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ABSTRACTS 
 

The dissertation, which consists of three chapters, is devoted to exploring 
theoretical asset pricing in over-the-counter markets.  
 
In Chapter 1, I study an economy where investors can trade a long-lived asset in 
both exchange and OTC market. Exchange means high immediacy and high cost 
while OTC market corresponds to low immediacy and low cost. Investors with 
urgent trading needs enter the exchange while investors with medium valuations 
enter the OTC market. As search friction decreases, more investors enter the 
OTC market, the bid-ask spread narrows and the trading volume in the OTC 
market increases. This sheds some light on the historical pattern why most 
trading in corporate and municipal bonds on the NYSE migrated to OTC markets 
after WWII with the development of communication technology. 
 
 
In Chapter 2 (co-authored with Hongjun Yan and Hin Wei), we analyse a search 
model where an intermediary sector emerges endogenously and trades are 
conducted through intermediation chains. We show that the chain length and the 
price dispersion among inter-dealer trades are decreasing in search cost, search 
speed and market size, but increasing in investors’ trading needs. Using data 
from the U.S. corporate bond market, we find evidence broadly consistent with 
these predictions. Moreover, as the search speed goes to infinity, our search-
market equilibrium does not always converge to the centralized-market 
equilibrium. In particular, the trading volume explodes when the search cost 
approaches zero. 
 
 
In Chapter 3 (co-authored with Hongjun Yan), we analyse a search model where 
two assets with different level of liquidity and safety are traded. We find that the 
marginal investor’s preference for safety and liquidity is not enough to determine 
the premium in equilibrium, but the whole distribution of investors’ valuations play 
an important role. We specify the condition under which an increase in the supply 
of the liquid asset may increase or decrease the liquidity premium. The paper 
also endogenizes the investment in the search technology and conducts welfare 
analysis. We find that investors may over- or underinvest in the search 
technology relative to a central planner.  
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Exchange or OTC Market: A Search-Based Model of
Market Fragmentation and Liquidity

Abstract

Investors trade assets or commodities in di¤erent venues: exchange means high immediacy and
high cost while OTC market corresponds to low immediacy and low cost. For example, a recent
trend in the global equity market is the rise of o¤-exchange trading. Chinese enterprise bonds
are traded in two partially-separated markets, the exchange and the interbank market. This
paper presents a model where a long-lived asset can be traded both in an exchange and an OTC
market. In the exchange, transactions are intermediated by market-makers who post bid-ask prices
publicly. In the OTC market, dealers search for trading partners on behalf of investors. Investors
with urgent trading needs enter the exchange while investors with moderate valuations enter the
OTC market. As search friction decreases, more investors enter the OTC market, the bid-ask
spread narrows and the trading volume in the OTC market increases. This helps understand the
historical pattern why most trading in corporate and municipal bonds on the NYSE migrated to
OTC markets after WWII with the development of communication technology.
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1 Introduction

Nowadays, many commodities and assets can be traded simultaneously in both centralized ex-

change and decentralized over-the-counter (OTC) markets. For example, Chinese enterprise bonds

are traded in two partially-separated markets, the exchange and the interbank market (Wang et

al, 2015). Multiple trading venues meet di¤erent levels of traders�needs: exchange usually means

high immediacy and high cost while OTC market, however, corresponds to low immediacy and

low cost. How do these two markets interact with each other? What factors determine liquidity,

trading volume and bid-ask spread in each market and how? How can a decentralized solution be

compared with the socially optimal solution? These are the basic questions we attempt to answer

in this paper.

We study an economy where investors can trade a long-lived asset through two trading venues:

exchange or OTC market. Transactions in the exchange can be executed instantly, but incur some

explicit costs. Trading in the OTC market incurs time delay. Investors are heterogenous in their

intrinsic valuations of the asset and each one�s valuation changes over time, which generates

trading between people and across time. Investors are free to enter either market. In this sense,

the two trading venues are linked together to some degree, so the pricing in one market a¤ects

trading activity in the other.

The model in Section 2 extends the seminal work of Du¢ e, Garleanu and Pedersson (2005,

2007) by enriching investor heterogeneity and incorporating a centralized market, but an individ-

ual investor�s valuation spans over interval
�
0;�

�
. For simplicity, we still assume that each investor

can hold either one unit of the asset or no unit at all. Investors with desperate trading needs

directly go to the exchange while those with intermediate trading needs enter the OTC market.

More precisely, given that transaction cost in the exchange is not very big so that both markets are

active in trading, there exist three cuto¤ points, �0, �w and �1, with 0 < �1 < �w < �0 < �.

Non-owners with high valuations (i.e., � 2
�
�0;�

�
) choose to buy in the exchange, those with

low valuations (i.e., � 2 [0;�w]) choose to hold no asset and those with valuations in between
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(i.e., � 2 (�w;�0)) choose to search in the OTC market. The optimal decision-making for own-

ers also follows a simple cuto¤ rule. Owners with low valuations (i.e., � 2 [0;�1]) choose to

sell in the exchange, those with intermediate valuations choose to sell in the OTC market (i.e.,

� 2 (�1;�w)) and those with high valuations (i.e., � 2
�
�w;�

�
) choose to hold onto the asset.

Investors�entry choices determine that the bid (or ask) price in the exchange should be charged

more aggresively than their counterparts in the OTC.

To further determine the bid-ask spread, we analyze two extreme cases of market making in the

exchange: competitive or monopolistic. The bid-ask spread in the exchange set by a monopolistic

market maker becomes narrower if search friction in the OTC is alleviated, if investors�trading

needs are stronger or if investors become less patient. Interestingly, we also �nd that how the

asset supply a¤ects the bid-ask spread is somehow related to the shape of the underlying valuation

distribution.

We specify the conditions under which both markets can coexist or all trading just occurs to

only one market. Generally speaking, the relative e¢ ciency of the two markets (including trans-

action costs and search friction) and investors heterogeneity mutually determine the boundary of

market trading.

A quite robust observation from empirical studies is that the average trading volume in the

OTC market is much bigger than that in the exchange. In Section 2.4, we compare trading volumes

in two markets and �nd that an improvement of search technology in the OTC market attracts

more investors to trade in the OTC. This may shed some light on the historical pattern that, with

the development of communication technology, most trading in corporate and municipal bonds

on the NYSE have migrated to OTC markets after World War II.

We perform welfare analysis in Section 2.5. A benevolent social planner aims to maximize

the total welfare by controlling asset prices in both markets. We �nd that the social planner

tends to set a low �0 and a high �1 relative to the decentralized solution under competitive or

monopolistic market making. More importantly, the socially optimal bid-ask spread is even below
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the transaction cost. This means that the social optimum can not be automatically achieved by

a competitive equilibrium where market makers in the exchange receive no subsidy from outside.

Though the main model provides several useful intuitions and important implications, its

tractability relies heavily on the strong assumptions of asset indivisibility and restrictions on

investors�holding position. Will the main results di¤er a lot if we deviate from these two assump-

tions? In Section 4, we work on a variation where the asset is perfectly divisible and investors are

allowed to trade any quantity. The new model is more complicated than the old one and there

could exist multiple equilibria. In a special case when the investor�s instantaneous utility takes

a quadratic form, we �nd that the bid-ask spread in the exchange takes almost exactly the same

expression as before.

This paper is related to the recently burgeoning literature that uses random search model

to analyze OTC markets. The strand of this literature is based on the framework developed in

Du¢ e, Garleanu and Pederson (2005). Their model has been generalized by a number of papers

(Weill (2007), Vayanos and Wang (2007), Vayanos and Weill (2008), etc). The closest to the

current paper is Miao (2006), who also analyzed a model where decentralized and centralized

trading are both available. The current paper is di¤erent from his work in a number of important

ways. Most importantly, in contrast to Miao�s paper, this work analyzes an environment where

a long-lived asset are traded repeatedly in the market, so buyers and sellers are endogenously

determined rather than exogenously �xed. However, in Miao�s model, when trade occurs to a pair

of seller and buyer, they both leave the market forever. The paper also draws di¤erent welfare

implications from Miao�s. Miao showed that monopolistic market-making may achieve a higher

level of social welfare than the case of competitive market-making, which can never be the case

in the current framework. A recent work by Zhong (2015) also analyzes the interaction between

centralized and OTC market, but his work focuses on how the introduction of centralized trading

reduces opacity in the OTC market, which is not the focus of this paper.

The rest of the paper is organized as follows. Section 2 lays out the main model and constructs

the equilibrium. Section 3 discuss some further issues. Section 4 considers a viariation where the
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restrictions on portfolio holdings are relaxed.

2 The Model

Time is continuous and continues forever. The economy consists of three types of in�nitely lived

agents, called investors, dealers in the OTC market and market makers in the exchange. All

agents are risk neutral and discount future cash �ow at a constant rate r > 0. There are an asset

available for trading and a numeraire good for consumption in the economy.

The asset is long-lived and indivisible. Each unit of the asset pays one unit of perishable

consumption good continuously to its holder. Each investor can hold either zero or one unit of

the asset and no short-selling is allowed. An investor who owns a unit of the asset is called an

owner while one with no asset in hand is called a non-owner.

Each investor, whether he is an owner or a non-owner, has an intrinsic valuation for the asset,

denoted by � 2
�
�;�

�
. An owner derives an instantaneous utility 1 + � from the asset if his

current intrinsic valuation is �. A non-owner, however, gets zero consumption good, no matter

what his valuation is.

Each investor receives a shock in his intrinsic valuation according to a Poisson process with

arrival rate �. This process is independent across investors. Conditional on receiving such a shock,

the investor draws his new valuation according to a cumulative distribution function F (�) on the

support
�
�;�

�
. For simplicity, one�s new valuation is independent of his previous one. We assume

that F (�) is continuous and �rst-order di¤erentiable on its support and the associated density

function is denoted by f (�). Consequently, investors�valuations on the asset vary from person

to person and change over time, which generates the motive for trading. It should be expected

that in equilibrium those owners with low valuations would like to sell while those non-owners

with high valuations would like to buy. Investors can trade the asset in the exchange or the OTC

market. Market makers remain in the exchange while dealers stay in the OTC market and both

of these two groups have no intrinsic valuation for the asset. None of the two sectors hold any
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position in the asset, so all units are held by investor at any point of time.

OTC market. Dealers have direct access to a competitive interdealer market continuously.

It takes time for investors to contact dealers. Each investor meets a dealer randomly at a Poisson

arrival rate � > 0, i.e., the average time that an investor has to wait until his desired transaction

is executed is 1=�. Once a dealer meets a buyer (or seller), they exchange one unit of the asset

at bid price PA (or ask price PB). The bid-ask spread, PA � PB, is used to cover the cost of

intermediating each unit of the asset incurred by the dealer. Denote such cost by �. Free entry

implies

PA � PB = �: (1)

Both of the bid and ask prices are determined in the interdealer market. Here, parameter �

measures the illiquidity of the OTC market from investors�viewpoint. A large � translates to a

short delay time and thus corresponds to a liquid market. When � goes to in�nity, investors can

adjust their asset positions instantaneously. 1

Our formulation for search friction in the OTC market can also be understood as prearranged

trades, which are often seen in the municipal bond market. An investor calls a dealer to show

his trading interest. The dealer then searches for a counterparty. Once the dealer has found a

trading partner, he transfers the bond from the seller to the buyer. Hence, the dealer�s role in

a pre-arranged trade is simply to provide intermediation service. 2 In this interpretation, the

parameter � measures how quickly a dealer position a trading partner for his client.

Throughout, we will stick to the �rst interpretation, but it is direct to rephrase our results in

the second interpretation.

Exchange Market. At any time, each investor can buy the asset at ask price A and sell

the asset at bid price B immediately. Both of the bid and ask prices are observed publicly by all

market participants, including all investors and dealers in the OTC market. A transaction incurs

1Here we take � as exogenously given. In Section 4, we will discuss how to determine this parameter endogenously.
2Li and Schürho¤ (2012) illustrates that those dealer �rms in the peripheral position tend to intermediate

prearranged traders because they are only connected with a limited number of trading partners (other dealer �rms
or clients) and just want to avoid inventory risk. See section 4.1 of their paper for more details.
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a �xed cost c.

For time being, we assume that there is active trading in both markets. We will later show

the condition under which this is the case or one of the two markets shut down due to no trading

otherwise.

An investor is free to enter either of the two trading venues at any moment and there is no

cost for him to switch one from the other. Even if an investor in the OTC market gets a chance

to contact a dealer, he can still choose to trade in the exchange. Hence, the following condition

should hold in equilibrium to guarantee active trading in both markets:

A > PA > PB > B: (2)

Otherwise, if the prices in the OTC market are not particularly favorable, all investors would

rather trade in the exchange.

2.1 Value Functions

The state of an individual investor is characterized by the pair (�;�), where � 2 f0; 1g is his asset

position and � his intrinsic valuation. Let V (�;�) be the expected payo¤ of such an investor.

A non-owner faces two choices: 1) do nothing, 2) search to buy the asset in the OTC, 3) buy

a unit of asset in the exchange at price A. He decides to choose the one that delivers him the

highest level of the expected payo¤, i.e.,

V (0;�) = max
n
Vn (�) ; V

OTC
b (�) ; V exchangeb (�)

o
; (3)

where Vn (�), V OTCb (�) and V exchangeb (�) represent the non-owner�s expected payo¤s if he

chooses to do nothing, search to buy the asset in the OTC or buy the asset in the exchange

at present and follows his optimal strategy in the future, respectively. The three value functions
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are determined by the following equations

Vn (�) =
�

�+ r
E
�
V
�
0;�0

��
; (4)

V OTCb (�) =
� [V (1;�)� PA] + �E [V (0;�0)]

�+ �+ r
; (5)

V exchangeb (�) = V (1;�)�A; (6)

where the expectations on the �rst two lines are taken on �0, which is a random variable with

cdf F (�). The �rst line says that a non-owner who chooses not to search stays inactively until he

receives a shock in his valuation which may call upon him to buy the asset. It is direct to see that

Vn (�) is constant for all �, so we denote it by Vn. The second line shows that a buyer in the

OTC keeps searching until he meets a dealer and purchase one unit at price PA, which happens

at rate �, or there is a change in his valuation and he needs to make a decision based on his new

valuation. The third line illustrates that a buyer in the exchange becomes an owner immediately

after he pays A.

An owner has three choices: 1) hold onto his asset, 2) search to sell the asset or 3) sell the

asset in the exchange immediately, so the expected payo¤ of an owner should be given by

V (1;�) = max
n
Vh (�) ; V

OTC
s (�) ; V exchanges (�)

o
; (7)

where Vh (�) represents the expected payo¤ of an inactive holder and V OTCs (�) and V exchanges (�)

are the non-owner�s expected payo¤s if he searches to sell the asset in the OTC or sells the asset

in the exchange at present and follows his optimal strategy in his whole life, respectively. These

three value functions are given by

Vh (�) =
1 +�+ �E [V (1;�0)]

�+ r
; (8)

V OTCs (�) =
1 +�+ � [V (0;�) + PB] + �E [V (1;�

0)]

�+ �+ r
; (9)

V exchanges (�) = V (0;�) +B; (10)

where the expectations on the �rst two lines are taken on �0, which is a random variable with cdf

F (�).
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We will later verify that in equilibrium a non-owner follows the following optimal decision

rule: 8<:
do nothing if � 2 [�;��)
search to buy the asset in the OTC if [��;�0]
buy the asset in the exchange if � 2

�
�0;�

� ; (11)

where �� and �0 are two cuto¤points to be determined in equilibrium. A non-owner is indi¤erent

between doing nothing and searching in the OTC if his valuation is �� and is indi¤erent between

trading in the OTC and the exchange market if his valuation is �0:

Vn (�
�) = V OTCb (��) ;

V OTCb (�0) = V exchangeb (�0) :

There exist another two cuto¤ points ��� and �1 with � � �1 < ��� � � such that an owner�s

optimal choice is given by8<:
sell the asset in the exchange if � 2 [�;�1)
search to sell the asset in the OTC if [�1;���]
hold onto the asset if � 2

�
���;�

� ; (12)

where �1 and ��� satisfy

V exchanges (�1) = V OTCs (�1) ;

V OTCs (���) = Vh (�
��) :

That is, the marginal owner with valuation �1 is indi¤erent between selling in the exchange and

the OTC market while the marginal owner with valuation ��� is indi¤erent between searching to

sell in the OTC and holding onto his asset.

We now brie�y argue �� � ���. Suppose not, i.e., �� < ��� and consider the behavior of

a buyer with valuation in the interval (��;���). As a non-owner, he searches to buy the asset

in the OTC according to decision rule (11). Once he buys the asset after paying PA, he would

turn to sell the asset still in the OTC, according to decision rule (12), at a somewhat low price

PB. Such an investor actually acts as a speculator, but his strategy is to "buy high and sell

cheap". We show in the appendix how such operation certainly violates the optimality of buyer�s

pro�t-maximization objective and thus should be excluded.
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All in all, the four cuto¤ points should be ordered as

�1 < �
�� � �� < �0:

2.2 Demographic Analysis

We use �o (�) and �n (�) to denote the density function of owners and non-owners at � re-

spectively, i.e., the population size of the owners (or non-owners) with valuations in the region

(�;�+ d�) is �o (�) d� (or �n (�) d�). The following accounting identities must hold for any

time:

�o (�) + �n (�) = f (�) ; (13)Z �

�
�o (�) d� = s: (14)

Equation (13) means that the cross-sectional distribution of investors� type is equal to f (�).

Equation (14) requires that the total measure of owners must equal to the total supply of the

asset in the economy (s) because both of the exchange and the OTC market take zero asset

position. This implies Z �

�
�n (�) d� = 1� s:

Since trading in the exchange results in no delay, decision rules (11) and (12) then imply that

�o (�) = 0 for � 2 [�;�1) ;

�n (�) = 0 for � 2
�
�0;�

�
:

It follows immediately from (13) that

�n (�) = f (�) for � 2 [�;�1) ;

�o (�) = f (�) for � 2
�
�0;�

�
:

We next determine �o (�) and �n (�) for � 2 [�1;���]. For this, we consider the �ows in and

out of the population of owners (i.e., sellers) with valuations in interval [�;�+ d�] during time
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period dt. According to (12), these sellers search in the OTC. The in�ow is �dt � sf (�), coming

from those sellers who receive preference shocks and whose new valuations happen to fall in this

interval. The out�ow consists of those sellers who meet dealers and trade (�dt � �o (�)), and of

those sellers who receive preference shocks (�dt ��o (�)). The �ow-balance equation is thus given

by

�sf (�) = ��o (�) + ��o (�) for � 2 [�1;���] :

Using the similar logic, we can �gure out �o (�) and �n (�) for � 2 (���;��) and [��;�0].

For the sake of saving space, we relegate all the details to the appendix.

Since the dealer sector, as a whole, holds no inventory, it follows that the mass of buyers

should equal that of sellers, namely,

�s = �b; (15)

where the masses of buyers and sellers are given by, respectively,

�b =

Z �o

��
�n (�) d�; (16)

�s =

Z ���

�1

�o (�) d�: (17)

The market makers in the exchange hold no position either. According to seller�s decision

rule (12), the total number of units sold from low-valuation investors to the exchange per unit

time amounts to �sF (�1). According to buyer�s decision rule (11), the total number of units

demanded by high-valuation investors per unit time is given by � (1� s) [1� F (�0)]. In the

exchange, the demand equals the supply at any time, so

�sF (�1) = � (1� s) [1� F (�0)] (18)

2.3 Equilibrium

We �rst study the partial equilibrium where A and B, the bid and ask prices in the exchange, are

taken as given.
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De�nition 1 Given A and B, the steady-state (partial) equilibrium consists of bid and ask prices

in the OTC PA and PB, cuto¤ points �1;���;�� and �0 with � � �1 < ��� � �� < �0 � �,

the distributions of owners and non-owners (�o (�) ; �n (�)), such that

� the implied choices (11) and (12) are optimal for all investors,

� the implied sizes of each group of investors remain constants over time and satisfy the

corresponding �ow-balance equations,

� dealers are free to enter the OTC market, i.e., (1) holds,

� the market-clearing conditions in the OTC and exchange market, (15) and (18), hold.

Our analysis will be focused mainly on the case of � = 0, with the only exception in Section 4

where we analyze the impact of dealer�s transaction cost on asset prices. When � = 0, the wedge

between the bid and ask prices in the OTC market vanishes, so PA = PB, which we denote by

P . We show in the appendix that this leads to ��� = ��. In what follows, when we mention

"bid-ask spread", it always refers to the one in the exchange as there is no such thing in the OTC

market.

The following proposition characterizes a steady state equilibrium.

Proposition 1 (Partial equilibrium with � = 0) If c � A � B < ���
�+�+r , the steady-state partial

equilibrium given A and B is the following. The cuto¤ points are given by

�� = ��� = �w; (19)

and �0 and �1 are uniquely determined by the following equations

A�B =
�0 ��1
�+ �+ r

; (20)

(1� s)F (�0) + sF (�1) = 1� s: (21)

The asset price charged by the dealers in the OTC market, P , is given by

P =
1 +�w
r

� �
r

R �w
�1

F (�) d�

�+ �+ r
+
�

r

R �0
�w
[1� F (�)] d�
�+ �+ r

: (22)
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Investors�distributions are given by

�n (�) =

8>>><>>>:
f (�) for � 2 [�;�1)
�(1�s)+�
�+� f (�) for � 2 [�1;�w)

�(1�s)
�+� f (�) for � 2 [�w;�0]
0 for � 2

�
�0;�

� ; (23)

and

�o (�) =

8>>><>>>:
0 for � 2 [�;�1)
�sf(�)
�+� for � 2 [�1;�w)
�s+�
�+� f (�) for � 2 [�w;�0]
f (�) for � 2

�
�0;�

� : (24)

Equation (20) shows that the distance between �0 and �1 is positively related to the bid-ask

spread and negatively related to investor�s e¤ective discount rate. Recall that in equilibrium only

those buyers with valuation above �0 and sellers with valuation below �1 choose to trade in the

exchange, so the distance between these two cuto¤ points gives the range of investors who are

active in the OTC market and therefore re�ects the bid-ask spread in the exchange. Equation

(21) just highlights that no asset is held in the hand of market makers, a copy of constraint (18).

The asset price in the OTC market in (15) consists of three components. The �rst part, 1+�wr ,

is exactly the asset price in the frictionless benchmark. It re�ects the present value of the cash

�ow for the marginal investor with valuation �w. The second term captures the buying pressure

on the price. Recall that sellers in the OTC, with valuations ranging from �1 to �w, would like

to sell at a low price if they have to wait for a long time. The third term corresponds to the

selling pressure, imposed by buyers in the OTC, whose valuations range from �w to �0.

In the literature, trading volume is an important measure of liquidity. The total units of the

asset being traded in the exchange is given by

TVexchange = �sF (�1) ; (25)

and the total units of the asset being traded in the OTC market is given by

TVOTC = ��b =
��s

�+ �
[1� s� F (�1)] : (26)

We will compare them in Section 2.4. For any �nite �, the total trading, which is the sum of

TVexchange and TVOTC, can never exceed TVWalrasian, the counterpart in the frictionless Walrasian

13



benchmark. 3

In general, there are three types of equilibria. If � < �1 < �w < �0 < �, the two markets

coexist. If �1 = � and �0 = �, there is no active trading in the exchange and only the OTC

market survives. If �1 = �0 = �w, the OTC market is quiet and only the exchange market

survives. We will later show that the last situation could never be the case in equilibrium unless

� = 0. 4

In order to determine the equilibrium, we need to specify how the bid and ask prices in the

exchange are set up. For this, we consider two cases of market structure in the exchange. In

the �rst case, free entry induces perfect competition among market makers. The second case is

monopolistic market making.

Competitive Market Making. Fierce competition among market makers in the exchange

should drive the average pro�t down to zero, so the bid-ask spread can only cover the cost of

making market for each share, i.e., A�B = c.

We �rst have the following result.

Proposition 2 Consider the search equilibrium with competitive market makers in the exchange.

If (�+ �+ r) c < �, trading occurs to both the exchange and the OTC market.

This proposition establishes that if either the cost of market making or the e¤ective discount

rate is high enough, all investors prefer to trade in the OTC market and there is no active trading

in the exchange.

3This can be easily seen from

TVexchange + TVOTC =
�

�+ �
�sF (�1) +

�

�+ �
�s (1� s)

<
�

�+ �
�s (1� s) + �

�+ �
�s (1� s)

= �s (1� s) = TVWalrasian ;

where we use �1 < �w in the second step.
4This claim, however, is not true when � > 0. If � is high relative to c, all investors choose to trade in the

exchange. See Section 3 for more details.
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To show an example, we assume F (�) is a uniform distribution on
�
0;�

�
. In this case, the

Walrasian cuto¤ point is given by �w = (1� s)�. The two cuto¤ points, denoted by �c0 and �c1

speci�cally, are given by

�c0 = min
�
(1� s)� + sc (�+ �+ r) ;�

	
;

�c1 = max
�
(1� s)�� (1� s) c (�+ �+ r) ; 0

	
:

The asset price in the OTC market, denoted by PCM speci�cally, is given by

PCM =

8<:
1+(1�s)�

r + �c
r (2s� 1)

�
1� (�+�+r)c

2�

�
, if (�+ �+ r) c < �

1+(1�s)�
r + �

r
(s� 1

2)�
�+�+r , if (�+ �+ r) c � �

: (27)

(27) illustrates that PCM consists of three components. The �rst term in PCM is actually

Pw, the Walrasian price of the asset in the frictionless benchmark. It is obvious to see that

whether PCM is above or below its Walrasian counterpart depends solely on the asset supply. If

s > 1
2 , there are more owners than non-owners in the economy and the buying pressure dominates

which pushes PCM up to overtake Pw. If s < 1
2 , there are more non-owners than owners in the

economy and thus the selling pressure dominates, which results in PCM < Pw. In both cases, an

improvement in the search technology (which corresponds to a higher level of �) enables PCM to

approach Pw. When s = 1
2 , the two pressures are in balance.

Monopolistic Market Making. A monopolistic market maker sets up A and B to maximize

his expected pro�t. In the steady-state equilibrium, the pro�t per unit time is given by

(A�B � c)TVexchange = �s
�
�0 ��1
�+ �+ r

� c
�
�1

�
;

subject to the constraint that the market maker holds zero inventory in his hand, i.e.,

(1� s) �0
�
+ s

�1

�
= 1� s:

Proposition 3 The search equilibrium with a monopolistic market maker is characterized as

follows. If (�+ �+ r) c < �, trading occurs to both the exchange and the OTC market. If

(�+ �+ r) c < �, trading occurs to the OTC market but not the exchange. The two cuto¤ points,
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denoted by �m0 and �m1 speci�cally, are given by

�m0 = min
n�
1� s

2

�
�+

s

2
(�+ �+ r) c;�

o
;

�m1 = max

�
(1� s)�

2
� 1� s

2
(�+ �+ r) c; 0

�
:

The asset price in the OTC market, denoted by PMM speci�cally, is given by

PMM =

8<:
1+(1�s)�

r + �
r

�
c+ �

�+�+r

� �
s� 1

2

� �
3
4 �

(�+�+r)c

4�

�
, if (�+ �+ r) c � �

1+(1�s)�
r + �

r
(s� 1

2)�
�+�+r , if (�+ �+ r) c > �

:

If (�+ �+ r) c < �, the bid-ask spread in the exchange is given by

A�B = �

2 (�+ �+ r)
+
c

2
: (28)

The bid-ask spread increases in c and � and decreases in the e¤ective discount rate. First, a

unit increase in transaction cost c translates into a partial increase in the bid-ask spread. Note that

increasing the bid-ask spread also discourages some investors from trading in the exchange and

results in a decreased demand for the monopolistic market maker. Second, if investors are more

dispersed in their valuations, then a wider bid-ask spread is charged. Third, a higher discount

rate also leads to fewer investors to trade in the exchange, so the market maker has to narrow the

bid-ask spread to maintain his business.

We will see in Section 5 that all the above results of comparative statics still hold in the case

when asset is divisible and investors are allowed to hold and trade any amount. Interestingly, the

bid-ask spread (for each share) in the new equilibrium takes exactly the same expression as here

if investor�s instantaneous utility is quadratic.

Note that the asset supply (denoted by s) does not play an explicit role in (28), though it

does a¤ect �m0 and �m1 . The absence of s in determining the optimal bid-ask spread is due to

the speci�cation of F (�). The following two numerical examples indicate that the shape of the

underlying preference distribution is an important factor to determine the supply e¤ect on the

bid-ask spread.

Example 1. If F (�) =
p
� on [0; 1], the bid-ask spread decreases in s.
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Example 2. If F (�) = �2 on [0; 1], the bid-ask spread increases in s.

2.4 Trading Volume

According to an empricial research on the Chinese bond markets (Wang et al, 2015), trading takes

place more frequently in the exchange but the average transaction size there is much smaller than

that in the OTC market. The average trading volume in the OTC market is over thirty times

more than that in the exchange. In the current model, the transaction size for each trade is

restricted to be one, so the number of trades equal the total trading volume then. We check

whether this simple model captures this important pattern.

The following table summarizes how the cuto¤ points and trading volume in each market

respond to the change in some underlying parameters under competitive market making.

Table: Comparative Statics Results

�0 �1 TVexchange TVOTC
� " " # # "
c " " # # "
r " " # # "
� " " # ? "

The �rst two lines are easy to understand. When the exchange becomes relatively more costly,

which is captured by an increase in � or c, more investors are willing to trade in the OTC market.

When investors are more impatient, which translates to a high r, holding an asset is less valuable.

This makes the delay cost in the OTC market less intolerable, so more investors are attracted to

the OTC market, as we see on the third line. The e¤ect of � on the cuto¤ points is clear. The

higher � is, more frequenly an investor�s type changes. This has two e¤ects. On the one hand, it

shortens the holding period of an asset for an owner and thus makes waiting in the OTC market

less costly. This surely widens the distance between �0 and �1 and increases TVOTC, but does

not lead to a lower TVexchange because a higher � also implies that more investors want to trade

during each instant.

As a natural consequence, the following proposition speci�es the condition under which TVOTC

exceeds TVexchange when both markets are active.
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Proposition 4 Suppose F (�) = � for � 2
�
0;�

�
and (�+ �+ r) c < �. There exist positive

values r0; c0 and �0 such that TVOTC > TVexchange if r > r0, or c > c0 or � > �0 under competitive

market making. Similar results obtain under monopolistic market making.

Note that we haven�t mentioned the role of � as it may increase the trading volumes in both

markets.

2.5 Welfare Analysis

In this subsection we examine whether the bid-spread, determined in Subsection 2.3, is socially

optimal.

The social welfare in the search equilibrium is de�ned as the sum of all investors�expected

payo¤s and total pro�ts for market makers:

Wd =

Z �

�
[V (0;�)�n (�) + V (1;�)�o (�)] d�+

1

r
(A�B � c)TVexchange: (29)

Since the type distribution for investors in a steady-state equilibrium does not change over time,

we can also consider the realized surplus per period, which is the sum of the total consumption

goods received by all owners net of total transaction costs in the exchange, i.e.,

Ws =

Z �

�
(1 + �)�o (�) d�� c � TVexchange: (30)

Here, the subscript d in (29) stands for "dynamic" and the subscript s in (30) stands for "static".

A social planner chooses asset prices in both markets, namely, A, B and P , and let investors

to make their optimal choices based on their own valuations. Investors who choose to trade in the

OTC market still have to face search frictions and bear the loss of delay by themselves while any

transaction in the exchange can be executed immediately at some cost. Since neither dealers nor

market makers have any intrinsic valuation in holding the asset, the social planner would allocate

all units of asset to investors, so the zero inventory conditions for the dealer sector and the market

makers still hold, i.e., both (18) and (15) are binding.
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It is easy to see that the social planner tends to allocate the desperate investors to the exchange

and investors with medium trading motives to the OTC market, so the optimal allocation rule

of investors should take a similar cuto¤ form as in (12) and (11). The following proposition

summarizes the socially e¢ cient allocation.

Proposition 5 Maximizing the welfare criterion in (29) and (30) lead to the same solution of

social optimum, which is characterized by the following. (I) There exist two cuto¤ points, denoted

by �fb0 and �fb1 , such that (i) if (�+ �) c < �, �
fb
1 is the unique solution to the following equation

(1� s)F
�
�fb1 + (�+ �) c

�
+ sF

�
�fb1

�
= 1� s,

and �fb0 = �fb1 + (�+ �) c, (ii) if (�+ �) c � �, �s0 = � and �s1 = 0. (II) An owner�s

optimal choice is given by (12) and a non-owner�s optimal choice is given by (11), where we set

�� = ��� = �w and replace �0 by �
fb
0 and �1 by �

fb
1 therein. (III) If (�+ �) c � �, trading

occurs to the OTC market but not the exchange. If (�+ �) c < �, trading occurs to both the

exchange and the OTC market and the bid-ask spread in the exchange is given by (�+�)c
�+�+r .

Here, the superscript fb stands for "�rst-best". The condition to have active trading in both

markets in the social optimum is c < �
�+� . Recall that the corresponding condition in the decen-

tralized solutions in Proposition 2 and Proposition 3 is c < �
�+�+r . Note that the value of �

fb
0

and �fb1 are independent of r. This is obvious if we use the static welfare criterion because there

is no r in (30), but not so obvious if we use the dynamic welfare criterion.

We �nd that the socially optimal bid-ask spread in the exchange is strictly below the required

transaction cost. This means that the social optimum can not be sustained even by a competitive

equilibrium unless the market makers in the exchange receive some subsidy from outside.

Proposition 6 If c < �
�+�+r , the cuto¤ points in all three equilibriums are ranked by

�m0 > �
c
0 > �

fb
0 > �fb1 > �c1 > �

m
1 :

If �
�+�+r � c <

�
�+� , they are ranked by

�m0 = �
c
0 = � > �

fb
0 > �fb1 > 0 = �c1 = �

m
1 :
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If c � �
�+� , then �

m
0 = �

c
0 = �

fb
0 = � and �c1 = �

m
1 = �

fb
1 = 0.

Note that a higher level of �1 and a lower level of �0 mean that investors with a larger

range of valuations are trading in the exchange. Given the transaction cost is not very large,

the social planner�s main concern is focused on the delay cost paid by those investors waiting in

the frictional OTC market. This proposition says that the search equilibrium under monopolistic

market making keeps too many investors away from the exchange, so they have to wait in the

OTC market and bear a large amount of delay cost. Such deadweight loss will be re�ected in the

aggregate welfare.

Finally, we are ready to compare the total welfare across di¤erent equilibriums. Denote for

short the social welfare in the search equilibrium under competitive market-making and monop-

olistic market-making by WCM
d and WMM

d , respectively. Denote the social welfare in the social

optimum by WFB
d . The following result con�rms that neither the social welfare under monopo-

listic market-making nor that under competitive market-making could achieve the social optimal

level because they just allow too few investors to trade in the exchange.

Proposition 7 If c < �
�+�+r , then W

FB
d > WCM

d > WMM
d . If �

�+�+r � c <
�
�+� , then W

FB
d >

WCM
d =WMM

d . If c � �
�+� , then W

FB
d =WMM

d =WCM
d .

3 Discussions

In this section, we discuss some further issues.

Endogenous Determination of Search Intensity �. So far, we have taken � as ex-

ogenously given. It is easy to determine this parameter by assuming a matching function.

Let �d be the mass of dealers and still use �b and �s to denote the mass of buyers and sell-

ers, respectively. The number of dealer-buyer pairs being matched per unit time is given by

M (�b; �d), where M (�; �) is strictly increasing in both of its arguments and exhibits constant

return to scale. Since dealers and investors match at random, a buyer meets a dealer at rate
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M (�b; �d) =�d = M (�b=�d; 1) � m (�b=�d), where m (�) is a strictly increasing function. Sim-

ilarly, the number of dealer-seller pairs being matched per unit time is given by M (�d; �s). A

seller meets a dealer at rate M (�s; �d) =�d = m (�s=�d). Since the dealers do not hold inventory,

we have �s = �b. Hence, � is given by

� = m (�b=�d) : (31)

Here, �b is also determined in the equilibrium endogenously. In the appendix, we show

�b =
� (1� s)
�+ �

[F (�0)� (1� s)] :

Note that � a¤ects �b in two opposite directions. On the one hand, an increase in � means a high

speed of matching and a shorter expected time delay, resulting in fewer searchers in the OTC

market. This e¤ect is re�ected by the � in the denominator of the above expression. On the other

hand, a reduction in the search friction attracts more investors to enter the OTC market. This

e¤ect is captured by �0, which is expected to be increasing in �. When F (�) is uniform, the �rst

e¤ect dominates and �b is decreasing in � under monopolistic or competitive market-making.

It follows that the RHS of (31) is decreasing in � while the LHS of this equation is obviously

increasing in �. It is then easy to show that a unique � exists.

Positive Cost of Market-Making in the OTC Market: � > 0. We construct the

equilibrium for a positive � in Theorem 1 in Appendix I. Comparing with the special case of � = 0

reported in Proposition 1, we highlight three di¤erences. First, unlike (19), there is now a wedge

between �� and ���:

�� ���� = (�+ r) �:

Second, the bid-ask spread in the exchange and the type range are now governed by

A�B = �0 ��1 + ��
�+ �+ r

; (32)

which is a generalization of (20). Third, the bid-ask spread in the OTC market equals �, i.e., (1).

In general, there are now four types of equilibriums.
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� If � > �0 > �� > ��� > �1 > 0, both markets are active.

� If � > �0 = �� � ��� = �1 > 0, trading only occurs to the exchange.

� If � = �0 > �� � ��� > �1 = 0, trading only occurs to the OTC market.

� If � = �0 > �� and ��� = �1 = 0, no trading occurs to either market.

The following proposition analyzes which market is active in trading under competitive market

making.

Proposition 8 Consider the search equilibrium with competitive market makers in the exchange.

If c � � � �
�+r , no trading occurs to either market. If � < c < ��+�

�+�+r , active trading occurs to

both markets. If c � ��+�
�+�+r > �, trading only occurs to the OTC market. If c = � <

�
�+r , active

trading only occurs to the exchange.

The following proposition reports the impacts of � on the equilibrium.

Proposition 9 Consider the search equilibrium with competitive market makers in the exchange.

(I) When � � c, �0 = �1 = �w, i.e., there is no active trading in the OTC market. (II) When

� < c, �0 and �1 are uniquely determined by (21) and (32). As � increases, more investors

choose to trade in the exchange, i.e., @�0@� < 0 <
@�1
@� ,

@�b
@� > 0 and

@TVexchange
@� > 0 > @TVOTC

@� .

The results in Proposition 8 and 9 hold for a general cumulative distribution F (�). Part (I)

of Proposition 9 reveals that the OTC market is driven out of the economy if � is large relative

to c. In this case, intermediating transactions in the OTC market is too costly relative to market

making in the exchange, so all trading activities migrate to the exchange.

Part (II) of Proposition 9 describes the case when both markets coexist for a small �. A higher

� expands the bid-ask spread in the OTC and makes trading in the exchange more appealing, so

an increase in � implies more investors in the exchange and few investors in the OTC market.
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Consequently, � decreases TVOTC and increases TVexchange. An interesting observation is that

� increases the total trading volume. This means the increase in TVexchange is more than the

decrease in TVOTC.

As for the equilibrium with a monopolistic market maker, we carry out the same analysis as

in Proposition 3 and obtain the optimal bid-ask spread:

A�B = �+ ��

2 (�+ �+ r)
+
c

2
:

Several points are in order. First, A�B is increasing in �. This is because when � is increased, the

advantage of the exchange over the OTC market becomes larger and raising the bid-ask spread

does not lose but win more business for the market maker. Second, all of the comparative statics

results still hold and the intuitions are similar. Just like the case of � = 0, the bid-ask spread is

still positively related to �, c and negatively related to �, r and �.

In addition, we can decompose the bid-ask spread in the exchange into three components:

A�B = (A� PA) + (PA � PB)| {z }
=� according to (1)

+ (PB �B) ;

where the term in the �rst (or last) bracket is the spread of ask (or bid, respectively) price between

two markets and the term in the middle bracket is the bid-ask spread in the OTC market. 5 The

increase of � narrows (A� PA) and (PB �B).

The following proposition analyzes which market is active in trading under monopolistic mar-

ket making.

Proposition 10 Consider the search equilibrium with a monopolistic market maker in the ex-

change. Assume F (�) is uniform on
�
0;�

�
. Both markets are active if

�
1 + �+r

�

�
c � �

� < � <

�+(�+�+r)c
�+2(�+r) . Trading only occurs to the exchange if

�+(�+�+r)c
�+2(�+r) � � < �

�+r . Trading only occurs

to the OTC market if � < max
n
�+(�+�+r)c
�+2(�+r) ;

�
1 + �+r

�

�
c� �

�

o
.

5More precisely, both (A� PA) and (PB �B) are positively related to � and c and negatively related to the
e¤ective discount rate and �. See Part IV of Section 7.6.

23



4 Variation

In this section, we consider a model in which the asset is divisible and investors are allowed to

hold and trade any amount of quantities, though short-selling is still not allowed. Basically, we

extend the search model in Lagos and Rocheteau (2009) by adding a centralized exchange.

The instantaneous utility function of an investor is ui (q) + c, where q � 0 represents the

investor�s asset holdings, c is the net consumption of the numeraire good and i 2 f1; 2g indexes

his preference shock. Note that a non-negative q means short-selling is forbidden, but c can

be positive or negative. To get closed-form solutions, we will mainly employ a quadratic utility

function in this section:

ui (q) = �iq �
1

2
q2; (33)

where �2 > �1 > 0. This speci�cation of utility is obviously strictly increasing and strictly concave

in q. A bigger �i translates to a higher level a marginal utility. Each investor receives a preference

shock with Poisson arrival rate �. Conditional on receiving such shock, the investor draws �i with

probability �i > 0, where �1 + �2 = 1.

OTC market. Investors contact dealers randomly at arrival rate �. Once a dealer and an

investor meet each other, they negotiate over the terms of trade, which now consist of the quantity

of assets that the investor aims to exchange and the intermediation fee that the dealer charges

for his services. The two parties split total trade surplus via Nash bargaining, that is, the dealer

gets � fraction of the trade surplus and the investor gets the remaining fraction. We still use P

to represent the asset price for each unit in the OTC market, whose value should be determined

in equilibrium.

Exchange. This is the same as before, i.e., investors can enter the exchange at any point of

time and buy (or sell) any quantity of the asset at unit ask price A (or unit bid price B).

The model setup in this section di¤ers from that in the previous section mainly along two

dimensions. First and foremost, asset is divisible and investors are free to hold and trade any
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quantity of assets as the net holdings in their portfolios are non-negative. Second, investors and

dealers in the OTC market bargain over the price and quantity at the same time. As long as

dealers have a strictly positive bargaining power, i.e., � 2 (0; 1], they can earn some positive

intermediation fees.

4.1 Investors�Optimal Choice

An investor with preference type �i and asset holding q is indexed by a pair (i; q) 2 f1; 2g � R+,

which is called as his state in what follows. Let �i (q) denote the value function of such an

investor, i.e., the maximum expected utility attained by an investor of type (i; q).

Suppose an investor in state (i; q) chooses to enter the OTC market and let Ui (q) be the

expected discounted utility for him. Note that Ui (q) is strictly dominated by �i (q) if it is

optimal for him to trade in the exchange but they two are the same otherwise. The �ow Bellman

equation that determines Ui (q) is given by

rUi (q) = ui (q) + � [Ui (q
�
i )� Ui (q)� P (q�i � q)� fi (q; q�i )] + �

X
j=1;2

�j [�j (q)� Ui (q)] ; (34)

for q � 0 and i = 1; 2. The investor derives �ow payo¤ from three sources. First, he receives a

utility �ow ui (q) from asset holdings q. Second, with instantaneous probability �, the investor

contacts a dealer and readjusts his asset holdings from q to q�i after paying a fee fi (q; q
�
i ) > 0.

Both his target asset holding q�i and the intermediation fee fi (q; q
�
i ) are determined by Nash

bargaining. Third, with instantaneous probability �, he draws a new preference type j with

probability �j and raises his lifetime expected utility by �j (q) � Ui (q). Note that he is able to

follow his optimal strategy based on his new type.

The value function of a dealer is denoted by Ud and solves

rUd = �

Z
fi (q; q

�
i ) dH (i; q) ;

where H (i; q) represents the distribution of asset holdings and preference types across investors.

We now determine the terms of trade in a bilateral meeting between a dealer and an investor.
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Consider an investor who is originally in state (i; q) becomes state (i; bq) after the bilateral meeting,
i.e., he buys (bq � q) units (sells if negative) and pays the dealer a fee f . The investor�s ex ante
utility is Ui (q) and his ex post utility is Ui (bq)� P (bq � q)� f , so his surplus from trade is given

by Ui (bq)� Ui (q)� P (bq � q)� f and he agrees to trade if and only if he receives a non-negative
surplus. The dealer�s utility is increased by the fee, f . Hence, the outcome of the bargaining is

given by

(q�i ; fi (q; q
�
i )) = argmax

(bq;f) [Ui (bq)� Ui (q)� P (bq � q)� f ]1�� f�: (35)

The solution to (35) is given by

U 0i (q
�
i ) = P; (36)

fi (q; q
�
i ) = � [Ui (q

�
i )� Ui (q)� P (q�i � q)] : (37)

We show in the appendix that Ui (q) is strictly concave in q, so q�i is unique given P . The �rst line

just says that q�i is set to equalize the marginal bene�t and the marginal cost. In what follows, we

call q�i the optimal asset holding for a type i investor because an investor in state (i; q
�
i ) contents

himself with current asset holdings so that he refuses to trade in either the exchange or the OTC

market. The second line says that the two parties just split the total surplus according to each

one�s bargaining power.

Since an investor can trade in the exchange at any time, he is actually facing the following

optimization problem

maxbq�0 [Ui (bq)�	(bq � q)] ; (38)

where

	(x) =

8<:
Ax, if x > 0
0, if x = 0
Bx, if x < 0

:

Let qAi and q
B
i be such that

U 0i
�
qAi
�
= A; (39)

U 0i
�
qBi
�
= B: (40)
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Due to strict concavity of Ui (q) and A > P > B, we know

qAi < q
�
i < q

B
i for i = 1; 2.

Given an investor�s preference type i, his optimal trading strategy in the exchange market is

simply determined by the distance between his current asset holdings (i.e., q) and his optimal

asset holdings, q�i .
6 If q is not far away from q�i (more precisely, if q lies in interval

�
qAi ; q

B
i

�
which contains q�i ), he does not trade in the exchange as the ask price is too high and the bid

price is too low in his eyes. If q < qAi , his marginal bene�t of holding an additional unit of the

asset exceeds the cost of buying one more unit, so he chooses to increase his asset holdings up to

qAi . If q > q
B
i , he holds so many units in hand that his marginal bene�t is well below the bid price

and therefore he chooses to decrease his asset holdings down to qBi . In the presence of positive

bid-ask spread in the exchange, it is too costly for an investor to readjust his portfolio in one step

to his ideal position, q�i , in the exchange.

An investor will choose to enter the market which delivers him a higher expected utility, so

his value function, �i (q), is the optimized objective function in (38).

The optimal strategy for an investor in state (i; q) is summarized as follows8<:
buy

�
qAi � q

�
units in the exchange, if q < qAi

search in the OTC, if qAi � q � qBi
sell

�
q � qBi

�
units in the exchange, if q > qBi

; (41)

where "search in the OTC" in the middle line means he searches in the OTC and readjusts his

asset holdings to q�i whenever he contacts a dealer.

4.2 Equilibrium

In order to describe the steady-state distribution, we need to determine the set of ergodic states

in the �rst place. Since there are 2 preference types and 6 critical asset holdings, it seems that the
6More precisely, given that the investor�s before-trade state is (i; q), his after-trade portfolio is given by

bq (i; q) =
8<:
qAi , if q < q

A
i

q, if qAi � q � qBi
qBi , if q > q

B
i

:

This is the solution to optimization problem (38).
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total number of an individual investor�s possible states is 12. However, this is by no means the

case because not every combination can sustain long in the equilibrium. To see an example, we

assume qB1 < q
�
2. Then once an investor in state (2; q

�
2) goes to state (1; q

�
2) due to a shock in his

preference type, he immediately sells
�
q�2 � qB1

�
units in the exchange and his after-trade state is�

1; qB1
�
. Hence, state (1; q�2) is actually transient. This example implies that if an investor chooses

to trade immediately in the exchange, then the mass of investors in his state is only in�nitesimal.

All in all, we must �gure out those ergodic states which accommodate positive masses of investors

in equilibrium. Denote the set of ergodic states by �, then � � f1; 2g �
�
qAi ; q

�
i ; q

B
i

	
i=1;2

.

So far we just know qAi < q
�
i < q

B
i for i = 1; 2, but we must know the ranking of all these 6

critical asset holdings. In the appendix, we analyze all possible cases by checking whether demand

and supply could emerge in the exchange simultaneously in each case. We �nd that there are only

two possible cases. 7 We now describe them in words and all mathematical proofs are relegated

to Appendix III.

Equilibrium I: qA1 < q
�
1 < q

A
2 < q

B
1 < q

�
2 < q

B
2 . � is composed of 6 states

� =
�
(1; q�1) ;

�
1; qA2

�
;
�
1; qB1

�
; (2; q�2) ;

�
2; qA2

�
;
�
2; qB1

�	
: (42)

In the exchange, investors in state (1; q�2), who were previously in state (2; q
�
2) before preference

shocks occur to them, are sellers and investors in state (2; q�1), who were in state before they

receives preference shocks, are buyers. Investors in state (i; q) with q 6= q�i are searching in the

OTC market to wait for the opportunity of contacting dealers and adjusting their portfolios. The

pattern of �ows between states is depicted in Figure 1. Each circle represents a state. The dashed

arrows represent �ows due to trade in the OTC, the double-line arrows represent �ows due to

trade in the exchange and the solid arrows indicate �ows due to type changes.

We are in a position to describe the set of equations that characterize the steady-state distri-

7This result does not depend on the utility speci�cation.
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bution H (i; q). First, the measure of investors with preference type i is equal to �i, so

n (1; q�1) + n
�
1; qA2

�
+ n

�
1; qB1

�
= �1; (43)

n (2; q�2) + n
�
2; qA2

�
+ n

�
2; qB1

�
= �2: (44)

Second, all assets are held by investors, so the market clearing condition requires

q�1n (1; q
�
1) + q

A
2

�
n
�
1; qA2

�
+ n

�
2; qA2

��
+ qB1

�
n
�
1; qB1

�
+ n

�
2; qB1

��
+ q�2n (2; q

�
2) = s: (45)

Third, the �ow of investors into each ergodic state is equal to the �ow out of that state. The

�ow-balance equations are listed in the appendix and omitted here.

De�nition 2 Given A and B, the steady-state (partial) equilibrium consists of the asset price

in the exchange P , intermediation fee in the OTC market fi (q; q�i ), the critical asset holdings�
qAi ; q

�
i ; q

B
i

	
i=1;2

, the time-invariant distribution of investors across the ergodic states fn (i; q) : (i; q) 2 �g

where � is given by (42), such that

� fn (i; q) : (i; q) 2 �g satis�es (43), (44) and the �ow-balance equation for each ergodic state,

� (41) characterizes the optimal choice for an investor in state (i; q) where i 2 f1; 2g and

q � 0,

� q�i , qAi and qBi satisfy (36), (39) and (40) respectively,

� P satis�es (45),

� fi (q; q�i ) satis�es (37).

The steady-state distribution fn (i; q) : (i; q) 2 �g are given by (101) � (106), which are ob-

tained by solving (43), (44) and all the �ow-balance equations. These equations have nothing to

do with the utility speci�cation and the critical asset holdings.

We highlight several important properties of this equilibrium. First, the total trading volume

per unit time in the OTC market exceeds that in the exchange. This result is desired as it is
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consistent with empirical results. Note that now the transaction size is endogenously determined

and varies across di¤erent trades, so we want to know whether this model can capture the fact

that the trading frequency in the exchange is much higher than that in the OTC. However, we

�nd the number of trades in the two markets are the same. One conjecture is that investors�

valuations are assumed to take only two values. If investors become more heterogenous in their

valuations, we might have the desirable result. Third, compared with the frictionless benchmark,

investors of low (high) type hold too many (few) units of asset, i.e., q�1 > q
W
1 ; q

�
2 < q

W
2 .

Under monopolistic market making, the optimal bid-ask spread is given by

A�B = ��

r + �+ � (1� �) +
c

2
:

This is almost the same as (28), so how the bid-ask spread is related to the underlying parameters

are the same as before. It has to be admitted that this result is due to the quadratic utility

speci�ed in (33). If some other speci�cations of instantaneous utility are chosen, the optimal

bid-ask spread could take some other forms or the closed-form solutions are not available. It

is interesting to check whether the same comparative statics results could be maintained under

di¤erent utility speci�cations or not.

Equilibrium II: qA1 < q
B
1 < q

A
2 < q

B
2 . Now � consists of 4 states

� =
�
(1; q�1) ;

�
1; qB1

�
;
�
2; qA2

�
; (2; q�2)

	
:

The pattern of �ows between states is illustrated in Figure 2. It turns out that any investor goes

to trade in the exchange whenever there is a change in his preference type.

The steady-state equilibrium can be de�ned analogously to De�nition 2. The steady-state

distribution fn (i; q) : (i; q) 2 �g are given by (128)�(131) in Appendix III. Given this equilibrium

exists, the trading volume in the exchange exceeds that in the OTC market. It is this result that

makes this equilibrium uninteresting and we omit the detailed analysis of this equilibrium here.

Please refer to Appendix III for more details.
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5 Conclusion

We have analyzed a model where investors can trade a long-lived asset in both exchange and OTC

market. In the exchange, transactions are intermediated by market-makers who post bid-ask prices

publicly. In the OTC market, dealers search for trading partners on behalf of investors. Exchange

means high immediacy and high cost while OTC market corresponds to low immediacy and low

cost. We show that in equilibrium investors with urgent trading needs enter the exchange while

investors with medium valuations enter the OTC market. We analyze how the bid-ask spread

is related to underlying parameters and specify the boundary of active trading in each market.

We also conduct welfare analysis and �nd that the decentralized solution is always inferior to the

socially optimal solution in terms of total welfare.

An important assumption in the current work is that we treat dealers in the OTC market

and market makers in the exchange as two groups of intermediaries, so their decision-making on

which market to serve is not modeled here. Given this, the relative e¢ ciency of the two markets

(i.e., transaction cost in each market and search friction) become the main force to determine the

equilibrium. For future research, we should study �nancial intermediary�s choice.
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Figure 1 

Equilibrium I: 𝑞1
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Figure 2 

Equilibrium II: 𝑞1
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Appendices for Chapter 1

6 Appendix I

In this section, we state and prove the steady-state (partial) equilibrium given the bid and ask

prices in the exchange, A and B. Proposition 1 in Section 2.2 is just a special case by taking

� = 0 here.

Theorem 1. Given that c � A � B < ���+��
�+�+r , the partial steady-state equilibrium given A

and B is characterized as follows. �� and ��� are uniquely determined by

�� ���� = (�+ r) �;

(1� s)F (��) + sF (���) = 1� s:

�0 and �1 are uniquely determined by

(1� s)F (�0) + sF (�1) = 1� s;

A�B =
�0 ��1 + ��
�+ �+ r

:

Investors�distributions are given by

�n (�) =

8>>>>><>>>>>:

f (�) for � 2 [�;�1)
�(1�s)+�
�+� f (�) for � 2 [�1;���]

(1� s) f (�) for � 2 (���;��)
�(1�s)
�+� f (�) for � 2 [�

�;�0]

0 for � 2
�
�0;�

�
; (46)

�o (�) =

8>>>>><>>>>>:

0 for � 2 [�;�1)
�sf(�)
�+� for � 2 [�1;���]
sf (�) for � 2 (���;��)
�s+�
�+� f (�) for � 2 [�

�;�0]

f (�) for � 2
�
�0;�

� : (47)
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The asset prices are given by

PA =
1 +��

r
� �
r

R ���
�1

F (�) d�

�+ �+ r
� �
r

R ��
��� F (�) d�

�+ r
+
�

r

R �0
�� [1� F (�)] d�

�+ �+ r
;

A� PA =
�0 ���
�+ �+ r

;

PB �B =
��� ��1
�+ �+ r

;

PA � PB = �:

Proof of Theorem 1 : The proof is organized as follows. We reformulate the value function for

owners and non-owners in Step I. We make some preliminary analysis in Step II. Step III and

IV determine the optimal strategy for non-owners and owners, respectively. The asset prices are

derived in Step V. We show the population distribution for non-owners and owners in Step VI

and solve out all cuto¤ points in Step VII.

Step I. De�ne the following three disjoint subsets of the whole range
�
�;�

�
:

N =
n
� 2

�
�;�

�
jVn (�) > max

n
V OTCb (�) ; V exchangeb (�)

oo
;

BOTC =
n
� 2

�
�;�

�
jV OTCb (�) > max

n
Vn (�) ; V

exchange
b (�)

oo
;

Bexchange =
n
� 2

�
�;�

�
jV exchangeb (�) > max

�
Vn (�) ; V

OTC
b (�)

	o
:

That is, a non-owner chooses to do nothing if his valuation is in N , to search to buy the asset

in the OTC market if his valuation is in BOTC and to buy in the exchange if his valuation is

in Bexchange. Note that the valuations with which a non-owner is indi¤erent between any of the

two choices are not included in any of the three subsets de�ned above, so the union of the three

subsets is not necessarily the whole range, i.e., N [BOTC [Bexchange �
�
�;�

�
. These indi¤erence

valuations are in the boundary but not the interior of those subsets. Denote by @N the boundary

of N , namely,

@N =
n
� 2

�
�;�

�
jVn (�) = max

n
V OTCb (�) ; V exchangeb (�)

oo
;

and the same for the other two subsets. Then, the set @N\ @BOTC collects all valuations with

which the non-owners are indi¤erent between doing nothing and searching to buy in the OTC
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market, i.e.,

@N \ @BOTC =
n
� 2

�
�;�

�
jVn (�) = V OTCb (�) � V exchangeb (�)

o
:

The meaning of set @Bexchange[ @BOTC and @Bexchange[ @N can be understood in the similar

way. The union of N and its boundary @N is called the closure of N and denoted by cl(N ), and

the same for the other two subsets. Note that cl(N ), cl(BOTC) and cl(Bexchange) are not mutually

disjoint, but the union of them is exactly
�
�;�

�
.

(3) can thus be written as

V (0;�) =

8<:
Vn (�) , if � 2 cl (N )
V OTCb (�) , if � 2 cl (BOTC)
V exchangeb (�) , if � 2 cl (Bexchange)

:

Similarly, we de�ne the following three disjoint subsets of the whole range
�
�;�

�
:

H =
n
� 2

�
�;�

�
jVh (�) > max

n
V OTCs (�) ; V exchanges (�)

oo
;

SOTC =
n
� 2

�
�;�

�
jV OTCs (�) > max

n
Vh (�) ; V

exchange
s (�)

oo
;

Sexchange =
n
� 2

�
�;�

�
jV exchanges (�) > max

�
V OTCs (�) ; Vh (�)

	o
:

That is, an owner holds onto his asset if his valuation is in H, searches to sell his asset in the

OTC market if his valuation is in SOTC and chooses to sell in the exchange if his valuation is in

Sexchange. Likewise, these subsets do not include the valuations with which owners are indi¤erent

between any of the two choices. We de�ne the boundary and closure of each subset as above.

(7) can thus be written as

V (1;�) =

8<:
Vh (�) , if � 2 cl (H)
V OTCs (�) , if � 2 cl (SOTC)
V exchanges (�) , if � 2 cl (Sexchange)

:

It should not be optimal for an owner to sell his asset in the OTC market in the �rst place and

then buy back the asset, still, through search in the OTC market after he sells his asset, given no

change in his valuation, otherwise he would choose to hold onto it at the very beginning. This

means

SOTC �
�
�;�

�
ncl (BOTC) = N [ Bexchange [ (@N \ @Bexchange) : (48)
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Similarly, it should not be optimal for an owner to sell his asset in the exchange in the �rst place

and then buy back the asset in the exchange immediately given no change in his valuation. This

means

Sexchange �
�
�;�

�
ncl (Bexchange) = N [ BOTC [ (@N \ @BOTC) : (49)

The same logic should apply to buyers in the OTC and the exchange market, so

BOTC �
�
�;�

�
nSOTC = H [ Sexchange [ (@H \ @Sexchange) , (50)

Bexchange �
�
�;�

�
nSexchange = H [ SOTC [ (@H \ @SOTC) . (51)

Step II. Let�s �rst argue that Sexchange \BOTC = ?. Suppose not, i.e., Sexchange \BOTC 6= ?.

This means that (i) the owners with valuations in this set would �rstly sell their assets in the

exchange and then search to buy in the OTC afterwards, and (ii) the non-owners with valuations

in this set would �rstly search to buy in the OTC and then sell in the exchange immediately after

they acquire the assets. When � 2 Sexchange \ BOTC, we have

V OTCb (�) =
�
h
V exchanges (1;�)� PA

i
+ �E [V (0;�0)]

�+ �+ r
;

V exchanges (�) = V OTCb (�) +B;

which can be solved by

V OTCb (�) =
� (B � PA)
�+ r

+ Vn;

V exchanges (�) =
� (B � PA)
�+ r

+ Vn +B:

Note that we must have V OTCb (�) > Vn if � 2 Sexchange \ BOTC � BOTC, so we know from

above that B > PA, which contradicts (2). Hence, we claim Sexchange \BOTC = ?. It thus follows

that Sexchange � N according to (49) and BOTC � H according to (50).

Now we argue SOTC\Bexchange = ?. Suppose not. i.e., SOTC\Bexchange 6= ?. This means that

(i) the owners with valuations in this region would �rstly sell their assets in the OTC and then

buy back assets in the exchange, (ii) the non-owners with valuations in this region would like to
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buy assets in the exchange and then search to sell them in the OTC. When � 2 SOTC \Bexchange,

V OTCs (�) =
1 +�+ �

h
V exchangeb (�) + PB

i
+ �E [V (1;�0)]

���b + �+ r
;

V exchangeb (�) = V OTCs (�)�A;

which can be solved as

V OTCs (�) = Vh (�)�
� (A� PB)
�+ r

;

V exchangeb (�) = Vh (�)�
� (A� PB)
�+ r

�A:

Note that we must have V OTCs (�) > Vh (�) if � 2 SOTC \ Bexchange � SOTC, so we know

from above that A < PB, which contradicts (2). Hence, we claim SOTC \ Bexchange = ?. It thus

follows that SOTC � N according to (48) and Bexchange � H according to (51).

We can use the above results to simplify equations (5) ; (6) ; (9) and (10) as follows:

V OTCb (�) =
� [Vh (�)� PA] + �E [V (0;�0)]

�+ �+ r
(due to BOTC � H), (52)

V exchangeb (�) = Vh (�)�A (due to Bexchange � H), (53)

V OTCs (�) =
1 +�+ � (Vn + PB) + �E [V (1;�

0)]

�+ �+ r
(due to SOTC � N ), (54)

V exchanges (�) = Vn +B (due to Sexchange � N ). (55)

Step III. We now prove that the optimal strategy for a non-owner is shown in (11), i.e.,

N = [�;��) ;

BOTC = (��;�0) ;

Bexchange =
�
�0;�

�
:

We �rst argue that if x1 2 N , then x 2 N for all x < x1. Suppose not, i.e., there exists x2

with x2 < x1 but x2 =2 N . If x2 2 BOTC, then

V OTCb (x2) > Vn > V
OTC
b (x1) : (56)
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However, we know

V OTCb (x2)� V OTCb (x1) =
� [Vh (x2)� Vh (x1)]

�+ �+ r
=

� (x2 � x1)
(�+ �+ r) (�+ r)

< 0;

where the �rst equality is due to (52) and the second equality is due to (8). This contradicts (56).

We then turn to assume x2 2 Bexchange, which implies

Vh (x1)�A = V exchangeb (x1) < Vn < V
exchange
b (x2) = Vh (x2)�A:

This, again, implies x2 > x1, which contradicts our starting assumption. We thus prove the claim.

We now argue that if y1 2 Bexchange, then y 2 Bexchange for all y > y1. Suppose not, i.e., there

exists y2 with y2 > y1 but y2 =2 Bexchange. If y2 2 BOTC, then V exchangeb (y2) < V
OTC
b (y2) implies

Vh (y2) < A+ Vn +
� (A� PA)
�+ r

;

and V exchangeb (y1) > V
OTC
b (y1) implies

Vh (y1) > A+ Vn +
� (A� PA)
�+ r

:

These two inequalities, together, imply y1 > y2, which contradicts our starting assumption. If

y2 2 N , then V exchangeb (y2) < Vn implies

Vh (y2) < Vn +A:

and V exchangeb (y1) > Vn implies

Vh (y1) > Vn +A:

These two inequalities imply y1 > y2, which presents a contradiction again. We thus prove the

claim.

The above arguments establish the claim in the very beginning of this step. The slope of

V (0;�) in each region is given by

dV (0;�)

d�
=

8<:
0, if � 2 [�;��)

�
�+�+r

1
�+r , if � 2 (�

�;�0)
1
�+r , if � 2

�
�0;�

� : (57)
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We see that V (0;�) is piece-wise linear in �. Integrating (57), we obtain

V (0;�) =

8<:
Vn, if � 2 [�;��)
Vn +

�
�+�+r

����
�+r , if � 2 [�

�;�0]

Vn +
�

�+�+r
�0���
�+r + ���0

�+r , if � 2
�
�0;�

� : (58)

We now derive the expression of Vn. For this, we �rst calculate E [V (0;�0)]:

E
�
V
�
0;�0

��
= Vn +

�

�+ �+ r

R �0
�� (���

�) dF (�)

�+ r
+

�

�+ �+ r

(�0 ���) [1� F (�0)]
�+ r

+

R �
�0
(���0) dF (�)

�+ r

= Vn +
�

�+ �+ r

R �0
�� [1� F (�)] d�

�+ r
+

R �
�0
[1� F (�)] d�
�+ r

:

Substituting this into (4) and rearranging, we obtain

Vn =
�

r

�

�+ �+ r

R �0
�� [1� F (�)] d�

�+ r
+
�

r

R �
�0
[1� F (�)] d�
�+ r

: (59)

Step IV. We now prove that the optimal strategy for an owner is shown in (12), i.e.,

Sexchange = [�;�1) ;

SOTC = (�1;�
��) ;

H =
�
���;�

�
:

We �rst argue that if x1 2 Sexchange, then x 2 Sexchange for all x < x1. Suppose not, i.e., there

exists x2 with x2 < x1 but x2 =2 Sexchange. If x2 2 H, we should have

Vh (x2) > V
exchange
s (x2) = Vn + PB = V

exchange
s (x1) > Vh (x1) ;

which implies x2 > x1. This contradicts our starting assumption. We then turn to assume

x2 2 SOTC, which implies

V OTCs (x2) > V
exchange
s (x2) = Vn + PB:

Since x1 2 Sexchange, we have

V OTCs (x1) < V
exchange
s (x1) = Vn + PB:
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The above two inequalities imply x2 > x1, which is a contradiction again! We thus prove the

claim.

Using the similar logic, we can show that if y1 2 H, then y 2 H for all y > y1. We thus prove

the claim established in the beginning of this step.

The slope of V (1;�) in each region is given by

dV (1;�)

d�
=

8<:
0, if � 2 [�;�1)

1
�+�+r , if � 2 (�1;�

��)
1
�+r , if � 2

�
���;�

� : (60)

We see that V (1;�) is piece-wise linear in �. Integrating (60), we obtain

V (1;�) =

8<:
Vn +B, if � 2 [�;�1)
Vn +B +

���1
�+�+r , if � 2 (�1;�

��)

Vn +B +
�����1
�+�+r +

�����
�+r , if � 2

�
���;�

� : (61)

For future use, we calculate E [V (1;�0)]:

E
�
V
�
1;�0

��
= Vn +B +

R ���
�1

(���1) dF (�)
�+ �+ r

+
(��� ��1) [1� F (���)]

�+ �+ r
+

R �
��� (���

��) dF (�)

�+ r

= Vn +B +

R ���
�1

[1� F (�)] d�
�+ �+ r

+

R �
��� [1� F (�)] d�

�+ r
: (62)

We now show �� � ���. Recall that we have Bexchange[BOTC � H, where Bexchange[BOTC =�
��;�

�
and H =

�
���;�

�
, so

�� � ���:

This result can also be obtained in another way as a double check. Recall that we have Sexchange[

SOTC � N , where Sexchange [ SOTC = [�;���) and N = [�;��), so still �� � ���.

Step V. We derive the expression of all asset prices.

First notice that we have the following chain of equalities:

Vn
(a)
=
� [Vh (�

�)� PA] + �E [VN (�0)]
�+ �+ r

(b)
=
� [Vh (�

�)� PA] + (�+ r)Vn
�+ �+ r

(c)
= Vn +

� [Vh (�
�)� Vn � PA]

�+ �+ r
;
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where (a) is due to the indi¤erence condition Vn = V OTCb (��), (b) is due to (4) and (c) is obtained

by rearrangement. It follows that

Vh (�
�) = Vn + PA: (63)

Recall that we already have Vh (��) according to (61)

Vh (�
�) = Vn +B +

��� ��1
�+ �+ r

+
�� ����
�+ r

:

Comparing this with the previous line, we obtain

PA = B +
��� ��1
�+ �+ r

+
�� ����
�+ r

: (64)

Now we look at the indi¤erence condition at �0: V OTCb (�0) = V
exchange
b (�0), which can be

written more explicitly as

� [Vh (�0)� PA] + �E [V (0;�0)]
�+ �+ r

= Vh (�0)�A:

This equation can be rearranged as

Vh (�0) = Vn +A+
� (A� PA)
�+ r

:

Subtracting Vh (��) in (63) from Vh (�0) in the above line and rearranging, we obtain

A� PA =
�0 ���
�+ �+ r

: (65)

Finally, we have the following chain of equalities:

Vh (�
��)

(a)
=
1 +��� + � (Vn + PB) + �E [V (1;�

0)]

�+ �+ r

(b)
=
(�+ r)Vh (�

��) + � (Vn + PB)

�+ �+ r

where (a) is due to the indi¤erence condition Vh (���) = V OTCs (���), and (b) is due to (8). It

follows that

Vh (�
��) = Vn + PB:

Subtracting Vh (��) in (63) from Vh (�
��) in the above line and rearranging,

PA � PB =
�� ����
�+ r

: (66)
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Substituting this into (64), we obtain

PB �B =
��� ��1
�+ �+ r

: (67)

Now we are in a position to derive expressions for asset prices. We use to derive (63) the

expression of PA, namely,

Vh (�
�) =

1 +�� + �E [V (1;�0)]

�+ r
= Vn + PA:

Substituting out Vn given by (59) and E [V (1;�0)] given by (62), we obtain

PA =
1 +��

r
� �
r

R ���
�1

F (�) d�

�+ �+ r
� �
r

R ��
��� F (�) d�

�+ r
+
�

r

R �0
�� [1� F (�)] d�

�+ �+ r
:

The bid-ask spread in the exchange is easily calculated by adding up (65), (66) and (67):

A�B = A� PA + PA � PB + PB �B

=
�0 ���
�+ �+ r

+
�� ����
�+ r

+
��� ��1
�+ �+ r

=
�0 ��1
�+ �+ r

+
� (�� ����)

(�+ r) (�+ �+ r)
: (68)

Due to (1), the last line can be rewritten as

A�B = �0 ��1 + ��
�+ �+ r

: (69)

When � = 0, we have PA = PB, which gives �� = ��� according to (66).

Step VI. We derive �n (�) and �o (�). Recall that we already obtained these two density

functions on intervals [�;�1), [�1;���] and
�
�0;�

�
, so our task now is to determine them on

intervals (���;��) and [��;�0].

We �rst determine �n (�) and �o (�) for � 2 (���;��). Investors with valuations in this

interval are "inactive" in their own way: non-owners do nothing according to (11) while owners

hold onto their assets according to (12). During dt, the in�ow to the population of owners

with valuations in [�;�+ d�] is �sf (�) dt, coming from the owners who experience preference
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shocks and whose new valuations fall in this interval, and the out�ow is ��o (�) dt, coming from

the owners who receive preference shocks. The �ow balance equation yields

�n (�) = (1� s) f (�) for � 2 (���;��) ;

�o (�) = sf (�) for � 2 (���;��) :

We next determine �n (�) and �o (�) for � 2 [��;�0]. According to (11), non-owners with

valuations in this interval search to buy the asset in the OTC market. During dt, the in�ow to

the population of buyers with valuations in [�;�+ d�] is � (1� s) f (�) dt, coming from the

non-owners who experience preference shocks and whose new valuations fall in this interval. The

out�ow consists of those buyers who meet dealers and trade (��n (�) dt), and those those buyers

who experience preference shocks (��n (�) dt). Writing that in�ow equals out�ow, we �nd

�n (�) =
� (1� s)
�+ �

f (�) for � 2 [��;�0] ;

�o (�) =
�s+ �

�+ �
f (�) for � 2 [��;�0] :

Putting together, we obtain (46) and (47).

We are now able to calculate the masses of buyers and sellers, given by (16) and (17) respec-

tively

�b =

Z �o

��
�n (�) d� =

� (1� s)
�+ �

[F (�0)� F (��)] ;

�s =

Z ���

�1

�o (�) d� =
�s

�+ �
[F (���)� F (�1)] :

Using (15), we �nd

(1� s) [F (�0)� F (��)] = s [F (���)� F (�1)] : (70)

Besides, we also need to guarantee (14). Integrating �o (�) over
�
�;�

�
, we obtain

�s

�+ �
[F (���)� F (�1)] + s [F (��)� F (���)] +

�s+ �

�+ �
[F (�0)� F (��)] + 1� F (�0) = s:
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Substituting (14) into the above equation and rearranging, we �nd

(1� s)F (��) + sF (���) = 1� s: (71)

Comparing this equation with (70), we obtain

(1� s)F (�0) + sF (�1) = 1� s: (72)

Step VII. Using (69), we have

�0 ��1 = (�+ �+ r) (A�B)� ��

Using (72), we express �1 as a decreasing function of �0:

�1 = F
�1
�
1� s
s

� 1� s
s
F (�0)

�
: (73)

Substituting this back into the previous equation, we �nd

�0 � F�1
�
1� s
s

� 1� s
s
F (�0)

�
= (�+ �+ r) (A�B)� ��: (74)

The LHS is an increasing function of �0, denoted by h (�0). Given that max fc; �g � A�B <
���+��
�+�+r , we check the value of h (z) at its lower and upper bound:

h (z)jz=�w = 0 < (�+ �+ r) (A�B)� ��;

h (z)jz=� = ��� > (�+ �+ r) (A�B)� ��:

Hence, there exists a unique �0 2
�
�w;�

�
that solves (74). Note that �0 > �w > �1 is

automatically guaranteed by (73).

With �0 in hand, we can �gure out �1 from (73).

To obtain �� and ���, we resort to (71) which gives

��� = F�1
�
1� s
s

� 1� s
s
F (��)

�
:

Substituting this into (1), we �nd

�� � F�1
�
1� s
s

� 1� s
s
F (��)

�
= (�+ r) �: (75)
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The LHS is an increasing function of ��, denoted by g (��). Given that c � A�B < ���+��
�+�+r ,

we check the value of g (z) at its lower and upper bound:

g (z)jz=�w = 0 < (�+ r) �;

g (z)jz=�0 = �0 ��1 = (�+ �+ r) (A�B)� �� > (�+ r) �:

Hence, there exists a unique �� 2 (�1;�0) that solves (75). Note that �� > �w > ��� is already

guaranteed. Q.E.D.

7 Appendix II

This section collects all the other proofs before Section 4.

7.1 Example 1 in Section 3

We show that if F (�) =
p
� for � 2 [0; 1], the bid-ask spread determined by a monopolistic

market maker decreases in s.

In this case, the Walrasian cuto¤ point is �w = (1� s)2. We still assume (�+ �+ r) c < 1.

The monopolistic market maker�s optimization problem can be written as

max
�0;�1

�
�0 ��1
�+ �+ r

� c
�p

�1

s.t. (1� s)
p
�0 + s

p
�1 = 1� s;

�0 > (1� s)2 > �1:

Using the equality constraint to substitute out �0:

�0 =
s2

(1� s)2
�1 �

2s

1� s
p
�1 + 1;

the objective function can be rewritten as

2s� 1
(1� s)2

�1
p
�1 �

2s

1� s�1 + y
p
�1; (76)

where we have denoted by y = 1� (�+ �+ r) c for short. Note that y 2 (0; 1).
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To solve this, let x =
p
�1 2 [0; 1� s] and the objective function becomes a cubic equation of

x:

g (x) � 2s� 1
(1� s)2

x3 � 2s

1� sx
2 + yx:

If s = 1
2 , g (x) boils down to a quadratic equation of x:

g (x) = �2x2 + yx = y2

8
� 2

�
x� y

4

�2
;

which is maximized at x = y
4 . Hence, the solution in this case is given by

�1 =
y2

16
<
1

4
= (1� s)2 ;

�0 =
�
1� y

4

�2
:

Now suppose s 6= 1
2 . g

0 (x) and g00 (x) given by

g0 (x) =
3 (2s� 1)
(1� s)2

x2 � 4s

1� sx+ y;

g00 (x) =
6 (2s� 1)
(1� s)2

x� 4s

1� s:

Note that g0 (x) = 0 is a quadratic equation which always have two real roots because its

determinant is strictly positive:

16

(1� s)2

�
s2 � 3y

4
(2s� 1)

�
>

16

(1� s)2
�
s2 � (2s� 1)

�
=

16

(1� s)2
(1� s)2 > 0:

If s < 1
2 , one root is positive while the other one is negative. From the following facts:

g0 (x)
��
x=0

= y;

g0 (x)
��
x=1�s = 2s� 3 + y < y � 2 < 0;

we know the positive root lies in (0; 1� s) and is given by

x1 =
2 (1� s)
3 (1� 2s)

"r
s2 +

3y

4
(1� 2s)� s

#
:
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The second-order condition is satis�ed at x1:

g00 (x1) = �
4

1� s

r
s2 +

3y

4
(1� 2s) < 0;

so x1 maximizes g (x) if s < 1
2 for x 2 [0; 1� s].

If s > 1
2 , both roots are positive. Based on the following facts:

g (x)jx=0 = y > 0;

g (x)jx=1�s = 2s� 3 + y < y � 1 < 0;

g (x)jx=+1 = +1;

we know that one root lies in (0; 1� s) and the other one lies in (1� s;+1). We should pick the

small one, which is given by

x2 =
2 (1� s)
3 (2s� 1)

"
s�

r
s2 � 3

4
y (2s� 1)

#
:

The second-order condition is satis�ed at x2:

g00 (x2) = �
4

1� s

r
s2 � 3

4
y (2s� 1) < 0;

so x2 maximizes g (x) if s > 1
2 for x 2 [0; 1� s].

To sum up, the cuto¤ points are given by

p
�1 =

2 (1� s)
3 (1� 2s)

"r
s2 +

3y

4
(1� 2s)� s

#
; (77)

and p
�0 = 1�

s

1� s
p
�1 = 1�

2s

3 (1� 2s)

"r
s2 +

3y

4
(1� 2s)� s

#
:

The bid-ask spread in the exchange in this case is given by

A�B =
�0 ��1
�+ �+ r

=
1� y

3 �
2
3

s
1�s
p
�1

�+ �+ r

=
1

�+ �+ r

0@1� y
3
�

y
3

1 +
q
1 + 3y

4
1�2s
s2

1A :
It is straightforward to verify that (A�B) decreases in s. Q.E.D.
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7.2 Example 2 in Section 3

We show that if F (�) = �2 for � 2 [0; 1], the bid-ask spread determined by a monopolistic

market maker increases in s.

In this case, the Walrasian cuto¤ point is �w =
p
1� s and we still assume (�+ �+ r) c < 1.

The monopolistic market maker�s optimization problem is now written as

max
�0;�1

�
�0 ��1
�+ �+ r

� c
�
(�1)

2

s.t. (1� s) (�0)2 + s (�1)2 = 1� s;

�0 >
p
1� s > �1:

Using the equality constraint to substitute out �0:

�0 =

s
1� s (�1)

2

1� s ;

the objective function can be rewritten as

(�1)
2

s
1� s (�1)

2

1� s � (�1)3 � (�+ �+ r) c (�1)2 :

To solve this, we let x = s(�1)
2

1�s 2 [0; s] and rewrite the objective function as

1� s
s
x
p
1� x�

�
1� s
s
x

�3=2
� 1� s

s
(�+ �+ r) cx: (78)

F.O.C. is given by
p
1� x� 1

2

xp
1� x

� 3
2

r
1� s
s
x = (�+ �+ r) c: (79)

It is direct to check that the LHS of (79) is strictly decreasing in x

d

dx
[LHS of (79)] = �3

4

4
3 � x

(1� x)3=2
� 3
4

r
1� s
sx

< 0;

so S.O.C. is also guaranteed. According to the following facts

LHS of (79)jx=0 = 1� (�+ �+ r) c > 0;

LHS of (79)jx=s = � 1

2
p
1� s

� (�+ �+ r) c < 0;
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we know (79) implies a unique x 2 (0; s) that maximizes (78).

We also establish
@x

@#
< 0, where # = �; �; r; c.

It thus implies
@�1
@#

< 0 <
@�0
@#

, where # = �; �; r; c.

The bid-ask spread in the exchange in this case is given by

A�B = �0 ��1
�+ �+ r

=

p
1� x�

q
1�s
s x

�+ �+ r
:

Adding 1
2

p
1� x on both sides of (79) and rearranging, we obtain

3

2

p
1� x� 3

2

r
1� s
s
x =

1

2

p
1� x+ 1

2

xp
1� x

+ (�+ �+ r) c

=
1

2

1p
1� x

+ (�+ �+ r) c

Therefore, A�B can be rewritten as

A�B = 1

3 (�+ �+ r)

1p
1� x

+
2c

3
:

Notice that s does not enter this expression explicitly, so s may a¤ect the bid-ask spread only

through x.

Since we aim to sign @ (A�B) =@s, we need �rst evaluate @x=@s. For this, we take total

di¤erentiation wrt s in (79) and �nd

@x

@s
= �2

p
x @@s

�q
1�s
s

�
4
3
�x

(1�x)3=2
+
q

1�s
sx

> 0;

so
@ (A�B)

@s
=
@ (A�B)

@x

@x

@s
> 0:

Q.E.D.

50



7.3 Proof of Proposition 4

Recall that the trading volume in the exchange and the OTC market are given in (25) and (26),

respectively. Therefore, TVOTC > TVexchange if and only if

F (�1) <
1� s
2 + �

�

: (80)

Part I. Suppose F (�) = � for � 2
�
0;�

�
, then (80) becomes

�1

�
<
1� s
2 + �

�

:

In the case of competitive market making, �1 (denoted by �c1 therein) is given in the paper

and the above inequality now becomes

�+ �

�+ 2�
< (�+ �+ r)

c

�
: (81)

It is obvious to see that inequality (81) holds if r > r0 � �+�
�+2�

�
c � � � �, or if c > c0 �

�
�+�+r

�+�
�+2� .

To discuss in terms of �, we transform (81) to

�2 +

�
3�

2
+ r � �

2c

�
�+

�

2

�
�+ r � �

c

�
> 0:

Observe that the LHS is a quadratic equation of �. Its discriminant is strictly positive�
3�

2
+ r � �

2c

�2
� 2�

�
�+ r � �

c

�
=

�
3�

2
+ r

�2
+

�
�

2c

�2
� �
c

�
3�

2
+ r

�
� 2�

�
�+ r � �

c

�
=

�
�

2
� r + �

2c

�2
+ 2�r > 0;

so it has two distinct real roots. According to Vieta�s formula, the product of these two roots is

equal to �
2

�
�+ r � �

c

�
< 0, so one root is strictly positive and the other is negative. We thus

know that (81) holds if and only if � 2
�
�0;

�
c � �� r

�
, where

�0 �
1

2

s�
�

2
� r + �

2c

�2
+ 2�r � 1

2

�
3�

2
+ r � �

2c

�
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is the positive root.

�+ � < (�+ 2�) (�+ �+ r)
c

�

In the case of monopolistic market making, �1 (denoted by�m1 therein) is given in Proposition

3 and (81) now becomes
�

�+ 2�
< (�+ �+ r)

c

�
:

It is direct to see that inequality (81) holds if r > r1 � �
�+2�

�
c ����, or if c > c1 �

�
�+�+r

�
�+2� .

To discuss in terms of �, we transform (81) to

�2 +

�
3�

2
+ r

�
�+

�

2

�
�+ r � �

c

�
> 0:

Observe that the LHS is a quadratic function of �. Its discriminant is strictly positive�
3�

2
+ r

�2
� 2�

�
�+ r � �

c

�
=
��
2
+ r
�2
+ 2�

�

c
> 0;

so it has two distinct roots. According to Vieta�s formula, the product of these two roots is equal

to �
2

�
�+ r � �

c

�
< 0, so one root is strictly positive and the other is negative. We thus know

that (81) holds if and only if � 2
�
�1;

�
c � �� r

�
, where

�1 �
1

2

s��
2
+ r
�2
+ 2�

�

c
� 1
2

�
3�

2
+ r

�
is the positive root.

Part II. Now suppose F (�) =
p
� for � 2 [0; 1], then (80) becomesp

�1 <
1� s
2 + �

�

: (82)

In the case of monopolistic market making, �1 is given by (77). If s � 1
2 , (82) boils down to

1� (�+ �+ r) c < 3�
2 + �

�

�2 + s

2 + �
�

: (83)

The LHS is strictly decreasing in � while the RHS is strictly increasing in �. Since

LHSj�=0 = 1� (�+ r) c > 0 = RHSj�=0 ;

LHSj�= 1
c
���r = 0 < RHSj�= 1

c
���r ;
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there exists a cuto¤ �1 such that (82) holds for all � 2
�
�1; �

�
, where �1 is determined by

1� (�1 + �+ r) c =
3�

2 + �
�1

�2 + s

2 + �
�1

:

In terms of r, we know that (82) holds if and only if

r >
1

c

"
1� 3�

2 + �
�

�2 � s

2 + �
�

#
� �� �:

If s > 1
2 , (82) boils down to

s� 3 (2s� 1)
2
�
2 + �

�

� <rs2 � 3y
4
(2s� 1):

If the LHS is already negative, i.e., when

�

�
< 1� 3

2s
;

then this inequality already holds. If not, then we need

1� (�+ �+ r) c <
�
2 + 4�

�

�
s+ 3�

2 + �
�

�2 :

The LHS is strictly decreasing in � while the RHS is strictly increasing in �. 8 Since

LHSj�=0 = 1� (�+ r) c > 0 = RHSj�=0 ;

LHSj�= 1
c
���r = 0 < RHSj�= 1

c
���r ;

there exists a cuto¤ �2 such that (82) holds for all � 2
�
�2; �

�
.

7.4 Proof of Proposition 5

The proof is organized as follows. Step I and II determine the socially optimal allocation by using

the static welfare criterion and the dynamic welfare criterion, respectively. We compare the asset

price across di¤erent equilibriums in Step III.
8Direct di¤erentiation of the RHS wrt (�=�) yields

d

d
�
�
�

� �2 + 4�
�

�
s+ 3�

2 + �
�

�2 =
2
�
2s
�
1� �

�

�
� 3

��
2 + �

�

�3 <
2
�
2s 3

2s
� 3

��
2 + �

�

�3 = 0;

where we have used condition 1� �
�
< 3

2s
(which holds in this case) in the inequality.
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Step I. We �rst study the allocation of social optimum by using the static welfare criterion

given by (30):

Ws =

Z �

�
(1 + �)�o (�) d�� c�sF (�1) ;

where �o (�) is given by (23).

Substituting, the social planner�s problem is

max
�1;�0

Ws =
�s

�+ �

Z �w

�1

(1 + �) f (�) d�+
�s+ �

�+ �

Z �0

�w

(1 + �) f (�) d�+

Z �

�0

(1 + �) f (�) d�

�c�sF (�1) ;

s.t. (1� s)F (�0) + sF (�1) = 1� s;

� � �1 � �0 � �:

We can express �0 as a function �1 by using the zero inventory condition and transform the

objective function to a uni-variate function of �1. The �rst-order condition is given by

@Ws

@�1
+
@Ws

@�0

d�0
d�1

= 0: (84)

Since

@Ws

@�1
= ��s

�
1 + �1
�+ �

+ c

�
f (�1) ;

@Ws

@�0
= �� (1� s)

�+ �
(1 + �0) f (�0) ;

d�0
d�1

= � sf (�1)

(1� s) f (�0)
;

(84) yields

�0 ��1 = (�+ �) c:

The second-order condition is also satis�ed

@2Ws

@�21
+ 2

@2Ws

@�1@�0

d�0
@�1

+
@2Ws

@�20

�
d�0
@�1

�2
+
@Ws

@�0

d2�0
d2�1

/ ��sf (�1)
�+ �

�
1 +

sf (�1)

(1� s) f (�0)

�
< 0:
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Step II. We study the allocation of social optimum by using the dynamic welfare criterion

given by (29), which

Wd =WI +�m;

where

WI =

Z �

�
[V (0;�)�n (�) + V (1;�)�o (�)] d�;

�m =
�s

r

�
�0 ��1
�+ �+ r

� c
�
F (�1) :

Here, V (0;�) is given by

V (0;�) =

8<:
Vn, if � 2 [�;�w)
Vn +

�
�+�+r

���w
�+r , if � 2 [�w;�0]

Vn +
�

�+�+r
�0��w
�+r + ���0

�+r , if � 2
�
�w;�

� ;

and V (1;�) is given by

V (1;�) =

8<:
Vn +B, if � 2 [�;�1)
Vn +B +

���1
�+�+r , if � 2 (�1;�w)

Vn +B +
�w��1
�+�+r +

���w
�+r , if � 2

�
�w;�

� :

We �rst calculate the investors�total welfare:

WI = Vn +Bs+
� (1� s)
�+ �

�

�+ �+ r

R �0
�w
(���w) f (�) d�

�+ r
+

�s

�+ �

R �w
�1

(���1) f (�) d�
�+ �+ r

+
�w ��1
�+ �+ r

�
�s+ �

�+ �
(F (�0)� F (�w)) + s

�
+
�s+ �

�+ �

R �0
�w
(���w) f (�) d�

�+ r

+

R �
�0
(���w) f (�) d�

�+ r
;

where

Vn =
�

r

�

�+ �+ r

R �0
�w
[1� F (�)] d�
�+ r

+
�

r

R �
�0
[1� F (�)] d�
�+ r

;

B =
1 +�w
r

� �w ��1
�+ �+ r

� �
r

R �w
�1

F (�) d�

�+ �+ r
+
�

r

R �0
�w
[1� F (�)] d�
�+ �+ r

:

Then,

@Wd

@�0
=

�s

r

F (�1)

�+ �+ r
� � (1� s)

r

1� F (�0)
�+ �+ r

� � (1� s)
�+ �

(�0 ��w) f (�0)
�+ �+ r

;

@Wd

@�1
=

�w ��1
�+ �+ r

�sf (�1)

�+ �
+
�s

r

�
�0 ��1
�+ �+ r

� c
�
f (�1)
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The FOC is given by
@Wd

@�1
+
@Wd

@�0

d�0
d�1

= 0;

which yields

�0 ��1 = (�+ �) c:

The second-order condition is also satis�ed:

@2Wd

@�21
+ 2

@2Wd

@�1@�0

d�0
@�1

+
@2Wd

@�20

�
d�0
@�1

�2
+
@Wd

@�0

d2�0
d2�1

= ��sf (�1)
r (�+ �)

�
1 +

sf (�1)

(1� s) f (�0)

�
< 0:

All in all, maximizing either welfare criterion points to the same result of social optimum.

Step III. If F (�) is the uniform distribution on
�
0;�

�
, �fb1 and �fb0 are given by

�fb1 = max
�
(1� s)�� (1� s) (�+ �) c;�

	
;

�fb0 = min
�
(1� s)� + s (�+ �) c; 0

	
:

The asset price in the OTC market, P fb, is given by

PFB =

8<:
1+(1�s)�

r + �c
r (2s� 1)

�+�
�+�+r

�
1� (�+�)c

2�

�
, if (�+ �) c < �

1+(1�s)�
r + �

r
(s� 1

2)�
�+�+r , if (�+ �) c � �

:

Suppose (�+ �+ r) c < �, so both the exchange and the OTC market are active in all three

equilibria, i.e., the search equilibrium with competitive market makers characterized in Proposi-

tion ??, the search equilibrium with a monopolistic market maker characterized in Proposition 3

and the socially optimal search equilibrium characterized in Proposition 5. Now we compare the

asset price in the OTC market in all three equilibriums. Note that we obtain asset price in each

case by substituting the corresponding values of �0 and �1 into (22), where �0 and �1 are also

linked through zero asset holding condition (21). We can �rst treat P as a function of �1 and

determine the sign of dP
d�1

. Since the ranking of �1s in di¤erent equilibriums are already obtained

in Proposition 6, we are then able to do the comparison of P s under the three equilibriums. Direct
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calculation yields

dP

d�1

����
P is given in (22)

=
�

r

F (�1)

�+ �+ r
+
�

r

1� F (�0)
�+ �+ r

d�0
d�1

=
�

r

F (�1)

�+ �+ r
� �
r

1� F (�0)
�+ �+ r

sf (�1)

(1� s) f (�0)

=
�

r

F (�1)

�+ �+ r

�
1� s2f (�1)

(1� s)2 f (�0)

�
;

where in the last step we use the fact sF (�1)1�s = 1 � F (�0) due to condition (22). Since F (�) is

uniform, we know
dP

d�1

����
P is given in (22)

/ (1� 2s) :

That is,

dP

d�1

����
P is given in (22)

8<:
> 0, if s < 1

2
= 0, if s = 1

2
< 0, if s > 1

2

:

According to Proposition 6, we have �fb1 > �c1 > �
m
1 , so

PFB > PCM > PMM if s <
1

2
;

PFB = PCM = PMM if s =
1

2
;

PFB < PCM < PMM if s >
1

2
:

Q.E.D.

7.5 Proof of Proposition 6

Suppose (�+ �+ r) c < �. Note that the distance between �0 and �1 in all three equilibriums

can be summarized as follows:

�0 ��1
�+ �+ r

8<: = (�+�)c
�+�+r in the social optimum

= c in the search equilibrium with competitive market makers
> c in the search equilibrium with a monopolistic market maker

.

If we set �0��1
�+�+r = z and substitute �0 out in (22), we can solve �1 out as a function of z,

denoted by �1 (z), which is uniquely determined by

(1� s)F (�1 (z) + (�+ �+ r) z) + sF (�1 (z)) = 1� s.
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The value of �0 is immediately given by

�0 (z) = �1 (z) + (�+ �+ r) z:

It is direct to check that �1 (z) is strictly decreasing in z:

�01 (z) = �
(�+ �+ r) (1� s) f (�1 (z) + (�+ �+ r) z)
(1� s) f (�1 (z) + (�+ �+ r) z) + sf (�1 (z))

< 0;

and �0 (z) is strictly increasing in z:

�00 (z) = �
0
1 (z) + (�+ �+ r) =

(�+ �+ r) sf (�1 (z))

(1� s) f (�1 (z) + (�+ �+ r) z) + sf (�1 (z))
> 0:

It follows that

�fb1 > �c1 > �
m
1 ;

�fb0 < �c0 < �
m
0 :

The result for the case of (�+ �+ r) c � � can be easily obtained. Q.E.D.

7.6 Proof of Proposition 7

Recall that in the proof of Proposition 5 we use condition (21) to substitute �0 out and thus

treat Wd as a function of �1. We have shown there that Wd is strictly concave in �1. Hence,

the farther away a speci�c �1 is from �fb1 , the lower the resulting total welfare. According to

Proposition 6, we have �fb1 > �c1 > �
m
1 when (�+ �+ r) c < �, so

WFB
d >WCM

d >WMM
d :

The result for the case of (�+ �+ r) c � � can be easily obtained. Q.E.D.

7.7 Equilibrium with � > 0 and Proof of Proposition 2 and Propositipon 8�10

This subsection is organized as follows. Part I presents some preliminary analysis. Part II proves

Proposition 9. Part III analyzes the equilibrium under competitive market making and gives the
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proof of Proposition 2 and 8. Part IV analyzes the equilibrium under monopolistic market making

and proves Proposition 10.

Part I. According to Theorem 1, �� and ��� are uniquely determined by

�� ���� = (�+ r) �;

(1� s)F (��) + sF (���) = 1� s:

Direct di¤erentiation yields

@��

@�
=

(�+ r) sf (���)

(1� s) f (��) + sf (���) > 0;

@���

@�
= � (�+ r) (1� s) f (��)

(1� s) f (��) + sf (���) < 0:

To see an example, we assume F (�) is uniform on
�
0;�

�
and have

�� = (1� s)� + s (�+ r) �;

��� = (1� s)�� (1� s) (�+ r) �:

Also, we have

A�B = �0 ��1 + ��
�+ �+ r

;

where �0 and �1 are still linked through (72).

Part II. Competitive Market-Making. In this case, A�B = c. �0 and �1 are uniquely

determined by the following two equations

�0 ��1 + �� = (�+ �+ r) c;

(1� s)F (�0) + sF (�1) = 1� s:

In order to have �0 > �� > ��� > �1, we need �0 � �1 > �� � ���, which leads to � < c.

When � � c, we have �0 = �� and �1 = ���: all investors choose to trade in the exchange in

this case. As � increases from zero, �0 and �� get close to each other because @�0
@� < 0 < @��

@�

(see below) until they meet when � exceeds c. From @���

@� < 0 < @�1
@� (see below), we know that

�1 and ��� approach each other as � is increased.
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Now we check the e¤ects of �. Direct calculation yields

@�0
@�

= � �sf (�1)

(1� s) f (�0) + sf (�1)
< 0;

@�1
@�

=
� (1� s) f (�0)

(1� s) f (�0) + sf (�1)
> 0:

�b is decreasing in �:

@�b
@�

=
� (1� s)
�+ �

2664f (�0) � @�0@�| {z }
�

� f (��) � @�
�

@�| {z }
+

3775 < 0:

� increases TVexchange but decreases TVOTC:

@TVexchange
@�

= �sf (�1)
@�1
@�

> 0;

@TVOTC
@�

= � ��s

�+ �
f (�1)

@�1
@�

< 0:

Consequently,
@ (TVexchange + TVOTC)

@�
=
�2sf (�1)

�+ �

@�1
@�

> 0:

We complete the proof of Proposition 9.

Part III. We analyze which market is active in the search equilibrium under competitive

market making. We assume c > 0 and � � 0 in this part.

Let�s introduce two auxiliary functions. For a positive z, let D (z) be the unique solution to

the following equation

(1� s)F (D (z) + z) + sF (D (z)) = 1� s: (85)

D (z) is decreasing:

D0 (z) = �
(1� s) f

�
D (z)

�
(1� s) f

�
D (z)

�
+ sf (D (z))

< 0:

It is easy to verify that D (0) = �w = F�1 (1� s) and D
�
�
�
= 0. Therefore, D (z) is a mapping

from
�
0;�

�
to [0;�w]. De�ne D (z) by

D (z) = D (z) + z, for z 2
�
0;�

�
. (86)
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D (z) is increasing:

D
0
(z) =

sf (D (z))

(1� s) f
�
D (z)

�
+ sf (D (z))

> 0:

It is easy to verify that D (0) = �w and D
�
�
�
= �, so D (z) is a mapping from

�
0;�

�
to
�
�w;�

�
.

We need to extend the domain of these two functions to [0;+1):

D (z) =

�
de�ned in (85) if z 2

�
0;�

�
0 if z 2

�
�;+1

� ;

D (z) =

�
de�ned in (86) if z 2

�
0;�

�
� if z 2

�
�;+1

� :

Then, we can rewrite four cuto¤ points by

�0 = D ((�+ �+ r) c� ��) ;

�1 = D ((�+ �+ r) c� ��) ;

�� = D ((�+ r) �) ;

��� = D ((�+ r) �) :

In the case of � = 0, we have �� = ��� = �w and

�0 = D ((�+ �+ r) c) > �1 = D ((�+ �+ r) c) ;

because c > 0. If c < �
�+�+r , then � > �0 > �w > �1 > 0. This is the case where active trading

occurs to both markets. If c � �
�+�+r , then �0 = � and �1 = 0. This corresponds to the case

where trading only occurs to the OTC market. These results are reported in Proposition 2.

Now we assume c = � > 0, there are two subcases.

If c = � < �
�+r , then (�+ �+ r) c� �� = (�+ r) � < � and therefore � > �0 = �

� > ��� =

�1 > 0. This is the case in which active trading only occurs to the exchange.

If c = � � �
�+r , � = �0 = �� > ��� = �1 = 0 and this is the case of no trading in either

market.

Now assume c > � > 0.
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If � < c < ��+�
�+�+r , then 0 < (�+ r) � < (�+ �+ r) c� �� < �. We therefore have � > �0 >

�� > ��� > �1 > 0 and this is the case where both markets are active.

If c > � � �
�+r , then (�+ �+ r) c � �� > (�+ r) � � �. We have �0 = �� = � and

�1 = �
�� = 0. This is the case where no market is active.

If c � ��+�
�+�+r > �, then (�+ �+ r) c � �� � � > (�+ r) �. We have � = �0 > �

� > ��� >

�1 = 0. This is the case where active trading only occurs to the OTC market.

The above results are reported in Proposition 8.

Part IV. Monopolistic Market-Making. For simplicity, we still assume F (�) is uniform

on
�
0;�

�
. Now, the monopolistic market maker�s problem is written as

max
A;B

(A�B � c)TVexchange = max
�0;�1

�s

�
�0 ��1 + ��
�+ �+ r

� c
�
�1

�

s.t. � � �0 � �� > ��� � �1 � 0 and (72) .

The interior solution is

�0 = �� s

2

�
�+ ��� (�+ �+ r) c

�
;

�1 =
1� s
2

�
�+ ��� (�+ �+ r) c

�
:

We obtain the interior solution by ignoring the inequality constraint. Just like before, �0 (or �1)

is decreasing (or increasing) in �.

Now we prove Proposition 10. Both markets coexist (i.e., � > �0 > �� > ��� > �1 > 0) if

(D1) :

�
1 +

�+ r

�

�
c� �

�
< � <

�+ (�+ �+ r) c

�+ 2 (�+ r)
:

A precondition to have (D1) is that the upper bound exceeds the lower bound, which requires

(�+ r) c < �:

Trading only occurs to the exchange (i.e., � > �0 = �� � ��� = �1 > 0) if

(D2) :
� + (�+ �+ r) c

�+ 2 (�+ r)
� � < �

�+ r
:
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Trading only occurs to the OTC market (i.e., � = �0 > �� � ��� > �1 = 0) if

(D3) : � < max

�
�+ (�+ �+ r) c

�+ 2 (�+ r)
;

�
1 +

�+ r

�

�
c� �

�

�
:

When � = 0, condition (D2) can never hold, so active trading always takes place in the OTC

market. In this case, condition (D1) boils down to (�+ �+ r) c < � and condition (D2) becomes

(�+ �+ r) c � �, which exhausts all possible situations. This is what we have speci�ed in

Proposition 3.

Under condition (D1), the optimal bid-ask spread is given by

A�B = �+ ��

2 (�+ �+ r)
+
c

2
;

which is increasing in � (obvious) and decreasing in �:

@ (A�B)
@�

=
� (�+ r)��
2 (�+ �+ r)2

< 0:

This is because condition (D1) requires c < �
�+r and then

�
(D1)
<

�+ (�+ �+ r) c

�+ 2 (�+ r)
<
�+ (�+ �+ r) �

�+r

�+ 2 (�+ r)
=

�

�+ r
:

Let�s look at the anatomy of the bid-ask spread in the exchange. The spread of the ask price

in the exchange and the OTC market is given by

A� PA
(65)
=

�0 ���
�+ �+ r

=
s

2

�
�

�+ �+ r
�
�
1 +

�+ r

�+ �+ r

�
�+ c

�
:

The spread of the bid price in the exchange and the OTC market is given by

PB �B
(67)
=
��� ��1
�+ �+ r

=
1� s
2

�
�

�+ �+ r
�
�
1 +

�+ r

�+ �+ r

�
�+ c

�
:

Both of these two price spreads are decreasing in � because

@

@�

�
�

�+ �+ r
�
�
1 +

�+ r

�+ �+ r

�
�+ c

�
/ (�+ r) ��� < 0:

It is also direct to show that they both decrease in � and r.
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8 Appendix III

This section explores the equilibrium of the model in Section 4. We brie�y describe the frictionless

benchmark where only a competitive market is available in the �rst subsection. We then study

the search equilibrium with both the exchange and the OTC market in the second subsection.

8.1 Frictionless Benchmark

We can think of an economy where every investor has to rent the asset in each period by paying

a �ow price rPW . An investor of preference type i chooses the number of units of the asset he

wants to hold, i.e.,

qWi = argmax
q

�
ui (q)� rPW q

�
:

The Walrasian price PW is determined by the market-clearing condition

�1q
W
1 + �2q

W
2 = s:

If the �ow utility is speci�ed by ui (q) = �iq � 1
2q
2, we have

qW1 = max
�
�1 � rPW ; 0

	
;

qW2 = �2 � rPW :

Inserting back into the market-clearing condition, we obtain the Walrasian price

PW =

(
��s
r , if s > �2��
1
r

�
�2 � s

�2

�
, if 0 < s < �2��

; (87)

and the optimal asset holdings for investors of each type

qW1 = max fs� �2��; 0g ;

qW2 = max

�
s+ �1��;

s

�2

�
:

To ensure a positive Walrasian price, we need to impose s < �2�2.
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8.2 Search Equilibrium

The proof is organized as follows. We provide some preliminary analysis and simplify the expres-

sions of value functions in Step I. We have argued in the paper that the steady-state distribution

across investors�states could be determined after we have excluded those transient states which

have in�nitesimal masses of investors. To this end, we need to go over all possible cases and

check whether demand and supply could coexist in the exchange simultaneously. We illustrate

our analysis in Step II and end up with two possible cases. We then analyze each case in Step III

and IV respectively.

Step I. Substituting fi (q; q�i ) in (37) into (34), we obtain

rUi (q) = ui (q) + b� [Ui (q�i )� Ui (q)� P (q�i � q)] + � X
j=1;2

�j [�j (q)� Ui (q)] ;

where we set b� � � (1� �). This can be rearranged as
(r + �+ b�)Ui (q) = ui (q) + b�Pq +
i + � X

j=1;2

�j�j (q) ; (88)

where


i = b� [Ui (q�i )� Pq�i ] :
Recall that �i (q) is the optimized objective function in optimization problem (38) and is given

by

�i (q) =

8<:
Ui
�
qAi
�
�A

�
qAi � q

�
, if q < qAi

Ui (q) , if qAi � q � qBi
Ui
�
qBi
�
+B

�
q � qBi

�
, if q > qBi

: (89)

By construction, the slope of �i (q) is bounded by B and A:

d�i (q)

dq
=

8><>:
A, if q < qAi
dUi(q)
dq , if qAi � q � qBi

B, if q > qBi

:

We will later show that Ui (q) is strictly concave for q 2
�
qAi ; q

B
i

�
which guarantees the concavity

of �i (q).

Step II. So far, we just know qAi < q�i < qBi for i 2 f1; 2g, but we don�t know yet the
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comparative magnitude between qB1 and q
A
2 , q

�
1 and q

A
2 , or q

�
2 and q

B
1 . There are 8 possible cases

in total and we now analyze each case by checking whether demand and supply could emerge (or

disappear) simultaneously in the exchange.

Case 1: qB1 > q
A
2 , q

�
1 > q

A
2 and q

�
2 > q

B
1 . Putting together, we have

qA1 < q
A
2 < q

�
1 < q

B
1 < q

�
2 < q

B
2

in this case. Since qB1 < q�2 < qB2 , investors in state (1; q
�
2) and

�
1; qB2

�
choose to sell in the

exchange and both go to state
�
1; qB1

�
after trade. Since qA1 < q

A
2 , investors in state

�
2; qA1

�
choose

to buy in the exchange and their state after trade become
�
2; qA2

�
. Note that only investors in

state
�
1; qA1

�
can enter state

�
2; qA1

�
after a new shock in their preference types. However, no

investor would ever be in state
�
1; qA1

�
, so the mass of investors in this state and in state

�
2; qA1

�
,

in turn, is zero at any time. The above shows that in the exchange some investors are willing to

sell but no one is willing to buy, which violates the zero inventory condition. Hence, this case is

impossible.

Case 2: qB1 > q
A
2 , q

�
1 > q

A
2 and q

�
2 < q

B
1 . Putting together, we have

qA1 < q
A
2 < q

�
1 < q

�
2 < q

B
1 < q

B
2

in this case. Since qA1 < qA2 , investors in state
�
2; qA1

�
choose to buy in the exchange and enter

state
�
2; qA2

�
after trade. Since qB1 < q

B
2 , investors in state

�
1; qB2

�
choose to sell in the exchange

and go to state
�
1; qB1

�
after trade. Note that only investors in state

�
2; qB2

�
can become state�

1; qB2
�
after a new shock in their preference types. However, no investor would ever be in state�

2; qB2
�
, so the mass of investors in this state and in state

�
1; qB2

�
, in turn, is zero at any time.

The above means that there is demand for but no supply of the asset in the exchange. Hence,

this case is still impossible.

Case 3: qB1 > q
A
2 , q

�
1 < q

A
2 and q

�
2 > q

B
1 . Putting together, we have

qA1 < q
�
1 < q

A
2 < q

B
1 < q

�
2 < q

B
2

in this case. Since qB1 < q�2 < qB2 , investors in state (1; q
�
2) and

�
1; qB2

�
choose to sell in the
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exchange and become state
�
1; qB1

�
after trade. Since qA1 < q�1 < qA2 , investors in state

�
2; qA1

�
and (2; q�1) choose to buy in the exchange and become state

�
2; qA2

�
after trade. It turns out

that demand and supply exist in this case. The states that have positive masses of investors are

(1; q�1),
�
1; qA2

�
,
�
1; qB1

�
,
�
2; qA2

�
,
�
2; qB1

�
and (2; q�2). We defer the detailed demographic analysis

and further discussions to Step III.

Case 4: qB1 > q
A
2 , q

�
1 < q

A
2 and q

�
2 < q

B
1 . Putting together, we have

qA1 < q
�
1 < q

A
2 < q

�
2 < q

B
1 < q

B
2

in this case. Since qA1 < q�1 < qA2 , investors in state
�
2; qA1

�
and (2; q�1) choose to buy in the

exchange and both become state
�
2; qA2

�
after trade. Since qB1 < qB2 , investors

�
1; qB2

�
in state

choose to sell in the exchange and enter state
�
1; qB1

�
after trade.

Case 5: qB1 < qA2 , q
�
1 > qA2 and q�2 > qB1 . We thus have q

�
1 > qA2 > qB1 , which contradicts

q�1 < q
B
1 . Hence, this case is impossible.

Case 6: qB1 < qA2 , q
�
1 > qA2 and q�2 < qB1 . We thus have q

�
1 > qA2 > qB1 , which contradicts

q�1 < q
B
1 . Hence, this case is impossible.

Case 7: qB1 < q
A
2 , q

�
1 < q

A
2 and q

�
2 > q

B
1 . Putting together, we have

qA1 < q
�
1 < q

B
1 < q

A
2 < q

�
2 < q

B
2

in this case. Since q�1 < q
A
2 , investors in state (2; q

�
1) choose to buy in the exchange and become

state
�
2; qA2

�
after trade. Since qB1 < q

�
2, investors in state (1; q

�
2) choose to sell in the exchange

and become state
�
1; qB1

�
after trade. It turns out that demand and supply exist in this case. The

states that have positive masses of investors are (1; q�1),
�
1; qB1

�
,
�
2; qA2

�
and (2; q�2). We defer the

detailed demographic analysis and further discussions to Step IV.

Case 8: qB1 < qA2 , q
�
1 < qA2 and q�2 < qB1 . We thus have q

�
2 < qB1 < qA2 , which contradicts

qA2 < q
�
2. Hence, this case is impossible.

Step III. We analyze Case 3 in Step II. In this case, we assume

qA1 < q
�
1 < q

A
2 < q

B
1 < q

�
2 < q

B
2 :
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Value functions. The value of �1 (q) and �2 (q) in di¤erent regions are listed in the following

table
Region/Value �1 (q) �2 (q)

q < qA1 U1
�
qA1
�
�A

�
qA1 � q

�
U2
�
qA1
�
�A

�
qA1 � q

�
qA1 � q < qA2 U1 (q) U2

�
qA1
�
�A

�
qA1 � q

�
qA2 � q � qB1 U1 (q) U2 (q)

qB1 < q � qB2 U1
�
qB1
�
+B

�
q � qB1

�
U2 (q)

q > qB2 U1
�
qB1
�
+B

�
q � qB1

�
U2
�
qB2
�
+B

�
q � qB2

�
Let�s �rst determine U1 (q) for q 2

�
qA1 ; q

B
1

�
. For this, we take i = 1 in (88) and obtain

(r + �+ b�)U1 (q) = u1 (q) + b�Pq +
1 + ��1U1 (q)
+

�
��2

�
U2
�
qA1
�
�A

�
qA1 � q

��
, if q 2

�
qA1 ; q

A
2

�
��2U2 (q) , if q 2

�
qA2 ; q

B
1

� :

This can be rearranged as

U1 (q) =
u1 (q) + b�Pq +
1
r + ��2 + b� +

(
��2

r+��2+b�
�
U2
�
qA1
�
�A

�
qA1 � q

��
, if q 2

�
qA1 ; q

A
2

�
��2

r+��2+b�U2 (q) , if q 2
�
qA2 ; q

B
1

� ; (90)

where 
1 = � (1� �) [U1 (q�1)� Pq�1].

We next determine U2 (q) for q 2
�
qA2 ; q

B
2

�
. For this, we take i = 2 in (88) and obtain

(r + �+ b�)U2 (q) = u2 (q) + b�Pq +
2 + ��2U2 (q)
+

�
��1U1 (q) , if q 2

�
qA2 ; q

B
1

�
��1

�
U1
�
qB1
�
+B

�
q � qB1

��
, if q 2

�
qB1 ; q

B
2

� :

This can be rearranged as

U2 (q) =
u2 (q) + b�Pq +
2
r + ��1 + b� +

(
��1

r+��1+b�U1 (q) , if q 2
�
qA2 ; q

B
1

�
��1

r+��1+b�
�
U1
�
qB1
�
+B

�
q � qB1

��
, if q 2

�
qB1 ; q

B
2

� ; (91)

where 
2 = � (1� �) [U2 (q�2)� Pq�2].

Using (90) and (91) to solve for U1 (q) and U2 (q), we have

U1 (q) =

8<:
u1(q)+b�Pq+
1
r+��2+b� + ��2

r+��2+b�
�
U2
�
qA1
�
�A

�
qA1 � q

��
, if q 2

�
qA1 ; q

A
2

�
(r+��1+b�)[u1(q)+
1]+��2[u2(q)+
2]

(r+b�)(r+�+b�) +
b�Pq
r+b� , if q 2 �qA2 ; qB1 � ;

and

U2 (q) =

8<:
��1[u1(q)+
1]+(r+��2+b�)[u2(q)+
2]

(r+b�)(r+�+b�) +
b�Pq
r+b� , if q 2 �qA2 ; qB1 �

u2(q)+b�Pq+
2
r+��1+b� + ��1

r+��1+b�
�
U1
�
qB1
�
+B

�
q � qB1

��
, if q 2

�
qB1 ; q

B
2

� :
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It is direct to see that Ui (q) is strictly concave when q 2
�
qAi ; q

B
i

�
for i = 1; 2.

Now we solve for all cuto¤ asset holdings. qA1 is determined by U
0
1

�
qA1
�
= A, i.e.,

u01
�
qA1
�
= (r + b�)A� b�P:

qB1 is determined by U
0
1

�
qB1
�
= B, i.e.,

(r + ��1 + b�)u01 �qB1 �+ ��2u02 �qB1 �
r + �+ b� = (r + b�)B � b�P:

To determine q�1, we notice q
�
1 2

�
qA1 ; q

A
2

�
, so U 01 (q

�
1) = P gives

u01 (q
�
1) = (r + ��2)P � ��2A:

qA2 is determined by U
0
2

�
qA2
�
= A, i.e.,

��1u
0
1

�
qA2
�
+ (r + ��2 + b�)u02 �qA2 �
r + �+ b� = (r + b�)A� b�P:

qB2 is determined by U
0
2

�
qB2
�
= B, i.e.,

u02
�
qB2
�
= (r + b�)B � b�P:

To determine q�2, we notice q
�
2 2

�
qB1 ; q

B
2

�
, so U 02 (q

�
2) = P gives

u02 (q
�
2) = (r + ��1)P � ��1B:

We need to guarantee

qA1 < q
A
2 < q

B
1 < q

B
2 :

Note that qAi < qBi is already guaranteed by the concavity of Ui (q), so we only need to check

qA2 < q
B
1 . We will later verify this after we determine the equilibrium bid-ask spread.
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Since u0i (q) = �i � q, we have

qA1 = �1 � (r + b�)A+ b�P; (92)

qB1 =
(r + ��1 + b�)�1 + ��2�2

r + �+ b� � (r + b�)B + b�P; (93)

qA2 =
��1�1 + (r + ��2 + b�)�2

r + �+ b� � (r + b�)A+ b�P; (94)

qB2 = �2 � (r + b�)B + b�P; (95)

q�1 = �1 � (r + ��2)P + ��2A; (96)

q�2 = �2 � (r + ��1)P + ��1B: (97)

Demographic analysis. We determine the mass of investors in each state. First, the mass

of investors with preference type i is equal to �i, so the following identities hold

n (1; q�1) + n
�
1; qA2

�
+ n

�
1; qB1

�
= �1; (98)

n (2; q�2) + n
�
2; qA2

�
+ n

�
2; qB1

�
= �2: (99)

Second, all assets are held by investors, so

q�1n (1; q
�
1) + q

A
2

�
n
�
1; qA2

�
+ n

�
2; qA2

��
+ qB1

�
n
�
1; qB1

�
+ n

�
2; qB1

��
+ q�2n (2; q

�
2) = s: (100)

Third, in a steady state the in�ow and out�ow of investors in each state should be equal. We

list out the in�ow-out�ow balance equation for each state as follows

(1; q�1) : ��2n (1; q
�
1) = �n

�
1; qA2

�
+ �n

�
1; qB1

�
;�

1; qA2
�
: (�+ ��2)n

�
1; qA2

�
= ��1n

�
2; qA2

�
;�

1; qB1
�
: (�+ ��2)n

�
1; qB1

�
= ��1n

�
2; qB1

�
+ ��1n (2; q

�
2) ;�

2; qA2
�
: (�+ ��1)n

�
2; qA2

�
= ��2n (1; q

�
1) + ��2n

�
1; qA2

�
;�

2; qB1
�
: (�+ ��1)n

�
2; qB1

�
= ��2n

�
1; qB1

�
;

(2; q�2) : ��1n (2; q
�
2) = �n

�
2; qB1

�
+ �n

�
2; qA2

�
;

where on each line the term before the colon indicates the state and the out�ow(s) and in�ow(s)
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of that state are placed on the LHS and RHS of the equation after the colon, respectively. It

can be shown that the steady-state distribution satisfying (98), (99) and the above 6 �ow balance

equations is

n (1; q�1) =
��1

�+ ��2
; (101)

n
�
1; qA2

�
=

��1
�+ ��2

��1�2
�+ �

; (102)

n
�
1; qB1

�
=

��1�2
�+ �

; (103)

n
�
2; qA2

�
=

��1�2
�+ �

; (104)

n
�
2; qB1

�
=

��2
�+ ��1

��1�2
�+ �

; (105)

n (2; q�2) =
��2

�+ ��1
: (106)

Substituting these into (100), we obtain

q�1
��1

�+ ��2
+ qA2

��1�2
�+ ��2

+ qB1
��1�2
�+ ��1

+ q�2
��2

�+ ��1
= s: (107)

So far we haven�t checked the zero inventory condition in the exchange and the OTC market.

Trading volumes. In the exchange, (i) each investor in state (1; q�2) sell
�
q�2 � qB1

�
units and

the total measure of such sellers is ��1n (2; q�2), (ii) every investor in state (2; q
�
1) buy

�
qA2 � q�1

�
units and the total measure of such buyers is ��2n (1; q�1). Since market makers in the OTC take

no inventory, we have

�
q�2 � qB1

�
��1n (2; q

�
2) =

�
qA2 � q�1

�
��2n (1; q

�
1) ;

which can be simpli�ed to
q�2 � qB1
�+ ��1

=
qA2 � q�1
�+ ��2

: (108)

Using this, we can show that (107) can be rewritten as

�1q
�
1 + �2q

�
2 = s: (109)

The total trading volume in the exchange is given by

TVexchange =
�
qA2 � q�1

� ���1�2
�+ ��2

: (110)
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In the OTC market, (i) each investor in state
�
1; qA2

�
sells

�
qA2 � q�1

�
units and the total measure

of such sellers is �n
�
1; qA2

�
, (ii) each investor in state

�
1; qB1

�
sells

�
qB1 � q�1

�
units and the total

measure of such sellers is �n
�
1; qB1

�
, (iii) each investor in state

�
2; qA2

�
buys

�
q�2 � qA2

�
units and

the total measure of such buyers is �n
�
2; qA2

�
, (iv) each investor in state

�
2; qB1

�
buys

�
q�2 � qB1

�
units and the total measure of such buyers is �n

�
2; qB1

�
. Hence, the trading volume in the OTC

market is given by

TVOTC =
�
qA2 � q�1

�
�n
�
1; qA2

�
+
�
qB1 � q�1

�
�n
�
1; qB1

�
=

�
qA2 � q�1

� ��1
�+ ��2

���1�2
�+ �

+
�
qB1 � q�1

� ���1�2
�+ �

:

It is direct to show TVOTC > TVexchange, which is equivalent to

�
qA2 � q�1

� ��1
�+ ��2

���1�2
�+ �

+
�
qB1 � q�1

� ���1�2
�+ �

>
�
qA2 � q�1

� ���1�2
�+ ��2

,�
qA2 � q�1

� ��1
�+ ��2

+
�
qB1 � q�1

�
>

�
qA2 � q�1

� �+ �

�+ ��2
,

qB1 � q�1 > qA2 � q�1:

The last line already holds because qB1 > q
A
2 .

Bid-ask spread under monopolistic market-making. The monopolistic market maker

sets the bid and ask price to maximize his pro�t

max
A;B

(A�B � c)� TVexchange (111)

s.t. (108) and (109) ;

and TVexchange is given by (110).

In what follows, we let

�1 =
r + ��1 + b�
�+ ��1

; �2 =
r + ��2 + b�
�+ ��2

: (112)

Let us �rst simplify two constraints. We already obtain all critical asset holdings in (92)�(97).

72



Inserting them into (109) and (108), we obtain

P =
� � s+ ��1�2 (A+B)

r + 2��1�2
: (113)

�1

�
��

r + �+ b� +B � P
�

= �2

�
��

r + �+ b� �A+ P
�
: (114)

Using (113) to substitute P out on the second line, we have

�1

�
��

r + �+ b� � � � s+ ��1�2A� (r + ��1�2)Br + 2��1�2

�
= �2

�
��

r + �+ b� + � � s� (r + ��1�2)A+ ��1�2Br + 2��1�2

�
: (115)

TVexchange becomes

TVexchange = (r + ��2 + b�) ���1�2
�+ ��2

�
��

r + �+ b� �A+ P
�

/ r + 2��1�2

r + �+ b� �� + � � s� rA� ��1�2 (A�B) ;
where we have substituted P out on the second line.

Inserting this into the objective function (111), the monopolistic market maker wants to

maximize the following

(A�B � c)
�
r + 2��1�2

r + �+ b� �� + � � s� rA� ��1�2 (A�B)
�
: (116)

Now we aim to use (A�B) to express rA. Using (113) and (114), we have

rA = � � s+ �2 � �1
�1 + �2

r + 2��1�2

r + �+ b� �� + �1 (r + ��1�2)� �2��1�2�1 + �2
(A�B) :

Inserting this back into (116), the objective function reduces to

(r + 2��1�2)�1
�1 + �2

(A�B � c)
�

2��

r + �+ b� � (A�B)
�
:

The optimal bid-ask spread is thus given by

A�B = ��

r + �+ b� + c

2
; (117)

if c < 2��

r+�+b� .
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Recall that we have to guarantee the inequality condition qA2 < q
B
1 , which is equivalent to

��

r + �+ b� < A�B:
Obviously, this already holds.

The ask and bid price in the exchange are given by

A =
� � s
r

+
���1�2�1 + (r + ��1�2)�2

�1 + �2

��

r(r + �+ b�) + �1 (r + ��1�2)� �2��1�2�1 + �2

c

2r
;

B =
� � s
r

+
� (��1�2 + r)�1 + ��1�2�2

�1 + �2

��

r(r + �+ b�) + ��1�2�1 � �2 (��1�2 + r)�1 + �2

c

2r
:

The asset price in the OTC market is given by

P =
� � s
r

+
��1�2
r

�2 � �1
�1 + �2

�
��

r + �+ b� � c

2

�
:

The �rst term in P is the Walrasian price in the frictionless benchmark given in (87). P exceeds

its Walrasian counterpart if there are more high-type investors than low-type investors in the

economy. 9 It is easy to show

A� P =
�1

�1 + �2

c

2
+

�2
�1 + �2

��

r + �+ b� > 0;
P �B =

�1
�1 + �2

��

r + �+ b� + �2
�1 + �2

c

2
> 0:

Finally, let�s compare the optimal asset holding in each type with its counterparty in the

frictionless benchmark. From (96) and (97), we know

q�1 =
�
�1 � � + s

�| {z }
=qW1

+
�1�1 + �2�2
�1 + �2

��2��

r + �+ b� + ��2�1�2 + �2�1�1 + �2

c

2
;

q�2 =
�
�2 � � + s

�| {z }
=qW2

� �1�1 + �2�2
�1 + �2

��1��

r + �+ b� � �2�1 + �1�2�1 + �2

��1c

2
;

9The exact condition to have P > ��s
r
is �2 > �1, which gives (�2 � �1) (r � ��) < 0. If we set the values of

parameter r, � and � in their reasonable ranges, we should have r < �� and thus we need �2 > �1. For example,
following Lagos and Rocheteau (2006), if the annual discount rate is 7 percent such that r = 1:07

1
360 � 1 and the

average delay of execution for a trade in the OTC market is one day such that � = 1, then we have r < �� as long
as dealers have some non-trivial bargaining power.
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where qWi = �i � � + s is the equilibrium asset holding of type i in the frictionless benchmark. It

is easy to see

q�1 > qW1 ;

q�2 < qW2 :

Note that we have assumed interior solutions through (92)� (97). We need to check qA1 > 0,

i.e., �1 > (r + b�)A� b�P , that is,
s� �2�� >

���1�2�1 + (r + b�+ ��1�2)�2
�1 + �2

��

r + �+ b� + (r + b�+ ��1�2)�1 � ��1�2�2�1 + �2

c

2
:

Corner Solution. The only corner solution could occur to qA1 = 0. In this case, we need to

ensure

(r + ��2)P � ��2A � �1 < (r + b�)A� b�P;
such that 0 = qA1 < q

�
1.

���2
�2�2 + �1�1
�1 + �2

��

r + �+ b� � ��2�1�2 + �2�1�1 + �2

c

2
< s� �2�� �

���1�2�1 + (r + b�+ ��1�2)�2
�1 + �2

��

r + �+ b� + (r + b�+ ��1�2)�1 � ��1�2�2�1 + �2

c

2
:

In sum, this equilibrium exists when

��1 < �� < ��1; (118)

where

��1 = (r + �+ b�) c
2
;

��1 =

s
�2
+ ��1�2+�2�1�1+�2

c
2

1� �2�2+�1�1
�1+�2

�

r+�+b� :

Step IV. We analyze Case 7 in Step II. In this case, we assume

qA1 < q
B
1 < q

A
2 < q

B
2 :
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Value functions. The value of �1 (q) and �2 (q) in di¤erent regions are listed in the following

table
Region/Value �1 (q) �2 (q)

q < qA1 U1
�
qA1
�
�A

�
qA1 � q

�
U2
�
qA1
�
�A

�
qA1 � q

�
qA1 � q < qB1 U1 (q) U2

�
qA1
�
�A

�
qA1 � q

�
qB1 � q � qA2 U1

�
qB1
�
+B

�
q � qB1

�
U2
�
qA1
�
�A

�
qA1 � q

�
qA2 < q � qB2 U1

�
qB1
�
+B

�
q � qB1

�
U2 (q)

q > qB2 U1
�
qB1
�
+B

�
q � qB1

�
U2
�
qB2
�
+B

�
q � qB2

�
To determine U1 (q) for q 2

�
qA1 ; q

B
1

�
, we take i = 1 in (88) and obtain

U1 (q) =
u1 (q) + b�Pq +
1
r + ��2 + b� +

��2

r + ��2 + b� �U2 �qA1 ��A �qA1 � q�� :
To determine U2 (q) for q 2

�
qA2 ; q

B
2

�
, we take i = 2 in (88) and obtain

U2 (q) =
u2 (q) + b�Pq +
2
r + ��1 + b� +

��1

r + ��1 + b� �U1 �qB1 �+B �q � qB1 �� :
Now we solve for all cuto¤ asset holdings:

�
qA1
�
: U 01

�
qA1 +

�
= A) u01

�
qA1
�
= (r + b�)A� b�P;

(q�1) : U 01 (q
�
1) = P ) u01

�
qB1
�
= (r + ��2)P � ��2A;�

qB1
�
: U 01

�
qB1 �

�
= B ) u01

�
qB1
�
= (r + ��2 + b�)B � ��2A� b�P;�

qA2
�
: U 02

�
qA2 +

�
= A) u02

�
qA2
�
= (r + ��1 + b�)A� ��1B � b�P;

(q�2) : U 02 (q
�
2) = P ) u02 (q

�
2) = (r + ��1)P � ��1B;�

qB2
�
: U 02

�
qB2 �

�
= B ) u02

�
qB2
�
= (r + b�)B � b�P:

Since u0i (q) = �i � q, we have

qA1 = �1 � (r + b�)A+ b�P; (119)

q�1 = �1 � (r + ��2)P + ��2A; (120)

qB1 = �1 � (r + ��2 + b�)B + ��2A+ b�P; (121)

qA2 = �2 � (r + ��1 + b�)A+ ��1B + b�P; (122)

q�2 = �2 � (r + ��1)P + ��1B; (123)

qB2 = �2 � (r + b�)B + b�P: (124)
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Demographic analysis. We determine the mass of investors in each state. First, the mass

of investors with preference type i is summed up to �i, so

n (1; q�1) + n
�
1; qB1

�
= �1; (125)

n
�
2; qA2

�
+ n (2; q�2) = �2: (126)

Second, all assets are held by investors, so

q�1n (1; q
�
1) + q

B
1 n
�
1; qB1

�
+ qA2 n

�
2; qA2

�
+ q�2n (2; q

�
2) = s: (127)

Third, the �ow of investors entering each state is equal to the �ow of investors leaving that

state, so we check the �ow-balance equation for each state as follows

(1; q�1) : ��2n (1; q
�
1) = �n

�
1; qB1

�
;�

1; qB1
�
: (�+ ��2)n

�
1; qB1

�
= ��1n

�
2; qA2

�
+ ��1n (2; q

�
2) ;�

2; qA2
�
: (�+ ��1)n

�
2; qA2

�
= ��2n

�
1; qB1

�
+ ��2n (1; q

�
1) ;

(2; q�2) : ��1n (2; q
�
2) = �n

�
2; qA2

�
:

Here, the LHS and RHS of the equation on each line are the out�ow(s) and in�ow(s) of the state

which is indicated before the colon. It can be shown that the steady-state distribution satisfying

(125), (126) and the above 4 �ow balance equations is

n (1; q�1) =
��1

�+ ��2
; (128)

n
�
1; qB1

�
=

��1�2
�+ ��2

; (129)

n
�
2; qA2

�
=

��1�2
�+ ��1

; (130)

n (2; q�2) =
��2

�+ ��1
: (131)

Substituting these into (127), we obtain

q�1
��1

�+ ��2
+ qB1

��1�2
�+ ��2

+ qA2
��1�2
�+ ��1

+ q�2
��2

�+ ��1
= s: (132)

Now we trace the supply and demand in the exchange and the OTC market.
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In the OTC market, when getting access to a dealer, (i) every investor in state
�
1; qB1

�
sell�

qB1 � q�1
�
and the total measure of such sellers is �n

�
1; qB1

�
, (ii) every investor in state

�
2; qA2

�
sell�

q�2 � qA2
�
and the total measure of such buyers is �n

�
2; qA2

�
. Since dealers in the OTC market

hold zero inventory, we have

�n
�
1; qB1

� �
qB1 � q�1

�
= �n

�
2; qA2

� �
q�2 � qA2

�
;

which can be simpli�ed to
qB1 � q�1
�+ ��2

=
q�2 � qA2
�+ ��1

: (133)

The total trading volume in the OTC market is given by

TVOTC = �n
�
2; qA2

� �
q�2 � qA2

�
= �

��1�2
�+ ��1

�
q�2 � qA2

�
:

In the exchange, (i) each investor in state (2; q�1) buy
�
qA2 � q�1

�
units and the total measure of

such buyers is ��2n (1; q�1), (ii) each investor in state
�
2; qB1

�
buy

�
qA2 � qB1

�
units and the total

measure of such buyers is ��2n
�
1; qB1

�
, (iii) each investor in state

�
1; qA2

�
sell

�
qA2 � qB1

�
units and

the total measure of such sellers is ��1n
�
2; qA1

�
, (iv) every investor in state (1; q�2) sell

�
q�2 � qB1

�
units and the total measure of such sellers is ��1n (2; q�2). The zero inventory in the exchange

gives

�2n (1; q
�
1)
�
qA2 � q�1

�
+ �2n

�
1; qB1

� �
qA2 � qB1

�
= �1n

�
2; qA1

� �
qA2 � qB1

�
+ �1n (2; q

�
2)
�
q�2 � qB1

�
:

The total trading volume in the exchange is given by

TVexchange = ��2n (1; q
�
1)
�
qA2 � q�1

�
+ ��2n

�
1; qB1

� �
qA2 � qB1

�
= ��2

��1
�+ ��2

�
qA2 � q�1

�
+ ��2

��1�2
�+ ��2

�
qA2 � qB1

�
: (134)

Now we show TVOTC < TVexchange in this equilibrium. To facilitate the comparison, we �rst

use (133) to rewrite TVOTC as

TVOTC = �
��1�2
�+ ��2

�
qB1 � q�1

�
:
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Then, direct calculation yields

TVOTC � TVexchange = ��1�2
�
qB1 � qA2

�
< 0:

Bid-ask spread under monopolistic market-making. The monopolistic market maker

maximizes the following pro�t by setting A and B

max
A;B

(A�B � c)� TVexchange (135)

s.t. (133) and (132) ;

and TVexchange is given by (134).

Recall that we already obtain all critical asset holdings in (119)� (124). Inserting them into

(133), we obtain

P =
�1A+ �2B

�1 + �2
;

where �1 and �2 are given by (112). Then we can express TVexchange, given by (134), as a function

of the bid-ask spread

TVexchange = ��1�2�� � ��1�2
�
r + �+ b�� � �1�2

�1 + �2

�
(A�B) :

Inserting back into objective function (135), the monopolistic market maker�s wants to maxi-

mize the following

(A�B � c)
�
�� �

�
r + �+ b�� � �1�2

�1 + �2

�
(A�B)

�
:

The optimal bid-ask spread is thus given by

A�B = 1

r + �+ b�� � �1�2
�1+�2

��

2
+
c

2
; (136)

if
��

c
> r + �+ b�� � �1�2

�1 + �2
:

In order to get P , we resort to constraint (132), which can be simpli�ed to

� � rP +
h
(��1 + �)�1�2 � ��1�1 � (r + b�)�2i �2 (A�B)�1 + �2

= s:
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Plugging (A�B) in (136) into the above equation and rearranging, we obtain P :

P =
� � s
r

+
��1�2
r

�2 � �1
�1 + �2

 
1

r + �+ b�� � �1�2
�1+�2

��

2
+
c

2

!
:

The bid and ask price in the exchange are given by

A =
� � s
r

+

�
��1�2
r

�2 � �1
�1 + �2

+
�2

�1 + �2

� 
1

r + �+ b�� � �1�2
�1+�2

��

2
+
c

2

!
;

B =
� � s
r

+

�
��1�2
r

�2 � �1
�1 + �2

� �1
�1 + �2

� 
1

r + �+ b�� � �1�2
�1+�2

��

2
+
c

2

!
:

Note that we have assumed interior solutions through (119)�(124). We need to check qA1 > 0,

i.e., �1 > (r + b�)A� b�P , which gives the following condition
s� �2��
1

r+�+b��� �1�2
�1+�2

��
2 +

c
2

>
(r + b�+ ��1�2)�2 � ��1�2�1

�1 + �2
:

Corner Solution. The only corner solution could occur to qA1 = 0. In this case, we need to

ensure q�1 > 0 and �1 � (r + b�)A� b�P , so the following condition should hold
���2

�1�1 + �2�2
�1 + �2

<
s� �2��
1

r+�+b��� �1�2
�1+�2

��
2 +

c
2

� (r + b�+ ��1�2)�2 � ��1�2�1
�1 + �2

:

In sum, the equilibrium in this part exists if and only if

��2 < �� < ��2; (137)

where

��2 =

�
r + �+ b�� � �1�2

�1 + �2

�
c;

��2 =

s
�2
+ ��1�1+�2�2�1+�2

c
2

1� �1�1+�2�2
�1+�2

�

r+�+b��� �1�2
�1+�2

1
2

:
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Financial Intermediation Chains
in an OTC Market

with Bin Wei and Hongjun Yan

Abstract

More and more layers of intermediaries arise in modern �nancial markets. What determines this
chain of intermediation? What are the consequences? We analyze these questions in a stylized
search model with an endogenous intermediary sector and intermediation chains. We show that
the chain length and the price dispersion among inter-dealer trades are decreasing in search cost,
search speed, and market size, but increasing in investors�trading needs. Using data from the U.S.
corporate bond market, we �nd evidence broadly consistent with these predictions. Moreover, as
the search speed goes to in�nity, our search-market equilibrium does not always converge to the
centralized-market equilibrium. In the case with an intermediary sector, prices and allocations
converge, but the trading volume remains higher than that in a centralized-market equilibrium.
This volume di¤erence goes to in�nity when the search cost approaches zero.
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1 Introduction

Financial intermediation chains appear to be getting longer over time, that is, more and more

layers of intermediaries are involved in �nancial transactions. For instance, with the rise of

securitization in the modern �nancial system in the U.S., the process of channeling funds from

savers to investors is getting increasingly complex (Adrian and Shin (2010)). This multi-layer

nature of intermediation not only exists in markets with relatively high transaction costs and

�slow�speeds (e.g., mortgage market), it is also prevalent in those with small transaction costs and

exceptionally �fast�speeds. For example, the average daily trading volume in the Federal Funds

market is more than ten times the aggregate Federal Reserve balances (Taylor (2001)). The trading

volume in the foreign exchange market appears disproportionately large relative to international

trade. According to the Main Economic Indicators database, the annual international trade

in goods and services is around $4 trillion in 2013. In that same year, however, the Bank of

International Settlement estimates that the daily trading volume in the foreign exchange market

is around $5 trillion.

These examples suggest that the multi-layer nature of intermediation is prevalent for markets

across the board. What determines the chain of intermediation? How does it respond as the

economic environment evolves? What is its in�uence on asset prices and investor welfare? To

analyze these issues, we need theories that endogenize the chain of intermediation. The literature

so far has not directly addressed these issues. Our paper attempts to �ll this gap.

The full answer to the above questions is likely to be complex and hinges on a variety of issues

(e.g., transaction cost, trading technology, regulatory and legal environment, �rm boundary). As

the �rst step, however, we abstract away from many of these aspects to analyze a simple model

of an over-the-counter (OTC) market, and assess its predictions empirically.1

In the model, investors have heterogeneous valuations of an asset. Their valuations change

over time, leading to trading needs. When an investor enters the market to trade, he faces a

1OTC markets are enormous. According to the estimate by the Bank for International Settlements, the total
outstanding OTC derivatives is around 711 trillion dollars in December 2013.
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delay in locating his trading partner. In the mean time, he needs to pay a search cost each period

until he �nishes his transaction. Due to the delay and search cost, not all investors choose to stay

in the market all the time, giving rise to a role of intermediation. Some investors choose to be

intermediaries. They stay in the market all the time and act as dealers. Once they acquire the

asset, they immediately start searching to sell it to someone who values it more. Similarly, once

they sell the asset, they immediately start searching to buy it from someone who values it less. In

contrast, other investors act as customers: once their trades are executed, they leave the market

to avoid the search cost. We solve the model in closed-form, and the main implications are the

following.

First, when the search cost is lower than a certain threshold, there is an equilibrium with

an endogenous intermediary sector. Investors with intermediate valuations of the asset choose

to become dealers and stay in the market all the time, while others with high or low valuations

choose to be customers, and leave the market once their transactions are executed. Intuitively, if

an investor has a high valuation of an asset, once he obtains the asset, there is little bene�t for

him to stay in the market since the chance of �nding someone with an even higher valuation is

low. Similarly, if an investor has a low valuation of the asset, once he sells the asset, there is little

bene�t for him to stay in the market. In contrast to the above equilibrium, when the search cost is

higher than the threshold, however, there is an equilibrium with no intermediary. Only investors

with very high or low valuations enter the market, and they leave the market once their trading

needs are satis�ed. Those with intermediate valuations have weak trading needs, and choose to

stay out of the market to avoid the search cost.

Second, at each point in time, there is a continuum of prices for the asset. When a buyer meets

a seller, their negotiated price depends on their speci�c valuations. The delay in execution in the

market makes it possible to have multiple prices for the asset. Naturally, as the search technology

improves, the price dispersion reduces, and converges to zero when the search technology becomes

perfect.

Third, we characterize two equilibrium quantities on the intermediary sector, which can be
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easily measured empirically. The �rst is the dispersion ratio, the price dispersion among inter-

dealer trades divided by the price dispersion among all trades in the economy.2 The second is the

length of the intermediation chain, the average number of layers of intermediaries for all customers�

transactions. Intuitively, both variables re�ect the size of the intermediary sector. When more

investors choose to become dealers, the price dispersion among inter-dealer trades is larger (i.e.,

the dispersion ratio is higher), and customers� transactions tend to go through more layers of

dealers (i.e., the chain is longer).

Our model predicts that both the dispersion ratio and the chain length are decreasing in the

search cost, the speed of search, and the market size, but are increasing in investors� trading

frequency. Intuitively, a higher search cost means that fewer investors �nd it pro�table to be

dealers, leading to a smaller intermediary sector and hence a smaller dispersion ratio and chain

length. Similarly, with a higher search speed or a larger market size, intermediation is less

pro�table because customers can �nd alternative trading partners more quickly. This leads to a

smaller intermediary sector (relative to the market size). Finally, when investors need to trade

more frequently, the higher pro�tability attracts more dealers and so increases the size of the

intermediary sector.

We test these predictions using data from the U.S. corporate-bond market. The Trade Report-

ing and Compliance Engine (TRACE) database records transaction prices, and identi�es traders

as �dealers�and �customers.� This allows us to construct the dispersion ratio and chain length.

There is substantial cross-sectional variation in both variables. The dispersion ratio ranges from

0 to 1, while chain length is 1 at the �rst percentile and is 7 at the 99th percentile.

We run Fama-MacBeth regressions of the dispersion ratio and chain length of a corporate bond

on proxies for search cost, market size, the frequency of investors�trading needs. Our evidence

is broadly consistent with the model predictions. For example, we �nd that investment-grade

bonds tend to have larger dispersion ratios and longer intermediation chains than other bonds.

Our regressions suggest that, on average, relative to other bonds, investment-grade bonds�price
2For convenience, we refer to the intermediaries in our model as �dealers,� the transactions among dealers as

�inter-dealer trades.�
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dispersion ratio is larger by 0.007 (t = 2:62), and their chain length is longer by 0.245 (t = 32:17).

If one takes the interpretation that it is less costly to make market for investment-grade bonds

than for other bonds (i.e., the search cost is lower for investment-grade bonds), then this evidence

is consistent with our model prediction that the dispersion ratio and chain length are decreasing

in search cost. We also include in our regressions �ve other variables as proxies for search cost, the

frequency of investors�trading needs, and market size. Among all 12 coe¢ cients, 11 are highly

signi�cant and consistent with our model predictions.3

Fourth, when the search technology approaches perfection, the search-market equilibrium

does not always converge to a centralized-market equilibrium. Speci�cally, in the case without

intermediary (i.e., the search cost is higher than a certain threshold), as the search speed goes to

in�nity, all equilibrium quantities (prices, volumes, and allocations) converge to their counterparts

in the centralized-market equilibrium. However, in the case with intermediaries (i.e., the search

cost is lower than a certain threshold), as the search speed goes to in�nity, all the prices and asset

allocations converge but the trading volume in the search-market equilibrium remains higher than

that in the centralized-market equilibrium. Moreover, this di¤erence in volume is larger if the

search cost is smaller, and converges to in�nity when the search cost goes to 0.

Intuitively, in the search market, intermediaries act as �middlemen� and generate �excess�

trading. As noted earlier, when the search speed increases, the intermediary sector shrinks.

However, thanks to the faster search speed, each dealer executes more trades, and the total excess

trading volume is higher. As the search speed goes to in�nity, the trading volume in the search

market remains signi�cantly higher than that in a centralized market. Moreover, the volume

di¤erence increases when the search cost becomes smaller because a smaller search cost implies a

larger intermediary sector, which leads to a higher excess trading volume in the search market.

This insight sheds light on why a centralized-market model has trouble explaining trading

volume, especially in an environment with a small transaction cost. We argue that even for

the U.S. stock market, it seems plausible that some aspects of the market are better captured
3The only exception is the coe¢ cient for issuance size in the price dispersion ratio regression. As explained later,

we conjecture that this is due to dealers�inventory capacity constraint, which is not considered in our model.
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by a search model. For example, the cheaper and faster trading technology in the last a few

decades made it possible for investors to exploit many high frequency opportunities that used to

be prohibitive. Numerous trading platforms were set up to compete with main exchanges; hedge

funds and especially high-frequency traders directly compete with traditional market makers. The

increase in turnover in the stock market in the last a few decades was likely to be driven partly

by these �intermediation�trades.

Finally, the relation between dispersion ratio, chain length and investors�welfare is ambiguous.

As noted earlier, a higher dispersion ratio and longer chain may be due to a lower search cost. In

this case, they imply higher investors welfare. On the other hand, they may be due to a slower

search speed. In that case, they imply lower investors welfare. Hence, the dispersion ratio and

chain length are not clear-cut welfare indicators.

1.1 Related literature

Our paper belongs to the recent literature that analyzes over-the-counter (OTC) markets in the

search framework developed by Du¢ e, Garleanu, and Pedersen (2005). This framework has

been extended to include risk-averse agents (Du¢ e, Garleanu, and Pedersen (2007)), unrestricted

asset holdings (Lagos and Rocheteau (2009)). It has also been adopted to analyze a number

of issues, such as security lending (Du¢ e, Garleanu, and Pedersen (2002)), liquidity provision

(Weill (2007)), on-the-run premium (Vayanos and Wang (2007), Vayanos and Weill (2008)), cross-

sectional returns (Weill (2008)), portfolio choices (Garleanu (2009)), liquidity during a �nancial

crisis (Lagos, Rocheteau, and Weill (2011)), price pressure (Feldhutter (2012)), order �ows in

an OTC market (Lester, Rocheteau, and Weill (2014)), commercial aircraft leasing (Gavazza

2011), high frequency trading (Pagnotta and Philippon (2013)), the roles of benchmarks in OTC

markets (Du¢ e, Dworczak, and Zhu (2014)), adverse selection and repeated contacts in opaque

OTC markets (Zhu (2012)) as well as the interaction between corporate default decision and

liquidity (He and Milbradt (2013)). Another literature follows Kiyotaki and Wright (1993) to

analyze the liquidity value of money. In particular, Lagos and Wright (2005) develop a tractable
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framework that has been adopted to analyze liquidity and asset pricing (e.g., Lagos (2010), Lester,

Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012), Lagos and Zhang (2014)).

Trejos and Wright (2014) synthesize this literature with the studies under the framework of Du¢ e,

Garleanu, and Pedersen (2005).

Our paper is related to the literature on the trading network of �nancial markets, see, e.g.,

Gofman (2010), Babus and Kondor (2012), Malamud and Rostek (2012). Atkeson, Eisfeldt, and

Weill (2014) analyze the risk-sharing and liquidity provision in an endogenous core-periphery

network structure. Neklyudov (2014) analyzes a search model with investors with heterogeneous

search speeds to study the implications on the network structure.

Intermediation has been analyzed in the search framework (e.g., Rubinstein and Wolinsky

(1987), and more recently Wright and Wong (2014), Nosal Wong and Wright (2015)). However,

the literature on �nancial intermediation chains has been recent. Adrian and Shin (2010) docu-

ment that the �nancial intermediation chains are becoming longer in the U.S. during the past a

few decades. Li and Schurho¤ (2012) document the network structure of the inter-dealer market

for municipal bonds. Glode and Opp (2014) focuses on the role of intermediation chain in reduc-

ing adverse selection. Afonso and Lagos (2015) analyze an OTC market for Federal Funds. The

equilibrium in their model features an intermediation chain, although they do not focus on its

property. The model that is closest to ours is Hugonnier, Lester, and Weill (2014). They analyze

a model with investors with heterogenous valuations, highlighting that heterogeneity magni�es

the impact of search frictions. Our paper is di¤erent in that, in order to analyze intermedia-

tion, we introduce search cost and derive the intermediary sector, price dispersion ratio, and the

intermediation chain, and also conduct empirical analysis of the intermediary sector.

The rest of the paper is as follows. Section 2 describes the model and its equilibrium. Section

3 analyzes the price dispersion and intermediation chain. Section 4 contrasts the search market

equilibrium with a centralized market equilibrium. Section 5 tests the empirical predictions.

Section 6 concludes. All proofs are in the appendix.
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2 Model

Time is continuous and goes from 0 to 1. There is a continuum of investors, and the measure of

the total population is N . They have access to a riskless bank account with an interest rate r.

There is an asset, which has a total supply of X units with X < N . Each unit of the asset pays

$1 per unit of time until in�nity. The asset is traded at an over-the-counter market.

Following Du¢ e, Garleanu, and Pedersen (2005), we assume the matching technology as the

following. Let Nb and Ns be the measures of buyers and sellers in the market, both of which

will be determined in equilibrium. A buyer meets a seller at the rate �Ns, where � > 0 is a

constant. That is, during [t; t+ dt) a buyer meets a seller with a probability �Nsdt. Similarly, a

seller meets a buyer at the rate �Nb. Hence, the probability for an investor to meet his partner

is proportional to the population size of the investors on the other side of the market. The total

number of matched pairs per unit of time is �NsNb. The search friction reduces when � increases,

and disappears when � goes to in�nity.

Investors have di¤erent types, and their types may change over time. If an investor�s current

type is �, he derives a utility 1 + � when receiving the $1 coupon from the asset. One interpre-

tation for a positive � is that some investors, such as insurance companies, have a preference for

long-term bonds, as modeled in Vayanos and Vila (2009). Another interpretation is that some

investors can bene�t from using those assets as collateral and so value them more, as discussed in

Bansal and Coleman (1996) and Gorton (2010). An interpretation of a negative � can be that the

investor su¤ers a liquidity shock and so �nds it costly to carry the asset on his balance sheet. We

assume that � can take any value in a closed interval. Without loss of generality, we normalize

the interval to
�
0;�

�
.

Each investor�s type changes independently with intensity �. That is, during [t; t+ dt), with

a probability �dt, an investor�s type changes and is independently drawn from a random variable,

which has a probability density function f (�) on the support
�
0;�

�
, with f (�) < 1 for any

� 2
�
0;�

�
. We use F (�) to denote the corresponding cumulative distribution function.
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Following Du¢ e, Garleanu, and Pedersen (2005), we assume each investor can hold either 0

or 1 unit of the asset. That is, an investor can buy 1 unit of the asset only if he currently does

not have the asset, and can sell the asset only if he currently has it.

There is a search cost of c per unit of time, with c � 0. That is, when an investor searches to

buy or sell in the market, he incurs a cost of cdt during [t; t+ dt). All investors are risk-neutral

and share the same time discount rate r. An investor�s objective function is given by

sup
��

Et

�Z 1

t
e�r(��t) (�� (1 + �� )d� � c1�d� � P�d�� )

�
;

where �� 2 f0; 1g is the investor�s holding in the asset at time � ; �� is the investor�s type at time

� ; 1� is an indicator variable, which is 1 if the investor is searching in the market to buy or sell

the asset at time � , and 0 otherwise; and P� is the asset�s price that the investor faces at time �

and will be determined in equilibrium.

2.1 Investors�choices

Since we will focus on the steady-state equilibrium, the value function of a type-� investor with

an asset holding �t at time t can be denoted as

V (�t;�) � sup
��

Et

�Z 1

t
e�r(��t) (�� (1 + �� )d� � c1�d� � P�d�� )

�
:

A non-owner (whose �t is 0) has two choices: search to buy the asset or stay inactive. We use

Vn(�) to denote the investor�s expected utility if he chooses to stay inactive, and follows the

optimal strategy after his type changes. Similarly, we use Vb(�) to denote the investor�s expected

utility if he searches to buy the asset, and follows the optimal strategy after he obtains the asset

or his type changes. Hence, by de�nition, we have

V (0;�) = max(Vn(�); Vb(�)): (1)

An asset owner (whose �t is 1) has two choices: search to sell the asset or stay inactive. We use

Vh(�) to denote the investor�s expected utility if he chooses to be an inactive holder, and follows

the optimal strategy after his type changes. Similarly, we use Vs(�) to denote the investor�s
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expected utility if he searches to sell, and follows the optimal strategy after he sells his asset or

his type changes. Hence, we have

V (1;�) = max(Vh(�); Vs(�)): (2)

We will verify later that in equilibrium, equation (1) implies that a non-owner�s optimal choice

is given by �
stay out of the market if � 2 [0;�b);
search to buy the asset if � 2 (�b;�];

(3)

where the cuto¤ point �b will be determined in equilibrium. A type-�b non-owner is indi¤erent

between staying out of the market and searching to buy the asset. Note that due to the search

friction, a buyer faces delay in his transaction. In the meantime, his type may change, and he will

adjust his action accordingly. Similarly, equation (2) implies that an owner�s optimal choice is�
search to sell his asset if � 2 [0;�s);
stay out of the market if � 2 (�s;�];

(4)

where the �s will be determined in equilibrium. A type-�s owner of the asset is indi¤erent

between the two actions. A seller faces potential delay in his transaction. In the meantime, if his

type changes, he will adjust his action accordingly. If an investor succeeds in selling his asset, he

becomes a non-owner and his choices are then described by equation (3).

Suppose a buyer of type x 2
�
0;�

�
meets a seller of type y 2

�
0;�

�
. The surplus from the

transaction is

S (x; y) = [V (1; x) + V (0; y)]| {z }
total utility after trade

� [V (0; x) + V (1; y)]| {z }
total utility before trade

: (5)

The pair can agree on a transaction if and only if the surplus is positive. We assume that the

buyer has a bargaining power � 2 (0; 1), i.e., the buyer gets � of the surplus from the transaction,

and the price is given by

P (x; y) = V (1; x)� V (0; x)� �S(x; y), if and only if S(x; y) > 0: (6)

The �rst two terms on the right hand side re�ect the value of the asset to the buyer: the increase
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in the buyer�s expected utility from obtaining the asset. Hence, the above equation implies that

the transaction improves the buyer�s utility by �S(x; y).

We conjecture, and verify later, that when a buyer and a seller meet in the market, the surplus

is positive if and only if the buyer�s type is higher than the seller�s:

S (x; y) > 0 if and only if x > y: (7)

That is, when a pair meets, a transaction occurs if and only if the buyer�s type is higher than the

seller�s type. With this conjecture, we obtain investors�optimality condition in the steady state

as the following.

Vh (�) =
1 +�+ �E [max fVh (�0) ; Vs (�0)g]

�+ r
; (8)

Vs (�) =
1 + y � c
�+ r

+
� (1� �)
�+ r

Z �

�
S (x;�)�b (x) dx+

�E [max fVh (�0) ; Vs (�0)g]
�+ r

; (9)

Vn (�) =
�E [max fVn (�0) ; Vb (�0)g]

�+ r
; (10)

Vb (�) = � c

�+ r
+

��

�+ r

Z �

0
S (�; x)�s (x) dx+

�E [max fVb (�) ; Vng]
�+ r

; (11)

where �0 is a random variable with a PDF of f(�).

2.2 Intermediation

Decision rules (3) and (4) determine whether intermediation arises in equilibrium. There are two

cases. In the �rst case, �b � �s, there is no intermediation. When an investor has a trading need,

he enters the market. Once his transaction is executed, he leaves the market and stays inactive.

In the other case �b < �s, however, some investors choose to be intermediaries in equilibrium.

If they are non-owners, they search in the market to buy the asset. Once they receive the asset,

however, they immediately search in the market to sell the asset. For convenience, we call them

�dealers.�

Details are illustrated in Figure 1. Panel A is for the case without intermediation, i.e., �b �

�s. If an asset owner�s type is below �s, as in the upper-left box, he enters the market to sell his

asset. If successful, he becomes a non-owner and chooses to be inactive since his type is below �b,
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as in the upper-right box. Similarly, if a non-owner�s type is higher than �b, as in the lower-right

box, he enters the market to buy the asset. If successful, he becomes an owner and chooses to be

inactive because his type is above �s, as in the lower-left box.

The dashed arrows in the diagram illustrate investors� chooses to enter or exit the market

when their types change. Suppose, for example, an owner with a type below �s is searching in

the market to sell his asset, as in the upper-left box. Before he meets a buyer, however, if his

type changes and becomes above �s, he will exit the market and become an inactive owner in

the lower-left box. Finally, note that all investors in the interval (�s;�b) are inactive regardless

of their asset holdings.

Panel B illustrates the case with intermediation, i.e., �b < �s. As in Panel A, asset owners

with types below �s enter the market to sell their assets. However, they have two di¤erent

motives. If a seller�s type is in [0;�b), as in the upper-left box, after selling the asset, he will leave

the market and become an inactive non-owner in the upper-right box. For convenience, we call

this investor a �true seller.� This is to contrast with those sellers whose types are in (�b;�s), as

in the middle-left box. We call them �intermediation sellers,�because once they sell their assets

and become non-owners (i.e., move to the middle-right box), they immediately search to buy the

asset in the market since their types are higher than �b. Similarly, we call non-owners with types

in (�s;�] �true buyers�and those with types in (�b;�s) �intermediation buyers.�

In the intermediation region (�b;�s), investors always stay in the market. If they are asset

owners, they search to sell their assets. Once they become non-owners, however, they immediately

start searching to buy the asset. They buy the asset from those with low types and sell it to those

with high types, and make pro�ts from their intermediation services.

What determines whether intermediation arises in equilibrium? Intuitively, a key determinant

is the search cost c. Investors are only willing to become intermediaries when the expected trading

pro�t is enough to cover the search cost. We will see later that the intermediation equilibrium

arises if c < c�, and the no-intermediation equilibrium arises if c � c�, where c� is given in the
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appendix.

2.3 Demographic analysis

We will �rst focus on the intermediation equilibrium case, and then analyze the no-intremediation

case in Section 4.3. Due to the changes in � and his transactions in the market, an investor�s

status (type � and asset holding �) changes over time. We now describe the evolution of the

population sizes of each group of investors. Since we will focus on the steady-state equilibrium,

we will omit the time subscript for simplicity.

We use �b(�) to denote the density of buyers, that is, buyers�population size in the region

(�;� + d�) is �b(�)d�. Similarly, we use �n(�), �s(�), and �h(�) to denote the density of

inactive non-owners, sellers, and inactive asset holders, respectively.

In the steady state, the cross-sectional distribution of investors�type is given by the probability

density function f (�). Hence, the total investor population in (�;�+d�) is Nf (�) d�. Hence,

the following accounting identity holds for any � 2
�
0;�

�
:

�s (�) + �b (�) + �n (�) + �h (�) = Nf (�) : (12)

Decision rules (3) and (4) imply that for any � 2 (�s;�],

�n (�) = �s (�) = 0: (13)

In the steady state, the group size of inactive holders remains a constant over time, implying

that for any � 2 (�s;�],

��h (�) = �Xf (�) + �Ns�b (�) : (14)

The left hand aside of the above equation is the �out�ow� from the group of inactive holders:

The measure of inactive asset holders in interval (�;� + d�) is �h (�) d�. During [t; t+ dt),

a fraction �dt of them experience changes in their types and leave the group. Hence, the total

out�ow is ��h (�) d�dt. The right hand side of the above equation is the �in�ow�to the group: A

fraction �dt of asset owners, who have a measure of X, experience type shocks and �Xf (�) d�dt
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investors�new types fall in the interval (�;�+d�). This is captured by the �rst term in the right

hand side of (14). The second term re�ects the in�ow of investors due to transactions. When

buyers with types in (�;�+ d�) acquire the asset, they become inactive asset holders, and the

size of this group is �Ns�b (�) d�dt. Similarly, for any � 2 [0;�b), we have

�b (�) = �h (�) = 0; (15)

��n (�) = � (N �X) f (�) + �Nb�s (�) : (16)

For any � 2 (�b;�s), we have

�n (�) = �h (�) = 0; (17)

��s (�) = �Xf (�)� ��s (�)
Z �

�
�b (x) dx+ ��b (�)

Z �

0
�s (x) dx: (18)

2.4 Equilibrium

De�nition 1 The steady-state equilibrium with intermediation consists of two cuto¤ points �b

and �s, with 0 < �b < �s < �, the distributions of investor types (�b (�), �s (�), �n (�),

�h (�)), and asset prices P (x; y), such that

� the asset prices P (x; y) are determined by (106),

� the implied choices (3) and (4) are optimal for all investors,

� the implied sizes of each group of investors remain constants over time and satisfy (12)�(18),

� market clears: Z �

0
[�s(�) + �h(�)] d� = X: (19)

Theorem 1 If c < c�, where c� is given in (87), there exists a unique steady-state equilibrium

with �b < �s. The value of �b is given by the unique solution to

c =
���X

[�+ r + �Nb (1� �)] (�+ �Nb)

Z �b

0
F (x) dx; (20)
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the value of �s is given by the unique solution to

c =
�� (1� �) (N �X)

(�+ r + ��Ns) (�+ �Ns)

Z �

�s

[1� F (x)] dx; (21)

where Ns and Nb are given by (54) and (57). Investors�distributions are given by equations (44)�

(51). When a type-x buyer (x 2 (�b;�]) and a type-y seller (y 2 [0;�s)) meet in the market,

they will agree to trade if and only if x > y, and their negotiated price is given by (106), with the

value function V (�; �) given by (81)�(83).

This theorem shows that when the cost of search is smaller than c�, there is a unique inter-

mediation equilibrium. Investors whose types are in the interval (�b;�s) choose to be dealers.

They search to buy the asset if they do not own it. Once they obtain the asset, however, they

immediately start searching to sell it. They make pro�ts from the di¤erences in purchase and sale

prices to compensate the search cost they incur. In contrast to these intermediaries, sellers with

a type � 2 [0;�s) and buyers with a type � 2 (�b;�] are true buyers and true sellers, and they

leave the market once they �nish their transactions.

The di¢ culty in constructing the equilibrium lies in the fact that investors�type distributions

(�b (�) ; �s (�) ; �n (�) ; �h (�)) determine the speed with which investors meet their trading part-

ners, which in turn determines investors�type distributions. The equilibrium is the solution to

this �xed-point problem.4 The above theorem shows that the distributions can be computed in

closed-form, making the analysis of the equilibrium tractable.

To illustrate some properties of the equilibrium, we de�ne R(�), for � 2 [0;�], as

R(�) � �s (�) + �h (�)

�b (�) + �n (�)
:

That is, R(�) is the density ratio of asset owners (i.e., sellers and inactive holders) to nonowners

(i.e., buyers and inactive nonowners). It has the following property.

Proposition 2 In the equilibrium in Theorem 1, R(�) is weakly increasing in �: R0(�) > 0 for

� 2 (�b;�s), and R0(�) = 0 for � 2 [0;�b) [ (�s;�].
4Hugonnier, Lester, and Weill (2014) was the �rst to solve a problem of this nature.
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The above proposition shows that high-� investors are more likely to be holding the asset

in equilibrium. The intuition is the following. As noted in (7), when a buyer meets a seller,

transaction happens if and only if the buyer�s type is higher than the seller�s. Hence, if a nonowner

has a high � he is more likely to �nd a willing seller. On the other hand, if an owner has a high

� he is less likely to �nd a willing buyer. Consequently, in equilibrium, the higher the investor�s

type, the more likely he is an owner.

Proposition 3 In the equilibrium in Theorem 1, we have @P (x;y)
@x > 0 and @P (x;y)

@y > 0.

The price of each transaction is negotiated between the buyer and the seller, and depends on

the speci�c types of both. Since there is a continuum of buyers and a continuum of sellers, at

each point in time, there is a continuum of equilibrium prices. The above proposition shows that

the negotiated price is increasing in both the buyer�s type and the seller�s type. Intuitively, the

higher the buyer�s type x, the more he values the asset. Hence, he is willing to pay a higher price.

On the other hand, the higher the seller�s type y, the less eager he is in selling the asset. Hence,

only a higher price can induce him to sell.

3 Intermediation Chain and Price Dispersion

If a true buyer and a true seller meet in the market, the asset is transferred without going through

an intermediary. On other occasions, however, transactions may go through multiple dealers. For

example, a type-� dealer may buy from a true seller, whose type is in [0;�b), or from another

dealer whose type is lower than �. Then, he may sell the asset to a true buyer, whose type is in

(�s;�], or to another dealer whose type is higher than �. Hence, for an asset to be transferred

from a true seller to a true buyer, it may go through multiple dealers.

What is the average length of the intermediation chain in the economy? To analyze this, we

�rst compute the aggregate trading volumes for each group of investors. We use TVcc to denote

the total number of shares of the asset that are sold from a true seller to a true buyer (i.e.,

�customer to customer�) per unit of time. Similarly, we use TVcd, TVdd, and TVdc to denote the
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numbers of shares of the asset that are sold, per unit of time, from a true seller to a dealer (i.e.,

�customer to dealer�), from a dealer to another (i.e., �dealer to dealer�), and from a dealer to a

true buyer (i.e., �dealer to customer�), respectively.

To characterize these trading volumes, we denote Fb(�) and Fs(�), for � 2 [0;�], as

Fb(�) �
Z �

0
�b(x)dx;

Fs(�) �
Z �

0
�s(x)dx:

That is, Fb(�) is the population size of buyers whose types are below �, and Fs(�) is population

size of sellers whose types are below �.

Proposition 4 In the equilibrium in Theorem 1, we have

TVcc = �Fs(�b) [Nb � Fb(�s)] ; (22)

TVcd = �Fs(�b)Fb(�s); (23)

TVdc = � [Ns � Fs(�b)] [Nb � Fb(�s)] ; (24)

TVdd = �

Z �s

�b

[Fs(�)� Fs(�b)] dFb(�): (25)

The above proposition characterizes the 4 types of trading volumes. For example, true sellers

are those whose types are below �b. The total measure of those investors is Fs(�b). True buyers

are those whose types are above �s, and so the total measure of those investors is Nb � Fb(�s).

This leads to the trading volume in (22). The results on TVcd and TVdc are similar. Note that

in these 3 types of trades, every meeting results in a transaction, since the buyer�s type is always

higher than the seller�s. For the meetings among dealers, however, this is not the case. When a

dealer buyer meets a dealer seller with a higher �, they will not be able to reach an agreement

to trade. The expression of TVdd in (25) takes into account the fact that transaction occurs only

when the buyer�s type is higher than the seller�s.

With these notations, we can de�ne the length of the intermediation chain as

L � TVcd + TVdc + 2TVdd
TVcd + TVdc + 2TVcc

: (26)

97



This de�nition implies that L is the average number of layers of dealers for all the trades in the

economy. To see this, let us go through the following three simple examples. First, suppose there

is no intermediation in the economy and true buyers and true sellers trade directly. In this case,

we have TVcd = TVdc = TVdd = 0. Hence L = 0, that is, the length of the intermediation chain

is 0. Second, suppose a dealer buys one unit of the asset from a customer and sells it to another

customer. We then have TVcd = TVdc = 1 and TVdd = TVcc = 0. Hence, the length of the

intermediation chain is 1. Third, suppose a dealer buys one unit of the asset from a customer

and sells it to another dealer, who then sells it to a customer. We then have TVcd = TVdc = 1,

TVdd = 1, and TVcc = 0. Hence, the chain length is 2. In the following, we will analyze the e¤ects

of search speed �, search cost c, market size X, and trading need � on the intermediation chain.

3.1 Search cost c

Proposition 5 In the equilibrium in Theorem 1, @�b@c > 0 and @�s
@c < 0, that is, the total popu-

lation size of the intermediary sector is decreasing in c.

Intuitively, investors balance the gain from trade against the search cost. The search cost

has a disproportionately large e¤ect on dealers since they stay active in the market constantly.

Hence, when the search cost c increases, fewer investors choose to be dealers and so the size of

the intermediary sector becomes smaller (i.e., the interval (�b;�s) shrinks). Consequently, the

smaller intermediary sector leads to a shorter intermediation chain, as summarized in the following

proposition.

Proposition 6 In the equilibrium in Theorem 1, @L
@c < 0, that is, the length of the �nancial

intermediation chain is decreasing in c.

When c increases to c�, the interval (�b;�s) shrinks to a point and the intermediary sector

disappears. Hence, we have limc!c� L = 0. On the other hand, as c decreases, more investors

choose to be dealers, leading to more layers of intermediation and a longer chain in the economy.

What happens when c goes to zero?
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Proposition 7 When c goes to 0, in the equilibrium in Theorem 1, the following holds:

�b = 0; �s = �;

Ns = X; Nb = N �X;

L =1:

As the search cost c diminishes, the intermediary sector (�b;�s) expands. When c goes to 0,

(�b;�s) becomes the whole interval (0;�). That is, all investors (except zero measure of them at

0 and �) are intermediaries, constantly searching in the market. Hence, Ns = X and Nb = N�X,

that is, virtually every asset holder is trying to sell his asset and every non-owner is trying to buy.

Since virtually all transactions are intermediation trading, the length of the intermediation chain

is in�nity.

3.2 Search speed �

Proposition 8 In the equilibrium in Theorem 1, when � is su¢ ciently large, @�s��b@� < 0, that

is, the intermediary sector shrinks when � increases; @L@� < 0, that is, the length of the �nancial

intermediation chain is decreasing in �.

The intuition for the above result is the following. As the search technology improves, a

customer has a higher outside option value when he trades with a dealer. This is because the

customer can �nd an alternative trading partner more quickly, if the dealer were to turn down

the trade. As a result, intermediation is less pro�table and the dealer sector shrinks, leading to a

shorter intermediation chain.

3.3 Market size X

To analyze the e¤ect of the market size X, we keep the ratio of investor population N and asset

supply X constant. That is, we let

N = �X; (27)
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where � is a constant. Hence, when the issuance size X changes, the population size N also

changes proportionally. We impose this condition to shut down the e¤ect from the change in the

ratio of asset owners and non-owners in equilibrium.

Proposition 9 In the equilibrium in Theorem 1, under condition (27), when � is su¢ ciently

large, @�s��b@X < 0, that is, the intermediary sector shrinks when the market size increases; @L@X < 0,

that is, the length of the �nancial intermediation chain is decreasing in the size of the market X.

Intuitively, when the market size gets larger, it becomes easier for an investor to meet his

trading partner. Hence, the e¤ect is similar to that from an increase in the search speed �. From

the intuition in Proposition 8, we obtain that the length of the �nancial intermediation chain is

decreasing in the size of the market.

3.4 Trading need �

Proposition 10 In the equilibrium in Theorem 1, when � is su¢ ciently large, @(�s��b)
@� > 0,

and @L
@� > 0, that is, the intermediary sector expands and the length of the intermediation chain

increases when the frequency of investors�trading need increases.

The intuition for the above result is as follows. Suppose � increases, i.e., investors need to

trade more frequently. This makes it more pro�table for dealers. Hence, the intermediary sector

expands as more investors choose to become dealers, leading to a longer intermediation chain.

3.5 Price dispersion

Theorem 1 shows that there is a continuum of prices for the asset in equilibrium. How is the

price dispersion related to search frictions? It seems reasonable to expect the price dispersion

to decrease as the market frictions diminishes. However, this intuition is not complete, and the

relationship between price dispersion and search frictions is more subtle.

100



To see this, we use D to denote the price dispersion

D � Pmax � Pmin; (28)

where Pmax and Pmin are the maximum and minimum prices, respectively, among all prices.

Proposition 3 implies that

Pmax = P (�;�s); (29)

Pmin = P (�b; 0): (30)

That is, Pmax is the price for the transaction between a buyer of type � and a seller of type �s.

Similarly, Pmin is the price of the transaction between a buyer of type �b and a seller of type 0.

The following proposition shows that e¤ect of the search speed on the price dispersion.

Proposition 11 In the equilibrium in Theorem 1, when � is su¢ ciently large, @D@� < 0.

The intuition is the following. When the search speed is faster, investors do not have to com-

promise as much on prices to speed up their transactions, because they can easily �nd alternative

trading partners if their current trading partners decided to walk away from their transactions.

Hence, the dispersion across prices becomes smaller when � increases.

However, the relation between the price dispersion and the search cost c is more subtle. As the

search cost increases, fewer investors participate in the market. On the one hand, this makes it

harder to �nd a trading partner and so increases the price dispersion as the previous proposition

suggests. There is, however, an opposite driving force: Less diversity across investors leads to a

smaller price dispersion. In particular, as noted in Proposition 5, �s is decreasing in c, that is,

when the search cost increases, only investors with lower types are willing to pay the cost to try

to sell their assets. As noted in (29), this reduces the maximum price Pmax. On the other hand,

when the search cost increases, only investors with higher types are willing to buy. This increases

the minimum price Pmin. Therefore, as the search cost increases, the second force decreases the

price dispersion. The following proposition shows that the second force can dominate.
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Proposition 12 In the equilibrium in Theorem 1, the sign of @D@c can be either positive or nega-

tive. Moreover, when c is su¢ ciently small, we have @D
@c < 0.

Price dispersion in OTC markets has been documented in the literature, e.g., Green, Holli�eld,

and Schurho¤ (2007). Jankowitsch, Nashikkar, and Subrahmanyam (2011) proposes that price

dispersion can be used as a measure of liquidity. Our analysis in Proposition 11 con�rms this

intuition that the price dispersion is larger when the search speed is lower, which can be interpreted

as the market being less liquid. However, Proposition 12 also illustrates the potential limitation,

especially in an environment with a low search cost. It shows that the price dispersion may

decrease when the search cost is higher.

3.6 Price dispersion ratio

To further analyze the price dispersion in the economy, we de�ne dispersion ratio as

DR � P dmax � P dmin
Pmax � Pmin

; (31)

where P dmax and P
d
min are the maximum and minimum prices, respectively, among inter-dealer

transactions. That is, DR is the ratio of the price dispersion among inter-dealer transactions to

the price dispersion among all transactions.

This dispersion ratio measure has two appealing features. First, somewhat surprisingly, it

turns out to be easier to measure DR than D. Conceptually, price dispersion D is the price

dispersion at a point in time. When measuring it empirically, however, we have to compromise

and measure the price dispersion during a period of time (e.g., a month or a quarter), rather than

at an instant. As a result, the asset price volatility directly a¤ects the measure D. In contrast,

the dispersion ratio DR alleviates part of this problem since asset price volatility a¤ects both the

numerator and the denominator. Second, as noted in Proposition 12, the e¤ect of search cost on

the price dispersion is ambiguous. In contrast, our model predictions on the price dispersion ratio

are sharper, as illustrated in the following proposition.
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Proposition 13 In the equilibrium in Theorem 1, we have @DR
@c < 0; when � is su¢ ciently large,

we have @DR
@� < 0, @DR@� > 0, and under condition (27) we have @DR

@X < 0.

Intuitively, DR is closely related to the size of the intermediary sector. All these parameters

(c; �;X; and �) a¤ect DR through their e¤ects on the interval (�b;�s). For example, as noted

in Proposition 5, when the search cost c increases, the intermediary sector (�b;�s) shrinks, and

so the price dispersion ratio DR decreases. The intuition for the e¤ects of all other parameters

(�;X; and �) is similar.

In summary, both DR and L are closely related to the size of the intermediary sector. All the

parameters of (c; �;X; and �) a¤ect both DR and L through their e¤ects on the interval (�b;�s).

Indeed, by comparing the above results with Propositions 6, 8, 9, and 10, we can see that, for all

four parameters (c; �;X; and �), the e¤ects on DR and L have the same sign.

3.7 Welfare

What are the welfare implications from the intermediation chain? For example, is a longer chain

an indication of higher or lower investors�welfare? Propositions 6�13 have shed some light on

this question. In particular, a longer intermediation chain (or a larger price dispersion ratio) is a

sign of a lower c, a lower �, a higher �, or a lower X, which have di¤erent welfare implications.

Hence, the chain length and dispersion ratio are not clear-cut indicators of investors�welfare.

For example, a lower c means that more investors would search in equilibrium. Hence, high-

� investors can obtain the asset more quickly, leading to higher welfare for all investors. On

the other hand, a lower � means that investors obtain their desired asset positions more slowly,

leading to lower welfare for investors. Therefore, if the intermediation chain L becomes longer

(or the price dispersion ration DR gets larger) because of a lower c, it is a sign of higher investor

welfare. However, if it is due to a lower search speed �, it is a sign of lower investor welfare. A

higher � means that investors have more frequent trading needs. If L becomes longer (or DR gets

larger) because of a higher �, holding the market condition constant, this implies that investors
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have lower welfare. Finally, if L becomes longer (or DR gets larger) because of a smaller X, it

means that investors execute their trades more slowly, leading to lower welfare for investors. To

formalize the above intuition, we useW to denote the average expected utility across all investors

in the economy. The relation between investors�welfare and those parameters is summarized in

the following proposition.

Proposition 14 In the equilibrium in Theorem 1, we have @W
@c < 0; when � is su¢ ciently large,

we have @W
@� > 0, @W@� < 0, and under condition (27) @W

@X > 0.

4 On Convergence

When the search friction disappears, does the search market equilibrium converge to the equi-

librium in a centralized market? Since Rubinstein and Wolinsky (1985) and Gale (1987), it is

generally believed that the answer is yes. This convergence result is also demonstrated in Du¢ e,

Garleanu, and Pedersen (2005), the framework we adopted.

However, we show in this section that as the search technology approaches perfection (i.e., �

goes to in�nity) the search equilibrium does not always converge to a centralized market equilib-

rium. In particular, consistent with the existing literature, the prices and allocation in the search

equilibrium converge to their counterparts in a centralized-market equilibrium, but the trading

volume may not.

4.1 Centralized market benchmark

Suppose we replace the search market in Section 2 by a centralized market and keep the rest of

the economy the same. That is, investors can execute their transactions without any delay. The

centralized market equilibrium consists of an asset price Pw and a cuto¤ point �w. All asset

owners above �w and nonowners below �w stay inactive. Moreover, each nonowner with a type

higher than �w buys one unit of the asset instantly and each owner with a type lower than �w

sells his asset instantly, such that all investors �nd their strategies optimal, the distribution of all
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groups of investors remain constant over time, and the market clears. This equilibrium is given

by the following proposition.

Proposition 15 In this centralized market economy, the equilibrium is given by

�w = F�1
�
1� X

N

�
; (32)

Pw =
1 +�w

r
: (33)

The total trading volume per unit of time is

TVw = �X

�
1� X

N

�
: (34)

As shown in (33), the asset price is determined by the marginal investor�s valuation �w. Asset

allocation is e¢ cient since (almost) all investors whose types are higher than �w are asset owners,

and (almost) all investors whose types are lower than �w are nonowners. Trading needs arise

when investors�types change. In particular, an asset owner becomes a seller if his new type is

below �w and a nonowner becomes a buyer if his new type is above �w. In this idealized market,

they can execute their transactions instantly. Hence, at each point in time, the total measure of

buyers and sellers are in�nitesimal, and the total trading volume during [t; t+ dt) is TVwdt.

4.2 The limit case of the search market

Denote the total trading volume in the search market economy in Section 2 as

TV � TVcc + TVcd + TVdc + TVdd: (35)

The following proposition reports some properties of the search equilibrium in the limit.
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Proposition 16 When � goes to in�nity, the equilibrium in Theorem 1 is given by

lim
�!1

�b = lim
�!1

�s = �w; (36)

lim
�!1

P (x; y) = Pw for any x < y, (37)

lim
�!1

�h(�) =

�
Nf(�) if � > �w;
0 if � < �w;

(38)

lim
�!1

�n(�) =

�
0 if � > �w;

Nf(�) if � < �w;
(39)

lim
�!1

�b(�) = lim
�!1

�s(�) = 0; (40)

lim
�!1

TV� TVw
TVw

= log
ĉ

c
; (41)

where ĉ is a constant, with ĉ > c, and is given by

ĉ =

sZ �w

0

F (x)

F (�w)
dx

sZ �

�w

1� F (x)
1� F (�w)

dx: (42)

As � goes to in�nity, many aspects of the search equilibrium converge to their counterparts

in a centralized market equilibrium. First, the interval (�b;�s) shrinks to a single point at �w

(equation (36)), and the size of the intermediary sector goes to zero. Second, all transaction

prices converge to the price in the centralized market, as shown in equation (37). Third, the

asset allocation in the search equilibrium converges to that in the centralized market. As shown

in equations (38)�(40), almost all investors whose types are higher than �w are inactive asset

holders, and almost all investors whose types are lower than �w are inactive nonowners. The

population sizes for buyers and sellers are in�nitesimal.

However, there is one important di¤erence. The equation (41) shows that as � goes to in�nity,

the total trading volume in the search market equilibrium is signi�cantly higher than the volume

in the centralized market equilibrium. This is surprising, especially given the result in (36) that

the size of the intermediary sector shrinks to 0.

It is worth emphasizing that this is not a mathematical quirk from taking the limit. Rather, it

highlights an important di¤erence between a search market and an idealized centralized market.

Intuitively, the excess trading in the search market is due to intermediaries, who act as middlemen,
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buying the asset from one investor and selling to another. As � increases, the intermediary sector

shrinks. However, thanks to the faster search technology, each intermediary can execute more

trades such that the total excess trading induced by intermediaries increases with � despite the

reduction in the size of the intermediary sector. As � goes to in�nity, the trading volume in the

search market remains signi�cantly higher than that in a centralized market.

As illustrated in (41), the di¤erence between TV and TVw is larger when the search cost c

is smaller, and approaches in�nity when c goes to 0. As noted in Proposition 5, the smaller the

search cost c, the larger the intermediary sector. Hence, the smaller the search cost c, the larger

the excess trading generated by middlemen.

These results shed some light on why centralized market models have trouble explaining trad-

ing volume, especially in markets with small search frictions. Even in the well-developed stock

market in the U.S., some trading features are perhaps better captured by a search model. It is

certainly quick for most investors to trade in the U.S. stock market. However, the cheaper and

faster technology makes it possible for investors to exploit opportunities that were prohibitive with

a less developed technology. Indeed, over the past a few decades, numerous trading platforms

were set up to compete with main exchanges; hedge funds and especially high-frequency traders

directly compete with traditional market makers. It seems likely that the increase in turnover

in the stock market in the past a few decades was driven partly by the decrease in the search

frictions in the market. Intermediaries, such as high frequency traders, execute a large volume of

trades to exploit opportunities that used to be prohibitive.

In summary, our analysis suggests that a centralized market model captures the behavior of

asset prices and allocations when market frictions are small. However, it is not well-suited for

analyzing trading volume, even in a market with a fast search speed, especially in the case when

the search cost is small.
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4.3 Equilibrium without Intermediation

Our discussion so far has focused on the case c < c�. We now brie�y summarize the analysis

for the other case. As noted in Section 3.1, when c increases to c�, the interval (�b;�s) shrinks

to a point and the intermediary sector disappears. As one might have expected, intermediaries

disappear in the equilibrium for the case of c � c�.

Similar to the analysis in Section 2, we can construct an equilibrium for the case c � c�. The

only di¤erence is that as described in Panel A of Figure 1, two cuto¤ points �b and �s are such

that �b � �s. In the equilibrium in Theorem 1, investors with intermediate valuations become

intermediaries and stay in the market all the time. In contrast, in this case with a higher search

cost, investors with intermediate valuations choose not to participate in the market. Only those

with strong trading motives (buyers with types higher than �b and sellers with types lower than

�s) are willing to pay the high search cost to participate in the market. In the limit case where

� goes to in�nity, as in Proposition 16, equations (36)�(40) still hold. However, we now have

lim
�!1

TV = TVw:

This is, as � goes to in�nity, both �b and �s converge to �w. The inactive sector shrinks to a

point. Moreover, the prices, allocation, and the trading volume all converge to their counterparts

in a centralized market equilibrium. This result further con�rms our earlier intuition that, in the

intermediation equilibrium in Section 2, the di¤erence between TV and TVw is due to the extra

trading generated by intermediaries acting as middlemen.

4.4 Alternative matching functions

Section 4.2 shows that the non-convergence result on volume is due to the fact that while �

increases, the intermediary sector shrinks but each one can trade more quickly. The higher trading

speed dominates the reduction in the size of the intermediary sector. One natural question whether

this result depends on the special matching function in our model. As explained in Section 2,

for tractability, we adopt the matching function �NbNs. Does our non-convergence conclusion

108



depend on this assumption?

To examine this, we modify our model to have a more general matching function: We now

assume that the matching function is �Q(Nb; Ns), where Q(�; �) is homogeneous of degree k (k > 0)

in Nb and Ns. The matching function in our previous analysis, �NbNs, is a special case with

homogeneity of degree 2. The rest of the model is kept the same as in Section 2. We construct

an intermediation equilibrium that is similar to the one in Theorem 1, and let � go to in�nity to

compare the limit equilibrium with the centralized market equilibrium.

The conclusions based on this general matching function remain the same as those in Section

4.2. When � goes to in�nity, both the prices and allocation converge to their counterparts in

a centralized market equilibrium, but the trading volume does not. Interestingly, the trading

volume in this generalized model converges to exactly the same value as in our previous model,

and is given by (41).

5 Empirical Analysis

In this section, we conduct empirical tests of the model predictions on the length of the interme-

diation chain L and the price dispersion ratio DR. We choose to analyze the U.S. corporate bond

market, which is organized as an OTC market, where dealers and customers trade bilaterally.

Moreover, a large panel dataset is available that makes it possible to conduct the tests reliably.

5.1 Hypotheses

Our analysis in Section 3 provides predictions on the e¤ects of search cost c, market size X,

trading need �, and search technology �. Our empirical analysis will focus on the cross-sectional

relations. Hence, there is perhaps little variation in the search technology � across corporate

bonds in our sample during 2002�2012. Our analysis below will focus on the e¤ects of c, X, and

�.

Speci�cally, we obtain a number of observable variables that can be used as proxies for these
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three parameters. Table 1 summarizes the interpretations of our proxies and model predictions.

We use issuance size as a proxy for the market size X. Another variable that captures the e¤ect

of market size is age. The idea is that after a corporate bond is issued, as time goes by, a larger

and larger fraction of the issuance reaches long-term buy-and-hold investors such as pension funds

and insurance companies. Hence, the active size of the market becomes smaller as the bond age

increases. With these interpretations, Propositions 9 and 13 imply that the intermediation chain

length L and price dispersion ratio DR should be decreasing in the issuance size, but increasing

in bond age.

We use turnover as a proxy for the frequency of investors� trading need �. The higher the

turnover, the more frequent the trading needs are. Propositions 10 and 13 imply that the chain

length L and dispersion ratio DR should be increasing in turnover.

As proxies for the search cost c, we use credit rating, e¤ective bid-ask spread, and time to

maturity. The idea is that these variables are related to the cost that dealers face. For example,

all else being equal, it is cheaper for dealers to make market for investment-grade bonds than for

high-yield or non-rated bonds, perhaps because dealers face less inventory risk and less capital

charge for holding investment-grade bonds. Hence, our interpretation is that the search cost c is

smaller for investment-grade bonds. Moreover, bonds with longer maturities are more risky, and

so more costly for dealers to make market (i.e., c is higher). Finally, everything else being equal,

a larger e¤ective bid-ask spread implies a higher pro�t for dealers (i.e., c is lower). With these

interpretations, Propositions 5 and 13 imply that the chain length L and price dispersion ratio

DR should be larger for investment-grade bonds, and for bonds with shorter time to maturity or

larger bid-ask spreads.

5.2 Data

Our sample consists of corporate bonds that were traded in the U.S. between July 2002 and De-

cember 2012. We combine two databases: the Trade Reporting and Compliance Engine (TRACE)

and the Fixed Income Securities Database (FISD). TRACE contains information about corporate
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bond transactions, such as date, time, price, and volume of a transaction. All transactions are

categorized as either �dealer-to-customer�or �dealer-to-dealer�transactions. The FISD database

contains information about a bond�s characteristics, such as bond type, date and amount of is-

suance, maturity, and credit rating. We merge the two databases using 9-digit CUSIPs. The

initial sample from TRACE contains a set of 64,961 unique CUSIPs; among them, 54,587 can

be identi�ed in FISD. We include in our �nal sample corporate debentures ($8.5 trillion total

issuance amount, or 62% of the sample), medium-term notes ($2.2 trillion total issuance amount,

or 16% of the sample), and convertibles ($0.6 trillion issuance amount, or 4% of the sample). In

total, we end up with a sample of 25,836 bonds with a total issuance amount of $11.3 trillion.

We follow the de�nition in (26) to construct the chain length L for each corporate bond during

each period, where TVcd + TVdc is the total dealer-to-customer trading volume and TVdd is the

total dealer-to-dealer trading volume during that period. In our data, TVcc = 0, that is, there

is no direct transaction between two customers. Hence, the chain length is always larger than or

equal to 1.

We obtain the history of credit ratings on the bond level from FISD. For each bond, we

construct its credit rating history at the daily frequency: for each day, we use credit rating by

S&P if it is available, otherwise, we use Moody�s rating if it is available, and use Fitch�s rating if

both S&P and Moody�s ratings are unavailable. In the case that a bond is not rated by any of the

three credit rating agencies, we consider it as �not rated.�We use the rating on the last day of

the period to create a dummy variable �IG�, which equals one if a bond has an investment-grade

rating, and zero otherwise.

To measure the e¤ective bid-ask spread of a bond, denoted as Spread, we follow Bao, Pan,

and Wang (2011) to compute the square root of the negative of the �rst-order autocovariance

of changes in consecutive transaction prices during the period, which is based on Roll (1984)�s

measure of e¤ective bid-ask spread. Maturity refers to the time to maturity of a bond, measured

in years. We use Age to denote the time since issuance of a bond, denominated in years, use Size

to denote issuance size of a bond, denominated in million dollars, and use Turnover to denote the
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total trading volume of a bond during the period, normalized by its Size.

We follow the de�nition in equation (31) to construct the price dispersion ratio, DR, for

each bond and time period, where P dmax and P
d
min are the maximum and minimum transaction

prices among dealer-to-dealer transactions, and Pmax and Pmin are the maximum and minimum

transaction prices among all transactions.

5.3 Analysis

Table 2 reports the summary statistics for variables measured at the monthly frequency. To rule

out extreme outliers, which are likely due to data error, we winsorize our sample by dropping

observations below the 1st percentile and above 99th percentile. For the overall sample, the

average chain length is 1.73. There is signi�cant variation. The chain length is 7.00 and 1.00 at

the 99th and 1st percentiles, respectively. Investment-grade bonds tend to have longer chains.

For example, the average chain length is 1.81 and the 99th percentile is 7.53. The average price

dispersion ratio is 0.50 for the overall sample, and 0.51 for investment-grade bonds. For the overall

sample, the average turnover is 0.08 per month and the average issuance size is $462 million.

Investment-grade bonds have a larger average issuance size of $537 million, and a turnover ratio

of 0.07. The e¤ective bid-ask spread is 1.43% for the overall sample, and 1.32% for the investment-

grade subsample. The average bond age is around 5 years and the time to maturity is around 8

years.

We �rst run Fama-MacBeth regressions of chain length on the variables in Table 1, and the

results are reported in Table 3. As shown in column 1, the signs of all coe¢ cients are consistent

with the model predictions, and all coe¢ cients are highly signi�cantly di¤erent from 0. The

coe¢ cient for IG is 0.245 (t = 32:17) implying that, holding everything else constant, the chain

length for investment-grade bonds is longer than that for other bonds by 0.245 on average. The

coe¢ cient for Spread is 0.073, with a t-statistic of 17.17. Hence, when the e¤ective bid-ask spread

increases from the 25th percentile to the 75th percentile, the chain length increases by 0.091

(= 0:073 � (1:81 � 0:56)). With the interpretation that a higher spread implies a lower cost for

112



dealers, this is consistent our model that the chain length is decreasing in the search cost. The

coe¢ cient for Turnover is 0.199 (t = 11:48), suggesting that the chain length increases with the

frequency of investors�trading needs. The coe¢ cients for Size and Age are �0:012 (t = 3:73) and

0:025 (t = 23:92), implying that the chain length is decreasing in the size of the market. Also

consistent with the model prediction, the coe¢ cient for Maturity is signi�cantly negative.

We then run another Fama-MacBeth regression, using the price dispersion DR as the depen-

dent variable. Our model predicts that the signs of coe¢ cients for all the variables should be the

same as those in the regression for L. As shown in the third column of Table 3, �ve out of the

six coe¢ cients have the same sign as those in the regression for L in column 1. For example, as

shown in the third column of Table 3, the coe¢ cient for IG is 0.007 (t = 2:62) implying that,

holding everything else constant, the price dispersion for investment grade bonds is larger than

that for other bonds by 0.007 on average. Similarly, as implied by our model, the coe¢ cients for

other variables such as Spread, Turnover, Age, and Maturity are all signi�cant and have the same

sign as in the regression for L.

The only exception is for Size. Contrary to our model prediction, the coe¢ cient is signi�cantly

positive. Intuitively, our model implies that, for a larger bond, it is easier to �nd trading partners.

Hence, it is less pro�table for dealers, leading to a smaller intermediary sector, and consequently

a shorter intermediation chain and a smaller price dispersion ratio. However, our evidence is only

consistent with the implication on the chain length, but not the one on the price dispersion ratio.

One conjecture is that our model abstracts away from the variation in transaction size and dealers�

inventory capacity constraints. For example, in our sample, the monthly maximum transaction

size for the largest 10% of the bonds is more than 50 times larger than that for the smallest 10%

of the bonds. When facing extremely large transactions from customers, with inventory capacity

constraints, a dealer may have to o¤er price concessions when trading with other dealers, leading

to a larger price dispersion ratio. However, this channel has a much weaker e¤ect on the chain

length, which re�ects the average number of layers of intermediation and so is less sensitive to

the transactions of extreme sizes. As a result, our model prediction on the chain length holds but
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the prediction on the price dispersion does not.

As a robustness check, we reconstruct all variables at the quarterly frequency and repeat our

analysis. As shown in the second and fourth columns, the results at the quarterly frequency are

similar to those at the monthly frequency. The only di¤erence is that the coe¢ cient for Maturity

becomes insigni�cant. Finally, we share the endogeneity concern for Spread, and should interpret

its coe¢ cient with caution. We also rerun our regressions after dropping Spread, and our results

remain very similar for all other variables.

6 Conclusion

We analyze a search model with an endogenous intermediary sector and an intermediation chain.

We characterize the equilibrium in closed-form. Our model shows that the length of the interme-

diation chain and price dispersion ratio are decreasing in search cost, search speed, market size,

but are increasing in investors�trading need. Based on the data from the U.S. corporate bond

market, our evidence is broadly consistent with the model predictions.

As search frictions diminish, the search market equilibrium does not always converge to a

centralized market equilibrium. In particular, the prices and allocations in the search market

equilibrium converge to their counterparts in a centralized market equilibrium, but the trading

volume does not converge in the case with intermediaries. The di¤erence between the two trading

volumes across the two equilibria increases when the search cost becomes smaller, and approaches

in�nity when the search cost goes to zero. These results suggest that a centralized market model

captures the behavior of asset prices and allocations when market frictions are small. However,

it is not well-suited for analyzing trading volume, even in a market with a fast search speed,

especially in the case when the search cost is small.
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Appendix for Chapter 2

7 Proof of Type Distributions in Theorem 1

In this section, we show that �i(�) for i = b; s; h; n are given by following. For � 2 [0;�b),

�b (�) = �h (�) = 0; (43)

�n (�) =
� (N �X) + �NbN

�+ �Nb
f (�) ; (44)

�s (�) =
�X

�+ �Nb
f (�) : (45)

For � 2 (�b;�s),

�n (�) = �h (�) = 0; (46)

�s (�) =
Nf (�)

2

241� N �NF (�)�X � �
�q�

N �NF (�)�X � �
�

�2
+ 4�� (N �X) [1� F (�)]

35 ; (47)

�b (�) =
Nf (�)

2

241 + N �NF (�)�X � �
�q�

N �NF (�)�X � �
�

�2
+ 4�� (N �X) [1� F (�)]

35 : (48)

For � 2
�
�s;�

�
,

�n (�) = �s (�) = 0; (49)

�b (�) =
� (N �X)
�+ �Ns

f (�) ; (50)

�h (�) =
�X + �NsN

�+ �Ns
f (�) : (51)

The proof is organized as follows. In Setp I, we derive the density function of each group of

investors for � 2
�
�s;�

�
and determine Ns as a function of �s. In Setp II, we derive the density

function of each group of investors for � 2 [0;�b] and determine Nb as a function of �b. We

determine the density function of each group of investors for � 2 [�b;�s] in Step III.

Step I. We determine �h (�) and �b (�) for � 2
�
�s;�

�
. Since �n (�) = �s (�) = 0 in this

region, the accounting identity (7) boils down to

�h (�) + �b (�) = Nf (�) for � 2
�
�s;�

�
:
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Besides, in�ow-out�ow balance equation for investors with types lie in region is given by (14) in

the paper, namely,

��h (�) = �Xf (�) + �Ns�b (�) :

We thus obtain two equations, both linear in �h (�) and �b (�). It is easy to solve them out.

Now we derive an equation that determines Ns, i.e., the total measure of sellers in the market.

The total measure of inactive holders in the economy should be equal to X �Ns which satisfy

X �Ns =
Z �

�s

�h (�) d� =

Z �

�s

�X + �NNs
�+ �Ns

f (�) d� =
�X + �NNs
�+ �Ns

[1� F (�s)] : (52)

This equation provides a link between Ns and �s. We can rewrite this as a quadratic equation

of Ns, i.e., ls (Ns) = 0, where

ls (z) = z2 +Asz �Bs; (53)

with As =
�

�
+N �X �NF (�s) ;

Bs =
�X

�
F (�s) > 0:

The associated discriminant is strictly positive: A2s + 4Bs > 0, so the equation has two

distinctive real roots. According to Vieta�s formula, the product of two roots is given by �Bs < 0,

which means that the two roots have di¤erent signs. We need to pick out the non-negative root

and ensure Ns < X. Based on the following observation

ls (z)jz=0 = �Bs < 0;

ls (z)jz=X =
��
�
+N

�
X [1� F (�s)] > 0;

we know for sure that the positive root lies in (0; X).

The two roots are given by

Ns = �
As
2
� 1
2

p
A2s + 4Bs:

We need to determine the sign of each root. Since
p
A2s + 4Bs > jAsj, we know (i)

�As
2
� 1
2

p
A2s + 4Bs < �

As
2
� jAsj

2
� 0;
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where the strict inequality holds only when As > 0 and the equality holds otherwise, so this root

is negative and should be deleted; (ii)

�As
2
+
1

2

p
A2s + 4Bs > �

As
2
+
jAsj
2
� 0;

where the strict inequality holds only when As < 0 and the equality holds otherwise, so this root

is positive.

The solution, denoted by Ns = S (�s), is given by

S (�s) = �
1

2

h�
�
+N �X �NF (�s)

i
+
1

2

rh�
�
+N �X �NF (�s)

i2
+ 4

�X

�
F (�s): (54)

S (�s) is increasing in �s. To see this, note that S (�s) satisi�es ls (S (�s)) = 0, where ls (�)

is given in (53). Taking direct di¤erentiation with respect to �s,

dS (�s)

d�s
=

NS (�s) +
�X
�

2S (�s) +
�
� +N �X �NF (�s)

f (�s)

=
NS (�s) +

�X
�q�

�
� +N �X �NF (�s)

�2
+ 4�X� F (�s)

f (�s) > 0:

We therefore know 0 = S (0) < S (�s) < S
�
�
�
= X for any �s 2

�
0;�

�
.

Step II. We determine �n (�) and �s (�) for � 2 [0;�b]. Since �b (�) = �h (�) = 0 in this

region, the accounting identity (7) boils down to

�n (�) + �s (�) = Nf (�) for � 2 [0;�b] :

Besides, in�ow-out�ow balance equation for investors with types lie in region is given by (16). We

thus obtain two equations, both linear in �n (�) and �s (�). It is easy to solve them out.

Now we derive an equation that determines Nb, i.e., the total measure of buyers in the market.

The total measure of non-owners who choose not to search should be equal to N �X �Nb which

satisfy

N�X�Nb =
Z �b

0
�n (�) d� =

Z �b

0

� (N �X) + �NNb
�+ �Nb

f (�) d� =
� (N �X) + �NNb

�+ �Nb
F (�b) :

(55)
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This equation provides a link between Nb and �b. We can rewrite this as a quadratic equation

of Ns, i.e., lb (Nb) = 0, where

lb (z) = z2 +Abz �Bb; (56)

with Ab =
�

�
�N +X +NF (�b) ;

Bb =
�

�
(N �X) [1� F (�b)] > 0:

The associated discriminant is strictly positive: A2b + 4Bb > 0, so the equation has two

distinctive real roots. According to Vieta�s formula, the product of two roots is given by �Bb < 0,

which means that the two roots have di¤erent signs. We need to pick out the positive root and

ensure Nb < N �X. Based on the following observation

lb (z)jz=0 = �Bb < 0;

lb (z)jz=N�X = (N �X)
��
�
+N

�
F (�b) > 0;

we know for sure that the positive root lies in (0; N �X).

The two roots are given by

Nb = �
Ab
2
� 1
2

q
A2b + 4Bb:

We need to determine the sign of each root. Since
q
A2b + 4Bb > jAbj, we know (i)

�Ab
2
� 1
2

q
A2b + 4Bb < �

Ab
2
� jAbj

2
� 0;

where the strict inequality holds only when Ab > 0 and the equality holds otherwise, so this root

is negative and should be deleted; (ii)

�Ab
2
+
1

2

q
A2b + 4Bb > �

Ab
2
+
jAbj
2
� 0;

where the strict inequality holds only when Ab < 0 and the equality holds otherwise, so this root

is positive.

The solution, denoted by Nb = B (�b), is given by

B (�b) =
1

2

h
N �X �NF (�b)�

�

�

i
+
1

2

rh
N �X �NF (�b)�

�

�

i2
+ 4

�

�
(N �X) [1� F (�b)]: (57)
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B (�b) is increasing in �b. To see this, note that B (�b) satis�es lb (B (�b)) = 0, where lb (�)

is given in (56). Taking direct di¤erentiation with respect to �b,

dB (�b)

d�b
= �

NB (�b) +
�(N�X)

�

2B (�b)�
�
N �X �NF (�b)� �

�

�f (�b)
=

NB (�b) +
�(N�X)

�q�
N �X �NF (�b)� �

�

�2
+ 4�� (N �X) [1� F (�b)]

f (�b) < 0:

We therefore know 0 = B
�
�
�
< B (�s) < B (0) = N �X for any �b 2

�
0;�

�
.

Step III. We determine �s (�) and �b (�) for � 2 [�b;�s].

Recall that �s (�) and �b (�) satisify the following in�ow-out�ow balance equation and ac-

counting identity equation

��s (�) = �Xf (�)� ��s (�)
Z �

�
�b (x) dx+ ��b (�)

Z �

0
�s (x) dx; (58)

�s (�) + �b (�) = Nf (�) : (59)

To understand (58), we consider the in�ow and out�ow of sellers with types in interval

[�;�+ d�]. At any time t, the measure of sellers in this interval is �s (�) d�. During short

period dt, a fraction (1� �dt) of them experience no type-switching shock and thus remain in in-

terval [�;�+ d�]. Besides, a fraction �dt of asset owners (sellers and inactive holders) experience

type shocks and �dtXf (�) d� investors�new types fall in the interval [�;�+ d�]. Moreover,

when the sellers with types in [�;�+ d�] sell their assets they become the non-owners and the

size of this group is ��s (�) d�dt
R �
� �b (x) dx. Finally, when the buyers with types in [�;�+ d�]

acquire the asset they become the sellers and the size of this group is ��b (�) d�dt
R �
� �s (y) dy.

The in�ow-out�ow balance equation is thus given by

�s (�) d� = (1� �dt)�s (�)+�dtXf (�) d����s (�) d�dt
Z �

�
�b (x) dx+��b (�) d�dt

Z �

�
�s (y) dy;

which can be simpli�ed to (58).
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De�ne the cumulative measure of buyers and sellers whose types are no more than � by

Fb (�) �
Z �

�b

�b (x) dx for � 2
�
�b;�

�
; (60)

Fs (�) �
Z �

0
�s (x) dx for � 2 [0;�s] : (61)

Note that the total measure of buyers and sellers can be expressed as

Nb = Fb
�
�
�
; Ns = Fs (�s) :

Using these notations, we can rewrite (59) as

�
dFs (�)

d�
= �Xf (�)� � [Nb � Fb (�)]

dFs (�)

d�
+ �Ms (�)

dFb (�)

d�
; (62)

where we have used the facts

�b (�) =
dFb (�)

d�
; �s (�) =

dFs (�)

d�
:

Notice the following fact

d

d�
f� [Nb � Fb (�)]Fs (�)g = � [Nb � Fb (�)]

dFs (�)

d�
� �Fs (�)

dFb (�)

d�
:

We can thus substitute the last two terms in (62) out and obtain

�
dFs (�)

d�
= �Xf (�)� d

d�
f� [Nb � Fb (�)]Fs (�)g :

Integrating both sides from �b to any � 2 (�b;�s], we have

� [Fs (�)� Fs (�b)] = �X [F (�)� F (�b)]� � f[Nb � Fb (�)]Fs (�)�NbFs (�b)g ; (63)

where we have used the facts that Fb (�b) = 0. Since �s (�) =
�X

�+�Nb
f (�) for � 2 [0;�b], we

are able to pin down Fs (�b) as follows

Fs (�b) =

Z �b

0
�s (x) dx =

Z �b

0

�X

�+ �Nb
f (x) dx =

�X

�+ �Nb
F (�b) : (64)

Besides, we can also rewrite (59) as

dFb (�)

d�
+
dFs (�)

d�
= Nf (�) :
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Integrating both sides of this equation from �b to any � 2 (�b;�s], we obtain

Fb (�) + Fs (�)� Fs (�b) = N [F (�)� F (�b)] ; (65)

where we have also used the fact that Mb (�b) = 0. According to the following observation

Fs (�b)�NF (�b) = �
� (N �X) + �NNb

�+ �Nb
F (�b) = � (N �X �Nb) ;

we can rewrite (65) by

Fb (�) + Fs (�) = NF (�)� (N �X �Nb) ; (66)

Using this to substitute term Fs (�) out in (63), we can show that Fb (�) is the solution to

the following quadratic equation: l1 (Fb (�)) = 0, where

l1 (z) = z2 �A1z +B1;

with A1 = NF (�)�N +X + 2Nb +
�

�
> 0;

B1 =

�
�

�

N �X
N

+Nb

�
[NF (�)�NF (�b)] � 0 for � 2 [�b;�s]

Here, A1 > 0 because

A1 � NF (�b)�N +X + 2Nb +
�

�

= (N �X �Nb)
�N + �NNb

� (N �X) + �NNb
�N +X + 2Nb +

�

�

=
�X (N �X �Nb)
� (N �X) + �NNb

+Nb +
�

�
> 0;

where we substitute F (�b) out in the second line according to (55).

The associated discriminant is strictly positive because

A21 � 4B1
(a)
=
h
NF (�)�N +X +

�

�

i2
+ 4N2

b + 4Nb

h
NF (�)�N +X +

�

�

i
�4�

�
(N �X) [F (�)� F (�b)]� 4Nb [NF (�)�NF (�b)]

(b)
= 4N2

b + 4Nb

h
�N +X +

�

�
+NF (�b)

i
+
h
NF (�)�N +X +

�

�

i2
�4�

�

N �X
N

[NF (�)�NF (�b)]
(c)
= 4

�

�
(N �X) [1� F (�b)] +

h
NF (�)�N +X +

�

�

i2
� 4�

�
(N �X) [F (�)� F (�b)]

(d)
= 4

�

�
(N �X) [1� F (�)] +

h
NF (�)�N +X +

�

�

i2
;
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where we break A21 down in (a), we put the coe¢ cient of Nb together in (b), we substitute N
2
b

out by (56) in (c) and �nd that all terms related to Nb are cancelled out. Both of the two terms

in the �nal step (d) are positive, so A21 � 4B1 > 0 and thus the equation has two distinctive real

roots.

According to Vieta�s formula, the product of two roots is given by B1 � 0, which means that

the two roots have the same signs. In view of the following facts

l1 (z)jz=0 = B1 > 0;

l1 (z)jz=Nb = ��
�
(N �X) [1� F (�)] < 0;

we know that one root is located in (0; Nb) and the other root exceeds Nb. We should pick the

small root. The solution is given by

Fb (�) =
A1 �

p
A21 � 4B1
2

:

Taking derivative with respect to �, we obtain �b (�) =
dMb(�)
d� for � 2 [�b;�s].

We can �gure out Fs (�) for � 2 [�b;�s] directly from (66) and obtain �s (�) = Nf (�) �

�b (�) in this region.

8 Proof of Theorem 1

The proof is organized as follows.

Step I. According to a non-owner�s optimal choice given in (3), we know

V (�t = 0;�) = max (Vn (�) ; Vb (�)) =

�
Vn (�) if � 2 [0;�b]
Vb (�) if � 2

�
�b;�

�
and a non-owner of marginal type �b is indi¤erent between staying outside the market and

searching to buy the asset

Vn (�b) = Vb (�b) : (67)

According to an owner�s optimal choice given in (4), we know

V (�t = 1;�) = max (Vh (�) ; Vs (�)) =

�
Vs (�) if � 2 [0;�s]
Vh (�) if � 2

�
�s;�

�
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and an owner of marginal type �s is indi¤erent between staying outside the market and searching

to sell the asset

Vh (�s) = Vs (�s) : (68)

We can thus simplify the expression of tradig surplus between a buyer of type x 2
�
�b;�

�
and a seller of type y 2 [0;�s] by

S (x; y) =

8>><>>:
Vs (x) + Vb (y)
Vs (x) + Vn (y)
Vh (x) + Vb (y)
Vh (x) + Vn (y)

� Vb (x)� Vs (y) , if

x 2 [�b;�s] ; y 2 [�b;�s]
x 2 [�b;�s] ; y 2 [0;�b]
x 2

�
�s;�

�
; y 2 [�b;�s]

x 2
�
�s;�

�
; y 2 [0;�b]

: (69)

It is direct to check S (�;�) = 0 for any � 2 [�b;�s]. We will show that S (x; y) > 0 for

x > y after we have constructed all value functions.

Step II. We determine Vn (�) and Vh (�) for � 2
�
0;�

�
. The equation for Vn (�) implies

that it is a constant for all �. We denote it by Vn � Vn (�). The equation for Vh (�) implies

that it is linear in � with a positive slope

dVh (�)

d�
=

1

�+ r
: (70)

Step III. We determine Vs (�) for � 2 [0;�s] and Vb (�) for � 2
�
�b;�

�
.

We �rst study Vs (�) for � 2 [0;�s]. Suppose � 2 [0;�b]. We can insert the expression

of S (x;�) given in (69) into the equation of Vs (�). We will later show that S (x;�) > 0 for

x > �b � � > 0 and we already know that �b (x) = 0 for x < �b holds in equilibrium, so

Vs (�) =
1 +�� c
�+ r

+
�E [max fVh (�0) ; Vs (�0)g]

�+ r
+
� (1� �)
�+ r

Z �

�b

S (�; x)�b (x) dx

=
1 +�� c
�+ r

+
�E [max fVh (�0) ; Vs (�0)g]

�+ r
+
� (1� �)
�+ r

Z �s

�b

[Vs (x) + Vn � Vb (x)� Vs (�)]�b (x) dx

+
� (1� �)
�+ r

Z �

�s

[Vh (x) + Vn � Vb (x)� Vs (�)]�b (x) dx.

Assume that all value functions are di¤erentiable almost everywhere and di¤erentiate both sides

of the equation with respect to �,

dVs (�)

d�
=

1

�+ r
� � (1� �)

�+ r

dVs (�)

d�

Z �

�b

�b (x) dx:
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Since the total measure of buyers in the market is given by Nb =
R �
�b
�b (�) dx, we thus obtain

dVs (�)

d�
=

1

�+ r + � (1� �)Nb
for � 2 [0;�b] . (71)

Now suppose � 2 [�b;�s]. Inserting the expression of S (x;�) given in (69) into the equation

of Vs (�),

Vs (�) =
1 +�� c
�+ r

+
�E [max fVh (�0) ; Vs (�0)g]

�+ r
+
� (1� �)
�+ r

Z �s

�
[Vs (x) + Vb (�)� Vb (x)� Vs (�)]�b (x) dx

+
� (1� �)
�+ r

Z �

�s

[Vh (x) + Vb (�)� Vb (x)� Vs (�)]�b (x) dx, for � 2 [�b;�s] . (72)

Still assume that all value functions are di¤erentiable almost everywhere. Di¤erentiating the

above equation with respect to � on both sides,

dVs (�)

d�
=

1

�+ r
� � (1� �)

�+ r

�
dVs (�)

d�
� dVb (�)

d�

� Z �

�
�b (x) dx: (73)

Next, we study Vb (�) for � 2
�
�b;�

�
. Suppose � 2

�
�s;�

�
. Inserting the expression of

S (x; y) given in (69) into the equation of Vb (�), we obtain

Vb (�) = �
c

�+ r
+
�E [max fVb (�0) ; Vng]

�+ r
+

��

�+ r

Z �b

0
[Vh (�) + Vn (x)� Vb (�)� Vs (x)]�s (x) dx

+
��

�+ r

Z �s

�b

[Vh (�) + Vb (x)� Vb (�)� Vs (x)]�s (x) dx, for � 2
�
�b;�

�
:

Assume that all value functions are di¤erentiable almost everywhere. Di¤erentiating the above

equation with respect to � on both sides,

dVb (�)

d�
=

��

�+ r

�
dVh (�)

d�
� dVb (�)

d�

� Z �s

0
�s (x) dx:

Notice that the total measure of sellers in the market is given by Ns =
R �s
0 �b (�) dx and the

slope of Vh (�) is already obtained in (70). We thus obtain

dVb (�)

d�
=

1

�+ r

��Ns
�+ r + ��Ns

for � 2
�
�s;�

�
: (74)

Suppose � 2 [�b;�s]. Inserting the expression of S (�; x) given in (69) into the equation of
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Vb (�),

Vb (�) = � c

�+ r
+
�E [max fVb (�0) ; Vng]

�+ r
+

��

�+ r

Z �

�b

[Vs (�) + Vb (x)� Vb (�)� Vs (x)]�s (x) dx

+
��

�+ r

Z �b

0
[Vs (�) + Vn (x)� Vb (�)� Vs (x)]�s (x) dx, for � 2 [�b;�s] . (75)

Assume that all value functions are di¤erentiable almost everywhere. Di¤erentiating the above

equation with respect to � on both sides,

dVb (�)

d�
=

��

�+ r

�
dVs (�)

d�
� dVb (�)

d�

� Z �

0
�s (x) dx: (76)

Substituting (60) into (73) and (61) into (76), we have

dVs (�)

d�
=

1

�+ r
� � (1� �)

�+ r

�
dVs (�)

d�
� dVb (�)

d�

�
[Nb � Fb (�)] ;

dVb (�)

d�
=

��

�+ r

�
dVs (�)

d�
� dVb (�)

d�

�
Fs (�) , both for � 2 [�b;�s] .

Taking di¤erence on both sides and rearranging,

dVs (�)

d�
� dVb (�)

d�
=

1

�+ r + � (1� �) [Nb � Fb (�)] + ��Fs (�)
� � (�) for � 2 [�b;�s] . (77)

Inserting back into each equation, we are able to obtain the slope of Vs (�) and Vb (�) for

� 2 [�b;�s].

The slope of Vs (�) is therefore given by

dVs (�)

d�
=

(
1

�+r+�(1��)Nb for � 2 [0;�b]
1
�+r

�+r+��Fs(�)
�+r+�(1��)[Nb�Fb(�)]+��Fs(�) � �s (�) for � 2 [�b;�s]

: (78)

The slope of Vb (�) is given by

dVb (�)

d�
=

(
1
�+r

��Fs(�)
�+r+�(1��)[Nb�Fb(�)]+��Fs(�) � �b (�) for � 2 [�b;�s]

1
�+r

��Ns
�+r+��Ns

for � 2
�
�s;�

� : (79)

Step IV. We list out investor�s expected utility given his choice and asset holding.

We �rst derive the expression of Vb (�). The slope of Vb (�) has already given by (79). We

thus have:

Vb (�) = Vn +

( R �
�b
�b (z) dz for � 2 [�b;�s]R �s

�b
�b (z) dz +

1
�+r

��Ns
�+r+��Ns

(���s) for � 2
�
�s;�

� ; (80)

129



where �b (�) is given in (79) and we have used the fact Vb (�b) = Vn.

Next, we derive Vn. We have the following chain of equations:

(�+ r)Vn
(a)
= �E

�
max

�
Vn; Vb

�
�0
�	� (b)

= �Vn + �

Z �

�b

�
Vb
�
�0
�
� Vn

�
dF
�
�0
�

(c)
= �Vb (�s)� �

Z �s

�b

�b (z)F (z) dz +
�

�+ r

��Ns
�+ r + ��Ns

Z �

�s

[1� F (z)] dz;

where (a) is due to Equation (10) in the paper, (b) is because Vb (�) > Vn whenever � > �b and

(c) is established by integral by parts. Plugging the expression of Vb (�s) into the last line and

rearranging, we obtain

Vn (�) = Vn �
�

r

Z �s

�b

�b (z) [1� F (z)] dz +
�

r

��Ns
�+ r + ��Ns

R �
�s
[1� F (z)] dz
�+ r

: (81)

Now we derive Vs (�) and Vh (�). Recall that the slope of Vh (�) is a constant and given by

(70). Hence,

Vh (�) = Vh (�s) +
���s
�+ r

; (82)

where Vh (�s) = Vs (�s) (cf. equation (68)) is to be determined.

Recall that the slope of Vs (�) is already given in (78). We thus obtain

Vs (�) = Vs (�b) +

(
���b

�+r+�Nb(1��) for � 2 [0;�b]R �
�b
�s (z) dz for � 2 [�b;�s]

; (83)

where Vs (�b) is given by

Vs (�b) = Vs (�s)�
Z �s

�b

�s (z) dz:

Now we pin down the value of Vs (�s). For this, we �rst calculate E [max fVs (�) ; Vh (�)g]:

E [max fVs (�) ; Vh (�)g] =

Z �s

0
Vs (�) dF (�) +

Z �

�s

Vh (�) dF (�)

= Vs (�s)�
R �b
0 F (z) dz

�+ r + �Nb (1� �)
�
Z �s

�b

�s (z)F (z) dz +

R �
�s
[1� F (z)] dz
�+ r

:

Substituting this into the following equation

Vs (�s) = Vh (�s) =
1 +�s + �E [max fVs (�) ; Vh (�)g]

�+ r
;
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and rearranging, we obtain

Vs (�s) =
1 +�s
r

� �

r

R �b
0 F (z) dz

�+ r + �Nb (1� �)
� �

r

Z �s

�b

�s (z)F (z) dz +
�

r

R �
�s
[1� F (z)] dz
�+ r

: (84)

Therefore, Vs (�b) in (83) is given by

Vs (�b) =
1 +�s
r

� �

r

R �b
0 F (z) dz

�+ r + �Nb (1� �)
�
Z �s

�b

�s (z)
h
1 +

�

r
F (z)

i
dz +

�

r

R �
�s
[1� F (z)] dz
�+ r

:

Step V. We check the trading rule in a bilateral meeting, i.e.,

S (x; y) > 0 if and only if x > y,

where x 2
�
�b;�

�
is the buyer�s type and y 2 [0;�s] is the seller�s type. Here, S (x; y) is given

by (69). We split our discussion in the following 4 cases.

(i) If x 2 [�b;�s] and y 2 [�b;�s],

S (x; y) = Vs (x)� Vs (y)� [Vb (x)� Vb (y)]

=

Z x

y

�
dVs (z)

dz
� dVb (z)

dz

�
dz =

Z x

y
� (z) dz > 0 whenever x > y:

(ii) If x 2 (�b;�s) and y 2 (0;�b) (where x > y always holds),

S (x; y) = Vs (x)� Vs (y)� [Vb (x)� Vb (�b)]

=

Z �b

y

dz

�+ r + � (1� �)Nb
+

Z x

�b

�s (z) dz �
Z x

�b

�b (z) dz

=
�b � y

�+ r + � (1� �)Nb
+

Z x

�b

� (z) dz > 0;

where the �rst term is positive because y < �b and the second term is positive because the

integrand � (z) > 0 and x > �b.

(iii) If x 2
�
�s;�

�
and y 2 (�b;�s) (where x > y always holds),

S (x; y) = Vh (x) + Vb (y)� Vb (x)� Vs (y)

= [Vh (x)� Vh (�s)] + [Vs (�s)� Vs (y)]� [Vb (x)� Vb (y)]

=
x��s
�+ r

+

Z �s

y
�s (z) dz �

��Ns
�+ r + ��Ns

x��s
�+ r

�
Z �s

y
�b (z) dz

=
x��s

�+ r + ��Ns
+

Z �s

y
� (z) dz > 0;
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where we have used the fact Vh (�s) = Vs (�s) in the second line.

(iv) If x 2
�
�s;�

�
and y 2 [0;�b] (where x > y always holds),

S (x; y) = Vh (x) + Vn � Vb (x)� Vs (y)

= [Vh (x)� Vh (�s)]� [Vb (x)� Vb (�b)] + [Vs (�s)� Vs (y)]

=
x��s
�+ r

�
�
x��s
�+ r

��Ns
�+ r + ��Ns

+

Z �s

�b

�b (z) dz

�
+

�Z �s

�b

�s (z) dz +
�b � y

�+ r + � (1� �)Nb

�
=

x��s
�+ r + ��Ns

+

Z �s

�b

� (z) dz +
�b � y

�+ r + � (1� �)Nb
> 0;

where we have used the fact Vh (�s) = Vs (�s) in the second line.

The last three cases show that any meeting between such kind of buyer and seller generates a

positive trading surplus and thus results in a trade.

Step VI. We derive the equilibrium condition that determines �b.

For this, we use the indi¤erence condition for the marginal non-owner of type�b, i.e., Vb (�b) =

Vn.

In order to give an expression of Vb (�b), we let � = �b in (75) and obtain

Vb (�b)
(a)
= � c

�+ r
+
�E [max fVb (�0) ; Vng]

�+ r
+

��

�+ r

Z �b

0
[Vs (�b) + Vn � Vb (�b)� Vs (x)]�s (x) dx

(b)
= � c

�+ r
+ Vn +

��

�+ r

Z �b

0

�b � x
�+ r + � (1� �)Nb

�s (x) dx

(c)
= � c

�+ r
+ Vn +

��

�+ r

�X

�+ �Nb

R �b
0 (�b � x) f (x) dx
�+ r + � (1� �)Nb

(d)
= � c

�+ r
+ Vn +

��

�+ r

�X

�+ �Nb

R �b
0 F (x) dx

�+ r + � (1� �)Nb
;

where we obtain (a) by construction, in (b) we substitute the second term out by Vn and use the

fact Vn = Vb (�b) in the integral, in (c) we substitute out the explicit expression of �s (x) for

x 2 [0;�b] in the integral and we simplify the last term through the integral by part in (d). Note

132



that the LHS of the �rst line is actually Vn due to (67). We thus arrive at

c =
���X

R �b
0 F (x) dx

(�+ �Nb) [�+ r + � (1� �)Nb]
:

Recall that in the proof of Proposition 3 we have established Nb = B (�b) given by (57). If

we substitute Nb by B (�b), we obtain an equation of �b:

c =
���X

R �b
0 F (x) dx

[�+ �B (�b)] [�+ r + � (1� �)B (�b)]
: (85)

Since B (�b) is strictly decreasing in �b, the RHS of (85) is strictly increasing in �b. As a �rst

step, we have to ensure that (85) implies a unique �b 2
�
0;�

�
at least. For this, we only need to

check the following boundary conditions:

c > RHS of (85)j�b=0 = 0;

c < RHS of (85)j�b=� = cb �
��X

�+ r

Z �

0
F (x) dx;

where we have used the facts: B (0) = N � X and B
�
�
�
= 0. The �rst inequality holds for

positive search cost and the second inequality should be satis�ed as an additional condition.

(85) de�nes �b as an increasing function of c, denoted by db (c).

Step VII. We derive the equilibrium condition that determines �s.

For this, we use the indi¤erence condition for the marginal owner of type �s, i.e., Vh (�s) =
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Vs (�s). In order to give an expression of Vs (�s), we let � = �s in (72) and obtain

Vs (�s)
(a)
=
1 +�s � c
�+ r

+
�E [max fVh (�0) ; Vs (�0)g]

�+ r

+
� (1� �)
�+ r

Z �

�s

[Vh (x) + Vb (�s)� Vb (x)� Vs (�s)]�b (x) dx

(b)
= Vh (�s)�

c

�+ r
+
� (1� �)
�+ r

Z �

�s

[Vh (x)� Vh (�s) + Vb (�s)� Vb (x)]�b (x) dx

(c)
= Vh (�s)�

c

�+ r
+
� (1� �)
�+ r

Z �

�s

�
x��s
�+ r

� x��s
�+ r

��Ns
�+ r + ��Ns

�
�b (x) dx

(d)
= Vh (�s)�

c

�+ r
+
� (1� �)
�+ r

R �
�s
(x��s)�b (x) dx
�+ r + ��Ns

(e)
= Vh (�s)�

c

�+ r
+
� (1� �)
�+ r

� (N �X)
�+ �Ns

R �
�s
(x��s) f (x) dx
�+ r + ��Ns

(f)
= Vh (�s)�

c

�+ r
+
� (1� �)
�+ r

� (N �X)
�+ �Ns

R �
�s
[1� F (x)] dx

�+ r + ��Ns
;

where we obtain (a) by construction, in (b) we simplify the �rst two terms by using the

expression of Vh (�s) and use the fact Vh (�s) = Vs (�s) in the integral, in (c) and (d) we

calculate the explicit form of the integrand, in (e) we substitute out the explicit expression of

�b (x) for x 2
�
�s;�

�
in the integral and we simplify the last term through the integral by part

in (f). Note that the LHS of the �rst line is actually Vh (�s) due to (68). We thus arrive at

c =
� (1� �)� (N �X)

R �
�s
[1� F (x)] dx

(�+ �Ns) (�+ r + ��Ns)
:

Recall that in the proof of Proposition 3 we have established Ns = S (�s) given by (54). If

we substitute Ns by S (�s), we obtain an equation of �s:

c =
� (1� �)� (N �X)

R �
�s
[1� F (x)] dx

[�+ �S (�s)] [�+ r + ��S (�s)]
: (86)

Since S (�s) is strictly increasing in �s, the RHS of (86) is strictly decreasing in �s. As a �rst

step, we have to ensure that (86) implies a unique �s 2
�
0;�

�
at least. For this, we only need to

check the following boundary conditions:

c < RHS of (86)j�s=0 = cs �
� (1� �) (N �X)

�+ r

Z �

0
[1� F (x)] dx;

c > RHS of (86)j�s=� = 0;
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where we have used the facts: S (0) = 0 and S
�
�
�
= X. The �rst inequality holds for positive

search cost and the second inequality should be satis�ed as an additional condition.

(86) de�nes �s as a decreasing function of c, denoted by ds (c).

Step VIII. We now prove the following result: there exists a unique c� > 0 such that for any

c < c� the value of �s and �b are unique and �s > �b.

Recall that equation (85) de�nes an increasing function db (c) : [0; cb] !
�
0;�

�
and equation

(86) de�nes a decreasing function ds (c) : [0; cs]!
�
0;�

�
. Notice that

ds (0) = � > 0 = db (0) :

(i) If cb > cs, then

db (cs)
(a)
> db (0)

(b)
= 0

(c)
= ds (cs) ;

where (a) is because db (c) is strictly increasing in c and cs > 0, (b) and (c) are by construction.

It follows that there exists a unique c�s 2 [0; cs] such that ds (c) T db (c) for any c S c�s. Since we

require �s > �b in equilibrium, we thus impose the restriction: c < c�s.

At c = c�s, we should have db (c
�
s) = ds (c

�
s).

(ii) If cb < cs, then

db (cb)
(a)
= �

(b)
= ds (0)

(c)
> ds (cb) ;

where (a) and (b) are by construction, (c) is because ds (c) is strictly decreasing in c and cb > 0.

It follows that there exists a unique c�b 2 [0; cb] such that d2 (c) T d1 (c) for any c S c�b . Since we

require �s > �b in equilibrium, we thus impose the restriction: c < c�b .

At c = c�b , we should have db (c
�
b) = ds (c

�
b).

In sum, the equilibrium exists when (i) c < c�s if cb � cs, or equivalently,

�

1� � �
R �
� [1� F (x)] dxR �

� F (y) dy

N �X
X

:
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(ii) c < c�b if cb > cs, or equivalently,

�

1� � <
R �
� [1� F (x)] dxR �

� F (y) dy

N �X
X

:

Let c� be such that

c� =

�
c�s
c�b

, if
�

1� �
�
<

R �
� [1� F (x)] dxR �

� F (y) dy

N �X
X

: (87)

We have proved the existence and uniquenss of �s and �b such that �s > �b when c < c�.

Step IX. We verify an owner�s optimal choice given in (4).

For an owner of type � 2
�
�s;�

�
, he prefers holding onto his asset to searching for trading

partners. Suppose he deviates to search in the market during a short period [t; t+ dt) and then

returns to his equilibrium strategy after t + dt. Denote the investor�s expected payo¤ from such

deviation by bVO (�). In this short period, he receives cash �ow from the asset, pays the search

cost and meets a buyer with type, say, x 2
�
�b;�

�
, with probability ��b (x) dt. The total trade

surplus is given by

bS (x;�) = max fVh (x) ; Vs (x)g+ Vb (�)� Vb (x)� bVO (�) ;
since the seller chooses to search for the asset after trade. Based on this, bVO (�) is given by

bVO (�) = (1 + �� c) dt+ �E
�
max

�
Vh
�
�0
�
; Vs

�
�0
�	�

dt

+�dt (1� �)
Z �

�b

max
nbS (x;�) ; 0o�b (x) dx+ e�rdt (1� �dt)Vh (�) :

We can rewrite Vh (�) by

Vh (�) = (1 + �) dt+ �E
�
max

�
Vh
�
�0
�
; Vs

�
�0
�	�

dt+ e�rdt (1� �dt)Vh (�) :

Taking di¤erence term by term,

bVO (�)� Vh (�) = �cdt+ �dt (1� �)Z �

�b

max
nbS (x;�) ; 0o�b (x) dx: (88)

The owner is tempted to make such a deviation if it is pro�table, i.e., bVO (�) > Vh (�). If so, the
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trade surplus is bounded by

bS (x;�) < max fVh (x) ; Vs (x)g+ Vb (�)� Vb (x)� Vh (�)

=

�
Vs (x) + Vb (�)� Vb (x)� Vh (�) , if x 2 [�b;�s] and � 2

�
�s;�

�
Vh (x) + Vb (�)� Vb (x)� Vh (�) , if x 2

�
�s;�

�
and � 2

�
�s;�

� :

If x � �, the upper bound is non-positive and thus bS (x;�) < 0 in this case. Hence, we at least
need x > � to have a positive trade surplus. In what follows, we assume x > �. bS (x;�) is
therefore bounded by

bS (�; x) < Vh (x) + Vb (�)� Vb (x)� Vh (�)

= [Vh (x)� Vh (�)]� [Vb (x)� Vb (�)]

=
x��
�+ r

� x��
�+ r

��Ns
�+ r + ��Ns

=
x��

�+ r + ��Ns
;

where the �rst line is because bVO (�) > Vh (�), the second line is a result of rearrangement and

the fourth line is by algebra. We can evaluate the RHS of (88) as follows

RHS of (88)
(a)
< �cdt+ �dt (1� �)

Z �

�

x��
�+ r + ��Ns

�b (x) dx

(b)
= �cdt+ �dt (1� �) � (N �X)

�+ �Ns

R �
� (x��) f (x) dx
�+ r + ��Ns

(c)
= �cdt+ �dt (1� �) � (N �X)

�+ �Ns

R �
� [1� F (x)] dx
�+ r + ��Ns

(d)
= �

� (1� �)� (N �X)
R �
�s
[1� F (x)] dx

(�+ �Ns) (�+ r + ��Ns)
dt+

� (1� �)� (N �X)
R �
� [1� F (x)] dx

(�+ �Ns) (�+ r + ��Ns)
dt

(e)

(e)
= �

� (1� �)� (N �X)
R �
�s
[1� F (x)] dx

(�+ �Ns) (�+ r + ��Ns)
dt

(f)
< 0;

where (a) is obtained by substituting bS (�; x) < x��
�+r+��Ns

for x > � into (88), (b) is obtained

by substituting �b (x) =
�(N�X)
�+�Ns

f (x) for x 2
�
�s;�

�
, (c) is obtained by using the integral by

part, (d) is obtained by replacing c by (86), (e) is the result of rearrangement and (f) is because

� > �s. It follows that bVO (�) � Vh (�) < 0, which contradicts our starting assumption thatbVO (�) > Vh (�). Hence, an owner of type � 2
�
�s;�

�
has no incentive to make such a deviation.

For an owner of type � 2 [0;�s), he prefers searching for buyers to holding onto his asset.
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Suppose he deviates to stay outside the market during a short period [t; t+ dt) and will switch

back to his equilibrium strategy after t + dt. Denote the investor�s expected payo¤ from such

deviation by bVO (�). In this short period, he receives cash �ow from the asset without paying the

search cost. bVO (�) is given by
bVO (�) = (1 + �) dt+ �E �max�Vh ��0� ; Vs ��0�	� dt+ e�rdt (1� �dt)Vs (�) :

We can rewrite Vs (�) by

Vs (�) = (1 + �� c) dt+ �E
�
max

�
Vh
�
�0
�
; Vs

�
�0
�	�

dt+ e�rdt (1� �dt)Vs (�)

+�dt (1� �)
Z �

�
S (x;�)�b (x) dx:

Taking di¤erence term by term.

bVO (�)� Vs (�) = cdt� �dt (1� �)
Z �

�
S (x;�)�b (x) dx: (89)

The owner is tempted to make such a deviation if it is pro�table, i.e., bVO (�) > Vs (�).

We now aim to present a contradiction by showing that the RHS of (89) is negative. Note

that
R �
� S (x;�)�b (x) dx is decreasing in � as its �rst-order derivative is given by

@

@�

Z �

�
S (x;�)�b (x) dx = �S (�;�)�b (�) +

Z �

�

@S (x;�)

@�
�b (x) dx

=

Z �

�

@S (x;�)

@�
�b (x) dx < 0;

because S (�;�) = 0 and @
@�S (x;�) < 0 for x > �. This impliesZ �

�
S (x;�)�b (x) dx >

Z �

�s

S (x;�s)�b (x) dx (90)

for � < �s. Note that we have the following equation

Vs (�s) = Vh (�s)�
c

�+ r
+
� (1� �)
�+ r

Z �

�s

S (x;�s)�b (x) dx:

Since Vs (�s) = Vh (�s), the above equation implies

c = � (1� �)
Z �

�s

S (x;�s)�b (x) dx; (91)
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which is actually another version of equation (86). It follows directly from (90) and (91) that

c < � (1� �)
Z �

�
S (x;�)�b (x) dx:

This means that the RHS of (89) is negative. However, the LHS of (89) is positive by assumption.

A contradiction! Hence, an owner of type � 2 [0;�s) has no incentive to make such a deviation.

Step X. We verify a non-owner�s optimal choice given in (3).

For a non-owner of type � 2 [0;�b], he prefers staying outside the market with no asset in

hand to searching for partners in equilibrium. Suppose he deviates to search in the market during

a short period [t; t+ dt) and then switches back to his equilibrium strategy afterwards. Denote

the investor�s expected payo¤ from such deviation by bVN (�). In this short period, he pays the
search cost and meets a seller with type, say, x 2 [0;�s], with probability ��s (x) dt. The total

trade surplus is given by

bS (�; x) = max fVn (x) ; Vb (x)g � Vs (x) + Vs (�)� bVN (�) :
bVN (�) is given by

bVN (�) = �cdt+ �E
�
max

�
Vn
�
�0
�
; Vb
�
�0
�	�

dt

+�dt�

Z �s

0
max

nbS (�; x) ; 0o�s (x) dx+ e�rdt (1� �dt)Vn (�) :
On the other hand, Vn (�) can be rewritten as

Vn (�) = �E
�
max

�
Vn
�
�0
�
; Vb
�
�0
�	�

dt+ e�rdt (1� �dt)Vn (�) :

Taking di¤erence term by term,

bVN (�)� Vn (�) = �cdt+ �dt� Z �s

0
max

nbS (�; x) ; 0o�s (x) dx: (92)

The non-owner is tempted to make such a deviation if it is pro�table, i.e., bVN (�) > Vn (�). If

so, the trade surplus is bounded by

bS (�; x) < max fVn (x) ; Vb (x)g � Vs (x) + Vs (�)� Vn (�)

=

�
Vn (x)� Vs (x) + Vs (�)� Vn (�) , if x 2 [0;�b] and � 2 [0;�b]
Vb (x)� Vs (x) + Vs (�)� Vn (�) , if x 2 [�b;�s] and � 2 [0;�b]

:
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If � � x, the upper bound is non-positive and thus bS (�; x) < 0 in this case. Hence, we at least
need � > x to have a positive trade surplus. In what follows, we assume � > x. bS (�; x) is
therefore bounded by

bS (�; x) < Vn (x)� Vs (x) + Vs (�)� Vn (�)

= [Vs (�)� Vs (x)]� [Vn (�)� Vn (x)]

=
�� x

�+ r + �Nb (1� �)
;

where the second line is by rearrangement and the third line is because Vn (�) = Vn (x) = Vn.

We can evaluate the RHS of (92) as follows

RHS of (92)
(a)
< �cdt+ �dt�

Z �

0

�� x
�+ r + �Nb (1� �)

�s (x) dx

(b)
= �cdt+ ���X

�+ �Nb

R �
0 (�� x) f (x) dx
�+ r + �Nb (1� �)

dt

(c)
= �cdt+ ���X

�+ �Nb

R �
0 F (x) dx

�+ r + �Nb (1� �)
dt

(d)
= �

���X
R �b
0 F (x) dx

(�+ �Nb) [�+ r + � (1� �)Nb]
dt+

���X
R �
0 F (x) dx

(�+ �Nb) [�+ r + �Nb (1� �)]
dt

(e)
= �

���X
R �b
� F (x) dx

(�+ �Nb) [�+ r + � (1� �)Nb]
dt

(f)
< 0;

where (a) is obtained by substituting bS (�; x) < ��x
�+r+�Nb(1��) for � > x, (b) is obtained by

substituting �s (x) =
�X

�+�Nb
f (x) for x 2 [0;�b], (c) is obtained by using the integral by part,

(d) is obtained by replacing c by (85), (e) is the result of rearrangement and (f) is because

� < �b. It follows that bVN (�) � Vn (�) < 0, which contradicts out starting assumption thatbVN (�) > Vn (�). Hence, a non-owner of type � 2 [0;�b] has no incentive to make such a

deviation.

For a non-owner of type � 2 [�b;�s], he prefers searching for sellers to staying outside the

market. Suppose he does not search during a short period [t; t+ dt) and will switch back to his

equilibrium strategy after t + dt. Denote the investor�s expected payo¤ from such deviation bybVN (�). In this short period, he receives no cash �ow but he does not pay the search cost at the

140



same time. bVN (�) is given by
bVN (�) = �E

�
max

�
Vn
�
�0
�
; Vb
�
�0
�	�

dt+ e�rdt (1� �dt)Vn (�) :

We can rewrite Vb (�) by

Vb (�) = �cdt+ �E
�
max

�
Vn
�
�0
�
; Vb
�
�0
�	�

dt+ e�rdt (1� �dt)Vb (�)

+�dt�

Z �

0
S (�; x)�s (x) dx:

Taking di¤erence term by term.

bVN (�)� Vb (�) = cdt� �dt�
Z �

0
S (�; x)�s (x) dx: (93)

The non-owner is tempted to make such a deviation if it is pro�table, i.e., bVN (�) > Vb (�).

Note that
R �
0 S (�; x)�s (x) dx is increasing in � as its �rst-order derivative is given by

@

@�

Z �

0
S (�; x)�s (x) dx = S (�;�)�s (�) +

Z �

0

@S (�; x)

@�
�s (x) dx

=

Z �

0

@S (�; x)

@�
�s (x) dx > 0

because S (�;�) = 0 and @S(�;x)
@� > 0 for � > x. This impliesZ �

0
S (�; x)�s (x) dx >

Z �b

0
S (�b; x)�s (x) dx (94)

for � > �b. Note that we have the following equation

Vb (�b) = Vn �
c

�+ r
+

��

�+ r

Z �b

0
S (�b; x)�s (x) dx:

Since Vb (�b) = Vn, the above equation implies

c = ��

Z �b

0
S (�b; x)�s (x) dx; (95)

which is actually another version of equation (86). It follows directly from (94) and (95) that

c < ��

Z �

0
S (�; x)�s (x) dx:

This means that the RHS of (93) is negative. However, the LHS of (93) is assumed to be positive.
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This presents a contradiction. Therefore, a non-owner of type � 2 [�b;�s] has no incentivce to

make such a deviation.

����������������������������

The underlying parameters of the economy include �;X;N and F (�) on
�
0;�

�
.

Proposition X. Suppose the equilibrium described in Theorem 1 exists given the parameter

space, i.e., c < c�. There exists � > 0 such that the equilibrium exists when � increases from �

to in�nity.

Proof:

Step 1. We compare �b and �w. Recall that �b is uniquely determined by (85). We have

shown that the RHS of this equation is strictly increasing in �b, so

�b T �w i¤ c T RHS of (85)j�b=�w

=
���X

R �w
0 F (x) dx

[�+ �B (�w)] [�+ r + � (1� �)B (�w)]

=
�

1� �
�X

R �w
0 F (x) dx

�X
�
1� X

N

�
+ �+r

2(1��)

�
�
� +

q�
�
�

�2
+ 4��X

�
1� X

N

�� � cb (�) : (96)

Note that cb (�) is strictly increasing in �, so it can be bounded by

0 = cb (0) < cb (�) < cb (1) = lim
�!1

cb (�) =
�

1� �

Z �w

0

F (x)

F (�w)
dx:

Step 2. We compare �s and �w. Recall that �s is uniquely determined by (86). We have

shown that the RHS of this equation is strictly decreasing in �s, so

�s T �w i¤ c S RHS of (86)j�s=�w

=
� (1� �)� (N �X)

R �
�w
[1� F (x)] dx

[�+ �S (�w)] [�+ r + ��S (�w)]

=
1� �
�

� (N �X)
R �
�w
[1� F (x)] dx

�X
�
1� X

N

�
+ �+r

2�

�
�
� +

q�
�
�

�2
+ 4�X�

�
1� X

N

�� � cs (�) : (97)
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Note that cs (�) is strictly increasing in �, so it can be bounded by

0 = cs (0) < cs (�) < cs (1) = lim
�!1

cs (�) =
1� �
�

Z �

�w

1� F (x)
1� F (�w)

dx:

Recall that in equilibrium we should have �s > �b, so only the following 3 cases are possible:

(i) �s > �w > �b (when c < cs (�) ; c < cb (�)), (ii) �s > �b > �w (when cb (�) < c < cs (�))

and (iii) �w > �s > �b (when cs (�) < c < cb (�)). The case that �b > �w > �s (when

c > cs (�) ; c > cb (�)) should NOT emerge in equilibrium.

Step 3. We compare cb (�) and cs (�).

To economize the notation, we introduce � (�) as a decreasing function of �

� (�) =
�+ r

2�X
�
1� X

N

� "�
�
+

s��
�

�2
+ 4

�

�
X

�
1� X

N

�#
and thus rewrite cb (�) and cs (�) respectively by

cb (�) =
cb (1)
1 + �(�)

1��
;

cs (�) =
cs (1)
1 + �(�)

�

:

To compare cb (�) and cs (�), we notice

cb (�) > cs (�), cb (1)� cs (1) >
�
cs (1)
1� � � cb (1)

�

�
� (�) ;

and vice versa.

The comparative magnitude between cb (�) and cs (�) is determined as follows.

(C-i) If cb (1) > cs (1) and cb(1)
� > cs(1)

1�� , then cb (�) > cs (�) for any � > 0.

(C-ii) If cb (1) > cs (1) and cb(1)
� < cs(1)

1�� , then cb (�) > cs (�) when � > ��1
�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
and cb (�) < cs (�) otherwise.

(C-iii) If cb (1) < cs (1) and cb(1)
� < cs(1)

1�� , then cb (�) < cs (�) for any � > 0.

(C-iv) If cb (1) < cs (1) and cb(1)
� > cs(1)

1�� , then cb (�) < cs (�) when � > ��1
�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
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and cb (�) > cs (�) otherwise.

(C-v) If cb (1) = cs (1) and � = 1
2 , cb (�) = cs (�) for any � > 0.

(C-vi) If cb (1) = cs (1) and � > 1
2 , cb (�) < cs (�) for any � > 0.

(C-vii) If cb (1) = cs (1) and � < 1
2 , cb (�) > cs (�) for any � > 0.

Step 4. We now prove the main results. According to Theorem 1, the equilibrium exists

when c < c�, where c� is determined by db (c�) = ds (c
�). For a �xed c, we know db (c) = �b and

ds (c) = �s. We have the following two cases.

Case I. db (c�) = ds (c
�) > �w. Here, db (c�) > �w is equivalent to

c�
(a)
= RHS of (85)j�b=db(c�)

(b)
> RHS of (85)j�b=�w

(c)
= cb (�) ;

where (a) is by de�nition, (b) is because the RHS of (85) is strictly increasing �b and (c) is due

to (96). Similarly, ds (c�) > �w is equivalent to

c�
(a)
= RHS of (86)j�s=ds(c�)

(b)
< RHS of (86)j�s=�w

(c)
= cs (�) ;

where (a) is by de�nition, (b) is because the RHS of (86) is strictly decreasing �s and (c) is due

to (97). Hence, we have cb (�) < c� < cs (�) in this case.

At least, we have cs (�) > cb (�). According to the last part of Step 3, this holds when (I-a)

cs(1)
cb(1) > max

n
1; 1���

o
and any � > 0 or (I-b) � < 1

2 , 1 <
cs(1)
cb(1) <

1��
� and � > ��1

�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
.

For any constant c 2 (0; cb (1)), let �b (c) be such that c = cb (�b (c)). Since cb (�) is strictly

increasing in �, we know that c ? cb (�) when � 7 �b (c). The equilibrium exists when � increases

from �b (c) to in�nity in case of (I-a) because c = cb (�b (c)) < cb (�) < c�, or when � increases

from max

�
��1

�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
; �b (c)

�
to in�nity in case of (I-b) because of the same reason.

Case II. db (c�) = ds (c
�) < �w. Here, db (c�) < �w is equivalent to

c� = RHS of (85)j�b=db(c�) < RHS of (85)j�b=�w = cb (�) :
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Similarly, ds (c�) < �w is equivalent to

c� = RHS of (86)j�s=ds(c�) > RHS of (86)j�s=�w = cs (�) ;

Hence, we have cs (�) < c� < cb (�) in this case.

At least, we have cs (�) < cb (�). According to the last part of Step 3, this holds when (II-a)

cs(1)
cb(1) < min

n
1; 1���

o
or (II-b) � > 1

2 ,
1��
� < cs(1)

cb(1) < 1 and � > ��1
�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
.

For any constant c 2 (0; cs (1)), let �s (c) be such that c = cs (�s (c)). Since cs (�) is strictly

increasing in �, we know that c ? cs (�) when � 7 �s (c). The equilibrium exists when � increases

from �s (c) to in�nity in case of (II-a) because c = cs (�s (c)) < cs (�) < c�, or when � increases

from max

�
��1

�
cb(1)�cs(1)
cs(1)
1�� � cb(1)

�

�
; �s (c)

�
to in�nity in case of (II-b) because of the same reason.

Q.E.D.

9 Asymptotic Analysis for su¢ ciently large �

We perform asymptotic analysis when � is su¢ ciently large. Denote the limit of �b and �s under

�!1 by

�1b = lim
�!1

�b;�
1
s = lim

�!1
�s:

Step I. We �rst show �1b 6= 0. Let�s �rst suppose �1b = 0. Rewriting (85) by

(1� �) c
��X

=

R �b
0 F (x) dx

� [B (�b)]
2 +

�
�+ �+r

1��

�
B (�b) +

�(�+r)
(1��)�

: (98)

Now take �!1 on both sides. Since the LHS is a constant independent of � and the numerator

of the RHS tends to zero as we have assumed �b ! 0, it follows that the denominator of the RHS

should at least converge to zero, i.e.,

� [B (�b)]
2 +

�
�+

�+ r

1� �

�
B (�b) +

� (�+ r)

(1� �)� ! 0:

This implies lim�!1B (�b) = o
�
��1=2

�
. However, we already have the explicit expression of

B (�b) in hand, as is given by (57). It is direct to check that lim�!1;�b!0B (�b) = N �X. This

poses a contradiction, so �1b 6= 0.
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Similarly, we can show �1s 6= �. Suppose �1s = �. Rewriting (86) as

�c

(1� �)� (N �X) =
R �
�s
[1� F (x)] dx

� [S (�s)]
2 +

�
�+ �+r

�

�
S (�s) +

�(�+r)
��

: (99)

Now take �!1 on both sides. Since the LHS is a constant independent of � and the numerator

of the RHS tends to zero as we have assumed �s ! �, it follows that the denominator of the

RHS should at least converge to zero, i.e.,

� [S (�s)]
2 +

�
�+

�+ r

�

�
S (�s) +

� (�+ r)

��
! 0:

This implies lim�!1 S (�s) = o
�
��1=2

�
. However, we already have the explicit expression of

S (�b) in hand, as is given by (54). It is direct to check that lim�!1;�s!� S (�s) = X. This

poses a contradiction, so �1s 6= �.

Step II. We determine the asymptotic expansion of Nb and �b. Since �1b 6= 0, the numerator

of (98) converges to
R �1b
0 F (x) dx > 0, so its denominator should tend to a positive and �nite

limit. It has to be the case that B (�b) = O
�
��1=2

�
for su¢ ciently large � and (98) implies

B (�b) =
Mbp
�
+ o

�
��1=2

�
, where Mb =

s
��X

(1� �) c

Z �1b

0
F (x) dx:

Inserting this into (56) and keeping the constant terms, the terms of order O
�
��1=2

�
and O

�
��1

�
while omitting the terms of higher orders, we obtain

M2
b

�
+ [�N +X +NF (�b)]

Mbp
�
� �

�
(N �X) [1� F (�1b )] = 0:

Both the �rst and the last term are O
�
��1

�
, so the second term has to be O

�
��1

�
. This implies

that �1b = �w = F�1
�
N�X
N

�
and �b ��w = O

�
��1=2

�
. Setting �b = �w +

mbp
�
+ o

�
��1=2

�
and inserting this into the above equation, we obtain

mb =
1

Nf (�w)

"
�X

�
1� X

N

�
Mb

�Mb

#
:

Step III. We determine the asymptotic expansion of Ns and �s. Since �1s 6= �, the numer-

ator of (99) converges to
R �
�1s

[1� F (x)] dx > 0, so its denominator should tend to a positive and
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�nite limit. It has to be the case that S (�s) = O
�
��1=2

�
for su¢ ciently large � and (99) implies

S (�b) =
Msp
�
+ o

�
��1=2

�
, where Ms =

vuut� (1� �) (N �X)
�c

Z �

�1s

[1� F (x)] dx:

Inserting this into (53) and keeping the constant terms, the terms of order O
�
��1=2

�
and O

�
��1

�
while omitting the terms of higher orders, we obtain

M2
s

�
+ [N �X �NF (�s)]

Msp
�
� �X

�
F (�1s ) = 0:

Both the �rst and the last term are O
�
��1

�
, so the second term has to be O

�
��1

�
. This implies

that �1s = �w and �s��w = O
�
��1=2

�
. Setting �s = �w+ msp

�
+ o
�
��1=2

�
and inserting this

into the above equation, we obtain

ms =
1

Nf (�w)

"
Ms �

�X
�
1� X

N

�
Ms

#
:

To sum up, the asymptotic expansion of Nb, Ns, �b and �s are given by

Nb =
Mbp
�
+ o

�
��1=2

�
with Mb =

s
��X

(1� �) c

Z �w

0
F (x) dx;

Ns =
Msp
�
+ o

�
��1=2

�
with Ms =

s
� (1� �) (N �X)

�c

Z �

�w

[1� F (x)] dx;

�b = �w +
mbp
�
+ o

�
��1=2

�
with mb =

1

Nf (�w)

"
�X

�
1� X

N

�
Mb

�Mb

#
;

�s = �w +
msp
�
+ o

�
��1=2

�
with ms =

1

Nf (�w)

"
Ms �

�X
�
1� X

N

�
Ms

#
:

As a �nal step, we check whether �s > �b in the asymptotic case. This holds if ms > mb,

which can be shown as equivalent to

c < bc;
where

bc =
sZ �w

0

F (x)

F (�w)
dx

sZ �

�w

1� F (x)
1� F (�w)

dx: (100)
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Step IV. We show

bc = lim
�!1

c�: (101)

Recall that c� is constructed such that db (c�) = ds (c
�), where �b = db (c) and �s = ds (c) are

the solution of (86) and (85) respectively. Since both�b and�s converge to�w as �!1, we have

lim�!1 db (c
�) = lim�!1 ds (c

�) = �w. We already know Ns = O
�
��1=2

�
and Nb = O

�
��1=2

�
and expand db (c�) in a similar fashion, i.e.,

db (c
�) = �w +

m�p
�
+ o

�
1=
p
�
�
:

Set �s = ds (c
�) in (53) and �b = db (c

�) in (56). Expanding both sides of the two equations and

matching the coe¢ cients of the terms of 1� , we obtain

(Ms)
2 �Nf (�w)m�Ms = �X

�
1� X

N

�
;

(Mb)
2 +Nf (�w)m�Mb = �X

�
1� X

N

�
:

Using these two equations to eliminate m�, we have

(Ms)
2 � �X

�
1� X

N

�
(Mb)

2 � �X
�
1� X

N

� = �Ms

Mb
;

which can be further simpli�ed to

MbMs = �X

�
1� X

N

�
:

Note that now we have set search cost c at the critical level c� and have let �!1, so the above

equation holds only when c = lim�!1 c�. Substituting out the expression of Mb and Ms (don�t

forget to replace c by lim�!1 c� therein), we can show (101).

For further simpli�cation, let

bcs =

Z �

�w

1� F (x)
1� F (�w)

dx;

bcb =

Z �w

0

F (x)

F (�w)
dx:
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The asymptotic parameters can be rewritten as

Mb =

s
�X

�
1� X

N

�s
�

1� �
bcb
c
; (102)

Ms =

s
�X

�
1� X

N

�s
1� �
�

bcs
c
; (103)

mb =

q
�X

�
1� X

N

�
Nf (�w)

 r
1� �
�

cbcb �
s

�

1� �
bcb
c

!
; (104)

ms =

q
�X

�
1� X

N

�
Nf (�w)

 s
1� �
�

bcs
c
�
r

�

1� �
cbcs
!
; (105)

and

bc =pbcbbcs:
9.1 Proof of Proposition 1

According to Theorem 1 in the paper, we can write R (�) more explicitly as

R (�) =

8><>:
�X

�(N�X)+�NbN if � 2 [0;�b]
�s(�)
�b(�)

if � 2 (�b;�s)
�X+�NsN
�(N�X) if � 2

�
�s;�

� :

It is obvious to see that R (�) is constant on [0;�b) [
�
�s;�

�
.

We �rst show R0 (�) = d
d�

�
�s(�)
�b(�)

�
> 0 for � 2 (�b;�s). Recall that �s (�) and �b (�) are

mutually determined by (58) and (59), i.e.,

��s (�) = �Xf (�)� ��s (�) [Nb � Fb (�)] + ��b (�)Fs (�)

�s (�) + �b (�) = Nf (�) :

We have

�s (�) =
�X + �NFs (�)

�+ �Nb � �Fb (�) + �Fs (�)
f (�) ;

�b (�) =
� (N �X) + �NbN � �NFb (�)
�+ �Nb � �Fb (�) + �Fs (�)

f (�) ;

and therefore
�s (�)

�b (�)
=

�X + �NFs (�)

� (N �X) + �NbN � �NFb (�)
:
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Since both Mb (�) and Ms (�) are strictly increasing in �,
�s(�)
�b(�)

is strictly increasing in �.

We next show lim�!�b�R (�) < lim�!�b+R (�), where

lim
�!�b�

R (�) =
�X

� (N �X) + �NbN
;

lim
�!�b+

R (�) =
�s (�b)

�b (�b)
=

�X + �NFs (�b)

� (N �X) + �NbN
:

Since Fs (�b) > 0, we have the desired result.

We now show lim�!�s�R (�) < lim�!�s+R (�), where

lim
�!�s�

R (�) =
�s (�s)

�b (�s)
=

�X + �NNs
� (N �X) + �N [Nb � Fb (�s)]

;

lim
�!�s+

R (�) =
�X + �NsN

� (N �X) :

Since Fb (�s) < Nb, we have the desired result. Q.E.D.

10 Proof of Proposition 2

The negotiated price between a buyer of type x 2
�
�b;�

�
and a seller of type y 2 [0;�s), provided

that x > y, is given by

P (x; y) =

8>><>>:
� [Vs (y)� Vn] + (1� �) [Vs (x)� Vb (x)] for 0 � y < �b � x � �s
� [Vs (y)� Vb (y)] + (1� �) [Vs (x)� Vb (x)] for �b � y < x < �s
� [Vs (y)� Vn] + (1� �) [Vh (x)� Vb (x)] for 0 � y < �b;�s � x � �
� [Vs (y)� Vb (y)] + (1� �) [Vh (x)� Vb (x)] for �b � y < �s � x � �

: (106)

It is direct to show that @P (x;y)@x > 0 and @P (x;y)
@y > 0 in each region. More precisely,

@P (x; y)

@x
=

8>>><>>>:
(1� �) � (x) for 0 � y < �b � x � �s
(1� �) � (x) for �b � y < x < �s

1��
�+r+��Ns

for 0 � y < �b;�s � x � �
1��

�+r+��Ns
for �b � y < �s � x � �

and

@P (x; y)

@y
=

8>>><>>>:
�

�+r+�(1��)Nb for 0 � y < �b � x � �s
�� (y) for �b � y < x < �s

�
�+r+�(1��)Nb for 0 � y < �b;�s � x � �
�� (y) for �b � y < �s � x � �

;

where � (�) is given in (77). Q.E.D.
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11 Proof of Proposition 3

We derive the trading volumes between investors in each case.

TVcd is the total number of units of the asset being traded between true sellers with types

y 2 [0;�b] and intermediation buyers with types x 2 [�b;�s]. The density of sellers is given by

�s (x) =
dFs
dy (y) and the density of intermediation buyers is given by �b (x) =

dFb
dy (x). Since any

such pair of buyer and seller would like to trade in a bilateral meeting, we have

TVcd = �

Z �b

y=0

Z �s

x=�b

�b (x)�s (y) dxdy = �

�Z �b

0

dFs
dy

(y) dy

��Z �s

�b

dFb
dy

(x) dx

�
= �Fs (�b)Fb (�s) ; (107)

where we use Fb (�b) = 0 in the last step since the type of all buyers are no less than �b.

TVdd is the total number of units of the asset being traded between intermediation sellers with

types y 2 [�b;�s] and intermediation buyers with types x 2 [�b;�s]. Note that trade occurs if

and only if x > y.

TVdd = �

Z �s

y=�b

Z �s

x=�b

�b (x)�s (y)1(x>y)dxdy;

where 1(x>y) is an indicator function which takes one if x > y and takes zero otherwise. For

further simpli�cation, we reduce the multiple integral to an iterated integral as follows

TVdd = �

Z �s

�b

�b (x)

�Z x

�b

�s (y) dy

�
dx = �

Z �s

�b

[Fs (y)� Fs (�b)] dFb (y) : (108)

To compute this integral, we have to simplify the integrand. We can rewrite (63) by

Fs (y)� Fs (�b) =
�X [F (y)� F (�b)] + �Fb (y)Fs (�b)

�+ � [Nb � Fb (y)]
: (109)

Using this to substitute out term Fs (y)�Fs (�b) on the LHS of (65) and rearranging, we can

express [F (y)� F (�b)] as a function of Fb (y)

F (y)� F (�b) = Fb (y)
�
� + [Nb � Fb (y)] + Fs (�b)
�(N�X)

� + [Nb � Fb (y)]N
:

Inserting this back into (109) and rearranging, we are able to rewrite the integrand in (108) by

Fs (y)� Fs (�b) =
�X
�N + Fs (�b)

�(N�X)
�N +Nb � Fb (y)

Fb (y) :
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Hence,

TVdd = �

�
�X

�N
+ Fs (�b)

� Z �s

�b

Fb (y) dFb (y)
�(N�X)
�N +Nb � Fb (y)

=

�
�X

N
+ �Fs (�b)

� Z Fb(�s)

0

z
�(N�X)
�N +Nb � z

dz;

where the lower bound of the integral is Fb (�b) = 0.

Note thatZ t

0

z

q � z dz = [�q ln (q � z)� z]jz=tz=0 = q ln
q

q � t � t (assuming q > t).

Let q = �(N�X)
�N +Nb and t = Fb (�s) (where q > Nb > t holds), soZ Fb(�s)

0

z
�(N�X)
�N +Nb � z

dz =

�
� (N �X)

�N
+Nb

�
ln

�(N�X)
�N +Nb

�(N�X)
�N +Nb � Fb (�s)

� Fb (�s) :

Hence,

TVdd =
�
�X

N
+ �Fs (�b)

�"�
� (N �X)

�N
+Nb

�
ln

�(N�X)
�N +Nb

�(N�X)
�N +Nb � Fb (�s)

� Fb (�s)
#
; (110)

For further simpli�cation, we insert the following expressions

Fs (�b) =
�XF (�b)

�+ �Nb
;

F (�w) =
N �X
N

;

into the above expression and obtain

TVdd =
�
�X

N
+
��XF (�b)

�+ �Nb

�"�
Nb +

�F (�w)

�

�
ln

�F (�w)
� +Nb

�F (�w)
� +Nb � Fb (�s)

� Fb (�s)
#
: (111)

TVcc is the total number of units of the asset being traded between true sellers with types

y 2 [0;�b] and true buyers with types x 2
�
�s;�

�
. Since any such pair of buyer and seller would

like to trade in a bilateral meeting, we have

TVcc = �

Z �b

y=0

Z �

x=�s

�b (x)�s (y) dxdy = �

�Z �b

0

dFs
dy

(y) dy

� Z �

�s

dFb
dy

(x) dx

!
= �Fs (�b) [Nb � Fb (�s)] : (112)
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TVdc is the total number of units of the asset being traded between intermediation sellers with

types y 2 [�b;�s] and true buyers with types x 2
�
�s;�

�
. Since any such pair of buyer and

seller would like to trade in a bilateral meeting, we have

TVdc = �

Z �s

y=�b

Z �

x=�s

�b (x)�s (y) dxdy = �

�Z �s

�b

dFs
dy

(y) dy

� Z �

�s

dFb
dy

(x) dx

!
= � [Ns � Fs (�b)] [Nb � Fb (�s)] ; (113)

where we use Fs (�s) = Ns in the last step because the type of all sellers are no more than �s.

12 Proof of Proposition 4

Recall that if c < c�, we have �b = db (c) and �s = ds (c), where db (c) is implicitly de�ned by

equation (85) and ds (c) is implicitly de�ned by equation (86). Since db (c) is increasing, we know

d�b
dc

= d0b (c) > 0:

Since ds (c) is decreasing, we know
d�s
dc

= d0s (c) < 0:

In equilibrium, Nb = B (�b) is given by (57) and Ns = S (�s) is given by (54), where B (�) is

decreasing while S (�) is increasing. We thus have

dNb
dc

= B0 (db (c)) d
0
b (c) < 0;

dNs
dc

= S0 (ds (c)) d
0
s (c) < 0:

The measure of true buyers, denoted by NT
b , is given by

NT
b =

Z �

�s

�b (�) d� =

Z �

�s

� (N �X)
�+ �Ns

f (�) d� =
� (N �X)
�+ �Ns

[1� F (�s)] :

The measure of intermediation buyers, namely, those non-owners whose types are in the interval

[�b;�s], is given by

N I
b = Nb �NT

b = Nb �
� (N �X)
�+ �Ns

[1� F (�s)] :
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NT
b is increasing in c because

dNT
b

dc
= ��� (N �X)

(�+ �Ns)
2 [1� F (�s)] �

dNs
dc|{z}
<0

� � (N �X)
�+ �Ns

f (�s) �
d�s
dc|{z}
<0

> 0:

N I
b is decreasing in c because

dN I
b

dc
=
dNb
dc|{z}
<0

� dNT
b

dc| {z }
>0

< 0:

The measure of true sellers, denoted by NT
s , is given by

NT
s =

Z �b

0
�s (�) d� =

Z �b

0

�X

�+ �Nb
f (�) d� =

�X

�+ �Nb
F (�b) :

The measure of intermediation sellers, namely, those owners whose types are in the interval

[�b;�s], is given by

N I
s = Ns �NT

s = Ns �
�X

�+ �Nb
F (�b) :

NT
s is increasing in c since

dNT
s

dc
= � �X

(�+ �Nb)
2�F (�b) �

dNb
dc|{z}
<0

+
�X

�+ �Nb
f (�b) �

d�b
dc|{z}
>0

> 0

N I
s is decreasing in c since

dN I
s

dc
=
dNs
dc|{z}
<0

� dNT
s

dc| {z }
>0

< 0:

13 Proof of Proposition 5

Denote the total trading volume by true traders by

TVT = TVcc +
TVcd + TVdc

2
:

According to Proposition 4, we know

TVcd = �Fs (�b)Fb (�s) ;

TVcc = �Fs (�b) [Nb � Fb (�s)] ;

TVdc = � [Ns � Fs (�b)] [Nb � Fb (�s)] ;
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so

TVT =
�Nb
2
Fs (�b) +

�Ns
2
[Nb � Fb (�s)] : (114)

For further simpli�cation, we need to substitute Fs (�b) and Fb (�s) out. To pin down the value

of Fs (�b), we use (64):

Fs (�b) =
�X

�+ �Nb
F (�b) ;

where we can �gure F (�b) out from (55)

F (�b) =
(N �X �Nb) (�+ �Nb)
� (N �X) + �NNb

:

Combining these together, we obtain

Fs (�b) =
�X (N �X �Nb)
� (N �X) + �NNb

: (115)

To pin down the value of Fb (�s), we notice that �b (�) =
�(N�X)
�+�Ns

f (�) for � 2
�
�s;�

�
.

Integrating from �s to �, we have

Nb � Fb (�s) =
Z �

�s

�b (�) d� =
� (N �X)
�+ �Ns

[1� F (�s)] :

Furthermore, [1� F (�s)] is determined by (52):

1� F (�s) =
(X �Ns) (�+ �Ns)

�X + �NNs
:

Combining these together, we obtain

Fb (�s) = Nb �
� (N �X) (X �Ns)

�X + �NNs
: (116)

Substituting (115) and (116) into (114) and rearranging, we obtain

TVT =
��X

2

Nb (N �X �Nb)
� (N �X) + �NNb

+
�� (N �X)

2

Ns (X �Ns)
�X + �NNs

: (117)

Denote the total trading volume by intermediaries by

TVI = TVdd +
TVcd + TVdc

2
:
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The total trading volume is the sum of all trading volumes, denoted by

TV� =
X

j2fcc;cd;dc;ddg
TVj = TVT + TVI :

According to Proposition 4, we can calculate

TV� = �Ns [Nb � Fb (�s)]�
�X

N
Fb (�s)

+

�
�X

N
+ �Fs (�b)

��
� (N �X)

�N
+Nb

�
ln

�(N�X)
�N +Nb

�(N�X)
�N +Nb � Fb (�s)

= �

�
1� X

N

�
(X �Ns)�

�X

N
Nb + �X

�
1� X

N

��
1 +

�

�N

�
ln

"
�
�
1� X

N

�
+ �Nb

�X
�
1� X

N

� �X + �NNs
�+ �N

#
;(118)

where we use the expression of TVdd in (110) to calculate the �rst line and then substitute Fs (�b)

given by (115) and Fb (�s) given by (116) out to obtain the second line.

Since

L =
TVI
TVT

=
TV�
TVT

� 1;

we have
dL

dc
=

d

dc

�
TV�
TVT

�
=

@

@Nb

�
TV�
TVT

�
dNb
dc

+
@

@Ns

�
TV�
TVT

�
dNs
dc

;

where

@

@Nb

�
TV�
TVT

�
=

TVT @TV�@Nb
� (TV�) @TVT@Nb

(TVT )2

=
TV�
(TVT )2

@TV�
@Nb

"
TVT
TV�

�
@TVT
@Nb
@TV�
@Nb

#
(119)

and
@

@Ns

�
TV�
TVT

�
=

TV�
(TVT )2

@TV�
@Ns

"
TVT
TV�

�
@TVT
@Ns
@TV�
@Ns

#
: (120)

We already know dNb
dc < 0 and dNs

dc < 0, so now we show

@

@Nb

�
TV�
TVT

�
> 0;

@

@Ns

�
TV�
TVT

�
> 0:

Step I. We �rst calculate @TV�
@Nb

and @TV�
@Ns

. Using (118), we �nd

@TV�
@Nb

=
�X

N

N �X �Nb
Nb +

�
�

�
1� X

N

� > 0; (121)

@TV�
@Ns

= �

�
1� X

N

�
X �Ns
Ns +

�X
�N

> 0: (122)
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Turning back to (119) and (120), we know

@

@Nb

�
TV�
TVT

�
/ TVT

TV�
�

@TVT
@Nb
@TV�
@Nb

;

@

@Ns

�
TV�
TVT

�
/ TVT

TV�
�

@TVT
@Ns
@TV�
@Ns

:

Step II. Recall that TVT is given by (117). The total trading volume is strictly less than the

total measure of meetings (�NbNs) because not every meeting results in a trade, i.e.,

TV� < �NbNs:

Hence,
TVT
TV�

>
TVT
�NsNb

=
�X

2Ns

(N �X �Nb)
� (N �X) + �NbN

+
� (N �X)
2Nb

(X �Ns)
�X + �NsN

:

Step III. Combining

@TVT
@Nb

=
��X

2

� (N �X) (N �X � 2Nb)� � (Nb)2N
[� (N �X) + �NbN ]2

;

@TVT
@Ns

=
�� (N �X)

2

�X (X � 2s)� � (Ns)2N
(�X + �NsN)

2 ;

with @TV�
@Nb

and @TV�
@Ns

in (121) and (122), we know

@TVT
@Nb
@TV�
@Nb

=
1

2

� (N �X) (N �X � 2Nb)� � (Nb)2N
(N �X �Nb) [� (N �X) + �NbN ]

;

@TVT
@Ns
@TV�
@Ns

=
1

2

�X (X � 2Ns)� � (Ns)2N
(�X + �NsN) (X �Ns)

:

It is direct to show that

TVT
TV�

�
@TVT
@b

@TV�
@b

>
TVT
�NsNb

�
@TVT
@Nb
@TV�
@Nb

> 0;

because

TVT
�NsNb

�
@TVT
@Nb
@TV�
@Nb

=
�X

2Ns

(N �X �Nb)
� (N �X) + �NbN

+
� (N �X)
2Nb

(X �Ns)
�X + �NsN

� 1
2

� (N �X) (N �X � 2Nb)� � (Nb)2N
(N �X �Nb) [� (N �X) + �NbN ]

=
1

2

�X
Ns
(N �X �Nb)� � (N �X) +Nb

h
�+ (�+�N)Nb

(N�X�Nb)

i
� (N �X) + �NbN

+
� (N �X)
2Nb

(X �Ns)
�X + �NsN

;
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where the last line is obtained by combining the �rst and the last term in the second line. The

numerator of the �rst term is strictly positive as it can be rearranged as

� (N �X) X
Ns

� �Nb
X

Ns
� � (N �X) +Nb

�
�+

(�+ �N)Nb
N �X �Nb

�
= � (N �X �Nb)

X �Ns
Ns

+
(�+ �N) (Nb)

2

N �X �Nb
> 0:

Similarly, we can show

TVT
TV�

�
@TVT
@Ns
@TV�
@Ns

>
TVT
�NsNb

�
@TVT
@Ns
@TV�
@Ns

> 0;

because

TVT
�NsNb

�
@TVT
@Ns
@TV�
@Ns

=
�X

2Ns

(N �X �Nb)
� (N �X) + �NbN

+
� (N �X)
2Nb

(X �Ns)
�X + �NsN

� 1
2

�X (X � 2Ns)� � (Ns)2N
(�X + �NsN) (X �Ns)

=
�X

2Ns

(N �X �Nb)
� (N �X) + �NbN

+
1

2

� (X �Ns) N�XNb � �X +
h
�+ (�+�N)Ns

X�Ns

i
Ns

�X + �NsN
;

where the last line is obtained by combining the �rst and the last term in the second line. The

numerator of the second term is strictly positive as it can be rearranged as

� (X �Ns)
N �X
Nb

� � (X �Ns) +
(�+ �N) (Ns)

2

X �Ns

= � (X �Ns)
N �X �Nb

Nb
+
(�+ �N) (Ns)

2

X �Ns
> 0:

So far we have shown

TVT
TV�

�
@TVT
@Nb
@TV�
@Nb

> 0, @

@Nb

�
TV�
TVT

�
> 0;

TVT
TV�

�
@TVT
@c

@TV�
@c

> 0, @

@c

�
TV�
TVT

�
> 0:

It follows that d
dc
TVI
TVT < 0. Q.E.D.

14 Proof of Proposition 6

We set c = 0. We need to pin down �b and �s in this case.
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We �rst show �b = 0. The LHS of (85) is zero, so is its RHS. Observe that the denominator

of the RHS is always strictly positive since 0 � B (�b) � N � X for any �b 2
�
0;�

�
, so the

numerator of the RHS must be zero, which leads to �b = 0.

Similarly, we can show that �s = � by taking c = 0 in (86).

With these in hand, we are able to determine the total measure of sellers and buyers in this

case

Nb = B (0) = N �X;

Ns = S
�
�
�
= X:

The 4 types of trading volumes in this limit are given by

lim
c!0

TVcc = lim
c!0

TVcd = lim
c!0

TVdc = 0;

lim
c!0

TVdd = �X

�
1� X

N

���
1 +

�

�N

�
ln

�
1 +

�N

�

�
� 1
�
:

Therefore, L!1 when c! 0.

To have a deep understanding, we conduct asymptotic analysis when c is close to zero. With

no loss of generality, we set

�s = �� �s (c) + o (�s (c)) with lim
c!0

�s (c) = 0;

�b = �b (c) + o (�b (c)) with lim
c!0

�b (c) = 0:

Since Nb = B (�b), we have

Nb = B (0) +
dB (�b)

d�b

����
�b=0

� �b (c) + o (�b (c))

= N �X �
(N �X)

�
N + �

�

�
f (0)

N �X + �
�

�b (c) + o (�b (c)) :

We also know Z �b

0
F (x) dx =

f (0) �2b (c)

2
+ o

�
�2b (c)

�
;

because

lim
c!0

R �b
0 F (x) dx

(�b)
2 = lim

c!0

F (�b)
d�b
dc

2�b
d�b
dc

= lim
c!0

f (�b)
d�b
dc

2d�bdc
=
f (0)

2
:
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Substituting these into (85),

c =
��X

f(0)�2b(c)
2

� (1� �)
�
�
� +N �X

� h
�+r
�(1��) +N �X

i :
so we �nd

�b (c) =

s
2� (1� �)
��Xf (0)

��
�
+N �X

�� �+ r

� (1� �) +N �X
�
c:

Similarly, from Ns = S (�s) we know

Ns = S
�
�
�
� dS (�s)

d�s

����
�s=�

� �s (c) + o (�s (c))

= X �
X
�
N + �

�

�
f
�
�
�

X + �
�

�s (c) + o (�s (c)) :

We also know Z �

�s

[1� F (x)] dx =
f
�
�
�
�2s (c)

2
+ o

�
�2s (c)

�
;

because

lim
c!0

R �
�s
[1� F (x)] dx�
���s

�2 = lim
c!0

[�1 + F (�s)] d�sdc
�2
�
���s

�
d�s
dc

= lim
c!0

�f (�s) d�sdc
�2d�sdc

=
f
�
�
�

2
:

Substituting these into (86),

c =
(1� �)� (N �X) f(�)�

2
s(c)

2

��
�
�
� +X

� �
�+r
�� +X

� ;

so we �nd

�s (c) =

vuut2��
�
�
� +X

� �
�+r
�� +X

�
(1� �)� (N �X) f

�
�
� c:

To conclude, when c is close to zero, we have

���s = O
�p
c
�
;

�b = O
�p
c
�
;

N �X �Nb = O
�p
c
�
;

X �Ns = O
�p
c
�
:
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15 Proof of Proposition 7

When � is su¢ ciently large, we have the following asymptotic expansion of the length of the

intermediation chain

L =
TVI
TVT

= ln
bc
c
+

p
�p
�
�

��
1 +

cbc� ln bcc + 3cbc � 1
�
; (123)

where � is a positive constant and is given by

� =
1

2

1p
� (�� 1)X

s
�

(1� �) c

Z �w

�

F (y)

F (�w)
dy +

1

2

s
�� 1
�X

s
1� �
�c

Z �

�w

1� F (x)
1� F (�w)

dx

and � = N=X > 1.

Now we show that the expression in the bracket is negative for c 2 (0;bc). Let
g (x) = (1 + x) lnx� 3x+ 1, for x 2 [0; 1) .

Then,

L = ln
bc
c
�
p
�p
�
�g
�cbc� :

First notice some values at boundary: g (0) = �1, g (1) = �2. Next, its �rst and second-order

derivative are given by

g0 (x) =
1

x
+ lnx� 2,

g00 (x) = � 1

x2
+
1

x
= �1� x

x2
< 0, for x 2 [0; 1) .

Now we show g0 (0) = +1. For this, �rst notice the following limit:

lim
x!0

x lnx = lim
x!0

lnx
1
x

= lim
x!0

1
x

� 1
x2

= lim
x!0

(�x) = 0;

where we have used l�Hospital rule. We thus have

g0 (0) = lim
x!0

1 + x lnx

x
� 2 = lim

x!0

1

x
� 2 = +1.

From g00 (x) < 0, g0 (0) = +1 and g0 (1) = �1, we know there exists a unique x1 2
�
0; 12
�
such

that g0 (x) ? 0 i¤ x 7 x1. (We know x1 <
1
2 because g

0 (x1) = 0) lnx1 = 2� 1
x1
< 0) x1 <

1
2 .)
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This implies that g (x) is increasing in x when 0 < x < x1 and decreasing in x when x1 < x < 1.

g (x) attains its global maximum at x = x1. g (x) � g (x1) < 0 because

g (x1) = (1 + x1) lnx1 � 3x1 + 1 = (1 + x1)
�
2� 1

x1

�
� 3x1 + 1

= 2�
�
x1 +

1

x1

�
< 0:

So far, we know g
�
cbc� < 0, so

dL

d�
=

p
�

2�
p
�
�g
�cbc� < 0;

that is, the length of the �nancial intermediation chain is decreasing in � when � is su¢ ciently

large.

16 Proof of Proposition 8 and 9

When � is su¢ ciently large, the distance between �s and �b can be approximated by

�s ��b =
ms �mbp

�
+ o

�
1p
�

�
:

Here, ms �mb is given by

ms �mb =
1� cbc

�
p
Xf (�w)

24s ��

(1� �) c

Z �w

0
F (x) dx+

s
� (1� �)

�c
(�� 1)

Z �

�w

[1� F (x)] dx

35 ;
where � = N=X > 1 and c�1 is given by (100). Note that c�1 is independent of X or N when �

is �xed. Since @(ms�mb)
@X < 0, we know

@ (�s ��b)
@X

< 0:

Since (ms �mb) is directly proportional to
p
�, we have

@ (�s ��b)
@�

> 0:

When � is su¢ ciently large, the asymptotic expansion of L is given by (123). When � = N=X

is �xed, we �nd
@L

@X
= �

p
�p
�
g
�cbc� @�@X < 0;
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because g
�
cbc� < 0 and @�

@X < 0.

Since L is directly proportional to
p
�, we have

@L

@�
> 0:

17 Proof of Proposition 10

According to Proposition 2, the negotiated price, P (x; y), is strictly increasing in the type of

buyer (x) and seller (y). The maximum and minimum prices among all prices are given by

Pmax = P
�
�;�s

�
= � [Vs (�s)� Vb (�s)] + (1� �)

�
Vh
�
�
�
� Vb

�
�
��
;

Pmin = P (�b;�) = � [Vs (0)� Vn] + (1� �) [Vs (�b)� Vb (�b)] :

Hence,

D � Pmax � Pmin =
��b

�+ r + � (1� �)Nb
+

Z �s

�b

� (z) dz +
(1� �)

�
���s

�
�+ r + ��Ns

: (124)

When � is su¢ ciently large, we study the asymptotic expansion of price dispersion. Since

Nb = O
�
��1=2

�
and Ns = O

�
��1=2

�
, we know that the �rst and the last term in (124) are

O
�
��1=2

�
. The following lemma claims that the second term in (124) is o

�
��1=2

�
. Given this,

the asymptotic expansion of the price dispersion is given by

D =
1p
�

"
��w

(1� �)Mb
+
(1� �)

�
���w

�
�Ms

#
+ o

�
1p
�

�
: (125)

Since the coe¢ cient of term ��1=2 is positive, we have

@D

@�
< 0:

Lemma X. When � is su¢ ciently large, we haveZ �s

�b

� (z) dz = O
�
��1

�
:

Proof of Lemma X: The integral can be bounded by

(�s ��b) � min
z2[�b;�s]

� (z) �
Z �s

�b

� (z) dz � (�s ��b) � max
z2[�b;�s]

� (z) : (126)
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Let us �rst check the value of � (z) at z = �b and �s:

� (�b) =
1

�+ r + � (1� �)Nb + �� �X
�+�Nb

F (�b)
;

� (�s) =
1

�+ r + � (1� �) �(N�X)�+�Ns
[1� F (�s)] + ��Ns

:

When � is su¢ ciently large, the asymptotic expansion of � (�b) and � (�s) are given by

� (�b) =
1p
�

1

(1� �)Mb + �
�X(1�X

N )
Mb

+ o

�
1p
�

�
; (127)

� (�s) =
1p
�

1

(1� �) �X(1�
X
N )

Ms
+ �Ms

+ o

�
1p
�

�
: (128)

To evaluate the maximum and minimum of � (z) on [�b;�s], we need �rstly know the derivative

of � (z). From
1

� (z)
= �+ r + � (1� �) [Nb � Fb (z)] + ��Fs (z) ;

we �nd

� 1
�

�0 (z)

�2 (z)
= � (1� �)�b (z) + ��s (z)

=
Nf (z)

2

242� � 1� N �NF (z)�X � �
�q�

N �NF (z)�X � �
�

�2
+ 4�� (N �X) [1� F (z)]

35 :(129)
Case 1. When � = 1

2 , we immediately know

sgn
�
�0 (z)

�
= sgn

h
N �NF (z)�X � �

�

i
:

If we de�ne �0 by

F (�0) = 1�
X

N
� �

�N
; (130)

then

sgn
�
�0 (z)

�
= sgn (�0 � z) , i.e., �0 (z)

8<:
> 0, when z < �0
= 0, when z = �0
< 0, when z > �0

:

Note that �0 does not necessarily lie in the interval [�b;�s]. All of the following three cases

are possible: �0 < �b, �b � �0 � �s or �0 > �s, even for � su¢ ciently large. To see this, the
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asymptotic expansion of �0 is given by

�0 = �w �
�

�Nf (�w)
+ o

�
1

�

�
:

Since �b ��w = O
�
��1=2

�
and �s ��w = O

�
��1=2

�
, �0 is closer to �w than �b and �s.

If �0 < �b, then �0 (z) < 0 on [�b;�s] and thus maxz2[�b;�s] � (z) = � (�b) = O
�
��1=2

�
and

minz2[�b;�s] � (z) = � (�s) = O
�
��1=2

�
.

If �0 > �s, then �0 (z) > 0 on [�b;�s] and thus maxz2[�b;�s] � (z) = � (�s) = O
�
��1=2

�
and

minz2[�b;�s] � (z) = � (�b) = O
�
��1=2

�
.

If �b � �0 � �s, then �0 (z) ? 0 whenever z 7 �0. This implies that maxz2[�b;�s] � (z) =

� (�0) and minz2[�b;�s] � (z) = min f� (�b) ; � (�s)g = O
�
��1=2

�
. We need to determine the

magnitude of � (�0), which is given by

� (�0) =
1

�+ r + � (1� �) [Nb � Fb (�0)] + ��Fs (�0)
: (131)

For further simpli�cation, we notice that

Nb � Fb (z) =
N

2

s
[F (�0)� F (z)]2 + 4

�

�N

�
1� X

N

�
[1� F (z)] + N

2
[F (�w)� F (z)]�

�

2�
;

Fs (z) =
N

2

s
[F (�0)� F (z)]2 + 4

�

�N

�
1� X

N

�
[1� F (z)]� N

2
[F (�w)� F (z)]�

�

2�
:

Therefore,

� [Nb � Fb (�0)] =

s
��X

�
1� X

N

�
+ �2

�
1� X

N

�
;

�Fs (�0) =

s
��X

�
1� X

N

�
+ �2

�
1� X

N

�
� �:

Plugging these back into (131) and rearranging, we obtain

� (�0) =
1

(1� �)�+ r +
q
��X

�
1� X

N

�
+ �2

�
1� X

N

�
= O

�
��1=2

�
:

So far, we have shown that maxz2[�b;�s] � (z) = O
�
��1=2

�
when � = 1

2 . Turning back to
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(126), since �s��b = O
�
��1=2

�
, we know that both of the upper and lower bound in (126) are

O
�
��1

�
.

Case 2. Now we discuss the case of � 6= 1
2 .

Let�s study the following equation of z:

2� � 1 =
N �NF (z)�X � �

�q�
N �NF (z)�X � �

�

�2
+ 4�� (N �X) [1� F (z)]

: (132)

Denote its solution on
�
0;�

�
by �� (if it exists). If � > 1

2 , we should have �� < �0. If � <
1
2 , we

should have �� > �0. 5

5Consider the following quadratic equation:

l� (z) = z
2 +A�z +B� = 0;

where

A� =
(2� � 1)2

� (1� �)
�

�N

�
1� X

N

�
� 2

�
1� X

N
� �

�N

�
;

B� =

�
1� X

N
� �

�N

�2
� (2� � 1)2

� (1� �)
�

�N

�
1� X

N

�
:

This quadratic equation has two real roots, denoted by z1 and z2 respectively, such that 0 < z1 < F (�0) < z2 < 1.
For � is su¢ ciently large, we have

A� = �2
�
1� X

N

�
+O

�
��1

�
< 0;

B� =

�
1� X

N

�2
+O

�
��1

�
> 0:

The associated discriminant is strictly positive:

(A�)
2 � 4B� =

(2� � 1)2

� (1� �)
�

�N

�
1� X

N

��
(2� � 1)2

� (1� �)
�

�N

�
1� X

N

�
+ 4

�
X

N
+

�

�N

��
> 0;

so this quadratic must have two real roots. According to Vieta�s theorem, the product of these two real roots is
equal to B�.
The two roots are given by

z1 =
�A� �

q
(A�)

2 � 4B�
2

; z2 =
�A� +

q
(A�)

2 � 4B�
2

:

Due to A� < 0 < B�, we know 0 <
q
(A�)

2 � 4B� < �A�. The two roots can be ranked as z2 > z1 > 0.
Next, we �nd z2 < 1 because

z2 < 1,
q
(A�)

2 � 4B� < 2 +A� , 1 +A� +B� > 0;

which already holds because

1 +A� +B� =

�
X

N
+

�

�N

�2
> 0:
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The solution to equation (132) is unique and is given by

�� =

�
F�1 (z1) , if � > 1

2
F�1 (z2) , if � < 1

2

:

When � is su¢ ciently large,

�� =

8<: �w � m�p
�
+ o

�
��1=2

�
, if � > 1

2

�w +
m�p
�
+ o

�
��1=2

�
, if � < 1

2

;

where

m� =
1

Nf (�w)

s
�X

�
1� X

N

�
(2� � 1)2

� (1� �) > 0:

Note that �0 (��) = 0, so �� is the stationary point of function � (�) on
�
0;�

�
. However, ��

does not necessarily lie in the interval [�b;�s]. We do not need to explore in detail which point

is the exact maxima and minima of � (�) on [�b;�s]. According to Fermat�s theorem, we know

min
z2[�b;�s]

� (z) 2 f� (�s) ; � (�b) ; � (��)g ;

max
z2[�b;�s]

� (z) 2 f� (�s) ; � (�b) ; � (��)g :

We already know that � (�s) = O
�
��1=2

�
and � (�b) = O

�
��1=2

�
. Besides, it is easy to obtain

� (��) =
1p
�

1

2
q
�X

�
1� X

N

�
� (1� �)

+ o
�
��1=2

�
, either � >

1

2
or � <

1

2
.

This implies

min
z2[�b;�s]

� (z) = O
�
��1=2

�
; max
z2[�b;�s]

� (z) = O
�
��1=2

�
:

Turning back to (126), since �s��b = O
�
��1=2

�
, we know that both of the upper and lower

bound in (126) are O
�
��1

�
. This completes the proof.

Besides, z1 and z2 are located around F (�0) because:

l� (z)jz=F (�0)
= � (2� � 1)

2

� (1� �)
�

�N

�
1� X

N

��
X

N
+

�

�N

�
< 0:

Taken together, we know 0 < z1 < F (�0) < z2 < 1.
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18 Proof of Proposition 11

When � is su¢ ciently large, the price dispersion can be expanded as the following (see (125))

D =

p
cp
�

2664 �wq
�(1��)X

�

R �w
0 F (x) dx

+

�
���w

�r
��(N�X)
(1��)

R �
�w
[1� F (x)] dx

3775+ o� 1p
�

�
:

In this case, we have
@D

@c
> 0 when � is su¢ ciently large.

We consider another limit case when c is close to zero. The asymptotic behavior in this case

has been studied in detail in the proof of Proposition 6. Since ���s = O (
p
c) and �b = O (

p
c),

the �rst and the last term in (124) are both O (
p
c). We thus have

D =

Z �s

�b

� (z) dz +O
�p
c
�
:

We argue in the proof of Proposition 12 (see (136)) that

d

dc

�Z �s

�b

� (z) dz

�
< 0;

which holds for any c < c�. We therefore have

@D

@c
< 0 when c is close to zero.

19 Proof of Proposition 12

According to Proposition 2, the negotiated price, P (x; y), is strictly increasing in the type of

buyer (x) and seller (y). The maximum and minimum prices among the transactions between

intermediaries are given by

P dmax = P (�s;�s) = Vs (�s)� Vb (�s) ;

P dmin = P (�b;�b) = Vs (�b)� Vb (�b) :

Hence,

P dmax � P dmin =
Z �s

�b

� (z) dz;
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where � (�) is given by (77).

The price dispersion of all transaction in the market, (Pmax � Pmin), is already given by (124).

The price dispersion ratio is thus given by

DR =
1

1 +
��b

�+r+�(1��)Nb
+
(1��)(���s)
�+r+��NsR�s

�b
�(z)dz

: (133)

Part I. We aim to determine the sign of @DR@c . Firstly, recall that we show
@�b
@c > 0; @Nb@c < 0

in Proposition 5, so term ��b
�+r+�(1��)Nb is strictly increasing in c. Similarly, we know that term

(1��)(���s)
�+r+��Ns

is strictly increasing in c because @�s
@c < 0 and @Ns

@c < 0.

Next, we need to determine the sign of @
@c

R �s
�b

� (z) dz, namely,

@

@c

Z �s

�b

� (z) dz =

Z �s

�b

@� (z)

@c
dz + � (�s)

@�s
@c

� � (�b)
@�b
@c

: (134)

We show @�(z)
@c = 0 for any z 2 [�b;�s]. By de�nition, we know

1

� (z)
= �+ r + � (1� �) [Nb � Fb (z)] + ��Fs (z) ; (135)

where Fb (z) and Fs (z) are explicitly given by

Nb � Fb (z) =
1

2

rh
N �NF (z)�X � �

�

i2
+
4�

�
(N �X) [1� F (z)]

+
1

2

h
N �NF (z)�X � �

�

i
;

Fs (z) =
1

2

rh
N �NF (z)�X � �

�

i2
+
4�

�
(N �X) [1� F (z)]

�1
2

h
N �NF (z)�X � �

�

i
� �

�
:

Inserting these back into (135) and rearranging,

1

� (z)
=

�

2
+ r +

�

2

rh
N �X �NF (z)� �

�

i2
+
4�

�
(N �X) [1� F (z)]

+
�

2
(1� 2�) [N �X �NF (z)] :

c does not show up on the RHS, so c does not impact � (�) (but c does in�uence the domain of

� (�)).
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Turning back to (134), we know

@

@c

Z �s

�b

� (z) dz = � (�s)
@�s
@c

� � (�b)
@�b
@c

< 0; (136)

because � (�s) > 0; � (�b) > 0 and @�s
@c < 0 < @�b

@c .

All in all, we have shown that
�

��b
�+r+�(1��)Nb +

(1��)(���s)
�+r+��Ns

�
is strictly increasing in c andR �s

�b
� (z) dz is strictly decreasing in c. Therefore, the denominator of DR in (133) is strictly

increasing in c, so
@DR

@c
< 0:

Part II. We aim to determine the sign of @DR@� . In the proof of Proposition 3, we proveR �s
�b

� (z) dz = O
�
��1

�
(in Lemma X). We are thus able to determine the magnitude of price

dispersions:

Pmax � Pmin = O
�
��1=2

�
;

P dmax � P dmin = O
�
��1

�
:

Therefore,

DR =
O
�
��1

�
O
�
��1=2

� = O
�
��1=2

�
;

or equivalently, lim�!1
�p

�DR
�
is a positive constant. This implies that @DR@� < 0.

Part III. We aim to determine the sign of @DR
@� for � su¢ ciently large. The asymptotic

expansion of (Pmax � Pmin) is given by

Pmax � Pmin =
1p
�

"
��w

(1� �)Mb
+
(1� �)

�
���w

�
�Ms

#
+ o

�
��1=2

�

=
1p
�

�w
q

�
1��

cbcb + ����w�q1��
�

cbcsq
�X

�
1� X

N

� + o
�
��1=2

�
: (137)

It is obvious to see
@ (Pmax � Pmin)

@�
< 0: (138)
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Now we determine @
�
P dmax � P dmin

�
=@�, which is explicitly given by

@
�
P dmax � P dmin

�
@�

=
@

@�

�Z �s

�b

� (z) dz

�
=

Z �s

�b

@� (z)

@�
dz + � (�s)

@�s
@�

� � (�b)
@�b
@�

: (139)

We have to evaluate the magnitude of each term.

To estimate the �rst term in (139), we notice that the explicit expression of � (z) is already

given by (135), which can be slightly rewritten as

1

� (z)
=

�

2
+ r +

�N

2

r
[F (�w)� F (z)]2 +

2�

�N
[F (�w) + F (z)� 2F (�w)F (z)] +

� �

�N

�2
+
�N

2
(1� 2�) [F (�w)� F (z)] : (140)

Taking derivative wrt �,

� 1

[� (z)]2
@� (z)

@�
=
1

2
+
1

2

F (�w) [1� F (z)] + F (z) [1� F (�w)] + �
�Nq

[F (�w)� F (z)]2 + 2�
�N [F (�w) + F (z)� 2F (�w)F (z)] +

�
�
�N

�2 :
(141)

It is obvious to see that the RHS of (141) are strictly positive, so

@� (z)

@�
< 0;

and thus Z �s

�b

@� (z)

@�
dz < 0:

When � is su¢ ciently large, the second term on the RHS of (141) is O (1). It follows that

@� (z)

@�
= � [� (z)]2 �O (1) = O

�
��1

�
�O (1) = O

�
��1

�
;

because we have shown in Lemma X that � (z) = O
�
��1=2

�
for z 2 [�b;�s]. Then,Z �s

�b

@� (z)

@�
dz = O

�
��3=2

�
:

Now we evaluate the second and the last term in (139). The asymptotic expansion of � (�b)

171



and � (�s) are already given by (127) and (128), so

� (�s)
@�s
@�

� � (�b)
@�b
@�

=
1

�

1
2�(1��)�Nf(�w)

(c�)2�c2
cc�qbcbbcs + c

c� +
c�
c +

qbcsbcb
+ o

�
��1

�
: (142)

Since c < c�, we know the �rst term in (142) is strictly positive and therefore

� (�s)
@�s
@�

� � (�b)
@�b
@�

> 0:

So far, we obtain Z �s

�b

@� (z)

@�
dz = O

�
��3=2

�
;

� (�s)
@�s
@�

� � (�b)
@�b
@�

= O
�
��1

�
:

Putting together, we �nally know

@
�
P dmax � P dmin

�
@�

= � (�s)
@�s
@�

� � (�b)
@�b
@�

+ o
�
��1

�
> 0:

Taken this and (138) together, we obtain

@DR

@�
> 0:

Part IV. We aim to determine the sign of @DR@X (when keeping � = N=X constant) for �

su¢ ciently large.

To this end, we need at �rst place prove a variation of Lemma X.

Lemma X1. When � is su¢ ciently large and � = N=X is constant, we haveZ �s

�b

� (z) dz = O

�
1

�X

�
: (143)

We leave the proof of this lemma to the end of this part.

We are thus able to determine the magnitude of price dispersions when �xing � = N=X:

Pmax � Pmin = O

�
1p
�X

�
;

P dmax � P dmin = O

�
1

�X

�
:
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Therefore,

DR =
O
�
1
�X

�
O
�

1p
�X

� = O

�
1p
�X

�
;

or equivalently, lim�!1
�p

�XDR
�
is a positive constant independent of �X. This implies that

@DR
@X < 0.

Proof of Lemma X1: To show this result, we �rst claim that NbN ;
Ns
N ;�s and �b depends on �

or X only through their product �X, where � is not needed to be su¢ ciently large. We rewrite

(54) as

Ns
N
= �1

2

h �

�N
+ F (�w)� F (�s)

i
+
1

2

rh �

�N
+ F (�w)� F (�s)

i2
+ 4

�

�N
[1� F (�w)]F (�s):

It is direct to see that NsN can be written as a function of �N and �s, denoted by �s (�N;�s).

Furthermore, (86) can be rewritten as

c =
�N (1� �)�F (�w)

R �
�s
[1� F (x)] dx

[�+ �N�s (�N;�s)] [�+ r + ��N�s (�N;�s)]
:

Since �N shows up altogether on the RHS, this equation actually implies that �s is a function

of �N . Inserting back into Ns
N = �s (�N;�s), we know that NsN is a function of �N .

Similarly, we rewrite (57) as

Nb
N
=
1

2

h
F (�w)� F (�b)�

�

�N

i
+
1

2

rh
F (�w)� F (�b)�

�

�N

i2
+ 4

�

�N
F (�w) [1� F (�b)]:

It is direct to see that NbN can be written as a function of �N and �b, denoted by �b (�N;�b).

Furthermore, (85) can be rewritten as

c =
�N�� [1� F (�w)]

R �b
0 F (x) dx

[�+ �N�b (�N;�b)] [�+ r + (1� �)�N�b (�N;�b)]
:

Since �N shows up altogether on the RHS, this equation actually de�nes �b as a function of �N .

Plugging back into Nb
N = �b (�N;�b), we know that

Nb
N is a function of �N .

Observing (140), we know that � (z) is also a function of �N . We therefore conclude that
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integral
R �s
�b

� (z) dz is a function of �N , because both its integrand and its upper and lower

bound are functions of �N .

Following the same procedure in proving Lemma X, we end up with (143).

20 Proof of Proposition 13

The expected utility is given by

W =
1

N

"Z �

�b

Vb (�)�b (�) d�+

Z �b

0
Vn (�)�n (�) d�+

Z �s

0
Vs (�)�s (�) d�

+

Z �

�s

Vh (�)�h (�) d�

#
:

To simplify, we compute term by term. Firstly,Z �

�b

Vb (�)�b (�) d� = VnNb +

Z �s

�b

[Nb � Fb (�)] �b (�) d�+
��Ns

�+ r + ��Ns

� (N �X)
�+ �Ns

R �
�s
[1� F (�)] d�
�+ r

= VnNb +

Z �s

�b

[Nb � Fb (�)] �b (�) d�+
�

1� �
Nsc

�+ r
:

Secondly, Z �b

0
Vn (�)�n (�) d� = Vn (N �X �Nb) :

Thirdly,Z �s

0
Vs (�)�s (�) d� = Vs (�s)Ns �

�X

�+ �Nb

R �b
0 F (�) d�

�+ r + � (1� �)Nb
�
Z �s

�b

Fs (�) �s (�) d�

= Vs (�s)Ns �
c

��
�
Z �s

�b

Fs (�) �s (�) d�;

and fourthly,Z �

�s

Vh (�)�h (�) d� = (X �Ns)Vh (�s) +
�X + �NsN

�+ �Ns

R �
�s
[1� F (�)] d�
�+ r

:

Taken together, we obtain

W =
1

N

�
Vn (N �X) + Vs (�s)X +

Z �s

�b

[Nb � Fb (�)] �b (�) d�+
�

1� �
Nsc

�+ r
� c

��

�
Z �s

�b

Fs (�) �s (�) d�+
�X + �NsN

�+ �Ns

R �
�s
[1� F (�)] d�
�+ r

35 :
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Plugging the expression of Vn given by (81) and Vs (�s) given by (84) into the above and

rearranging, we obtain

W = Ww +
1

r

Z �w

�s

[F (�w)� F (z)] dz +
1

N

Z �s

�b

 (z) dz � �+ r

r (1� �) �
c

�N

�
�

Ns
1� � +

Nb
�

�
c

rN
: (144)

where the �rst term, Ww, is the average expected utility across all investors in an idealized

centralized market without search friction and is given by

Ww =
1

r

Z �

�w

(1 + �) dF (�) ;

and the integrand in the third term is given by

 (z) =
n�
r
(N �X) [1� F (z)] + [Nb � Fb (z)]

o
�b (z)�

h
Fs (z) +

�

r
XF (z)

i
�s (z)

= � (z) � (z) ;

where � (z) is given by (77) and

� (z) =
1

r
[N �X �NF (z)]��Fs (z)�

h
Fs (z) +

�

r
XF (z)

i
:

In the end of this proof, we argue that the integral
R �s
�b

 (z) dz is of order o
�
��1=2

�
for �

su¢ ciently large.

When � is su¢ ciently large, we can expand V up to the term of order 1p
�
(so the third and

the fourth term in (144) can be omitted) and obtain

W =Ww �
mVp
�
+ o

�
1p
�

�
;

where

mW =
1

r

r
�c

� (1� �)X

24s 1

�

�
1� 1

�

�Z �

�w

[1� F (x)] dx+ 1

�

sZ �w

0
F (x) dx

35 > 0:
Since mW > 0, we know

@W
@�

> 0:
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It is direct to see
@mW
@c

> 0;
@mW
@�

> 0;

so
@W
@c

< 0;
@W
@�

< 0 for � su¢ ciently large.

When keeping N = �X as constant, we �nd

@mW
@X

< 0;

so
@W
@X

< 0 for � su¢ ciently large.

Lemma Y. When � is su¢ ciently large, we haveZ �s

�b

 (z) dz = o
�
��1=2

�
:

Proof : The integral can be bounded byZ �s

�b

 (z) dz � (�s ��b) � max
z2[�b;�s]

j (z)j : (145)

We already know �s � �b = O
�
��1=2

�
, so we need to estimate maxz2[�b;�s] j (z)j, which is

further bounded by

max
z2[�b;�s]

j (z)j � max
z2[�b;�s]

j� (z)j � max
z2[�b;�s]

� (z) : (146)

Recall that we show in Lemma X that maxz2[�b;�s] � (z) = O
�
��1=2

�
. Our focus in what

follows will be on maxz2[�b;�s] j� (z)j. Firstly, we have

j� (z)j � 1

r
jN �X �NF (z)j��Fs (z) + Fs (z) +

�

r
XF (z)

<
1

r
jN �X �NF (z)j��NNs +Ns +

�

r
XF (z)

<
1

r
max fjF (�w)� F (�b)j ; jF (�w)� F (�s)jg��NNs +Ns +

�

r
XF (�s) :(147)

Since �b ��w = O
�
��1=2

�
and �s ��w = O

�
��1=2

�
, we know

max fjF (�w)� F (�b)j ; jF (�w)� F (�s)jg = O
�
��1=2

�
:
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Since Ns = O
�
��1=2

�
, we know that the �rst term in (147) is O (1), the second term is O

�
��1=2

�
and the last term is O (1). Putting together, we know that j� (z)j is bound by O (1).

Turning back to (146), we know thatmaxz2[�b;�s] j (z)j is bounded by a product of O
�
��1=2

�
and O (1), which is obviously O

�
��1=2

�
.

Further back to (145), we conclude that
R �s
�b

 (z) dz is bounded by a product of O
�
��1=2

�
and O

�
��1=2

�
, which is obviously o

�
��1=2

�
. This completes the proof. Q.E.D.

21 Proof of Proposition 14

We construct the frictionless benchmark with a centralized market.

Let V co (�) and V
c
n (�) be the value function for an owner and a non-owner of type �, respec-

tively. Let Pw be the equilibrium price.

For an owner, he has to decide whether to hold his asset or not. If he chooses to hold, he

receives cash �ow (1 + �) instantaneously and his value function is given by

rV co (�) = 1 +�+ �E
�
max

�
V co
�
�0
�
; V cn

�
�0
�
+ Pw

	�
� �V co (�) :

The LHS is the �ow payo¤ of holding his asset, which consists of two terms: the instantaneous

payo¤ illustrated by the �rst term on the RHS and the option value of selling his asset holding

at prevailing price Pw captured by the second term on the RHS.

If he chooses to sell his asset at price Pw, he becomes a non-owner immediately with value

function VN (�) together with the price he charges, i.e., Pw. Hence, V co (�) is determined by

V co (�) = max

�
1 + �+ �E [fV co (�0) ; V cn (�0) + Pwg]

�+ r
; V cn (�) + Pw

�
: (148)

For a non-owner, if he chooses to stay outside the search market, his value function is given

by

rV cn (�) = �E
�
max

�
V co
�
�0
�
� Pw; V cn

�
�0
�	�

� �V cn (�) :

177



The �ow payo¤ of staying outside is only derived from purchasing the asset and receiving cash

�ows from it in the future. If he chooses to buy a share at price Pw, he becomes an owner with

value function V co (�) net of the purchase cost Pw. Hence,

V cn (�) = max fV cn ; V co (�)� Pwg : (149)

where

V cn =
�E [max fV co (�0)� Pw; V cn (�0)g]

�+ r
:

We conjecture that an investor would like to own the asset whenever his type � is above a

cuto¤ level �w and stay inactively with no asset otherwise.

The demand for the asset is from those non-owners whose newly-drawn types are above �w,

which amounts to � (N �X) [1� F (�w)] dt during short period dt. The supply of the asset is

from those owners whose newly-drawn types are below�w, which amounts to �XF (�w) dt during

short period dt. At any point of time, demand should be equal to supply, which yields

F (�w) = 1�
X

N
: (150)

A marginal owner of type �w should be indi¤erent between holding his asset and selling his

asset at price Pw, i.e.,

V co (�w) = V cn (�w) + Pw: (151)

This also means that a marginal non-owner of type �W should be indi¤erent between buying the

asset and staying outside the market. Setting � = �w in (148) and (149),

V cn (�w) =
�E [max fV co (�)� Pw; V cn (�)g]

�+ r
;

V co (�w) =
1 +�w + �E [max fV co (�) ; V cn (�) + Pwg]

�+ r
= V cn (�w) + Pw:

Using the �rst line to substitute out term E [max fV co (�) ; V cn (�) + Pwg] = (�+ r)V cn (�w)+Pw

in the second line and rearranging, we obtain

Pw =
1 +�w

r
: (152)
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From (148), we know (i) when� < �w, V co (�) = V cn (�)+Pw, (ii) when� > �W , d
d�V

c
o (�) =

1
�+r . Hence,

V co (�) =

�
V cn (�) + Pw, if � 2 [�;�w)
V co (�w) +

���w
�+r , if � 2

�
�w;�

� :

This means that an owner holds onto his asset if � > �w and sells his asset if � < �w. He is

indi¤erent between these two choices when � = �w.

From (149), we know (i) when � < �w, V cn (�) is a constant equal to V
c
n = V co (�w) � Pw,

(ii) when � > �w, V cn (�) = V co (�)� Pw. Hence,

V cn (�) =

�
V cn , if � 2 [0;�w)
V co (�w)� Pw + ���w

�+r , if � 2
�
�w;�

� = V co (�)��w :

This means that a non-owner purchases one unit of asset if � > �w and stays with no asset if

� < �w. He is indi¤erent between these two choices when � = �w.

Here, V cn is given by

V cn =
�

�+ r

Z �

�
max

�
V co
�
�0
�
� Pw; V cn

�
�0
�	
dF
�
�0
�

=
�

�+ r

"Z �w

�
V cndF (�) +

Z �

�w

[V co (�)� Pw] dF (�)
#
:

Using integral by part, we knowZ �

�w

V co (�) dF (�) = V cn [1� F (�w)] +
1

�+ r

Z �

�w

[1� F (�)] d�:

Hence, V cn is given by

V cn =
�

r (�+ r)

Z �

�w

[1� F (�)] d�: (153)

We therefore obtain

V co (�) =

�
V cn + Pw, if � 2 [0;�w)
V cn + Pw +

���w
�+r , if � 2

�
�w;�

� ;

V cn (�) = V co (�)� Pw;

where V cn is given by (153) and Pw is given by (152).
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The (unit time) trading volume is given by

TVw = �XF (�w) = �X

�
1� X

N

�
:

The expected utility is given by

Ww =

Z �w

0
(V cn + Pw) dF (�) +

Z �

�w

V co (�) dF (�) =
1

r

Z �

�w

(1 + �) dF (�) : (154)

22 Proof of Proposition 15

We have already established the following limit results:

lim
�!1

�b = lim
�!1

�s = �w (155)

and

lim
�!1

�Nb = lim
�!1

�Ns = +1: (156)

In order to evaluate lim�!1 P (x; y), we need at �rst place evaluate the limit of Vn (�), Vb (�),

Vs (�) and Vh (�) as �!1.

Vn (�) is given by (81). We argue its �rst term, �r
R �s
�b

�b (z) [1� F (z)] dz, vanishes to zero

as � ! 1. According to (155), the lower and upper bound of this integral is tending to each

other. Besides, the integrand is bounded by 1
�+r because 0 � �b (z) � 1

�+r and 0 � 1�F (z) � 1.

Therefore, the integral shrinks to zero as �!1. Hence, we �nd

Vn (�) = Vn !
�

r

R �
�w
[1� F (z)] dz
�+ r

= V cn as �!1,

where V cn is the expected utility of an asset owner in the centralized market and is given by (153).

Vb (�) is given by (80). Due to (155) and �b (z) � 1
�+r , we know for any � 2 [�b;�s]

0 �
Z �

�b

�b (z) dz �
���b
�+ r

� �s ��b
�+ r

! 0 as �!1:

We thus have

Vb (�)!
�

r

R �
�w
[1� F (z)] dz
�+ r

+
���w
�+ r

= V cn +
���w
�+ r

for � 2
�
�w;�

�
:
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Vs (�) is given by (83). We �rst calculate lim�!1 Vs (�b). Since 0 � �s (z) � 1
�+r for

z 2 [�b;�s] we know

0 �
Z �s

�b

�s (z)
h
1 +

�

r
F (z)

i
dz � 1

�+ r

�
1 +

�

r

�
(�s ��b) =

�s ��b
r

! 0 as �!1

and thus

Vs (�b)!
1 + �w

r
+
�

r

R �
�w
[1� F (z)] dz
�+ r

= Pw + V
c
n as �!1.

It follows directly that

Vs (�)! lim
�!1

Vs (�b) = Pw + V
c
n for � 2 [0;�w] :

Vh (�) is given by (82). Note that

Vh (�s)!
1 + �w

r
+
�

r

R �
�w
[1� F (z)] dz
�+ r

= Pw + V
c
n as �!1;

so

Vh (�)! Pw + V
c
n +

���w
�+ r

for any � 2
�
�w;�

�
as �!1:

With these in limit results in hand, we are able to see

lim
�!1

P (x; y) = Pw for 0 � y � �w � x � �:

Now we evaluate the limit of type distributions of investors. According to (155) and (156), we

immediately have

lim
�!1

�n (�) =

�
Nf (�) for � < �w
0 for � > �w

;

lim
�!1

�h (�) =

�
0 for � < �w
Nf (�) for � > �w

;

lim
�!1

�b (�) = 0; lim
�!1

�s (�) = 0:

Finally, we evaluate the limit of total trading volume. Recall that the total trading volume

TV� is given by (118). We �nd

lim
�!1

TV� = �X

�
1� X

N

�
+ �X

�
1� X

N

�
ln

" p
�Mb

�X
�
1� X

N

�Np�Ms

�N

#

= �X

�
1� X

N

�
+ �X

�
1� X

N

�
ln

MbMs

�X
�
1� X

N

� :
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Since TVw = �X
�
1� X

N

�
and

MbMs = �X

�
1� X

N

� bc
c
;

we have

lim
�!1

TV� = TVw + TVw ln
bc
c
:
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A Search Model of the Aggregate Demand
for Safe and Liquid Assets

with Hongjun Yan

Abstract

Safe and liquid assets, such as Treasury bonds, are money-like instruments that command a
convenience yield. We analyze this in a search model of two assets that di¤er in liquidity and safety.
In contrast to the reduced-form approach, which puts the safe and liquid asset in utility function,
we explicitly model investors�trading needs and the trading friction. One new implication from
this approach is that the marginal investor�s preference for safety and liquidity is not enough in
determining the premium. Instead, the distribution of investors�preferences plays a direct role.
Our model implies that an increase in the supply of the liquid asset may increase or decrease the
liquidity premium, depending on the distribution of investors� liquidity preference. Our model
shows that investors may over- or underinvest in the search technology relative to a central planner,
and that overinvestment occurs when investors�expected trading frequency is in the intermediate
region.
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1 Introduction

There has been growing interest in the role of �safe and liquid assets� in a �nancial system,

especially since the recent �nancial crisis. One �nding that emerges from these studies is that safe

and liquid assets, such as Treasury bonds, are like money, commanding a sizeable premium for their

safety and liquidity (Krishnamurthy and Vissing-Jorgensen 2012). What are the determinants of

this premium? How does the supply of Treasury bonds a¤ect the premium? When risky assets

become more liquid, how does it a¤ect their own prices, as well as the Treasury price? What is

the welfare implication when traders invest to improve the liquidity of risky assets?

One framework for addressing these questions is a representative agent model. For example,

Krishnamurthy and Vissing-Jorgensen (2012) follow the tradition of money-in-the-utility-function

formulation (e.g., Sidrauski 1967) and include the Treasury holding in the representative investor�s

utility function. In equilibrium, the liquidity premium is determined such that the representative

agent is indi¤erent between holding the Treasury and a less liquid asset. That is, the representative

agent is the marginal investor whose indi¤erence condition determines the liquidity premium.

The appeal of this approach is its simplicity, and one can analyze the liquidity premium without

explicitly modeling investors�trading needs and trading frictions.

We adopt an alternative framework, and explicitly model investors�trading needs and trading

frictions. Not only does this make it possible to directly connect liquidity premium to trading

frictions� it also leads to new implications that are absent in the representative agent framework.

Speci�cally, the marginal investor�s liquidity preference is no longer enough to determine the

premium. Instead, the distribution of investors�liquidity preferences also plays a direct role. For

example, we �nd that an increase in the supply of Treasury bonds may increase or decrease their

liquidity premium, depending on the distribution of investors�liquidity preferences.

The intuition is as follows. Suppose assets 1 and 2 have identical cash �ows, but asset 2 is

�more liquid�than asset 1. In the reduced-form approach, asset 2 being more liquid is modeled as

investors deriving a �convenience yield�from holding asset 2 (i.e., putting the holding of asset 2 in
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an investor�s utility function). Let P1 and P2 be the prices of assets 1 and 2, respectively. The liq-

uidity premium, P2�P1, is determined by the present value of the marginal investor�s convenience

yield. Hence, the marginal investor�s liquidity preference fully determines the premium.

However, this is no longer the case once we explicitly take trading frictions into account.

Suppose that asset 2 is perfectly liquid, and that the friction for trading asset 1 is that investors

need to search in the market and can trade only when they meet their counterparties. In this

case, the marginal investor�s liquidity preference cannot fully determine the premium. To see this,

suppose that P1 decreases by one dollar due to a reduction of demand from its investors. We will

see that, if the marginal investor between assets 1 and 2 remains the same, P2 will decrease by

less than one dollar, and hence the liquidity premium P2 � P1 will increase. The reason is that

the marginal investor�s value function is less sensitive to P1 than to P2: Intuitively, since asset 2

is perfectly liquid, P2 is the price at which an investor can transact right away. So, a one-dollar

drop in P2 leads to a one-dollar increase in his value function. In contrast, a one-dollar drop in P1

leads to a less-than-one-dollar increase in his value function. This is due to the trading friction:

P1 is the price at which the investor can transact only when he meets his counterparty. There

is a chance that the investor cannot �nd his counterparty before his trading need disappears.

This point arises naturally once we explicitly account for the trading friction, but is absent in the

reduced-form approach that abstracts away from trading frictions.

In essence, the notion of �market price� is di¤erent in a setup where frictions are modeled

explicitly than in a setup that treats frictions implicitly. In a model which treats frictions only

implicitly, the market price is the price at which investors can transact at immediately. However,

this is not the case in models with explicit trading frictions.

We formalize the above intuition by extending the over-the-counter (OTC) market model of

Du¢ e, Garleanu, and Pedersen (2005) by introducing two assets. In the baseline model, the two

assets are claims to identical cash �ows but have di¤erent liquidity. Asset 1 (e.g., agency debt) is

less liquid, and trade occurs only when a buyer meets a seller. In contrast, asset 2 (e.g., Treasury)

is perfectly liquid and transactions occur without any delay. There is a continuum of investors,
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whose trading needs are due to the changes of their valuations of the two assets. In particular,

when a type-� investor receives $1 from asset 1 or 2, he derives a utility of 1 +�. We normalize

the region for investors�possible types to [0;�]. An investor�s type stays constant until the arrival

of a shock. Once the shock arrives, his new type is drawn from a random variable, which has a

density function of f(�) on [0;�]. Investors�types are independent from one another. Hence, in

the steady state, f(�) is also the cross-sectional distribution of investors�types.

We show that, in equilibrium, there are two cuto¤ points, �� and ���, with 0 < �� < ��� <

�. Investors with high types (i.e., � 2 (���;�]) choose to buy asset 2, those with intermediate

types (i.e., � 2 (��;���)) choose to buy asset 1, and those with low types (i.e., � 2 [0;��))

choose not to buy any asset. Investors �� and ��� are marginal investors: investor-��� is

indi¤erent between buying asset 1 and buying asset 2, while investor-�� is indi¤erent between

buying asset 1 and not buying any asset.

The liquidity preference of the marginal investor between the two assets (i.e., ���) a¤ects

the liquidity premium, but, as explained earlier, it cannot fully pin down the liquidity premium.

We �nd that the liquidity premium increases in ��� but decreases in ��. Intuitively, a higher

��� means that trading delay is more costly for the investor. Hence, asset 2 commands a higher

premium. How does �� a¤ect the liquidity premium? Since investor-�� is the marginal investor

between investing asset 1 and not investing, holding everything else constant, a decrease in ��

decreases P1. In response to this drop in P1, as noted earlier, P2 would decrease less than P1

does. That is, the liquidity premium P2 � P1 increases when �� decreases.

Our model implies that an increase in the supply of asset 2 may increase or decrease the

liquidity premium, depending on the distribution f(�). Intuitively, when the supply of asset 2

increases, it attracts more investors with high �, pushing down both ��� and ��. As noted

earlier, the liquidity premium increases in ��� but decreases in ��. In the case illustrated in

Panel A of Figure 1, for example, f(��) is signi�cantly larger than f(���). That is, there are

many investors whose � is around ��, but very few investors around ���. When the supply of

asset 2 increases, ��� decreases signi�cantly, but �� decreases only slightly. Hence, the impact
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from ��� dominates, and the increase in the supply of asset 2 decreases the liquidity premium.

Similarly, in the case illustrated in Panel B of Figure 1, f(��) is signi�cantly lower than f(���).

The impact from �� dominates, and the increase in the supply of asset 2 increases the liquidity

premium.

hINSERT FIGURE 1i

What are the empirical implications from this result? Suppose we interpret asset 2 as Treasury

bonds and asset 1 as agency bonds or highly rated corporate bonds. Then, it might be reasonable

to think this case is summarized by Panel A: a small fraction of investors have very high �. For

example, commercial banks can use Treasury securities as collateral to issue checking accounts,

and hedge funds can use them as collateral for their derivative positions. For most investors,

however, their � is modest. In this case, the increase in Treasury supply decreases the yield

spreads between Treasury and highly rated bonds, as documented in Krishnamurthy and Vissing-

Jorgensen (2012). On the other hand, if we interpret asset 1 as junk bonds and asset 2 as

bonds with investment-grades and above (e.g., investment-grade rated corporate bonds, agency

bonds and Treasury securities), the case is more likely to correspond to Panel B, where very

few specialized investors (such as hedge funds) are the marginal investors for asset 1 (i.e., f(��)

is small). With this interpretation, our model implies that the increase of the supply of bonds

with investment-grades and above increases the spread between junk bonds and investment-grade

bonds.

When the search friction in market 1 is alleviated, how does it a¤ect P1 and P2? Our model

shows that it decreases P2, because when trading asset 1 is easier, asset 2 becomes relatively less

appealing. Moreover, the liquidity improvement in market 1 has a mixed e¤ect on the price of

asset 1. Intuitively, when search becomes slower, sellers in market 1 are willing to accept a lower

price to speed up their transactions. Similarly, buyers are willing to o¤er a higher price to reduce

their waiting time. Hence, the total impact is mixed, and depends on which side is more eager to

speed up the transaction.

Our welfare analysis on the investment in the search technology for market 1 shows that
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investors may over- or underinvest relative to a central planner. The reason is that the investment

has two externalities. First, when an investor improves his search technology, it not only bene�ts

himself, but also bene�ts his potential trading partners. This leads to a free-riding problem and

underinvestment. Second, investment in the search technology helps more investors to execute

their trades, and so reduces the number of investors in the market, making it more di¢ cult for all

investors to meet their counterparties. Investors don�t internalize this negative externality and so

overinvest relative to a central planner. Hence, the tradeo¤ between the two e¤ects determines

whether investors over- or underinvest in their search technology. We �nd that overinvestment

tends to occur when investors�expected trading frequency is in the intermediate region.

1.1 Related Literature

Our paper belongs to the recent literature that analyzes OTC markets in the search framework de-

veloped by Du¢ e, Garleanu, and Pedersen (2005). This framework has been extended to include

risk-averse agents (Du¢ e, Garleanu, and Pedersen (2007)), unrestricted asset holdings (Lagos

and Rocheteau (2009)). It has also been adopted to analyze a number of issues, such as security

lending (Du¢ e, Garleanu, and Pedersen (2002)), liquidity provision (Weill (2007)), on-the-run

premium (Vayanos and Wang (2007), Vayanos and Weill (2008)), cross-sectional returns (Weill

(2008)), portfolio choices (Garleanu (2009)), liquidity during a �nancial crisis (Lagos, Rocheteau,

and Weill (2011)), price pressure (Feldhutter (2012)), order �ows in an OTC market (Lester, Ro-

cheteau, and Weill, (2014)), commercial aircraft leasing (Gavazza 2011), high frequency trading

(Pagnotta and Philippon (2013)), the roles of benchmarks in OTC markets (Du¢ e, Dworczak,

and Zhu (2014)), adverse selection and repeated contacts in opaque OTC markets (Zhu (2012)),

intermediation chains (Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2014)), trading

network structure (Neklyudov (2014)), as well as the interaction between corporate default de-

cision and liquidity (He and Milbradt (2013)). Another literature follows Kiyotaki and Wright

(1993) to analyze the liquidity value of money. In particular, Lagos and Wright (2005) develop

a tractable framework that has been adopted to analyze liquidity and asset pricing (e.g., Lagos

(2010), Lester, Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012), Lagos and
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Zhang (2014)). Trejos and Wright (2014) synthesize this literature with the studies under the

framework of Du¢ e, Garleanu, and Pedersen (2005).

Our paper is related to these studies, and one distinctive feature is our analysis of the supply

e¤ect on the premium. Another insight from our model is the contrast between the reduced-form

approach and the search approach that explicitly accounts for trading frictions. This is parallel to

the point stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which

emphasizes the importance of explicitly modeling the frictions that render money essential. This

idea has led to the so-called New Monetarist Economics, which emphasize that assets are valued

not only for their fundamentals (i.e., claims to consumption goods) but also for their liquidity�

the extent to which they facilitate exchange in an imperfect market (see Williamson and Wright

(2010, 2011) for recent surveys).

2 The Model

Time is continuous and goes from 0 to 1. There is a continuum of investors, and the total

population size is N . They have access to a riskless bank account with an interest rate r. There

are two assets, assets 1 and 2, which are traded in two separate markets. The supplies for assets

1 and 2 are X1 and X2, respectively, and X1+X2 < N . The two assets have the same cash �ows,

and each unit of the asset pays $1 per unit of time until in�nity. However, asset 1 is less liquid

than asset 2.

Our formulation of the market for asset 1 follows Garleanu (2009) and Lagos and Rocheteau

(2009). In this market, investors face a potential delay in �nding market makers. Once they meet

a market maker, they can execute their trades and take the price P1 as given. The potential delay

is as follows. Let �b1 and �
s
1 be the measures of buyers and sellers in the market for asset 1, and

both will be determined endogenously in equilibrium. A buyer meets a market maker at the rate

��s1, where � > 0 is a constant. That is, during [t; t + dt) a buyer meets a market maker with

a probability ��s1dt. Similarly, a seller meets a market maker who can buy his asset at the rate

��b1. Hence, the total number of trades per unit of time is ��
s
1�
b
1. The search friction reduces
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when � increases, and completely disappears when � goes to in�nity.

This formulation is a slight modi�cation of that in Garleanu (2009) and Lagos and Rocheteau

(2009). Speci�cally, we assume that the arrival rate of the market maker depends on the popu-

lation size of the investors on the other size of the market. For example, for a buyer, the larger

the seller population �s1, the quicker the buyer is expected to �nd a market maker to sell him the

asset. This captures the notion that an investor faces a shorter delay if there are more investors

trying to be on the other side of the transaction.1

The market for asset 2 is more liquid. To simplify our analysis, we let the search technology

in market 2 go to perfection, i.e., investors in market 2 can trade instantly.2

2.1 Trading needs

Investors have di¤erent types, and their types may change over time. If an investor�s current type

is �, he derives a utility 1+� when receiving the $1 coupon from either asset. One interpretation

for a positive � is that some investors, such as insurance companies, have a strong preference for

long-term bonds, as modeled in Vayanos and Vila (2009). Another interpretation is that some

investors can bene�t from using those assets as collateral and so value them more, as discussed

in Bansal and Coleman (1996) and Gorton (2010). An interpretation of a negative � can be that

the investor su¤ers a liquidity shock and so �nds it costly to carry the asset on his balance sheet.

We assume that � can take any value in a closed interval. Without loss of generality, we can

normalize the interval to
�
0;�

�
.

Each investor�s type changes independently with intensity �. That is, during [t; t+ dt), with

a probability �dt, an investor�s type changes and is independently drawn from a random variable,

which has a probability density function f (�) on the support
�
0;�

�
, with f (�) < 1 for any

� 2
�
0;�

�
. We use F (�) to denote the corresponding cumulative distribution function.

1We also solve our model without this modi�cation. All our main results, except for the welfare implication in
Section 2.8, remain similar.

2We also solved a version of the model in which the search technology in market 2 is imperfect but is better
than the one in market 1. All our results remain similar.
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The changes in investors�types make them trade the two assets. Following Du¢ e, Garleanu,

and Pedersen (2005) and Vayanos and Wang (2007), we assume each investor can hold either 0 or

1 unit of only one of the assets.3 Hence, an investor can buy an asset only when he currently does

not hold either asset, and can sell an asset only if he is currently holding the asset. All investors

are risk-neutral and share the same time discount rate r. An investor�s objective function is given

by

sup
�1� ;�2�

Et

�Z 1

t
e�r(��t) ((�1� + �2� ) (1 + �� )d� � P1�d�1� � P2�d�2� )

�
;

where �1� and �2� are the investor�s holdings in assets 1 and 2 at time � ; �� is the investor�s type

at time � ; and Pi� , for i = 1; 2, is asset i�s price at time � and will be determined in equilibrium.

2.2 Demographics

Investors can be classi�ed into three categories: owners of asset 1 (�1t = 1 and �2t = 0), owners

of asset 2 (�1t = 0 and �2t = 1), and non-owners (i.e., �1t = �2t = 0). This section describes each

category in detail.

A non-owner with a type � has three choices: search to buy asset 1, buy asset 2, or stay

inactive. We conjecture and verify later that a non-owner�s optimal choice can be summarized as8<:
stay inactive if � 2 [0;��0);
search to buy asset 1 if � 2 (��0;���0 );
buy asset 2 if � 2 (���0 ;�]:

(1)

That is, he buys asset 2 if � > ���0 , searches to buy asset 1 if � 2 (��0;���0 ), and stays inactive

if � < ��0. A non-owner is indi¤erent between staying inactive and searching to buy asset 1 at

��0, and is indi¤erent between searching to buy asset 1 and buying asset 2 at �
��
0 . Note that due

to the search friction in market 1, the buyers of asset 1 face a delay in their transactions. In the

meantime, their types may change, and then they will adjust their actions accordingly. In market

2, however, the buyers become owners of asset 2 instantly.

3This deviates from the formulation in Garleanu (2009) and Lagos and Rocheteau (2009), where the asset
holdings are not restricted. We keep this traditional assumption on asset holdings for tractability. We impose the
same asset holding restriction in both markets to isolate the e¤ects from the search friction in market 1. More
generally, in the case where the search technology in market 2 is imperfect, this formulation isolates the e¤ects from
the di¤erence in the search frictions across the two markets.
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An owner of asset 1 has two choices: search to sell asset 1 or hold on to it. We conjecture and

later verify that this investor�s optimal choice can be summarized as�
search to sell his asset if � 2 [0;��1);
hold on to his asset if � 2 (��1;�]:

(2)

That is, he searches to sell asset 1 if � < ��1, holds on to the asset if � > ��1, and is indi¤erent

between the two actions if his type is ��1. Moreover, investors face a delay in selling their asset 1.

In the meantime, their types may change, and they may need to adjust their actions accordingly.

If an investor succeeds in selling his asset 1, he becomes a non-owner and faces the three choices

described in equation (1).

An owner of asset 2 also has two choices: sell it or hold on to it. We conjecture and later

verify that this investor�s optimal choice can be summarized as�
sell his asset if � 2 [0;��2);
hold on to his asset if � 2 (��2;�]:

(3)

That is, he sells asset 2 if � < ��2, holds on to the asset if � > �
�
2, and is indi¤erent between the

two actions if his type is ��2. Since there is no search friction in market 2, investors can execute

their transactions right away.

Due to the change in � and execution of his trade, an investor�s status changes over time.

We now describe the evolution of the population sizes of each category of investors. Since we will

focus on the steady-state equilibrium, we will omit the time subscript for the population size of

each group of investors. For i = 1; 2, we use �si to denote the population size of the sellers for

asset i, and use �bi to denote the population size of the buyers for asset i. Similarly, we use �
h
i ,

for i = 0; 1; 2; to denote the population sizes of the inactive investors who are non-owners, owners

of asset 1, and owners of asset 2, respectively. Hence, there are seven groups of investors.

Figure 2 illustrates investors�migration across the seven groups. For sellers of asset 1, for

example, the in�ow to this group during the period [t; t + dt) is �h1�F (�
�
1)dt, since �F (�

�
1) is

the intensity for an inactive asset 1 holder to become a seller (i.e., his type becomes lower than

��1). The out�ow from the group of asset-1 sellers has two components. First, during the period

[t; t + dt), ��b1�
s
1dt investors succeed in selling their asset 1 and become inactive non-owners.
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Second, ��s1 [1� F (��1)] dt investors do not want to sell asset 1 any more because their types now

become higher than ��1. In the steady state, the in�ow equals the out�ow:

�h1�F (�
�
1) = ��

b
1�
s
1 + ��

s
1 [1� F (��1)] : (4)

hINSERT FIGURE 2i

Applying the same logic to the buyers of asset 1, inactive owners of asset 1, and inactive

non-owners, we obtain the following:

��h0 [F (�
��
0 )�F (��0)] + ��h2 [F (��2)�F (��0)] = ��b1�

s
1 + ��

b
1[F (�

�
0) + 1�F (���0 )]; (5)

��s1 [1� F (��1)] + ��b1�s1 = ��h1F (�
�
1); (6)

��b1�
s
1 + �

�
�b1 + �

h
2

�
F (��0) = ��h0 [1� F (��0)]: (7)

Following Garleanu (2009) and Lagos and Rocheteau (2009), we also assume that the market

makers do not hold inventory and simply serve as match makers. This implies that

�b1 = �
s
1: (8)

Market 2 has no search friction, the measures of buyers and sellers are in�nitesimal,

�b2 = �
�
�h0 + �

b
1

�
[1� F (���0 )]dt (9)

�s2 = ��h2F (�
�
2)dt; (10)

and during each instant [t; t+ dt), the �ow of buyers is equal to the �ow of sellers�
�h0 + �

b
1

�
[1� F (���0 )] = �h2F (��2): (11)

Finally, the investors in all groups add up to the total population:

�h1 + �
s
1 + �

b
1 + �

h
2 + �

s
2 + �

b
2 + �

h
0 = N: (12)

2.3 Value functions

For the case �1t = �2t = 0 (i.e., the investor is a non-owner), we use V b1 (�), V
b
2 (�), and V

h
0 (�) to

denote the investor�s expected utility if he chooses to buy asset 2, to search to buy asset 1, and
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to stay inactive, respectively. For the case �1t = 1 and �2t = 0 (i.e., the investor is an owner of

asset 1), we use V s1 (�) and V
h
1 (�) to denote the investor�s expected utility if he searches to sell

asset 1, and to keep asset 1, respectively. For the case �1t = 0 and �2t = 1 (i.e., the investor is an

owner of asset 2), we use V s2 (�) and V
h
2 (�) to denote the investor�s expected utility if he chooses

to sell asset 2, and to keep asset 2, respectively. In the steady state, these expected utilities are

time-invariant, implying the following:

V b1 (�) =
��s1

�
V h1 (�)� P1

�
+ �E

�
max

�
V b1 (�

0) ; V b2 (�
0) ; V h0 (�

0)
	�

��s1 + �+ r
; (13)

V h1 (�) =
1 +�+ �E

�
max

�
V s1 (�

0) ; V h1 (�
0)
	�

�+ r
; (14)

V s1 (�) =
1+�+ ��b1max

�
V h0 (�) ; V

b
2(�)

	
+��b1P1+�E

�
max

�
V s1(�

0) ; V h1 (�
0)
	�

��b1 + �+ r
; (15)

V b2 (�) = V h2 (�)� P2; (16)

V s2 (�) = max
n
V h0 (�) ; V

b
1 (�)

o
+ P2; (17)

V h2 (�) =
1 +�+ �E

�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

�+ r
; (18)

V h0 (�) =
�

�+ r
E
h
max

n
V b1
�
�0
�
; V b2

�
�0
�
; V h0

�
�0
�oi

: (19)

2.4 Prices with trading frictions

Once we explicitly account for the trading friction, the notion of the price of an asset is di¤erent

that in a reduced-form model. For example, an holder of asset 1 can no longer exchange the asset

for P1 instantly. This straight forward but easy-to-overlook feature implies that investors�value

functions have di¤erent sensitivities to P1 and P2. From equation (13), we obtain the following

lemma.

Lemma 1 An investor�s expected utility is more sensitive to P2 than to P1:
@V b2 (�)
@P2

= �1 and
@V b1 (�)
@P1

= � ��s1
��s1+�+r

.

The intuition is the following. The market for asset 2 is perfectly liquid, i.e., a buyer can

pay P2 to get asset 2 right away. Hence, holding everything else constant, a one-dollar drop in
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P2 increases the investor�s expected utility by one dollar. In contrast, a one-dollar drop in P1

does not mean the investor gets a one-dollar bene�t. This is because the market for asset 1 is

illiquid, and the investor may not be able to bene�t fully from the price drop. Due to the delay in

searching, the investor can only enjoy the bene�t in the future. Moreover, the investor may not be

able to bene�t at all if he cannot meet a seller before his � changes and his demand disappears.

As a result, the investor�s expected utility is less sensitive to P1.

This intuition is absent in the money-in-the-utility-function formulation, where the trading

friction is not explicitly modeled and the notion of liquidity is captured by putting the liquid asset

directly into investors�utility function. Hence, the sensitivity of the buyer�s expected utility to

price is still one-to-one: a one-dollar drop in price increases the expected utility by one dollar.

The essence is that the notion of market price is di¤erent in a setup where frictions are modeled

explicitly than in a setup that treats frictions implicitly. In models with explicit trading frictions,

the market price is not the price at which investors can transact at immediately.

2.5 Equilibrium

De�nition 1 A steady-state equilibrium consists of asset prices P1 and P2, the cuto¤ points

(��0;�
��
0 ;�

�
1;�

�
2), such that

1) the sizes of each group (�h1 ; �
s
1; �

b
1; �

h
2 ; �

s
2; �

b
2; �

h
0) remain constants over time, i.e., satisfy

(4)�(12);

2) the choices implied by (1)�(3) and (13)�(19) are optimal for all investors;

3) both markets clear:

X1 = �h1 + �
s
1: (20)

X2 = �h2 : (21)

Proposition 1 The steady-state equilibrium for the above economy is the following. The cuto¤
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points are given by

��0 = ��1 = �
�;

��2 = ���0 = ���;

where

�� = F�1
�
1� X1 +X2

N

�
; (22)

��� = F�1
�
1� X2

N �X1

�
: (23)

The population sizes for each group are given by

�s1 = �b1 = �1; (24)

�h1 = X1 � �1; (25)

�h0 = N �X2 �X1 � �1; (26)

�h2 = X2; (27)

�b2 = �X2

�
1� X2

N �X1

�
dt (28)

�s2 = �X2

�
1� X2

N �X1

�
dt; (29)

where

�1 �

s� �
2�

�2
+
�X1
�

�
1� X1 +X2

N

�
� �

2�
: (30)

The asset prices are given by

P1 =
1 +��

r
+
�

r

R ���
�� [1� F (�)] d�
��1 + �+ r

� �
r

R ��
0 F (�) d�

��1 + �+ r
; (31)

P2 =
1 +���

r
� ��1
��1 + �+ r

��� ���
r

: (32)

This proposition shows that, the four cuto¤ points collapse into two: �� and ���. A non-

owner with a type �� is indi¤erent from buying asset 1 and not buying any asset. A holder of

asset 1 with a type �� is indi¤erent between holding the asset and selling it. Similarly, a non-

owner with a type ��� is indi¤erent from buying asset 1 and buying asset 2; a holder of asset 2

with a type ��� is indi¤erent between holding the asset and selling it.
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Equations (24)�(29) characterize the population size of each group. In particular, equation

(24) shows that the buyers and sellers for asset 1 have the same population size. Moreover, since

there is no delay in trading asset 2, at each point in time, the groups of investors who need to

buy or sell asset 2 (i.e., �b2 and �
s
2) are in�nitesimal, as shown in equations (28) and (29). Hence,

virtually all the supply of asset 2 is held by inactive holders, as shown in equation (27).

Equation (31) shows that asset 1�s price has three components. The �rst term, 1+�
�

r , is the

marginal investor�s present value of the cash �ow and convenience yield �� from the asset. The

second term re�ects the liquidity e¤ect from the buyers, whose types range from �� to ���. Eager

to get the asset, they are willing to pay a higher price. On the other hand, the trading friction

makes sellers, whose types range from 0 to ��, willing to sell at a low price. This e¤ect is captured

by the third term. When the search friction disappears, i.e., � goes to in�nity, the last two terms

converge to 0 and P1 converges to 1+��

r .

The price of asset 2 is in equation (32). The �rst term, 1+�
��

r , is the marginal investor�s

present value of the cash �ow and convenience yield ��� from the asset. The second term re�ects

the discount due to the investors�outside option of buying asset 1. Asset 1 is cheaper, but one

has to face a delay in the transaction. The higher the search friction, the less valuable the outside

option of buying asset 1 is. When the search friction goes to in�nity (i.e., � goes to 0), the outside

option value goes to 0 and the second term becomes 0. On the other hand, when the search

friction disappears, i.e., � goes to in�nity, P2 converges to 1+��

r . That is, when the search friction

disappears, the two assets become the same and have the same price.

Proposition 2 The e¤ect of the search friction on asset prices is as follows:

@P1
@�

< 0 if ��� ��� >
Z ���

0
F (�) d�;

@P1
@�

> 0 if ��� ��� <
Z ���

0
F (�) d�;

@P2
@�

< 0:
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When the search technology in market 1 improves, its e¤ect on P1 depends on the tradeo¤

between the e¤ect on buyers and the e¤ect on sellers, which are captured by the second and third

terms in equation (31). Note that the condition ��� ��� >
R ���
0 F (�) d� is equivalent to the

second term being larger than the third term, that is, the e¤ect on buyers dominates. In this

case, due to the search friction, buyers push up P1. Hence, when the search technology improves,

this e¤ect weakens and P1 decreases. Similarly, in the other case, ������ <
R ���
0 F (�) d�, the

e¤ect on sellers dominates and P1 increases when the search techonology improves.

Finally, when the search technology improves, it increases asset 2 buyers�outside option value,

since they can more easily obtain asset 1. This reduces the comparative advantage of asset 2 and

so reduces P2.

2.6 The liquidity premium

Since assets 1 and 2 have identical cash �ows, the price di¤erence, P2 � P1, re�ects the liquidity

premium. From (31) and (32), the liquidity premium is given by

LP =
��� ��� + �

r

R ���
0 F (�) d�

��1 + �+ r
: (33)

The above expression immediately shows that the liquidity premium is always positive and de-

creases when the search friction decreases (i.e., when � increases). As � goes to in�nity, the

friction in market 1 disappears, and the liquidity premium converges to 0.

Another observation from (33) is that the liquidity premium depends on not only the marginal

investor�s liquidity preference ���, but also the distribution of all investors�preferences F (�). In

particular, the liquidity premium is increasing in ��� but decreasing in ��. Intuitively, investor

��� is the marginal investor who is indi¤erent between buying assets 1 and 2. He can pay P2

to obtain asset 2 right away. Asset 1 is cheaper, but he has to face a delay in the transaction.

In the meantime, he is giving up his convenience ���. The investor is indi¤erent about the two

assets if the price di¤erence (i.e., the liquidity premium) is the same as the present value of the

convenience that the marginal investor expects to lose during his search. Hence, the liquidity
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premium increases in ���.

It is less obvious that the liquidity premium also depends on ��. The intuition is the following.

Suppose�� decreases. This reduces P1 since the type-�� investor is the marginal investor between

buying asset 1 and not buying any asset. How does P2 respond to the drop in P1? For investor-

��� to be indi¤erent between assets 1 and 2, P2 has to decrease. If P1 drops by one dollar, how

much should P2 decrease to keep investor-��� indi¤erent? The answer is less than one dollar.

The reason is that, as noted in Lemma 1, an investor�s expected utility is more sensitive to P2

than to P1. That is, after a one-dollar drop in P1, it takes a smaller drop in P2 to keep the investor

indi¤erent between the two assets. Therefore, a decrease in �� increases the liquidity premium.

The above result naturally leads to the following proposition.

Proposition 3 The liquidity premium decreases in X2 (i.e., @LP@X2
< 0) if

1

f (��)
+
��X1

h
��� ��� + �

r

R ���
0 F (�) d�

i
(2��1 + �) (��1 + �+ r)

<
N
�
1 + �

rF (�
��)
�

N �X1
1

f (���)
; (34)

but increases in X2 (i.e., @LP@X2
> 0) if

1

f (��)
+
��X1

h
��� ��� + �

r

R ���
0 F (�) d�

i
(2��1 + �) (��1 + �+ r)

>
N
�
1 + �

rF (�
��)
�

N �X1
1

f (���)
: (35)

This proposition shows that the supply of asset 2 may increase or decrease the liquidity

premium, depending on the distribution of the investors�liquidity preferences. Intuitively, since

an increase in X2 attracts more investors with high �, it pushes down both �� and ���. That is,

the increase in X2 has two e¤ects. First, it decreases ��� and so decreases the premium. Second,

it decreases �� and so increases the liquidity premium. The strength of the two e¤ects depends

on the sensitivity of �� and ��� to X2. From (22) and (23), we have

@��

@X2
= � 1

Nf(��)
;

@���

@X2
= � 1

(N �X1) f(���)
:

So, the strength of the two e¤ects is decreasing in f(��) and f(���), respectively.
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Intuitively, a higher f(���) means that there are more investors whose types are around ���.

Hence, an increase in X2 pushes down ��� less, and so the �rst e¤ect (i.e., the e¤ect through

���) is weaker. Similarly, the strength of the second e¤ect is weaker if f(��) is larger. This is

illustrated in Figure 1. Panel A re�ects condition (34): f(��) is high relative to f(���). Hence,

the �rst e¤ect (i.e., the e¤ect through ���) dominates and the supply of asset 2 decreases the

liquidity premium. Similarly, under condition (35), as illustrated in Panel B, f(���) is high

relative to f(��). The second e¤ect (i.e., the e¤ect through ��) dominates and an increase in X2

increases the liquidity premium.

To better illustrate the result in Proposition 3, and also demonstrate that conditions (34) and

(35) are both attainable, we parameterize the density function f(�) as

f (�) = a�a�1; (36)

for � 2 (0; 1), where a is a constant and a > 0. The case a = 1 corresponds the uniform

distribution. When a increases, the slope of f(�) increases. So, a small a corresponds to the case

in Panel A of Figure 1, and a large a represents the case in Panel B.

Corollary 1 For the distribution in (36), @LP@X2
< 0 if a < ba, and @LP

@X2
> 0 if a > ba, where ba is a

constant and given by equation (79) in the Appendix.

In the uniform distribution case, i.e., a = 1, the liquidity premium is decreasing in X2, since

we can see from the Appendix that the constant ba is larger than 2. The corollary shows that the
liquidity premium becomes increasing in X2 only when the slope of f(�) is su¢ ciently large, i.e.,

a > ba, as illustrated in Panel B of Figure 1.
The empirical evidence in Krishnamurthy and Vissing-Jorgensen (2012) suggests that the

supply of Treasury securities decreases their premium. This is consistent with the implication

from the case a < ba or Panel A in Figure 1. That is, the liquidity preference among investors is
such that many investors have a modest convenience (i.e., �), while some other investors have

large �. One can think of these investors with large � as banks, which can use Treasury securities
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as collateral to issue checking accounts, or hedge funds that use Treasury securities as collateral

for their derivative positions. Normal investors, however, do not bene�t as much from the liquidity

and safety in Treasury securities.

The case where a > ba (i.e., Panel B in Figure 1) may be relevant for some other occasions.
For example, if one interprets asset 1 as junk bonds and asset 2 as bonds with investment grade

and above, such as investment-grade corporate bonds, agency bonds and Treasury securities etc.

Hence, most investors hold asset 2 for its liquidity and safety, and only a small of investors

with expertise (e.g., hedge funds) are marginal investors for junk bonds. That is, f(��) is small

relative to f(���), as in Panel B. In this case, the novel prediction from our model is that when

the supply of Treasury or investment-grade bonds increases, the spread between junk bonds and

investment-grade bonds should go up.4

2.7 Trading needs and asset prices

How do investors� trading needs a¤ect the asset prices and liquidity premium? In the model,

investors�trading needs are summarized by �. The higher � is, the more frequently each investor�s

type changes, and hence the stronger the trading need. From Proposition 1, we obtain the

following.

Proposition 4

@P1
@�

(
> 0 if ��� ��� <

R ���
0 F (�) d�

< 0 if ��� ��� >
R ���
0 F (�) d�

@P2
@�

�
< 0 if � < ��;
> 0 if � > ��;

where

�� � r

1 +
q

rN
�X1(N�X1�X2)

:

4We run regressions similar to those in Krishnamurthy and Vissing-Jorgensen (2012). However, the high yield
index is available only after 1997. Perhaps due to the short sample period, we do not �nd a signi�cant relation
between the Treasury supply and the spread between junk bonds and investment-grade bonds.
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This proposition shows that the impact of trading need on P1 depends on the impacts of the

buyers and sellers in market 1. As noted in Proposition 2, ��� � �� <
R ���
0 F (�) d� implies

that the buyers�impact dominates. In this case, more trading need increases P1. Similarly, if the

sellers�impact dominates, i.e., ��� ��� >
R ���
0 F (�) d�, more trading need decreases P1.

The e¤ect of � on P2 is more subtle. When � increases, it has two e¤ects. First, it means

more investors search in market 1, making it more liquid. This reduces asset 2�s advantage and

decreases P2. Second, a higher � also means that investors expect a shorter holding period. This

makes the delay in trading asset 1 even less appealing, and hence increases P2. When � is smaller

than ��, the �rst e¤ect dominates and @P2
@� < 0. In fact, when � goes to 0, both �

s
1 and �

b
1 go to

0, that is, market 1 becomes completely illiquid and @P2
@� converges to �1. On the other hand,

when � > ��, investors expect to hold an asset only for a short period of time. This makes the

delay in market 1 less tolerable. Hence, the second e¤ect dominates and @P2
@� > 0. Taken together,

it is easy to see that the e¤ect of � on the liquidity premium is mixed and depends on the relative

strength of the four e¤ects discussed above.

2.8 Welfare

This section endogenizes the investment in the search technology, and analyzes the welfare im-

plications. In particular, we specify the cost of investing in the search technology and the cor-

responding matching function as the following. Investor i has to pay �(�i) to obtain a search

technology �i, where �(�) is continuous, di¤erentiable, increasing, and convex, with �(0) = 0,

�0(1) = 1. For simplicity, the cost �(�i) is paid at t = 0 before the investor knows his type,

and there is no further cost to maintain the technology and investors cannot make adjustments

to their technology after t = 0. Suppose investor i is a buyer in market 1. Let �� denote the

average technology chosen by sellers. Then, during [t; t + dt) this buyer meets a seller with a

probability
�
��i + (1� �)��

�
�s1dt. That is, the matching intensity is a linear combination of the

buyer�s technology �i and the average technology of all sellers ��. Similarly, suppose that investor

i is a seller in market 1 and that �� is buyers�average technology. Then, during [t; t + dt) this
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seller meets a buyer with a probability
�
��i + (1� �)��

�
�b1dt.

An investor�s objective function is

max
�i
E[V (�)]� �(�i) (37)

where E[V (�)] is an investor�s expected value function across states in the steady states. We

consider a symmetric equilibrium, in which all investors choose the same level of technology. One

degenerate equilibrium is that all investors choose not to invest in their search technology at

all and the market for asset 1 is shut down. In the following, we focus on the more interesting

equilibrium where investors choose to invest, and denote this decentralized choice as �d.

As a comparison, we also analyze the choice of a central planner, who chooses the technology

investment for all investors to maximize

max
�
E[V (�)]� �(�): (38)

We denote this centralized choice as �c. The di¤erence between (37) and (38) is that when

an investor makes a decentralized decision in (37), he takes other investors� choice �� and the

population distribution (e.g., �b1 and �
s
1) as given. In (38), however, the central planner internalizes

the consequences of investors� decisions. The following proposition compares the investment

choices across the two cases.

Proposition 5 There are unique solutions �d and �c to (37) and (38), respectively. If � � 1
2 ,

decentralized decisions lead to underinvest, i.e., �d < �c. If � > 1
2 , decentralized decisions may

lead to over- or underinvestment.

There are two externalities in this economy. First, an investor�s investment in his technology

also bene�ts his potential future trading partners. This positive externality leads to a free-riding

problem, and hence underinvestment relative to the �rst best. Second, as the search technology

improves, more investors�trading needs get matched, and hence fewer investors are left searching in

the market, reducing the marginal bene�t of searching for all investors. This negative externality
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leads to overinvestment.

The strength of the �rst externality is determined by �. The smaller the �, the stronger the

free riding problem. The proposition shows that in the case of � � 1
2 , the free-riding problem

always dominates and leads to underinvestment relative to the central planning case. In the case

of � > 1
2 , however, the second externality may dominate. In particular, Panel A of Figure 3 plots

the sensitivity of the population size to the search technology, �@�b1=@�, against �. It shows

that this sensitivity is the strongest when � is in the intermediate region. This is the region

where the second externality is the strongest. Hence, as shown in Panel B, in the intermediate

region for �, we have �d > �c, i.e., investors overinvest relative to a central planner in this region.

That is, decentralized decisions lead to underinvestment in the matching technology in markets

where investors expect to trade very infrequently or very frequently, but lead to overinvestment

in markets where the trading frequency is intermediate.

hINSERT FIGURE 3i

3 The safety premium

The analysis so far has focused on the liquidity premium. We now move on to analyze the safety

premium. In particular, we modify the model by introducing a default risk to asset 1. Speci�cally,

asset 1 pays a constant cash �ow of $1 per unit of time, until default, which has an intensity of

�. That is, during [t; t+ dt), a fraction �dt of asset-1 holders lose their holdings in asset 1, while

the remaining asset-1 holders are intact. If default happens to an investor who is trying to sell

his asset 1, he becomes an inactive non-owner. Alternatively, if an investor is an inactive holder

of asset 1 when default happens to his holding, he then chooses his optimal strategy (buy asset

1, buy asset 2, or stay inactive) according to his current type �.

To keep the steady state stable, we assume that X1�dt units of asset 1 are issued to market

1 during [t; t+ dt), so that the total amount of asset 1 outstanding remains a constant over time.

We can think of the sellers of the newly issued asset 1 as investment bankers. They are treated
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the same as other sellers in market 1. The only di¤erence is that the investment bankers leave

the market after they sell their assets. Hence, at each point in time, some investment bankers

leave and market and other investment bankers enter the market with newly issued asset 1. In the

steady state, the population size of investment bankers in the market remain constant over time.

The steady-state equilibrium is de�ned analogously to that in De�nition 1, and is characterized

in the following proposition.

Proposition 6 The steady-state equilibrium is given by

P1 =
1 +�y

� + r
+

�

� + r

�yy ��y �
R �y
0 F (�) d�

��b1 + �+ � + r
; (39)

P2 =
1 +�yy

r
� ��b1
��b1 + �+ � + r

�yy ��y
r

; (40)

where �b1 is the solution to

1

�

�
�b1 +

�+ �

�

��
��b1 + �

X1
� �

�b1

�
= 1�

1
�+��

�
�b1
�2
+ �b1 +X2

N � �
�+�

��b1
��b1+�

X1
; (41)

and

F
�
�yy
�

= 1� X2

N � �
�+�

��b1
��b1+�

X1
;

F (�y) =
1

�

�
�b1 +

�+ �

�

��
��b1 + �

X1
� �

�b1

�
;

�s1 = �b1 �
�X1

��b1 + �
;

�h1 = X1 � �b1;

�h0 = N �X2 �
��b1

��b1 + �
X1 � �b1:

The equilibrium shares many similar properties to those in Proposition 1. For example, similar

to the two cuto¤ points in the baseline model, we now have two cuto¤ points �y and �yy.

Investor-�y is indi¤erent between searching to buy asset 1 and staying inactive, and investor-�yy

is indi¤erent between searching to buy asset 1 and buying asset 2.

The price of asset 1 is determined by the valuation of the marginal investor �y (i.e., 1+�
y

�+r )
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and the illiquidity e¤ect from the buyers and sellers (i.e., the last term in equation (39)). The

price of asset 2 is determined by its marginal investor�s valuation 1+�yy

r , and the discount due to

the investor�s outside option of buying asset 1 (i.e., the last term in equation (40)). When the

search friction disappears, i.e., � goes to in�nity, asset 1 becomes perfectly liquid and its price P1

converges to 1+��

�+r , and P2 converges to
1+��

r .

The price di¤erence, P2 � P1, is due to the better liquidity and safety of asset 2. To isolate

the impact from safety, we de�ne the safety premium as

SP � lim
�!0

P1 � P1;

where lim�!0 P1 is the limit of the price of asset 1 when the default intensity converges to 0. One

can think of lim�!0 P1 as the price of an asset that is as liquid as asset 1, but as safe as asset

2. Hence, SP re�ects the safety premium that asset 2 commands. The following proposition

characterizes the properties of the safety premium.

Proposition 7 If � is su¢ ciently large, the safety premium decreases with the supply of asset 2,

@SP
@X2

< 0, and this impact is stronger when the default intensity is higher, @2SP
@X2@�

< 0.

Due to the default risk, the expected cash �ow from asset 1 is lower. So, it is not surprising

that there is a safety premium. However, the above proposition shows that the safety premium

is related to the supply of asset 2. Intuitively, in the absence of default, the marginal investor of

asset 1 enjoys a convenience yield of �y. The default risk, however, means that he can get only

a fraction of it in expectation. That is, the safety premium re�ects a fraction of the convenience

yield �y that is expected to be wiped out by default. Hence, the safety premium increases in

�y. When the supply of asset 2 increaes, it attracts more investors with high types, and so

reduces �y and the safety premium. Moreover, when the default intensity � is higher, the safety

premium re�ects a larger fraction of the convenience yields �y, and hence is more sensitive to �y.

Therefore, the e¤ect of supply of asset 2 on the safety premium is stronger.
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4 Conclusion

We have analyzed a micro-founded model of the safety and liquidity premium. Relative to the

reduced-form money-in-the-utility-function approach, our model explicitly examines investors�

trading needs and trading frictions. One new insight from our approach is that the marginal

investor�s preference for safety and liquidity is no longer enough in determining the premium.

Instead, the distribution of all investors�preferences plays a direct role. The model implies that

an increase in the supply of Treasury securities decreases the credit spread of investment-grade

bonds, but may increase the spread between junk bonds and investment-grade bonds. Our analysis

highlights the importance of explicitly modeling trading frictions. This is parallel to the point

stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which emphasizes

the importance of explicitly modeling the frictions that render money essential.
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Appendix for Chapter 3

5 Proof of Proposition 1

The proof is organized as follows. Step I, II and III determine the optimal strategy for non-owners,

owners of asset 2 and owners of asset 1, respectively, by comparing the expected utilities across

all choices. The price of asset 1 and 2 are shown in Step IV and Step V, respectively. We solve

out the measure of each group of investors and cuto¤ points in Step VI. Finally, we �gure out the

type distribution of investors in Step VII.

Step I. We determine the optimal strategy for a non-owner. For this, we need to compare

the slope of V b1 (�), V
b
2 (�) and V

h
0 (�) with respect to �.

It is easy to see from equation of V h0 (�) (equation (18) in the paper) that V
h
0 (�) remains

constant for all �. We deonte this constant as U .

Di¤erentiating equation (12) and (15), we obtain

dV b2 (�)

d�
=
dV h2 (�)

d�
=

1

�+ r
; (42)

dV b1 (�)

d�
=

��s1
��s1 + �+ r

dV h1 (�)

d�
=

��s1
��s1 + �+ r

1

�+ r
: (43)

Hence, both V b2 (�) and V
b
1 (�) are linear in � and their slopes can be ranked as follows

dV b2 (�)

d�
>
dV b1 (�)

d�
> 0 =

dV h0 (�)

d�
, for any �.

We thus conjecture that there exist two cuto¤ points, ��0 and �
��
0 with ��0 < �

��
0 , such that

maxfV h0 (�) ; V b1 (�) ; V b2 (�)g =

8<:
U , if � 2 [0;��0) ;
V b1 (�) , if � 2 (��0;���0 );
V b2 (�) , if � 2

�
���0 ;�

�
;

(44)

and the following value matching conditions are satis�ed:

V b1 (�
�
0) = V h0 (�

�
0) = U; (45)

V b1 (�
��
0 ) = V b2 (�

��
0 ) : (46)
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We obtain the expressions for V b1 (�) and V
b
2 (�):

V b1 (�) = V b1 (�
�
0) +

��s1
��s1 + �+ r

����0
�+ r

= U +
��s1

��s1 + �+ r

����0
�+ r

; (47)

V b2 (�) = V b2 (�
��
0 ) +

�����0
�+ r

= U +
��s1

��s1 + �+ r

���0 ���0
�+ r

+
�����0
�+ r

: (48)

where have used V b1 (�
�
0) = U in (47) and V b2 (�

��
0 ) = U +

��s1
��s1+�+r

���0 ���0
�+r in (48).

We now derive the expression of U . By equation (18) in the paper and optimal strategy

speci�ed in (44), we have

U =
�

�+ r

"Z ��0

0
UdF (�) +

Z ���0

��0

V b1 (�) dF (�) +

Z �

���0

V b2 (�) dF (�)

#
:

Substituting V b1 (�) in (47) and V
b
2 (�) in (48) into the above equation and rearranging, we obtain

U =
�

r

24 ��s1
��s1 + �+ r

R ���0
��0

[1� F (�)] d�
�+ r

+

R �
���0

[1� F (�)] d�
�+ r

35 : (49)

Step II. We determine the optimal strategy for an owner of asset 2. For this, we need to

compare the slope of V s2 (�) and V
h
2 (�) with respect to �.

The slope of V h2 (�) is given by

dV h2 (�)

d�
=

1

�+ r
: (50)

From (47), we know that V b1 (�) > V h0 (�) and V
s
2 (�) = V b1 (�) + P2 if � > ��0 while

V b1 (�) < V
h
0 (�) and V

s
2 (�) = V

h
0 (�) + P2 if � < �

�
0. We then have:

V s2 (�) =

(
U + P2, if � < ��0;
U + P2 +

��s1
��s1+�+r

����0
�+r , if � > �

�
0:

(51)

Since the slope of V h2 (�) is larger than that of V
s
2 (�) for all �, we conjecture that there

exists a cuto¤ point ��2 such that

maxfV h2 (�) ; V s2 (�)g =
�
V s2 (�) , if � < �

�
2

V h2 (�) , if � � ��2
(52)

and

V s2 (�
�
2) = V

h
2 (�

�
2) : (53)
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Now we show ��2 > �
�
0. Suppose the reverse holds, i.e., �

�
2 � ��0. It follows that V s2 (��2) =

U + P2 and (53) can be simpli�ed into

U + P2 =
1 +��2 + �E

�
V s2 (�

0) ; V h2 (�
0)
�

�+ r
: (54)

On the other hand, we have the following chain of equalities:

U +
��s1

��s1 + �+ r

���0 ���0
�+ r

(a)
= V b1 (�

��
0 )

(b)
= V b2 (�

��
0 )

(c)
= V h2 (�

��
0 )� P2

(d)
=
1 +���0 + �E

�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

�+ r
� P2;

where (a) is due to (47), (b) is due to (46) and (c) and (d) are satis�ed by construction. Rear-

ranging, we have

U + P2 =
1 +���0 + �E

�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

�+ r
� ��s1
��s1 + �+ r

���0 ���0
�+ r

: (55)

Note that the L.H.S of (54) is equal to the L.H.S. of (55), so their R.H.S. have to be the same,

that is

��2 =
�+ r

��s1 + �+ r
���0 +

��s1
��s1 + �+ r

��0:

Since ��0 < �
��
0 , this implies �

�
0 < �

�
2 < �

��
0 , which is inconsistent with the assumption �

�
2 � ��0.

Hence, we must have ��2 > �
�
0. In this case, we have

V s2 (�
�
2) = V

b
1 (�

�
2) + P2 = U + P2 +

��s1
��s1 + �+ r

��2 ���0
�+ r

:

Therefore, (53) implies

U + P2 =
1 +��2 + �E

�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

�+ r
� ��s1
��s1 + �+ r

��2 ���0
�+ r

: (56)

Since the L.H.S. of (55) and (56) are the same, so are their R.H.S. Equalizing their R.H.S and

rearranging, we have

��2 ����0 =
��s1

��s1 + �+ r
(��2 ����0 ) ;

which immediately implies

��2 = �
��
0 � ���:
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Step III. We determine the optimal strategy for an owner of asset 1.

The slope of V s1 (�) is given by

dV s1 (�)

d�
=

(
1

��b1+�+r
, if � < b�0

1
�+r , if � >

b�0 ; (57)

where b�0 = ��s1�
�
0+(�+r)�

��
0

��s1+�+r
2 (��0;���0 ).

The slope of V h1 (�) is given by

dV h1 (�)

d�
=

1

�+ r
: (58)

Note that the slope of V s1 (�) and V
h
1 (�) are the same for the region � > b�0. If V s1 (b�0) >

V h1 (
b�0), then V s1 (�) > V h1 (�) for all �, which means that any owner of asset 1 strictly prefers

to sell rather than hold. We therefore have V s1 (b�0) � V h1 (b�0), so there should be a cuto¤ point
��1(� b�0) such that

maxfV s1 (�) ; V h1 (�)g =
�
V s1 (�) , if � < �

�
1

V h1 (�) , if � � ��1
; (59)

and

V s1 (�
�
1) = V

h
1 (�

�
1) : (60)

With these in hand, we now derive a relation between ��0 and �
�
1.

From (57), we obtain

V s1 (�) =

8<: V s1 (�
�
1) +

����1
��b1+�+r

, if � � b�0;
V s1 (�

�
1) +

b�0���1
��b1+�+r

+ ��b�0
�+r , if � >

b�0: (61)

Since ��1 � b�0, we have the following chain of equalities:

V s1 (�
�
1)

(a)
=

(b)
=(�+r)V h1 (��1)

(c)
=(�+r)V s1 (��1)z }| {

1 + ��1 + �E
h
max

n
V s1
�
�0
�
; V h1

�
�0
�oi

+ ��b1 (U + P1)

��b1 + �+ r

=
(�+ r)V s1 (�

�
1) + ��

b
1 (U + P1)

��b1 + �+ r

(d)
= U + P1; (62)
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where (a) and (b) are satis�ed by construction, (c) is due to (60) and (d) is the result after some

rearrangements. Therefore, (62) and (60) lead to

V h1 (�
�
1) = �

�

��b1
+ U + P1: (63)

Since V h1 (�) is linear in � as shown in (58), we must have

V h1 (�
�
0) = V

h
1 (�

�
1) +

��0 ���1
�+ r

= U + P1 +
��0 ���1
�+ r

: (64)

On the other hand,

U
(a)
= V b1 (�

�
0)

(b)
=
��s1

�
V h1 (�

�
0)� P1

�
+

(c)
=(�+r)Uz }| {

�E
h
max

n
V b1
�
�0
�
; V b2

�
�0
�
; V h0

�
�0
�oi

��s1 + �+ r

=
��s1

�
V h1 (�

�
0)� P1

�
+ (�+ r)U

��s1 + �+ r

(d)
= V h1 (�

�
0)� P1; (65)

where (a) is due to (45), (b) and (c) are satis�ed by construction and (d) is the result after some

rearrangements. Substituting (64) into the above equation and rearranging, we obtain

��0 = �
�
1 � ��: (66)

Step IV. We derive P1, the price of asset 1. For this, we �rst calculateE
�
max

�
V s1 (�) ; V

h
1 (�)

	�
,

which will be used in what follows. According to the optimal strategy for an owner of asset 1

speci�ed in (59), we know

E
h
max

n
V s1 (�) ; V

h
1 (�)

oi
=

Z ��

0
V s1 (�) dF (�) +

Z �

��
V h1 (�) dF (�) :

Here, V h1 (�) can be expressed as

V h1 (�) = V
h
1 (�

�) +
����
�+ r

;

and V s1 (�) is determined by (61). We then obtain

E
h
max

n
V s1
�
�0
�
; V h1

�
�0
�oi

= V h1 (�
�
1)�

R ��
0 F (�) d�

��b1 + �+ r
+

R �
�� [1� F (�)] d�

�+ r
: (67)
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Furthermore, we have

V h1 (�
�) =

1 +�� + �E
�
max

�
V s1 (�

0) ; V h1 (�
0)
	�

�+ r
; (68)

which is obtained from equation of V h1 (�1). Substituting this into (67) and rearranging, we have

E
h
max

n
V s1 (�) ; V

h
1 (�)

oi
=
�+ r

r

241 + ��
�+ r

�
R ��
0 F (�) d�

��b1 + �+ r
+

R �
�� [1� F (�)] d�

�+ r

35 : (69)

So far we have obtained two expressions of V h1 (�
�), (63) and (68). Equalizing the terms on

R.H.S. and substituting out U given by (49), E
�
max

�
V s1 (�) ; V

h
1 (�)

	�
given by (69), we obtain

P1 =
1 +��

r
+
�

r

"R ���
�� [1� F (�)] d�
��1 + �+ r

�
R ��
0 F (�) d�

��1 + �+ r

#
: (70)

Step V. We derive P2, the price of asset 2. For this, we �rst calculateE
�
max

�
V s2 (�

0) ; V h2 (�
0)
	�
.

According to the optimal strategy for an owner of asset 2 speci�ed in (52), we know

E
h
max

n
V s2 (�) ; V

h
2 (�)

oi
=

Z ���

0
V s2 (�) dF (�) +

Z �

���
V h2 (�) dF (�) ;

where V s2 (�) is given by (51) and V
h
2 (�) is given by

V h2 (�) = V
h
2 (�

��)+
�����
�+ r

(a)
= V s2 (�

��)+
�����
�+ r

(b)
= U+P2+

��s1
��s1 + �+ r

��� ���
�+ r

+
�����
�+ r

;

where (a) is due to (53) and (b) is due to (51).

After some algebra, we have

E
h
max

n
V s2 (�) ; V

h
2 (�)

oi
= U + P2 +

��s1
��s1 + �+ r

R ���
�� [1� F (�)] d�

�+ r
+

R �
��� [1� F (�)] d�

�+ r
:

(71)

We use (55) to derive the expression of P2. Substituting out U given by (49), E
�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

given by (71) and rearranging, we obtain

P2 =
1 +���

r
� ��1
��1 + �+ r

��� ���
r

: (72)

Step VI. We now determine �s1; �
b
1; �

h
1 ; �

h
0 and cuto¤ points �

�;���. Recall that we have

�s1 = �
b
1 � �1.
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Plugging �h2 = X2 into the in�ow-out�ow balance equation of buyers of asset 1 (equation (5)

in the paper) and rearranging yields

�
�
�h0 +X2 + �

b
1

�
F (���)� ��b1 = ��b1�s1 + �

�
�h0 +X2 + �

b
1

�
F (��) : (73)

Plugging �h2 = X2 into the in�ow-out�ow balance equation of inactive non-owners (equation (7)

in the paper) and rearranging yields

��h0 = ��
b
1�
s
1 + �

�
�h0 + �

b
1 +X2

�
F (��) :

The R.H.S. of these two equations are identical, so are their L.H.S., i.e.,

F (���) =
�b1 + �

h
0

�h0 +X2 + �
b
1

= 1� X2

�h0 +X2 + �
b
1

:

Due to the total population constraint (equation (11) in the paper),

�h0 +X2 + �
b
1 = N �

�
�h1 + �

s
1

�
= N �X1;

where we have used the market clearing condition for asset 1 in the last equality. Hence,

F (���) = 1� X2
N �X1

:

Substituting out F (���) and term
�
�h0 +X2 + �

b
1

�
in (73), we obtain

� (N �X1 �X2)� ��1 = � (�1)2 + � (N �X1)F (��) : (74)

The in�ow-out�ow balance equation of inactive owners (equation (7) in the paper) can be

rewritten as

��1 + � (�1)
2 = �

�
�s1 + �

h
1

�
F (��) = �X1F (�

�) ; (75)

where we have used the market clearing condition for asset 1 again.

Putting (74) and (75) together and cancelling out F (��), we obtain a quadratic equation of

�1:

(�1)
2 +

�

�
�1 �

�X1
�

�
1� X1 +X2

N

�
= 0:

216



This equation has two real roots with di¤erent signs and we have to pick the positive one, which

is exactly equation (30) in the paper. Substituting the closed-form expression of �1 into (74) gives

the expression of F (��).

Step VII. We study type distribution for each kind of investors in the steady-state.

We use gxi (�), where x = b; s; h and i = 0; 1; 2, to denote the density of investors with value

funcion V xi (�). Integrating g
x
i (�) over

�
0;�

�
should be equal to the population size of investors

for each kind: Z �

0
gxi (�) d� = �

x
i :

For any �, the following identity should be satis�ed:

gh0 (�) + g
b
1 (�) + g

b
2 (�) + g

s
2 (�) + g

h
2 (�) + g

s
1 (�) + g

h
1 (�) = Nf (�) : (76)

Since one can sell or buy asset 2 immediately, we have gb2 (�) = o (1) and g
s
2 (�) = o (1) for

all �.

To determine gh1 (�) on its support
�
��;�

�
, we consider the �ows in and out of the population

of inactive owners of asset 1 with types in [�;�+ d�]. The in�ows consist of: 1) those sellers

of asset 1 whose newly-drawn types lie in this interval (��s1f (�) d�), 2) those inactive owners of

asset 1 whose newly-drawn types lie in this interval (��h1f (�) d�), 3) those buyers of asset 1 who

meets sellers and trade (��s1g
b
1 (�) d�, given � 2 [��;���]). The out�ow is �gh1 (�) d�, coming

from those inactive owners of asset 1 who experience type changes and whose newly-drawn types

are in this interval. The in�ow-out�ow balance equation yields

�
�
�s1 + �

h
1

�
f (�) + ��s1g

b
1 (�)�[��;���] (�) = �g

h
1 (�) , for � 2

�
��;�

�
:

Here, �[��;���] (�) is an indicator function that takes on the value of 1 if � 2 [��;���] and 0

otherwise.

Since �s1 + �
h
1 = X1, we obtain

gh1 (�) =

�
X1f (�) +

�
��

s
1g
b
1 (�)

X1f (�)
, if

� 2 [��;���]
� 2

�
���;�

� :
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When � 2 (��0;���0 ), (76) becomes

gb1 (�) + g
h
1 (�) = Nf (�) :

Substituting gh1 (�) out and rearranging, we obtain

gb1 (�) =
�1f (�)

F (���)� F (��) , for � 2 [�
�;���] :

Hence,

gh1 (�) =

( h
N � �1

F (���)�F (��)

i
f (�)

X1f (�)
, for

� 2 [��;���]
� 2

�
���;�

� :
Following similar procedure, we can show that gh0 (�), g

s
1 (�) and g

h
2 (�) are proportional to

f (�) on their supports respectively. Therefore, we can have

gh0 (�) = (N �X1 �X2 � �1)
f (�)

F (��)
for � 2 [0;��] ;

gs1 (�) = �1
f (�)

F (��)
for � 2 [�;��] ;

gh2 (�) = (N �X1) f (�) for � 2
�
���;�

�
:

Q.E.D.

6 Proof of Corollary 1

With f(�) in (36), Proposition 3 implies that LP is increasing in X2 if and only if

1
a �B
N

1
a

>

1
a �B +

(1�B)a+1
a(a+1)

�
rF (�

��)

(N �X1)
1
a

; (77)

where B 2
�
0; 12
�
is given by

B =
��X1
2 F (��)�

�
2

�2
+ ��X1F (��) +

�
�
2 + r

�q�
�
2

�2
+ ��X1F (��)

:

There are 3 cases. Case 1: If a < 1
B , (77) can be rewritten as

1
a �B

1
a �B +

(1�B)a+1
a(a+1)

�
rF (�

��)
>

N
1
a

(N �X1)
1
a

:
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The left hand side (LHS) of the above inequality is smaller than 1, while the right hand side

(RHS) is larger than 1. So, the inequality never holds and LP is decreasing in X2.

Case 2: If 1B � a < a1, where a1 is given by

a1 =
1�B
2B

�
1 +

�

r
F (���)

�
+

s�
1�B
2B

�2 �
1 +

�

r
F (���)

�2
+
1

B

�
1 +

�

r
F (���)

�
;

the LHS of (77) is negative while the RHS of (77) is positive, so the inequality never holds.

Therefore, LP is decreasing in X2.

Case 3: If a � a1, (77) holds if and only if

N �X1
N

<

�
1� (1�B) a+ 1

(a+ 1) (aB � 1)
�

r
F (���)

�a
; (78)

Note that the LHS of (78) is between 0 and 1. The RHS of (78) is increasing in a. Moreover,

RHS = 0 if a = a1 and RHS>1 if a is su¢ ciently large. Hence, there exists a unique ba > a1 such
that

N �X1
N

=

�
1� (1�B)ba+ 1

(ba+ 1) (baB � 1) �r F (���)
�ba

(79)

and inequality (78) holds if and only if a > ba.
Therefore, combining all three cases, we obtain that the liquidity premium is decreasing in X2

for a < ba and increasing in X2 for a > ba.
7 Proof of Proposition 5

We �rst compute an investor�s average value function across � in the steady state. Recall that

gxi (�), where x = b; s; h and i = 0; 1; 2, represents the density of investors with value funcion

V xi (�). Since one can sell or buy asset 2 immediately, we have g
b
2 (�) = o (1) and g

s
2 (�) = o (1)

for all �. Now, we list out the steady state type distribution and value function for each kind

of investors as follows: 1) inactive non-owners: V h0 (�) = U is given by (49) and gh0 (�) =

(N �X1 �X2 � �1)
f(�)
F (��) for � 2 [0;��]; 2) buyers of asset 1: V b1 (�) is given by (47) and

gb1 (�) = �1
f(�)

F (���)�F (��) for � 2 [�
�;���]; 3) inactive owners of asset 1: V h1 (�) = U+P1+

����
�+r
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for � 2 [��;���] and

gh1 (�) =

( h
N � �1

F (���)�F (��)

i
f (�) , for � 2 [��;���]

X1f (�) , for � 2
�
���;�

� ;

4) sellers of asset 1: V s1 (�) = U + P1 +
����
��1+�+r

for � 2 [�;��] and gs1 (�) = �1
f(�)
F (��) for

� 2 [�;��]; 5) owners of asset 2: V h2 (�) = U+P2+����
�+r �

������
��1+�+r

and gh2 (�) = (N �X1) f (�)

for � 2
�
���;�

�
.

The expected welfare is given by

E [V (�)] =
1

N

"Z ��

0
V h0 (�) g

h
0 (�) d�+

Z ���

��
V b1 (�) g

b
1 (�) d�+

Z ��

�
V s1 (�) g

s
1 (�) d�

+

Z �

��
V h1 (�) g

h
1 (�) d�+

Z �

���
V h2 (�) g

h
2 (�) d�

#

=
1

r

"
X1 +X2
N

+

Z �

��
�dF (�)

#
�

�
r I1 + �1I2

��1 + �+ r
; (80)

where

I1 =

�
1� X1

N

�Z ���

��
[F (���)� F (�)] d�+ X1

N

Z ��

0
F (�) d�;

I2 =
1

N

"Z ���

��

F (�)� F (��)
F (���)� F (��)d�+

Z ��

�

F (�)

F (��)
d�

#
:

Note that the �rst term in (80) is the expected welfare with no friction, i.e., the �rst-best case

and the second term is the welfare loss due to search friction. Since �1 itself is also a function of

�, we will it as �1 (�).

We introduce a function

G (x; y) = �
�
r I1 + I2y

x+ �+ r
, for x > 0; y > 0.

One can show that G (��1 (�) ; �1 (�)) is strictly increasing in � and strictly concave in � and

converges to zero when �!1.

The decentralized choice problem (expression (37) in the paper) is equivalent to

max
�i
G
��
��i + (1� �)�

�
�1
�
�
�
; �1

�
�
��
� � (�i) :
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The decentralized choice �d is characterized by FOC:

��1

�
�d
� @G
@x

�
�d�1

�
�d
�
; �1

�
�d
��
= �0

�
�d
�
: (81)

The centralized choice problem (expression (38) in the paper) is equivalent to

max
�i
G (��1 (�) ; �1 (�))� � (�) :

Hence, �c is characterized by FOC:

@G

@x
(�c�1 (�

c) ; �1 (�
c))

d [��1 (�)]

d�

����
�=�c

+
@G

@y
(�c�1 (�

c) ; �1 (�
c))

d�1 (�)

d�

����
�=�c

= �0 (�c) : (82)

In the following, we will show that (82) and (81) have unique solutions, �c and �d. Moreover,

if � � 1=2, we have �c > �d. If � > 1=2, we have

(a) if H (��) > �0 (��) , then �d > �c > ��;

(b) if H (��) = �0 (��) , then �d = �c = ��;

(c) if H (��) < �0 (��) , then �d < �c < ��;

where �� is uniquely determined byp
�2 + 4���X1F (��)� �

��
=
�I1
rI2

(2�� 1)
p
�2 + 4���X1F (��)� �

(1� �)
p
�2 + 4���X1F (��) + �+ r

; (83)

and H (��) is given by

H (��) =
1

1 + 2(�+r)p
�2+4���X1F (��)��

�
r I1

�
��

(1� �)
p
�2 + 4���X1F (��) + �+ r

: (84)

Let

H (�) = ��1 (�)
@G

@x
(��1 (�) ; �1 (�)) = ��1 (�)

�G (��1 (�) ; �1 (�))
��1 (�) + �+ r

;

K (�) =
�1 (�)

2

��1 (�) + �

��1 (�) +
�
2

�G (��1 (�) ; �1 (�))
��1 (�) + �+ r

+
�1 (�)

2

�1 (�)

��1 (�) +
�
2

I2
��1 (�) + �+ r

;

then FOCs (82) and (81) can be rewritten as

H
�
�d
�

= �0
�
�d
�
;

K (�c) = �0 (�c) :
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SinceG (��1 (�) ; �1 (�)) is strictly increasing and concave in � andK (�) =
dG
d� (��1 (�) ; �1 (�)),

we know K (�) is positive and decreasing in �: K 0 (�) < 0.

On the other hand, H (�) is positive and decreasing in �.

We study K (�)�H (�):

K (�)�H (�) = �1 (�)

[��1 (�) + �+ r]
2J (�) ;

where

J (�) =

�
1

2
� �+

�
2

2��1 (�) + �

�
�

r
I1 +

�
1� �+ �+ r

2��1 (�) + �

�
�1 (�) I2:

It can be shown that �1 (�) is decreasing in � and ��1 (�) is increasing in �. It follows that J (�)

is decreasing in �. Now we check the boundary conditions:

J (�)j�=0 = (1� �) �
r
I1 +

�
2� �+ r

�

�
I2X1F (�

�) > 0;

J (�)j�=1 =

�
1

2
� �

�
�

r
I1:

If � � 1
2 , then J (�)j�=1 > 0 and J (�) > J (�)j�=1 > 0 for any �nite � because J (�) is

decreasing in �. That is, K (�) > H (�) for any �nite �. In this case, we have �c > �d. To see

this, we suppose the reverse, i.e., �c < �d. We have the following chain of inequalities:

�0
�
�d
�
(1)
= H

�
�d
� (2)
< H (�c)

(3)
< K (�c)

(4)
= �0 (�c) ;

where (1) is by de�nition, (2) is because H (�) is decreasing, (3) is because K (�) > H (�) for any

�nite �, (4) is by de�nition. On the other hand, since �00 (�) > 0, we should have �0 (�c) < �0
�
�d
�
.

This results in a contradiction.

If � > 1
2 , then J (�)j�=1 < 0. Then, there exists a unique �� such that

K (�)

8<:
>
=
<

9=;H (�) , or J (�)
8<:
>
=
<

9=; 0 i¤ �
8<:
<
=
>

9=;��:
We have the following three subcases.

Subcase I: if H (��) > �0 (��), then �d > �c > ��.
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We �rst show �c > �� and �d > ��. Both can be proved by contradiction. If �d < ��,

then we have �0
�
�d
�
= H

�
�d
�
> H (��) > �0 (��), where the �rst inequality is because H (�)

is decreasing. On the other hand, we should have �0
�
�d
�
< �0 (��) because �00 (�) > 0. We thus

present a contradition. The same logic leads to �c > ��.

Next, we show �c < �d. Suppose not, i.e., �c > �d. We therefore have the following chain of

inequalities:

�0
�
�d
�
(1)
= H

�
�d
� (2)
> H (�c)

(3)
> K (�c)

(4)
= �0 (�c) ;

where (1) is by de�nition, (2) is because H (�) is decreasing and we have set �c > �SB, (3) is

because H (�) > K (�) for any � > �� and here �c > ��, (4) is by de�nition. On the other

hand, it must be the case that �0
�
�d
�
< �0 (�c) under the assumption �c > �d. This results in a

contradiction.

Subcase II: if H (��) = �0 (��), then �d = �c = ��. This is obvious.

Subcase III: if H (��) < �0 (��), then �� > �c > �d. This part can be proved in a similar way

as in subcase I.

We therefore arrive at result (a), (b) and (c) in the proposition.

Now we determine the value of �� and H (��). Setting J (��) = 0 and rearranging, we obtain

�1 (�
�) =

�I1
rI2

�� 1
2 �

�
2p

�2+4���X1F (��)

1� �+ �+rp
�2+4���X1F (��)

:

The LHS is decreasing in �� while the RHS is increasing in �� (because the numerator is increasing

in �� and the denominator is decreasing in ��). To ensure the existence and uniqueness of ��, we

only need to check the boundary conditions:

LHSj��=0 = X1F (�
�) > 0 > ��I1

rI2

1� �
2 + r

� � �
= RHSj��=0 ,

LHSj��=1 = 0 <
�I1
rI2

�� 1
2

1� � = RHSj��=1 .

Plugging the expression of �1 (�
�) into the L.H.S., we know that �� is determined by (83).
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We next determine G (��):

G (���1 (�
�) ; �1 (�

�)) = �
�
r I1 + I2�1 (�

�)

���1 (�
�) + �+ r

= �
�
r I1

(1� �)
p
�2 + 4���X1F (��) + �+ r

:

Finally,

H (��) = K (��) = ��1 (�
�)
�G (���1 (��) ; �1 (��))

���1 (�) + �+ r

gives (84). Q.E.D.

8 Proof of Proposition 6

To establish the equilibrium when asset 1 has default risk, we �rst construct value functions for

investors and analyze their optimal strategies in Step I. We then do demographic analysis in Step

II.

Step I. In this version of the model, there is a primary market. Each instant [t; t+dr], �X1dt

units of asset 1 is issued to the economy. The issuers search in the market for asset 1 until they

sell their asset to buyers, and then leave the economy.

We use q to denote the amount of asset 1 that has been issued but is still held by issuers. The

value functions satisfy the following equations

V b1 (�) =
� (�s1 + q)

�
V h1 (�)� P1

�
+ �E

�
max

�
V h0 (�

0) ; V b1 (�
0) ; V b2 (�

0)
	�

� (�s1 + q) + �+ r
; (85)

V h1 (�) =
1 +�+ �max

�
V b1 (�) ; V

b
2 (�) ; V

h
0 (�)

	
+ �E

�
max

�
V s1 (�

0) ; V h1 (�
0)
	�

�+ r + �
; (86)

V s1 (�) =
1 +�+

�
��b1 + �

�
max

�
V h0 (�) ;V

b
2 (�)

	
+ ��b1P1+�E

�
max

�
V s1 ;V

h
1

	�
��b1 + �+ r + �

; (87)

V b2 (�) = V h2 (�)� P2; (88)

V s2 (�) = max
n
V h0 (�) ; V

b
1 (�)

o
+ P2; (89)

V h2 (�) =
1 +�+ �E

�
max

�
V s2 (�

0) ; V h2 (�
0)
	�

�+ r
; (90)

V h0 (�) =
�

�+ r
E
h
max

n
V b1
�
�0
�
; V b2

�
�0
�
; V h0

�
�0
�oi

: (91)

It is direct to see that V h0 (�) is constant for all � and we denote it by U . V h2 (�) is linear in
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� with an upward slope 1
�+r . We still conjecture that there exists two cuto¤ points, �

y
0 and �

yy
0 ,

such that

max
n
V h0 (�) ; V

b
1 (�) ; V

b
2 (�)

o
=

8>>><>>>:
V h0 (�) , if � 2

h
0;�y0

�
V b1 (�) , if � 2

�
�y0;�

yy
0

�
V b2 (�) , if � 2

�
�yy0 ;�

i (92)

and

V b1

�
�y0

�
= U; V b1

�
�yy0

�
= V b2

�
�yy0

�
: (93)

With (92) in hand, we are able to determine the slope of V h1 (�) in the interior of each region:

dV h1 (�)

d�
=

8>>><>>>:
1

�+�+r , if � 2
�
0;�y0

�
;

�(�s1+q)+�+r
(�+r)[�(�s1+q)+�+r+�]

, if � 2
�
�y0;�

yy
0

�
;

1
�+r , if � 2

�
�yy0 ;�

�
;

(94)

and the slope of V b1 (�)

dV b1 (�)

d�
=

8>>>><>>>>:
�(�s1+q)

(�+�+r)[�(�s1+q)+�+r]
, if � 2

�
0;�y0

�
;

�(�s1+q)
(�+r)[�(�s1+q)+�+r+�]

, if � 2
�
�y0;�

yy
0

�
;

�(�s1+q)
(�+r)[�(�s1+q)+�+r]

, if � 2
�
�yy0 ;�

�
:

(95)

Integrating (94) and (95) while taking (93) into consideration, we obtain

V b1 (�) =

8>>>>>><>>>>>>:

U +
�(�s1+q)

�
���y0

�
(�+�+r)[�(�s1+q)+�+r]

, if � 2
h
0;�y0

�
;

U +
�(�s1+q)

�
���y0

�
(�+r)[�(�s1+q)+�+r+�]

, if � 2
�
�y0;�

yy
0

�
;

U +
�(�s1+q)

�
�yy0 ��

y
0

�
(�+r)[�(�s1+q)+�+r+�]

+
�(�s1+q)

�
���yy0

�
(�+r)[�(�s1+q)+�+r]

, if � 2
�
�yy0 ;�

i
;

(96)

V b2 (�) = U +
� (�s1 + q)

�
�yy0 ��

y
0

�
(�+ r) [� (�s1 + q) + �+ r + �]

+
���yy0
�+ r

: (97)

We then use (18) to simplify the expression of U :

U =
�

r

264 � (�s1 + q)

� (�s1 + q) + �+ r + �

R �yy0
�y0

(1� F (�)) d�

�+ r
+

R �
�yy0

(1� F (�)) d�
�+ r

375 : (98)

Likewise, it is easy to show that the optimal strategy for an owner of asset 2 is as follows:
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there exists a cuto¤ point �y2 such that

maxfV s2 (�) ; V h2 (�)g =
(
V s2 (�) , if � < �

y
2

V h2 (�) , if � � �
y
2

; (99)

and

V s2

�
�y2

�
= V s2

�
�y2

�
: (100)

Similarly to the proof of Proposition 1, we can show that �y2 = �
yy
0 � �yy.

We now determine the optimal strategy for an owner of asset 1. Di¤erentiating (87) with

respect to � we obatin
dV s1 (�)

d�
=

(
1

��b1+�+r+�
, if � < b�1;

1
�+r , if � >

b�1; (101)

where b�1 = �+ r + �

� (�s1 + q) + �+ r + �
�yy0 +

� (�s1 + q)

� (�s1 + q) + �+ r + �
�y0 2

�
�y0;�

yy
0

�
:

dV h1 (�)
d� is given by (94).

We assume that there exists a cuto¤ point �y1 such that

maxfV s1 (�) ; V h1 (�)g =
(
V s1 (�) , if � < �

y
1;

V h1 (�) , if � � �
y
1;

and

V s1

�
�y1

�
= V h1

�
�y1

�
:

Then following similar derivations from equations (61) to (64) in the paper (in Step III of

proof of Proposition 1), we can obtain

�y0 = �
y
1 � �y: (102)

Analogous to equation (66) in the paper (in the proof of Proposition 1), we obtain

�s1 + q = �
b
1: (103)

Step II. We now obtain the in�ow-out�ow balance equations for the population of investors of

each group. As shown in Panel A of Figure 1, the in�ow to the primary market during [t; t+dt] is
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�X1dt. We use q to denote the amount of asset 1 in this primary market. Hence, the out�ow from

this primary market has two components. First, �qdt of asset 1 default and leaves the economy.

Second, ��b1qdt issuers manage to sell their positions to buyers in the market for asset 1. Hence,

the in�ow-out�ow balance equation for the population of sellers holding newly issued securities is

given by

�X1 = �q + ��
b
1q: (104)

hINSERT FIGUREi

Panel B summarizes the demographics for the secondary markets. Let gh1 (�) be the density

of investors with value function V h1 (�). This function satis�es the accounting identityZ �

�y1

gh1 (�) d� = �
h
1 :

The in�ow-out�ow balance equations for the population of sellers of asset 1, buyers of asset 1,

inactive owners of asset 1, inactive non-owners, are given by

��h1F
�
�y1

�
= ��b1�

s
1 + ��

s
1

h
1� F

�
�y1

�i
+ ��s1; (105)

��h0

h
F
�
�yy0

�
� F

�
�y0

�i
+ ��h2

h
F
�
�y2

�
� F

�
�y0

�i
+ �

Z �yy0

�y0

gh1 (�) d�;

= ��b1 (�
s
1 + q) + ��

b
1

h
F
�
�y0

�
+ 1� F

�
�yy0

�i
; (106)

��s1

h
1� F

�
�y1

�i
+ ��b1 (�

s
1 + q) = ��

h
1 + ��

h
1F
�
�y1

�
; (107)

��s1 + ��
b
1�
s
1 + ��

h
2F
�
�y0

�
+ ��b1F

�
�y0

�
+ �

Z �y0

�y1

gh1 (�) d� = ��
h
0

h
1� F

�
�y0

�i
: (108)

The measures of buyers and sellers in market 2, �b2 and �
s
2, are still in�nitesimal

�b2 = �
�
�h0 + �

b
1

� h
1� F

�
�yy0

�i
dt+ �dt

Z �

�yy0

gh1 (�) d�; (109)

�s2 = ��h2F
�
�y2

�
dt; (110)

and during each instant [t; t+ dt), the �ow of buyers is equal to the �ow of sellers

�
�
�h0 + �

b
1

� h
1� F

�
�yy0

�i
+ �

Z �

�yy0

gh1 (�) d� = ��
h
2F
�
�y2

�
: (111)
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We now determine gh1 (�) on its support
h
�y1;�

i
. To this end, we consider the �ows in and out

of the population of inactive owners of asset 1 with types in [�;�+ d�]. The in�ows consist of:

1) those sellers of asset 1 whose newly-drawn types lie in
h
�y1;�

i
(��s1f (�) d�), 2) those inactive

owners of asset 1 whose newly-drawn types lie in
h
�y1;�

i
(��h1f (�) d�), 3) those buyers of asset

1 who meets sellers and trade (� (�s1 + q) g
b
1 (�) d�, given � 2

�
�y0;�

yy
0

�
). The out�ows consist

of: 1) those inactive owners of asset 1 who experience type changes and whose newly-drawn types

are
h
�y1;�

i
(�gh1 (�) d�), 2) those owners of asset 1 whose types are in this interval and whose

asset 1 happens to default (�gh1 (�) d�). The in�ow-out�ow balance equation yields

�
�
�s1 + �

h
1

�
f (�) + � (�s1 + q) g

b
1 (�)� (�)

�
�y0;�

yy
0

� = (� + �) gh1 (�) , for � 2 h�y1;�i :
Rearranging, we obtain

gh1 (�) =

8<:
�(�s1+�h1)f(�)

�+� , if � 2
h
�y1;�

y
0

i
[
h
�yy0 ;�

i
;

�(�s1+�h1)f(�)+�gb1(�)(�s1+q)
�+� , if � 2

�
�y0;�

yy
0

�
;

(112)

where gb1 (�) is the density of investors with value funcion V
b
1 (�). We do not have to obtain the

exact form of gb1 (�), but only need to keep in mind that

�b1 =

Z �yy0

�y0

gh1 (�) d�:

We are then able to calculate the following three integrals:Z �y0

��1

gh1 (�) d� =
�
�
�s1 + �

h
1

�
� + �

[F (�y0)� F (�
y
1)];Z �yy0

�y0

gh1 (�) d� =
�
�
�s1 + �

h
1

�
� + �

[F (�yy0 )� F (�
y
0)] +

��b1 (�
s
1 + q)

� + �
;

Z �

�yy0

gh1 (�) d� =
�
�
�s1 + �

h
1

�
� + �

[1� F (�yy0 )]:

With these in hand, we can simplify (106) to 
�h0 + �

h
2 +

�
�
�s1 + �

h
1

�
� + �

!h
F
�
�yy0

�
� F

�
�y0

�i
=
��b1 (�

s
1 + q)

� + �
+ �b1

h
1 + F

�
�y0

�
� F

�
�yy0

�i
;

(113)
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(108) to

��s1 + ��
b
1�
s
1 + �

�
�h2 + �

b
1

�
F
�
�y0

�
+
��
�
�s1 + �

h
1

�
� + �

h
F
�
�y0

�
� F

�
�y1

�i
= ��h0

h
1� F

�
�y0

�i
;

(114)

and (111) to  
�h0 + �

b
1 +

�
�
�s1 + �

h
1

�
� + �

!h
1� F

�
�yy0

�i
= �h2F

�
�y2

�
: (115)

Since owners of asset 1 include inactive owners and sellers in the primary and secondary

market, we have

X1 = �
h
1 + �

s
1 + q: (116)

The market clearing condition for asset 2 is given by

X2 = �
h
2 : (117)

Besides, market participants in all pools (except sellers of newly issued securities) should be

summed up equal to total population

�h1 + �
s
1 + �

b
1 + �

h
2 + �

s
2 + �

b
2 + �

h
0 = N: (118)

In order to determine the value of these measures, we need to express every other measure as

a function of �b1 as a �rst step and then obtain an equation to solve out �
b
1.

Since �b2 and �
s
2 are in�nitesimal and (116) and (117) holds, (118) boils down to

�b1 + �
h
0 = N �X1 �X2 + q: (119)

From (104), we know

q =
�X1

� + ��b1
: (120)

Substituting (120) back into (119), we obtain

�h0 = N �X2 �
��b1

� + ��b1
X1 � �b1: (121)
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Substituting (120) back into (116), we obtain

�h1 + �
s
1 =

��b1X1

� + ��b1
: (122)

From (105), we know

�h1 =
�s1

�F
�
�y1

� h��b1 + � h1� F ��y1�i+ �i : (123)

Substituting (123) back into (122) and rearranging, we obtain

�s1 = X1
��b1

� + ��b1

�F (��1)

��b1 + �+ �
; (124)

�h1 = X1
��b1

� + ��b1

��b1 + � [1� F (��1)] + �
��b1 + �+ �

: (125)

So far, we have already obtained the expression of q in (120), that of �h0 in (121), that of �
s
1

in (124) and that of �h1 in (125), each as a function of �
b
1 (and also �

�
1 if needed).

We show in (102) that �y0 and �
y
1 converge to a common limit �

y as �! 0.

Equation (103) implies a relationship between �b1 and �
y:

F
�
�y
�
=
1

�

�
�b1 +

�+ �

�

��
� + ��b1
X1

� �

�b1

�
: (126)

Using (122) to substitute out term
�
�h1 + �

s
1

�
in (115) and (121) to substitute out term�

�h0 + �
b
1

�
in (115) and rearranging, we obtain�

N � �

� + �

��b1X1

� + ��b1

�h
1� F

�
�yy
�i
= X2: (127)

Similarly, we can show that (113) can be rearranged as�
N � �

� + �

��b1X1

� + ��b1

�h
F
�
�yy
�
� F

�
�y
�i
=

1

� + �

��b1X1

� + ��b1

 
���b1F

�
�y
�

��b1 + �+ �
+ �

!
+ �b1: (128)

Substituting out term F
�
�yy
�
by using (127) and term F

�
�y
�
by using (126) and rearranging,

(128) boils down to

1

�

�
�b1 +

�+ �

�

��
� + ��b1
X1

� �

�b1

�
= 1�

1
�+��

�
�b1
�2
+ �b1 +X2

N � �
�+�

��b1X1
�+��b1

; (129)

which is an equation of �b1. Q.E.D.
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9 Proof of Proposition 7

From (41), we expand �b1 as

�b1 = m
b
1=
p
�+ o

�
1=
p
�
�
; (130)

where

mb
1 =

s
X1

�
� + �

�
1� X1 +X2

N

��
:

From (130), we can obtain

�y = �� + o
�
1=
p
�
�
;

�yy = F�1

 
1� X2

N � �
�+�X1

!
+ o (1) ;

where �� is given by (22). We can thus expand P1 and the safety premium as

P1 =
1 +�y

� + r
+ o (1) ;

SP =
�
�
1 + �y

�
r (� + r)

+ o (1) :

Therefore, when � is su¢ ciently large, we have

@SP

@X2
= � �

r (� + r)Nf (�y)
< 0;

@2SP

@X2@�
= � 1

(� + r)2Nf (�y)
< 0:

Q.E.D.
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