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Abstract

The thesis concerns estimating large correlation and covariance matrices

and their inverses. Two new methods are proposed. First, tilting-based

methods are proposed to estimate the precision matrix of a p-dimensional

random variable, X , when p is possibly much larger than the sample size

n. Each 2 by 2 block indexed by (i, j) of the precision matrix can be

estimated by the inversion of the pairwise sample conditional covariance

matrix of Xi and Xj controlling for all the other variables. However, in

the high dimensional setting, including too many or irrelevant controlling

variables may distort the results. To determine the controlling subsets, the

tilting technique is applied to measure the contribution of each remain-

ing variable to the covariance matrix of Xi and Xj , and only puts the

(hopefully) highly relevant remaining variables into the controlling sub-

sets. Four types of tilting-based methods are introduced and the properties

are demonstrated. The simulation results are presented under different sce-

narios for the underlying precision matrix. The second method NOVEL

Integration of the Sample and Thresholded covariance estimators (NOV-

ELIST) performs shrinkage of the sample covariance (correlation) towards

its thresholded version. The sample covariance (correlation) component

is non-sparse and can be low-rank in high dimensions. The thresholded

sample covariance (correlation) component is sparse, and its addition en-



sures the stable invertibility of NOVELIST. The benefits of the NOVEL-

IST estimator include simplicity, ease of implementation, computational

efficiency and the fact that its application avoids eigenanalysis. We ob-

tain an explicit convergence rate in the operator norm over a large class

of covariance (correlation) matrices when p and n satisfy log p/n → 0.

In empirical comparisons with several popular estimators, the NOVELIST

estimator performs well in estimating covariance and precision matrices

over a wide range of models. An automatic algorithm for NOVELIST is

developed. Comprehensive applications and real data examples of NOV-

ELIST are presented. Moreover, intensive real data applications of NOV-

ELIST are presented.
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Chapter 1

Introduction

1.1 Literature review

Estimating the covariance matrix and its inverse, also known as the concentration or

precision matrix, has always been an important part of multivariate analysis, and arises

prominently. In particular, covariance matrix and its inverse play a central role in port-

folio selection and financial risk management. The adequacy of diversification of a

portfolio, which is highly related to “risk”, is quantified by the covariance matrix of

the assets [Markowitz, 1952]. For example, the largest and smallest eigenvalues of

the covariance matrix provide the boundary for the variance of return of each possible

portfolio allocation [Fan et al., 2008; Markowitz, 1952]. See Ledoit and Wolf [2003],

Talih [2003], Goldfarb and Iyengar [2003] and Longerstaey et al. [1996] for appli-

cations of covariance matrices to portfolio selection and financial risk management.

Also, in principal component analysis, where eigenanalysis of covariance matrix is es-

sential for computing principal components [Croux and Haesbroeck, 2000; Jackson,

1991; Johnstone and Lu, 2009; Pearson, 1901], and in linear discriminant analysis,

1



where common or individual covariance matrix is inverted in discriminant function for

classification or dimension reduction purposes [Bickel and Levina, 2004; Fisher, 1936;

Guo et al., 2007]. Moreover, graphical modeling [Meinshausen and Bühlmann, 2008;

Ravikumar et al., 2011; Yuan, 2010] with its applications in network science [Gardner

et al., 2003; Jeong et al., 2001] require a good covariance matrix estimator inverting

which does not excessively amplify the estimation error. Naturally, this is also true of

the correlation matrix, and the following discussion applies to the correlation matrix,

too. The sample covariance matrix is a straightforward and often used estimator of the

covariance matrix [Anderson, 1968]. However, estimating large covariance matrices is

intrinsically challenging. When the dimension p of the data grows with the sample size

n, the sample covariance matrix is no longer a consistent estimate in the sense that its

eigenvalues do not converge to those of the true covariance matrix, according to ran-

dom matrix theory [Chen et al., 2013; Johnstone, 2001; Marc̆enko and Pastur, 1967].

Moreover, sample precision matrix is not defined because sample covariance matrix

is singular in the high-dimensional setting. Even if p is smaller than but of the same

order of magnitude as n, the number of parameters to estimate is p(p + 1)/2, which

can significantly exceed n. In this case, the sample covariance matrix is not reliable,

and alternative estimation methods are needed.

We would categorise the most commonly used alternative covariance estimators

into two broad classes. Estimators in the first class rely on various structural assump-

tions on the underlying true covariance. One prominent example is ordered covariance

matrices, often appearing in time series analysis, spatial statistics and spatio-temporal

modelling; these assume that there is a metric on the variable indices. Bickel and Lev-

ina [2008a] develop a class of well-conditioned and approximately “bandable” ma-

trices, and use banding to achieve consistent estimation uniformly over the class as

2



long as log p/n → 0 under Gaussianity. Furrer and Bengtsson [2007] and Cai et al.

[2010] regularise estimated ordered covariance matrices by tapering. Cai et al. [2010]

derive the optimal estimation rates for the covariance matrix under the operator and

Frobenius norms, a result which implies sub-optimality of the convergence rate of the

banding estimator of Bickel and Levina [2008a] in the operator norm. The banding

technique is also applied to the estimated Cholesky factorisation of the inverse of the

covariance matrices [Bickel and Levina, 2008a; Wu and Pourahmadi, 2003]. Another

important example of a structural assumption on the true covariance or precision ma-

trices is sparsity; it is often made e.g. in the statistical analysis of genetic regulatory

networks [Gardner et al., 2003; Jeong et al., 2001]. El Karoui [2008] and Bickel and

Levina [2008b] simultaneously and independently regularise the estimated sparse co-

variance matrix by universal thresholding, which is a simple and permutation-invariant

method of covariance regularization. El Karoui [2008] develops thresholding under

a special notion of sparsity called β-sparsity, and Bickel and Levina [2008b] study

thresholding under another class of sparse matrices, which is stronger and parallels

to the class of the approximately “bandable” matrices in [Bickel and Levina, 2008a].

Bickel and Levina [2008b] derive the consistency results of the thresholded estimators

with Gaussian and sub-Gaussian models, and show that the results are stronger than

those in El Karoui [2008] under suitable assumptions. Adaptive thresholding, in which

the threshold is a random function of the data [Cai and Liu, 2011; Fryzlewicz, 2013],

leads to more natural thresholding rules and hence, potentially, more precise estima-

tion. Cai and Liu [2011] show that adaptive thresholding estimators can achieve the

optimal rate of convergence over a class of sparse covariance matrices under operator

norm, while the universal thresholding estimators are shown to be sub-optimal under

the same conditions. The Lasso penalty is another popular way to regularise the covari-
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ance and precision matrices [d’Aspremont et al., 2008; Friedman et al., 2008; Rothman

et al., 2008; Yuan and Lin, 2007; Zou, 2006]. Also, Fan and Li [2007]; Lam and Fan

[2009]; Zhao and Yu [2001] addresses explicitly the issues of sparsistency and the bias

problem due to L1 penalization. Upon sparsity assumption, a closely related problem

is the estimation of the support of the precision matrix which corresponds to the se-

lection of graphical models for Gaussian distributions [Lauritzen, 1996]. Focusing on

model selection rather than parameter estimation, Meinshausen and Bühlmann [2008]

propose the neighbourhood selection method with the Lasso technique for estimating

the pattern of zero entries in the precision matrix of a multivariate normal distribution,

based on which Peng et al. [2009] develop a faster algorithm to select the non-zero

partial correlations by using a joint sparse regression model. One other commonly oc-

curring structural assumption in covariance estimation is the factor model, often used

e.g. in financial applications. Motivated by the Arbitrage Pricing Theory in finance,

Fan, Fan, and Lv [2008] impose a multi-factor model on data to reduce dimensionality

and to estimate the covariance matrix, where the factors are observable and the number

of factors can grow with dimension p. Fan et al. [2013] propose the POET estimator,

which assumes that the covariance matrix is the sum of a part derived from a factor

model, and a sparse part.

Different from the estimators in the first class which rely on various structural as-

sumptions on the underlying true covariance, estimators in the second broad class do

not assume a specific structure of the covariance or precision matrices, but shrink the

sample eigenvalues of the sample covariance matrix towards an assumed shrinkage tar-

get [Ledoit and Wolf, 2012]. A considerable number of shrinkage estimators have been

proposed along these lines. Ledoit and Wolf [2004] derive an optimal linear shrinkage

formula, which imposes the same shrinkage intensity on all sample eigenvalues but

4



leave the sample eigenvectors unchanged. However, Ledoit and Péché [2011] argue

that the differences between the eigenvalues of the sample covariance matrix and those

of the population covariance matrix are highly nonlinear and derive the asymptoti-

cally optimal bias correction for sample eigenvalues. Based on it, Ledoit and Wolf

[2012] extend linear shrinkage to nonlinear shrinkage of the eigenvalues of the sam-

ple covariance matrix. Ledoit and Wolf [2013] also derive a consistent estimator of

the oracle nonlinear shrinkage based on the consistent estimation of the population

eigenvalues (also known as the spectrum). Lam [2016] introduces a Nonparametric

Eigenvalue-Regularized Covariance Matrix Estimator (NERCOME) through subsam-

pling of the data, which is asymptotically equivalent to the nonlinear shrinkage method

of Ledoit and Wolf [2012]. Shrinkage can also be applied on the sample covariance

matrix directly. Ledoit and Wolf [2003] propose a weighted average estimator of the

covariance matrix with a single-index factor target to account for common market co-

variance and provide analytic calculation of the optimal shrinkage intensity. Schäfer

and Strimmer [2005] review six different shrinkage targets and derive improved co-

variance estimator based on the optimal shrinkage intensity in Ledoit and Wolf [2003].

Besides, shrinkage techniques are also used for spectral analysis of multivariate time

series of high dimensionality. Böhm and von Sachs [2008] shrink the empirical eigen-

values in the frequency domain towards one another to improve upon the smoothed

periodogram as an estimator for the multivariate spectrum. Also, Böhm and von Sachs

[2009] propose a nonparametric shrinkage estimator of the spectral matrix which has

asymptotically minimal risk among all linear combinations of the identity and the av-

eraged periodogram matrix. Naturally related to the shrinkage approach is Bayesian

estimation of the covariance and precision matrices. Evans [1965], Chen [1979], and

Dickey et al. [1985] use possibly the most natural priors distribution of the covariance
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matrix of a multivariate normal distribution, the inverted Wishart distribution. More-

over, Leonard and John [2012] propose a flexible class of covariance matrix prior,

which yields more general hierarchical and empirical Bayes smoothing and inference.

Alvarez [2014] proposes some alternative distributions, including the scaled inverse

Wishart distribution, which gives more flexibility on the variance priors, and separate

priors for variances and correlations, which eliminates any prior relationship among

covariance matrix elements.

1.2 Organization and Outline of the thesis

The thesis is structured as follows. In Chapter 2 we propose tilting-based precision ma-

trix estimators of a p-dimensional random variable, X , when p is possibly much larger

than the sample size n. Four types of tilting-based methods are introduced and the rate

of convergence are addressed under certain assumptions. Asymptotic properties of the

estimators are studied when p is fixed and p grows with n. For finite p and n, extensive

comparisons of thresholding estimators and the proposed methods are demonstrated.

Several improvement approaches are made. The simulation results are presented under

different models.

Chapter 3 proposes NOVEL Integration of the Sample and Thresholded covariance

estimators (NOVELIST), which is shrinkage of the sample covariance (correlation) to-

wards its thresholded version. The linkage between NOVELIST and ridge regression

are demonstrated. We obtain an explicit convergence rate in the operator norm over

a large class of covariance (correlation) matrices when p and n satisfy log p/n → 0.

Empirical choices of parameters and a data-driven algorithm for NOVELIST estima-

tors which combines Ledoit and Wolf [2003]’s method and cross-validation (LW-CV

6



algorithm) is presented. Further empirical improvements of NOVELIST are proposed.

Comprehensive simulation study is based on a wide range of models and results of

comparisons with several popular estimators are presented. Finally, an automatic al-

gorithm is constructed to provide an adaptive choice between the use of LW-CV algo-

rithm and fixed parameters.

Chapter 4 is devoted to explore the applications of NOVELIST estimators and to

exhibit the results of applying the estimators on real data, including portfolio opti-

mization using low-frequency and high-frequency FTSE 100 constituents log returns,

forecasting the number of calls for a call center and estimating false discovery propor-

tion through a well-known breast cancer study. Chapter 5 concludes the thesis.

1.3 Conclusion

In conclusion, estimating the covariance matrix and its inverse for high-dimensional

data has always been an important part of multivariate analysis. This chapter cate-

gorises the existing and most commonly used estimators proposed in recent years into

two broad classes and provides a brief review of them. Several methods have offered

inspirations to the methods introduced in Chapter 3 and 4. This chapter also gives an

overview of the organization and outline of the thesis.
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Chapter 2

Precision Matrix Estimation via tilting

2.1 Introduction

For multivariate normal distributions, the support of the estimate of the precision ma-

trix is closely related to graphical models. For graphical models, each node corre-

sponds to a random variable, and each non-zero edge between two nodes represents

conditional dependence between the corresponding random variables after removing

the effects of all the other variables. In this chapter, we consider a p-dimensional mul-

tivariate normal distributed random variable X = (X1, X2, · · ·, Xp) with n i.i.d. ob-

servations, P = {1, 2, · · ·, p}, EX = 0, covariance matrix is Σ = {σi,j} = E(XTX),

and precision matrix is Σ−1 = P = {pi,j}, i, j ∈ P. For given i and j, the conditional

dependence between two variables Xi and Xj given other variables is equivalent to the

non-zero corresponding entry of the precision matrix, pi,j [Edward, 2000]. Hence, for

Gaussian distributions, recovering the structure of the graphical models is equivalent

to the identification and estimation of the non-zero entries in the precision matrix [Lau-

ritzen, 1996]. Moreover, non-zero entries of the precision matrix imply non-zero par-
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tial correlations between corresponding variable pairs conditional on the rest of the

variables, as partial correlation between Xi and Xj is defined as ρ̆i,j =
−pi,j√
pi,i
√
pj,j

[Peng

et al., 2009], which is very useful in estimation in Gaussian graphical models.

There exists a well-known link between partial correlations and regression models

under Gaussianity, based on which a partial correlation estimation method is intro-

duced by Peng et al. [2009]. Although it is not directly linked to this work, it gives

us inspiration for exploring the relationship between precision matrix and regression

models, based on which our work is carried on. For given i, by regression Xi on all

the other variables in P, we have

Xi =
∑

j∈P\{i}

βi,jXj + ζi, (2.1)

where ζi are uncorrelated with each Xj , j ∈ P \ {i}. From Lemma 1 in Peng

et al. [2009], we have βi,j = ρ̆i,j
√

pj,j
pi,i

. Analogously, by regression Xj on all the

other variables, we also have βj,i = ρ̆j,i
√

pi,i
pj,j

. Since ρ̆i,j = ρ̆j,i, we obtain ρ̆i,j =

sign(βi,j)
√
βi,jβj,i. Therefore, the search for non-zero partial correlations, i.e. deter-

mining the non-zero edges in graphical models, can be viewed as a model selection

problem under the Gaussian regression settings.

However, we aim to estimate the precision matrix, which is closely related to the

partial correlations but cannot be explicitly expressed by them. Instead, we find another

way to link a p×p precision matrix Σ−1 to regression models block by block as follows.

For simplicity, we choose p = 3 for illustration.

Step one: for any given i and j, for example i = 1 and j = 2, we obtain the first

four elements of Σ−1 (indicated as red dots), which is called 2 × 2 pairwise precision
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matrix, and denoted by Σ◦i,j
−1, where

Σ−1 =


• • ·

• • ·

· · ·


← i = 1

← j = 2, (2.2)

Σ◦1,2
−1 .

=

• •
• •

 = cov−1(X1,X2|X−(1,2)). (2.3)

Here, cov(X1,X2|X−(1,2)) is a partial covariance matrix, i.e. the covariance matrix

of X1 and X2 given all the other variables. Formula (2.3) indicates that the pairwise

precision matrix Σ◦1,2
−1 equals the inverse of the pairwise partial covariance matrix.

Since partial covariance matrix can be estimated by using regression models, precision

matrix estimation is linked to regression problems. More detailed explanation about

this comes later.

Step two: for i = 1 and j = 3, we obtain another four elements of Σ−1 (indicated

as green dots).

Σ−1 =


• • •

• • ·

• · •


← i = 1

← j = 3,

(2.4)

Σ◦1,3
−1 .

=

• •
• •

 = cov−1(X1,X3|X−(1,3)), (2.5)

where, cov(X1,X3|X−(1,3)) is the partial covariance matrix of X1 and X3 given all

the other variables.

Step three: move i and j around across all the indices in P, we are able to obtain
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all the entries of Σ−1. We note that each diagonal involves (p − 1) different 2 by 2

blocks as i and j move around across all indices, we use their average values finally.

Now, we focus on formula (2.3) and explain how the last equality is obtained.

Actually it comes from the block-wise inversion of matrix [Bernstein, 2009, p.147] as

follows,

 A B

BT C


−1

=

 (A−BC−1BT )−1 −(A−BC−1BT )−1BC−1

−C−1BT (A−BC−1BT )−1 C−1 + C−1BT (A−BC−1BT )−1BC−1

 ,

(2.6)

where A, B and C are matrix sub-blocks of arbitrary size, A and C must be square, C

and A−BC−1BT must be nonsingular. The proof of formula (2.6) is given in Section

2.12.1. We note that, A−BC−1BT is actually in a form closely related to conditional

covariance. For illustration, we give a simple example of a 3 by 3 sample precision

matrix Σ̂−1 of a multivariate normal random variable X = (X1, X2, X3) with n i.i.d.

observations, Σ̂−1 = XTX . We partition Σ̂−1 and apply the top-left part (indicated in

red) of the right-hand side of formula (2.6) on it, which leads to

Σ̂−1 =


σ̂1,1 σ̂1,2

σ̂2,1 σ̂2,2

σ̂1,3

σ̂2,3

σ̂3,1 σ̂3,2 σ̂3,3


−1

=


σ̂1,1 − σ̂1,3σ̂

−1
3,3σ̂3,1 σ̂1,2 − σ̂1,3σ̂

−1
3,3σ̂3,2

σ̂2,1 − σ̂2,3σ̂
−1
3,3σ̂1,3 σ̂2,2 − σ̂2,3σ̂

−1
3,3σ̂3,2


−1

·

·

· · ·

 , (2.7)

where only the top-left part (indicated in red) are calculated for illustration. We observe
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that this part corresponds to the inverse of the pairwise sample conditional covariance

matrix of (X1, X2) given X3. For example, we note that

σ̂1,2 − σ̂1,3σ̂
−1
3,3σ̂3,2

=XT
1 X2 −XT

1 X3(XT
3 X3)−1XT

3 X2

=XT
1 (In −H3)X2

=ĉov((In −H3)X1, (In −H3)X2)

=ĉov(X1|X3, X2|X3), (2.8)

where In is a n by n diagonal matrix, H3 is the projection matrix onto the space

spanned by X3,H3
.
= X3(XT

3 X3)−1XT
3 and ĉov(X1|X3, X2|X3) is the sample condi-

tional covariance between X1 and X2 given X3, which can be obtained by computing

the sample covariance between the residuals of regressing X1 and X2 on X3. When

Σ̂−1 is partitioned in different combinations of the indices, the results of the remaining

part of formula (2.7) (indicated as dots) will be obtained. Actually, this relationship

is also true at the population level, which means that any 2 by 2 block indexed by

(i, j) of any precision matrix is equivalent to the inversion of the pairwise conditional

covariance matrix of (Xi, Xj) given all the other variables, see Lemma 1 in Section

2.3.1. Here we find how precision matrix estimation links to regression models which

helps us to estimate precision matrix. Now, we understand that precision matrix es-

timation can be achieved block by block through 2 simultaneous regression problems

for each block under Gaussianity. More details and a generalization are also given in

Section 2.3.1. However, in high-dimensional settings, difficulties arise in estimating

the regression coefficients and residuals, even individually. Including all or “too many”

remaining variables in the regression models would distort the estimation results due
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to the large dimensionality and possibly strong collinearity among the remaining vari-

ables. Also, in high dimensional geometry, even when variables follow independent

Gaussian distributions, spurious sample marginal correlations among variables would

be observed [Fan and Lv, 2008], leading to wrong regression models. Over the last two

decades, substantial efforts have been made in tackling this high-dimensional variable

selection problem. An exhaustive review can be found in Fan and Lv [2010] under the

assumption that regression coefficients are assumed to be sparse with many being zero.

Among them, one of the intensively studied area is the penalised least squares estima-

tion, such as the Lasso [Tibshirani, 1996], the ridge regression, the SCAD [Fan and

Li, 2007] and their extensions [Meinshausen, 2007; Zou, 2006]. Fan and Lv [2008]

introduce the Sure Independence Screening (SIS), which ranks the importance of each

variable according to the magnitude of the corresponding marginal correlation between

the variable and the response, and selects the first dn variables which have the largest

magnitude of correlations. SIS reduces the dimensionality from high or ultra high (for

example, log p = O(na) for some a > 0) to the scale dn, which can be less than n, in

a computationally efficient way.

Despite of good theoretical properties and empirical performances achieved by

these methods, Cho and Fryzlewicz [2012] argue that the results relying on heavy

usage of marginal correlation for measuring the contribution of each variable to the

response can be misleading with growing dimensionality p. Many iterative algorithms

for measures other than marginal correlation are proposed in variable selection prob-

lems for high-dimensional regression models. Traditional forward selection [Weis-

berg, 2005] and forward regression [Wang, 2009] consider the relationship between

a new variable and the response after removing the effects of the existing variables

in the model at each iteration. Bühlmann et al. [2009] introduced a PC-simple algo-
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rithm, where partial correlation instead of marginal correlation is applied in order to

iteratively remove irrelevant variables from the model. Cho and Fryzlewicz [2012]

introduced tilted correlation to measure the strength association between the variables

and the response which takes into account collinearity. The tilted correlation is closely

related to partial correlation, but it focuses on regressing the response Y on the vari-

ablesXk, and thus Y andXk are not treated on an equal footing. For any given variable

Xk, k ∈ P, the tilted correlation is designed to capture the linear relationship between

Xk and the response Y , after removing the effects of all the highly related remaining

variables (not all the other variables), onXk only instead of on bothXk and Y . A more

detailed explanation of the tilted correlation can be found in Section 2.2.

Motivated by the link between precision matrix and regression models, this chapter

proposes tilting techniques which are applied to simultaneously select the (hopefully)

highly relevant remaining variables for each pair Xi and Xj when p grows with n,

which leads to block by block large precision matrix estimation . To tackle the si-

multaneous variable selection problems for high-dimensional regression models, we

introduce four types of tilting methods. The first three methods rely on ranking of the

marginal correlations, while the last one apply tilted correlations in order to remove or

reduce the effects of collinearity. We investigate the asymptotic properties of the tilting

estimators under suitable assumptions as well as small sample inference. Furthermore,

empirical choices of parameters and improvements are discussed and algorithms are

listed for the estimators. Also, simulation studies are presented afterwards.

The rest of the chapter is organised as follows. Section 2.2 gives preliminary

knowledge regarding the tiltied correlation introduced by Cho and Fryzlewicz [2012].

In Section 2.3, we introduce the notations, describe and generalize the building block

of the tilting estimators, which comes from the block-wise inversion of covariance
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matrix, and illustrate the motivation by a simulation example. In Section 2.4, tilt-

ing methodology is formally defined and four types of tilting methods are introduced.

Section 2.5 lists the algorithms for the tilting estimators. Section 2.6 establishes the

consistency of the tilting estimators under assumptions for fixed p and when p grows

with n. Section 2.7 analytically investigates the finite sample performance of tilting

estimators and the differences and links between the tilting estimators and soft and

hard thresholding estimators. Section 2.8 gives suggestions on choices of parameters.

Section 2.9 exploits optional empirical improvements of the tilting estimators. Sec-

tion 2.10 exhibits practical performances of the tilting estimators in comparison to the

thresholding estimators. Section 2.11 concludes the chapter. Section 2.12 is additional

lemmas and proofs.

2.2 Preliminary: tiltied correlation

Before introducing the proposed methods for precision matrix estimation, we need

to briefly describe what is the so called “tilted” correlation introduced by Cho and

Fryzlewicz [2012] and how it works. It considers the following linear model:

Y = Xβ + ε, (2.9)

where Y = (Y1, · · ·, Yn)T ∈ Rn is an n-vector of the response, X = (X1, · · ·, Xp) is an

n× p design matrix and ε = (ε1, · · ·, εn)T ∈ Rn is an n-vector of i.i.d. random errors.

The aim of the regression problem is to identify S = {1 6 k 6 p : βk 6= 0} under the

assumption that only a small number of variables actually contribute to the response,

i.e., S is of cardinality |S| � p.
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The marginal correlation between each variable Xk and Y can be written as the

following decomposition,

XT
k Y = XT

k (

p∑
s=1

βsXs + ε) = βk +
∑

s∈S\{k}

βsX
T
k Xs +XT

k ε, (2.10)

which shows that marginal correlation screening is not reliable on selecting S if the

underlined summand in formula (2.10) is non-negligible. For example, irrelevant vari-

ables that are highly related with the relevant ones can be selected by using marginal

correlation screening. Also, if high collinearity exists among the variables, the results

coming from marginal correlation screening could be far away from the true set S. It

can even be the case that the relevant variables are ruled out when marginal correlation

screening is applied. Consider the following example,

Y = βX1 + βX2 − 2β
√
ϕX3 + ε, (2.11)

where ε ∼ N(0, In) and (X1, X2, X3)T are generated from a multivariate normal dis-

tribution N(0,Σ) independently for i = 1, 2, 3. The population covariance matrix

Σ = {σi,j} satisfies σi,i = 1 and σi,j = ϕ, i 6= j, except σi,3 =
√
ϕ. It is clear

that corr(X3, Y ) = 0, which indicates that X3 is marginally uncorrelated with Y at

the population level, and is likely to be ruled out if marginal correlation screening is

applied, but X3 is actually a relevant variable with Y.

In order to find an alternative measurement instead of marginal correlation that can

be represented as βk (plus an negligible term), Cho and Fryzlewicz [2012] introduce
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the tilted variable X∗k for each Xk, which is defined as

X∗k
.
= (In −Hk)Xk, (2.12)

where Hk is the projection matrix onto the space spanned by Xk̃, i.e. Hk
.
= Xk̃(X

T
k̃

Xk̃)
−1XT

k̃
, and Xk̃ is a submatrix of XP\{k}, which contains all the remaining vari-

ables that are highly correlated with Xk. It is clear that the tilted variable is a projected

version of the original one, which removes the effects of all the highly correlated vari-

ables.

Then the tilted correlation is introduced based on the tilted variable. We can de-

compose (X∗k)TY as

(X∗k)TY = XT
k (In −Hk)Y = XT

k {
p∑
s=1

βs(In −Hk)Xs + (In −Hk)ε}

= βkX
T
k (In −Hk)Xk +

∑
s∈S\{k̃},s 6=k

βsX
T
k (In −Hk)Xs +XT

k (In −Hk)ε

(2.13)

If we rescale (X∗k)TY by dividing XT
k (In −Hk)Xk (rescaling 1 in Cho and Fry-

zlewicz [2012]), and as long as the second and the third summands in formula (2.13)

are negligible in comparison with the first, the rescaled tilted correlation can be rep-

resented as βk plus a small term. We denote ak
.
= ‖HkXk‖2

2 / ‖Xk‖2
2, then we have

1 − ak = XT
k (In −Hk)Xk as the rescaling factor of making the norm of the tilted

correlation to be 1. From now on, we refer to “tilted correlation” as the rescaled tilted

correlation, and denote it by ĉorr∗.

In Cho and Fryzlewicz [2012]’s paper, conditions are used in order to ensure that

17



the underlined term in formula (2.13) is negligible. For example, condition 1 in Cho

and Fryzlewicz [2012] means that ifXs is not highly relevant toXk itself, it remains not

highly relevant to the projected Xk onto the space spanned by Xk̃, i.e. HkXk, which

can be shown to hold asymptotically when each columnXk is generated independently

as a random vector on a sphere of radius 1, which is the surface of the Euclidean ball

Bn
2 = {x ∈ Rn :

∑n
i=1 x

2
i 6 1} by using Lemma 4 in Section 2.12.2.

To sum up, the tilted correlation measures the rescaled correlation between the

response Y and the tilted version of the variable Xi that removes the effects of all the

highly relevant remaining variables on Xi. More explanations regarding how it can be

applied to precision matrix estimation come later in Section 2.4.2.4 and the algorithm

can be found in Section 2.5.2.

2.3 Notations, building block and motivations

2.3.1 Notations and building block Σ̂◦2×2
−1

For a given pair of i and j, i, j ∈ P, we denote K = P \ {i, j}. If we partition X as

(Xij,X−(ij)), where Xij = (Xi, Xj), X−(ij) = (Xk : k ∈ K), the covariance matrix

Σ is decomposed as follows,

Σ =

 Σ2×2 Σ2×(p−2)

Σ(p−2)×2 Σ(p−2)×(p−2)


p×p

, (2.14)

where Σ2×2 = E(XT
ijXij), Σ2×(p−2) = E(XT

ijX−(ij)), Σ(p−2)×2 = E(XT
−(ij)Xij),

Σ(p−2)×(p−2) = E(XT
−(ij)X−(ij)). Analogously, the precision matrix P can be parti-
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tioned as

P =

 Σ2×2 Σ2×(p−2)

Σ(p−2)×2 Σ(p−2)×(p−2)


−1

p×p

=

 P2×2 P2×(p−2)

P(p−2)×2 P(p−2)×(p−2)


p×p

. (2.15)

Lemma 1 If X ∼ N(0,Σ), Σ and P are partitioned as in formula (2.14) and (2.15),

and Σ(p−2)×(p−2) and Σ2×2 − Σ2×(p−2)Σ
−1
(p−2)×(p−2)Σ(p−2)×2 are nonsingular, then

P2×2 = (Σ2×2 − Σ2×(p−2)Σ
−1
(p−2)×(p−2)Σ(p−2)×2)−1 = cov−1(Xij|X−(ij)), (2.16)

whereXij = (Xi, Xj).

The first equality follows because of the block-wise inversion of matrix (formula (2.6)

in Section 2.1). The second equality follows due to properties of marginal and condi-

tional normal distribution [Tong, 2012, p.35].

Lemma 1 shows that P2×2 is not the inversion of Σ2×2, instead, it is the inversion

of the 2 by 2 pairwise conditional covariance matrix which we define as

Σ◦2×2
.
= cov(Xij|X−(ij)), (2.17)

where Xij = (Xi, Xj). i.e. Σ◦2×2 is the covariance matrix of Xi and Xj controlling

all the other variables, X−(ij), for estimating which, the natural way in practice is to

regress Xi and Xj on all the other variables.

By regressing Xi and Xj on all the other variables,X−(ij), respectively, we obtain

2 simultaneous regression models

Xi =
∑
k∈K

βi,kXk + εi, (2.18)

19



Xj =
∑
k∈K

βj,kXk + εj, (2.19)

where εi and εj are specific terms of Xi and Xj respectively, E(εi) = E(εj) = 0, Xk is

uncorrelated with εi and εj . We denote εij = (εi, εj) , hence we have cov(εij) = Σ◦2×2.

In order to estimate P2×2, we need to replace εij by ε̂ij . Typically, ε̂ij can be obtained

by Least Squares Estimation,

ε̂i = (In −H−(ij))Xi, (2.20)

ε̂j = (In −H−(ij))Xj, (2.21)

i.e. ε̂ij = (In −H−(ij))Xij . Then we obtain Σ̂◦2×2 = ĉov(ε̂ij), and P̂2×2 = Σ̂◦2×2
−1.

Furthermore, as i and j move around across all indices in P, each pair of i and j yields

its Σ̂◦2×2
−1, which fills in the corresponding elements of the precision matrix estimator,

and eventually the estimation of the entire precision matrix P is obtained. It is clear

that Σ̂◦2×2
−1 is the building block of the precision matrix estimator.

However, we note that the building block does not have to be a 2 by 2 matrix. If

we denote S as a subset of P, K = P \ S, |S| = m and |K| = p − m. In general,

for any m satisfying 2 6 m < min(p, n), the link between precision matrix and

regression models still exist. Now, we describe the links between precision matrix

and regression models in the general notations. We partition X as (XS,X−S), where

XS = (Xs : s ∈ S), X−S = XK = (Xk : k ∈ K). The partitioned covariance matrix

is

Σ =

 Σm×m Σm×(p−m)

Σ(p−m)×m Σ(p−m)×(p−m)


p×p

, (2.22)
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and the partitioned precision matrix is

P =

 Pm×m Pm×(p−m)

P(p−m)×m P(p−m)×(p−m)


p×p

, (2.23)

By respectively regressingXS on all the other variablesX−S, we obtain m simultane-

ous regression models. We denote the specific terms εS as εS = (εs : s ∈ S). Since

m < n, the projection matrix H−S = X−S(X
T
−SX−S)

−1XT
−S is well defined. Hence,

we obtain ε̂S = (In −H−S)XS and

Σ̂◦m×m = ĉov(ε̂S), (2.24)

P̂m×m = Σ̂◦m×m
−1. (2.25)

Theoretically speaking, m can be any integer as long as 2 6 m < p with large n. We

observe that the size of m has little effect on the precision matrix estimation when n

is large enough according to prior experimental numerical results. However, when n

is close to p or even smaller than p, there is a trade-off between the size of S and K

because |S|+|K| = p. On the one hand, asm increases, the number of regression mod-

els needed to be simultaneously solved is getting larger, which leads to computational

complexity largely increases and then decreases; on the other hand, the number of all

the remaining variables for each regression model, i.e. candidate regressors, is as large

as p−m, and small m means large p−m which possibly results in high-dimensional

regression problems. We choose m = 2 for the estimate. See Section 2.8 for other

choices of m and numerical results.
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2.3.2 Motivation and example illustrations

Choosing |S| = 2 means that |K| = p−2. When p� n, K involves too many variables

such that the projection matrix H−S is not well-defined and regression coefficients

cannot be solved. Even if n > p but n is close to p, putting all the other variables

in the regression models will also distort the estimators. To tackle this problem, it

appears natural to replace XK by a controlling subset XC, where |C| is not bigger, in

most cases much smaller than |K|, andXC hopefully only contains the highly relevant

controlling variables. Figure 2.1 shows that the optimal size of the controlling subset

Figure 2.1: Frobenius norm errors of Σ̂◦2×2
−1 to P2×2 with different size of the control-

ling subsets under model D in Section 2.10.1 , X-axis is the size of controlling subsets
|C|, Y-axis is the average Frobenius norm error of Σ̂◦2×2

−1 to P2×2. The red dashed
lines are located at the optimal size of |C|. |S| = 2, |K| = p− 2. Simulation times=50.
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is much smaller than |K| in most of the cases unless n� p.

Since, there are 2 regression models to be solved at the same time, the determina-

tions of 2 controlling subsets forXi andXj are made simultaneously, which makes the

problem more difficult. In the following section, we will introduce the tilting meth-

ods of regularizing the controlling subsets for Xi and Xj which take into account the

effects of the relationship between Xi and Xj on them.

2.4 Definitions and methods

2.4.1 Definitions

In this section, we formally introduce and define the precision matrix estimation via

tilting. It is defined as

T̂ = {t̂i,j}, i, j ∈ P, (2.26)

where

t̂i,j =

 [Σ̂◦ij
−1]1,2 if i 6= j

1
p−1

∑
l∈P\{i}[Σ̂

◦
il
−1]1,1 if i = j

, (2.27)

Σ̂◦ij is an alternative notation to Σ̂◦2×2 with emphasis on the indices, Σ̂◦ij = ĉov(X∗ij),

where X∗ij = (Xi|XCi , Xj|XCj), XCi and XCj are the controlling subsets for Xi and

Xj respectively, which can be equal to each other, [M ]a,b is a scalar, which is the

element indexed by (a, b) in the matrix M . Since each off-diagonal is calculated once,

we obtain the estimate of the entry straight away, while each diagonal is involved in
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(p − 1) different 2 by 2 blocks as i and j move around across all indices in P, we use

the average value as the final estimate of each diagonal.

2.4.2 Four types of tilting methods

One key ingredient of this methodology is simultaneous choice of the sets Ci and Cj

for Xi and Xj , which is the essential for the building block Σ̂◦2×2, especially in high-

dimensional cases. Now, four types of tilting methods are introduced for determining

the sets Ci and Cj , which can be identical to each other.

For each pair of specified indices i and j, we can decompose formula (2.18) and

(2.19) as follows,

Xi =
∑
b∈B

βi,bXb +
∑
ei∈Ei

βi,eiXei +
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu + εi, (2.28)

Xj =
∑
b∈B

βj,bXb +
∑
ei∈Ei

βj,eiXei +
∑
ej∈Ej

βj,ejXej +
∑
u∈U

βj,uXu + εj, (2.29)

where

B = {b : βi,b 6= 0, and βj,b 6= 0}, i.e. each Xb is a predictor for both Xi and Xj;

Ei = {ei : βi,ei 6= 0, and βj,ei = 0}, i.e. each Xei is a predictor for Xi, but not Xj;

Ej = {ej : βi,ej = 0, and βj,ej 6= 0}, i.e. each Xej is a predictor for Xj , but not Xi;

U = {u : βi,u = 0, and βj,u = 0}, i.e. none of Xu is a predictor for either Xi or

Xj;

εi, and εj are uncorrelated with each Xb, Xei , Xej and Xu.

Zero summands for only Xi or Xj are underlined, and those for both are double-

underlined. Based on the decomposition, four different types of tilting methods are

defined below. The first three methods rely on ranking of the marginal correlations and
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computationally fast. We note that the marginal correlation between variable Xk and

Xi, for example if k ∈ B, has following decomposition,

XT
k Xi =XT

k (
∑
b∈B

βi,bXb +
∑
ei∈Ei

βi,eiXei +
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu + εi)

= βk,i + (
∑

b∈B\{k}

βi,bX
T
k Xb +

∑
ei∈Ei

βi,eiX
T
k Xei) +XT

k εi, (2.30)

which shows that marginal correlation between two variables is the corresponding re-

gression coefficient plus bias terms (in bracket). But we will show in Section 2.6.2

that under certain assumptions, the bias terms would not contaminate consistency of

the tilting estimators at element-wise level. The last tilting method applies tilted corre-

lations [Cho and Fryzlewicz, 2012] instead of marginal correlations in order to make

such bias terms zero or negligible.

2.4.2.1 Simple tilting

Simple tilting puts the variables which are highly correlated with either Xi or Xj into

the controlling subsetXCsi
andXCsj

, where Csi and Csj are defined as

Csi = Csj = Csij = {c : |ĉorr(Xc, Xi)| > π1 or |ĉorr(Xc, Xj)| > π1, c ∈ K}, (2.31)

where π1 is a threshold, π1 ∈ (0, 1). Actually, Csij intends to capture B ∪ Ei ∪ Ej .

Subject to |B| + |Ei| + |Ej| < n, after controlling XB∪Ei∪Ej for both Xi and Xj , the

remaining parts are

Ri =
∑
u∈U

βi,uXu + εi, (2.32)
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Rj =
∑
u∈U

βj,uXu + εj. (2.33)

And their covariance can be written as

cov(Ri, Rj) = cov(
∑
u∈U

βi,nXn,
∑
u∈U

βj,uXu) + cov(εi, εj). (2.34)

2.4.2.2 Double tilting

Double tilting only controls the variables which are highly correlated with both Xi and

Xj . Cdi and Cdj are defined as

Cdi = Cdj = Cdij = {c : |ĉorr(Xc, Xi)| > π1 and |ĉorr(Xc, Xj)| > π1, c ∈ K}. (2.35)

It is clear that double tilting intends to control the variables inXB. Subject to |B| < n,

only controllingXB for both Xi and Xj , the remaining terms are

Ri =
∑
ei∈Ei

βi,eiXei +
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu + εi, (2.36)

Rj =
∑
ei∈Ei

βj,eiXei +
∑
ej∈Ej

βj,ejXej +
∑
u∈U

βj,uXu + εj. (2.37)

Then the corresponding covariance is

cov(Ri, Rj) =cov(
∑
ei∈Ei

βi,eiXei +
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu,
∑
ei∈Ei

βj,eiXei

+
∑
ej∈Ej

βj,ejXej +
∑
u∈U

βj,uXu) + cov(εi, εj). (2.38)
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2.4.2.3 Separate tilting

Separate tilting applies different controlling subsets on Xi and Xj , i.e. Csei 6= Csej . We

define Csei and Csej as follows,

Csei = {ci : |ĉorr(Xci , Xi)| > π1, ci ∈ K}, (2.39)

Csej = {cj : |ĉorr(Xcj , Xj)| > π1, cj ∈ K}. (2.40)

We view B∪Ei and B∪Ej as the population-level counterparts of Csei and Csej respec-

tively. If we assume that |B|+ |Ei| < n and |B|+ |Ej| < n, the remaining summands

after controllingXB∪Ei for Xi andXB∪Ej for Xj respectively can be written as

Ri =
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu + εi, (2.41)

Rj =
∑
ei∈Ei

βj,eiXei +
∑
u∈U

βj,uXu + εj, (2.42)

followed by expressing the covariance as

cov(Ri, Rj) =cov(
∑
ej∈Ej

βi,ejXej +
∑
u∈U

βi,uXu,
∑
ei∈Ei

βj,eiXei +
∑
u∈U

βj,uXu

+ cov(εi, εj) (2.43)

2.4.2.4 Competing tilting

The last tilting method is an application and extension of the tilted correlation intro-

duced by Cho and Fryzlewicz [2012], as mentioned in Section 2.2. Instead of using

sample marginal correlations, competing tilting apply tilted correlations on regulariza-
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tion of Cci and Ccj . We name it as “competing tilting” because at each iteration step, it

determines a subset which includes correlated variables and lets them compete to each

other according to the conditional correlations between each variable and the response

given all the other variables within the subset. We recall the tilted correlation ĉorr∗ in

Section 2.2, and define the controlling subsets for competing tilting as follows,

Cci = {ci : |ĉorr∗(Xci , Xi)| > π1, ci ∈ P}, (2.44)

Ccj = {cj : |ĉorr∗(Xcj , Xj)| > π1, cj ∈ P}. (2.45)

Competing tilting is highly related to separate tilting, as both aim to capture the sets

B ∪ Ei and B ∪ Ej .

For any remaining variable Xk, k ∈ K, we denotes Xk̃ as a submatrix of XK\{k},

which contains Xk̃, k̃ ∈ Ck as its columns, and each of them is highly correlated with

Xk, i.e. Ck = {k̃ : ĉorr(Xk̃, Xk) > πn}. For considering the linear relationship

between Xi and Xk after removing the effects ofXk̃, the tilted correlation between Xi

and Xk after appropriate rescaling method (rescaling 1 in Cho and Fryzlewicz [2012])

is defined as

ĉorr∗(Xk, Xi) = (1− ak)−1XT
k (In −Hk)Xi, (2.46)

where 1−ak is the rescaling factor of making the norm of the tilted correlation to be 1,

ak
.
= ‖HkXk‖2

2 / ‖Xk‖2
2, Hk is the projection matrix onto the space spanned by Xk̃,

Hk
.
= Xk̃(X

T
k̃
Xk̃)

−1XT
k̃

. The algorithm of model selection via tilted correlation for

single regression model can be found in Section 2.5.2. It is straightforward to extend

it to this 2-regression-model case as Cci and Ccj are chosen separately.
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2.5 Algorithm of the tilting estimators for precision ma-

trix

2.5.1 Separate tilting

Here we list the algorithm of the separate tilting estimator. The simple and double

tilting estimators can be achieved in the similar manner.

Step 1: Estimate the pairwise precision matrices by applying the separate tilting.

Step 1.1: For a given pair of (i, j), and a chosen threshold π1, determine

the controlling subsets Csei = {ci : |ĉorr(Xci , Xi)| > π1, ci ∈ K} and Csej = {cj :

|ĉorr(Xcj , Xj)| > π1, cj ∈ K}.

Step 1.2: Compute the pairwise precision matrix (Σ̂◦ij)
−1 = 1

n
Xi

T (In −

Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj .

Step 1.3: Repeat 2.1-2.2 for all the combination of i and j.

Step 2: Construct the precision matrix estimation.

Step 2.1: For off-diagonal entries, t̂sei,j = [(Σ̂◦ij)
−1]1,2

Step 2.2: For diagonal entries, t̂sei,j = 1
p−1

∑
j 6=i[(Σ̂

◦
ij)
−1]1,1

2.5.2 Competing tilting and the TCS algorithm

The only difference between separate tilting and competing tilting is in Step 1.1, where

the marginal correlation ĉorr is replaced by the tilted correlation ĉorr∗ for competing

tilting. The tilted correlation screening algorithm (TCS algorithm) is described in Sec-

tion 3.1 of Cho and Fryzlewicz [2012]. Below, we list the algorithm which is taken

from the paper to make the contents of the thesis coherent and easy to follow.

Consider the following linear model: y = Xβ+ %, where y = (y1, y2, · · ·, yn)T ∈
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R
n is an n-vector of the response, β = {β1, β2, · · ·, βp} is the coefficient vector,

X = (X1, X2 · ··, Xp) is an n × p design matrix and % = (%1, · · ·, %n)T ∈ R
n is

an n-vector of i.i.d. random errors, the aim of the TSC algorithm is to determine an

active set denoted as A, that contains the real relevantX variables to y after effectively

removing the non-negligible effects of all the other X variables, i.e. according to the

tilted correlation ĉorr∗ between X variables and y.

Step 0: Start with an empty active set A = ∅, current residual z = y, and current

design matrix Z = X .

Step 1: Find the variable which achieves the maximum marginal correlation with

z and let k = arg maxj /∈A|ZT
j z|. Identify Ck = {j /∈ A, j 6= k : |ZT

j z| > πn} and if

Ck = ∅, let k∗ = k and go to Step 3.

Step 2: If Ck 6= ∅, screen the tilted correlations between Zj and z, ĉorr∗(Zj, z) in

formula (2.46), for j ∈ Ck ∪ {k} and find k∗ = arg maxj∈Ck∪{k}|ĉorr∗(Zj, z)|.

Step 3: Add k∗ to A and update the current residual and the current design matrix

z ← (In −HA)y and Z ← (In −HA)X , respectively, where HA the projection

matrix of Xk, k ∈ A, i.e., HA
.
= XA(XT

AXA)−1XT
A . Further, rescale each column

j /∈ A of Z to have norm one.

Step 4:: Repeat Step 1 to 3 until the cardinality of active set |A| reaches a pre-

specified m1 < n.
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2.6 Asymptotic properties of tilting methods

2.6.1 Fixed p: asymptotic properties of Σ̂◦m×m
−1

In this section, we briefly show the consistency of the building block of the estimators

in the generalized form, i.e. Σ̂◦m×m
−1 defined in formula (2.24)-(2.25), when p is fixed.

Here, the controlling subsets contain all the other variables, that is to say, for fixed p,

it is safe to include all the remaining variables in the controlling subsets as long as n is

large enough.

Lemma 2 Consistency: If p <∞ and 2 6 m < p, then Σ̂◦m×m
−1 p→ Pm×m.

Proof of Lemma 2: Since each Xi, i ∈ P, follows i.i.d. Gaussian distribution with

mean zero and finite variance, by the weak law of large numbers [Davidson, 1994,

p.289], we note thatXT
SXS

p→ Σm×m,XT
−SXS

p→ Σ(p−m)×m,XT
SX−S

p→ Σm×(p−m),

XT
−SX−S

p→ Σ(p−m)×(p−m). By Slutsky’s Theorem [Serfling, 2009, p.19] and the

block-wise inversion of covariance matrix [Bernstein, 2009, p.147], we obtain

Σ̂◦m×m
−1 = (ε̂TS ε̂S)

−1

= (XT
S (I −H−S)XS)

−1

= (XT
SXS −XT

SX−S(X
T
−SX−S)

−1XT
−SXS)

−1

p→ (Σm×m − Σm×(p−m)Σ
−1
(p−m)×(p−m)Σ(p−m)×m)−1

= Pm×m (2.47)

The lemma follows.
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2.6.2 p→∞: assumptions and consistency

2.6.2.1 Assumptions

In studying the theoretical properties of the four types of tilting methods for estimating

precision matrices, we make the following assumptions and also give the reasons for

and examples satisfying these assumption.

A. 1 For any i, j ∈ P in formula (2.28) and (2.29), we assume Xb, Xei , Xej , Xu, εi

and εj are mutually uncorrelated.

Assumption (A.1) is made in order to ensure element-wise consistency of the precision

matrix via all the four types tilting methods. Although it seems a strong assumption,

we can find examples which satisfy the assumption. For example, absolute diagonal

block covariance matrix as Model (B) in Section 2.10.1 is a typical example.

A. 2 Condition of high dimensional cases: log p = O(nθ) for θ ∈ [0, 1 − 2γ), for

γ ∈ (δ, 1/2).

A. 3 The total number of non-zero coefficients for eitherXi orXj satisfies |B|+ |Ei|+

|Ej| = O(nδ), δ ∈ [0, 1/2).

A. 4 The predictors ofXi satisfy n(3−θ)/2 ·minci∈B∪Ei |XT
ci
Xi| → ∞, and the predictors

of Xj satisfy n(3−θ)/2 · mincj∈B∪Ej |XT
cj
Xj| → ∞.

Assumption (A.2) lets the dimension p grow with n. Assumption (A.3) allows the

number of relevant remaining variables to grow with n, but also ensures the simple

tilting to be well-conditioned, which is the strongest condition among all four types

of tilting methods. Assumption (A.4) is to ensure consistency of simple, double and

separate tilting.
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A. 5 Non-zero coefficients satisfy nµ ·minci∈B∪Ei |βi,ci | → ∞ for µ ∈ [0, γ− δ− ξ/2).

A. 6 The threshold is chosen as πn = Cn−γ for some C > 0. We assume that there

exists C0 > 0 such that Ck = {k̃ : |XT
k Xk̃| > πn} is of cardinality |Ck| 6 C0n

ξ

uniformly over all k, where ξ ∈ [0, 2(γ − δ)).

A. 7 After standardization, there exists α ∈ (0, 1) satisfying 1−XT
i HCsi

Xi = 1−ai >

α, for all i ∈ P.

A. 8 For each i ∈ P, k ∈ K and whose corresponding Ck satisfies B ∪ Ei * Ck, we

have

nκ ·
‖(In −Hk)XB∪EiβB∪Ei‖

2
2

‖XB∪EiβB∪Ei‖
2
2

→∞

for κ satisfying κ/2 + µ ∈ [0, γ − δ − ξ/2).

Assumption (A.5)-assumption (A.8) are taken from Section 2.3 of Cho and Fryzlewicz

[2012] to achieve consistency of tilted correlation in single regression model, and to

ensure consistency of competing tilting as shown in Theorem 1. Below, we list the

reasons for and examples satisfying these assumptions, which are taken from Cho and

Fryzlewicz [2012].

Assumption (A.5) imposes a lower bound on the absolute values of the non-zero

coefficients, which still allows the minimum non-zero coefficient to decay to zero as

n increases. At the same time, it imposes an upper bound on the magnitudes of the

non-zero coefficients to ensure that the ratio in absolute value between the largest and

smallest non-zero coefficients does not grow too quickly with n. Assumption (A.6)-

assumption (A.8) are all applied to correlation matrices. Assumption (A.6) is to pro-

vide a bound in order to guarantee the existence of the projection matrix into the space
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spanned by Xk̃, as well as to prevent tilted correlations from being distorted by high

dimensionality. Assumption (A.7) is required for ruling out strong collinearity among

variables due to the fact that 1 − ai = det(XT
Ci∪{i}XCi∪{i})/det(XT

Ci
XCi), which is

highly related to strict positive definiteness of Σ [Bühlmann et al., 2009; Fan and Li,

2007; Zou, 2006]. Assumption (A.8) is linked to the asymptotic identifiability condi-

tion for high-dimensional problems first introduced in Chen and Chen [2008]. Further,

one example of when assumption (A.6) is satisfied and a certain mild assumptions

from Wang [2009] upon which assumption (A.7) and (A.8) are satisfied are presented

in Section 2.12.2.

In practice, one may want to check whether these conditions are satisfied. If the true

subsets B, Ei, Ej and U are known, it is straightforward to check assumptions (A.1-

A.3) and (A.6-A.7) by using the observed values after suitable algebraic operations.

Otherwise, we firstly need to apply tilted correlation to obtain the estimation of the

coefficients and the following estimation of the subsets B, Ei, Ej and U, then check the

assumptions based on the results. However, for any given datasets with fixed p and n,

it makes less sense for checking asymptotic assumptions such as a measurement goes

to infinity asymptotically. But, when n is very large, we can still set a large enough

finite value as a boundary and if the realisation of the measurement is larger than the

boundary, it is viewed that the assumption is satisfied. The asymptotic assumptions

include (A.4-A.5) and (A.8).
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2.6.2.2 Element-wise consistency

Theorem 1 Under assumptions (A.1)-(A.8), for any i, j ∈ P, we have limn→∞ Pr(∆l >

δ) = 0, for any δ > 0, l = 1, 2, 3, 4, where

∆1 = |cov(εi, εj)−
1

n
Xi

T (In −Xc(X
T
c Xc)

−1XT
c )Xj : c ∈ Csij|, (2.48)

∆2 = |cov(εi, εj)−
1

n
Xi

T (In −Xc(X
T
c Xc)

−1XT
c )Xj : c ∈ Cdij|, (2.49)

∆3 = |cov(εi, εj)−
1

n
Xi

T (In −Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj

: ci ∈ Csei , cj ∈ Csej |, (2.50)

∆4 = |cov(εi, εj)−
1

n
Xi

T (In −Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj

: ci ∈ Cci , cj ∈ Ccj|. (2.51)

The proof is given in the Section 2.12.3. Theorem 1 shows element-wise consis-

tency of the precision matrix estimators via four types of tilting methods. ∆1, ∆2, ∆3,

∆4 correspond to simple, double, separate and competing tilting respectively.

2.7 Finite sample performance: comparisons between

tilting and thresholding estimators

Apart from asymptotic properties, we are also interested in finite sample performance.

In this section, we would like to investigate the finite sample performance of tilting es-

timators for precision matrix and the links and differences between tilting and thresh-

olding (both soft and hard) estimators. We choose the thresholding estimators as com-

petitors due to their simplicity and popularity [Bickel and Levina, 2008b; Cai and Liu,
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2011; Rothman et al., 2009] as well as the close link between tilting and hard thresh-

olding estimator under certain cases. The three methods are defined below. Soft and

hard thresholding are applied on the sample covariance matrices.

(1) Soft thresholding: P̂ sf = (Σ̂sf )−1 = {p̂sfi,j}, where Σ̂sf = {σ̂sfi,j}, and

σ̂sfi,j =

(σ̂i,j − sign(σ̂i,j)λ)1(|σ̂i,j| > λ) if i 6= j

σ̂i,j if i = j
, (2.52)

where λ is a selected threshold, λ ∈ (0, 1).

(2) Hard thresholding: P̂ h = (Σ̂h)−1 = {p̂hi,j}, where Σ̂h = {σ̂hi,j}, and

σ̂hi,j =

σ̂i,j1(|σ̂i,j| > λ) if i 6= j

σ̂i,j if i = j
, (2.53)

(3) Tilting: as stated in formula (2.26)-(2.27), T̂ = {t̂i,j}, where

t̂i,j =

 [Σ̂◦ij
−1]1,2 if i 6= j

1
p−1

∑
l∈P\{i}[Σ̂

◦
il
−1]1,1 if i = j

(2.54)

2.7.1 Case I: Σ−1 = diagonal matrix

When the underlying precision matrix and covariance matrix are the diagonal matrices,

we will show that tilting will never perform better than thresholding under certain

assumptions. It is not surprising as diagonal matrix is the simplest sparse matrix which

is the thresholding estimators designed for.

Denote true covariance matrix as Σ = diag{σ1,1, · · ·, σp,p}, true precision matrix as

P = diag{σ−1
1,1, · · ·, σ−1

p,p} and sample covariance matrix as Σ̂ = {σ̂i,j}, for all i, j ∈ P.
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Assuming there exist λ > 0, s.t. |σ̂i,j| < λ for all i 6= j such that the thresholding

estimators can reduce all each off-diagonal to 0. Hence, soft thresholding can obtain

Σ̂sf = diag{σ̂1,1, · · ·, σ̂p,p}, and the corresponding precision matrix estimator is P̂ sf =

diag{σ̂−1
1,1, · · ·, σ̂−1

p,p}. Hard thresholding yields the same result as soft thresholding in

this case.

The situation for four types of tilting methods are the same for this case. Here we

only illustrate simple tilting as a example. For given i, j ∈ P, i 6= j, assuming there

exists a threshold π1 such that Csij = ∅, we have Σ̂◦ij =

σ̂i,i σ̂i,j

σ̂j,i σ̂j,j

. Hence, for off-

diagonals, we obtain t̂i,j = −σ̂i,j/(σ̂i,iσ̂j,j− σ̂i,jσ̂j,i) 6= 0 if σ̂i,j 6= 0. For diagonals, we

have t̂i,j = 1
p−1

∑
l∈P\{i} σ̂l,l/(σ̂i,iσ̂l,l− σ̂i,lσ̂l,i) >

1
p−1

∑
l∈P\{i} σ̂l,l/(σ̂i,iσ̂l,l) = σ̂−1

i,i , as

summarised in Table 2.1. Illustration by a small panel of simulation results also shows

the relationships, see Table 2.2 .

Table 2.1: Comparison of precision estimators in Case I

Index True Soft Hard Tilting

i = j σ−1
i,j σ̂−1

i,j = σ̂−1
i,j 6 1

p−1

∑
l∈P\{i} σ̂l,l/(σ̂i,iσ̂l,l − σ̂i,lσ̂l,i)

i 6= j 0 0 = 0
if σ̂i,j 6=0

6= −σ̂i,j/(σ̂i,iσ̂j,j − σ̂i,jσ̂j,i)

Although tilting estimators for precision matrix can achieve asymptotically element-

wise consistency, we find that, the finite sample performance shows that they are pos-

itively skewed for diagonals, and oscillate around the true values for off-diagonals, as

long as sample covariance matrix contains non-zero off-diagonal entries. That is to

say tilting estimators cannot achieve better performance than thresholding estimators

if true covariance is a diagonal matrix.
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Table 2.2: Means and variances (in brackets) of the precision matrix estimators from
Case I

p=50, n=1000 p=50, n=100

Index True Soft/hard Tilting Soft/hard Tilting

i = j 1 1.003
(0.002)

1.024
(0.002)

1.022
(0.022)

1.054
(0.023)

i 6= j 0 0 −1.001× 10−4

(0.001)
0 −2.768× 10−4

(0.011)

2.7.2 Case II: Σ−1 = diagonal block matrix

Suppose true covariance structure and the corresponding precision matrix are

Σ =



ΣA1 0

ΣA2

· · ·

0 ΣAW


, P =



Σ−1
A1

0

Σ−1
A2

· · ·

0 Σ−1
AW


where ΣA1 ,ΣA2 , · · ·,ΣAW are square blocks with all entries being non-zeros, and A1∪

A2 ∪ · · · ∪AW = P and the sample covariance matrix as Σ̂ = {σ̂i,j}.

For soft and hard thresholding estimators, we assume that there exists a suitable

threshold λ such that |σ̂i,j| > λ, if σi,j 6= 0 and |σ̂i,j| 6 λ, if σi,j = 0. We take

|Aw| = 2 as an example. The soft and hard estimators for the covariance matrix are

denoted as
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Σ̂sf =



Σ̂sf
A1

0

Σ̂sf
A2

· · ·

0 Σ̂sf
AW


, Σ̂h =



Σ̂h
A1

0

Σ̂h
A2

· · ·

0 Σ̂h
AW


,

where, for each Aw, w ∈ {1, 2, · · ·,W},

Σ̂sf
Aw

=

 σ̂i,i σ̂i,j − sign(σ̂i,j)λ

σ̂j,i − sign(σ̂j,i)λ σ̂j,j

 , Σ̂h
Aw

=

σ̂i,i σ̂i,j

σ̂j,i σ̂j,j

 .

Then the corresponding estimators for the precision matrix are denoted as

P̂ sf =



P̂ sf
A1

0

P̂ sf
A2

· · ·

0 P̂ sf
AW


, P̂ h =



P̂ h
A1

0

P̂ h
A2

· · ·

0 P̂ h
AW


,

where P̂ sf
Aw

= (Σ̂sf
Aw

)−1, and P̂ h
Aw

= (Σ̂h
Aw

)−1.

We compare each element of P̂ sf and P̂ h, and summarise the following relation-

ships. For i = j, we have p̂sfi,i = σ̂j,j/(σ̂i,iσ̂j,j−(σ̂i,j−λ)2) < σ̂j,j/(σ̂i,iσ̂j,j−σ̂2
i,j) = p̂hi,i;

for i 6= j, we have |p̂sfi,j| = |λ− σ̂i,j|/(σ̂i,iσ̂j,j−(σ̂i,j−λ)2) < |− σ̂i,j|/(σ̂i,iσ̂j,j− σ̂2
i,j) =

|p̂hi,j|; and p̂sfi,j = p̂hi,j = 0 else. The similar results can be generalized to 2 < |Aw| < n.

For the tilting methods, we assume that there exists a suitable threshold π1 such

that Cdij can distinguish the relevant and irrelevant remaining variables. We take double

tilting as an example. There are two scenarios for all 2 6 |Aw| 6 p:
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(1) If there exist w, w ∈ {1, 2, · · ·W}, such that {i, j} ⊂ Aw, i.e. Xi and Xj

are in the same block, we are able to include all the variables within that block in the

regression models. By doing this, we find that, for |Aw| = 2, Σ̂◦i,j
−1 = (XT

ijXij)
−1 =

(Σ̂h
Aw

)−1, and for 2 < |Aw| 6 p,

Σ̂◦i,j
−1 = XT

i (I|Aw|−2 −HAw\{i,j})Xj, (2.55)

which is also equivalent to the corresponding 2 × 2 matrix in (Σ̂h
Aw

)−1. That is to

say, the tilting methods obtain same results as the hard thresholding estimator for each

off-diagonals within the blocks.

(2) If there is no such w, i.e. Xi and Xj are in different blocks, the controlling

subsets will be empty for double tilting, and we have

Σ̂◦ij
−1 =

σ̂i,i σ̂i,j

σ̂j,i σ̂j,j


−1

, (2.56)

leading to the same results as what tilting yields in case I, see Section 2.7.1.

We note that if we assume there exists a threshold π2 satisfying maxi,j∈P,i 6=j|σ̂i,j/(σ̂i,i

σ̂j,j − σ̂i,jσ̂j,i)| < π2, for large enough sample size n, we can always further regularise

tilting estimators by applying hard thresholding with λ = π2 on the tilting results to

reduce all the elements outside the blocks to be zero. After this step, double tilting

estimators will yield the same results as hard thresholding estimators, apart from small

differences among diagonals.

However, it is not the case for competing tilting, that would not control all the

remaining variables in the blocks due to possible collinearity. Simple and separate

tilting yields slightly different off-diagonals as the controlling subsets are not empty
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even if Xi and Xj are not in the same block. Table 2.3 summaries the results and

relationships, and table 2.4 presents simulation examples.

Table 2.3: Comparison of precision estimators in Case II (|Aw| = 2)

Index True Soft Hard Double tilting

i = j
σj,j

(σi,iσj,j−σ2
i,j)

σ̂j,j
(σ̂i,iσ̂j,j−(σ̂i,j−λ)2)

<
σ̂j,j

(σ̂i,iσ̂j,j−σ̂2
i,j)

m>1
6= 1

p−1

∑
l∈P\{i}

σ̂l,l
(σ̂i,iσ̂l,l−σ̂i,lσ̂l,i)

i 6= j
in the blocks

−σi,j
(σi,iσj,j−σ2

i,j)

sign(σ̂ij)max(|σ̂i,j |−λ,0)
σ̂i,iσ̂j,j−(σ̂i,j−λ)2

|·|
<

−σ̂i,j
(σ̂i,iσ̂j,j−σ̂2

i,j)
= −σ̂i,j

(σ̂i,iσ̂j,j−σ̂2
i,j)

i 6= j
outside the blocks

0 0 = 0
if σ̂i,j 6=0

6= −σ̂i,j
(σ̂i,iσ̂j,j−σ̂2

i,j)

Note: a
|·|
< b means |a| < |b|.

Table 2.4: Means and variances (in brackets) of the precision matrix estimators from
Case II (|Aw| = 2)

p=50, n=1000 p=50, n=100

Index True Soft Hard Tilting Soft Hard Tilting

i = j 1.333 1.045
(0.002)

1.338
(0.004)

1.011
(0.002)

1.067
(0.019)

1.373
(0.040)

1.035
(0.022)

i 6= j
in the blocks

-0.667 −0.207
(0.002)

−0.667
(0.002)

−0.667
(0.002)

−0.202
(0.010)

−0.687
(0.025)

−0.687
(0.025)

i 6= j
outside the blocks

0 0 0 −2.899× 10−4
(0.001)

0 0 9.907× 10−4
(0.011)

Some remarks: if there exist certain thresholds which can correctly identify the

blocks, double tilting estimator will yield the same results as hard thresholding estima-

tor for all the off-diagonal elements within the blocks. If we apply suitable threshold-

ing methods afterwards, tilting can also reduce the elements outside the blocks to zero,

which are also equal to those of hard thresholding estimator. However, by choosing dif-
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ferent thresholds, tilting estimators can obtain very different results from thresholding,

particularly for large |Aw|, which is true for all the underlying covariance structures,

particularly for the non-sparse ones. Moreover, comparison between soft and hard

thresholding indicates that when n � p, soft thresholding is not favourable as it is a

biased estimator, otherwise, soft thresholding regularizes the distorted sample covari-

ance matrix towards the truth much quicker and is preferable when p is possibly much

larger than n.

2.7.3 Case III: Factor model

Suppose the random variables are generated from a k-factor model as follows,

X = Bf + ε, (2.57)

where X = (X1, X2, · · ·, Xn) be a vector of n i.i.d. observations of a p-dimensional

random variable, f is a k × n matrix of common factors, k 6 p − 2, k � n, B =

{β1,β2, · · ·,βp}T is a p × k coefficient matrix, which contains only positive entries,

and there exists a threshold λ > 0 satisfying that |βiβTj | > λ for all i, j ∈ P, i 6= j,

ε = {ε1, ε2, · · ·, εp} is a p × n matrix of noise component. We assume that all the

factors and noises are with mean zero, variance one and uncorrelated with each other.

i.e. E(f) = 0, var(f) = Ik; E(ε) = 0, var(ε) = Ip; cov(f , εi) = 0, i = 1, 2, · · ·, p.

We denote A =
∑

p∈P βpβ
T
p , B =

∑
l∈P\{i} βlβ

T
l , C =

∑
v∈P
∑

u∈P βvβ
T
u , D =∑

m∈P\{i,j} βmβ
T
m, E =

∑
s∈{i,j}

∑
m∈P\{i,j} βsβ

T
m, F = βiβ

T
j , G = βiβ

T
i . And

Â ∼ Ĝ are the corresponding sample versions of A ∼ G. Note that the true covariance

42



matrix and precision matrix are Σ = {σi,j} and P = {pi,j} respectively, where

σi,j =

βiβ
T
i + 1 = G+ 1 if i = j

βiβ
T
j = F if i 6= j

, pi,j =


∑
l∈P\{i} βlβ

T
l +1∑

p∈P βpβ
T
p +1

= B+1
A+1

if i = j

−βiβTj∑
p∈P βpβ

T
p +1

= −F
A+1

if i 6= j
.

For hard and soft thresholding estimators, we assume common factors and noise

components have identity sample variance when n is large enough for simplicity. After

simple algebra, we obtain the results for hard thresholding as follows,

σ̂hi,j =

β̂iβ̂
T
i + 1 = Ĝ+ 1 if i = j

β̂iβ̂
T
j = F̂ if i 6= j

, p̂hi,j =


B̂+1

Â+1
if i = j

−F̂
Â+1

if i 6= j
,

and soft thresholding estimators as

σ̂sfi,j =

β̂iβ̂
T
i + 1 = Ĝ+ 1 if i = j

β̂iβ̂
T
j − λ = F̂ − λ if i 6= j

, p̂sfi,j =


B̂+1+2F̂ λ−λ2

Â+1+(Ĉ−Â)λ+(Ĉ−2Â−3)λ2+2λ3
if i = j

−F̂+(D̂−Ê+1)λ+λ2

Â+1+(Ĉ−Â)λ+(Ĉ−2Â−3)λ2+2λ3
if i 6= j

.

For simple, double and separate tilting methods, given i and j, we obtain the following

expressions for the precision matrix estimator,

t̂i,j =


−β̂i(B̂TKB̂K)−1β̂Tj

β̂i(B̂TKB̂K)−1β̂Ti +β̂j(B̂TKB̂K)−1β̂Tj +1
if i 6= j

1
p−1

∑
l∈P\{i},Kl=P\{i,l}

β̂l(B̂
T
Kl
B̂Kl

)−1β̂Tl +1

β̂i(B̂TKl
B̂Kl

)−1β̂Ti +β̂l(B̂
T
Kl
B̂Kl

)−1β̂Tl +1
if i = j

, (2.58)

see Section 2.12.4 for details. If |K| = 1, we have

t̂i,j =


−F̂
Â

if i 6= j

B̂

Â
if i = j

· (2.59)
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Table 2.5 shows relationships among soft, hard thresholding and tilting estimators

under Case III with |K| = 1. Compared to the hard thresholding estimators, the soft

thresholding estimators shrink both diagonals and off-diagonals towards 0. However,

the tilting estimators shrink diagonals towards 0, while enlarge the magnitudes of the

off-diagonals. Table 2.6 displays the relationships based on simulation results. Due to

strong collinearity among variables in this case, competing tilting works different from

other tilting methods, which makes the analytical comparisons much more difficult.

Table 2.5: Comparison of precision estimators in Case III (|K| = 1)

Index True Soft Hard Tilting

i = j B+1
A+1

B̂+1+2F̂ λ−λ2
Â+1+(Ĉ−Â)λ+(Ĉ−2Â−3)λ2+2λ3

< B̂+1

Â+1
> B̂

Â

i 6= j −F
A+1

−F̂+(D̂−Ê+1)λ+λ2

Â+1+(Ĉ−Â)λ+(Ĉ−2Â−3)λ2+2λ3

|·|
< −F̂

Â+1

|·|
< −F̂

Â

Table 2.6: Means and variances (in brackets) of the precision matrix estimators from
Case III (|K| = 1)

p=50, n=1000 p=50, n=100

Index True Soft Hard Tilting Soft Hard Tilting

i = j 0.981 0.932
(0.001)

1.033
(0.002)

1.037
(0.003)

1.485
(0.060)

2.032
(0.175)

2.001
(0.175)

i 6= j -0.019 −0.016
(0.001)

−0.017
(0.001)

−0.017
(0.001)

−0.024
(0.029)

−0.025
(0.030)

−0.028
(0.031)
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2.8 Choices of m and π1

As stated in Section 2.3.1, the size of S, m = |S|, for tilting estimation can be

m ∈ [2, n). Ifm > 2, there are more than two regression models conducted at the same

time for estimating a block conditional covariance matrix, which makes computational

complexity largely increase as m increases and then decreases. Also, numerical re-

sults shows that the performance of tilting with m = 2 is among the best. Figure 2.2

illustrates how operator norm errors and computing times change with m. We choose

m = 2 in simulation study.

The choices of the controlling subsets highly depend on the choices of π1, which is

the key for the tilting estimators. The choices of π1 depend on prior knowledge about

the structure of the true covariance or precision matrices. There is no uniform guidance

of the choices, but here we provide some suggestions. For example, upon knowing the

true covariance matrix is a diagonal block matrix as in Section 2.7.2, we can use dis-

tribution of the sample correlation off-diagonals to assist in the determination of π1 for

the first three tilting methods as shown in Figure 2.3. The peak around 0 is due to all

the zero off-diagonals and the peak around 0.5 is due to the non-zero off-diagonals. π1

is chosen as the lowest point between the two peaks in order to maximize the probabil-

ity of correctly distinguishing the relevant and irrelevant remaining variables. Another

example is the choice of π1 for competing tilting with the knowledge that data follow

a 3-factor model. The controlling subsets Cci for competing tilting is stated as formula

(2.44). However, there is alternative way to determine Cci , as stated in Section 3.1 in

Cho and Fryzlewicz [2012]. By setting the maximum size of Cci to be equal to a spec-

ified integer f , competing tilting will stop searching more controlling variables when

|Cci | reaches f . For the 3-factor model, f should be at least 3, but our empirical expe-
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Figure 2.2: Operator norm errors and computing times with different choices of m
under Model (A) in Section 2.10.1.
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rience suggest that it is safer to choose a larger f to retain more information from the

data, especially when p is close to n or even larger than n, but f should not exceed
√
n

in order to avoid issues with high dimensionality.

Figure 2.3: Determination of π1 by distribution of all the diagonal elements of the
sample correlation matrix upon knowing the true covariance matrix is diagonal block
matrix. π1 is chosen as the lowest point between two peaks. True covariance structure:
σi,j = 1 for i = j, σi,j = 0.5 for i 6= j and {i, j} ⊆ Aw, w ∈ (1, 2, · · ·,W ), and 0 else.

2.9 Improvements of tilting estimators

As shown in simulation study later, all the four types of tilting estimators do not per-

form well for several models, further improvements are needed. Here several attempts

of improving the estimators are made. The first one is especially for the diagonal

block precision structure, and the last three methods are based on the consideration of

the estimation errors that come from incorrect choices of controlling subsets Ci, Cj and
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distorted realisations of each variables inX . All the improved approaches are included

in simulation study in Section 2.10 for parallel comparisons to the original four types

of tilting methods.

2.9.1 Tilting with hard thresholding

As mentioned in Section 2.7.2, if the underlying precision structure is a diagonal block

matrix, we can always further regularise the tilting estimators by applying hard thresh-

olding with a suitable threshold on the tilting results to reduce all the elements outside

the blocks to be zero. Later on, simulation studies will also show that tilting methods

can be further improved by applying hard thresholding after tilting. We take separate

tilting with hard thresholding as an example. After separate tilting algorithm in Section

2.5.1, we apply hard thresholding on the tilting results by setting every off-diagonal el-

ement to be zero if it satisfies that the absolute value is less than π2, and yield the final

estimator, T̂ se.h = {t̂se.hi,j } as

t̂se.hi,j =

t̂
se
i,j1(|t̂sei,j| > π2) if i 6= j

t̂sei,j if i = j
, (2.60)

where π2 is a chosen threshold, π2 ∈ (0, 1).

2.9.2 Smoothing via subsampling

The nature of tilting estimators determines that the choices of controlling subsets for

each regression model is very important and has large impact on the results. Also,

tilting estimators are not very stable, especially when p is much larger than n. One

way to improve is smoothing via subsampling. Firstly, we subsample the data set with
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only n1 observations, which is denoted asX∗(n1). Secondly, we compute the estimated

precision matrix for X∗(n1) via tilting methods, which is denoted as T̂ ∗(n1). Thirdly,

we repeat the previous two steps for W times, and obtain T̂ ∗(n1), T̂ ∗(n2), · · ·, T̂ ∗(nW ).

The final estimated tilting precision matrix is defined as 1
W

∑W
w=1 T̂

∗(nw). However,

we suggest to use this approach with caution especially when p � n, because even

less observations are available after subsampling, that will make the high-dimensional

problem even worse.

2.9.3 Smoothing via threshold windows

Thresholds π1 also affect the choices of controlling subsets, as stated in Section 2.8.

It is usually easy to find a suitable threshold to distinguish the non-zero and zero ele-

ments, when n � p or if magnitude of the non-zero elements is large enough. How-

ever, when p is close to n or even p > n, or the non-zero elements are not far away

from zero, finding such a threshold is difficult. Hence, smoothing via a threshold win-

dow will be a good choice, which is the average of the results based on the well-spaced

thresholds within the window. Denote π(1), π(2), · · ·, π(M) as the equal-spaced thresh-

olds within the window [πL, πU ], where πL and πU are the chosen lower bound and

upper bound of the thresholds. For each threshold π(m), m ∈ (1,M), we determine

the controlling subsets C
(m)
i and C

(m)
j for the tilting methods, and obtain the tilting

estimator T̂ (m) in formula (2.26). Then we take the average of all T̂ (m) as the final esti-

mated tilting precision matrix, 1
M

∑M
m=1 T̂

(m). Simulation results shows that a suitable

threshold window will improve the results when p is close to n or even p > n.
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2.9.4 Regularization by ridge regression

When p is close to n or even p > n, even if tilting can correctly identify Ci and Cj , the

distorted observations of XT
i Xi and XT

j Xj may be far away from the truth. Hence,

alternative approach for improvements could be any penalized regression methods,

such as ridge regression. For chosen Ci, the close form of the residuals of regressing

Xi onXCi via ridge regression is defined as:

ε̆i = (In −XCi(X
T
Ci
XCi + αI|Ci|)

−1XT
Ci

)Xi (2.61)

where I|Ci| is identity matrix with dimension equal to |Ci|, and α is a shrinkage in-

tensity. ε̆j can be obtained analogously. Then we have the tilting estimation by ridge

regression via replacing Σ̂◦ij in formula (2.26) by cov(ε̆ij), where ε̆ij = (ε̆i, ε̆j). Simu-

lation study will show that this approach only suits the sparse covariance structure.

2.10 Simulation study

In this section, we investigate the optimal performances of precision matrix estima-

tion via tilting based on π1 ∈ (0, 1) for several simulation models and in compari-

son with other competitors. In all simulations, the sample size n ∈ {20, 200, 500},

p ∈ {20, 100, 200, 500}. We perform N = 100 repetitions.

2.10.1 Simulation models

We use the following models for Σ−1, apart from model (D).

(A) Identity. pi,j = 11(i = j), for 1 ≤ i, j ≤ p.

(B) Absolute diagonal block structure. This model is the same as case II in Section
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2.7.2, the precision matrix is defined as

P =



PA1 0

PA2

· · ·

0 PAW


, (2.62)

where PAw = {pAw
i′ ,j′
} contains non-zero elements, for each w ∈ {1, 2, · · ·,W}, and

i
′
, j
′ ∈ {1, 2, ···, |Aw|}, |Aw| = p/10. In order to generate a well-conditioned diagonal

block precision matrix, we first generate off-diagonals within each block PAw from

U(0.5, 0.9) and set all the other entries equal to zero, obtaining P0, then we set P =

P0+P T
0 and add to the diagonals of P a constant λ

∗(P )−p·λ∗(P )
p−1

, where λ∗(P ) and λ∗(P )

represent the smallest and largest eigenvalues of P , respectively [Bien and Tibshirani,

2011; Rothman et al., 2008].

(C) Relative diagonal block structure. It is similar to model (B), but the only dif-

ference is that the zero elements outside blocks in model (B) is replaced by relative

small non-zero entries. The setting of PAw stay the same. Outside PAws, each pi,j is

generated from U(0, 0.2). And we still apply the constant shift to the diagonals of P .

(D) Factor model covariance structure. Let Σ be the covariance matrix of X =

{X1, X2, · · ·, Xp}T , which follows a f-factor model

Xp×n = Bp×fYf×n + Ep×n, (2.63)

where

Y = {Y1, Y2, · · ·Yf}T is a f-dimensional factor, generated independently from a

ARMA(1,1) model, Yt = 0.7Yt−1 + %t − 0.7%t−1, where f = p/10.
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B = {βij} is the coefficient matrix, βij
i.i.d.∼ U(−1, 1), 1 ≤ i ≤ p, 1 ≤ j ≤ 3,

E = {ε1, ε3, ···, εp}T is p-dimensional random noise, generated independently from

the standard normal distribution, E ∼ N(0, Ip).

Based on this model, we have σi,j =


∑3

k=1 β
3
ik + 1 if i = j;∑3

k=1 βikβjk if i 6= j.
.

The competing estimators include (a) the soft thresholding estimator S (formula

(2.52) in Section 2.7), (b) the hard thresholding estimator H (formula (2.60) in Section

2.7), (c) the simple tilting estimator T̂ s, as in Section 2.4.2.1, (d) the double tilting

estimator T̂ d, as in Section 2.4.2.2, (e) the separate tilting estimator T̂ se, as in Section

2.4.2.3 and 2.5.1, (f) the competing tilting estimator T̂ c, as in Section 2.4.2.4, (g) the

separate tilting estimator with hard thresholding T̂ se.h, as described in Section 2.9.1,

(h) the separate tilting estimator by smoothing via subsampling, “smooth tilting 1” for

short, T̂ se.s1, as in Section 2.9.2, (i) the separate tilting estimator by smoothing via

threshold window, “smooth tilting 2” for short, T̂ se.s2, as in Section 2.9.3, and (j) the

separate tilting estimator regularized by ridge regression, “ridge tilting” for short, T̂ se.r,

as in Section 2.9.4. We use the R package tilting to compute T̂ c. We use n1 = 80%n

for T̂ se.s1, and l = πU − πL = 0.2 for T̂ se.s2.

2.10.2 Simulation results

Performance of different tilting estimators. Examining the results presented in Table

2.9 to 2.10, we find that the performances of four tilting estimators vary in different

models. In general, separate tilting is the best for model (A)-(C), followed by simple

tilting, and competing tilting performs best for model (D). Further, separate tilting

with hard thresholding and three improvement methods can improve the performances
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of tilting. For model (A), although tilting can never achieve better results than soft

and hard thresholding, separate tilting with hard thresholding and tilting regularized

by ridge regression can yield very close results to them. The separate tilting with

hard thresholding largely reduce the estimation errors in model (B) and (C). But, the

smooth tilting 1 can only improve the results by a small margin for model (B) and (C)

with moderate n to p ratio, which is around 1 ∼ 5. Also, the smooth tilting 2 only

work relatively well for model (B) and (C), if compared to separate tilting.

Comparison with competing estimators. Comparisons with hard and soft thresh-

olding estimators show that tilting with hard thresholding performs the best for the ab-

solute and relative diagonal block model. Competing tilting beats others for the factor

model when n is close to or larger than p, but does not perform better than thresholding

when p is much larger than n. The reason is because the tilting highly relies on the

realisations of the variables. When p is much larger than n, although competing tilting

could identify the most relevant variables, the precision matrix estimators can be far

away from the truth due to the distortion of the variables and the resulting distortion

of the residuals for calculating the pairwise conditional covariance matrices. However,

all the tilting methods are beaten by thresholding estimators for the identity precision

matrix, where tilting with hard thresholding and ridge tilting can achieve the results

that are close to those by thresholding estimators.

2.11 Conclusion

This chapter proposes tilting-based methods to estimate the precision matrix of a p-

dimensional random variable, X , when p is possibly much larger than the sample size

n. Four types of tilting-based methods are introduced and the rate of convergence
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is addressed under certain assumptions. Asymptotic properties of the estimators are

studied when p is fixed and p grows with n. For finite p and n, extensive comparisons

of thresholding estimators and the proposed methods are demonstrated. Several im-

provement approaches are made. The simulation results are presented under different

models for the underlying precision matrix.

The benefits of first three tilting methods (simple, double and separate tilting) in-

clude simplicity, ease of understanding, and computational efficiency, among them

separate tilting performs the best. We note that, separate tilting estimators perform

better in estimating the non-zero entries if we already known which ones are non-zeros

rather than identifying the non-zeros. This is the reason why separate tilting with hard

thresholding performs well for diagonal block models. However, tilting estimators do

not perform well when n is much smaller than p due to the highly distorted realisations

for calculating Σ̂◦2×2
−1 even if we know which entries are non-zero.

The most suitable scenario for using competing tilting is when high collinearity

exists, for example, in factor models. When the correlations among some or most of

variables within controlling subsets are extremely large, controlling on all of them is

actually redundant and sometimes distorts the estimators. Also, there may exist large

discrepancy between the sample marginal correlation and the true regression coeffi-

cients due to collinearity, as mentioned in Section 2.2. In these cases, competing tilt-

ing can further reduce the controlling subsets as small and accurate as possible, as the

tilted correlation measures the contribution of each variable to the response that takes

into account collinearity. But, when we face the (ultra) high-dimensional cases, we

need to use competing tilting with caution, since it is highly affected by the distorted

realisations of the variables and the residuals.

To summarise, we recommend thresholding estimators for diagonal precision ma-
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Table 2.7: Average operator norm error for competing precision estimators with opti-
mal parameters under model (A) (50 replications). The best results and those up to 5%
worse than the best are boxed. The worst results are in bold.

p n S H T̂ s T̂ d T̂ se T̂ c T̂ se.h T̂ se.s1 T̂ se.s2 T̂ se.r

20

20 1.077 1.077 6.225 6.225 6.225 6.225 1.116 6.428 6.416 1.125

200 0.222 0.222 1.617 1.617 1.617 1.617 0.222 1.266 1.580 0.228

500 0.146 0.146 1.007 1.007 1.007 1.007 0.147 0.446 0.947 0.146

100

20 1.735 1.735 8.234 8.234 8.234 8.234 1.755 9.187 8.138 1.763

200 0.297 0.297 7.145 7.145 7.145 7.145 0.302 6.304 6.932 0.299

500 0.188 0.188 3.408 3.408 3.408 3.408 0.190 4.103 3.351 0.189

200

20 1.932 1.932 14.227 14.227 14.227 14.227 2.127 14.997 12.627 2.001

200 0.327 0.327 4.559 4.559 4.559 4.559 0.344 4.345 4.364 0.358

500 0.195 0.195 4.314 4.314 4.314 4.314 0.201 4.226 4.231 0.226

500

20 2.454 2.454 11.957 11.957 11.957 11.957 2.784 12.147 9.784 2.772

200 0.393 0.393 8.246 8.246 8.246 8.246 0.513 6.931 7.813 0.521

500 0.223 0.223 4.821 4.821 4.821 4.821 0.230 2.138 4.136 0.232

trix estimation, separate tilting with hard thresholding for absolute diagonal block

structure. If p is smaller than n, we recommend separate tilting with hard thresholding

for relative diagonal block and competing tilting for factor models, otherwise, we use

thresholding to be on the safer side. Suitable improvement approaches can be applied

depending on circumstances. In general, the higher collinearity the variables have, the

more necessary it is to apply tilting methods, especially the competing tilting.
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Table 2.8: Average operator norm error for competing precision estimators with opti-
mal parameters under model (B) (50 replications). The best results and those up to 5%
worse than the best are boxed. The worst results are in bold.

p n S H T̂ s T̂ d T̂ se T̂ c T̂ se.h T̂ se.s1 T̂ se.s2 T̂ se.r

20

20 2.413 3.077 3.791 4.768 3.791 4.073 2.402 3.514 3.434 3.338

200 1.812 0.725 1.377 1.600 1.367 1.547 0.711 1.189 1.204 1.210

500 1.097 0.429 0.903 1.014 0.896 1.085 0.359 1.009 1.005 1.104

100

20 14.201 14.582 14.547 14.827 14.542 14.855 13.766 15.206 14.100 14.103

200 13.272 14.482 7.660 8.979 8.932 9.004 7.898 8.512 8.407 8.365

500 10.486 10.486 6.709 8.452 8.132 8.627 5.695 7.067 7.995 7.989

200

20 28.333 28.464 30.593 32.647 30.593 31.291 28.169 31.574 29.637 29.662

200 27.253 28.779 20.737 22.697 22.432 22.990 18.085 20.633 20.034 21.688

500 27.363 28.764 16.559 22.635 21.172 21.695 16.389 19.001 19.303 20.093

500

20 70.830 70.990 84.041 85.674 84.041 73.660 70.442 90.388 82.674 78.090

200 68.831 71.096 73.609 76.156 74.401 75.318 60.344 72.629 73.334 65.941

500 69.676 71.148 56.308 62.110 60.389 63.264 46.317 53.623 55.192 58.641
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Table 2.9: Average operator norm error for competing precision estimators with opti-
mal parameters under model (C) (50 replications). The best results and those up to 5%
worse than the best are boxed. The worst results are in bold.

p n S H T̂ s T̂ d T̂ se T̂ c T̂ se.h T̂ se.s1 T̂ se.s2 T̂ se.r

20

20 4.928 5.428 4.809 4.877 4.766 4.967 4.144 4.720 4.778 4.933

200 2.442 2.442 1.989 2.155 2.007 2.337 1.885 1.995 2.051 2.289

500 1.890 1.890 1.890 1.890 1.890 1.890 1.890 1.924 1.933 1.890

100

20 31.796 32.861 30.769 32.084 30.762 32.553 30.209 30.582 30.589 30.996

200 31.444 32.757 22.485 26.667 25.440 25.986 20.157 22.912 22.650 25.279

500 13.585 13.585 13.585 13.771 13.585 13.577 12.636 13.250 13.356 13.868

200

20 62.025 62.897 87.268 92.506 81.018 90.739 62.454 80.386 78.924 80.075

200 63.812 65.221 91.237 93.787 87.379 92.014 64.036 88.227 86.783 90.850

500 61.986 65.518 45.057 51.553 49.126 50.367 41.928 46.043 47.345 47.338

500

20 159.197 160.657 255.866 276.596 230.644 268.305 157.786 232.358 228.575 230.644

200 161.461 162.026 201.024 224.654 191.649 216.337 160.683 185.335 189.950 190.672

500 161.884 161.919 185.324 195.571 177.370 193.518 160.918 172.453 175.302 177.370
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Table 2.10: Average operator norm error for competing precision estimators with opti-
mal parameters under model (D) (50 replications). The best results and those up to 5%
worse than the best are boxed. The worst results are in bold.

p n S H T̂ s T̂ d T̂ se T̂ c T̂ se.h T̂ se.s1 T̂ se.s2 T̂ se.r

20

20 0.733 0.742 2.935 2.885 2.745 1.115 1.271 2.680 2.735 2.779

200 0.504 0.742 0.681 0.675 0.631 0.522 0.545 0.601 0.624 0.677

500 0.455 0.467 0.422 0.420 0.414 0.387 0.391 0.412 0.414 0.420

100

20 0.882 0.882 6.300 6.210 6.090 1.053 1.900 5.857 6.073 6.088

200 0.854 0.854 2.274 2.006 1.741 0.842 0.724 1.735 1.724 1.740

500 0.859 0.859 0.943 0.926 0.891 0.810 0.833 0.885 0.872 0.890

200

20 0.939 0.939 5.911 5.810 5.794 3.483 1.654 5.939 5.686 5.706

200 0.915 0.915 2.367 2.355 2.354 1.378 0.706 2.057 2.160 2.331

500 0.912 0.912 1.964 1.881 1.554 0.821 0.834 1.330 1.716 1.775

500

20 0.974 0.974 8.245 8.014 7.649 4.144 2.300 7.515 7.622 7.640

200 0.962 0.962 5.511 5.206 5.089 2.201 1.316 4.979 5.004 5.080

500 0.989 0.989 2.344 2.205 2.045 1.492 1.001 1.827 1.948 2.037
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2.12 Additional lemmas and proofs

2.12.1 Proofs of block-wise inversion of matrix

In this section, we give proof of formula (2.6). We denote a p by p square matrix M

and its inverse M−1

M =

 A B

BT C

 , M−1 =

 Ã B̃

B̃T C̃

 , (2.64)

where A is a m by m square matrix, C and A − BC−1BT are nonsingular. Since

M ·M−1 = Ip, we have

 A B

BT C


 Ã B̃

B̃T C̃

 =

Im 0

0 I(p−m)

 , (2.65)

leading to four equations

AÃ+BB̃T = Im (2.66)

BT Ã+ CB̃T = 0 (2.67)

AB̃ +BC̃ = 0 (2.68)

BT B̃ + CC̃ = Im (2.69)

From formula (2.67) we have

B̃T = −C−1BT Ã. (2.70)
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Then by substituting formula (2.70) in (2.66), we obtain

Ã = (A−BC−1BT )−1 (2.71)

Subsequently, we obtain

B̃T = C−1BT (A−BC−1BT )−1 (2.72)

B̃ = −(A−BC−1BT )−1BC−1 (2.73)

C̃ = C−1 + C−1BT (A−BC−1BT )−1BC−1, (2.74)

and formula (2.6) follows.

2.12.2 More example and proofs of the assumptions (A.6)-(A.8)

In this section, we present one example of when assumption (A.6) is satisfied and a

certain mild assumptions from Wang [2009] (referenced as Lemma 3) for satisfying

assumption (A.7) and (A.8), which are taken from Cho and Fryzlewicz [2012].

Example of assumption (A.6). Suppose X ∈ Rn×p is n-i.i.d. observations of a

multivariate normal variable,X ∼ Np(0,Σ) with Σk,k̃ = ϕ|k−k̃| for some ϕ ∈ (−1, 1).

Assuming each column ofX has a unit norm, the sample correlation indexed by (k, k̃)

is defined as XT
k Xk̃ in Cho and Fryzlewicz [2012]. Then by Lemma 1 in Kalisch and

Bühlmann [2007], we have that

P(maxk̃∈Ck |X
T
k Xk̃ − σk,k̃| 6 C2n

ξ) > 1− C0np(p− 1)

2
· exp(−C2(n− 4)n−2ξ

2
),

(2.75)
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for some C2 ∈ (0, C) and C0 > 0. From assumption (A.2)-(A.3), the right-hand side

of formula (2.75) tends to 1. Hence, assumption (A.6) holds with probability tending

to 1 because of |XT
k Xk̃| 6 |σk,k̃|+ |C2n

ξ| 6 πn for |k − k̃| � log n.

Study of assumption (A.7) and (A.8). Now we present how assumption (A.7)

and (A.8) are satisfied under the following condition from [Wang, 2009]. Consider the

following linear model: y = Xβ+%, where y = (y1, y2, · · ·, yn)T ∈ Rn is an n-vector

of the response, β = {β1, β2, · · ·, βp} is the coefficient vector and % = (%1, · · ·, %n)T ∈

R
n is an n-vector of i.i.d. random errors. Let λ∗(M) and λ∗(M) represent the smallest

and largest eigenvalues of the matrix M , respectively. We introduce a lemma from

Wang [2009].

Lemma 3 There exists ξ ∈ (0, 1) satisfying

τ∗ 6 min
D
λ∗(X

T
DXD) 6 min

D
λ∗(X

T
DXD) 6 τ ∗ (2.76)

with probability tending to 1, for any D ⊂ {1, 2, · · ·, p} with |D| 6 nη, if the following

conditions are satisfied,

(1) bothX and % follow normal distributions;

(2) there exist two positive constants 0 < τ∗ < τ ∗ < ∞ such that τ∗ < λ∗(Σ) <

λ∗(Σ) < τ ∗, where cov(xi) = Σ for i = 1, 2, · · ·, n.

We now prove that assumption (A.7) and (A.8) are satisfied if formula (2.76) in Lemma

3 holds. Recalling the notationsHk̃

.
= Xk̃(X

T
k̃
Xk̃)

−1XT
k̃

, we have

1−XT
kHk̃Xk =

∥∥Xk −Xk̃(X
T
k̃
Xk̃)

−1XT
k̃
Xk

∥∥2

2
. (2.77)

Denote θ = (XT
k̃
Xk̃)

−1XT
k̃
Xk and assume the ξ from assumption (A.7) satisfies ξ 6
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η such that, by applying formula (2.76), we obtain the following;

1−XT
kHk̃Xk

=(1,θ)(Xk,Xk̃)
T (Xk,Xk̃)(1,θ)T

>(1,θ)λ∗((Xk,Xk̃)
T (Xk,Xk̃))(1,θ)T

>(1 + ‖θ‖2
2)τ∗

>τ∗

>0 (2.78)

then assumption (A.7) follows.

For assumption (A.8), first we introduce the asymptotic identifiability condition for

high-dimensional problems first introduced in Chen and Chen [2008]. The condition

can be re-written as

lim
n→∞

lim
D⊂P,|D|6|L|,D6=L

n(log n)−1 · ‖(In −Hk)XLβL‖2
2

‖XLβL‖2
2

→∞ (2.79)

after taking into account the column-wise normalisation of X , where L
.
= {1 6 i 6

p : βi 6= 0}. Although the rate nκ is less favourable than n(log n)−1, following exactly

the same arguments as in Section 3 of Chen and Chen [2008], we are able to show

that assumption (A.8) is implied by the condition in formula (2.76). That is, letting
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θ = (XT
k̃
Xk̃)

−1XT
k̃
XLβL, we have

nκ · ‖(In −Hk)XLβL‖2
2

‖XLβL‖2
2

>nκ · inf
k/∈L

∥∥X
L∩k̃cβL∩k̃c −Xk̃θ

∥∥2

2

‖XLβL‖2
2

>Cnκ−2δ inf
k/∈L

(βT
L∩k̃c ,−θ)TXT

L∩k̃cXL∩k̃c(β
T
L∩k̃c ,−θ)

>Cnκ−2δλ∗(L ∩ k̃)
∥∥β

L∩k̃

∥∥2

2
(2.80)

for some positive constantC, where the second inequality is derived under the assump-

tion (A. 3) -(A. 6). Then a constraint can be imposed on the relationship between κ, δ

and ξ such that the right-hand side of formula (2.80) diverges to infinity.

2.12.3 Proof of Theorem 1

First, we prove for simple tilting, limn→∞ Pr(∆l > δ) = 0, for any δ > 0.

∆1 =|cov(εi, εj)−
1

n
Xi

T (In −Xc(X
T
c Xc)

−1XT
c )Xj : c ∈ Csij|

6|cov(εi, εj)− cov(Xi, Xj|Xk : k st. βi,k 6= 0 or βj,k 6= 0)|

+|cov(Xi, Xj|Xk : k st. βi,k 6= 0 or βj,k 6= 0)

− 1

n
Xi

T (In −Xk(X
T
kXk)

−1XT
k )Xj : k st. βi,k 6= 0 or βj,k 6= 0|

+| 1
n
Xi

T (In −Xk(X
T
kXk)

−1XT
k )Xj : k st. βi,k 6= 0 or βj,k 6= 0

− 1

n
Xi

T (In −Xc(X
T
c Xc)

−1XT
c )Xj : c ∈ Csij|

.
=Is + IIs + IIIs (2.81)
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Part Is error is due to removing the irrelevant variables with both Xi and Xj from the

regression models. Part IIs error is due to the differences between true and sample

covariances. Part IIIs is the error due to selecting the nonzero controlling subsets

based on four tilting methods. Next, these terms will be investigated one by one, and

proved that each term is equal to 0 or converges to 0, as n→∞.

(I) Term Is:

Under assumption (A1), from formula (2.32), (2.33) and (2.34), we have,

Is =|cov(εi, εj)− cov(Xi|Xk, Xj|Xk : k st. βi,k 6= 0 and βj,k 6= 0)|

=|cov(εi, εj)− cov(
∑
u∈U

βi,uXu,
∑
u∈U

βj,uXu) + cov(εi, εj)|

=|cov(
∑
u∈U

βi,uXu,
∑
u∈U

βj,uXu)|

=0, (2.82)

as βi,u = 0 and βj,u = 0.

(II) Term IIs:
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Next, we are to prove that limn→∞ Pr(II
s > ε) = 0.

IIs =|E(Xi
T (In −Xk(X

T
kXk)

−1XT
k )Xj) : k st. βi,k 6= 0 or βj,k 6= 0

− 1

n
Xi

T (In −Xk(X
T
kXk)

−1XT
k )Xj : k st. βi,k 6= 0 or βj,k 6= 0|

6|E(Xi
TXj)−

1

n
Xi

TXj|

+|E(Xi
TXk(X

T
kXk)

−1XT
k Xj)−

1

n
Xi

TXk(X
T
kXk)

−1XT
k Xj

: k st. βi,k 6= 0 or βj,k 6= 0|
.
= IIs1 + IIs2 (2.83)

For term IIs1 , it can be proved that 1
n
Xi

TXj
p→ E(XT

i Xj) by applying WLLN [David-

son, 1994, p.289].

Then, it is needed to prove term IIs2 also has the same property.

If |{k : βi,k 6= 0 or βj,k 6= 0}| = K = 1, we have XT
i Xk, (XT

k Xk), and XT
k Xj

all scalars. From WLLN [Davidson, 1994, p.289], we have 1
n

∑N
m=1Xi,mXk,m

p→

E(XT
i Xk), 1

n

∑N
m=1 Xj,mXk,m

p→ E(XT
j Xk), 1

n

∑N
m=1X

2
k,m

p→ E(XT
k Xk). By Slut-

sky’s theorem [Serfling, 2009, p.19], we have 1
n
XT
i Xk(X

T
k Xk)

−1XT
k Xj

p→ E(XT
i Xk

(XT
k Xk)

−1XT
k Xj), Then limn→∞ Pr(II

s
2 > δ) = 0 follows, for all δ > 0.

If K > 1, XT
i Xk, (XT

kXk), and XT
k Xj are no long scalars. Under assumption
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(A. 3), we have

Xi
TXk(X

T
kXk)

−1XT
k Xi

=

(
Xi,1 · · ·Xi,N

)


X1,1 · ·XK,1

· ·

· ·

· ·

X1,N · ·XK,N


(



X1,1 · · · X1,N

· ·

· ·

XK,1 · · · XK,N





X1,1 · ·XK,1

· ·

· ·

· ·

X1,N · ·XK,N


)−1

·



X1,1 · · · X1,N

· ·

· ·

XK,1 · · · XK,N





Xj1

·

·

·

XjN



=

(
XT
i X1 · · ·XT

i Xk

)
(



XT
1 X1 XT

2 X1 · · · XT
k X1

XT
1 X2 XT

2 X2 · · · XT
k X2

· · ·

· · ·

· · ·

XT
1 Xk XT

2 Xk · · · XT
k Xk


)−1



XT
1 Xj

·

·

·

XT
k Xj


.
=IM−1J (2.84)

Note that all the elements in I, M, and J can be written in the form XT
q Xs.

By WLLN [Davidson, 1994, p.289], we have 1
n
XT
q Xs

p→ E(XT
q Xs) which means

all the elements actually converge in probability to their expectations. Hence, applying
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Slutsky’s theorem [Serfling, 2009, p.19], we can conclude that 1
n
Xi

TXk(X
T
kXk)

−1

XT
k Xj

p→ E(Xi
TXk(X

T
kXk)

−1XT
k Xi). Overall, we have limn→∞ Pr(II

s > δ) = 0,

for all δ > 0.

(III) Term IIIs: we denote C+
ij as C+

ij = {c+
ij : βi,cij 6= 0 or βj,cij 6= 0} = B ∪

Ei ∪ Ej , and C−ij as C−ij = {c−ij : βi,cij = 0 and βj,cij = 0} = U. Instead of proving

limn→∞ Pr(IIIs > ε) = 0, we will prove that, for all c+
ij ∈ C+

ij , at least one of the

following holds,

lim
n→∞

Pr(
maxc−ij∈C

−
ij
| 1
n
XT
i Xc−ij

|
| 1
n
XT
i Xc+ij

|
→ 0) = 1, (2.85)

lim
n→∞

Pr(
maxc−ij∈C

−
ij
| 1
n
XT
j Xc−ij

|
| 1
n
XT
j Xc+ij

|
→ 0) = 1. (2.86)

It is to prove that simple tilting can distinguish C+
ij and C−ij with suitable threshold and

assumptions.

From assumption (A.1), we obtain thatE(XT
c−ij
Xi) = E(XT

u (
∑

b∈B βi,bXb+
∑

ei∈Ei

βi,eiXei)) = 0, for all c−ij ∈ C−ij . Similarly, we have E(XT
c−ij
Xj) = 0. From Bickel and

Levina [2008b], we have maxc−ij∈C
−
ij
| 1
n
XT
i Xc−ij

| 6 O(
√

log p/n) and maxc−ij∈C
−
ij
| 1
n
XT
j

Xc−ij
| 6 O(

√
log p/n). From assumption (A.3)-(A.4), we have Pr(

max
c−
ij
∈C−
ij
| 1
n
XT
i Xc−

ij
|

| 1
n
XT
i XB∪Ei |

→

0) = 1 and Pr(
max

c−
ij
∈C−
ij
| 1
n
XT
j Xc−

ij
|

| 1
n
XT
j XB∪Ej |

→ 0) = 1. Then, since C+
ij = B ∪ Ei ∪ Ej , at least

one of the formula (2.85) and (2.86) holds for all c+
ij ∈ C+

ij .

Combining Is, IIs and IIIs, limn→∞ Pr(∆1 > δ) = 0 follows.

The prove for double tilting can achieve analogously. Here only state the slight

differences in the first term.
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Under assumption (A1), from formula (2.36), (2.37) and (2.38), we have,

Id =|cov(εi, εj)− cov(Xi|Xki , Xj|Xkj : k st. βi,ki 6= 0 and βj,kj 6= 0)|

=cov(
∑
ei∈Ei

βi,eiXei ,
∑
ei∈Ei

βj,eiXei) + cov(
∑
ej∈Ej

βi,ejXej ,
∑
ej∈Ej

βj,ejXej)

+ cov(
∑
u∈U

βi,uXu,
∑
u∈U

βj,uXu)

=0, (2.87)

as βj,ei = 0, βi,ej = 0, βi,u = 0 and βj,u = 0.

For separate tilting, as Csei 6= Csej , the corresponding formula (2.81) is as follows.

∆3 =|cov(εi, εj)−
1

n
Xi

T (In −Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj

: ci ∈ Csei , cj ∈ Csej |

6|cov(εi, εj)− cov(Xi|Xki , Xj|Xkj : k st. βi,ki 6= 0 and βj,kj 6= 0)|

+|cov(Xi|Xki , Xj|Xkj : k st. βi,ki 6= 0 and βj,kj 6= 0)

− 1

n
Xi

T (In −Xki(X
T
ki
Xki)

−1XT
ki

)(In −Xkj(X
T
kj
Xkj)

−1XT
kj

)Xj

: k st. βi,ki 6= 0 and βj,kj 6= 0|

+| 1
n
Xi

T (In −Xki(X
T
ki
Xki)

−1XT
ki

)(In −Xkj(X
T
kj
Xkj)

−1XT
kj

)Xj

: k st. βi,ki 6= 0 and βj,kj 6= 0

− 1

n
Xi

T (In −Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj

: ci ∈ Csei , cj ∈ Csej |
.
=Ise + IIse + IIIse (2.88)
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The prove for competing tilting can also achieve analogously, apart from the dif-

ference in the last term.

IIIc =| 1
n
Xi

T (In −Xki(X
T
ki
Xki)

−1XT
ki

)(In −Xkj(X
T
kj
Xkj)

−1XT
kj

)Xj

: k st. βi,ki 6= 0 and βj,kj 6= 0

− 1

n
Xi

T (In −Xci(X
T
ci
Xci)

−1XT
ci

)(In −Xcj(X
T
cj
Xcj)

−1XT
cj

)Xj

: ci ∈ Cci , cj ∈ Ccj| (2.89)

Instead of proving limn→∞ Pr(IIIc > δ) = 0, we prove limn→∞ Pr(ĉorr∗(Xci , Xi)
p→

βi,ci) = 1, under assumptions. It is to say the probability of the event that tilted

correlation converges to the true regression coefficients goes to 1, as n→∞.

First, we introduce Lemma 4 which is taken from Lemma 1 in Cho and Fryzlewicz

[2012].

Lemma 4 Let Sn−1 denote the surface of the Euclidean ball Bn
2 = {x ∈ Rn :∑n

i=1X
2
i 6 1} and u ∈ Rn be a vector on Rn−1 such that ||u||2 = 1. Then the

proportion of spherical cone defined as v ∈ Sn−1 : |uTv| > ω for any u is bounded

from above by exp(−nω2/2).

After standardization, we have all the ||Xi||22 = 1, i ∈ P. Let C+
i denote {c+

i : βi,ci 6=

0} = B ∪ Ei, and C−i denote {c−i : βi,ci = 0} = Ej ∪ U. Under assumption (A.6) and

(A.7), and from Lemma 4, it can be proved that Pr(|(HCsi
Xi)

TXc−i
| > Cn−r) → 1,

for c−i ∈ C−i . Hence, Condition 1 in Section 2.3.1 in Cho and Fryzlewicz [2012] is

satisfied, and then from Theorem 1 in that paper, under assumption (A.3)-(A.8), we

have limn→∞ Pr(ĉorr∗(Xci , Xi)
p→ βi,ci) = 1, which implies limn→∞ Pr(IIIc > δ) =

0. Finally, limn→∞ Pr(∆4 > δ) = 0 follows. �
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2.12.4 Proof of formula (2.58)

For simple, double and separate tilting methods, given i and j, we have

Xi = βif + εi, (2.90)

Xj = βjf + εj, (2.91)

XK = BKf + εK, , (2.92)

where K = P\{i, j}. If k = p−2, by rewriting formula (2.92) as f = B−1
K (XK−εK),

and replacing f in formula (2.90) and (2.91), we obtain

Xi = βiB
−1
K (XK − εK) + εi, (2.93)

Xj = βjB
−1
K (XK − εK) + εj. (2.94)

Since cov(ε) = Ip, we have

cov(Xi, Xj|XK) = cov(βiB
−1
K εK,βjB

−1
K εK) + cov(εi, εj)

= βiB
−1
K cov(εK)(BT

K)−1βTj + cov(εi, εj)

=

βi(B
T
KBK)−1βTi + 1 if i = j

βi(B
T
KBK)−1βTj if i 6= j

· (2.95)

If k < p− 2, by left multiplying the left inverse ofBK, we can rewrite formula (2.92)

as f = (BT
KBK)−1BT

K(XK − εK), which yields the same results as formula (2.95).

Again, we assume common factors and noise components have identity sample
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variance when n is large enough for simplicity. Then, for tilting estimators, we have

(Σ◦ij)
−1 =

1

βi(BT
KBK)−1βTi + βj(BT

KBK)−1βTj + 1
·βj(BT

KBK)−1βTj + 1 −βi(BT
KBK)−1βTj

−βi(BT
KBK)−1βTj βi(B

T
KBK)−1βTi + 1

 , (2.96)

which resulting in the tilting estimators are

t̂i,j =


−β̂i(B̂TKB̂K)−1β̂Tj

β̂i(B̂TKB̂K)−1β̂Ti +β̂j(B̂TKB̂K)−1β̂Tj +1
if i 6= j

1
p−1

∑
l∈P\{i},Kl=P\{i,l}

β̂l(B̂
T
Kl
B̂Kl

)−1β̂Tl +1

β̂i(B̂TKl
B̂Kl

)−1β̂Ti +β̂l(B̂
T
Kl
B̂Kl

)−1β̂Tl +1
if i = j

· (2.97)
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Chapter 3

NOVEL Integration of the Sample and

Thresholded covariance/correlation

estimators (NOVELIST)

3.1 Introduction

As mentioned in Section 1.1, the POET method of Fan et al. [2013] proposes to esti-

mate the covariance matrix as the sum of a non-sparse, low-rank matrix coming from

the factor model part, and a certain sparse matrix, added on to ensure invertibility of

the resulting covariance estimator. In this chapter, we are motivated by the general

idea of building a covariance estimator as the sum of a non-sparse and a sparse part.

By following this route, the resulting estimator can be hoped to perform well in es-

timating both non-sparse and sparse covariance matrices if the amount of sparsity is

chosen well. At the same time, the addition of the sparse part can guarantee stable

invertibility of the estimated covariance under centain conditions, a pre-requisite for
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the successful estimation of the precision matrix. On the other hand, we wish to move

away from the heavy modelling assumptions used by the POET estimator: indeed,

our empirical results presented later suggest that POET can underperform if the factor

model assumption does not hold.

Motivated by this observation, this chapter proposes a simple, practically assumption-

free estimator of the covariance and correlation matrices, termed NOVELIST (NOVEL

Integration of the Sample and Thresholded covariance/correlation estimators). NOV-

ELIST arises as the linear combination of two parts: the sample covariance (correla-

tion) estimator, which is always non-sparse and has low rank if p > n, and its thresh-

olded version, which is sparse. As long as the sparse thresholded part is invertible by

using suitable thresholds, we can always find a range of the shrinkage intensity that

makes NOVELIST stably invertible. NOVELIST can be viewed as a shrinkage esti-

mator where the sample covariance (correlation) matrix is shrunk towards a flexible,

non-parametric, sparse target. By selecting the appropriate amount of contribution of

either of the two components, NOVELIST can adapt to a wide range of underlying

covariance structures, including sparse but also non-sparse ones. In the chapter, we

show consistency of the NOVELIST estimator in the operator norm uniformly under

a class of covariance matrices introduced by Bickel and Levina [2008b], as long as

log p/n → 0. The benefits of the NOVELIST estimator include simplicity, ease of

implementation, computational efficiency and the fact that its application avoids eige-

nanalysis, which is unfamiliar to some practitioners. As other threshold-type covari-

ance estimators [Bickel and Levina, 2008b; Fryzlewicz, 2013; Rothman et al., 2009],

the NOVELIST estimator is not guaranteed to be positive-definite in finite samples.

However, the estimator converges to a positive-definite limit with probability tending

to one, as long as log p/n → 0. Also, it is guaranteed to be positive-definite for arbi-
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trary finite samples, provided that the shrinkage intensity and the threshold are large

enough. In our simulation studies, NOVELIST performs well in estimating both co-

variance and precision matrices for a wide range of underlying covariance structures,

benefiting from the flexibility in the selection of its shrinkage intensity and threshold-

ing level.

The rest of the chapter is organised as follows. In Section 3.2 we introduce the

NOVELIST estimator and its properties. Section 3.3 discusses the case where the two

components of the NOVELIST estimator are combined in a non-convex way. Section

3.4 describes the procedure for selecting its parameters. Section 3.5 shows empirical

improvements of NOVELIST. Section 3.6 exhibits practical performance of NOVEL-

IST in comparison with the state of the art. Section 3.7 presents the automatic algo-

rithm and more Monte Carlo experiment results. Section 3.8 concludes the chapter.

Section 3.9 is additional lemmas and proofs. The R package “novelist” is available on

CRAN.

3.2 Method, motivation and properties

3.2.1 Notation and Method

LetX = (X1, X2, · · ·, Xn)T be a vector of n i.i.d. observations of a p-dimensional ran-

dom variable, distributed according to a distribution F , with EX = 0, Σ = {σij} =

E(XTX), and R = {ρij} = D−1ΣD−1, where D = (diag(Σ))1/2. In the case of

heteroscedastic data, we apply NOVELIST to the sample correlation matrix and only

then obtain the corresponding covariance estimator. The NOVELIST estimator of the
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correlation matrix is defined as R̂N

R̂N(R̂, λ, δ) = (1− δ) R̂︸ ︷︷ ︸
non-sparse part

+ δ T (R̂, λ)︸ ︷︷ ︸
sparse part

, (3.1)

and the corresponding covariance estimator is defined as

Σ̂N = D̂R̂ND̂, (3.2)

where Σ̂ = {σ̂ij} and R̂ = {ρ̂ij} are the sample covariance and correlation matrices

respectively, D̂ = (diag(Σ̂))1/2, δ is the weight or shrinkage intensity, which is usually

within the range [0, 1] but can also lie outside it, λ is the thresholding value, which is a

scalar parameter in [0, 1], and T (·, ·) is a function that applies any generalised thresh-

olding operator [Rothman et al., 2009] to each off-diagonal entry of its first argument,

with the threshold value equal to its second argument. The generalised thresholding

operator refers to any function satisfying the following conditions for all z ∈ R, (i)

| T (z, λ) |≤| z |; (ii) T (z, λ) = 0 for | z |≤ λ; (iii) | T (z, λ) − z |≤ λ. Typical

examples of T include soft thresholding Ts with T (z, λ) = (z− sign(z)λ)1(| z |> λ),

hard thresholding Th with T (z, λ) = z1(| z |> λ), and SCAD (Fan and Li, 2001).

Note that Σ̂N can also be written directly as a NOVELIST estimator with a p×p adap-

tive threshold matrix Λ, Σ̂N = (1 − δ) Σ̂ + δ T (Σ̂,Λ), where Λ = {λσ̂iiσ̂jj}. Unlike

many other shrinkage estimators [Ledoit and Wolf, 2004, 2012; Schäfer and Strimmer,

2005] making efforts on shrinkage of the diagonal elements, the diagonal elements of

Σ̂N keep unchanged, which gives NOVELIST more flexibility to fit a wider range of

underlying covariance matrices such as heteroscedastic covariance matrices. As our

simulation results later demonstrate, the NOVELIST estimators perform better than
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Figure 3.1: Illustration of NOVELIST: image plots of NOVELIST correlation estima-
tors with different δ and λ.

other shrinkage estimator competitors for heteroscedastic models.

NOVELIST is a shrinkage estimator, in which the shrinkage target is assumed to

be sparse. The degree of shrinkage is controlled by the δ parameter, and the amount of

sparsity in the target by the λ parameter. Figure 3.1 gives an example of NOVELIST

estimators (soft thresholding target) with different δ and λ when the true Σ is a long
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Figure 3.2: Left: Illustration of NOVELIST operators for any off-diagonal entry of
the correlation matrix ρ̂ij with soft thresholding target Ts (λ = 0.5, δ = 0.1, 0.5 and
0.9). Right: ranked eigenvalues of NOVELIST plotted versus ranked eigenvalues of
the sample correlation matrix.

memory covariance matrix (see Model (F) in section 3.6), p = 50, n = 50. Numerical

results shown in Figure 3.2 suggest that the eigenvalues of the NOVELIST estimator

arise as a certain non-linear transformation of the eigenvalues of the sample correlation

(covariance) matrix, although the application of NOVELIST avoids explicit eigenanal-

ysis.

3.2.2 Motivation: link to ridge regression

In this section, we show how the NOVELIST estimator can arise in a penalised solu-

tion to the linear regression problem, which is linked to ridge regression. For linear

regression

Y = Xβ + ε, (3.3)
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possibly with p > n. Consider a criterion

(1− δ)||Y −Xβ||22 + δβTf(XTX)β, (3.4)

where f(XTX) is any modification of the matrixXTX , and δ is a constant, δ ∈ [0, 1].

To minimise criterion (3.4) with respect to β, we differentiate it and equate the

differential to zero, we get

β̂ = (1− δ)[(1− δ)XTX + δf(XTX)]−1XTY. (3.5)

Notice that if we do not want any penalisation, which is in the case f(XTX) = XTX ,

the criterion reduces to

(1− δ)||Y −Xβ||22 + δβTXTXβ, (3.6)

and it yields

β̂ = (1− δ)(XTX)−1XTY, (3.7)

i.e. a “shrunk” OLS solution. To ensure that we get the pure OLS solution in that case,

we define

β
′
=

β

1− δ
. (3.8)
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Then formula (3.7) can be rewrited as

β
′
= (XTX)−1XTY, (3.9)

i.e. pure OLS. Rewriting criterion (3.4) in terms of β ′ , we obtain

||Y −X(1− δ)β ′ ||22 + δ(1− δ)β ′TXTXβ
′
. (3.10)

Thus, we can conclude the following: in the standard regression problem (3.3), min-

imising the criterion

||Y −X(1− δ)β||22 + δ(1− δ)βTXTXβ (3.11)

yields the classical OLS solution. The OLS solution rewrites as [(1 − δ)XTX +

δXTX]−1XTY = (XTX)−1XTY . However, when p > n, XTX is not invertible,

and we have to find the way to obtain a regularised solution. Using this as a starting

point, we consider a regularised solution

[(1− δ)XTX + δf(XTX)]−1XTY
.
= A−1XTY (3.12)

where f(XTX) is any elementwise modification of the matrix XTX designed (a) to

make A invertible and (b) to ensure adequate estimation of β. The expression in (3.12)

is the minimiser of a generalised ridge regression criterion

||Y −X(1− δ)β||22 + δ(1− δ)βTf(XTX)β, (3.13)

79



where δ acts as a tuning parameter. If f(XTX) = I , formula (3.13) is reduced to

ridge regression and A is the shrinkage estimator with the identity matrix target. If

f(XTX) = T (XTX, λσ̂iiσ̂jj), A is the NOVELIST estimator of the covariance ma-

trix.

From formula (3.13), NOVELIST penalises the regression coefficients in a pair-

wise manner which can be interpreted as follows: for a given threshold λ, we place

a penalty on the products βiβj according to the (i, j)-th entry of f(XTX), i.e. the

elements of the adaptive thresholded covariance matrix. If the absolute value of the

sample covariance exceeds λσ̂iiσ̂jj , we penalise the product βiβj by σ̂ij for soft thresh-

olding target and by sign(σ̂ij)|σ̂ij−λσ̂iiσ̂jj| for hard thresholding target, otherwise, we

do not apply any penalty on βiβj . In other words, if the sample covariance is positive

and high, we penalise the product of the corresponding β’s, hoping that the result-

ing estimated βi and βj are not simultaneously large. The following diagrams present

the correlation relationships among Xi and Xj . For given Xi, the cone indicates the

boundary set by the chosen threshold λ. As the left graph illustrates, each Xj (inside

the cone) has a sample correlation larger than λ, i.e. Xi and Xj is highly correlated,

and the corresponding βiβj is penalized. On contrary, as shown in the right graph, each

Xj has a sample correlation smaller than λ (outside the cone), and the corresponding

βiβj is not penalized.
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3.2.3 Asymptotic properties of NOVELIST

3.2.3.1 Consistency of the NOVELIST estimators.

In this section, we establish consistency of NOVELIST in the operator norm and de-

rive the rates of convergence under different scenarios. Bickel and Levina [2008b]

introduce a uniformity class of covariance matrices invariant under permutations as

U(q, c0(p),M, ε0) =

{
Σ : σii ≤M,

p∑
j=1

| σij |q≤ c0(p), for all i and λmin(Σ) ≥ ε0 > 0

}
,

(3.14)

where 0 ≤ q < 1, c0 is a function of p, the parameters M and ε0 are constants,

and λmin() is the smallest eigenvalue operator. If q = 0, the L0 norm is defined as

|σij|0
.
= 1(σij 6= 0), then U(q, c0(p),M, ε0) reduces to a class of sparse covariance
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matrices. Analogously, we define a uniformity class of correlation matrices as

V(q, s0(p), ε0) =

{
R :

p∑
j=1

|ρij|q ≤ s0(p), for all i and λmin(R) ≥ ε0 > 0

}
, (3.15)

where 0 ≤ q < 1 and ε0 is a constant. Similarly, if q = 0, V(q, s0(p), ε0) reduces

to a class of sparse correlation matrices. However, it can also include non-sparse

correlation matrices. For example, the long-memory correlation matrix with ρij =

min(1, |i− j|−γ) (0 < γ < 1, 1 ≤ i, j ≤ p) exhibits polynomial rather than exponen-

tial decay, but is still a member of V(q, s0(p), ε0) with s0(p) = max
1≤i≤p

∑p
j=1 ρ

q
ij → ∞

as p→∞, 0 ≤ q < 1.

Next, we establish consistency of the NOVELIST estimator in the operator norm,

|| A ||22= λmax(AA
T ), where λmax() is the largest eigenvalue operator.

Proposition 1 Let F satisfy
∫∞

0
exp(γt)dGj(t) < ∞ for 0 <| γ |< γ0, where γ0 > 0

and Gj is the cdf of X2
1j . Let R = {ρij} and Σ = {σij} be the true correlation and co-

variance matrices with 1 ≤ i, j ≤ p, and σii ≤M , whereM > 0. Then, for sufficiently

large M ′, if λ = M ′
√

log p/n and log p/n = o(1), uniformly on V(q, s0(p), ε0),

|| R̂N −R || = Op((1− δ)p
√

log p/n) +Op(δs0(p)(log p/n)(1−q)/2), (3.16)

and the analogous result holds for the inverse of the correlation matrix, also uniformly on

U(q, c0(p),M, ε0),

|| Σ̂N − Σ || = Op((1− δ)p
√

log p/n) +Op(δs0(p)(log p/n)(1−q)/2), (3.17)

and the analogous result holds for the inverse of the covariance matrix.

The proof is given in Section 3.9. We denote with (A) the termOp((1−δ)p
√

log p/n)
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and with (B) the term Op(δs0(p)(log p/n)(1−q)/2). The convergence rate depends on

the value of δ.

3.2.3.2 Optimal δ and rate of convergence.

Focusing on R̂N without loss of generality, the optimal rate of convergence is obtained

by equating parts (A) and (B) in formula (3.16). The resulting optimal shrinkage in-

tensity δ̃ is

δ̃ =
p(log p/n)q/2

s0(p) + p(log p/n)q/2
. (3.18)

If δ̃ has an asymptotic limit as n or p → ∞, its limiting behaviour will be one

of the following. (a) δ̃ → 1, when s0(p) = o(p(log p/n)q/2); (b) δ̃ → 0, when

p(log p/n)q/2 = o(s0(p)); (c) δ̃ ∈ (0, 1), when p(log p/n)q/2 � s0(p).

The corresponding rate of convergence of the NOVELIST estimators will be (a)

Op(s0(p) (log p/n)(1−q)/2), (b) Op(p
√

log p/n), and (c) Op(p
√

log p/n) = Op(s0(p)

(log p/n)(1−q)/2).

Using (3.18) as a starting point, we discuss the form of δ̃ and the final rate of

convergence under three scenarios arranged in the order of decreasing sparsity.

Scenario 1 q = 0.

When q = 0, the uniformity class of correlation matrices controls the maximum

number of non-zero entries in each row. The typical examples are β-sparsity from El Karoui

[2008], with s0(p) = Cpβ , 0 < β < 1/2, and the moving-average (MA) autocorrela-

tion structure in time series.

Corollary 1 Under Scenario 1 and the conditions of Proposition 1, δ̃ is a function of

p only, and
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1. δ̃ ∈ (0, 1) for fixed p,

2. δ̃ → 1, as p→∞, as long as s0(p) = o(p).

Corollary 1 follows in a straightforward way by setting q = 0 in formula (3.18).

Under this scenario, interestingly, δ̃ does not depend on n. For p increasing, as long

as s0(p) = o(p), NOVELIST necessarily degenerates to the thresholding estimator,

which is unsurprising, given the “strongly sparse” character of this scenario.

Scenario 2 q 6= 0, s0(p) ≤ C as p→∞.

A typical example of this scenario is the auto-regressive (AR) autocorrelation struc-

ture.

Corollary 2 Under Scenario 2 and the conditions of Proposition 1, δ̃ is a function of

p and n. Assume log p = C1n
α, 0 < α < 1. As n→∞, the following holds.

1. δ̃ → 0, if p = o(n(1−α)q/2).

2. δ̃ → 1, if n = o(p2/(1−α)q).

3. δ̃ ∈ (0, 1), if p � n(1−α)q/2.

Scenario 2 permits weaker sparsity than Scenario 1, and the optimal NOVELIST

can be closer to its sample covariance component or to its thresholding component,

depending on the relationship between p and n.

Scenario 3 q 6= 0, s0(p)→∞ as p→∞.

As sparsity decreases, s0(p) can tend to ∞, as p → ∞. An example is the long-

memory autocorrelation matrix, ρij =| i−j |−γ , 0 ≤ γ ≤ 1, for which
∑p

j=1 | i−j |−γ

→∞ for each i. The following corollary assumes this correlation structure.
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Corollary 3 Under Scenario 3 and conditions of Proposition 1, δ̃ is a function of p

and n. Assume log p = C1n
α, 0 < α < 1, and ρij =| i−j |−γ , 0 ≤ γ ≤ 1. As n→∞,

the following holds.

1. δ̃ → 0, if p = o(n(1−α)/2γ).

2. δ̃ → 1, if n = o(p2γ/(1−α)).

3. δ̃ ∈ (0, 1), if p � n(1−α)/2γ .

Comparing Corollaries 2 and 3, since (1− α)q/2 < (1− α)/2γ, 0 < α, q, γ < 1,

it is apparent that under the less sparse Scenario 3, the optimal NOVELIST less easily

degenerates to the thresholding estimator.

3.2.4 Positive definiteness and invertibility

Not only the convergence rate but also the positive definiteness and invertibility of the

NOVELIST estimators depend on the values of λ and δ. The NOVELIST estimator

converges to a positive-definite and invertible limit with probability tending to one, as

long as log p/n → 0. In finite sample, NOVELIST is not guaranteed to be positive-

definite or invertibility in general, which is a common problem shared with other

threshold-type covariance estimators [Bickel and Levina, 2008b; Fryzlewicz, 2013;

Rothman et al., 2009]. However, it is guaranteed to be positive-definite and invertible

for arbitrary finite samples, provided that the shrinkage intensity and the threshold are

large enough. More specifically, the NOVELIST correlation matrix degenerates to the

empirical sample correlation matrix if λ = 0 and δ = 0, and to the diagonal matrix

that is positive-definite and invertible if λ = 1 and δ = 1. Hence as λ and δ increase,
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the NOVELIST will necessarily be positive-definite and invertible from certain λ and

δ onwards.

In simulation study, we don’t impose restriction on positive definiteness. But, for

precision matrix estimation, the optimal and the cross-validated NOVELIST estimators

are chosen from a list of the invertible candidates, as described in Section 3.4.

3.3 δ outside [0, 1]

This extended section is regarding the unconventional range of δ, which is outside

[0, 1]. Since there is little literature showing the performance of the NOVELIST esti-

mators with δ 6∈ [0, 1], we are curious about how NOVELIST behaves if δ is outside

[0, 1] and relax the restriction of δ ∈ (0, 1) in simulation study.

Some authors [Ledoit and Wolf, 2003; Savic and Karlsson, 2009; Schäfer and

Strimmer, 2005], more or less explicitly, discuss the issue of the shrinkage intensity

(for other shrinkage estimators) falling within versus outside the interval [0, 1]. Ledoit

and Wolf [2003] “expect” it to lie between zero and one, Schäfer and Strimmer [2005]

truncate it at zero or one, and Savic and Karlsson [2009] view negative shrinkage as

a “useful signal for possible target misspecification”. We are interested in the perfor-

mance of the NOVELIST estimator with δ 6∈ [0, 1], and have reasons to believe that

δ 6∈ [0, 1] may be a good choice in certain scenarios.

We use the diagrams below to briefly illustrate this point. When the target T is

appropriate, the “oracle” NOVELIST estimator (by which we mean one where δ is

computed with the knowledge of the true R by minimising the spectral norm distance

to R) will typically be in the convex hull of R̂ and T , i.e. δ ∈ [0, 1] as shown in the left

graph. However, the target may not reflect the underlying covariance/correlation struc-
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ture. For example, if the true correlation matrix is highly non-sparse, the sparse target

may be inappropriate, to the extent that R will be further away from T than from R̂,

as shown in the middle graph. In that case, the optimal δ should be negative to prevent

NOVELIST being close to the target. By contrast, when the sample correlation matrix

is far from the (sparse) truth, perhaps because of high dimensionality, the optimal delta

may be larger than one to avoid relying on the sample correlation matrix too much, as

shown in the right graph.

R̂ T

R

R̂N
opt

(A) δ ∈ (0, 1)
R̂ T

R

R̂N
opt

(B) δ < 0
R̂ T

R

R̂N
opt

(C) δ > 1

Diagram 1: Geometric illustration of shrinkage estimators. R is the truth, T is the

target, R̂ is the sample correlation, R̂N
opt is the “oracle” NOVELIST estimator defined as

the linear combination of T and R̂ with minimum spectral norm distance to R. LEFT:

δ ∈ (0, 1) if target T is appropriate; MIDDLE: δ < 0 if target T is inappropriate;

RIGHT: δ > 1 if R̂ is far from R.

3.4 Empirical choices of (λ, δ) and LW-CV algorithm

The choices of the shrinkage intensity (for shrinkage estimators) and the thresholding

level (for thresholding estimators) are intensively studied in the literature. Bickel and

Levina [2008b] propose a cross-validation method for choosing the threshold value for

their thresholding estimator. However, NOVELIST requires simultaneous selection of
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the two parameters λ and δ, which makes straight cross-validation computationally

intensive. Ledoit and Wolf [2003], and Schäfer and Strimmer [2005] give an analytic

solution to the problem of choosing the optimal shrinkage level, under the Frobenius

norm, for any shrinkage estimator. Since NOVELIST can be viewed as a shrinkage

estimator, we borrow strength from this result and proceed by selecting the optimal

shrinkage intensity δ∗(λ) in the sense of Ledoit and Wolf [2003] for each λ, and then

perform cross-validation to select the best pair (λ′, δ∗(λ′)). This process significantly

accelerates computation. As it combines Ledoit and Wolf [2003]’s method and cross-

validation, we call it LW-CV Algorithm.

Cai and Liu [2011] and Fryzlewicz [2013] use adaptive thresholding for covariance

matrices, in order to make thresholding insensitive to changes in the variance of the in-

dividual variables. This, effectively, corresponds to thresholding sample correlations

rather than covariances. In the same vein, we apply NOVELIST to sample correlation

matrices. We use soft thresholding as it often exhibits better and more stable empiri-

cal performance than hard thresholding, which is partly due to its being a continuous

operation.

Determining the optimal shrinkage intensity δ∗(λ) is the first step of the LW-CV

Algorithm. Let Σ̂ = {σij} and R̂ = {ρij} be the sample covariance and correlation

matrices computed on the whole dataset, and let T = {tij} be the soft-thresholding es-

timator of the correlation matrix. By considering the Frobenius norm error of the NOV-

ELIST correlation estimator to the true correlation matrix [Ledoit and Wolf, 2003], we

arrive at the following quadratic loss function:

L(δ) =
∥∥∥δT + (1− δ)R̂−R

∥∥∥2

2
(3.19)
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which give rise to the risk function

R(δ) =E(L(δ))

=
P∑
i=1

P∑
j=1

E(δtij + (1− δ)ρ̂ij − ρij)2

=
P∑
i=1

P∑
j=1

Var(δtij + (1− δ)ρ̂ij) + [E(δtij + (1− δ)ρ̂ij − ρij)]2

=
P∑
i=1

P∑
j=1

δ2Var(tij) + (1− δ)2Var(ρ̂ij) + 2δ(1− δ)Cov(tij, ρ̂ij)

+ δ2(E(tij)− ρij)2. (3.20)

To minimize R(δ) with respect to δ, we take first derivatives

∂R(δ)

∂δ
=2

P∑
i=1

P∑
j=1

δVar(tij)− (1− δ)Var(ρ̂ij) + (1− 2δ)Cov(tij, ρ̂ij)

+ δ(E(tij)− ρij)2 (3.21)

Setting ∂R(δ)
∂δ

= 0 and solving for δ∗ we get a optimal shrinkage intensity

δ∗ =

∑P
i=1

∑P
j=1 Var(ρ̂ij)− Cov(ρ̂ij, tij)∑P
i=1

∑P
j=1 E(ρ̂ij − tij)2

(3.22)

Since ∂2R(δ)
∂δ2

= 2
∑P

i=1

∑P
j=1 Var(tij − ρ̂ij) + (E(tij) − ρij)

2 > 0, the solution is a

minimum of the risk function.

Next, we need to find an estimate δ̂∗ of the optimal shrinkage intensity. As sug-

gested by Schäfer and Strimmer [2005], we use the unbiased sample counterparts to
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replace all the expectations, variances and covariances.

δ̂∗(λ) =

∑P
i=1

∑P
j=1 V̂ar(ρ̂ij)− Ĉov(ρ̂ij, tij)∑P
i=1

∑P
j=1(ρ̂ij − tij)2

=

∑
1≤i 6=j≤n V̂ar(ρ̂ij)1(ρ̂ij < λ)∑

1≤i 6=j≤n(ρ̂ij − tij)2
, (3.23)

the second equality follows because of the fact that our shrinkage target T is the

soft-thresholding estimator with threshold λ (applied to the off-diagonal entries only).

Here, V̂ar(ρ̂ij) is computed as in Schäfer and Strimmer [2005]. Let Xki be the k-th

observation of the variable Xi and X̄i = 1
n

∑n
k=1 Xki. We denote

Wkij =
(Xki − X̄i)(Xkj − X̄j)

1
n−1

√∑n
k=1(Xki − X̄i)2

∑n
k=1(Xkj − X̄j)2

(3.24)

and W̄ij = 1
n

∑n
k=1Wkij . Then the unbiased sample correlation is ρ̂ij = n

n−1
W̄ij , and

the empirical unbiased variance of ρ̂ij is

V̂ar(ρ̂ij) =
n2

(n− 1)2
V̂ar(W̄ij) =

n

(n− 1)2
V̂ar(Wkij) =

n

(n− 1)3

n∑
k=1

(Wkij − W̄ij)
2

(3.25)

The LW-CV algorithm proceeds as follows. For estimating the covariance matrix,

LW (Ledoit-Wolf) step: Using all available data, for each λ ∈ (0, 1) chosen from

a uniform grid of size m, find the optimal empirical δ as formula (3.23).

CV (Cross-Validation) step: For each z = 1, . . . , Z, split the data randomly into

two equal-size parts A (training data) and B (test data), letting Σ̂
(z)
A and Σ̂

(z)
B be the

sample covariance matrices of these two datasets, and R̂
(z)
A and R̂

(z)
B – the sample

correlation matrices.
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1. For each λ, obtain the NOVELIST estimator of the correlation matrix R̂N(z)

A (λ) =

R̂N(R̂
(z)
A , λ, δ̂∗(λ)), and of the covariance matrix Σ̂N(z)

A (λ) = D̂AR̂
N(z)

A (λ)D̂A, where

D̂A = (diag (Σ̂
(z)
A ))1/2.

2. Compute the spectral norm error Err(λ)(z) =|| Σ̂N(z)

A (λ)− Σ̂
(z)
B ||22.

3. Repeat steps 1 and 2 for each z and obtain the averaged error Err(λ) =

1
Z

∑Z
z=1 Err(λ)(z). Find λ′ = minλErr(λ), then obtain the optimal pair (λ′, δ′) =

(λ′, δ̂∗(λ′)).

4. Compute the cross-validated NOVELIST estimators of the correlation and co-

variance matrices as

R̂N
cv = R̂N(R̂, λ

′
, δ
′
), (3.26)

Σ̂N
cv = D̂R̂N

cvD̂, (3.27)

where D̂ = (diag(Σ̂))1/2.

For estimating the inverses of the correlation/covariance matrices, the first step

uses the same approach as that for correlation matrix estimation. In step 2, the norm

errors computed are precision-matrix-related. If n > 2p (i.e. in the case when Σ̂
(z)
B is

invertible), we use the measure Err(λ)(z) =|| (Σ̂N(z)

A (λ))−1 − (Σ̂
(z)
B )−1 ||22; otherwise,

use Err(λ)(z) =|| (Σ̂N(z)

A (λ))−1Σ̂
(z)
B − I ||22, where I is the identity matrix. In step

3, we need to find the best option of the parameters from the candidates that make the

NOVELIST correlation matrix estimator invertible, which is λ′ = minλ∈INErr(λ),

IN = {λ : R̂N(R̂, λ, δ̂∗(λ)) is invertible}. In step 4, we compute the cross-validated
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NOVELIST estimators of the inverted correlation and covariance matrices as

(R̂N
cv)
−1 = (R̂N(R̂, λ

′
, δ
′
))−1, (3.28)

(Σ̂N
cv)
−1 = (D̂R̂N

cvD̂)−1. (3.29)

3.5 Empirical improvements of NOVELIST

3.5.1 Fixed parameters

As shown in the simulation study of Section 3.6, the performance of cross valida-

tion is generally adequate, except in estimating large precision matrices with highly

non-sparse covariance structures, such as in factor models and long-memory autoco-

variance structures. To remedy this problem, we suggest that fixed, rather than cross-

validated parameters be used, if prior knowledge or empirical testing indicates that

there are prominent principal components, when estimating the inverse of correlation

or covariance matrix with p > 2n or close. We make suggestions on fixed parameters

by assessing the robustness of our procedure to the choices of (λ, δ) in finite samples,

see Section 3.5.3.

3.5.2 Principal-component-adjusted NOVELIST

NOVELIST can further benefit from any prior knowledge about the underlying covari-

ance matrix, such as the factor model structure. If the underlying correlation matrix

follows a factor model, we can decompose the sample correlation matrix as

R̂ =
K∑
k=1

γ̂(k)ξ̂(k)ξ̂
′
(k) + R̂rem, (3.30)
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where γ̂(k) and ξ̂(k) are the kth eigenvalue and eigenvector of sample correlation matrix,

K is the number up to which the principal components are considered to be “large”,

and R̂rem is the sample correlation matrix after removing the first K principal compo-

nents. Instead of applying NOVELIST on R̂ directly, we keep the first K components

unchanged and only apply NOVELIST to R̂rem. Principal-component-adjusted NOV-

ELIST estimators are obtained by

R̂N
rem =

K∑
k=1

γ̂(k)ξ̂(k)ξ̂
′
(k) + R̂N(R̂rem, λ, δ), (3.31)

Σ̂N
rem = D̂R̂N

remD̂. (3.32)

The value of K to be used depends on the prior knowledge about the number of the

prominent principal components. We suggest that PC-adjusted NOVELIST should

only be used with prior knowledge or if empirical testing indicates that there are promi-

nent principal components and large K should not be used unless there are solid foun-

dations ensuring that the number of the prominent principal components is at least that

large number. Setting K too large means that we only apply NOVELIST to a small

proportion of the sample correlation/covariance matrix, which may make the final re-

sult no much difference from the sample version itself. In the remainder of the chapter,

we always use the not-necessarily-optimal value K = 1 to avoid too large K. Param-

eters can also be chosen by LW-CV algorithm or be fixed by robustness test as shown

in Section 3.5.3.

93



3.5.3 Robustness of parameter choices

The NOVELIST estimator of the precision matrix with fixed parameters improves the

performances at certain circumstances. To assess the robustness of our procedure to

(λ, δ) in finite sample, we calculate the spectral norm errors
∥∥∥Σ̂−1(λ, δ)− Σ−1

∥∥∥2

2
for

factor models (model (E) in Section 3.6.1) and long-memory auto-covariance models

(model (F) in Section 3.6.1), where the parameters (λ, δ) are chosen and labelled as

in Table 3.1. Robustness tests are conducted for both NOVELIST and PC-adjusted

NOVELIST estimators ans shown in Figure 3.3.

Table 3.1: Parameter choices for robustness tests

λ

δ

0 0.25 0.5 0.75

1.25 A8 B8 C8 D8

1.00 A7 B7 C7 D7

0.75 A6 B6 C6 D6

0.50 A5 B5 C5 D5

0.25 A4 B4 C4 D4

0.00 A3 B3 C3 D3

-0.25 A2 B2 C2 D2

-0.50 A1 B1 C1 D1

Based on the robustness test results, our suggestion for fixed parameters are listed

as follows: for NOVELIST, fixed parameters (λ′′, δ′′) are suggested as (0.75, 0.50)

for factor models, and (0.50, 0.25) for long-memory auto-covariance models. For PC-

adjusted NOVELIST, (λ′′, δ′′) are suggested to be (0.50, 0.90) for factor models, and

(0.25, 0.65) for long-memory auto-covariance models.
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Figure 3.3: Robustness of (λ, δ) as p increases for various choices of (λ, δ) (Table
3.1). Top left: NOVELIST (Model (E)); top right: NOVELIST (Model (F)); bottom
left: PC-adjusted NOVELIST (Model (E)); bottom right: PC-adjusted NOVELIST
(Model (F)), n = 100.

3.6 Simulation study

In this section, we investigate the performance of the NOVELIST estimator of covari-

ance and precision matrices based on optimal and data-driven choices of (λ, δ) for

seven different models and in comparison with five popular competitors. To be con-

sistent to the theoretical results, we compare the performance of the estimators based
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on operator norm. Also, the preliminary simulation results in a discussion paper Fry-

zlewicz and Huang [2013] showed that the performance of NOVELIST is stable across

different error norms including Frobenius, L∞, max and operator norm. According to

the algorithm in Section 4, the NOVELIST estimator of the correlation is obtained

first; the corresponding estimator of the covariance follows by formula (3.27) and the

inverse of the covariance estimator is obtained by formula (3.29). In all simulations,

the sample size n = 100, and the dimension p ∈ {10, 100, 200, 500}. We perform

N = 50 repetitions.

3.6.1 Simulation models

We use the following models for Σ.

(A) Identity. σij = 11{i = j}, for 1 ≤ i, j ≤ p.

(B) MA(1) autocovariance structure.

σij =


1, if i = j;

ρ, if | i− j |= 1;

0, otherwise

(3.33)

for 1 ≤ i, j ≤ p. We set ρ = 0.5.

(C) AR(1) autocovariance structure.

σij = ρ|i−j|, for 1 ≤ i, j ≤ p, (3.34)

with ρ = 0.9.
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(D) Non-sparse covariance structure. We generate a positive-definite matrix as

Σ = QΛQT , (3.35)

where Q has i.i.d. standard normal entries and Λ is a diagonal matrix with its diagonal

entries drawn independently from the χ2
5 distribution. The resulting Σ is non-sparse

and lacks an obvious pattern.

(E) Factor model covariance structure. Let Σ be the covariance matrix of X =

{X1, X2, · · ·, Xp}T , which follows a 3-factor model

Xp×n = Bp×3Y3×n + Ep×n, (3.36)

where

Y = {Y1, Y2, Y3}T is a 3-dimensional factor, generated independently from the

standard normal distribution, i.e. Y ∼ N(0, I3),

B = {βij} is the coefficient matrix, βij
i.i.d.∼ U(0, 1), 1 ≤ i ≤ p, 1 ≤ j ≤ 3,

E = {ε1, ε2, ···, εp}T is p-dimensional random noise, generated independently from

the standard normal distribution, ε ∼ N(0,1).

Based on this model, we have σij =


∑3

k=1 β
2
ik + 1 if i = j;∑3

k=1 βikβjk if i 6= j.

.

(F) Long-memory autocovariance structure. We use the autocovariance matrix of

the Fractional Gaussian Noise (FGN) process, with

σij =
1

2
[|| i− j | +1 |2H −2 | i− j |2H + || i− j | −1 |2H ] 1 ≤ i, j ≤ p.

(3.37)
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The model is taken from Bickel and Levina [2008a], Section 6.1, and is non-sparse.

We take H = 0.9 in order to investigate the case with strong long memory.

(G) Seasonal covariance structure.

σij = ρ|i−j|1{| i− j |= lZ≥0}, for 1 ≤ i, j ≤ p, (3.38)

where Z≥0 is the set of non-negative integers. We take l = 3 and ρ = 0.9.

The models can be broadly divided into 3 groups. (A)-(C) and (G) are sparse,

(D) is non-sparse, and (E) and (F) are highly non-sparse. In models (B), (C) (F) and

(G), the covariance matrix equals the correlation matrix. In order to depart from the

case of equal variances, we also work with modified versions of these models, denoted

by (B*), (C*) (F*) and (G*), in which the correlation matrix {ρij} is generated as in

(B), (C) (F) and (G), respectively, and which have unequal variances independently

generated as σii ∼ χ2
5. As a result, in the ‘starred’ models, we have σij = ρij

√
σiiσjj ,

i, j ∈ (1, p).

The performance of the competing estimators is presented in two parts. In the first

part, we compare the estimators with optimal parameters identified with the knowl-

edge of the true covariance matrix. These include (a) the soft thresholding estimator

Ts, which applies the soft thresholding operator to the off-diagonal entries of R̂ only,

as described in Section 2.1, (b) the banding estimator B (Section 2.1 in Bickel and

Levina [2008a]), (c) the optimal NOVELIST estimator Σ̂N
opt and (d) the optimal PC-

adjusted NOVELIST estimator Σ̂N
opt.r . In the second part, we compare the data-driven

estimators including (e) the linear shrinkage estimator S (Target D in Table 2 from

Schäfer and Strimmer [2005]), which estimates the correlation matrix by “shrinkage

of the sample correlation towards the identity matrix” and estimates the variances by
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“shrinkage of the sample variances towards their median”, (f) the POET estimator

P [Fan et al., 2013], (g) the cross-validated NOVELIST estimator Σ̂N
cv, (h) the PC-

adjusted NOVELIST Σ̂N
r , and (i) the nonlinear shrinkage estimator NS [Ledoit and

Wolf, 2013]. The sample covariance matrix Σ̂ is also listed for reference. We use the R

package corpcor to compute S, and the R package POET to compute P . In the latter,

we use k = 7 as suggested by the authors, and use soft thresholding in NOVELIST and

POET as it tends to offer better empirical performance. We use Z = 50 for Σ̂N
cv, and

extend the interval for δ to [−0.5, 1.5]. Σ̂N
cv with fixed parameters are only considered

for estimating precision matrix under model (E), (F) and (F*) when p = 100, 200, 500.

We use K = 1 for Σ̂N
opt.r and Σ̂N

r . NS is performed by using the commercial package

SNOPT for Matlab [Ledoit and Wolf, 2013].

3.6.2 Simulation results

Performance of Σ̂N as a function of (λ, δ). Examining the results presented in Fig-

ures 3.4-3.5 and Table 3.2, it is apparent that the performance of NOVELIST depends

on the combinations of λ and δ used. Generally speaking, the average operator norm

errors increase as sparsity decreases and dimension p increases. The positions of em-

pirically optimal λ∗ and δ∗ are summarised below.

1. The higher the degree of sparsity, the closer δ∗ is to 1. The δ∗ parameter tends

to be close to 1 or slightly larger than 1 for the sparse group, around 0.5 for the

non-sparse group, and about 0 or negative for the highly non-sparse group.

2. δ∗ moves closer to 1 as p increases. This is especially true for the sparse group.

3. Unsurprisingly, the choice of λ is less important when δ is closer to 0.
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4. Occasionally, δ∗ 6∈ [0, 1]. In particular, for the AR(1) and seasonal models,

δ∗ ∈ (1, 1.5], while in the highly non-sparse group, δ∗ can take negative values,

which is a reflection of the fact that Σ̂N
opt attempts to reduce the effect of the

strongly misspecified sparse target.

Performance of cross-validated choices of (λ, δ). Table 3.2 shows that the cross-

validated choices of the parameter (λ
′
, δ
′
) for Σ̂N

cv are close to the optimal (λ∗, δ∗) for

most models when p = 10, but there are bigger discrepancies between (λ
′
, δ
′
) and

(λ∗, δ∗) as p increases, especially for the highly non-sparse group. Again, Figure 3.6,

which only includes representative models from each sparsity category, shows that the

choices of (λ
′
, δ
′
) are consistent with (λ∗, δ∗) in most of the cases. For models (A)

and (C), cross validation works very well: the vast majority of (λ
′
, δ
′
) lead to the error

lying in the 1st decile of the possible error range, whereas for models (D) and (G) with

p = 10, in the 1st or 2nd decile.

However, as shown in Tables 3.4 and 3.6, the performance of cross validation in

estimating Σ−1 with highly non-sparse covariance structures, such as in factor mod-

els and long-memory autocovariance structures, is less good (a remedy to this was

described in Section 3.5).

Comparison with competing estimators. For the estimators with the optimal pa-

rameters, NOVELIST performs the best for p = 10 for both Σ and Σ−1, and beats the

competitors across the non-sparse and highly non-sparse model classes when p = 100,

200 and 500. The banding estimator beats NOVELIST in covariance matrix estima-

tion in the homoscedastic sparse models by a small margin in the higher-dimensional

cases. For the identity matrix, banding, thresholding and the optimal NOVELIST at-

tain the same results. Optimal PC-adjusted NOVELIST achieves better relative results

for estimating Σ−1 than for Σ.
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Table 3.2: Choices of (λ∗, δ∗) and (λ
′
, δ
′
) for Σ̂N (50 replications).

Σ̂Nopt Σ̂Ncv Σ̂Nopt Σ̂Ncv

λ∗ δ∗ λ
′

δ
′

λ∗ δ∗ λ
′

δ
′

p=10, n=100 p=100, n=100

(A) Identity 0.75 1.00 0.60 1.00 0.75 1.00 0.60 1.00

(B) MA(1) 0.15 1.00 0.25 0.80 0.20 1.00 0.20 0.95

(B*) MA(1)* 0.15 0.95 0.30 0.65 0.15 1.00 0.30 0.90

(C) AR(1) 0.50 0.00 0.40 0.15 0.15 0.50 0.10 0.70

(C*) AR(1)* 0.50 0.05 0.40 0.00 0.30 0.60 0.30 0.85

(D) Non-sparse 0.40 0.50 0.55 0.40 0.45 0.60 0.35 0.80

(E) Factor 0.40 0.00 0.65 0.10 0.20 −0.15 0.50 0.05

(F) FGN 0.50 −0.05 0.50 0.00 0.30 −0.10 0.55 0.05

(F*) FGN* 0.50 −0.05 0.50 0.00 0.40 −0.05 0.65 0.05

(G) Seasonal 0.15 0.75 0.15 0.70 0.10 1.30 0.05 1.50

(G*) Seasonal* 0.25 0.75 0.20 0.65 0.10 1.30 0.05 1.50

p=200, n=100 p=500, n=100

(A) Identity 0.55 1.00 0.60 1.00 0.55 1.00 0.60 1.00

(B) MA(1) 0.25 1.00 0.20 1.00 0.30 1.00 0.25 1.00

(B*) MA(1)* 0.25 1.00 0.25 0.95 0.25 1.00 0.20 1.00

(C) AR(1) 0.05 1.00 0.05 1.00 0.10 1.10 0.05 0.80

(C*) AR(1)* 0.05 1.10 0.05 1.30 0.10 0.95 0.10 1.10

(D) Non-sparse 0.30 0.65 0.55 0.40 0.40 0.75 0.40 0.90

(E) Factor 0.10 −0.10 0.60 0.05 0.20 −0.10 0.50 0.05

(F) FGN 0.30 0.05 0.65 0.10 0.35 0.10 0.40 0.10

(F*) FGN* 0.25 0.05 0.50 0.05 0.15 −0.10 0.35 0.10

(G) Seasonal 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20

(G*) Seasonal* 0.10 1.10 0.05 1.50 0.10 1.30 0.10 1.20
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In the competitions based on the data-driven estimators, when p = 10, the cross-

validation NOVELIST is the best for most of the models with heteroscedastic vari-

ances, and only slightly worse than linear or nonlinear shrinkage estimator for the

other models. When p = 100, 200 or 500, the cross-validation NOVELIST is the

best for most of the models in the sparse and the non-sparse groups (more so for het-

eroscedastic models) for both Σ and Σ−1, but is beaten by POET for the factor model

and the FGN model by a small margin, and is slightly worse than nonlinear shrink-

age for homoscedastic sparse models. However, POET underperforms for the sparse

and non-sparse models for Σ, and nonlinear shrinkage does worse than NOVELIST

for heteroscedastic sparse models due to the fact that NOVELIST does not shrink the

diagonals towards a target “grand mean” and does not introduce large biases, which

particularly suits the heteroscedastic models. The cases where the cross-validation

NOVELIST performs the worst are rare. NOVELIST with fixed parameters as chosen

in Section 3.5.3 for highly non-sparse cases improves the results for Σ−1. PC-adjusted

NOVELIST can further improve the results for estimating Σ−1 but not for Σ. We would

argue that NOVELIST is the overall best performer, followed by nonlinear shrinkage,

linear shrinkage and POET.

102



Figure 3.4: Image plots of operator norm errors of NOVELIST estimators of
Σ with different λ and δ under Models (A)-(C) and (G), n = 100, p =
10 (Left), 100 (Middle), 200 (Right), simulation times=50. The darker the area, the
smaller the error.
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Figure 3.5: Image plots of operator norm errors of NOVELIST estimators of Σ
with different λ and δ under Models (D)-(F), n = 100, p = 10 (Left), 100
(Middle), 200 (Right), simulation times=50. The darker the area, the smaller the er-
ror.
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Figure 3.6: 50 replicated cross validation choices of (δ
′
, λ
′
) (green circles) against

the background of contour lines of operator norm distances to Σ under model (A),
(C), (D) and (F) [equivalent to Figures 3.4 and 3.5], n = 100, p = 10 (Left), 100
(Middle), 200 (Right). The area inside the first contour line contains all combina-
tions of (λ, δ) for which ||Σ̂N(λ, δ) − Σ|| is in the 1st decile of [min

(λ,δ)
||Σ̂N(λ, δ) −

Σ||,max
(λ,δ)
||Σ̂N(λ, δ)− Σ||].
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Table 3.3: Average operator norm error to Σ for competing estimators with optimal
parameters (50 replications). The best results and those up to 5% worse than the best
are boxed. The worst results are in bold.

Σ̂ Ts B Σ̂Nopt Σ̂Nopt.r Σ̂ Ts B Σ̂Nopt Σ̂Nopt.r

p=10, n=100 p=100, n=100

(A) Identity 0.578 0.246 0.246 0.246 — 2.946 0.436 0.436 0.436 —

(B) MA(1) 0.623 0.447 0.361 0.435 — 3.055 0.670 0.554 0.668 —

(B*) MA(1)* 1.400 1.008 0.871 0.988 — 6.458 1.890 1.370 1.800 —

(C) AR(1) 1.148 0.762 1.072 0.475 — 6.112 4.977 3.999 4.703 —

(C*) AR(1)* 2.010 1.707 2.004 1.020 — 16.338 8.353 8.786 7.992 —

(D) Non-sparse 3.483 2.954 3.127 2.812 — 25.844 11.302 11.539 10.717 —

(E) Factor 1.811 1.462 1.742 1.120 1.221 14.350 13.675 13.993 9.881 9.921

(F) FGN 1.110 0.751 0.970 0.527 0.711 7.824 6.777 7.478 5.135 7.033

(F*) FGN* 2.239 1.617 2.108 1.129 1.683 15.666 13.383 15.147 10.878 13.782

(G) Seasonal 0.850 0.564 0.797 0.527 — 4.290 2.493 2.205 2.460 —

(G*) Seasonal* 1.664 1.228 1.594 1.158 — 6.694 3.028 2.362 2.959 —

p=200, n=100 p=500, n=100

(A) Identity 4.661 0.440 0.440 0.440 — 9.321 0.467 0.467 0.467 —

(B) MA(1) 4.886 0.717 0.626 0.716 — 9.828 0.761 0.729 0.761 —

(B*) MA(1)* 10.727 1.884 1.545 1.881 — 21.233 2.041 1.775 2.041 —

(C) AR(1) 10.291 6.922 4.898 6.768 — 17.877 9.311 5.584 9.261 —

(C*) AR(1)* 20.277 14.691 14.943 14.426 — 39.241 18.780 11.738 18.728 —

(D) Non-sparse 26.729 10.990 11.240 10.322 — 50.915 13.917 13.284 12.913 —

(E) Factor 31.183 28.053 29.819 20.463 20.432 82.451 65.234 73.807 48.104 48.928

(F) FGN 14.732 12.729 13.877 9.906 15.881 35.041 30.201 31.272 23.939 30.782

(F*) FGN* 32.370 26.692 29.862 20.357 28.983 68.154 66.833 66.320 49.853 55.998

(G) Seasonal 6.913 2.961 2.418 2.930 — 13.157 3.582 2.499 3.460 —

(G*) Seasonal* 14.709 6.427 5.171 6.350 — 27.627 7.873 5.660 7.538 —

Note: The results of Σ̂N
opt.r are only presented for the highly non-sparse group, i.e. Models (E),

(F) and (F*).
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Table 3.4: Average operator norm error to Σ for competing estimators with data-driven
parameters (50 replications). The best results and those up to 5% worse than the best
are boxed. The worst results are in bold.

S P Σ̂Ncv Σ̂Nr NS S P Σ̂Ncv Σ̂Nr NS

p=10, n=100 p=100, n=100

(A) Identity 0.084 0.823 0.263 — 0.116 0.088 3.657 0.446 — 0.087

(B) MA(1) 0.444 0.732 0.493 — 0.481 0.670 3.730 0.704 — 0.694

(B*) MA(1)* 1.165 1.546 1.159 — 1.191 1.985 8.015 1.877 — 2.449

(C) AR(1) 1.013 1.135 1.153 — 1.017 5.423 6.257 5.390 — 5.892

(C*) AR(1)* 2.190 2.291 2.114 — 2.190 8.878 19.468 8.446 — 12.095

(D) Non-sparse 3.120 3.860 3.046 — 2.934 12.453 29.355 11.739 — 11.730

(E) Factor 1.793 1.866 1.741 1.763 1.537 17.681 14.304 16.497 16.438 15.285

(F) FGN 0.849 1.020 1.021 1.024 0.980 6.628 7.798 7.799 7.732 7.554

(F*) FGN* 2.218 2.221 2.222 2.227 1.960 14.795 15.611 15.225 15.254 16.561

(G) Seasonal 0.666 0.852 0.687 — 0.659 3.200 4.826 2.534 — 3.098

(G*) Seasonal* 1.647 1.652 1.452 — 1.480 4.268 7.171 3.016 — 6.979

p=200, n=100 p=500, n=100

(A) Identity 0.058 5.414 0.443 — 0.067 0.064 10.076 0.468 — 0.047

(B) MA(1) 0.658 5.615 0.744 — 0.694 0.645 10.566 0.819 — 0.683

(B*) MA(1)* 2.094 12.458 1.956 — 2.729 2.060 23.034 2.116 — 3.004

(C) AR(1) 8.123 11.446 8.217 — 7.759 12.785 18.496 12.484 — 12.036

(C*) AR(1)* 18.172 23.721 16.251 — 18.751 26.571 40.903 18.903 — 24.581

(D) Non-sparse 11.920 30.108 11.220 — 10.993 13.758 54.462 13.636 — 12.996

(E) Factor 34.237 31.064 33.224 33.194 31.020 83.101 81.489 81.697 81.382 80.852

(F) FGN 12.961 14.376 14.640 14.593 14.125 26.672 34.344 31.296 30.992 36.299

(F*) FGN* 31.165 30.263 31.470 31.042 32.188 84.958 69.133 75.546 75.377 74.432

(G) Seasonal 4.126 7.403 2.972 — 4.016 4.994 13.722 3.471 — 4.949

(G*) Seasonal* 9.225 15.855 6.494 — 9.064 11.030 28.949 7.561 — 11.132
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Table 3.5: Average operator norm error to Σ−1 for competing estimators with optimal
parameters (50 replications). The best results and those up to 5% worse than the best
are boxed. The worst results are in bold.

Σ̂ Ts B Σ̂Nopt Σ̂Nopt.r Σ̂ Ts B Σ̂Nopt Σ̂Nopt.r

p=10, n=100 p=100, n=100

(A) Identity 0.917 0.281 0.281 0.281 — — 0.469 0.469 0.469 —

(B) MA(1) 1.177 0.681 0.656 0.605 — — 1.244 1.300 1.166 —

(B*) MA(1)* 0.626 0.489 0.732 0.442 — — 0.846 0.779 0.745 —

(C) AR(1) 9.078 7.751 9.078 5.502 — — 14.313 18.064 10.792 —

(C*) AR(1)* 4.491 2.736 4.491 2.339 — — 8.915 7.298 6.001 —

(D) Non-sparse 0.378 0.256 0.297 0.210 — — 2.670 2.775 1.793 —

(E) Factor 0.846 0.403 0.610 0.370 0.400 — 0.712 0.715 0.653 0.518

(F) FGN 2.995 1.727 2.980 1.560 1.535 — 3.585 4.650 3.112 2.734

(F*) FGN* 1.571 1.193 1.212 1.001 1.018 — 2.029 2.038 1.948 1.761

(G) Seasonal 2.688 1.538 2.685 1.302 — — 3.806 5.444 3.260 —

(G*) Seasonal* 1.340 1.091 1.726 0.827 — — 2.526 4.345 1.971 —

p=200, n=100 p=500, n=100

(A) Identity — 0.527 0.527 0.527 — — 0.599 0.599 0.599 —

(B) MA(1) — 1.358 1.530 1.258 — — 1.405 1.562 1.377 —

(B*) MA(1)* — 1.100 0.795 0.850 — — 1.040 1.145 0.962 —

(C) AR(1) — 15.023 18.122 11.469 — — 15.622 18.136 11.064 —

(C*) AR(1)* — 14.509 20.358 7.362 — — 18.392 23.740 7.155 —

(D) Non-sparse — 2.460 2.016 1.459 — — 5.986 5.896 4.289 —

(E) Factor — 0.711 0.711 0.677 0.537 — 0.744 0.744 0.730 0.557

(F) FGN — 3.972 4.658 3.317 3.024 — 4.267 4.737 3.527 3.306

(F*) FGN* — 2.974 4.096 2.083 1.849 — 4.426 5.674 2.250 2.083

(G) Seasonal — 4.029 5.469 3.538 — — 4.188 5.477 3.673 —

(G*) Seasonal* — 3.328 4.885 2.259 — — 3.726 5.479 2.358 —

Note: The results of Σ̂N
opt.r are only presented for the highly non-sparse group, i.e. Models (E),

(F) and (F*). The worst results for model (A) with p = 100, 200 and 500 are not labelled, as
T , B and Σ̂N

opt obtain exactly the same results.
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Table 3.6: Average operator norm error to Σ−1 for competing estimators with data-
driven parameters (50 replications). The best results and those up to 5% worse than
the best are boxed. The worst results are in bold.

S P Σ̂Ncv Σ̂Nr NS S P Σ̂Ncv Σ̂Nr NS

p=10, n=100 p=100, n=100

(A) Identity 0.090 4.472 0.469 — 0.146 0.045 0.882 0.472 — 0.109

(B) MA(1) 0.799 6.474 0.824 — 0.780 1.273 1.403 1.439 — 1.405

(B*) MA(1)* 0.526 4.892 0.448 — 0.440 1.358 0.993 0.935 — 1.748

(C) AR(1) 7.309 40.142 8.574 — 5.396 13.410 15.704 12.605 — 12.272

(C*) AR(1)* 5.390 27.593 4.841 — 3.264 12.508 13.649 10.167 — 13.446

(D) Non-sparse 0.500 1.705 0.328 — 0.340 2.937 2.916 2.910 — 2.979

(E) Factor 1.142 1.806 0.864 — 0.296 2.603 0.893 1.608 — 0.343

(0.854) (0.695) (0.526)

(F) FGN 1.864 16.530 2.097 — 1.701 4.565 3.060 4.212 — 3.122

(2.081) (3.159) (2.773 )

(F*) FGN* 1.174 10.284 2.017 — 1.101 4.474 2.965 3.431 — 4.432

(2.001) (2.075) (1.843)

(G) Seasonal 1.897 13.175 2.103 2.115 1.687 4.229 4.721 3.839 — 3.947

(G*) Seasonal* 1.284 8.436 1.143 — 1.219 3.510 3.799 2.743 — 4.538

p=200, n=100 p=500, n=100

(A) Identity 0.046 0.930 0.529 — 0.136 0.078 0.923 0.601 — 0.139

(B) MA(1) 1.449 1.371 1.401 — 1.463 1.473 1.445 1.540 — 1.487

(B*) MA(1)* 1.293 1.256 1.169 — 1.906 1.914 1.140 1.221 — 2.463

(C) AR(1) 15.066 17.128 14.125 — 13.907 16.526 17.700 16.025 — 15.924

(C*) AR(1)* 17.480 18.286 13.201 — 19.037 22.833 23.053 19.169 — 23.740

(D) Non-sparse 2.602 2.842 2.563 — 3.206 5.998 6.171 5.994 — 5.660

(E) Factor 3.701 0.892 1.450 — 0.348 5.672 0.962 4.106 — 0.347

(0.710) (0.546) (0.937) (0.558)

(F) FGN 9.397 3.552 5.670 — 3.434 8.621 3.933 6.652 — 3.752

(3.582) (3.045) (4.364) (3.326)

(F*) FGN* 6.649 2.765 4.024 — 5.519 6.241 3.083 5.442 — 6.519

(2.589) (2.199) (3.002) (2.887)

(G) Seasonal 4.676 5.019 4.176 — 4.526 5.045 5.256 4.548 — 5.001

(G*) Seasonal* 4.540 4.643 3.514 — 6.068 5.632 5.254 4.489 — 6.988

Note: For models (E), (F) and (F*), results by both cross validation and fixed parameters (in
brackets) are presented for NOVELIST when n < 2p. For Σ̂N

cv, fixed parameters (λ′′, δ′′) are
(0.75, 0.50) for Model (E), and (0.50, 0.25) for Models (F) and (F*). For Σ̂N

r , (λ′′, δ′′) is fixed
to be (0.50, 0.90) for (E), and (0.25, 0.65) for (F) and (F*).
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3.7 Automatic NOVELIST algorithm and more Monte

Carlo experiments

3.7.1 Automatic NOVELIST algorithm (ANOVELIST)

As shown in the simulation study, we note that NOVELIST or PC-adjusted NOVEL-

IST with fixed parameters largely improve the performances in estimating precision

matrices for model (E) and (F). However, we suggest that they should only be used

with prior knowledge or if empirical testing indicates that there are prominent princi-

pal components. This extra section describes an automatic algorithm which provides

an adaptive choice between the use of LW-CV algorithm and (PC-adjusted) NOVEL-

IST with fixed parameters suggested in Section 3.5. For estimating the correlation,

covariance or their inverses, given p and n, we suggest the following rules of thumb:

first, we look for the evidence of “elbows” in the scree plot of eigenvalues, by exam-

ining if
∑p

k=1 1{γ(k) + γ(k+2) − 2γ(k+1) > 0.1p} > 0, where γ(k) is the kth principal

component. If so, then we look for the evidence of long-memory decay, by examining

if the off-diagonals of the sample correlation matrix follow a high-kurtosis distribution.

If the sample kurtosis ≤ 3.5, this suggests that the factor structure may be present, and

we use the fixed parameters (λ′′, δ′′) = (0.75, 0.50) for NOVELIST or (0.50, 0.90) for

PC-adjusted NOVELIST; if the sample kurtosis > 3.5, this may point to long memory,

and we use the fixed parameters (λ′′, δ′′) = (0.50, 0.25) for NOVELIST or (0.25, 0.65)

or PC-adjusted NOVELIST. The parameters are chosen from the robustness test in

Section 3.5. It is sketched in the following flowchart.
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Estimate Σ−1?

p > 2n?

Prominent PCs?

High-kurtosis off-diagonals?

LW-CV (λ′, δ′)

Factor model:

Fixed (λ′′, δ′′)is

(0.75, 0.50) for NOVELIST

(0.50, 0.90) for PC-adjusted NOVELIST

Long-memory:

Fixed (λ′′, δ′′) is

(0.50, 0.25) for NOVELIST

(0.25, 0.65) for PC-adjusted NOVELIST

No

No

No

Yes

Yes

Yes

No

Yes

Flowchart 1: ANOVELIST: decision procedure for using LW-CV algorithm or

fixed parameters in estimating precision matrices.

3.7.2 More Monte Carlo experiments for automatic algorithm

More Monte Carlo simulations are conducted to test the performances of ANOVEL-

IST . We test models (A)-(F), but not those with ∗, as NOVELIST already work well

for heteroscedastic models in Section 3.6. Also, we only present the results of ANOV-
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ELIST and the nonlinear shrinkage estimator [Ledoit and Wolf, 2003] (NS), as NS

is the best competitor for NOVELIST as shown in Section 3.6. We use PC-adjusted

NOVELIST with fixed parameters for ANOVELIST in the simulation.

Table 3.7: Average operator norm error to Σ−1 for Automatic NOVELIST and Non-
linear shrinkage (50 replications). The best results are boxed.

ANOV EL NS ANOV EL NS

p=200, n=100 p=200, n=50

(A) Identity 0.513 0.132 0.584 0.177

(B) MA(1) 1.411 1.469 1.934 1.997

(C) AR(1) 14.267 14.064 15.236 14.881

(D) Non-sparse 2.604 3.320 2.934 3.831

(E) Factor 0.727 0.350 1.133 0.568

(F) FGN 3.170 3.481 3.623 3.880

(G) Seasonal 4.153 4.502 4.663 4.904

p=500, n=100 p=1000, n=100

(A) Identity 0.627 0.146 0.806 0.267

(B) MA(1) 1.541 1.487 1.605 1.583

(C) AR(1) 16.246 16.132 19.334 19.537

(D) Non-sparse 5.980 5.643 8.304 7.923

(E) Factor 0.968 0.353 1.139 0.498

(F) FGN 3.591 3.729 5.067 5.638

(G) Seasonal 4.527 4.983 5.691 6.039
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3.8 Conclusion

This chapter proposes the NOVELIST estimators for correlation/covariance and their

inverses. The linkage between NOVELIST and ridge regression are demonstrated. We

obtain an explicit convergence rate in the operator norm over a large class of covariance

(correlation) matrices when p and n satisfy log p/n→ 0. Empirical choices of param-

eters and a data-driven algorithm for NOVELIST estimators which combines Ledoit

and Wolf [2003]’s method and cross-validation (LW-CV algorithm) is presented. Fur-

ther empirical improvements of NOVELIST are proposed. Comprehensive simulation

study is based on a wide range of models and results of comparisons with several pop-

ular estimators are presented. Finally, an automatic algorithm is constructed to provide

an adaptive choice between the use of LW-CV algorithm and fixed parameters.

Based on the simulation results, NOVELIST works best when the underlying cor-

relation/covariance matrices are sparse and non-sparse (more so for heteroscedastic

models) but is beaten by POET for the highly non-sparse models by a small mar-

gin. Also, NOVELIST performs better for the heteroscedastic models than for the

homoscedastic ones due to the fact that NOVELIST does not shrink the diagonals

towards any target such as their median, which particularly suits the heteroscedastic

models. However, NOVELIST does not perform stable when estimating precision

matrices for the highly non-sparse cases, which is because of the bad performance

of the cross-validated choices of the parameters. We improve the results by applying

fixed parameters that come from the robustness test instead of the cross-validated ones,

and also build a bridge between using the fixed parameters and the cross-validated

choices. The fixed parameters vary across different underlying correlation/covariance

structures, but they are mostly not close to the edges of the range [0, 1] to ensure stable
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performance. Overall, it is clear that the flexible control of the degree of shrinkage and

thresholding offered by NOVELIST means that it is able to offer competitive perfor-

mance across most models, and in situations in which it is not the best, it tends not to

be much worse than the best performer. We recommend NOVELIST as a simple, good

all-round covariance, correlation and precision matrix estimator ready for practical use

across a variety of models and data dimensionalities.

3.9 Additional lemmas and proofs

Firstly, we briefly introduce two lemmas that will be used in the proof of Proposition

1.

Lemma 5 If F satisfies
∫∞

0
exp(γt)dGj(t) < ∞, for 0 < |γ| < γ0, for some γ0 > 0,

where Gj is the cdf of X2
1j , R = {ρij} and Σ = {σij} are the true correlation and

covariance matrices, 1 ≤ i, j ≤ p, and σii ≤ M , where M is a constant, then, for

sufficiently large M ′, if λ = M ′
√

log p/n and log p/n = o(1), we have max
1≤i,j≤p

|ρ̂ij −

ρij| = Op(
√

log p/n), for 1 ≤ i, j ≤ p.

Proof of Lemma 5: By the sub-multiplicative norm property ||AB|| ≤ ||A|| ||B||
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[Golub and Van Loan, 2013], we write

max
1≤i,j≤p

|ρ̂ij − ρij|

= max
1≤i,j≤p

|σ̂ij/(σ̂iiσ̂jj)1/2 − σij/(σiiσjj)1/2|

≤max
1≤i≤p

|σ̂−1/2
ii − σ−1/2

ii | max
1≤i,j≤p

|σ̂ij − σij|max
1≤j≤p

|σ̂−1/2
jj − σ−1/2

jj |

+ max
1≤i≤p

|σ̂−1/2
ii − σ−1/2

ii | max
1≤i,j≤p

(|σ̂ij||σ−1/2
jj |+ |σ̂ii−1/2||σij|)

+ max
1≤i,j≤p

|σ̂ij − σij|max
1≤i≤p

|σ̂ii−1/2|max
1≤i≤p

|σ−1/2
ii |

=Op(
√

log p/n) (3.39)

The last equality holds as we have max
1≤i,j≤p

|σ̂ij−σij| = Op(
√

log p/n) = max
1≤i,j≤p

|σ̂−1
ij −

σ−1
ij | [Bickel and Levina, 2008b], and max

1≤i,j≤p
|σ̂ij| = Op(1) = max

1≤i,j≤p
|σ̂−1
ij |, and σii ≤

M , 1 ≤ i, j ≤ p. �

Lemma 6 If F satisfies
∫∞

0
exp(γt)dGj(t) < ∞, for 0 < |γ| < γ0, for some γ0 > 0,

where Gj is the cdf of X2
1j , R = {ρij} is the true correlation matrix, 1 ≤ i, j ≤ p,

then, uniformly on V(q, s0(p), ε0), for sufficiently large M ′, if λ = M ′
√

log p/n and

log p/n = o(1),

||T (R̂, λ)−R|| = Op(s0(p)(log p/n)(1−q)/2). (3.40)

where T is any kind of generalised thresholding estimator.

Lemma 6 is a correlation version of Theorem 1 in Rothman et al. [2009] and

follows in a straightforward way by replacing Σ̂, Σ, U(q, c0(p),M, ε0) and c0(p) by R̂,

R, V(q, s0(p), ε0) and s0(p) in the proof of the theorem.

Proof of Proposition 1:
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We first show the result for R̂N . By the triangle inequality,

||R̂N −R|| = ||(1− δ)R̂ + δT (R̂, λ)−R||

≤ (1− δ)||R̂−R||+ δ||T (R̂, λ)−R||

= I + II. (3.41)

Using Lemma 6, we have

II = Op{δs0(p)(log p/n)(1−q)/2}. (3.42)

For symmetric matrices M , Corollary 2.3.2 in Golub and Van Loan [2013] states that

||M || ≤ (||M ||(1,1)||M ||(∞,∞))
1/2 = ||M ||(1,1) = max

1≤i≤p

p∑
j=1

|mij|. (3.43)

Then by Lemma 5,

||R̂−R|| ≤ max
1≤i≤p

p∑
j=1

|R̂ij −Rij| ≤ p max
1≤i,j≤p

|ρ̂ij − ρij| = Op(p
√

log p/n). (3.44)

Thus, we have

I = (1− δ)||R̂−R|| ≤ Op((1− δ)p
√

log p/n). (3.45)

Combining formula (3.42) and (3.45) yields formula (3.16). The corresponding inverse

obtains the same rate,

||(R̂N)−1 −R−1|| � ||R̂N −R||, (3.46)
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uniformly on V(q, s0(p), ε0).

For the Σ̂N estimator, recalling that T = T (R̂, λ) and D = (diag(Σ))1/2, we have

||Σ̂N − Σ|| = ||D̂R̂ND̂ −DRD||

= ||D̂((1− δ)R̂ + δ T )D̂ −DRD||

≤ (1− δ)||Σ̂− Σ||+ δ||D̂T D̂ −DRD||

= III + IV. (3.47)

Similarly as in (3.45), we obtain III = Op((1− δ)p
√

log p/n). For IV , we write

||D̂T D̂ −DRD||

≤||D̂ −D|| ||T −R|| ||D̂ −D||+ ||D̂ −D||(||T || ||D||+ ||D̂|| ||R||)

+||T −R|| ||D̂|| ||D||

=Op((1 + s0(p)(log p/n)−q/2)
√

log p/n). (3.48)

The last equality holds as we have ||T − R|| = Op(s0(p)(log p/n)(1−q)/2), ||D̂ −

D|| = Op(
√

log p/n), ||D̂|| = Op(1) = ||T ||, and ||D|| = O(1) as σii < M . Because

(log p/n)q/2(s0(p))−1 is bounded from above by the assumption that log p/n = o(1)

and ||(Σ̂N)−1−Σ−1|| � ||Σ̂N−Σ|| uniformly on U(q, c0(p),M, ε0), the result follows.

�

Proof of Corollary 2:

Substituting log p by C1n
α in (3.18), we get

δ̃ =
C2pn

(α−1)q/2

s0(p) + C2pn(α−1)q/2
, (3.49)
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where C2 is a constant. If p = o(n(1−α)q/2), we have pn(α−1)q/2 → 0, which implies

δ̃ → 0, since s0(p) ≤ C. On the other hand, if n = o(p2/(1−α)q), we have pn(α−1)q/2 →

∞ and δ̃ → 1 as n → ∞. Additionally, if p � n(1−α)q/2, then pn(α−1)q/2 is of a

constant order, which yields δ̃ ∈ (0, 1), as required. �

Proof of Corollary 3:

Firstly, noting that

∫ p+1

1

K−γqdK <

p∑
K=1

K−γq <

∫ p

0

K−γqdK (3.50)

p1−γq

1− γq
<

p∑
K=1

K−γq <
(p+ 1)1−γq − 1

1− γq
,

we have
∑p

K=1 K
−γq = O(p1−γq). For the long-memory correlation matrix, we can

write

s0(p) = max
1≤i≤p

p∑
j=1

|i− j|−γq = O(p1−γq). (3.51)

By substituting log p by C1n
α and s0(p) by (3.51) in (3.18), we get

δ̃ =
C2n

(α−1)q/2

p−γq + C2n(α−1)q/2
. (3.52)

Again δ̃ depends on p and n. The remaining part of the proof is analogous to that of

Corollary 2 and is omitted here. �
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Chapter 4

Applications of NOVELIST and real

data examples

4.1 Introduction

As stated in Section 1.1, estimation of covariance, correlation and precision matri-

ces for high-dimensional data have remarkable applications in almost every aspect

of statistics, such as principal component analysis [Croux and Haesbroeck, 2000;

Jackson, 1991; Johnstone and Lu, 2009; Pearson, 1901], linear discriminant analysis

[Bickel and Levina, 2004; Fisher, 1936; Guo et al., 2007], graphical modeling [Mein-

shausen and Bühlmann, 2008; Ravikumar et al., 2011; Yuan, 2010], portfolio selection

and financial risk management [Fan et al., 2008; Goldfarb and Iyengar, 2003; Ledoit

and Wolf, 2003; Longerstaey et al., 1996; Markowitz, 1952; Talih, 2003], and network

science [Gardner et al., 2003; Jeong et al., 2001].

Apart from these popular areas, many other applications arise in literature where

covariance or precision matrix estimation is just an intermediate step instead of the
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final goal, and better covariance or precision estimation can lead to better results in

the end. In particular, covariance matrix estimation can be found in estimation of false

discovery proportion (FDP) of large-scale multiple testing with highly correlated test

statistics [Fan and Han, 2013; Fan et al., 2012a]. Over the last two decades, testing

procedures have been proposed in incorporating correlation information in estimat-

ing FDP [Benjamini and Yekutieli, 2001; Sarkar, 2002; Sun and Cai, 2009]. In recent

years, Fan et al. [2012a] propose a consistent estimate of realized FDP based on princi-

pal factor approximation (PFA), which subtracts the known common dependence and

significantly weakens the correlation structure. However, if such dependence structure

is unknown, the covariance matrix has to be estimated before estimating FDP [Efron,

2010]. For tackling this problem, Fan and Han [2013] investigate conditions on the

dependence structure such that the estimate of FDP is consistent and study an approx-

imate factor model for the test statistics, then develop a consistent estimate of FDP

by applying the POET estimator [Fan et al., 2013] to estimate the unknown covariance

matrix. Moreover, another application considered in several papers [Bickel and Levina,

2008a; Huang et al., 2006; Lam, 2016] is to apply the estimated large covariance matrix

on forecasting the call arrival pattern to a telephone call centre, in particular, predicting

the number of arrivals later in a day by using arrival patterns at earlier times of the day.

In this chapter, we explore the applications of NOVELIST estimators and exhibit the

results of applying the estimators on real data, including portfolio optimisation using

inter-day and intra-day log returns of the constituents of FTSE 100, forecasting the

number of calls for the call center, and estimating false discovery proportion through

a well-known breast cancer study. The rest of the chapter is organised as follows. In

Section 4.2, we illustrate how NOVELIST performs in the minimal variance portfolio

optimisation problems. Section 4.3 presents the performance of NOVELIST in fore-
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casting the phone calls. Section 4.4 shows the application of NOVELIST in estimating

FDP in the breast cancer study. Section 4.5 concludes the chapter.

4.2 Portfolio selection

Portfolio selection is an empirical finance problem of efficiently allocating capital over

a number of assets in order to maximize the expected “return” and/or minimise the

level of “risk” according to investors’ risk preferences [Goldfarb and Iyengar, 2003;

Markowitz, 1952]. The first mathematical model for portfolio selection is formulated

by Markowitz [1952], when he introduces the Modern Portfolio Theory (MPT), also

known as mean-variance analysis. In modern portfolio theory, the “return” and “risk”

of a portfolio are measured by the expected value and the variance of the portfolio

return respectively. The mean-variance model also has had a profound impact on the

Capital Asset Pricing Model (CAPM) [Lintner, 1965; Mossin, 1966; Sharpe, 1964],

which is a model that derives the theoretical required expected return when consid-

ering adding a new asset to the existing portfolio, given the risk-free rate available

to investors and the risk of the overall market [Sharpe, 1964]. In 1990, Sharpe and

Markowitz shared the Nobel Prize in Economic Sciences for their contributions to the

field of financial economics.

Although the MPT is originally proposed based on daily data, using high frequency

data in portfolio management is arising in literature over the last decade, which bene-

fits from apparent increase in sample size for returns and covariance matrix estimation.

[Andersen et al., 2006; Fan et al., 2012b; Fleming et al., 2003; Liu, 2009]. Thanks

to advanced computational power and efficient data storage facilities, high frequency

data are easily accessible and increasingly analyzed by market practitioners and aca-
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demic researchers. However, many authors are aware of the contamination of market

microstructure in the tick-by-tick data and the problems caused by non-synchronous

trading times of multi-dimensional high-frequency data [Aı̈t-Sahalia et al., 2005; Bandi

and Russell, 2005]. To overcome these two challenges, one way is to sample less fre-

quently to avoid or largely reduce the market microstructure noise, when the noise

is present but unaccounted for. The popular choices of high frequency sampling in

the empirical literature range from 5-min intervals [Barndorff-Nielsen and Shephard,

2002] to as long as 30-min intervals [Andersen et al., 2003]. Aı̈t-Sahalia et al. [2005]

derives a closed-form expression of the optimal sampling frequency under the pres-

ence of i.i.d. microstructure noise. The optimal sampling frequency is often found to

be between one and five minutes [Aı̈t-Sahalia et al., 2005; Park, 2011]. Further discus-

sion on the optimal sampling rate can be found in Bandi and Russell [2005]. Another

way to tackle microstructure contamination is to model the noise by using very high

frequent data and to ameliorate the bias contributed from the extreme eigenvalues of

the realized covariance matrix by regularization with specific assumptions on the true

integrated matrix itself, such as sparsity [Wang and Zou, 2010] and factor model [Tao

et al., 2011]. Other attempts includes Fan et al. [2012b] who impose constraints on

gross exposure of the portfolio directly, and Lam and Feng [2016] who nonlinearly

shrink extreme eigenvalues of the sample integrated covariance matrix without spe-

cific assumption for the underlying integrated covariance matrix structure.

In this section, we present real-data performance of NOVELIST in portfolio op-

timisation problems based on daily and intra-day returns. For intra-day sampling

frequency, we use 5-30 minutes to mostly reduce the contamination induced by mi-

crostructure noise, although the noise still exist as shown in the results of Section

4.2.2.3, nevertheless, we focus on comparison instead of estimation. We apply the
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NOVELIST algorithm and the competing methods to share portfolios composed of

the constituents of the FTSE 100 index. Similar competitions were previously con-

ducted to compare the performance of different covariance matrix estimators [Lam,

2016; Lam and Feng, 2016; Ledoit and Wolf, 2003]. We compare the performance for

risk minimisation purposes instead of return maximisation, i.e. we want to find the

estimator which can minimise the portfolio volatility not the one which can maximise

the portfolio return. The data were provided by Bloomberg.

4.2.1 Daily returns

4.2.1.1 Dataset

The constituents of the FTSE 100 index consists of 100 companies, but there are 101

listings, as Royal Dutch Shell has both A and B class shares listed. They are essentially

identical shares except for a difference in dividend access mechanism, which applies

only to the B class shares. Although it may lead to practitioners’ preferences to B

class shares in practice, it does not impact on this real data experiment, which is purely

based on the returns, and does not take the costs or dividends into account. The returns

normally follow factor models instead of i.i.d. distribution, but from simulation studies

in Section 3.6 we note that NOVELIST still performs well for factor models. Our first

dataset consists of p = 85 stocks of FTSE 100 and n = 2526 daily returns {rt} for the

period January 1st 2005 to December 31st 2014. We removed all those constituents

that contain missing values and all the non-trading days including the weekends and

public holidays.
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4.2.1.2 Portfolio rebalancing regimes

We use two portfolio rebalancing regimes for daily data, the first one is explained

below.

Rebalancing regime 1

1. In-sample covariance matrix estimation: we set the number of in-sample obser-

vations as n1 = 120. On trading day t, we use the past n1-trading-day returns (i.e.

computed over days t − n1 + 1 to t) to estimate the p × p covariance matrix Σ̂
(n1)
t

by using NOVELIST and several other covariance matrix estimators. The first t starts

from day n1 + 1.

2. Minimal variance portfolio optimisation: to solve the risk minimisation problem

minw′t1p=1 w
′
tΣ̂

(n1)
t wt, (4.1)

we obtain the well-known weight formula

ŵt =
{Σ̂(n1)

t }−11p

1′p{Σ̂
(n1)
t }−11p

, (4.2)

where 1p is the column vector of p ones. Based on formula (4.2), portfolios are con-

structed according to different covariance matrix estimators.

3. Out-of-sample portfolio performances: we hold these portfolios for the next

n2 = 22 trading days (i.e. over days t + 1 to t + n2) and compute their daily returns,

out-of-sample standard deviations and Sharpe ratio as follows [DeMiguel and Nogales,
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2009; Lam, 2016; Ledoit and Wolf, 2003],

µ̂t =
1

n2

n2∑
i=1

ŵ′trt+i,

σ̂t = { 1

n2

n2∑
i=1

(ŵ′trt+i − µ̂t)2}1/2,

ŝrt = µ̂t/σ̂t. (4.3)

4. Portfolio rebalancing: at the end of the t + n2 day, we liquidate the portfolios,

update current t = t+ n2 and start process 1-3 all over again until t+ n2 > n.

5. Annualised average results: finally, we obtain the average daily returns, out-

of-sample standard deviations and Sharpe ratios. In order to compare the results from

different rebalancing regimes, we annualise the average results as follows [Lam and

Feng, 2016]

µ̃ = 252× 1

N

N−1∑
j=0

µ̂n1+j·n2 ,

σ̃ =
√

252× 1

N

N−1∑
j=0

σ̂n1+j·n2 ,

s̃r =
√

252× 1

N

N−1∑
j=0

ŝrn1+j·n2 . (4.4)

where N is the times of rebalancing, i.e. N =
⌊
n−n1

n2

⌋
= 109 for regime 1. And 252 is

the number of trading days per year.

Rebalancing regime 2

We use n1 = 252 to see the impacts of prolonging the in-sample period on es-

timating the covariance matrix and the corresponding portfolio performance. Hence,
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Table 4.1: Proportion of times (N of them) when in-sample covariance matrix has
prominent PCs or high-kurtosis off-diagonals and decisions of NOVELIST algorithm
made according to Section 3.7.

Prominent PCs High-kurtosis off-diagonals Decisions

Regime 1: Daily with n1 = 120 1.000 0.312 factor model

Regime 2: Daily with n1 = 152 1.000 0.359 factor model

Regime 3: Intra-day 5 minutes 0.759 0.008 factor model

Regime 4: Intra-day 10 minutes 0.742 0.008 factor model

Regime 5: Intra-day 30 minutes 0.664 0.008 factor model

N =
⌊
n−n1

n2

⌋
= 103. All the other procedures remain the same.

We compare the performances of six covariance matrix estimators. For NOVEL-

IST, we always apply the decision procedure as stated in Section 3.7 to choose from

LW-CV algorithm and fixed parameters. Table 4.1 presents that the decision proce-

dure points to underlying factor structure for both rebalancing regime 1 and 2, and also

for all the portfolio rebalancing regimes based on intra-day returns in Section 4.2.2.

Moreover, factor model is one of the popular structural assumptions in financial ap-

plications [Fan et al., 2013]. Both decision procedures and prior knowledge imply

factor structure, which suggest NOVELIST with fixed parameters instead of cross val-

idated parameters. We place both NOVELIST and PC-adjusted NOVELIST with fixed

parameters on the competitors’ list. Apart from NOVELIST, there are four other data-

driven competing covariance matrix estimators, which we previously considered in

Section 3.6: sample covariance estimator, linear shrinkage estimator, nonlinear shrink-

age estimator, and POET. We use them again to compete with NOVELIST estimator.

Also, we use the R package corpcor, POET and novelist to compute linear shrinkage,
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POET and NOVELIST respectively, and the commercial package SNOPT for Matlab

to compute nonlinear shrinkage [Ledoit and Wolf, 2013], We use k = 7 for POET as

suggested by Fan et al. [2013], and K = 1 for PC adjusted NOVELIST, since it is

common that there is one overwhelming principal component for financial data, and

the preliminary data analysis for this dataset also supports this.

4.2.1.3 Results

Table 4.2 shows the results. Clearly, NOVELIST has the lowest risk, which is mea-

sured by the out-of-sample standard deviation, followed by PC-adjusted NOVELIST

and nonlinear shrinkage. Also, NOVELIST has the highest Sharpe ratio, followed by

linear and nonlinear shrinkage. However, NOVELIST is beaten by sample covariance

matrix for annualised portfolio returns, which is not surprising as the portfolio weights

in formula (4.2) are allocated for risk minimisation purpose instead of return maximi-

sation. However, sample covariance matrix has highest risk and lowest Sharpe ratios.

In essence, NOVELIST and Nonlinear shrinkage have risk minimisation done well and

maintaining the level of Sharpe ratio greater than 1, which is considered as “good” by

practitioners [Khalsa, 2013; Maverick, 2016]. The results of rebalancing regime 1 and

2 are similar, which implies that there is no prominent improvement by prolonging the

in-sample period.

Figure 4.1 presents impacts of the choices of the parameters (λ, δ) on the perfor-

mance of NOVELIST. We call the areas indicated by “1” the “outperforming ranges”

of parameters, where NOVELIST estimators always beat all the other competitors in

our study. For both rebalancing regime 1 and 2, NOVELIST outperforms with wide

outperforming ranges for risk and Sharpe ratio, and the suggested fixed parameter

(λ′′, δ′′) = (0.75, 0.5) for factor model is within the outperforming ranges. However,
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(0.75, 0.5) is outside the outperforming ranges of (λ, δ) for portfolio returns, which

explains the reason why NOVELIST does not perform well in terms of enhancing re-

turns, although it is not the purpose of the minimum-variance portfolio optimisation.

Table 4.2: Annualised portfolio returns, standard deviations (STDs) and Sharpe ratios
of minimum variance portfolios (based on daily data) as in formula (4.4). The best
results are boxed.

Annualised portfolio returns (%) out-of-sample STDs (%) Sharpe ratios

Regime 1: Daily with n1 = 120

Sample 8.928 19.261 0.616

Linear shrinkage 7.166 13.572 1.103

Nonlinear shrinkage 5.800 11.690 1.092

POET 4.283 12.235 0.871

NOVELIST 6.973 11.422 1.264

PC-adjusted NOVELIST 5.144 11.590 0.978

Regime 2: Daily with n1 = 252

Sample 6.866 13.631 0.883

Linear shrinkage 6.049 13.031 1.000

Nonlinear shrinkage 6.630 11.990 1.089

POET 6.763 12.453 1.012

NOVELIST 6.475 11.678 1.186

PC-adjusted NOVELIST 4.476 12.189 0.877
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Figure 4.1: Contour plots of proportions of the times when NOVELIST outperforms
in terms of the choices of (λ, δ) under rebalancing regime 1 (left column) and 2
(right column). “1” indicates the area of choices of (λ, δ) which makes NOVEL-
IST to outperform with the chance of 100%, in contrast, “0” indicates the area of
choices of (λ, δ) where NOVELIST never outperform. The suggested fixed parame-
ter (λ′′, δ′′) = (0.75, 0.50) for factor model which is used in Automatic NOVELIST
algorithm in Section 3.7 is marked as a plus.
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4.2.2 Intra-day returns

4.2.2.1 Datasets and sampling

We use three datasets that cover the same time period but have different sampling

frequencies. To distinguish them from the first dataset which we use in Section 4.2.1,

we call these three datasets the second, third and fourth ones. The second dataset

consists of p = 101 constituents of FTSE 100 and n = 13260 five-minute returns

{yt} for the period March 2nd 2015 to September 4th 2015 (130 trading days), after

removing the weekends, 3 bank holidays and 2 Easter holidays, and retaining only

the returns within the trading time 8:00-16:30 on each trading day, i.e. the number

of observations is 102 on each trading day. The third dataset consists of n = 6630

ten-minute returns with 51 points on each day for the 130 trading days. And the fourth

dataset has n = 2210 thirty-minute returns with 17 points on each day for the 130

trading days.

4.2.2.2 Portfolio rebalancing regimes

We use three regimes for intra-day portfolio rebalancing. They all rebalance every-

day using the past ten-day as in-sample data for estimating the covariance matrix, but

the differences rely on the sampling frequency: they are based on 5, 10, and 30 min-

utes sampling frequency respectively. The rebalancing regimes are similar to those in

Section 4.2.1 and here we only explain the differences.

Rebalancing regime 3

1. In-sample covariance matrix estimation: we use the second dataset (sampling

frequency f = 5 minutes, n2 = 102 on each day), and 10-day in-sample period to esti-

mate the covariance matrices of the returns, i.e. the number of in-sample observations

130



n1 = 10n2 = 1020. At the starting time of trading day t, we use the past n1-five-

minute returns (i.e. five-minute returns from n2(t − 11) + 1 to n2(t − 1)) to estimate

the covariance matrix Σ̂
(n1)
t . The first t starts from day 11.

2. Minimal variance portfolio optimisation is the same as that in Section 4.2.1.

3. Out-of-sample portfolio performances: we hold these portfolios for the trading

day t (i.e. over five-minute points n2(t− 1) + 1 to n2t) and compute their five-minute

returns, out-of-sample standard deviations and Sharpe ratio as follows

µ̂t =
1

n2

n2∑
i=1

ŵ′trn2(t−1)+i,

σ̂t = { 1

n2

n2∑
i=1

(ŵ′trn2(t−1)+i − µ̂t)2}1/2,

ŝrt = µ̂t/σ̂t. (4.5)

4. Portfolio rebalancing: at the beginning of day t+ 1, we liquidate the portfolios,

update current t = t+ 1 and start process 1-3 all over again until n2(t+ 1) > n.

5. Annualised average results. The annualised average portfolio returns, standard

deviations and Sharpe ratios are as follows [Lam and Feng, 2016]

µ̃ = 252× n2 ×
1

N

N−1∑
j=0

µ̂11+j,

σ̃ =
√

252× n2 ×
1

N

N−1∑
j=0

σ̂11+j,

s̃r =
√

252× n2 ×
1

N

N−1∑
j=0

ŝr11+j. (4.6)

where N is the times of rebalancing, i.e. N =
⌊
n−n1

n2

⌋
= 120 for regime 3.
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Rebalancing regime 4

We use the third dataset (sampling frequency f = 10 minutes), n = 6630 n1 =

510, n2 = 51. All the procedures are the same as those for rebalancing regime 2.

Rebalancing regime 5

We use the fourth dataset (sampling frequency f = 30 minutes), n = 2210, n1 =

170, n2 = 17. All the procedures are the same as those for rebalancing regime 2.

4.2.2.3 Results

Microstructure noises. Figure 4.2 presents distributions of sample variances and co-

variances of p = 101 intra-day stock returns, which are prevalently used as indicator

of microstructure noise. Clearly, when sampling frequency increases from once ev-

ery 30 minutes to once every 5 minutes, variances of returns slightly increase while

covariances decrease due to presence of microstructure noise. Figure 4.3 shows six

minimal variance portfolio returns are more volatile when sampling frequency is every

5 minutes.

Overall competitions. Table 4.2 shows the results of overall competition. We note

that the portfolio returns and most of the Sharpe ratios are negative during this period,

but which does not impact on the competition. NOVELIST has the highest portfolio

returns (the least loss) and highest Sharpe ratios for both five-minute and ten-minute

portfolios, followed by PC-adjusted NOVELIST and nonlinear shrinkage, and has the

lowest out-of-sample standard deviations for thirty-minute portfolios. However, NOV-

ELIST is beaten by nonlinear shrinkage or POET otherwise. In summary, we argue

that NOVELIST is the overall winner, followed by nonlinear shrinkage.

Some remarks: one may note that the annualised out-of-sample standard devia-

tions listed in Table 4.3 do not vary a lot as sampling frequency changes, which seems
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Figure 4.2: Distribution of Annualised sample variances and covariances of intra-day
returns of the FTSE 100 constitutes from March 2nd 2015 to September 4th 2015.
Sampling frequency= 5, 10, 30 minutes.

to be contradictory to Figure 4.2 and 4.3. The reason for this is that the formula (4.6)

we used for annualisation are the simplest and broadly adopted in literature, although

Lo [2002] argues that they could only used when there is no serial correlation, i.e.

i.i.d. portfolio returns. The annualised results based on formula (4.6) can yield stan-

dard deviations that are considerably smaller (in the case of negative serial correlation)
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or larger (in the case of positive serial correlation). Again, since we focus on compari-

son instead of estimation in this section, we keep these neat formulas instead of using

a more complicated annualisation factor given by Lo [2002].
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Figure 4.3: Time series plots of six minimal variance portfolio returns and STDs based
on intra-day data.
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Table 4.3: Annualised portfolio returns, standard deviations (STDs) and Sharpe ratios
of minimum variance portfolios (based on intra-day data) as in formula (4.6). The best
results are boxed.

Annualised portfolio returns (%) out-of-sample STDs (%) Sharpe ratios

Regime 3: intra-day 5 minutes

Sample -17.949 8.856 -1.238

Linear shrinkage -18.612 9.190 -1.597

Nonlinear shrinkage -17.150 8.680 -1.124

POET -17.422 8.944 -1.309

NOVELIST -16.288 8.695 -0.862

PC-adjusted NOVELIST -17.453 9.015 -1.118

Regime 4: intra-day 10 minutes

Sample -20.464 9.329 -1.748

Linear shrinkage -20.936 9.425 -1.754

Nonlinear shrinkage -17.010 8.190 -1.335

POET -19.770 8.987 -1.540

NOVELIST -15.814 8.749 -0.786

PC-adjusted NOVELIST -16.591 9.018 -1.068

Regime 5: intra-day 30 minutes

Sample -23.816 12.172 -3.272

Linear shrinkage -16.043 10.222 -1.571

Nonlinear shrinkage -7.830 8.930 0.489

POET -8.557 9.217 1.623

NOVELIST -11.681 8.866 0.920

PC-adjusted NOVELIST -13.346 9.052 0.429

136



4.3 Forecasting the number of calls for a call center

In this section we present the performance of NOVELIST in estimating large covari-

ance matrix by an application in forecasting the call arrival pattern at a telephone call

centre, in particular, the number of arrivals later in a day using arrival patterns at earlier

times of the day. Similar competitions were previously conducted to compare the per-

formance of different covariance matrix estimators [Bickel and Levina, 2008a; Huang

et al., 2006; Lam, 2016].

4.3.1 Dataset

The data come from one call centre in a major U.S. northeastern financial organisa-

tion, containing every call arrival time. For each day in the Year 2002, after removing

weekends, holidays and the days when the data-collecting equipment was out of or-

der, we obtain observations for 239 days. Phone calls were recorded from 7 am until

midnight every day, and the 17-hour period is divided into 102 ten-minute intervals,

and the number of calls arriving at the service queue during each interval are recorded.

According to Huang et al. [2006], interval length of 10 minutes is chosen rather sub-

jectively as a way of smoothing the data and for illustration.

4.3.2 Phone calls forecasting

We denote Nij as the number of calls arrives during the jth ten-minute interval on the

ith day, i = 1, 2, · · ·, 239, j = 1, 2, · · ·, 102. As suggested, we first take a square

root transformation to make the data distribution close to normal [Brown et al., 2005;
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Huang et al., 2006],

yij =
√
Nij + 1/4. (4.7)

We can forecast the number of call arrivals later in the day by using call arrival pat-

terns at earlier times of the day. We evenly partition yi into y(1)
i ,y

(2)
i , where y(1)

i =

(yi,1, yi,2, · · ·, yi,51) and y(2)
i = (yi,52, yi,53, · · ·, yi,102). Correspondingly, the mean and

variance matrix are partitioned as follows

µ =


µ1

µ2


, and Σ =


Σ11 Σ12

Σ21 Σ22


(4.8)

Assuming multivariate normality, the best mean squared error forecast of y(2)
i using

y
(1)
i is

ŷ
(2)
i = µ2 + Σ21Σ−1

11 (y
(1)
i − µ1). (4.9)

Clearly, we need to plug in estimates of µ1, µ2, Σ11 and Σ−1
21 . By replacing µ1 and µ2

with the sample means ȳi(1) and ȳi(2), and applying NOVELIST and other covariance

and precision matrix estimators to estimate Σ11 and Σ−1
21 , we can obtain ŷ(2)

i .

In order to evaluate the performance of different estimators, we split the 239 days

into training and test datasets, see Table 4.4 for details. Forecast 1 to 3 is designed for

comparing the performance of NOVELIST to existing papers in which this application

is also considered, especially the results in Lam [2016]. They have same test dataset
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Table 4.4: Allocation of training and test datasets for forecast 1 to 6.

Training Test

Sample size
(N1)

Start day
(n1)

End day
(n2−1)

Sample size
(N2)

Start day
(n2)

End day

Forecast 1 30 181 210 29 211 239

Forecast 2 120 91 210 29 211 239

Forecast 3 210 1 210 29 211 239

Forecast 4 180 1 180 59 181 239

Forecast 5 90 1 90 149 91 239

Forecast 6 30 1 30 209 31 239

but different-length training dataset. Forecast 3 to 6 changes the ratio of the length

of training and test datasets to see the accuracy of call arrival forecasting if training

window is shorter and test window is longer. We take forecast 3 as a example, it

contains the training dataset from the first 210 days, roughly corresponding to January

to October, which is used to estimate the mean and covariance structure. The estimates

are then applied on forecasting using formula (4.9) for the 29 days in the test set,

corresponding to the remaining days of the year. We compare the average absolute

forecast error of the 29 days which is defined by

AEt =
1

N2

239∑
i=n2

|ŷ(2)
i,t − y

(2)
i,t | (4.10)

where ŷ(2)
i,t and y(2)

i,t are the observed and forecast values respectively, n2 = 211 and

N2 = 29 for forecast 3.

We compete NOVELIST estimators with six other covariance and precision esti-
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mators: the first four are the same as those in Section 4.2 and another two, NERCOME

and CRC grand average, which are taken from Lam [2016] for comparisons in forecast

1 to 3. We take NERCOME and CRC grand average because they outperform in sev-

eral cases in Lam [2016]. The decision procedure for NOVELIST indicates underlying

factor models, and we use fixed parameters again in this application.

4.3.3 Results

Table 4.5 shows the results. NOVELIST outperforms other estimators in all seven

forecast, followed by nonlinear shrinkage, NERCOME and CRC, which have roughly

the same results in forecast 1 to 3, and followed by PC-adjusted NOVELIST and non-

linear shrinkage in forecast 4 to 6. POET and sample covariance perform the worse,

and also PC-adjusted NOVELIST in forecast 1 to 3. Figure 4.4 shows that forecast

is less accurate during the middle times of the second half of the day (roughly from

17:00 to 22:00) than at the beginning or at the end (from 15:30 to 17:00 or from 22:00

to 24:00). For nearly every ten-minute interval of the second half of the day (apart

from a few intervals at the beginning), there is more than half chance that NOVELIST

outperforms other methods. From 17:00 to 22:00 roughly, NOVELIST even has more

than 80% chance to beat others. Also, comparison among forecast 1 to 3 tells us that

having shorter training window increases the 29-day forecast error. However, Figure

4.5 shows that forecast accuracy can be good even when we have a small training to

test ratio, for example, forecast 6 surprisingly performs well with only 30 days in train-

ing dataset and 209 days in test dataset. This tells us that the covariance structure of

yis can be viewed as unchanged for a long period. But, we notice the discrepancies be-

tween forecast and true call arrivals after about day 200, which may indicate a change
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point of covariance structure near that day. This may give the reason why forecast 4

to 6 perform better than forecast 1 to 3 in general, that is because forecast 1 to 3 have

training and test periods on the two sides of a possible change point.

Table 4.5: Mean absolute forecast errors and standard deviations (in brackets) of fore-
cast 1 to 6. The best results are boxed.

Forecast

1 2 3 4 5 6

Sample — 1.603
(0.472)

1.532
(0.487)

1.247
(0.326)

— —

POET 1.652
(0.581)

1.626
(0.531)

1.569
(0.542)

1.231
(0.346)

0.918
(0.200)

0.859
(0.160)

Linear 1.570
(0.415)

1.645
(0.503)

1.548
(0.494)

1.209
(0.316)

0.952
(0.194)

0.919
(0.140)

Nonlinear 1.481
(0.523)

1.597
(0.524)

1.523
(0.510)

1.167
(0.319)

0.892
(0.193)

0.824
(0.154)

NOVELIST 1.419
(0.458)

1.458
(0.466)

1.463
(0.491)

1.027
(0.247)

0.802
(0.155)

0.800
(0.135)

PC-adjusted NOVELIST 1.677
(0.568)

1.676
(0.553)

1.571
(0.509)

1.116
(0.277)

0.821
(0.158)

0.846
(0.177)

NERCOME∗ 1.45
(0.45)

1.59
(0.51)

1.53
(0.51)

— — —

CRC∗ 1.46
(0.50)

1.59
(0.52)

1.54
(0.51)

— — —

Note: The methods labelled with ∗ are taken from Lam [2016] for comparison and the decimal
places are different.
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Figure 4.4: Competitions of call forecasting based on forecast 1 to 3. Left: plots of av-
erage absolute errors for the forecasts using different estimators. Right: percentage of
days (29 of them) in the test dataset when the NOVELIST based forecast outperforms
for each ten-minute interval at later times in the day.
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Figure 4.5: Accuracy of forecasting telephone calls based on NOVELIST estimators
for forecast 3 to 6. Top: daily average number of call arrivals of training (blue), test
(black) and forecast (red) data. Bottom: true and predicted average number of call
arrivals during each ten-minute interval at later times of the days within test windows.
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4.4 Estimation of false discovery proportion of large-

scale multiple testing with unknown dependence struc-

ture

In this section, we estimate false discovery proportion (FDP) of dependent test statis-

tics in large-scale multiple testing by using NOVELIST covariance matrix estimator.

Similar application was previously considered by using POET estimator in Fan and

Han [2013].

4.4.1 Notation, setting and method

4.4.1.1 FDP under dependence structure

Suppose that {Xi}ni=1 are n i.i.d. observations of a p-dimensional random variable,

where each Xi ∼ Np(µ,Σ), µ = {µ1, µ2, · · ·, µp} and Σ = {σi,j}, 1 6 i, j 6 p.

Under high dimensional setting, i.e. p > n, the mean vector µ is assumed to be a

sparse vector containing only a small number of nonzero entries. More precisely, we

denote P0 = {1 6 j 6 p : µj = 0}, P1 = {1 6 j 6 p : µj 6= 0}, p0 = |P0| and

p1 = |P1|, and we assume that p1/p → 0 as p → ∞. In practice, the subsets P0 and

P1 are unknown, and we want to identify the nonvanishing signals within P1.

We consider Z =
√
nX̄ , where X̄ is the sample mean of {Xi}ni=1, i.e. X̄ =

1
n

∑n
i=1Xi. Hence, we have Z ∼ Np(µ,Σ) and (Z −

√
nµ)D−

1
2 ∼ Np(0,R) after

standardisation, where D = diag(σ1,1, σ2,2, ··, ·, σp,p) is a diagonal matrix which con-

sist of all the diagonals of the covariance matrix and R is the correlation matrix. In

order to identify the nonzero entries in the mean vectorµ, we use multiple test statistics
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Z∗ = {Z∗1 , Z∗2 , · · ·, Z∗p}. For each j ∈ (1, p),

Z∗j =

√
nX̄j√
σj,j

, (4.11)

where µ∗j =
√
nµj√
σj,j

and we consider multiple testing

H0j : µ∗j = 0 vs H1j : µ∗j 6= 0 (4.12)

based on Z∗, which is equivalent to test

H0j : µj = 0 vs H1j : µj 6= 0. (4.13)

The p-value for the jth hypothesis is Pj = 2Φ(−|Z∗j |), where Φ(·) is the cumulative

distribution function of the standard normal distribution. For a chosen threshold value

t, we reject H0j if pj < t. Then, we want to know the accuracy of this multiple testing.

Define the number of discoveries as R(t) = #{j : Pj ≤ t} and the number of false

discoveries as V (t) = #{true null j : Pj ≤ t}. Our aim is to estimate the false

discovery proportion FDP (t) = V (t)/R(t). R(t) is observed but V (t) needs to be

estimated in order to obtain the estimated FDP (t).

If there is no dependence among these j testing, the number of false discoveries

V (t) should go to p0t asymptotically, which leads to FDP → p0t/R(t) asymptoti-

cally. However, if there exist dependence of the test statistics, Fan and Han [2013]

show how the dependence impacts on the FDP by considering the following one-
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factor model, if we assume for simplicity that Σ = R. For each j, we consider

Z∗j = µ∗j + bjW + ajεj, (4.14)

where aj = (1 − b2
j)

1/2, W is the common factor and each εj is a random noise, and

they follow independent standard normal distribution. Then, under the null hypothesis

H0j : µ∗j = 0 for all j, we have the number of false discoveries is

V (t) =
∑
j∈P0

I(2Φ(−|Z∗j |) < t)

=
∑
j∈P0

I(|bjW + ajεj| > zt/2)

=
∑
j∈P0

[I(bjW + ajεj > −zt/2) + I(bjW + ajεj < zt/2)]

=
∑
j∈P0

[I(εj > −
zt/2 + bjW

aj
) + I(εj <

zt/2 − bjW
aj

)]. (4.15)

where zt/2 is the t/2-quantile of the standard normal distribution. We assume that

p0 = |P0| is big enough and each εj is independent, then we can apply the weak law of

large numbers [Davidson, 1994, p.289]. Conditioning on W , we have

V (t) ≈
∑
j∈P0

[Φ(
zt/2 + bjW

aj
) + Φ(

zt/2 − bjW
aj

)], (4.16)

Formula (4.16) quantifies the dependence of V (t) and the corresponding FDP (t) =

V (t)/R(t) on the realisation of W . However, P0, bj and W are unknown. Since we

assume sparsity: p1/p → 0 as p → ∞, the set of true nulls P0 is nearly the whole

set, but we also need to estimate W which can be viewed as a regression problem

and achieved for example by least squares estimation or L1 penalised regression [Fan
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et al., 2012a], or be solved by principal factor approximation (PFA) [Fan and Han,

2013; Fan et al., 2012a]. We apply the NOVELIST covariance matrix estimator on

PFA for estimating FDP.

4.4.1.2 Estimation of FDP by PFA

In this section, we briefly present the PFA procedure for estimation of FDP introduced

by Fan et al. [2012a] and Fan and Han [2013]. The basic idea is to use principal

components as approximated factors, more precisely, it takes out the first k principal

components that derive the strong dependence among observed data to estimate the

common factors under the approximate factor model and provides a consistent estimate

of the realized FDP.

Consider an approximate factor model for the test statistics Z∗i as

Z∗i = µ∗ +Bfi + ui (4.17)

for each observation, whereµ∗ is a p-dimensional unknown sparse vector,B = (b1, b2 ·

··, bp)T is the factor loading matrix, fi are k common factors to the ith observations,

independent of the noise ui ∼ Np(0,Σu), where Σu is sparse. The PFA procedure for

estimating FDP is as follows,

(1) Estimating the covariance matrix Σ̂ of Z∗.

(2) Apply singular value decomposition to the covariance matrix Σ̂. Obtain the

first k eigenvalues λ̂1, λ̂2, · · ·, λ̂k and the corresponding eigenvectors γ̂1, γ̂2, · · ·, γ̂k .

(3) Construct B̂ = (λ̂
1/2
1 γ̂1, λ̂

1/2
2 γ̂2, · · ·, λ̂1/2

k γ̂k), and compute the least squares

estimate f̂ ∗ = (B̂T B̂)−1B̂TZ∗.
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(4) With b̂Ti is the ith row of B̂, compute

F̂DP (t) = Σp
i=1[Φ((zt/2 + b̂Ti f̂

∗)/âi) + Φ((zt/2 − b̂Ti f̂ ∗)/âi)]/R(t) (4.18)

where âi = (1− ||b̂Ti ||)1/2.

4.4.2 Breast cancer dataset

We use the breast cancer dataset which is considered by Fan and Han [2013] and

Hedenfalk et al. [2001] in Large-scale hypothesis testing problem, and also used by

Efron [2007] in breast cancer gene-expression study. This dataset consists of gene

expression levels in 15 patients. The first group includes 7 women with BRCA1 and the

second group includes 8 women with BRCA2, both BRCA1 and BRCA2 are known

to increase the lifetime risk of hereditary breast cancer. We observe p = 3226 gene

expression levels for each group. Let X1,X2, · · ·,Xn, n = 7, denote the microarray

of expression levels on the 3226 genes for the first group, and Y1,Y2, · · ·,Ym, m = 8,

for that of the second group. Identifying the significantly different genes expressed by

BRCA1 carriers and BRCA2 carriers will allow scientists to discriminate the cases of

hereditary breast cancer on the basis of gene-expression profiles.

We assume that the gene expression levels of the two groups follows two multivari-

ate normal distributions with different mean vector but the same covariance matrix. Let

Xi ∼ Np(µ,Σ) for i = 1, 2, · · ·, n and Yi ∼ Np(ν,Σ) for i = 1, 2, · · ·,m. We use

the following multiple hypothesis test to identify the genes distinctively expressed by

the patients in the two groups. For each gene j, we consider two-sample testing

H0j : µj = νj vs H1j : µj 6= νj, (4.19)
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based on the test statistics

Z∗j =
X̄j − Ȳj

σ̂j,j

√
1
n

+ 1
m

, (4.20)

which follows tn+m−2 distribution. It is also reasonable to assume that a large propor-

tion of the genes are not differentially expressed, so that µ−ν is sparse. By choosing a

threshold level t, we can obtain the subset of discoveries which includes the differently

expressed genes by the BRCA1 and BRCA2 carriers based on the testing. Then we

use cross validated NOVELIST to estimate the covariance matrix of Z∗j and apply the

PFA procedure described in Section 4.4.1.2 to estimate FDP of the testing.

4.4.3 Results

The results of our analysis are presented in Figure 4.6. Firstly, the estimated FDP

increases as the threshold value t increases, which indicates that the discoveries with

lower t have higher accuracy to be the true discoveries, for example, when the number

of discoveries is below 200, the estimated number of false discoveries is close to zero,

for number of factors k 6 15. Secondly, although it is claimed that the PFA procedure

for estimating FDP is robust under different choices of number of factors k between 2

to 5 in Fan et al. [2012a] and Fan and Han [2013], we choose k up to 13 and observe

obvious discrepancies in the estimated FDP. The smallest F̂DP is obtained when k =

13. For example, when the number of discoveries is 1000, the F̂DP is below 50

with k = 13, by contrast, the F̂DP is around 250 with k = 2. It indicates that

suitable choice of k is important for accurately estimating the FDP. Moreover, alough

k = 13 yields the smallest F̂DP , we note that the sample size is only 15, and taking

k = 13 makes no much sense in terms of approximate factor models and may distort
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the results, we argue that the low F̂DP produced by k = 13 may underestimate the

true FDP. However, the true FDP is unknown for this study, although similar results

are obtained in Fan and Han [2013], we are unable to compare and conclude which

one has the more accurate F̂DP .

In order to compare the results of gene discoveries in this study and those in other

literature, we present the list of the 51 most differentially expressed genes in BRCA1

and BRCA2 carriers in this study in Table 4.6, and 51 genes that are best differenti-

ated among BRCA1-Mutation-Positive, BRCA2-Mutation-Positive, and another breast

cancer related tumor by a modified F test in Hedenfalk et al. [2001] in Figure 4.7. There

are 25 out of 51 genes that coincide. Since the significance level is 8.116 × 10−6 in

our study versus 0.001 in Hedenfalk et al. [2001], this multiple testing is much more

sensitive than the modified F test in Hedenfalk et al. [2001]. In this testing, if the

significance level is 0.001, we will identify around 170 differently expressed genes.

Figure 4.6: The estimated false discovery proportion as function of the threshold value
t and the estimated number of false discoveries as function of the number of total
discoveries for p = 3226 genes in total. The number of factors k ∈ (2, 15).

Some remarks: The difficulties in this study are due to the high dimension and the
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very low sample size. Since n is only 15, it is difficult for NOVELIST to find the suit-

able parameters via cross validation. However, there is no widely accepted consensus

in terms of the true subset of the differently expressed genes for BRCA1 and BRCA2

carriers for this study, we can only provide the estimated FDP using NOVELIST, but

cannot evaluate the goodness of the cross validation and the accuracy of the estimation.

151



Table 4.6: 51 most distinctively expressed genes that can discriminate breast can-
cers with BRCA1 mutations from those with BRCA2 mutations (threshold level t is
8.116 × 10−6). The estimated FDP by using NOVELIST is approximately 0.012%
under approximate factor model with 5 factors.

Clone ID UniGene Title
810057 cold shock domain protein A
46182 CTP synthase

813280 adenylosuccinate lyase
950682 phosphofructokinase, platelet
897646 splicing factor, arginine/serine-rich 4
840702 SELENOPHOSPHATE SYNTHETASE ; Human selenium donor protein
712604 pre-B-cell colony-enhancing factor
784830 D123 gene product
841617 Human mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2
686172 KIAA0008 gene product
563444 forkhead box F1
711680 zinc finger protein, subfamily 1A, 1 (Ikaros)
949932 nuclease sensitive element binding protein 1
75009 EphB4

566887 chromobox homolog 3 (Drosophila HP1 gamma)
841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1)
214731 KIAA0601 protein
809981 glutathione peroxidase 4 (phospholipid hydroperoxidase)
236055 DKFZP564M2423 protein
293977 ESTs, Weakly similar to putative [C.elegans]
295831 ESTs, Highly similar to CGI-26 protein [H.sapiens]
236129 Homo sapiens mRNA; cDNA DKFZp434B1935 (from clone DKFZp434B1935)
247818 ESTs
139354 ESTs
127099 ESTs, Moderately similar to atypical PKC specific binding protein [R.norvegicus]
814270 polymyositis/scleroderma autoantigen 1 (75kD)
130895 ESTs
344352 ESTs
31842 UDP-galactose transporter related

133178 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
548957 general transcription factor II, i, pseudogene 1
212198 tumor protein p53-binding protein, 2
293104 phytanoyl-CoA hydroxylase (Refsum disease)
82991 phosphodiesterase I/nucleotide pyrophosphatase 1 (homologous to mouse Ly-41 antigen
32790 mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)

291057 cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
344109 proliferating cell nuclear antigen
366647 butyrate response factor 1 (EGF-response factor 1)
366824 cyclin-dependent kinase 4
471918 intercellular adhesion molecule 2
361692 sarcoma amplified sequence
136769 TATA box binding protein (TBP)-associated factor, RNA polymerase II, A, 250kD
23014 mitogen-activated protein kinase 1
26082 very low density lipoprotein receptor
26184 phosphofructokinase, platelet
29054 ARP1 (actin-related protein 1, yeast) homolog A (centractin alpha)
36775 hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzy
42888 interleukin enhancer binding factor 2, 45kD
45840 splicing factor, arginine/serine-rich 4
46019 minichromosome maintenance deficient (S. cerevisiae) 7
51209 protein phosphatase 1, catalytic subunit, beta isoform height

152



Figure 4.7: Panel A of figure 2 in Hedenfalk et al. [2001]: 51 genes that are best
differentiated among BRCA1-Mutation-Positive, BRCA2-Mutation-Positive, and an-
other breast cancer related tumor, as determined by a modified F test (α = 0.001), for
comparison with Table 4.6.
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4.5 Conclusion

This chapter applies NOVELIST estimators on real data, including portfolio optimisa-

tion using low-frequency and high-frequency FTSE 100 constituents log returns, fore-

casting the number of calls for a call center and estimating false discovery proportion

through a well-known breast cancer study.

For minimum-variance portfolio optimisation, NOVELIST performs well and sta-

ble for daily data, where it has the lowest volatility and the highest Sharpe ratios, but is

beaten by others for maximising the portfolio returns, which is mainly because the pur-

pose of this portfolio optimisation is risk minimisation instead of return maximisation.

For intra-day data, NOVELIST performs less stable due to microstructure noises as

sampling frequency increases. In general, increasing sampling frequency has negative

effects on risk minimisation and return/sharp ratio maximisation in this example.

In the example of the call center phone arrival forecast, NOVELIST outperforms

other estimators in all seven forecast (different training and test datasets), followed by

nonlinear shrinkage, NERCOME and CRC. The call arrival forecast by using NOVEL-

IST is good and stable even when training to test ratio is small (30 days in the training

dataset and 209 days in the test dataset). But, its performance can be highly affected

by change points, which indicates that ensuring stationarity or detecting change points

are important before applying NOVELIST estimation.

In the application on estimation of FDP of large-scale multiple testing by using

a breast cancer dataset, the final results show that FDP increases as the number of

the discoveries increases, and the most differentially expressed genes found by us-

ing NOVELIST has about 50% overlap with those from existing literature. However,

NOVELIST is not compared with other estimators. It is because that there is no widely
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accepted consensus in terms of the true subset of the differently expressed genes for

BRCA1 and BRCA2 carriers for this study and the true FDP is unknown, there is no

sense to compare the accuracy of the estimations. Another difficulty is the ultra low

sample size (only 15 patients compared to 3226 gene expression levels), and it is diffi-

cult for NOVELIST to find the suitable parameters via cross validation. Nonetheless,

we still consider this area as an important one where NOVELIST estimator can be

applied on and further improvements can be made.

Based on the overall performance of all the competitors in these applications, we

argue that NOVELIST is the overall winner, followed by nonlinear shrinkage. Again,

it is due to the flexible control of the degree of shrinkage and thresholding offered by

NOVELIST.
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Chapter 5

Conclusion and future work

The thesis concerns estimating large correlation and covariance matrices and their in-

verses. The main focus is put on the two new methods proposed and the related appli-

cations.

Firstly, tilting-based methods are proposed to estimate the large precision matrix

block by block. Each block can be estimated by the inversion of the corresponding

pairwise sample conditional covariance matrix controlling all the other variables. To

determine the controlling subsets, four types of tilting-based methods are introduced

as variable selection techniques that aim to only put the highly relevant remaining

variables into the controlling subsets. The asymptotic properties and the finite sample

performance of the methods are demonstrated. The simulation study shows that sep-

arate tilting (with thresholding afterwards) performs well for (absolute and relative)

diagonal block models, and competing tilting is the best when high collinearity exists,

such as factor models, but all the tilting methods are beaten by thresholding methods

for the diagonal precision matrix. The fact that adding a thresholding step after apply-

ing tilting methods improves the results indicates that tilting estimators perform well
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in estimating rather than identifying the non-zero entries. Competing tilting is only

recommended for use when necessary, as it requires much more computational time

and efforts compared to other tilting methods. Also, when we face the (ultra) high-

dimensional cases, we need to use competing tilting with caution, since it is highly

affected by the distorted realisations of the variables and the residuals. Suitable im-

provement approaches can be applied depending on circumstances. In general, the

higher collinearity the variables have, the more necessary it is to apply tilting methods,

especially the competing tilting.

Secondly, we propose the NOVELIST methods for correlation/covariance and their

inverses, which performs shrinkage of the non-sparse and low-rank sample version to-

wards the sparse thresholded target. The benefits of the NOVELIST estimator include

simplicity, ease of implementation, computational efficiency and the fact that its appli-

cation avoids eigenanalysis. The linkage between NOVELIST and ridge regression are

demonstrated. We obtain an explicit convergence rate in the operator norm over a large

class of covariance (correlation) matrices when p and n satisfy log p/n → 0. Empir-

ical choices of parameters and a data-driven algorithm for NOVELIST estimators are

presented. Comprehensive simulation study are based on a wide range of models and

shows that NOVELIST works best when the underlying correlation/covariance matri-

ces are sparse and non-sparse (more so for heteroscedastic models) but is beaten by

POET for the highly non-sparse models by a small margin. For the highly non-sparse

cases, we improve the performance of the NOVELIST precision matrix estimation

by applying fixed parameters that come from the robustness test instead of the cross-

validated ones and the automatic algorithm is presented. Overall, it is clear that the

flexible control of the degree of shrinkage and thresholding offered by NOVELIST

means that it is able to offer competitive performance across most models, and in situ-
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ations in which it is not the best, it tends not to be much worse than the best performer.

We recommend NOVELIST as a simple, good all-round covariance, correlation and

precision matrix estimator ready for practical use across a variety of models and data

dimensionalities.

Lastly, we also apply NOVELIST estimators on real data examples, including port-

folio optimisation, call arrival forecasting and FDP estimation. First, NOVELIST

works well in the aim of minimum-variance portfolio optimization, but performs less

stable due to microstructure noises as sampling frequency increases. Second, in the

example of the call center phone arrival forecast, NOVELIST outperforms other esti-

mators in all seven forecast (different training and test datasets), but its performance

can be highly affected by change points, which indicates that ensuring stationarity or

detecting change points are important before applying NOVELIST estimation. Third,

in the application on estimation of FDP of large-scale multiple testing by using a breast

cancer dataset, final results show that FDP increases as the number of the discoveries

increases, and the most differentially expressed genes found by using NOVELIST has

about 50% overlap with those from existing literature. However, further work is needed

to investigate the accuracy of the NOVELIST estimation compared to other competi-

tors. Therefore, we argue that NOVELIST is the overall winner in these applications,

followed by nonlinear shrinkage.

Future research can be made from two aspects. First, the tilting and NOVELIST

methods can be extended from i.i.d variables to dependent data. Sancetta [2008] gen-

eralises the linear shrinkage method by Ledoit and Wolf [2004] to serially correlated

data. Fiecas et al. [2016] considers high-dimensional time series generated by a hid-

den Markov model which allows for switching between different regimes or states, and

applies shrinkage with an EM-type algorithm to yield a more stable estimates of the
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covariance matrix. We believe such approaches are worth trying to extend the tilting

and NOVELIST methods to dependent data. Second, ensuring positive definiteness

and invertibility of the correlation/covaraince matrices is mostly essential in practice.

Although discussion regarding this is included in the thesis, further research is still

needed to understand more in theory.
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