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Abstract

This thesis is concerned with two explicitly solvable stochastic control problems that

incorporate discretionary stopping. The first of these problems combines the features of

the so-called monotone follower of singular stochastic control theory with optimal stop-

ping. The uncontrolled state dynamics are modelled by a general one-dimensional Itô

diffusion. The aim of the problem is to maximise the utility derived from the system’s

controlled state at the discretionary time when the system’s control is terminated. This

objective is reflected by an appropriate performance criterion, which also penalises con-

trol expenditure as well as waiting. In the presence of rather general assumptions, the

optimal strategy, which can take one of three qualitatively different forms, depending

on the problem data, is fully characterised.

The second problem is concerned with the optimal stopping of a diffusion with gen-

eralised drift over an infinite horizon. The dynamics of the underlying state process are

similar to the ones of a geometric Brownian motion. In particular, the drift of the state

process incorporates the process’ local time at a given level in an additive way. The ob-

jective of this problem is to maximise the expected discounted payoff that stopping the

underlying diffusion yields over all stopping times. The associated reward function is the

one of a financial call option. The optimal stopping strategy can take six qualitatively

different forms, depending on parameter values.
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Chapter 1

Introduction

In this thesis, we study two explicitly solvable stochastic control problems that incor-

porate discretionary stopping. First, we consider a stochastic system whose state is

modelled by the controlled one-dimensional positive Itô diffusion

dXt = b(Xt) dt+ dZt + σ(Xt) dWt, X0 = x > 0, (1.1)

where W is a standard one-dimensional Brownian motion, and the controlled process Z

is an adapted càglàd increasing process. The objective of the optimisation problem that

we solve is to maximise the performance criterion

Jx(Z, τ) = E
[∫ τ

0

e−ΛtH(Xt) dt−
∫ τ

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ<∞}

]
, (1.2)

over all admissible choices of Z and all stopping times τ , where

Λt =

∫ t

0

r(Xu) du, (1.3)

and∫ τ

0

e−ΛtK ′(Xt) ◦ dZt =

∫ τ

0

e−ΛtK ′(Xt) dZ
c
t +

∑
0≤t≤τ

∫ ∆Zt

0

e−ΛtK ′(Xt + s) ds, (1.4)

in which expression, Zc is the continuous part of the increasing process Z. It is worth

noting that the integral given by (1.4), which we use to penalise control expenditure, was

introduced by Zhu [38] and is now standard in the singular stochastic control literature.
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Next, we consider the problem of optimally stopping the process X given by

dXt = bXt dt+ β dLzt + σXt dWt, X0 = x > 0, (1.5)

for some constants b ∈ R, β ∈ ] − 1, 1[ \ {0}, z > 0 and σ 6= 0. The process Lz

appearing here is the symmetric local time of X at level z (see Revuz and Yor [35,

Exercise VI.1.25] for the precise definition), while W is a standard one-dimensional

(Ft)-Brownian motion that is defined on a given filtered probability space (Ω,F,Ft,P).

The stochastic differential equation (1.5) has a unique strong solution that is a strictly

positive process (see Engelbert and Schmidt [18]). The value function of the optimal

stopping problem that we study is defined by

v(x) = sup
τ∈T

E
[
e−rτ (Xτ −K)+

]
, (1.6)

for some constants r,K > 0, where T is the set of all (Ft)-stopping times.

To avoid repetitions, we discuss these problems and their relevant literature in more

detail in the introductions of Chapters 2 and 3.
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Chapter 2

A model for optimally advertising

and launching a product

2.1 Introduction

In this chapter, we study the stochastic control problem defined by (1.1)–(1.4) in the

introduction. This stochastic control problem is motivated by the following application

that arises in the context of the so-called goodwill problem. A company considers the

timing of launching a new product that they have developed. Prior to launching it in

a given market, the company attributes an image to the product based on the market’s

attitudes to similar products, the new product’s quality differences from existing prod-

ucts, and the company’s own image in the market. We use X to model the evolution in

time of the product’s image. In this context, Z represents the effect of costly interven-

tions, such as advertising, that the company can make to raise the product’s image. The

company’s objective is to maximise their utility from launching the product minus their

“dis-utility” associated with the cost of intervention and the cost of waiting. In particu-

lar, the company aims at maximising the performance index defined by (1.2)–(1.4) over

all intervention strategies Z and launching times τ .

Optimal control problems addressing this type of application have attracted signifi-

cant interest in the literature for about half a century. Most of the models that have been
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studied in this area involve deterministic control and can be traced back to Nerlove and

Arrow [31] (see Buratto and Viscolani [14] and the references therein). More realistic

models in which the product’s image evolves randomly over time have also been pro-

posed and studied (see Feichtinger, Hartl and Sethi [19] for a review and Marinelli [29]

for some more recent references). In particular, Marinelli [29] considers extensions of

the classical Nerlove and Arrow model, and studies a class of problems that involve lin-

ear dynamics of the state process, absolutely continuous control and linear or quadratic

payoff functions. Also, Jack, Johnson and Zervos [21] study a related model involving

singular control only, in which, the product is assumed launched at time 0 and the ob-

jective is to select an advertising strategy that maximises the expected payoff resulting

from its marketing.

The problem that we solve combines the features of the so-called monotone follower

of the singular stochastic control theory with optimal stopping. Singular stochastic con-

trol, which was introduced by Bather and Chernoff [7] and Beneš, Shepp and Witsen-

hausen [12], has a well-developed body of theory, and we do not attempt a comprehensive

literature survey. Also, we refer the interested reader to Peskir and Shiryaev [32] for

a recent exposition of the theory of optimal stopping. Models that combine singular

control with discretionary stopping were introduced by Davis and Zervos [15] who as-

sumed that the uncontrolled system dynamics follow a standard Brownian motion and

considered quadratic cost functions. In the same context, Karatzas, Ocone, Wang and

Zervos [23] solved the problem that arises if an additional finite-fuel constraint is in-

corporated. A problem combining the singular control of a Brownian motion with drift

with optimal stopping was later studied by Ly Vath, Pham and Villeneuve [28]. More

recently, Morimoto [30] studied a model similar to the one in Davis and Zervos [15] but

with a controlled geometric Brownian motion instead of a controlled standard Brownian

motion. Also, Bayraktar and Egami [9], motivated by issues in initial public offerings

rather than the goodwill problem, solved a problem that has the same general structure

as the one of the problem we consider here. These authors assumed that the uncontrolled

state dynamics are given by a Brownian motion with drift added to a compound Pois-

son process with exponentially distributed jump sizes, and that H(x) = 0, K ′(x) = 1,

r(x) = % and U(x) = λx for all x, for some constants %, λ > 0. It is of interest to ob-
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serve that the optimal strategy derived in that paper has a qualitatively different form

from the one we obtain here. In particular, reflecting the state process at a given level

figures among the optimal tactics in Bayraktar and Egami [9] but is never optimal in

the problem we study here (see also the discussion of our main results below).

The control of one-dimensional Itô diffusions such as the one we considered here

has recently attracted considerable interest in the literature. The optimal stopping of

such processes has been studied by Salminen [36], Alvarez [2, 3], Beibel and Lerche [11],

Dayanik and Karatzas [17], Dayanik [16] and Lamberton and Zervos [27], among others.

Also, Alvarez [1, 4], Bayraktar and Egami [8], and Jack, Johnson and Zervos [21] have

studied several singular control problems, Alvarez [5], and Alvarez and Lempa [6] have

studied models with impulse control, while Bayraktar and Egami [10], Pham, Ly Vath

and Zhou [34] and Johnson and Zervos [22] have analysed models with sequential switch-

ing (see also Pham [33]). In the spirit of certain references in this rather incomplete list,

we solve the problem we consider by constructing an appropriate solution of the as-

sociated Hamilton-Jacobi-Bellman (HJB) equation. To the best of our knowledge, the

model that we study here is the first one that combines the singular control of a general

one-dimensional Itô diffusion with optimal stopping.

It turns out that the optimal strategy of the problem that we solve here may involve

only a single impulse applied to the state process. In particular, the optimal strategy

does not involve reflecting the state process in the boundary of a state space’s subset,

which characterises singular stochastic control problems. Beyond this observation, the

optimal strategy can take one of three different possible forms, depending on parameter

values. These forms involve combinations of the following three tactics: wait, move (i.e.,

advertise the product), and stop (i.e., launch the product). Specifically, it is optimal

either to move and stop, or to wait and stop, or to wait, move and stop, in which list,

we order the sequence of optimal tactics according to small, moderate and large values

of the underlying state process X (see Theorem 3, which is our main result).

We illustrate our main result by means of several special cases. Apart from an inde-

pendent interest that each of these has, they reveal that the form of the optimal strategy

is dependent on the functional form of the problem data as well as on parameter values.
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Indeed, if the uncontrolled system dynamics are modelled by a geometric Brownian mo-

tion, then the move and stop strategy is always optimal if the terminal payoff function

U is a power utility function, while the move and stop strategy is never optimal if U is

the logarithmic utility function. On the other hand, if the uncontrolled system dynamics

are modelled by a mean-reverting square-root process, such as the one appearing in the

Cox-Ingersoll-Ross model, then the optimal strategy can take any of the three different

possible forms, whether U is a power or the logarithmic utility function.

2.2 Problem formulation

We fix a filtered probability space (Ω,F,Ft,P) satisfying the usual conditions and car-

rying a standard one-dimensional (Ft)-Brownian motion W . We consider a stochastic

system whose uncontrolled dynamics are modelled by the Itô diffusion associated with

the stochastic differential equation

dX0
t = b(X0

t ) dt+ σ(X0
t ) dWt, X0

0 = x > 0, (2.1)

and we make the following assumption.

Assumption 1 The functions b, σ : ]0,∞[→ R are locally Lipschitz, and σ2(x) > 0 for

all x > 0.

This assumption implies that (2.1) has a unique strong solution. It also implies that,

given any c > 0, the scale function pc, given by

pc(c) = 0, p′c(x) = exp

(
−2

∫ x

c

b(s)

σ2(s)
ds

)
, (2.2)

is well-defined, and the speed measure mc, given by

mc(dx) =
2

σ2(x)p′c(x)
dx,

is a Radon measure. Additionally, we assume that the solution of (2.1) is non-explosive,

so that, given any initial condition x, X0
t ∈ ]0,∞[ for all t ≥ 0, with probability 1

(see Karatzas and Shreve [24, Theorem 5.5.29] for appropriate necessary and sufficient

analytic conditions).
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Assumption 2 The Itô diffusion X0 defined by (2.1) is non-explosive.

Feller’s test for explosions (see Theorem 5.5.29 in Karatzas and Shreve [24]) provides a

necessary and sufficient condition for this assumption to hold true.

We model the system’s controlled dynamics by the SDE (1.1). With each admissible

intervention strategy, we associate the performance criterion defined by (1.2)–(1.4).

Definition 1 The set A of all admissible strategies is the set of all pairs (Z, τ) where

τ is an (Ft)-stopping time and Z is an (Ft)-adapted increasing càglàd process such that

Z0 = 0,

E
[∫ ∞

0

e−ΛtK ′(Xt) ◦ dZt
]
<∞ and E

[
e−ΛτU−(Xτ+)1{τ<∞}

]
<∞, (2.3)

where U−(x) = −min{0, U(x)}.

The objective of our control problem is to maximise Jx over all admissible strategies.

Accordingly, we define the problem’s value function v by

v(x) = sup
(Z,τ)∈A

Jx(Z, τ), for x > 0.

For our optimisation problem to be well-posed, we need additional assumptions.

Assumption 3 The discounting rate function r is absolutely continuous. Also, there

exists a constant r0 > 0 such that r(x) ≥ r0 for all x > 0.

Assumption 4 The functions K and U are C2 with absolutely continuous second

derivatives, and the function H is absolutely continuous. There exists a point β > 0

such that

K ′(x)− U ′(x) =

≤ 0, for x < β,

≥ 0, for x > β.
(2.4)

Also, the function H/r is bounded, and K ′(x) remains bounded as x ↓ 0.

In the context of the goodwill problem that has motivated this paper, it is worth noting

that (2.4) in this assumption has a simple economic interpretation. In view of (1.4),
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which provides the cost of an intervention strategy Z, K ′(x) ε is the cost of raising the

product’s image from x to x+ε, for small ε > 0. Also, U ′(x) ε is the change in the utility

that the company derives if the product is launched when its image is x+ ε rather than

x, for small ε > 0. In light of these observations, assumption (2.4) captures the idea

that the marginal cost of advertising is less (resp., greater) than the marginal utility

derived from the product’s launch when the product’s image is low (resp., high), which

is a rather natural one.

In the presence of Assumption 4, we can see that, if we define

Θ(x) =

U(β)−
∫ β
x
K ′(s) ds, for x < β,

U(x), for x ≥ β,
(2.5)

then the function Θ is C1 in ]0,∞[ and C2 with absolutely continuous second derivative

in ]0, β[∪ ]β,∞[, and it satisfies

max{Θ′(x)−K ′(x), U(x)−Θ(x)} = 0. (2.6)

In the context of the goodwill problem, Θ would be the value function of the control

problem if advertise and launch immediately were the only tactics available to the deci-

sion maker, i.e., if waiting for any amount of time were not a possibility.

We need to make additional assumptions. To this end, we consider the operator L

acting on C1 functions with absolutely continuous first derivatives that is defined by

Lw(x) = 1
2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x), (2.7)

and the operator Dr acting on absolutely continuous functions that is defined by

Drw(x) =
r(x)w′(x)− r′(x)w(x)

r(x)
≡ r(x)

(w
r

)′
(x). (2.8)

At first glance, the conditions in the following assumption may appear involved. How-

ever, they are quite general, and, apart from a growth and an integrability condition,

they have a natural economic interpretation (see the discussion below). Furthermore,

they are rather easy to verify in practice, as we will see in Section 2.4.
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Assumption 5 The function Θ satisfies

lim
x↓0

Θ(x)

ϕ(x)
= lim

x→∞

Θ(x)

ψ(x)
= 0, (2.9)

where the functions ϕ and ψ span the solution space of the homogeneous ODE Lw(x) = 0

and satisfy (2.48)–(2.50) in the Appendix. Furthermore, Θ satisfies

E
[∫ ∞

0

e−Λt|LΘ(X0
t )| dt

]
<∞. (2.10)

There exists a point x∗ ≥ 0 such that

[LΘ +H](x−) =

> 0, for x < x∗, if x∗ > 0,

≤ 0, for x > x∗.
(2.11)

Furthermore,

[LΘ +H](β−) ≥ [LΘ +H](β+), (2.12)

Dr[LΘ +H](x) ≤ 0 Lebesgue-a.e. in ]0, β[∪ ]β,∞[, (2.13)

[LΘ +H](x)

r(x)
remains bounded as x ↓ 0, (2.14)

lim inf
x→∞

[Θ−RH ](x) > 0, (2.15)

where RH is defined by (2.57) in the Appendix for F = H.

The operator L is the infinitesimal generator of the uncontrolled diffusion X0 killed at

a rate given by the discounting rate function r. Also, as we have discussed after As-

sumption 4, Θ is the best value that the company can get from just advertising and

launching the product, while H is the running payoff that the company accumulates by

delaying the product’s launch. Therefore, [LΘ +H](x) ∆t is the expected payoff associ-

ated with the company’s waiting for a small amount of time ∆t > 0 before advertising

and launching. In view of this observation, (2.11)–(2.12) capture the following natural

idea: if the product’s image is low (resp., high), then waiting may be a good (resp., bad)

choice because the product’s image may improve (resp., deteriorate) due to its stochastic

dynamics.

Building on the above ideas, we can view the function [LΘ + H]/r as the expected

rate at which the company’s payoff from advertising and launching changes by delaying
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taking action, measured in units of time that are proportional to the discounting rate

r. In light of this interpretation and the definition (2.8) of the operator Dr, (2.13)

reflects the idea that the expected rate at which the best payoff resulting from “pure”

action changes by waiting is decreasing as the product’s image increases. Furthermore,

(2.14) reflects the idea that waiting cannot be associated with an infinite expected rate

of improvement.

In view of (2.56) in the Appendix, the function RH identifies with the expected

payoff that the company face if they exert no advertising effort and they never launch

the product. Combining this observation with the interpretation of the function Θ as

the optimal payoff that the company can receive if advertising and launching were the

only available tactics, we can see that (2.15) is a necessary condition for guaranteeing

that waiting forever and never taking any action is not an optimal strategy.

Remark 1 The conditions (2.9)–(2.10) in the previous assumption imply that the func-

tion Θ admits the representation

Θ(x) = R−LΘ(x) for all x > 0, (2.16)

where R−LΘ is defined by (2.56) or (2.57) in the Appendix with F = −LΘ (see also the

discussion at the end of the Appendix). The boundedness of H/r (see Assumption 4)

and the definition (1.3) of Λ imply that

E
[∫ ∞

0

e−Λt|H(X0
t )| dt

]
= −E

[∫ ∞
0

|H(X0
t )|

r(X0
t )

de−Λt

]
≤ sup

x>0

|H(x)|
r(x)

<∞.

This observation and (2.55) in the Appendix imply that the function RH given by (2.56)–

(2.57) with F = H is well-defined and satisfies

LRH(x) +H(x) = 0 for all x > 0. (2.17)

2

Remark 2 In view of Assumption 4, the function LΘ + H is absolutely continuous

in ]0, β[∪ ]β,∞[ but may have a discontinuity at β. It is for this reason why we have

included condition (2.12) in Assumption 5. Also, (2.13), as well as any other such

inequality that we may encounter in our analysis, is understood to hold Lebesgue-a.e. if

LΘ +H is not C1 in ]0, β[∪ ]β,∞[. 2
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2.3 The solution of the control problem

In light of the general theory of stochastic optimal control and optimal stopping, we

expect that the value function v of our control problem identifies with a solution w of

the HJB equation

max {Lw(x) +H(x), w′(x)−K ′(x), U(x)− w(x)} = 0. (2.18)

A function w is a solution of this equation if it is C1 with absolutely continuous first

derivative, and it satisfies

Lw(x) +H(x) ≤ 0 Lebesgue-a.e. in ]0,∞[,

w′(x) ≤ K ′(x) and U(x) ≤ w(x) for all x > 0,

and

[Lw(x) +H(x)] [w′(x)−K ′(x)] [U(x)− w(x)] = 0 Lebesgue-a.e. in ]0,∞[.

We now solve the control problem by constructing an appropriate solution of this

equation. To this end, we have to consider two possibilities. The first one arises when

it is optimal to move and stop immediately.

Lemma 1 In the presence of Assumptions 1–5, the function Θ defined by (2.5) satis-

fies the HJB equation (2.6) if and only if x∗ = 0, where x∗ is the point in (2.11) of

Assumption 5.

Proof. In view of (2.6), we can see that Θ satisfies the HJB equation of (2.18) if and

only if

LΘ(x) +H(x) ≤ 0 Lebesgue-a.e. in ]0,∞[,

which is true if and only if x∗ = 0, where x∗ is the point appearing in (2.11) of Assumption

5. 2

The second possibility arises when waiting enters the set of optimal tactics. In this

case, we postulate that it is optimal to wait for as long as the state process X takes
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values below a given threshold level, and move and stop as soon as the state process

exceeds the threshold level. If we denote by α this threshold level, then we look for

a solution w of the HJB equation (2.18) that satisfies the ODE Lw(x) + H(x) = 0

Lebesgue-a.e. in ]0, α[, and is such that

max {w′(x)−K ′(x), U(x)− w(x)} = 0 for all x ≥ α.

In view of (2.6) and (2.17), we therefore look for a solution of the form

w(x) =

Aψ(x) +RH(x), for x < α,

Θ(x), for x ≥ α,
(2.19)

where A is an appropriate constant, ψ is as in (2.49)–(2.50), and RH is defined by

(2.56)–(2.57) with F = H (see also Remark 1).

To specify the parameter A and the free-boundary point α, we postulate that w

satisfies the so-called “principle of smooth fit”. In particular, we assume that w is C1

at α, which gives rise to the system of equations

Aψ(α) +RH(α) = Θ(α) and Aψ′(α) +R′H(α) = Θ′(α),

which is equivalent to

A =
Θ(α)−RH(α)

ψ(α)
=

Θ′(α)−R′H(α)

ψ′(α)
. (2.20)

In view of the fact that

Θ−RH = −RLΘ+H , (2.21)

which follows from (2.16) and (2.61) with F = LΘ + H, we can check that the second

identity in (2.20) is equivalent to(
RLΘ+H

ψ

)′
(α) = 0.

It follows that the free-boundary point α should satisfy the equation

q(α) :=

∫ α

0

[LΘ +H](s)ψ(s)

σ2(s)p′c(s)
ds = 0, (2.22)
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because (2.59) in the Appendix with F = LΘ +H implies the expression(
RLΘ+H

ψ

)′
(x) = −2p′c(x)

ψ2(x)

∫ x

0

[LΘ +H](s)ψ(s)

σ2(s)p′c(s)
ds = −2p′c(x)

ψ2(x)
q(x). (2.23)

The following result is concerned with the solvability of this equation and with the

associated solution of the HJB equation (2.18).

Lemma 2 In the presence of Assumptions 1–5, equation (2.22) has a unique solution

α > 0 if and only if x∗ > 0, where x∗ is the point appearing in (2.11) of Assumption 5.

In this case, α > x∗, and the function w defined by (2.19), where A is given by (2.20),

is C1 with absolutely continuous first derivative and satisfies the HJB equation (2.18).

Proof. In view of (2.11), we can see that the left-hand derivative q′(x−) of q at x > 0

satisfies

q′(x−) =
[LΘ +H](x−)ψ(x)

σ2(x)p′c(x)

> 0, for x < x∗, if x∗ > 0,

≤ 0, for x > x∗.
(2.24)

Combining this observation with the fact that q(0) = 0, we can see that the equation

q(α) = 0 has a unique solution α > 0 if and only if x∗ > 0 and

lim
x→∞

q(x) < 0. (2.25)

Furthermore, this solution is such that

x∗ < α and q(x) =

> 0, for x < α,

< 0, for x > α.
(2.26)

To see that the inequality (2.25) is indeed true, we first note that (2.23)–(2.24) imply

that the function RLΘ+H/ψ is monotone as x→∞. In particular, this expression implies

(2.25) if the function RLΘ+H/ψ is actually increasing as x → ∞. To prove that this is

indeed the case, we note that (2.15) in Assumption 5 and (2.21) imply that

lim sup
x→∞

RLΘ+H(x) < 0.
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This observation, the fact that

lim
x→∞

RLΘ+H(x)

ψ(x)
= 0,

(see (2.58) in the Appendix with F = LΘ +H) and (2.23) imply (2.25) if and only if

RLΘ+H(x) ≡ −[Θ−RH ](x) < 0,

for all x sufficient large, which is true thanks to (2.15) in Assumption 5.

In view of the construction of w and the fact that Θ satisfies (2.6), we will prove

that w satisfies the HJB equation (2.18) if we show that

[LΘ +H](x) ≤ 0 Lebesgue-a.e. in ]α,∞[, (2.27)

Aψ(x) +RH(x) ≥ U(x) for all x ≤ α, (2.28)

Aψ′(x) +R′H(x) ≤ K ′(x) for all x ≤ α. (2.29)

To this end, we note that (2.27) follows immediately from (2.11) in Assumption 5 and

the first inequality in (2.26). To establish (2.28), it suffices to show that

Aψ(x) +RH(x) ≥ Θ(x) for all x < α,

because Θ ≥ U (see (2.6)). In view of (2.20), (2.21) and the fact that ψ > 0, we can see

that this inequality is equivalent to

RLΘ+H(x)

ψ(x)
≥ RLΘ+H(α)

ψ(α)
for all x < α,

which is true thanks to (2.23) and (2.26).

Finally, (2.29) will follow if we prove that

Aψ′(x) +R′H(x) ≤ Θ′(x) for all x < α,

because Θ′ ≤ K ′ (see (2.6)). Combining (2.20) with (2.21) and the strict positivity of

ψ′, we can see that this inequality is equivalent to

R′LΘ+H(x)

ψ′(x)
≤
R′LΘ+H(α)

ψ′(α)
for all x < α. (2.30)
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Using the identity (2.60) in the Appendix with F = [LΘ +H] and the definition (2.22)

of q, we can see that the left-hand derivative (R′LΘ+H/ψ
′)′(x−) exists for all x > 0, and

is given by(
R′LΘ+H

ψ′

)′
(x−) =

2r(x)p′c(x)

[σ(x)ψ′(x)]2

[
2q(x)− [LΘ +H](x−)

r(x)

ψ′(x)

p′c(x)

]
. (2.31)

Furthermore, recalling that the function LΘ+H is absolutely continuous in ]0, β[∪ ]β,∞[

(see Remark 2), we can use the integration by parts formula, the expression (2.54) in

the Appendix and the definition (2.8) of the operator Dr to calculate

[LΘ +H](x−)

r(x)

ψ′(x)

p′c(x)

=
[LΘ +H](x0−)

r(x0)

ψ′(x0)

p′c(x0)
+

[LΘ +H](β+)− [LΘ +H](β−)

r(β)

ψ′(β)

p′c(β)
1[x0,x[(β)

+

∫ x

x0

Dr[LΘ +H](s)ψ′(s)

r(s)p′c(s)
1[x0,x]\{β}(s) ds+ 2

∫ x

x0

[LΘ +H](s)ψ(s)

σ2(s)p′c(s)
ds. (2.32)

The limits (2.53) in the Appendix and (2.14) in Assumption 5 imply that

lim
x0↓0

[LΘ +H](x0)

r(x0)

ψ′(x0)

p′c(x0)
= 0.

In light of (2.11)–(2.13) in Assumption 5, we can use the monotone convergence theorem

and this observation to pass to the limit x0 ↓ 0 in (2.32) to obtain

[LΘ +H](x−)

r(x)

ψ′(x)

p′c(x)
=

∫ x

0

Dr[LΘ +H](s)ψ′(s)

r(s)p′c(s)
1[0,x]\{β}(s) ds+ 2q(x)

+
[LΘ +H](β+)− [LΘ +H](β−)

r(β)

ψ′(β)

p′c(β)
1]0,x[(β).

This calculation and (2.31) imply that(
R′LΘ+H

ψ′

)′
(x−) = − 2r(x)p′c(x)

[σ(x)ψ′(x)]2

(∫ x

0

Dr[LΘ +H](s)ψ′(s)

r(s)p′c(s)
1[0,x]\{β}(s) ds

+
[LΘ +H](β+)− [LΘ +H](β−)

r(β)

ψ′(β)

p′c(β)
1]0,x[(β)

)
≥ 0,

the inequality following thanks to (2.12) and (2.13) in Assumption 5. It follows that the

function R′LΘ+H/ψ
′ is increasing, which establishes (2.30). 2

We can now prove our main result of the section.
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Theorem 3 Consider the stochastic control problem formulated in Section 2.2 and sup-

pose that Assumptions 1–5 hold true. The optimal strategy takes the form of one of the

following mutually exclusive cases, which are characterised by the point β > 0 appearing

in (2.4) of Assumption 4, the point x∗ ≥ 0 appearing in (2.11) of Assumption 5, and

the solution α > x∗ of equation (2.22):

1. If x∗ = 0, then it is optimal to move and stop, and the optimal strategy is given by

τ ∗ = 0 and Z∗t = (β − x)+1]0,∞[(t).

2. If x∗ > 0 and α < β, then it is optimal to wait, move and stop, and the optimal

strategy is given by

τ ∗ = inf{t ≥ 0 | X0
t ≥ α} and Z∗t = (β − α ∨ x)+1]τ∗,∞[(t).

3. If x∗ > 0 and α ≥ β, then it is optimal to wait and stop, and the optimal strategy

is given by

τ ∗ = inf{t ≥ 0 | X0
t ≥ α} and Z∗ ≡ 0.

In the first case, the value function v identifies with the function Θ defined by (2.5), while,

in cases (2) and (3), the value function v identifies with the function w constructed in

Lemma 2.

Proof. Throughout the proof, we consider the solution w of the HJB equation (2.18)

that is as in Lemma 1 or in Lemma 2, depending on whether x∗ = 0 or not, and we fix

any initial condition x > 0 and any admissible strategy (Z, τ) ∈ A. Also, we consider

the local martingale defined by

MT =

∫ T

0

e−Λtσ(Xt)w
′(Xt) dWt,

and we let (τn) be any localising sequence of (Ft)-stopping times such that τn ≤ n, for

17



all n ≥ 1. Using Itô’s formula and the fact that ∆Xt = ∆Zt, we calculate

e−Λτ∧τnw(Xτ∧τn+) = w(x) +

∫ τ∧τn

0

e−ΛtLw(Xt) dt+

∫ τ∧τn

0

e−Λtw′(Xt) dZt

+
∑

0≤t≤τ∧τn

e−Λt [w(Xt+)− w(Xt)− w′(Xt)∆Xt] +Mτ∧τn

= w(x) +

∫ τ∧τn

0

e−ΛtLw(Xt) dt+

∫ τ∧τn

0

e−Λtw′(Xt) dZ
c
t

+
∑

0≤t≤τ∧τn

e−Λt [w(Xt + ∆Zt)− w(Xt)] +Mτ∧τn ,

where the operator L is defined by (2.7) and Zc is the continuous part of the process Z.

In view of (1.4) and the fact that w satisfies the HJB equation (2.18), we can therefore

see that∫ τ∧τn

0

e−ΛtH(Xt) dt−
∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ≤τn}

= w(x) + e−Λτ [U(Xτ+)− w(Xτ+)] 1{τ≤τn} − e−Λτnw(Xτn+)1{τn<τ}

+

∫ τ∧τn

0

e−Λt [Lw(Xt) +H(Xt)] dt

+

∫ τ∧τn

0

e−Λt [w′(Xt)−K ′(Xt)] dZ
c
t

+
∑

0≤t≤τ∧τn

e−Λt

∫ ∆Zt

0

[w′(Xt + s)−K ′(Xt + s)] ds+Mτ∧τn

≤ w(x) + e−Λτnw−(Xτn+)1{τn<τ} +Mτ∧τn , (2.33)

where w−(x) = −min{0, w(x)}. Taking expectation, we obtain

E
[∫ τ∧τn

0

e−ΛtH(Xt) dt−
∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt + e−ΛτU(Xτ+)1{τ≤τn}

]
≤ w(x) + E

[
e−Λτnw−(Xτn+)1{τn<τ}

]
. (2.34)

The assumption that H/r is bounded, the fact that the process E defined by Et =

− exp(−Λt) is increasing and the dominated convergence theorem imply that

lim
n→∞

E
[∫ τ∧τn

0

e−ΛtH(Xt) dt

]
= lim

n→∞
E
[∫ τ

0

1{t≤τn}
H(Xt)

r(Xt)
dEt

]
= lim

n→∞
E
[∫ τ∧τn

0

H(Xt)

r(Xt)
dEt

]
= E

[∫ τ

0

e−ΛtH(Xt) dt

]
, (2.35)
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while the monotone convergence theorem implies that

lim
n→∞

E
[∫ τ∧τn

0

e−ΛtK ′(Xt) ◦ dZt
]

= E
[∫ τ

0

e−ΛtK ′(Xt) ◦ dZt
]
.

The admissibility condition (2.3) and the monotone convergence theorem imply that

lim
n→∞

E
[
e−ΛτU(Xτ+)1{τ≤τn}

]
= lim

n→∞
E
[
e−ΛτU+(Xτ+)1{τ≤τn}

]
− lim

n→∞
E
[
e−ΛτU−(Xτ+)1{τ≤τn}

]
= E

[
e−ΛτU(Xτ+)1{τ<∞}

]
. (2.36)

Also, since w− is bounded, which follows from the inequality w ≥ Θ and the fact that

Θ is bounded from below (see (2.5) and the last claim in Assumption 4), we can use the

dominated convergence theorem and Assumption 3 to obtain

lim
n→∞

E
[
e−Λτnw−(Xτn+)1{τn<τ}

]
= 0.

In view of these observations, we can pass to the limit as n → ∞ in (2.34) to obtain

Jx(Z, τ) ≤ w(x), which implies that v(x) ≤ w(x).

In each of the cases (1)–(3) in the theorem’s statement, we can check that the strategy

(Z∗, τ ∗) is admissible in the sense of Definition 1 because the process Z∗ has at most

one jump and because U(X∗τ∗) = U(α) ∈ R. Furthermore, we can check that (2.33)

and (2.34) both hold with equality, which, combined with (2.35)–(2.36), implies that

Jx(Z
∗, τ ∗) = w(x). This conclusion and the inequality v(x) ≤ w(x), which we have

established above, imply that v(x) = w(x) and that (Z∗, τ ∗) is optimal. 2

2.4 Special cases

We now consider a number of special cases that arise when the uncontrolled system’s

dynamics are modelled by a geometric Brownian motion (Section 2.4.1) or by a mean-

reverting square-root process such as the one in the Cox-Ingersoll-Ross interest rate

model (Section 2.4.2). In these special cases, we assume that

H(x) = −γ, K ′(x) = κ and r(x) = % for all x > 0,
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where γ ≥ 0 and κ, % > 0 are constants. Also, we assume that the terminal payoff

function U is a power utility function, given by

U(x) =
xp

p
for all x > 0, (2.37)

for some p ∈ ]0, 1[, in which case, the function Θ defined by (2.5) takes the form

Θ(x) =


1−p
p
κ−

p
1−p + κx, for x < κ−

1
1−p ≡ β,

xp

p
, for x ≥ κ−

1
1−p ≡ β,

(2.38)

or the logarithmic utility function, namely

U(x) = ln x for all x > 0, (2.39)

in which case,

Θ(x) =

κx− 1− lnκ, for x < κ−1 ≡ β,

lnx, for x > κ−1 ≡ β.
(2.40)

It is straightforward to verify that these choices satisfy all of the conditions appearing

in Assumptions 3 and 4.

2.4.1 Geometric Brownian motion

Suppose that X0 is a geometric Brownian motion, so that

dX0
t = bX0

t dt+ σX0
t dWt, X0

0 = x > 0,

for some constants b and σ 6= 0, and assume that % > b. In this case, Assumptions 1 and

2 both hold true, and it is a standard exercise to verify that, if we choose c = 1, then

ϕ(x) = xm, ψ(x) = xn and p′c(x) = xn+m−1, (2.41)

where the constants m < 0 < n are the solutions of the quadratic equation

1
2
σ2k2 +

(
b− 1

2
σ2
)
k − % = 0.

Also, it is well-known that

% > b ⇔ n > 1, (2.42)

20



in which case,

E
[∫ ∞

0

e−%tX0
t dt

]
=

x

%− b
<∞. (2.43)

Since there exists a constant C1 > 0 such that |LΘ(x)| ≤ C1(1 + x) for all x > 0,

whether Θ is given by (2.38) or (2.40), it follows from (2.41)–(2.43) that conditions (2.9)

and (2.10) in Assumption 5 hold true. Also, we can use (2.56) in the Appendix with

F = H ≡ −γ to calculate RH = −γ/%, which implies that (2.15) in Assumption 5 is

satisfied, whether Θ is given by (2.38) or (2.40).

In the following two subsections, we show that the choices for the problem data that

we have made satisfy the remaining conditions (2.11)–(2.14) in Assumption 5, and we

discuss the possible forms that the optimal strategy takes.

Power utility function UUU

If the terminal payoff function U is the power utility function given by (2.37), then we

can check that the function Θ defined by (2.38) satisfies

[LΘ +H](x) =

−(%− b)κx− %1−p
p
κ−

p
1−p − γ, for x < κ−

1
1−p ≡ β,

−
[
(1− p)1

2
σ2 + %

p
− b
]
xp − γ, for x > κ−

1
1−p ≡ β,

< 0,

where the inequality follows from the assumption that % > b and the fact that p ∈ ]0, 1[.

It follows that (2.11) is satisfied with x∗ = 0 and that (2.14) holds true. We can also

calculate

[LΘ +H](β−) = −
[
%

p
− b
]
κ−

p
1−p − γ

> −
[
(1− p)1

2
σ2 +

%

p
− b
]
κ−

p
1−p − γ

= [LΘ +H](β+),
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which establishes (2.12), and

Dr[LΘ +H](x) =
d

dx
[LΘ +H](x)

=

−(%− b)κ, for x < κ−
1

1−p ≡ β,

−
[
(1− p)1

2
σ2 + %

p
− b
]
px−(1−p), for x > κ−

1
1−p ≡ β,

< 0,

which implies that (2.13) is also true.

Finally, the fact that x∗ = 0 puts us in the context of case (1) of Theorem 3, so the

move-and-stop strategy is the optimal strategy.

Logarithmic utility function UUU

If the terminal payoff function U is the logarithmic utility function given by (2.39), then

we can check that the function Θ defined by (2.40) satisfies

[LΘ +H](x) =

−(%− b)κx+ % lnκ+ %− γ, for x < κ−1 ≡ β,

−% lnx− 1
2
σ2 + b− γ, for x > κ−1 ≡ β,

[LΘ +H](β−) = % lnκ+ b− γ > % lnκ− 1
2
σ2 + b− γ = [LΘ +H](β+),

as well as

Dr[LΘ +H](x) =
d

dx
[LΘ +H](x)

=

−(%− b)κ, for x < κ−1 ≡ β,

−%x−1, for x > κ−1 ≡ β,

< 0.

These calculations imply that (2.13)–(2.14) hold true, and that (2.11) is satisfied with

x∗ =


%+% lnκ−γ

(%−b)κ , if % lnκ < −b+ γ,

β, if − b+ γ ≤ % lnκ ≤ 1
2
σ2 − b+ γ,

exp

(
−1

2
σ2+b−γ
%

)
, if 1

2
σ2 − b+ γ < % lnκ.
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In this case x∗ > 0, so “waiting” belongs to the set of optimal tactics. To obtain the

free-boundary point α > 0 that determines the waiting region, we use (2.22) and (2.41)

to calculate

q(α) =

−
(%−b)κ

σ2(1−m)αm

[
α− (1−m)(%+% lnκ−γ)

−m(%−b)κ

]
, if α ≤ κ−1 ≡ β,

%
σ2mαm

[
lnα + 1

m
− %+% lnκ−γ

%
+ (ακ)m

(
lnκ− 1

m
− m(%−b)

(1−m)%

)]
, if α > κ−1 ≡ β.

From these calculations, it follows that the unique solution α > 0 of the equation

q(α) = 0 is strictly less than β ≡ κ−1 if and only if

% lnκ <
−m
−m+ 1

(%− b)− %+ γ. (2.44)

In light of this analysis, we can see that the optimal strategy takes one of the following

forms. If the parameter values are such that (2.44) is true, then we are in the context of

case (2) of Theorem 3, and the wait-move-and-stop strategy is optimal. Otherwise, we

are in the context of case (3) of Theorem 3, and the wait-and-stop strategy is optimal.

2.4.2 Mean-reverting square-root process

Suppose that X0 is a mean-reverting square-root process, so that

dX0
t = ζ(ϑ−X0

t ) dt+ σ
√
X0
t dWt, X0

0 = x > 0,

for some constants ζ, ϑ, σ > 0, and assume that

ζϑ− 1
2
σ2 > 0, (2.45)

which is a necessary and sufficient condition for X0 to be non-explosive. In this context,

Assumptions 1 and 2 are plainly satisfied. With reference to Jack, Johnson and Zervos

[21, Section 5.2], we can deduce that, if we choose c = 1, then

φ(x) =
U
(
%
ζ
, 2ζϑ
σ2 ; 2ζ

σ2x
)

U
(
%
ζ
, 2ζϑ
σ2 ; 2ζ

σ2

) , ψ(x) =
1F1

(
%
ζ
, 2ζϑ
σ2 ; 2ζ

σ2x
)

1F1

(
%
ζ
, 2ζϑ
σ2 ; 2ζ

σ2

) ,
where U and 1F1 are confluent hypergeometric functions, and

p′c(x) = x−2ζϑ/σ2

e2ζ(x−1)/σ2

.
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The functions ϕ and ψ identify with confluent hypergeometric functions and ψ has

exponential growth as x tends to ∞. Also, the calculation

E
[∫ ∞

0

e−%tX0
t dt

]
=

∫ ∞
0

e−%tE
[
X0
t

]
dt

=

∫ ∞
0

e−%t
[
ϑ+ (x− ϑ)e−ζt

]
dt

=
ζϑ+ %x

%(ζ + %)

<∞

is a standard exercise in financial mathematics. This calculation implies that Θ satisfies

(2.10) in Assumption 5 because there exists a constant C2 > 0 such that |LΘ(x)| ≤
C2(1 +x) for all x > 0, whether Θ is given by (2.38) or (2.40) (see also (2.46) and (2.47)

below). Such a bound of Θ also implies that (2.9) in Assumption 5 holds true because

limx↓0 ϕ(x) = ∞ and ψ(x) has exponential growth as x tends to ∞. Furthermore, the

fact that RH ≡ −γ/%, which follows from (2.56), implies that (2.15) in Assumption 5

holds true, whether Θ is given by (2.38) or (2.40).

In the following two subsections, we verify that conditions (2.11)–(2.14) of Assump-

tion 5 are satisfied as well, and we discuss the possible forms that the optimal strategy

takes.

Power utility function UUU

If the terminal payoff function U is the power utility function given by (2.37), then we

can check that the function Θ defined by (2.38) satisfies

[LΘ +H](x) =

−(%+ ζ)κx+ ζϑκ− (1− p)%
p
κ
−p
1−p − γ, for x < κ

−1
1−p ≡ β,[

ζϑ− 1
2
σ2(1− p)

]
x−(1−p) −

(
ζ + %

p

)
xp − γ, for x > κ

−1
1−p ≡ β,

(2.46)

[LΘ +H](β−) = −
(
ζ +

%

p

)
κ
−p
1−p + ζϑκ− γ

> −
(
ζ +

%

p

)
κ
−p
1−p +

[
ζϑ− 1

2
(1− p)σ2

]
κ− γ

= [LΘ +H](β+)
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and

Dr[LΘ +H](x)

=
d

dx
[LΘ +H](x)

=

−(%+ ζ)κ, for x < κ
−1
1−p ≡ β,

−
[
ζϑ− 1

2
σ2(1− p)

]
(1− p)x−(2−p) −

(
ζ + %

p

)
px−(1−p), for x > κ

−1
1−p ≡ β,

< 0,

where the inequality follows from the assumption (2.45) and the fact that p ∈ ]0, 1[.

These calculations imply immediately that (2.13)–(2.14) hold true. Also, these calcula-

tions imply that there exists a unique point x∗ such that (2.11) in Assumption 5 is true.

In particular,

x∗ = 0, if ζϑκ− (1− p)%
p
κ
−p
1−p ≤ γ,

x∗ ∈ ]0, β[, if ζϑκ−
(
ζ +

%

p

)
κ
−p
1−p < γ < ζϑκ− (1− p)%

p
κ
−p
1−p ,

x∗ = β, if
[
ζϑ− 1

2
(1− p)σ2

]
κ−

(
ζ +

%

p

)
κ
−p
1−p ≤ γ ≤ ζϑκ−

(
ζ +

%

p

)
κ
−p
1−p ,

and

x∗ > β, if γ <
[
ζϑ− 1

2
(1− p)σ2

]
κ−

(
ζ +

%

p

)
κ
−p
1−p .

In view of Lemmas 1 and 2, we conclude that, in the special case of the general problem

that we consider here, the optimal strategy can take the form of any of the cases (1)–(3)

of Theorem 3, depending on parameter values.

Logarithmic utility function UUU

If the terminal payoff function U is the logarithmic utility function given by (2.39), then

we can calculate

[LΘ +H](x) =

−(ζ + %)κx+ ζϑκ+ % lnκ+ %− γ, for x < κ−1 ≡ β,[
ζϑ− 1

2
σ2
]
x−1 − ζ − % lnx− γ, for x > κ−1 ≡ β,

(2.47)

25



[LΘ +H](β−) = −ζ + ζϑκ+ % lnκ− γ

> −ζ + ζϑκ+ % lnκ− 1
2
σ2κ− γ

= [LΘ +H](β+)

and

Dr[LΘ +H](x) =
d

dx
[LΘ +H](x)

=

−(ζ + %)κ, for x < κ−1 ≡ β,

−
[
ζϑ− 1

2
σ2
]
x−2 − %x−1, for x > κ−1 ≡ β,

< 0,

where the inequality follows from the assumption (2.45). These calculations imply im-

mediately that (2.13)–(2.14) are satisfied and that there exists a unique point x∗ such

that (2.11) is true. In particular,

x∗ = 0, if ζϑκ+ % lnκ+ % ≤ γ,

x∗ ∈ ]0, β[, if − ζ + ζϑκ+ % lnκ < γ < ζϑκ+ % lnκ+ %,

x∗ = β, if − ζ + ζϑκ+ % lnκ− 1
2
σ2κ ≤ γ ≤ −ζ + ζϑκ+ % lnκ,

and

x∗ > β, if γ < −ζ + ζϑκ+ % lnκ− 1
2
σ2κ.

As in the previous case, the optimal strategy can be as in any of the cases (1)–(3) of

Theorem 3, depending on parameter values.

2.5 Appendix: A second order linear ODE

In this section, we review a range of results regarding the solvability of a second order

linear ODE on which part of our analysis has been based. All of the claims that we

do not prove here are standard, and can be found in various forms in several references

(e.g., see Borodin and Salminen [13, Chapter II]).
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In the presence of Assumptions 1, 2 and 3, the general solution of the second-order

linear homogeneous ODE

Lw(x) ≡ 1
2
σ2(x)w′′(x) + b(x)w′(x)− r(x)w(x) = 0, for x > 0,

is given by

w(x) = Aϕ(x) +Bψ(x),

for some constants A,B ∈ R. The functions ϕ and ψ are C2,

0 < ϕ(x) and ϕ′(x) < 0 for all x > 0, (2.48)

0 < ψ(x) and ψ′(x) > 0 for all x > 0, (2.49)

and

lim
x↓0

ϕ(x) = lim
x→∞

ψ(x) =∞. (2.50)

In this context, ϕ and ψ are unique, modulo multiplicative constants. To simplify the

notation we assume, without loss of generality, that ϕ(c) = ψ(c) = 1, where c > 0 is the

same constant as the one that we used in the definition (2.2) of the scale function pc.

Also, these functions satisfy

ϕ(x)ψ′(x)− ϕ′(x)ψ(x) = Cp′c(x), (2.51)

where C := [ψ′(c)− ϕ′(c)] > 0. Furthermore, the identity

ϕ′′(x)ψ′(x)− ϕ′(x)ψ′′(x) =
2Cr(x)

σ2(x)
p′c(x), (2.52)

follows immediately from the fact that ϕ and ψ satisfy the ODE Lf(x) = 0 and (2.51).

Combining the inequalities

0 <
ϕ(x)ψ′(x)

Cp′c(x)
< 1 and 0 < −ϕ

′(x)ψ(x)

Cp′c(x)
< 1,

which follow from (2.48)–(2.49) and (2.51), with (2.50), we can see that

lim
x↓0

ψ′(x)

p′c(x)
= lim

x→∞

ϕ′(x)

p′c(x)
= 0. (2.53)
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Also, the calculation

d

dx

(
1

p′c(x)

)
=

2b(x)

σ2(x)p′c(x)
,

and the fact that ψ satisfies the ODE Lw(x) = 0, imply that

d

dx

(
ψ′(x)

p′c(x)

)
=

2

σ2(x)p′c(x)

[
1
2
σ2(x)ψ′′(x) + b(x)ψ′(x)

]
=

2r(x)ψ(x)

σ2(x)p′c(x)
. (2.54)

Now, we consider any Borel measurable function F such that∫ x

0

|F (s)|ψ(s)

σ2(s)p′c(s)
ds+

∫ ∞
x

|F (s)|ϕ(s)

σ2(s)p′c(s)
ds <∞ for all x > 0.

A function F satisfies this integrability condition if and only if

E
[∫ ∞

0

e−Λt |F (X0
t )| dt

]
<∞ (2.55)

for every initial condition x > 0 of the SDE (2.1). Given such F , the function RF defined

by

RF (x) = E
[∫ ∞

0

e−ΛtF (X0
t ) dt

]
, for x > 0, (2.56)

admits the analytic representation

RF (x) =
2

C
ϕ(x)

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds+

2

C
ψ(x)

∫ ∞
x

F (s)ϕ(s)

σ2(s)p′c(s)
ds, (2.57)

and satisfies the ODE LRF (x) + F (x) = 0, Lebesgue-a.e., as well as

lim
x↓0

|RF (x)|
ϕ(x)

= lim
x→∞

|RF (x)|
ψ(x)

= 0. (2.58)

In view of (2.51)–(2.52) and (2.57), we can calculate(
RF

ψ

)′
(x) =

R′F (x)ψ(x)−RF (x)ψ′(x)

ψ2(x)
= −2p′c(x)

ψ2(x)

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds, (2.59)

and we can check that the function R′F/ψ
′ is absolutely continuous with derivative(

R′F
ψ′

)′
(x) =

4r(x)p′c(x)

[σ(x)ψ′(x)]2

∫ x

0

F (s)ψ(s)

σ2(s)p′c(s)
ds− 2F (x)

σ2(x)ψ′(x)
. (2.60)

Noting that −LRF = F , we can see that, if R−LF (resp., RLF ) is defined as in (2.56)–

(2.57) with −LF (resp., LF ) in the place of F , then

RF = R−LRF = −RLRF . (2.61)

Also, if Θ is a C1 function with absolutely continuous first derivative that satisfies (2.9)

and (2.10) then Θ satisfies (2.16).
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Chapter 3

An explicitly solvable problem of

optimally stopping a diffusion with

generalised drift

3.1 Introduction

We consider the problem of optimally stopping the process X given by

dXt = bXt dt+ β dLzt + σXt dWt, X0 = x > 0, (3.1)

for some constants b ∈ R, β ∈ ] − 1, 1[ \ {0}, z > 0 and σ 6= 0. The process W is

a standard one-dimensional (Ft)-Brownian motion that is defined on a given filtered

probability space (Ω,F,Ft,P). Also, Lz is the symmetric local time of X at level z,

which is defined by

Lzt = lim
ε↓0

1

2ε

∫ t

0

σ2X2
s1]z−ε,z+ε[(Xs) ds

(see Revuz and Yor [35, Exercise VI.1.25]). The stochastic differential equation (3.1)

has a unique strong solution that is a strictly positive process (see Engelbert and

Schmidt [18]).

The process X behaves like a usual geometric Brownian motion inside ]0, z[∪ ]z,∞[.

The difference is that the direction of each excursion of X away from z is determined
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by an “independent” Bernouli random variable with parameter p = (1 + β)/2. In other

words, X is reflected in z in the positive direction with probability p and in the negative

direstion with probability 1− p.
The value function of the optimal stopping problem that we study is defined by

v(x) = sup
τ∈T

E
[
e−rτ (Xτ −K)+

]
, (3.2)

for some constants r,K > 0, where T is the set of all (Ft)-stopping times. We make the

following assumption.

Assumption 6 b ∈ R, β ∈ ]− 1, 1[ \ {0}, z > 0, σ 6= 0, r,K > 0 and r > b.

The theory of optimal stopping has a well-developed body of theory that has been

documented in several references, including the monographs by El Karoui [25], Fried-

man [20], Krylov [26], Peskir and Shiryaev [32], and Shiryayev [37]. Apart from results

of a general nature, there are several problems involving the optimal stopping of diffu-

sions that have been explicitly solved. To the best of our knowledge, the only examples

involving the optimal stopping of diffusions with generalised drift such as the one given

by (3.1) can be found in Peskir and Shiryaev [32, Section IV.9.3] who are motivated by

the range of validity of the so-called “principle of smooth fit”.

3.2 Preliminary considerations

It is well-known that every solution to the Euler ODE

1
2
σ2x2w′′(x) + bxw′(x)− rw(x) = 0 (3.3)

is given by

w(x) = Axn +Bxm,

for some constants A,B ∈ R, where the constants m < 0 < n are the solutions to the

quadratic equation

1
2
σ2k2 +

(
b− 1

2
σ2
)
k − r = 0,
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given by

m,n =
−
(
b− 1

2
σ2
)
∓
√(

b− 1
2
σ2
)2

+ 2σ2r

σ2
.

It is straightforward to verify that

r > b ⇔ n > 1, (3.4)

n+m− 1 = −2b

σ2
, nm = −2r

σ2
, (3.5)

and

r

r − b
=

nm

(n− 1)(m− 1)
<

n

n− 1
. (3.6)

We will need the fact that these identities and the assumption r > b imply that

bx− r(x−K) ≤ 0 for all x ≥ rK

r − b
. (3.7)

The solution to the ODE (3.3) that satisfies

(1 + β)w′+(z) = (1− β)w′−(z) (3.8)

and identifies with the function ψ defined by

ψ(x) =

x
n, if x < z,

Axn +Bxm, if x ≥ z,
(3.9)

for

A =
n(1− β)−m(1 + β)

(n−m)(1 + β)

> 1, if β < 0,

∈ ]0, 1[, if β > 0,
(3.10)

and

B =
2nβ

(n−m)(1 + β)
zn−m

< 0, if β < 0,

> 0, if β > 0.
(3.11)

will play a fundamental role in our analysis. The following result is concerned with

properties of this function.
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Lemma 4 In the presence of Assumption 6, the function ψ defined by (3.9)–(3.11)

satisfies

ψ′−(z) = nzn−1 < nAzn−1 +mBzm−1 = ψ′+(z) ⇔ β < 0 (3.12)

and is convex if and only if

β < 0 and (n− 1)(1− β)− 2mβ ≥ 0. (3.13)

Furthermore,

ψ(x) = ψ(y)E
[
e−rTy

]
for all y > x, (3.14)

where Ty = inf{t ≥ 0 | Xt = y}.

Proof. The equivalence stated in (3.12) is straightforward to see. Also, the claim that

ψ is convex if and only if (3.13) is true follows immediately from the inequality n > 1

(see also (3.4)) and the calculations

ψ′′(x) = xm−2
[
n(n− 1)Axn−m +m(m− 1)B

]
=

nxm−2

(n−m)(1 + β)

{
(n− 1)

[
n(1− β)−m(1 + β)

]
xn−m + 2m(m− 1)βzn−m

}
and

ψ′′+(z) =
n
[
(n− 1)(1− β)− 2mβ

]
zn−2

1 + β
.

To establish (3.14), we first note that the second distributional derivative ψ′′(dy) of

the function ψ has Lebesgue decomposition that is given by

ψ′′(dy) = 1]0,z[∪]z,∞[(y)ψ′′(y) dy +
[
ψ′+(z)− ψ′−(z)

]
δz(dy),

where δz(dy) is the Dirac measure that assigns mass 1 on z. Combining this observation

with the Itô-Tanaka-Meyer and the occupation times formulae (see Revuz and Yor [35,
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Exercise VI.1.25]) we can calculate

ψ(Xt)− r
∫ t

0

ψ(Xs) ds

= ψ(x) + 1
2

∫ t

0

(
ψ′+ + ψ′−)(Xs) dXs + 1

2

∫ ∞
0

Lyt ψ
′′(dy)− r

∫ t

0

ψ(Xs) ds

= ψ(x) + 1
2

∫ t

0

(
ψ′+ + ψ′−)(Xs) dXs − r

∫ t

0

ψ(Xs) ds

+ 1
2

∫ ∞
0

Lyt

(
1]0,z[∪]z,∞[(y)ψ′′(y) dy +

[
ψ′+(z)− ψ′−(z)

]
δz(dy)

)
= ψ(x) + 1

2

∫ t

0

(
ψ′+ + ψ′−)(Xs) dXs − r

∫ t

0

ψ(Xs) ds

+ 1
2

∫ t

0

σ2X2
sψ
′′(Xs)1{Xs 6=z} ds+ 1

2

[
ψ′+(z)− ψ′−(z)

]
Lzt

= ψ(x) +

∫ t

0

[
1
2
σ2X2

sψ
′′(Xs) + bXsψ

′(Xs)− rψ(Xs)
]
1{Xs 6=z} ds

+ 1
2

∫ t

0

(
ψ′+ + ψ′−)(Xs)β dL

z
s + 1

2

[
ψ′+(z)− ψ′−(z)

]
Lzt + σ

∫ t

0

Xsψ
′
−(Xs) dWs.

In view of the facts that the measure dLzt is supported on the set {Xt = z} and the

function ψ satisfies (3.3) and (3.8), we can see that

ψ(Xt)− r
∫ t

0

ψ(Xs) ds

= ψ(x) +

∫ t

0

[
1
2
σ2X2

sψ
′′(Xs) + bXsψ

′(Xs)− rψ(Xs)
]
1{Xs 6=z} ds

+ 1
2

[
(1 + β)ψ′+(z)− (1− β)ψ′−(z)

]
Lzt + σ

∫ t

0

Xsψ
′
−(Xs) dWs

= ψ(x) + σ

∫ t

0

Xsψ
′
−(Xs) dWs.

Using the integration by parts formula, we obtain

e−rtψ(Xt) = ψ(x) + σ

∫ t

0

e−rsXsψ
′
−(Xs) dWs. (3.15)

In view of the fact that

E

[(∫ t∧Ty

0

e−rsXsψ
′
−(Xs) dWs

)2
]

= E
[∫ t

0

[
1{s≤Ty}e

−rsXsψ
′
−(Xs)

]2
ds

]
≤ y2 sup

u≤y

[
ψ′−(u)

]2
t

<∞ for all t ≥ 0,
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which follows from Itô’s isometry, we can see that the stochastic integral in (3.15) is a

square integrable martingale if stopped at Ty. It follows that

ψ(x) = ψ(y)E
[
e−rTy1{Ty≤t}

]
+ E

[
e−rtψ(Xt)1{t<Ty}

]
.

Using the monotone and the dominated convergence theorems, we can pass to the limit

as t→∞ to obtain (3.14). 2

Remark 3 The second inequality (3.13) is true and ψ is convex for all β ∈ ] − 1, 0[ if

and only if it is true for β = −1, namely, if and only if

n+m− 1
(3.5)
= −2b

σ2
≥ 0.

In view of this observation, we can see that,

if b ≤ 0, then the second inequity (3.13) is true for all β ∈ ]− 1, 0[,

and

if b > 0, then the second inequity (3.13) is true for all β ∈ ]− 1, 0[ such that

β ≥ n− 1

n+ 2m− 1
> −1.

2

3.3 A verification theorem

We now establish sufficient conditions under which the value function v identifies with

a function w : R+ → R+ satisfying

(1 + β)w′+(z) ≤ (1− β)w′−(z), (3.16)

and

max
{

1
2
σ2x2w′′(x) + bxw′(x)− rw(x),

(x−K)+ − w(x)
}

= 0 inside ]0, z[ ∪ ]z,∞[. (3.17)
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Proposition 5 Consider the optimal stopping problem defined by (3.1)–(3.2) and sup-

pose that Assumption 6 holds true. Let w : R+ → R+ be a positive function satisfying

the variational inequality (3.16)–(3.17) in the sense that

(I) w is C1 inside ]0, z[∪ ]z,∞[ and C2 inside ]0, z[∪ ]z,∞[ \ S, where S is a finite set,

(II) w satisfies (3.16),

(III) w satisfies (3.17) inside ]0, z[ ∪ ]z,∞[ \ S,

(IV) w satisfies (3.16) with equality if z ∈
{
x > 0 | w(x) > (x−K)+

}
, and

(V) w satisfies

sup
y∈]0,n[

|w′−(y)| <∞ for all n ≥ 1 and lim
y→∞

w(y)

ψ(y)
= 0, (3.18)

where w− is the left-hand derivative of w. Then w(x) = v(x) for all x > 0 and

τ? = inf
{
t ≥ 0 | w(Xt) = (Xt −K)+

}
(3.19)

defines an optimal stopping time.

Proof. Using the Itô-Tanaka-Meyer and the occupation times formula (see Revuz and

Yor [35, Exercise VI.1.25]) as in the proof of Lemma 4, we can calculate

w(Xt)− r
∫ t

0

w(Xs) ds

= w(x) + 1
2

∫ t

0

(
w′+ + w′−)(Xs) dXs + 1

2

∫ ∞
0

Lyt w
′′(dy)− r

∫ t

0

w(Xs) ds

= w(x) +

∫ t

0

[
1
2
σ2X2

sw
′′(Xs) + bXsw

′(Xs)− rw(Xs)
]
1{Xs 6=z} ds

+ 1
2

[
(1 + β)w′+(z)− (1− β)w′−(z)

]
Lzt + σ

∫ t

0

Xsw
′
−(Xs) dWs.

Using the integration by parts formula, we obtain

e−rtw(Xt) = w(x) +

∫ t

0

e−rs
[

1
2
σ2X2

sw
′′(Xs) + bXsw

′(Xs)− rw(Xs)
]
1{Xs 6=z} ds

+ 1
2

[
(1 + β)w′+(z)− (1− β)w′−(z)

] ∫ t

0

e−rs dLzs +Mt, (3.20)

where

Mt = σ

∫ t

0

e−rsXsw
′
−(Xs) dWs.
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If we define

Tn = inf
{
t ≥ 0 | Xt ≥ n

}
,

then we can see that Itô’s isometry implies that

E
[
M2

t∧Tn

]
= σ2E

[∫ t

0

[
1{s≤Tn}e

−rsXsw
′
−(Xs)

]2
ds

]
≤ σ2n2 sup

y≤n

[
w′−(y)

]2
t

<∞,

which proves that the stopped process MTn is a square integrable martingale. This

observation and (3.20) imply that, given any (Ft)-stopping time τ ,

E
[
e−rτ (Xτ −K)+1{τ≤Tn}

]
+ E

[
e−rTnw(XTn)1{τ>Tn}

]
= w(x) + E

[
e−rτ

{
(Xτ −K)+ − w(Xτ )

}
1{τ≤Tn}

]
+ E

[∫ τ∧Tn

0

e−rs
[

1
2
σ2X2

sw
′′(Xs) + bXsw

′(Xs)− rw(Xs)
]
1{Xs 6=z} ds

]
+ 1

2

[
(1 + β)w′+(z)− (1− β)w′−(z)

]
E
[∫ τ∧Tn

0

e−rs dLzs

]
. (3.21)

If τ is any (Ft)-stopping time, then (3.21) and the fact that w satisfies the variational

inequality (3.16)–(3.17) imply that

E
[
e−rτ (Xτ −K)+1{τ≤Tn}

]
+ w(n)E

[
e−rTn1{τ>Tn}

]
≤ w(x).

Similarly, we can see that, if τ? is defined by (3.19), then

E
[
e−rτ?(Xτ? −K)+1{τ?≤Tn}

]
+ w(n)E

[
e−rTn1{τ?>Tn}

]
= w(x).

Combining these observations with the identity

lim
n→∞

w(n)E
[
e−rTn1{τ?>Tn}

] (3.14)
= lim

n→∞

w(n)ψ(x)

ψ(n)

E
[
e−rTn1{τ?>Tn}

]
E [e−rTn ]

(3.18)
= 0,

we can see that v(x) = w(x) and that τ? is optimal. 2
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3.4 The case when −1 < β < 0−1 < β < 0−1 < β < 0

We will solve the optimal stopping problem that arises when β ∈ ] − 1, 0[ under the

assumption that the problem data is such that

(n− 1)(1− β)− 2mβ ≥ 0 ⇔ r

r − b
≤ n

n− 1+β
1−β

, (3.22)

where the equivalence follows from (3.6). In view of Lemma 4, (3.22) is equivalent to

the convexity of ψ (see also Remark 3).

In this case, we are going to show that the function w defined by

w(x) =

Γψ(x), if x ≤ a,

x−K, if x > a,
(3.23)

satisfies the requirements of Proposition 5 and identifies with the value function v for

appropriate choices for the constant Γ and the free-boundary point a > 0. To this end,

we are guided by the intuition that we can get from a careful inspection of Figures 1–3.

For sufficiently small values of z, we expect that a > z, while, for sufficiently large values

of z, we expect that a < z. In both of these cases, we use the so-called “principle of

smooth fit”, namely, the requirement that the value function should be C1 along the

free-boundary point a, to determine Γ, a (see Figures 1 and 3), which yields the system

of equationsΓψ(a) = a−K,

Γψ′(a) = 1,
⇔

Γ = (a−K)/ψ(a) = 1/ψ′(a),

aψ′(a)− ψ(a)−Kψ′(a) = 0.
(3.24)

In view of the definition (3.9) of ψ, we can see that the possibility that a < z implies

that

a =
nK

n− 1
> 0 (3.25)

solves the equation for a in (3.24). On the other hand, we can check that, if z < a, then

the equation for a in (3.24) is equivalent to

F (a) = 0, (3.26)
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where F is defined by

F (a) =
[
(n− 1)a− nK

]
Aan−m +

[
(m− 1)a−mK

]
B, (3.27)

because

F (a) = a−m+1
[
(a−K)ψ′(a)− ψ(a)

]
for all a > z.

For intermediate values of z, Figure 2 suggests that a = z and the function w given by

(3.23) is not C1 at a.

Proposition 6 Consider the optimal stopping problem defined by (3.1)–(3.2) and sup-

pose that Assumption 6 holds true. Also, suppose that β ∈ ] − 1, 0[ and that (3.22) is

satisfied. If the problem data is such that z < nK

n− 1+β
1−β

, then equation (3.26) has a unique

solution a such that

nK

n− 1+β
1−β

< a <
nK

n− 1
. (3.28)

If the rest of the problem data is kept fixed, then this solution a = a(z) defines a strictly

decreasing C1 function such that

lim
z↓0

a(z) =
nK

n− 1
and lim

z↑ nK

n− 1+β
1−β

a(z) =
nK

n− 1+β
1−β

. (3.29)

Furthermore,

(I) if nK
n−1

< z, then let a be given by (3.25),

(II) if nK

n− 1+β
1−β
≤ z ≤ nK

n−1
, then let a = z, and

(III) if z < nK

n− 1+β
1−β

, then let a be the unique solution to (3.26).

Given such choices for a, the function w, which is defined by (3.23) for Γ > 0 being given

by (3.24) in cases (I), (III), and Γ = (z − K)z−n > 0 in case (II), identifies with the

value function v of the discretionary stopping problem. Furthermore, the (Ft)-stopping

time defined by

τ? = inf
{
t ≥ 0 | Xt ≥ a

}
,

is optimal.
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Proof. To study the solvability of equation (3.26), we first use the definitions (3.10),

(3.11) of A, B to calculate

F (K) = −Kn−m+1
[
A+BKm−n], F ′(K) = (m− 1)Kn−m[A+BKm−n],

(3.30)

and

A+BKm−n =
1

(1 + β)(n−m)

[
n(1− β)−m(1 + β) + 2nβ

( z
K

)n−m]
> 0 for all z <

[
−n(1− β)−m(1 + β)

2nβ

] 1
n−m

K. (3.31)

In view of the calculation

F ′′(a) = (n−m)
[
(n− 1)(n−m+ 1)a− n(n−m− 1)K

]
Aan−m−2,

and the fact that A > 0, we can see that

F ′

 is strictly decreasing in ]0, a‡[,

is strictly increasing in ]a‡,∞[,
where a‡ =

n(n−m− 1)K

(n− 1)(n−m+ 1)
. (3.32)

If the problem data is such that

z < min

{
nK

n− 1+β
1−β

,

[
−n(1− β)−m(1 + β)

2nβ

] 1
n−m

K

}
,

then (3.30) and (3.31) imply that F (K) < 0 and F ′(K) < 0. Combining these inequali-

ties with (3.32) and the calculations

F

(
nK

n− 1+β
1−β

)
=

K

(1− β)
(
n− 1+β

1−β

)
×

[
2nβA

(
nK

n− 1+β
1−β

)n−m

−
[
n(1− β)−m(1 + β)

]
B

]

=
2nKβ

[
n(1− β)−m(1 + β)

]
(n−m)(1 + β)(1− β)

(
n− 1+β

1−β

) [( nK

n− 1+β
1−β

)n−m

− zn−m
]

< 0 for all z <
nK

n− 1+β
1−β

, (3.33)
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and

F

(
nK

n− 1

)
= − (n−m)K

n− 1
B > 0, (3.34)

we can see that equation (3.26) has a unique solution such that (3.28) is true. In

particular, this solution is such that

F ′(a) > 0 and F (x) < 0 for all x ∈ ]K, a[. (3.35)

On the other hand, if the problem data is such that[
−n(1− β)−m(1 + β)

2nβ

] 1
n−m

K ≤ z <
nK

n− 1+β
1−β

, (3.36)

then (3.30) and (3.31) imply that F (K) ≥ 0. This inequality and the calculation

F (z) =
1− β
1 + β

[(
n− 1 + β

1− β

)
z − nK

]
zn−m < 0 for all z <

nK

n− 1+β
1−β

(3.37)

imply that there exists a subset of ]K, z] in which F ′ is strictly negative because F is

continuous in ]k, z[. Combining this observation with (3.32) and (3.33)–(3.34), we can

see that equation (3.26) has a unique solution such that (3.28) is true. In particular,

this solution is such that

F ′(a) > 0 and F (x) < 0 for all x ∈ ]z, a[. (3.38)

To show that the solution to (3.26) is a strictly decreasing function of z that satisfies

(3.29) when the rest of the problem data is kept constant, we note that a(z) satisfies the

equation F̃
(
a(z), z

)
= 0, where

F̃ (a, z) =
[
(n− 1)a− nK

]
Aan−m +

[
(m− 1)a−mK

]
B(z), (3.39)

and A, B are given by (3.10), (3.11) (see also (3.27) defining F ). In view of the identi-

fication of F̃ with F if z is considered to be constant, we can see that (3.35) and (3.38)

imply that F̃a
(
a(z), z

)
> 0 for all z < nK

n− 1+β
1−β

. Therefore, differentiating the identity

F̃
(
a(z), z

)
= 0 with respect to z, we obtain

a′(z) = −
F̃z
(
a(z), z

)
F̃a
(
a(z), z

) = −
2n
[
(m− 1)a(z)−mK

]
β

1 + β

zn−m−1

F̃a
(
a(z), z

) < 0, (3.40)
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the inequality following because

(m− 1)a(z)−mK ≤ (m− 1)
nK

n− 1+β
1−β
−mK = − K

n− 1+β
1−β

n(1− β)−m(1 + β)

1− β
< 0.

The first of the limits in (3.29) follows from the observation that

0 = lim
z↓0

F̃
(
a(z), z

) (3.11),(3.27)
= A lim

z↓0

[
(n− 1)a(z)− nK

]
an−m(z),

while, the second limit in (3.29) follows from (3.33) and (3.35)–(3.38).

In view of its construction, we will prove that the function w that is defined as in

the statement of this result satisfies (3.16)–(3.17) if we show that

(1 + β)w′+(z) ≤ (1− β)w′−(z), if z ≥ a, (3.41)

(x−K)+ ≤ w(x) for all x < a, (3.42)

and

1
2
σ2x2w′′(x) + bxw′(x)− rw(x) ≤ 0 inside ]a,∞[. (3.43)

The inequality (3.41) is equivalent to β ≤ 0 if z > a, which is true by assumption, while,

if z = a, then it is equivalent to

nK ≤
(
n− 1 + β

1− β

)
z,

which also holds true.

In light of (3.23) and the first expression for Γ > 0 in (3.24), we can see that (3.42)

is equivalent to

x−K
ψ(x)

≤ a−K
ψ(a)

for all x < a. (3.44)

The continuity of ψ and the calculation

d

dx

x−K
ψ(x)

=

−
[
(n− 1)x− nK

]
x−1−n, if x < z

−xm−1F (x)/ψ2(x), if x > z

 > 0 for all x < a,

where the inequality follows from the fact that a < nK/(n−1) and (3.35)–(3.38), imply

that (3.44) is indeed true. The inequality (3.43) is equivalent to

bx− r(x−K) ≤ 0 for all x > a, (3.45)
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which is true thanks to (3.6), (3.7), (3.22) and the fact that, in all cases, a ≥
nK/

(
n− 1+β

1−β

)
.

Finally, the identification of w with the discretionary stopping’s value function v and

the optimality of τ? follow immediately from Proposition 5. 2

3.5 The case when 0 < β < 10 < β < 10 < β < 1

We first show that the function w defined by (3.23) may identify with the value function

v for appropriate values of the constant Γ and the free-boundary point a > 0, depending

on parameter values (see Figures 4 and 5). To this end, we appeal to the “principle of

smooth fit”, which yields the system of equations (3.24) and equation (3.26) for a. The

next result is concerned with the solvability of (3.26) in the context that we consider

here as well as with necessary and sufficient conditions on the problem data for this case

to be optimal.

Proposition 7 Consider the optimal stopping problem defined by (3.1)–(3.2) and sup-

pose that Assumption 6 holds true and that β ∈ ]0, 1[. Equation (3.26) has a unique

solution a > 0. This solution is such that

a



∈
]
nK
n−1
∨ z,∞

[
, if n ≤ 1+β

1−β ,

∈
]
nK
n−1
∨ z, nK

n− 1+β
1−β

[
, if n > 1+β

1−β and z < nK

n− 1+β
1−β

,

= nK

n− 1+β
1−β

, if n > 1+β
1−β and z = nK

n− 1+β
1−β

,

∈
]

nK

n− 1+β
1−β

, z
[
, if n > 1+β

1−β and z > nK

n− 1+β
1−β

,

(3.46)

and

F (ζ)

< 0, for all ζ ∈ ]z ∧ nK
n−1

, a[,

> 0, for all ζ > a.
(3.47)

If the rest of the problem data is kept fixed, then this solution a = a(z) defines a strictly

increasing C1 function. If we further assume that z < nK

n− 1+β
1−β

if n > 1+β
1−β , then there
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exists a unique

z∗ ∈


]
nK
n−1

,∞
[
, if n ≤ 1+β

1−β ,]
nK
n−1

, nK

n− 1+β
1−β

[
, if n > 1+β

1−β ,
(3.48)

such that

a(z)−K − 1

n

(
nK

n− 1

)−n+1

ψ
(
a(z)

)> 0, if z < z∗,

< 0, if z > z∗.
(3.49)

Furthermore, the function w that is defined by (3.23) for Γ > 0 being given by (3.24)

and a > 0 being the unique solution of (3.26) satisfies the variational inequality (3.16)–

(3.17) and identifies with the value function v of the discretionary stopping problem if

and only if z ≤ z∗. In particular, the (Ft)-stopping time defined by

τ? = inf
{
t ≥ 0 | Xt ≥ a

}
,

is optimal.

Proof. Recalling that A > 0, B > 0 (see (3.10), (3.11)), m < 0 and 1 < n, we can see

that the calculation

F ′(a) = (n− 1)(n−m+ 1)

[
a− (n−m)nK

(n− 1)(n−m+ 1)

]
Aan−m−1 + (m− 1)B

implies that

lim
a↓0

F ′(a) = (m− 1)B < 0 and lim
a→∞

F ′(a) =∞.

Combining this observation with (3.32), we can see that there exists a unique a† > 0

such that

F ′(a)

< 0, if a < a†,

> 0, if a > a†.
(3.50)

In view of these inequalities and the calculations

F

(
nK

n− 1

)
= −(n−m)K

n− 1
B < 0 and lim

a→∞
F (a) =∞, (3.51)
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we can conclude that equation (3.26) has a unique solution a > 0. In particular, we

can see that this solution is such that a > nK
n−1

. Furthermore, we can obtain (3.46) and

(3.47) by considering (3.50) and (3.51) in connection with the facts that

if n ≤ 1 + β

1− β
, then F (z) < 0 for all z > 0,

if n >
1 + β

1− β
, then F (z) < 0 for all z ∈

]
0,

nK

n− 1+β
1−β

[
,

if n >
1 + β

1− β
, then F (z) > 0 for all z >

nK

n− 1+β
1−β

,

which follow from the calculation in (3.37), and the inequalities

F

(
nK

n− 1+β
1−β

)
> 0, if n > 1+β

1−β and z < nK

n− 1+β
1−β

,

= 0, if n > 1+β
1−β and z = nK

n− 1+β
1−β

,

< 0, if n > 1+β
1−β and z > nK

n− 1+β
1−β

,

which follow from (3.33) because β > 0 here.

If the rest of the problem data is kept fixed, then we can see that the same arguments

and calculations as the ones in (3.40) imply that the function z 7→ a′(z) is continuous

and strictly positive because β > 0 and

(m− 1)a(z)−mK ≤ (m− 1)
nK

n− 1
−mK = −(n−m)K

n− 1
< 0.

In the rest of the proof, we assume that z < nK

n− 1+β
1−β

if n > 1+β
1−β . To establish the

existence and uniqueness of z∗ such that (3.48) and (3.49) hold true, we consider the

inequality

x−K
ψ̃(x, z)

≤ a(z)−K
ψ̃
(
a(z), z

) for x < a(z), (3.52)

where a(z) is the solution to the equation F̃
(
a(z), z

)
= 0 that identifies with (3.26) for

F̃ given by (3.39) and we write ψ̃(·, z) instead of ψ to stress the explicit dependence of

this function on z. The calculation

∂

∂x

x−K
ψ̃(x, z)

=

−
[
(n− 1)x− nK

]
x−1−n, if x < z,

−xm−1F̃ (x, z)/ψ̃2(x, z), if x > z,
(3.53)
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implies that, if z ≤ nK
n−1

, then (3.52) holds with strict inequality for all x < a(z). On the

other hand, if z > nK
n−1

, then (3.47) and (3.53) imply that

∂

∂x

x−K
ψ̃(x, z)

< 0, if x ∈ ] nK
n−1

, z[,

> 0, if x ∈ ]0, nK
n−1

[ ∪
]
z, a(z)

[
.

Therefore, if z > nK
n−1

, then (3.52) is true for all x < a if and only if the inequality

x−K
ψ̃(x, z)

∣∣∣∣
x= nK

n−1

=
x−K
xn

∣∣∣∣
x= nK

n−1

=
1

n

(
nK

n− 1

)−n+1

≤ a(z)−K
ψ̃
(
a(z), z

) (3.54)

holds true. If n > 1+β
1−β , then (3.46) and (3.53) imply that

x−K
xn

∣∣∣∣
x= nK

n−1

>
x−K
xn

∣∣∣∣
x= nK

n− 1+β
1−β

= lim
z↑ nK

n− 1+β
1−β

a(z)−K
ψ
(
a(z), z

) .
Also, if n ≤ 1+β

1−β , then (3.10), (3.11) and the fact that a(z) > z for all z > 0 imply that

lim
z→∞

a(z)−K
ψ
(
a(z), z

) = 0.

Combining these observations with the calculation

d

dz

a(z)−K
ψ̃
(
a(z), z

) = −
F̃
(
a(z), z

)
am−1(z)

ψ̃2
(
a(z), z

) a′(z)−
2nβ

[
a(z)−K

]
am(z)

(1 + β)ψ̃2
(
a(z), z

) zn−m−1

= −
2nβ

[
a(z)−K

]
am(z)

(1 + β)ψ̃2
(
a(z), z

) zn−m−1

< 0,

and the fact that (3.52) holds with strict inequality for all x < a(z) if z ≤ nK
n−1

, we

can see that there exists a unique z∗ satisfying (3.48) and such that (3.54) holds true if

z ≤ z∗ and is false if z > z∗. In particular,

(3.52) holds true for all x < a(z) if and only if z ≤ z∗, (3.55)

and that the inequalities in (3.49) are all true.

In light of its construction, we will prove that the function w that is as in the

statement of this result satisfies the variational inequality (3.16)–(3.17) if we show that

(x−K)+ ≤ w(x) for all x < a, (3.56)
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and

1
2
σ2x2w′′(x) + bxw′(x)− rw(x) ≤ 0 inside ]a,∞[. (3.57)

The definition (3.23) of w and the first expression for Γ > 0 in (3.24) imply that (3.56)

is equivalent to (3.52), which is true if and only if z ≤ z∗ (see (3.55)). The inequality

(3.57) is equivalent to

bx− r(x−K) ≤ 0 for all x > a, (3.58)

which is true thanks to (3.6), (3.7) and the fact that a ≥ nK
n−1

.

Finally, the identification of w with the discretionary stopping’s value function v and

the optimality of τ? follow from Proposition 5. 2

The function w defined by (3.23) with Γ, a > 0 being determined by the requirement

that it is C1 at a is depicted by Figure 4 if z < z∗ and by Figure 5 if z = z∗. When the

problem data is such that z > z∗, we will show that there exist constants C`, D`, Cr,

Dr and free boundary points γ ∈
]
nK
n−1

, z
[
, ζ > z such that the function w defined by

w(x) =



1
n

(
nK
n−1

)−n+1
xn, if x ≤ nK

n−1
,

C`x
n +D`x

m, if x ∈ [γ, z],

Crx
n +Drx

m, if x ∈ ]z, ζ],

x−K, if x ∈
]
nK
n−1

, γ
[
∪ ]ζ,∞[,

(3.59)

identifies with the value function v. This function satisfies the ODE (3.3) inside the set]
0, nK

n−1

[
∪ ]γ, z[∪ ]z, ζ[ and is C1 at nK

n−1
. The requirements that w is continuous at z and

(1 + β)w′+(z) = (1− β)w′−(z) (3.60)

yield the identities

Cr =
n(1− β)−m(1 + β)

(n−m)(1 + β)
C` −

2mβ

(n−m)(1 + β)
D`z

−(n−m) (3.61)

and

Dr =
2nβ

(n−m)(1 + β)
C`z

n−m +
n(1 + β)−m(1− β)

(n−m)(1 + β)
D`, (3.62)
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while, C1 fit at γ, ζ yields

C` = − 1

n−m
[
(m− 1)γ −mK

]
γ−n, Cr = − 1

n−m
[
(m− 1)ζ −mK

]
ζ−n, (3.63)

D` =
1

n−m
[
(n− 1)γ − nK

]
γ−m and Dr =

1

n−m
[
(n− 1)ζ − nK

]
ζ−m. (3.64)

Substituting the expressions given by (3.61)–(3.62) for the constants C`, D`, Cr, Dr into

(3.63)–(3.64), we obtain the system of equations[
(n− 1)ζ − nK

]
zmζ−m +

2nβ

(1 + β)(n−m)

[
(m− 1)γ −mK

]
znγ−n

−n(1 + β)−m(1− β)

(1 + β)(n−m)

[
(n− 1)γ − nK

]
zmγ−m = 0, (3.65)

[
(m− 1)ζ −mK

]
znζ−n − n(1− β)−m(1 + β)

(1 + β)(n−m)

[
(m− 1)γ −mK

]
znγ−n

− 2mβ

(1 + β)(n−m)

[
(n− 1)γ − nK

]
zmγ−m = 0. (3.66)

Subtracting (3.65) from (3.66), we obtain

G(γ, ζ) :=
[
(n− 1)ζ − nK

]
zmζ−m −

[
(m− 1)ζ −mK

]
znζ−n

−
[
(n− 1)γ − nK

]
zmγ−m +

[
(m− 1)γ −mK

]
znγ−n = 0 (3.67)

On the other hand, solving (3.65) for
[
(m − 1)γ − mK

]
znγ−n and substituting the

resulting expression in (3.66), we obtain

H(γ, ζ) := ζ−nF (ζ)− 1− β
1 + β

[
(n− 1)γ − nK

]
γ−m = 0, (3.68)

where F is defined by (3.27).

Proposition 8 Consider the optimal stopping problem defined by (3.1)–(3.2) and sup-

pose that Assumption 6 holds true and that β ∈ ]0, 1[. The system of equations (3.67)–

(3.68) has a unique solution (γ, ζ) such that nk
n−1
≤ γ < z < ζ if and only if

either z ≥ nK

n− 1+β
1−β

, if n >
1 + β

1− β
, or z ≥ z∗, otherwise, (3.69)

where z∗ is as in Proposition 7. If the problem data is such that z < nK

n− 1+β
1−β

if n > 1+β
1−β ,

then this solution satisfies

(γ, ζ) =

(
nK

n− 1
, a

)
if z = z∗ and

nK

n− 1
< γ < z < a < ζ if z > z∗, (3.70)
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where a is the unique solution to the equation F (a) = 0. In either case, the function w

defined by (3.59) for C`, D`, Cr, Dr > 0 being given by (3.63)–(3.64) and γ < ζ being the

solution considered above satisfies the variational inequality (3.16)–(3.17) and identifies

with the value function v of the discretionary stopping problem. In particular, the (Ft)-

stopping time defined by

τ? = inf

{
t ≥ 0 | Xt ∈

]
nK

n− 1
, γ

[
∪ ]ζ,∞[

}
,

is optimal.

Proof. In view of the inequality

nmK

(n− 1)(m− 1)
<

nK

n− 1
,

which follows from the fact that m < 0 < n, and the calculations

G(γ, γ) = 0, lim
ζ→∞

G(γ, ζ) =∞,

and

∂

∂ζ
G(γ, ζ) = −(n− 1)(m− 1)

[
ζ − nmK

(n− 1)(m− 1)

]
znζ−n−1

[(
ζ

z

)n−m
− 1

]
< 0, for all ζ ∈

]
nK
n−1

, z
[
,

> 0, for all ζ > z,

we can see that the equationG(γ, ζ) = 0 defines uniquely a function L :
[
nK
n−1

, z
[
→ ]z,∞[

such that

z < L(γ) and G
(
γ, L(γ)

)
= 0 for all γ ∈

[
nK

n− 1
, z

[
. (3.71)

In particular, we can see that

G(γ, ζ)

< 0, for all nK
n−1
≤ γ < ζ < L(γ),

> 0, for all nK
n−1
≤ γ < L(γ) < ζ,

and lim
γ↑z

L(γ) = z. (3.72)

Also, differentiating the identity G
(
γ, L(γ)

)
= 0 with respect to γ, we obtain

L′(γ) =

[
γ − nmK

(n−1)(m−1)

]
γ−n−1

[(
γ
z

)n−m − 1
]

[
L(γ)− nmK

(n−1)(m−1)

]
L−n−1(γ)

[(
L(γ)
z

)n−m
− 1

] < 0 for all γ ∈
]
nK

n− 1
, z

[
.(3.73)
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To resolve the solvability of the system of equations (3.67)–(3.68), we need to es-

tablish conditions under which the equation H
(
γ, L(γ)

)
= 0 has a unique solution

γ ∈
[
nK
n−1

, z
[
. To this end, we note that the definition (3.68) of H and the limit in (3.72)

imply that

H(z, z) = −2βz−m+1

1 + β
< 0,

and we use (3.71), (3.73) to calculate

d

dγ
H
(
γ, L(γ)

)
= − (n− 1)(m− 1)

1− β
1 + β

[
γ − nmK

(n− 1)(m− 1)

]
γ−m−1

×


[
n(1− β)−m(1 + β)

]
Ln−m(γ) + 2nβzn−m

(n−m)(1− β)

(
γ
z

)n−m − 1(
L(γ)
z

)n−m
− 1

γ−n+m − 1


< 0 for all γ ∈

]
nK

n− 1
, z

[
.

In light of these calculations, we can see that

there exists γ∗ ∈
[
nK

n− 1
, z

[
such that H

(
γ∗, L(γ∗)

)
= 0 (3.74)

if and only if

H
(
γ, L(γ)

)∣∣∣
γ= nK

n−1

= L−n(γ)F
(
L(γ)

)∣∣∣
γ= nK

n−1

≥ 0. (3.75)

If the problem data is such that n > 1+β
1−β and z ≥ nK

n− 1+β
1−β

, then (3.46) and (3.71) imply

that a ≤ z < L
(
nK
n−1

)
. Therefore, (3.75) holds with strict inequality thanks to (3.47).

On the other hand, if the problem data is such that z < nK

n− 1+β
1−β

if n > 1+β
1−β , then (3.47)

implies that the inequality (3.75) is true if and only if L
(
nK
n−1

)
≥ a, where a > z ∨ nK

n−1
is

the unique solution to the equation F (a) = 0. Furthermore, the inequality L
(
nK
n−1

)
≥ a

is equivalent to

G

(
nK

n− 1
, a

)
=
[
(n− 1)a− nK

]
zma−m

−
[
(m− 1)a−mK

]
zna−n − n−m

n

(
nK

n− 1

)−n+1

zn

≤ 0, (3.76)
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thanks to (3.72). Using the identities F (a) = 0 and Bzm + Azn = zn to eliminate the

term
[
(m− 1)a−mK

]
in (3.76), we can calculate

BamG

(
nK

n− 1
, a

)
=
[
(n− 1)a− nK

]
zn − n−m

n

(
nK

n− 1

)−n+1

znBam.

Similarly, we can eliminate the term
[
(n− 1)a− nK

]
in (3.76) to obtain

AanG

(
nK

n− 1
, a

)
= −

[
(m− 1)a−mK

]
zn − n−m

n

(
nK

n− 1

)−n+1

znAan.

Adding up these identities yields

z−nψ(a)G

(
nK

n− 1
, a

)
= (n−m)

[
a−K − 1

n

(
nK

n− 1

)−n+1

ψ(a)

]

because ψ(a) = Aan+Bam when the problem data is such that z < nK

n− 1+β
1−β

if n > 1+β
1−β . In

view of (3.49), it follows that (3.76) is true if and only if z ≥ z∗. Therefore, the system of

equations (3.67)–(3.68) has a unique solution, which identifies with the pair
(
γ∗, L(γ∗)

)
considered in (3.74), if and only if the problem data satisfy (3.69). In particular, the

arguments that we have developed reveal that (3.70) holds true.

The strict positivity of the constants C`, D`, Cr, Dr follows from their definition in

(3.63)–(3.64) and the inequalities

mK

m− 1
<

nK

n− 1
< γ < ζ.

By construction, we will prove that the function w that is as in the statement of this

result satisfies the variational inequality (3.16)–(3.17) if we show that

(x−K)+ ≤ w(x) for all x ∈
]
0,

nK

n− 1

[
∪ ]γ, ζ[, (3.77)

and

1
2
σ2x2w′′(x) + bxw′(x)− rw(x) ≤ 0 inside

]
nK

n− 1
, γ

[
∪ ]ζ,∞[. (3.78)

In view of the definition (3.59) of w and the calculation

d

dx

[
1

n

(
nK

n− 1

)−n+1

xn − (x−K)

]
=

(
nK

n− 1

)−n+1

xn−1 − 1,
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we can see that the function x 7→ w(x) − (x −K) is strictly decreasing in the interval]
0, nK

n−1

[
. Combining this observation with the positivity of w, we can see that (3.77) is

true for all x ∈
]
0, nK

n−1

[
. On the other hand, the inequality (3.77) for x ∈ ]γ, ζ[ follows

from the observation that the restrictions of the function x 7→ w(x) − (x − K) in the

intervals ]γ, z[ and ]z, ζ[ both are convex (thanks to the strict positivity of C`, D`, Cr,

Dr) and the facts that

lim
x↓γ

[
w(x)− (x−K)

]
= lim

x↓γ

d

dx

[
w(x)− (x−K)

]
= 0

and

lim
x↑ζ

[
w(x)− (x−K)

]
= lim

x↑ζ

d

dx

[
w(x)− (x−K)

]
= 0.

The inequality (3.78) is equivalent to

bx− r(x−K) ≤ 0 for all x ∈
]
nK

n− 1
, γ

[
∪ ]ζ,∞[,

which is true thanks to (3.6) and (3.7).

Finally, the identification of w with the discretionary stopping’s value function v and

the optimality of τ? follow from Proposition 5. 2
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