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Abstract

The thesis examines how different aspects of market quality are affected by imperfect

competition. The first chapter presents a model of strategic liquidity provision in

a uniform-price auction that does not require normally distributed asset payoffs. I

propose a constructive solution method: finding the equilibrium reduces to solving

a linear ODE. With non-normal payoffs, the price response becomes an asymmetric,

non-linear function of order size: greater for buys than sells and concave (convex) for

small sell (buy) orders when asset payoffs are positively skewed; concave for large

sell (buy) orders when payoffs are bounded below (above). The model speaks to

key empirical findings and provides new predictions concerning the shape of price

response.

The second chapter analyses a market with large and small traders with differ-

ent values. In such market illiquidity and information efficiency are complements.

Policy measures promoting liquidity might be harmful for information efficiency and

vice versa. An increase in risk-bearing capacity may harm liquidity. An increase

in the precision of information may harm information efficiency. Increasing market

power or breaking up a centralized market into two separate exchanges might im-

prove welfare. Multiple equilibria, in which higher liquidity is associated with lower

information efficiency, are possible.

The third chapter (co-authored with Ji Shen) studies OTC markets. Traders

in a market a-la Duffie, Garleanu and Pedersen (2005) can search via Multilateral

Trading Platform (MTP), querying n dealers and running first-price auction among

them. Dealers have homogenous valuation for the asset, yet the distribution of bid

and ask prices is non-degenerate: uncertainty about the number of competitor deal-

ers responded induces mixed-strategy equilibrium. We provide testable implications

linking skewness and dispersion of bid and ask prices to dealers response rate in the

auctions.
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Chapter 1

Strategic Trading without Normality

1.1 Introduction

In many markets trade is dominated by large institutional investors (such as mutual

and pension funds) whose trades can affect prices. These investors often trade

strategically, taking their price impact into account.1 Empirical evidence documents

that prices react to orders of such investors in an asymmetric and non-linear way:

purchases typically have greater price impact compared to sells and price response

is a concave function of order size.2

Previous papers on strategic trading have often adopted a CARA-normal frame-

work for tractability: traders have negative exponential (CARA) utility functions

and asset payoffs are normally distributed. The CARA-normal models feature linear

equilibria (in which the price is a linear function of order size and purchases and

sells have the same price impact) which are hard to align with empirical evidence.

Normality also implies that higher moments play no role which may not be true

in practice, and that asset payoffs are not bounded which is unrealistic, e.g., due

to limited liability. In this paper I present a tractable model of strategic trading

that allows for general distribution of asset payoffs. I show that if asset payoffs are
1Some investors, such as J.P. Morgan or Citigroup, have in-house optimal execution desks

which devise trading strategies to minimize price-impact costs. Other investors use the software
and services provided by more specialized trading firms.

2Hausman et al. (1992), Almgren et al. (2005), Frazzini et al. (2014) find concave price reaction
functions (absolute value of price change as a function of order size) for equities. Muraviev (2015)
presents the evidence for options. He decomposes the price reaction function into inventory and
information components and finds that both are concave. Regarding asymmetry, Saar (2001)
summarizes the evidence that shows bigger price impact of buy orders compared to sell orders.
However, Chiyachantana et al. (2004) link the asymmetry to the underlying market condition and
find that in bullish markets buy orders have a bigger price impact than sells, while in the bearish
markets sells have a higher price impact.
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positively skewed and bounded the model can speak to key empirical findings con-

cerning nonlinearity and asymmetry of price impact. The main technical challenge

is that with non-normal distribution the traditional guess-and-verify approach is no

longer applicable as it is not clear what should be the guess. I propose a constructive

solution method that allows to overcome this difficulty and to solve the model in

closed form for any distribution.

I assume that CARA traders exchange a risky for a riskless asset over one pe-

riod. Traders have the same risk aversion coefficient and are symmetrically informed.

Trading is structured as a uniform-price double auction: traders submit simultane-

ously demand functions, and all trades are executed at the price that clears the

market. My main innovation relative to previous literature is to assume that the

distribution of the risky asset payoff is completely general save for the technical

restriction. The restriction requires that a risk function, a transformation of the

cumulant generating function (CGF) which I introduce in this paper, exists.3 This

restriction holds for any distribution with finite support as well as for many infi-

nite support distributions, including normal and mixture of normals. In addition to

the symmetric CARA traders, there is a “block trader” who submits an exogenous

market order of random size. Trade occurs because the CARA traders compete to

absorb part of the block trader’s order, hence providing liquidity to that trader. In

most of the paper I assume that the block trader’s order is independent of the asset

payoff, and so the block trader is uninformed. In that setting the unique source of

price impact is inventory risk. I also extend my model to allow the block trader’s

order to be correlated with the asset payoff. In that extension, price impact is driven

by both inventory risk and asymmetric information. The model is similar to Kyle

(1989), with the main simplification of absence of heterogeneity among strategic

traders (both in terms of information and risk aversion) and the main generalization

of allowing for non-normal payoffs.

In equilibrium, traders determine their optimal demand function knowing the

demand functions of all other traders. I show that the optimization problem is

equivalent to traders not knowing others’ demand functions but knowing their own

price impact (i.e., how their trade moves the price at the margin) for each order
3By definition, the cumulant generating function (CGF) is a log of a moment generating function

of the distribution. Given the CGF g(x) the risk function with a parameter a is defined as ρa(x) =´ 1

0
g′′(−t1−aγx)dt.
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size. This is an intuitive representation of the problem: real-world traders typically

have a market impact model that is an input in their optimal execution algorithm.

The equilibrium price impact function is pinned down by the requirement that it is

consistent with the demand functions of the other traders. The consistency require-

ment yields a linear ordinary differential equation (ODE) that I use to compute the

equilibrium price impact function in closed form for any probability distribution.

I show that the properties of the price impact function can be derived by those

of a risk function, which summarizes the probability distribution of the asset pay-

offs. I derive main properties of a risk function, in particular the ones related to

comparative statics, and believe that these can be useful for future research.

I show that the ODE for the price impact function can have a continuum of

solutions, even with a normal distribution. Thus, there is a continuum of equilibria.

Equilibrium non-uniqueness can be attributed to the following complementarity: if

strategic traders believe that the price impact is high, they provide less liquidity,

which confirms higher equilibrium price impact. In Glebkin, Rostek and Yoon (2015)

we study equilibrium uniqueness in demand functions. Applying the results from

the latter paper, a unique equilibrium with bounded payoff can be pinned down by

requiring prices to lie within asset payoff bounds. This requirement is intuitive: if

the price is outside payoff bounds the block trader gets negative profit with certainty

and hence should not trade. The requirement rules out equilibria in which CARA

traders’ price impact is too high, selecting the unique equilibrium. With unbounded

payoff the equilibrium can be selected by requiring the prices to be close to that of

an asset with an arbitrary close, but bounded payoff. This equilibrium corresponds

to the linear one under normality.

Using the characterization of the price impact function, I examine the relation-

ship between price and order size. When asset payoffs are positively skewed, small

purchases have greater price impact compared to small sells. The intuition for the

result can be seen by contrasting with the benchmark case where the asset payoff is

normally distributed and hence the skewness is zero. Consider first sells by the block

trader. The trader’s counterparties, who buy from him, receive a positively skewed

profit, which they like. Intuitively, positive skewness implies that positive surprises

to profits are more likely than negative ones. As a result, traders require a lower

premium for providing liquidity and the price reaction to the order is smaller than

in the benchmark case. For purchases, the trader’s counterparties, who sell to him,

10



receive a negatively skewed profit and require a greater premium. The price reaction

is greater than in the benchmark case. Consequently, with positive skewness small

purchases have greater price impact compared to small sells. Similarly, when asset

payoffs are negatively skewed sells have greater price impact compared to purchases.

The concavity of the price reaction function (absolute value of price change as a

function of order size) for large orders arises when asset payoffs are bounded. If asset

payoff is bounded below, e.g., by zero, the sell order cannot push the price below

zero. Consequently, the price reaction function for sells is bounded above, which

rules out convex shapes. Assuming a further mild restriction on payoff distribution

I show that the price reaction function is concave for large sell orders.4 Similarly,

if payoff distribution is bounded above and satisfies the same restriction, the price

reaction function is concave for large buy orders.

With positive skewness the price reaction function is concave for small sells and

convex for small purchases. As noted above, with positive skewness the price reaction

for purchases is smaller than that in a benchmark CARA-normal case, in which the

price reaction linear. This “smaller than linear” price reaction generates a concave

shape. For purchases, the price response is greater than that in a benchmark case,

which generates convexity. Similarly, with negative skewness, the price reaction

function is concave for small purchases and convex for small sells.

Summarizing, the baseline model can speak to two key empirical findings con-

cerning the shape of the price impact: the asymmetry and the concavity of the price

reaction function. With positively skewed asset payoffs the model predicts that price

impact of (small) purchases is greater than that of (small) sells, which is in line with

the evidence summarized by Saar (2001). With bounded asset payoffs the model

predicts concave price reaction function for large orders, consistent with the evi-

dence in Hausman et al. (1992), Almgren et al. (2005) and Frazzini et al. (2015). I

also derive new predictions. The model implies that difference in curvatures of price

reaction function for small purchases and sells is positive (negative) with positive

(negative) skewness. This prediction can be tested in equities market: individual

stocks have positively skewed returns, while returns on stock indices are negatively

skewed (e.g. Chen et al. (2001)). The effects of payoff bounds can be examined in
4The restriction is that the third derivative of the CGF, g′′′(x), does not change sign for large

enough x. In the numerical simulations (as well as analytic calculations, when direct calculation
of CGF is possible) I was unable to find an example of a finite-support distribution for which this
condition does not hold. Consequently, I believe that this restriction is mild.
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options market. Payoffs of puts, unlike that of calls are bounded above. The model

suggests that the price reaction to purchases should be more concave for puts rather

than calls.

In the extension of the model I show that when the block trader possesses pri-

vate information regarding the asset payoff, the price impact can be separated into

an inventory risk part and asymmetric information one. The bounds of the asset

payoff play the same role as in the case of no asymmetric information. Unlike that

case, however, there are additional determinants of the curvature of price reaction

function for small orders. In particular, the shape of the conditional moments (mean

and variance of asset payoff conditional on order size of the block trader) as func-

tions of order size also plays a role. For example, if (1) skewness is positive, (2) the

conditional mean function is convex and (3) the conditional variance is decreasing,

both inventory and asymmetric information components of the price reaction func-

tion are convex (concave) functions of order size for small buy (sell) orders. One

would not capture these effects in the jointly normal setting because, in that case,

the conditional mean is linear and the conditional variance is a constant.

In the extended setting, I also show that the slope of the information component

of the price reaction function is diagnostic of the degree of informed trading. This

slope is proportional to the slope of the conditional mean function. The latter shows

how a marginal unit liquidated or purchased by a block trader affects expectation

of liquidity providers regarding asset payoffs. Therefore, a higher slope of the price

reaction function indicates a more informed block trader.

This paper is related to three broad strands of the literature: strategic trading,

divisible good auctions, and models of asset trading without normality.

The literature on strategic trading dates back to Kyle (1985). The models typ-

ically feature asymmetric information and rely on CARA-normal assumptions for

tractability.5 The equilibria in those models are linear, which results in liquidity

measures being linear in the trade size.

The representation of equilibrium in this paper and the corresponding intuition

builds on the result of Rostek and Weretka (2015), who are the first to show that

the Nash equilibrium in demand submission games can be represented through two

conditions: the optimality of the bid given a price impact model and the consistency
5An incomplete list includes: Kyle (1985, 1989), Subrahmanyam (1991), Douglas and

Viswanathan (1996), Vayanos (1999, 2001), DeMarzo and Urosevic (2006), Rostek and Weretka
(2015). See also Brunnermeier (2001) or Biais et al. (2005) for a review.
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of the model. A related paper by Weretka (2011) defines a new equilibrium concept

in which traders are not price takers but slope takers. The consistency in that

paper is a part of that equilibrium concept. In both Rostek and Weretka (2015) and

Weretka (2011), however, the price impact is a constant, which is due to normality

in the first paper and is a part of the equilibrium concept in the second paper.

A number of papers seek to explain the shape of the price impact. Rosu (2009)

provides a model of the limit order book in which the key friction is costs associated

with waiting for the execution of the limit orders. Keim and Madhavan (1996) ex-

plain concave price impact through a search friction in the upstairs market for block

transactions. Saar (2001) provides an institutional explanation for the price impact

asymmetry across buys and sells. My paper adds to this literature by providing a

unified treatment of the properties of the price reaction function and linking them

to the shape of the probability distribution that describes asset payoffs.

The divisible good auctions literature commonly examines the two most popular

auction formats, namely the discriminatory-price auction (DPA) and the uniform-

price auction (UPA), that are used to distribute divisible goods such as government

debt, electricity, spectrum and emission permits.6 The key contribution of my paper

relative to this literature is to examine nonlinear equilibrium in UPA, solve for

equilibrium in closed form and to link the nonlinearities to the properties of asset

payoff distribution.

Wang and Zender (2002) consider both UPA and DPA formats in a CARA-

normal setting with random supply of the asset. They show that there is a continuum

of equilibria when uniform-price auction format is adopted. My non-uniqueness

result is thus related to the one in that paper. My main contribution relative to

Wang and Zender (2002) is to consider a more general setting allowing, in particular,

the asset payoff to be bounded. The latter enables me to use the selection argument

resulting in a unique equilibrium.

DeMarzo and Skiadas (1998, 1999), Breon-Drish (2015), Chabakauri et al. (2015)

and Albagli, Hellwig, and Tsyvinski (2011) study REE models without assuming nor-

mality. Palvolgyi and Venter (2015) demonstrate the existence of non-linear equilib-

ria with discontinuous price function in a standard CARA-normal REE model a la
6Such papers include Wilson (1979), Klemperer and Meyer (1989), Wang and Zender (2002),

Kremer and Nyborg (2004), Rostek and Weretka (2012) and Ausubel et al (2014). The papers
focusing specifically on finance applications, such as Kyle (1989), Vayanos (1999) and Rostek and
Weretka (2015) (which I mentioned in the strategic trading literature) also belong to this literature.
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Grossman and Stiglitz (1980) and Hellwig (1980). The traders in those papers are

competitive. Consequently, these papers abstract from price impact, which is the

focus of my paper. Rochet and Vila (1994) analyze a model a la Kyle (1985) without

normality and prove uniqueness of equilibrium.7 Their uniqueness result is in con-

trast to the multiplicity result in my paper, which extends the Kyle (1989) model.

Moreover, Rochet and Vila (1994) do not study how departures from normality af-

fect the shapes of the price impact, which I do. Biais et al. (2000), Baruch (2005)

and Back and Baruch (2013) study strategic liquidity provision without assuming

normality. However, the liquidity providers in their models are risk-neutral. Con-

sequently, there is no inventory risk, which is the main focus of my paper. Martin

(2013) introduces the language of cumulant generating functions (CGF) in a Lucas

tree asset pricing model with general (not log-normal) i.i.d. consumption growth.

This paper applies the language of CGFs and demonstrates that it is useful in a

strategic setting.

Finally, my paper speaks to a literature on optimal optimal dynamic execution

algorithms under exogenous and non-constant price impact (see, e.g., Almgren et

al. (2005)).8 My paper complements this literature by providing equilibrium foun-

dations for non-linear price functions.

The remainder of the paper is organized as follows. Section 2 presents the model,

and Section 3 solves for equilibrium. Section 4 derives the model’s predictions about

the price impact measures and solves the model for specific probability distributions.

Section 5 extends the model to the case where the block trader is informed. Section

6 links the theory to empirical evidence. Section 7 concludes. All proofs are in

Appendix A. Appendix B collects the main properties of the risk functions.

1.2 The model

There are two time periods t ∈ {0, 1}; two assets, a stock and a bond; and L > 2

large traders. The bond earns zero net interest, without loss of generality, as the

bond can be chosen as a numeraire. The stock is a claim on a terminal dividend δ
7Boulatov and Bernhardt (2015) demonstrate the uniqueness of a robust equilibrium in a Kyle

(1983) paper. They also derive, using a different technique, an ODE for price impact in their
model. Their model features risk-neutral market makers and normally distributed asset payoff.

8Other papers on optimal dynamics execution algorithms with exogenous price impact, which
can be linear or non-linear, include Bertsimas and Lo (1998), Almgren and Chriss (2001), Huber-
man and Stanzl (2005) and Obizhaeva and Wang (2012)
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characterized by the cumulant generating function (CGF)

g(x) ≡ logE[exp(xδ)].

I assume that the CGF exists for all x ∈ R.

The CGF contains information on the moments of the distribution. In particular

g′(0) = E[δ] ≡ µ, g′′(0) = V ar[δ] ≡ σ2,

g′′′(0) = σ3 · skewness, g(4)(0) = σ4 · excess kurtosis. (1.2.1)

The stock is in price-inelastic supply s, which is uncertain for large traders.

The supply s has a full support and is independent of a terminal dividend δ.9 I

interpret the supply as being provided by a block trader who trades with a market

order. In this interpretation, the uncertainty about s is due to the uncertainty about

the identity of the block trader. The uncertainty of the supply is important because

without it there is a dramatic multiplicity of equilibria, as is common in the literature

(see, e.g., Klemperer and Meyer (1989), Vayanos (1999)). The independence of the

supply s and the terminal dividend δ implies that there is no information to be

learned from observing s. With uninformative supply, its distribution does not

affect the equilibrium. The independence assumption is relaxed in the section 5.

The large traders are identical and maximize expected utility from their terminal

wealth W . I refer to a problem solved by the traders as problem P

max
x(p)

Eδ,s[− exp(−γW )],

s.t. : W = x̂δ − p̂(·)x̂.

As can be seen from the above, all traders have CARA utility with risk aversion

γ. They have no initial inventories of stocks or bonds.10 Their strategy is a bid

(demand schedule) x(p): the quantity of the risky asset they wish to buy (x > 0) or

sell (x < 0) at a price p. Traders are large in the sense that they can affect market

clearing prices p̂(·) and account for this effect. I use the notation p̂(·) (not just p̂)
9In what follows, I will abuse notation and denote the random variable and its realization by

the same letter. E.g., s may denote the random supply or its particular realization.
10This assumption is made to simplify the exposition. One can easily relax it as long as initial

inventories are symmetric across traders.
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to emphasize the latter fact.11

The trading mechanism is a uniform-price double auction. I denote the outcomes

of the auction (market clearing price and allocations) by hat. The quantity x̂ allo-

cated to a trader is his bid evaluated at the market clearing price p̂(·), x̂ = x(p̂(·)).

The market clearing price p̂(·) is determined as follows. Given the bids of the traders

(xi(p))i=1,L and a particular realization of s, the equilibrium price p̂(·) is the one

that clears the market
L∑
i=1

xi(p) = s.

If there are several market clearing prices, then the smallest of them is chosen. If

there are no market clearing prices, then there is excess demand at all prices. The

price is set to p = ∞ if the excess demand is positive and to p = −∞ if it is

negative. Such rules are the same as in Kyle (1989) and provide well-defined prices

for all possible strategies of the traders. In equilibrium, the bids will be such that

the finite market clearing price always exists and is unique.

Throughout the paper, I use the following notation. The certainty equivalent of

a position y in the risky asset is denoted by f(y). By definition, f(y) solves

exp(−γf(y)) ≡ Eδ[exp(−γyδ)].

It is clear that the certainty equivalent f(y) is related to the cumulant-generating

function as follows

f(y) = −1

γ
g(−γy). (1.2.2)

It can also be shown that the function f(y) is strictly concave.12

I also introduce the index of imperfect competition ν ∈ (0; 1] :

ν =
1

L− 2
∈ (0; 1].

Higher values of the index correspond to a less competitive market, and the limiting

case ν → 0 corresponds to perfect competition.
11To be more rigorous, p̂(·) is not a scalar (as would be implied by notation p̂) but a functional

that maps bids of all traders onto market clearing prices.
12See, for example, Gromb and Vayanos (2002), Lemma 1. It also follows from a strict convexity

of a cumulant-generating function (e.g., Billingsley (1995)).
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1.3 Equilibrium

The equilibrium concept is a symmetric Nash equilibrium (simply equilibrium in

what follows) and is formally defined below.

Definition 1. A bid x(p) is a symmetric Nash equilibrium if for any i = 1, 2, ..L,

given that the traders j 6= i submit bids xj(p) = x(p), it is optimal for trader i to

submit bid xi(p) = x(p).

I will focus on equilibria in which the bids are continuously differentiable. Before

proceeding to equilibrium characterization, I define several objects that will be used

in the following parts of the paper.

1.3.1 Residual supply, ex post maximization and price im-

pact

Given other traders’ equilibrium bids (xj(p))j 6=i for a given realization of s, rewrite

the market clearing condition as

xi(p) = s−
∑
j 6=i

xj(p). (1.3.1)

The right-hand side of the equation above,

Ri(p; s) = s−
∑
j 6=i

xj(p), (1.3.2)

is called the residual supply. The subscript i indicates that this is a residual supply

faced by the trader i.13 The inverse function, Pi(x; s), solving

x = s−
∑
j 6=i

bj(Pi(x; s)), (1.3.3)

is called the inverse residual supply.14 The locus

Ci(s) =

{
(x, p)|x = s−

∑
j 6=i

xj(p)

}
13Because the equilibrium is symmetric, I will often omit the subscript i for the residual supply

when it does not cause confusion.
14The equilibrium bids are shown to be strictly decreasing. Therefore, the inverse functions in

this section are well defined.
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is called the residual supply curve.

As follows from (1.3.1), from the perspective of a particular trader, the market

clearing price and quantity are determined by the intersection of his bid and the

residual supply curve. Each realization of s corresponds to a horizontal parallel

shift of the residual supply curve C(s). There is a price-quantity pair M∗(s) =

(x∗(s), p∗(s)) on C(s) that maximizes the utility of a trader. I call the point M∗(s)

the optimal point. If there exists a bid that intersects with each realization of

the residual supply at the optimal point, then such a bid is ex post optimal, i.e.,

it produces optimal price and quantities for any realization of s . A bid given

parametrically (as a function of s) by (x∗(s), p∗(s)) is clearly such a bid. This bid

is clearly optimal ex ante and solves problem P .

The process of finding the equilibrium bid can therefore be simplified to finding

the locus of ex post optimal points (x∗(s), p∗(s)) corresponding to different realiza-

tions of s. The locus (x∗(s), p∗(s)) is a parametric representation of the bid. The

latter problem, which I call ex post optimization and denote PEP , can be written

as15

(x∗(s), p∗(s)) = arg max
x,p
{f(x)− p · x} , (1.3.4)

s.t.: (x, p) ∈ C(s).

The optimal point maximizes the certainty equivalent of a position x in risky asset

f(x) minus the costs of reaching this position, p · x, on a given residual supply real-

ization. Figure 1.3.1 provides an illustration of the ex post maximization procedure

outlined above.

Apart from being helpful in ex post maximization, the residual supply is also a

useful object because it allows one to define the price impact. I define it analogously

to Kyle’s lambda: it is the slope of the equilibrium inverse residual supply evaluated

at the quantity allocated to the trader in equilibrium. More precisely, consider a

profile of equilibrium bids of the traders. Denote by si (x
∗) the residual supply

realization such that a trader i is allocated x∗ given the profile of equilibrium bids

(in the symmetric equilibrium, si (x∗) = Lx∗). The price impact is by definition the

slope of Pi (x, si (x∗)) evaluated at x∗

15The idea of finding the equilibrium in games in which players submit demand schedules by
means of ex post optimization is not new. Klemperer and Meyer (1989) and Kyle (1989) were
among the first to develop it.
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Figure 1.3.1: The figure shows realizations of the residual supply curve corresponding
to the realizations of supply s ∈ {−3,−1, 1} (thick black solid lines). On each curve,
there is an optimal point M(s) that is marked explicitly in the figure. The set of
such optimal points represents the equilibrium bid (dashed line). The figure also
shows the price impact at point x = 1/3: it is a slope of the inverse residual supply
corresponding to s = 1 (L = 3 for the figure above).

λi (x
∗) ≡ ∂Pi (x, si (x

∗))

∂x

∣∣∣∣
x=x∗

. (1.3.5)

I show that the equilibrium bids are strictly decreasing. This implies that the

inverse residual supply is strictly increasing and there is always only one point at

which it intersects with the equilibrium bid. Therefore, for a given x∗, there is

only one realization of the inverse residual supply that intersects with the bid at

x∗ and only one corresponding value of the slope ∂P (x,s(x∗))
∂x

∣∣∣
x=x∗

. Therefore, λ is a

well-defined object: it is a function of x∗ , and it depends on x∗ only (and does not

depend, for example, on s).

The price impact shows the equilibrium price sensitivity. For a given realization

of s (producing x∗ for a trader of interest), holding the bids of other traders fixed,

if the trader of interest modifies his bid in a way that he is allocated x∗+ ∆ instead

of x∗ , the price will change by λ(x∗) ·∆.

1.3.2 Characterization of the equilibrium

I first derive the equilibrium characterization heuristically to show the intuition and

then justify the derivation in the Theorem 1 below.
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Consider first a competitive (price-taking) trader and his equilibrium bid. He

solves

max
x

f(x)− px. (1.3.6)

His inverse bid p = I(x) is determined by the first-order condition in the above

problem

f ′(x) = p.

A strategic trader accounts for the fact that he can move prices, and his first-

order condition will have a new term that is due to price impact

f ′(x)− ∂p

∂x
x = p. (1.3.7)

Once the large trader knows the price impact ∂p
∂x
, he is able to solve for his optimal

bid from the first-order condition above.

Suppose that each trader has amodel l(x) = ∂p
∂x

of his price impact. This function

shows how much, at the margin, the trader of interest can move prices if he trades

x. This model, together with first-order condition (1.3.7), determines his optimal

(inverse) bid

f ′(x)− l(x)x = p. (1.3.8)

In a Nash equilibrium, the models cannot be arbitrary. The way to pin down the

equilibrium price impact model is to require it to be consistent with equilibrium

demands of the other traders.The consistency condition requires assumed price im-

pact l(x) to be equal to the equilibrium one, the slope of the equilibrium inverse

residual supply, i.e., l(x) = λ(x). Intuitively, an inconsistent price sensitivity model

will produce suboptimal bids and, therefore, cannot be an equilibrium because the

traders will have incentives to deviate.

Consistency implies an ODE for price impact function. In the symmetric equi-

librium, there are (L − 1) identical bids contributing to the slope of the residual

supply. The slope of the residual supply is thus

slope of the residual supply = −(L− 1)
1

I ′(x)
.
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The minus is to account for the fact that the residual supply is upward-sloping while

the bid is downward-sloping; I also exploit the fact that the slope of the bid is the

reciprocal of the slope of its inverse. The slope of the inverse residual supply is the

reciprocal of the above; therefore,

λ(x) =
−1

L− 1
I ′(x). (1.3.9)

The inverse bid is given by (1.3.8), which, accounting for the consistency con-

dition l(x) = λ(x) becomes I(x) = f ′(x) − λ(x)x. The slope of the inverse bid is

thus

I ′(x) = f ′′(x)− λ′(x)x− λ(x).

Combining the above and (1.3.9) yields the ODE

xλ′(x) = (L− 2)λ(x) + f ′′(x). (1.3.10)

The equilibrium bid should therefore satisfy two conditions: the optimality (equa-

tion (1.3.8)) and consistency of the model (equation (1.3.10)). The third condition

was used implicitly: for the inverse bid and the inverse residual supply to exist, the

bids should be monotone. The analysis in Appendix C shows that monotonicity

should hold in equilibrium, as the second-order conditions are violated otherwise.

The theorem below summarizes and justifies the above heuristic derivation.

Theorem 1. The bid b(p) is an equilibrium if, and only if, it satisfies the following

three conditions:

(1) The bid b(p) is optimal given a model l(x) of price impact

f ′(x)− xl(x) = p⇒ x = b(p). (1.3.11)

(2) The assumed models of price impact are consistent, i.e., l(x) = λ(x). The

latter condition is equivalent to the following ODE

xλ′(x) = (L− 2)λ(x) + f ′′(x). (1.3.12)

(3) Monotonicity: 0 < λ(x) <∞∀x.
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I follow Rostek and Weretka (2015) in using the representation of equilibrium

through optimality and consistency conditions because it captures nicely the decision-

making of real traders. As in real life, traders have a market impact model and de-

termine optimal bids (do the optimal trade execution) given this model. In a Nash

equilibrium, the price impact model is specified by the consistency condition. The

main contribution relative to Rostek and Weretka (2014) is to derive the consistency

condition when price impact is a function, not a constant. The fixed point condition

then results in an ODE, not an algebraic equation.

The above representation is also very useful for solving the model. To find an

equilibrium bid, one has to find the equilibrium price impact, which satisfies a linear

ODE (1.3.12). The latter is easy to solve with standard methods.

1.3.3 Solution

In this section, I provide the solution to the model. I solve for the equilibrium

strategies of traders, their bids, and the corresponding equilibrium price impacts.

Before doing so, I introduce the new object that will be helpful in the analysis that

follows.

Risk function

I introduce the following transformation of the cumulant-generating function, which

I call the risk function. The risk function with a parameter a is given by

ρa(x) =

ˆ 1

0

g′′(−t1−aγx)dt.

This function summarizes the relevant risk inherent in the distribution of the ter-

minal payoff δ when the trader changes his position in the risky asset from zero to

x.

As can be seen from the above, for the normal distribution for which all risk is

summarized by the variance (σ2), the risk function is equal to σ2. It is also clear

that the risk function evaluated at zero is equal to variance

ρa(0) = g′′(0) = σ2.

However, the main justification for the function ρa(x) as a measure of risk comes,
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of course, from the equilibrium. We will see that the risk function appears in the

expressions for equilibrium objects in a general case where variance is present in a

CARA-normal case. See the remark below.

Remark 1. We will see that the results under a general distribution can be obtained

from a CARA-normal case by substituting ρa(x) instead of σ2 as a measure of risk.

The value of parameter a differs depending on where the risk function appears.

The risk contributing to price impact function (arising due to strategic interactions)

is measured by the risk function with the parameter a related to the degree of

competition in the economy, a = 1 + ν. In all other cases, the parameter a is equal

to zero. In other words, one can obtain the results under the general distribution by

substituting ρ1+ν(x) instead of σ2 when computing the price impact function and

substituting ρ0(x) instead of σ2 in all other cases. The shapes of liquidity measures

and the important comparative static results will be determined by the properties

of risk functions that I present in Appendix 1.9.

CARA-normal benchmark

I begin by investigating the CARA-normal version of my model. The results for this

case are well known, and the following corollary to Theorem 1 summarizes them.

Corollary 1. Suppose δ ∼ N (µ, σ2). There exists a linear equilibrium, given by

λ = νγσ2; (1.3.13)

I(x) = µ− γσ2x− λx. (1.3.14)

Proof. In a linear equilibrium, the price impact is constant. Plugging λ′ = 0 into

(1.3.12) yields that λ = −νf ′′(x). For a normal distribution, f ′′(x) = −γσ2, and

hence (1.3.13) and (1.3.14) obtains.

Equation (1.3.13) demonstrates that there are three sources generating the illiq-

uidity (λ): imperfect competition (ν), limited risk-bearing capacity (γ) and the

riskiness of the asset (σ2 ). The higher the risk, the lower the risk-bearing capacity;

the lower the competition, the higher the price impact.
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Further observe that relative to the competitive case (for which ν = 0), the

traders reduce their bids: they bid smaller quantities for a given price. This is a

consequence of imperfect competition among traders and is a standard result for

divisible good auctions (see, e.g., Ausubel et al. (2014)).

General case

To construct an equilibrium in the general case, I divide the problem into two. I first

find the equilibrium price impact. Once it is found, it is easy to find the equilibrium

bid from the first-order condition (1.3.11).

According to Theorem 1, a function λ(x) is an equilibrium price impact if and

only if it satisfies the ODE (1.3.12) and 0 < λ(x) < ∞. The equation (1.3.12) is

easy to analyze: it is a linear ODE.

For x 6= 0, multiply both parts of equation (1.3.12) by the integrating factor

x1−L and rearrange to obtain

(
x2−Lλ(x)

)′
= f ′′(x)x1−L. (1.3.15)

Integrating the above between x and x0, where x > x0 > 0, indicates that the

solution can be written as

λ(x) = xL−2

(
λ(x0)xL−2

0 +

ˆ x

x0

f ′′(t)t1−Ldt

)
. (1.3.16)

An analogous equation can be written for the case in which x < x0 < 0. Any solution,

corresponding to different boundary conditions λ(x0), such that 0 < λ(x) <∞, will

be an equilibrium price impact.

Two things are evident from equation (1.3.16). First, there might be many

equilibrium price impact functions, as there might be many boundary conditions

λ(x0) such that 0 < λ(x) < ∞. Second, for the price impact function to exist

for all real x (in particular, at infinity), some technical conditions regarding the

certainty equivalent f(x), or, equivalently, on CGF g(x) have to be met for the

integral
´ x
x0
f ′′(t)t1−Ldt to converge as x → ∞. Those technical conditions yield

the restrictions on the CGF that need to be satisfied for the equilibrium to exist.

I discuss the multiplicity and the technical conditions needed for the existence of

equilibrium in a greater detail in Remarks 2 and 3. Proposition 1 below summarizes
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the solution.

Proposition 1. (1) The equilibrium exists if and only if ρ1+ν(x) <∞. In particu-

lar, it exists for any distribution with bounded support.

(2) The equilibrium price impact function is given by

λ(x) = νγρ1+ν(x) + I(x ≥ 0)C+xL−2 + I(x < 0)C− · (−x)L−2 ,

for any C+, C− ≥ 0.

(3) The equilibrium inverse bid is given by

I(x) = µ− γρ0(x)x− λ(x)x. (1.3.17)

I comment on the technical conditions that need to be satisfied for the equilibrium

to exist and on the multiplicity in the two remarks below.

Remark 2. According to Proposition 1, the equilibrium exists if and only if the risk

function ρ1+ν(x) is finite for every finite x. After some algebra, the latter function

can be written as

ρ1+ν(x) = (L− 2)

ˆ ∞
1

g′′(−γyx)y1−Ldy.

For the integral to converge, the second derivative of the CGF should grow not too

fast as y → ±∞. An example of the distribution for which the equilibrium does

not exist is a Poisson distribution for which the CGF and its second derivative grow

exponentially.

However, given that equilibria exist for any distribution with bounded support, I

believe that the technical conditions are not too restrictive. Indeed, in the real world,

the payoff cannot be unbounded. There is a lower bound, which is due to limited

liability, and there is an upper bound, which is due to the fact that the resources

of are limited (and hence an asset cannot have an infinite payoff). It should also

be noted that the technical conditions hold also for distributions with unbounded

support: examples include (and are not restricted to) normal (the benchmark) and

the mixture of normal distributions.

Remark 3. Despite the presence of uncertainty regarding the supply, there is nev-

ertheless a multiplicity of equilibria. The mechanism behind the multiplicity is the

following.
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Technically, according to Theorem 1, the equilibrium lambda is a price impact

model that is consistent. The consistency condition is equivalent to ODE (1.3.12).

The standard result from the theory of differential equations implies that having

obtained a solution to a linear ODE (1.3.12) another can be obtained by adding

a solution of an homogenous ODE, in this case xλ′(x) = (L − 2)λ(x). The latter

solution is given by 1(x ≥ 0)C+xL−2 + 1(x < 0)C− (−x)L−2. After filtering out

solutions not satisfying condition (3) of Theorem 1, we are left with C+, C− ≥ 0.

In economic terms, the multiplicity can be attributed to the following comple-

mentarity: if a trader believes that the price impact is high, he provides less liquidity,

which implies a higher price impact for other traders. This, in turn, induces them

to provide less liquidity, confirming the higher price impact for a trader of interest.

Note that the multiplicity is present even in the standard CARA-normal case.

The multiplicity result in a CARA-normal case is known in the divisible goods auc-

tions literature (see Wang and Zender (2002), Proposition 3.4). The non-uniqueness

of equilibrium arises for a similar reason in Bhattacharya and Spiegel (1991). How-

ever, in the generalized setting of my paper a selection argument, exploiting the

generality of distribution is possible.

In Glebkin, Rostek and Yoon (2015) we study the uniqueness of equilibrium in

supply functions. Parts (1) and (2) of the following Proposition is from there and

are included here for completeness. The Proposition demonstrates that there is only

one equilibrium satisfying the following natural properties.

Proposition 2. The equilibrium with C+ = C− = 0 is the unique equilibrium having

the following properties:

(1) Suppose that δ has a bounded support (a, b). The equilibrium with C+ =

C− = 0 is the unique equilibrium with equilibrium prices within [a, b].

(2) Suppose that δ has infinite support. Consider an asset with a payoff δn =

δ · I(δ ∈ (an, bn)), where an and bn are finite. Denote pn(s) the price of the asset that

pays δn when the supply realization is s in the unique equilibrium in which pn(s)

is within (an, bn) for all s. Then pn(s) converges pointwise to p(s) as an → −∞

and bn → ∞, where p(s) is a price of the asset that pays δ in the equilibrium with

C+ = C− = 0.

(3) The equilibrium with C+ = C− = 0 is the unique equilibrium in which λ(s)

converges to zero pointwise as either ν → 0 or γ → 0.
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In the CARA-normal model, the equilibrium with C+ = C− = 0 corresponds to

the linear equilibrium of corollary 1.

The first property is intuitive: if the price is outside payoff bounds the block

trader gets negative profit with certainty and hence should not trade. Block trader

is unmodeled and is assumed to submit a price-inelastic bid: he is willing to pay any

price. However, the latter is only consistent with rational behavior if prices outside

the bounds of payoff never realize in equilibrium. Another piece of intuition is as

follows. By assumption, there is a full support uncertainty regarding the supply,

i.e., any quantity may be supplied with positive probability. Suppose, for example,

that for some supply realization s the price is outside the payoff bounds. Then,

the trader providing the supply will realize a negative profit with certainty, for any

realization of δ. However, it is then not consistent to assume that quantity s may

be supplied with positive probability.

The second property extends the first one to the case of infinite support. It

highlights that price of an asset with arbitrary close, but bounded payoffs (for which

the price can be uniquely pinned down requiring the property (1) to hold) is close to

the price of an asset with unbounded payoff in the equilibrium with C+ = C− = 0.

The third property highlights that price impact vanishes as the sources of illiq-

uidity disappear (the economy becomes perfectly competitive, ν → 0; or risk-bearing

capacity becomes infinite, γ → 0) only in the equilibrium with C+ = C− = 0.

Henceforth, I focus on the equilibrium with C+ = C− = 0 (and will simply

refer to it as equilibrium hereafter). Although other equilibria may be of theoretical

interest, they appear to have little empirical relevance. Indeed, unbounded prices

are not observed for assets with bounded payoffs (e.g., negative prices on limited

liability assets), and there is empirical evidence that competition reduces illiquidity

(e.g., Kagel and Levin (2001)).

1.4 The shape of the price impact

The purpose of this section is to study how the prices in the imperfectly competitive

market may be affected by a block sell or buy order s. This is measured by several

liquidity measures that I describe below.
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I will use the notation s̄ for per capita supply

s̄ ≡ s/L.

A positive s̄ corresponds to a sell order, whereas a negative s̄ corresponds to a buy

order.

Denote p(s) as the equilibrium price when the supply is s. The function p(s) is

easy to find. Because each large trader is allocated s/L in the symmetric equilibrium,

the equilibrium price can be determined from condition (1.3.11), which using the

risk function, can be written as (cf. (1.3.17))

p(s) = µ− γρ0(s̄)− λ(s̄)s̄. (1.4.1)

The price reaction function Π(s) = |p(s)−µ| is the absolute value of the difference

between the equilibrium price when the supply is s and the equilibrium price when

the supply is zero (which is equal to µ). It measures the total reaction of the

equilibrium price to a block of size s. Equation (1.4.1) yields

Π(s) = γρ0(s̄)|s̄|+ λ(s̄)|s̄|. (1.4.2)

The price reaction function can be decomposed into two parts. The first

τ(s̄) ≡ λ(s̄)|s̄| = νγρ1+ν(s̄)|s̄|, (1.4.3)

arises due to strategic interactions. I will refer to it as a strategic component of

price reaction function. It is (the absolute value of) the difference between price

p(s) and price f ′(s̄) that a competitive trader would pay.16 In the limit, ν → 0,

s/L = const = s̄, corresponding to perfect competition, this strategic component

disappears.

The second component

π(s) ≡ γρ0(s̄)|s̄|, (1.4.4)

Is non-strategic. It is the equal to |f ′(s/L) − µ|, the price reaction in a perfectly

competitive economy. I will refer to it as a non-strategic component of price reaction

function.
16It is easy to show that f ′(s̄) = µ− γρ0(s̄).
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In a dynamic CARA-normal model, Rostek and Weretka (2014) demonstrate

that the component of the price reaction due to strategic interactions is transitory.

This is intuitive: the strategic component in a particular period (say t) arises because

the traders account for their price impact in this particular period. The extent to

which a trader can move prices in period t does not matter for him in periods t+ 1

and so on because the price at t is already realized. Therefore, there will be a price

effect at time t and no effect at times t + 1 and so forth. They also show that the

non-strategic component, in contrast, is permanent. This is also intuitive. If a block

trader sells in period t, he increases the inventory of traders who absorb this trade.

They have greater inventories in periods t,t + 1, .. and, being risk averse, require a

price discount in those periods. The price effect lasts for subsequent periods and is

thus permanent.

Given the above, one can interpret the strategic component τ(s̄) as a temporary

price effect and the non-strategic component π(s̄) as a permanent price effect. See

also the remark below.

Remark 4. One can also justify the difference between the temporary and the per-

manent price effects as follows. I allow traders to trade in two additional periods,

t = −1/2 and t = 1/2. However, given the complexity of a dynamic problem with-

out normality, I assume that in each period traders behave myopically and do not

foresee the possibility to trade in the future. There is a block sale s at t = 0, and

the supply at t = −1/2, 1/2 is zero. As before, the traders consume only at time

t = 1.

At time t = −1/2, there will be no trading, as traders are symmetric and there

is no supply provided. The price at which the traders having no initial endowments

will neither buy nor sell is

p−1/2 = µ.

The price at t = 0 is already found and is given by

p0 = µ− γρ0(s)s− λ(s)s.

At time t = 1/2, there will also be no trading due to symmetry and the absence

of supply. However, each trader now has an endowment s̄; therefore, the price at
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which traders will be indifferent between buying and selling is

p1/2 = f ′(s̄) = µ− γρ0(s)s.

The immediate price reaction to block selling is thus p0−p−1/2 = γρ0(s)s+λ(s)s;

however, in the longer term, the strategic component disappears, p−1/2 − p1/2 =

γρ0(s)s. The strategic component is therefore temporary, while the non-strategic

component is permanent.

1.4.1 Theoretical results

In this section, I investigate the shapes of liquidity measures (price reaction function,

and its’ two components), focusing on the monotonicity, convexity and asymmetry

of those functions. These properties have been the focus of empirical studies.

The expressions for the price reaction function and its’ components are given by

(1.4.2), (1.4.3) and (1.4.4), respectively. It then follows that for a normal distribu-

tion, the three functions are linear in the absolute value of the order size |s̄|, and

are also symmetric:

Π(s) = γ(1 + ν)σ2 · |s̄|, τ(s) = γνσ2 · |s̄| and π(s) = γσ2 · |s̄|. (1.4.5)

The analytical results in the general case can be obtained in two limits: when

the order size is small (|s̄| → 0) and when it is large (|s̄| → ∞). Those two limits are

associated with the two forces that play no role under normality. Higher moments

play a role in the |s̄| → 0 limit, whereas the bounds of the support are important

in the |s̄| → ∞ limit. The two limits, and the two respective forces, are examined

separately below.

Proposition 3. The price reaction function and its’ non-strategic component are

strictly increasing in the absolute value of the order size |s̄|. Suppose that δ has

bounded support δ ∈ [a, b]. The following is true in the |s̄| → ∞ limit:

buy order sell order

Π(−∞) = b− µ Π(+∞) = µ− a

π(−∞) = b− µ π(+∞) = µ− a

τ(−∞) = 0 τ(+∞) = 0
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Consequently, there exists x1 > 0 such that the following is true for s : |s| > x1:

Liquidity measure L(s) sign(L(s)− L(−s))

Π(s) sign((µ− a)− (b− µ))

π(s) sign((µ− a)− (b− µ))

If g′′′(x) does not change sign given a large enough x, the price reaction function

Π(x) is concave for a large enough x.

It is intuitive that the price reaction function and the its’ non-strategic compo-

nent are monotone: larger orders have larger price effects. Finite limits at infinity

and monotonicity imply that they have a horizontal asymptote b − µ (µ − a) at

minus (plus) infinity. This is also intuitive: the price reaction Π(·) cannot be higher

than b−µ (µ− a) for a very large buy (sell) order because otherwise the price itself

would be higher than b (lower than a) and the block trader should not trade. The

non-strategic part π(·) is a price reaction in a competitive economy; therefore, the

latter argument also applies to it.

If the support is unbounded, the price reaction and its’ non-strategic component

would also be unbounded. The bounds of the distribution represent a force that

bends those functions preventing violation of the bounds. The functions therefore

cannot be convex. Moreover, a concave shape is typically observed. This is illus-

trated in figure 1.4.1, where I compare the price reaction function in the normal and

truncated normal cases. Under the condition that the third derivative of the CGF

does not change sign given a large enough x, it is possible to prove that the price

reaction function is concave for large order sizes.17

The strategic component has to decrease to zero at infinity. This is because

Π(s) = π(s) + τ(s) and the limits of Π(s) and π(s) coincide. Intuitively, the non-

strategic component already drives prices toward the bounds of the payoff’s support;

therefore, if the non-strategic component is not zero, the price bounds will be vio-

lated. Therefore, the force bending the price reaction function and the non-strategic

component is even stronger, making the strategic component non-monotone. Due

to the presence of this force, the function τ(s) cannot be convex. If attention is re-

stricted to the monotone part of τ(s), its shape also appears concave, as illustrated

by the left pahnel of Figure 1.4.2.
17I could not find an example of a distribution with bounded support for which this condition

does not hold. I believe that this condition is not too restrictive.

31



Figure 1.4.1: If the payoff is bounded, and hence the price of the asset and the price
reaction function should also be bounded. The figure represents the price reaction
function for the case of a normal distribution N(0, 1) truncated to the segment[0, 2]
(solid lines with buy and sell orders labeled accordingly). It compares the latter to
the price reaction function for the case of a normal distribution (with mean 0.72 and
variance 0.25 equal to that of the truncated normal distribution) represented by the
dashed line. For a normal distribution, the function is linear, unbounded and the
same for buy and sell orders. For the truncated normal distribution, the function
is asymmetric and is bounded by the horizontal dotted lines. The combination of
boundedness and monotonicity produces the concave-looking shape. The shape is
not exactly concave: the price reaction function for buy orders is above the tangent
line (and hence convex) in the neighborhood of zero, consistent with Proposition 4.

Figure 1.4.2: The bounds of the payoff produce a strategic component of price impact
with a concave-alike shape if the order size is not very large (left panel). However,
the force that shaped the price reaction function is even stronger for its’ strategic
component: it is bounded not by a horizontal line but by µ− a−π(s) (b−µ−π(s))
for sell (buy) orders represented by a dotted line (right panel). The plots are for a
normal distribution N(0, 1) truncated to the segment[0, 2]
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The asymmetry of the price reaction function at infinity obtains if µ 6= b−a
2
, i.e.,

if the mean of the distribution does not coincide with the middle of its support.

Intuitively, because the shape of the price impact is linked to the shape of the

distribution, asymmetry in the one leads to the asymmetry in the other.

In the proposition below I investigate the shape of liquidity measures for small

order size.

Proposition 4. Suppose that L > 3. Denote the skewness by κ3. There exists

x0 > 0 such that the following is true :

1) Local convexity and monotonicity:

Liquidity measure L(s) sign(L′(|s|)) sign(L′′(|s|))

Π(s) +∗ -sign(κ3 · s)

π(s) +∗ -sign(κ3 · s)

τ(s) + -sign(κ3 · s)

for all y if marked by ∗, and for s : |s| < x0 otherwise.

2) Local asymmetry:

sign(Π(s)− Π(−s)) = −sign(κ3)∀s : |s| < x0,

sign(π(s)− π(−s)) = −sign(κ3)∀s : |s| < x0.

3) Comparative statics: |Π(s) − Π(−s)| and |Π′′(s)| are increasing in ν, γ and

|κ3| for s : |s| < x0.

When asset payoffs are positively skewed, the price reaction function is a convex

(concave) function of order size for small buy (sell) orders. Similarly, when asset

payoffs are negatively skewed, the price reaction function is a concave (convex)

function of order size for small buy (sell) orders.

Consider the case of a sell order and positive skewness. To understand the

intuition, consider a benchmark economy in which higher moments play no role. It is

identical to the initial economy, except that the asset’s payoff is normally distributed

with mean and variance equal to that in the initial economy. In the benchmark

economy, the price reaction function is linear. This linear function is represented by

a dashed line in the figure 1.4.2. Moreover, for a very small (infinitesimal) order size,
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the role of higher moments is negligible; therefore, the price impact function in the

benchmark economy should be arbitrarily close to that in the initial economy in the

neighborhood of zero. Consequently, the line representing the price impact in the

benchmark economy is tangent to the price reaction in the initial economy (which

the left panel of figure 1.4.2 illustrates). A concave function lies below its tangent

line, and hence the remaining question is why the price impact in the benchmark

economy is greater. The intuition is simple: with a positively skewed payoff, the

trading profit of the investors accommodating the sale order is also positively skewed

(i.e., they occasionally receive large positive surprises to their profits). Consequently,

they require less price compensation relative to the case of zero skewness. Similarly,

for small purchases, the shape of the price reation function is convex with positive

skewness.

The above discussion also implies that with non-zero skewness the price reaction

function is asymmetric for small orders. As noted above, with positive skewness the

price reaction function for purchases is convex, and therefore lies above its’ tangent

line. It is concave for sell orders, and therefore lies below the tangent line and,

consequently, below the price reaction function for purchases. Hence, with positive

skewness the price reacts stronger to small purchases rather than sells. Similarly,

with negative skewness the price reacts stronger to sells. Left panel of the figure

1.4.2 provides an illustration for the case of positive skewness.

1.4.2 An example

In this section, I examine numerically the case of a δ distributed according to the

mixture of normal distributions. This example illustrates that, in theory, the shapes

of the price impact can be quite rich. This case has at least two natural interpreta-

tions.

The first interpretation is as follows. Suppose that δ is a claim to cash flows

generated by a firm. Suppose also that between time 0 and time 1, there is a

corporate event (occurring with probability p) that may increase or decrease δ, also

making it more or less risky. Suppose for simplicity that conditional on the outcome

of this event, the distribution of δ is normal. The resulting distribution is then the

mixture of normals
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Fδ(x) = p · Φ(x|µ1, σ1) + (1− p) · Φ(x|µ2, σ2), (1.4.6)

where Fδ denotes the CDF of the dividend δ and Φ(x|µi, σi) denotes the CDF of a

normal distribution with mean µi and variance σ2
i . The event can, for example, be:

• default, in which case p is the probability of default, µ1 is a mean repayment

in the event of default and σ1 → 0 if this repayment is certain.

• appointment of a new CEO, in which case p is the probability that a search

for a new CEO is successful. If the new is CEO is better than the old one, one

may expect µ1 > µ2 and σ1 < σ2.

The second interpretation is as follows. Suppose that all traders have a prior belief

δ ∼ N(µ, σ) and receive the same signal ι concerning the asset. There is, however,

uncertainty with respect to whether the signal is informative, in the spirit of Banerjee

and Green (2014). For example, the signal might be

ι =

δ + ε, with probability p,

ε, with probability 1− p,

where δ and ε ∼ N (0, σ2
ε ) are independent. The posterior distribution will then

be a mixture of normals (1.4.6) with µ2 = µ, σ2
2 = σ2 and µ1 = µ + β(ι − µ),

σ2
1 = σ2 − β2(σ2 + σ2

ε ), and β = σ2

σ2+σ2
ε
.

Figure 1.4.3 represents the risk functions ρ1+ν(x) and ρ0(x). Recall that ρ1+ν(|s̄|)

and ρ0(|s̄|) are proportional to the per unit strategic and non-strategic components

of price reaction function: e.g., for s > 0 we have τ(s)/s̄ = νγρ1+ν(s̄) and π(s)/s̄ =

γρ0(s̄)18.

The intuition behind the shapes represented in figure 1.4.3 is the following. When

the order size is small, a normal distribution with lower variance (denote it σ2
1)

dominates. The risk is thus small and is close to σ2
1. For a large-sized order, the

normal distribution with higher variance (denote it σ2
2) dominates and the risk is

close to σ2
2. In between, the uncertainty regarding the variance increases risk and

there are spikes in the risk functions. Therefore, if one aims to execute a small order,

he or she should be optimistic about risk and assume that the level of risk is close
18The general formula is τ(|s|)/|s̄| = νγρ1+ν(|s̄|) and π(|s|)/|s̄| = γρ0(|s̄|).
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Figure 1.4.3: Mixture of normals N(0, 1) with probability 0.8 and N(−2, 2) with
probability 0.2. For small order sizes, the normal with the lower variance of 1
dominates and the risk is close to 1. For large order sizes, the normal with the
higher variance of 4 dominates and the risk is close to 4. In between, the risk spikes
above 4 due to uncertainty regarding the variance.

to σ2
1. If the order is very large, one should be conservative about risk and assume

that the risk is close to σ2
2. If the order is neither very large nor very small, one

should be pessimistic, as the uncertainty makes the risk higher than σ2
2.

1.5 Informed block trader

In this section, I relax the assumption that the block seller is uninformed, i.e., that

s and δ are independent. The conditional distribution of δ given s is characterized

by the conditional CGF

g(y, s) = lnE[exp(yδ)|s].

As before, I assume that the distribution of s has full support. The conditional

CGF and the conditional certainty equivalent, defined as f(y, s), that solves

exp(−γf(y, s)) ≡ E[exp(−γyδ)|s],

are related as follows

f(y, s) = −1

γ
g(−γy, s).
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As before, my focus is liquidity: I will investigate how price reaction function

and its’ components depend on the size of supply s. I begin by deriving heuristically

the equilibrium representation.

The approach to solving the problem is still ex post optimization, but now the

residual supply curve realization reveals s and thus provides information on the

terminal payoff. The ex post maximization problem is then written as

(x∗(s), p∗(s)) = arg max
x,p
{f(x, s)− p · x} ,

s.t.: (x, p) ∈ C(s).

The first-order condition in the ex post maximization problem is given by

f1(x, s)− l(x)x = p,

where l(x) = ∂p
∂x

is the price sensitivity model. The above first-order condition makes

it possible to determine the optimal x for a given s. In the symmetric equilibrium,

x = s/L should be optimal. Equivalently, x is optimal when s = Lx is realized. The

above can thus be rewritten as follows

f1(x, Lx)− l(x)x = p = I(x). (1.5.1)

As before, the way to specify the price sensitivity model is to require it to be con-

sistent : the assumed price sensitivity should be equal to the equilibrium sensitivity.

Consistency is equivalent to

l(x) = λ(x) = − 1

L− 1
I ′(x).

Combining the above and (1.5.1) yields the ODE for price impact function

xλ′(x) = (L− 2)λ(x) + h(x),

where

h(x) ≡ d

dx
f1(x, Lx) = f11(x, Lx) +Lf12(x, Lx) = −γg11(−γx, Lx) +Lg12(−γx, Lx).

(1.5.2)

To proceed further, I impose the following assumption.
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Assumption 1. h(x) < 0.

The above assumption states that the supply distribution is such that the equilib-

rium marginal certainty equivalent f1(y|Ly) is decreasing in the equilibrium quantity

y. Given that g11(x|y) > 0 Assumption 1 is satisfied if a stronger assumption holds19

Assumption 1s. f12(x|s) < 0 ∀x, s.

Assumption 1s says that higher supply realization is bad news for large traders.

This is intuitive: supply is high when the informed traders sell a great deal, which

is the case when they receive bad news about the asset.

The following theorem generalizes Theorem 1 for the setting with informed block

traders.

Theorem 2. If Assumption 1 holds, bid b(p) is an equilibrium if, and only if, it

satisfies the following three conditions:

(1) Bid b(p) is optimal given a model l(x) of price sensitivity

f ′(x, Lx)− xl(x) = p⇒ x = b(p). (1.5.3)

(2) The assumed models of price sensitivity are consistent, i.e., the assumed

models are equal to equilibrium price sensitivity, l(x) = λ(x). The latter condition

is equivalent to the following ODE

xλ′(x) = (L− 2)λ(x) + h(x). (1.5.4)

(3) Monotonicity: 0 < λ(x) <∞∀x.

The analysis in the main part of the paper can be generalized to the case of

asymmetric information by substituting h(x) for f ′′(x). I define the augmented risk

function ϕa(x), which generalizes the risk function in the baseline model, as follows
19The conditional CGF g(x|y) can be proven to be convex in x analogously to the case of the

unconditional CGF, using Cauchy-Schwartz inequality.
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ϕa(x) ≡ −1/γ

ˆ 1

0

h(t1−ax)dt =

= −1/γ

ˆ 1

0

(
f11(t1−ax, Lt1−ax) + Lf12(t1−ax, Lt1−ax)

)
dt

=

ˆ 1

0

g11(−t1−aγx, Lt1−ax)dt︸ ︷︷ ︸
risk function ρa(x)

−L/γ
ˆ 1

0

g12(−t1−aγx, Lt1−ax)dt︸ ︷︷ ︸
information function ιa(x)

= ρa(x) + ιa(x).

The augmented risk function is defined analogously to the risk function in the

baseline setting with the sensitivity of marginal utility f ′′(x) substituted by h(x).

Because the sensitivity of the marginal utility has two components, the sensitivity to

information and the sensitivity to the quantity (due to risk aversion), the augmented

risk function can be decomposed into two parts: inventory risk (simply risk hereafter)

and information.

The risk function is familiar: it measures the sensitivity of marginal certainty

equivalent f1(x, s) to the size of the position in the risky asset x. The latter sensi-

tivity is not zero because the asset is risky and the traders are risk averse.

The information function measures the sensitivity of marginal certainty equiva-

lent f1(x, s) to the news provided by the supply s. A higher equilibrium quantity x

of the risky asset indicates higher supply provided by the informed traders, which, in

turn indicates bad news about the terminal payoff δ under Assumption 1s. There-

fore, the information function summarizes the winner’s curse faced by the large

traders: if they are allocated a great deal of supply in equilibrium, this means that

the suppliers sold a great deal, which indicates that the asset is of poor quality.

It is instructive to consider the following example.

Example 1. Suppose that δ and s are jointly normal. Then, by projection theorem

g(x, s) = (x̄+ β(s− E[s]))x+ 1/2σ2
δ|sx

2,

where β = cov(x,y)
var(y)

, and σ2
δ|s is a conditional variance of δ given s. The risk function

and the information function are given by

ρa(x) = σ2
δ|s, ιa(x) = β.
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The above indicates that in the CARA-normal case, both components of the risk

function are constants. The risk function is a conditional volatility. The information

function is the sensitivity of the conditional mean to the signal.

The analysis in the main part of the paper can be generalized to the case consid-

ered in this section by substituting the augmented risk function for the risk function.

Following the steps of Proposition 1, one obtains the results for the case considered

here. It will be clear from Proposition 6 that the solution with C+ = C− = 0 is

the unique one satisfying prices being in [a, b] for the bounded payoff δ ∈ [a, b], thus

providing grounds for focusing on this equilibrium here.

As in the augmented risk function, all liquidity measures now separate into two

components that are denoted by superscripts ρ (risk component) and ι (information

component).

Proposition 5. Suppose that Assumption 1s holds.

(1) The equilibrium with asymmetric information exists if and only if ϕ1+ν(x) <

∞.

(2) The equilibrium price impact function is decomposed into risk and informa-

tion components and is given by

λ(x) = νγϕ1+ν(x) = νγρ1+ν(x) + νγι1+ν(x),

(3) The equilibrium price is given by

p = µ− γϕ0(s)s− λ(s)s. (1.5.5)

The strategic and non-strategic components of price reaction function are decom-

posed into risk and information parts

π(s) = γφ0(s)s = γρ0(s)|s|+ γ|ι0(s)s| ≡ πρ(s) + πι(s),

τ(s) = νγφ1+ν(s)s = νγρ1+ν(s)|s|+ νγ|ι1+ν(s)s| ≡ τ ρ(s) + τ ι(s).

The results of the main part of the paper are nicely generalized: one has to aug-

ment the risk function with the information function to obtain equilibrium objects

in the informed block trader case. The price reaction function is nicely decomposed
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into two components. The risk component is due to the risk aversion of the traders,

and the information component is due to the winner’s curse. The non-strategic com-

ponent arises because traders account for their own risk aversion and the winner’s

curse to which they are exposed. The strategic component arises because a trader

strategically recognizes that others are risk averse and exposed to the winner’s curse,

which affects his price sensitivity.

Below, I investigate the shape of the price reaction function in two limiting cases:

s → ∞ and s → 0. I first examine the s → ∞ limit and introduce the following

assumption.

Assumption 2. The support of the conditional distribution of δ given s is the

same as the support of the unconditional distribution of δ.

The above assumption states that the traders cannot improve their knowledge

about the support of the terminal payoff by observing the supply. This assumption

holds, for example, when the supply can be decomposed into information and noise,

s = f(δ) + ε and the noise ε has a full support20.

Proposition 6. Suppose that δ has a bounded support and that Assumption 1s

holds. Then the price reaction function and its’ non-strategic component are strictly

increasing in the absolute value of the order size |s̄|. Suppose that δ has bounded

support δ ∈ [a, b] and Assumption 2 holds . The following is true in the ¯|s| → ∞

limit:
buy order sell order

Π(−∞) = b− µ Π(+∞) = µ− a

π(−∞) = b− µ π(+∞) = µ− a

τ(−∞) = 0 τ(+∞) = 0

The proposition above confirms the robustness of the results of Proposition 3 for

the case in which the block trader may be informed. As long as the available infor-

mation does not allow to improve one’s knowledge of the support of the distribution

of δ, the boundedness of δ works in the the same way as in the uninformed case. It

represents a force that bends down functions Π(·) and τ(·). The functions therefore

cannot be convex - exactly as in the baseline setting.

Below, I investigate the shape of the price impact in the s → 0 limit. Before

doing so I introduce the following notation. The conditional mean, variance and

20Indeed, fδ|s =
fs|δ·fδ
fs

, and fs|δ and fs have full support.
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skewness of δ given s are all functions of s and are denoted by µ(s), σ2(s)and κ3(s),

respectively.

Proposition 7. Suppose that L > 3 and Assumption 1s holds. There exists x0 > 0

such that the following is true.

1) Local convexity and monotonicity:

Liquidity measure L(s) sign(L′(|s|)) sign(L′′(|s|))

Πρ(s) + sign
((

(σ2)
′
(0)− γ/L · κ3(0)

)
· s
)

Πι(s) + sign
((

(σ2)
′
(0)− L/γ · µ′′(0)

)
· s
)

πρ(s) +∗ sign
((

(σ2)
′
(0)− γ/L · κ3(0)

)
· s
)

πι(s) +∗ sign
((

(σ2)
′
(0)− L/γ · µ′′(0)

)
· s
)

τ ρ(s) + sign
((

(σ2)
′
(0)− γ/L · κ3(0)

)
· s
)

τ ι(s) + sign
((

(σ2)
′
(0)− L/γ · µ′′(0)

)
· s
)

for all y if marked by ∗, and for s : |s| < x0 otherwise.

2) Local price reaction function asymmetry:

sign(Π(s)− Π(−s)) = sign
(

2γL
(
σ2
)′

(0)− γ2κ3(0)− L2µ′′(0)
)
∀s : |s| < x0.

One additional force determines the shape of the liquidity measures relative to

the baseline model. In the setting considered here, the moments are functions of the

supply s. In addition to higher moments, the shape of the conditional moments (as

functions of the size of the supply s) also plays a role. In particular, the convexity of

the information component of the liquidity measures is also driven by the convexity

of the conditional mean function, whereas the convexity of the risk component is

driven by the slope of the conditional variance. Note that one would not capture

those effects in the jointly normal setting (see, e.g., example 1) because in that case

the conditional mean is linear (convexity is zero) and the conditional variance is a

constant (the slope is zero).

If one can separate the the inventory risk and the information components of

the price impact (Muraviev (2015) provides an excellent example of how one can do

so), then one can extract the information about how an order affects the expecta-

tions of traders accommodating it. The proposition below shows that the slope of

the information component of the price impact is proportional to the slope of the

conditional mean µ(s).
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Proposition 8. The slope of the conditional mean function and the slope of the

information component of the price impact are related as follows: µ′(0) = − (Πι)′(0)
L(1+ν)

.

The slope of the conditional mean function shows how a marginal unit liquidated

by a block trader affects the expectations of liquidity providers regarding the asset’s

payoff. Consequently, all else being equal, in markets with greater slope of Πι(·), a

marginal liquidated unit affects the expectation more, which is indicative of a more

informed block trader.

1.6 Empirical evidence and testable predictions

I begin by summarizing the key findings concerning the shape of the price impact.

These are as follows:

1. The price reaction function is a concave function of the order size.21

2. The price reaction function is an asymmetric function: the price impacts of

sell and buy orders are different.22

Proposition 3 implies that with bounded asset payoff, the price reaction function is

concave for a large order size, providing the explanation for the first finding. Propo-

sitions 3 and 7 link the asymmetry of the permanent price impact to asymmetry

and skewness of the distribution. The model predicts that with positive skewness

(a natural property for stocks at the individual level (e.g. Chen et al. (2001)))

price impact of small purchases is greater than that of small sells, consistent with

evidence summarized by Saar (2001).

While Saar (2001) summarizes the evidence of a greater price impact of purchases

compared to sells, Chiyachantana et al. (2004) find that the asymmetry of the

permanent price impact is linked to the underlying market condition, and show,

in particular, that in the bearish markets sells have a higher price impact. My

model links the local asymmetry to skewness, and predicts that when skewness is

negative small sells have a higher price impact compared to small purchases. Perez-

Quiros and Timmermann (2001) present the evidence that skewness varies with the
21Equities: Hausman et al. (1992), Almgren et al. (2005), Frazzini et al. (2014). Options:

Muraviev (2015).
22Saar (2001) summarizes the evidence that shows bigger price impact of buy orders compared

to sell orders. However, Chiyachantana et al. (2004) link the asymmetry to the underlying market
condition and find that in bullish markets buy orders have a bigger price impact than sells, while
in the bearish markets sells have a higher price impact.
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underlying market condition. The model predictions are therefore in line with these

findings.

While empirical papers typically find concave price reaction functions, there is

some conflicting evidence for price impact of purchases. E.g., Keim and Maddavan

(1996) and Holthausen, Leftwich and Mayers (1990) find the convex price reaction

function for purchases. This is in line with the prediction of my model: with positive

skewness the price reaction function for small purchases is convex. Thus, model

findings provide a way of reconciling the conflicting evidence.

Proposition 8 demonstrates that the slope of the asymmetric information com-

ponent of the price reaction function is linked to the slope of the conditional mean

function (i.e., the extent to which, on the margin, the order affects the expecta-

tions of liquidity providers about the asset’s payoff). Muraviev (2015) presents a

methodology that makes it possible to separate the price impact into inventory and

information components. The idea is that, when assets are traded on multiple ex-

changes, the information spreads among traders on different exchanges, while the

inventory risk is only accommodated by the traders on the exchange in which the

block trader executes the order. Consequently, one can estimate the shape of the

information component of the price impact, in particular its slope, which is diagnos-

tic of the informativeness of block trades and can be useful in detecting informed

trading.

My model identifies two forces that shape the price reaction function. For small

order sizes, its’ curvature is linked to skewness. The model implies that the differ-

ence in curvatures of price reaction function for purchases and sells is positive with

positive skewness and is negative with negative skewness. One can test it in equities

market. At the individual level stock returns are positively skewed, whereas at the

aggregate level the skewness is negative. Therefore, the difference in curvatures of

the price reaction function for purchases and sells should be positive for individual

stocks but negative for ETFs.

For large order sizes, the bounds of the payoff represent another force affecting

the curvature of price reaction function. One can examine the role of this force in

the options market. For put options, the upside is limited, while this is not the

case for calls. Consequently, for buy orders, the price reaction function should be

more concave for puts relative to calls. Muraviev (2015) finds that the price reaction

functions in options markets are concave, but, unfortunately, he did not estimate
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them separately for calls and puts.

One can also examine the role of payoff bounds and skewness by running cross-

sectional regressions, in which one estimates the non-linear model of price reaction

function also controling for skewness and “distance to the bound”, maximal payoff

minus current price for purchases and current price minus minimal payoff for sells.

The model also implies that the curvature and asymmetry is more pronounced

when market is less competitive and when the risk bearing capacity is smaller.

Following Nagel (2012) the changes in risk bearing capacity can be proxied by VIX.

Consequently, when VIX is high, the asymmetry and curvature of price response

should be higher. The variation in competitiveness can be observed by comparing

after hours and regular hours market. There are less market makers in the after

hours market and, consequently, the asymmetry and difference in curvatures should

be higher. At a higher frequency, the competitiveness of the market can be proxied

by Herfindahl indices, as in Hasbrouck (2015).

1.7 Conclusion

This paper presents a tractable model of strategic trading without normality. It

develops a methodology that makes it possible to solve for the equilibrium in a con-

structive way, which allows one to uncover the multiplicity of equilibria. Closed-form

solutions are helpful in selecting the unique equilibrium. The paper also demon-

strates that the two forces absent under the normal distribution, the boundedness

of the support and higher moments, play an important role in determining the shape

of liquidity measures, such as price reaction function and its’ components.

This paper focuses on the implications of departures from normality to shape of

price impact function and shuts down several channels that might be worth studying.

First, as all large traders are symmetric, there is no risk sharing between them.

Second, as all traders are informed symmetrically, no information aggregation is

taking place. Finally, as the model is static, I am unable to study how nonlinearities

in the shape of the liquidity measures affect optimal order break up and the dynamics

of the price impact.

Extending the model in any of the above directions is promising and is left for the

future work. Below, I comment on the potential difficulties that one may encounter

in investigating in those directions.
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Solving the model with heterogeneous traders to study risk sharing is challenging

because the symmetry of equilibrium generating the tractability in this paper will

no longer be present.

Incorporating asymmetric information into the model is challenging because

without normality, the bids are not linear and the uncertainty faced by each trader

(which comes from the signals that other traders receive and the supply) does not

aggregate in a scalar parameter shifting the residual supply curve, and one cannot

use ex post maximization techniques.

The dynamic extension is challenging for a reason similar to the heterogeneous

case. One has to find a value function, which will depend on endowments of other

traders. In particular, one should find the value function for the case in which the

endowments are asymmetric.

Despite the above mentioned difficulties, I believe that it still might be possible

to approach the above questions, perhaps with the help of numerical techniques.

1.8 Omitted proofs.

Proof. (Theorem 1) Consider a particular trader and fix the strategies of all other

traders to be the equilibrium bid x(p). Denote the inverse of x(p) by I(x). It is

proved in the Appendix 1.10 that the equilibrium bids are strictly decreasing and

have a finite slope. Given this the inverse residual supply and the inverse bid are

both well-defined objects. The inverse residual supply is given by

P (x; s) = I

(
s− x
L− 1

)
. (1.8.1)

The ex-post maximization problem PEP can be written as

max
x,p

f(x)− p · x

s.t. : p = P (x; s).

Substituting the constraint into the objective and taking the first order condition

with respect to x yields the following equation determining optimal quantity x∗(s)

on the residual supply curve for a given realization of s
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f ′ (x∗)− x∗ ∂
∂x
P (x; s) |x=x∗︸ ︷︷ ︸

=λ(x∗)

−P (x∗; s) = 0. (1.8.2)

Since P (x∗(s); s) is the optimal price p∗ corresponding to x∗ the above becomes

the expression (1.3.11) for the inverse bid

f ′ (x∗)− λ (x∗)x∗ = p∗ = I (x∗) .

Differentiating the above with respect to x∗ and applying the link (1.3.9) be-

tween the price impact function and the slope of the inverse bid in the symmetric

equilibrium I get the ODE (1.5.4)

xλ′(x) = (L− 2)λ(x) + f ′′(x). (1.8.3)

The Proposition C1 implies that 0 < λ(x) < ∞. The only thing that left is to

check the second order conditions.

Second order conditions.

I will verify that 1) the first order condition gives unique candidate x∗(s) = s
L

and 2) the second order conditions are satisfied for this x∗.

First, plugging (1.8.1) into (1.8.2) one rewrites the first order condition (1.8.2)

as

f ′(x) +
x

L− 1
I ′
(
s− x
L− 1

)
= I

(
s− x
L− 1

)
. (1.8.4)

In the symmetric equilibrium x = s/L should be optimal, so plugging it into

(1.8.4) I find the ODE for the inverse bid (I denote y = s/L)

f ′(y) +
y

L− 1
I ′(y) = I(y). (1.8.5)

To show 1) I need to demonstrate that given that inverse bid satisfies (1.8.5) the

unique solution to (1.8.4) is x∗ = s/L.

Define ξ = s−x
L−1

and rewrite (1.8.4) as

f ′(x) +
x

L− 1
I ′ (ξ) = I (ξ) .

For a given ξ the function on the left hand side of the above decreases in x

whereas the right hand side does not depend on x. Therefore for each ξ there is at
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most one x∗(ξ) solving the above. Since x∗(ξ) = ξ is a solution (the above becomes

(1.8.5)) we find that x∗ solving x∗ = s−x∗
L−1

is the unique optimal quantity. Therefore

x∗ = s/L.

To check second order conditions at x∗ = s/L differentiate (1.8.4) with respect

to x to get the expression for the second derivative of the objective function

second derivative = f ′′(x)− 2

L− 1
I ′
(
s− x
L− 1

)
− x

(L− 1)2
I ′′
(
s− x
L− 1

)
= f ′′ (x∗)− 2

L− 1
I ′ (x∗)− x∗

(L− 1)2
I ′′ (x∗)

= f ′′ (x∗)− λ (x∗) +
x∗λ′ (x∗)− (L− 1)λ (x∗)

(L− 1)

= (f ′′ (x∗)− λ (x∗))

(
1 +

1

L− 1

)
< 0,

where the second line substitutes x∗ = s/L, the third line uses (1.3.9), the fourth

line substitutes (1.8.3). Since the second derivative is negative, the second order

conditions are satisfied.

Proof. (Proposition 1 ) (1) The equilibrium exists iff there is a solution to (1.3.12)

satisfying 0 < λ(x) <∞. It follows from (1.3.15) that

x2−Lλ(x) = x2−L
0 λ(x0) +

ˆ x

x0

f ′′(t)t1−Ldt. (1.8.6)

Consider the case x ≥ x0 > 0. The condition 0 < λ(x) < ∞ should hold for all x,

therefore
´ x
x0
f ′′(t)t1−Ldt has to be a bounded function of x for a given x0. Indeed,

we have that −x2−L
0 λ(x0) <

´ x
x0
f ′′(t)t1−Ldt from λ(x) > 0 and

´ x
x0
f ′′(t)t1−Ldt < 0

from f ′′(t) < 0.

Consider a function φ(x) =
´ x
x0
f ′′(t)t1−Ldt. It is a decreasing function, which

according to the above should be bounded. The latter condition is equivalent to

limx→∞ φ(x) <∞.Thus we have that

lim
x→∞

ˆ x

x0

f ′′(t)t1−Ldt <∞,
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which is equivalent to

lim
x→∞

xL−2
0

ˆ x

x0

f ′′(t)t1−Ldt︸ ︷︷ ︸
(2−L)ρ1+ν(x0)/γ

<∞, .

The above implies that ρ1+ν(x0) < ∞ for any given x0 > 0. We can show

that ρ1+ν(x0) < ∞ ∀x0 < 0 analogously. The fact that ρ1+ν(0) < ∞ follows from

ρ1+ν(0) = σ2.

The fact that ρ1+ν(x0) < ∞ for any distribution with bounded support follows

from the Fact 5.

(2) I first find a particular solution and then find the general solution by adding

the solution of the homogenous equation. Consider the solution satisfying λ(x) =

o
(
xL−2

)
. Taking the limit in the (1.8.6) as x→∞we get that this solution is given

by

λ(x0) = νγρ1+ν(x0). (1.8.7)

It follows from the above that λ(x0)

xL−2
0

= −
´∞
x0
f ′′(t)t1−Ldt. The limit of the latter

expression as x0 →∞ is zero, so λ(x) is indeed o
(
xL−2

)
.

The general solution to the ODE (1.3.12) can be written as a particular solution

plus a general solution of a homogenous ODE. Hence one can write

λ(x) = νγρ1+ν(x) + 1(x ≥ 0)C+xL−2 + 1(x < 0)C− (−x)L−2 .

Since ρ1+ν(x) = o
(
xL−2

)
only solutions with C+, C− ≥ 0 will satisfy λ(x) > 0.

They all will satisfy λ(x) <∞ because ρ1+ν(x) <∞.

(3) The equilibrium inverse bid follows directly from the condition (2) of the

Theorem 1.

Proof. (Proposition 2) When the supply realization is s the equilibrium price in the

case C+ = C− = 0 is

p = I(s/L) = g′(−γs/L)− νγρ1+ν(s/L)s/L.

The bid is strictly decreasing and it follows from Results B2 and B4 that its limit

as x→ −∞(x→ +∞) is equal to b(a). The inverse bid and prices are thus within

[a, b]. If C+ > 0 (C− > 0) then the inverse bid is less than a (greater than b) for
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high enough (low enough) s due to unbounded power terms C+xL−2 (respectively

C−xL−2). This fact implies that the equilibrium satisfying property (1) is unique.

To prove (2) note that one can write

pn(s) =

ˆ ∞
1

z−Lg′n(−γz · s/L)dz,

where gn(t) is a CGF of an asset that pays δn. Interchanging the limit and integration

(which is possible due to Dominated Convergence Theorem) one gets

pn(s)→
ˆ ∞

1

z−L lim
an→−∞
bn→+∞

g′n(−γz · s/L) · dz =

ˆ ∞
1

z−Lg′(−γz · s/L) · dz,

where g(t) is a CGF of an asset that pays δ. The last equality follows from the

application of the Dominated Convergence Theorem.

The third property follows directly by taking the limits in the results of Propo-

sition 1.

Proof. (Proposition 3) The monotonicity of price reaction function follows from the

monotonicity of equilibrium bid (recall that p(s) = I(s/L)). The monotonicity of

permanent price impact in |s̄| follows from

π(s) = |f ′(s̄)− µ|, (1.8.8)

eq. (1.2.2) and the convexity of the CGF (Fact 1 in the Appendix 1.9).

That π(−∞) = b− µ and π(+∞) = µ− a follows from (1.8.8), (1.2.2) and Fact

2.

The limits τ(−∞) = 0 and τ(+∞) = 0 follow from (1.4.3) and the Fact 5.

Since Π(·) = π(·)+τ(·), one gets Π(−∞) = b−µ and Π(+∞) = µ−a immediately

from the above two limits.

It can be shown that the inverse bid is given by I(x) =
´∞

1
z−Lf ′(zx)dz. The

convexity of the price reaction function at x is the same as the convexity of the

inverse bid x/L. The latter is given by

I ′′(x) =

ˆ ∞
1

z2−Lf ′′′(zx)dz.

For large enough x, the term f ′′′(zx), z ≥ 1 is either positive or negative, and
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hence the bid is either concave or convex. The convex shape is ruled out by the fact

that the inverse bid is bounded.

Proof. (Proposition 4) The global monotonicity of the functions Π(·) and τ(·) was

established in the Proposition 3 above. To prove that τ(|s|) is locally increasing I

calculate its’ derivative at zero. For positive s the function τ(|s|) can be written as

(cf. (1.4.3)):

τ(|s|) = τ(s) = νγρ1+ν(s̄)s̄.

Calculating the derivative with respect to s̄ at zero one gets (cf. Fact 4) νγρ1+ν(0) =

νγσ2 > 0. For negative s we have τ(|s|) = τ(−s) = −νγρ1+ν(−s̄)s̄ and the calcula-

tion leads, analogously τ ′ = νγσ2 > 0. Calculating the second derivative of τ(·) at

zero one gets νγρ′1+ν(0) = −νγκ3σ
3, where I’ve used Fact 4 and (1.2.1). For negative

s the calculation is analogous and yields νγκ3σ
3. We thus get τ ′′(0+) = −sign(κ3)

while τ ′′(0−) = sign(κ3). The convexity of price reaction function and the perma-

nent price impact is considered analogously.

To prove the result about asymmetry note that the permanent price impact

function for buy and sell orders have common slope at the origin, but different

convexity. The asymmetry then follows.

The comparative statics follow from the following approximation, which one can

obtain using Fact 3 and Fact 4: xρa(x) = σ2x− 2α
1+α

γg′′′(0)x2 + o (x2).

Proof. (Theorem 2) Consider trader i and let his bid be xi(p). Fix the strategies

of all other traders to be equilibrium bid x(p). The residual supply in that case is

given by

R(p; s) = s− (L− 1)x(p). (1.8.9)

The ex-post maximization problem PEP can be written as

max
x,p

f(x, s)− p · x

s.t. : x = R(p; s).

Substituting the constraint into the objective and taking the first order condition

with respect to p yields the following equation determining optimal price p∗(s) on

the residual supply curve for a given realization of s
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f1(R(p∗, s), s)Rp(p
∗, s)−R(p∗, s)− p∗ ·Rp(p

∗; s) = 0. (1.8.10)

Given that the second-order conditions are satisfied the optimal price p∗(s) is

unique. The corresponding optimal quantity x∗(s) is given by x∗(s) = R(p∗; s).

In the symmetric equilibrium x∗(s) = x(p∗(s)) = s/L. It follows that R(p∗; s) =

b(p∗(s)). Substituting it to (1.8.10), noting that Rp(p
∗; s) = −(L− 1)b′(p∗(s)) (fol-

lows directly from (1.8.9)) and denoting p = p∗(s) we rewrite (1.8.10), after some

rearrangement, as

b′(p) =
b(p)

(L− 1)(p− f1(b(p), Lb(p)))
≡ φ(p, b). (1.8.11)

Under assumption 1, ψ(x) = f1(x, Lx) is strictly decreasing in x. The analysis of

the symmetric info case is applicable substituting ψ(x) instead of f ′(x). In particular

the ODE for price impact function is obtained by substituting ψ′(x) instead of f ′′(x)

in the ODE (1.3.12) the analysis of the second order conditions can be done via the

analogous substitution.

Proof. (Proposition 5) The proof follows the same steps as the proof of Proposition

1 writing h(x) instead of f ′′(x) everywhere.

Proof. (Proposition 6) The monotonicity of price reaction function follows from the

monotonicity of equilibrium bid. The monotonicity of the permanent price impact

follows from π(s) = |f1(s̄, Ls̄) − µ| and the fact that the function f1(s̄, Ls̄) is

monotone in s̄ provided that Assumption 1s holds.

To get the limits of π(·) at infinity note two facts. First, for any fixed y the

we havea ≤ f1(x, y) ≤ b (monotonicity of f1(x, y) in x and the Fact 2). Second,

Assumption 1s implies that for any y ≥ 0 f1(x, y) ≤ f1(x, 0). Combining the two

facts we get that a ≤ f1(x, Lx) ≤ f1(x, 0). Taking the limit as x→ +∞ using Fact

2 and applying Squeezing Theorem we get that limx→+∞ f1(x, Lx) = a from which

π(+∞) = µ− a follows. The limit at minus infinity can be derived analogously.

To get the limits of price reaction function at infinity note that it can be writ-

ten as Π(s) = |p(s) − µ| =
∣∣(L− 2)

´∞
1
f1(s̄t, Ls̄t)t1−Ldt− µ

∣∣ (This can be most

easily derived by solving the ODE xI ′(x) = (L − 2)I(x) − f1(x, Lx) for the in-

verse bid. The ODE can be obtained from 1.5.4 using λ(x) = − 1
L−2

I ′(x). ). Now

calculate the limit of (L − 2)
´∞

1
f1(xt, Lxt)t1−Ldt as x → ∞. Using the Mono-
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tone Convergence Theorem and limx→+∞ f1(x, Lx) = a derived above we can write

limx→+∞(L − 2)
´∞

1
f1(xt, Lxt)t1−Ldt = (L − 2)

´∞
1

limx→+∞ f1(xt, Lxt)t1−Ldt =

a(L− 2)
´∞

1
t1−Ldt = a. The limit at minus infinity can be derived analogously.

The limit of τ(·) at infinity follows from τ(·) = Π(·)−π(·) and the limits derived

above.

Proof. (Proposition 7 and 8) I start by deriving the results for the permanent price

impact. The risk part for s > 0 can be written as

πρ(s) = γs̄

ˆ 1

0

g11(−γts̄, Lts̄)dt = γ

ˆ s̄

0

g11(−γy, Ly)dy.

Its derivative is thus given by γg11(−γs̄, Ls̄) > 0 and the second derivative at zero

with respect to |s̄| is given by −γ2g111(0, 0) + γLg112(0, 0) = −γ2k3(0) + γL (σ2)
′
(0)

for s > 0 with the sign flipped for s < 0.

The information part can analogously be written as

πι(s) = −L
ˆ s̄

0

g12(−γy, Ly)dy.

Its’ first derivative is given by −L · g12(−γs̄, Ls̄) > 0 (Assumption 1s) (equal to

−Lµ′(0) at zero) and the second derivative at zero is γLσ′(0) − L2µ′′(0) for s > 0

with the sign flipped for s < 0.

The risk part of the strategic component of the price reaction function can be

written as

τ ρ(s) = νγs̄

ˆ 1

0

g11(−t−νγs̄, Lt−ν s̄)dt.

It’s first derivative at zero is given by g11(0, 0) = νγσ2(0) > 0 the second derivative

at zero is given by 2νγ
´ 1

0
t−ν (Lg112(0, 0)− γg111(0, 0)) dt = 2ν

1−νγL((σ2)
′
(0)− γ/L ·

κ3(0)) for s > 0 with the sign flipped for s < 0.

The information part of the strategic component of the price reaction function

can be written as

τ ι(s) = −νLs̄
ˆ 1

0

g12(−t−νγs̄, Lt−ν s̄)dt.

Its’ first derivative at zero is given by −νLg12(0, 0) > 0 (equal to −νLµ′(0) at zero).

The second derivative at zero is given by −2νL
´ 1

0
t−ν (Lg122(0, 0)− γg112(0, 0)) dt =

− 2ν
1−νγL(L/γ · µ′′(0)− (σ2)

′
(0)) for s > 0 with the sign flipped for s < 0.

The results for the price reaction function are obtained combining the results
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for π(·) and τ(·). In particular, the slope of the price reaction function is given by

−L(1 + ν)µ′(0).

1.9 Some properties of CGFs and the risk function

I start by outlining some properties of CGFs. They are certainly known but I present

them with proofs to provide a self-contained treatment of the results.

1.9.1 Properties of CGFs

Fact 1. The CGF of a non-degenerate distribution is strictly convex.

Proof. Differentiating the definition of the CGF twice one gets

g′′(x) =
E[δ2 exp(δx)]E[exp(δx)]− E[δ exp(δx)]2

E[exp(δx)]2
.

The sign of g′′(x) is equal to the sign of E[δ2 exp(δx)]E[exp(δx)]−E[δ exp(δx)]2.

To complete the proof apply the Cauchy-Schwartz inequality (stating that E[XY ]2 <

E [X2]E [Y 2] for linearly independent random variables X and Y ) to the random

variables X = δ exp(δx/2) and Y = exp(δx/2).

The next result is particularly important to analyze the case of δ having bounded

support.

Fact 2. Suppose that the support of δ is (a, b) (with a and b possibly infinite). The

first derivative of the CGF, g′(x) is increasing and

lim
x→−∞

g′(x) = a and lim
x→+∞

g′(x) = b.

This result relies on the following two Lemmas.

Lemma 1. Suppose that the support of δ is (a, b) (with a and b possibly infinite).

Consider c : a < c < b. Then E[δexδI(δ < c)] = O (ecx) as x→ +∞.

Proof. We need to show that ∃x0, M such that ∀x > x0

|E[δexδI(δ < c)]| < Mexc. (1.9.1)
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Without loss of generality consider x > 0. Rewrite |E[δexδI(δ < c)]| as

|E[δexδI(δ < c)]| = Pr(δ < c) · |E[δexδ|δ < c]|

< |c|E[exδ|δ < c]

< |c|exc.

It is clear that (1.9.1) holds with M = |c| and x0 = 0.

Lemma 2. Suppose that the support of δ is (a, b) (with a and b possibly infinite).

Consider c : a < c < b. There exists K > 0 and θ > c such that

E[exδI(δ ≥ c)] ≥ Keθx. (1.9.2)

Proof. Rewrite E[exδI(δ ≥ c)] as

E[exδI(δ ≥ c)] = Pr(δ ≥ c) · E[exδ|δ ≥ c].

By Jensen’s inequality E[exδ|δ ≥ c] ≥ exθ, where θ = E[δ|δ ≥ c] > c. Clearly,

(1.9.2) holds with K = Pr(δ < c) and θ = E[δ|δ ≥ c].

I am now ready to provide the prof for the Fact 2.

Proof. (Fact 2) That g′(x) is increasing follows directly from the Fact 1.

I only prove that limx→+∞ g
′(x) = b, since the second limit is analogous.

Consider arbitrary c : a < c < b and rewrite

g′(x) =
E[δexδ]

E[exδ]
=

E[δexδI(δ < c)]

E[exδI(δ < c) + E[exδI(δ ≥ c)]

+
E[δexδI(δ ≥ c)]

E[exδI(δ < c) + E[exδI(δ ≥ c)]
,

Consider the first term. It follows from Lemmas 1 and 2 that there exist K, M >

0 and θ > c such that

∣∣∣∣ E[δexδI(δ < c)]

E[exδI(δ < c) + E[exδI(δ ≥ c)]

∣∣∣∣ ≤ Mexc

Kexθ
→ 0 as x→∞.
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It then follows from a Squeezing Theorem that the limit of the first term is zero.

The latter implies that

lim
x→∞

g′(x) = lim
x→∞

E[δexδI(δ ≥ c)]

E[exδI(δ < c) + E[exδI(δ ≥ c)]
.

The above and the fact that cE[exδI(δ ≥ c] < E[δexδI(δ ≥ c] < bE[exδI(δ ≥ c] imply

that

c ≤ lim
x→∞

g′(x) ≤ b.

Because c is arbitrary and the limit cannot depend on c, we find that the limit is

b.

1.9.2 Properties of the risk function

Now I present the properties of the risk function ρa(x). In all derivations I will

assume that x ≥ 0. The relevant derivations for the case x ≤ 0 can be obtained

analogously.

I will denote

α =
1

1− a
.

I will also maintain the assumption

a ≥ 0, a 6= 1

throughout this section which clearly holds for the cases a = 0 and a = 1 + ν

which are of interest for the results of the paper. The case 0 ≤ a < 1 corresponds

to α ≥ 1, whereas the case a > 1 corresponds to α < 0.

Fact 3. The risk function ρa(x) satisfies the ODE

xρ′a(x) = −αρa(x) + αg′′(−γx). (1.9.3)

Proof. Write the definition of the risk function

ρa(x) =

ˆ 1

0

g′′(−t1−aγx)dt.
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Make a change of variable t = (y/x)α , dt = α (y/x)α−1 dy
x
. The above becomes

ρa(x) =

αx
−α ´ x

0
g′′(−γy)yα−1dy, α ≥ 1

−αx−α
´∞
x
g′′(−γy)yα−1dy, α < 0

(1.9.4)

Differentiating the above with respect to x one gets (1.9.3).

Fact 4. Provided that α 6= −n, the n-th derivative of ρa(x) is continuous at zero

and is given by

ρ(n)
a (0) =

(−γ)n α

n+ α
g(n+2)(0).

Proof. Rewrite (1.9.3) as

ρ′a(x) = −α
(
ρa(x)− σ2

x
+ γ

g′′(−γx)− σ2

−γx

)
.

Calculating the limit of the above as x→ 0 we get

ρ′a(0) = −αρ′a(0)− αγg′′′(0).

The above implies

ρ′a(0) =
−γα
1 + α

g′′′(0).

So if α 6= −1 ρ′a(x) is continuous at zero.

To get the second derivative at zero differentiate (1.9.3)

xρ′′a(x) = −(1 + α)ρ′a(x)− γαg′′′(−γx).

Rewrite the above as

ρ′′a(x) = −(1 + α)

(
ρ′a(x)− ρ′a(0)

x
− γ2α

1 + α

g′′′(−γx)− g′′′(0)

−γx

)
.

Taking the limit as x→ 0 we get

ρ′′a(0) = −(1 + α)ρ′′a(0) + γ2αg(4)(0).

We get

ρ′′a(0) =
γ2α

2 + α
g(4)(0).
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Again, if α 6= −2 ρ′′a(x) is continuous at zero. One can get the general formula

by induction:

ρ(n)
a (0) =

(−γ)nα

n+ α
g(n+2)(0).

Fact 5. Suppose δ has bounded support [a, b]. Then for a > 1: ρa(x) <∞ and

ρa(x) = o(1/x) as x→ ±∞.

Proof. First I prove that ρa(x) <∞. According to (1.9.4) for a > 1 (i.e. α < 0) we

can write the risk function as

ρa(x) = −αx−α
ˆ ∞
x

g′′(−γy)yα−1dy.

Integrating by parts one gets

ρa(x) =
−α
γx

(
g′(−γx)− (α− 1)x1−α

ˆ ∞
x

g′(−γy)yα−2dy

)
. (1.9.5)

Rearranging the above I get

ρa(x) =
α(α− 1)

γ

(ˆ ∞
1

(
g′(−γx)− g′(−γxt)

x

)
tα−2dt

)
.

Since 0 < g′(−γx)− g′(−γxt) < b− a (Fact 1 and Fact 2) we have that ρa(x) <

−α
γ
b−a
x
<∞ for x 6= 0. To calculate ρa(x) at zero we use the Dominated Convergence

Theorem to interchange the limit and integration and L’Hopital’s rule to calculate

limx→0
g′(−γx)−g′(−γxt)

x
= −γσ2(1 − t). Calculating α(α − 1)

(´∞
1
σ2 (t− 1) tα−2dt

)
yields σ2 which is finite (since by assumption the CGF exists for all x ∈ R.

Now I prove that ρa(x) = o(1/x) as x→ +∞.

We can write limx→∞ xρa(x) = α(α−1)
γ

(´∞
1

limx→∞ (g′(−γx)− g′(−γxt)) tα−2dt
)

=

0, where the Dominated Convergence Theorem was used to interchange limit and

integration and Fact 2 to calculate limx→∞ g
′(−γx) = limx→∞ g

′(−γxt) = a.

Fact 6. The risk function satisfies the following comparative statics results:

1) ρa(x) is homogenous of degree 0 in (γ, 1/x);
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2) For a′ > a > 1 and a′ < a < 1 1/α′ · ρa′(x) < 1/α · ρa(x), where α′ = 1
1−a′ and

α = 1
1−a ;

3) For two distributions A and B satisfying g′′A(t) > g′′B(t) ρAa (x) > ρBa (x).

Proof. Write the risk function as

ρa(x) =

α
´ 1

0
g′′(−γyx)yα−1dy , if α > 0;

−α
´∞

1
g′′(−γyx)yα−1dy , if α < 0.

(1.9.6)

The results are easy to verify from the above.

1.10 Equilibrium bids are strictly decreasing and

have a finite slope

Since we do not know whether the residual supply is invertible, we write the residual

supply curve as

x = R(p; s).

The residual supply is given by

R(p; s) = s− (L− 1)b(p), (1.10.1)

where b(p) denotes the equilibrium bid.

The ex-post maximization problem PEP can be written as

max
x,p

f(x)− p · x

s.t. : x = R(p; s).

Substituting the constraint into the objective and taking the first order condition

with respect to p yields the following equation determining optimal price p∗(s) on

the residual supply curve for a given realization of s

f ′ (R (p∗; s))Rp (p∗; s)−R (p∗; s)− p∗ ·Rp (p∗; s) = 0. (1.10.2)

The above equation determines the optimal price p∗(s) for a given realization

of s. The corresponding optimal quantity x∗ is given by x∗ = R(p∗; s). In the
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Figure 1.10.1: Possible trajectories originating in the II and IV quadrants.

symmetric equilibrium x∗ = b(p∗) (all traders get the same quantity). It follows that

R (p∗; s) = b (p∗). Substituting it to (1.10.2), noting that Rp (p∗; s) = −(L−1)b′ (p∗)

(follows directly from (1.10.1)) and denoting p = p∗(s) we rewrite (1.10.2), after

some rearrangement, as

b′(p) =
b

(L− 1) (p− f ′ (b))
. (1.10.3)

The nonlinear ordinary differential equation above is a necessary condition for

equilibrium bid. The analysis that follows is analogous to Klemperer and Meyer

(1989).

The lines b = 0 and b = b∞(p) solving p− f ′ (b∞) = 0 divide the (b, p) plane into

four quadrants numbered as in the figure below.

Proposition C1. The equilibrium bid b(p) satisfies−∞ < b′(p) < 0.

Proof. The condition −∞ < b′(p) < 0 is equivalent to saying that the bid lays

within the second and fourth quadrants.

Suppose, on the contrary, that the equilibrium bid passes through the first quad-

rant. Then the price the trader will pay for some realizations of the supply will

be above marginal utility f ′(x) which cannot be optimal because in that case the

trader is strictly better off by submitting f ′(·) for the corresponding supply reali-

sations. The bid that passes through the first quadrant cannot be optimal for the

same reason. The bid that satisfies b′(p) = ∞ is the bid that intersects with the
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b = b∞(p) locus. Such a bid eventually reaches either first or third quadrant and so

cannot be optimal. Finally, as follows from (1.10.3) the only bid for which b′(p) = 0

is b = 0 which is not optimal since the consumer surplus is zero and the deviation

to any bid that passes through second and fourth quadrants is profitable.
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Chapter 2

Liquidity vs Information Efficiency

2.1 Introduction

In many modern markets, traders are heterogeneous along the following two dimen-

sions. The first dimension is the price impact: there are large traders who are able

to move prices and small traders whose effect on prices is negligible. For example, in

financial markets there is evidence that large institutional investors (such as hedge,

mutual and pension funds) have considerable price impact1. No such evidence exists

for retail investors and smaller funds, and anecdotally, price impact is not an issue

for these types of investors. The second dimension is heterogeneity in values. For

example, in financial markets institutional and retail investors may have different

values of an asset due to different trading needs or tax or risk-management con-

siderations2. In this paper, I present a model that captures this heterogeneity and

show that such heterogeneity has unexpected consequences for liquidity, information

efficiency and welfare.

I consider a centralized market (modeled as a uniform-price double auction) pop-

ulated by large and small traders. To capture the heterogeneity in price impacts, I

assume that there is a countable number of large traders, whereas small traders form

a continuum. The traders within each group are identical. I employ a linear-normal

setting: traders have linear-quadratic objectives, and their values are distributed

normally. To capture the second dimension of heterogeneity, I assume that the val-
1See, e.g., Chan and Lakonishok (1995), Keim and Madhavan (1995), Korajczyk and Sadka

(2004), among others.
2Fund flows and fund managers’ compensation relative to a benchmark can be conceptualized as

endowment shocks. These endowment shocks create hedging needs that are specific to institutional
investors. See Vayanos and Woolley (2013) for a treatment of the effect of fund flows. See Basak
and Pavlova (2012) and Cuoco and Kaniel (2011) for a treatment of benchmarking.
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ues of large and small traders are imperfectly correlated. For simplicity, I assume

that the large traders know their value. However, for the information efficiency

to play a role, the information concerning small traders value is dispersed among

them. I show that the model provides a natural framework for considering asset,

commodities, foreign exchange and product markets.

In my first set of results, I consider the interaction among liquidity, information

efficiency and welfare. First, I show that a tension between liquidity and informa-

tion efficiency might arise: policy measures intended to promote liquidity might be

harmful for information efficiency and vice versa and changes in the market environ-

ment (such as risk-bearing capacity, number of large traders, information precision)

can shift liquidity and information efficiency in opposite directions. Second, I show

that a shock to the economic environment that has a positive direct effect on liq-

uidity (an increase in risk-bearing capacity) may have a negative overall effect on

liquidity (liquidity paradox ). This is possible because the shock has a positive ef-

fect on information efficiency and there is a tension between the two. Similarly, a

positive shock to information efficiency (an increase in the precision of the signals)

might have a negative overall effect on information efficiency (information aggrega-

tion paradox ). Third, when there is more competition between large traders, welfare

might be lower. Moreover, all traders, even small ones, can be worse off as a result

of more competition. This is possible because competition has negative effects on

information efficiency. For a similar reason, breaking up a centralized market into

two separate exchanges might improve welfare.

The above results are a consequence of an equilibrium mechanism that features a

complementarity between illiquidity (price impact) and information efficiency. The

mechanism is represented in Figure 2.1.1. A belief that the market is less liquid

induces large investors to trade less aggressively (their demand is less sensitive to

their information). It makes the price relatively less (more) sensitive to the values

of large (small) traders. From the perspective of small traders, the price is more

informative. Therefore, they provide less liquidity: if someone is buying and driving

up the price, small traders are less willing to sell (decrease their demands) because

they partly attribute higher prices to stronger fundamentals. In other words, when

prices are more informative, small traders are less price-elastic. The latter confirms

lower liquidity.

A direct consequence of such complementarity is the possibility of multiple equi-
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Figure 2.1.1: Equilibrium mechanism. I-traders are large. J-traders are small.

libria driven by self-fulfilling beliefs concerning liquidity or information efficiency.

I provide the sufficient conditions for the multiplicity to emerge. I show that the

equilibria can be ranked in terms of liquidity and information efficiency and that

the rankings are the opposite of one another: the equilibria with higher liquidity

feature lower information efficiency and vice versa. I also provide a sufficient condi-

tion under which the equilibria can be ranked in terms of welfare: if the price does

not provide much incremental information to the traders, the equilibria with higher

liquidity are those with greater welfare.

I also explore the implications of the mechanism for market crashes. I understand

the latter either as a switch between the two equilibria with different price levels or

as a large change in price caused by a small change in the economic environment.

The latter is possible because the complementarities provide a natural amplification

mechanism. I show that, depending on whether the large traders are on the buy

or sell side of the market, there are two scenarios consistent with a market crash,

which differ in the behavior of information efficiency, liquidity, volatility, and trad-

ing volume. Under the sufficient condition that price does not provide substantial

incremental information, welfare decreases in only one scenario. Correspondingly,

only one scenario suggests policy intervention.

I consider the implications of the model and empirical evidence in Section 2.7.

Briefly, I consider two episodes that affected commodities markets, the 2008 boom/bust
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and the 2014 crash in oil prices, through the lens of the model. I emphasize the role

of two forces: (1) informational frictions and (2) the market power of oil producers

that is endogenously amplified because of (1). In asset markets, I seek evidence

supporting the model’s prediction that in a more liquid market, the price is more

(less) reflective of the values of large (small) traders. I find suggestive evidence in

the on-the-run treasury bonds and equity markets. I also discuss the policy implica-

tions concerning the effects of high-frequency traders and commodity index traders

in the in asset and commodities markets and discuss the effects of competition on

welfare.

On a technical side, I demonstrate how to perform a stability analysis in a

strategic trading model with heterogeneous traders. The key idea is to represent the

equilibrium as a fixed point that determines market liquidity. Given their beliefs

concerning market liquidity, traders choose their demand schedules. In equilibrium,

liquidity (which is determined by the slopes of the traders’ demands) should be equal

to assumed liquidity. The stability of equilibrium is associated with the stability of

this fixed point.3 This representation also allows me to characterize quantitatively

the amplification through an illiquidity multiplier.4

Related literature This paper is related to two strands of literature: strate-

gic trading/supply function equilibria and rational expectations models featuring

multiple equilibria.

The first strand of literature can be further divided into two subgroups: the

models with common values (Kyle (1989), Pagano (1989), Vayanos (1999), Rostek

and Weretka (2015), and Malamud and Rostek (2015)) and the models with pri-

vate values (Vives (2011), Rostek and Weretka (2012, 2014), Du and Zhu (2015),

Kyle, Obizhaeva and Wang (2015), and Babus and Kondor (2015)). Technically,

the common value models obviously lack the heterogeneity in trader’ values, which

I capture in my model. More important, given common values, the interaction be-

tween liquidity and information efficiency is in the opposite direction. In common

value models, the price reflects traders’ information and noise. If traders believe

that the market is more liquid, they trade more aggressively on their information,
3The representation simplifies the stability analysis significantly, as mapping liquidity onto itself

entails mapping R onto R, whereas the best response mapping is R4 onto R4 in my model.
4The notion of an illiquidity multiplier is from Cespa and Foucault (2014). The idea of repre-

senting the equilibrium as a fixed point determining the price impact is from Weretka (2011) and
Rostek and Weretka (2015).
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and information efficiency improves. Consequently, the complementarity between

illiquidity and information efficiency does not arise.

The private values model of Vives (2011), Rostek and Weretka (2012, 2014), Du

and Zhu (2015) and Kyle, Obizhaeva and Wang (2015) capture the heterogeneity in

traders’ values; however, they focus on symmetric settings and there is no hetero-

geneity in price impact.5 As a result, traders’ behavior is affected by liquidity in a

symmetric way, and the price reflects the same combination of their signals. Con-

sequently, the complementarity uncovered in this paper does not arise. Babus and

Kondor (2015) include the two dimensions of heterogeneity in their model. However,

they focus on the over-the-counter markets, and the complementarity does not arise

because of the bilateral interactions among the large traders.

The multiplicity of equilibria in REE models can arise for two reasons. First, due

to demand nonlinearities, there can be multiple market-clearing prices (e.g., Gen-

notte and Leland (1990); Barlevy and Veronesi (2003); Yuan (2005)). In contrast,

the equilibrium in this model is linear, and consequently, the market-clearing price

is always unique.

The equilibrium multiplicity in this paper arises due to strategic complementari-

ties, similar to Ganguli and Yang (2009), Goldstein, Li and Yang (2013), Cespa and

Focault (2014), Cespa and Vives (2015), Rohi and Zigrand (2015), Huang (2015)

and Bing et al. (2016). In these papers, the traders take prices as given, whereas

the traders in my model account for their influence on prices. This difference is not

merely technical: strategic behavior on the part of large traders is an integral com-

ponent of the mechanism generating the complementarity in this paper. Moreover,

price-taking behavior implies that traders regard the market as perfectly liquid;

therefore, as my focus in the paper is liquidity, assuming the strategic behavior is

desirable.

Through their focus on liquidity, the two most closely related papers among

the above REE models with complementarities are Cespa and Foucault (2014) and

Cespa and Vives (2015). These models also feature multiple equilibria that differ in

liquidity and information efficiency. However, in these papers, the equilibria with

higher liquidity are also those with higher information efficiency, which highlights

the complementarity between liquidity and information efficiency (versus comple-
5Technically, there are small traders in Vives (2011). However, their behavior is not affected by

either liquidity or information. The model predictions are the same if instead of small traders the
model postulates an exogenously postulated demand curve.
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mentarity between illiquidity and information efficiency in this paper).

The tension between liquidity and information efficiency can manifest as a com-

parative statics result in some other settings. For example, in Subrahamnyam

(1991), increasing the variance of noise trading can increase liquidity but decrease

information efficiency. However, in my paper this tension manifests through the po-

tential coexistence of high liquidity/low efficiency and low liquidity/high efficiency

equilibria. Bing et al. (2016) demonstrate that there might be a tension between

the liquidity and information efficiency if noise traders chase liquidity: improvement

in liquidity attracts more noise traders and may therefore harm the information

efficiency. In my paper it is more aggresive trading, not the entry of traders, that

have adverse effects on information efficiency.

The information aggregation paradox is reminiscent of the results of Banerjee

et al. (2015), who show that reducing the cost of information acquisition (and,

therefore, increasing signal precision in equilibrium) may not increase information

efficiency. In their model, the traders may acquire information on asset fundamen-

tals or on noise. They show that lowering the cost of information concerning the

fundamentals may, under certain conditions, induce traders to learn more about

noise. As a result, information efficiency may decrease. This mechanism differs

from that in my paper, whereby more precise information improves liquidity and

induces large traders to trade more, which is harmful for the price inference of small

traders and, consequently, for information efficiency.

Rostek and Weretka (2014) show that increasing market size (the number of

traders) does not necessarily increase welfare. They consider an equicommonal auc-

tion: a market with large traders who are heterogenous in their values, such that

the average correlation of the value of each trader with the values of others is the

same for all traders. They attribute the reduction in welfare to a decrease in gains

from trade: in larger equicommonal markets, the values of traders are more aligned

and, correspondingly, the gains from trade are lower. This mechanism is therefore

different from that presented here, which emphasizes the negative externality that

increased competition has on information efficiency.6

6In an equicommonal auction, the price always reflects the average of traders’ signals. In
contrast, in my model, the price is less (more) reflective of the value of small (large) traders when
the competition among large traders increases.
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2.2 The model

Consider a market for a divisible good in which two groups of agents, I and J ,

are trading. There are N > 1 of I-traders, indexed by i ∈ I ≡ {1, 2, ..N}, and

there is a unit continuum of J-traders, indexed by j ∈ J ≡ [0, 1]. The traders

within each group k ∈ {I, J} are identical, and their preferences are given by a

quasilinear-quadratic function

uk = (vk − p)x−
wkx

2

2
, (2.2.1)

where wk > 0 is a constant, and the values vk ∼ N
(
v̄k,

1
τk

)
are jointly normally

distributed with

corr(vI , vJ) = ρ ∈ (−1, 1). (2.2.2)

The information structure is as follows. The I-traders know their value, but it is

not known to J investors. The J−investors have dispersed information about their

value. Each j ∈ J receives a signal

sj = vJ + εj, (2.2.3)

where εj ∼ N
(

0, 1
τs

)
, and for any j, k ∈ J , such that k 6= j the noise εj is indepen-

dent of vI , vJ and εk. The parameter τs measures the precision of the signal. The

information structure can be summarized by the information sets

Fi = {vI}, Fj = {sj}, ∀i ∈ I, j ∈ J.

In equilibrium, traders will also learn from prices.

The market is modeled as a uniform-price double auction. Each trader k submits

his net demand schedule xk(p): xk(p) > 0 (xk(p) < 0) corresponds to a buy (sell)

order. The market-clearing price p∗ is such that the net aggregate demand is zero

N∑
i=1

xi (p
∗) +

ˆ 1

0

xj (p∗) dj = 0. (2.2.4)

In equilibrium, each trader is allocated

x∗k = xk (p∗) .
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The equilibrium concept is a symmetric linear Bayesian Nash Equilibrium (hence-

forth, equilibrium). A symmetric linear equilibrium is an equilibrium in which

traders i ∈ I and j ∈ J have the following demand schedules

xi = α + β · vI − γ · p and xj = αJ + βJ · sj − γJ · p. (2.2.5)

2.2.1 Examples

Below, I show that the model presented above provides a natural framework for

considering at least four types of markets.

1. Securities markets.

In this example, the good being traded is a financial asset, such as a bond or

stock. The I-traders are institutional investors. In the model, their distinguishing

features are that they are large (can affect prices), and sophisticated/informed (know

their value). It is therefore natural to interpret them in this manner.7 The J-traders

can be interpreted as retail investors.

The preference specification (2.2.1) is common in the securities markets context.8

The quadratic component wkx
2

2
represents an inventory cost that may come from the

regulatory capital requirements, collateral requirements or risk-management consid-

erations.9 The difference in the values of I- and J-traders may be due to the following

reasons. The first is that along with the common value component v, representing

the fundamental value of the security, investors may also care about a private value

uk, such that

vk = v + uk, k ∈ {I, J}.

The private values uk, which differ between the two groups, may be due to different

tax or risk-management considerations.10 Assuming that v, uI and uJ are normally

distributed and not perfectly correlated, we obtain the setup with imperfectly cor-

related values described in the section above.
7There is a vast empirical literature demonstrating that institutional investors have price impact

and that the costs associated with it are considerable. Examples include Chan and Lakonishok
(1995), Keim and Madhavan (1995), and Korajczyk and Sadka (2004), among others. Anecdotally,
institutional investors are more informed because they have more resources to support a larger
research division, pay for relevant data streams, etc. Hendershott et al. (2015) present empirical
evidence supporting this point.

8E.g., Vives (2011), Rostek and Weretka (2012) and Du and Zhu (2015).
9See Du and Zhu(2015), Section 2.1 for a discussion.

10See, e.g., Duffie, Garleanu and Pedersen (2005) or Du and Zhu (2015) for a discussion of private
values in the context of financial markets.
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An alternative explanation is that the difference in vI and vJ may represent

uncertainty concerning the endowment shocks. Suppose that both types of investors

care about the fundamental value of the security v. Suppose that I-investors receive

a (normally distributed) endowment shock e that is known to them but unknown

to J-investors. The J-investors receive no endowment shocks. In that case, the

preference relation of I-investors can be written as (v − p)x− wI(e+x)2

2
, or, dropping

the constant wIe
2

2
,

(v − wIe− p)x−
wIx

2

2
.

Denoting vI ≡ v − wIe, the above becomes

(vI − p)x−
wIx

2

2
,

which is consistent with the specification (2.2.1). Moreover, as long as e is not

perfectly correlated with v, vJ = v and vI = v − wIe are imperfectly correlated,

which is consistent with the setup described above.

2. Commodities or intermediate good markets.

In this example, the good being traded is a commodity, such as crude oil or

aluminum. More generally, imagine any intermediate good, i.e., one that is an output

for some firms while being an input for the others. The I-traders are commodity

producers. The J-traders are firms, buying the commodity to produce the final

good.

Commodity producers have a production technology characterized by a convex

cost function

c · y +
wI
2
y2, (2.2.6)

where c ∼ N
(
c̄, 1

τI

)
is a cost shock, which is known to producers but not to firms.

The latter assumption captures that the producers are better informed about their

own production technology. Producers are risk neutral and maximize their profit

p · y −
(
cy +

wI
2
y2
)
. (2.2.7)

Note that in the above, y is the amount of commodity sold, i.e., the net supply.

The net demand of producers is x = −y. With this change of variable, the above
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becomes

(c− p)x− wI
2
x2, (2.2.8)

which is consistent with (2.2.1) with a value vI equal to the cost shock c.

Firms j ∈ [0, 1] have a production technology characterized by a concave pro-

duction function

Y (x) ≡ a · x− wJ
2
x2. (2.2.9)

In the above, a ∼ N
(
ā, 1

τa

)
is a productivity shock. The latter shock is common

to all firms. The firms have dispersed information concerning a. In particular, each

firm j is endowed with a signal

sj = a+ εj,

where εj ∼ N
(

0, 1
τs

)
and ∀j, k, such that k 6= j the noise εj is independent of

c, a and εk. Following Sockin and Xiong (2015), the productivity shock can be

interpreted as the strength of the economy. Firms are risk neutral and maximize

their profit

pg

(
a · x− wJ

2
x2
)
− p · x, (2.2.10)

where pg = 1 is the price of the final good (endogenized below) and p is the price of

the commodity. The above is consistent with (2.2.1) with the value vJ equal to the

productivity shock a.

I close the model and assume that the final good is sold to consumers l ∈ [0, 1],

who have a linear Marshallian utility function over consumption of the final good z

and residual money m = m0 − pgz

ul(z,m) = z +m0 − pgz,

where m0 is the endowment of money that each consumer has. The fact that there

is a continuum of them implies that they are price takers. Therefore the price of the

final good is equal to the marginal utility and, indeed, pg = 1.

The setting considered in this example is a natural framework to study commodi-

ties markets. The linear-quadratic specification of the cost and production functions

is common in the commodities literature.11 The information structure with a cost

shock known to producers but not to firms and firms having dispersed information
11E.g., Grossman (1977), Kyle (1984), Stein (1987), Goldstein and Yang (2015).
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regarding the strength of the economy is the same as in Sockin and Xiong (2015),

with an additional generality of allowing for correlation between c and a. The set-

ting of this example can be considered a generalization of Sockin and Xiong (2015),

in which I allow producers to have market power.12

3. Product markets.

This example is similar to the previous one, but the good being traded is a final

good. The I−traders are the producers of that good. They have a cost function

(2.2.6), with the same assumptions regarding the cost shocks distribution. The only

difference is that J-traders are now consumers with concave utility

vJx−
wJx

2

2
− px.

The parameter vJ is interpreted as a quality of the product, and the consumers

have dispersed information on quality in the form of signals (2.2.3). With cost c

and quality vJ being imperfectly correlated, the example conforms to the setting

presented in the section above.

4. Foreign exchange markets.

In this example, the good being traded is foreign currency. Suppose that the

home currency is the pound and the foreign currency is the dollar. The price p is

how many pounds one dollar is worth. The I-traders are exporters. The J-traders

are importers. Exporters receive dollars from selling their goods. Importers need to

buy dollars to purchase raw materials abroad. The supply and demand from those

two groups determine the exchange rate.

The price of the good that the I-traders produce and export is denominated

in dollars, and the exporters have no ability to influence it. Normalize it to one.

Assume that the cost of production of y units of the export good is given by (2.2.6).

The revenue from selling y units of the good is y dollars and p ·y pounds. Therefore,

the profit from a sale of y units (corresponding to the net demand of x = −y) is

given by (2.2.8), just as in Example 2.
12The market power of producers is clearly relevant in commodities markets. E.g., in the crude

oil market, OPEC accounts for more than 40% of world production (OPEC statistical bulletin
(2015)); in the aluminum market, the 6 largest producers account for over 40% of world production
(Nappi (2013)). Such concentration should not be surprising, and the possible reasons for it are
twofold. First, for the energy and metals commodity classes, commodity-producing firms are
typically monopolies in their home countries. Because there are few large commodity-producing
countries, there are few large producers in the world. Second, even if there are many producers in
a country (which is the case for agricultural commodities, for example) their actions in the global
market are nevertheless orchestrated by their home governments through export quotas and tariffs.
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The J-traders need to import raw materials, the price of which is denominated

in dollars and normalized to one, similar to the above. The cost of buying x units of

raw materials is therefore x dollars and p ·x pounds. With x units of raw materials,

the importers can produce Y (x) units of the good, where the production function

Y (x) is given by (2.2.9). The price of the good that the importers produce is

denominated in pounds and normalized to one. The profit from selling x units of

the good is therefore given by (2.2.10), just as in Example 2. The mapping to the

general framework can therefore be established in the same way as in Example 2.

2.3 Equilibrium

In this section, I characterize the equilibrium in the model. I restrict myself to the

case

ρ ≥ 0. (2.3.1)

This is a reasonable assumption in the securities,13 commodities14 and product mar-

kets.15 However, my main motivation to introduce it is to simplify exposition. The

model with negative correlation is still tractable but exhibits additional complemen-

tarities. To focus on the main mechanism, I consider the case (2.3.1). Theorem 3

characterizes the equilibria.

Theorem 3. There exists at least one equilibrium. The closed-form expressions, up

to a solution of a sextic equation, for the equilibrium coefficients (α, β, γ, αJ , βJ , γJ)

are given by the equations (2.10.24-2.10.29) in the Appendix. The equilibrium is

unique if

τI < τ 1. (2.3.2)

Suppose that

wI < w, N > 4. (2.3.3)

Then there exist thresholds τ2 and τ2 such that τ 1 < τ2 < τ2, and there are at least

three equilibria if
13Indeed, under the traditional pure common value setup, the correlation is equal to one. If

the departure from the pure common values is not too substantial, the correlation should still be
positive.

14It is more general than the assumption of zero correlation of demand and supply shocks in
Sockin and Xiong (2015) and Goldstein and Yang (2015).

15Indeed, the fact that a particular product is more expensive to produce is usually associated
with that product having better quality.
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τ2 < τI < τ2. (2.3.4)

The closed-form expressions for the thresholds are given by equations (2.10.45, 2.10.53-

2.10.55) in the Appendix.

I present a detailed proof of the above theorem in the Appendix. Below I provide

the most important steps.

Consider I-traders. They choose their demand schedules to maximize (vI − p)x−
wI
2
x2. The first-order condition is given by

vI − p− x
∂p

∂x
− wIx = 0,

where the third term x ∂p
∂x

reflects the fact that the I-traders realize that they can

move prices.

In equilibrium, the price sensitivity ∂p
∂x

is given by the slope of the inverse residual

supply (Kyle’s lambda) ∂p
∂x

= λ, where

1

λ
= (N − 1)γ + γJ . (2.3.5)

The above expression is intuitive: 1/λ is the slope of the (direct) residual supply

function, and there are (N − 1) I-traders with supply elasticity γ and a unit mass

of J-traders with demand elasticity γJ contributing to it.

In what follows, I will refer to λ as a price impact and 1/λ as liquidity. Equation

(2.3.5) provides the first takeaway: liquidity is directly related to price elasticities

γ and γJ . This enables me to use the following language: if a trader increases

(decreases) his price elasticity, I say that he provides more (less) liquidity.

The above implies that the demand of the I-traders is given by

xi =
1

wI + λ
(vI − p), (2.3.6)

from which it follows, in particular, that

β = γ =
1

wI + λ
> 0, (2.3.7)

where λ is given by (2.3.5). The above equation provides the second takeaway: a

74



higher price impact implies that I-traders trade less aggressively (β is lower) and

provide less liquidity (γ is lower).

As there is a continuum of J-traders, they cannot move prices. Their optimiza-

tion problem is given by

max
x

(E[vJ |sj, p]− p)x−
wJx

2

2
,

implying an optimal demand of

xj =
1

wJ
(E [vJ |sj, p]− p) . (2.3.8)

It remains to understand the inference problem of the J-traders. In a linear

equilibrium given by (2.2.5), the equilibrium price function is

p =
1

Γ
(NβvI + βJvJ) + cp, (2.3.9)

where Γ = Nγ + γJ is a price elasticity of aggregate demand and cp is a constant.16

The values vI and vJ are positively correlated, and hence without loss of gener-

ality, we may assume that

vI = A+BvJ + Cε,

where ε ∼ N(0, 1) is independent of vJ and A, B ≥ 0 and C > 0 are some con-

stants.17

Substituting the above into (2.3.9), one can see that the price is informationally

equivalent to the following sufficient statistic

π ≡ Γp

NβB + βJ
+ const = vJ +

NβC

NβB + βJ
ε,

where in the above and in what follows, I denote by const non-stochastic terms.

Because ε and vJ are independent, the sufficient statistic π is an unbiased signal of

vJ . This signal has a precision

τπ ≡ Var[π|vJ ]−1 =
1

C2

(
B +

βJ
Nβ

)2

>

(
B

C

)2

. (2.3.10)

16The exact value is cp = Nα+αJ
Γ .

17It is easy to express A, B and C through the parameters of the model. One can find B = ρ
√

τJ
τI
,

C =
√

1−ρ2
τI

and A = v̄I −Bv̄J .
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From the Projection Theorem, the ex-post precision of vJ , measuring how much

the J-traders can learn about their values, is

τ = Var[vJ |sj, p]−1 = τJ + τs + τπ.

Define information efficiency as:18

I ≡ Var(vJ)

Var(vJ |sj, p)
=
τJ + τs + τπ

τJ
.

This reveals the third takeaway: less aggressive trading by I-traders (lower β) makes

the price more informative for J-traders (greater τπ). Because the J-traders are the

only ones who learn, the information efficiency of the market improves (I increases).

From the Projection Theorem, one can compute

E [vJ |sj, p] =
τs
τ
sj +

τπ
τ
π + const

=
τs
τ
sj +

τπ
τ

Γp

(NβB + βJ)
+ const.

Substituting the above into (2.3.8) and comparing to (2.2.5) yields

βJ =
1

wJ

τs
τ
> 0, (2.3.11)

and, after some rearrangement,

γJ =
1

wJ
− Γ

τs

√
τπ

(
√
τπ −

B

C

)
. (2.3.12)

Intuitively, there are two effects determining the elasticity γJ . The first is the

expenditure effect: for a higher price, a trader would demand less because a higher

price implies higher expenditure p · x from buying x units of the good. This effect

corresponds to the first term in (2.3.12). The second is the information effect: a

higher price may also signal a higher value of vJ , and a trader might wish to buy

more for a higher price. The information effect therefore has the opposite sign and

corresponds to the second term in (2.3.12). Intuitively, this effect is stronger the

more informative the price is. This is why, as can be seen from (2.3.12), the price

elasticity γJ is decreasing in τπ. This observation provides the last takeaway: greater
18Intuitively, I measures the reduction in variance due to learning. As the I-traders know their

value perfectly well, they do not contribute to I.

76



price informativeness (higher τπ) induces J-traders to provide less liquidity (decrease

γJ).

2.4 Strategic complementarities and multiplicity of

equilibria

The four takeaways from the above section are the basis for the strategic comple-

mentarities in the model and the driver of the multiplicity of equilibria. The comple-

mentarities are represented in Figure 2.4.1, which depicts two feedback loops. The

smaller one corresponds to complementarities within I-traders. If market is less

liquid (λ is higher), I-traders provide less liquidity (γ is lower, cf. (2.3.7)). This, in

turn, confirms a higher price impact (cf. (2.3.5)).

The larger loop corresponds to the complementarities between I- and J-traders.

A higher price impact implies that I-traders are less aggressive (β is lower, cf.

(2.3.7)). This implies that the price is more informative for J-traders (τ is higher,

cf. (2.3.10)) and the market is more information efficient (as only J-traders learn

from prices). Because the price is more informative, J-traders provide less liquidity

(γJ is lower): they are less willing to decrease their demand if the price increases

because an increase in price may signal stronger fundamentals. This is confirmed by

equation (2.3.11). The last step in the loop indicates that because J-traders provide

less liquidity, the price impact is indeed higher (2.3.5).

Complementarities may generate multiple equilibria driven by self-fulfilling be-

liefs regarding liquidity. Indeed, suppose that there is an equilibrium. Suppose that

traders believe that the liquidity is actually lower. The I-traders will then trade less

aggressively. This will make the price more informative for J-traders, who will pro-

vide less liquidity. The latter confirms lower liquidity and potentially allows traders

to coordinate on another equilibrium. One can also interpret the multiplicity as

being driven by self-fulfilling beliefs concerning information efficiency. The latter

interpretation works as follows. Suppose that there is an equilibrium. Suppose that

the J-traders believe that the price informativeness is actually higher than that in

equilibrium. They will then provide less liquidity. This would lead to a higher price

impact of I-traders, who will trade less aggressively, confirming the higher price

informativeness and potentially justifying another equilibrium.
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Figure 2.4.1: Equilibrium mechanism: two feedback loops. The smaller one cor-
responds to within-complementarities. The larger one corresponds to between-
complementarities.

Theorem 3 provides sufficient conditions for uniqueness and multiplicity, which

I discuss below. The complementarities between I- and J-traders are facilitated by

the price inference of J-traders. The more informative the price is relative to the

signal, the more J-traders rely on prices and the more the two groups of traders

interact. Sufficient condition (2.3.2) ensures that the price is not too informative: if

τI is low enough, there is enough noise in the price. This condition ensures that the

between-complementarities (i.e., the larger loop in Figure 2.4.1) are not too strong

to generate multiple equilibria. As is well known from the literature, the within-

complementarities alone do not generate multiplicity are needed.19, and hence no

additional conditions to weaken the feedback in the small loop in Figure 2.4.1

The sufficient condition for multiplicity τI > τ2 ensures that price informativeness

is high enough, such that the price inference channel, through which I- and J-traders

interact, is important. The condition τI < τ2 ensures that price informativeness is

not too high, and hence more/less aggressive trading by the I-traders can change

the informativeness significantly. Thus, condition (2.3.4) ensures that the between-

complementarities are strong enough. The condition that wI < w ensures that the
19Indeed, within-complementarities are present even in the pure common values setting of, e.g.,

Kyle (1989), Vayanos (1999) and Rostek and Weretka (2015). However, the equilibrium in those
models is unique.
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Figure 2.4.2: Multiple equilibria. The figure demonstrates dependence of βJ on
log(τI) for wI = 3 (thick line) and wI = 1 (thin line). Unstable equilibria are
represented by dotted parts of the lines. The values of other parameters are ρ = 0.9,
τJ = 1, τs = 1, N = 10, wJ = 1.

price elasticity γ is not too small (cf. (2.3.7)). Together with the condition that N

is large enough, the former condition ensures that (N − 1)γ is not too small relative

to γJ , and hence the between-complementarities are an important determinant of

the price impact (cf. (2.3.5)). Thus, condition (2.3.3) ensures that the within-

complementarities are strong enough.

Figure 2.4.2 illustrates the multiplicity of equilibria in the model. It plots the

equilibrium sensitivities βJ against τI . It should be read as follows: draw a vertical

line corresponding to a particular value of the parameter τI . Each intersection of

the vertical line with the plot in Figure 2.4.2 corresponds to an equilibrium. If the

line intersects with a dashed part of the plot, the equilibrium is unstable.20 For

example the equilibria A and C in Figure 2.4.2 are stable, whereas equilibrium B is

unstable. Observe, consistent with Theorem 1, that there is a unique equilibrium if

τI is small enough and that when wI is small enough, there are three equilibria for

the intermediate values of τI .

2.4.1 Liquidity and information efficiency

In this section, I consider the case of equilibrium multiplicity and compare the

equilibria in terms of liquidity and information efficiency. Recall the definitions of
20The stability analysis is performed in Section 2.9.
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liquidity and information efficiency

L =
1

λ
and I =

Var(vJ)

Var(vJ |sj, p)
.

Recall that the multiplicity is driven by the complementarity between illiquidity and

information efficiency: lower liquidity induces higher information efficiency (through

I-traders being less aggressive); higher information efficiency confirms lower liq-

uidity (through J-traders providing less liquidity). Therefore, given a particular

equilibrium, traders can coordinate on another one with lower liquidity and higher

information efficiency.

The above suggests that the equilibria can be ranked in terms of L and I, with

the equilibria that are more liquid being less information efficient and vice versa.

This is confirmed in Proposition 9. If the traders were to pick an equilibrium, they

would have to choose between two evils: the equilibrium with the highest liquidity

is the one with the lowest information efficiency and vice versa. To resolve this

tension, I compute the welfare W (defined as the sum of expected utilities of all

traders) and provide a sufficient condition that allows me to rank equilibria in terms

of welfare. See Proposition 9 below.

Proposition 9. Suppose that there are multiple equilibria. For any two equilibria

A and B: LA > LB if and only if IA < IB. Moreover, there exists τJ such that if

τJ > τJ and τI < 1− ρ2 (2.4.1)

holds, then WA >WB if and only if LA > LB.

Condition (2.4.1) should be understood as follows: prices do not provide much

incremental information. Indeed, τJ being large enough ensures that J-traders face

little uncertainty regarding their value. The condition that τI is small enough implies

that the price is not too informative from the perspective of J−traders. If condition

(2.4.1) holds, liquidity is more important and the equilibria with higher liquidity are

those with higher welfare.

2.4.2 Crashes

In this section, I explore the implications of the mechanism presented above for

price crashes and the associated changes in information efficiency, liquidity, volume,
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volatility and welfare.

In what follows, I refer to the expected price E[p] simply as price. I refer to the

standard deviation of the price simply as volatility and denote it as σp

σp ≡
√

Var(p).

The expected trading volume (volume hereafter) is defined as

V ≡ 1

2
· E
[ˆ 1

0

|xj (p∗)| dj +N · |xI (p∗)|
]
.

I define a crash (jump) in an endogenous variable such as price, volatility or

volume as follows.

Definition 2. Suppose that there is an endogenous variable X and a parameter of

the model ζ ∈ {τI , τJ , τs, ρ, wI , wJ , N} . A crash (jump) of X is either of the two

situations. (1) There are multiple equilibria. A crash (jump) is a sunspot switch

from the equilibrium in which X is high (low) to the equilibrium in which X is low

(high). (2) There is unique equilibrium, in which dX
dζ

= −∞ (dX
dζ

= +∞).

For example, the thick line in Figure 2.4.2 exhibits a crash of βJ when log(τI)

is close to 5.2, and a thin line exhibits a crash when log(τI) is between 5.5 and 6.5.

The proposition below characterizes the behavior of endogenous objects in the event

of a price crash. I focus on the case of a price crash because in most markets, prices

rarely jump up.21 The corresponding statements for the case of jumps can be easily

obtained in a way analogous to the proposition below.

Proposition 10. Two scenarios are consistent with a price crash. (1) The price

crash is associated with a liquidity crash, a jump in volatility and a jump in informa-

tion efficiency, and if (2.4.1) holds, there is also a crash in the trading volume and

welfare. This is the case when the I-traders are net buyers, i.e., v̄I > v̄J . (2) The

price crash is associated with a jump in liquidity, a crash in volatility and a crash

in information efficiency, and if (2.4.1) holds, there is also a jump in the trading

volume. This is the case when the I-traders are net sellers, i.e., v̄I < v̄J .

The above proposition identifies two scenarios consistent with a price crash.

In the first scenario, the I-traders are net buyers. This scenario is represented
21The notable exception is currency markets: exchange rates do jump up.
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Figure 2.4.3: Two scenarios of a price crash. In the left panel, the I-traders are net
buyers. The parameter values are v̄I = 1.5, v̄J = 0, and τs = 0.01. In the right
panel, the I-traders are net sellers. The parameter values are v̄I = 0, v̄J = 1.5, and
wI = 4.5. The values of the remaining parameters are the same for the two panels:
N = 10, wJ = 1, ρ = 0.9, τJ = 0.1, and τI = 6.13.

in the left panel of Figure 2.4.3. Let us interpret it in the context of securities

markets (Example 1). A small change in the risk-bearing capacity of I-traders (an

increase in wI) reduces liquidity. This initial liquidity shock is amplified due to two

feedback loops. Due to the liquidity shock, I-traders provide less liquidity, which

feeds back into a higher price impact. As I-traders also trade less aggressively,

the price becomes more informative and the J-traders provide less liquidity. This

also feeds back into a higher price impact. A small liquidity shock is amplified

and results is a large overall drop in liquidity. Due to the increased price impact,

I-traders buy less and the prices drop. Because liquidity is low, relatively small

orders can cause large price changes, and hence volatility increases. The volume

drops for two reasons. First, due to the higher price impact, the I-traders trade

less. Second, after the crash, information efficiency increases (because I-traders

trade less aggressively); therefore, the ex post values of J-traders E[vJ |sj, p] are

closer to the true value vJ and are therefore more aligned. This implies less volume

generated by J-traders.22 The first scenario is associated with a drop in liquidity but
22There is, however, an effect that works in the opposite direction. The variation in the ex post

value Var (E[vJ |sj , p]) may increase as a result of more information. To understand why, consider
an extreme case in which the precision τs is zero. Without any information from price, the ex post
value is E[vJ |sj ] = v̄J and there is no variation in it. The more information the price provides,
the closer the ex post value is to the true value vJ . Because the latter is stochastic, there will be
more variation in the ex post value. The expected trading volume is an increasing function of the
variance of the demand, which, in turn, depends on the ex post value E[vJ |sj , p] . Therefore the
above mechanism can lead to an increase in trading volume.
Condition (2.4.1) ensures that even without information from price, there is sufficient variation
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Figure 2.5.1: Tension between liquidity and information efficiency. Increasing N
reduces the market power of I-traders and therefore improves liquidity, but because
it induces I-traders to trade more aggressively, it reduces information efficiency.

an increase in information efficiency. If condition (2.4.1) holds (the price provides

little incremental information), then such a crash is welfare-reducing and suggests a

policy intervention.

In the second scenario, the I-traders are net sellers. This scenario is represented

in the left panel of Figure 2.4.3. Let us interpret it in the context of commodities

markets (Example 2). A small increase in the precision of information regarding the

strength of the economy (an increase in τs) decreases the market power of producers

(λ) . Due to the the mechanism discussed above, this reduction in market power is

amplified and results in a substantial overall decrease in λ. Liquidity improves. Be-

cause the commodity producers have less market power, prices drop. The increase in

liquidity means that volatility decreases. Volume increases because for two reasons.

First, the commodity producers trade more, due to the lower price impact. Second,

because there is less information, the ex post values of the firms are less aligned

and there is an increase in the volume generated by them. The second scenario

is associated with a drop in information efficiency but an increase in liquidity. If

condition (2.4.1) holds (the informational role of price is not too important), then

such a crash is welfare-improving, and no policy intervention is needed.
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2.5 Comparative statics

In this section, I consider how information efficiency I and liquidity L are affected by

changes in the model parameters. I focus on the following parameters: τs, which is

related to informational frictions, N , which is related to the degree of competition,

and wI and wJ , which are related to liquidity. I consider two ways of obtaining

comparative statics with respect to N .

1. No other parameters of the model change with N .

2. The convexity wI is proportional to N , i.e., wI = w1N , where w1 is some

constant. Other parameters are not affected by N .

The idea behind the second approach to obtain the comparative statics is as follows.

Consider Example 2, in which the I-traders are producers. Decreasing (increasing)

N in the second way corresponds to a merger (split) of existing producers.23 Indeed,

suppose that there are N = n ·M producers with costs C (x;N) = c · x + wI(N)
2

x2.

Suppose that every n producers have merged into 1. After the merger, there are

M producers, each having n production units. To minimize the cost, producers

will divide the production evenly across production units. Thus to obtain the out-

put x, they will produce x/n units at each of the production units. Therefore,

the cost function becomes C(x;M) = nC(x/n;N) = c · x + wI(N)
2n

x2. Therefore,

wI(N/n) = wI(N)/n , and the coefficient wI is indeed proportional to to the number

of producers. In financial markets, the second approach to obtaining the compara-

tive statics can regarded as a reduced-form approach to modeling the wealth effect

(see Makarov and Schornick (2010)).

In the proposition below, I examine the comparative statics with respect to N .24

Proposition 11. In the unique equilibrium, irrespective of whether wI does not

depend on N , or wI = w1N ,

dI
dN

< 0 and
dL
dN

> 0.

in the ex post value E[vJ |sj ] = βJwJsj that the above effect is not too strong.
23The first way of obtaining the comparative statics corresponds to entry/exit.
24Although, by definition, N takes discrete values, the quantities I and L are continuous func-

tions of N , and hence I provide the results for the derivatives of those functions, rather than finite
differences, to simplify exposition.
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The proposition above implies that there is tension between liquidity and in-

formation efficiency. Increasing the number of I-traders improves liquidity: with

more I-traders, each of them has less market power, and thus the price impact is

lower. However, because more liquidity induces I-traders to trade more aggressively,

it reduces information efficiency. This is illustrated in Figure 2.5.1.

Next, I examine the comparative statics with respect to τs.

Proposition 12. In the unique equilibrium

dL
dτs

> 0,

for τs > 1−2ρ2

1−ρ2 τJ . In particular, if ρ > 1√
2
, then dL

dτs
> 0 for all τs.

The intuition is as follows. With more precise signals, the J-traders learn more

from their signals and less from prices. Their price elasticities increase, and liquidity

improves.

The comparative statics for information efficiency are driven by two forces. On

the one hand, increasing τs has a positive, direct effect on I ≡ Var(vJ )

Var(vJ |sj ,p)
= τJ+τs+τπ

τJ
.

On the other hand, as the proposition above indicates, increasing τs improves liquid-

ity and makes the I-traders trade more aggressively. This may have a negative effect

on the precision τπ of the price signal. If the second effect prevails, the informa-

tion aggregation paradox obtains: aggregating an ex ante more precise information

(higher τs) market conveys less information ex post (lower I). Intuitively, the second

force is stronger when the J-traders learn more from prices, which is the case when

τs is low: this is illustrated in Figure 2.5.2.

Figure 2.5.2 illustrates that there is tension between liquidity and information

efficiency when τs is small, such that there is an information aggregation paradox.

When τs is large, there is no tension: improving the precision of information (i.e., by

reducing the information acquisition costs) improves both liquidity and information

efficiency.

I next examine the comparative statics with respect to wI and wJ . An increase

in wI or wJ is interpreted as a decrease in risk-bearing capacity, which can be due to

tightened of regulations or an external liquidity shock. Consider first the effect of a

change in wI and wJ on information efficiency. Intuitively, if wJ decreases, J-traders

trade more aggressively on their signals and the price becomes more informative.
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Figure 2.5.2: Left panel: liquidity is increasing in the precision of the signal τs.
The higher the precision is, the less the J-traders learn from prices, the higher the
price elasticity of their demand is and the greater the liquidity. Right panel: for
small values of τs, there is an information aggregation paradox ; the aggregation of
more information yields less information ex post. The parameter values are N = 10,
wI = 4.5, wJ = 1, ρ = 0.9, τJ = 0.1, and τI = 7.

An increase in wI induces I-traders to trade less aggressively and therefore has a

similar effect. This is intuition is confirmed in the proposition below.

Proposition 13. In the unique equilibrium, dI
dwJ

< 0 and dI
dwI

> 0.

A decrease in the risk-bearing capacity of I-traders (an increase in wI) has a

direct negative effect on liquidity. It also has an indirect effect: an increase in wI

increases information efficiency, which has a negative effect on L because J-traders

provide less liquidity. Therefore, the overall effect of the liquidity shock to I-traders

on liquidity should be negative. This is confirmed in the proposition below.25

Proposition 14. In the unique equilibrium, dΓ
dwI

< 0, where Γ = Nγ + γJ is a slope

of the aggregate demand.

Combining the results of Propositions 13 and 14, it is clear that if the risk-bearing

capacity of I-traders increases, liquidity improves but the information efficiency

deteriorates. Thus, there is tension between liquidity and information efficiency.

A shock to the risk-bearing capacity of J-traders has conflicting effects on liq-

uidity. The direct effect is negative: if wJ increases, J-traders provide less liquidity.

However, an increase in wJ has a negative effect on information efficiency. This can

induce J-traders to provide more liquidity. This effect can be amplified through
25The proposition examines the effect of wI on Γ. The numerical result is that L is also decreasing

in wI .
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Figure 2.5.3: Left panel: liquidity paradox. An adverse shock to the risk-bearing
capacity of J-traders may lead to an increase in liquidity. Right panel: information
efficiency is decreasing in wJ . The parameter values are N = 4, wI = 1, ρ = 0.9,
τs = 0.1, τJ = 0.1, and τI = 1.

I-traders being more aggressive. If the second effect dominates, a liquidity paradox

obtains: an adverse liquidity shock leads to an improvement in liquidity. This is

represented in Figure 2.5.3.

I finally consider the question of how combining two markets into one (or, alter-

natively, breaking up an existing exchange into two) affects the market quality of

the combined market.

The exercise is as follows. Consider a market with N I-traders and a unit mass

of J-traders. Divide this market into two: let M < N I-traders trade with a

proportional measure M/N of J-traders in “market 1”; let the remaining traders

trade in “market 2”. Markets 1 and 2 are completely segmented. I am interested in

how the information efficiency and liquidity of markets 1 and 2 are related to those

of a combined market (“1+2”). Intuitively, markets 1 and 2 are less competitive

than a combined market 1 + 2, and hence the liquidity should be lower. However,

because I-traders are less aggressive in smaller markets, information efficiency can

increase. The proposition below confirms this intuition: breaking up a market into

two is bad for liquidity but is good for information efficiency.

Proposition 15. Liquidity and information efficiency in markets 1, 2 and 1 + 2

described above are related as follows: L1+2 > L1 and L1+2 > L2; however, I1+2 < I1

and I1+2 < I2.

Note that in the competitive economy, proportionally scaling the measures of

agents in the market has no effect on equilibrium, as it cancels out through market
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Figure 2.6.1: The role of liquidity and information efficiency in determining welfare:
a gray triangle represents a welfare loss. Left panel: the role of information. In the
economy with I-traders being price takers (such that liquidity plays no role), with
more information the ex post value vepJ is less biased relative to vJ (state by state)
which helps to reduce welfare loss. Right panel: the role of liquidity in determining
welfare. In the economy in which J-traders know their value perfectly well (such
that information plays no role), I-traders reduce their demands, which results in a
welfare loss.

clearing. Comparing economy 1 + 2 with either economy 1 or economy 2 provides

another way of isolating the effect of competition on liquidity and information effi-

ciency. Competition is good for liquidity but is bad for information efficiency.

2.6 Welfare

It is often argued that greater competition is associated with greater welfare. I

examine the validity of this claim in the context of my model.

Define

UI ≡ E

[
(vI − p)xi (p)−

wIxi (p)
2

2

]
,

the expected utility of an I-trader, and

UJ ≡ E

[
(vJ − p)xj (p)− wJxj (p)2

2

]
,

the expected utility of a J-trader. The total welfare is then

W ≡ N · UI + UJ .

With no informational frictions, the effect of competition on welfare is unambigu-

ous (e.g., Tirole (1988)): with more competition, welfare improves. The intuition is

as follows: when N increases, large traders have less market power and there is less
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Figure 2.6.2: Welfare W (circles), expected utility of a J−trader UJ (squares) and
the expected utility of I-traders N · UI (diamonds) . Left panel: τs = 0.1. When
the informational frictions are not too strong, the standard intuition applies: com-
petition is good for welfare and for small traders. Right panel: τs = 0.01. When
informational frictions are strong, welfare becomes non-monotonic in N . Moreover,
it is possible that everyone, including small traders, is worse off as a result of more
competition. The remaining parameter values are wI = 8, wJ = 1, ρ = 0.3, τJ = 0.1,
and τI = 25.

reduction in their demands. This helps to reduce deadweight loss, and welfare in-

creases. Because the large traders have less market power, prices are more favorable

to small traders, and hence they also become better off.

The proposition below provides a sufficient condition for the “usual” comparative

statics for welfare: if prices provide little incremental information (condition (2.4.1)

holds), the standard intuition applies.

Proposition 16. Suppose that there is a unique equilibrium and (2.4.1) holds.

Then, dW
dN

> 0 and dUI
dN

> 0, irrespective of whether wI does not depend on N ,

or wI = w1N .

I show below that if condition (2.4.1) does not hold, increasing competition

might actually reduce welfare. Moreover, this can be bad for everyone, including

J-traders. I attribute this result to the tension between liquidity and information

efficiency outlined in the section above. To proceed, it is necessary to understand

the effects of liquidity and information efficiency on welfare. In the model, the two

are tightly linked through the mechanism represented in Figure 2.4.1. Therefore, it

is difficult to disentangle the roles of the two. To overcome this difficulty, I consider

the following two thought experiments.

First, consider an economy in which the role of liquidity is “switched off”. Suppose
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that traders behave as if the market were perfectly liquid, i.e., even I-traders take

prices as given.26 The informational frictions in this economy are the same as in the

original economy. In this economy, welfare increases in information. First, with more

information, the equilibrium quantities allocated to J-traders are less dispersed,

which is good for welfare.27 Second, with more information, the ex post values of

J-traders (E[vJ |sj, p]) are less biased,28 which also increases welfare. Indeed, the

maximum welfare in this economy is achieved when traders bid according to their

marginal utilities

xi = MUI ≡
vI − p
wI

, and xj = MUJ ≡
vJ − p
wJ

.

However, the aggregate trade of J-traders is actually

xJ ≡
ˆ
xjdj

=
vepJ − p
wJ

, where vepJ =

ˆ
E[vJ |sj, p]dj.

A bias between vepJ and the true value vJ results in a welfare loss. See the left panel

of Figure 2.6.1.

Second, consider an economy in which the role of information is “switched off”.

Suppose that all traders know their values but that I-traders exercise their market

power. This economy is, essentially, the textbook oligopoly model discussed above.

The I-traders will reduce their demands, which will result in welfare loss. See the

right panel of Figure 2.6.1.

Summarizing the above discussion, I conclude that taken in isolation, both liq-

uidity and information efficiency are beneficial for welfare. This suggests that in-

creasing competition can have an adverse effect on welfare through its adverse effects

on information efficiency, as established in Section 2.5. Because the negative effect

operates through the information channel, it should be more pronounced when in-

formational frictions are high. This intuition is confirmed in Figure 2.6.2: when τs is

small, welfare may be non-monotonic in N . Moreover, everyone, even small traders,
26This setting corresponds to REE in the model.
27It is easy to show that allocating the average quantity xJ =

´
xj(p)dj to all traders

(instead of allocating xj(p) to each of them) increases the ex post aggregate utility´ 1

0

(
(vJ − p)xj (p)− wJxj(p)

2

2

)
dj of J-traders. This is due to the concavity of their objective.

The more dispersed xj(p) are relative to xJ , the smaller the ex post aggregate utility.
28Indeed, define the bias as E [E[vJ |sj , p]− vJ |vJ ] = τJ

τ (v̄J − vJ). It goes to zero as τ →∞.
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Figure 2.6.3: Welfare in the economy with 2 segmented markets (circles) and a com-
bined market (squares). Left panel: τs = 0.3. When the informational frictions are
not too strong, the segmentation is bad for welfare. Right panel: τs = 0.01. When
informational frictions are strong, segmentation might be beneficial for welfare. The
remaining parameter values are wI = 8, wJ = 1, ρ = 0.3, τJ = 0.1, and τI = 25.

can be worse off as a result of more competition.

I finally consider the question of the effects of breaking up an exchange on welfare.

Common wisdom suggests that welfare should be higher in a centralized market. A

centralized market should better aggregate information, and the traders should bet-

ter share their risks in such a context. Figure 2.6.3 shows that this common wisdom

may not be correct: it plots the welfare in an economy in which there are two iden-

tical segmented markets and the welfare when those two markets are combined into

one relative to the number N of I-traders in either of the segmented markets. The

right panel of the figure indicates that segmentation might be beneficial. The intu-

ition is as follows: in two segmented markets, I-traders are less competitive, which

results in lower liquidity; however, this is beneficial for information efficiency,29 as

I-traders trade less aggressively (Proposition 15). When N is large, such that the

liquidity loss resulting from breaking up the market is less considerable, segmen-

tation might be beneficial. This result is present when informational frictions are

important (τs is low). A similar graph can be obtained for the surplus of J-traders

instead of aggregate welfare.
29Malamud and Rostek (2015) show that breaking up an exchange can be beneficial through its

effects on liquidity. Their setting does not feature asymmetric information and does not capture
information efficiency. The result in this paper therefore complements that of Malamud and Rostek
(2015). It would be desirable to incorporate the mechanism highlighted in this paper into the much
more general market structure environment considered in Malamud and Rostek (2015).
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2.7 Implications

In this section, I consider the implications of the model.

2.7.1 Commodities markets

I consider two episodes, the 2008 boom/bust in oil prices and the recent crash of oil

prices, through the lens of the model.

2008 boom/bust in oil prices Oil prices reached an all-time high of $145 per

barrel in July 2008, a 40% increase from the level in January of 2008, when the

US and most other developed economies were entering a recession. It is difficult

to explain such a sharp increase by a shift in either demand or supply: no major

disruptions in supply occurred at that time; demand from developed economies was

weaker, and it is unlikely that the demand from the developing economies (which

were performing well at the time) could have offset this weakness.

My explanation for this episode emphasizes the role of two forces: (1) infor-

mational frictions and (2) the market power of oil producers being endogenously

amplified because of (1). In the model, market power corresponds to λ, which mea-

sures the extent to which producers can drive up the price by reducing their supply.

Proposition 12 implies that the producers’ market power is higher when information

concerning economic fundamentals is less precise (1/τs is higher). This is intuitive:

when informational frictions are high, firms on the demand side rely on commodity

prices as a signal of the strength of the economy. When commodity producers reduce

their supply, they are driving up the price. Firms partly attribute the increase in

price to stronger fundamentals and demand more, which amplifies the price impact

of producers. Therefore, the boom in prices can be attributed to an increase in

the market power of commodity producers caused by the uncertainty regarding the

strength of the economy at the time.

Singleton (2014) presents empirical evidence that supports this explanation. He

finds a strong, positive correlation between the dispersion of oil price forecasts (re-

lated to 1/τs in the model) and the oil price level. Such a relationship can be

explained by an increase in the market power of producers caused by higher uncer-

tainty. This evidence therefore supports the mechanism discussed above.

In emphasizing the role of informational frictions, my explanation is closely re-
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lated to that of Sockin and Xiong (2015).30 My explanation complements theirs by

highlighting the role of commodity producers’ market power and the role of infor-

mational frictions in amplifying the latter.

The bust can be explained by the price effect of the demand shock coming from

CITs and hedge funds that unwounded their positions in the commodities markets

during the financial crisis, as documented by Cheng et al. (2015). My model can

help explain the magnitude of the price effect of this shock. Informational frictions

amplified the illiquidity of the market, and a demand shock had a larger price effect.

2014 crash in oil prices Between January 2012 and October 2014, the oil price

ranged from $80 to $110 per barrel. By the by the end of 2014, it had halved and

remains in the range $40 - $60 to the present.

I attempt to explain this episode with assistance from my model. As illustrated

in the right panel of Figure 2.4.3, a small change in the precision of information

regarding the fundamentals of the economy (an increase in τs) can cause a sharp de-

crease in the market power of commodity producers (increase in L) and a price crash

in the model. This is because of the complementarity between the market power of

producers and informational frictions discussed above. Therefore, the resolution of

uncertainty regarding the strength of the world economy (e.g., news about “China’s

new normal”)31 could have sharply decreased the market power of commodity pro-

ducers and caused a price crash.

The above explanation attributes the sharp decrease in price to a decrease in

the market power of oil producers. Consistent with this explanation, OPEC did not

cut its production following the crash.32 If the above story is true, after the crash,

information efficiency should have decreased (Proposition 10): oil prices should have

become worse barometers for the global economy. This can be tested, for example,

by conducting the exercise in Hu and Xiong (2013) for the periods before and after

the 2014 crash.
30See Section V.C of Sockin and Xiong (2015) for more evidence and discussion on the importance

of informational frictions.
31E.g., “Xi Says China Must Adapt to ‘New Normal’ of Slower Growth”, Bloomberg, May 12,

2014
32See, e.g., “OPEC Pumps at Three-Year High Despite Oil Glut”, WSJ Aug. 11, 2015
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2.7.2 Asset markets

I showed in the Section 2.5 that changes in different aspects of the market environ-

ment (such as risk-bearing capacity, information precision, entry/exit or competition

between large traders) can induce changes in liquidity and information efficiency in

opposite directions. The latter implies, in particular, that when liquidity improves,

the price better (worse) reflects the values of large (small) traders. In reality, one

does not observe the values of the large traders. However, there are two settings in

which the two can be proxied.

On-the-run treasury market and short-sellers In the treasury bonds mar-

ket, the difference in the prices of the on-the-run bonds and off-the-run bonds is

attributed to “specialness”, the quality of the on-the-run bond of being better col-

lateral. The difference between the price of the on-the-run and off-the-run bond can

therefore be attributed to the values of the short sellers, who are buying the on-the-

run bonds to use as collateral. Regard the short sellers as the I-traders; the model

then implies that when the liquidity of the on-the-run market improves, the price of

the on-the-run bond should increase. This is because in a more liquid market, the

short sellers will trade more aggressively, driving up the price.33 Because the off-

the-run bonds are unaffected by the short sellers, the spread should increase. This is

consistent with the evidence in Krishnamurthy (2002) and Banerjee and Graveline

(2013)34.

Equity markets and institutional investors Consider equity markets. In-

terpret I-traders as large institutional investors and J-traders as retail investors.

Tension between liquidity and information efficiency implies that in a more liquid

market, the price better reflects the value of institutional investors. While the latter

is unobservable, arguably,35 it should be correlated with a benchmark relative to

which the institutions are evaluated. Consequently, a stock traded by institutions
33More formally, this is a consequence of Lemma 12 in the Appendix.
34Vayanos and Weill (2008) describe similar implications in a search-based model. They show

that if there are more short sellers in the market, both the spread and liquidity increase. The
intuition in their model is as follows: if there are more short sellers in the on-the-run bond market,
the price is more reflective of their values and is thus higher. Moreover, entry of short sellers
also increases liquidity by relaxing search frictions. The main difference is that in my paper, the
higher price is not necessarily a consequence of the entry of short sellers but rather more aggressive
trading by existing ones due to higher liquidity.

35See, e.g., Basak and Pavlova (2012), who derive that the marginal utility of the fund manager
should be increasing in the level of the benchmark in a moral hazard framework.
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should become more correlated with a benchmark when the liquidity of the stock

improves. This prediction is testable.

Indirect evidence supporting the above prediction is provided by Chan et al.

(2013), who show that stocks’ co-movements with one another are positively related

to market liquidity. The latter can be explained as follows. When there is more

liquidity, the price of each stock better reflects the values of institutions and is thus

more correlated with the benchmark against which the institutions are evaluated.

The stocks’ correlations with one another therefore also increase.

2.7.3 Policy

A recent policy debate centers on the effects of high-frequency traders (HFTs) on

asset markets and commodity index traders (CITs) on commodities futures markets.

It is often argued that the presence of those traders is beneficial because it improves

market liquidity and, by incorporating the information those traders have into prices,

information efficiency. The results in Section 2.5 confirm the beneficial effects of

those groups of traders on liquidity (Proposition 11, interpret CITs and HFTs as

I-traders)36. However, because those groups of traders may have different values

from those of other traders the beneficial effect on liquidity may feed back into an

adverse effect on information efficiency:37 with more liquidity, the price will better

reflect the values of HFTs and CITs as they trade more aggressively.

It is often argued that greater competition is beneficial for welfare. Moreover,

this is a basis of antitrust policy around the world.38 As shown in Propositions

11 and 15, promoting competition is beneficial for market liquidity but may be

harmful for information efficiency. Consequently, the standard intuition holds when

the price provides little incremental information to economic agents (Proposition

16). However, when the price is a valuable source of information, competition may
36Indeed, in asset markets, HFTs dominate trading at high frequencies. They also use quan-

titative strategies to account for their price impact. In this context, regard J-traders as retail
investors.
In commodities futures markets, CITs and large hedge funds have large positions in commodities

futures (Cheng et al. (2014)). They also have price impact, as shown in Cheng et al. (2014).
37HFTs may have a short-term horizon and care about the price in the near future. Retail

investors may have a longer horizon and consequently care about the price in the more distant
future.
CITs may have specific hedging needs arising from their positions in other markets. Evidence

for this is provided in Cheng et al.
38See, e.g., US Federal Trade Commission introduction to antitrust laws

https://www.ftc.gov/tips-advice/competition-guidance/guide-antitrust-laws.
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harm price discovery (as the price will better reflect the values of large traders) and

may have adverse effects on welfare. Moreover, all traders, large and small, could

be worse off. Below, I discuss the economic environments in which the latter effects

might be important.

In the context of product markets, consumers may have little information on the

quality of new products. The price may be an important signal of quality. Conse-

quently, consumers can benefit from patent protection, which restricts competition

among producers (allowing them to recover the costs of designing a new product):

with less competition, the price of a new product better reflects its quality.

In the context of financial markets, an important dimension of competition comes

from the market structure: there are increasingly more trading venues that allow

investors to execute their trades. I show that breaking up a centralized market

into two separate exchanges can improve welfare because each of the two exchanges

will be more informationally efficient. This result complements the results of Mala-

mud and Rostek (2015), who show that breaking up the exchange can be beneficial

because of the effects on liquidity.

2.8 Conclusion

This paper shows that traders’ heterogeneity in their price impacts and values - a

notable feature of many contemporaneous markets - might have unexpected conse-

quences for liquidity, information efficiency and welfare.

I show that the heterogeneity results in a complementarity between illiquidity and

information efficiency. A belief that the market is less liquid induces large traders to

trade less aggressively. It makes the price relatively more sensitive to the values of

small traders. From the latter’s perspective, the price is more informative, and they

provide less liquidity. Consequently, the market is less liquid. The complementarity

has the following consequences.

First, tension might arise between liquidity and information: policy measures in-

tended to promote liquidity may harm information efficiency and vice versa. Related

to the latter, changes in the market environment (such as risk-bearing capacity, the

number of large traders, information precision) can shift liquidity and information

efficiency in opposite directions.

Second, I show that an increase in risk-bearing capacity may have a negative
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effect on liquidity (liquidity paradox ). This is possible because despite its direct

negative effect on liquidity, it has a positive effect on information efficiency, and

there is a tension between the two. Similarly, an increase in the precision of informa-

tion might have a negative effect on information efficiency (information aggregation

paradox ).

Third, competition is not necessarily beneficial for welfare. This is possible

because competition has negative effects on information efficiency. For a similar

reason, breaking up a centralized market into two separate exchanges might improve

welfare.

The evidence obtained from commodities and asset markets is broadly consistent

with the predictions of the model.

The model can be extended in multiple directions. Allowing for multiple assets

would allow for a treatment of asset-class effects in the presence of institutional

investors and interactions with market liquidity and information efficiency. Consid-

ering a dynamic extension is also interesting. Consider a large trader, who can trade

in several periods. If he trades more aggressively in the first period, the price will

be less informative for small traders, and they will provide more liquidity. Trading

more aggressively will then be less costly for a large trader. Consequently, in the

presence of the complementarity highlighted in this paper, large investors may trade

faster. These extensions are left for future work.

2.9 Stability and Amplification

One of the notions of stability in game theory is associated with a stability of a fixed

point of the best-response mapping determining the equilibrium.39 This notion is

commonly adopted in REE models.40

The idea behind this notion is the following. Suppose that agents make a small

deviation from the profile of the equilibrium strategies S0. Denote the perturbed

strategy profile by S1. Let agents play S2, which is a best response to S1. Let them

play a best response (denote it S3) to the strategy profile S2, and so on. If, as a

result of such tÃ¢tonnement process, the strategies will converge back to the initial

equilibrium (i.e. Sn → S0 as n→∞) the equilibrium is called stable.
39See e.g. Fudenberg and Tirole (1994) ch. 1.2.5 in a context of Cournot duopoly.
40E.g. Cespa and Vives (2015).
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Such analysis is tractable in symmetric models, because the best response typi-

cally maps a scalar (the equilibrium strategy of other agents) onto a scalar (the best

reply of a particular agent).

In this model, however, there are two groups of traders, and the best response

depends on a vector of strategies. For example the best response sensitivity βJ

depends on β and γ chosen by I-traders and βJ and γJ chosen by the other J-

traders. In other words the best response maps R4 onto R4, which complicates the

stability analysis of its’ fixed point.

To overcome this difficulty, I represent the equilibrium as being a fixed point of

a mapping characterizing the market as a whole. The characteristic I focus on is

illiquidity, i.e. price impact.41

To understand how the price impact mapping onto itself is determined, consider

the following logic. Suppose that traders believe that the price impact is l. Given this

belief they optimally choose their strategies. Those strategies determine the “true”

price impact, i.e. the slope of the inverse residual supply Λ(l). In equilibrium, the

assumed price impact should be equal to the “true” one. In other words, the fixed

point condition l = Λ(l) should hold.

I will call the equilibrium stable if the fixed point l = Λ(l) is stable. The Λ(l)

maps R onto R, so the stability of fixed point of this function is easier to analyze.

The intuition behind such definition of stability is as follows. Suppose that the

equilibrium price impact is l0. Suppose that traders hold slightly incorrect belief

l1 about the price impact. With this belief they choose their strategies, which

determines the slope of residual supply l2 = Λ(l1). Now the traders realize that the

price impact is l2, not l1. They choose their strategies, which determine the new

price impact l3 = Λ(l2). If the iteration of that process brings them back to the l0,

then the equilibrium is stable. The latter is equivalent to the stability of the fixed

point l = Λ(l).

I derive the mapping Λ(l) and formally define stability below.

Suppose that the traders believe that the price impact is equal to l such that
41The idea of equilibrium in a model with market power being a fixed point of a mapping of price

impact to itself is due to Weretka (2011). The representation of the supply function equilibrium
as a fixed point of a mapping of price impact to itself is due to Rostek and Weretka (2015).
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Figure 2.9.1: Stability analysis. The left panel illustrates the concept of stability.
The middle equilibrium is unstable: a small deviation from it leads to further devi-
ation, until the system converges to the top equilibrium, which is stable. The right
panel shows that stable and unstable equilibria provide opposite comparative statics
results: an increase in the variance of I-traders’ value decreases the price impact in
the stable equilibria and increases it in the unstable one. The parameter values are
ρ = 0.99, τJ = 1, τs = 1, N = 10, wJ = 1, wI = 1, 1/τI = 0.006 (0.01) (thin (thick)
line).

2l + wI > 0.42 The I-traders’ strategy is then given by (2.3.6), implying

β = γ = g(l) ≡ 1

wI + l
. (2.9.1)

The strategy of each of J-traders given l is determined as best-response to the

strategies (2.9.1) of the I-traders and to the strategies of other J-traders. Denote

those by βJ = bJ(l) and γJ = gJ(l).

Combining (2.3.10) and (2.3.11) one can find the implicit expression for βJ =

bJ(l)

1

βJ
= wJ

(
τJ + τs
τs

+
1

τsC2

(
B +

βJ
N · g(l)

)2
)
. (2.9.2)

The left-hand side of the above is strictly decreasing while the right-hand side is

strictly increasing in βJ for βJ > 0, therefore there is a unique solution βJ = bJ(l) to

(2.9.2). Moreover, differentiating the above implicitly, one can see that this function

is strictly decreasing in l.

Given βJ = bJ(l) and β = g(l), the precision of the signal π is determined by

(2.3.10), implying
√
τπ = t(l) ≡ 1

C

(
B +

bJ(l)

N · g(l)

)
. (2.9.3)

42The minimal price impact that can be sustained in equilibrium is λ = −wI/2. This is because
the second-order conditions would be violated otherwise. See Lemma 3 in the Appendix.
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Given the above one can find the elasticity γJ from (2.3.12)

γJ =
1

wJ
− 1

τs
t(l)

(
t(l)− B

C

)
(γJ +Ng(l)) . (2.9.4)

In the above I used the fact that the aggregate elasticity Γ = Nγ + γJ is equal to

γJ + N
wI+l

. Expressing γJ from the equation (2.9.4) yields

γJ = gJ(l) ≡
τs − wJNt(l)

(
t(l)− B

C

)
g(l)

τswJ + wJ · t(l)
(
t(l)− B

C

) . (2.9.5)

We now know how the price elasticities g(l) and gJ(l) are determined. Those, in

turn, determine the “true” price impact Λ(l):

Λ(l) ≡ 1

(N − 1) g(l) + gJ(l)
. (2.9.6)

In equilibrium the price impact assumed by traders should be equal to the slope of

the residual supply, i.e. l = Λ(l).

The above argument is justified by the following Theorem.

Theorem 4. The equilibrium price impact is equal to l if and only if it solves the

fixed point problem l = Λ(l) and 2l + wI > 0.

We are now ready to formally define stability.

Definition 3. The equilibrium is called stable if and only if the price impact λ in

that equilibrium is a stable fixed point of the function Λ(·), that is, iff the λ satisfies

|Λ′(λ)| < 1.

The left panel of Figure 2.9.1 illustrates the above definition.43 According to the

definition the middle equilibrium on the Figure should be unstable: the function

Λ(l) crosses the 45 degree line from below, therefore its’ slope is greater than one.

The figure illustrates the tÃ¢tonnement process by a sequence of arrows: a small

deviation from the middle equilibrium leads to further deviation, until the system

converges to the top equilibrium, which is stable. The right panel illustrates that

the stable and unstable equilibria yield the opposite comparative statics results. An

increase in the variance of I-traders’ value shifts the curve Λ(l) down (with greater
43The Figure applies log-log scale, because otherwise the top equilibrium is too far apart from

the two bottom ones and the plot does not read well. Since in equilibrium l = Λ(l), one may write
d ln Λ(λ)
d ln l = l

Λ(l)Λ′(l) = Λ′(l). Therefore the stability can be seen graphically on the Figure 2.9.1:
the equilibrium is stable iff | ln Λ′(l)| < 1.
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Figure 2.9.2: Illiquidity multiplier: when wI is close to a resonant value of 4.8, the
economy exhibits sharply larger amplification. The parameter values are N = 10,
wJ = 1, ρ = 0.9, τs = 0.01, τJ = 0.1, τI = 6.

variance the prices are more noisy for J-traders, so they learn less from prices and

their price elasticity is higher). Two equilibrium points corresponding to the crossing

of Λ(l) and the 45 degree line from above shift down, while the other equilibrium

point shifts up.

2.9.1 Illiquidity multiplier

Consider an equilibrium with a price impact equal to λ. Suppose that there is an

unexpected shock to a parameter of the model so that the curve Λ(l) shifts up by

dΛ at l = λ. Since the shock is unexpected, the traders will still behave as if the

price impact was λ and the change of the “true” price impact is then dΛ, the direct

effect of the shock.

If the shock is expected, the traders should adjust their behavior. Consider a

stable equilibrium and the tÃ¢tonnement process described above. In the first step

traders realize that the “true” price impact is higher by dΛ, so they will adjust their

strategies as if the price impact was λ+ dΛ. The “true” price impact corresponding

to such a belief is Λ (λ+ dΛ) ≈ λ + Λ′(λ)dΛ. In the second step they realize that

the “true” price impact is higher by Λ′(λ)dΛ. The “true” price impact corresponding

to such a belief is Λ (λ+ Λ′(λ)dΛ) ≈ λ+ (Λ′(λ))2 dΛ and so on. The total change in

of the equilibrium price impact is the sum of changes of price impact at each step,
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so we get

change of equilibrium price impact = dΛ · M,

where

M≡ 1 + Λ′(λ) + (Λ′(λ))
2

+ (Λ′(λ))
3

+ ... (2.9.7)

is illiquidity multiplier.44

Intuitively, the direct effect dΛ gets amplified and the total effect of the shock

to a parameter is M · dΛ. Therefore the illiquidity multiplier M characterizes

quantitatively the amplification mechanism of the model.

It is well know that the geometric series (2.9.7) converge if and only if |Λ′(λ)| < 1,

i.e. iff the equilibrium is stable. Applying the formula for the sum of the geometric

series, one can get that in the stable equilibrium with price impact equal to λ the

multiplier is given by

M =
1

1− Λ′(λ)
.

Repeating formally the above logic for unstable equilibria, one would get that

the series (2.9.7) diverge. Therefore one can think of those equilibria as the ones

with extreme amplification, so that the multiplierM explodes.

I summarize the above discussion by formally defining the multiplier.

Definition 4. Consider a stable equilibrium with a price impact equal to λ. The

illiquidity multiplier isM≡ 1
1−Λ′(λ)

.

Figure 2.9.2 plots the illiquidity multiplier against wI . The figure reminds of a

resonance in physics: when wI is close to a “resonant” value of 4.8, the economy

exhibits sharply larger amplification.

2.9.2 Stability analysis

The stability is easily analyzed numerically. One have to evaluate |Λ′(λ)| and see

whether it is smaller than 1. In the Appendix 2.10.10 I provide a closed form

expression, up to a solution of a cubic equation, for the derivative Λ′(λ).

The stability analysis is represented in the Figure 2.4.2. We see that all equilibria

in which βJ(τI) is increasing (“upward-sloping” equilibria) are unstable. To under-

stand why, consider an increase in τI and examine its’ effects on the strategies of
44This definition is analogous to the concept of illiquidity multiplier in Cespa and Foucault

(2014).
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J-traders. Suppose first that I-traders’ strategies are unchanged. An increase in τI

makes the prices more informative so the J-traders learn less from their signals and

more from prices. The sensitivity βJ should therefore decrease. Therefore, in order

for the equilibrium βJ to increase following an increase in τI , the I-traders demand

should become more sensitive to their value, i.e. β should increase. It implies that

the equilibrium price impact λ should decrease.

From the above discussion we know that an increase in τI in the “upward-sloping”

equilibria should lead to a decrease in λ. I will demonstrate that this is only possible

if the λ corresponds to the intersection of Λ(l) and the 45 degree line from below,

which implies that such an equilibrium is unstable.

Indeed, an increase in τI corresponds to an upward shift of the curve Λ(l): given

the same belief l about the price impact (and therefore the same strategies of I-

traders) the prices become more informative, so J-traders reduce their elasticity

which increases the “true” price impact Λ(l). But if the curve Λ(l) shifts up, its’

intersection with a 45 degree line can shift down only if Λ(l) this intersection is from

below.

2.10 Proofs

In this section I will use the following notation:

θ ≡ τJ + τs
τs

> 1, ξ ≡ ρ

√
τJ
τI
, κ ≡

√
τI/τs
1− ρ2

> 0,

ψ ≡ wI
NwJ

> 0, φ ≡ κξ =
ρ√

1− ρ2

√
τJ
τs
.

Unless stated otherwise, the proofs are not restricted to the case ρ ≥ 0.

2.10.1 Proof of Theorem 3

Derivation of equilibrium

The proof is split into 4 steps.

Step 1. Guess.

I conjecture that I- and J-traders have the following linear schedules in equilib-
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rium

xi = α + βvI − γp and xj = αJ + βJsj − γJp. (2.10.1)

Step 2. Residual supply and the equilibrium price function.

The above guess and the market-clearing rule (2.2.4) implies that I-traders face

the following inverse residual supply

p = ι+ λ · x, (2.10.2)

where the stochastic intercept ι has full support45 and the slope is given by

1

λ
= (N − 1)γ + γJ . (2.10.3)

The J-traders are atomistic, so their inverse residual supply does not depend on

the quantity they trade. Substituting (2.10.1) to (2.2.4) we find that it is given by

p =
1

Γ
(NβvI + βJvJ) + cp, (2.10.4)

where

Γ = Nγ + γJ , and cp =
Nα + αJ

Γ
. (2.10.5)

Equation (2.10.4) is also the equilibrium price function.

Step 3. Verify.

I-traders. The approach to solving I-traders problem relies on the idea of max-

imizing against the residual supply ( Kyle (1989), Klemperer and Meyer (1989)).

For a given realization of ι we find an optimal price-quantity pair (x∗(ι), p∗(ι)) on

the residual supply curve (2.10.2) that maximizes the utility of a trader. Trader’s

optimal schedule is given parametrically by (x∗(ι), p∗(ι)) as a function of ι. The

problem of finding an optimal price-quantity pair on the residual supply curve can

be written as

max
(x,p)

(vI − p)x−
wI
2
x2 (2.10.6)

s.t.: p = ι+ λ · x. (2.10.7)

Taking the first order condition and eliminating ι using (2.10.7) yields the following
45The exact expression is ι = λ ((N − 1)α+ αJ + (N − 1)βvI + βJvJ).
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expression for the optimal schedule of a trader i

xi =
1

wI + λ
(vI − p). (2.10.8)

The second order conditions require

wI + 2λ > 0. (2.10.9)

In what follows I assume that the second-order condition holds, which is justified

by the Lemma 3. Comparing (2.10.8) and (2.10.1) yields

β = γ =
1

wI + λ
> 0 and α = 0. (2.10.10)

The guess for I-traders is therefore verified.

J-traders, being atomistic, have no price impact. For a given realisation of price

they find the optimal quantity x, solving

max
x

(E[vJ |sJ , p]− p)x−
wJx

2

2
.

The first order necessary and sufficient condition implies

xj =
1

wJ
(E [vJ |sj, p]− p) . (2.10.11)

To solve the inference problem of a J-trader I apply Lemma 4 according to which

the price is informationally equivalent to a signal

π ≡ Γp

βJ +Nβξ
+ cπ, (2.10.12)

Where the expression for the constant cπ is given by (2.10.30). This signal can also

be written as

π = vJ +
1
√
τπ
επ, (2.10.13)

where επ ∼ N(0, 1) is independent of vJ and the noize εj in the signal sj. Therefore,

the signal π is an unbiased signal of vJ . According to Lemma 4 the precision of the
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signal is given by

τπ = κ2τs

(
βJ
Nβ

+ ξ

)2

. (2.10.14)

Applying the Projection Theorem one gets

E [vJ |sj, p] =
τJ
τ
v̄J +

τs
τ
sj +

τπ
τ
π, (2.10.15)

where

τ ≡ τJ + τs + τπ.

Substituting (2.10.15) and (2.10.12) to (2.10.11) and comparing to (2.10.1) one

gets

βJ =
1

wJ

τs
τ
, (2.10.16)

γJ =
1

wJ

(
1− τπ

τ

Γ

βJ +Nβξ

)
, (2.10.17)

αJ =
1

wJ

(τJ
τ
v̄J +

τπ
τ
cπ

)
,

which verifies the guess for J-traders.

Step 4. Solve for coefficients.

To solve the model I introduce the quantity

δ ≡ κ
(
βJ
Nβ

+ ξ

)
> φ, (2.10.18)

and express all coefficients through it. The inequality is true because both β and

βJ are positive (cf. (2.10.16) and (2.10.10)). From (2.10.14) we get

τπ
τs

= δ2,

which allows to rewrite (2.10.16) as

βJ =
(
wJ
(
θ + δ2

))−1
. (2.10.19)

One can rewrite (2.10.18) as

1

β
= wI + λ =

N

βJ

(
δ

κ
− ξ
)
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Substituting (2.10.19) into which yields

λ =
NwJ
κ

(δ − φ)
(
θ + δ2

)
− wI . (2.10.20)

One can express all coefficients of I-traders through δ by substituting the above

expression for λ to (2.10.10).

After some algebra γJ can be expressed as

γJ =
1

wJ
− δ (δ − φ) Γ. (2.10.21)

Combining the above and Γ = γJ + N
wI+λ

one gets

Γ =
1
wJ

+ N
wI+λ

1 + δ (δ − φ)
. (2.10.22)

After some algebra, for αJ one can get the following expression:

αJ =
ββJN(τJ + δκτs(ξvJ − vI))

τs(βJδκ + βN)
.

Finally, we get the expression to pin down δ. It can be done substituting (2.10.22)

to Γ = 1
λ

+ 1
wI+λ

which yields, after some algebra

λ (wI +NwJ + λ)− wJ (1 + δ (δ − φ)) (wI + 2λ) = 0. (2.10.23)

Substituting (2.10.20) to the above yields the following sextic equation in δ:

N
((
δ2 + θ

)
(δ − φ) + κ

) (
NwJ

(
δ2 + θ

)
(δ − φ)− κwI

)
−

−κ (δ (δ − φ) + 1)
(
2NwJ

(
δ2 + θ

)
(δ − φ)− κwI

)
= 0.(2.10.24)

The analysis of the number of equilibria is performed in the section 2.10.1.

I summarize the results for BNE. Given δ that solves (2.10.24) and satisfies
NwJ
κ (δ − φ) (θ + δ2) > wI

2
, the coefficients in BNE are given by

β = γ =
1

wI + λ
> 0, α = 0, where (2.10.25)

λ =
NwJ
κ

(δ − φ)
(
θ + δ2

)
− wI . (2.10.26)
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βJ =
(
wJ
(
θ + δ2

))−1
> 0, γJ =

1

wJ
− δ (δ − φ) Γ, (2.10.27)

αJ =
ββJN(vJ(δφτs + τJ)− δκτsvI)

τs(βJδκ + βN)
, (2.10.28)

where

Γ =
1
wJ

+ N
wI+λ

1 + δ (δ − φ)
> 0. (2.10.29)

Lemma 3. There is no equilibrium in which 2λ+ wI ≤ 0.

Proof. Suppose wI + 2λ < 0. In that case for any realisation of ι the profit max-

imizing quantity in the problem (2.10.6) is infinite and the market will not clear.

Therefore such an equilibrium does not exist.

In the case wI + 2λ = 0, the problem is (2.10.8) is linear and the demand of

I-itraders is only finite when p = vI which is the case only when at least one of the

traders submits perfectly price elastic schedule. In the latter case the price impact

of other I-traders is λ = 0, not λ = −wI
2
, a contradiction.

Lemma 4. In a linear equilibrium characterised by the schedules (2.2.5) the price

function is informationally equivalent to the sufficient statistic

π ≡ Γp

βJ +Nβξ
+ cπ,

where

cπ ≡
ξv̄J − v̄I − Γ cp

Nβ

βJ
Nβ

+ ξ
. (2.10.30)

The sufficient statistic π can be written as

π = vJ +
1

κ√τs
(
βJ
Nβ

+ ξ
)επ, (2.10.31)

where

επ ≡ κ
√
τs (vI − v̄I − ξ (vJ − v̄J)) .

Moreover επ ∼ N(0, 1) and, for any j, επ is independent of vJ and the noize εj in
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the signal sj. The precision of π is given by

τπ ≡ V ar[π|vJ ]−1 = κ2τs

(
βJ
Nβ

+ ξ

)2

.

Proof. The π is a linear transformation of, and hence is informationally equivalent

to, the price p.

Given the price function (2.10.4), it can be checked by a direct calculation that

(2.10.31) holds.

It is clear that επ is distributed noirmally with mean zero. The variance can be

computed as

Var[επ] = κ2τsVar[vI − v̄I − ξ (vJ − v̄J)]

=
τI

1− ρ2

(
1

τI
+ ξ2 1

τJ
− 2ξ

ρ
√
τIτJ

)
=

τI
1− ρ2

(
1

τI
+ ρ2 τJ

τI

1

τJ
− 2ρ

√
τJ
τI

ρ
√
τIτJ

)
= 1.

The επ is independent of εj, because επ is a linear combination of vI and vJ and

the two are independent of εj. To see that επ is independent of vJ compute

cov(επ, vJ)

κ√τs
= cov(vI − v̄I − ξ (vJ − v̄J) , vJ)

= cov(vI , vJ)− ρ
√
τJ
τI

1

τJ
= 0,

which, given joint normality of vI and vJ (and hence επ and vJ) implies independence.

The formula for precision follows immediately from (2.10.31).

Existence and sufficient conditions for uniqueness and multiplicity of equi-

libria

Existence

Lemma 5. If φ > −
√

3θ there exists at least one BNE. In particular, if ρ ≥ 0 there

always exists at least one BNE.
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Proof. According to the Theorem 3 the BNE exists if and only if there is a solution

δ to the sextic equation (2.10.24) that satisfies

NwJ
κ

(δ − φ)
(
θ + δ2

)
>
wI
2
. (2.10.32)

Denote by δ̌ the solution to

NwJ
κ

(
δ̌ − φ

) (
θ + δ̌2

)
=
wI
2
. (2.10.33)

Such a solution is unique and the left hand side of the above is increasing in δ for

δ > δ̂.46

After substituting δ = δ̌ to (2.10.24) it becomes

−N
((
δ̌2 + θ

)
(δ̌ − φ) + κ

) κwI
2

< 0, (2.10.34)

i.e. the polynomial is negative at δ = δ̌. On the other hand, the leading coefficient

of the polynomial (2.10.24) is N2wJ > 0, therefore it becomes positive for δ large

enough. By the Intermediate Value Theorem there should be a solution δ∗ > δ̌ to

(2.10.24). Since for δ > δ̌ and the function NwJ
κ (δ − φ) (θ + δ2) is strictly increasing

in δ, the second order condition (2.10.32) holds for δ = δ∗.

Sufficient conditions for the uniqueness

Lemma 6. The BNE is unique if ξ > ξ, where ξ < 1 is given by (2.10.44). In the

case ρ ≥ 0 the sufficient condition can be written as τI < τ 1, where τ 1 is given by

(2.10.45).

Proof. The BNE corresponds to a solution of a system of equations (2.10.20) and

(2.10.23) satisfying the second order condition λ > −wI/2. After the change of

variables

l ≡ 2λ+ wI
2NwJ

> 0, (2.10.35)

the system becomes

l = l(δ) ≡ (δ2 + θ) (δ − φ)

κ
− ψ

2
(2.10.36)

46 The solution exists, because LHS is less than RHS at δ = φ and is greater than RHS for δ
large enough. Since for δ < φ the LHS is negative, there are no solutions in that region and we
may consider only δ > φ. If φ > 0, then the LHS is strictly increasing for δ > φ. If −

√
3θ < φ < 0

then the LHS is striclty increasing for all δ. In any case there is at most one solution and LHS is
increasing in δ for δ > δ̂.
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l(Nl +N − 2 (1 + δ(δ − φ))) = N

((
ψ

2

)2

+
ψ

2

)
. (2.10.37)

We are now looking for the solutions to the above system satisfying l > 0.

Denote

y ≡ δ(δ − φ).

From (2.10.37) one can express y through l as follows

y =
4l2n+ 4l(N − 2)−Nψ(ψ + 2)

8l
. (2.10.38)

The equation (2.10.36) can be written as

l =
δy + θ(δ − φ)

κ
− ψ

2
,

which allows to get an expression of δ through y and l:

δ =
2θφ+ κψ + 2κl

2(θ + y)
.

Substituting y from (2.10.38) the above becomes after some algebra

δ = δ(l) ≡ 2κ
N

l
(
l + θξ + ψ

2

)
(l − l+)(l − l−)

, (2.10.39)

where

l± ≡ −G±
√
G2 + F

2
,

G ≡ 1 +
2(θ − 2)

N
> 1,

F ≡ 2ψ + ψ2 > 0.

One can show that

0 < l+ <
ψ

2
, l− < 0.

The idea for proceeding further is the following. Equation (2.10.36) gives an

explicit expression for the function l(δ). Equation (2.10.39) expresses explicitly the

function δ(l). The sufficient conditions for uniqueness can be obtained by analyzing

how many times the two functions intersect. In what follows I consider the behavior

of the two curves on the coordinate plane in which l is a vertical and δ is a horiozontal

axis.
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I make the following additional assumption

ξ > −min

(
ψ

2θ
,

√
3θ

κ

)
. (2.10.40)

Note that when ρ ≥ 0 the above condition always holds.

Condition (2.10.40) implies ξ > − ψ
2θ
, which implies that δ(l) is positive for l > l+.

Condition ξ > −
√

3θ
κ together with ξ > − ψ

2θ
implies that in the region l > 0 the

curve l(δ) lies to the right of the vertical line δ = 0.47 The two curves can therefore

intersect only in the region l > l+ and δ > 0. Since l(δ) < 0 < l+ for δ < φ we may

actually restrict our attention to the region l > l+ and δ > max(φ, 0).

It is easy to show that for δ > max(φ, 0) the function l(δ) is strictly increasing.

Lemma 7 implies that for l such that δ(l) > 2κ
N

the function δ(l) is strictly

decreasing. Suppose that

φ >
2κ
N
. (2.10.41)

The intersection of the two curves can only occur in the region δ > φ > 2κ
N
> 0 and

l > l+. In this region δ(l) is strictly decreasing, whereas l(δ) is strictly increasing so

they intersect in at most one point. Condition (2.10.41) is equivalent to

ξ >
2

N
. (2.10.42)

We also know from the Lemma 7 that if ξ > 4(θ−1)+N(2−ψ)
2θN

, then the function δ(l)

is strictly decreasing in l for all l > l+. Therefore

ξ >
4(θ − 1) +N(2− ψ)

2θN
(2.10.43)

is also a sufficient condition for uniqueness. Combining (2.10.40), (2.10.42) and

(2.10.43) one gets

ξ > ξ = max

(
−min

(
ψ

2θ
,

√
3θ

κ

)
,min

(
2

N
,
4(θ − 1) +N(2− ψ)

2θN

))
, (2.10.44)

47Note that for l(δ) can not be positive if δ ≤ φ. If ξ ≥ 0 then the condition δ > φ = κξ > 0

ensures that the statement is true. In the case ξ < 0 the condition ξ > −
√

3θ
κ implies that the

function l(δ) is strictly increasing. Consider l(0). One can compute l(0) = −θξ − ψ
2 , which is

negative since (2.10.40) implies that ξ > − ψ
2θ . Therefore the function l(δ) can only be positive for

strictly positive δ.
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moreover, since N > 1 we have

ξ ≤ 1.

In the case ρ ≥ 0 the condition (2.10.44) can be written as

τI < τ 1 ≡

 ρ
√
τJ

min
(

2
N
, 4(θ−1)+N(2−ψ)

2θN

)
2

. (2.10.45)

Lemma 7. Suppose that (2.10.40) holds. Then: 1) in the region l > l+ the function

δ(l) is strictly decreasing in l for l such that δ(l) > 2κ
N
; 2) the function δ(l) is strictly

decreasing in l for all l > l+, provided that

ξ >
4(θ − 1) +N(2− ψ)

2θN
. (2.10.46)

Proof. One can find that for l > l+ the condition δ(l) > 2κ
N

is equivalent to

l
(
l+ + l− + θξ + ψ/2

)
> l+l−. (2.10.47)

Computing the derivative of δ(l) one gets

δ′(l) =
κ (2l (l−l+ − l(θξ + l− + l+ + ψ/2)) + l−l+(2θξ + ψ + 2l))

N(l − l−)2(l − l+)2

≡ n(l)

N(l − l−)2(l − l+)2
.

The above is negative provided that (2.10.47) holds, which proves the first claim.

The sign of δ′(l) is the same as the sign of its’ nominator n(l). Below I prove that

n(l+) < 0 and that n(l) is decreasing provided that (2.10.46) holds, which proves

the second claim. Indeed,

n(l+) = κl+(l− − l+)(2 (θξ + ψ/2) + 2l+) < 0.

The derivative of n(l) is given, by

n′(l) = κ(4l−l+ − 2l(2(θξ + l− + l+) + ψ)),
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which is negative if

2(θξ + l− + l+) + ψ > 0.

The above is equivalent to ξ > 4(θ−1)+N(2−ψ)
2θN

.

Sufficient conditions for multiplicity of BNE, ρ ≥ 0

Lemma 8. Suppose N > 4. There are at least three equilibria if τ2 < τI < τ2 and

wI < w, where τ 1 < τ2 < τ2 and the expressions for the tresholds
(
τ2, τ2, w

)
are

given by (2.10.53-2.10.55).

Proof. Denote

Q ≡ −4Nξ + 8ξ + 4ψ

T ≡ 16N2ξψ

(
ξ − 2

N

)
(ψ + 2) .

Assume that

Q < 0, ξ <
1

N
, Q2 + T > 0, ψ < 1, N > 4. (2.10.48)

Consider all solutions to

δ(l) = φ. (2.10.49)

If the conditions (2.10.48) hold then there exist two solutions to (2.10.49) given

by

L± =
−Q±

√
Q2 + T

8N
(

2
N
− ξ
)

Moreover, both solutions L± > l+48. The fact that there are two solutions to

(2.10.49) implies that the function δ(l) attains local minimum in the region l > l+

and this minimum is less than φ.

Consider also all solutions to

δ(l) =
κ
N
.

Given that (2.10.48) holds there are two solutions to the above. Denote the maximal
48It is easy to see that both solutions are positive. But δ(L) = φ > 0 is positive only if L > l+.
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of them by Lm. One can calculate

Lm =
1

2

(
Qm +

√
Q2
m + Tm

)
> L+, where

Qm ≡
2(θ − 1)

N
+ 1− 2θφ

κ
− ψ,

Tm ≡ −
(
ψ2 + 2ψ

)
If

Lm < l
(κ
N

)
=

(κ2 + θN2) (κ −Nφ)

κN3
− ψ

2
≡ lm, (2.10.50)

then there are at least three equilibria.

The condition Q < 0 is equivalent to

ξ >
ψ

N − 2
. (2.10.51)

The condition Q2 + T > 0 holds provided that49

ξ >
2ψ(N(ψ + 3)− 2)

N (N(ψ + 1)2 − 4) + 4
and N

(
N(ψ + 1)2 − 4

)
+ 4 > 0. (2.10.52)

The second part of the above holds given (2.10.48). Note that

2ψ(N(ψ + 3)− 2)

N (N(ψ + 1)2 − 4) + 4
<

8ψ

N − 4
>

ψ

N − 2

Therefore (2.10.51) and (2.10.52) hold if the weaker condition holds:

ξ > ξ1 ≡
8ψ

N − 4
.

The above can be written as

τI <
ρ2τJ

ξ2

1

≡ τ 2. (2.10.53)

Suppose that

lm −Qm > 0.

49Indeed

Q2 + T = 16ξ2
(
N
(
N(ψ + 1)2 − 4

)
+ 4
)
− 32ξψ(N(ψ + 3)− 2) + 16ψ2.

Condition (2.10.52) ensures that the first two terms are positive.
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Then (2.10.50) holds50. The above can be written as

(
κ2

N2
− θ
)(

1

N
− ξ
)
> 1− 2

N
− ψ

2
.

Assume

ξ <
1

2N
.

Then the LHS of the above is greater than
(

κ2

N2 − θ
)

1
2N

and the constraint holds

provided that
κ2

N2
− θ > 2N − 4−Nψ,

which is equivalent to

τI > (1− ρ2)τsN
2 (2N − 4−Nψ + θ) .

The above holds if the stricter inequality holds:

τI > (1− ρ2)τsN
2 (2N − 4 + θ) .

The constraint that ξ < 1
2N

implies that

τI > 4N2ρ2τJ .

The above two conditions hold provided that

τI > τ2 ≡ max
(
4N2ρ2τJ , (1− ρ2)τsN

2 (2N − 4 + θ)
)
. (2.10.54)

It is clear that

τ2 > 4N2ρ2τJ > τ 1.

We finaly derive the conditions when τ2 < τ 2. One gets

√
τ2 <

ρ
√
τJ

ξ
1

=
ρ
√
τJ

8ψ
(N − 4),

50Indeed (2.10.50) is equivalent to

Q2
m + Tm − (2lm −Qm)2 = 2lm(2Qm − 2lm) + Tm < 0,

which is true.
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which is equivalent to

wI < w ≡ wJρ
N(N − 4)

8

√
τJ
τ2

. (2.10.55)

2.10.2 Proof of Proposition 9

According to Lemmas 9-13 the equilibrium objects considered in the Proposition

can be written in terms of the model parameters and

δ ≡ κ
(
βJ
Nβ

+ ξ

)
=

√
τπ
τs
. (2.10.56)

The liquidity is decreasing in δ, whereas the information efficiency is increasing in

δ. The two have the opposite rankings. It is established in the proof of Proposition

16 that the welfare is decreasing in δ if (2.4.1) holds.

2.10.3 Proof of Proposition 10

Throughout the proof I maintain the assumption that ρ ≥ 0.

I first start with the case of crash(jump) understood as a switch from one equi-

librium to another. According to Lemmas 9-13 the equilibrium objects considered

in the Proposition can be written in terms of the model parameters and

δ ≡ κ
(
βJ
Nβ

+ ξ

)
=

√
τπ
τs
. (2.10.57)

When there is a switch from one equilibrium to another, parameters of the model

obviously do not change, and the only thing that changes is δ. The change in delta

leads to a change to all equilibrium quantities. Therefore, given the monotonicity of

the equilibrium objects in δ (Lemmas 9-13), once we understand how the δ changes

if there is a price crash we know how the equilibrium objects change.

From the Lemma 12 it is clear that if there is a price crash, there is a crash

(jump) in δ if v̄I < v̄J (v̄I > v̄J ). The statements of the proposition then follow

from the monotonicity of λ, σp, I and V in δ which follow from Lemmas 9-13.

If the crash(jump) is understood as a situation in which the sensitivity of en-
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dogenous object to model parameters is infinite, the proof works as follows. Suppose

the model parameter of interest is τs. We can write

λ = λ(δ, τs).

The sensitivity can be computed as

∂λ

∂τs
= λδ(δ, τs)

∂δ

∂τs
+ λτs(δ, τs).

It can be seen by direct computation that λδ(δ, τs) and λτs(δ, τs) are both finite as

long as δ is finite. In general, all equilibrium quantities are smooth functions of δ

and the model parameters. The δ latter is finite, because the only case when iti is

not is when β = 0, which is not possible due to second-order condition wI + 2λ > 0.

Therefore ∂λ
∂τs

= −∞ iff ∂δ
∂τs

= −∞. Analogous statements can be formulated for σp,

I, E[p] and V .

Expressing the endogenous objects through δ and the parameters of the

model

In this section I show that the equilibrium objects considered in the Proposition 10

can be expressed through δ given by (2.10.57) and the parameters of the model.

Price impact

Lemma 9. One can write the price impact λ as a function of δ and the parameters

of the model, moreover ∂λ
∂δ
> 0.

Proof. Equation (2.10.26) implies that

λ =
NwJ
κ

(δ − φ)
(
θ + δ2

)
− wI ,

which is an increasing function of for δ > φ, if ρ ≥ 0.

Volatility

Lemma 10. One can write the volatiltiy σp as a function of δ and the parameters

of the model, moreover ∂σp
∂δ

> 0.
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Proof. The volatility can be computed as follows. Using Lemma 4 one can write

Var(p) = Var
(
βJ +Nβξ

Γ
π

)
= Var

(
Nβ

Γ

δ

κ

(
vJ +

1
√
τsδ

επ

))
=

(
Nβ

Γ

δ

κ

)2
1

τJ
+

(
Nβ

Γκ

)2
1

τs
.

One can compute

Nβ

Γ
=

N

(wI + λ)
(

1
λ

+ 1
wI+λ

)
=

N
wI
λ

+ 2
.

The above is positive and is increasing in λ and, given the monotonicity of λ(δ),

also in δ. Hence, σ′p(δ) > 0.

Information efficiency

Lemma 11. One can write the information efficiency I as a function of δ and the

parameters of the model, moreover ∂I
∂δ
> 0.

Proof. The information efficiency can be written as

I ≡ Var(vJ)

Var(vJ |sj, p)

=
τJ + τs + τπ

τJ

=
τJ + τs(1 + δ2)

τJ
,

which is increasing in δ.

Price

Lemma 12. One can write the price E[p] as a function of δ and the parameters of

the model, moreover sign
(
∂E[p]
∂δ

)
= sign (v̄J − v̄I) .

Proof. Expected price sets net expected demand to zero. Expected total demand of

I traders is given by

X =
N

wI + λ
(v̄I − E[p]) . (2.10.58)
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The expected demand of J-traders is given by

xJ =
1

wJ
E
[τs
τ
vJ +

τπ
τ
π +

τJ
τ
v̄J − p

]
=

1

wJ
(v̄J − E[p]) .

Equalising the expected demand and supply we find

E[p] =
NwJ v̄I + (wI + λ) v̄J

wI + λ+NwJ
. (2.10.59)

Taking the derivative of the above one can find

sign
(
∂E[p]

∂λ

)
= sign (v̄J − v̄I) ,

which, given the monotonicity of λ in δ proves the Lemma.

Trading volume

Lemma 13. The trading volume is given by (2.10.67). There exists τJ such that if

τI < 1− ρ2, and τJ > τJ (2.10.60)

the trading volume is a decreasing function of δ.

Proof. Denote

X = NxI (p∗) ,

the aggregate trade of I-traders. Denote also

uj ≡ E[vJ |sj, p]dj =
τπ
τ

(vJ + επ) +
τs
τ

(vJ + εj) +
τJ
τ
v̄J

the ex-post value of a trader j. Denote

uJ ≡
ˆ 1

0

ujdj =
τπ
τ

(vJ + επ) +
τs
τ
vJ +

τJ
τ
v̄J

the aggregate ex-post value of J-traders. One can also write the above in a more

convinient way

uJ =
τπ + τs
τ

(vJ − vJ) +
τπ
τ
επ + v̄J .
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The market clearing condition can be written as

N
vI − p∗

wI + λ
+
uJ − p∗

wJ
= 0.

From the above one can express the market-clearing price and the aggregate

trade of I-traders

p∗ =
vINwJ + uJ(λ+ wI)

λ+NwJ + wI
,

X = G (vI − uJ) where G ≡ N

λ+NwJ + wI
. (2.10.61)

One can also compute

xj (p∗) = −X + βJεj. (2.10.62)

According to the Lemma 4 one can write

vI = vI + ξ(vJ − vJ) +
1

κ√τs
επ,

which allows to rewrite

vI − uJ = vI − v̄J + cv(vJ − vJ) + cεεπ, where (2.10.63)

cv ≡ ξ − τπ + τs
τ

, and cε ≡
1

κ√τs
− τπ

τ
. (2.10.64)

Substituting τs
τ

= wJβJ the above expressions become

cv = ξ − 1 +
τJ
τs
wJβJ and cε ≡

1

κ√τs
− 1 +

τJ + τs
τs

wJβJ , (2.10.65)

and it is clear that both cv and cε are decreasing in δ since βJ = 1
wJ (θ+δ2)

is decreasing

in δ.

I next use the well-known fact that for Y ∼ N(µ, σ2) the mean of |Y | is given by

E[|Y |] = M
(
µ, σ2

)
≡ σ

√
2

π
exp

(
−µ2

2σ2

)
− µ · erf

(
−µ√

2σ

)
(2.10.66)

where erf(z) ≡ 2√
π

´ z
0
e−t

2
dt is the error function. The trading volume then can be

written as

V =
1

2

(
M (µX , σX) +M

(
µxj , σ

2
xj

))
,
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where

µX ≡ E[X] = G (vI − v̄J) ,

µxj ≡ E [xj (p∗)] = −µX ,

σ2
X ≡ Var[X] = G2

(
c2
v/τJ + c2

ε

)
,

σ2
xj
≡ Var[xj (p∗)] = σ2

X + β2
J/τs.

Applying the Lemma 14 one can write

V =
1

2

(
M
(
|µX |, σ2

X

)
+M

(
|µX |, σ2

X + β2
J/τs

))
. (2.10.67)

If cv and cε are positive, then |µX |, σ2
X and σ2

X + β2
J/τs are all decreasing in δ.

Lemma 14 then implies that the trading volume is a decreasing function of δ.

The sufficient condition for cv and cε to be positive can be found from (2.10.64):

ξ − τπ + τs
τJ + τπ + τs

> 0 and
1

κ√τs
− τπ

τ
> 0 (2.10.68)

The inequalities hold if

ξ >
τs
τJ

(
1 + δ̄2

)
and (2.10.69)

1

κ√τs
> 1, (2.10.70)

where the value of δ̄ is given by Lemma 15.

Consider τJ that solves

inf
{
τJ ≥ 0 : ξ >

τs
τJ

(
1 + δ̄2

)}
.

Denote the solution τJ . The solution exists and is unique, since the left-hand side of

ξ > τs
τJ

(
1 + δ̄2

)
is increasing in τJ and is unbouneded, whereas the right-hand side

is decreasing in τJ . The inequality (2.10.69) holds if τJ > τJ .

The inequality (2.10.70) holds if

τI < 1− ρ2.
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Lemma 14. The functionM (µ, σ2) defined by (??) is symmetric in µ, i.e. M (−µ, σ2) =

M (µ, σ2) = M (|µ|, σ2), is incresing in µ if µ ≥ 0 and is increasing in σ.

Proof. The fact thatM (−µ, σ2) = M (µ, σ2) follows tion ofM(·) and the symmetry

of the error function erf(−z) = −erf(z). Taking the derivatives of M(·) one gets

∂

∂µ
M
(
µ, σ2

)
= erf

(
µ√
2σ

)
,

∂

∂σ
M
(
µ, σ2

)
=

√
2

π
e−

µ2

2σ2 ,

which proves the Lemma.

Lemma 15. In equilibrium δ < δ, where δ is given by (2.10.71); δ̄/
√
τJ decreases

in τJ .

Proof. From the definition of δ

δ ≡ κ
(
βJ
Nβ

+ ξ

)
= κ

(
βJ
N

(wI + λ) + ξ

)
< κ

(
1

NwJθ
(wI + λ) + ξ

)

< κ
(

1

NwJ
(wI + λ) + ξ

)
.

We next find an upper bound for λ. One can write

1

λ
= Γ− γ < Γ <

1

wJ
+

N

wI + λ
,

where the last inequality follows from (2.10.29). Since λ > −wI
2

we have N
wI+λ

< 2N
wI

and

λ <

(
1

wJ
+

2N

wI

)−1

=
wIwJ

wI + 2NwJ
.

Thus we get the following expression for δ

δ =
κ

NwJ

(
wI +

wIwJ
wI + 2NwJ

)
+ φ. (2.10.71)

The δ̄/
√
τJ is given by κ

NwJ
√
τJ

(
wI + wIwJ

wI+2NwJ

)
+ ρ√

1−ρ2
1√
τs
. Clearly, it is de-

creasing in τJ .
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2.10.4 Proof of Proposition 11

The equilibrium is a solution to the system (2.10.20-2.10.23), which can be written

as follows

λ = L(δ;N) ≡ NwJ
κ

(δ − φ)
(
θ + δ2

)
− wI , and (2.10.72)

δ = D(λ;N) ≡ h

(
λ (wI +NwJ + λ)

wJ (wI + 2λ)

)
, (2.10.73)

where h(x) is the inverse of 1 + δ (δ − φ), i.e. it solves

x = 1 + h(x) (h(x)− φ) .

Lemma 16 implies that in equilibrium λ > 0. This is not possible if δ < φ,

therefore we may look for the nitersection of the two curves in the region δ > φ and

λ > 0.

Since for δ > φ the function 1 + δ (δ − φ) is strictly increasing, the function h(x)

is well-defined and is strictly increasing as well.

The equilibrium is therefore the intersection of the two curves, λ = L(δ;N) and

δ = D(λ;N), moreover it is easy to see that ∂L
∂δ
> 0 and ∂D

∂λ
> 0 for δ > φ, so both

curves are strictly upward-sloping for a given N . We next compute

∂L

∂N
=
wJ (δ2 + θ) (δ − φ)

κ
− w′I(N),

which is positive both if wI does not depend on N , and if wI = w1N .

Analogously, we compute

∂D

∂N
= h′(·)×


λ

2λ+wI
, if wI does not depend on N

λ2(w1+2wJ )
wJ (2λ+Nw1)2

, if wI = w1N.

The above is positive.

Therefore an infinitesimal increase in N shifts the curve L(δ;N) up and the curve

D(λ;N) to the right. Their new intersection will be below and to the left from the
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old one51. Thus, we have
dλ

dN
< 0,

dδ

dN
< 0.

Since I = τJ+τs(1+δ2)
τJ

is increasing in δ and does not directly depend on N , and

L is inversely related to λ, we have

dI
dN

< 0 and
dL
dN

> 0.

Lemma 16. |If ρ ≥ 0, the equilibrium price impact is positive.

Proof. Rewrite (2.10.23) as follows

λ =
wJ (1 + δ (δ − φ)) (wI + 2λ)

(wI +NwJ + λ)
.

The δ > φ, because otherwise λ < −wI and the second order condition 2λ+wI > 0

does not hold. Therefore 1 + δ (δ − φ) > 0. Other terms in the above are positive

due to the second order condition wI + 2λ > 0.

2.10.5 Proof of Proposition 12

I will use the fixed point condition l = Λ(l) to analyze the comparative statics of

price impact.

Recall that

1/Λ(l; τs) ≡ (N − 1) g(l) + gJ(l; τs).

Denote

z(l; τs) ≡
1

τs
t(l; τs)

(
t(l; τs)−

B

C

)
=

1

τs
t(l; τs)

bJ(l; τs)

Ng(l)C
.

Recall that C =
√

1−ρ2
τI

does not depend on τs. With this notation one can write

1/Λ(l; τs) =
g(l)NwJ + 1

wJz(l; τs) + wJ
− g(l). (2.10.74)

I am interested in ∂Λ
∂τs

. The only term which depend on τs directly is z(l; τs).

51It can be shown that the curve λ = L(δ;N) has to intersect the curve δ = D(λ;N) from below,
since for λ = 0 the curve λ = L(δ;N) is to the right of the curve δ = D(λ;N)
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Substituing (2.9.3) and differentiating implicitly (2.9.2) one can find

∂

∂τs

(
t(l; τs)bJ(l; τs)

τs

)
=

=
−bJ (g2N2bJ (B2 + C2(τs − τJ)) + 2BNgb2

J +BC2g3N3τs + b3
J)

CNgτ 2
s (g2N2 (B2 + C2(τJ + τs)) + 4BNgbJ + 3b2

J)
.

The above is negative provided that B2 +C2(τs− τJ) > 0, which is equivalent to

τs >
1− 2ρ2

1− ρ2
τJ .

Therefore, provided that the above holds, the nominator (denominator) of (2.10.74)

is increasing (decreasing) in τs, which implies that (the two are positive since Λ(λ)

is positive) ∂Λ
∂τs

< 0. Therefore an increase in τs shifts the function Λ(l) up, and its’

new intersection with a 45 degree line will shift up as well (Λ(l) intersects the 45

degree line from above, see Lemma 17).

Lemma 17. In the unique equilibrium Λ′(λ) < 1.

Proof. I derive the sign of Λ′(λ) from the comparative statics with respect to τI .

We first prove that ∂λ
∂τI

> 0 in the unique equilibrium. Indeed changes of τI has no

effect on the curve (2.10.73) but shifts down the curve (2.10.72). Their intersection

occurs at a point with greater λ.

Second, we prove that ∂Λ(λ;τI)
∂τI

> 0. Indeed, observe that in (2.10.74) only the

term z depend on τI through t(l; τI)bJ(l; τI). Moreover, it is easy to prove that

t(l; τI)bJ(l; τI) is decreasing in τI . Thereofre the denominator of (2.10.74) is decreas-

ing in τI which implies that ∂Λ
∂τI

> 0. Therefore an increase in τI shifts the function

Λ(l) up. Since ∂λ
∂τI

> 0, the intersection of Λ(l) and the 45 degree line should be

from above, which proves the Lemma.

2.10.6 Proof of Propositions 13 and 14

Make a change of variable

m ≡ λ+ wI
NwJ

=
(δ2 + θ) (δ − φ)

κ
.
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With this change of variable (2.10.24) becomes

(m+ 1)
m− ψ
2m− ψ

=
δ(δ − φ) + 1

N
.

The left hand side of the above is increasing in δ and is decreasing in ψ. The right

hand side is increasing in δ and does not depend on ψ. An infinitisemal increase in

wI (or a decrease in wJ) shifts the LHS down and the new intersection of LHS and

RHS occurs at a point with greater δ and thus greater I.

Since m is increasing in δ we have that λ + wI is increasing in wI . The Γ =
1
wJ

+ N
wI+λ

1+δ(δ−φ)
is therefore decreasing in wI .

2.10.7 Proof of Proposition 15

Given Lemma 18 scaling the measure of J traders by a factor µ = M/N is equivalent

to scaling wJ by a factor 1
µ

= N/M . Therefore λ and δ in the economy 1 solve (cf.

(2.10.72-2.10.73))

λ = L(δ) ≡ NwJ
κ

(δ − φ)
(
θ + δ2

)
− wI , and (2.10.75)

δ = D(λ;µ) ≡ h

(
µ
λ (wI +NwJ + λ)

wJ (wI + 2λ)

)
. (2.10.76)

The first curve is unaffected by changes in µ. Decreasing µ shifts the curve to

the left and the new point of intersection has lower δ and greater λ. Therefore, the

liquidity decreases, whereas the information efficiency increases.

Lemma 18. Consider an economy with N I-traders and a measure µ of J-traders

with utility uJ = (vJ − p)x − ŵJx
2

2
. Call this economy Ê . Any equilibrium in this

economy is an equilibrium in the economy with N I-traders and a unit measure of

J-traders with utility uJ = (vJ − p)x − wJx
2

2
,where wJ = ŵJ

µ
. Call this economy E.

Conversely, any equilibrium in E is also an equilibrium in Ê.

Proof. Guess that the equilibrium demands in the economy Ê are given by

xi = α + β · vI − γ · p and xj = aJ + bJ · sj − gJ · p.

Denote αJ = µaJ ,βJ = µbJ and γJ = µgJ . Following the steps of the proof of
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Theorem 1 one can see that α, β, γ,αJ , βJ and γJ satisfy the same equations as the

corresponding soefficients in the economy E .

2.10.8 Proof of Proposition 16

Define

U epJ ≡ E

[
(vJ − p)xj (p)− wJxj (p)2

2

∣∣∣∣∣ sj, p
]

the ex-post utility of a J-trader. Using the notation introduced in the Proof of the

Lemma 13 the above can be written as

U epJ = (uj − p)xj (p)− wJxj (p)2

2
.

Compute

xj(p) =
uj − p
wJ

=
uJ − p
wJ

+ βJεj

= −X + βJεj,

where the second line substitutes uj = uJ + wJβJεj and the third line uses the

market cleraing conditon X+
´ 1

0
xj(p)dj = 0. The expected utility of a J-trader can

now be written as

UJ = E [U epJ ]

= E

[
(uJ − p+ wJβJεj) (−X + βJεj)−

wJ (−X + βJεj)
2

2

]

= E

[
− (uJ − p)X −

wJX
2

2

]
+
wJβ

2
J

2τs
,

where the third line computes the expectation with respect to εj. Substituting

X = G(vI − uJ) and

uJ − p =
NwJ(uJ − vI)
NwJ + wI

≡ KJ(uJ − vI)
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the above becomes

UJ = E

[
GKJ (uJ − vI)2 − wJG

2 (uJ − vI)2

2

]
+
wJβ

2
J

2τs

≡ HJE
[
(uJ − vI)2]+

wJβ
2
J

2τs
,

where I have denoted

HJ ≡ G

(
KJ −

wJG

2

)
. (2.10.77)

As in the Proof of the Lemma 13 one can write

vI − uJ = vI − v̄J + cv(vJ − vJ) + cεεπ,

which allows to calculate

UJ = HJ

(
(vI − v̄J)2 + c2

v/τJ + c2
ε

)
+
wJβ

2
J

2τs
.

Lemma 19 implies that HJ is increasing in N . From Proposition 11 we know

that δ is decreasing in N , hence βJ is increasing in N . From the proof of Lemma

13 we know that if (2.10.60) holds, c2
v and c2

ε are both decreasing in δ and hence

increasing in N . Therefore, the if (2.10.60) holds, UJ is increasing in N .

The expected utility of an I-trader can be calculated as

UI =
1

N
E

[
(vI − p)X −

wIX
2

2N

]
.

Substituting X = G(vI − uJ) and

vI − p = (1−KJ) (vI − uJ)

the expected utility of an I-trader becomes

UI = HIE
[
(uJ − vI)2] ,

where

HI ≡
1

N
G
(

(1−KJ)− wI
2N

G
)
.
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Computing the expectation we get

UI = HI

(
(vI − v̄J)2 + c2

v/τJ + c2
ε

)
.

We finally compute the welfare

W = NUI + UJ

= H
(
(vI − v̄J)2 + c2

v/τJ + c2
ε

)
+
wJβ

2
J

2τs
.

Where I denoted

H ≡ NHI +HJ = G− 1

2

(wI
N

+ wJ

)
G2. (2.10.78)

From Proposition 11 we know that δ is decreasing in N , hence βJ is increasing

in N . From Lemma 19 we know that H is increasing in N . Finally, from Lemma

13 we know that if (2.10.60) holds, c2
v and c2

ε are both decreasing in δ and hence

increasing in N . Therefore, the if (2.10.60) holds, the welfare is increasing in N .

Lemma 19. The HJ and H given by (2.10.77) and (2.10.78) is increasing in N .

Proof. Write

H(G,N) = G− 1

2

(wI
N

+ wJ

)
G2.

Compute
dH

dN
=
∂H

∂G

dG

dN
+

1

2

wI
N2

G2.

Compute
∂H

∂G
= 1−

wI
N

+ wJ

1/G
= 1−

wI
N

+ wJ
wI
N

+ wJ + λ
N

> 0.

From

G =
1

wI
N

+ wJ + λ
N

it is clear that G is increasing in N (recall that according to Proposition 11 λ is

decreasing in N).

Analogously,
dHJ

dN
=
∂HJ

∂G

dG

dN︸︷︷︸
>0

+
∂HJ

∂KJ

dKJ

dN︸︷︷︸
>0

.

130



Compute

∂HJ

∂G
= KJ − wJG =

λNwJ
(NwJ + wI)(λ+NwJ + wI)

> 0

and
∂HJ

∂KJ

= G > 0.

Thus, dHJ
dN

> 0.

2.10.9 Proof of Theorem 4

The values of price impact l such that 2l + wI > 0 does not hold are ruled out by

the Lemma 3.

For the if part, we should show that if l = Λ(l) then there exists an equilibrium

such that l is equal to the slope of the inverse residual supply. A natural candidate

is an equilibrium with β = g(l), γ = g(l) and βJ = bJ(l), γJ = gJ(l), where the

function g(l) is given by (2.9.1), bJ(l) is given by (2.9.2) and gJ(l) is given by (2.9.5).

We shall show that if l = Λ(l) then the above strategies constitute mutual best

responses. By definition Λ(l) = 1
(N−1)g(l)+gJ (l)

therefore by the Lemma 20 β = g(l)

and γ = g(l) are the best responses to other I-traders playing β = g(l) and γ = g(l)

and J-traders playing βJ = bJ(l) and γJ = gJ(l).

By consrtruction βJ = bJ(l) and γJ = gJ(l) are the best responses to I-traders

playing β = g(l) and γ = g(l) and J-traders playing βJ = bJ(l) and γJ = gJ(l),

which proves the if part.

For the only if part we shall show that if there is an equilibrium with a price

impact l such that 2l + wI > 0, then l = Λ(l) should hold.

From Lemma 20 we know that in this equilibrium I-traders play β = g(l) and

γ = g(l). Since it is an equilibrium, the strategies of J-traders should constitute

mutual best responses and be a best response to β = g(l) and γ = g(l) played by

the I-traders. By definition of bJ(l) and gJ(l) the J-traders should play βJ = bJ(l)

and γJ = gJ(l)

Since the price impact l is given by 1
(N−1)γ+γJ

and we have γ = g(l) and γJ =

gJ(l), we get that l = Λ(l), which proves the only if part.

Lemma 20. The strategy xi(p) of a trader i ∈ I is a best response to the profile of

symmetric linear strategies of traders j ∈ J and k ∈ I, k 6= i characterised by the
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coefficients (αJ , βJ , γJ) and (α, β, γ) such that 2
(N−1)γ+γJ

+ wI > 0 if and only if it

is given by

xi(p) =
vI − p
wI + l

, where l =
1

(N − 1) γ + γJ
.

Proof. As it is discussed in the proof of the Theorem 3 the best response of a trader

i solves

max
(x,p)

(vI − p)x−
wI
2
x2 (2.10.79)

s.t.: p = ι+ l · x. (2.10.80)

Taking the first order condition and eliminating ι using (2.10.80) yields the following

expression for the best response of the trader i

xi =
1

wI + l
(vI − p). (2.10.81)

By assumption the second order condition wI + 2λ > 0 holds, therefore the above

first order necessary condition is also sufficient.

2.10.10 Stability. The expression for Λ′(l).

First recall that B = ρ
√

τJ
τI
, C =

√
1−ρ2
τI

implying that

B = ξ, C =
1
√
τsκ

,

in the notation adopted in the appendix.

We first differentiate implicitly (2.9.2) to get the expression for b′J(l):

b′J(l) = − 2κ2bJ(l)2(bJ(l)(l + wI) +Nξ)

κ2bJ(l)(l + wI)(3bJ(l)(l + wI) + 4Nξ) +N2 (θ + κ2ξ2)
< 0. (2.10.82)

Differentiation of (2.9.6) yields

Λ′(l) =
nominator
denominator

,

where

denominator =
1

wJ

(
N2(l + (N − 1)wJ + wI)− κ2wJbJ(l)(l + wI)(bJ(l)(l + wI) +Nξ)

)2
,
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nominator = κ2N2bJ(l)2(l + wI)
2
(
2l + wJ

(
−κ2ξ2 + 3N − 2

)
+ 2wI

)
+ (N − 1)N4wJ −

− 2κ4NξwJbJ(l)3(l + wI)
3 − κ4wJbJ(l)4(l + wI)

4 +

+ κ2N3ξ(l + wI)
2b′J(l)(l +NwJ + wI) +

+ bJ(l)
(
2κ2N2(l + wI)

3b′J(l)(l +NwJ + wI) + κ2ξN3(l + wI)(l + 2(N − 1)wJ + wI)
)

Substituting (2.10.82) to the above two expressions yields a closed form solution

for Λ′(l), up to a solution of a cubic equation determining bJ(l):

1 = wJbJ

(
θ +

(
φ+ κ (wI + l)

bJ
N

)2
)
.
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Chapter 3

A Model of OTC Market with

Multilateral Trading Platform

3.1 Introduction

Trade in over-the-counter (OTC) markets was traditionally bilateral: a customer

calls a dealer and negotiates terms of trade. Recently, in some OTC markets cus-

tomers may also trade using multilateral trading platforms (MTPs) allowing them

to query several dealers and to trade with the one offering the best quote (see Figure

3.0.1 for an illustration). For example, more than 10% of trades in $8tn corporate

bond market has been completed via MTP (Hendershott and Madhavan (2015)).

While the theory of bilateral trade in OTC markets is well-established (e.g., Duffie,

Garleanu and Pedersen (2005) and the literature that followed), to the best of our

knowledge the the theory of multilateral trade in OTC market (in particular via

MTPs) is absent. In this paper we aim to fill this gap.

The trade via MTP is different from the traditional bilateral trade along the

following two dimensions. Matching: customers are matched to several dealers,

instead of just one. Price mechanism: price is determined in a first-price auction, not

through bargaining. We augment the classic OTC framework of Duffie, Garleanu and

Pedersen (2005) along those two dimensions. In particular, we consider an economy

with a continuum of risk-neutral infinitely-lived investors who can hold up to one

unit of asset. Investors are of two types: high-type investors receive higher flow

utility from holding the asset. The types evolve stochastically and the differences in

types generate trade. The trade is subject to a search friction: investors wishing to
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Figure 3.0.1: In a traditional, “call” market a customer (c) contacts one dealer (d)
and negotiates the terms of trade. MTP allows to contact several dealers and to
trade with the one offering best quote.

trade cannot do so instantaneously. We allow investors searching for quotes (playing

a role of customers) to query several (n) other investors (playing a role of dealers)

and to run the first-price auction among them. See Figure 3.2.1 for an illustration.

We study both stationary equilibrium and transition dynamics, and the model is

tractable in both.

In our model all dealers responded to customer’s query have the same valua-

tions, yet bid and ask distribution is non-degenerate. The dispersion of bid and ask

prices has a strategic nature: each dealer is uncertain about how many other dealers

respond and uses a mixed strategy when providing a quote. We provide testable

implications linking skewness and dispersion of bid and ask prices to dealers’ re-

sponse rate. In particular, we show that ask prices are negatively skewed, while bid

prices are positively skewed. We also show that dispersion of bid and ask prices of

assets (or during periods of time) with higher response rate of dealers is smaller.

The intuition is simple: higher response rate implies that the market power of each

seller is smaller. The prices would be more concentrated near the competitive price

and the dispersion will be smaller. The skewness of bid and ask prices is of opposite

signs, because the ask distribution is shifted to the right, while the bid distribution

is shifted left due to market power, producing negative (positive) skewness.

We show that increasing n may provoke a liquidity squeeze: when n is large,

it is hard to find dealers as they are taken from the market quickly. As a result

small changes in asset supply can cause a large swings in price. However, such a
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squeeze is actually efficient: for example, when asset supply is low, efficiency implies

that all asset should be allocated to high-types, implying that the measure of low-

types who are willing to sell the asset is zero. Moreover, we show that increasing

n improves welfare both in steady state and in transition. Moreover, in the limit

as n → ∞ efficient allocation can be achieved in steady state even when the trade

is infrequent. However, even when n is infinite, the transition to efficient allocation

takes time because of search friction. We also show that allowing large n may

provoke a liquidity squeeze: when n is large, it is hard to find dealers as they are

taken from the market quickly. As a result small changes in asset supply can cause

a large swings in price.

Our paper is related to two strands of literature: search models of OTC mar-

kets and auctions with uncertain number of bidders. Our main difference to the

first strand of literature (e.g. Duffie, Garleanu and Pedersen (2005), Weill (2007),

Vayanos and Weill (2008), Lagos and Rochateau (2009)) is that the trade in our

model is multilateral. Price competition among several dealers and uncertainty

about the number of them generates price dispersion in our model, that is strategic

in nature. The latter is in contrast to price dispersion in Hugonnier et al (2015) and

Shen et al (2015), where price dispersion is a consequence of dispersion in investors’

valuations.

Relative to the auctions literature with uncertain number of bidders (see e.g.

Klemperer (1999) for a review) and IO literature on pricing with heterogeneously

informed consumers (e.g. Butters (1997), Varian (1980) and Burdett and Judd

(1983)) our main difference is the endogeneity of this uncertainty. In our model

uncertainty about the number of dealers who respond is a consequence of hetero-

geneity of traders: some of them may not respond, when there are no gains from

trade. The measure of different kinds of agents is determined endogenously in our

model, which is important for the liquidity squeeze result.

3.2 The model

The time is continuous and goes from zero to infinity, t ∈ T ≡ [0,∞). There is a unit

continuum of risk-neutral infinitely lived investors who discount future consumption
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at a rate ρ: given a consumption stream {ct}t∈T each gets utility

ˆ ∞
0

cte
−ρtdt.

There is one asset and investors may choose to hold xt ∈ {0, 1} units of it.1 The

supply of the asset is s ∈ [0, 1]. Investors are of two types, high and low : θt ∈

{1, 1− δ}. Investor of type θt derives flow utility θt if holds the asset. Types evolve

according to a continuous time Markov chain:

Pr (θt+dt = 1|θt = 1− δ) = λudt,

Pr (θt+dt = 1− δ|θt = 1) = λddt.

Depending on the type θt and asset holdings xt we get four kinds of investors,

k ∈ {b, s, h, o}: buyers, sellers, holders and outsiders. We denote the corresponding

measures and values by µk and Vk, respectively. We summarize the notation in the

table below.

kind xt θt Measure Value

buyer 0 1 µb Vb

seller 1 1− δ µs Vs

holder 1 1 µh Vh

outsider 0 1− δ µo Vo

Difference in types generates trade in our model. As in DGP (2005) the δ may

represent, for example, hedging reasons to sell or relative tax disadvantage. The

trade is subject to a friction. In order to purchase the asset buyers have to find

sellers and vice versa. Investors can only search at arrival times of Poisson process

with intensity α. One possible interpretation of such search friction is the following:

1/α is a mean time to finalize investment decision, e.g. to get approval from risk-

management desk.2 When an investor can search, he simultaneously contacts n

other investors from the whole population at random and asks them for quotes. An

investor searching for a quote plays a role of a customer and investors receiving his
1We can extend the model similarly to DGP (2005) and add the second asset, money market

account, earning the interest r. This will not change any of the results presented in the paper, so
we decided to have just one asset to simplify the exposition.

2In such an interpretation: αdt = Pr(intended trade is approved in dt).
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Figure 3.2.1: A buyer requests 5 other investors for a quote. A buyer plays a role
of a customer (depicted as a circle), other investors (depicted as rectangles) act
as dealers. Only sellers respond with a quote. The buyer trades with the seller
providing best quote (3$).

query play a role of dealers. The quotes are take-it-or-leave-it offers. Investor trades

with the one who provided best quote if there are gains from trade and does not

trade otherwise.3 We assume that only the dealers with gains from trade respond

with a quote (i.e. only sellers (buyers) respond to a query for a bid (ask) quote).

See Figure 3.2.1 for an illustration.

3.3 Stationary equilibrium

In this section we derive the stationary equilibrium in our model. The equilibrium

objects are: 1) value functions Vk 2) measures µk, k ∈ {b, s, h, o} and 3) price

strategies. In equilibrium only sellers would be willing to sell and only buyers will

be willing to buy. Therefore, without loss of generality we assume that sellers and
3A real life example of such a mechanism is a MarketAxess electronic trading platform for

trading bonds. Here is the description from Hendershott and Madhavan (2015):

MarketAxess is an electronic trading platform with access to many dealers in U.S.
investment-grade and high-yield corporate bonds, Eurobonds, emerging markets,
credit default swaps, and U.S. agency securities. MarketAxess allows an investor
to query multiple dealers electronically, providing considerable time savings relative
to the alternative of a sequence of bilateral negotiations with this same set of deal-
ers. An ending time is specified for the auction. Auctions vary in length from 5 to
20 minutes, and only at the end of the auction does the investor review the dealer
responses and select the best quote...MarketAxess charges dealers a fee between 0.1
and 0.5 basis points for investment-grade bonds.
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only sellers provide bid prices and buyers and only buyers provide ask prices and no

quotes are provided in all other cases.4 Asking and bidding strategies of, respectively,

sellers and buyers are characterized by the CDFs A(p) ≡ Pr(quoted ask price < p)

and B(p) ≡ Pr(quoted bid price < p).

We focus on symmetric stationary Markov perfect equilibria. We derive equilib-

rium in three steps. First, taking values Vk and measures µk as given we derive the

price strategies A(p) and B(p) in section 3.3.1. We then derive equilibrium measures

µk and values Vk in sections 3.3.2 and 3.3.3, respectively.

3.3.1 Price strategies

For a trade to happen the price should satisfy Vs − Vo ≤ p ≤ Vh − Vb. The first

inequality is to ensure that sellers are willing to sell; the second inequality ensures

that the buyers are willing to buy. We denote the reservation price of buyers (sellers)

by rb (rs). We denote the difference between the two, which we call gains from trade,

by ∆.

rs ≡ Vs − Vo, rb ≡ Vh − Vb, ∆ ≡ rb − rs.

We guess, and later verify that rs, rb and ∆ are positive. We also introduce the

following notation

γs ≡ (1− µs)n−1, γb ≡ (1− µb)n−1.

We call γs (γb) market power of sellers (buyers): it is equal to probability of being

a monopolist conditional on being contacted.5 The Proposition below characterizes

the equilibrium price strategies, taking the measures and values as given.

Proposition 17. There are no pure strategy equilibria. The equilibrium price strate-

gies are given by CDFs

A(p) =
1

µs
− 1− µs

µs

(
∆

p− rs

) 1
n−1

, B(p) =
1− µb
µb

((
∆

rb − p

) 1
n−1

− 1

)
,

4So for example if a buyer calls to holder, outsider or another buyer and asks for the price at
which they sell, they provide no quotes.

5Indeed, consider a seller contacted by some buyer. The seller is a monopolist, i.e. the only
seller among n traders contacted by the buyer, if each of the n−1 remaining contacts led the buyer
not to a seller. The probability of not reaching a seller is 1− µs. The probability of not reaching
a seller n− 1 times is (1− µs)n−1.
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with support [rs + γs∆, rb] and [rs, rb − γb∆], respectively. The expected profits of

buyers and sellers are given by, respectively

πs = γs∆, πb = γb∆. (3.3.1)

Proof. We consider sellers’ strategies here. The claims for buyers are proved analo-

gously in the appendix.

(No pure strategy equilibrium). Suppose all sellers charge the price p∗. Undercut-

ting this price by a small amount is a profitable deviation, except for the case when

p∗ = rs. However, charging p∗ = rs is not an equilibrium either, as it yields a profit

of zero, whereas deviating to any price p > rs yields strictly positive profit: if only

the seller of interest responded (which happens with strictly positive probability)

the quote p will be accepted and yield p− rs > 0 for that seller.

(Derivation of the strategy A(p)). Given the above we will be looking at mixed

strategies. Denote the equilibrium strategy of a seller byA(p) = Pr(quoted bid price <

p) and its’ support by [pa, pa]. We show in the appendix that the price strategy has

connected support and has no point masses. Consider a particular seller and suppose

he quotes a price p. He gets a profit

πs = Pr(qoute p is the best)(p− rs)

= (1− µs + µs(1− A(p)))n−1(p− rs)

= (1− µsA(p))n−1(p− rs)

= const

= (1− µs)n−1(pa − rs).

The first equality is clear: a buyer will only trade with a seller at price p if the

it is the best quote among the ones the buyer received. If the buyer trades with

the seller of interest, the seller gets p − rs. Quote p is the best if any of the other

n−1 traders queried by the buyer either did not respond (happens with probability

1 − µs) or respond, but with a quote greater than p (happens with probability

µs(1−B(p))). This explains the second line. In the third line we simply rearrange.

For traders to play mixed strategy they have to be indifferent between any price in

the support (otherwise they would charge the price yielding the greatest profit with

probability 1). Therefore the profit should be constant (fourth line), in particular
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we can evaluate it at p = pa (fifth line). Combining third and fifth lines we express

A(p) =
1

µs
− 1− µs

µs

(
pa − rs
p− rs

) 1
n−1

.

In the appendix we show that pa = rb , which pins down the pricing strategy and

expected profit.

Intuitively, sellers playing a role of a dealer use mixed strategies because de-

pending on how many other dealers respond they may either be monopolists, in

which case they would like to charge the price rb. They may also face competition

with other sellers, in which case they would have to charge the price closer to rs.

As a result they mix between the prices from a segment [rs + c, rb], where cis some

positive number. Any price from the segment should yield the same profit πs. In

particular when charging the lowest price rs + c a seller ensures that his quote is

always accepted and gets a profit rs + c − rs = πs. It then follows that c = πs, i.e.

the distance c between the lowest price charged and the reservation price rs is the

profit of sellers. When charging the highest price sellers earn the maximal possible

profit ∆ in case their quote is accepted. The latter happens with probability γs. It

then follows that πs = γs∆, i.e. the market power γs is also equal to the fraction

of the trade surplus that a seller gets. It is therefore analogous to bargaining power

in models with Nash bargaining. Note, however, that in our model, unlike Nash

bargaining models, γs is endogenous.

In short, the price dispersion arises due to uncertainty about the number of com-

petitors that each dealer has. The latter uncertainty arises due to two factors which

we find realistic. First, the seller does not know the current type of his potential

competitors: if it is high, they will not be willing to sell and therefore will not con-

tribute to competition. Second, he does not know their current inventories: even if

their type is low they might not have the asset to sell, therefore not contributing to

competition. Hendershott and Madhavan (2015) document a significant dispersion

in the fraction of dealers responded, providing the empirical support to the fact that

each dealer is uncertain about the number of competitors.
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3.3.2 Demographics

In this section we find measures of traders µk, k ∈ {b, s, h, o} in a stationary equilib-

rium. We express the measures µb, µh and µo through the measure of sellers. First,

in a stationary equilibrium the measure of investors with θ = 1 is6

η ≡ λu
λu + λd

.

Hence,

µb + µh = η, (3.3.2)

µs + µo = 1− η. (3.3.3)

From market clearing condition we also have

µh + µs = s. (3.3.4)

Equations (3.3.2-3.3.4) allow to express

µh = s− µs, µb = µs + η − s, µo = 1− µs − η. (3.3.5)

It remains to pin down the measure of sellers. We consider the inflows and outflows

from the population of sellers. In a short period dt a measure µsαdt of sellers will

search, of which only a fraction 1 − (1 − µb)n will contact at least one buyer and

trade. Hence, there is an outflow νsdt due to seller-initiated transactions, where

νs ≡ (1− (1− µb)n)µsα. (3.3.6)

Since one unit of asset is traded in each transaction, νs is also a seller-initiated trading

volume. Analogously, there is an outflow νbdt due to buyer-initiated transactions,

where

νb ≡ (1− (1− µs)n)µbα. (3.3.7)

Again, νb is also a buyer-initiated trading volume. The outflows from the population

of sellers in a short period dt include: (i) a measureµsλudt, who will change to holders
6Indeed, in a stationary equilibrium, the measure of agents who change their type from θ = 1

to θ = 1− δ is ηλd per unit of time. It should be equal to the measure of agents who change their
type from θ = 1− δ to θ = 1, which is (1− η)λu, per unit of time. From ηλd = (1− η)λu one finds
η = λu

λu+λd
.
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due to type-switching shocks, (ii) a measure (νs + νb)dt who will become outsiders

due to trade. The inflows are due to holders of a measure µhλddt becoming sellers.

Equating net inflow of sellers to zero one gets

µsλu + νs + νb − µhλd = 0. (3.3.8)

One pins down µ substituting (3.3.5) in the last equation. The Proposition below

summarizes the above discussion.

Proposition 18. The measures µk, k ∈ {b, s, h, o} are given by (3.3.5), where µs is

the unique solution µ ∈ (0, s) to

µλu + (1− (1− µ− η + s)n)µα + (1− (1− µ)n) (µ+ η − s)α− (s− µ)λd = 0.

(3.3.9)

Proof. It remains to prove that there exists a unique solution to (3.3.9). Since the

left hand side (LHS) of (3.3.9) is strictly increasing in µ, there is at most one solution.

The LHS is continuous, strictly negative at µ = 0 and strictly positive at µ = s,

therefore a unique solution µ ∈ (0, 1− η) exists.

3.3.3 Value functions

In this section we determine the value functions Vk, k ∈ {b, s, h, o} in a stationary

equilibrium. We start with holders. The Hamilton-Jacobi-Bellman equation writes

as:

0 = 1 + λd(Vs − Vh)− ρVh. (3.3.10)

The interpretation is as follows. Over a short period dt a holder gets a flow utility

1dt from holding the asset, plus, with probability λddt he can switch his type and

become a seller, in which case his value changes by Vs−Vh, minus the “depreciation”

of ρVhdt due to discounting. For outsiders one can similarly write

0 = λu(Vb − Vo)− ρVo. (3.3.11)

We now consider sellers. Denoting 〈b〉(〈a〉) the average bid (ask) transaction

price (i.e., the average price paid in seller- (buyer-) initiated transactions), the HJB
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equation writes as

0 = 1− δ + λu(Vh − Vs) +
νs
µs

(〈b〉 − rs) +
νb
µs

(〈a〉 − rs)− ρVs. (3.3.12)

In a short period dt the value of a seller changes by (1− δ) dt due to holding the

asset. It may also change by Vh − Vs with probability λudt due to a type type

switching shock. A change of 〈b〉 − rs is possible if a seller of interest initiates a

transaction. Since νsdt sellers initiate a trade in a period dt and there are µs sellers

in total, the probability that a seller of interest initiates a trade is νs
µs
dt. Similarly,

the value changes by 〈a〉 − rs if a seller of interest trades in a transaction initiated

by a buyer. The probability of the latter is νbdt
µs

. Finally, the value also changes by

−ρVsdt due to discounting.

For buyers one can similarly write

0 = λd(Vo − Vb) +
νb
µb

(rb − 〈a〉) +
νs
µb

(rb − 〈b〉)− ρVb. (3.3.13)

We finally determine the average bid and ask prices 〈b〉 and 〈a〉. We write the

expected profit of a seller in a short period dt due to a trade initiated by a buyer in

two ways. The first one was already explored when writing the HJB equation and

gives νb
µs

(〈a〉 − rs) dt, . The second gives nαµbπs: each seller may be contacted by a

buyer with probability nαµbdt and gets profit πs if contacted. Hence,

〈a〉 = rs +
nαµbµs
νb

πs. (3.3.14)

Similarly, writing the expected profit of a buyer due to a trade initiated by a seller

yields

〈b〉 = rb −
nαµbµs
νs

πb. (3.3.15)

Substituting (3.3.14-3.3.15) and (3.3.1) into (3.3.12-3.3.13) yields

0 = 1− δ + λu(Vh − Vs) + ∆

(
νs
µs

+ nαµb (γs − γb)
)
− ρVs, (3.3.16)

0 = λd(Vo − Vb) + ∆

(
νb
µb

+ nαµs (γb − γs)
)
− ρVb. (3.3.17)

Equations (3.3.10), (3.3.11), (3.3.16), (3.3.17) constitute a system of 4 linear equa-

tions allowing do determine all value functions. The Proposition below summarizes
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the derivation of equilibrium.

Proposition 19. There exists a unique equilibrium. The price strategies and mea-

sures of agents are given by Propositions 17 and 18. The value functions are unique

solutions to a linear system of equations (3.3.10), (3.3.11), (3.3.16), (3.3.17). The

expressions for gains from trade and reservation prices of buyers and sellers are

given by

∆ =
δ

ρ+ λu + λd + νb
µb

+ νs
µs

+ nα(µs − µb) (γb − γs)
, (3.3.18)

rb =
1

ρ
− ∆

ρ

(
λd +

νb
µb

+ nαµs (γb − γs)
)
, (3.3.19)

rs =
1− δ
ρ

+
∆

ρ

(
λu +

νs
µs

+ nαµb (γs − γb)
)
. (3.3.20)

Proof. We derive expressions for rb, rs, and ∆. Subtracting (3.3.11) from (3.3.16)

and (3.3.13) from (3.3.10) one gets (3.3.20) and (3.3.19). Subtracting (3.3.19) from

(3.3.20) one gets (3.3.18). We uniquely express Vh − Vs and Vb − Vo through ∆

in the appendix, from which it follows that the system (3.3.10), (3.3.11), (3.3.16),

(3.3.17) has a unique solution. We also prove in the appendix that rs, rb and ∆ are

positive.

3.3.4 Transaction price distribution

We first characterize the equilibrium transaction price distribution. The distribution

of transaction ask prices (i.e., prices paid in buyer-initiated transactions) is different

from the distribution of the quoted ask prices A(p) (as buyers select best quotes)

and is denoted by Fa(p). The distribution of transaction bid prices (i.e., prices paid

in seller-initiated transactions) is denoted by Fb(p). The distribution of prices in all

transactions is denoted by F (p). The means of Fa(p), Fb(p) and F (p) are denoted

by 〈a〉, 〈b〉 and 〈p〉:

〈a〉 ≡
ˆ
pdFa(p), 〈b〉 ≡

ˆ
pdFb(p), 〈p〉 ≡

ˆ
pdF (p).
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We refer to 〈b〉 and 〈a〉 as mean transaction bid (ask) price. We call 〈p〉 mean

transaction price. The standard deviations are denoted by σb and σs:

σ2
a ≡
ˆ

(p− 〈pa〉)2 dFa(p), σ
2
b ≡
ˆ

(p− 〈pb〉)2 dFb(p).

We further normalize the above measures by the corresponding ranges of bid and

ask prices: (1− γs) ∆ in case of ask prices and (1− γb) ∆ in case of bid prices.

We call σa/ ((1− γs) ∆) ask dispersion and σb/ ((1− γb) ∆) bid dispersion. The

normalization makes the measures of dispersion unitless and also scales the measures

to an interval between 0 and 1. As we will also see from the proposition below the

scaled dispersion depends on just two parameters: number of traders queried (n)

and the response rate (µs in case of buyer-initiated transactions and µb in case of

seller initiated transactions), both of which are observable in the data (Hendershott

and Madhavan (2015)).

Our measure of skewness is nonparametric skew, which by definition is the dif-

ference between the mean and median, scaled by the standard deviation:

skewask =
〈pb〉 − F−1

a (1/2)

σa
; skewbid =

〈ps〉 − F−1
b (1/2)

σb
.

Normalization by standard deviation ensures that the measures of skewness are

unitless and is between −1 and 1. We call skewbid (skewask) bid (ask) skewness.

We characterize the distributions and their moments in the proposition below.

response

Proposition 20. The distributions Fa(p), Fb(p) and F (p) are given by

Fa(p) =
αµb
νb

(
1−

(
γs∆

p− rs

) n
n−1

)
with support [rs + γs∆, rb], (3.3.21)

Fb(p) = 1− αµs
νs

(
1−

(
γb∆

rb − p

) n
n−1

)
with support [rs, rb − γb∆] , (3.3.22)

F (p) =
νsFs(p) + νbFb(p)

νs + νb
. (3.3.23)

Prices 〈a〉 and 〈b〉 are given by (3.3.14-3.3.15). The mean transaction price of 〈p〉

is given by

〈p〉 =
νs 〈b〉+ νb 〈a〉

νs + νb
.
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The bid and ask dispersions are given by

σb/ ((1− γs) ∆) = φ(µb, n), σa/ ((1− γb) ∆) = φ(µs, n), (3.3.24)

where

φ(µ, n) ≡ nµ(1− µ)n−1

(1− (1− µ)n) (1− (1− µ)n−1)

√
1− (1− µ)n−2

(n− 2) (1− µ)n−2

1− (1− µ)n

nµ2
− 1.

(3.3.25)

The bid and ask skewness is given by

skewbid = −ψ(µb, n), skewask = ψ(µs, n),

where

ψ(µ, n) =
1−

(
1− 1

2
(1− (1− µ)n)

) 1−n
n 1−(1−µ)n

nµ√
1−(1−µ)n−2

(n−2)(1−µ)n−2

1−(1−µ)n

nµ2
− 1

> 0.

Proof. See Appendix.

The proposition above yields several implications.

3.3.5 Transaction price skewness and dispersion and dealer

response rate

Below we relate the properties of transaction bid and ask price distributions to

the observable characteristics such as dealer response rate and number of dealers

queried.

1. The transaction ask prices are positively skewed while bid prices are negatively

skewed. The intuition is simple: due to market power sellers charge prices

concentrated near monopoly price rb. The distribution of bid prices is thus

shifted to the right producing negative skewness. Similar intuition applies for

bid prices that are concentrated near rs.

2. Price dispersion is lower for assets with higher response rate. It follows from

the fact that the function φ(µ, n) is decreasing in µ. Hendershott and Madha-

van (2015) report that traders query between 24 and 28 dealers in the corporate

bond market and that this number is similar for investment-grade and high-

yield bonds. They also report that the response rate is higher for investment-
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Figure 3.3.1: Price dispersion and skewness.

grade bonds. It then follows that there should be more dispersion in prices of

high-yield bonds. The left panel of the Figure 3.3.1 plots the price dispersion

as a function of response rate.

3. The absolute value of skewness is the highest for assets with intermediary re-

sponse rate. As we discussed above, the source of skewness in transaction

prices is a market power of dealers. High response rate implies low market

power and hence low skewness. On the other hand if the response rate is

small, the market power is high, and the price distribution is concentrated

near the monopoly price. In the case of bid distribution the left tail will

be thin, producing small negative skewness. Similar intuition applies for ask

prices. Consequently, the largest value of skewness should be observed for

intermediary values of response rates. The left panel of the Figure 3.3.1 plots

the skewness as a function of response rate.

4. The distribution of scaled bid (ask) prices first-order stochastically dominates

that of assets with lower (higher) response rates. We define scaled bid price as

bid minus the minimal bid normalized by the range of bid prices: p−(rs+γs∆)
(1−γs)∆ .

Clearly, scaled price is always between zero and one. Similarly, scaled ask price

is p−rs
(1−γb)∆

. The intuition for stochastic dominance result is simple: higher re-

sponse rate in seller-initiated transactions implies lower market power of buyers

and hence higher ask prices. Similarly, higher response rate in buyer-initiated

transactions implies lower market power of sellers and hence lower bid prices.
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Figure 3.3.2: Distributions of scaled bid and ask prices, n = 26.

Given the results reported in Hendershott and Madhavan (2015) the above

implies that the distribution of scaled ask (bid) prices for investment-grade

(high-yield) bonds should first-order stochastically dominate that of high-yield

(investment-grade) bonds. Figure 3.3.2 plots the distributions of scaled bid

and ask prices for different values of response rates.

3.3.6 Price impact

In this section we consider how the market adsorbs supply shocks. Our measure of

price impact is Λ(s) which is defined as follows

Λ(s) ≡
∣∣∣∣∂ 〈p〉 (s)∂s

∣∣∣∣ .
Our objective is to examine how changes in the number of dealers queried (in

particular, going from a “call” market (n = 1) to an auction market (n ≥ 2)) affects

the above aspect of market liquidity. The Figure 3.3.3 demonstrates that as n grows

large the market may become fragile: for some values of s the price impact becomes

large. Moreover, Proposition 21 derives the values of s for which the price impact

is infinite in the n→∞ limit and also derives the limiting function 〈p〉 (s).
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Figure 3.3.3: Average price and price impact. Parameter values: ρ = 0.1, α = λu =
2, λd = 1, δ = 0.7.

Proposition 21. The function 〈p〉 (s) in the n→∞ limit is given by
1
ρ

, if s ≤ s;

w(s)
(

1
ρ
− δ

ρ
λd+α

ρ+λu+λd+2α

)
+ (1− w(s))

(
1−δ
ρ

+ δ
ρ

λu+α
ρ+λu+λd+2α

)
, if s < s < s;

1−δ
ρ

, if s ≥ s,

where

s ≡ α

α + λd
η, s ≡

(
1 +

λd
α + λu

)
η,

w(s) ≡ s(α + λd)− αη
s(λd − λu) + η(λd + λu)

∈ [0, 1].

Consequently, Λ(s) become infinite when s ∈ {s, s} as n→∞.

Proof. See Appendix.

The force behind the sharp changes in price observed in the Figure 3.3.3 is a

liquidity squeeze: as n grows, the measure of sellers becomes zero for s < s = 0.4(4)

(short squeeze), similarly the measure of buyers becomes zero for s > s = 0.8(3)

(long squeeze). Consequently, when the supply decreases from s + ε to s − ε there

is a short squeeze (sellers become scarce) and the price jumps. When the supply

increases from s− ε to s+ ε there is a long squeeze (buyers become scarce) and the

price falls.

The intuition behind the particular value of s is as follows: s is the value of
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supply such that all new sellers coming to the market per unit of time (the measure

of them is λdµh = λd(s− µs) = λds) are taken from the market by searching buyers

(the measure is αµb = α(µs + η − s) = α(η − s)). Equating the two measures we

find

λds = α(η − s)⇒ s = s.

The intuition behind the value of s is similar. Measure of new buyers coming to the

market per unit of time, µoλu = (1− s)λu should be equal to the measure of sellers

searching αµs = α(s− η). Hence,

(1− s)λu = α(s− η)⇒ s = s.

To illustrate the mechanism further we compute the average time spent on the

market by buyers and sellers. The latter depends on the price that they charge. We

compute the average time for a trader charging monopoly price: rb for sellers and

rs for buyers. The average time is given by

τb =

(
λd +

νb
µb

+ nαµsγb

)−1

, τs =

(
λu +

νs
µs

+ nαµbγs

)−1

.

The buyer may become an outsider (with intensity λd ) or a holder due to trade

that he initiates himself (intensity νb
µb
) or due to a trade initiated by a seller (with

intensity nαµsγb).7 A similar explanation applies for a formula for τs. The time τb

measure the scarcity of buyers: when τb is small it is hard to find a buyer, as they go

from the market very quickly. Similarly, τs measures the scarcity of sellers. Figure

3.3.4 provides an illustration.

3.3.7 Efficiency and welfare

We start by investigating the efficient allocation. The efficient allocation is the one

in which all asset is allocated to high types. Once high types are allocated the asset,

the remaining is given to the low types. Thus, if s < η efficiency implies

µs = 0, µh = s, µb = η − s, µo = 1− η.
7In a period dt a buyer gets contacted with probability nαµsdt. Given that he charges a

monopoly price a seller trades with hime with probability γb.
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Figure 3.3.4: Measures and average times spent on the market of buyers and sellers.
Parameter values: ρ = 0.1, α = λu = 2, λd = 1, δ = 0.7.

Similarly, if s ≥ η efficiency implies

µs = s− η, µh = η, µb = 0, µo = 1− s.

The welfare is easy to calculate: at any time t the total utility flow is µs(1−δ)+µh.

Hence, substituting µh = s− µs the welfare can be written as

W =
s− µsδ

ρ
.

Proposition 22. The efficient allocation is: µs = µes ≡ [s− η]+, and the rest of

the measures expressed by (3.3.5). The welfare in the efficient allocation is given by

W = s−µesδ
ρ
. For finite α, as n→∞, the allocation converges to the efficient one, if

s ∈ [0, s] ∪ [s, 1]. For finite n, as α → ∞, the allocation converges to the efficient

one for any s.

Proof. See Appendix.

Why the efficient allocation could not be obtained in the n → ∞ limit for

intermediary values of supply (s ∈ [s, s])? The intuition is as follows. Because of

the search friction, the agents are stuck with inefficient allocation. For example, for

s < η efficiency implies that µs = 0. Suppose that indeed µs = 0 and s < s < η.

Then the measure of new sellers coming to the market is λds is greater than the

measure of the buyers searching (i.e. the maximal measure of sellers that transform
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Figure 3.3.5: Approaching efficiency by changing α and n. Parameter values: ρ =
0.1, λu = λd = 1, δ = 0.8, α = 1 (right panel) and n = 30 (left panel).

into outsiders due to trade) α(η− s). Hence, the next instant the measure of sellers

become positive. Figure 3.3.5 provides an illustration.

3.4 Transition dynamics

In this section we analyze the symmetric Markov perfect equilibrium without as-

suming stationarity. The equilibrium objects Vk(t), µk(t), A(p; t) and B(p; t), k ∈

{b, s, h, o} now depend on time. We drop the argument t where it does not cause

a confusion. As before, we first characterize the price strategies taking values and

measures as given. Since we did not use the stationarity when deriving the price

strategies in the section 3.3.1, our derivation holds even in the non-stationary case.

Therefore, it remains to derive the evolution of measures µk and values Vk.

As application of the techniques developed in this section we consider the dy-

namics of shock adsorption in this market, that the economy starts in a stationary

state corresponding to the supply s, at time 0 the supply changes to s′. We then

study how the economy reaches the new steady-state.

3.4.1 Demographics.

We first derive the evolution of measure η(t) of high-type traders. The measure of

agents who change their type from θ = 1 to θ = 1−δ is ηλd per unit of time, whereas
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the measure of agents who change their type from θ = 1 − δ to θ = 1 is (1 − η)λu,

per unit of time, therefore the evolution of η is given by the following ODE:8

η̇ = −ηλd + (1− η)λu.

Denoting the measure of high types at time 0 by η0 and the stationary measure

by η∗ we get the following solution to the above ODE

η(t) = η∗ + (η0 − η∗) exp(−(λu + λd)t), (3.4.1)

where η∗ ≡ λu
λu + λd

.

The measures of buyers, holders and outsiders can be expressed through η and

µs through equations (3.3.5). Equating the net inflow of sellers per unit of time to

µ̇s yields the following ODE:

µ̇s = µhλd − µsλu − νs − νb, (3.4.2)

Or, substituting (3.3.5) and (3.3.6-3.3.7):

µ̇s = m(µs, t), (3.4.3)

where

m(µs, t) ≡ (s− µs)λd − µsλu−

− (1− (1− µs − η(t) + s)n)µsα− (1− (1− µs)n) (µs + η(t)− s)α. (3.4.4)

The initial state of the economy can be characterized by initial measure of high

types (η0) and the initial measure of sellers (µ0
s): the remaining measures can be

expressed through (3.3.5). We summarize the derivation of measures µk in the

Proposition below.

Proposition 23. The measures µk(t), k ∈ {b, s, h, o} are given by (3.3.5), where

η(t) is given by (3.4.1) and µs(t) is the unique solution to the ODE (3.4.3) subject

to the boundary condition µs(0) = µ0
s.

The ODE (3.4.3) above is a non-linear first-order ODE. Suppose we have an

integral curve, i.e. a solution µs(t) to the ODE above, which we represent on a (µs, t)

8We denote the derivative with respect to time by dot, e. g., d
dtx = ẋ .
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Figure 3.4.1: Slope field for the ODE (3.4.3) and the particular solution corre-
sponding to initial condition µ0

s = 0.59. The remaining parameter values are
α = λu = λd = 1, n = 10, s = 0.6, η0 = 0.6.

diagram. A vector with coordinates (1,m(µs, t)) is tangent to the integral curve at

the point (µs, t). A collection of such vectors is called a slope field, corresponding to

the ODE. We can characterize the slope field in close form: the function m(µs, t) is

given by (3.4.4). Figure 3.4.1 plots the slope field for particular parameter values.

It also plots the solution to (3.4.3) which is easy to obtain using standard numerical

methods.

3.4.2 Value functions.

In the previous sections we derived the HJB equations by equating the change in

the value of a trader, Vt − Vt+dt, to zero. In non-stationary equilibrium the latter

change is equal −V̇ dt. Therefore, the HJB equations become

0 = V̇h + 1 + λd(Vs − Vh)− ρVh, (3.4.5)

0 = V̇o + λu(Vb − Vo)− ρVo, (3.4.6)

0 = V̇s + 1− δ + λu(Vh − Vs) + ∆

(
νs
µs

+ nαµb (γs − γb)
)
− ρVs, (3.4.7)

0 = V̇b + λd(Vo − Vb) + ∆

(
νb
µb

+ nαµs (γb − γs)
)
− ρVb. (3.4.8)
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Subtracting (3.4.8) from (3.4.5) and (3.4.6) from (3.4.7) yields

0 = ṙb + 1−∆

(
λd +

νb
µb

+ nαµs (γb − γs)
)
− ρrb,

0 = ṙs + 1− δ + ∆

(
λu +

νs
µs

+ nαµb (γs − γb)
)
− ρrs.

Taking the difference of the above two expressions one gets the ODE for ∆

0 = ∆̇ + δ −∆

(
ρ+ λd + λu +

νb
µb

+
νs
µs

+ nα (µs − µb) (γb − γs)
)
. (3.4.9)

Imposing a transversality condition

lim
t→∞

exp(−ρt)∆(t) = 0

One gets the following unique solution to (3.4.9):

∆(t) = δ

ˆ ∞
t

exp(−R(t, τ))dτ, (3.4.10)

where

R(t, τ) ≡
ˆ τ

t

(
ρ+ λd + λu +

νb(z)

µb(z)
+
νs(z)

µs(z)
+ nα (µs(z)− µb(z)) (γb(z)− γs(z))

)
dz.

(3.4.11)

Having the solution for ∆(t) one can compute the reservation prices

rb =
1

ρ
−
ˆ ∞
t

exp(−ρ(τ − t))∆(τ)

(
λd +

νb(τ)

µb(τ)
+ nαµs(τ) (γb(τ)− γs(τ))

)
dτ,

(3.4.12)

rs =
1− δ
ρ

+

ˆ ∞
t

exp(−ρ(τ − t))∆(τ)

(
λu +

νs(τ)

µs(τ)
+ nαµb(τ) (γs(τ)− γb(τ))

)
dτ,

(3.4.13)

where we imposed the transversality condition

lim
t→∞

exp(−ρt)rb(t) = 0, lim
t→∞

exp(−ρt)rs(t) = 0.

Proposition 24. There exists a unique symmetric Markov perfect equilibrium in

the model. The price strategies and measures of agents are given by Propositions 17

and 23. The expressions for gains from trade and reservation prices of buyers and
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Figure 3.4.2: Dynamics of the response rate and price skewness. Parameter values
are α = λu = 2, λd = 1 n = 35, s = 0.6, η0 = 0.9, µ0

s = 0.09.

sellers are given by (3.4.10-3.3.20).

Proof. See Appendix.

3.4.3 Transaction price skewness and dispersion and dealer

response rate

The transaction prices in non-stationary equilibrium are given by the same expres-

sions as before. In the section 3.1 we provided cross-section implications linking

dealer’s response rate to price skewness and dispersion. In this section we augment

those by time-series implications.

1. Price dispersion is lower in periods of time with higher response rate of dealers.

2. The absolute value of skewness is the highest in periods of time with interme-

diary response rate of dealers.

3. The distribution of scaled bid (ask) prices first-order stochastically dominates

that in periods of time with lower (higher) response rates.

Figure 3.4.2 illustrates points 1 and 2.

3.4.4 Price dynamics

In this section we consider the dynamics of how prices respond to a supply shock.

We assume the economy starts in a stationary state corresponding to the supply s,

and at time 0 the supply changes to s′. We then study how the economy reaches

the new steady-state. Since the economy starts at the steady state and there is
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Figure 3.4.3: Dynamics of a short squeeze. Parameter values are α = λu = λd = 1,
n = 100, s = 0.2, s′ = 0.3 η0 = 0.5.

no change in neither λd nor λu, the initial measure of high-types is equal to its’

steady-state value, η0 = η(t) = η∗ ≡ λu
λu+λd

. The latter implies that in the ODE

(3.4.3) the function m(µs, t) = m(µs), i.e., it does not depend on t directly, which

simplifies the analysis.

Figure 3.4.3 demonstrates the dynamic aspect of liquidity squeeze studied in

section 2. Even though the the (ask) price changes smoothly, the (ask) skewness

and dispersion jump. The intuition for the jump is skewness and dispersion is as

follows: as time goes by, the measure of sellers decreases. Since n is very large,

market power of sellers is almost zero at times when the measure of sellers is not

zero. However, as the measure of sellers approaches zero, their market power jumps,

resulting in non-trivial skewness and dispersion.

3.4.5 Efficiency and welfare

In this section we consider the dynamics of welfare. Summing the ODEs for the

value functions we obtain the ODE for welfare

0 = Ẇ − ρW + s− µs(t)δ,

implying a solution

W =

ˆ ∞
t

exp (−ρ(τ − t)) (s− µs(τ)δ) dτ.
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The efficient allocation implies µs = µes. However, because of the search friction,

the efficient allocation will not be achieved instantaneously, even if s ∈ [0, 1]\(s, s).

Proposition 25. As n→∞, the efficient allocation is achieved if s ∈ [0, 1]\(s, s),

after a time
ln |µ0

s − µ∞s | − ln |µ∞s |
2α + λd + λu

, if s < s

and
ln |µ0

s − µ∞s | − ln |η∗ − s|
2α + λd + λu

, if s > s,

where

µ∞s ≡
s(α + λd)− αη
(2α + λd + λu)

.

Proof. Consider the ODE

µ̇s = µhλd − µsλu − νs − νb

in the limit as n → ∞. Suppose that 0 < µs < η∗ − s, i.e. both the measure of

sellers and the measure of buyers are positive. Then, νs = αµs and νb = αµb =

α (η∗ − s+ µs). The ODE above becomes

µ̇s = s(α + λd)− αη − µs(2α + λd + λu),

which is a linear ODE. Denote µ∞s ≡
s(α+λd)−αη
(2α+λd+λu)

. Now note, that since by assumption

s ∈ [0, 1]\(s, s), we have either µ∞s < 0 or µ∞s > η∗ − s (i.e. we hit one of the

boundaries). Integrating the ODE we get

ln |µ0
s − µ∞s | − ln |µs(t)− µ∞s |

2α + λd + λu
= t,

from which the proposition follows.

Figure 3.4.4 provides an illustration. We also see that increasing n improves

welfare both in steady-state and in transition.

3.5 Conclusion

We present a tractable model of an OTC market with multilateral trading platform.

Our model is tractable both in steady state and in transition dynamics. This makes

159



Figure 3.4.4: Dynamics of welfare. Parameter values are α = λu = λd = 1, n = 100,
s = 0.3, s′ = 0.2 η0 = 0.5.

us hope that the possible extensions which we outline below may be tractable as

well.

First, in our model the number of dealers that a customer can query is exogenous

and there is no cost of querying several dealers. It is therefore desirable to introduce

such a cost and to endogenize the number of dealers queried. This extension is a

subject of our ongoing research.

Second, in many markets traders use both MTP and traditional, “voice”, ways

of trade. It is thus desirable to give such a possibility to traders in our model and

to examine what determines the choice between the two, and whether or not they

can coexist in a long run.

Finally, in our model there are just two types of traders. It might be interesting

to extend our results allowing a continuum of types to examine how the strategic

force behind the price dispersion which our model highlights interacts with the price

dispersion due to the dispersion of valuations (as highlighted by Hugonnier et al

(2015) and Shen et al (2015)).
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3.6 Appendix

Proof. (Proposition 17) (There are no point masses in the support of A(p)). Suppose

that there is a point mass at some p = pm. Since in a mixed strategy equilibrium

the profit should be constant, the profit of following the mixed strategy is the same

as the profit of charging the price pm. However, undercutting the price pm > rs by

a small amount yields a strictly greater profit. If there is a point mass at p = rs,

then the profit is zero and charging any price between rs and rb is a deviation since

it yields strictly positive profit.

(The support of B(p) is connected) Suppose not and there is a gap: prices p ∈

(p1, p2) ∈ [rs+πs, rb] are charged with zero probability. Charging a price p ∈ (p1, p2)

is a deviation: price p yields greater profit than p1 since it has the same probability

of being the best one, but yields a greater profit.

(pa = rb) It is clear that prices above the reservation price rb will not be charged

in equilibrium. It remains to show that pa < p can not be true in equilibrium.

Indeed, if pa < p then charging price p̂ ∈ (pa; p) with probability one is a deviation:

the profit of following the strategy B(p) is (1− µs)m (pa − p) while charging p̂ with

probability 1 yields greater profit of (1− µs)m (p̂− p).

(Derivation of B(p)) Analogous to the case of sellers one can prove that B(p)

has no point masses and has connected support [pb, pb]. The following is true for the

profit of a buyer

πb = Pr(qoute p is the best)(rb − p)

= (1− µb + µbB(p))n−1(rb − p)

= const

= (1− µb)n−1(rb − pb).

It can be proven analogous to the case of sellers that pb = rs from which the

expressions for πb and B(p) follow.

Proof. (Proposition 19) Subtracting (3.3.12) from (3.3.10) and (3.3.11) from (3.3.13)

yields

Vh − Vs =
δ

ρ+ λu + λd
− ∆

ρ+ λu + λd

(
νs
µs

+ nαµb (γs − γb)
)
,
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Vb − Vo =
∆

ρ+ λu + λd

(
νb
µb

+ nαµs (γb − γs)
)
.

To prove that ∆ > 0 it is sufficient to show that n(µs−µb) (γb − γs) > 0. Denote

f(x) ≡ 1− (1− x)n. Note that f(x) is strictly concave for x ∈ (0, 1). One can write

n(µs − µb) (γb − γs) = (µs − µb)(f ′(µb) − f ′(µs)) > 0. The last inequality is due to

concavity of f(·). To prove that rs > 0 it is sufficient to prove that νb
µb
− nαγs > 0.

The latter can be written as α (f(µs) + f ′(µs)(0− µs)) > αf(0) = 0. Again, the

inequality follows from the concavity of f(·).

Proof. (Proposition 20) We derive the distributions below. The computation of

moments follows by straightforward integration.

Fa(p) =

= Pr(price in a buyer-init. transaction < p)

= Pr(best quote recieved by a buyer < p| a buyer contacted at least one seller)

=
Pr(a buyer has contacted at least one buyer and at least one quote < p)

Pr(a buyer has contacted at least one seller)

=
1− Pr(each contact: either not a seller or to a seller who quotes > p)

νb/ (αµb)

=
1− (1− µs + µs(1− A(p)))n

νb/ (αµb)

=
αµb
νb

(
1−

(
γs∆

p− rs

) n
n−1

)
.

For sellers one can similarly write

1− Fb(p) =
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= Pr(price in a seller-initiated transaction > p)

= Pr(best quote recieved by a seller > p| a seller contacted at least one buyer)

=
Pr(a seller contacted at least one buyer and at least one quote > p)

Pr(a seller contacted at least one buyer)

=
1− Pr(each contact is either not a buyer or to a buyer who quotes < p)

νs/ (αµs)

=
1− (1− µb + µbB(p))n

νs/ (αµs)

=
αµs
νs

(
1−

(
γb∆

rb − p

) n
n−1

)
.

From the above we get

Fb(p) = 1− αµs
νs

(
1−

(
γb∆

rb − p

) n
n−1

)
.

Proof. (Proposition 21) Denote µns the equilibrium measure of sellers for a finite

n, and denote by µ∞s the corresponding limit. The measure µns solves (3.3.9).

It is straightforward to show that µns is decreasing in n. Since the sequence µns
monotonically decreases and is bounded below (by zero) the limit µ∞s exists and is

non-negative. Given (3.3.5), the corresponding limit of buyers exists, is given by

µ∞b = µ∞s + η − s and should also be non-negative.

We first consider that case when both µ∞s and µ∞b are positive.

In that case ν∞b = limn→∞ (1− (1− µs)n)αµb = αµb and

ν∞s = limn→∞ (1− (1− µb)n)αµs = αµs. In the limit n → ∞ equation (3.3.9)

becomes

µ∞s λu + α(2µ∞s + η − s)− (s− µ∞s )λd = 0.

From the above we express

µ∞s =
s(α + λd)− αη
2α + λd + λu

, µ∞b = µ∞s + η − s =
η(α + λd + λu)− s(α + λu)

2α + λd + λu
.

It then follows that µ∞s and µ∞b are positive iff

s > s ≡ α

α + λd
η and s < s ≡

(
1 +

λd
α + λu

)
η.

To calculate rb, rs and ∆ one needs to calculate limn→∞ n(1 − µs)
n−1 and
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limn→∞ n(1−µb)n−1. Since n(1−µ)n−1 is a decreasing function of µs is a decreasing

sequence, µs > µ∞s for all n. Therefore one can write

0 < n(1− µs)n−1 < n(1− µ∞s )n−1︸ ︷︷ ︸
→0 if µ∞s >0

.

Since we conjectured that µ∞s > 0, by Sandwich Theorem we get limn→∞ n(1−

µs)
n−1 = 0. Similarly, limn→∞ n(1− µb)n−1 = 0.

Substituting the above into (3.3.18-3.3.20) one gets

∆ =
δ

ρ+ λu + λd + 2α
, (3.6.1)

rb =
1

ρ
− ∆

ρ
(λd + α) , (3.6.2)

rs =
1− δ
ρ

+
∆

ρ
(λu + α) . (3.6.3)

Since 〈pb〉 = rs and 〈ps〉 = rb the result follows.

We next consider the case µ∞s = 0. Since µ∞b = µ∞s + η− s = η− s, the former is

possible only if η − s ≥ 0. We further assume the strict equality, η − s > 0. In that

case νs = 0, but νb = αµb(1− (1− µs)n) is indeterminate. To find it we substitute

νs = µs = 0 to (3.3.8) and express

νb = λds.

From γs = (1− µs)n−1 = 1
1−µs

(
1− νb

αµb

)
we also express

γs = 1− λds

αµb
= 1− λds

α (η − s)
,

which is smaller than 1 iff s < s. Substituting the above into (3.3.18-3.3.20) we

get

∆ = 0, rb = rs =
δ

ρ
,

from which the result follows. The case s > s corresponding to µ∞b = 0 is considered

analogously.

Proof. (Proposition 22) Dividing both parts of (3.3.9) by α and taking the limits

one can get that µs → µes as α→∞.
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It follows from the proof of Proposition 21 that µs → µes as n → ∞, for s ∈

[0, 1]\(s, s).

Proof. (Proposition 24)As in the stationary case we derive the expressions for rb,

rs, Vh − Vs and Vb − Vo. Having these expressions one can easily derive all value

functions, The expressions for the firs two are given by (3.4.12-3.4.13). Subtracting

(3.4.7) from (3.4.5) and (3.4.6) from (3.4.8) one get the following ODEs:

0 =
d

dt
(Vh − Vs) + δ −∆

(
νs
µs

+ nαµb (γs − γb)
)
− (ρ+ λu + λd) (Vh − Vs) ,

0 =
d

dt
(Vb − Vo) + ∆

(
νb
µb

+ nαµs (γb − γs)
)
− (Vb − Vo) (ρ+ λu + λd) ,

which one can solve in closed form as follows

Vh(t)− Vs(t) =
δ

ρ+ λu + λd
−

−
ˆ ∞
t

exp(−(ρ+ λu + λd)(τ − t))∆(τ)

(
νs(τ)

µs(τ)
+ nαµb(τ) (γs(τ)− γb(τ))

)
dτ,

(3.6.4)

Vb(t)− Vo(t) =

=

ˆ ∞
t

exp(−(ρ+ λu + λd)(τ − t))∆(τ)

(
νb(τ)

µb(τ)
+ nαµs(τ) (γb(τ)− γs(τ))

)
dτ,

(3.6.5)

where we imposed the transversality condition

lim
t→∞

exp(−ρt) (Vh(t)− Vs(t)) = 0, lim
t→∞

exp(−ρt) (Vb(t)− Vo(t)) = 0.

The transversality conditions ensure sufficiency. It clearly follows from (3.4.10)

that our conjecture of positive gains from trade holds.
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