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ABSTRACTS

The dissertation, which consists of three chapters, is devoted to exploring
theoretical asset pricing in over-the-counter markets.

In Chapter 1, | study an economy where investors can trade a long-lived asset in
both exchange and OTC market. Exchange means high immediacy and high cost
while OTC market corresponds to low immediacy and low cost. Investors with
urgent trading needs enter the exchange while investors with medium valuations
enter the OTC market. As search friction decreases, more investors enter the
OTC market, the bid-ask spread narrows and the trading volume in the OTC
market increases. This sheds some light on the historical pattern why most
trading in corporate and municipal bonds on the NYSE migrated to OTC markets
after WWII with the development of communication technology.

In Chapter 2 (co-authored with Hongjun Yan and Hin Wei), we analyse a search
model where an intermediary sector emerges endogenously and trades are
conducted through intermediation chains. We show that the chain length and the
price dispersion among inter-dealer trades are decreasing in search cost, search
speed and market size, but increasing in investors’ trading needs. Using data
from the U.S. corporate bond market, we find evidence broadly consistent with
these predictions. Moreover, as the search speed goes to infinity, our search-
market equilibrium does not always converge to the centralized-market
equilibrium. In particular, the trading volume explodes when the search cost
approaches zero.

In Chapter 3 (co-authored with Hongjun Yan), we analyse a search model where
two assets with different level of liquidity and safety are traded. We find that the
marginal investor’s preference for safety and liquidity is not enough to determine
the premium in equilibrium, but the whole distribution of investors’ valuations play
an important role. We specify the condition under which an increase in the supply
of the liquid asset may increase or decrease the liquidity premium. The paper
also endogenizes the investment in the search technology and conducts welfare
analysis. We find that investors may over- or underinvest in the search
technology relative to a central planner.
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Exchange or OTC Market: A Search-Based Model of
Market Fragmentation and Liquidity

Abstract

Investors trade assets or commodities in different venues: exchange means high immediacy and
high cost while OTC market corresponds to low immediacy and low cost. For example, a recent
trend in the global equity market is the rise of off-exchange trading. Chinese enterprise bonds
are traded in two partially-separated markets, the exchange and the interbank market. This
paper presents a model where a long-lived asset can be traded both in an exchange and an OTC
market. In the exchange, transactions are intermediated by market-makers who post bid-ask prices
publicly. In the OTC market, dealers search for trading partners on behalf of investors. Investors
with urgent trading needs enter the exchange while investors with moderate valuations enter the
OTC market. As search friction decreases, more investors enter the OTC market, the bid-ask
spread narrows and the trading volume in the OTC market increases. This helps understand the
historical pattern why most trading in corporate and municipal bonds on the NYSE migrated to
OTC markets after WWII with the development of communication technology.



1 Introduction

Nowadays, many commodities and assets can be traded simultaneously in both centralized ex-
change and decentralized over-the-counter (OTC) markets. For example, Chinese enterprise bonds
are traded in two partially-separated markets, the exchange and the interbank market (Wang et
al, 2015). Multiple trading venues meet different levels of traders’ needs: exchange usually means
high immediacy and high cost while OTC market, however, corresponds to low immediacy and
low cost. How do these two markets interact with each other? What factors determine liquidity,
trading volume and bid-ask spread in each market and how? How can a decentralized solution be
compared with the socially optimal solution? These are the basic questions we attempt to answer

in this paper.

We study an economy where investors can trade a long-lived asset through two trading venues:
exchange or OTC market. Transactions in the exchange can be executed instantly, but incur some
explicit costs. Trading in the OTC market incurs time delay. Investors are heterogenous in their
intrinsic valuations of the asset and each one’s valuation changes over time, which generates
trading between people and across time. Investors are free to enter either market. In this sense,
the two trading venues are linked together to some degree, so the pricing in one market affects

trading activity in the other.

The model in Section 2 extends the seminal work of Duffie, Garleanu and Pedersson (2005,
2007) by enriching investor heterogeneity and incorporating a centralized market, but an individ-
ual investor’s valuation spans over interval [0, Z] . For simplicity, we still assume that each investor
can hold either one unit of the asset or no unit at all. Investors with desperate trading needs
directly go to the exchange while those with intermediate trading needs enter the OTC market.
More precisely, given that transaction cost in the exchange is not very big so that both markets are
active in trading, there exist three cutoff points, Ag, A, and Aq, with 0 < A; < A, < Ag < A.
Non-owners with high valuations (i.e., A € [AO,Z]) choose to buy in the exchange, those with

low valuations (i.e., A € [0,A,]) choose to hold no asset and those with valuations in between



(i.e., A € (A, Ap)) choose to search in the OTC market. The optimal decision-making for own-
ers also follows a simple cutoff rule. Owners with low valuations (i.e., A € [0,A4]) choose to
sell in the exchange, those with intermediate valuations choose to sell in the OTC market (i.e.,
A € (A1,A,)) and those with high valuations (i.e., A € [Ay, A]) choose to hold onto the asset.
Investors’ entry choices determine that the bid (or ask) price in the exchange should be charged

more aggresively than their counterparts in the OTC.

To further determine the bid-ask spread, we analyze two extreme cases of market making in the
exchange: competitive or monopolistic. The bid-ask spread in the exchange set by a monopolistic
market maker becomes narrower if search friction in the OTC is alleviated, if investors’ trading
needs are stronger or if investors become less patient. Interestingly, we also find that how the
asset supply affects the bid-ask spread is somehow related to the shape of the underlying valuation

distribution.

We specify the conditions under which both markets can coexist or all trading just occurs to
only one market. Generally speaking, the relative efficiency of the two markets (including trans-
action costs and search friction) and investors heterogeneity mutually determine the boundary of

market trading.

A quite robust observation from empirical studies is that the average trading volume in the
OTC market is much bigger than that in the exchange. In Section 2.4, we compare trading volumes
in two markets and find that an improvement of search technology in the OTC market attracts
more investors to trade in the OTC. This may shed some light on the historical pattern that, with
the development of communication technology, most trading in corporate and municipal bonds

on the NYSE have migrated to OTC markets after World War II.

We perform welfare analysis in Section 2.5. A benevolent social planner aims to maximize
the total welfare by controlling asset prices in both markets. We find that the social planner
tends to set a low Ag and a high A; relative to the decentralized solution under competitive or

monopolistic market making. More importantly, the socially optimal bid-ask spread is even below



the transaction cost. This means that the social optimum can not be automatically achieved by

a competitive equilibrium where market makers in the exchange receive no subsidy from outside.

Though the main model provides several useful intuitions and important implications, its
tractability relies heavily on the strong assumptions of asset indivisibility and restrictions on
investors’ holding position. Will the main results differ a lot if we deviate from these two assump-
tions? In Section 4, we work on a variation where the asset is perfectly divisible and investors are
allowed to trade any quantity. The new model is more complicated than the old one and there
could exist multiple equilibria. In a special case when the investor’s instantaneous utility takes
a quadratic form, we find that the bid-ask spread in the exchange takes almost exactly the same

expression as before.

This paper is related to the recently burgeoning literature that uses random search model
to analyze OTC markets. The strand of this literature is based on the framework developed in
Duffie, Garleanu and Pederson (2005). Their model has been generalized by a number of papers
(Weill (2007), Vayanos and Wang (2007), Vayanos and Weill (2008), etc). The closest to the
current paper is Miao (2006), who also analyzed a model where decentralized and centralized
trading are both available. The current paper is different from his work in a number of important
ways. Most importantly, in contrast to Miao’s paper, this work analyzes an environment where
a long-lived asset are traded repeatedly in the market, so buyers and sellers are endogenously
determined rather than exogenously fixed. However, in Miao’s model, when trade occurs to a pair
of seller and buyer, they both leave the market forever. The paper also draws different welfare
implications from Miao’s. Miao showed that monopolistic market-making may achieve a higher
level of social welfare than the case of competitive market-making, which can never be the case
in the current framework. A recent work by Zhong (2015) also analyzes the interaction between
centralized and OTC market, but his work focuses on how the introduction of centralized trading

reduces opacity in the OTC market, which is not the focus of this paper.

The rest of the paper is organized as follows. Section 2 lays out the main model and constructs

the equilibrium. Section 3 discuss some further issues. Section 4 considers a viariation where the



restrictions on portfolio holdings are relaxed.

2 The Model

Time is continuous and continues forever. The economy consists of three types of infinitely lived
agents, called investors, dealers in the OTC market and market makers in the exchange. All
agents are risk neutral and discount future cash flow at a constant rate r > 0. There are an asset

available for trading and a numeraire good for consumption in the economy.

The asset is long-lived and indivisible. Each unit of the asset pays one unit of perishable
consumption good continuously to its holder. Each investor can hold either zero or one unit of
the asset and no short-selling is allowed. An investor who owns a unit of the asset is called an

owner while one with no asset in hand is called a non-owner.

Each investor, whether he is an owner or a non-owner, has an intrinsic valuation for the asset,
denoted by A € [é, Z]. An owner derives an instantaneous utility 1 + A from the asset if his
current intrinsic valuation is A. A non-owner, however, gets zero consumption good, no matter

what his valuation is.

Each investor receives a shock in his intrinsic valuation according to a Poisson process with
arrival rate k. This process is independent across investors. Conditional on receiving such a shock,
the investor draws his new valuation according to a cumulative distribution function F'(-) on the
support [A, N . For simplicity, one’s new valuation is independent of his previous one. We assume
that F' () is continuous and first-order differentiable on its support and the associated density
function is denoted by f(-). Consequently, investors’ valuations on the asset vary from person
to person and change over time, which generates the motive for trading. It should be expected
that in equilibrium those owners with low valuations would like to sell while those non-owners
with high valuations would like to buy. Investors can trade the asset in the exchange or the OTC
market. Market makers remain in the exchange while dealers stay in the OTC market and both

of these two groups have no intrinsic valuation for the asset. None of the two sectors hold any



position in the asset, so all units are held by investor at any point of time.

OTC market. Dealers have direct access to a competitive interdealer market continuously.
It takes time for investors to contact dealers. Each investor meets a dealer randomly at a Poisson
arrival rate A > 0, i.e., the average time that an investor has to wait until his desired transaction
is executed is 1/A. Once a dealer meets a buyer (or seller), they exchange one unit of the asset
at bid price P4 (or ask price Pg). The bid-ask spread, P4 — Pp, is used to cover the cost of
intermediating each unit of the asset incurred by the dealer. Denote such cost by €. Free entry
implies

Py— Pp =e. (1)

Both of the bid and ask prices are determined in the interdealer market. Here, parameter A
measures the illiquidity of the OTC market from investors’ viewpoint. A large A translates to a
short delay time and thus corresponds to a liquid market. When A goes to infinity, investors can

adjust their asset positions instantaneously. !

Our formulation for search friction in the OTC market can also be understood as prearranged
trades, which are often seen in the municipal bond market. An investor calls a dealer to show
his trading interest. The dealer then searches for a counterparty. Once the dealer has found a
trading partner, he transfers the bond from the seller to the buyer. Hence, the dealer’s role in
a pre-arranged trade is simply to provide intermediation service. ? In this interpretation, the

parameter A measures how quickly a dealer position a trading partner for his client.

Throughout, we will stick to the first interpretation, but it is direct to rephrase our results in

the second interpretation.

Exchange Market. At any time, each investor can buy the asset at ask price A and sell
the asset at bid price B immediately. Both of the bid and ask prices are observed publicly by all

market participants, including all investors and dealers in the OTC market. A transaction incurs

'Here we take X as exogenously given. In Section 4, we will discuss how to determine this parameter endogenously.

2Li and Schiirhoff (2012) illustrates that those dealer firms in the peripheral position tend to intermediate
prearranged traders because they are only connected with a limited number of trading partners (other dealer firms
or clients) and just want to avoid inventory risk. See section 4.1 of their paper for more details.



a fixed cost c.

For time being, we assume that there is active trading in both markets. We will later show
the condition under which this is the case or one of the two markets shut down due to no trading

otherwise.

An investor is free to enter either of the two trading venues at any moment and there is no
cost for him to switch one from the other. Even if an investor in the OTC market gets a chance
to contact a dealer, he can still choose to trade in the exchange. Hence, the following condition

should hold in equilibrium to guarantee active trading in both markets:
A> Py > Pp>B. (2)

Otherwise, if the prices in the OTC market are not particularly favorable, all investors would

rather trade in the exchange.
2.1 Value Functions
The state of an individual investor is characterized by the pair (6, A), where 6§ € {0, 1} is his asset

position and A his intrinsic valuation. Let V' (6, A) be the expected payoff of such an investor.

A non-owner faces two choices: 1) do nothing, 2) search to buy the asset in the OTC, 3) buy
a unit of asset in the exchange at price A. He decides to choose the one that delivers him the

highest level of the expected payoff, i.e.,
V(0,A) = max { Vi (4), V2T (A), V5 (4) ], (3)

where V;, (A), V;OTC (A) and VM€ (A) represent the non-owner’s expected payoffs if he
chooses to do nothing, search to buy the asset in the OTC or buy the asset in the exchange

at present and follows his optimal strategy in the future, respectively. The three value functions



are determined by the following equations

Vo (A) = RirE[V (0,4%)], (4)
VbOTC (A) _ A [V (17 A) _)\ZAI]{‘:’j‘E [V (07 A,)] , (5)
Vbexchange (A) . (1’ A) . A, (6)

where the expectations on the first two lines are taken on A’, which is a random variable with
cdf F' (-). The first line says that a non-owner who chooses not to search stays inactively until he
receives a shock in his valuation which may call upon him to buy the asset. It is direct to see that
Vi (A) is constant for all A, so we denote it by V,,. The second line shows that a buyer in the
OTC keeps searching until he meets a dealer and purchase one unit at price P4, which happens
at rate ), or there is a change in his valuation and he needs to make a decision based on his new
valuation. The third line illustrates that a buyer in the exchange becomes an owner immediately

after he pays A.

An owner has three choices: 1) hold onto his asset, 2) search to sell the asset or 3) sell the

asset in the exchange immediately, so the expected payoff of an owner should be given by
V(1,A) = max {V; (), VOTC (A)  vesehonse () ] (7)

where Vj, (A) represents the expected payoff of an inactive holder and VOTC (A) and VE¥0ee (A)
are the non-owner’s expected payoffs if he searches to sell the asset in the OTC or sells the asset
in the exchange at present and follows his optimal strategy in his whole life, respectively. These

three value functions are given by

1+ A+ KE[V (1, A")]

Vi(a) = = , (®)
POTC (A} — I+ A+ AV (O’f?l—_;iBT]‘—i_KE [V(l,A’)]’ )
V;cxchangc (A) =V (O, A) + B’ (10)

where the expectations on the first two lines are taken on A’, which is a random variable with cdf

F().



We will later verify that in equilibrium a non-owner follows the following optimal decision
rule:
do nothing if A € [A, A*)
search to buy the asset in the OTC if [A* Ag] , (11)
buy the asset in the exchange if A € (Ao,m

where A* and Ay are two cutoff points to be determined in equilibrium. A non-owner is indifferent
between doing nothing and searching in the OTC if his valuation is A* and is indifferent between

trading in the OTC and the exchange market if his valuation is Ag:

Vn (A*) _ VE)OTC (A*) ’

VE)OTC (AO) _ V;)exchange (AO) )

There exist another two cutoff points A** and A; with A < A; < A** < A such that an owner’s
optimal choice is given by

sell the asset in the exchange if A € [A, Aq)
search to sell the asset in the OTC if [Ay, A™] | (12)
hold onto the asset if A € (A**,N

where A; and A** satisfy

Vsexchange (Al) _ VSOTC (Al) ,

V;OTC (A**) = W (A**) )

That is, the marginal owner with valuation A; is indifferent between selling in the exchange and
the OTC market while the marginal owner with valuation A** is indifferent between searching to

sell in the OTC and holding onto his asset.

We now briefly argue A* > A**. Suppose not, i.e., A* < A* and consider the behavior of
a buyer with valuation in the interval (A*, A**). As a non-owner, he searches to buy the asset
in the OTC according to decision rule (11). Once he buys the asset after paying P4, he would
turn to sell the asset still in the OTC, according to decision rule (12), at a somewhat low price
Pp. Such an investor actually acts as a speculator, but his strategy is to "buy high and sell
cheap". We show in the appendix how such operation certainly violates the optimality of buyer’s

profit-maximization objective and thus should be excluded.



All in all, the four cutoff points should be ordered as

A < AY < A* < Ay.
2.2 Demographic Analysis

We use p, (A) and p, (A) to denote the density function of owners and non-owners at A re-
spectively, i.e., the population size of the owners (or non-owners) with valuations in the region
(A, A+ dA) is p, (A)dA (or p,, (A)dA). The following accounting identities must hold for any

time:

po (A) + 1y (A) = f(A), (13)
&

Lo (A)dA = s. (14)
A

Equation (13) means that the cross-sectional distribution of investors’ type is equal to f(A).
Equation (14) requires that the total measure of owners must equal to the total supply of the
asset in the economy (s) because both of the exchange and the OTC market take zero asset
position. This implies

A
/ ty (A)dA =1 —s.
A

Since trading in the exchange results in no delay, decision rules (11) and (12) then imply that

Lo (A) = 0for Ae[A A),

y (A) = 0for A€ (Ag,A].
It follows immediately from (13) that

pn (A) = [(A) for AcA, Ay),

o (A) = f(A) for A€ (Ao, A].

We next determine p, (A) and p,, (A) for A € [A1, A**]. For this, we consider the flows in and

out of the population of owners (i.e., sellers) with valuations in interval [A, A + dA] during time

10



period dt. According to (12), these sellers search in the OTC. The inflow is kdt - sf (A), coming
from those sellers who receive preference shocks and whose new valuations happen to fall in this
interval. The outflow consists of those sellers who meet dealers and trade (Adt - p, (A)), and of
those sellers who receive preference shocks (kdt - p, (A)). The flow-balance equation is thus given
by

kSf(A) = Ay (A) + kp, (A) for A € [Ay, A™].

Using the similar logic, we can figure out p, (A) and u, (A) for A € (A**, A*) and [A*, Ag].

For the sake of saving space, we relegate all the details to the appendix.

Since the dealer sector, as a whole, holds no inventory, it follows that the mass of buyers

should equal that of sellers, namely,
Hs = Hp, (15)

where the masses of buyers and sellers are given by, respectively,

A,

o= [ @)aa, (16)
-

b = /A 1o (A) dA. (17)

The market makers in the exchange hold no position either. According to seller’s decision
rule (12), the total number of units sold from low-valuation investors to the exchange per unit
time amounts to xksE (Aj). According to buyer’s decision rule (11), the total number of units
demanded by high-valuation investors per unit time is given by x (1 —s)[1 — F (Ap)]. In the

exchange, the demand equals the supply at any time, so

ksF (A1) =k (1 —s)[1 = F(Ap)] (18)

2.3 Equilibrium

We first study the partial equilibrium where A and B, the bid and ask prices in the exchange, are

taken as given.

11



Definition 1 Given A and B, the steady-state (partial) equilibrium consists of bid and ask prices
in the OTC P4 and Pg, cutoff points Ay, A**, A* and Ag with A < A1 < A¥™ < A* < Ay < A,

the distributions of owners and non-owners (p, (A), u, (A)), such that

the implied choices (11) and (12) are optimal for all investors,

the implied sizes of each group of investors remain constants over time and satisfy the

corresponding flow-balance equations,

dealers are free to enter the OTC market, i.e., (1) holds,

the market-clearing conditions in the OTC and exchange market, (15) and (18), hold.

Our analysis will be focused mainly on the case of € = 0, with the only exception in Section 4
where we analyze the impact of dealer’s transaction cost on asset prices. When € = 0, the wedge
between the bid and ask prices in the OTC market vanishes, so P4 = Pp, which we denote by
P. We show in the appendix that this leads to A** = A*. In what follows, when we mention
"bid-ask spread", it always refers to the one in the exchange as there is no such thing in the OTC

market.

The following proposition characterizes a steady state equilibrium.

Proposition 1 (Partial equilibrium with e =0) If c < A— B < E;%T, the steady-state partial

equilibrium given A and B is the following. The cutoff points are given by
AY =A™ = Ay, (19)

and Ay and A1 are uniquely determined by the following equations

Ag — Ay
A=B = S/ =0 (20)
(1—8)F (Do) +sF(Ay) = 1 (21)

The asset price charged by the dealers in the OTC market, P, is given by
144, w AT F(A)dA K SO[L - F(A)]dA

P
T r AtK4T T At K+T

(22)

12



Investors’ distributions are given by

f(A) for Ae A Ay)
Mf (A) for A €[A1,Ay)

Koy (A) = P Kj?\ 7 (23)
,({1+>\)f(A) for A € [Ay, Ag]
0 for A€ (Ag, Al
and
0 for A € [A,Ay)
IR for A € [Ag, Ay)
° A) = K+A 1, 2w 94
fo () %f(A) for A € [Ay, Ag] (24)

f(A) for Ae (Ao, Al

Equation (20) shows that the distance between Ay and A is positively related to the bid-ask
spread and negatively related to investor’s effective discount rate. Recall that in equilibrium only
those buyers with valuation above Ag and sellers with valuation below A choose to trade in the
exchange, so the distance between these two cutoff points gives the range of investors who are
active in the OTC market and therefore reflects the bid-ask spread in the exchange. Equation

(21) just highlights that no asset is held in the hand of market makers, a copy of constraint (18).

The asset price in the OTC market in (15) consists of three components. The first part, %,
is exactly the asset price in the frictionless benchmark. It reflects the present value of the cash
flow for the marginal investor with valuation A,,. The second term captures the buying pressure
on the price. Recall that sellers in the OTC, with valuations ranging from A; to A, would like

to sell at a low price if they have to wait for a long time. The third term corresponds to the

selling pressure, imposed by buyers in the OTC, whose valuations range from A, to Ag.

In the literature, trading volume is an important measure of liquidity. The total units of the

asset being traded in the exchange is given by
I]I‘Vexchzmge = KsF (Al) ) (25)

and the total units of the asset being traded in the OTC market is given by

AKS
K+ A

TVorc = Aty = 1—s— F(A). (26)

We will compare them in Section 2.4. For any finite A, the total trading, which is the sum of

TVexchange and TVorc, can never exceed TVairasian, the counterpart in the frictionless Walrasian
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benchmark. 3

In general, there are three types of equilibria. If A < A; < A, < Ag < A, the two markets
coexist. If A1 = A and Ag = A, there is no active trading in the exchange and only the OTC
market survives. If Ay = Ag = Ay, the OTC market is quiet and only the exchange market
survives. We will later show that the last situation could never be the case in equilibrium unless

A=0.1

In order to determine the equilibrium, we need to specify how the bid and ask prices in the
exchange are set up. For this, we consider two cases of market structure in the exchange. In
the first case, free entry induces perfect competition among market makers. The second case is

monopolistic market making.

Competitive Market Making. Fierce competition among market makers in the exchange
should drive the average profit down to zero, so the bid-ask spread can only cover the cost of

making market for each share, i.e., A — B =c.

We first have the following result.

Proposition 2 Consider the search equilibrium with competitive market makers in the exchange.

If N+ Kk +71)c <A, trading occurs to both the exchange and the OTC market.

This proposition establishes that if either the cost of market making or the effective discount
rate is high enough, all investors prefer to trade in the OTC market and there is no active trading

in the exchange.

3This can be easily seen from

K

TVexchange T = F(A 1-—

Vexchange + TVorc s ( 1)—%-&_’_/\&5( s)
< r /is(lfs)JrHi)\ns(lfs)

K+ A
ks (1 — s) = TVwalrasian,
where we use A; < A, in the second step.

4This claim, however, is not true when e > 0. If € is high relative to ¢, all investors choose to trade in the
exchange. See Section 3 for more details.
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To show an example, we assume F (A) is a uniform distribution on [0, A]. In this case, the

Walrasian cutoff point is given by A,, = (1 — s) A. The two cutoff points, denoted by Af and A

specifically, are given by

Af = min{(1-s)A+sc(A+r+7),A},

Af = max{(1-s)A—(1—-s)c(A+r+7),0}.

The asset price in the OTC market, denoted by P¢M specifically, is given by

H(1=5)A | ke (94 _ _ Odrtr)e
poM _ T + 57 (2s 71)<1 A ),1f A+ rE+7r)c<A | @)

_ o B
1+(1;5)A+$(j+,34)_f7if At rtrie>A

(27) illustrates that P¢M consists of three components. The first term in P“M is actually
P, the Walrasian price of the asset in the frictionless benchmark. It is obvious to see that
whether PM is above or below its Walrasian counterpart depends solely on the asset supply. If
5> %, there are more owners than non-owners in the economy and the buying pressure dominates
which pushes P°M up to overtake P,. If s < %, there are more non-owners than owners in the
economy and thus the selling pressure dominates, which results in PM < P,,. In both cases, an
improvement in the search technology (which corresponds to a higher level of \) enables PEM o

approach P,. When s = %, the two pressures are in balance.

Monopolistic Market Making. A monopolistic market maker sets up A and B to maximize

his expected profit. In the steady-state equilibrium, the profit per unit time is given by

Ag— A A
(A — B — ¢) TVexchange = KS <01 — c) -t

A+ Kr+T A’
subject to the constraint that the market maker holds zero inventory in his hand, i.e.,

Ag Ay
1 — S) = + S— = 1 — S
(L—s) < +5%
Proposition 3 The search equilibrium with a monopolistic market maker is characterized as

follows. If (A +rK+7)c < A, trading occurs to both the exchange and the OTC market. If

(A + K +71)c <A, trading occurs to the OTC market but not the exchange. The two cutoff points,
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denoted by A7 and AT specifically, are given by

AT = min{(l—i)A—i—;(/\—i—n—i—r)c,A},

(I-s)A 1-s
2 2

AT = max{ ()\—i—/{—l—r)c,()}.

The asset price in the OTC market, denoted by PMM specifically, is given by

oy R s (e ) (- ) (3 M) ek e <

—3 s—3)A . —_

If N+ Kk+7)c <A, the bid-ask spread in the exchange is given by

A ¢ (28)

A-B=_—_°=>
2(A+K+T1) +2

The bid-ask spread increases in ¢ and A and decreases in the effective discount rate. First, a
unit increase in transaction cost ¢ translates into a partial increase in the bid-ask spread. Note that
increasing the bid-ask spread also discourages some investors from trading in the exchange and
results in a decreased demand for the monopolistic market maker. Second, if investors are more
dispersed in their valuations, then a wider bid-ask spread is charged. Third, a higher discount
rate also leads to fewer investors to trade in the exchange, so the market maker has to narrow the

bid-ask spread to maintain his business.

We will see in Section 5 that all the above results of comparative statics still hold in the case
when asset is divisible and investors are allowed to hold and trade any amount. Interestingly, the
bid-ask spread (for each share) in the new equilibrium takes exactly the same expression as here

if investor’s instantaneous utility is quadratic.

Note that the asset supply (denoted by s) does not play an explicit role in (28), though it
does affect Af* and AT*. The absence of s in determining the optimal bid-ask spread is due to
the specification of F'(-). The following two numerical examples indicate that the shape of the
underlying preference distribution is an important factor to determine the supply effect on the

bid-ask spread.
Example 1. If F(A) = v/A on [0, 1], the bid-ask spread decreases in s.
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Example 2. If F (A) = A% on [0, 1], the bid-ask spread increases in s.

2.4 Trading Volume

According to an empricial research on the Chinese bond markets (Wang et al, 2015), trading takes
place more frequently in the exchange but the average transaction size there is much smaller than
that in the OTC market. The average trading volume in the OTC market is over thirty times
more than that in the exchange. In the current model, the transaction size for each trade is
restricted to be one, so the number of trades equal the total trading volume then. We check

whether this simple model captures this important pattern.

The following table summarizes how the cutoff points and trading volume in each market

respond to the change in some underlying parameters under competitive market making.

Table: Comparative Statics Results

A0 A1 TVexchange TVOTC
AT T | T
il I 1
ri T ! T
X I i

The first two lines are easy to understand. When the exchange becomes relatively more costly,
which is captured by an increase in A or ¢, more investors are willing to trade in the OTC market.
When investors are more impatient, which translates to a high r, holding an asset is less valuable.
This makes the delay cost in the OTC market less intolerable, so more investors are attracted to
the OTC market, as we see on the third line. The effect of x on the cutoff points is clear. The
higher k is, more frequenly an investor’s type changes. This has two effects. On the one hand, it
shortens the holding period of an asset for an owner and thus makes waiting in the OTC market
less costly. This surely widens the distance between Ag and A; and increases TVgorc, but does
not lead to a lower TV ychange because a higher s also implies that more investors want to trade

during each instant.

As a natural consequence, the following proposition specifies the condition under which TVgorc

exceeds TVeychange when both markets are active.
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Proposition 4 Suppose F'(A) = A for A € [O,Z] and (A + kK +71)c < A. There exist positive
values o, co and Ng such that TVorc > TV cychange if 7 > 10, 07 ¢ > cg or X > Ag under competitive

market making. Similar results obtain under monopolistic market making.

Note that we haven’t mentioned the role of k as it may increase the trading volumes in both

markets.
2.5 Welfare Analysis

In this subsection we examine whether the bid-spread, determined in Subsection 2.3, is socially

optimal.

The social welfare in the search equilibrium is defined as the sum of all investors’ expected

payoffs and total profits for market makers:

A
Wd = /A [V (0, A) 2% (A) + |4 (1, A) Mo (A)] dA + % (A — B - C) I']I‘%Iexchange- (29)

Since the type distribution for investors in a steady-state equilibrium does not change over time,
we can also consider the realized surplus per period, which is the sum of the total consumption

goods received by all owners net of total transaction costs in the exchange, i.e.,
A
WS = / (1 + A) Ko (A) dA —c- TVexchange- (30)
A
Here, the subscript d in (29) stands for "dynamic" and the subscript s in (30) stands for "static".

A social planner chooses asset prices in both markets, namely, A, B and P, and let investors
to make their optimal choices based on their own valuations. Investors who choose to trade in the
OTC market still have to face search frictions and bear the loss of delay by themselves while any
transaction in the exchange can be executed immediately at some cost. Since neither dealers nor
market makers have any intrinsic valuation in holding the asset, the social planner would allocate
all units of asset to investors, so the zero inventory conditions for the dealer sector and the market

makers still hold, i.e., both (18) and (15) are binding.
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It is easy to see that the social planner tends to allocate the desperate investors to the exchange
and investors with medium trading motives to the OTC market, so the optimal allocation rule
of investors should take a similar cutoff form as in (12) and (11). The following proposition

summarizes the socially efficient allocation.

Proposition 5 Mazximizing the welfare criterion in (29) and (30) lead to the same solution of

social optimum, which is characterized by the following. (I) There exist two cutoff points, denoted

by Agb and A{b, such that (i) if (k + \) c < A, A{b is the unique solution to the following equation
(1—3)F(A{b+(kg+/\)c) + sF <A{b) =1-s,

and Agb = A"+ (k+Ne, (i) if (k+Ne >N, A5 = A and A; = 0. (II) An owner’s

optimal choice is given by (12) and a non-owner’s optimal choice is given by (11), where we set

A* = A*™ = Ay, and replace g by A{;b and A1 by A{b therein. (III) If (k + \)c > A, trading

occurs to the OTC market but not the exchange. If (k+ X)c < A, trading occurs to both the

(k+A)e
KHAFT°

exchange and the OTC market and the bid-ask spread in the exchange is given by

Here, the superscript fb stands for "first-best". The condition to have active trading in both

A

markets in the social optimum is ¢ < 2.

Recall that the corresponding condition in the decen-
tralized solutions in Proposition 2 and Proposition 3 is ¢ < %. Note that the value of Agb
and A{b are independent of r. This is obvious if we use the static welfare criterion because there

is no r in (30), but not so obvious if we use the dynamic welfare criterion.

We find that the socially optimal bid-ask spread in the exchange is strictly below the required
transaction cost. This means that the social optimum can not be sustained even by a competitive
equilibrium unless the market makers in the exchange receive some subsidy from outside.

A

Proposition 6 If ¢ < 54,

the cutoff points in all three equilibriums are ranked by
AT > AS > AL > ATY S AG > AT
If ﬁ <c< %, they are ranked by

P=A=A>A"> A > 0=AF=AT
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Ich%, then A7 = ﬁzAgb:Z and A§ = T:A{b:O.

Note that a higher level of A; and a lower level of Ag mean that investors with a larger
range of valuations are trading in the exchange. Given the transaction cost is not very large,
the social planner’s main concern is focused on the delay cost paid by those investors waiting in
the frictional OTC market. This proposition says that the search equilibrium under monopolistic
market making keeps too many investors away from the exchange, so they have to wait in the
OTC market and bear a large amount of delay cost. Such deadweight loss will be reflected in the

aggregate welfare.

Finally, we are ready to compare the total welfare across different equilibriums. Denote for
short the social welfare in the search equilibrium under competitive market-making and monop-
olistic market-making by W(?M and Wﬁlw M respectively. Denote the social welfare in the social
optimum by Wg B The following result confirms that neither the social welfare under monopo-
listic market-making nor that under competitive market-making could achieve the social optimal

level because they just allow too few investors to trade in the exchange.

Proposition 7 If c < ﬁ, then WgB > WgM > Wfl\/[M. If H+§+r <ec< %, then WgB >

WM = WYM  Ifc > 25, then WIB = WM = wqM,

3 Discussions

In this section, we discuss some further issues.

Endogenous Determination of Search Intensity A. So far, we have taken A\ as ex-
ogenously given. It is easy to determine this parameter by assuming a matching function.
Let p; be the mass of dealers and still use y; and pg to denote the mass of buyers and sell-
ers, respectively. The number of dealer-buyer pairs being matched per unit time is given by
M (py, pq), where M (-,-) is strictly increasing in both of its arguments and exhibits constant

return to scale. Since dealers and investors match at random, a buyer meets a dealer at rate
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M (s prg) J1tg = M (up/ g, 1) = m (pp/pg), where m(+) is a strictly increasing function. Sim-
ilarly, the number of dealer-seller pairs being matched per unit time is given by M (g, pt5). A
seller meets a dealer at rate M (g, 1tg) /1tg = m (pg/ptq). Since the dealers do not hold inventory,

we have u, = ;. Hence, A is given by

A =m(py/ 1ha) - (31)

Here, p;, is also determined in the equilibrium endogenously. In the appendix, we show

k(1 —3s)

P (@0) - (1),

Hp =

Note that A affects p;, in two opposite directions. On the one hand, an increase in A means a high
speed of matching and a shorter expected time delay, resulting in fewer searchers in the OTC
market. This effect is reflected by the A in the denominator of the above expression. On the other
hand, a reduction in the search friction attracts more investors to enter the OTC market. This
effect is captured by A, which is expected to be increasing in A. When F'(+) is uniform, the first

effect dominates and i, is decreasing in A under monopolistic or competitive market-making.

It follows that the RHS of (31) is decreasing in A while the LHS of this equation is obviously

increasing in A. It is then easy to show that a unique A exists.

Positive Cost of Market-Making in the OTC Market: ¢ > 0. We construct the
equilibrium for a positive € in Theorem 1 in Appendix I. Comparing with the special case of e = 0
reported in Proposition 1, we highlight three differences. First, unlike (19), there is now a wedge
between A* and A**:

A" =A™ =(k+7)e.
Second, the bid-ask spread in the exchange and the type range are now governed by

_Ao—A1+)\€

A-B
A4+ K+T

; (32)
which is a generalization of (20). Third, the bid-ask spread in the OTC market equals €, i.e., (1).

In general, there are now four types of equilibriums.
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If A > Ag > A* > A* > Ay > 0, both markets are active.

If A > Ag=A*>A* = A; > 0, trading only occurs to the exchange.

o If A = Ay > A* > A*™ > Ay = 0, trading only occurs to the OTC market.

o If A=Ap>A* and A* = A; =0, no trading occurs to either market.

The following proposition analyzes which market is active in trading under competitive market

making.

Proposition 8 Consider the search equilibrium with competitive market makers in the exchange.

If ¢ > € > %, no trading occurs to either market. If € < ¢ < )\’\j:g, active tmdmg occurs to
both markets. If ¢ > /\)frA > €, trading only occurs to the OTC market. If c = € < 5., active

trading only occurs to the exchange.
The following proposition reports the impacts of € on the equilibrium.

Proposition 9 Consider the search equilibrium with competitive market makers in the exchange.
(I) When € > ¢, Ag = Ay = Ay, i.e., there is no active trading in the OTC market. (II) When

€ < ¢, Ag and Ay are uniquely determined by (21) and (32). As € increases, more investors

BAO 0A1

<0< 86,8’”’>0and ‘WVOTF

>0>

‘ ‘ aTvV
choose to trade in the exchange, i.e., ———tzchange

The results in Proposition 8 and 9 hold for a general cumulative distribution F'(-). Part (I)
of Proposition 9 reveals that the OTC market is driven out of the economy if € is large relative
to c. In this case, intermediating transactions in the OTC market is too costly relative to market

making in the exchange, so all trading activities migrate to the exchange.

Part (II) of Proposition 9 describes the case when both markets coexist for a small e. A higher
€ expands the bid-ask spread in the OTC and makes trading in the exchange more appealing, so

an increase in € implies more investors in the exchange and few investors in the OTC market.
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Consequently, € decreases TVorc and increases TVexchange- An interesting observation is that
€ increases the total trading volume. This means the increase in TVeychange is more than the

decrease in TVorc.

As for the equilibrium with a monopolistic market maker, we carry out the same analysis as

in Proposition 3 and obtain the optimal bid-ask spread:

A+ Xe c

A—-—B= m + 5"
Several points are in order. First, A— B is increasing in €. This is because when ¢ is increased, the
advantage of the exchange over the OTC market becomes larger and raising the bid-ask spread
does not lose but win more business for the market maker. Second, all of the comparative statics

results still hold and the intuitions are similar. Just like the case of ¢ = 0, the bid-ask spread is

still positively related to A, ¢ and negatively related to A, r and k.

In addition, we can decompose the bid-ask spread in the exchange into three components:
A-B=(A—-Pa)+ (Pa—Pp) +(P—B),
—_————
=e according to (1)
where the term in the first (or last) bracket is the spread of ask (or bid, respectively) price between

two markets and the term in the middle bracket is the bid-ask spread in the OTC market. ° The

increase of € narrows (A — P4) and (Pg — B).

The following proposition analyzes which market is active in trading under monopolistic mar-

ket making.

Proposition 10 Consider the search equilibrium with a monopolistic market maker in the ex-

change. Assume F (-) is uniform on [O,Z]. Both markets are active if (1 + ”y) c— % <e<

% Trading only occurs to the exchange if % <e< gﬂ,. Trading only occurs
to the OTC market if € < max{%, (1+ ") e— %}

®More precisely, both (A — P4) and (Pg — B) are positively related to A and ¢ and negatively related to the
effective discount rate and e. See Part IV of Section 7.6.
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4 Variation

In this section, we consider a model in which the asset is divisible and investors are allowed to
hold and trade any amount of quantities, though short-selling is still not allowed. Basically, we

extend the search model in Lagos and Rocheteau (2009) by adding a centralized exchange.

The instantaneous utility function of an investor is u; (q) + ¢, where ¢ > 0 represents the
investor’s asset holdings, ¢ is the net consumption of the numeraire good and i € {1,2} indexes
his preference shock. Note that a non-negative ¢ means short-selling is forbidden, but ¢ can
be positive or negative. To get closed-form solutions, we will mainly employ a quadratic utility
function in this section:

Ly

ui(q) = 0iq = 50, (33)

where 05 > 61 > 0. This specification of utility is obviously strictly increasing and strictly concave
in g. A bigger 0; translates to a higher level a marginal utility. Each investor receives a preference
shock with Poisson arrival rate k. Conditional on receiving such shock, the investor draws 8; with

probability w; > 0, where 71 4+ w9 = 1.

OTC market. Investors contact dealers randomly at arrival rate A. Once a dealer and an
investor meet each other, they negotiate over the terms of trade, which now consist of the quantity
of assets that the investor aims to exchange and the intermediation fee that the dealer charges
for his services. The two parties split total trade surplus via Nash bargaining, that is, the dealer
gets 7 fraction of the trade surplus and the investor gets the remaining fraction. We still use P
to represent the asset price for each unit in the OTC market, whose value should be determined

in equilibrium.

Exchange. This is the same as before, i.e., investors can enter the exchange at any point of

time and buy (or sell) any quantity of the asset at unit ask price A (or unit bid price B).

The model setup in this section differs from that in the previous section mainly along two

dimensions. First and foremost, asset is divisible and investors are free to hold and trade any
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quantity of assets as the net holdings in their portfolios are non-negative. Second, investors and
dealers in the OTC market bargain over the price and quantity at the same time. As long as
dealers have a strictly positive bargaining power, i.e., n € (0, 1], they can earn some positive

intermediation fees.
4.1 Investors’ Optimal Choice

An investor with preference type 6; and asset holding ¢ is indexed by a pair (i,q) € {1,2} x R,
which is called as his state in what follows. Let ®;(q) denote the value function of such an

investor, i.e., the maximum expected utility attained by an investor of type (i, q).

Suppose an investor in state (i,q) chooses to enter the OTC market and let U; (q) be the
expected discounted utility for him. Note that U; (q) is strictly dominated by ®;(q) if it is
optimal for him to trade in the exchange but they two are the same otherwise. The flow Bellman
equation that determines U; (¢) is given by

rU; (q) = ui (@) + A[Ui () = Ui (9) = P(¢] —q) = fi(g:a)] +r Y mj[®;(0) = Ui(a)], (34)

j=1,2

for ¢ > 0 and ¢ = 1,2. The investor derives flow payoff from three sources. First, he receives a
utility flow wu; (¢) from asset holdings ¢. Second, with instantaneous probability A, the investor
contacts a dealer and readjusts his asset holdings from ¢ to ¢ after paying a fee f;(q,¢) > 0.
Both his target asset holding ¢f and the intermediation fee f; (¢, q) are determined by Nash
bargaining. Third, with instantaneous probability x, he draws a new preference type j with
probability 7; and raises his lifetime expected utility by ®; (¢) — U; (¢). Note that he is able to

follow his optimal strategy based on his new type.

The value function of a dealer is denoted by U¢ and solves

U= [ fila.ad) dH ).
where H (i, q) represents the distribution of asset holdings and preference types across investors.

We now determine the terms of trade in a bilateral meeting between a dealer and an investor.
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Consider an investor who is originally in state (¢, ¢) becomes state (7, ) after the bilateral meeting,
i.e., he buys (¢ — ¢) units (sells if negative) and pays the dealer a fee f. The investor’s ez ante
utility is U; (¢) and his ez post utility is U; (¢) — P (¢ — q) — f, so his surplus from trade is given
by U; (@) — U; (q9) — P (g — q) — f and he agrees to trade if and only if he receives a non-negative
surplus. The dealer’s utility is increased by the fee, f. Hence, the outcome of the bargaining is
given by

(67, fi (a.a7)) = avg max[U; (@) — Ui a) = P(§—q) - A (35)

The solution to (35) is given by

Uilg;) = P, (36)

filg,q7) = nlUi(g) —Ui(g) — P(g —q)]. (37)

We show in the appendix that Uj; (g) is strictly concave in ¢, so ¢ is unique given P. The first line
just says that ¢ is set to equalize the marginal benefit and the marginal cost. In what follows, we
call g} the optimal asset holding for a type i investor because an investor in state (¢, g]) contents
himself with current asset holdings so that he refuses to trade in either the exchange or the OTC
market. The second line says that the two parties just split the total surplus according to each

one’s bargaining power.

Since an investor can trade in the exchange at any time, he is actually facing the following

optimization problem

U; () —Y(g—1q)], 38
max [U: () = ¥ (7~ q)] (38)
where
Az, if x >0
U(z)=< 0,ifx=0
Bx,if x <0
Let qZA and qZB be such that
Ui (g') = A (39)
Ul (¢?) = B. (40)
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Due to strict concavity of U; (¢) and A > P > B, we know

< qf <P fori=1,2

Given an investor’s preference type 4, his optimal trading strategy in the exchange market is
simply determined by the distance between his current asset holdings (i.e., ¢) and his optimal
asset holdings, ¢ 6 If ¢ is not far away from ¢/ (more precisely, if ¢ lies in interval [qZA, qu]
which contains ¢), he does not trade in the exchange as the ask price is too high and the bid
price is too low in his eyes. If ¢ < in, his marginal benefit of holding an additional unit of the
asset exceeds the cost of buying one more unit, so he chooses to increase his asset holdings up to
q{‘. Ifg > qZB , he holds so many units in hand that his marginal benefit is well below the bid price
and therefore he chooses to decrease his asset holdings down to qlB . In the presence of positive
bid-ask spread in the exchange, it is too costly for an investor to readjust his portfolio in one step

to his ideal position, ¢}, in the exchange.

An investor will choose to enter the market which delivers him a higher expected utility, so

his value function, ®; (¢), is the optimized objective function in (38).

The optimal strategy for an investor in state (i,¢) is summarized as follows

buy (q;4 — q) units in the exchange, if ¢ < qZA
search in the OTC, if ¢/ < ¢ < ¢P ) (41)
sell (q — qlB) units in the exchange, if ¢ > qlB

where "search in the OTC" in the middle line means he searches in the OTC and readjusts his

asset holdings to ¢; whenever he contacts a dealer.
4.2 Equilibrium

In order to describe the steady-state distribution, we need to determine the set of ergodic states

in the first place. Since there are 2 preference types and 6 critical asset holdings, it seems that the

5More precisely, given that the investor’s before-trade state is (4, q), his after-trade portfolio is given by

g, if ¢ < ¢
q(i,q) =1 ¢ ifq¢' <qg<q’

q’, if ¢>q’

This is the solution to optimization problem (38).
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total number of an individual investor’s possible states is 12. However, this is by no means the
case because not every combination can sustain long in the equilibrium. To see an example, we
assume ¢ < ¢5. Then once an investor in state (2, q3) goes to state (1,¢3) due to a shock in his
preference type, he immediately sells (q§‘ — qlB ) units in the exchange and his after-trade state is
(1, qP ) Hence, state (1,¢3) is actually transient. This example implies that if an investor chooses
to trade immediately in the exchange, then the mass of investors in his state is only infinitesimal.
All in all, we must figure out those ergodic states which accommodate positive masses of investors

in equilibrium. Denote the set of ergodic states by T, then T C {1,2} x {qlA, q;, qZB}i:l 5"

So far we just know qZA <q < qlB for ¢ = 1,2, but we must know the ranking of all these 6
critical asset holdings. In the appendix, we analyze all possible cases by checking whether demand
and supply could emerge in the exchange simultaneously in each case. We find that there are only
two possible cases. © We now describe them in words and all mathematical proofs are relegated

to Appendix III.

Equilibrium I: qf‘ <qr < qu < qlB <qg < qQB. T is composed of 6 states

T= {(LQT) ) (17Q2A) ) (17QF) ’ (QJQ§) ) (27%4) ) (27Qf3)} : (42)

In the exchange, investors in state (1,q;), who were previously in state (2, ¢5) before preference
shocks occur to them, are sellers and investors in state (2,¢}), who were in state before they
receives preference shocks, are buyers. Investors in state (i,q) with ¢ # ¢ are searching in the
OTC market to wait for the opportunity of contacting dealers and adjusting their portfolios. The
pattern of flows between states is depicted in Figure 1. Each circle represents a state. The dashed
arrows represent flows due to trade in the OTC, the double-line arrows represent flows due to

trade in the exchange and the solid arrows indicate flows due to type changes.

We are in a position to describe the set of equations that characterize the steady-state distri-

"This result does not depend on the utility specification.
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bution H (i,q). First, the measure of investors with preference type i is equal to m;, so

n(l,q¢)+n(Lg)+n(lq) = m, (43)
n(2,¢)+n(2,¢)+n(2,4¢) = m. (44)

Second, all assets are held by investors, so the market clearing condition requires
gn(L,¢) + ¢ [n(La') +n(2.6)] +a [n (L) +n(2.00)] + n(2,¢5) =s.  (45)

Third, the flow of investors into each ergodic state is equal to the flow out of that state. The

flow-balance equations are listed in the appendix and omitted here.

Definition 2 Given A and B, the steady-state (partial) equilibrium consists of the asset price
in the exchange P, intermediation fee in the OTC market f;(q,q}), the critical asset holdings
{qf, q;, qu}i:1 5 the time-invariant distribution of investors across the ergodic states {n (i,q) : (i,q) € T}

where T is given by (42), such that

o {n(i,q): (i,q) € T} satisfies (43), (44) and the flow-balance equation for each ergodic state,

(41) characterizes the optimal choice for an investor in state (i,q) where i € {1,2} and

q=>0,

at, ¢ and qP satisfy (36), (39) and (40) respectively,

P satisfies (45),

fi(q,q}) satisfies (37).

The steady-state distribution {n (i,q) : (i,q) € T} are given by (101) — (106), which are ob-
tained by solving (43), (44) and all the flow-balance equations. These equations have nothing to

do with the utility specification and the critical asset holdings.

We highlight several important properties of this equilibrium. First, the total trading volume

per unit time in the OTC market exceeds that in the exchange. This result is desired as it is
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consistent with empirical results. Note that now the transaction size is endogenously determined
and varies across different trades, so we want to know whether this model can capture the fact
that the trading frequency in the exchange is much higher than that in the OTC. However, we
find the number of trades in the two markets are the same. One conjecture is that investors’
valuations are assumed to take only two values. If investors become more heterogenous in their
valuations, we might have the desirable result. Third, compared with the frictionless benchmark,

investors of low (high) type hold too many (few) units of asset, i.e., ¢f > ¢!V, ¢ < ¢¥.

Under monopolistic market making, the optimal bid-ask spread is given by

Al c
A—B= =.
r+/€+)\(1—77)+2

This is almost the same as (28), so how the bid-ask spread is related to the underlying parameters
are the same as before. It has to be admitted that this result is due to the quadratic utility
specified in (33). If some other specifications of instantaneous utility are chosen, the optimal
bid-ask spread could take some other forms or the closed-form solutions are not available. It
is interesting to check whether the same comparative statics results could be maintained under

different utility specifications or not.

Equilibrium II: qf‘ <gP < q§4 < ¢B. Now T consists of 4 states

T={(La), 1), (2,¢).2.a)}.

The pattern of flows between states is illustrated in Figure 2. It turns out that any investor goes

to trade in the exchange whenever there is a change in his preference type.

The steady-state equilibrium can be defined analogously to Definition 2. The steady-state
distribution {n (¢, q) : (i,q) € T} are given by (128)—(131) in Appendix III. Given this equilibrium
exists, the trading volume in the exchange exceeds that in the OTC market. It is this result that
makes this equilibrium uninteresting and we omit the detailed analysis of this equilibrium here.

Please refer to Appendix III for more details.
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5 Conclusion

We have analyzed a model where investors can trade a long-lived asset in both exchange and OTC
market. In the exchange, transactions are intermediated by market-makers who post bid-ask prices
publicly. In the OTC market, dealers search for trading partners on behalf of investors. Exchange
means high immediacy and high cost while OTC market corresponds to low immediacy and low
cost. We show that in equilibrium investors with urgent trading needs enter the exchange while
investors with medium valuations enter the OTC market. We analyze how the bid-ask spread
is related to underlying parameters and specify the boundary of active trading in each market.
We also conduct welfare analysis and find that the decentralized solution is always inferior to the

socially optimal solution in terms of total welfare.

An important assumption in the current work is that we treat dealers in the OTC market
and market makers in the exchange as two groups of intermediaries, so their decision-making on
which market to serve is not modeled here. Given this, the relative efficiency of the two markets
(i.e., transaction cost in each market and search friction) become the main force to determine the

equilibrium. For future research, we should study financial intermediary’s choice.
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Figure 1

Equilibrium l: ¢! < q; <qf <qf <q; <43

ﬁ
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Flows due to trade in
the OTC

32




Figure 2

Equilibrium Il: qf < q; <qf <q¥ <q; <q8
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Appendices for Chapter 1
6 Appendix I

In this section, we state and prove the steady-state (partial) equilibrium given the bid and ask
prices in the exchange, A and B. Proposition 1 in Section 2.2 is just a special case by taking

€ = 0 here.

A—A+)e

Theorem 1. Given that ¢ < A— B < =51,

the partial steady-state equilibrium given A

and B is characterized as follows. A* and A** are uniquely determined by

A* =AY = (k+7)e,

(1—38)F(A")+sF(A™) = 1-—s.
Ag and A1 are uniquely determined by

(I—S)F(Ao)-i-SF(Al) = 1-—s,
Ag — A1+ Xe
A+ k+r

A-B =

Investors’ distributions are given by

( f(A) for A €A, A))
%f (A) for A € [Ay, A*]

i (A) = (L=s)f(A) for Ae(A™ A%) (46)
S £(A) for A € [A*, Ag]

0 for A € (AO,N

0 for A € [A,Ay)
=B for A € [Ar, A*]
[y (A) = < sf(A) for A e (A*™ A*) . (47)

ESEAf(A) for A € [A*, A]

f(A) for Ae (A, A

~
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The asset prices are given by

1+ A wfa F(A)dA  k [ALF(A)dA  « [20[1— F(A)dA

Py = - = _ = i
4 r r A+K+T r K+ +r A K47 ’
Ay — A*
A—Pp, = =20°2
A At r+7’
A — Ay
Pp—B = - 21
B A K+
Py—Pp = e

Proof of Theorem 1: The proof is organized as follows. We reformulate the value function for
owners and non-owners in Step I. We make some preliminary analysis in Step II. Step III and
IV determine the optimal strategy for non-owners and owners, respectively. The asset prices are
derived in Step V. We show the population distribution for non-owners and owners in Step VI

and solve out all cutoff points in Step VII.

Step I. Define the following three disjoint subsets of the whole range [é, Z]:

N = {A c [A,N |V (A) > max {Vl')OTC (A) ’ Cxclnngc

J

@)
Bore = {Ae[aB] VT (A) > max {V; (), v ( }}
A)}

3

That is, a non-owner chooses to do nothing if his valuation is in N, to search to buy the asset

Buctomse = {5 € A1 (8) > max {15 (4), 0T

in the OTC market if his valuation is in Borc and to buy in the exchange if his valuation is
in Bexchange- Note that the valuations with which a non-owner is indifferent between any of the
two choices are not included in any of the three subsets defined above, so the union of the three
subsets is not necessarily the whole range, i.e., N'UBorc U Bexchange © [A, m These indifference
valuations are in the boundary but not the interior of those subsets. Denote by ON the boundary

of N, namely,
ON = {A € [A,A] |V, (A) = max {VOTC (A), yexchange (A)}} ,

and the same for the other two subsets. Then, the set ONN dBorc collects all valuations with

which the non-owners are indifferent between doing nothing and searching to buy in the OTC

35



market, i.e.,
ON N OBoTe = {A € [AA] [V (A) = VOTC (A) > ppichanee (A)}.

The meaning of set dBexchangel OBorc and OBexchange ON can be understood in the similar
way. The union of N and its boundary ON is called the closure of ' and denoted by cl(N'), and
the same for the other two subsets. Note that cl(N), cl(Botc) and cl(Bexchange) are not mutually

disjoint, but the union of them is exactly [A,N.

(3) can thus be written as

Vi (A), if A € cl(N)
V(0,A) = VOPTC(A),if A € cl(Borc)
VX (A i A € el (Bexehange)

Similarly, we define the following three disjoint subsets of the whole range [A, A]

That is, an owner holds onto his asset if his valuation is in H, searches to sell his asset in the

H

{A € [A,m ‘Vh (A) > max {‘/SOTC (A) Vexchange }
Sorc = {A € [A,m ‘VSOTC (A) > maX{Vh (A), VBXChange }
A}y

Sexchange = {A € [A,A] |Vexchange (A) 5 max {VSOTC

OTC market if his valuation is in SoTc and chooses to sell in the exchange if his valuation is in
Sexchange- Likewise, these subsets do not include the valuations with which owners are indifferent

between any of the two choices. We define the boundary and closure of each subset as above.

(7) can thus be written as
Vi (A),if Aecl(H)
V(1,A)={ VOTC(A),if A € cl(Sorc)
V;exchange (A) ) if A ccl (Sexchange>
It should not be optimal for an owner to sell his asset in the OTC market in the first place and
then buy back the asset, still, through search in the OTC market after he sells his asset, given no

change in his valuation, otherwise he would choose to hold onto it at the very beginning. This

means

SOTC - [é)m \Cl (BOTC) = N U Boxchangc U (8./\/ N aBexchangc) . (48)
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Similarly, it should not be optimal for an owner to sell his asset in the exchange in the first place
and then buy back the asset in the exchange immediately given no change in his valuation. This

means

Sexchange - [Aam \Cl (Bexchange) =NU Borc U (aN N 8BOTC) . (49)

The same logic should apply to buyers in the OTC and the exchange market, so

N

BOTC [é)KJ \SOTC =HU Sexchange U (87_[ N 8Sexchamge) ’ (50)

N

Bexchange [é,m \Sexchange =HUSorc U (87'[ N 8SOTC) . (51)

Step II. Let’s first argue that Sexchange NV BoTc = &. Suppose not, i.e., Sexchange N Borc # .
This means that (i) the owners with valuations in this set would firstly sell their assets in the
exchange and then search to buy in the OTC afterwards, and (ii) the non-owners with valuations
in this set would firstly search to buy in the OTC and then sell in the exchange immediately after

they acquire the assets. When A € Sexchange N BoTc, we have

\ [ scxchango (17 A) _ PA] + rE [V (07 A/)}
Atk+r |

V;exchange (A) _ VE)OTC (A) + B7

which can be solved by

A (B — Pa)

oTC
A) = 22"y
VOTC (A) A
B— P
Vsexchange(A) — )‘( A>—|—Vn+B.
K+

Note that we must have VbOTC (A) > Vi if A € Sexchange N BoTc C Botc, so we know from
above that B > P4, which contradicts (2). Hence, we claim Sexchange NV BoTc = @. It thus follows

that Sexchange C N according to (49) and Botc C H according to (50).

Now we argue Sorc N Bexchange = &- Suppose not. i.e., SoTc MNBexchange 7 - This means that
(i) the owners with valuations in this region would firstly sell their assets in the OTC and then

buy back assets in the exchange, (ii) the non-owners with valuations in this region would like to
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buy assets in the exchange and then search to sell them in the OTC. When A € SoTc N Bexchange:

L4 A+ ) yexchanee (A) 4 PB] +KE[V (1,A7)]

VSOTC (&) Ay + K+ ’
VI A) = vOTOa) - 4,
which can be solved as
Vo) = vi(a) - AAZ TR
pexchange (A) i (A) - )\(f:;fB) A

Note that we must have VOTC (A) > Vj, (A) if A € Sorc N Bexchange C SoTc, so we know
from above that A < Pp, which contradicts (2). Hence, we claim So1c N Bexchange = 2. It thus

follows that Sorc C N according to (48) and Bexchange C H according to (51).

We can use the above results to simplify equations (5),(6), (9) and (10) as follows:

AV (A) = Pa]l + E[V (0, A")]

oTC
Vi (A) Ntrr (due to Borc C H), (52)
Ve (A) =V, (A) — A (due t0 Beyehange C H), (53)
L+ A+ XNV, + Pp)+rsE[V (1,A")]
oTC _ ?
VOTC (A) = rp—— (due to Sorc C N), (54)
Vsexchange (A) = Vn + B (due to Scxchangc C N) (55)

Step III. We now prove that the optimal strategy for a non-owner is shown in (11), i.e.,

N = [AAY),
Borc = (A%, Ay),

Bexchange = (AO;Z]

We first argue that if x1 € NV, then x € N for all z < x1. Suppose not, i.e., there exists xo

with 29 < x1 but 22 ¢ N. If 29 € Borc, then

VPt (22) > Vo > VPTE (21) (56)
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However, we know

VOTC (gy) — VOTC (3) = AV g\xi),;_vi (z)] _ 5 —:\’Exj T—) Z?;)+ 5 <0,

where the first equality is due to (52) and the second equality is due to (8). This contradicts (56).

We then turn to assume 2 € Bexchange, Which implies
Vh (xl) A= vacxchango (ml) < Vn < V-bcxchange (.’Eg) _ Vh (:C2) _ A
This, again, implies x2 > x1, which contradicts our starting assumption. We thus prove the claim.

We now argue that if 11 € Bexchange, then y € Bexchange for all y > y1. Suppose not, i.e., there

exists yo With y2 > y1 but y2 & Bexchange- If ¥2 € Borc, then VXM (y5) < V,0TC (o) implies

A(A = Pa)

Vi A+V,
h(y2)< * + K+

)

and VbCXChangC (y1) > V,PTC (y1) implies

AA-P
Vh(y1)>A+Vn+M.
K+T

These two inequalities, together, imply 31 > y2, which contradicts our starting assumption. If

yo € N, then VbeXChange (y2) < V;, implies
Vi (yz) <V, + A.

and VbCXChaLngc (y1) > V,, implies

Vi (yl) >V, + A.

These two inequalities imply y; > yo, which presents a contradiction again. We thus prove the

claim.

The above arguments establish the claim in the very beginning of this step. The slope of

V (0,A) in each region is given by

0,if A € [A,A¥)
dv (0, A ’ = N
/i—&—r’ifAE (Ao,m
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We see that V (0, A) is piece-wise linear in A. Integrating (57), we obtain
Vo, if A € [A, AY)

14 (07 A) = Vi + A-&-i-ﬁ-r A/i_-&-Ar* ) if Ae [A*’ AO] __ (58)
Vo + /\+2+r A/ZJ_WA + A/-e_JrArO’ if Ae (AO’ A]

We now derive the expression of V,,. For this, we first calculate E [V (0, A')]:

Ao
J(A = A" dF (A Ag—AY1—-F (A
E[V(O,A')] _ Vn+ A A ( ) ( )_|_ A ( 0 )[ ( 0)]
At Kk+T K+ At k+T K+
A
+on (A —Ag)dF (A)
K+
v A ﬁf[l—F(A)]dA+fﬁou—F(A)]dA
"Nt R+ K+ K+ '

Substituting this into (4) and rearranging, we obtain

koA AA*O[I—F(A)]dA+§f§0[1—F(A)}dA'

Vi, = —
R PR K+ r K+

Step IV. We now prove that the optimal strategy for an owner is shown in (12), i.e.,

Sexchange = [é7 Al)a
Sorc = (A1, A™),

H = (a™A].
We first argue that if 21 € Sexchange, then & € Sexchange for all x < 1. Suppose not, i.e., there
exists xo with zo < z1 but x4 ¢ Sexchange- If 2 € H, we should have
Vh (x2) > V;exchange (x2) _ Vn + PB — V;exchange (-%'1) > Vh (-’L'l) ’

which implies xo2 > z;. This contradicts our starting assumption. We then turn to assume

T9 € SoTc, which implies

‘/SOTC (x2) > V;exchange (.Tg) =V, + Pg.
Since 71 € Sexchange, We have

VSOTC («Tl) < ‘/sexchange («Tl) =V, + Pg.
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The above two inequalities imply x2 > x1, which is a contradiction again! We thus prove the

claim.

Using the similar logic, we can show that if y; € ‘H, then y € H for all y > y;. We thus prove
the claim established in the beginning of this step.

The slope of V (1, A) in each region is given by

1 A ) )
dV;A’ V) it Ae (A A (60)
—, if A e (A*,A]
We see that V (1, A) is piece-wise linear in A. Integrating (60), we obtain
Vo + B, if A e[AA)
V(1,A)={ Va+ B+ £5L if A€ (A, A™) (61)
Vo4 B+ 501 4 807 if A e (A 4]
For future use, we calculate E [V (1, A')]:
A** Z
A—Aq)dF (A A — A1) [1 - F (A* (A= A™)dF (A
E[V(1,4)] = Vo B 38 DdF(4) D= FA™)] L s )dF (A)
A+ k4T At k4T K+
A** Z
1—F(A)]dA e [1— F (A)]dA
_ yoopg da RO F@NA L - F(A)dA )
AR+ K+

We now show A* > A**. Recall that we have Bexchange UBoTc € H, where Bexchange U BoTc =
(A*,m and H = (A**,m, SO

AF > A™

This result can also be obtained in another way as a double check. Recall that we have Sexchange U

Sorc € N, where Sexchange U Sorc = [A, A*) and N = [A, A¥), so still A* > A,
Step V. We derive the expression of all asset prices.
First notice that we have the following chain of equalities:

v @ AV (A") = Pa] + wE [Viv (A)] @) A[Vi (A") = Pal + (v +7) Vi

" )\+/€+7" - )\+I‘L+’l"
©y,  AVR(AT) = Vi — Py
:Vn P

+ At K+T
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where (a) is due to the indifference condition V;, = V,°TC (A*), (b) is due to (4) and (c) is obtained
by rearrangement. It follows that

Vi (A*) =V, + Pa. (63)
Recall that we already have V}, (A*) according to (61)

+ .
A+ K+ K+

V(A" =V, + B+

Comparing this with the previous line, we obtain

Pys=1B . 4
4 +)\+I€+T+ K+T (64)

Now we look at the indifference condition at Ag: VOTC (Ag) = V&8 (Ag), which can be

written more explicitly as

AVi (Ag) — Pa]l + KE [V (0, A)]

= Vir (Ag) — A.
At hA+r h (Bo)
This equation can be rearranged as
AMA-P
Vh(Ao) = Vn—%-A—i-M.
K+

Subtracting V3, (A*) in (63) from V}, (Ap) in the above line and rearranging, we obtain

Ay — A*

A—Py=—2"2=
AT Nkt

(65)

Finally, we have the following chain of equalities:

Vi, (A) @ L+ A+ X(Vo+ Pg) + kE[V (1,A")] ) (k4 7) Vi (A**) + X (V, + Pp)
" B )\+/ﬁ§+7' o )\—i-/ﬁ:_’_r

where (a) is due to the indifference condition Vj, (A**) = VOTC (A**), and (b) is due to (8). It
follows that

Vi (A**) =V, + Pp.
Subtracting V3, (A*) in (63) from Vj, (A**) in the above line and rearranging,

A*_A**
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Substituting this into (64), we obtain

A** Al

Ps—B=—_"°21
B ANt r+r

(67)
Now we are in a position to derive expressions for asset prices. We use to derive (63) the

expression of P4, namely,

1+ A+ RE[V (1,A7)]

=V, + Pa.
K+ nt 4

Vi (A¥)

Substituting out V;, given by (59) and E [V (1, A")] given by (62), we obtain

P_J+A*_§@%F@WA_gﬁiF@MA+EﬁHLJWMMA
AT T oAt+E+T r K+r T A+ K+ '

The bid-ask spread in the exchange is easily calculated by adding up (65), (66) and (67):

A-B = A—P4+Py—Pg+Pg—B
Ag — A* A* _ A** AR — Ay

+ -
At Kk+T K+ At K+T
ANg — Ay A (A* — A*)

= ) 68
At r+r (k+r)A+K+7) (68)
Due to (1), the last line can be rewritten as
Ag— A1+ A
A_po 20T A1t AC (69)
A+ K+T

When € = 0, we have P4 = Pp, which gives A* = A** according to (66).

Step VI. We derive pu,, (A) and p, (A). Recall that we already obtained these two density
functions on intervals [A, Ay), [A;, A**] and (AO,Z], so our task now is to determine them on

intervals (A*™*, A*) and [A*, Ag].

We first determine p,, (A) and p, (A) for A € (A*, A*). Investors with valuations in this
interval are "inactive" in their own way: non-owners do nothing according to (11) while owners
hold onto their assets according to (12). During dt, the inflow to the population of owners

with valuations in [A, A + dA] is ksf (A)dt, coming from the owners who experience preference
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shocks and whose new valuations fall in this interval, and the outflow is kp, (A) dt, coming from

the owners who receive preference shocks. The flow balance equation yields

pn (A) = (1=5) f(A) for A e (A™, A7),

4, (A) = sf(A) for A€ (A™AY).

We next determine p,, (A) and p, (A) for A € [A*, Ag]. According to (11), non-owners with
valuations in this interval search to buy the asset in the OTC market. During dt, the inflow to
the population of buyers with valuations in [A; A +dA] is k(1 —s) f (A)dt, coming from the
non-owners who experience preference shocks and whose new valuations fall in this interval. The
outflow consists of those buyers who meet dealers and trade (Au,, (A)dt), and those those buyers

who experience preference shocks (ku,, (A)dt). Writing that inflow equals outflow, we find

’%(1_8) *

[y (A) ﬁf(A) for A € [A", A},
kS + A N

wn, (A) = /£+)\f(A) for A € [A*, A].

Putting together, we obtain (46) and (47).

We are now able to calculate the masses of buyers and sellers, given by (16) and (17) respec-

tively
Bo k(l—s
mo= [ m@yas =" e g - Py,
A** ,{S
peo= [ ma(@yaa = SE AT - F (o)

Using (15), we find
(1 =) [F(Ao) = F(AY)] = s[F(A™) = F (Ay)]. (70)
Besides, we also need to guarantee (14). Integrating p, (A) over [A,m, we obtain

m’f)\ [F'(A™) = F(A)] + s [F(AY) = F(A™)] + IT:—:-L;\

[F (Ag) — F(AM)]+1—=F(Ap) =s.
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Substituting (14) into the above equation and rearranging, we find
(1—-s)F(A") 4+ sF(A™)=1-s. (71)
Comparing this equation with (70), we obtain

(1— ) F (Ag) + sF (Ay) =1 —s. (72)

Step VII. Using (69), we have
Apg—Ar1=A+r+71)(A—B)— Xe

Using (72), we express Aj as a decreasing function of Ag:

1-s 1-—s
s s

Ay =F1 ( F (A0)> . (73)

Substituting this back into the previous equation, we find

AO—F_l(lgs—lgsF(Ao)>:()\+/~c+r)(A—B)—)\e. (74)

The LHS is an increasing function of Ag, denoted by h (Ag). Given that max {c,e} < A—B <

A—A+)e
Atr+r 0

we check the value of h (z) at its lower and upper bound:

h(2)l,ea, = 0<(A+r+71)(A=DB) = A

h(z),.x = A—=A>A+r+7r)(A—B) - e

Hence, there exists a unique Ay € (Aw,Z) that solves (74). Note that Ay > A, > Aj is

automatically guaranteed by (73).
With Ag in hand, we can figure out A; from (73).

To obtain A* and A**, we resort to (71) which gives

1-— 1-—
A**:F1< - 5F(A*)>.
s s
Substituting this into (1), we find
1-— 1-—
A* — 1 ( - - - SF(A*)) = (k+7)e (75)
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The LHS is an increasing function of A*, denoted by g (A*). Given that ¢ < A—B < Z);%L),‘E,

we check the value of g (z) at its lower and upper bound:
9())za, = 0<(s+7)e
9(2)en, = Do—A1=A+r+7)(A=B)—Ae> (k+r)e

Hence, there exists a unique A* € (A, Ag) that solves (75). Note that A* > A,, > A** is already

guaranteed. Q.FE.D.

7 Appendix II

This section collects all the other proofs before Section 4.
7.1 Example 1 in Section 3

We show that if F'(A) = /A for A € [0,1], the bid-ask spread determined by a monopolistic

market maker decreases in s.

In this case, the Walrasian cutoff point is A, = (1 — s). We still assume (A +x+7)c < 1.
The monopolistic market maker’s optimization problem can be written as
Ag — Ay
max | —— —c | VA
AO,A1<A+m+r ) !

st. (1—s)v/Ap+syvA;=1-—s,

Ag>(1—s)%> A

Using the equality constraint to substitute out Ag:
A N/ e
0= —— 381 —7—— 1 )
(1-s)? 1—s
the objective function can be rewritten as
25 — 1
17 ArV/A 7A1 +yV A1, (76)

where we have denoted by y =1 — (A + k + r) c for short. Note that y € (0, 1).
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To solve this, let z = /A; € [0,1 — s] and the objective function becomes a cubic equation of

2s -1 4 2s

2
z° — 7+ yx.
1-s2 1-s 7

g9 ()

If s =1, g () boils down to a quadratic equation of z:

2 2
Yy Yy

i_22 77_2( _7)
g(x)= x+yw-8 z=7)

which is maximized at = 4. Hence, the solution in this case is given by

2
oyl
Ay = 16<4—(1 S),
_ AN
Ay = (1 4).

Now suppose s # 3. ¢/ (z) and ¢” (z) given by

, _ 3(2s-1) 5 d4s
g(x) = Q2" Tt
" 6(2s—1) 4s
x) = x— :
g () (1_5)2 ]._S

Note that ¢’ (z) = 0 is a quadratic equation which always have two real roots because its

determinant is strictly positive:

(1i68)2 [82 — (25 — 1)]

= a iGS)z (1—-s5)%>0.

; i6s)2 [32 _ %y (25 — 1)] >

If s < %, one root is positive while the other one is negative. From the following facts:

g @),y = v

g/(x)|x:175 = 2s—-3+y<y—2<0,

we know the positive root lies in (0,1 — s) and is given by

\/52%—341/(1—25)—,5].
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The second-order condition is satisfied at z1:

— S

4 3
g" (1) = — \/32+y(1—2s)<0,
1 4
so 1 maximizes g (z) if s < & for z € [0,1 — s].

If s > %, both roots are positive. Based on the following facts:

g (x)‘xZO =Y > 07
9(@))mqy = 2s—3+y<y—1<0,
g(x>|x:+oo = +OO7

we know that one root lies in (0,1 — s) and the other one lies in (1 — s, +00). We should pick the

small one, which is given by

wz—m [s—\/SQ—zy(Qs—l)].

The second-order condition is satisfied at xs:

4 3
2_ 2y (2s—1

so o maximizes g (z) if s > 3 for z € [0,1 — s].

9" (x2) = —

To sum up, the cutoff points are given by

N 2(1—y9)

3(1—2s)

\/82+?ZJ(125)5], (77)

\/s2+?f(1—2s)—s].

The bid-ask spread in the exchange in this case is given by

Ag—Ar 1-4 - 3:5VA
AN+K+71 A+ K47

and

VAg—1— -5 A =12

1—s 3(1—2s)

A-B =

_ Y _ 3
A+ K+T 3 14 /14_3?1;225

It is straightforward to verify that (A — B) decreases in s. Q.E.D.
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7.2 Example 2 in Section 3

We show that if F'(A) = A? for A € [0,1], the bid-ask spread determined by a monopolistic

market maker increases in s.

In this case, the Walrasian cutoff point is A, = v/1 — s and we still assume (A +k +7)c < 1.

The monopolistic market maker’s optimization problem is now written as

Ag — Ay 2
AoA; <>\+f~@+r c) (A1)
st (1—8) (D) +5(A1)°=1—s,
Ag > V1—s> A

Using the equality constraint to substitute out Ag:

s(Ar)°

Ag=1/1
0 1_87

the objective function can be rewritten as

2 s (AI)Q 3 2
(A1)"4/1— . — (A1) = (A +r+71)c(Ay)".
To solve this, we let x = S(ﬁlf € [0, s] and rewrite the objective function as
1-— 1— 32 9 _
88:16\/1—3:—< S.r) - SS()\—I-I%—F’I’)CLB. (78)
F.O.C. is given by
1 =z 3 /11—
Vi—z-i_& 3 e '
x Wi . A+r+71)c (79)

d 3 43—z 3 [1—s

so S.0.C. is also guaranteed. According to the following facts

LHS of (79)|,.y = 1—(A\+k+7r)c>0,

1
LHS of (79)|,_., = —————-(A+K+71)c<0,
= 21—
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we know (79) implies a unique z € (0, s) that maximizes (78).

We also establish

ox
99 < 0, where ¥ = A\ Kk, 7, c.
It thus implies
0/ 0Ag B
50 <0< 59 where ¢ = A\, K, 1, C.

The bid-ask spread in the exchange in this case is given by

B Ag — Ay _\/1—:5—1/%:1:

At E+T A+ K47

A-B

Adding %\/1 — x on both sides of (79) and rearranging, we obtain

;\/ﬂf% 1;890 = % 17x+% 1$_x+()\+n+r)c
= % 11_m+()\+ﬁ;+7’)c
Therefore, A — B can be rewritten as
1 1 2¢

A-B= -«
3()\+/<a+7")\/1—a:+ 3

Notice that s does not enter this expression explicitly, so s may affect the bid-ask spread only

through z.

Since we aim to sign 0 (A — B) /0s, we need first evaluate dx/0s. For this, we take total

differentiation wrt s in (79) and find

or 5 \/E% (\/%)

95 i . i > 0,
(1_1,)3/2 ST
SO
O(A-B) _9(A-B)ox
Os - Oz Os ’
Q.E.D.
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7.3 Proof of Proposition 4

Recall that the trading volume in the exchange and the OTC market are given in (25) and (26),
respectively. Therefore, TVorc > TVexchange if and only if

1-—s

F(A)) < .
(A1) P

(80)

Part I. Suppose F (A) = A for A € [0, A], then (80) becomes

Al 1—s
— < —.
A 2+5

In the case of competitive market making, A; (denoted by Af therein) is given in the paper
and the above inequality now becomes

K+ A

c
< (A =. 81
P SRR (8D
It is obvious to see that inequality (81) holds if » > ro = :jz/x% —A—gK,orif c > ¢y =
A K+
AR+T KH2X°

To discuss in terms of A\, we transform (81) to
3K A K A
22 — —— A+ = - — 0.
+(2+7“ 26) —|—2</£—|—7" c>>
Observe that the LHS is a quadratic equation of A. Its discriminant is strictly positive

3, AN (., A
2T20 H,{Tc

_ 3£_|_ 2+ § 2_é 3j+ _2 + _§
a 2 " 2c c 2 " AR c

2
K A
= <2—r+2c> + 2kr > 0,

so it has two distinct real roots. According to Vieta’s formula, the product of these two roots is

R

equal to § <Ii +7r— %) < 0, so one root is strictly positive and the other is negative. We thus

know that (81) holds if and only if A € ()\g, % —K— r), where

E—r+§ 2+2m‘—} 3£+r—§
2 2c 2\ 2 2c

o1

1
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is the positive root.
c

I€+>\<(I€+2)\)()\+I€+T)A

In the case of monopolistic market making, A; (denoted by A" therein) is given in Proposition

3 and (81) now becomes

K c
< (A =.
proy A FRETZ

It is direct to see that inequality (81) holdsif r > r; = KJ’:QA%—)\—/@, orifc> ¢y = %ﬁ

To discuss in terms of A, we transform (81) to

A
)\2+<3K+7’>)\+K</€+T—> > 0.
2 2 &

Observe that the LHS is a quadratic function of A. Its discriminant is strictly positive

3K 2 A K 2 A
—+r| —2xk|K+T—— :<——|—7“) + 25— >0,
2 c 2 c

so it has two distinct roots. According to Vieta’s formula, the product of these two roots is equal

to § (/i +7r— %) < 0, so one root is strictly positive and the other is negative. We thus know

that (81) holds if and only if A € ()\1, - 1“), where

is the positive root.
Part I1. Now suppose F (A) = /A for A € [0, 1], then (80) becomes

VA <18 (82)

2+ 5

In the case of monopolistic market making, Ay is given by (77). If s < 1, (82) boils down to
3 n s
2+5)° 2F%

The LHS is strictly decreasing in A while the RHS is strictly increasing in A. Since

l1-(A+k+71)ec<

(83)

LHS|,_:_ 0< RHS|,_1_

K—T K=
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there exists a cutoff \; such that (82) holds for all A € (Al,ﬂ, where )\; is determined by

3 s
1—()\ = .
A +r+71)c 2+2+fl

(2+5)

In terms of r, we know that (82) holds if and only if

7“>1 1- ; -0
(2+5)° 273

If s > 1, (82) boils down to

3(2s—1) 3y
8—2(2+§)<\/s2—4(23—1).

If the LHS is already negative, i.e., when

K 3
—<1l-—
A 2s

then this inequality already holds. If not, then we need

(24+%)s+3

I1-(A+k+r)c< —
(2+5%)

The LHS is strictly decreasing in A while the RHS is strictly increasing in A. ® Since

LHS|\ 1 ., = 0<RHS|\_1_.,,

there exists a cutoff Ay such that (82) holds for all A € (A, A].
7.4 Proof of Proposition 5

The proof is organized as follows. Step I and II determine the socially optimal allocation by using
the static welfare criterion and the dynamic welfare criterion, respectively. We compare the asset

price across different equilibriums in Step III.

¥Direct differentiation of the RHS wrt (x/)) yields

d (2+%)s+3 _2[2s(1— %) —3] <2(252—35—3)
i(3)  (2+3%)° (2+%)° (2+5)°

)

where we have used condition 1 — § < 2—?’5 (which holds in this case) in the inequality.
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Step I. We first study the allocation of social optimum by using the static welfare criterion

given by (30):
A
Wy = / (14+ A) p, (A)dA — cksF (A1),
A

where 1, (A) is given by (23).

Substituting, the social planner’s problem is

max W, = 5 [ (14 Ay F(A)dA ¢ B AO(1+A)f(A)dA+/A(1+A)f(A)dA
A1,Ap 5o K+ )\ Aq /{‘{‘ )\ Ay Ao
—cksF (Ay),

st. (1—9)F(Ag)+sF(A)=1—s,

A <A <Ap <A

We can express Ay as a function Ay by using the zero inventory condition and transform the

objective function to a uni-variate function of Aj. The first-order condition is given by

oW,  OW,dAg

oA, Ry dn, (84)
Since
OW . 1+ A
oWy k(l-s)
an, —ﬁ(lJer)f(Ao),
ddo _ sf(A)
dAy (1—15)f(Ag)’

(84) yields

Ag—Ar=(k+)N)c

The second-order condition is also satisfied

02W, W, dA, 0?°W, <dAo>2 OW, d2A,

oA2 T 2an0n, 0, T aaz \oa,) T an, @A,
ks f (Ar) sf (A1) }
SR e VAN R R ol VRS ()
rth | o9 (B S
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Step II. We study the allocation of social optimum by using the dynamic welfare criterion
given by (29), which

Wd = W] +Hm7

where

A
W = /A [V (0, A) iy (A) + V (1, A) s, (A)] dA,

RS Ao—Al
I, = — (=221 ) F(Ay).
T <)\+/<c+r c> (A1)

Here, V (0, A) is given by

AT ) ALA ’
V”+A+i+r et . 1fA€(A N

Vi, if A € [A, Ay)
V(0,A) =X Vit s 878 if A € [Ay, Ag]
K+ K+r

and V (1,A) is given by

Vi, + B, if A €A A)
V(1,A)

Vo4 B+ ﬁrﬁl,ﬁ'Ae(Al,A )

V4 B4 581 4 88w if A € (A, A]

K+r

We first calculate the investors’ total welfare:

k(1—s) A AAj(A—Aw)f(A)dA+ ks JAT (A= A1) F(A)dA

W=V, + Bs +

K+AX A+k+7T K4+ K4+ A A+ Kk+T
Ao
Aw— A1 [Ks+ A ks + A Sar (A= Ay) f(A)dA
+)\+/£+T[I<a+)\(F(AO)_F(Aw))+S * K+ A K+
) S8 (A= Ay) f(A)dA
K+ ’
where
koA A= FA)dA 5 [1— F(A)]dA
Vo = — w + = ,
rA+rk+rT K+T T K+T
po_ LHAy Ay A k[N FA)AA [0 F(A)]dA
N r At k+r v A+k+rT T A+ k4T '
Then,
OWqg ks F(A1) K(1=s)1-F(Ao) £ —5)(B0—Au)f(Ao)
oIANY rA+Kr+T r A+ K+7 K+ A A Kk+7 ’
8Wd Aw - Al KJSf (Al) KRS Ao — Al
= — | —— - A
0Aq AKr+7 K+ + r \Atrtr © F (A1)
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The FOC is given by

OWa | OWaddo _
OA1 | 9N dA;

which yields
Ao—Al = (Ii—f—)\)c.

The second-order condition is also satisfied:
O*W, o W, dAg N Wy (dA\? W, d2 A
8A% 0A10Ag O/ 8A% 0/ 0Ny d2Aq

_/‘ﬂsf (A1) sf (A1)
RPESY 1+(1—8)f(Ao)}<0'

All in all, maximizing either welfare criterion points to the same result of social optimum.

Step IIL If F (A) is the uniform distribution on [O,N, A{b and Agb are given by

A{b max {(1—s)A—(1—s)(k+A)c,A},

Agb = min{(1-s)A+s(k+A)c,0}.

The asset price in the OTC market, P/?, is given by

s M + 5025 — 1) 2 (1 — (”;%\)C> Jf (k+A)e< A

_ - = B
EX(ESE ?(;rﬁlfv i (4 A)e> B

Suppose (k+ A +7)c < A, so both the exchange and the OTC market are active in all three

equilibria, i.e., the search equilibrium with competitive market makers characterized in Proposi-

tion 77, the search equilibrium with a monopolistic market maker characterized in Proposition 3

and the socially optimal search equilibrium characterized in Proposition 5. Now we compare the

asset price in the OTC market in all three equilibriums. Note that we obtain asset price in each

case by substituting the corresponding values of Ag and A into (22), where Ag and A; are also

linked through zero asset holding condition (21). We can first treat P as a function of A; and

determine the sign of %. Since the ranking of Ays in different equilibriums are already obtained

in Proposition 6, we are then able to do the comparison of Ps under the three equilibriums. Direct
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calculation yields

dP o K F(Al) Kl—F(Ao) dAo
EPisgiVCIlin(QQ) CorAtRAT T AR+ dA

K F(A)  k1-F(Ag) sf(A)
rA+r+r o A+r+r (1—3)f(Ao)
K F (A1) {1_ s2f (Aq)
rAtREr L (=9 (A0

where in the last step we use the fact %_A;) =1— F (Ap) due to condition (22). Since F'(-) is

uniform, we know

dP
- x (1—2s).
dAl P is given in (22)
That is,
P >0,if s < %
Bl =0,if s=3
dAq P is given in (22) <0,if s > %

According to Proposition 6, we have A{ b Af > AT, so

1
PFE > PCM>PMMifs<§,
pFB - — PCM:PMMifs:%,
1
PFB < PCM<PMMifs>§.

Q.E.D.
7.5 Proof of Proposition 6

Suppose (k + A +7)c < A. Note that the distance between Ag and A; in all three equilibriums

can be summarized as follows:

N ,(i'f:\ﬁf in the social optimum

———— 4§ = c in the search equilibrium with competitive market makers
K+A+r . ey . L
> ¢ in the search equilibrium with a monopolistic market maker

If we set ﬁi;i} = z and substitute Ay out in (22), we can solve A; out as a function of z,

denoted by Aj (z), which is uniquely determined by
(I=5)F(A1(2)+(k+A+71)2)+sF (A1 (2) =1—s.
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The value of Ag is immediately given by

Ao (2) =A1(2)+ (k+A+7)2

It is direct to check that Aj (2) is strictly decreasing in z:

(ktA+r)(A=8)f(A1(2)+(K+A+T)2)

M) = T AL F e A+ 1)) 57 (A1 ()

<0,

and Ag (z) is strictly increasing in z:

(k+A+7)sf(A1(2))

Ag(z)=AL(2) +(k+A+7) = (1=35)f(A1(z)+(k+A+71)2)+sf(A1(2))

> 0.

It follows that

b
A{ > Al > AT,

A" < A< AP
The result for the case of (k + A +7)c > A can be easily obtained. Q.E.D.

7.6 Proof of Proposition 7

Recall that in the proof of Proposition 5 we use condition (21) to substitute Ay out and thus
treat Wy as a function of A;. We have shown there that Wy is strictly concave in A;. Hence,
the farther away a specific A is from A{b, the lower the resulting total welfare. According to

Proposition 6, we have A{b > A¢ > AT when (k+ A +7)c < A, so
WiP > wWiM > wiM.
The result for the case of (k + A +7)c > A can be easily obtained. Q.E.D.

7.7 Equilibrium with ¢ > 0 and Proof of Proposition 2 and Propositipon 8-10

This subsection is organized as follows. Part I presents some preliminary analysis. Part I proves

Proposition 9. Part III analyzes the equilibrium under competitive market making and gives the
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proof of Proposition 2 and 8. Part IV analyzes the equilibrium under monopolistic market making

and proves Proposition 10.
Part I. According to Theorem 1, A* and A™ are uniquely determined by

A" =A™ = (k+71)e,

(1—s)F(AY) +sF(A™) = 1-—s.

Direct differentiation yields

OA* _ (k+71)sf(A™) -0
Oe (1 —5) f(A*) + sf (A*) ’
OA* _ (k+7)(1—38)f(AY) <0

Oe (1 —3s) f(A*) + sf (A**) ’

To see an example, we assume F (-) is uniform on [0, A] and have

A* = (1-s)A+s(k+7)e

A = 1-8)A—(1-3)(k+71)e.

Also, we have
A-B= Ao—A1+)\6
At+K+T

I

where Ag and A; are still linked through (72).

Part II. Competitive Market-Making. In this case, A — B = c. Ag and A; are uniquely

determined by the following two equations

Ag—A1+ X = A+k+7)c,

(1—=s)F(Ag)+sF (A1) = 1—s.

In order to have Ag > A* > A*™ > Aq, we need Ag — A1 > A* — A™, which leads to € < c.

When € > ¢, we have Ag = A* and A; = A**: all investors choose to trade in the exchange in

OA*
Oe

this case. As € increases from zero, Ag and A* get close to each other because % <0<

(see below) until they meet when € exceeds c¢. From 8%% <0< % (see below), we know that

A1 and A** approach each other as € is increased.
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Now we check the effects of €. Direct calculation yields

0Ay B Asf (Aq) <0
e (L=35) f(Ao) +sf (A1) 7
0A _  A1-9f(B0)
e (L=38) f(Ao) +sf (A1) =
Uy is decreasing in e:
o, K(1—ys) 04y o OA*
2 A T Y (A - — £ (A¥). .
e wa |[TB0) o FAY 0
—~ +
€ increases TVexchange but decreases TVorc:
aTVexchange o 8A1
L AC e
ITVorc _ AKS 0/
Oe N /~£+)\f(A1) Oe <0.

Consequently,
0 (TVexchange + TVOTC) H2Sf (Al) 8A1

Oe T T REN e > 0.

We complete the proof of Proposition 9.

Part III. We analyze which market is active in the search equilibrium under competitive

market making. We assume ¢ > 0 and € > 0 in this part.

Let’s introduce two auxiliary functions. For a positive z, let D (z) be the unique solution to

the following equation

(1-5s)F(D(2)+2)+sF(D(z)=1-s. (85)
D (z) is decreasing: 5 )
"(2) = (1 - S) f D (Z)
PO o) rar e <"
It is easy to verify that D (0) = A, = F~' (1 — s) and D (A) = 0. Therefore, D (z) is a mapping

from [0, A] to [0,A,]. Define D (z) by

D(z) = D(z) + z, for z € [0,A]. (86)
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D (z) is increasing:

sf(D(z))
(1=s)f(D(2) +sf(D(2))
It is easy to verify that D (0) = A, and D (A) = A, so D (z) is a mapping from [0, A] to [A,, A].

-/

D (z) =

> 0.

We need to extend the domain of these two functions to [0, +00):

B defined in (85) if z € |0
D(z) = {01fz€(A+oo) [ T

— B defined in (86) if z € |0
D(z) = {AIfZE(A+OO) | T

Then, we can rewrite four cutoff points by

Ay = D((A+K+71)c—Xe),
Ay = D((A+k+T1)c—Xe),
A" = D((k+r)e),
A™ = D((k+r)e).

In the case of € = 0, we have A* = A*™ = A, and
Ay=D((A+r+7r)c)>A1=D(A+r+71)c),

because ¢ > 0. If ¢ < %, then A > Ag > A, > A1 > 0. This is the case where active trading

occurs to both markets. If ¢ > then Ag = A and A; = 0. This corresponds to the case

>\+ +r?

where trading only occurs to the OTC market. These results are reported in Proposition 2.
Now we assume ¢ = € > 0, there are two subcases.

Ifec=e< %_T, then (A +k+7)c— Xe = (k+7)e < A and therefore A > Ag = A* > A* =

A > 0. This is the case in which active trading only occurs to the exchange.

Ifc=€¢>

n+r’ A =Ag=A*> A" = A; = 0 and this is the case of no trading in either

market.

Now assume ¢ > ¢ > 0.

61



Ife<c< /\)‘j:_ér,then()< (k+71)e < (A+K+71)c—de < A. We therefore have A > Ag >

A* > A*™ > Ay > 0 and this is the case where both markets are active.

If ¢ > e > 2 then A+r+7r)c—Xe > (k+r)e > A. We have Ag = A* = A and

K+Tr?

A1 = A*™ = 0. This is the case where no market is active.

If ¢ > /\)‘j:_g > ¢, then A+ k+7)c—Xe > A > (k+71)e. We have A = Ay > A* > A** >

A1 = 0. This is the case where active trading only occurs to the OTC market.
The above results are reported in Proposition 8.

Part IV. Monopolistic Market-Making. For simplicity, we still assume F'(+) is uniform

on [O,Z]. Now, the monopolistic market maker’s problem is written as

AU—A1+)\€_C)

A
IEaé{(A—B—C) TVexchange = i]g:a'AXl kS ( >\+I€+T fl
(72

)

s.t. A

v

Ag > A* > A*™ > A; >0and (72).

The interior solution is

Ay = Z—gm+)\e—()\+m+r)c],

1—s —
Ay = 28[A—|—)\6—()\+/€—|—r)c].

We obtain the interior solution by ignoring the inequality constraint. Just like before, Ay (or Ay)

is decreasing (or increasing) in e.

Now we prove Proposition 10. Both markets coexist (i.e., A > Ag > A* > A** > Ay > 0) if

A A
(Dy) <1+m—)|\—r>c_<6< +A+kK+7r)c

A A+2(k+7)
A precondition to have (D;) is that the upper bound exceeds the lower bound, which requires

(k+7)ec <A

Trading only occurs to the exchange (i.e., A > Ag = A* > A*™ = Ay > 0) if

A+(A+r+71)c A
Ds) : .
D) st = wtr
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Trading only occurs to the OTC market (i.e., A = Ag > A* > A*™ > Ay = 0) if

A+A+r+71)c Lyt A
A+2(k+r) A '

(D3):e<max{ 5

When € = 0, condition (D2) can never hold, so active trading always takes place in the OTC
market. In this case, condition (D) boils down to (A + £ +7) ¢ < A and condition (D3) becomes
(A+ K +7)c > A, which exhausts all possible situations. This is what we have specified in

Proposition 3.

Under condition (Dy), the optimal bid-ask spread is given by

A+ e c
A-B= ———— 4+ —
2()\+/<c—}-1“)+27

which is increasing in € (obvious) and decreasing in A:

0(A—B) e(k+r)—A
~ > < 0.
A 2(A+K+7)

This is because condition (D7) requires ¢ < ,ET and then

D) A+ A+wtre A+A+r+r) S A

A+2(k+T) A+2(k+7) K+

Let’s look at the anatomy of the bid-ask spread in the exchange. The spread of the ask price
in the exchange and the OTC market is given by

65) Ao — A s A K+
A-Pa= )\+m+r_2{>\+n+r <1+A+m+r>6+c]'

The spread of the bid price in the exchange and the OTC market is given by

67y A™ — A7 1-—3s A K4+
Pp— B = = - 14+ — .
b A+E+T 2 [)\+m+r +)\+/-e+r cte

Both of these two price spreads are decreasing in A because

0 A K+ —
L B AL _A<o.
o\ [/\+n+r <+A+m+r)6+c]o<(’<“+r)€ <0

It is also direct to show that they both decrease in x and r.
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8 Appendix III

This section explores the equilibrium of the model in Section 4. We briefly describe the frictionless
benchmark where only a competitive market is available in the first subsection. We then study

the search equilibrium with both the exchange and the OTC market in the second subsection.
8.1 Frictionless Benchmark

We can think of an economy where every investor has to rent the asset in each period by paying
a flow price rP". An investor of preference type i chooses the number of units of the asset he

wants to hold, i.e.,
q; = argmax [u; (g) = rP"q] .

The Walrasian price P is determined by the market-clearing condition

w w
mi1qy +m2qy =S.

If the flow utility is specified by u; (¢) = 6;q — %qQ, we have

q}/v = max{@l—rPW,O},

qgv = 0,—rP".

Inserting back into the market-clearing condition, we obtain the Walrasian price

o 0=s if 5 > myAf .
- %(62—%),if0<s<7r2A9’ (87)

and the optimal asset holdings for investors of each type

q)Y = max{s—mAb,0},

o = max{s + 11 A0, 8} .
T2

To ensure a positive Walrasian price, we need to impose s < mofs.
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8.2 Search Equilibrium

The proof is organized as follows. We provide some preliminary analysis and simplify the expres-
sions of value functions in Step I. We have argued in the paper that the steady-state distribution
across investors’ states could be determined after we have excluded those transient states which
have infinitesimal masses of investors. To this end, we need to go over all possible cases and
check whether demand and supply could coexist in the exchange simultaneously. We illustrate
our analysis in Step II and end up with two possible cases. We then analyze each case in Step III

and IV respectively.

Step I. Substituting f; (¢, ¢;) in (37) into (34), we obtain

rU; (q) = ui (q) + AU (¢}) — Ui (9) — P (¢} — )] + & Z 7 [®; (¢) — Ui (q)],

where we set A = A (1 —n). This can be rearranged as
(r+ 5+ MU (q) =ui (@) + AP+ Qi+ 5 > 70 (q), (88)
j=12
where

Q=AU (q) — Pgl].

Recall that ®; (¢) is the optimized objective function in optimization problem (38) and is given

by
Ui (¢) —A(g) —q),ifqg< g
®;(q) =1 Ui(q),ifgt<qg<qP - (89)
Ui (¢f) +B(q—4qf),if ¢>q

By construction, the slope of ®; (¢) is bounded by B and A:

A, if g < ¢?
dq dq 1 — — 17
B, if ¢ > qf

We will later show that U; (¢) is strictly concave for ¢ € [qZA, qu ] which guarantees the concavity

of (I)i (q)
Step II. So far, we just know qZA < q < qZB for i € {1,2}, but we don’t know yet the
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comparative magnitude between qlB and qf‘, qi and qf‘, or g5 and qlB. There are 8 possible cases
in total and we now analyze each case by checking whether demand and supply could emerge (or

disappear) simultaneously in the exchange.
Case 1: ¢ > qf‘, qi > q2A and ¢ > ¢f. Putting together, we have
i <@ <di<af <@ <a3

in this case. Since qlB <@ < qQB, investors in state (1,¢5) and (1,q23) choose to sell in the
exchange and both go to state (1, qlB ) after trade. Since qf‘ < qé“, investors in state (2, qf‘) choose
to buy in the exchange and their state after trade become (2, qg‘). Note that only investors in
state (l,qf‘) can enter state (2,qf‘) after a new shock in their preference types. However, no
investor would ever be in state (1, qf‘), so the mass of investors in this state and in state (2, qf),
in turn, is zero at any time. The above shows that in the exchange some investors are willing to
sell but no one is willing to buy, which violates the zero inventory condition. Hence, this case is

impossible.
. B A x A * B .
Case 2: ¢ > ¢3', ¢ > ¢5 and g5 < qi’. Putting together, we have
A A
a' <@ <ai <@ <af <df

in this case. Since qf1 < q?, investors in state (2, qf‘) choose to buy in the exchange and enter
state (2, qé“) after trade. Since ¢ < ¢2, investors in state (1, a5 ) choose to sell in the exchange
and go to state (1, qlB ) after trade. Note that only investors in state (2,qQB ) can become state
(1, P ) after a new shock in their preference types. However, no investor would ever be in state
(2, qQB), so the mass of investors in this state and in state (1, QQB), in turn, is zero at any time.
The above means that there is demand for but no supply of the asset in the exchange. Hence,

this case is still impossible.
Case 3: ¢ > q§4, qi < qu and ¢ > ¢f. Putting together, we have
g <g <@ <a <¢<d
in this case. Since qlB < ¢ < qQB, investors in state (1,¢3) and (1,q23) choose to sell in the
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exchange and become state (l,qlB ) after trade. Since qf <qf < qf‘, investors in state (2,qi4)
and (2,q]) choose to buy in the exchange and become state (2,q§4) after trade. It turns out
that demand and supply exist in this case. The states that have positive masses of investors are
(1,q7), (l,qf), (1,qlB), (2,q§4), (2,qlB) and (2,¢3). We defer the detailed demographic analysis

and further discussions to Step III.
Case 4: ¢ > qé“, q; < q2A and ¢ < ¢f. Putting together, we have
i <4 <@ <@ <ap <a3

in this case. Since ¢f* < ¢} < ¢4, investors in state (2,q{‘) and (2,¢]) choose to buy in the
A : B B B\ :
exchange and both become state (2, a3 ) after trade. Since ¢ < g5, investors (1, g5 ) in state

choose to sell in the exchange and enter state (1, qlB ) after trade.

Case 5: qlB < qé“, q; > q2A and g5 > qlB . We thus have ¢ > q? > qlB , which contradicts

q; < qP. Hence, this case is impossible.

Case 6: ¢f < qf‘, q; > q§4 and ¢ < ¢. We thus have ¢} > qﬁ‘ > ¢P, which contradicts

qf < ¢P. Hence, this case is impossible.

Case T: qlB < qf‘, q; < q§4 and g5 > qlB. Putting together, we have
A B A B
@ <@ <a <@ <@<g

in this case. Since ¢ < q§4, investors in state (2, ¢}) choose to buy in the exchange and become
state (2, qu) after trade. Since qlB < ¢3, investors in state (1,q3) choose to sell in the exchange
and become state (1, qP ) after trade. It turns out that demand and supply exist in this case. The
states that have positive masses of investors are (1, ¢), (1, qlB), (2, qu) and (2, ¢3). We defer the

detailed demographic analysis and further discussions to Step IV.

Case 8: ¢ < ¢3!, ¢f < ¢4 and ¢§ < ¢P. We thus have ¢5 < ¢F < ¢, which contradicts

@' < ¢3. Hence, this case is impossible.
Step III. We analyze Case 3 in Step II. In this case, we assume
0 <di <@ <af <a3<a.
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Value functions. The value of ®; (¢) and @5 (¢) in different regions are listed in the following

table
Region/Value 4 (q) @3 (q)
q<qi Ur (g1) —Aai' —a) | Uz (qi') — A(af" —q)
@t <qg<gs Ui (q) Uz (gi) — A (q' —q)
@ <q<qf Ui (q) Uz (q)
@@ <q<d® | Uh(dP)+B(q—4dP) Us (q)
q>qP Ur(¢f) +Blqa—df) | U2(¢5) + B¢ —d5)

Let’s first determine U (q) for g € [qf‘, gf’]. For this, we take ¢ = 1 in (88) and obtain

(r+/€—|—X)U1(q) = ul(q)+XPq—|—Ql—|—mrlU1(q)

N { kma [Us () = A (g = q)], if ¢ € [, ¢3")
kmaUs (q) , if q € [¢4, ¢ ]

This can be rearranged as

u1 (g )+)\PQ+QI (U2 (af') = A(af* — q)] , if g € [af', 45"

Ui (q) = s : 90
( T+mr2+)\ { %Uﬂ) 1fq€[Q§47Q1B] (90)

where Q1 = A (1 —n) [U1 (¢f) — Pgi]-
We next determine Us (q) for q € [qé“, qQB]. For this, we take ¢ = 2 in (88) and obtain

(r+r+ X)Ug (q) = wua(q)+ XPq + Qo + km2Us (q)

+{ kmUi(q),if g € [¢5', qP)
ki (U1 (¢P) + B (¢—qP)], if g € [¢F, ¢F]

This can be rearranged as

Uz (q) = (91)

uz(q) +APg+ Qs { 2 =Ui(q), if g € [g3 a7

KT+ A s (U (o) + B (a—af)] ifq € [of 0]

where Qo = A (1 —n) [U2(¢3) — Pg3).
Using (90) and (91) to solve for U; (q¢) and Us (¢q), we have

P | e (1 (gf) — Aaf ~ )] it 0 € [af' 0f)
U1 (q) — r+rmot r+rmo+
(r+rm1+A)[u1(q)+Q1 | +rma uz(q)+22] + )\Pq

(r4X) (rK+N)

,if g € [, ¢F]

and R
k1 [u1 (@) +Q ]+ (r+rma+A) [ua(g)+0]
" L + 22 if g € [¢4', ¢P)
Us (q) _ R (r+)\)(r+/€+)\)

w@ P, | am (1 (gf) + 5 (q —gB)] it € [¢F.qF]

)\Pq
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It is direct to see that U; (q) is strictly concave when ¢ € [q{‘, gP| for i =1,2.

Now we solve for all cutoff asset holdings. qlA is determined by Uj (qlA) = A, ie.,
uy (qf) = (r + M)A — AP,

P is determined by U] (¢F) = B, i.e.,

(r + rm + Ny (aF) + ko (af)
R A

= (r+A)B— AP.
To determine ¢, we notice gi € (g, ¢3'), so Uj (¢}) = P gives
uy (qF) = (1 + kmy) P — kma A.

¢4 is determined by U} (qé“) = A, ie.,

rmid) (g3)) + (r + g + N)uf (g3)
TR+ A

= (r+\A—AP.
qu is determined by U} (q2B) = B, i.e.,
uy (¢F) = (r + N)B = \P.
To determine ¢}, we notice g3 € (¢, ¢¥), so Uj (¢3) = P gives
uy (¢3) = (r + km1) P — kmi B.
We need to guarantee
0 <@ <da <@

Note that qu < qZ-B is already guaranteed by the concavity of U; (¢), so we only need to check

qf‘ < ¢P. We will later verify this after we determine the equilibrium bid-ask spread.
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Since u} (q) = 6; — g, we have

A
q1

B
q1

A
g2

B
q2

01 — (r + N)A+ AP, (92)

(r+km + )\)elj' Pl —(r+ X)B + XP, (93)
r+Kr+A

rmibr b rma 02 Sy A A, (94)
T+ K+ A

01 — (r + kma) P + kmaA, (96)

0o — (T+I€7F1)P+H7TlB' (97)

Demographic analysis. We determine the mass of investors in each state. First, the mass

of investors with preference type ¢ is equal to 7;, so the following identities hold

n(2,¢)+n(2,¢)+n(2,¢) = 7. (99)

Second, all assets are held by investors, so

Gn(Lg)) +a [n(Lgd) +n(2,6)] +af [n(1,¢) +n(2.¢P)] +@n(2.¢3) =s.  (100)

Third, in a steady state the inflow and outflow of investors in each state should be equal. We

list out the inflow-outflow balance equation for each state as follows

= RTIN (2, qlB) + RN (27 q;) )

(
(1,42)
(1,ar)
A+ wm1) 1 (2,68) = wman (1, q7) + wman (1,63
(2,ar)
(

where on each line the term before the colon indicates the state and the outflow(s) and inflow(s)
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of that state are placed on the LHS and RHS of the equation after the colon, respectively. It
can be shown that the steady-state distribution satisfying (98), (99) and the above 6 flow balance

equations is

n(l,q) = )\‘):Tf;TQ (101)
n(la) = %Tfj (102)
n(La’) = Tfja (103)
n(2e) = 327 (104)
n(2,q0) = %Tﬁ: (105)
n(2,q¢) = )\f:;l (106)
Substituting these into (100), we obtain
0y iilm + g3 ;11:;2 a ;f;:l @ iﬂjﬁl = (107)

So far we haven’t checked the zero inventory condition in the exchange and the OTC market.

Trading volumes. In the exchange, (i) each investor in state (1, g3) sell (qg —qP ) units and
the total measure of such sellers is kmin (2, 43), (ii) every investor in state (2, ¢}) buy (qé4 - q{)
units and the total measure of such buyers is kman (1, ¢}). Since market makers in the OTC take

no inventory, we have

(Q; - qlB) RT1M (27 q;) = (qé4 - qT) RT2M (17 qT) )

which can be simplified to

G- @ —q

= . 108
A+ KT A+ KT (108)
Using this, we can show that (107) can be rewritten as
T + mags = s. (109)
The total trading volume in the exchange is given by
TV — (gf —qp) 22 (110)
exchange 2 1 X+ rma .
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In the OTC market, (i) each investor in state (1, qéq) sells (qé4 —q ) units and the total measure
of such sellers is An (1,¢4'), (ii) each investor in state (1,q7) sells (¢f — ¢}) units and the total
measure of such sellers is An (1, qlB ), (iii) each investor in state (2, qé‘) buys (q§ — qé‘) units and
the total measure of such buyers is An (2, qé“), (iv) each investor in state (2, qP ) buys (q§ —qP )
units and the total measure of such buyers is An (2, qlB ) Hence, the trading volume in the OTC

market is given by

TVore = (¢ — ) n(1,6) + (af —ai) An (1, ¢F)
_ A s\ KTl QKT B ) AKTIT2
— (q2 ql))\+/{ﬂ_2 A—Fl’i (1 ql) )\+,{

It is direct to show TVorc > TVexchange, Which is equivalent to

A A A
(q2A B QT) KT KT (Q1B _ q>1k) KMy (q§4 B QT) K72

a+ KTy A+ K A+ K A+ KTy
K1 o Atk
(' =) s + (@ =) > (@ —d) 75—

oW -4 > @ -d
The last line already holds because ¢f > g5'.

Bid-ask spread under monopolistic market-making. The monopolistic market maker

sets the bid and ask price to maximize his profit

max (A — B —¢) x TVexchange (111)

s.t.(108) and (109),

and TVexchange 18 given by (110).

In what follows, we let

7r+mr1+x 77‘4-/1772—1—/)\\
X1 = )\‘i‘:‘iﬂ'l X2 = /\‘FHT['Q '

(112)

Let us first simplify two constraints. We already obtain all critical asset holdings in (92) —(97).
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Inserting them into (109) and (108), we obtain

0 — s+ kmima (A+ B)

P = . 113
T‘+2/<L7T17T2 ( )
Al Al
r+ K+ A r+ K+ A

Using (113) to substitute P out on the second line, we have

< AO _0—8+/€7T17['2A—(7”+/€7[’17T2)B>
T—FI‘Q—FX r 4+ 2KT1TY

Af n 0—s—(r+rmm) A+ K,7T17TQB> ‘ (115)

= X —
2<r+f€—l—)\ T+ 2RI

TV exchange becomes

~ A A6O
TVexchange = (r+rKm2+A) AT ( ~—A+ P)

A+ ET2 \r+ K+ A
2 _
PR ERMT2 NG LG — 5 — rA— kmima (A= B),
T+ K+ A

where we have substituted P out on the second line.

Inserting this into the objective function (111), the monopolistic market maker wants to

maximize the following

9 _
(A— B —¢) MAQ—F@—S—TA—K?HTFQ(A—B) . (116)
r+K+A

Now we aim to use (A — B) to express rA. Using (113) and (114), we have

TA:@_SJFXz—X17’+2'€7T17T2A6+X1(7“+HTF17T2)—XzfﬂTlﬁz(

i A-B).
X1+X2e r+r+ A X1 T X2

Inserting this back into (116), the objective function reduces to

2 2A
(r+ mr17r2)X1(A_B_c) GA—(A—B) '

X1t X2 T4+ A

The optimal bid-ask spread is thus given by
A
A-B= b ¢ (117)
r+r+N 2

: 2A60
ife< Y
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Recall that we have to guarantee the inequality condition qg‘ < qlB , which is equivalent to

A6l

— =< A-B.
r+ K+ A

Obviously, this already holds.

The ask and bid price in the exchange are given by

4 = 0—s L TRmITX + (r + kT172) Xa Al _.x (r + KT1T2) — XoKT1T2 C
T X1t X2 r(r+k+X) X1t Xz 2r

B - 0—s Lo (kmime 4+ 1) X1 + KT1T2X2 Al | M X (kmimo + 1) <
T X1t X2 r(r+ K+ \) X1+ X 2r

The asset price in the OTC market is given by

§—s+/<m'17T2X2—X1 ( Af c>
r roxitxe \r+r+x 2/
The first term in P is the Walrasian price in the frictionless benchmark given in (87). P exceeds

its Walrasian counterpart if there are more high-type investors than low-type investors in the

economy. ? It is easy to show

A0
A-p = X &, X ~ >0,
X1t+tXx22 xitXer+r+A
Af
p-B = M + X2 S5y

X1+ Xer+r+A X1+ Xo2

Finally, let’s compare the optimal asset holding in each type with its counterparty in the

frictionless benchmark. From (96) and (97), we know

— T +7 YA T +7 c
G = (01— 0+s) ¢ AT PRTT_ o, X2 TS
—_——— X1+tXe r+r+A X1+t X2 2
—gW
. = m1X1 + T2 USPAY ToX1 + T1Xo KT1C
@ = (6a—0+s)— AT __ T2Xy FTiX FMIC
—_—— X1+X2e r4+r+A X1+ X2 2
—q

*The exact condition to have P > E:S is x5 > X3, which gives (w2 —m1) (r —nA) < 0. If we set the values of

parameter r, n and X in their reasonable ranges, we should have r < n\ and thus we need 72 > m1. For example,

following Lagos and Rocheteau (2006), if the annual discount rate is 7 percent such that r = 1.07360 — 1 and the
average delay of execution for a trade in the OTC market is one day such that A = 1, then we have r < n\ as long
as dealers have some non-trivial bargaining power.
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where ¢!V = 0; — 0 + s is the equilibrium asset holding of type i in the frictionless benchmark. It

is easy to see

w
QI > qi »

G < 4.

Note that we have assumed interior solutions through (92) — (97). We need to check ¢f* > 0,
ie., 61 > (r —|—X)A — /):P, that is,

—kmimaxy + (r+ A+ RT1T2)Xe Al n (r + X+ KT1m2)X] — KT1T2Xs c

s — mo A > —~ .
X1+ X2 r+K+ A X1 T X2 2

Corner Solution. The only corner solution could occur to qf‘ = 0. In this case, we need to
ensure

(T’—I-IWTQ)P— koA < 01 < (T—FX)A—XP,

such that 0 = ¢f* < qf.

ToXo +mT1x;  Af T1Xg + T2X1 €
2 =~ — KTg————————
X1 +X2 r+r+A X1tx2 2
—kmimeX, + (r+ A+ kmima)x, Al n (r+ A+ Kmim2)X1 — KT1T2X ©
X1+ X2 r4ok A X1+ X2 2’

< s —maAf <

In sum, this equilibrium exists when

A, < AH < Aby, (118)
where
AO, = (r+/~e+X)g,
s T1X2+72X1 ¢
El _ E—’_R 1X?+Xz 15

1— T2Xo+T1X1 _ K _
X1tX2  r4r+A

Step IV. We analyze Case 7 in Step II. In this case, we assume
A B A B
G <q <q <gy-
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Value functions. The value of ®; (¢) and @5 (¢) in different regions are listed in the following

table
Region/Value ®q (q) D5 (q)
¢ <aqi Ur (g1) —Aai' —a) | Uz (qi') — A(af" —q)
gl <q<qf Ui (q) Uz (q7') — A(qf' — q)
o <a<q; |[Ui(af) +B(a—af) | Uz (qf') — Alef —q)
9 <aq<qy |Ui(af)+B(q—a7) Us (q)
q>d0 U (¢F) +B(g—4qf) | U2 (¢5) + B(g—47)

To determine U (q) for ¢ € [q{‘, qﬂ we take i = 1 in (88) and obtain

()+>\PCI+91 Ko

Ui(q) =
(@) 7’+I€7T2+)\ 7’+mrg+)\

[Ua (ai') — A (g — q)] -

To determine Us (q) for ¢ € [qf, %], we take i = 2 in (88) and obtain

uz (q >+>\Pq+92 KT

Us (q) =
2(4) r+mr1+)\

Uy (¢B) + B (q—¢P)].
r+/<a7r1+)\[1(q1) (4= a)]

Now we solve for all cutoff asset holdings:

(qf‘) 2 Uy (qfl—k) = A=) (qfl) =(r+ X)A — AP,

(1) = Ui(qh)=P=u (Q1 ) (r + ko) P — koA,
@) =B=1u(¢) = (r+rm +N)B — kmyA — AP,
G+) = A= (¢8) = (r + kmi + N A — km B — AP,
(@3) : Uz(a3) =P = uy(q3) = (r+km)P — kmB,

(qu) : U (qQB—) = B = uj (qQB) :(T'—i—X)B—/):P.

Since u} (q) = 6; — g, we have

@' = 01— (r+NA+ AP, (119)
@@ = 01— (r+rkm)P + kmA, (120)
@@ = 01— (r+rmy+ A\)B+ kmeA + AP, (121)
@ = 0y— (r+rm +AN)A+ KT B+ AP, (122)
¢ = 0Os— (r+km)P+kmB, (123)
@& = 03— (r+N)B+AP. (124)
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Demographic analysis. We determine the mass of investors in each state. First, the mass

of investors with preference type i is summed up to ;, so

n(l,q)+n(l,q) = m,

n(2,¢) +n(2,q¢) = .

Second, all assets are held by investors, so

ain(Lg}) +aln (1,¢0) + 'n (2,63) + ¢3n (2,63) = s.

(125)

(126)

(127)

Third, the flow of investors entering each state is equal to the flow of investors leaving that

state, so we check the flow-balance equation for each state as follows

(2,q5) : kmn(2,¢5) = An

Il
=
3
o
3

ey
N
2
N
SN—
_l_

X
3
o
3
o
o)
N %
~—

Here, the LHS and RHS of the equation on each line are the outflow(s) and inflow(s) of the state

which is indicated before the colon. It can be shown that the steady-state distribution satisfying

(125), (126) and the above 4 flow balance equations is

AT
n(l,q) = ——L
( Q1) A+ Kma
B . RT17T9
n(her) = S
A . RTT17T2
n2s) =
)\71‘2
n(2,q¢) = ——.
Substituting these into (127), we obtain
A1 B KT1T2 A KT1T2 .

*
q1>\+mr2+q1 A+ KTy q2)\+mrl qz)\+/<c7r1

Now we trace the supply and demand in the exchange and the OTC market.
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In the OTC market, when getting access to a dealer, (i) every investor in state (1, qlB ) sell
(qlB — qi‘) and the total measure of such sellers is An (1, qlB ), (ii) every investor in state (2, qé“) sell
(q§ — qé“) and the total measure of such buyers is An (2,q§4). Since dealers in the OTC market

hold zero inventory, we have
M (1q7) (af —af) = M (2,6') (65— @3')
which can be simplified to

o —4 _ G- (133)
)\-l-liﬂ'g )\+I€7T1.

The total trading volume in the OTC market is given by

. KT .
TVorc = M (2,6) (6 — ¢4') = Aﬁlmil (65 —d3).

In the exchange, (i) each investor in state (2, ¢}) buy (qé4 — qf) units and the total measure of
such buyers is kman (1, q7), (ii) each investor in state (2, qlB) buy (q§4 — qlB) units and the total
measure of such buyers is kmon (1, qF ), (iii) each investor in state (1, qé“) sell (qé4 —qP ) units and
the total measure of such sellers is kmin (2, qf‘), (iv) every investor in state (1, ¢3) sell (q; —qP )
units and the total measure of such sellers is kmin (2, ¢5). The zero inventory in the exchange

gives

mon (1,¢}) (@5 — ai) + mon (L af) (6 — of) = min (2,47) (8 — o) + min (2, 63) (65 — af’) -

The total trading volume in the exchange is given by

r]I‘Xlexchange = KRT2N (L q;) (qé4 - (ﬁ) + KTan (17 (hB) (qé4 - qlB)
>\7T1 * RT17T9
= Rﬂzm (%4 - Q1) + Kﬂ2m Q§4 - Q1B) . (134)

Now we show TVorc < TVexchange in this equilibrium. To facilitate the comparison, we first

use (133) to rewrite TVorc as

RT179 ( B *)

TVorc = A
OTC T AN ¥ Ry
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Then, direct calculation yields

TVorc — TVexchange = RT172 ((hB - Qéq) <0.

Bid-ask spread under monopolistic market-making. The monopolistic market maker

maximizes the following profit by setting A and B

max (A= B —¢) x TVexchange (135)

)

s.t. (133) and (132),
and TVexchange 1s given by (134).

Recall that we already obtain all critical asset holdings in (119) — (124). Inserting them into

(133), we obtain
p_ x14 + x2B
X1+ X2

where x; and x, are given by (112). Then we can express TVeychange, given by (134), as a function

of the bid-ask spread

PHW/exchamge = k1T Al — KT <T + K+ 3\\ - )\X1X2) (A — B) .
X1+ X2

Inserting back into objective function (135), the monopolistic market maker’s wants to maxi-

mize the following

(A—B—QWAH—G+W+X—Agﬁf;>M—Bﬂ.

The optimal bid-ask spread is thus given by

1 AG
A—B= _ Mm4§+g, (136)
T+H+A—>\m
if
A6 ~
MRS N W6 0. 2
c X1+ X2

In order to get P, we resort to constraint (132), which can be simplified to

— ~ m (A — B
0—rP+ [(mrl—i—)\) X1Xo — KT1X] — <T+/\)X2] 2X(1+XQ) =3
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Plugging (A — B) in (136) into the above equation and rearranging, we obtain P:

P:g—S+H7T17T2X2—X1 1 Af ¢ '
r X1t X2

Yy Xaxe 2 2
r+rk—+ A )\TJFXQ

The bid and ask price in the exchange are given by

0—s KT - 1 A6 ¢
A = +< 172 X2 X1+ X2 ) _ A e
" roxitXxe xatXe/ \r+r+A-aXXe 202
X1+X2
b-s - 1 AB
B — +<mr17T2X2 X1 Xa > _ 74_3 |
" TooX1tXe X1t Xe g4 N— \Xaxe 2 2
X1+X2

Note that we have assumed interior solutions through (119) — (124). We need to check ¢{* > 0,

i.e., 01 > (r + A)A — AP, which gives the following condition

s — maAO - (r+ XA+ Kmim2) Xy — KT1T2X]
1 Ab c :
— 1 A0 X1+ Xz
2 T3
T+K+/\7AXX11+X>?2

Corner Solution. The only corner solution could occur to qf‘ = 0. In this case, we need to

ensure ¢; > 0 and 01 < (r + X)A — AP, so the following condition should hold

_ 27T1X1+772X2 < 8—7T2A9 < (T+X+EW1W2)X2—I€7T17T2X1
+ —l 480 ¢~ + '
X1 T X2 PR A I 2 + 3 X1 7T X2

In sum, the equilibrium in this part exists if and only if

A, < Af < A6, (137)
where
A, = (r—i—m—l—X—)\XlXQ)c
X1+ X2
s T1X1+7T2X2 ¢
m2 _ 5—’_% 1X1+X§ 25

1— T1X1+7T2X2 1°

K
T Ty X1x2 2
X1TX2  r4+r+A /\X1+X2
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Financial Intermediation Chains
in an OTC Market

with Bin Wei and Hongjun Yan

Abstract

More and more layers of intermediaries arise in modern financial markets. What determines this
chain of intermediation? What are the consequences? We analyze these questions in a stylized
search model with an endogenous intermediary sector and intermediation chains. We show that
the chain length and the price dispersion among inter-dealer trades are decreasing in search cost,
search speed, and market size, but increasing in investors’ trading needs. Using data from the U.S.
corporate bond market, we find evidence broadly consistent with these predictions. Moreover, as
the search speed goes to infinity, our search-market equilibrium does not always converge to the
centralized-market equilibrium. In the case with an intermediary sector, prices and allocations
converge, but the trading volume remains higher than that in a centralized-market equilibrium.
This volume difference goes to infinity when the search cost approaches zero.
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1 Introduction

Financial intermediation chains appear to be getting longer over time, that is, more and more
layers of intermediaries are involved in financial transactions. For instance, with the rise of
securitization in the modern financial system in the U.S., the process of channeling funds from
savers to investors is getting increasingly complex (Adrian and Shin (2010)). This multi-layer
nature of intermediation not only exists in markets with relatively high transaction costs and
“slow” speeds (e.g., mortgage market), it is also prevalent in those with small transaction costs and
exceptionally “fast” speeds. For example, the average daily trading volume in the Federal Funds
market is more than ten times the aggregate Federal Reserve balances (Taylor (2001)). The trading
volume in the foreign exchange market appears disproportionately large relative to international
trade. According to the Main Economic Indicators database, the annual international trade
in goods and services is around $4 trillion in 2013. In that same year, however, the Bank of
International Settlement estimates that the daily trading volume in the foreign exchange market

is around $5 trillion.

These examples suggest that the multi-layer nature of intermediation is prevalent for markets
across the board. What determines the chain of intermediation? How does it respond as the
economic environment evolves? What is its influence on asset prices and investor welfare? To
analyze these issues, we need theories that endogenize the chain of intermediation. The literature

so far has not directly addressed these issues. Our paper attempts to fill this gap.

The full answer to the above questions is likely to be complex and hinges on a variety of issues
(e.g., transaction cost, trading technology, regulatory and legal environment, firm boundary). As
the first step, however, we abstract away from many of these aspects to analyze a simple model

of an over-the-counter (OTC) market, and assess its predictions empirically.!

In the model, investors have heterogeneous valuations of an asset. Their valuations change

over time, leading to trading needs. When an investor enters the market to trade, he faces a

!OTC markets are enormous. According to the estimate by the Bank for International Settlements, the total
outstanding OTC derivatives is around 711 trillion dollars in December 2013.
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delay in locating his trading partner. In the mean time, he needs to pay a search cost each period
until he finishes his transaction. Due to the delay and search cost, not all investors choose to stay
in the market all the time, giving rise to a role of intermediation. Some investors choose to be
intermediaries. They stay in the market all the time and act as dealers. Once they acquire the
asset, they immediately start searching to sell it to someone who values it more. Similarly, once
they sell the asset, they immediately start searching to buy it from someone who values it less. In
contrast, other investors act as customers: once their trades are executed, they leave the market
to avoid the search cost. We solve the model in closed-form, and the main implications are the

following.

First, when the search cost is lower than a certain threshold, there is an equilibrium with
an endogenous intermediary sector. Investors with intermediate valuations of the asset choose
to become dealers and stay in the market all the time, while others with high or low valuations
choose to be customers, and leave the market once their transactions are executed. Intuitively, if
an investor has a high valuation of an asset, once he obtains the asset, there is little benefit for
him to stay in the market since the chance of finding someone with an even higher valuation is
low. Similarly, if an investor has a low valuation of the asset, once he sells the asset, there is little
benefit for him to stay in the market. In contrast to the above equilibrium, when the search cost is
higher than the threshold, however, there is an equilibrium with no intermediary. Only investors
with very high or low valuations enter the market, and they leave the market once their trading
needs are satisfied. Those with intermediate valuations have weak trading needs, and choose to

stay out of the market to avoid the search cost.

Second, at each point in time, there is a continuum of prices for the asset. When a buyer meets
a seller, their negotiated price depends on their specific valuations. The delay in execution in the
market makes it possible to have multiple prices for the asset. Naturally, as the search technology
improves, the price dispersion reduces, and converges to zero when the search technology becomes

perfect.

Third, we characterize two equilibrium quantities on the intermediary sector, which can be
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easily measured empirically. The first is the dispersion ratio, the price dispersion among inter-
dealer trades divided by the price dispersion among all trades in the economy.? The second is the
length of the intermediation chain, the average number of layers of intermediaries for all customers’
transactions. Intuitively, both variables reflect the size of the intermediary sector. When more
investors choose to become dealers, the price dispersion among inter-dealer trades is larger (i.e.,
the dispersion ratio is higher), and customers’ transactions tend to go through more layers of

dealers (i.e., the chain is longer).

Our model predicts that both the dispersion ratio and the chain length are decreasing in the
search cost, the speed of search, and the market size, but are increasing in investors’ trading
frequency. Intuitively, a higher search cost means that fewer investors find it profitable to be
dealers, leading to a smaller intermediary sector and hence a smaller dispersion ratio and chain
length. Similarly, with a higher search speed or a larger market size, intermediation is less
profitable because customers can find alternative trading partners more quickly. This leads to a
smaller intermediary sector (relative to the market size). Finally, when investors need to trade
more frequently, the higher profitability attracts more dealers and so increases the size of the

intermediary sector.

We test these predictions using data from the U.S. corporate-bond market. The Trade Report-
ing and Compliance Engine (TRACE) database records transaction prices, and identifies traders
as “dealers” and “customers.” This allows us to construct the dispersion ratio and chain length.
There is substantial cross-sectional variation in both variables. The dispersion ratio ranges from

0 to 1, while chain length is 1 at the first percentile and is 7 at the 99th percentile.

We run Fama-MacBeth regressions of the dispersion ratio and chain length of a corporate bond
on proxies for search cost, market size, the frequency of investors’ trading needs. Our evidence
is broadly consistent with the model predictions. For example, we find that investment-grade
bonds tend to have larger dispersion ratios and longer intermediation chains than other bonds.

Our regressions suggest that, on average, relative to other bonds, investment-grade bonds’ price

2For convenience, we refer to the intermediaries in our model as “dealers,” the transactions among dealers as
“inter-dealer trades.”
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dispersion ratio is larger by 0.007 (¢ = 2.62), and their chain length is longer by 0.245 (¢ = 32.17).
If one takes the interpretation that it is less costly to make market for investment-grade bonds
than for other bonds (i.e., the search cost is lower for investment-grade bonds), then this evidence
is consistent with our model prediction that the dispersion ratio and chain length are decreasing
in search cost. We also include in our regressions five other variables as proxies for search cost, the
frequency of investors’ trading needs, and market size. Among all 12 coefficients, 11 are highly

significant and consistent with our model predictions.?

Fourth, when the search technology approaches perfection, the search-market equilibrium
does not always converge to a centralized-market equilibrium. Specifically, in the case without
intermediary (i.e., the search cost is higher than a certain threshold), as the search speed goes to
infinity, all equilibrium quantities (prices, volumes, and allocations) converge to their counterparts
in the centralized-market equilibrium. However, in the case with intermediaries (i.e., the search
cost is lower than a certain threshold), as the search speed goes to infinity, all the prices and asset
allocations converge but the trading volume in the search-market equilibrium remains higher than
that in the centralized-market equilibrium. Moreover, this difference in volume is larger if the

search cost is smaller, and converges to infinity when the search cost goes to 0.

Intuitively, in the search market, intermediaries act as “middlemen” and generate “excess”
trading. As noted earlier, when the search speed increases, the intermediary sector shrinks.
However, thanks to the faster search speed, each dealer executes more trades, and the total excess
trading volume is higher. As the search speed goes to infinity, the trading volume in the search
market remains significantly higher than that in a centralized market. Moreover, the volume
difference increases when the search cost becomes smaller because a smaller search cost implies a

larger intermediary sector, which leads to a higher excess trading volume in the search market.

This insight sheds light on why a centralized-market model has trouble explaining trading
volume, especially in an environment with a small transaction cost. We argue that even for

the U.S. stock market, it seems plausible that some aspects of the market are better captured

3The only exception is the coefficient for issuance size in the price dispersion ratio regression. As explained later,
we conjecture that this is due to dealers’ inventory capacity constraint, which is not considered in our model.
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by a search model. For example, the cheaper and faster trading technology in the last a few
decades made it possible for investors to exploit many high frequency opportunities that used to
be prohibitive. Numerous trading platforms were set up to compete with main exchanges; hedge
funds and especially high-frequency traders directly compete with traditional market makers. The
increase in turnover in the stock market in the last a few decades was likely to be driven partly

by these “intermediation” trades.

Finally, the relation between dispersion ratio, chain length and investors’ welfare is ambiguous.
As noted earlier, a higher dispersion ratio and longer chain may be due to a lower search cost. In
this case, they imply higher investors welfare. On the other hand, they may be due to a slower
search speed. In that case, they imply lower investors welfare. Hence, the dispersion ratio and

chain length are not clear-cut welfare indicators.

1.1 Related literature

Our paper belongs to the recent literature that analyzes over-the-counter (OTC) markets in the
search framework developed by Duffie, Garleanu, and Pedersen (2005). This framework has
been extended to include risk-averse agents (Duffie, Garleanu, and Pedersen (2007)), unrestricted
asset holdings (Lagos and Rocheteau (2009)). It has also been adopted to analyze a number
of issues, such as security lending (Duffie, Garleanu, and Pedersen (2002)), liquidity provision
(Weill (2007)), on-the-run premium (Vayanos and Wang (2007), Vayanos and Weill (2008)), cross-
sectional returns (Weill (2008)), portfolio choices (Garleanu (2009)), liquidity during a financial
crisis (Lagos, Rocheteau, and Weill (2011)), price pressure (Feldhutter (2012)), order flows in
an OTC market (Lester, Rocheteau, and Weill (2014)), commercial aircraft leasing (Gavazza
2011), high frequency trading (Pagnotta and Philippon (2013)), the roles of benchmarks in OTC
markets (Duffie, Dworczak, and Zhu (2014)), adverse selection and repeated contacts in opaque
OTC markets (Zhu (2012)) as well as the interaction between corporate default decision and
liquidity (He and Milbradt (2013)). Another literature follows Kiyotaki and Wright (1993) to

analyze the liquidity value of money. In particular, Lagos and Wright (2005) develop a tractable
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framework that has been adopted to analyze liquidity and asset pricing (e.g., Lagos (2010), Lester,
Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012), Lagos and Zhang (2014)).
Trejos and Wright (2014) synthesize this literature with the studies under the framework of Duffie,

Garleanu, and Pedersen (2005).

Our paper is related to the literature on the trading network of financial markets, see, e.g.,
Gofman (2010), Babus and Kondor (2012), Malamud and Rostek (2012). Atkeson, Eisfeldt, and
Weill (2014) analyze the risk-sharing and liquidity provision in an endogenous core-periphery
network structure. Neklyudov (2014) analyzes a search model with investors with heterogeneous

search speeds to study the implications on the network structure.

Intermediation has been analyzed in the search framework (e.g., Rubinstein and Wolinsky
(1987), and more recently Wright and Wong (2014), Nosal Wong and Wright (2015)). However,
the literature on financial intermediation chains has been recent. Adrian and Shin (2010) docu-
ment that the financial intermediation chains are becoming longer in the U.S. during the past a
few decades. Li and Schurhoff (2012) document the network structure of the inter-dealer market
for municipal bonds. Glode and Opp (2014) focuses on the role of intermediation chain in reduc-
ing adverse selection. Afonso and Lagos (2015) analyze an OTC market for Federal Funds. The
equilibrium in their model features an intermediation chain, although they do not focus on its
property. The model that is closest to ours is Hugonnier, Lester, and Weill (2014). They analyze
a model with investors with heterogenous valuations, highlighting that heterogeneity magnifies
the impact of search frictions. Our paper is different in that, in order to analyze intermedia-
tion, we introduce search cost and derive the intermediary sector, price dispersion ratio, and the

intermediation chain, and also conduct empirical analysis of the intermediary sector.

The rest of the paper is as follows. Section 2 describes the model and its equilibrium. Section
3 analyzes the price dispersion and intermediation chain. Section 4 contrasts the search market
equilibrium with a centralized market equilibrium. Section 5 tests the empirical predictions.

Section 6 concludes. All proofs are in the appendix.
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2 Model

Time is continuous and goes from 0 to co. There is a continuum of investors, and the measure of
the total population is N. They have access to a riskless bank account with an interest rate r.
There is an asset, which has a total supply of X units with X < N. Each unit of the asset pays

$1 per unit of time until infinity. The asset is traded at an over-the-counter market.

Following Duffie, Garleanu, and Pedersen (2005), we assume the matching technology as the
following. Let N, and N, be the measures of buyers and sellers in the market, both of which
will be determined in equilibrium. A buyer meets a seller at the rate ANg, where A > 0 is a
constant. That is, during [t,t + dt) a buyer meets a seller with a probability ANgdt. Similarly, a
seller meets a buyer at the rate AN;. Hence, the probability for an investor to meet his partner
is proportional to the population size of the investors on the other side of the market. The total
number of matched pairs per unit of time is AIN;Np. The search friction reduces when \ increases,

and disappears when A goes to infinity.

Investors have different types, and their types may change over time. If an investor’s current
type is A, he derives a utility 1 + A when receiving the $1 coupon from the asset. One interpre-
tation for a positive A is that some investors, such as insurance companies, have a preference for
long-term bonds, as modeled in Vayanos and Vila (2009). Another interpretation is that some
investors can benefit from using those assets as collateral and so value them more, as discussed in
Bansal and Coleman (1996) and Gorton (2010). An interpretation of a negative A can be that the
investor suffers a liquidity shock and so finds it costly to carry the asset on his balance sheet. We
assume that A can take any value in a closed interval. Without loss of generality, we normalize

the interval to [O,Z].

Each investor’s type changes independently with intensity . That is, during [t,¢ + dt), with
a probability kdt, an investor’s type changes and is independently drawn from a random variable,
which has a probability density function f(-) on the support [0,A], with f(A) < oo for any

Ae [O,N. We use F'(-) to denote the corresponding cumulative distribution function.
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Following Duffie, Garleanu, and Pedersen (2005), we assume each investor can hold either 0
or 1 unit of the asset. That is, an investor can buy 1 unit of the asset only if he currently does

not have the asset, and can sell the asset only if he currently has it.

There is a search cost of ¢ per unit of time, with ¢ > 0. That is, when an investor searches to
buy or sell in the market, he incurs a cost of ¢dt during [t,t + dt). All investors are risk-neutral

and share the same time discount rate r. An investor’s objective function is given by

sup E; [/ e (T=1) (0-(1+ Ay)dr — el dr — P.db;)|,
[ t

where 6, € {0,1} is the investor’s holding in the asset at time 7; A is the investor’s type at time
7; 1, is an indicator variable, which is 1 if the investor is searching in the market to buy or sell
the asset at time 7, and 0 otherwise; and P is the asset’s price that the investor faces at time 7

and will be determined in equilibrium.
2.1 Investors’ choices

Since we will focus on the steady-state equilibrium, the value function of a type-A investor with

an asset holding 6; at time ¢ can be denoted as

V(0;,A) = sup E, [ / e (0,.(1 + A)dr — el dr — Prdo,)| .
0- t

A non-owner (whose 6; is 0) has two choices: search to buy the asset or stay inactive. We use
Vi (A) to denote the investor’s expected utility if he chooses to stay inactive, and follows the
optimal strategy after his type changes. Similarly, we use V;(A) to denote the investor’s expected
utility if he searches to buy the asset, and follows the optimal strategy after he obtains the asset

or his type changes. Hence, by definition, we have

V(0,4) = max(Vi(A), Vy(A)). (1)

An asset owner (whose 6; is 1) has two choices: search to sell the asset or stay inactive. We use
Vi (A) to denote the investor’s expected utility if he chooses to be an inactive holder, and follows

the optimal strategy after his type changes. Similarly, we use Vs(A) to denote the investor’s
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expected utility if he searches to sell, and follows the optimal strategy after he sells his asset or

his type changes. Hence, we have

V(1,4A) = max(Vi(A), Vs(A)). (2)

We will verify later that in equilibrium, equation (1) implies that a non-owner’s optimal choice

is given by

stay out of the market if A € [0,4A), 3)
search to buy the asset if A € (A, A],
where the cutoff point Ay will be determined in equilibrium. A type-A; non-owner is indifferent
between staying out of the market and searching to buy the asset. Note that due to the search

friction, a buyer faces delay in his transaction. In the meantime, his type may change, and he will

adjust his action accordingly. Similarly, equation (2) implies that an owner’s optimal choice is

search to sell his asset if A € [0,Ay), (@)
stay out of the market if A € (Ag, Al

where the A; will be determined in equilibrium. A type-A; owner of the asset is indifferent
between the two actions. A seller faces potential delay in his transaction. In the meantime, if his
type changes, he will adjust his action accordingly. If an investor succeeds in selling his asset, he

becomes a non-owner and his choices are then described by equation (3).

Suppose a buyer of type x € [O,N meets a seller of type y € [O,Z]. The surplus from the

transaction is

total utility after trade total utility before trade

The pair can agree on a transaction if and only if the surplus is positive. We assume that the
buyer has a bargaining power 7 € (0, 1), i.e., the buyer gets 1 of the surplus from the transaction,

and the price is given by
P(z,y) =V(l,z) =V (0,2) — nS(x,y), if and only if S(z,y) > 0. (6)
The first two terms on the right hand side reflect the value of the asset to the buyer: the increase
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in the buyer’s expected utility from obtaining the asset. Hence, the above equation implies that

the transaction improves the buyer’s utility by nS(z,y).

We conjecture, and verify later, that when a buyer and a seller meet in the market, the surplus

is positive if and only if the buyer’s type is higher than the seller’s:
S (z,y) > 0 if and only if z > y. (7)

That is, when a pair meets, a transaction occurs if and only if the buyer’s type is higher than the
seller’s type. With this conjecture, we obtain investors’ optimality condition in the steady state
as the following.

14+ A+ KE [max {V}, (A7), Vs (A")}]

Vald) = Kt ’ (8)
vy - E [maX{VR ﬁi) ) | o
V(8 =~ HT/ S (A x) py (@ )dx+”E[maXi‘f£A>’Vn}], (1)

where A’ is a random variable with a PDF of f(-).

2.2 Intermediation

Decision rules (3) and (4) determine whether intermediation arises in equilibrium. There are two
cases. In the first case, Ay > Ay, there is no intermediation. When an investor has a trading need,
he enters the market. Once his transaction is executed, he leaves the market and stays inactive.
In the other case A, < Ag, however, some investors choose to be intermediaries in equilibrium.
If they are non-owners, they search in the market to buy the asset. Once they receive the asset,
however, they immediately search in the market to sell the asset. For convenience, we call them

“dealers.”

Details are illustrated in Figure 1. Panel A is for the case without intermediation, i.e., Ay >
A;. If an asset owner’s type is below Ay, as in the upper-left box, he enters the market to sell his

asset. If successful, he becomes a non-owner and chooses to be inactive since his type is below Ay,
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as in the upper-right box. Similarly, if a non-owner’s type is higher than Ay, as in the lower-right
box, he enters the market to buy the asset. If successful, he becomes an owner and chooses to be

inactive because his type is above Ag, as in the lower-left box.

The dashed arrows in the diagram illustrate investors’ chooses to enter or exit the market
when their types change. Suppose, for example, an owner with a type below Aj; is searching in
the market to sell his asset, as in the upper-left box. Before he meets a buyer, however, if his
type changes and becomes above Ag, he will exit the market and become an inactive owner in
the lower-left box. Finally, note that all investors in the interval (Ag, Ap) are inactive regardless

of their asset holdings.

Panel B illustrates the case with intermediation, i.e., Ay < As. As in Panel A, asset owners
with types below A, enter the market to sell their assets. However, they have two different
motives. If a seller’s type is in [0, Ap), as in the upper-left box, after selling the asset, he will leave
the market and become an inactive non-owner in the upper-right box. For convenience, we call
this investor a “true seller.” This is to contrast with those sellers whose types are in (Ap, As), as
in the middle-left box. We call them “intermediation sellers,” because once they sell their assets
and become non-owners (i.e., move to the middle-right box), they immediately search to buy the
asset in the market since their types are higher than A,. Similarly, we call non-owners with types

in (A, A] “true buyers” and those with types in (Ap, A;) “intermediation buyers.”

In the intermediation region (Ap, Ag), investors always stay in the market. If they are asset
owners, they search to sell their assets. Once they become non-owners, however, they immediately
start searching to buy the asset. They buy the asset from those with low types and sell it to those

with high types, and make profits from their intermediation services.

What determines whether intermediation arises in equilibrium? Intuitively, a key determinant
is the search cost c. Investors are only willing to become intermediaries when the expected trading
profit is enough to cover the search cost. We will see later that the intermediation equilibrium

arises if ¢ < ¢*, and the no-intermediation equilibrium arises if ¢ > ¢*, where ¢* is given in the
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appendix.
2.3 Demographic analysis

We will first focus on the intermediation equilibrium case, and then analyze the no-intremediation
case in Section 4.3. Due to the changes in A and his transactions in the market, an investor’s
status (type A and asset holding ) changes over time. We now describe the evolution of the
population sizes of each group of investors. Since we will focus on the steady-state equilibrium,

we will omit the time subscript for simplicity.

We use p,(A) to denote the density of buyers, that is, buyers’ population size in the region
(A, A 4+ dA) is py(A)dA. Similarly, we use p,(A), ug(A), and py(A) to denote the density of

inactive non-owners, sellers, and inactive asset holders, respectively.

In the steady state, the cross-sectional distribution of investors’ type is given by the probability
density function f (A). Hence, the total investor population in (A, A+dA) is N f (A)dA. Hence,

the following accounting identity holds for any A € [0, Z]:

ps (A) + iy (A) + i, (A) 4y, (A) = Nf (A). (12)

Decision rules (3) and (4) imply that for any A € (A, A],

o (A) = 1, (8) = 0. (13)

In the steady state, the group size of inactive holders remains a constant over time, implying

that for any A € (A, A,

R (A) = KX f (A) + ANy, (A). (14)

The left hand aside of the above equation is the “outflow” from the group of inactive holders:
The measure of inactive asset holders in interval (A, A + dA) is py (A)dA. During [t,t + dt),
a fraction kdt of them experience changes in their types and leave the group. Hence, the total
outflow is Ky, (A) dAdt. The right hand side of the above equation is the “inflow” to the group: A

fraction kdt of asset owners, who have a measure of X, experience type shocks and kX f (A) dAdt
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investors’ new types fall in the interval (A, A+dA). This is captured by the first term in the right
hand side of (14). The second term reflects the inflow of investors due to transactions. When
buyers with types in (A, A + dA) acquire the asset, they become inactive asset holders, and the

size of this group is ANgpuy, (A) dAdt. Similarly, for any A € [0, Ap), we have

w (A) = py (D) =0, (15)

i (A) = R(N = X) £ (A) + ANy, (A). (16)
For any A € (Ap, Ag), we have

pn (B) =y, (A) =0, (17)

A
ks () = KXT(A) = Ay (A) / y () dz + Ay (A) /0 u, (2) d. (18)
2.4 Equilibrium

Definition 1 The steady-state equilibrium with intermediation consists of two cutoff points A,
and Ag, with 0 < Ay < Ay < A, the distributions of investor types (uy, (A), g (A), w, (A),

uy, (A)), and asset prices P(x,y), such that

e the asset prices P(x,y) are determined by (106),

o the implied choices (3) and (4) are optimal for all investors,

e the implied sizes of each group of investors remain constants over time and satisfy (12)—(18),
o market clears:

A
/0 15 (A) + i (A)] dA = X, (19)

Theorem 1 If ¢ < ¢*, where c* is given in (87), there exists a unique steady-state equilibrium

with Ay < Ag. The value of Ay is given by the unique solution to

_ AN X Ay
kT AN (1 - 1) (FH_)\Nb)/O F (z)dz,

(20)
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the value of Ag is given by the unique solution to

M(l-m(N-X) A

A
T (et r+ MN,) (5 + AN,) /A 1= F ()} dz, (21)

where Ny and Ny are given by (54) and (57). Investors’ distributions are given by equations (44)—
(51). When a type-z buyer (v € (Ay, A]) and a type-y seller (y € [0,As)) meet in the market,
they will agree to trade if and only if x > y, and their negotiated price is given by (106), with the

value function V(-,-) given by (81)-(83).

This theorem shows that when the cost of search is smaller than ¢*, there is a unique inter-
mediation equilibrium. Investors whose types are in the interval (Ap, Ag) choose to be dealers.
They search to buy the asset if they do not own it. Once they obtain the asset, however, they
immediately start searching to sell it. They make profits from the differences in purchase and sale
prices to compensate the search cost they incur. In contrast to these intermediaries, sellers with

a type A € [0,A;) and buyers with a type A € (Ap, A] are true buyers and true sellers, and they

leave the market once they finish their transactions.

The difficulty in constructing the equilibrium lies in the fact that investors’ type distributions
(1 (A) g (A, (A, g, (A)) determine the speed with which investors meet their trading part-
ners, which in turn determines investors’ type distributions. The equilibrium is the solution to
this fixed-point problem.? The above theorem shows that the distributions can be computed in

closed-form, making the analysis of the equilibrium tractable.

To illustrate some properties of the equilibrium, we define R(A), for A € [0, A], as

ps (A) + iy (A)
py (A) + g (A)°

That is, R(A) is the density ratio of asset owners (i.e., sellers and inactive holders) to nonowners

R(A) =

(i.e., buyers and inactive nonowners). It has the following property.

Proposition 2 In the equilibrium in Theorem 1, R(A) is weakly increasing in A: R'(A) > 0 for
A € (Ay, Ay), and R'(A) =0 for A €0, Ap) U (Ag, Al

*Hugonnier, Lester, and Weill (2014) was the first to solve a problem of this nature.
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The above proposition shows that high-A investors are more likely to be holding the asset
in equilibrium. The intuition is the following. As noted in (7), when a buyer meets a seller,
transaction happens if and only if the buyer’s type is higher than the seller’s. Hence, if a nonowner
has a high A he is more likely to find a willing seller. On the other hand, if an owner has a high
A he is less likely to find a willing buyer. Consequently, in equilibrium, the higher the investor’s

type, the more likely he is an owner.
Proposition 3 In the equilibrium in Theorem 1, we have P(I’y) > 0 and ( Y) S 0.

The price of each transaction is negotiated between the buyer and the seller, and depends on
the specific types of both. Since there is a continuum of buyers and a continuum of sellers, at
each point in time, there is a continuum of equilibrium prices. The above proposition shows that
the negotiated price is increasing in both the buyer’s type and the seller’s type. Intuitively, the
higher the buyer’s type x, the more he values the asset. Hence, he is willing to pay a higher price.
On the other hand, the higher the seller’s type y, the less eager he is in selling the asset. Hence,

only a higher price can induce him to sell.

3 Intermediation Chain and Price Dispersion

If a true buyer and a true seller meet in the market, the asset is transferred without going through
an intermediary. On other occasions, however, transactions may go through multiple dealers. For
example, a type-A dealer may buy from a true seller, whose type is in [0, Ap), or from another
dealer whose type is lower than A. Then, he may sell the asset to a true buyer, whose type is in
(Ag, A], or to another dealer whose type is higher than A. Hence, for an asset to be transferred

from a true seller to a true buyer, it may go through multiple dealers.

What is the average length of the intermediation chain in the economy? To analyze this, we
first compute the aggregate trading volumes for each group of investors. We use TV, to denote
the total number of shares of the asset that are sold from a true seller to a true buyer (i.e.,

“customer to customer”) per unit of time. Similarly, we use TV 4, TV 44, and TV, to denote the
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numbers of shares of the asset that are sold, per unit of time, from a true seller to a dealer (i.e.,
“customer to dealer”), from a dealer to another (i.e., “dealer to dealer”), and from a dealer to a

true buyer (i.e., “dealer to customer”), respectively.

To characterize these trading volumes, we denote Fp(A) and Fg(A), for A € [0, A], as

A
Fy(8) = /0 (),

[ s

That is, Fy(A) is the population size of buyers whose types are below A, and Fy(A) is population

o
e
Il

size of sellers whose types are below A.

Proposition 4 In the equilibrium in Theorem 1, we have

TV, = AFJ(A) [Ny — Fy(Ay)], (22)
TVea = AFs(Ap)Fp(As), (23)
Vi = A[Ns— Fa(A)] [N, — Fy(A,)], (24)
TVy = A /A f [Fy(A) — Fy(Ay)] dFy(A). (25)

The above proposition characterizes the 4 types of trading volumes. For example, true sellers
are those whose types are below Aj. The total measure of those investors is F5(Ayp). True buyers
are those whose types are above Ay, and so the total measure of those investors is N — Fp(Ay).
This leads to the trading volume in (22). The results on TV, and TV, are similar. Note that
in these 3 types of trades, every meeting results in a transaction, since the buyer’s type is always
higher than the seller’s. For the meetings among dealers, however, this is not the case. When a
dealer buyer meets a dealer seller with a higher A, they will not be able to reach an agreement
to trade. The expression of TV, in (25) takes into account the fact that transaction occurs only

when the buyer’s type is higher than the seller’s.

With these notations, we can define the length of the intermediation chain as

TVeq + TV 4+ 2TV g

L= .
TV.q+ TVy. + 2TV,
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This definition implies that L is the average number of layers of dealers for all the trades in the
economy. To see this, let us go through the following three simple examples. First, suppose there
is no intermediation in the economy and true buyers and true sellers trade directly. In this case,
we have TV.y = TVy. = TV4q = 0. Hence L = 0, that is, the length of the intermediation chain
is 0. Second, suppose a dealer buys one unit of the asset from a customer and sells it to another
customer. We then have TV, = TV4. = 1 and TV4y = TV, = 0. Hence, the length of the
intermediation chain is 1. Third, suppose a dealer buys one unit of the asset from a customer
and sells it to another dealer, who then sells it to a customer. We then have TV,.; = TV4. = 1,
TV4q =1, and TV.. = 0. Hence, the chain length is 2. In the following, we will analyze the effects

of search speed A\, search cost ¢, market size X, and trading need x on the intermediation chain.
3.1 Search cost ¢

Proposition 5 In the equilibrium in Theorem 1, % >0 and % < 0, that is, the total popu-

lation size of the intermediary sector is decreasing in c.

Intuitively, investors balance the gain from trade against the search cost. The search cost
has a disproportionately large effect on dealers since they stay active in the market constantly.
Hence, when the search cost ¢ increases, fewer investors choose to be dealers and so the size of
the intermediary sector becomes smaller (i.e., the interval (Ay, Ag) shrinks). Consequently, the
smaller intermediary sector leads to a shorter intermediation chain, as summarized in the following

proposition.

Proposition 6 In the equilibrium in Theorem 1, %—% < 0, that is, the length of the financial

intermediation chain is decreasing in c.

When ¢ increases to ¢*, the interval (Ap, Ay) shrinks to a point and the intermediary sector
disappears. Hence, we have lim. .. L = 0. On the other hand, as ¢ decreases, more investors
choose to be dealers, leading to more layers of intermediation and a longer chain in the economy.

What happens when ¢ goes to zero?
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Proposition 7 When ¢ goes to 0, in the equilibrium in Theorem 1, the following holds:

Ab_07 AS:Z7
NSZX, Nb:N_X7
L=

As the search cost ¢ diminishes, the intermediary sector (Ap, Ag) expands. When ¢ goes to 0,
(Ap, As) becomes the whole interval (0, A). That is, all investors (except zero measure of them at
0 and A) are intermediaries, constantly searching in the market. Hence, Ny = X and N = N — X,
that is, virtually every asset holder is trying to sell his asset and every non-owner is trying to buy.
Since virtually all transactions are intermediation trading, the length of the intermediation chain

is infinity.
3.2 Search speed )\

Proposition 8 In the equilibrium in Theorem 1, when X is sufficiently large, % < 0, that
1s, the intermediary sector shrinks when A\ increases; % < 0, that is, the length of the financial

intermediation chain is decreasing in A.

The intuition for the above result is the following. As the search technology improves, a
customer has a higher outside option value when he trades with a dealer. This is because the
customer can find an alternative trading partner more quickly, if the dealer were to turn down
the trade. As a result, intermediation is less profitable and the dealer sector shrinks, leading to a

shorter intermediation chain.
3.3 Market size X

To analyze the effect of the market size X, we keep the ratio of investor population N and asset
supply X constant. That is, we let

N = ¢X, (27)
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where ¢ is a constant. Hence, when the issuance size X changes, the population size N also
changes proportionally. We impose this condition to shut down the effect from the change in the

ratio of asset owners and non-owners in equilibrium.

Proposition 9 In the equilibrium in Theorem 1, under condition (27), when X\ is sufficiently

large, aAg)}Ab < 0, that is, the intermediary sector shrinks when the market size increases; g—)% <0,

that is, the length of the financial intermediation chain is decreasing in the size of the market X.

Intuitively, when the market size gets larger, it becomes easier for an investor to meet his
trading partner. Hence, the effect is similar to that from an increase in the search speed A. From
the intuition in Proposition 8, we obtain that the length of the financial intermediation chain is

decreasing in the size of the market.

3.4 Trading need

Proposition 10 In the equilibrium in Theorem 1, when A is sufficiently large, w > 0,

and g—{; > 0, that is, the intermediary sector expands and the length of the intermediation chain

increases when the frequency of investors’ trading need increases.

The intuition for the above result is as follows. Suppose k increases, i.e., investors need to
trade more frequently. This makes it more profitable for dealers. Hence, the intermediary sector

expands as more investors choose to become dealers, leading to a longer intermediation chain.
3.5 Price dispersion

Theorem 1 shows that there is a continuum of prices for the asset in equilibrium. How is the
price dispersion related to search frictions? It seems reasonable to expect the price dispersion
to decrease as the market frictions diminishes. However, this intuition is not complete, and the

relationship between price dispersion and search frictions is more subtle.
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To see this, we use D to denote the price dispersion
D= Pmax - Pmina (28)

where Ppax and Py, are the maximum and minimum prices, respectively, among all prices.

Proposition 3 implies that

Poax = P(AAy), (29)

Pyin = P(Abao) (30)

That is, Puayx is the price for the transaction between a buyer of type A and a seller of type A,.
Similarly, Py, is the price of the transaction between a buyer of type A, and a seller of type 0.

The following proposition shows that effect of the search speed on the price dispersion.

Proposition 11 In the equilibrium in Theorem 1, when A is sufficiently large, %—? < 0.

The intuition is the following. When the search speed is faster, investors do not have to com-
promise as much on prices to speed up their transactions, because they can easily find alternative
trading partners if their current trading partners decided to walk away from their transactions.

Hence, the dispersion across prices becomes smaller when A increases.

However, the relation between the price dispersion and the search cost ¢ is more subtle. As the
search cost increases, fewer investors participate in the market. On the one hand, this makes it
harder to find a trading partner and so increases the price dispersion as the previous proposition
suggests. There is, however, an opposite driving force: Less diversity across investors leads to a
smaller price dispersion. In particular, as noted in Proposition 5, Ay is decreasing in ¢, that is,
when the search cost increases, only investors with lower types are willing to pay the cost to try
to sell their assets. As noted in (29), this reduces the maximum price Ppax. On the other hand,
when the search cost increases, only investors with higher types are willing to buy. This increases
the minimum price Pui,. Therefore, as the search cost increases, the second force decreases the

price dispersion. The following proposition shows that the second force can dominate.
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Proposition 12 In the equilibrium in Theorem 1, the sign of %—[c) can be either positive or nega-

tive. Moreover, when c is sufficiently small, we have %—lc) < 0.

Price dispersion in OTC markets has been documented in the literature, e.g., Green, Hollifield,
and Schurhoff (2007). Jankowitsch, Nashikkar, and Subrahmanyam (2011) proposes that price
dispersion can be used as a measure of liquidity. Our analysis in Proposition 11 confirms this
intuition that the price dispersion is larger when the search speed is lower, which can be interpreted
as the market being less liquid. However, Proposition 12 also illustrates the potential limitation,
especially in an environment with a low search cost. It shows that the price dispersion may

decrease when the search cost is higher.
3.6 Price dispersion ratio

To further analyze the price dispersion in the economy, we define dispersion ratio as

d d
DR = Pmaw_Pmm (31)
Pma:r Pm'Ln’
where Pr(rilax and Pgﬁn are the maximum and minimum prices, respectively, among inter-dealer

transactions. That is, DR is the ratio of the price dispersion among inter-dealer transactions to

the price dispersion among all transactions.

This dispersion ratio measure has two appealing features. First, somewhat surprisingly, it
turns out to be easier to measure DR than D. Conceptually, price dispersion D is the price
dispersion at a point in time. When measuring it empirically, however, we have to compromise
and measure the price dispersion during a period of time (e.g., a month or a quarter), rather than
at an instant. As a result, the asset price volatility directly affects the measure D. In contrast,
the dispersion ratio DR alleviates part of this problem since asset price volatility affects both the
numerator and the denominator. Second, as noted in Proposition 12, the effect of search cost on
the price dispersion is ambiguous. In contrast, our model predictions on the price dispersion ratio

are sharper, as illustrated in the following proposition.
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BDR

Proposition 13 In the equilibrium in Theorem 1, we have < 0; when A is sufficiently large,

BDR

we have ag))\R <0, BDR

Intuitively, DR is closely related to the size of the intermediary sector. All these parameters
(¢, \, X, and k) affect DR through their effects on the interval (Ay, Ag). For example, as noted
in Proposition 5, when the search cost ¢ increases, the intermediary sector (Ap, Ag) shrinks, and
so the price dispersion ratio DR decreases. The intuition for the effects of all other parameters

(A, X, and k) is similar.

In summary, both DR and L are closely related to the size of the intermediary sector. All the
parameters of (¢, A\, X, and k) affect both DR and L through their effects on the interval (Ay, Ay).
Indeed, by comparing the above results with Propositions 6, 8, 9, and 10, we can see that, for all

four parameters (¢, A\, X, and k), the effects on DR and L have the same sign.

3.7 Welfare

What are the welfare implications from the intermediation chain? For example, is a longer chain
an indication of higher or lower investors’ welfare? Propositions 6-13 have shed some light on
this question. In particular, a longer intermediation chain (or a larger price dispersion ratio) is a
sign of a lower ¢, a lower A, a higher x, or a lower X, which have different welfare implications.

Hence, the chain length and dispersion ratio are not clear-cut indicators of investors’ welfare.

For example, a lower ¢ means that more investors would search in equilibrium. Hence, high-
A investors can obtain the asset more quickly, leading to higher welfare for all investors. On
the other hand, a lower A means that investors obtain their desired asset positions more slowly,
leading to lower welfare for investors. Therefore, if the intermediation chain L becomes longer
(or the price dispersion ration DR gets larger) because of a lower ¢, it is a sign of higher investor
welfare. However, if it is due to a lower search speed A, it is a sign of lower investor welfare. A
higher £ means that investors have more frequent trading needs. If L becomes longer (or DR gets

larger) because of a higher x, holding the market condition constant, this implies that investors
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have lower welfare. Finally, if L becomes longer (or DR gets larger) because of a smaller X, it
means that investors execute their trades more slowly, leading to lower welfare for investors. To
formalize the above intuition, we use W to denote the average expected utility across all investors
in the economy. The relation between investors’ welfare and those parameters is summarized in

the following proposition.

Proposition 14 In the equilibrium in Theorem 1, we have %LZV < 0; when X is sufficiently large,

we have %L;V >0, %Lg < 0, and under condition (27) gi;g > 0.

4 On Convergence

When the search friction disappears, does the search market equilibrium converge to the equi-
librium in a centralized market? Since Rubinstein and Wolinsky (1985) and Gale (1987), it is
generally believed that the answer is yes. This convergence result is also demonstrated in Dulffie,

Garleanu, and Pedersen (2005), the framework we adopted.

However, we show in this section that as the search technology approaches perfection (i.e., A
goes to infinity) the search equilibrium does not always converge to a centralized market equilib-
rium. In particular, consistent with the existing literature, the prices and allocation in the search
equilibrium converge to their counterparts in a centralized-market equilibrium, but the trading

volume may not.
4.1 Centralized market benchmark

Suppose we replace the search market in Section 2 by a centralized market and keep the rest of
the economy the same. That is, investors can execute their transactions without any delay. The
centralized market equilibrium consists of an asset price P, and a cutoff point A,. All asset
owners above A, and nonowners below A, stay inactive. Moreover, each nonowner with a type
higher than A, buys one unit of the asset instantly and each owner with a type lower than A,

sells his asset instantly, such that all investors find their strategies optimal, the distribution of all

104



groups of investors remain constant over time, and the market clears. This equilibrium is given

by the following proposition.

Proposition 15 In this centralized market economy, the equilibrium is given by

X
A, = FH1-= 2
(1-%). (32)

14+ Ay
p, = -1 2w (33)
r
The total trading volume per unit of time is

X
TVy=rX|1-=]. 4
K < N> (34)

As shown in (33), the asset price is determined by the marginal investor’s valuation A,,. Asset
allocation is efficient since (almost) all investors whose types are higher than A,, are asset owners,
and (almost) all investors whose types are lower than A, are nonowners. Trading needs arise
when investors’ types change. In particular, an asset owner becomes a seller if his new type is
below A, and a nonowner becomes a buyer if his new type is above A,,. In this idealized market,
they can execute their transactions instantly. Hence, at each point in time, the total measure of

buyers and sellers are infinitesimal, and the total trading volume during [t,¢ + dt) is TV,,dt.

4.2 The limit case of the search market

Denote the total trading volume in the search market economy in Section 2 as

TV = TV + TVeq + TVye + TVaa. (35)

The following proposition reports some properties of the search equilibrium in the limit.
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Proposition 16 When A\ goes to infinity, the equilibrium in Theorem 1 is given by

lim Ay = lim A, =A
e =i A=A (36)
)\lim P(z,y) = P, foranyz <y, (37)
. [ NF(A) ifA> A,
i pn(A) = { 0 if A < Ay, (38)
. _ 0 if A > Ay,
Jm g (A) = { NF(A) if A< Ay, (39)
)\hm :U'b(A) = )\hm :U’S(A) =0, (40)
. TV-TV,, . ¢
dm v, T sy (41)

where € is a constant, with ¢ > ¢, and is given by
A A
. v F(x) / 1—F(x)
c= dx ————dx. 42
\//0 F (o) \/Awl—me) 2

As X goes to infinity, many aspects of the search equilibrium converge to their counterparts

in a centralized market equilibrium. First, the interval (A, As) shrinks to a single point at A,
(equation (36)), and the size of the intermediary sector goes to zero. Second, all transaction
prices converge to the price in the centralized market, as shown in equation (37). Third, the
asset allocation in the search equilibrium converges to that in the centralized market. As shown
in equations (38)—(40), almost all investors whose types are higher than A, are inactive asset
holders, and almost all investors whose types are lower than A, are inactive nonowners. The

population sizes for buyers and sellers are infinitesimal.

However, there is one important difference. The equation (41) shows that as A goes to infinity,
the total trading volume in the search market equilibrium is significantly higher than the volume
in the centralized market equilibrium. This is surprising, especially given the result in (36) that

the size of the intermediary sector shrinks to 0.

It is worth emphasizing that this is not a mathematical quirk from taking the limit. Rather, it
highlights an important difference between a search market and an idealized centralized market.

Intuitively, the excess trading in the search market is due to intermediaries, who act as middlemen,
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buying the asset from one investor and selling to another. As X increases, the intermediary sector
shrinks. However, thanks to the faster search technology, each intermediary can execute more
trades such that the total excess trading induced by intermediaries increases with A despite the
reduction in the size of the intermediary sector. As A\ goes to infinity, the trading volume in the

search market remains significantly higher than that in a centralized market.

As illustrated in (41), the difference between TV and TV,, is larger when the search cost ¢
is smaller, and approaches infinity when ¢ goes to 0. As noted in Proposition 5, the smaller the
search cost c, the larger the intermediary sector. Hence, the smaller the search cost ¢, the larger

the excess trading generated by middlemen.

These results shed some light on why centralized market models have trouble explaining trad-
ing volume, especially in markets with small search frictions. Even in the well-developed stock
market in the U.S., some trading features are perhaps better captured by a search model. It is
certainly quick for most investors to trade in the U.S. stock market. However, the cheaper and
faster technology makes it possible for investors to exploit opportunities that were prohibitive with
a less developed technology. Indeed, over the past a few decades, numerous trading platforms
were set up to compete with main exchanges; hedge funds and especially high-frequency traders
directly compete with traditional market makers. It seems likely that the increase in turnover
in the stock market in the past a few decades was driven partly by the decrease in the search
frictions in the market. Intermediaries, such as high frequency traders, execute a large volume of

trades to exploit opportunities that used to be prohibitive.

In summary, our analysis suggests that a centralized market model captures the behavior of
asset prices and allocations when market frictions are small. However, it is not well-suited for
analyzing trading volume, even in a market with a fast search speed, especially in the case when

the search cost is small.
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4.3 Equilibrium without Intermediation

Our discussion so far has focused on the case ¢ < ¢*. We now briefly summarize the analysis
for the other case. As noted in Section 3.1, when c increases to ¢*, the interval (Ay, Ag) shrinks
to a point and the intermediary sector disappears. As one might have expected, intermediaries

disappear in the equilibrium for the case of ¢ > ¢*.

Similar to the analysis in Section 2, we can construct an equilibrium for the case ¢ > ¢*. The
only difference is that as described in Panel A of Figure 1, two cutoff points A, and Ay are such
that Ay > A;. In the equilibrium in Theorem 1, investors with intermediate valuations become
intermediaries and stay in the market all the time. In contrast, in this case with a higher search
cost, investors with intermediate valuations choose not to participate in the market. Only those
with strong trading motives (buyers with types higher than A and sellers with types lower than
A;) are willing to pay the high search cost to participate in the market. In the limit case where

A goes to infinity, as in Proposition 16, equations (36)—(40) still hold. However, we now have

lim TV = TV,,.

A—00

This is, as A goes to infinity, both A, and A; converge to A,,. The inactive sector shrinks to a
point. Moreover, the prices, allocation, and the trading volume all converge to their counterparts
in a centralized market equilibrium. This result further confirms our earlier intuition that, in the
intermediation equilibrium in Section 2, the difference between TV and TV, is due to the extra

trading generated by intermediaries acting as middlemen.

4.4 Alternative matching functions

Section 4.2 shows that the non-convergence result on volume is due to the fact that while A
increases, the intermediary sector shrinks but each one can trade more quickly. The higher trading
speed dominates the reduction in the size of the intermediary sector. One natural question whether
this result depends on the special matching function in our model. As explained in Section 2,

for tractability, we adopt the matching function ANy Ns. Does our non-convergence conclusion
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depend on this assumption?

To examine this, we modify our model to have a more general matching function: We now
assume that the matching function is AQ(Ny, Ns), where Q(-, -) is homogeneous of degree k (k > 0)
in Ny and Ns;. The matching function in our previous analysis, AN Ny, is a special case with
homogeneity of degree 2. The rest of the model is kept the same as in Section 2. We construct
an intermediation equilibrium that is similar to the one in Theorem 1, and let A go to infinity to

compare the limit equilibrium with the centralized market equilibrium.

The conclusions based on this general matching function remain the same as those in Section
4.2. When X goes to infinity, both the prices and allocation converge to their counterparts in
a centralized market equilibrium, but the trading volume does not. Interestingly, the trading
volume in this generalized model converges to exactly the same value as in our previous model,

and is given by (41).

5 Empirical Analysis

In this section, we conduct empirical tests of the model predictions on the length of the interme-
diation chain L and the price dispersion ratio DR. We choose to analyze the U.S. corporate bond
market, which is organized as an OTC market, where dealers and customers trade bilaterally.

Moreover, a large panel dataset is available that makes it possible to conduct the tests reliably.
5.1 Hypotheses

Our analysis in Section 3 provides predictions on the effects of search cost ¢, market size X,
trading need &, and search technology A. Our empirical analysis will focus on the cross-sectional
relations. Hence, there is perhaps little variation in the search technology A across corporate
bonds in our sample during 2002-2012. Our analysis below will focus on the effects of ¢, X, and

K.

Specifically, we obtain a number of observable variables that can be used as proxies for these
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three parameters. Table 1 summarizes the interpretations of our proxies and model predictions.
We use issuance size as a proxy for the market size X. Another variable that captures the effect
of market size is age. The idea is that after a corporate bond is issued, as time goes by, a larger
and larger fraction of the issuance reaches long-term buy-and-hold investors such as pension funds
and insurance companies. Hence, the active size of the market becomes smaller as the bond age
increases. With these interpretations, Propositions 9 and 13 imply that the intermediation chain
length L and price dispersion ratio DR should be decreasing in the issuance size, but increasing

in bond age.

We use turnover as a proxy for the frequency of investors’ trading need . The higher the
turnover, the more frequent the trading needs are. Propositions 10 and 13 imply that the chain

length L and dispersion ratio DR should be increasing in turnover.

As proxies for the search cost ¢, we use credit rating, effective bid-ask spread, and time to
maturity. The idea is that these variables are related to the cost that dealers face. For example,
all else being equal, it is cheaper for dealers to make market for investment-grade bonds than for
high-yield or non-rated bonds, perhaps because dealers face less inventory risk and less capital
charge for holding investment-grade bonds. Hence, our interpretation is that the search cost c is
smaller for investment-grade bonds. Moreover, bonds with longer maturities are more risky, and
so more costly for dealers to make market (i.e., ¢ is higher). Finally, everything else being equal,
a larger effective bid-ask spread implies a higher profit for dealers (i.e., ¢ is lower). With these
interpretations, Propositions 5 and 13 imply that the chain length L and price dispersion ratio
DR should be larger for investment-grade bonds, and for bonds with shorter time to maturity or

larger bid-ask spreads.

5.2 Data

Our sample consists of corporate bonds that were traded in the U.S. between July 2002 and De-
cember 2012. We combine two databases: the Trade Reporting and Compliance Engine (TRACE)

and the Fixed Income Securities Database (FISD). TRACE contains information about corporate
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bond transactions, such as date, time, price, and volume of a transaction. All transactions are
categorized as either “dealer-to-customer” or “dealer-to-dealer” transactions. The FISD database
contains information about a bond’s characteristics, such as bond type, date and amount of is-
suance, maturity, and credit rating. We merge the two databases using 9-digit CUSIPs. The
initial sample from TRACE contains a set of 64,961 unique CUSIPs; among them, 54,587 can
be identified in FISD. We include in our final sample corporate debentures ($8.5 trillion total
issuance amount, or 62% of the sample), medium-term notes ($2.2 trillion total issuance amount,
or 16% of the sample), and convertibles ($0.6 trillion issuance amount, or 4% of the sample). In

total, we end up with a sample of 25,836 bonds with a total issuance amount of $11.3 trillion.

We follow the definition in (26) to construct the chain length L for each corporate bond during
each period, where TV .; + TV is the total dealer-to-customer trading volume and TV, is the
total dealer-to-dealer trading volume during that period. In our data, TV.. = 0, that is, there
is no direct transaction between two customers. Hence, the chain length is always larger than or

equal to 1.

We obtain the history of credit ratings on the bond level from FISD. For each bond, we
construct its credit rating history at the daily frequency: for each day, we use credit rating by
S&P if it is available, otherwise, we use Moody’s rating if it is available, and use Fitch’s rating if
both S&P and Moody’s ratings are unavailable. In the case that a bond is not rated by any of the
three credit rating agencies, we consider it as “not rated.” We use the rating on the last day of
the period to create a dummy variable “IG”, which equals one if a bond has an investment-grade

rating, and zero otherwise.

To measure the effective bid-ask spread of a bond, denoted as Spread, we follow Bao, Pan,
and Wang (2011) to compute the square root of the negative of the first-order autocovariance
of changes in consecutive transaction prices during the period, which is based on Roll (1984)’s
measure of effective bid-ask spread. Maturity refers to the time to maturity of a bond, measured
in years. We use Age to denote the time since issuance of a bond, denominated in years, use Size

to denote issuance size of a bond, denominated in million dollars, and use Turnover to denote the

111



total trading volume of a bond during the period, normalized by its Size.

We follow the definition in equation (31) to construct the price dispersion ratio, DR, for

each bond and time period, where P¢__ and P¢.  are the maximum and minimum transaction

max min

prices among dealer-to-dealer transactions, and Ppax and Ppj, are the maximum and minimum

transaction prices among all transactions.

5.3 Analysis

Table 2 reports the summary statistics for variables measured at the monthly frequency. To rule
out extreme outliers, which are likely due to data error, we winsorize our sample by dropping
observations below the 1st percentile and above 99th percentile. For the overall sample, the
average chain length is 1.73. There is significant variation. The chain length is 7.00 and 1.00 at
the 99th and 1st percentiles, respectively. Investment-grade bonds tend to have longer chains.
For example, the average chain length is 1.81 and the 99th percentile is 7.53. The average price
dispersion ratio is 0.50 for the overall sample, and 0.51 for investment-grade bonds. For the overall
sample, the average turnover is 0.08 per month and the average issuance size is $462 million.
Investment-grade bonds have a larger average issuance size of $537 million, and a turnover ratio
of 0.07. The effective bid-ask spread is 1.43% for the overall sample, and 1.32% for the investment-
grade subsample. The average bond age is around 5 years and the time to maturity is around 8

years.

We first run Fama-MacBeth regressions of chain length on the variables in Table 1, and the
results are reported in Table 3. As shown in column 1, the signs of all coefficients are consistent
with the model predictions, and all coefficients are highly significantly different from 0. The
coefficient for IG is 0.245 (¢ = 32.17) implying that, holding everything else constant, the chain
length for investment-grade bonds is longer than that for other bonds by 0.245 on average. The
coeflicient for Spread is 0.073, with a t-statistic of 17.17. Hence, when the effective bid-ask spread
increases from the 25th percentile to the 75th percentile, the chain length increases by 0.091

(= 0.073 x (1.81 — 0.56)). With the interpretation that a higher spread implies a lower cost for
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dealers, this is consistent our model that the chain length is decreasing in the search cost. The
coefficient for Turnover is 0.199 (¢ = 11.48), suggesting that the chain length increases with the
frequency of investors’ trading needs. The coefficients for Size and Age are —0.012 (¢ = 3.73) and
0.025 (¢t = 23.92), implying that the chain length is decreasing in the size of the market. Also

consistent with the model prediction, the coefficient for Maturity is significantly negative.

We then run another Fama-MacBeth regression, using the price dispersion DR as the depen-
dent variable. Our model predicts that the signs of coefficients for all the variables should be the
same as those in the regression for L. As shown in the third column of Table 3, five out of the
six coefficients have the same sign as those in the regression for L in column 1. For example, as
shown in the third column of Table 3, the coefficient for IG is 0.007 (¢t = 2.62) implying that,
holding everything else constant, the price dispersion for investment grade bonds is larger than
that for other bonds by 0.007 on average. Similarly, as implied by our model, the coefficients for
other variables such as Spread, Turnover, Age, and Maturity are all significant and have the same

sign as in the regression for L.

The only exception is for Size. Contrary to our model prediction, the coefficient is significantly
positive. Intuitively, our model implies that, for a larger bond, it is easier to find trading partners.
Hence, it is less profitable for dealers, leading to a smaller intermediary sector, and consequently
a shorter intermediation chain and a smaller price dispersion ratio. However, our evidence is only
consistent with the implication on the chain length, but not the one on the price dispersion ratio.
One conjecture is that our model abstracts away from the variation in transaction size and dealers’
inventory capacity constraints. For example, in our sample, the monthly maximum transaction
size for the largest 10% of the bonds is more than 50 times larger than that for the smallest 10%
of the bonds. When facing extremely large transactions from customers, with inventory capacity
constraints, a dealer may have to offer price concessions when trading with other dealers, leading
to a larger price dispersion ratio. However, this channel has a much weaker effect on the chain
length, which reflects the average number of layers of intermediation and so is less sensitive to

the transactions of extreme sizes. As a result, our model prediction on the chain length holds but
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the prediction on the price dispersion does not.

As a robustness check, we reconstruct all variables at the quarterly frequency and repeat our
analysis. As shown in the second and fourth columns, the results at the quarterly frequency are
similar to those at the monthly frequency. The only difference is that the coefficient for Maturity
becomes insignificant. Finally, we share the endogeneity concern for Spread, and should interpret
its coefficient with caution. We also rerun our regressions after dropping Spread, and our results

remain very similar for all other variables.

6 Conclusion

We analyze a search model with an endogenous intermediary sector and an intermediation chain.
We characterize the equilibrium in closed-form. Our model shows that the length of the interme-
diation chain and price dispersion ratio are decreasing in search cost, search speed, market size,
but are increasing in investors’ trading need. Based on the data from the U.S. corporate bond

market, our evidence is broadly consistent with the model predictions.

As search frictions diminish, the search market equilibrium does not always converge to a
centralized market equilibrium. In particular, the prices and allocations in the search market
equilibrium converge to their counterparts in a centralized market equilibrium, but the trading
volume does not converge in the case with intermediaries. The difference between the two trading
volumes across the two equilibria increases when the search cost becomes smaller, and approaches
infinity when the search cost goes to zero. These results suggest that a centralized market model
captures the behavior of asset prices and allocations when market frictions are small. However,
it is not well-suited for analyzing trading volume, even in a market with a fast search speed,

especially in the case when the search cost is small.
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Table 1: Model Predictions

This table summarizes the model predictions. The first column are the variables
that we will measure empirically. The second column reports the variables in our
model, for which the variable in the first column is a proxy. The third column reports
the predicted relation with the length of the intermediation chain . and the price
dispersion ratio IDR. L is the ratio of the volume of transactions generated by dealers
to that generated by customers, and is defined in (26). DR is the price dispersion
among inter-dealer trades divided by the price dispersion among all trades, and is
defined in (31). IG is a dummy variable, which is 1 if the bond is rated as investment
grade, and 0 otherwise. Spread of a bond is the square root of the negative of the
first-order autocovariance of changes in consecutive transaction prices of the bond.
Maturity is the the time until maturity of a bond, measured in years. Turnover is the
total trading volume of a bond in face value during the period, normalized by Size,
which is the initial face value of the issuance size of the corporate bond, denominated
in million dollars. Age is the time since the issuance, denominated in years.

Variable Proxy for Relation with L and DR
IG c +
Spread c +
Maturity c —
Turnover K +
Size X —
Age X +
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Table 2: Summary Statistics

This table reports the summary statistics of the variables defined in Table 1, all «
which are measured at the monthly frequency. For each variable, the table repor
its mean, standard deviation, the 99th, 75th, 50th, 25th, and 1st percentiles, as we
as the number of observations.

Mean S.D.| 99% 755% 50% 25% 1% Obs.
L All| 1.73 096 | 7.00 210 136 1.02 1.00 862109

IG | 1.81 097 | 753 225 148 1.05 1.00 526272
DR All | 050 0.31 | 1.00 076 054 0.25 0.00 683379

IG | 051 031 ] 1.00 075 054 027 0.00 436993
Turnover All'| 008 0.12 | 1.02 0.10 0.04 0.01 0.00 866831
(per month) IG | 0.07 0.11 | 0.76 0.08 0.03 0.01 0.00 528698

Spread All | 143 146 | 1488 1.81 1.02 0.56 0.05 590883
(%) IG | 132 124 | 677 169 097 054 0.04 372473
Size All | 462 1645 | 3000 500 275 150 2.00 866832
($million) IG | 537 2029 | 3000 600 300 175 3.11 528698
Age All | 486 450 | 1891 691 3.73 1.64 0.02 866832
(vear) IG | 5.06 456 | 1889 732 391 1.71 0.04 528698
Maturity All | 819 9.35 | 3337 957 5.08 237 0.08 866523
(vear) IG | 867 9091 | 35.17 10.08 5.00 225 0.08 528434
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Table 3: Regression Results

This table reports the estimated coefficients from Fama-MacBeth regressions of inter-
mediation chain length L and price dispersion ratio DR on a number of independent
variables, at monthly and quarterly frequencies. All variables are defined in Table
1. T-statistics are reported in parentheses. The superscripts #, ##%, * % % indicate
significance levels of 10%, 5%, and 1%, respectively.

L DR
Monthly  Quarterly | Monthly — Quarterly
IG 0.245%** 0.239** 0.007** 0.004
(32.17) (20.43) (2.62) (1.14)
Spread 0.073*** 0.049** 0.004** 0.003*
(17.17) (8.22) (4.47) (2.54)
Turnover 0.199* 0.118** 0.217+ 0.107**

(11.48)  (1047) | (26.38)  (15.59)
Size(x1073) | —0.012**  —0.008* | 0.021**  0.016"*

(3.73) (1.66) (15.17) (8.88)
Age 0.025***  0.019** | 0.001**  0.002**

(23.92)  (13.92) (5.39) (5.47)
Maturity —0.001™*  0.000 | —0.001**  0.000

(3.72) (0.08) (6.00) (0.40)
Const. 1.383*  1.311% | 0490  0.573"*

(163.14)  (136.07) | (69.71)  (50.47)
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Figure 1: The evolution of demographics.
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Appendix for Chapter 2
7 Proof of Type Distributions in Theorem 1

In this section, we show that u;(A) for i = b, s, h,n are given by following. For A € [0, A;),

p(B) = i (8) = 0 )
KN =X)+ AN,N
kX
ps(A) = ,@+)\Nbf(A)' )
For A € (A, Ay),
pn (B) = pn(B) =0, oW
pe (A) = NAA) Y, ARk WD
2| IvoNE@) - x PV - X0 P
(D) = Nfz(A) 1+ ARRLILE S (48)
| JIN-NF(A) - X £+ 45 (N - X) [1 - F ()]
For A € (A, 4],
pa(B) = g (B) =0, )
@) = SER @), (50)
&) = BRI, "

The proof is organized as follows. In Setp I, we derive the density function of each group of
investors for A € [As, Z] and determine N; as a function of A,. In Setp II, we derive the density
function of each group of investors for A € [0,A;] and determine N, as a function of A,. We

determine the density function of each group of investors for A € [Ap, As] in Step III.

Step I. We determine p;, (A) and 1, (A) for A € [A,, Al. Since p,, (A) = p, (A) = 0 in this

region, the accounting identity (7) boils down to
i (A) + py (A) = Nf(A) for A € [A;,A].
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Besides, inflow-outflow balance equation for investors with types lie in region is given by (14) in

the paper, namely,
kg, (A) = kX f(A) + ANy (A) .

We thus obtain two equations, both linear in g, (A) and gy (A). It is easy to solve them out.

Now we derive an equation that determines N, i.e., the total measure of sellers in the market.

The total measure of inactive holders in the economy should be equal to X — N, which satisfy

K;X—l-)\NN kX + AN N,

This equation provides a link between Ny and Ag. We can rewrite this as a quadratic equation

of Ng, i.e., ls(Ng) =0, where

ls(2) = 2°4 A,z — By, (53)
with A, = §+N—X—NF(AS),
X
B, = “=F(A)>0.

The associated discriminant is strictly positive: A2 + 4B, > 0, so the equation has two
distinctive real roots. According to Vieta’s formula, the product of two roots is given by — B, < 0,
which means that the two roots have different signs. We need to pick out the non-negative root

and ensure Ny < X. Based on the following observation

ls(2)],.p = —Bs<0,

K
L@ox = (5+N)XL-FA)] >0,
we know for sure that the positive root lies in (0, X).

The two roots are given by
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where the strict inequality holds only when A, > 0 and the equality holds otherwise, so this root

is negative and should be deleted; (ii)

A, 1 Ay A4
24 2\ /A2 1+ 4B _s s
2+2 s T A > 27L 2

>0,

where the strict inequality holds only when As; < 0 and the equality holds otherwise, so this root

is positive.

The solution, denoted by Ny = S (Ay), is given by

S(A,) = _% §+N—X—NF(AS)} +;\/[’;+N—X—NF(AS)]2+4“§(F(AS). (54)

S (Ay) is increasing in Ag. To see this, note that S (Ag) satisifies I5 (S (As)) = 0, where I (+)

is given in (53). Taking direct differentiation with respect to Ag,

ds (As) NS (A,) + 55
das  29(A)+ 5+ N - X-NF@ay! @)
kX
- ALkt e v f(As) >0.
VIE+N - X - NF(A)]? +455F (A,)

We therefore know 0 = S (0) < S (A;) < S (A) = X for any A, € (0,A).

Step II. We determine p,, (A) and u, (A) for A € [0, Ap]. Since uy, (A) = py, (A) = 0 in this

region, the accounting identity (7) boils down to
fn (A) + pg (A) = Nf(A) for A €[0,A].

Besides, inflow-outflow balance equation for investors with types lie in region is given by (16). We

thus obtain two equations, both linear in pu,, (A) and p, (A). It is easy to solve them out.

Now we derive an equation that determines Ny, i.e., the total measure of buyers in the market.
The total measure of non-owners who choose not to search should be equal to N — X — N, which

satisfy

k(N — X) + ANN,
K+ ANy

F(A)dA =

AV _
)dA:/O (N —X)+ ANN, F(A,).

Ay

0
(55)
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This equation provides a link between N, and A;. We can rewrite this as a quadratic equation

of Ng, i.e., Iy (Ny) = 0, where

Ih(z) = 224 Ayz — By, (56)
with 4y = ;—N+X+NF(A1)),
By, = ;(N—X)[I—F(Ab)]>0.

The associated discriminant is strictly positive: A% + 4By, > 0, so the equation has two
distinctive real roots. According to Vieta’s formula, the product of two roots is given by —Bj, < 0,
which means that the two roots have different signs. We need to pick out the positive root and

ensure Ny < N — X. Based on the following observation
Iy (z)’z:[) = —B, <0,
K
b(@oy-x = (N=X)(5+N)F(A) >0,

we know for sure that the positive root lies in (0, N — X).

The two roots are given by

Ay 1
N, = —é)ii./Al%—éLBb.

We need to determine the sign of each root. Since y/A? + 4B, > |Ap|, we know (i)

where the strict inequality holds only when A; > 0 and the equality holds otherwise, so this root

is negative and should be deleted; (ii)

A, 1 Ay |4
— 2 A2 4By > -2 4+ 2 >0
5 TV TAb > o5 20,

where the strict inequality holds only when Ay < 0 and the equality holds otherwise, so this root

is positive.

The solution, denoted by Ny, = B (4Ay), is given by

B(A,) = % [N -x-NF(a) -]
sy lv-x-wra) e nn- @ 6
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B (Ay) is increasing in Ay. To see this, note that B (Ay) satisfies I, (B (Ap)) = 0, where I, ()

is given in (56). Taking direct differentiation with respect to Ay,

i, T 2B(A) - [N-X - NE(Ay) -5 O
R(N-X)
_ NB (&) + 7 F(Ay) < 0.

VIN =X = NF(8y) = 5] +45 (N = X) [L - F (&)

We therefore know 0 = B (A) < B(A;) < B(0) = N — X for any Ay € (0,A).
Step III. We determine g  (A) and gy (A) for A € [Ap, Ag).

Recall that g (A) and py, (A) satisify the following inflow-outflow balance equation and ac-
counting identity equation

A A
g () = KXF Q)= ey (A) [ @ ety (@) [ @ (59)

ps (A) +pp (A) = Nf(A). (59)

To understand (58), we consider the inflow and outflow of sellers with types in interval
[A, A + dA]. At any time ¢, the measure of sellers in this interval is pg (A)dA. During short
period dt, a fraction (1 — kdt) of them experience no type-switching shock and thus remain in in-
terval [A, A + dA]. Besides, a fraction kdt of asset owners (sellers and inactive holders) experience
type shocks and kdtX f (A)dA investors’ new types fall in the interval [A, A + dA]. Moreover,
when the sellers with types in [A; A 4+ dA] sell their assets they become the non-owners and the
size of this group is Ay, (A) dAdt fAZ iy () dz. Finally, when the buyers with types in [A,; A + dA]
acquire the asset they become the sellers and the size of this group is Ay, (A) dAdt [ AA s (y) dy.
The inflow-outflow balance equation is thus given by

A A
g (A)dA = (1 — kdt) pg (A)+rdtX f (A)dA—=Aug (A) dAdE /A wy () dr+Apy, (A) dAdt/A L () dy,

which can be simplified to (58).
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Define the cumulative measure of buyers and sellers whose types are no more than A by

A _
F(A) = / iy, (x) d for A € [Ay, A],

Ay

o
=
Il

A
/ s (z) dz for A € [0, Ag].
0

Note that the total measure of buyers and sellers can be expressed as

Ny = Fy, (B), N, = Fy (Ay).

Using these notations, we can rewrite (59) as

W) o (8) = AN - B (@] T o (a) DS,
where we have used the facts
iy (A) = dlgim,#s (A) = dﬁsgA).
Notice the following fact
% {N[Ny — Fy (A)] F5 (A)} = A [Ny — Fy (A)] dP;iA) AR (A) dﬁc’l;iA)

We can thus substitute the last two terms in (62) out and obtain

dF, (A)
dA

K

Integrating both sides from Ay to any A € (A, A4, we have

K [Fs (A) = Fs (Ap)] = 6 X [F (A) = F (Ap)] = M[Np — Fy (A)] Fs (A) = NpFs (Ap)}

where we have used the facts that Fj, (Ap) = 0. Since pg (A) =

are able to pin down Fs (Ap) as follows

Ay Ay K
Fsmb):/o us<x>da:=/0 X () de =

K+ ANy

Besides, we can also rewrite (59) as

dFy(A)  dF,(A)
int i N
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KX
H+/\Nb

= RXF(A) ~ (AN~ B (M) (A))

(60)

(61)

(63)

f(A) for A € [0, Ap], we
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Integrating both sides of this equation from Ay to any A € (Ap, As], we obtain
Fy (A) + Fs (A) = Fs (Ay) = N [F(A) = F'(Ay)], (65)

where we have also used the fact that M (Ap) = 0. According to the following observation

k(N —X)+ ANN,
K+ ANy

Fy (Ap) — NF (Ap) = — F(Ay)=—(N-X—Ny),
we can rewrite (65) by

Fy (&) + Fy (&) = NF (&) = (N = X — Ny), (66)

Using this to substitute term Fs (A) out in (63), we can show that Fj (A) is the solution to
the following quadratic equation: I (F (A)) = 0, where
l1 (Z) = 22— A1z + By,

with 4; = NF(A)—N+X+2NZ,+§>0,

B = (iN;[X + Nb) [NF(A) — NF(Ay)] >0 for A € [Ay, AJ]

Here, A; > 0 because

A > NF(Ab)—N+X+2Nb+;

kN + ANN,
k(N — X)+ANN,
KX (N =X — )

K
- Ny + 2 >0,
(N —X)FANN, Ty

= (N-X-Ny)

—N+X+2Nb+§

where we substitute F'(Ap) out in the second line according to (55).

The associated discriminant is strictly positive because

a 2
A3 =481 @ [NF(A) = N+ X + 5] + 4N +4N, [NF(8) - N + X + 5]

—4% (N = X)[F (&) = F (A)] = 4N, [NF (A) = NF (&)

b 2
O 4Nz 1 an, [N+ X+ S NF@A)]+ NP2 - N+ X+ 5]

A
kN —X

SR N (8) - NF (&) 2

@4§(N—X) 11— F (&) + [NF(A) —N+X+§] — 45 (N = X) [F(8) = F (&)

(d) K K12
QSN -x)-F @)+ [NF@a) - N+ x+ 5]
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where we break A? down in (a), we put the coefficient of N, together in (b), we substitute N7
out by (56) in (c¢) and find that all terms related to N} are cancelled out. Both of the two terms
in the final step (d) are positive, so A7 — 4B; > 0 and thus the equation has two distinctive real

roots.

According to Vieta’s formula, the product of two roots is given by By > 0, which means that
the two roots have the same signs. In view of the following facts
l]. (Z)|z:0 = Bl >0)
K
b2y, = —3(N-X)1-F(4)] <0,

we know that one root is located in (0, Ny) and the other root exceeds N,. We should pick the

small root. The solution is given by

_ 2 _
B (a) - VAT 4B,

2

Taking derivative with respect to A, we obtain py, (A) = % for A € [Ay, A4

We can figure out Fs (A) for A € [Ap, Ag] directly from (66) and obtain u, (A) = Nf (A) —

ty (A) in this region.
8 Proof of Theorem 1

The proof is organized as follows.

Step I. According to a non-owner’s optimal choice given in (3), we know

B _ [ Va(A) if A e0,A)
V(6= 0.8) = max (v, (&) vi (&) = { ) SR
and a non-owner of marginal type A; is indifferent between staying outside the market and
searching to buy the asset

Vi (Ap) = Vo (Ayp) . (67)

According to an owner’s optimal choice given in (4), we know

V, (A) if A € [0,A]

V (0, =1,A) = max (V, (A),V, (A)) = { Vi (A) if A € [Ay, A]
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and an owner of marginal type A; is indifferent between staying outside the market and searching
to sell the asset

Vi (Ag) = Vs (As) (68)

We can thus simplify the expression of tradig surplus between a buyer of type x € [Ab,m

and a seller of type y € [0, Ag] by

VS (x) + Vb (y) S [Ab7 As] Y € [Aby As]
) Vs@+Valy) o) — 4 L€ [Ap, Ag],y € [0, Ap]
SEN=1 i@+ vy PO TR IR e a8
Vi (z) + Vi, (v) z € [As, Al ,y €[0,A]

It is direct to check S (A, A) = 0 for any A € [Ay, As]. We will show that S (x,y) > 0 for

x > y after we have constructed all value functions.

Step II. We determine V, (A) and V}, (A) for A € [0,A]. The equation for V;, (A) implies
that it is a constant for all A. We denote it by V,, = V,, (A). The equation for V}, (A) implies

that it is linear in A with a positive slope

dvi (D) 1

dA k47 (70)

Step III. We determine V (A) for A € [0,A;] and V;, (A) for A € [Ay, A].

We first study V5 (A) for A € [0,Ag]. Suppose A € [0,A]. We can insert the expression
of §(z,A) given in (69) into the equation of Vs (A). We will later show that S (z,A) > 0 for

x> Ap > A >0 and we already know that p; (x) = 0 for x < Ay holds in equilibrium, so

1+A—-c &kE[max{V;(A"),Vs(A)}] X1 -n) a

Va(B) = ———+ s + AS(A,x)ub(x)dx
—c¢ kE|max N, Vs (A _ A
h 1:ﬁr + =2 {Viﬁ)’v(“”“ﬁiﬁ)/Ab Vs (@) + Vi = Vi (2) = V5 (A)] py () da
-~ A
+>\l(<cl+7"77) / S Vi () + V,, = Vi (2) = Vi (A)] iy, () d.

Assume that all value functions are differentiable almost everywhere and differentiate both sides

of the equation with respect to A,

dvy(A) 1 _A(l—'f?)st(A)/A
dA K+T K+ dA

py () de.
Ay
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Since the total measure of buyers in the market is given by N, = [ AAb ty (A) dz, we thus obtain

4V, (A) |
- for A € [0,A]. |
A rrrraa—nn, oAl (1)

Now suppose A € [Ay, Ag]. Inserting the expression of S (z, A) given in (69) into the equation

of V5 (A),
—c¢ kKE|max N, Ve (A — As
vy = En ey BB 8 BB A0 T )+ (8) - i (o) — Vi ()] o)
B A
20TV @) 4 T (8) = Vi (o)~ Ve (A o) o for A€ [An A (72

Still assume that all value functions are differentiable almost everywhere. Differentiating the

above equation with respect to A on both sides,

W)L M) ) M) E g
dA an | [, P e

(73)

dA K+r  KAET

Next, we study V, (A) for A € [Ab,Z]. Suppose A € [As,m. Inserting the expression of

S (z,y) given in (69) into the equation of V} (A), we obtain

c xE [max ", Va Ap
V(&) = -ty BP0 0+ Vi (@) - (8) ~ Ve @], (0o

As
+ );7_7 / Vi (A) 4+ Vi (z) — Vi (A) = Vi (2)] pg (2) da, for A € [Ay, A].
K T Ay

Assume that all value functions are differentiable almost everywhere. Differentiating the above

equation with respect to A on both sides,

dVy (A) My [dVi(A)  dV(A) /AS (2) d
A k47| dA an | ), M '

Notice that the total measure of sellers in the market is given by Ny = fOAS ty (A) dz and the

slope of V3 (A) is already obtained in (70). We thus obtain

vy (A) 1 AnN, _
= for A € [Ag, A 74
dA K+1K+71+ AN or A€ ) (74)

Suppose A € [Ay, Ag]. Inserting the expression of S (A, z) given in (69) into the equation of
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c xE [max N,V A
() = -ty SR B [T )+ Vo) - (@) - Vi @) )
An Ap
+/<;+r/ Vs (A) + Vi () = Vi (A) = Vs ()] pg () da, for A € [Ay, Ag]. (75)
0

Assume that all value functions are differentiable almost everywhere. Differentiating the above

equation with respect to A on both sides,

vy (A) Mg [st (A)  dvy (A)] /A . (z) d. (76)
0

dA k47 dA dA

Substituting (60) into (73) and (61) into (76), we have

dvs(A) 1 A(l—n) [dVi(A) dV,(A)
dA o ,‘q;—|—'r_ K4+ [ dA - ;A ][Nb—Fb(A)]a
T = | s P bt or A e A,

Taking difference on both sides and rearranging,

dvi (A) dV(A) 1
AN dA T k4 r+ A1 =) [Ny — Fy (A)] + MFy (A)

€(A) for A € [Ay, Ag]. (77)

Inserting back into each equation, we are able to obtain the slope of Vs (A) and V; (A) for

A € [Ay, Ay,

The slope of V5 (A) is therefore given by

dvs (A) { o, for A €[04
- 1

K+r+AnFs(A _
dA e /<;+r+)\(1fn)[ijFb((A)%Jr/\nFS(A) =&, (A) for A€ [Ay, Ay

The slope of V, (A) is given by

AnFs(A —
AN { e S = 6 (D) for A € (A, A . (79)

1 AnNs
dA K+r /i—&-rj—/\nNs for A e [AS’N

Step I'V. We list out investor’s expected utility given his choice and asset holding.

We first derive the expression of V3 (A). The slope of V4 (A) has already given by (79). We

thus have:

I & (2) dz for A € [Ay, A

As s ’
Ja, & () dz + HL% (A = Ay) for A € [Ay,A]

(80)
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where &, (+) is given in (79) and we have used the fact Vj, (Ap) = V,,.

Next, we derive V,,. We have the following chain of equations:

(a)

(k+7r)V, = KE [max{Vm% (A/) }] (b)

A
= KV + 5 / (Vi (A7) = Vi ] dF (A)
JAVS
A A
(c) s K ANN /
= Ag) — F(z)d 1—F(2)]dz,
WV (B = | G F () e+ o B | L= F ()] d

where (a) is due to Equation (10) in the paper, (b) is because V;, (A) > V,, whenever A > A; and
(c) is established by integral by parts. Plugging the expression of V;, (A;) into the last line and
rearranging, we obtain

A

A
s K MNs, a1 - F(2)]dz
Va(A) =V, =12 1= F(z)]dz+ = s '
(A) T A, S (21 (=) Z+7”KZ+T’+)\77NS K+

(81)

Now we derive Vs (A) and V3, (A). Recall that the slope of Vj, (A) is a constant and given by

(70). Hence,
A — A
Vi (A) = Vi, (As) + o (82)
where Vj, (Ag) = Vs (As) (cf. equation (68)) is to be determined.
Recall that the slope of Vs (A) is already given in (78). We thus obtain
A8y for A € [0,A
V. (A) —V, (Ab) + K]-Z’r’-‘rANb(l—?’]) or [ ’ b] , (83)
fAb 55 (Z) dz for A € [Abu As]
where V (Ap) is given by
As
V)=V - [ @)
Ay
Now we pin down the value of V; (Ay). For this, we first calculate E [max {V; (A),V;, (A)}]:
A A
Blmax (V. (4) V(@)Y = [ VQ)dF@)+ [ V@) @)
0 As
A
[2F (2)dz A R 1 —F(2)dz
— V(A — — 0 - F . .
Vs (Bs) = o AN (L= ) A, £ (2) F(2)dz+ Kt

Substituting this into the following equation

_ 1+ A+ KE [max{V; (4), Vi (A)}]
K+

‘/s (As) = Vh (As)

i
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and rearranging, we obtain

Ay s A F(2)]dz
_IHA ok fFEEdE okt ks Lo FE)d

T rE+r+ AN, (1—n) 7 Ay r K+

Vi (As) (84)

Therefore, Vs (Ap) in (83) is given by

A, ;
_1+A s Jo'Fz)dz Aés(z)[lJr:F(z)}dva

" ka1 = F(2)]dz
r re+71+ AN, (1—n) A, '

r K+

Vs (Ap)

Step V. We check the trading rule in a bilateral meeting, i.e.,
S (z,y) > 0 if and only if x > y,

where z € [Ay, A] is the buyer’s type and y € [0,A,] is the seller’s type. Here, S (z,y) is given

by (69). We split our discussion in the following 4 cases.
(i) If x € [Ab,AS] and y € [Ab, As],

S(z,y) = Vi(z)—=Vi(y) — Vo (z) = Vi (y)]

_ /ac [st (2) _ dVb(Z)] dz — /Ig(z)dz > 0 whenever = > y.
y y

dz dz
(ii) If x € (Ap, As) and y € (0,Ap) (where x > y always holds),
S(ay) = Vilz) = Vs(y) = [Vo (@) = V5 (A)]

Ay dz x z
= + < (2)dz — z)dz
/y E+r+A(1—n) Ny Abg() Abéb()

Ap—y *
= + dz > 0,
E+r+A(1—n)Ny Abf(z) i

where the first term is positive because y < A and the second term is positive because the

integrand & (z) > 0 and = > A,,.
(iii) If z € [As, A] and y € (Ap, A;) (where z > y always holds),

S(@y) = Valz)+Ve(y) = Vo(z) = Vi(y)

= [Va () = Vi (As)] + [Vs (As) = Vs ()] = [Vo () = Vb (y)]

z—As [P NN, - Ay [
= dz — — d
K47 + y §s(2)dz k+7r+MNs k+r1 Y & () dz
T — Ag As
- TT8s d
K+T+>\77Ns+/y €(z)dz >0,
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where we have used the fact Vj, (As) = V5 (Ay) in the second line.
(iv) If z € [As, A] and y € [0, Ap] (where z > y always holds),

S(zy) = Vi(z)+Va—=Vi(z) - Vs (y)

= [Va(2) = Va (As)] = [Vo (x) = Vo (Ap)] + [Vi (As) = Vi (y)]
A

z— Ag Tz — A, ANN As s Ap—y
- — d d
K+ {n—i-r /€+T+)\77NS+ A, & (2) Z}—I_[/Ab & (2) Z+/€+r+)\(1—n)Nb
T — Ay A Ap—y

= ——— + £(z)dz+ > 0,
b

k+7r+ANs A K+r+ A1 =n) N,

where we have used the fact V}, (As) = V5 (Ay) in the second line.

The last three cases show that any meeting between such kind of buyer and seller generates a

positive trading surplus and thus results in a trade.
Step VI. We derive the equilibrium condition that determines Ay.

For this, we use the indifference condition for the marginal non-owner of type Ay, i.e., V}, (Ap) =

Vi

In order to give an expression of V4 (Ap), we let A = Ay in (75) and obtain

(a) c . wE [max {Vj (A"), Vi }] X A1

Ay

Vi (D) = — Vi (D) + Vi = Vi (Ay) — Vi J(x)d
(8 2 - . S [0+ V= ) V@) (o) o
(b) c An Ao Ay —x
= Vi d

ﬁ+r+ +f€+7"/0 n—l—'r’—k)\(l—n)Nb’uS(x) v
© ¢ Vo4 An kX fOAb (Ap —z) f(x)de
o k+r " KETEFAN, T+ A (1 —n) N
@__¢ Ly An o kX fOAbF(ZL‘)dCC
kT " KHETEFANy kT AL —n) Ny

where we obtain (a) by construction, in (b) we substitute the second term out by V;, and use the
fact V,, = V, (Ap) in the integral, in (¢) we substitute out the explicit expression of u, (x) for

x € [0, Ap] in the integral and we simplify the last term through the integral by part in (d). Note
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that the LHS of the first line is actually V,, due to (67). We thus arrive at

_ AknX fOAb F (z)dx
(BN [T AL =) N

Recall that in the proof of Proposition 3 we have established N, = B (Ay) given by (57). If

we substitute N, by B (Ap), we obtain an equation of Ay:

. ArnX fOA” F (z)dx (5)
K+ AB(Ap)] [k + 7+ A(1—n)B(Ay)]

Since B (Ayp) is strictly decreasing in Ay, the RHS of (85) is strictly increasing in A,. As a first
step, we have to ensure that (85) implies a unique Ay € [O,N at least. For this, we only need to

check the following boundary conditions:

¢ > RHSof (85)[5,_o=0,
anX A
K+T1 Jo

¢ < RHSof (85)|p,.x =0 = F (z)dz,

where we have used the facts: B(0) = N — X and B (A) = 0. The first inequality holds for

positive search cost and the second inequality should be satisfied as an additional condition.
(85) defines Ay as an increasing function of ¢, denoted by dj, (¢).
Step VII. We derive the equilibrium condition that determines Ag.

For this, we use the indifference condition for the marginal owner of type Ag, i.e., V}, (As) =

133



Vs (Ag). In order to give an expression of Vi (Ay), we let A = A in (72) and obtain

V(A)@ 1—|—As—c+/ﬂE[max{Vh(A’),VS(A’)}]
s s K+ K+

B A
+M1+77>/ Vi (z) + Vo (As) = Vi (2) = Vi (A9)] py () doe
k+r  Ja,

‘ o A
e /A [Vi (2) = Vi (Ad) + Vh (As) = Vi (2)] py () d

< - ° A(l—n)/A x_As_SU—As AN N
_Vh(As) ;4;+r+ K+T A, L K+T k+r1r K47+ AnN; Mb(x)dq:
A
(i)V(A)_ ¢ +>‘(1—77)IAS($—A8)Mb($)dx
h s K+ K+ K‘_'_T—i_)"r]Ns
A
@y () - 6y A=AV = X) Ja, (2= &) f (@) do
h\Rs K+ K+ K+ AN, K+ 1+ AnN,
A
A1 — N-X 1— F(z)]dx
Oy (ay - C A= N =X) [ 1 - F (@)

K+ k+r K+ANs Kk+7+IN;

where we obtain (a) by construction, in (b) we simplify the first two terms by using the
expression of V3 (Ag) and use the fact V3 (Ag) = Vs (Ag) in the integral, in (¢) and (d) we
calculate the explicit form of the integrand, in (e) we substitute out the explicit expression of
wy, (z) for x € [AS,Z] in the integral and we simplify the last term through the integral by part
in (f). Note that the LHS of the first line is actually V;, (As) due to (68). We thus arrive at

AL -n)r(N—X)[x L F(@)]de

€= (k 4+ ANs) (k 4+ r + AnNy)

Recall that in the proof of Proposition 3 we have established Ny = S (A;) given by (54). If
we substitute Ns by S (Ag), we obtain an equation of Ag:

LAV - X) S - F(@)]ds (56)
T RN A [E T+ AS (A

Since S (Ajy) is strictly increasing in Ag, the RHS of (86) is strictly decreasing in Ag. As a first
step, we have to ensure that (86) implies a unique A € [0, m at least. For this, we only need to
check the following boundary conditions:

o _ A
¢ < RHS of (86)|As:0=@5)\(1 :)fj X)/O [1—F(x)]dz,

¢ > RHS of (86)5 _x =0,
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where we have used the facts: S (0) =0 and S (Z) = X. The first inequality holds for positive

search cost and the second inequality should be satisfied as an additional condition.
(86) defines A as a decreasing function of ¢, denoted by d; (c).

Step VIII. We now prove the following result: there exists a unique ¢* > 0 such that for any

c < c* the value of Ay and Ap are unique and Ag > Ay,

Recall that equation (85) defines an increasing function d; (c) : [0, — [0, A] and equation

(86) defines a decreasing function d; (c) : [0,¢5] — [0, A]. Notice that

ds (0) =8 > 0 =dy (0).

(i) If ¢ > ¢, then

@) Y dy0) 2024, @),

where (a) is because dp (¢) is strictly increasing in ¢ and ¢; > 0, (b) and (¢) are by construction.
It follows that there exists a unique ¢} € [0, ¢5] such that ds (c) % dy (c) for any ¢ § cs. Since we

require Ag > Ay in equilibrium, we thus impose the restriction: ¢ < cf.
At ¢ = ¢, we should have dj, (¢}) = ds (c}).

(ii) If ¢ < G5, then

a) — (C)
(@) CAaYa, 0% d (@),

where (a) and (b) are by construction, (c¢) is because ds (c) is strictly decreasing in ¢ and ¢ > 0.
It follows that there exists a unique c; € [0,¢)] such that d (c) % d; (c) for any c § cj. Since we

require Ay > Ay in equilibrium, we thus impose the restriction: ¢ < ¢j.
At ¢ = ¢}, we should have d; (c) = ds (c}).

In sum, the equilibrium exists when (i) ¢ < ¢} if ¢, < €5, or equivalently,

n fA [1—F(z)dr N — X
1—n— X
0 fA
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(ii) ¢ < ¢} if G > €, or equivalently,

1 fA - Ndx N — X
1— X
0" N

Let ¢* be such that

=4 °¢
c

We have proved the existence and uniquenss of Ag and Ay such that A; > Ay when ¢ < ¢*.

o szu— ()}de X
,1f1_7]< fA e (87)

Tx 0 %

Step IX. We verify an owner’s optimal choice given in (4).

For an owner of type A € (As,m, he prefers holding onto his asset to searching for trading
partners. Suppose he deviates to search in the market during a short period [t,¢ + dt) and then
returns to his equilibrium strategy after ¢t 4+ dt. Denote the investor’s expected payoff from such
deviation by Y/}o (A). In this short period, he receives cash flow from the asset, pays the search
cost and meets a buyer with type, say, = € [Ab,m, with probability Ay, (z) dt. The total trade

surplus is given by
S (z,A) =max {Vj, (z), Vs (2)} + Vi (A) =V} (&) — Vo (A),

since the seller chooses to search for the asset after trade. Based on this, Vo (A) is given by

~

Vo(A) = (1+A—c)dt+ wE [max {V; (A"),V; (A)}] dt

A o~
At (1 — 1) /A max {s (z,A) ,o} 1, (z) do + e (1 — kdt) Vi, (A) .

We can rewrite Vj, (A) by
Vi (A) = (1+ A)dt + KE [max {V}, (A7), Vs (A)}] dt + e (1 — kdt) Vi, (A) .

Taking difference term by term,

A
Vo (A) = Viy (A) = —cdt + Adt (1 — n)/ max {5 (z,A), o} 1, () de. (88)

Ay
The owner is tempted to make such a deviation if it is profitable, i.e., ‘A/O (A) > Vj, (A). If so, the
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trade surplus is bounded by

S(w,A) < max{Vi(z),V; (@)} + V5 (A) = Vi (2) = Vi (A)

:{ (@) + Vi (A) = Vi () = Vi (A), if 2 € [Ay, A,] and A € (A, A]
Vi () + Vi (A) = Vy (2) — Vi (A), if z € [Ag,A] and A € (A4, A]

If x < A, the upper bound is non-positive and thus S (z,A) < 0 in this case. Hence, we at least
need z > A to have a positive trade surplus. In what follows, we assume z > A. S (x,A) is

therefore bounded by

S(Az) < Vi(2)+Vi(A) =V (z) — Vi (A)

= [Va(@) = Vi (Q)] = Vo (z) = V4 (A)]
r—A z-A ANN z—A

K+ I€+’I”I€+T‘+)\T]N5:I€+T‘+)\77N57

where the first line is because Vp (A) > Vi, (A), the second line is a result of rearrangement and

the fourth line is by algebra. We can evaluate the RHS of (88) as follows

RHS of (88) = —cdt + Adt (1 — )/AM
7 A I€+T+>\7]Ns'ub

KN =X) [y @=A) f(2)de

ﬁ'i_)‘Ns K/+T'+)\7]N8

k(N —X) [A1 = F(2)]da

n+3\NS K474+ AnNg

@_)\(l—n)m(N—X)fAAS [1—F(m)]dxdt+A(l—n)n(N—X)fAA[l—F(x)]d:c

N (K + ANs) (k + 1+ AnNy) (k + ANg) (k + 7+ AnNy)
(e)

@ AA=n)r(N=X) [0 [1-F(2)]de )

S s dt <0,
(k + ANg) (k + 7+ AnNy)

(z)dx

© et + Adt (1)

D _cdt + At (1 — )

dt

where (a) is obtained by substituting §(A,x) m for x > A into (88), (b) is obtained

by substituting g, (x) = ”éf;]\),i)f (z) for x € [A,, A], (c) is obtained by using the integral by
part, (d) is obtained by replacing ¢ by (86), (e) is the result of rearrangement and (f) is because
A > A,. Tt follows that Vg (A) — Vi (A) < 0, which contradicts our starting assumption that

Vo (A) > Vj, (A). Hence, an owner of type A € (Ag, A] has no incentive to make such a deviation.

For an owner of type A € [0,A), he prefers searching for buyers to holding onto his asset.
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Suppose he deviates to stay outside the market during a short period [¢,t + dt) and will switch
back to his equilibrium strategy after ¢t + dt. Denote the investor’s expected payoff from such
deviation by XA/O (A). In this short period, he receives cash flow from the asset without paying the

search cost. Vp (A) is given by
Vo (A) = (1+ A)dt + kE [max {V, (&), Vs (&) }] dt + e (1 — wdt) Vi (A) .
We can rewrite V; (A) by
Vi(A) = (1+A—c)dt+kE [max{V; (A7), V, (A")}] dt + e " (1 — kdt) Vy (A)
Adt(1— 1) /: S (2, A) 1y () da.

Taking difference term by term.

~

A

Vo (A) — Vi (A) = edt — Adt (1 — ) / S (2, A py () d. (89)
A

The owner is tempted to make such a deviation if it is profitable, i.e., Vo (A) > Vi (A).

We now aim to present a contradiction by showing that the RHS of (89) is negative. Note

that fAKS (x, A) iy, (x) dz is decreasing in A as its first-order derivative is given by

o (A 298 (z,A)
o /A S (e Ay (@) de = —S(AA) uy(A) + /A 0T L) (o) d
A
0S (z,A)
= ————uy (x)dx < 0,
/A S5y (@)
because S (A, A) =0 and %S (z,A) <0 for z > A. This implies
A A
/ S (e, Ay (@) de > [ S (2,80 py (x) da (90)
A Ag

for A < Ag. Note that we have the following equation

A1 — A
c+( n)

VS(AS):Vh(AS)_H—FT Kk+r A

S (z, As) py () da.
Since Vs (Ag) = Vi, (As), the above equation implies
A
c=A(1=n) [ (8 (o) o1)
A
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which is actually another version of equation (86). It follows directly from (90) and (91) that

A
c<)\(117)/A S (z,A) py (x) de.

This means that the RHS of (89) is negative. However, the LHS of (89) is positive by assumption.

A contradiction! Hence, an owner of type A € [0, A;) has no incentive to make such a deviation.
Step X. We verify a non-owner’s optimal choice given in (3).

For a non-owner of type A € [0, Ay], he prefers staying outside the market with no asset in
hand to searching for partners in equilibrium. Suppose he deviates to search in the market during
a short period [t,t + dt) and then switches back to his equilibrium strategy afterwards. Denote
the investor’s expected payoff from such deviation by TA/N (A). In this short period, he pays the
search cost and meets a seller with type, say, © € [0, Ag], with probability A, (x)dt. The total

trade surplus is given by

(A, x) = max {V;, (2), Vi (@)} = Vi (@) + Vi (A) = Viv (A)..

~

VN (A) is given by

~

Uy (A) = —cdt + B [max {V, (A7), Vs (A)}] dt

As N
—I-)\dtn/ max {S (A, z) ,()} pg (2) dz 4+ e (1 — kdt) Vi, (A).
0
On the other hand, V,, (A) can be rewritten as
Vi (A) = kE [max {V,, (A) , V, (A")}] dt + e (1 — kdt) V;, (A) .

Taking difference term by term,

~ o~

As
Vn (A) =V (A) = —edt + /\dtn/o max {s (A, z) ,o} u, () dz. (92)

The non-owner is tempted to make such a deviation if it is profitable, i.e., Vy (A) > V,, (A). If
so, the trade surplus is bounded by

~

S(Az) < max{V,(z),V,(z)} —

_ {Vn<x>—vs<m>
Vi () — Vi (x)
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If A <z, the upper bound is non-positive and thus S (A,z) < 0 in this case. Hence, we at least
need A > x to have a positive trade surplus. In what follows, we assume A > z. S (A, z) is

therefore bounded by

S(A,z) < Vilz) = Vi(@) + Va(A) = Vo (A)

= [Va(A) = Vi (@)] = [Va (A) = Vy (2)]
A—x
/€+T+)\Nb(1—77)’

where the second line is by rearrangement and the third line is because V,, (A) = V,, (z) = V.

We can evaluate the RHS of (92) as follows

A—z
K+1r+AN,(1—n
AnX fOA (A—2z)f(x)dx
K+ ANpk+71+ ANy (1 —n)
AenX fOAF(a:)dm

a A
RHS of (92) (<) —cdt + )\dtn/ ),us (z) dz
0

(b)

= —cdt + dt

(©

S N hr AN, ()
@ AnX fOAb F(x)dx it AnX fOA F(z)dx Ut
(e AN [+ 7+ A (L= ) N ¥ (e ANG) [ 7 ANy (1= )]
@ )\FmeAAbF(x)dx it (2)0
(K+ ANp) [k + 7+ X (1 —n) Ny ’
where (a) is obtained by substituting S (A, z) < Wlﬁ(l—n) for A > z, (b) is obtained by

substituting u, (x) = Hfi(Nb (x) for x € [0,Ap], (c) is obtained by using the integral by part,

(d) is obtained by replacing ¢ by (85), (e) is the result of rearrangement and (f) is because
A < Ay. Tt follows that Vi (A) — V,, (A) < 0, which contradicts out starting assumption that
Vy (A) > V, (A). Hence, a non-owner of type A € [0, Ap] has no incentive to make such a

deviation.

For a non-owner of type A € [Ap, Ag], he prefers searching for sellers to staying outside the
market. Suppose he does not search during a short period [t,t + dt) and will switch back to his
equilibrium strategy after ¢t + dt. Denote the investor’s expected payoff from such deviation by

TA/N (A). In this short period, he receives no cash flow but he does not pay the search cost at the
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same time. Vy (A) is given by
Vv (A) = £E [max {V,, (A7), Vi (&) }] dt + e "% (1 — wdt) Vi, (A) .
We can rewrite V, (A) by

Vo (A) = —cdt+ kE [max {V; (A"),V; (A)}] dt + e (1 — kdt) Vi, (A)

A
+)\dt77/ S (A, z) pg (x) de.
0

Taking difference term by term.

. A
VN (A) =V, (A) = edt — /\dtn/O S (A, z) pg (x) de. (93)

The non-owner is tempted to make such a deviation if it is profitable, i.e., Viy (A) > V; (A).

Note that fOA S (A, x) g (x) dx is increasing in A as its first-order derivative is given by

o [A 298 (A, x)
— A = A A A —_
55 | S@an@ds = SO @)+ [ R @)
A
B 0S (A, x)
= /0 N (x)dz >0
because S (A, A) =0 and % > 0 for A > x. This implies
A Ay
/ S (A, z) p (x) de > S (Ap,z) pg (x) dz (94)
0 0
for A > Ay. Note that we have the following equation
c An A
Ay) =V — Ao, .
)=V - e S S () (@) de
Since V3 (Ap) = V;,, the above equation implies
Ay
c=An S(Abvx) M (ﬁ) dz, (95)

0

which is actually another version of equation (86). It follows directly from (94) and (95) that

A
c< )\77/ S (A, x) pg (x) de.
0
This means that the RHS of (93) is negative. However, the LHS of (93) is assumed to be positive.
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This presents a contradiction. Therefore, a non-owner of type A € [Ap, A;] has no incentivce to

make such a deviation.

The underlying parameters of the economy include A, X, N and F'(-) on [O,m.

Proposition X. Suppose the equilibrium described in Theorem 1 exists given the parameter
space, i.e., ¢ < ¢*. There exists A > 0 such that the equilibrium exists when A increases from A

to infinity.
Proof:

Step 1. We compare Ay and A,,. Recall that Ay is uniquely determined by (85). We have

shown that the RHS of this equation is strictly increasing in Ay, so

Ay

AV

Ay iff ¢ = RHS of (85)[5,—a,
AnX fOA“’ F(z)dx
[k +AB(Ay)] [k + 7+ A (1 —n) B(Ay)]
n kX fOA“’ F(z)dx

= 1o 5 = (N). (96)
- X KT K K K X
X (1= 3) + 5l [§ V7 152 (- )|
Note that ¢, (\) is strictly increasing in A, so it can be bounded by
A
v F
0=10c(0) <cp(N) <cp(o0) = Ali_{& cp(N) = % ; F((Axu)])dx

Step 2. We compare Ag and A,,. Recall that Ay is uniquely determined by (86). We have

shown that the RHS of this equation is strictly decreasing in Ag, so

Ag

AV

Ay iff ¢ = RHS of (86)[5,_a,
ANL=m) (N =X) [ [1-F ()] de
[k + AS (A)] [k + r + AnS (Ay)]

A
_ 19 KN = X) [ 11~ F (@) de oo

T =B iR s -5
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Note that cs (\) is strictly increasing in A, so it can be bounded by

dz.

R
OZCS(O)<CS(A)<CS(OO):,\11_,HC}OCS()‘):1777]/A 11_FF((Au)})

Recall that in equilibrium we should have Az > Ay, so only the following 3 cases are possible:
(i) As > Ay > Ay (when ¢ < ¢s (V) ,c < ¢ (N)), (i) As > Ap > Ay (when ¢ (N) < ¢ < ¢5(N))
and (iii) Ay > Ag > Ay (when ¢5 (A) < ¢ < ¢ (A\)). The case that Ay > A, > Ay (when

c¢>cs(A),c> ¢y (M) should NOT emerge in equilibrium.
Step 3. We compare ¢, (A) and ¢5 (A).
To economize the notation, we introduce x (\) as a decreasing function of A

) (7))

and thus rewrite ¢, (A) and ¢, (\) respectively by

K+T

= _ ™"
XN = xaon)

o () 1:(?’2)
(V) = fii?).
To compare ¢ (A) and ¢, (A), we notice
@) > e () ao0) = e 0) > (5120 - 2Dy,

and vice versa.
The comparative magnitude between ¢, (\) and ¢4 (A) is determined as follows.

(C-i) If ¢ (00) > 5 (o0) and © ( ) > Ci(oo) then ¢ (A) > ¢5 (N) for any A > 0.

n cs(o0) _ cp(e0)
1-n n

(C-ii) If ¢ (00) > ¢5 (00) and el0) o ci(f;), then c; () > cs (A) when A > x 7! <cb®0)_cs(oo))

and ¢, (A) < ¢s (\) otherwise.

(CHiil) If ¢ (00) < ¢ (00) and Cb(oo) < ci(oo) then ¢ (A) < ¢ () for any A > 0.

(C-iv) If ¢ (00) < ¢5 (00) and @ > cl(oo) then ¢ (A) < ¢s (A) when A >yt (W)
—n n
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and ¢, (A) > ¢5 (\) otherwise.
(C-v) If ¢ (00) = ¢5 (00) and np = %, ey (A) = ¢s (A) for any A > 0.
(C-vi) If ¢ (00) = ¢ (00) and n > 3, ¢ (A) < ¢ (A) for any A > 0.
(C-vii) If ¢ (00) = ¢ (00) and n < 3, ¢ (A) > ¢, (A) for any A > 0.

Step 4. We now prove the main results. According to Theorem 1, the equilibrium exists
when ¢ < ¢*, where ¢* is determined by dj (¢*) = ds (¢*). For a fixed ¢, we know dj (¢) = Ay and

ds (¢) = As. We have the following two cases.

Case L. dy (¢*) = ds (¢*) > Ay Here, dp (¢*) > A, is equivalent to

a (b) C
¢ @ RHS of (85)]5, g,y > RHS of (85)]5,_a, = e (V).

~

where (a) is by definition, (b) is because the RHS of (85) is strictly increasing A, and (c) is due

0 (96). Similarly, ds (¢*) > Ay, is equivalent to

a b C
¢ & RHS of (86)|5, g, (e @ RHS of (86)5 _x. L ea (M),

where (a) is by definition, (b) is because the RHS of (86) is strictly decreasing Ag and (c) is due

to (97). Hence, we have ¢, (A) < ¢* < ¢5 (\) in this case.

At least, we have cg (\) > ¢, (A). According to the last part of Step 3, this holds when (I-a)

cs(00 1— 1 cs(o0 1— — cp(00)—cs (00
Cbéoog >max{1,7"}andanyA>00r(I—b)n<5,1<ﬁ<7"and)\>x 1<w>

For any constant ¢ € (0,¢p (00)), let Ay (¢) be such that ¢ = ¢, (A (¢)). Since ¢, () is strictly
increasing in A, we know that ¢ 2 ¢, (\) when A < A\ (¢). The equilibrium exists when A increases

from Ay (c) to infinity in case of (I-a) because ¢ = ¢ (A (¢)) < ¢ (A) < ¢*, or when A increases

cs(o0) _ cp(0)
1—n n

from max {Xl (Cb(oo)cs(oo)> , Ab (c)} to infinity in case of (I-b) because of the same reason.

Case II. dp (¢*) = ds (¢*) < Ay. Here, dp (¢*) < A, is equivalent to
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Similarly, ds (¢*) < A, is equivalent to
C* = RHS Of (86)’Aszds(c*) > R,HS Of (86)|A5:Aw = CS (A)7
Hence, we have ¢s (A) < ¢* < ¢, (\) in this case.

At least, we have cg (A) < ¢ (A). According to the last part of Step 3, this holds when (II-a)

cs(o0) min{l, 1_777} or (II-b) n > %, 1;77" < @) 9 and A > X! <Cb(°°)cs(°°)>.

cp(00) cp(00) Ci(f;)_cb(;o)

For any constant ¢ € (0, ¢ (00)), let Ag (¢) be such that ¢ = ¢s (A5 (¢)). Since ¢4 () is strictly
increasing in A, we know that ¢ 2 ¢5 (\) when A < A, (¢). The equilibrium exists when A increases

from A (c) to infinity in case of (II-a) because ¢ = ¢ (A5 (¢)) < ¢s(N\) < ¢*, or when A increases

cs(o0) _ cp(o0)
1-n n

from max {X_l (Cb@o)_cg(mv , As (c)} to infinity in case of (II-b) because of the same reason.

Q.E.D.
9 Asymptotic Analysis for sufficiently large A

We perform asymptotic analysis when A is sufficiently large. Denote the limit of Ay, and A4 under
A — 00 by

p= )\lim Ap, AT = lim A,

A—00

Step 1. We first show AP® # 0. Let’s first suppose Ap® = 0. Rewriting (85) by

(1-nec S F (x) dae

XA B A+ (5 ) B(A) + 5

(98)

Now take A — oo on both sides. Since the LHS is a constant independent of A and the numerator
of the RHS tends to zero as we have assumed A, — 0, it follows that the denominator of the RHS

should at least converge to zero, i.e.,

K+

A[B (A + <"6+ 177) B (Ap) + (k4 7)

(1—=m)A

— 0.

This implies limy o B (Ap) = o ()\_1/ 2). However, we already have the explicit expression of
B (Ayp) in hand, as is given by (57). It is direct to check that limy_,s a,—0 B (Ap) = N — X. This

poses a contradiction, so Ap® # 0.
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Similarly, we can show A% # A. Suppose A® = A. Rewriting (86) as

A
ne _ fAs [1— F(x)]dx ‘ (99)

(1—77)/€(N—X) )\[S(As)]2+ (K_i_nT-s—r)S(As)_i_ﬁ(/;;\rr)

Now take A — oo on both sides. Since the LHS is a constant independent of A and the numerator
of the RHS tends to zero as we have assumed A; — A, it follows that the denominator of the

RHS should at least converge to zero, i.e.,

K+

AIS (A + </~; + > S (Ay) +

This implies limy o, S (A5) = 0 ()\71/ 2). However, we already have the explicit expression of
S (Ap) in hand, as is given by (54). It is direct to check that limy A xS (As) = X. This

poses a contradiction, so A% # A.

Step II. We determine the asymptotic expansion of N, and A;. Since Ap® # 0, the numerator
of (98) converges to fOAgo F (z)dx > 0, so its denominator should tend to a positive and finite

limit. It has to be the case that B (Ap) = O ()\*1/2) for sufficiently large A and (98) implies

AOO
B (Ap) = ]\\/4§ +o ()\_1/2> , where M), = \/(1/117);)0/0 ' F (z)dz.

Inserting this into (56) and keeping the constant terms, the terms of order O ()\_1/2> and O ()\_1)

while omitting the terms of higher orders, we obtain

2 R
S+ N 4 X+ NF(A)] = S (V= X)L - F(AF)] =0

Both the first and the last term are O ()\_1), so the second term has to be O ()\_1). This implies
that AP = A, = F~H (N5X) and A, — A, = 0 (A712). Setting Ay = Ay, + % + 0 (A7/?)

and inserting this into the above equation, we obtain

1
N (Aw)

X (1-%)
M, — My

my =

Step III. We determine the asymptotic expansion of Ny and A,. Since A% # A, the numer-

ator of (99) converges to [ AAOO [l — F (x)]dx > 0, so its denominator should tend to a positive and
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finite limit. It has to be the case that S (Ag) = O ()\_1/2> for sufficiently large A and (99) implies

R(L-n)(N-X) [
" /20[1 F (z)]dx.

Inserting this into (53) and keeping the constant terms, the terms of order O ()\_1/2) and O (A1)

S(Ap) =

A\j; 0 ()\*1/2> , where My =

while omitting the terms of higher orders, we obtain

2 K
A%+[NXNF(AS)]J\\/4§§(F(A°°)—

Both the first and the last term are O ()\_1), so the second term has to be O ()\_1). This implies

that A = A, and Ag— A, =0 ()\*1/2> Setting Ay = Ay + 22 40 (/\71/2> and inserting this

i

into the above equation, we obtain

ms —

To sum up, the asymptotic expansion of Ny, Ny, Ay and Ag are given by

N, = %—FO()\_UQ) withMb:\/ w1 X / F(x

\/X
B A
N, = ( 1/2) witth—\/“(l ”LEN X)/Aw[l—F(x)]dx,
Ay = ?}Ejto(xl/) with my = Nf(lAw) “X(Mb_ﬁ)—Mb],
Ay = Aw—k%—ko()fl )withms—Nf(lAw) M, —HX(]L_@]

As a final step, we check whether A; > A; in the asymptotic case. This holds if mg > my,
which can be shown as equivalent to

c < ¢,

E:\/ n F \/ f1-F ))dx. (100)
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Step IV. We show

c¢= lim c". (101)

A—00

Recall that ¢* is constructed such that dj (¢*) = ds (¢*), where Ay = d;, (¢) and Ag = ds (¢) are
the solution of (86) and (85) respectively. Since both A, and A4 converge to A, as A — oo, we have
limy 00 dp (¢*) = limy 0 ds (¢*) = Ay. We already know Ng = O ()\_1/2> and Ny = O <)\_1/2>

and expand dp, (¢*) in a similar fashion, i.e.,

dp (c*) :Aw+m7\/§+o<1/\5\>.

Set Ag =ds (c*) in (53) and Ay = dp (¢*) in (56). Expanding both sides of the two equations and
matching the coeflicients of the terms of %, we obtain
9 X
(Ms)” = Nf(Ay)maM, = wX|[1-—],
9 X
(Mp)" + Nf(Ap)maM, = kX (1-7 ).

Using these two equations to eliminate ma, we have

(My)? = kX (1-=%) M,
(M) — kX (1-%) My

which can be further simplified to

X
MM, =X (1-2).

Note that now we have set search cost ¢ at the critical level ¢* and have let A\ — 00, so the above
equation holds only when ¢ = limy_, o, ¢*. Substituting out the expression of M; and M, (don’t

forget to replace ¢ by limy_,o ¢* therein), we can show (101).

For further simplification, let

Ay 1- F(Aw)
. [® F()
aq = /0 [ (Aw)dm
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The asymptotic parameters can be rewritten as

_ X\ [ n &
M, = \//@X(l—N> e (102)
X 1—ncs
M, = (Jex(1-2),/2=1%, 1
\/H ( N) noc (103)
ﬁX(l_%) 1-nec n G
my =V c  [ona) (104)
Nf(Aw) n G l—nc
v/ kX 1-—2 o
my = U-w) (fi-ne L) (105)
Nf(Ay) n c 1—ncs

and

9.1 Proof of Proposition 1

According to Theorem 1 in the paper, we can write R (A) more explicitly as

R(A) = RN (A, Ay)

)
m if A€ [Ag A

It is obvious to see that R (A) is constant on [0, Ay) U (A, A].

We first show R/ (A) = ddA (“SEAD > 0 for A € (Ap, As). Recall that pg (A) and uy (A) are

mutually determined by (58) and (59), i.e
rps (B) = RXF(A) = Aps (A) [Ny — Fy (A)] + Ay, (A) Fs (A)

1o (A) + (A = NJ().

We have
kX + ANF; (A)
A) = A
s (8) AN, = F, (B) + AF &y )
/i(N—X)-i-)\NbN )\NFb(A)
A) = A
y (8) K+ ANy — AFy (A) + AF, (A) F (&),
and therefore
fs (A) kX + ANF, (A)

1, (D)~ k(N — X)+ AN,N — ANF, (A)’
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Since both M, (A) and M (A) are strictly increasing in A, & - Eig is strictly increasing in A.

We next show lima_,a,— R (A) < lima_,a,+ R (A), where

kX
li A) =
A R(A) k(N — X) + ANyN’
lim R(A) _ Mg (Ab) _ kX + ANF (Ab) ‘
A—Ap+ Uy (Ab) K (N - X) + ANy N

Since Fs (Ap) > 0, we have the desired result.

We now show lima_a,— R(A) < lima_a,+ R(A), where

_ g (Ag) kX + AN N,
A (A 1 (A k(N —X)+ AN [N, — B, (Ay)]
KX + AN,N
lim R(A) = = 27l
Jm B4 (N —X)

Since Fy (As) < Ny, we have the desired result. Q.E.D.

10 Proof of Proposition 2

The negotiated price between a buyer of type = € (Ab, m and a seller of type y € [0, Ay), provided

that = > y, is given by

n[Vs(y) = Val + (=) [Vs (2) = Vp ()] for 0 <y <Ay <z < A
n Vs (y) = Vo ()] + (1 =) [Vs () — Vb(fﬂ)] for Ay <y <z <A
P(x,y) = 106
=Y V)~ Vil + (L =) Va (@)~ Vo @)] for0<y < ApA, <a<h ~ (109
Ve (@) =Vo W)+ 1 =n) [Va(z) = Vi (2)] for Ay <y <A, <z <A
It is direct to show that ( %) > 0 and 8P(§’y) > ( in each region. More precisely,
(I—n)é(x) for0 <y < Ap<a<A;
OP (z,y) (I=n)&(x) for Ap <y <z<As
83’; - WfOI‘O<y<Ab7A <LL’<A
e for Ay <y <A, <z <A
and

Ty, r0<y <Ay <z <A,
OP (z,y) | né(y) for Ap <y <z <A
oy mf0r0<y<Ab,A< <A’
7E () for Ay <y < Ay < <A

where £ (+) is given in (77). Q.E.D.
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11 Proof of Proposition 3

We derive the trading volumes between investors in each case.

TV,.q is the total number of units of the asset being traded between true sellers with types

y € [0, Ap] and intermediation buyers with types x € [Ay, Ag]. The density of sellers is given by

ty () = d;; s (y) and the density of intermediation buyers is given by p, (z) = % (z). Since any

such pair of buyer and seller would like to trade in a bilateral meeting, we have

e = e ([ ) ([ )

= AFs (D) Fy (As), (107)

where we use Fj, (Ap) = 0 in the last step since the type of all buyers are no less than A.

TV 44 is the total number of units of the asset being traded between intermediation sellers with
types y € [Ap, As] and intermediation buyers with types x € [Ap, Ag]. Note that trade occurs if

and only if z > y.
As As
TVaq = A / / pp () o5 () 1(zsy)dady,
=0y Jor=Ay

where 1(,~,) is an indicator function which takes one if z > y and takes zero otherwise. For

further simplification, we reduce the multiple integral to an iterated integral as follows
As x As
i = [ ) ([ mar)de=x [T~ Rl e, o)
Ay Ay Ay
To compute this integral, we have to simplify the integrand. We can rewrite (63) by

RX[F (y) = F (Bp)] + AFy (y) Fs (Ap)

Fs(y) — Fs (Ap) = K+ ANy — Fy ()]

(109)

Using this to substitute out term Fj (y) — Fs (Ap) on the LHS of (65) and rearranging, we can
express [F (y) — F (Ap)] as a function of F; (y)

5Ny — Fy ()] + Fs (A)
MN=X) LN, — Fy ()] N

F(y) — F(Ay) = Fy (y)

Inserting this back into (109) and rearranging, we are able to rewrite the integrand in (108) by

S+ Fa (A)

Fy (y) = Fs (D) = M Ny — By (y)

Fy (y).
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Hence,

kX B Fy(y)dFy (y)
Vi = A [ +F, (Ab)} /
AN A, (N X) + Ny — Fy (y)
kX Fy(As ) p
= | T AF (Ab)} / — dz,
|: N 0 75(]XNX) + Np — 2

where the lower bound of the integral is Fj, (Ap) = 0.

Note that

t
/ G - [—qIn(q—2) — 2]|’=f = qlni —t (assuming q > t).
0o 4—% q—1

Let g = ”(]X;VX) + Ny and t = Fj, (Ag) (where ¢ > N > t holds), so

Fp(As) _ sIN=X) | N
/ z dz:(M—l-Nb)lHH w4V ~Fy(A,).
0

AN LNy — 2 AN WX Ny — Fy (Ay)
Hence,
KX k(N — X) AKX L N,
TVdd = [ + /\F Ab :| < + Nb> In — Fb AS y 110
N (&) AN M—I—Nb Fy (Ay) () (110)

For further simplification, we insert the following expressions

kX F (A
Fo(Bo) = /@—I-)ENZ)7

N-X
F(Aw) - T,

into the above expression and obtain

KF(A KF(Aw) N,
<Nb +5 (AAw)> e v 10
A+ Ny = By (Ag)

kX ARXF (Ap)
TVy = | 4 2022 220
Va = | T 705N, }

(111)

TV, is the total number of units of the asset being traded between true sellers with types
y € [0, Ap] and true buyers with types = € [AS,Z]. Since any such pair of buyer and seller would

like to trade in a bilateral meeting, we have

e = AL s ([ 5 ) (o)

= AFs (Ap) [Ny — Fy (A5)]. (112)
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TV 4. is the total number of units of the asset being traded between intermediation sellers with
types y € [Ap, Ag] and true buyers with types x € [AS,Z]. Since any such pair of buyer and

seller would like to trade in a bilateral meeting, we have

= ([ o) (15 0]

= Fs (Bp)] [No = Fy (As)] (113)

where we use Fs (Ag) = Ny in the last step because the type of all sellers are no more than Ag.

12 Proof of Proposition 4

Recall that if ¢ < ¢*, we have Ay = d} (¢) and A = ds (¢), where dj, (¢) is implicitly defined by

equation (85) and d; (c) is implicitly defined by equation (86). Since dy, (¢) is increasing, we know

dA,
Since ds (c) is decreasing, we know
dA
*=d .
T < (c) <0

In equilibrium, N, = B (Ay) is given by (57) and Ny = S (A;) is given by (54), where B (+) is

decreasing while S (-) is increasing. We thus have

% = B'(dy () dj () <0,
dﬁs = §'(ds(e)d, (c) <0.

The measure of true buyers, denoted by NbT , is given by

A (N —
N = [ @)aa - Imf(A)dAzm[l—F(As)]-

The measure of intermediation buyers, namely, those non-owners whose types are in the interval

[Ap, Ag], is given by



NbT is increasing in ¢ because

AN} s (N — X) dN, k(N —X) dAg
& :_(n+/\N)2[ B T T VAR A A T

’ 0 ) 0

< <

NbI is decreasing in ¢ because
AN} dN, dN]
de  _dc dc
~—~— N~
<0 >0

< 0.

The measure of true sellers, denoted by N7, is given by

Ay Ay
T B kX _ kX
N R T et )

The measure of intermediation sellers, namely, those owners whose types are in the interval

[Ap, Ag], is given by

X
Nl =N, -NT =N, - "2 p(A).
s s s s K+ AN, ( b)
NI is increasing in ¢ since
dNT kX dN, kX dA
o= SAF (Ay) - db+ )\Nf(Ab)-d—b>0
c (K 4+ ANy) c, K+ AN Lc
<0 >0
N! is decreasing in ¢ since
dN! _dNs dNT “0.
de de de
N~ =
<0 >0
13 Proof of Proposition 5
Denote the total trading volume by true traders by
TVeq 4+ TV g4,

TV =TV, + 5

According to Proposition 4, we know
TV = AFs(Ap) Fp(As),
TVee = AFs(Qp) [Ny — Fp (Ay)],

TVg = )\[Ns — Fy (Ab)] [Nb -k (AS)]7
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SO

AN, AN,
TVy = TbF (D) + =5

[Ny — Fy (As)] .- (114)

For further simplification, we need to substitute Fs (Ap) and Fj (Ag) out. To pin down the value
of Fs (Ayp), we use (64):

where we can figure F' (A;) out from (55)

(N—X — Nb) (li—i—)\Nb)

F(&) = k(N — X)+ ANN,

Combining these together, we obtain

KX (N =X — N,)

Fy (D) = .
(&) k(N —X)+ ANN,

(115)

To pin down the value of Fj (As), we notice that py (A) = %f(A) for A € [Ag, Al

Integrating from Ay to A, we have

k(N —X)

K+ AN, [I_F(As)]'

A
No=Fo(a) = [ (a)aa -

Furthermore, [1 — F' (As)] is determined by (52):

(X — Ng) (k+ )\NS)'

1-F(As) =
(As) kX + AN N,

Combining these together, we obtain

k(N = X) (X - Ny)

Fy(As) =Ny — 11
b(Be) = Ny KX + ANN, (116)
Substituting (115) and (116) into (114) and rearranging, we obtain
iy = MX Ny (N =X = Np) A (N = X) Na (X = o) 17)

2 k(N —X)+ANN, 2 kX + ANN,

Denote the total trading volume by intermediaries by

TV,.q + TV,

TV =TVgq + 5

155



The total trading volume is the sum of all trading volumes, denoted by

TVe= >  TV;=TVs+TV,.
j€{ecc,cd,de,dd}

According to Proposition 4, we can calculate

kX
TVy = ANs [Ny — F, (Ag)] — WFI’ (As)

. K(N—X) N,
+ ["3‘\)[( + \Fy (Ab)] (KU(]\)]\]VAX) + Nb> In ES AN + Np
N +Nb _Fb (As)

X wX X K k(1= %)+ AN, kX + ANN
= 1— =) (X —Ng)— —Ny+6X (1 -2 ) (1+ )1 N a1
“( N>( A < N)( +5%) n[ X (=X mancp

where we use the expression of TV 44 in (110) to calculate the first line and then substitute Fy (Ap)

given by (115) and Fj, (As) given by (116) out to obtain the second line.

Since
_ TV, TV, 1
~ TVy TVp
we have
dL — d (TV,\ 9 [TV, dN, n 0 [TV,\ dN,
de  de\TVy) ONy \TVy/) dc = ON, \TVy ) dc’
where
P <TVU) TV e — (TV,) GiF
ONy \TVr (TVr)?
TV, 9TV, [TVr G (119)
(TV7)® ONy | TV, Sl
and
9 (TVU) TV, 9TV, [TVr 3;5??5] (120)
ONs \TVr (TV7)® ONs | TV, e
We already know % < 0 and ddj\és < 0, so now we show
o (TV, >0 o [TV, >0
ONy \ TV "ONs \ TV '
Step I. We first calculate 8(;%)" and 855&’. Using (118), we find
TV, kX N—-—X-—N,
= = - > 0, (121)
ONy, N N+5(1-%)
TV, X\ X — N
= — = || —F7>0. 122
oN, ”( N>N8+§J)§> (122)
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Turning back to (119) and (120), we know

9 (’]FVU> o TVr o

0TV, ’
dN, \ TV TV,
o [TV, TV:  Bn-
ON, \TVz) * TV, o’

Step II. Recall that TV is given by (117). The total trading volume is strictly less than the

total measure of meetings (AN, Ng) because not every meeting results in a trade, i.e.,

TV, < ANyN;.

Hence,
TVy  TVr _ kX (N — X — Ny) k(N —-X) (X —Ny)
TV, = ANgNy  2Nsk (N — X) + AN,N 2N, KX +AN;N'

Step III. Combining

OTVy  MX k(N —X) (N —X —2Ny) — A(Np)° N
oNy, 2 [k (N — X) + AN, N]? ’
OTVy  Ae(N — X) kX (X —25) — A\(Ns)* N
ON, 2 (kX + AN,N)?2 7

with 8;1‘]37; and 831;3’5" in (121) and (122), we know

ATV

oNe LE(N = X)(N—X —2Ny) — A (Np)° N
az 2 (N—X—N)[s(N—X)+AN,N] ’
BNE 1EX (X —2N,) - A(N)?N
8{353’; 2 (KX £ AN,N) (X — Ny)

It is direct to show that

OTV OTVr
Ve - - TVr N, >0
0TV, 0TV, ’
TV, 7% ~ AN,N, TV
because
TV
TVr 3N,
TV,
AN,N, T

_ X (N-X-N)  A(N-X) (X-N) 16(N—=X)(N—=X—2N,) = A(N,)®N

2N, k(N — X) + ANyN 2N, kX +AN,N 2 (N—X—Ny)[k(N —X)+ ANyN]

K K+AN)N
%(N—X—Nb)—ﬂ(N—X)—i-Nb [Fc—f—i((Nfo)Nbb)] +H(N_X) (X — N,)

k(N — X) + AN,N 2N, KX + AN,N’

N | =
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where the last line is obtained by combining the first and the last term in the second line. The

numerator of the first term is strictly positive as it can be rearranged as

X X (k+ AN) N,
N-X) —kNy— — k(N - X)+ N, A
K ( )Ns KbNS K ( )+ bH+N—X—Nb
X =N, (k4 AN) (N)?
= N — X — N, 0.
a DN TN x-N,
Similarly, we can show
otV TV
TVr B - TVr BN -0
TV, 0TV, ’
TV, N AN Ny N
because
TV: Gy
T oIV,
AN Ny O
KX (N-X-N,) K(N-X) (X-N,) 16X (X-2N,)-A(N)’N
~ 2Nyk(N — X) + ANyN 2N, kX +ANSN 2 (kX +ANGN) (X — Ny)
N-—X K+AN) N
B wX (ﬁ]__;X'_,Ah) }:H()(-—<A@) g — kX + |k+ Lthjgzg— N,
T 2N,k (N = X)+ AN,N ' 2 kX + AN,N ’

where the last line is obtained by combining the first and the last term in the second line. The

numerator of the second term is strictly positive as it can be rearranged as

N-—X K+ AN) (Ng)?
k(X — N) N, —/i(X—NS)_|_( X_)]\(fs )
N—X—-Ny (k4 AN)(N,)?
= X — N, .
K ( ) N, + XN, >0
So far we have shown
OTVr
T T
Vr _ 0N, > O@i Vo >0,
TV, e ON, \ TV
b
TV, 2EVr o [TV,
T o 5 0o
TV, 81(1‘9% Oc \ TV
It follows that 4 1YL < 0. Q.E.D.

dc TV

14 Proof of Proposition 6

We set ¢ = 0. We need to pin down A, and A in this case.
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We first show Ay = 0. The LHS of (85) is zero, so is its RHS. Observe that the denominator
of the RHS is always strictly positive since 0 < B(Ap) < N — X for any A, € [O,Z], so the

numerator of the RHS must be zero, which leads to A, = 0.
Similarly, we can show that Ag = A by taking ¢ = 0 in (86).

With these in hand, we are able to determine the total measure of sellers and buyers in this

case

N, = B(0)=N-X,

N, = S(A)=X.
The 4 types of trading volumes in this limit are given by
lin% TV, = lin% TV = lin% TVg4. =0,
. X K AN
lmTVyy = #X <1 - N) [<1+ ) <1+ ﬁ) - 1} .
Therefore, L — oo when ¢ — 0.

To have a deep understanding, we conduct asymptotic analysis when c is close to zero. With

no loss of generality, we set

Ay = A—6§5(c)+0(0s(c)) with 111%55 (c) =0,

Ay = & (c)+0(dy(c)) with lin%éb (c)=0.

Since Ny = B (Ap), we have

No = BO+ dljz(AAb) -85 () + (8 (c))
b 1Ay=0
N-X)(N+£&
- Nox-t N)_(X—:—/\;)fm)db(c) o8 (c).
We also know
Ay 2
[P = LORO o5 0).
0
because
po St F@)de L F(A) R f(A) G ()
c—0 (Ab)Q T 50 2Ab% T 50 2% =9
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Substituting these into (85),

X L0

C =

A(1—7) (5+N - X) [l\("@lit”erN—X}

so we find

5b(c)=\/m_")(”+N—X) [WHV—X] c.

knX f(0) \X

Similarly, from Ng = S (Ag) we know

Al —=n)

N, = S(A)- di(:s) NELACERICAC)
- - XIS 406, 0)
We also know
/ S F@lde=? (A);? 9 4 o@ (),
because S
LS N-F@lde 14 FA)]%  f(A)%: f(B)
0 (B-a) 0 2(A- A G 0 2 2

Substituting these into (86),

(1—n)r (N - x) [B)EE

nA (5 +X) (52 + X)

CcC =

so we find

ds(c) =

J 207 (5 + X) (55 + X)

(1—17)/<c(N—X)f(Z)C'

To conclude, when c is close to zero, we have

A=Ay = 0(Vo),
Ay = 0(Vo),
N-X-N, = 0(Ve),
X-N, = 0(Ve).
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15 Proof of Proposition 7

When A is sufficiently large, we have the following asymptotic expansion of the length of the

intermediation chain
TV c c 3
L:I:lnc%—ﬁ/\[(l—ki)lnc—kf—l}, (123)
c c c c
where A is a positive constant and is given by

_ ! 1 U B A 1—F(a:) i
A_2,/¢(¢—1)X\/(1—77)6/A d "2 \/ \/ A F(Aw)d

and ¢ = N/X > 1.

Now we show that the expression in the bracket is negative for ¢ € (0,¢). Let

g@)=0+2z)lnx —3x+1, for x € [0,1).

Then,
L= ng—@Ag(g>.
ERVAN ¢
First notice some values at boundary: g (0) = —o0, g (1) = —2. Next, its first and second-order

derivative are given by

1
g = —+lnz-2
x
1 1 11—z
"
J"(z) = _?4-;:— = <0, for x € 0,1).

Now we show ¢’ (0) = +oo. For this, first notice the following limit:

n . .
limzlnx = hm —— = lim %~ = lim (—z) = 0,
z—0 —0 P z—0 —23 z—0

where we have used I’'Hospital rule. We thus have

1421 |
g (0) = lim —5% 5 i S 2 — 4o

z—0 xT z—0 X

From ¢” (z) < 0, g’ (0) = +00 and ¢’ (1) = —1, we know there exists a unique 21 € (0, 3) such

that ¢’ (z) 2 0 iff 2 < z1. (We know 21 < 1 because ¢/ (z1) =0 =Inz; =2 — xil <0=z<1)
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This implies that ¢ (x) is increasing in  when 0 < z < x; and decreasing in x when z; < z < 1.

g (z) attains its global maximum at x = z1. g (z) < g (1) < 0 because

1
g(x1)) = (I+z)lnz —3z1+1=(14z1) <2—> —3z1+1

r1
1
2 — (.Tl —|—> < 0.
r1

So far, we know g (%) < 0, so

% - 2)\\/\%/\9 (g) <0,

c
that is, the length of the financial intermediation chain is decreasing in A when A is sufficiently

large.
16 Proof of Proposition 8 and 9

When ) is sufficiently large, the distance between Ay and Ay can be approximated by

Mg — My 1
Ay Ay= T ()
N U WV

Here, ms — my is given by

M= e \/(1_77)0/0 Flaydo /= o 1>/Aw[1 F(2))de|,

where ¢ = N/X > 1 and ¢ is given by (100). Note that ¢} is independent of X or N when ¢

is fixed. Since w < 0, we know

8(As - Ab)
—aox 0

Since (ms — my,) is directly proportional to \/k, we have

0 (As — Ayp)

0.
Ok -

When A\ is sufficiently large, the asymptotic expansion of L is given by (123). When ¢ = N/ X

is fixed, we find

ox ~ ~I\Gax ©

~

oL  /k <c>8A 0.
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because g (%) < 0 and g—)’} < 0.

Since L is directly proportional to \/k, we have

oL

— > 0.
6/@>

17 Proof of Proposition 10

According to Proposition 2, the negotiated price, P (z,y), is strictly increasing in the type of

buyer (z) and seller (y). The maximum and minimum prices among all prices are given by
Puax = P (B,A0) =n[Vi(Ag) = Vi (A)] + (1 =) [Vi (B) =V (B)],
Poin = P (85, A) =n[Vs(0) = Va] + (1 =) [V (Ap) = Vi (Ap)] .-

Hence,

A _
A . (1—-n) (A —A)

D = Pyax — Puin = d .
I€+T+)\(1777)Nb+ Ay §(2)dz+ K+ 1+ AnNg

(124)

When A is sufficiently large, we study the asymptotic expansion of price dispersion. Since
Ny, = O ()\_1/2) and Ny = O ()\_1/2>, we know that the first and the last term in (124) are
0 ()\71/2) The following lemma claims that the second term in (124) is o ()\*1/2) Given this,

the asymptotic expansion of the price dispersion is given by

1 Ay 1-n)(A-Ay, 1
= |1 L=l ) +0<>. (125)
\/X (1 - 7’) My "7Ms \/X
Since the coefficient of term A\71/2 is positive, we have
oD
— < 0.
ax =
Lemma X. When A is sufficiently large, we have
As
E(z)dz=0(\"1).
Ay
Proof of Lemma X: The integral can be bounded by
As
Ag — Ay) - i < dz < (As — Ayp) - . 126
(As — Ap) min, € (2) < N §(2)dz < (As — Ay) e (€ (2) (126)
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Let us first check the value of £ (z) at z = Ay and As:

1
§(Ab) = P )
k+r+A(1 —77)N6+>\7]r§§va(Ab)
1
£(As) = r(N—X

kA1 =) S 1 - F(A)] + AN,

When A is sufficiently large, the asymptotic expansion of £ (Ap) and & (A;) are given by

1 1 1
§(A) = —= 5 tol—=): (127)
’ \/X(l _77) Mb“‘nKX(]\l/[;ﬁ) <\/X>
1 1 1

To evaluate the maximum and minimum of £ (2) on [Ay, Ag], we need firstly know the derivative

of £ (z). From

5(12) — b AL =) [Ny — By (2)] + A F (2),
we find
1 !/
—A;((zz)) = — (=) (2) + s (2)
_ Nf(z) o1 N—-NF(z)-X-% (129)
2 \/[N—NF(Z)—X—§]2+4§(N—X)[1—F(z)]
Case 1. When n = %, we immediately know
sgn [ (2)] = sgn {N— NF (z) — X — ;} .
If we define Ag by
X K
FAo)=1-5~ (130)

then
> 0, when z < Ay

sgn [ (2)] = sgn (Do — 2) , ie., £ (2){ =0, when z = Ag
< 0, when z > Ay

Note that Ag does not necessarily lie in the interval [Ap, Ag]. All of the following three cases

are possible: Ag < Ay, Ap < Ag < A or Ag > Ag, even for A sufficiently large. To see this, the
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asymptotic expansion of Ay is given by

K 1
Bo=Bu SN O (A) |

Since Ay — A, = O ()\_1/2> and Ag — A, =0 ()\_1/2), Ag is closer to A, than Ay and Ag.

If Ag < Ay, then € (2) < 0 on [A, A,] and thus max.c(a, a. € (2) = € (Ay) = O ()\_1/2) and
min.cja, a, € (2) = € (&) = 0 (A12).

If Ag > Ay, then &' (2) > 0 on [Ap, A, and thus max,cia, a, € (2) = £ (As) = O </\*1/2) and
min.c(a, a,)€ (2) = € (&) = 0 (A712).

If Ay < Ag < A, then &' (2) 2 0 whenever z S Ag. This implies that max,cia, A, € (2) =

§(Aop) and min,ga, a6 (2) = min{{(Ay),§(As)} = O ()\*1/2). We need to determine the

magnitude of £ (Ag), which is given by

1
B S R T N B (Bl + ME (Bg) 3
For further simplification, we notice that
No-Fi() = Z\/[Fmo) PP (1- 3 - P+ T PG - PG - 5
Fi(3) = Z\/[F (@0) = PP+ (123 ) 1= PG - 5 P (A0 = Fo] - 55

Therefore,

AN, — Fy (Ag)] = \/MX <1—])§) + K2 (1— ﬁ)

AF, (Ag) = \/MX (1— ﬁ) + K2 <1 - ﬁ) — k.

Plugging these back into (131) and rearranging, we obtain

1
(L= rtr 4 AX (1) +s2 (1)
- o\,

£(Do) =

So far, we have shown that max,cia, a6 (2) = O ()\_1/2) when n = % Turning back to
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(126), since Ag —Ap = O ()\_1/2), we know that both of the upper and lower bound in (126) are
o (7).

Case 2. Now we discuss the case of n # %

Let’s study the following equation of z:

N-NF(z)—X %
VIN - NF(2) - X — 5] +45 (N - X)[1 - F (2)]

m—1= (132)

Denote its solution on [O,Z] by A, (if it exists). If n > %, we should have A, < Ap. If n < %, we

should have A, > Ag. °

®Consider the following quadratic equation:

lg(z):z2+A9z+39:0,

. = S (B YT (B )

This quadratic equation has two real roots, denoted by z1 and z2 respectively, such that 0 < z1 < F (Ap) < 22 < 1.
For A is sufficiently large, we have

where

X -

Ay = —2(1—N)+O()\ Y <o,
X\* _

By = (1_N> +o(A ) >o.

The associated discriminant is strictly positive:

2m—1)7° k X\ [(@2n-1)2 & X X K
A274B:(7— l-=)|—F——[(1-—= 4| =+ — 0

(o) — 4B n(l—n)/\N< N)L(l—n)/\N v) T TN )70

so this quadratic must have two real roots. According to Vieta’s theorem, the product of these two real roots is

equal to By.
The two roots are given by

21

—Ag — \/ (A9)2 — 4By —Ag + \/ (A9)2 — 4By
= L 22 = .
2 2

Due to Ag < 0 < By, we know 0 < 1/(Ag)?> — 4By < —Ay. The two roots can be ranked as zz > z1 > 0.
Next, we find z2 < 1 because

22 <1e1/(Ag)> —4By <2+ Ag = 14 Ag + By > 0,
which already holds because

X k\°
1+A9+B9:(N+W> > 0.
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The solution to equation (132) is unique and is given by

A F~ 1 (z),ifn >
T F_I(ZQ)aifn<

N[O

When A is sufficiently large,

N R R ATH2) it > 4
" Ay +Tx+o0 A~1/2 ifp< i 7

where

1 X\ (27 —1)>
My = ———4 /X |1—— ] ——>0.
Nf(Aw)\/ ( N> n(l—mn)
Note that £ (A,) = 0, so A, is the stationary point of function £ (-) on [O,N. However, A,

does not necessarily lie in the interval [Ap, Ag]. We do not need to explore in detail which point

is the exact maxima and minima of £ (-) on [Ay, A4]. According to Fermat’s theorem, we know

min  £(z) € {£(As),&(Ap),E(AL},

Ze[Avas}

max £(z) € {&(As),6(Ay),E(AN}.

ZG[Ab,AS}
We already know that & (Ag) = O ()\_1/2> and £ (Ap) =0 </\_1/2>. Besides, it is easy to obtain

1 1
= —— 71/2 1 — —
€ (Ay) +0()\ ),e1thern>20rn<2.

This implies

i =0 (A2 =0 (A712).
i €@ =0 (V). max () =0 (A1)

Turning back to (126), since As— Ay = O (A71/2>, we know that both of the upper and lower
bound in (126) are O ()\_1). This completes the proof.

Besides, z1 and z2 are located around F' (Ag) because:

_ (2n—1)% & X X K
le(z)|Z:F(A0)7in(1_n))\7N 1*N N‘FW < 0.

Taken together, we know 0 < z1 < F (Ag) < 22 < 1.
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18 Proof of Proposition 11

When A is sufficiently large, the price dispersion can be expanded as the following (see (125))

_ Ve Ay (A - Au) (L
ERaRe=y; 'wF<x)dx+\/m<NX> ()

=) fAZw [1 = F(z)]dx

In this case, we have

D
% > 0 when A\ is sufficiently large.
c

We consider another limit case when c is close to zero. The asymptotic behavior in this case
has been studied in detail in the proof of Proposition 6. Since A — A = O (y/¢) and Ay = O (/¢),

the first and the last term in (124) are both O (y/c). We thus have

As
D = £(z)dz+ O (Ve).
Ay
We argue in the proof of Proposition 12 (see (136)) that
d [ [
— d
dc< N €(2) z> <0,

which holds for any ¢ < ¢*. We therefore have

oD
—— < 0 when c is close to zero.

Oc

19 Proof of Proposition 12

According to Proposition 2, the negotiated price, P (z,y), is strictly increasing in the type of
buyer (z) and seller (y). The maximum and minimum prices among the transactions between

intermediaries are given by

Pl = P(A,A) =V, (A) = (A),
Pl = P (A Ap) =V, (Ay) = Vi (Ay).

Hence,

As
Prcrllax_Pgiin:/ §<Z)d2,
Ay
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where & (+) is given by (77).

The price dispersion of all transaction in the market, (Ppax — Pmin), 1S already given by (124).

The price dispersion ratio is thus given by

1

DR = D (133)
1 + N+7'+>\(177])Nb k+r+AnNs
As
Ay £(z)dz
A ONy

Part I. We aim to determine the sign of ag—cR. Firstly, recall that we show =52 >0, %% <0

in Proposition 5, so term

(1—m) (ZfAs)
K+r+AnNNg

#Albfn)% is strictly increasing in c. Similarly, we know that term

is strictly increasing in ¢ because % < 0 and aé\f < 0.

Next, we need to determine the sign of % 1) AAb * & (z) dz, namely,

d [ [P0 (2) A, O
ac Ja, f(z)dz—/Ab sz_{'g(As)W_g(Ab)W' (134)

We show %(:) = 0 for any z € [Ap, Ag]. By definition, we know

1
£(2)

=k+r+A(1—n)[Ny— F,(2)] + M\nFs(2), (135)

where Fy (z) and Fy (z) are explicitly given by

- 12
Ny, —Fy(2) = ;\/N—NF(Z)— —; +4;(N—X)[1—F(z)]
17 K
+§_N_NF(Z)— —X_,
- 12
F(z) = ;\/N—NF(Z)— -2 +47"(N—X)[1—F(z)]
17 K] K
S |[V-NFE-x -] - %
Inserting these back into (135) and rearranging,
1 K A K12 4k
O 2+7‘+2\/[N—X—NF(Z)—)\ +7(N—X)[1—F(z)]

+%(1—2n)[N—X—NF(z)].

¢ does not show up on the RHS, so ¢ does not impact & (-) (but ¢ does influence the domain of
£())-
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Turning back to (134), we know

o [4 A N,
— dz =& (As —&(Ay) — <0, 136
5o, E()z =880 T —an) G < (136)
because £ (A;) > 0,& (Ap) > 0 and % <0< aaAc”.
All in all, we have shown that <K v +Z(A1ﬂn) N, T (1;?2&%\;1@ S)> is strictly increasing in ¢ and

[ AAb ° ¢ (z)dz is strictly decreasing in c. Therefore, the denominator of DR in (133) is strictly

increasing in ¢, so
ODR

0.
Jc <

Part II. We aim to determine the sign of aaD—/\R. In the proof of Proposition 3, we prove

fAA: £(z)dz = O (A7') (in Lemma X). We are thus able to determine the magnitude of price

dispersions:

Puax = Pain = O (3712),

PItlilaX_P;Iilin = O()\_l) :

Therefore,

O (A1
pr=207)_ _, (A7),

o) ()\—1/2)

or equivalently, limy_, (ﬁDR) is a positive constant. This implies that 88)%1% < 0.

Part III. We aim to determine the sign of %)TR for A sufficiently large. The asymptotic

expansion of (Ppax — Pmin) 1s given by

. _ 1 "7Aw (1 — 77) (Z - Aw) —1/2
Pmax_Pmln — 7)\ (1—77)Mb+ 'I]MS +0()\ )
c N 1-n ¢
- LA“’ The+ (A -Ay) /5% s
= 7 = +o(A . (137)
KX (1- %)
It is obvious to see

9 (Pmax = Prin) _ (138)
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Now we determine 9 (P2, — PZ.) /Ok, which is explicitly given by

max

d _ pd As
a(PmaBK Pmin) — i(A f(z)dz)
As 9 (2) 0N, oA,
/. T A e T e (A . (139)

We have to evaluate the magnitude of each term.

To estimate the first term in (139), we notice that the explicit expression of £ (z) is already

given by (135), which can be slightly rewritten as

5(1z) = g—l-?"—i-% [F(Aw)_F(z)]2+%[F(Aw)+F(Z)_2F(Aw)F(Z)]+()\LN>2
A0 o) [P (M)~ F (2], o

Taking derivative wrt x,

F(Aw)[1 - F(2)]+ F(2)[1 - F(Auw)l + R

1 1
— — — + — .
€))7 o 202 VIF(A) = F(2) + 2 [F (Ay) + F (2) = 2F (A) F (2)] + (5)°
(141)

It is obvious to see that the RHS of (141) are strictly positive, so

9€ (2)
Ok

<0,

and thus
Ag
/ 857('2)d,z < 0.

Ay Ok

When ) is sufficiently large, the second term on the RHS of (141) is O (1). It follows that

because we have shown in Lemma X that £ (2) = O ()\*1/2> for z € [Ap, Ag]. Then,

/ PO, g ()\_3/2) .

Ay Ok

Now we evaluate the second and the last term in (139). The asymptotic expansion of £ (Ap)
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and £ (A;) are already given by (127) and (128), so

()=

1
8Ab . l 2n(1—n)&N f(Aw) cc*
ok N /& * &
T+t THYE

Since ¢ < ¢*, we know the first term in (142) is strictly positive and therefore

0A

e +o(A71). (142)

£(As)

—&(Ap)

0N,
0K

—ﬁ(Ab>%>0-

£() o

So far, we obtain

/As 6(),. _ o ()\‘3/2) ,

Ay Ok
on,
—&(Ap) 2. = © (A1)

0A

£(8)

Putting together, we finally know

0 Pglax 7Prcrllin
( Ok ) :f(As)

0N, [SJANY
ok A

Taken this and (138) together, we obtain

0DR

o > 0.

Part IV. We aim to determine the sign of ‘?—XR (when keeping ¢ = N/X constant) for A

sufficiently large.
To this end, we need at first place prove a variation of Lemma X.

Lemma X1. When ) is sufficiently large and ¢ = N/X is constant, we have

: (2)dz = O <A1X> . (143)

We leave the proof of this lemma to the end of this part.

We are thus able to determine the magnitude of price dispersions when fixing ¢ = N/X:

1
Pmax_Pmin = 0| —= ;
<v>\X>
1
pi —pd = — ).
max min O(}\X)
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Therefore,

O (v% 1
DR = (>\1X) =0 <)\)(> ,
o () ”

or equivalently, limy_, (\/ AX DR) is a positive constant independent of AX. This implies that
8DR < 0.

Proof of Lemma X1: To show this result, we first claim that 2 Ag and Ay depends on A

N’N’

or X only through their product AX, where A is not needed to be sufficiently large. We rewrite

(54) as
. [)\l;erF(Aw)—F(AS)}Jrl\/[WJrF(A )~ F(8))] + 4 1= F A F (A,

It is direct to see that % can be written as a function of AN and Ag, denoted by II; (AN, Ay).

Furthermore, (86) can be rewritten as

AN (1 - fA [1— )] dx
[k + ANTI; (/\N, As)] [n +r+ nANHS ()\N, Ay

Since AN shows up altogether on the RHS, this equation actually implies that Ay is a function

of AN. Inserting back into % = Il (AN, Ay), we know that % is a function of AN.

Similarly, we rewrite (57) as

1 K 1 K
N — 3 F(Ay) = F(Ap) — 7} + 2\/[F (Aw) = F(Ap) — N +4WF(Aw) (1= F(Ap)].
It is direct to see that % can be written as a function of AN and A, denoted by II (AN, Ap).

Furthermore, (85) can be rewritten as

ANEn (1= F (Ay)] [ F (z) da

" [k + ANTL, (AN, A)] [ + 7 + (1 — ) ANTL, (AN, A)]

Since AN shows up altogether on the RHS, this equation actually defines Ay as a function of AN.

Plugging back into % = II; (AN, Ap), we know that % is a function of AN.

Observing (140), we know that & (z) is also a function of AN. We therefore conclude that
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integral [ AA,, *¢(z)dz is a function of AN, because both its integrand and its upper and lower

bound are functions of ANV.

Following the same procedure in proving Lemma X, we end up with (143).
20 Proof of Proposition 13

The expected utility is given by

A Ay As
W = /%(Ambm)dm/o vn<A>un<A>dA+/0 Vi (A) gy (A) dA

Ay

L
N

A
+/AS Vi (A) iy (A) dA

To simplify, we compute term by term. Firstly,

A A A
B s AN, k(N =X) [a, 1= F(A)]dA
/Abe(A)Mb(A)dA = VanJr/Ab [N Fb(A)]gb(A)dA+K+T+)\nNS Py —
A
s n NSC
= V,N, Ny — Fy (A)] &, (A) dA + —— .
o [N B ()6 (8)as +
Secondly,
Ay
0
Thirdly,
A kX 2 F(A)dA A
Vo (A) g (AYdA = Vi (Ag) N, — 0 —/ F, (A€, (A)dA
| v T Yy i MIEACSIAEY
As
= V@)N- - [T R@)g @),
An A,
and fourthly,
3 KX+ ANGN o [1— F(A)]dA
/ASVh(A)uh(A)dA_(X—NS)Vh(AS)Jr o — =
Taken together, we obtain
1 As n  Ngc c
= —|V,(N=X)+V,(A)X Ny — Fp (A)] & (A)dA + —— -
L L A B R T P
As /<;X+)\N8Nf§ [1—F(A)]dA
- F, (A&, (A)dA s .
/Ab ()& (A)dA+ K+ AN K+
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Plugging the expression of V,, given by (81) and V, (A;) given by (84) into the above and

rearranging, we obtain

L A 1 K+ c
W = WW+T/AS [F(Aw)—F(Z)]dz"‘ﬁ w() Cr(1—n)n AN
Ns N\ c
_<1—77+77> TN’ (144)

where the first term, W,,, is the average expected utility across all investors in an idealized

centralized market without search friction and is given by

wwzi/A (1+A)dF (A),

and the integrand in the third term is given by

0@ = {EW-X)L-FEI+ N - B ()]} 6 () - [F(2) + 2XF (2)] & (2)
= ()€,

where £ (2) is given by (77) and
()= 1IN~ X = NF (2] MFs (2) - [Fa(2) + X F (2)]

In the end of this proof, we argue that the integral fAAbS ¥ (2)dz is of order o ()\_1/2) for A

sufficiently large.

When A is sufficiently large, we can expand V up to the term of order % (so the third and

the fourth term in (144) can be omitted) and obtain

1 KC 1 1 A w
mw = TA-mX \/¢<1 ¢>/w[1 :1:+ / x| > 0.

Since myy > 0, we know

where
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It is direct to see
om 0
W S0, My
oc 0K

> 0,

SO

W W
ow <0, ow < 0 for A sufficiently large.
oc oK

When keeping N = ¢ X as constant, we find

0mw
X <0,

SO

oA .
X < 0 for A sufficiently large.

Lemma Y. When ) is sufficiently large, we have

A

! Y (z)dz=o0 ()\_1/2> .

Ay

Proof: The integral can be bounded by

As
(2)dz < (As — Ap) - max [P (2)]. (145)
Ay z€[Ap,As]
We already know Ag — Ay = O ()\71/2>, so we need to estimate max,cia, A, ¥ (2)], which is
further bounded by

< : . 146
zeﬁ?ﬁsﬂwz)'—zefﬁfﬁs]’( ()] Ze{gﬁs]é(@ (146)

Recall that we show in Lemma X that max.ca, a,1§(2) = O ()\_1/2). Our focus in what
follows will be on max,¢a, A, ¢ (2)]. Firstly, we have

CEN < LIN-X - NF@E)|MWE () +F () + “XF (2)

« LN X S NF@MNN, 4N+ X (2)
T T
1
< —max{|[F (Ay) = F(89)],[F (A) = F (A} AN N, + N, + =X F (A,).(147)
Since Ay — Ay = O ()\_1/2) and A, — Ay = O ()\_1/2), we know

max {|F (Ay) = F (&), |F (Ay) = F (&)} = 0 (A72).
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Since Ny = O ()\_1/2), we know that the first term in (147) is O (1), the second term is O ()\_1/2)

and the last term is O (1). Putting together, we know that |¢ (z)| is bound by O (1).

Turning back to (146), we know that max.c(a, a,] [¥ (2)] is bounded by a product of O ()\*1/2>

and O (1), which is obviously O (A‘1/2>.

Further back to (145), we conclude that fAA: Y (z) dz is bounded by a product of O ()\_1/2>

and O ()\*1/2), which is obviously o ()\*1/2>. This completes the proof. Q.E.D.

21 Proof of Proposition 14

We construct the frictionless benchmark with a centralized market.

Let V£ (A) and V¢ (A) be the value function for an owner and a non-owner of type A, respec-

tively. Let P, be the equilibrium price.

For an owner, he has to decide whether to hold his asset or not. If he chooses to hold, he

receives cash flow (1 + A) instantaneously and his value function is given by
rVi(A) =1+ A+ &E [max {VS (A), Ve (A") + Pu}] — 6V (A).

The LHS is the flow payoff of holding his asset, which consists of two terms: the instantaneous
payoff illustrated by the first term on the RHS and the option value of selling his asset holding

at prevailing price P, captured by the second term on the RHS.

If he chooses to sell his asset at price P,, he becomes a non-owner immediately with value

function Viy (A) together with the price he charges, i.e., P,,. Hence, V¢ (A) is determined by

1+ A+ sE[{Vy (A"), Vi (A) + Py}
K+

Ve (A) = max { VE(A) + Pw} . (148)

For a non-owner, if he chooses to stay outside the search market, his value function is given
by
rVie (A) = KE [max {V} (A") = Py, Vi (A)}] = sV (D).

n
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The flow payoff of staying outside is only derived from purchasing the asset and receiving cash
flows from it in the future. If he chooses to buy a share at price P,, he becomes an owner with

value function V. (A) net of the purchase cost P,. Hence,

Vo(A) =max{V, VS (A) — Py} (149)
where
e — HEmax {V5 (A") = Py, Vi (AN)}]
no K+ '

We conjecture that an investor would like to own the asset whenever his type A is above a

cutoff level A,, and stay inactively with no asset otherwise.

The demand for the asset is from those non-owners whose newly-drawn types are above A,
which amounts to k(N — X)[1 — F (Ay)] dt during short period dt. The supply of the asset is
from those owners whose newly-drawn types are below A,,, which amounts to kX F' (A,,) dt during

short period dt. At any point of time, demand should be equal to supply, which yields

X
F(A,)=1- N (150)

A marginal owner of type A, should be indifferent between holding his asset and selling his
asset at price P, i.e.,

Vy (Aw) =V, (Aw) + Py. (151)

n

This also means that a marginal non-owner of type Ay, should be indifferent between buying the

asset and staying outside the market. Setting A = A,, in (148) and (149),

kE [max {V (A) — Py, Vi (A)}]

Ve(da) = 2 ,
1+ Ay + KE C(A), Vi (A) + Py
Viay) = DRt BRI ER v () 4 P

Using the first line to substitute out term E [max {VS (A), V.S (A) + Py} = (k +7r) VS (Ay) + Py

in the second line and rearranging, we obtain

14 Ay,
P, — — 2w, (152)
T
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From (148), we know (i) when A < A, V& (A) = V¢ (A)+P,, (i) when A > Ay, AVE(A) =

1

- Hence,

(A)—{ VE(A) + Py, if A € [A,Ay)

Tl VE(Aw) + A8 i A€ [Ay, A

This means that an owner holds onto his asset if A > A,, and sells his asset if A < A,,. He is

indifferent between these two choices when A = A,,.

From (149), we know (i) when A < Ay, V,¢(A) is a constant equal to V,¢ = V¢ (A,) — P,

(i) when A > A, VC(A) = Ve

“(A) — P,. Hence,
. [ VEIEA€[0,Ay) e
Vi (8)= { VE(Ay) = Py + 28u if A€ [Ay,A] — Vo (8) = A

Kk+r

This means that a non-owner purchases one unit of asset if A > A,, and stays with no asset if

A < A,. He is indifferent between these two choices when A = A,,.

Here, V¢ is given by

A
c _ K C N _ C / !
Ve = RH/A max (V2 (&) — Py, V¢ (A7) } dF (A)

Ay A
[ vear @)+ [T s @) - par @)
A Ay

K
K+

Using integral by part, we know

/A VOC(A)dF(A):VnC[l—F(Aw)]+H+T

A
/ [1 - F(A)]dA.
Ay
Hence, V¢ is given by
K

A
Ve = M/ [1— F(A)]dA. (153)

w

We therefore obtain

[ VEH P, ifAC[0,A,)
T Ve Py + 28 i A€ [Ay,A] 7

K

Vi(A) = Vi(A)— Py,

o

where V¢ is given by (153) and P, is given by (152).
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The (unit time) trading volume is given by

X
TVy = kXF (Ay) = kX <1 — ) .
N
The expected utility is given by
Ay A 1 /A
Wom [V PAE @)+ [ Vi@aR@) =1 [Taraar@). sy
0 Ay Aw
22 Proof of Proposition 15
We have already established the following limit results:
)\hm Ay = )\hm Ag = Ay (155)
and
)\hm AN, = )\lim ANg = 400. (156)

In order to evaluate limy_,o, P (z,y), we need at first place evaluate the limit of V, (A), V4 (4A),

Vs (A) and Vj, (A) as A — oo.

Vi (A) is given by (81). We argue its first term, %fAAbS & (2) [1 — F (2)] dz, vanishes to zero

as A — oo. According to (155), the lower and upper bound of this integral is tending to each

other. Besides, the integrand is bounded by because 0 < §,(2) < =~ and 0 <1 - F(z) < 1.

+r

Therefore, the integral shrinks to zero as A — oo. Hence, we find

Vi (A) = V—>ffA )} d=
" K+

=V as A — oo,
where V¢ is the expected utility of an asset owner in the centralized market and is given by (153).

Vi (A) is given by (80). Due to (155) and &, (z) < we know for any A € [Ap, A

_L
K+Tr?

— 0 as A — oo.

A _ _
0< [ & (z)dag B0 < BT B
A, K+T K+

We thus have

A
1-F dz — - _
%(A)—fwa[ 2/ L2 A“’:V,erA Bu for A € [Ay,A].

T K+T K+ K+




Vs (A) is given by (83). We first calculate limy o Vi (Ap). Since 0 < &, (2) < H}H for

z € [Ap, Ag] we know

A
s K 1 K Ay — Ay
< — < —_ —_ = —_——
o</ E () [1+2F ()| de < —— (14 7) (A - Ay = 0as A - oo

and thus

144, | 1l 0= F@)d:
T T K+T

Vs (Ap) — =P, +V as A — oo.

It follows directly that

Vs (A) — lim Vi (Ap) = Py, + Vyy for A € [0,A,].

A—00

Vi, (A) is given by (82). Note that

1+ A,k fa, 1= F(2)]dz
— + —

Vi (AS) r r K+

=P, +V,; as A — oo,

SO

A—Ay,
Vi (A) — Py +Vi+ e for any A € [Ay, A] as A — oo.

With these in limit results in hand, we are able to see

lim P(z,y) = P, for 0 <y <A, <z <A.

A—00

Now we evaluate the limit of type distributions of investors. According to (155) and (156), we

immediately have

lim 71, (A)

{ Nf(A) for A <Ay
A—00

0 for A > A, ’
. 0 for A < Ay,

Jm i (A) = { Nf(A) for A> A,
lim py (A) = O,Alim ps (A) =0.

A—00

Finally, we evaluate the limit of total trading volume. Recall that the total trading volume

TV, is given by (118). We find

lim TVO’ = rX <1_X> + kX <1_X> In \/XMbX N\/XMS
Ao KX (1-X) AN

X X My M,
= /£X<1—>+/£X<1—>ln b




Since TV,, = kX (1 — %) and

)

X
MM, = kX <1 - )

c
N/ c

we have

~

lim TV, = TV, + TV, In <.
C

A—00
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A Search Model of the Aggregate Demand
for Safe and Liquid Assets

with Hongjun Yan

Abstract

Safe and liquid assets, such as Treasury bonds, are money-like instruments that command a
convenience yield. We analyze this in a search model of two assets that differ in liquidity and safety.
In contrast to the reduced-form approach, which puts the safe and liquid asset in utility function,
we explicitly model investors’ trading needs and the trading friction. One new implication from
this approach is that the marginal investor’s preference for safety and liquidity is not enough in
determining the premium. Instead, the distribution of investors’ preferences plays a direct role.
Our model implies that an increase in the supply of the liquid asset may increase or decrease the
liquidity premium, depending on the distribution of investors’ liquidity preference. Our model
shows that investors may over- or underinvest in the search technology relative to a central planner,
and that overinvestment occurs when investors’ expected trading frequency is in the intermediate
region.
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1 Introduction

There has been growing interest in the role of “safe and liquid assets” in a financial system,
especially since the recent financial crisis. One finding that emerges from these studies is that safe
and liquid assets, such as Treasury bonds, are like money, commanding a sizeable premium for their
safety and liquidity (Krishnamurthy and Vissing-Jorgensen 2012). What are the determinants of
this premium? How does the supply of Treasury bonds affect the premium? When risky assets
become more liquid, how does it affect their own prices, as well as the Treasury price? What is

the welfare implication when traders invest to improve the liquidity of risky assets?

One framework for addressing these questions is a representative agent model. For example,
Krishnamurthy and Vissing-Jorgensen (2012) follow the tradition of money-in-the-utility-function
formulation (e.g., Sidrauski 1967) and include the Treasury holding in the representative investor’s
utility function. In equilibrium, the liquidity premium is determined such that the representative
agent is indifferent between holding the Treasury and a less liquid asset. That is, the representative
agent is the marginal investor whose indifference condition determines the liquidity premium.
The appeal of this approach is its simplicity, and one can analyze the liquidity premium without

explicitly modeling investors’ trading needs and trading frictions.

We adopt an alternative framework, and explicitly model investors’ trading needs and trading
frictions. Not only does this make it possible to directly connect liquidity premium to trading
frictions—it also leads to new implications that are absent in the representative agent framework.
Specifically, the marginal investor’s liquidity preference is no longer enough to determine the
premium. Instead, the distribution of investors’ liquidity preferences also plays a direct role. For
example, we find that an increase in the supply of Treasury bonds may increase or decrease their

liquidity premium, depending on the distribution of investors’ liquidity preferences.

The intuition is as follows. Suppose assets 1 and 2 have identical cash flows, but asset 2 is
“more liquid” than asset 1. In the reduced-form approach, asset 2 being more liquid is modeled as

investors deriving a “convenience yield” from holding asset 2 (i.e., putting the holding of asset 2 in
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an investor’s utility function). Let P; and P, be the prices of assets 1 and 2, respectively. The lig-
uidity premium, P, — P, is determined by the present value of the marginal investor’s convenience

yield. Hence, the marginal investor’s liquidity preference fully determines the premium.

However, this is no longer the case once we explicitly take trading frictions into account.
Suppose that asset 2 is perfectly liquid, and that the friction for trading asset 1 is that investors
need to search in the market and can trade only when they meet their counterparties. In this
case, the marginal investor’s liquidity preference cannot fully determine the premium. To see this,
suppose that P; decreases by one dollar due to a reduction of demand from its investors. We will
see that, if the marginal investor between assets 1 and 2 remains the same, P, will decrease by
less than one dollar, and hence the liquidity premium P, — P; will increase. The reason is that
the marginal investor’s value function is less sensitive to P; than to P,: Intuitively, since asset 2
is perfectly liquid, P» is the price at which an investor can transact right away. So, a one-dollar
drop in P, leads to a one-dollar increase in his value function. In contrast, a one-dollar drop in P;
leads to a less-than-one-dollar increase in his value function. This is due to the trading friction:
P is the price at which the investor can transact only when he meets his counterparty. There
is a chance that the investor cannot find his counterparty before his trading need disappears.
This point arises naturally once we explicitly account for the trading friction, but is absent in the

reduced-form approach that abstracts away from trading frictions.

In essence, the notion of “market price” is different in a setup where frictions are modeled
explicitly than in a setup that treats frictions implicitly. In a model which treats frictions only
implicitly, the market price is the price at which investors can transact at immediately. However,

this is not the case in models with explicit trading frictions.

We formalize the above intuition by extending the over-the-counter (OTC) market model of
Duffie, Garleanu, and Pedersen (2005) by introducing two assets. In the baseline model, the two
assets are claims to identical cash flows but have different liquidity. Asset 1 (e.g., agency debt) is
less liquid, and trade occurs only when a buyer meets a seller. In contrast, asset 2 (e.g., Treasury)

is perfectly liquid and transactions occur without any delay. There is a continuum of investors,
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whose trading needs are due to the changes of their valuations of the two assets. In particular,
when a type-A investor receives $1 from asset 1 or 2, he derives a utility of 1 + A. We normalize
the region for investors’ possible types to [0, A]. An investor’s type stays constant until the arrival
of a shock. Once the shock arrives, his new type is drawn from a random variable, which has a

density function of f(-) on [0, A]. Investors’ types are independent from one another. Hence, in

the steady state, f(-) is also the cross-sectional distribution of investors’ types.

We show that, in equilibrium, there are two cutoff points, A* and A*™, with 0 < A* < A™ <
A. Tnvestors with high types (i.e., A € (A** A]) choose to buy asset 2, those with intermediate
types (i.e., A € (A*, A*)) choose to buy asset 1, and those with low types (i.e., A € [0,A%))
choose not to buy any asset. Investors A* and A** are marginal investors: investor-A** is
indifferent between buying asset 1 and buying asset 2, while investor-A* is indifferent between

buying asset 1 and not buying any asset.

The liquidity preference of the marginal investor between the two assets (i.e., A**) affects
the liquidity premium, but, as explained earlier, it cannot fully pin down the liquidity premium.
We find that the liquidity premium increases in A** but decreases in A*. Intuitively, a higher
A*™ means that trading delay is more costly for the investor. Hence, asset 2 commands a higher
premium. How does A* affect the liquidity premium? Since investor-A* is the marginal investor
between investing asset 1 and not investing, holding everything else constant, a decrease in A*
decreases P;. In response to this drop in P, as noted earlier, P> would decrease less than P;

does. That is, the liquidity premium P» — P; increases when A* decreases.

Our model implies that an increase in the supply of asset 2 may increase or decrease the
liquidity premium, depending on the distribution f(-). Intuitively, when the supply of asset 2
increases, it attracts more investors with high A, pushing down both A** and A*. As noted
earlier, the liquidity premium increases in A** but decreases in A*. In the case illustrated in
Panel A of Figure 1, for example, f(A*) is significantly larger than f(A**). That is, there are
many investors whose A is around A*, but very few investors around A**. When the supply of

asset 2 increases, A™ decreases significantly, but A* decreases only slightly. Hence, the impact
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from A** dominates, and the increase in the supply of asset 2 decreases the liquidity premium.
Similarly, in the case illustrated in Panel B of Figure 1, f(A*) is significantly lower than f(A**).
The impact from A* dominates, and the increase in the supply of asset 2 increases the liquidity

premium.

(INSERT FIGURE 1)

What are the empirical implications from this result? Suppose we interpret asset 2 as Treasury
bonds and asset 1 as agency bonds or highly rated corporate bonds. Then, it might be reasonable
to think this case is summarized by Panel A: a small fraction of investors have very high A. For
example, commercial banks can use Treasury securities as collateral to issue checking accounts,
and hedge funds can use them as collateral for their derivative positions. For most investors,
however, their A is modest. In this case, the increase in Treasury supply decreases the yield
spreads between Treasury and highly rated bonds, as documented in Krishnamurthy and Vissing-
Jorgensen (2012). On the other hand, if we interpret asset 1 as junk bonds and asset 2 as
bonds with investment-grades and above (e.g., investment-grade rated corporate bonds, agency
bonds and Treasury securities), the case is more likely to correspond to Panel B, where very
few specialized investors (such as hedge funds) are the marginal investors for asset 1 (i.e., f(A*)
is small). With this interpretation, our model implies that the increase of the supply of bonds
with investment-grades and above increases the spread between junk bonds and investment-grade

bonds.

When the search friction in market 1 is alleviated, how does it affect P; and P»? Our model
shows that it decreases P», because when trading asset 1 is easier, asset 2 becomes relatively less
appealing. Moreover, the liquidity improvement in market 1 has a mixed effect on the price of
asset 1. Intuitively, when search becomes slower, sellers in market 1 are willing to accept a lower
price to speed up their transactions. Similarly, buyers are willing to offer a higher price to reduce
their waiting time. Hence, the total impact is mixed, and depends on which side is more eager to

speed up the transaction.
Our welfare analysis on the investment in the search technology for market 1 shows that
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investors may over- or underinvest relative to a central planner. The reason is that the investment
has two externalities. First, when an investor improves his search technology, it not only benefits
himself, but also benefits his potential trading partners. This leads to a free-riding problem and
underinvestment. Second, investment in the search technology helps more investors to execute
their trades, and so reduces the number of investors in the market, making it more difficult for all
investors to meet their counterparties. Investors don’t internalize this negative externality and so
overinvest relative to a central planner. Hence, the tradeoff between the two effects determines
whether investors over- or underinvest in their search technology. We find that overinvestment

tends to occur when investors’ expected trading frequency is in the intermediate region.

1.1 Related Literature

Our paper belongs to the recent literature that analyzes OTC markets in the search framework de-
veloped by Duffie, Garleanu, and Pedersen (2005). This framework has been extended to include
risk-averse agents (Duffie, Garleanu, and Pedersen (2007)), unrestricted asset holdings (Lagos
and Rocheteau (2009)). It has also been adopted to analyze a number of issues, such as security
lending (Duffie, Garleanu, and Pedersen (2002)), liquidity provision (Weill (2007)), on-the-run
premium (Vayanos and Wang (2007), Vayanos and Weill (2008)), cross-sectional returns (Weill
(2008)), portfolio choices (Garleanu (2009)), liquidity during a financial crisis (Lagos, Rocheteau,
and Weill (2011)), price pressure (Feldhutter (2012)), order flows in an OTC market (Lester, Ro-
cheteau, and Weill, (2014)), commercial aircraft leasing (Gavazza 2011), high frequency trading
(Pagnotta and Philippon (2013)), the roles of benchmarks in OTC markets (Duffie, Dworczak,
and Zhu (2014)), adverse selection and repeated contacts in opaque OTC markets (Zhu (2012)),
intermediation chains (Afonso and Lagos (2015), Hugonnier, Lester, and Weill (2014)), trading
network structure (Neklyudov (2014)), as well as the interaction between corporate default de-
cision and liquidity (He and Milbradt (2013)). Another literature follows Kiyotaki and Wright
(1993) to analyze the liquidity value of money. In particular, Lagos and Wright (2005) develop
a tractable framework that has been adopted to analyze liquidity and asset pricing (e.g., Lagos

(2010), Lester, Postlewaite, and Wright (2012), and Li, Rocheteau, and Weill (2012), Lagos and
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Zhang (2014)). Trejos and Wright (2014) synthesize this literature with the studies under the

framework of Duffie, Garleanu, and Pedersen (2005).

Our paper is related to these studies, and one distinctive feature is our analysis of the supply
effect on the premium. Another insight from our model is the contrast between the reduced-form
approach and the search approach that explicitly accounts for trading frictions. This is parallel to
the point stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which
emphasizes the importance of explicitly modeling the frictions that render money essential. This
idea has led to the so-called New Monetarist Economics, which emphasize that assets are valued
not only for their fundamentals (i.e., claims to consumption goods) but also for their liquidity—
the extent to which they facilitate exchange in an imperfect market (see Williamson and Wright

(2010, 2011) for recent surveys).

2 The Model

Time is continuous and goes from 0 to oo. There is a continuum of investors, and the total
population size is N. They have access to a riskless bank account with an interest rate r. There
are two assets, assets 1 and 2, which are traded in two separate markets. The supplies for assets
1 and 2 are X7 and Xo, respectively, and X1+ Xo < N. The two assets have the same cash flows,
and each unit of the asset pays $1 per unit of time until infinity. However, asset 1 is less liquid

than asset 2.

Our formulation of the market for asset 1 follows Garleanu (2009) and Lagos and Rocheteau
(2009). In this market, investors face a potential delay in finding market makers. Once they meet
a market maker, they can execute their trades and take the price P; as given. The potential delay
is as follows. Let ul{ and pf be the measures of buyers and sellers in the market for asset 1, and
both will be determined endogenously in equilibrium. A buyer meets a market maker at the rate
Api, where A > 0 is a constant. That is, during [t,¢ + dt) a buyer meets a market maker with
a probability Aujdt. Similarly, a seller meets a market maker who can buy his asset at the rate

A8, Hence, the total number of trades per unit of time is Au§u8. The search friction reduces
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when A increases, and completely disappears when A goes to infinity.

This formulation is a slight modification of that in Garleanu (2009) and Lagos and Rocheteau
(2009). Specifically, we assume that the arrival rate of the market maker depends on the popu-
lation size of the investors on the other size of the market. For example, for a buyer, the larger
the seller population i, the quicker the buyer is expected to find a market maker to sell him the
asset. This captures the notion that an investor faces a shorter delay if there are more investors

trying to be on the other side of the transaction.!

The market for asset 2 is more liquid. To simplify our analysis, we let the search technology

in market 2 go to perfection, i.e., investors in market 2 can trade instantly.?
2.1 Trading needs

Investors have different types, and their types may change over time. If an investor’s current type
is A, he derives a utility 1+ A when receiving the $1 coupon from either asset. One interpretation
for a positive A is that some investors, such as insurance companies, have a strong preference for
long-term bonds, as modeled in Vayanos and Vila (2009). Another interpretation is that some
investors can benefit from using those assets as collateral and so value them more, as discussed
in Bansal and Coleman (1996) and Gorton (2010). An interpretation of a negative A can be that
the investor suffers a liquidity shock and so finds it costly to carry the asset on his balance sheet.
We assume that A can take any value in a closed interval. Without loss of generality, we can

normalize the interval to [O, Z].

Each investor’s type changes independently with intensity x. That is, during [¢,¢ + dt), with
a probability xdt, an investor’s type changes and is independently drawn from a random variable,
which has a probability density function f(-) on the support [0,A], with f(A) < oo for any

A € [0,A]. We use F (+) to denote the corresponding cumulative distribution function.

'We also solve our model without this modification. All our main results, except for the welfare implication in
Section 2.8, remain similar.

2We also solved a version of the model in which the search technology in market 2 is imperfect but is better
than the one in market 1. All our results remain similar.
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The changes in investors’ types make them trade the two assets. Following Duffie, Garleanu,
and Pedersen (2005) and Vayanos and Wang (2007), we assume each investor can hold either 0 or
1 unit of only one of the assets.> Hence, an investor can buy an asset only when he currently does
not hold either asset, and can sell an asset only if he is currently holding the asset. All investors
are risk-neutral and share the same time discount rate r. An investor’s objective function is given
by

sup Et |:/ e_r(T_t) ((917— + 927’) (1 + Ar)dT - PleelT - P2Td927') ’
t

917‘7927

where 01, and 02, are the investor’s holdings in assets 1 and 2 at time 7; A is the investor’s type

at time 7; and P;;, for i = 1,2, is asset i’s price at time 7 and will be determined in equilibrium.
2.2 Demographics

Investors can be classified into three categories: owners of asset 1 (1 = 1 and 6; = 0), owners
of asset 2 (61; = 0 and 69 = 1), and non-owners (i.e., 1y = 02 = 0). This section describes each

category in detail.

A non-owner with a type A has three choices: search to buy asset 1, buy asset 2, or stay
inactive. We conjecture and verify later that a non-owner’s optimal choice can be summarized as

stay inactive if A € [0, Af),
search to buy asset 1 if A € (A, Af¥), (1)
buy asset 2 if A € (AF*, Al

That is, he buys asset 2 if A > A}*, searches to buy asset 1 if A € (A§, Af*), and stays inactive
if A < Aj. A non-owner is indifferent between staying inactive and searching to buy asset 1 at
Aj, and is indifferent between searching to buy asset 1 and buying asset 2 at Aj*. Note that due
to the search friction in market 1, the buyers of asset 1 face a delay in their transactions. In the
meantime, their types may change, and then they will adjust their actions accordingly. In market

2, however, the buyers become owners of asset 2 instantly.

*This deviates from the formulation in Garleanu (2009) and Lagos and Rocheteau (2009), where the asset
holdings are not restricted. We keep this traditional assumption on asset holdings for tractability. We impose the
same asset holding restriction in both markets to isolate the effects from the search friction in market 1. More
generally, in the case where the search technology in market 2 is imperfect, this formulation isolates the effects from
the difference in the search frictions across the two markets.
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An owner of asset 1 has two choices: search to sell asset 1 or hold on to it. We conjecture and
later verify that this investor’s optimal choice can be summarized as

search to sell his asset if A € [0, A), )
hold on to his asset if A € (A7, A].

That is, he searches to sell asset 1 if A < Aj, holds on to the asset if A > A}, and is indifferent
between the two actions if his type is A]. Moreover, investors face a delay in selling their asset 1.
In the meantime, their types may change, and they may need to adjust their actions accordingly.
If an investor succeeds in selling his asset 1, he becomes a non-owner and faces the three choices

described in equation (1).

An owner of asset 2 also has two choices: sell it or hold on to it. We conjecture and later
verify that this investor’s optimal choice can be summarized as

sell his asset if A € [0, A3), 3)
hold on to his asset if A € (A3, A].

That is, he sells asset 2 if A < A3, holds on to the asset if A > A%, and is indifferent between the
two actions if his type is A3. Since there is no search friction in market 2, investors can execute

their transactions right away.

Due to the change in A and execution of his trade, an investor’s status changes over time.
We now describe the evolution of the population sizes of each category of investors. Since we will
focus on the steady-state equilibrium, we will omit the time subscript for the population size of
each group of investors. For i = 1,2, we use pu} to denote the population size of the sellers for
asset 7, and use ,ui? to denote the population size of the buyers for asset ¢. Similarly, we use ,ulh,
for i = 0,1, 2, to denote the population sizes of the inactive investors who are non-owners, owners

of asset 1, and owners of asset 2, respectively. Hence, there are seven groups of investors.

Figure 2 illustrates investors’ migration across the seven groups. For sellers of asset 1, for
example, the inflow to this group during the period [t,t + dt) is plkF(A})dt, since kF(AY) is
the intensity for an inactive asset 1 holder to become a seller (i.e., his type becomes lower than
AY). The outflow from the group of asset-1 sellers has two components. First, during the period

[t,t + dt), )\ul{u{dt investors succeed in selling their asset 1 and become inactive non-owners.
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Second, kuj [1 — F(AY)] dt investors do not want to sell asset 1 any more because their types now

become higher than Aj. In the steady state, the inflow equals the outflow:
pIRF(AT) = Aud i + mp [1 = F(A])].

(INSERT FIGURE 2)

(4)

Applying the same logic to the buyers of asset 1, inactive owners of asset 1, and inactive

non-owners, we obtain the following:

R IF(AF) ~ F(A)] + sl [F(AD) - F(AY)] = Mibus + sl [F(AF) + 1-F(AF)),
s L= F(AD] 4+ Mfpi = wpt F(AY),
N+ (i + 1) P(AY) = mu1 — F(AY))

Following Garleanu (2009) and Lagos and Rocheteau (2009), we also assume that the market

makers do not hold inventory and simply serve as match makers. This implies that
b
pi = pi.
Market 2 has no search friction, the measures of buyers and sellers are infinitesimal,

ph = () [ F(AGat

ps = rpsF(A3)dt,

and during each instant [t,¢ + dt), the flow of buyers is equal to the flow of sellers
(kb + 1) [1 = F(AF)] = Wb F(83).

Finally, the investors in all groups add up to the total population:

Y 5+ )+ s+ b+l = N

2.3 Value functions

(8)

(12)

For the case 01; = 02; = 0 (i.e., the investor is a non-owner), we use V?(A), VP(A), and VI(A) to

denote the investor’s expected utility if he chooses to buy asset 2, to search to buy asset 1, and
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to stay inactive, respectively. For the case #1; = 1 and 03; = 0 (i.e., the investor is an owner of
asset 1), we use V{*(A) and V{*(A) to denote the investor’s expected utility if he searches to sell
asset 1, and to keep asset 1, respectively. For the case 01, = 0 and 02, = 1 (i.e., the investor is an
owner of asset 2), we use V3'(A) and VJ*(A) to denote the investor’s expected utility if he chooses
to sell asset 2, and to keep asset 2, respectively. In the steady state, these expected utilities are
time-invariant, implying the following;:

Mg [V (A) = P + kE [max {V (&), Vi (A'), Vi (A)}]

v = A+ K+ ’ (13)
Vi) = 1+ A+kE [ma);{—:/f (A7), v (AN} 7 (14)
Ve(A) = T+A+ M\ max{VOh(A) ,ng(A/\l)u}li—l——’—)\:li_P:l—/{E[max{Vf(A’) , V{’(A’)}] ’ (15)
V7 (A) = V3 (A) - Py, (16)
Vi(a) = max{V{(a), v} (2)} + P, (17)
Vi) = 1+ A+kE [ma);{—:/f (A7), Vg (AN} 7 (1)
VA = - _’i E [max {Vf’ (&), V2 (A), Vi (&) H . (19)

2.4 Prices with trading frictions

Once we explicitly account for the trading friction, the notion of the price of an asset is different
that in a reduced-form model. For example, an holder of asset 1 can no longer exchange the asset
for P; instantly. This straight forward but easy-to-overlook feature implies that investors’ value

functions have different sensitivities to P; and P,. From equation (13), we obtain the following

lemma.
. , G . ovi(A)
Lemma 1 An investor’s expected utility is more sensitive to Ps than to P: 8p, = —1 and
8‘/117(A) — Apq
orP. Aps+r+re

The intuition is the following. The market for asset 2 is perfectly liquid, i.e., a buyer can

pay P> to get asset 2 right away. Hence, holding everything else constant, a one-dollar drop in
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P, increases the investor’s expected utility by one dollar. In contrast, a one-dollar drop in P;
does not mean the investor gets a one-dollar benefit. This is because the market for asset 1 is
illiquid, and the investor may not be able to benefit fully from the price drop. Due to the delay in
searching, the investor can only enjoy the benefit in the future. Moreover, the investor may not be
able to benefit at all if he cannot meet a seller before his A changes and his demand disappears.

As a result, the investor’s expected utility is less sensitive to P;.

This intuition is absent in the money-in-the-utility-function formulation, where the trading
friction is not explicitly modeled and the notion of liquidity is captured by putting the liquid asset
directly into investors’ utility function. Hence, the sensitivity of the buyer’s expected utility to
price is still one-to-one: a one-dollar drop in price increases the expected utility by one dollar.
The essence is that the notion of market price is different in a setup where frictions are modeled
explicitly than in a setup that treats frictions implicitly. In models with explicit trading frictions,

the market price is not the price at which investors can transact at immediately.
2.5 Equilibrium

Definition 1 A steady-state equilibrium consists of asset prices Py and Py, the cutoff points

(AG, AF*, AT, AS), such that

1) the sizes of each group (u?,y{,u?,ug,ug,ug,u{}) remain constants over time, i.e., satisfy

(4)-(12);
2) the choices implied by (1)-(3) and (13)-(19) are optimal for all investors;

3) both markets clear:

X1 = 4 (20)

Xy = pf. (21)

Proposition 1 The steady-state equilibrium for the above economy is the following. The cutoff
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points are given by

where
_ X1+ Xo
A* = F 11— 22
(1- 57, (22)
X9
A = F7l{1-— . 2
(1525 2
The population sizes for each group are given by
pio= = p, (24)
po= X1, (25)
pg = N—Xo—Xi—py, (26)
/'1”21 = X27 (27)
X
b 2
= rkXol|1- 2
i = (1o ) (29)
Xo
5 = kXo|1— dt 2
i = wt (1o g e (20)
where
k\2 kX1 X1+ Xo K
= (= 1— -
i \/(2)\) LY ( N > 2\ (30)
The asset prices are given by
— 1+A*+5f§:* [1-F(A)dA & [ F(A)dA a1
b r r Ay + K+ r My FEFT
p = 2 ) . (32)
r A+ K+ r

This proposition shows that, the four cutoff points collapse into two: A* and A**. A non-
owner with a type A* is indifferent from buying asset 1 and not buying any asset. A holder of
asset 1 with a type A* is indifferent between holding the asset and selling it. Similarly, a non-
owner with a type A** is indifferent from buying asset 1 and buying asset 2; a holder of asset 2

with a type A** is indifferent between holding the asset and selling it.
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Equations (24)—(29) characterize the population size of each group. In particular, equation
(24) shows that the buyers and sellers for asset 1 have the same population size. Moreover, since
there is no delay in trading asset 2, at each point in time, the groups of investors who need to
buy or sell asset 2 (i.e., u4 and y3) are infinitesimal, as shown in equations (28) and (29). Hence,

virtually all the supply of asset 2 is held by inactive holders, as shown in equation (27).

Equation (31) shows that asset 1’s price has three components. The first term, 1+TA*, is the
marginal investor’s present value of the cash flow and convenience yield A* from the asset. The
second term reflects the liquidity effect from the buyers, whose types range from A* to A**. Eager
to get the asset, they are willing to pay a higher price. On the other hand, the trading friction
makes sellers, whose types range from 0 to A*, willing to sell at a low price. This effect is captured
by the third term. When the search friction disappears, i.e., A goes to infinity, the last two terms

converge to 0 and P converges to #.

1HA**

The price of asset 2 is in equation (32). The first term, , is the marginal investor’s
present value of the cash flow and convenience yield A** from the asset. The second term reflects
the discount due to the investors’ outside option of buying asset 1. Asset 1 is cheaper, but one
has to face a delay in the transaction. The higher the search friction, the less valuable the outside
option of buying asset 1 is. When the search friction goes to infinity (i.e., A goes to 0), the outside
option value goes to 0 and the second term becomes 0. On the other hand, when the search

friction disappears, i.e., A goes to infinity, P> converges to % That is, when the search friction

disappears, the two assets become the same and have the same price.

Proposition 2 The effect of the search friction on asset prices is as follows:

P A**

oh Oz'fA**—A*>/ F(A)dA,
B 0

oP; ar

=1 > Oz’fA**—A*</ F(A)dA,
BN 0

oP;

=2 0.

ax °
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When the search technology in market 1 improves, its effect on P; depends on the tradeoff
between the effect on buyers and the effect on sellers, which are captured by the second and third
terms in equation (31). Note that the condition A*™ — A* > fOA** F (A) dA is equivalent to the
second term being larger than the third term, that is, the effect on buyers dominates. In this
case, due to the search friction, buyers push up P;. Hence, when the search technology improves,
this effect weakens and P; decreases. Similarly, in the other case, A*™ — A* < fOA** F (A)dA, the

effect on sellers dominates and P; increases when the search techonology improves.

Finally, when the search technology improves, it increases asset 2 buyers’ outside option value,
since they can more easily obtain asset 1. This reduces the comparative advantage of asset 2 and

so reduces Ps.
2.6 The liquidity premium

Since assets 1 and 2 have identical cash flows, the price difference, P, — P;, reflects the liquidity
premium. From (31) and (32), the liquidity premium is given by

A%~ A* 4 5 (BT F(A)dA

LP =
Ay + K+

(33)

The above expression immediately shows that the liquidity premium is always positive and de-
creases when the search friction decreases (i.e., when \ increases). As A goes to infinity, the

friction in market 1 disappears, and the liquidity premium converges to 0.

Another observation from (33) is that the liquidity premium depends on not only the marginal
investor’s liquidity preference A**; but also the distribution of all investors’ preferences F'(-). In
particular, the liquidity premium is increasing in A** but decreasing in A*. Intuitively, investor
A* is the marginal investor who is indifferent between buying assets 1 and 2. He can pay P
to obtain asset 2 right away. Asset 1 is cheaper, but he has to face a delay in the transaction.
In the meantime, he is giving up his convenience A**. The investor is indifferent about the two
assets if the price difference (i.e., the liquidity premium) is the same as the present value of the

convenience that the marginal investor expects to lose during his search. Hence, the liquidity
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premium increases in A**.

It is less obvious that the liquidity premium also depends on A*. The intuition is the following.
Suppose A* decreases. This reduces P; since the type-A* investor is the marginal investor between
buying asset 1 and not buying any asset. How does P, respond to the drop in P;? For investor-
A*™ to be indifferent between assets 1 and 2, P5 has to decrease. If P; drops by one dollar, how
much should P, decrease to keep investor-A** indifferent? The answer is less than one dollar.
The reason is that, as noted in Lemma 1, an investor’s expected utility is more sensitive to P
than to P;. That is, after a one-dollar drop in Pj, it takes a smaller drop in P» to keep the investor
indifferent between the two assets. Therefore, a decrease in A* increases the liquidity premium.

The above result naturally leads to the following proposition.

Proposition 3 The liquidity premium decreases in X (i.e., ?)LTI: <0)if

L Xy [A** — AT+ E AT R (A) dA} N(1+EF(A™) 1

+ < , 34
7o) (g + %) (g 1) Nox a2
but increases in Xo (i.e., ‘gLT]: >0)if
sk * K [AT
L A6 X1 [A —A 5 [T F(A) dA} y N(1+2F(A™) 1 (35)
f(A¥) (21 + K) (Apy + £ +7) N—-X; f(Ax)

This proposition shows that the supply of asset 2 may increase or decrease the liquidity
premium, depending on the distribution of the investors’ liquidity preferences. Intuitively, since
an increase in Xo attracts more investors with high A, it pushes down both A* and A**. That is,
the increase in X9 has two effects. First, it decreases A** and so decreases the premium. Second,
it decreases A* and so increases the liquidity premium. The strength of the two effects depends

on the sensitivity of A* and A** to Xs. From (22) and (23), we have

OA* 1
0Xy  Nf(A*)
A 1
0X2 (N —Xy) f(am)

So, the strength of the two effects is decreasing in f(A*) and f(A**), respectively.
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Intuitively, a higher f(A**) means that there are more investors whose types are around A**.
Hence, an increase in X9 pushes down A** less, and so the first effect (i.e., the effect through
A**) is weaker. Similarly, the strength of the second effect is weaker if f(A*) is larger. This is
illustrated in Figure 1. Panel A reflects condition (34): f(A*) is high relative to f(A**). Hence,
the first effect (i.e., the effect through A**) dominates and the supply of asset 2 decreases the
liquidity premium. Similarly, under condition (35), as illustrated in Panel B, f(A**) is high
relative to f(A*). The second effect (i.e., the effect through A*) dominates and an increase in X»

increases the liquidity premium.

To better illustrate the result in Proposition 3, and also demonstrate that conditions (34) and

(35) are both attainable, we parameterize the density function f(-) as
f(A) =aA* (36)

for A € (0,1), where a is a constant and a > 0. The case a = 1 corresponds the uniform
distribution. When a increases, the slope of f(-) increases. So, a small a corresponds to the case

in Panel A of Figure 1, and a large a represents the case in Panel B.

Corollary 1 For the distribution in (36), ‘gLTI: <0ifa<a, and gLTI: >0 if a > a, where a is a

constant and given by equation (79) in the Appendiz.

In the uniform distribution case, i.e., a = 1, the liquidity premium is decreasing in Xs, since
we can see from the Appendix that the constant @ is larger than 2. The corollary shows that the
liquidity premium becomes increasing in X5 only when the slope of f(-) is sufficiently large, i.e.,

a > a, as illustrated in Panel B of Figure 1.

The empirical evidence in Krishnamurthy and Vissing-Jorgensen (2012) suggests that the
supply of Treasury securities decreases their premium. This is consistent with the implication
from the case a < @ or Panel A in Figure 1. That is, the liquidity preference among investors is
such that many investors have a modest convenience (i.e., A), while some other investors have

large A. One can think of these investors with large A as banks, which can use Treasury securities
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as collateral to issue checking accounts, or hedge funds that use Treasury securities as collateral
for their derivative positions. Normal investors, however, do not benefit as much from the liquidity

and safety in Treasury securities.

The case where a > @ (i.e., Panel B in Figure 1) may be relevant for some other occasions.
For example, if one interprets asset 1 as junk bonds and asset 2 as bonds with investment grade
and above, such as investment-grade corporate bonds, agency bonds and Treasury securities etc.
Hence, most investors hold asset 2 for its liquidity and safety, and only a small of investors
with expertise (e.g., hedge funds) are marginal investors for junk bonds. That is, f(A*) is small
relative to f(A*), as in Panel B. In this case, the novel prediction from our model is that when
the supply of Treasury or investment-grade bonds increases, the spread between junk bonds and

investment-grade bonds should go up.*

2.7 Trading needs and asset prices

How do investors’ trading needs affect the asset prices and liquidity premium? In the model,
investors’ trading needs are summarized by . The higher x is, the more frequently each investor’s
type changes, and hence the stronger the trading need. From Proposition 1, we obtain the

following.

Proposition 4

P [ >0 if A™ - AT < [27 F(A)dA
Ok | <0 if A —A*> [P F(A)dA
P [ <0 if s <k,
Ok >0 if k> K",
where
. T
K =
1_|_ rN

X (N—X1—-X2)

4We run regressions similar to those in Krishnamurthy and Vissing-Jorgensen (2012). However, the high yield
index is available only after 1997. Perhaps due to the short sample period, we do not find a significant relation
between the Treasury supply and the spread between junk bonds and investment-grade bonds.
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This proposition shows that the impact of trading need on P; depends on the impacts of the
buyers and sellers in market 1. As noted in Proposition 2, A** — A* < fOA** F (A)dA implies
that the buyers’ impact dominates. In this case, more trading need increases P;. Similarly, if the

sellers’ impact dominates, i.e., A™ — A* > fOAH F (A)dA, more trading need decreases P;.

The effect of k on P» is more subtle. When k increases, it has two effects. First, it means
more investors search in market 1, making it more liquid. This reduces asset 2’s advantage and
decreases P». Second, a higher x also means that investors expect a shorter holding period. This
makes the delay in trading asset 1 even less appealing, and hence increases P». When « is smaller
than x*, the first effect dominates and % < 0. In fact, when  goes to 0, both p$ and p8 go to
0, that is, market 1 becomes completely illiquid and % converges to —oco. On the other hand,
when k > k¥, investors expect to hold an asset only for a short period of time. This makes the
delay in market 1 less tolerable. Hence, the second effect dominates and % > (0. Taken together,
it is easy to see that the effect of k on the liquidity premium is mixed and depends on the relative

strength of the four effects discussed above.
2.8 Welfare

This section endogenizes the investment in the search technology, and analyzes the welfare im-
plications. In particular, we specify the cost of investing in the search technology and the cor-
responding matching function as the following. Investor ¢ has to pay I'(\;) to obtain a search
technology A;, where I'(+) is continuous, differentiable, increasing, and convex, with I'(0) = 0,
I"(o00) = oco. For simplicity, the cost I'();) is paid at ¢ = 0 before the investor knows his type,
and there is no further cost to maintain the technology and investors cannot make adjustments
to their technology after t = 0. Suppose investor i is a buyer in market 1. Let A denote the
average technology chosen by sellers. Then, during [t,¢ + dt) this buyer meets a seller with a
probability [a/\i +(1— a)/_\] pidt. That is, the matching intensity is a linear combination of the
buyer’s technology \; and the average technology of all sellers A. Similarly, suppose that investor

i is a seller in market 1 and that A is buyers’ average technology. Then, during [¢, + dt) this
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seller meets a buyer with a probability [a); + (1 — &)A] pdt.

An investor’s objective function is
max E[V(A)] = T'(\) (37)
where E[V(A)] is an investor’s expected value function across states in the steady states. We
consider a symmetric equilibrium, in which all investors choose the same level of technology. One
degenerate equilibrium is that all investors choose not to invest in their search technology at
all and the market for asset 1 is shut down. In the following, we focus on the more interesting

equilibrium where investors choose to invest, and denote this decentralized choice as \%.

As a comparison, we also analyze the choice of a central planner, who chooses the technology

investment for all investors to maximize
max E[V(A)] —T(\). (38)

We denote this centralized choice as A°. The difference between (37) and (38) is that when
an investor makes a decentralized decision in (37), he takes other investors’ choice A and the
population distribution (e.g., u} and ) as given. In (38), however, the central planner internalizes
the consequences of investors’ decisions. The following proposition compares the investment

choices across the two cases.

Proposition 5 There are unique solutions \* and X¢ to (37) and (38), respectively. If a < %,
decentralized decisions lead to underinvest, i.e., \* < X¢. If a > %, decentralized decisions may

lead to over- or underinvestment.

There are two externalities in this economy. First, an investor’s investment in his technology
also benefits his potential future trading partners. This positive externality leads to a free-riding
problem, and hence underinvestment relative to the first best. Second, as the search technology
improves, more investors’ trading needs get matched, and hence fewer investors are left searching in

the market, reducing the marginal benefit of searching for all investors. This negative externality
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leads to overinvestment.

The strength of the first externality is determined by «. The smaller the «, the stronger the
free riding problem. The proposition shows that in the case of a < %, the free-riding problem
always dominates and leads to underinvestment relative to the central planning case. In the case
of a > %, however, the second externality may dominate. In particular, Panel A of Figure 3 plots
the sensitivity of the population size to the search technology, —du?/d), against s. It shows
that this sensitivity is the strongest when x is in the intermediate region. This is the region
where the second externality is the strongest. Hence, as shown in Panel B, in the intermediate
region for k, we have A% > )\ i.e., investors overinvest relative to a central planner in this region.
That is, decentralized decisions lead to underinvestment in the matching technology in markets
where investors expect to trade very infrequently or very frequently, but lead to overinvestment

in markets where the trading frequency is intermediate.

(INSERT FIGURE 3)

3 The safety premium

The analysis so far has focused on the liquidity premium. We now move on to analyze the safety
premium. In particular, we modify the model by introducing a default risk to asset 1. Specifically,
asset 1 pays a constant cash flow of $1 per unit of time, until default, which has an intensity of
m. That is, during [¢,t + dt), a fraction 7dt of asset-1 holders lose their holdings in asset 1, while
the remaining asset-1 holders are intact. If default happens to an investor who is trying to sell
his asset 1, he becomes an inactive non-owner. Alternatively, if an investor is an inactive holder
of asset 1 when default happens to his holding, he then chooses his optimal strategy (buy asset

1, buy asset 2, or stay inactive) according to his current type A.

To keep the steady state stable, we assume that Xi7wdt units of asset 1 are issued to market
1 during [t,t + dt), so that the total amount of asset 1 outstanding remains a constant over time.

We can think of the sellers of the newly issued asset 1 as investment bankers. They are treated
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the same as other sellers in market 1. The only difference is that the investment bankers leave
the market after they sell their assets. Hence, at each point in time, some investment bankers
leave and market and other investment bankers enter the market with newly issued asset 1. In the
steady state, the population size of investment bankers in the market remain constant over time.
The steady-state equilibrium is defined analogously to that in Definition 1, and is characterized

in the following proposition.

Proposition 6 The steady-state equilibrium is given by

AT
14+ Af ko ATT—AT— [2 F(A)dA

P = + , 39
! m+r w+r At kfTtr (39)
1+ Aff b ATt — Al
Py, = - — ag , (40)
r Al +K+THT T

where 18 is the solution to

2
1(,, /<c+7r) [)\,ul{—i-ﬂ 7T:|_1_7T-:il-l£>\(l’él1)) + 1 + Xo

E Ml+ A X1 _E K )\#l{ ’

T+K )\,ull’ +7 X1

and
F(NT) - 1- X2
_ Kk A“Zf X?
K Aub+m 1
1 K+ M4
P = ¢ (ST (M-S,
K A X1 H’I{
s - b_ 7TX]_
M1 = M1 A,U,l{—‘rﬂ'?
upo= Xy —ud,

A b
h H1 b
i = N — X2 — X1 — 1.
0 b+ !

The equilibrium shares many similar properties to those in Proposition 1. For example, similar

to the two cutoff points in the baseline model, we now have two cutoff points A and Aff,

Investor-At is indifferent between searching to buy asset 1 and staying inactive, and investor-Aff

is indifferent between searching to buy asset 1 and buying asset 2.

1+AT)

The price of asset 1 is determined by the valuation of the marginal investor AT (i.e., S
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and the illiquidity effect from the buyers and sellers (i.e., the last term in equation (39)). The

14+ATT
T

price of asset 2 is determined by its marginal investor’s valuation , and the discount due to

the investor’s outside option of buying asset 1 (i.e., the last term in equation (40)). When the

search friction disappears, i.e., A goes to infinity, asset 1 becomes perfectly liquid and its price P;

1+A*

A*
T+r ? .

and P, converges to 1+T

converges to

The price difference, P» — P, is due to the better liquidity and safety of asset 2. To isolate

the impact from safety, we define the safety premium as
SP = lim P, — Py,
T—0

where lim;_,g P; is the limit of the price of asset 1 when the default intensity converges to 0. One
can think of lim,_.o P, as the price of an asset that is as liquid as asset 1, but as safe as asset
2. Hence, SP reflects the safety premium that asset 2 commands. The following proposition

characterizes the properties of the safety premium.

Proposition 7 If A is sufficiently large, the safety premium decreases with the supply of asset 2,

gSTIQD < 0, and this impact is stronger when the default intensity is higher, 36)?% < 0.

Due to the default risk, the expected cash flow from asset 1 is lower. So, it is not surprising
that there is a safety premium. However, the above proposition shows that the safety premium
is related to the supply of asset 2. Intuitively, in the absence of default, the marginal investor of
asset 1 enjoys a convenience yield of Af. The default risk, however, means that he can get only
a fraction of it in expectation. That is, the safety premium reflects a fraction of the convenience
yield At that is expected to be wiped out by default. Hence, the safety premium increases in
A", When the supply of asset 2 increaes, it attracts more investors with high types, and so
reduces A' and the safety premium. Moreover, when the default intensity 7 is higher, the safety
premium reflects a larger fraction of the convenience yields Af, and hence is more sensitive to Af.

Therefore, the effect of supply of asset 2 on the safety premium is stronger.
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4 Conclusion

We have analyzed a micro-founded model of the safety and liquidity premium. Relative to the
reduced-form money-in-the-utility-function approach, our model explicitly examines investors’
trading needs and trading frictions. One new insight from our approach is that the marginal
investor’s preference for safety and liquidity is no longer enough in determining the premium.
Instead, the distribution of all investors’ preferences plays a direct role. The model implies that
an increase in the supply of Treasury securities decreases the credit spread of investment-grade
bonds, but may increase the spread between junk bonds and investment-grade bonds. Our analysis
highlights the importance of explicitly modeling trading frictions. This is parallel to the point
stressed in the classical search-theoretical model of Kiyotaki and Wright (1989), which emphasizes

the importance of explicitly modeling the frictions that render money essential.

207



Panel A Panel B
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Figure 1: Distribution of liquidity preferences across investors f{(-).
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Figure 2: This plot illustrates each investor group’s size and inflows and outflows. The black solid
arrows denote the flows induced by trading, and the blue dash arrows denote the flows due to the

changes in investors’ types.

208




Panel B

Panel A
b
aut Adnf
- - ooz
aa
0015
om
0.005 H
0
-0.005
-0.01
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I's - 0 o1 02 0.3 04 as 06
K

0.1 0.2 03 04 0.5 0.6

Figure 3: Panel A plots —du? /8, against k. Panel B plots AY — \°, against x. Parameters for
both panels: X; = 10, X2 = 10, N = 22. Other parameters for Panel B: a = 0.7, r = 0.02, A =1,

T'(\) =0.12%
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Appendix for Chapter 3
5 Proof of Proposition 1

The proof is organized as follows. Step I, IT and III determine the optimal strategy for non-owners,
owners of asset 2 and owners of asset 1, respectively, by comparing the expected utilities across
all choices. The price of asset 1 and 2 are shown in Step IV and Step V, respectively. We solve
out the measure of each group of investors and cutoff points in Step VI. Finally, we figure out the

type distribution of investors in Step VII.

Step I. We determine the optimal strategy for a non-owner. For this, we need to compare

the slope of V? (A), V{ (A) and VJ' (A) with respect to A.

It is easy to see from equation of V' (A) (equation (18) in the paper) that V! (A) remains

constant for all A. We deonte this constant as U.

Differentiating equation (12) and (15), we obtain

dvy () _dv(a) 1

= = 42

dA dA K471’ (42)

WA avia) | i1 )
dA AN+ k+r dA MgStR+ETEAT

Hence, both Vi (A) and V? (A) are linear in A and their slopes can be ranked as follows

dvy (&) _dVP(A) o dVg(A)
dA > dA >O—T,foranyA.

We thus conjecture that there exist two cutoff points, Aj and Aj* with Aj < Af*, such that
U,if A €[0,Af),
max{Vg' (8), V7' (8), V5 (A)} = { VP (A),if A € (A5, AF"), (44)
VP (A),if A€ (AF, A,
and the following value matching conditions are satisfied:
VI(A)) = Vi (A5 =10, (45)
VW(AF) = V3 (AD). (46)
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We obtain the expressions for V (A) and V3 (A):

A A — A} Ap; A —Aj
b b A* 1 0 1 0
A) = A = 4
Vi (4) Vi'( 0)+)\,w{+/¢+r K+ U+>\,uf—|—/£+r K+r (47)
Vb A — Vb AF* 0 _ U 1 0 0 0 . 48
2 (8) 2 (807) + K+ +)\u‘{+/<a+7“ K+ * K+ (48)
where have used V? (A}) = U in (47) and V{ (AF*) = U + /\MAf}CJrT AS,:_:TAS in (48).

We now derive the expression of U. By equation (18) in the paper and optimal strategy

specified in (44), we have

K
K+

A Ax* A
= / UdF (A) + / VP (A)dF (A) + / VY (A)dF (A)
0

* *
0

Substituting V;? (A) in (47) and V? (A) in (48) into the above equation and rearranging, we obtain

gt A3 fA* [1-F A)]dA+fA**1_ (A)]dA
I DV R K+ K+

(49)

Step II. We determine the optimal strategy for an owner of asset 2. For this, we need to

compare the slope of V3 (A) and Vi (A) with respect to A.

The slope of V3 (A) is given by

avy(a) 1
dA  k+7r (50)

From (47), we know that VP (A) > VP (A) and V5 (A) = VP (A) + Py if A > A} while
VP (A) < VP (A) and Vi (A) = VI (A) + Py if A < Af. We then have:

U+ P, it A <A,

V2 (8) = { U+P2+MAJ‘:;+T A > AL

(51)

Since the slope of Vi (A) is larger than that of Vi’ (A) for all A, we conjecture that there

exists a cutoff point A} such that

max(V (28). 73 () = { Q) FA s (52)
and
Vi (A3 = Vi (a9, (53)
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Now we show A} > Af. Suppose the reverse holds, i.e., A5 < Aj. It follows that V5 (A}) =
U + P, and (53) can be simplified into

1+ A3+ RE [V5 (A), Vg (A
Utpy=-—2T" Lii ), Ve (A] (54)

On the other hand, we have the following chain of equalities:

A AT =A@ ®) b © h
= VP (AF) = VB (A = Vo' (AF) — P
+)\,uf—|-/-€+7“ K4 1(0) 2(0) 2(0) 2
@) 1+ A + £E [max {V5 (A), V' (A")}] .
= J— 2,
K+

C

where (a) is due to (47), (b) is due to (46) and (c¢) and (d) are satisfied by construction. Rear-
ranging, we have

14+ A + wE [max {V5 (A) V5 (A)}] AR — A
K+r AMiS+Kk+r K4+T

U+ P, = (55)
Note that the L.H.S of (54) is equal to the L.H.S. of (55), so their R.H.S. have to be the same,

that is
A S
;: K+ AS* /1’1 A*
Api + K+ Api+r+T

Since Aj < Aj*, this implies Aj < A3 < Aj*, which is inconsistent with the assumption A3 < Ag.

Hence, we must have A5 > Af. In this case, we have

Aui A5 — A
M +E+r K4T

V3 (83) =V (A3) + Bo=U+ Py +

Therefore, (53) implies

1+ A+ &E [max {V5 (A"), V' (A)}] Aps A3 — Af

U+ P, -
T K+ Api +E+T KET

(56)

Since the L.H.S. of (55) and (56) are the same, so are their R.H.S. Equalizing their R.H.S and

rearranging, we have

2 O T NSt R4r 2 0/
which immediately implies
5 =AF =A™

212



Step III. We determine the optimal strategy for an owner of asset 1.

The slope of Vi (A) is given by

dvls (A) _ 7)\“11,41_54_7‘, if A< 30
dA L if A> Ag

K+1?

A AG+(s+r) AG* € (A%, A
, .

where Ag = YT

The slope of V" (A) is given by

avir(a)y 1

dA K47

(57)

(58)

Note that the slope of V; (A) and V{" (A) are the same for the region A > Ag. If V#(Ag) >

Vlh(ﬁo), then V# (A) > V] (A) for all A, which means that any owner of asset 1 strictly prefers

to sell rather than hold. We therefore have Vf(ﬁg) < Vlh(ﬁo), so there should be a cutoff point

A (<L ﬁo) such that

Vi (A),if A < AT

max{V}’ (&), V{" (A)} = { VI (A),if A > Af

and

VP (A7) = Vi (A]).

With these in hand, we now derive a relation between Afj and A7.

From (57), we obtain

Vi (A]) + sy i A < A,
Vi (A) = it

s * AO_AT Afzo . >
Ve (A + il + S A > A

Since A} < Ao, we have the following chain of equalities:

—~

Datrvi(a1) Destnvi (A7)

A

@ L+ AT RE [max {1 () V(&) ]+ U+ P
Vi (A7) =

)\u’{—l—kﬁ-r

_ ("”FT)Vf(Ab’{)JFW? (U+ Py) @0y p
>\,U,1+I€—|—’r’
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where (a) and (b) are satisfied by construction, (c) is due to (60) and (d) is the result after some

rearrangements. Therefore, (62) and (60) lead to

N €
1

Since V{* (A) is linear in A as shown in (58), we must have

h *\ _ 1/h * M: Ag — A7
Vi' (Ap) = Vi' (A7) + prays U+ P+ pyrpant (64)
On the other hand,
(;)(lerr)U
(@) b Axy (B A [Vlh (Af) — Pl] + kE [maX{Vf’ (A’) ,V2b (A/) 7Voh (A’) H
U=V (Ag) = =
ui+rK+r
Aus Vh AX) — P U
- WS P DT @ 5, (65)

Api+r+T
where (a) is due to (45), (b) and (c) are satisfied by construction and (d) is the result after some

rearrangements. Substituting (64) into the above equation and rearranging, we obtain

A= AT = A", (66)

Step I'V. We derive Py, the price of asset 1. For this, we first calculate E [max {Vf (A), V] (A)}] ,
which will be used in what follows. According to the optimal strategy for an owner of asset 1

specified in (59), we know

A
Ve (A)dF (A) + / VI (A)dF (A).

*

B [max {17 @), @} = [

Here, V" (A) can be expressed as

A — A*

VH(A) =V (A + =—

)

and V¥ (A) is determined by (61). We then obtain

A* A
Jo F(A)dA [ F(A)]dA
M+ k4T K+ '

E [max { V7" (&), v (&) }] = v (ap) - (67)
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Furthermore, we have

1+ A* + 5E [max { V5 (A'), V{* (A))}]
K+

Vit (A%) = ; (68)

which is obtained from equation of V{* (A1). Substituting this into (67) and rearranging, we have

N X
E [max{Vf (A), v (A)H = ”:fr :;AT - fguf{i(fldf L dall KiiA)] B (69)

So far we have obtained two expressions of V{* (A*), (63) and (68). Equalizing the terms on

R.H.S. and substituting out U given by (49), E [max {V{* (A),V{" (A)}] given by (69), we obtain

P =

1+A*+ [fm [1—F(A)]dA fo (A)dA (70)

Apy + K+ Ay + K+

T r

Step V. We derive Py, the price of asset 2. For this, we first calculate E [max {VQS (A, VZh (A) }] .

According to the optimal strategy for an owner of asset 2 specified in (52), we know

A a
E max {15 (A), W ()} = [ w(@)ar@)+ [ Wa)aF@),
0 A
where V3’ (A) is given by (51) and Vi (A) is given by
AT @ a2 AT O p

Vi (A) = Vi (A
2 (A) = Vo (A7)+ k4T k4T NGR4T Rt et

where (a) is due to (53) and (b) is due to (51).

After some algebra, we have

Mg [ar L= F(A)]dA f** — F(A)]dA
s h _ 1 A A
E[max{‘@ (A), V2 (A)}]_U+P2+W+HT — — .

(71)
We use (55) to derive the expression of P,. Substituting out U given by (49), E [max { V5 (A'), VJ* (A)}]

given by (71) and rearranging, we obtain

r Ay + K+ ro

P, = (72)

Step VI. We now determine pu5, u8, u?, M(})Z and cutoff points A*, A**. Recall that we have

b
1

B = = gy

215



Plugging % = X5 into the inflow-outflow balance equation of buyers of asset 1 (equation (5)

in the paper) and rearranging yields
(b + Xo o+ 1) F(A™) = il = Myt + (4 + X+ 1) F (A7), (73)

Plugging pf = X3 into the inflow-outflow balance equation of inactive non-owners (equation (7)

in the paper) and rearranging yields
Rpg = MNP + R (MSL + s+ X2> F(AY).

The R.H.S. of these two equations are identical, so are their L.H.S., i.e.,

A Xy

(%) 4 Xo + b 4+ Xo + b

Due to the total population constraint (equation (11) in the paper),
h b _ h s\ _
Ho +X2+,Uzl =N — (,Ul +,le1> —N—Xl,
where we have used the market clearing condition for asset 1 in the last equality. Hence,

Substituting out F (A**) and term (uf + Xo + p}) in (73), we obtain
B (N = X1 = X5) = iy = A ()2 + 5 (N — X1) F (A7), (74)

The inflow-outflow balance equation of inactive owners (equation (7) in the paper) can be

rewritten as
i+ A () = i (15 + b ) F (A7) = X0 F (A7), (75)
where we have used the market clearing condition for asset 1 again.

Putting (74) and (75) together and cancelling out F' (A*), we obtain a quadratic equation of

M-

K kX X1+ Xo
(M1)2+X'LL1_ )\1<1— >:
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This equation has two real roots with different signs and we have to pick the positive one, which
is exactly equation (30) in the paper. Substituting the closed-form expression of i into (74) gives

the expression of F' (A*).
Step VII. We study type distribution for each kind of investors in the steady-state.

We use g7 (A), where x = b,s,h and i = 0, 1,2, to denote the density of investors with value
funcion V;* (A). Integrating g7 (A) over [0, A] should be equal to the population size of investors

for each kind:

A
JRINEINSTS
0
For any A, the following identity should be satisfied:

96 (A) + g7 (A) + g5 (A) + g5 (A) + g5 (A) + gf (A) + g7 (A) = Nf(A). (76)

Since one can sell or buy asset 2 immediately, we have g5 (A) = o(1) and g5 (A) = o(1) for

all A.

To determine g{b (A) on its support [A*, m , we consider the flows in and out of the population
of inactive owners of asset 1 with types in [A, A + dA]. The inflows consist of: 1) those sellers
of asset 1 whose newly-drawn types lie in this interval (kuf f (A) dA), 2) those inactive owners of
asset 1 whose newly-drawn types lie in this interval (kuf f (A) dA), 3) those buyers of asset 1 who
meets sellers and trade (Aujg? (A)dA, given A € [A*, A**]). The outflow is kg} (A) dA, coming
from those inactive owners of asset 1 who experience type changes and whose newly-drawn types

are in this interval. The inflow-outflow balance equation yields

K (ui + u?) F(A) +Aig] (A) Xjas,ax (A) = kgl (A), for A € [A*A]

Here, X{a+ a=+) (A) is an indicator function that takes on the value of 1 if A € [A*, A*™*] and 0

otherwise.

Since 3 + pf = X1, we obtain

_ [ X (D) + 2uigh (D) A€ [AY, A™]
a1 (A)_{ Xif(A) 191 ’lf AE(A**,N .
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When A € (A§, A§*), (76) becomes

g (A) +g1 (A)=Nf(A).

Substituting g7 (A) out and rearranging, we obtain

KA =7 (Aﬁfj)f_(i)w), for A € [A*, A™].

Hence,

h _ N—W f(A) . AG[A*,A**].
(&) {)[(Lf(A) ] O Ae (av B

Following similar procedure, we can show that g& (A), g5 (A) and g& (A) are proportional to

f (A) on their supports respectively. Therefore, we can have

(A = <N—X1—X2—ul>g(<§,?)forAe[o,A*J,

gig (A) = Ml;éﬁz) for A € [év A*] )

gh(A) = (N—Xip)f(A) for A e [A™A].

Q.E.D.
6 Proof of Corollary 1

With f(-) in (36), Proposition 3 implies that LP is increasing in Xs if and only if

1 (1-B)a+1 x *k
A s (A™)

Ni (N — X1)e

ISHL
|
©

: (77)

where B € (O, %) is given by
/\H2Xl F (A*)

B = .
(5) 4 MXaF (A% + (5 + 1)/ (5)° + M Xa F (&%)

There are 3 cases. Case 1: If a < £, (77) can be rewritten as

i_p Na
1-B)a+1 > 1-
Lo B LT AR (A7) (N = Xy)e
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The left hand side (LHS) of the above inequality is smaller than 1, while the right hand side

(RHS) is larger than 1. So, the inequality never holds and LP is decreasing in Xj.

Case 2: If % < a < a1, where a; is given by

a _ﬂ<1+EF(A**)>+ ﬂ 2(1+KF(A**))2_|_1(1_|_KF(A**))
'7 B r 2B r B r ’
the LHS of (77) is negative while the RHS of (77) is positive, so the inequality never holds.
Therefore, LP is decreasing in Xs.
Case 3: If a > aq, (77) holds if and only if

N —-X; (1-B)a+1 & e |
N <[1_(a+1)(aB—1)rF(A )} ’ (78)

Note that the LHS of (78) is between 0 and 1. The RHS of (78) is increasing in a. Moreover,
RHS = 0if a = a1 and RHS>1 if a is sufficiently large. Hence, there exists a unique @ > a; such

that

N—Xl_{ (1-B)a+1 &
L

N a+1)(@B-1) o (A**>] (79)

and inequality (78) holds if and only if a > a.

Therefore, combining all three cases, we obtain that the liquidity premium is decreasing in Xs

for a < @ and increasing in Xs for a > a.
7 Proof of Proposition 5

We first compute an investor’s average value function across A in the steady state. Recall that
g¥ (A), where x = b,s,h and ¢ = 0, 1,2, represents the density of investors with value funcion
V% (A). Since one can sell or buy asset 2 immediately, we have g5 (A) = o(1) and g5 (A) = o (1)
for all A. Now, we list out the steady state type distribution and value function for each kind

of investors as follows: 1) inactive non-owners: V@' (A) = U is given by (49) and gf (A) =

(N — X7 — Xo—pq) % for A € [0,A*]; 2) buyers of asset 1: VP (A) is given by (47) and

¢ (A) = ulﬁ for A € [A*, A**]; 3) inactive owners of asset 1: V* (A) = U+ P+ A,;AT*
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for A € [A*, A**] and

— A * K%
g (D) = [N F(A**)—F(A*)] F(A), for A € [A* A
X1f(A), for A € [A**7m

I

4) sellers of asset 1: V& (A) = U+ P, + ﬁ for A € [A,A*] and ¢f (A) = g FJ,C((AA*)) for

A € [A, A*]; 5) owners of asset 2: V' (A) = U4+Py+2 HJH, /\Al:;ﬁ:r and g (A) = (N — X1) f(A)

for A € [A**,N.

The expected welfare is given by

1 A* A** A*
BV(A)] = + [ | @@t [ vi@g@aas [ @)@
A A
v v ayan s [ Vo) e a)an
A* A**
11X+ Xy A Th+ 1z
o B ) NG e vt (80)

where

L = <1—)]§1>/f**[F(A**)— dA+/A*

b L[ e

Note that the first term in (80) is the expected welfare with no friction, i.e., the first-best case

and the second term is the welfare loss due to search friction. Since p; itself is also a function of
A, we will it as pq (N).
We introduce a function
2 + Iy

G(l’,y):—m, fora:>0,y>0.

One can show that G (Auq (A), g (A)) is strictly increasing in A and strictly concave in A and

converges to zero when A\ — oc.

The decentralized choice problem (expression (37) in the paper) is equivalent to
n%\axG ([adi+ (1 —a) Al g (A) 11 (X)) =T (N).
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The decentralized choice A? is characterized by FOC:
o () 2 (3 () () () "

The centralized choice problem (expression (38) in the paper) is equivalent to
max & (Mg (V) iy (A)) =T(A).-

Hence, A° is characterized by FOC:

G O (1) g (00 TREECH) B v ) (1) B

—T()\9). (82)
A=X¢

In the following, we will show that (82) and (81) have unique solutions, A\® and A%. Moreover,

if @ <1/2, we have \° > A%, If o > 1/2, we have

(a) if H(A\*) > T'(\*), then A4 > \¢ > \*,
(b) if H()\*) = I ()\*) , then Ad =)\ = )\*’

(c)if H(X) < T7(X\Y), then A < X¢ < \*,

where \* is uniquely determined by

VEZ+HANEXIF (A%) =k kD1 (20— 1) /K2 + AN KX F (A*) — &

_ R , 83
A rly (1 —a) /K2 + 4N (X1 F (A*) + Kk + 71 (83)
and H (\*) is given by
1 fh
H(\) = - L2 : (84)
(k) _ 2 * *
1+ DX FAT (1—a) VK2 +4ANEXG F (A% + k41
Let
— oG _ —G Ay (A) 1 (N))
HO) = () G2 O () () = o () 2SR,
K\ pr(A) A (A) + 5 =G Apg (A (V) | (N (V) I
2 My (N)+5 A (A + w47 2 Ay N+ 5 (V) +r+717

then FOCs (82) and (81) can be rewritten as

H()\d) —r ()\d),

K(\) = I'(X).



Since G (Mg (M), pq (N)) is strictly increasing and concave in A and K (A) = 9 (A\y; (M), pq (V)),

we know K (M) is positive and decreasing in A: K’ (\) < 0.
On the other hand, H () is positive and decreasing in .

We study K (\) — H (\):

Ml()\)
KR = (A)_[Aul()\)+m+r]2 A
where
1 K K K+

It can be shown that p; (A) is decreasing in A and Ay (\) is increasing in A. It follows that J ()

is decreasing in A\. Now we check the boundary conditions:
K r .
JMh= = (1-0) Sht (2 —a+ ;) LX 1 F (A%) >0,

IO = (3-) 50

If o <1 then J(A\)|,_,, > 0and J(A) > J(A\)|,_, > 0 for any finite A because J (A) is
decreasing in A. That is, K (\) > H ()\) for any finite A. In this case, we have \° > A%, To see

this, we suppose the reverse, i.e., \> < \%. We have the following chain of inequalities:

o) La () a0 Y ko Lo,

where (1) is by definition, (2) is because H (-) is decreasing, (3) is because K (A) > H () for any
finite A, (4) is by definition. On the other hand, since I/ () > 0, we should have I'" (\%) < I (A?%).

This results in a contradiction.

If a > 1, then J ()| _,, <0. Then, there exists a unique A\* such that

K\ H(\), or J(A) 0 iff A A%,

AN Y
ANV
VoIl A

We have the following three subcases.
Subcase I: if H (A*) > T" (\*), then A% > X¢ > \*.
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We first show A° > A* and AY > \*. Both can be proved by contradiction. If A% < \*,
then we have I” ()\d) =H ()\d) > H (\*) > IV (\*), where the first inequality is because H ()
is decreasing. On the other hand, we should have IV (A?) < I" (\*) because I'" (-) > 0. We thus

present a contradition. The same logic leads to A\° > \*.

Next, we show A\° < A%. Suppose not, i.e., A > A\?. We therefore have the following chain of
inequalities:

2 3
r (x9) Oy (x) P a0 Y ko Do),
where (1) is by definition, (2) is because H (-) is decreasing and we have set \° > A°B, (3) is
because H (\) > K (\) for any A > A* and here A\ > \*, (4) is by definition. On the other
hand, it must be the case that I' (A\?) < I (\°) under the assumption A° > A%. This results in a

contradiction.
Subcase IL: if H (A\*) = I’ (A\*), then A = X\¢ = A\*. This is obvious.

Subcase III: if H (A*) < TV (\*), then \* > A° > X%, This part can be proved in a similar way

as in subcase 1.
We therefore arrive at result (a), (b) and (c) in the proposition.

Now we determine the value of A* and H (A\*). Setting J (A*) = 0 and rearranging, we obtain

K

oa—L_ 2
(V) = 26t 2 /R2HAN KX F(A)
251 - T‘IQ 1—a+ K+ :

VRN kX1 F(A*)
The LHS is decreasing in \* while the RHS is increasing in A\* (because the numerator is increasing
in A* and the denominator is decreasing in A*). To ensure the existence and uniqueness of \*, we

only need to check the boundary conditions:

N ki 1—«
LHS’)\*:O = XlF (A ) > 0 > —Em - RHS’/\*:O,
K
Iioa—1
LHS|,._, = 0< :T; —2 = RHS|,._,.

Plugging the expression of u; (\*) into the L.H.S., we know that A* is determined by (83).
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We next determine G (\*):

C fhit b (N I
Npg(N)+ k47 (1 —a) /K2 +4ANRX F (A + k47

G N (A7), g (X)) =

Finally,
—G (N g (A7), 1y (A))
N (N +K+r

H(X) = K (X) = apg (A7)

gives (84). Q.E.D.

8 Proof of Proposition 6

To establish the equilibrium when asset 1 has default risk, we first construct value functions for
investors and analyze their optimal strategies in Step I. We then do demographic analysis in Step

II.

Step I. In this version of the model, there is a primary market. Each instant [¢, ¢+ dr]|, 7 X dt
units of asset 1 is issued to the economy. The issuers search in the market for asset 1 until they

sell their asset to buyers, and then leave the economy.

We use ¢ to denote the amount of asset 1 that has been issued but is still held by issuers. The

value functions satisfy the following equations

Vo A) = A(pf +q) [Vlh (A) — Pl] +xE [max {Voh (A", VP (A, VP (A/)}] (85)
! a AMpi+q)+r+T ’

1+ A+ amax {V(A), VP (A), VI (A)} + &E [max { V5 (A"), V" (A)}]

via) = K+r+m , (86)
Ve (a) = 1+ A+ (Aub + ) maX{%};\(MAI{)J_‘E}:_AZ }_'_:)\MI{P1+HE [max{Vf,Vlh}] 7 (87)
V2 (A) = V3 (A) - By (88)
Vi) = max{V (), ()} + P, (89)
Vi Ay = 1+A+kE [mai{—:/f (A), Ve (A} 7 (90)
V) = B max (W (&)17 (&), W (&) }]. (91)

It is direct to see that V' (A) is constant for all A and we denote it by U. Vi (A) is linear in
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A with an upward slope H%FT We still conjecture that there exists two cutoff points, A(T) and A(T)T,

such that
VI(A),if A e O,Ag)
max { Vi (A), V¥ (8), 13 (A)} = { VP (4), ir A e (a],All) (92)
VP (A),if A e Ay,z}
and

vf(Ag):lLV?(Ay):=V$<AH)- (93)

With (92) in hand, we are able to determine the slope of V}* (A) in the interior of each region:

it ae (0,a]),
dvi" (A) _ Npgta)tetr f At
CdA (n+r)[ (1§+q)+rtr+r]’ ifAe <A0’ Ao ) ’ (94)
L ifAe (AI,T,A
and the slope of V? (A)
A(u5+q) . t
wr | TR A (0.88).
1 _ Auita : T ATT
dA (n-i-r)[)\gui-&-qg-&-m-&-r-&-ﬂ]’ it A€ (AO’ Ao ) ' (95)
Alrite

: A
(k) (M +a)+r+r]’ if A€ (AO ’A> '

Integrating (94) and (95) while taking (93) into consideration, we obtain

Mni+a) (A_AtTJ) : 1
U+ (Ktm+r)[A (;El+q)+r;+r]’ ifAe [0’ AO) ’
A(s+a) (A-A]
VP(A) = 1 0 : INA 96
7 (A) U+ G ZQHW;W], if A € (AE, A} )), (96)
Aui+a) (A -af Aui+a) (a-aft) -
U+ (k) Mg +a)+rtr+m] (st [M(p§+q) +rt+r]’ if A€ (AO ’A] )
A +a) (A - A A — Al
VP(A) = U+ _ ( ) 0 (97)
(K+r) A +q) +r+7r+7] K4
We then use (18) to simplify the expression of U:
A1 FA)yda (A
K A+ q) oy A=F (&) Sar (1= F (8))dA
U=-— + . (98)
r A+ FE+r+T K+r K+r

Likewise, it is easy to show that the optimal strategy for an owner of asset 2 is as follows:
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there exists a cutoff point A; such that

) Vi (A),if A < Al
max{V (8), V§ (&) :{ ) At (99
2 ) = 2
and
vs (al) =5 (al). (100)

Similarly to the proof of Proposition 1, we can show that A; = AET = ATt

We now determine the optimal strategy for an owner of asset 1. Differentiating (87) with

respect to A we obatin

s 1 - A
d‘/l (A) — b +rr4m’ I/f\A < Al’ (101)
dA LA > Ay,
where
A, - K+r+m t Alpi +4) ATE(AT ATT).
Api+q)+r+r+7 0 Api+q+r+r+m ° 0770
vy ()

IA— is given by (94).

We assume that there exists a cutoff point AI such that

VE(A),if A < Al

max{Vy’ (A) 7V1h (A)} = { VI(A),if A > A1

and
v (af) =w (al]).
Then following similar derivations from equations (61) to (64) in the paper (in Step III of

proof of Proposition 1), we can obtain

Al = Al = AT, (102)

Analogous to equation (66) in the paper (in the proof of Proposition 1), we obtain

i+ q = (103)

Step II. We now obtain the inflow-outflow balance equations for the population of investors of

each group. As shown in Panel A of Figure 1, the inflow to the primary market during [t, ¢+ dt] is
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wX1dt. We use ¢ to denote the amount of asset 1 in this primary market. Hence, the outflow from
this primary market has two components. First, mgdt of asset 1 default and leaves the economy.
Second, )\M{th issuers manage to sell their positions to buyers in the market for asset 1. Hence,
the inflow-outflow balance equation for the population of sellers holding newly issued securities is
given by

X1 = wq + Milq. (104)

(INSERT FIGURE)

Panel B summarizes the demographics for the secondary markets. Let g/ (A) be the density
of investors with value function V* (A). This function satisfies the accounting identity
a h h
/T g1 (&) dA = py'.
A1
The inflow-outflow balance equations for the population of sellers of asset 1, buyers of asset 1,

inactive owners of asset 1, inactive non-owners, are given by

rpt F (AD = M + wops} [1 ~F (AD] + s, (105)

. [F (Ay) _F (Ag)] + Rl [F (A;) _F (Ag)} t /A ?y g (A)dA,
= Mk (15 + q) + iyl [F (Ag) Y1-F (A(Tﬁ)] , (106)
aiss [1 = F (A)] + vk (5 + @) =l + il F (A1), (107)

s + M + kub F (Ag) + RS F (Ag) + W/A?(T) gt (A dA = kul [1 - F (Ag)] . (108)
1

The measures of buyers and sellers in market 2, ,ug and 15, are still infinitesimal

A

iy = & (ug’ + /Ll{) [1 —F (AET)} dt + Trdt/ " gr(A)dA, (109)

A0
i = e (ad)a 10

and during each instant [t,t + dt), the flow of buyers is equal to the flow of sellers

. (Mg + u*{) [1 _F (Ay)} + w/; g (A)dA = ki F (A;) . (111)

227



We now determine g{l (A) on its support {AJ{, Z] . To this end, we consider the flows in and out

of the population of inactive owners of asset 1 with types in [A, A + dA]. The inflows consist of:
1) those sellers of asset 1 whose newly-drawn types lie in [AI, A} ki f (A)dA), 2) those inactive
owners of asset 1 whose newly-drawn types lie in [AL } (kul f (A)dA), 3) those buyers of asset
1 who meets sellers and trade (A (1§ + q) g% (A) dA, given A € (Ag, A:ST)). The outflows consist
of: 1) those inactive owners of asset 1 who experience type changes and whose newly-drawn types
are {AJ{,Z} (kg (A)dA), 2) those owners of asset 1 whose types are in this interval and whose

asset 1 happens to default (mg} (A)dA). The inflow-outflow balance equation yields

o () Q)4 M+ @) () (8) gy = () (4), for A € [A]B].

Rearranging, we obtain

Rl +)IA) e A e [A;,Ag] U [AU,Z} :

P iac (A(TVAI)T) | (112)

h
G (B) =0 (gl ) (A)+AgH(A) (1)
T+kK

where g} (A) is the density of investors with value funcion V} (A). We do not have to obtain the

exact form of g% (A), but only need to keep in mind that

Al
uliz/T g1 (D) dA.
AO

We are then able to calculate the following three integrals:

Ab o (15 - uh
/ grayaa =SB pan paly)

* T+ K

i

Al k(5 + b b(,s
b u1+,u1) t t Apg (1] +q)
A dA = ———2[F(A)) - F(A —_
/AT gl( ) T+ K [ ( O) ( 0)]+ T+ K

A S h
h R it
J ot @an = SREE - Rl

With these in hand, we can simplify (106) to

(o L) (o) < o)) 820 () ()]

T+ K T+ K
(113)
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(108) to

T+ M + K (u’% + #’i) F (Aé) + W [F (Aé) ~F (AD] = Kpp [1 ~F (Am :
(114)

and (111) to
T+ K

(uff + b+ W) [1 _F (AE)TH = b F (A;) . (115)

Since owners of asset 1 include inactive owners and sellers in the primary and secondary
market, we have

X1 =pi +p5 +a. (116)
The market clearing condition for asset 2 is given by
_ . h
Xa = 5. (117)
Besides, market participants in all pools (except sellers of newly issued securities) should be
summed up equal to total population
P A s s+ s+ g = N (118)

In order to determine the value of these measures, we need to express every other measure as

a function of 1} as a first step and then obtain an equation to solve out 4.

Since ;4 and i are infinitesimal and (116) and (117) holds, (118) boils down to

W+ g =N—-X1— Xy +q. (119)
From (104), we know
7I'X1
= —- (120)
T+ A

Substituting (120) back into (119), we obtain

AL

h 1 b

=N-—-—Xg— ———X; — . 121
Ho 2 \ 1{ 1= M1 ( )
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Substituting (120) back into (116), we obtain
h s _ )‘Mll)Xl

+pi = . 122
1231 231 T+ )‘,uli ( )
From (105), we know
ph = —A it + 5 [1=F (a1)] + 4] (123)
rkE (A1>
Substituting (123) back into (122) and rearranging, we obtain
b F (A7
,U/i ) M1 ; 'K; ( 1) , (124)
T+ Apl + K+
M M+ R[1—F (A +7
,u? - X H1 H1 [ (A7)] . (125)

T+ A My +E+T

So far, we have already obtained the expression of q in (120), that of uf in (121), that of

in (124) and that of uf in (125), each as a function of x¢ (and also A} if needed).
We show in (102) that Ag) and AJ{ converge to a common limit AT as e — 0.
Equation (103) implies a relationship between ,ul{ and Af:
1 K+ T+xb  ow
F(Af) == (4 -1, 126
K (:u’]. + )\ Xl /.LI{ ( )

Using (122) to substitute out term (u} +pf) in (115) and (121) to substitute out term

(,u’(} + ull’) in (115) and rearranging, we obtain

<N - i R:fi;{) [1 —F (ATT)} = Xo. (127)

Similarly, we can show that (113) can be rearranged as

(3v- 2 ) o ) ()] = L 2 (W?F(N)ﬂ)w;. (129

T+ KT+ b T+er+ Ml \ M +r+7

Substituting out term F' (AfT) by using (127) and term F (AT) by using (126) and rearranging,

(128) boils down to

2
1 b+f<a+7r 7T—|—/\,ul{_1 71_?1%)\(/;[{) + 18+ Xo
K H1 A X1 /'L(i - N_L)"“lfxl ’
7T+H7r+)\,u’{

(129)

which is an equation of u?. Q.E.D.
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9 Proof of Proposition 7

From (41), we expand p$ as

e = mt V3 +0 (1/VA).

where

X1+ X
ml{:\/Xl [ﬂ'—i—fﬁ(l—l;Z)].

Al = A*+0<1/\5\>,

From (130), we can obtain

Xo

ATT = F_1<]_—M>+O(l),

T+K

where A* is given by (22). We can thus expand P; and the safety premium as

Py

SP

Therefore, when A is sufficiently large,

oSP
0Xo
0’spP
0X90m

Q.E.D.

- 17T—:—A7"Jr o (1) ’
T T
- r((lﬂ—:-Ar)) Foll).

we have

= rmrnnNf@an <Y

1
T+ r)ENf(AD <0
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Panel A: Primary Market Panel B: Secondary Markets
el F(A))dt

Sellers-1: pj KIS[1 = F(A))]de . | Inactive Holders-1: pff  fpeesremmennnses

H Lo . c"b * ++

b5 CR. S W » : o
X, d Apypide E‘I'll-hdf ".‘,- bo g\,k- RLL?(I—li"’Q)dt Eﬂdtf+ ‘g;i(_v_‘l)dﬂ E
¥ R : a S
b [r(ai) - Fapar Suverets u? U, i
uyers-1: p 5
Issuers-1: q KL F(A5)dt E :
Inactive non-owners: jif iwf[l - F(A3))dt :
\ 4
b w1 — F(ag)]de :
mqdt Aquyd = ¥ Buyers-2: |1} Gorrrnnanans ;
N
£
.‘\/ b
*pl F(85)dt > =
P h 2
Sellers-2; p3 Inactive Holders-2: urzl
wpl F(AS)de

Figure 1: This plot illustrates each investor group’s size and inflows and outflows. Panel A is for
the primary market for asset 1. Panel B is for the secondary market for assets 1 and 2. In Panel B,
the black solid arrows denote the flows induced by trading, the blue dash arrows denote the flows
due to the changes in investors’ types, and the red dotted arrows denote the flows due to the default

of asset 1.
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