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Abstract

The thesis consists of three parts. The first part studies the Glosten-Milgrom model [25] where the

risky asset value admits an arbitrary discrete distribution. In contrast to existing results on insider

model, the insiders optimal strategy in this model, if it exists, is not of feedback type. Therefore,

a weak formulation of equilibrium is proposed. In this weak formulation, the inconspicuous trade

theorem still holds, but the optimality for the insiders strategy is not enforced. However, the

insider can employ some feedback strategies whose associated expected profit are close to the

optimal value, when the order size is small. Moreover, this discrepancy converges to zero when the

order size diminishes.

The second part extends Peng’s monotone convergence result [37] to backward stochastic dif-

ferential equations (BSDEs in short) driven by marked point processes. We apply this result to

give a stochastic representation to the value function of the insiders problem in the previous part.

The last part studies an optimal trading problem in limit order market with asymmetry in-

formation. The market consists of a strategic trader and a group of noisy traders. The strategic

trader has private prediction on the fundamental value of a risk asset, and aims to maximise her

expected profit. Both types of market participants are allowed to place market and limit orders.

We aim to find a trading strategy for the strategic trader who uses both limit and market orders.

This is formulated as a stochastic control problem that we characterise in terms of a HJB system.

We also provide a numerical algorithm to obtain its solution and prove its convergence. Finally,

we consider an example to illustrate the optimal trading strategy of the strategic trader.
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Chapter 1

Introduction

1.1 Trading on informational advantage

One main issue in trading is informational differences. Many trades originate not because indi-

viduals have investment or liquidation purposes, but because one agent has or believes she has

advanced information about what the price will be in the future. The primary reference in this

case is a study by Kyle [32]. In Kyle model, there is an agent denoted by insider or informed trader

who has strong informational advantage, i.e. she knows the true value of the asset. On the other

hand, other market participants do not have this information. The insider tries to optimally adjusts

her trading strategy based on the price impact that her trades generate. Back [5] formalises and

extends Kyle’s model in continuous time to allow any continuous distribution as the asset value.

Another influential model, Glosten-Milgrom [25] model, puts market makers at the centre of

the problem trading with counterparties who own advanced information. Market makers need to

set a positive bid-ask spread to compensate losses incurred by trading with informed traders even

when market makers are competitive and risk-neutral. There exists an equilibrium in which the

informed trader plays a mixed strategy.

Back and Baruch [6] connect Kyle and Glosten-Milgrom models by showing that a sequence

of the Glosten-Milgrom equilibria converges to the Kyle equilibrium when orders are smaller and

arrive more and more frequently. The convergence has been studied recently in a mathematical

framework in Çetin and Xing [18]. However, in [6] and [18], the asset value, denoted by ṽ, is

assumed to have Bernoulli distribution which is quite restricted comparing to general results in

Back’s paper [5].

In Chapter 2, we consider the Glosten-Milgrom model whose risky asset value ṽ has a discrete

distribution. This generalizes the setting in [6] and [18] that ṽ has a Bernoulli distribution. Then we

are interested to study whether the Glosten-Milgrom equilibrium still exists when the asset value ṽ

has general discrete distributions. In contrast to existing results on the insider model, the insider’s
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1.2. Backward stochastic differential equation 8

optimal strategy in this model, if it exists, is not of feedback type. Therefore, a weak formulation

of equilibrium is proposed. In this weak formulation, the inconspicuous trade theorem still holds,

but the optimality for the insiders strategy is not enforced. However, the insider can employ some

feedback strategies whose associated expected profit are close to the optimal value, when the order

size is small. Moreover, this discrepancy converges to zero when the order size diminishes.

1.2 Backward stochastic differential equation

Backward stochastic differential equations (BSDEs in short) were first introduced by Bismut [11].

Then Pardoux and Peng [36] considered non-linear BSDEs in a Brownian setting. A solution to a

BSDE is a pair of adapted processes (Y,Z) which satisfies

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdWs, 0 ≤ t ≤ T.

When the function g is Lipschitz continuous with respect to (y, z) and E[|ξ|2] < ∞, the existence

and uniqueness of the solution have been proved in [36].

Going beyond the Brownian framework, Barles et al. [8] consider a BSDE driven by a Brownian

motion and an independent Poisson random measure. Since then, many generalizations have been

considered. In particular, Confortola and Fuhrman [20] build up a connection between optimal

control problems and a class of BSDEs, both driven by a marked point process. They show that

there exists a unique solution to a BSDE which identifies the value function for the optimal control

problem.

Peng [37] studies a limit convergence of BSDEs driven by a Brownian motion such that

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdWs + CT − Ct, 0 ≤ t ≤ T, (1.2.1)

where C is a càdlàg increasing process with C0 = 0 and E[|CT |2] <∞.

Definition 1.2.1 Given a non-decreasing process C, a terminal value ξ and a generator g, if the

pair (Y,Z) solves (1.2.1), then we call Y a supersolution of BSDE with generator g or simply called

g-supersolution on [0, T ]. In particular, when C ≡ 0, Y is called a g-solution on [0, T ].

Peng proved a limit theorem that if a sequence of supersolutions Y n increasingly converging to Y

with E
[

supt |Yt|
2
]
<∞, then Y itself is a càdlàg supersolution of the same BSDE. As an applica-

tion, he constructed a family of penalised BSDEs, which converges to the smallest supersolution of

a BSDE with a constraint.

In Chapter 2, we consider the value function of insider’s optimal trading problem. There has

a boundary layer in value function as the time goes to the terminal time. The source of the

boundary layer can be determined by a convergence in value functions as the trading intensities of
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the insider goes to infinity. Since the value functions can be represented by a sequence of penalised

BSDEs driven by marked point processes, we analyse the convergence in BSDEs. In Chapter

3, we first extend Confortola and Fuhrman [20] to prove the well-posedness of penalised BSDEs

driven by marked point processes. Then we extend Peng’s [37] monotone convergence theorem

from Brownian setting to a marked point process setting. Finally, we analyse the convergence in

BSDEs to determine the source of the boundary layer.

1.3 Trading on limit order book

In Chapter 2, we focus on a control problem which relays on market orders only. However, in

practise, agents frequently post limit orders as they are cheaper than market orders. Hence, in

Chapter 4, we study a problem how a strategy trader uses her private prediction on the asset and

trades both market and limit orders to maximise her trading profits.

Since there are very few papers considering asymmetric information in limit order book, we

borrow ideas from the literature of optimal execution in limit order book. For instance, Back and

Pedersen [7] show that a strategic trader uses her private prediction gradually and completely in

whole trading period. Avellaneda and Stoikov [4] investigate that a market marker maximises

terminal wealth by trading in and out of positions using limit orders. Guilbaud and Pham [27]

study that a market maker is to maximize her expected utility from revenue over a short term

horizon by a trade-off between limit and market orders, while controlling her inventory position. In

this case, the agent searches for both an optimal trading size and a sequence of optimal stopping

times at which to execute market orders.

In our model, there are two types of agents, noisy traders and a strategic trader, all of whom

are risk neutral but they have different information. Both market participants are allowed to place

market and limit orders. The strategic trader has some private signal, which is her private valuation

prediction of the asset price. She uses the private prediction to trade in the market and maximise

her expected profit. Rest market participants are aggregated to noise traders.

Moreover, for market orders, we assume that the size of buy or sell order k takes values from

the set of integers Km = {1, . . . , m̄} where the subscript m stands for market orders. These buy or

sell orders are modelled by Poisson processes. The strategic trader controls intensities of Poisson

processes, i.e. the speed of placing market orders. On the other hand, for limit orders, they are

executed when they are filled by incoming counterpart market orders. After previous execution of

limit orders, the strategic trader cancels unexecuted orders and submits new limit orders to wait

for next arrival of market orders. We assume that after each arrival of market orders, the strategic

trader can submit limit orders, either on buy or sell side, i.e. limit orders are submitted right after
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the last execution. If there is non-execution or partial execution of limit orders, she will cancel

the whole or rest orders immediately before placing new limit orders to wait a next execution.

Furthermore, for simplicity of the model, we assume that she always submits limit orders at best

bid or ask and those have highest priority to be executed compared to other outstanding limit

orders. Hence, according to our assumption, the strategic trader needs to control the size of limit

orders either on buy or sell side at each submission. In addition, we also consider the price impact

of limit and market orders in our model.

We formulate the problem as a stochastic control problem and prove that the value function

of the strategic trader is a solution to this HJB equation. We also investigate numerically the

strategic trader’s optimal strategy in a market where limit and market orders have two sizes, small

and large. We consider five different scenarios depending on sizes of orders allowed to trade by

strategic and noise traders. Our numerical solution shows that the strategic trader will place limit

and market buy orders when the magnitude of mispricing, which is the difference between her

private prediction on the asset and the current trading price, is higher than a threshold. In certain

cases, she may even employ a “round trip” strategy to first submit limit sell orders to push price

down, and subsequently uses market buy orders to make profit on low market price. In this round

trip of trade, the profits from the market buy are still more than losses from the limit sell.



Chapter 2

Asymptotic Glosten-Milgrom

equilibrium

2.1 Introduction

In the theory of market microstructure, two models, due to Kyle [32] and Glosten-Milgrom [25], are

particularly influential. In the Kyle model, buy and sell orders are batched together by a market

maker, who sets a unique price at each auction date. In the Glosten-Milgrom model, buy and sell

orders are executed by the market maker individually, hence bid and ask prices appear naturally.

In both models1, an informed agent (insider) trades to maximize her expected profit utilizing her

private information on the asset fundamental value, while another group of noise traders trade

independently of the fundamental value. The cumulative demand of these noise traders is modelled

by a Brownian motion in Kyle model, cf. [5], and by the difference of two independent Poisson

processes, whose jump size is scaled by the order size, in the Glosten-Milgrom model.

When the fundamental value, described by a random variable ṽ, has an arbitrary continuous

distribution2, Back [5] establishes a unique equilibrium between the insider and the market maker.

Moreover, the cumulative demand process in the equilibrium connects elegantly to the theory of

filtration enlargement, cf. [35]. However much less is known about equilibrium in the Glosten-

Milgrom model. Back and Baruch [6] consider a Bernoulli distributed ṽ. In this case, the insider’s

optimal strategy is constructed in [18]. Equilibrium with general distribution of ṽ, as Cho [19] puts

it, “will be a great challenge to consider”.

In this paper, we consider the Glosten-Milgrom model whose risky asset value ṽ has a discrete

1A profit maximizing informed agent is introduced in the Glosten-Milgrom model in [6]
2Models with discrete distributed ṽ can be studied similarly as in [5].
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distribution:

P(ṽ = vn) = pn, n = 1, · · · , N, (2.1.1)

where N ∈ N∪{∞}, (vn)n=1,··· ,N is an increasing sequence and pn ∈ (0, 1) with
∑N

n=1 pn = 1. This

generalizes the setting in [6] where N = 2 is considered, i.e., ṽ has a Bernoulli distribution.

In models of insider trading, inconspicuous trade theorem is commonly observed, cf. e.g., [32],

[5], [7], [6], [14], and [15] for equilibria of Kyle type, and [18] for the Glosten-Milgrom equilibrium

with Bernoulli distributed fundamental value. The inconspicuous trade theorem states, when the

insider is trading optimally in equilibrium, the cumulative net orders from both insider and noise

traders have the same distribution as the net orders from noise traders, i.e., the insider is able to hide

her trades among noise trades. As a consequence, this allows the market maker to set the trading

price only considering current cumulative noise trades. Moreover, in all aforementioned studies,

the insider’s optimal strategy is of feedback form, which only depends on the current cumulative

total order. This functional form is associated to optimizers of the Hamilton-Jacobi-Bellman (HJB)

equation for the insider’s optimization problem. However the situation is dramatically different in

the Glosten-Milgrom model with N in (2.1.1) at least 3. Theorem 2.2.6 below shows that, given

aforementioned pricing mechanism, the insider’s optimal strategy, if exists, does not correspond to

optimizers of the HJB equation. The result is consequence of the difference between bid and ask

prices in the Glosten-Milgrom model, which is contrast to the unique price in the Kyle model.

Therefore to establish equilibrium in these Glosten-Milgrom models, we propose a weak formu-

lation of equilibrium in Definition 2.2.11, which is motivated by the convergence of Glosten-Milgrom

equilibria to the Kyle equilibrium, as the order size diminishing and the trading intensities increas-

ing to infinity, cf. [6] and [18]. In this weak formulation, the insider still trades to enforce the

inconspicuous trading theorem, but the insider’s strategy may not be optimal. However, the in-

sider can employ some feedback strategy so that the loss to her expected profit (compared to the

optimal value) is small for small order size. Moreover this gap converges to zero when the order

size vanishes. We call this weak formulation asymptotic Glosten-Milgrom equilibrium and establish

its existence in Theorem 2.2.12.

In the asymptotic Glosten-Milgrom equilibrium, the insider’s strategy is constructed explicitly

in section 2.5, using a similar construction as in [18]. Using this strategy, the insider trades towards

a middle level of an interval, driving the total demand process into this interval at the terminal date.

This bridge behaviour is widely observed in the aforementioned studies on insider trading. On the

other hand, the insider’s strategy is of feedback form. Hence the insider can determine her trading

intensity only using the current cumulative total demand. Moreover, as order size diminishes,

the family of suboptimal strategies converge to the optimal strategy in Kyle model, cf. Theorem

2.2.13. In such an asymptotic Glosten-Milgrom equilibrium, the insider loses some expected profit.
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The expression of this profit loss is quite interesting mathematically: it is the difference of two

stochastic integrals with respect to (scaled) Poisson occupation time. As the order size vanishes,

both integrals converge to the same stochastic integral with respect to Brownian local time, hence

their difference vanishes.

This chapter is organized as follows. Main results are presented in section 2.2. The mismatch

between insider’s optimal strategy and optimizers for the HJB equation is proved in section 2.3.

Then a family of suboptimal strategies are characterized and constructed in Sections 2.4 and 2.5.

Finally the existence of asymptotic equilibrium is established in section 2.6 and a technical result

is proved in Appendix.

2.2 Main results

2.2.1 The model

We consider a continuous time market for a risky and a risk free asset. The risk free interest

rate is normalized to 0, i.e., the risk free asset is regarded as the numéraire. We assume that the

fundamental value of the risky asset ṽ has a discrete distribution of type (2.1.1). This fundamental

value will be revealed to all market participants at a finite time horizon, say 1, at which point the

market will terminate.

The micro-structure of the market and the interaction of market participants are modelled sim-

ilarly to [6] which we recall below. There are three types of agents: uninformed/noise traders, an

informed trader/insider, and a market maker, all of whom are risk neutral. These agents share the

same view toward future randomness of the market, but they possess different information. There-

fore, the probability space (Ω,P) with different filtration accommodates the following processes:

• Noise traders trade for liquidity or hedging reasons which are independent of the fundamental

value ṽ. The cumulative demand Z is described by the difference of two independent jump

processes ZB and ZS which are the cumulative buy and sell orders, respectively. Therefore

Z = ZB − ZS and it is independent of ṽ. Noise traders only submit orders of fixed sized δ

every time they trade. As in [6], ZB/δ and ZS/δ are assumed to be independent Poisson

processes with constant intensity β. Let (FZ
t )t∈[0,1] be the smallest filtration generated by Z

and satisfying the usual conditions. Then (FZ
t )t∈[0,1] describes the information structure of

noise traders.

• The insider knows the fundamental value ṽ at time 0 and observes the market price for the

risky asset between time 0 and 1. The insider also submits orders of fixed size δ in every

trade and tries to maximize her expected profit. The cumulative demand from the insider is
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denoted by X := XB−XS where XB and XS are cumulative buy and sell orders respectively.

Since the insider observes the market price of the risky asset, she can back out the dynamics

of noise orders, cf. discussions after Definition 2.2.1. Therefore the information structure of

the insider F I
t includes FZ

t and σ(ṽ), for any t ∈ [0, 1].

• A competitive market maker only observes the aggregation of the informed and noise trades,

so he cannot distinguish between informed and noise trades. Given Y := X+Z, the informa-

tion of the market maker is (F Y
t )t∈[0,1] generated by Y and satisfying the usual conditions.

As the market maker is risk neutral, the competition will force him to set the market price

as E[ṽ|F Y
t ], t ∈ [0, 1].

In order to define equilibrium in the market, let us first describe admissible actions for the

market maker and the insider. The market maker looks for a Markovian pricing mechanism, in

which the price of the risky asset at time t is set using cumulative order Yt and a pricing rule p.

Definition 2.2.1 A function p : δZ× [0, 1]→ R is a pricing rule if

i) y 7→ p(y, t) is strictly increasing for each t ∈ [0, 1);

ii) limy→−∞ p(y, t) = v1 and limy→∞ p(y, t) = vN for each t ∈ [0, 1];

iii) t 7→ p(y, t) is continuous for each y ∈ δZ.

The monotonicity of y 7→ p(y, t) in i) is natural. It implies that the market price is higher whenever

the demand is higher. Moreover, because of the monotonicity, the insider fully observes the unin-

formed orders Z by inverting the price process and subtracting her orders from the total orders.

Item ii) means that the range of the pricing rule is wide enough to price in every possibility of

fundamental value. The insider trades to maximize her expected profit. Her admissible strategy is

defined as follows:

Definition 2.2.2 The strategy (XB, XS ; F I) is admissible, if

i) F I is a filtration satisfying the usual conditions and generated by σ(ṽ), FZ , and H, where

(Ht)t∈[0,1] is a filtration independent of ṽ and FZ ;

ii) XB and XS , with XB
0 = XS

0 = 0, are F I -adapted and integrable3 increasing point processes

with jump size δ;

iii) the (F I ,P)-dual predictable projections of XB and XS are absolutely continuous with respect

to time, hence XB and XS admit F I−intensities θB and θS , respectively;

3That is, E[XB
1 ] and E[XS

1 ] are both finite.
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iv) E
[∫ 1

0 |p(Yt, t)| |dX
i
t − δθitdt|

]
< ∞, for i ∈ {B,S} and the pricing rule p fixed by the market

maker. Here |Xi −
∫ ·

0 δθ
idt| is the variation of the compensated point process.

This set of admissible strategies is similar to [18, Definition 2.2]. Item i) assumes that the

insider is allowed to possess additional information H, independent of ṽ and FZ , which she uses to

generate her mixed strategy. Item iv) implies δE[
∫ 1

0 |p(Yt, t)| θ
i
tdt] < ∞, hence the expected profit

of the insider is finite. Item ii) does not exclude the insider trading at the same time with noise

traders. When the insider submits an order at the same time when an uniformed order arrives

but in the opposite direction, assuming the market maker only observes the net demand implies

that such pair of trades goes unnoticed by the market maker. This pair of opposite orders will be

executed without a need for a market maker. Hence the market maker only knows the transaction

when there is a need for him. Henceforth, when the insider makes a trade at the same time with

an uninformed trader but in an opposite direction, we say the insider cancels the noise trades. On

the other hand, item ii) also allows the insider to trade at the same time with noise traders in the

same direction. We call that the insider tops up noise orders in this situation. However, the insider

does not submit such orders in equilibrium, even when equilibrium is defined in a weak sense, cf.

Remark 2.4.6 below. The assumption that the insider is allowed to trade at the same time as noise

traders is different from assumptions for Kyle model where insider’s strategy is predictable. This

additional freedom for insider is not the source for Theorem 2.2.6 below, which states optimizers

for the insider’s HJB equation do not correspond to the optimal strategy; see Remark 2.2.8 below.

As described in the last paragraph, the insider’s cumulative buy orders may consist of three

components: XB,B arrives at different time than those of ZB, XB,T arrives at the same time as

some orders of ZB, and XB,S cancels some orders of ZS . Sell orders XS are defined analogously.

Therefore XB = XB,B +XB,T +XB,S and XS = XS,S +XS,T +XS,B.

As mentioned earlier, the insider aims to maximize her expected profit. Given an admissible

trading strategy X = XB −XS the associated profit at time 1 of the insider is given by∫ 1

0
Xt−dp(Yt, t) + (ṽ − p(Y1, 1))X1.

The last term appears due to a potential discrepancy between the market price and the liquidation

value. Since X is of finite variation and X0 = 0, applying integration by parts rewrites the profit as∫ 1

0
(ṽ − p(Yt, t)) dXB

t −
∫ 1

0
(ṽ − p(Yt, t)) dXS

t

=

∫ 1

0
(ṽ − p(Yt− + δ, t)) dXB,B

t +

∫ 1

0
(ṽ − p(Yt− + 2δ, t)) dXB,T

+

∫ 1

0
(ṽ − p(Yt−, t)) dXB,S

t −
∫ 1

0
(ṽ − p(Yt− − δ, t)) dXS,S

t

−
∫ 1

0
(ṽ − p(Yt− − 2δ, t)) dXS,T −

∫ 1

0
(ṽ − p(Yt−, t)) dXS,B

t ,
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where Y increases (resp. decreases) δ when XB,B (resp. XS,S) jumps by δ, Y increases (resp.

decreases) 2δ when XB,T (resp. XS,T ) jumps at the same time with ZB (resp. ZS), and Y is

unchanged when XS,B (resp. XB,S) jumps at the same time with ZB (resp. ZS). Define

a(y, t) := p(y + δ, t) and b(y, t) := p(y − δ, t),

which can be viewed as ask and bid prices respectively. Then the expected profit of the insider

conditional on her information can be expressed as

E
[∫ 1

0
(ṽ − a(Yt−, t)) dX

B,B
t +

∫ 1

0
(ṽ − p(Yt−, t)) dXB,S

t

+

∫ 1

0
(ṽ − a(Yt− + δ, t)) dXB,T

t −
∫ 1

0
(ṽ − b(Yt− − δ, t)) dXS,T

t

−
∫ 1

0
(ṽ − b(Yt−, t)) dXS,S

t −
∫ 1

0
(ṽ − p(Yt−, t)) dXS,B

t

∣∣∣ṽ] .
(2.2.1)

Having described the market structure, an equilibrium between the market maker and the insider

is defined as in [6]:

Definition 2.2.3 A Glosten-Milgrom equilibrium is a quadruplet (p,XB, XS ,F I) such that

i) given (XB, XS ; F I), p is a rational pricing rule, i.e., p(Yt, t) = E[ṽ|F Y
t ] for t ∈ [0, 1];

ii) given p, (XB, XS ; F I) is an admissible strategy maximizing (2.2.1).

When N = 2, [18] establishes the existence of Glosten-Milgrom equilibria. In equilibrium the

pricing rule is

p(y, t) = EPy [P (Z1−t)] , (y, t) ∈ δZ× [0, 1]. (2.2.2)

Here Py is a probability measure under which Z is the difference of two independent Poisson

processes and Py(Z0 = y) = 1. P is a nondecreasing function such that P (Z1) has the same

distribution as ṽ. Moreover the optimal strategy of the insider are given by jump processes Xi,j , i ∈

{B,S} and j ∈ {B, T, S}, with intensities δ θi,j(Yt−, t), t ∈ [0, 1]. These intensities are deterministic

functions of the state variable Y , hence this control strategy is a feedback control and it corresponds

to optimizers of insider’s HJB equation. However, when N ≥ 3, Theorem 2.2.6 below shows that,

given the pricing rule (2.2.2), the optimal strategy does not correspond to optimizers in the HJB

equation, for some values of ṽ. This result is surprising, because it is contrast to existing results in

the Kyle and Glosten-Milgrom equilibrium; cf. [32], [5], [7], [6], [14], [15], and [18]. This mismatch

roots in the discrete state space of the demand process in the Glosten-Milgrom model. The discrete

state space yields different bid and ask prices, which is contrast to the unique price in the Kyle

model. See Remark 2.2.7 below for more discussion.
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2.2.2 Nonexistence of a feedback optimal control

To state aforementioned result, we introduce several additional notations. For each δ > 0, let

Ωδ = D([0, 1], δZ) be the space of δZ-valued càdlàg functions on [0, 1] with coordinate process Zδ,

(FZ,δ
t )t∈[0,1] is the minimal right continuous and complete filtration generated by Zδ, and Pδ is

the probability measure under which Zδ is the difference of two independent Poisson processes

starting from 0 with the same jump size δ and intensity βδ. We denote by Pδ,y the probability

measure under which Zδ0 = y a.s.. Henceforth, the superscript δ indicates the trading size in the

Glosten-Milgrom model.

For the fundamental value ṽδ, let us first consider the following family of distributions.

Assumption 2.2.4 Given ṽδ of type (2.1.1), there exists a δZ∪{−∞,∞}−valued strictly increas-

ing sequence (aδn)n=1,··· ,N+1
4 with aδ1 = −∞, aδN+1 = ∞, and

⋃N
n=1[aδn, aδn+1) = δZ ∪ {−∞}, such

that

P(ṽδ = vn) = Pδ
(
Zδ1 ∈ [aδn, a

δ
n+1)

)
, n = 1, · · · , N. (2.2.3)

For any ṽ with discrete distribution (2.1.1), Lemma 2.6.1 below shows there exists a sequence

(ṽδ)δ>0, each satisfies Assumption 2.2.4 and converges to ṽ in law as δ ↓ 0. Therefore any ṽ of type

(2.1.1) can be approximated by a ṽδ satisfying Assumption 2.2.4. Given ṽδ satisfying Assumption

2.2.4, define

hδn(y, t) := Pδ,y
(
Zδ1−t ∈ [aδn, a

δ
n+1)

)
, y ∈ δZ, t ∈ [0, 1], n ∈ {1, · · · , N}, (2.2.4)

and

pδ(y, t) :=

N∑
n=1

vnh
δ
n(y, t) = Eδ,y

[
P (Zδ1−t)

]
, (2.2.5)

where the expectation is taken under Pδ,y and

P (y) = vn, when y ∈ [aδn, a
δ
n+1). (2.2.6)

Then (2.2.3) implies that ṽδ and P (Zδ1) have the same distribution. If pδ is chosen as the pricing

rule, it has the same form as in (2.2.2). Finally we impose a technical condition on pδ. This

assumption is clearly satisfied when N is finite.

Assumption 2.2.5 There exist positive constants C and n such that |pδ(y, t)| ≤ C(1 + |y|n) for

any (y, t) ∈ δZ× [0, 1].

Given the pricing rule (2.2.5), let us first study the insider’s optimization problem and derive the

associated HJB equation via a heuristic argument. In this derivation, the superscript δ is omitted

4When N =∞, N + 1 =∞.
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to simplify notation. Definition 2.2.2 iii) implies that Xi,j − δ
∫ ·

0 θ
i,j
r dr defines an F I -martingale

for i ∈ {B,S} and j ∈ {B, T, S}. On the other hand, Definition 2.2.2 iv) and [13, Chapter I, T6]

combined imply that
∫ ·

0(ṽ− p(Yr− + δ, r))(dXB,B
r − δθB,Br dr) =

∫ ·
0(ṽ− p(Yr, r))(dXB,B

r − δθB,Br dr)

is an F I -martingale. Similar argument applied to other terms allows us to rewrite (2.2.1) as

δE
[ ∫ 1

0
(ṽ − p(Yr− + δ, r))θB,Br dr +

∫ 1

0
(ṽ − p(Yr−, r))θB,Sr dr

+

∫ 1

0
(ṽ − p(Yr− + 2δ, r))θB,Tr dr −

∫ 1

0
(ṽ − p(Yr− − δ, r))θS,Sr dr

−
∫ 1

0
(ṽ − p(Yr−, r))θS,Br dr −

∫ 1

0
(ṽ − p(Yr− − 2δ, r))θS,Tr dr

∣∣∣ṽ].
This motivates us to define the following value function for the insider:

V δ(ṽ, y, t) := sup
θi,j ; i∈{B,S},j∈{B,T,S}

δ E
[ ∫ 1

t
(ṽ − p(Yr− + δ, r))θB,Br dr +

∫ 1

t
(ṽ − p(Yr−, r))θB,Sr dr

+

∫ 1

t
(ṽ − p(Yr− + 2δ, r))θB,Tr dr −

∫ 1

t
(ṽ − p(Yr− − δ, r))θS,Sr dr

−
∫ 1

t
(ṽ − p(Yr−, r))θS,Br dr −

∫ 1

t
(ṽ − p(Yr− − 2δ, r))θS,Tr dr

∣∣∣Yt = y, ṽ

]
,

(2.2.7)

for ṽ = {v1, · · · , vN}, y ∈ δZ, t ∈ [0, 1). The terminal value of V δ is defined as V δ(ṽ, y, 1) =

limt→1 V
δ(ṽ, y, t) 5. Lemma 2.3.2 and Proposition 2.4.4 below show that the optimization problem

in (2.2.7) is well defined and nontrivial, i.e., 0 < V δ < ∞, for each δ > 0. Let us now derive the

HJB equation which V δ satisfies via a heuristic argument. Since positive (resp. negative) part

of Y is Y B := XB,B + XB,T + ZB − XS,B (resp. Y S := XS,S + XS,T + ZS − XB,S). Hence

Y B − δ
∫ ·

0(β − θS,Br − θB,Tr ) dr − δ
∫ ·

0 θ
B,B
r dr − 2δ

∫ ·
0 θ

B,T
r dr (resp. Y S − δ

∫ ·
0(β − θB,Sr − θS,Tr ) dr −

δ
∫ ·

0 θ
S,S
r dr − 2δ

∫ t
0 θ

S,T
r dr) is an F I -martingale.6 Then applying Itô’s formula to V δ(ṽ, Yr, r) and

employing the standard dynamic programming arguments yield the following formal HJB equation

for V δ:

−Vt(vn, y, t)−H(vn, y, t, V ) = 0, n ∈ {1, · · · , N}, (y, t) ∈ δZ× [0, 1), (2.2.8)

where the Hamilton H is defined as (the ṽ argument is omitted in H to simplify notation)

H(vn, y, t, V ) :=(V (y + δ, t)− 2V (y, t) + V (y − δ, t))β

5Since the set of admissible control is unbounded, the HJB equation associated to (2.2.7) usually admits a boundary

layer, i.e., limt→1 V
δ(ṽ, y, t) is not identically zero even if there is no terminal profit in (2.2.1). Such phenomenon

also shows up in Kyle model, see [5].
6As discussed after Definition 2.2.2, the set of jumps of XB,S and XS,T (resp. XS,B and XB,T ) arrive at the same

time as some jumps of ZS (resp. ZB), then we necessarily have θB,S + θS,T ≤ β (resp. θS,B + θB,T ≤ β).
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+ sup
θB,B≥0

[
V (y + δ, t)− V (y, t) + (vn − p(y + δ, t))δ

]
θB,B

+ sup
θB,T≥0

[
V (y + 2δ, t)− V (y + δ, t) + (vn − p(y + 2δ, t))δ

]
θB,T

+ sup
θB,S≥0

[
V (y, t)− V (y − δ, t) + (vn − p(y, t))δ

]
θB,S (2.2.9)

+ sup
θS,S≥0

[
V (y − δ, t)− V (y, t)− (vn − p(y − δ, t))δ

]
θS,S

+ sup
θS,T≥0

[
V (y − 2δ, t)− V (y − δ, t)− (vn − p(y − 2δ, t))δ

]
θS,T

+ sup
θS,B≥0

[
V (y, t)− V (y + δ, t)− (vn − p(y, t))δ

]
θS,B.

Optimizers θi,j , i ∈ {B,S} and j ∈ {B, T, S}, in (2.2.9), are deterministic functions of vn, y and

t, hence they are of feedback form. They are expected to be the optimal control intensities for

(2.2.7). This is indeed the case in many existing results in Kyle model and Glosten-Milgrom model

(with N = 2), compare [32], [5], [7], [6], and [18]. However, when N ≥ 3 in the Glosten-Milgrom

model, the following theorem shows any optimizers in (2.2.9) are not the optimal intensities when

ṽ is neither v1 nor vN .

Theorem 2.2.6 Let N ≥ 3 and ṽδ satisfy Assumption 2.2.4. Let pδ in (2.2.5) be the pricing

rule and satisfy Assumption 2.2.5. Then any optimizers θi,j(y, t), i ∈ {B,S}, j ∈ {B, T, S} and

(y, t) ∈ δZ× [0, 1), for (2.2.9) are not the optimal strategy for (2.2.7) when ṽδ = vn for 1 < n < N .

Remark 2.2.7 When ṽδ = v1 (resp. vN ), the insider knows the risky asset is always over-priced

(resp. under-priced). Hence she always sells (resp. buys) in equilibrium. This situation is exactly

the same as [18]. When ṽδ is neither minimal nor maximal, let us briefly describe the proof of

Theorem 2.2.6 here. To ensure (2.2.8) to be wellposed, H must be finite for all (y, t) ∈ δZ× [0, 1).

Hence

(p(y, t)− vn)δ ≤ V (y + δ, t)− V (y, t) ≤ (p(y + δ, t)− vn)δ, for all (y, t) ∈ δZ× [0, 1), (2.2.10)

where the second inequality comes from the first three maximization in (2.2.9) and the first inequal-

ity comes from the last three. Since V > 0, θi,j ≡ 0, i ∈ {B,S} and j ∈ {B, T, S}, in (2.2.9) does

not correspond to the optimal strategy. Hence there must exist (y0, t0) such that one inequality

in (2.2.10), say the first one, is an equality. However, in this case, the discrete state space forces

the first inequality to be an equality for all (y, t) ∈ δZ× [0, 1), which implies the second inequality

in (2.2.10) is strict for all (y, t), due to p(y + δ, t) > p(y, t). Therefore the optimizers in the first

three maximization in (2.2.9) must be identically zero, which means the associated point process

X does not have positive jumps. On the other hand, the dynamic programming principle and the

boundary layer of (2.2.8) at t = 1 force Y1 = Z1 +X1 ∈ [aδn + δ, aδn+1] a.s.. This can never happen
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when X does not have positive jumps. Therefore, Theorem 2.2.6 is the joint effort of the discrete

state space and the boundary layer of the HJB equation.

Remark 2.2.8 The statement of Theorem 2.2.6 remains valid when the insider is prohibited from

trading with noise traders at the same time; i.e., XB,T , XB,S , XS,T , XS,B are all zero. In this case,

the second, third, fifth and sixth maximization do not present in (2.2.9). However, the first and

fourth maximization therein still lead to (2.2.10). Hence the same argument as in the previous

remark still applies.

Remark 2.2.9 Examples of control problems without optimal feedback control exist in literature

of the optimal control theory, cf., e.g. [43, Chapter 3, pp. 246] and [34, Example 1.1]. In these cases,

notion of relaxed control is employed to prove the existence of a relaxed optimal control, cf. [34] and

references therein. For the insider’s optimization problem, instead of {θ : δZ × [0, 1] → R+}, the

control set can be relaxed to {θ : δZ× [0, 1]→M1(R+)}, whereM1(R+) is the set of all probability

measures in R+. It is interesting to investigate whether (2.2.7) admits an optimal control in this

relaxed set. We leave this topic to future studies.

2.2.3 Asymptotic Glosten-Milgrom equilibrium

To establish equilibrium of Glosten-Milgrom type when the risky asset ṽ has general discrete distri-

bution (2.1.1) with N ≥ 3, we introduce a weak form of equilibrium in what follows. To motivate

this definition, we recall the convergence of Glosten-Milgrom equilibria as the order size decreasing

to zero and intensity of noise trades increasing to infinity, cf. [6, Theorem 3] and [18, Theorem 5.3]:

Proposition 2.2.10 For any Bernoulli distributed ṽ (i.e. N = 2 in (2.1.1)), there exists a sequence

of Bernoulli distributed random variables ṽδ such that

i) ṽδ converges to ṽ in law as δ ↓ 0;

ii) For each δ > 0, model with ṽδ as the fundamental value of the risky asset admits a Glosten-

Milgrom equilibrium (pδ, XB,δ, XS,δ,F I,δ);

iii) When the intensity of Poisson process is given by βδ := (2δ2)−1, XB,δ−XS,δ L−→ X0, as δ ↓ 0,

where X0 is the optimal strategy in the Kyle model and
L−→ represents the weak convergence

of stochastic processes7.

This result motivates us to define the following weak form of Glosten-Milgrom equilibrium:

7Refer to [10] or [30] for the definition of weak convergence of stochastic processes.
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Definition 2.2.11 For any ṽ with discrete distribution (2.1.1), an asymptotic Glosten-Milgrom

equilibrium is a sequence (ṽδ, pδ, XB,δ, XS,δ,F I,δ)δ>0 such that

i) ṽδ converges to ṽ in law as δ ↓ 0;

ii) For each δ > 0, given (ṽδ, XB,δ, XS,δ,F I,δ) and set Y δ := Zδ + XB,δ −XS,δ, pδ is a rational

pricing rule, i.e., pδ(Y δ
t , t) = E[ṽδ |F Y δ

t ] for t ∈ [0, 1];

iii) Given (ṽδ, pδ) and βδ = (2δ2)−1, let J δ(XB, XS) be insider’s expected profit associated to the

admissible strategy (XB, XS). Then

sup
(XB ,XS) admissible

J δ(XB, XS)− J δ(XB,δ, XS,δ)→ 0, as δ ↓ 0.

In the above definition, rationality of the pricing mechanism is not compromised. However opti-

mality of the insider’s strategy is not enforced. Instead, item iii) requires that, when the order

size is small, the loss of insider’s expected profit by employing the strategy (XB,δ, XS,δ; F δ,I) is

small, comparing to the optimal value. Moreover this discrepancy converges to zero when the order

size vanishes. Therefore if the insider is willing to give up a small amount of expected profit, she

can employ strategy (XB,δ, XS,δ; F I,δ) to establish a suboptimal equilibrium. The following result

establishes the existence of equilibrium in the above weak sense:

Theorem 2.2.12 Assume that ṽ satisfies (2.1.1) with N <∞. Then asymptotic Glosten-Milgrom

equilibrium exists.

In this asymptotic equilibrium, the pricing rule is given by (2.2.5). When the order size is δ,

the insider employs the strategy (XB,δ, XS,δ; F I,δ) with F I,δ-intensities

δβδ
N∑
n=1

I{ṽδ=vn}

[
hδn(Y δ

t− + δ, t)

hδn(Y δ
t−, t)

− 1

]
+

+ δβδ
N∑
n=1

I{ṽδ=vn}

[
hδn(Y δ

t− − δ, t)
hδn(Y δ

t−, t)
− 1

]
−

,

δβδ
N∑
n=1

I{ṽδ=vn}

[
hδn(Y δ

t− − δ, t)
hδn(Y δ

t−, t)
− 1

]
+

+ δβδ
N∑
n=1

I{ṽδ=vn}

[
hδn(Y δ

t− + δ, t)

hδn(Y δ
t−, t)

− 1

]
−

,

(2.2.11)

respectively. In particular, when the fundamental value is vn, the insider trades toward the middle

level mδ
n := (aδn + aδn+1 − δ)/2 of the interval [aδn, a

δ
n+1): when the total demand is less than mδ

n,

the insider only places buy orders by either complementing noise buy orders or canceling some of

noise sell orders, when the total demand is larger than mδ
n, the insider does exactly the opposite.

More specifically, Lemma 2.5.2 below shows that y 7→ hδn(y, t) is strictly increasing when y < mδ
n

and strictly decreasing when y > mδ
n. Therefore, when Y δ

t− < mδ
n, (2.2.11) implies that: XB,B,δ

has intensity 1
2δ

(
hδn(Y δt−+δ,t)

hδn(Y δt−,t)
− 1
)

, XB,S,δ has intensity 1
2δ

(
1− hδn(Y δt−−δ,t)

hδn(Y δt−,t)

)
, meanwhile intensities of

XS,S,δ andXS,B,δ are both zero. When Y δ
t− > mδ

n, intensities can be read out from (2.2.11) similarly.
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Even though Theorem 2.2.6 remains valid when the insider is prohibited from trading at the same

time with noise traders, the strategy constructed above depends on the possibility of canceling

orders. However, in this strategy, the insider never tops up noise orders, i.e., XB,T = XS,T ≡ 0.

This allows the market maker to employ a rational pricing mechanism so that Definition 2.2.11 ii)

is satisfied, cf. Remark 2.4.6 below.

The processes (XB,δ, XS,δ; F I,δ) with intensities (2.2.11) will be constructed explicitly in section

2.5. The insider employs a sequence of independent random variables with uniform distribution

on [0, 1] to construct her mixed strategy. This sequence of random variables are also independent

of Zδ and ṽδ. This construction is a natural extension of [18]. In this construction, whenever a

noise order arrives, the insider uses a uniform distributed random variable to decide whether or

not submitting an opposite cancelling order. Hence this strategy is adapted to insider’s filtration,

rather than predictable as in the Kyle model. Such a cancelling strategy is called input regulation

and has been studied extensively in the queueing theory literature, see eg. [13, Chapter VII, Section

3].

When the fundamental value is vn and the insider follows the aforementioned strategy, the total

demand at time 1 will end up in the interval [aδn, a
δ
n+1). Therefore the insider’s private information

is fully, albeit gradually, revealed to the public so that the trading price does not jump when the

fundamental value is announced. On the other hand, the total demand, in its own filtration, has

the same distribution of the demand from noise traders, i.e., the insider is able to hide her trades

among the noise trades. This is another manifestation of inconspicuous trading theorem commonly

observed in the insider trading literature (cf. e.g., [32], [5], [7], etc.).

The insider’s strategy discussed above is of feedback form. The insider can determine her

trades only using the current total cumulative demand (and some additional randomness coming

from the sequence of i.i.d. uniform distributed random variables which are also independent of the

fundamental value and the noise trades). Even though this strategy is not optimal, its associated

expected profit is close to the optimal value when the order size is small. Moreover the discrepancy

converges to zero as the order size diminishes.

The Figure 2.1 presents a numeric example illustrates the convergence of the upper bound

for insider’s expected profit loss as the order size decreases to zero. In this example, ṽ takes

values in {1, 2, 3} with probability 0.55, 0.35, and 0.1, respectively. The expected profit in Kyle-

Back equilibrium is 0.512. Compared to this, the following figure shows that the loss to insider’s

expected profit is small.

Finally, similar to Proposition 2.2.10 iii), insider’s net order in the asymptotic Glosten-Milgrom

equilibrium converges to the optimal strategy in the Kyle model as the order size decreases to zero.
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Figure 2.1: The mean and standard deviation of the upper bound for insider’s expected profit loss.

The figure is generated by Monte Carlo simulation with 105 paths.

Theorem 2.2.13 Let (XB,δ, XS,δ,F I,δ)δ>0 be the sequence of insider’s strategy in Theorem 2.2.12.

Then

XB,δ −XS,δ L−→ X0 as δ ↓ 0,

where X0 is the optimal strategy in Kyle model.

2.3 Optimizers in the HJB equation are not optimal control

Theorem 2.2.6 will be proved in this section. Let us first make the heuristic argument for the

HJB equation rigorous by using the dynamic programming principle and standard arguments for

viscosity solutions. To this end, recall the domain of Hamilton:

dom(H) := {(vn, y, t, V ) ∈ {v1, · · · , vN} × δZ× [0, 1]× R

−valued functions |H(vn, y, t, V ) <∞} .

Observe that control variables for (2.2.9) are chosen in [0,∞). Hence (vn, y, t, V ) ∈ dom(H) if

V (y + δ, t)− V (y, t) + (vn − p(y + δ, t))δ ≤ 0, (2.3.1)

V (y − δ, t)− V (y, t)− (vn − p(y − δ, t))δ ≤ 0. (2.3.2)

Moreover, when (vn, y, t, V ) ∈ dom(H), the Hamilton is reduced to

H(vn, y, t, V ) = (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β. (2.3.3)
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Hence (2.2.8) reads

−Vt − (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β = 0 in dom(H). (2.3.4)

Proposition 2.3.1 The following statements hold for V δ, δ > 0:

i) V δ is a viscosity solution of (2.2.8);

ii) (vn, y, t, V
δ) ∈ dom(H) for any n ∈ {1, · · · , N} and (y, t) ∈ δZ × [0, 1). Hence V δ satisfies

(2.3.1), (2.3.2), and is a viscosity solution of (2.3.4);

iii) t 7→ V δ(y, t) is continuous on [0, 1];

iv) V δ(y, t) = EPδ,y [V δ(Zs−t, s)
]

for any y ∈ δZ, and 0 ≤ t ≤ s ≤ 1.

The proof is postponed to Appendix 2.7.1 where the dynamic programming principle together with

the definition of viscosity solutions are recalled. The proof of Theorem 2.2.6 also requires the

following result.

Lemma 2.3.2 For any δ > 0, n ∈ {1, · · · , N}, and (y, t) ∈ δZ× [0, 1), V δ(vn, y, t) > 0.

Proof. Without loss of generality, we fix δ = 1, ṽ = vn for some n ∈ {1, · · · , N}, and (y, t) = (0, 0).

The superscript δ is omitted throughout this proof. When n > 1, let us construct a strategy where

the insider buys once the asset is under-priced. Consider

τ := inf{r : p(Zr− + 1, r) < vn)} ∧ 1 and σ := inf{r > τ : ∆Yr 6= 0} ∧ 1.

Here τ is the first time that the asset is under-priced and σ is the arrival time of the first order

after τ . The insider employs a strategy with intensity θB,Br = I{τ≤r≤σ} and all other intensities

zero. Then the associated expected profit is

E
[∫ 1

0
(vn − a(Yr−, r)) I{τ≤r≤σ}dr

]
= E

[∫ σ

τ
(vn − p(Zr− + 1, r)) dr

]
> 0,

where the inequality follows from the definition of τ and the fact that P(τ < 1) > 0 due to Definition

2.2.1 ii). When n = 1, set τ := inf{t : p(Zt− − 1, t) > v1} ∧ 1 and θS,St = I{τ≤t≤σ}. Argument

similar as above shows that this selling strategy also leads to positive expected profit. Therefore,

in both cases, V > 0 is verified. �

Proof of Theorem 2.2.6. Without loss of generality, we set δ = 1 and omit the superscript δ

throughout the proof.

Step 1: For any n ∈ {1, · · · , N}, either one of the following situations holds:

• (2.3.1) holds as an equality and (2.3.2) is a strict inequality at all (y, t) ∈ Z× [0, 1);
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• (2.3.2) holds as an equality and (2.3.1) is a strict inequality at all (y, t) ∈ Z× [0, 1).

To prove the assertion, observe from (2.3.1) and (2.3.2) that

p(y, t)− vn ≤ V (y + 1, t)− V (y, t) ≤ p(y + 1, t)− vn, (y, t) ∈ Z× [0, 1).

Since y 7→ p(y, t) is strictly increasing for any t ∈ [0, 1), there exists η(y, t) ∈ [0, 1] such that

V (y + 1, t)− V (y, t) = p(y, t) + η(y, t) (p(y + 1, t)− p(y, t))− vn, (y, t) ∈ Z× [0, 1).

Assume that either (2.3.1) or (2.3.2) holds as an equality at some point. If such assumption fails,

both inequalities in (2.3.1) and (2.3.2) are strict at all points in Z × [0, 1). Then all optimizers in

(2.2.9) are identically zero, with the associated expected profit zero. Since V > 0, cf. Lemma 2.3.2,

these trivial optimizers are not optimal strategies for (2.2.7). Hence the statement of the theorem

is already confirmed in this trivial situation. Let us now assume (2.3.2) holds as an equality at

(y0 +1, t0), we will show (2.3.2) is an identity. On the other hand, combining the identity in (2.3.2)

and the strict monotonicity of y 7→ p(y, t), we obtain

V (y + 1, t)− V (y, t) = p(y, t)− vn < p(y + 1, t)− vn, (y, t) ∈ Z× [0, 1),

hence the inequality (2.3.1) is always strict. The other situation where (2.3.1) is an identity and

(2.3.2) is strict can be proved analogously.

Since (2.3.2) holds as an equality at (y0 + 1, t0), then, for any s ∈ (t0, 1),

Ey0 [p(Zs−t0 , s)]− vn = p(y0, t0)− vn = V (y0 + 1, t0)− V (y0, t0)

= Ey0 [V (Zs−t0 + 1, s)− V (Zs−t0 , s)] ,

where the first identity follows from (2.2.5) and the Markov property of Z, the third identity is

obtained after applying Proposition 2.3.1 iv) twice. On the other hand, the definition of η(y, t)

yields

Ey0 [V (Zs−t0 + 1, s)− V (Zs−t0 , s)]

= Ey0 [p(Zs−t0 , s) + η(Zs−t0 , s) (p(Zs−t0 + 1, s)− p(Zs−t0 , s))]− vn.

The last two identities combined imply

Ey0 [η(Zs−t0 , s) (p(Zs−t0 + 1, s)− p(Zs−t0 , s))] = 0. (2.3.5)

Recall that η ≥ 0, p(·+ 1, s)− p(·, s) > 0 for any s < 1, and the distribution of Zs0−t has positive

mass on each point in Z. We then conclude from (2.3.5) that η(y, s) = 0 for any y ∈ Z. Since s is

arbitrarily chosen,

η(y, s) = 0, for any y ∈ Z, t0 < s < 1. (2.3.6)
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Now fix s, the previous identity yields, for any t < s and y ∈ Z,

V (y + 1, t)− V (y, t) = Ey [V (Zs−t + 1, s)− V (Zs−t, s)]

= Ey [p(Zs−t, s)]− vn = p(y, t)− vn,

where Proposition 2.3.1 iv) is applied twice again to obtain the first identity. Therefore η(y, t) = 0

for any y ∈ Z and t ≤ s, which combined with (2.3.6), implies (2.3.2) is an identity.

Step 2: Fix 1 < n < N . When (2.3.2) is an identity, any optimizers in (2.2.9) are shown not to be

the optimal strategy for (2.2.7). When (2.3.1) is an identity, a similar argument leads to the same

conclusion. Combined with the result in Step 1, the statement of the theorem is confirmed.

When (2.3.2) is an identity, sending t→ 1, V (y, 1), defined as limt→1 V (y, t), satisfies

V (y − 1, 1)− V (y, 1) = vn − P (y − 1).

The previous identity and (2.2.6) combined imply that V (y, 1) is strictly decreasing when y < an+1,

constant when y ∈ [an + 1, an+1 + 1), and strictly increasing when y ≥ an+1 + 1. Thus y 7→ V (y, 1)

attains its minimum value when y ∈ [an+1, an+1]. Let (X̂B, X̂S) be the point processes whose F I -

intensities are optimizers θ̂i,j , i ∈ {B,S} and j ∈ {B, T, S}, in (2.2.9), and set Ŷ = Z + X̂B − X̂S .

Assuming that (X̂B, X̂S) is the optimal strategy for (2.2.7), DPP i) in Appendix 2.7.1 implies

V (y, t) ≥ Ey,t
[
V (Ŷ1, 1)

+

∫ 1

t
(vn − p(Ŷr− + 1, r))dX̂B,B

r +

∫ 1

t
(vn − p(Ŷr− + 2, r))dX̂B,T

r

+

∫ 1

t
(vn − p(Ŷr−, r))dX̂B,S

r −
∫ 1

t
(vn − p(Ŷr− − 1, r))dX̂S,S

r

−
∫ 1

t
(vn − p(Ŷr− − 2, r))dX̂S,T

r −
∫ 1

t
(vn − p(Ŷr−, r))dX̂S,B

r

]
,

where the expectation is taken under Py,t with Py,t(Ŷt = y) = 1. However, the value function V (y, t)

is exactly the expected profit when the insider employs the optimal strategy (X̂B, X̂S). Therefore,

the previous identity yields

Ey,t[V (Ŷ1, 1)] = 0.

Recall that V (·, 1), as limit of positive functions, is nonnegative, and it achieves the minimum at

[an + 1, an+1]. The previous identity implies V (y, 1) = 0 when y ∈ [an + 1, an+1] and

Ŷ1 ∈ [an + 1, an+1], Py,t − a.s.. (2.3.7)

However, when (2.3.2) is an identity and (2.3.1) is a strict inequality, any optimizer of (2.2.9)

satisfies θ̂B,B = θ̂B,S ≡ 0, i.e., X̂B ≡ 0. Therefore, Ŷ = ZB−ZS−X̂S with only negative controlled

jumps from X̂S cannot compensate ZS to satisfy (2.3.7), where [an + 1, an+1] is a finite interval in

Z when 1 < n < N . �
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2.4 A suboptimal strategy

We start to prepare the proof of Theorem 2.2.12 from this section.

For the rest of the paper, N <∞, assumed in Theorem 2.2.12, is enforced unless stated otherwise.

In this section we are going to characterize a suboptimal strategy of feedback form in the

Glosten-Milgrom model with order size δ, such that the pricing rule (2.2.5) is rational. To simplify

presentation, we will take δ = 1, hence omit all superscript δ, throughout this section. Scaling all

processes by δ gives the desired processes when the order size is δ.

The following standing assumption on distribution of ṽ will be enforced throughout this section:

Assumption 2.4.1 There exists a strictly increasing sequence (an)n=1,··· ,N+1 such that

i) an ∈ Z ∪ {−∞,∞}, a1 = −∞, aN+1 =∞, and ∪Nn=1[an, an+1) = Z ∪ {−∞};

ii) P(Z1 ∈ [an, an+1)) = P(ṽ = vn), n = 1, · · · , N ;

iii) The middle level mn = (an + an+1 − 1)/2 of the interval [an, an+1) is not an integer.

Item i) and ii) have already been assumed in Assumption 2.2.4. Item iii) is a technical assump-

tion which facilities the construction of the suboptimal strategy. In the next section, when an

arbitrary ṽ of distribution (2.1.1) is considered and the order size δ converges to zero, a sequence

(aδn)n=1,··· ,N+1,δ>0 together with a sequence of random variables (ṽδ)δ>0 will be constructed, such

that Assumption 2.4.1 is satisfied for each δ and ṽδ converges to ṽ in law. To simplify nota-

tion, we denote by mn := b(an + an+1 − 1)/2c the largest integer smaller than mn and by

mn := d(an + an+1 − 1)/2e the smallest integer larger than mn. Assumption 2.4.1 iii) implies

an ≤ mn < mn < mn < an+1 and mn −mn = 1 when both an and an+1 are finite.

Let us now define a function U , which relates to the expected profit of a suboptimal strategy and

also dominates the value function V . First the Markov property Z implies that p is continuously

differentiable in the time variable and satisfies8

pt + (p(y + 1, t)− 2p(y, t) + p(y − 1, t))β = 0, (y, t) ∈ Z× [0, 1),

p(y, 1) = P (y).
(2.4.1)

Define

U(vn, y, 1) :=

an−1∑
j=y

(vn −A(j)) I{y≤mn} +

y∑
j=an+1

(B(j)− vn) I{y≥mn}, y ∈ Z, 1 ≤ n ≤ N, (2.4.2)

8This follows from the same argument as in [18, Footnote 4].
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where A(y) := P (y + 1) and B(y) := P (y − 1) can be considered as ask and bid pricing functions

right before time 1. Since (vn)n=1,··· ,N is increasing, U(·, ·, 1) is non-negative and

U(vn, y, 1) = 0 ⇐⇒ y ∈ [an − 1, an+1 + 1). (2.4.3)

Given U(·, ·, 1) as above, U is extended to t ∈ [0, 1) as follows:

U(vn, y, t) := U(vn, y, 1) + β

∫ 1

t
(p(y, r)− p(y − 1, r)) dr, y ≥ mn, (2.4.4)

U(vn, y, t) := U(vn, y, 1) + β

∫ 1

t
(p(y + 1, r)− p(y, r)) dr, y ≤ mn, (2.4.5)

for t ∈ [0, 1) and n = 1, · · · , N . Since N is finite, p is bounded, hence U takes finite value.

Proposition 2.4.2 Let Assumption 2.4.1 hold. Suppose that the market maker chooses p in (2.2.5)

as the pricing rule. Then for any insider’s admissible strategy (XB, XS ; F I), with F I-intensities

θi,j , i ∈ {B,S} and j ∈ {B, T, S}, the associated expected profit function J (vn, y, t;X
B, XS) satis-

fies

J (vn, y, t;X
B, XS) ≤ U(vn, y, t)− L(vn, y, t), n ∈ {1, · · · , N}, (y, t) ∈ Z× [0, 1]. (2.4.6)

where

L(vn, y, t) :=Ey
[ ∫ 1

t
(vn − p(mn, r))

[(
β − θB,Sr + θS,Sr

)
I{Yr−=mn}

+θS,Tr I{Yr−=mn+1}
]
dr
∣∣∣ṽ = vn

]
− Ey

[ ∫ 1

t
(vn − p(mn, r))

[(
β − θS,Br + θB,Br

)
I{Yr−=mn}

+θB,Tr I{Yr−=mn−1}
]
dr
∣∣∣ṽ = vn

]
.

(2.4.7)

Moreover (2.4.6) is an identity when the following conditions are satisfied:

i) Y1 ∈ [an − 1, an+1 + 1) a.s. when ṽ = vn;

ii) XS,S
t = XS,B

t ≡ 0 when Yt− ≤ mn, XB,B
t = XB,S

t ≡ 0 when Yt− ≥ mn, θB,T ≡ 0 when y ≥ mn,

and θS,T ≡ 0 when y ≤ mn.

Before proving this result, let us derive equations that U satisfies. The following result shows

that U satisfies (2.3.4) except when y = mn and y = mn, and U satisfies the identity in either

(2.3.1) or (2.3.2) depending on whether y ≤ mn or y ≥ mn.

Lemma 2.4.3 The function U satisfies the following equations: (Here ṽ = vn is fixed and the

dependence on ṽ is omitted in U .)

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t))β = 0, y > mn or y < mn, (2.4.8)
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Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t))β = (p(mn, t)− vn)β, y = mn, (2.4.9)

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t))β = (vn − p(mn, t))β, y = mn, (2.4.10)

U(y, t)− U(y + 1, t)− (vn − p(y, t)) = 0, y ≥ mn, (2.4.11)

U(y, t)− U(y − 1, t) + (vn − p(y, t)) = 0, y ≤ mn. (2.4.12)

Proof. We will only verify these equations when y ≥ mn. The remaining equations can be proved

similarly. First (2.4.2) implies

U(y + 1, 1)− U(y, 1) = B(y + 1)− vn = P (y)− vn, y ≥ mn.

Combining the previous identity with (2.4.4),

U(y + 1, t)− U(y, t) = U(y + 1, 1)− U(y, 1)

+ β

∫ 1

t
(p(y + 1, r)− 2p(y, r) + p(y − 1, r)) dr

= p(y, t)− vn,

where (2.4.1) is used to obtain the second identity. This verifies (2.4.11). When y > mn, summing

up (2.4.11) at y and y + 1, and taking time derivative in (2.4.4), yield

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t))β

= −β(p(y, t)− p(y − 1, t)) + β(p(y, t)− p(y − 1, t))

= 0,

which confirms (2.4.8) when y > mn. When y = mn, observe from (2.4.2), (2.4.4) and (2.4.5) that

U(mn, ·) = U(mn, ·). Then

Ut + (U(y + 1, t)− 2U(y, t) + U(y − 1, t))β

= −β (p(mn, t)− p(mn, t)) + β (U(mn + 1, t)− U(mn, t))

= −β (p(mn, t)− p(mn, t))− β (vn − p(mn, t))

= β (p(mn, t)− vn) ,

where the second identity follows from (2.4.11). �

Proof of Proposition 2.4.2. Throughout the proof the ṽ = vn is fixed and the dependence on ṽ is

omitted in U . Let Y B = ZB+XB,B+XB,T −XS,B and Y S = ZS+XS,S+XS,T −XB,S be positive

and negative parts of Y respectively. Then Y B −
∫ ·

0(β − θS,Br − θB,Tr )dr −
∫ ·

0 θ
B,B
r dr − 2

∫ ·
0 θ

B,T
r dr

and Y S−
∫ ·

0(β−θB,Sr −θS,Tr )dr−
∫ ·

0 θ
S,S
r dr−2

∫ ·
0 θ

S,T
r dr are F I -martingales. Applying Itô’s formula
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to U(Y·, ·), we obtain

U(Y1, 1)

= U(y, t) +

∫ 1

t
Ut(Yr−, r)dr

+

∫ 1

t
[U(Yr, r)− U(Yr−, r)] dY

B
r +

∫ 1

t
[U(Yr, r)− U(Yr−, r)] dY

S
r

= U(y, t) +

∫ 1

t
[Ut(Yr−, r) + (U(Yr− + 1, r)− 2U(Yr−, r) + U(Yr− − 1, r))β] dr

+

∫ 1

t
[U(Yr− + 1, r)− U(Yr−, r)]

(
θB,Br − θS,Br

)
dr

+

∫ 1

t
[U(Yr− + 2, r)− U(Yr− + 1, r)] θB,Tr dr

+

∫ 1

t
[U(Yr− − 1, r)− U(Yr−, r)]

(
θS,Sr − θB,Sr

)
dr

+

∫ 1

t
[U(Yr− − 2, r)− U(Yr− − 1, r)] θS,Tr dr +M1 −Mt,

(2.4.13)

where

M =

∫ ·
0

[U(Yr, r)− U(Yr−, r)] d

(
Y B
r −

∫ r

0

(
β − θS,Bu + θB,Bu + θB,Tu

)
du

)
+

∫ ·
0

[U(Yr, r)− U(Yr−, r)] d

(
Y S
r −

∫ r

0

(
β − θB,Su + θS,Su + θS,Tu

)
du

)
.

Since (2.4.11) and (2.4.12) imply U(y+1, t)−U(y, t) is either p(y, t)−vn or p(y+1, t)−vn, which are

both bounded from below by v1−vn and from above by vN −vn, hence M is an F I -martingale (cf.

[13, Chapter I, T6]). On the right hand side of (2.4.13), splitting the second integral on {Yr− ≥ mn},

{Yr− = mn}, and {Yr− < mn}, splitting the fourth integral on {Yr− > mn}, {Yr− = mn}, and

{Yr− ≤ mn}, utilizing U(mn, ·) = U(mn, ·), as well as different equations in Lemma 2.4.3 in different

regions, we obtain

U(Y1, 1)

= U(y, t) +

∫ 1

t
(p(mn, r)− vn)βI{Yr−=mn}dr +

∫ 1

t
(vn − p(mn, r))βI{Yr−=mn}dr

−
∫ 1

t
(vn − p(Yr−, r)) I{Yr−≥mn}(θ

B,B
r − θS,Br )dr

−
∫ 1

t
(vn − p(Yr− + 1, r)) I{Yr−<mn}(θ

B,B
r − θS,Br )dr

−
∫ 1

t
(vn − p(Yr− + 1, r)) I{Yr−≥mn}θ

B,T
r dr

−
∫ 1

t
(vn − p(Yr− + 2, r)) I{Yr−<mn−1}θ

B,T
r dr

+

∫ 1

t
(vn − p(Yr− − 1, r)) I{Yr−>mn}(θ

S,S
r − θB,Sr )dr

+

∫ 1

t
(vn − p(Yr−, r)) I{Yr−≤mn}(θ

S,S
r − θB,Sr )dr
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+

∫ 1

t
(vn − p(Yr− − 2, r)) I{Yr−>mn+1}θ

S,T
r dr

+

∫ 1

t
(vn − p(Yr− − 1, r)) I{Yr−≤mn}θ

S,T
r dr +M1 −Mt.

Rearranging the previous identity by putting the profit of (XB, XS) to the left hand side, we obtain

U(y, t)− U(Y1, 1)−K − L+M1 −Mt

=

∫ 1

t
(vn − p(Yr− + 1, r))θB,Br dr +

∫ 1

t
(vn − p(Yr− + 2, r)) θB,Tr dr

+

∫ 1

t
(vn − p(Yr−, r))θB,Sr dr −

∫ 1

t
(vn − p(Yr− − 1, r))θS,Sr dr

−
∫ 1

t
(vn − p(Yr− − 2, r)) θS,Tr dr −

∫ 1

t
(vn − p(Yr−, r))θS,Br dr

(2.4.14)

where

K =

∫ 1

t
(p(Yr− + 1, r)− p(Yr−, r)) I{Yr−≥mn}θ

B,B
r dr

+

∫ 1

t
(p(Yr−, r)− p(Yr− − 1, r)) I{Yr−≥mn}θ

B,S
r dr

+

∫ 1

t
(p(Yr− + 2, r)− p(Yr− + 1, r)) I{Yr−≥mn}θ

B,T
r dr

+

∫ 1

t
(p(Yr−, r)− p(Yr− − 1, r)) I{Yr−≤mn}θ

S,S
r dr

+

∫ 1

t
(p(Yr− + 1, u)− p(Yr−, r)) I{Yr−≤mn}θ

S,B
r dr

+

∫ 1

t
(p(Yr− − 1, r)− p(Yr− − 2, r)) I{Yr−≤mn}θ

S,T
r dr,

L =

∫ 1

t
[vn − p(mn, r)]

[
(β − θB,Sr + θS,Sr )I{Yr−=mn} + θS,Tr I{Yr−=mn+1}

]
dr

−
∫ 1

t
[vn − p(mn, r)]

[
(β − θS,Br + θB,Br )I{Yr−=mn} + θB,Tr I{Yr−=mn−1}

]
dr.

Taking conditional expectation E[·|F I
t , Yt = y] on both sides of (2.4.14), the right hand side is

the expected profit J (XB, XS), while, on the left hand side, both U(·, 1) and K are non-negative

(cf. Definition 2.2.1 i)). Therefore (2.4.6) is verified. To attain the identity in (2.4.6), we need i)

Y1 ∈ [an − 1, an+1 + 1) a.s. so that U(Y1, 1) = 0 a.s. follows from (2.4.3); ii) θB,B = θB,S ≡ 0 when

y ≥ mn, θS,S = θS,B ≡ 0 when y ≤ mn, θB,T ≡ 0 when y ≥ mn, and θS,T ≡ 0 when y ≤ mn. �

Come back to the statement of Proposition 2.4.2. If the insider chooses a strategy such that

both conditions in i) and ii) are satisfied, then the identity in (2.4.6) is attained, hence the expected

profit of this strategy is U − L. On the other hand, define US : {v1, · · · , vN} × Z× [0, 1]→ R via

US(vn, y, t) =

 U(vn, y, t) y ≥ mn

U(vn, y − 1, t) y ≤ mn

. (2.4.15)
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The next result shows that US dominates the value function V , therefore US −U +L is the upper

bound of the potential loss of the expected profit. In section 2.6, we will prove this potential loss

converges to zero as δ ↓ 0. Therefore, when the order size is small, the insider losses little expected

profit by employing a strategy satisfying Proposition 2.4.2 i) and ii).

Proposition 2.4.4 Let Assumption 2.4.1 hold. Then V ≤ US, hence V <∞, on {v1, · · · , vN} ×

Z× [0, 1].

Proof. Fix vn and omit it as the first argument of US and U throughout the proof. We first verify

US(y, t)− US(y + 1, t)− (vn − p(y, t)) = 0, (2.4.16)

USt +
(
US(y + 1, t)− 2US(y, t) + US(y − 1, t)

)
β = 0, (2.4.17)

for any (y, t) ∈ Z× [0, 1). Indeed, when y ≥ mn, (2.4.16) is exactly (2.4.11). When y = mn,

US(mn, t)− US(mn, t) = U(mn − 1, t)− U(mn, t)

= U(mn − 1, t)− U(mn, t) = vn − p(mn, t),

where the second identity follows from U(mn, t) = U(mn, t) and the third identity holds due to

(2.4.12). When y < mn,

US(y, t)− US(y + 1, t) = U(y − 1, t)− U(y, t) = vn − p(y, t),

where (2.4.12) is utilized again to obtain the second identity. Therefore (2.4.16) is confirmed for

all cases. As for (2.4.17), (2.4.16) yields

US(y + 1, t)− 2US(y, t) + US(y − 1, t) = p(y, t)− p(y − 1, t).

On the other hand, we have from (2.4.4) and (2.4.5) that

USt (y, t) =

 Ut(y, t) = −β(p(y, t)− p(y − 1, t)) y ≥ mn

Ut(y − 1, t) = −β(p(y, t)− p(y − 1, t)) y ≤ mn

.

Therefore (2.4.17) is confirmed after combining the previous two identities.

Now note that US(·, 1) ≥ 0, moreover US satisfies (2.4.16) and (2.4.17). The assertion V ≤ US

follows from the same argument as in the high type of [18, Proposition 3.2]. �

Having studied the insider’s optimization problem, let us turn to the market maker. Given

(XB, XS ; F I), Definition 2.2.11 ii) requires the pricing rule to be rational. This leads to another

constraint on (XB, XS ; F I).

Proposition 2.4.5 If there exists an admissible strategy (XB, XS ; F I) such that
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i) Y B = ZB + XB,B + XB,T − XS,B and Y S = ZS + XS,S + XS,T − XB,S are independent

F Y−adapted Poisson processes with common intensity β;

ii) [Y1 ∈ [an, an+1)] = [ṽ = vn], n = 1, · · · , N .

Then the pricing rule (2.2.5) is rational.

Proof. For any t ∈ [0, 1],

p(Yt, t) = EYt [P (Z1−t)] = E [P (Z1) |Zt = Yt] = E
[
P (Y1) |F Y

t

]
= E[ṽ |F Y

t ],

where the third identity holds since Y and Z have the same distribution, the fourth identity follows

from ii) and (2.2.6). �

Remark 2.4.6 If the insider places a buy (resp. sell) order when a noise buy (resp. sell) order

arrives, Proposition 2.4.5 i) cannot be satisfied. Therefore in the asymptotic equilibrium the insider

will not trade in the same direction as the noise traders, i.e., XB,T = XS,T ≡ 0, so that the market

maker can employ a rational pricing rule.

Concluding this section, we need to construct point processes (XB, XS ; F I) which simultane-

ously satisfy conditions in Proposition 2.4.2 ii), Proposition 2.4.5 i) and ii)9. This construction is

a natural extension of [18, Section 4], where N = 2 is considered, and will be presented in the next

section.

2.5 Construction of a point process bridge

In this section, we will construct point processesXB andXS on a probability space (Ω,F I , (F I
t )t∈[0,1],P)

such that XB,T = XS,T ≡ 0, due to Remark 2.4.6, and satisfy

i) Y B = ZB +XB,B −XS,B and Y S = ZS +XS,S −XB,S are independent F Y -adapted Poisson

processes with common intensity β;

ii) XB,B
t = XB,S

t ≡ 0 when Yt− ≥ mn, XS,S
t = XS,B

t ≡ 0 when Yt− ≤ mn;

iii) [Y1 ∈ [an, an+1)] = [ṽ = vn] P-a.s. for n = 1, · · · , N .

The construction is a natural extension of [18] where N = 2 is considered. As in [18], XB and XS

are constructed using two independent sequences of iid random variables (ηi)i≥1 and (ζi)i≥1 with

uniform distribution on [0, 1], moreover they are independent of Z and ṽ. The insider uses (ηi)i≥1

to randomly contribute either buy or sell orders, and uses (ζi)i≥1 to randomly cancel noise orders.

9Note is Proposition 2.4.5 ii) implies Proposition 2.4.2 i).
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Throughout this section Assumption 2.4.1 is enforced. Moreover, we set δ = 1, hence suppress the

superscript δ. Otherwise XB and XS can be scaled by δ to obtain the desired processes.

In the following construction, we will define a probability space (Ω,F I , (F I
t )t∈[0,1], P) on which

Y takes the form

Y = Z +
N∑
n=1

I{An}(X
B −XS). (2.5.1)

Here Z is the difference of two independent F I -adapted Poisson processes with intensity β, An ∈

F I
0 such that P(An) = P(Z1 ∈ [an, an+1)) for each n = 1, · · · , N .

Before constructing XB and XS satisfying desired properties, let us draw some intuition from

the theory of filtration enlargement. Let us define (D([0, 1],Z),F , (F t)t∈[0,1], P) be the canonical

space where D([0, 1],Z) is Z-valued càdlàg functions, P is a probability measure under which ZB and

ZS are independent Poisson processes with intensities β, (F t)t∈[0,1] is the minimal filtration gener-

ated by ZB and ZS satisfying the usual conditions, and F = ∨t∈[0,1]F t. Let us denote by (Gt)t∈[0,1]

the filtration (F t)t∈[0,1] enlarged with a sequence of random variables (I{Z1∈[an,an+1)})n=1,··· ,N .

In order to find the G-intensities of ZB and ZS , we use a standard enlargement of filtration

argument which can be found, e.g. in [35]. To this end, recall hn(y, t) = P[Z1 ∈ [an, an+1) |Zt = y].

Note that hn is strictly positive on Z × [0, 1). Moreover the Markov property of Z implies hn is

continuously differentiable in the time variable and satisfies

∂thn + (hn(y + 1, t)− 2hn(y, t) + hn(y − 1, t))β = 0, (y, t) ∈ Z× [0, 1),

hn(y, 1) = I{y∈[an,an+1)}.
(2.5.2)

Lemma 2.5.1 The G-intensities of ZB and ZS at t ∈ [0, 1) are given by

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zt− + 1, t)

hn(Zt−, t)
β and

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zt− − 1, t)

hn(Zt−, t)
β,

respectively.

Proof. We will only calculate the intensity for ZB. The intensity of ZS can be obtained similarly.

All expectations are taken under P throughout this proof. For s ≤ t < 1, take an arbitrary E ∈ F s

and denote MB
t := ZBt − βt. The definition of hn and the F -martingale property of MB imply

E
[
(MB

t −MB
s )I{E}I{Z1∈[an,an+1)}

]
= E

[
(MB

t −MB
s )I{E}hn(Zt, t)

]
= E

[
I{E}(〈MB, hn(Z·, ·)〉t − 〈MB, hn(Z·, ·)〉s)

]
= E

[
I{E}

∫ t

s
β (hn(Zr− + 1, r)− hn(Zr−, r)) dr

]
= E

[
I{E}

∫ t

s
β I{Z1∈[an,an+1)}

hn(Zr− + 1, r)− hn(Zr−, r)

hn(Zr−, r)
dr

]
.
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These computations for each n = 1, · · · , N imply that

MB −
∫ ·
s
β

N∑
n=1

I{Z1∈[an,an+1)}
hn(Zr− + 1, r)− hn(Zr−, r)

hn(Zr−, r)
dr

defines a G-martingale. Therefore the G-intensity of ZB follows from ZBt = MB
t + βt. �

To better understand intensities in the previous lemma, let us collect several properties for hn:

Lemma 2.5.2 Let Assumption 2.4.1 hold. The following properties hold for each hn, n = 1, · · · , N :

i) hn(·, ·) = hn(2mn − ·, ·); in particular, hn(mn, ·) = hn(mn, ·).

ii) y 7→ hn(y, t) is strictly increasing when y ≤ mn and strictly decreasing when y ≥ mn.

Here, when n = 1 (resp. n = N), mn = mn = −∞ (resp. mn = mn =∞).

Proof. Recall that an + an+1 − 1 = 2mn. Then

hn(y, t) = P[Z1 ∈ [an, an+1) |Zt = y] = P[y + Z1−t ∈ [an, an+1)]

= P[2mn − y − Z1−t ∈ (2mn − an+1, 2mn − an]]

= P[2mn − y − Z1−t ∈ [an, an+1)] = hn(2mn − y, t),

where the last identity holds since Z and −Z have the same distribution. This verifies i). To prove

ii), rewrite hn(y, t) = P[Z1−t ∈ [an − y, an+1 − y)]. Then the statement ii) follows from the fact

that y 7→ P(Z1−t = y) is strictly increasing when y ≤ 0 and strictly decreasing when y ≥ 0. �

In what follows, given An ∈ F I
0 such that P(An) = P(Z1 ∈ [an, an+1)), (XB, XS ; F I) on An

will be constructed so that F I -intensity of Y B (resp. Y S) on An match G-intensities of ZB (resp.

ZS) on [Z1 ∈ [an, an+1)]. Matching these intensities ensures that (XB, XS ; F I) satisfies desired

properties, cf. Proposition 2.5.5 below. Recall Y B = ZB+XB,B−XS,B and Y S = ZS+XS,S−XB,S .

Subtracting β from G-intensities of ZB (resp. ZS) in Lemma 2.5.1, we can read out intensities of

XB,B −XS,B (resp. XS,S −XB,S). Since property ii) at the beginning of this section implies that

θB and θS are never positive at the same time. Therefore, when the intensity of XB,B −XS,B is

positive, the insider contributes buy orders XB,B with such intensity, otherwise the insider submits

sell orders XS,B with the same intensity to cancel some noise buy orders from ZB. Applying the

same strategy to XS,S − XB,S and utilizing Lemma 2.5.2, we read out F I -intensities for Xi,j ,

i, j ∈ {B,S}:

Corollary 2.5.3 Suppose that F I-intensities of Y B and Y S match G-intensities of ZB and ZS

respectively, moreover XB,B
t = XB,S

t ≡ 0 when Yt− ≥ mn and XS,S
t = XS,B

t ≡ 0 when Yt− ≤ mn.

Then F I-intensities of Xi,j, i, j ∈ {B,S}, have the following form on An when Yt− = y:

θB,B(y, t) =

(
hn(y + 1, t)

hn(y, t)
− 1

)
+

β, θB,S(y, t) =

(
hn(y − 1, t)

hn(y, t)
− 1

)
−
β,
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θS,S(y, t) =

(
hn(y − 1, t)

hn(y, t)
− 1

)
+

β, θS,B(y, t) =

(
hn(y + 1, t)

hn(y, t)
− 1

)
−
β.

In particular, θi,j, i, j ∈ {B,S}, satisfies the following properties:

i) θB,B(y, ·) = θB,S(y, ·) ≡ 0, θS,S(y, ·) > 0, and θS,B(y, ·) > 0, when y ≥ mn; θS,S(y, ·) =

θS,B(y, ·) ≡ 0, θB,B(y, ·) > 0, and θB,S(y, ·) > 0, when y ≤ mn;

ii) θB,B(·, ·) = θS,S(2mn − ·, ·), θB,S(·, ·) = θS,B(2mn − ·, ·);

iii) θB,B(mn, ·) = θS,S(mn, ·) ≡ 0.

As described in Corollary 2.5.3, when An ∈ F 0 is fixed, the state space is divided into two

domains S := {y ∈ Z : y ≥ mn} and B := {y ∈ Z : y ≤ mn}. As Y making excursions into these

two domains, either XS or XB is active. In the following construction, we will focus on the domain

B and construct inductively jumps of XB until Y leaves B. When Y excusers in S, XS can be

constructed similarly.

When Y is in B, one of the goals of XB is to make sure that Y1 ends up in the interval [an, an+1).

In order to achieve this goal, XB will add some jumps in addition to the jumps coming from ZB.

However this by itself will not be enough since Y also jumps downward due to ZS . Thus, XB also

needs to cancel some of downwards jumps from ZS . Therefore XB consists of two components

XB,B and XB,S , where XB,B complements jumps of ZB and XB,S cancels some jumps of ZS . Let

us denote by (τi)i≥1 the sequence of jump times for Y . These stopping times will be constructed

inductively as follows. Given τi−1 < 1 and Yτi−1 ≤ mn, the next jump time τi happens at the

minimum of the following three random times:

• the next jump of ZB,

• the next jump of XB,B,

• the next jump of ZS which is not canceled by a jump of XB,S .

HereXB,B andXB,S need to be constructed so that their intensities θB,B(Yt−, t) and θB,S(Yt−, t)

match the forms in Corollary 2.5.3. This goal is achieved by employing two independent sequences

of iid random variables (ηi)i≥1 and (ζi)i≥1 with uniform distribution on [0, 1]. They are also

independent of F and (An)n=1,··· ,N . These two sequences will be used to generate a random

variable νi and another sequence of Bernoulli random variables (ξj,i)j≥1 taking values in {0, 1}. Let

(σ+
i )i≥1 and (σ−i )i≥1 be jump time of ZB and ZS , respectively. Then, after τi−1, the next jump of

ZB is at σ+
ZBτi−1

+1
, the next jump of XB,B is at νi, and the next jump of ZS not canceled by jumps

of XB,S is at τ−i = min{σ−j > τi−1 : ξj,i = 1}. Then the next jump of Y is at

τi = σ+
ZBτi−1

+1
∧ νi ∧ τ−i .
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The construction of νi and (ξj,i)j≥1 using (ηi)i≥1 and (ζi)i≥1 is exactly the same as in [18, Section

4], only replacing h therein by hn.

All aforementioned construction is performed in a filtered probability space (Ω,F I , (F I
t )t∈[0,1],P)

such that there exist (An)n=1,··· ,N ∈ F I
0 with P(An) = hn(0, 0) and two independent sequences of

iid F I -measurable random variables (ηi)i≥1 and (ζi)i≥1 with uniform distribution on [0, 1], more-

over these two sequences are independent of both Z and (An)n=1,··· ,N . These requirements can be

satisfied by extending F 0 (resp. F ) to F I
0 (resp. F I). As for the filtration (F I

t )t∈[0,1], we require

that it is right continuous and complete under P, moreover Z, as the difference of two indepen-

dent Poisson processes with intensity β, is adapted to (F I
t )t∈[0,1]. Therefore Z is independent of

(An)n=1,··· ,N , since Z has independent increments. Finally, we also assume that (F I
t )t∈[0,1] is rich

enough so that (νi)i≥1 and (τ−i )i≥1 discussed above are F I -stopping times. An argument similar

to [18, Lemma 4.3] yields:

Lemma 2.5.4 Given point processes (XB, XS ; F I) constructed above, the F I-intensities of Y B

and Y S at t ∈ [0, 1) are given by

N∑
n=1

I{An}
hn(Yt− + 1, t)

hn(Yt−, t)
β and

N∑
n=1

I{An}
hn(Yt− − 1, t)

hn(Yt−, t)
β,

respectively.

Now we are ready to verify that our construction is as desired.

Proposition 2.5.5 The process Y as constructed above satisfies the following properties:

i) [Y1 ∈ [an, an+1)] = An a.s. for n = 1, · · · , N ;

ii) Y B and Y S are independent Poisson processes with intensity β with respect to the natural

filtration (F Y
t )t∈[0,1] of Y ;

iii) (XB, XS ; F I) is admissible in the sense of Definition 2.2.2.

Proof. To verify that Y satisfies the desired properties, let us introduce an auxiliary process

(`t)t∈[0,1):

`t :=
N∑
n=1

I{An}
hn(0, 0)

hn(Yt, t)
, t ∈ [0, 1).

When n = 2, · · · , N − 1, there is only almost surely finite number of positive (resp. negative)

jumps of Y on An when Y· ≥ mn (resp. Y· ≤ mn). Therefore Yt is finite on these An when t < 1

is fixed. When n = 1 (resp. n = N), there is finite number of positive (resp. negative) jumps of Y

on A1 (resp. AN ) before t. Hence Yt < ∞ on A1 (resp. Yt > −∞ on AN ). This analysis implies
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hn(Yt, t) > 0 on An for each n = 1, · · · , N and t < 1. Therefore (`t)t∈[0,1) is well defined positive

process with `0 = 1.

To prove i), we first show that ` is a positive F I -local martingale on [0, 1). To this end, Itô

formula yields that

d`t =
N∑
n=1

I{An}`t−
[
hn(Yt−, t)− hn(Yt− + 1, t)

hn(Yt− + 1, t)
dMB

t +
hn(Yt−, t)− hn(Yt− − 1, t)

hn(Yt− − 1, t)
dMS

t

]
,

where t ∈ [0, 1). Here

MB = Y B − β
∫ ·

0

N∑
n=1

I{An}
hn(Yr− + 1, r)

hn(Yr−, r)
dr,

MS = Y S − β
∫ ·

0

N∑
n=1

I{An}
hn(Yr− − 1, r)

hn(Yr−, r)
dr,

are all F I -local martingales. Define ζ+
m = inf{t ∈ [0, 1] : Yt = m} and ζ−m = inf{t ∈ [0, 1] : Yt =

−m}. Consider the sequence of stopping time (ηm)m≥1:

ηm :=
(
I{∪N−1

n=2 An}
ζ+
m ∧ ζ−m + I{A1}ζ

+
m + I{AN}ζ

−
m

)
∧ (1− 1/m).

It follows from the definition of hn that each hn(Yt, t) on An is bounded away from zero uniformly in

t ∈ [0, ηm]. This implies that `ηm is bounded, hence `ηm is an F I -martingale. The construction of Y

yields limm→∞ ηm = 1. Therefore, ` is a positive F I -local martingale, hence also a supermartingale,

on [0, 1).

Define `1 := limt→1 `t, which exists and is finite due to Doob’s supermartingale convergence

theorem. This implies hn(Y1−, 1) > 0 on An. On the other hand, the construction of Y yields

Y S (resp. Y B) does not jump at time 1 P-a.s. when Y1− ≤ mn (resp. Y1− ≥ mn). Therefore

hn(Y1, 1) > 0 on An. However hn(·, 1) by definition can only be either 0 or 1. Hence Y1 ∈ [an, an+1)

on An, for each n = 1, · · · , N , and the statement i) is confirmed.

As for the statement ii), we will prove that Y B is an F Y -adapted Poisson process. The similar

argument can be applied to Y S as well. In view of the F I -intensity of Y B calculated in Lemma

2.5.4, one has that, for each i ≥ 1,

Y B
·∧τi∧1 − β

(∫ ·∧τi∧1

0

N∑
n=1

I{An}
hn(Yu− + 1, u)

hn(Yu−, u)
du

)

is an F I -martingale, where τi is the ith jump time of Y . We will show in the next paragraph that,

when stopped at τi ∧ 1, Y B is Poisson process in F Y by showing that (Y B
τi∧t− β(τi ∧ t))t∈[0,1] is an

F Y -martingale. (Here note that τi is an F Y -stopping time.) This in turn will imply that Y B is

a Poisson process with intensity β on [0, τ ∧ 1) where τ = limi→∞ τi is the explosion time. Since

Poisson process does not explode, this will further imply Y B
τ∧1 <∞ and, therefore, τ ≥ 1, P-a.s..
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We proceed by projecting the above martingale into F Y to see that

Y B − β
∫ ·

0

N∑
n=1

P(An|F Y
r )

hn(Yr− + 1, r)

hn(Yr−, r)
dr

is an F Y -martingale when stopped at τi ∧ 1. Therefore, it remains to show that, for almost all

t ∈ [0, 1), on [t ≤ τi],
N∑
n=1

P(An|F Y
t )

hn(Yt− + 1, t)

hn(Yt−, t)
= 1, P-a.s.. (2.5.3)

To this end, we will show, on [t ≤ τi],

P(An|F Y
t ) = hn(Yt, t), for t ∈ [0, 1). (2.5.4)

Then (2.5.3) follows since Yt 6= Yt− only for countably many times.

We have seen that (`u∧τi)u∈[0,t] is a strictly positive F I -martingale for each i. Define a proba-

bility measure Qi ∼ P on F I
t via dQi/dP|F I

t
= `τi∧t. It follows from Girsanov’s theorem that Y B

is a Poisson process when stopped at τi ∧ t and with intensity β under Qi. Therefore, they are

independent from An under Qi. Then, for t < 1, we obtain from the Bayes’s formula that

I{r≤τi∧t}P(An|F Y
r ) = I{r≤τi∧t}

EQi [I{An}`−1
r |F Y

r ]

EQi [`−1
r |F Y

r ]

= I{r≤τi∧t}
EQi [I{An}

hn(Yr,r)
hn(0,0) |F

Y
r ]

EQi [
∑N

n=1 I{An}
hn(Yr,r)
hn(0,0) |F Y

r ]

= I{r≤τi∧t}hn(Yr, r),

(2.5.5)

where the third identity follows from the aforementioned independence of Y and An under Qi

along with the fact that Qi does not change the probability of F I
0 measurable events so that

Qi(An) = P(An) = hn(0, 0). As result, (2.5.4) follows from (2.5.5) after sending i→∞.

Since Y B and Y S are F Y -Poisson processes and they do not jump simultaneously by their

construction, they are then independent. To show the strategy (XB, XS ; F I) constructed is ad-

missible, it remains to show both E[XB
1 I{An}] and E[XS

1 I{An}] are finite for each n = 1, · · · , N . To

this end, for each n, E[XB
1 I{An}] = E[XB,B

1 I{An}]+E[XB,S
1 I{An}], where E[XB,S

1 I{An}] ≤ E[ZS ] <∞

and E[XB,B
1 I{An}] ≤ E[Y B

1 I{An}] + E[XS,B
1 I{An}] ≤ E[ZB1 |Z ∈ [an, an+1)] + E[ZS1 ] < ∞. Similar

argument also implies E[XS
1 I{An}] < ∞. Finally, since N < ∞, p is bounded, Definition 2.2.2 iv)

is verified using E[XB
1 I{An}],E[XS

1 I{An}] <∞ for each n ∈ {1, . . . , N}. �

2.6 Convergence

Collecting results from previous sections, we will prove Theorems 2.2.12 and 2.2.13 in this section.

Let us first construct a sequence of random variables (ṽδ)δ>0, each of which will be the fundamental

value in the Glosten-Milgrom model with order size δ.
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Adding to the sequence of canonical spaces (Ωδ,FZ,δ, (FZ,δ
t )t∈[0,1],Pδ), defined at the beginning

of section 2.2.2, we introduce (Ω0,F 0, (F 0
t )t∈[0,1],P0), where Ω0 = D([0, 1],R) is the space of R-

valued càdlàg functions on [0, 1] with coordinate process Z0, and P0 is the Wiener measure. Denote

by P0,y the Wiener measure under which Z0
0 = y a.s.. Let us now define a R ∪ {−∞,∞}-valued

sequence (a0
n)n=1,···N+1 via

a0
1 = −∞, a0

n = Φ−1 (p1 + · · ·+ pn−1) , n = 2, · · · , N + 1,

where Φ(·) =
∫ ·
−∞

1√
2π
e−x

2/2 dx. Using this sequence, one can define a pricing rule following the

same recipe in (2.2.5):

p0(y, t) :=
N∑
n=1

vnh
0
n(y, t), y ∈ R, t ∈ [0, 1], n ∈ {1, · · · , N}, (2.6.1)

where h0
n(y, t) := P0,y

(
Z0

1−t ∈ [a0
n, a

0
n+1)

)
= Φ(a0

n+1 − y)− Φ(a0
n − y).

As we will see later, this is exactly the pricing rule in the Kyle-Back equilibrium. Moreover,

the sequence (aδn)n=1,··· ,N+1, associated to (ṽδ)δ>0 constructed below, converges to (a0
n)n=1,··· ,N+1

as δ ↓ 0, helping to verify Definition 2.2.11 i).

Lemma 2.6.1 For any ṽ with distribution (2.1.1) where N may not be finite, there exists a sequence

of random variables (ṽδ)δ>0, each of which takes value in {v1, · · · , vN}, such that

i) Assumption 2.4.1 is satisfied when ṽ therein is replaced by each ṽδ 10;

ii) Law(ṽδ) =⇒ Law(ṽ), as δ ↓ 0. Here =⇒ represents the weak convergence of probability

measures.

Proof. For each δ > 0, ṽδ will be constructed by adjusting pn in (2.1.1) to some pδn, n = 1, · · · , N .

Starting from [ṽ = v1], choose aδ1 = −∞, aδ2 = inf{y ∈ δZ : Pδ(Zδ1 ≤ y) ≥ p1}, and set Pδ(ṽδ =

v1) = Pδ(Zδ1 ∈ [aδ1, a
δ
2)). Moving on to [ṽδ = v2], choose aδ3 = inf{y ∈ δZ : Pδ(Zδ1 ≤ y) ≥

p1 + p2 and (aδ2 + y − δ)/2 /∈ δZ} and set Pδ(ṽδ = v2) = Pδ(Zδ1 ∈ [aδ2, a
δ
3)). Following this step, we

can define aδn inductively. When N < ∞, we set aδN+1 = ∞. This construction gives a sequence

of random variables (ṽδ)δ>0 taking values in {v1, · · · , vN} such that Pδ(ṽδ = vn) = pδn := Pδ(Zδ1 ∈

[aδn, a
δ
n+1)) with

∑N
n=1 p

δ
n = 1, moreover each sequence (aδn)n=1,··· ,N+1 satisfies Assumption 2.4.1.

It remains to show Law(ṽδ) =⇒ Law(ṽ) as δ ↓ 0. To this end, note that aδn is either the

(
∑n−1

i=1 pi)
th quantile of the distribution of Zδ1 or δ above this quantile. When βδ is chosen as 1/(2δ2),

it follows from [24, Chapter 6, Theorem 5.4] that Pδ =⇒ P0, in particular, Law(Zδ1) =⇒ Law(Z0
1 ).

Therefore,

lim
δ↓0

aδn = a0
n, n = 1, · · · , N + 1. (2.6.2)

10When the order size is δ, Assumption 2.4.1 iii) reads (aδn + aδn+1 − δ)/2 /∈ δZ.
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For any ε > 0 and n ∈ {1, · · · , N}, the previous convergence yields the existence of a sufficiently

small δε,n, such that [a0
n + ε, a0

n+1 − ε) ⊆ [aδn, a
δ
n+1) ⊆ [a0

n − ε, a0
n+1 + ε) for any δ ≤ δε,n. Hence

Pδ
(
Zδ1 ∈ [aδn, a

δ
n+1)

)
≤ Pδ

(
Zδ1 ∈ [a0

n − ε, a0
n+1 + ε)

)
→ P0

(
Z0

1 ∈ [a0
n − ε, a0

n+1 − ε)
)
,

Pδ
(
Zδ1 ∈ [aδn, a

δ
n+1)

)
≥ Pδ

(
Zδ1 ∈ [a0

n + ε, a0
n+1 − ε)

)
→ P0

(
Z0

1 ∈ [a0
n + ε, a0

n+1 − ε)
)
,

as δ ↓ 0, where both convergence follow from Law(Zδ1) =⇒ Law(Z0
1 ) and the fact that the distri-

bution of Z0
1 is continuous. Since ε is arbitrarily chosen, utilizing the continuity of the distribution

for Z0
1 again, we obtain from the previous two inequalities

lim
δ↓0

Pδ
(
Zδ1 ∈ [aδn, a

δ
n+1)

)
= P0

(
Z0

1 ∈ [a0
n, a

0
n+1)

)
.

Hence limδ↓0 p
δ
n = p0

n for each n ∈ {1, · · ·N} and Law(ṽδ)⇒ Law(ṽ). �

After (ṽδ)δ>0 is constructed, it follows from Sections 2.4 and 2.5 that a sequence of strategies

(XB,δ, XS,δ; F I,δ)δ>0 exists, each of which satisfies conditions in Proposition 2.4.5. Hence pδ in

(2.2.5) is rational for each δ > 0. It then remain to verify Definition 2.2.11 iii) to establish an

asymptotic Glosten-Milgrom equilibrium.

Before doing this, we prove Theorem 2.2.13 first. Let us recall the Kyle-Back equilibrium. Fol-

lowing arguments in [32] and [5], the equilibrium pricing rule is given by (2.6.1) and the equilibrium

demand satisfies the SDE

Y 0 = Z0 +
N∑
n=1

I{ṽ=vn}

∫ ·
0

∂yh
0
n(Y 0

r , r)

h0
n(Y 0

r , r)
dr,

where Z0 is a P0-Brownian motion modeling the demand from noise traders. Hence the insider’s

strategy in the Kyle-Back equilibrium is given by

X0 =

N∑
n=1

I{ṽ=vn}

∫ ·
0

∂yh
0
n(Y 0

r , r)

h0
n(Y 0

r , r)
dr.

Proof of Theorem 2.2.13. As we have seen in Lemma 2.6.1, Assumption 2.4.1 is satisfied by each

ṽδ. It then follows from Proposition 2.5.5 i) and ii) that the distribution of Y δ on [ṽδ = vn] is

the same as the distribution of Zδ conditioned on Zδ1 ∈ [aδn, a
δ
n+1). Denote Y 0,n = Y 0I{ṽ=vn} as

the cumulative demand in Kyle Back equilibrium when the fundamental value is vn. The same

argument as in [18, Lemma 5.4] yields

Law(Zδ |Zδ1 ∈ [aδn, a
δ
n+1)) =⇒ Law(Y 0,n), as δ ↓ 0,

for each n ∈ {1, · · · , N}. It then follows

Law(Y δ; F I,δ) =⇒ Law(Y 0; F I,0), as δ ↓ 0, (2.6.3)
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where the filtration F I,0 is F 0 initially enlarged by ṽ. Recall from (2.5.1) that Y δ = Zδ +XB,δ −

XS,δ, moreover Y 0 = Z0 +X0. Combining (2.6.3) with Law(Zδ) =⇒ Law(Z0), we conclude from

[30, Proposition VI.1.23] that Law(XB,δ −XS,δ) =⇒ Law(X0) as δ ↓ 0. �

In the rest of the section, Definition 2.2.11 iii) is verified for strategies (XB,δ, XS,δ; F I,δ)δ>0,

which concludes the proof of Theorem 2.2.12. We have seen in Proposition 2.4.2 that the expected

profit of the strategy (XB,δ, XS,δ; F I,δ), constructed in section 2.5, satisfies

J δ(vn, 0, 0;XB,δ, XS,δ) = U δ(vn, 0, 0)− Lδ(vn, 0, 0), n ∈ {1, · · · , N},

where

Lδ(vn, 0, 0) = δβδ Eδ,0
[∫ 1

0
(vn − pδ(mδ

n, r)) I{Y δr−=mδn}dr

∣∣∣∣ ṽδ = vn

]
− δβδ Eδ,0

[∫ 1

0
(vn − pδ(mδ

n, r)) I{Y δr−=mδn}dr

∣∣∣∣ ṽδ = vn

]
.

(2.6.4)

This expression for Lδ follows from changing the order size in (2.4.7) from 1 to δ and utilizing

θB,S,δ(mδ
n, ·) = θS,S,δ(mδ

n, ·) = θS,B,δ(mδ
n, ·) = θB,B,δ(mδ

n, ·) = 0 from Corollary 2.5.3 i) and iii),

θB,T,δ = θS,T,δ ≡ 0 from Remark 2.4.6, and the expectations are taken under Pδ,0. Here mδ
n :=

δb(an + an+1 − δ)/2δc the largest integer multiple of δ smaller than mδ
n and by mδ

n := δd(an +

an+1 − δ)/2δe the smallest integer multiple of δ larger than mδ
n. To prove Theorem 2.2.13, let us

first show

lim
δ↓0

Lδ(vn, 0, 0) = 0, n ∈ {1, · · · , N}. (2.6.5)

In the rest development, we fix vn and denote Lδ = Lδ(vn, 0, 0).

Before presenting technical proofs for (2.6.5), let us first introduce a heuristic argument. First,

since βδ = 1/(2δ2), (2.6.4) can be rewritten as

Lδ = Eδ,0
[
I
δ,n
1

∣∣∣ ṽδ = vn

]
− Eδ,0

[
Iδ,n1

∣∣∣ ṽδ = vn

]
, (2.6.6)

where

I
δ,n
· =

∫ ·
0

(vn − pδ(Y δ
r− − δ, r)) dLδ,m

δ
n

r , Iδ,n· =

∫ ·
0

(vn − pδ(Y δ
r− + δ, r)) dLδ,m

δ
n

r ,

and Lδ,y· = 1
2δ

∫ ·
0 I{Y δr−=y}dr is the scaled occupation time of Y δ at level y. Here Y δ is, in its natural

filtration, the difference of two independent Poisson Y B,δ and Y S,δ with jump size δ and intensity

βδ, cf. Proposition 2.5.5 ii). For the integrands in I
δ,n

and Iδ,n, we expect that vn−pδ(Y δ
· ±δ, ·)

L−→

vn − p0(Y 0
· , ·), where Y 0 is a P0-Brownian motion. As for the integrators, we will show both Lδ,m

δ
n·

and Lδ,m
δ
n· converge weakly to Lmn· , which is the Brownian local time at level mn := (a0

n + a0
n+1)/2.

Then the weak convergence of both integrands and integrators yield

I
δ,n
· and Iδ,n·

L−→ I0,n
· :=

∫ ·
0

(vn − p0(Y 0
r , r)) dLmnr , as δ ↓ 0.
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Finally passing the previous convergence to conditional expectation, the two terms on the right

hand side of (2.6.6) cancel each other in the limit.

Proposition 2.6.2 On the family of filtration (F Y,δ
t )t∈[0,1],δ≥0, generated by (Y δ)δ≥0,

pδ(Y δ
· ± δ, ·)

L−→ p0(Y 0
· , ·) on D[0, 1) as δ ↓ 0.

Proof. To simplify presentation, we will prove

pδ(Y δ
· , ·)

L−→ p0(Y 0
· , ·) as δ ↓ 0. (2.6.7)

The assertions with ±δ can be proved by replacing Y δ by Y δ± δ. First, applying Itô’s formula and

utilizing (2.4.1) yield

pδ(Y δ
· , ·) = pδ(0, 0) +

∫ ·
0

1

δ

(
pδ(Y δ

r− + δ, r)− pδ(Y δ
r−, r)

)
dY

B,δ
r

+

∫ ·
0

1

δ

(
pδ(Y δ

r− − δ, r)− pδ(Y δ
r−, r)

)
dY

S,δ
r ,

(2.6.8)

where Y
B,δ
· = Y B,δ

· − δβδ· and Y
S,δ
· = Y S,δ

· − δβδ· are compensated jump processes. For pδ(0, 0) on

the right hand side, the same argument in Lemma 2.6.1 yields limδ↓0 p
δ(0, 0) = p0(0, 0). As for the

other two stochastic integrals, we will show that they converge weakly to

1√
2

∫ ·
0
∂yp

0(Y 0
r , r)dW

B
r and − 1√

2

∫ ·
0
∂yp

0(Y 0
r , r)dW

S
r , respectively,

where WB and WS are two independent Brownian motion. These estimates then imply the right

hand side of (2.6.8) converges weakly to

p0(0, 0) +

∫ ·
0
∂yp

0(Y 0
r , r) dWr,

where W = WB/
√

2 −WS/
√

2 is another Brownian motion. Since p0 satisfies ∂tp
0 + 1

2∂
2
yyp

0 = 0,

the previous process has the same law as p0(Y 0
· , ·). Therefore (2.6.7) is confirmed.

To prove the aforementioned convergence of stochastic integrals, let us first derive the conver-

gence of (pδ(·+ δ, ·)− pδ(·, ·))/δ on R× [0, 1). To this end, it follows from (2.2.5) that

1

δ
(pδ(y + δ, t)− pδ(y, t))

=
1

δ

N∑
n=1

vn

[
Pδ,y+δ(Zδ1−t ∈ [aδn, a

δ
n+1))− Pδ,y(Zδ1−t ∈ [aδn, a

δ
n+1))

]
=

1

δ

N∑
n=1

vn

[
Pδ,y(Zδ1−t = aδn − δ)− Pδ,y(Zδ1−t = aδn+1 − δ)

]
=

1

δ

N∑
n=1

vn

[
P1,0

(
Z1

1−t =
aδn − δ − y

δ

)
− P1,0

(
Z1

1−t =
aδn+1 − δ − y

δ

)]
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=
N∑
n=1

vn

1

δ
e−

1−t
δ2 I∣∣∣∣aδn−δ−yδ

∣∣∣∣
(

1− t
δ2

)
− 1

δ
e−

1−t
δ2 I∣∣∣∣aδn+1−δ−y

δ

∣∣∣∣
(

1− t
δ2

)
→

N∑
n=1

vn

[
1√

2π(1− t)
exp

(
−(a0

n − y)2

2(1− t)

)
− 1√

2π(1− t)
exp

(
−

(a0
n+1 − y)2

2(1− t)

)]

= ∂yp
0(y, t), as δ ↓ 0.

Here Z1
1−t is the difference of two independent Poisson random variables with common parameter

(1− t)βδ = (1− t)(2δ2)−1 under P1,0. Hence the fourth identity above follows from the probability

distribution function of the Skellam distribution: P1,0(Z1
1−t = k) = e−2µI|k|(2µ), where I|k|(·) is

the modified Bessel function of the second kind and µ = (1 − t)(2δ2)−1, cf. [40]. The convergence

above is locally uniformly in R× [0, 1) according to [3, Theorem 2]. The last identity above follows

from taking y derivative to p0(y, t) =
∑N

n=1

(
Φ
(
a0n+1−y√

1−t

)
− Φ

(
a0n−y√

1−t

))
, cf. (2.6.1). Combining

the previous locally uniform convergence of (pδ(· + δ, ·) − pδ(·, ·))/δ with the weak convergence

Y δ L−→ Y 0 in their natural filtration, we have from [10, Chapter 1, Theorem 5.5]:

1

δ

(
pδ(Y δ

· + δ, ·)− pδ(Y δ
· , ·)

)
L−→ ∂yp

0(Y 0
· , ·) on D[0, 1) as δ ↓ 0.

As for the integrators in (2.6.8), Y
B,δ L−→ WB/

√
2 and Y

S,δ L−→ WS/
√

2. Moreover, both

(Y
B,δ

)δ>0 and (Y
S,δ

)δ>0 are predictable uniform tight (P-UT), since 〈Y B,δ〉t = 〈Y S,δ〉t = t/2, for

any δ > 0, cf. [30, Chapter VI, Theorem 6.13 (iii)]. Then combining weak convergence of both

integrands and integrators, we obtain from [30, Chapter VI, Theorem 6.22] that∫ ·
0

1

δ
(pδ(Y δ

r− + δ, r)− pδ(Y δ
r−, r)) dY

B,δ
r

L−→ 1√
2

∫ ·
0
∂yp

0(Y 0
r , r) dW

B
r on D[0, 1) as δ ↓ 0.

A similar weak convergence holds for the other stochastic integral in (2.6.8) as well. Therefore

the claimed weak convergence of stochastic integrals on the right hand side of (2.6.8) is confirmed.

�

Having studied the weak convergence of integrands in I
δ,n

and Iδ,n, let us switch our attention

to the integrators Lδ,mδn and Lδ,mδn .

Proposition 2.6.3 On the family of filtration (F Y,δ
t )t∈[0,1],δ≥0, for any n ∈ {1, · · · , N},

Lδ,mδn L−→ Lmn and Lδ,mδn L−→ Lmn on D[0, 1] as δ ↓ 0.

Proof. For simplicity of presentation, we will prove

Lδ,0 L−→ L0 as δ ↓ 0. (2.6.9)

Since limδ↓0m
δ
n = limδ↓0m

δ
n = mn follows from (2.6.2), the statement of the proposition follows

from replacing Y δ by Y δ −mδ
n (or by Y δ −mδ

n) and Y 0 by Y 0 −mn in the rest of the proof. To
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prove (2.6.9), applying Itô’s formula to |Y δ
· | yields

|Y δ
· | =

∑
r≤·

(
|Y δ
r | − |Y δ

r−|
)

=

∫ ·
0

(
|Y δ
r− + δ| − |Y δ

r−|
)
d(Y B,δ

r /δ − βδr)

+

∫ ·
0

(
|Y δ
r− − δ| − |Y δ

r−|
)
d(Y S,δ

r /δ − βδr)

+

∫ ·
0

(
|Y δ
r− + δ|+ |Y δ

r− − δ| − 2|Y δ
r−|
)
βδdr

=

∫ ·
0

(
|Y δ
r− + δ| − |Y δ

r−|
)
dY

B,δ
r /δ +

∫ ·
0

(
|Y δ
r− − δ| − |Y δ

r−|
)
dY

S,δ
r /δ

+

∫ ·
0

1

δ
I{Y δr−=0}dr,

(2.6.10)

where the third identity follows from |y+ δ|+ |y− δ|− 2|y| = 2δ I{y=0} for any y ∈ R. On the other

hand, Tanaka formula for Brownian motion is

|Y 0
· | =

∫ ·
0
sgn(Y 0

r ) dY 0
r + 2L0

· , (2.6.11)

where sgn(x) = 1 when x > 0 or −1 when x ≤ 0.

The convergence (2.6.9) is then confirmed by comparing both sides of (2.6.10) and (2.6.11).

To this end, since Y δ L−→ Y 0 and the absolute value is a continuous function, then |Y δ| L−→ |Y 0|

follows from [10, Chapter 1, Theorem 5.1]. Then (2.6.9) is confirmed as soon as we prove the

martingale term on the right hand side of (2.6.10) converges weakly to the martingale in (2.6.11),

which we prove in the next result. �

Lemma 2.6.4 Let M δ :=
∫ ·

0

(
|Y δ
r− + δ| − |Y δ

r−|
)
dY

B,δ
r /δ+

∫ ·
0

(
|Y δ
r− − δ| − |Y δ

r−|
)
dY

S,δ
r /δ and M0 :=∫ ·

0 sgn(Y 0
r ) dY 0

r . Then M δ L−→M0 on D[0, 1] as δ ↓ 0.

Proof. Define f δ(y) := 1
δ (|y + δ| − |y|) for y ∈ R and observe

f δ(y) =


1 y ≥ 0

2y/δ + 1 −δ < y < 0

−1 y ≤ −δ

.

It is clear that f δ converges to sgn(·) locally uniformly on R \ {0}. On the other hand, Y δ L−→ Y 0

and the law of Y 0 is continuous. It then follows from [10, Chapter 1, Theorem 5.5] that f δ(Y δ)
L−→

sgn(Y 0). As for the integrators (Y
B,δ

)δ>0, as we have seen in the proof of Proposition 2.6.2, they

converge weakly to WB/
√

2 and are P-UT. Then [30, Chapter VI, Theorem 6.22] implies∫ ·
0

(
|Y δ
r− + δ| − |Y δ

r−|
)
dY

B,δ
r /δ

L−→ 1√
2

∫ ·
0
sgn(Y 0

r ) dWB
r .

Similar argument yields∫ ·
0

(
|Y δ
r− − δ| − |Y δ

r−|
)
dY

S,δ
r /δ

L−→ − 1√
2

∫ ·
0
sgn(Y 0

r ) dWS
r .
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Here WB and WS are independent Brownian motion. Defining W = WB/
√

2−WS/
√

2, we obtain

from the previous two convergence that

M δ L−→
∫ ·

0
sgn(Y 0

r ) dWr which has the same law as M0. �

Propositions 2.6.2 and 2.6.3 combined yields the weak convergence of (I
δ,n

)δ>0 and (Iδ,n)δ>0. More-

over the sequence of local time in Proposition 2.6.3 also converge in expectation.

Corollary 2.6.5 On the family of filtration (F Y,δ
t )t∈[0,1],δ≥0, for any n ∈ {1, · · · , N},

I
δ,n

and Iδ,n
L−→ I0,n on D[0, 1) as δ ↓ 0.

Proof. The statement follows from combining Propositions 2.6.2 and 2.6.3, and appealing to [30,

Chapter VI, Theorem 6.22]. In order to apply the previous result, we need to show that both

(Lδ,mδn)δ>0 and (Lδ,mδn)δ>0 are P-UT. This property will be verified for (Lδ,mδn)δ>0. The same argu-

ment works for (Lδ,mδn)δ>0 as well. To this end, since Lδ,mδn is a nondecreasing process, (Lδ,mδn)δ>0

is P-UT as soon as (V ar(Lδ,mδn)1)δ>0 is tight, where V ar(X) is the variation of the process X, cf.

[30, Chapter VI, 6.6]. Note V ar(Lδ,mδn)1 = Lδ,m
δ
n

1 , since Lδ,mδn is nondecreasing. Then the tightness

of (V ar(Lδ,mδn)1)δ>0 is implied by Proposition 2.6.3. �

Corollary 2.6.6 For any n ∈ {1, · · · , N} and t ∈ [0, 1],

lim
δ↓0

Eδ,0
[
Lδ,m

δ
n

t

]
= lim

δ↓0
Eδ,0

[
Lδ,m

δ
n

t

]
= E0,0 [Lmnt ] .

Proof. For simplicity of presentation, we will prove limδ↓0 Eδ,0[Lδ,0t ] = E0,0[L0
t ]. Then the statement

of the corollary follows from replacing Y δ
t by Y δ

t −mδ
n or Y δ

t −mδ
n in the rest of the proof. Since

the stochastic integrals in (2.6.10) are Pδ,0-martingales,

2Eδ,0[Lδ,0t ] = Eδ,0[|Y δ
t |].

Since E[(Y δ
t )2] = t for any δ > 0, (|Y δ

t |;Pδ,0)δ>0 is uniformly integrable. It then follows from

[24, Appendix, Proposition 2.3] and Law(|Y δ
t |) =⇒ Law(|Y 0

t |) that limδ↓0 Eδ,0[|Y δ
t |] = E0,0[|Y 0

t |].

Therefore the claim follows since E0,0[|Y 0
t |] = 2E0,0[L0

t ] cf. (2.6.11). �

Collecting previous results, the following result confirms (2.6.5).

Proposition 2.6.7 For the strategies (XB,δ, XS,δ; F I,δ)δ>0 constructed in section 2.5,

lim
δ↓0

Lδ(vn, 0, 0) = 0, n ∈ {1, · · · , N}.
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Proof. Fix any ε ∈ (0, 1). Corollary 2.6.5 implies that Law(I
δ,n
1−ε; F

Y,δ) =⇒ Law(I0,n
1−ε; F

0). Recall

Law(ṽδ) =⇒ Law(ṽ) from Lemma 2.6.1. It then follows

Law
(
I
δ,n
1−ε I{ṽδ=vn}; F

Y,δ
)

=⇒ Law
(
I0,n

1−ε I{ṽ=vn}; F
0
)
.

On the other hand, since N is finite, pδ is bounded uniformly in δ. Then there exists constant

C such that |Iδ,n1−ε| I{ṽδ=vn} ≤ CLδ,m
δ
n

1−ε , where the expectation of the upper bound converges, cf.

Corollary 2.6.6. Therefore appealing to [24, Appendix Theorem 1.2] and utilizing limδ↓0 Pδ(ṽδ =

vn) = P0(ṽ = vn) from Lemma 2.6.1, we obtain

Eδ,0
[
I
δ,n
1−ε | ṽδ = vn

]
=

Eδ,0
[
I
δ,n
1−ε I{ṽδ=vn}

]
Pδ(ṽδ = vn)

→
E0,0

[
I0,n

1−ε I{ṽ=vn}

]
P0(ṽ = vn)

= E0,0
[
I0,n

1−ε | ṽ = vn

]
,

(2.6.12)

as δ ↓ 0. On the other hand, since limδ↓0 Pδ(ṽδ) = P0(ṽ = vn) > 0, there exists a constant C such

that

Eδ,0
[
|Iδ,n1 − I

δ,n
1−ε|

∣∣∣ ṽδ = vn

]
≤ C Eδ,0

[
Lδ,m

δ
n

1 − Lδ,m
δ
n

1−ε

]
→ C E0,0

[
Lmn1 − Lmn1−ε

]
,

as δ ↓ 0, where the convergence follows from applying Corollary 2.6.6 twice. For the difference of

Brownian local time, Lévy’s result (cf. [31, Chapter 3, Theorem 6.17]) yields

E0,0
[
Lmn1 − Lmn1−ε

]
= E0,−mn [L0

1 − L0
1−ε
]

=
1

2
E0,−mn

[
sup
r≤1

Y 0
r − sup

r≤1−ε
Y 0
r

]
=

√
2

π
(1−

√
1− ε),

where Y 0 is a P0-Brownian motion and E0,y[supr≤t Y
0
r ] =

√
2t/π+ y is utilized to obtain the third

identity. Now the previous two estimates combined yield

lim sup
δ↓0

Eδ,0
[
|Iδ,n1 − I

δ,n
1−ε|

∣∣∣ ṽδ = vn

]
≤ C(1−

√
1− ε), for another constant C. (2.6.13)

Estimates in (2.6.12) and (2.6.13) also hold when I
δ,n

is replaced by Iδ,n. These estimates then

yield

Eδ,0
[
I
δ,n
1 − I

δ,n
1 | ṽ

δ = vn

]
≤ Eδ,0

[
I
δ,n
1−ε − I

δ,n
1−ε | ṽ

δ = vn

]
+ Eδ,0

[
|Iδ,n1 − I

δ,n
1−ε|

∣∣∣ ṽδ = vn

]
+ Eδ,0

[
|Iδ,n1 − I

δ,n
1−ε|

∣∣∣ ṽδ = vn

]
.

Sending δ ↓ 0 in the previous inequality, the first term on the right side vanishes in the limit,

because both conditional expectations converge to the same limit, the limit superior of both second

and third terms are less than C(1−
√

1− ε). Now since ε is arbitrarily choose, sending ε→ 1 yields

lim supδ↓0 Eδ,0
[
I
δ,n
1 − I

δ,n
1 | ṽδ = vn

]
≤ 0. Similar argument leads to

lim inf
δ↓0

Eδ,0
[
I
δ,n
1 − I

δ,n
1 | ṽ

δ = vn

]
≥ 0,
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which concludes the proof. �

Finally the proof of Theorem 2.2.12 is concluded.

Proof of Theorem 2.2.12. It remains to verify Definition 2.2.11 iii). Fix vn and (y, t) = (0, 0)

throughout the proof. We have seen from Proposition 2.4.4 that V δ ≤ US,δ. On the other hand,

Proposition 2.4.2 yields J (XB,δ, XS,δ) = U δ − Lδ. Therefore

sup
(XB ,XS) admissible

J δ(XB, XS)− J δ(XB,δ, XS,δ) ≤ US,δ − U δ + Lδ.

Since limδ↓0 L
δ = 0 is proved in Proposition 2.6.7, it suffices to show limδ↓0 U

S,δ − U δ = 0. To this

end, from the definition of US,δ,

US,δ(0, 0)− U δ(0, 0) = (U δ(−δ, 0)− U δ(0, 0)) I{0≤mδn} = δ(vn − pδ(0, 0))I{0≤mδn}. (2.6.14)

The second identity above follows from (2.4.12) which reads U δ(y, t)−U δ(y−1, t)+δ(vn−pδ(y, t)) =

0 for y ≤ mδ
n when the order size is δ. Therefore limδ↓0 U

S,δ − U δ = 0 is confirmed after sending

δ ↓ 0 in (2.6.14). �

2.7 Appendix

2.7.1 Viscosity Solution

Proposition 2.3.1 will be proved in this section. To simplify notation, δ = 1 and ṽ = vn are fixed

throughout this section. First let us recall the definition of (discontinuous) viscosity solution to

(2.2.8). Given a locally bounded function11 v : Z × [0, 1] → R, its upper-semicontinuous envelope

v∗ and lower-semicontinuous envelope v∗ are defined as

v∗(y, t) := lim sup
t′→t

v(y, t′), v∗(y, t) := lim inf
t′→t

v(y, t′), (y, t) ∈ Z× [0, 1]. (2.7.1)

Definition 2.7.1 Let v : Z× [0, 1]→ R be locally bounded.

i) v is a (discontinuous) viscosity subsolution of (2.2.8) if

−ϕt(y, t)−H(y, t, v∗) ≤ 0,

for all y ∈ Z, t ∈ [0, 1), and any function ϕ : Z × [0, 1] → R continuously differentiable in the

second variable such that (y, t) is a maximum point of v∗ − ϕ.

11Since the state space Z is discrete, v is locally bounded if v(y, ·) is bounded in any bounded neighborhood of t

and any fixed y ∈ Z.
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ii) v is a (discontinuous) viscosity supersolution of (2.2.8) if

−ϕt(y, t)−H(y, t, v∗) ≥ 0,

for all y ∈ Z, t ∈ [0, 1), and any function ϕ : Z × [0, 1] → R continuously differentiable in the

second variable such that (y, t) is a minimum point of v∗ − ϕ.

iii) We say that v is a (discontinuous) viscosity solution of (2.2.8) if it is both subsolution and

supersolution.

For the insider’s optimization problem, let us recall the dynamic programming principle (cf.

e.g. [38, Remark 3.3.3]). Given an admissible strategy (XB, XS), any [t, 1]−valued stopping time

τ , and the fundamental value vn, denote the associated profit by

Int,τ :=

∫ τ

t
(vn − p(Yr− + 1, r))dXB,B

r +

∫ τ

t
(vn − p(Yr− + 2, r))dXB,T

r

+

∫ τ

t
(vn − p(Yr−, r))dXB,S

r −
∫ τ

t
(vn − p(Yr− − 1, r))dXS,S

r

−
∫ τ

t
(vn − p(Yr− − 2, r))dXS,T

r −
∫ τ

t
(vn − p(Yr−, r))dXS,B

r ,

where Y = Z +XB −XS . Then the dynamic programming principle reads:

DPP i) For any admissible strategy (XB, XS) and any [t, 1]-valued stopping time τ ,

V (y, t) ≥ Ey,t[V (τ, Yτ ) + Int,τ ].

DPP ii) For any ε > 0, there exists an admissible strategy (XB, XS) such that for all [t, 1]-valued

stopping time τ ,

V (y, t)− ε ≤ Ey,t[V (τ, Yτ ) + Int,τ ].

The viscosity solution property of the value function V follows from the dynamic programming prin-

ciple and standard arguments in viscosity solutions, (see e.g. [38, Propositions 4.3.1 and 4.3.2]12.)

Therefore Proposition 2.3.1 i) is verified.

Remark 2.7.2 The proof of DPP ii) utilizes the measurable selection theorem. To avoid this

technical result, one could employ the weak dynamic programming principle in [12]. For the

insider’s optimization problem, the weak dynamic programming principle reads:

WDPP i) For any [t, 1]-valued stopping time τ ,

V (y, t) ≤ sup
(XB ,XS)

Ey,t
[
V ∗(τ, Yτ ) + Int,τ

]
.

12Therein the stopping time τm can be chosen as the first jump time of Y where Ytm = y for a sequence (tm)m → t
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WDPP ii) For any [t, 1]-valued stopping time τ and any upper-semicontinuous function ϕ on

Z× [0, 1] such that V ≥ ϕ, then

V (y, t) ≥ sup
(XB ,XS)

Ey,t
[
ϕ(τ, Yτ ) + Int,τ

]
.

Conditions A1, A2, and A3 from Assumption A in [12] are clearly satisfied in the current context.

Condition A4 from Assumption A can be verified following the same argument in [12, Proposition

5.4]. Therefore aforementioned weak dynamic programming principle holds. Hence the value

function is a viscosity solution to (2.2.8) following from arguments similar to [12, Section 5.2].

Now the proof of Proposition 2.3.1 ii) is presented. To prove (vn, y, t, V ) ∈ dom(H), observe from

the viscosity supersolution property of V that H(vn, y, t, V∗) < ∞, hence (vn, y, t, V∗) ∈ dom(H).

On the other hand, for any integrable intensities θi,j , i ∈ {B,S} and j ∈ {B, T, S}, due to Definition

2.2.2 iv), one can show Ey,t[Int,1] is a continuous function in t. As a supremum of a family of

continuous function (cf. (2.2.7)), V is then lower-semicontinuous in t. Therefore V∗ ≡ V , which

implies (vn, y, t, V ) ∈ dom(H) for any vn, (y, t) ∈ Z× [0, 1). It then follows from (2.3.1) and (2.3.2)

that

V (y−1, t)+p(y−1, t)−vn ≤ V (y, t) ≤ V (y−1, t)+p(y, t)−vn, for any (y, t) ∈ Z× [0, 1). (2.7.2)

Taking limit supremum in t in the previous inequalities and utilizing the continuity of t 7→

p(y, t), it follows that the previous inequalities still hold when V is replaced by V ∗, which means

(vn, y, t, V
∗) ∈ dom(H) for any vn, (y, t) ∈ Z× [0, 1). As a result, H(vn, y, t, V∗) and H(vn, y, t, V

∗)

have the reduced form (2.3.3) where V is replaced by V∗ and V ∗, respectively. Hence Definition

2.7.1 implies that V is a viscosity solution of (2.3.4).

To prove Proposition 2.3.1 iii) and iv), let us first derive a comparison result for (2.3.4). The

function v : Z× [0, 1]→ R has at most polynomial growth in its first variable if there exist C and

n such that |v(y, t)| ≤ C(1 + |y|n), for any (y, t) ∈ Z× [0, 1].

Lemma 2.7.3 Assume that u (resp. v) has at most polynomial growth and that it is upper-

semicontinuous viscosity subsolution (resp. lower-semicontinuous supersolution) to (2.3.4). If

u(·, 1) ≤ v(·, 1), then u ≤ v in Z× [0, 1).

Assume this comparison result for a moment. Inequalities (2.7.2) and Assumption 2.2.5 com-

bined imply that V is of at most polynomial growth. Then Lemma 2.7.3 and (2.7.1) combined yield

V∗ ≤ V ∗ ≤ V∗, which implies the continuity of t 7→ V (y, t), hence Proposition 2.3.1 iii) is verified.

On the other hand, one can prove Ṽ (y, t) := Ey,t [V (Z1, 1)] is of at most polynomial growth and is
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another viscosity solution to (2.3.4)13. Then Lemma 2.7.3 yields

V (y, t) = Ṽ (y, t) = Ey,t [V (Z1, 1)] ,

which confirms Proposition 2.3.1 iv) via the Markov property of Z.

Proof of Lemma 2.7.3. For λ > 0, define ũ = eλtu and ṽ = eλtv. One can check ũ (resp. ṽ) is a

viscosity subsolution (resp. supersolution) to

−wt + λw − (w(y + 1, t)− 2w(y, t) + w(y − 1, t))β = 0. (2.7.3)

Since the comparison result for (2.7.3) implies the comparison result for (2.2.8), it suffices to consider

u (resp. v) as the viscosity subsolution (resp. supersolution) of (2.7.3).

Let C and n be constants such that |u|, |v| ≤ C(1 + |y|n) on Z × [0, 1]. Consider ψ(y, t) =

e−αt(y2n + C̃) for some constants α and C̃. It follows

−ψt + λψ + (ψ(y + 1, t)− 2ψ(y, t) + ψ(y − 1, t))β

> e−αt
(

(α+ λ)(y2n + C̃)− 2βy2n
)
> 0,

when α + λ > 2β. Choosing α satisfying the previous inequality, then v + ξψ, for any ξ > 0, is

a viscosity supersolution to (2.7.3). Once we show u ≤ v + ξψ, the statement of the lemma then

follows after sending ξ ↓ 0.

Since both u and v have at most linear growth

lim
|y|→∞

(u− v − ξψ)(y, t) = −∞. (2.7.4)

Replacing v by v+ξψ, we can assume that u (resp. v) is a viscosity subsolution (resp. supersolution)

to (2.7.3) and

sup
Z×[0,1]

(u− v) = sup
O×[0,1]

(u− v), for some compact set O ⊂ Z.

Then u ≤ v follows from the standard argument in viscosity solutions (cf. e.g. [38, Theorem 4.4.4]),

which we briefly recall below.

Assume M := supZ×[0,1](u − v) = supO×[0,1](u − v) > 0 and the maximum is attained at

(x, t) ∈ O × [0, 1]. For any ε > 0, define

Φε(x, y, t, s) := u(x, t)− v(y, s)− φε(x, y, t, s),

where φε(x, y, t, s) := 1
ε [|x − y|2 + |t − s|2]. The upper-semicontinuous function Φε attains its

maximum, denoted by Mε, at (xε, yε, tε, sε). One can show, using the same argument as in [38,

13Write Ṽ (y, t) = E0 [V (Z1−t + y, 1)]. One can utilize the Markov property of Z to show that Ṽ is continuous

differentiable and Ṽ is a classical solution to (2.3.4).
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Theorem 4.4.4],

Mε →M and (xε, yε, tε, sε)→ (x, x, t, t) ∈ O2 × [0, 1]2 as ε ↓ 0.

Here (xε, yε, tε, sε) ∈ O2 × [0, 1]2 for sufficiently small ε. Now observe that

• (xε, tε) is a local maximum of (x, t) 7→ u(x, t)− φε(x, yε, t, sε);

• (yε, sε) is a local minimum of (y, t) 7→ v(y, s) + φε(xε, y, tε, s).

Then the viscosity subsolution property of u and the supersolution property of v imply, respectively,

− 2

ε
(tε − sε) + λu(xε, tε)− (u(xε + 1, tε)− 2u(xε, tε) + u(xε, tε))β ≤ 0,

− 2

ε
(tε − sε) + λv(yε, sε)− (u(yε + 1, sε)− 2v(yε, sε) + v(yε, sε))β ≥ 0.

Taking difference of the previous inequalities yields

(λ+ 2β)(u(xε, tε)− v(yε, sε))

≤ β (u(xε + 1, tε) + u(xε − 1, tε))− β (v(yε + 1, sε) + v(yε − 1, sε)) .

Sending ε ↓ 0 on both sides, we obtain

(λ+ 2β)M = (λ+ 2β)u(x, t)

≤ β
(
u(x+ 1, t)− v(x+ 1, t)

)
+ β

(
u(x− 1, t)− v(x− 1, t)

)
≤ 2βM,

which contradicts with λM > 0. �



Chapter 3

Monotone convergence of BSDEs

driven by marked point processes and

an application

3.1 Introduction

In Chapter 2, the value function of the insider presented in (2.2.7) has a boundary layer V δ(ṽ, y, 1) =

limt→1 V
δ(ṽ, y, t). The boundary layer is due to the unbounded trading intensities of the insider.

Where does this boundary layer comes from? To answer the question, we consider a family of

control problems where insider’s trading intensity is at most n ∈ N. For each constrained value

function, we represent it via solutions of a BSDE driven by a marked point process. The value

function of these problems increasingly converges to the original value function as n → ∞, which

implies there also has a convergence in BSDEs.

To take the monotone limit, we extend Peng’s [37] monotone convergence of BSDEs from

Brownian setting to market point processes. Before considering the monotone convergence, we use

[20] to prove the well-posedness of a family of penalised BSDEs.

Confortola and Fuhrman [20] studied a class of BSDEs driven by marked point processes.

They prove existence, uniqueness, a priori estimates and continuous dependence upon data of the

BSDE. They also apply this family of BSDEs to study a class on non-Markovian optimal control

problems whose randomness is driven by marked point processes. In the Brownian setting, Peng

[37] proved a monotone convergence result for supersolutions to BSDEs. More precisely, if there

exists a sequence of càdlàg supersolutions Y n (cf. Definition 1.2.1) converging to a process Y

with E
[

sup0≤t≤T |Yt|
2
]
< ∞, the process Y is also a càdlàg supersolution of the same BSDE.

In addition, Peng considers a family of penalised BSDEs converging to the smallest supersolution

53
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satisfying the constrained BSDE.

First we consider a sequence of BSDEs

Y n
t = ξn +

∫ T

t
gs(Y

n
s , Z

n
s (·))dAs −

∫ T

t

∫
E
Zns (y)q(ds dy) + CnT − Cnt , (3.1.1)

for 0 ≤ t ≤ T and n ∈ N, where g is Lipschitz continuous and Cn is a continuous increasing process

representing penalty of violation of a constraint. Rewriting (3.1.1) as a Lipschitz BSDE, we use

[20] to establish existence and uniqueness of a solution to (3.1.1). Next we establish a comparison

theorem in Theorem 3.3.7 to show that the sequence (Y n)n∈N is increasing. If the sequence of

supersolutions Y n increasingly converges to the process Y in (3.1.1) with E
[

sup0≤s≤T |Ys|
2
]
<∞,

we show that the process Y is also a supersolution. Moreover, there exist C which is the weak limit

of Cn and Z which is the strong limit of Zn. Both Y and Z satisfy the BSDE with the constraint.

Finally the general result described above is applied to the insider’s optimisation problem to give

a stochastic representation of the boundary layer.

This chapter is organised as follows. The next section introduces a market point process and

defines spaces of functions, random variables and processes. In section 3.3, we prove the well-

posedness of a BSDE and provides a comparison theorem which is used in the following sections.

In section 3.4 we provide a monotone convergence theorem in Theorem 3.4.2 and consider the

smallest supersolution subject to a given constraint on (Y, Z). Finally, in section 3.5, we consider

an application, insider trading problem and represent the value function by a monotone sequence

of BSDE solutions.

3.2 Marked point process

In this section, following [13, Chapter VIII], we introduce marked point processes and stochastic

integrals with respect to them.

3.2.1 Definitions

Consider a measurable space (E,E ), and a random sequence (Tn, ζn)n≥0 ∈ [0,∞) × E, where

(Tn)n≥0, starting from T0 = 0, is an increasing sequence of non-anticipating random times to

describe the occurrence of events and ζn ∈ E is a quantity observed at time Tn. We assume that Tn

is non-explosive, i.e. Tn → ∞ P-a.s. as n → ∞, which guarantees the number of events occurring

on any finite interval, is almost surely finite. The random sequence (Tn, ζn)n≥0 is called a marked

point process, where (Tn)n≥0 is a point process and (ζn)n≥0 are marks. Define a counting process

Nt(K) by

Nt(K) =
∑
n≥1

I{Tn≤t}I{ζn∈K}, K ∈ E . (3.2.1)
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We associate to each K ∈ E the counting measure µ such that

µ((0, t],K) = Nt(K), t ≥ 0. (3.2.2)

Let (Ω,F , (Ft)t≥0,P) be a probability space and satisfying the usual conditions. Denote by P the

F -predictable algebra on Ω× [0, T ]. If any process H is P ⊗ E -measurable satisfying

E
[ ∫ T

0

∫
E
|Ht(k)|µ(dt dk)

]
<∞, (3.2.3)

it follows from [13, Chapter VIII, T14] that there exists a function φt and an increasing process A

with A0 = 0, such that

i) K → φt(K) is a probability measure on (E,E );

ii) t→ φt(K) is a predictable process;

iii) we have

E
[ ∫ T

0

∫
E
Ht(k)µ(dt dk)

]
= E

[ ∫ T

0

∫
E
Ht(k)φt(dk)dAt

]
. (3.2.4)

The predictable random measure φt(dk)dAt is denoted by ν(dt, dk) and called the compensator

of µ or dual predictable projection of µ. For H satisfies (3.2.3), we can define the compensated

stochastic integral

Mt :=

∫ t

0

∫
E
Hr(k)q(dr dk), (3.2.5)

where q(dt dk) := µ(dt dk)−ν(dt dk) is called the compensated measure. It follows from [13, Chapter

VIII, C4] that M is a martingale.

3.2.2 Spaces of functions, random variables and stochastic processes

Assumption 3.2.1 The process A is an absolutely continuous increasing process with respect to

time. There exists a constant α such that AT ≤ α a.s..

Now let us introduce the following spaces of functions, random variables and stochastic processes.

• Let L2(E;R) denote the space of E -measurable functions ϕ: E → R satisfying∫
E
|ϕ(y)|2 φt(dy) <∞;

• Let L2(Ω;R) denote the space of random variables ξ: Ω→ R satisfying

|ξ|2 := E
[
|ξ|2

]
<∞;
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• Let L2
G (Ω× [0, T ];R) denote the space of adapted càdlàg processes Y : Ω× [0, T ]→ R, which

are G -measurable, satisfying

|Y |2 := E
[ ∫ T

0
|Ys|2 dAs

]
<∞,

where G denoted by the (Ft)t≥0-progressive algebra on Ω× [0, T ];

• Let L2
P(Ω × [0, T ] × E;R) denote the space of processes Z: Ω × [0, T ] × E → R, which are

P ⊗ E -measurable, satisfying

||Z||2 := E
[ ∫ T

0

∫
E
|Zs(y)|2 φs(dy)dAs

]
<∞;

• Let S2
G (Ω× [0, T ];R) denote the space of adapted càdlàg processes Y : Ω× [0, T ]→ R, which

are G -measurable, satisfying

|Y |2sup := E
[

sup
0≤s≤T

|Ys|2
]
<∞;

• Let S2
inc,G (Ω× [0, T ];R) denote the subspace of S2

G (Ω× [0, T ];R) which consists processes with

non-decreasing trajectories;

• Let S2
inc,c,G (Ω× [0, T ];R) denote the subspace of S2

inc,G (Ω× [0, T ];R) which consists processes

with continuous and non-decreasing trajectories;

To simplify notations, let K2(R) denote the space of L2
G (Ω × [0, T ];R) × L2

P(Ω × [0, T ] × E;R),

endowed with the norm ||(Y,Z)||2 := |Y |2 + ||Z||2.

3.3 Backward stochastic differential equation

In this section, we will consider a BSDE driven by a marked point process. Under suitable assump-

tions, we prove the existence and uniqueness of a solution. Finally we state a comparison principle

which allows us to compare solutions of BSDEs.

3.3.1 Uniqueness and existence of the BSDE solution

Let us consider a pair of processes (Y,Z) ∈ K2(R) satisfying

Yt = ξ +

∫ T

t
gs(Ys, Zs(·))dAs −

∫ T

t

∫
E
Zs(y)q(ds dy) + CT − Ct, 0 ≤ t ≤ T, (3.3.1)

which is called the backward stochastic differential equation. In the above equation (3.3.1), the

function g is called a generator, and the process Z is called control process as it controls an adapted

process Y so that Y satisfies the terminal condition YT = ξ.
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Definition 3.3.1 Given a non-decreasing process C, a terminal value ξ and a generator g, if the

pair (Y,Z) solves (3.3.1), then we call Y a supersolution of BSDE with generator g or simply called

g-supersolution on [0, T ]. In particular, when C ≡ 0, Y is called a g-solution on [0, T ].

Assumption 3.3.2 There exist the process C, the random variable ξ and the generator g satisfying

following conditions:

1) C ∈ S2
inc,G (Ω× [0, T ];R) with C0 = 0;

2) ξ is a FT -measurable random variable and ξ ∈ L2(Ω;R);

3) for t ∈ [0, T ], r ∈ R, a mapping gt(r, ·): L2(E;R)→ R is given, then

i) for every Z ∈ L2
P(Ω × [0, T ] × E;R), the mapping (t, r) → gt(r, Zt(·)) is G ⊗ B(R)-

measurable;

ii) we have E
[ ∫ T

0 gs(0, 0)dAs

]
<∞;

iii) there exist γ1 ≥ 0 and γ′1 ≥ 0 such that r, r′ ∈ R and z, z′ ∈ L2(E;R), we have

∣∣gt(r, z(·))− gt(r′, z′(·))∣∣ ≤ γ′1 ∣∣r − r′∣∣+ γ1

(∫
E

∣∣z(y)− z′(y)
∣∣2 φt(dy)

) 1
2

. (3.3.2)

Proposition 3.3.3 When Assumption 3.3.2 holds, there exists a unique solution (Y,Z) ∈ K2(R)

solving the BSDE (3.3.1), and Y ∈ S2
G (Ω× [0, T ];R).

Proof of Proposition 3.3.3. We introduce a fixed positive constant β > γ2
1 + 2γ′1 and denote

K2,β(R) by a space satisfying the norm of (Y,Z) such that

||(Y, Z)||2β := |Y |2β + ||Z||2β ,

where

|Y |2β := E
[ ∫ T

0
eβAs |Ys|2 dAs

]
<∞,

||Z||2β := E
[ ∫ T

0
eβAs

∫
E
|Zs(y)|2 φs(dy)dAs

]
<∞.

The weighted space K2,β(R) is equivalent to the unweighted space K2(R) defined in section 3.2.2

due to AT ≤ α in Assumption 3.2.1.

Next we define a process Y := Y + C and a random variable ξ := ξ + CT to construct an

equivalent BSDE

Y t = ξ +

∫ T

t
gs(Y s − Cs, Zs(·))dAs −

∫ T

t

∫
E
Zs(y)q(ds dy), 0 ≤ t ≤ T. (3.3.3)

Once we can show there exists a unique solution (Y , Z) solving (3.3.3), it is equivalent to show that

there exists a unique solution (Y,Z) solving (3.3.1).
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We also define a mapping Γ : K2,β(R)→ K2,β(R) satisfying (Y , Z) = Γ(U, V ) if (Y , Z) satisfies

Y t = ξ +

∫ T

t
gs(U s − Cs, Vs)dAs −

∫ T

t

∫
E
Zs(y)q(ds dy), 0 ≤ t ≤ T. (3.3.4)

The Assumption 3.3.2 on the generator g implies that E
[∫ T

0 eβAs
∣∣gs(U s − Cs, Vs)∣∣2 dAs] < ∞, so

by [20, Lemma 3.3], there exists a unique solution (Y , Z) ∈ K2,β(R) to (3.3.4) and Γ is well-defined.

Then we apply [20, Theorem 3.4] to represent that there exists a unique solution solving (3.3.3).

The sketch of the proof is shown as below. Let us (U
i
, V i), i = 1, 2, be elements of K2,β(R) and let

(Y
i
, Zi) = Γ(U

i
, V i). Denote ∆Y = Y

1 − Y 2
, ∆Z = Z1 −Z2, ∆U = U

1 −U2
and ∆V = V 1 − V 2.

Using the Lipschitz conditions of g, [20, Theorem 3.4] establishes that(
β − γ2

1

c3
− c4γ

′
1

) ∣∣∆Y ∣∣2
β

+ ||∆Z||2β ≤ c3 ||∆V ||2β +
γ′1
c4

∣∣∆U ∣∣2
β
,

for every c3, c4 > 0. By the assumption on β, i.e. β > γ2
1 + 2γ′1, it is possible to find c3 ∈ (0, 1)

such that

β >
γ2

1

c3
+

2γ′1√
c3

If γ′1 = 0 we see that Γ is a contraction on K2,β(R) endowed with the equivalent norm (Y , Z) →(
β − γ21

c3

) ∣∣Y ∣∣2
β

+ ||Z||2β. If γ′1 > 0 we choose c4 = 1/
√
c3 and obtain

γ′1√
c3

∣∣∆Y ∣∣2
β

+ ||∆Z||2β ≤ c3 ||∆V ||2β + γ′1
√
c3

∣∣∆U ∣∣2
β

= c3

(
γ′1√
c3

∣∣∆U ∣∣2
β

+ ||∆V ||2β
)
,

so that Γ is a contraction on K2,β(R) endowed with the equivalent norm (Y , Z)→ γ′1√
c3

∣∣Y ∣∣2
β

+ ||Z||2β.

In all cases there exists a unique fixed point which is the required unique solution to the BSDE

(3.3.3). �

Proposition 3.3.3 illustrates that a supersolution Y on [0, T ] is uniquely determined once the

terminal value ξ, the increasing càdlàg process C and the generator function g are given. On the

other hand, we can extend [37, Proposition 1.6] for (3.3.1) to show:

Lemma 3.3.4 Given a supersolution Y on [0, T ], there exists a unique pair (Z,C) ∈ L2
P(Ω ×

[0, T ]× E;R)× S2
inc,G (Ω× [0, T ];R) with C0 = 0.

Proof. We suppose two triplets (Y, Z,C) and (Y,Z ′, C ′) simultaneously satisfying (3.3.1). Applying

Itô formula to |Yt − Yt|2 ≡ 0, we have∫ T

0

∫
E

∣∣Zs(y)− Z ′s(y)
∣∣2 φs(dy)dAs +

∑
t<s≤T

(
∆
∣∣Cs − C ′s∣∣)2

+

∫ T

0

∫
E

∣∣Zs(y)− Z ′s(y)
∣∣2 q(ds dy) = 0.

Then taking expectation on both sides, we have

E
[∫ T

0

∫
E

∣∣Zs(y)− Z ′s(y)
∣∣2 φs(dy)dAs

]
+ E

 ∑
0≤s≤T

(
∆
∣∣Cs − C ′s∣∣)2

 = 0,
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which makes sure Z ≡ Z ′ and C ≡ C ′ a.s.. �

Definition 3.3.5 If (Z,C) is uniquely determined by the supersolution Y , (Z,C) is called the

unique decomposition of Y .

3.3.2 Comparison theorem

Now we have proved the uniqueness and existence of the solution to the BSDE (3.3.1) under

Assumption 3.3.2. In the next section, we can go further to consider the convergence of BSDEs.

Before moving on to the next section, we present Comparison Theorem. The Comparison Theorem

in [22] is used to compare two supersolutions of BSDEs driven by Brownian motions. Here we can

present the comparison theorem for supersolutions of BSDEs driven by a marked point process.

Assumption 3.3.6 For any t ∈ [0, T ], r ∈ R and z, z′ ∈ L2(E;R), there exist two constants

c1 ≥ c2 > −1 such that we can find a measurable map ρ: Ω× [0, T ]× E × R3 → [c2, c1] satisfying

gt(r, z(·))− gt(r, z′(·)) ≤
∫
E

(z(y)− z′(y))ρr,z,z
′

t (y)φt(dy). (3.3.5)

Theorem 3.3.7 (Comparison Theorem)

Given (ξi, gi, Ci) satisfying Assumption 3.3.2, let (Y i, Zi) ∈ K2(R), i = 1, 2, be the unique solution

to the following BSDE

Y i
t = ξi +

∫ T

t
gis(Y

i
s , Z

i
s(·))dAs −

∫ T

t

∫
E
Zis(y)q(ds dy) + CiT − Cit , 0 ≤ t ≤ T,

where g2 also satisfies Assumption 3.3.6. Moreover we assume that

i) ξ2 − ξ1 ≥ 0, a.s.,

ii) g2
t (Y

1
t , Z

1
t (·))− g1

t (Y
1
t , Z

1
t (·)) ≥ 0, a.s., a.e.,

iii) C2
t − C1

t is a càdlàg increasing process,

then we have Y 2
t ≥ Y 1

t as for all t ∈ [0, T ].

Proof. The proof is motivated by [23, Proposition 4.1] with proper modifications. Let us denote

∆Y := Y 2 − Y 1, ∆ξ := ξ2 − ξ1, ∆Z := Z2 − Z1, ∆g := g2(Y 2, Z2(·)) − g1(Y 1, Z1(·)) and

∆C := C2 − C1 such that

∆Yt = ∆ξ +

∫ T

t
∆gsdAs −

∫ T

t

∫
E

∆Zs(y)q(ds dy) + ∆CT −∆Ct, 0 ≤ t ≤ T. (3.3.6)

Let us define a process a by

at :=
g2
t (Y

2
t , Z

2
t (·))− g2

t (Y
1
t , Z

2
t (·))

∆Yt
I{∆Yt 6=0}, 0 ≤ t ≤ T.
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Note that the process a are bounded a.s. since g2 is Lipschitz continuous. Observe also that the

process ∆K defined on [0, T ] by

∆Kt := ∆Ct −
∫ t

0

∫
E
ρY

1
s ,Z

1
s ,Z

2
s

s (y)∆Zs(y)φs(dy)dAs +

∫ t

0

[
g2
s(Y

1
s , Z

2
s (·))− g1

s(Y
1
s , Z

1
s (·))

]
dAs

is a non-decreasing process since

g2
t (Y

1
t , Z

2
t (·))− g1

t (Y
1
t , Z

1
t (·)) ≥ g2

t (Y
1
t , Z

2
t (·))− g2

t (Y
1
t , Z

1
t (·))

≥
∫
E
ρ
Y 1
t ,Z

1
t ,Z

2
t

t (y)∆Zt(y)φt(dy),

where the first inequality follows the assumption ii) in this Theorem and the second inequality

follows Assumption 3.3.6. With these notations, we rewrite (3.3.6) as

∆Yt =∆ξ +

∫ T

t
as∆YsdAs −

∫ T

t

∫
E

∆Zs(y)q(ds dy)

+

∫ T

t

∫
E
ρY

1
s ,Z

1
s ,Z

2
s

s (y)∆Zs(y)φs(dy)dAs + ∆KT −∆Kt.

Consider the positive process Ξ which is the solution of the following SDE

dΞt = Ξt

(
atdAt +

∫
E
ρ
Y 1
t ,Z

1
t ,Z

2
t

t (y)q(dt dy)

)
, Ξ0 = 1.

Notice that E
[

sup0≤s≤T |Ξs|
2
]
<∞ since a and ρ are bounded, and Ξ is positive since ρ > −1 in

Assumption 3.3.6. Applying the product rule to d(Ξt∆Yt), we have

d(Ξt∆Yt) = Ξt

∫
E

∆Zt(y)q(dt dy) + Ξt

∫
E

∆Zt(y)ρ
Y 1
t ,Z

1
t ,Z

2
t

t (y)q(dt dy)

+ ∆YtΞt

∫
E
ρ
Y 1
t ,Z

1
t ,Z

2
t

t (y)q(dt dy)− Ξtd(∆Kt).

Hence, the process Ξ∆Y is a supermartingale because of Ξ > 0. Therefore

Ξt∆Yt ≥ E [ΞT∆ξ|Ft] ≥ 0, 0 ≤ t ≤ T,

makes sure ∆Y ≥ 0. �

3.4 Monotone convergence of supersolutions

3.4.1 Monotone convergence theorem

In this section, we want to extend Peng’s monotonic limit theorem in [37] for BSDEs driven by

marked point processes. In order to show the monotone theorem of g-supersolutions, we need to

introduce a sequence of triplets (Y n, Zn, Cn) satisfying the assumption as below.

Assumption 3.4.1 The following conditions hold for all n ∈ N.
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i) ξn ∈ L2(Ω;R) is a FT -measurable random variable;

ii) Y n increasingly converges to Y with Y ∈ S2
G (Ω× [0, T ];R);

iii) Cn ∈ S2
inc,c,G (Ω× [0, T ];R) with Cn0 = 0.

Given Cn, ξn and g satisfying Assumption 3.3.2, Proposition 3.3.3 implies the existence of a unique

solution (Y n, Zn) solving

Y n
t = ξn +

∫ T

t
gs(Y

n
s , Z

n
s (·))dAs−

∫ T

t

∫
E
Zns (y)q(ds dy) +CnT −Cnt , 0 ≤ t ≤ T, n ∈ N. (3.4.1)

Theorem 3.4.2 (Monotone convergence theorem)

When item 3) in Assumption 3.3.2, 3.3.6 and Assumption 3.4.1 are satisfied,

i) there exists a constant L such that |Y n|2sup + ||Zn||2 + |Cn|2sup ≤ L for all n;

ii) there exists a unique decomposition (Z,C) ∈ L2
P(Ω× [0, T ]×E;R)×S2

inc,G (Ω× [0, T ];R), such

that

|Y − Y n|2 + ||Z − Zn||α → 0, 1 ≤ α < 2,

and C is the weak limit of Cn. Moreover, (Y,Z,C) is the weak limit of (Y n, Zn, Cn).

iii) (Y,Z) is the solution of the BSDE

Yt = ξ +

∫ T

t
gs(Ys, Zs(·))dAs −

∫ T

t

∫
E
Zs(y)q(ds dy) + CT − Ct, 0 ≤ t ≤ T. (3.4.2)

The proof of Theorem 3.4.2 is postponed to the Appendix.

3.4.2 BSDE with constraints

Now we will study the BSDE of type (3.3.1) with a constraint imposed to the solution, i.e.

Yt = ξ +

∫ T

t
gs(Ys, Zs(·))dAs −

∫ T

t

∫
E
Zs(y)q(ds dy) + CT − Ct, 0 ≤ t ≤ T, (3.4.3)

as well as the constraint

ht(Yt, Zt(y)) = 0, as for all (t, y) ∈ [0, T ]× E. (3.4.4)

Definition 3.4.3 Given a constraint function h, a terminal value ξ and a generator g, if the

(Y, Z,C) solves (3.4.3), then we call Y a supersolution of BSDE subject to the constraint (3.4.4).

Assumption 3.4.4 The constrained function h : Ω × [0, T ] × R × R → R+ satisfies following

conditions:

i) h is F -predictable and non-negative;
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ii) there exist γ2 ≥ 0 and γ′2 ≥ 0 such that for any t ∈ [0, T ] and r, r′, z, z′ ∈ R, we have∣∣ht(r, z)− ht(r′, z′)∣∣ ≤ γ′2 ∣∣r − r′∣∣+ γ2

∣∣z − z′∣∣ ; (3.4.5)

iii) for any t ∈ [0, T ], z, z′ ∈ R and z ≥ z′, ht(·, z) ≥ ht(·, z′);

iv) E
[∫ T

0 |hs(0, 0)|2 dAs
]
<∞.

Assumption 3.4.5 We assume that there exists at least one g-supersolution Ŷ ∈ L2
G (Ω× [0, T ];R)

solving (3.4.3)-(3.4.4) with unique decomposition (Ẑ, Ĉ) ∈ L2
P(Ω × [0, T ] × E;R) × S2

inc,G (Ω ×

[0, T ];R).

We will find the minimal g-supersolution later.

Definition 3.4.6 A g-supersolution Y on [0, T ] with the decomposition (Z,C) regarded as the

smallest g-supersolution, given YT = ξ subject to the constraint (3.4.4), whenever Y ≤ Ŷ a.e., a.s.,

for any other g-supersolution Ŷ satisfying (3.4.3) and (3.4.4).

Theorem 3.4.7 When Assumptions 3.3.2, 3.3.6, 3.4.1, 3.4.4 and 3.4.5 hold along with a sequence

of BSDEs

Y n
t = ξ +

∫ T

t
gs(Y

n
s , Z

n
s (·))dAs −

∫ T

t

∫
K
Zns (y)q(ds dy) + CnT − Cnt , (3.4.6)

where

Cnt := n

∫ t

0

∫
E
hs(Y

n
s , Z

n
s (y))φs(dy)dAs. (3.4.7)

then

i) there exists the smallest g-supersolution Y ∈ S2
G (Ω× [0, T ];R) to (3.4.3)-(3.4.4);

ii) the sequence Y n increasingly converges to Y ;

iii) there exists a unique decomposition (Z,C) ∈ L2
P(Ω× [0, T ]×E;R)×S2

inc,G (Ω× [0, T ];R), such

that

|Y − Y n|2 + ||Z − Zn||α → 0, for each 1 ≤ α < 2,

and C is the weak limit of Cn. Moreover, (Y, Z,C) is the weak limit of (Y n, Zn, Cn).

Proof. Let us first prove the existence of the unique solution to (3.4.6). Define fn := g + nh and

rearrange (3.4.6) to have

Y n
t = ξ +

∫ T

t

(
gs(Y

n
s , Z

n
s (·)) + n

∫
E
hs(Y

n
s , Z

n
s (y))φs(dy)

)
dAs −

∫ T

t

∫
K
Zns (y)q(ds dy)

= ξ +

∫ T

t
(gs + nhs) (Y n

s , Z
n
s (·))dAs −

∫ T

t

∫
K
Zns (y)q(ds dy)

= ξ +

∫ T

t
fns (Y n

s , Z
n
s (·))dAs −

∫ T

t

∫
K
Zns (y)q(ds dy).

(3.4.8)
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The Lipschitz property of fn is satisfied since both g and h are Lipschitz. Moreover, for any

t ∈ [0, T ], r ∈ R and z, z′ ∈ L2(E;R), we have

fnt (r, z(·))− fnt (r, z′(·))

≤
∫
E

(z(y)− z′(y))ρr,z,z
′

t (y)φt(dy) + n

∫
E

(h(r, z(y)− h(r, z′(y))φt(dy)

≤
∫
E

(z(y)− z′(y))ρ̂r,z,z
′

t (y)φt(dy)

(3.4.9)

where ρ̂r,z,z
′

t (·) := ρr,z,z
′

t (·) + nγ2I{z(·)>z′(·)} is located in [c2, c1 + nγ2] where c2 > −1. The first

inequality follows (3.3.5) and the second inequality follows the non-decreasing property of h in z

(cf. Assumption 3.4.4 iii)). Then applying Proposition 3.3.3 by assuming C ≡ 0, it shows that

there exists a unique solution (Y n, Zn) to (3.4.8), which implies the existence of the unique solution

to (3.4.6).

Now let us prove that (Y n)n is increasing by Comparison Theorem 3.3.7. Consider (Y n, Zn) as

a solution to (3.4.8). Items i) - iii) of Theorem 3.3.7 are obviously satisfied. Moreover fn satisfies

(3.4.9) and fn is increasing. Hence Theorem 3.3.7 implies that (Y n)n is non-decreasing. For the

g-supersolution (Ŷ , Ẑ, Ĉ) in Assumption 3.4.5, consider (Y n, Zn) as a solution to (3.4.8). Since

(Ŷ , Ẑ, Ĉ) satisfies the constraint (3.4.4), (Ŷ , Ẑ, Ĉ) is a supersolution to (3.4.8). Hence Theorem

3.3.7 implies Y n ≤ Ŷ for all n.

To prove convergence of (Y n, Zn, Cn), we directly apply Theorem 3.4.2. In addition since there

exists a constant L such that |Cn|2sup ≤ L, i.e.

E

[
sup

0≤s≤T
|Cns |

2

]
= n2E

[
sup

0≤s≤T

(∫ t

0

∫
E
ht(Y

n
s , Z

n
s (y))φs(dy)dAs

)2
]
≤ L,

the constraint (3.4.4) is satisfied. In conclusion, (Y,Z,C) is one of the candidate solutions to

(3.4.3)-(3.4.4).

Since the sequence of Y n is upper-bounded by Ŷ , i.e. Y n ≤ Ŷ , we take the limit on both sides

to obtain

lim
n↑∞

Y n = Y ≤ Ŷ ,

which illustrates Y with decomposition (Z,C) is the minimal solution. Finally, by applying Lemma

3.3.4, we can state that there exists a unique decomposition (Z,C) of Y . �
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3.5 Application in an insider trading problem

3.5.1 Glosten-Milgrom model

Here we follow the assumptions and definitions in the last chapter. We consider a continuous time

market for the risky asset whose fundamental value ṽ follows a discrete distribution,

P(ṽ = vi) = pi, i = 1, · · · , N, (3.5.1)

where N ∈ N ∪ {∞}, (vi)i=1,··· ,N is an increasing sequence and pi ∈ (0, 1) with
∑N

n=1 pi = 1.

The risk free interest rate is 0. Without loss of generality, we assume the trading period is [0, 1]

which can be scaled to any time interval. All of participants are risk neutral and will know this

fundamental value at terminal time 1, at which point the market will terminate.

Noisy traders trade for liquidity reasons, and their aggregated demand is the difference of two

pure jump processes ΓB and ΓS , which represents the cumulative buy and sell orders respectively.

Noisy traders only submit orders with fixed size δ. ΓB/δ and ΓS/δ are assumed to be two in-

dependent Poisson processes with intensity λ. The net demand from noisy traders is defined as

Γ := ΓB − ΓS . Then (FΓ
t )t∈[0,1] describes the information structure of noise traders.

The insider observes the market price and knows the fundamental value ṽ. The net order from

the insider is defined as I := IB−IS . The admissibility of insider’s strategy is defined in Definition

2.2.2. The insider’s filtration F I
t includes FΓ

t and σ(ṽ), for any t ∈ [0, 1]. Moreover, the insider’s

buy orders IB consist two components: we denote by IB,B the cumulative buy orders which arrive

at different time than those of ΓB, and by IB,S the cumulative buy orders which cancel some of ΓS .

Sell orders IS,S and IS,B are defined analogously. According to Definition 2.2.2 (iii) together with

[30, Chapter1, Theorem 3.15], we have that Ii,jt − δλ
∫ t

0 θ
i,j
s ds is a F I -martingale for i ∈ {B,S}

and j ∈ {B,S} for any t ∈ [0, 1], where λθi,j is F I -intensity.

A competitive market maker only observes the aggregated demand M := I + Γ and sets the

price only based on it. The market maker’s filtration FM is the smallest σ-field generated by M .

Moreover, the net buy orders consists three components: MB := IB,B + ΓB − IS,B. The net sell

orders MS := IS,S + ΓS − IB,S is defined analogously. In addition, MB − λδ
∫ ·

0 η
B
s ds (resp. MS −

λδ
∫ ·

0 η
S
s ds) is a F I -martingale where ηB := 1 + θB,B − θS,B (resp. ηS := 1 + θS,S − θB,S).

To simplify the presentation, we assume the order size δ = 1. The definition of pricing rule, l,

is the same as Definition 2.2.1. Given an admissible trading strategy I := IB − IS , we follow the

similar way (cf. [18]) to derive the associated profit at time 1 for the insider conditional on her
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private information,

E
[∫ 1

0
(ṽ − a(Mt−, t)) dI

B,B
t +

∫ 1

0
(ṽ − l(Mt−, t)) dI

B,S
t

−
∫ 1

0
(ṽ − b(Mt−, t)) dI

S,S
t −

∫ 1

0
(ṽ − l(Mt−, t)) dI

S,B
t

∣∣∣ṽ] , (3.5.2)

where a(m, t) := l(m+ 1, t) is ask price and b(m, t) := l(m− 1, t) is bid price for any m ∈ Z. Since

the insider always aims to maximize her expected profit and Ii,j − δλ
∫ ·

0 θ
i,j
s ds is a F I -martingale

for i, j ∈ {B,S}, the insider’s value function can be expressed such as

V (ṽ,m, t) = sup
ηB ,ηS≥0

λE
[∫ 1

t
(ṽ − l(Ms− + 1, s))(ηBs − 1)+ds+

∫ 1

t
(ṽ − l(Ms−, s))(η

B
s − 1)−ds

−
∫ 1

t
(ṽ − l(Ms− − 1, s))(ηSs − 1)+ds−

∫ 1

t
(ṽ − l(Mt−, t))(η

S
s − 1)−ds

∣∣∣Mt = m, ṽ

]
,

(3.5.3)

for ṽ = {v1, · · · , vN}, m ∈ Z and t ∈ [0, 1). The terminal value of V is defined as V (ṽ,m, 1) =

limt↑1 V (ṽ,m, t). Since ηB and ηS are uniquely determined by insider’s strategy (θi,j), we consider

ηB and ηS as insider’s control in (3.5.3).

Remark 3.5.1 The equation (3.5.3) is consistent with the value function (2.2.7), since the insider

will hide her trades among noisy trades, i.e. not placing any buy (resp. sell) order to compensate

a noisy buy (resp. sell) order. Therefore, second and fourth terms in (2.2.7) are equal to 0.

Instead of unbounded control in (3.5.3), we consider a family of control problems where the trading

intensities ηB and ηS are bounded by n. The value function of the bounded control problem is

V n(ṽ,m, t) = sup
ηB ,ηS∈[0,n]

λE
[∫ 1

t
(ṽ − l(Ms− + 1, s))(ηBs − 1)+ds+

∫ 1

t
(ṽ − l(Ms−, s))(η

B
s − 1)−ds

−
∫ 1

t
(ṽ − l(Ms− − 1, s))(ηSs − 1)+ds−

∫ 1

t
(ṽ − l(Mt−, t))(η

S
s − 1)−ds

∣∣∣Mt = m, ṽ

]
,

(3.5.4)

where the superscript n stands for the upper bound of trading intensities ηB and ηS . The terminal

value V n(ṽ,m, 1) = 0. According to HJB equation (2.2.9), we can obtain HJB equation of V n such

that

V n
t (vi,m, t) + λ

[
V n(vi,m+ 1, t)− 2V n(vi,m, t) + V n(vi,m− 1, t)

]
+ (n− 1)

[
(vi − l(m+ 1, t)) + V n(vi,m+ 1, t)− V n(vi,m, t)

]+
+ (n− 1)

[
(vi − l(m− 1, t)) + V n(vi,m, t)− V n(vi,m− 1, t)

]−
(3.5.5)

+
[
vi − l(m, t) + V n(vi,m, t)− V n(vi,m− 1, t)

]+
+
[
vi − l(m, t) + V n(vi,m+ 1, t)− V n(vi,m, t)

]−
= 0,
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where i = {1, · · · , N} and (m, t) ∈ Z× [0, 1).

We notice that the terminal value of V in (3.5.3) is non-zero. This is so called “boundary layer”

or “face-lifting” which usually appears when controls are unbounded. However, the terminal value

of V n is zero because the control is bounded. Our question is where this face-lifting comes from?

Since the value functions V n can be represented by the solution Yn of a BSDE driven by a marked

point process, the convergence of (Yn) leads to a non-decreasing process C which we interpret as

the boundary layer. In Lemma 3.5.2, by applying (4.17) and Theorem 4.10 in [20], we can find

an expression of Y n to represent the value functions V n. Finally, in Proposition 3.5.3, we apply

Theorem 3.4.7 to show the existence of the smallest supersolution Y which is exactly the value

function V as n goes to infinity.

For any n ∈ N, consider the following BSDE

Y n
t =

∫ 1

t
gs(Z

n
s (·))ds−

∫ 1

t

∫
{−1,1}

Zns (y)q(ds dy) + Cn1 − Cnt , t ∈ [0, 1], (3.5.6)

where

Cn1 − Cnt = (n− 1)

∫ 1

t
hs(Z

n
s (·))ds, (3.5.7)

Znt (y) = V n(ṽ,Mt− + y, t)− V n(ṽ,Mt−, t), (3.5.8)

gt(Z
n
t (·)) = (ṽ − l(Mt−, t)− Znt (−1))+ + (ṽ − l(Mt−, t) + Znt (1))−, (3.5.9)

ht(Z
n
t (·)) = (ṽ − l(Mt− + 1, t) + Znt (1))+ + (ṽ − l(Mt− − 1, t)− Znt (−1))−, (3.5.10)

q(dt dy) = d(Nt(y)− 2λt). (3.5.11)

Here Nt(y) is the counting process for y ∈ {−1, 1} where 1 (resp. −1) represents a buy order (resp.

sell order) to compensate the net order M .

Lemma 3.5.2 The equation (3.5.6) admits a unique solution (Y n, Zn) and Y n
t = V n(ṽ,Mt, t) for

all t ∈ [0, 1].

We put the proof of Lemma 3.5.2 in the Appendix. Now let us consider a scenario that the

upper bound of the insider’s intensity goes to infinity, i.e. V n = Y n ↑ V = Y as n ↑ ∞. We first

assume that the supersolution Y with a unique decomposition (Z,C) to satisfy

Yt =

∫ 1

t
gs(Zs(·))ds−

∫ 1

t

∫
{−1,1}

Zs(y)q(ds dy) + C1 − Ct, t ∈ [0, 1], (3.5.12)

where Y1 = 0, Zt(y) = V (ṽ,Mt− + y, t)− V (ṽ,Mt−, t), the definitions of the functions g and h are

(3.5.9) and (3.5.10). Furthermore, there exists the inequality (2.2.10), for all (m, t) ∈ Z× [0, 1) and

i = {1, . . . , N}, so we have

l(m, t)− vi ≤ V (vi,m+ 1, t)− V (vi,m, t) ≤ l(m+ 1, t)− vi,

vi − l(m, t)− ≤ V (vi,m− 1, t)− V (vi,m, t) ≤ vi − l(m+ 1, t),
(3.5.13)
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which implies that the generator function gt(Zt(·)) = ht(Zt(·)) ≡ 0. When t = 1, we have the

similar result. Hence the following supersolution Y of the BSDE to represent the insider’s value

function V such that

Yt = −
∫ 1

t

∫
{−1,1}

Zs(y)q(ds dy) + C1 − Ct, t ∈ [0, 1], (3.5.14)

with the constraint

ht(Zt(·)) = 0 a.e. a.s..

In Proposition 3.5.3 below, we use Theorem 3.4.7 to show the convergence from (3.5.6) to (3.5.14)

as n ↑ ∞.

Proposition 3.5.3 The sequence (Y n)n∈N in Lemma 3.5.2 increasingly converges to Y which is

the smallest supersolution of (3.5.14) and

|Y − Y n|2 + ||Z − Zn||α → 0, 1 ≤ α < 2,

and C is the weak limit of Cn.

Proof. Let us check that all assumptions of Theorem 3.4.7 are satisfied. Then the statement readily

follows from Theorem 3.4.7. Assumptions 3.3.2, 3.3.6 and 3.4.4 are automatically satisfied because

of Lemma 3.5.2. Moreover Assumption 3.4.5 holds obviously. Now let us check Assumption 3.4.1.

The item (i) is automatically satisfied as Y n
1 = 0. As Y n represents the value function V n when

the intensities ηB and ηS are bounded by n, Y n is increasing. In addition, according to (2.4.15),

there exists a upper bound for the value function, such that

0 < V n(vi,m, t) ≤ V (vi,m, t) ≤ US(vi,m, t), for m ∈ Z and i = {1, · · · , N}.

Moreover, as the definition of US , we have US(vi,m, t) = λ
∫ t

0 (l(m, s)− l(m− 1, s))ds. Combining

with |vi|2 < ∞ for i = {1, · · · , N}, we confirm US ∈ L2
G (Ω × [0, 1];R) which implies Y ∈ S2

G (Ω ×

[0, 1];R). We can also determine Cn ∈ S2
inc,c,G (Ω × [0, 1];R) with Cn0 = 0 by (3.5.7). Hence

Assumption 3.4.1 is satisfied. Finally we apply Theorem 3.4.7 to obtain for t ∈ [0, 1],

Yt =

∫ 1

t
gs(Zs(·))ds−

∫ 1

t

∫
{−1,1}

Zs(y)q(ds dy) + C1 − Ct,

= −
∫ 1

t

∫
{−1,1}

Zs(y)q(ds dy) + C1 − Ct,
(3.5.15)

with the constraint

ht(Zt(·)) = 0 a.e. a.s.. �
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3.5.2 Numerical results

In the following numeric example, we investigate the convergence rate of V n to V as n → ∞. In

this example, we assume ṽ follows Bernoulli distribution {0, 1} with equal probabilities. We also

assume that the intensity of noisy orders λ is 300 and the order size δ is defined as 1/
√

2λ. Hence

the value V is 0.3787 by applying equation (3.6) in [18] when insider’s intensities ηB and ηS are

unbounded. Next we also need to solve HJB equation (3.5.5) numerically to obtain V n when the

insider’s intensities ηB and ηS are bounded by n. The Figure 3.1 shows that V − V n ∼ n−0.32.

Figure 3.1: Simulation results and regression line for (ln(n), ln(V − V n)). The slope of the regression line

is about -0.32.

3.6 Appendix

Proof of Theorem 3.4.2. 1. Boundedness. Since (Y n) is monotonic, there exists a constant L′

such that

sup
n∈N
|Y n|2sup ≤

∣∣Y 0
∣∣2
sup

+ |Y |2sup ≤ L
′, (3.6.1)

where L′ is independent of index n. Applying Itô formula to |Y n
t |

2, recalling Cn is continuous and

taking the expectation, we have

E
[
|Y n

0 |
2
]

+ E
[∫ T

0

∫
E
|Zns (y)|2 φs(dy)dAs

]
(3.6.2)

= E
[
|ξn|2

]
+ 2E

[∫ T

0
Y n
s g

n
s (Y n

s , Zs(·))dAs
]

+ 2E
[∫ T

0
Y n
s dC

n
s

]
≤ E

[
|ξn|2

]
+ 2E

[∫ T

0
|Y n
s |
[
|gs(0, 0)|+ γ′1 |Y n

s |+ γ1

(∫
E
|Zns (y)|2 φs(dy)

) 1
2
]
dAs

]
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+ 2E

[
CnT sup

s∈[0,T ]
|Y n
s |

]

≤ E
[
|ξn|2

]
+ 2E

∫ T

0

[
(γ′1 + γ2

1 + 1) |Y n
s |

2 +
1

4

∫
E
|Zns (y)|2 φs(dy) +

1

4
|gs(0, 0)|2

]
dAs

+ 2E

[
CnT sup

s∈[0,T ]
|Y n
s |

]
,

where the first inequality follows the Lipschitz condition of g. Then we rearrange the above in-

equality to have

||Zn||2 ≤ 2E
[
|ξn|2

]
+ 4E

[
CnT sup

s∈[0,T ]
|Y n
s |

]

+ 4E
[∫ T

0

[
(γ′1 + γ2

1 + 1) |Y n
s |

2 +
1

4
|gs(0, 0)|2

]
dAs

]
.

(3.6.3)

Since

CnT ≤ |Y n
0 |+ |ξn|+

∫ T

0
|gs(Y n

s , Z
n
s (·))| dAs +

∫ T

0

∫
E
|Zns (y)| q(ds dy),

there exists a constant γ3 > 0 such that

|Cn|2sup ≤ γ3

(
1 + |Y n|2sup + ||Zn||2

)
. (3.6.4)

Applying the inequality 4ab ≤ 8γ3 |a|2 + |b|2
2γ3

for a, b ∈ R, we have

4E

[
CnT sup

s∈[0,T ]
|Y n
s |

]
≤ 8γ3 |Y n|2sup +

|Cn|2sup

2γ3

≤ 8γ3 |Y n|2sup +
1

2

(
1 + |Y n|2sup + ||Zn||2

)
≤ 8γ3 |Y n|2sup +

1

2
||Zn||2 +

1

2
|Y n|2sup +

1

2
.

Combining the last inequality with (3.6.1) and (3.6.3), we obtain a constant γ4 such that

||Zn||2 + |Y n|2sup ≤ γ4.

Then combining the last inequality with (3.6.4), there exists a constant L such that

||Zn||2 + |Y n|2sup + |Cn|2sup ≤ L.

2. Weak convergence. According to the uniform boundedness, we need to show that there exists

a subsequence of (Zn, Cn, g·(Y
n, Zn)) weakly converging to (Z,C,G) ∈ L2

P(Ω × [0, T ] × E;R) ×

S2
inc,G (Ω× [0, T ];R)×L2

G (Ω× [0, T ];R). Identifying the limits of (Y n)n and (Zn, Cn, g·(Y
n, Zn))n,

there exists a G such that

Yt = ξ +

∫ T

t
GsdAs −

∫ T

t

∫
E
Zs(y)q(ds dy) + CT − Ct, 0 ≤ t ≤ T. (3.6.5)
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To prove the above identity, we first claim that the stochastic integral
∫ T
t

∫
E Z

n
s (y)q(ds dy) converges

weakly to
∫ T
t

∫
E Zs(y)q(ds dy). For any η ∈ L2(Ω;R), by martingale representation theorem, there

exists a predictable process ϕ such that

η = E
[
η
]

+

∫ T

0
ϕs(y)q(ds dy). (3.6.6)

It implies a convergence such that

E
[[∫ T

t

∫
E
Zns (y)q(ds dy), η

]]
= E

[∫ T

t

∫
E
Zns (y)ϕs(y)q(ds dy)

]
→ E

[∫ T

t

∫
E
Zs(y)ϕs(y)q(ds dy)

]
= E

[[∫ T

t

∫
E
Zs(y)q(ds dy), η

]]
.

Now define Int,T and It,T such that

Int,T := −Y n
t + ξ +

∫ T

t
gs(Y

n
s , Z

n
s (·))dAs −

∫ T

t

∫
E
Zns (y)q(ds dy) + CnT − Cnt ,

It,T := −Yt + ξ +

∫ T

t
GsdAs −

∫ T

t

∫
E
Zs(y)q(ds dy) + CT − Ct.

Due to Int,T = 0, the weak convergence of all terms on the right implies It,T = 0 a.s.. Therefore

(3.6.5) is satisfied.

3. Properties of the process C. All of proofs in this part have been done by Peng in [37].

According to [37, Lemma 2.2], we know the process C is càdlàg. In addition, [37, Lemma A.1] tells

us the process C has a finite number of jumps. We can construct a successive jump times (σn)N+1
n=0

with σ0 = 0, σN+1 = T and jump size bigger than a sufficiently small constant ν > 0. Moreover,

[37, Lemma 2.3] allows us to find another a sequence of jump times (τn)n=0 and construct a finite

number of pairs of jump times (σu, τu)0≤u≤N with 0 ≤ σu ≤ τu ≤ T such that

(i) (σj , τj ] ∩ (σk, τk] = ∅ for each j 6= k;

(ii) E
[∑N

u=0(τu − σu)
]
≥ T − ε;

(iii) E
[∑N

u=0

∑
σu<t≤τu(∆Ct)

2
]
≤ δ.

This result means that for any càdlàg increasing process defined on [0, T ], the total size of jumps

in the process mainly concentrated within a finite number of time intervals is sufficiently small.

4. Strong convergence. Since
∣∣Y 0
t − Yt

∣∣2 ≥ |Y n
t − Yt|

2 → 0 a.s. for all t ∈ [0, T ], and

E
[∫ T

0

∣∣Y 0
s − Ys

∣∣2 dAs] <∞,
applying dominated convergence theorem, we have

|Y − Y n|2 → 0, as n→∞. (3.6.7)

Now let us prove the strong convergence of Z. According to the statement of part 3, there exists

a finite number of disjoint intervals (σu, τu], u = 0, 1, · · · , N , satisfying
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(i) E
[∑N

u=0(τu − σu)
]
≥ T − ε

2 ;

(ii) E
[∑N

u=0

∑
σu<t≤τu(∆Ct)

2
]
≤ δε

3 .

Applying Itô formula to |Yt − Y n
t |

2 on (σu, τu] and summing over u, we have

N∑
u=0

E
[∫ τu

σu

∫
E
|Zns (y)− Zs(y)|2 φs(dy)dAs

]
+

N∑
u=0

E
[∣∣Y n

σu − Yσu
∣∣2]

=
N∑
u=0

E
[∣∣Y n

τu − Yτu
∣∣2]+ 2

N∑
u=0

E
[∫ τu

σu

(Y n
s − Ys)(gs(Y n

s , Z
n
s (·))−Gs)dAs

]

− E

 N∑
u=0

∑
σu<s≤τu

|∆Cs|2
− 2

N∑
u=0

E
[∫ τu

σu

(Y n
s − Ys)dCs

]
+ 2

N∑
u=0

E
[∫ τu

σu

(Y n
s − Ys)dCns

]
.

As the last term of the above identity are less than zero and E
[∑N

u=0(τu − σu)
]
≤ T , we have

N∑
u=0

E
[∫ τu

σu

∫
E
|Zns (y)− Zs(y)|2 φs(dy)dAs

]
(3.6.8)

≤
N∑
u=0

E
[∣∣Y n

τu − Yτu
∣∣2]+ 2E

[∫ T

0
|Y n
s − Ys| |gs(Y n

s , Z
n
s (·))−Gs| dAs

]

+ E

 N∑
u=0

∑
σu<s≤τu

|∆Cs|2
+ 2E

[∫ T

0
|Y n
s − Ys| dCs

]
.

As

N sup
s∈[0,T ]

|Y n
s − Ys|

2 ≥
N∑
n=0

∣∣Y n
τn − Yτn

∣∣2 → 0,

and

NE

[
sup
s∈[0,T ]

|Y n
s − Ys|

2

]
<∞,

applying dominated convergence theorem, we have

N∑
u=0

E
[∣∣Y n

τu − Yτu
∣∣2]→ 0, as n→∞. (3.6.9)

Moreover, as
∣∣Y 0
t − Yt

∣∣ ≥ |Y n
t − Yt| → 0 for t ∈ [0, T ] and

E
[∫ T

0

∣∣Y 0
t − Yt

∣∣ dCs] ≤ (E[ sup
s∈[0,T ]

∣∣Y 0
s − Ys

∣∣2]) 1
2 (

E
[
|CT |2

]) 1
2
<∞,

applying dominated convergence theorem, we have

E
[∫ T

0
|Y n
s − Ys| dCs

]
→ 0, as n→∞. (3.6.10)

Finally, applying Cauchy Schwartz inequality, we have

E
[∫ T

0
|Y n
s − Ys| |gs(Y n

s , Z
n
s (·))−Gs| dAs

]
(3.6.11)
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≤
(
E
[∫ T

0
|gs(Y n

s , Z
n
s (·))−Gs|2

]) 1
2
(
E
[∫ T

0
|Y n
s − Ys|

2 dAs

]) 1
2

≤ L
(
E
[∫ T

0
|Y n
s − Ys|

2 dAs

]) 1
2

→ 0, as n→∞,

where the second inequality holds since g satisfies Assumption 3.3.2 and G ∈ L2
G (Ω × [0, T ];R).

Combining (3.6.8), (3.6.9), (3.6.10) and (3.6.11), we have

lim
n↑∞

N∑
u=0

E
[∫ τu

σu

∫
E
|Zns (y)− Zs(y)|2 φs(dy)dAs

]
≤ E

 N∑
u=0

∑
σu<s≤τu

|∆Cs|2
 ≤ δε

3
.

Thus there exists an integer lδ,ε > 0 such that when n > lδ,ε ≥ 0,

N∑
u=0

E
[∫ τu

σu

∫
E
|Zns (y)− Zs(y)|2 φs(dy)dAs

]
≤ δε

2
.

Therefore, in the product space (Ω× [0, T ]× E, P ⊗ E ), for n ≥ lδ,ε, we have

p̃⊗ P
(

(s, y, ω) ∈ ∪Nu=0(σu, τu]× E × Ω; |Zns (y)− Zs(y)|2 ≥ δ
)
≤ ε,

where p̃ is predictable random measure on P ⊗ E . This implies that

lim
n↑∞

p̃⊗ P
(

(s, y, ω) ∈ ∪Nu=0(σu, τu]× E × Ω; |Zns (y)− Zs(y)|2 ≥ δ
)

= 0.

Thus Zn converges in measure to Z. Since Zn is bounded in L2
P(Ω× [0, T ]× E;R), then for each

α ∈ [1, 2), it converges in LαP(Ω× [0, T ]× E;R). Combining (3.6.7) and strong convergence of Z,

we have

|Y − Y n|2 + ||Z − Zn||α → 0, for each 1 ≤ α < 2.

Since we already know the strong convergence of (Y n, Zn) to (Y,Z), we know gt(Y
n
t , Z

n
t (·)) strongly

converges to gt(Yt, Zt(·)) by showing

E
[∫ T

t
|gs(Y n

s , Z
n
s (·))− gs(Ys, Zs(·))| dAs

]
≤ E

[∫ T

t
γ′1 |Y n

s − Ys| dAs
]

+ E

[∫ T

t
γ1

(∫
E
|Zns (y)− Zs(y)|2 φs(dy)

) 1
2

dAs

]
→ 0.

Here gt(Yt, Zt(·)) identifies with Gt, i.e.

Gt = gt(Yt, Zt(·)), 0 ≤ t ≤ T,

which immediately shows (Y, Z) is the solution of the BSDE (3.4.2). �

Proof of Lemma 3.5.2. Thanks to Theorem 4.11 in [20], we can apply it to prove this lemma.

Before applying the theorem, we need to check whether we have satisfied Hypotheses 4.1 and 4.9
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of [20]. In the insider problem, control space is a measurable space. When the controller ηi,

i ∈ {B,S}, bounded by n, the profit of the insider is bounded. The value function V n(ṽ,M1, 1)

is FM
1 -measurable. In addition, for each of n, there exists an optimal strategy to maximise her

expected profit. Therefore Hypotheses 4.1 and 4.9 in [20] are satisfied. Now we can apply Theorem

4.10 in [20] to generate a sequence of BSDEs

Y n
t =(n− 1)

∫ 1

t

[(
ṽ − l(Ms− + 1, s) + Zns (1)

)+
+
(
ṽ − l(Ms− − 1, s)− Zns (−1)

)−]
ds

+

∫ 1

t

[(
ṽ − l(Ms−, s)− Zns (−1)

)+
+
(
ṽ − l(Ms−, s) + Zns (1)

)−]
ds (3.6.12)

−
∫ 1

t

∫
{−1,1}

Zns (y)q(ds dy),

where q(dt dy) = d(Nt(y)−2λt). Moreover, the functions g and h automatically satisfy Assumption

3.3.2 and 3.4.4 respectively since both functions come from (4.8) in [20] which satisfies Hypothesis

3.1 of [20].

Compared to (3.5.6), once we determine the value of Zn(y) for y ∈ {−1, 1}, the proof will be

done. Since V n = Y n, we can take the differentiation on V n to have

Y n
t =−

∫ 1

t

∫
{−1,1}

[
V n(ṽ,Ms− + y, s)− V n(ṽ,Ms−, s)

]
q(ds dy) (3.6.13)

−
∫ 1

t

[
V n
t (ṽ,Ms−, s) + λ(V n(ṽ,Ms− + 1, s)− 2V n(ṽ,Ms−, s) + V n

t (ṽ,Ms− − 1, s))
]
ds.

Now combining (3.5.5), (3.6.12) and (3.6.13) together, the processes Zn(y) for y ∈ {−1, 1} can be

determined. �



Chapter 4

Trading in limit order market with

asymmetric information

4.1 Introduction

In the study of asymmetric information, a continuous time model, Glosten-Milgrom model [25] and

Kyle model [32] are influential. In both model, market participants submit market orders to a risk-

neutral market maker. Other than the market maker, traders are of two types: informed traders

(insiders) and noise traders. The insider possesses the knowledge of value of the asset before the

trade and aims to maximise her expected profit by utilizing her private information on the asset.

In addition, there are plenty of works extending Glosten-Milgrom model [25] and Kyle model [32]

e.g. [6], [5] [18] [33], etc. In these studies, agents are only allowed to submit market orders with

unique order size.

In recent years, with growth of electronic exchanges, more than half of the markets use a limit

order book (LOB) mechanism to facilitate trades. In LOB market, there is no market maker or

specialist who provides bid and ask quotes. There are many papers studying models of LOB. For

instance, Roşu [39] considers an equilibrium model that insiders arrive randomly to the market

according to an independent Poisson process. Informed investors learn the current value of the

asset, and decide whether to buy or sell one unit of the asset, and whether to trade with a market

order or a limit order. He illustrates that each informed trader observes the value of mispricing

to decide submit which types of orders depending on a given threshold. Moreover, he also states

that compared to market orders, limit orders have a smaller price impact by a factor about four.

Avellaneda and Stoikov [4] follow early work by Ho and Stoll [29], and represent an inventory

management problem that an agent controls the distances between limit orders and mid price to

maximise expected terminal profits of the inventory. Guilbaud and Pham [26] propose a framework

74
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to study optimal trading strategies in a one-tick pro-rata LOB. The trader decides to submit either

market orders or limit orders, which are represented, respectively, by impulse controls and regular

controls. Furthermore, several papers, e.g., [16], [27], [41], describe optimal strategies for high

frequency trading on cash equities or foreign exchange.

In this chapter, we study an optimal trading problem of a strategic trader, who has a private

prediction or signal on asset value. She maybe wrong on her prediction but wants to maximise

her trading profits by using this private prediction together with market and limit orders. Rest

market participants without this private prediction are aggregated to noisy traders. All of market

participants are allowed to submit market or limit orders with multiple sizes. We know that market

orders are costly but execution is immediately, and limit orders guarantee the price but execution

is uncertain. Hence, the strategic trader faces a trade-off between immediate execution but at a

less favourable price, or waiting to be executed but at a better price. From the modelling point of

view, for market orders, she tries to control intensities of point processes for associated different

order size. On the contrary, we model the strategy of limit orders as continuous controls for order

size, due to the fact that these orders can be cancelled immediately with no cost. We also consider

the price impact of limit and market orders in our model. In this context, the strategic trader

maximises the expected profit over a short time horizon by submitting between limit and market

orders.

We formulate the problem as a stochastic control problem and prove that the value function

of the strategic trader is a solution to this HJB equation. We also investigate numerically the

strategic trader’s optimal strategy in a market where limit and market orders have two sizes, small

and large. We consider five different scenarios depending on sizes of orders allowed to trade by

strategic and noise traders. Our numerical solution shows that the strategic trader will place limit

and market buy orders when the magnitude of mispricing, which is the difference between her

private prediction on the asset and the current trading price, is higher than a threshold. In certain

cases, she may even employ a “round trip” strategy to first submit limit sell orders to push price

down, and subsequently uses market buy orders to make profit on low market price. In this round

trip of trade, the profits from the market buy is still more than losses from the limit sell.

In this chapter, we first recall market point processes to build up our model and explicitly write

down the optimization problem. Then we derive Hamilton-Jacobi-Bellman (HJB) equation for the

optimization problem. Finally, we provide a computational algorithm for the resolution of HJB,

and illustrate numerically the behavior of the strategic trader under specific scenarios.
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4.2 The Model

4.2.1 Marked point process

Consider a measurable space (E,E ), and a random sequence (Tn, ζn)n≥0 ∈ [0,∞) × E, where

(Tn)n≥0, starting from T0 = 0, is an increasing sequence of non-anticipating random times to

describe the occurrence of events and ζn ∈ E is a quantity observed at time Tn. We assume that Tn

is non-explosive, i.e. Tn → ∞ P-a.s. as n → ∞, which guarantees the number of events occurring

on any finite time interval, is almost surely finite. The random sequence (Tn, ζn)n≥0 is called a

marked point process, where (Tn)n≥0 is a point process and (ζn)n≥0 are marks. Define a counting

process Nt(K) by

Nt(K) =
∑
n≥1

I{Tn≤t}I{ζn∈K}, K ∈ E . (4.2.1)

We associate to each K ∈ E the counting measure µ such that

µ((0, t],K) = Nt(K), t ≥ 0. (4.2.2)

Let (Ω,F , (Ft)t≥0,P) be a probability space where F satisfies the usual conditions. Denote by P

the F -predictable algebra on Ω× [0, T ]. If any process H is P ⊗ E -measurable satisfying

E
[ ∫ T

0

∫
E
|Ht(k)|µ(dt, dk)

]
<∞, (4.2.3)

it follows from [13, Chapter VIII, T14] that there exists a function φt and an increasing process A

with A0 = 0, such that

i) K → φt(K) is a probability measure on (E,E );

ii) t→ φt(K) is a predictable process;

iii) we have

E
[ ∫ T

0

∫
E
Ht(k)µ(dt, dk)

]
= E

[ ∫ T

0

∫
E
Ht(k)φt(dk)dAt

]
. (4.2.4)

Assumption 4.2.1 The process A is an absolutely continuous increasing process and with respect

to time.

The predictable random measure φt(dk)dAt is denoted by ν(dt, dk) and called the compensator

of µ or dual predictable projection of µ. For H satisfies (4.2.3), we can define the compensated

stochastic integral

Mt :=

∫ t

0

∫
E
Hr(k)µ̃(dr, dk), (4.2.5)

where µ̃(dt, dk) := µ(dt, dk) − ν(dt, dk) is called the compensated measure. It follows from [13,

Chapter VIII, C4] that M is a martingale.
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4.2.2 Trading model

After recalling marked point processes, let us consider the trading model. In this paper, the micro-

structure of the market are modelled similar to [6], [18] and Chapter 2. There is a market in

continuous time for a risky asset, whose fundamental value denoted by ṽ. We assume that ṽ has

the upper bound and the lower bound denoted by νU and νL respectively and νU > νL. For

simplicity, the risk free interest rate is normalised to 0, i.e. the risk free asset is regarded as the

numéraire. There are two types of agents, noisy traders and a strategic trader, all of whom are risk

neutral but they have different information. The strategic trader has some private signal about

ṽ, which is private valuation/prediction of the asset price based on strategic trader’s information

advantage. This information advantage will lose its value in a future time, say 1. Therefore we

assume that the value of ṽ will be revealed to all market participants at time 1. She uses the private

value prediction to trade in the market and maximise her expected profit. Rest market participants

without this private information are aggregated to noise traders. As the strategic trader always

has advance private information on the market, the probability space (Ω,P) with different filtration

accommodates these two types of market participants.

In our model, both market participants are allowed to place market and limit orders. Let us

consider the model of market orders for both market participants.

Noisy traders are allowed to place buy or sell market orders with maximum m̄ ∈ N shares

each time. This maximal order size is usually determined by the stock exchange. We assume that

the asset is indivisible, therefore the size of buy or sell order k takes values from Km = {1, . . . , m̄}

where the subscript m stands for market orders. The arrival of these buy or sell orders are modelled

by exogenous Poisson processes. To count the number of buy or sell market orders, we denote by

µB and µS counting measures associated to market buy and sell orders. We also denote by λk the

buy or sell intensity for order size k. The buy and sell are assumed to be symmetric, i.e. the same

λk for both buy and sell of order size k. We assume that λk is decreasing against k because of

large orders arrivals less frequent than small orders. The compensator of µB(dt, k) and µS(dt, k) is

φ(k)dAt, defined in (4.2.4), where φ(k) = λk∑m
j=1 λ

j and dAt =
∑m

j=1 λ
jdt. Here the A represents the

arrival of buy/sell market orders of any size and φ(k) represents the probability that an incoming

market buy/sell order is of size k. We denote by ZB and ZS market cumulative buy and sell orders

respectively. They can be represented as

ZB =

∫ ·
0

m̄∑
k=1

kµB(dt, k), ZS =

∫ ·
0

m̄∑
k=1

kµS(dt, k).

The cumulative demand is denoted by Z = ZB − ZS with initial condition Z0 = z ∈ Z.

The other market participant is the strategic trader. She has an object to maximise her expected

profit out of trading. She applies her private prediction on the asset to place market orders with
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arbitrary size in Km. We denote by µ̂B and µ̂S the counting measures for her market buy and

sell orders. For each jump size k, the two processes have intensities θB,k and θS,k respectively. We

assume that these two intensities are bounded by θ̄ > 0. The strategic trader controls the values

of trading intensities to maximise her expected profit, so the intensities are regarded as control

variables. The compensator of µ̂B(dt, k) is φ(k)dAt, where φ(k) = θB,k∑m
j=1 θ

B,j and dAt =
∑m

j=1 θ
B,jdt.

We use similar notation for sell side with superscript S. The cumulative market buy and sell orders,

XB and XS , for the strategic trader can be represented by

XB =

∫ ·
0

m̄∑
k=1

kµ̂B(dt, k), XS =

∫ ·
0

m̄∑
k=1

kµ̂S(dt, k). (4.2.6)

The cumulative order is denoted by X = XB −XS with initial condition X0 = 0.

Now let us consider limit orders for both market participants. We assume that limit orders

submission or cancellation are free of charge. We also assume that any market order submitted by

the strategic trader will be executed against existing orders on the market. Therefore, limit orders

from noisy traders are not explicitly modelled.

The limit orders placed by the strategic trader are executed when they are filled by incoming

counterpart market orders. After previous execution of limit orders, the strategic trader cancels

unexecuted orders and submits new limit orders to wait for next arrival of market orders. We

assume that after each arrival of market orders, the strategic trader can submit limit orders, either

on buy or sell side, i.e. limit orders are submitted right after the last execution at time Tn, n ∈ N0,

which is defined as below with initial value T0 = 0. If there is non-execution or partial execution of

limit orders, she will cancel the whole or rest orders immediately before placing new limit orders

to wait a next execution. Furthermore, for simplicity of the model, we assume that she always

submits limit orders at best bid or ask and those have highest priority to be executed compared to

other outstanding limit orders. The limit order size is denoted by li ∈ Kl, where Kl = {0, 1, . . . , l̄}1

and l̄ ∈ N. Here the subscript l of Kl stands for limit orders. The cumulative submitted buy/sell

limit orders up to time t ∈ [0, 1) is denoted by Lit, which is defined as Lit =
∑∞

n=0 l
i
Tn
I{Tn≤t}, where

i ∈ {B,S}. In addition, we define σ = inf{t > Tn : ∆ZSt 6= 0} and τ = inf{t > Tn : ∆ZBt 6= 0}

to represent the execution time of buy and sell limit orders after last execution time Tn, then

the next market order arrives at Tn+1 = σ ∧ τ . As the submission time of limit orders is earlier

than the next arrival of market orders, we might need a shifted limit order processes defined as

L̃it = LiTn−, where Tn ≤ t < Tn+1. According to the definition of Li, L̃i jumps at the same time

with counterpart X and ∆L̃iTn+1
= ∆LiTn = liTn represents how many limit orders are waiting

to be executed by incoming market orders at Tn+1. Hence, the number of executed limit buy at

1If the jump size is 0, it implies the insider does not place any limit order.
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time σ can be modelled as ∆L̃Bσ ∧∆ZSσ . The executed limit sell can be represented analogously.

The aggregated limit orders from the strategic trader can be defined as L̃ = L̃B − L̃S with initial

condition lB0 if a limit buy order of size lB0 is submitted at time 0 or −lS0 if a limit sell order of size

lS0 is submitted at time 0.

Now let us consider an example to understand how the strategic trader places limit orders.

There are four market order arrivals from T1 to T4. At T0 = 0, she places a limit buy order with

lBT0 size. A market sell order comes at T1 with ∆ZST1 size. At the same time, if ∆ZST1 ≥ lBT0 , the

limit buy is fully filled. Otherwise, she cancels unexecuted buy orders and places a new limit buy

with size lBT1 . At T2 a market buy comes in but it cannot fill any limit buy order, so the strategic

trader cancels limit buy and places another limit buy order with size lBT2 . After the last market

order arrivals at T4, LT4 = lBT0 + lBT1 + lBT2 − l
S
T3
− lST4 and L̃t = LT4− = lBT0 + lBT1 + lBT2 − l

S
T3

for t > T4.

-
Time

6

lBT0

T0 T1

?∆ZST1

6

lBT1
6

T2

∆ZBT2

6
lBT2

6

T3

∆ZBT3

?lST3

T4

?∆ZST4

?lST4

Now let us consider the aggregation of the informed and noise trades from buy and sell, i.e. Y B =

ZB +XB + L̃B, Y S = ZS +XS + L̃S respectively. The total aggregation is Y = Y B − Y S , which

can be regarded as order flow imbalance defined in [21], since it is aggregated orders from buy and

sell sides.

4.2.3 Pricing rule

We consider market participants who are price takers with respect to an exogenously given pricing

rule for shares bought or sold of this stocks within the trading interval. Instead of market partici-

pants facing the same price for any order size, they now face a pricing rule that depends on their

order demand. Moreover, we also assume that there exists a price impact generated by market and

limit orders in our model. The price impact of trades has been extensively studied in the literature.

It is usually classified as permanent and temporary price impacts. The permanent price impact is

the price change that is due to the information content of the trade. The temporary price impact is

the transitory change in prices due to market frictions such as the liquidity effect and the imbalance

between demand and supply. In our model, we simply introduce an coefficient of the price impact

to combine permanent and temporary price impacts together.

To achieve the properties we assume above, we might define a pricing rule which is the function

of Y and t such that:



4.2. The Model 80

Definition 4.2.2 A function p : [0, 1]× Z→ R+ is a pricing rule if

i) y → p(t, y) is strictly increasing for each t ∈ [0, 1);

ii) limy→−∞ p(t, y) = νL and limy→+∞ p(t, y) = νU for each t ∈ [0, 1] where νL and νU are

constants and νL ≤ νU .

The monotonicity of y → p(t, y) is natural in asset pricing markets, which implies that when the

demand is higher, it generates higher price impact and pushes the price higher. The quantity

impact on the price is due to either information effects from the strategic trader or supply/demand

imbalances from all market participants.

Now let us consider the price impact on market orders. Çetin et al. [17] study a stochastic supply

curve for a security’s price as a function of trade size. In Kyle-Back [5], [32] and Glosten-Milgrom

[25] models, informed trades cannot be distinguished from non-informed trades, then all trades

will generate permanent impact on the price since other agents will believe that a fraction of these

trades might contain some private information. For instance, after a buy market order submitted

by the strategic trader with ∆XB
t size, as the price will become p(t, Yt− + ∆XB

t ) compared to

p(t, Yt−), the strategic trader needs to pay ∆XB
t p(t, Yt− + ∆XB

t ). For a sell market order, it has a

similar result. For temporary price impact on market orders, Alzahrani et al. [2] illustrate that the

temporary price impact only contributes one tenth of permanent price impact. On the contrary,

Almgren et al. [1] state that permanent and temporary components have equal weight to contribute

the total price impact. To compromise different conclusions about permanent/temporary price

impacts, we introduce a price impact coefficient εm > 1, which combine permanent and temporary

components together. For instance, after a buy market order submitted by the strategic trader with

∆XB
t size, the price will become p(t, Yt− + εm∆XB

t ) compared to p(t, Yt−) for any time t ∈ [0, 1).

The permanent price impact is p(t, Yt− + ∆XB
t ) − p(t, Yt−) and the temporary price impact is

p(t, εmYt−+ ∆XB
t )− p(t, Yt−+ ∆XB

t ). The εm− 1 can be regarded as the temporary price impact

factor. If we want to exclude the temporary price impact, we just make εm be 1. Here, the

superscript m of εm stands for market orders.

Next let us consider the price impact on limit orders. Hautsch and Huang [28] show that limit

orders do have significant effects on the price. Cont et al. [21] also state that the price changes are

mainly driven by the order flow imbalance, i.e. the aggregation order Y in our model. They also

present that there exists a linear relation between price impact and order flow imbalance in short

period. To consider the price impact on limit orders, we can also introduce another coefficient

εl > 1, which aggregates permanent and temporary components together. For instance, if the

strategic trader submits ∆L̃Bt limit buy orders followed by ∆XS
t noisy sell market orders, the price

will become to p(t, Yt−+ εl∆L̃Bt −∆XS
t ) compared to price p(t, Yt−) for any original time t ∈ [0, 1).
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For a sell limit order, it has a similar result. The εl − 1 can be regarded as the temporary price

impact factor. Here, the superscript l of εl stands for limit orders.

Before considering the strategic trader’s profit, let us first consider an admissible strategy for

her.

Definition 4.2.3 The strategy (XB, XS , LB, LS ; F I) is admissible, if

i) XB and XS are F I -adapted and integrable marked point processes with initial condition

XB
0 = XS

0 = 0;

ii) LB and LS are F I -adapted and integrable marked point processes with initial condition which

may not be zero;

iii) the (F I ,P)-dual predictable projections of XB and XS are absolutely continuous functions of

time and intensities bounded by θ̄ > 0.

It implies that for each jump size k ∈ Km from buy side there exists F I -intensity θB,k such that

XB −
∫ ·

0

∑m̄
k=1 kθ

B,k
r dr =

∫ ·
0

∑m̄
k=1 k(µ̂B(dr, k) − θB,kr dr) is an F I -martingale. The sell side has a

similar result.

4.2.4 Strategic trader’s profit

As mentioned earlier, the strategic trader aims to maximise her expected profit. Given an admissible

trading strategy from market orders (XB, XS), the associated profit from market orders at time 1

is given by∫ 1

0

(
ṽ − p(r, Yr− + εm∆XB

r )
)
dXB

r −
∫ 1

0

(
ṽ − p(r, Yr− − εm∆XS

r )
)
dXS

r

=

∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εmk)

)
kµ̂B(dr, k)−

∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− − εmk)

)
kµ̂S(dr, k).

Therefore the expected profit of the strategic trader from market orders conditional on her private

prediction is

E
[ ∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εmk)

)
kµ̂B(dr, k)−

∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− − εmk)

)
kµ̂S(dr, k)

∣∣∣ṽ]. (4.2.7)

Since pricing rule p is bounded, combined with (4.2.5), we have
∫ ·

0

∑m̄
k=1

(
ṽ−p(r, Yr−+εmk)

)
k(µ̂B(dr,

k)− θB,kr dr) is an F I -martingale. The sell side has a similar result. Therefore, the expected profit

from market orders can be expressed as

E
[ ∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εmk)

)
kθB,kr dr −

∫ 1

0

m̄∑
k=1

(
ṽ − p(u, Yr− − εmk)

)
kθS,kr dr

∣∣∣ṽ]. (4.2.8)
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According to our assumption, given admissible strategy from limit orders (LB, LS), the associ-

ated profit from limit orders at time 1 is given by∫ 1

0

(
ṽ − p(r, Yr− + εl∆L̃Br −∆ZSr )

)
(dL̃Br ∧ dZSr )

−
∫ 1

0

(
ṽ − p(r, Yr− − εl∆L̃Sr + ∆ZBr )

)
(dL̃Sr ∧ dZBr )

=

∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εl∆L̃Br − k)

)
(∆L̃Br ∧ k)µS(dr, k)

−
∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− − εl∆L̃Sr + k)

)
(∆L̃Sr ∧ k)µB(dr, k).

We also know that the expected profit of the strategic trader from limit orders conditional on her

information is

E
[ ∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εl∆L̃Br − k)

)
(∆L̃Br ∧ k)µS(dr, k)

−
∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− − εl∆L̃Sr + k)

)
(∆L̃Sr ∧ k)µB(dr, k)

∣∣∣ṽ]. (4.2.9)

Since pricing rule p is bounded, combined with (4.2.5), we have
∫ ·

0

∑m̄
k=1

(
ṽ − p(r, Yr− + εl∆L̃Br −

k)
)

(∆L̃Br ∧ k)(µ̂S(dr, k)−λkdr) is an F I -martingale. The sell side has a similar result. Therefore,

the expected limit profit (4.2.9) can be expresses as

E
[ ∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− + εl∆L̃Br − k)

)
(∆L̃Br ∧ k)λkdr

−
∫ 1

0

m̄∑
k=1

(
ṽ − p(r, Yr− − εl∆L̃Sr + k)

)
(∆L̃Sr ∧ k)λkdr

∣∣∣ṽ]. (4.2.10)

4.2.5 Control problem

Let U be a set of admissible controls, which consists of [0, θ̄]2m̄ × [0, l̄]2-valued processes. For given

u = (θB,1, . . . , θB,m̄, θS,1 . . . , θS,m̄, lB, lS),

we define a function for the insider at time t as

C(t, y, u) :=
m̄∑
k=1

{(
ṽ − p(t, y + εmk)

)
kθB,kt +

(
p(t, y + εmk)− ṽ

)
kθS,kt

+
(
ṽ − p(t, y + εllB − k)

)
(lB ∧ k)λk +

(
p(t, y − εllS + k)− ṽ

)
(lS ∧ k)λk

}
.

Therefore, when the strategic trader uses a control u ∈ U , the expected profit is

Ju(t, y) = E
[ ∫ 1

t
C(r, Yr−, ur)dr

∣∣∣Yt = y, ṽ
]
. (4.2.11)
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The value function can be defined as

V (t, y, ṽ) = ess sup
u∈U

Ju(t, y). (4.2.12)

Now employing the standard dynamic programming arguments yields the following HJB equation

for V : 
−Vt(t, y, ṽ)−H(t, y, ṽ, V, p) = 0,

V (1, y, ṽ) = 0,

(4.2.13)

where ṽ ∈ {0, 1}, (t, y) ∈ [0, 1)× Z. The Hamilton H is defined as

H(t, y, ṽ, V, p) := H(1)(t, y, ṽ, V ) + sup
u∈U

H(2)(t, y, ṽ, V, p), (4.2.14)

where U = [0, θ̄]2m̄ × [0, l̄]2,

H(1)(t, y, ṽ, V ) =
m̄∑
k=1

[
V (t, y + k)− 2V (t, y) + V (t, y − k)

]
λk

and

H(2)(t, y, ṽ, V, p)

=

m̄∑
k=1

[
V (t, y + k)− V (t, y) + (ṽ − p(t, y + εmk))k

]
θB,k

+
m̄∑
k=1

[
V (t, y − k)− V (t, y) + (p(t, y − εmk)− ṽ)k

]
θS,k

+
m̄∑
k=1

[
V (t, y + lB − k)− V (t, y − k) +

(
ṽ − p(t, y + εllB − k)

)
(lB ∧ k)

]
λk

+
m̄∑
k=1

[
V (t, y − lS + k)− V (t, y + k) +

(
p(t, y − εllS + k)− ṽ

)
(lS ∧ k)

]
λk.

Theorem 4.2.4 The system (4.2.13) admits a unique bounded solution V continuously differen-

tiable in the time variable. Moreover, there exists a measurable function u∗ satisfying

u∗(t, y) = arg max
u∈U

H(2)(t, y, ṽ, V, p). (4.2.15)

Proof. This proof is motivated by [13, Chapter VII, T3 Theorem]. To simplify notation, we suppress

ṽ in V and also p in H throughout the proof. We know U is a compact set. We also notice that

the mappings t→ θB,kt (y), t→ θS,kt (y), for any k ∈ Km and (t, u)→ C(t, y, u) are continuous and

bounded. The pricing rule p is bounded as well.

Let l∞ be the Banach space of real bounded sequences. The supermum norm is defined as |l|l∞ =

supn∈N |ln| for l = (. . . , l−1, l0, l1, . . . ). Then let us consider the following ordinary differential

equation in l∞:

V̇(t) = −H(t,V) , V(1) = 0,
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where

V(t) = (. . . , V (t,−1), V (t, 0), V (t, 1), . . . ),

H(t,V) = (. . . , H(t,−1, V ), H(t, 0, V ), H(t, 1, V ), . . . ),
(4.2.16)

and H comes from (4.2.14). The symbol V̇ denotes differentiation with respect to t and relative

to the sup norm on l∞. In fact, the differentiability of t → V(t) in the l∞ sense implies the

differentiability of t→ V (t, y) for all y in the usual sense, and moreover

V̇(t) =
(
. . . ,

dV (t,−1)

dt
,
dV (t, 0)

dt
,
dV (t, 1)

dt
, . . .

)
.

Now the mappings V→ (AjV)k, where j = {1, 2, 3, 4} from l∞ into l∞ given by

(A1V)k = V (·, ·+ k)− V (·, ·),

(A2V)k = V (·, · − k)− V (·, ·),

(A3V)k = V (·, ·+ lB − k)− V (·, ·),

(A4V)k = V (·, · − lS + k)− V (·, ·),

are Lipschitz operators for li ∈ KL, i ∈ {B,S}, and k ∈ Km since
∣∣AjV∣∣

l∞
≤ 2 |V|l∞ . Under the

conditions of boundedness for the intensities θB,k, θS,k and λk, combined with the profit per unit

time C, it is not difficult to show that the mapping from R4m̄ to R defined by

(x1,x2,x3,x4)→ supu∈U

{ m̄∑
k=1

x1
kθ
B,k +

m̄∑
k=1

x2
kθ
S,k +

m̄∑
k=1

(x3
k + x4

k)λ
k + C(t, y, u)

}
(4.2.17)

is Lipschitz and this for all y and t ∈ [0, 1]. Therefore, by composition of (AjV)k and (4.2.17), i.e.

replacing xjk by (AjV )k(y), V→ H(t,V) is Lipschitz map for all t ∈ [0, 1]. We can therefore apply

the classical results on differential equations on Banach spaces that guarantee the existence of a

unique solution of (4.2.13) in l∞. The last assertion follows from the classical results on measurable

selections in [42]. �

Proposition 4.2.5 We have stated in Theorem 4.2.4 that there exists a function V (t, y, ṽ) ∈ C1

in time t ∈ [0, 1] satisfying the system (4.2.13). Then u∗t defined by

u∗t = u∗(t, Yt), (4.2.18)

where u∗ comes from (4.2.15), is an optimal control.

Proof. To simplify notation, we ignore ṽ in V . Applying Itô’s formula to V (·, Y·), we obtain

V (1, Y1) =V (t, y) +

∫ 1

t
Vt(r, Yr−)dr +

∫ 1

t

m̄∑
k=1

(
V (r, Yr− + k)− V (r, Yr−)

)
θB,kr dr
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+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− − k)− V (r, Yr−)

)
θS,kr dr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− + ∆L̃Br − k)− V (r, Yr−)

)
λkdr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− −∆L̃Sr + k)− V (r, Yr−)

)
λkdr +M1 −Mt,

where

M =

∫ ·
0

m̄∑
k=1

(
V (r, Yr− + k)− V (r, Yr−)

)
(µ̂B(dr, k)− θB,kr dr)

+

∫ ·
0

m̄∑
k=1

(
V (r, Yr− − k)− V (r, Yr−)

)
(µ̂S(dr, k)− θS,kr dr)

+

∫ ·
0

m̄∑
k=1

(
V (r, Yr− + ∆L̃Br − k)− V (r, Yr−)

)
(µS(dr, k)− λkdr)

+

∫ ·
0

m̄∑
k=1

(
V (r, Yr− −∆L̃Sr + k)− V (r, Yr−)

)
(µB(dr, k)− λkdr)

is a martingale. Now, we add
∫ 1
t C(t, Yr−, ur)dr on both sides in above equation, we have∫ 1

t
C(r, Yr−, ur)dr =− V (1, Y1) + V (t, y) +

∫ 1

t
Vt(r, Yr−)dr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− + k)− V (r, Yr−)

)
θB,kr dr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− − k)− V (r, Yr−)

)
θS,kr dr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− + ∆L̃Br − k)− V (r, Yr−)

)
λkdr

+

∫ 1

t

m̄∑
k=1

(
V (r, Yr− −∆L̃Sr + k)− V (r, Yr−)

)
λkdr

+

∫ 1

t
C(t, Yr−, ur)dr +M1 −Mt.

Moreover, taking the conditional expectation with respect to F I
t on both sides, by the HJB equation

(4.2.13), we have

Ju(t, y) ≤ V (t, y)− V (1, Y1) = V (t, y), (4.2.19)

where the equality is attained at u∗ by the definition in (4.2.18), and the identity is because of the

terminal condition of V . �

4.3 Numerical example

In this section, we solve (4.2.13) numerically then illustrate the strategic trader’s optimal value and

strategy. We assume that the asset price ṽ follows a Bernoulli distribution with P(ṽ = 0) = p and
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P(ṽ = 1) = 1− p. To ease of notation, we suppress ṽ in each function below.

4.3.1 Pricing function

In our model, the pricing function defined in Definition 4.2.2 is general. To observe the behaviour

of the strategic trader, we need to specify a pricing function in the numerical scheme. We can

borrow the pricing rule from literature [18], who illustrates that when there only exists market

orders with unique order size, the pricing function is p(t, Zt) = E
[
ṽ|Ft

]
set by a market maker

to achieve an equilibrium. Even though we do not consider the equilibrium here, we want to see

the impact of limit orders with the same order size as well on strategic trader’s optimal value once

limit orders are allowed. In particular, p(t, Zt) = E
[
ṽ|Ft

]
describes market’s implied probability

that ṽ = 1 since ṽ has Bernoulli distribution. The price p(t, Zt) is market’s evaluation of the asset

at time t and satisfies (3.5) in [18] due to the Markov property in Z. Here we assume that p(t, Yt)

is market’s evaluation and satisfies
pt +

m̄∑
k=1

{
p(t, y + k)− p(t, y) + p(t, y − k)

}
λk = 0, (t, y) ∈ [0, 1)× Z,

p(1, y) = P (y), y ∈ Z,

(4.3.1)

where

P (y) :=


0 y < z

1 y ≥ z
, (4.3.2)

for any value of z ∈ Z.

4.3.2 Numerical results

Let us introduce parameters in the computational scheme which numerically solve the system

(4.2.13). The time interval [0, 1] can be discretised with time step ∆t = 1/N and a regular

time grid TN = {tn = n∆t, n = 0, . . . , N}. We assume that the interval of aggregated demand

Y is [−MY ,MY ] which implies the state space Y is truncated at −MY and MY for large MY .

Then we can discretise the state space with size step ∆y = 2MY /NY and a finite regular grid

YMY
= {ym = −MY + m∆y, m = 0, . . . , NY }. To find the optimal strategy for the strategic

trader, we need to perform the algorithm (4.4.4) with parameters shown in Table 4.1. The details

of the numerical scheme are deferred to the Appendix.

In Table 4.1, we assume that ṽ follows Bernoulli distribution with 0 or 1 values. When the value

p = 0.5, it illustrates that ṽ is an unbiased Bernoulli random variable. In addition, we assume that

the strategic trader predicts ṽ being equal to 1 by using her advanced information. As the whole

trading period is [0, 1], we set terminal time T as 1. For simplicity reason, we also suppose that
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all of agents are allowed to place orders with maximum two units of orders. One unit size can be

regarded as small orders, which arrives frequently with intensity λ1 = 200. Two units size can be

regarded as large orders with intensity λ2 = 20, which only has one tenth of λ1 as large orders

arrivals much less frequent than small orders. The intensities of market orders θi,k, where i ∈ {B,S}

and k ∈ {1, 2}, is bounded by θ̄, which is 400. We assume that the number of time partitions is

N = 5, 000, which means the time interval ∆t = 1/N = 0.0002. In addition, we assume that the

interval of aggregated orders is defined as 1/
√

2λ1, which is motivated by [6] and [18]. The value of

MY is three times of standard deviation of results obtained by 106 times of Monte Carlo simulation

for the difference of two independent of Poisson processes with the intensity λ1 +λ2. Once we have

values of ∆y and MY , the value of NY will be determined. Since p = 0.5 and the difference of

independent Poisson processes, the value of z in (4.3.2) is the middle point of [−MY ,MY ] which

is 0. Finally, we assume that the price impact of market orders will generated three times effect

compared to limit ones, i.e. 6 and 2 respectively.

Parameter Value Parameter Value Parameter Value

p 0.5 T 1 z 0

ṽ 1 λ1 200 λ2 20

θ̄ 400 N 5000 ∆t 0.0002

∆y 1√
2λ1

= 0.05 MY 72 NY 2880

εm 6 εl 2

Table 4.1: Parameters for numerical scheme

Here we consider five different scenarios listed in Table 4.2. The range of scenarios is from all of

market participants only allowed to place market orders with small unit order size to all of them

allowed to place market and limit orders with small and large order size. The second column is the

values of V ∆t,∆y.My(0, 0) defined in (4.4.4) when the strategic trader applies her optimal strategy to

trade each time. The first three scenarios are classified to the first group and the rest are aggregated

to the second group as the values in last two scenarios have a significant jump. The reason will be

explained later. In the each of group, the values gradually increase along with extending trading

options. Now let us consider these five scenarios one by one.

The numerical results are listed in section 4.4.3, the y-axis is the trading period from 0 to 1 and

the x-axis is the number of order units for aggregated orders. In general, as the private prediction
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Scenarios Value at y = 0 and t = 0

1 Market Order Size Only 0.2658

1 Market Order Size, 1 Limit Order Size 0.3508

2 Market Order Size, 1 Limit Order Size 0.4024

1 Market Order Size, 2 Limit Order Size 8.2242

2 Market Order Size, 2 Limit Order Size 8.8654

Table 4.2: Optimal values for different scenarios

of ṽ is 1, the strategic trader always wants to push the aggregated demand y above the z = 0 due

to (4.3.2) and the definition of Z.

In the Figure 4.3, we display the optimal strategy when only both market orders with small order

size are allowed. There are two regions for the strategy of market buy, active region and inactive

region. Since the control problem is of bang-bang type, optimal intensity is either maximal θ̄ in

the active region or 0 in the inactive region. At the beginning of the trade, she is patient to place

market buy orders. However, as time passed by, she becomes more and more impatient and tries to

place market orders once the number of aggregated orders is less than zero, i.e. the number of sell

more than the number of buy. In market sell side, the strategic trader does not place any orders

to sell since it incurs a permanent loss, which is not the optimal strategy for her.

In the Figure 4.4, we display the optimal strategy when market and limit orders in small order

size are allowed. The strategy in limit buy orders is very similar as market buy orders. At the

same time, she does not place any market and limit sell orders. The reason of no limit sell orders

submitted can be demonstrated by an example as below. For instance, at time t, when the strategic

trader places the limit sell with small order size ls = 1 which is fully filled by the following market

buy with order size k = 1 submitted by noisy traders, the strategic trader suffers the loss when

εm = 6 and εl = 2 such that

Loss = (p(t, y − εlls + k)− ṽ)(ls ∧ k) = p(t, y − 1)− ṽ.

Since the price of the asset is less than ṽ = 1 for any y and t, the value of the above identity is

non-positive. After posting a limit sell followed by a market buy order with the same size, the

aggregated order is unchanged, i.e. y − 1 + 1 = y, due to the negative one contributed from the

limit sell and the positive one contributed from the market buy. Next the strategic trader places a

market buy order with small order size k = 1 at time t′ > t to obtain the profit such that

Profit = (ṽ − p(t, y + εmk))k = ṽ − p(t, y + 6).
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For simplicity, we assume that there is no any other orders coming in between the time interval t

and t′. The net profit is

Net Profit = Profit + Loss

= p(t, y − 1)− p(t, y + 6) < 0.

The negative net profit also happens when she submits limit sell orders followed by limit buy orders.

Hence, submitting limit sell orders is not the optimal strategy as the profit from the market buy

is less than the loss from the limit sell in this scenario. Furthermore, comparing to the strategy in

Figure 4.3, we find that the strategic trader is more patient at early of the trade as she has one

more option, limit buy orders, to make profits.

In Figure 4.5, we display the optimal strategy when market orders with both order sizes and

limit orders with only small order size are allowed. The pattern of the trading strategy is similar

as the previous two scenarios. The main difference is that the strategic trader is the most patient

among these three scenarios as she has the most trading options in the third scenarios.

Now let us consider last two scenarios together. In Figure 4.6 and 4.7, the trading strategies in

market buy, market sell and limit buy orders are similar to three previous scenarios. However, the

values of strategic trader’s profit in the fourth and fifth scenarios, 8.2242 and 8.8654 respectively,

are much larger than values in the three previous scenarios. The main reason is the strategy in

limit sell orders. It is easy to use an example to explain the reason. For instance, at time t, when

the strategic trader places a limit sell order with large order size ls = 2 which is partially filled by

the following a market buy order with size k = 1 submitted by noisy traders, the strategic trader

suffers a loss such that

Loss = (p(t, y − εlls + k)− ṽ)(ls ∧ k) = p(t, y − 3)− ṽ,

which is non-positive. Now the number of the aggregated order is y− 2 + 1 = y− 1 due to negative

two contributed from the limit sell side and positive one contributed from the market buy side.

Next the strategic trader places a market buy order with large size k = 2 at time t′ > t to obtain

a profit such that

Profit = (ṽ − p(t, y − 1 + εmk))k = 2(ṽ − p(t, y + 11)).

We also assume that there is no any other orders coming in between the time interval t and t′.

Hence the net profit is

Net Profit = Profit + Loss

= 2(ṽ − p(t′, y + 11)) + p(t, y − 3)− ṽ
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= ṽ − p(t′, y + 11) + p(t, y − 3)− p(t′, y + 11).

As the pricing rule is non-decreasing against y and is always less or equal to ṽ, the value of

the net profit might be positive when the value of ṽ − p(t′, y + 11) is larger than the value of

p(t′, y + 11) − p(t, y − 3). Therefore, the strategic trader will place market orders with large size

when it happens, which is demonstrated in the fourth plot in the Figure 4.6 and 4.7. In summary,

the strategic trader submits limit sell orders with large size to push the trading price down and

suffers a loss, and places market buy orders with large order size to take advantage of low trading

price and make immediate profit which is larger than the previous loss. Therefore, comparing to

do nothing in the limit sell, the behaviour of “round trip” trading is an optimal strategy for her.

4.4 Appendix

4.4.1 Numerical scheme

In this section, we will consider the details of the numerical scheme to solve the system (4.2.13).

Besides introducing parameters listed in Table 4.1, we defined a truncated function denoted by

ϕ(y) := −MY ∨ (y∧MY ). Now let us define an operator associated to the (4.3.1): given a [0,1]-real

valued function φ on [0, 1]× R, we define

P∆t,∆y,MY (t, y, φ) := φ(t, y) + ∆t

m̄∑
k=1

{
φ
(
t, ϕ(y + k∆y)

)
− φ(t, y) + φ

(
t, ϕ(ym − k∆y)

)}
λk.

We also define an operator associated to the (4.2.13): given a real valued function ψ on [0, 1]× R,

we define

S∆t,∆y,MY (t, y, ψ, φ) := ψ(t, y) + ∆t× Ĥ(t, y, ψ, φ),

where

Ĥ(t, y, ψ, φ) := Ĥ(1)(t, y, ψ) + sup
u∈U

Ĥ(2)(t, y, ψ, φ)

such that

Ĥ(1)(t, y, ψ) :=

m̄∑
k=1

[
ψ
(
t, ϕ(y + k∆y)

)
− 2ψ(t, y) + ψ

(
t, ϕ(y − k∆y)

)]
λk, (4.4.1)

and

Ĥ(2)(t, y, ψ, φ) :=

m̄∑
k=1

[
ψ
(
t, ϕ(y + k∆y)

)
− ψ(t, y) +

(
ṽ − φ(t, ϕ(y + εmk∆y))

)
k∆y

]
θB,k

+
m̄∑
k=1

[
ψ
(
t, ϕ(y − k∆y)

)
− ψ(t, y) +

(
φ(t, ϕ(y − εmk∆y))− ṽ

)
k∆y

]
θS,k
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+
m̄∑
k=1

[
ψ
(
t, ϕ(y + (lB − k)∆y)

)
− ψ

(
t, ϕ(y − k∆y)

)
(4.4.2)

+
(
ṽ − φ(t, ϕ(y + (εllB − k)∆y))

)
(lB ∧ k)∆y

]
λk

+

m̄∑
k=1

[
ψ
(
t, ϕ(y − (lS − k)∆y)

)
− ψ

(
t, ϕ(y + k∆y)

)
+
(
φ
(
t, ϕ(y − (εllS − k)∆y)

)
− ṽ
)
(lS ∧ k)∆y

]
λk.

Now we can approximate the solution p in (4.3.1) by the function p∆t,∆y,MY on (tn, ym) ∈

TN × YM solution to the computational scheme
p∆t,∆y,MY (tn, ym) = P∆t,∆y,MY (tn+1, ym, p

∆t,∆y,MY )

p∆t,∆y,MY (tN , ym) = P (ym).
(4.4.3)

We can also approximate the solution V in (4.2.13) by the function V h,∆y,MY on (tn, ym) ∈ TN×YM

solution to the computational scheme
V ∆t,∆y,MY (tn, ym) = S∆t,∆y,MY (tn+1, ym, V

∆t,∆y,MY , p∆t,∆y,MY ),

V ∆t,∆y,MY (tN , ym) = 0.
(4.4.4)

The algorithm can be described explicitly in backward induction by the following pseudo-code: for

each ym ∈ YMY
,

• for tN = 1, set p∆t,∆y,MY (tN , ym) = P (ym);

• for n = N − 1, . . . , 0, assign p∆t,∆y,MY (tn, ym) by computing P∆t,∆y,MY (tn+1, ym, p
∆t,∆y,MY );

• for tN = 1, set V ∆t,∆y,MY (tN , ym) = 0;

• for n = N − 1, . . . , 0, compute

Ĥ(1)(tn+1, ym, V
∆t,∆y,MY ) and Ĥ(2)(tn+1, ym, V

∆t,∆y,MY , p∆t,∆y,MY ),

and store θB,k,?, θS,k,?, lB,? and lS,? the argmax. Finally assign V ∆t,∆y,MY (tn, ym) by com-

puting

V ∆t,∆y,MY (tn+1, ym)+∆t
(
Ĥ(1)(tn+1, ym, V

∆t,∆y,MY )+Ĥ(2)(tn+1, ym, V
∆t,∆y,MY , p∆t,∆y,MY )

)
.

The convergence of the numerical scheme (4.4.4) is by showing the monotonicity, stability, and

consistency properties of this scheme. The proof is provided below. Now we can confirm that the

solution V ∆t,∆y,MY to the numerical scheme (4.4.4) converges locally uniformly to V on [0, 1)×Z,

as (∆t,∆y,MY ) goes to (0, 1,∞).
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4.4.2 Proof of convergence

In this section, the proof follows [26, Section 4.2] with proper extension. To ease of notation, we

suppress the parameter ṽ for each function in this section. We denote by C1
b the set of bounded

continuously differentiable functions on [0, 1] × R with bounded derivatives, and C1
[0,1] the set of

[0,1]-bounded continuously increasing functions on [0, 1]× R with bounded derivatives.

Assumption 4.4.1 To prove the convergence of V ∆t,∆y,MY to V as (∆t,∆y,MY ) goes to (0, 1,∞),

we assume that

i) the functions φ ∈ C1
[0,1] and ψ ∈ C1

b ;

ii) the solution p∆t,∆y,MY to the numerical scheme (4.4.3) converges locally uniformly to p for

(4.3.1) on [0, 1)× Z as (∆t,∆y,MY ) goes to (0, 1,∞).

Remark 4.4.2 Here we assume that item ii) in Assumption 4.4.1 holds without a detailed proof

as the way to finish the proof is similar as the technique in the proof of the convergence from

V ∆t,∆y,MY to V illustrated below. It is needed to show monotonicity, stability and consistency

properties of the scheme (4.4.3). Combining these three properties, we can confirm that there

exists a convergence from (4.4.3) to (4.3.1) as (∆t,∆y,MY ) goes to (0, 1,∞).

Now let us study the convergence of numerical scheme (4.4.4) by showing monotonicity, stability

and consistency properties of this scheme.

Lemma 4.4.3 (Monotonicity). For any ∆t > 0 s.t. ∆t <
(

2
∑m

k=1(λk + θ̄)
)−1

, the operator

S∆t,∆y,MY (t, y, ψ, φ) is non-decreasing in ψ, i.e. for any φ ∈ C1
[0,1], ψ1 and ψ2 ∈ C1

b , s.t. ψ1 ≤ ψ2:

S∆t,∆y,MY (t, y, ψ1, φ) ≤ S∆t,∆y,MY (t, y, ψ2, φ), (t, y) ∈ [0, 1)× R.

Proof. We see that the Sh,∆y,MY (t, y, ψ) can be written as

S∆t,∆y,MY (t, y, ψ, φ)

=ψ(t, y) + ∆t×
(
Ĥ(1)(t, y, ψ) + sup

u∈U
Ĥ(2)(t, y, ψ, φ)

)
=ψ(t, y) + sup

u∈U

{
m̄∑
k=1

[
ψ
(
t, ϕ(y + k∆y)

)
− ψ(t, y) +

(
ṽ − φ(t, ϕ(y + εmk∆y))

)
k∆y

]
∆tθB,k

+
m̄∑
k=1

[
ψ
(
t, ϕ(y − k∆y)

)
− ψ(t, y) +

(
φ(t, ϕ(y − εmk∆y))− ṽ

)
k∆y

]
∆tθS,k

+
m̄∑
k=1

[
ψ
(
t, ϕ(y + (lB − k)∆y)

)
− ψ

(
t, y
)

+
(
ṽ − φ(t, ϕ(y + (εllB − k)∆y))

)
(lB ∧ k)∆y

]
∆tλk

+
m̄∑
k=1

[
ψ
(
t, ϕ(y − (lS − k)∆y)

)
− ψ

(
t, y
)

+
(
φ
(
t, ϕ(y − (εllS − k)∆y)

)
− ṽ
)
(lS ∧ k)∆y

]
∆tλk

}
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= sup
u∈U

{
ψ(t, y) +

m̄∑
k=1

{
− (θB,k + θS,k + 2λk)∆tψ(t, y)

+
[
ψ
(
t, ϕ(y + k∆y)

)
+
(
ṽ − φ(t, ϕ(y + εmk∆y))

)
k∆y

]
∆tθB,k

+
[
ψ
(
t, ϕ(y − k∆y)

)
+
(
φ(t, ϕ(y + εmk∆y))− ṽ

)
k∆y

]
∆tθS,k

}
+

m̄∑
k=1

[
ψ
(
t, ϕ(y + (lB − k)∆y)

)
+
(
ṽ − φ(t, ϕ(y + (εllB − k)∆y))

)
(lB ∧ k)∆y

]
∆tλk

+
m̄∑
k=1

[
ψ
(
t, ϕ(y − (lS − k)∆y)

)
+
(
φ(t, ϕ(y − (εllS − k)∆y)− ṽ)

)
(lS ∧ k)∆y

]
∆tλk

}
.

From the expression above, it is clear that S∆t,∆y,MY (t, y, ψ, φ) in ψ is monotone once ∆t <(
2
∑m

k=1(λk + θ̄)
)−1

. �

Lemma 4.4.4 (Stability) For any ∆t,∆y,MY > 0 there exists a unique solution V ∆t,∆y,MY to the

numerical scheme (4.4.4), and the sequence (V ∆t,∆y,MY ) is uniformly bounded for any (tn, ym) ∈

TN × YM .

Proof. Existence and uniqueness of V ∆t,∆y,MY follows from the backward scheme (4.4.4). Let us

now consider the uniform bounds. Since θi,k, li, λk and p∆t,∆y,MY for i ∈ {B,S} are bounded,

there always exists a constant γ to make V ∆t,∆y,MY < γ. �

Lemma 4.4.5 (Consistency) For all (t, y) ∈ [0, 1)× Z, we have ψ ∈ C1
b , φ ∈ C1

[0,1] and

lim
(∆t,∆y,MY )→(0,1,∞)

(t′,y′)→(t,y)

φ→ φ̂,

where φ̂ is the function on [0, 1]× Z, then we can show

lim
(∆t,∆y,MY )→(0,1,∞)

(t′,y′)→(t,y)

1

∆t

[
ψ(t′, y′)− S∆t,∆y,MY (t′ + ∆t, y′, ψ, φ)

]
= −ψt(t, y)−H(t, y, ψ, φ̂).

(4.4.5)

Proof. We have all (t′, y′) ∈ [0, 1)× R,

1

∆t

[
ψ(t′, y′)− S∆t,∆y,MY (t′ + ∆t, y′, ψ, φ)

]
=

1

∆t

[
ψ(t′, y′)− ψ(t′ + ∆t, y′)

]
− Ĥ(t′ + ∆t, y′, ψ, φ).

The first term converges trivially to −ψt(t, y) as ∆t goes to 0 and (t′, y′) goes to (t, y). To com-

plete this proof, we just need to show the convergence of Ĥ(t′ + ∆t, y′, ψ, φ) to H(t, y, ψ, φ̂) as

(∆t,∆y,MY ) goes to (0, 1,∞) and (t′, y′) goes to (t, y). Alternatively, we need to prove the conver-

gence of Ĥ(1)(t′+∆t, y′, ψ) and Ĥ(2)(t′+∆t, y′, ψ, φ) to H(1)(t, y, ψ) and H(2)(t, y, ψ, φ̂) respectively.

Now let us consider the convergence of Ĥ(1)(t′ + ∆t, y′, ψ) to H(1)(t, y, ψ). The convergence of

the first term in Ĥ(1)(t′+ ∆t, y′, ψ) to the corresponding term in H(1)(t, y, ψ) is such that for three

bounded constants η1, η2 and η3,∣∣∣∣ m̄∑
k=1

λk
[
ψ
(
t′ + ∆t, ϕ(y′ + k∆y)

)
− ψ(t, y + k)

]∣∣∣∣ ≤ m̄∑
k=1

λk
∣∣∣∣ψ(t′ + ∆t, ϕ(y′ + k∆y)

)
− ψ(t, y + k)

∣∣∣∣
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=
m̄∑
k=1

λk
∣∣∣∣ψ(t′ + ∆t, y′ + k∆y)− ψ(t, y + k)

∣∣∣∣I{y′+k∆y∈[−MY ,MY ]}

+
m̄∑
k=1

λk
∣∣∣∣ψ(t′ + ∆t,MY )− ψ(t, y + k)

∣∣∣∣I{y′+k∆y>MY }

+
m̄∑
k=1

λk
∣∣∣∣ψ(t′ + ∆t,−MY )− ψ(t, y + k)

∣∣∣∣I{y′+k∆y<−MY }

≤ η1

∣∣∣ψ(1)
∣∣∣
∞

(
∆t+

∣∣y + 1− y′ −∆y
∣∣ )+ η2 |ψ|∞ I{y′+εmk∆y≥MY } + η3 |ψ|∞ I{y′+εmk∆y≤−MY },

where ψ is bounded by |ψ|∞ and the derivative of ψ is bounded by
∣∣ψ(1)

∣∣
∞ because of Assumption

4.4.1. Once (∆t,∆y,MY ) → (0, 1,∞) and (t′, y′) → (t, y), the convergence is proved. Now let us

consider the second term in Ĥ(1)(t′ + ∆t, y′, ψ) such that for a bounded constant η4,∣∣∣∣ m̄∑
k=1

{
ψ(t′ + ∆t, y′)− ψ

(
t, y)

}∣∣∣∣ ≤ m̄∑
k=1

∣∣∣∣ψ(t′ + ∆t, y′)− ψ
(
t, y)

∣∣∣∣ ≤ η4

∣∣∣ψ(1)
∣∣∣
∞

(
∆t+

∣∣y − y′∣∣ ),
which converges to 0 as (∆t,∆y,MY ) → (0, 1,∞) and (t′, y′) → (t, y). For the third term, it can

be done as similar as the first term. Hence, combining these three results, we can confirm

lim
(∆t,∆y,MY )→(0,1,∞)

(t′,y′)→(t,y)

Ĥ(1)(t′ + ∆t, y′, ψ) = H(1)(t, y, ψ).

Next let us consider the convergence from supu∈U Ĥ
(2)(t′+∆t, y′, ψ, φ) to supu∈U H

(2)(t, y, ψ, φ̂).

The convergence of the terms of market buy in supu∈U Ĥ
(2)(t′+∆t, y′, ψ) to the corresponding term

in supu∈U H
(2)(t, y, ψ) is such that∣∣∣∣∣

m̄∑
k=1

sup
θB,k∈[0,θ̄]

{[
ψ
(
t′ + ∆t, ϕ(y′ + k∆y)

)
− ψ(t′ + ∆t, y′) +

(
ṽ − φ(t′ + ∆t, ϕ(y′ + εmk∆y))

)
k∆y

]
θB,k

}

−
m̄∑
k=1

sup
θB,k∈[0,θ̄]

{[
ψ(t, y + k)− ψ(t, y) + (ṽ − φ̂(t, y + εmk))k

]
θB,k

}∣∣∣∣∣
≤

m̄∑
k=1

θB,k

∣∣∣∣∣ψ(t′ + ∆t, ϕ(y′ + k∆y)
)
− ψ(t, y + k)

∣∣∣∣∣+
m̄∑
k=1

θB,k

∣∣∣∣∣ψ(t′ + ∆t, y′)− ψ(t, y)

∣∣∣∣∣
+

m̄∑
k=1

kθB,k

∣∣∣∣∣φ(t′ + ∆t, ϕ(y′ + εmk∆y)
)
∆y − φ̂(t, y + εmk)

∣∣∣∣∣.
As the control problem is of bang-bang type, the optimal intensity is θ̄ when the coefficients are

positive. Hence applying the inequality
∣∣x+ − x′+

∣∣ ≤ |x− x′|, we can obtain the above inequality.

As the convergence of the first and second terms on the right hand side of the above inequality have

been proved in last paragraph, and the convergence of the third term automatically holds due to

Assumption 4.4.1, we can confirm that the terms of market buy in Ĥ(2)(t′ + ∆t, y′, ψ, φ) converges

to the corresponding terms in H(2)(t, y, ψ, φ̂). We can apply the same technique to finish the rest

of proofs. �
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Proposition 4.4.6 (Convergence) The solution V ∆t,∆y,MY to the numerical scheme (4.4.4) con-

verges locally uniformly to V on [0, 1)× Z as (∆t,∆y,MY ) goes to (0, 1,∞).

Proof. Given the above monotonicity, stability and consistency properties, the convergence of the

sequence (V ∆t,∆y,MY ) towards V , which is the unique bounded viscosity solution to (4.2.13), follows

from [9]. We claim that V ∗ and V∗ defined as

V ∗(t, y) = lim sup
(∆t,∆y,MY )→(0,1,∞)

(t′,y′)→(t,y)

V ∆t,∆y,MY (t′, y′),

V∗(t, y) = lim inf
(∆t,∆y,MY )→(0,1,∞)

(t′,y′)→(t,y)

V ∆t,∆y,MY (t′, y′),

which are finite upper and lower semi-continuous functions on [0, 1]×Z, and inherit the boundedness

of (V ∆t,∆y,MY ), are viscosity sub and super solutions of (4.2.13) respectively. If we assume that

the claim is true, we can obtain V ∗ ≤ V∗ by the strong comparison principle for (4.2.13). Since

the converse inequality is obvious by the definitions of V ∗ and V∗, we can show that V ∗ = V∗ = V

is the unique bounded continuous viscosity solution to (4.2.13), hence completing the proof of

convergence.

Next we prove the viscosity supersolution property of V∗. The viscosity subsolution property of

V ∗ can be proved analogously. We introduce (t̄, ȳ) ∈ [0, 1) × Z and let ψ ∈ C1
b be a test function

such that (t̄, ȳ) is a strict global minimum point of V∗ − ψ, i.e.

0 = (V∗ − ψ)(t̄, ȳ) = min
(t,y)∈[0,1)×Z

(V∗ − ψ)(t, y). (4.4.6)

By definition of V∗(t̄, ȳ), there exists a sequence (t′n, y
′
n) in [0, 1)×R, and a sequence (∆tn,∆yn,M

n
Y )

such that

(t′n, y
′
n)→ (t̄, ȳ), (∆tn,∆yn,M

n
Y )→ (0, 1,∞) and V ∆tn,∆yn,Mn

Y (t′n, y
′
n)→ V∗(t̄, ȳ),

when n goes to infinity. By the continuity of ψ and (4.4.6), we also have that

ζn := (V ∆tn,∆yn,Mn
Y − ψ)(t′n, y

′
n)→ 0,

when n goes to infinity. By the definition of ζn, we have V ∆tn,∆yn,Mn
Y ≥ ψ+ζn. From the definition

of the numerical scheme S∆t,∆y,MY , and its monotonicity, we then have

ζn + ψ(t′n, y
′
n) = V ∆tn,∆yn,Mn

Y (t′n, y
′
n)

= S∆tn,∆yn,Mn
Y (t′n + ∆tn, y

′
n, V

∆tn,∆yn,Mn
Y , p∆tn,∆yn,Mn

Y )

≥ S∆tn,∆yn,Mn
Y (t′n + ∆tn, y

′
n, ζn + ψ, p∆tn,∆yn,Mn

Y )

= S∆tn,∆yn,Mn
Y (t′n + ∆tn, y

′
n, ψ, p

∆tn,∆yn,Mn
Y ) + ζn
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= ψ(t′n + ∆tn, y
′
n) + ∆tn × Ĥ(t′n + ∆tn, y

′
n, ψ, p

∆tn,∆yn,Mn
Y ) + ζn,

which implies

ψ(t′n, y
′
n)− ψ(t′n + ∆tn, y

′
n)

∆tn
− Ĥ(t′n + ∆tn, y

′
n, ψ, p

∆tn,∆yn,Mn
Y ) ≥ 0.

By the consistency property combined with Assumption 4.4.1, and by sending n to infinity in the

above inequality, we obtain the required viscosity supersolution property

−ψt(t̄, ȳ)−H(t̄, ȳ, ψ, p) ≥ 0. �

4.4.3 Numerical optimal trading strategy

Now we list all of numerical results of the strategic trader’s optimal strategies in different scenarios

listed in Table 4.2.

Figure 4.3: Optimal strategy of 1 market order size only
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Figure 4.4: Optimal strategy of 1 market order size and 1 limit order size
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Figure 4.5: Optimal strategy of 2 market order size and 1 limit order size
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Figure 4.6: Optimal strategy 1 market order size only and 2 limit order size
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Figure 4.7: Optimal strategy 1 market order size only and 2 limit order size
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