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Abstract 

In the first paper, I introduce a new framework to estimate household climate risk exposure based on 

a combination of climate and microeconomic data. I apply it to the Ethiopian Rural Household Survey 

(1994-2009) and find that households living at low altitudes are the most vulnerable to weather shocks. 

The second paper is based on a combination of open and double-blind randomized controlled trials 

(RCT) conducted in Tanzania in 2013 with 560 farmers.  By comparing the results between the 

participants in the open and double-blind groups, we find that more than 50% of the total effect of 

improved seeds estimated in traditional open RCTs depends on farmers’ behaviour. The third paper, 

based on the RCT mentioned above (only the open one is used), tests the hypothesis that farmers try 

to escape forced solidarity when facing favourable conditions. We find that farmers having received 

the improved seeds decrease their number of social interactions. We interpret this as a sign that 

farmers seek to hide from the pressure to redistribute. In the fourth paper, I leave Africa for the 

Republic of Ireland and show that a large Irish agri-environmental scheme does not increase farmers’ 

risk exposure. 
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Summary 

According to the median estimates of the United Nations Population Division (United Nations 2015), 

the world population will reach 9.7 billion in 2050. In order to feed this larger, richer and more urban 

population, food production will have to increase by 70% above 2009 levels (net of bio-fuels use) while 

livestock demand could already be up by 68% by 2030 (FAO 2009). Assuming that the goal is to meet 

this challenge with no agricultural land expansion in order to limit deforestation, currently responsible 

for 17% of greenhouse gas emissions (IPCC 2007), a yield growth of 1.07% per annum (p.a.) is required 

globally, while this figure goes up to 4.6% p.a. for Africa. However, yield growth has declined over the 

last decades and is projected to be around 0.7% p.a. (half their historical trend) for the decades to 

come (FAO 2009). Furthermore, it is very likely that climate change will cause, by 2050 in Sub-Saharan 

Africa, a 7% yield loss for the main food crops while its impact on rain-fed agriculture could be even 

more severe (up to 50% in some areas, IPCC 2007). There is hence a need to increase the yield of food 

production, to decrease its vulnerability to climate risk while limiting its impact on the environment. 

This tryptic has been labelled as the need a for a ‘doubly-green revolution’ (Conway 1998).  

The first chapter provides an overview of the literature on the link between risk, poverty, and 

agricultural technology adoption with an emphasis on empirical studies conducted in Sub-Saharan 

Africa. I start with an introduction to the expected utility theory and its limitations. The classic risk 

estimation framework in agricultural economics and recent developments are then discussed. The rest 

of the review surveys empirical studies on the link between risk, poverty and technology adoption. 

Social networks in developing countries play an important role in technology diffusion and household 

risk-management strategies. They are hence discussed in corresponding sections. We conclude by 

highlighting the contribution of the thesis to some of the topics introduced in this literature review. 

In the second chapter, we introduce a new framework to estimate climate risk exposure with the 

standardized precipitation evapotranspiration index (SPEI) as its building block. The approach is simple 

enough to accommodate quantile regressions and hence offer the opportunity to broaden the scope 

of the analysis to different categories of the population. The main contribution of the chapter is to 

provide an estimation framework where the various measure of risk, such as variance and skewness, 

can be directly derived from the regression parameters estimates of the SPEI. The methodology is 

illustrated with a case study on Ethiopia. In accordance with previous studies, the results show that 

households located at low altitudes are the most exposed to climate risk. 

In the third chapter, we assess the role of farmers’ behaviour in driving the yield increase of improved 

maize seeds. The study is based on the combination of open and double-blind randomized controlled 
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trials (RCTs) conducted in 2013 in two regions of Tanzania with 560 farmers. The advantage of 

combining open and double-blind RCTs is to allow the distinction between the effects of the improved 

seeds per se from the effects resulting from a change in the management of the farm. The empirical 

contribution of this study is to show that this behavioural response plays a central role in driving the 

increase in yields brought about improved seeds. In our experiment, more than 50% of the increase in 

yield estimated in the traditional open RCT would not have materialized without the behavioural 

response. 

Social networks play an important role in the livelihood of rural communities in Sub-Saharan Africa. 

The more successful members of the network must help the least successful or unlucky members of 

the social network. Recently, some observational and experimental evidence has indicated that these 

obligations may trigger an evasive response. In the fourth chapter, we investigate if participants to the 

RCT conducted in Tanzania try to escape forced solidarity when facing favourable conditions by hiding 

from their network. We find that farmers who were allocated improved seeds decreased the number 

of their social interactions, particularly if they have numerous relatives in the village. We interpret this 

as a sign that farmers attempt to escape forced solidarity and that the pressure to share increases as 

the size of the social network increases. To our knowledge, this constitutes the first set of evidence of 

evasive behaviour based on data from a RCT involving real interactions (i.e. not in a choice experiment 

or with observational data).   

In the fifth chapter, we investigate the impact on Irish farmers’ risk exposure of the Rural Environment 

Protection Scheme (REPS), an agri-environmental scheme. It has been shown in the literature that 

organic and, more generally, low input agriculture tends to increase risk exposure while risk aversion 

plays a role in the low adoption of sustainable production techniques. We show that REPS does not 

increase risk exposure, and adequately compensates farmers for foregone returns, which might be one 

of the reasons of its large success among farmers. Addressing risk considerations in policies aimed at 

making farmers eco-friendlier is an important dimension to the challenge of preserving both farmers’ 

quality of life and the environment. 
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1 Literature Review 

Xavier Vollenweider 

 

 

Abstract 

This chapter provides an overview of the literature on the link between poverty, risk, and technology 

adoption. We start by an introduction to the expected utility theory and discuss briefly the violation of 

the independence axiom and ambiguity aversion. The classic risk estimation framework in agricultural 

economics and its recent developments are then discussed in the following section. The rest of the 

review surveys empirical studies on the link between risk, poverty, and technology adoption. Social 

networks in developing countries play a role both in risk-coping and technology diffusion. They are 

hence discussed in corresponding sections. We conclude by highlighting the contribution of the thesis 

to some of the topics introduced in this literature review. 
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1.1 Introduction  

According to the median estimates of the United Nations Population Division (United Nations 2015), 

the world population will reach 9.7 billion in 2050. In order to feed this larger, richer and more urban 

population, food production will have to increase by 70% (net of bio-fuels use) above 2009 levels while 

livestock demand could be up by 68% already by 2030 (FAO 2009). Assuming that the goal is to meet 

this challenge with no agricultural land expansion in order to limit deforestation, currently responsible 

for 17% of greenhouse gas emissions (IPCC 2007), a yield growth of 1.07% per annum (p.a.) is required 

globally, while this figure goes up to 4.6% p.a. for Africa. However, yield growth has declined over the 

last decades and is projected to be around 0.7% p.a. (half their historical trend) for the decades to 

come (FAO 2009). Furthermore, it is very likely that climate change will cause, by 2050 in Sub-Saharan 

Africa, a 7% yield loss for the main food crops while its impact on rain-fed agriculture could be even 

more severe (up to 50% in some areas, IPCC 2007). There is hence a need to increase the yield of food 

production, to decrease its vulnerability to climate risk while limiting its impact on the environment. 

This tryptic has been labelled the need for a ‘doubly-green revolution’ (Conway 1998). 

The present thesis addresses some of the methodological and empirical aspects of this challenge. 

Chapter 2 provides a simple framework for estimating climate risk and climate vulnerability with a case 

study on Ethiopia. Chapter 3 analyses the role of effort allocation in driving the productivity increase 

of improved seeds thanks to the combination of open and double-blind randomized controlled trials 

(RCT) conducted in Tanzania. The open RCT data are also used in chapter 4 in an analysis of evasive 

response to social pressure to share risk and income among kin in village economy. Lastly, chapter 5 

studies the effect of an agri-environmental scheme on risk exposure of Irish farmers. In order to set 

the scene, we provide below a survey of the literature on risk and technology adoption in developing 

countries.  

For the sake of concision, some important streams of research are left out of this review 

notwithstanding their contribution to the general debate, notably the Ricardian approach 

(Mendelsohn et al. 1994), because its assumption of a well-functioning property market is rarely met 

in developing countries (Di Falco et al. 2011); the stochastic budgeting approach, because it relies on 

scenario analysis and simulation, rather than on empirical evidence; and the state-contingent 

approach (e.g. Chambers and Quiggin 1998), because there are only a few empirical studies based on 

it and it is not used in the present thesis. 

The seminal paper by Sandmo (1971) showing that risk leads to underinvestment and underproduction 

contributed to establishing the economics of production under uncertainty as an important research 

stream in economics, with agriculture as one of its favourite case studies. If production risk is a major 
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topic in the agricultural economics literature, it is probably because ’the most singular aspect of 

agricultural production is its randomness’ (Chambers and Quiggin 1998). Disparities are large in terms 

of farms’ risk exposure between developing countries (wherein traditional farming practices based on 

rain-fed agriculture dominate), and developed countries (wherein high-tech farms supply a large part 

of the alimentary needs and agricultural subsidies seek to shelter producers from market instabilities). 

Despite this heterogeneity, farming systems share the common attribute of being at the nexus of the 

markets and the environment. 

Admittedly there are different types of risk faced by a farm (Hardaker et al. 2004; Hazell 1992): 

production risk (e.g. pest and animal diseases, droughts and floods), market risk (e.g. inputs and 

outputs price volatility); resource risk (e.g. fertilizers, seeds and labour supply shocks), institutional risk 

(e.g. changes in policy), financial risk (e.g. changes in the interest charged on farm debt), personal risk 

(e.g. health issues, accidents), asset risk (theft or fire damage to buildings, machinery and livestock). 

While price risks are the dominant source of income shocks in OECD countries, production risk is of 

major concern among small-scale subsistence farmers in developing countries.  

The common understanding of risk is often associated with negative impacts but rarely articulated in 

terms of probabilities (Fafchamps 2009). Knight (1921) distinguished risk, wherein a probability set can 

be assigned to the set of possible outcomes, from uncertainty, wherein no probabilities can be 

assigned. Savage (1954) largely discarded this distinction by grounding subjective probability as the 

relevant concept to model agent perception of risk. The agricultural economics literature has adopted 

the expected utility theory first formalised by Bernoulli in 1738, and applied to modern economics by 

von Neumann and Morgenstern (1944), as the backbone of its decision-theoretic framework. Although 

this approach was challenged as early as 1953 by Allais and more generally by the field of behavioural 

economics (e.g. 1979; Machina 1987; Tversky and Kahneman 1974), no other theoretical decision 

framework has really succeeded in superseding it in the agricultural and development economics 

literature. We will nevertheless review briefly some of the main departures from expected utility 

theory reported in choice experiments.  

In section 1.2, we provide an introduction to the main decision theoretical framework of agricultural 

and development economics, the expected utility theory, and flesh out some of its limitations. Section 

1.3 presents the main risk estimation framework and recent developments. Section 1.4 provides an 

overview of the empirical findings on the link between risk and poverty. Section 1.5 looks at the 

determinants of new technology adoption. Social networks in developing countries play a role both in 

risk-coping and in technology diffusion. They are hence discussed in sections 1.4.3 and 1.5. We 

comment briefly on the role of risk in agri-environmental policies of developed countries in section 
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1.4.2. Section 1.6 concludes and discusses the contribution of the present thesis to the various research 

streams presented in this literature review. 

1.2 Expected utility theory and risk aversion 

We present the expected utility framework by relying on a series of examples and keeping the 

mathematical presentation as limited as possible. The goal is to introduce the decision theoretical 

framework in which most agricultural and development studies related to risk are grounded. We also 

review at the end of the section some of its limitation identified in the field of non-expected utility 

theory. 

Let us assume that an agent can choose either to toss a coin giving him a one in two chance of winning 

£10 or to be directly paid a sure amount of money. The amount of sure money he asks for can inform 

us on his degree of risk aversion. A risk-neutral agent will be indifferent between betting and receiving 

straight away the exact average of the gamble (£5). By contrast, a risk-averse agent might prefer £3 to 

the risk of having nothing, because, as Rothschild and Stiglitz (1971) put it, ‘a bird in the hand is worth 

two in the bush’. The risk-seeking agent, by contrast, will require a higher sure amount of money (let 

us say £7), because he prefers to play for the chance of earning £10.  

This sure amount of money is called the certainty equivalent (CE). We see that the smaller the CE is, 

the bigger the risk aversion. The difference between the expected gain (i.e. the average of the gamble) 

and the certainty equivalent is the risk premium: the risk-averse player has a risk premium of £2 (£5-

£3), which is bigger than the risk neutral (£5-£5=£0) and risk-seeking one (£5-£7=-£2). 

One can directly apply these insights to the interaction between risk aversion and agricultural 

production choices. Replacing the choice between coin toss and the sure sum of money by, 

respectively, the choice between planting a risky crop (e.g. coffee) or a riskless but low return crop 

(e.g. sweet potato), we can see that a risk-averse farmer will choose to plant sweet potatoes while a 

risk-seeking one will prefer planting coffee. The difference between the profit of the sweet potato and 

the coffee is the risk premium. Risk premium is also called the private cost of risk bearing, as it is the 

foregone returns paid for lower risk. This example suggests that risk can have an important cost for 

risk-averse farmers: to renounce more lucrative activities and, potentially, to be trapped in poverty.  

From this simple example, we see that it is important to stress the difference between risk as a 

probability measure and the event to which these probabilities are attached, e.g. droughts or price 

collapse (Fafchamps 2009). Although the latter is directly tangible, the example illustrates that the risk 
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in itself can constitute a constant draw on farmers’ livelihoods, as they might adopt low-risk strategies 

at the cost of lower expected revenues.  

Let us define these concepts a bit more formally. Figure 1.1 plots the utility function of a risk-averse 

(left) and a risk-neutral (right) agent defined in the domain of the coin toss example. For the risk-averse 

player, the sum of the utilities of the payoffs of the game, 1 2⁄ 𝑈(0) + 1/2𝑈(10), is less than the utility 

of the average payoff of the game, 𝑈(5). By contrast, both quantities are equal for the risk neutral 

agent. Hence his indifference towards playing, or directly receiving £5. 

Figure 1.1: Utility function of a risk averse and risk neutral agent 

  

The risk premium is represented on the left panel by the thick straight line under the utility curve 

between 3 and 5. It equals the average payoff of the game, £5, minus the CE payoff of the game, £3, 

which is £2. By contrast, we see that under risk neutrality, the utility function is linear and the CE payoff 

equals the average of the game, £5. The difference between these utility functions is their curvature 

which is captured by their second derivatives.  

The Arrow-Pratt coefficient of absolute risk aversion, AP, (Pratt 1964) is based on the curvature of the 

utility function: 

𝐴𝑃 = −
𝑈′′(𝜋)

𝑈′(𝜋)
 

(1)  

where 𝜋 represents the payoffs of the game in our example. The second derivative of the utility 

function is normalized by the first derivative in order to offer comparable metrics at different level of 

wealth. Lastly, as 𝑈’’ is negative, one adds a negative sign in order to end up with a more intuitive 

metric: a higher AP value means higher risk aversion. 

To better understand the implication of choosing a particular functional form for the utility, let’s 

specify it as an exponential function: 
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𝑈(𝜋) = 1 − exp(−𝛼𝜋) (2)  

Then the AP is: 

𝐴𝑃 = −
𝑈′′(𝜋)

𝑈′(𝜋)
= −(

−𝛼2𝑒−𝛼𝜋

𝛼𝑒−𝛼𝜋
) = 𝛼 

(3)  

We see that the level of absolute risk aversion, 𝛼, is independent of wealth and constant for the whole 

domain of the utility function. This means the agent exhibits constant absolute risk aversion (CARA). 

This implies that, under an exponential utility function specification, the multi-millionaire owner of a 

hacienda is as afraid of losing 1 dollar as landless farmers living on one dollar per day. Other utility 

functions allow more flexibility in terms of the structure of risk aversion.  

Let us examine risk aversion in more detail by modifying the choice offered to our gamblers. Now, we 

ask them to choose between two different gambles: (1) if they score Heads, they receive £10, Tails £0, 

(2) if they score Heads, they receive £9, Tails £1. Although the expected gains are the same, the risk-

averse player prefers the second gamble, because the spread between both payoffs is smaller, while 

the risk neutral player is indifferent. This aversion to the spread of payoffs is precisely what is captured 

by the Arrow-Pratt coefficient of absolute risk aversion, hence it is also called the coefficient of 

aversion to mean-preserving spread (Rothschild and Stiglitz 1970). In the case of agriculture, a farmer 

expecting a yield between 200 kg/ha and 4,000 kg/ha would have a higher spread than a farmer 

expecting a yield between 1,800 kg/ha and 2,200 kg/ha for instance. The spread is generally computed 

as the variance of the distribution of yield or output. 

One peculiarity of betting with fair coins is that they are symmetrically distributed. However, payoffs 

linked to economic activities might not be so. The distribution of probabilities between good and bad 

events is also an important characteristic of risk. Let’s take a simple example from the paper of 

Menezes et al. (1980) to illustrate this concept. Mao (1970) questioned executives in several industries 

about their preferences concerning two lotteries with payoffs 𝑥 and corresponding probabilities 𝑝𝑟(𝑥) 

described in (Table 1.1): 

Table 1.1: Choice experiment on downside risk aversion 

𝑓(𝑥) 𝑔(𝑥) 

𝑃 𝑟(𝑥 = 1) = 75% 𝑃 𝑟(𝑥 = 0) = 25% 

𝑃 𝑟(𝑥 = 3) = 25% 𝑃 𝑟(𝑥 = 2) = 75% 
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Mao (1970) found unambiguous preferences for 𝑓(𝑥) over 𝑔(𝑥) although these distributions have 

equal mean and variance, and despite the fact that the most likely outcome of 𝑔(𝑥), its mode, is higher. 

He interprets this preference as evidence of the importance of downside risk (here the risk of having 

0) captured by the coefficient of asymmetry of payoffs, the skewness. In other terms, agents prefer 

positively skewed distribution to negatively skewed one because they dislike downside risk. Menezes 

(1980) and Eeckhoudt and Schlesinger (2005) show that the coefficient of downside risk aversion is 

given by: 

𝐷𝑆 =
𝑈′′′(𝜋)

𝑈′(𝜋)
 

(4)  

In summary, we have stressed the differences between risk as a probability concept and the 

consequences that are attached to it. We then detailed two aspects of risk: the spread (variance) of 

the possible outcomes and their asymmetry (skewness, i.e. downside risk). The expected utility theory 

provides an elegant framework to represent the agents’ preferences with respect to these various 

facets of risk. 

Nevertheless, the expected utility rests on three assumptions: the ordering, continuity and 

independence of preferences with respect to the set of pairs of probability and payoffs (hereafter, 

prospects). The ordering axiom and continuity axiom imply that choice must be consistent, transitive. 

The evaluation of each prospect via the utility function can therefore be carried to any degree of 

precision, so that a certainty equivalent exists for each prospect (e.g Buschena 2003; Wakker 2010). 

The independence axiom implies that the choice between two pairs of prospects should not be 

affected if a third pair of prospects is mixed in with the first two pairs. The independence axiom was 

questioned as early as 1953 by Allais in choice-experiments. We follow below the presentation of 

Starmer (2000). Participants were offered the choice between the two lotteries presented in Table 1.2: 

Table 1.2: Lottery 1, choice-experiment on the independence axiom 

𝑓1(𝑥) 𝑔1(𝑥) 

𝑃 𝑟(𝑥 = £1m) = 100% 𝑃 𝑟(𝑥 = £5m) = 10% 

 
𝑃 𝑟(𝑥 = £1m) = 89% 

𝑃 𝑟(𝑥 = £0) = 1% 

Most of participants chose the lottery 𝑓1(𝑥) as it provides £1 million with certainty. Participants were 

then asked to choose between the two lotteries presented in Table 1.3:  
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Table 1.3: Lottery 2, choice-experiment on the independence axiom 

𝑓2(𝑥) 𝑔2(𝑥) 

𝑃 𝑟(𝑥 = £1m) = 11% 𝑃 𝑟(𝑥 = £5m) = 10% 

𝑃 𝑟(𝑥 = £0) = 89% 𝑃 𝑟(𝑥 = £0) = 90% 

Most participants chose 𝑔2(𝑥) because the chance of winning in 𝑓2(𝑥) and 𝑔2(𝑥) appear very similar 

while the prize of 𝑔2(𝑥) is much higher. However, this constitutes a violation of the independence 

axiom. 

Indeed, let us now rewrite the gamble 𝑓1(𝑥) = {£1𝑚, 11%;£1𝑚, 89%} and 𝑔1 =

{£0, 1%; £5, 10%;£1𝑚, 89%}. Both 𝑓1(𝑥) and 𝑔1(𝑥) have (£1𝑚, 89%) in common. Now, let rewrite 

𝑓2(𝑥) = {£1𝑚, 11%;£0,89%} and 𝑔2(𝑥) = {£0,1%;£5,10%; £0,89%}. Both 𝑓2(𝑥) and 𝑔2(𝑥) have 

as common consequence (£0,89%). The only change between the first and the second pairs of lotteries 

is the change in the common consequence from (£1𝑚, 89%) to (£0,89%). Under the independence 

axiom, a change in the common consequence should not affect the choice between 𝐟 and 𝐠 lotteries. 

Many studies have confirmed that the choice between prospects was influenced by change in the 

common consequence (Starmer 2000)1. 

So far, the probabilities of each possibility where known. What happens when probabilistic judgments 

are hard to make? This is a situation which is much closer to decision-making in real conditions. For 

instance, a farmer will have only a vague idea of the weather conditions over the next three years 

when deciding to plant a coffee crop.  As mentioned in the introduction, the distinction between risk, 

where probabilities can be attached to the events and uncertainty, where no probability are attached 

to the event, was largely discarded in favour of the notion of subjective probability proposed by Savage 

(Savage 1954). The decision under uncertainty can be reduced to decision under risk, with the 

assumption that agents hold subjective probabilistic beliefs which are used linearly.  

However, Ellsberg (1961) showed that one could not discard the distinction between uncertainty and 

risk. The following though experiment will illustrate his point (see Etner et al. 2012). Say an individual 

faces two urns, with 100 balls in each urn: in urn I, he knows that there are 50 black and 50 red balls 

(he can open the urn and count them); in urn II, he does not know the proportion of black and red 

                                                           
1 Another violation of the independence axiom is the common ratio effect (Starmer, 2000). Say you have to 
choose between the following lotteries: 𝑓1′(£3000,100%; £0,1 − 100%) and 𝑔1′(£4000,80%; £0,1 − 80%). 
Many people would go for 𝑓1′ because of the certainty of getting £3000. Now say you have to choose between 
𝑓2′(£3000,25%; £0,1 − 25%) and  𝑔2′(£4000,20%; £0,1 − 20%). Many people would go for 𝑔2′. However, 
expected utility theory predicts that one would go either for 𝒇′ or 𝒈’ gambles as the chance of winning as only 
been divided by 4 in both lotteries.   
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balls. He can choose a colour and then pick at random one ball, but he has first to decide from which 

urn he will pick the ball. Most people would strictly prefer urn I. If they were ‘probability-sophisticate’, 

this would imply that they think that there are fewer than 50 red balls in urn II. They should therefore 

rather prefer to bet on drawing a black ball from urn II. This paradox suggests that people are not 

probability sophisticated and dislike a situation where probabilities are unknown, i.e. they are 

ambiguity-averse. 

The observation that participants in choice-experiments tended to deviate systematically from the 

prediction of expected utility theory has led to the hunt for a descriptive theory of choice under risk 

and uncertainty accommodating non-linear probability weighting, heterogeneous valuation of bad and 

good events, and ambiguity aversion. The prospect theory proposed by Kahneman and Tversky (1979) 

gained a wide acceptance in the field of non-expected utility theory and could provide a worthy 

alternative to expected utility theory. Nevertheless, despite the large set of experimental evidence 

showing that alternate models are better for choice evaluation under conditions of risk and 

uncertainty, the use of non-expected utility models in empirical studies is still rare in agricultural and 

development economics. We will therefore not delve into more details. Interested readers are referred 

to literature reviews from Etner et al. (2012) and Starmer (2000) and the books from Gilboa (2009) and 

Wakker (2010) for a in depth treatment of this subject matter. We turn now to estimation of risk 

exposure with empirical data. 

1.3 Estimating risk exposure 

The goal of risk estimation in development and agricultural economics could be summarized as the 

estimation of the mean, variance and skewness of the probability distribution of production, yield, 

profit or consumption. More generally, the mean, variance and skewness are defined as the first, 

second and third central moments of a probability distribution. We will use both terminologies below. 

The stochastic production approach has been the dominant approach for estimating risk in the 

agricultural economics literature. The key insight of Just and Pope (1978) was to split the production 

function into a deterministic part and a stochastic part, allowing inputs to be risk increasing, risk 

neutral or risk decreasing: 

𝑦 = 𝑓(𝑥, 𝛽1) + ℎ(𝑥, 𝛽2)𝜀 (5)  

where 𝑦 is the quantity produced, 𝑓(𝑥, 𝛽) is the mean, 𝑥 the input and ℎ(𝑥, 𝛽)2𝜀2 is the variance. As 

Antle (1983) put it, the idea is basically to specify a deterministic model to which an error term is 

appended. Antle (1983) showed that although input effects on variance are not determined by their 
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effects on the mean, this specification restricts the inputs’ effect to have the same direction on 

variance and higher moments.  

Antle (1983) proposed an alternative model wherein the central probability moments are directly 

specified as: 

𝜇1(𝑥, 𝛽1) = ∫𝑦𝑓(𝑦|𝑥)𝑑𝑦 (6)  

𝜇𝑖(𝑥, 𝛽𝑖) = ∫(𝑦 − 𝜇1)
𝑖𝑓(𝑦|𝑥)𝑑𝑦𝑖 ≥ 2 (7)  

where 𝛽𝑖 relates the input 𝑥 to the moment 𝜇𝑖. This approach relaxes the cross-moment restrictions: 

the inputs’ elasticity with respect to variance does not restrict their elasticity with respect to higher 

moments2. Antle (1987) showed that the different central moments can be estimated using feasible 

Generalised Least Squares estimators.  

Antle (2010) extended his model to allow inputs to have asymmetric effects on the central moments 

of the probability distribution. The approach is based on the estimation of partial moments, i.e. 

probability moments below and above a given threshold of the yield or output. Once the effect of a 

given input on the higher partial moments is netted out from its effect on the lower partial moments, 

the conclusion regarding the risk effects of this input can change radically. It is illustrated with data 

from Ecuador where labour is shown to be risk increasing according to the central moments approach 

and to be risk decreasing according to the partial moments approach. 

Kim et al. (2014) recently proposed an estimation framework based on quantile regressions. The first 

stage consists of estimating a production function. The second stage consists of using the residuals of 

this first stage regression as dependent variable in a series of quantile regressions. The authors also 

provide a derivation of the risk premium in terms of the quantiles of the probability distribution. Based 

on the analysis of farm data in South Korea, they show that 90% of the cost of risk, defined as the risk 

premium, comes from downside risk. The method has also been applied to compare the effect of 

genetically modified crops on corn yield distribution (Chavas and Shi 2015). 

The models presented above rely on the residual of the production function to estimate risk. By 

contrast, in the field of efficiency analysis of agriculture production, a different interpretation is given 

to the residual: it represents farmers’ inefficiency. The field of stochastic frontier analysis sought to 

                                                           
2 The model from Antle (1983) has been labelled the flexible method of moments because it relaxes the 
assumption on cross-moment elasticity of inputs, and more recently, the linear method of moments because of 
its assumption that the central moments of the probability function can be approximated by a linear function 
(Tack et al., 2012). 
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unify both approaches by extending the stochastic production function from Just and Pope with a one 

sided error terms capturing the distance from the efficiency frontier (Battese et al. 1997; Sabul C 

Kumbhakar 1993; Subal C. Kumbhakar 2002; Subal C. Kumbhakar and Tveterås 2003; S. Kumbhakar 

and Tsionas 2010) or by estimating risk as the variance of the inefficiency terms (Bera and Sharma 

1999; Jaenicke et al. 2003; Wang and Schmidt 2002). As the residual is ultimately determined by what 

is left out of the regression model, the decomposition of the residual into an inefficiency term, risk 

term, misspecification error and noise is made difficult: ‘whether the residuals represent the ignorance 

of the firm under study or [the ignorance of] the analyst’ is often unclear (Saastamoinen 2013).3 This 

is likely one of the major weaknesses of risk estimation models based on the error term.  

A novel semi-parametric approach has been proposed by Tack et al. (2012) to circumvent this issue. 

Instead of estimating equation (6) and (7), Tack et al. (2012) estimate the raw moments of the 

conditional distribution of output via the following equation: 

𝑦𝑖𝑡
𝑗 = 𝑓(𝑥, 𝛽1) + 𝜀𝑖𝑡 (8)  

where 𝑦𝑖𝑡  is the output at time 𝑡 for observation 𝑖 put to the power 𝑗 and each 𝑗 equation corresponds 

to each 𝑗 raw moment. These raw moments provide all the required information to estimate the mean, 

variance and skewness of the conditional distribution, estimated as a maximum entropy density 

distribution. This distribution contains as a special case the normal, beta, chi-square, beta and many 

other distributions. The advantage of the raw moments approach is to decrease the risk of obtaining 

biased results caused by misspecification of the first moment equation, i.e. equation (5) in the model 

of Just and Pope and equation (6) in the model from Antle (1983). This method has notably been used 

to estimate the effect of the El Niño Southern Oscillation on US corn production and downside risk (J. 

B. Tack and Ubilava 2013). 

The availability of climate data has led to an explosion of the number of studies on the link between 

climate and the economy. This ‘new climate-economy literature’ (Dell et al. 2014) does not seek to 

recover conditional output distribution and is hence not focused on risk per se, but rather on how 

weather shocks affect various dimensions of the economy, from aggregate output, labour productivity, 

health and mortality, conflict and political stability, and, naturally, agriculture.  

In order to estimate the relationship between weather shocks and the economy, these studies use a 

similar reduced-form panel specification which can be generalized as (Dell et al. 2014): 

                                                           
3 Interested readers are referred to the literature review of Saastamoinen (2013) for a detailed presentation of 
the issue. 
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𝑦𝑖𝑡 = 𝛽𝑪𝒊𝒕 + 𝛾𝒁𝒊𝒕 + 𝜇𝑖 + 𝜃𝑟𝑡 + 𝜀𝑖𝑡 (9)  

where 𝑦𝑖𝑡  is the outcome of interest for unit 𝑖 at time 𝑡, 𝑪𝒊𝒕 is the climate variable, 𝒁𝒊𝒕 is a set of control 

variables, 𝜇𝑖  is a unit fixed effects, 𝜃𝑟𝑡 is a time fixed effects which might vary between regions, 𝑟,  and 

𝜀𝑖𝑡 is an error term. Most of these studies, when focusing on agriculture, are conducted at the 

aggregate level (county, district, state or country level) with the few exceptions such as the studies of 

Yang and Choi (2007) and Welch et al. (2010) where  farm and household level data are used. The 

outcome variable is either yield, profit or revenue and the climate variable is either temperature, 

precipitation or a combination of both.  

As the climate variable is exogenous and varies randomly over time, the studies based on equation (9) 

do not suffer from reverse causality bias. Furthermore, the use of fixed effects, 𝜇𝑖, and time fixed 

effects, 𝑟, account for possible omitted variable bias (e.g. unobserved spatial characteristics) and allow 

for different trends across subsamples. Studies based on equation (9) ‘makes relatively few 

identification assumptions and allows unusually strong causative interpretation’ (Dell et al. 2014). Dell 

et al. (2014) provides an extended survey of the new climate-economy literature. 

Most of these studies use a non-linear specification of the climate variable, 𝑪𝒊𝒕, be it temperature or 

precipitation, with a preference for quadratic specification: precipitation or temperature increases the 

output variable, 𝑦𝑖𝑡, up to a point where higher precipitation or temperature has an adverse impact 

on 𝑦𝑖𝑡, each additional degree or precipitation amount decreasing 𝑦𝑖𝑡  (e.g. Hidalgo et al. 2010; Lobell 

et al. 2011a; Lobell et al. 2011b; Schlenker and Roberts 2009; Schlenker and Lobell 2010). Another 

interesting insight from the ‘new climate-economy’ literature is the clear distinction between weather, 

defined as the realisation of the distribution of possible weather events, and climate, defined as the 

distribution of these possible weather events. 

We reviewed above some of the core techniques for estimating risk at the farm level. Most models are 

based on the residual of a regression of profit or output, with the exception of the raw moments 

approach of Tack et al (2012). Recently, the availability of climate data has led to the burgeoning 

studies on the link between various aspect of the economy and weather shocks. The latter studies are 

however not concerned per se with risk; rather, they look at the impact of shocks. The contribution of 

chapter 2 is to propose a model based on climate data and a model similar to equation (9) in order to 

assess climate risk exposure and vulnerability. 
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1.4 Empirical studies on the link between risk and poverty 

The absence of effective risk management strategies leaves farmers exposed to the vagaries of the 

weather, resulting in large fluctuations in agricultural production, income and household consumption. 

In Zimbabwe, for instance, Kinsey et al. (1998) report that household maize production dropped from 

more than 3 ton in 1991 to half a ton during the 1992 drought. In 1981-1985 in Burkina Faso, a period 

marked also by a major drought, the standard deviation in crop income  was half the long term average 

income (Kazianga and Udry 2006). Furthermore, half of the variation in crop income was directly 

passed into consumption, resulting in median caloric intake 30% below the World Health 

Organization’s recommendations. In Ethiopia, even relatively common weather conditions, such as a 

rainfall deficit expected to occur every five years on average, can  decrease consumption by 10 to 20 

percent (Porter 2012). The impact of a drought is rarely felt equally by all members of the household. 

Hoddinot (2006) shows that during the 1994-1995 Zimbabwean drought, women and children under 

the age of 12-24 months bore the brunt of the shock, the males’ body mass index staying relatively 

stable over the same period. As there are large seasonal variations in rural households’ consumption 

and, as data collection occurs only once a year at best, a large part of consumption fluctuations might 

even go unnoticed in most studies (Dercon and Krishnan 2000). 

Weather shocks not only bring short term fluctuation in income and consumption, they can also have 

long lasting consequences on households’ well-being by pushing them in poverty traps, i.e. 

‘equilibrium levels of poverty in which one may slide relatively easily, but from which there is no 

possible recovery without outside intervention’ (Dercon 2008). It took Ethiopian households on 

average 10 years to rebuild their cattle herd following the 1983-1985 drought, while consumption 

growth in the 1990’s of the most affected households remained 16% lower than the least affected 

(Dercon 2004). The 1984-1985 Ethiopian famine had a large and irreversible impact on children under 

the age of 36 months at that time. Dercon and Porter (2014) observe that adult height shortfall caused 

by poor infant nutrition is associated with a 3-8% p.a. income loss over adult life. Even marginal 

changes in rainfall have long-lasting effects. Although the 1994-1995 Zimbabwean drought was a 

relatively mild drought by African standards (no famine or emergency appeal for food aid), it lowered 

the growth velocity of children aged 12-24 months at that time (Hoddinott 2006). While the children 

living in wealthier households were able to recover, those living in poor households never did.  

The 2002 drought in Ethiopia is considered to have been well-managed: no famine death was reported 

despite it being of a similar magnitude than the 1983-1985 one. Two years later, the 2002 drought 

nevertheless still had a negative and significant impact on consumption (Dercon et al. 2005). More 

generally, a 10 percent decrease in rainfall depresses consumption growth by 1 percentage point four 
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to five years later in Ethiopia (Dercon and Porter 2014). This high level of path dependence in poverty 

has been observed in several other studies (e.g. Bigsten and Shimeles 2008; Yesuf and Bluffstone 

2009).  

Households do not stay passive: they implement a wide array of strategies to deal with these shocks 

and decrease risk exposure. These strategies are generally classified into two types: ex-ante risk 

management strategies and ex-post risk coping strategies (Alderman and Paxson 1992). The aim of ex-

ante strategies is to decrease income risk (e.g. decrease variance and skewness of the conditional 

distribution of income). The aim of ex-post strategies is to reduce the impact of income shocks on 

consumption. Ex-ante strategies include the diversification of income sources and the adoption of low 

risk production techniques. Ex-post strategies include self-insurance in the form of asset holding ready 

to be sold in case of adverse shocks and informal insurance via solidarity networks of friends and family 

ready to be called upon in case of need.  

Theses ex-post and ex-ante strategies can have several adverse consequences such as holding a sub-

optimal amount of productive assets (e.g. cattle) or the selection of activities less sensitive to rainfall 

variations but less profitable, contributing to the trapping of households in poverty. Although ex-ante 

and ex-post strategies should not be analysed separately as the availability of ex-post strategies 

typically influence the choice of ex-ante strategies (e.g. Dercon 1996; Rosenzweig and Binswanger 

1993), we discuss each type of strategy separately for the sake of clarity. We start by surveying the 

literature on risk aversion as risk aversion determines the price one is ready to pay to decrease risk.  

1.4.1 Risk aversion 

There are two main approaches for estimating risk aversion: analysing production choices or 

conducting choice-experiments. Models using production data are based on the insight that risk-averse 

farmers will choose a mix of inputs that decrease risk at the cost of forgone output, whereas risk-loving 

farmers will choose a riskier input mix with higher returns. Two sets of parameters need hence to be 

estimated: the technology parameters which describe the effect of inputs on risk and profit and the 

utility parameters mapping the input mix into risk aversion. These two stages can be carried either 

recursively (John M. Antle 1987, 2010; Foudi and Erdlenbruch 2011; Groom et al. 2008; Simtowe et al. 

2006) or jointly (e.g. Chavas and Holt 1996; Koundouri et al. 2009; Subal C. Kumbhakar 2002; Subal C. 

Kumbhakar and Tveterås 2003; S. Kumbhakar and Tsionas 2010; Love and Buccola 1991; Pope and Just 

1991; Saha et al. 1994).  

The core assumption of these models is that producers maximise expected utility. Most of these 

studies, carried out in developed countries, points toward a DARA and IRRA risk preference structures. 
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A large heterogeneity in risk preferences has been found among farmers’ populations. Antle (1987) 

finds that farmers in the Aurepalle village in India were both Arrow-Pratt and downside-risk-averse but 

at very different levels, ranging from risk neutrality to risk premiums as high as 25%. Lence (2009) calls 

into question the validity of estimating risk aversion with production data, particularly when shocks 

are not large or the sample is small, which is the case in most of the studies cited above. Furthermore, 

Just et al. (2010) show that although the models can be locally identified, they are not globally 

identified: an infinite set of pairs of technology and utility functions can equally well fit the data. These 

two articles are a serious blow to the whole field of risk preferences estimation based on production 

data. 

The use of choice-experiments to recover risk aversion in developing countries dates back at least to 

the 1980 Binswanger study on risk aversion in India (1980). The use of choice-experiment has provided 

a fertile ground for testing the validity of the expected utility theory in developing countries.  

Deviation from expected utility theory has been found in Uganda by Humphrey and Verschoor (2004) 

and by Mosley and Vershoor (2005) in Ethiopia, Uganda and Andhra Pradesh (India): rank dependent 

utility function and non-linear probability weighting function were found to explain better the data.  

Harrison et al (2010), with the same data than Mosley and Vershoor (2005), show by contrast that 

there is equal support both for expected utility theory and prospect theory. When both models are 

used simultaneously to explain the choices made in the experiment, they find that subjects behaving 

according to expected utility exhibit risk aversion and subjects behaving according to prospect theory 

exhibit risk loving behaviour. Risk aversion has also been found to vary geographically. Tanaka and 

Munro (2014), with results holding both under expected utility theory and prospect theory, found that 

farmers in the less favourable agro-climatic zones in Uganda were also the most risk averse. Several 

authors also find that the exposure to large shocks such as a severe drought was correlated with higher 

risk aversion (Gloede et al. 2013; Yesuf and Bluffstone 2009). Choice experiments are however not 

immune to bias. Cilliers et al. (2015) showed for instance that in an experiment in Sierra Leone the 

presence of a foreigner, typically a white researcher from a Western country, altered the behaviour of 

participants. 

Mosley and Verschoor (2005) suggest that there could be a mutually self-reinforcing cycle between 

risk aversion and poverty. Ex-ante risk management strategies by asset-poor households are not 

adequate to deal with important shocks. Asset-poor households have hence no other choice than to 

deplete their asset stock in order to smooth out the effect of shocks. This increases the risk of failing 

into chronic poverty, which, in turn, increases risk aversion, reducing their willingness to undertake 
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riskier and more profitable investments or to adopt new technology4. As a result, this further traps 

them in poverty. Dercon (2008) stresses rather the lack of insurance, credit and investment options 

among the poor as the main explanation behind the uptake of costly ex-ante risk management 

strategies. Innate differences in risk aversion between the rich and the poor would not play a central 

role in the larger adoption by the poor of costly ex-ante risk management strategies.  

1.4.2 Ex-ante strategies 

As discussed in section 1.2, risk might have a detrimental effect on well-being as it is hard to reduce 

risk without reducing expected income. This results in ‘efficiency losses, more inequality, [..] and 

poverty traps.’ (Dercon 2002). We discuss below one of the main ex-ante strategies: diversifying the 

source of income. The choice of low-risk low-return income generating activities constitutes a second 

major ex-ante strategy. We will discuss it in section 1.5 when presenting the role of risk aversion in the 

low rate of technology adoption. 

Diversification of the household activities into uncorrelated income sources is a key strategy to reduce 

risk. Non-farm income may already account for more than 40 percent of average household income 

(Barrett et al. 2001). However, risk mitigation cannot explain all diversification as ‘it is widely believed 

that risk aversion decreases with wealth but it is observed that diversification increases with wealth’ 

(Barrett et al. 2001).5 One reason for the lower diversification among the poorest households is the 

barriers to entry into non-farm enterprise such as capital constraints and education (Reardon et al. 

2000). Furthermore, finding income sources not correlated with the agricultural sector is difficult in 

rural areas. Fafchamps et al. (Fafchamps et al. 1998) find that ‘droughts adversely affect not only crop 

income but also non-farm income’. The authors state that these results are ‘consistent with Sen (1981) 

who remarked that droughts lead to a collapse of the demand for local services and crafts’.  

Several authors have shown that preserving biodiversity could be an effective ex-ante risk 

management strategy, as ecologically diverse agricultural systems tend to be both more resilient to 

climate shocks, pest invasion and crop diseases and more productive (Di Falco and Perrings 2005; Di 

Falco and Chavas 2006, 2009; Smale et al. 1998). As bio-diversity plays a role in ex-ante risk mitigation, 

risk aversion has been found to increases bio-diversity both in developing and developed countries 

(Bezabih and Sarr 2012; Di Falco and Perrings 2005; Nastis et al. 2013).  

                                                           
4 The impact of risk aversion on technology adoption is discussed in more detail in section 1.4.3. 
5 Several other factors explain diversification (Barrett et al. 2001). The push factors include risk diversification, 
ex-post coping strategies such as looking for alternative income or food consumption source after a crop failure, 
limited access to inputs forcing households to diversify their activities. The pull factors include complementarities 
between activities (e.g. intercropping), economy of scope or skill endowments.  
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Before presenting the ex-post risk coping strategies, let us consider for a moment the challenge of 

preserving the environment in developed countries. Many OECD countries have set up agri-

environmental schemes (AES) aimed at financially rewarding farmers for adopting eco-friendly 

practices. It is however as yet unclear what impact they have on risk exposure. Some production 

standards imposed by AES, such as a reduction in fertiliser and pesticide application rates, might have 

a direct impact on risk exposure. Indeed, organic and low input farmers are generally more exposed to 

production risk than conventional farmers (Berentsen et al. 2012; Finger 2014; Gardebroek 2006; Serra 

et al. 2008). Corroborating these findings, organic farmers tend to be less risk averse than conventional 

farmers (Gardebroek 2006; Serra et al. 2008). Morris et al. (2000) report a concern among English 

farmers that the rigidity of their local AES reduced their ability to take remedial action in case of pest 

infestation or severe weed events. Similarly, AES contract length was found to affect negatively the 

decision to join an AES because it tied up farmers’ hands over a long period of time (Peerlings and 

Polman 2009). The change in agricultural practices required to join an AES is also generally perceived 

as a risk (Wynn et al. 2001). It is however as yet unclear if joining an AES is objectively riskier or if it is 

perceived as such because of the uncertainty linked to the change in long tried farming practices. We 

will investigate this in more detail in chapter 5, studying the effect of joining an AES on Irish farmers’ 

risk exposure.  

1.4.3 Ex-post strategies 

A typical feature of weather shocks is that they tend to be covariate: many households are hit at the 

same time. While households manage to deal relatively well with idiosyncratic shock, i.e. shocks 

affecting only one household at a time (e.g. illness) (e.g. Porter 2012), they are ill-equipped to deal 

with covariate shocks such as drought or price swings.  Naturally, successive shocks are more difficult 

to deal with than a single one (Alderman 1996, cit. in Dercon, 2002). We review below two important 

ex-post strategies adopted by households to deal with shocks: self-insurance in the form of asset 

holding, risk sharing via solidarity networks of friends and family. We then briefly comment the link 

between ex-post coping strategies and environmental degradation and a weather index insurance. 

One the main strategies for coping with adverse shocks is asset holding, typically in the form of cattle, 

crop inventory or jewellery. In case of need, households can sell an asset in order to buffer the effect 

of the shock. It is hence often described as a self-insurance. However, their effectiveness at decreasing 

the impact of covariate shocks is limited, as shown in the case of the 1981-1985 drought in Burkina 

Faso where livestock sales compensated at most 30% of village-level income shocks (Fafchamps et al. 

1998). Running down crop inventory or decreasing food consumption was more a common response 

than selling livestock (according to the study from Kazianga and Udry, 2006, with the same dataset). 
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When all households seek to sell livestock at the same time, as when they are all affected by large 

drought, the terms of trade for livestock against food will collapse.  

The lumpiness of asset limits also their use for consumption smoothing: they are very costly to acquire, 

representing often several months of crop income, and are hence not easily disposed-of. Furthermore, 

livestock are key productive inputs used to plough the fields or providing manure for the crops. 

Hoddinott (2006) finds that in Zimbabwe, during the 1994-1995 minor drought, more than half of the 

households owning at least two oxen sold at least one ox. By contrast, only 15% did so when they 

owned only one or two oxen. Disposing of all the oxen can indeed have long-lasting consequences such 

as forcing households to rent each following year an ox at a high price, decreasing their ability to save 

money in order to buy another ox and get back on their feet. The risk of falling into such asset poverty 

traps could explain why asset rich households pursue consumption smoothing while asset poor 

households pursue asset smoothing (e.g. Zimmerman and Carter 2003).  

However, some behaviour observed during time of famine is hard to reconcile with the idea that asset-

poor households maximise the expected utility of consumption over time by protecting their assets. 

During the Ethiopian famine of 1984-1985 for instance, many households declined to sell their livestock 

even when it could have saved their family members, and their own, lives. Dercon (2008) suggest that 

non-expected utility models of choice under risk and uncertainty could explain this behaviour: 

individuals would exhibit risk-loving attitudes when faced with large shocks, clinging to the hope of 

conserving their status quo, however remote is this possibility. 

A second important ex-post strategy is to rely on the solidarity of friends and family as a form of 

informal insurance. Its effectiveness is however limited mostly to idiosyncratic risk. Bramouillé and 

Kranton (2007) show that social networks provide higher welfare gains when they link individuals 

across different villages and communities, but geographical proximity and kinship are the major 

determinants of risk-sharing network formation (Fafchamps and Gubert 2007). The result is that risk-

sharing networks rarely include people with uncorrelated risk (Fafchamps and Lund 2003). They are 

hence of limited use against covariate shocks such as drought or price swings. As all the individuals in 

the social network are affected at the same time, there is no surplus to share. Several studies tested 

and rejected the hypothesis of full risk pooling at the village level (e.g. Townsend 1994). Kazianga and 

Udry (2006) find almost no risk sharing in Burkina Faso over the 1981-1985 period. Reardon et al. 

(1988, cited in Dercon, 2002) report that transfers represented ‘only 3 per cent of the losses for the 

poorest households in the Sahel’ during the 1981-1985 drought. Nor does Yilma (2014) find evidence 

for reliance on gifting from friends and family to deal with shocks in Ethiopia, in a survey conducted in 
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2011. Morduch (1999) gives many other examples of a limited role for transfers in smoothing income 

shocks.  

A disadvantage of these risk sharing networks is that they can lead to unequal patron-client 

relationships between the poorest households and wealthier ones (Fafchamps 1992) when the poorest 

households are not simply excluded (e.g. Santos and Barrett 2011). Furthermore, Di Falco and Bulte 

(2011) find that forced sharing norms in social networks diverted investment away from sharable liquid 

assets toward assets not sharable, but with lower returns. Jakiela and Ozier (2016) find that sharing 

norms ‘distort incentives towards less visible, but potentially less profitable, investments, and may 

consequently slow economic growth’. Baland et al. (2011) provide anecdotal evidences that some 

individuals in Cameroon attempt to fend off network requests by contracting costly credit in order to  

‘pretend to be poor’. As Chuang and Schechter (2015) put it, ‘this suggests that we should be interested 

both in how social networks work as a conduit for financial transactions, but also how social networks 

enforce these transactions’. There could be indeed a ‘dark side’ to social capital (Di Falco and Bulte 

2011). 

Lastly, households may rely on income or food sources with detrimental effects on the environment 

such as wildlife poaching (Barrett and Arcese 1998), firewood and charcoal selling (Little et al. 2001) 

The resulting environmental degradation can then itself increases risk exposure (e.g. decreases in 

water availability due to deforestation) and contribute to establish a mutually self-reinforcing cycle 

between poverty and environmental degradation (Barbier 2010; Barrett et al. 2011; Dasgupta et al. 

2005). 

A new blend of insurances has emerged on the policy arena since the beginning of the nineties: 

weather index insurance and affiliated instruments, also known under the generic term of index-based 

risk transfer product (IBRTP). The concept of index insurance is that the indemnities are not paid 

according to the actual loss but on the basis of an index highly correlated with the loss. Examples of 

such indexes are rain gauges, area-yield, wind speed or bio-mass as captured by satellite imagery.  

Index insurance might prove adequate in developing countries where governments can ill-afford the 

heavy subsidies needed for standard multiple peril crop insurance (Ibarra and Skees 2007). Weather 

index insurance is indeed much cheaper. For instance, rainfall insurance could be triggered objectively 

and remotely monitored based on satellite or rain gauge data. There is no need to send an employee 

to check that each policy holder is affected by a drought. Furthermore, it decreases the cost linked to 

asymmetric information (moral hazard and adverse selection) as the risk can be objectively assessed 

thanks to historical rainfall data. However, the uptake of weather insurance has been lower than 
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expected, the explanations ranging from a lack of information, the complexity of the product or 

behavioural biases.  

Clark (2011) showed recently that the basis risk was the main determinant of non-adoption. Hill et al. 

(2013) find that wealthier households were more likely to purchase weather index insurance and that 

risk aversion decreased the propensity to adopt it. Dercon et al. (2014) found that basis risk in weather 

insurance makes it a complement to informal risk sharing, implying that weather insurance could 

reinforce existing informal risk sharing networks and that communities with well-functioning informal 

risk sharing networks should be targeted first for weather insurance. Despite these promises, weather 

index insurance availability is still very low in Sub-Saharan Africa. As reviewed above, the traditional 

ex-post strategies adopted by households are not very effective at dealing with covariate and recurrent 

shocks such as drought and price swings.  

To sum up, traditional on-farm risk management strategies might be effective against idiosyncratic risk 

such as illness, but they might prove very costly, lock farmers in poverty traps, increase inequality and 

are not adapted to covariate shocks such as drought. Lastly, recent studies point toward a positive 

relationship between bio-diversity preservation and risk management and the development of 

weather index insurance could provide an effective way for farmers to deal with risk. 

1.5 Adoption of agricultural technologies and their impact on well-

being 

New agricultural technologies, such as drought tolerant crop varieties, could play a crucial role in 

improving food security in Africa. High yield varieties and the adoption of modern farming practices 

drove the Green Revolution in Asia and could provide increases in agricultural productivity across 

Africa as well. The uptake of new agricultural technology in Africa is however still limited and far from 

complete (Foster and Rosenzweig 2010).  

One key reason for adopting a new technology is its profitability. The return on adoption is however 

not easy to estimate (Foster and Rosenzweig 2010). Even in the relatively simple case of profit 

maximising entities, where the return on adoption could be measured as the increase in profit caused 

by the new technology, some inputs might hard to measure, particularly when considering small-scale 

farmers in developing countries where a large part of the input invested on the farm consists of home-

labour, which is hard to measure and hard to value. For instance, Foster and Rosenzweig (2010) notes 

that Duflo’s study (2008) of the impact of fertiliser adoption on output neglects changes in labour 
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provision. As the change in labour provision represents a cost, the benefit from the adoption might be 

overestimated if not properly taken into account.  

There is also a large heterogeneity between farmers in terms of plot quality, agro-ecological 

conditions, management skills and access to capital and inputs. These differences might be hard to 

assess. The observation that high yield farmers use improved seeds does not imply that farmers with 

traditional seeds should use improved seeds. It might be the case that farmers with improved seeds 

would also perform better with traditional seeds (heterogeneity between farmers) or that traditional 

seeds are better suited to the marginal lands used by farmers with low yields (heterogeneity in the 

return on adoption). An estimation of the impact of a new technology based on observational data 

which does not properly account for the heterogeneity between adopters and non-adopters will be 

biased: a part of the estimated increase in yield attributed to the new technology is, in fact, caused by 

the better management skills of the adopters or the higher suitability of their plots, for instance.  

These issues have been dealt with via endogenous switching regressions (Asfaw et al. 2012a), 

propensity score matching methods (Becerril and Abdulai 2010; Kassie et al. 2014; Mendola 2007), the 

use of both methods side by side (Amare et al. 2012; Asfaw et al. 2012b; Khonje et al. 2015; Shiferaw 

et al. 2014), or panel data analysis (Bezu et al. 2014; Mathenge et al. 2014; Smale and Mason 2014; 

Suri 2011). In endogenous switching regression methods, the decision to adopt and the impact of 

adoption on output are analysed jointly. The identification of the causal effect of adoption on the yield 

rests on the assumption that at least one variable used to explain adoption is not correlated with yield 

(exclusion restriction). In the propensity score matching methods, a set of observable variables is used 

to build a comparable set of pairs of adopters and non-adopters. The assumption is that conditional 

on these variables, the decision to adopt is random. However, some characteristics determining 

adoption might be unobservable to the analyst, implying that the conditional independence 

assumption is violated. 

Most studies find a positive effect of improved seeds on farmers well-being, be it in terms of income, 

food security or reduced depth of poverty. For instance, Minten and Barrett (Minten and Barrett 2008) 

find that areas that ‘have higher rates of adoption of improved agricultural technologies and, 

consequently, higher crop yields enjoy lower food prices, higher real wages for unskilled workers, and 

better welfare indicators’. Some studies find also that the poor benefit particularly (Bezu et al. 2014; 

Mathenge et al. 2014). However, gains might vary across farmers, depending on geophysical 

conditions, farm size, and other characteristics affecting output. Heterogeneous treatment effects 

associated with adoption have been analysed in detail for the case of hybrid maize in Kenya by Suri 
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(2011). Suri shows that the return on adoption might be null for a large share of the Kenyan farming 

population. 

The studies have provided a plethora of explanations for the low adoption of modern agricultural 

technologies. Following a literature review from 1985 (Feder et al. 1985), they include: farm size,  risk 

exposure and risk aversion,  human capital, capital and credit constraints, limited access to 

information. Studies on the determinant of the adoption of modern seeds performed since 2000 show 

that farmers still face similar constraints:  the high price of seeds (e.g. Fisher et al. 2015; Wekesa et al. 

2003), their low availability (e.g. Amare et al. 2012; Asfaw et al. 2012a; Fisher et al. 2015; Wekesa et 

al. 2003), a lack of capital and credit access (e.g. Fisher et al. 2015; Lambrecht et al. 2014; Zeller et al. 

1998), inadequate information about their usage and yield (e.g. Amare et al. 2012; Asfaw et al. 2012a; 

Fisher et al. 2015). Other studies have shown that the low rate of adoption could be explained by 

behavioural bias such as high rate of time discounting (Duflo et al. 2008, 2011) while others still have 

shown that the improved seeds were not profitable for a large share of the population so that farmers 

may behave perfectly rationally when deciding not to adopt (Suri 2011). 

Risk aversion and risk exposure has also been shown to play an important role in the adoption decision 

(e.g. Richard E Just and Zilberman 1983). New technology such as fertilisers or improved seeds 

represent a significant investment for poor farmers, the benefits of which might be hard to ascertain 

without prior experience. Simtowe et al. (2006) showed that a high level of risk aversion, among other 

factors such as education, leads to a low level of adoption of hybrid maize among farmers in Malawi 

while Knight et al. found similar results in Ethiopia (J. Knight et al. 2003). Hill (2009) finds that more 

risk averse farmers were less likely to invest in a profitable but risky crop in Uganda (coffee), a fact 

which was particularly salient for poor farmers unable to insure against shocks.  

Brick and Visser (2015) also found that farmer with a high degree of risk aversion were more likely to 

use traditional agriculture techniques and less likely to use modern seeds even when insurance is 

available. By contrast, Dercon and Christiaensen (2011) and Berhane et al. (2015) find that fertiliser 

use in Ethiopia increases if insurance is offered. Karlan et al. (2014) even go a step further by showing 

that in Ghana the binding constraint for investing in new technology is risk and not credit access: when 

relaxing risk constraint by providing weather index insurance, households were actually able to find 

the credit required to increase expenditure on farm inputs. Zeller et al. (1998) suggest that these risk-

induced poverty traps are not inescapable, as high risk averse farmers in Malawi were able to adopt 

new technology, such as hybrid maize and tobacco, provided that ‘policies improve their access to 

credit, extension,  input and output markets’. 
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Education has also been shown to play a major role in the adoption process as it facilitates learning 

about the use and potential of new technologies. Weir and Knight (2000) show that education had two 

positive externality effects: ‘educated farmers are early innovators, providing an example which may 

be copied by less educated farmers; and educated farmers are better able to copy those who innovate 

first, enhancing diffusion of the new technology more widely within the site’. In related study, Knight 

et al. (2003) found that education reduced risk aversion and hence increased adoption. 

It is has also been long recognized that social networks play an important role in the diffusion of 

technology. For instance, Besley and Case (1993), in their discussion of the modelling and estimation 

of farmers’ adoption decisions, stress the importance of learning from the experience of early adopters 

and from discussion with peers. Several empirical studies confirm the importance of the learning 

effects, mediated by peers and extension agents, on the decision to adopt (e.g. Bandiera and Rasul 

2006; Conley and Udry 2010; Isham 2002; Moser and Barrett 2006; Munshi 2004).  

Furthermore, Foster and Rosenzweig (1995) found that the profitability of a seed increased with 

neighbours’ experience because better knowledge on the management of the new seed was gained 

by observing peers.  More recently, Van den Broeck and Dercon (2011) found similar effects among 

Banana growers in Tanzania and showed that the impact of information depended on the network 

type, the kinship network being the most effective at transforming information into higher yield. Barr 

(2000) also found some productive effects of social capital in the Ghanaian manufacturing sector 

thanks to better flows of technological information. Nevertheless, the impact of social networks on 

the adoption process might be complex. Bandiera and Rasul (2006) find that the probability of 

adoption follows an inverse-U shape in the size of the social network: when there is only a few adopters 

in the network, knowing one more adopter increases the probability of adoption; when there are many 

adopters in the network, some farmers might have an incentive to free-ride and rely on the solidarity 

of their peers. 

We propose in chapter 3 an impact evaluation framework based on a set of randomized controlled 

trials. It offers unbiased estimate of the effect of improved seeds on yield and allows us to estimate 

the role played by the input adjustment of farmers in yielding the full potential of the improved seeds. 

1.6 Conclusion 

Farmers in Sub-Saharan Africa are largely exposed to the vagaries of the weather. In order to deal with 

this risk, they adopt various ex-ante risk management and ex-post risk coping strategies. However, ex-

post strategies tend to break down when large covariate shocks, such as droughts, occur; while ex-
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ante strategies tend to be very costly and might contribute to trap households in poverty. Improved 

seeds and fertilisers could go a long way in improving food security. However, they are not widely 

adopted. A myriad of factors explain this situation, but risk and the heterogeneity of new technology 

returns likely play an important role. Although solidarity networks of kin and friends are generally 

inadequate to deal with large covariate shocks, they are a key channel for technology diffusion. 

Nevertheless, an emerging body of literature shows that the social pressure to share among social 

networks might also distort incentives to invest in lucrative activities because of the fear of being taxed 

by kin or friends. Lastly, while bio-diversity has been found to decrease risk exposure in developing 

countries, risk aversion might by contrast deter some farmers from adopting eco-friendly practices in 

developed countries. We summarize below the contribution of the current thesis to the various fields 

of research covered in this literature review. 

Chapter 2 aims at providing a simple framework to assess the climate risk exposure by combining 

climate data and household level consumption data. Instead of relying on the residual as in the classic 

risk estimation framework of the agricultural economic literature (e.g. John M Antle 1983; john M. 

Antle 2010; Richard E. Just and Pope 1978; Kim et al. 2014), we propose to estimate the impact of 

weather shocks on consumption variables with a regression model similar to the one used in the ‘new 

climate economy’ literature (Dell et al. 2014). The novelty comes from the use of the statistical 

properties of the Standardized Precipitation Evapotranspiration Index (SPEI), our climate variable, in 

order to estimate the shape of the conditional distribution of consumption and provide direct estimate 

of its variance, its skewness. Poverty risk and other vulnerability indices could be computed with this 

approach. 

Chapter 3 provides an analysis of the contested issue of the profitability of improved seeds. It is likely 

that no single factor can, on its own, explain the puzzle of their low adoption in Sub-Saharan Africa. 

However, Suri (2011) showed that some agricultural technologies might not be profitable for a large 

part of the population, while Rosenzweig and Foster (2010) highlight the fact that many studies may 

overestimate the benefit of adoption because they neglect farmers’ adjustment cost, i.e. they measure 

the total effect of adoption instead of the net effect. Based on open and double-blind randomized 

controlled trials (RCT) in Tanzania, we provide an assessment of the role of farmers’ behavioural 

responses in driving the increase in yield of improved seeds. We find that at least 50% of the increase 

in yield estimated in a traditional RCT would not materialise without an increase in labour, land 

allocation and other dimensions of effort. Our experimental design provides also a lower and higher 

bounds of the net effect improved seeds. 
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Based on the data from the RCT cited above, chapter 4 investigates if the participants adopt an evasive 

behaviour to fend off solidarity requests from their social network when exposed to a positive income 

shock, i.e. receiving improved seeds. We use here only the open RCT conducted in Tanzania, not the 

double-blind one: we want to observe the participants’ behaviour when they know that they have a 

positive income shock. The evasive behaviour is measured among farmers having received the 

improved seeds as a decrease in social interactions which could reveal to their social network that they 

received the improved seeds. We find that the propensity to adopt an evasive behaviour increases 

with the size of the kin network. To our knowledge, this constitutes the first set of evidence, based on 

a RCT design involving real interactions - i.e. not in a choice experiment as in Jakiela and Ozier (2016) 

or with observational data as in Baland et al. (2011) and Di Falco and Bulte (2011) - that hiding from 

the social network tax takes place in a village economy. Nevertheless, we stop short of concluding that 

this evasive behaviour bears any economic consequences. Indeed, although they asked for less help 

on the experimental plot at harvest time, the participants did not ask for less help at planting and 

weeding time where a decrease in labour could have decreased yields.   

Lastly, chapter 5 investigates the impact on Irish farmers’ risk exposure of the Rural Environment 

Protection Scheme (REPS), an agri-environmental scheme. Organic and, more generally, low input 

agriculture tends to increase risk exposure according to several studies (e.g. Berentsen et al. 2012; 

Finger 2014; Gardebroek 2006; Serra et al. 2008) while risk aversion is believed to play a role in the 

low adoption of sustainable production techniques (e.g.Gardebroek 2006; Morris et al. 2000; Peerlings 

and Polman 2009). We show that REPS does not increase risk exposure, and adequately compensates 

farmers for foregone returns. Although we do not analyse the decision to join REPS, this could be one 

of the reasons of its large success. 
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2 A Simple Framework for the Estimation of Climate Risk 

Exposure 

Xavier Vollenweider6 

Abstract 

This article introduces a new framework to estimate climate risk exposure at the household level with 

the standardized precipitation evapotranspiration index (SPEI) as its building block. The great 

advantage of using the SPEI is in knowing that it is distributed as a standard normal distribution. We 

have hence a proxy variable for the climate with a known distribution. Once the conditional 

expectation of consumption has been estimated as a function of SPEI, the probability density function 

of expected consumption conditional on SPEI can be derived by a change of variables. We use this 

probability density function as our measure of climate risk exposure. Furthermore, the approach is 

simple enough to accommodate quantile regressions and hence offers the opportunity to broaden the 

scope of the analysis to different categories of the population. Lastly, it offers a direct estimate of the 

central moments of the climate risk exposure function via the regression estimates on the SPEI 

(variance, skewness, kurtosis). It circumvents hence the use of the residuals as done in traditional 

model of production risk analysis. The methodology is illustrated with a case study on Ethiopia, 

combining data from the Ethiopian Rural Household Survey (ERHS) with climate data (African Rainfall 

Climatology Version 2 dataset and Climate Prediction Centre Global Land Surface Air Temperature 

Analysis, GHCN+CAMS, NOAA 2001). The results show notably that households located at low altitudes 

are the most exposed to climate risk.  

 

 

                                                           
6 Department of Geography and Environment, London School of Economics and Political Science, United 

Kingdom. Contact author: Xavier Vollenweider: X.Y.Vollenweider@lse.ac.uk. I gratefully acknowledge the 

support from the Walsh fellowship and the Rural Economy and Development Programme of Teagasc, the 

Agriculture and Food Development Authority of the Republic of Ireland. I would like also to extend my thanks to 

Elvezio Ronchetti, Ben Groom, Kelvin Balcombe and Steve Gibbons for comments on earlier drafts of this paper.  

mailto:X.Y.Vollenweider@lse.ac.uk


  

48 
 

2.1 Introduction 

The seminal paper of Sandmo (1971) showing that risk leads to underinvestment and underproduction 

contributed to establishing the economics of production under uncertainty as an important research 

stream in economics, with agriculture as one of its favourite case studies. If production risk is a major 

topic in the agricultural economics literature, it is probably because ’the most singular aspect of 

agricultural production is its randomness’ (Chambers and Quiggin 1998). The main framework for 

production risk estimation is based on the stochastic production analysis of Just and Pope (1978) and 

Antle (1983). These models, and their later extensions to skewness and efficiency analysis (Di Falco 

and Chavas 2006; Kumbhakar and Tveterås 2003), have been the backbone of a large number of 

studies. They have been applied to the estimation of risk preferences, and efficiency (e.g. John M Antle 

1987; Koundouri et al. 2009; Love and Buccola 1991), to estimate the role of biodiversity as a risk 

mitigating option (e.g. Di Falco and Chavas 2006; Di Falco and Chavas 2009; Smale et al. 1998) and to 

water resource management (e.g. Groom et al. 2008). See Saastamoinen (2013) for an recent and 

synthetic literature review. 

Although the existing estimation framework is appropriate for estimating short-term production risk, 

the estimation of climate exposure is more elusive: climate risk in the classical framework is lumped 

into the larger category of production risk; a catch-all term covering plant and animal diseases, pests, 

mushrooms, damage caused by animals as well as droughts and floods. Two main reasons can explain 

this gap in the literature. First, when the foundations of the stochastic production analysis framework 

were laid, i.e. the beginning of the 1980s, climate change was not yet on the political agenda. Second, 

weather data were not widely available in the 1980s and geographical information system (GIS) 

software was still the realm of a few specialists. 

Following the Rio Declaration on Environment and Development (1992), the emergence of climate 

change and climate adaptation as a serious challenge to policymakers at both national and 

international levels has highlighted the need for a precise estimation of household climate risk 

exposure. Furthermore, anyone can nowadays access daily satellite and weather station precipitation 

as well as temperature data over several decades, and link them with microeconomic data thanks to 

GIS software (e.g. Quantum GIS7, R8). Hence, a new methodology utilizing this climate data bonanza 

and answering these policy needs is required.  

                                                           
7 Quantum GIS Development Team (2013). Quantum GIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://qgis.osgeo.org. 
8 R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL  http://www.R-project.org/. 
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So far, the focus has been on estimating the production risk of the average household. Indeed, the 

main tool to investigate changes in other parts of a population distribution, i.e. quantile regression 

analysis (Koenker and Bassett 1978), was still a novelty at the time of the pioneering work of Just and 

Pope (1978). It is, however, of interest to know how climate exposure varies between poor and rich 

households or if a particular development policy is effective at decreasing climate exposure among 

poorer parts of a population. Standard quantile regression routines are now widely available on 

common statistical software (e.g. STATA) and their extensions to panel data, still an active field of 

research, are readily available via the R CRAN project, for instance. The new methodology should hence 

be simple enough to accommodate quantile regressions in order to distinguish climate exposure in 

different categories of the population. 

The methodology proposed in the present article is built on the use of standardized measures of 

weather. The Standardized Precipitation Index (SPI), first introduced by McKee et al. (McKee et al. 

1993, 1995), is a locally and frequency based characterization of precipitation levels. Guttman (1998, 

1999) widely contributed to its popularisation by showing some of its key advantages over the Palmer 

Drought Severity Index (Palmer 1965), the index of choice at the time.9 The SPI allows the comparison 

of hydrological conditions across space and time (Hayes et al. 1999), is flexible enough to consider 

different kind of droughts (e.g. hydrological conditions on monthly scales affecting agriculture, or at 

yearly scales affecting large-scale water management), is simple and tractable, and is parsimonious in 

terms of data requirements.  

Note that climate change affects both changes in precipitation and temperature. Vicente-Serrano et 

al. (2010) have proposed the SPEI in order to take into account the influence of temperature on 

hydrological conditions. Its statistical conception and properties are essentially the same as the SPI. 

However, in the case of the SPEI, it is the difference between precipitation and potential 

evapotranspiration, i.e. the net balance of water, which is standardized. As both temperature and 

precipitation have an impact on agricultural production and the livelihood of rural populations, and 

since the SPEI is more sensible in the context of climate change, it was preferred as the standardized 

measure of weather. 

The use of the SPEI offers the opportunity to easily characterize average production or consumption 

under locally and frequency-defined weather scenarios. As the framework is very simple, it can easily 

                                                           
9 The Palmer Drought Severity Index (PDSI) is based on a water balance equation taking into account 
precipitation, moisture supply, runoff and evaporation demand at the surface level. According to Vicente-Serrano 
et al. (2010), although some of the weaknesses of the PSDI have been solved by Wells et al. (2004), the main 
weakness of the PDSI identified by Guttman (1998) has not been addressed: the fixed temporal scale between 9 
to 12 months and the fact that PDSI values are affected by conditions up to four years in the past. 
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be extended to quantile regressions in order to broaden the scope of analysis to households at 

different quantiles of the population distribution. In order to control for unobserved heterogeneity, 

we rely on penalized quantile fixed effects quantile regressions as proposed by Koenker (2004). 

Once the climate risk exposure has been estimated, a vulnerability index is needed to summarize the 

information. We rely on three indices: (1) poverty risk, (2) expected shortfall, and (3) relative risk 

premium. We apply the proposed methodology to the consumption level of rural households in 

Ethiopia with data from the Ethiopian Rural Household Survey (ERHS)10, a panel dataset with seven 

rounds conducted between 1989 and 2009, including more than 1,200 households. The climate data 

come from the African Rainfall Climatology Version 2 dataset and the Climate Prediction Center Global 

Land Surface Air Temperature Analysis dataset (GHCN+CAMS, NOAA 2001). All datasets used in the 

present study are freely available online.  

 

Section 2.2 presents the estimation framework starting with a brief review of the classical estimation 

framework of production risk analysis (2.2.1), following with the presentation of the SPEI (2.2.2) and 

the derivation of the climate consumption model (2.2.3). The vulnerability indices and the estimation 

strategy are then presented (2.2.4 and 2.2.5 respectively). Section 2.3 presents the data and results 

are discussed in section 2.4. Section 2.5 concludes.  

2.2 Estimation framework 

2.2.1 Production risk analysis 

The classical risk estimation methodology was developed when climate and weather data were not 

widely available. The emphasis was hence on production risk, a catch term for drought, flood, pest and 

animal diseases. In other words, production risk was viewed as all factors affecting production which 

are not under the farmer’s control, oscillating randomly from year to year and not related to market 

risk (e.g. inputs and outputs price volatility); resources risk (e.g. fertilizers, seeds and labour supply 

shocks), institutional risk (e.g. changes in policy), financial risk (e.g. changes in the interest rates 

                                                           
10 The ERHS data have been made available by the Economics Department, Addis Ababa University (Economics 
/AAU); the Centre for the Study of African Economies, University of Oxford (CSAE); and the International Food 
Policy Research Institute (IFPRI). Funding for data collection was provided by the Economic and Social Research 
Council (ESRC), the Swedish International Development Agency (SIDA) and the United States Agency for 
International Development (USAID); the preparation of the public release version of these data was supported, 
in part, by the World Bank. AAU, CSAE, IFPRI, ESRC, SIDA, USAID and the World Bank are not responsible for any 
errors in these data or for their use or interpretation. 
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charged on the debt of the farm), personal risk (e.g. health issues, accidents), and asset risks (thefts or 

fire damages to buildings, machinery and livestock) (Hardaker et al. 2004; Hazell 1992). Note that 

financial risk, personal risk, and asset risk are rarely controlled for in applied studies and hence are 

lumped into production risk.  

Furthermore, the framework was designed to disentangle the impact of different inputs on production 

risk exposure. The impact of weather risk on the production process was hence not the main concern. 

Most studies in the literature on poverty traps have addressed the question of weather shocks and 

weather risk impact on consumption either by including a dummy variable equal to one if the 

household was exposed to extreme events or by using another weather risk index. In the latter case, 

the most popular weather risk measure has been rainfall variability, captured by the variance or the 

intra-year coefficient of variation. However, such measures are likely to introduce unobserved 

heterogeneity bias if the sample overlaps different weather regimes. For instance, a great level of intra-

year variation might be a characteristic of a particular weather regime and hence should not count as 

risk, while in another weather regime such variation would indeed imply erratic rainfalls. Dercon and 

Christansen (2011) use lower quantiles of the sample’s rain distribution to characterize weather 

shocks. This approach is the closest to the one introduced in the present paper. 

The goal of risk estimation could be summarized as the estimation of the different central moments of 

the probability distribution of production. The first central moment is the mean, i.e. the expected 

output or yield. The second moment, i.e. the variance, is a measure of the dispersion of the possible 

production levels. For instance, a farmer expecting a yield between 200 kg/ha and 4,000 kg/ha would 

have a higher variance than a farmer expecting a yield between 1,800 kg/ha and 2,200 kg/ha. Variance 

has hence been one of the first measures of risk. The third moment, summarized by the skewness, is 

a measure of the asymmetry of possible yields. Negative skewness implies that expected yield is lower 

than the most likely one and that if bad and good harvests with the same probability are compared, 

the bad harvest will cost more than the good one could have yield. It is hence often interpreted as a 

measure of downside risk.  

The key insight of Just and Pope (1978) was to split the production function into a deterministic part 

and a stochastic part, allowing inputs to be risk-increasing, risk-neutral or risk-decreasing. The 

production, 𝑦, is specified as follows: 

𝑦 = 𝑓(𝒙, 𝜷) + ℎ(𝒙,𝜸)1/2𝜀 (1)  
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where 𝑓(𝒙, 𝜷) is the deterministic production function, 𝒙  a set of inputs, 𝜷 a set of parameters to be 

estimated, ℎ(𝒙, 𝜸) the risk function, with parameters 𝜸 to be estimated, and 𝜀 a random noise 

identically and independently distributed (iid) according to a standard normal distribution.  

Antle (1983) showed that the Just and Pope approach restricts the effect of inputs across variance and 

higher moments. He proposed the so-called ‘flexible moment-based approach’ where the central 

probability moments (i.e. mean, variance etc.) are directly specified: 

𝜇1(𝑥, 𝛽1) = ∫𝑦𝑓(𝑦|𝑥)𝑑𝑦 (2)  

𝜇𝑖(𝑥, 𝛽𝑖) = ∫(𝑦 − 𝜇1)
𝑖𝑓(𝑦|𝑥)𝑑𝑦𝑖 ≥ 2 (3)  

where 𝛽𝑖 relates the input 𝑥 to the moment 𝜇𝑖. This approach relaxes any cross-moments restrictions: 

the inputs’ elasticity with respect to variance does not restrict their elasticity with respect to higher 

moments. The different moments can be estimated using a feasible generalized least square estimator 

(FGLS). The first step is hence to estimate a classical production function with FGLS, the residuals of 

which are then put to the square and to the cube to estimate the variance and skewness function. The 

predicted values of this set of three regressions are respectively the mean, variance and skewness of 

the conditional distribution of each farmer’s production.  

A limitation of these approaches is that they are highly parametric. Indeed, specification errors in the 

first moment, respectively Equations (1) and (2), cascade across the whole model, directly affecting 

the estimation of the higher moments.  

A popular solution is to choose a flexible functional form such as the translog function, which 

corresponds to a second order Taylor approximation around the mean of the true production function 

(e.g. Greene 2003). Although mathematically appealing, the translog functions are notoriously hard to 

estimate with a sample of a few hundred observations (the usual sample size of rural household 

surveys): the set of covariates enters the function multiple times — in level, square and through the 

series of interaction terms — giving rise to important multicollinearity issues.11 It is hence difficult to 

obtain statistically significant estimates and no test provides an objective criterion to select which 

covariates to retain. Full information maximum likelihood estimation and general method of moments 

provide more efficient results, although issues persist. As Kumbhakar and Tveteras (2003) note: ‘[the] 

idea of dropping insignificant variables is not pursued […] due to several problems. First, it destroys 

                                                           
11 For instance, a production function with four explanatory variables, say labour, fertilizer, land and capital, 
implies fourteen parameters to estimate. 
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the flexibility of the mean output function. Second, dropping one insignificant variable caused other 

insignificant (significant) variables to be significant (insignificant) due to high multicollinearity (which 

is always present in flexible functions) and the use of a system approach. Furthermore, we found no 

natural order to select variables for exclusion in the present model’. Therefore, although the 

conditional expectation might well fit on average, marginal effects are difficult to ascertain. 

Recently, quantile regressions started to attract interest in the microeconomics of risk literature (as 

across most applied statistical disciplines). The first author to mention the possible application of 

quantile regressions to production risk analysis is probably Charles B. Moss (2010), and the first to 

propose an estimation framework of production risk based on quantile regressions were Kim et al. 

(2014).  

2.2.2 Definition of the climate variable 

Meteorologists have struggled to give a definition of drought general enough to be comparable across 

areas and time: light rains in the middle of the rainy season might be the first sign of an incoming 

drought in a given area, while the same level of precipitation can be considered as totally normal at 

other times of the year or in another area. The standardized precipitation index (SPI) addresses 

precisely these kinds of issues. The SPI is a localized and statistical measure of precipitation. It offers a 

comparable index across times and regions. Indeed, it is based indeed on local frequency: given a series 

of cumulative local monthly precipitation over an extended period (30 years is deemed acceptable), 

probability functions are fitted on each monthly distribution. Most commonly, a gamma distribution is 

fitted with a maximum likelihood estimator and then standardized. 

The SPI is symmetrically distributed around zero, a value of zero representing normal conditions, whilst 

below and above zero values represent dry and wet conditions respectively, with values between -0.5 

and 0.5 considered as nearly normal. Although the SPI is theoretically unbounded, values below -3 and 

above 3 are extremely rare as they occur with a probability of 0.1 %. Assuming that weather events 

are identically and independently distributed, catastrophic droughts and floods can be defined as SPI 

values above and below ± 2.3, i.e. a drought or flood with a return period of 100 years (Guttmann 

1999). Values above and below ± 1.9 can also be considered as extreme events as they have a return 

period of 35 years.  

Recently, Vicente-Serrano et al. (2010) have proposed focusing on the net balance of water in order to 

take climate change into account. The intuition is the same, the only change being that it is not 

precipitation, but the difference between precipitation and evapotranspiration that is standardized.  
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The calculation of the SPEI has four main steps. We follow here the presentation of Vicente-Serrano et 

al. (2010). The first step consists in computing potential evapotranspiration (PET), i.e. the demand of 

water in the hydrological process. The simplest PET index, used in the present study, is the 

Thornthwaite Index (1948): it requires only the temperature and the latitude at which the data have 

been gathered. The derivation of this can be found in appendix 2.6.  

The second step consists in computing the ‘water balance’ for a given month, say July, at time 𝑡, i.e. 

the difference between precipitation and evapotranspiration: 

𝐷𝑡 = 𝑃𝑡 − 𝑃𝐸𝑇𝑡  (4)  

where 𝐷𝑡, 𝑃𝑡 and 𝑃𝐸𝑇𝑡 are respectively the water balance, the precipitation and the potential 

evapotranspiration measured in millimetres. A positive value for 𝐷𝑡 implies at time 𝑡 a water surplus 

and a negative one implies a water deficit. The step is then repeated on each month of July for which 

data are available in order to obtain a time series of the net balance of water in July over the last 30 

years for instance. 

The third step consists of fitting a distribution 𝐹(𝐷) on times series of 𝐷𝑡 gathered over the sample 

period. The longer the period, the better is the distribution fit, but 30 years of data, i.e. 30 observations 

of 𝐷𝑡, is deemed acceptable. Several candidate distributions were investigated by Beguería and 

Vicente-Serrano (2013): Pearson III, Lognormal, Log-logistic and General Extreme Value. As all the 

investigated distributions fit well with empirical probabilities, a selection is made based on their 

behaviour at extreme values. Following the latter criterion, the log-logistic distribution is preferred and 

its parameters are estimated with the unbiased probability weighted moments method (Beguería and 

Vicente-Serrano 2013). 

The last step consists of obtaining the SPEI values which are defined as the inverse of 𝐹(𝐷) once 𝐹(𝐷) 

is standardized.  Beguería and Vicente-Serrano (2013) use the formula 26.2.23 in Abramowitz and 

Stegun (1972):  

𝑆𝑃𝐸𝐼𝑝 = 𝑊 −
𝐶0 + 𝐶1𝑊 + 𝐶2𝑊

2

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
 (5)  

where 𝑝 is the probability that 𝐷𝑡 exceeds a given value �̅�𝑡 and is given by 𝐹(𝐷), 𝐶0 = 2.515517, 𝐶1 =

0.802853,𝐶2 = 0.010328, 𝑑1 = 1.432788, 𝑑2 = 0.189269, 𝑑3 = 0.001308 and W is given by: 

𝑊 = √ln (
1

𝑝2
) = √−2 ln 𝑝 (6)  
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The approximation is valid for 𝑝 ≤ 0.5. For 𝑝 > 0.5, 𝑝 is replaced by 1 − 𝑝 and the sign of the resulting 

𝑆𝑃𝐸𝐼𝑝 is inversed.  

Figure 2.1: Standardization of the net balance of water 

 

 

The process is illustrated with simulated data in Figure 2.1. On the left-hand side, we plot the density 

of net balance of water simulated according to a gamma distribution. The simulated data is then 

standardised with the formula in equation (5) in order to obtain the normal density plotted on the 

right-hand side, i.e. the SPEI index. The colour shading indicates the frequency of net balance of water’s 

values, from very rare (dark red) to very frequent (bright green).  

2.2.3 Climate consumption model 

The great advantage of using the SPEI is in knowing that it is distributed as a standard normal 

distribution. We have hence a proxy variable for the climate with a known distribution12. Once the 

conditional expectation of consumption has been estimated as a function of SPEI, the probability 

density function of expected consumption conditional on SPEI can be derived by a change of variables. 

We use this probability density function as our measure of climate risk exposure. We present below 

how we recover climate risk exposure based on the relationship between consumption and SPEI.  

                                                           
12 Following the terminology used in new climate-economy literature, we define the word ‘climate’ as the 

distribution of all possible weather events (Dell et al. 2014). We reserve the word weather of a realisation of the 

climate, i.e. a random draw from the distribution of all possible weather events. 
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Let us assume that the relation between the SPEI and consumption is defined as follows: 

𝑐 = 𝑔(𝑆) (7)  

where 𝑐 is consumption, 𝑆 is the SPEI with probability density function 𝑓𝑠(𝑆), i.e. a standard normal 

density function, and 𝑔(𝑆) is a monotonic and increasing function.  

We can compute the probability density function of 𝑐 by a change of variables as (e.g. Casella and 

Berger 2002): 

𝑓𝑐(𝑐) = 𝑓𝑠(𝑔
−1(𝑐)) |

𝑑𝑔−1(𝑐)

𝑑𝑐
| (8)  

where 𝑔−1(𝑐) is the inverse function of 𝑔(𝑆) and 𝑓𝑠 is the probability density function of SPEI, i.e. a 

standard normal density function as shown in equation (5) and (6). 

In the case of a non-monotonous function, we have (e.g. Casella and Berger 2002):  

𝑓𝑐(𝑐) = ∑ |
𝑑𝑔𝑘

−1(𝑐)

𝑑𝑐
|

𝑛(𝑐)

𝑘=1

𝑓𝑆(𝑔𝑘
−1(𝑐)) (9)  

where 𝑔𝑘
−1(𝑐) = 𝑆 is the inverse function of 𝑔(), 𝑛(𝑐) is the number of k solutions to 𝑔𝑘

−1(𝑐). 

For the sake of example, let us assume that consumption is a linear function of SPEI: 

𝑐 = 𝑔(𝑆) = 2𝑆 (10)  

so that the 𝑔−1(𝑐) = 𝑐/2 and 𝑑𝑔−1(𝑐)/𝑑𝑐 = 1/2. Hence, the probability function of 𝑦 can be 

expressed as: 

𝑓𝑐(𝑐) = 0.5𝑓𝑠(
𝑐

2
) (11)  

We illustrate the change of variables in Figure 2.2 with a simulation. We start by generating a sample 

of 1000 observations for 𝑆 equally spaced over [-3, 3]. We then compute 𝑐 according to (10) as shown 

by thick black line in plot a in Figure 2.2. We also plot 𝑓𝑠 on its left axis (grey dashed line, plot a of Figure 

2.2). Applying the formula in equation (8), we obtain the density function 𝑓𝑐 and plot it in graph 1.b. 

Intuitively, each consumption level on the thick black line of 𝑐 is weighted according to the likelihood 

of the corresponding 𝑆 value shown in grey. 

Many of the studies in the ‘new climate-economy literature’ use a non-linear specification of climate 

with a preference for the quadratic specification (e.g. Hidalgo et al. 2010; Lobell et al. 2011a; Lobell et 
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al. 2011b; Schlenker and Roberts 2009; Schlenker and Lobell 2010). For instance, temperature 

increases yield up to a point where an increase in temperature has an adverse impact on yield, each 

additional degree decreasing it. We can expect the same to be true for consumption in rural areas of 

Sub-Saharan Africa, where weather conditions have a large effect on consumption (see section 1.4 of 

the literature review for a survey of the link between weather shocks and poverty). 

We therefore repeat the example above, specifying this time consumption as a quadratic function of 

SPEI:      

𝑔(𝑆, 𝛽) = 𝛽0 + 𝛽1𝑆 + 𝛽2𝑆
2 (12)  

Letting 𝛽0 = 10, 𝛽1 = 1 and 𝛽2 = −2, consumption reach a maximum in conditions slightly moister 

than normal and decreases both with positive and negative values (plot c of Figure 2.2). Applying the 

formula in equation (9), the density function of 𝑐 is: 

𝑓𝑐(𝑐) = ∑ |1/√𝛽1
2 − 4𝛽2(𝛽0 − 𝑦)|

2

𝑘=1

𝑓𝑆(𝑔𝑘
−1(𝑐)) (13)  

where 𝑔𝑘
−1(𝑐) =

−𝛽1±√𝛽1
2−4𝛽2(𝛽0−𝑦)

2𝛽2
. We show it in plot d of Figure 2.2.  

Figure 2.2: Recovering climate risk exposure 
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When 𝑔(𝑆) is a quadratic function, the probability density function 𝑓𝑐(𝑐) is a non-central chi-squared 

distribution. Indeed, let us rewrite 𝑔(𝑆) as: 

𝑐 = 𝑎(𝑆 − 𝐵)2 + 𝐷 (14)  

where 𝑎 = 𝛽2, 𝐵 = −𝛽1/2𝛽2, 𝐷 = 𝛽0 − (𝛽1/2𝛽2)
2𝛽2, 𝑆 − 𝐵~𝑁 (

𝛽1

2𝛽2
, 1) and (𝑆 − 𝐵)2 follows a 

noncentral chi-squared distribution with 1 of degree of freedom and noncentrality parameter𝜆 =

(−𝐵)2 (Casella and Berger 2002), i.e. (𝑆 − 𝐵)2~𝜒1
2(𝜆). 

Substituting back the original 𝛽 parameters and taking into account the fact that 𝑐 is a linear 

transformation of a 𝜒1
2(𝜆) distributed variable, the first four central moments of 𝑓𝑐(𝑐) are given by: 

𝜇1(𝑐) = 𝛽2 (1 + (
𝛽1
2𝛽2

)
2

) + 𝛽0 − (−(
𝛽1
2𝛽2

)
2

)𝛽2 = 𝛽0 + 𝛽2 (15)  

𝜇2(𝑐) = 2𝛽2
2 (1 + 2(

𝛽1
2𝛽2

)
2

) = 2𝛽2
2 + 𝛽1

2 (16)  

a. Linear effect of SPEI on consumption 
b. Climate risk exposure as a normal 

distribution 

c. Quadratic effect SPEI on consumption d. Climate risk exposure as a non-central 

chi-squared distribution 
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𝜇3(𝑐) = 𝛽2
3(8(1 + 3(

𝛽1
2𝛽2

)
2

)) = 8𝛽2
3 + 6𝛽2𝛽1

2 (17)  

𝜇4(𝑐) = 𝛽2
4 [12(1 + 2(

𝛽1
2𝛽2

)
2

)

2

+ 48(1 + 4(
𝛽1
2𝛽2

)
2

)]

= 48 + 12𝛽2
4 + 6𝛽1

4 + 96𝛽1
2𝛽2

2. 

(18)  

While 𝛽0has only an impact on the mean, 𝜇1(𝑐), 𝛽1 and 𝛽2 have an impact on all the central moments 

of 𝑓𝑐(𝑐).  

The advantage of the approach proposed above is hence to offer a direct estimate of the central 

moments of the climate risk exposure function via the 𝛽 parameters. It circumvents the use of the 

residuals as done in traditional model of production risk analysis (John M. Antle 1983). 

Lastly, we can specify consumption not only as a function of SPEI, but also as a function of other 

determinants such as land tenure, agro-ecological zones, development intervention, etc. Furthermore, 

we can assess the impact of a given variable, say agro-ecological zones, on climate risk exposure by 

specifying the following function: 

𝑔(𝑆, 𝐺, 𝛽) = 𝛽0 + 𝛽1𝑆 + 𝛽2𝑆
2 + 𝛽3𝐺 + 𝛽4𝐺𝑆 + 𝛽5𝐺𝑆

2 (19)  

where 𝐺 is  a dummy variable equal to one for household living in a given agro-ecological zone. Solving 

this quadratic equation, the inverse function of  𝑔(𝑆, 𝐺, 𝛽) and its derivative in absolute terms are: 

𝑔(𝑐)𝑘
−1 =

−(𝛽1 + 𝛽4𝐺) ± √(𝛽1 + 𝛽4𝐺)
2 − 4(𝛽2 + 𝛽5𝐺)(𝛽0 + 𝛽3𝐺 − 𝑐)

2(𝛽2 + 𝛽5𝐺)
 (20)  

and 

|
𝑑𝑔𝑘

−1(𝑐)

𝑑𝑐
| =

1

√(𝛽1 + 𝛽4𝐺)
2 − 4(𝛽2 + 𝛽5𝐺)(𝛽0 + 𝛽3𝐺 − 𝑐)

. 
(21)  

Equations (20) and (21) are then inserted into equation (9) in order to obtain 𝑓𝑐(𝑐) and we can modify 

equations (15)-(18) accordingly in order to estimate the central moments in and out of the agro-

ecological zone of interest. 

We do not do address here any of the classic endogeneity issues: it provides only a framework to 

estimate various measures of risk under the assumption that the additional variables included in the 

model, 𝐺 in the equation above, are exogenous. 
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2.2.4 Vulnerability Indices 

Once the relationship between consumption and climate is established and the properties of climate 

risk exposure are derived (variance, skewness etc.), we need to summarize this information into a 

measure with an economic meaning. We use for this a set of vulnerability indices. Our first index is the 

consumption poverty risk. It has notably been used by Chaudhuri, Jalan, and Suryahadi (2002) and 

Christiaensen and Subbarao (2000) and it is defined as the probability that a household’s consumption 

falls below the poverty line.  

In the framework presented in section 2.2.3, poverty risk is computed by estimating the 𝛽 parameters 

of equation (9) or (12) with SPEI and consumption data. Then, we generate with a random number 

generator a sample of shocks following a standard normal distribution, i.e. an artificial sample of SPEI, 

and compute a consumption level under each scenario thanks to the 𝛽 parameters. Poverty risk is then 

approximated by the percentage of simulated consumption scenarios falling below the poverty line. 

In order to illustrate the versatility of the estimation approach introduced in section 2.2.3, we compute 

the expected poverty shortfall given weather conditions at least as bad as a weather shock of a 

magnitude expected to occur at most every 25 years.13 We start by defining a threshold such as an 

extreme weather event with a 5 years return period, be it a drought or a flood. We then compute the 

difference between the expected consumption under such conditions or worse the poverty line: 

𝑉2(𝑆) = 𝑧 − ∫ 𝑐𝑓𝑐(𝑐)d𝑐
𝑔(𝑆)

−∞

 (22)  

where 𝑧 is the poverty line and 𝑆 is defined in terms of the return period of the event in question. For 

instance, for drought expected to occur every 25 years, 𝑆 equals -1.9. The conditional expected poverty 

shortfall, 𝑉2(𝑆), will hence measure the average cash transfer required to bringing back a household 

to the poverty line in the case of a weather event with a magnitude expected to recur every 25 years 

at most.  

Lastly, we can compute the relative risk premium with:  

𝑅𝑅𝑃 ≈ (
𝐴𝑃

2
𝜇2 −

𝐷𝑆

6
𝜇3 +

𝐹𝑇

24
𝜇4) 𝜇1⁄  (23)  

                                                           
13 It could be summarized as the combination of the expected poverty shortfall commonly used in vulnerability 

analysis and the conditional values-at-risk measure used in the finance literature (e.g. Engle and Manganelli 

2004). We don’t attempt here at providing any rigourous derivation of this index, it is only used for illustrative 

purposes. Interested readers are referred to Foster et al. (2010) for a review of the use of the Foster-Greer-

Thorbecke class of poverty measures with illustration of recent vulnerability analysis, or Hoddinott and 

Quisumbing (2003)e.g. , e.g.  for a more detailed review on vulnerability measurement. 
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where 𝜇𝑖  are the ith central moment as expressed in equations (15)-(18), AP is the coefficient of 

absolute risk aversion (Pratt) for mean-preserving spread aversion, DS is the coefficient of downside 

risk aversion (Menezes et al. 1980), for mean-spread-preserving skewness preferences and FT is the 

coefficient of kurtosis aversion (Rubinstein et al. 2006) for mean-spread-skewness preserving kurtosis 

aversion. We specify the utility function as follows: 

𝑈(𝑥) =
𝑈(𝑥)1−𝛾

1 − 𝛾
 (24)  

We will conduct some sensitivity analysis on the γ parameter as its values varies according to academic 

fields and authors (e.g. Holt and Laury 2002; Ligon and Schechter 2003; Yesuf and Bluffstone 2009). 

These three vulnerability indices give different perspectives on the climate risk exposure of 

households. The poverty risk is intuitive, but does not take into account the expected depth of poverty. 

The conditional expected poverty shortfall index captures downside risk and could be useful for 

contingency planning14. Lastly, the relative risk premium emphasizes the trade-off between expected 

profit and risk and could be used for targeting the roll-out of private agricultural insurance policies 

such as weather index insurance. Indeed, the relative risk premium, also known as the implicit cost of 

risk bearing, is an estimate of household willingness to pay for risk reduction.  

2.2.5 Estimation strategy 

In order obtain estimates of the 𝛽 parameters in equation (12), we will use ordinary least squares on 

the following regression line: 

𝑐 = 𝛽0 + 𝛽1𝑆 + 𝛽2𝑆
2 + 𝜀 (25)  

where 𝛽𝑖are the parameter to estimate, 𝑆 is the SPEI values of the peak rainfall month of the preceding 

season and 𝜀 is an error term. We will also investigate how weather sensitivity and climate risk 

exposure varies between as agro-ecological zones with the following regression line: 

𝑐 = 𝛽0 + (𝛽1𝑆 + 𝛽2𝑆
2 + 1)𝑨𝑬𝒁𝜷𝑨𝑬𝒁 + 𝜀 (26)  

where 𝑨𝑬𝒁 is a set of dummy variables for the agro-ecological zones and 𝜷𝑨𝑬𝒁 a vector of parameter 

to be estimated. Lastly, we will test the impact of access to basic service on vulnerability with the 

following specification:  

                                                           
14 A much more thorough examination of its properties would be required however before using it for any policy 

purpose. 
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𝑐 = 𝛽0 + (𝛽1𝑆 + 𝛽2𝑆
2) + 𝑨𝑬𝒁𝜷𝑨𝑬𝒁 +𝑿𝜷+ 𝜀 (27)  

where 𝑿 is a set of basic services we will describe in the data section.  

As the climate variable is exogenous and varies randomly over time, the regression should not suffer 

from reverse causality bias. In order to control for omitted variable bias, we use household fixed effects 

in order to control for unobserved heterogeneity between household. In each case, we will present 

results obtained both with pooled regression and panel fixed effects models.  

Given the serial correlation of the error term coming from the use of fixed effects as well as the likely 

heteroskedasticity, we computed heteroskedasitcity and autocorrelation robust standard errors 

following Arellano (Arellano 1987) with the plm R CRAN package (Croissant and Millo 2008). 

Furthermore, all explicative variables are measured at the peasant association (PA) level. It is therefore 

likely that the error exhibit a certain degree of clustering at the PA level despite the use of household 

fixed effects. We therefore apply a degree of freedom correction to the variance-covariance matrix of 

the parameter estimates 𝛽𝑖, 𝑖 = 1,… . , 𝑁. The resulting variance-covariance matrix is hence computed 

as:  

𝑉(�̂�) =
𝐺

𝐺 − 1

𝑁 − 1

𝑁 − 𝐾
(𝑋𝑇𝑋)−1∑𝑋𝑖

𝑇𝜀𝑖𝜀𝑖
𝑇𝑋𝑖

𝑁

𝑖=1

(𝑋𝑇𝑋)−1 (28)  

where 𝐺 is the number of PA, 𝑁 is the sample size and 𝐾 is the model rank. 

Note that the parameter estimates on SPEI have to be read in terms of standard deviation: a net 

balance of water one standard deviation away from normal causes a change of 𝛽 consumption units. 

The fact that the SPEI is standardized implies that the water balance is measured in terms of local 

frequencies. This help sorts another source of unobserved heterogeneity: typically, one can assume 

that a given level of net balance of water is going to have a heterogeneous impact across agro-

ecological zones. The standardization implies that we are comparing the net balances of water in terms 

of their local frequency so that passing from 0 to 1 on the SPEI scale means the same across the 

country, i.e. a one standard deviation compared to normal conditions. 

Lastly, note that the estimated climate risk exposure via OLS is valid for the average household in the 

sample. Instead of focusing on expected consumption, we can look at the consumption at other 

quantiles of the consumption sample distribution. It is likely that poorer farmers exhibit higher climate 

risk exposure because of a lack of ex ante and ex post risk mitigating options such as irrigated plots, 

liquid assets (e.g. bullocks and gold ornaments), off-farm jobs, savings and affluent social networks 
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(e.g. relatives working in a nearby town). We can therefore expand the analysis from the climate risk 

exposure of the average household to the climate risk exposure at different quantiles: 

𝑓𝑐𝜏(𝑐𝜏) = ∑ |
𝑑𝑔𝜏

−1(𝑐𝜏)

𝑑𝑐𝜏
|

𝑛(𝑐𝜏)

𝑘=1

𝑓𝑆(𝑔𝑘𝜏
−1(𝑐𝜏)) (29)  

where 𝑐𝜏 = 𝑄𝜏(𝑐𝑖𝑡|𝑆) is the conditional quantile of consumption as a function of SPEI.  

Panel econometrics methods for quantile regression have been developed by Koenker (2004) and 

Abrevia and Dahl (2008). They have recently been applied by Bache et. al (2013) to study the impact 

of prenatal maternal smoking on the dispersion of birthweights and by Dahl et al. (2013) to study the 

impact of the decentralization of wage bargaining on wage dispersion. As in the classical mean 

regression panel methods, they allow for the control of unobserved heterogeneity within the sample. 

The standard errors were automatically computed with bootstraps thanks to the rqpd package on R 

(Koenker and Holst Bache 2014).  

It is interesting to note that there has been some confusion between risk and inequality in the 

literature using quantile regressions. A clear example of the ambiguity surrounding quantile 

regressions’ estimates is the twin papers of Peirera and Martins (2002, 2004) on the impact of 

education on wages. In a first version of the paper published in Economics Letters in 2002, the authors 

apply quantile regressions at each decile of the wage distribution with education as an explicative 

variable. Their goal is to estimate the impact of education on wage uncertainty across sixteen European 

countries. They interpret their results as follows: ‘[I]f there is a large difference in the estimated 

coefficients between the first and last decile, meaning that the return is much higher at the upper than 

at the lower decile, the individual faces a high risk, as the individual can end up at the lower decile. If 

the difference is small, there is almost no risk’ (Telhado Pereira and Silva Martins 2002). Other studies 

based on the risk interpretation of quantile estimates have followed, both in the banking sector and 

the literature examining the impact of education on wage. 

 A second version of the paper, with exactly the same set of data, econometric analysis, results and 

published by the same authors one year later in Labour Economics, is entitled ‘Does education reduce 

wage inequality?’. In the latter paper, the authors give the inequality interpretation of quantile 

regressions, i.e. a positive difference between higher and lower quantile estimates implies that 

education increases inequality: ‘[their] findings imply that schooling may have a positive impact upon 
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within-group wage inequality, as the spread of returns increases for higher educational levels’ (Martins 

and Pereira 2004).15  

In support of this interpretation, we observe that the law of iterated expectation does not apply in the 

quantile world. Therefore, while the conditional expectation can be interpreted as the expectation for 

an average household, the conditional quantile cannot be interpreted as the quantile of the conditional 

distribution of an average as household. The classic interpretation of quantile regressions’ parameters 

as indicative of sample inequality seems hence more appropriate. We will assume below that SPEI has 

a rank preserving effect: the rank of each household is not affected by a change in the SPEI value. We 

can hence interpret the results of a quantile regression estimated at the median for instance as the 

effect of SPEI on the median household. 

 To sum-up, we predict expected consumption thanks to a regression of consumption on the SPEI and, 

optionally, on a set of controls. As the SPEI is distributed according to a standard normal distribution, 

we can compute with a change of variable the probability density function of consumption, i.e. the 

climate risk exposure of the average household (or households at other quantile, for instance the 

poorest quintile). Climate risk exposure and weather sensitivity are then summarized in three indices: 

poverty risk, expected shortfall and the risk premium. 

2.3 Data 

The Ethiopian Rural Household Survey (ERHS) is probably the longest running household survey 

available on development economics, conducted from 1989 to 2009 in seven rounds, with a 

staggeringly low level of attrition (see Dercon and Kirshan, 1998, for the sample frame design).  On top 

of being freely available on the International Food Policy Research Institute (IFPRI) website, it comes 

with a great amount of documentation and videos on the data collection process and data issues. For 

this paper, we use the data files on consumption and community level information.  

There are large seasonal fluctuations in consumption as documented by Dercon and Krishnan (2000). 

As the surveys have not been conducted exactly at the same period of the year over the rounds, we 

                                                           
15 The rationale behind this is that ‘the earnings increment associated to schooling is higher for those individuals 
whose unobservable characteristics place them at the top of the conditional wage distribution’ (idem). It is hence 
akin to the latent effect interpretation of quantile regression: inequality in conditional wage outcomes is the 
result of differences in innate ability revealed by quantile regression. Note that this interpretation is, in turn (and 
quite paradoxically), related to a special case of Kanbur’s model (1979) , where risk is represented by the ability 
risk that an entrepreneur faces when starting a business for the first time, i.e. the uncertainty about his own 
capacity to run it. Other earlier works (e.g. Friedman, 1953) have drawn the link between risk and inequality. It 
also echoes the concept of ‘veil of ignorance’ used in thought experiments by political philosophers to apprehend 
social contracts and redistribution (Rawls, 1971). 
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follow Dercon et al. (2012) and drop data from rounds 2, 3 and 4. Indeed, rounds 2 and 4’s data were 

collected in most villages just after harvest, when a household’s consumption is expected to be at its 

maximum. Round 3 is removed in order to have an equally spaced panel (1994, 1999, 2004, 2009) and 

avoid hence inconsistent estimates due to heterogeneous frequency (Dercon et al. 2012). The other 

rounds have been performed, on average, 6 to 9 months after harvest.  

Ethiopia changed in many aspects between 1989 and 2009. The country’s population increased from 

50 m to 83 m between 1992 and 2009 (FAO statistics). Meanwhile, the share of the rural population is 

quite stable although we do observe a slow and constant decline from 88% in 1989 to 83% in 2009. 

Lastly, the road network almost doubled between 1997 and 2007, although the share of paved roads 

did not follow suit (decreasing from 15% to 13.7%). In constant 2005 US dollars, GDP per capita had 

been oscillating around $140 until 2003 before experiencing a steep rise, reaching $213 in 2009, i.e. a 

52% increase in 6 years for an average GDP growth of 11% (World Development Indicators, The World 

Bank, 2014). The domestic food price index grew from 1.6 in 1990 to 1.9 in 2009. Hence it is not clear, 

a priori, if the food security of the rural population has increased or not over time.  

The poverty head count ratio at USD $1.25 PPP declined from 60% to less than 40% between 1995 and 

2005 (the only available period in the World Bank data bank). Although the share of agriculture in the 

GDP declined from 61% to 47% over the period 1989-2009, cereal yields and production increased 

greatly. The yield hovered around 1,180 kg/ha until 2004 before reaching 1,650 kg/ha in 2009, while 

production had started its climb up by the beginning of the 1990s thanks to a large increase in land 

under cereal production. In the 2000s’, the increase in production is due, in equal proportion, to the 

increases in yield and area farmed (Taffesse et al. 2011). In 2007, 96% of the cultivated land dedicated 

to the main crops (cereals, pulses, oilseeds, vegetables, roots crops, fruits and cash crops) was still 

farmed by smallholders and their harvest in the main production season (Meher), represents 93% of 

the Ethiopian cereal production (Taffesse et al. 2011). It is hence of primary concern to better assess 

smallholders’ exposure to climate shocks.  

We used two sets of data for the computation of the SPEI thanks to the R package SPEI (Beguería and 

Vicente-Serrano 2013) with the Thornthwaite evapotranspiration index. The precipitation data come 

from the African Rainfall Climatology Version 2 dataset (ARC2, Novella and Thiaw 2013), providing daily 

estimates at a resolution of 0.1 decimal degree from 1983 to the present, and are based on a 

combination of gauge and satellite data. The dataset has been developed as a key input of the Famine 

Early Warning System Network (FEWSNET), one of the main indicators used by international 

humanitarian agencies to monitor food security. The temperature data comes from the Climate 

Prediction Center Global Land Surface Air Temperature Analysis (GHCN+CAM, Fan and Van den Dool 
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2008).16 They come as monthly mean surface air temperatures at a 0.5 decimal degree resolution over 

the period from 1948 to the present. One of its recommended uses is precisely the computation of 

evapotranspiration indices. Both ARC2 and GHCN+CAMS datasets are matched with the ERHS thanks 

to a ward-level (kebele) administrative boundaries shapefile (Ethiopian Statistical Agency, 2007 

census).  

The kebele, or Peasant Associations (PA) in the rural part of the countries, were founded by the 

Coordinating Committee of the Armed Forces, Police, and Territorial Army of Ethiopia, also known as 

the Derg, after the fall of Emperor Haile Selassie in 1974. They are the lowest administrative unit. We 

have chosen as matching coordinates the centre of each PA computed with centroids of Voronoi. Note 

that the median area of the EHRS PAs is smaller (50 km2) than the median aRC2 and GHCN+CAMS cells 

(120 km2 and 3,025km2 on average respectively); they hence constitute a matching metric precise 

enough for the climate data resolution.17 

There are three main weather regimes in Ethiopia: the northern part has a bi-modal regime with a long 

rainy season from June to September and a short rainy season from March to May (regime A); the 

western part of the country has a mono-modal regime with rainfall from June to September (regime 

B); and the southern and eastern part has a mono-modal weather regime with rains from February to 

May (regime C) (NMSA 1996, cited in Abebe 2010). The approximate hand-drawn partition of the 

country between weather regimes, according to a map of the Ethiopian National Meteorological 

Agency (1996) reproduced in Abebe (2010), is mapped with long dashed lines in Figure 2.3 (a). Note 

that according to the ARC2 rainfall data for each PA, the partition is slightly different (dotted line).18 

Figure 2.3: Elevation and weather regimes (a) and annual precipitation (b) 

                                                           
16 GHCN Gridded V2 data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at 
http://www.esrl.noaa.gov/psd/. 
17 Area weighted precipitation and temperature means would also have been an option for PAs at the junction 
of multiple cells, but given the spatial definition of the climate datasets, it would not have affected the results 
much. 
18 Although the ARC2 dataset would allow estimating the boundaries between weather regimes with more 
precision, it is outside of the scope of the present paper. 

http://www.esrl.noaa.gov/psd/
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Figure 2.3 a and b: On the left figure, the long dashed lines are the approximate partition of the country 

between weather regimes according to a 1996 map of reproduced in Abebe (2010) and the dotted lines 

represent an alternative partition matching the ARC2 data at Pas’ locations. The map on the right is the 

average annual precipitation over the period 1990 to 2013. Although it is clear that precipitation is 

concentrated on reliefs because of convective rain, there are great differences in precipitation between PAs 

located at similar altitudes: Geblen receives less than 320mm on average while Yetmen, in the same agro-

ecological zone, receives twice as much. 

Note that the cumulative level of rainfall varies a lot between PAs in regime A (Figure 2.3 b): normal 

annual precipitation19 for Geblen and Harresaw (Tigray region, top North) is only 270 mm while it is 

680 mm in Yetmen (Amhara, central North). The PAs located in weather regime C have a maximum 

amount of cumulative rainfall in March while those located in weather regime A have their maximum 

in August. We plot in Figure 2.3 b the annual precipitation profile for Geblen (regime A), Doma (regime 

C) and Yetmen (regime A). We use the climate data for the peak months in the analysis.  

Figure 2.4: Monthly precipitation 

                                                           
19 Normal computed on 1994 to 2013, Hoefsloot 2013, LEAP software. 

A 

B 

C 



  

68 
 

 

We use as our dependent variable real consumption per capita as provided in the ERHS. The explicative 

variables are the 3 months smoothed SPEI at peak rainfall month, the agro-ecological zones, the quality 

of the road leading to the next town, the distance to the nearest bank, the number of extension agents 

within the PA and the presence of a non-governmental organisation (NGO) in the PA. Summary 

statistics are presented in Table 2.1. 

Table 2.1: Summary statistics 

 Mean Median 

Stand. 

Dev. Min. Max. 

Real consumption per capita (birr) 77.63 56.79 74.17 0.88 1,109.39 

3-SPEI at peak precipitation month 0.22 0.21 0.91 -1.56 2.21 

Remote from a bank (22 km) 0.42 0 0.49 0 1 

NGO in the PA 0.16 0 0.36 0 1 

Extension agent in the PA 0.76 1 0.43 0 1 

Road improvement 0.59 1 0.49 0 1 

Although the national figures paint a rather positive picture for recent years, micro level evidence from 

the ERHS warrants some caution. While the poverty rate hovers between 45% and 50% until 1995 in 

the ERHS sample, it decreases to 30% in the next 3 rounds (1997, 1999, 2004) before rising again, above 

50% in 2009 (Dercon et al. 2012). The average consumption is 78 birr (Ethiopian currency) per month 

(circa USD 18) if one focuses on the 1994, 1999, 2004 and 2009 rounds. There are some substantial 
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variations across years: the 1989, 1994 and 1995 average consumption is around 70 birr; the 1997, 

1999 and 2004 average consumption increases to 90 birr while 2009 sees a 34% drop in consumption 

to 60 birr per month. Consumption per capita includes household-produced food and hence is directly 

impacted by weather conditions. Details of the real consumption per capita calculation can be found 

in Dercon and Krishnan (1998). We follow Dercon and Krishnan (1998) in setting the poverty line at the 

income level required to buy 2,400 calories per day, i.e. 50 birr. The vulnerability indices are hence 

linked to climate related food insecurity. 

According to the weather regimes identified above, we focus on precipitation in the months of March 

we are interested in the hydrological conditions affecting agriculture production, we select the three 

month smoothed SPEI values. We use one year lagged SPEI values as the surveys have been conducted 

in pre-harvest periods, i.e. when real consumption is still determined by the previous year’s harvest. 

The average SPEI is 0.21, i.e. conditions were on average slightly wetter than normal. The minimum 

and maximum are respectively -1.57 (2009, in Imdibir) and 2.2 (1994, in Trirufe Ketchema), i.e. dry 

conditions with a 20 years return periods and wet conditions close to a 100 year return period. Note 

that consumption prediction conditional on values outside the sample range will have to be treated 

with caution and can only represent high bound estimates, as it is likely that consumption collapses at 

higher (lower) SPEI values than the one observed. 

The community-level data capture some of the classical development policies. Indeed, road 

improvement allows better market linkages with the rest of the country and hence offers better 

marketing opportunities, larger and more stable sets of products for buying, better price smoothing 

when local production is adversely hit and allows households to enter into new profitable activities 

(Dercon et al., 2012). Extension agents remain a key development mechanism whereby civil servants 

are dispatched among rural communities to offer farm management advice and increase the adoption 

of best farming practices. We express it as a dummy variable equal to one if there is at least one 

extension agent in the PA. Over time, all PAs got an extension agent. The distance to the nearest bank 

is also of interest as they are a key channel in providing saving mechanisms, as ex ante risk 

management and credit for adopting more capital intensive inputs. Furthermore, the distance to the 

nearest bank serves as a proxy of the remoteness or secludedness of a particular PA as banks are likely 

to establish branches in local economic centres. We express it as dummy equal to one if the PA is 

located at more than 22 km from any bank, the latter value being the median sample distance. The 

presence of an NGO or a development agency might not only have an impact on their sectorial activity, 

be it education, health or micro-credit; but they can also be an important provider of jobs for the local 

community. Furthermore, in case of an adverse climatic shock, an NGO might be able to scale up its 
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activity and act as a safety net for the local community. Dercon and Krishnan (2003) showed that food 

aid provided an insurance mechanism.   

2.4 Results 

We start by investigating the functional shape of the relationship between real consumption per capita 

and the standardized precipitation evapotranspiration index (SPEI) with localized polynomial 

regressions. The smoothing fit is plotted in Figure 2.5 along the 95% confidence intervals computed by 

performing 1,000 bootstraps with replacements. The relationship is clearly u-shaped, with a maximum 

at 0.8, i.e. conditions slightly wetter than normal. 

Figure 2.5: Influence of weather on consumption per capita 

 

We start the analysis with a simple pooled OLS quadratic regression of consumption on SPEI in order 

to evaluate the average climate risk exposure in the sample. As the consumption values are very 

skewed, we apply logarithmic transformation on the consumption variable. The regression we 

estimate is given by the following expression:  

log(𝑐𝑖𝑡) = 𝛽0 + 𝛽1𝑆𝑖𝑡 + 𝛽2𝑆𝑖𝑡
2 + 𝜀𝑖𝑡  (30)  

where 𝑐𝑖𝑡 is the real consumption per capita of household 𝑖 at time 𝑡, 𝑆 is the 3-months smoothed SPEI 

at peak rainfall months and 𝛽𝑗, 𝑗 = 1,2,3, are parameters to be estimated. Note that the intercept, 𝛽0, 

is the log of expected consumption under normal conditions, i.e. when the SPEI equals 0. Results are 

presented in Table 2.2, column 1. 



  

71 
 

All parameters are statistically significant (p-value <0.001). The low R2 should not be a concern as 

various other factors determine the between variation in the sample distribution of consumption (the 

size of the land holding, the size of the herd, etc). Nevertheless, a clear pattern emerges from this 

simple regression: consumption has an inverted U shape in SPEI and reaches its maximum at a SPEI 

value of 0.7, i.e. in conditions slightly moister than normal, and decreases sharply in drier conditions, 

crossing the poverty/hunger line at a SPEI value of -1.4, i.e. in severely dry conditions occurring on 

average every 12 years. Consumption can also fall under the poverty line for extreme precipitation 

levels, i.e. a SPEI of 2.8 consisting consistent with an extreme flood event. However, such events have 

only a 0.2% chance of occurring, and hence weight less in farmers’ exposure to climate risk. Note, 

however, that the observed SPEI values in the sample are limited to -1.48 to 2.21, hence predictions 

outside the sample range have to be considered with care.  

Figure 2.6: Real consumption per capita (a) and climate risk exposure (b) 

 

The graph in Figure 2.6 (a) is the fitted consumption line as a function of SPEI. The probability function 

of the SPEI is superimposed in grey in order to get a better sense of the likelihood of each SPEI value. 

The area coloured in orange in Figure 2.6 (b) is the probability mass of falling below the hunger line, 

i.e. 11% in the present case. We also represent the expected shortfall with a 35 years return-period 

drought (blue arrow, 20 birr). A quick calculation indicates that a 10 year return period drought hitting 

a region with 100,000 inhabitants would cost a humanitarian agency on average 800,000 birr (circa 

USD 192,000) per month in cash vouchers/transfers to ensure that basic food requirements are met. 

Table 2.2: Regressions with agro-ecological zones as additional explicative variables 

Climate Risk Exposure Real Consumption per Capita 
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 Dependent variable: log of real consumption per capita 
  OLS 

(pooled) 
OLS 

with fixed 

effects 

Quantile regressions with penalized 

fixed effects   
 I II III 1st quartile Median 3rd quartile 

SPEI 0.174***  0.125*** 0.131*** 0.119*** 0.137*** 0.147*** 

 (0.017)  (0.017) (0.017) (0.02) (0.017) (0.02) 

SPEI2 -0.125***  -0.128*** -0.053*** -0.085*** -0.052*** -0.054* 

 (0.016)  (0.016) (0.018) (0.015) (0.015) (0.02) 

High altitude D  0.102*** 0.109***  0.046 0.088*** 0.126*** 

  (0.035) (0.033)  (0.035) (0.03) (0.043) 

Low altitude D  -0.156*** -0.200***  -0.207*** -0.111*** -0.083* 

  (0.034) (0.037)  (0.044) (0.031) (0.045) 

High altitude D *SPEI   0.222*** 0.089*** 0.208*** 0.152*** 0.111*** 

   (0.029) (0.031) (0.036) (0.03) (0.035) 

Low altitude D *SPEI   -0.043 0.016 -0.048 -0.081** -0.05 

   (0.037) (0.054) (0.056) (0.038) (0.04) 

High altitude D *SPEI2   -0.045* 0.049 -0.005 -0.019 -0.025 

   (0.025) (0.032) (0.033) (0.027) (0.033) 

Low altitude D *SPEI2    -0.010 -0.076* -0.013 -0.098*** -0.153*** 

   (0.035) (0.044) (0.046) (0.038) (0.045) 

Constant 4.103*** 4.032*** 4.128*** 4.043*** 3.800*** 4.074*** 4.391*** 

 (0.021) (0.022) (0.021) (0.343) (0.022) (0.017) (0.028) 

Observations 5,240 5,240 5,240 5,240 5,240 5,240 5,240 

R2 0.045 0.011 0.074 0.056    

Adjusted R2 0.044 0.011 0.073 0.041    

F Statistic 122.316***  30.077*** 52.287*** 38.131***     

Cluster robust standard error in parentheses,  *p<0.1; **p<0.05; ***p<0.01, D stands for dummy variables. 

We then add a series of dummies for the agro-ecological zones, taking the mid-altitude zone (Weyna-

Dega) as base category, and we interact them with the SPEI variables: 

log(𝑐𝑖𝑡) = 𝛽0 + 𝛽1𝑆𝑖𝑡 + 𝛽2𝑆𝑖𝑡
2 + 𝛽3𝑆𝑖𝑡 ∗ 𝐾𝑖 + 𝛽4𝑆𝑖𝑡

2 ∗ 𝐾𝑖 + 𝛽5𝑆𝑖𝑡 ∗ 𝐷𝑖 + 𝛽6𝑆𝑖𝑡
2

∗ 𝐷𝑖 + 𝜀𝑖𝑡 
(31)  

where 𝐾 stands for the lowlands dummy and 𝐷 for the highlands dummy. We test for the presence of 

unobserved heterogeneity with a Lagrange multiplier test (Breusch-Pagan) and a F-test of the model 

with fixed effects and against pooled OLS (p-value <0.001). The null hypothesis is rejected in all cases 

with a high confidence level (more than 99.99%); we hence conclude that there are important 

unobserved effects. We then compare the random effects model against fixed effects models with a 
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Hausman test and reject the null hypothesis of convergent estimates, preferring the fixed (within) 

effects model. Lastly, we test for the presence of serial correlation threatening the strict exogeneity 

assumption of the fixed effects model with the Wooldridge test for serial correlation, and fail to reject 

the null hypothesis of no serial correlation (p-value=0.32). We choose, therefore, a fixed effects model 

to take into account the households’ unobserved heterogeneity. The results are reported in Table 2.2, 

column 4. For comparison purposes, we present in column 2 and 3 regressions results with pooled OLS 

when only the altitude dummies are added and where both altitudes and interaction variables are 

added. 

As we see in Table 2.2 column 4, �̂�1and �̂�2 decrease compared to Model I, implying that the climate 

sensitivity in the midlands (Weyna Dega) is lower than the average. Furthermore, it appears that the 

quadratic effect of SPEI is null in the highlands as �̂�6 ≈ −�̂�2, i.e. that expected consumption would 

only increase in SPEI values. This result has to be nevertheless treated with caution given the low level 

of statistical significance of �̂�6. By contrast, the lowlands are much more sensitive than the Weyna 

Dega as �̂�4 is negative, highly significant and of greater magnitude than �̂�2. 

Computing the different indices for each region, the mid-altitude villages have, on average, a poverty 

risk of 1%, while those located in the highlands of 12% and those in the lowlands of 47%. In terms of 

expected shortfall, the average household in the midlands is found to be fully resilient even when 

confronted by a 35 years drought. By contrast, the lowlands have an expected shortfall of 24 birr. These 

results compare well with Deressa et al. (2009) who also found a greater vulnerability in the lowlands. 

We now present the results across a subset of quantiles of the populations estimated with penalized 

quantile fixed effects quantile regressions (Koenker 2004) and implemented with the package rqpd 

(Koenker and Holst Bache 2014). The results are reported in Table 2.2, columns 5 to 7. Climate 

sensitivity does not vary much between agro-ecological zones for the lower quartile in terms of the 

curvature of consumption. The only significant parameter among the interactions is the interaction of 

the SPEI expressed in level with the highlands dummy: poor households in high altitude villages reach 

a maximum consumption in conditions wetter than the rest of the sample. Comparing the interaction 

terms between the lowlands dummy and the SPEI squared, we see that climate sensitivity increases 

for households as consumption per capita increases. It suggests, hence, an important trade-off in the 

lowlands between increase in consumption and decrease in climate sensitivity, the poorer households 

being stuck in a low risk-low consumption trap, a phenomenon described in the literature on the risk-

induced poverty trap.  
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We present in Figure 2.7 (a), (b) and (c) the 3 vulnerability indices across quantiles and agro-ecological 

zones.20 In the lowlands, the lowest quartile is trapped in poverty as its poverty risk is 100%. 

Furthermore, the median households also face a risk of poverty close to 100% while the 3rd quartile is 

slightly above 40%. This contrasts with the results found with OLS where the average household had 

only a 47% risk of poverty. Hence, it is likely that the OLS poverty risk estimate was driven downward 

by the top percentiles of the population. In the midlands and the highlands, the poverty risk is quite 

low for households above the median although still substantial for the 1st quartile. 

The results in terms of the expected shortfall are presented in Figure 2.7 (b). Although the ranking of 

agro-ecological zones in terms of risk is respected, the differences are much smaller. Furthermore, the 

ranking within zones changes a lot, e.g. in the lowlands the median 35-year drought expected shortfall 

is higher than the lower quartile one. The relative risk premium (Figure 2.7 (c)), i.e. the implicit cost of 

risk computed for a coefficient of relative risk aversion equal to 2, confirms the interpretation of a risk-

induced poverty trap by showing that poor households have a smaller relative risk exposure: they have 

already reduced risk exposure to its maximum at the cost of a decrease in consumption.  

Figure 2.7: Poverty risk (a), expected shortfall (35-year drought) (b), Relative risk premium (c) 

 

As the value of the relative risk premium is largely determined by the coefficient of relative risk 

aversion, we performed a sensitivity analysis assuming that the coefficient of relative risk aversion 

follows a gamma distribution (see Figure 2.8 a). The distribution was chosen to reflect findings of Yesuf 

and Bluffstone (2009) based on experimental evidences in Ethiopia. As Holt and Laury (2002) found 

sensibly lower estimates, we allow for risk preferences below the minimum found in Yesuf and 

                                                           
20 Note that the quantile regressions were run in level to compute the indices because it is a priori not clear how 
to deal with the residuals of exponential quantile regressions when computing the conditional quantiles. 
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Bluffstone (2009), i.e. between 0 and 1. We present in Figure 2.8 b the resulting box-plot of relative 

risk premia.  

Figure 2.8: Sensitivity analysis on relative risk premia estimated in the quantile regressions 

 

A policy maker interested in having the greatest impact on average poverty via, for instance, the 

provision of subsidized fertilizers, should look at the poverty risk indicator and target the lowlands. 

Interestingly, the expected shortfall shows that in the case of a serious drought, it might not be the 

poorest quartile of the population which will require most help in the lowlands but instead the median 

households because the latter are more exposed to downside climate shocks. Lastly, the relative risk 

premium shows that the implicit cost of risk bearing is the highest among richer households, 

particularly in the lowlands. Hence, the higher quantile of the population manages to get higher 

consumption at the cost of a large increase in risk and should therefore be willing to swap part of this 

risk against some kind of consumption insurance, be it index based or of the traditional agricultural 

kind. 

Community level characteristics are only available for rounds 4, 6 and 7, i.e. 1997, 2004 and 2009. As 

noted in the data section, the 1997 round was conducted earlier in the season and hence might 

introduce some unobserved heterogeneity. We attempt to control for it by adding a year dummy for 

1997. We focus on the presence of an improvement in the road leading to the next town, the number 

of extension agents within the PA and the distance to the nearest bank, and the presence of a non-

governmental and/or international organization office in the PA. The results are presented in Table 

2.3. 

a. Distribution of the coefficient of relative 

risk aversion used in the sensitivity analysis 

b. Relative risk premia according to 

the risk aversion distribution on plot a. 
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Table 2.3: Regressions with community development factors as additional explicative variables 

 Dependent variable: log of real consumption per capita 
 panel Quantile regressions with penalized fixed effects 
 Linear  

 (1) 1st quartile Median 3rd quartile 

SPEI 0.133*** 0.188*** 0.148*** 0.187*** 
 (0.020) (0.025) (0.020) (0.024) 

SPEI2 -0.087*** -0.130*** -0.130*** -0.124*** 
 (0.016) (0.017) (0.016) (0.019) 

1997 D 0.163*** 0.137*** 0.207*** 0.139*** 
 (0.033) (0.052) (0.038) (0.049) 

High altitude D  0.086** 0.045 0.082** 
  (0.038) (0.030) (0.033) 

Low altitude D  -0.076** -0.106*** -0.086** 
  (0.036) (0.035) (0.039) 

Bank D -0.232*** -0.284*** -0.341*** -0.324*** 
 (0.041) (0.039) (0.036) (0.042) 

NGO D 0.288*** 0.101** 0.126*** 0.191*** 
 (0.037) (0.049) (0.045) (0.046) 

Extension agents  0.092*** 0.113*** 0.115*** 0.065** 
 (0.024) (0.029) (0.026) (0.031) 

Road improvement D 0.054* 0.044 0.090*** 0.150*** 
 (0.029) (0.031) (0.030) (0.034) 

Constant 4.014*** 3.762*** 4.082*** 4.398*** 
 (0.385) (0.042) (0.041) (0.046) 

Observations 3,892 3,892 3,892 3,892 

R2 0.108 

Adjusted R2 0.071 

F Statistic 44.150***     

Cluster robust standard error in parentheses,  *p<0.1; **p<0.05; ***p<0.01, D stands 

for dummy variables. 

The 1997 dummy is positive, as expected, because the 1997 round was conducted earlier in the season 

when consumption is higher. The distance to the bank dummy, equal to one if the PA is located at 

more than 22 km from any bank, is strongly negative: the average household in such a PA has an 

expected consumption per capita 21% lower than those in PAs closer to a bank. As mentioned in the 

data section, the presence of a bank might signal that the local economy is particularly dynamic or 

wealthy. It is hence not clear a priori if the positive coefficient on the bank distance dummy does not 

results from endogeneity caused by the effect of an unobserved variable left in the error term. Note 

that the effect is quite stable across quantiles of the population (although lower). By contrast, the 

presence of an NGO office in the PA benefits mostly the median household and above. This might be 

linked to the fact that jobs created by NGOs tend to benefit the better educated and wealthier 
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households, or it might reveal the difficulty for NGOs to reach the poorest of the poor. Interestingly, 

road improvement seems again to be of greatest benefit to richer households as no consumption-

increasing effect linked to road improvement is found significant in the 1st quartile regression. The 

number of extension agents has a positive and significant effect: each additional extension agent 

increases expected consumption by 10% and has the most impact on the median of the distribution. 

Note that the top quartile does benefit the least from the presence of an extension agent. A possible 

explanation is that households at the top of the consumption distribution already know and apply best 

and recommended farming techniques.   

Figure 2.9: Change in poverty risk (a) and Change in expected shortfall (10-year drought) (b) 

  

We present in Figure 2.9 (a) and (b) the impact on poverty risk and on the expected shortfall (computed 

for a 10 years drought) of the variables found significant at different quantiles of the population. As 

expected, the greatest effect is clearly the bank dummy. It is likely that the bank captures the effect of 

living close to a dynamic economic centre where banks choose to open a new branch rather than the 

effect of the bank itself. This large effect might be due to more off-farm opportunities or to the support 

from relatives living in these economic centres. Note that, however, in the case of a 10-year drought, 

poor households living near economic centres are not much less exposed than their counterparts in 

more remote regions, as shown with the expected shortfall. By contrast, richer categories are much 

more exposed in remote parts compared to their counterparts living close to an economic centre. 

NGOs and road improvements have a similar effect on the risk of poverty and expected shortfall. Both 

are, incidentally, positively correlated and it is likely that logistical reasons favour the installation of 

NGOs in PAs with better road access. Again, we see this mirror relationship between poverty risk and 

expected shortfall: these are the poorest households who benefit the most in terms of poverty risk 

reduction but the richest ones in terms of reduction of downside risk.     



  

78 
 

2.5 Conclusion 

This paper introduces a new framework to estimate climate risk exposure at the household level with 

the SPEI as its building block. It is based on the combination of climate data and household 

microeconomic data. The main advantage of this approach is that it is based on locally and frequency 

based weather scenarios allowing different measures of climate vulnerability. Furthermore, as the SPEI 

is computed over several decades, it properly captures climate risk exposure rather than the short-

term, running-season production risk exposure estimated with classic microeconometric methods of 

production risk estimation. A limitation of the proposed methodology is that it is quite demanding in 

terms of the large dataset required. Indeed, the estimation of the climate risk exposure relies on the 

assumption of observing a large range of SPEI values in the sample either thanks to a long panel or 

thanks to a large geographical spread. We note, however, that the number of microeconomic panel 

datasets keeps increasing so that this limitation is likely to fade in coming years.    

Another advantage of this approach is that it is quite simple and hence is able to accommodate 

quantile regressions. Instead of being forced to think about the average household, one can broaden 

the analysis to other parts of the sample distribution. Several indices are proposed to summarize 

climate risk exposure. The most actionable from a policy standpoint is likely to be the expected 

shortfall, also known as the conditional value-at-risk.  

We illustrate the methodology with a case study on Ethiopia using the Ethiopian Rural Household 

Survey (ERHS) and we combine it with SPEI values estimated with the African Rainfall Climatology 

Version 2 dataset and Climate Prediction Center Global Land Surface Air Temperature Analysis 

(GHCN+CAMS). Results show that the PAs located in the Kolla agro-ecological zone are the most 

exposed to climate. The results are in line with Deressa et al. (2009), although we do find greater 

differences between agro-ecological zones. Furthermore, we find that while poor households in the 

most remote PAs are almost as resilient to 10-year return period droughts as poor households living 

in the vicinity of towns (within 20 km), the contrary is true for richer households: the ones living in 

remote parts of Ethiopia are much more at risk than their suburban counterparts. 
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2.7 Appendix: Thornthwaite Potential Evapotranspiration index  

We follow here closely the presentation of the Thornthwaite Potential Evapotranspiration index (1948) 

given in Vicente-Serrano et al. (2010). The monthly PET in millimetre at a given location is obtained in 

the following manner: 

𝑃𝐸𝑇 = 16𝐾 (
10𝑇

𝐼
)
𝑚

 
(32)  

where T is the monthly mean temperature, 𝐼 is a heat index computed as: 

𝐼 =∑(
𝑇𝑗

5
)
1.51412

𝑗=1

 
(33)  

where j=1, …, 12 for the twelve months;   the coefficient 𝑚 is computed as: 

𝑚 = 6.75 ∗ 10−7 ∗ 𝐼3 − 7.71 ∗ 10−5 ∗ 𝐼2 + 1.79 ∗ 10−2 ∗ 𝐼 + 0.492 (34)  

and 𝐾 is a correction coefficient computed as function of the latitude and the month: 

𝐾 = (
𝑁

12
) (
𝑁𝐷𝑀

30
) 

(35)  

where 𝑁𝐷𝑀 is the number of days in the month and 𝑁 is the maximum number of sun hours computed 

as: 

𝑁 = (
24

𝜋
)𝑤𝑠 

(36)  

where 𝜋 is the number pi and 𝑤𝑠 is the hourly angle of sun rising calculated using: 

𝑤𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠(−tan𝜑 ∗ tan𝛿) (37)  

where 𝜑 is the latitude in radian and 𝛿 is the solar declination in radian, calculated using: 

𝛿 = 0.4093sin (
2𝜋𝐽

365
− 1.405) 

(38)  

Where J is the average Julian day of the month. 

  



  

84 
 

3 Disentangling the Benefits from Agricultural Innovations: 

Evidence from a combination of open and double-blind 

experiments in Tanzania 

 

Xavier Vollenweider21, Erwin Bulte22, Salvatore Di Falco23 and Menale Kassie24  

 

 

Abstract 

We provide an assessment of the importance of the role of farmers’ behaviour in driving the increase 

in yield of improved maize seeds. The study is based on the combination of an open and double-blind 

randomized controlled trials (RCTs) conducted in 2013 in two regions of Tanzania with 560 farmers. In 

the open RCT, farmers were told about which types were allocated to them: half of the farmers 

received improved seeds, the other half local seeds. The same was done in the double-blind RCT except 

that farmers were told they had one chance out of two of getting the improved seeds. It allows us to 

disentangle the increase in yield caused by the improved seeds from the increase in yield which 

depends on a change in farmers’ behaviour. Our main empirical contribution is to show that the 

behavioural response to improved seeds plays a central role in driving the increase in yield. In our 

experiment, close to 50% of the increase in yield measured in the open RCT would not have 

materialized without the behavioural response. 
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3.1 Introduction 

Food insecurity is a major problem in sub-Saharan Africa. The productivity of food crops has been low 

and decreasing for more than a decade. In Tanzania, for instance, maize yields went from 1.9 tons per 

hectare (ha) in 2000 to 1.2 tons per ha in 2012 (according to FAOSTAT). Slow adoption of new 

agricultural technologies is widely regarded as a key determinant of the current state of affairs (Doss 

2003; Evenson and Gollin 2003). High yield varieties drove the Green Revolution in Asia and could 

provide increases in agricultural productivity across Africa as well, stimulating economic growth and 

facilitating the transition from low productivity subsistence agriculture to a productive, agro-industrial 

economy (World Bank 2008) . Their uptake in Africa, however, is still limited and far from complete 

(Foster and Rosenzweig 2010). The literature has provided a plethora of explanations, including lack of 

access to information, inputs, credit, or risk preferences (e.g. Diagne and Demont 2007).  Recently, Suri 

(2011) used panel data and a random coefficient model to show that the adoption of hybrid maize is 

simply not profitable for wide swaths of the farming population. If innovations are not sufficiently 

adapted to the needs and requirements of local farmers (Doss 2003), individuals behave perfectly 

rationally when deciding not to adopt. 

In this paper we use a set of field experiments to address the debated issue of the impact of improved 

seeds by probing the benefits associated with the adoption of an open pollinated maize variety in 

Tanzania. Maize is the staple food in the region, and improving productivity in maize is likely to be a 

key impetus for improving local rural development and food security. Assessing the benefits of 

adoption is complicated because of two reasons.  First, gains likely vary across farmers, depending on 

geophysical conditions, farm size, and other characteristics affecting output. Heterogeneous 

treatment effects associated with adoption have been analysed in detail for the case of hybrid maize 

in Kenya by Suri (2011). Second, subjects may adjust their behaviour following adoption (Bulte et al. 

2014; List 2011).  For example, changes in the quality of seeds may invite farmers to allocate more or 

less fertiliser or effort to cultivation. 

To examine the importance of the behavioural response as compared to the pure genetic improvement 

effect, we combine data from two field experiments organised in two regions in Tanzania. In both 

experiments we provide improved maize to groups of farmers. The first experiment is a conventional 

(or open) randomised experiment (randomised control trial, RCT). Farmers are randomly allocated 

either to a treatment group receiving the improved maize or to a control group receiving a traditional 

variety. Both groups are told which type of seeds they received. The second experiment is a double-

blind RCT where neither the participating farmers nor the enumerators are informed about the 

allocation of the two types of seeds. By comparing the outcomes across the two experiments we can 
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distinguish between the genetic improvement and behavioural effects, and obtain a better 

understanding of the sources of the innovation's impact on yield than either experiment could produce 

alone. In addition to obtaining an improved assessment of the impact on yield of this key innovation, 

we disaggregate the total effect of adoption into a pure genetic improvement effect (i.e., the increase 

in yields that may be attributed to superior seeds) and the increase in yields that depends on the 

behavioural response of the farmer to the improved seeds. Indeed, as the information about the 

treatment status is randomized thanks to the combination of an open and double-blind RCT, related 

changes in behaviour as well as their impact on yield can be estimated. 

When assessing the effect of an intervention, one can focus either on its total effect or on its net effect, 

i.e. either on the total derivative or on the partial derivative of the production function that the 

intervention seeks to optimize (Glewwe et al. 2004). Policy makers tend to focus on the total effect of 

the intervention. The behavioural change of participants is factored in as a benefit of the intervention, 

even if it represents a cost for them. An alternative approach is to focus on the net effect of the 

intervention, i.e. net of the additional cost of effort provided by the participants. If the behavioural 

responses are not observed, then the estimates of the net impact of the intervention will be biased 

(Chassang et al. 2012; Duflo et al. 2008) as the estimation will provide an estimate of the total effect 

of the intervention. In the case of improved seeds, failing to account for the opportunity costs of 

labour, or any other complementary inputs, implies that the net benefits of adoption are over- or 

underestimated (depending on whether the behavioural response implies the supply of 

complementary inputs in greater or smaller quantities, respectively). In contrast, if the behavioural 

response is observed, and fully controlled for in a regression framework, then the indirect effects of 

adoption via changes in complementary inputs are not attributed to the adoption. Further 

complicating matters, the behavioural response may be overly optimistic or pessimistic. Farmers may 

easily overshoot or under-supply complementary inputs in the short run, biasing initial assessments of 

(potential) profitability. The crux for distinguishing the total impact from the net impact is to get an 

estimate of the contribution of the behavioural change. The combination of an open and a double-

blind RCT provides such an estimate. 

The use of double blind procedures is still rare in field experiments. To our knowledge, an exception is 

Bulte et al. (2014), who study the productivity effect of improved cowpea seeds.25 Unfortunately, their 

study is affected by significant attrition and small sample size. Seeds were offered to farmers close to 

the planting date, and some farmers had already finalized their cropping plans for the season. 

                                                           
25 Other notable exceptions are found in health economics – see the work on the Work and Iron Status Evaluation 
(WISE) conducted by Duncan Thomas in Indonesia and Boisson et al. (2010) on water filtration devices in the 
Democratic Republic of Congo. 
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Moreover, cowpea is a secondary crop in the study region, and some farmer chose not to grow it. We 

build and improve upon Bulte et al. (2014) in different ways in an effort to reduce attrition: we 

distributed seeds earlier in the season, and we used a crop that is the key food staple in the region 

(maize). As a result our attrition rate is fairly low (9%). We also up-scaled the size of the experiment, 

and made some changes to the design (details are provided in section 3.4).26 

The paper is organized as follows: in section 3.2, we provide an overview of the theory behind our 

methodology. In section 3.3, we present our identification strategy. In section 3.4, after a brief 

introduction to the study regions, we describe the two experiments and the data. Section 3.5 presents 

the results and section 3.6 concludes. 

3.2 Background 

We start by briefly reviewing how a randomized controlled trial (RCT) can provide an estimate of the 

effect of improved seeds. We then distinguish between the effect caused by the improved seeds alone 

from the effect which depends on the behavioural response to the improved seeds, for instance an 

increase in complementary inputs such as fertilisers or labour.  

Say we want to estimate the effect of improved seeds on output with a conventional RCT. Farmers are 

randomly allocated to either of two groups: the first one receives improved seeds, the second one 

local seeds.  

Following the model of Rubin (1974), the potential output of farmer 𝑖, 𝑌𝑖, can be written as: 

𝑌𝑖 = {
𝑌1𝑖if𝜏𝑖 = 1
𝑌0𝑖 if𝜏𝑖 = 0

 (1)  

where 𝜏𝑖 = 1 if the farmer receives improved seeds and 𝜏𝑖 = 0  otherwise. This can be expressed as: 

𝑌𝑖 = 𝑌0𝑖 + (𝑌1𝑖 − 𝑌𝑖0)𝜏𝑖 (2)  

Assuming that the effect of the improved seed is constant for all farmers, 𝑌1𝑖 − 𝑌0𝑖 = 𝜌, equation (2) 

can be re-expressed in regression form as: 

𝑌𝑖 = 𝛼 + 𝜌𝜏𝑖 + 𝜂𝑖 (3)  

                                                           
26 Double-blind implies that seeds should not be recognizable. We followed Bulte et al. (2014) by treating the 
improved and local seeds with a reddish food colorant in the double-blind RCT. We modified their design, 
however, by also coloring the seeds of the open experiment. This was done to avoid that any harvest difference 
could be attributed to the colorant itself. 
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where 𝛼 is the expected output with the local seed, 𝐸(𝑌0𝑖),and 𝜂𝑖  is the random part of 𝑌0𝑖, 𝜂𝑖 = 𝑌0𝑖 −

𝐸(𝑌0𝑖). Expected outputs with improved and local seeds are respectively given by: 

𝐸(𝑌𝑖|𝜏𝑖 = 1) = 𝛼 + 𝜌 + 𝐸(𝜂𝑖|𝜏𝑖 = 1) 

𝐸(𝑌𝑖|𝜏𝑖 = 0) = 𝛼 + 𝐸(𝜂𝑖|𝜏𝑖 = 0) 
(4)  

As the allocation to the improved seeds and local seeds groups has been artificially randomized, we 

have:   

𝐸(𝑌𝑖0|𝜏𝑖 = 1) − 𝐸(𝑌𝑖0|𝜏𝑖 = 0) = 0 (5)  

And the difference in sample means yields: 

𝐸(𝑌𝑖|𝜏𝑖 = 1) − 𝐸(𝑌𝑖|𝜏𝑖 = 0) = 𝜌 (6)  

RCTs offer hence a direct way of estimating the impact of improved seeds on output, bypassing the 

traditional pitfall of self-selection bias, a threat to the internal validity of impact studies of improved 

seeds adoption based on observational data27.  

Rational farmers should adjust farm management if the improved seeds change the marginal product 

of the inputs at their disposal (e.g. Bulte et al. 2014). For example, farmers should either work harder, 

re-allocate household labour from other activities towards the targeted plot, hire additional labour or 

apply more fertiliser. There are hence two channels by which improved seeds increases output: the 

                                                           
27 If we were to compare outputs between adopters and non-adopters with observational data, i.e. once farmers 

have decided to adopt or not, a simpler comparison of means would yield the following: 

𝐸(𝑌𝑖|𝜏𝑖 = 1) − 𝐸(𝑌𝑖|𝜏𝑖 = 0) = 𝜌 + 𝐸(𝜂𝑖|𝜏𝑖 = 1) − 𝐸(𝜂𝑖|𝜏𝑖 = 0) 

= 𝜌 + 𝐸(𝑌𝑖0|𝜏𝑖 = 1) − 𝐸(𝑌𝑖0|𝜏𝑖 = 0)⏟                  
𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑏𝑖𝑎𝑠

 (i) 

The selection bias is caused by a systematic difference in the conditional output under non-adoption of the 
adopters and the non-adopters. In the case of improved seeds, we can typically expect adopters to be more 
productive than non-adopter even before adoption. In the regression based on equation (3), the dummy variable 
𝜏𝑖  is hence correlated with 𝜂𝑖  so that an Ordinary Least Squares (OLS) estimate of 𝜌 would be biased upward. The 
selection bias has notably been dealt with endogenous switching regressions and propensity score matching 
methods. In the first approach, the decision to adopt and the impact of adoption on output are analysed jointly. 
The identification of the causal effect of adoption on the yield rests on the assumption that at least one variable 
used to explain adoption is not correlated with yield (exclusion restriction). In the propensity score matching 
methods, a set of observable variables is used to build a comparable set of pairs of adopters and non-adopters. 
The assumption is that conditional on these variables, the decision to adopt is random. However, some 
characteristics determining adoption might be unobservable to the analyst, implying that the conditional 
independence assumption is violated. The advantage of randomly allocating farmers to either the improved or 
local seeds group is that it solves the selection bias issue. As farmers are randomly allocated to groups receiving 
either the improved or local seeds, the expected output conditional on non-adoption is equal for both groups. 
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higher genetic potential of the improved seeds, the behavioural response. We illustrate each effect in 

Figure 3.1. 

Figure 3.1: The effects of technology adoption 

 

Effort,𝑒, is plotted on the horizontal axis of Figure 3.1 and output, 𝑌𝜏𝑒, on the vertical axis, where  𝜏 =

1 with improved seeds and zero with local seeds and 𝑒 = 1 if effort is adjusted to the improved seeds 

and  𝑒 = 0 otherwise. The improved seeds lead both to a vertical shift of the production function and 

an increase in its slope. 

We define the genetic improvement effect, 𝑔,  as the increase in output at the default level of effort, 

𝑌10 − 𝑌00. It is typically the effect of improved seeds if farmers face input constraints preventing them 

from adjusting their effort from 𝑒 = 0 to 𝑒 = 1. 
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We define the effort allocation effect, 𝑙, as the increase in output caused by the increase in effort alone, 

i.e. in the increase in output that could have been obtained with local seeds given an increase in effort 

from 𝑒 = 0 to 𝑒 = 1. 28 The effort allocation effect is the difference between 𝑌01 and 𝑌00.  

Lastly, we define the marginal productivity effect, 𝑚, as the increase in output at the optimal level of 

effort (𝑒 = 1) caused by the increase in the productivity of effort. It is given by (𝑌11 − 𝑌10) −

(𝑌01 − 𝑌00).  

The potential output model of equation (1) can be extended to: 

𝑌𝑖 = {

𝑌11𝑖if𝜏𝑖 = 1and𝑒𝑖 = 1
𝑌10𝑖if𝜏𝑖 = 1and𝑒𝑖 = 0
𝑌01𝑖if𝜏𝑖 = 0and𝑒𝑖 = 1
𝑌00𝑖if𝜏𝑖 = 0and𝑒𝑖 = 0

 (7)  

where 𝑒𝑖 = 1 if the farmer increase effort and 𝑒𝑖 = 0 otherwise, 𝜏𝑖 = 1 if the farmers received 

improved seeds and 𝜏𝑖 = 0 otherwise. The four counterfactuals correspond to the following 

possibilities: the farmer received improved seeds and increases effort, 𝑌11𝑖, the farmer received 

improved seeds and does not increase effort, 𝑌10𝑖, the farmers received local seeds and increases 

effort, 𝑌01𝑖, the farmers received local seeds and does not increase effort, 𝑌00𝑖. 

This can be expressed as: 

𝑌𝑖 = 𝑌00𝑖 + (𝑌10𝑖 − 𝑌𝑖00)𝜏𝑖 + (𝑌01𝑖 − 𝑌𝑖00)𝑒𝑖

+ (𝑌11𝑖 − 𝑌𝑖10 − (𝑌01𝑖 − 𝑌𝑖00))𝜏𝑖𝑒𝑖 
(8)  

Assuming a constant effect model and letting 𝑌10𝑖 − 𝑌00𝑖 = 𝑔, (𝑌01𝑖 − 𝑌𝑖00) = 𝑙, (𝑌11𝑖 − 𝑌𝑖10 −

(𝑌01𝑖 − 𝑌𝑖00)) = 𝑚, we can express equation (9) as: 

𝑌𝑖 = 𝛼 + 𝑔𝜏𝑖 + 𝑙𝑒𝑖 + 𝑒𝑖𝜏𝑖𝑚 + 𝜂𝑖  (9)  

where 𝛼 = 𝑌00𝑖, 𝑔 is the genetic improvement effect, 𝑙 is the effort allocation effect, 𝑚 is the marginal 

productivity effect and 𝜂𝑖 = 𝑌00𝑖 − 𝐸(𝑌00𝑖). 

The total effect of improved seeds, 𝜌 in equation (6) can hence be decomposed as: 

𝐸(𝑌𝑖|𝜏𝑖 = 1, 𝑒 = 1) − 𝐸(𝑌𝑖|𝜏𝑖 = 0, 𝑒 = 0) = 𝑔 + 𝑙 + 𝑚 (10)  

                                                           
28 It is therefore called the pseudo-placebo effect in Bulte et al. (2014) following the terminology of Chassang et 
al. (2012). 
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If a large part of the total effect is driven by the behavioural effect (𝑙 + 𝑚), the results of the RCT might 

not hold in another region or in another population sub-group because of differences in input 

constraints and differences in the perceived benefits of the new technology for instance, i.e. the RCT 

might have a low external validity.  

Furthermore, if the interest lies in the increase in output caused by the higher productivity of the 

improved seeds, i.e. the net effect of the improved seeds, the effort allocation effect, 𝑙, should be 

taken out of the equation (10) as it could occur as well with local seeds. The net effect can hence be 

expressed as: 

𝑛𝑒𝑡𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑔 +𝑚 (11)  

In Figure 3.1, the net effect is given by 𝑌11 − 𝑌01.  

3.3 Identification strategy 

There are several possible routes to isolate each effect. An option is to run a regression where we 

control for effort, 𝑒, and interact it with the improved seeds dummy, expressing equation (9) as: 

𝐸(𝑌|𝑒, 𝜏) = 𝛼 + 𝑔𝜏 + 𝑙𝑒 + 𝑚𝜏𝑒 (12)  

where 𝑒 is now a proxy variable for effort and 𝜏 = 1 if the farmers received improved seeds and zero 

otherwise. Even in the relatively simple setting of the production function of smallholders in 

developing countries, controlling for effort might be hard as inputs vary in quantity and quality; effort 

might be adjusted across several dimensions (Giller et al. 2011). A large set of proxy variables should 

be used and interacting them with 𝑚 would greatly increase the number of parameters to estimate, 

reducing hence the power of the test we would like to carry on each parameter. 

Our solution is to opt for an experimental design similar to Chassang et al. (2012) whereby both the 

improved seeds and the probability of receiving them are randomized.  

We summarize the design of the experiment in Table 3.1. Participants were allocated to either of four 

groups.  

Table 3.1: Design of the experiment 

 Improved seeds Local seeds 

Open RCT G1 G2 

Double-blind RCT G3 G4 
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The two first groups were allocated to a traditional open RCT experiment: half received improved seeds 

(G1) and the other half got local seeds (G2). Both groups were told about the type of seeds they got. 

In other terms, farmers in G1 were told they had a probability of 100% of receiving the improved seeds 

and farmers in G2 were told they had a probability of 0% of getting the improved seeds.  

The third and fourth groups were allocated to a double-blind RCT: half received improved seeds (G3) 

and the other half got local seeds (G4). G3 and G4 were told they had one chance out of two of 

getting the improved seeds, i.e. a probability of 50%. 

Our identification strategy rests on two assumptions. First, effort is weakly increasing in the probability 

of receiving improved seeds: 

𝑒𝑖(0) ≤ 𝑒𝑖(0.5) ≤ 𝑒𝑖(1) A1 

where 𝑒𝑖(𝑝) is the effort of a farmer on the experimental plot and is both a function of his type𝑖 and 

the probability of having received improved seeds 𝑝 where 𝑝 has been communicated to him by the 

extension agent in charge of distributing the seeds. We assume hence that effort is weakly increasing 

in 𝑝. 

Second, there are no Hawthorne or John Henry effects29:  the behavioural response to the probability 

of receiving improved seeds is not caused by participants’ awareness of taking part in an experiment. 

It is rather a response to the expected increase in marginal productivity of effort caused by the 

improved seeds and would also take place independent of an experimental setting. 

Let us rewrite the potential output model of equation (7) as: 

𝑌𝑖,𝜏,𝑝 =

{
 
 

 
 
𝜇𝑖(1, 𝑒𝑖(1)) + 𝜀𝑖,1,1if𝜏𝑖 = 1and𝑝𝑖 = 1Group1

𝜇𝑖(0, 𝑒𝑖(0)) + 𝜀𝑖,0,0if𝜏𝑖 = 0and𝑝𝑖 = 0Group2

𝜇𝑖(1, 𝑒𝑖(0.5)) + 𝜀𝑖,1,0.5if𝜏𝑖 = 1and𝑝𝑖 = 0.5Group3

𝜇𝑖(0, 𝑒𝑖(0.5)) + 𝜀𝑖,0,0.5if𝜏𝑖 = 0and𝑝𝑖 = 0.5Group4

 (13)  

where 𝜇𝑖(𝜏, 𝑒𝑖(𝑝)) is the expected output for farmer of type 𝑖 under treatment status 𝜏 and effort 

𝑒𝑖(𝑝). The error 𝜀𝜏𝑝𝑖 represents production shocks such as water deficit or excessive rainfall, pest 

invasion or plant disease. It has expectation 𝐸(𝜀𝜏𝑝𝑖|𝑖) = 0. Each type 𝑖 summarizes all observed and 

                                                           
29 The Hawthorne effect describes a situation in which participants allocated to the treatment group increase 
their effort because they know they are assigned to the treatment group. The John Henry effect describes the 
same situation but for those allocated to the control group. 
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unobserved factors affecting output. In our case, these could comprise farm management skills, access 

to credit and inputs, and farmers’ readiness to adopt new farming practices.  

Figure 3.2: Effects estimated in the experiment 

 

The comparison in means in the open RCT (groups 1 and 2), provides the average total effect of the 

improved seeds: 

𝐸(𝑌𝑖|𝜏𝑖 = 1, 𝑝𝑖 = 1) − 𝐸(𝑌𝑖|𝜏𝑖 = 0, 𝑝𝑖 = 0) = 𝑔 + 𝑙 + �̂� (14)  

It is illustrated in Figure 3.2 as the difference between G1 and G2 and was denoted 𝜌 in equation (6). 

By comparing output in the double-blind RCT (G3-G4), we get a lower bound of the net effect of 

improved seeds: 
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𝐸(𝑌𝑖|𝜏𝑖 = 1, 𝑝𝑖 = 0.5) − 𝐸(𝑌𝑖|𝜏𝑖 = 0, 𝑝𝑖 = 0.5) = 𝑔 + �̂�
∗ (15)  

where �̂�∗ ≤ �̂� because of assumption (A1).  

The lower bound of the net effect of adoption is illustrated in Figure 3.2 as the difference between G3 

and G4.  

By comparing the average treatment effect in the open and double-blind RCTs, we get upper and lower 

bounds of the net effect of the improved seeds adoption: 

𝑔 + �̂�∗ ≤ 𝑔 + �̂� ≤ 𝑔 + �̂� + 𝑙 (16)  

Let us now compare participants with the same seeds, but with different probabilities of receiving 

improved seeds. Comparing group 4 and group 2, i.e. farmers with local seeds in the double-blind and 

open RCTs, we obtain a lower bound of the effort allocation effect: 

𝐸(𝑌𝑖|𝜏𝑖 = 0, 𝑝𝑖 = 0.5) − 𝐸(𝑌𝑖|𝜏𝑖 = 0, 𝑝𝑖 = 0) = 𝑙
∗ (17)  

where 𝑙∗ ≤ 𝑙 because of assumption (A1). The lower bound of the effort allocation effect, 𝑙∗, is 

illustrated in Figure 3.2 as the difference between G4 and G2. 

Lastly, by comparing group 1 with group 3, i.e. farmers with improved seeds in the open and double-

blind RCTs, we get a lower bound of the behavioural effect: 

𝐸(𝑌𝑖|𝜏𝑖 = 1, 𝑝𝑖 = 1) − 𝐸(𝑌𝑖|𝜏𝑖 = 1, 𝑝𝑖 = 0.5) = 𝑙
′ + �̂�′ (18)  

where 𝑙′ ≤ 𝑙 and 𝑚′ ≤ �̂� because of assumption (A1). The lower bound of the behavioural effect is 

illustrated in Figure 3.2 as the difference between G1 and G3. 

By comparing output between groups, we can hence get an estimate of the total impact of improved 

seeds, 𝑔 + 𝑙 + �̂�, a lower bound estimate of the net impact, 𝑔 + �̂�∗, a lower bound estimate of the 

effort allocation effect, 𝑙∗, and lower bound of the behavioural effect, 𝑙′ + �̂�′. Table 3.2 summarises 

the effects estimated in the experiment. 

Table 3.2: Summary of the effects estimated in the experiment 

Groups Effects Expression 

G1-G2 Total effect �̂� + 𝑙 + �̂� = 𝐸[𝜇𝑖(1, 𝑒𝑖(1)) − 𝜇𝑖(0, 𝑒𝑖(0))] 

G3-G4 Lower bound of net effect �̂� + �̂�∗ = 𝐸[𝜇𝑖(1, 𝑒𝑖(0.5)) − 𝜇𝑖(0, 𝑒𝑖(0.5))] ≤ �̂� + �̂� 
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G4-G3 Lower bound of labour allocation effect 𝑙∗ = 𝐸[𝜇𝑖(0, 𝑒𝑖(0.5)) − 𝜇𝑖(0, 𝑒𝑖(0))] ≤ 𝑙 

G1-G3 Lower bound of behavioural effect �̂�∗ + �̂�∗ = 𝐸[𝜇𝑖(1, 𝑒𝑖(1)) − 𝜇𝑖(1, 𝑒𝑖(0.5))] ≤ �̂� + �̂� 

The model above rests on the assumptions that effort is weakly increasing in the probability of 

receiving improved seeds and that there are no Hawthorne or John Henry effects. While we can test 

the first assumption by investigating if effort does vary between groups, we cannot test the second 

assumption. In order to identify separately the Hawthorne effect and the John Henry effect from the 

effects described above, we would need a third treatment arm where famers would have been 

allocated randomly to more or less intensive follow-up and scrutiny from the research team (e.g. 

McCarney et al. 2007). Lastly, in order to obtain direct estimates rather than lower bound estimates of 

the net, effort allocation and behavioural effects, a different experiment could have been ran. Farmers 

with improved seeds in the double-blind RCT should have been told they had local seeds and vice-

versa. However, it would have raised important ethical questions. This is the reason why we preferred 

the experimental design discussed above.  

3.4 Data 

Maize, along with rice and wheat, is one of the three major crops comprising 70% of world food 

production, and plays a major role in the diet of Sub-Saharan populations. There has been a great deal 

of research effort directed toward improving maize yields since the start of the green revolution in the 

1960s. We can therefore expect to see large increase in yields with modern maize varieties. The 

improved seeds tested in the current study, the Situka-M1, was released in 2001 by Selian Agricultural 

Research Institute(SARI). It has a yield potential of 3-5 ton/ha and its optimal production altitude 

ranges from 1000 to 1500m above sea level. In Tanzania, it can grow in the Eastern and Northern 

regions where our study areas are located. The variety is tolerant to drought, maize streak and grey 

leaf spot diseases, and resistant to Diplodia fungus, Fusarium leaf bright and Puccinia sorghi.  Although 

its yields are often advertised as 4 to 6 ton/ha by the government (Ministry of Agriculture, Food 

Security and Cooperatives. 2009, cit. in Tumbo et al. 2012) or grain dealers (e.g. Suba Agro-Trading & 

Engineering Co. Ltd30), CIMMYT found considerably lower yields, from 2.4 ton /ha in a mid-altitude dry 

environment to 4 ton/ha in a mid-altitude humid hot environment (Magorokosho et al. 2009). 

Naturally, yield does not depend only on the type of seed: input choices, soil quality and weather 

conditions are also key determinants. A given type of seeds is therefore expected to perform 

differently according to the farmer’s skills, his access to inputs and the weather. 

                                                           
30 Website accessed on the 6th of December 2013: http://subaagro.com/index_files/OPV.htm.  

http://subaagro.com/index_files/OPV.htm
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Agriculture is the main employment sector in Tanzania and represented 80% of the labour force in 

2003 (Eskola 2005). Maize is the major staple crop produced and consumed in Tanzania (Amare et al. 

2012; Shiferaw et al. 2014). It accounts for 45% of the cultivated land and 75% of cereal production  

(Kassie et al. 2014). Virtually all the maize is produced by smallholders (98%, Minot 2010), with 0.8 ha 

per farm on average dedicated to maize. Although the land under cultivation increased by 54% 

between 2000 and 2015 (Kassie et al. 2014), only 18% of land planted with maize was planted with 

improved maize seeds in 2006 and similar figures still apply in the study area (Kassie et al. 2014; Smale 

et al. 2011). Yields are low compared to Europe: 1.5 ton per ha against more than 9 ton per ha in the 

European Union (FADN 2013). The average per capita annual maize consumption is 73kg, contributing 

on average to 33% of calorific needs (Minot 2010). Much of the output is consumed on the farm (Alene 

et al. 2009), so the benefit of improved seeds adoption might be assumed to imply higher household 

food consumption. 

The data are based on two sets of RCTs ran in parallel in the 2013 main growing season. The farmers 

were spread in three districts of Tanzania (Karatu, Mvomero and Kilosa), covering the main agri-

ecological zones of Tanzania. Karatu, in the northern part of Tanzania, is located next to the natural 

Ngorongoro conservation area and to the tarmac road which brings numerous visitors each year to the 

Serengeti national park. Despite the proximity of this tourist attraction, farmers in the surrounding 

villages do not benefit much from this flow of travellers as most do not stop in Karatu. The 399 farmers 

who took part to the experiment in Karatu district live in three villages that are within a maximum of 

20 km of each other. Despite their relative proximity, each one belongs to a distinct agro-ecological 

zone: Changarawe is located at an altitude of 1350m-1450m with a dry climate; Kilimatembo and 

Rothia benefit from wetter conditions and are located at an altitude of 1500m-1600m and 1600m-

1700m respectively. The 290 farmers who took part to the study in the East are spread over two 

districts (Kilosa and Mvomero) and 12 villages. By contrast to the Karatu area, there are no tourist 

activities and these villages are far more remote from one another - the maximum distance between 

each one being close to 140 km. They are located at a lower altitude, between 500m and 1075m and 

are diverse in terms of humidity. Most are distant from any tarmac road and the closest village to the 

regional centre, Morogoro, is still 25 km away from it. 

Kassie et al. found (2014) that one fifth of the farmers adopted improved maize seeds in the study area 

(20% in Karatu, 25% in Kilosa and 17% Mvomero) while Amare et al. (2012) report an adoption rate of 

50% in Karatu. Maize accounts on average for 70% of crop production and constitute 80% of domestic 

food production consumption in the study area (Kassie et al. 2014). Kassie et al. (2014) found yields of 

1.2 t per ha for adopters of improved maize varieties compared to 0.5 t. per ha for local varieties.  



  

97 
 

At the beginning of December 2012, farmers were told by extensions agents, that they would have the 

opportunity to take part to a study on maize yield. Seeds were distributed in January in units of circa 2 

kg (2 tins). Farmers were allocated randomly to four groups. Group 1 got Situka M1 seeds and group 

2, local seeds. Farmers in groups 1 and 2 were told the type of seeds they were using, as in a classical 

open RCT. Farmers in groups 3 and 4 got Situka M1 and local seeds respectively but were not told to 

which category they were assigned nor were the extensions agents in charge of distributing the seeds. 

It is hence a double-blind experiment. The Situka M1 is treated with a pink fungicide powder while 

local seeds are not. In order to make them indistinguishable, we applied a reddish food colorant on 

both types of seeds. Farmers in the double-blind groups were told by extension agents that they had 

one chance out of two of getting a bag with improved seeds. 

Furthermore, farmers in all four groups were told that a reddish colorant had been applied on all types 

of seeds and that they could plant the seeds and manage the plots as they wanted. The size of the plot, 

the soil quality (farmers have multiple small plots of various sizes and qualities), the number of seeds 

per hole, the spacing between rows as well as the number of weeding and threshing are all important 

production choices.  

Co-authors returned six times for two-week stays to monitor the progress of the experiment and 

collect data at different stages of the growing season, the final survey being conducted in July and 

August in the eastern and northern districts respectively. Most farmers in the double-blind groups 

found out the true type of seeds at maturation because the Situka M1 is an early maturing maize breed. 

However, as most production choices were already made at this stage of the growing cycle, this is of 

minor concern for the results. 

The attrition rate was limited (9%). Among the 625 farmers having answered the end-line survey, we 

identified 10% of non-compliers, i.e. farmers in the double blind groups who were told which type of 

seeds they had by the extension agents, farmers who were in the open RCT but were not told the type 

of seeds they got, and farmers who got the wrong type of seeds according to the randomization 

scheme. The final sample therefore includes 560 farmers, of which 348 are located in the North and 

212 in the East. 

We tested if randomization worked by comparing a set of 20 pre-determined socio-economic variables 

such as farm size, gender of the household head, education, and others. The only statistical difference 

we found was the average age of group 3 farmers which was slightly lower than group 4 farmers. The 

difference is nevertheless pragmatically negligible (45 years old v. 48 years old) and likely to be driven 

only by a few outliers (see Table 3.9 in Appendix 3.8). We hence conclude that randomization worked. 

We further tested if non-compliant farmers differ according to this set of 20 variables and failed to 
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reject the null hypothesis that they do not differ from the rest of the sample. Nevertheless, we choose 

to remove them from the sample. Note that the main results of the present study hold true when 

tested on the sample including non-compliers. The effect estimated is hence the Local Average 

Treatment Effect, i.e. the effect on the compliers only. However, given the good balance in terms of 

socio-economic characteristics, the results are likely indicative of the Average Treatment Effect (ATE), 

a term which we will use below when commenting on the estimated effects. 

Table 3.3 presents a set of summary statistics. The sample average harvest on the experimental plot is 

95 kg, the average yield is 0.82 ton per ha (ton/ha), and the average plot size is 0.11 ha. The standard 

deviation of yield is very large at harvest (ton/ha) and the minimum yield is 0 kg in case of crop failure 

and the maximum is 5.53 ton/ha. The top values likely represent enumeration errors: farmers might 

have provided the total harvest quantity on their farm rather than on the experimental plot. Crop 

failures were mostly caused by termite infestation in the East and excessive rainfall in the North (some 

steep plots were washed away by heavy rains).   

The median farm size is 1.2 ha, with a maximum of 8.5 ha, the 75th percentile at 2 ha and the 95% 

percentile at 4 ha. Farmers are hence mostly small-scale subsistence farmers with only a small fraction 

of the sample likely to have important and regular surplus for sale. The average area planted with 

maize measures around 0.5 ha, which means that we provided the seed for close to a quarter of the 

farm’s total maize production. The experimental plot was hence an important part of the production 

process. As farmers were told that we would not take any of the harvest, it is likely that they have been 

managing it with no less care than their usual plots. 

Only one third of the experimental plots have good quality soil, less than half are flat, while close to 

40% of them suffer from soil erosion according to plot measurements done by extension agents. 

Hence, plots tend to be of lesser quality than the ideal plots on which yield estimates are based when 

marketing a new maize breed. Furthermore, field visits of more than 50 plots showed great differences 

in management, in terms of planting decisions and weeding, for instance. 

Table 3.3: Summary statistics 

 Mean St. dev. Median 

Harvest (kg) 95.23 105.49 60.00 

Yield (ton/ha) 0.82 0.85 0.59 

Size of the plot (ha) 0.11 0.05 0.10 

Good soil 0.35 0.48 0.00 

Flat 0.46 0.44 0.46 

Erosion 0.39 0.43 0.39 

Labour (man days) 8.79 6.64 7.40 
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One or no weeding 0.18 0.38 0.00 

Fertiliser (mostly manure) 0.22 0.42 0.00 

Pesticide 0.11 0.32 0.00 

Plot improvement work (soil bund, terrace etc.) 0.29 0.46 0.00 

Intercropping 0.14 0.31 0.00 

Standardized precipitation Index (peak rainfall month, ARC 2 

dataset) 

0.14 0.39 0.23 

Extreme precipitation (self-reported) 0.48 0.50 0.00 

Crop damage due to pest, disease or fungi 0.26 0.44 0.00 

Female headed household 0.12 0.33 0.00 

Age of household head 46.22 12.93 46.22 

Education: one household member up to form IV 0.18 0.39 0.00 

Household size 5.14 2.21 5.00 

Dependency ratio (no of dependent per adult) 0.55 0.68 0.33 

Risk lover (risk experiment)31 0.41 0.49 0.00 

Land owned (ha) 1.22 1.18 0.91 

Land farmed (ha) 1.49 1.22 1.21 

Motorbike 0.15 0.36 0.00 

Rich (self-reported) 0.26 0.44 0.00 

Oxen 0.26 0.44 0.00 

Active role in the community 0.27 0.44 0.00 

Member of a self-help group (Sacco, vicoba, funeral society) 0.38 0.49 0.00 

Member of a social association (e.g. reglious, youth, women) 0.74 0.44 1.00 

Social network for help in cash, in kind or on the farm 

(number of people) 

2.67 3.51 2.00 

Social network for agricultural related information (number of 

people) 

1.77 3.57 1.00 

In terms of labour, households have allocated on average 9 man-days to the experimental plot 

although there are some outliers, probably driven by the same kind of enumeration errors as 

mentioned above. One quarter of households own at least one ox, an important input for land 

preparation, most of them in the North. 

The average household size is 5 people with an average dependency ratio of 50% (one adult for two 

children). Female-headed households represent a substantial minority (12%). In terms of social capital, 

close to 30% of the households count at least one member in a village community organisation, 40% 

are member of a credit union or other self-help group, and 70% are a member of a social group such 

as youth, women or religious associations. We have two proxies for social network: the number of 

                                                           
31 Farmers were presented with a set of six lotteries ranked according to their riskiness (variance) and expected 

gain. Once the farmer had chosen his preferred lottery, a coin was flipped and he received the corresponding 

pay-off. The maximum amount was 4000 Tsh (circa 2 USD). Farmers who took one of the 2 riskiest lotteries were 

classified as risk lover seeking (40% of the sample). See appendix B for the protocol. 
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people the farmer can ask for help in cash, in kind or on the farm and the number of people he can ask 

agriculture-related questions. The median size of the help and information networks is 2 and 1 people, 

respectively. 

Table 3.4 show large differences in key inputs between regions. In the East, farmers worked 50% more 

on their plot than farmers in the North, planted the crop on larger plots, and a greater share of the 

plots were flat with good soils and no erosion. Furthermore, close to 30% of the farmers located in the 

East chose one of their best plots for the experiment while the share drops to 10% in the North.  

Fertilisers were used more often in the North (mostly manure), which is likely driven by the much 

higher share of households holding cattle in the North (40% against 2% in the East). The lower use of 

manure in the East is hence not the result of a choice but of input constraints. Pesticides were used 

more often in the North, suggesting a greater threat from pest damage although actual pest damage 

does not differ between regions but plot visits suggested more termite attacks in the East. 

Experimental plots were more likely to have benefited from improvement work in the North, although 

most of the improvement work is aimed at limiting soil erosion (soil and rock bunds, terracing etc.), 

which is needed less in the East given the flatness of the terrain. Mulching was for instance carried in 

similar proportion in both regions. With the exception of manure, it appears hence that conditions and 

farm management has been more favourable in the East than in the North. 

Table 3.4: Differences in key inputs between regions, comparison in mean 

 East North East-North 

Labour (man day) 7.42 4.88 2.54*** 

 (3.64) (3.21) (0.30) 

Plot size (ha) 0.12 0.10 0.01*** 

 (0.04) (0.05) (0.00) 

Pesticide use (d.) 0.02 0.17 -0.15*** 

 (0.15) (0.38) (0.03) 

Fertiliser (, d.) 0.05 0.33 -0.29*** 

 (0.21) (0.47) (0.03) 

Good soil (d.) 0.44 0.30 0.15*** 

 (0.50) (0.46) (0.04) 

More fertile plot (d.) 0.28 0.09 0.19*** 

 (0.44) (0.29) (0.31) 

Flat plot (d.) 0.67 0.31 0.37*** 

 (0.47) (0.46) (0.04) 

Erosion (d.) 0.29 0.45 -0.15*** 

 (0.46) (0.50) (0.05) 

Plot improvement (d.) 0.21 0.34 -0.14*** 

 (0.41) (0.48) (0.04) 

One or no weeding (d.) 0.19 0.17 0.01 

 (0.39) (0.38) (0.03) 

p-values of the t-test: * p < 0.10, ** p < 0.05, *** p < 0.01. Labour is the pre-harvest labour 

(land preparation, planting, weeding). d. stands for dummy variables. 
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GPS coordinates were taken for each village and were used to match the survey data with the rainfall 

data from the African Rainfall Climatology Version 2 dataset. Weather conditions have been on average 

slightly wetter than normal according to the standardized precipitation index (SPI, Guttman 1999). The 

average SPI value for March precipitation, the month during which most of the rain falls, is indeed 0.27, 

so lies between the bounds of nearly normal conditions (-0.5, 0.5). Some villages in the East, Manza 

and Vitonga, were exposed to relatively dry conditions with a return period of approximately 10 years 

(SPI values of -1.27) while Kilimatembo (North) enjoyed quite wet conditions (SPI 0.9, return period of 

approximately 5 years). According to informal discussions with farmers and extension agents in the 

North, the timing of rain was not optimal this year: rain started very late, then fell so heavily during 

one month that some plots were washed away, and then stopped abruptly, leaving maize plants short 

of the optimal rainfall required for their growing phase. 

3.5 Results 

We start by comparing effort level across treatment groups in order to investigate if assumption A1, 

i.e. effort is weakly increasing in the probability of receiving improved seeds, does hold. We then 

present the average yields32 across groups and regions and proceed to the estimation of the total 

effects, the lower bounds of the net effects, the lower bounds of the labour allocation effects and the 

lower bounds behavioural effects. We left out of the analysis the top 5% of the yield distribution in 

order to limit the effect of outliers. 

3.5.1 Behavioural response to the probability of receiving improved seeds 

Table 3.5 shows the average behavioural response to the change in the probability of receiving 

improved seeds. Under assumption A1, effort should be weakly increasing in the probability of 

obtaining improved seeds. Therefore, average effort among farmers with a probability of 100% of 

getting improved seeds (group 1) should be higher or equal to the average effort of those with a 50% 

probability of getting improved seeds (groups 3 and 4), which , in turn, should be higher or equal to 

the average effort of the farmers with a zero probability of getting improved seeds (group 2). 

We used 9 variables in order to capture effort: pre-harvest labour (man days)33, size of the 

experimental plot (ha), pesticide use (dummy), fertiliser use (dummy), good soil (dummy), flat plot 

                                                           
32 We chose to present the results in terms of yields rather than harvests because it is a more common metric. 

Results do hold as well when using harvests instead of yields. 

33 We want here to measure the effort allocation causing a harvest and not effort allocation caused by a harvest. 
We therefore focus on the pre-harvest labour. 
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(dummy), erosion (dummy), plot improvement (dummy), one or no weeding (dummy). Results are 

shown in Table 3.5.  

In the North, we cannot reject the null hypothesis of no difference in effort between groups: there 

appears to be no behavioural response to the probability of receiving improved seeds. According to 

the model presented in section 3.3, it implies that we should not find any significant difference 

between the open and the double-blind RCT and, as a results, the lower bound of the behavioural 

effects should not be significantly different from zero. 

Table 3.5: Behavioural response to the probability of receiving improved seeds 

 North East 

Difference in 

probability of 

receiving 

improved seeds : 

100%-0% 

(G1-G2) 

100%-50% 

 (G1-DB) 

50%-0% 

(DB-G2) 

100%-0% 

(G1-G2) 

100%-50% 

(G1-DB) 

50%-0% 

(DB-G2) 

Labour (man day) -0.05 0.51 -0.56 1.18* 0.96 0.22 

 (0.76) (0.59) (0.62) (0.63) (0.72) (0.65) 

Plot size (ha) 0.01 0.01 0.00 0.02** 0.02** 0.00 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

PesticideD -0.07 -0.01 -0.06 0.01 0.02 -0.02 

 (0.06) (0.05) (0.05) (0.03) (0.03) (0.02) 

FertiliserD  -0.02 -0.05 0.03 0.03 0.03 -0.01 

 (0.07) (0.06) (0.06) (0.04) (0.04) (0.03) 

Good soilD 0.03 -0.02 0.05 0.03 0.03 0.01 

 (0.07) (0.06) (0.06) (0.09) (0.09) (0.08) 

Flat plotD -0.12 -0.05 -0.07 -0.04 -0.07 0.02 

 (0.08) (0.07) (0.07) (0.09) (0.09) (0.08) 

ErosionD 0.07 0.01 0.06 0.10 0.07 0.03 

 (0.08) (0.08) (0.07) (0.09) (0.09) (0.08) 

Plot improvementD  0.05 0.02 0.03 -0.09 -0.05 -0.04 

 (0.07) (0.06) (0.06) (0.07) (0.07) (0.07) 

Few weedingD -0.09 -0.06 -0.03 -0.02 -0.03 0.00 

 (0.06) (0.05) (0.05) (0.07) (0.07) (0.06) 

G1: Improved seeds in the open RCT (probability of improved seeds=100%), G2: Local seeds in the open 

RCT (probability of improved seeds=0%), DB: double-blind groups (groups 3 and 4) with a probability of 

50% of receiving the improved seeds. p-values of the t-test: * p < 0.10, ** p < 0.05, *** p < 0.01. Labour is the 

pre-harvest labour (land preparation, planting, weeding). D stands for dummy variables. 

In the East, by contrast, we do find significant differences in the pre-harvest labour and the size of the 

experimental plot. As expected, farmers with a 100% probability of receiving improved seeds (group 

1) allocated on average more labour to the plot and chose a larger plot than those with a 0% probability 

of receiving improved seeds (group 2). Similarly, farmers with a 50% probability of getting the 

improved seeds (group 3 and 4) chose a larger plot on average than those with a 0% probability of 

getting improved seeds (group 2). Although the difference in terms of labour allocation is not 

significant between the groups with a 100% and 50% chance of getting improved seeds (group 1 and 

the double-blind groups) and between those with a 50% and 0% (double-blind groups and group 2), it 
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has the expected sign: the higher the probability of receiving improved seeds, the higher is the average 

labour allocation. We can therefore expect to find a difference in the results of the open and double-

blind RCTs and a significant behavioural effect. 

Assumption (A1) appears hence to hold across the sample: effort is weakly increasing in the probability 

of receiving improved seeds. We expect that the difference in the behavioural response between 

regions should be reflected in the results of the experiments: the larger behavioural response in the 

East should imply a larger behavioural effect. 

3.5.2 Average treatment effects 

Table 3.6 shows the average yields across treatment groups and regions. Farmers in the East have on 

average higher yields than those in the North. This is consistent with the observation that plots were 

of better quality in the East (larger, better soil, lower erosion, flatter etc.) and the higher labour 

invested on the plots (Table 3.4). However, yields are very low in both cases: 0.59 ton/ha in the North 

and 1.16 in the East, less than half those found in Magorokosho et al. (2009). In both regions, improved 

seeds have a large impact on average yield: they are close to 60% higher than with local seeds. In terms 

of the second treatment arm of the experiment, i.e. the probability of receiving improved seeds, we 

observe that the average yields with improved seeds in the open category (G1) tend to be higher than 

in the double-blind category (G3). By contrast, farmers having received local seeds in the open RCT 

(G2) and the double-blind RCT (G4) have similar yield levels. We test below if these differences are 

statistically significant (Table 3.7). 

Table 3.6: Average harvest and yields 

  Yield (ton/ha)   

 All Local 

G2 & G4 

Improved 

G1 & G3 

 

G1 G2 G3 G4 

Both regions 0.82 0.64 1.01 1.12 0.69 0.87 0.57 

 (0.85) (0.58) (1.03) (1.16) (0.61) (0.81) (0.53) 

North 0.59 0.46 0.73 0.76 0.46 0.69 0.46 

 (0.51) (0.36) (0.62) (0.66) (0.35) (0.57) (0.37) 

East 1.16 0.91 1.43 1.65 0.96 1.13 0.82 

 (1.10) (0.72) (1.34) (1.51) (0.72) (1.03) (0.71) 

G1: Improved seeds in the open RCT, G2: Local seeds in the open RCT, G3: Improved seeds in the 

double-blind RCT, G4: Local seeds in the double-blind RCT. Standard deviations in parentheses. 

Following the model presented in section 3.3, the results of the open RCT, i.e. the comparison in mean 

values between groups 1 and 2, provide the average total effect of improved seed: 𝑔 + 𝑙 + �̂�. As 

expected, the total effect is large. In the North, the average yields with the local and improved seeds 
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are, respectively, 0.46 ton/ha and 0.76/ha, i.e. an increase of 0.31 ton/ha (or 65%) significant at the 

99% confidence level. In the East, average yield with local and improved seeds are, respectively, 0.96 

ton per ha and 1.65 ton/ha, i.e. an increase in yields of 0.69 ton/ha (or 72%). Lastly, at the aggregate 

level, yields increase by 0.44 ton/ha (62%). The total effect is hence very large both in the North and 

the East.  

Table 3.7: Comparison in means 

 Treatment Effects on Yield (ton/ha) East North Both 

regions 

Total effect: G1- G2 𝑔+𝑙+𝑚 0.69*** 0.31*** 0.44*** 

  (0.21) (0.08) (0.11) 

LB of Net effect: G3-G2 𝑔+𝑚∗ 0.31 0.23*** 0.29*** 

  (0.2) (0.08) (0.09) 

LB of Behavioural effect: G1-G3 𝑙′+𝑚′ 0.52* 0.07 0.25* 

  (0.27) (0.1) (0.13) 

LB of Effort allocation effect: G4-G2 𝑙∗ -0.14 0 -0.11 

  (0.15) (0.06) (0.07) 

LB: lower bound, G1: Improved seeds in the open RCT, G2: Local seeds in the open RCT, 

G3: Improved seeds in the double-blind RCT, G4: Local seeds in the double-blind RCT. The 

total effect of improved seeds is given by �̂� + 𝑙 + �̂� (G1- G2), the lower bound of the net 

effect by  �̂� + �̂�∗ (G3- G4), the lower bound of the behavioural effect by 𝑙′ + �̂�′(G1- G3) 

and the lower bound of the effort allocation effect by 𝑙∗ (G4- G2). Standard errors in 

parentheses, p-values of the t-test: * p < 0.10, ** p < 0.05, *** p < 0.01. 

We turn now to the results of the double-blind experiment. Following the model presented in section 

3.3, they provide a lower bound of the net effect, i.e. a lower bound of the average increase in yield 

attributable to the higher productivity of the improved seeds: 𝑔 + �̂�∗. In the North, the lower bound 

of the net effect on yield is 0.23 ton/ha (a 50% increase), significant at the 99% confidence level. In the 

East, it is 0.31 (a 38% increase), but it is not statistically different from zero. When both regions are 

pooled together, the average lower bound of the net effect is a 53% increase in yield, significant at the 

99% confidence level. 

By combining the results of the open and double-blind RCTs we obtain a lower and upper bounds of 

the net effect. At the aggregate level, the average net effect of improved seeds on yield is hence 

bounded between 0.29 ton per/ha to 0.44 ton/pa; in the North, between 0.23 ton/ha and 0.31/ton 

and in the East, between 0.31 ton/ha and 0.69 ton/ha. The difference between the open and double-

blind RCTs is hence larger in the East, pointing toward a larger role of the behavioural response.  

We  now analyse the effect of the second treatment arm of the experiment, i.e. the change in the 

probability of receiving improved seeds. Following the model presented in section 3.3, the difference 

between group 4 and 2 gives a lower bound of the effort allocation effect, i.e. the increase in output 
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caused by the increase in effort alone,   𝑙′. We do not find any significant difference between group 4 

and 2, which is consistent with the lack of behavioural response to a change in probability from 0% to 

50% reported in Table 3.5. These results contrast with Bulte et al. (2014) where a significant effort 

allocation effect was found (or pseudo-placebo effect according to the terminology used in Bulte et al., 

2014).  

Following the model presented in section 3.3, the difference between group 1 and 3, provides a lower 

bound of the behavioural effect. It is large in the East: farmers being told that they have the improved 

seeds have yield 0.52 ton/ha higher than those who are told they have one chance out of two 

(significant at 90% confidence level). The behavioural effect represents close to 75% of the total effect 

in the East. Although it is not significant in the North, the contribution of the behavioural effect is large 

and significant when both regions are pooled together: 0.25 ton/ha or 57% of the total effect. 

This highlights the importance of effort adjustment in order to reap the whole potential of the 

improved seeds. Farmers facing input constraints either because of limited access to land, fertilisers 

or man power will hence only benefit from a fraction of the potential increase in yield brought about 

by improved seeds.  

We present in Table 3.8 the results of the regression analysis. Detailed results are shown in Table 3.10, 

Table 3.11 and Table 3.12 in the appendix. In model I, the only variables are the group dummies and, 

for the regression at the aggregate level, a dummy equal to one for the farmers in the North. In model 

II, we add controls related to farm management: labour (pre-harvest labour expressed in man days), a 

dummy for weeding (equal to 1 if the farmer conducted only one or no weeding), the size of the 

experimental plot (ha), the soil quality (a dummy equal to one for good soil), pesticide use (dummy), 

fertiliser use (dummy) and plot improvement works such as soil bunds or mulching (dummy). In model 

III, we add controls on production shocks, weather conditions and socioeconomic characteristics with 

the following set of variables: crop damage caused by pests, plant disease or fungi (dummy), extreme 

rainfall (dummy, self-reported), standardized precipitation index in level and square,  a dummy for 

female-headed households, education of the household head (completed form IV, dummy), active role 

in the community such as seating in the village council (dummy) and risk loving attitude measured by 

a short risk preference experiment.34 In model IV, we control for the extent of the social network and 

farmers’ social interactions, i.e. the number of people the farmer can ask about farming related 

questions, the number of people the farmer can ask for help in cash, in kind or on the farm, a dummy 

                                                           
34 Farmers were presented with a set of six lotteries ranked according to their riskiness (variance) and expected 
gain. Once the farmer had chosen his preferred lottery, a coin was flipped and he received the corresponding 
pay-off. The maximum amount was 4000 Tsh (circa 2 USD). Farmers who took one of the 2 riskiest lotteries were 
classified as risk lover (40% of the sample). See appendix for the protocol. 
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equal to one if the farmer consulted anybody about best farming practices, if he is a member of a social 

group (e.g. prayer group) or a member of a self-help group (e.g. credit union).  

Table 3.8: Ordinary least squares regressions results 

  Yield (ton/ha) 

 Model I II III IV 

Both 

regions 

Total Effect: G1-G2 0.46*** 0.45*** 0.44*** 0.43*** 

 (0.14) (0.14) (0.15) (0.14) 

LB of Net effect: G3-G4 0.25* 0.25* 0.21 0.21 

 (0.12) (0.13) (0.13) (0.14) 

LB of Behavioural effect: G1-G3 0.25* 0.25 0.25 0.25* 

 (0.13) (0.15) (0.15) (0.14) 

LB of Effort allocation effect: G4-G2 -0.06 -0.07 -0.07 -0.08 

 (0.08) (0.07) (0.06) (0.07) 

Observations 518 512 512 502 

R2 0.169 0.201 0.284 0.300 

North 

Total Effect: G1-G2 0.31* 0.28* 0.24* 0.24+ 

 (0.08) (0.08) (0.08) (0.09) 

LB of Net effect: G3-G4 0.23 0.26 0.24 0.22 

 (0.12) (0.15) (0.15) (0.19) 

LB of Behavioural effect: G1-G3 0.07 0.04 0.03 0.06 

 (0.1) (0.14) (0.14) (0.15) 

LB of Effort allocation effect: G4-G2 -0.00 -0.02 -0.03 -0.04 

 (0.06) (0.06) (0.05) (0.07) 

Observations 312 308 308 304 

R2 0.072 0.129 0.173 0.253 

East 

Total Effect: G1-G2 0.69** 0.67** 0.65** 0.64** 

 (0.26) (0.25) (0.25) (0.25) 

LB of Net effect: G3-G4 0.31 0.21 0.14 0.24 

 (0.31) (0.32) (0.29) (0.3) 

LB of Behavioural effect: G1-G3 0.52* 0.55** 0.56** 0.53** 

 (0.23) (0.24) (0.23) (0.21) 

LB of Effort allocation effect: G4-G2 -0.14 -0.09 -0.06 -0.12 

 (0.16) (0.16) (0.16) (0.17) 

Observations 206 204 204 198 

R2 0.085 0.131 0.257 0.282 

LB: lower bound, G1: Improved seeds in the open RCT, G2: Local seeds in the open RCT, G3: 

Improved seeds in the double-blind RCT, G4: Local seeds in the double-blind RCT. The total 

effect of improved seeds is given by G1- G2 (�̂� + 𝑙 + �̂�), the lower bound of the net effect by G3- 

G4 (�̂� + �̂�∗), the lower bound of the behavioural effect by G1- G3 (𝑙′ + �̂�′) and the lower 

bound of the effort allocation effect by G4- G2 (𝑙∗). Standard errors in parentheses (robust to 

clustering at the village level), p-values of the t-test: * p < 0.10, ** p < 0.05, *** p < 0.01. 

The regressions’ results are consistent with the results of the comparison in means35. We do observe 

a slight decrease of the total effect and of the net effect once controls are added. This is likely due to 

the fact that part of the behavioural effect is controlled by the added variables. However, the low 

bound of the behavioural effect stays highly significant in the East and at the aggregate level, even 

                                                           
35 The slight difference in the results for both regions pooled together between the regression and difference in 
mean analysis comes from the fact that in the former a dummy equal to one for farmers in the North and zero 
otherwise in added. The regression results conducted on each region separately do match as expected the results 
from the comparison in means.   
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after controlling for more than 20 variables (the p-value is just above 0.1 in model II and III at the 

aggregate level).  

This suggests that a simple regression with a set of controls is not able to control appropriately for 

effort. A more complex model where the proxy variables for effort would be interacted with the 

improved seeds dummy could perhaps capture the increase in marginal productivity of effort. 

However, given the number of dimensions along which effort can be adjusted (e.g. quality, frequency), 

it might be challenging to properly account for the increased productivity. The combination of the 

double-blind and open RCT simplify greatly the estimation of various effect of interest: the total effect, 

the net effect, marginal productivity effect and the effort allocation effect.  

3.6 Conclusion 

While it is likely that no single factor can, on its own, explain the puzzle of the low adoption of improved 

seeds in Sub-Saharan Africa (see section 1.5 of the literature review), Suri (2011) showed that some 

hybrid maize seeds might not be profitable for a large part of the population, while Rosenzweig and 

Foster (2010) highlight the fact that many studies may overestimate the benefit of adoption because 

they neglect farmers’ adjustment cost, i.e. they measure the total effect of adoption instead of the net 

effect.  

We tested an improved maize seeds variety in Tanzania, the Situka M1, with a unique combination of 

open and double-blind randomized controlled trials (RCT). In the classic open RCT, by randomly 

allocating participants to a group receiving either the improved seeds or to another one receiving local 

seeds, the traditional issue of self-selection bias in studies based on observational data is bypassed and 

a direct and unbiased estimate of the total effect of the improved seeds is provided. 

The advantage of combining an open and a double-blind RCTs is the randomization of the probability 

of receiving improved seeds. It allows us to disentangle the effect of the improved seeds per se from 

its effects which depends on a change in the management of the farm. The empirical contribution of 

this study is to show that this behavioural response plays a central role in driving the total effect of 

improved seeds. In the Eastern part of our sample, 75% of the total effect of improved seeds would 

not materialize without the behavioural response.  

A second advantage of our design over classical open RCTs is to provide an upper and lower bounds 

estimate of the net effect of improved seeds, i.e. net of the adjustment in effort. At the aggregate level, 

the net effect of improved seeds is between 0.29 ton/ha and 0.44 ton/ha. Given this large increase in 

yield, the low adoption rate of improved seeds in the study area remains puzzling. A possible 



  

108 
 

explanation is the large role of the behavioural response in driving the effect of improved seeds. 

Constraints on complementary inputs, such as low soil plot quality, might limit the scope of the 

behavioural response of some farmers. An interesting extension of the present paper would be to 

investigate the drivers of the behavioural effects as well as the distributional impacts of the improved 

seeds. 
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3.8 Appendix A: Further results  

Table 3.9: Did randomization work? 

 Averages P-values of the t-test 

 G1 G2 G3 G4 1=2 1=3 1=4 2=3 2=4 3=4 

Land owned fully (ha) 2.83 3.01 2.64 2.62 0.53 0.55 0.48 0.25 0.21 0.95 

Land owned (ha) 2.96 3.06 2.76 2.69 0.74 0.52 0.37 0.36 0.25 0.83 

Land farmed (ha) 1.46 1.50 1.43 1.38 0.73 0.81 0.52 0.58 0.33 0.72 

Oxen (d.)  0.23 0.22 0.30 0.29 0.89 0.19 0.29 0.14 0.22 0.81 

Rich (self-reported, d.) 0.26 0.26 0.29 0.23 0.96 0.55 0.61 0.57 0.57 0.29 

Female headed household 0.09 0.13 0.15 0.12 0.29 0.17 0.51 0.70 0.73 0.50 

Age household head 44.6 45.5 48.4 47.3 0.51 0.02 0.07 0.06 0.21 0.52 

Dependency ratio (no of dependent per adult) 0.53 0.55 0.58 0.42 0.70 0.51 0.16 0.73 0.06 0.05 

Household size 5.14 5.03 5.10 5.16 0.67 0.90 0.93 0.78 0.61 0.83 

Education head (years of education) 6.01 5.89 6.02 5.88 0.76 0.99 0.76 0.75 0.98 0.74 

Education: one household member up to form IV 0.45 0.47 0.52 0.42 0.67 0.22 0.68 0.40 0.40 0.12 

Education: tow household member up to form IV 0.22 0.21 0.13 0.15 0.91 0.07 0.17 0.09 0.19 0.68 

Social network (number of people) 1.82 1.89 2.13 1.96 0.71 0.23 0.55 0.35 0.78 0.56 

Social network (number of relatives) 2.27 2.49 2.76 2.47 0.41 0.13 0.52 0.35 0.95 0.40 

Member of a social association (e.g. youth, women) 0.78 0.75 0.69 0.72 0.54 0.12 0.30 0.33 0.64 0.63 

Member of a self-help group (e.g. Sacco, vicoba) 0.40 0.39 0.39 0.33 0.81 0.86 0.27 0.96 0.36 0.37 

Active role in the community 0.28 0.24 0.26 0.28 0.39 0.72 0.91 0.65 0.48 0.82 

Oxen (d.) 0.23 0.22 0.30 0.29 0.89 0.19 0.29 0.14 0.22 0.81 

Rich (self-reported, d.) 0.26 0.26 0.29 0.23 0.96 0.55 0.61 0.57 0.57 0.29 

Observations 148 166 121 126       
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Table 3.10: Ordinary Least Squares: Both regions 

 

Dependent variable: Harvest (kg) 

Base category: local seeds in the open RCT I II III IV 

Improved seeds, open RCT 0.46*** 0.45*** 0.44*** 0.43*** 

 (0.14) (0.14) (0.15) (0.14) 

Improved seeds, double-blind RCT 0.21+ 0.20 0.18 0.18 

 (0.13) (0.14) (0.15) (0.15) 

Local seeds, double-blind RCT -0.04 -0.05 -0.03 -0.03 

 (0.07) (0.06) (0.06) (0.07) 

North -0.57** -0.54** -1.01*** -1.06*** 

 (0.20) (0.20) (0.24) (0.25) 

Labour (man day, pre-harvest)  0.00 0.01 0.01 

  (0.01) (0.01) (0.01) 

One or no weeding  -0.29** -0.20** -0.21** 

  (0.12) (0.08) (0.09) 

Experimental plot size (ha)  0.18 -0.01 0.01 

  (0.58) (0.52) (0.56) 

Good soil (dummy)  0.12 0.12+ 0.11 

  (0.08) (0.07) (0.07) 

Pesticide (dummy)  -0.23*** -0.20** -0.20*** 

  (0.07) (0.07) (0.06) 

Fertiliser (dummy, mostly manure)  -0.06 -0.02 -0.01 

  (0.07) (0.08) (0.08) 

Plot improvement (e.g. soil bund,   0.04 0.06 0.06 

Mulching, dummy)  (0.15) (0.13) (0.13) 

Standardized precipitation Index    0.72** 0.74** 

(peak rainfall month, ARC 2 dataset)   (0.27) (0.29) 

Standardized precipitation Index2   -1.36 -1.31 

   (0.93) (0.94) 

Crop damage due to pest, diseases,    -0.17+ -0.17 

or fungi (dummy)   (0.11) (0.11) 

Extreme precipitation (self-reported,   -0.13* -0.14* 

dummy)   (0.07) (0.08) 

Female headed household (dummy)    -0.03 

    (0.12) 

Basic education (Standard IV,     0.01 

dummy)    (0.07) 

Active role in the community     0.16* 

(dummy)    (0.08) 

Dependency ratio     0.00 

(no of dependent per adult)    (0.10) 

Risk lover (risk experiment, dummy)    -0.02 

    (0.05) 

Information network (number of     0.00 

people the farmer can ask farming related 

question) 

   (0.00) 

Help network (number of people the     0.01 

farmer can ask help in cash, in kind or on the 

farm) 

   (0.01) 

Consulted a farmer or an extension       0.04 

agent on farming practices (dummy)    (0.06) 

Member of a social association     -0.06 

(e.g. prayer groups , dummy)    (0.12) 
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Member of a self-help group     -0.10 

(e.g. credit union, dummy)    (0.09) 

Constant 1.00*** 0.99*** 1.46*** 1.46*** 

 (0.15) (0.18) (0.25) (0.25) 

Observations 518 512 512 502 

R2 0.169 0.201 0.284 0.300 

Standard errors in parentheses (robust to clustering at the village level)* p < 0.10, ** p < 0.05, *** p < 0.01   
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Table 3.11: Ordinary Least Squares: North 

Dependent variable: Harvest (kg) 

Base category: local seeds in the open RCT I II III IV 

Improved seeds, open RCT 0.31* 0.28* 0.24* 0.24+ 

 (0.08) (0.08) (0.08) (0.09) 

Improved seeds, double-blind RCT 0.23 0.23 0.20 0.19 

 (0.13) (0.15) (0.15) (0.21) 

Local seeds, double-blind RCT -0.00 -0.02 -0.03 -0.04 

 (0.06) (0.06) (0.05) (0.07) 

Labour (man day, pre-harvest)  0.01 0.01 0.01 

  (0.01) (0.01) (0.01) 

One or no weeding  -0.22* -0.22* -0.20+ 

  (0.06) (0.06) (0.08) 

Experimental plot size (ha)  -0.06 -0.03 -0.06 

  (0.63) (0.63) (0.66) 

Good soil (dummy)  0.03 0.05 0.09** 

  (0.04) (0.04) (0.01) 

Pesticide (dummy)  -0.20+ -0.16 -0.15 

  (0.09) (0.11) (0.09) 

Fertiliser (dummy, mostly manure)  -0.09* -0.10 -0.11** 

  (0.02) (0.04) (0.02) 

Plot improvement (e.g. soil bund,   0.13** 0.13** 0.11* 

Mulching, dummy)  (0.03) (0.03) (0.03) 

Standardized precipitation Index    11.77+ 7.94** 

(peak rainfall month, ARC 2 dataset)   (4.85) (0.83) 

Standardized precipitation Index2   -16.53 -10.86** 

   (7.32) (1.31) 

Crop damage due to pest, diseases,    -0.22* -0.18 

or fungi (dummy)   (0.06) (0.12) 

Extreme precipitation (self-reported,   -0.11** -0.14* 

dummy)   (0.02) (0.04) 

Female headed household (dummy)    -0.09 

    (0.14) 

Basic education (Standard IV,     0.06 

dummy)    (0.05) 

Active role in the community     0.17 

(dummy)    (0.09) 

Dependency ratio     -0.19*** 

(no of dependent per adult)    (0.01) 

Risk lover (risk experiment, dummy)    -0.07 

    (0.06) 

Information network (number of     -0.01 

people the farmer can ask farming related 

question) 

   (0.00) 

Help network (number of people the     0.01** 

farmer can ask help in cash, in kind or on the 

farm) 

   (0.00) 

Consulted a farmer or an extension       0.09 

agent on farming practices (dummy)    (0.06) 

Member of a social association     -0.06 

(e.g. prayer groups , dummy)    (0.12) 

Member of a self-help group     -0.01 

(e.g. credit union, dummy)    (0.09) 

Constant 0.46** 0.48* -1.35 -0.74*** 
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 (0.08) (0.13) (0.59) (0.04) 

Observations 312 308 308 304 

R2 0.072 0.129 0.173 0.253 

Standard errors in parentheses (robust to clustering at the village level)* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 3.12: Ordinary Least Squares: East 

Dependent variable: Harvest (kg) 

Base category: local seeds in the open RCT I II III IV 

Improved seeds, open RCT 0.69** 0.67** 0.65** 0.64** 

 (0.26) (0.25) (0.25) (0.25) 

Improved seeds, double-blind RCT 0.17 0.12 0.09 0.11 

 (0.27) (0.28) (0.27) (0.26) 

Local seeds, double-blind RCT -0.14 -0.09 -0.06 -0.12 

 (0.16) (0.16) (0.16) (0.17) 

Labour (man day, pre-harvest)  -0.01 0.01 0.01 

  (0.02) (0.02) (0.02) 

One or no weeding  -0.39+ -0.22 -0.23 

  (0.25) (0.17) (0.20) 

Experimental plot size (ha)  1.37 0.20 1.32 

  (2.35) (1.65) (1.70) 

Good soil (dummy)  0.17 0.12 0.13 

  (0.16) (0.15) (0.14) 

Pesticide (dummy)  -0.67+ -0.62* -0.54 

  (0.38) (0.34) (0.36) 

Fertiliser (dummy, mostly manure)  0.20 0.51 0.52 

  (0.51) (0.43) (0.39) 

Plot improvement (e.g. soil bund,   -0.12 -0.11 -0.07 

Mulching, dummy)  (0.43) (0.35) (0.33) 

Standardized precipitation Index    0.56* 0.57* 

(peak rainfall month, ARC 2 dataset)   (0.27) (0.29) 

Standardized precipitation Index2   -2.51 -2.35 

   (1.80) (1.90) 

Crop damage due to pest, diseases,    -0.01 0.05 

or fungi (dummy)   (0.27) (0.33) 

Extreme precipitation (self-reported,   -0.11 -0.09 

dummy)   (0.25) (0.26) 

Female headed household (dummy)    0.15 

    (0.18) 

Basic education (Standard IV,     -0.09 

dummy)    (0.12) 

Active role in the community     0.11 

(dummy)    (0.12) 

Dependency ratio     0.10 

(no of dependent per adult)    (0.13) 

Risk lover (risk experiment, dummy)    0.01 

    (0.12) 

Information network (number of     0.01 

people the farmer can ask farming related 

question) 

   (0.01) 

Help network (number of people the     0.01 

farmer can ask help in cash, in kind or on the 

farm) 

   (0.02) 

Consulted a farmer or an extension       -0.05 

agent on farming practices (dummy)    (0.13) 

Member of a social association     0.00 

(e.g. prayer groups , dummy)    (.) 

Member of a self-help group     -0.24 

(e.g. credit union, dummy)    (0.17) 

Constant 0.96*** 0.93** 1.64*** 1.48** 
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 (0.13) (0.39) (0.44) (0.60) 

Observations 206 204 204 198 

R2 0.085 0.131 0.257 0.282 

Standard errors in parentheses (robust to clustering at the village level)* p < 0.10, ** p < 0.05, *** p < 0. 
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3.9 Appendix B : Risk preference experiment 

 

 

 

 

 

 

 

Extentionist, please read the following: Imagine you can select 1 of 6 plots. On plot one, you earn 1000 Tsh if the season is bad (HEAD) and also 
1000 Tsh if the season is good (TAIL); on plot two 900 Tsh if the season is bad or 1800 Tsh if the season is good; on plot three 800 Tsh or 2400 Tsh; 
on plot four 600 Tsh or 3000 Tsh; on plot five 200 or 3600 Tsh and on plot six 0 or 4000. In each plot, there is a one chance in two to get the bad 
and good harvest, that is: a good season is as likely as a bad season. Please, take a moment to compare the six different plots and then tell me 
which plot is the best for you.  

 Extentionist: show the boxes below to the farmers and explain him again how it works.  

 

 

 

 

 

 

 

 

 

 

 

Bad harvest 
(Head) 

200

Good 
harvest 

(Tail) 
3600 

Bad harvest 
(Head) 
1000

Good 
harvest 

(Tail) 
1000 

   Bad harvest 
(Head) 

800

 
Good harvest 

(Tail) 
2400 

Bad harvest 
(Head) 

900

Good 
harvest 

(Tail) 
1800 

Bad harvest 
(Head) 

600

Good 
harvest 

(Tail) 
3000 

Bad harvest 
(Head) 

0

Good 
harvest 

(Tail) 
4000 

Plot  1.___ Plot  2.___ Plot  3.___ Plot  4.___ Plot  5.___ Plot  6.___ 

The respondent is asked to choose between the different farming plots (plot 1 to plot 6); Each plot 

gives either the bad harvest yield or a good harvest yield. For instance, plot 2 gives 900 Shillings if the 

season is bad (bad harvest), but it gives 1800 Shillings if the season is good (good harvest).  



  

119 
 

 

 

 

4 Avoiding the ‘Family Tax’:  Social pressure and hiding in 

village economies 

Xavier Vollenweider1 and Salvatore Di Falco2  

Abstract 

Based on the field experiment on maize seeds conducted in Tanzania and presented in chapter 3, we test 

the hypothesis that individuals try to escape forced solidarity when facing favourable conditions. We find 

that farmers who were allocated the improved seeds decrease the number of their social interactions, 

particularly if they have a large number of relatives in the village. We interpret these results as an evidence 

that farmers who were assigned the improved seeds adopted an evasive behaviour to escape the 

redistributive pressure from their social network.  Furthermore, it suggests that the pressure to share 

increases with the size of the social network.  
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4.1 Introduction 

Social networks play an important role in the livelihood of rural communities in developing countries 

by providing informal insurance and credit when markets are imperfect or absent (Anderson and Baland 

2002; Coate and Ravallion 1993; Fafchamps 1992; Fafchamps and Lund 2003; Ligon et al. 2002; Rosenzweig 

1988; Townsend 1994; Udry 1994). Households’ expectations of future assistance and transfers are key 

motivations behind participation in these networks. Other explanations may, however, apply. Altruism, 

guilt, social pressure to share resources and potential social sanctions also seem to play a crucial role in 

shaping individual behaviour in networks (Alger and Weibull 2010; Barr and Stein 2008; Foster and 

Rosenzweig 2001; Leider et al. 2009; Ligon 2011; Ligon and Schechter 2012; Platteau 2000). Social relations 

define obligations for the network’s members.3 The more successful members of the network must help 

the least successful or unlucky members of the social network. 

Recently, some observational and experimental evidence has been provided indicating that these 

obligations may trigger an evasive response. Households anticipating that their future income will be 

‘taxed’ by kin and neighbours may alter their consumption and investment decisions. They may, for 

instance, try to escape these obligations by spending more on non-sharable goods and keeping less 

liquidity (Di Falco and Bulte 2011). Individuals may attempt to fend off network requests by ‘pretending 

to be poor’ (Baland et al. 2011) or by concealing their assets and making more investments when not 

observed by kinship members (Jakiela and Ozier 2016). In this paper, we directly analyse the role of 

hiding as an evasive response to social network pressure by using a field experiment in rural Tanzania.4 

We randomly assigned a positive income shock to some farmers by allocating improved seeds to some 

farm households, while others were assigned a traditional low yielding variety. The expected future 

income of households with improved seeds is therefore raised. We found that individuals who were 

assigned the improved seeds reduced their social interactions if they counted a large number of relatives 

within the village. 

In section 4.2, we introduce the experimental design, the main idea behind the study, the variable used as 

proxy of the social interactions and social network. In section 4.3, we introduce a simple model to further 

                                                           
3 In this respect, Scott (1976) and Platteau (1991) refer to the ‘moral economy’. 
4 This is the same experiment used in chapter 3 with the slight difference that we use only the results from the open 
randomized controlled trial, i.e. the farmers who were told which type of seeds they received (i.e. group 1 and 2 in 
chapter 3). 
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the empirical analysis. In section 4.4, we present the econometric strategy, in section 4.5, we present the 

results and we conclude in section 4.6.     

4.2 Data and Design of the Field Experiment 

The field experiment was conducted in two areas of Tanzania, the South East (Morogoro) and the North 

(Karatu) with a sample of 320 farmers.5 Improved (high yielding) maize seeds were allocated randomly to 

half of the sample in 2013. The remaining half received traditional (low yielding) varieties. Maize is a key 

crop for these areas and is basically grown by all farmers mostly for their own consumption. In good years 

or among large farms, surpluses are marketed. The improved variety of Situka-M1 was released in 2001 

by the Selian Agricultural Research Institute (SARI). It has a very high yield potential of 3-5 ton/ha and its 

optimal production altitude range is 1000-1500 m. The traditional variety has a potential of 0.5-1 ton/ha 

under similar conditions. In Tanzania, the improved variety is grown in the South Eastern and Northern 

regions where our study districts are located. It is the second most important open pollinated variety (OPV) 

following the Staha variety grown in our study areas.6 The Situka-M1 is hence well-known and considered 

as a high yielding variety by farmers. Thus, allocating Situka-M1 constituted a positive shock on expected 

income as shown by the results of chapter 3 where harvest was on average 50% higher with the Situka-

M1 than the local variety of seeds. 

The goal of the present chapter is to compare social interactions between the farmers who got the 

improved seeds and the control group’s farmers who got local seeds. Each farmer was asked in the end-

line survey the number of social interactions they have had over the study period according to seven 

categories summarized in Table 4.1. Let us for the moment focus on asking for help on the farm. Asking 

for help on the farm is a very common social interaction in the village. In this way farmers can use extra 

units of labour; this is a direct and tangible benefit of a social network. Asking for help entails one 

important implication: visibility. The people giving a helping hand can guess the farmer’s future harvest. If 

it is a bumper crop, the farmer exposes himself to solidarity requests from those that helped him, and 

from less fortunate members of the community having heard of his bumper crop. Hence there is a choice 

                                                           
5 We use the same experiment as in chapter 3, using here only the data from farmers who knew what type of seeds 
they were given (i.e. group 1 and 2 in the chapter 3) and not the double-blind experiment. Indeed, we want to observe 
the participants’ behaviour when they know that they have a positive income shock. 
6 About 12% of farmers used Situka-M1 during the 2010/11crop calendar. The variety is tolerant to drought, and 
maize streak and grey leaf spot diseases. 
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between, on the one side, asking for help and being exposed to a solidarity tax and, on the other side, not 

benefiting from help and hiding from a solidarity request. A farmer having received improved seeds will 

think twice before asking for help: in the eyes of the community, he might become one of the lucky few 

to whom one turns to in case of hardship. 

The social interactions recorded in the survey vary in terms of the visibility they entail. Discussing the type 

of seeds received in the experiment and asking for help on the experimental plot or, more generally, on 

the farm implies a high visibility. By contrast, asking for help in cash or in kind or for information about 

best practices or output and land market does not require revealing the type of seeds received in the 

experiment (low visibility).  

Table 4.1: Social interactions analysed 

 Visibility Improved Local Diff. 

Discussing the seeds received in the experiment (count) high 3.33 4.05 -0.72 

  (3.70) (5.42) (0.53) 

Asking for help on the farm (count) high 1.74 2.06 -0.32 

  (2.64) (2.87) (0.31) 

Asking for help on the experimental plot (harvest) (d) high 0.10 0.10 -0.00 

  (0.30) (0.30) (0.03) 

Asking for help on the experimental plot (pre-harvest) (d) high 0.36 0.33 0.03 

  (0.48) (0.47) (0.05) 

Asking for help in cash or in kind (count) low 4.19 4.23 -0.04 

  (6.02) (6.58) (0.71) 

Asking for information on best farming practices (count) low 2.41 2.57 -0.15 

  (3.45) (2.91) (0.36) 

Asking for information on markets (output or land) (count) low 2.89 2.31 0.58 

  (6.03) (3.52) (0.55) 

Standard deviations and standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) stands for 

dummy variables, (count) stands for the number of people with whom each farmer had one of the social 

interaction. 

Summary statistics on the social interactions variables are presented in Table 4.1. We see that the number 

of people each farmer interacts with oscillates between 1 and 3. Furthermore, while asking for help on the 

experimental plot is relatively common (more than one third of the sample does it), asking for help at 

harvest time is much less common (10 percent). There are no statistically significant differences between 

farmers in the improved and local seeds category. However, the difference in the propensity to ask may 

depend on the size of the social network. Indeed, visibility may come at a greater cost with a large network 

because larger networks may imply larger pressure for sharing. In section 4.3 we will present a 

formalisation of this argument based on expected utility theory. The distributions of the count data 

variables are shown in Figure 4.1. 
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Figure 4.1: Distribution of the main variables 

 

The social network variable is based on the number of people each farmer could ask for help or 

information. As each category has been recorded separately, it is likely that some networks overlap (e.g. 

friends ready to give information on best farming practices are ready to give information on output and 

land markets). We have chosen to express the network size as the average size of all social network 

categories in order to reduce the impact of double-counting and capture more closely the number of 

people each farmer knows.7 The social network is measured in three layers: people in general, relatives 

inside the village, and relatives outside the village. We opted for relatives inside the village as it is in this 

layer that solidarity should be the strongest as geographical proximity and kinship are the major 

determinants of risk-sharing network formation (Fafchamps and Gubert 2007).  Farmers can ask for help 

or information on average from 1.5 relatives in the village. Its distribution is shown in Figure 4.1.  

                                                           
7 An alternative strategy is to express the network size as the sum of all social network categories in order to capture 
the intensity or the usefulness of each member of a farmer’s social network: a friend who can help with cash, kind or 
help on the farm is worth more than a friend who can only provide help on the farm. As we found very similar results, 
we therefore present results only in terms of averaged networks. 
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We also controlled for external drivers which could trigger the solidarity within the villages such as pest 

damage and excessive rainfall. Field visits revealed heavy damage to some fields from termites in the South 

East and from fungi and excessive rainfall in the North, close to one quarter of the farmers reported crop 

damage due to pests. The 2013 season was rather wet as half of the farmers reported rain above the 

normal (70% in the North). This is also recorded with satellite observations from the African Rainfall 

Climatology Version 2 dataset (ARC2, Novella and Thiaw 2013): the standardized precipitation index for 

March was 0.64 in the North with a maximum of 0.91 in one village. 

We also tried to limit the effect of omitted variable bias by controlling for socioeconomic characteristics 

possibly correlated with social interactions such as belonging to a self-help group or other economic 

association (e.g. primary society, a rotating savings and credit association or funeral society), for belonging 

to a social group (e.g. a prayer group or a youth organisation), the size of the household, the education, 

female headed household, the age of the household head, the size of the whole farm measure in ha, oxen 

holding, and for living in the North. Lastly, a farmer with improved seeds sowed on a highly visible plot 

(e.g. near the homestead) is more likely to be identified by his peers as expecting a high harvest. This could 

trigger demand for help from his social network even in the absence of a request to help or information 

from his part.  In order to control for the visibility of the plot, we add a variable measuring the walking 

distance from the homestead to the experimental plot (measured in minutes). A more remote plot is less 

observable. Summary statistics are displayed in Table 4.2. Note that the average size of the farm is just 

above 1.5 ha, i.e. most farmers are small-scale subsistence with no surplus for sale. 

Table 4.2: Explicative variables 

 Mean Standard Deviation 

Improved seeds(d) 0.47 0.50 

Number of relatives within the village 1.50 1.57 

North(d) 0.59 0.49 

Plot size (ha) 0.11 0.04 

Distance to plot (minutes)  18.86 19.12 

Farm size (ha) 1.58 1.23 

Oxen (d)  0.23 0.42 

Labour (man day)  9.27 6.87 

Pest damage (d) 0.23 0.42 

Standardized Precipitation Index  0.22 0.66 

Female headed household (d)  0.11 0.32 

Age household head(d)  45.74 12.43 

Household size  5.11 2.24 

Secondary education (d)  0.60 0.49 
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Risk averse(d)8  0.22 0.41 

Leadership role in the community(d)  0.31 0.56 

Member of a self-help group (d)  0.39 0.49 

Member of a religious association (d) 0.76 0.43 

(d) stands for dummy variables. 

Despite the low level of attrition (around 9%), we checked that attrition was not correlated with geo-

physical characteristics. We could find no significant association. Furthermore, we compared farmers in 

each group according to a set of demographic, socioeconomic and geophysical characteristics and we 

could not find any statistical difference (Table 4.3). It hence appears that the randomization has worked 

and that the groups of treated and untreated farmers are comparable.9 

Table 4.3: Randomization results: two comparable groups of farmers 

 

Improved 

seeds Local seeds 

p-value of 

a t-test of 

equality of 

mean N 

Number of relatives within the village 1.57 1.43 0.43 313 

Farm size (ha) 1.48 1.42 0.6 286 

Distance to plot (minutes) 17.68 18.84 0.528 300 

Standardized precipitation index: March 0.18 0.27 0.209 314 

Dependency ratio 0.29 0.27 0.402 304 

Age of the household head 45.41 44.42 0.377 286 

Household size 4.86 5.08 0.302 295 

Motorbike (d) 0.17 0.14 0.336 314 

Oxen (d) 0.22 0.23 0.885 314 

Rich (self-reported) (d) 0.26 0.26 0.963 314 

Member of a religious association (d) 0.75 0.78 0.535 314 

Member of a self-help group (d) 0.39 0.4 0.813 314 

Leadership role in the community (d) 0.24 0.28 0.39 314 

No education(d) 0.41 0.39 0.75 314 

Female (d) 0.13 0.09 0.294 314 

Pest damage (d) 0.27 0.19 0.135 314 

                                                           
8 Farmers were presented with a set of six lotteries ranked according to their riskiness (variance) and expected gain. 

Once the farmer had chosen his preferred lottery, a coin was flipped and he received the corresponding pay-off. The 

maximum amount was 4000 Tsh (circa 2 USD). Farmers who took one of the 2 riskiest lotteries were classified as risk 

lover seeking (40% of the sample). See appendix B of chapter 3 for the protocol. 

9 We cannot be sure however that the randomization worked in terms of the longer history of giving and receiving 
help. Nevertheless, as farmers do not differ either in terms of their socio-demographic characteristics, or social 
capital as measured by the dummy variable equal to one if the farmer has a leadership role in the community, by the 
dummy variable equal to one if he is member of a self-help group or a religious association, or by the social network 
size, we assume that the randomization worked in terms of the longer history of help. 
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(d) stands for dummy variables. 

4.3 Conceptual background 

In order to define the notion of evasive behaviour, we present a simple model of the decision to ask for 

help on the farm when confronted to a positive income shock. In our experiment, this positive shock is 

represented by receiving the improved seeds. The model serves as a general motivational device for the 

empirical work. We do not attempt to identify the structural parameters of a behavioural model which 

would be estimated and tested in the empirical section.  

We start with a model where social network is only given a negative role: the larger it is, the larger is the 

probability of being asked for help. Positive effects of social networks, such as their role as a channel of 

financial resources and information, are then discussed. We comment at the end of the section the 

implications of considering other types of social interactions than asking for help on the farm. 

The model has three periods. In the first period, the farmer can ask for help on the farm. In the second 

period, he draws utility from the consumption of the harvest and saves in the form of an asset the potential 

additional income he made from it In the third period, a member of his social network can ask him for 

help, hereafter referred to as a tax. The farmer pursues an asset-smoothing strategy rather than a 

consumption-smoothing one. Therefore, if he is confronted with a tax in the third period, he pays it by 

decreasing consumption rather than drawing down on the savings. Lastly, the farmer does not discount 

future utility and does not consider the utility of saving when deciding about asking for help on the farm, 

he takes into account only the marginal utility of consumption. 

The utility of asking and not asking for help on the farm is given respectively: 

VAsk = U(CH + b) + πAU(cF − d) + (1 − πA)U(cF) (1)  

VNot = U(CH) + πNU(cF − d) + (1 − πN)U(cF) (2)  

where 𝑈()is a utility function, 𝐶𝐻 is the consumption at harvest time (i.e. at the second period), 𝑏 is the 

added consumption at harvest time due to having asked for help on the farm (e.g. thanks to better land 

preparation, weeding, slashing etc.), 𝜋𝐴 is the probability of being taxed in the third period if one has asked 

for help in the first period, 𝜋𝑁 is the probability of being taxed in the third period if one has not asked for 

help in the first period, 𝐶𝐹 is the consumption level in the third period and 𝑑 is the tax. Both 𝐶𝐻 and 𝐶𝐹 in 
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period 2 and 3 are assumed to be constant, the only source of risk comes from the probability of being 

taxed. 

We assume that improved seeds increases harvest in period 2. This rests on the observation that, on 

average, improved seeds increase yields by more than 60% following the results presented in chapter 3. 

Improved seeds might however not always be adapted to the needs of small scale farmers as, for instance, 

it has been found to be the case of hybrid maize seeds in Kenya (Suri 2011). Furthermore, we showed in 

chapter 3 that a large part of the increase in yield was driven by the farm management. Therefore, 

differences in know-how, plot quality or inputs access could imply that some farmers derive only a low 

benefit from the improved seeds. The Situka-M1, the improved seeds we distributed, is however well 

perceived by farmers who took part in the experiment according to discussions with key informants. 

Furthermore, as it is an open-pollinated variety and not a hybrid variety, it does not require large 

application of costly inorganic fertilisers to increase yield. We therefore assume that receiving improved 

seeds is a positive shock.  

Furthermore, we assume that the productivity of labour with improved seeds is higher than with local 

seeds so that b𝐼 > b𝐿, where the subscripts 𝐼 and 𝐿 denote improved and local seeds respectively. The 

maximum consumption in period 2 is given by CH + b𝐼 + 𝑧. Any additional harvest is sold on the market 

and the resulting income is saved. 

Four additional assumptions are made: 

1. Farmers' harvest is not known precisely by the members of their social network;  

2. Asking for help on the farm implies revealing one's expected harvest to the members of their 

social network;  

3. The probability of being taxed, 𝜋(𝑛, 𝑘, 𝑓), increases with the size of the network, 𝑛, the wealth 

reputation, 𝑘 and the help debt, 𝑓:  

𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑖
> 0 

(3)  

where 𝑖 is either 𝑘, 𝑛, or 𝑓. The size of the social network, 𝑛, is the number of people the farmer 

has to help in case they ask. The wealth reputation is the amount of saving that the members of 

the social network think the farmer has. A larger harvest increases the wealth reputation. The help 

debt, 𝑓, is the number of times the farmer has asked for help minus the number of times he has 

been asked for help in the past. 
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4. The increase in the probability of being taxed, when the wealth reputation increases, is higher 

when the size of the social network is larger or when the help debt is larger. More generally:  

𝜕2𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑘𝜕𝑗
> 0 

(4)  

 where 𝑖, 𝑗, is 𝑘, 𝑛, or 𝑓 and 𝑖 ≠ 𝑗. 

Assumption (1) rests on the observation that in the developing world ‘people consciously try to decrease 

observability of their income and wealth’ by avoiding the disclosure of any information ‘surrounding grain 

storage, livestock, and other assets to their counterparts’ (Fafchamps 1992). In the model below, it implies 

that the expected harvest is not known by the other members of the network. 

Assumption (2) is based on the fact that ‘it is easy for an experienced farmer to guess crop yield by 

observing standing crops at harvest’ (idem).  

Assumption (3) relies on the observations that wealthy members of a social network have a moral duty to 

help the poor and unlucky ones. An increase in the wealth reputation should therefore increases the risk 

of being taxed. Furthermore, people with a large network often play a central role in the village’s 

community life and it is toward them that one turns for assistance when confronted with a shock.10 Lastly, 

by asking for help, one contracts a debt which will need to be paid pack. There is hence a higher likelihood 

to be taxed if one asked for help in the first period.  

Assumption (4) implies that an increase in wealth reputation increases more the risk of a tax when the 

network is larger because the number of people who can tax is larger. The same idea holds for the help 

debt: if someone has a long history of relying on the solidarity of his network, i.e. his help debt his large, 

then we can expect that as soon has his wealth reputation increases, his creditors will come to ask him 

their due. The more numerous they are, the higher is the chance that he will be confronted by a tax.  

                                                           
10 Another way of defending assumption (3) is to restrict the definition of an ‘increase’ in n as an increase in the size 
of the ego-network by the addition of a new member not connected to the previous members of the ego-network. 
A larger network would hence stretch over smaller unconnected ego-networks. Let us imagine a social network 
composed of 3 individuals forming a triangle with each individual represented as a dot in one corner. Let one of the 
three individuals meet two other people and form a separate network with them. Graphically, there are now two 
triangles head to head. The individual who is at the junction can be taxed by 4 people. By contrast, each member of 
his ego-network can be taxed by only two people. Hence, when an ego network increases by unconnected members 
of the ego network, the risk of being taxed increases. 
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The marginal utility of asking for help on the farm is given by: 

Δ𝑉 = U(CH + b) − U(CH) + πAU(cF − d) + (1 − πA)U(cF) − πNU(cF − d) − (1 − πN)U(cF) (5)  

Δ𝑉 = U(CH + b) − U(CH) + (πA − πA)[U(cF − d) − U(cF)] (6)  

Δ𝑉 = U(CH + b) − U(CH) − (πA − πN)[U(cF) − U(cF − d)] (7)  

For notational convenience, we assume that 𝑏 and 𝑑 imply only a marginal change in consumption. We 

hence have: 

Δ𝑉 ≈ 𝑈′(𝐶𝐻)𝑏 − (πA − πN)𝑈
′(𝑐𝐹 − 𝑑)𝑑 (8)  

The marginal cost, 𝑀𝐶, and the marginal benefit, 𝑀𝐵, can hence be expressed as: 

𝑀𝐵 = 𝑈′(𝐶𝐻)𝑏 (9)  

𝑀𝐶 = (πA − πN)𝑈
′(𝑐𝐹 − 𝑑)𝑑 (10)  

The 𝑀𝐵 derives from the marginal increase in consumption brought about by the helping hand, the 

marginal cost derives from the increase in the probability of being taxed. The farmer does not ask for help 

if the 𝑀𝐶 is larger than the 𝑀𝐵: 

Δ𝑉 ≈ 𝑀𝐵 −𝑀𝐶 < 0 (11)  

Equation (11) is the decision to hide: it results from the willingness to sacrifice 𝑀𝐵 in order to decrease 

the risk of being taxed. 

Now, let us investigate the 𝑀𝐵 and the 𝑀𝐶  with improved and local seeds. With local seeds, the MB and 

𝑀𝐶 are given by: 

𝑀𝐵𝐿 = 𝑈
′(𝐶𝐻)𝑏𝐿 (12)  

MC𝐿 =
𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑓
𝑈′(𝑐𝐹 − 𝑑)𝑑 (13)  

where the subscript 𝐿 is used to denote local seeds. With improved seeds, the 𝑀𝐶 and 𝑀𝐵 are given by: 

𝑀𝐵𝐼 = 𝑈
′(𝐶𝐻 + 𝑧)𝑏𝐼 (14)  

MC𝐼 = (
𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑓
+
𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑘
)𝑈′(𝑐𝐹 − 𝑑)𝑑 (15)  
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where the subscript 𝐼 is used to denote improved seeds The effect of improved seeds on 𝑀𝐵 and 𝑀𝐶 is 

hence given by: 

Δ𝑀𝐵 = 𝑀𝐵𝐼 −𝑀𝐵𝐿 = 𝑈
′(𝐶𝐻 + 𝑧)𝑏𝐼 − 𝑈

′(𝐶𝐻)𝑏𝐿 ⋚ 0 (16)  

Δ𝑀𝐶 = 𝑀𝐶𝐼 −𝑀𝐶𝐿 =
𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑘
𝑈′(𝑐𝐹 − 𝑑)𝑑 > 0 (17)  

The 𝑀𝐶 is higher with improved seeds because of the increase in the probability of the tax. By contrast, 

the difference in 𝑀𝐵 can be positive, negative or null as it depends on the shape of the utility function and 

the difference in marginal productivity of labour between improved and local seeds, 𝑏𝐼 − 𝑏𝐿. In other 

terms, improved seeds might change the decision from asking to not asking because the marginal benefit, 

𝑀𝐵, decreases.  

This is one of the assumptions we will make in the empirical section: the improved seeds do not decrease 

the MB and therefore a decrease in the number of social interactions is an evidence of hiding. 

Furthermore, as we assumed that the network size doesn’t enter in the marginal benefit of asking, when 

𝑛 increases, the difference in the 𝑀𝐶s increases while the difference in the 𝑀𝐵s does not: 

𝜕Δ𝑀𝐵

𝜕𝑛
= 0 (18)  

𝜕Δ𝑀𝐶

𝜕𝑛
=
𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑘𝜕𝑛
𝑈′(𝑐𝐹 − 𝑑)𝑑 > 0 (19)  

Therefore, we expect hiding to increase as the size of the social network increases:  

𝜕Δ𝑉

𝜕𝑛
≈ −

𝜕𝜋(𝑛, 𝑘, 𝑓)

𝜕𝑘𝜕𝑛
𝑈′(𝑐𝐹 − 𝑑)𝑑 < 0 (20)  

The social network, 𝑛, is only included in the cost side of the model presented in equation (1) and (2), i.e. 

only via an increase in the pressure to share. However, the literature on social networks has provided 

many evidence of positive effects of social networks (for a recent literature review, see Chuang and 

Schechter 2015). It is only recently that studies pointed to a ‘dark side’ of the social network (Di Falco and 

Bulte 2011). The network should therefore also be included in the benefit side of equation (1) and (2).  

For instance, asking for help on the farm is a good way of nurturing the relationships with the members of 

the social network: during fields’ work, farmers share stories and reinforce friendship bonds. The farmer 

hence increases his chances of benefiting from his friends’ solidarity in case of a downturn, such as illness 
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or crop damage caused by pest invasion. Friends could also provide credit for investment on the farm or 

gift on special occasions such as weddings or funerals. Hence, asking for help on the farm does not only 

provide the tangible benefit of an increase in the labour supply, it also helps fostering strong solidarity 

bonds which might provide informal source of insurance and credit.  An additional benefit could hence be 

added in equation (1) and (2). 

Furthermore, the size of the social network and the utility derived from the social network might be 

interdependent: farmers with larger network might value more social interactions. They would hence tend 

to interact more with other people, and hence have a larger social network. In other terms, the benefit of 

asking for help might increases with the size of the social network: 

𝜕𝑀𝐵

𝜕𝑛
> 0 (21)  

Lastly, social networks have been shown to play an important role in technology diffusion by increasing 

farmers’ awareness of new agricultural technologies. Farmers with a larger social network might hence 

have a better know-how of improved seeds cultivation. The increase on harvest brought by a helping hand, 

𝑏𝐼, might hence increase with the size of the social network. Therefore, the difference in 𝑀𝐵 as 𝑛 increases 

might hence be positive: 

𝜕Δ𝑀𝐵

𝜕𝑛
> 0 (22)  

Once the benefit side of the social network is taken into account, the decision to hide does not 

automatically increases as the size of the social network increase: 

𝜕Δ𝑉

𝜕𝑛
≈
𝜕Δ𝑀𝐵

𝜕𝑛
−
𝜕Δ𝑀𝐶

𝜕𝑛
⋚ 0 (23)  

because both 
𝜕Δ𝑀𝐶

𝜕𝑛
 and 

𝜕Δ𝑀𝐵

𝜕𝑛
  are positive. It depends on how  Δ𝑀𝐵 and Δ𝑀𝐶 vary with the network size. 

One of the assumptions we will make, when interpreting the results, is hence that the difference in the 

marginal benefit of asking between farmers with improved and local seeds doesn’t decrease as the social 

network increases. 

As mentioned in section 4.2, we will also investigate other types of social interactions. These social 

interactions entail different degrees of visibility and different degrees of benefits. For instance, discussing 

the type of seeds has a high visibility but no direct tangible impact on the harvest of the experimental plot, 
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i.e. it does not bring any 𝑏𝐼 but it increases the difference in 𝑀𝐶 by 
𝜕𝜋(𝑛,𝑘,𝑓)

𝜕𝑘
.  Asking for information about 

land and output markets or asking for help in cash or in kind do not imply a large visibility nor directly 

benefit the plot so it should not cause any differences in 𝑀𝐵 or 𝑀𝐶.  

As a final note, farmers could choose to substitute highly visible social interactions by less visible ones: 

chatting more about markets rather than about the type of seeds for instance. Therefore, hiding from peer 

pressure by not asking for help on the farm does not imply that the farmers renounce the benefits provided 

by social networks. Furthermore, refraining from asking for help on the farm might go unnoticed and is 

unlikely to be regarded as a violation of the social norms regulating moral economies.11 Indeed, much 

more proactive and blatant hiding strategies have been observed. For instance, Baland (2011) found 

reports that individuals in Cameroon contracted unneeded debts in order to pretend to be poor and fend 

off pressure to share, while Anderson and Baland (2002) found that women in Kenyan slums joined 

rotating savings and credit associations in order to protect their savings from their husbands.    

4.4 Econometric strategy 

We start by considering social interactions which increase the risk of revealing the type of seeds received 

in the experiment, i.e. implying a high visibility: discussing the type of seeds received in the experiment, 

hiring someone for harvesting the experimental plot, or asking for help on the farm. The goal of the 

estimation is to test if farmers having received improved seeds seek to hide this positive shock from their 

kin, i.e. if they seek to escape the social pressure to share. We consider that farmers having received 

improved seeds hide if they decrease the number of social interactions compared to farmers with local 

seeds and the same network size. As detailed in section 4.3, we expect that the social pressure to share 

increases with number of kin. The hiding behaviour should therefore be greater for farmers with a larger 

social network.  

In order to test these hypotheses, we estimate the following regression line:  

𝐷 = 𝛽0 + 𝛽𝑠𝑆 + 𝛽𝑁𝑁 + 𝛽𝐼𝐼 + 𝑪′𝜷 (24)  

                                                           
11 By contrast, refusing to provide help could constitute a violation of the ‘social contract’ (Hoff and Senn, 2006) and 
could lead to large social sanctions: ‘To fail in kinship obligation is to be a witch…, in other words to be the opposite 
of a moral being: a murderer, a bestialist, a lover of death, etc.’ (Bloch, 1974).   
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where 𝑆 is a dummy variable equal to 1 if the farmer belongs to the group with improved seeds and zero 

otherwise (local seeds), 𝑁 is the network size, 𝐼 = 𝑁 ∗ 𝑆 the interaction effect between the improved 

seeds dummy and the network size. We also add a set of controls, 𝑪, summarized in section 4.2. 𝐷 is either 

the number of people with whom each farmer discussed the type of the seeds received in the experiment, 

or the number of people asked to help on the farm in general or on the experimental plot at harvest time. 

We run hence three separate set of regressions, one for each dependent variable. 

Under the null hypothesis that farmers with improved seeds did not attempt to hide, the marginal effect 

of improved seeds should be equal to zero: 

𝐻0:�̂�𝑠 + �̂�𝐼𝑁 = 0 (25)  

Furthermore, under the null hypothesis that hiding does not increase with the size of the social network, 

then �̂�𝐼 should be not statistically different from zero. We can expect that the 𝛽𝑁 is positive, i.e. farmers 

with local seeds discuss with more people the type of seeds they got if their social network is larger.  

Social interactions which do not involve visibility should not differ between farmers with improved and 

local seeds as theses social interaction do not increase the risk of a family tax. In order to test for this, the 

left-hand side variable of equation (24) is replaced with either the number of people asked for help in kind 

and in cash, or the number of people asked about information on output and land market, or about best 

farming practices.  

Although the seeds' allocation to farmers was randomized and is hence totally exogenous, the network 

variable, 𝑁, might be correlated with some unobserved heterogeneity such as a long history of asking and 

giving help or information, social capital, socio-demographic characteristics or farm management skills. 

We seek to control for this by adding a set of control variables.  

Nevertheless, some important factors left in the error term might still be correlated with the social 

network variable. A priori, this could be a serious concern since the resulting endogeneity implies that the 

estimates of the interaction term are biased. Conventional econometric wisdom indicates that all 

estimates, (𝛽𝑆, 𝛽𝑁, 𝛽𝐼) are biased and inconsistent because of smearing (e.g. Greene 2003). However, 

several authors have recently used interaction effects between exogenous and endogenous variables 

(Abhijit V. Banerjee et al. 2007; Abhijit V Banerjee et al. 2010; Glewwe et al. 2009). Nizalova & 

Murtazashvili (2014) have shown both analytically and with simulations that the OLS estimate of the 

interaction effect is biased but consistent. The condition is that the endogenous variable and the 
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unobserved heterogeneity to which the former is correlated are jointly independent from the exogenous 

treatment, a condition fulfilled thanks the randomization of seed allocation. We assume that our sample 

is large enough to yield consistent estimates. We present in appendix A a step by step derivation of the 

main results of Nizalova and Murtazashvili (2014) in order to offer a comprehensive treatment of our 

identification strategy. In order to limit the effect of having many zeroes in the dependent variable, i.e. 

people who have not asked for help, we will use a zero-inflated Poisson model alongside standard OLS 

regressions. All regression results are presented with standard error, robust to clustering at the village 

level. 

4.5 Results 

We start by analysing a social interaction entailing high visibility and low benefit: discussing the type of 

seeds received in the experiments. The dependent variable is hence the number of people with whom 

each farmer discussed the type of seeds received in the experiment, hereafter number of discussions.  We 

estimated a first Ordinary Least Squares (OLS) model where the dependent variable is log-transformed 

because it is highly skewed.  Furthermore, a large number of households did not discuss the type of seeds 

at all. We therefore also estimate a zero-inflated Poisson (ZIP) model, more appropriate than an OLS when 

analysing count data with an excess number of zeroes12. 

We tested several specifications. In model (1), the only variables are the improved seeds dummy and the 

number of relative within the village (see section 4.2 for the definition). In model (2), we add an interaction 

term between the improved seeds dummy and the number of relatives. In model (3), we add a dummy 

equal to one for farmers in the north as well as a series of control variables for farmers’ social capital: 

leadership role in the community (dummy), member of a self-help group (dummy) and member of a 

religious association (dummy). In model (4), we add a series of controls on farm and socio-demographic 

characteristics and on the farm inputs: experimental plot size (ha), walking distance to the plot (minutes), 

farm size (ha), oxen (dummy), labour (man day), pest damage (dummy), standardized precipitation index, 

female headed household (dummy), age of the household head, household size, secondary education 

(dummy), risk averse (dummy).  The goal of this set of variable is to limit the risk of an omitted variable 

bias. Table 4.4 shows the results. 

                                                           
12 We tested as an alternative to the ZIP model the Poisson model, but results of the Vuong test show unambiguously 

that the ZIP perform better whatever control variables are added. 
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Table 4.4: Discussing the type of seeds 

Determinants of the Number of People with Whom Each Farmer Discussed the Type of Seeds 

Received in the Experiment 
 Ordinary Least Squares Estimates: 

log-linear model 

Zero-Inflated Poisson Estimates 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Log count          

Improved seeds (d)  -0.00 0.22 0.21 0.14 -0.20** 0.05 0.03 -0.03 

 (0.09) (0.13) (0.13) (0.13) (0.09) (0.21) (0.21) (0.19) 

         

Relatives 0.13*** 0.23*** 0.22*** 0.16*** 0.10*** 0.18** 0.17** 0.14* 

 (0.02) (0.04) (0.04) (0.04) (0.04) (0.08) (0.09) (0.08) 

         

Improved seeds (d) *Relatives   -0.20*** -0.16*** -0.14***  -0.13* -0.13 -0.11 

  (0.04) (0.04) (0.03)  (0.08) (0.09) (0.07) 

         

North (d)   X X   X X 

Social capital controls   X X   X X 

Inputs and socio-demographic 

controls 

   X    X 

         

Constant 1.00*** 0.87*** 0.97*** 0.82*** 1.39*** 1.23*** 1.34*** 0.77** 

 (0.08) (0.11) (0.10) (0.20) (0.14) (0.21) (0.19) (0.33) 

Log odd of asking no one (logit model)        

Improved seeds (d)      -0.18 -0.92* -1.12* -1.19 

     (0.34) (0.51) (0.64) (0.76) 

         

Relatives     -0.21 -0.62** -0.70** -0.73 

     (0.13) (0.30) (0.34) (0.46) 

         

Improved seeds (d) *Relatives       0.65* 0.72* 0.84 

      (0.36) (0.41) (0.54) 

         

North (d)       X X 

Social capital controls       X X 

Inputs and socio-demographic 

controls 

       X 

Constant     -1.41*** -0.96*** -1.95** -1.64*** 

     (0.35) (0.36) (0.82) (0.61) 

Observations 298 300 299 297 313 313 313 313 

Adjusted R2 0.08 0.11 0.11 0.23     

F-test 25.4*** 20.2*** 46.5*** 5.5***     

AIC 595 599 592 551 1910 1892 1815 1755 

BIC 606 614 622 607 1932 1922 1867 1811 

McFadden’s Pseudo R2     0.03 0.04 0.082 0.114 

Wald chi2     18.7*** 21.2*** 20.8*** 58.6*** 

Cluster robust standard errors at the village level in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01, (d) stands for 

dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives within the village 

each farmer can ask for help or information. List of social capital controls: leadership role in the community (d), 

member of a self-help group(d), member of a religious association(d). List of inputs and socio-demographic controls: 

plot size (ha), walking distance to the plot (minutes), farm size (ha), oxen (d), labour (man day), pest damage (d), 
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standardized precipitation index, female headed household (d), age, household size, secondary education (d), risk 

averse (d). 

Model (1) shows that receiving improved seeds has no significant effect on the average number of 

discussions. The only significant variable is the number of relatives within the village: when the number of 

relatives increases by one, the number of discussions increases by 13%. The addition in model (2) of the 

interaction term between receiving improved seeds and the number of relatives increases slightly the 

model fit (from 0.08 to 0.11)13. The interaction term is highly significant and is negative as expected: while 

farmers with local seeds discuss more if they have numerous kin, it is not the case for farmers with 

improved seeds. The addition of controls in model (3) and (4) does not affect the results: farmers with 

local seeds discuss more if they count more relatives, farmers with improved seeds do not. The ZIP models 

corroborate these findings. The number of relatives decreases the odd of not discussing (logit part of the 

ZIP model), but less so for farmers with improved seeds. The number of relatives increases the number of 

discussions (Poisson part of the ZIP model), but less so for farmers with improved seeds. 

Figure 4.2: Discussing the type of seeds 

                                                           
13 However, both the Akaike and Bayesian Information Criterion (AIC and BIC) increases. Nevertheless, as the main 
interest of the current analysis is in the sign of the interaction term coefficient, we choose to keep it in the model. 
Furthermore, the AIC and the BIC decreases from models (5) to (6) in the ZIP model estimation. 
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Figure 4.2 shows the marginal effects of receiving the improved seeds on the number of discussions 

estimated according to the OLS model (4) and the ZIP model (8). We define hiding as a decrease in the 

number of discussions caused by the improved seeds.  

Note that there is no evidence of hiding among farmers counting only one or no relatives within the village. 

This is expected, as when the social pressure to share is low, there is no incentive to hide. By contrast, if 

farmers count two relatives, those with improved seeds discussed 12% less than those with local seeds. 

Lastly, if they count more than 5 relatives in the village, i.e. when the pressure to share is very high, they 

discuss 50% less when they receive improved seeds (OLS results). Similarly, the ZIP estimates shows that 

hiding becomes statistically significant when farmers count more than 1.5 relatives within the village, i.e. 

it is significant for 40% of the sample. The sample average effect is large: receiving improved seeds 

decreases by 24% the number of discussions (ZIP model, (8)). Lastly, the graphs show that the incentive to 

hide builds up at the number of relatives increases. This is coherent with the hypothesis that larger is the 

number of relatives, larger is the pressure to share and hence larger is the incentive to hide. 

We now investigate another social interaction increasing the risk of disclosing the type of seeds received 

in the experiment: asking for help on the farm. Given the large number of farmers who did not ask anyone 

for help on the farm (43%), we estimated only a ZIP model. The set of controls is the same, except that 
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here we also control for having been asked for help on the farm of others in model (4) and (5). Table 4.5 

shows the results.   

Table 4.5: Asking for help on the farm 

Zero-Inflated Poisson Estimates: Number of People Each Farmer Asked to Come for Help 

on the Farm 

 (1) (2) (3) (4) (5) 

Log count (Poisson)      

Improved seeds (d)  -0.15 0.01 0.01 0.05 0.14 

 (0.12) (0.24) (0.24) (0.20) (0.22) 

      

Relatives 0.06 0.11*** 0.11*** 0.14*** 0.14*** 

 (0.05) (0.04) (0.04) (0.03) (0.03) 

      

Improved seeds (d) *Relatives   -0.09 -0.09 -0.12** -0.14** 

  (0.09) (0.09) (0.06) (0.06) 

      

North (d)   X X X 

Social capital controls    X X 

Inputs and socio-demographic controls     X 

Constant 1.13*** 1.04*** 0.97*** 0.81*** 1.30*** 

 (0.12) (0.16) (0.27) (0.21) (0.46) 

Log odd of asking no one (logit)      

Improved seeds (d)  -0.02 -0.07 -0.09 0.21 0.03 

 (0.21) (0.44) (0.44) (0.34) (0.38) 

      

Relatives -0.23*** -0.25 -0.27 -0.28 -0.43 

 (0.07) (0.18) (0.17) (0.20) (0.30) 

      

Improved seeds (d) *Relatives   0.05 0.08 -0.08 0.03 

  (0.26) (0.28) (0.23) (0.28) 

      

North (d)   X X X 

Social capital controls    X X 

Inputs and socio-demographic controls     X 

Constant -0.05 -0.03 0.38 1.68*** 2.28*** 

 (0.27) (0.41) (0.33) (0.49) (0.84) 

Observations 311 311 311 311 311 

McFadden’s Pseudo R2 0.0 0.02 0.02 0.174 0.194 

Wald chi2 2.22 12.28*** 13.10*** 28.98*** 47.84*** 

AIC 1256 1257 1252 1071 1045 

BIC 1278 1287 1290 1127 1101 

Cluster robust standard errors at the village level in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01, (d) stands for 

dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives inside the village 

each farmer can ask for help or information. List of social capital controls: leadership role in the community (d), 

member of a self-help group(d), member of a religious association(d), being asked for help on the farm of other (d). 

List of inputs and socio-demographic controls: plot size (ha), walking distance to the plot (minutes), farm size (ha), 

oxen (d), labour (man day), pest damage (d), standardized precipitation index, female headed household (d), age, 

household size, secondary education (d), risk averse (d). 

The pattern is similar to the one observed in the case of discussing the seeds. The logit model shows that 

for farmers with local seeds the odds of not asking anyone decreases with the number of relatives, i.e. 
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farmers with a larger number of relatives have a higher propensity to ask than those with smaller number 

of relative. It is also true of farmers with improved seeds, but the increase in the propensity of asking as 

the network size increases is smaller. The Poisson part of the models shows a stronger pattern. The 

number of relatives increases the predicted number of people asked to help on the farm for farmers having 

received the local seeds while the effect of the number of relatives is statistically not different from zero 

for farmers with improved seeds. We summarize the marginal effects of receiving improved seeds in Figure 

4.3 . 

Figure 4.3: Asking for help on the farm 

 

There is less evidence of hiding than in the case of discussing the type of seeds. This is expected as not 

discussing the type of seeds is a relatively cost-free hiding strategy while not asking for help on the farm 

implies either that the household has to increase his own labour provision or that some of the farm tasks 

wo not be performed as well as with the help from others (e.g. less care in planting and weeding). 

Nevertheless, we do find that hiding increases as the number of kin increases. It becomes statistically 

significant for farmers with three or more relatives within the village, i.e. 15% of the sample. The hiding 

behaviour appears hence to take place only among farmers exposed to the largest pressure to redistribute. 
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Farmers taking part to the experiment, as across many places in Sub-Saharan Africa, tends to have several 

plots which can be far away from each other. Therefore, some farmers may ask for help on plots other 

than the plot where they planted the seeds of the experiment. We turn now to the decision to ask for help 

on the experimental plot. 

We start by investigating the decision to ask for help at harvest time, i.e. when there is the highest visibility. 

The dependent variable is a dummy variable equal to one if the farmer asked for help on the farm and 

zero otherwise. We used the same set of explicative variables than presented above. Based on the 

comparison of the log-likelihood, a logit model is preferred to a probit model. Table 4.6 shows the results. 

Detailed results are left in the appendix. 

Table 4.6: Asking for help to harvest the experimental plot 

Logit Estimates: Asking for Help on the Experimental at Harvest times 
 (1) (2) (3) (4) (5) 

      

Improved seeds (d)  -0.01 0.78 0.77 0.66 0.42 

 (0.29) (0.54) (0.55) (0.55) (0.35) 

      

Relatives 0.28*** 0.53*** 0.53*** 0.53*** 0.39*** 

 (0.10) (0.16) (0.15) (0.16) (0.12) 

      

Improved seeds (d) *Relatives   -0.38** -0.38** -0.37** -0.29** 

  (0.16) (0.16) (0.15) (0.12) 

      

North (d)   X X X 

Harvest (10 kg)    X X 

Controls    X X 

      

Constant -2.67*** -3.21*** -3.43*** -3.69*** -5.94*** 

 (0.39) (0.57) (0.66) (0.74) (1.64) 

Observations 313 313 313 313 313 

McFadden’s Pseudo R2 0.04 0.05 0.06 0.06 0.17 

Wald chi2 7.61** 14.3*** 21.6*** 29.3*** 41.20*** 

AIC 205 204 205 206 201 

BIC 216 219 224 228 257 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 

0.01, (d) stands for dummy variables. The social network variable is ‘Relatives’: it is the average 

number of relatives inside the village each farmer can ask for help or information.  List of controls: 

plot size (ha), farm size (ha), oxen (d), pest damage (d), standardized precipitation index, female 

headed household (d), age, household size, secondary education (d), risk averse (d), leadership role 

in the community (d), member of a self-help group(d) member of a religious association(d) walking 

distance to the plot (minutes). 

As expected, an increase in the number of relatives increases the odds of asking for help at harvest time. 

Indeed, a larger kin network increases the opportunity to enter labour sharing agreement where labour is 

pooled and the harvest is done in common, one field after the other. However, there is a clear distinction 



  

141 
 

between farmers having received the improved and the local seeds. Among the formers ones, farmers 

with a large network will ask less on average than those with a small network.  

We also tested if we could find a similar effect on the decision to ask for help for pre-harvest work on the 

experimental plot (e.g. planting, weeding or slashing). The marginal productivity of labour on improved 

seeds fields might higher than on local seeds plots. Therefore, the marginal benefit of the helping hand 

might outweigh the marginal cost of increased visibility. Furthermore, in this earlier phase of the crop 

growing cycle, harvest is more difficult to ascertain and adverse weather or a pest invasion can still 

deteriorate the harvest. Therefore, asking for help in pre-harvest entails less visibility than at harvest time. 

We should therefore observe a lower effect of improved seeds on the decision to ask for help. Detailed 

results are left in the appendix in Table 4.11. The results are summarized in Figure 4.4 (left hand-side) 

alongside the marginal effect of improved seeds on asking for help at harvest time (right-hand side).  

Figure 4.4: Asking for help on the experimental plot 

 

Figure 4.4 shows that while improved seeds have no impact on the decision to ask for pre-harvest work 
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the number of relative is large, i.e. there is evidence of a hiding behaviour. The fact that farmers with 

improved seeds and a large social network do not hesitate to ask in pre-harvest times while they abstain 

from it at harvest time suggests that decreasing the visibility of their harvest is important for them. Hiding 

becomes significant for farmers counting at least three relatives in the village, i.e. 15% of the sample.  

We now test if we can find hiding behaviours in social interactions which are not expected to increase the 

risk of a family tax: (1) the number of people asked for help in cash or in kind; (2) the number of people 

asked about information on best farming practices; (3) the number of people asked about information on 

output or land market. Naturally, it could be argued that these social interactions involve also some sort 

of visibility. However, it is much more limited than discussing the seeds received in the experiments and 

asking people for help on the farm.  

The same set of explicative variables is used to analyse the determinants of these social interactions. We 

also used a ZIP model in order to model the excess zeroes. Detailed results are present in appendix in Table 

4.11. Figure 4.5 summarizes the results. 

Figure 4.5: Social interactions not related to the experimental plot 

 

-4
-2

0
2

4

E
ff
e

c
ts

 o
n

 p
re

d
ic

te
d
 n

u
m

b
e

r 
o
f 
p
e

o
p

le
 a

s
k
e

d

0 1 2 3 4 5
Relatives within the village

Help
in cash or kind

-4
-2

0
2

4

E
ff
e

c
ts

 o
n

 p
re

d
ic

te
d
 n

u
m

b
e

r 
o
f 
p
e

o
p

le
 a

s
k
e

d

0 1 2 3 4 5
Relatives within the village

Information
on best practices

-4
-2

0
2

4

E
ff
e

c
ts

 o
n

 p
re

d
ic

te
d
 n

u
m

b
e

r 
o
f 
p
e

o
p

le
 a

s
k
e

d

0 1 2 3 4 5
Relatives within the village

Information
on markets

(output and land)

90% confidence intervals, standard errors robust to clustering at the village level.

Marginal Effects of Improved Seeds
on Social Interactions Not Requiring to Disclose
the Type of Seeds Received in the Experiment

(Zero-Inflated Poisson)



  

143 
 

We do not find any difference between farmers having received improved and local seeds in terms of the 

probability of engaging in social interaction not related to the experimental plot.  In other terms, there is 

no sign of hiding behaviour however large the kin network is. Allocating farmers to the improved seeds 

group did therefore distort social interactions only in the case where there was a risk of an increase in the 

family tax, i.e. social interactions revealing the positive consumption shock brought about by improved 

seeds distributed in the experiment.  

4.6 Conclusion 

This chapter tests the hypothesis that individuals try to escape forced solidarity when facing favourable 

conditions. We randomly assigned a positive shock by providing farmers with improved maize seeds that 

are more productive than the traditional varieties. Our results, robust to various specifications, show that 

farmers who are assigned more productive seeds decrease the number of their social interactions if they 

face a social pressure to share, i.e. if they count many relatives within the village. This suggests that farmers 

attempt to reduce the burden of decreasing their future consumption in order with other members of the 

social network, which is consistent with the idea that traditional sharing norms may invite evasive 

behaviour.  

The results of the present chapter provide another set of evidence of the existence of evasive responses 

to the social pressure to share. Di Falco and Bulte (2011) find that forced sharing norms in social networks 

diverted investment away from sharable liquid assets and could have a negative effect on growth while 

Jakiela and Ozier (2016) find that sharing norms distorted incentives ‘towards less visible, but potentially 

less profitable, investments, and may consequently slow economic growth’.  

This dark side of social capital echoes the concept of the Laffer curve: increasing tax level increases 

government revenues up to a point where work is discouraged, tax evasion kicks in and government 

revenues drop. A similar phenomenon could be at play in the case of village economies where solidarity 

networks play a central role in income redistribution and forced solidarity is akin to a tax. Some farmers 

might prefer to forsake an increase in output brought about by asking for help in order to reduce the 

likelihood of the tax, particularly if the likelihood of a tax is high because their network is large and their 

wealth status has improved. Indeed, why ask for help if the resulting increase in output will be eaten away 

by friends and family? It might be better to keep a low profile, enjoy the bumper crop harvest brought 

about by the improved seeds and relinquish an even greater harvest as the latter would be taxed by 
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members of their social network. Hence, as in the Laffer curve hypothesis, where higher tax brings about 

smaller revenues, the collision of self-interest and high solidarity might imply that less food is produced 

and available for sharing at the village level. This hypothesis could be investigated in future work.  

Indeed, it is yet not clear if the hiding behaviour identified in the present study has any economic 

consequences. We do indeed find that a farmer with improved seeds asks for less help on the farm if their 

kin network is large, but the hiding behaviour only becomes significant for the 15% of farmers with the 

largest number of relative within the village. Furthermore, as no hiding was found in terms of the pre-

harvest labour, i.e. when labour is expected to have the highest effect on harvest, it is yet not clear if this 

hiding strategies implied a decrease in output. In our experiment, farmers may have been able to hide at 

no cost. 
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4.8 Appendix A: Interaction effect, biased but consistent 

We reproduce below a step by step derivation of the results of Nizalova and Murtazashvili (2014) in 

order to offer a comprehensive treatment of the identification strategy of the present paper.  We want 

to estimate the following model: 

𝑌 = 𝛽0 + 𝛽𝐼𝐼 + 𝛽𝑁𝑋𝑁 + 𝛽𝑆𝑋𝑆 + 𝜀
∗ (26)  

where 𝐼 = 𝑋𝑆𝑋𝑁, 𝜀∗ = 𝜀 + 𝛽𝐻𝐻 and 𝑋𝑆 is perfectly exogenous. The parameter of interest is 𝛽𝐼 while the 

issue is the correlation between 𝐻 and 𝑋𝑁. The omitted variable bias is given by (e.g. Greene 2003):  

𝑝𝑙𝑖𝑚(�̂�) = 𝛽 + 𝛾𝑸 (27)  

where 𝑸 = 𝑝𝑙𝑖𝑚[(𝑋′𝑋)−1(𝑋′𝑋)𝜀∗] = 𝑝𝑙𝑖𝑚[(𝑋′𝑋)−1(𝑋′𝐻)]. 

Let’s focus on 𝑸. We start by re-expressing 𝑋′𝑋: 

𝑋′𝑋 = (

𝜎𝐼1
2 𝜎𝐼𝑁 𝜎𝐼𝑆
𝜎𝑁𝐼 𝜎𝑁

2 𝜎𝑁𝑆
𝜎𝑆𝐼 𝜎𝑆𝑁 𝜎𝑆

2

) = Λ𝑅Λ 

(28)  

where Λ = (

𝜎𝐼1
2 0 0

0 𝜎𝑁
2 0

0 0 𝜎𝑆
2

), 𝑅 = (
1 𝑟𝐼𝑁 𝑟𝐼𝑆
𝑟𝑁𝐼 1 𝑟𝑁𝑆
𝑟𝑆𝐼 𝑟𝑆𝑁 1

) and 𝑟𝑖,𝑗 is the correlation between variable 𝑖 and 

variable 𝑗, 𝑟𝑖,𝑗 =
𝜎𝑖,𝑗

𝜎𝑖𝜎𝑗
. 

The second pair of matrices can be expressed as: 

𝑋′𝐻 = 𝜎𝐻Λω (29)  

 

where 𝜔′ = [𝑟𝐼𝐻 , 𝑟𝑁𝐻 , 𝑟𝑆𝐻]. Hence, 𝑸 = 𝑝𝑙𝑖𝑚[𝜎𝐻(Λ𝑅Λ)
−1Λω] = 𝑝𝑙𝑖𝑚[𝜎𝐻Λ

−1R−1ω]. We note that:  

R−1 =
1

det(𝑅)
(

1 − 𝑟𝑁𝑆
2 𝑟𝐼𝑆𝑟𝑁𝑆 − 𝑟𝐼𝑁 𝑟𝐼𝑁𝑟𝑁𝑆 − 𝑟𝐼𝑆

𝑟𝐼𝑆𝑟𝑁𝑆 − 𝑟𝐼𝑁 1 − 𝑟𝐼𝑆
2 𝑟𝐼𝑆𝑟𝐼𝑁 − 𝑟𝑁𝑆

𝑟𝐼𝑁𝑟𝑁𝑆 − 𝑟𝐼𝑆 𝑟𝐼𝑆𝑟𝐼𝑁 − 𝑟𝑁𝑆 1 − 𝑟𝐼𝑁
2

) 

(30)  

where det(𝑅) = 1 − 𝑟𝐼𝑁
2 − 𝑟𝐼𝑆

2 − 𝑟𝑆𝑁
2 + 2𝑟𝐼𝑁𝑟𝐼𝑆𝑟𝑁𝑆. Hence, we can express 𝑸 as a vector of size 3: 

𝑸 = (

𝜎𝐻
𝜎𝐼

𝑟𝐼𝐻(1 − 𝑟𝑁𝑆)
2 + 𝑟𝑁𝐻(𝑟𝐼𝑆𝑟𝑁𝑆 − 𝑟𝐼𝑁) + 𝑟𝑆𝐻(𝑟𝐼𝑁𝑟𝑁𝑆 − 𝑟𝐼𝑁)

1 − 𝑟𝐼𝑁
2 − 𝑟𝐼𝑆

2 − 𝑟𝑆𝑁
2 + 2𝑟𝐼𝑁𝑟𝐼𝑆𝑟𝑁𝑆…

…

) 

(31)  

where we omitted the second and third row as we are interested here in 𝛽𝐼: 

𝑝𝑙𝑖𝑚(�̂�𝐼) = 𝛽𝐼 + 𝛾𝑟𝑸𝑰 (32)  

where 𝑸𝑰 is the first row of 𝑸 and 𝛾𝑟  is the probability limit of the coefficient of 𝐼 in an auxiliary 

regression of the omitted variable 𝐻 on the set of covariates (𝐼, 𝑁, 𝑆). 
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Assuming that 𝑋𝑁 and 𝐻 are jointly independent from the randomly assigned 𝑋𝑆, 𝑟𝑁𝑆 = 𝑟𝑆𝐻 = 0, we 

have: 

𝑸𝑰 =
𝜎𝐻
𝜎𝐼

𝑟𝐼𝐻 − 𝑟𝑁𝐻𝑟𝐼𝑁

1 − 𝑟𝐼𝑁
2 − 𝑟𝐼𝑆

2  (33)  

The joint independence of (𝑋𝑁 , 𝐻) from 𝑋𝑆 implies that 𝑋𝑆 conditional on 𝑋𝑁 is independent from 𝐻. 

Hence, we have: 

𝑟𝐼𝑁 =
𝑐𝑜𝑣(𝐼, 𝑋𝑁)

𝜎𝐼𝜎𝑁
 

(34)  

=
𝐸(𝑁𝑆𝑁) − 𝐸(𝑁𝑆)𝐸(𝑁)

𝜎𝐼𝜎𝑁
 

(35)  

=
𝐸(𝑆)[𝐸(𝑁2) − 𝐸(𝑁)2]

𝜎𝐼𝜎𝑁
 

(36)  

=
𝐸(𝑆)𝑣𝑎𝑟(𝑁)

𝜎𝐼𝜎𝑁
 

(37)  

=
𝜎𝑁𝐸(𝑆)

𝜎𝐼
 

(38)  

From which it follows that 𝑟𝐼𝐻 = 𝑟𝑁𝐻𝑟𝐼𝐻 and therefore 𝑸 = 0 and 𝑝𝑙𝑖𝑚(�̂�𝐼) = 𝛽𝐼. 
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4.9 Appendix B: Further results 

 
Table 4.7: Discussing the seeds, details of the OLS results 

Ordinary Least Squares Estimates: Number of People with whom Each Farmer Discussed 

the Type of Seeds Received in the Experiment 
 (1) (2) (3) (4) (5) 

Improved seeds (d) -0.00 0.22 0.22 0.21 0.14 

 (0.09) (0.13) (0.14) (0.13) (0.13) 

Relatives inside the village 0.13*** 0.23*** 0.24*** 0.22*** 0.16*** 

 (0.02) (0.04) (0.04) (0.04) (0.04) 

Improved seeds (d)*Relatives inside the village  -0.20*** -0.19*** -0.16*** -0.14*** 

  (0.04) (0.05) (0.04) (0.03) 

North   -0.16* -0.12 -0.10 

   (0.07) (0.09) (0.11) 

Leadership role in the community (d)    0.14* 0.12* 

    (0.07) (0.06) 

Member of a self-help group(d)    0.12 0.08 

    (0.08) (0.09) 

Member of a religious association(d)    -0.15** -0.17** 

    (0.07) (0.07) 

Plot size (ha)     2.77*** 

     (0.51) 

Walking distance to the plot (minutes)     -0.00 

     (0.00) 

Farm size (ha)     0.12*** 

     (0.02) 

Oxen (d)     0.00 

     (0.03) 

Labour (man day)     0.01** 

     (0.01) 

Pest damage (d)     0.19** 

     (0.07) 

Standardized Precipitation Index     0.06 

     (0.07) 

Female headed household (d)     -0.24* 

     (0.13) 

Age     -0.01** 

     (0.00) 

Household size     -0.02 

     (0.02) 

Secondary education (d)     0.12** 

     (0.05) 

Risk averse (d)     0.15* 

     (0.07) 

Constant 1.00*** 0.87*** 0.96*** 0.97*** 0.82*** 

 (0.08) (0.11) (0.13) (0.10) (0.20) 

Observations 298 300 298 299 297 

Adjusted R2 0.08 0.11 0.12 0.11 0.23 

AIC 595 599 592 551 595 

BIC 606 614 622 607 606 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) stands 

for dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives inside the 
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village each farmer can ask for help or information. 

Table 4.8: Discussing the seeds, details of the ZIP results 

Zero-Inflated Poisson Estimates: Number of People with whom Each Farmer Discussed the 

Type of Seeds Received in the Experiment 
 (1) (2) (3) (4) (5) 

Log count (Poisson model)      

Improved seeds (d) -0.20** 0.05 0.06 0.03 -0.03 

 (0.09) (0.21) (0.21) (0.21) (0.19) 

Relatives inside the village 0.10*** 0.18** 0.18** 0.17** 0.14* 

 (0.04) (0.08) (0.08) (0.09) (0.08) 

Improved seeds (d)*Relatives inside the village  -0.13* -0.13 -0.13 -0.11 

  (0.08) (0.08) (0.09) (0.07) 

North   -0.41** -0.35** -0.50* 

   (0.17) (0.17) (0.30) 

Leadership role in the community (d)    0.28** 0.28* 

    (0.13) (0.15) 

Member of a self-help group(d)    0.01 -0.03 

    (0.13) (0.14) 

Member of a religious association(d)    -0.02 -0.09 

    (0.16) (0.17) 

Plot size (ha)     2.32*** 

     (0.77) 

Farm size (ha)     -0.00 

     (0.06) 

Oxen (d)     -0.03 

     (0.09) 

Labour (man day)     0.02** 

     (0.01) 

Pest damage (d)     0.11 

     (0.14) 

Standardized Precipitation Index     0.17 

     (0.22) 

Female headed household (d)     -0.19 

     (0.18) 

Age     0.00 

     (0.01) 

Household size     0.03 

     (0.03) 

Secondary education (d)     0.04 

     (0.14) 

Risk averse (d)     0.17 

     (0.16) 

Walking distance to the plot (minutes)     0.00 

     (0.00) 

Constant 1.39*** 1.23*** 1.23*** 1.34*** 0.77** 

 (0.14) (0.21) (0.21) (0.19) (0.33) 

Log odd of asking no one (logit model)       

Improved seeds (d) -0.18 -0.92* -0.91 -1.12* -1.19 

 (0.34) (0.51) (0.58) (0.64) (0.76) 

Relatives inside the village -0.21 -0.62** -0.62* -0.70** -0.73 

 (0.13) (0.30) (0.32) (0.34) (0.46) 

Improved seeds (d)*Relatives inside the village  0.65* 0.63 0.72* 0.84 

  (0.36) (0.39) (0.41) (0.54) 

North   -0.39 -0.03 -0.86* 
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   (0.32) (0.28) (0.46) 

Leadership role in the community (d)    -0.14 0.25 

    (0.25) (0.23) 

Member of a self-help group(d)    -0.56  

    (0.38)  

Member of a religious association(d)    1.62**  

    (0.70)  

Farm size (ha)     -0.54* 

     (0.28) 

Age     0.03* 

     (0.02) 

Household size     0.16 

     (0.11) 

Female headed household (d)     0.93 

     (0.69) 

Secondary education (d)     -0.81 

     (0.60) 

Risk averse (d)     -0.22 

     (0.68) 

Constant -1.41*** -0.96*** -0.96*** -1.95** -1.64*** 

 (0.35) (0.36) (0.36) (0.82) (0.61) 

Observations 313 313 313 313 313 

McFadden’s Pseudo R2 0.03 0.04 0.06 0.082 0.114 

Wald chi2 18.68*** 21.15*** 25.22*** 20.84*** 58.55*** 

AIC 1910 1892 1852 1815 1755 

BIC 1932 1922 1889 1867 1811 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) stands for 

dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives inside the village 

each farmer can ask for help or information. 
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Table 4.9: Asking for help on the farm, details of the ZIP model 

Zero-Inflated Poisson Estimates: Number of People Each Farmer Asked for Help on the 

Farm 

 (1) (2) (3) (4) (5) 

farm_ask_no      

Improved seeds (d) -0.15 0.01 0.01 0.05 0.14 

 (0.12) (0.24) (0.24) (0.20) (0.22) 

Relatives inside the village 0.06 0.11*** 0.11*** 0.14*** 0.14*** 

 (0.05) (0.04) (0.04) (0.03) (0.03) 

Improved seeds (d)*Relatives inside the village  -0.09 -0.09 -0.12** -0.14** 

  (0.09) (0.09) (0.06) (0.06) 

North   0.09 0.02 0.14 

   (0.25) (0.20) (0.21) 

Leadership role in the community (d)    0.11 0.12 

    (0.15) (0.16) 

Member of a self-help group(d)    0.34*** 0.37*** 

    (0.10) (0.08) 

Member of a religious association(d)    -0.36** -0.45*** 

    (0.15) (0.10) 

Plot size (ha)     -5.00** 

     (2.26) 

Farm size (ha)     0.06 

     (0.06) 

Oxen (d)     0.08 

     (0.08) 

Labour (man day)     -0.00 

     (0.01) 

Pest damage (d)     0.14 

     (0.15) 

Standardized Precipitation Index     -0.12 

     (0.29) 

Female headed household (d)     0.02 

     (0.28) 

Age     0.00 

     (0.00) 

Household size     -0.05 

     (0.05) 

Secondary education (d)     -0.06 

     (0.24) 

Risk averse (d)     -0.02 

     (0.21) 

Walking distance to the plot (minutes)     -0.00 

     (0.00) 

Constant 1.13*** 1.04*** 0.97*** 0.81*** 1.30*** 

 (0.12) (0.16) (0.27) (0.21) (0.46) 

inflate      

Improved seeds (d) -0.02 -0.07 -0.09 0.21 0.03 

 (0.21) (0.44) (0.44) (0.34) (0.38) 

Relatives inside the village -0.23*** -0.25 -0.27 -0.28 -0.43 

 (0.07) (0.18) (0.17) (0.20) (0.30) 

Improved seeds (d)*Relatives inside the village  0.05 0.08 -0.08 0.03 

  (0.26) (0.28) (0.23) (0.28) 

North   -0.67** -0.67 -0.60 

   (0.27) (0.44) (0.52) 



  

153 
 

Leadership role in the community (d)    1.06** 0.00 

    (0.52) (.) 

Member of a self-help group(d)    0.50 0.36 

    (0.50) (0.49) 

Member of a religious association(d)    -0.51* -0.56* 

    (0.28) (0.29) 

Farm size (ha)     -0.11 

     (0.18) 

Age     -0.01 

     (0.01) 

Household size     0.06 

     (0.09) 

Female headed household (d)     -0.48 

     (0.45) 

Secondary education (d)     -0.45 

     (0.34) 

Risk averse (d)     0.98** 

     (0.43) 

Constant -0.05 -0.03 0.38 1.68*** 2.28*** 

 (0.27) (0.41) (0.33) (0.49) (0.84) 

Observations 311 311 311 311 311 

McFadden’s Pseudo R2 0.0 0.02 0.02 0.174 0.194 

Wald chi2 2.22 12.28*** 13.10*** 28.98*** 47.84*** 

AIC 1256 1257 1252 1071 1045 

BIC 1278 1287 1290 1127 1101 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) stands 

for dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives inside the 

village each farmer can ask for help or information. 
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Table 4.10: Asking for help on the experimental plot a harvest times, details of the Logit model 

Logit Estimates: Asking for Help on the Experimental Plot a Harvest times 

 (1) (2) (3) (4) (5) 

      

Improved seeds (d) -0.01 0.78 0.77 0.66 0.42 

 (0.29) (0.54) (0.55) (0.55) (0.35) 

Relatives inside the village 0.28*** 0.53*** 0.53*** 0.53*** 0.39*** 

 (0.10) (0.16) (0.15) (0.16) (0.12) 

Improved seeds (d)*Relatives inside the village  -0.38** -0.38** -0.37** -0.29** 

  (0.16) (0.16) (0.15) (0.12) 

North   0.36 0.52 1.64** 

   (0.48) (0.55) (0.81) 

Harvest (10 kg)    0.00 0.00* 

    (0.00) (0.00) 

Plot size (ha)     1.51 

     (2.25) 

Farm size (ha)     -0.18 

     (0.25) 

Oxen (d)     -0.49 

     (0.64) 

Pest damage (d)     0.57 

     (0.51) 

Standardized Precipitation Index     -0.17 

     (0.50) 

Female headed household (d)     -0.75 

     (1.00) 

Age     0.00 

     (0.02) 

Household size     -0.05 

     (0.15) 

Secondary education (d)     0.30 

     (0.43) 

Risk averse (d)     0.32 

     (0.39) 

Leadership role in the community (d)     0.78*** 

     (0.25) 

Member of a self-help group(d)     0.16 

     (0.40) 

Member of a religious association(d)     1.74*** 

     (0.48) 

Walking distance to the plot (minutes)     0.02*** 

     (0.01) 

Constant -2.67*** -3.21*** -3.43*** -3.69*** -5.94*** 

 (0.39) (0.57) (0.66) (0.74) (1.64) 

Observations 313 313 313 313 313 

Pseudo R2 0.04 0.05 0.06 0.06 0.17 

Wald chi2 7.61** 14.3*** 21.6*** 29.3*** 41.20*** 

AIC 205 204 205 206 201 

BIC 216 219 224 228 257 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) 

stands for dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives 

inside the village each farmer can ask for help or information. 
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Table 4.11: Social interactions involving less visibility, details of the regressions results 

 Zero-Inflated Estimates:  

 Number of people asked by each farmer: Logit 

Estimates:  

 for help in 

kind or in 

cash  

About best 

farm 

practices 

About 

market 

(output or 

land) 

Asking for 

help on the 

experimental 

plot: 

planting or 

weeding 

 Poisson model Logit model 

Improved seeds (d) -0.05 0.25* 0.41* 0.31 

 (0.14) (0.13) (0.22) (0.21) 

Relatives inside the village 0.18*** 0.16*** 0.16*** 0.23*** 

 (0.06) (0.04) (0.03) (0.07) 

Improved seeds (d)*Relatives inside the village -0.01 -0.06 -0.05 -0.06 

 (0.07) (0.06) (0.06) (0.08) 

North -0.11 0.11 -0.12 2.49*** 

 (0.18) (0.21) (0.39) (0.39) 

Been asked (d) 0.45*** 0.49** 0.35  

 (0.17) (0.20) (0.37)  

Plot size (ha) 1.46 -2.65*** -2.29 2.17* 

 (1.43) (1.00) (2.22) (1.32) 

Farm size (ha) -0.04 0.03 0.15* 0.10 

 (0.06) (0.05) (0.09) (0.09) 

Oxen (d) 0.24* 0.28*** 0.04 -0.16 

 (0.14) (0.07) (0.22) (0.31) 

Labour (man day) 0.01 0.00 0.01  

 (0.01) (0.01) (0.02)  

Pest damage (d) -0.33*** -0.29* -0.57*** 0.99 

 (0.12) (0.15) (0.15) (0.66) 

Standardized Precipitation Index 0.05 -0.26*** 0.14 -0.51 

 (0.12) (0.07) (0.17) (0.37) 

Female headed household (d) 0.35* -0.02 -0.08 -0.69* 

 (0.20) (0.17) (0.17) (0.37) 

Age 0.00 0.01 0.00 0.00 

 (0.00) (0.01) (0.00) (0.01) 

Household size 0.04 -0.06** -0.03 -0.12*** 

 (0.03) (0.03) (0.06) (0.04) 

Secondary education (d) -0.08 0.12 -0.13 -0.08 

 (0.13) (0.16) (0.22) (0.35) 

Risk averse (d) 0.16 0.09 -0.05 -0.05 

 (0.20) (0.15) (0.16) (0.37) 

Leadership role in the community (d) 0.09 0.01 0.06 -0.01 

 (0.10) (0.10) (0.12) (0.32) 

Member of a self-help group(d) 0.21* 0.32** 0.08 -0.01 

 (0.13) (0.14) (0.27) (0.33) 

Member of a religious association(d) 0.08 -0.14 0.12 0.59** 

 (0.11) (0.10) (0.18) (0.25) 

Walking distance to the plot (minutes) 0.01*** -0.00 0.00 0.02*** 

 (0.00) (0.00) (0.01) (0.01) 

Constant 0.34 0.61 0.78* -3.36*** 

 (0.41) (0.42) (0.40) (0.51) 

Log odd of asking no one (logit model)     
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Improved seeds (d) 0.22 0.64 0.52  

 (0.38) (0.94) (0.47)  

Relatives inside the village 0.06 -0.99 -0.33**  

 (0.19) (0.98) (0.13)  

Improved seeds (d)*Relatives inside the village -0.18 0.06 0.04  

 (0.25) (1.31) (0.16)  

North 0.08 0.63 0.81**  

 (0.39) (1.10) (0.36)  

Been asked (d) -3.62*** -4.63*** -3.95***  

 (0.49) (0.70) (0.45)  

Farm size (ha) 0.07 -0.41 0.23  

 (0.18) (0.52) (0.19)  

Age -0.01 -0.01 0.01  

 (0.01) (0.03) (0.02)  

Household size 0.19*** -0.15 -0.03  

 (0.06) (0.21) (0.11)  

Leadership role in the community (d) 0.47 0.27 -0.15  

 (0.35) (0.69) (0.30)  

Female headed household (d) 0.06 -0.91 0.23  

 (0.65) (1.04) (0.41)  

Secondary education (d) -0.37 1.65*** 0.37  

 (0.38) (0.43) (0.48)  

Risk averse (d) 0.87*** 0.70 -0.01  

 (0.33) (0.82) (0.52)  

Constant 0.37 0.95 0.31  

 (0.95) (1.07) (0.75)  

Observations 313 313 313 313 

McFadden's R2 0.23 0.20 0.25 0.14 

Wald-test 160.72*** 101.13*** 188.5*** 47.47*** 

AIC 1543 1175 1154 374 

BIC 1599 1231 1210 430 

Cluster robust standard errors at the village level in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01, (d) stands for 

dummy variables. The social network variable is ‘Relatives’: it is the average number of relatives inside the village 

each farmer can ask for help or information. 
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5 Agri-environmental Schemes and Risk exposure: a case 

study from Ireland 

Xavier Vollenweider1 

Abstract 

We estimate the impact of an Irish agri-environmental scheme (AES) on farmer’s risk exposure with the 

moment-based approach of Antle (1983) applied to a panel dataset covering the 2006-2009 period. The 

AES does not have a large impact on risk exposure; it even slightly decreases the variance of the net gross 

margin distribution. We then compute the risk premium across farm categories and find that the greatest 

benefit in terms of risk premium reduction goes to sheep farmers. The benefit of joining the AES is mostly 

driven by an increase in the expected gross margin. The dairy sector, the most intensive sector of Irish 

agriculture, is also the one which benefits the least from the scheme. This is consistent with the 

observation that dairy farmers are under-represented in the scheme. 
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5.1 Introduction 

We present here a set of evidence of the impact of agri-environmental schemes (AES) on farmer risk 

exposure. The republic of Ireland provides an interesting case study as its AES, the Rural Environment 

Protection Scheme (REPS), is universal - i.e. all farmers can enter the scheme, not only the ones located in 

an environmentally sensitive area - and is voluntary (Emerson and Gillmor 1999). The goal of REPS is to 

incentivize farmers with financial rewards to adopt environmentally friendly practices over a five-year 

period. The aim of the present study is to estimate the impact of joining REPS on farmers’ risk exposure. 

Several factors could explain the link between AES and risk exposure.  

First, some production standards imposed by AES, such as a reduction in fertiliser and pesticide application 

rates, might have a direct impact on risk exposure. Organic and low input farmers have indeed been shown 

to be more exposed to production risk than conventional farmers (Berentsen et al. 2012; Finger 2014; 

Gardebroek 2006; Serra et al. 2008). We might therefore expected REPS farmers to be more exposed to 

production risk than those staying out of the scheme.  

Second, Morris et al. (2000) report a concern among English farmers that the rigidity of the AES reduced 

their ability to take remedial action in case of pest infestation or severe weed events. AES contract length 

was found to negatively affect the decision to join because it tied farmers’ hands over a long period of 

time (Peerlings and Polman 2009). According to these findings, joining an AES would increase risk 

exposure. 

Third, the change in agricultural practices required to take part to an AES is generally perceived as a risk 

that younger farmers were more willing to take (Wynn et al. 2001). Corroborating the increase in risk 

linked to non-conventional farming, organic farmers have been shown to be less risk averse than non-

organic farmers (Gardebroek 2006; Serra et al. 2008). It is however yet unclear if joining an AES is 

objectively riskier or if it is perceived as such by farmers because of the uncertainty linked to changes in 

long established farming practices. Our aim is to test the impact of REPS on farmers’ risk exposure. 

As the entire farming population of Ireland is eligible for REPS, the analysis is performed across all the 

major farm categories in Ireland. Our impact analysis is based on the moment-based approach of Antle 

(1983). REPS is introduced in section 5.2. We present the model and the estimation strategy in section 5.3 

and 5.4. The data are presented in section 5.5 and the empirical implementation in section 5.6. Results 

follow in section 5.7 and we conclude in section 5.8. 
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5.2 The Rural Environment Protection Scheme 

European Council Regulation 2078/92 required member states to implement policies fostering the 

adoption of environmentally sustainable agricultural production practices. The response of the Irish 

government was the design, in consultation with farming and environmental groups, of the Rural 

Environment Protection Scheme (REPS, Emerson and Gillmor 1999). REPS came into operation on the 1st 

of June 1994. Its three objectives are to incentivize farmers to: (1) produce food in an extensive and 

environmentally friendly manner; (2) to protect biodiversity, endangered species and wildlife habitat and 

(3) to preserve the landscape (DAFF 2005; Emerson and Gillmor 1999). 

In order to benefit from the REPS subsidy, farmers have to draw up a five-year production plan so as to 

implement a comprehensive set of eleven mandatory measures, extending from waste management, 

fertilizer use and stocking rate, to the protection of wildlife habitats, historical remains and the 

improvement of the visual appearance of the farm (Emerson and Gillmor 1999). Over the period 1994 to 

2009 - the year of its closure to new entrants -, there were four successive reforms of REPS. There has not 

been major change in the overall design of the policy, although additional payments for farms above 40 

hectares (ha) and other supplementary measures were introduced in 2005. The goal of the scheme was 

thus to reward financially, over five years, the more environmentally virtuous farmer. Noncompliance with 

the agreed-upon farm management plan could lead to fines and ultimately to the exclusion from the 

scheme.  

The first version of REPS, REPS I, reached its target of 45’000 farmers enrolled. It did not, however, attract 

the most intensive and polluting farmers (Murphy et al. 2014). Farmers were dissatisfied with REPS II as 

payments were considered too low and the administrative burden rate too high (Murphy et al. 2014). As 

a result, the target of 70’000 farmers was not attained, with just over 30’000 farmers participating. 

Nevertheless, the participation of dairy farmers (who tend to operate more intensive and polluting farms) 

increased. These farmers might have used REPS II as a risk management instrument following the loss of 

income caused by the foot-and-mouth disease epidemic in 2001  (Murphy et al. 2014). The uptake of REPS 

III, initiated in 2005, attracted many more farmers than earlier versions. Murphy et al. (2014) report that 

the Irish Farmers Association endorsed the new REPS even before it was introduced while contemporary 

newspapers relayed a sense of urgency to enrol before the program closed to new entrants.  

In REPS III, two additional biodiversity measures had to be adopted out of a choice of 16 possible measures. 

Subject to the fulfilment of their action plan, farmers received: 200 euros per hectare for the first 20 ha; 
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175 euros per ha for the next 20 ha up to 40 ha; 70 euros/ha for the next 15 ha up to 55 ha and 10 euros 

per ha for areas over 55 ha. The last two payment tiers were a novelty in REPS III and contributed to its 

appeal. Higher payments were given to environmentally sensitive areas and supplementary measures such 

as organic farming practices lead to additional payments.  

The introduction of the Single farm payment in 2005 and the ratification of the Nitrate directive in 2006 

may have reduced the opportunity cost of joining REPS. Indeed, some of the accompanying measures, 

mandatory for receiving the Single Farm Payment, were already present in REPS (Murphy et al. 2014). 

Furthermore, the decoupling of subsidy from output level might have reduced the incentive to 

overproduce, favouring production plans more compatible with REPS (O'donoghue and Howley 2012). In 

REPS IV, applied from 2008 until 2009, farmers using more than 170kg of nitrogen per ha could apply for 

a derogation under the Nitrate directive. The goal was to further increase the participation of intensive 

farmers. Furthermore, farmers could choose among a larger option of biodiversity conservation measures. 

In the present study we focus on the period 2006 to 2009. Most farmers were under the REPS III contract 

over this period. REPS payments were relatively stable over the years covered in our study, with an average 

of 6500 euros per participating farmer. Almost half of the farms in the sample were taking part in the 

scheme. 

5.3 Theoretical background 

Our goal is to estimate the impact of REPS on farmers’ risk exposure by investigating the conditional 

distribution of their net gross margin. Net gross margin is defined as the difference between gross output 

and direct costs net of REPS subsidy. Gross output might be affected by weather, pests or diseases and 

other random factors, while prices swings might affect input costs and output value. The net gross margin 

can hence be expressed for each farm by a conditional distribution function: 

𝐹(𝜋|𝝁𝒊𝒕)𝑖 = 1,… ,𝑁𝑡 = 1,… , 𝑇 (1)  

where 𝜋 is the net gross margin defined as a random variable and 𝝁𝒊𝒕 = (𝜇1𝑖𝑡 , … , 𝜇𝑚𝑖𝑡) is a vector of the 

𝑚 central moments characterizing the net gross-margin distribution for farmer 𝑖 at time 𝑡 (Gardebroek 

2006). The conditional distribution function is thus assumed to be the same for all farmers, but the 

moments of each farmer’s conditional distribution are allowed to differ between farmers, and are related 

to farm characteristics and input choices. The first moment is the expected net gross margin. The second 
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moment is the variance of net gross margin, and gives a sense of the spread of the net gross margin a 

farmer can expect. The third moment captures the asymmetry of the distribution of the possible gross-

margins, negative values implying the presence of downside risk. The econometric strategy to estimate 

these central moments is presented in the next section. 

In order to assess the riskiness of each farmer’s conditional distribution, we rely on two indicators 

summarizing these moments. The first one is the coefficient of variation, defined as the standard deviation 

of the conditional distribution divided by its mean, √𝜇2𝑖𝑡 𝜇1𝑖𝑡⁄ .  

The second indicator is the risk premium, 𝑅𝑖𝑡. It can be interpreted as the implicit cost of risk bearing, i.e. 

the maximum price one is ready to pay to get rid of all risk. Following Pratt (1964), the risk premium 

satisfies: 

𝐸𝑈(𝜋𝑖𝑡) = 𝑈[𝐸(𝜋𝑖𝑡) − 𝑅𝑖𝑡] (2)  

where E stands for the expectation operator, and 𝑈 is a utility function we will define below.  

Rearranging and approximating the last expression by its Taylor expansion of degree three (e.g. John M 

Antle 1987; Chavas and Holt 1996b), we can express the risk premium as: 

𝑅𝑖𝑡 ≈
1

2
𝐴𝑃𝜇2𝑖𝑡 −

1

6
𝐷𝑆𝜇3𝑖𝑡 (3)  

where 𝜇𝑚𝑖𝑡 is the 𝑚 central moment for 𝑚 = 2,3 of farmer 𝑖 at time 𝑡, 𝐴𝑃 is the coefficient of absolute 

risk aversion (Pratt 1964) for mean-preserving spread aversion, and 𝐷𝑆 is the coefficient of downside risk 

aversion (Menezes et al. 1980) for mean-spread-preserving skewness preferences. The risk premium 

depends on: 

 the set of risk preference parameters, 𝐴𝑃and 𝐷𝑆; 

 the variance of the conditional net gross margin distribution of each farmer, 𝜇2𝑖𝑡; 

 the third central moment of the conditional net gross margin distribution of each farmer, 𝜇3𝑖𝑡. 

Several models have been applied for the estimation of risk preferences, either based on recursive 

estimation (John M Antle 1987; 2010; Foudi and Erdlenbruch 2011; Groom et al. 2008; Simtowe et al. 

2006), or on joint estimation of preferences and technology parameters (Chavas and Holt 1996b; 

Koundouri et al. 2009; S. C. Kumbhakar 2002; S. C. Kumbhakar and Tveterås 2003; S. Kumbhakar and 

Tsionas 2010; Love and Buccola 1991; Pope and Just 1991; Saha et al. 1994; Saha 1997; Vollenweider et 
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al. 2011). As regards the structure of risk aversion, the results point toward declining absolute risk aversion 

(Bar-Shira et al. 1997; Chavas and Holt 1990, 1996b; Saha et al. 1994), and increasing relative risk aversion 

(Bar-Shira et al. 1997; Saha et al. 1994). 

Lence (2009) calls into question the validity of estimating risk aversion with agricultural production data, 

particularly when shocks are not large or the sample is small. Just and Just (2010) show that although the 

models can be locally identified, they are not globally identified: an infinite set of pairs of technology and 

utility functions can equally well fit the data.  

These last two papers are a serious blow to the field of risk preference estimation with production data. 

Hence, we use a more straightforward approach whereby we assume a given parametric form for the 

utility function and present the risk premium according to the various degrees of risk aversion commonly 

found in the literature.  

Following the literature on risk preference estimation, farmers are assumed to exhibit Declining Absolute 

Risk Aversion (DARA). Thus, we model the utility function with a power utility function:  

𝑈(𝑥) =
𝑥1−𝛾

(1 − 𝛾)
 (4)  

where 𝛾 is the coefficient of relative risk aversion. Farmers hence exhibit DARA and constant relative risk 

aversion. Although it has been found that the degree of risk aversion differs between farmers, notably in 

the case of organic vs. conventional farmers (Gardebroek 2006; Serra et al. 2008), we will assume that the 

overall structure of risk preferences and the parameter of relative risk aversion remain unchanged in and 

out of the scheme.2 Nevertheless, as farmers exhibit DARA, an increase in expected net gross margin 

decreases their level of absolute risk aversion. We present below the estimation strategy for recovering 

the central moment of each farmer’s conditional net gross margin distribution. 

                                                           
2 Nauges et al. show that changes in subsidy policies might have an impact on producers risk preferences (Kounduri 
et al., 2009). In a different context, an increase in violence linked to civil conflict in Burundi have been shown to 
decrease risk aversion (Voors et al., 2012). 
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5.4 Estimation Strategy 

We rely on the ‘moment-based’ approach of Antle (1987) to estimate the expected net gross margin, its 

variance and skewness as defined in equation (1) and the marginal effect of REPS on them. We follow 

below closely his derivation (see also Gardebroek 2006).  

Let us define the probability density of net gross margin as 𝑓(𝜋|𝒙𝒊𝒕) where 𝜋 is the stochastic net gross 

margin and 𝒙𝒊𝒕 is a vector of farmer’s 𝑖 input and characteristics at time 𝑡. The moments of the net gross 

margin can be written in general form as (John M Antle 1987): 

𝜇𝑖𝑡1(𝒙𝒊𝒕) = ∫𝜋 𝑓(𝜋|𝒙𝒊𝒕)d𝜋 (5)  

𝜇𝑖𝑡𝑚 = ∫(𝜋 − 𝜇𝑖𝑡1(𝒙𝒊𝒕))
𝑚
𝑓(𝜋|𝒙)𝑑𝜋 (6)  

where 𝜇𝑖𝑡1(𝒙𝒊𝒕) is the first moment, and 𝜇𝑖𝑡𝑚(𝒙𝒊𝒕) are the 𝑚 moments for 𝑚 ≥ 2. The moments are hence 

a function of a vector of inputs and farmer characteristics, 𝒙𝒊𝒕. Assuming a linear relationship between the 

moment and the variables, both equations in (5) and (6) can be expressed as: 

𝜇𝑖𝑡1(𝒙𝒊𝒕) = 𝒙𝒊𝒕𝜷𝟏 (7)  

𝜇𝑖𝑡𝑚(𝒙𝒊𝒕) = 𝒙𝒊𝒕𝜷𝒎 (8)  

We will test in the empirical section several specifications for 𝒙𝒊𝒕𝜷𝟏 and 𝒙𝒊𝒕𝜷𝒎. Antle (1983) and 

Gardebroek (2006) use a quadratic equation. As the net gross margin is random, we can write the first 

moment as the following regression equation: 

𝜋𝑖𝑡 = 𝒙𝒊𝒕𝜷𝟏 + 𝑣𝑖𝑡 (9)  

where 𝜋𝑖𝑡 is the net gross margin of farmer 𝑖 at time 𝑡,  𝒙𝒊𝒕𝜷𝟏 is the expected net gross margin at time t 

and 𝑣𝑖𝑡 an error term with expectation equal to zero. Based on equation (9), we have 𝐸[(𝜋𝑖𝑡 − 𝜇𝑖𝑡1)
𝑚] =

𝐸(𝑣𝑖
𝑚) ≡ 𝜇𝑖𝑡𝑚, for  𝑚 ≥ 2.  

The regression equation for the 𝑚 central moment is given by: 

(𝑣𝑖𝑡)
𝑚 = 𝒙𝒊𝒕𝜷𝒎 + 𝑣𝑖  (10)  
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Letting 𝒙𝒊𝒕 contain a binary variable equal to one for farmers having joined REPS and zero otherwise, we 

can estimate the impact of REPS on expected net gross margin, variance and skewness. Furthermore, we 

can use the estimated moment function in equation (9) and (10) as a building block for the risk premium 

given in equation (3). Note that equation (10) corresponds to an assumption that there is 

heteroskedasticity in the moment equations. The estimates of 𝜷𝟏 and 𝜷𝒎 are hence not efficient, but they 

are still consistent. Therefore the difference in variances and skewness of net gross margin between REPS 

and non-REPS farmers are estimated consistently (Gardebroek 2006).  

5.5 Data  

We rely on data from the Irish National Farm Survey to conduct the analysis. This is an annual survey 

collected by Teagasc, a semi-state research body of the Republic of Ireland and feeding into the European 

Farm Accountancy Data Network (FADN). We selected the 2006 to 2009 years because the system of 

subsidies is comparable over this period. Indeed, the 2005 Common Agricultural Policy reform unified a 

large part of Pillar I farm support under the single farm payment. Furthermore, most farmers over the 

period were part of the third version of REPS III (Murphy et al. 2014). The number of farms in the dataset 

oscillates between 860 and 1052 per annum, and farms took part to the survey 3 years in a row on average. 

Farming activities are divided into 6 categories according to the FADN convention. The sample is composed 

of specialist dairy (17%), dairy and other (8%), cattle (21%), cattle and other (23 %), sheep (11%), tillage 

(9%). 

We use as dependent variable the farm net gross margin, i.e. the difference between gross output and 

direct costs minus the REPS subsidy. Gross output is the sum of the livestock gross output, the crop gross 

output, farm subsidies, other farm income as well as inter enterprise transfers3. Direct costs include the 

purchased feed concentrate, bulky feed, hired casual labour, the value of the fertilisers and pesticide (or 

other crop protection) used, machinery hire cost, veterinary costs and other miscellaneous expenses. 

The explanatory variables are the capital expenditure (capital expenditure during the year less capital sales 

and capital grants4), land (the utilised agricultural area of the farm in hectares), labour (total number of 

                                                           
3 The gross output is ‘total sales less purchase of livestock, plus value of farm produce used in the house plus receipts 
for hire work, service fees etc.  It also includes net change in inventory which for cows, cattle and sheep is calculated 
as the change in numbers valued at closing inventory prices.  All non-capital grants, subsidies, premia, headage 
payments etc are also included, as are income from land and quota let’ (RERC, 2009). 
4 Major repairs to farm buildings, plant and machinery and land improvements are included. 
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labour units working on the farm5), a diversification index (Berry 1971) based on the share of each source 

of gross margin within total gross margin6, a series of dummy variables on main farming categories (Dairy, 

Cattle, Sheep, Tillage). Farms are classified according to dominant enterprise. As farms often have multiple 

enterprises, for instance cattle and dairy, individual farmers might change categories over the years.  

Table 5.1: Variables used in the analysis 

 REPS 

farmers 

Non-REPS 

farmers 

Difference 

Gross margin 43,685.35 40,640.30 3,045.04*** 

 (26,489.07) (31,662.43) (977.91) 

Gross margin net of REPS subsidies 37,549.90 39,828.20 -2,278.29** 

 (26,229.03) (30,861.61) (958.87) 

REPS subsidy 6,452.45 0.00 6,452.45*** 

 (2,066.36) (0.00) (47.78) 

Capital 8,280.43 8,321.75 -41.32 

 (14,396.34) (15,344.23) (498.75) 

Land 45.04 43.28 1.76** 

 (20.92) (23.58) (0.75) 

Labour 1.13 1.17 -0.04*** 

 (0.40) (0.44) (0.01) 

Berry diversification index 0.43 0.46 -0.03*** 

 (15.63) (14.11) (0.50) 

Cattle (d) 0.50 0.44 0.06*** 

 (0.50) (0.50) (0.02) 

Tillage (d) 0.09 0.08 0.01 

 (0.29) (0.27) (0.01) 

Sheep (d) 0.15 0.08 0.07*** 

 (0.36) (0.27) (0.01) 

Dairy(d) 0.26 0.41 -0.14*** 

 (0.44) (0.49) (0.02) 

Observations 1,907 2,066 3,913 

Standard deviation in parentheses in column 1 and 2, standard error of the t-test of 

comparison of means in parentheses in column 3, * p < 0.10, ** p < 0.05, *** p < 0.01. 

                                                           
5 1’800 hours per year is worth one labour unit, but one person cannot work more than one labour unit even if he/she 
works more than 1’800 hours per year. People under 18 years of age are given the following labour-unit equivalent: 
16-18 years = 0.75; 14-16 years = 0.50. 
6 Gross margin sources are classified in 9 categories: Dairying, cattle, sheep, pigs, poultry, horses, crops, hire of 
machinery revenue, other current receipts. The Berry diversification index is expressed as: 

𝐵 = 1 −∑𝑠𝑘
2

9

𝑘=1

 

where 𝑠𝑘
2 is the share of each source 𝑘 in gross margin. 
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Table 5.1 presents summary statistics over the whole period (2006-2009). The third column presents the 

average difference between REPS and non REPS participants. REPS farmers tend to have a higher gross 

margin than non-REPS farmers, however the difference is mainly driven by REPS subsidy as REPS farmers 

have a lower net gross margin. There are no differences in labour or capital between both categories. 

The literature show contrasting evidence on the role of farm size on the decision to join an AES. Some 

studies finds a strong positive role (e.g. Damianos and Giannakopoulos 2002; Mazorra 2001), others a 

negative one (e.g. Vanslembrouck et al. 2002), while still other find no impact (Wynn et al. 2001). This 

heterogeneity in findings might be due to the coexistence of large extensive farms and intensive farms, 

the former having a lower opportunity cost to join the AES as suggested by Murphy et al. (2014) because 

their default farm management practices are more in accordance with REPS requirements. In our sample, 

landholding is slightly larger on REPS farms. 

The largest differences between REPS and non REPS farmers are in terms of shares of sheep and dairy 

farms. The share of sheep farms is higher in the REPS category while the share of dairy farms is higher in 

the non-REPS category. This likely reflects the cost of joining REPS which tends to be lower for sheep farms 

and higher for dairy farms as the former tend to have extensive farming practices (<170 kg of nitrogen per 

ha) and the latter intensive farming practices (>170 kg of nitrogen per ha). In other terms, the default farm 

management of sheep farms are in accordance with REPS.  

Table 5.2: Socio-economic variables and farm characteristics 

Variable REPS 

farmers 

Non-REPS 

farmers 

Difference 

Farm family income 24,701.79 22,138.24 2,563.55*** 

 (20,351.70) (23,572.17) (719.72) 

Farm family income per capita 13,889.65 12,709.55 1,180.11*** 

 (11,386.32) (13,589.90) (409.98) 

Age between 25 and 44 0.63 0.55 0.08*** 

 (0.83) (0.80) (0.03) 

Age above 65 0.40 0.54 -0.14*** 

 (0.66) (0.75) (0.02) 

Number of household members with third  0.20 0.17 0.03* 

          level education (0.53) (0.48) (0.02) 

Good soil  0.49 0.53 -0.04** 

 (0.50) (0.50) (0.02) 

Bad soil  0.11 0.09 0.02* 

 (0.32) (0.29) (0.01) 

Herd size on dairy farms 39.26 47.76 -8.51*** 
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 (22.20) (25.16) (1.39) 

Observations 1,907 2,006 3913 

Standard deviation in parentheses in column 1 and 2, standard error of the t-test of comparison of means 

in parentheses in column 3, * p < 0.10, ** p < 0.05, *** p < 0.01. 

We present in Table 5.2 a series of socio-demographic and farm characteristics variables. The farm family 

income, i.e. gross margin minus over-head cost7, is higher among REPS participants. They also tend to be 

younger. This is coherent with the fact that younger farmers tend to have a higher likelihood of joining AES 

because they are ready to take the risk of adopting the new farming practices required in the AES (Wynn 

et al. 2001). The average number of household member with a third level education is also higher, in line 

with Dupraz et al. (2003) who showed that education generally encourages participation in AES. REPS 

participants tend to have lower quality soils, which might reflect their lower opportunity cost in joining 

REPS as intensive farming is less profitable on poor quality soils (Hynes and Garvey 2009). Similarly, herd 

size on REPS dairy farms are smaller, suggesting that smaller scale exploitations joins REPS while larger 

one stay out, pointing toward an adverse selection process in REPS as suggested by Hynes and Garvey 

(2009). 

5.6 Empirical implementation 

The moments of net gross margin presented in equations (9) and (10) are estimated sequentially. Although 

sequential estimation is not the most efficient approach, it is consistent. It was originally applied by Antle 

(1983) and more recently by Kim and Chavas (2003), Gardebroek (2006), Di Falco and Chavas (2006, 2009), 

Bangwayo‐Skeete et al. (2012) and by Gardebroek et al. (2010) to the related Just and Pope framework for 

production risk estimation. 

Outliers are identified as observations with a net gross margin greater than the yearly farm category 

average by 3 standard deviations (1% of the sample). The explicative variables are labour, capital, land, a 

diversity index, a series of dummy variables for the three farm categories (Cattle, Sheep, Tillage; Dairy 

being the base category), a dummy for REPS participation as well as a series of time fixed effects. We also 

added a series of interaction terms between the REPS dummy and the farm category dummies in order to 

let the impact of REPS on expected net gross margin and higher moments vary across farm categories. 

                                                           
7 Over-head cost include cost of land rental, car, electricity, telephone, interest payment, depreciation of the 
machinery, machinery operating expenses, depreciation of the building, building repairs and upkeep, depreciation of 
land improvement work, land general upkeep, accountants and other consultant’s fees and other miscellaneous 
expenses. 
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Table 5.3: Specification tests 

  AIC BIC 

 Quadratic  83996.78 84128.81 

Expected net gross margin, 𝜇𝑖𝑡1 Quadratic without interaction 84028.64 84122.95 

 Linear 84028.64 84122.95 

 Quadratic  161244.7 161370.4 

Variance, 𝜇𝑖𝑡2 Quadratic without interaction 161293.8 161407 

 Linear 161290.9 161385.2 

 Quadratic  104668.6 104792.3 

Skewness, 𝜇𝑖𝑡3 Quadratic without interaction 104662.8 104767.9 

 Linear 104658.4 104744.9 

For the labour, capital and land variables, we tested three functional forms: a quadratic, a quadratic 

without interaction, and a specification where the variables enter only in level. Table 5.3 shows the results 

of the Bayesian and Akaike information criteria tests (respectively BIC and AIC) for the three first moments. 

For the first central moment, the quadratic is preferred according to the AIC while, according to the BIC, 

the quadratic functional form without interaction is better. In order to minimize mis-specification errors, 

which could cascade across the whole model via the use of the residual of the first moment equation for 

the estimation of the second and third moments equations (see section 5.4), we privileged results given 

by the AIC as it penalizes model complexity less compared to model fit. Furthermore, the quadratic form 

provides a Taylor second order approximation of any unknown expected net gross margin function (e.g. S. 

C. Kumbhakar and Tveterås 2003) and should thus, on average, produce a better fit to the data than the 

quadratic without interaction. AIC and BIC results agree for the second and third moments: the quadratic 

is preferred for the second moment and the linear specification for the third. The specifications of the first 

three moments are given in equations (11) to (13): 

𝜋𝑖𝑡 = 𝛽01 +∑𝛽𝑗1𝑥𝑗𝑖𝑡

3

𝑗=1

+
1

2
∑∑𝛽𝑗𝑘1𝑥𝑗𝑖𝑡𝑥𝑘𝑖𝑡

3

𝑘=1

3

𝑗=1

+ 𝛽𝑅1𝑅𝐸𝑃𝑆𝑖𝑡 +∑𝛽𝑐1𝑐𝑐𝑖𝑡

3

𝑐=1

+∑𝛽𝑅𝑐1𝑐𝑐𝑖𝑡𝑅𝐸𝑃𝑆𝑖𝑡

3

𝑐=1

+ 𝛽𝑑1𝐷𝑖𝑣𝑖𝑡 +∑𝛽ℎ1𝑇ℎ𝑖𝑡

3

ℎ=1

+ 𝛼1𝑖 + 𝑣1𝑖𝑡 

(11)  

(𝑣1𝑖𝑡)
2 = 𝛽02 +∑𝛽𝑗2𝑥𝑗𝑖𝑡

3

𝑗=1

+
1

2
∑∑𝛽𝑗𝑘2𝑥𝑗𝑖𝑡𝑥𝑘𝑖𝑡

3

𝑘=1

3

𝑗=1

+ 𝛽𝑅2𝑅𝐸𝑃𝑆𝑖𝑡 +∑𝛽𝑐2𝑐𝑐𝑖𝑡

3

𝑐=1

+∑𝛽𝑅𝑐2𝑐𝑐𝑖𝑡𝑅𝐸𝑃𝑆𝑖𝑡

3

𝑐=1

+ 𝛽𝑑2𝐷𝑖𝑣𝑖𝑡 +∑𝛽ℎ2𝑇ℎ𝑖𝑡

3

ℎ=1

+ 𝛼2𝑖 + 𝑣2𝑖𝑡  

(12)  
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(𝑣1𝑖𝑡)
3 = 𝛽03 +∑𝛽𝑗3𝑥𝑗𝑖𝑡

3

𝑗=1

+ 𝛽𝑅3𝑅𝐸𝑃𝑆𝑖𝑡 +∑𝛽𝑐3𝑐𝑐𝑖𝑡

3

𝑐=1

+∑𝛽𝑅𝑐3𝑐𝑐𝑖𝑡𝑅𝐸𝑃𝑆𝑖𝑡

3

𝑐=1

+ 𝛽𝑑3𝐷𝑖𝑣𝑖𝑡 +∑𝛽ℎ3𝑇ℎ𝑖𝑡

3

ℎ=1

+ 𝛼3𝑖 + 𝑣3𝑖𝑡 

(13)  

where 𝑥𝑗𝑖𝑡 is  land, capital and labour for 𝑗 = 1,2,3 respectively, 𝑅𝐸𝑃𝑆𝑖𝑡 is a dummy equal to one if the 

farmer is a REPS participant, 𝑐𝑐𝑖𝑡 is a binary for the sheep, cattle and tillage categories for the subscript 

𝑐 = 1,2,3 respectively (the base category is dairy), 𝐷𝑖𝑣𝑖𝑡 is the Berry diversification index,𝑇ℎ𝑖𝑡 are time-

fixed effects for ℎ = 2007,2008,2009, 𝛼𝑚𝑖 are the farm fixed effects and 𝑣𝑚𝑖𝑡 an error term for moments 

𝑚 = 1,2,3.  

Equations (10) to (12) are estimated with a fixed effect estimator (within effect). We tested with a Durbin-

Wu-Watson if REPS was endogenous and failed to reject the null of no endogeneity (p-value= 0.325). We 

did find some correlation in the error terms, but as the panel is short, this should not affect too largely the 

results. We use robust standard error to clustering at the farm level. 

5.7 Results 

Table 5.8 in the appendix shows the results of the estimation of the first moment of net gross margin and 

Table 5.4 shows the marginal effects. Out of the 9 variables of the quadratic function of labour, land and 

capital, three are found to be significant. We nevertheless chose to keep all the variables of the quadratic 

function (i.e. land, labour and capital in level, square and their interactions) in order to conserve flexibility 

in the expected net gross margin function.8 The other estimated parameters are very significant and the 

R-squared is reasonably high: 30% of the within variation is explained by the model. 

Table 5.4 shows the marginal effects on the moments of farmers’ net gross margin distributions. The effect 

of capital investment in machinery is minor as 1 euro invested increases net gross margin by only 2.5 cents. 

This low return on capital might reflect over-capitalisation of the farms. Land, by contrast, has a positive 

                                                           
8 Kumbhakar and Tveterås (2003) estimated a related model of production risk with a quadratic function. They notes: 
‘[t]he idea of dropping insignificant variables is not pursued […] due to several problems. First, it destroys the 
flexibility of the mean output function. Second, dropping one insignificant variable caused other insignificant 
(significant) variables to be significant (insignificant) due to high multicollinearity (which is always present in flexible 
functions) and the use of a system approach. Furthermore, we found no natural order to select variables for exclusion 
in the present model’. 
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effect on net gross margin; an additional hectare increase net gross margin by 160 euros. Diversification 

also increases net gross margin. All the farm category dummies are negative as expected because the base 

category, the dairy sector, is the most profitable sector of the Irish agriculture. Switching from dairy 

production to another system is therefore on average not profitable. 

The average effect of REPS on expected net gross margin is negative: farmers joining REPS lose on average 

3'000 euros. This might be due to an increase in the direct costs incurred to comply with the REPS plan as 

well lower output caused by the reduction in fertiliser use and stocking rate. Nevertheless, the cost of 

joining REPS appears to be more than compensated by the REPS subsidy (7'060 euros on average). Hence 

REPS III provided more than adequate compensation for possible revenue loss and the increase in cost due 

to compliance with the REPS production plan. This likely explains the large success in the uptake rate of 

REPS III. 

The impact of REPS differs however across categories. Dairy farms are those who benefit the least from 

REPS; it decreases their expected net gross margin by 7'000 euros while the average subsidy in the dairy 

category is 7'500 euros. As dairy farms are the most productive and intensive farm category, production 

constraints (e.g. reduction in stocking rate and fertiliser use) might cause higher compliance costs and 

revenue losses from REPS participation. This low average net benefit of joining REPS (circa 500 euros) is 

consistent with the observed low participation rate of dairy farmers. Being tied up over 5 years in farm 

management plan as well as the administrative burden of joining REPS might not have been adequately 

compensated by the REPS subsidy. 

By contrast, sheep farms, the most extensive production system, is the one benefits greatly from joining 

the scheme. Joining REPS causes a drop of 4’000 euros in expected net gross-margin of sheep farmers, but 

it is largely compensated by the REPS subsidy equal, on average, to 7’850 euros. As they are more likely to 

meet limitations in nitrogen usage by default, joining REPS implies a lower cost than for other farm 

categories. As noted by Hynes and Garvey (2009), the design of REPS might have created an adverse 

selection whereby farms for which REPS measures do not constitute a large change in their farm 

management join, while the more intensive and polluting ones, i..e the dairy farms, do not. Murphy et al. 

(2014) report that sheep farms are over-represented in the REPS compared to the share of sheep farms in 

Irish agriculture. The effect of joining REPS on cattle and tillage farms does not differ significantly from the 

sample average, i.e. it decreases gross margin by 3’000 euros while the average REPS subsidy in both sector 

is, respectively, 6’400 and 7’850 euros.  
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Table 5.4: Marginal effects on the moment of net gross margin 

Marginal effect Mean Variance 

capital 0.025* -142.829 

 (0.014) (141.421) 

labour -1,029.500 755,921.037 

 (1,823.398) (18,822,286.615) 

land 158.226** 523,155.405 

 (68.629) (758,625.301) 

diversification 59.068** 19,883.734 

 (26.737) (178,561.798) 

cattle farms -5,038.581*** -57,284,248.785*** 

 (1,873.306) (22,280,288.567) 

tillage farms -6,294.716* -87,557,742.616*** 

 (3,383.684) (31,226,220.979) 

sheep farms -4,063.329** -52,363,719.018** 

 (1,730.428) (20,891,646.485) 

REPS average -2997.076*** -14782600* 

 (922) (8400618) 

REPS for dairy farms -6,789.095*** -41,505,350.737** 

 (1,760.024) (18,093,153.704) 

REPS for cattle farms -544.90 9689194.1 

 (1165.9) (7459878) 

REPS for sheep farms  4110.354** 43167074*** 

 (1935.625) (14308620) 

REPS for tillage farms -1811.099 -10687388 

 (1935.625) (14308620) 
* p < 0.10, ** p < 0.05, *** p < 0.01, standard errors in parentheses 

Table 5.8 in the appendix shows the regression results for the second central moment defined in equation 

(12). Three of the nine variables in the quadratic function of labour, land and capital are significant while 

all the other variables are significant. The r-squared is 7%, a figure in line with other studies (e.g. 

Bangwayo‐Skeete et al. 2012; Gardebroek et al. 2010).  

Table 5.4 presents the marginal effect for the second moment equation. Capital, labour and land have no 

effect on variance while shifting from the dairy sector to another sector decreases net gross margin 

variance. REPS is found to be risk-diminishing on average. At the farm sector level, REPS decreases variance 

for the dairy farms. The smaller variance for REPS farmers, although statistically significant, might however 

be driven by the smaller expected gross margin. We will investigate this further by computing the implicit 

cost of risk bearing for various degree of risk aversion.  
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Results for the third moment were not conclusive: the only parameters found to be significant are the year 

dummies and the diversification index. The latter increases skewness, i.e. it decreases the amount of 

downside risk as expected. Diversifying farm income sources across multiple enterprises might indeed help 

reduce the risk of a big loss caused by an adverse price swing of a single commodity, for instance. However, 

results of the third moment must be considered with care. Indeed, they rely heavily on the parametric 

assumption that the moments of the net gross margin distribution function can be modelled as a linear 

combination of variables. Furthermore, specification errors in the first moment equation are raised to the 

power three in the third moment equation, making the results very sensitive to any mis-specification in 

the first moment. Even though results are expected to be consistent, the number of observations required 

to achieve consistency may be very large. Along with Gardebroek (2006), we decided not to include the 

third moment in the computation of the risk premium presented below. Results for the third moment 

equation are nevertheless available in Table 5.8 in the appendix. 

Table 5.5 displays the sample average central moment of farmers’ net gross margin distributions as well 

as the results of t-test of comparison in means between REPS and non-REPS farmers. REPS farms have an 

average expected net gross margin 7'000 euros smaller than non-REPS farms (Table 5.1). Again, it suggests 

that less profitable farms tend to have a higher participation in REPS, underlying the role of REPS as an 

income support mechanism. REPS farmers also have a lower variance than non-REPS farmers on average, 

confirming the results found above. However, the coefficient of variation is only marginally smaller for 

REPS farmers (21% against 23%) and the difference is not statistically significant.   

Table 5.5: Central moments of the net gross margin distribution 

 REPS Non-REPS REPS-NON REPS 

Expected net gross margin   40,748 47,444 -6,696*** 

 (30,360) (38,325) (1,126) 

Variance 52,288,395 63,812,123 -11,523,728*** 

  (59,754,849) (67,384,120) (2,148,041) 

Skewness 3,896,695,231 12,421,218,599 -8,524,523,368 

 (202,870,556,290) (201,048,547,121) (6,576,589,135) 

Coefficient of variation 0.2072 0.2283 -0.07 

 (1.8623) (0.1671) (0.0064) 
* p < 0.10, ** p < 0.05, *** p < 0.01, standard errors in parentheses 

Table 5.6 shows the sample average risk premium for REPS participants and non-participants according to 

various degree of risk aversion as well as the results of t-tests of means comparison. We do not consider 

skewness in the computation of the risk premium because of the lack of significant estimates in the third 
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moment equation. Furthermore, the sample average skewness does not differ statistically between REPS 

and non-REPS farmers (see Table 5.5). The risk premium is therefore defined as: 

𝑅𝑖𝑡 ≡
1

2
𝐴𝑃�̂�2𝑖𝑡 (14)  

where �̂�2𝑖𝑡 is the variance of net gross margin at time 𝑡.  The Arrow-Pratt coefficient of absolute risk 

aversion, 𝐴𝑃, depends on the coefficient of relative risk aversion, 𝛾. The literature on risk aversion 

estimation presents a wide range of estimates, from -0.10 in India (John M Antle 1989) to 7.62 in the US 

(Chavas and Holt 1996a). The most common values chosen in studies comparable to the present one 

oscillate between 2 and 3 (e.g. Di Falco and Chavas 2006; Finger 2014; Ligon and Schechter 2003), we 

present the results with 𝛾 ranging from 1 to 5 (risk premium is zero for 𝛾 = 0). 

The risk premium is presented both in terms of net gross margin and gross margin with the REPS subsidy. 

In the latter case, we first add the value of the subsidy from REPS to the estimated expected net gross 

margin. We then compute the risk premium. 

Table 5.6: Risk premium 

 Sample average risk premium net of REPS 

subsidy 

Sample average risk premium with REPS 

subsidy 

Risk 

aversion 

𝛾 

REPS farmers Non-REPS 

farmers 

Difference REPS 

farmers 

Non-REPS 

farmers 

Difference 

1 717 757 -40* 583 757 -174*** 

  (660) (647) (23) (518) (647) (20) 

2 1,434 1,514 -80* 1,166 1,514 -348*** 

 (1,320) (1,294) (45) (1,035) (1,294) (41) 

3 2,151 2,271 -120* 1,749 2,271 -521*** 

 (1,980) (1,940) (68) (1,553) (1,940) (61) 

4 2,868 3,028 -160* 2,333 3,028 -695*** 

 (2,640) (2,587) (91) (2,071) (2,587) (82) 

5 3,585 3,784 -200* 2,916 3,784 -869*** 

 (3,300) (3,234) (113) (2,589) (3,234) (102) 
* p < 0.10, ** p < 0.05, *** p < 0.01, standard errors in parentheses 

The differences reported in Table 5.6 show that the implicit cost of risk is lower for REPS farmers, although 

the difference is small. Once the REPS subsidy has been added to the expected net gross margin of REPS, 

the difference in risk premium is increases slightly, it is between 348 euros and 521 euro for moderate 

levels of risk aversion (𝛾 = 2,3). The additional benefit of REPS in terms of risk reduction is hence quite low 

on average (5% to 7% of the average value of the REPS subsidy).  
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Table 5.7: Differences in risk premium between REPS and non REPS farmers in the different farming 

categories 

 Sample average difference in  risk premium net 

of REPS subsidy 

Sample average difference in  risk premium with 

REPS subsidy 

Risk 

aversion

𝛾 Dairy Cattle Sheep Tillage Dairy Cattle Sheep Tillage 

1 -59** -56 -199* -86 -132*** -237*** -436*** -163*** 

  (30) (47) (120) (64) (29) (42) (101) (58) 

2 -118** -112 -398* -172 -264*** -473*** -872*** -327*** 

 (60) (94) (240) (128) (57) (83) (202) (116) 

3 -176** -168 -598* -258 -396*** -710*** -1,308*** -490*** 

 (89) (141) (360) (191) (86) (125) (304) (174) 

4 -235** -223 -797* -343 -528*** -946*** -1,744*** -654*** 

 (119) (188) (480) (255) (115) (166) (405) (231) 

5 -294** -279 -996* -429 -661*** -1,183*** -2,181*** -817*** 

 (149) (235) (601) (319) (144) (208) (506) (289) 
* p < 0.10, ** p < 0.05, *** p < 0.01, standard errors in parentheses 

Table 5.7 shows the difference in risk premium between REPS participants and non-participants across 

farm categories. The greatest benefit in terms of risk reduction is in the sheep sector. For a degree of 

relative risk aversion equal to 3, the benefit amounts to 1'300 euros in the reduction of the implicit cost of 

risk bearing, i.e. an increase in the benefit from REPS of 16% compared to the sole subsidy (7'865 euros on 

average). By contrast, the additional benefit brought by REPS for dairy farmers represent only 5% of the 

amount of the REPS subsidy.  

The low effect of REPS on risk exposure might be the result of the flexibility in the design of the scheme. 

Each farmer designed their own production plan in accordance with a farm adviser accredited by the 

government. This flexibility in the design of the policy rather than a one size-fits-all approach might have 

allowed farmers to design plans minimizing the impact of REPS on their risk exposure. Furthermore, most 

REPS participants are extensive farms on which no major changes are required in terms of fertiliser or 

pesticide use. Although we did find that REPS decreases the variance of the net gross margin distribution, 

there were no statistical differences in the coefficient of variation between participants and non-

participants while differences in the risk premium computed with the net gross margin were economically 

very small.  REPS had, therefore, mostly an impact on gross margin distribution via the increase in expected 

gross margin caused by the subsidy. 
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5.8 Conclusion 

Studies on the impact of organic farming and low-input agriculture have shown that these production 

systems were riskier than conventional ones. Furthermore, the literature on adoption of agricultural 

environmental scheme (AES) has found that many farmers perceived agri-environmental schemes as risk-

increasing. This does not appear to be the case for REPS as it slightly decreases, on average, both the 

variance of net gross margin and the implicit cost of risk bearing. This is true for all farm categories. 

Most of the benefit in joining REPS is driven by an increase in expected gross margin. We found that joining 

REPS implied an average decrease in net gross margin of 3'000 euros. As the subsidy is on average 7'000 

euros, the participants in REPS benefited from the scheme. REPS acted hence as a gross margin support 

subsidy. 

However, the benefit of joining REPS varies between farm categories. Sheep farmers tend to benefit largely 

from the scheme while the gain is minimal for dairy farmers. The former ones benefit not only in terms of 

increased expected gross margin, they also benefit from a significant decrease in risk exposure. This might 

explain their over-representation in REPS compared to the other farm types. Hynes and Garvey (2009) 

showed that REPS suffered from adverse selection: the less polluting farmers participate (e.g. sheep 

farmers), while the most polluting farmers do not (e.g. the dairy farmers). As intensive farmers are 

generally the most profitable farms and face high compliance cost with AES measures, increasing their 

participation only via an increase in the subsidy might be hard to achieve and very expensive. An option 

would be to link AES with risk management schemes as proposed in the case of organic farmers by Serra 

et al. (2008). This could decrease the perceived riskiness of joining AES and increase the net benefit.  

The moment-based approach adopted in the current paper provides a direct route for the estimation of 

all central moments of the distributions of gross margin at the farm level. We did not however find 

significant results in terms of the skewness of net gross margin. The lack of significant results for skewness 

might be caused by two factors. First, the sequential estimation strategy is sub-optimal in terms of 

efficiency. A maximum likelihood approach could increase the efficiency of the results. Furthermore, a 

dynamic approach could produce further insights on the impact of REPS on risk exposure. Indeed, the cost 

of joining an AES might vary over the duration of the AES contract while the implementation of AES 

measures is generally progressive over the overall length of the contract. It remains however to be shown 

that dynamic panel data methods are applicable to the methods of moments. This could constitute an 

interesting follow-up of this paper. 
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The second reason for a lack of significant results for the third moment is likely inherent to the use of the 

residuals of the first moment regression as dependent variables in the higher moments equations. Any 

misspecification in the first moment is put to the power three for the third moment equation. Thus, the 

results might be very sensitive to the specification and not very informative of the actual skewness of net 

gross margin. An interesting extension of the current paper would be to apply the methodology of climate 

risk exposure estimation exposed in chapter 2 in order to investigate the impact of AES on downside 

climate risk exposure. The prerequisite for such an approach is to have access to farm GPS coordinates. 

Unfortunately, this was not possible in Ireland at the time of the writing because of the strict rules on data 

confidentiality.  
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5.10 Appendix 

Table 5.8: Estimates of the net gross margin moments equations   

 Mean Variance Skewnesse 

(rescaled by 1 mio) 

capital -0.0169 186.2 876077.3 

 (0.0214) (249.4) (683770.4) 

capital2 -5.43e-08 -0.0000454  

 (8.10e-08) (0.000911)  

labour -9210.1** -74228454.4 1.52365e+11 

 (4438.9) (52314472.3) (1.10796e+11) 

capital×labour 0.0310** -596.6***  

 (0.0132) (175.6)  

land 111.7 419530.0 -1.29425e+09 

 (99.13) (964758.7) (1.46642e+09) 

capital × land 0.0000835 8.303***  

 (0.000346) (3.022)  

land ×  land -0.330* -1018.4  

 (0.180) (2008.4)  

land × labour 62.65 62903.2  

 (54.78) (333385.3)  

labour ×  labour 1708.2 31683436.1**  

 (1283.5) (15303934.2)  

diversification 59.07** 19883.7 6924.8*** 

 (26.74) (178561.8) (1759.1) 

REPS -6789.1*** -41505350.7** -2.59249e+10 

 (1760.0) (18093153.7) (1.41397e+11) 

cattle -8100.8*** -78487590.9*** 1.28648e+11 

 (2207.3) (25039336.6) (1.82355e+11) 

REPS ×  cattle 6379.7*** 44070623.7** 8.82768e+10 

 (1987.1) (18234172.6) (1.57853e+11) 

Tillage -6917.1* -89706524.6*** 4.60331e+11** 

 (3609.3) (33275915.4) (2.14258e+11) 

REPS ×  tillage 1296.6 4466190.4 -2.35216e+11 

 (3347.0) (30593272.8) (3.02152e+11) 

sheep -7884.5*** -83493565.2*** 1.66581e+11 

 (2311.0) (26067852.7) (2.07045e+11) 

REPS× sheep 7961.0*** 64702617.5*** -5.50756e+10 

 (2320.5) (20222066.7) (1.77489e+11) 

2007 8121.8*** 32457453.4*** -5.40840e+10 

 (490.2) (4707567.1) (3.29716e+10) 

2008 4723.9*** 18803710.1*** 2.17755e+10 

 (476.4) (4771971.3) (3.11914e+10) 

2009 -8441.8*** 59624028.6*** 3.99888e+11*** 

 (551.6) (6366744.1) (4.08223e+10) 

Constant 51028.0*** 117464769.3** -6.11541e+11*** 

 (5344.6) (57509185.4) (2.12922e+11) 

Observations 3973 3708 3575 

R2 0.301 0.073 0.078 

Fixed effect estimator with standard errors robust to clustering at the farm level in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01 

 


