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Abstract

In this dissertation, we study the following three statistical problems.

First, we consider a high-dimensional data framework, where the number of covariates

potentially affecting the response is large relatively to the sample size. In this setting,

some of the covariates are observed to exhibit an impact on the response spuriously.

Addressing this issue, we rank the covariates according to their impact on the response

and use certain subsampling scheme to identify the covariates which non-spuriously

appear at the top of the ranking. We study the conditions under which such set is

unique and show that, with high probability, it can be recovered from the data by our

procedure, for rankings based on measures commonly used in statistics. We illustrate

its good practical performance in an extensive comparative simulation study and on

microarray data.

Second, we propose a generic approach to the problem of detecting the unknown

number of features in the time series of interest, such as changes in trend or jumps in the

mean, occurring at the unknown locations in time. Those locations naturally imply the

decomposition of the data into segments of homogeneity, the knowledge of which is useful

in e.g. estimation of the mean of the series. We provide a precise description of the type

of features we are interested in and, in two important scenarios, demonstrate that our

methodology enjoys appealing theoretical properties. We show that the performance of

our proposal matches or surpasses the state of the art in the scenarios tested and present

its applications on three real datasets: oil price log-returns, temperature anomalies data
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and the UK House Price Index

Finally, we introduce a class of univariate multiscale time series models and propose an

estimation procedure to fit those models from the data. We demonstrate that our proposal,

with a large probability, correctly identifies important timescales, under the framework in

which the largest timescale in the model diverges with the sample size. A good empirical

performance of the method is illustrated in an application to high-frequency financial

returns for stocks listed on New York Stock Exchange.

For all proposed methods, we provide efficient and publicly-available computer imple-

mentations.
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Chapter 1

Introduction

Many questions that arise in modern statistics are inspired by high-dimensional data sets,

that are nowadays ubiquitous in fields such as genomics, neuroscience, high-frequency

finance or economics, to name but a few. For example, a substantial progress has been

made over past 20 years in the high-dimensional regression which is now an essential tool

in genomics (Bühlmann et al., 2014).

The core chapters of this thesis propose methodologies to tackle three statistical prob-

lems: variable selection in high-dimensional data, change-point detection, segmentation

and nonparametric function estimation and multiscale modelling of univariate time series.

In Chapter 2, we review the statical literature relevant to these problems. Each of the

subsequent three chapters begin with an introductory section, where we give further

motivations for our work. The remainder is structured as follows.

Chapter 3. Ranking-Based Variable Selection for high-dimensional data

In this chapter, we propose Ranking-Based Variable Selection (RBVS), a technique

aiming to identify covariates affecting the response, being the variable of interest,

in high-dimensional data. The RBVS algorithm uses certain subsampling scheme

to identify the set of covariates which non-spuriously appears at the top of a

chosen variable ranking. We study the conditions under which such set is unique
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and show that it can be successfully recovered from the data by our procedure.

Unlike the majority of the existing high-dimensional variable selection techniques,

RBVS does not depend on any thresholding or regularity parameters. Moreover,

RBVS does not require any model restrictions on the relationship between the

response and covariates, it is therefore widely applicable, both in a parametric

and non-parametric context. We illustrate its good practical performance in an

extensive comparative simulation study and on real data. The RBVS algorithm is

implemented in the publicly available R packages rbvs (Baranowski et al., 2015)

and rbvsGPU Baranowski (2016).

Chapter 4. Narrowest-Over-Threshold detection of multiple change-points

and change-point-like features

In this chapter, we propose a new, generic and flexible methodology for nonpara-

metric function estimation, in which we first estimate the number and locations of

any features that may be present in the function, and then estimate the function

parametrically between each pair of neighbouring detected features. Examples

of features handled by our methodology include change-points in the piecewise-

constant signal model, kinks in the piecewise-linear signal model, and other similar

irregularities, which we also refer to as generalised change-points. Our methodol-

ogy works with only minor modifications across a range of generalised change-point

scenarios, and we achieve such a high degree of generality by proposing and using

a new multiple generalised change-point detection device, termed Narrowest-Over-

Threshold (NOT). The key ingredient of NOT is its focus on the smallest local

sections of the data on which the existence of a feature is suspected. Crucially,

this adaptive localisation technique prevents NOT from considering subsamples

containing two or more features, a key factor that ensures the general applicability

of NOT. For selected scenarios, we show the consistency and near-optimality of
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NOT in detecting the number and locations of generalised change-points, and

discuss how to extend the proof to other settings. The NOT estimators are easy

to implement and rapid to compute: the entire threshold-indexed solution path

can be computed in close-to-linear time. Importantly, the NOT approach is easy

to extend by the user to tailor to their own needs. There is no single competitor,

but we show that the performance of NOT matches or surpasses the state of the

art in the scenarios tested. Our methodology is implemented in the R package

not (Baranowski et al., 2016b).

Chapter 5. Multiscale autoregression on adaptively detected timescales

Motivated by the notoriously difficult task of predicting high-frequency financial

returns, in Chapter 5 we introduce Adaptive Multiscale Autoregressive (AMAR)

time series models, where the quantity of interest is explicitly modeled as linearly

dependent on its own past averages over unknown timescales. Combining the

Ordinary Least Square method with the Narrowest-Over-Threshold approach

described in Chapter 4, we propose an estimation procedure for identifying both

the number and locations of the relevant timescales from the data. We demonstrate

that this procedure consistently recovers the timescales under the framework in

which both the number of the timescales and the largest timescale diverge with the

sample size. In an application to data from the New York Stock Exchange Trades

and Quotes Database, we show that our proposal offers relatively good performance

in terms of the out-of-sample forecasting of high-frequency financial returns. The

proposed methodology is implemented in the R package amar (Baranowski and

Fryzlewicz, 2016a).

Chapter 6 summarises our contributions and points a number of directions for future

research.

Statistical problems we deal with in Chapters 3, 5 and 4 are essentially different
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from each other, as they are inspired by differently structured data. However, from the

methodological and theoretical point of view, there is a common ground between those

chapters, namely high-dimensionality. This is due to the fact that the complexity of the

considered problems, measured either in terms of the number of covariates (Chapter 3)

or in terms of the number of parameters in the corresponding models (Chapters 4 and

5), potentially grows with the sample size. Therefore all problems satisfy the general

definition of high-dimensionality given in Fan and Lv (2010) and as such, should be

regarded as high-dimensional.



Chapter 2

Literature review

In this chapter, we provide a review of the statistical literature related to the problems

covered in this thesis: high-dimensional variable selection, multiple change-point detection

and multiscale time series modelling.

2.1 High-dimensional variable selection

Suppose we observe Y1, . . . , Yn, being n observations of the response, and that for each

i = 1, . . . , n there are p predictors Xi1, . . . , Xip which potentially influence Y . In this

thesis, the variable selection problem is understood as the situation in which only a small

number of predictors S ⊂ {1, . . . , p} contribute to the response and our aim is to use the

observed sample to identify those. When p large in comparison to the sample size n, the

variable selection problem is said to be high-dimensional.

The high-dimensional variable selection problem has attracted a considerable attention

across various scientific disciplines, such as genomics (Bickel et al., 2009; Bühlmann

et al., 2014; Singh et al., 2002), economics (Korobilis, 2013; Scott and Varian, 2013),

finance (Aït-Sahalia and Brandt, 2001; Stock and Watson, 2002; Tian et al., 2015),

neuroimaging (Rosa et al., 2015; Schwartzman et al., 2009; Valdés-Sosa et al., 2005), or
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machine learning (Du Jardin, 2010; Rakotomamonjy, 2003), to name a few. An extensive

list of high-dimensional data analysis problems can be found in Donoho (2000) and

Bühlmann et al. (2016). There exists a large body of statistical literature proposing

methodologies designed to tackle high-dimensional data, an excellent overview of which

can be found in Fan and Lv (2010), Bühlmann et al. (2011), Hastie et al. (2015) and

Bühlmann et al. (2016). In this section, we briefly discuss different approaches to the

high-dimensional variable selection problem, knowledge of which is vital in Chapter 3,

where we propose our contribution to the problem.

On a broad level, we group the existing variable selection techniques according to the

assumptions on the relationship between the response and the predictors, distinguishing

three scenarios. The vast majority of the literature on the variable selection problem

studies the following Linear Regression Model (LRM)

Yi = β0 +
p∑

j=1
βjXij + εi, , i = 1, . . . , n (2.1)

where β0, β1, . . . , βp ∈ R are the unknown regression coefficients and εi is the random

error term, typically required to satisfy E εi = 0, E ε2
i = σ2 and E εiεj ̸= 0 for i ̸= j. The

set of the variables that contribute to Y is then simply defined as

S = {1 ≤ j ≤ p : βj ̸= 0}. (2.2)

Let EYi|(Xi1, . . . , Xip) denote the conditional expectation of Y given Xi1, . . . , Xip.

Hereafter we assume that E |Yi| < ∞, which ensures that the conditional expectation

exists. An important branch of the high-dimensional statistics literature assume that

the relationship between the response and the predictors can be modelled with the
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Generalised Linear Models (McCullagh and Nelder, 1989, GLMs) of the form

EYi|(Xi1, . . . , Xip) = g−1(
p∑

j=1
β0 + βjXij), (2.3)

where β0, β1, . . . , βp ∈ R are again unknown regression coefficients and g : R 7→ R is the

(invertible) link function. In (2.3) the set of important variables is defined as (2.2).

Finally, the third scenario with respect to which we discuss the variable selection

techniques is the nonparametric regression model, where

EYi|(Xi1, . . . , Xip) = f(Xi1, . . . , Xip), (2.4)

for an unknown, measurable function f : Rp 7→ R. Here the important variables are

defined as

S = {1 ≤ j ≤ p : EYi|(Xi1, . . . , Xip) functionally depends on Xij}. (2.5)

Regardless of the nature of the relationship between the response and the predictors,

it is commonly assumed that the number of variables in S is small in comparison to p.

In the context of LRM and GLMs, this condition is known as the sparsity assumption.

In the remainder of this section, we assume that β0 = 0 in (2.1) and (2.3) and

denote by Zi = (Yi, Xi1, . . . , Xip)′ and β = (β1, . . . , βp)′. For any q ≥ 1, the ℓq-norm of

any vector v ∈ Rn is defined as ∥v∥q =
(∑n

j=1 |vj|q
)1/q

. Additionally, for q = 0 we set

∥v∥0 = ∑n
j=1 I (vi ̸= 0), i.e. the number of non-zero coordinates of v. Although ∥v∥0 is

not a properly defined norm, as it does not satisfy the absolute scalability condition, we

refer to ∥v∥0 as the ℓ0-norm of v, which is a common practice in the variable selection

literature.
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2.1.1 Variable selection via Penalised Likelihood minimisation

A substantial number of the variable selection techniques proposed in the context of

(2.1) or (2.3), are derived from the solution of the following Penalised Likelihood (PLH)

minimisation problem

argminβ∈Rp (−2ℓ (β|Z1, . . . ,Zn) + penλ (β)) , (2.6)

where ℓ (β|Z1, . . . ,Zn) is the log-likelihood of β given Z1, . . . ,Zn and penλ is the penalty

function depending on the tuning parameters vector λ = (λ0, . . . , λK) for some integer

K ≥ 0. Heuristically speaking, the aim of (2.6) is to find the estimates of β which

guarantee that the resulting model fits the data well, but also satisfies some additional

constrains on its complexity. Let β̂ =
(
β̂1, . . . , β̂p

)
denote a solution of (2.6). Typically,

the penalty function is designed such that (for an appropriately chosen λ) a large number

of β̂j’s are shrunk to zero. The resulting estimate of S is then defined as

Ŝ = {1 ≤ j ≤ p : β̂j ̸= 0}. (2.7)

One of the most widely-studied examples of PLH is derived from the linear model (2.1)

with the standard Gaussian i.i.d. noise. After omitting constants which does not change

the minimum, (2.6) in the Guassian linear model simplifies to

argminβ∈Rp

 n∑
i=1

Yi −
p∑

j=1
βjXij

2

+ penλ (β)

 . (2.8)
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2.1.1.1 PLH with ℓ0-norm type penalty

Many classic model selection tools can be formulated as the PLH minimisation problem

with the penalty function of the following form

penλ (β) = λ0 ∥β∥0 , (2.9)

where λ1 > 0. For example, setting λ0 = 2 recovers the Akaike’s information criterion

(Akaike, 1998); λ0 = log(n) yields the Schwarz’s information criterion (Schwarz, 1978).

Some works propose modifications of the classic information criteria addressing probles

arrising in the high-dimensional variable selection, see e.g. Bogdan et al. (2004) or Chen

and Chen (2008). However, from the computational point of view, solving (2.6) with the

penalty given by (2.9) requires an exhaustive search over all subsets of {1, . . . , p}, hence

it is not feasible if p is larger than a few dozens (Candes and Tao, 2007).

2.1.1.2 PLH with ℓ1-norm and ℓ2-norm type penalties

A popular class of penalties, which yield computationally tractable PLHs is of the form

penλ (β) =
p∑

j=1
λj|βj|, (2.10)

where λj > 0 for all j = 1, . . . , p. When λj ≡ λ0 for some λ0 > 0, (2.10) simplifies to

penλ (β) = λ0 ∥β∥1 , (2.11)

which recovers the penalty introduced by Alliney and Ruzinsky (1994) and Tibshirani

(1996) in the context of (2.1). The latter author termed the resulting method Least

absolute shrinkage and selection operator (Lasso). Owing to certain geometric properties

of the ℓ1-norm, PLH with the Lasso penalty leads to the solutions β̂ with certain
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coefficients shrunk to be exactly zero. Lokhorst (1999); Park and Hastie (2007); Shevade

and Keerthi (2003); Van de Geer (2008) study variable selection with the (2.11) penalty

in the GLMs, for a disscusion of these and other developements of the Lasso methodology,

see Tibshirani (2011) and Bühlmann et al. (2011).

Zou and Hastie (2005) observe that, in the situation when two or more important

predictors are highly correlated, Lasso tends to select only one of them. In order to deal

with this issue, Zou and Hastie (2005) consider the elastic net penalty of the following

form

penλ (β) = λ0 ∥β∥1 + λ1 ∥β∥2
2 , (2.12)

with λ0, λ1 ≥ 0. When λ0 = 0, (2.12) simplifies to the classic ridge penalty (Hoerl and

Kennard, 1970).

Variants of (2.10) with λj possibly different for each j = 1, . . . , p, have been also exten-

sively studied in the literature. For example, Zou (2006) suggests to set λj = λ0

∣∣∣β̂OLS
j

∣∣∣−γ
,

where β̂OLS
j denotes the simple OLS estimate of βj and γ > 0 is a tuning parameter,

and shows that this approach yields certain optimality properties. Meinshausen and

Bühlmann (2010) suggest to set the penalty parameters to λj = λ0U
−1
j , where Uj’s

are independently drawn from the uniform distribution. This, combined with their

subsampling scheme discussed in Section 3.3.6, yields a method that successfully recovers

S in certain settings in which the standard Lasso fails. Another interesting development

can be found in Bogdan et al. (2015), who propose the SLOPE penalty defined as

penλ (β) =
p∑

j=1
λj|βj:p|,

where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 and βj:p’s are the coordinates of β ordered such that

|β1:p ≥ |β2:p| ≥ . . . ≥ |βp:p|. Bogdan et al. (2015) show that, for carefully selected λj ’s and
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under orthogonal designs, SLOPE allows for variable selection with a control of the False

Discovery Rate (Benjamini and Hochberg, 1995, FDR); Su et al. (2016) demonstrate

that the SLOPE estimates of β achieve minimax rates in the ℓ2-norm sense.

2.1.1.3 PLH with other types of penalties

Fan and Li (2001) propose yet another class of penalty functions, which are designed to

return asymptotically unbiased, sparse and continuous in the data estimates of β. They

note that ℓq-based penalties in general do not satisfy some of those requirements and

consider

penλ (β) =
p∑

j=1
pλ (|βj|) , (2.13)

where pλ is defined for t ≥ 0 through the derivative

p′
λ(t) = λ0

(
I (t ≤ λ0) + max{aλ0 − t, 0}

(a− 1)λ0
I (t > λ0)

)
,

and a > 2 is a tuning parameter. Fan and Li (2001) prove that the solutions of (2.8)

with the penalty function specified this way satisfies all aforementioned requirements.

Zhang (2010) considers the penalty of form given by (2.13) with

pλ(t) = λ0

∫ t

0
max{1− x/(λ0γ), 0}dx (2.14)

for some γ > 0. PLH estimates with this penalty are asymptotically unbiased and attain

certain minimax convergence rates for the estimation of β.

2.1.2 Variable screening methods

Fan and Lv (2008) point out two limitations of the variable selection achieved through
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minimisation of PLH. First, theoretical conditions required for the consistency of the

estimates given by (2.6) are unlikely to be satisfied when p is large in relation to n.

Second, solving (2.6) for large values of p and n is typically computationally expensive.

To tackle those issues in the context of (2.1), Fan and Lv (2008) introduce the concept of

variable screening, defined as follows. Let ω̂j be a measure evaluating the impact of the

j’th predictor Xij on the response Yi (e.g. Pearson correlation coefficient), calculated for

the sample Z1, . . . , Zn and let dn < p be an integer, preferably smaller than n. Variable

screening is then simply defined as the act of removing predictors which exhibit week

relationship to the response. Denote by

Ŝdn = {1 ≤ j ≤ p : ω̂j is among the first dn largest of all}, (2.15)

i.e. the set of variables that survive after the screening. The variable screening based on

the measure ω̂j is said to posses the sure screening property if

P
(
S ⊂ Ŝdn

)
→
n

1. (2.16)

Fan and Lv (2008) show that in the linear model (2.1), the variable screening based

on the Pearson correlation coefficient, termed as Sure Independence Screening (SIS),

achieves the sure screening property, under certain restrictions on the correlation between

predictors. If this is satisfied for dn comparable to the sample size n, we can expect

better estimation accuracy by applying the PLH estimation directly on the reduced set

of predictors Ŝdn . Importantly, the sample correlations are quick to compute, therefore

SIS provides a solution to the aforementioned problems in (2.1).

Due to their simplicity and wide applicability, variable screening procedures attracted

considerable attention in the statistical literature. Consequently, many well-known

statistical measures have been shown to possess the sure screening property, e.g. Kendall’s
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τ correlation (Li et al., 2012a) or distance correlation (Li et al., 2012b). An excellent

overview of these developments can be found in Liu et al. (2015).

2.1.3 Subsampling in variable selection

A particular difficulty in performing variable selection or variable screening in high-

dimensional data using techniques described in the previous sections, is that their

performance is sensitive to the choice of the tuning parameters parameters (Fan and

Tang, 2013; Meinshausen and Bühlmann, 2010). A variant of cross-validation (CV),

so called k-fold CV, where 1 ≤ k ≤ n, is one of the most popular methods employed

to choose the tuning parameters (Arlot et al., 2010; Friedman et al., 2001). In this

method, the original sample is randomly divided into k subsamples of approximately

equal length. Next, each subsample is used as the validation set, on which a number

of models, corresponding to different tuning parameters and fitted on the remaining

data, are evaluated and the parameter yielding the best model in terms of the average

evaluation criterion is selected. Typically, k-fold CV is used in conjunction with a

criterion that asses the predictive power of the model, e.g. the Mean Squared Error in

LRM.

In Section 3.3.6, we discuss two alternatives to CV that use subsampling to perform

variable selection taking different than prediction-oriented approach, namely, Stability

Selection of Meinshausen and Bühlmann (2010) and the bootraped rankings of Hall and

Miller (2009a).
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2.2 Data segmentation and multiple change-point

detection

Let Yt, t = 1, . . . , T , be a univariate time series. Informally, the multiple-change point

detection problem is defined as the situation in which there exist the unknown change-

points in time 1 ≤ τ1 < . . . < τq < T such that for each j = 0, 1, . . . , q, the distribution of

Yt exhibits certain degree of homogeneity across the segments between the change-points,

i.e. for t = τj + 1, . . . , τj+1, where τ0 = 1 and τq+1 = T for notational convenience. The

primary goal in this setting is to estimate both the number and the locations of the

change-points. Moreover, as the estimated change-points imply the segmentation of the

data into homogeneous blocks, it also often of interest to fit a model that describes the

homogeneity in each segment.

There are numerous applications where the multiple change-point problem arises,

e.g. in genomics (Olshen et al., 2004; Zhang and Siegmund, 2007), neuroscience (Ombao

et al., 2001; Schröder and Ombao, 2015), finance (Andreou and Ghysels, 2002; Aue and

Horváth, 2013; Ewing and Malik, 2013; Schröder and Fryzlewicz, 2013), oceanography

(Killick et al., 2010, 2013), climatology (Beaulieu et al., 2012; Cahill et al., 2015; Ruggieri,

2013), hydrology (Wang et al., 2014) or acoustic sensing signals (Pickering, 2016). In this

section, we review a selection of multiple change-point detection problems and methods,

which serves as a starting point to the discussion of Chapter 4. For a more exhaustive

presentation of various change-point problems, we refer the reader to the following books:

Basseville et al. (1993); Brodsky and Darkhovsky (2013); Chen and Gupta (2011); Wu

(2007).

A large body of the change-point detection literature studies problems that are
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formulated using the following model

Yt = ft + εt, t = 1, . . . , T, (2.17)

where ft is a deterministic signal with the change-points in its structure at 1 ≤ τ1 <

. . . < τq < T and the random noise εt is a stationary time series exactly or approximately

centred at zero. In Section 2.2.1, we discuss methods that deal with the case of ft being

piecewise-constant, which is the most widely studied example of (2.17). Section 2.2.2

concerns the more general scenario, in which ft in each segment is a (possibly non-constant,

e.g. linear) function of time or other non-stochastic covariates.

Another common way of formulating the multiple change-point detection problem is

to assume that

Yt for t = τj + 1, . . . , τj+1 are i.i.d. Fj-distributed, (2.18)

where j = 0, . . . , q and each Fj is a cumulative distribution function of some distribution

and the consecutive cdfs are different, i.e. Fj ̸= Fj+1. For example, (2.18) can be used to

model the situation in which both or either of E(Yt) and Var(Yt) are piecewise constant

functions of time. Section 2.2.3 discusses this and other change-point detection problems

in the context of (2.18). Naturally, models (2.17) and (2.18) overlap to certain extend,

e.g. the piecewise constant case in (2.17) can be modelled using (2.18) assuming that Fj

are of the form Fj(x) = F (x− θj), where θj are scalars satisfying θj ̸= θj+1 and F is a

known cumulative distribution function. In general, however, there are some important

examples that can be modelled only with either (2.17) or (2.18), as e.g. in the case of

piecewise-constant variance or piecewise-linear mean of Yt.

We remark that in this thesis we focus on retrospective (a posteriori or off-line)

change-point detection, which assumes that the entire sample Y1, . . . , YT is available at
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the time of the analysis. When the observations arrive one by one and the aim of the

analysis is to detect changes in the most recent data, the problem is classified as on-line

change-point detection. A survey of literature in this area can be found in Basseville

et al. (1993); Kawahara and Sugiyama (2012); Lai (2001).

2.2.1 Canonical change-point detection problem

The scenario in which ft in (2.17) is piecewise-constant, i.e.

ft = θj, for t = τj + 1, . . . , τj+1, (2.19)

where j = 0, . . . , q and θ0, θ1, . . . , θq ∈ R satisfy θj ̸= θj+1 for j = 0, . . . , q, is one of the

most widely studied examples of (2.17). We refer to (2.17) with the signal ft given by

(2.19) as to the canonical change-point detection problem.

Early literature on the canonical change-point detection problem largely focuses on

the detection of a single change-point in the data (Davis, 1979; Hawkins, 1977; Sen and

Srivastava, 1975; Worsley, 1986), and is typically stated as a hypothesis testing problem.

Throughout this section, we focus on the case of multiple change-points in ft.

2.2.1.1 Multivariate optimisation

When it is suspected that multiple change-points are present, the estimators of τj’s are

often formulated as the solutions of the following multivariate optimisation problem

argmin1≤τ1≤...≤τq<T
q≤qmax

(Cost(Y1, . . . , YT , τ1, . . . , τq) + pen(q, τ1, . . . , τq)) (2.20)

where Cost(Y1, . . . , YT , τ1, . . . , τq) is the cost function, pen(q, τ1, . . . , τq) is the penalty

function and qmax is the maximum number of change-points, that is typically assumed

to be fixed (Chen and Gupta, 2011). For example, Yao (1988) considers the Schwarz’s
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Information Criterion (SIC, Schwarz (1978)) penalty pen(q, τ1, . . . , τq) = (2q + 1) log(T )

with the cost function

Cost(Y1, . . . , YT , τ1, . . . , τq) = −T log

 q∑
j=0

τj+1∑
t=τj+1

Yt − (τj+1 − τj)−1
τj+1∑

l=τj+1
Yl

2

(2.21)

which is derived from the log-likelihood function of θ1, . . . , θq+1, τ1, . . . , τq given the data

Y1, . . . , YT under the assumption that the noise is i.i.d. Gaussian. Killick et al. (2012a)

define

Cost(Y1, . . . , YT , τ1, . . . , τq) = −
q∑

j=0
sup

θj

log ℓ(Yτj+1, . . . , Yτj
; θj),

where ℓ(Yτj+1, . . . , Yτj+1 ; θj+1) denotes the likelihood of θj+1 given Yτj+1, . . . , Yτj+1 , and

consider the linear penalty pen(q, τ1, . . . , τq) = λ(q+1), where λ > 0 is a tuning parameter.

An example of (2.20) with the penalty depending on both the number and the locations

of the change-points can be found in Zhang and Siegmund (2007). For certain cost

functions and penalties linear in the number of change-points, dynamic programming

techniques (Bertsekas, 1995) can be used to compute (2.20) in O(T ) average time (Killick

et al., 2012a; Maidstone et al., 2016; Rigaill, 2010). In general, however, solving (2.20)

is computationally expensive with the typical computational complexity of the order of

O(qmaxT
2) and not straightforward to implement.

2.2.1.2 Binary Segmentation

Binary Segmentation (BS, Vostrikova (1981)) is a generic approach that estimates the

change-points sequentially, detecting just a single change-point at each stage of the

procedure solving a one-dimensional optimisation problem, as opposed to solving a

multivariate optimisation problem as in (2.20). Its main building block is a test statistic
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Algorithm 2.1 Binary Segmentation
Input: Data vector Y = (Y1, . . . , YT )′, threshold ζT > 0, S = ∅.
Output: Set of estimated change-points S ⊂ {1, . . . , T}.

procedure BS(s, e, ζT )
if e− s < 1 then STOP
else

if maxsm≤b≤em Cb
sm,em

(Y) ≤ ζT then STOP
else

b∗ := argmaxsm∗ ≤b≤em∗ Cb
sm∗ ,em∗ (Y)

S := S ∪ {b∗}
BS(s, b∗, ζT )
BS(b∗ + 1, e, ζT )

end if
end if

end procedure

Cb
s,e (Y), often referred to as a contrast function, defined for any 1 ≤ s ≤ b ≤ e ≤ T .

The contrast function is constructed such that maxs≤b≤e Cb
s,e (Y) > ζT for certain ζT > 0

indicates presence of a change-point in [s, e] located at b∗ = argmaxs≤b≤e Cb
s,e (Y). For

example, Vostrikova (1981) considers the absolute value of the Cumulative Sum (CUSUM)

statistic, defined as follows

Cb
s,e (Y) =

∣∣∣∣∣∣
√

e− b
l(b− s+ 1)

b∑
t=s

Yt −
√
b− s+ 1
l(e− b)

e∑
t=b+1

Yt

∣∣∣∣∣∣ , (2.22)

which can be derived from the Gaussian likelihood function (for details see Section 4.2.3).

Algorithm 2.1 describes BS using pseudocode. The procedure is launched by the call

BS(1,T ,ζT ) and at this initial stage the entire sample is searched for the most likely

location of the change-point denoted by b∗. If the change-point is deemed significant, i.e.

the corresponding maximum value of the contrast function exceeds the threshold ζT , b∗

is added to the set of estimated change-points and a similar search is performed on the

segments to the left and to the right of b∗, until no further change-points are detected.

The BS algorithm is easy to code and has a low computational complexity, typically
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of the order of O(T log T ). Those are among the reasons why it has many applications

outside the canonical change-point detection problem, e.g. in the multiple detection of

change-points in high-dimensional mean (Cho, 2016; Cho and Fryzlewicz, 2015; Wang and

Samworth, 2016), variance (Inclan and Tiao, 1994), autocovariance (Cho and Fryzlewicz,

2012b), conditional variance (Fryzlewicz and Subba Rao, 2014), the frequency bands

of autospectra and cross-coherences in multi-channel EEG data (Schröder and Ombao,

2015) or in a nonparametric setting (Matteson and James, 2014). However, as shown in

Venkatraman (1992) and Fryzlewicz (2014), BS (with the CUSUM statistics employed as

the contrast function) estimates the locations of the change-points in (2.19) at a sub-

optimal rate and only under strong assumptions on the minimum spacing between the

consecutive change-points. Those weaknesses of BS stem from the fact that maximising

the CUSUM statistic is equivalent to finding a piecewise-constant function with a single

change-point that fits the data Ys, . . . , Ye best in the least squares sense (see Section 4.2.3

for an explanation). Therefore, if at any stage of Algorithm 2.1 the [s, e] interval contains

multiple change-points, BS proceeds via fitting the wrong model, which can adversely

impact its performance.

A number of attempts have been made in the literature to modify the BS procedure in

order to address the issues mentioned above, see e.g. Olshen et al. (2004), Venkatraman

and Olshen (2007) and Fryzlewicz (2014). Here we discuss the Wild Binary Segmentation

(WBS) algorithm of Fryzlewicz (2014) in more detail, as we repeatedly refer to this

method in Chapter 4. Algorithm 2.2 outlines the WBS procedure. At its initial stage,

the contrast function is calculated over M randomly drawn intervals [sm, em], as opposed

to calculating the contrast function just for s = 1 and e = T as in the BS algorithm.

Subsequently, the interval yielding the largest contrast is picked and, provided that the

corresponding contrast exceeds the threshold, the b∗ that maximises the contrast over

that interval is added to the set of the estimated change-points. As in the standard BS,
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Algorithm 2.2 Wild Binary Segmentation
Input: Data vector Y = (Y1, . . . , YT )′, FM

T being a set of M intervals, with start- and
end- points drawn independently and uniformly with replacement from {1, . . . , T},
S = ∅.

Output: Set of estimated change-points S ⊂ {1, . . . , T}.

procedure WBS(s, e, ζT )
if e− s < 1 then STOP
else
Ms,e :=

{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

if Ms,e = ∅ then STOP
else

m∗ :∈ argmaxm∈Ms,e
maxsm≤b≤em Cb

sm,em
(Y)

if maxsm∗ ≤b≤em∗ Cb
sm,em

(Y) ≤ ζT then STOP
else

b∗ := argmaxsm∗ ≤b≤em∗ Cb
sm∗ ,em∗ (Y)

S := S ∪ {b∗}
WBS(s, b∗, ζT )
WBS(b∗ + 1, e, ζT )

end if
end if

end if
end procedure
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similar procedure is then applied to the data to the left and to the right of b∗. Some of the

intervals drawn contain exactly one change-point with high probability, provided that M

is large enough, which is the reason why in the canonical change-point detection problem

the WBS algorithm estimates the locations of the change-points at a near-optimal rate,

as shown in Fryzlewicz (2014).

The WBS algorithm can be also applied to other change-point detection problems, e.g.

in order to detect change-points in the second order structure of a time series (Korkas

and Fryzlewicz, 2016). However, there is no guarantee that the intervals picked at each

stage of the WBS procedure contain no more than one change-point, which is the reason

why it fails to detect the change-points consistently in some settings outside the canonical

change-point detection. An example of such setting is given in Section 4.1.

2.2.1.3 Other approaches

In this section, for the sake of completeness, we briefly mention two classes of change-

point detection methods. The first class consists of methods which in the first step fit

a piecewise-constant vector to the data and subsequently extract change-points from

the obtained estimates, typically using certain post-processing techniques. A number

of methods fall into this category, e.g. the Tail-Greedy Unbalanced Haar transform

of Fryzlewicz (2016), trend filtering method of (Taylor and Tibshirani, 2014) with the

post-processing procedure proposed by Lin et al. (2016) or the approach of Harchaoui

and Lévy-Leduc (2012). Finally, Bayesian methods have been also studied in the context

of the canonical change-point detection problem. A non-exhaustive list of early works

includes Broemeling (1972, 1974); Chernoff and Zacks (1964), for an overview of more

recent works that take a Bayesian perspective see Erdman and Emerson (2008); Jandhyala

et al. (2013).
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2.2.2 Regression change-point models

In this section, we discuss the problem of detecting change-points in (2.17) when the

signal ft follows

ft = θ1,jxt1 + θ2,jxt2 + . . . , θd,jxtd, for t = τj + 1, . . . , τj+1 (2.23)

for each j = 0, 1, . . . , q, where the predictors xtj are non-stochastic, d is known, the

vectors of parameters Θj = (θ1,j, . . . , θd,j)′ are unknown and satisfy Θj ̸= Θj+1 for

j = 0, . . . , q − 1. An important example of (2.23) is the scenario in which ft is a

piecewise-polynomial function of time, i.e.

ft = θ1,j + θ2,jt+ . . . , θd,jt
d−1, for t = τj + 1, . . . , τj+1. (2.24)

Naturally, for d = 1 (2.24) simplifies to the canonical change-point detection problem,

therefore we focus our attention on the case of d > 1 in the discussion of this section.

Furthermore, we distinguish a class of continuous piecewise-polynomial signals, i.e. ft

satisfying (2.24) for which definition (2.24) applied for all t ∈ [1, T ] yields a continuous

function.

Early literature on change-point detection in model (2.17) with the signal given by

(2.23) focus mainly on the problem of detecting a single change-point in the data, a

survey of these developments can be found in Zacks (1982). The case of q > 1 has

attracted considerably less attention in the early literature, however, some interesting

contributions can be found. Gallant and Fuller (1973); Hudson (1966), e.g., propose

methods for simultaneous estimation of τj ’s and θk,j’s in the context of (2.24) using least

squares methods and certain type of the Gauss-Newton method for finding solutions of

the least squares criteria considered in the corresponding works.

In this section, we discuss two popular approaches for change-point detection in
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(2.17) with the signal given by (2.23), that are formulated as multivariate optimisation

problems. Examples of other approaches can be found in Leonardi and Bühlmann (2016),

who combine the BS algorithm with Lasso to detect change-points in (2.23) in the case

of large d or in Ruggieri (2013); Ruggieri and Antonellis (2016) who propose a Bayesian

approach to estimate change-points in (2.24) when d = 2.

2.2.2.1 Methodology of Bai and Perron (1998)

Bai and Perron (1998) propose to estimate the change-points in a slightly more general

version of model (2.17) with the signal given by (2.23) solving the following multivariate

optimisation problem

argmin1≤τ1≤...≤τq<T
∀j(τj+1−τj)≥h

 q∑
j=0

inf
(θ1,j ,...,θd,j)′∈Rd

τj+1∑
t=τj+1

(Yt − θ1,jxt1 − θ2,jxt2 − . . .− θd,jxtd)2

 ,
(2.25)

where h is the user-specified lower bound on the minimum distance between the change-

points and the number of change-points q is assumed to be known. As in the case of

methods presented in Section 2.2.1.1, solutions of (2.25) can be found using dynamic

programming techniques in O(T 2) time (Bai and Perron, 2003).

Bai and Perron (1998) show that (2.25) yields consistent estimators of the change-

points under week assumptions on xtj and εt. They also propose a testing procedure to

estimate q when it is unknown. However, in such case the computational complexity of

their procedure is of the order O(qmaxT
2), where qmax denotes the maximum number

of change-points imposed by the user, which is prohibitively slow for even moderately

large sample sizes. We illustrate this point in the numerical examples of Section 4.4,

where among other aspects, we compare empirical running times of various change-point

detection techniques.
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2.2.2.2 Trend filtering

Trend filtering Kim et al. (2009); Tibshirani (2014) is a technique whose main goal is

to approximate the signal ft in (2.17) using continuous piecewise-polynomials. For any

d, the trend filtering estimate is defined as the solution of the following optimisation

problem

argminf∈RT

(
T∑

t=1
(Yt − ft)2 + λ

T∑
t=1
|(Ddf)t|

)
, (2.26)

where f = (f1, . . . , fT )′, D ∈ RT ×T denotes the discrete difference operator defined for

any vector v = (v1, . . . , vT )′ ∈ RT as follows

(Dv)t =


vt+1 − vt, for t = 1, . . . , T − 1,

0 for t = T,

and λ > 0 is a tuning parameter.

Trend filtering belongs to a wide class of ℓ1-penalised methods discussed previously in

Section 2.1.1 in the context of variable selection. The key property of the ℓ1-type penalty

term in (2.26) is that (for a carefully chosen λ) it leads to the solution f̂ = (f̂1, . . . , f̂T )′

such that (Ddf̂)t = 0 for the majority of times t, which essentially means that f̂1, . . . , f̂T

is a piecewise-polynomial of degree at most d− 1.

Tibshirani (2014) shows that the trend filtering estimates are closely related to the

estimates obtained using the locally adaptive regression splines of Mammen and van de

Geer (1997) and as such achieve the same minimax rate for the estimation of ft. However,

solutions of (2.26) are in general quicker to compute than the regression splines; for the

discussion of the computational aspects of the trend filtering see Arnold and Tibshirani

(2016).

When the true signal is assumed to follow (2.24), Lin et al. (2016) propose to use the
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trend filtering estimates in order to detect the change-points in ft, defining the estimators

of τj’s as τ such that (Ddf̂)τ > 0. We note, however, that this approach is not optimal

for change-point detection in the case of d = 1, as shown in Brodsky and Darkhovsky

(2013); Cho and Fryzlewicz (2011). Although we are not aware of similar results for

d > 1, the empirical evidence of Section 4.4 suggest that change-point detection achieved

through minimisation of (2.26) may not be optimal either.

2.2.3 Other change-point detection problems

In Sections 2.2.1 and 2.2.2, we focus on the problem of detecting change-points in various

characteristics of EYt. Below, we present a selective overview of approaches in the context

of model (2.18), allowing for multiple change-points in other aspects of the distribution

of Yt than its mean.

2.2.3.1 Change in variance and/or mean

Arguably, one of the simplest departures from the piecewise-constancy in the mean of

Yt, is to allow its variance to change in a piecewise-constant manner. This problem is

typically modelled using (2.18), by assuming that in the j’th segment, j = 0, . . . , q, and

for all x ∈ R, the cdf is of the following form

Fx(t) = F

(
x− θ1,j

θ2,j

)
, (2.27)

where F : R 7→ [0, 1] is a cdf of some distribution, e.g. standard Gaussian, typically

assumed to be know, θ1,j ∈ R, θ2,j > 0, and there is a change in at least one of

the parameters in the consecutive segments, i.e. (θ1,j, θ2,j)′ ̸= (θ1,j+1, θ2,j+1)′ for all

j = 0, 1, . . . , q − 1.

A considerable number of early works study (2.27) under the assumption that there

is at most one change-point in the data, with the mean of Yt assumed to be constant,
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i.e. θ1,j ≡ θ1,0, and known. In this setting, Hsu (1977) proposes a CUSUM-type test,

assuming that the data are Gaussian and the location of the change-point is unknown;

Hsu (1979) derives a test statistic for Gamma-distributed data with known location of

the change; Hsieh (1984) proposes a non-parametric rank test. Menzefricke (1981) allows

for different means in the segments and introduces a Bayesian procedure for detecting

a single change-point in Gaussian data. Some authors, e.g. Chen and Gupta (1997);

Horváth (1993) in the off-line and Hawkins and Zamba (2005) in the on-line change-point

detection context, base their procedures on a likelihood-ratio type test, which is the

approach we take in Chapter 4.

Many multiple change-point detection techniques that have been introduced in

Section 2.2.1 in the context of the canonical change-point detection, can be also applied

to estimate change-points in (2.18) with (2.27). For example, the methodology of Killick

et al. (2012a) handles the case of (2.27), when the adequate likelihood function in (2.21)

is specified; Inclan and Tiao (1994) introduces a slightly modified version of the Binary

Segmentation procedure, with a contrast function derived from the likelihood-ratio test

under the assumption that θ1,j ≡ 0 and the data are Gaussian; Schröder (2016) applies

the Wild Binary Segmentation algorithm with a contrast function specifically designed

to tackle the case of Gaussian data following (2.27) where changes may occur non-

simultaneously, i.e. either θ1,j ̸= θ1,j+1 and θ2,j = θ2,j+1 or θ1,j = θ1,j+1 and θ2,j ̸= θ2,j+1

for some j.

2.2.3.2 Nonparametric change-point detection

A (possibly multiple) change-point detection problem defined by (2.18) is said to be

nonparametric, when the cdfs F1, . . . , Fq+1 describing the distribution of Yt in the segments

between the change-points are unknown, excluding those examples in which Fj are known

to belong to a parametric family of distributions.
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Much of the literature on the nonparametric change-point detection problem deal

with the case of a single change-point in the data and state it as a hypothesis testing

problem. In this setting, Darkhovskh (1976); Pettitt (1979) consider a Mann-Whitney

type test statistics, while Carlstein (1988); Ross and Adams (2012) introduce tests based

on Cramer–Von Mises and Kolmogorov–Smirnov distances between empirical cdfs before

and after a given change-point candidate. An example of a test that easily extends to

the case of multivariate data can be found in Harchaoui et al. (2009), who proposes a

kernel-based method.

The case of multiple change-points in the nonparametric setting has attracted consid-

erably less attention in the statistical literature, however, we observe a growing interest

in this problem in recent publications. For example, Matteson and James (2014) apply

the Binary Segmentation algorithm using the energy statistic of Szekely and Rizzo (2005)

as the contrast function, which allows for the detection of any type of distributional

change in the multivariate data. In James and Matteson (2015), the authors consider a

multivariate optimisation problem similar to (2.20), with the cost function based on a

quicker to compute approximation of the energy statistic. Another example of a multi-

variate optimisation type approach is taken in Haynes et al. (2016a); Zou et al. (2014),

with the cost function based on a functional of the joint non-parametric log-likelihood

function of the data.

2.3 Multiscale time series models

Broadly speaking, a univariate time series Xt, t = 1, . . . , T is said to follow a multiscale

model, when Xt is observed at a fine resolution, e.g. daily, but it depends on the

observations of this or other time series recorded on a course scale, e.g. weekly, or

vice-versa. An extensive list of data that fit this framework, as well as a review of the

multiscale methodology can be found in Ferreira and Lee (2007), Ferreira et al. (2010)
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and Nason (2010). This section discusses a selection of multiscale time series models,

that are related to the Adaptive Multiscale Autoregressive time series models that we

introduce in Chapter 5.

2.3.1 Multiscale time series models of Ferreira et al. (2006)

Ferreira et al. (2006) introduces a class of multiscale time seris models that consist of two

main building blocks: Yt, t = 1, . . . , Tm, the fine level process, where m > 1 is known,

and the coarse level aggregate process Xt defined as follows

Xt = m−1
m∑

j=1
Ytm−j + εt, (2.28)

where the noise term εt ∼ N (0, σ2) form a i.i.d. sequence independent of the fine

level process. To model the behaviour of the fine level process, Ferreira et al. (2006)

recommends to choose a simple model, e.g. AR(1), and show that with such choice

the resulting coarse level process given by (2.28) can emulate long memory process. To

estimate (2.28) from the data, Ferreira et al. (2006) propose a Bayesian procedure based

on Markov Chain Monte Carlo (Gilks, 2005).

2.3.2 Mixed Data Sampling Regression Models

Another attempt to model time series sampled at different frequncies can be found in

Ghysels et al. (2004), who propose Mixed Data Sampling (MIDAS) regression model.

Using the notation of the previous section, the MIDAS model is defined as follows

Xt = β0 +
p∑

i=1
bi(Ytm−i;β) + εt, (2.29)

where b1(·;β), . . . , bp(·;β) are given functions of the lagged observations recorded at a

higher frequency and a low-dimensional vector of unknown parameters β = (β1, . . . , βq)′
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and εt is a random noise. Here the value of m indicates that for each recorded observation

of Xt, m values of Yi are sampled.

Data that are sampled at various frequencies are ubiquitous in finance and macroeco-

nomics, which is perhaps one of the reasons why MIDAS models have found multiple

applications in the corresponding literature, e.g. for forecasting of daily volatility (Ghysels

and Valkanov, 2006), quarterly GDP growth by using monthly business cycle indicators

(Bai et al., 2013; Clements and Galvão, 2009) or other daily financial data Andreou et al.

(2013).

Depending on the specfication of bi(·;β) in (2.29) are typically estimated using either

Ordinary Least Squares of Nonlinear Least Squares, for details and examples see Ghysels

et al. (2007). Here we mention one particular form of bi(·;β) studied in Forsberg and

Ghysels (2007), who consider

Xt = β0 +
q∑

j=1
βj

τj∑
i=1

Ytm−i + εt, (2.30)

where 1 ≤ τ1 < . . . ≤ τq are known integers, as Chapter 5 introduces a model that assumes

a similar structure of the conditional mean of the time series of interest. However, there

are some important differences, e.g. τ1, . . . , τq in our model are unknown. For more

details, see Chapter 5.



Chapter 3

Ranking-Based Variable Selection

for high-dimensional data

3.1 Introduction

Suppose Y is a response, covariates X1, . . . , Xp constitute the set of random variables

which potentially influence Y , and we observe Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n,

independent copies of Z = (Y,X1, . . . , Xp). In modern statistical applications, where p

could be very large, even in tens or hundreds of thousands, it is often assumed that there

are many variables having no impact on the response. It is then of interest to use the

observed data to identify a subset of X1, . . . , Xp which affects Y . The so-called variable

selection or subset selection problem plays an important role in statistical modelling

for the following reasons. First of all, the number of parameters in a model including

all covariates can exceed the number of observations when n < p, which makes precise

statistical inference not possible. Even when n ≥ p, constructing a model with a small

subset of initial covariates can boost the estimation and prediction accuracy. Second,

parsimonious models are often more interpretable. Third, identifying the set of important

variables can be the main goal of statistical analysis, which precedes further scientific
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investigations.

Our aim is to identify a subset of {X1, . . . , Xp} which contributes to Y , under scenario

in which p is potentially much larger than n. To model this phenomenon, we work in

a framework in which p diverges with n. Therefore, both p and the distribution of Z

depend on n and we work with a triangular array, instead of a sequence. Our framework

includes, for instance, high-dimensional linear and non-linear regression models. Our

proposal, termed Ranking-Based Variable Selection (RBVS), can be in general applied

to any technique which allows the ranking of covariates according to their impact on the

response. Therefore, we do not impose any particular model structure on the relationship

between Y and X1, . . . , Xp, however ω̂j = ω̂j(Z1, . . . ,Zn), j = 1, . . . , p, the measure

used to assess the importance of covariates (either joint or marginal) may require some

assumptions on the model. The main ingredient of the RBVS methodology is a variable

ranking defined as follows.

Definition 3.1.1. The variable ranking Rn = (Rn1, . . . , Rnp) based on ω̂1, . . . , ω̂p is a

permutation of {1, . . . , p} satisfying ω̂Rn1 ≥ . . . ≥ ω̂Rnp . Potential ties are broken at

random.

A large number of measures can be used to construct variable rankings. In the linear

model, the marginal correlation coefficient serves as an example of such a measure. It is

the main component of the Sure Independence Screening (SIS, Fan and Lv (2008)). Hall

and Miller (2009a) consider the generalized correlation coefficient, which can capture

(possibly) non-linear dependence between Y and Xj’s. Along the same lines, Fan et al.

(2011) propose a procedure based on the magnitude of spline approximations of Y over

each Xj, aiming to capture dependencies in non-parametric additive models. Fan and

Song (2010) extend SIS to a class of GLMs, using estimates of the maximum marginal

likelihood as the measure of association. Cho and Fryzlewicz (2012a) consider variable

screening based on the tilted correlation, which accounts for high correlations between
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the variables, when such are present. Li et al. (2012a) utilise the Kendall rank correlation

coefficient, which can be applicable when Y is, for example, a monotonic function of the

linear combination of X1, . . . , Xp. Several model-free variable ranking procedures have

been also advocated in the literature. Li et al. (2012b) propose to rank the covariates

according to their distance correlation (Székely and Rizzo, 2009) to the response. Zhu

et al. (2011) propose to use the covariance between Xj and the cumulative distribution

function of Y conditioning on Xj at point Y as the quantity estimated for screening

purposes. He et al. (2013) suggest a ranking procedure relying on the marginal quantile

utility; Shao and Zhang (2014) introduce a ranking based on the martingale difference

correlation. An extensive overview of these and other measures that can be used for

variable screening can be found in Liu et al. (2015). In this work we also consider variable

rankings based on measures which originally have not been developed for this purpose,

e.g. regression coefficients estimated via penalised likelihood minimisation procedures

such as Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) or MC+ (Zhang, 2010).

Variable rankings are used for the purpose of so-called variable screening (Fan and Lv,

2008). The main idea behind this concept is that truly important covariates are likely to

be ranked ahead of the irrelevant ones, so variable selection can be performed on the set

of the top-ranked variables. Variable screening procedures attained recently considerable

attention due to their simplicity, wide applicability and computational gains they offer

to practitioners. Hall and Miller (2009a) suggest that variable rankings can be used for

the actual variable selection. They propose to construct bootstrap confidence intervals

for the position of each variable in the ranking and select covariates for which the right

end of the confidence interval is lower than some cutoff, e.g. p/2. This principle, as its

authors admit, may lead to undesirable high rate of false positives, and the choice of the

ideal cutoff might be very difficult in practice, which was the case in our real data study

in Section 3.7. Hall and Miller (2009b) show that various types of the bootstrap are able
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to estimate the distribution of the ranks consistently, however, do not prove that their

procedure is able to recover the set of the important variables.

Another approach involving subsampling is taken by Meinshausen and Bühlmann

(2010), who propose Stability Selection (StabSel), a general methodology aiming to

improve any variable selection procedure. In the first stage of the StabSel algorithm, a

chosen variable selection technique is applied to randomly picked subsamples of the data

of size ⌊n/2⌋. Subsequently, the variables which are most likely to be selected by the

initial procedure, i.e. their selection probabilities exceed a prespecified threshold, are

taken as the final estimate of the set of the important variables. An appropriate choice

of the threshold leads to finite sample control of the rate of false discoveries of a certain

type. Shah and Samworth (2013) propose a variant of StabSel with a further improved

error control.

Our proposed method also incorporates subsampling to boost existing variable selec-

tion techniques. Conceptually, it is different from StabSel. Informally speaking, RBVS

sorts covariates from the most to the least important, while StabSel treats variables

as either relevant or irrelevant and equally important in either of the categories. This

has far-reaching consequences. First of all, RBVS is able to simultaneously identify

subsets of covariates appearing to be important consistently over subsamples. The same

is not computationally feasible for Stability Selection, which only analyses the marginal

distribution of the initial variable selection procedure. The bootstrap ranking approach

of Hall and Miller (2009a) relies on marginal confidence intervals, thus it can be also

regarded as a “marginal” technique. Second, RBVS does not depend on any regularity

parameters or a model complexity penalty, it only requires the parameters of the incor-

porated subsampling procedure (naturally, these are also required by the approaches of

Hall and Miller (2009a) and Meinshausen and Bühlmann (2010)). RBVS can therefore

be viewed as more automatic and data adaptive than both StabSel and the approach of
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Hall and Miller (2009a), which is illustrated by the data example in Section 3.7.

The key idea behind RBVS stems from the following observation: although some

subsets of {X1, . . . , Xp} containing irrelevant covariates may appear to have a high

influence over Y , the probability that they will exhibit this spurious relationship is very

small. On the other hand, truly important covariates will typically consistently appear to

be related to Y , both over the entire sample and over randomly chosen subsamples. This

motivates the following procedure. In the first stage, we repeatedly assess the impact of

each variable on the response, with the use of a randomly picked part of the data. For

each random draw, we sort the covariates in decreasing order, according to their impact

on Y , obtaining a ranking of variables. In the next step, we identify the sets of variables

which appear in the top of the rankings frequently and we record the corresponding

frequencies. Using these, we decide how many and which variables should be selected.

RBVS is a general and widely-applicable approach; it can be used with any measure

of dependence between Xj and Y , either marginal or joint, both in a parametric and

non-parametric context. We do not restrict Y and Xj’s to be scalar, they can be e.g.

multivariate, or be curves or graphs. RBVS focuses on variable selection; we provide

empirical evidence that it outperforms prediction-based approaches when the predictive

model is misspecified or non-identifiable. The covariates that are highly, but spuriously

related to the response are less likely to exhibit relationship to Y consistently over

the subsamples than the truly relevant ones, thus our approach is “reluctant” to select

irrelevant variables. Finally, the RBVS algorithm is easily parallelizable and adjustable

to available computational resources, making it useful in analysis of extremely high-

dimensional data sets. Its R implementation is publicly available in the R package rbvs

(Baranowski et al., 2015).

The rest of the chapter is organised as follows. Section 3.2 describes two examples

which further motivate our proposal. In Section 3.3, we define the set of important
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covariates for variable rankings and introduce the RBVS algorithm. Section 3.4 reports

theoretical arguments showing that RBVS is a consistent statistical procedure. In Sec-

tion 3.5, we propose an iterative extension of RBVS, which aims to boost its performance

in the presence of strong dependencies between the covariates. The empirical perfor-

mance of RBVS is illustrated in Section 3.6 and Section 3.7 on simulated and real data.

Section 3.9 discusses various computational aspects of the proposed methodology. Finally,

Section 3.10 contains the proofs of our theoretical results.

3.2 Motivating examples

To further motivate our methodology, we discuss the following examples.

Example 3.2.1 (riboflavin production with Bacillus subtils, for details see Meinshausen

and Bühlmann (2010)). The data set consists of the response variable being the logarithm

of the riboflavin production rate and transformed expression levels of p = 4088 genes for

n = 111 observations. The aim is to identify those genes whose mutation leads to a high

concentration of riboflavin.

Example 3.2.2 (Fan and Lv (2008)). We consider a random sample generated from the

linear model Yi = 5Xi1+5Xi2+5Xi3+εi, i = 1, . . . , n, where (Xi1, . . . , Xip) ∼ N (0,Σ) and

εi ∼ N (0, 1) are independent, Σjk = 0.75 for j ̸= k and Σjk = 1 otherwise. The number

of covariates p = 4088 and the sample size n = 111 are the same as in Example 3.2.1.

We consider the variable ranking defined in Definition 3.1.1, based on the sample

marginal correlation coefficient in both examples. This choice is particularly reasonable

in Example 3.2.2, where at the population level the Pearson correlation coefficient is the

largest for X1, X2 and X3 which are the only truly important ones. The linear model

has been previously used to analyse the riboflavin data set (Meinshausen and Bühlmann,
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2010), therefore the sample correlation may be useful in identifying important variables

in Example 3.2.1 too.

Figure 3.1 demonstrates the “paths” generated by Algorithm 3.3 introduced in the

next section. In both examples, the paths share common features, i.e. the estimated

probability is large for the first few values of k and it declines afterwards. Interestingly,

in Example 3.2.2 the curves reach levels very close to 0 shortly after k = 3, which is the

number of the important covariates here. Crucially, the subset corresponding to k = 3

contains the three first covariates (Xi1, Xi2, Xi3), which are relevant in this example. This

observation suggests that such paths as those presented in Figure 3.1 may be used to

identify how many and which variables are important, hence it might be used for the

purpose of variable selection.
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(b) Example 3.2.2

Figure 3.1: Estimated probabilities corresponding to the k-element sets which appear to
be the most highly correlated to the response, based on 500 subsamples. On the x-axis, k
denotes the number of elements in a set. On the y-axis we have the estimated probability
corresponding to the most frequently occurring subset of covariates of size k. The three
different lines in each example correspond to a different subsample size used to generate
paths details are given in Section 3.3).
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3.3 Methodology of Ranking-Based Variable Selec-

tion

In this section, we introduce the Ranking-Based Variable Selection algorithm. The main

purpose of RBVS is to find the set of top-ranked variables, which we formally define.

3.3.1 Notation

Hereafter, |A| stands for the number of elements in a set A. For any k = 0, . . . , p, we

denote Ωk = {A ⊂ {1, . . . , p} : |A| = k}. For every A ∈ Ωk, k = 1, . . . , p, we define the

probability of its being ranked at the top by

πn(A) = P ({Rn1(Z1, . . . ,Zn), . . . , Rnk(Z1, . . . ,Zn)} = A) . (3.1)

For k = 0, we set πn(A) = πn(∅) = 1. For any integer m satisfying 1 ≤ m ≤ n, we define

πm,n(A) = P ({Rn1(Z1, . . . ,Zm), . . . , Rnk(Z1, . . . ,Zm)} = A) . (3.2)

The random samples in our framework form a triangular array, hence we need to use a

double subscript in the definition above.

3.3.2 Definition of a k-top-ranked and the top-ranked set

We define the set of the important variables in the context of variable rankings.

Definition 3.3.1. Any set S ∈ Ωk, k < p, is said to be k-top-ranked when

lim inf
n→∞

πn(S) > 0.
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Definition 3.3.2. Set A ∈ Ωk is said to be top-ranked if it is k-top-ranked and a

k + 1-top-ranked set does not exist, i.e. lim infn→∞ πn(A) = 0 for all A ∈ Ωk+1. It is

unique when the existence of another top-ranked set A′ ∈ Ωk′ implies A = A′ for all n

sufficiently large.

Some remarks are in order. Firstly, Definition 3.3.1 formalises the statement that

A appears at the top of the ranking with high probability. We use limit inferior in

the definitions above as limn→∞ πn(A) in general does not exist. Furthermore, we

consider lim infn→∞ πn(S) > 0 in Definition 3.3.1, as in some scenarios it is strictly

lower than 1. In Example 3.2.2, for instance, X1, X2, X3 have equal impact on Y , hence

lim infn→∞ πn(A) = 1/3 for A = {1}, {2}, {3}.

Secondly, although the top-ranked set is unique under our assumptions (see Sec-

tion 3.3.3), this does not imply that other k-top-ranked sets are unique as well. In

Example 3.2.2 again, we observe that {1}, {2}, {3} are 1-top-ranked and {1, 2}, {1, 3},

{2, 3} are 2-top-ranked. However, the top-ranked set is unique and equal to {1, 2, 3}.

Finally, we have ∑A∈Ωk
πn(A) = 1, hence maxA∈Ωk

πn(A) ≥
(

p
k

)−1
for k = 1, . . . , p.

In particular, if p were bounded in n, the top-ranked set would not exist. Therefore, we

restrict ourselves to the case of p diverging with n (allowing both p ≤ n and p > n). In

Section 3.6 we show that RBVS works well for p both comparable to and much larger

than n.

3.3.3 Top-ranked set for a class of variable rankings

The top ranked set defined in Definition 3.3.2 exists for a wide class of variable rankings,

as we can learn from Proposition 3.3.1 below. Consider ωj, j = 1, . . . , p, a measure

of the contribution of each Xj to the response, depending on the distribution of Z =

(Y,X1, . . . ., Xp) (thereby on n, as p changes with n). For ease of notation, assume

ω1 ≥ ω2 ≥ . . . ≥ ωp ≥ 0. Let ω̂j = ω̂j(Z1, . . . ,Zn) be an estimator of ωj. We make the
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following assumptions.

(C1) For some ϑ ≥ 0 and any cϑ > 0 we have supj=1,...,p P
(
|ω̂j − ωj| ≥ cϑn

−ϑ
)
≤

Cϑ exp (−nγ), where constants Cϑ, γ > 0 do not depend on n.

(C2) There exists l = 0, 1, . . . , p such that for each a > l, there are many covariates

which have the same impact on Y as Xa. More precisely, for each a > l there

exists Ma ⊂ {l + 1, . . . , p}, such that a ∈ Ma, the distribution of ω̂j, j ∈ Ma, is

exchangeable and |Ma| →
n
∞.

(C3) Let s be the smallest non-negative integer l satisfying (C2). Assume that s is

bounded in n. There exists η ≤ ϑ, where ϑ is as in (C1), and cη > 0 such that

minj=1,...,s ωj −maxj>s ωj ≥ cηn
−η uniformly in n.

(C4) The number of covariates p ≤ C1 exp
(
nb1
)
, where 0 < b1 < γ and γ is as in (C1).

Condition (C1) holds for a wide range of measures. The sample correlation coefficient

satisfies (C1) when the data follow a multivariate normal distribution (Kalisch and

Bühlmann (2007), Lemma 1), or when Y ,X1, . . . , Xp are uniformly bounded (Delaigle

and Hall (2012), proof of Theorem 1). Li et al. (2012a) in their Theorem 2 demonstrate

that Kendall’s τ meets (C1) under the Marginally symmetric condition and Multi-modal

condition. Distance Correlation satisfies (C1) under regularity assumptions on the tails

of distribution of Xj ’s and Y (Li et al. (2012b), Theorem 1). The Lasso estimates of the

regression coefficients in the linear model meet (C1) if the covariates satisfy the sparse

Riesz condition and the regression coefficients are sparse (Zhang and Huang (2008),

Theorem 3).

In condition (C3), we assume that there is a gap between ωs and ωs+1, which means

that ωj separates the first s variables (which we believe to be relevant ones) from the

remaining ones. The gap η is allowed to decrease slowly to zero. Furthermore, we assume

s is bounded in n, which combined with diverging p implies that the number of truly
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important covariates is very small (this can be seen as a variant of the so-called “sparsity”

assumption, more on which later in this section). Conditions (C1) and (C3) together

imply that the ranking based on on ω̂j has the sure independence screening property

(Fan and Lv, 2008).

We note that Meinshausen and Bühlmann (2010) use the exchangeability assumption

on the selection of noise variables. However, it concerns a variable selection procedure,

while we impose restrictions on the measure ω̂j. The main difference between their

assumption and (C2) is that they require all covariates to be equally likely to be selected,

while we allow for many groups within which each variable has the same impact on Y .

Condition (C2) can be linked to the sparsity assumption which requires that only

a few covariates have a significant impact on the response. In our framework, these

are X1, . . . , Xs. For the remaining covariates, the sparsity may require, for example,

that the regression coefficients corresponding to them are zero. In (C2) each Xa, a > s,

may contribute to Y , but, speaking heuristically, it is difficult to select Xa, a > s with

the largest contribution, as many covariates have the same impact on Y . We believe

that this assumption is likely to be met at least approximately (in the sense that large

groups of covariates exhibit similar small impact on the response), especially for large

dimensions p. Condition (C4) restricts the maximum number of covariates, but it allows

high-dimensional settings where the number of covariates grows exponentially with n.

Proposition 3.3.1. Let Rn be a variable ranking based on ω̂j, j = 1, . . . , p, given

in (3.1.1). Under conditions (C1)-(C4), the unique top ranked set defined in Definition

3.3.2 exists and equals S = {1, . . . , s}, where s is as in (C3).

Proposition 3.3.1 can be applied to establish a link between the top-ranked set and the

set of the important variables understood in a classic way. Consider the following linear

regression model Y = ∑p
j=1 βjXj + ε, where βj ’s are unknown regression coefficients, Xj ’s

- random predictors and ε is an error term. In this model, the top-ranked set can coincide
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with {k : βk ̸= 0}. To observe that, we consider the variable ranking given by (3.1.1)

based on ω̂j = Ĉor (Y,Xj), which satisfies (C1) when (Y,X1, . . . , Xp) is e.g. Gaussian

(Kalisch and Bühlmann, 2007). Condition (C2) is met when e.g. Ĉor (Y,Xj) = ρ for

some ρ ∈ (−1, 1) and all j such that βj = 0, and p →
n
∞. Imposing some restrictions

on the correlations between the covariates, we also guarantee that (C3) holds. From

Proposition 3.3.1, {k : βk ̸= 0} is then the top-ranked set, provided that p→
n
∞ no faster

than in (C4).

3.3.4 Ranking-Based Variable Selection

Assume the top-ranked set S exists and is uniquely determined and denote by s = |S|

its size. To construct an estimate of S, we introduce the estimators of πm,n(A) defined

by (3.2) using a variant of the m-out-of-n bootstrap (Bickel et al., 2012).

Definition 3.3.3. Let B = 1, 2, . . ., m = 1, . . . , n and set r = ⌊n/m⌋. For any b =

1, . . . , B, let Ib1, . . . , Ibr be mutually exclusive subsets of {1, . . . , n} of size m, drawn

uniformly from {1, . . . , n} without replacement. Assume that the sets of subsamples

are independently drawn for each b. For any A ∈ Ωk, we estimate πm,n(A) by the

fraction of subsamples in which A appeared at the top of the ranking, i.e. π̂m,n(A) =

B−1∑B
b=1 r

−1∑r
j=1 I (A = Rn,1:k (Zi, i ∈ Ibj)) .

In general πm,n(A) can be different than πn(A), however, we later show that πm,n(A)

and πn(A) are large for the same subsets, provided that m is not too small. This combined

with some bounds on the estimation accuracy of π̂m,n(A) will imply that π̂m,n(A) can be

used to find the top-ranked set from the data. In practice the number of elements in

S is typically unknown, thus we need to consider subsets of any size in our estimation

procedure. Under assumptions given in Section 3.4, πm,n(A) and πn(A) are large for the
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same subsets, thus for n sufficiently large, S will be one of the following sets:

Ak,m = argmaxA∈Ωk
πm,n(A), k = 0, 1, . . . , p. (3.3)

We define the sample counterparts of Ak,m as

Âk,m = argmaxA∈Ωk
π̂m,n(A). (3.4)

At this point we can better understand the importance of the parameter B introduced in

Definition 3.3.3. Note that maxA∈Ωk
π̂m,n(A) ≥ (Br)−1. For moderate sample sizes, r

may not be large, while we expect the majority of πm,n(A)’s to be small, even smaller

than 1/r. In this situation, the bias of maxA∈Ωk
π̂m,n(A) with B = 1 is expected to be

high and estimate of Âk,m inaccurate. A moderate value of B brings Âk,m closer to its

population counterpart Ak,m. The theoretical requirements on B are given in Section 3.4;

our guidance for the choice of B in practice is provided in Section 3.6.2.

Under appropriate assumptions, Âs,m equals S with high probability, as shown in

Section 3.4. In practice, we do not know s and it should be estimated as well. One

possibility is to apply hard thresholding rule and set ŝζ = min
{
k : π̂m,n

(
Âk+1,m

)
≤ ζ

}
,

where ζ > 0 is a prespecified threshold. This approach could be justified by the existence

of the asymptotic gap between πm,n(As+1,m) and πm,n(As,m). However, the magnitude

of this difference is typically unknown and can be rather small, which makes the choice

of ζ difficult. As an alternative, we propose to estimate s by

ŝ = argmink=0,...,p−1
π̂m,n(Âk+1,m)
π̂m,n(Âk,m)

, (3.5)

which is the k where π̂m,n(Âk+1,m) declines the most drastically. This estimator has

the advantage of not requiring any parameters. In Section 3.4, it is also shown to be
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consistent.

3.3.5 The Ranking-Based Variable Selection algorithm

The RBVS algorithm consists of the four main steps and, described by the pseudocode,

it is defined in Algorithm 3.3. In Step 1 below, we draw subsamples from the data, using

the subsampling scheme introduced in Definition 3.1.1. Subsequently in Step 2, for each

subsample drawn we calculate the estimates of ωj’s based on the subsamples Ibl, and

sort the sample measures {ω̂j(Zi ∈ Ibl)}p
j=1 in non-increasing order to find Rn(Zi ∈ Ibl)

defined in Definition 3.1.1. Having computed the variable rankings, we proceed to Step 3,

where for each k = 1, . . . , kmax we find Âk,m, the k-element set the most frequently

occurring in the top of Rn(Zi ∈ Ibl), b = 1, . . . , B, l = 1, . . . , r. Finally, in Step 4,

probabilities π̂m,n(Âk,m) are used to find ŝ, the estimate of the size of the top-ranked

set and Ŝ = Âŝ,m is returned as the final estimate of S. Note that in the algorithm we

consider π̂m,n(Âk,m) for k ≤ kmax. This decreases the computational burden involved in

Step 4 (see Section 3.9.1).

Algorithm 3.3 Ranking-Based Variable Selection
Input: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m s.t.

1 ≤ m ≤ n, positive integers kmax, B.
Output: The estimate of the set of important variables Ŝ.
procedure RBVS(Z1, . . . ,Zn,m,B, kmax)

Step 1 Let r = ⌊n/m⌋. For each b = 1, . . . , B, draw uniformly without replacement
m-element subsets Ib1, . . . , Ibr ⊂ {1, . . . , n}.
Step 2 Calculate ω̂j(Zi ∈ Ibl) and the corresponding variable ranking Rn(Zi ∈ Ibl)
for all b = 1, . . . , B, l = 1, . . . , r and j = 1, . . . , p.
Step 3 For k = 1, . . . , kmax find Âk,m given by (3.4).
Step 4 Find ŝ = argmink=0,...,kmax−1

π̂m,n(Âk+1,m)
π̂m,n(Âk,m) and return Ŝ = Âŝ,m.

end procedure
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3.3.6 Relations to existing methodology

In this section, we provide a brief overview of the differences between RBVS, StabSel

and the bootstrap ranking approach of Hall and Miller (2009a).

3.3.6.1 Stability selection

Let us denote the selection probabilities πj = P
(
j ∈ Ŝλ

)
, j = 1, . . . , p, where Ŝλ is

the set of variables selected by a chosen variable selection technique with its tuning

parameter set to λ. The aim of StabSel is twofold: first, to select covariates that the

initial procedure selects with a high probability, second, to bound the average number of

false positives (denoted by EV ) below some prespecified level α > 0. For this purpose,

Meinshausen and Bühlmann estimate πj’s and select variables for which π̂j > π, where

π ∈ (2−1, 1) is a prespecified threshold. To control EV , one can set λ such that |Ŝλ| ≤ q,

where q ∈ {1, . . . , p} depends on π and α and is adjusted to ensure EV ≤ α. The exact

formula for q and other possible ways of controlling EV are given in Meinshausen and

Bühlmann (2010).

In contrast to StabSel, which needs a variable selection procedure, RBVS selects

variables based on a variable ranking, which implies another difference. Namely, in

our approach we consider joint probabilities πm,n(A), while in StabSel only marginal

probabilities are used. The estimates of the joint probabilities can be used to determine

the number of important covariates at the top of the variable ranking, not requiring

the specification of any thresholding parameters, as we demonstrate in Section 3.4.

Consequently, RBVS can be viewed as more automatic and “less marginal” than StabSel.

3.3.6.2 The bootstrapped rankings of Hall and Miller (2009a)

Let rnj be the position of the jth covariate in the variable ranking Rn = (Rn1, . . . , Rnp).

Formally, rnj = l if and only if when Rnl = j. To identify important covariates based on
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Rn, Hall and Miller (2009a) compute [r−
nj, r

+
nj], two-sided, equal tiled, percentile-method

bootstrap confidence intervals for rnj at a significance level α. A variable is considered to

be influential when r+
nj is lower than some prespecified cutoff level c, for instance c = p/2.

The number of variables selected by the procedure of Hall and Miller (2009a) depends

therefore on α and c and “marginal” confidence intervals [r−
nj, r

+
nj]. By contrast, RBVS

is based on the joint probabilities p̂m,n(A) and does not require the specification of any

tuning parameters.

3.3.6.3 Computational complexity of the related methods

Let us denote by c(n, p) the computational cost of evaluating ω̂j for all j = 1, . . . , p

using n observations. Subsampling takes O(Bn) operations. Finding all ω̂j’s takes

c(m, p)×Br manipulations. Next, evaluating rankings takes O((p+ kmax log(kmax))Br)

operations. Step 3 can be performed in O(Brk2
max) basic operations. The final step

requires O(Brkmax) operations, hence the computational complexity of Algorithm 3.3

is c(m, p)×Br +O(max{p, k2
max}Br). For our recommended choice of kmax and m see

Section 3.6.2.

Table 3.1 summarises computational complexity of 3.3 and its competitors: SIS

(Fan and Lv, 2008) and StabSel (Meinshausen and Bühlmann, 2010). For reference, we

include the computational complexity of the k-fold cross-validation (k-fold CV), which is

frequently used to find optimal parameters for e.g. Lasso, MC+ or SIS. The computational

complexity of the method proposed by Hall and Miller (2009a) is comparable to StabSel,

hence omitted in this comparison. In theory, SIS requires the least computational

resources, especially in the case of p >> n. Simple k-fold cross-validation has the

second lowest computational complexity. StabSel in the case of n > √p is theoretically

quicker than RBVS, however, the common factor B× c (n/2, p) typically dominates both

O(Bp) and O(max{p, n2}), therefore StabSel and RBVS usually take similar amount of
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computational resources.

k-fold CV SIS StabSel RBSS
k × c

( (k−1)n
k

, p
)

O(np) + k × c
( (k−1)n

k
, n

log(n)

)
B × c

(
n
2 , p
)

+ O(Bp) B × c( n
2 , p) + O(max{n2, p}B)

Table 3.1: Computational complexity of Algorithm 3.3 and its competitors. The cost of
the base learner in relation to the sample size n and the number of variables p is denoted by
c(n, p); B is the number of subsamples used in StabSel and RBVS. Parameters for SIS, StabSel,
RBVS are set to the recommended values. For SIS, we assume that k-fold CV is used after the
screening step.

3.4 Theoretical results

Under the theoretical framework below, we prove that Algorithm 3.3 recovers the top-

ranked given by Definition 3.3.2 with probability tending to 1 when n → ∞. As in

Section 3.3, we consider a variable ranking based on measure ω̂j, j = 1, . . . , p, and,

w.l.o.g., assume that its population counterpart satisfies ω1 ≥ . . . ≥ ωp ≥ 0. We make

the following assumptions.

(A1) For some ϑ ≥ 0 and any c > 0 we have

sup
j=1,...,p

P
(
|ω̂j(Z1, . . . ,Zm)− ωj| ≥ cϑm

−ϑ
)
≤ Cϑ exp (−mγ) ,

where constants Cϑ, γ > 0 and m are specified in (A5).

(A2) There exists l = 0, 1, . . . , p s.t. for each a > l there exists Ma ⊂ {l + 1, . . . , p} s.t.

the distribution of ω̂j(Z1, . . . ,Zm), j ∈Ma ∪ {a}, is exchangeable, where m is as

in (A5).

(A3) Let s be the smallest non-negative integer l satisfying (A2). Assume that s

is bounded in n. There exists η ≤ ϑ, where ϑ is as in (A1), and cη > 0 s.t.

minj=1,...,s ωj −maxj>s ωj ≥ cηm
−η uniformly in n, where m is as in (A5).
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(A4) There exist constants C1 > 0 and 0 < b1 < γ with γ as in (A1) s.t. p ≤ C1 exp
(
nb1
)
.

(A5) The subsample size m goes to infinity at rate nb2 , with 0 < b2 < 1 and γb2− b1 > 0,

where γ is as in (A1) and b1 as in (A4).

(A6) Subsets Ma defined in (A2) satisfy mina>s |Ma| ≥ C3n
b3 with s as in (A3),

b3 > 2(1− b2), b2 from (A5) and C3 not depending on n.

(A7) The number of random draws B is bounded in n, but B ≥ 3 and Bα−2/3 >

maxk=1,...,s

(
s
k

)
, for some α ∈ (2/3, 1) and s as in (A3).

(A8) The maximum subset size kmax ≤ C4n
b4 with a constant C4 > 0 and b4 satisfying

b3− b4 > 2α(1− b2), where b2, b3 and α are as in (A5), (A6) and (A7), respectively.

Assumptions (A4), (A2) and (A3) can be seen as natural extensions of (C1), (C2)

and (C3) respectively, to the case when ω̂j’s are evaluated with m out of n observations

only. Similarly, both (A4) and (C4) limit the growth of the number of covariates, but p

may be exponentially larger than n. Note that (A3) and (A4) are almost exactly the

same as (C3) and (C4), but formally need to be repeated here, because they involve

theoretically different constants; (A2) and (A6) combined together imply (C2).

Assumption (A5) establishes the required size of the subsample size m. It implies

that both n/m→
n
∞ and m→

n
∞. Such condition is common in literature on bootstrap

resampling and U-statistics, see for instance Bickel et al. (2012), Götze and Račkauskas

(2001) or Hall and Miller (2009b). The lower bound on B given in (A7) is needed only

in the case when some of relevant variables are equally important. Assumption (A6)

imposes a lower bound on the number of covariates which have the same impact on Y .

Combined with (A8), is is needed to justify that the sets of irrelevant covariates have

sufficiently small empirical probabilities π̂m,n (A). Note that (A6) imposes a lower bound

on p (p ≥ C3n
b3).
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Assumptions (A1) combined with (A3) and the technical conditions on the size of

p imply that, with large probability, the set of covariates with the largest ω̂j coincides

with the covariates with large ωj at the population level. In practice, however, we do

not know how many variables should be considered as important, nor do we know the

threshold separating large ω̂j’s from the small ones. Moreover, irrelevant covariates can

spuriously exhibit large empirical impact on the response, especially when p >> n. The

resampling based set probability estimation is necessary in order to discover variables

which non-spuriously appear at the top of the analysed rankings. The following theorem

establishes the consistency of the RBVS methodology; for the proof see Section 3.10.2.

Theorem 3.4.1. Suppose assumptions (A1)-(A8) hold. Then Ŝ = Âŝ,m, where Âŝ,m is

given by (3.4) and (3.5), satisfies P
(
Ŝ = S

)
= 1− o

(
n2αb2 exp

(
−n(1−α)b2

))
→
n

1. Ŝ is

therefore a consistent estimator of the top-ranked set S.

3.5 Iterative extension of RBVS

In the presence of strong dependence between covariates, measure ω̂j may fail to detect

some important variables. For instance, a covariate may be jointly related but marginally

unrelated to the response (see Fan and Lv (2008) or Barut (2013)). Under such a setting,

the top-ranked set given in Definition 3.3.2 may contain just some of the important

variables. To overcome this problem, we propose IRBVS, an iterative extension of

Algorithm 3.3. Again using pseudocode, we describe IRBVS in Algorithm 3.4. In each

iteration, IRBVS removes the linear effect on the response of the variables found at the

previous iteration, it is therefore applicable when the relationship between Y and Xj’s

is at least approximately linear. It is possible to further extend our methodology; e.g.

Barut (2013) demonstrates how to remove the impact of a given set of covariates on the

response in Generalised Linear Models.
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Algorithm 3.4 Iterative Ranking-Based Variable Selection
Input: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m s.t.

1 ≤ m ≤ n, positive integers kmax, B.
Output: The estimate of the set of important variables Ŝ.
procedure IRBVS(Z1, . . . ,Zn,m,B, kmax)

Initialise Ŝ = ∅.
repeat
Step 1 Find Y ∗

i , X
∗
ij , the residuals left after projecting Y,Xj onto the space spanned

by the covariates with indices in Ŝ and set Z∗
i = (Y ∗

i , X
∗
ij, j ∈ {1, . . . , p} \ Ŝ),

i = 1, . . . , n.
Step 2 Calculate Ŝ∗ = RBVS(Z∗

1, . . . ,Z∗
n,m,B, kmax).

Step 3 Set Ŝ := Ŝ∗ ∪ Ŝ.
until Ŝ∗ ̸= ∅; return Ŝ.

end procedure

We note that iterative extensions of variable screening methodologies are frequently

proposed in the literature, see for instance Fan and Lv (2008), Zhu et al. (2011) or

Li et al. (2012a). A practical advantage of the IRBVS algorithm over its competitors

is that, it does not require the specification of the number of variables added at each

iteration or the total number of iterations. Moreover, IRBVS appears to offer better

empirical performance than other iterative methods such as ISIS (Fan and Lv, 2008); see

Section 3.6.

3.6 Simulation study

3.6.1 Simulation methods

We illustrate the performance of the RBVS and IRBVS algorithms on simulated data

following models given in Section 3.6.3. In the first three models, which are linear, we

apply RBVS with the absolute values of the following measures: Pearson correlation

coefficient (PC) , the regression coefficients estimated via Lasso (Tibshirani, 1996), the

regression coefficients estimated via MC+ algorithm (Zhang (2010)). Corresponding

methods are termed, respectively, RBVS PC, RBVS Lasso and RBVS MC+. In Model
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(E) Y is binary, in which example we consider rankings based on the distance correlation

(DC, Li et al. (2012b)) aiming to capture any kind of dependence, leading to RBVS DC.

Techniques using Algorithm 3.4 are termed IRBVS PC, IRBVS Lasso, IRBVS MC+ and

IRBVS DC.

Recall that Lasso and MC+ estimators are defined as

β̂pen = argminβ

(n−1
n∑

i=1

Yi −
p∑

j=1
βjXij

2

+
p∑

j=1
pen(|βj|)

 ,

where pen(t) = λt for Lasso, pen(t) = λ
∫ t

0 max {0, (1− x/(γλ))} dx for MC+ and

λ, γ > 0 are tuning parameters. In StabSel, we set the tuning parameters such that

q ∈ {1, . . . , p} among the estimated coefficients are non-zero, as per the recommendation

of Meinshausen and Bühlmann (2010). To provide a fair comparison, we select λ for RBVS

Lasso and RBVS MC+ in the exactly same way as for StabSel setting q =
√

(2π − 1)EV p,

where π = 0.6 and EV = 2.5; γ = 3 for MC+ as in Breheny and Huang (2011). From

our experience, the value of q has a limited impact on the performance of Algorithm 3.3,

unless it is too small, i.e. smaller than the number of the important covariates. As in

RBVS, StabSel is applied with PC, Lasso and MC+.

We also apply standard Lasso and MC+ algorithms. The theoretically optimal

parameters for both methods did not perform well in our simulations, thus we use 10-fold

cross-validation to choose λ. The final group of the techniques included in our comparison

consists of SIS and its iterative extension ISIS ((Fan and Lv, 2008)). Standard ISIS

procedure did not perform well in our experiments (it was selecting a very large number

of false positives), therefore we apply a modified version of ISIS which involves certain

randomisation mechanism (Saldana and Feng (2014)). We use implementations of the

Lasso and MC+ algorithms from the R package ncvreg (Breheny and Huang, 2011). For

SIS based methods we use the R package SIS (Saldana and Feng, 2014). When it is
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relevant, we estimate the regression coefficients using OLS for the variables selected by

each of the chosen variable selection techniques.

3.6.2 Choice of parameters of the RBVS algorithm

RBVS involves the choice of three parameters, namely B, m and kmax. The B parameter

has been introduced to decrease the randomness of the method. Naturally, the larger the

value of B, the less the algorithm depends on a particular random draw. Assumption

(A7) requires B to be sufficiently large and bounded in n. However, the lower bound

given in (A7) depends on unknown constants. From the proof of Theorem 3.4.1, we learn

that if B is too small, the estimator ŝ given by (3.5) may underestimate s, in the case

when X1, . . . , Xs have exactly the same impact on Y . If this is not the case, the lower

bound on B in (A7) is too conservative. Our recommendation is to take a moderate

value of B from 100 to 500.

The problem of the choice of the subsample size m is more challenging. In Section 3.4,

we require m → ∞ at an appropriate rate, which is, however, unknown. In the finite-

sample case m cannot be too small, as it is unlikely that Rn based on a small sample

could give a high priority to the important variables. On the other hand, when m is too

large (i.e. close to n), subsamples largely overlap. In practical problems, we propose

to choose m = ⌊n/2⌋ and our simulation studies (Section 3.8) confirm that this choice

results in good finite-sample properties of the RBVS-based methods.

From our experience, the value of kmax has a negligible impact on the outcome of

RBVS, as long it is not extremely small. In all simulations conducted, π̂m,n(Âk,m) given

by (3.4) reaches and stays at the level of (Br)−1 for some k ≤ n, so we recommend

kmax = min{n, p}.
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3.6.3 Simulation models

We study the following simulation models.

Model (A) Taken from Fan and Lv (2008): Yi = 5Xi1 + 5Xi2 + 5Xi3 + εi, where

(Xi1, . . . , Xip) are i.i.d. observations from N (0,Σ) distribution and εi follow N (0, 1)

distribution. The covariance matrix satisfies Σii = 1, i, 1, . . . , p, Σij = ρ, |ρ| < 1 for i ̸= j.

This is a relatively easy setting, where all important Xj ’s are “visible” to any reasonable

marginal approach as they are the most highly correlated to Y at the population level.

Model (B) Taken from Fan and Lv (2008):

Yi = 5Xi1 + 5Xi2 + 5Xi3 − 15√ρXi4 + εi, (3.6)

where (Xi1, . . . , Xip) are i.i.d. observations fromN (0,Σ) and εi followN (0, 1) distribution.

The covariance Σ is as in Model (A), except Σ4,k = Σj,4 = √ρ. The challenge of this

model is that Xi4 has a large contribution to Y but it is marginally unrelated to the

response.

Model (C) Factor model with two factors, taken from Meinshausen and Bühlmann

(2010):

Yi = β1Xi1 + . . .+ βpXip + εi, (3.7)

where Xij = fijϕi +hijψi + θij and fij, ϕi, hij, ψi, θij , non-zero βj ’s are i.i.d. N (0, 1). The

number of βj ̸= 0 is set to s = 5, 10, and their indices are drawn uniformly without

replacement. In this model some of the non-zero regression coefficients are potentially

very small, thus the corresponding covariates are difficult to detect.
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Model (D) Taken from Hall and Miller (2009a):

Yi = Xi1 −Xi2 + εi, (3.8)

where Xi1 = Xi3 +Xi4, Xi2 = Xi3 +Xi5, and Xi3, . . . , Xip, εi are i.i.d. N (0, 1). Uncount-

ably many combinations of the first 5 covariates have the same explanatory power, so

the model is not identifiable.

Model (E) Logistic regression model taken from Hall and Xue (2014):

log qi

1− qi

= −2.5 +
3∑

j=1

4− j
3

{
Xij +Xi,j+3 + sin(Xij) + eXi,j+3

}
, (3.9)

where Yi ∈ {0, 1} follows a Bernoulli distribution with qi = P (Yi = 1|Xi1, . . . , Xip) and

(Xi1, . . . , Xip) i.i.d. N (0,Σ) with Σii = 1, Σij+3 = 0.85 for j = 1, 2, 3, Σij = 0 otherwise.

The dependence between the response and the important covariates Xi1, . . . , Xi6 is highly

non-linear.

3.6.4 Comments on the results

Tables 3.2–3.6 below contain the results. In Model (A), all methods but RBVS PC

almost always successfully recover the set of the important variables. StabSel, ISIS

based methods and RBVS significantly reduce the average FP. Interestingly, RBVS Lasso

and methods using Algorithm 3.4 perform better for higher dimensions p, which can be

concluded from the values of FP+FN. In general, all techniques but CV and SIS offer

very good performance.

Prediction based approaches (Lasso and MC+ with cross-validation) perform poorly

in Model (B) when p is large. In this case, both Lasso and MC+ frequently miss one

covariate. Even when X1, X2, X3 and X4 are detected, those techniques include a lot of

irrelevant covariates. RBVS PC cannot detect X4 which is not marginally related to Y .
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IRBVS and ISIS, deal with this difficulty well and mostly selects all relevant variables,

however, IRBVS based methods achieve lower average rate of false positives.

MC+ offers the best estimates of βj ’s in Model (C), however, IRBVS based methods

perform similarly in this aspect selecting many fewer false positives than either Lasso or

MC+. StabSel and RBVS based techniques fail to detect some of the important variables,

however, RBVS Lasso is better than StabSel Lasso when either p is large, or s = 10.

Finally, IRBVS PC, IRBVS Lasso and IRBVS MC+ perform similarly, suggesting that

in this scenario IRBVS is robust against the choice of measure used for variable ranking.

The approach based on the marginal correlation proves to be the most effective in

variable selection, when correlations between covariates are extremely strong, as we can

learn from Table 3.5. In Model (D), either RBVS PC or IRBVS PC achieves the best

error control when p is large.

In Model (E), IRBVS again proves to be the most effective variable selection

technique, even though the linear model is not correct here. Moreover, we observe again

that StabSel performs very well for small p, but it is significantly outperformed by IRBVS

when p is greater than 100. Finally, the choice of the measure of association between Y

and Xj have little impact on the quality of variable selection, yet PC yields the lowest

FP+FN.

Overall, variable selection techniques incorporating the RBVS algorithm perform

well, especially when p is much larger than n. Its iterative extension, IRBVS, in many

cases is able to detect variables overlooked by pure RBVS and other techniques. A

particular practical advantage of the IRBVS algorithm is that, unlike other iterative

variable selection techniques such as ISIS (Fan and Lv, 2008) or IRRCS (Li et al., 2012a),

it is fully automatic.

The performance of IRBVS is relatively robust against the choice of the measure

used in the procedure. Therefore we recommend to adjust this choice to the available
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computational resources and the size of the data. For large data sets (p > 10000,

n > 500), we recommend using IRBVS PC, which is extremely quick to compute with

the R package rbvs and achieves either the best or close to the best FP+FN in each

example. In the case of moderate data sizes, penalised likelihood methods typically offer

slightly better performance.
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n = 100 p = 100 ρ = 0
FP .00 2.00 .01 9.88 .03 .00 .01 .00 .01 .02 .02 2.06 3.01 .04 .04 .03
FN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 2.00 .01 9.88 .03 .00 .01 .00 .01 .02 .02 2.06 3.01 .04 .04 .03
ℓ2 .18 .36 .18 .59 .18 .18 .18 .18 .18 .18 .18 .22 .36 .18 .18 .18

time .00 .15 .25 .16 .44 .07 .82 .81 .07 .82 .81 .89 1.34 .12 1.25 1.24
n = 100 p = 100 ρ = 0.75

FP .00 5.00 .00 4.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
FN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 5.00 .00 4.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
ℓ2 .21 .84 .21 .66 .21 .21 .21 .21 .21 .21 .21 .21 .21 .21 .21 .21

time .00 .06 .05 .11 .07 .02 2.37 .63 .02 2.37 .63 .22 .12 .03 2.78 1.00
n = 100 p = 1000 ρ = 0

FP .00 9.58 .80 7.80 2.59 .00 .00 .00 .20 .20 .20 .00 .00 1.00 .60 .40
FN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 9.58 .80 7.80 2.59 .00 .00 .00 .20 .20 .20 .00 .00 1.00 .60 .40
ℓ2 .12 .74 .12 .64 .45 .12 .12 .12 .12 .24 .12 .12 .12 .37 .25 .24

time .00 .94 1.33 .17 .46 .21 3.07 3.65 .21 3.07 3.65 2.57 2.60 .54 4.63 5.63
n = 100 p = 1000 ρ = 0.75

FP .00 10.68 .00 5.33 .18 .66 .17 .00 .66 .33 .33 .66 .50 1.99 1.16 1.16
FN .00 .00 .00 .00 .00 .50 .00 .00 .50 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 10.68 .00 5.33 .18 1.16 .17 .00 1.16 .33 .33 .66 .50 1.99 1.16 1.16
ℓ2 .25 .95 .25 .59 .25 3.05 .25 .25 3.05 .25 .25 .34 .33 .85 .85 .85

time .00 .42 .29 .12 .09 .12 15.19 6.12 .12 15.19 6.12 1.70 1.58 .43 18.88 9.17
n = 100 p = 5000 ρ = 0

FP .00 14.31 .00 7.32 1.33 .00 .00 .00 .33 .33 .33 .00 .00 .33 1.00 .33
FN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 14.31 .00 7.32 1.33 .00 .00 .00 .33 .33 .33 .00 .00 .33 1.00 .33
ℓ2 .19 .67 .19 .53 .29 .19 .19 .19 .19 .29 .29 .19 .19 .19 .49 .29

time .00 2.06 3.89 .22 .52 .68 14.57 20.83 .68 14.57 20.83 12.75 13.00 1.20 22.57 31.99
n = 100 p = 5000 ρ = 0.75

FP .00 15.02 .00 3.05 .00 .01 .00 .00 .01 .00 .01 .00 .00 .01 .01 .01
FN .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00

FP+FN .00 15.02 .00 3.05 .00 .01 .00 .00 .02 .00 .01 .00 .00 .01 .01 .01
ℓ2 .13 .98 .13 .58 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13

time .00 1.58 1.32 .23 .12 .53 52.91 25.63 .53 52.91 25.63 7.55 7.76 1.01 59.73 33.70

Table 3.2: Model (A): The average number of False Positives (FP) and False Negatives (FN), the median of ℓ2 = ∥β̂−β∥, calculated
over 500 realisations. Also average computation times in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB
of RAM. Both RBVS and IRBVS use B = 500 and m = n

2 . Bold: the lowest or within 10% of the lowest value of FP+FN (or ℓ2
respectively). Underlined: best among non-iterative or iterative methods with the same base learner.
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n = 100 p = 100 ρ = 0.5
FP .00 30.10 14.25 16.93 15.98 .25 .31 .12 .86 .88 .62 5.90 2.29 1.49 1.70 .77
FN .00 .00 .69 .94 .94 1.91 1.43 1.43 1.37 2.11 1.85 .00 .00 .49 1.16 .73

FP+FN .00 30.10 14.94 17.87 16.91 2.16 1.75 1.56 2.23 2.99 2.47 5.90 2.29 1.98 2.87 1.49
ℓ2 .27 3.90 11.14 11.22 11.23 12.67 12.66 12.63 12.41 12.43 12.60 .66 .64 .48 .78 .60

time .00 .32 .28 .13 .18 .02 .60 .48 .02 .60 .48 .67 .51 .06 1.45 1.51
n = 100 p = 100 ρ = 0.75

FP .00 39.87 21.13 16.10 12.18 .37 .49 .01 .17 .77 1.10 6.49 2.74 1.20 1.52 1.73
FN .00 .37 1.00 1.49 1.49 2.58 1.38 1.38 1.72 2.46 1.74 .00 .00 .95 1.33 .49

FP+FN .00 40.24 22.13 17.59 13.67 2.95 1.87 1.39 1.89 3.24 2.85 6.49 2.74 2.15 2.85 2.22
ℓ2 .48 8.27 13.49 13.60 13.63 15.31 15.10 15.19 15.30 15.14 14.93 1.21 .96 .79 1.17 .88

time .00 1.35 .21 .13 .11 .02 .59 .50 .02 .59 .50 .57 .42 .04 1.35 1.48
n = 100 p = 1000 ρ = 0.5

FP .00 71.12 19.31 16.76 16.27 .31 .31 .08 .46 .69 .61 .77 .23 1.08 .77 .62
FN .00 1.00 1.00 1.00 1.00 1.46 1.00 1.00 1.01 1.00 1.00 .46 .46 .01 .00 .00

FP+FN .00 72.12 20.31 17.76 17.27 1.77 1.31 1.08 1.47 1.69 1.61 1.23 .69 1.09 .77 .62
ℓ2 .36 10.93 11.16 11.36 11.39 12.48 12.48 12.48 12.40 12.44 12.44 .46 .39 .46 .37 .38

time .00 2.23 .57 .13 .17 .11 3.26 3.59 .11 3.26 3.59 1.82 1.94 .36 6.49 8.50
n = 100 p = 1000 ρ = 0.75

FP .00 71.38 18.94 17.50 16.50 .25 .25 .00 .50 .50 .25 .51 .25 1.49 .51 .25
FN .00 1.00 1.00 1.00 1.00 1.74 1.00 1.00 1.00 1.00 1.00 .75 .75 .00 .00 .00

FP+FN .00 72.38 19.94 18.50 17.50 1.98 1.25 1.00 1.50 1.50 1.25 1.26 1.00 1.49 .51 .25
ℓ2 .36 13.25 13.53 13.80 13.80 15.12 15.05 15.12 15.00 15.05 15.11 .70 .54 .67 .53 .36

time .00 4.59 .38 .15 .13 .11 3.26 4.02 .11 3.26 4.02 1.67 2.17 .35 6.35 8.63
n = 100 p = 5000 ρ = 0.5

FP .00 76.17 18.01 17.81 17.80 .00 .00 .00 .00 .33 .17 .50 .33 .67 .33 .17
FN .00 1.00 1.00 1.17 1.17 1.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .00 .00 .00

FP+FN .00 77.17 19.01 18.97 18.97 1.83 1.00 1.00 1.00 1.33 1.17 1.50 1.33 .67 .33 .17
ℓ2 .26 11.02 11.23 11.61 11.61 12.56 12.52 12.52 12.52 12.53 12.53 .39 .45 .39 .26 .26

time .00 5.48 1.90 .18 .22 .55 12.46 13.13 .55 12.46 13.13 8.02 8.02 1.61 29.85 43.66
n = 100 p = 5000 ρ = 0.75

FP .00 71.95 14.01 17.93 15.93 .01 .00 .00 .01 .00 .00 .01 .00 .01 .01 .00
FN .00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 .01 .01 .00 .00 .00

FP+FN .00 72.95 15.01 18.94 16.93 1.02 1.00 1.00 1.01 1.01 1.00 .01 .01 .01 .01 .00
ℓ2 .22 13.27 13.53 14.02 14.04 14.95 14.95 14.95 14.95 14.95 14.95 .22 .22 .22 .22 .22

time .00 8.20 1.42 .20 .16 .53 17.66 20.43 .53 17.66 20.43 8.01 11.81 1.54 35.22 48.21

Table 3.3: Model (B): The average number of False Positives (FP) and False Negatives (FN), the median of ℓ2 = ∥β̂−β∥, calculated
over 500 realisations. Also average computation times in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB
of RAM. Both RBVS and IRBVS use B = 500 and m = n

2 . Bold: the lowest or within 10% of the lowest value of FP+FN (or ℓ2
respectively). Underlined: best among non-iterative or iterative methods with the same base learner.
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n = 100 p = 100 s = 5
FP .00 4.93 .60 7.68 1.35 .12 .00 .00 .24 .29 .18 5.25 3.64 1.36 1.06 .54
FN .00 .52 .65 1.42 1.59 2.65 1.01 .83 2.48 1.23 .71 .65 .70 .94 .65 .71

FP+FN .00 5.45 1.25 9.10 2.94 2.77 1.01 .83 2.72 1.52 .89 5.89 4.34 2.30 1.71 1.25
ℓ2 .07 .19 .11 .38 .31 .54 .14 .10 .52 .16 .09 .19 .20 .15 .14 .14

time .00 .17 .29 .17 .47 .06 .78 .86 .06 .78 .86 1.58 1.83 .18 1.42 1.33
n = 100 p = 100 s = 10

FP .00 8.29 1.36 9.66 3.38 .01 .00 .00 .28 .13 .00 3.44 1.58 1.53 .88 .56
FN .00 .90 1.28 4.08 4.23 7.63 6.18 5.34 7.52 6.40 6.07 1.17 1.03 2.34 2.57 2.61

FP+FN .00 9.19 2.64 13.74 7.60 7.64 6.18 5.34 7.80 6.53 6.07 4.61 2.61 3.86 3.44 3.17
ℓ2 .13 .26 .18 .66 .63 1.76 1.28 1.28 1.76 1.28 1.28 .19 .18 .19 .21 .21

time .00 .06 .12 .13 .19 .03 .59 .56 .03 .59 .56 .84 1.03 .15 1.69 1.61
n = 100 p = 1000 s = 5

FP .00 19.75 2.46 10.45 2.52 .23 .15 .00 .31 .46 .23 .92 .30 1.38 .99 .68
FN .00 .46 .62 2.23 2.23 2.54 1.31 .92 3.00 1.00 .69 .77 .77 .69 .69 .69

FP+FN .00 20.21 3.07 12.69 4.75 2.77 1.46 .92 3.30 1.46 .92 1.69 1.08 2.08 1.69 1.38
ℓ2 .11 .36 .23 .56 .47 .55 .26 .15 .62 .18 .12 .15 .15 .16 .18 .15

time .00 1.06 1.38 .17 .47 .21 2.62 2.97 .21 2.62 2.97 7.50 7.56 .75 4.56 5.10
n = 100 p = 1000 s = 10

FP .00 26.17 2.27 12.06 6.06 .21 .04 .00 .22 .09 .00 .74 .21 1.81 1.01 .68
FN .00 1.18 1.10 5.30 5.37 7.53 5.72 5.74 7.70 4.70 2.62 2.79 2.62 1.66 1.23 1.14

FP+FN .00 27.35 3.37 17.35 11.44 7.74 5.76 5.74 7.92 4.79 2.62 3.53 2.83 3.47 2.24 1.82
ℓ2 .13 .48 .23 1.57 1.46 1.97 1.35 1.17 2.02 .93 .32 .27 .24 .24 .23 .20

time .00 .40 .79 .17 .29 .16 2.00 2.51 .16 2.00 2.51 7.03 7.15 .95 6.32 6.25
n = 100 p = 5000 s = 5

FP .00 36.09 3.70 13.02 8.29 .01 .00 .00 .00 .33 .00 .01 .00 .67 .34 .00
FN .00 .01 .01 1.69 1.69 2.36 1.02 1.67 2.69 1.01 .03 .03 .03 .02 .01 .01

FP+FN .00 36.10 3.71 14.71 9.98 2.38 1.02 1.67 2.70 1.34 .03 .04 .04 .69 .35 .02
ℓ2 .07 .38 .09 .70 .60 .77 .31 .37 1.16 .31 .07 .07 .07 .12 .07 .07

time .00 2.19 4.09 .22 .58 .76 13.07 13.07 .76 13.07 13.07 37.82 38.13 3.26 29.67 24.03
n = 100 p = 5000 s = 10

FP .00 42.48 3.85 13.25 7.43 .30 .05 .00 .17 .08 .03 .28 .16 1.15 .53 .33
FN .00 2.07 1.48 6.47 6.49 7.83 6.53 7.38 8.21 6.10 5.75 4.85 4.94 2.86 2.32 2.69

FP+FN .00 44.56 5.33 19.72 13.92 8.13 6.58 7.38 8.38 6.17 5.78 5.12 5.10 4.00 2.85 3.02
ℓ2 .13 .69 .29 1.73 1.63 1.85 1.32 1.60 1.99 1.13 .97 .58 .60 .28 .25 .25

time .00 1.51 1.62 .16 .18 .35 3.04 3.09 .35 3.04 3.09 11.74 11.70 1.87 10.15 9.22

Table 3.4: Model (C): The average number of False Positives (FP) and False Negatives (FN), the median of ℓ2 = ∥β̂ − β∥,
calculated over 500 realisations. Also average computation times in seconds using a single core of an Intel Xeon 3.6 GHz
CPU with 16 GB of RAM. Both RBVS and IRBVS use B = 500 and m = n

2 . Bold: the lowest or within 10% of the lowest
value of FP+FN (or ℓ2 respectively). Underlined: best among non-iterative or iterative methods with the same base learner.
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n = 100 p = 100
FP 8.37 1.40 10.62 3.54 .09 .13 .08 .59 .43 .40 3.32 2.93 1.22 .88 .71
FN 1.57 2.00 1.29 1.90 .30 1.84 1.80 .25 1.51 1.19 1.25 2.00 .25 1.51 1.19

FP+FN 9.93 3.40 11.91 5.45 .39 1.97 1.88 .84 1.94 1.58 4.58 4.93 1.47 2.39 1.89
time .11 .46 .15 .21 .04 .18 .18 .04 .18 .18 .68 .65 .10 .34 .34

n = 200 p = 100
FP 8.05 1.25 12.52 2.32 .06 .17 .13 .52 .49 .49 9.87 7.12 1.23 .93 .73
FN 1.57 2.00 1.39 2.00 .01 1.79 1.60 .00 1.48 .71 1.27 2.00 .00 1.48 .71

FP+FN 9.62 3.25 13.92 4.32 .07 1.96 1.73 .52 1.97 1.20 11.14 9.12 1.23 2.41 1.44
time 1.01 2.21 .20 .59 .08 .53 .55 .08 .53 .55 2.02 2.21 .17 .97 1.01

n = 100 p = 1000
FP 19.73 2.71 14.86 11.55 .25 .16 .05 .36 .26 .17 .29 .36 .77 .54 .32
FN 1.69 2.00 1.17 1.54 .56 1.91 1.90 .79 1.76 1.32 1.40 2.00 .76 1.76 1.32

FP+FN 21.42 4.71 16.03 13.09 .81 2.07 1.94 1.15 2.01 1.49 1.69 2.36 1.52 2.29 1.65
time .77 1.58 .22 .50 .13 .85 .96 .13 .85 .96 3.66 3.87 .29 1.62 1.85

n = 200 p = 1000
FP 17.15 2.30 27.07 19.37 .22 .22 .12 .48 .28 .14 1.12 .97 .91 .56 .31
FN 1.73 2.00 1.22 1.60 .01 1.85 1.73 .02 1.52 .78 1.24 2.00 .02 1.52 .78

FP+FN 18.88 4.30 28.29 20.98 .23 2.07 1.85 .50 1.79 .92 2.36 2.97 .92 2.08 1.09
time 1.55 3.30 .25 1.26 .35 1.67 1.56 .35 1.67 1.56 6.12 5.85 .72 2.89 2.89

n = 100 p = 5000
FP 23.84 4.61 15.72 14.21 .30 .10 .00 .26 .19 .10 .08 .14 .52 .38 .22
FN 1.80 2.00 1.18 1.38 .84 1.95 1.96 1.09 1.86 1.58 1.67 2.00 1.01 1.85 1.58

FP+FN 25.64 6.61 16.91 15.59 1.15 2.05 1.97 1.36 2.04 1.69 1.75 2.14 1.54 2.23 1.80
time 2.51 3.77 .29 .73 1.20 5.44 6.27 1.20 5.44 6.27 19.48 18.46 2.47 8.91 11.70

n = 200 p = 5000
FP 24.50 3.35 29.75 28.80 .23 .19 .10 .28 .19 .10 .16 .27 .56 .39 .18
FN 1.77 2.00 1.13 1.28 .04 1.90 1.80 .08 1.58 .88 1.21 2.00 .08 1.58 .88

FP+FN 26.27 5.35 30.89 30.08 .27 2.09 1.90 .36 1.78 .98 1.37 2.27 .64 1.98 1.06
time 4.16 7.66 .37 2.20 3.60 6.39 8.17 3.60 6.39 8.17 30.50 35.93 4.56 12.25 14.64

Table 3.5: Model (D): The average number of False Positives (FP) and False Negatives (FN) calculated over 500. Also
average computation times in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM. Both RBVS and
IRBVS use B = 500 and m = n

2 . Bold: methods with the lowest or within 10% of the lowest value of FP+FN. Underlined:
best result among non-iterative or iterative methods with the same choice of the base learner.
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n = 100 p = 100
FP 10.61 8.81 11.93 10.71 .06 .06 .04 .04 .39 .36 .41 .28 3.37 3.75 .98 .91 .80 .61
FN 1.36 1.93 1.26 1.74 2.35 2.37 2.49 3.15 2.31 2.29 2.02 2.20 1.55 1.87 1.45 1.56 1.72 2.03

FP+FN 11.97 10.75 13.18 12.45 2.41 2.42 2.53 3.19 2.70 2.66 2.42 2.48 4.92 5.62 2.43 2.47 2.52 2.63
time .21 1.10 .15 .32 1.43 1.49 .21 .77 1.43 1.49 .21 .77 .66 .71 1.57 3.45 .58 .91

n = 200 p = 100
FP 10.69 8.51 15.91 13.67 .05 .06 .02 .02 .19 .23 .07 .04 9.53 10.26 .91 .91 .57 .41
FN .59 1.05 .53 .93 1.69 1.71 1.21 1.20 1.47 1.47 .76 .56 .51 .80 .43 .52 .57 .49

FP+FN 11.28 9.56 16.44 14.60 1.73 1.77 1.23 1.22 1.66 1.71 .83 .61 10.04 11.06 1.34 1.43 1.14 .90
time 1.01 2.36 .15 .62 .52 4.41 .82 .40 .52 4.41 .82 .40 1.07 1.66 .62 11.04 1.29 .80

n = 100 p = 1000
FP 19.72 17.83 15.21 15.12 .29 .26 .15 .01 .37 .31 .21 .13 .25 .27 .77 .65 .40 .29
FN 1.93 2.51 1.85 2.13 2.68 2.62 2.89 4.03 2.92 2.78 2.66 3.33 2.54 2.76 2.09 2.10 2.49 3.19

FP+FN 21.65 20.34 17.06 17.25 2.97 2.88 3.05 4.04 3.30 3.09 2.87 3.47 2.79 3.03 2.86 2.75 2.88 3.48
time .81 1.81 .15 .34 .08 5.68 .35 .45 .08 5.68 .35 .45 1.07 1.04 .22 11.58 .69 .86

n = 200 p = 1000
FP 22.88 18.40 28.75 28.82 .16 .20 .16 .07 .36 .31 .34 .24 1.17 1.41 .73 .68 .59 .35
FN .88 1.34 .84 1.06 1.75 1.80 1.48 1.45 1.74 1.75 1.39 1.06 1.21 1.35 .92 1.14 1.25 1.03

FP+FN 23.76 19.74 29.60 29.88 1.91 2.00 1.64 1.52 2.10 2.05 1.73 1.30 2.38 2.76 1.64 1.82 1.84 1.38
time 1.32 3.29 .18 .83 .11 22.49 .50 .51 .11 22.49 .50 .51 2.25 2.25 .31 45.06 1.05 1.03

n = 100 p = 5000
FP 25.35 23.29 16.07 16.08 .28 .27 .10 .00 .21 .17 .05 .05 .08 .07 .51 .40 .22 .18
FN 2.39 2.97 2.34 2.51 3.11 2.98 3.47 4.73 3.54 3.35 3.47 3.82 3.11 3.32 2.66 2.49 3.22 3.64

FP+FN 27.74 26.26 18.41 18.59 3.39 3.26 3.57 4.73 3.74 3.51 3.52 3.87 3.19 3.39 3.17 2.89 3.44 3.82
time 2.58 4.75 .19 .42 .93 53.96 2.71 3.43 .93 53.96 2.71 3.43 8.45 7.82 1.90 110.12 5.31 7.42

n = 200 p = 5000
FP 32.22 25.59 30.27 30.55 .20 .33 .18 .03 .24 .25 .21 .13 .23 .28 .49 .49 .36 .21
FN 1.15 1.64 1.25 1.36 1.96 1.95 1.85 1.97 2.04 1.98 1.96 1.76 1.80 1.90 1.27 1.52 1.81 1.67

FP+FN 33.38 27.23 31.53 31.91 2.16 2.28 2.03 2.00 2.28 2.23 2.17 1.90 2.04 2.18 1.76 2.01 2.17 1.88
time 3.74 7.95 .26 1.00 .56 115.84 2.76 3.35 .56 115.84 2.76 3.35 8.35 8.74 1.64 363.91 7.09 7.74

Table 3.6: Model (E): The average number of False Positives (FP) and False Negatives (FN) calculated over 500 realisations.
Also average computation times in seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM. Both
RBVS and IRBVS use B = 500 and m = n

2 . Bold: the lowest or within 10% of the lowest value of FP+FN. Underlined: best
among non-iterative or iterative methods with the same base learner.
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3.7 Data examples

We present applications to two well-known datasets: the prostate cancer data and the

Boston housing data.

3.7.1 Prostate cancer data set

We compare performance of RBVS against its two competitors, StabSel (Meinshausen

and Bühlmann, 2010) and the approach of Hall and Miller (2009a) (HM). To provide a

fair comparison, we apply these three methods with the same subsamples taken from the

data described below, drawn as in Definition 3.3.3. Besides the number of subsamples

and their size, we need to specify the threshold π and the bound for the expected number

of false positives EV for StabSel, the significance level α and the cut-off level c for HM.

We try several values for each pair of these parameters.

We analyse the Prostate cancer data (Singh et al., 2002) which is frequently used

to evaluate the performance of various classification methods (Pochet et al. (2004), Fan

and Fan (2008), Hall and Xue (2014)). It consists of expression levels of p = 12600 genes

from 52 tumour and 50 normal prostate samples in the training set, and 9 tumour and

25 normal samples in the test set coming from an independent experiment. The response

variable Y is binary (1 for tumour samples, 0 for normal samples) and Xj , the expression

of the j’th gene, is a continuous variable. In this setting, we take the sample correlation

coefficient to identify the covariates that affect the response, which was previously used

in this and similar classification problems; see Fan and Lv (2008) and Hall and Xue

(2014).

We use RBVS, HM and StabSel on the training set to identify the important genes.

Still on the training set, we fit the logistic regression model, using the selected covariates

only. Subsequently, we use the fitted model to classify samples in the test set. Finally,

we record the number of correctly classified samples. The entire experiment is repeated
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50 times, to minimise the impact of a particular random draw, and the medians are

reported.

The median correct classification rate on the test set for the RBVS algorithm is 31

out of 34 and this is always achieved using from 3 to 6 genes only, both for subsamples

of size m =
⌊

n
2

⌋
= 51 and m =

⌊
3n
4

⌋
= 76. For some random draws, RBVS selects

exactly 4 genes, which result in the classification rate of 33. Figure 3.2 summarises

the corresponding numbers for the StabSel and HM algorithms, with various tuning

parameters of these methods. For m =
⌊

n
2

⌋
, there exists one pair of parameters that leads

to a better error control for StabSel and HM (33 correctly classified samples), however,

RBVS is always better when m = 76. The parameters which are the best in this example

are much different from those recommended for StabSel and HM. Unlike its competitors,

RBVS automatically selects an appropriate number of genes, being particularly effective

in this example.
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Figure 3.2: Prostate cancer data set: the median of the number of correctly classified
samples on the test set, evaluated over 50 runs of the algorithms studied. The larger a
circle, the better classification rate. Grey colour indicates the cases where the median
classification rate is no worse than 31, the median classification rate achieved by RBVS
PC. The number of subsamples B = 500.
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3.7.2 Boston housing data set

We apply our methodology to the Boston housing data set (Harrison and Rubinfeld,

1978) which has been frequently adopted to illustrate performance of various variable

selection and estimation techniques (see e.g. Radchenko and James (2010), Cho and

Fryzlewicz (2012a) or Fan et al. (2014). We use Boston Housing data available in the

R package mlbench (Leisch and Dimitriadou, 2010) containing 15 numerical covariates

which may have influence over the median price recorded in n = 506 locations. As in

Cho and Fryzlewicz (2012a), we additionally consider interaction terms between the

explanatory variables so the final data set has p = 120 covariates.

Harrison and Rubinfeld (1978) used the linear model to analyse the price, thus we

apply RBVS combined with the linear measures introduced Section 3.6.1.
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Figure 3.3: The Boston housing data: the estimated probabilities corresponding to the
k-element subsets top-ranked the most frequently. The dots indicate the probability at
k = ŝ, which is the number of elements selected according to the suggested approach.
The subsample size m = n

2 = 253 and B = 250.

Figure 3.3 shows a “RBVS path”, i.e. probabilities corresponding to the k-lement

subsets of covariates the most frequently occurring as the most influential ones (defined by

(3.4)). The “probability path for RBVS PC declines much slower than those corresponding

to RBVS Lasso and RBVS MC+. This results in a different numbers of selected variables;

RBVS PC chooses 17 covariates, while RBVS MC+ 8 and RBVS Lasso MC+ just 5. We

argue that in this example RBVS PC, as based on a marginal measure, includes some

variables that are not useful in a predictive model. Intuitively, if two or more variables
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were highly correlated to the response, then interactions formed of any two of those

would be highly correlated to Y .

To investigate predictive usefulness of RBVS based methods, we split the data

randomly, assembling approximately 50%, 25% and 25% observations to the train,

validation and test sets, respectively. On the training set, we select variables and obtain

OLS estimates of the regression coefficients (for Lasso and MC+ we consider all set

candidates on their solution paths, for RBVS based methods we take the subsample size

equal to m =
{

1
8 ,

2
8 , . . . ,

7
8

}
ntrain). Next, we evaluate the average prediction error on

the validation set and choose the covariates minimising the error. Finally, we find the

average prediction error, R squared coefficient (R2) and adjusted R squared (R2
adj) on

the test set.

Table 3.7 reports the results averaged over 500 random splits of the data; PG in this

summary corresponds to the linear model studied in Pace and Gilley (1997), Section

2.2. RBVS PC, RBVS Lasso and RBVS MC+ perform similar to PG in terms of

prediction accuracy, which can be seen from the corresponding values of the test error

and R2. However, RBVS Lasso and RBVS MC+ choose on average only 9 variables

and consequently perform best in terms of R2
adj. Lasso and MC+ achieve the best test

error; however, they select about 50 variables on average. By contrast, IRBVS Lasso

and IRBVS MC+ choose no more than 27 covariates, yet they achieve similar prediction

accuracy as Lasso and MC+ respectively. Both RBVS PC and IRBVS PC perform

reasonably well in terms of prediction accuracy, however, they select more variables than

the remaining RBVS and IRBVS based techniques. This is probably caused by the strong

correlations between covariates, which is due to the way the data set has been produced.
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RBVS IRBVS
PG Lasso MC+ SIS Lasso MC+ SIS Lasso MC+

test error 0.037 0.032 0.032 0.038 0.038 0.038 0.036 0.033 0.033
R2 0.773 0.803 0.805 0.769 0.766 0.765 0.780 0.798 0.801

R2
adj 0.735 0.638 0.609 0.708 0.748 0.747 0.571 0.739 0.745

no var 18.0 49.3 55.0 25.4 9.2 9.1 44.7 27.6 26.5

Table 3.7: Boston housing data : the test error, R squared, adjusted R squared and the
number of selected variables, averaged over 500 test sets.

3.8 High-dimensional simulation study

The aim of the simulation study reported in this section is threefold. First, to provide an

extensive comparison of the performance of RBVS and StabSel algorithms. Second, to

investigate their utility in the “high-dimensional framework”, where p is growing with

n and the former is much larger than the latter. Third, to check how sensitive both

approaches are to the choice of the subsample size m.

The data are generated from the following linear model

Yi = β1Xi1 + . . . , βpXip + εi, . . . , i = 1, . . . , n, (3.10)

where

• Xij’s follow the factor model Xij = ∑K
l=1 fijlφil + θij, with fijl, φil, θij, εi i.i.d.

N (0, 1) and the number of factors equal either K = 0 (variables independent)

or K = 5. We choose the factor model, as it provides a non-trivial dependence

structure between the covariates and it is relatively easy and quick to simulate.

The R package rbvs provides a C-implemented routine gen.factor.model.design

which quickly generates the factor model design matrix.

• The number of non-zero β′
js is set to s = 5, 10, their indices are drawn uniformly

without replacement from {1, . . . , p}. Their values are drawn independently and

have same distribution as β =
(
|Z|+ log(n)√

n

)
V , where Z is a standard normal

random variable and V is independent of Z with P (V = 1) = P (V = −1) = 1
2 . In
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this setting, the impact of the important predictors is diminishing with n.

• The total number of variables p = 100, 1000, 10000, 100000.

• The sample size n = 100, 200, . . . , 1000.

• The subsample size is set to m = 50, 100, n
2 .

Due to a very large number of variables, we take the marginal correlation as a

base learner for both StabSel and (I)RBVS, as it is least computationally demanding

across measures studied in this chapter. All computations reported in this section are

performed with the R package rbvsGPU (Baranowski, 2016), which provide a parallel

implementation of RBVS PC and IRBVS PC, using to this end the CUDA framework

(Luebke, 2008). The number of random splits is set to B = 500m
n

, such that there always

500 subsamples used in total.

Unlike the RBVS algorithm, StabSel requires specification of the two tuning parame-

ters. From our experience, the values recommended in Meinshausen and Bühlmann (2010)

are fairly “optimal”, we decided however to test robustness of the StabSel algorithm

against the choice of its parameters. The bound on the error control is set to EV = 2.5, 5,

while the thresholding probability π = 0.55, 0.6, 0.75, 0.9.

Tables 3.8–3.19 report results of this high-dimensional simulation study. Furthermore,

Table 3.20 shows the average computation times in one of the simulation scenarios. The

times for the other scenarios are similar, hence not reported here. We address each issue

brought up in the introduction to this section in the comments below.

1. Comparison of StabSel to RBVS:

• In the fixed m cases, RBVS typically outperforms StabSel. Moreover, for a

moderate value of m = 100 and p fixed, the average number of false positives

and false negatives decreases with n, which does not hold for StabSel.
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n\p 102 103 104 105

200 1.57 2.38 3.03 3.53
300 1.50 2.27 3.00 3.47
400 1.41 2.33 2.98 3.48
500 1.53 2.32 2.98 3.46
600 1.47 2.29 2.95 3.46
700 1.56 2.34 2.96 3.46
800 1.44 2.27 2.97 3.50
900 1.61 2.34 2.98 3.44
1000 1.48 2.31 2.98 3.45

(a) RBVS PC

n\p 102 103 104 105

200 .35 .19 .41 .96
300 .16 .10 .45 1.06
400 .04 .12 .49 .98
500 .03 .15 .56 1.02
600 .06 .21 .62 1.18
700 .05 .26 .66 1.17
800 .04 .25 .73 1.12
900 .05 .32 .72 1.31
1000 .05 .27 .74 1.28

(b) IRBVS PC

n\p 102 103 104 105

200 2.05 2.49 2.93 3.40
300 2.15 2.57 3.04 3.46
400 2.19 2.66 3.11 3.48
500 2.29 2.68 3.11 3.50
600 2.30 2.68 3.11 3.54
700 2.41 2.73 3.14 3.49
800 2.25 2.67 3.14 3.51
900 2.43 2.77 3.19 3.56
1000 2.30 2.70 3.09 3.47

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.91 2.43 2.94 3.41
300 2.01 2.52 3.05 3.48
400 2.07 2.63 3.11 3.50
500 2.22 2.62 3.10 3.52
600 2.23 2.64 3.12 3.56
700 2.33 2.70 3.16 3.52
800 2.16 2.63 3.15 3.54
900 2.35 2.74 3.18 3.59
1000 2.22 2.67 3.11 3.49

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 2.07 2.68 3.15 3.62
300 2.23 2.77 3.28 3.73
400 2.27 2.86 3.38 3.81
500 2.42 2.87 3.36 3.76
600 2.40 2.90 3.36 3.77
700 2.50 2.93 3.42 3.77
800 2.37 2.90 3.42 3.77
900 2.54 3.00 3.52 3.81
1000 2.42 2.91 3.34 3.73

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.72 2.27 2.80 3.28
300 1.85 2.35 2.87 3.36
400 1.92 2.48 2.97 3.38
500 2.05 2.49 2.96 3.40
600 2.05 2.48 2.98 3.40
700 2.15 2.56 3.02 3.41
800 2.02 2.49 3.02 3.41
900 2.20 2.59 3.03 3.45
1000 2.09 2.54 2.98 3.38

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.68 2.21 2.79 3.28
300 1.83 2.31 2.86 3.37
400 1.88 2.47 2.97 3.39
500 2.02 2.47 2.96 3.41
600 2.02 2.47 2.98 3.42
700 2.14 2.54 3.03 3.42
800 1.99 2.47 3.02 3.43
900 2.17 2.57 3.03 3.46
1000 2.06 2.51 2.97 3.39

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.76 2.46 3.01 3.50
300 1.95 2.58 3.15 3.62
400 2.02 2.68 3.23 3.68
500 2.17 2.70 3.24 3.64
600 2.17 2.73 3.23 3.68
700 2.28 2.78 3.29 3.67
800 2.14 2.73 3.28 3.68
900 2.32 2.83 3.36 3.71
1000 2.19 2.74 3.22 3.63

(h) StabSel PC π = 0.75 EV = 5

Table 3.8: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 50 and B = 500m

n
, number

of important variables s = 5 and number of factors K = 0. Bold: result better than the
corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.53 1.82 2.19 2.79
300 1.04 1.40 1.87 2.60
400 .90 1.36 1.89 2.59
500 .85 1.31 1.86 2.55
600 .76 1.34 1.86 2.35
700 .83 1.33 1.90 2.32
800 .73 1.30 1.87 2.31
900 .76 1.32 1.88 2.39
1000 .68 1.30 1.85 2.39

(a) RBVS PC

n\p 102 103 104 105

200 1.49 .98 .66 .58
300 .60 .20 .11 .40
400 .32 .09 .10 .35
500 .18 .03 .09 .41
600 .12 .03 .09 .32
700 .06 .01 .11 .30
800 .02 .02 .15 .30
900 .01 .04 .16 .36
1000 .01 .04 .18 .41

(b) IRBVS PC

n\p 102 103 104 105

200 1.24 1.59 2.10 2.34
300 1.31 1.49 1.84 2.21
400 1.33 1.61 1.96 2.33
500 1.44 1.61 1.96 2.28
600 1.44 1.68 2.01 2.34
700 1.55 1.71 2.05 2.31
800 1.44 1.69 2.05 2.33
900 1.57 1.74 2.07 2.43
1000 1.50 1.72 2.06 2.41

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.15 1.64 2.12 2.56
300 1.17 1.43 1.82 2.48
400 1.22 1.57 1.96 2.56
500 1.29 1.56 1.96 2.54
600 1.33 1.63 2.01 2.35
700 1.44 1.66 2.06 2.32
800 1.34 1.64 2.06 2.34
900 1.46 1.69 2.08 2.46
1000 1.40 1.70 2.07 2.42

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.19 1.61 2.06 2.63
300 1.24 1.60 2.01 2.72
400 1.30 1.73 2.18 2.79
500 1.41 1.75 2.16 2.75
600 1.45 1.82 2.23 2.57
700 1.54 1.87 2.30 2.55
800 1.45 1.82 2.27 2.58
900 1.58 1.88 2.31 2.68
1000 1.51 1.87 2.25 2.63

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.13 1.74 2.31 2.51
300 1.07 1.33 1.72 2.14
400 1.12 1.47 1.84 2.24
500 1.17 1.45 1.83 2.19
600 1.20 1.52 1.89 2.23
700 1.29 1.54 1.94 2.23
800 1.21 1.49 1.94 2.23
900 1.36 1.59 1.96 2.36
1000 1.26 1.57 1.96 2.30

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.17 1.92 2.40 2.54
300 1.02 1.29 1.72 2.13
400 1.07 1.43 1.83 2.23
500 1.12 1.42 1.83 2.19
600 1.15 1.50 1.88 2.24
700 1.25 1.53 1.94 2.23
800 1.18 1.48 1.95 2.24
900 1.33 1.56 1.96 2.36
1000 1.23 1.55 1.96 2.31

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.21 1.69 2.10 2.31
300 1.05 1.43 1.88 2.30
400 1.12 1.59 2.03 2.43
500 1.20 1.60 2.02 2.38
600 1.23 1.67 2.11 2.48
700 1.34 1.72 2.16 2.45
800 1.27 1.68 2.16 2.47
900 1.41 1.74 2.19 2.58
1000 1.32 1.74 2.15 2.55

(h) StabSel PC π = 0.75 EV = 5

Table 3.9: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 100 and B = 500m

n
,

number of important variables s = 5 and number of factors K = 0. Bold: result better
than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.57 1.79 2.22 2.59
300 1.18 1.31 1.64 1.98
400 1.07 1.10 1.33 1.61
500 .95 1.00 1.13 1.40
600 .94 .88 1.03 1.15
700 .96 .77 .90 1.00
800 .85 .77 .84 .92
900 .73 .67 .74 .87
1000 .80 .62 .78 .84

(a) RBVS PC

n\p 102 103 104 105

200 1.54 .90 .64 .44
300 1.35 .80 .58 .33
400 1.23 .86 .53 .25
500 1.26 .87 .55 .27
600 1.39 .80 .51 .24
700 1.32 .78 .46 .23
800 1.28 .82 .41 .24
900 1.19 .76 .43 .22
1000 1.21 .75 .45 .29

(b) IRBVS PC

n\p 102 103 104 105

200 1.23 1.58 2.10 2.35
300 .88 1.18 1.54 1.81
400 .75 .96 1.31 1.56
500 .62 .83 1.18 1.35
600 .49 .76 1.08 1.19
700 .47 .62 .96 1.12
800 .41 .60 .82 1.02
900 .35 .51 .75 .96
1000 .32 .44 .82 .92

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.16 1.65 2.12 2.38
300 .81 1.22 1.57 1.87
400 .67 1.01 1.33 1.62
500 .58 .91 1.20 1.41
600 .48 .84 1.13 1.22
700 .47 .68 .98 1.13
800 .43 .68 .88 1.05
900 .34 .59 .77 .99
1000 .33 .52 .86 .94

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.18 1.59 2.03 2.43
300 .83 1.19 1.47 1.90
400 .68 .94 1.26 1.69
500 .59 .87 1.09 1.41
600 .49 .78 .98 1.11
700 .49 .64 .86 1.00
800 .45 .61 .77 .89
900 .37 .51 .70 .85
1000 .35 .47 .74 .82

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.15 1.77 2.29 2.52
300 .80 1.33 1.78 2.06
400 .66 1.14 1.52 1.77
500 .59 1.05 1.40 1.61
600 .50 .97 1.34 1.48
700 .49 .82 1.17 1.36
800 .45 .82 1.13 1.29
900 .36 .71 1.00 1.22
1000 .34 .70 1.07 1.21

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.15 1.91 2.41 2.56
300 .80 1.48 1.86 2.10
400 .72 1.33 1.62 1.81
500 .66 1.22 1.48 1.68
600 .56 1.13 1.46 1.52
700 .55 .94 1.28 1.42
800 .51 1.01 1.26 1.35
900 .43 .91 1.12 1.27
1000 .42 .89 1.16 1.29

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.20 1.72 2.12 2.33
300 .85 1.29 1.59 1.77
400 .76 1.10 1.33 1.54
500 .70 .99 1.19 1.30
600 .63 .94 1.11 1.17
700 .63 .77 .99 1.07
800 .55 .76 .85 .98
900 .49 .66 .78 .92
1000 .50 .65 .86 .87

(h) StabSel PC π = 0.75 EV = 5

Table 3.10: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = n

2 and B = 500m
n

, number
of important variables s = 5 and number of factors K = 0. Bold: result better than the
corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.77 2.45 3.20 3.70
300 1.66 2.44 3.17 3.68
400 1.62 2.38 3.18 3.66
500 1.63 2.39 3.15 3.63
600 1.50 2.31 3.16 3.61
700 1.61 2.38 3.12 3.72
800 1.54 2.35 3.15 3.67
900 1.54 2.37 3.09 3.81
1000 1.56 2.33 3.10 3.79

(a) RBVS PC

n\p 102 103 104 105

200 .28 .11 .09 .48
300 .12 .03 .04 .25
400 .04 .00 .05 .21
500 .02 .01 .03 .15
600 .01 .00 .03 .13
700 .00 .01 .04 .19
800 .00 .00 .05 .17
900 .00 .00 .01 .29
1000 .00 .00 .04 .15

(b) IRBVS PC

n\p 102 103 104 105

200 2.21 2.62 3.10 3.53
300 2.29 2.66 3.18 3.63
400 2.34 2.74 3.20 3.62
500 2.39 2.71 3.21 3.57
600 2.37 2.75 3.27 3.57
700 2.43 2.83 3.26 3.67
800 2.37 2.84 3.31 3.67
900 2.41 2.87 3.31 3.78
1000 2.40 2.73 3.20 3.72

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 2.09 2.57 3.09 3.54
300 2.20 2.62 3.19 3.65
400 2.23 2.71 3.23 3.64
500 2.29 2.69 3.21 3.59
600 2.28 2.70 3.29 3.58
700 2.35 2.80 3.26 3.68
800 2.28 2.80 3.32 3.69
900 2.30 2.84 3.32 3.82
1000 2.35 2.71 3.20 3.74

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 2.24 2.77 3.33 3.76
300 2.40 2.92 3.43 3.89
400 2.47 2.99 3.46 3.91
500 2.47 2.91 3.46 3.84
600 2.50 3.01 3.59 3.86
700 2.58 3.04 3.49 3.94
800 2.53 3.05 3.56 3.92
900 2.56 3.11 3.60 4.04
1000 2.52 2.98 3.51 3.95

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.94 2.43 2.98 3.42
300 2.05 2.47 3.07 3.52
400 2.06 2.55 3.11 3.51
500 2.11 2.55 3.09 3.47
600 2.11 2.55 3.15 3.48
700 2.18 2.65 3.15 3.56
800 2.10 2.62 3.20 3.58
900 2.13 2.68 3.17 3.68
1000 2.20 2.56 3.07 3.62

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.88 2.39 2.97 3.42
300 2.01 2.43 3.06 3.52
400 2.03 2.53 3.10 3.52
500 2.09 2.53 3.07 3.48
600 2.08 2.53 3.16 3.49
700 2.16 2.64 3.15 3.57
800 2.08 2.61 3.20 3.58
900 2.11 2.66 3.18 3.70
1000 2.18 2.53 3.07 3.62

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 2.00 2.60 3.18 3.66
300 2.14 2.72 3.30 3.78
400 2.19 2.79 3.34 3.81
500 2.23 2.76 3.34 3.71
600 2.26 2.82 3.44 3.76
700 2.32 2.88 3.38 3.84
800 2.26 2.91 3.42 3.82
900 2.28 2.95 3.47 3.95
1000 2.32 2.80 3.34 3.84

(h) StabSel PC π = 0.75 EV = 5

Table 3.11: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 50 and B = 500m

n
, number

of important variables s = 5 and number of factors K = 5. Bold: result better than the
corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.58 1.90 2.39 2.82
300 1.21 1.48 2.15 2.58
400 .97 1.48 2.03 2.52
500 .88 1.39 2.01 2.48
600 .90 1.30 2.01 2.50
700 .83 1.41 2.04 2.49
800 .83 1.42 1.97 2.54
900 .76 1.42 1.98 2.59
1000 .77 1.36 2.01 2.63

(a) RBVS PC

n\p 102 103 104 105

200 1.51 .88 .59 .31
300 .65 .23 .08 .01
400 .30 .05 .01 .00
500 .16 .02 .01 .00
600 .10 .00 .00 .00
700 .05 .00 .00 .00
800 .03 .00 .00 .00
900 .01 .00 .00 .00
1000 .02 .00 .00 .01

(b) IRBVS PC

n\p 102 103 104 105

200 1.33 1.72 2.17 2.56
300 1.45 1.61 2.07 2.37
400 1.44 1.70 2.05 2.38
500 1.50 1.70 2.09 2.41
600 1.53 1.69 2.10 2.51
700 1.54 1.78 2.20 2.43
800 1.54 1.83 2.15 2.54
900 1.55 1.86 2.15 2.61
1000 1.60 1.80 2.19 2.62

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.21 1.73 2.21 2.56
300 1.33 1.56 2.06 2.37
400 1.30 1.65 2.04 2.39
500 1.36 1.65 2.09 2.41
600 1.41 1.66 2.10 2.52
700 1.46 1.75 2.20 2.44
800 1.43 1.82 2.15 2.55
900 1.43 1.83 2.17 2.62
1000 1.48 1.77 2.20 2.63

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.24 1.72 2.18 2.56
300 1.40 1.71 2.25 2.59
400 1.42 1.82 2.28 2.62
500 1.48 1.81 2.30 2.64
600 1.54 1.87 2.31 2.75
700 1.58 1.96 2.41 2.67
800 1.57 1.97 2.40 2.77
900 1.57 2.03 2.41 2.88
1000 1.64 1.98 2.41 2.85

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.21 1.86 2.41 2.74
300 1.21 1.46 1.97 2.25
400 1.21 1.52 1.95 2.30
500 1.24 1.53 1.97 2.32
600 1.29 1.53 2.00 2.41
700 1.31 1.65 2.06 2.33
800 1.27 1.69 2.02 2.43
900 1.32 1.70 2.05 2.52
1000 1.36 1.63 2.09 2.54

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.23 1.96 2.49 2.75
300 1.16 1.41 1.96 2.24
400 1.17 1.50 1.95 2.30
500 1.21 1.50 1.97 2.33
600 1.24 1.49 2.00 2.42
700 1.25 1.64 2.06 2.34
800 1.24 1.65 2.01 2.44
900 1.28 1.68 2.05 2.53
1000 1.32 1.61 2.09 2.54

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.27 1.74 2.24 2.53
300 1.21 1.57 2.11 2.49
400 1.21 1.67 2.15 2.51
500 1.27 1.68 2.19 2.54
600 1.35 1.70 2.19 2.65
700 1.36 1.79 2.31 2.57
800 1.36 1.85 2.26 2.67
900 1.36 1.89 2.29 2.74
1000 1.41 1.82 2.29 2.75

(h) StabSel PC π = 0.75 EV = 5

Table 3.12: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 100 and B = 500m

n
,

number of important variables s = 5 and number of factors K = 5. Bold: result better
than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 1.59 1.88 2.38 2.79
300 1.37 1.41 1.83 2.12
400 1.10 1.17 1.45 1.70
500 .92 1.08 1.24 1.48
600 .91 .89 1.13 1.29
700 .82 .87 1.01 1.14
800 .80 .84 .88 1.10
900 .83 .75 .80 .93
1000 .72 .73 .86 .91

(a) RBVS PC

n\p 102 103 104 105

200 1.35 .85 .56 .30
300 1.45 .78 .58 .29
400 1.44 .78 .48 .24
500 1.23 .84 .52 .29
600 1.29 .81 .51 .24
700 1.17 .80 .50 .20
800 1.23 .83 .48 .25
900 1.34 .82 .46 .21
1000 1.19 .79 .51 .19

(b) IRBVS PC

n\p 102 103 104 105

200 1.34 1.75 2.19 2.59
300 1.07 1.26 1.65 2.06
400 .81 1.05 1.37 1.69
500 .63 .94 1.23 1.48
600 .58 .74 1.14 1.34
700 .48 .75 1.09 1.19
800 .43 .67 .89 1.17
900 .42 .60 .82 1.01
1000 .37 .56 .87 .99

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 1.23 1.75 2.22 2.59
300 1.00 1.29 1.71 2.08
400 .74 1.12 1.42 1.69
500 .59 .99 1.27 1.50
600 .55 .81 1.17 1.37
700 .46 .82 1.14 1.23
800 .39 .75 .93 1.21
900 .38 .65 .86 1.02
1000 .35 .63 .90 1.01

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 1.25 1.73 2.19 2.56
300 1.01 1.26 1.68 1.95
400 .77 1.05 1.32 1.60
500 .62 .93 1.16 1.40
600 .58 .74 1.03 1.18
700 .47 .75 .99 1.10
800 .41 .68 .80 1.03
900 .40 .59 .76 .93
1000 .38 .58 .81 .85

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 1.20 1.84 2.40 2.74
300 .97 1.35 1.86 2.29
400 .74 1.22 1.63 1.85
500 .59 1.09 1.46 1.74
600 .58 .92 1.34 1.58
700 .45 .92 1.33 1.44
800 .41 .86 1.10 1.43
900 .39 .77 1.07 1.25
1000 .37 .76 1.07 1.26

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 1.23 1.93 2.48 2.78
300 1.01 1.48 1.96 2.33
400 .79 1.32 1.72 1.92
500 .65 1.21 1.56 1.80
600 .60 1.05 1.43 1.65
700 .50 1.10 1.42 1.49
800 .47 .99 1.21 1.49
900 .45 .92 1.18 1.29
1000 .42 .93 1.17 1.31

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 1.27 1.79 2.23 2.56
300 1.02 1.32 1.69 2.03
400 .82 1.17 1.40 1.66
500 .69 1.05 1.25 1.44
600 .64 .88 1.15 1.30
700 .55 .87 1.14 1.13
800 .52 .80 .91 1.13
900 .51 .72 .84 .96
1000 .49 .70 .90 .94

(h) StabSel PC π = 0.75 EV = 5

Table 3.13: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = n

2 and B = 500m
n

, number
of important variables s = 5 and number of factors K = 5. Bold: result better than the
corresponding value for RBVS PC.
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n\p 102 103 104 105

200 6.46 7.50 8.32 8.93
300 6.27 7.48 8.33 8.88
400 6.39 7.44 8.31 8.81
500 6.31 7.38 8.18 8.82
600 6.35 7.41 8.31 8.85
700 6.29 7.47 8.22 8.85
800 6.34 7.43 8.17 8.82
900 6.41 7.46 8.24 8.87
1000 6.30 7.44 8.25 8.81

(a) RBVS PC

n\p 102 103 104 105

200 1.82 1.52 3.01 6.38
300 1.41 1.51 2.94 5.97
400 1.49 1.59 3.08 5.61
500 1.20 1.54 2.87 5.37
600 1.33 1.67 3.33 5.69
700 1.57 2.02 3.05 5.83
800 1.46 1.76 3.08 5.35
900 1.66 2.17 3.52 6.08
1000 1.29 1.91 3.04 5.36

(b) IRBVS PC

n\p 102 103 104 105

200 6.97 7.49 8.17 8.82
300 6.96 7.60 8.35 8.92
400 7.14 7.69 8.32 8.84
500 6.98 7.57 8.21 8.83
600 7.06 7.72 8.37 8.92
700 7.18 7.73 8.39 8.89
800 7.15 7.75 8.35 8.85
900 7.23 7.73 8.41 9.02
1000 7.12 7.64 8.33 8.89

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 6.67 7.39 8.17 8.84
300 6.71 7.51 8.34 8.94
400 6.90 7.59 8.33 8.86
500 6.74 7.50 8.23 8.83
600 6.87 7.64 8.40 8.94
700 6.97 7.67 8.41 8.93
800 6.94 7.68 8.37 8.88
900 7.01 7.67 8.43 9.05
1000 6.89 7.58 8.33 8.91

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 6.92 7.81 8.54 9.11
300 6.99 7.96 8.71 9.24
400 7.25 8.10 8.76 9.17
500 7.09 7.96 8.61 9.14
600 7.21 8.08 8.86 9.25
700 7.34 8.13 8.79 9.25
800 7.26 8.11 8.74 9.20
900 7.39 8.20 8.78 9.37
1000 7.25 8.02 8.71 9.21

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 6.29 7.08 7.95 8.70
300 6.39 7.15 8.12 8.74
400 6.53 7.33 8.11 8.71
500 6.40 7.17 7.98 8.66
600 6.53 7.36 8.19 8.77
700 6.56 7.34 8.18 8.75
800 6.61 7.38 8.12 8.71
900 6.68 7.40 8.22 8.87
1000 6.60 7.31 8.12 8.75

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 6.13 7.00 7.92 8.70
300 6.27 7.08 8.09 8.76
400 6.42 7.27 8.11 8.72
500 6.30 7.11 7.98 8.67
600 6.45 7.33 8.19 8.80
700 6.46 7.30 8.18 8.77
800 6.51 7.32 8.12 8.75
900 6.57 7.34 8.22 8.90
1000 6.51 7.26 8.11 8.76

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 6.26 7.45 8.29 8.98
300 6.46 7.62 8.53 9.08
400 6.70 7.73 8.54 9.05
500 6.50 7.63 8.42 9.02
600 6.69 7.77 8.61 9.13
700 6.73 7.84 8.62 9.13
800 6.80 7.81 8.53 9.10
900 6.87 7.84 8.61 9.24
1000 6.74 7.71 8.52 9.10

(h) StabSel PC π = 0.75 EV = 5

Table 3.14: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 50 and B = 500m

n
, number

of important variables s = 10 and number of factors K = 0. Bold: result better than
the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 4.69 5.79 6.75 7.61
300 4.21 5.42 6.53 7.38
400 3.97 5.31 6.37 7.31
500 3.77 5.30 6.40 7.22
600 3.85 5.36 6.37 7.24
700 3.95 5.35 6.42 7.24
800 4.01 5.31 6.40 7.24
900 4.01 5.37 6.41 7.24
1000 3.98 5.21 6.44 7.25

(a) RBVS PC

n\p 102 103 104 105

200 2.09 1.22 .93 1.38
300 .90 .46 .40 .70
400 .51 .17 .25 .75
500 .32 .07 .38 .84
600 .16 .15 .36 .86
700 .24 .18 .39 1.13
800 .11 .15 .47 1.09
900 .12 .16 .63 1.10
1000 .08 .13 .55 1.18

(b) IRBVS PC

n\p 102 103 104 105

200 5.29 5.31 6.05 6.91
300 5.43 5.32 6.05 6.79
400 5.58 5.42 6.02 6.88
500 5.49 5.47 6.11 6.85
600 5.62 5.64 6.15 6.79
700 5.60 5.62 6.20 6.89
800 5.68 5.62 6.35 6.89
900 5.69 5.66 6.34 6.98
1000 5.65 5.60 6.35 6.94

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 4.73 5.20 6.06 6.92
300 4.93 5.13 6.03 6.80
400 5.02 5.29 6.03 6.89
500 4.94 5.31 6.11 6.87
600 5.14 5.52 6.14 6.82
700 5.17 5.50 6.22 6.90
800 5.25 5.48 6.37 6.92
900 5.28 5.54 6.35 7.02
1000 5.23 5.49 6.36 6.96

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 4.58 5.34 6.21 7.01
300 4.84 5.54 6.43 7.25
400 5.04 5.65 6.41 7.32
500 5.00 5.74 6.54 7.26
600 5.21 5.93 6.60 7.34
700 5.24 5.90 6.73 7.34
800 5.34 5.95 6.85 7.35
900 5.39 5.98 6.79 7.49
1000 5.33 5.89 6.78 7.37

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.48 5.08 6.06 6.98
300 4.60 4.91 5.77 6.59
400 4.71 5.02 5.80 6.68
500 4.64 5.03 5.87 6.62
600 4.84 5.24 5.87 6.58
700 4.91 5.21 5.93 6.69
800 4.95 5.21 6.10 6.68
900 5.02 5.25 6.12 6.81
1000 4.96 5.20 6.08 6.74

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.22 5.07 6.11 6.97
300 4.35 4.82 5.74 6.58
400 4.41 4.91 5.78 6.68
500 4.39 4.93 5.82 6.64
600 4.60 5.13 5.85 6.60
700 4.70 5.14 5.93 6.72
800 4.71 5.14 6.08 6.72
900 4.83 5.19 6.12 6.85
1000 4.74 5.14 6.08 6.75

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.06 5.14 6.07 6.96
300 4.22 5.12 6.16 7.02
400 4.38 5.31 6.17 7.10
500 4.37 5.34 6.29 7.07
600 4.60 5.60 6.33 7.12
700 4.71 5.57 6.42 7.13
800 4.78 5.57 6.61 7.17
900 4.85 5.62 6.55 7.29
1000 4.79 5.57 6.57 7.20

(h) StabSel PC π = 0.75 EV = 5

Table 3.15: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 100 and B = 500m

n
,

number of important variables s = 10 and number of factors K = 0. Bold: result better
than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 4.66 5.84 6.78 7.54
300 3.52 4.52 5.46 6.29
400 2.80 3.62 4.51 5.46
500 2.38 3.19 3.98 4.72
600 2.20 2.77 3.44 4.17
700 2.13 2.58 3.21 3.81
800 1.99 2.35 3.04 3.53
900 1.81 2.14 2.81 3.27
1000 1.70 1.96 2.51 3.05

(a) RBVS PC

n\p 102 103 104 105

200 1.96 1.34 1.09 1.25
300 1.62 1.01 .63 .46
400 1.61 .97 .54 .35
500 1.65 .95 .51 .31
600 1.58 .90 .58 .26
700 1.61 .89 .51 .26
800 1.36 .90 .48 .26
900 1.44 .80 .54 .22
1000 1.39 .90 .56 .30

(b) IRBVS PC

n\p 102 103 104 105

200 5.28 5.31 6.05 6.93
300 4.82 4.22 4.94 5.63
400 4.51 3.46 4.06 4.88
500 4.35 3.02 3.64 4.29
600 4.33 2.70 3.15 3.82
700 4.29 2.48 2.90 3.54
800 4.26 2.29 2.86 3.26
900 4.23 2.09 2.60 3.02
1000 4.21 1.87 2.29 2.91

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 4.70 5.19 6.04 6.93
300 4.00 4.09 4.95 5.64
400 3.52 3.34 4.05 4.88
500 3.11 2.87 3.64 4.32
600 2.96 2.62 3.17 3.82
700 2.87 2.40 2.93 3.56
800 2.76 2.20 2.87 3.25
900 2.61 2.01 2.63 3.04
1000 2.68 1.76 2.30 2.93

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 4.51 5.31 6.24 7.01
300 3.64 4.23 5.04 5.80
400 2.99 3.44 4.15 4.99
500 2.54 2.95 3.71 4.33
600 2.36 2.69 3.19 3.88
700 2.11 2.43 2.98 3.53
800 2.04 2.27 2.94 3.29
900 1.80 2.06 2.63 3.04
1000 1.69 1.83 2.36 2.88

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.47 5.09 6.06 6.97
300 3.78 4.02 4.95 5.77
400 3.29 3.27 4.14 4.95
500 2.96 2.86 3.70 4.49
600 2.83 2.62 3.22 3.94
700 2.72 2.41 3.00 3.67
800 2.63 2.20 2.97 3.43
900 2.48 2.02 2.72 3.22
1000 2.51 1.75 2.43 3.10

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.18 5.05 6.12 7.02
300 3.39 4.04 5.00 5.82
400 2.81 3.30 4.18 4.98
500 2.41 2.88 3.77 4.53
600 2.25 2.63 3.30 3.98
700 2.02 2.43 3.08 3.75
800 1.98 2.26 3.02 3.46
900 1.79 2.06 2.78 3.26
1000 1.67 1.84 2.48 3.18

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.01 5.13 6.05 6.92
300 3.16 4.03 4.96 5.66
400 2.55 3.27 4.08 4.92
500 2.10 2.84 3.63 4.29
600 2.00 2.66 3.18 3.83
700 1.74 2.42 2.97 3.54
800 1.69 2.22 2.89 3.26
900 1.49 2.03 2.62 3.02
1000 1.37 1.78 2.32 2.88

(h) StabSel PC π = 0.75 EV = 5

Table 3.16: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = n

2 and B = 500m
n

, number
of important variables s = 10 and number of factors K = 0. Bold: result better than
the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 7.23 8.05 8.77 9.35
300 7.04 8.02 8.74 9.27
400 7.02 7.90 8.68 9.26
500 6.83 7.88 8.62 9.12
600 6.96 7.94 8.69 9.11
700 7.14 7.90 8.63 9.11
800 6.96 7.97 8.63 9.14
900 7.01 7.94 8.68 9.20
1000 6.94 7.90 8.55 9.10

(a) RBVS PC

n\p 102 103 104 105

200 2.49 1.94 4.04 8.38
300 1.55 1.73 3.26 7.48
400 1.93 1.52 2.76 7.14
500 1.19 1.01 2.51 5.46
600 1.68 1.38 2.94 5.52
700 2.09 1.45 2.65 5.59
800 1.57 1.38 2.41 5.28
900 1.44 1.44 2.84 6.09
1000 1.66 1.41 2.13 5.01

(b) IRBVS PC

n\p 102 103 104 105

200 7.37 7.97 8.67 9.24
300 7.41 8.17 8.79 9.33
400 7.48 8.15 8.81 9.39
500 7.44 8.09 8.74 9.26
600 7.55 8.17 8.83 9.24
700 7.66 8.25 8.83 9.31
800 7.51 8.20 8.80 9.31
900 7.67 8.26 8.89 9.37
1000 7.55 8.13 8.73 9.26

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 7.13 7.88 8.68 9.26
300 7.24 8.09 8.80 9.33
400 7.26 8.08 8.83 9.39
500 7.25 8.02 8.75 9.27
600 7.39 8.09 8.85 9.27
700 7.50 8.16 8.85 9.33
800 7.29 8.12 8.82 9.33
900 7.47 8.20 8.90 9.39
1000 7.33 8.06 8.76 9.28

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 7.42 8.26 9.00 9.51
300 7.50 8.47 9.12 9.54
400 7.61 8.51 9.14 9.62
500 7.59 8.45 9.09 9.48
600 7.74 8.61 9.17 9.53
700 7.84 8.55 9.18 9.57
800 7.71 8.59 9.16 9.56
900 7.89 8.61 9.21 9.65
1000 7.75 8.51 9.10 9.51

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 6.75 7.63 8.50 9.13
300 6.92 7.83 8.59 9.23
400 6.91 7.76 8.61 9.25
500 6.95 7.77 8.53 9.10
600 7.01 7.78 8.64 9.12
700 7.11 7.86 8.60 9.20
800 6.96 7.82 8.60 9.18
900 7.13 7.90 8.71 9.28
1000 6.97 7.76 8.55 9.15

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 6.63 7.56 8.48 9.13
300 6.83 7.76 8.58 9.23
400 6.84 7.71 8.62 9.27
500 6.85 7.71 8.53 9.11
600 6.95 7.74 8.65 9.15
700 7.05 7.84 8.61 9.23
800 6.91 7.78 8.59 9.19
900 7.06 7.87 8.73 9.29
1000 6.92 7.73 8.55 9.16

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 6.83 7.94 8.81 9.38
300 7.04 8.19 8.95 9.43
400 7.10 8.19 8.99 9.53
500 7.10 8.15 8.89 9.41
600 7.27 8.24 9.01 9.42
700 7.34 8.32 9.01 9.49
800 7.20 8.28 8.97 9.48
900 7.38 8.34 9.08 9.56
1000 7.20 8.22 8.91 9.44

(h) StabSel PC π = 0.75 EV = 5

Table 3.17: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 50 and B = 500m

n
, number

of important variables s = 10 and number of factors K = 5. Bold: result better than
the corresponding value for RBVS PC.



94 Ranking-Based Variable Selection

n\p 102 103 104 105

200 5.43 6.53 7.47 8.34
300 5.07 6.17 7.23 8.05
400 4.67 5.92 7.06 7.95
500 4.65 6.05 7.05 7.72
600 4.55 5.84 6.99 7.76
700 4.54 5.96 6.99 7.85
800 4.48 5.98 6.97 7.82
900 4.55 6.03 7.10 7.86
1000 4.56 5.89 7.03 7.71

(a) RBVS PC

n\p 102 103 104 105

200 2.13 1.57 1.13 1.89
300 1.01 .56 .30 .60
400 .56 .13 .21 .31
500 .44 .14 .23 .24
600 .31 .13 .16 .50
700 .28 .15 .16 .43
800 .25 .23 .20 .32
900 .12 .21 .24 .49
1000 .20 .19 .26 .15

(b) IRBVS PC

n\p 102 103 104 105

200 5.64 5.88 6.80 7.60
300 5.84 5.91 6.66 7.45
400 5.93 5.95 6.72 7.50
500 5.93 6.11 6.77 7.34
600 5.96 5.99 6.71 7.38
700 5.95 6.13 6.84 7.53
800 5.93 6.16 6.89 7.55
900 6.03 6.21 6.92 7.58
1000 5.95 6.06 6.87 7.43

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 5.21 5.78 6.76 7.59
300 5.38 5.76 6.62 7.45
400 5.50 5.83 6.72 7.51
500 5.49 5.97 6.78 7.37
600 5.50 5.87 6.72 7.42
700 5.55 6.02 6.83 7.55
800 5.54 6.06 6.91 7.58
900 5.67 6.08 6.95 7.63
1000 5.55 5.95 6.88 7.47

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 5.09 5.93 6.91 7.67
300 5.42 6.17 7.12 7.83
400 5.58 6.20 7.19 7.89
500 5.59 6.39 7.20 7.79
600 5.64 6.35 7.24 7.84
700 5.70 6.47 7.27 7.99
800 5.72 6.45 7.35 8.03
900 5.85 6.55 7.41 8.01
1000 5.76 6.41 7.31 7.91

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.99 5.70 6.80 7.71
300 5.05 5.50 6.37 7.21
400 5.16 5.55 6.39 7.28
500 5.16 5.68 6.54 7.18
600 5.17 5.58 6.46 7.16
700 5.25 5.72 6.54 7.31
800 5.24 5.74 6.62 7.38
900 5.36 5.76 6.61 7.38
1000 5.24 5.66 6.58 7.23

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.72 5.66 6.80 7.72
300 4.80 5.41 6.34 7.20
400 4.96 5.42 6.38 7.29
500 4.94 5.58 6.52 7.20
600 4.97 5.49 6.43 7.18
700 5.01 5.65 6.54 7.33
800 5.05 5.68 6.62 7.40
900 5.20 5.71 6.63 7.41
1000 5.06 5.60 6.58 7.24

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.55 5.73 6.75 7.53
300 4.74 5.79 6.76 7.65
400 4.97 5.85 6.88 7.72
500 4.97 6.03 6.92 7.58
600 5.02 5.92 6.94 7.65
700 5.13 6.11 7.05 7.78
800 5.14 6.14 7.11 7.83
900 5.29 6.21 7.14 7.83
1000 5.15 6.06 7.09 7.73

(h) StabSel PC π = 0.75 EV = 5

Table 3.18: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = 100 and B = 500m

n
,

number of important variables s = 10 and number of factors K = 5. Bold: result better
than the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 5.47 6.51 7.54 8.35
300 4.33 5.22 6.24 7.08
400 3.48 4.29 5.34 6.09
500 2.96 3.80 4.65 5.26
600 2.59 3.35 4.08 4.78
700 2.27 2.96 3.74 4.24
800 2.16 2.72 3.46 3.96
900 1.98 2.45 3.13 3.73
1000 1.83 2.32 2.90 3.48

(a) RBVS PC

n\p 102 103 104 105

200 2.21 1.48 1.11 1.83
300 1.95 1.13 .67 .45
400 1.59 1.00 .57 .30
500 1.73 .99 .56 .33
600 1.70 .97 .56 .32
700 1.70 .90 .49 .28
800 1.53 .91 .50 .28
900 1.52 .91 .50 .26
1000 1.46 .90 .51 .26

(b) IRBVS PC

n\p 102 103 104 105

200 5.65 5.86 6.81 7.61
300 5.02 4.74 5.54 6.29
400 4.71 4.08 4.71 5.33
500 4.49 3.57 4.13 4.78
600 4.38 3.15 3.68 4.33
700 4.29 2.86 3.39 3.80
800 4.23 2.59 3.17 3.59
900 4.29 2.35 2.90 3.41
1000 4.24 2.17 2.71 3.21

(c) StabSel PC π = 0.55 EV = 2.5

n\p 102 103 104 105

200 5.22 5.74 6.78 7.60
300 4.35 4.63 5.52 6.29
400 3.88 3.99 4.72 5.33
500 3.50 3.44 4.14 4.79
600 3.26 2.97 3.67 4.33
700 3.07 2.74 3.39 3.80
800 2.96 2.52 3.18 3.60
900 2.80 2.26 2.92 3.42
1000 2.71 2.09 2.72 3.22

(d) StabSel PC π = 0.6 EV = 2.5

n\p 102 103 104 105

200 5.10 5.89 6.90 7.66
300 4.11 4.78 5.70 6.42
400 3.50 4.10 4.81 5.42
500 3.05 3.55 4.25 4.79
600 2.70 3.08 3.76 4.35
700 2.49 2.84 3.46 3.85
800 2.30 2.58 3.24 3.66
900 2.11 2.32 2.94 3.47
1000 1.92 2.14 2.73 3.22

(e) StabSel PC π = 0.75 EV = 2.5

n\p 102 103 104 105

200 4.96 5.69 6.82 7.72
300 4.13 4.52 5.52 6.39
400 3.65 3.91 4.78 5.46
500 3.32 3.40 4.24 4.98
600 3.09 2.94 3.70 4.53
700 2.93 2.68 3.46 3.92
800 2.80 2.55 3.25 3.73
900 2.69 2.24 3.03 3.56
1000 2.57 2.09 2.82 3.34

(f) StabSel PC π = 0.55 EV = 5

n\p 102 103 104 105

200 4.70 5.70 6.87 7.72
300 3.78 4.51 5.60 6.39
400 3.29 3.89 4.84 5.49
500 2.89 3.43 4.26 5.05
600 2.55 2.95 3.75 4.56
700 2.40 2.73 3.51 3.97
800 2.23 2.59 3.31 3.77
900 2.03 2.28 3.08 3.61
1000 1.89 2.17 2.92 3.38

(g) StabSel PC π = 0.6 EV = 5

n\p 102 103 104 105

200 4.53 5.71 6.77 7.57
300 3.54 4.56 5.52 6.31
400 3.04 3.91 4.72 5.33
500 2.67 3.39 4.13 4.77
600 2.28 2.96 3.65 4.32
700 2.08 2.67 3.39 3.77
800 1.96 2.54 3.19 3.62
900 1.75 2.23 2.94 3.43
1000 1.62 2.10 2.73 3.19

(h) StabSel PC π = 0.75 EV = 5

Table 3.19: High-dimensional example: the average number of FP+FN (False Positives
and False Negatives) calculated over 500 realisations with m = n

2 and B = 500m
n

, number
of important variables s = 10 and number of factors K = 5. Bold: result better than
the corresponding value for RBVS PC.
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n\p 102 103 104 105

200 .04 .08 .41 2.55
300 .05 .10 .51 2.80
400 .05 .11 .50 3.13
500 .05 .13 .60 3.56
600 .06 .14 .69 6.81
700 .07 .16 .81 7.63
800 .07 .18 .91 8.12
900 .08 .21 1.05 9.39
1000 .09 .24 1.21 9.94

(a) RBVS PC, m = 50

n\p 102 103 104 105

200 .14 .29 1.50 10.07
300 .14 .31 1.76 10.55
400 .14 .33 1.73 11.90
500 .16 .36 1.96 13.07
600 .16 .39 2.18 23.01
700 .17 .43 2.43 25.39
800 .18 .48 2.70 26.73
900 .20 .54 3.06 29.37
1000 .21 .60 3.52 30.36

(b) IRBVS PC, m = 50

n\p 102 103 104 105

200 .05 .10 .55 3.54
300 .05 .11 .64 4.01
400 .05 .13 .63 4.55
500 .06 .14 .72 5.09
600 .06 .16 .83 8.39
700 .07 .18 .95 9.09
800 .08 .20 1.03 9.33
900 .08 .22 1.17 10.75
1000 .09 .25 1.35 11.32

(c) RBVS PC, m = 100

n\p 102 103 104 105

200 .15 .32 1.78 12.79
300 .14 .31 1.90 13.59
400 .14 .32 1.81 15.30
500 .15 .34 1.98 16.95
600 .15 .37 2.25 24.75
700 .16 .41 2.49 26.01
800 .16 .45 2.60 26.48
900 .17 .49 2.98 29.63
1000 .18 .55 3.38 30.50

(d) IRBVS PC, m = 100

n\p 102 103 104 105

200 .05 .10 .55 3.47
300 .05 .13 .82 5.15
400 .06 .16 .95 7.07
500 .07 .19 1.19 8.86
600 .08 .22 1.40 14.10
700 .08 .25 1.58 16.59
800 .09 .28 1.70 16.33
900 .10 .32 1.90 18.17
1000 .11 .36 2.30 20.30

(e) RBVS PC, m = n
2

n\p 102 103 104 105

200 .15 .32 1.78 12.14
300 .17 .37 2.42 16.06
400 .17 .43 2.69 20.69
500 .19 .48 3.25 25.07
600 .20 .52 3.64 37.56
700 .21 .55 3.91 41.85
800 .22 .60 4.00 40.40
900 .24 .67 4.31 43.68
1000 .25 .74 5.30 47.96

(f) IRBVS PC, m = n
2

Table 3.20: High-dimensional example: average computation times achieved with the
rbvsGPU package (Baranowski, 2016), calculated over 500 realisations with B = 500m

n
,

number of important variables s = 5 and number of factors K = 0. In a single run,
computations are performed in parallel, using a Nvidia Quadro 4000 GPU and a single
core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM.
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• When the subsample size is set to m
2 , there typically exists a set of parameters

for StabSel such that it slightly outperforms RBVS. We have checked that

RBVS in this setting selects slightly more false positives.

• Overall, performance of StabSel is sensitive to the choice of its parameter.

• “Optimal” parameters for StabSel in one example are not necessarily best in

another case. For instance, in the s = 5, K = 0 and m = n
2 case π = 0.75 and

EV = 2.5 results in the best error control, while for s = 5, K = 0 and m = 50

setting EV = 5 and π = 0.6 yields best FP + FN rate.

• IRBVS almost uniformly outperforms both RBVS and StabSel, which demon-

strates that the iterative extension of our methodology significantly improves

its vanilla variant.

2. General comments on the impact of “high-dimensionality”:

• Perhaps a bit unexpectedly, performance of the IRBVS algorithm improves

with dimensionality p growing. This phenomenon can be explained by the fact

that a single irrelevant covariate is the less likely to appear at the top of the

ranking, the more covariates with similar (spurious) impact on the response

there are. We note that this surprising “blessing of dimensionality” has been

observed in Fan et al. (2009).

• IRBVS performs very well even for small/moderate values of n and m, even

when p is very large.

3. Comments on the choice of the subsample size m:

• For the IRBVS algorithm, m = 100 yields best FP + FN in this example,

often close to 0. On the other hand, choosing m
2 results in IRBVS occasionally

picking some irrelevant covariates. We emphasise again, however, that IRBVS

consistently outperforms RBVS nad StabSel.
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• For the RBVS and StabSel algorithms, m = m
2 leads to best performance.

• The subsample size set to a small number (m = 50) results in a worse selection

of the important variables.

3.9 Computational aspects

3.9.1 Details of the implementation of the RBVS algorithm

In this section, we provide a detailed description of our implementation of Algorithm 3.3,

which is available in the R package rbvs. First we recall all necessary notation. By

Zi = (Yi, Xi1, Xip), i = 1, . . . n we denote a random sample we observe, where Yi is a

response and {Xi1,, . . . , Xip} is the set of the covariates. A chosen (empirical) measure of

dependence between the response and j′th covariates is denoted by ω̂j, positive integer

m < n is a subsample size (parameter of our method), B is a positive integer (typically

B = 100, 500).

The RBVS algorithm aims to identify the set of covariates which non-spuriously

appears at the top of the variable ranking based on the empirical measure ω̂j . It consists

of four steps. Implementation of Step 1 is straightforward. It is worth noting that in

Step 2 we do not actually need to evaluate complete rankings for each subsample, it is

sufficient to find only a partial ranking, i.e. indices of the kmax top ranked variables,

as only those are used in 3. The computational complexity of finding a full ranking is

O(p log(p)). For the partial ranking, it takes (on average) just O(p + kmax log(kmax))

operations. The gain can be substantial when p >> kmax.

Let us recall that Âk,m = argmaxA∈Ωk
π̂m,n(A), where Ωk is the set of all k-element

subsets of {1, . . . , p}. Despite the fact that the definition involves searching of the

maximum empirical probability over a set the size of which grows extremely fast, finding

Âk,m is actually quick. This is because the number of the subsets which could have
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appeared at the top of the ranking at least once is limited by the total number of

evaluated rankings. In Step 3, we apply procedure outlined in Algorithm 3.4.

Algorithm 3.5 Top-ranked sets
Input: Variable rankings (Rl1, . . . , Rlkmax), l = 1, . . . , Br.
Output: Estimates Âk,m and π̂m,n

(
Âk,m

)
for k = 1, . . . , kmax.

procedure kTopRankedSets({(Rl1, . . . , Rlkmax}Br
l=1)

for k = 1, . . . , kmax do
Step 1 for each l, insert Rlk into Sl,k−1 s.t. resulting sequence Sl,k is in increasing
order
Step 2 find S∗

k the most frequently occurring among S1,k, . . . , SBr,k

Step 3 set Âk,m = S∗
k and π̂m,n

(
Âk,m

)
= no. l s.t. Sl,k=S∗

k

Br

end for
end procedure

The computational complexity of Step 1 is of order O(nBr) (for each k we use the fact

that at the previous step k − 1 elements are already in increasing order; we do not need

to sort R1,l, . . . , Rk,l from scratch). The second part is relatively quick – we need to find

the most frequent element among k-element sequences. For each k, the computational

complexity is O(kBr). Therefore with kmax = n in total the algorithm we use to find

Âk,m is of order O(max{n2, nrB}). Algorithm 3.5 can be easily run on multiple CPUs

(which is supported by the rbvs package) or a GPU, which makes it feasible for extremely

large data sets. In practice, Step 3 of the RBVS algorithm (Algorithm 3.3) takes much

less computational time than Step 2. Moreover, the rbvs package provides optimised,

C-implemented routines performing Algorithm 3.3, hence in particular Algorithm 3.5.

3.9.2 Algorithmic differences between RBVS and StabSel

RBVS and StabSel algorithms are based on the idea that to one can repeatedly apply a

favourite variable ranking or, respectively, variable selection algorithm, and aggregate

results to obtain “better” feature selection. In this section we describe the differences

between the two approaches, focusing on the algorithmic side of the problem. We
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RBVS StabSel
covariates are seen from the most to the

least important
as either relevant or ir-
relevant

no. model complexity parameters 0 2
no. other parameters 2 2
error control no yes
iterative extension yes no

Table 3.21: Informal comparison of the RBVS and StabSel algorithms.

demonstrate how to use rankings obtained in the RBVS algorithm to perform Stability

Selection.

To ease presentation, we assume in this section that dependence between the response

and covariates is measured with ω̂j equal to the absolute value of the regression coefficient

estimated using a penalised likelihood method, e.g. Lasso. Moreover, we assume that

the penalty is always selected such that there are exactly kmax ∈ {1, . . . , p} non-zero

coefficients, where kmax is the same as in the RBVS algorithm (see Section 3.3.5).

The initial steps of the RBVS and StabSel algorithms are similar, i.e. we evaluate the

measure of dependence over subsamples from the data. Let Il ⊂ {1, . . . , n}, l = 1, . . . , Br

denote the indices of such randomly drawn subsamples of size 1 ≤ m ≤ n, by ω̂lj denote

the measure of dependence calculated over Il. Subsequent steps, however, are different.

In the RBVS algorithm, we sort ω̂lj and obtain variable rankings (Rl1, . . . , Rlkmax). Next

we find subsets which appear at the top of the rankings frequently and based on the

frequencies we select the important variables. This way, we use full information on the

magnitude of ω̂j.

In Stability Selection, on the other hand, after calculating the measures of dependence,

we find Sl = {j : ω̂lj ̸= 0}, therefore at this stage we completely ignore the information

on the order of ω̂′
js. Subsequently, we find the proportions π̂j equal to the number of

sets Sl containing j. The covariates for which p̂j exceeds prespecified threshold form the

final set of the selected predictors.

Table 3.21 heuristically compares RBVS and StabSel methodologies.
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3.9.3 Simulation code

The list below summarises how all methods consider in Section 3.6 have been executed.

• In Model (A)–Model (E):

– Lasso/MC+ CV: we used the cross-validation routine from the ncvreg (Breheny

and Huang, 2011). The execution code is as follows.

cv.ncvreg(x, y, penalty="lasso") # Lasso penalty

cv.ncvreg(x, y, penalty="MCP") #MC+ penalty

– (I)SIS Lasso/MC+: we used the R package SIS executing the following code.

SIS(x,y, penalty="lasso") # SIS Lasso

SIS(x,y, penalty="MCP") # SIS MC+

SIS(x,y, penalty="lasso", iter=TRUE, varISIS="aggr") # ISIS Lasso

SIS(x,y, penalty="MCP", varISIS="aggr") # ISIS MC+

Note that we used an “aggresive” variant of the ISIS algorithm (for details see

Saldana and Feng (2014)), which was basically much better than a standard

ISIS in our simulations. Unfortunately, the SIS package does not allow for

sample splitting in the standard SIS procedure.

– (I)RBVS PC/Lasso/MC+: these routines, implemented in the rbvs package,

were executed as follows.

p <- ncol(x)

thr <- 0.6 # StabSel thresholding probability

EV <- 2.5 # StabSel bound

d <- ceiling(sqrt(p*EV*(2*thr-1)))

# RBVS PC

rbvs(x,y,measure="pc", iter=FALSE, k.max=p)

# RBVS Lasso
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rbvs(x,y,measure="lasso", iter=FALSE, k.max=p, nonzero=p)

# RBVS MC+

rbvs(x,y,measure="mcplus", iter=FALSE, k.max=p, nonzero=p)

# IRBVS PC

rbvs(x,y,measure="pc", iter=TRUE, k.max=p, nonzero=p)

# IRBVS Lasso

rbvs(x,y,measure="lasso", iter=TRUE, k.max=p, nonzero=p)

# IRBVS MC+

rbvs(x,y,measure="mcplus", iter=TRUE, k.max=p, nonzero=p)

Note that we set the nonzero parameter as in the StabSel algorithm. This

means that the tuning parameter λ for MC+ and Lasso algorithms is chosen

such that nonzero out of p coefficients are different than zero.

– StabSel PC/Lasso/MC+: for these method we used the rbvs package. The

example code below demonstrates how we do this with the marginal correlation

used as a base learner.

p <- ncol(x)

thr <- 0.6 # StabSel thresholding probability

EV <- 2.5 # StabSel bound

d <- ceiling(sqrt(p*EV*(2*thr-1)))

# RBVS PC

rbvs.object <- rbvs(x,y,measure="pc", iter=FALSE, k.max=p)

pb <- rep(0, p) # vector with StabSel probabilities

for(j in 1:ncol(ranks)) pb[ranks[,j]] <- pb[ranks[,j]] + 1

active.stabsel <- which(pb>thr)

In Section 3.9.2 we discuss this approach in a greater detailed.

• In Model (E): in this example we used the logistic regression model for Lasso/MC+.

The code can be found below.
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– Lasso/MC+ CV:

cv.ncvreg(x, y, penalty="lasso", family="binomial") # Lasso penalty

cv.ncvreg(x, y, penalty="MCP", family="binomial") #MC+ penalty

– (I)SIS Lasso/MC+:

SIS(x,y, penalty="lasso", family="binomial") # SIS Lasso

SIS(x,y, penalty="MCP", family="binomial") # SIS MC+

# ISIS Lasso

SIS(x,y, penalty="lasso", family="binomial", iter=TRUE,

varISIS="aggr")

SIS(x,y, penalty="MCP", family="binomial", varISIS="aggr") # ISIS MC+

– (I)RBVS PC/Lasso/MC+:

p <- ncol(x)

thr <- 0.6 # StabSel thresholding probability

EV <- 2.5 # StabSel bound

d <- ceiling(sqrt(p*EV*(2*thr-1)))

rbvs(x,y,measure="pc", iter=FALSE, k.max=p) # RBVS PC

rbvs(x,y,measure="dc", iter=FALSE, k.max=p) # RBVS DC

rbvs(x,y,measure="lasso", family="binomial" iter=FALSE,

k.max=p, nonzero=p) # RBVS Lasso

rbvs(x,y,measure="mcplus", family="binomial", iter=FALSE,

k.max=p, nonzero=p) # RBVS MC+

rbvs(x,y,measure="pc", iter=TRUE, k.max=p, nonzero=p) # IRBVS PC

rbvs(x,y,measure="dc", iter=TRUE, k.max=p) # IRBVS DC

rbvs(x,y,measure="lasso", family="binomial", iter=TRUE,

k.max=p, nonzero=p) # IRBVS Lasso

rbvs(x,y,measure="mcplus", family="binomial", iter=TRUE,

k.max=p, nonzero=p) # IRBVS MC+
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– StabSel PC/Lasso/MC+: we used the rbvs package.

3.10 Proofs

3.10.1 Proof of Proposition 3.3.1

Proof. First, we show that πn (S) tends to 1. Indeed, using (C3) we have

πn (S) = P
(

min
j=1,...,s

ω̂j > min
j=s+1,...,p

ω̂j

)
≥ P

(
max

j=1,...,p
|ω̂j − ωj| < ϵ

)
,

where ϵ = cηn−η

2 . Application of Bonferroni’s inequality yields that

P
(

max
j=1,...,p

|ω̂j − ωj| < ϵ
)
≥ 1− p sup

j=1,...,p
P (|ω̂j − ωj| ≥ ϵ) .

The last term is of order 1−O
(
exp

(
−nγ−b1

))
, which tends to 1 as n approaches infinity.

This proves that S is a s-top-ranked set.

Consider any A ∈ Ωk+1. We will prove that πn(A)→
n

0. Denote by

E = { min
j=1,...,s

ω̂j > min
j=s+1,...,p

ω̂j}.

When S ̸⊂ A, we have

P
(

min
j∈A

ω̂j > max
j ̸∈A

ω̂j

)
≤ P (Ec) = 1− πn(S)→

n
0.

Now consider the case S ⊂ A in which A \ S has only one element denoted by a. On

event E we have

P
({

min
j∈A

ω̂j > max
j ̸∈A

ω̂j

}
∩ E

)
= P

({
ω̂a > max

j ̸∈A
ω̂j

}
∩ E

)
,
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hence it is sufficient to bound P (ω̂a > maxj ̸∈A ω̂j). Let us observe that

P
(
ω̂a > max

j ̸∈A
ω̂j

)
≤ P

(
ω̂a > max

j∈Ma\{a}
ω̂j

)
.

Using (C2), we have

P
(
ω̂a > max

j∈Ma\{a}
ω̂j

)
≤ 1
|Ma|

.

Eventually,

πn(A) ≤ P
(
ω̂a > max

j ̸∈A
ω̂j

)
+ P (Ec)→

n
0.

To conclude that S is unique, we make the following observations.

1. Using (C2) and arguments analogical to those above, we can prove that πn(A)→
n

0

for any A ⊂ {1, . . . , p} such that p > |A| > s.

2. On the other hand, πn(A) →
n

0 for any A ⊂ {1, . . . , p} such that |A| ≤ s and there

exists a ∈ A, a ̸∈ S. This follows from πn(S)→
n

1.

3. For any k = 0, . . . , s, there exists k-top-ranked set. Indeed, let us take k ≤ s and

consider A∗
n = argmaxA⊂{1,...,s},|A|=k πn(A). We have ∑

A⊂{1,...,s},|A|=k πn(A) →
n

1,

hence lim infn→∞ p(A∗) > 0, as s is bounded in n.

4. S is the only s-top-ranked set, as πn(S)→
n

1 and ∑A∈Ωs
πn(A) = 1.
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3.10.2 Proof of Theorem 3.4.1 and discussion of some of its

aspects.

One of the challenges in proving Theorem 3.4.1 is that π̂m,n (A)’s are not consistent

estimators for πm,n (A)’s when p is growing with n. This is due to the fact that the total

number of subsets A ⊂ {1, . . . , p} whose empirical probability π̂(A)m,n is greater than

zero cannot be greater than the number of subsamples used in the RBVS algorithm (i.e.

rB). Despite this difficulty, maxA∈Ωk
π̂m,n (A) has a desirable property, i.e. it is small

(with a large probability) when its population counterpart maxA∈Ωk
πm,n (A) is small.

On the other hand, the probability π̂m,n (S) is significantly larger than the corresponding

estimate for any other set, provided that πm,n (S) and n are big enough. Therefore S

appears at the top of the ranking consistently over subsamples provided that πm,n (S) is

significantly larger than 0.

The proof of Theorem 3.4.1 below begins by showing that the unknown probabilities

πm,n (A) for A ⊂ {1, . . . , p} such that |A| > s, are uniformly small, and πm,n (S)

converges to 1 at an exponential rate. Consequently, the size of the gap between

πm,n (S) and πm,n (A) is ‘large enough’ when n is large. Precisely, we take n such that
πm,n(S)
πm,n(A) > (Br)2α− 1

3 and show that the estimators π̂m,n (A) with large probability exhibit

similar behaviour. To this end, we use the following Lemma’s.

Lemma 3.10.1 (Proposition 2.4, Arcones and Giné (1993)). Let W1, . . . ,WB be binomial

r.v. with the probability of success π and r trials. For any 1 > t > π, we have

P
(

1
B

B∑
i=1

Wi ≥ rt

)
≤
(
π

t

)rt (1− π
1− t

)r(1−t)
,

for 0 < t < π,

P
(

1
B

B∑
i=1

Wi ≤ rt

)
≤
(
π

t

)rt (1− π
1− t

)r(1−t)
.
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Lemma 3.10.2. Let a1, . . . , al be non-negative numbers s.t. ∑l
i=1 ai ≤ 1 and max ai ≤ t

for some 1
l
≤ t ≤ 1. There exist N ∈ N, N ≤ 3

t
, and mutually exclusive sets I1, . . . , IN ⊂

{1, . . . , l} s.t. ∑i∈Ij
ai ≤ t and ⋃N

j=1 Ij = {1, . . . , l}.

Proof. Note that it is sufficient to consider 1
l
≤ t < 1, as for t = 1 the statement of the

lemma is obvious. For l = 2 partition I1 = {1} and I2 = {2} conditions stated in the

lemma. Assume the statement holds for any positive integer l.

Consider a1, . . . , al+1 and, without loss of generality, assume that a1 ≥ a2 ≥ . . . ≥ al+1.

Take I1 = {1, . . . , k} where k is such that ∑k
i=1 ai ≤ t and ∑k+1

i=1 ai > t. Suppose 1
2 < t < 1

and take I2 = {k + 1}, I3 = {k + 2, . . . , l + 1} (if k < l). It follows directly that∑
i∈Ij

ai ≤ t, i = 1, 2 and ∑i∈I3 ai ≤ 1− t < t, so partition I1, I2, I3 satisfies conditions

of the lemma for 1
2 < t < 1.

Suppose now 1
l+1 ≤ t ≤ 1

2 and define

ãi = ai+k∑l+1
u=k+1 au

, i = 1, . . . , l − k + 1.

We have ∑l−k+1
i=1 ãi = 1 and

max
i
ãi ≤

t∑l+1
u=k+1 au

≤ t

1− t ≤ 1.

Using the induction assumption, we find a partition Ĩ1, . . . , ĨN of {1, . . . , l − k + 1} and

N ≤ 3
∑l+1

u=k+1 au

t
such that

∑
i∈Ĩj

ãi ≤
t∑l+1

u=k+1 au

,

for all j = 1, . . . , N , which implies ∑i∈Ĩj
ai+k ≤ t. Moreover, we have

N + 1 ≤ 3(1−∑k
u=1 au)
t

+ 1 ≤ 3
t

+ t−∑k+1
u=1 au

t
≤ 3
t
.
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Define Ij+1 = Ĩj + k, j = 1, . . . , N . Partition I1, . . . , IN+1 satisfies conditions stated in

the lemma.

Lemma 3.10.3. Let be Ω ⊂ Ωk for some k = 1, . . . , p− 1, m ≤ n and t1, t2 satisfying

maxA∈Ω πm,n(A) ≤ t2 < t1 < 1. Then

P
(

max
A∈Ω

π̂m,n(A) ≥ t1

)
≤ 3
t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r

,

where πm,n(A), π̂m,n(A) are defined by (3.3) and (3.4), respectively.

Proof. Denote by A1, . . . ,Al the elements of Ω. Applying Lemma 3.10.2 we find a

partition I1, . . . , IN such that maxj=1,...,N
∑

i∈Ij
πm,n(Aj) ≤ t2 and N ≤ 3

t2
. We have

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1

)
≤ N max

j=1,...,N
P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 .
Note that rB∑i∈Ij

π̂m,n(Aj) is a sum of B binomial random variables with the probability

of success p∗
j = ∑

i∈Ij
πm,n(Ai) and r trials. We conclude from Lemma 3.10.1 that

P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 ≤
(p∗

j

t1

)t1 (1− p∗
j

1− t1

)1−t1
r

≤
[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r

,

which combined with N ≤ 3
t2

finishes the proof.

Now we are in position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. To ease notation, define ω̂j,m = ω̂j(Z1, . . . ,Zm), δ = πm,n (S)

and θ = maxA̸⊂{1,...,s},|A|≤kmax πm,n (A), where πm,n(·) is given by (3.2). We start from

showing that δ and θ are separated from each other for sufficiently large n.

Let us take ϵ = cηm−η

2 . Using (A1) and (A3) combined with a simple Bonferroni’s
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inequality we get

δ ≥ P
(

max
j=1,...,p

|ω̂j,m − ωj| < ϵ
)
≥ 1− Cϵp exp(−mγ).

Using (A4) and (A5) applied to this, we get δ = 1 +O(exp(−nγb2−b1)), which tends to

one with n→∞.

For any A ∈ Ωk (k ≤ kmax) containing at least one a ∈ A \ S we have

pn,m(A) ≤ P
(

min
j∈A

ω̂j,m ≥ max
j ̸∈A

ω̂j,m

)
≤ P

(
ω̂a,m ≥ max

j∈Ma\A
ω̂j,m

)
≤ 1
||Ma| − kmax|

,

where Ma is as in (A2). Using (A6) and (A8) we conclude that θ = O(nb4−b3). From

(A8), this tends to zero faster than ( 1
Br

)2α = O(n−2α(1−b2)), therefore for sufficiently large

n we have

θ ≤
( 1
Br

)2α

<
( 1
Br

) 1
3
≤ c2 < c1 < δ,

where c2, c1 are constants not depending on n.

Take t1 =
(

1
Br

)α
, t2 = t21 and define events Ek = {maxA∈Ωk,A̸∈S π̂m,n(A) < t1},

k = 1, . . . , kmax, and B = {π̂m,n(S) > c2}. We will demonstrate that Âŝ,m = S on the

event E = B∩⋂kmax
k=1 Ek and P (E)→

n
1. To prove the latter assertion, we use Lemma 3.10.1

and bound

P (Bc) ≤
( δ

c2

)c2 ( 1− δ
1− c2

)1−c2
r

≤ exp (−Cc1,c2r) , (3.11)

where Cc1c2 = − log
((

c1
c2

)c2 (1−c1
1−c2

)1−c2
)

is strictly positive. By Lemma 3.10.3

P (Ec
k) ≤ 3

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r

= 3
t21

[(
t1

1 + t1

)t1

(1 + t1)
]r

. (3.12)
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Now we take the logarithm of
(

t1
1+t1

)t1 (1 + t1). After simple algebra we get

t1 log
(

t1
1 + t1

)
+ log (1 + t1) = t1 log

(
1− 1

1 + t1

)
+ log (1 + t1) ,

which can be bounded using (A7) and log(1 + x) ≤ 2x
2+x

for x ∈ (−1, 0) and log(1 + x) ≤
x
2

2+x
1+x

for x ≥ 0 (Topsøe, 2004) which together yield

t1 log
(

1− 1
1 + t1

)
+ log (1 + t1) ≤ −t1

(2− t1 − 2t21)
2(1 + t1)(1 + 2t1)

≤ −t16 .

This applied to (3.12) yields

P (Ec
k) ≤ 3

t21
exp

(−rt1
6

)
= C1,α,Br

2α exp
(
−C2,α,Br

(1−α)
)
, (3.13)

with positive constants C1,α,B = 3B2α, C2,α,B = 1
6Bα . From (3.11), (3.13) and (A5), (A8)

we have

P (E) ≥ 1− C1,α,Br
2αkmax exp

(
−C2,α,Br

(1−α)
)
− exp (−Cc1,c2r) ,

therefore P (E)→
n

1.

The remaining arguments used in the proof are valid on E . First, from the c2 > t1

we conclude that Âs,m = S, where Âs,m is given by (3.4), hence showing ŝ = s proves

Ŝ = S. Denote Tk = π̂m,n(Âk+1,m)
π̂m,n(Âk,m) , then ŝ = argmink=0,1,...,kmax

Tk. For k < s we have

π̂m,n(Âk+1,m) ≥ π̂m,n(Âs,m)
( s

k+1)
, hence

Tk ≥
c2(
s

k+1

) , k = 0, . . . , s− 1.

Directly from the definition of Es and B we bound Ts ≤ t1
c2

, and, π̂m,n(Âk+1,m) ≥ 1
Br

for
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any k,

Tk ≥
1

Br

t1
, k = s+ 1, . . . , kmax.

To prove Tk > Ts for k = 0, . . . , s− 1, it is sufficient to demonstrate that c2
( s

k+1)
> t1

c2
. The

latter follows from

c2
2(
s

k+1

)(Br)α ≥ (Br)α− 2
3(

s
k+1

) ≥ Bα− 2
3

maxk=1,...,s

(
s
k

) > 1,

as c2 ≥
(

1
Br

)1/3
, t1 =

(
1

Br

)α
and Bα− 2

3 > maxk=1,...,s

(
s
k

)
by (A7). Similarly, to observe

that Ts < Tk for k = s+ 1, . . . , kmax, we need to show t1
c2
< 1

t1Br
. Since α > 1

3 , this can

be concluded from

Br

c2(Br)2α
≤ (Br)2( 1

3 −α) < 1.

Therefore Tk is necessarily minimised at k = s on the set E meaning that ŝ = s, which

finishes the proof.



Chapter 4

Narrowest-Over-Threshold

detection of multiple change-points

and change-point-like features

4.1 Introduction

This chapter considers the canonical univariate statistical model

Yt = ft + εt, t = 1, . . . , T, (4.1)

where the deterministic and unknown signal ft is believed to display some regularity

across the index t, and the stochastic noise εt is exactly or approximately centred at

zero. Despite the simplicity of model (4.1), inferring information about ft remains a

task of fundamental importance in modern applied statistics and data science. We now

mention a selection of applications in which the task of interest reduces to estimating

or making inference on ft or its functionals. In the analysis of DNA copy number data

in genomics, ft is usually modelled as piecewise-constant and the typical task is to
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estimate change-points in ft (Olshen et al., 2004). In mass spectrometry, it is often of

interest to detect peaks in ft (Antoniadis et al., 2010). In applied financial econometrics,

a key task is to identify current trends in financial markets, which can be translated

into searching for significant recent changes in some characteristics of ft, e.g. the local

slope (Schröder and Fryzlewicz, 2013). In climatology, detecting changes in the trends of

temperature data (Cahill et al., 2015) can also be formalised as estimating changes in the

slope of ft while modelling it as piecewise-linear. In astrophysics, detecting Gamma-Ray

Bursts (GRB; Kolaczyk, 1997) typically requires delicate statistical work resulting in the

separation of ft into slowly-varying background and faster-changing GRB’s.

Depending on the nature and complexity of the statistical task involving ft, a wider or

narrower range of tools are at the statistician’s disposal, and we provide a non-exhaustive

list of the main approaches below. When the task is the simple estimation of ft, linear

methods such as kernel smoothing (Wand and Jones, 1994), spline smoothing (De Boor,

2001) or local polynomial regression (Fan and Gijbels, 1996; Simonoff, 2012) typically

provide a useful reference point, and robust smoothing techniques (such as median

filtering; Koch, 1996) may be of interest if the distribution of εt is heavy-tailed. On

the other hand, when the interest is in more interpretable estimation, for example in

the detection of “features” in ft such as jumps or kinks, then more involved, non-linear

techniques are usually required. If ft is modelled as piecewise-constant and it is of

interest to detect its change-points, several techniques are available, and we only mention

a selection of older and more recent approaches. When εt is assumed to be Gaussian, both

non-penalised and penalised least squares approaches were first considered by Yao and Au

(1989). For specific choices of penalty functions, see e.g. Yao (1988) and Lavielle (2005).

The Gaussianity assumption on the noise εt is relaxed to exponential family distributions

in Lee (1997), Hawkins (2001) and Frick et al. (2014). In particular, Frick et al. (2014)

also provide confidence intervals for the location of the estimated change-points. Note
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that often this penalty-type approach requires a computational cost of at least O(T 2),

with the exception of the estimator proposed by Killick et al. (2012a), which achieves a

linear computational cost (thus called the “Pruned Exact Linear Time”, or PELT), but

requires further assumption that change-points are separated by time intervals drawn

independently from some probability distribution, a scenario in which considerations

of statistical consistency are not generally possible. A nonparametric version of PELT

is investigated by Haynes et al. (2016a). Another general approach is based on the

idea of Binary Segmentation (BS; Vostrikova, 1981), which can be viewed as a greedy

approach with a limited computational cost. Its popular variants include the circular

binary segmentation (CBS; Olshen et al., 2004) and the Wild Binary Segmentation (WBS;

Fryzlewicz, 2014). A more complete review in terms of up-to-date publications, software

and applications can be found in the online repository changepoint.info maintained by

Killick et al. (2012b). More general change-point problems, in which ft is modelled as

piecewise-parametric (not necessarily piecewise-constant) between “knots”, the number

and locations of which are unknown and need to be estimated, have attracted less interest

in the literature and overwhelmingly focus on linear trend detection. Among them, we

mention the approach based on least squares principle and Wald-type tests by Bai and

Perron (1998), and trend filtering (Lin et al., 2016; Tibshirani, 2014).

The aim of this work is to propose a new, generic approach to the problem of

detecting an unknown number of “features” occurring at unknown locations in ft. By

a feature, we mean a characteristic of ft, occurring at a location t0, that is detectable

by considering a sufficiently large subsample of data Yt around t0. Examples include:

change-points in ft when it is modelled as piecewise-constant, change-points in the first

derivative when ft is modelled as piecewise-linear and continuous, and discontinuities

in ft when it is modelled as piecewise-linear but without the continuity constraint. We

will provide a precise description of the type of features we are interested in later on.
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Moving beyond ft only, our approach will also permit the detection of similar features

present in some distributional aspects of εt, for example in its variance. Since all types

of features we consider describe changes in a parametric description of ft, we use the

terms “feature detection” and “change-point detection” interchangeably throughout the

chapter. Occasionally, for precision, we will be referring to change-point detection in the

piecewise-constant model as the “canonical” change-point problem, while our general

feature detection problem will sometimes be referred to as a “generalised” change-point

problem.

Core to our approach is a particular blend of “global” and “local” treatment of the

data Yt in the search for the multiple features that may be present in ft, a combination

that gives our method a multi-scale character. At the first “global” stage, we randomly

draw a number of subsamples (Ys, Ys+1, . . . , Ye)′, where 1 ≤ s < e ≤ T . On each

subsample, we assume, possibly erroneously, that only one feature is present and use a

tailor-made contrast function derived (according to a universal recipe we provide later)

from the likelihood theory to find the most likely location of the feature. We retain

those subsamples for which the contrast exceeds a certain user-specified threshold, and

discard the others. Amongst the retained subsamples, we search for the one drawn on

the narrowest interval, i.e. one for which e− s is the smallest: it is this step that gives

rise to the name Narrowest-Over-Threshold (NOT) for our methodology. The focus on

the narrowest interval constitutes the “local” part of the method, and is a key ingredient

of our approach which ensures that with high probability, at most one feature is present

in the selected interval. This key observation gives our methodology a general character

and allows it to be used, only with minor modifications, in a wide range of scenarios,

including those described in the previous paragraph. Having detected the first feature,

the algorithm then proceeds recursively to the left and to the right of it, and stops, on

any current interval, if no contrasts can be found that exceed the threshold.
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Besides its generic character, other benefits of the proposed methodology include

low computational complexity, ease of implementation, accuracy in the detection of the

feature locations, and the fact that it enables parametric (and hence: interpretable)

estimation of the signal on each section delimited by a pair of neighbouring estimated

features. Regarding the computational complexity, the facts that only a limited number

of data subsamples, M , need to be drawn (we provide precise bounds later; with

finitely many change-points, one can take M = O(log T ) in general), and that typical

contrasts are computable in linear time, lead to a computational complexity of O(MT )

for the entire procedure. Moreover, the entire threshold-indexed solution path can

also be computed efficiently, in typically close-to-linear time, as observed from our

numerical experiments. Regarding the estimation accuracy, in the scenarios we consider

theoretically, our procedure yields near-optimal rates of convergence for the estimators

of feature locations.

Importantly, the flexible character of our methodology leaves it open to possible

extensions and modifications. Indeed, borrowing words from Sweldens and Schröder

(2000), who advocated “building your own wavelets at home”, we also view our proposal

as flexible enough to enable the user to “construct their own feature detector at home”,

e.g. by proposing their own specialised contrast functions, or by data-adaptively choosing

the most suitable contrast function from a pre-specified dictionary (which would lead to

mixed-type feature detection). Although these extensions are not covered in the current

work, we view this modularity and flexibility offered by our methodology as an important

aspect of our proposal.

On a broader level, our methodology promotes the idea of “fitting simple models on

subsets of the data (the local aspect), and then aggregating the results to obtain the

overall fit (the global aspect)”, an idea also present in the Wild Binary Segmentation

method of Fryzlewicz (2014). However, we emphasise that the way the simple models
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(here: models containing at most one change-point or other feature) are fitted in the NOT

and WBS methods are entirely different and have different aims. Unlike the WBS, the

NOT methodology focuses on the narrowest intervals of the data on which it is possible

to locate the feature of interest. It is this focus on the narrowest intervals that enables

NOT to extend well beyond mere change-point detection for a piecewise-constant ft, the

latter being the sole focus of the WBS method. The lack of the narrowest-interval focus

in the WBS and BS methods means that it is not applicable to more general feature

detection, and we explain the mechanics of this phenomenon briefly in the following

simple example.

Consider a continuous piecewise-linear signal that has two change-points in its first

derivative:

ft =



1
350t, t = 1, . . . , 350,

1, t = 351, . . . , 650,

1001
350 −

1
350t, t = 651, . . . , 1000.

(4.2)

If we approximate ft using a piecewise-linear signal with only one change-point in its

derivative, then the best approximation (in terms of minimising the ℓ2 distance) will result

in an estimated change-point at t = 500, which is away from the true ones at t = 350 and

t = 650, as is illustrated in Figure 4.1. Therefore, taking the entire sample of data starting

at s = 1 and ending at e = 1000, and searching for one of its multiple change-points

by fitting, via least squares, a triangular signal with a single change-point, does not

make sense. NOT avoids this issue because of its unique feature of picking the narrowest

intervals which are likely to contain only one change-point. To understand the mechanics

of this key feature, imagine that now ft is observed with noise. Through its pursuit of the

narrowest intervals, NOT will ensure that, with high probability, some suitably narrow

intervals around the change-points t = 350 and t = 650 are considered. More precisely, by
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construction, they will be narrow enough to contain only one change-point each, but wide

enough for the designed contrast (see Section 4.2.3.2 for more on contrasts) to indicate

the existence of the change-point within both of them. The designed contrast function

will indicate the right location of the change-point (modulo the estimation error) if only

one change-point is present in the data subsample considered, unlike in the situation

described earlier in which multiple change-points were included in the chosen interval.

More details on this example are presented in Section 4.3.3.

We note that this example is different from the canonical change-point detection

problem (i.e. piecewise-constant signal with multiple change-points), where if we ap-

proximate the signal using a piecewise-constant function with only one change-point,

the change-point of the fitted signal will always be among the true ones (Venkatraman,

1992). Since the latter property does not hold in most generalised change-point detection

problems, this highlights the need for new methods with better localisation of the feature

of interest, such as our NOT algorithm. Finally, we remark that Fang et al. (2016)

independently considered a related shortest-interval idea in the context of the canonical

change-point detection problem. However, they did not consider it as a springboard to

more general feature detection problems, which is the key motivation behind NOT and

its most valuable contribution.

Error = 15.0
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t

(a) τ = 350

Error = 6.3
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(b) τ = 500

Error = 15.0
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(c) τ = 651

Figure 4.1: Best ℓ2 approximation of the true signal (dashed) via a triangular signal with
a single change-point, the location of which is fixed at the left change-point (left panel),
halfway between the true change-points (middle panel) and at the right change-point
(right panel). Approximation errors (in terms of squared ℓ2 distance) are given in the
top-right corners of the corresponding panels.
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To summarise, in the NOT approach, we propose a new “modus operandi” in statistical

smoothing, by providing a novel, general, flexible framework for feature detection and

interpretable signal estimation. The procedure is fast, accurate, easy to code and to

extend by the user to tailor to their own needs. Its implementation is provided in the R

package not (Baranowski et al., 2016b).

The remainder of this chapter is organised as follows. In Section 4.2, we give a more

mathematical description of NOT. In particular, we consider NOT in four scenarios,

each with a different form of structural change in the mean and/or variance. For the

development of both theory and computation, in each scenario, we also introduce the

tailor-made contrast function derived from the generalised likelihood ratio (GLR), which

is used to detect features within each subsample. Theoretical properties of NOT, such

as its consistency and convergence rates are also provided. Section 4.3 deals with the

computational aspects of NOT, while a comprehensive simulation study is carried out in

Section 4.4, where we compare NOT with the state-of-art change-point detection tools.

In Section 4.5, we consider data examples of oil price, global temperature anomalies and

London housing data. All proofs can be found in Section 4.6.

4.2 Methodology

4.2.1 Setup

To describe the main framework of NOT, we consider a simplified version of (4.1), where

Y = (Y1, . . . , YT )′ is modelled through

Yt = ft + σtεt, t = 1, . . . , T, (4.3)
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where ft is the signal, εt
i.i.d∼ N (0, 1) is the standardised independent and identically

distributed (i.i.d.) Gaussian noise, and where σt is the noise’s standard deviation at time

t. We note that the normality assumption facilitates the technical presentation of our

results, but the entire framework can be extended to other noise distributions. Numerical

examples involving other noise distributions can be found in Section 4.4.

We assume that (ft, σt) can be partitioned into q + 1 segments, with q unknown

distinct change-points 0 = τ0 < τ1 < . . . < τq < τq+1 = T . Here the value of q is not

pre-specified and can grow with T . For each j = 1, . . . , q + 1 and for t = τj−1 + 1, . . . , τj ,

the structure of (ft, σt) is is modelled parametrically by a local (i.e. depending on j)

real-valued d-dimensional parameter vector Θj (with Θj ≠ Θj−1), where d is known

and typically small. In addition, we require the minimum distance between consecutive

change-points to be greater than d for the purpose of identifiability. In other words,

(ft, σt) can be divided into q different segments, each from the same parametric family of

much simpler structure. Even if the main goal is not change-point detection, the class of

piecewise-parametric functions is rich enough for function estimation, as any function

could be approximated arbitrarily well in Lp (0 < p < ∞) by a piecewise-parametric

function with enough segments (DeVore, 1998).

Some commonly-encountered scenarios are listed below, where the following holds

inside the j-th segment for each j = 1, . . . , q + 1:

(S1) Constant variance, piecewise-constant mean:

σt = σ0 and ft = θj for t = τj−1 + 1, . . . , τj.

(S2) Constant variance, continuous and piecewise-linear mean:

σt = σ0 and fτj−1+1 = θj,1, ft = ft−1+θj,2 for t = τj−1+2, . . . , τj , with the additional

constraint of

θj,1 + θj,2(τj − τj−1 − 1) = θj+1,1 − θj+1,2
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for j = 1, . . . , q. Therefore, t ∈ {τ1, . . . , τq} if and only if ft−1 + ft+1 ̸= 2ft.

(S3) Constant variance, piecewise-linear (not necessarily continuous) mean:

σt = σ0 and fτj−1+1 = θj,1, ft = ft−1 + θj,2 for t = τj−1 + 2, . . . , τj.

(S4) Piecewise-constant variance, piecewise-constant mean:

ft = θj,1 and σt = θj,2 > 0 for t = τj−1 + 1, . . . , τj.

Since σ0 in (S1)–(S3) acts as a nuisance parameter, in the rest of this manuscript,

for simplicity we assume that its value is known. If it is unknown, then it can be

estimated accurately using the Median Absolute Deviation (MAD) method (Hampel,

1974). More specifically, the MAD estimator of σ0 is defined as σ̂ = Median{|Y2 −

Y1|, . . . , |YT − YT −1|}/{Φ−1(3/4)
√

2} in Scenario (S1) and as σ̂ = Median{|Y1 − 2Y2 +

Y3|, . . . , |YT −2 − 2YT −1 + YT |}/{Φ−1(3/4)
√

6} in Scenarios (S2) and (S3), where Φ−1(·)

denotes the quantile function of the standard normal distribution.

Both the methodology and the theory developed below can readily be extended to

handle more complicated cases in which the signal within the segments is non-linear

(e.g. higher-order-polynomial, a case illustrated in Section 4.4). In all of the above-listed

scenarios, we focus on structure changes in the mean or the first two moments in the

univariate setting. Nevertheless, our framework can be extended to handle multivariate

observations, or other more complex structure changes such as autocovariance in time

series. In addition, as mentioned earlier, the normality assumption of the noise can be

relaxed as well.

4.2.2 Main idea

We now describe the main idea of NOT formally. In the first step, instead of directly using

the entire data sample, we randomly extract subsamples, i.e. vectors (Ys, Ys+1, . . . , Ye)′,

where s and e are integers drawn (independently with replacement) uniformly from the
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set {1, . . . , T} that satisfy 1 ≤ s < e ≤ T and e− s > 2(d− 1). Let ℓ(Ys, . . . , Ye; Θ) be

the likelihood of Θ given (Ys, . . . , Ye)′. We then compute the generalised log-likelihood

ratio (GLR) statistic for all potential single change-points within the subsample and pick

the maximum, that is,

Rb
s,e(Y) = 2 log

[supΘ1,Θ2

{
ℓ(Ys, . . . , Yb; Θ1)ℓ(Yb+1, . . . , Ye; Θ2)

}
supΘ ℓ(Ys, . . . , Ye; Θ)

]
; (4.4)

Rs,e(Y) = max
b∈{s+d−1,...,e−d}

Rb
s,e(Y).

If constraints are in place between Θj and Θj+1 for any j = 1, . . . , q (e.g. as in (S2)),

the supremum in the numerator of (4.4) is taken over the set that only contains elements

of form Θ1 ×Θ2 satisfying these constraints. Otherwise, as in (S1), (S3) and (S4), (4.4)

can be simplified to

Rb
s,e(Y) = 2 log

{
supΘ ℓ(Ys, . . . , Yb; Θ) supΘ ℓ(Yb+1, . . . , Ye; Θ)

supΘ ℓ(Ys, . . . , Ye; Θ)

}
.

The above procedure is repeated for M randomly drawn intervals (s1, e1), . . . , (sM , eM).

In the second step, we test all the Rsm,em(Y) for m = 1, . . . ,M against a given

threshold ζT , and pick the one corresponding to the interval [sm∗ , em∗ ] that has the

smallest length. Once a change-point is found in [sm∗ , em∗ ] (i.e. the b∗ that maximises

Rb
sm∗ ,em∗ (Y)), the same procedure is then repeated recursively to the left and to the right

of it, until no further significant GLRs can be found.

After finding all the change-points, one can estimate the signals within each segment

using standard methods such as least squares or maximum likelihood. Note that spline

regression can be viewed as a multiple change-point detection problem set in the context

of polynomial segments that are continuously differentiable but have discontinuous higher

order derivatives at the change-points between these segments. From this perspective,

one can also think of NOT as an adaptive way of picking the number and the location of
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knots from the data for the traditional spline regression.

4.2.3 Log-likelihood ratios and contrast functions

In many applications, the GLR (4.4) in NOT can be simplified with the help of “contrast

functions” under the setting of Gaussian noise. More precisely, for every integer triple

(s, e, b) with 1 ≤ s < e ≤ T , our aim is to find Cb
s,e(Y) such that:

(a) argmaxb Cb
s,e(Y) = argmaxbRb

s,e(Y),

(b) heuristically speaking, the value of Cb
s,e(Y) is relatively small if there is no change-

point in [s, e],

(c) the formulation of Cb
s,e(Y) mainly consists of taking inner products between the data

and contrast vectors, which facilitates the development of both computation and

theory, particularly if the contrast vectors can be taken to be mutually orthonormal.

In the following, we give the contrast functions corresponding to (S1)–(S4). We note that

this approach recovers the CUSUM statistic in (S1), which is popular in this canonical

change-point detection setting. One can view the resulting statistics as generalisations of

CUSUM to other scenarios.

4.2.3.1 Scenario (S1)

Here ft is piecewise-constant. For any integer triple (s, e, b) with 1 ≤ s < e ≤ T and

s ≤ b ≤ e− 1, we define the contrast vector ψb
s,e =

(
ψb

s,e(1), . . . , ψb
s,e(T )

)′
with

ψb
s,e(t) =



√
e−b

l(b−s+1) , t = s, . . . , b

−
√

b−s+1
l(e−b) , t = b+ 1, . . . , e

0, otherwise,

(4.5)
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where l = e− s+ 1. Also, if b /∈ {s, s+ 1, . . . , e− 1}, then we set ψb
s,e(t) = 0 for all t. As

an illustration, plots of ψb
s,e with different (s, e, b) are shown in Figure 4.2a.
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Figure 4.2: Plots of ϕb
s,e and ψb

s,e given by, respectively, (4.5) and (4.8) for s = 1,
e = 1000 and several values of b. Solid line: b = 125; dotted line: b = 500; dashed line:
b = 750.

For any vector v = (v1, . . . , vT )′ we define the contrast function as Cb
s,e (v) =√〈

v,ψb
s,e

〉2
=
∣∣∣〈v,ψb

s,e

〉∣∣∣. Therefore, if s ≤ b ≤ e− 1, then

Cb
s,e (v) =

∣∣∣∣∣∣
√

e− b
l(b− s+ 1)

b∑
t=s

vt −
√
b− s+ 1
l(e− b)

e∑
t=b+1

vt

∣∣∣∣∣∣ . (4.6)

Otherwise, Cb
s,e (v) = 0. This recovers the well-known CUSUM statistic in the change-

point detection literature. It can be shown that [Cb
s,e (Y)]2 = σ2

0Rb
s,e(Y) for every (s, e, b)

with 1 ≤ s ≤ b < e ≤ T , thus Cb
s,e (·) fulfills the aforementioned requirements for the

contrast function.

In addition, with a slight abuse of notation, for any 1 ≤ s < e ≤ T , we define the

constant vector for the interval [s, e] as

1s,e(t) =


(e− s+ 1)−1/2, t = s, . . . , e

0, otherwise
, (4.7)

and write 1s,e =
(
1s,e(1), . . . ,1s,e(T )

)′
. Then it is easy to check that 1s,e and ψb

s,e are

orthonormal. This explains why the CUSUM is invariant to shifts in the mean.
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4.2.3.2 Scenario (S2)

Here ft is piecewise-linear and continuous. For any triple (s, e, b) with 1 ≤ s < e ≤ T

and s+ 1 ≤ b ≤ e− 1, consider the contrast vector ϕb
s,e =

(
ϕb

s,e(1), . . . , ϕb
s,e(T )

)′
with

ϕb
s,e(t) =


αb

s,eβb
s,e

[{
3(b− s + 1) + (e− b)− 1

}
t−

{
b(e− s) + 2s(b− s + 1)

}]
, t = s, . . . , b

−αb
s,e

βb
s,e

[{
3(e− b) + (b− s + 1) + 1

}
t−

{
b(e− s) + 2e(e− b + 1)

}]
, t = b + 1, . . . , e,

0, otherwise.

(4.8)

where αb
s,e =

(
6

l(l2−1)(1+(e−b+1)(b−s+1)+(e−b)(b−s))

)1/2
, βb

s,e =
(

(e−b+1)(e−b)
(b−s)(b−s+1)

)1/2
and l = e−s+1.

If b /∈ {s+ 1, . . . , e− 1}, then we set ϕb
s,e(t) = 0 for all t. We illustrate the structure of

ϕb
s,e in Figure 4.2b. The contrast function is then defined as

Cb
s,e (v) =

√〈
v, ϕb

s,e

〉2
=
∣∣∣〈v,ϕb

s,e

〉∣∣∣ , (4.9)

To explain the rationale behind ϕb
s,e, we first define the “linear” vector for the interval

[s, e], γs,e =
(
γs,e(1), . . . , γs,e(T )

)′
, as

γs,e(t) =


{

1
12(e− s+ 1)(e2 − 2es+ 2e+ s2 − 2s)

}−1/2(
t− e+s

2

)
, t = s, . . . , e

0, otherwise
.

(4.10)

Then we have that ϕb
s,e is orthonormal to both 1s,e and γs,e (note that γs,e itself is

orthonormal to 1s,e). The orthonormality of the vectors 1s,e, γs,e and ϕb
s,e is important

in deriving the identity σ2
0Rb

s,e(Y) = Cb
s,e (Y)2 below, and helps improve the numerical

efficiency and stability in our implementation of NOT. In particular, it means that the

contrast function is invariant to both mean shifts and slope shifts on a given interval.
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In fact, ϕb
s,e can be derived by (i) applying the Gram–Schmidt process on the following

vector (linear with a kink at b+ 1 on [s, e])

ϕ̃b
s,e(t) =


t− b, t = b+ 1, . . . , e

0, otherwise

with respect to 1s,e and γs,e, and (ii) normalisation such that ∥ · ∥2 = 1.

Write the restriction of v on [s, e] as v|[s,e] = (0, . . . , 0, vs, . . . , ve, 0, . . . , 0)′. Fix any

(s, e, b), given the restriction imposed on Θ in (S2), the best approximation of Y|[s,e] (in

the ℓ2 distance) with a single kink at b is a linear combination of 1s,e, γs,e and ϕb
s,e (all

mutually orthonormal). Therefore,

σ2
0Rb

s,e(Y) =

min
a0,a1∈R

∥Y|[s,e] − a01s,e − a1γs,e∥2
2 − min

a0,a1,a2∈R
∥Y|[s,e] − a01s,e − a1γs,e − a2ϕ

b
s,e∥2

2

= ∥Y|[s,e] − ⟨Y,γs,e⟩γs,e − ⟨Y,1s,e⟩1s,e∥2
2

− ∥Y|[s,e] − ⟨Y,ϕb
s,e⟩ϕb

s,e − ⟨Y,γs,e⟩γs,e − ⟨Y,1s,e⟩1s,e∥2
2

= ⟨f ,ϕb
s,e⟩2 = Cb

s,e (Y)2 ,

i.e. the aforementioned requirements for the contrast function are satisfied.

4.2.3.3 Scenario (S3)

Here ft is a piecewise-linear but not necessarily continuous function. We use the following

contrast function for any s < b < e:

Cb
s,e (v) =

(〈
v,ψb

s,e

〉2
+
〈
v,γs,b

〉2
+
〈
v,γb+1,e

〉2
−
〈
v,γs,e

〉2
)1/2

. (4.11)
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This construction is justified by noting that

σ2
0Rb

s,e(Y) = min
a0,a1∈R

∥Y|[s,e] − a01s,e − a1γs,e∥2
2

− min
a0,a1∈R

∥Y|[s,b] − a01s,b − a1γs,b∥2
2

+ min
a0,a1∈R

∥Y|[b+1,e] − a01b+1,e − a1γb+1,e∥2
2

= Cb
s,e (Y)2 ,

where we also used the orthonormality among 1s,e, ψb
s,e, γs,b and γb+1,e in the above

derivation.

4.2.3.4 Scenario (S4)

Here both ft and σt are piecewise-constant. For any 1 ≤ s + 1 < b < e − 1 ≤ T , we

propose

Cb
s,e (Y) = (b− s+ 1) log (σ̂s,b(Y)) + (e− b) log (σ̂b+1,e(Y)) (4.12)

− (e− s+ 1) log (σ̂s,e(Y)) ,

where

σ̂2
s,e(Y) = 1

e− s+ 1

e∑
t=s

(
Yt −

1
e− s+ 1

e∑
t=s

Yt

)2

=
〈
Y2,12

s,e

〉
−
〈
Y,12

s,e

〉2
.

Otherwise, for b ̸∈ {s + 2, . . . , e − 2}, we set Cb
s,e (Y) = 0. In this Scenario, it is

straightforward to verify that Cb
s,e (Y) = Rb

s,e(Y). (N.B. 12
s,e ̸= 1s,e because of the

normalising constant.)
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4.2.4 The NOT algorithm

Algorithm 4.6 presents a generic version of the NOT algorithm, described using pseu-

docode. The main ingredient of the NOT procedure is a contrast function Cb
s,e (·), chosen

by the user, depending on the assumed nature of change-points in the data, e.g. as

exemplified by our scenarios (S1)–(S4) above. The threshold ζT > 0 is a tuning parameter

for the method with respect to which the contrast should be tested, while M is the

number of the intervals drawn in the procedure. Guidance on the choice of ζT and M is

given in Section 4.3.

Algorithm 4.6 Narrowest-Over-Threshold algorithm
Input: Data vector Y = (Y1, . . . , YT )′, FM

T being a set of M intervals, with start- and
end- points drawn independently and uniformly with replacement from {1, . . . , T},
S = ∅.

Output: Set of estimated change-points S ⊂ {1, . . . , T}.

procedure NOT(s, e, ζT )
if e− s < 1 then STOP
else
Ms,e :=

{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

if Ms,e = ∅ then STOP
else
Os,e :=

{
m ∈Ms,e : maxsm≤b≤em Cb

sm,em
(Y) > ζT

}
if Os,e = ∅ then STOP
else

m∗ :∈ argminm∈Os,e
|em − sm|

b∗ := argmaxsm∗ ≤b≤em∗ Cb
sm∗ ,em∗ (Y)

S := S ∪ {b∗}
NOT(s, b∗, ζT )
NOT(b∗ + 1, e, ζT )

end if
end if

end if
end procedure
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4.2.5 Theoretical properties of NOT

In this section, we analyse the theoretical behaviour of the NOT algorithm in scenarios

(S1) and (S2). An attractive feature of our methodology is that proofs for other scenarios

can in principle be constructed “at home” by the user, by following the same generic proof

strategy as the one we use for these two scenarios. A discussion of the proof strategy, as

well its extensions, is given in Section 4.6.2.

First, we revisit the canonical change-point detection problem, (S1), where the signal

vector f = (f1, . . . , fT )′ is piecewise-constant. For notational convenience, we set σ0 = 1.

Again σ0 is assumed to be known. (If not, one can plug in the MAD estimator, described

in Section 4.2.1.)

Theorem 4.2.1. Suppose Yt follow (4.3) in Scenario (S1). Let δT = minj=1,...,q+1(τj −

τj−1), ∆f
j = |fτj+1 − fτj

|, f
T

= minj=1,...,q ∆f
j. Furthermore, assume that δ1/2

T f
T
≥

C
√

log T for some large enough C. Let q̂ and τ̂1, . . . , τ̂q denote, respectively, the number

and locations of change-points, sorted in increasing order, estimated by Algorithm 4.6 with

the contrast function given by (4.6). Then there exist constants C1, C2, C3, C4 > 0 (all not

depending on T ) such that given C1
√

log T ≤ ζT < C2δ
1/2
T f

T
, M ≥ 36T 2δ−2

T log(T 2δ−1
T ),

and for sufficiently large T ,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj|(∆f

j)2
)
≤ C3 log T

)
≥ 1− C4/T. (4.13)

In the simplest case where we have finitely many change-points with δT ∼ T , we

need M = O(log T ) many random intervals for the consistent detection of all the change-

points, which leads to a total computational cost of O(T log T ) for the entire procedure.

Furthermore, maxj=1,...,q

(
|τ̂j − τj|

)
= OP (log T ), which trails the minimax rate of Op(1)

by only a logarithmic factor.

In addition, we note that the NOT procedure allows for δ1/2
T f

T
, a quantitity that
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characterises the difficulty level of the problem, to be of order
√

log T . As argued in

Chan and Walther (2013) and Fryzlewicz (2014), this is the smallest rate that permits

change-point detection for any method, and is thus optimal.

Next, we revisit Scenario (S2), in which the signal is piecewise-linear and continuous.

Again, we set σ0 = 1 for notational convenience.

Theorem 4.2.2. Suppose Yt follow (4.3) in Scenario (S2). Let δT = minj=1,...,q+1(τj −

τj−1), ∆f
j = |2fτj

− fτj−1 − fτj+1|, fT
= minj=1,...,q ∆f

j. Furthermore, assume that

δ
3/2
T f

T
≥ C
√

log T for some large enough C. Let q̂ and τ̂1, . . . , τ̂q denote, respectively,

the number and locations of change-points, sorted in increasing, order estimated by

Algorithm 4.6 with the contrast function given by (4.9). Then there exist constants

C1, C2, C3, C4 > 0 not depending on T such that given C1
√

log T ≤ ζT < C2δ
3/2
T f

T
,

M ≥ 36T 2δ−2
T log(T 2δ−1

T ), and for sufficiently large T ,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj|(∆f

j)2/3
)
≤ C3(log T )1/3

)
≥ 1− C4/T. (4.14)

In the case where we have finitely many change-points with δT ∼ T , we again need

M = O(log T ) many random intervals for the consistent estimation of all the change-

points, leading to the total computational cost of O(T log T ). In the most common case

of f
T
∼ T−1 (in which the signal ft is bounded), the resulting change-point detection

rate is Op(T 2/3(log T )1/3), which is different from the minimax rate of Op(T 2/3) derived

by Raimondo (1998) by only a logarithmic factor. Moreover, in more general cases, the

difficulty level of the problem in Scenario (S2) can be charaterised by δ3/2
T f

T
, a quantity

analogous to δ1/2
T f

T
in the setting of (S1).

Finally, we remark that results similar to Theorem 4.2.1 and Theorem 4.7 can be

obtained if we replace the assumption of standard Gaussian noise by E (exp(uεt)) <∞

for some u > 0. In essence, we only require the tails of εt to be about or lighter than

exponential, which can be seen from Step One and Step Two of the proofs in Section 4.6.2
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and Section 4.6.3.

4.3 Computational aspects

4.3.1 Computing contrast functions in linear time

The practical performance (in terms of computational cost) of Algorithm 4.6 relies on

the fast computation of the contrast functions discussed in Section 4.2.3 on any given

interval [s, e]. In this section, we show that in all scenarios listed in Section 4.2.3, the

cost of computing {Cb
s,e (Y)}e−1

b=s is O(e− s+ 1).

Note that the key ingredients in Cb
s,e (Y) under the different scenarios are functions of

the inner products, i.e.
〈
Y,ϕb

s,e

〉
,
〈
Y,ψb

s,e

〉
,
〈
Y,γs,b

〉
,
〈
Y,γb+1,e

〉
,
〈
Y,12

s,b

〉
,
〈
Y,12

b+1,e

〉
,〈

Y2,12
s,b

〉
and

〈
Y2,12

b+1,e

〉
for b = s, . . . , e − 1. For a fixed interval [s, e], by simple

algebra, we observe that
〈
Y,ϕb

s,e

〉
and

〈
Y,ψb

s,e

〉
can be decomposed as

〈
Y,ϕb

s,e

〉
=←−a ϕ,b

b∑
t=s

Yt −−→a ϕ,b

e∑
t=b+1

Yt

:=←−a ϕ,b
←−π (0)

b (Y)−−→a ϕ,b
−→π (0)

b (Y),
〈
Y,ψb

s,e

〉
=←−a (1)

ψ,b

b∑
t=s

tYt −−→a (1)
ψ,b

e∑
t=b+1

tYt +←−a (0)
ψ,b

b∑
t=s

Yt −−→a (0)
ψ,b

e∑
t=b+1

Yt

:=←−a (1)
ψ,b
←−π (1)

b (Y)−−→a (1)
ψ,b
−→π (1)

b (Y) +←−a (0)
ψ,b
←−π (0)

b (Y)−−→a (0)
ψ,b
−→π (0)

b (Y),

where ←−a ϕ,b,
−→a ϕ,b,

←−a (1)
ψ,b,
−→a (1)
ψ,b,
←−a (0)
ψ,b and −→a (0)

ψ,b are scalars that do not depend on Y, and

can all be computed at the cost of O(1) using equations given in Section 4.2.3. Here

for notational convenience, we use overhead arrows to indicate whether a scalar or a

function is associated with observations to the left of b (i.e. [s, b], using ←−· ) or to the

right of b (i.e. [b+ 1, e], using −→· ). We also suppress their dependence on s and e in the
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notation. In addition, the following recursive formulae hold

←−π (k)
b+1(Y) =←−π (k)

b (Y) + (b+ 1)kYb+1,

−→π (k)
b (Y) = −→π (k)

b+1(Y) + (b+ 1)kYb+1,

with ←−π (k)
s (Y) = −→π (k)

e (Y) = 0 for k = 0, 1. Consequently, ←−π (k)
b (Y) and −→π (k)

b (Y) for all

b ∈ {s, . . . , e− 1} and k = 0, 1 (thereby
〈
Y,ϕb

s,e

〉
and

〈
Y,ψb

s,e

〉
) can be computed in a

single pass through Ys, . . . , Ye. Similar approach can be applied to the remaining inner

products involved in the definitions of the contrast functions given in Section 4.2.3, which

demonstrates that in all these cases the computation of {Cb
s,e (Y)}e−1

b=s scales linearly with

the number of observations.

4.3.2 The NOT solution path algorithm

In general, there are at least two ways of choosing a suitable threshold ζT in Algorithm 4.6.

It can be either done by selecting a ζT which guarantees consistent change-point estimation

in a given class of segmentation problems with a high probability, or by using one that

optimises a loss function or a model selection criterion. The latter approach proves

particularly useful when the theoretically “optimal” threshold is either difficult to derive,

or depends on some unobserved quantities, which is typically the case. Denote by

T (ζT ) = {τ̂1(ζT ), . . . , τ̂q̂(ζT )} the locations of change-points estimated by Algorithm 4.6

with threshold ζT (where we suppress the dependence of q̂ on ζT for notational convenience)

and define the solution path as the family of sets {T (ζT )}ζT ≥0. In this section, we present

a fast algorithm that computes the entire solution path of Algorithm 4.6. Being able

to compute the solution path quickly is essential in Section 4.3.4, where we study a

data-driven approach to the choice of ζT .

The solution path seen as the function ζT 7→ T (ζT ) changes only at discrete points, i.e.
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Algorithm 4.7 NOT solution path
Input: Intervals [sm, em] and

bm := argmaxsm≤b≤em
Cb

sm,em
(Y) , cm := Cbm

sm,em
(Y) , lm := em − sm + 1

for all m ∈ F M
T .

Output: Thresholds 0 = ζ
(1)
T < . . . < ζ

(N)
T and sets of the estimated change-points

T (ζ(1)
T ), . . . , T (ζ(N)

T ).

procedure BuildBinaryTree(s, e, ζT , N)
Ms,e := set of those m ∈ {1, . . . , M} such that [sm, em] ⊂ [s, e]
Os,e := set of m ∈Ms,e such that cm > ζT

if Os,e = ∅ then N = NULL
else

k := any elements of argminm∈Os,e
lm

N.b := bk, N.c := ck, N.Left := NULL, N.Right := NULL
BuildBinaryTree(s, N.b, ζT , N.Left)
BuildBinaryTree(N.b + 1, e, ζT , N.Right)

end if
end procedure

procedure UpdateBinaryTree(s, e, ζT , N)
if N.c ≤ ζT then

BuildBinaryTree(s, e, ζT , N)
else

if N.Left ̸= NULL then
UpdateBinaryTree(s, N.b, ζT , N.Left)

end if
if N.Right ̸= NULL then

UpdateBinaryTree(N.b + 1, e, ζT , N.Right)
end if

end if
end procedure

procedure SolutionPath()
Set Nr := NULL, i := 1, ζ

(1)
T := 0

BuildBinaryTree(1, T , ζ
(1)
T , Nr)

while Nr ̸= NULL do
D := {Nr and all its children nodes}
T (ζ(i)

T ) := {N.b|N ∈ D}
ζ

(i+1)
T := minN∈D{N.c}

UpdateBinaryTree(1, T , ζ
(i+1)
T , R)

i := i + 1
end while

end procedure
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there exist 0 ≤ ζ
(1)
T < . . . < ζ

(N)
T , such that T (ζ(i)

T ) ̸= T (ζ(i+1)
T ) for any i = 1, . . . , N − 1,

and T (ζT ) = T (ζ(i)
T ) for any ζT ∈ [ζ(i)

T , ζ
(i+1)
T ). Furthermore, we have that T (ζT ) = ∅

for any ζT ≥ ζ
(N)
T . Thresholds ζ(i)

T are unknown and depend on the data, therefore

applying Algorithm 4.6 on a range of pre-specified thresholds typically does not recover

the entire solution path. From the computational point of view, repeated application

of Algorithm 4.6 to find the solution path is not optimal either, because intuitively one

would expect the solutions for ζ(i+1)
T and ζ

(i)
T to be similar for most i.

We propose our Algorithm 4.7 that computes the entire solution path {T (ζT )}ζT ≥0.

Its construction stems from the following two observations. First, for any fixed threshold

ζT , Algorithm 4.6 implies a binary tree data structure that is constructed according to

the order of the detection of each change-point. More specifically, in our implementation,

each tree node N contains information on the location of the detected change-point N.b

over the interval of interest, [N.s, N.e], along with the maximum achieved value of the

contrast function over all intervals in FM
T that are subsets of [N.s, N.e] (the largest value

and its location are denoted by N.c and N.b, respectively). Moreover, we define N.Left

and N.Right pointing to the nodes of the next detected change-points in [N.s, N.b] and

[N.b + 1, N.e], respectively. We then treat the first detected change-point over [1, T ]

as the root of the tree and construct its branches in a recursive fashion afterwards.

Second, suppose that we have already constructed the tree for ζT with root Nr. For

ζ ′
T > ζT , the new tree’s root is unchanged if Nr.c > ζ ′

T . This observation remains valid for

Nr.Left and Nr.Right and all subsequent nodes. Therefore, a branch of the tree has to be

reconstructed only if N.c ≤ ζ ′
T for some node N. In this way, the tree constructed for ζT

can be used as a starting point to finding the tree corresponding to ζ ′
T , thus significantly

reducing the computational time in comparison to constructing the tree from scratch.

See the pseudo-code of Algorithm 4.7 for more details.
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4.3.3 An illustrative example

In this part, we revisit the example shown in the Introduction, and provide a simple

illustration of how Algorithm 4.6 and Algorithm 4.7 work on a simulated dataset.

Figure 4.3 shows the generated data {Yt}1000
t=1 following Scenario (S2), where the signal ft

is as in (4.2) and σt = 0.05. The contrast function (4.9) is evaluated for 5 intervals. We

observe that the contrast function corresponding to [1, 1000], being the longest interval

here, attains its maximum at b = 490, which is far from the true change-points located

at τ = 350 and τ = 650. Furthermore, max1≤b≤1000 Cb
s,e (Y) is much larger than the

corresponding value for the other intervals considered in Table 4.1. However, thanks to

the fact that we focus on the narrowest-over-threshold intervals, Algorithm 4.6 (for any

ζT ∈ (0.08, 0.83)) picks at its first iteration an interval with exactly one change-point

(depending on ζT , it is either [225, 450] or [500, 750]) and the maximum of the contrast

function computed is close to one of the true change-points.

s e e− s + 1 argmaxs≤b≤e Cb
s,e (Y) maxs≤b≤e Cb

s,e (Y)
1 1000 1000 490 10.19
10 245 236 43 0.08
225 450 226 344 0.76
500 750 251 651 0.83
740 950 211 746 0.03
450 550 101 471 0.07

Table 4.1: Intervals considered in Figure 4.3a and corresponding maxima of the contrast
function Cb

s,e (Y) given by (4.9), all calculated for a sample path of Yt, t = 1, . . . , 1000
generated from model (4.1) with the signal ft given by (4.2) and the noise εt ∼ N (0, 0.052).

Figure 4.4 shows how Algorithm 4.7 proceeds in the example presented in Figure 4.3.

At the initial stage that can be seen in Figure 4.4a, the threshold is set to ζ
(1)
T = 0

and b = 417, the maximum of the contrast function computed for the shortest interval

[450, 550] is taken as the root of the binary tree. Then we construct its left and right

branches by considering only those intervals specified in Table 4.1 whose endpoints

[s, e] ⊂ [1, 471] and [s, e] ⊂ [472, 1000], respectively, and the procedure continues for
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Figure 4.3: An application of the NOT methodology to Yt generated from model (4.1)
with the signal ft given by (4.2) and i.i.d. εt ∼ N (0, 0.052). Figure 4.3a: contrast function
Cb

s,e (Y) given by (4.9) evaluated for all b ∈ [s, e] and intervals [s, e] specified in Table 4.1.
For intervals containing one change-point, Cb

s,e (Y) attains its maximum at b close to the
change-point. When there are two change-points (black solid line), the maximum is far
from both change-points, despite maxs≤b≤e Cb

s,e (Y) being large. Figure 4.3b: observed
Yt (thin grey), true signal (thick dashed black), signal estimated picking the change-
point candidate based on the interval corresponding to the largest contrast function
(dotted-dashed navy) and the narrowest-over-threshold intervals (dashed red).

the resulting nodes. Next, the node with the smallest value of the contrast function is

determined (b = 746) and the threshold is set to the corresponding minimum ζ
(2)
T = 0.03.

This guarantees that as Algorithm 4.7 proceeds, there will be at least one update in

the binary tree. In our example, the b = 746 node is removed and, as the maximum

for [500, 750] ⊂ [472, 1000] exceeds the threshold, the b = 651 node is inserted its place.

Subsequently, we identify the node with the smallest contrast again (b = 471), update

the threshold to ζ(3)
T = 0.07 and reconstruct the entire tree, as b = 471 in Figure 4.4b

constitutes its root. Algorithm 4.7 keeps running until the resulting tree shrinks to NULL.

In this example, the fourth solution on the path (Figure 4.4d) contains exactly two nodes

being close to the true change-points.

4.3.4 Parameter choice

4.3.4.1 Choice of M

We recommend setting M = 10000 when the number of observations is of the order of

thousands. Our empirical evidence shows that setting a much higher M does not improve
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Figure 4.4: First four segmentation trees obtained by Algorithm 4.7 applied to a
Y1, . . . , Y1000 presented in Figure 4.3. The larger the node, the larger the corresponding
value of maxs≤b≤e Cb

s,e (Y) given by (4.9). The grey nodes correspond to the smallest
contrast function for each tree and are updated as Algorithm 4.7 proceeds.

the practical performance of the method in these circumstances. With this value of M ,

the implementation of Algorithm 4.6 provided in the R not package (Baranowski et al.,

2016b) achieves the average computation time not longer than 2 seconds in all examples

discussed in Section 4.4.2 using a single core of an Intel Xeon 3.6 GHz CPU. This can be

accelerated further, as the not package allows for computing the contrast function over

the intervals drawn in parallel using all available CPU cores.

4.3.4.2 Choice of the threshold ζT

Algorithm 4.6 can be applied to a wide range of change-point detection problems with

various contrast functions, hence it seems challenging (at least from a theoretical perspec-

tive) to find a universal threshold that works well in all settings. In the piecewise-constant

and piecewise-linear cases, based on Theorem 4.2.1 and Theorem 4.2.2, respectively,

we could take ζT of the lowest admissible order (i.e.
√

log T ). Here, our ambition is

to come up with a more general data-driven choice of ζT based on Algorithm 4.7. Let

T (ζ(1)), . . . , T (ζ(N)) be the NOT solution path, i.e. the collection of candidate mod-

els produced by Algorithm 4.7. We propose to select T (ζ(k)) minimising the Schwarz

Information Criterion (SIC) defined as follows. Let k = 1, . . . , N , q̂k = |T (ζ(k)
T )| and

Θ̂1, . . . , Θ̂q̂k+1 be the maximum likelihood estimators of the segment parameters in model

(4.3) with the estimated change-points τ̂1, . . . , τ̂q̂k
∈ T (ζ(k)

T ). Denote by nk the total num-
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ber of estimated parameters, including the number of free parameters in Θ1, . . . ,Θq̂k+1

(this can be different from the dimensionality of each Θj multiplied by the number of

segments, as e.g. in (S2)), and q̂k. The SIC criterion is given by

SIC(k) = −2
q̂k+1∑
j=1

ℓ(Yτ̂j−1+1, . . . , Yτ̂j
; Θ̂j) + nk log(T ), (4.15)

with τ̂0 = 0 and τ̂q̂k+1 = T . In practice it may not be necessary to calculate SIC for

all k, if the number of change-points in the data is expected to be rather moderate. In

all applications presented in this work we compute SIC only for k such that T (ζ(k)
T ) ≤

qmax with qmax = 25. In general, solutions on the path corresponding to very small

values of ζT contain many estimated change-points, especially when M is large. Such

solutions are unlikely to minimise (4.15), therefore by considering T (ζ(k)
T ) ≤ qmax we

achieve computational gains, without adversely impacting the overall performance of the

methodology.

4.3.5 Computational complexity of the NOT and NOT solution

path algorithms

Here we elaborate on the computational complexity of Algorithms 4.6 and 4.7. For both

algorithms, the task of computation can be divided into two main parts. First, we need

to evaluate a chosen contrast function for all points in the M randomly picked intervals

with their endpoints in {1, . . . , T}. In the second part, we find potential locations of the

change-points for a single threshold ζT in the case of Algorithm 4.6 and for all possible

thresholds in the case of Algorithm 4.7.

Naturally, the total computational complexity of the first part depends on the cost

of computing the contrast function for a single interval. In all scenarios studied in this

chapter, this cost is linear in the length of an interval, as shown in Section 4.3.1. The
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intervals drawn in the procedures have approximately T/4 points on average, therefore

the computational complexity of the first part of the computations is O(MT ) in a typical

application. Importantly, as the calculations for one interval are completely independent

of the calculations for another, it is straightforward to run these computations in parallel.

Implementation of the NOT methodology available from the R package not (Baranowski

et al., 2016b) uses to this end the OpenMP framework (Dagum and Menon, 1998),

allowing for the efficient use of multiple cores that modern CPUs offer.

As we explain in Section 4.3.2, finding solutions of Algorithm 4.6 for a single threshold

ζT is equivalent to the construction of a binary tree, which can be performed with

the BuildBinaryTree routine given in Algorithm 4.7. Computational cost of this

operation is no larger than O(MKζT
), where KζT

denotes the height of the constructed

binary tree with the threshold ζT . The computational complexity of finding the entire

solution path using Algorithm 4.7 is therefore (in the worst case) of the order O(MKN),

where N and K are, respectively, the number of solutions and the maximum tree depth

over the entire solution path. However, this is a rough estimate which assumes that for

each threshold on the path the binary tree has a different root node, which, from our

empirical experience, is highly unlikely to occur in practice. Typically, the consecutive

trees on the path differ just slightly, see e.g. Figure 4.6, which significantly reduces the

amount of computation that Algorithm 4.7 requires. Finally, we remark that the memory

complexity of Algorithm 4.7 is O(MT ), which combined with its low computational

complexity implies that our approach can handle problem of size T in the millions.

Figure 4.5 shows execution times for the implementation of Algorithm 4.7 available

from the R package not, with the data Yt, t = 1, . . . , T , being i.i.d. N (0, 1). The running

times appears to scale linearly both in T (Figure 4.5b) and in M (Figure 4.5b), which

provides evidence that the computational complexity of Algorithm 4.7 in this example is

practically of the order O(MT ).
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Figure 4.5: Execution times (in seconds) for the implementation of Algorithm 4.7
available from R package not (Baranowski et al., 2016b), for various feature detection
problems with the data Yt, t = 1, . . . , T being i.i.d. N (0, 1). In a single run, computations
for the input of the algorithm are performed in parallel, using 8 virtual cores of an Intel
Xeon 3.6 GHz CPU with 16 GB of RAM. The computation times are averaged over 10
runs in each case.

4.4 Simulation study

We compare the performance of the R package not implementing the NOT methodology

against the best competitors available on CRAN. The R code for all simulations can

be downloaded from our GitHub repository (Baranowski et al., 2016a). We consider

examples following (S1)–(S4) introduced in Section 4.2.3, as well as an extra example

satisfying

(S5) σt = σ0 and ft is a piecewise-quadratic function of t.

Calculations required to derive the contrast function in (S5) are similar to those shown

in Section 4.2.3 for (S3); we omit them here.

4.4.1 Simulation methods

To the best of our knowledge, none of the competing packages can be applied in all

of the scenarios (S1)–(S5). For change-point detection in the mean, the competitors

are: changepoint (Killick and Eckley, 2014) implementing the PELT methodology

proposed by Killick et al. (2012a), changepoint.np (Haynes et al., 2016b) implementing

a nonparametric extension of the PELT methodology studied in Haynes et al. (2016a),
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wbs (Baranowski and Fryzlewicz, 2015)) implementing the Wild Binary Segmentation

proposed by Fryzlewicz (2014), ecp (James and Matteson, 2014) implementing the e.cp3o

method proposed by James and Matteson (2015), strucchange (Zeileis et al., 2002)

implementing the methodology of Bai and Perron (2003), Segmentor3IsBack (Cleynen

et al., 2013) implementing the technique proposed by Rigaill (2010), nmcdr (Zou and

Lancezhange, 2014), implementing the NMCD methodology of Zou et al. (2014), stepR

(Hotz and Sieling, 2016), implementing the SMUCE method proposed by Frick et al.

(2014). We refer to the corresponding methods as, respectively, PELT, NP-PELT, WBS,

e.cp3o, B&P, S3IB, NMCD and SMUCE. All techniques but B&P, WBS, S3IB and

SMUCE can be also used for change-point detection in (S4), where change-points occur

in the mean and variance of the data.

Only the B&P method allows for change-point detection in piecewise-linear and

piecewise-quadratic signals, hence we also study the performance of the trend filtering

methodology of Kim et al. (2009) termed as TF hereafter, using the implementation

available from the R package genlasso (Taylor and Tibshirani, 2014), to have a broader

comparison. The TF method aims to estimate a piecewise polynomial signal from the

data, not focusing on the change-point detection problem directly. Let f̂ (T F )
t denote the

TF estimate of the true signal ft, then the TF estimates of the change-points in (S2) are

defined as those τ for which |2f̂ (T F )
τ − f̂ (T F )

τ−1 − f̂
(T F )
τ+1 | > ϵ, where ϵ > 0 is a very small

number being the numerical tolerance level (more precisely, we set ϵ = 1.11× 10−15). In

the piecewise-polynomial case, the change-points are defined as those τ for which the

third order differences |f̂ (T F )
τ+2 − 3f̂ (T F )

τ+1 + 3f̂ (T F )
τ − f̂ (T F )

τ−1 | > ϵ. Finally, we note that both

B&P and TF require a substantial amount of computational resources, with B&P being

the slowest among all methods considered in this study. Owing to this, below we consider

signals of moderate lengths not exceeding a few thousand, however, as demonstrated in

Section 4.3.5, our proposal can be applied even if T is of the order of 107.
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In this section, we apply Algorithm 4.7 to compute the NOT solution path and always

pick the solution minimising the SIC criterion introduced in Section 4.3.4. The number

of intervals drawn in the procedure and the maximum number of change-points for SIC

are set to M = 10000 and qmax = 25, respectively. In each simulated example, we use

the contrast function designed to detect change-points in the scenario that the example

follows, derived in Section 4.2.3 under the assumption that εt is Gaussian. The resulting

method is referred to simply as ‘NOT’. The tuning parameters for the competing methods

are set to the values recommended by the authors of the corresponding R packages.

The simulation results below show that the NOT methodology with the Gaussian

contrast functions is fairly robust against the misspecification of the distribution of

the noise. Nevertheless, to illustrate how its performance can be improved further in

the presence of heavy-tailed noise, in simulation models for Scenario (S1) we apply

Algorithm 4.7 with an additional contrast function, defined for Y and 1 ≤ s ≤ b < e < T

as

Cb
s,e (Y) =

〈
Ss,e(Y),ψb

s,e

〉
, (4.16)

where for any vector v = (v1, . . . , vT )′ the i-component of Ss,e(v) is given by Ss,e(v)i =

sign (vi − (e− s+ 1)−1∑e
t=s vt) and ψb

s,e is defined by (4.5). The rationale behind (4.16)

is as follows. Suppose Yt satisfies (4.1) with the piecewise-constant signal ft and let

[s, e) be any interval containing exactly one change-point at τ ∈ [s, e). For i = s, . . . , e,

consider Ỹi = sign (Yt − (e− s+ 1)−1∑e
t=s ft). Then Ỹi decomposes as Ỹi = f̃t + ε̃t, where

f̃t = E sign (Yt − (e− s+ 1)−1∑e
t=s ft) also has exactly one change-point at τ , while the

distribution of ε̃t is binomial (regardless of the distribution for the original noise εt),

hence its tails are light. In this setting, as argued in Section 4.2.5, (4.6) can be used to

identify the location of the change-point in Ỹs, . . . , Ỹe. As the true signal is unknown, we

use Ȳs,e := (e − s + 1)−1∑e
t=s Yt as a proxy for (e − s + 1)−1∑e

t=s ft when computing
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(4.6) for the data Y. In essence, we assign Ys − Ȳs,e, . . . , Ye − Ȳs,e (i.e. residuals for

fitting a curve with no change-point on a given interval) into two classes (±1), and apply

the contrast function to their labels. Algorithm 4.7 combined with (4.16) and SIC is

termed ‘NOT HT’, where ‘HT’ stands for heavy tails. We expect that the theoretical

properties of NOT HT can be shown along the lines of Theorem 4.2.1, because the tails

of ε̃t are lighter than exponential. Finally, we note that the contrast functions addressing

the issue of heavy-tails in the noise can be also constructed for (S2)–(S5). For example,

when the distribution of the noise is known, this can be achieved by considering GLR

given by (4.4) with the correct likelihood function. Otherwise, on any given interval

[s, e], one could again consider the vector of residuals from fitting a corresponding curve

with no change-point, and truncate the residuals on that interval by a small proportion

before plugging it (instead of Y) into the contrast function. This approach is robust, and

intuitively preserves more information than using just the sign operator and could be

useful for determining the location of a change-point in segments of a more complicated

parametric form.

4.4.2 Simulation models

We simulate data according to equation (4.3) using the following test signals.

(M1) teeth: piecewise-constant ft (in Scenario (S1)), T = 512, q = 7 change-points at

τ = 64, 128, . . . , 448, with the corresponding jump sizes −2, 2,−2, . . . ,−2, starting

intercept f1 = 1, σt = 1 for t = 1, . . . , T .

(M2) blocks: piecewise-constant ft (in Scenario (S1)), T = 2024, q = 11 change-points at

τ = 205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598, 1659, with the corresponding

jump sizes 1.464, −1.830, 1.098, −1.464, 1.830, −1.537, 0.768, 1.574, −1.135, 0.769,

−1.537, starting intercept f1 = 0, σt = 1 for t = 1, . . . , T . This signal is widely

analysed in the literature, see e.g. Donoho and Johnstone (1994).
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Figure 4.6: Examples of data generated from simulation models studied in Section 4.4.2.
Figure 4.6a– 4.6g: data series Yt (thin grey), true signal ft (dashed black), f̂t being the
OLS estimate of ft with the change-points estimated by NOT (thick red). Figure 4.6h:
centered data |Yt − f̂t| (thick grey), true standard deviation σt (dashed black) and the
estimated standard deviation σ̂t between the change-points detected by NOT (thick red).
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(M3) wave1: piecewise-linear ft without jumps in the intercept (in Scenario (S2)),

T = 1408, q = 7 change-points at τ = 256, 512, 768, 1024, 1152, 1280, 1344, with

the corresponding changes in slopes 1 · 2−6,−2 · 2−6, 3 · 2−6 . . . ,−7 · 2−6, starting

intercept f1 = 1 and slope f2 − f1 = 2−8, σt = 1 for t = 1, . . . , T .

(M4) wave2: piecewise-linear ft without jumps in the intercept (in Scenario (S2)),

T = 1500, q = 9 change-points at τ = 150, 300, . . . , 1350, with the corresponding

changes in slopes 2−5,−2−5, 2−5, . . . ,−2−5, starting intercept f1 = 2−1 and slope

f2 − f1 = 2−6, σt = 1 for t = 1, . . . , T .

(M5) mix: piecewise-linear ft with jumps in the intercept (in Scenario (S3)), length

T = 2048, q = 7 change-points at τ = 256, 512, . . . , 1792, with the corresponding

changes in the intercept 0,−1, 0, 0, 2,−1, 0 and in the slope 2−6, −2−6, −2−6, 2−6,

0, 2−6, −2−5, starting value for the intercept f1 = 0 and slope f2 − f1 = 0, σt = 1

for t = 1, . . . , T .

(M6) vol: piecewise-constant ft and σt (in Scenario (S4)), T = 2048, q = 7 changes at τ =

256, 512, . . . , 1792 with the corresponding jumps in ft and σt being 1,0,−2,0,2,−1,0

and 0,1,0,1,0,−1,1, respectively, initial values f1 = σ1 = 1.

(M7) quad: piecewise-quadratic ft (in Scenario (S5)), T = 1000, q = 3 change-points at

τ = 100, 250, 500, with the corresponding changes in the intercept 2,−2, 0, in the

slope 0,−10−1, 10−1 and in the quadratic coefficient 0, 0, 2× 10−5, the initial values

f1 = f2 − f1 = f3 − 2f2 + f1 = 0, σt = 1 for all t = 1, . . . , T .

Figure 4.6 shows the examples of the data generated from models (M1)–(M7), as well as

estimates produced by NOT, for the i.i.d. N (0, 1) noise εt.
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q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 time
B&P

(M1)

70 8 1 21 0 0 0 0.703 11.39 0.27
e-cp3o 0 0 0 100 0 0 0 0.052 0.48 2.32
NMCD 0 0 0 96 4 0 0 0.093 0.76 1.38
NOT 0 0 0 99 1 0 0 0.053 0.54 0.08
NOT HT 0 0 0 99 1 0 0 0.055 0.51 0.1
NP-PELT 0 0 0 86 11 2 1 0.068 0.85 0.03
PELT 0 0 0 100 0 0 0 0.052 0.48 0
S3IB 0 0 0 92 6 2 0 0.055 0.67 0.11
SMUCE 0 0 0 100 0 0 0 0.083 0.57 0.22
WBS 0 0 0 97 3 0 0 0.054 0.58 0.11
B&P

(M2)

100 0 0 0 0 0 0 0.314 12.56 4.29
e-cp3o 100 0 0 0 0 0 0 0.127 5.69 188.84
NMCD 0 5 64 31 0 0 0 0.035 1.82 4.92
NOT 0 4 61 35 0 0 0 0.026 1.56 0.11
NOT HT 2 8 54 28 8 0 0 0.033 2.08 0.23
NP-PELT 0 0 27 44 15 9 5 0.029 2.13 0.49
PELT 11 33 45 11 0 0 0 0.035 2.97 0.01
S3IB 0 2 49 49 0 0 0 0.024 1.42 0.51
SMUCE 59 36 5 0 0 0 0 0.069 3.44 0.03
WBS 0 1 45 53 0 1 0 0.026 1.31 0.22
B&P

(M3)
0 0 100 0 0 0 0 0.218 3.78 147.23

NOT 0 0 0 99 1 0 0 0.015 0.99 0.63
TF 0 0 0 0 0 0 100 0.019 8.33 63.98
B&P

(M4)
0 1 3 96 0 0 0 0.072 2.59 168.12

NOT 0 0 0 100 0 0 0 0.016 1.21 0.53
TF 0 0 0 0 0 0 100 0.016 4.3 64.81
B&P

(M5)
0 0 0 100 0 0 0 0.02 2.42 382.96

NOT 0 0 0 99 1 0 0 0.02 2.42 0.51
TF 0 0 0 0 0 0 100 0.026 6.03 77.09
e-cp3o

(M6)

94 3 0 3 0 0 0 0.378 16.83 11.35
NMCD 0 0 7 83 8 2 0 0.057 2.54 4.8
NOT 0 0 4 94 2 0 0 0.049 1.69 1.22
NP-PELT 0 0 0 20 30 19 31 0.123 2.96 0.61
PELT 9 15 28 48 0 0 0 0.074 8 0.02
B&P

(M7)
0 0 0 100 0 0 0 0.021 1.94 44.14

NOT 0 0 0 100 0 0 0 0.02 1.78 0.31
TF 0 0 0 0 0 0 100 0.049 23.33 59.56

Table 4.2: Distribution of q̂ − q for data generated according to (4.3) with the noise
term εt being i.i.d. N (0, 1) for various choices of ft and σt given in Section 4.4.2 and
competing methods introduced in Section 4.4. Also, the average Mean-Square Error of
the resulting estimate of the signal ft, average Hausdorff distance dH given by (4.18) and
average computation time in seconds using a single core of an Intel Xeon 3.6 GHz CPU
with 16 GB of RAM, all calculated over 100 simulated data sets. Bold: methods with
the largest empirical frequency of q̂− q = 0 or smallest average dH and those within 10%
of the highest, or, respectively, within 10% of the lowest.
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q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 time
B&P

(M1)

82 9 2 7 0 0 0 0.832 14.15 0.26
e-cp3o 0 0 0 100 0 0 0 0.109 1.02 2.15
NMCD 0 0 0 98 2 0 0 0.149 1.43 1.28
NOT 0 0 0 99 1 0 0 0.112 1.05 0.08
NOT HT 0 0 0 97 3 0 0 0.127 1.35 0.09
NP-PELT 0 0 0 73 24 2 1 0.131 1.43 0.04
PELT 0 0 0 100 0 0 0 0.11 1.04 0
S3IB 0 0 0 94 5 1 0 0.113 1.17 0.11
SMUCE 0 1 15 84 0 0 0 0.192 2.23 0.23
WBS 0 0 0 98 2 0 0 0.11 1.05 0.11
B&P

(M2)

100 0 0 0 0 0 0 0.358 14.34 5.64
e-cp3o 100 0 0 0 0 0 0 0.142 8.12 194.18
NMCD 37 31 26 5 1 0 0 0.073 4.02 5.06
NOT 27 28 25 17 2 1 0 0.062 3.48 0.11
NOT HT 42 27 23 7 1 0 0 0.076 4.23 0.23
NP-PELT 1 12 26 25 17 16 3 0.067 3.91 0.54
PELT 92 7 0 1 0 0 0 0.106 7.28 0.01
S3IB 35 23 24 17 0 1 0 0.065 3.94 0.53
SMUCE 100 0 0 0 0 0 0 0.139 5.72 0.04
WBS 30 26 27 16 1 0 0 0.064 3.64 0.22
B&P

(M3)
0 0 100 0 0 0 0 0.246 3.94 146.74

NOT 0 0 0 99 1 0 0 0.032 1.47 0.54
TF 0 0 0 0 0 0 100 0.032 8.42 63.71
B&P

(M4)
16 55 28 1 0 0 0 0.336 6.48 167.31

NOT 0 0 0 98 2 0 0 0.039 2.08 0.47
TF 0 0 0 0 0 0 100 0.031 4.44 64.41
B&P

(M5)
0 0 8 92 0 0 0 0.044 3.31 380.84

NOT 0 0 5 93 2 0 0 0.045 3.52 0.48
TF 0 0 0 0 0 0 100 0.041 5.89 78.46
e-cp3o

(M6)

95 2 0 3 0 0 0 0.372 16.55 11.67
NMCD 0 0 15 79 6 0 0 0.058 3.35 4.78
NOT 0 0 10 89 1 0 0 0.045 2.07 1.22
NP-PELT 0 0 0 22 24 22 32 0.12 2.97 0.61
PELT 11 15 28 44 2 0 0 0.075 7.83 0.02
B&P

(M7)
0 0 35 65 0 0 0 0.066 6.47 44.26

NOT 0 1 37 62 0 0 0 0.064 5.78 0.31
TF 0 0 0 0 0 1 99 0.075 22.71 60.17

Table 4.3: Distribution of q̂ − q for data generated according to (4.3) with the noise
term εt being i.i.d. N (0, 2) for various choices of ft and σt given in Section 4.4.2 and
competing methods introduced in Section 4.4. Also, the average Mean-Square Error of
the resulting estimate of the signal ft, average Hausdorff distance dH given by (4.18) and
average computation time in seconds using a single core of an Intel Xeon 3.6 GHz CPU
with 16 GB of RAM, all calculated over 100 simulated data sets. Bold: methods with
the largest empirical frequency of q̂− q = 0 or smallest average dH and those within 10%
of the highest, or, respectively, within 10% of the lowest.
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q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 time
B&P

(M1)

76 4 1 19 0 0 0 0.745 13.04 0.25
e-cp3o 0 0 0 100 0 0 0 0.097 0.87 2.13
NMCD 0 0 0 94 6 0 0 0.141 1.35 1.28
NOT 0 1 0 95 3 1 0 0.107 1.19 0.08
NOT HT 0 0 0 99 0 1 0 0.093 0.79 0.09
NP-PELT 0 0 0 71 22 6 1 0.141 1.57 0.04
PELT 0 0 0 69 13 14 4 0.145 1.4 0
S3IB 0 1 0 76 10 9 4 0.136 1.47 0.11
SMUCE 0 0 1 52 23 14 10 0.155 2.6 0.21
WBS 0 0 0 64 4 23 9 0.151 1.91 0.11
B&P

(M2)

100 0 0 0 0 0 0 0.311 12.55 5.36
e-cp3o 100 0 0 0 0 0 0 0.147 9.1 191.73
NMCD 15 36 37 12 0 0 0 0.06 3.37 5.06
NOT 51 21 17 9 2 0 0 0.079 4.8 0.11
NOT HT 23 26 36 15 0 0 0 0.054 3.08 0.23
NP-PELT 0 4 10 19 27 19 21 0.077 4.03 0.51
PELT 20 21 19 14 14 6 6 0.108 5.02 0.01
S3IB 88 8 2 2 0 0 0 0.13 10.22 0.5
SMUCE 14 16 23 22 6 8 11 0.108 6.02 0.03
WBS 21 12 12 15 15 10 15 0.104 4.98 0.22
B&P

(M3)
0 0 100 0 0 0 0 0.261 4.16 147.23

NOT 0 0 1 96 1 1 1 0.037 1.89 0.52
TF 0 0 0 0 0 0 100 0.035 8.42 64.08
B&P

(M4)
16 44 37 3 0 0 0 0.323 6.27 171.88

NOT 0 0 0 96 3 1 0 0.042 2.24 0.44
TF 0 0 0 0 0 0 100 0.032 4.38 66.53
B&P

(M5)
0 1 6 93 0 0 0 0.045 3.44 384.72

NOT 0 1 2 90 3 3 1 0.047 3.48 0.5
TF 0 0 0 0 0 0 100 0.041 5.91 78.1
e-cp3o

(M6)

96 3 1 0 0 0 0 0.481 17.95 11.91
NMCD 1 28 38 30 2 0 1 0.098 9.45 4.83
NOT 1 10 42 35 9 1 2 0.188 8.17 1.24
NP-PELT 0 1 4 14 22 16 43 0.359 5.34 0.75
PELT 22 22 35 17 3 1 0 0.215 12.8 0.03
B&P

(M7)
0 0 41 59 0 0 0 0.066 5.93 44.19

NOT 0 2 51 44 2 1 0 0.077 7.7 0.32
TF 0 0 0 0 0 0 100 0.075 22.42 60.33

Table 4.4: Distribution of q̂− q for data generated according to (4.3) with the noise term
εt being i.i.d. Laplace

(
0, (
√

2)−1
)

(N.B. Var(εt) = 1 here) for various choices of ft and
σt given in Sectopm 4.4.2 and competing methods introduced in Section 4.4. Also, the
average Mean-Square Error of the resulting estimate of the signal ft, average Hausdorff
distance dH given by (4.18) and average computation time in seconds using a single core
of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM, all calculated over 100 simulated
data sets. Bold: methods with the largest empirical frequency of q̂ − q = 0 or smallest
average dH and those within 10% of the highest, or, respectively, within 10% of the
lowest.
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q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 time
B&P

(M1)

65 12 0 23 0 0 0 0.67 10.76 0.26
e-cp3o 0 0 0 100 0 0 0 0.044 0.39 2.22
NMCD 0 0 0 94 6 0 0 0.092 0.81 1.31
NOT 0 0 0 94 5 1 0 0.046 0.57 0.08
NOT HT 0 0 0 98 2 0 0 0.045 0.47 0.1
NP-PELT 0 0 0 73 14 11 2 0.082 1.37 0.03
PELT 0 0 0 63 6 16 15 0.092 1.68 0
S3IB 0 0 0 54 7 20 19 0.096 1.84 0.11
SMUCE 0 0 0 45 22 19 14 0.091 2.53 0.21
WBS 0 0 0 44 3 28 25 0.105 2.44 0.11
B&P

(M2)

100 0 0 0 0 0 0 0.302 11.98 4.28
e-cp3o 100 0 0 0 0 0 0 0.126 5.87 197.26
NMCD 0 4 66 29 0 1 0 0.032 1.92 5.13
NOT 2 16 33 31 14 3 1 0.032 4.09 0.11
NOT HT 1 7 62 28 2 0 0 0.027 1.9 0.23
NP-PELT 0 0 6 22 20 23 29 0.048 3.91 0.46
PELT 0 3 16 19 20 12 30 0.066 3.98 0.01
S3IB 29 10 26 20 4 11 0 0.065 4.38 0.49
SMUCE 0 5 11 25 14 13 32 0.056 5.36 0.03
WBS 0 3 15 11 21 15 35 0.067 4.7 0.22
B&P

(M3)
0 0 100 0 0 0 0 0.217 3.63 149.51

NOT 0 0 0 99 1 0 0 0.015 1 0.63
TF 0 0 0 0 0 0 100 0.017 8.4 66.66
B&P

(M4)
0 0 10 90 0 0 0 0.081 2.78 175.34

NOT 0 0 0 94 5 1 0 0.019 1.51 0.54
TF 0 0 0 0 0 0 100 0.017 4.44 68.33
B&P

(M5)
0 0 0 100 0 0 0 0.019 2.29 392

NOT 0 0 0 96 4 0 0 0.019 2.33 0.53
TF 0 0 0 0 0 0 100 0.026 6.01 80.41
e-cp3o

(M6)

91 2 2 4 0 1 0 0.327 14.05 11.51
NMCD 0 12 47 36 5 0 0 0.053 8.56 4.94
NOT 0 4 17 35 25 12 7 0.08 6.1 1.26
NP-PELT 0 0 2 9 22 19 48 0.205 5.1 0.66
PELT 7 14 26 33 15 5 0 0.112 8.88 0.03
B&P

(M7)
0 0 0 99 1 0 0 0.021 2.5 45.59

NOT 0 0 8 79 11 2 0 0.03 4.28 0.32
TF 0 0 0 0 0 0 100 0.05 23.32 62.79

Table 4.5: Distribution of q̂− q for data generated according to (4.3) with the noise term
εt being i.i.d. (3/5)1/2t5 (N.B. Var(εt) = 1 here) for various choices of ft and σt given
in Section 4.4.2 and competing methods introduced in Section 4.4. Also, the average
Mean-Square Error of the resulting estimate of the signal ft, average Hausdorff distance
dH given by (4.18) and average computation time in seconds using a single core of an
Intel Xeon 3.6 GHz CPU with 16 GB of RAM, all calculated over 100 simulated data
sets. Bold: methods with the largest empirical frequency of q̂− q = 0 or smallest average
dH and those within 10% of the highest, or, respectively, within 10% of the lowest.
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4.4.3 Results and discussion

Tables 4.2–4.5 summarise the results for the four different distributions of the noise εt.

For each method, we show a frequency table for the distribution of q̂ − q, where q̂ is the

number of the estimated change-points and q denotes the true number of change-points.

We also report Monte-Carlo estimates of the Mean-Square error

MSE = 1
T

T∑
t=1

E
(
ft − f̂t

)2
. (4.17)

For all methods but TF, f̂t is calculated by finding the OLS approximation of the signal

of the appropriate type depending on the true ft, between each consecutive pair of

estimated change-points. For TF, f̂t used in the definition of the MSE is the penalised

least squares estimate of ft returned by the TF algorithm. To assess the performance of

each method in terms of the accuracy of the estimated locations of the change-points, we

also report estimates of the (scaled) Hausdorff distance defined as

dH = T−1 E max
{

max
j=0,...,q+1

min
k=0,...,q̂+1

|τj − τ̂k|, max
k=0,...,q̂+1

min
j=0,...,q+1

|τ̂k − τj|
}
, (4.18)

where 0 = τ0 < τ1 < . . . τq < τq+1 = T and 0 = τ̂0 < τ̂1 < . . . τ̂q < τ̂q+1 = T denote,

respectively, true and estimated locations of the change-points. From the definition

above, it follows that that 0 ≤ dH ≤ 1. An estimator is regarded to perform well when

its dH is close to 0. However, when the number of change-points is under-estimated or

some of the estimated change-points are not close to the real ones, dH is closer to 1.

The points below, grouped according to the scenario for the type of segmentation

problem, discuss the results.

(S1) Two simulation models follow this scenario: (M1) teeth and (M2) blocks. The

teeth signal with the N (0, 1) noise is a relatively easy setting, where all meth-

ods but B&P always detect all change-points. PELT, SMUCE and e-cp3o per-
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form exceptionally well here, always finding exactly 7 change-points close to the

true locations. NMCD, NOT, NOT HT, S3IB and WBS overestimate q sporad-

ically, while NP-PELT shows a tendency of detecting some additional change-

points. The performance of NP-PELT and SMUCE deteriorates in (M1) when

εt ∼ N (0, 2); SMUCE underestimates q, while NP-PELT overestimates q more

frequently than in the N (0, 1) case. In the heavy-tailed scenarios (εt ∼ (3/5)1/2t5

and εt ∼ Laplace
(
0, (
√

2)−1
)
), NOT, NOT HT, NMCD and e-cp3o, offer the best

performance, while the other methods but B&P tend to slightly overestimate q.

For the blocks signal with N (0, 1) noise, WBS performs the best, S3IB is the

second best, while NOT is the third best method, which can be seen from the

corresponding values of the Hausdorff distance dH and MSE. B&P, e-cp3o and

SMUCE underestimate, while NP-PELT tends to overestimate the number of

change-points. In the N (0, 2) case, NOT performs the best in terms of dH and

MSE, while WBS is the second best. In the heavy-tailed noise cases, performance

of NOT HT and NMCD stands out, with the former achieving the best dH and

MSE, while PELT, NP-PELT, SMUCE tend to overestimate q.

Overall, we observe that only three methods, namely NMCD, NOT and NOT HT,

perform reasonably well across all the examples with a piecewise constant signal.

(S2) Two signals follow this scenario: (M3) wave1 and (M4) wave2. For the wave1

signal, we observe a pattern common across all considered scenarios for εt: typically

B&P underestimates the number of changes in the slope coefficient, TF largely

overestimates q while NOT tends to find the correct number of the change-points.

The NOT estimates lie close to the true locations of the change-points, which can

be seen from very low values of dH . Moreover, NOT estimates of the underlying

signal yields MSEs comparable to or even lower than the corresponding values for

TF, despite the latter procedure having been designed solely for the estimation of



152 Narrowest-Over-Threshold change-point detection

ft.

In (M4), NOT performs the best across all scenarios for εt, most often identifying

the correct number of change-points. In the case of εt ∼ N (0, 1) and εt ∼ (3/5)1/2t5

B&P performs reasonably well, while in the remaining two scenarios it frequently

fails to identify some of the change-points.

Finally, the NOT estimates are orders of magnitude quicker to compute than the

competing estimators.

(S3) The (M5) mix signal follows this scenario. In the case of εt ∼ N (0, 1), NOT

performs slightly better than B&P, always correctly identifying the number of

change-points. TF performs well in terms of the average MSE, but it largely

overestimates the number of change-points. On the other hand, NOT identifies

the correct number of change-points more frequently than B&P when the noise

εt ∼ N (0, 2), but B&P achieves a slightly lower dH in that scenario. In the heavy-

tailed examples, B&P performs very well, while NOT slightly overestimates the

number of change-points. However, we emphasise again that NOT is much quicker

to compute than the competing methods.

(S4) The (M6) vol signal follows this scenario. In the cases of εt ∼ N (0, 1) and

εt ∼ N (0, 2), NOT most frequently estimates the number of change-points correctly

and achieves the lowest average dH , while NMCD is the second best. In the heavy-

tailed scenarios, NP-PELT achieves the best dH , but it exhibits an overall tendency

of overestimating the number of change-points. Besides, e-c3po and PELT in all

cases underestimate q.

(S5) The (M7) quad signal follows this scenario. In the case of εt ∼ N (0, 1), both

NOT and B&P always correctly estimate the number of change-points, however,

NOT estimates are on average closer to the true locations. The problem becomes
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more challenging for εt ∼ N (0, 2), where all methods frequently fail to identify

one change-point, with NOT being marginally better than B&P and significantly

better than TF. The challenge here is that the signal between t = 251 to t = 1000

can be approximated by a quadratic function reasonably well, therefore SIC and

other criteria may prefer a simpler model without a change-point at t = 500 when

the standard deviation of the noise is relatively large. In the heavy-tailed cases,

NOT slightly overestimates the number of change-points, however its performance

in terms of dH remains reasonably close to the performance of B&P, which is the

best in these examples.

In all simulated scenarios, NOT is always either the best or not far from the best

method. Importantly, it is quick to compute, which gives it a particular advantage over

its competitors in Scenarios (S2), (S3) and (S5), where the computational complexity

of the competing methods is polynomial, which is prohibitive for large sample sizes.

Furthermore, NOT with the contrast function derived under the assumption that the

noise is Gaussian is relatively robust against the misspecification in the distribution of εt.

4.5 Real data analysis

We present applications of the NOT methodology to three real data sets: oil price

log-returns, temperature anomalies data and the UK House Price Index. All R code used

in this section is available from our GitHub repository (Baranowski et al., 2016a).

4.5.1 OPEC Reference Basket oil price

We perform change-point analysis on the daily Organisation of the Petroleum Exporting

Countries (OPEC) Reference Basket oil price from 1 January, 2003 to 15 July, 2016. The

data were obtained from the OPEC database through the R package Quandl (McTaggart
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Figure 4.7: Change-point analysis on the daily OPEC Reference Basket oil price in USD
from 1 January, 2003 to 15 July, 2016. Figure 4.7a: price series Pt (thin grey), locations
of the change-points detected with NOT (vertical dotted lines) and NMCD (vertical
dashed lines). Figure 4.7b: autocorrelation function of Y 2

t . Figure 4.7c: log-returns
Yt = 100 log (Pt/Pt−1) (thin grey), the fitted piecewise-constant mean f̂t (thick red).
Figure 4.7d residuals ε̂t = (Yt− f̂t)/σ̂t. Figure 4.7e: the centred log-returns |Yt− f̂t| (thin
grey), fitted piecewise-constant volatility σ̂t (thick red). Figure 4.7f: autocorrelation of
ε̂2

t . The exact locations of the change-points detected with NOT are given in Table 4.6.

NOT NMCD Event
29 April 2003 N/A Invasion of Iraq
1 September 2008 28 August 2008 critical stage of the subprime mortgage crisis
27 January 2009 22 January 2009 tensions in the Gaza Strip
1 October 2009 23 October 2009
12 November 2012 12 October 2012 beginning of a period of low volatility
30 September 2014 1 October 2014
5 January 2016 21 January 2016 beginning of a sell-off leading the price to 12-

year low
N/A 22 February 2016

Table 4.6: Change-points detected using NOTWBS and NMCD methods in the daily
OPEC Reference Basket oil price data from 1 January 2003 to 15 July 2016, with the
majority of them dated.
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et al., 2016). Instead of working with the raw price series, we analyse the log-returns

series Yt = 100 log (Pt/Pt−1), where Pt denotes the daily oil price. One of the stylised

facts of the financial time series data is that the autocorrelation of assets returns are

weak, while squared returns tend to exhibit strong autocorrelation, which is the case for

the oil price time series (see Figure 4.7b). This phenomenon can be possibly explained

by the existence of the structural breaks in the mean and variance structure of the data

series (Fryzlewicz et al., 2006; Mikosch and Stărică, 2004). In this study, we apply NOT

with the contrast function given by (4.12), which is designed to detect changes in both

the mean and the volatility. For comparison, we also report change-points detected

with the NMCD method of Zou et al. (2014), which was the second best method for

change-point detection in Scenario (S4) in the simulation study of Section 4.4.

We apply Algorithm 4.7 to compute the NOT solution path and choose the model

achieving the lowest SIC given by (4.15), setting the number of intervals drawn M = 10000

and the maximum number of change-points qmax = 25. Computations for the solution

path and model selection are performed using the R package not (Baranowski et al.,

2016b). For the NMCD procedure, we use the nmcd routine from the R package nmcdr

(Zou and Lancezhange, 2014), setting the maximum number of change-points to qmax = 25

as well.

Figure 4.7 illustrates the results of our analysis. The oil price time series and the

locations of the change-points identified by NOT and NMCD can be seen in Figure 4.7a.

Both methods discover 7 change-points, largely agreeing on their locations, in the sense

that for 6 out of 7 NOT estimates, NMCD detects a change-point nearby. However,

NMCD does not indicate any change-point around the first change-point identified by

NOT on 29 April 2003. This date can be clearly related to the end of the 2003 invasion

of Iraq, which initiated the upward trend in the oil price lasting almost ceaselessly until

the beginning of the 2008–09 financial crisis. On the other hand, NMCD indicates two
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change-points in the first quarter of 2016, while NOT finds a single change-point in

that period. Table 4.6 lists the exact locations of the change-points detected by the two

methods and the events that can be related to some of them. Figure 4.7f shows the

autocorrelation function for the squared residuals obtained by subtracting the sample

mean and dividing by the standard deviations from the data in each segment. It appears

that there is little autocorrelation in the squares of the residuals, meaning that (S4)

models the data in this example reasonably well.

4.5.2 Temperature anomalies
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Figure 4.8: Change-point analysis for the GISSTEMP data set introduced in Section 4.5.2.
Figure 4.8a: the data series Yt (thin grey) and f̂t estimated using change-points returned
by NOT (thick red). Figure 4.8b: residuals ε̂t = Yt − f̂t.

For the second application, we analyse the GISS Surface Temperature anomalies data

set available from GISTEMP Team (2016), consisting of monthly temperature anomalies

recorded from January 1880 to June 2016. The anomaly here is defined as the difference

between the average global temperature in a given month and the baseline value, being

the average calculated for that time of the year over the 30-year period from 1951 to

1980; for more details see Hansen et al. (2010). This and similar anomalies series are

frequently studied in literature with a particular focus on identifying change-points in

the data, see e.g. Ruggieri (2013) or James and Matteson (2015).

The plot of the data (Figure 4.8a) clearly indicates the presence of a linear trend with

several change-points in the temperature anomalies series. The corresponding changes
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are not abrupt, therefore we believe that Scenario (S2) with change-points in the slope

of the trend is most appropriate here. To detect the locations of the change-points, we

apply Algorithm 4.7 with the contrast given by (4.9), combined with the SIC criterion to

determine the best model on the solution path. The maximum number of change-points

for NOT is set to qmax = 25 and M = 50000.

Figure 4.8 shows the data, the NOT estimate of the piecewise-linear trend and the

empirical residuals. We identify 8 change-points located at the following dates: March

1901, December 1910, July 1915, June 1935, April 1944, December 1946, June 1976 and

May 2015. Previous studies conducted on similar temperature anomalies series (observed

at a yearly frequency and obtained from a different source), report change-points around

1910, 1945 and 1976 (see Ruggieri (2013) for an overview of a number of related analyses).

In addition to the change-points around these dates, NOT identifies two periods, 1901–

1915 and 1935–1946, where local deviations from the baseline trend are clearly visible.

We also observe a long-lasting upward trend in the anomalies series starting in December

1946. NOT estimates indicate that the slope of the trend is increasing, with the most

recent change-point in May 2015.

4.5.3 UK House Price Index

In our final example, we analyse monthly percentage changes in the UK House Price

Index (HPI) which provides an overall estimate of the changes in house prices across the

UK. The data and a detailed description of how the index is calculated are available

online from UK Land Registry (2016). Fryzlewicz (2016), who proposed a method for

signal estimation and change-point dectection in Scenario (S1), used this data set to

illustrate the performance of his methodology. We perform similar analysis, assuming

the more flexible Scenario (S4), allowing for changes both in the mean and the variance

of the series, which, we argue, leads to some additional insights and better-interpretable
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Figure 4.9: Change-point analysis for the monthly percentage changes in the UK
House Price Index from January 1995 to May 2016. Figure 4.9a, 4.9c and 4.9e: the
monthly percentage changes Yt and the fitted piecewise-constant mean f̂t, between the
change-points estimated with NOT. Figure 4.9b, 4.9d and 4.9f: |Yt − f̂t| and the fitted
piecewise-constant standard deviation σ̂t, between the change-points estimated with
NOT.
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estimates in this case.

As in Fryzlewicz (2016), we analyse the percentage changes in the HPI for three

London boroughs, namely Hackney, Newham and Tower Hamlets, all of which are located

in East London. Hackney and Tower of Hamlets border on the City of London, a major

business and financial district, with the latter being a home to Canary Wharf, another

important financial centre. On the other hand, Newham, located to the east of Hackney

and Tower Hamlets, hosted the London 2012 Olympic Games which involved large-scale

investment in that borough.

Figure 4.9 shows monthly percentage changes in HPI for the analysed boroughs

and the corresponding NOT estimates, obtained using the contrast function (4.12). As

recommended in Section 4.3.4, we set the number of intervals drawn in the procedure to

M = 10000 and choose the threshold that minimises the SIC criterion (4.15). For better

comparability, NOT is applied with the same random seed for each data series.

In contrast to Fryzlewicz (2016), whose TGUH method estimates at least 10 change-

points in each HPI series, we detect just a few change-points in the data, facilitating

the interpretation of the results. Furthermore, for all three boroughs, NOT estimates

two change-points (one around March 2008 and one around September 2009) that can

clearly be linked to the 2008–2009 financial crisis and the concurrent collapse of the

housing market. Estimated standard deviations for that period are much larger than the

estimates corresponding to the other segments of piecewise-constancy, suggesting that

in this example Scenario (S4) may be more relevant than (S1) considered in Fryzlewicz

(2016). It is also interesting to observe that, with the exception of Tower Hamlets from

January 1995 to April 2000 and the 2008–2009 financial crisis for all boroughs, the

estimated standard deviations oscillate around a baseline level (different for each series).

The period of a larger volatility for Tower Hamlets in Figure 4.9f, observed from

January 1995 to April 2000, can possibly be explained by developments in Canary
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Wharf, which in the past was a dock complex closed in 1980. Gordon (2001) claims

that the project of converting Canary Wharf into a business district “was politically

controversial and widely regarded as a planning disaster” which “(in 1992) failed as a

result of six factors: a recession in the London property market, competition from the

City of London, poor transport links, few British tenants, complicated finances and

developer overconfidence”. Over the 1995–2000 period, the situation in the London

property reversed, which combined with a development of new public transport lines in

Canary Wharf led to the success of the project. According to Gordon (2001), “when the

Jubilee underground line opened in 2000, Canary Wharf’s resurrection was complete”.

Finally, it is interesting to observe that over two periods, namely March 1991 to

November 2002 and January 2014 to May 2016, the HPI for Newham (Figure 4.9c) was

increasing at a rate higher than for the other two boroughs.

4.6 Proofs

4.6.1 Some useful lemmas

4.6.1.1 The piecewise constant case

Lemma 4.6.1. Let g(x, y) = xy
x+y

and suppose that min(x, y) > 0. Then

g(x, y) ≥ 1
2 min(x, y).

Proof. Without loss of generality, assume that x ≥ y. Then g(x, y) ≥ xy
2x
≥ y/2 =

min(x, y)/2.

Lemma 4.6.2. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario

(S1), and τ1, . . . , τq are the locations of the change-points. Suppose 1 ≤ s < e ≤ T , such

that τj−1 < s ≤ τj < e ≤ τj+1 for some j = 1 . . . , q. Let η = min{τj − s+ 1, e− τj} and
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∆f
j = |fτj+1 − fτj

|. Then

Cτj
s,e (f) = max

s≤b<e
Cb

s,e (f)


≥ 1√

2η
1/2∆f

j ,

≤ η1/2∆f
j .

Proof. For any s ≤ b < e, by simple algebra, we have

Cb
s,e (f) =



√
b−s+1
l(e−b) (e− τj)|fτj+1 − fτj

|, b ≤ τj;√
(τj−s+1)(e−τj)

l
|fτj+1 − fτj

|, b = τj;√
e−b

l(b−s+1)(τj − s+ 1)|fτj+1 − fτj
|, b ≥ τj,

(4.19)

where l = s− e+ 1. Now Cτj
s,e (f) = maxs≤b≤e Cb

s,e (f) follows from the fact that Cb
s,e (f) is

increasing (as a function of b) for 1 ≤ b ≤ τj and decreasing for τj ≤ b ≤ e. To prove

the lower bound, we set ηL = τj − s+ 1 and ηR = e− τj and observe that ηL ≥ η and

ηR ≥ η. Therefore by Lemma 4.6.1, ηLηR

ηL+ηR
≥ η

2 . Noting that l = ηL + ηR we bound

Cτj
s,e (f) =

√
(τj − s+ 1)(e− τj)

l
|fτj+1 − fτj

|


≥ (η/2)1/2∆f

j ;

≤ η1/2∆f
j .

which completes the proof.

Lemma 4.6.3. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario

(S1), and τ1, . . . , τq are the locations of the change-points. Suppose 1 ≤ s < e ≤ T such

that τj−1 < s ≤ τj and τj+1 < e ≤ τj+2 for some j = 1 . . . , q − 1. Then

max
s≤b<e

Cb
s,e (f) ≤ (τj − s+ 1)1/2∆f

j + (e− τj+1)1/2∆f
j+1

where ∆f
j = |fτj+1 − fτj

|.
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Proof. Suppose that b∗ = argmaxs≤b<e Cb
s,e (f). Then

0 ≤ ∥f − ⟨f ,ψb∗

s,e⟩ψb∗

s,e − ⟨f ,1s,e⟩1s,e∥2 = ∥f − ⟨f ,1s,e⟩1s,e∥2 − ⟨f ,ψb∗

s,e⟩2

≤ ∥f − fτj+1
√
s− e+ 11s,e∥2 − ⟨f ,ψb∗

s,e⟩2

= (τj − s+ 1)(∆f
j)2 + (e− τj+1)(∆f

j+1)2 −
(

max
s≤b<e

Cb
s,e (f)

)2
.

It then follows that

max
s≤b<e

Cb
s,e (f) ≤

√
(τj − s+ 1)(∆f

j)2 + (e− τj+1)(∆f
j+1)2

≤ (τj − s+ 1)1/2∆f
j + (e− τj+1)1/2∆f

j+1.

Lemma 4.6.4. Suppose f = (f1, . . . , fT )′ is piecewise-constant vector as in Scenario

(S1). Pick any interval [s, e] ⊂ [1, T ] such that [s, e−1] contains exactly one change-point

τj. Let ρ = |τj − b|, ∆f
j = |fτj+1 − fτj

|, ηL = τj − s+ 1 and ηR = e− τj. Then,

∥ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩∥2
2 = (Cτj

s,e (f))2 − (Cb
s,e (f))2.

Moreover,

1. for any τj ≤ b < e, (Cτj
s,e (f))2 − (Cb

s,e (f))2 = ρ ηL

ρ+ηL
(∆f

j)2;

2. for any s ≤ b < τj, (Cτj
s,e (f))2 − (Cb

s,e (f))2 = ρ ηR

ρ+ηR
(∆f

j)2.

Proof. First, we note that since there is only one change-point in [s, e− 1], the restriction

of f on [s, e], i.e. f |[s,e] = (0, . . . , 0, fs, . . . , fe, 0, . . . , 0)′ can be decomposed into

f |[s,e] = ψτj
s,e⟨f ,ψτj

s,e⟩+ 1s,e⟨f ,1s,e⟩,
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where we also used the fact that ψτj
s,e and 1s,e are orthonormal. Note that ψb

s,e and 1s,e

are also orthonormal, it follows that

⟨f ,ψb
s,e⟩ = ⟨f |[s,e],ψ

b
s,e⟩ =

〈
ψτj

s,e⟨f ,ψτj
s,e⟩+ 1s,e⟨f ,1s,e⟩,ψb

s,e

〉
= ⟨ψτj

s,e,ψ
b
s,e⟩⟨f ,ψτj

s,e⟩.

Therefore,

⟨f ,ψb
s,e⟩2 = ⟨f ,ψb

s,e⟩⟨ψτj
s,e,ψ

b
s,e⟩⟨f ,ψτj

s,e⟩,

and thus

⟨f ,ψτj
s,e⟩2 − ⟨f ,ψb

s,e⟩2 = ⟨f ,ψτj
s,e⟩2 + ⟨f ,ψb

s,e⟩2 − 2⟨f ,ψb
s,e⟩⟨ψτj

s,e,ψ
b
s,e⟩⟨f ,ψτj

s,e⟩

= ∥ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩∥2
2.

Here in the above final step, we used the fact that ∥ψτj
s,e∥2

2 = ∥ψb
s,e∥2

2 = 1.

Second, for the sake of brevity, we only prove the case of b ≥ τj. Let l = e− s+ 1,

x = b− s+ 1, and thus ρ = x− ηL. Using (4.19), we get

(Cτj
s,e (f))2 − (Cb

s,e (f))2 =
(
ηL(l − ηL)

l
− η2

L(l − x)
lx

)
|fτj+1 − fτj

|2

= ηL(x− ηL)
x

(∆f
j)2 =

(
ρηL

ηL + ρ

)
(∆f

j)2.

4.6.1.2 The piecewise linear continuous case

Lemma 4.6.5. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2),

and τ1, . . . , τq are the locations of the change-points. Suppose 1 ≤ s < e ≤ T , such

that τj−1 ≤ s < τj < e ≤ τj+1 for some j = 1 . . . , q. Let η = min{τj − s, e − τj} and
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∆f
j = |2fτj

− fτj−1 − fτj+1|. Then

Cτj
s,e (f) = max

s<b<e
Cb

s,e (f)


≥ 1√

24η
3/2∆f

j ,

≤ 1√
3(η + 1)3/2∆f

j .

Proof. First, we show that Cb
s,e (f) is maximised at b = τj. Using the notation from the

proof of Lemma 4.6.4, we have that

f |[s,e] = ϕτj
s,e⟨f ,ϕτj

s,e⟩+ γs,e⟨f ,1s,e⟩+ 1s,e⟨f ,1s,e⟩.

Therefore, it follows that

∥f |[s,e]∥2
2 = ⟨f ,ϕτj

s,e⟩2 + ⟨f ,γs,e⟩2 + ⟨f ,1s,e⟩2. (4.20)

For any b ∈ {s+ 1, . . . , τj − 1, τj + 1, . . . , e− 1}, it is clear that f |[s,e] does not lie in the

span of ϕb
s,e, γs,e and 1s,e. Consequently, by projecting f |[s,e] onto these three bases, we

have that

∥f |[s,e]∥2 > ⟨f ,ϕb
s,e⟩2 + ⟨f ,γs,e⟩2 + ⟨f ,1s,e⟩2. (4.21)

Comparing (4.21) with (4.20) entails that |⟨f ,ϕτj
s,e⟩
∣∣∣ > ∣∣∣⟨f ,ϕb

s,e⟩
∣∣∣ for any b ̸= τj.

Secondly, set ηL = τj − s and ηR = e− τj. After some calculation, we get that

Cτj
s,e (f) =

{
ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}
∆f

j ,

where l = e− s + 1. Also, we have ηL ≥ η, ηR ≥ η and l = ηL + ηR + 1. To prove the
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lower bound, we observe that

{
ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}

≥
{

1
6

(ηL + 1)ηR

l

ηL(ηR + 1)
l

2 min(ηL, ηR){max(ηL, ηR) + 1}
l

}
≥
{
η3

24

}
,

where the last inequality is obtained applying Lemma 4.6.1 three times. For the upper

bound, we notice that 2ηLηR + ηL + ηR + 2 ≤ 2(ηL + 1)(ηR + 1) which implies

{
ηL(ηL + 1)ηR(ηR + 1)(2ηLηR + ηL + ηR + 2)

6l(l2 − 1)

}
≤
{

1
3
ηLηR(ηL + 1)2(ηR + 1)2

(l − 1)l2

}

≤
{

(η + 1)3

3

}
.

Lemma 4.6.6. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2),

and τ1, . . . , τq are the locations of the change-points. Suppose 1 ≤ s < e ≤ T such that

τj−1 ≤ s ≤ τj and τj+1 ≤ e ≤ τj+2 for some j = 1 . . . , q − 1. Then

max
s≤b<e

Cb
s,e (f) ≤ 1√

3
(τj − s+ 1)3/2∆f

j + 1√
3

(e− τj+1 + 1)3/2∆f
j+1,

where ∆f
j = |2fτj

− fτj−1 − fτj+1|.

Proof. Suppose that b∗ = argmaxs≤b≤e Cb
s,e (f). Then

0 ≤ ∥f − ⟨f ,ϕb∗

s,e⟩ϕb∗

s,e − ⟨f ,γs,e⟩γs,e − ⟨f ,1s,e⟩1s,e∥2

= ∥f − ⟨f ,γs,e⟩γs,e − ⟨f ,1s,e⟩1s,e∥2 − ⟨f ,ϕb∗

s,e⟩2

= 1
6(τj − s)(τj − s+ 1)(2τj − 2s+ 1)(∆f

j)2

+ 1
6(e− τj+1)(e− τj+1 + 1)(2e− 2τj+1 + 1)(∆f

j+1)2 −
(

max
s≤b<e

Cb
s,e (f)

)2
.
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It then follows that

max
s≤b<e

Cb
s,e (f) ≤

{
(τj − s+ 1)3(∆f

j)2/3 + (e− τj+1 + 1)3(∆f
j+1)2/3

}
≤ 1√

3
(τj − s+ 1)3/2∆f

j + 1√
3

(e− τj+1 + 1)3/2∆f
j+1.

Lemma 4.6.7. Suppose f = (f1, . . . , fT )′ is piecewise-linear vector as in Scenario (S2),

and τ1, . . . , τq are the locations of the change-points. Suppose 1 ≤ s < e ≤ T , such that

τj−1 ≤ s < τj < e ≤ τj+1 for some j = 1 . . . , q. Let ρ = |τj − b|, ηL = τj − s, ηR = e− τj

and ∆f
j = |2fτj

− fτj−1 − fτj+1|. Then,

∥ϕb
s,e⟨f ,ϕb

s,e⟩ − ϕτj
s,e⟨f ,ϕτj

s,e⟩∥2
2 = (Cτj

s,e (f))2 − (Cb
s,e (f))2. (4.22)

Moreover,

1. for any τj ≤ b < e, (Cτj
s,e (f))2 − (Cb

s,e (f))2 ≥ 1
63 min(ρ, ηL)3(∆f

j)2;

2. for any s < b ≤ τj, (Cτj
s,e (f))2 − (Cb

s,e (f))2 ≥ 1
63 min(ρ, ηR)3(∆f

j)2.

Proof. The proof of (4.22) is very similar to that shown in Lemma 4.6.4, so is omitted

for brevity. In the following, we only deal with the case of τj ≤ b < e. Note that

∥ϕb
s,e⟨f ,ϕb

s,e⟩ − ϕτj
s,e⟨f ,ϕτj

s,e⟩∥2
2 =

∥∥∥ϕb
s,e⟨f ,ϕb

s,e⟩+ γs,e⟨f ,γs,e⟩+ 1s,e⟨f ,1s,e⟩ − f |[s,e]

∥∥∥2

2

≥ min
a0,a1∈R

∥∥∥f |[s,b] − a01s,b − a1γs,b

∥∥∥2

2
+ min

a0,a1∈R

∥∥∥f |[b+1,e] − a01b+1,e − a1γb+1,e

∥∥∥2

2

≥ min
a0,a1∈R

∥∥∥f |[s,b] − a01s,b − a1γs,b

∥∥∥2

2
.

Recalling the definitions of ατj

s,b and β
τj

s,b in (4.8), and writing d = b− s+ 1. After some

calculations (similar to what has already been carried out in deriving ϕb
s,e), we obtain
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that

min
a0,a1∈R

∥∥f |[s,b] − a01s,b − a1γs,b

∥∥2
2 =

[
(3ηL + ρ + 2)ατj

s,bβ
τj

s,b + (3ρ + ηL + 2)ατj

s,b(β
τj

s,b)
−1
]−2

(∆f
j)2

= 1
6(∆f

j)2d(d2 − 1)
[
1 + ρηL + (ρ + 1)(ηL + 1)

]
×[

(d + 2ηL + 1)2 ρ(ρ + 1)
ηL(ηL + 1) + (d + 2ρ + 1)2 ηL(ηL + 1)

ρ(ρ + 1) + 2(d + 2ηL + 1)(d + 2ρ + 1)
]−1

.

Notice that the above equation is symmetric with respect to ηL and ρ. Without loss of

generality, here we proceed by assuming that ηL ≥ ρ. Since (d+2ηL+1)+(d+2ρ+1) = 4d,

it follows that (d+ 2ηL + 1)(d+ 2ρ+ 1) ≤ 4d2. Therefore,

min
a0,a1∈R

∥∥∥f |[s,b] − a01s,b − a1γs,b

∥∥∥2

2

≥ 1
6(∆f

j)2d(d2 − 1)[2(ηL + 1)ρ]
[
(3d)2 + (2d)2 (ηL + 1)2

ρ2 + 8d2
]−1

≥ 1
6(∆f

j)2d2(d− 1)[2(ηL + 1)ρ]
[
21d2 (ηL + 1)2

ρ2

]−1

≥ 1
63ρ

3(∆f
j)2,

where in the last step, we used the fact that d−1
ηL+1 ≥ 1 for ρ ≥ 1 (and note that the last

above-displayed equation also holds if ρ = 0).

Finally, we remark that the case of s < b ≤ τj can also be handled by symmetry.

4.6.2 Proof of Theorem 4.2.1

Here we informally discuss our proof strategy, which could be generalised to other

scenarios. Intuitively speaking, lemmas from Section 4.6.1 deal with noiseless versions

of the change-point estimation problems. In order to apply these results to show the

consistency of estimated number of change-points, we need to control ∥Cb
s,e (Y)−Cb

s,e (f) ∥

for every (s, e, b), which can be achieved using Bonferroni in Step 1. Note that for

any fixed interval with start-point s and end-point e, to decide whether b1 or b2 is a

more suitable change-point candidate inside this interval, we only need to look at the
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value of Cb1
s,e (Y) − Cb2

s,e (Y). Therefore, when establishing the convergence rate of the

estimated change-point location , we control the distance between Cb1
s,e (Y) − Cb2

s,e (Y)

and its noiseless analogue Cb1
s,e (f) − Cb2

s,e (f) (after proper normalisation) for all tuples

(s, e, b1, b2) in Step 2. In Step 3, we show that given a properly chosen threshold and

a large enough M , both bounds in Step 1 and Step 2 hold, and for each change-point

τj, there exists an interval from FM
T that contains only this change-point and both its

start- and end- points are sufficiently far away from other change-points. Since we are

dealing with the narrowest-over-threshold intervals, the actual intervals that our NOT

algorithm pick must have length no longer than the ones we considered in Step 3, thus

could only contain precisely one change-point. So in Step 4, it suffices to investigate

a single change-point detection problem, where we can use lemmas from Section 4.6.1

and the bound in Step 2 to establish the convergence rate for its location estimation.

Finally, in Step 5, we show that after detecting all the change-points, the NOT algorithm

stops with no further detection. This is because the remaining elements [s, e] ∈ FM
T to

be considered either have no change-point inside, or have one/two change-points that

are very close to its start- or/and end- points, thus their corresponding maxb Cb
s,e (Y)

cannot exceed the given threshold in views of the property of its noiseless analogue and

the bound from Step 1.

Now we proceed to the technical details.

Proof. We shall prove the following more specific result, which in turn implies (4.13).

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj|(∆f

j)2
)
≤ C3 log T

)
≥ 1− T−1/(6

√
π) (4.23)

− Tδ−1
T (1− δ2

TT
−2/36)M , (4.24)
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Step One.

Let ε = (ε1, . . . , εT )′ and λT =
√

8 log T . Define the set

AT =
{

max
s,b,e:1≤s≤b<e≤T

|Cb
s,e (ε) | ≤ λT

}
.

Note that for any 1 ≤ s ≤ b < e ≤ T , Cb
s,e (ε) follows a standard normal distribution.

Therefore, using the Bonferroni bound, we get

P (Ac
T ) ≤ T 3

6
2e−(

√
8 log T )2/2

√
8 log T

√
2π
≤ T−1

12
√
π
.

Moreover, because Cb
s,e (Y)− Cb

s,e (f) = Cb
s,e (ε), so AT also implies that

{
max

s,b,e:1≤s≤b<e≤T
|Cb

s,e (Y)− Cb
s,e (f) | ≤ λT

}
.

Step Two.

Define the set

BT =
{

max
j=1,...,q

max
τj−1<s≤τj

τj<e≤τj+1
s≤b<e

∣∣∣∣〈ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩, ε
〉∣∣∣∣

∥ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩∥2
≤ λT

}
.

Again, for any 1 ≤ s ≤ b < e ≤ T , |⟨ψb
s,e⟨f ,ψb

s,e⟩−ψ
τj
s,e⟨f ,ψ

τj
s,e⟩,ε⟩|

∥ψb
s,e⟨f ,ψb

s,e⟩−ψ
τj
s,e⟨f ,ψ

τj
s,e⟩∥2

follows a standard normal

distribution, so using a similar argument, we get

P (Bc
T ) ≤ T−1

12
√
π
.
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Step Three.

To fix the ideas, for j = 1, . . . , q, we define intervals

IL
j = (τj − δT/3, τj − δT/6) (4.25)

IR
j = (τj + δT/6, τj + δT/3) (4.26)

Note that these intervals all contain at least one integer as long as δT > 6. This is always

true for sufficiently large T , as it follows from Conditions 1 and 2 that δT > C log T/f .

Recall that FM
T is the set of M randomly drawn intervals with endpoints in {1, . . . , T}.

Denote by [s1, e1], . . . , [sM , eM ] the elements of FM
T and let

DM
T =

{
∀j = 1, . . . , q, ∃k ∈ {1, . . . ,M}, s.t. sk × ek ∈ IL

j × IR
j

}
. (4.27)

We have that

P
(
(DM

T )c
)
≤

q∑
j=1

ΠM
m=1

(
1− P

(
sm × em ∈ IL

j × IR
j

) )

≤ q

(
1− δ2

T

62T 2

)M

≤ T

δT

(
1− δ2

T

36T 2

)M

.

Therefore, P
(
AT ∩BT ∩DM

T

)
≥ 1− T−1/(6

√
π)− Tδ−1

T (1− δ2
TT

−2/36)M .

In the rest of the proof, we assume that AT , BT and DM
T all hold. We give the

constants as follows:

C1 = 2
√
C3 +

√
8, C2 = 1√

6
− 2
√

2
C

, C3 = 32
√

2 + 48.

These constants could be further refined by applying the Bonferroni bound more carefully.

But since our main aim is to establish the rate, we chose not to pursue this direction further.

In addition, here we need to make sure that CC2 > C1, and thus C2δ
1/2
T f

T
> C1

√
log T ,
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i.e. we can select ζT ∈ [C1
√

log T ,C2δ
1/2
T f

T
). This is indeed the case because C is

sufficiently large.

Step Four.

We focus on a generic interval [s, e] such that

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. [sk, ek] ⊂ [s, e] and sk × ek ∈ IL
j × IR

j (4.28)

Fix such an interval [s, e] and let j ∈ {1, . . . , q} and k ∈ {1, . . . ,M} be such that

(4.28) is satisfied. Let b∗
k = argmaxsk≤b≤ek

Cb
sk,ek

(Y). By construction, [sk, ek] satisfies

τj − sk + 1 ≥ δT/6 and ek − τj > δT/6. Denote by

Ms,e =
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

;

Os,e = {m ∈Ms,e : max
sm≤b<em

Cb
sm,em

(Y) > ζT}

Our first aim is to show that Os,e is non-empty. This follows from Lemma 4.6.2 and the

calculation below.

Cb∗
k

sk,ek (Y) ≥ Cτj
sk,ek

(Y)

≥ Cb∗
k

sk,ek (f)− λT ≥
(
δT

6

)1/2

|fτj+1 − fτj
| − λT ≥

(
δT

6

)1/2

f
T
− λT

=
 1√

6
− λT

δ
1/2
T f

T

 δ1/2
T f

T
≥
(

1√
6
− 2
√

2
C

)
δ

1/2
T f

T
= C2δ

1/2
T f

T
> ζT .

Let m∗ = argminm∈Os,e
(em−sm +1) and b∗ = argmaxsm∗ ≤b<em∗ Cb

sm∗ ,em∗ (Y). Observe

that [sm∗ , em∗) must contain at least one change-point. Indeed, if that was not the case,
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we would have Cb
sm∗ ,em∗ (f) = 0 and

Cb∗

sm∗ ,em∗ (Y) = |Cb∗

sm∗ ,em∗ (Y)− Cb∗

sm∗ ,em∗ (f) | ≤ λT ≤ ζT

which contradicts Cb∗
sm∗ ,em∗ (Y) > ζT . On the other hand, [sm∗ , em∗) cannot contain more

than one change-points, because em∗ − sm∗ + 1 ≤ ek − sk + 1 ≤ δT , as we picked the

narrowest-over-threshold interval.

Without loss of generality, assume τj ∈ [sm∗ , em∗ ]. Denote by ηL = τj − sm∗ + 1

ηR = em∗ − τj and ηT = (C1−
√

8)2(∆f
j)−2 log T , where ∆f

j = |fτj+1− fτj
|. We claim that

min(ηL, ηR) > ηT , because min(ηL, ηR) ≤ ηT and Lemma 4.6.2 result in

Cb∗

sm∗ ,em∗ (Y) ≤ Cb∗

sm∗ ,em∗ (f) + λT ≤ Cτj
sm∗ ,em∗ (f) + λT ≤ η

1/2
T ∆f

j + λT

= (C1 −
√

8 +
√

8)
√

log T = C1

√
log T ≤ ζT ,

which contradicts Cb∗
sm∗ ,em∗ (Y) > ζT .

We are now in the position to prove |b∗ − τj| ≤ C3 log T/(∆f
j)2. The arguments we

use here are simpler and slightly more general than Lemma A.3 of Fryzlewicz (2014).

Our aim is to find ϵT such that for any b ∈ {sm∗ , sm∗ + 1, . . . , em∗ − 1} with |b− τj| > ϵT ,

we always have

(Cτj
sm∗ ,em∗ (Y))2 − (Cb

sm∗ ,em∗ (Y))2 > 0. (4.29)

This would then imply that |b∗ − τj| ≤ εT . By expansion and rearranging the terms
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(using the fact that ft = Yt + εt), we see that (4.29) is equivalent to

⟨f ,ψτj
sm∗ ,em∗ ⟩2 − ⟨f ,ψb

sm∗ ,em∗ ⟩2 >⟨ε,ψb
sm∗ ,em∗ ⟩2 − ⟨ε,ψτj

sm∗ ,em∗ ⟩2

+ 2
〈
ε,ψb

sm∗ ,em∗ ⟨f ,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨f ,ψτj
sm∗ ,em∗ ⟩

〉
.

(4.30)

In the following, we assume that b ≥ τj . The case that b < τj can be handled in a similar

fashion. By Lemma 4.6.4, we have

⟨f ,ψτj
sm∗ ,em∗ ⟩2 − ⟨f ,ψb

sm∗ ,em∗ ⟩2 = (Cτj

s∗,e∗ (f))2 − (Cb
sm∗ ,em∗ (f))2 = |b− τj|ηL

|b− τj|+ ηL

(∆f
j)2 := κ.

In addition, since AT and BT hold, we have that

⟨ε,ψb
sm∗ ,em∗ ⟩2 − ⟨ε,ψτj

sm∗ ,em∗ ⟩2 ≤ λ2
T ,

2
〈
ε,ψb

sm∗ ,em∗ ⟨f ,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨f ,ψτj
sm∗ ,em∗ ⟩

〉
≤ 2∥ψb

sm∗ ,em∗ ⟨f ,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨f ,ψτj
sm∗ ,em∗ ⟩∥2λT = 2κ1/2λT ,

where the last equality also comes from Lemma 4.6.4. Consequently, (4.30) can be

deducted from the stronger inequality κ− 2λTκ
1/2 − λ2

T > 0. This quadratic inequality

is implied by κ > (
√

2 + 1)2λ2
T , and could be restricted further to

2|b− τj|ηL

|b− τj|+ ηL

≥ min(|b− τj|, ηL) > (32
√

2 + 48)(∆f
j)−2 log T = C3(∆f

j)−2 log T. (4.31)

But since

ηL ≥ ηT = (C1 −
√

8)2(∆f
j)−2 log T = (2

√
C3)2(∆f

j)−2 log T > C3(∆f
j)−2 log T,

we see that (4.31) is equivalent to |b− τj| > C3(∆f
j)−2 log T . To sum up, |b∗− τj|(∆f

j)2 >
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C3 log T would result in (4.29), a contradiction. So we have proved that |b∗ − τj|(∆f
j)2 ≤

C3 log T .

Step Five.

Using the arguments given above which are valid on the event AT ∩BT ∩DM
T , we can now

proceed with the proof of the theorem as follows. At the start of Algorithm 4.6 we have

s = 1 and e = T and, provided that q ≥ 1, condition (4.28) is satisfied. Therefore the

algorithm detects a change-point b∗ in that interval such that |b∗ − τj| ≤ C3 log T (∆f
j)−2.

By construction, we also have that |b∗ − τj| < 2/3δT . This in turn implies that for

all l = 1, . . . , q such that τl ∈ [s, e] and l ̸= j we have either IL
l , IR

l ⊂ [s, b∗] or

IL
l , IR

l ⊂ [b∗ + 1, e]. Therefore (4.28) is satisfied within each segment containing at least

one change-point. Note that before all q change-points are detected, each change-point

will not be detected twice. To see this, we suppose that τj has already been detected by

b, then for all intervals [sk, ek] ⊂ [τj − C3 log T (∆f
j)−2 + 1, τj − C3 log T (∆f

j)−2 + 2/3δT +

1] ∪ [τj + C3 log T (∆f
j)−2 − 2/3δT , τj + C3 log T (∆f

j)−2], Lemma 4.6.2, together with the

event AT , guarantees that

sk ≤ b < ekCb
sk,ek

(Y) ≤ max
s≤b<e

Cb
sk,ek

(f) +
√

8 log T ≤
√
C3 log T (∆f

j)−2∆f
j +

√
8 log T

≤ C1

√
log T ≤ ζT .

Once all the change-points are detected, we then only need to consider [sk, ek] such that

[sk, ek] ⊂ [τj − C3 log T (∆f
j)−2 + 1, τj+1 + C3 log T (∆f

j+1)−2]
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for j = 0, . . . , q, where we set ∆f
0 = ∆f

q+1 = ∞ for notational convenience. It follows

from Lemma 4.6.3 (within AT ) that

max
sk≤b<e

Cb
sk,ek

(Y) ≤ max
s≤b<e

Cb
sk,ek

(f) +
√

8 log T

≤
√
C3 log T (∆f

j)−2∆f
j +

√
C3 log T (∆f

j+1)−2∆f
j+1 +

√
8 log T

< (2
√
C3 +

√
8)
√

log T = C1

√
log T ≤ ζT .

Hence the algorithm terminates and no further change-points are detected.

4.6.3 Proof of Theorem 4.2.2

Proof. The proof proceeds in analogy to the proof of Theorem 4.2.1. In five steps we

shall establish the following result,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj|(∆f

j)2/3
)
≤ C3(log T )1/3

)
≥ 1− T−1/(6

√
π) (4.32)

− Tδ−1
T (1− δ2

TT
−2/36)M , (4.33)

which in turn implies (4.14).

Step One and Step Two

We define the following two events

AT =
{

max
s,b,e:1≤s≤b<e≤T

|Cb
s,e (ε) | ≤ λT

}
,

BT =
{

max
j=1,...,q

max
τj−1<s≤τj

τj<e≤τj+1
s≤b<e

∣∣∣∣〈ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩, ε
〉∣∣∣∣

∥ψb
s,e⟨f ,ψb

s,e⟩ −ψτj
s,e⟨f ,ψτj

s,e⟩∥2
≤ λT

}
,



176 Narrowest-Over-Threshold change-point detection

where λT =
√

8 log T . Arguments as those used in Step One and Step Two of the proof

of Theorem 4.13 show that P (Ac
T ) ≤ T −1

12
√

π
and P (Bc

T ) ≤ T −1

12
√

π
.

Step Three

In the rest of the proof, we assume that AT , BT and DM
T all hold, where the last

event is given by (4.27). Exactly as in the proof of Theorem 4.13, we show that

P
(
AT ∩BT ∩DM

T

)
≥ 1− T−1/(6

√
π)− Tδ−1

T (1− δ2
TT

−2/36)M .

We give the constants as follows:

C1 = 2
√

2
3C

3/2
3 +

√
8, C2 = 1

72 −
2
√

2
C

, C3 = 2 3
√

7
(
3
(
1 +
√

2
))2/3

.

We require C to be sufficiently large such that CC2 > C1. Consequently it is possible to

select ζT ∈
[
C1
√

log T ,C2δ
3/2
T f

T

)
.

Step Four

Consider a generic interval [s, e] satisfying

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. [sk, ek] ⊂ [s, e] and sk × ek ∈ IL
j × IR

j (4.34)

and define events

Ms,e =
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}
,

Os,e = {m ∈Ms,e : max
sm≤b<em

Cb
sm,em

(Y) > ζT}.



177 Narrowest-Over-Threshold change-point detection

Let b∗
k = argmaxsk≤b≤ek

Cb
sk,ek

(Y). We have

Cb∗
k

sk,ek (Y) ≥ Cτj
sk,ek

(Y)

≥ Cb∗
k

sk,ek (f)− λT ≥
1√
24

(δT/6)3/2 ∆f
j − λT ≥

1
72δ

3/2
T f

T
− λT

=
 1

72 −
λT

δ
3/2
T f

T

 δ1/2
T f

T
≥
(

1
72 −

2
√

2
C

)
δ

3/2
T f

T
= C2δ

3/2
T f

T
> ζT ,

where the third inequality above follows from Lemma 4.6.5, therefore Os,e is non-empty.

Let m∗ = argminm∈Os,e
(em−sm +1) and b∗ = argmaxsm∗ ≤b<em∗ Cb

sm∗ ,em∗ (Y). Arguing

exactly as in Step Four in the proof of Theorem 4.2.1, we show that [sm∗ , em∗) must

contain exactly one change-point. Without loss of generality, assume that τj ∈ [sm∗ , em∗).

Let ηL = τj − sm∗ , ηR = em∗ − τj and ηT =
(√

3(C1 −
√

8)
√

log T (∆f
j)−1)

)2/3
− 1. We

observe that min(ηL, ηR) > ηT , as min(ηL, ηR) ≤ ηT and Lemma 4.6.5 implies that

Cb∗

sm∗ ,em∗ (Y) ≤ Cb∗

sm∗ ,em∗ (f) + λT ≤ Cτj
sm∗ ,em∗ (f) + λT ≤

1√
3

(ηT + 1)3/2∆f
j + λT

= (C1 −
√

8 +
√

8)
√

log T = C1

√
log T ≤ ζT ,

contradicting Cb∗
sm∗ ,em∗ (Y) > ζT .

We are now in position to prove that |b∗ − τj| ≤ C3(∆f
j)−2/3(log T )1/3 := ϵT . Let

b ∈ {sm∗ + 1, . . . , em∗ − 2} and define κ = ((Cτj
sk,ek (f))2 − (Cb

sk,ek
(f))2. We claim that

(Cτj
sm∗ ,em∗ (Y))2 − (Cb

sm∗ ,em∗ (Y))2 > 0, (4.35)

when |b−τj| > ϵT . Inequality (4.35) does not hold for b = b∗, so proving the claim suffices

to demonstrate that |b∗ − τj| ≤ ϵT . Without loss of generality, we consider the case of

b > τj . Using arguments as those in Step Four of the proof of Theorem 4.2.1 we can show

that (4.35) is implied by κ > (
√

2 + 1)2λ2
T , where κ = (Cτj

sm∗ ,em∗ (f))2− (Cb
sm∗ ,em∗ (f))2. By
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Lemma 4.6.7, κ > (
√

2 + 1)2λ2
T is implied by

min (|b− τj|, ηL) >
(
63(∆f

j)−2 · 8(
√

2 + 1)2 log T
)1/3

= C3(∆f
j)−2/3(log T )1/3

However, for sufficiently large T ,

ηL > ηT = (
√

3(C1 −
√

8))2/3(∆f
j)−2/3(log T )1/3 − 1 > (C1 −

√
8)2/3(∆f

j)−2/3(log T )1/3

= (C3/2
3 +

√
8−
√

8)2/3(∆f
j)−2/3 = C3(∆f

j)−2/3(log T )1/3 = ϵT ,

hence |b− τj| > ϵT implies (4.35), so it must hold that |b∗ − τj| ≤ ϵT .

Step Five

Using the arguments given above which are valid on the event AT ∩BT ∩DM
T , we can

now proceed with the proof of the theorem as follows. At the start of Algorithm 4.6

we have s = 1 and e = T and, provided that q ≥ 1, condition (4.28) is satisfied.

Therefore the algorithm detects a change-point b∗ in that interval such that |b∗ − τj| ≤

C3(∆f
j)−2/3(log T )1/3. By construction, we also have that |b∗ − τj| < 2/3δT . This in turn

implies that for all l = 1, . . . , q such that τl ∈ [s, e] and l ̸= j we have either IL
l , IR

l ⊂ [s, b∗]

or IL
l , IR

l ⊂ [b∗ +1, e]. Therefore (4.28) is satisfied within each segment containing at least

one change-point. Note that before all q change-points are detected, each change-point

will not be detected twice. To see this, we suppose that τj has already been detected by b,

then for all intervals [sk, ek] ⊂ [τj − ϵT + 1, τj − ϵT + 2/3δT + 1]∪ [τj + ϵT − 2/3δT , τj + ϵT ],



179 Narrowest-Over-Threshold change-point detection

Lemma 4.6.5, together with the event AT , guarantees that

max
sk≤b<ek

Cb
sk,ek

(Y) ≤ max
s≤b<e

Cb
sk,ek

(f) +
√

8 log T

≤ 1√
3

(C3(∆f
j)−2/3(log T )1/3 + 1)3/2∆f

j +
√

8 log T

≤ (2
√

2
3C

3/2
3 +

√
8)
√

log T = C1

√
log T ≤ ζT

Once all the change-points are detected, we then only need to consider [sk, ek] such that

[sk, ek] ⊂ [τj − C3(∆f
j)−2/3(log T )1/3 + 1, τj+1 + C3(∆f

j+1)−2/3(log T )1/3]

for j = 0, . . . , q, where we set ∆f
0 = ∆f

q+1 = ∞ for notational convenience. It follows

from Lemma 4.6.6 (within AT ) that

max
sk≤b<e

Cb
sk,ek

(Y) ≤ max
s≤b<e

Cb
sk,ek

(f) +
√

8 log T

≤ 1√
3

(C3(∆f
j)−2/3(log T )1/3)3/2∆f

j

+ 1√
3

(C3(∆f
j)−2/3(log T )1/3)3/2∆f

j+1 +
√

8 log T

= ( 2√
3
C

3/2
3 +

√
8)
√

log T ≤ C1

√
log T ≤ ζT .

Hence the algorithm terminates and no further change-points are detected.



Chapter 5

Multiscale autoregression on

adaptively detected timescales

5.1 Introduction

Let Xt be the univariate time series representing return on a financial asset, observed at

a mid- or high- frequency, e.g. every ten minutes. In this chapter, we propose Adaptive

Multiscale Autoregressive (AMAR) time series models, where Xt linearly depends on its

own past averages calculated over unknown timespans. Formally, the AMAR(q) model is

defined as

Xt = α1
1
τ1

(Xt−1 + . . .+Xt−τ1) + . . .+ αq
1
τq

(Xt−1 + . . .+Xt−τq) + εt, t = 1, . . . , T,

(5.1)

where the timescales 1 ≤ τ1 < τ2 < . . . < τq and the scale coefficients α1, . . . , αq ∈ R are

unknown, the number of scales q is much smaller than the largest timescale τq and εt is

a white-noise-like innovation.

The key idea behind the AMAR(q) model is that, in the hope of improving the
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forecasting accuracy, we model Xt using only some features of the past (in (5.1) these are

the average calculated at possible large timescales), as opposed to using all information

as in e.g. the Autoregressive time series model given by (5.2) below. Similar concepts

have been previously studied in in the context of modelling of multivariate time series

in Reinsel (1983) and Ahn and Reinsel (1988). Reinsel (1983) consider the multivariate

autoregressive index models, where the multivariate time series of interest Yt depends

linearly on a small number of the index variables which are linear combinations of the

lagged values of Yt. The averages of Xt in (5.1) serve as an example of the index variables.

However, in contrast to our setting, the index variables in Reinsel (1983) are assumed the

be known. Ferreira et al. (2006) consider a multi-scale time series model in a Bayesian

context. In their model, the time series of interest observed at a coarser timescale depends

on the averages observed at the finer timescales, which is exactly the opposite to the

dependence structure in AMAR(q). Another class of multi-scale time series models is

proposed in Ghysels et al. (2004), where time series observed at finer scales are used to

model the one observed at the lower frequency.

We propose the estimation procedure for fitting AMAR(q) models from the data,

which is motivated as follows. Observe that for any p > τq, AMAR(q) is an instance of

the sparsely parametrised Autoregressive (AR) time series model, therefore (5.1) can be

rewritten as

Xt = β1Xt−1 + . . . βpXt−p + εt, t = 1, . . . , T, (5.2)

βj =
∑

k:τk≥j

αk

τk

, j = 1, . . . , p, (5.3)

where εt is again a white-noise-like sequence. We refer to (5.2) with the coefficients given

by (5.1) as to the AR(p) representation of the AMAR(q) process. Let β̂ = (β̂, . . . , β̂p)′

be the Ordinary Least Squares (OLS) estimator of β = (β1, . . . , βp)′. Then β̂j’s trivially
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decompose as

β̂j = βj + (β̂j − βj), j = 1, . . . , p. (5.4)

The coefficients β1, . . . , βp form the piecewise-constant vector with the change-points

at the timescales τ1, . . . , τq. Consequently, (5.4) follows the ‘piecewise-constant signal

+ noise’ model, with the noise sequence β̂j − βj, j = 1, . . . , p, which implies that the

timescales can be estimated by identifying the change-points in (5.4) and motivates

the following procedure. First, we choose a large p and find the OLS estimates of

the autoregressive coefficients in the AR(p) representation of the AMAR(q) process.

Subsequently, we estimate the time-scales by identifying the change-points in (5.4), using

to this end the Narrowest-Over-Threshold approach introduced in Chapter 4. Once the

time-scales are estimated, we estimate the scale coefficients, using to this end OLS again.

As an illustration, an example of the resulting estimates is shown in Figure 5.1d.

From the theoretical point of view, our main contributions can be summarised as

follows. We demonstrate that our proposal recovers the locations of the timescales with

a large probability, under the framework in which the timescales are allowed to diverge

with the growing sample size T . As a side result, we provide an explicit bound on the

tail probability of the ℓ2 norm of the difference between the autoregressive coefficients

an their OLS estimates in the AR(p) model with i.i.d. Gaussian noise. The bound can

be used to study consistency of the OLS estimators when both the order p and the

autoregressive coefficients depend on the sample size T .

We also show that AMAR(q) models estimated with our procedure offer relatively

good predictive power in terms of out-of-sample forecasting of high- and mid- frequency

financial returns, in an application to stock price series for a number of companies listed

on New York Stock Exchange (NYSE). The R package amar (Baranowski and Fryzlewicz,

2016a) provides an efficient implementation of our proposal. The most computationally
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Figure 5.1: Example of high-frequency trades data for Apple Inc., observed from January
2012 to January 2013, obtained from the New York Stock Exchange Trades and Quotes
Database through Wharton Research Data Services. Figure 5.1a: price of the stock Pt

observed every 10 minutes. Figure 5.1b: log-returns X̃t = log(Pt/Pt−1). Figure 5.1c:
the normalised log-returns Xt (see Section 5.4.1 for details). Figure 5.1d: the OLS
estimates of the AR(p) coefficients with p = 240 (thin black) and the piecewise-constant
estimate of the coefficients computed with our proposal (red). Figure 5.1e and 5.1f: the
autocorrelation function for, respectively, X̃t and Xt.
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intensive parts of the computations have been coded in C, with a focus on ensuring

optimal use of the available computational resources. The R code used in all numerical

examples reported in this chapter is available from our GitHub repository (Baranowski

and Fryzlewicz, 2016b).

The remainder of the chapter is organised as follows. In Section 5.2, we introduce

an estimation procedure for AMAR(q) models and study its theoretical properties.

Section 5.3 discusses the choice of the parameters of the procedure and demonstrates its

finite-sample performance on simulated data. In Section 5.4, we apply our proposal in

order to forecast high-frequency returns for several stocks listed on NYSE. Sections 5.5

and 5.6 contain proofs of all our theoretical results.

5.2 Methodology and theory

5.2.1 Notation

In a typical application of the AMAR(q) model, the number of timescales q is considered to

be small in comparison to the maximum timescale τq. In order to model this phenomenon,

we work in a framework where the timescales τ1, . . . , τq possibly diverge with, and the

coefficients α1, . . . , αq depend on the sample size T . However, for economy of notation

we suppress the dependence of T on αj, τj, q and Xt in the remainder of this chapter.

Apart from the overall amount of the noise in (5.4), the following two quantities will

measure how difficult a change-point problem is:

δT = min
j=1,...,q

|τj+1 − τj| (5.5)

αT = min
j=1,...,q

|βτj+1 − βτj
| = min

j=1,...,q
|αj|τ−1

j (5.6)
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Let C denote the complex plane. For any AR(p) process, we define its characteristic

polynomial by

b(z) = 1−
p∑

j=1
βjz

j, (5.7)

where z ∈ C. Furthermore, the unit circle is denoted by

T = {z ∈ C : |z| = 1}, (5.8)

Finally, for any vector v = (v1, . . . , vk)′ ∈ Rk the Euclidean norm is denoted by ∥v∥ =√∑k
j=1 v

2
k.

5.2.2 Large deviations for the OLS estimator in AR(p)

In this section, we obtain a tail probability bound on the Euclidean norm of the difference

between the OLS estimator β̂ of the autoregressive parameters β in model (5.2), with

all bounds explicitly depending on T , p and other parameters of the AR(p) process. The

following theorem holds.

Theorem 5.2.1. Suppose Xt, t = 1, . . . , T , follow the AR(p) model given by (5.2) and

assume that the innovations ε1, . . . , εT are i.i.d. N (0, 1) distributed. Suppose that the

initial conditions Xt = 0 a.s. for t = 0,−1, . . . ,−p+ 1 and all roots of the characteristic

polynomial b(z) given by (5.7) lie within the unit circle. Let β̂ = (β̂1, . . . , β̂p)′ be the OLS

estimate of the vector of the autoregressive coefficients β = (β1, . . . , βp)′. Then there exist

universal constants κ1, κ2, κ3 > 0 not depending on T , p and β s.t. if
√
T > κ2p log(T ),

we have

P

∥∥∥β̂ − β∥∥∥ ≤ κ1(b/b)2 ∥β∥
p log(T )

√
log(T + p)

√
T − κ2p log(T )

 ≥ 1− κ3

T
, (5.9)
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where b = minz∈T |b(z)| and b = maxz∈T |b(z)|.

Theorem 5.2.1 implies that, with high probability, the differences β̂j − βj in (5.4)

diverge to zero with T → ∞, provided that p = o(T 1/2). This property justifies why

(5.4) can be seem as the ‘piecewise-constant signal + noise’ problem.

We remark that in a classic setting, where both the order p and the autoregressive

coefficients in model (5.2) do not depend on the sample size T , properties of the OLS

estimators are well-established. For example, Bercu et al. (2008) provides an exponential

inequality for the OLS estimats in the AR(1) model with the i.i.d. Gaussian noise. Lai

and Wei (1983) show that, without any assumptions on the roots of the characteristic

polynomial b(z), hence both in a stationary and non-stationary case, the OLS estimates are

strongly consistent, provided that εt is a martingale difference sequence with conditional

second moments bounded from below and above. (Barabanov, 1983) obtains similar

results independently, under slightly stronger assumptions on the noise sequence.

5.2.3 Estimation of the timescales with NOT

In order to estimate the locations of change-points in (5.4), we propose to use the

Narrowest-Over-Threshold approach introduced in Chapter 4 with the contrast function

(4.6) designed to detect change-points in piecewise-constant signals. This choice is, first

of all, motivated by the fact that owing to its modular structure, NOT can be easily

adopted to the problem of estimation of the timescales in (5.4). Second, recall that

in Section 4.2.5 NOT has been shown to approximately recover the locations of the

change-points at optimal rates in the ‘piecewise-constant signal + i.i.d. Gaussian noise’

model. Although it is challenging to establish the corresponding optimal rates in (5.4)

due to the serial dependence in the noise β̂j − βj, we show later in Section (5.2.4) that

NOT estimates in (5.4) enjoy properties similar to those established in the i.i.d. Gaussian

setting.
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Algorithm 5.8 NOT algorithm for estimation of the time-scales in AMAR models
Input: Estimates of the autoregressive coefficients β̂ = (β̂1, . . . , β̂p)′, FM

T being a set of
M independently drawn intervals with the endpoints in {1, . . . , p}, S = ∅.

Output: Set of estimated scales S ⊂ {1, . . . , p}.
procedure NOT(β̂, s, e, ζT )

if e− s < d then STOP
else
Ms,e :=

{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

if Ms,e = ∅ then STOP
else
Os,e :=

{
m ∈Ms,e : maxsm≤b≤em Cb

sm,em

(
β̂
)
> ζT

}
if Os,e = ∅ then STOP
else

m∗ :∈ argminm∈Os,e
|em − sm + 1|

b∗ := argmaxs∗
m≤b≤e∗

m
Cb

s∗
m,e∗

m

(
β̂
)

S := S ∪ {b∗}
NOT(β̂, s, b∗, ζT )
NOT(β̂, b∗ + 1, e, ζT )

end if
end if

end if
end procedure
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Let ζT > 0 be the threshold which we use to identify large CUSUMS and FM
T be set

of M randomly drawn subsamples with the endpoint in {1, . . . , p}. The NOT procedure

for estimation of the timescales in the AMAR(q) model is described in Algorithm 5.8

using pseudocode.

5.2.4 AMAR algorithm and its theoretical properties.

Having introduced all the ingredients of our proposal, we now introduce the AMAR

estimation procedure. Its key steps are described in Algorithm 5.9, again using pseudocode.

An efficient implementation of the procedure is available from the R package amar

(Baranowski and Fryzlewicz, 2016a).

Algorithm 5.9 AMAR algorithm
Input: Data X1, . . . , XT , threshold ζT and M , p.
Output: Estimates of the relevant scales τ̂1, . . . , τ̂q̂ and the corresponding AMAR coeffi-

cients α̂1, . . . , α̂q̂.

procedure AMAR(X1, . . . , XT , p, ζT )
Step 1 Find β̂ = (β̂1, . . . , β̂p)′ being the OLS estimates of the autoregressive coeffi-
cients in the AR(p) representation of AMAR(p).
Step 2 Call NOT(β̂, 1, p, ζT ) given in Algorithm 5.8 to find the estimates of the
timescales τ̂1, . . . , τ̂q̂.
Step 3 With the timescales in (5.1) set to τ̂1, . . . , τ̂q̂, find α̂1, . . . , α̂q̂ being the OLS
estimates of the scale coefficients α1, . . . , αq.

end procedure

Studying the theoretical properties of the estimates of the timescales obtained with

Algorithm 5.9, we make the following assumptions on the time series Xt following the

AMAR(q) model and p being the order of its AR(p) representation.

(A1) Assume that the process Xt follows the AMAR(q) model given (5.1) with the

innovations εt i.i.d. N (0, 1) and the initial conditions satisfy Xt = 0 a.s. for t < 0.

(A2) Suppose that p > τq and there exist constants θ < 1
2 and c1 > 0 such that p < c1T

θ

for all T .
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(A3) Assume that all roots of the characteristic polynomial b(z) given by (5.7) lie strictly

inside the unit circle. Furthermore, suppose that there exist two constants c2, c3 > 0

such that c2 ≤ minz∈T |b(z)| ≤ maxz∈T |b(z)| ≤
√

1 + ∥β∥2 ≤ c3 uniformly in T .

(A4) Set λT = c4T
θ− 1

2 (log(T ))3/2, where θ is as in (A2) and c4 > 0 is certain constant

depending on c1, c2, c3 given in (A2) and (A3). Assume that δ1/2
T αT ≥ cλT for a

sufficiently large c > 0, where δT and αT are given by (5.5) and (5.6), respectively.

The Gaussianity Assumption (A1) is made to simplify the theoretical arguments

of the proof of Theorem 5.2.1, which is subsequently used to justify Theorem 5.2.2

given below. As we argue in Section 5.2.2, Theorem 5.2.1, could be possibly extended

to cover more complicated scenarios, where e.g. εt is a martingale difference sequence

following a non-Gaussian distribution. However, the Gaussianity assumption appears

to be reasonable from the point of view of the applications of AMAR(q) in forecasting

high-frequency returns in Section 5.4. In the applications, we first remove the volatility

from the data and subsequently apply AMAR(q) modelling to the resulting residuals, an

example of which can be seen in Figure 5.1c.

Condition (A2) imposes the restriction on both p and the maximum time-scale τq,

which is allowed to increase with T →∞, but at the rate not faster than T 1/2. Similar

condition on p being the order of AR(p) approximations of an AR(∞) processes can

be found in e.g. Ing and Wei (2005). Assumption (A3) implies that for the AMAR(q)

process Xt, t = 1, . . . , T is stationary for all T . The requirement that minz∈T |b(z)|

is bounded from below implies that the roots of the characteristic polynomial do not

approach the unit circle T when T →∞, which in turn ensures that the Xt process is,

heuristically speaking, sufficiently far from the unit root process.

Assumption (A4) controls both the minimum spacing between the timescales and

the size of the jumps in (5.3). The quantity δ1/2
T αT displayed here is well-known in the
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change-point detection literature and characterises the difficulty of the problem, as e.g.

in the problems discussed in Section 4.2.5.

Under the introduced assumptions, the following result holds for the AMAR estimation

procedure.

Theorem 5.2.2. Suppose that the assumptions (A1), (A2), (A3) and (A4) are met. Let

q̂ and τ̂1, . . . , τ̂q denote, respectively, the number and the locations of the timescales sorted

in increasing order estimated with Algorithm 5.9. There exist constants C1, C2, C3, C4 > 0

such that if C1λT ≤ ζT ≤ C2δ
1/2
T αT , and M ≥ 36Tδ−2

T log(Tδ−1
T ), then for all sufficiently

large T we have

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj| ≤ ϵT

)
≥ 1− C4T

−1, (5.10)

with ϵT = C3λ
2
Tα

−2
T .

The main conclusion of Theorem 5.2.2 is that Algorithm 5.9 estimates the number of

the time-scales correctly, while the corresponding locations of the estimates lie close to the

true timescales, all with a high probability. Under certain circumstances, Algorithm 5.9

recovers the exact locations of the time-scales. Consider e.g. the case when both

the number of scales q and the scale coefficients α1, . . . , αq in (5.1) are fixed, while

the time-scales increase with T such that δT ∼ p ∼ T θ (recall that ‘∼’ means that

the quantities grow at the same rate with T → ∞). This is a challenging setting, in

which αT ∼ T−θ and ∥β∥ ∼ T−θ/2, where the coordinates of β are given by (5.3), so

the signal strength decreases to 0 when T → ∞. Here δ1/2
T αT ∼ T−θ/2, consequently

(A4) can be met only if θ in (A2) satisfies an additional requirement θ ≤ 1
3 . The

distance between the true timescales and their estimates is then not larger than ϵT ∼

T 4θ−1(log(T ))3, which converges to zero provided that θ < 1
4 . In this case, (5.10) simplifies

to P (q̂ = q,∀j = 1, . . . , q τ̂j = τj) ≥ 1− C4T
−1, when T is sufficiently large.
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5.3 Practicalities and simulated examples

5.3.1 Parameter choice and other practicalities

In this section, we elaborate on the problem of the parameter choice for Algorithm 5.9,

which requires specification of the maximum timescale p, the number of subsamples

drawn M and the threshold ζT , the latter two being used in the NOT procedure. We

also discuss the computational complexity of the proposed estimation procedure.

5.3.1.1 Choice of the threshold ζT

The lower bound for the the admissible thresholds in Theorem 5.2.2 is of the order of

O(T θ−1/2(log(T ))3/2), regardless of the value of δT and αT . This motivates the use of the

thresholds of the form ζT = CT θ−1/2(log(T ))3/2 in Algorithm 5.9, with C > 0 being the

user-specified constant and θ as in (A2). As the value of θ is unknown, in our simulations

we use θ = 0 aiming to ensure that the NOT procedure does not underestimate the

number of the timescales, which inevitably happens when the threshold is too large.

From the practical point of view, it is difficult to propose a particular choice of C,

as the constant in Theorem 5.2.2 depends on the unknown constants that are listed

in Assumptions (A1)–(A4), which can be seen from the proofs of Theorem 5.2.1 and

Theorem 5.2.2. In the simulation study of Section 5.3.2 we present the results for the

threshold ζT = CT−1/2(log(T ))3/2 with C = 0.25 in C = 0.5, the both of which appear

to work well for large sample sizes. However, in real world applications we suggest to

use a data-adaptive approach for the choice of ζT . For any ζT > 0, denote by X̂t(ζT ) the

forecast of Xt constructed with Algorithm 5.9 and by q̂(ζT ) the number of the estimated

timescales. We propose to select the thresholds that minimises the Schwarz Information
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Criterion (SIC) defined as follows:

SIC(ζT ) = T log
(

T∑
t=1

(Xt − X̂t(ζT ))2
)

+ 2q̂(ζT ) log T, (5.11)

where (5.11) is minimised over ζT such that q̂(ζT ) ≤ qmax = 10. The thresholds which

produce solutions satisfying this requirement can be quickly computed using Algorithm 4.7.

Another possible way of choosing the appropriate ζT is discussed in Section 5.4, where

we apply AMAR(q) modelling to forecast high-frequency financial returns.

5.3.1.2 Choice of p

In real-data applications we suggest to choose p corresponding to a large “natural” time

span. For example, if Xt represents 5-minute returns, we can take p equal to the length of

a trading week or trading month expressed in the number of 5-minute intervals,for which

trading activity occurs. In principle, the SIC criterion (5.11) can minimised with respect

to both ζT and p, but this would increase the total computational burden involved in the

procedure, hence we do not pursue this direction.

5.3.1.3 Choice of M

Regarding the choice of the number of subsamples drawn in the NOT procedure, we

follow the recommendation given in Section 4.3.4 and set M = 10000.

5.3.1.4 Computational complexity.

From the computational point of view, Algorithm 5.9 involves the two main operations.

In Step 1 and Step 3, we calculate the OLS estimates with T data points and at most p

predictors, the cost of which is typically of the order of O(Tp2). In Step 2 of Algorithm 5.9,

we estimate the change-points in the p-element vector using the NOT procedure. As

shown in Section 4.3.5, (4.6) for any pair of integers (s, e) can be computed in O(e− s)
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time, the computational complexity of Step 2 is therefore O(Mp). The O(Mp) term

is typically dominated by O(Tp2), hence the computational complexity of the entire

procedure is O(Tp2). In practice, Step 1 requires most of the computational time. In order

to quickly compute all OLS estimates, the amar package uses an efficient implementation

of the OLS available from the R package RcppEigen (Bates and Eddelbuettel, 2013).

5.3.2 Simulation study
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Figure 5.2: Example of the data generated according to (5.1) with parameters specified
by (M1) and (M2) and T = 2500 observations.

To illustrate the finite sample performance of our proposal, we apply Algorithm 5.9

to simulated data. All computations are performed with the amar package. The R code

used in this section is available from our GitHub repository (Baranowski and Fryzlewicz,

2016b). The data are simulated according to (5.1) for the following two scenarios.
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(M1) Three timescales τ1 = 1, τ2 = ⌊20 log(T )⌋, τ3 = ⌊40 log(T )⌋ with the corresponding

coefficients α1 = −0.115, α2 = −2.15 and α3 = −15 and i.i.d. N (0, 1) noise εt.

(M2) Four timescales τ1 = 1, τ2 = ⌊20 log(T )⌋, τ3 = ⌊10 log(T )2⌋, τ4 = ⌊20(log(T ))2⌋

with the corresponding coefficients α1 = −0.115, α2 = −3.15, α3 = −15, α4 = 10

and i.i.d. N (0, 1) noise εt.

Figure 5.2 shows sample the paths and the estimated autocorrelation function for both

scenarios with T = 2500 observations. Here we observe that, apart from lag 1, the sample

autocorrelation function fails to detect the serial dependence in the data. Figure 5.2e and

5.2f show the largest modulus of the roots of characteristic polynomials for, respectively,

(M1) and (M2), depending on the sample size T . The modulus in both cases is always

lower than 1, which shows that the corresponding AMAR(q) processes are stationary.

We look at the two aspects of the estimates obtained with Algorithm 5.9. In order to

assess the performance of the method in terms of (in-sample) forecasting accuracy, we

consider the Relative Prediction Error (RPE), defined as follows:

RPE =
∑T

t=1(X̂t − µt)2∑T
t=1 µ

2
t

, (5.12)

where X̂t = α̂1
1
τ̂1

(Xt−1+. . .+Xt−τ̂1)+. . .+α̂q̂
1
τ̂q̂

(Xt−1+. . .+Xt−τ̂q̂
) is a AMAR estimate of

the conditional mean µt = α1
1
τ1

(Xt−1+. . .+Xt−τ1)+. . .+αq
1
τq

(Xt−1+. . .+Xt−τq) = Xt−εt.

We furthermore investigate the accuracy of Algorithm 5.9 at estimation of the timescales

τ1, . . . , τq. To this end, we consider the following three measures:

TPη = |{j : ∃k|τ̂k − τj| ≤ η}| , (5.13)

FNη = |{j : ∄k|τ̂k − τj| ≤ η}| , (5.14)

FPη = q̂ − TPη, (5.15)
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Method Model T p FP0 TP0 FN0 FPlog(T ) TPlog(T ) FNlog(T ) RPE

SIC (M1)

2500 412 2.0 1.8 1.1 1.2 2.6 0.4 0.119
5000 440 1.6 2.1 0.9 0.8 2.9 0.1 0.047
10000 468 1.1 2.4 0.6 0.5 3.0 0.0 0.018
25000 505 0.4 2.8 0.2 0.2 3.0 0.0 0.006
50000 532 0.3 2.9 0.1 0.2 3.0 0.0 0.002

C = 0.25 (M1)

2500 412 1.4 1.8 1.2 0.7 2.5 0.5 0.106
5000 440 0.8 1.9 1.1 0.3 2.5 0.5 0.074
10000 468 0.3 2.0 1.0 0.0 2.3 0.7 0.054
25000 505 0.2 2.1 0.9 0.0 2.3 0.7 0.049
50000 532 0.1 2.0 1.0 0.0 2.1 0.9 0.057

C = 0.5 (M1)

2500 412 0.4 1.3 1.7 0.1 1.6 1.4 0.411
5000 440 0.3 1.5 1.5 0.1 1.7 1.3 0.289
10000 468 0.2 1.8 1.2 0.0 2.0 1.0 0.169
25000 505 0.1 2.0 1.0 0.0 2.1 0.9 0.066
50000 532 0.0 2.0 1.0 0.0 2.0 1.0 0.061

SIC (M2)

2500 1324 2.5 1.3 2.7 1.8 2.0 2.0 0.259
5000 1550 2.7 1.4 2.6 1.5 2.5 1.5 0.161
10000 1796 2.8 1.9 2.1 1.6 3.0 1.0 0.080
25000 2150 2.3 2.2 1.8 1.1 3.5 0.6 0.038
50000 2441 1.5 2.7 1.3 0.6 3.6 0.4 0.018

C = 0.25 (M2)

2500 1324 10.0 1.2 2.8 9.1 2.1 1.9 0.475
5000 1550 3.6 1.5 2.5 2.7 2.4 1.6 0.177
10000 1796 2.6 1.6 2.4 1.4 2.8 1.1 0.095
25000 2150 1.5 2.2 1.8 0.6 3.1 0.9 0.048
50000 2441 0.8 2.5 1.5 0.3 3.1 0.9 0.043

C = 0.5 (M2)

2500 1324 1.4 1.1 2.9 0.9 1.6 2.5 0.366
5000 1550 0.9 1.2 2.8 0.4 1.7 2.3 0.292
10000 1796 0.6 1.3 2.7 0.1 1.8 2.2 0.253
25000 2150 0.5 1.7 2.3 0.0 2.2 1.8 0.140
50000 2441 0.2 2.0 2.0 0.0 2.2 1.8 0.129

Table 5.1: Simulation results for the data following (5.1) with parameters given in
Section 5.3.2 for a growing sample size T , with averages of the Relative Prediction Error,
TPη, FNη and FPη given by, respectively, (5.12), (5.13), (5.14) and (5.15), all calculated
over 100 simulated data sets.
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with η = 0 and η = log T . For η = 0, TPη, FNη and FPη are the number of, respectively,

true positives, false negatives and false positives.

We apply Algorithm 5.9 with the threshold ζT = CT−1/2(log(T ))3/2 for C = 0.25

and C = 0.5 (the corresponding methods are termed ‘THR C = 0.25’ and ‘THR

C = 0.5’, respectively), and with the threshold chosen using the SIC criterion given

by (5.11) (termed simply as ‘SIC’). The order of the AR(p) representation is set to

p = ⌊40 log(T )⌋+ 100 in (M1) and p = ⌊20(log(T ))2⌋+ 100 in (M2), while M = 10000,

as recommended in Section 5.3.1. Table 5.1 shows the results. We observe that for all

methods, the average RPE decreases with T growing, however, SIC performs the best

in this aspect, achieving the lowest RPE in almost all cases. In terms of the estimation

of the timescales, we also observe that the performance of all methods improves for the

larger sample sizes, with SIC yielding the best results. For example, in (M1) and with

T ≥ 10000, SIC always identifies three timescales close to the true ones, as TPlog(T ) = 3

in those cases. For T ≥ 25000, SIC also very often recovers the exact locations of the

timescales, as the average TP0 is close to 3.

5.4 Application to high-frequency data from NYSE

TAQ database

In this section, we apply our proposal to the returns series for a number of stocks

listed on the New York Stock Exchange. The chosen companies, shown in Table 5.2,

represent various industries and are liquid enough to analyse them at a high-frequency.

We download the price tick-by-tick data from the NYSE Trades and Quotes database

through Wharton Research Data Services, for the time span covering 10 years from

January 2004 to December 2013. The R code used to obtain the results we discuss in this

section is available from our GitHub repository (Baranowski and Fryzlewicz, 2016b).
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Ticker Company Industry
AAPL Apple Inc. Computer Hardware
BAC Bank of America Corp Banks
CVX Chevron Corp. Oil & Gas Exploration & Production
CSCO Cisco Systems Networking Equipment

F Ford Motor Automobile Manufacturers
GE General Electric Industrial Conglomerates

GOOG Alphabet Inc. Internet Software & Services
MSFT Microsoft Corp. Systems Software

T AT&T Inc. Telecommunications

Table 5.2: Ticker symbols and the industries for the companies analysed in Section 5.4.

5.4.1 Data preprocessing

The data are preprocessed in the following three steps. First, as the TAQ database contain

some erroneous observations, the tick-by-tick data need to be cleaned. To this end, we

use the methodology proposed by Brownlees and Gallo (2006), using the implementation

available from the R package TAQMNGR (Calvori et al., 2015).

Second, the tick-by-tick data are observed in irregular time intervals. To obtain the

price series observed the required frequency, we divide the trading day into time intervals

of equal length (we consider 5-minute and 10-minute intervals). For each interval, the

price process Pt is defined as the price of the last trade observed in that bin. When

there are no trades in an interval, Pt is set to the price of the latest available trade.

Computations for this step are also performed with the TAQMNGR package.

Third, we remove the volatility from the log-returns X̃t = log(Pt/Pt−1), using to this

end the NoVaS transformation approach (Politis, 2003, 2007). The NoVaS estimate of

the (squared) volatility is defined as

σ̂2
t (λ) = (1− λ)σ̂2

t−1(λ) + λX̃2
t , (5.16)

with the initial value σ̂2
0(λ) = 1 and λ ∈ (0, 1) being the tuning parameter. The NoVaS

transformation is similar to the ordinary exponential smoothing (ES, Gardner (1985);
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Taylor (2004)), where σ2
t is estimated as the weighted average of the squared returns with

exponentially decaying weights. However, the ES estimator depends only on observations

prior time t, while (5.16) involves also the current observation. The evolution of the

intra-day volatility follows certain periodic patterns (Hecq et al., 2012), e.g. it is typically

higher in the morning, when the trading starts, and shortly before the close of the market.

The simple ES estimator cannot capture such patterns, as it gives a very small weight

to observation where the pattern has been observed for the last time. Judging from

the residuals obtained using (5.16), an example of which can be seen in Figure 5.1c,

it appears that the NoVaS transformation captures the daily patterns in the volatility

reasonably well.

In order to choose an appropriate λ for (5.16), Politis and Thomakos (2013) recom-

mends to find λ ∈ (0, 1) such that that the resulting residuals X̃t

σ̂t(λ) match a desired

distribution. All our theoretical results discussed in Section 5.2 are derived under the

Gaussianity assumption for the noise, which in turn implies Gaussianity of the considered

AMAR(q) processes. Consequently, we aim to ‘Gaussianise’ X̃t, by minimising the

Jarque-Bera test statistic (Jarque and Bera, 1980), defined as

JB(λ) = n

6

(
γ̂(λ)2 + 1

4(κ̂(λ)− 3)2
)
, (5.17)

where γ̂(λ) and κ̂(λ) denote, respectively, the sample skewness and the sample kurtosis

both computed for the residuals X̃t

σ̂t(λ) , computed on the validation set defined in the next

section.

5.4.2 Rolling window analysis

We conduct the rolling window analysis, where we compare the forecasts obtained with

AMAR(q) models against the predictions obtained with the classic AR(p) model. A

detailed description of the procedure applied for a single window is given in Algorithm 5.10.
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Algorithm 5.10 AMAR train algorithm
Input: Price series Pt observed at a chosen frequency; the maximum order p of the

AR(p) approximation; the number of subsamples M .
Output: The estimated returns X̂t.
procedure TrainAMAR(P1, . . . , PT , p, qmax)

Step 1 Set Strain = {1, . . . , ⌊0.5T ⌋}, Svalidate = {⌊0.5T ⌋+ 1, . . . , ⌊0.75T ⌋+ 1}, and
Stest = {⌊0.75T ⌋+ 1, . . . , T}.
Step 2 Set X̃t = log(Pt/Pt−1) for t = 1, . . . , T .
Step 3 Find λ∗ = argminλ∈(0,1) JB(λ), where JB(λ) given by (5.17) is calculated
using X̃t s.t. t ∈ Strain. Set Xt = X̃t

σ̂(λ∗) , t = 1, . . . , T .
Step 4 Using X̃t for t ∈ Strain, find β̂1, . . . , β̂p, the OLS estimates of the autoregres-
sive coefficients for the AR(p) model.
Step 5 Apply NOT(β̂, 1, p, ζ(k)

T ) for all thresholds ζ(k))
T such there are at most qmax

time scales. Denote by T1, . . . , TN the resulting sets of timescales.
Step 6 For each Tk, find the OLS estimates of α1, . . . , αq, using Xt, t ∈ Strain.
Using those estimates, construct predictions X

(k)
t for t ∈ Svalidate. Find k∗ =

argmaxk=1,...,N R2
validate(k), where R2

validate(k) is given by (5.18) computed for X(k)
t

for t ∈ Svalidate.
Step 7 Find the OLS estimates of the AMAR coefficients for the timescales Tk∗

using Xt such that t ∈ Svalidate.
Step 8 Using the model obtained in the previous step, find predictions X̂t for
t ∈ Stest. Record R2

test and HRtest.
end procedure
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The window size is set to 252 days, which is approximately the number of the trading

days on NYSE each year. For each window, the data are split into three parts. The

first half (approximately 6 months) is used as the training set on which we estimate the

parameters for the analysed candidate models. The subsequent 3 months are used as the

validation set, on which we select the model yielding best forecasting (in terms of R2

introduced below). The last three months serve as the test set, where we use the model

selected on the validation set to construct the out-of-sample forecasts of the normalised

returns Xt. Once the forecast are calculated, we move the entire window such that the

old test set becomes the new validation set.

Let X̂t be a forecast of Xt for t = 1, . . . , T . The main criterion we use to asses the

predictions is defined as follows:

R2 = 1−
∑T

t=1(Xt − X̂t)2∑T
t=1 X

2
t

. (5.18)

Naturally, R2 = 0 for X̂t ≡ 0, therefore R2 > 0 implies that the given forecast beats

the ‘zeros only’ benchmark, which is a difficult task in the context of financial returns.

From the point of view of constructing trading strategies involving the forecasts, it is

also interesting to investigate how often the sign of the forecast agrees with the sign of

the observed return. To this end we consider the hit-rate defined as

HR = |{t = 1, . . . , T : sgn(X̂t) = sgn(Xt), Xt ̸= 0}|
|{t = 1, . . . , T : Xt ̸= 0}| . (5.19)

5.4.3 Results and discussion

Tables 5.3–5.6 show the results of our analysis for the data observed every 5 and 10

minutes, with the p in Algorithm 5.10 set to 6 and 12 days. We observe that, overall,

both AR and AMAR achieve positive average R2, which means that they typically beat
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Ticker Method R2 HR− 50% pct. zeroes

AAPL MZAR 0.00042 1.6 2.07AR -0.00036 1.2

BAC MZAR 0.00231 2.2 9.36AR 0.00186 0.9

CVX MZAR -0.00002 0.7 4.24AR -0.00026 0.5

CSCO MZAR 0.00273 2.5 9.32AR 0.00235 1.8

F MZAR 0.00586 3.8 16.75AR 0.00601 1.8

GE MZAR 0.00208 2.2 9.63AR 0.00197 2.1

GOOG MZAR 0.00111 1.9 1.09AR 0.00066 1.9

MSFT MZAR 0.00393 2.9 8.79AR 0.00386 2.2

T MZAR 0.00321 2.2 9.68AR 0.00358 0.7

Table 5.3: Averages of the measures introduced in Section 5.4 evaluating the out-of
sample performance of the forecasts obtained with the MZAR methodology and the
classic AR model. The returns Xt are observed every 5 minutes, while the maximum
time-scale and the maximum order for MZAR and AR are both set to p = 480 (6 trading
days expressed in 5-minute intervals). For each pair of a characteristic and company
ticker, bold font indicates the better method.
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Ticker Method R2 HR− 50% pct. zeroes

AAPL MZAR 0.00038 1.7 2.07AR -0.00038 1.4

BAC MZAR 0.00227 2.3 9.35AR 0.00204 1.5

CVX MZAR 0.00017 0.8 4.23AR -0.00034 0.5

CSCO MZAR 0.00287 2.5 9.36AR 0.00302 1.9

F MZAR 0.00602 3.8 16.73AR 0.00595 1.6

GE MZAR 0.00206 2.2 9.61AR 0.00184 2.1

GOOG MZAR 0.00088 1.8 1.08AR 0.00064 1.8

MSFT MZAR 0.00375 2.8 8.83AR 0.00347 1.8

T MZAR 0.00315 2.2 9.69AR 0.00350 0.9

Table 5.4: Averages of the measures introduced in Section 5.4 evaluating the out-of
sample performance of the forecasts obtained with the AMAR methodology and the
classic AR model. The returns Xt are observed every 5 minutes, while the maximum
time-scale and the maximum order for AMAR and AR are both set to p = 960 (12 trading
days expressed in 5-minute intervals). For each pair of a characteristic and company
ticker, bold font indicates the better method.
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Ticker Method R2 HR− 50% pct. zeroes

AAPL MZAR 0.00043 1.9 1.41AR -0.00034 1.5

BAC MZAR 0.00063 1.9 6.83AR 0.00011 0.7

CVX MZAR -0.00065 0.5 3.12AR -0.00075 0.2

CSCO MZAR 0.00181 1.8 6.45AR 0.00124 0.5

F MZAR 0.00277 2.7 12.52AR 0.00235 0.3

GE MZAR 0.00202 1.8 6.95AR 0.00177 1.4

GOOG MZAR 0.00095 1.7 0.72AR 0.00072 1.6

MSFT MZAR 0.00208 2.1 6.12AR 0.00241 1.2

T MZAR 0.00309 1.9 7.40AR 0.00260 0.7

Table 5.5: Averages of the measures introduced in Section 5.4 evaluating the out-of
sample performance of the forecasts obtained with the AMAR methodology and the
classic AR model. The returns Xt are observed every 10 minutes, while the maximum
time-scale and the maximum order for AMAR and AR are both set to p = 240 (6 trading
days expressed in 10-minute intervals). For each pair of a characteristic and company
ticker, bold font indicates the better method.
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Ticker Method R2 HR− 50% pct. zeroes

AAPL MZAR 0.00039 1.6 1.41AR -0.00050 1.5

BAC MZAR 0.00074 1.9 6.82AR 0.00033 0.7

CVX MZAR 0.00001 0.8 3.10AR -0.00076 0

CSCO MZAR 0.00154 1.8 6.45AR 0.00138 0.6

F MZAR 0.00288 3 12.50AR 0.00242 -0.3

GE MZAR 0.00230 2.3 6.92AR 0.00240 1.5

GOOG MZAR 0.00060 1.5 0.71AR 0.00093 1.6

MSFT MZAR 0.00233 2.2 6.16AR 0.00220 1.5

T MZAR 0.00321 2 7.40AR 0.00278 0.6

Table 5.6: Averages of the measures introduced in Section 5.4 evaluating the out-of
sample performance of the forecasts obtained with the AMAR methodology and the
classic AR model. The returns Xt are observed every 10 minutes, while the maximum
time-scale and the maximum order for AMAR and AR are both set to p = 480 (12
trading days expressed in 10-minute intervals). For each pair of a characteristic and
company ticker, bold font indicates the better method.
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the ‘zeros only’ benchmark. However, in the majority of cases, AMAR is better than AR

in terms of R2 and it is always better in terms of the average hit-rate.

5.4.4 Simulated data with real volatility

In this section, we illustrate the performance of Algorithm 5.10 on a simulated data

aiming to resemble 5 minutes log-returns on a stock price. The simulated returns are

generated according to the following equation

Yt = σtXt, t = 1, . . . , T, (5.20)

where Xt follows (5.1), εt are i.i.d. N (0, σ2), while the volatility σt is either constant in t

or extracted from the real data using the NoVaS procedure described in Section 5.4.1.

Scales τj for Xt correspond to one trading hour, one trading day and one trading week, all

expressed in 5-five minute intervals. The following list summarises all examples studied

in this section.

(MV1) Timescales τ1 = 1, τ2 = 12 (1 hour), τ3 = 400 (1 trading week), α1 = −0.15,

α1 = 0.25, α3 = −3.15, , σt = 1, σ2 = 2,

(MV2) All parameters as in (MV1) expect for σt which is simulated from the real data.

(MV3) Timescales τ1 = 1, τ2 = 12 (1 hour), τ3 = 80 (1 trading day), τ4 = 400 (1 trading

week), α1 = −0.15, α1 = 0.25, α3 = −3.15, α4 = −5.5, σt = 1, σ2 = 2.

(MV4) All parameters as in (MV3) expect for σt which is simulated from the real data.

Table 5.7 shows the results. Clearly, the AMAR models fitted with Algorithm 5.10

offer better forecasting accuracy than the AR model, which can be seen from the lower

corresponding values of RPE.
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Model days p q̂ p̂ RPE MZAR RPE AR time MZAR time AR

(MV1)

90 480 4.5 10.3 0.155 0.376 0.25 40.32
120 480 4.5 10.7 0.111 0.336 0.32 54.15
180 480 4.2 14.5 0.062 0.326 0.47 83.76
250 480 4.1 14.0 0.042 0.287 0.65 118.15

(MV2)

90 480 4.5 8.0 0.461 0.571 0.28 41.52
120 480 4.9 9.5 0.445 0.561 0.34 54.44
180 480 4.5 10.9 0.424 0.548 0.51 83.91
250 480 4.5 11.3 0.408 0.541 0.68 115.36

(MV3)

90 480 4.6 74.1 0.104 0.384 0.28 39.06
120 480 4.6 80.7 0.082 0.266 0.37 53.60
180 480 4.9 84.2 0.048 0.189 0.50 83.00
250 480 5.3 84.4 0.026 0.150 0.67 115.47

(MV4)

90 480 4.3 53.6 0.510 0.634 0.28 38.42
120 480 4.4 69.7 0.501 0.576 0.37 52.90
180 480 5.3 82.4 0.497 0.523 0.53 82.70
250 480 6.0 86.3 0.486 0.512 0.76 121.60

Table 5.7: Simulation results for the data following (5.20) with parameters given in
Section 5.4.4 for a growing sample size T , with averages of the Relative Prediction Error
given by (5.12) for the predictions obtained with the MZAR and classic AR methodology,
all calculated over 100 simulated data sets.

5.5 Large deviations for LSE estimators in station-

ary AR(p) models

Suppose Xt follows the AR(p) model given by (5.2), where the initial conditions satisfy

X0 = . . . = X−p+1 = 0 almost surely. The aim of this note is to provide a probabilistic

and non-asymptotic bound on the Euclidean norm
∥∥∥β̂ − β∥∥∥, where β̂ is the OLS estimator

of β. Conveniently, the AR(p) can be rewritten as the VAR(1) model

Yt = BYt−1 + εtu, t = 1, . . . , T, (5.21)
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where Yt = (Xt, Xt−1, ..., Xt−p+1)′, the matrix of the coefficients

B =

β1 β2 · · · βp

Ip−1 0

 (5.22)

and u = (1, 0, . . . , 0)′ ∈ Rp. We assume that Xt is stationary, i.e. the modulus of all

roots of the characteristic polynomial b(z) give by (5.7) is strictly larger than 1.

5.5.1 Some properties of the B matrix

In this section, we provide some useful facts about various quadratic forms involving

matrix B defined by (5.22), which are essential in proving Theorem 5.2.1. First we recall

some well-known facts.

Theorem 5.5.1 (Parseval’s Theorem, Theorem 1.9 in Duoandikoetxea (2000)). For any

complex-valued sequence {fk}k∈Z such that ∑k∈Z |fk|2 <∞, the following identity holds

∑
k∈Z
|fk|2 =

∫
T
|f(z)|2dm(z), (5.23)

where a(z) = ∑
k∈Z akz

k, T = {z ∈ C : |z| = 1}, dm(z) = d|z|
2π

.

Lemma 5.5.1 (Cauchy’s integral formula). Let M ∈ Rp×p be a real- or complex- valued

matrix. Then for any curve Γ enclosing all eigenvalues of M and any j ∈ N the following

holds

Mj = 1
2πi

∫
Γ
zj(zIp −M)−1dz = 1

2πi

∫
Γ
zj−1(Ip − z−1M)−1dz. (5.24)

Lemma 5.5.2. Let B given by (5.22) be the matrix of coefficients of a stationary AR(p)
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process and let v ∈ Rp. For all z ∈ C such that ∑∞
i=0 | ⟨v,Biu⟩ ||zi| <∞, we have

b(z)
∞∑

i=0

〈
v,Biu

〉
zi = b(z)

〈
v, (Ip − zB)−1

〉
= v(z), (5.25)

where v(z) = v1 + v2z + . . .+ vpz
p−1, b(z) is given by (5.7).

Proof. As ∑∞
i=0 | ⟨v,Biu⟩ ||zi| < 0, we can change the order of summation in the left-hand

side of (5.25)

(1− β1z − . . .− βpz
p)

∞∑
i=0

〈
v,Biu

〉
zi =

〈
v,
( ∞∑

i=0
(1− β1z − . . .− βpz

p)ziBi

)
u
〉

Define β0 = −1, βk = 0 for k > p. By direct algebra

∞∑
i=0

(1− β1z − . . .− βpz
p)ziBi = −

∞∑
i=0

(
i∑

k=0
βkBi−k

)
zi := −

∞∑
i=0

Diz
i

The characteristic polynomial of B is given by ϕ(z) = (−1)p+1∑p
k=0 βkz

p−k. From the

Cayley-Hamilton theorem , B is a root ϕ, and, consequently for i ≥ p

Di = Bi−p
i∑

k=0
βkBp−k = Bi−p

p∑
k=0

βkBp−k = 0.

It remains to demonstrate that ⟨v,Diu⟩ = −vi+1 for i = 0, . . . , p − 1, which we show

by induction. For i = 0, ⟨v,Diu⟩ = β0 ⟨v,u⟩ = −v1. When i ≥ 1, matrices Di satisfy

Di = BDi−1 + βiIp, therefore

⟨v,Diu⟩ = ⟨v,BDi−1u⟩+ βi ⟨v,u⟩ = ⟨B′v,Di−1u⟩+ βi ⟨v,u⟩

= ⟨v1(β1, . . . , βp)′ + (v2, . . . , vp, 0)′,Di−1u⟩+ βi ⟨v,u⟩ = −v1βi − vi+1 + v1βi

= −vi+1,

which finishes the proof.
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5.5.2 Two useful lemmas

Lemma 5.5.3. Let Z1, Z2, . . . be a sequence of i.i.d. N (0, 1) random variables. Then

for any integers l ̸= 0 and k > 0, the following exponential probability bound holds

P
(∣∣∣∣∣

k∑
t=1

ZtZt+l

∣∣∣∣∣ > kx

)
≤ 2 exp

(
−1

8
kx2

6 + x

)
. (5.26)

Proof. For brevity, we will only show that P
(∑k

t=1 ZtZt+l > kx
)
≤ exp

(
−1

8
kx2

6+x

)
. Proof of

P
(∑k

t=1 ZtZt+l < kx
)
≤ exp

(
−1

4kx
)

is similar and, combined with the former inequality,

implies (5.26). By Markov’s inequality, for any x > 0 and λ > 0 it holds that

P
(

k∑
t=1

ZtZt+l > kx

)
≤ exp (−kxλ) E exp

(
λ

k∑
t=1

ZtZt+l

)
.

Naturally for any λ > 0 function y 7→ exp (λy) is convex, therefore by Theorem 1 in

Vershynin (2011), the expectation above is bounded by

E exp
(
λ

k∑
t=1

ZtZt+l

)
≤ E exp

(
4λ

k∑
t=1

ZtZ̃t

)
,

where Z̃1, . . . , Z̃k are independent copies of Z1, . . . , Zk. Using the independence by direct

computation we get

E exp
(

4λ
k∑

t=1
ZtZ̃t

)
=
(
E exp

(
4λZ1Z̃1

))k
=
(
E exp

(
8λ2Z̃2

1

))k
=
(
1− 16λ2

)− 1
2 k

provided that 0 < λ < 1
4 , therefore

P
(

k∑
t=1

ZtZt+l > kx

)
≤ exp

(
−kxλ− k

2 log
(
1− 16λ2

))
.

Taking λ = −2+
√

4+x2

4x
minimises the right-hand side of the inequality above. Substituting
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this value of λ and using simple bound log(x) ≤ x− 1 we further get

P
(

k∑
t=1

ZtZt+l > kx

)
≤ exp

(
k

4

(
2−
√
x2 + 4 + 2 log

(1
4
(√

x2 + 4 + 2
))))

≤ exp
(
k

4

(
2−
√
x2 + 4 + 1

2
(√

x2 + 4 + 2
)
− 2

))

= exp
(
k

8
(
2−
√
x2 + 4

))
= exp

(
−1

8
kx2

2 +
√
x2 + 4

)

≤ exp
(
−1

8
kx2

6 + x

)

which finishes the proof.

Lemma 5.5.4 (Lemma 1 in Laurent and Massart (2000)). Let Z1, Z2, . . . be a sequence

of i.i.d. N (0, 1) random variables. For any integer k > 0 and x ∈ R s.t. x > 0, the

following exponential probability bounds hold

P
(

k∑
t=1

Z2
t ≥ k + 2

√
kx+ 2x

)
≤ exp (−x) , (5.27)

P
(

k∑
t=1

Z2
t ≤ k − 2

√
kx

)
≤ exp (−x) . (5.28)

5.5.3 Proof of Theorem 5.2.1

Proof. For CT = ∑T −1
t=1 YtY′

t and AT = ∑T −1
t=1 εt+1Yt, we have β̂ − β = C−1

T AT . Conse-

quently,

∥∥∥β̂ − β∥∥∥ ≤ λmax(C−1
T ) ∥AT∥ = λ−1

min(CT ) ∥AT∥ , (5.29)

where λmin(M) and λmax(M) denote, respectively, the smallest and the largest eigenvalue

of a symmetric matrix M. To provide an upper bound on
∥∥∥β̂ − β∥∥∥ given in Theorem 5.2.1,

we will bound λmin(CT ) from below and ∥AT∥ from above, working on a set whose
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probability is large. Here we will show result more specific than (5.9), i.e.

∥AT∥ ≤
(

32b−2
√

1 + ∥β∥2
)
p log(T )

√
(1 + log(T + p))T , (5.30)

λmin(CT ) ≥ b
−2 (

T − p(1 + 32 log(T )
√
T )
)
, (5.31)

on the the following event

ET = E (1)
T ∩ E

(2)
T ∩ E

(3)
T , (5.32)

where

E (1)
T =

⋂
1≤i<j≤p


∣∣∣∣∣∣
T −max(i,j)∑

t=1
εtεt+|i−j|

∣∣∣∣∣∣ < 32 log(T )
√
T −max(i, j)

 ,
E (2)

T =
T⋂

j=1


∣∣∣∣∣∣
T −j∑
t=1

εtεt+j

∣∣∣∣∣∣ < 32 log(T )
√
T − j

 ,
E (3)

T =


T −p∑
t=1

ε2
t > T − p− 2

√
log(T )(T − p)

 .
Finally, we will demonstrate that ET satisfies

P (ET ) ≥ 1− 5
T
. (5.33)

Naturally, (5.29), (5.30), (5.31) and (5.33) combined together imply the statement of

Theorem 5.2.1. We note that constants appearing in the right-hand side of (5.30) and

(5.31) can be improved, however, here we are interested in the rates, hence this direction

is not pursued.

The remaining part of the proof is split into three parts, where we subsequently show

(5.30), (5.31) and (5.33). In the calculations below, we will repeatedly use the following
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representation of Yt, which follows from applying (5.21) recursively:

Yt =
t∑

j=1
εjBt−ju =

t∑
j=1

εt−j+1Bj−1u, t = 1, 2, . . . , T. (5.34)

Upper bound for ∥AT∥

The Euclidean norm satisfies ∥AT∥ = supv:∈Rp∥v∥=1 | ⟨v,AT ⟩ |, therefore we consider inner

products ⟨v,AT ⟩ where v ∈ Rp is any unit vector. By (5.34), we have

⟨v,AT ⟩ =
T −1∑
t=1
⟨v,Yt⟩ εt+1 =

T −1∑
t=1

T −1∑
j=1

〈
v,Bj−1u

〉
εt−j+1εt+1 =

T −1∑
j=1

〈
v,Bj−1u

〉
aj,

where aj = ∑T −1
t=1 εt−j+1εt+1 = ∑T −j

t=1 εtεt+j. Lemma 5.5.1 and Lemma 5.5.2 applied to

the equation above yields

T −1∑
j=1

〈
v,Bj−1u

〉
aj = 1

2πi

∫
T

T −1∑
j=1

zj−1aj

〈v, (zIp −B)−1
〉
dz

= 1
2πi

∫
T

T −1∑
j=1

zj−1aj

 p∑
j=1

zp−jvj

 q(z)dz
= 1

2πi

∫
T

T +p−1∑
j=0

zjcj

 q(z)dz

where q(z) = (zpb(z−1))−1 and cj = ∑j
i=0 ai+1vp−j+i. Integrating by parts, we get

1
2πi

∫
T

T +p−1∑
j=0

zjcj

 q(z)dz = − 1
2πi

∫
T

T +p−1∑
j=0

zj+1 cj

j + 1

 q′(z)dz.

Combining the calculations above and Cauchy’s inequality we obtain the following bound.

⟨v,AT ⟩ ≤

√√√√√T +p−1∑
j=0

(
cj

j + 1

)2√∫
T
|q′(z)|2dm(z) (5.35)
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To further bound the first term on the right-hand side of (5.35), we recall that on the

event ET coefficients |aj| ≤ 32 log(T )
√
T , hence

√√√√√T +p−1∑
j=0

(
cj

j + 1

)2

=

√√√√√T +p−1∑
j=0

1
(j + 1)2

 j∑
i=0

ai+1vp−j+i

2

≤ max
j=0,...,T +p−1

|aj|

√√√√√T +p−1∑
j=0

1
(j + 1)2

 j∑
i=0
|vp−j+i|

2

≤ 32 log(T )
√
T

√√√√√T +p−1∑
j=0

max(j + 1, p)
(j + 1)2

≤ 32 log(T )
√

(1 + log(T + p))T .

For the second term in (5.35), we calculate the derivative q′(z) = −pzp−1−
∑p

j=1(p−j)βjzp−j−1

(zpb(z−p))2

and bound

√∫
T
|q′(z)|2dm(z) =

√√√√∫
T

∣∣∣∣∣pzp−1 −∑p
j=1(p− j)βjzp−j

(zpb(z−p))2

∣∣∣∣∣
2

dm(z)

≤

√∫
T

∣∣∣pzp−1 −∑p
j=1(p− j − 1)βjzp−j−1

∣∣∣2 dm(z)
min|z|=1 |(zpb(z−p))|2 =

= b−2

√√√√√
p2 +

p∑
j=1

(p− j)2β2
j

 ≤ b−2p
√

1 + ∥β∥2.

Combining bounds on the two terms, we obtain

⟨v,AT ⟩ ≤
(

32b−2
√

1 + ∥β∥2
)
p log(T )

√
(1 + log(T + p))T .

Taking supremum over v ∈ Rp such that ∥v∥ = 1 proves (5.30).
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Lower bound for λmin(CT )

Let v = (v1, . . . , vp)′ be a unit vector in Rp. We begin the proof by establishing the

following inequality

⟨v,CT v⟩ ≥ b
−2

p∑
i,j=1

vivj

T −1∑
t=1

εt−j+1εt−i+1, (5.36)

where εt = 0 for t ≤ 0 and b = maxz∈T |b(z)|. By Theorem 5.5.1 and (5.34), we rewrite

the quadratic form on the left-hand side of (5.36) to

⟨v,CT v⟩ =
T −1∑
t=1
⟨v,Yt⟩2 =

∫
T

∣∣∣∣∣∣
T −1∑
t=1

〈
v,

t∑
j=1

εjB
t−ju

〉
zt

∣∣∣∣∣∣
2

dm(z) (5.37)

=
∫
T

∣∣∣∣∣∣
T −1∑
t=1

T −1∑
j=1

εjωt−jz
t

∣∣∣∣∣∣
2

dm(z) (5.38)

where ωj = ⟨v,Bju⟩ for j ≥ 0, ωj = 0 for j < 0. Changing the order of summation and

by a simple substitution we get

T −1∑
t=1

T −1∑
j=1

εjωt−jz
t =

T −1∑
j=1

εjz
j

T −1∑
t=1

ωt−jz
t−j =

T −1∑
j=1

εjz
j

T −j−1∑
t=0

ωtz
t. (5.39)

Using the definition of ωj, the fact that all eigenvalues of B have modulus strictly lower

than one and Lemma 5.5.2, (5.39) simplifies to

T −1∑
j=1

εjz
j

T −j−1∑
t=0

ωtz
t =

T −1∑
j=1

εjz
j
〈
v, (Ip − (Bz)T −j)(Ip −Bz)−1

〉

=
T −1∑
j=1

εj

(
zj
〈
v, (Ip −Bz)−1

〉
− zT

〈
BT −jv, (Ip −Bz)−1

〉)

= b(z)−1
T −1∑
j=1

εj

(
zjv(z)− zTwj(z)

)
,
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where v(z) = ∑p
k=1 vkzk−1 and wj(z) = ∑p

k=1(BT −jv)kz
k−1 for j = 0, . . . , n − 1. The

equation above, (5.37) and (5.39) combined together imply the following inequality

⟨v,CT v⟩ =
∫
T

∣∣∣∣∣∣b(z)−1
T −1∑
j=1

εj

(
zjv(z)− zTwj(z)

)∣∣∣∣∣∣
2

dm(z)

≥ b
−2
∫
T

∣∣∣∣∣∣
T −1∑
j=1

εj

(
zjv(z)− zTwj(z)

)∣∣∣∣∣∣
2

dm(z).

Observe that ∑T −1
j=1 εj

(
zjv(z)− zTwj(z)

)
= ∑T −1

j=1 εj

(
zjv(z)− zTwj(z)

)
= ∑T +p−1

t=1 ctz
t

is a trigonometric polynomial, therefore by Theorem 5.5.1 and simple calculations

∫
T

∣∣∣∣∣∣
T −1∑
j=1

εj

(
zjv(z)− zTwj(z)

)∣∣∣∣∣∣ dm(z) =
T +p−1∑

t=1
|ct|2 ≥

n−1∑
t=1
|ct|2 =

T −1∑
t=1

 p∑
j=1

vjεt−j+1

2

=

=
p∑

i,j=1
vjvi

T −1∑
t=1

εt−j+1εt−i+1,

which proves (5.36).

We are now in position to bound ⟨v,CT v⟩ from below. Rearranging terms in (5.36)

yields

⟨v,CT v⟩ ≥ b
−2
 p∑

i=1
v2

i

n−i∑
t=1

ε2
t +

∑
1≤i<j≤p

vivj

T −max(i,j)∑
t=1

εtεt+|j−i|


≥ b

−2
T −p∑

t=1
ε2

t

p∑
i=1

v2
i − max

1≤i<j≤p

∣∣∣∣∣∣
T −max(i,j)∑

t=1
εtεt+|j−i|

∣∣∣∣∣∣
( p∑

i=1
|vi|
)2

−
p∑

i=1
v2

i


≥ b

−2
T −p∑

t=1
ε2

t − (p− 1) max
1≤i<j≤p

∣∣∣∣∣∣
T −max(i,j)∑

t=1
εtεt+|j−i|

∣∣∣∣∣∣
 .

Now, recalling the definition ET , we conclude that on this event

⟨v,CT v⟩ ≥ b
−2
(
T − p− 2

√
log(T )(T − p)− (p− 1)32 log(T )

√
T
)

≥ b
−2 (

T − p(1 + 32 log(T )
√
T )
)
.
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Taking infimum over v ∈ Rp such that ∥v∥ = 1 in the inequality above proves (5.31).

Lower bound for P (ET )

Recalling (5.32) and using simple Bonferroni bound, we get

P (Ec
T ) ≤ p2 max

1≤i<j≤p
P

∣∣∣∣∣∣
T −max(i,j)∑

t=1
εtεt+|i−j|

∣∣∣∣∣∣ ≥ 32 log(T )
√
T −max(i, j)


+ T max

1≤j≤T
P

∣∣∣∣∣∣
T −j∑
t=1

εtεt+j

∣∣∣∣∣∣ < 32 log(T )
√
T − j


+ P

T −p∑
t=1

ε2
t > T − p− 2

√
log(T )(T − p)


:= p2 max

1≤i<j≤p
P

(1)
i,j + T max

1≤j≤T
P

(2)
j + P (3).

Lemma 5.5.3 implies that

P
(1)
i,j ≤ 2 exp

−1
8

(32 log(T ))2

6 + (
√
T −max(i, j))−132 log(T )

 ≤ 2 exp (−2 log(T )) = 2
T 2 ,

P
(2)
j ≤ 2 exp

(
−1

8
(32 log(T ))2

6 + (
√
T − j)−132 log(T )

)
≤ 2 exp (−2 log(T )) = 2

T 2 .

Moreover, by Lemma 5.5.4, P (3) ≤ exp (− log(T )) = 1
T

, hence, given that p2 < T ,

P (Ec
T ) ≤ 5

T
, which finishes the proof.

5.6 Proof of Theorem 5.2.2

Proof. The proof follows the structure of the proof of Theorem 4.2.1 given in Section 4.6.2.
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Step One.

Consider the event
{∥∥∥β̂ − β∥∥∥ ≤ κ1(b/b)2 ∥β∥ p log(T )

√
log(T +p)√

T −κ2p log(T )

}
where κ1, κ2 are as in

Theorem 5.2.1. Assumption (A3) imply that b/b and ∥β∥ are bounded from above by a

constant. Furthermore, by (A2), p ≤ C1T
θ, which implies that

κ1(b/b)2 ∥β∥
p log(T )

√
log(T + p)

√
T − κ2p log(T )

≤ CT a−1/2(log(T ))3/2 =: λT

for some constant C > 0 and sufficiently large T . Define now

AT =
{∥∥∥β̂ − β∥∥∥ ≤ λT

}
(5.40)

By Theorem 5.2.1,

P (AT ) ≥ P

∥∥∥β̂T − β
∥∥∥ ≤ κ1(b/b)2 ∥β∥

p log(T )
√

log(T + p)
√
T − κ2p log(T )

 ≥ 1− κ3T
−1, (5.41)

for some constant κ3 > 0.

Step Two.

To fix the ideas, for j = 1, . . . , q we define intervals

IL
j = (τj − δT/3, τj − δT/6) (5.42)

IR
j = (τj + δT/6, τj + δT/3) (5.43)

Recall that FM
T is the set of M randomly drawn intervals with endpoints in {1, . . . , p}.

Denote by [s1, e1], . . . , [sM , eM ] the elements of FM
T and let

DM
T =

{
∀j = 1, . . . , q, ∃k ∈ {1, . . . ,M}, s.t. sk × ek ∈ IL

j × IR
j

}
. (5.44)
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We have that

P
(
(DM

T )c
)
≤

q∑
j=1

ΠM
m=1

(
1− P

(
sm × em ∈ IL

j × IR
j

) )

≤ q

(
1− δ2

T

62p2

)M

≤ p

δT

(
1− δ2

T

36p2

)M

.

Therefore, P
(
AT ∩DM

T

)
≥ 1− κ3T

−1 − Tδ−1
T (1− δ2

Tp
−2/36)M .

In the rest of the proof, we assume that AT and DM
T all hold. We give the constants

as follows:

C1 = 2
√
C3 + 1, C2 = 1√

6
− 2
√

2
C

, C3 = (4
√

2 + 6).

But since our main aim is to establish the rate, we chose not to pursue this direction further.

In addition, here we need to make sure that CC2 > C1, and thus C2δ
1/2
T f

T
> C1

√
log(T ),

i.e., we can select ζT ∈ [C1

√
log(T ), C2δ

1/2
T f

T
). This is indeed the case because C is

sufficiently large.

Step Three

We focus on a generic interval [s, e] such that

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. [sk, ek] ⊂ [s, e] and sk × ek ∈ IL
j × IR

j (5.45)

Fix such an interval [s, e] and let j ∈ {1, . . . , q} and k ∈ {1, . . . ,M} be such that

(5.45) is satisfied. Let b∗
k = argmaxsk≤b≤ek

Cb
sk,ek

(
β̂
)
. By construction, [sk, ek] satisfies

τj − sk + 1 ≥ δT/6 and ek − τj > δT/6. Denote by

Ms,e =
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

;

Os,e = {m ∈Ms,e : max
sm≤b<em

Cb
sm,em

(
β̂
)
> ζT}
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Our first aim is to show that Os,e is non-empty. This follows from Lemma 4.6.2 and the

calculation below.

Cb∗
k

sk,ek

(
β̂
)
≥ Cτj

sk,ek

(
β̂
)

≥ Cb∗
k

sk,ek (β)− λT ≥
(
δT

6

)1/2

|αjτ
−1
j | − λT ≥

(
δT

6

)1/2

αT − λT

=
(

1√
6
− λT

δ
1/2
T αT

)
δ

1/2
T αT ≥

(
1√
6
− 2
√

2
C

)
δ

1/2
T αT = C2δ

1/2
T αT > ζT .

Let m∗ = argminm∈Os,e
(em − sm + 1) and b∗ = argmaxs∗

m≤b<e∗
m
Cb

s∗
m,e∗

m

(
β̂
)
. Observe

that [sm∗ , em∗) must contain at least one change-point. Indeed, if that was not the case,

we would have Cb
sm∗ ,em∗ (β) = 0 and

Cb∗

sm∗ ,em∗

(
β̂
)

= |Cb∗

sm∗ ,em∗

(
β̂
)
− Cb∗

sm∗ ,em∗ (β) | ≤ λT < C1λT ≤ ζT

which contradicts Cb∗
sm∗ ,em∗

(
β̂
)
> ζT . On the other hand, [sm∗ , em∗) cannot contain more

than one change-points, because em∗ − sm∗ + 1 ≤ ek − sk + 1 ≤ δT , as we picked the

narrowest-over-threshold interval.

Without loss of generality, assume τj ∈ [sm∗ , em∗ ]. Denote by ηL = τj − sm∗ + 1

ηR = em∗ − τj and ηT = (C1 − 1)2α2
jτ

−2
j λ2

T , where ∆f
j = |fτj+1 − fτj

|. We claim that

min(ηL, ηR) > ηT , because min(ηL, ηR) ≤ ηT and Lemma 4.6.2 result in

Cb∗

sm∗ ,em∗

(
β̂
)
≤ Cb∗

sm∗ ,em∗ (β) + λT ≤ Cτj
sm∗ ,em∗ (β) + λT ≤ η

1/2
T |αjτ

−1
j |+ λT

= (C1 − 1 + 1)λT = C1λT ≤ ζT ,

which contradicts Cb∗
sm∗ ,em∗

(
β̂
)
> ζT .

We are now in the position to prove |b∗ − τj| ≤ C3λTα
−2
T . Our aim is to find ϵT such
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that for any b ∈ {sm∗ , sm∗ + 1, . . . , em∗ − 1} with |b− τj| > ϵT , we always have

(Cτj
sm∗ ,em∗

(
β̂
)
)2 − (Cb

sm∗ ,em∗

(
β̂
)
)2 > 0. (5.46)

This would then imply that |b∗ − τj| ≤ εT . By expansion and rearranging the terms, we

see that (5.46) is equivalent to

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 > ⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2

+ 2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
. (5.47)

In the following, we assume that b ≥ τj . The case that b < τj can be handled in a similar

fashion. By Lemma 4.6.4, we have

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 = (Cτj

s∗,e∗ (β))2 − (Cb
sm∗ ,em∗ (β))2

= |b− τj|ηL

|b− τj|+ ηL

(αjτ
−1
j )2 := κ.

In addition, since AT holds

⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2 ≤ λ2
T ,

2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
≤ 2∥ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩∥2λT = 2κ1/2λT ,

where the last equality also comes from Lemma 4.6.4. Consequently, (5.47) can be

deducted from the stronger inequality κ− 2λTκ
1/2 − λ2

T > 0. This quadratic inequality

is implied by κ > (
√

2 + 1)2λ2
T , and could be restricted further to

2|b− τj|ηL

|b− τj|+ ηL

≥ min(|b− τj|, ηL) > (4
√

2 + 6)(ατ−1
j )−2λ2

T = C3(αjτ
−1
j )−2λ2

T . (5.48)
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But since

ηL ≥ ηT = (C1 − 1)2(αjτ
−1
j )−2λ2

T = (2
√
C3)2(αjτ

−1
j )−2λ2

T > C3(αjτ
−1
j )−2λ2

T ,

we see that (5.48) is equivalent to |b − τj| > C3(αjτ
−1
j )−2λ2

T . To sum up, |b∗ − τj| >

C3(αjτ
−1
j )−2λ2

T would result in (5.46), a contradiction. So we have proved that |b∗− τj| ≤

C3(αjτ
−1
j )−2λ2

T .

Step Four

Using the arguments given above which are valid on the event AT ∩BT ∩DM
T , we can now

proceed with the proof of the theorem as follows. At the start of Algorithm 5.8 we have

s = 1 and e = T and, provided that q ≥ 1, condition (5.45) is satisfied. Therefore the

algorithm detects a change-point b∗ in that interval such that |b∗ − τj| ≤ C3(αjτ
−1
j )−2λ2

T .

By construction, we also have that |b∗ − τj| < 2/3δT . This in turn implies that for

all l = 1, . . . , q such that τl ∈ [s, e] and l ̸= j we have either IL
l , IR

l ⊂ [s, b∗] or

IL
l , IR

l ⊂ [b∗ + 1, e]. Therefore (5.45) is satisfied within each segment containing at least

one change-point. Note that before all q change points are detected, each change point

will not be detected twice. To see this, we suppose that τj has already been detected by

b, then for all intervals [sk, ek] ⊂ [τj −C3(αjτ
−1
j )−2λ2

T + 1, τj −C3(αjτ
−1
j )−2λ2

T + 2/3δT +

1] ∪ [τj + C3(αjτ
−1
j )−2λ2

T − 2/3δT , τj + C3(αjτ
−1
j )−2λ2

T ], Lemma 4.6.2, together with the

event AT , guarantees that

max
sk≤b<e

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb

sk,ek
(β) + λT

≤
√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j +

√
C3(αj+1τ

−1
j+1)−2λ2

Tαj+1τ
−1
j+1 + λT

< (2
√
C3 + 1)λT = C1λT ≤ ζT .
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Once all the change-points are detected, we then only need to consider [sk, ek] such that

[sk, ek] ⊂ [τj − C3(αjτ
−1
j )−2 + 1, τj+1 + C3(αj+1τ

−1
j+1)−2]

for j = 1, . . . , q. For such intervals, we have

max
sk≤b<ek

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb

sk,ek
(β) + λT ≤

√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j + λT ≤ C1λT ≤ ζT .

Hence the algorithm terminates and no further change-points are detected.



Chapter 6

Conclusions

Chapters 3, 4 and 5 propose methods to solve statistical problems arising in analysis of

three different types of data. Below, we provide a summary of these contributions, as

well as a discussion of possible directions for future research.

Chapter 3 introduces the concept of Ranking-Based Variable Selection, as an alterna-

tive to variable selection that is achieved through optimisation of a prediction-oriented

criterion. We propose the RBVS algorithm, which aims to recover the set of covariates

which non-spuriously appears at the top of a chosen variable ranking, and show that

it is a consistent procedure within a general statistical framework. In order to address

the issue of possible high correlations between the covariates in the linear model, we

propose IRVBS, an iterative extension of RVBS, which in our extensive simulation studies

consistently outperforms its competitors.

In Chapter 4, we propose the Narrowest-Over-Threshold methodology, a generic

framework for detection of multiple generalised change-points in univariate time series.

Under the assumption that the noise in the data is i.i.d. Gaussian and for two important

scenarios for the type of the change-points, we show that the NOT procedure estimates

the number of the change-points consistently and is near-optimal in terms of estimation

of their locations. We provide an extensive study of computational aspects related to the
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NOT algorithm, demonstrating how to compute its entire solution path in close-to-linear

time. A competitive practical performance of the NOT methodology is illustrated in a

number of applications to simulated and real-world data.

Chapter 5 introduces Adaptive Multiscale Autoregressive time series models where

the conditional mean of the process of interest depends linearly on its averages calculated

over unknown timescales. Applying the methodology of Chapter 4, we propose an

estimation procedure in order to recover the timescales from the data and establish its

theoretical properties. A particularly appealing feature of AMAR models estimated with

the proposed method is that they appear to offer a good predictive power in out-of-sample

forecasting of high-frequency financial returns, which is illustrated by the application to

the data from NYSE TAQ.

All proposed methodologies are accompanied by easy to use software, which is crucial

from the practical point of view. Importantly, the R packages implementing the proposed

methods use low-level and parallel programming techniques in order to ensure high

computational efficiency and are available free of charge.

There is a number of interesting problems related to the methodology of Chapter 3

that can be a topic of future research. In particular, it appears compelling to find a

data-adaptive methods for the choice of the subsample size m used in Algorithm 3.3 and

3.4. The work of Götze and Račkauskas (2001) can serve as a starting point for this

piece of research. Another interesting avenue is to extend the IRBVS algorithm to the

cases where the relationship between the response and the predictors is non-linear. This

can be achieved by replacing the original measure ω̂j with E ω̂j|(Xij, i = 1, . . . , n, j ∈ S)

at each iteration of Algorithm 3.4. In general, finding E ω̂j|(Xij, i = 1, . . . , n, j ∈ S) is

difficult, however, it can be relatively easily computed in the Generalised Linear Models

as shown in Barut et al. (2015).

The Narrowest-Over-Threshold methodology is also open to many possible extensions.
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Choosing an appropriate contrast function in Algorithm 4.6, NOT can be easily extended

to identify multiple (generalised) change-points in multivariate time series. For example,

in the high-dimensional case and if the mean of the data is piecewise-constant, we

can use the idea of Cho and Fryzlewicz (2015), who define the contrast as the sum of

the component-wise calculated CUSUM statistics (given by (4.6)) that exceed certain

threshold. Analogues definition of the contrast function can be used in order to identify

the changes in multivariate trends. Another possible solution that can be applied in the

multivariate piecewise-constant scenario can be found in Wang and Samworth (2016), who

propose to use certain projection technique that transforms the data into one-dimensional

vector, preserving the locations of the change-points. In this case, the contrast can be

defined in similar fashion to (4.16), i.e. as the inner product of the transformed data and

ψb
s,e defined by (4.5).

Finally, the work of Chapter 5 also provokes many interesting research questions.

One of the crucial assumptions in our theoretical results presented in this chapter is

that p , i.e. the rate of the AR(p) representation of the considered AMAR(q) process,

satisfies p = o(T 1/2), where T denotes the number of observations. From both theoretical

and practical point of view, it is interesting to investigate the possibility of proposing

an estimation procedure for the case of p growing faster than T 1/2 or even the case of

p ∼ T . Some clues how to approach this challenging task can be found in McMurry et al.

(2015), who study the problem of estimation of the autocovariance matrix in the p ∼ T

case. Another possible extension is to modify the AMAR models in order to incorporate

the multiscale structure in the volatility of the process. For example, for t = 1, . . . , T we

can consider

Xt = α1
1
τ1

(Xt−1 + . . .+Xt−τ1) + . . .+ αq
1
τq

(Xt−1 + . . .+Xt−τq) + σtεt,

σ2
t = γ0 + γ1

1
η1

(ε2
t−1 + . . .+ ε2

t−η1) + . . .+ γr
1
ηr

(ε2
t−1 + . . .+ ε2

t−ηr
),
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where 1 ≤ α1 ≤ . . . ≤ αq, 1 ≤ η1 ≤ . . . ,≤ ηr are the unknown timescales and α1, . . . , αq,

γ1, . . . , γq are the coefficients timescale-coefficients and εt’s are i.i.d. N (0, 1)
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