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Abstract

The first chapter studies the impact of variance risk in the Treasury market on both term

premia and the shape of the yield curve. Under minimal assumptions shared by standard

structural and reduced-form asset pricing models, I show that an observable proxy of vari-

ance risk in the Treasury market can be constructed via a portfolio of Treasury options.

The observable variance risk has the ability to explain the time variation in term premia,

but is largely unrelated to the shape of the yield curve. Using the observable variance risk,

I also propose a new representation of no-arbitrage term structure models. All the pricing

factors in the model are observable, tradable, and hence economically interpretable. The

representation can also accommodate both unspanned macro risks and unspanned stochastic

volatility in the term structure literature.

The second chapter shows that it is beneficial to incorporate a particular zero-cost trading

strategy into approaches that extract a stochastic discount factor from asset prices in a

model-free manner (e.g. the Hansen-Jagannathan minimum variance stochastic discount

factor). The strategy mimics the Radon-Nikodym derivative between two pricing measures

with alternative investment horizons, and is hence characterized by the term structure of

the SDF (or the dynamics of the SDF). Incorporating the strategy into the Euler equation

significantly enhances the ability of the extracted stochastic discount factor to explain cross-

sectional variation of expected asset returns. Furthermore, the strategy remarkably tightens

various lower bounds for the stochastic discount factor, hence setting a more stringent hurdle

for equilibrium asset pricing models.

The third chapter studies variance risk premiums in the Treasury market. We first de-

velop a theory to price variance swaps and show that the realized variance can be perfectly

replicated by a static position in Treasury futures options and a dynamic position in the

underlying. Pricing and hedging is robust even if the underlying jumps. Using a large

options panel data set on Treasury futures with different tenors, we report the following



findings: First, the term-structure of implied variances is downward sloping across matu-

rities and increases in tenors. Moreover, the slope of the term structure is strongly linked

to economic activity. Second, returns to the Treasury variance swap are negative and eco-

nomically large. Shorting a variance swap produces an annualized Sharpe ratio of almost

two and the associated returns cannot be explained by standard risk factors. Moreover, the

returns remain highly statistically significant even when accounting for transaction costs

and margin requirements.
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Chapter 1

Information in (and not in) Treasury Options

1.1 Introduction

What is the role of variance risk in the Treasury market? How big is its impact on the

risk-return trade-off? How does it affect the shape of the yield curve? What kind of

macroeconomic uncertainty drives it? The first step to addressing these questions is to

identify the variance risk in the Treasury market. In this paper, I suggest a novel approach

to identifying variance risk, by utilizing information in Treasury bond options to answer the

above questions.

I first show that variance risk can be proxied by implied variance measures from bond

option markets and that this is true under a set of mild assumptions which are shared by

many well-known structural and reduced form asset pricing models. Specifically, I prove

that a bond VIX2 (a portfolio of Treasury options constructed akin to the VIX2 in the

equity market1) represents the variance risk in the Treasury market under the assumptions

that (i) the short-term interest rate is a linear function of the state variables and (ii) the

state follows an affine diffusion process under the risk-neutral measure. In other words, the

bond VIX2s span time-varying variances in Treasury yields under the two assumptions. As

a consequence, the impact of variance risk on both term premia and the shape of the yield

curve is directly measurable via the observable variance risk: the bond VIX2s. Using this

theoretical framework, I obtain the following three novel results.

First, I propose a novel return-forecasting factor that jointly exploits the bond VIX2s

and the implication of leading macro-finance asset pricing models. The bond VIX2s identify

1The VIX is a measure of volatility, and hence the VIX2 is a measure of variance.
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economic fundamentals that determine the conditional variances of bond yields in many

well-known consumption-based asset pricing models: for example, the time-varying variance

of consumption growth in Bansal and Yaron (2004), the probability of a rare disaster in

Wachter (2013), and the external habit in Le, Singleton, and Dai (2010). Interestingly,

the unobservable fundamentals are both the drivers of the variances of Treasury yields and

the sole sources of time variation in term premia under these frameworks (see e.g. Le and

Singleton (2013)). Hence, one common implication of the models is that excess returns

on bonds should be completely explained by the bond VIX2s. In particular, in the long-

run risk framework of Bansal and Yaron (2004), the risk premium is time-varying solely

due to the time variation in the quantity of risk. Moreover, changes in the variance of

yields are the manifestation of time-varying macroeconomic uncertainties in the long-run

risk framework. Because the short-term interest rate is postulated to be linear in affine

diffusion states in the economy, the bond VIX2s span the time-varying variance in yields.

Hence, the time variation in expected excess returns should be captured by the bond VIX2s.

The same implication can also be obtained from the rare disaster framework of Wachter

(2013). Time-varying probability of a rare disaster is assumed to follow an affine diffusion

process in the framework, and it is also a sole driver of time variation in both risk premia

and interest rate variance. Hence, the bond VIX2s are the manifestation of time-varying

disaster probabilities, and should have the ability to predict future excess returns. The

affineQ habit model in Le, Singleton, and Dai (2010) is another class of models in which the

bond VIX2s should be driven by the factor underlying the time variation in risk premia. In

this framework, the external habit of the representative agent - the source of time-varying

price of risks - is the only factor driving both the time variation in the variance of yields

and the time-varying risk premia. Moreover, the drift in the pricing kernel is assumed to

be linear in the state variables following an affine-diffusion process under the risk-neutral

measure, and hence the bond VIX2s reflect the time-varying price of risk. In sum, the

space of time-varying risk premia and the space of the bond VIX2s are identical under the

standard macro-finance asset pricing models, the long-run risk, rare disaster, and affineQ

habit formation frameworks.
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In the above three frameworks, the noise in realized excess returns on bonds can be com-

pletely removed by projecting realized excess returns onto the bond VIX2s space. Hence,

using implied variance measures from options on Treasury futures with different tenors, I use

a projection in line with Cochrane and Piazzesi (2005). Similar to their regressions where

they project bond excess returns of different maturity onto forward rates, I find that the

linear combination of bond VIX2s also produces a tent-shape factor forecasting excess re-

turns. Interestingly, the predictive ability of this return-forecasting factor mainly stems from

the excess returns of relatively short-term bonds, while the linear combination of forward

rates in Cochrane and Piazzesi (2005) is superior in predicting excess returns on long-term

bonds. Moreover, the single factor from the bond VIX2s and the Cochrane-Piazzesi factor

are complementary, and the predictability for bond returns increases significantly in joint

regressions.

Second, I analyze the observable variance risk’s impact on the shape of the yield curve.

Its marginal impact is assessed by projecting yields onto the bond VIX2s as well as the

first three yield principal components: level, slope and curvature. After controlling for

these factors, I find that variance risk is largely unrelated to the shape of the yield curve.

This result corroborates earlier evidence of unspanned stochastic volatility (USV) whereby

yield variance can only be very weakly identified from the cross-section of yields (see e.g.,

Collin-Dufresne and Goldstein (2002) among many others). However, the strict condition

for the USV effect is rejected by a newly devised statistical test exploiting the observational

variance risk. In sum, it is hard to identify the volatility of interest rates from the yield

curve movements, but the knife-edge conditions for the USV effect do not seem to hold in

the data.

Third, to assess the variance risk’s impact on term premia and the cross-section of yields

within a fully-fledged framework, I suggest a new representation of affine no-arbitrage term

structure models that incorporate the observable variance risk. The representation follows in

the spirit of Joslin, Singleton, and Zhu (2011), and extends their work to affine models with

stochastic volatility. The risk factors are represented as a portfolio of yields and options.

Hence, all the pricing factors are observable, tradable, and economically interpretable. In

addition, due to the observable variance risk, the factor dynamics under the physical measure
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can easily be estimated by generalized least squares. Furthermore, the observable proxy of

variance incorporates information in volatility-sensitive instruments, namely the Treasury

options. As a result, the variance risk in interest rates is well identified, in contrast to the

conventional latent factor approaches. Finally, the model can be easily extended to reflect

the unspanned macro risks in Joslin, Priebsch, and Singleton (2014) (henceforth JPS). Given

that the observable variance factor can be unspanned by yields, the model can accommodate

the two distinct types of unspanned risks in the term structure literature: unspanned macro

risk factor (hidden factor) and unspanned stochastic volatility. The estimates of the model

indicate that both unspanned macro risk and stochastic volatility drive expected returns.

The stochastic volatility factor in the estimated model is not literally unspanned by yields,

but its impact on the shape of the yield curve is noticeably small and can be effectively

treated as an unspanned factor.

This paper also contributes to the recent discussion on unspanned macro risks in the

macro-finance term structure literature. The unspanned macro risks are macroeconomic

factors that are informative about macroeconomic fluctuations and term premia, but largely

unrelated to the term structure movements. One open question with this strand of studies2

is, among the hundreds of macroeconomic variables, which one should or could be treated as

an unspanned macro risk? For example, Bauer and Rudebusch (2016) show that estimates of

risk premia can differ significantly depending on whether a measure of the level or the growth

in economic activity is used as unspanned risk. I show that the LPY (“linear projection

of yields”) criteria in Dai and Singleton (2002) provide informative guidance on this issue.

The LPY criteria are descriptive statistics that measure whether a term structure model can

match the pattern of violation of the expectations hypothesis as in Fama and Bliss (1987)

or Cambpell and Shiller (1991). For the issue of choosing level or growth indicators of

economic activity as an unspanned macro risk, the LPY criteria indicate that level variable

is more relevant measure of economic activity in term structure modeling perspective. In

other words, the models with level of economic activity as an unspanned macro risk are

better at re-producing the pattern for the failure of expectations hypothesis in the data

than the models with growth indicator as unspanned macro risk. Furthermore, in the LPY

2See e.g., Duffee (2011b), Chernov and Mueller (2012) and Joslin, Priebsch, and Singleton (2014).
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dimension, the stochastic volatility models with/without unspanned macro risks outperform

the corresponding Gaussian models. This shows that the observational variance risk is (i)

properly identified and (ii) beneficial in explaining the time variation in risk premia.

This paper is related to several different strands of the literature. First, the construction

of an observable proxy of variance risk in interest rates is based on the methodology of Mele

and Obayashi (2013) and Choi, Mueller, and Vedolin (2016). However, while these papers

utilize bond VIX2s to study the price of variance risk or variance risk premium in a model-

free manner, this paper (i) initially identifies the classes of asset pricing models under which

the bond VIX2 is equivalent to the interest rate variance risk of the models, (ii) and then

jointly utilizes both the bond VIX2s and the implication of the asset pricing models for a

better understanding of expected excess returns on long-term bonds (rather than variance

trading). In other words, given an asset pricing model within the class characterized by (i)

affine short rate and (ii) affine state under the risk-neutral measure, variance risk takes the

form of bond VIX2, and this observable portfolio of options inherits all the properties and

implications of the variance risk in the model. In this paper, the bond VIX2s are utilized as

instruments to identify such variance risks within the models. For structural asset pricing

models with the two assumptions, the bond VIX2s identify economic fundamentals that

drive variance risks in the Treasury market. Hence, the bond VIX2s should inherit all the

asset pricing implications of the fundamentals.

This idea implies that within the long-run risk, rare disaster, and affineQ habit formation

frameworks, the bond VIX2s should predict excess returns on bonds because the set of risk

factors underlying variation in risk premia is the sole source of time-varying variances in

bond yields. Hence, the return-forecasting factor in this paper is based on the theoretical

prediction of those specific models, contrary to the return-forecasting factors from the yield

curve as in Fama and Bliss (1987), Cambpell and Shiller (1991), and Cochrane and Piazzesi

(2005). Furthermore, the bond VIX2s can be measured in real time and contain forward-

looking information, in contrast with infrequently-updated macro data as in Bansal and

Shaliastovich (2013) or Ludvigson and Ng (2009).

The benefit of observable variance is also highlighted in the connection of the bond VIX2

to the no-arbitrage affine dynamic term structure models (henceforth, ADTSM). Under the
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assumption of ADTSM, the bond VIX2 directly identifies variance risk in ADTSM, which

has been considered one of the most challenging tasks in the term structure literature.

While previous term structure models also incorporate information from volatility-sensitive

instruments into their estimation procedure for better identification of variance risk3, the

approach of this paper circumvents their computational difficulties. Specifically, previous

studies match individual derivative prices from the models to actual derivative prices in

their estimation procedures, but the calculations of the derivative prices are extremely cum-

bersome computationally. By formulating a specific option portfolio that directly reflects

the changes in the underlying variance factor, the approach I propose simplifies the incor-

poration of information in volatility-sensitive instruments into ADTSM.

Furthermore, the observable variance risk enables ADTSM to be represented by observ-

able and tradable factors, contrary to all the previous dynamic term structure models with

stochastic volatility. Hence, the new representation of ADTSM that I posit here is based

on the observable variance risk, and extends the representation for both spanned Gaus-

sian ADTSM in Joslin, Singleton, and Zhu (2011) and Gaussian ADTSM with unspanned

macro risk in Joslin, Priebsch, and Singleton (2014) into more general setting. Joslin and Le

(2014) also utilize a parameterization scheme for ADTSM with stochastic volatility, in which

the time-varying variance factor is approximated by observable portfolio of yields. Their

volatility instrument can only be identified after the estimation of the model, while the

bond VIX2 identifies variance risk even before the estimation of ADTSM. Furthermore, the

approach of this paper is robust to unspanned stochastic volatility (USV), because option

prices are utilized to detect variance risk. On the other hand, yields do not span variance

risk in the presence of USV, and hence one cannot construct a yield portfolio that captures

time-varying variance as in Joslin and Le (2014).

Finally, while all the other USV models in the literature should be estimated with hard-

wired constraints to generate USV effects4, the approach here does not impose a priori

constraints for the USV effect and lets the data speak about the presence of USV. With

3See e.g. Jagannathan, Kaplin, and Sun (2003), Bibkov and Chernov (2009), Trolle and Schwartz (2009),
Bibkov and Chernov (2011), Almeida, Graveline, and Joslin (2011) and Joslin (2014) among many others.

4See e.g. Bibkov and Chernov (2009), Collin-Dufresne, Goldstein, and Jones (2009), Trolle and Schwartz
(2009), Joslin (2015) and Creal and Wu (2015) among many others.
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the bond VIX2 at hand, the estimation of ADTSM reveals the relative importance of the

already-identified variance factor in determining the shape of the yield curve. Once the

bond VIX2 turns out to play little role in explaining the cross-section of yields, then one

can effectively treat it as an unspanned stochastic volatility factor.

The paper proceeds as follows. Section 1.2 theoretically shows how one can construct

an observable proxy of the variance risk in the Treasury market by utilizing information in

option markets. Section 1.3 argues why the observable measure of variance could capture

the time-variation in risk premia, and investigates its predictive ability for excess returns.

Section 1.4 analyzes the relation between the variance risk and the shape of the yield curves.

Section 1.5 introduces a new representation for no-arbitrage term structure models in which

the variance risk is identified as a portfolio of Treasury options. The representation is

extended to accommodate unspanned macro risks in Section 1.6. In Section 1.7, the models

in Section 1.6 but with different types of unspanned macro risks are evaluated based on the

LPY criteria. Section 1.8 explores the properties of risk premia in more depth. Finally,

Section 1.9 concludes. All proofs are deferred to the Appendices.

1.2 Observable Volatility

To start, let us assume the state variable Zt = (X ′
t, V

′
t )

′ ∈ RN−m × Rm
+ follows the Ito

diffusion under the risk-neutral measure Q

d

⎡

⎣ Xt

Vt

⎤

⎦ = µZ,tdt+ ΣZ,tdB
Q
t (1.1)

where

µZ,t =

⎡

⎣ µX,t

µV,t

⎤

⎦ =

⎡

⎣ K0X

K0V

⎤

⎦+

⎡

⎣ K1X K1XV

K1V X K1V

⎤

⎦

⎡

⎣ Xt

Vt

⎤

⎦ , and ΣZ,tΣ
′
Z,t = ΣZ0+

m∑

i=1

ΣZiVit

with a set of restrictions on the parameters to ensure the non-negativity of the volatility

factor Vt as in Duffie, Filipović, and Schachermayer (2003). BQ
t is aN -dimensional Brownian

motion under Q. The short rate (the negative of the drift in a pricing kernel) is assumed to

be linear in the state Zt

rt = δ0 + δ1Zt (1.2)
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In addition, denote the following portfolios of options as Vt which is a measure of model-

free implied variance akin to the Chicago Board Options Exchange (CBOE) VIX2 in equity

markets:

Vt (T,T) =
2

Pt,T

[∫ Ft(T,T)

0

Putt (K, T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K, T,T)

K2
dK

]

(1.3)

where Pt,T is the price of a zero-coupons bond expiring at T , and Ft (T,T) is the forward

price at t, for delivery at T , of the bond maturing at T. Putt (K, T,T) and Callt (K, T,T)

are European options with strike price K and tenor T written on Pt,T. It is well-known in

the equity literature that cross-sectional information from options enables us to recover the

risk-neutral probability density of underlying asset (Breeden and Litzenberger (1978)). The

CBOE VIX is a specific application of this theory, to proxy the forward-looking risk-neutral

volatility of the one-month return on S&P 500 index. Similarly, with T being equal to one-

month,
√

Vt (T,T) can be considered as a forward-looking measure of one-month volatility

in Pt,T under the risk-neutral measure.

Under the two assumptions that the state is an affine process as in (1.1) and that the

short rate is affine in the state Zt as like (1.2), it can be shown that Ft (T,T) follows a

diffusion process of which instantaneous variance is a linear function of the latent factor Vt.

When Ft (T,T) follows a diffusion process, it is well-known that equation (1.3) represents

the expected quadratic variation of the forward under QT measure of which numéraire is the

bond Pt,T (see, e.g., Carr and Madan (1998)). Furthermore, the change of measure between

the forward measure QT and the risk-neutral measure Q is determined by the volatility of

Ft (T,T) in a linear fashion: see for example Björk (2009). As a consequence, Vt can be

expressed as a linear function of Vt, which means that one can observe the latent variance

factor up to its linear transformation and its shocks via the option portfolio Vt.

Proposition 1. Suppose that the short rate is an affine function of the Q affine process in
(1.1). Then,

Vt (T,T) = α
(
ΘQ; t, T,T

)
+ β

(
ΘQ; t, T,T

)
· Vt (1.4)

where ΘQ is the set of parameters for (1.1) and (1.2).

Proof: See Appendix 1.
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One of the key features of Proposition 1 is that it does not require any specification of

the market price of risk (or the dynamics of Zt under P) to completely characterize a pricing

kernel. In other words, the proposition can be utilized even though Zt follows a non-linear

process under P. In sum, for large classes of asset pricing models, one can capture the

innovations in variance factor through the portfolio of options, Vt.

As can be seen from equation (1.3), the option portfolio
√
Vt is a Treasury market

version of the CBOE VIX in the equity market. While the VIX has been intensively studied

and utilized in the literature,5 studies about its analogue for US Treasuries (henceforth, the

bond VIX) started relatively recently. Mele and Obayashi (2013) develop theories on pricing

Treasury volatility (i.e. expected value of Treasury volatility under a forward measure), and

suggest a practical way of representing the price as a portfolio of Treasury futures options.

Based on their methodology, CBOE launched the 10-year U.S. Treasury Note Volatility

Index (TYVIX) in May 2013. Choi, Mueller, and Vedolin (2016) show how investors can

make use of the bond VIX to get pure exposure to variance risk in the fixed income market

and document the empirical properties of the trading strategy. They construct the bond

VIX named as Treasury Implied Volatility index (TIV) for a 10-year T-note, plus TIV for

a 5-year Treasury bill and a 30-year Treasury bond.

This paper utilizes their TIVs since the three measures of volatility with different un-

derlying bonds enable us to identify multiple latent volatility factors via Proposition 1. For

a detailed description of how to construct TIV, I refer the reader to Choi, Mueller, and

Vedolin (2016). Figure 1.1 provides a plot of the CBOE VIX, the CBOE TYVIX, and the

10-year TIV; following the custom in practice, they are the square root of the annualized

variances expressed in percent. The 10-year TIV is virtually identical to the TYVIX, and

they are largely correlated with the VIX. The bond VIXs are driven by the variance factor

in the discount rates (or the pricing kernel), while the VIX reflect the variance factor in

both the discount rates and cash flow dynamics. The figure shows that the impact of the

variance factor in the cash flow dynamics became less important from late 90s.

5See, e.g., Carr and Wu (2009), Drechsler and Yaron (2011), Bollerslev, Tauchen, and Zhou (2009), Ang,
Hodrick, Xing, and Zhang (2006), Adrian and Shin (2010), Nagel (2012), Brunnermeier, Nagel, and Pedersen
(2009), Bao, Pan, and Wang (2011), Amengual and Xiu (2014),Bekaert, Hoerova, and Duca (2013), Kelly,
Pástor, and Veronesi (2014) among many others.
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Figure 1.1. TIV,TYVIX and VIX

This figure plots the CBOE VIX, the CBOE TYVIX and the 10-year TIV from Choi, Mueller,
and Vedolin (2016). Volatilities are the square root from variances as constructed using option
prices via equation (1.3). Numbers are annualized and expressed in percent. Gray bars indicate
NBER recessions. The data is monthly and runs from July 1990 to June 2015; The 10-year TIV
data ends in August 2012, and the TYVIX data starts from January 2003.

To summarize, Proposition 1 gives the implication of the model-free measure of im-

plied volatility in the Treasury market, the bond VIX, once it is combined with additional

structures embedded in many economic models. Once the information in bond VIX is in-

corporated with an economic model in which the short rate is linear in Q affine diffusion

state variables, the bond VIXs can completely identify the volatility factors. This result

also implies that some economic fundamentals in macro-finance asset pricing models can be

identified via the bond VIX2s if the fundamentals determine the conditional variances of

bond yields.

1.3 Predictability

The assumptions for Proposition 1 are that (i) the drift of a pricing kernel is affine in the

state variable and (ii) the state variable follows affine diffusion under Q. Three classes

of well-known consumption-based asset pricing models incorporate this feature. They are

the long-run risk framework of Bansal and Yaron (2004), the rare disasters framework of

Wachter (2013), and the affineQ habit formation model of Le, Singleton, and Dai (2010).
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Importantly, in all of these models, the source of time variation in risk premia is entirely

spanned by volatilities in yields only (see Le and Singleton (2013) for detailed explanations).

Once this salient feature of those models is incorporated with Proposition 1, it means that

the bond VIX2s should predict future excess returns and they are the sole source of time

variation in risk premia.

Specifically, the assumptions in Proposition 1 are canonical in most long-run risks models

without jumps (or rare disasters) - see e.g. Bansal and Yaron (2004), Bollerslev, Tauchen,

and Zhou (2009), Bansal and Shaliastovich (2013), Zhou and Zhu (2015). For example,

in Bansal and Shaliastovich (2013), (i) the drift of the pricing kernel is a linear function

of the subset of affine diffusion state variables - expected consumption growth, expected

inflation and their variance factors, and (ii) the P affine state variable, in conjunction with

their market price of risk, imply Q affine state variable. The time-varying volatilities in

expected consumption growth and expected inflation are the two economic fundamentals

that induce time variation in volatilities in yields. In this economy, Proposition 1 implies that

the bond VIX2s should be the manifestation of uncertainty about the two macroeconomic

fundamentals: expected consumption growth and expected inflation (see Appendix 2 for

a formal derivation). Note that in long-run risk economies, the time-varying quantity of

macroeconomic risk is the only source of time variation in risk premia - the price of risk is

pinned down by Epstein-Zin preference. As a consequence, the bond VIX2s should capture

the entire innovations in risk premia though the channel of time-varying quantity of risk.

The rare disaster framework with time-varying disaster probabilities is another example

that fits the assumptions of Proposition 1 - see e.g. Wachter (2013), and Tsai (2016). In this

framework, the short rate is linearly dependant on time-varying risk of disasters (intensity

of a disaster more precisely). The intensity process follows affine diffusion under both the

physical and the risk-neutral measures, and it also determines volatilities in yields. Then,

the bond VIX2s disclose the time-varying probability of a disaster because of Proposition 1.

Moreover, in this economy, time variation in risk premia solely stems from the time-varying

probability of a disaster. Hence, the bond VIX2s should have the ability to predict future

excess returns.

11



The habit formation model in Le, Singleton, and Dai (2010), henceforth LSD, is another

class of asset pricing models in which the bond VIX2s should explain the entire time variation

in risk premia. The model, based on Campbell and Cochrane (1999) and Wachter (2006),

uses the two assumptions in Proposition 1 to obtain affine pricing. By doing so, they specify

the market price of risk as a non-linear function of the states as in Duarte (2004) and, as a

result, the state variable follows a non-linear process under P. LSD shows that their model

approximately nests Wachter’s model and closely resembles its prominent features. In this

type of affineQ habit formation models with external habit level Ht, the consumption surplus

ratio st = log [(Ct −Ht) /Ct] is the sole source of time-varying risk premia since the shocks

on consumption growth (that drives the quantity of risk in the economy) are assumed to be

homoscedastic. Furthermore, the volatilities in yields are driven by the non-negative process

ϕt = smax − st where smax is the upper bound of st.6 Hence, the bond VIX2 is linear in

ϕt, the inverse consumption surplus ratio, and contains the full information on risk premia

through the reflection of the time-varying price of risk.

Motivated by the implication of Proposition 1 for the three classes of asset pricing

models, I examine whether the bond VIX2s explain time variation in expected bond excess

returns. To assess their predictive ability, I initially apply MA2 filters for the one-month

bond VIX2s (with 5yr, 10yr and 30yr bonds as underlying assets) constructed in Choi,

Mueller, and Vedolin (2016) with the aim of removing transitory shocks potentially due

to measurement errors and institutional effects (see, for example, Kim (2007)). Then, I

regress one-year holding period excess returns of bonds with different maturities onto the

space of the three (filtered) one-month bond VIX2, henceforth denoted as TIV2s following

Choi, Mueller, and Vedolin (2016). The projections indicate that, across all maturities,

the excess returns’ loadings on the TIV2s exhibit tent-shape pattern akin to the pattern

in Cochrane and Piazzesi (2005). Hence, in the spirit of Cochrane and Piazzesi (2005), I

construct a single factor by projecting the average (across maturity) excess returns onto the

three TIV2s:

rxt+12 = γ0 + γ1TIV
2
t,5yr + γ2TIV

2
t,10yr + γ3TIV

2
t,30yr + et

6Note that st is always negative.
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Table 1.1

Predictive Regressions

Panel A reports adjusted R2 from regressing twelve-month excess returns rx(n) of bonds with n
years to maturity on CP factor, CIV, and both. Panel B presents estimated coefficients from
predictive regressions from the mean of excess returns in Panel A onto CP factor or (and) CIV.
Standard errors are in parentheses and adjusted according to Newey and West (1987). Data is
monthly and runs from October 1990 to December 2007.

Panel A: Predictive Regressions and Adjusted R2s

Excess returns from Fama-Bliss data Excess returns from GSW data

CP CIV CIV&CP CP CIV CIV&CP
rx(2) 0.20 0.27 0.36 rx(2) 0.15 0.26 0.31
rx(3) 0.22 0.28 0.38 rx(4) 0.21 0.28 0.36
rx(4) 0.24 0.28 0.40 rx(6) 0.25 0.27 0.38
rx(5) 0.22 0.28 0.38 rx(8) 0.27 0.26 0.39

rx(10) 0.28 0.23 0.38

Panel B: Predictive Regression Coefficients

CIV CP adj R2

mean(FB rx) 0.53 0.28
(0.10)

mean(FB rx) 0.35 0.43 0.39
(0.10) (0.12)

mean(GSW rx) 0.52 0.27
(0.11)

mean(GSW rx) 0.38 0.39 0.39
(0.11) (0.12)

The time-series of the fitted values (henceforth, CIV) is the return-forecasting factor, and

is utilized to predict realized excess returns on each bond with maturity of n.

rx(n)
t+12 = b(n)0 + b(n)1

(
γ̂0 + γ̂1TIV

2
t,5yr + γ̂2TIV

2
t,10yr + γ̂3TIV

2
t,30yr

)
+ e(n)t

For comparison purposes, the Cochrane-Piazzesi return-forecasting factor (henceforth, CP)

is constructed by regressing mean excess returns onto the spreads of five Fama-Bliss forward

rates with maturities of 1 through 5 years as in Cochrane and Piazzesi (2008). Excess returns

from the Gürkaynak, Sack, and Wright (GSW) data set (with maturities of one through 10

years) are also utilized to assess excess returns on long-term bonds since the longest time-

to-maturity of yields in the Fama-Bliss (FB) data set is five years.

13



Corr(CIV,CP) =   0.34
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Figure 1.2. Excess Returns, CP and CIV

This figure plots the Cochrane-Piazzesi factor (CP ), CIV , and the average of twelve-month excess
returns on bonds with maturities of 1 through 10 years. Gray bars indicate NBER recessions, and
blue bars represent financial crisis periods. The data is monthly and runs from October 1990 to
December 2007.

Table 1.1 present adjusted R2s and coefficients from predictive regressions of twelve-

month bond excess returns on CP, CIV, and both CP and CIV jointly. Panel B shows

that, for both sets (FB and GSW) of excess returns, each estimated coefficient on CIV is

statistically significant during the sample period, and the variation in CIV explains more

than 20% of the variation in realized mean excess returns. Once CIV and CP are jointly

utilized, R2s increase more than 10 percentage points in addition to the statistical signifi-

cance of both coefficients. Panel A reports adjusted R2 from regressing each excess return

on the predictors, and it reveals that the predictability of the CIV stems mainly from excess

returns of bonds with short-term maturities while the predictability of the CP comes from

relatively long-term maturities. As a result, the adjusted R2s are improved significantly

once CIV and CP are utilized jointly to predict excess returns. Their joint significance can

also be observed in Figure 1.2 where the time-series of CIV, CP and the mean realized excess

returns from the GSW data set are plotted together. Between 1998 and 2002, for example,
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CIV and CP exhibit heterogeneous movements and can assist each other to explain the time

variation in the excess returns.

1.4 Variance Risk and the Shape of the Yield Curve

How does volatility risk affect the shape of the yield curve? Do yields strongly/weakly load

on volatility risk? Can we extract a reliable measure of interest rate volatility from the

cross-section of bonds? The first step to addressing these questions is to identify volatility

risk in a framework where volatility has a systematic impact on the yields across different

maturities.

The class of affine dynamic term structure models (henceforth, ADTSM) is a typical ex-

ample of such a framework, and has also served as the workhorse in the literature to assess

the impact of volatility risk on the cross-section of bond yields; ADTSMs are fully character-

ized by (i) the two assumptions in Proposition 1, (ii) the specification of the market price of

risk, and (iii) a set of parametric restrictions needed to identify the model. It is well estab-

lished that the affine models successfully capture the cross-sectional properties of yields; see

for example Dai and Singleton (2000). However, the ADTSMs’ ability to capture variation

in the volatility of interest rates is questionable and controversial, especially once volatility-

sensitive derivatives are not incorporated into the estimation procedure of the model. For

instance, using U.S. swap data only, Collin-Dufresne, Goldstein, and Jones (2009) show that

the model implied volatilities from affine models seem unrelated to their non-parametric or

semi-parametric counterparts (i.e. realized volatility estimates and GARCH estimates).

Because ADTSMs are built up on the two assumptions in Proposition 1, the bond VIX2s

directly represent variance risk in the model. In other words, the variance risk in ADTSM is

readily identifiable via the bond VIX2s as a consequence of Proposition 1. This identification

strategy is beneficial in several ways. First, it is based directly on option prices that tend to

be more sensitive to the changes in volatility than nominal bond prices. This is in line with

previous studies pointing out that the introduction of volatility-sensitive instruments into the

estimation procedure can significantly mitigate the difficulty in identifying volatility risk of

affine models; see, for example, Bibkov and Chernov (2009), Almeida, Graveline, and Joslin
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(2011), Jagannathan, Kaplin, and Sun (2003), and Joslin (2014). In addition, the approach

doesn’t require us to estimate a specific model, and allows variance risk to be measured in

real time. Furthermore, since the variance measure is constructed in a model-free manner,

the approach can be easily incorporated into the class of Gaussian quadratic term structure

models, as in Ahn, Dittmar, and Gallant (2002). In this case, Vt is a quadratic function of

the Gaussian state factors in the model 7 (See Appendix 3 for a detailed explanation).

Before estimating a fully-fledged model to analyze the impact of variance risk on the

cross-section of yields, I conduct two simple regression-based tests on the relationship be-

tween variance risk and the cross-section of yield. First, I examine the marginal impact

of the variance risk on the shape of the yield curve beyond the traditional term structure

factors: level, slope and curvature of the yield curve. The results suggest that variance risk

is largely unrelated to the shape of the yield curve and that at least three non-volatility

factors are required to adequately explain the cross-section of yields. The second test investi-

gates whether variance risk can be identified from the cross-section of yields: the unspanned

stochastic volatility (USV) effect in Collin-Dufresne and Goldstein (2002). The USV effect

can be or cannot be rejected, depending on the number of variance factors. The empiri-

cal evidence will be utilized as guidance for designing highly parameterized term structure

models in later sections.

1.4.1 The Shape of the Yield Curve and Vt

Provided that (i) the state follows affine diffusion and (ii) the short rate is an affine function

of the state, the yield on a zero-coupon bond of maturity n is affine in the state variable Zt:

yn,t = An

(
ΘQ
)
+ Bn

(
ΘQ
)
Zt (1.5)

where An and Bn are obtained from standard recursions as in Duffie and Kan (1996). The

linear relationship between yields and factors in equation (1.5) implies that yields can be

treated as state variables; given a set of maturities equal in number to the number of latent

factors, one can rotate the underlying factor into the yields (see for example Pearson and Sun

7For Gaussian quadratic term structure models, the short rate equation is a quadratic function of Gaus-
sian state vector. The conditional variance of yields is linear in the square of a subset of the state.
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(1994), Chen and Scott (1993) and Duffie and Kan (1996) among many others). One can

further rotate the risk factors into portfolios of yields, especially the principal component of

yields, Pt, as in Joslin, Singleton, and Zhu (2011) for example. As will be shown thoroughly

in Section 1.5, Proposition 1 enables us to rotate the latent risk factors into portfolio of

yields Pt and portfolio of options Vt

yot = A+ BZZt = A+ BPPt + BVVt + et, et ∼ N
(
0, σ2

eI
)

(1.6)

where yot denotes a vector of stacked observed yields and et represents measurement error

assumed to be an independent and homoscedastic Gaussian random variable (as commonly

assumed in the literature). Because all the variables in equation (1.5) can be observable,

the yields’ loading on the factors A, BP and BV can be estimated by linear regressions. The

estimated model, then, can be treated as a standard linear factor model nesting the no-

arbitrage affine models since A, BP and BV are non-linear functions of ΘQ under the affine

bond pricing models: see for example, Duffee (2011a), Hamilton and Wu (2012), Joslin and

Le (2014) and Joslin, Le, and Singleton (2013).

The marginal impact of the variance risk beyond traditional yield factors like level,

slope and curvature factors can be examined by comparing the likelihood of (1.6) with the

following restricted version of it:

yot = A∗ + B∗
PPt + e∗t , e∗t ∼ N

(
0, σ2

e∗I
)

(1.7)

Table 1.2 reports the test statistics of the likelihood ratio test for the hypothesis of the

zero coefficients on the additional variable in the unrestricted version. The first column

presents the right hand side variables in the restricted models where PC1-PC3 denotes the

first, second and third principal components of yields on U.S. Treasury nominal zero-coupon

bonds with maturities of six months and 1 through 10 years8. The remaining columns present

an additional variable in each version of the unrestricted model and its corresponding LR

statistics. VPC1 and VPC2 denotes the first and second principal components of the MA2

filtered 5, 10 and 30-year TIV2s as in Section 1.3. Each of VPC1 and VPC2 capture

8The yields with maturities of two to ten years are from Gürkaynak, Sack, and Wright (2007). The six-
month and one-year yields are bootstrapped from observed bond prices using the Fama-Bliss methodology.
My thanks to Anh Le for allowing me to use this data set.
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Table 1.2

Marginal Impact of Variance Risks onto the Shape of the Yield Curve

This table reports the test statistics of the likelihood ratio test. The first column presents the right
hand side variables in the restricted models: equation (1.7). The remaining columns present an
additional variable in each version of the unrestricted model and its corresponding LR statistics.
The last column shows the 5% critical value of the test statistics, which follows χ2 (11) distribution.
Data is monthly and runs from October 1990 to December 2007.

Restricted Model
Additional Variable in Unrestricted model
VPC1 VPC2 PC3 PC4 C.V.(5%)

PC1, PC2 4.2 14.2 5882.9 19.7
PC1, PC2, PC3 45.0 18.6 3678.7 19.7

respectively 94% and 5.6% of the variation in the three TIV2s. The last column shows the

5% critical value of the test statistics which follows χ2 (11) distribution. The table indicates

that for each version of the restricted model, its likelihood ratio is greatest when a yield

factor (PC3 or PC4) is the additional variable in the unrestricted model. In other words,

adding a PC factor to the restricted models is the best extension for the purpose of a better

cross-sectional fit. Moreover, for the unrestricted models with the variance factors as the

additional variables, the null can be rejected or not, but the magnitude of test statistics is

not very large, regardless of their statistical significance. Similar results are obtained once

two or three representative yields, instead of the yield PCs, are utilized as the right hand

side variables of the restricted models (the results are omitted in the paper for the sake of

brevity). In sum, the exercise indicates that the marginal benefit of adding variance factors

is fairly limited and it is hard to identify variance risk from the cross-section of yields.

The exercise also implies that it is empirically difficult to extend the estimation approach

of Hamilton and Wu (2012) into affine bond pricing models with stochastic volatilities.

They propose a minimum-chi-square estimation procedure of Gaussian ADTSM in which

the risk-neutral parameters of the model are inferred by minimizing the differences between

the ordinary least square (OLS) estimates of the cross-sectional equation (1.7) and the

corresponding yields’ loadings from Gaussian ADTSM. In theory, their approach can be

applied to equation (1.6) for the estimation of ADTSM with stochastic volatilities. However,

the limited impact of the variance risk on the shape of the yield curve causes difficulties in its
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empirical implementation. The OLS estimates of BV in equation (1.6) are not informative

enough to precisely pin down the risk-neutral parameters related to the volatility factors.

1.4.2 Unspanned Stochastic Volatility Effect

The difficulty of identifying volatility risk under ADTSM stems from the multiple roles of

volatility risk in the class of affine models. The volatility risk affects (i) the second moments

of yields, (ii) the expectation of future interest rates under both physical and risk-neutral

measures, and (iii) the so-called convexity effect introduced by the non-linear relationship

between bond prices and the latent factors. The various roles of volatility enables us to infer

it through multiple channels, but this feature causes tension rather than a complimentary

effect in identifying it (see Joslin and Le (2014) for a detailed explanation).

One potential resolution for the issue is to impose a set of model-based restrictions to

remove the dependence of the cross-section of yields on volatility, a set of restrictions coined

as an “unspanned stochastic volatility” (USV) restriction by Collin-Dufresne and Goldstein

(2002). More broadly, the USV effects mean that the yields curve itself fails to span the

volatilities in the changes in yields. In their seminar paper, Collin-Dufresne and Goldstein

(2002) define the USV effect as the existence of a set of parameters {φ1, ...,φN} that are not

all zero such that
N∑

i=1

φiBn,i = 0 ∀n > 0 (1.8)

where N is the number of pricing factors and Bn,i the i-th element of Bn in equation (1.5).

The authors further show that, under the existence of such a set of parameters with N ≥ 3,

one can find a rotation such that the variance factor Vt has no effect on the price of bonds.

As a consequence, the variance factor cannot be extracted from the cross-section of observed

yields (see Collin-Dufresne and Goldstein (2002), and Joslin (2015) for further details).

The following studies, however, have accumulated conflicting evidence on the USV effect.

Decoupling the dual role of volatility through the USV restrictions helps the model to

produce more realistic model-implied volatility, even though the model’s cross-sectional fit

is slightly impeded (see for example Creal and Wu (2015) and Collin-Dufresne, Goldstein,

and Jones (2009) among others). Andersen and Benzoni (2010) also show that their measure
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of intraday volatility in yields is largely unexplained by term structure factors, which is in

line with the USV effect. On the other hand, the USV effect is rejected once the model-

specific restrictions are directly tested by the likelihood-ratio or the Wald test (Bibkov and

Chernov (2009), Joslin (2015)). Utilizing the observable volatility proxy, I devise a new test

for the USV effects, which can shed new light on the debate.

The condition for the USV effect in equation (1.8) can be translated into the statement

that the matrix BZ ≡ [BP ,BV ] in equation (1.6) is not full rank, regardless the maturities

of the yields on the left hand side of the equation (see Appendix 5 for a formal derivation).

As a result, a statistical test for the rank of the estimated matrix B̂Z is a test of the USV

effect. The null hypothesis is

H0 : rank (BZ) ≤ N − 1 (1.9)

where N is the total number of factors. I use the Kleibergen-Paap rank test, among many

other rank tests. The test statistic follows χ2 distribution: for details, see Kleibergen and

Paap (2006).

The approach has several benefits not shared by other tests for the USV effect in the

literature. First, it is a formal statistical test - many of others in the literature are not formal

statistical tests as pointed out by Bibkov and Chernov (2009). Second, while Bibkov and

Chernov (2009) and Joslin (2015) conduct formal tests for the set of restrictions generating

the USV effect, the USV restrictions are not unique as pointed out by Joslin (2015). For

example, two different sets of restriction on the A1(4) specification can induce the USV

effect while the two models fit volatilities in significantly different manners; see for example

Creal and Wu (2015). The rank test that I posit here is free from this issue. Finally, the

test can be implemented even in the presence of hidden factors as in Duffee (2011b) or

Joslin, Priebsch, and Singleton (2014) - a detailed explanation of the hidden factors can

also be found in Section 1.6. The test only exploits the cross-sectional relationship between

the yields and variance factors, so the test results should be identical even after taking into

account hidden factors.

Table 1.3 reports the test statistics for specifications with one through two volatility

factors in conjunction with two through three additional non-volatility factors. Following

Dai and Singleton (2000), Am (N) denotes anN factor model withm factor driving volatility.
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Table 1.3

Tests for the USV effect

This table reports the test statistics of Kleibergen and Paap (2006) for the rank of the matrix BZ

in equation (1.6). The null of the test is equation (1.9). Data is monthly and runs from October
1990 to December 2007.

Specification Stat. d.f. C.V.(5%) p-val

A1 (3) 20.82 9 16.92 0.01
A1 (4) 20.72 8 15.51 0.01
A2 (4) 14.90 8 15.51 0.06
A2 (5) 14.89 7 14.07 0.04

The data set is the same as the one in Section 1.4.1, and the first m PCs of the MA2 filtered

TIV2s are used as the variance factors for Am (N) models. Specifications with up to two

volatility factors are considered for the exercise because the first two PCs of TIV2s explain

99% variation of the three TIV2s as pointed out in Section 1.4.1. The table shows that, for

all the specifications, the null (the presence of USV effects) is rejected at the 10% significance

level. Hence, the conditions for the affine models to generate USV effect do not hold in the

data.

In sum, it is true that variance risks are hard to identify from the cross-section of yields

as shown in Section 1.4.1, however, the knife-edge conditions for the USV effect are rejected

in the data. In other words, the variance risk is effectively unspanned by yields not because

of the USV restrictions but because of its limited impact on the shape of the yield curve,

and it can be hardly identified without help of option prices.

1.5 A New Representation of ADTSM

In this section, I suggest a new representation of ADTSM in which all factors are repre-

sented as portfolios of bonds and options. The representation inherits the spirit of Joslin,

Singleton, and Zhu (2011), and the advantages of their representation. Since all the term

structure factors (including volatility) are observable, the estimation procedure becomes

greatly simplified and economic interpretation of the model is more straightforward com-

pared to conventional latent factor approaches.
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For econometric identification, I initially assume that the risk-neutral dynamics of the

latent factor in equation (1.1) is drift normalized as in Joslin (2015) or Creal and Wu (2015).

The yield on a zero-coupon bond of maturity n is affine in the states Zt:

yn,t = An

(
ΘQ
)
+ Bn

(
ΘQ
)
Zt

where An and Bn are obtained from standard recursions as in Duffie and Kan (1996). I let

(n1, n2, ..., nJ) be the set of maturities of the bonds used in estimation and yt be the (J × 1)

vector of corresponding yields. For any full-rank matrix W ∈ R(N−m)×J , Wyt represents

the associated (N −m)-dimensional set of portfolios of J (≥ N) yields. Following Joslin,

Singleton, and Zhu (2011), I let Pt denote the first (N −m) principal components (PCs) of

J yields with W being the weighting matrix of the PCs:

Pt = Wyt = AW

(
ΘQ
)
+BW

(
ΘQ
)
Zt = AW

(
ΘQ
)
+BW,X

(
ΘQ
)
Xt +BW,V

(
ΘQ
)
Vt

Invoking Proposition 1, then, we can define the N observable pricing factors Zt such that

Zt ≡ (P ′
t,V ′

t)
′ =
(
(Wyt)

′ ,V ′
t

)′
= U0 + U1 (X

′
t, V

′
t )

′ (1.10)

where

U0 =

⎡

⎣ AW

α

⎤

⎦ , U1 =

⎡

⎣ BW,X BW,V

0m×(N−m) β

⎤

⎦

with α and β defined in Proposition 1. The dynamic of Zt can be represented as a function

of the observable factor Zt after applying the invariant rotation of Dai and Singleton (2002)

to the latent factor Zt. Provided that the mapping between Zt and Zt is bijective (i.e.

one-to-one mapping), the model with observable Zt is observationally equivalent to the

representation with the latent Zt. The sufficient condition for the mapping to be bijective is

a full rank matrix β. Once the Gaussian factor Xt is drift normalized, Joslin (2015) shows

that the matrix BW,X should be full rank. Hence, the first (N −m) columns of U1 are

linearly independent. With non-zero β, the last m columns of U1 are not spanned by the

first (N −m) columns of U1, which implies that a full rank matrix β guarantees U1 to be

not rank deficient.
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The new representation of ADTSM with the observable factors Zt in equation (1.10)

follows the idea of Joslin, Singleton, and Zhu (2011), henceforth JSZ, and can be considered

an extension of their work into general affine models. JSZ suggests a new representation

of Gaussian ADTSM in which all the Gaussian pricing factors are observable as portfolios

of yields, i.e. Pt in equation (1.10). Through their representation, the estimation of the

Gaussian term structure model is extremely simplified, and becomes more reliable in terms

of finding a global optimum in maximum likelihood estimation. In particular, simple or-

dinary least square estimation (OLS) can be utilized to estimate the P conditional mean

parameters of the pricing factors which had been treated as one of the most challenging

parts in estimating term structure models due to the high degree of persistence in yields.

In my representation, all pricing factors (including the variance risk), are observable. As

a consequence, one can make use of generalized least square estimation (GLS) to pin down

the drift of the pricing factor under P. Since variance is directly observational up to its

linear transformation via Vt, it is also easy to estimate the parameters governing the time-

series dynamics of Vt. In addition, when volatility risk is identified from the cross-section

of yields, one should solve a numerically unstable equation AX = b where A is often nearly

singular, with the possibility that the solution leads to negative values for volatility: see

for example Piazzesi (2010) and Joslin (2014). Instead, the representation I posit here is

unaffected by this issue. In sum, the representation helps us find the global optimum of

maximum likelihood estimation by simplifying the two hardest parts of the ADTSM with

stochastic volatility estimation, namely, the identification of volatility, as well as the drift

of the state under P.

The parameterization scheme using portfolios of yields as pricing factors for Am(N)

model is also explored in Joslin and Le (2014), where the variance factor in Am(N) is ap-

proximated by portfolios of yields. The model I posit here utilize portfolios of options rather

than portfolios of yields, and the variance factor is known before the model estimation while

their variance factors can only be identified after the model estimation. In addition, the

approach here is robust even in the presence of unspanned stochastic volatility factors as

in Section 1.4.2, while their approach only works for spanned stochastic volatility. Further-

more, as discussed extensively in their paper, extracting the variance factor from yields only
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(without options) results in undesirable properties in the factor dynamics under P - this

issue is discussed further in Section 1.7.2.

1.6 Unspanned Macro Risk and the Likelihood Function

More recently, a large literature has been studying so-called hidden factors or unspanned

macro factors, see e.g., Duffee (2011b), Chernov and Mueller (2012) and Joslin, Priebsch,

and Singleton (2014), henceforth JPS. A factor is described as hidden if it plays an important

role in determining investors’ expectations for future yields, yet is not priced in the fixed

income market. Hence, the hidden factor cannot be recovered from the cross-section of any

fixed income assets. This section explains how to take into account the hidden factor inside

the model described in the previous section.

Since all priced factors are observable due to the representation in the previous section,

the same argument as in JPS can be applied in order to add hidden factors in the framework.

Once both hidden and non-hidden factors are projected onto the space of fixed income asset

returns as in JPS, we get the following factor dynamics under the physical measure P and

the risk-neutral measure Q. First, the factors are composed of (i) the priced risks in the

fixed income market Zt = (P ′
t,Vt)

′ and (ii) a non-priced (hidden) factor Mt. In discrete

time setting, the dynamics of the non-variance factors, (P ′
t,Mt), can be represented as

⎡

⎣ Pt+1

Mt+1

⎤

⎦=

⎡

⎣ KP
0P

KP
0M

⎤

⎦+

⎡

⎣ KP
PP KP

PM

KP
MP KP

MM

⎤

⎦

⎡

⎣ Pt

Mt

⎤

⎦+

⎡

⎣ KP
PV

KP
MV

⎤

⎦Vt+

⎡

⎣ ΣPV

ΣMV

⎤

⎦ϵPV ,t+1+

⎡

⎣ ϵP,t+1

ϵM,t+1

⎤

⎦

(1.11)

with

(
ϵ′P,t+1, ϵ

′
M,t+1

)′ ∼ N (0,Σt)

Σt = Σ0 + Σ1 (Vt − α) (1.12)

ϵPV ,t+1 = Vt+1 −Et (Vt+1)

The variance factor Vt+1 follows a compound autoregressive gamma process

Vt+1|Vt ∼ CAR
(
ρP, cP, νP,α

)
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where cP is a scale parameter, νP is a shape parameter, and ρP determines the autocorrelation

of Vt. The lower bound of Vt is set α, contrary to the standard lower bound of zero for a

variance process. Indeed, the lower bound of the latent variance factor Vt should be set to

zero for econometric identification. Then, the linear relationship between the observable Vt

and the latent Vt, Vt = α+βVt with α
(
ΘQ
)
defined in Proposition 1, implies that Vt should

be greater than α. Furthermore, α should be positive since both α
(
ΘQ
)
and β

(
ΘQ
)
capture

the convexity components of yields - see equation (A-8) and Appendix 4.2 for details. The

non-zero lower bound of Vt also leads Σt in equation (1.12) to be Σ0+Σ1 (Vt − α) rather than

Σ0+Σ1Vt. For a detailed explanation of compound autoregressive processes, see Gourieroux

and Jasiak (2006), Le, Singleton, and Dai (2010) and Creal and Wu (2015).

Under the pricing measure Q, the dynamics of Zt are assumed to be

Pt+1 = KQ
0P +KQ

PPPt +KQ
PVVt + ΣPVϵ

Q
V ,t+1 + ϵP,t+1 (1.13)

Vt+1|Vt ∼ CAR
(
ρQ, cQ, νQ,α

)

Hence, the specification of the price of risks follows that in Cheridito, Filipović, and Kimmel

(2007), and yields can be represented as a linear function of (P ′
t,Vt)

′ where yields’ loadings

on the pricing factors are determined by ΘQ (see Appendix 4.1).

Furthermore, in order to maintain (i) the diffusion invariance property of the variance

process Vt and (ii) non-exploding market price of risk in the continuous time limit (see Ap-

pendix B.4 in Joslin and Le (2014) for explanations), I impose the following two restrictions

on parameters for Vt:

cP = cQ, νP = νQ

For the fitting of the cross-section, I assume that higher-order PCs, denoted by Pe,t, are

observed with i.i.d. uncorrelated Gaussian measurement errors with a common variance:

Po
e,t = Pe,t + et and et ∼ N

(
0, Iσ2

e

)

In sum, the likelihood function of the observed data, L, is

L =
∑

t

f (Pt+1,Mt+1|Vt+1, It) + f (Vt+1|Vt, It) + f (Pe,t+1|Pt+1,Vt+1)

25



where f denotes the log conditional density. The first two terms capture the density of the

time-series dynamics, and the last term is the density of the cross-sectional fit on which the

unspanned macro factors Mt have no impact. Particularly, the P-feedback matrix of Pt and

Mt can be concentrated out by running GLS of the following system:
⎡

⎣ Pt+1 − ΣPVϵPV ,t+1

Mt+1 − ΣMVϵPV ,t+1

⎤

⎦ =

⎡

⎣ KP
0P

KP
0M

⎤

⎦+

⎡

⎣ KP
PP KP

PM

KP
MP KP

MM

⎤

⎦

⎡

⎣ Pt

Mt

⎤

⎦+

⎡

⎣ KP
PV

KP
MV

⎤

⎦Vt+

⎡

⎣ ϵP,t+1

ϵM,t+1

⎤

⎦

The observable variance Vt can be either spanned by yields or unspanned (i.e. of the

unspanned stochastic volatility type as in Section 1.4.2). However, this does not affect the

estimation procedure, since the volatility factor is identified not via yields but via options,

even before the estimation procedure. In contrast, without the observable volatility factor,

one should choose a specific set of restrictions on the Q parameters (among many possible

set of restrictions), in order to estimate a model with unspanned stochastic volatilities.

Otherwise, the identification of the volatility factor is infeasible, because it has no effect on

the price of bonds.

In the term structure literature, both the unspanned stochastic volatility and hidden

factors have been considered important components driving the time variation in risk premia,

although their mechanisms are totally different. The effect of hidden factors on changes in

risk premia exactly cancels out its effect on expectations of future short rate while USV

implies a cancelation of the convexity bias. The USV factor can be identified from interest

rate derivatives while hidden factors cannot be identified from any financial instrument in the

market. To the best of my knowledge, my model is the first one capable of accommodating

both types of unspanned risks: the unspanned stochastic volatility factors as well as the

hidden factors.

1.7 Model Comparison

1.7.1 Model Specifications and Data

The discussion in Section 1.4 indicates that the variance risks’ explanatory power for the

cross-section of yield is fairly limited when it is compared to the explanatory power of the
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three term structure factors, level, slope and curvature. Under the representation in Section

1.5, this implies that at least three Gaussian factors are required to adequately explain the

shape of the yield curve. Hence, I study a model with three yield factors and one stochastic

volatility, which I denote by A1 (4) as in Section 1.4.2. Its corresponding specification with

two unspanned macro risks, denoted as UMA2
1 (6), is also investigated; UMAR

m (N) stands

for the family of ADTSMs in Section 1.6, with (P ′
t,M

′
t ,V ′

t)
′ of dimension N , Mt of dimension

R, and Vt of dimension m. Following JPS, I use measures of economic activity and inflation

as the two unspanned macro risks. In particular, the three-month moving average of the

Chicago Fed’s National Activity Index (CFNAI), henceforth denoted as GRO, is used as

the measure of the growth in real economic activity as in JPS. However, I use year-over-

year growth in Consumer Price Index excluding food prices and energy prices (henceforth,

CPI) for the measure of inflation, contrary to JPS in which the measure of inflation is the

expected rate of inflation from Blue Chip Financial Forecasts (henceforth, INF ).

Moreover, the same UMA2
1 (6) specification but with a different measure of economic ac-

tivity - the unemployment gap - is also studied. The unemployment gap (henceforth UGAP )

is the difference between the actual unemployment rate and the estimate of the natural rate

of unemployment from the Congressional Budget Office (CBO). Hence, it gauges the level of

economic activity rather than the growth of activity. Bauer and Rudebusch (2016), hence-

forth BR, argue that level indicators of activity such like UGAP are largely related to the

movement of the yield curves (i.e. weakly unspanned by yields) because these variables are

relevant for setting the short-term policy rates; the authors also point out that the em-

pirical monetary policy rules literature has identified level rather than growth variables as

those which are most important for determining monetary policy (e.g. Taylor (1993), Taylor

(1999), Orphanides (2003), Bean (2005) and Rudebusch (2006) among others). On the other

hand, measures of growth in economic activity such as GRO are largely uncorrelated with

the level of activity; see for example UGAP and GRO in Figure 1.3. Furthermore, BR show

that growth variables accompany low R2s when (i) they are projected onto term structure

factors or (ii) fed fund rates are regressed on them. Hence, they are strongly unspanned

by yields. The different spanning properties of UGAP and GRO induce significantly dif-

ferent estimates of risk premia for the UMA2
0 (5) models in BR. BR qualitatively assess
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Figure 1.3. UGAP, GRO and CPI

This figure plots the unemployment gap (UGAP ), the three-month moving average of the Chicago
Fed’s National Activity Index (GRO) and the year-over-year growth in Consumer Price Index,
excluding food prices and energy prices (CPI). Gray bars indicate NBER recessions. The data is
monthly and runs from October 1990 to December 2007.

the relevance of two different estimates of risk premia and claim that UGAP is a better

measure of economic activity. I access four unspanned models UMA2
0 (5) and UMA2

1 (6)

and evaluate their relevance based on whether they can match the pattern for violation of

the expectations hypothesis.

The yield data set is the same as that in Section 1.4, but I only use yields with maturities

of six months, 1 through 3 years, 5, 7, 9 and 10 years. As a measure of observable volatility,

I make use of the 30-year TIV.

1.7.2 The Campbell and Shiller Regression

The most well-known stylized fact in the fixed income market is the failure of the expecta-

tions hypothesis (see, for example, Fama and Bliss (1987) or Cambpell and Shiller (1991)

among many others). As pointed out by Dai and Singleton (2002), this prominent pat-

tern of return predictability can serve as a measure to access the goodness-of-fit of term
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structure models - one can investigate whether a model implied data-generating-process can

re-produce the observed pattern in the data. In this section, I assess the ability of each

model posited in Section 1.7.1 by comparing the extent to which each of them can match

the important stylized fact of bond yields. The investigation reveals that the identification

of a variance factor through the portfolio of options Vt strikingly enhances the models’ abil-

ity to reproduce important patterns in the data. Furthermore, it is shown that the usage of

different unspanned macro risks also determines the models’ ability to generate the stylized

fact. Hence, this property of models can serve as a useful guidance in selecting unspanned

macro risks.

The expectation hypothesis implies that the changes in yields are solely attributed to

the revision of future expected interest rates. As a result, high yield spreads should proceed

increases in long rates, and changes in risk premia play no role in determining the shape of

yield curves. One way of testing the expectations hypothesis is to regress realized changes

in yields onto yield spreads

yn−h,t+h − yn,t = φ(n)
0 + φ(n)

1

(
h

n− h
(yn,t − yh,t)

)
(1.14)

as in Cambpell and Shiller (1991). While φ(n)
1 should be one for n > h under the null, the

estimated φ(n)
1 ’s are typically negative and their magnitudes are increasing with n, i.e. for

longer yields maturities. Dai and Singleton (2002) named this property of linear projections

of yields as LPY, and suggested treating the projections as descriptive statistics that any

empirically desirable term structure model should replicate. They find that the population

coefficients φ(n)
1 implied by estimated Gaussian models closely match their data counterparts.

In contrast, the affine models with stochastic volatilities are not capable of generating this

pattern, and counter-factually imply that the expectations hypothesis nearly holds: φ(n)
1 ’s

typically stay close to one across all maturities. In other words, the affine models with

stochastic volatilities fail to match the key empirical relationship between expected returns

and the slope of the yields curve. However, Almeida, Graveline, and Joslin (2011) document

that the stochastic volatility models can be as good as Gaussian models in generating the

LPY property, once options data are incorporated into the estimation procedure.
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Table 1.4 reports the LPY property of each model. The stochastic volatility models with

or without unspanned macro risks outperform the corresponding Gaussian models - this is

in line with the findings in Almeida, Graveline, and Joslin (2011). The result first implies

that the observational variance risk is beneficial in explaining the time variation in risk

premia. Second, it indicates that the bond VIX is a properly identified measure of volatility

risk in the Treasury market. As pointed out in Joslin and Le (2014), φ(n)
1 in equation (1.14)

is mainly determined by the physical feedback matrix of factors. The population value of

φ(n)
1 is

φ(n)
1 =

(n− h)

h

(
Bn−h

(
KP

1Z

)h −Bn

)
Σ (Bn −Bh)

′

(Bn − Bh)Σ (Bn −Bh)
′ (1.15)

where Σ denote the unconditional covariance matrix of the time-series innovations and Bn is

the yield’s loadings on the observational factors Z = (P ′
t,M

′
t ,V ′

t)
′. The loadings are almost

identical across all the models - the variance factor’s marginal impact on the cross-section is

minimal as shown in Section 1.4, and the yield’s loadings on unspanned macro risks are zero

by construction. Since the covariance matrix Σ is in both the numerator and denominator of

equation (1.15), its impact cancels out. Hence, KP
1Z is the key that causes the variation in the

LPY property of each model. In the case of Gaussian models, the physical feedback matrix

of (P ′
t,M

′
t)

′ is estimated by OLS. Hence, the estimates should be biased if the conditional

volatility of Pt is time varying (which is strongly evident in the data). In the presence

of Vt, the bias of OLS estimates can be corrected because the physical feedback matrix of

(P ′
t,M

′
t)

′ is estimated by GLS. However, the correction works only if the the instrument of

conditional volatility can truly resemble the data generating process. The outperformance

provides evidence that the bond VIX is a well-identified measure of volatility risk in the

Treasury market.

Figure 1.4 plots the φ(n)
1 s fromA0 (3) andA1 (4) models where six-month changes in yields

are the dependent variables in the Campbell-Shiller regression. The φ(n)
1 s from corresponding

unspanned models, with GRO and CPI as the macro risks, are also displayed. They are

notably worse than the three factor Gaussian model, A0 (3). Figure 1.5 plots the same but

with UGAP as a measure of economic activity. Contrary to Figure 1.4, the unspanned

models’ performances are much improved, and it becomes even better than A0 (3) model

once the unspanned model incorporates the variance risk. Hence, the unemployment gap,
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Table 1.4

Campbell-Shiller Regressions

Panel A reports the coefficients φ(n)1 from the Campbell-Shiller regression in equation (1.14) with three month changes in yields as regressands.

GRO and CPI are used to estimate UMAR
m (N) models. Panel B reports the coefficients φ(n)1 from the Campbell-Shiller regression with

six month changes in yields as regressands. UGAP and CPI are used to estimate UMAR
m (N) models. Data is monthly and runs from

October 1990 to December 2007.

Panel A: Campbell-Shiller Regression with Three-month Changes in Yields

Specification Macro
Maturities

MSE
1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr

Data 0.40 -0.25 -0.67 -0.90 -1.03 -1.10 -1.15 -1.18 -1.20 -1.23 0.00
A0(3) 0.40 0.01 -0.23 -0.37 -0.46 -0.53 -0.59 -0.64 -0.69 -0.74 2.31
A1(4) 0.26 -0.29 -0.64 -0.84 -0.96 -1.07 -1.16 -1.25 -1.33 -1.41 0.09

UMA2
0(5) GRO,CPI 0.96 0.64 0.38 0.21 0.09 0.00 -0.06 -0.12 -0.17 -0.21 10.28

UMA2
1(6) GRO,CPI 0.96 0.60 0.27 0.04 -0.13 -0.25 -0.35 -0.43 -0.50 -0.57 6.45

UMA2
0(5) UGAP,CPI 0.56 0.16 -0.09 -0.25 -0.35 -0.42 -0.48 -0.54 -0.59 -0.64 3.44

UMA2
1(6) UGAP,CPI 0.33 -0.11 -0.40 -0.56 -0.67 -0.75 -0.83 -0.89 -0.96 -1.02 0.74

Panel B: Campbell-Shiller Regression with Six-month Changes in Yields

Specification Macro
Maturities

MSE
1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr

Data 0.34 -0.39 -0.78 -0.98 -1.10 -1.17 -1.23 -1.27 -1.31 -1.34 0.00
A0(3) 0.30 -0.03 -0.21 -0.30 -0.36 -0.41 -0.46 -0.50 -0.54 -0.59 4.36
A1(4) 0.13 -0.37 -0.64 -0.78 -0.87 -0.96 -1.03 -1.11 -1.19 -1.26 0.29

UMA2
0(5) GRO,CPI 1.11 0.84 0.62 0.47 0.36 0.27 0.21 0.15 0.10 0.06 18.41

UMA2
1(6) GRO,CPI 1.06 0.76 0.46 0.25 0.10 -0.01 -0.11 -0.18 -0.25 -0.31 12.29

UMA2
0(5) UGAP,CPI 0.48 0.13 -0.07 -0.18 -0.24 -0.28 -0.33 -0.36 -0.40 -0.43 6.25

UMA2
1(6) UGAP,CPI 0.23 -0.18 -0.40 -0.51 -0.58 -0.64 -0.69 -0.75 -0.80 -0.85 2.04
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Figure 1.4. Campbell-Shiller Regression

This figure plots the coefficients φ(n)1 from the Campbell-Shiller regression in equation (1.14) where
the left-hand side variable is changes in yields over six months. The models Am (N) are models
with N −m Gaussian factors and m factors driving volatility. The models UMAR

m (N) are models
with GRO and CPI as unspanned macro risks. Data is monthly and runs from October 1990 to
December 2007.

a policy factor, can be considered a more relevant measure of real economic activity than

GRO for a macro-finance term structure modeling. It also indicates that the impact of

unspanned risk might not be as prominent as asserted by JPS in which CFNAI is utilized

as a measure of output growth.

1.8 Risk Premia Accounting

This section studies the risk premia implied by UMA4
1 (6) with UGAP and CPI as un-

spanned macro risks9. The risk premia on the risk factor Pt are the difference between

the conditional expectation of Pt+1 from the physical dynamics of equation (1.11) and the

9Since both UGAP and CPI are weakly unspanned, the model also can be treated as a shortcut of a
spanned macro-finance term structure model as pointed out by Bauer and Rudebusch (2016).
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Figure 1.5. Campbell-Shiller Regression

This figure plots the coefficients φ(n)1 from the Campbell-Shiller regression in equation (1.14) where
the left-hand side variable is changes in yields over six months. The models Am (N) are models
with N −m Gaussian factors and m factors driving volatility. The models UMAR

m (N) are models
with UGAP and CPI as unspanned macro risks. Data is monthly and runs from October 1990 to
December 2007.

risk-neutral dynamics of equation (1.13). They are determined by the full set of the state

Z∗
t ≡ (P ′

t,M
′
t ,Vt)

′ rather than solely by pricing factors (P ′
t,Vt)

′:

EP
t (Pt+1)− EQ

t (Pt+1) =
[
KP

0P −KQ
0P

]
+
[ (

KP
1PP −KQ

1PP

)
KP

1PM

(
KP

1PV −KQ
1PV

) ]
Z∗

t

Furthermore, the risk premia on Pt are, to a first-order approximation, the scaled excess

returns on the yield portfolios whose value change locally one-to-one with changes in Pt. In

other words, the first row of EP
t (Pt+1)−EQ

t (Pt+1) is the scaled excess return on the factor

mimicking portfolio of PC1 while its value is unresponsive to changes in PC2, PC3, and

V (see Appendix 6 for a detailed explanation - it extends the similar analysis of JPS for

Gaussian unspanned models into affine models with stochastic volatilities.)
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Table 1.5

Risk Premia Parameters

This table presents the maximum likelihood estimation of the parameters Λ0 and Λ1 governing
expected excess returns on the PC-mimicking portfolios. Standard errors are given in parentheses.

P const PC1 PC2 PC3 UGAP CPI TIV 2
30yr

PC1 0 -0.636 -1.305 0 0 1.647 1.509
(0.213) (0.326) (0.650) (0.683)

PC2 -0.018 0 0 0 0 0.699 0
(0.007) (0.265)

PC3 0 0 0 0 0 0 0

Denoting these PC-mimicking portfolios as xPC = Λ0 + Λ1Z∗
t , I impose a set of zero

restrictions on Λ0 and Λ1 due to the concerns about over-parameterization caused by the

large number of parameters of the model (see, for example, Duffee (2010)). Furthermore,

the constraint is economically interpretable since all the factors are tradable portfolios and

macro variables. As pointed out by JPS (for their Gaussian models), no such model-free

interpretation is feasible with a latent factor model. To figure out an adequate set of zero

restrictions, I initially estimate the fully flexible version of a model in which no element

of Λ0 and Λ1 is constrained to be zero. Then, the elements of the first estimates without

statistical significance at 5% level are set as zero for the next step of estimation10. This

procedure is repeated until I find that every non-constrained element of Λ0 and Λ1 is sta-

tistically significant. Table 1.5 displays the resulting estimates of Λ0 and Λ1. It indicates

that exposure to both level and slope risks is priced, while exposure to curvature risk is not.

Increase in the level of uncertainty, Vt, induces higher expected return on the level mimick-

ing portfolio even though Vt’s impact on the cross-section of bonds is noticeably small as

expected from the exercises in Section 1.4: see Appendix 7 for a detailed description of the

risk-neutral parameters and cross-sectional fit of the model. Also, positive shocks on the

measure of inflation (CPI) raise the risk premia on both level and slope risks. On the other

hand, the level measure of economic activity, UGAP , does not contribute to the evolution

of risk premia at all. Its unspanned component provides no relevant information for the

10Asymptotic standard errors are computed by numerical approximation to the Hessian and using the
delta method.

34
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Figure 1.6. One-year Expected Excess Returns from MC

This figure plots the estimates of one-year simple expected excess returns from MC . The con-
straints on risk premia dynamics in Section 1.8 are imposed. The data is monthly and runs from
October 1990 to December 2007.

time-variation in risk premia, because UGAP is largely spanned by yield curve components

as documented in Bauer and Rudebusch (2016).

Figure 1.6 plots the estimates of one-year simple expected excess returns from the model

with constraints on Λ0 and Λ1 as in Table 1.5. Henceforth, this model is denoted as MC

. For comparison purposes, I also estimate the preferred model in JPS (henceforth, MJ).

Based on information criteria, they conduct model selection searches over Λ0 and Λ1 of

UMA2
0 (5) with GRO and Blue Chip inflation forecasts as unspanned macro risks. One-

year expected excess returns on 2-year and 10-year bonds from MC and MJ are plotted

in Figure 1.7. The term premia from MC peak early in the recovery or near the end of

the recession, and they are more volatile than the term premia from MJ , especially for

long-term bonds. For example, expected excess returns on a 10-year bond implied by MJ ,

Et

(
RX(10yr)

t→t+12|MJ

)
, is much less time-varying than the expected excess return from MC ,

Et

(
RX(10yr)

t→t+12|MC

)
. Table 1.6 reports R2s from projecting one-year realized excess returns

of n-year bonds onto their corresponding model implied expected excess returns from MC
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Figure 1.7. One-year Expected Excess Returns from MC and MJ

This figure plots the estimates of one-year simple expected excess returns from MC and MJ .
The constraints on risk premia dynamics in Section 1.8 are imposed to estimate each specification.
The data is monthly and runs from October 1990 to December 2007.

and MJ . Expected excess returns from MC explain, across all maturities, about 30% of

time variation in realized excess returns. On the other hand, MJ is particularly good at

capturing excess returns on short-term bonds, but its explanatory power diminishes along

long-term bonds.
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Table 1.6

Predictive Regressions

This table reports adjusted R2 from regressing twelve-month excess returns xr(n) of bonds with n
years to maturity on corresponding model implied expected excess returns.

Model Specification Macro
R2

1 year 5 year 7 year 10 year

MC UMA2
1(6) UGAP,CPI 0.26 0.28 0.29 0.30

MJ UMA2
0(5) GRO,CPI 0.38 0.22 0.18 0.14

The estimates of expected returns from June 2004 to June 2006 are of particular interest.

During this period, the Federal Open Market Committee raised the policy rates 25 basis

points for 17 consecutive meetings while the long-end of the yield curve remained relatively

constant. The puzzling behaviour of long-rates has been labeled as a “conundrum” by the

former Chairman Greenspan, and subsequent studies have attributed the phenomenon to

declining risk premia. A comparison of the top and bottom panels in Figure 1.7 indicates

that incorporating time-varying variance induces more a prominent reduction in risk premia

during the conundrum period. Moreover, Figure 1.6 and Figure 1.7 show that negative one-

year expected returns are associated with the conundrum period. The negative expected

bond return, especially implied by MC , has an interesting implication for the design of

structural asset pricing models. As shown in Martin (2015), any expected gross return RT

can be decomposed into

EP
t (RT − Rf,t) =

1

Rf,t
varQt (RT )− covt (MTRT , RT )

where MT is the pricing kernel that prices time T payoffs from the perspective of time

t. Hence, if Rsp
T is the return on the S&P 500 index and the second component of the

decomposition, covt (MTR
sp
T , Rsp

T ), is negative, then the risk-neutral variance of return,

1
Rf,t

varQt (Rsp
T ), gives the lower bound on the equity premium. Martin (2015) also argues

that covt (MTR
sp
T , Rsp

T ) of the equity index is negative in most of macro-finance asset pricing

models and estimates of covariance cov(MTR
sp
T , Rsp

T ) are negative across various sample

periods. As a consequence, the measure of the risk-neutral variance constructed from S&P

500 index options can serve as the lower bound on the equity premium. On the other hand,
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the negative expected bond returns from MC imply that covt
(
MC,TR

(n)
T , R(n)

T

)
for n-year

bond return R(n)
T can take a positive value even after explicitly incorporating varQt (RT )

into the stochastic discount factor. Hence, in a desirable equilibrium asset pricing model,

covt (MTRT , RT ) for bonds should be able to switch its sign while covt (MTRT , RT ) for the

equity market remains negative. Given a preference of representative agent, for example,

this condition gives a clue for the factor structure of the state. Alternatively, it can be

utilized to restrict the parameter space of an equilibrium model.

1.9 Conclusion

This paper studies the impact of variance risk in the Treasury market on both term premia

and the shape of the yield curve. Variance risk in the Treasury market can be observed via

a portfolio of options given the assumptions that (i) the state of the economy is determined

by a state variable following an affine diffusion process under the risk-neutral measure and

(ii) the drift of a pricing kernel is affine in the state variable. This unique approach for

the identification of variance risk in interest rates enables me to treat the bond VIX2 as a

measure of fixed income variance risk.

Using the observable proxy of variance risk, labeled bond VIX2, this paper first proposes

a novel return-forecasting factor. The return-forecasting factor is motivated by leading

consumption-based asset pricing models, the long-run risk, rare disaster, and affineQ habit

formation models. In these frameworks, the set of risk factors underlying variation in risk

premia is the sole source of time-varying variances in bond yields and should be captured

by the bond VIX2s. Projection of realized excess bond returns onto the space of VIX2s

gives a single return-forecasting factor that describes time-variation in the expected bond

returns. The return-forecasting factor predicts excess returns of relatively short-term bonds

well, and complements the Cochrane-Piazzesi factor.

Second, the observable measure of variance risk can be utilized to analyze the relationship

between variance risk and the shape of the yield curve in a simple and parsimonious way.

Its marginal impact on the cross-section of bonds is limited once I control for standard

term structure factors. Furthermore, the hypothesis of unspanned stochastic volatility can
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be directly assessed by testing the spanning conditions of affine models, and I find the

hypothesis is rejected. In sum, though the knife-edge conditions for USV effects do not hold

in the data, it is true that identifying variance risk from the yield curve movements is very

hard, and the variance risk can be effectively considered as unspanned risk.

Third, I propose a new representation of affine dynamic term structure models with time-

varying variance risks in yields. Due to the observable proxy of variance risk, affine bond

pricing models can be represented by observable and tradable factors. This simplifies the

estimation procedure significantly while the information in volatility-sensitive instruments

is readily incorporated. The estimated risk premia show that it is important to take into

account both types of unspanned risk: the unspanned stochastic volatility factor and the

hidden non-volatility factor.

39



Chapter 2

Asset Prices and Pricing Measures with Alternative
Investment Horizons

2.1 Introduction

Asset prices contain enormous amount of information about the stochastic discounting of

possible future states, the pricing kernel or the stochastic discount factor (henceforth, SDF).

For example, option prices can be utilized to extract the pricing kernel as in Äıt-Sahalia and

Lo (2000), Rosenberg and Engle (2002), and Ross (2015), among many others. Alternatively,

the lower bound for the variance of the SDF can be recovered from asset prices as in Hansen

and Jagannathan (1991). The prices of zero-coupon bonds also help to characterize the

properties of the SDF at multiple intermediate horizons: see Backus, Chernov, and Zin

(2014).

This paper also utilizes asset prices to identify the SDF, but I propose a particular

zero-cost trading strategy, named strategy-F, that distinctively reveals the information on

the dynamics of the pricing kernel. Through the strategy, the investor holds a long-term

bond by borrowing at a series of short term interest rates, and importantly the payoff

of the strategy mimics the Radon-Nikodym derivative between two pricing measures with

alternative investment horizons (for example, the risk-neutral measure and a T -forward

measure). The return on the strategy is hence characterized by the term structure of the

SDF (or the dynamics of the SDF), and as a result, imposes a distinctive restriction on the

set of admissible SDFs that price the strategy correctly.

I then incorporate the strategy-F into non-parametric estimation schemes for the SDF,

specifically the Hasen-Jagannathan pricing kernel in Hansen and Jagannathan (1991) and
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the information kernel in Ghosh, Julliard, and Taylor (2016b). The non-parametrically

estimated SDFs (henceforth, filtered SDFs) are then utilized to assess the benefit of the

strategy in identifying the underlying SDF. In particular, I first compare the cross-sectional

pricing abilities of the filtered SDFs with/without taking into account the strategy for their

estimation procedure. With respect to several alternative measures to evaluate the SDFs’

ability for the task, the SDFs characterized by the strategy-F (in conjunction with other

asset returns) are better than the corresponding SDFs estimated without the strategy-F.

Given that the validity of the strategy-F is supported by the cross-sectional asset pricing

exercises, I then assess the extent to which the strategy raises various lower bounds of asset

pricing models. In particular, I show that incorporating the strategy-F into the Euler

equation remarkably raises the Hansen-Jagannathan bound in Hansen and Jagannathan

(1991) and various entropy bounds in Ghosh, Julliard, and Taylor (2016b). That is, the

strategy-F helps to significantly tighten the space of admissible SDFs, and as a result it sets

a more stringent hurdle for the equilibrium models.

The paper proceeds as follows. Section 2.2 theoretically shows how the particular strat-

egy is related to the Radon-Nikodym derivative between the risk-neutral measure and a

forward measure, hence the dynamics of the pricing kernel. Section 2.3 argues how one can

incorporate the information from the strategy-F into non-parametric extraction of the pric-

ing kernel. Section 2.4 analyzes the estimated pricing kernel, and Section 2.5 assesses their

cross-sectional pricing abilities. Section 2.6 explores the new Hansen-Jagannathan bound

and the entropy bounds stemming from the strategy-F . Finally, Section 2.7 concludes. All

proofs are deferred to the Appendices.

2.2 Theory

Under the assumption of no arbitrage opportunity, there exists a positive pricing kernel

(also known as a stochastic discount factor), Mt,t+n, that satisfies

EP
t (Mt,t+nRt,t+n) = 1, (2.1)

for any positive time interval n, and any vector of returns Rt,t+n ∈ RN . Here, Rt,t+n is

the gross return on traded assets over the period t to t + n. The conditional expectation
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of Mt,t+n is denoted as P (n)
t which should be the date t price of a zero coupon bond with

maturity of n. Under weak regularity conditions, dividing both sides of equation (2.1) with

P (n)
t

EP
t

(
Mt,t+n

P (n)
t

Rt,t+n

)

=
1

P (n)
t

,

yields an expression for the Radon-Nikodym derivative of Q(n) with respect to P

dQ(n)

dP
=

Mt,t+n

EP
t (Mt,t+n)

(2.2)

where Q(n) is the pricing measure of which numeraire is P (n)
t . Equation (2.2) also gives us

a representation of the Radon-Nikodym derivative of Q(n) with respect to Q,

dQ(n)

dQ
=

dQ(n)

dP

dP

dQ
=

Mt,t+n

P (n)
t

P (1)
t

Mt,t+1
= Mt+1,t+n

P (s)
t

P (n)
t

, (2.3)

where Mt+1,t+n ≡
∏n−1

i=0 Mt+i,t+i+1. Equation (2.3) shows that, at time t, the upcoming

evolution of the pricing kernel from time t + 1 to time t + n,
∏n−1

i=0 Mt+i,t+i+1, is fully

reflected to the Radon-Nikodym derivative dQ(n)/dQ. Hence if we observe the realization of

dQ(n)/dQ, it can be an informative channel to infer the dynamics of the one-period pricing

kernel Mt,t+1. As pointed out by Backus, Chernov, and Zin (2014), the dynamics of the

pricing kernel Mt,t+1 convey important and useful information. The novel approach of this

paper is to utilize the fact that the realization of dQ(n)/dQ can be observed from the price

of zero coupon bonds (or zero coupon bond yields), because of the following equation:

1

P (n)
t

≡ EQ(n)

t (Rt+n) ≡ EQ
t

(
dQ(n)

dQ
Rt+n

)
= EQ

t

(∏n−1
i=0 P (1)

t+i

P (n)
t

Rt+n

)

In other words,
dQ(n)

dQ
=

∏n−1
i=0 P (1)

t+i

P (n)
t

(2.4)

which implies that dQ(n)/dQ is about the expected path of the pricing kernel and its realiza-

tion can be observed by the price of a one-period zero coupon bond (or the risk-free rate).

In addition, the logarithm of equation (2.4) gives a log return of the zero-costing strategy
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in which the investor holds a long-term bond by borrowing at a series of short-term interest

rates

ln
dQ(n)

dQ
= ny(n)t −

n−1∑

i=0

y(1)t+i.

The conditional expectation of the logarithm of dQ(n)/dQ is the term premium for the zero

bond P (n)
t . Hence, the Radon-Nikodym derivative dQ(n)/dQ is also closely related to term

premia in the term structure literature.

Note that the conditional expectation of the Radon-Nikodym derivative dQ(n)/dQ should

be 1 under the risk-neutral measure Q, and this implies1 the following restriction on the

pricing kernel Mt,t,+1

Et

[

Mt,t+1

(∏n−1
i=1 P (1)

t+i

P (n)
t

− 1

)]

= 0, (2.5)

which helps to identify the dynamic property of the pricing kernel. The vast literature

exploits the unconditional form of equation (2.1) to extract the stochastic discount factor

from asset prices in a model-free manner. On the other hand, this paper jointly utilizes the

unconditional version of equation (2.5) as well as equation (2.1) to construct the pricing

kernel from asset returns in a non-parametric way. In particular, I incorporate the two

restrictions into the extraction of (i) the Hansen-Jaganathan minimum variance kernel in

Hansen and Jagannathan (1991) and (ii) the information kernel in Ghosh, Julliard, and

Taylor (2016b). The approach that I posit here is that of unifying the information contents

of (i) measure of dispersion entropy bound and (ii) horizon dependence in Backus, Chernov,

and Zin (2014).

2.3 Methodology

Since the seminal work by Hansen and Jagannathan (1991), the literature has developed

approaches to extract a stochastic discount factor (hereafter, SDF) from a given set of asset

returns: for example, Ferson and Siegel (2003), Bekaert and Liu (2004), Chabi-Yo (2008)

1It is straightforward to show that

EQ
t

(
dQ(n)

dQ
− 1

)
= Et

[
dQ

dP

(
dQ(n)

dQ
− 1

)]
= Et

[
Mt,t+1

Et (Mt,t+1)

(∏n−1
i=1 P (1)

t+i

P (n)
t

− 1

)]

= 0,

and equation (2.5) comes from the last equality.
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and Ghosh, Julliard, and Taylor (2016b). This section first demonstrates how to incorporate

the theory in Section 2.2 into the Hansen-Jagannathan minimum variance kernel in Hansen

and Jagannathan (1991), and into the information kernel in Ghosh, Julliard, and Taylor

(2016b). It then compares their properties with/without the new restriction in Section 2.2.

2.3.1 Hansen-Jagannathan minimum variance kernel

The canonical Hansen-Jagannathan pricing kernel is the minimum variance pricing kernel

among admissible SDFs that perfectly price a given set of asset returns to construct it. More

formally, for a given value of E (Mt) = M , the Hansen-Jagannathan minimum variance

kernel is

MHJ
t ≡ argmin

{Mt(M)}T

t=1

V ar (Mt) s.t. EP (MtR
e
t ) = 0 (2.6)

where Re
t denotes a set of asset returns that defines the ‘admissibility’ of SDFs - among all

the SDFs that are orthogonal to Re
t , the canonical Hansen-Jagannathan kernel (henceforth,

I-SDF) is the one that achieves the smallest variance.

2.3.2 Information kernel in Ghosh, Julliard and Taylor (2016)

While the Hansen-Jagannathan minimum variance kernel minimizes the second moment de-

viation, the information kernel in Ghosh, Julliard, and Taylor (2016b) minimizes Kullback-

Leibler Information Criterion (KLIC) divergence between the physical and the risk-neutral

measure. More precisely, for each E (Mt) = M , their information kernel is

M I
t ≡ argmin

{Mt(M)}Tt=1

EP (Mt lnMt) s.t. EP (MtR
e
t ) = 0 (2.7)

Because of Mt

M
= dQ

dP , it is straightforward to show that the optimization in equation (2.7) is

equivalent to

argmin
Q

D (Q||P) = argmin
Q

∫
ln

(
dQ

dP

)
dQ s.t.

∫
Re

tdQ = 0

where D (A||B) ≡
∫
ln
(
dA
dB

)
dA ≡

∫
dA
dB ln

(
dA
dB

)
dB denotes the Kullback-Leibler Information

Criterion (KLIC) divergence between A and B (or the relative entropy of A with respect

to B). Hence, the information kernel (henceforth, I-SDF) is the minimum relative entropy
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(between the physical and the risk-neutral measure) among admissible SDFs that price Re
t

perfectly (or are orthogonal to the space of Re
t ).

2.3.3 Strategy-F

For ease of explanation, I refer to the strategy that mimics the evolution of the Radon-

Nikodym derivatives dQ(n)

dQ in equation (2.4) as ‘strategy-F’, and denote its excess return as

Fe
t :

Fe
t ≡

∏n−1
i=1 P (1)

t+i

P (n)
t

− 1 (2.8)

As argued in Section 2.2, Fe
t reveals the dynamics of the pricing kernel, and moreover it

is orthogonal to Mt: see equation (2.5). Hence, it can be readily incorporated into the

estimation procedure of the HJ-SDF and the I-SDF. The orthogonality of Mt with respect

to Fe
t implies

EP (MtF
e
t ) = 0, (2.9)

and the HJ-SDF and the I-SDF with the strategy-F can be respectively implemented by

MHJ,F
t ≡ argmin

{Mt(M)}T

t=1

V ar (Mt) s.t. EP (MtR
e
t ) = 0 and EP (MtF

e
t ) = 0

and

M I,F
t ≡ argmin

{Mt(M)}Tt=1

EP (Mt lnMt) s.t. EP (MtR
e
t ) = 0 and EP (MtF

e
t ) = 0

Thus, simply expanding the return space (to construct SDFs) from {Re
t |t = 1, ..., T} to

augmented {Re
t ,F

e
t |t = 1, ..., T} enables the filtered SDFs to explicitly take into account the

properties in the dynamics of the pricing kernel. In other words, the space of admissible

SDFs is tightened from {Re
t |t = 1, ..., T}⊥ to {Re

t ,F
e
t |t = 1, ..., T}⊥ in order to explain the

realization of dQ(n)

dQ in the data.

2.4 Pricing Kernels and Strategy-F

This section non-parametrically extracts real SDFs with/without strategy-F via the method-

ology in Hansen and Jagannathan (1991) and Ghosh, Julliard, and Taylor (2016b). Then,
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the impact of introducing strategy-F to the estimation procedure is examined. The re-

striction from strategy-F, i.e. EP (MtFe
t ) = 0, causes noticeable changes, especially the

persistency of filtered SDFs, and also increases the KLIC of information SDF.

2.4.1 Data

To construct real HJ-SDF and I-SDF, I utilize return space consisting of both excess returns

on zero-coupon bonds and several equity portfolios. In particular, 3 and 8 year bond returns

are calculated using the zero-coupon bond yields of Gürkaynak, Sack, and Wright (2007).

For the equity portfolios, I make use of the 6 size and book-to-market-equity sorted portfolios

of Fama-French, 10 industry-sorted portfolios, and 10 momentum sorted portfolios. The

data can be obtained from Kenneth French’s data library at a monthly frequency, and the

quarterly returns on these data are formed by compounding the monthly returns within each

quarter. Excess returns are then computed by subtracting the corresponding risk-free rate.

I use the three-month Treasury bill rate from the Center for Research in Security Prices

(CRSP) as a proxy for the risk-free rate, and the three-month rate is also used to form

the excess returns on strategy-F. The nominal returns are then converted into real returns

using the Consumer Price Index (CPI). I also set the holding-period of the strategy-F at two

years (hence, n in equation (2.8) is equal to 8 at a quarterly frequency). The data runs from

1963:1 to 2013:4 for the SDFs without strategy-F, whereas the period between 2014:1 and

2015:4 is covered for the SDFs with strategy-F in order to observe realized excess returns

on the strategy, Fe
t .

2.4.2 Estimated pricing kernels

Figure 2.1 plots the filtered kernels with/without incorporating the strategy-F into their

asset return spaces. Their levels are pinned down by matching their means to the average 3-

month T-Bill rate - the filtered time-series of HJ-SDF exhibits frequently observed negative

values due to this normalization. One can also observe more prominent spikes in the filtered

time-series after introducing the strategy-F into the asset return space.

Table 2.1 presents the summary statistics of the SDFs. The most noticeable difference

can be found in their first-order serial correlations, as the strategy-F conveys information on
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Figure 2.1. Filtered Pricing Kernels
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This figure plots the estimated HJ-SDFs and I-SDFs with/without the strategy-F i.e. with/without
the restriction in (2.9). Data is quarterly and runs from 1963:1 to 2015:4.

the dynamics of the SDF. Imposing the condition that an SDF perfectly prices the strategy-

F (i) induces the estimated SDF to switch the sign of their auto-correlation coefficients

from negative to positive numbers, and (ii) drastically increases the persistency of each HJ-

SDF and I-SDF. Second, the SDFs with the strategy-F are more volatile and more skewed,

while only the I-SDF becomes more heavy-tailed after reflecting the strategy-F. Finally,
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Table 2.1

Summary Statistics of Filtered Kernels

This table reports the summary statistics of filtered kernels. Data is quarterly and runs
from 1963:1 to 2015:4.

Strategy-F Mean Std Min Max Skew Kurt A.C. KLIC

HJ-SDF
No 0.99 0.83 -2.19 3.32 -0.21 3.75 -0.07
Yes 0.99 1.01 -2.67 3.66 -0.41 3.70 0.23

I-SDF
No 0.99 0.97 0.01 5.50 1.81 6.63 -0.09 0.40
Yes 0.99 1.32 0.00 7.01 2.14 8.03 0.15 0.70

the relative entropy of Q with respect to P becomes twice larger than before once equation

(2.9) is incorporated into the Euler equation.

2.5 Cross-Sectional Pricing

The summary statistics of the Hansen-Jagannathan minimum variance kernels and infor-

mation kernels in Table 2.1 exhibit noticeable differences once we take into account the

strategy-F. The difference itself cannot tell us much, and it matters only to the extent that

it has meaningful asset pricing implications. This section examines whether the differences

entail meaningful asset pricing implications, especially in the context of cross-sectional pric-

ing of asset returns. In other words, I assess the cross-sectional pricing performance of the

two pricing kernels before/after adding the strategy-F to the return space to construct the

SDFs2.

To this end, I use the two-step procedure of Fama and MacBeth (1973) to evaluate the

ability of each SDF in pricing the cross-section of asset returns. In the first step, I obtain

the factor loadings for the test assets from a time-series regression of the excess asset returns

on the pricing kernel:

Re
t = a+BMt + εt

2Note that the cross-sectional asset pricing ability of the I-SDF (without the strategy-F) is comprehen-
sively documented in Ghosh, Julliard, and Taylor (2016a)
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In the second step, the risk premium is estimated from a cross-sectional regression of the

average excess returns, ET (Re
t ) ∈ RN , on the estimated loadings B of the first stage regres-

sion:

µ = Xλ+ α = zι+Bγ + α, X ≡
[
ι B

]
, λ′ ≡

[
z γ

]
(2.10)

where ι denotes a conformable vector of ones, γ denotes a regression slope, and α is an N×1

vector of pricing errors. z is a scalar constant which should be zero once the zero beta rate

matches the average risk-free rate.

Following the critique of Lewellen, Nagel, and Shanken (2010), I make use of a mixed

cross-section of test assets to avoid a strong factor structure in test asset returns. In partic-

ular, I consider the 25 size and book-to-market-equity sorted portfolios, the 10 momentum-

sorted portfolios, and the 10 portfolios formed on long-term reversal, in addition to excess

returns on zero-coupon bonds with maturities of 2, 5, 7 and 9 years.

I report several measures of performance for the cross-sectional regressions based on the

suggestions of Lewellen, Nagel, and Shanken (2010), henceforth LNS. I first present the

standard ordinary least squares (OLS) cross-sectional adjusted R2 (henceforth R̄2
OLS) with

its associated confidence interval. I also report the generalized least squares (GLS) cross-

sectional adjusted R2 (henceforth R̄2
GLS). This measure represents a factor’s proximity to

the minimum-variance boundary and, hence, can be considered a more relevant measure

than OLS R2 to assess the factor’s ability to explain the risk-return opportunities (see

Lewellen, Nagel, and Shanken (2010) for details). The T 2 statistics in Shanken (1985) are

also reported. The statistics are a weighted sum of squared pricing errors and defined as

α̂′S+
α α̂ where S+

α is the pseudoinverse of the consistent estimates of the covariance matrix

of pricing errors - henceforth denoted as Σα. The pricing errors, α̂, has asymptotic variance

Σα = ψyΣy/T where y ≡ IN − X (X ′X)−1X ′ and Σ is the covariance matrix of the error

term, εt, in the first stage regression. Here, ψ =
(
1 + γ′Σ−1

f γ
)
is the multiplicative correction

in Shanken (1992) to reflect estimation error in B where Σf is the covariance matrix of risk

factors, hence the variance of the pricing kernel in the specific application here. The statistics

asymptotically follow χ2 with degrees of freedom N − K − 1. Finally, the quadratic, q ≡

α̂′ (yΣy)+ α̂, is presented. This measure shows how far factor mimicking portfolios are from

the mean-variance frontier - it assesses the difference between the maximum generalized
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Figure 2.2. The figures plot the average and expected returns on 10 long-term reversal
portfolios and bonds with maturities of 2, 5, 7 and 9 years. Expected returns and adjusted
R2s are from the GLS of the cross-sectional equation (2.10), and the factor for Panel B (A)
is the I-SDF (not) using the strategy-F for its construction.

squared Sharpe ratio on any portfolio and that attainable from a portfolio constructed by

the test assets that is maximally correlated with the SDF.

Panel A in Table 2.2 reports the cross-sectional pricing results when the test assets are

composed of the 25 Fama-French portfolios, the 10 momentum portfolios, and the 30 in-

dustry portfolios, in addition to the zero-coupon bonds with maturities of 2, 5, 7 and 9

years. The estimated price of risk in each SDF is strongly statistically significant with an

absolute value of the t-statistic (reported in parentheses) greater than 3, and the estimated

zero-beta rates are not statistically different from the observed average three-month Trea-

sury bill rate. However, with the strategy-F in their Euler equations, the price of risk in

each HJ-SDF and I-SDF is more than doubled. Put differently, the price of risk is signifi-

cantly underestimated when we do not take into account the dynamic property of an SDF.

Across all the considered measures of cross-sectional asset pricing performance, the filtered

SDFs with the strategy-F outperform the corresponding SDFs without the strategy-F. In

particular, the T 2 statistic shows that the models with the strategy-F are not rejected at

conventional significance levels, whereas the corresponding SDFs without the strategy-F are

rejected at the 5% significance level (p-values are reported in parentheses).
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Table 2.2

Cross-Sectional Regressions

Panel A reports the cross-sectional pricing ability of the HJ-SDFs and I-SDFs where the
cross-sectional test assets are the 25 size and book-to-market-equity sorted portfolios (25
FF), the 10 momentum-sorted portfolios (10 MOM), and the 30 industry portfolios (30
IND), in addition to excess returns on zero-coupon bonds with maturities of 2, 5, 7 and 9
years. Panel B also reports the cross-sectional pricing ability but with 10 long-term reversal
portfolios and 2, 5, 7 and 9-year zero-coupon bonds as test assets.

Panel A: 25 FF, 10 MOM, 30 IND Portfolios and Bonds

Kernel Strategy-F const. λ R̄2
OLS R̄2

GLS T 2 q

HJ-SDF

0.00 -0.65 0.84 0.43 104.61 0.83
No

(0.27) (-4.70) (0.00)
0.00 -0.97 0.86 0.53 74.12 0.69

Yes
(0.27) (-4.26) (0.26)

I-SDF

0.00 -0.85 0.78 0.41 98.62 0.85
No

(0.40) (-4.48) (0.01)
0.00 -1.60 0.85 0.54 55.41 0.67

Yes
(0.27) (-3.70) (0.84)

Panel B: 10 Long-term-reversal Portfolios and Bonds

Kernel Strategy-F const. λ R̄2
OLS R̄2

GLS T 2 q

HJ-SDF

0.00 -0.70 0.95 0.53 7.23 0.06
No

(0.02) (-2.02) (0.84)
0.00 -1.02 0.97 0.63 4.87 0.05

Yes
(0.10) (-1.88) (0.96)

I-SDF

-0.00 -1.00 0.94 0.50 6.44 0.06
No

(-0.12) (-1.82) (0.89)
-0.00 -1.85 0.96 0.75 2.21 0.03

Yes
(-0.02) (-1.53) (1.00)
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The flexibility of non-parametric approaches tends to accompany over-fitting problems.

Panel B in Table 2.2 investigates this issue by deploying fresh cross-sectional test assets

that are not utilized in the construction of the SDF. Note that, for the previous exercise,

the set of asset returns for the construction of the SDF is a subset of the test assets for the

cross-sectional tests (although it is a very small subset). For Panel B, I use the same SDF

as in Panel A, but instead run cross-sectional regressions both with the 10 portfolios formed

on the basis of long-term reversal and with the 2, 5, 7 and 9-year bonds (note that 3 and

8-year bond returns are employed to filter the SDF). All the SDFs do reasonably good jobs

with respect to all the measures of performance. However, the SDFs with the strategy-F

noticeably outperform the SDFs without the strategy-F in their Euler equations. That is

clearly demonstrated in Figure 2.2, where the average returns and expected returns fitted

by the GLS of the cross-sectional equation (2.10) are plotted.

2.6 Evaluation of Asset Pricing Models

Both the variance of the Hansen-Jagannathan SDF and the Kullback-Leibler Information

Criterion (KLIC) of the information SDF in Table 2.1 are significantly enlarged after incor-

porating the strategy-F into their Euler equations. This is in line with the observation in

Backus, Chernov, and Zin (2014) that a tension exists for standard structural asset pric-

ing models to explain the magnitude of risk premia and the dynamics of a pricing kernel

(summarized as the shape of the yield curve in their approach). The indicative increases

in the variance of the Hansen-Jagannathan SDF and the KLIC of the information SDF

demonstrate that the tension is pervasive even in the non-parametrically estimated SDFs.

Importantly, the strategy-F (which contains the information on the dynamics of the SDF)

helps to better identify the underlying SDF, in the sense that the average asset returns

are better explained by their covariance with the SDF embodying the strategy-F than by

the conventionally estimated SDFs in the absence of the strategy-F. Hence, adding the

return, Fe
t , to the return space (for the construction of the SDF) should be considered as an

important asset pricing constraint, rather than an artificial restriction to tighten the set of

admissible SDFs. In other words, this section assesses the extent to which the strategy-F in
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the Euler equation (i.e. the information on the dynamics of the SDF) affects various bounds

for the SDF.

To this end, I initially start with the definition of the famous Hansen-Jagannathan

bound (henceforth, HJ bound), in conjunction with the entropy bounds of SDFs in Ghosh,

Julliard, and Taylor (2016b) - henceforth GJT. It is well known that the HJ bound denotes

the variance of the HJ-SDF in equation (2.6). Similarly, the Q-bound in GJT is defined as

the KLIC of the I-SDF in equation (2.7) - hence, the KLICs in Table 2.1 are the Q bound

of I-SDFs with/without the strategy-F. GJT show that the HJ bound can be considered

a second-order approximation of the Q bound, which implies that the Q bound presents a

more stringent hurdle for the equilibrium models to be evaluated. GJT also propose two

additional entropy bounds based on the observation that a large class of equilibrium asset

pricing models can be decomposed into observable and unobservable components. More

precisely, most of the consumption-based asset pricing models can be factorized into two

components, i.e. Mt = m (θ, t)×ψt where m (θ, t) is a known function of observable variables

(mostly consumption growth) with the parameter vector θ, and an unobservable component

ψt. GJT define the following two entropy bounds for an SDF. M-bound is the KLIC between

m (θ, t)× ψt and the physical probability,

D

(
Mt

M̄
||P
)

≥ D

(
m (θ, t)ψ∗

t

m (θ, t)ψ∗
t

||P

)

,

where ψ∗
t solves equation (2.7). Similarly, their Ψ-bound sets the lower bound for the relative

entropy of ψt with respect to P,

D

(
ψt

ψt

||P
)

≥ D

(
ψ∗
t

ψ∗
t

||P
)
,

where ψ∗
t solves equation (2.7).

For the Consumption-CAPM (henceforth, C-CAPM) of Breeden (1979), Lucas (1978)

and Rubinstein (1976), the pricing kernel consists of observable components only. The

utility function is one with constant relative risk aversion and hence the SDF is specified as

Mt+1 = δ (Ct+1/Ct)
−γ
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(b) Entropy Bounds with the strategy-F

Figure 2.3. The figures plot the entropy bounds of C-CAPM with/without the strategy-F

where γ is the coefficient of relative aversion, δ denotes the subjective time discount factor,

and Ct+1/Ct is the real per capita aggregate consumption growth. The SDF itself is observ-

able given the value of the parameters, and its unobservable component is set as ψt = 1 for

all t. Hence, the entropy bounds for the C-CAPM provide useful benchmarks for more elab-

orate asset pricing models. More precisely, most recent developments in consumption-based

asset pricing models are about refining the constant ψt in the C-CAPM so that a new unob-

served component is time-varying and elucidates observed asset prices and macroeconomic

quantities - see for example Campbell and Cochrane (1999), Bansal and Yaron (2004), Men-

zly, Santos, and Veronesi (2004) and Piazzesi, Schneider, and Tuzel (2007), among many

others. Hence, the Ψ-bound of the C-CAPM designates what remains to be explained by

any SDFs with the form of Mt = m (θ, t) × ψt after taking into account the (observable)

consumption growth.

Figure 2.3 summarizes the Q, M and Ψ bounds for the C-CAPM: the same set of

asset returns in the previous two sections is used to calculate the entropy and HJ bounds,

especially in conjunction with the strategy F for Panel (b). Because the missing component

of the SDF, ψt, is a constant, its relative entropy is zero regardless of the value of the risk

aversion coefficient γ (see the green line with triangles). Hence, the model-implied SDF is

equivalent to the observable component m (θ, t) i.e. the consumption growth raised to power

in −γ, δ (Ct+1/Ct)
−γ . The black curve with circles shows the KLICs of the model implied
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SDF along with a different degree of risk aversion. In addition, the blue dotted curve and

the red solid curve represent, respectively, the relative entropy of the filtered SDF and its

missing component as a function of the risk aversion coefficient.

Panel (a) in the figure shows the entropy bounds and the KLICs of the C-CAMP implied

SDF without incorporating the strategy-F into the Euler equation. The model satisfies the

Q bound for γ ≥ 111 which corresponds to the intersection of the horizontal dash-dot black

line and the black curve with circles. The minimum value of γ required to satisfy the M

bound is 142, as shown by the intersection of the dotted blue line and the black curve

with circles. The Ψ bound is not satisfied for any value of γ since the model’s missing

component, ψt, is constant and is not affected by the value of γ. Finally, the HJ bound is

met for γ ≥ 89. After incorporating the strategy-F into the Euler equation as in equation

(2.9), then the Q, M and HJ increase up to 142, 174 and 101 respectively. The increases are

remarkable, especially given the size of test assets - the return space in the Euler equation,

i.e. {Re
t |t = 1, ..., T} in equation (2.7), consists of 28 assets (6 size and book-to-market

sorted portfolios, 10 industry portfolios, and 10 momentum portfolios, in addition to two

bonds). By adding one single return Fe
t (the excess return on the strategy-F) to the returns

space, remarkably tighter bounds on SDFs can be achieved. Put differently, the single

restriction on the SDF, EP (MtFe
t ) = 0, significantly refines the admissible space of Mt, and

the validity of the restriction is even supported by the cross-sectional implications as in

Section 2.5.

2.7 Conclusion

This paper utilize a particular zero-cost strategy to better identify the underlying SDF. The

strategy tracks the evolution of the Radon-Nikodym derivative between two pricing measures

with alternative investment horizons, hence reveal the characteristic of the dynamics of the

SDF.

Incorporating the strategy into the Euler equation significantly enhances the ability of

the non-parametrically filtered SDF to explain cross-sectional variation of expected asset

returns.
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Furthermore, the strategy remarkably tightens various lower bounds for the stochastic

discount factor, hence setting a more stringent hurdle for equilibrium asset pricing models.

Because the strategy-F is particularly informative about the term structure of the SDF,

the approach that I posit here is that of unifying the information contents of (i) measure of

dispersion entropy bound and (ii) horizon dependence in Backus, Chernov, and Zin (2014).
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Chapter 3

Bond Variance Risk Premiums

Markets for volatility derivatives have grown a lot over the last decade. Nowadays, in-

vestors have both exchange-traded and over-the-counter instruments available to hedge and

trade volatility in equity markets. While a plethora of research has focused on understand-

ing and pricing equity variance risk, the same risk is much less well understood in fixed

income markets.

In this paper, we propose the generalized Treasury variance swap (GTVS) which offers a

pure exposure to fixed income variance.1 We theoretically derive the fair value of the contract

and empirically document significant returns to variance trading in Treasury markets that

are comparable to those earned in the equity variance market. We quantitatively compare

our GTVS strategy to alternative volatility trading strategies based on fixed income options

that may not leave the investor with a clean volatility exposure. Calculating the variance

swap rate for various horizons, we obtain a term structure of Treasury implied variances

and ex post bond variance risk premiums. Finally, we show that the term structure of

Treasury implied variances is significantly related to economic activity and stress indicators

for financial markets.

The main contribution of this paper is twofold. First, we study the theoretical properties

of variance swaps in Treasury markets. Different from standard variance contracts, our

strategy is model-free and allows for stochastic interest rates. Variance swaps consist of two

legs: (i) a realized leg and (ii) the fair strike. The latter is defined as the strike that makes

the net present value of the swap equal to zero at initiation. Building on the pioneering

1Data is available from the authors’ webpages.
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work of Neuberger (1994) and Demeterfi, Derman, Kamal, and Zou (1999), we show that

the fair strike can easily be approximated using a portfolio of puts and calls. The way

we define the realized leg is crucial. For the generalized Treasury variance swap we use a

generalized measure of realized variance which allows for perfect replication of the contract

even in the presence of jumps (see Neuberger (2012) for an application in the equity market).

This property is particularly useful in face of the recent extreme events as standard variance

swaps (the log Treasury variance swap or LTVS) rely on squared log returns and are therefore

exposed to cubed returns, resulting in extremely inefficient hedges for investors.

Second, using a large panel data set of daily option prices on Treasury futures with

different tenors, we study the payoffs of the GTVS and the associated ex post variance

risk premiums, defined as the difference between the realized variance and the fair strike

or variance swap rate. Our main findings can be summarized as follows: Consistent with

the literature in the equity market we find that the variance risk premiums are negative

and economically large. The average excess returns for a strategy that shorts the variance

swap with a one-month maturity, independent of the tenor of the underlying, is around

20% per month (21.2% for the 30y Treasury futures (t-statistic of 8.98), 27.6% for the 10

year Treasury futures (t-statistic of 12.71) and 18.7% for the 5y Treasury futures (t-statistic

of 6.61), respectively) and the associated annual Sharpe ratio is just below two.2 Since

our theory is based on (European) options on forwards, we need to convert the (American)

options on futures to European options on forwards. We show that the adjustment is overall

very small, especially for options with maturities of less than one year.

Traditionally, the most common strategy to exploit variance is to invest in a delta-

hedged at-the-money straddle. A drawback of straddles compared to variance swaps is

that the sensitivity of the trading strategy with respect to volatility or variance is non-

linear. Moreover, the sensitivity to other factors is typically non-zero (volatility of volatility

effect). We find that trading a one-month delta-hedged at-the-money straddle generates

significantly smaller rewards compared to a position in a one-month variance swap over

our sample period: The average return on the 10y Treasury futures straddle is around −7%

2The excess return is calculated as a simple return, meaning it is the variance risk premium normalized
by the fair strike price or the implied variance.
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(with an associated t-statistic of 4.91) and the annualized Sharpe ratio is around 1.05, which

is about half in size compared to the GTVS.

We then study whether the alpha of these strategies can be explained by common factors

found to explain variance trading strategies. Not surprisingly, we find that the market return

explains very little of the excess returns on variance swaps. However, even if we include

a battery of additional factors such as size, book-to-market, or bond market liquidity, the

time-series variation of these risk premiums remains largely unexplained. Moreover, the

alpha of the variance swap strategy continues to be highly significant. For example, for the

30y Treasury futures, we find that the alpha is 26% per month, even when including all

controls.

As a by-product of our analysis, we construct the unconditional term structure of im-

plied variances and variance risk premiums. The unconditional variance risk premiums are

obtained as the unconditional average of the difference between the realized variance under

the physical measure and the expected variance under the risk-neutral measure. We find

that, on average and for all tenors, the term structure of implied variances is downward

sloping. The slope, defined as the difference between the implied variance of a one-year

and a one-month option is strongly pro-cyclical. During crisis periods, the slope becomes

extremely negative. Moreover, the slope has strong predictive power for future economic

growth and proxies of economic stress, especially at short horizons: A steeper slope predicts

higher growth or lower stress up to eight months ahead. When we add the slope of the term

structure of Treasury yields, which itself is considered a good predictor of future growth, we

find that the predictive power of the implied variance slope remains unchanged. Moreover,

at short horizons, the slope of the yield curve has no power at all.

The term structure of variance risk premiums is also downward sloping in absolute terms.

Expressed in monthly squared percent, the variance risk premiums for the 30y Treasury

futures are ranging from −4.9 for a ten-day horizon to essentially zero for the one-year

horizon. For 10y Treasury futures, the short- and longer-term variance risk premiums are

−3.1 and −0.4, while for the 5y Treasury futures they are −1.1 and −0.4, respectively.

Note that unlike the excess returns on the generalized Treasury variance swap, the variance
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risk premiums are not normalized by the implied variance and they are, thus, distinctly

increasing in the variance level (which is increasing in the underlying tenors).

We run different robustness checks to challenge our findings. First, one might be worried

about statistical significance as option returns are known to be non Gaussian. We therefore

use a studentized bootstrap to obtain confidence intervals on the means, alphas, and Sharpe

ratios of our trading strategies. We find all performance measures to be statistically different

from zero.

Second, we also study the impact of bid and ask spreads on the profitability of the

variance swap strategy and find that while average returns decrease by around 3%, shorting

variance is still a very attractive strategy: Annualized Sharpe ratios remain above one and

the alpha is highly significant.

Third, margin requirements limit the notional amount of capital that can be invested in

trading strategies. Moreover, large losses in a position can force investors out of a trade,

potentially at the worst possible time. Thus, in order to realistically assess the profitability

of our proposed variance swap trading strategy we take into account the impact of margins

on the realized returns. Earlier literature suggests that margin requirements can have an

economically significant effect when investors do not have access to unlimited capital when

the market is in a downturn. We confirm that there is a difference between average returns

for an unrestricted and a margined variance swap strategy but we find that average returns

and Sharpe ratios remain significant and economically large.

Fourth, we ask to what extent it matters how the variance swap is constructed. As men-

tioned, a perfect replication of the variance swap that is robust to jumps in the underlying

and the choice of the re-balancing frequency requires a particular definition to measure the

realized variance. This definition differs from the standard way to calculate realized vari-

ance, namely to use squared log returns. On average, we find that the payoffs of the GTVS

and those from a contract based on realized variance measured using log returns (LTVS)

are very similar. This stems from the fact that positive and negative jumps cancel each

other out. The devil is in the details, however. We show that whenever there are jumps in

the underlying, regardless of whether they are positive or negative, the returns to the two

trading strategies are distinctly different. Negative (positive) jumps render the payoff to the

60



LTVS larger (smaller) compared to the GTVS. More importantly, while the payoff to the

GTVS can still be perfectly hedged, this is no longer the case for the LTVS. This is in line

with the findings of Broadie and Jain (2008) who study variance swaps in the presence of

jumps in the equity index market and document that negative jumps have the most severe

impact on replication errors.

Finally, one might wonder whether it matters for the profitability of our trading strategies

whether we include crisis periods or not. Hence, a natural additional robustness check is to

study variance swap returns for different time periods. We confirm that trading strategies

that go short variance during periods that include the October 1987 crash or the height of

the credit crisis in August 2008 are still very profitable over time. Overall, we find almost

no quantitatively relevant differences across various sub-periods.

Related Literature: Our paper draws from the large literature on variance trading in

equity markets starting with the work of Dupire (1994) and Neuberger (1994). For example,

Carr and Wu (2009) use portfolios of options to approximate the value of the variance swap

rate for different stock indices and individual stocks. They then compare the synthetic

variance swap rates to the ex post realized variance to determine the size of the variance

risk premium. Wu (2010) estimates variance risk dynamics by combining the information in

realized variance estimators from high frequency returns and the VIX. Egloff, Leippold, and

Wu (2010) directly use variance swap quotes and study the term structure of variance swap

rates. Motivated by the recent financial crisis, much attention has been paid to the pricing

and hedging of equity variance swaps in the presence of jumps. Both Schneider (2015) and

Schneider and Trojani (2015) study tradeable properties of volatility risk, where the latter

focus on higher-order risk premiums attached to time-varying disaster risk.

Other papers investigate the term structure of variance risk premiums and prices in

the equity index market. Dew-Becker, Giglio, Le, and Rodriguez (2016) estimate an affine

term structure model using variance swap data and find that realized volatility is the only

priced risk factor which implies a term structure that is steeply negative at the short-end

but flat beyond a one-month maturity. They conclude that these stylized facts are hard

to reconcile within standard asset pricing models. Similarly, Andries, Eisenbach, Schmalz,

and Wang (2015) study the term structure of variance risk premiums and find that a model
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where investors feature horizon-dependent risk aversion matches the data well. Our paper

is different from this strand of the literature, as our approach is completely model-free and

we do not take a stand on the microfoundations.

We are not the first to explore variance contracts in fixed income markets. Trolle (2009)

estimates variance risk premiums in two ways: First, he estimates a dynamic term struc-

ture model that allows for unspanned stochastic volatility and, second, he corroborates his

findings using a model-independent approach similar to ours. Both approaches lead him to

the conclusion that the market price of variance risk is highly negative. While his focus is

on a dynamic portfolio choice problem which includes interest rate derivatives, his approach

also differs from ours as he derives the model-free variance risk premiums under different

assumptions. Furthermore, he does not study the term structure of variance risk premiums.

Trolle and Schwartz (2014) study variance and skewness across different swap maturities

and option tenors in the swaptions market. They find that both variance and skewness risk

premiums are negative and highly time-varying. The authors then propose a dynamic term

structure model that fits the dynamics of these risk premiums. We see our work compli-

mentary to theirs as our focus is on documenting empirical facts about a variance trading

strategy rather than asking what model is best suited to capture the dynamic behavior of

conditional swap rate moments. Recently, Cieslak and Povala (2016) study yield volatility

risk and suggest that investors willingness to pay large premiums to hedge volatility can be

linked to uncertainty about the future path of monetary policy.

In contemporaneous theoretical work, Mele and Obayashi (2013) explore variance con-

tracts on Treasury futures similar to ours. There are important differences, however. While

their fair strike is constructed in the same way than ours, their definition of the realized leg

is different as it is constructed using log returns. In our paper, we show that using realized

variance based on log returns leaves an exposure to cubed returns. This has important con-

sequences during periods where the underlying exhibits jumps. Moreover, we also conduct

an empirical analysis of the proposed contract while they are mainly interested in the the-

oretical derivation of the option-implied leg. Finally, Merener (2012) constructs a variance

strategy on forward swap rates and studies dynamic hedging strategies. He assumes that

the forward curve is flat which implies that the no-arbitrage condition is violated. In our
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setting, we study a variance contract where the underlying is a traded asset and derive ex-

plicit solutions for the hedge positions. Our assumptions are very general and, in particular,

we only assume that no-arbitrage holds.

Our paper is also related to Äıt-Sahalia, Karaman, and Mancini (2015) who estimate a

two-factor affine stochastic volatility model to study the term structure of variance swaps

in the equity index market. They show that the risk premiums contain a large jump risk

component, especially at short horizons. Filipović, Gourier, and Mancini (2015) propose a

quadratic term structure model for equity variance swaps. Using data on over-the-counter

variance swaps, they also find a downward sloping term structure of variance swap payoffs.

The findings in this paper are also related to Duarte, Longstaff, and Yu (2007) who

study risk and return for different fixed income arbitrage strategies featuring, among others,

a volatility trading strategy through delta-hedged caps. Depending on the cap maturity, the

(annualized) Sharpe ratios can be quite attractive, reaching 0.82 for a four-year maturity

cap. The difference between their study and ours is that their results depend on a particular

model. Hedge ratios to calculate the delta of caps are based on Black (1976). Our results are

model-independent, moreover, shorting delta-hedged caps leaves the investor with Gamma

exposure, similar to the straddle strategies that we consider as an alternative to the variance

swap.

The rest of the paper is organized as follows. Section 3.1 provides the expressions to

price variance swaps in Treasury futures markets and introduces the generalized Treasury

variance swap. Section 3.2 describes our data set, explains the calculation of the variance

risk premiums, and documents the term structures of implied volatilities and variance risk

premiums in the fixed income market. Section 3.3 outlines the construction of the various

trading strategies and presents the results of our empirical study, and Section 3.4 concludes.

The Appendix contains some proofs and derivations; a detailed description of data filters

and additional robustness checks are deferred to an Online Appendix.

63



3.1 Theory

This section theoretically derives the payoff of a variance swap in the Treasury bond mar-

ket. While the contract we propose is robust to jumps in the underlying, we start with

a standard contract that assumes a continuous process for the underlying before relaxing

this assumption to present our main result. The model-free implementation requires that

we use forward contracts instead of the futures that we have available in the data. Thus,

in the empirical implementation, we also show how to convert American options on futures

(as observed empirically) to European options on forwards (that are used in the theoretical

derivation). Quantitatively, we find the differences between the two types of options to be

negligible, especially for options with short maturities.

Variance swaps consist of two different legs: The floating leg (realized variance) and

the fixed leg (expected variance). The difference between the two is then the variance risk

premium (see, e.g., Carr and Wu (2009)). We fix the current time t = 0 and study contracts

which pay at some future date T . We denote by Ft,T the price of a forward contracted at

time t with maturity T on the underlying XT .

3.1.1 Log Treasury Variance Swap

To start, we assume that Ft,T follows a continuous process. By no-arbitrage, this implies

that the dynamics of Ft,T are
dFt,T

Ft,T
= σtdW

QT ,

where WQT is a standard Brownian motion under the T -forward measure QT and σt is the

instantaneous volatility.

A standard variance swap exchanges the realized variance defined as

RVlog
t,T :=

(
log

Ft+1,T

Ft,T

)2

+

(
log

Ft+2,T

Ft+1,T

)2

+ . . .+

(
log

FT,T

FT−1,T

)2

with some fair strike F̃t,T at maturity T . We assume that the realized variance is constructed

using some sampling partition T = [t0, t1, . . . , tn] with trading dates 0 = t0 < t1 < . . . <

tn = T . For a variance swap, the fair strike F̃t,T is chosen such that at initiation of the
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contract at time t no money is exchanged. Dupire (1994) and Neuberger (1994) define the

variance swap rate F̃t,T in terms of the expected payoff under the risk-neutral measure Q

from a so-called Log contract. To account for stochastic interest rates, we make use of the

QT measure

F̃t,T := −2EQT
t

[
log

FT,T

Ft,T

]
. (3.1)

We now want to derive an expression for Equation (3.1). Let us start with the fundamental

theorem of asset pricing, which implies that for any traded asset Xt

Xt

p(t, T )
= EQT

t [XT ] , (3.2)

where p(t, T ) is the price of a zero-coupon bond. Relation (3.2) holds in general and in

particular under stochastic interest rates. Consider now the payoff logFT,T . Using the

results in Carr and Madan (1998), we can write

logFT,T = logFt,T +
FT,T − Ft,T

Ft,T
−
∫ Ft,T

0

(K − FT,T )+

K2
dK −

∫ ∞

Ft,T

(FT,T −K)+

K2
dK.

Re-arranging yields that

−2(logFT,T−logFt,T ) = 2

(

−
FT,T − Ft,T

Ft,T
+

∫ Ft,T

0

(K − FT,T )+

K2
dK +

∫ ∞

Ft,T

(FT,T −K)+

K2
dK

)

.

The forward Ft,T is a QT -martingale.3 By taking QT expectations on both sides, we get

−2EQT
t [logFT,T − logFt,T ] = EQT

t

[∫ Ft,T

0

(K − FT,T )+

K2
dK +

∫ ∞

Ft,T

(FT,T −K)+

K2
dK

]

=
2

pt,T

(∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ ∞

Ft,T

Ct,T (K)

K2
dK

)

, (3.3)

3It is easy to see that

EQT

t [FT,T ] = EQT

t [ST ] = EQ
t

⎡

⎣
exp

(
−
∫ T

t
rsds

)

pt,T
ST

⎤

⎦ = Ft,T .
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where Pt,T (K) and Ct,T (K) are puts and calls, since by Equation (3.2)

Pt,T (K)

p(t, T )
= EQT

t

[
(K − FT,T )

+
]

Ct,T (K)

p(t, T )
= EQT

t

[
(FT,T −K)+

]
.

Hence, it follows that the Log contract can be written as a portfolio of puts and calls with

the same strike K and the same maturity T . To see that Equation (3.3) indeed represents

expected variance, note that by applying Itô’s Lemma, we get that

logFT,T − logFt,T = −
1

2

∫ T

t

σ2
udu+

∫ T

t

σudW
QT
u .

Note that our objective is to price a contract on forward volatility which is the same as

the volatility on futures. Forwards are martingales under the QT -measure while futures are

martingales under the risk-neutral measure. By Girsanov’s theorem, the volatilities are the

same while their drifts are not. We summarize our findings in a first Proposition.

Proposition 2. Assume that Ft,T is continuous. Then, the payoff
∫ T
t σ2

udu can be perfectly
replicated by a static position in

F̃t,T =
2

pt,T

(∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ ∞

Ft,T

Ct,T (K)

K2
dK

)

,

and a dynamic position in the underlying which at any time s ∈ [t, T ] holds 2
(

1
Fs,T

− 1
Ft,T

)
.

Hence,

F̃t,T = EQT
t

[∫ T

t

σ2
udu

]
.

Proof: See Appendix 8.

Equation (3.3) resembles the definition of the VIX but instead of deriving everything

under the risk-neutral measure, we derive it under the T -forward measure. This is important

as it allows for stochastic interest rates, which is needed since we want to study contracts in

the fixed income market. The VIX is in general referred to as being model-free, because we

have not made any assumption on Ft,T other than it being an Itô process. However, once
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we deviate from this assumption, i.e., once we allow for jumps, VIX2 is no longer the fair

strike of a variance swap. For example, Carr and Wu (2009) note that

EQT
t

[∫ T

t

σ2
udu

]
= VIX2

t + error from jumps.

Negative (positive) jumps induce an upward (downward) bias in VIX2. The sensitivity of

the standard variance swap presented in Proposition 2 has been extensively documented in

the literature, see for example Broadie and Jain (2008).

3.1.2 Generalized Treasury Variance Swap

We now proceed to relax the assumption that the underlying follows a continuous process.

Martin (2013) studies so called simple variance swaps which are robust to jumps. He

does this by altering the fair strike, F̃t,T . In the following, we are deviating from this

approach by changing the realized variance leg of the contract instead. The idea is that

rather than focussing on the unobservable quantity F̃t,T , we concentrate on the observed

realized variance. This closely follows Neuberger (2012) and Bondarenko (2014) who study

generalized variance swaps in the equity market. We extend their approach by allowing for

stochastic interest rates.

We define the generalized Treasury variance swap (GTVS) as an agreement to exchange

R̃V t,T = 2
T−t∑

i=1

(
Ft+i,T

Ft+i−1,T
− 1− log

Ft+i,T

Ft+i−1,T

)
, (3.4)

with the fair strike F̃t,T . At first sight, R̃V t,T may not look like a variance measure but it

turns out to be the same as realized variance computed from simple returns minus cubed

simple returns.4 This new measure of realized variance has the useful property that it allows

for a perfect replication of the variance contract for every price path and every partition.

We summarize our findings in the following Proposition.

Proposition 3. For any process Ft,T , the payoff R̃V t,T can be perfectly replicated by a static
position in

F̃t,T =
2

pt,T

(∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ ∞

Ft,T

Ct,T (K)

K2
dK

)

, (3.5)

4A formal derivation can be found in Appendix 9.
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and a dynamic position in the underlying, which at any time s ∈ T holds 2
(

1
Fs,T

− 1
Ft,T

)
.

Hence,

F̃t,T = EQT
t

[
R̃V t,T

]
.

Proof: See Appendix 8.

Hence, it follows that the replicating strategy for the realized variance consists of two

parts: First, a path-independent payoff from options and, second, a dynamic strategy in

the underlying. Note that we have not made any assumption about Ft,T or about the

frequency with which we re-balance the portfolio. Proposition 3 looks almost identical to

Proposition 2, and indeed, if Ft,T is continuous, both R̃V t,T and RVlog
t,T converge to

∫ T

t σ2
udu

as the partition goes to zero.

Note, however, that the results of Proposition 3 are valid under any partition T as long

as re-balancing in the underlying takes place on the same dates, t0, t1, . . . , tn. It, hence, does

not matter whether we sample R̃V t,T from daily, weekly, or monthly data as long as we re-

balance at the daily, weekly, or monthly frequency. The reason for this lies in the aggregation

property of the realized variance estimator given in Equation (3.4), see Neuberger (2012).

The aggregation property essentially tells us that for any real-valued function g, for any

martingale process Xt, for any measure M, and for any times 0 ≤ s ≤ t ≤ u ≤ T ,

EM
t [g(Xu −Xs)− g(Xu −Xt)− g(Xt −Xs)] = 0.

In other words, for any function g which satisfies this restriction and if Xt is the forward

price Ft,T—which we know is a martingale under the QT -measure—then the discretely-

sampled payoff
∑n

i=1 g(Fti,T − Fti−1,T ) has the same market price as the path-independent

time T payoff of g(FT,T −F0,T ). Thus, the realized variance which we calculate from higher

frequency future returns (daily) is an unbiased estimate of the lower frequency counterpart

(monthly). A priori, we do not expect the effect of discrete sampling to be large for pricing

(see Broadie and Jain (2008)), however, the aggregation property tells us that it is exactly

zero for the measure of realized variance that we propose.

Next, we implement the generalized Treasury variance swap introduced in Proposition

3 using a large panel of Treasury options data. We first outline how to convert American
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option prices on futures into European option prices on forwards that are needed to calculate

the model-free implied variance measure. We will also compare the payoffs of the GTVS

(Proposition 3) with those of the LTVS (Proposition 2).

3.2 Data and Measurement of Variance Swaps

In this section, we briefly introduce the data used in our analysis. We use futures and options

data to construct the bond variance swap payoffs. To put our results for the Treasury market

in perspective, we also calculate returns to variance trading strategies using S&P500 futures

and options. Before we can start, however, we need to account for two features of the data

that mainly affect the calculation of the fair strike. First, the observed options are written

on futures rather than on forwards as implied by our theoretical contracts in Propositions 2

and 3. Second, the futures options are American rather than European. Based on existing

evidence for the Eurodollar futures market, we expect both effects to be small. For example,

Flesaker (1993) and Cakici and Zhu (2001) show in the Eurodollar futures market that the

effect of having futures as the underlying as opposed to forward contracts is very small

especially for options with shorter maturities.

The data is available from October 1982, May 1985, and June 1990 to May 2012 for

the 30 year, 10 year, and 5 year Treasury bond futures and options, respectively. Using a

monthly frequency throughout the paper, we have at most 355, 325, and 264 observations

available, respectively. To make our trading strategies comparable, we present our baseline

results using a sample starting in June 1990.

3.2.1 Futures and Options Data

Treasury Futures and Options: To calculate implied and realized variance measures for

Treasury bonds, we use futures and options data from the Chicago Mercantile Exchange

(CME). For our benchmark results we use end-of-day price data for the 30-year Treasury
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bond futures, the 10- and 5-year Treasury notes futures, and end-of-day prices of options

written on the underlying futures, respectively.5

Treasury futures are traded electronically as well as by open outcry. While the quality

of electronic trading data is higher, the data only becomes available in August 2000. To

maximize our time span, we use data from electronic as well as pit trading sessions.

The contract months for the Treasury futures are the first three (30y Treasury futures)

or five (10y and 5y Treasury futures) consecutive contracts in the March, June, September,

and December quarterly cycle. This means that at any given point in time, up to five

contracts on the same underlying are traded. To get one time series, we roll the futures on

the 28th of the month preceding the contract month.

For options, the contract months are the first three consecutive months (two serial ex-

pirations and one quarterly expiration) plus the next two (30y futures) or four (10y and

5y futures) months in the March, June, September, and December quarterly cycle. Serials

exercise into the first nearby quarterly futures contract, quarterlies exercise into futures con-

tracts of the same delivery period. We roll our options data consistent with the procedure

applied to the futures.6

S&P500 Index Futures and Options: In line with our approach for Treasuries, we calculate

the implied and realized variance measures for the stock market using futures and options

on the S&P500 index from CME. The sample period is from January 1983 to May 2012.7

3.2.2 Differences between Futures and Forwards, and the Effect on Option

Options on Treasury and S&P500 index futures are American. We need to adjust for these

two features since Equation (3.5) is derived under the assumption that the options are

5We use settlement prices for both options and futures which do not suffer from stale trading or bid-ask
spreads. CME calculates settlement prices simultaneously for all options based on their last bid and ask.

6Detailed information about the contract specifications of Treasury futures and options can be found on
the CME website, www.cmegroup.com.

7We compare our results to the VIX and VXO measures that are calculated using options on the S&P500
cash index instead of S&P500 index futures. The VIX is the implied volatility calculated using a model-free
approach, whereas the VXO is calculated using the Black and Scholes (1973) implied volatility. The VIX is
available starting in January 1990 and the VXO is available since January 1986. Over the common sample
period, the VIX and our implied volatility measure from index futures options using the same methodology
have a correlation of over 99.4% and the root mean squared error is below 1%.
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European and written on forwards. In order to obtain implied volatilities from the available

option prices, we hence need a suitable model for the futures and American feature.

The approach we use closely follows Cakici and Zhu (2001) and is outlined in the Online

Appendix. In line with the results in Cakici and Zhu (2001), we find the adjustment from

American futures options to European forward options to be very small and never exceeding

two percent of the implied volatility level for all tenors and option maturities we consider.

For the 30y Treasury options the difference ranges between 0.60% and 0.91% of the price for

short-term and long-term options, respectively. For the 10y Treasury options, the average

differences range between 0.65% and 0.90%, and finally for 5y Treasury options they range

between 0.56% and 0.77%, respectively.8

3.2.3 Construction of Implied Volatility

In this section we show how to empirically calculate the fair strike of the variance swap at

time t with maturity T . In line with the equity literature, we report our benchmark results

for a horizon τ = T − t of one-month. However, we also consider a term structure using

horizons ranging from ten days to one year.

Before including an option in the calculation, we apply a set of filters to clean the data:

(i) We eliminate all data where either the futures or option price, the strike, the maturity, or

the open interest are equal to zero. (ii) We also delete data when option prices fail to pass

the no arbitrage boundary conditions.9 (iii) We eliminate deep in-the-money options, i.e.,

we eliminate calls if the strike is less than 0.94× Ft,T and puts if the strike is greater than

1.06 × Ft,T , where Ft,T is the underlying futures price. Thus, note that we do not restrict

ourselves to out-of-the-money options only. Using strike prices greater than 0.94× Ft,T for

calls or less than 1.06×Ft,T for puts means we still include some in-the-money and near-the-

money options. At each maturity, we then fit a spline for the available implied volatilities

against their corresponding strike prices and from the fitted spline, we obtain a fine grid of

implied volatilities. We then convert the grid of implied volatilities into European option

8To save space, we defer more detailed summary statistics to the Online Appendix.
9The boundary condition for the call options are Ct,T (K)−max (Ft,T −K)+ ≥ 0 and for the put options

it is Pt,T (K)−max (K − Ft,T )
+ ≥ 0.
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prices and numerically evaluate Equation (3.5) with daily options data on 30y, 10y, and 5y

Treasury futures, and the S&P500 futures adjusted for the forward/futures feature.

3.2.4 Construction of Realized Volatility

We now describe the construction of the realized variance measures used to calculate the

payoffs at maturity T to a generic variance swap that pays the difference between realized

variance and the strike F̃t,T .

Proposition 3 implies that the fair strike of the GTVS is given by F̃t,T irrespective of

the sampling partition and the underlying price process if we use the definition given in

Equation (3.4) for the realized variance leg, R̃V t,T . As variance swaps generally use a daily

sampling frequency, the benchmark results we report are based on daily data. In addition,

we also calculate the standard measure of realized variance, RV log
t,T , using daily log returns.

Note that the realized variance measures R̃V t,T and RV log
t,T are only observed ex post at

maturity T of the variance swap. For our benchmark horizon of one month and using a

daily sampling frequency, R̃V t,T and RV log
t,T are therefore based on the futures prices of the

previous 21 trading days. We use end-of-day prices measured at 14:00 CT in line with the

end of pit trading hours at the CME. In addition to the one-month horizon, we calculate a

term structure of realized variances ranging from ten days to one year (252 trading days)

to match the term structure of implied variances.

3.2.5 Summary Statistics and Variance Risk Premiums

Table 3.1 reports summary statistics of implied volatilities as described in Equation (3.5)

and Figure 3.1 provides a plot of the average implied volatilities. As it is custom in practice

to report volatilities, we present the square root of the annualized variances expressed in

percent.

We note that all term structures are downward sloping in the maturity dimension. For

30y (10y, 5y) Treasury options, average implied volatilities range from 11.8% (8.3%, 5.5%)

for the ten-day options to 9.9% (6.7%, 4.5%) for options with one-year to maturity. Hence,

along the tenor dimension, the term structure is upward sloping. The slope of the term
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Table 3.1

Summary Statistics Treasury Implied Volatilities

The table reports means, standard deviations, minima and maxima of annualized implied volatil-
ities for the three different tenors (30y, 10y, and 5y) and different maturities ranging from ten
days to one year. Volatilities are the square root of the implied variances extracted from daily
option prices using Equation (3.5). All numbers are annualized and expressed in percent. Data is
monthly and runs from June 1990 to May 2012.

maturity 10d 20d 1m 3m 6m 9m 12m

Panel A: 30y Treasury

mean 11.83 11.21 10.98 10.47 10.35 10.06 9.88
std 3.57 2.85 2.65 2.41 2.11 2.09 2.13
min 4.21 6.01 6.60 5.78 6.07 5.82 5.41
max 31.18 26.20 24.15 21.12 20.30 20.02 19.88

Panel B: 10y Treasury

mean 8.27 7.65 7.43 6.90 6.87 6.77 6.72
std 2.56 1.77 1.63 1.54 1.66 1.86 1.98
min 0.31 4.32 4.26 2.99 3.11 2.91 2.66
max 17.08 14.76 14.33 13.08 12.52 13.69 14.24

Panel C: 5y Treasury

mean 5.54 4.99 4.79 4.49 4.49 4.48 4.47
std 1.94 1.29 1.16 1.22 1.36 1.45 1.50
min 0.74 2.34 2.59 2.06 1.77 1.46 1.28
max 11.88 9.90 9.69 9.40 9.33 9.30 9.29

structure of implied variances, which we define as the difference between the implied variance

of a one-year option and a one-month option, is negative on average. The equity index

option literature finds both upward and downward-sloping implied volatility term structures

depending on the method used (see, e.g., Äıt-Sahalia, Karaman, and Mancini (2015)). Using

options on S&P500 futures, we find a slightly downward sloping term structure ranging

between 20.1% and 19.4%.

In analogy to the calculation of the equity risk premium, we call the difference between

the (ex post) realized and the implied variance in the variance swap the (unconditional)

variance risk premium. In line with this definition, we use the terms ex post or realized
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Figure 3.1. Term Structure of Implied Volatilities

The figure plots average implied volatilities for the three different tenors (30y, 10y, and 5y) and
different maturities ranging from ten days to one year. Volatilities are the square root of the implied
variances extracted from daily option prices using Equation (3.5). All numbers are annualized and
expressed in percent. Data is monthly and runs from June 1990 to May 2012.

variance risk premiums to describe the time-varying differences between the realized and the

implied variances.10 The realized variance measure is calculated by summing up daily data.11

We report average variance risk premiums in Table 3.2 together with the corresponding

Sharpe ratios for different subsamples. Panel A reports variance risk premiums for the

period June 1990 to May 2012 which is the time span for which we have available data for

all tenors. There are several noteworthy observations. First, variance risk premiums are

negative in line with expectations (investors are willing to pay a premium to be protected

against volatility spikes) and existing research for the equity market (with the sole exception

of 30y Treasury variance risk premiums for the one year horizon). Second, the downward

sloping implied volatility term structures imply an upward sloping term structure of the

10Note that we explicitly take an ex post view by focusing on realized variance which is in line with the
payoff traders face in a variance swap. Taking an ex ante view to study conditional variance risk premiums
requires to form expectations about variance using, for example, an econometric model. See, e.g., Mueller,
Sabtchevsky, Vedolin, and Whelan (2016) for an exploration of conditional variance risk premiums in the
stock and bond markets.

11For different maturities we sum up daily data over various horizons. The sample averages are then taken
over the whole sample. Regardless of the maturity, this is essentially the same as taking an unconditional
average of all daily values.
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ex post variance risk premiums. Given that the variance risk premiums are essentially

all negative on average, this of course means that in absolute terms, the term structure

of variance risk premiums is downward sloping. The same is true for the Sharpe ratios.

These declining Sharpe ratios are consistent with findings of van Binsbergen and Koijen

(2016), who document that Sharpe ratios in a range of markets (stocks, bonds, corporate

bonds, index straddles, and housing) decline with maturity.12 Third, the variance risk

premium term structures look very similar across tenors. In absolute terms, the variance

risk premium term structures are all downward sloping while the Sharpe ratios decline

almost monotonically with the horizon. At the same time, average variance risk premiums

increase with the tenor (again in absolute terms) and, for example, average 30y variance

risk premiums are always larger than the corresponding variance risk premiums for the 10y

and 5y tenors.

To check robustness of this pattern about the average shape of the term structure of

variance risk premiums, we examine term structures for different subsamples. Figure 3.2

plots the average variance risk premiums and Sharpe ratios for a sample that excludes the

financial crisis and ends in December 2007 (left panels) and a sample that starts in 2008

(right panels). We note that the variance risk premium surface looks very similar for both

subsamples. However, the slope across tenors becomes much steeper during the post crisis

period. For example, the difference between the ten-day variance risk premium on the 30y

and 5y Treasury futures is −3.17 during the pre-crisis period, but increases to −6.45 after

2007. At the other end of the maturity spectrum, for one year options, we find that the

difference between the variance risk premiums for 30y and 5y Treasury futures turns from

being negative during the pre-crisis period to a positive value after the crisis, implying that

while the 30y variance risk premium was more negative than the 5y variance risk premium in

the early sample, this relationship has been reversed since 2008. A similar pattern emerges

for Sharpe ratios which increase in absolute terms during the post-crisis periods, especially

for shorter horizons while the Sharpe ratios for longer horizons are now slightly smaller.

12Applying a hedging based method for swaptions with different maturities, Duyvesteyn and de Zwart
(2015) also find a downward sloping term structure of variance risk premiums in the swaptions market.
Similarly, Aı̈t-Sahalia, Karaman, and Mancini (2015) and Dew-Becker, Giglio, Le, and Rodriguez (2016)
also find that the term structure of variance risk premiums is downward sloping for the S&P500.
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Table 3.2

Term Structure of Variance Risk Premiums: Means and Sharpe Ratios

The table reports average variance risk premiums (mean) and average Sharpe ratios (SR) for the
three different tenors (30y, 10y, and 5y) and different maturities ranging from ten days to one
year. Variance risk premiums are computed by subtracting the implied variance as in Equation
(3.5) from the ex-post realized variance as in Equation (3.4). They are monthly and expressed in
squared percent. Sharpe ratios are calculated as the average variance risk premiums divided by
the corresponding standard deviation of the monthly variance risk premiums. Panel A reports the
results for the benchmarks sample period from June 1990 until May 2012 while Panel B shows the
corresponding numbers for the maximally available data set that goes back to October 1982, May
1985, and June 1990 for the respective tenors, 30y, 10y, and 5y. Data is sampled monthly.

maturity 10d 20d 1m 3m 6m 9m 12m

Panel A: June 1990 - May 2012

mean
30y -4.90 -3.22 -2.41 -1.35 -0.88 -0.32 0.08
10y -3.15 -1.81 -1.33 -0.61 -0.49 -0.46 -0.40
5y -1.08 -0.61 -0.44 -0.16 -0.25 -0.27 -0.37

SR
30y -0.81 -0.67 -0.51 -0.34 -0.23 -0.08 0.02
10y -0.94 -0.76 -0.69 -0.36 -0.25 -0.22 -0.18
5y -0.62 -0.48 -0.45 -0.19 -0.24 -0.25 -0.24

Panel B: all available data

mean
30y -6.82 -3.75 -2.84 -1.31 -0.56 0.18 0.66
10y -4.68 -2.46 -1.62 -0.52 -0.34 -0.26 -0.17
5y -1.08 -0.61 -0.44 -0.16 -0.25 -0.27 -0.37

SR
30y -0.64 -0.50 -0.45 -0.26 -0.12 0.04 0.15
10y -0.67 -0.54 -0.60 -0.23 -0.14 -0.10 -0.07
5y -0.62 -0.48 -0.45 -0.19 -0.24 -0.25 -0.24

Finally, we examine to what extent the implied variances across tenors and option hori-

zons are driven by a common set of factors. To this end, we perform a principal components

analysis (PCA) on monthly changes in the implied variances for the three tenors and hori-

zons ranging from ten days up to one year. We find that the first principal component (PC)

explains around 70% of the overall variation while the second PC accounts for an additional

15%. Since the third PC captures 5% of the overall variation, the first three PCs are suffi-
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Figure 3.2. Term Structure of Variance Risk Premiums and Sharpe Ratios

The figure plots average variance risk premiums (upper panels) and average Sharpe ratios (lower
panels) for the three different tenors (30y, 10y, and 5y) and different maturities ranging from ten
days to one year. The left side panels display the results for the pre-crisis period from June 1990
until December 2007 while the right side panels show the corresponding numbers for the crisis
and post-crisis period from January 2008 to May 2012. Variance risk premiums are computed
by subtracting the implied variance as in Equation (3.5) from the ex-post realized variance as in
Equation (3.4), and then expressed in squared percent after scaling them to monthly measures.
Sharpe ratios are calculated as the average variance risk premiums divided by the corresponding
standard deviation of the variance risk premiums. Data is monthly and runs from June 1990 to
May 2012.

cient to explain almost 90% of the variation across tenors and for all horizons.13 Figure 3.3

13This is in line with results for the swaptions implied volatility surface reported in Trolle and Schwartz
(2014).
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plots the factor loadings on the implied variance surface for the first two PCs. The first PC

acts as a level factor, having a roughly uniform impact on implied variances for all tenors and

option maturities. On the other hand, the second PC acts as a slope factor, having a more

prominent impact on long-horizon variances and monotonically decreasing loadings across

tenors. To summarize, only a small number of factors is needed to capture the variation

in implied variances across tenors and option maturities, and the factors present the usual

level and slope effects as in other asset classes (see, for example, Litterman and Scheinkman

(1991) and Lustig, Roussanov, and Verdelhan (2011)).
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Figure 3.3. Factor Loadings on (Standardized) Implied Variances

The figure plots the factor loading of the first (left panel) and second (right panel) principal
component of implied variances as in Equation (3.5) across the three tenors (5y, 10y and 30y)
and for maturities ranging between ten days and one year. The loadings are constructed from
the eigenvectors corresponding to the two largest eigenvalues of the correlation matrix of monthly
changes in implied variances. Data is monthly and runs from June 1990 to May 2012.

3.3 Empirics

In this section, we evaluate different variance trading strategies using fixed income options.

We first present summary statistics for the variance swap as well as straddles, which also

provide exposure to variance risk. Our findings reveal that trading variance in fixed income
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markets is attractive even if we condition on other risk factors. We further benchmark our

results for the fixed income markets against those realized by trading variance in the equity

index market using options on S&P500 futures. As it is well established that variance trading

in the equity market has been popular and profitable over the last decade, comparing the

returns from the Treasury and equity market helps to put our novel results into perspective.

3.3.1 Trading Strategies

First, we study returns to a strategy based on our generalized Treasury variance swap which

are calculated as follows

rGTV S
t,T =

R̃V t,T

EQT
t

[
R̃V t,T

] − 1, (3.6)

where T is the maturity of the contract, R̃V t,T is the realized variance as defined in Equa-

tion (3.4) and the denominator is given by Equation (3.5). This means that the return is

the ex post variance risk premium scaled by the fair strike price. At the same time, this

is the excess returns to a fully collateralized long position in the variance swap that posts

EQT
t

[
R̃V t,T

]
dollars of collateral and receives R̃V t,T at expiration plus interest on the col-

lateral. Alternatively, one can label what we define as the realized variance risk premium

the realized excess return on a unit position in the variance swap, whereas Equation (3.6)

represents the scaled version thereof. However, we prefer the term “ex post variance risk

premium” to highlight the fact that our main object of interest is the realized quantity of

the ex ante variance risk premium that the literature generally focuses on.

We then compare these returns to those of two standard volatility trading strategies

using straddles. First, we consider an at-the-money straddle, a classical position for getting

exposure to volatility. Unfortunately, such a position loses sensitivity to volatility as the

underlying moves away from the strike. To this end, in addition to an unhedged straddle,

we also consider a delta-hedged position. Coval and Shumway (2001) and Santa-Clara and

Saretto (2009) show that trading in straddles yields very attractive (annualized) Sharpe

ratios above one for options on the S&P500 index futures.

To calculate the delta-hedged returns, we proceed as follows. Each month, we simulta-

neously purchase an at-the-money call and put option with 30 days to expiration (or the

79



closest to 30 days). We track the path of the straddle until its expiration date and on a daily

basis we go long or short the corresponding underlying future such that the whole position

becomes delta-neutral at the end of each day. Denoting the delta of a straddle on a given

date t as ∆S,t, the accumulated profit and loss from this hedging activity can be written as:

T∑

i=t

−∆S,i−1 (Fi,T − Fi−1,T ) .

Hence, hold to expiration returns of the delta-hedged straddle strategy are defined as:

r∆S
t,T =

(K − FT,T )
+ + (FT,T −K)+ −

∑T
i=t ∆S,i−1 (Fi,T − Fi−1,T )

Pt,T (K) + Ct,T (K)
− 1. (3.7)

Summary Statistics

Table 3.3 reports summary statistics of the trading strategies together with different per-

formance measures, the Sharpe ratio and Jensen’s alpha. Note that while Equation (3.6) is

defined for an arbitrary maturity T − t we focus on the one-month horizon in line with the

sampling frequency for our benchmark results. Hence, in what follows we study one-month

excess returns on one-month variance swaps only. To calculate the alpha, we employ two

different market indices depending on whether we use Treasury or equity options, respec-

tively. The market return for the options on the S&P500 futures is the value weighted

excess return on all stocks in CRSP and for the bond options, we use the total return on

the Barclays US Treasury bond index available from Datastream.

Panel A summarizes the annualized returns on the generalized Treasury variance swap,

our main object of interest. We note that shorting a variance swap produces a monthly

average return of around 20% for options on 30y, 10y, and 5y Treasury futures. All average

returns are highly significantly different from zero as indicated by the t-statistics which range

between 6.61 for the 5y and 12.71 for the 10y futures. The volatilities of the variance swap

trading strategies are relatively small, leading to annualized Sharpe ratios ranging between

1.4 for the 5y and 2.7 for the 10y Treasury futures, respectively.14 The associated alphas

are only marginally smaller than the average returns ranging between between 18% and

27% and, hence, the market return does not explain the variance swap returns at all. Trolle

14Note that the tables report monthly Sharpe ratios.
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Table 3.3

Summary Statistics Option Trading Strategies

This table reports monthly summary statistics for one-month returns on three different trading
strategies described in Section 3.3.1: mean, standard deviation, maximum, skewness, kurtosis,
Sharpe ratio (SR), and alpha. Panel A presents the summary statistics of monthly returns on
the generalized Treasury variance swap defined in Equation (3.6) across three tenors (5y, 10y and
30y) and with a maturity T − t = 1 month. Panel B and Panel C report the summary statistics
of monthly returns on un-hedged or delta-hedged at-the-money straddles with a maturity of one
month, respectively. The delta-hedged straddle return is defined in Equation (3.7). The un-
hedged return is the same but without the accumulated profit and loss from the hedging activity,
i.e.,

∑T
i=t−∆S,i−1 (Fi,T − Fi−1,T ) in Equation (3.7). In addition, we also report the corresponding

summary statistics for the trading strategies using options on S&P500 index futures. t-Statistics
reported in parentheses are adjusted according to Newey and West (1987). Data is sampled
monthly and runs from June 1990 to May 2012.

Panel A: Variance Swap

mean t-stat std max skew kurt SR alpha t-stat
30y -0.212 (-8.98) 0.382 2.167 2.128 7.805 -0.554 -0.202 (-8.54)
10y -0.276 (-12.71) 0.353 2.123 1.893 8.104 -0.784 -0.270 (-11.14)
5y -0.187 (-6.61) 0.460 2.313 2.191 7.857 -0.407 -0.181 (-5.39)
S&P500 -0.314 (-9.40) 0.542 4.182 3.711 21.634 -0.580 -0.279 (-7.33)

Panel B: Straddles not hedged

mean t-stat std max skew kurt SR alpha t-stat
30y 0.007 (0.17) 0.710 2.409 0.912 3.723 0.011 0.005 (0.10)
10y -0.019 (-0.42) 0.724 4.097 1.227 6.461 -0.026 -0.018 (-0.36)
5y 0.033 (0.70) 0.758 4.340 1.365 6.876 0.044 0.023 (0.45)
S&P500 -0.125 (-2.95) 0.686 2.895 1.379 5.607 -0.182 -0.150 (-3.22)

Panel C: Straddles hedged

mean t-stat std max skew kurt SR alpha t-stat
30y -0.034 (-2.47) 0.219 1.167 0.831 6.614 -0.153 -0.034 (-2.19)
10y -0.070 (-4.91) 0.231 0.711 0.146 3.287 -0.304 -0.069 (-4.31)
5y -0.045 (-2.99) 0.244 0.815 0.366 3.611 -0.185 -0.042 (-2.53)
S&P500 -0.075 (-4.11) 0.296 1.421 1.599 7.537 -0.254 -0.081 (-4.04)

and Schwartz (2014) study variance swaps in the swaptions market and report even higher

average returns ranging between 44% and up to 66% per month. The associated volatilities

are considerably higher than in the Treasury options market, so the Sharpe ratios they

find are in line with ours. The returns to shorting a variance swap are negatively skewed

and exhibit excess kurtosis, however, the values are comparable to the strategies based on

81



straddles. Trading a variance swap on the S&P500 index futures is similarly attractive:

The return is 31% per month, with an annualized Sharpe ratio of two. However, the reward

comes with some additional risk as the strategy has much fatter tails with a kurtosis as high

as 22.

Panel B reports the summary statistics for at-the-money (ATM) straddles without tak-

ing a position in the underlying futures. The average returns are much smaller than for the

variance swap strategy. In fact, shorting an ATM straddle with options written on Treasury

futures produces an average return close to, and not significantly different from, zero. Sim-

ilarly, we also find the strategies’ alpha to be insignificant. Moreover, the associated risk as

proxied by the volatility is more than 50% higher compared to the variance swap strategies.

Panel C in Table 3.3 presents the results for the delta-hedged straddle strategies. By

delta-hedging the straddle, the volatility of the strategy becomes considerably smaller. Av-

erage returns are highly significant and range between −3.4% (30y) and −7% (10y) per

month. The corresponding annualized Sharpe ratios are 0.5 for the 30y and 1.1 for the 10y

Treasury futures, respectively. The associated alphas are significant and also range between

−3.4% (30y) and −7% (10y). Overall, we conclude that delta-hedged straddle strategies

yield attractive returns but variance swaps still produce average returns and alphas that

are on average larger by a factor of roughly four, both for Treasury as well as for S&P500

futures strategies.

To further investigate the variance swap strategy, we plot the time series of the GTVS

returns for the 30y Treasury futures in Figure 3.4 (upper panel) together with the associated

realized and implied volatility measures (lower panel). We note that most of the time,

implied volatility exceeds the ex post realized one. Hence, on average, a strategy that is

long realized and short implied variance produces a negative return. At the same time, there

are some very distinct positive spikes which, interestingly, correspond to general periods of

distress as can be gauged from the annotations in the upper panel. However, there is one

single spike which is very specific to the bond market and it coincides with the large bond-

market sell-off in July 2003 due to mortgage hedging activity (see Malkhozov, Mueller,

Vedolin, and Venter (2016b)). To compare, we also plot the returns to the variance swap on

the S&P500 futures in Figure 3.5. Different from the bond market, there is for example no
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Figure 3.4. Generalized Treasury Variance Swap Returns 30y Treasury

The upper panel plots the monthly returns of the generalized Treasury variance swap (GTVS)
with a 30y tenor and one month to maturity. The return is computed as the payoff of the one-
month variance swap (implied variance minus ex-post realized variance) scaled by the fair strike
of the variance swap (implied variance). The lower panel plots (annualized) realized and implied
volatilities for the 30y Treasury futures. Gray bars indicate NBER recessions. Data is monthly
and runs from January 1990 to May 2012.

spike in July 2003. On the other hand, there is one large positive spike in July 2002, when

the S&P500 index lost 8% between June and July.

Statistical Significance

One might worry about statistical significance as it is well known that option trading strate-

gies are non-Gaussian and the extant literature shows that performance measures such as

the Sharpe ratio can change dramatically if returns do not follow a Normal distribution (see

Lo (2002)).
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Figure 3.5. Variance Swap Returns S&P500

The upper panel plots the monthly returns of the variance swap on the S&P500 with a maturity
of one month. The return is computed as the payoff of the one-month variance swap (implied
variance minus ex-post realized variance) scaled by the fair strike of the variance swap (implied
variance). The lower panel plots (annualized) realized and implied volatilities for the S&P500.
Gray bars indicate NBER recessions. Data is monthly and runs from January 1990 to May 2012.

Thus, in the following, we use a studentized bootstrap to obtain confidence intervals

on the mean, Sharpe ratio, and alpha of the trading strategies discussed earlier. Using a

sample of 10,000 bootstrapped repetitions, we report 95% confidence intervals in Table 3.4.

In line with the previous results, average returns for the variance swap and delta-hedged

straddle strategies are all significantly different from zero, as none of the confidence intervals

includes the zero itself. The same applies to the Sharpe ratios as well as for the alphas.
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Table 3.4

Bootstrapped Confidence Intervals

This table reports 95% bootstrapped confidence intervals for mean, Sharpe ratio (SR), and alpha
for three trading strategies presented in Table 3.3. The empirical distribution of returns is obtained
from 10,000 studentized bootstrap repetitions of our sample. Data is monthly and runs from June
1990 to May 2012.

Panel A: Variance Swap

mean SR alpha
30y -0.248 -0.177 -0.741 -0.415 -0.205 -0.199
10y -0.311 -0.250 -1.050 -0.643 -0.272 -0.267
5y -0.242 -0.138 -0.581 -0.254 -0.184 -0.177
S&P500 -0.376 -0.252 -0.851 -0.373 -0.282 -0.276

Panel B: Straddles not hedged

mean SR alpha
30y -0.097 0.078 -0.128 0.091 -0.056 0.042
10y -0.099 0.060 -0.163 0.047 -0.041 0.048
5y -0.051 0.116 -0.066 0.121 -0.032 0.280
S&P500 -0.167 -0.048 -0.316 -0.078 -0.200 -0.104

Panel C: Straddles hedged

mean SR alpha
30y -0.065 -0.014 -0.287 -0.045 -0.042 -0.021
10y -0.091 -0.045 -0.432 -0.178 -0.088 -0.070
5y -0.063 -0.014 -0.276 -0.056 -0.068 -0.027
S&P500 -0.099 -0.037 -0.415 -0.117 -0.095 -0.072

Risk-Adjusted Returns

In this section, we explore how and whether the returns of these trading strategies are

related to market risk. To this end, we regress the strategy returns onto the returns of

different equity and bond portfolios. In particular, we control for the market, size (SMB),

book-to-market (HML), and momentum (MOM) portfolios. We also include two liquidity

factors for bond and equity markets: The liquidity factor extracted from bonds used in

Malkhozov, Mueller, Vedolin, and Venter (2016a) and the Pástor and Stambaugh (2003)

equity liquidity factor. In order to make the two measures comparable, we multiply the

latter by minus one to get an illiquidity measure. Table 3.5 presents the regression results
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Table 3.5

Risk-Adjusted Returns Trading Strategies

This table reports Newey and West (1987) adjusted t-statistics of OLS coefficients from regressing
the returns of three different trading strategies (the one-month generalized Treasury variance swap,
un-hedged straddle, and delta-hedged straddle) on the market excess return (MRKT), size (SMB),
book-to-market (HML), momentum factors (MOM), and an illiquidity factor.

rit = α+ β1r
MRKT
t + β2r

SMB
t + β3r

HML
t + β4r

MOM
t + β5r

ILLIQ
t + ϵt

For the bond option trading strategies we use the Barclays US Treasury bond index as a proxy
for the market return. For the S&P500 futures strategies we use the excess return on the value-
weighted return of all CRSP firms. The illiquidity measure for the bond market is taken from
Malkhozov, Mueller, Vedolin, and Venter (2016b) and for the equity market we use the negative of
the Pástor and Stambaugh (2003) liquidity factor such that a high value again measures illiquidity.
The first column reports Jensen’s alpha together with its t-statistic in parentheses. Data is monthly
and runs from June 1990 to May 2012.

Panel A: Variance Swap

alpha t-stat MRKT SMB HML MOM ILLIQ Adj. R2

30y -0.261 (-4.44) -2.317 -3.061 1.924 -2.572 1.562 10.37%
10y -0.418 (-8.21) -1.997 -2.195 1.839 -2.483 3.211 10.48%
5y -0.336 (-3.80) -0.370 -2.106 2.466 -2.082 1.697 4.79%
S&P500 -0.321 (-9.65) 0.146 -1.133 -1.376 -1.653 4.249 31.72%

Panel B: Straddles not hedged

alpha t-stat MRKT SMB HML MOM ILLIQ Adj. R2

30y -0.031 (-0.36) 0.264 -0.660 0.329 -0.985 0.591 0.72%
10y -0.082 (-0.93) 0.261 -0.907 1.277 -1.076 0.903 1.61%
5y -0.025 (-0.27) 0.895 -0.522 1.554 -1.018 0.564 1.56%
S&P500 -0.230 (-4.07) 0.111 -0.313 1.304 -1.126 0.440 2.76%

Panel C: Straddles hedged

alpha t-stat MRKT SMB HML MOM ILLIQ Adj. R2

30y -0.071 (-2.58) 0.180 -0.238 0.888 -0.185 1.623 1.58%
10y -0.125 (-4.48) 0.581 -1.191 1.922 -1.040 2.482 5.14%
5y -0.083 (-2.83) 0.566 -0.245 2.410 -1.067 1.513 3.82%
S&P500 -0.176 (-4.67) 1.091 -1.095 0.410 -0.334 2.628 5.28%

for each strategy. We report the alpha together with its associated t-statistic while for the

other regressors we only report (Newey and West (1987) adjusted) t-statistics.
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Panel A reports the results for variance swap returns. We first note the high significance

of the momentum factor (t-statistics all above two for the Treasury variance swap returns)

and the borderline significance of the equity momentum factor for variance swaps on the

S&P500. The alpha of the strategy is still negative and highly significant, which indicates

that while these factors explain some of the variation (adjusted R2 range between 4% to

10%), the majority is left unexplained.

The alphas for the un-hedged straddles (Panel B) are not statistically significant except

for the S&P500. On the other hand, once the straddles are delta-hedged (Panel C) we find

alphas to be highly significant. Naturally, due to the delta-hedging, the market return is

insignificant. Moreover, we find the momentum portfolio to have no correlation with the

strategy returns.

Overall, we reconfirm that trading variance in the fixed income market produces high av-

erage returns and attractive Sharpe ratios. The associated alphas are large and statistically

significant even when controlling for standard risk factors.

Transaction Costs

It is well known that transaction costs lower the returns of option strategies and that the

impact is increasing with decreasing moneyness, i.e., it is worst for deep out-of-the-money

options (see, for example, George and Longstaff (1993) and Santa-Clara and Saretto (2009)).

In the following, we explore the impact of bid-ask spreads onto the profitability of the trading

strategies. To this end, we recalculate the summary statistics in Table 3.3 by assuming that

we always buy at the ask price and sell at the bid price. The results are summarized in

Table 3.6.

Not surprisingly, we find that average returns drop but shorting variance is still attrac-

tive: Annualized Sharpe ratios vary between 1.1 and 2.4 for the variance swaps. Moreover,

average returns and alphas remain statistically significant both for the variance swaps and

the delta-hedged straddles. We conclude that while bid-ask spreads lower average returns

by up to one third, trading variance swaps is still very profitable.
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Table 3.6

Summary Statistics Option Trading Strategies Bid-Ask Spread Adjusted

This table reports monthly summary statistics for one-month returns on three different trading
strategies described in Section 3.3.1, taking into account bid and ask spreads: mean, standard
deviation, Sharpe ratio (SR), and alpha. First, we report returns on the generalized Treasury
variance swap defined in Equation (3.6) across three tenors (5y, 10y and 30y) and with a maturity
T − t = 1 month. Second, we report the summary statistics of monthly returns on un-hedged
or delta-hedged at-the-money straddles with a maturity of one month, respectively. The delta-
hedged straddle return is defined in Equation (3.7). The un-hedged return is the same but without
the accumulated profit and loss from the hedging activity, i.e.,

∑T
i=t−∆S,i−1 (Fi,T − Fi−1,T ) in

Equation (3.7). t-Statistics reported in parentheses are adjusted according to Newey and West
(1987). Data is sampled monthly and runs from June 1990 to May 2012.

Variance Swap Straddles not hedged Straddles hedged

30y 10y 5y 30y 10y 5y 30y 10y 5y
mean -0.138 -0.254 -0.173 -0.001 -0.004 0.020 -0.021 -0.062 -0.035
t-stat (-5.32) (-11.42) (-5.95) (-0.01) (-0.21) (0.41) (-2.11) (-4.24) (-2.57)
std 0.421 0.362 0.474 1.625 0.309 0.793 0.162 0.238 0.221
SR -0.327 -0.703 -0.364 -0.001 -0.013 0.025 -0.130 -0.261 -0.158
alpha -0.127 -0.245 -0.166 -0.002 -0.005 0.014 -0.027 -0.046 -0.038
t-stat (-5.00) (-10.69) (-5.17) (-0.00) (-0.01) (0.21) (-1.96) (-3.15) (-3.26)

Margins

The strategies we consider are implemented using options traded on the CME. In practice,

this means that investors are subject to margin constraints which are likely going to influence

a strategy’s profitability. For example, if a strategy of shorting variance leads to large losses,

an investor could be forced to close down the position if she does not have unlimited funds.

In the following, we follow a similar procedure as in Santa-Clara and Saretto (2009) and

study the impact of margin requirements on the trading strategies discussed earlier.

In practice, variance swap strikes are quoted in terms of volatility (expressed in percent),

not variance (see, for example, Allen, Einchomb, and Granger (2006)). The payoff to a

variance swap is the difference between the ex post realized variance and the squared strike

price multiplied by the so-called variance notional, which represents the profit or loss per

point difference between realized and implied variance. Since market participants often

think in terms of volatility, the vega notional is often used instead of the variance notional.
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The vega notional shows the profit or loss from a 1% change in volatility and it is calculated

as Nvega = Nvar × 2K, where K is the strike of the variance swap expressed in terms of

volatility.15

Margin requirements in general depend on the type of strategy employed. Variance

swaps are margined in a similar way to options. In the following, we assume that the

required margin is nine times the vega notional. For our sample period, the assumed margin

is sufficient to withstand a daily adverse move in volatility in excess of three standard

deviations based on monthly data. This means a trading portfolio that can be re-balanced

daily will never be wiped out in a single day.16 We further assume that during the life of

the swap, the variation margin as well as the initial margin are set in the same fashion. For

example, the variation margin for a short position with notional value of one dollar at time

t is set as

PVt (T )×
[{

t

T
× R̃V 0,t +

T − t

T
× (Implied Vol (t, T ) + 9)2

}
−K2

]
, (3.8)

where K is the fair strike at initiation and PVt (T ) is the t-present value of one dollar at

time T . The minimum required margin is then the maximum of the initial margin and the

variation margin at each point in time t.17

Margins influence our strategies along two dimensions: i) they limit the number of

contracts that an investor can write (execution) and ii) they may force the investor to close

down positions and take losses (profitability). To evaluate these effects, we assume in line

with Santa-Clara and Saretto (2009) a zero-cost strategy. In particular, at the beginning

of each month the investor borrows one dollar and allocates that amount to a risk-free rate

account which she can use to cover the margin requirements. Then, the investor takes a short

position in a variance swap contract for a notional amount which is equivalent to a fraction

15Thus, a vega notional of one dollar means a trader with a short position in a variance swap with a strike
of 10% will lose one dollar if the volatility increases to 11%.

16Allen, Einchomb, and Granger (2006) provide an example of a term sheet with a collateral requirement
equal to three times the vega notional, which is not sufficient to prevent a complete loss in a single trading
day. In practice, payoffs to variance swaps are often capped. As a result, a three notional vega margin may
be enough. However, this further complicates hedging and pricing (see also Martin (2013)). To abstract
from the pricing issues, we thus impose a higher margin.

17As the month progresses, Equation (3.8) requires the calculation of the variance swap rate with a
decreasing time to maturity. To ensure that our results are not biased by interpolation, we enter into a
position when the options have exactly one month to maturity instead of sampling at the end of the month.
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of that one dollar. This quantity is referred to as the target notional, and the corresponding

vega amount of the contract is referred to as the target vega notional. The initial margin

requirement is then approximately equal to nine times the target vega notional.

During the month, we assume that the investor cannot borrow additional capital. In

other words, margin calls are met by liquidating the investment in the risk-free account.

When the risk-free account is no longer sufficient to meet the margin call, then the position

is liquidated at the swap value. The investor is then allowed to open a new position such

that the new margin does not exceed 90% of the available wealth. The maturity date of the

new contract remains the same as before, but a new strike is defined for the value of the

swap to be zero. Moreover, the (vega) notional of the new contract is adjusted accordingly.

Hence, unless no re-balancing occurs during the month, the effective (vega) notional will

differ from the target (vega) notional. At the end of the month, the variance swap position

is closed and the proceeds are added to the risk-free account. Together with the interest

earned on the risk-free account (which in general is negligible) this allows to calculate both

the P/L of the strategy as well as the return in month t compared to the initial position of

one dollar.

Given the relatively high margin requirements, the maximum target vega notional pos-

sible is 10 cents on the dollar or 10%. Table 3.7 reports results using target vega notionals

ranging between 1% and 10%, meaning that the initial margin ranges from just under 10%

to 90% of the one dollar borrowed at the beginning of each month. For comparison, we

also calculate un-margined returns based on the same zero-cost strategy described above

but without applying the variational margin. This means that the initial position is never

forcibly closed out and remains the same until the end of the month. Note that the returns

in Table 3.7 are calculated for a short position in a variance swap and they are, thus, positive

on average.18 We report bootstrapped confidence intervals for the quantities of interest.

First, the results in Table 3.7 show that margined returns are increasing in the target

vega notional. This is not surprising as shorting variance is profitable and a higher target

vega notional is tantamount to increasing the exposure to variance for a given amount of

18Moreover, note that the returns in Table 3.7 are defined slightly differently than those presented in
Table 3.3 and, hence, they cannot be directly compared.
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Table 3.7

Treasury Variance Swaps and Margin Requirements

This table analyzes the impact of margin requirements on the returns to writing one-month Trea-
sury variance swaps. The table reports the effective vega notional, monthly average and monthly

Sharpe ratio (SR) of margined returns at different levels of target vega notional in addition to the
corresponding un-margined returns. The proportion of months with forced rescaling (out of 264)

is reported in the third column of the table. 95% confidence intervals (in brackets) are obtained
using a bootstrap with 10,000 draws. Data is monthly and runs from June 1990 to May 2012.

margined un-margined

target
vega

effective
vega

notional

rescaled
month

(fraction)
mean SR mean SR

Panel A: 30y Treasury

0.010 0.010 0.00 0.01 0.33 0.01 0.33
[0.010,0.010] [0.00,0.00] [0.00,0.01] [0.18,0.50] [0.00,0.01] [0.19,0.50]

0.050 0.050 0.01 0.03 0.32 0.03 0.33
[0.050,0.050] [0.00,0.02] [0.02,0.05] [0.18,0.50] [0.02,0.05] [0.19,0.50]

0.075 0.068 0.52 0.05 0.29 0.05 0.33
[0.067,0.069] [0.46,0.58] [0.03,0.07] [0.15,0.47] [0.03,0.07] [0.19,0.50]

0.100 0.067 1.00 0.05 0.30 0.07 0.33
[0.066,0.068] [1.00,1.00] [0.03,0.06] [0.15,0.47] [0.04,0.09] [0.19,0.50]

Panel B: 10y Treasury

0.010 0.010 0.00 0.01 0.53 0.01 0.53
[0.010,0.010] [0.00,0.00] [0.01,0.01] [0.37,0.72] [0.01,0.01] [0.37,0.72]

0.050 0.050 0.00 0.04 0.52 0.04 0.53
[0.050,0.050] [0.00,0.03] [0.03,0.04] [0.37,0.71] [0.03,0.04] [0.37,0.72]

0.075 0.060 0.93 0.04 0.49 0.05 0.53
[0.059,0.061] [0.90,0.96] [0.03,0.05] [0.34,0.68] [0.04,0.07] [0.37,0.72]

0.100 0.060 1.00 0.04 0.50 0.07 0.53
[0.059,0.060] [1.00,1.00] [0.03,0.05] [0.34,0.68] [0.06,0.09] [0.37,0.72]

Panel C: 5y Treasury

0.010 0.010 0.00 0.00 0.43 0.00 0.43
[0.010,0.010] [0.00,0.00] [0.00,0.01] [0.28,0.62] [0.00,0.01] [0.28,0.62]

0.050 0.048 0.25 0.02 0.44 0.02 0.43
[0.047,0.048] [0.20,0.31] [0.01,0.03] [0.29,0.63] [0.01,0.03] [0.28,0.62]

0.075 0.050 1.00 0.02 0.43 0.03 0.43
[0.049,0.051] [1.00,1.00] [0.02,0.03] [0.28,0.62] [0.02,0.04] [0.28,0.62]

0.100 0.050 1.00 0.02 0.43 0.04 0.43
[0.049,0.051] [1.00,1.00] [0.02,0.03] [0.28,0.62] [0.03,0.05] [0.28,0.62]
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capital. At the same time, a higher vega notional also leads to a higher probability of

forced rescaling if the volatility increases too much and a margin call cannot be met with

the available capital. For example a 10% vega notional leads to a forced rescaling in every

month of our sample and for all underlying tenors, while a 1% target vega notional never

leads to a forced rescaling.

The relationship between the target vega notional and the volatility of our strategy is

less straightforward. Absent rescaling, the volatility of the strategy is increasing in the

vega notional. However, once the margin requirements take effect, forced rescaling often

leads to a reduction in the volatility of the trading strategy as positions are often scaled

down during periods of turmoil. This has an overall positive effect on Sharpe ratios that

is at times, however, offset by a reduction in the mean return. Hence, Sharpe ratios are

not necessarily monotonic in the target vega notional. However, they remain on average

very sizable and range between 1 and 1.8 (annualized) depending on the underlying and the

target vega notional.

As mentioned above, the assumed margin requirements are rather restrictive. This

ensures that the investor cannot loose the total available capital in a daily move and before

rescaling is allowed, which makes our strategy viable in the long-run. Applying for example

the same setup to variance swaps on S&P500 futures results in the investor losing all the

capital before being able to rescale a total of six times during the sample period. Hence, the

strategy with variance swaps on equity is much riskier compared to using Treasury variance

swaps and thus, in practice, margins would have to be higher in order to ensure that the

portfolio can withstand even periods of severe turmoil in financial markets.19

Figure 3.6 plots in log scale the accumulation of wealth for different target vega notional

short positions in variance swaps on 30y Treasury futures. The starting wealth is one dollar

and it is assumed that the full amount is reinvested each month. As benchmark, we plot

the total return index from investing one dollar in the S&P500 stock index. The figure

confirms the results from Table 3.7, namely that that shorting variance in the Treasury

market remains a profitable strategy when taking margins into account. Measured over 22

years, the Treasury variance swap strategies with vega notionals ranging between 5% and

19As mentioned earlier, one can alternatively impose a cap on the payoff as is regularly done in practice.
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Figure 3.6. Margined Variance Swap Returns for 30y Treasury

This figure plots the wealth evolution in log scale for portfolios with an initial value of one USD.
Each month the investor takes a short position in a 30y generalized Treasury variance swaps with
a given target vega notional (ranging from 1% to 10%) and a maturity of one month. The required
margin is nine times the vega notional. If losses within the month exceed the margin, the investor
has to rescale the position. For comparison purposes, we also plot the evolution (also in log scale)
of an investment in the S&P500 market index. Gray bars indicate NBER recessions. Data is
monthly and runs from June 1990 to May 2012.

10% deliver on average around 40% return per year, compared with just above 6% for the

S&P500 index. Moreover, the results also highlight that with proper margin requirements,

the strategy remains very attractive even in a setting where investors do not have unlimited

access to capital and may need to close out or scale down their positions during market

turmoil.

3.3.2 The Impact of Realized Variance

In this section we gauge to what extent it makes a difference whether we use realized variance

as defined in Equation (3.4) or whether we follow common practice and use daily squared log
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Table 3.8

Summary Statistics Variance Swap Different RV

This table reports monthly summary statistics, mean, standard deviation, kurtosis, skewness, and
the Sharpe ratio (SR) for one-month variance swap returns that are based on different measures
of realized variance. GTVS corresponds to the variance swap payoff using realized variance as
defined in Equation (3.4) that allows for perfect replication. LTVS corresponds to a variance swap
that uses realized variance calculated using daily squared log returns. Data is monthly and runs
from June 1990 to May 2012.

30y Treasury 10y Treasury 5y Treasury

GTVS LTVS GTVS LTVS GTVS LTVS
mean -0.212 -0.212 -0.276 -0.276 -0.187 -0.187
t-stat (-8.98) (-8.98) (-12.71) (-12.71) (-6.61) (-6.61)
std 0.383 0.383 0.353 0.353 0.460 0.460
kurtosis 10.635 10.824 10.929 11.163 10.686 10.896
skewness 2.116 2.131 1.882 1.901 2.178 2.197
SR -0.553 -0.552 -0.782 -0.782 -0.407 -0.406

returns. The results are reported in Table 3.8. The summary statistics reveal that on average

it does not matter whether one uses one or the other measure of realized variance. This is

intuitive, as for the data and sample period we study, the number and size of positive and

negative jumps is roughly the same. The distinction between the two approaches becomes

more evident, however, once we consider the time series of the differences between a variance

swap that is defined using daily squared log returns and of our GTVS that uses realized

variance as defined in Equation (3.4). The time series of the differences is depicted in Figure

3.7.

We note that there are both positive and negative differences in line with the notion

that there are positive and negative jumps. The largest positive spikes correspond to the

same distinct spikes that we observe in Figure 3.4. The three largest spikes are: July 2003

which corresponds to the month with the largest mortgage refinancing activity, August

1990 which was when Iraq invaded Kuwait, and September 2008 right after the Lehman

default. Positive spikes correspond to negative jumps. In Appendix 9 we derive the difference

between the realized variance measure that we use for our variance swap contract and

realized variance calculated using daily squared log returns. It is straightforward to show
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Figure 3.7. Difference in 30y Variance Swap Returns between RV log and R̃V

This figure plots the differences in monthly returns on 30y variance swap with a maturity of one
month, but from two different measures of realized variance, log squared returns (RV log

T ) and

realized variance R̃V T defined in Equation (3.4). Each return is computed as the payoff of the

one-month variance swap (implied variance minus RV log
T or R̃V T respectively) scaled by the fair

strike of the variance swap (implied variance). Gray bars indicate NBER recessions. Data is
monthly and runs from January 1990 to May 2012.

that R̃V t,T = RV log
t,T − cubed returns. Hence, large negative jumps render the log realized

variance measure larger than R̃V t,T . Since the payoff is the realized leg minus the fair strike,

the payoff becomes larger (smaller) compared to using R̃V t,T in the presence of negative

(positive) jumps.

3.3.3 Treasury Implied Volatility and Economic Activity

The VIX is often referred to as a fear gauge and, hence, it seems natural to ask whether

the VIX has any predictive power for future economic activity.20 In the following, we study

whether Treasury implied variance and the slope of the implied variance term structure

20For example Bekaert and Hoerova (2014) present empirical evidence that the VIX2 is an excellent
predictor of economic activity at the monthly, quarterly, and annual frequency.
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has any predictive power for economic activity as captured by the Chicago Fed National

Activity Index (CFNAI).21 We also check how implied volatility and the slope of implied

variances is related to a measure of economic stress, namely the St. Louis Fed Stress Index

(STLFSI).22

Even though we have implied variance available for different tenors, we focus on the

longest maturity, i.e., the 30y Treasury futures options. To simplify notation, we call im-

plied volatility from options on 30y Treasury futures, TIV (Treasury Implied Volatility,

the implied variance is then TIV2). We denote slopeTIV the slope of the term structure of

implied variances which is defined as the difference between the implied variance from a

one-year and one-month option.

Figure 3.8 plots slopeTIV together with the CFNAI, and the STLFSI multiplied by minus

one. The co-movement between the three time series is strikingly high, especially during

the recent crisis period. Indeed, the unconditional correlation between the slope and the

CFNAI is 68% and it is 76% with the STLFSI. To test the relationship more formally,

we run predictive regressions from the economic activity/stress index onto TIV2, slopeTIV,

VIX2, the slope of the implied variance on the S&P500 (slopeS&P500), and the slope of the

term structure at different horizons, n, ranging from zero to twelve months:

CFNAIt+n/STLFSIt+n = βTIV
n TIV2

t + βslope TIV
n slopeTIV

t + . . .+ ϵt+n.

The results are reported in Tables 3.9 and 3.10.23 TIV2 is an excellent predictor of future

economic activity up to eight months: For the contemporaneous regressions, we find that

for any one standard deviation shock in the TIV2, there is a 0.3 standard deviation shock

to economic activity. t-statistics range from −6.45 to −3.01 for the eight month horizon.

The R2s drop fast with the horizon: For contemporaneous regressions, the R2 is 29% but it

drops by half, i.e., to 14% after four months. Similarly to the level, the slope of the TIV has

21The CFNAI is available on the Chicago Fed web page as a weighted average of 85 existing monthly
indicators of national economic activity including (i) production and income, (ii) employment, unemploy-
ment, and hours, (iii) personal consumption and housing, and (iv) sales, orders, and inventories. A positive
index corresponds to growth above trend and a negative index corresponds to growth below trend.

22The STLFSI is available from FRED and is a principal component from 18 different time-series including
(i) interest rates, (ii) yield spreads, and (iii) other indicators which include variables like the VIX. A positive
(negative) index corresponds to a higher (lower) degree of stress compared to the trend.

23Variables are standardized, meaning, we de-mean and divide by the standard deviation.
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Figure 3.8. Slope of 30y Implied Variance, Chicago Fed National Activity Index
(CFNAI), & St. Louis Fed Stress Index (SLFSI)

This figure plots the slope of the implied variance term structure which is defined as the difference
between the one-year and one-month implied variance together with the Chicago Fed National
Activity Index and the (negative of the) St. Louis Fed Stress Index. The variables are de-meaned
and standardized. Gray bars indicate NBER recessions. Data is monthly and runs from January
1990 to May 2012.

strong predictive power up to eight months with R2s monotonically decreasing from 20% for

contemporaneous regressions to virtually zero for horizons longer than eight months. When

we include both the level and the slope in the regression, the significance of both factors is

not affected.

Adding VIX2 or the slope of the VIX term structure does not alter the results much:

The predictive power of the slope of the TIV is quantitatively the same, however, some of

the predictive power of TIV2 is subsumed by VIX2. Adding the slope of the Treasury yield

term structure itself does not change the results either. The slope of the term structure is

known to be a long-term predictor of the business cycle rather than a predictor of short-term

fluctuations. Hence, at horizons up to eight months, we observe basically no predictive power

from the slope of the term structure, whereas at longer horizons, where the other right-hand

side variables lose any power, the slope of the term structure becomes significant.
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Table 3.9

Predictive Regressions Economic Activity

This table reports estimated coefficients from predictive regressions from the Chicago Fed National
Activity Index (CFNAI) onto the Treasury implied volatility index squared (TIV2), the slope of
the TIV, and other factors:

CFNAIt+n = βTIV
n TIV2

t + βslope TIV
n slopeTIV

t + . . .+ ϵt+n, n = 0, . . . , 12.

Variables are standardized, meaning we de-mean and divide by the standard deviation. t-Statistics
presented in parentheses are calculated using Newey and West (1987). Regressions are run con-
temporaneously and for forecast horizons up to twelve months. Data is monthly and runs from
June 1990 to May 2012.

horizon contemp. 3m 6m 9m 12m

TIV2 -0.302 -0.226 -0.121 -0.051 -0.038
(-6.45) (-5.24) (-3.30) (-2.51) (-1.34)

Adj. R2 28.89% 16.20% 4.64% 0.81% 0.47%

slope TIV 0.622 0.552 0.327 0.152 0.121
(3.11) (4.49) (3.61) (1.72) (0.99)

Adj. R2 19.71% 15.46% 5.32% 1.16% 0.74%

TIV2 -0.237 -0.154 -0.074 -0.026 -0.018
(-6.05) (-4.21) (-1.80) (-0.69) (-0.38)

slope TIV 0.330 0.360 0.232 0.118 0.098
(3.74) (3.47) (2.23) (0.91) (0.59)

Adj. R2 32.84% 20.83% 6.28% 0.94% 0.43%

TIV2 -0.172 -0.022 0.019 0.004 0.010
(-3.43) (-0.38) (0.31) (0.07) (0.13)

slope TIV 0.339 0.375 0.261 0.183 0.179
(3.01) (3.06) (2.01) (1.12) (0.84)

VIX2 -0.064 -0.131 -0.097 -0.046 -0.046
(-1.22) (-2.08) (-1.58) (-0.79) (-0.72)

slope VIX -0.037 -0.073 -0.101 -0.173 -0.210
(-0.32) (-0.67) (-0.71) (-0.95) (-1.09)

Adj. R2 33.52% 25.20% 7.66% 1.23% 1.37%

TIV2 -0.188 -0.015 0.039 0.038 0.054
(-3.82) (-0.26) (0.69) (0.63) (0.71)

slope TIV 0.309 0.388 0.298 0.243 0.261
(2.90) (3.11) (2.24) (1.41) (1.19)

VIX2 -0.053 -0.136 -0.112 -0.072 -0.081
(-1.03) (-2.16) (-1.81) (-1.17) (-1.14)

slope VIX -0.014 -0.084 -0.135 -0.232 -0.288
(-0.13) (-0.78) (-0.94) (-1.23) (-1.39)

slope yields -0.099 0.044 0.124 0.204 0.268
(-1.73) (0.72) (1.65) (2.18) (2.38)

Adj. R2 34.34% 25.12% 8.96% 5.40% 9.14%
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Table 3.10

Predictive Regressions Stress Index

This table reports estimated coefficients from predictive regressions from the St. Louis Fed Stress
Index (STLFSI) onto the Treasury implied volatility index squared (TIV2) and the slope of the
TIV:

STLFSIt+n = βTIV
n TIV2

t + βslope TIV
n slopeTIV

t + ϵt+n, n = 0, . . . , 12.

Variables are standardized, meaning we de-mean and divide by the standard deviation. t-Statistics
presented in parentheses are calculated using Newey and West (1987). Regressions are run con-
temporaneously and for forecast horizons up to twelve months. Data is monthly and runs from
January 1994 to May 2012.

horizon contemp. 3m 6m 9m 12m

TIV2 0.276 0.192 0.088 0.025 0.006
(2.98) (2.43) (1.53) (0.71) (0.27)

Adj. R2 28.74% 13.99% 2.93% 0.24% 0.02%

slope TIV -0.791 -0.600 -0.356 -0.285 -0.220
(-4.14) (-4.12) (-3.69) (-2.21) (-1.47)

Adj. R2 35.37% 20.14% 6.95% 4.43% 2.55%

TIV2 0.160 0.098 0.022 -0.048 -0.055
(2.03) (1.42) (0.41) (-0.98) (-1.06)

slope TIV -0.576 -0.466 -0.325 -0.354 -0.299
(-3.89) (-3.22) (-2.47) (-1.98) (-1.65)

Adj. R2 42.18% 22.44% 6.65% 4.60% 2.86%
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We run the same exercise but now use the stress index as the left-hand side variable.24

The results are reported in Table 3.10. The results depict a similar picture as for the activity

index but with opposite signs: An increase in TIV2 implies an increase in the stress index.

Estimated coefficients are significant up to four months. The estimated slope coefficients

of slopeTIV are negative and highly significant up to a horizon of eight months. The effects

are not only statistically but also economically significant: For any one standard deviation

change in the slope, there is almost a 0.8 standard deviation change in the stress index.

We conclude that both TIV2 and the slope of the TIV are excellent predictors of future

economic activity or stress. The predictive power is only at the short horizon and dies out

after eight months. One might now obviously suspect that our results are mainly driven

by the large co-movement between all series during the summer of 2008. We therefore run

robustness checks and study the predictive power using a sample which ends in August

2008. Indeed, the TIV2 has no predictive power for CFNAI if we end the sample in 2008,

however, the slope of the TIV is still significant but only at short horizons. For the stress

index, we still find that both TIV2 and the slope are highly significant. To save space, these

results are deferred to the Online Appendix.

3.4 Conclusions

This paper studies the returns of variance trading strategies in the Treasury options market.

We first derive theoretically how to replicate variance swaps. The fair strike can easily be

constructed using a continuum of put and call options. The way we formalize the realized

leg is critical: Instead of using squared log returns, we use simple returns which allows for a

perfect replication of the variance swap payout even in the presence of jumps and regardless

of the sampling partition.

Using a large panel data set of Treasury options with different tenors, we juxtapose

the variance swap with delta-hedged ATM straddle strategies—an alternative strategy well

known to be very profitable in the equity markets. Trading variance through straddles is

attractive but the profitability of these strategies is dwarfed by the variance swaps: The

24We do not run a regression which includes the slope from yields, VIX2, or the slope of the VIX as the
stress index contains both the slope of the term structure and the VIX itself.
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average excess return on a variance swap is about 20% per month regardless of the tenor.

Moreover, these returns come at reasonable risk as the annualized Sharpe ratio is above two.

We then examine how and whether these returns can be explained by standard risk factors

such as the market, book-to-market, size, momentum, or liquidity factors. We find that none

of these factors have significant explanatory power for the returns of variance swaps. The

alpha of the strategy is large and highly significant. Using realistic assumptions on margins,

we verify that variance trading in fixed income markets yields substantial profits even when

investors cannot rely on an unlimited supply of capital to implement their strategies.

We also study the term structure of implied variances and variance risk premiums. We

document that variance risk premiums are negative and their term structure is downward

sloping in absolute terms. At longer maturities, the premiums are smaller in magnitude.

The term structure of implied variances is also downward sloping on average while over

time, it is highly time-varying and strongly pro-cyclical. In particular, the slightly negative

slope becomes extremely negative during crisis periods. Using this observation, we find that

both the level of implied volatility and the slope are excellent predictors of both economic

activity and stress, especially at short horizons.
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Appendix 1 Proof of Proposition 1

Lemma 1. Suppose that Ft (T,T) is a diffusion process

dFt (T,T)

Ft (T,T)
= v′tdB

QT
t

Then,

EQT
t

[∫ T

t
vsv

′
sds

]
=

2

Pt,T

[∫ Ft(T,T)

0

Putt (K,T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K,T,T)

K2
dK

]

Proof. See Appendix 8.

Lemma 2. Suppose that the numeraire of QT forward measure, Pt,T , has the following dynamics

under Q

dPt,T = Pt,T

(
rtdt+ σ′t,TdB

Q
t

)
(A-1)

Then,

dBQT
t = −σt,Tdt+ dBQ

t

Proof. See for example Björk (2009).

Proof of Proposition 1. Under the two assumptions that (i) the state follows affine diffusion and
(ii) the short rate is an affine function of the state, Duffie and Kan (1996) show that Pt,T is
exponentially affine in the state.

Pt,T = exp

[
Ā
(
ΘQ, t, T

)
+ B̄

(
ΘQ, t, T

)′
Zt

]
(A-2)

Since no-arbitrage condition implies Ft = Pt,T/Pt,T , the forward price is also exponentially affine
in the state

Ft (T,T) = Pt,T/Pt,T = exp
[
ψ0 + ψ′

1Zt
]

where ψ0 and ψ1 are functions of
{
ΘQ, T,T

}
. Applying Ito’s lemma to Ft under QT , we have the

following diffusion process
dFt (T,T)

Ft (T,T)
≡ v′tdB

QT
t = ψ′

1ΣZ,tdB
QT
t

The expected quadratic variation of the forward up to time T is

EQT
t

[∫ T

t
v′svsds

]
=

∫ T

t
ψ′
1ΣZ0ψ1ds+

m∑

i=1

∫ T

t
ψ′
1ΣZiψ1E

QT
t [Vis] ds (A-3)

The proof is completed by Lemma 1 once the right-hand side of equation (A-3) is an affine function
of Vt only. Intuitively, the Gaussian factor Xt cannot affect E

QT
t [Vis], otherwise the expected value

of Vs under QT could have a negative value. As a last step, apply Ito’s lemma to equation (A-2).
Then, the diffusion term of it, the σt,T term in case of equation (A-1), is given by

σt,T = ΣZ,tB̄
(
ΘQ, t, T

)
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As a consequence of Lemma 2, the dynamics of the state under QT can be written as

dZt = d
(
X ′

t, V
′
t

)′
=

[(
µQ′
X,t, µ

Q′
V,t

)′
+ ΣZ,tΣ

′
Z,tB̄

(
ΘQ, t, T

)]
dt+ ΣZ,tdB

QT

Since µQ
V,t is assumed to be affine in Vt only (i.e. as in Duffie, Filipović, and Schachermayer (2003),

K1V X in equation (1.1) is set to be zero for admissibility) and ΣZ,tΣ′
Z,tB̄

(
ΘQ, t, T

)
is a linear

function of Vt solely, µ
QT
V,t is also an affine function of Vt.

Appendix 2 The bond VIX2s in a long-run risk framework

I initially solve the model of Bansal and Shaliastovich (2013) in the continuous-time framework,
and then demonstrate the linear mapping between the bond VIXs and the two macroeconomic
uncertainties in the model. The dynamics of consumption Ct, inflation πt ,and their long-run risks
as well as quantity of risk are specified as

dCt

Ct
= (µc +Xct) dt+ σcdZ1t

dπt
πt

= (µπ +Xπt) dt+ σπdZ2t

dXct = (−ρcXct − ρcπXπt) dt+
√

VctdW1t

dXπt = −ρπXπtdt+
√

VπtdW2t

Vct = κc
(
V̄c − Vct

)
dt+ wc

√
VctdB1t

Vπt = κπ
(
V̄π − Vπt

)
dt+ wπ

√
VπtdB2t

where Z1t, Z2t,W1t,W2t, B1t and B2t are independent Brownian motions. Following Duffie and
Epstein (1992), the representative agent’s objective is

Jt = max
{Cs}

Et

[∫ T

t
f (Cs, Js) ds

]

where the normalized aggregator f (C, J) is given by

f (C, J) = β

(
1− γ

1− 1/ψ

)
J

⎡

⎣
(

C

((1− γ) J)1/(1−γ)

)1−1/ψ

− 1

⎤

⎦ (A-4)

with β the rate of time preference, γ the relative risk version, and ψ the elasticity of intertemporal
substitution. Conjecture J as

J (Wt, Zt) = exp (a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)
W 1−γ

t

1− γ
. (A-5)

Since the envelop condition, fC = JW , can be written as

C = J−ψ
W [(1− γ) J ]

1−γψ
1−γ

βψ, (A-6)
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substituting equation (A-5) into equation (A-6) enables us to express the log consumption-wealth
ratio in terms of the state variables:

log

(
Ct

Wt

)
= ψ log β +

1− ψ

1− γ
(a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)

In addition, substituting equation (A-6) into equation (A-4) gives

f =

(
1− γ

1− 1/ψ

)(
Ct

Wt
− β

)
J

Applying log-linear approximation from Campbell (1993) to the consumption-wealth ratio

Ct

Wt
≈ g1 + g1 log g1 + g1 log

(
Ct

Wt

)
(A-7)

where g1 is the long-term mean of the consumption-wealth ratio. Then

f ≈
(

1− γ

1− 1/ψ

)[
g1 + g1 log g1 + g1 log

(
Ct

Wt

)
− β

]
J

=

(
1− γ

1− 1/ψ

)[
ξ +

g1 (1− ψ)

1− γ
(a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)

]
J

where ξ = g1 + g1 log g1 + g1ψ log β − β. As shown in Duffie and Epstein (1992), the state price

process is identified as ζt = exp
[∫ t

0 fJ (Cs, Js) ds
]
fC (Ct, Jt) and the corresponding nominal pricing

kernel is defined as ζ̃t =
ζt
πt
. Applying Ito’s lemma for the nominal pricing kernel results in

dζ̃t

ζ̃t
= − (r0 + r1Xct + r2Xπt + r3Vct + r4Vπt) dt

−λ1tdZ1t − λ2tdZ2t − λ3tdW1t − λ4tdW2t − λ5tdB1t − λ6tdB2t

where

λ1t = γσc, λ2t = σπ

λ3t = −
1− γψ

1− γ
a1
√

Vct, λ4t = −
1− γψ

1− γ
a2
√

Vπt

λ5t = −
1− γψ

1− γ
a3wc

√
Vct, λ6t = −

1− γψ

1− γ
a4wπ

√
Vπt
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and

r0 = −ξ1 −
1− ψ

1− γ

(
a1µπ + a3κcV̄c + a4κπV̄π

)
+ γµc −

1

2
γ (γ − 1) σ2c + µπ − σ2π

r1 = γ + a1 (ρc + g1)
1− γψ

1− γ

r2 = 1 + (a1ρcπ + a2 (ρπ + g1))
1− γψ

1− γ

r3 = a3 (κc + g1)
1− γψ

1− γ
−

1

2

(
a21 + a23w

2
c

)(1− γψ

1− γ

)2

r4 = a4 (κπ + g1)
1− γψ

1− γ
−

1

2

(
a22 + a24w

2
π

)(1− γψ

1− γ

)2

Because of the Girsanov theorem, the price of risk dynamics implies that the state variable also
follows affine diffusion under Q, and the short rate is affine in the state as can be seen.

Appendix 3 The bond VIX2s and Gaussian quadratic term structure models

In Gaussian quadratic term structure models, the state variable Xt is assumed to follow the
Ornstein-Uhlenbeck process under the risk-neutral measure Q:

dXt =
[
KQ

0X +KQ
1XXt

]
dt+

√
ΩdBQ

t

where
√
Ω represents the Cholesky decomposition of a positive definite matrix Ω. The short rate

is a quadratic function of the Gaussian affine-diffusion state

rt = Ψ0 +Ψ1Xt +X ′
tΨ2Xt

Then, bond prices are represented as

Pt,T = exp
[
Ã
(
ΘQ, t, T

)
+X ′

tB̃
(
ΘQ, t, T

)
+X ′

tC̃
(
ΘQ, t, T

)
Xt

]

with a symmetric matrix C̃ (see for example Ahn, Dittmar, and Gallant (2002)). Applying Ito’s
lemma, the dynamics of the forward are

dFt (T,T)

Ft (T,T)
≡ v′tdB

QT
t = [ξ0 + 2ξ1Xt]

′
√
ΩdBQT

t

where

ξ0 = B̃
(
ΘQ, t,T

)
− B̃

(
ΘQ, t, T

)

ξ1 = C̃
(
ΘQ, t,T

)
− C̃

(
ΘQ, t, T

)

Then, the expected quadratic variation can be written as

EQT
t

[∫ T

t
v′svsds

]
= EQT

t

[∫ T

t
(ξ0 + 2ξ1Xs)

′ Ω (ξ0 + 2ξ1Xs) ds

]
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Suppose that the i-th element of Xt has no impact on the volatilities in yields. This implies that
i-th row and column of C̃

(
ΘQ, t, T

)
is zero for all T > 0. Since the instantaneous volatility of Pt,T

is
σt,T =

√
Ω
′
[
B̃
(
ΘQ, t, T

)
+ 2C̃

(
ΘQ, t, T

)
Xt

]
,

the dynamics of the state under QT is

dXt =
[
KQT

0X +KQT
1XXt

]
dt+

√
ΩdBQT

t

where

KQT
0X = KQ

0X + ΩB̃
(
ΘQ, t, T

)

KQT
1X = KQ

1X + 2ΩC̃
(
ΘQ, t, T

)

Appendix 4 Discrete-time term structure model with stochastic volatility

Appendix 4.1 Zero-coupon bonds’ loading on pricing factors

Denote the price of zero-coupon bond with maturity of n as P (n)
t . Then, we can show that

lnP (n)
t = −Ān − B̄V,nVt − B̄X,nXt with loadings given by

Ān = δ0 + Ān−1 +KQ′
0XB̄X,n + cQνQ′B̄V,n−1 −

1

2
αn−1

B̄V,n = δV +KQ′
1XV B̄X,n−1 + ρQ′B̄V,n−1 −

1

2
βn−1 (A-8)

B̄X,n = δX +KQ′
1XB̄X,n−1

where

αn = B̄′
X,nΣ0XΣ′

0XB̄X,n − 2vQ′
V

[
logJn − cQ′

V B̄XV,n

]
(A-9)

βn = −2Gn+
(
B̄′

X,nΣ1XΣ′
1XB̄X,n, · · ·, B̄′

X,nΣmXΣ′
mXB̄X,n

)′
(A-10)

and

Gn−1 = ρQ′cQ−1′
(
[diag (Jn−1)]

−1 − Im
)
cQ′B̄XV,n−1

Jn−1 = ιm + cQ′B̄XV,n−1

B̄XV,n−1 = Σ′
XV B̄X,n−1 + B̄V,n−1

The initial condition of the difference equation is Ā0 = B̄V,0 = B̄X,n ≡ 0.

In addition, denoting the yield on a zero-coupon bond of maturity n as yn,t, then, we have

yn,t = An +BnZt

where An = 1
nĀn, BV,n = 1

nB̄V,n and BV,n = 1
nB̄X,n. Stacked yields, yt, can be represented as

yt = A+BV Vt +BXXt
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where A, BV and BX are corresponding stacked An, BV,n and BX,n. Furthermore it can be
written as a function of the observable factor Zt as in Section 1.5. With W ∈ R(N−m)×J being the
weighting matrix to construct Pt,

yt = A+BV Vt +BXXt = A+ BPPt + BVVt

where

BP = BX (WBX)−1

BV = (I − BPW )BV β
−1 (A-11)

A = (I − BPW )A− BVα

Appendix 4.2 Vt’s loading on the latent variance factor

As shown in Appendix 8,

Vt ≡
2

Pt,T

[∫ Ft(T,T)

0

Putt (K,T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K,T,T)

K2
dK

]

= 2
[
lnEQT

t (FT (T,T))− EQT
t (lnFT (T,T))

]

In the case of one-month TIVs or TYVIX, T is equal to t + 1. Hence, the calculation for α and
β should be taken under Qt+1 forward measure (i.e. the risk neutral measure). I use the notation
Q instead of Qt+1 according to the convention in the literature, and denote the time to maturity
of the underlying bond on the expiration date of the forward as n = T − (t+ 1) for notational
simplicity. Then,

lnEQ
t [Ft+1 (t+ 1,T)] = lnFt (t+ 1,T) = lnP (n+1)

t − lnP (1)
t = − (An+1 −A1)−

(
B′

n+1 −B′
1

)
Zt

EQ
t [lnFt+1 (t+ 1,T)] = EQ

t

(
lnP (n)

t+1

)
= −An −B′

nE
Q
t (Zt+1)

= −An −B′
X,n

(
KQ

0X +KQ
1XXt +KQ

1XV Vt

)
−B′

V,n

(
cQνQ + ρQVt

)

Using the difference equations in (A-8), we have

V(n)
t = 2 lnEQ

t [Ft+1 (t+ 1,T)]− 2EQ
t [lnFt+1 (t+ 1,T)]

= αn + β′nVt

where αn and βn are given in equations (A-9) and (A-10).

Appendix 5 Test for the USV effect

Denote R as the number of priced factors. For J ≥ R, a (J × 1) vector of yields can be written as

yt = A+BXXt +BV Vt = A+ BPPt + BVVt

where Pt (≡ Wyt) is the first (R−m) principal components of yt, Vt is the observable measure of
variance risk, and

BV =
(
I −BX (WBX)−1W

)
BV β

−1
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as in equation (A-11). Suppose that, without loss of generality, the first volatility factor V1t is an
unspanned volatility. Then, there exists Φ such that BV1 = BXΦ (see, for example, Lemma 2 in
Joslin (2015)), which implies

BV =
(
I −BX (WBX)−1 W

) [
BXΦ, BV2:m

]
β−1

=
[
0,

(
I −BX (WBX)−1 W

)
BV2:m

]
β−1

Hence, BZ ≡
[
BP , BV

]
cannot be a full rank matrix in the presence of USV.

Appendix 6 Returns on generalized mimicking portfolios

As in Joslin, Priebsch, and Singleton (2014), we have

EP
t

[
P (n−1)
t+1 /P (n)

t

]
= exp

[
kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt

]

where kt (Ztt+1;u) denotes the conditional cumulant generating function of Zt+1 at time t, and Bn

is the corresponding factor loading. In addition, the Laplace transform of the mixture of Gaussian
and multivariate non-central gamma distribution is given by

E
[
exp

(
u′Zt+1

)]
= exp

(
u′P (K0P +K1PPt +K1PVVt −ΣPV [µ+ cν + ρ (Vt − µ)]) +

1

2
u′PΣP,tΣ

′
P,tuP

)

× exp

(

u′PVµ−
m∑

i=1

vi log
(
1− e′ic

′uPV
)
+

m∑

i=1

e′ic
′uPV

1− e′ic
′uPV

e′ic
−1ρ (Vt − µ)

)

where uPV = Σ′
PVuP + uV and ei is a zero vector except its i-th element is 1. µ denotes the lower

bound of Vt, and is equal to αn in Appendix 4.2 when the lower bound on latent Vt is set to be
zero. Under the normalization scheme of cP = cQ and ΣP

XV = ΣQ
XV , we have

kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1)

= B′
P,n−1

[(
KQ

0P −KP
0P

)
+
(
KQ

1P −KP
1P

)
Pt +

(
KQ

1PV −KP
1PV

)
Vt

]

−B′
P,n−1ΣPV

[
c
(
νQ − νP

)
+
(
ρQ − ρP

)
(Vt − µ)

]

+
m∑

i=1

(
vQi − vPi

)
log (1 +Ai) +

m∑

i=1

Ai

1 +Ai
e′ic

−1
(
ρQ − ρP

)
(Vt − µ)

where the constant Ai is given by

Ai = e′ic
′
(
Σ′
PVBP,n−1 +BV ,n−1

)
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Since 1
1+x ≈ x and log (1 + x) ≈ x for small x, the above can be approximated by

B′
P,n−1

[(
KQ

0P −KP
0P

)
+
(
KQ

1P −KP
1P

)
Pt

]
+B′

P,n−1

(
KQ

1PV −KP
1PV

)
Vt

+

[

B′
P,n−1ΣPV −

m∑

i=1

Aie
′
ic

−1

](
ρP − ρQ

)
(Vt − µ)

+B′
P,n−1ΣPVc

(
νP − νQ

)
−

m∑

i=1

Ai

(
vPi − vQi

)

When m = 1 and νQi = νPi , this can be further simplified as

B′
P,n−1

[(
KQ

0P −KP
0P

)
+
(
KQ

1P −KP
1P

)
Pt +

(
KQ

1PV −KP
1PV

)
Vt

]
+BV ,n−1

(
ρQ − ρP

)
(Vt − µ)

Now consider a linear combination of yields yat =
∑N

i=1 aiy
ni
t where ni denotes the maturity of the

i-th yield. To construct a mimicking portfolio of it, we need to find {wi}Ni=1 such that

dPw
t

dyat
=

N∑

i=1

dPw
t

dyni
t

dyni
t

dyat
= −

N∑

i=1

winiP
ni
t

1

ai
= 1

which will hold for weights

wi = −
ai

NniP
ni
t

Consider the one-period excess return on portfolio Pw
t :

∑
iwi

(
Pni−1
t+1 − ertPni

t

)

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni

(
Pni−1
t+1 /Pni

t − ert
)

|
∑

i wiP
ni
t |

Using ex ≈ 1 + x, we have

EP
t

[
Pni−1
t+1 /Pni

t

]
= exp

[
kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt

]

≈ 1 + kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt

which implies that

−
∑

i ai/niEP
t

[
Pni−1
t+1 /Pni

t − ert
]

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni

[
kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1)

]

|
∑

iwiP
ni
t |

Hence, the expected excess return on portfolio Pw
t , to a first-order approximation, is given by

∑
i ai/niBni−1 [Λ0 + Λ1Zt]

|
∑

i ai/ni|
(A-12)
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where

Λ0 =

[
KP

0P −KQ
0P

−
(
ρP − ρQ

)
µ

]

Λ1 =

[ (
KP

1PP −KQ
1PP

)
KP

1PM

(
KP

1PV −KQ
1PV

)

0 0 ρP − ρQ

]

and
Bni−1 =

(
B′

P,n−1, B
′
V ,n−1

)′

Since the first (N −m) elements of Zt correspond to the first (N −m) principal components of
yields

PCjt =
N∑

i=1

lji y
ni
t =

N∑

i=1

lji (Ani/ni +Bni/niZt)

it follows that
∑N

i=1 l
j
iBni/ni is the selection vector for the j-th element (e.g. (1, 0, 0) for j = 1 )

for j ≤ N −m. Replacing ai of equation (A-12) with lji and approximating Bni−1 with Bni , we
have

∑
i l

j
iBni−1/ni [Λ0 + Λ1Zt]∣∣∣

∑
i l

j
i /ni

∣∣∣
=

selction vector︷ ︸︸ ︷∑

i

ljiBni/ni [Λ0 + Λ1Zt]

∣∣∣
∑

i l
j
i /ni

∣∣∣

which implies that xPCj is given by the j-th row of Λ0+Λ1Zt scaled by
∣∣∣
∑

i l
j
i /ni

∣∣∣ for j ≤ N−m.

Appendix 7 Estimates of MC

Under the risk-neutral measure Q, the latent state variable is drift-normalized as in Joslin (2015)
or Creal and Wu (2015), for econometric identification. Then, the short rate equation for MC is1

rt = rQ∞ + ι′Xt + δV Vt (A-13)

where ι denotes a vector of ones. δV can take ±1 or 0, and each possible value induces different
local maxima: see for example Creal and Wu (2015). The conditional mean of the normalized
state Zt ≡ (X ′

t, Vt)
′ is

[
EQ

t (Xt+1)

EQ
t (Vt+1)

]

=

[
0

KQ
0V

]
+

[
diag

(
λQ
)

0
0 ρQ

] [
Xt

Vt

]
(A-14)

where KQ
0V is the product of the scale and shape parameters of Vt.

Table A-1 presents the estimates of the Q parameters for MC and MJ . The persistency of
Gaussian factors, measured by λQ, is similar across the two models. For MJ , δV in equation (A-13)
should be zero and Vt does not affect the conditional variance of Xt. Then, rQ∞ can be interpreted
as the long-run Q mean of the short rate, since the long-run mean of Xt is set to zero under Q

1For ease of explanation, KQ
1X is assumed to have real distinct eigenvalues - this is overidentifying. For

details, see Joslin, Singleton, and Zhu (2011).
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as in equation (A-14). For MC , the long-run Q mean of the short rate is rQ∞ + δV K
Q
0V /

(
1− ρQ

)

rather than rQ∞, which induces the difference between the rQ∞s of MC and MJ . In addition, the
likelihood of MC is maximized with δV = 1 among the three possible values of δV . This is in line
with rQ∞ of MC being slightly less than rQ∞ of MJ for the two models to have similar levels in the
long-run Q mean of the short rate.

For each maturity n, Table A-2 reports the fraction var(Bnιiι′iZt) /var(BnZt) where ιi denotes
a vector of zero with i-th element being one. The table thus represents the relative contribution
of each latent factor toward the yields curve movement. Note that the exercises in Section 1.4
analyze the marginal impact of Vt after controlling the yield curve factors. Because the yield curve
factors themselves, Pt, are linear functions of latent factors Xt and Vt, the sole impact of Vt on the
shape of the yield cannot be assessed in this setting. Within a fully-fledged ADTSM, the impact
of Vt on the cross-section of yields can be completely isolated from the impact of latent Gaussian
factor Xt. The table performs this exercise, and shows that the shape of the yields curve is largely
unexplained by Vt or Vt. Note that the interpretations of Vt and Vt are freely interchangeable in
the context, since one is an invariant transformation of the other: one can freely scale up or down
Vt, then yield loadings on Vt are adjusted accordingly so that its impact on the yield curve still
remains the same.

Table A-1

Persistence Parameters

This table reports the estimates of persistence parameters for the each model MC and MJ .
Standard errors are given in parentheses.

Model rQ∞ λQ1 λQ2 λQ3 ρQ

MC 0.098 0.996 0.963 0.903 0.949
(0.012) (0.000) (0.003) (0.010) (0.036)

MJ 0.108 0.996 0.963 0.906
(0.003) (0.000) (0.002) (0.008)

Table A-2

Yield Curve Decomposition

This table reports the fraction var(Bnιiι′iZt) /var(BnZt) where ιi denotes a vector of zero with i-th
element being one.

ι′iZt
n

6 mon 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr

X1 (≡ ι′1Zt) 1.20 1.22 1.28 1.37 1.47 1.49 1.45
X2 (≡ ι′2Zt) 3.60 3.02 2.24 1.73 1.07 0.69 0.40
X3 (≡ ι′3Zt) 0.64 0.39 0.18 0.10 0.05 0.03 0.01
V (≡ ι′4Zt) 0.03 0.03 0.02 0.01 0.01 0.00 0.00
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Appendix 8 Proofs of Proposition 2 and Proposition 3

Proof of Proposition 2. Following Carr and Madan (1998), we assume that there exist a function
g(FT,T ) and that it is twice differentiable. It then follows that

g(FT,T ) = g(x) + g′(x) (FT,T − x) +

∫ x

0
g′′(K) (K − FT,T )

+ dK

+

∫ ∞

x
g′′(K) (FT,T −K)+ dK

for any x ≥ 0. If x = Ft,T , then

g(FT,T ) = g(Ft,T ) + g′(Ft,T ) (FT,T − Ft,T ) +

∫ Ft,T

0
g′′(K) (K − FT,T )

+ dK

+

∫ ∞

Ft,T

g′′(K) (FT,T −K)+ dK

Now assumr g(F ) = log F . Then, we get

log FT,T = log Ft,T +
1

Ft,T
(FT,T − Ft,T )

−

(∫ Ft,T

0

(K − FT,T )
+

K2
dK +

∫ ∞

Ft,T

(FT,T −K)+

K2
dK

)

. (A-15)

Given that d (log Ft,T ) =
dFt,T

Ft,T
− 1

2σ
2
t dt due to Ito’s lemma, the quadratic variation of Ft,T can be

written as
∫ T

t
σ2udu = −2 log

FT,T

Ft,T
+

∫ T

t

dFu,T

Fu,T

= 2

(
FT,T − Ft,T

Ft,T
− log

FT,T

Ft,T

)
+ 2

∫ T

t

(
1

Fu,T
−

1

Ft,T

)
dFu,T

= 2

(∫ Ft,T

0

(K − FT,T )
+

K2
dK +

∫ ∞

Ft,T

(FT,T −K)+

K2
dK

)

+2

∫ T

t

(
1

Fu,T
−

1

Ft,T

)
dFu,T .

where the last equality follows from Equation (A-15). Since Ft,T is a martingale under the QT

measure, the QT expectation of the dynamic strategy is zero and hence this implies that the market
price of the realized variance is equal to F̃t,T , i.e.

F̃t,T = E
QT
t

[∫ T

t
σ2udu

]
.

In words, replicating the expression for the variance RVlog
t,T involves

1. a path-independent payoff in out-of-the-money options

2. a dynamic trading strategy which is re-balanced to hold 2
(

1
Ft+i−1,T

− 1
Ft,T

)
of the underlying.
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Proof of Proposition 3.

R̃V t,T = −2 log
FT,T

Ft,T
+ 2

T−t∑

i=1

Ft+i,T − Ft+i−1,T

Ft+i−1,T

= 2

(
FT,T − Ft,T

Ft,T
− log

FT,T

Ft,T

)

+2
T−t∑

i=1

(
1

Ft+i−1,T
−

1

Ft,T

)
(Ft+i,T − Ft+i−1,T )

= 2

(∫ Ft,T

0

(K − FT,T )
+

K2
dK +

∫ ∞

Ft,T

(FT,T −K)+

K2
dK

)

+2
T−t∑

i=1

(
1

Ft+i−1,T
−

1

Ft,T

)
(Ft+i,T − Ft+i−1,T )

where the last equality follows from the proof of Proposition 2.

Appendix 9 Squared Returns and New Variance Measure

Relationship between squared returns and new variance measure. The calculations follow Carr
and Lee (2009). We start with a Taylor expansion of 2 log Ft+i,T around Ft,T ,

2 log Ft+i,T = 2 log Ft,T +
2

Ft,T
(Ft+i,T − Ft,T )−

(
Ft+i,T − Ft,T

Ft,T

)2

+

2

3

(
Ft+i,T − Ft,T

Ft,T

)3

+O
(
r4t+i,T

)

= 2 log Ft,T + 2rt+i,T − r2t+i,T +
2

3
r3t+i,T +O

(
r4t+i,T

)
,

where rt+i,T := Ft+i,T /Ft,T − 1. Rearranging the right and left hand sides of the above equation
yields

r2t+i,T = 2rt+i,T − 2 (logFt+i,T − log Ft,T ) +
2

3
r3t+i,T +O

(
r4t+i,T

)
.

Summing over different i’s we get

RVt,T = R̃V t,T +
2

3

n∑

i=1

r3t+i,T +
n∑

i=1

O
(
r4t+i,T

)

= R̃V t,T +O

(
n∑

i=1

r3t+i,T

)

,

where RVt,T =
∑n

i=1 r
2
t+i,T and R̃V t,T = 2

∑n
i=1 [rt+i,T − log (1 + rt+i,T )].
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Filipović, D., E. Gourier, and L. Mancini (2015): “Quadratic Variance Swap Mod-
els,” forthcoming, Journal of Financial Economics.

Flesaker, B. (1993): “Arbitrage Free Pricing of Interest Rate Futures and Forward Con-
tracts,” Journal of Futures Markets, 13, 77–91.

117



George, T. J., and F. A. Longstaff (1993): “Bid-Ask Spreads and Trading Activity
in the S&P100 Index Option Market,” Journal of Financial and Quantitative Analysis,
28, 381–397.

Ghosh, A., C. Julliard, and A. P. Taylor (2016a): “An Information Based One-
Factor Asset Pricing Model,” Working Paper, Carnegie Mellon.

(2016b): “What is the Consumption-CAPM Missing? An Information-Theoretic
Framework for the Analysis of Asset Pricing Models,” forthcoming, Review of Financial
Studies.

Gourieroux, C., and J. Jasiak (2006): “Autoregressive gamma processes,” Journal of
Forecasting, 25(2), 129–152.

Gürkaynak, R., B. Sack, and J. Wright (2007): “The U.S. Treasury Yield Curve:
1961 to the Present,” Journal of Monetary Economics, 54, 2291–2304.

Hamilton, J. D., and J. C. Wu (2012): “Identification and Estimation of Gaussian
Affine Term Structure Models,” Journal of Econometrics, 168(2), 315 – 331.

Hansen, L., and R. Jagannathan (1991): “Implications of Security Market Data for
Models of Dynamic Economies,” Journal of Political Economy, 99, 225–262.

Jagannathan, R., A. Kaplin, and S. Sun (2003): “An evaluation of multi-factor CIR
models using LIBOR, swap rates, and cap and swaption prices,” Journal of Econometrics,
116, 113 – 146.

Joslin, S. (2014): “Pricing and Hedging in Fixed Income Markets,” Working Paper, USC.

(2015): “Can Unspanned Stochastic Volatility Models Explain the Cross Section
of Bond Volatilities?,” Working Paper, USC.

Joslin, S., and A. Le (2014): “Interest Rate Volatility and No-Arbitrage Affine Term
Structure Models,” Working Paper, USC.

Joslin, S., A. Le, and K. J. Singleton (2013): “Why Gaussian Macro-Finance Term
Structure Models Are (Nearly) Unconstrained Factor-VARs,” Journal of Financial Eco-
nomics, 109, 604 – 622.

Joslin, S., M. Priebsch, and K. J. Singleton (2014): “Risk Premiums in Dynamic
Term Structure Models with Unspanned Macro Risks,” Journal of Finance, 69, 1197–
1233.

Joslin, S., K. J. Singleton, and H. Zhu (2011): “A New Perspective on Gaussian
Dynamic Term Structure Models,” Review of Financial Studies.
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