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Abstract

This dissertation contains three essays on self-enforcing implicit contracts in economic

transactions and politics.

Chapter 2 studies a repeated agency model with two tasks where the agent has private

information on the first task and there is no verifiable performance signal for the second

task. The equilibrium level of the first task is determined so as to guarantee the credibility

of the relational contracts to provide incentives for the second task. It implies interest-

ing economic results including non-monotonic relation between the discount factor and

the total surplus, social desirability of unverifiability, and implications for organization

design.

Chapter 3 studies a model of political contribution of dynamic common agency where

state-contingent agreements must be self-enforced. First, we investigate the punishment

strategy for supporting the self-enforcing mechanism. The most severe punishment strat-

egy on the principals takes the form of a two-phase scheme in general. Second, we

characterize the payoff set of the equilibria on which the same decision is chosen by the

agent through implicit agreements and examine whether it can achieve the same payoff as

in the standard static menu auction model. It implies that there could be an equilibrium

outcome in a static menu auction that cannot be supported in our model for any discount

factor.

Chapter 4 studies repeated political competition with policy-motivated citizen can-

didates. The dynamic relationship could cause strategic candidacy in two-candidate

competition, such as in circumstances where two candidates stand for election and one of

them has no chance to win. The candidate can choose her implementing policy depending

3



on the set of the rival candidates in the election and the rival candidate actually has an

incentive to stand even with no chance to win since it can induce policy compromises

from the winning candidate.
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Chapter 1

Introduction

Contracts and agreements have played a major role in a broad range of economic, political,

and social activities. One of the important aspects of contracts and agreements is that these

are typically concluded ex ante for stipulating the ex post behaviour. It means that contracts

and agreements have little influence if the ex post enforcement is not guaranteed.

Whereas recent development of the theory of contract and mechanism design has pro-

vided a huge amount of insights on information and incentives, it has less emphasized its

importance of the role of enforcement of contracts and agreements. The standard agency

model and mechanism design problems typically assume that a contract or mechanism

offered by a principal or mechanism designer is enforced by exogenous third party such as

courts (or able to be committed by them). However this is often too ideal for the following

reasons at least.

Illegal Contract: the law may stipulate to prohibit (illegal) agreements being enforced.

Imperfect Law System: the law system may not be matured enough to guarantee the

enforcement.

Lack of Information: the court (or another third party who is considered the enforcing

party) may not be able to judge whether an ex post situation is what was stipulated

in the contract.
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Nevertheless we have observed that contracts and agreements have positive impacts

in many cases even if there are some enforcement problems due to the above reasons.

It indicates a next important direction of incentive theory to consider the enforcement

problem explicitly to obtain additional insights on information and incentive problems.

Motivated by the above discussion, this dissertation theoretically investigates incentive

problems in economics and politics and discusses the impact of agreements when the

enforcement is not perfectly guaranteed. Especially, we focus on situations in which self-

enforcement agreements are supported by ongoing relationships between the involved

parties. If an agreement in each period is not guaranteed to be enforced exogenously,

then each of the involved parties has an option to deviate from the agreement. In the

ongoing relationships, however, such a deviation might be deterred since the deviation

could induce the loss from punishment for the future relationship.

In the following three chapters, we consider incentive problems of multitasking agency,

lobbying activity via political contribution, and political competition in elections respec-

tively. Each of them has a common question; how to deal with the self-enforcing agree-

ments in the ongoing relationship.

Chapter 2 studies a relational contracting problem where there exist adverse selection

and multitasking problems. Specifically we consider a repeated agency model with two

tasks where the agent has private information on the first task and there is no verifiable

performance signal for the second task. The principal is faced with inefficiency generated

by information rent from the first task and the problem of designing self-enforcing con-

tracts for the second task. Under the assumption that the principal has full bargaining

power and imperfect commitment ability, the equilibrium level of the first task is deter-

mined so as to guarantee the credibility of the relational contracts to provide incentives

for the second task. This interaction provides interesting results as follows. First, the
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total surplus is not monotonically increasing in the discount factor. In particular, the total

surplus for intermediate values of the discount factor is greater than for high values since

the principal must care about sustaining relational contracts rather than distorting the first

task to reduce the information rent to the agent. Second, for intermediate values of the

discount factor, the equilibrium is more socially efficient than when both the first and sec-

ond tasks are verifiable. Interestingly it implies that to assure enforcement of agreements

sometimes induces socially worse outcomes. Furthermore, in order to obtain insights for

organizational design, we consider a job design problem of whom the principal allocates

the second task to. If the second task can be allocated to the principal herself, then the

total surplus could be lower than in allocating the second task to the agent. Since the

information rent can be an incentive device for the unverifiable task, the principal never

exercises her option to allocate the second task to a different agent. From a perspective

of organizational design, these results imply the benefit of delegation and bundling of

tasks due to the effect of information rent on the other task through the self-enforcement

mechanism.

Chapter 3 studies self-enforcing contracts of political contribution. While the literature

typically assumes that a payment plan offered by lobbyists is treated as a binding contract

enforced by the court after the agent makes a decision, it is not the case in many countries.

From the concern of the enforcement problems of political contribution, we consider

a model of dynamic common agency where state-contingent agreements must be self-

enforced. First, we investigate the punishment strategy for supporting the self-enforcing

mechanism. The most severe punishment strategy on the principals takes the form of a

two-phase scheme in general. More specifically, it is either an “Exclusion-type” where a

decision undesirable for the deviating principal is chosen over time, or a “Sanction-type”

where once the undesirable decision is chosen and the deviating principal contributes an
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additional amount of the payment, it is cancelled. Second, we characterize the payoff

set of the equilibria on which the same decision is chosen by the agent through implicit

agreements and examine whether it can achieve the same payoff as in the standard static

menu auction model. It implies that there could be an equilibrium outcome in a static

menu auction that cannot be supported in our model for any discount factor. This result

has an important meaning since a political outcome predicted by a static menu auction

model might not be justified by ongoing relationships even when the political players are

assumed to be patient.

Chapter 4 studies repeated political competition with policy-motivated citizen candi-

dates. While an election promise cannot be a binding agreement in practice, the dynamic

relationship can guarantee an ability to commit to a policy that is different from the ideal

policy for the fear of worse political process after implementing her ideal policy. It causes

strategic candidacy in two-candidate competition, such as in circumstances where two

candidates stand for election and one of them has no chance to win which never emerges

when there is no commitment ability. The candidate can choose her implementing pol-

icy depending on the set of the rival candidates in the election and the rival candidate

actually has an incentive to stand even with no chance to win since it can induce policy

compromises from the winning candidate. We furthermore show that in some situations,

a political compromise is induced with strategic candidacy which would be impossible

without the strategic candidacy.
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Chapter 2

The Interaction of Formal and Implicit
Contracts with Adverse Selection

2.1 Introduction

Problems of incentive provision are often observed in economic relationships such as

procurement transaction, organization, and regulation of industry. The incentive problem

often becomes more serious when there are multiple dimensions of tasks, all of which the

right incentives must be provided for. As Holmström and Milgrom (1991) demonstrate in

the principal-agent relationship, if the agent is faced with multi-dimensional tasks, then

the principal must be concerned with balancing incentives among the tasks as well as the

incentive provision. In the extreme case where some tasks do not generate any objective

performance measure, legal contracts can never compensate him for the effort devoted

to these tasks and then the agent would devote his effort only to a subset of the tasks.

Thus the multitask property has suggested additional insights for contract design. It has

also stimulated some issues in the theory of the firm. In particular, the task assignment

problem to decide who has the responsibility of the task is definitely motivated by the

multitasking incentive problem.

The aim of this chapter is to find new insight into the multitasking incentive problem

caused by ex ante asymmetric information and unverifiability of performance by courts.
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We argue that the interaction of information rent and reneging temptation of relational

contracts causes several interesting results. Specifically, raising the discount factor and/or

making the signal on the performance verifiable do not necessarily improve economic

efficiency. This interaction provides new incentive perspective for the job design problem.

The deriving force of these results are the information rent caused by ex ante asymmetric

information, which affects the incentive provision in the task without verifiable signals.

In what follows, we analyse a repeated principal-agent relationship with two tasks.

Each task can lead to a potential inefficiency. On the first task, the agent has ex ante private

information on his cost in each period. On the second task, the cost is technologically

independent of his private information. However the performance measure is unverifiable

so that it cannot be assessed by a third party and formal contracts contingent on it are not

enforced by the court. We assume that both tasks are essential for the parties’ payoff so

that the principal must deal with these two incentive problems simultaneously.

One way to create incentives related to the second task is the use of relational contracts

based on the unverifiable measurement. More specifically, the principal uses both formal

contracts contingent only on verifiable signals and informal agreements contingent on

unverifiable signals as well as verifiable ones. This is consistent with evidence showing

that both formal and informal contracts are used as incentive devices.1 In our model,

the principal optimizes hew own payoff every period subject to two kinds of constraint.

First, the principal must deal with the information rent caused by the agent’s private

information. Second, since informal agreements cannot be enforced by the court exoge-

nously, both parties must be concerned with ensuring to honour the informal agreements

1Gibbons (1998, 2005b) describes a number of cases in which bonus plans based on subjective assessments
together with formal contracts were used within the firm. Asanuma (1989) investigates and concludes that
in the Japanese automobile and electric machinery industries, the written contracts between a manufacturer
and a supplier were relatively coarse, and that well-established informal practices supported their economic
performances.
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voluntarily.

It is well known that there are many equilibria in repeated games even if they are

restricted to the public perfect equilibria those are tractable in repeated games with public

monitoring.2 In order to obtain the prediction from our model, we make the additional

assumption (Assumption 2.4) which requires that in each period the principal maximizes

her own payoff as long as the players are on the equilibrium path. This restriction is

analogous to the standard principal-agent models which presume the principal to make

a take-or-leave-it offer. It also means the principal’s imperfect ability at commitment. It

implies that she cannot commit to the strategy which is not maximizing her own payoff

in some period even if it can induce a preferable outcome ex ante.

The above assumption implies that the equilibrium is stationary; in equilibrium, the

principal offers the same contract and the agent decision depends only on the current type.3

Together with an additional assumption4 on the equilibrium behaviour, this stationarity

further implies that the equilibrium is characterized by the principal’s static optimization

problem as in the standard adverse selection model with an additional constraint requir-

ing the players to honour the informal agreements. This additional constraint determines

the scope of relational contracts and it is satisfied if the sum of the discounted future total

surplus between the principal and the agent exceeds the agent’s current deviation benefit

on the second task. Thus, if this additional constraint is relevant, then the principal’s

concern of incentive provision in unverifiable tasks can alter the design of formal con-

tracts from the optimal contract without the additional constraint. This effect causes the

following results.

2The definition of the public perfect equilibrium is provided by Fudenberg et al. (1994).
3Without Assumption 2.4, under the strategy which maximizes the principal’s payoff, she can exploit

the agent in the first period and compensate for it in the future by maximizing the future aggregate benefit.
See Section 2.7 for details.

4It is corresponding to Assumption 2.3, which we make later.
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It is the comparative static analysis of our equilibrium characterization with respect

to the discount factor that gives us our first main result. Clearly, the discount factor

determines the scope of relational contracts since it affects the future discounted total

surplus. It is important to distinguish three cases: high, intermediate, or low discount

factor. If the discount factor is low, then relational contracts do not work at all and there is

no value of the relationship between the principal and the agent since there is no way to

provide the agent incentives for the second task. Conversely, if the discount factor is high,

then relational contracts work well enough to provide the right incentive with respect to

the second task. Nevertheless the principal is still faced with hidden information with

respect to the first task and hence she attempts to decrease the information rent to the

agent. As in the standard adverse selection problem, this concern leads to the inefficient

outcome with respect to the first task.5

When the discount factor is intermediate, the same equilibrium outcome as in the case

of high discount factor cannot be supported since it does not create a sum of the discounted

future total surplus that is large enough to sustain the relational contracts. Nevertheless

the principal can increase the total surplus by mitigating the inefficiency caused by the

information rent problem in the first task. In order to ensure the success of the relational

contracts, she improves the efficiency relative to the case of a high discount factor. In

other words, by decreasing the discount factor from a high level to an intermediate level,

the principal’s objective is altered from purely reducing the information rent to ensuring

the functioning of the relational contract, which leads to a more efficient outcome.

The second main result shows that unverifiability could be socially desirable. Specif-

ically, we compare our equilibrium characterization described above with one in which

the performance measure on the second task is also verifiable under Assumption 2.4. In

5Specifically, the information rent problem causes the downward distortion on the first task.
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the latter, the principal’s concern for ensuring the efficacy of relational contracts vanishes

and then, regardless of the discount factor, the outcome is the same as the former for high

discount factors.6 It implies that, for intermediate discount factors, the aggregate benefit

between the two parties is greater when the second task is unverifiable than when it is

verifiable.7 When the second task is also verifiable, the inefficiency caused by her concern

about the information rent still remains even if the discount factor is not high.

In order to obtain insights for organizational design, we next consider the following

task assignment problem. Before the game starts, the principal is allowed to allocate the

second task to the agent or another party. We investigate three possibilities as follows:

centralization where the principal performs the second task, task bundling where both

tasks are assigned to a single agent, and task separation where the second task is allocated

to a different agent . Clearly, task bundling is the same as the setting explained above.

The equilibrium under centralization is exactly the same as the one where the second

task is verifiable. Under centralization, there is no agency problem in the second task and

the principal’s only concern is to reduce the information rent. Then as in the discussion

of verifiability, when the discount factor is intermediate, centralization generates lower

social surplus than task bundling. Note that in contrast with centralization, task bundling

is interpreted as delegation of the decision right to the agent. Thus it advocates the

delegation of authority to the informed party; if the decision right can be sold to the agent,

then the principal might prefer delegation since it can work as a commitment device to

produce a more efficient outcome.

When only task bundling and task separation are available, the former is preferred to

6Under Assumption 2.4, when the performance measure on the second task is also verifiable, the equi-
librium results in the repetition of the equilibrium in the one shot game. The same outcome is implemented
when the performance measure on the second task is unverifiable and the discount factor is high.

7The principal’s payoff is greater when the second task is verifiable than when it is unverifiable.
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the latter from the social perspective. Intuitively, by bundling the tasks, the information

rent obtained from the first task in the future can be an incentive device for the second

task. By contrast, in task separation, the agent working on the second task no longer has

opportunity to obtain the future information rent. Furthermore, the principal no longer

has an incentive to improve the aggregate benefit among all the parties since doing so just

increases the information rent for agent 1 and does not help to relax the self-enforcement

constraint at all. These effects imply that task separation is undesirable not only from the

social perspective but also the principal’s perspective.

It should be emphasized that while the literature has shown the results similar to

our main results, the logic behind our results is different from them. On desirability of

unverifiability, the literature typically has argued that unverifiability can make a stronger

punishment for deviation which can reinforce incentive provision through relational con-

tracts. The literature of the job design problem in multitasking agency problems mainly

has discussed complementarity of tasks and identified its conditions in terms of techno-

logical aspects such as cost structure and observability and verifiability of signals. Both

of the literatures usually abstract ex ante asymmetric information which causes the infor-

mation rent problem. By contrast, this chapter argues that the information rent problem

causes the similar phenomena. Our explanation for desirability of unverifiability is that

since the principal cares about the information rent, unverifiability can alter the her ob-

jective from her own payoff to total surplus for sustaining relational contracts, which can

improve the total surplus. The task assignment problem in our model suggests that since

the information rent could be a useful instrument for the incentive provision on tasks

without verifiable signals, tasks with hidden information and unverifiable measurement

should be treated as complementary tasks from an incentive perspectives and allocated

to a single agent.
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The next section reviews the related literature and clarifies the contribution of this

chapter. Section 2.3 describes the main model and defines the strategy and equilibrium

used in the analysis. Section 2.4 characterizes the equilibrium conditions and provides

comparative statistic analyses. Section 2.5 points out the possibility that unverifiability is

socially desirable. Section 2.6 considers the task assignment problem. Section 2.7 discusses

the robustness of the results. The final section concludes. The appendix contains proofs

for some propositions and lemmas.

2.2 Related Literature

This chapter is related to several strands of the literature on contract theory and the

theory of the firm. In order to clarify the relation to the literature, we classify the related

papers into the following three categories, relational contracts and screening, verifiability

of performance measures, and multitasking incentive agency and job design.8

Relational Contracts and Screening Several papers study the design of relational con-

tracts for screening. However none of them include multitasking problems. Levin (2003)

develops the design of relational contracts with asymmetric information.9 Athey and

Miller (2007) study repeated bilateral trading with a budget balancing constraint and two-

sided private information. Alonso and Matouschek (2007) study a repeated coordination

problem where monetary transfer is prohibited.

The following papers also study repeated principal-agent relationships with screening

and are related to our results. Calzolari and Spagnolo (2010) study competitive bidding

8MacLeod (2007) and Malcomson (2010) survey the various topics of self-enforcing relational contracts.
Dewatripont et al. (2000) briefly summarize the topics of multitasking incentive and job design problems.

9In his model the agent obtains private information after contracting while in our model he obtains
private information before contracting.
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in procurement and suggest the importance of limiting the competition since it maintains

information rent to the agent which is necessary for implementing unverifiable quality.10

We partly share this logic and argue for a similar role of information rent in a bilateral

relationship. Wolitzky (2010) considers a dynamic monopolist problem with price dis-

crimination and unverifiable delivery decisions. Setting a price corresponds to our first

task in the sense that it is related to private information about consumer value and the

delivery decision corresponds to our second task in the sense that it is unverifiable. In

our terminology, delivery is implemented by the principal and then his model is similar

to centralization in our task assignment problem. He investigates both non-durable and

durable goods monopolists and demonstrates that the so-called Coase conjecture, due to

the ratchet effect in durable goods markets, is not observed when an unverifiable delivery

cost is introduced. While his analysis of durable goods includes the dynamics of market

rationing, our model essentially rules out such a dynamic path by excluding persistent

state variables and then there is no issue of learning over the periods.11 Dynamic flow of

information in repeated principal-agent relationships will be left for future research.12

Verifiable and Unverifiable Performance Measure As long as unverifiable performance

is more informative on the task than verifiable performance, an interaction of formal and

informal contracts could emerge. Baker et al. (1994), Pearce and Stacchetti (1998) and

Itoh and Morita (2010) study this topic in an environment with biased measurement,

risk-sharing, and relation-specific investments, respectively. However these abstract from

multitasking issues. The interaction of formal and informal contracts in multitasking

10Board (2010) demonstrates the similar outcome in repeated competitive procurement. However in his
model, the agents have no private information and then the principal does not need to attempt to screen
the agents’ types.

11We briefly discuss the case of serially correlated type in Section 2.7.
12Halac (2009) studies repeated principal-agent relationships where each party holds private information

on her/his own outside value. She assumes that the outside value is completely persistent over periods,
which induces dynamics of learning on the other’s private information.
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environment is studied by Schmidt and Schnitzer (1995), Daido (2006), Schöttner (2008),

and Iossa and Spagnolo (2009).13 Neither of them includes hidden information.

Several papers have already found the possibility of welfare improvement by making a

task unverifiable (Baker et al., 1994; Schmidt and Schnitzer, 1995; Bernheim and Whinston,

1998; Kovrijnykh, 2010). Their idea is basically that unverifiability can make a stronger

punishment for deviation and then provide a larger incentive via relational contracts,

which improves efficiency. As argued in Section 2.1, our idea is different from theirs.14

Kvaløy and Olsen (2009) introduce the principal’s endogenous verification investment

– interpreted as a cost of writing effective formal contracts – which stochastically deter-

mines the verifiability. They show that the discount factor and verifiability could have a

negative impact on the quality of the transaction.15 This chapter derives this phenomenon

caused by hidden information instead of an endogenous verification decision.

Multitasking Incentive Agency and Job Design Multitasking incentive problems and

job design have been mainly discussed in environments without relational contracts.

One of the main strands in the literature studies the environment with hidden action

and identifies conditions on the verifiable measurement under which task bundling is

preferable to task separation between multiple agents. (Holmström and Milgrom, 1991;

Itoh, 1994; Meyer et al., 1996).16 In the environment with hidden information, Jackson

and Sonnenschein (2007) and Matsushima et al. (2010) investigate the linking mechanism

in which many identical tasks are allocated to a single agent and the agent’s messages

13Dewatripont et al. (1999) study a multitasking problem with implicit contracts. They focus on an agent
with career concerns and the contract design problem is different from our model.

14We discuss the detail of the difference in Section 2.5.
15Their interest is in how a change of such factors affects the quality level implemented in the transaction

and they do not mention the overall economic efficiency including the cost of the investment for verification.
Actually, in their model, the overall economic efficiency is weakly increasing in the discount factor.

16A number of papers study the vertical job design problem, i.e. centralization or delegation. See
Mookherjee (2006) for a survey of this literature.
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Figure 2.1: Timing within a Period

on his preference are rationed so as to approximate the ex ante belief on the preference.

Both of their papers demonstrate that when the number of the tasks are sufficiently large,

the linking mechanism can almost beat the incentive problem without any transfer. The

research interest in this chapter is different from them in the sense that we consider the

effect of a small number of the tasks with hidden information on the multitasking incentive

problem.

Schöttner (2008) is one of the most related papers to this chapter. She studies the effect

of job design on relational contracts and points out that task bundling is often preferred to

task separation. In her paper, however, hidden information is excluded. The implication

for the job design problem with hidden information is one of our contributions to this

literature.

2.3 The Model

2.3.1 Environment

There are two parties, a principal (denoted by P) and an agent (denoted by A). Both live in

periods t = 0, 1, . . . until infinity. Their common discount factor is δ ∈ [0, 1). Assume that

they are risk-neutral. In each period t, they have a business opportunity and in period t

the game proceeds as in Figure 2.1. At stage 0, A privately observes the cost parameter θt
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drawn from [θ, θ] according to the cumulative distribution function F(θ) with the density

function f (θ). Assume that θt is independently drawn in each period. At stage 1, P offers

A a mechanism, which is to be defined formally later. Assume that P can choose to abstain

from offering mechanisms. If P does not offer a mechanism or A rejects the mechanism,

then the period ends and both players obtain zero payoff. If A accepts the mechanism,

then A works on two tasks at stage 2. In the first task, he chooses qt ∈ [0, q] ≡ Q where

q > 0 and in the second one he faces a binary choice et ∈ {0, e}where e > 0. These decisions

yield P the benefit y(qt, et) and A the cost c(qt, θt) + et. Finally, at stage 3 the parties make a

decision on the enforcement of the mechanism. Later we will explain this stage precisely.

In period t, given θt, qt, et, and a monetary transfer wt from P to A, P and A obtain

the (ex post) payoff y(qt, et) − wt and wt − c(qt, θt) − et respectively. Denote the aggregated

surplus by s(q, e, θ) ≡ y(q, e) − c(q, θ) − e and the first best decision by (qFB(θ), eFB(θ)) ∈

arg maxq,e s(q, e, θ). We make the following assumptions.

Assumption 2.1 For all q ∈ Q, e ∈ {0, e}, and θ ∈ [θ, θ], the following conditions are satisfied;

1. c(q, θ) is three-times differentiable and bounded in each component, cq(q, θ) > 0, cθ(q, θ) > 0,

cqθ(q, θ) > 0 and c(0, θ) > 0.

2. s(q, e, θ) is twice differentiable in q, bounded in each component, s(q, 0, θ) < 0, s(0, e, θ) < 0,

sqq(q, e, θ) < 0 and there exists q′ ∈ (0, q) such that sq(q′, e, θ) = 0.

3. Let J(q, e, θ) ≡ s(q, e, θ) − cθ(q, θ)F(θ)/ f (θ). Then Jqq(q, e, θ) < 0, Jqθ(q, e, θ) < 0, and

J(qFB(θ), e, θ) > 0.

If the second task e is absent, implying that it is a single task model, then these assumptions

would be fairly standard in the adverse selection literature.17 Nevertheless some remarks

17The assumption that cθ(0, θ) > 0 rules out a case where c(q, θ) ≡ θq + K for some K > 0 since it is not
satisfied at q = 0. This assumption is only used for simplifying the proof of Lemma 2.1 and it can be shown
even if cθ(0, θ) = 0.
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are useful here. Part 2 of Assumption 2.1 implies that both tasks are strict complements

in the sense that to implement e = e and q > 0 is essential for the value of the relationship.

If it is impossible to induce positive amounts of (q, e), then the business is less valued than

the outside option.

J(q, e, θ) is known as the virtual-surplus, which becomes the consequent objective

function for P in a typical adverse selection model. Part 3 guarantees that for each θ,

arg maxq,e J(q, e, θ) is unique. Hereafter denote the maximand of J(q, e, θ) by (eSB(θ), qSB(θ)).

It can be seen that eSB(θ) = e and Jq(qSB(θ), e, θ) = 018 for each θ ∈ [θ, θ] and qSB(θ) is

decreasing in θ. Part 2 and Part 3 further guarantee that eFB(θ) = e19 and sq(qFB(θ), e, θ) = 0

for each θ ∈ [θ, θ], qFB(θ) is decreasing in θ,20 and qFB(θ) ≥ qSB(θ) for all θ ∈ [θ, θ] with

equality holding only if θ = θ.

The assumption on the observability and verifiability is as follows. All variables

except for θ are observable by both parties. P cannot observe θ and she believes that it is

distributed according to F(θ) and f (θ). Both qt and et are describable at stage 1 in period t

whereas unless otherwise stated, only the first task qt is verifiable.

A mechanism is defined as a pair of a formal contract and an informal agreement. A

formal contract is a transfer schedule pt(qt) from P to A contingent on qt and enforced by

the court.21 We assume that pt(qt) is continuous in qt.22 An informal agreement bt(qt, et) is

a transfer schedule from P to A which can be contingent on both qt and et and must be

enforced by themselves.23 Both pt(qt) and bt(qt, et) can be positive or negative. Enforcement

18Note that maxq J(q, 0, θ) < 0 for any q and θ by Part 2 of Assumption 2.1.
19It is because maxq s(q, e, θ) > maxq J(q, e, θ) ≥ J(qFB(θ), e, θ) > 0 > maxq s(q, 0, θ) for any q and θ.
20Note that sqθ(q, e, θ) < 0 for all q and θ.
21Here we implicitly assume that monetary transfer is also verifiable.
22The assumption of continuity of pt(qt) is required only for the proof of Lemma 2.6, which shows the

existence of an equilibrium strategy used for the punishment. It means that this technical assumption is
only for the construction of the off-path outcome and innocuous in the other parts of the analysis. Thus
except for Lemma 2.6, we will not explicitly mention this assumption. See the proof of Lemma 2.6 and
footnote 44 there for the detail.

23The assumption on the describability of qt and et implies that neither pt nor bt can be contingent on qτ
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of informal agreements is defined as follows. At stage 3, each party chooses Ii
t ∈ I ≡ {H,R}

for i = P,A where H denotes honouring the informal agreement, and R reneging. The

informal agreement bt(qt, et) is enforced if and only if both parties chose to honour it, i.e.,

It ≡ (IP
t , I

A
t ) = (H,H). If it is not enforced, i.e., It , (H,H), then no transfer is made by the

informal agreements.

We later discuss the effect of verifiability of the second task e. We define that the

second task e is verifiable if an informal agreement bt(q, e) is also enforced by the court for

each t. It implies that when the second task is verifiable, bt(q, e) is successfully transferred

regardless of It.

2.3.2 Economic Interpretation of the Setting

Throughout this chapter, we treat this environment as a manufacturer-supplier relation-

ship. The manufacturer offers a menu contract p(q) contingent on units of the products q

from the supplier. However this product is valueless without the supplier’s effort which

can be interpreted as improvement of quality, careful delivery, or regular maintenance.

For simplicity, in what follows, we use the term “quantity” for the first task and “effort”

for the second task.

This framework can be applied to the analysis of other situations. On management

of a production line of automobiles or or electric machineries, the product consists of

hard parts q assembled in the expertized line and software e for controlling the system

the performance of which is hard to be evaluated from the outside. In an relationship

between a firm owner and a CEO, q might be interpreted as the size of a project and e as

the effort to find and tailor the project for successful implementation. In the context of

and eτ for τ > t.
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regulation, the regulation authority asks the regulated firm to meet several environmental

standards and some of the standards might be hard to measure objectively. The analysis

below would be applicable to these cases.

2.3.3 Strategy and Equilibrium

A pure strategy in the repeated game is defined as a mapping from a privately observable

history to a decision variable. Formally, let D ≡ Q × {0, e} be the set of the task levels

and W ≡ ({(p(·), b(·, ·)) | p : Q → R, b : D → R}) be the set of feasible mechanisms.

Denote W ≡ W ∪ {φ} where φ denotes no mechanism being offered. Denote also the

decision of A’s rejection of the mechanism by ω. Then the public history, a sequence of

publicly observable variables24, up to period t ≥ 1 is defined as ht ≡ (hτ)t−1
τ=0 where for each

τ = 0, . . . , t − 1, hτ ∈ {φ} ∪ (W × ({ω} ∪ (D × I2))).25 Let h0 be the null history andH be the

set of the public histories. A’s private history, the sequence of A’s observable variables,

up to period t is defined as hA0 = h0 and for t ≥ 1, hAt ≡ (θτ, hτ)t−1
τ=0. LetHA be the set of A’s

private histories.

P’s pure strategy is a pair of mappings σP ≡ (Γ, ιP) where Γ : H → W and ιP :

H ×W × D → I. These define the mechanism offered by P and whether P enforces the

informal agreement given that the mechanism is accepted, respectively. A’s pure strategy

is a pair of mappingsσA ≡ (χ, ιA) whereχ : HA×[θ, θ]×W→ D, ιA : HA×[θ, θ]×W×D→ I,

and D ≡ D ∪ {ω}. χ stipulates A’s response to an offered mechanism and ιA whether to

enforce the informal agreement. Denote the set of strategies by Σi for i = P,A. A pure

strategy profile (σP, σA) is a perfect Bayesian equilibrium if after every history, there is no

24We mean by “publicly observable” and “public history” that it is observable for both P and A but not
necessarily observable for others. Then note that it does not necessarily coincide with “verifiable”.

25It is implicitly presumed that if hτ contains an element in D, then it means that A accepts the mechanism
in period τ.
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incentive to deviate to improve her/his own average payoff at any stage of the period and

P’s belief about θ is computed by Bayes’ rule whenever it is possible and consistent with

the strategy profile.26

Since the game has a recursive structure, we can decompose strategy (σP, σA) in the

following way. For any public history up to stage 0 of period t, ht ∈ H , let

σP
+(ht)



Γ(ht) ∈W

ιP(· | ht) : W ×D→ I

σP
+(ht, ·) : {φ} ∪ (W × (D ∪ {ω}))→ ΣP

where σP
+(h0) ≡ σP, and for any A’s private history up to stage 0 of period t, hAt ∈ HA,

σA
+(hAt)



χ(· | hAt) : [θ, θ] ×W→ D

ιA(· | hAt) : [θ, θ] ×W ×D→ I

σA
+(hAt, ·) : [θ, θ] × ({φ} ∪ (W × (D ∪ {ω})))→ ΣA

where σA
+(h0) ≡ σA. This formulation is interpreted as that the strategy stipulates players’

actions in the current period and a strategy itself played in the repeated game starting

from next period, that is the continuation strategy.

The repeated game typically has multiple equilibria. Thus we make some additional

restrictions on the equilibrium strategy. First, we focus on the public strategy in the

equilibrium.

Assumption 2.2 σA satisfies that for all t ≥ 0 and hAt ∈ HA, σA
+(hAt) is independent from

(θ0 . . . , θt−1) and ιA(θt,Wt, dt | hAt) is independent from (θ0 . . . , θt−1, θt).

It simply states that A’s equilibrium strategy is independent from θs which are irrelevant

26Since the equilibrium mechanism seen later does not have bunching for the first task, the restriction to
pure strategy profiles is without loss of generality for the optimum. See Strausz (2006) for details.
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to his current payoff. An equilibrium of a public strategy is known as the public perfect

equilibrium (PPE) and every pure strategy equilibrium payoff can be achieved by PPE.27

Instead of σA
+(hAt), hereafter denote A’s public strategy by σA

+(ht) where ht is a public history.

The next assumptions stipulate the bargaining power and the commitment ability.

Assumption 2.3 A public strategy σ satisfies σ+(ht,W, ω) = σ+(ht, φ) = σ+(ht) for all ht ∈ H .

Assumption 2.4 Let Ĥ(σ) ⊂ H be the set of public histories achieved with positive probability

by public strategy σ. For any ht ∈ Ĥ(σ), σ+(ht) ≡ (σP
+(ht), σA

+(ht)) must attain the maximum

average payoff for P in the PPE.

Assumption 2.3 means that the event of no contracting at the beginning of the period

is not interpreted as serious misbehaviour and then the same strategy is taken in the

continuation game. These could prevent the punishment for deviating party which can

reinforce efficiency. Assumption 2.4 means that as long as the players are on the equilib-

rium path, P has absolute bargaining power at the stage of contracting in the sense that the

equilibrium strategy will optimize P’s utility subject to the equilibrium constraints. This

is for consistency with the standard principal-agent models which presume the principal

to make a take-or-leave-it offer. It also implies that P’s commitment ability to the future

play is not so strong that P may not voluntarily choose the worse outcome, which could

lead to more efficient outcome ex ante.

Assumption 2.3 and 2.4 cause some loss of generality. In particular, Assumption 2.4 is

crucial if the type is independently drawn each period as in our model. In Section 2.7, we

discuss how much loss of generality is caused by these assumptions.

Hereafter call the equilibrium satisfying Assumption 2.2, 2.3, and 2.4 the Optimal

Public Perfect Equilibrium (OPPE). The following proposition shows that it is without

27See Fudenberg et al. (1994) for details.

30



loss of generality to focus on the following simple trigger strategy for finding the OPPE.

To state the proposition, let HR ≡ {ht ∈ H | ∃τ < t, ∃i, ∃(dτ, Iτ) ∈ D × I2, Ii
τ = R}, that is

the set of public histories in which there exists a party having reneged on an informal

agreement and HH ≡ H \ HR, the set of public histories in which informal agreements

have been honoured on.

Proposition 2.1 Let σ be an OPPE and (π, u) be the OPPE payoff. Then there exists an OPPE

σ∗ such that

• for all ht ∈ HH,

– Γ∗(ht) = W∗ ∈W,

– if W∗ ∈ W, then χ∗(W∗ | ht, θt) = d∗(θt) ∈ D ∪ {ω}, and ιP∗(W∗, d | ht) = ιA∗(W∗, d |

ht, θt) = H,

• for ht ∈ HR, Γ∗(ht) = φ, and

• the associated payoff (π∗,u∗) satisfies that π∗ = π and u∗ ≥ u.

Proposition 2.1 drastically simplifies our analysis. Specifically, we obtain several

notable features of σ∗ that (i) on the equilibrium path, if W∗ ∈ W and d∗(θt) ∈ D, i.e., P

actually offers a mechanism and A accepts it, then the informal agreement must always be

honoured, (ii) P’s mechanism and A’s decision are independent of public histories as long

as they have reneged on informal agreements, and (iii) after deviation to reneging on an

informal agreement, both players obtain 0 payoff from the outside options. Furthermore

if W∗ = φ, then it is straightforward that both parties obtain 0 as their average payoff.

Thus our problem is to seek the mechanism W∗ ∈Wwhich maximizes P’s average payoff.

If there exists such a mechanism with P’s average payoff π∗ ≥ 0, then W∗ is offered on the

equilibrium path and if not, then no mechanism is offered on the equilibrium path.
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Hereafter we focus on the OPPE which satisfies Proposition 2.1.

2.4 Analysis

Thanks to Proposition 2.1, the OPPE can be derived by a stationary problem with some

constraints. Furthermore, the following proposition shows that the OPPE is more simpli-

fied in that all types accept the equilibrium mechanism.

Lemma 2.1 Let W∗ ∈ W be the OPPE mechanism and d∗(θ) be A’s OPPE decision given that

mechanism W∗ is offered. Then d∗(θ) ∈ D for all θ ∈ [θ, θ].

Let W∗ = (p∗(q), b∗(e, q))q∈Q,e∈{0,e} and d∗(θ) = (q∗(θ), e∗(θ)) be the equilibrium task level

chosen by A given the mechanism W∗. Due to the stationarity of W∗ and d∗(θ), P’s average

payoff is given by

π∗ = (1 − δ)
∞∑

τ=0

δτEθ
[
y(q∗(θ), e∗(θ)) − w∗(q∗(θ), e∗(θ))

]

= Eθ
[
y(q∗(θ), e∗(θ)) − w∗(q∗(θ), e∗(θ))

]

where w∗(q, e) = p∗(q) + b∗(q, e). This is the objective to be maximized subject to the equilib-

rium conditions. In each period, the players are faced with four equilibrium conditions

which are common among periods on the equilibrium path. Figure 2.2 describes them in

order. At stage 1, the participation constraint (PC) is satisfied if and only if A with type

θ ∈ [θ, θ] accepts W∗ offered by P. At stage 2, A chooses d∗(θ) = (q∗(θ), e∗(θ)). There are

two concerns on this incentive compatibility constraint. First, the truth-telling constraint

(TT) is satisfied if and only if type θ does not pretend to be any other type θ′. Second, the

effort incentive constraint (EI) is satisfied if and only if type θ does not choose e , e∗(θ).28

28Strictly, we must also check the incentive constraint not to choose q < Q∗ ≡ {q′ ∈ Q | ∃θ ∈ [θ, θ], q′ =
q∗(θ)}. However, since we can show that Q∗ is an closed interval and p∗(q) is non-decreasing in q ∈ Q∗, the
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Figure 2.2: Equilibrium Constraints

Finally, at stage 3, the honouring constraint (HC) is satisfied if and only if both parties

choose to honour the informal agreement.

Let

U∗(θ) ≡ w∗(q∗(θ), e∗(θ)) − c(q∗(θ), θ) − e∗(θ),

u∗ ≡ Eθ [U∗(θ)] ,

s∗ ≡ u∗ + π∗

be A’s ex post and ex ante payoff and the ex ante total surplus within a period. In general, the

players are concerned about their future continuation payoff as well as the payoff in the

current period. Nevertheless by construction of the strategy, the continuation payoff is not

altered by any deviation on (TT), (EI), and (PC). It means that it is enough to consider these

constraints without the future continuation payoff. On (HC), choosing ιi∗ = H induces

the continuation payoff, π∗ and u∗ for P and A respectively. Conversely, choosing ιi∗ = R

induces no mechanism in the future and then the continuation payoff is 0 for both parties.

Thus, while the continuation payoff must be taken into account in (HC), the value of the

possibility to choose q < Q∗ can be excluded by constructing p∗(q) such that for q > sup Q∗, p∗(q) = supq∈Q∗ p∗(q)
and for q < inf Q∗, p∗(q) is sufficiently small.
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continuation payoff is still history-independent. Therefore the optimization problem of

characterizing the OPPE can be transformed to a static mechanism design problem.

First, look at (TT). For each θ, θ ∈ [θ, θ], θ does not pretend θ′ ∈ [θ, θ] if and only if

U∗(θ) ≥ w∗(q∗(θ′), e∗(θ′)) − c(q∗(θ′), θ) − e∗(θ′)

= U∗(θ′) + c(q∗(θ′), θ′) − c(q∗(θ′), θ).

The envelope theorem by Milgrom and Segal (2002) implies that this is equivalent to that

q∗(θ) is non-increasing in θ and

U∗(θ) = U∗(θ) +

∫ θ

θ

cθ(q∗(z), z)dz. (2.1)

Second, consider (EI). (EI) is satisfied if for each θ, θ′ and e′ , e∗(θ′), θ does not choose

(q(θ′), e′). It is expressed as

U∗(θ) ≥ w∗(q∗(θ′), e′) − c(q∗(θ′), θ) − e′

= U∗(θ′) − b∗(q∗(θ′), e∗(θ′)) + b∗(q∗(θ′), e′) + c(q∗(θ′), θ′) − c(q∗(θ′), θ) + e∗(θ′) − e′.

Substituting (2.1) implies that

∫ θ′

θ

cθ(q∗(x), x)dx − c(q∗(θ′), θ′) + c(q∗(θ′), θ) ≥ −b∗(q∗(θ′), e∗(θ′)) + b∗(q∗(θ′), e′) + e∗(θ′) − e′.(2.2)

Third, (PC) means that every type accepts the mechanism. Since to reject generate zero

payoff for A, the condition is described as

U∗(θ) ≥ 0
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for all θ ∈ [θ, θ]. Since U∗(θ) is non-increasing due to (2.1), it is satisfied if and only if

U∗(θ) ≥ 0. (2.3)

Finally, consider (HC). Given that q and e were observed and A chooses IA = H, if P

chooses IP = H, then b∗(q, e) is transferred from P to A and the continuation payoff from

the next period is π∗. Conversely if P chooses IP = R, then b∗(q, e) is not to be transferred

and the continuation payoff from the next period is 0 because she does not offer any

mechanism from the next period. Thus P chooses IP = H if and only if

−b∗(q, e) +
δ

1 − δπ
∗ ≥ 0.

Similarly, A chooses IA = H if and only if

b∗(q, e) +
δ

1 − δu∗ ≥ 0.

Combining them implies that

δ
1 − δπ

∗ ≥ b∗(q, e) ≥ − δ
1 − δu∗. (2.4)

Plugging (2.1) into π∗ and integrating by parts yield that

π∗ = Eθ
[
y(q∗(θ), e∗(θ)) − c(q∗(θ), θ) − e∗(θ) −U∗(θ)

]

=

∫ θ

θ

J(q∗(θ), e∗(θ), θ) f (θ)dθ −U∗(θ) (2.5)
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where J(q, e, θ) is defined as in Assumption 2.1. In equilibrium, it is maximized by control

variables (q∗(θ), e∗(θ),U∗(θ), b∗(q∗(θ), e)) subject to (2.2), (2.3), (2.4), and monotonicity of

q∗(θ) in θ. This problem is simplified as follows.

Lemma 2.2 The optimization problem described above is equivalent to the following;

max
q∗(θ)

∫ θ

θ

J(q∗(θ), e, θ) f (θ)dθ

subject to
δ

1 − δ
∫ θ

θ

s(q∗(z), e, z) f (z)dz ≥ e (2.6)

and q∗(θ) is non-increasing in θ.

If constraint (2.6) is absent, then the Euler equation implies that q∗(θ) = qSB(θ) for all θ.

Since qSB(θ) is non-increasing in θ, it is the solution if qSB(θ) satisfies (2.6), that is

δ

1 − δ
∫ θ

θ

s(qSB(z), e, z) f (z)dz ≥ e ⇐⇒ δ ≥ δ ≡ e

e +
∫ θ

θ
s(qSB(z), e, z) f (z)dz

. (2.7)

Suppose that (2.7) is not satisfied. Now consider the following Lagrangian with multiplier

λ∗ ≥ 0:

L ≡
∫ θ

θ

J(q∗(θ), e, θ) f (θ)dθ + λ∗

δ

1 − δ
∫ θ

θ

s(q∗(θ), e, θ) f (θ)dθ − e

 .

The Euler equation implies that the solution satisfies that

sq(q∗(θ), e, θ) =
1

1 + δ
1−δλ

F(θ)
f (θ)

cqθ(q∗(θ), θ). (2.8)

Recall that by definition of qSB(θ), q∗(θ) = qSB(θ) if λ = 0. However, since it does not satisfy

(2.6), then λ∗ is positive and determined to satisfy (2.6) with equality.
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Under what conditions is it feasible? It is easy to see that q∗(θ) characterized by (2.8)

is decreasing in θ by Assumption 2.1. The right hand side of (2.8) is greater then 0 and

qSB(θ) satisfies that Jq(q∗(θ), e, θ) = 0 or equivalently

sq(qSB(θ), e, θ) =
F(θ)
f (θ)

cqθ(qSB(θ), θ),

the right hand side of which is greater that of (2.8). Thus we see that for δ < δ,

sq(qFB(θ), e, θ) < sq(q∗(θ), e, θ) < sq(qSB(θ), e, θ), which implies that by concavity of s(q, e, θ)

qFB(θ) > q∗(θ) > qSB(θ)

for all θ ∈ (θ, θ). Furthermore, (2.8) shows that q∗(θ) is increasing in λ∗ (provided that

δ > 0) and approaches qFB(θ) as λ∗ goes to infinity. Then by concavity of s(q, e, θ) in q, s∗ is

increasing as λ∗ goes up and the supremum of it is
∫

s(qFB(z), e, z) f (z)dz. Thus the solution

obtained by (2.8) is feasible if and only if

δ
1 − δ

∫ θ

θ

s(qFB(z), e, z) f (z)dz > e ⇐⇒ δ > δ ≡ e

e +
∫ θ

θ
s(qFB(z), e, z) f (z)dθ

(2.9)

where strictly inequality must be satisfied because of Slater constraint qualification for

constrained optimization problems. When δ = δ, it is obvious that qFB(θ) for each θ is the

unique feasible q and then it is the solution.

Finally, if δ < δ, then there is no q∗(θ) which satisfies (2.6). This implies that e∗(θ) = 0

for all θ ∈ [θ, θ] and then π∗ < 0. In this case, P strictly prefers to offer no mechanism. The

summary of the above analysis is as follows.

Proposition 2.2 The OPPE satisfies the following.
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Figure 2.3: Total Surplus and P’s payoff in the OPPE

1. For δ ≥ δ, d∗(θ) = (qSB(θ), e).

2. For δ ∈ (δ, δ), d∗(θ) = (q∗(θ), e) where q∗(θ) satisfies (2.6) and (2.8) with equality for some

λ∗ > 0.

3. For δ = δ, d∗(θ) = (qFB(θ), e).

4. For δ < δ, W∗ = φ.

Proposition 2.2 implies the following corollary.

Corollary 2.1 On the OPPE, the total surplus for δ ∈ (δ, δ) is decreasing in δ and strictly greater

than δ ≥ δ. P’s payoff for δ ∈ (δ, δ) is increasing in δ and strictly less than δ ≥ δ.

Figure 2.3 illustrates the result in Proposition 2.2 and Corollary 2.1.

The intuition of Corollary 2.1 is as follows. Since effort is unverifiable, self-enforcement

contracts are required to induce positive effort from A. The self-enforcement contracts are

credible if the value of the relationship in the future is large enough. This is captured by

constraint (2.6). For high discount factors such that δ ≥ δ, the players value the future

surplus so much that P is allowed to optimize her utility with respect to the first task. As
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the discount factor is lower such that δ ∈ [δ, δ), the optimal level of the first task does not

ensure the future surplus enough to sustain the self-enforcing contracts. Nevertheless, as

(2.6) shows, it is possible to induce e by raising the total surplus for an intermediate value

of the discount factor. Thus the total surplus is rather improved by mitigating inefficiency

with respect to the first task caused by asymmetric information. In other words, P’s

objective is altered from optimizing her own payoff to caring about the total surplus to

sustain the relational contracts.

2.5 Social Desirability of Unverifiability

Contrary to the previous assumption, assume now that e is also verifiable within a period.

We show that verifiability could lead to a lower social surplus.

Even when e is verifiable, the basic procedure for deriving the equilibrium is sim-

ilar to the previous section.29 The difference is that informal contracts b∗(q∗(θ), e) do

not have to satisfy (HC) which is corresponding to (2.4). Thus, when e is verifiable,

the optimization problem to derive the OPPE is to maximize (2.5) by control variables

(q∗(θ), e∗(θ),U∗(θ), b∗(q∗(θ), e)) subject to (2.2), (2.3), and monotonicity of q∗(θ) in θ.

Proposition 2.3 When e is verifiable, the OPPE satisfies that W∗ ∈ W, q∗(θ) = qSB(θ), and

e∗(θ) = e for any δ ∈ [0, 1).

Comparing it with the result in Proposition 2.2 immediately implies the following

corollary.

Corollary 2.2 For δ ≥ δ, unverifiability of e is weakly socially desirable. In particular, for

δ ∈ [δ, δ), unverifiability of e is strictly socially desirable.

29The optimality of stationary contracts with all the types participating can be proven by a similar proof
of Proposition 2.1 and Lemma 2.1.

39



E[s(qFB(θ), e, θ)]

E[s(qSB(θ), e, θ)]

E[J(qSB(θ), e, θ)]

E[J(qFB(θ), e, θ)]

δ δ

Total Surplus
Unverifiable:

Verifiable:

P’s Payoff

Unverifiable:
Verifiable:

δ

Figure 2.4: Comparison between the Verifiable and Unverifiable Cases

Figure 2.4 illustrates the comparison between the unverifiable case and the verifiable

one. Actually the problem of the verifiable case is the same as that of the unverifiable case

without (2.6). Thus the equilibrium achieved in the verifiable case is the same as in the

unverifiable case with δ ≥ δ. However it is less socially efficient than the unverifiable case

with δ ∈ [δ, δ).

The intuition is similar to the comparison between the cases of high and intermediate

discount factor in the previous section. Even for intermediate δ, if e is verifiable, then

P has no problem about implementing e. Unverifiability of e urges P to consider the

implementation of e more seriously, which induces more social efficiency as discussed

before.

Note that unverifiability is not desirable from P’s view. Actually, regardless of verifia-

bility of e, P’s objective is the expected value of J(q∗(θ), e, θ) and the unverifiability could

change the quantity level from qSB(θ) to a more socially efficient level. Since qSB(θ) is the

optimum of J(q∗(θ), e, θ), the unverifiability is obviously less preferred by P. Thus P does

not strategically leave the contract incomplete even if she can.30

30Nevertheless we can demonstrate the strategic contractual incompleteness. by extending the model.
One way of extension is just introducing a positive cost of writing a contract on e. Another extension is
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We can also obtain an economic implication for the role of courts and contract law.

The standard contract theory typically tells us that if the court could void a contract,

a party anticipating that action would lose the incentive to implement better economic

performance due to the lack of the commitment to the ex post compensation. This view

makes it difficult to explain why courts sometimes intervene to void contractual terms in

reality. One of the explanations from our model is that when the long-term relationship

is working and the party with bargaining power are faced with the party with private

information, the court should sometimes void the terms of the contract. Intuitively,

contract design by the party without information causes inefficiency due to the concern

of the information rent. If verifiability is not assured by the court, then the contracting

party cannot control the information rent and then the inefficiency caused by it can be

mitigated.

Several papers in the literature point out the desirability of unverifiability. Neverthe-

less it should be emphasized that the logic here is quite different from that of the literature.

To understand the difference, consider a strategy which implements the same decision

every period in equilibrium. Then it can be a public perfect equilibrium if and only if the

following inequality is satisfied:

δ
1 − δ

[
s∗ − s

]
≥ g∗ (2.10)

where s∗ denotes the equilibrium total surplus, s does the total surplus without relational

contracts and g∗ the agent’s deviation benefit from unverifiable tasks. It expresses that the

self-enforcing contract can work if and only if the future total surplus from relational con-

assuming that at the beginning of the repeated game there is an option to invest in a technology which
makes the effort verifiable (e.g., introducing the objective measurement related to the effort). Then P does
not necessarily choose to invest in the technology by receiving a transfer from A as a consideration for
leaving the unverifiability.
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tracts exceeds the one-shot benefit from deviation in the unverifiable tasks. By substituting

s = 0 and g∗ = e, it is the same as (2.6) in our model.

The typical argument is that unverifiability can make for a stronger punishment on

deviation, which improves efficiency. For instance, Schmidt and Schnitzer (1995) study

a relational contracting model where, as in our model, the agent’s tasks are two dimen-

sional. They show that the above inequality is necessary and sufficient for the equilibrium

condition and compare the cases where both tasks are unverifiable and one of the tasks

is verifiable. Then in the latter, since the verifiable task can be implemented by formal

contracts, the deviation incentive g∗ is smaller. At the same time, however, the total

surplus without relational contracts s could be larger since formal contracts can always

give incentives for the verifiable task. Overall, whether the constraint is relaxed or not

is ambiguous. In particular, if the effect on s dominates that of g, then verifiability is not

necessarily desirable. Here the payoff s is the total surplus after informal contracts are

reneged on. Thus s expresses the degree of effectiveness of the punishment. Making one

task verifiable can weaken the punishment necessary for sustaining relational contracts,

which can worsen efficiency.31

By contrast, our argument starts with the case where both tasks are verifiable. Then

the formal contract can completely eliminate the deviation incentive meaning that g∗ = 0.

Furthermore, since there is no unverifiable task, the principal will implement the decision

as she likes. Now suppose that one of the tasks becomes unverifiable. Since the same

strategy as in the verifiable case is most preferred to the principal, it would be implemented

as long as it satisfies (2.10). If not, then the principal would attempt to improve the total

surplus to satisfy (2.10). In other words, by increasing g, the principal’s objective is

31A similar argument is developed by Baker et al. (1994), Bernheim and Whinston (1998), and Kovrijnykh
(2010).
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changed from maximizing her own payoff distorted from the total surplus to improving

the total surplus to sustain the relational contracts. In this sense, a more important effect

of unverifiability on the efficiency in our argument is increasing g rather than decreasing

s.

2.6 Task Assignment Problem

In the main analysis, we assume that a single agent dedicates to the two tasks. The liter-

ature on the multitasking agency problem demonstrates that the distribution of the tasks

to multiple agents could mitigate or reinforce the inefficiency caused by the multitasking

incentive problem. The effect of the task allocation suggests whether the tasks should

be allocated to one agent as a bundle or two or more agents separately and gives us

implications on organizational design.

In this section, we develop a discussion of the task assignment problem in the following

manner. The first task is highly expertized so that only the original agent can work on it

and he still holds private information on that technology. By contrast, the second task can

be delegated to another party. However the performance of it is still unverifiable so that

a self-enforcing mechanism is required.

Formally, e is unverifiable but the decision right of e is contractible for infinite periods.

Thus we modify the repeated game by introducing period −1 in which P chooses a party

to whom the second task is allocated. Then from period 0, they play the repeated game

in which in each period the party with the decision right of e makes a decision and incurs

the cost of e.

We consider the following three modes.

• Task Bundling (B): the decision right is allocated to the agent deciding q
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• Centralization (C): P keeps the decision right of e

• Task Separation (S): the decision right is allocated to an agent different from one who

decides q.

Recall that (B) is exactly the same as in the analysis of section 2.4. Here we investigate (C)

and (S).32

2.6.1 Centralization

First, suppose that P keeps the decision right of e and denote the OPPE under (C) by

superscript C. If she offers a mechanism, among the equilibrium conditions, the constraint

(EI) can be ignored because she no longer has to care about A’s incentive to exert effort.

Instead, she must care about her own incentive to choose eC.33 The constraint would be

∫ θ

θ

[y(qC(θ), eC) − wC(qC(θ), eC)]dθ ≥
∫ θ

θ

[y(qC(θ), e′) − wC(qC(θ), e′)]dθ (2.11)

for eC , e′. The other constraints are unchanged. Then given that P offers some mechanism

WC ∈ W, the problem of deriving the OPPE under centralization is to maximize (2.5)

subject to (2.1), (2.3), (2.4), (2.11) and monotonicity of qC(θ). The equilibrium under (C) is

characterized as follows.

Lemma 2.3 The optimization problem described above is equivalent to the following one;

max
qC(θ)

∫ θ

θ

J(qC(θ), e, θ) f (θ)dθ

32While depending on the allocation the strategy space is changed, a similar proof of Proposition 2.1 and
Lemma 2.1 shows that we can still focus on the stationary strategy where all the types accept if a mechanism
is offered.

33Here eC must be independent from θ because we assume that P chooses e before observing A’s choice
of q. Nevertheless the same result is established even if P chooses e after observing A’s choice of q so that eC

can be type-dependent.

44



subject to monotonicity of qC(θ).

It is easy to see that Assumption 2.1 assures the following result.

Proposition 2.4 For any δ ∈ [0, 1), the OPPE under (C) satisfies that WC ∈W, qC(θ) = qSB(θ),

and eC = e.

2.6.2 Task Separation

Next consider (S) in which P delegates the decision right of e to another agent. Denote the

equilibrium by superscript S and let us call the agent to choose q A1 and one to choose e

A2, respectively. The timing of the game within a period is modified as follows. At stage

0, only A1 knows his type θ. At stage 1, P offers a mechanism pS(q) to A1 and bS(e) to A2

simultaneously and publicly in the sense that every party observes this offer.34 If at least

either of the agents rejects the mechanism offered by P, then the period ends and all the

parties obtain zero payoff as their outside option. If both accept, then at stage 2, A1 and

A2 make a decision on their respective tasks simultaneously. Finally, at stage 3, P and A2

decide whether to enforce the informal agreement or not.

Suppose that P offers a mechanism. Since A1 is not involved in the second task or

relational contracts, the constraints (EI) and (HC) are ignored and then the constraints on

A1 are characterized by (2.1), (2.3), and monotonicity of qS(θ). Instead, P must care about

A2’s incentive to choose eS, A2’s participation constraint, and the self-enforcing constraint

between P and A2. Let u2S ≡ bS(eS)− eS be A2’s payoff within a period. The constraints are

respectively described as

u2S ≥ bS(e′) − e′ for eS , e′ (2.12)

34The result is not changed even if P can offer an informal agreements to A1, an informal agreement can
depend on q, or the offers are sequential.
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u2S ≥ 0 (2.13)

δ
1 − δπ

S ≥ bS(e) ≥ δ
1 − δu2S for e = {0, e}. (2.14)

Although these additional constraints must be taken into account, the procedure for

deriving the optimal solution can be similarly simplified.

Lemma 2.4 The optimization problem described above is equivalent to the following;

max
qS(θ)

∫ θ

θ

J(qS(θ), e, θ) f (θ)dθ

subject to
δ

1 − δ
∫ θ

θ

J(qS(z), e, z) f (z)dz ≥ e (2.15)

and qS(θ) is non-increasing in θ.

By using this simplified problem, the equilibrium can be characterized as follows.

Proposition 2.5 Let δS ≡ e/(e +
∫ θ

θ
J(qSB(z), e, z) f (z)dz). The OPPE under (S) satisfies the

following.

1. For δ ≥ δS, qS(θ) = qSB(θ) and eS = e.

2. For δ < δS, WS = φ.

2.6.3 Implications

Note that given that P offers a mechanism in equilibrium, P’s objective is
∫ θ

θ
J(q(θ), e, θ) f (θ)dθ

which is common among (B), (C), and (S). Then, if P can choose among those, she chooses

the one attaining the maximum equilibrium payoff. The corollary below directly follows

from Proposition 2.2, 2.4, and 2.5.
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Figure 2.5: Comparison among (B), (C), and (S)

Corollary 2.3 1. Suppose that P can choose (C). Then she weakly prefers (C) to the others.

She strictly prefers (C) to (B) if δ < δ and to (S) if δ < δS.

2. For δ ∈ [δ, δ), when (B) and (C) are available, the total surplus is increased by preventing

(C) from being chosen.

3. Suppose that P can choose only (B) and (S). Then she weakly prefers (B) to (S) for any

δ ∈ [0, 1) and strictly prefers (B) for δ ∈ [δ, δS).

4. The total surplus in (B) is weakly greater than (S) for any δ ∈ [0, 1) and strictly greater for

δ ∈ [δ, δS).

Corollary 2.3 can be easily obtained from Figure 2.5, which illustrates the result of the

three modes. Comparison between (B) and another mode gives us interesting implications.

First, centralization is always preferred by P but could be less socially efficient than task

bundling. Since e generates direct benefit for P, P is willing to choose e = e in (C) and then

she can simply optimize
∫ θ

θ
J(q, e, θ) f (θ)dθ by formal contracts. This is very similar to the

situation in which e is verifiable as in Section 2.5. It eliminates the effect of improving social

efficiency caused by the concern for implementing the unverifiable task when δ ∈ [δ, δ).
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This analysis provides a rationale for delegation in organizations. Specifically, if

monetary transfer is allowed in period −1 in which the allocation of decision right on e

is determined, P should “sell” the decision right to A unless δ is so small that relational

contracts do not work at all. Interestingly, this is somewhat counter-intuitive in the sense

that since e has a direct benefit for P, P has a right incentive to work on the unverifiable task

and then the inefficiency caused by incomplete contracts disappears under centralization.

Here, delegation to the party with small bargaining power can be a commitment device

to avoid the inefficiency caused by the asymmetric information.

Second, task separation is generally less preferred from both P’s and the social per-

spective. It is obvious from the comparison between the constraints of (B) and that of (S).

Contrary to (2.6) in (B), the consequent constraint in (S) becomes (2.15). The key feature of

(S) different from (B) is that whether relational contracts work or not is independent from

A1’s payoff. Actually the left hand side is the aggregate surplus between P and A2, which

does not include A1’s payoff. Since s(q, e, θ) > J(q, e, θ) for all q ∈ Q and θ ∈ (θ, θ], if qS(θ)

is feasible in the optimization problem of (S), then it is also feasible in the optimization

problem of (B). Then P does not prefer (S) to (B) because of the feasibility. In addition, P

does not have any incentives to mitigate the social inefficiency caused by A1’s information

rent under (S). This implies that (S) is also socially less desirable.

Comparison between (B) and (S) suggests that while the tasks have no technological

complementarity in the sense that the total costs are additively separable, they are com-

plements due to the incentive problem. Intuitively, it is because the future information

rent can be an incentive device for the task with unverifiable performance. Bundling the

tasks provides information rent caused by the first task for the agent who also works

on the second task and then the incentive constraint for the second task can be relaxed

in comparison with task separation. In this sense, tasks with hidden information and
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unverifiable measurement would be complements when relational contracts are used for

providing incentives.

The benefit of task bundling from an incentive perspective has been already discussed

in the literature. In static settings, it has been shown that, given that tasks have no

complementarity in the agent’s cost, the tasks should be bundled and allocated to one

agent if the difficulty of measuring performance is similar among those tasks (Holmström

and Milgrom, 1991) or if there is only an aggregate measurement for the tasks available

for terms in contracts (Itoh, 1994). In dynamic settings, this would also be the case if there

is a component which causes a ratchet effect (Meyer et al., 1996). All of these studies rule

out private information held by the agent and the possibility of relational contracting.35

Recently, as argued by Gibbons (2005a), there has been an increasing interest in the

effect of organizational design on relational contracts. Schöttner (2008) studies a relational

contracting model with multiple tasks and discusses the effect of job design on relational

contracts. She focuses on moral hazard environments and shows that task bundling can

reinforce relational contracts due to the malfunction of formal contracts.36 Our model sug-

gests another perspective for job design problems with relational contracts; task bundling

is beneficial since the task with private information can provide an incentive for the

unverifiable task via information rent.

35In case of hidden information with a large number of tasks, task bundling could also be beneficial by
using the linking mechanism. See Jackson and Sonnenschein (2007) and Matsushima et al. (2010) for the
detail.

36This argument is similar to the discussion of verifiability in the sense that both verifiability and job
design can be instruments that change the effectiveness of punishment for cheating in relational contracts.
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2.7 Extension and Robustness

2.7.1 Extension to a General Setting

For tractability, our model is simplified in some aspects which might seem not to be

reasonable. Here we discuss how these assumptions are innocuous to the results derived

above.

Binary Choice of Effort First, we assume that the second task e is a binary decision. This

is not a crucial assumption as long as both q and e are assumed to be essential for the value

of the relationship. For instance, suppose that e is chosen from interval [0,E] where E ≥ e.

Then the same result is obtained if y(q, e) is a step function in e which jumps from 0 to

positive value at e = e. Or even if y(q, e) is increasing and differentiable everywhere in e,

a similar equilibrium is attained if ye(q, e) is sufficiently high. The crucial assumption for

our result is that e has a large marginal effect on the aggregate benefit so that providing an

incentive for e is a priority. It forces P to improve the total surplus to induce high effort.

The extreme form of this idea is a binary decision.

Measurement Error Second, our model does not contain any error in measuring the

outcome of the task. It can be relaxed as follows. Suppose that both q and e are unobserv-

able for P and then unverifiable. Instead, a stochastic signal k ∈ {1, 0} correlated with q

is verifiable and both parties can observe an unverifiable signal y ∈ {1, 0} correlated with

e. Finally, P’s ex post benefit is given by Bky where B is constant positive. In this setting,

according to Levin (2003), without loss of generality, the equilibrium is still characterized

by the stationary strategy without any possibilities of terminating the relationship and the

result is qualitatively similar to the case without measurement errors.
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While we abstract from measurement errors for focusing on the information rent

problem, this extension would be valuable to investigate. One promising topic for future

research is the usefulness of less informative verifiable signals as discussed in Baker et al.

(1994) for single task agency. They study whether and how a noisy verifiable signal is

useful when the parties intend to use relational contracts based on a more informative but

unverifiable signal. In our model, the verifiable signal k does not contain any information

on the unverifiable task e. By introducing correlation between k and e, we may discuss

which kind of verifiable signal is desirable for relational contracts. Another topic is further

investigation into task assignment problem. Our model generates no trade-off between

task bundling and task separation; task bundling is weakly dominant from an incentive

perspective. However, as Holmström and Milgrom (1991) point out, heterogeneity in the

degree of informativeness of the signals can lead to task separation since task separation

can avoid misallocation of effort across tasks and Schöttner (2008) points out that it has

the opposite effect if relational contracts are available. Thus incorporating measurement

noise into our model can stimulate discussion on the job design problem.

Additive Separability of Cost Function The third simplification is about additive sep-

arability of A’s cost function. We should admit that this assumption is for tractability of

the model. Nevertheless the result seems to be robust as long as a marginal change of θ

and q has little effect on that of e.

Let us briefly review the technical difficulty. Suppose that A’s cost function is gen-

eralized to c(q, e, θ) and denote c(q, θ) ≡ c(q, e, θ) and c(q, θ) ≡ c(q, 0, θ). Assume that

cq(q, θ) ≥ cq(q, θ) and cθ(q, θ) ≥ cθ(q, θ). When the analysis proceeds as in Section 2.4, (2.6)
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becomes

δ
1 − δ

∫ θ

θ

s(q∗(z), e, z) f (z)dz ≥ c(q∗(θ), θ) − c(q∗(θ), θ)

for all θ who accept the mechanism. This inequality says as before that the cost of

the unverifiable task must be no more than the future discounted sum of the expected

total surplus. Here the cost of the unverifiable task depends on the type.37 Then the

optimization problem must take into consideration the constraints for every θ. Since there

are infinitely many θ, it makes the problem much more complex.38 It further suggests

that it could be the case that some types do not accept the mechanism in equilibrium even

under Assumption 2.1. Thus we might have to consider the set of types which reject the

mechanism. It makes the analysis more complex.

2.7.2 Assumptions on the Behaviour

Punishment upon Rejection of Mechanisms Assumption 2.3 imposes that if no mecha-

nism is offered or an offered mechanism is rejected, then the players play the same strategy

in the continuation game. It implies that if the equilibrium stipulates that P offers a mech-

anism in period 0, then the same mechanism must be offered in the next period if it was

rejected in period 0.

For δ ≥ δ, on the OPPE the same mechanism is offered each period and all types accept

it. Then rejection is an unexpected deviation in the sense that it leads off the equilibrium

path. According to Abreu (1988), allowing the punishment for deviations leading off the

equilibrium path could make the players better off. Thus allowing termination of the

37It would be the case even if cθ(q, θ) = cθ(q, θ) because the type affects the optimal quantity, which further
affects the effort as long as cq(q, θ) > cq(q, θ).

38If we make an assumption that cθ(q, θ) = cθ(q, θ), then it can be shown that the right hand side achieves
the maximum at θ = θ.
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relationship after rejecting the mechanism could change the equilibrium.

In order to look at this possibility, consider the following situation. After A rejects

the equilibrium mechanism, instead of the same mechanism being offered, P does not

offer any mechanism and both parties obtain zero payoff. Denote this equilibrium by

superscript ∗∗. Now consider the participation constraint for A with type θ. If he accepts

the mechanism, then he obtains U∗∗(θ) in the current period and u∗∗ as his continuation

payoff. Conversely, If he rejects it, then he obtains 0 in the current period and also 0 as his

continuation payoff. Then instead of (2.3), the participation constraint becomes

U∗∗(θ) +
δ

1 − δu∗∗ ≥ 0

for all θ ∈ [θ, θ].

By the same procedure as in Section 2.4, we see that the equilibrium satisfies that for

high δ,

sq(q∗∗(θ), e, θ) = (1 − δ)cqθ(q∗∗(θ), θ)
F(θ)
f (θ)

and for intermediate δ,

sq(q∗∗(θ), e, θ) =
1 − δ

1 + δ
1−δλ

∗∗ cqθ(q∗∗(θ), θ)
F(θ)
f (θ)

where λ∗∗ > 0. It immediately implies that for high δ, qFB(θ) > q∗∗(θ) > q∗(θ) = qSB(θ)

for θ ∈ (θ, θ] meaning that total efficiency is improved by imposing punishment for A’s

rejection.39 Intuitively, by rejecting the mechanism, A loses two benefits: the current

39For intermediate δ, direct comparison between q∗(θ) and q∗∗(θ) is impossible in general since the thresh-
old of the discount factor and the Lagrange multiplier are different. Nevertheless the same inequality is
established.
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information rent and the expected payoff from future trade. It means that relative to

the case without punishments for the rejection, the current payoff is less important for A

and then the incentive to mimic another type to obtain the information rent is also less

important. It leads to a more efficient outcome since P’s concern about the reduction of

information rent is less serious. Imposing punishment on A’s rejection also alters A’s

payoff level. Specifically,

U∗∗(θ) = −δ
∫ θ

θ

cθ(q∗∗(θ), θ)F(θ)dθ,

which is obviously negative for δ > 0. Then, even if the current payoff is lower than his

outside option, A could choose to participate because present loss can be compensated by

future trade.

Whereas imposing punishment on rejection can improve efficiency, we rule out this

possibility in the main analysis for two reasons. First, it is not robust to some aspects.

For instance, the result that every type participates in equilibrium is due to Assumption

2.1 on J(q, e, θ). If this assumption is relaxed and there are some types rejecting the

mechanism in equilibrium, rejection is no longer an unexpected observable deviation and

then the punishment is not necessarily optimal. Second, while the equilibrium is altered

by imposing punishment on rejection, our main results derived above are qualitatively

the same. In particular, the social desirability of unverifiability and the issues in job design

can be demonstrated similarly even if we allow punishment for rejection and then our

message from the analysis is basically unchanged.

Principal’s Commitment Ability The important restriction made by Assumption 2.4

is that in each period the strategy must maximize the principal’s payoff subject to the
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equilibrium conditions as long as the players are on the equilibrium path. In other words,

the principal cannot commit themselves to a worse equilibrium in the continuation game.

While this assumption seems to be reasonable in the case where we presume that P has

always full bargaining power, we should review the case where the principal can commit

themselves to a worse outcome.

If both Assumption 2.3 and 2.4 are absent, then P’s optimal equilibrium strategy is

no longer stationary. Nevertheless, when e is verifiable, it is still simply characterized as

follows.40

• If δ ≥ δ, then the equilibrium decision in period t, (qt(θ), et(θ)) is independent of the

past history and satisfies (q0(θ), e0(θ)) = (qSB(θ), eSB(θ))

(qt(θ), et(θ)) =



(qSB(θ), eSB(θ)) for t = 0

(qFB(θ), eFB(θ)) for t ≥ 1

and

• otherwise, the principal offers no contract every period.

When δ ≥ δ, only the decision in the first period is distorted in equilibrium. When

the principal implements the first best, she must give more information rent to the agent

than the second best level. While it is costly for her in the one shot relation, the dynamic

structure allows that this loss for her can be compensated by transfer from the agent in

the first period.

It is not hard to confirm that these results are not consistent with what we have argued

so far. Specifically, raising δ and verifiability of e never worsen efficiency. Then it seems

that our argument is vulnerable without Assumption 2.4. Nevertheless we argue that it

40The proof is in the Appendix.
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is due to the assumption that θ is independently drawn over time, which we impose for

tractability of the model. If θ is serial correlated, then our argument would be valid even

without Assumption 2.4 while we do not formally show the result here.

The above conjecture can be obtained from the result by Battaglini (2005) who studies

a model of dynamic price discrimination where the consumer has private information

about the valuation of the good and the valuation evolves in a Markovian way. Whereas he

considers a single task model with binary types, the first task level in the above equilibrium

is very similar to his equilibrium characterization where the type is independently drawn

over time. As Battaglini (2005)’s result suggests, if the type evolves in a Markovian

way, then the decision optimal for the principal still remains inefficient distortion in the

future. It implies that if in our two task model the type evolves in a Markovian way and

Assumption 2.3 and 2.4 are absent, then the principal attempts to implement the quantity

similar to Battaglini (2005)’s characterization as long as it can provide an incentive for the

second task.

We have argued that when the constraint to honour relational contracts are stringent,

the future inefficiency can be mitigated for ensuring the relational contract to work. In

our framework with independent drawn type, however, without Assumption 2.4 the

information rent problem causes the inefficiency only in the first period and then our logic

is not valid. Nevertheless we guess that if the type is serially correlated which causes

persistent inefficiency due to the screening problem, our argument would be restored

even if Assumption 2.3 and 2.4 are dropped.

Incentives through Efficiency Wages Throughout this chapter, we assume that ex post

transfer stipulated by informal agreements is available every period as long as the players

have no incentive to deviate. Nevertheless it might be presumably infeasible from some
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reasons.41 If ex post transfer is unavailable, the efficiency wage can be a substitute for

providing incentives for unverifiable tasks. As Shapiro and Stiglitz (1984) demonstrate, in

the efficiency wage scheme, the players terminate their relationship after observing that

the agent makes an unexpected deviation.

Let us describe the stationary equilibrium with efficiency wages. Denote the equi-

librium with efficiency wage by superscript EW. Since they do not use any informal

agreements, (HC) is no longer relevant. It is straightforward that (TT) and (PC) are the

same as before. The constraint is changed in (EI). If A with type θ chooses q = qEW(θ) and

e = e, then he can obtain UEW(θ) in the current period and uEW as the continuation payoff.

Conversely if he chooses q = qEW(θ′) and e = 0, then his payoff in the current period is

pEW(qEW(θ′)) − c(qEW(θ′), θ) = UEW(θ′) + c(qEW(θ′), θ′) − c(qEW(θ′), θ) + e

and the continuation payoff is 0 because the relationship with the principal ends. Hence

the equilibrium condition is

UEW(θ) +
δ

1 − δuEW ≥ UEW(θ′) + c(qEW(θ′), θ′) − c(qEW(θ′), θ) + e.

As Lemma 2.2, the equilibrium is characterized by the optimization problem to maximize

41For instance, if we consider a sequence of short-lived principals instead of one principal playing in
infinite periods, then each principal cannot commit to honour any informal agreements. Another example
is a situation where there are multiple agents competing each period to get the monopolistic transaction
opportunity with the principal. In this case, the principal has an opportunity to find and transact with
another agent next period. If the parties outside the transaction have no way of knowing if cheating was
taken place in the informal agreement, then punishing such cheating becomes impossible. It makes it
impossible for the principal to credibly commit herself to informal agreements no matter how patient she
is. See MacLeod and Malcomson (1989, 1998) and Calzolari and Spagnolo (2010) for an analysis of the
competitive situation.
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∫ θ

θ
J(qEW(θ), e, θ)F(θ)dθ subject to

δ
1 − δuEW ≥ e (2.16)

and monotonicity of qEW(θ) where uEW =
∫ θ

θ
cθ(qEW(θ), θ)F(θ)dθ. It is again straight-

forward that if δ is so high that qEW(θ) = qSB(θ) satisfies (2.16), then it is the solution.

Otherwise, it is still valid to solve the Lagrangian if cθqq ≤ 0. In this case, qEW(θ) satisfies

that

sq(qEW(θ), e, θ) =

(
1 − δλ

EW

1 − δ

)
F(θ)
f (θ)

cθq(qEW(θ), θ)

with λEW ≥ 0 which satisfies (2.16) with equality provided that λEW ≤ (1 − δ)/δ.42 If

these qualifications are satisfied, then a similar result is obtained to the case with informal

agreements; the total surplus for intermediate discount factors is greater than for high

discount factors.

If the above characterization by the Lagrangian is not valid, then the quantity could

be distorted upward from qFB(θ). Whereas we admit it to be an open question, our

guess is reasonable since (2.16) shows that to induce eEW = e is possible if A’s (future)

information rent is sufficiently large. Since the information rent is assured by increasing

q monotonically, P would distort q upward as long as such large q is still beneficial to her.

2.8 Conclusion

This chapter studied the interaction of formal and informal contracts in multitasking

agency problem with adverse selection. We investigated the multitasking incentive prob-

42If λEW > (1 − δ)/δ, then qEW(θ) does not satisfy monotonicity.
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lem to show how the incentive problems due to hidden information and unverifiability

interact. The analysis provided various insights on contract and organization design.

We have shown that unverifiability can improve social efficiency. If a performance

measure of some task becomes unverifiable, then the principal needs to use relational

contracts to provide incentives to undertake the task. Then the principal’s main concern

might shift from the reduction of the agent’s rent to assuring credible relational contracts.

This shift could improve social efficiency since relational contracts can be sustained by

increasing the future total surplus.

Second, the task assignment problem implies that those tasks should be bundled

and allocated to a single agent. Specifically, whereas leaving the decision rights on the

unverifiable task in the hands of the principal seems to mitigate the agency problem,

as in the discussion of the verifiable task, it negatively affects the relational contracts.

Furthermore, separating those tasks between two agents is totally undesirable. This

suggests that those tasks should be treated as complements from the incentive perspective.

We conclude by suggesting a future research agenda. First, our model does not include

any measurement error. According to Levin (2003), an extension in this direction seems

to be somewhat easy since the optimal equilibrium would still be stationary and, as

mentioned in Section 2.7, it can provide additional insights on contract and organization

design. Second and more broadly, we guess that a similar result can be obtained without

hidden information. In particular, the key idea behind the assumption on the first task is

that the decision on the first task is distorted from the efficient level due to the principal’s

cost of implementing the efficient decision. This phenomenon also emerges for instance

in moral hazard environments with limited liability. However, if there is another task

whose performance measure is unverifiable, the principal again alters her priority from

incentivizing the first task according to her payoff to ensuring credible relational contracts.
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Thus a formal analysis that investigates what kind of multitasking agency problems

generates an outcome similar to ours is a future research topic for examining the robustness

of our prediction.43

2.9 Appendix: Proofs

2.9.1 Proof of Proposition 2.1

First, we show two lemmas.

Lemma 2.5 Let (π,u) be a PPE payoff. Then π ≥ 0 and u ≥ 0.

Proof (Lemma 2.5) P can achieve at least zero payoff by abstaining from offering mechanisms

regardless of the public history. A can obtain at least zero payoff by rejecting any mechanism

regardless of the public history. �

Lemma 2.6 There exists a PPE σ such that Γ(ht) = φ for all ht ∈ H .

Proof (Lemma 2.6) Consider the strategy satisfying the following. For all ht ∈ H , Γ(ht) = φ

and for any W̃ = (p̃, b̃) ∈W and d ∈ D

χ(W̃ | ht, θ) =



(q̃, 0) ∈ D if q̃ ∈ arg maxq∈Q[p̃(q) − c(q, θ)] and p̃(q̃) − c(q̃, θ) ≥ 0

ω otherwise,

ιi(W̃, d | ht) = R.

Namely, P does not offer any mechanism and A does not choose e = e after every history as long as

it assures non-negative payoff in the current period. Given history ht, type θ, and mechanism W̃,

43The difficulty of the model of relational contracts with limited liability is that the optimal equilibrium
is in general non-stationary and then the dynamics must be taken into account. For instance, see Thomas
and Worrall (1994) and Fong and Li (2010).
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A has no incentive to deviate from χ(W̃ | ht, θ) since deviation does not improve his current payoff

nor change the continuation payoff.44 Given history ht, type θ, mechanism W̃ ∈ W, and decision

d ∈ D, to change from ιA(W̃, d | ht) = R to H does not alter A’s payoff since ιH(W̃, d | ht) = R and

the continuation payoff is not changed. Thus the strategy is sequentially rational for A. Suppose

that changing P’s strategy alters her expected payoff. Note that due to the same argument, to

change from ιP(W̃, d | ht) = R to IP = H does not alter P’s payoff. Then it could be the case only

when she deviates at stage 0 in some period and A must accept the mechanism. However because of

the construction of A’s strategy, if A accepts the mechanism, then the total benefit must be strictly

lower than 0 by Assumption 2.1. It implies that either P or A’s payoff must be strictly lower than

0, which contradicts Lemma 2.5. Thus changing P’s strategy does not alter her expected payoff

implying that P has no incentive to change her strategy. Then this strategy is a PPE. �

Note that Lemma 2.6 implies that there is a PPE in which the expected payoff vector is

(0, 0).

Suppose that Γ(h0) = φ. Then by assumption 2.4, Γ(ht) = φ for any ht on the equilibrium

path. The strategy described in the proof of Lemma 2.6 generates the equilibrium payoff

(0, 0). Since Lemma 2.5 assures that the OPPE payoff must be no less than 0 for both

parties, the statement in Proposition 2.1 is satisfied.

44We have assumed that an formal contract p(·) must be continuous. When we allow P to offer non-
continuous p(·), this strategy is not necessarily sequentially rational. Specifically, for some non-continuous
p(·), arg maxq∈Q[p(q) − c(q, θ)] might be empty. It means that in the subgame after such p(·) is offered, there
is no optimal decision for A and then this strategy does not satisfy the conditions of PPE off the equilibrium
path.
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In the rest of the proof, suppose that Γ(h0) ∈ W. Denote the set of public strategies by

Σ̂i for i = P,A. As mentioned in Section 2.3.3, σP and σA can be respectively rewritten as

σP



W ∈W

ιP : W ×D→ I

σP
+ : {φ} ∪ (W × ((D × I2) ∪ {ω}))→ Σ̂P

and

σA



χ : [θ, θ] ×W→ D

ιA : W ×D→ I

σA
+ : {φ} ∪ (W × ((D × I2) ∪ {ω}))→ Σ̂A.

For notational simplicity, let `(W, d) = 1{ιi(W, d) = H for i = P,A} and (π+(h1),u+(h1)) be

the continuation payoff where the public history after period 0 was h1. Let (π,u) be the

corresponding payoff. By applying the one-shot deviation principle, it is shown that σ

satisfies if the following five conditions (PPC), (IC), (PHC), (AHC), and (CE) are satisfied;

(PPC):

∫

θ:d(θ,W)∈D

[
y(χ(θ,W)) − p(q(θ,W)) − `(W, χ(θ,W))b(χ(θ,W))

+
δ

1 − δπ+(W, χ(θ,W), ιP(W, χ(θ,W)), ιA(W, χ(θ,W)))
]

f (θ)dθ +

∫

θ:d(θ,W)<D

δ
1 − δπ f (θ)dθ

≥ max
{

sup
W′∈W

[ ∫

θ:d(θ,W′)∈D

[
y(χ(θ,W′)) − p(q(θ,W′)) − `(W′, χ(θ,W′))b(χ(θ,W′))

+
δ

1 − δπ+(W′, χ(θ,W′), ιP(W′, χ(θ,W′)), ιA(W′, χ(θ,W′)))
]

f (θ)dθ

+

∫

θ:d(θ,W′)<D

δ
1 − δπ f (θ)dθ

]
,
δ

1 − δπ
}
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(IC): when χ(θ,W) = (q(θ,W), e(θ,W)) ∈ D,

p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + `(W, χ(θ,W))b(χ(θ,W))

+
δ

1 − δu+(W, χ(θ,W), ιP(W, χ(θ,W)), ιA(W, χ(θ,W)))

≥ max

 sup
d′≡(q′,e′)∈D

[
p(q′) − c(q′, θ) − e′ + `(W, d′)b(d′) +

δ
1 − δu+(W, d′, ιP(W, d′), ιA(W, d′))

]
,

δ
1 − δu

}

and when χ(θ,W) = ω,

δ
1 − δu ≥ sup

d′≡(q′,e′)∈∈D

[
p(q′) − c(q′, θ) − e′ + `(W, d′)b(d′) +

δ
1 − δu+(W, d′, ιP(W, d′), ιA(W, d′))

]
,

(PHC): when ιP(W, d) = H,

−b(d) +
δ

1 − δπ+(W, d,H, ιA(W, d)) ≥ δ
1 − δπ+(W, d,R, ιA(W, d)),

and when ιP(W, d) = R,

−b(d) +
δ

1 − δπ+(W, d,H, ιA(W, d)) ≤ δ
1 − δπ+(W, d,R, ιA(W, d)),

(AHC): when ιA(W, d) = H,

b(d) +
δ

1 − δu+(W, d, ιP(W, d),H) ≥ δ
1 − δu+(W, d, ιP(W, d),R),

and when ιA(W, d) = R,

b(d) +
δ

1 − δu+(W, d, ιP(W, d),H) ≤ δ
1 − δu+(W, d, ιP(W, d),R),
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and

(CE): for all z = φ or (W, d) ∈W × ({ω} ∪ (D × I2)), (π+(z),u+(z)) is a PPE and it is also an

OPPE if z is on the equilibrium path.

Let Σ∗ ≡ {σ ∈ Σ̂ | σ satisfies (PPC), (IC), (PHC), (AHC), and (CE)}. The OPPE is the

strategy which maximizes P’s payoff in Σ∗. Let Ψ∗ be the set of payoff vectors attained by

σ ∈ Σ∗.

Lemma 2.7 If σ ∈ Σ∗, its associated mechanism in period 0 is W ∈ W, and W is accepted with

positive probability, then there exists an OPPE σ̃ with its associated mechanism in period 0 is W̃

such that the payoff is the same as σ and the informal agreements are honoured whenever W̃ is

offered and A accepts it.

Proof (Lemma 2.7) Construct strategy σ̃ as follows; for d ∈ D such that ι(W, d) , (H,H),

b̃(d) = 0,

(π̃+(W̃, d,H,H), ũ+(W̃, d,H,H)) = (π+(W, d, ι(W, d)),u+(W, d, ι(W, d))),

(π̃+(W̃, d, I), ũ+(W̃, d, I)) = (0, 0) for I , (H,H),

ι̃P(W̃, d) = ι̃A(W̃, d) = H,

and the others are the same as σ, i.e., χ̃(θ, W̃) = χ(θ,W), p̃(q) = p(q), b̃(d) = b(q), ι̃i(W̃, d) =

ιi(W, d) for i = P,A, (π̃+(W̃, d, I), ũ+(W̃, d, I)) = (π+(W, d, I),u+(W, d, I)), and (π̃+(W̃, ω), ũ+(W̃, ω)) =

(π+(W, ω),u+(W, ω)). Note that (π̃+(W̃, d,H,H), ũ+(W̃, d,H,H)) ∈ Ψ∗ and (π̃+(W̃, d, I), ũ+(W̃, d, I))

is a PPE for I = (H,R), (R,H), (R,R) thanks to Lemma 2.5. Then (CE) is satisfied. By construction,

(PHC) and (AHC) with ι̃P(W̃, d′) = ι̃A(W̃, d′) = H are satisfied for any d′ ∈ D and

p̃(q) + ˜̀(W̃, d′)b(d′) +
δ

1 − δ ũ+(W̃, d′,H,H)
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= p(q) + `(W, d′)b(d′) +
δ

1 − δu+(W, d′, ιP(W, d′), ιA(W, d′)) (2.17)

that assures (PPC) and (IC). Hence σ̃ is a PPE. Since χ̃(W̃, θ) = χ(W, θ) and (2.17) holds, A’s

payoff in σ̃ is the same as σ, generating the same payoff as σ. �

Then without loss of generality, (PHC) and (AHC) are written as

(PHC’): for any d ∈ D,

−b(d) +
δ

1 − δπ+(W, d,H,H) ≥ δ
1 − δπ+(W, d,R,H)

(AHC’): for any d ∈ D,

b(d) +
δ

1 − δu+(W, d,H,H) ≥ δ
1 − δu+(W, d,H,R).

Lemma 2.8 Ψ∗ is compact.

Proof (Lemma 2.8) For all (π, u) ∈ Ψ∗, Lemma 2.5 assures (π,u) ≥ (0, 0) and since s(q, e, θ) is

bounded from above, π + u is also bounded above. Then Ψ∗ is bounded.

To show that it is closed, consider an arbitrary converging sequence {(πn,un)}∞n=0 where

(πn,un) ∈ Ψ∗ for all n ≥ 0 and limn→∞(π, u) and let σn be the corresponding strategy pro-

file. The proof is completed if (π, u) ∈ Ψ∗. Let W ≡ {p : Q → [−K,K], b : D → [−K,K]} where

K ≡ supq′∈Q,e′∈{0,e},θ′∈[θ,θ] s(q′, e′, θ′)δ/(1−δ). Then the mechanism offered under σn is without loss

of generality in W which is compact. Then we can construct a converging subsequence {σ̃n}∞n=0.

Let σ̃ be its limit. Note that σ̃ can be decomposed to W̃, d̃(θ,W), ι̃i(W, d), and σ̃i
+(h1) for i = P,A.

Now suppose that (π, u) < Ψ∗. Then either (PPC), (IC), (PHC’), (AHC’), or (CE) is violated. If
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(PPC) is violated, then there exists W′ ∈W such that

∫

θ:d̃(θ,W̃)∈D

[
y(χ̃(θ, W̃)) − p̃(q̃(θ, W̃)) − ˜̀(W̃, χ̃(θ, W̃))b̃(χ̃(θ, W̃))

+
δ

1 − δπ̃+(W̃, χ̃(θ, W̃), ι̃P(W̃, χ̃(θ, W̃)), ι̃A(W̃, χ̃(θ, W̃)))
]

f (θ)dθ

+
δ

1 − δ
∫

θ:d̃(θ,W̃)<D
π̃ f (θ)dθ + ε

< max
{∫

θ:d̃(θ,W′)∈D

[
y(χ̃(θ,W′)) − p′(q̃(θ,W′)) − ˜̀(W′, χ̃(θ,W′))b′(χ̃(θ,W′))

+
δ

1 − δπ̃+(W′, χ̃(θ,W′), ι̃P(W′, χ̃(θ,W′)), ι̃A(W′, χ̃(θ,W′)))
]

f (θ)dθ

+
δ

1 − δ
∫

θ:d̃(θ,W′)<D
π̃ f (θ)dθ,

δ
1 − δπ̃

}

for some ε > 0. Since σ̃ is a limit of a converging sequences {σ̃n}∞n=0, There exists N > 0 such that

∫

θ:dN(θ,WN)∈D

[
y(χN(θ,WN)) − pN(qN(θ,WN)) − `N(WN, χN(θ,WN))bN(χN(θ,WN))

+
δ

1 − δπ
N
+ (WN, χN(θ,WN), ιPN(WN, χN(θ,WN)), ιAN(WN, χN(θ,WN)))

]
f (θ)dθ

+
δ

1 − δ
∫

θ:dN(θ,WN)<D
π̃ f (θ)dθ

< max
{∫

θ:dN(θ,W′)∈D

[
y(χN(θ,W′)) − p′(qN(θ,W′)) − `N(W′, χN(θ,W′))b′(χN(θ,W′))

+
δ

1 − δπ
N
+ (W′, χN(θ,W′), ιPN(W′, χN(θ,W′)), ιAN(W′, χN(θ,W′)))

]
f (θ)dθ

+
δ

1 − δ
∫

θ:dN(θ,W′)<D
πN f (θ)dθ,

δ
1 − δπ

N

}
,

which contradicts that σ̃N is a PPE. Thus it could not be the case that (PPC) is violated. Similar

arguments show that neither (IC), (PHC’), nor (AHC’) is not violated. Finally, suppose that (CE)

is violated. Then there exists a strategy profile σ̃+(h1) for some public history up to period 1, h1,

such that party i can increase his payoff by changing to another strategy σi′ ∈ Σi. If i = P, then

it states that π(σ̃+(h1)) + ε < π(σP′, σ̃A
+(h1)) for some ε > 0 where π(σ) is P’s average payoff

given strategy profile σ. Note that since π(σ) is a sum of the discounted payoff, if {σ̃n
+(h1)}∞n=0 is
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a converging sequence, then {π(σ̃n
+(h1))}∞n=0 and {π(σP′, σ̃n

+(h1))}∞n=0 are converging sequences too.

Then there exists N > 0 such that π(σ̃N
+ (h1)) < π(σP′, σ̃NA

+ (h1)) for some σP′ ∈ ΣP. It contradicts

that σ̃N
+ (h1) is a PPE. The same argument can be applied for i = A. �

Suppose that σ is an OPPE. By Lemma 2.8, σ can be restricted to one such that the

payoff (π, u) ∈ Ψ∗ satisfies that for all (π′,u′) ∈ Ψ∗, π ≥ π′ and u ≥ u′ if π = π′. That

is, (π,u) is on the Pareto frontier of Ψ∗ subject to π attaining the maximum. Now we

construct a strategy σ∗ in Ψ∗ generating a payoff which weakly Pareto-dominates that of

σ. For d ∈ D, let W∗ = (p∗(·), b∗(·)) be such that

b∗(d) = b(d) +
δ

1 − δ [u+(W, d,H,H) − u] − inf
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]

p∗(q) = p(q) + inf
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
.

In each period t, P chooses Wt = φ if each of the players has chosen Ii
s = R for some s < t

and Wt = W∗ otherwise. If W∗ is offered, then A chooses χ∗(θ,W∗) = χ(θ,W) for all θ.

Note that Lemma 2.6 ensures that there is a PPE such that P does not offer any

mechanism. Since P offers W∗ repeatedly on the equilibrium path of σ∗, if (IC), (PHC’),

and (AHC’) under σ∗ are satisfied, there is no incentive to deviate at any information

set implying that σ∗ is a PPE. Note that the continuation payoff is u∗ unless the implicit

contracts were reneged on.

We first confirm that (IC) is satisfied under W∗. Note that since σ is an OPPE, (IC)

under σ implies that for χ(θ,W) = (q(θ,W), e(θ,W)) ∈ D,

p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b(χ(θ,W)) +
δ

1 − δu+(W, χ(θ,W),H,H)

≥ max

 sup
d′≡(q′,e′)∈D

[
p(q′) − c(q′, θ) − e′ + b(d′) +

δ
1 − δu+(W, d′,H,H)

]
,
δ

1 − δu+(W, ω)


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and for χ(θ,W) = ω,

δ
1 − δu+(W, ω) ≥ sup

d′≡(q′,e′)∈D

[
p(q′) − c(q′, θ) − e′ + b(d′) +

δ
1 − δu+(W, d′,H,H)

]
.

These imply (IC) under σ∗ by the following argument. First, note that

u∗ = (1 − δ)
∫

θ:d(W,θ)∈D

[
p∗(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b∗(χ(θ,W))

]
f (θ)dθ

+δu∗

= (1 − δ)
∫

θ:d(W,θ)∈D

[
p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b(χ(θ,W))

+
δ

1 − δ [u+(W, χ(θ,W),H,H) − u]
]

f (θ)dθ + δu∗

⇐⇒ u∗ =

∫

θ:d(W,θ)∈D

[
p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b(χ(θ,W))

+
δ

1 − δ [u+(W, χ(θ,W),H,H) − u]
]

f (θ)dθ

and

u =

∫

θ:d(W,θ)∈D

[
(1 − δ)

(
p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b(χ(θ,W))

)

+δu+(W, χ(θ,W),H,H)] f (θ)dθ + δ

∫

θ:d(W,θ)<D
u+(W, ω) f (θ)dθ.

Since (π,u) is on the Pareto frontier of Ψ∗, Assumption 2.4 ensures that u ≥ u+(W, ω). It

implies that

u∗ =
1

1 − δu − δ
1 − δ

∫

θ:d(W,θ)<D
u+(W, ω) f (θ)dθ − δ

1 − δ
∫

θ:d(W,θ)<D
u f (θ)dθ

≥ 1
1 − δu − δ

1 − δ
∫

θ:d(W,θ)<D
u f (θ)dθ − δ

1 − δ
∫

θ:d(W,θ)<D
u f (θ)dθ = u
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Then for χ(θ,W) = (q(θ,W), e(θ,W)) ∈ D,

p∗(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b∗(χ(θ,W)) +
δ

1 − δu∗

= p(q(θ,W)) − c(q(θ,W), θ) − e(θ,W) + b(χ(θ,W)) +
δ

1 − δu+(W, χ(θ,W),H,H)

≥ max

 sup
d′≡(q′,e′)∈D

[
p(q′) − c(q′, θ) − e′ + b(d′) +

δ
1 − δu+(W, d′,H,H)

]
,
δ

1 − δu+(W, ω)



= max

 sup
d′≡(q′,e′)∈D

[
p∗(q′) − c(q′, θ) − e′ + b∗(d′) +

δ
1 − δu

]
,
δ

1 − δu+(W, ω)



= max

 sup
d′≡(q′,e′)∈D

[
p∗(q′) − c(q′, θ) − e′ + b∗(d′) +

δ
1 − δu∗

]
,
δ

1 − δu∗


and for χ(θ,W) = ω,

δ
1 − δu∗ =

δ
1 − δu+(W, ω) ≥ sup

d′≡(q′,e′)∈D

[
p(q′) − c(q′, θ) − e′ + b(d′) +

δ
1 − δu+(W, d′,H,H)

]

= sup
d′≡(q′,e′)∈D

[
p∗(q′) − c(q′, θ) − e′ + b∗(d′) +

δ
1 − δu

]

= sup
d′≡(q′,e′)∈D

[
p∗(q′) − c(q′, θ) − e′ + b∗(d′) +

δ
1 − δu∗

]
.

These inequalities are equivalent to (IC) under σ∗.

We next confirm (AHC’). By construction of b∗(d),

b∗(d) +
δ

1 − δu∗

= b(d) +
δ

1 − δ [u+(W, d,H,H) − u] − inf
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
+

δ
1 − δu∗

≥ b(d) +
δ

1 − δu+(W, d,H,H) − inf
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
≥ 0,

which implies (AHC’) for σ∗.
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Finally, we confirm (PHC’). Note that

π∗ = (1 − δ)
∫

θ:d(W,θ)∈D

[
y(χ(θ,W)) − p∗(q(θ,W)) − b∗(χ(θ,W))

]
f (θ)dθ + δπ∗

= (1 − δ)
∫

θ:d(W,θ)∈D

[
y(χ(θ,W)) − p(q(θ,W)) − b(χ(θ,W))

− δ
1 − δ [u+(W, χ(θ,W),H,H) − u]

]
f (θ)dθ + δπ∗

⇐⇒ π∗ =

∫

θ:d(W,θ)∈D

[
y(χ(θ,W)) − p(q(θ,W)) − b(χ(θ,W))

− δ
1 − δ [u+(W, χ(θ,W),H,H) − u]

]
f (θ)dθ

and

π =

∫

θ:d(W,θ)∈D

[
(1 − δ)

(
y(χ(θ,W)) − p(q(θ,W)) − b(χ(θ,W))

)

+δπ+(W, χ(θ,W),H,H)] f (θ)dθ + δ

∫

θ:d(W,θ)<D
π+(W, ω) f (θ)dθ.

Since Assumption 2.4 ensures that π+(W, ω) = π,

π∗

=
1

1 − δπ −
∫

θ:d(W,θ)∈D

δ
1 − δπ+(W, χ(θ,W),H,H) f (θ)dθ

− δ
1 − δ

∫

θ:d(W,θ)<D
π+(W, ω) f (θ)dθ − δ

1 − δ
∫

θ:d(W,θ)∈D
[u+(W, χ(θ,W),H,H) − u] f (θ)dθ

= π +
δ

1 − δ

[
π −

∫

θ:d(W,θ)∈D
(s+(W, χ(θ,W),H,H) − u) f (θ)dθ −

∫

θ:d(W,θ)<D
π+(W, ω) f (θ)dθ

]

= π +
δ

1 − δ

[∫

θ:d(W,θ)∈D
(s − s+(W, χ(θ,W),H,H)) f (θ)dθ

]
.

Note that by construction of σ, s ≥ s+(W, χ(θ,W),H,H) for all θ. Thus we obtain π∗ ≥ π.
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(PHC’) is satisfied if and only if

−b∗(d) +
δ

1 − δπ
∗

= −b(d) − δ
1 − δ [u+(W, d,H,H) − u] + inf

d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
+

δ
1 − δπ

∗

is no less than 0 for all d. It is equivalent to that the following is no less than 0;

− sup
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
+ inf

d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
+

δ
1 − δ[π∗ + u]

= − sup
d∈D

[
b(d) +

δ

1 − δu+(W, d,H,H)
]

+ inf
d∈D

[
b(d) +

δ

1 − δu+(W, d,H,H)
]

+
δ

1 − δs∗ ≥ 0

⇐⇒ δ
1 − δs∗ ≥ sup

d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
− inf

d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
. (2.18)

Recall from (PHC’) and (AHC’) under σ that

b(d) +
δ

1 − δu+(W, d,H,H) ≥ δ
1 − δu+(W, d,H,R) ≥ 0

implying that

− inf
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
≤ 0

and

sup
d∈D

[
b(d) +

δ
1 − δu+(W, d,H,H)

]
= sup

d∈D

[
b(d) +

δ
1 − δ (s+(W, d,H,H) − π+(W, d,H,H))

]

≤ sup
d∈D

[
b(d) +

δ
1 − δ (s∗ − π+(W, d,H,H))

]

= − inf
d∈D

[
−b(d) +

δ
1 − δπ+(W, d,H,H)

]
+

δ
1 − δs∗

≤ − δ
1 − δπ+(W, d,R,H) +

δ
1 − δs∗ ≤ δ

1 − δs∗
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Summing these inequalities implies (2.18).

2.9.2 Proof of Lemma 2.1 and 2.2

Let Θ∗ be the set of types for which d∗(θ) ∈ D, i.e. the set of types who accept the

mechanism in the OPPE, and Θ∗C ≡ [θ, θ] \Θ∗. We first establish Lemma 2.2 by showing

that given Θ∗ = [θ, θ], the equilibrium can be characterized by the optimization problem

in Lemma 2.2. We next establish Lemma 2.1 by showing the equilibrium must satisfy

either Θ∗ = [θ, θ] or Θ∗ = ∅.

Proof of Lemma 2.2 Note that because of (2.1),

u∗ = U∗(θ) +

∫ θ

θ

cθ(q∗(θ), θ)F(θ)dθ

and then (2.4) can be written as

δ

1 − δ


∫ θ

θ

J(q∗(θ), e∗(θ), θ) f (θ)dθ −U∗(θ)



≥ b∗(q, e) ≥ − δ
1 − δ

U∗(θ) +

∫ θ

θ

cθ(q∗(θ), θ)F(θ)dθ

 . (2.19)

Now b∗(q, e) appears only in constraints (2.2) and (2.19). By observing (2.2), we see that

(2.2) is relaxed by increasing b∗(q∗(θ′), e∗(θ′)) and by decreasing b∗(q∗(θ′), e′). It implies that

without loss of generality

b∗(q∗(θ), e) =



δ
1 − δ


∫ θ

θ

J(q∗(z), e∗(z), z) f (z)dz −U∗(θ)

 if e = e∗(θ)

− δ
1 − δ

U∗(θ) +

∫ θ

θ

cθ(q∗(z), z)F(z)dz

 if e = e′
(2.20)
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and then (2.2) becomes

δ
1 − δ

∫ θ

θ

s(q∗(z), e∗(z), z) f (z)dz +

∫ θ′

θ

cθ(q∗(x), x)dx − c(q∗(θ′), θ′) + c(q∗(θ′), θ)

≥ e∗(θ′) − e′

⇐⇒ δ
1 − δ

∫ θ

θ

s(q∗(z), e∗(z), z) f (z)dz +

∫ θ′

θ

[
cθ(q∗(x), x) − cθ(q∗(θ′), x)

]
dx

≥ e∗(θ′) − e′. (2.21)

Now (2.19) is redundant and U∗(θ) appears only in the objective and (2.3). Then (2.3) is

obviously binding; U∗(θ) = 0. Thus the rest of the constraints are (2.21) and monotonicity

of q∗(θ).

The objective function shows that e∗(θ′) must be e as long as it is feasible. If e∗(θ′) = e,

then the right hand side is e. However recall that given θ′ ∈ [θ, θ] fixed, (2.21) must be

satisfied for any θ ∈ [θ, θ]. Now the following lemma is useful.

Lemma 2.9 Suppose that q∗(θ) is non-increasing in θ. Then

min
θ,θ′∈[θ,θ]

[∫ θ′

θ

[
cθ(q∗(x), x) − cθ(q∗(θ′), x)

]
dx

]
= 0.

Proof (Lemma 2.9) Suppose that q∗(θ) is non-increasing in θ. Given arbitrary θ′ ∈ [θ, θ] fixed,

d
dθ

[∫ θ′

θ

[
cθ(q∗(z), z) − cθ(q∗(θ′), z)

]
dz

]
= −cθ(q∗(θ), θ) + cθ(q∗(θ′), θ)



≥ 0 if θ > θ′

= 0 if θ = θ′

≤ 0 if θ < θ′

meaning that the term
∫ θ′

θ
[cθ(q∗(z), z) − cθ(q∗(θ′), z)]dz is non-increasing in θ < θ′ and non-

decreasing in θ > θ′. This implies that it attains the minimum at θ = θ′ the value of which is
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obviously zero. �

Lemma 2.9 implies that e∗(θ′) = e if and only if

δ
1 − δ

∫ θ

θ

s(q∗(z), e∗(z), z) f (z)dz ≥ e,

which is independent from θ′. This further implies that if e∗(θ) = e for some θ, then

e∗(θ) = e for all θ. If e∗(θ) = 0 for all θ, then Assumption 2.1 implies that π∗ < 0 and P

should choose to offer no mechanism. Thus the equilibrium in which some mechanism is

offered must satisfy that e∗(θ) = e for all θ and the condition becomes (2.6).

Proof of Lemma 2.1 Note that U∗(θ) = 0 for all θ ∈ Θ∗C. If Θ∗ has zero probability

measure, then π∗ is also 0. In this case, to offer no mechanism is indifferent. Thus without

loss of generality, suppose that Θ∗ has positive probability measure.

Furthermore, suppose that for θ < θ′, θ′ ∈ Θ∗ and θ ∈ Θ∗C. For type θ′, there is no

incentive to mimic θ. It is satisfied if and only if

U∗(θ′) ≥ 0.

Conversely, type θ has no incentive to mimic θ′ if and only if

0 ≥ w∗(q∗(θ′), e∗(θ′)) − c(q∗(θ′), θ) − e∗(θ′)

= U∗(θ′) + c(q∗(θ′), θ′) − c(q∗(θ′), θ).

Combining them implies that c(q∗(θ′), θ′) ≤ c(q∗(θ′), θ), which contradictsθ < θ′. It implies

that if θ ∈ Θ∗C, then θ′ ∈ Θ∗C for all θ′ > θ. It also means that there exists θ̂ ∈ [θ, θ] such

that [θ, θ̂) ⊂ Θ∗ and (θ̂, θ] ⊂ Θ∗C.
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Given θ̂ fixed, the equilibrium conditions can be characterized in the same way as

in the proof of Lemma 2.2 by replacing θ with θ̂. Then it can be characterized by the

following optimization problem;

max
∫ θ̂

θ

J(q∗(z), e, z) f (z)dz subject to
δ

1 − δ
∫ θ̂

θ

s(q∗(z), e, z) f (z)dz ≥ e

and monotonicity of q∗(θ). The Euler equation provides the characterization of the equi-

librium as follows.

1. If

δ
1 − δ

∫ θ̂

θ

s(qSB(z), e, z) f (z)dz ≥ e ⇐⇒ δ ≥ δ(θ̂) ≡ e

e +
∫ θ̂

θ
s(qSB(z), e, z) f (z)dz

,

then the equilibrium satisfies that d∗(θ) = (qSB(θ), e) for θ > θ̂.

2. If δ < δ(θ̂) and

δ
1 − δ

∫ θ̂

θ

s(qFB(z), e, z) f (z)dz > e ⇐⇒ δ > δ(θ̂) ≡ e

e +
∫ θ̂

θ
s(qFB(z), e, z) f (z)dz

,

then the equilibrium satisfies that

sq(q∗(θ), e, θ) =
1

1 + δ
1−δλ

∗(θ̂)

F(θ)
f (θ)

cqθ(q∗(θ), θ),

δ
1 − δ

∫ θ̂

θ

s(q∗(z), e, z) f (z)dz = e,

and e∗(θ) = e with some λ∗(θ̂) > 0.

3. For δ = δ(θ̂), q∗(θ) = qFB(θ) and e∗(θ) = e.
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4. For δ < δ(θ̂), W∗ = φ.

Note that the value of P’s payoff is positive if δ ≥ δ(θ̂) while it is zero if δ < δ(θ̂).

Now fix δ ∈ [0, 1) and suppose that θ̂ < θ. In the following, we show that P’s payoff is

weakly increasing in θ̂, implying that choosing θ̂ < θ is never optimal.

First, suppose that δ < δ(θ̂). Note that δ(θ̂) is decreasing in θ̂. When δ < δ(θ), P’s

payoff is still 0 since δ < δ(θ) for any θ. However, when δ ≥ δ(θ), it become positive for

ˆ̂θ such that δ ≥ δ( ˆ̂θ). Then choosing θ̂ < θ is weakly dominated by another ˆ̂θ such that

δ ≥ δ( ˆ̂θ).

Second, suppose that δ = δ(θ̂). Then q∗(θ) = qFB(θ). Now consider ˆ̂θ which is slightly

greater than θ̂. Since

d
dθ

∫ θ

θ

s(qFB(z), e, z) f (z)dz = s(qFB(θ̂), e, θ̂) f (θ̂) > 0

d
dθ

∫ θ

θ

J(qFB(z), e, z) f (z)dz = s(qFB(θ̂), e, θ̂) f (θ̂) > 0

for all θ ∈ [θ̂, ˆ̂θ],

∫ ˆ̂θ

θ

J(qFB(z), e, z) f (z)dz >
∫ θ̂

θ

J(qFB(z), e, z) f (z)dz

and

δ
1 − δ

∫ ˆ̂θ

θ

s(qFB(z), e, z) f (z)dz ≥ e

those imply that by changing θ̂ to ˆ̂θ, P can achieve the payoff greater than the optimal

value under θ̂.

Suppose next that δ ∈ (δ(θ̂), δ(θ̂)). In this case, q∗(θ) satisfies the first order condition
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of the following Lagrangian;

L(θ̂) =

∫ θ̂

θ

J(q∗(z), e, z) f (z)dz + λ∗(θ̂)


δ

1 − δ
∫ θ̂

θ

s(q∗(z), e, z) f (z)dz − e

 .

Note that
∫ θ̂

θ
J(q∗(z), e, z) f (z)dz = L(θ̂) in the neighbourhood of θ̂ and the envelope theorem

implies that

d
dθ̂


∫ θ̂

θ

J(q∗(z), e, z) f (z)dz

 = L′(θ̂) =
∂L
∂θ̂

(θ̂)

= J(q∗(θ̂), e, θ̂) f (θ̂) + λ∗(θ̂)
δ

1 − δs(q∗(θ̂), e, θ̂) f (θ̂) > 0

meaning that slightly increasing θ̂ improves the objective function. Then such θ̂ < θ is

never optimal.

Finally, suppose that δ ≥ δ(θ̂). Since δ(θ̂) is decreasing in θ̂, when θ̂ is increasing, the

value of the objective function is still
∫ θ̂

θ
J(qSB(z), e, z) f (z)dz and it is increasing in θ̂. Then

slightly increasing θ̂ improves the objective functions. Then again such θ̂ < θ is never

optimal.

So far we have shown that Θ∗ = [θ, θ] or [θ, θ). In the case of Θ∗ = [θ, θ), the

optimization problem achieves P’s payoff as high as in the case of Θ∗ = [θ, θ] demonstrated

in Section 2.4. Thus both cases are indifferent for P and it is without loss of generality to

focus on the case of Θ∗ = [θ, θ].
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2.9.3 Proof of Corollary 2.1

It is enough to demonstrate that the total surplus is decreasing and P’s expected payoff is

increasing in δ ∈ [δ, δ). For δ ∈ [δ, δ), q∗(θ) satisfies that

∫ θ

θ

s(q∗(θ), e, θ) f (θ)dθ =
1 − δ
δ

e.

The left hand side is the total surplus and the right hand side is decreasing in δ. On

P’s payoff, since it is characterized by the Lagrangian and the constraint is binding, the

envelope theorem implies that

d
dδ

∫ θ

θ

J(q∗(θ), e, θ) f (θ)dθ =
dL
dδ

=
∂L
∂δ

=
1

(1 − δ)2

∫ θ

θ

s(q∗(θ), e, θ) f (θ)dθ > 0.

2.9.4 Proof of Proposition 2.3

Note that b∗(q∗(θ), e) appears only in (2.2). Then by letting b∗(q∗(θ), e) = e for all θ and

e, Lemma 2.9 implies that (2.2) is satisfied. Since U∗(θ) appears only in (2.5) and (2.3),

(2.3) is obviously binding; U∗(θ) = 0. Then we obtain the problem that maximizes
∫

J(q(θ), e∗(θ), θ)dθ subject to monotonicity of q∗(θ). By Assumption 2.1, the solution is

e∗(θ) = e and q∗(θ) = qSB(θ) for all θ.

2.9.5 Proof of Lemma 2.3

By substituting UC(θ) and bC(qC(θ), e), (2.11) is written as

∫ θ

θ

J(qC(θ), eC, θ) f (θ)dθ ≥
∫ θ

θ

[J(qC(θ), eC, θ) − b(qC(θ), eC) + b(qC(θ), e′)] f (θ)dθ.
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Now bC(qC(θ), e) appears only in this inequality and (2.4). Then by substituting bC(qC(θ), e) =

0 for any θ and e, these inequalities are satisfied. Since UC(θ) appears only in (2.5) and

(2.3), (2.3) is obviously binding; UC(θ) = 0. Then we obtain the problem that maximizes
∫

J(q(θ), eC, θ) f (θ)dθ subject to monotonicity of qC(θ). Assumption 2.1 implies that eC = e.

2.9.6 Proof of Lemma 2.4

By using the notation U1S(θ) = pS(θ) − c(qS(θ), θ) and u2S = bS(eS) − eS, the optimization

problem for characterizing the OPPE under task separation is as follows;

max
∫ θ

θ

[
s(qS(θ), eS, θ) −U1S(θ) − u2S

]
f (θ)dθ

subject to (2.1), (2.3), (2.12), (2.13), (2.14), and monotonicity of qS(θ). If eS = 0, the the

objective is less than 0 meaning that P prefers to abstain from offering any mechanism.

Then we focus on eS = e. Now (2.12) and (2.13) are reduced to u2s ≥ max{bS(0), 0} and

since bS(0) appears only in this and (2.14), it should be lower as long as it is possible. It

implies that bS(0) = −δu2S/(1 − δ) and u2S ≥ 0. Since u2S should also be lower, it implies

that u2S = 0 (and then bS(0) = 0). Substituting (2.1) shows that (2.3) is binding and the

objective becomes

∫ θ

θ

J(qS(θ), e, θ) f (θ)dθ

and since bS(e) = u2S + e = e, (2.14) becomes (2.15).

δ
1 − δ

∫ θ

θ

J(qS(θ), e, θ) f (θ)dθ ≥ e.
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2.9.7 Proof of Proposition 2.5

Since qSB(θ) is monotone and maximizes the objective, it is the solution if it is feasible, i.e.,

δ
1 − δ

∫ θ

θ

J(qSB(θ), e, θ) f (θ)dθ ≥ e ⇐⇒ δ ≥ δS ≡ e

e +
∫ θ

θ
J(qSB(θ), e, θ) f (θ)dθ

.

If it is not feasible, then there is no feasible qS(θ) and then P chooses not to offer any

mechanism.

2.10 Appendix: The Optimal Contract without Assumption

of Limited Commitment Ability

In this section, we characterize the optimal contract when both Assumption 2.3 and 2.4

are dropped.

Conditions for PPE: Without loss of generality, we can focus on the equilibrium in which

both P and A honour informal agreements on the equilibrium path.45 Let (p∗(·), b∗(·, ·)) be

the equilibrium mechanism in period 0, d∗(θ) ≡ (q∗(θ), e∗(θ)) ∈ D be the agent’s equilibrium

decision in period 0 after he accepts (p∗(·), b∗(·)), and (π∗+(p, b, x),u∗+(p, b, x)) be the contin-

uation payoff given mechanism (p, b) and decision x ∈ D and the informal agreement in

period 0 honoured if x ∈ D. Denote Θ∗ ≡ [θ ∈ [θ, θ] | d∗(θ) ∈ D]. Note that if either p , p∗,

b , b∗, or x , (q(θ), e(θ)) for any θ, then those are observable deviations and without loss

of generality (π∗+(p, b, x),u∗+(p, b, x)) = (0, 0) by Nash reversion due to Lemma 2.6.

Suppose that a strategy induces (p∗(·), b∗(·, ·),Θ∗, d∗(·), π∗+(·, ·, ·),u∗+(·, ·, ·)) and let U∗(θ) be

A’s average payoff when the type is θ in period 0. Then the one-shot deviation principle

45The proof of Lemma 2.7 is directly applicable.
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implies that it is a PPE if and only if P’s average payoff is greater or equal to 0,

∀θ, θ′ ∈ Θ∗, U∗(θ) ≥ U∗(θ′) + (1 − δ)[c(q∗(θ′), θ′) − c(q∗(θ′), θ)], (2.22)

∀θ,∈ Θ∗, θ′ < Θ∗, U∗(θ) ≥ δu∗+(p∗, b∗, ω)

≥ U∗(θ) + (1 − δ)[c(q∗(θ), θ) − c(q∗(θ), θ′)], (2.23)

∀θ, θ′ ∈ Θ∗, U∗(θ) ≥ U∗(θ′) + (1 − δ) ·
[
c(q∗(θ′), θ′) − c(q∗(θ′), θ) + e∗(θ′) − e′ − b∗(q∗(θ′), e∗(θ′)) + b∗(q∗(θ′), e′)

]

−δu∗+(p∗, b∗, d∗(θ′)), (2.24)

δ
1 − δπ

∗
+(p∗, b∗, q, e) ≥ b∗(q, e) ≥ − δ

1 − δu∗+(p∗, b∗, q, e), (2.25)

and (π∗+(p, b, x),u∗+(p, b, x)) must be a PPE payoff vector for any (p, b, x).

We can show that Θ∗ is an interval including θ or an empty set by the similar proof of

Lemma 2.2. Then from the envelope theorem (2.22) and (2.23) are equivalent to that q∗(θ)

is non-increasing in θ ∈ Θ∗,

∀θ ∈ Θ∗, U∗(θ) = U∗(θ̂) + (1 − δ)
∫ θ̂

θ

cθ(q∗(z), z)dz, (2.26)

if Θ∗ = [θ, θ], U∗(θ) ≥ δu∗+(p∗, b∗, ω), (2.27)

if Θ∗ , [θ, θ], ∀θ′ < Θ∗, U∗(θ′) = U∗(θ̂) = δu∗+(p∗, b∗, ω) (2.28)

where θ̂ ≡ inf Θ∗.

Socially Optimal PPE: First, suppose that the PPE achieves the joint maximum pay-

off. Then it must maximize the following aggregate average payoff subject to the above

81



constraints;

s∗ ≡
∫ θ̂

θ

(1 − δ)s(d∗(θ), θ) f (θ)dθ + δ

∫ θ̂

θ

s∗+(p∗, b∗, d∗(θ)) f (θ)dθ + δ(1 − F(θ̂))s∗+(p∗, b∗, ω)(2.29)

where s∗+(p∗, b∗, d∗(θ)) ≡ π∗+(p∗, b∗, d∗(θ)) + u∗+(p∗, b∗, d∗(θ)). Since b∗(q, e) appears only in (2.24)

and (2.25), without loss of generality

b∗(q∗(θ), e) =



δ

1 − δπ
∗
+(p∗, b∗, q∗(θ), e) if e = e∗(θ)

− δ
1 − δu∗+(p∗, b∗, q∗(θ), e) if e , e∗(θ).

(2.30)

Furthermore, with (2.26) and u∗+(p∗, b∗, q∗(θ′), e′) = 0, (2.24) becomes

δ
1 − δs∗+(p∗, b∗, q∗(θ′), e∗(θ′)) +

∫ θ′

θ

[
cθ(q∗(z), z) − cθ(q∗(θ′), z)

]
dz ≥ e∗(θ′) − e′

for all θ, θ′ ∈ Θ∗ and e′ , e∗(θ). From Lemma 2.9, it is further simplified to

δ
1 − δs∗+(p∗, b∗, q∗(θ), e∗(θ)) ≥ e∗(θ′) − e′ (2.31)

for all θ ∈ Θ∗ and e′ , e∗(θ). Increasing s∗+(p∗, b∗, d∗(θ)) improves the objective and relaxes

the constraints. Then s∗+(p∗, b∗, d∗(θ)) should be the maximum joint PPE payoff for any

θ ∈ Θ∗.

Suppose that

δ
1 − δEz[s(qFB(z), e, z)] < e

or equivalently δ < δ. Then for all θ ∈ Θ∗, e∗(θ) = 0. It implies that if Θ∗ , ∅, then from
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(2.29)

s∗ < δF(θ̂)s∗ + δ(1 − F(θ̂))s∗+(p∗, b∗, ω) ⇐⇒ s∗ <
δ(1 − F(θ̂))

1 − δF(θ̂)
s∗+(p∗, b∗, ω) ≤ δ(1 − F(θ̂))

1 − δF(θ̂)
s∗ ≤ s∗,

which is a contradiction. Then Θ∗ = ∅ and from (2.29)

s∗ = δs∗+(p∗, b∗, ω) ≤ δs∗,

which implies that s∗ = 0. Conversely, suppose that

δ
1 − δEz[s(qFB(z), e, z)] ≥ e

or equivalently δ ≥ δ. If a PPE implements (qFB(θ), e) for all θ ∈ [θ, θ] every period,

then (2.31) implies that δ ≥ δ. Now we construct a stationary PPE to implement the first

best every period and check the equilibrium condition for δ ≥ δ. Consider the following

stationary mechanism; in each period P offers a mechanism such that

p(qFB(θ)) = c(qFB(θ), θ) +

∫ θ

θ

cθ(qFB(z), z)dz +
δ

1 − δ
∫ θ

θ

cθ(qFB(θ), θ)F(θ)dθ,

b∗(qFB(θ), e) = e − δ
1 − δ

∫ θ

θ

cθ(qFB(θ), θ)F(θ)dθ

and if A rejects it, then the players start the Nash reversion from the next period (i.e.,

u∗+(p∗, b∗, ω) = 0). This mechanism generates that for all θ ∈ [θ, θ]

U∗(θ) = (1 − δ)
∫ θ

θ

cθ(qFB(z), z)dz + δ

∫ θ

θ

cθ(qFB(z), z)F(z)dz,

u∗+(p∗, b∗, qFB(θ), e) = Ez[U∗(z)] =

∫ θ

θ

cθ(qFB(z), z)F(z)dz,
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π∗+(p∗, b∗, qFB(θ), e) =

∫ θ

θ

J(qFB(z), e, z) f (z)dz ≥ 0

and it is easy to see that (2.24), (2.25), (2.26), and (2.27) are satisfied. Finally, since the

mechanism is stationary, (2.24), (2.25), (2.26), and (2.27) assure that the players have no

incentive to deviate at any history. Thus the stationary mechanism is a PPE.

Therefore the joint optimal PPE payoff is given as

s∗ =



Eθ[s(qFB(θ), e, θ)] if δ ≥ δ

0 if δ < δ.

P’s Optimal PPE: Now suppose that the PPE achieves P’s optimal average payoff. Then

it must maximize the following function subject to the PPE constraints;

∫ θ̂

θ

(1 − δ)
[
y(q∗(θ), e∗(θ)) − w∗(q∗(θ), e∗(θ))

]
f (θ)dθ

+δ


∫ θ̂

θ

π∗+(p∗, b∗, d∗(θ)) f (θ)dθ + (1 − F(θ̂))π∗+(p∗, b∗, ω)



where w∗(q∗(θ), e∗(θ)) = p∗(q∗(θ)) + b∗(q∗(θ), e∗(θ)). By replacing w∗ with U∗, P’s average

payoff can be rewritten as

∫ θ̂

θ

(1 − δ)
[
y(q∗(θ), e∗(θ)) − c(q∗(θ), θ) − e∗(θ) − 1

1 − δU∗(θ) +
δ

1 − δu∗+(p∗, b∗, d∗(θ))
]

f (θ)dθ

+δ

∫ θ̂

θ

π∗+(p∗, b∗, d∗(θ)) f (θ)dθ + δ(1 − F(θ̂))π∗+(p∗, b∗, ω)

= (1 − δ)
∫ θ̂

θ

J(d∗(θ), θ) f (θ)dθ − F(θ̂)U∗(θ̂)

+δ


∫ θ̂

θ

s∗+(p∗, b∗, d∗(θ)) f (θ)dθ + (1 − F(θ̂))π∗+(p∗, b∗, ω)

 . (2.32)

84



Since b∗(q, e) appears only in (2.24) and (2.25), without loss of generality

b∗(q∗(θ), e) =



δ
1 − δπ

∗
+(p∗, b∗, q∗(θ), e) if e = e∗(θ)

− δ
1 − δu∗+(p∗, b∗, q∗(θ), e) if e , e∗(θ).

(2.33)

Furthermore, with (2.26) and u∗+(p∗, b∗, q∗(θ′), e′) = 0, (2.24) becomes

δ
1 − δs∗+(p∗, b∗, q∗(θ′), e∗(θ′)) +

∫ θ′

θ

[
cθ(q∗(z), z) − cθ(q∗(θ′), z)

]
dz ≥ e∗(θ′) − e′

for all θ, θ′ ∈ Θ∗ and e′ , e∗(θ). From Lemma 2.9, it is further simplified to (2.31) for all

θ ∈ Θ∗ and e′ , e∗(θ). Since increasing s∗+(p∗, b∗, d∗(θ)) improves the objective and relaxes

the constraints, s∗+(p∗, b∗, d∗(θ)) should be the maximum joint PPE payoff for any θ ∈ Θ∗.

Furthermore it is easy to see that regardless of Θ∗, (2.27) or (2.28) is binding. Those imply

that (2.32) becomes

(1 − δ)
∫ θ̂

θ

J(d∗(θ), θ) f (θ)dθ + δ
[
F(θ̂)

(
s∗ − s∗+(p∗, b∗, ω)

)
+ π∗+(p∗, b∗, ω)

]

and the relevant constraints are monotonicity of q∗(θ) and (2.31) where the latter is rewrit-

ten by

δ
1 − δs∗ ≥ e∗(θ) − e′

for all θ ∈ Θ∗ and e′ , e∗(θ).

Suppose that δ < δ. Then s∗ = 0 and (2.31) implies that e∗(θ) = 0 for all θ ∈ Θ∗.

Since s∗ ≥ s∗+(p∗, b∗, ω), the objective is less than δπ∗+(p∗, b∗, ω). If π∗+(p∗, b∗, ω) < 0, then

P can improve her average payoff by offering no mechanism after every history. Then
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π∗+(p∗, b∗, ω) ≥ 0. However, if π∗+(p∗, b∗, ω) > 0, then by starting the continuation strategy

from period 0, she can obtain average payoff π∗+(p∗, b∗, ω) > δπ∗+(p∗, b∗, ω). Therefore

π∗+(p∗, b∗, ω) = 0. Note that it can be achieved by the Nash reversion.

Suppose now that δ ≥ δ. Then since q∗(θ) and e∗(θ) affect only on J(d∗(θ), θ) in the ob-

jective and e∗(θ) = e is feasible, d∗(θ) = (qSB(θ), eSB(θ)). Furthermore since s∗ ≥ s∗+(p∗, b∗, ω),

the objective function is increasing in θ̂. Then d∗(θ) = (qSB(θ), eSB(θ)) for all θ ∈ [θ, θ].
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Chapter 3

Relational Political Contribution under
Common Agency

3.1 Introduction

In order to analyse the strategic use of monetary transfer between politicians and lobbyists

of interest groups to influence political decisions. the common agency model is widely

used as a standard framework. The seminal paper by Bernheim and Whinston (1986,

hereafter BW), considers menu auction to be common agency such that the bidders offer a

payment plan contingent on the auctioneer’s decision on the allocation of the goods. This

menu auction model has been applied in analyses of buying influence through political

contribution from lobbyists to a politician to investigate many issues in political economy.

The implicit assumption behind analyses using menu auction models is a long term

relationship between the politician and the lobbyists while the analysed model typically

appears as a one shot game.1 In BW, a payment plan offered by the principals is treated

as a binding contract enforced by the court after the agent makes a decision. However to

assume that lobbyists can offer such a binding contract contingent on political decisions

to a politician is far from reality. Instead, in the context of politics, such a compensation

contract must be just an implicit agreement and hence we need another justification for

1Grossman and Helpman (2001, p. 228) explicitly mention this assumption.
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the lobbyists’ ability to commit to the implicit agreement. Repeated relationship allows

the lobbyists to commit the implicit agreements since reneging can be punished later by

themselves.

Nevertheless repeated relationship cannot necessarily justify the full commitment

assumption. Empirical evidence argues that although there are long-term interactions

among politicians and leaders of interest groups, the amount of contributions is sensitive

to the length of their relation.2 It implies that it is important to ask under what conditions

it is appropriate to assume that lobbyists can fully commit to their contribution schedule

and what happens if the commitment assumption is not appropriate.

This chapter formally analyses the political contribution that takes a form of implicit

agreements and then must be self-enforced. The literature on the theory of relational

contracts has already studied self-enforced contracts in dynamic situations by applying

the framework of the repeated game. Recently, tractable frameworks of relational contracts

have been established (MacLeod and Malcomson (1989) and Levin (2003)) and these are

the building blocks for our analysis. Our model departs from them in two features. First,

while the existing model analyses the bilateral relations between a single principal and

a single agent, our model allows multi-principal situations. Second, the players have no

outside option, which is a more realistic assumption in the political process.

In labour contracts such as MacLeod and Malcomson (1989) and Levin (2003), it is

reasonable to imagine that the employee’s effort is meaningful to the firm only if their

employment relation is established. In other words, in the model the players have a partic-

ipation decision at the beginning of each period and if the players do not participate, then

2For example, McCarty and Rothenberg (1996) find from the data that in the U.S., credible commitment
of campaign contribution by the Political Action Committee is significantly weak. Snyder (1992) provides
empirical evidence that campaign contribution to young representatives in the U.S. House is larger than old
representatives.
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they obtain the (constant) reservation utility as the outside value. In political situations,

by contrast, the lobbyists are always influenced by the political decision regardless of their

access to the politician. For instance, in case of protection for sale, the industry group

always cares about imports and/or exports from foreign countries influenced by the tariff

policy. However the event to access the politician and to make an (implicit) agreement

itself does not affect the trade quantity at all. This independence is similarly applicable to

the politician. In this sense, the political players cannot escape from the agent’s decision

or equivalently they do not have an outside option.3

There are two interests in analysing our model. First, we investigate the optimal

punishment strategy. The punishment on a deviating player supports the self-enforcing

mechanism for the implicit agreements on the political contribution. Second, we fully

characterize the stationary equilibrium payoff set where the agent chooses the same deci-

sion repeatedly. As an implication, we show that – contrary to the naive conjecture from

the folk theorem in repeated game theory – an equilibrium in the standard menu auction

model might not be supported on implicit agreements no matter how patient the players

are.

The most severe punishment on a deviating principal is not as simple as in the standard

model of the relational contract because of the lack of the outside option. Nevertheless we

show that the optimal punishment on a principal is either of two types. The first one is an

“Exclusion-type” in which the agent repeatedly chooses the same decision harmful to the

deviating principal. It is credibly implemented if there is a decision that is undesirable

for the deviating principal but desirable for the other principals. The second one is a

“Sanction-type” in which the undesirable decision is chosen only in the first period. If

3It might be still suspected that there is a situation in which the lobbyist can escape to the outside option
and avoid the effect of the decision made by the politician. Nevertheless our result is applicable for the
model with the outside options. See footnote 11 section 3.2.2.
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the decision which brings the deviating principal the harsh payoff is also undesirable for

the other players, then the players are not willing to repeat it. Now think of the following

statement; “the agent will take the undesirable decision as a sanction on the deviating

principal. But once she pays some fine to the agent, we will stop the sanction.” If she obeys

this statement, she must incur the additional cost by paying the fine as well as the cost

from the undesirable decision. However, once she pays the fine, the undesirable decision

immediately stops and all the players, including her, become better off. Thus by setting an

appropriate fine, the deviating principal is willing to pay the fine and it is enough for all

the players to put up with the undesirable decision only in the first period. It is actually

similar to the so-called “stick and carrot” punishment proposed by Abreu (1986) in the

context of Cournot oligopoly.

Thanks to the analysis of the optimal punishment, we can relatively easily provide

a full characterization of the set of the payoffs of the decision-stationary equilibrium

in which the agent chooses the same decision repeatedly on the equilibrium path. It

can then be compared with the equilibrium payoffs in the static menu auction model of

BW. It easily provides us the necessary and sufficient condition under which the payoff

of the equilibrium in the corresponding static menu auction cannot be supported by

the equilibria in the corresponding relational political contribution model.4 We see the

existence of an upper bound for the credible amount of relational political contribution

and show that a static equilibrium payoff is possible when the payment on the static

equilibrium is below the upper bound. Not surprisingly, the upper bound is increasing

in the discount factor implying that a static equilibrium payoff is more likely to appear

on the relational equilibrium when the players are patient. However there could be a

4We later use a term “menu auction” to describe environments where binding contracts are allowed and
“political contribution” to be those without binding contracts.
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static equilibrium payoff which cannot be an equilibrium payoff in the relational political

contribution for any discount factors.

Roughly speaking, this interesting case appears when there are more than two princi-

pals and each of them is faced with a threat of being isolated from all the other players. In

particular, suppose that there exists a decision which is undesirable for one of the princi-

pals and desirable for the others. This is an isolating decision in the sense that except for

the principal all the players are willing to implement. Now suppose that there are two

principals being isolated in such a way but the isolating decision is not common between

them. In the static menu auction, the agent can exploit the principal by using the isolating

decision as a threat and then at least one of the two principals are forced to pay much

amount of compensation for the agent to avoid the isolating decision. By contrast, in

the relational political contribution, it is impossible for the principal to commit to such

amount of payment since the punishment is invoked only after the deviation is observed

and then the effect of the punishment must be delayed and discounted. This discounting

makes it impossible for the agent to exploit the principal no matter how patient the play-

ers are. Therefore the exploitation from more than one principal is impossible by implicit

agreements, whereas it is possible by binding contracts.

Our model is an extension of the static common agency model analysed by BW and

Grossman and Helpman (1994) – the latter of which was the first application of the menu

auction model to political lobbies – to a dynamic setting. Dynamic common agency has

been studied by Bergemann and Välimäki (2003). However they assume that decision-

contingent contracts within one period can be enforced by the third party, whereas these

are not available in our model. Instead, they introduce a payoff-relevant state variable

and characterize the Markov perfect equilibria.

The static menu auction with notion of the commitment problem is studied by Dixit
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et al. (1997) and Campante and Ferreira (2007). Dixit et al. (1997) generalizes BW’s model

and their model includes the case where the maximum feasible compensation is limited.

Nevertheless their analysis has no economic implication from this assumption.5 Our

analysis suggests that it would be a quite realistic assumption and we discuss a new

economic insight from this assumption, which is ignored in Dixit et al. (1997). Campante

and Ferreira (2007) consider the menu auction model where the principal cannot fully

commit to the compensation plan due to the wealth constraint and her own production

technology. However they assume that the decision-contingent compensation contract is

still feasible, which is different from our model.

Self-enforced contracts are recently analysed by a number of papers, especially in

labour contracts (e.g., MacLeod and Malcomson (1989) and Levin (2003)) and the theory

of the firm (e.g., Baker et al. (2002)). To the best of our knowledge, our analysis is the

first step for introducing the self-enforcing contract into the study of political lobbies.

Our contribution is to characterize the optimal punishment when there is no outside

option. Furthermore, while there are several papers that study self-enforced contracts

with multiple parties, such as Levin (2002) and Rayo (2007), no paper studies the situation

in which multiple principals interact with a common agent via self-enforced contracts.

Thus this chapter is also the first analysis of relational contracts in common agency.

The rest of this chapter is organized as follows. The next section describes the model

and the approach to derive the equilibria. Section 3.3 characterizes the set of decision-

stationary equilibrium payoffs. In section 3.4, we present the first main result: the charac-

terization of the optimal punishment strategy. Section 3.5 compares a decision-stationary

equilibrium payoff with that of the static menu auction and shows the second main result.

Section 3.6 discusses some topics related to the main results and section 3.7 provides the

5Moreover, to the best of our knowledge, there is no paper explicitly taking this assumption into account.
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conclusion. The proofs are in the appendix.

3.2 The Model

3.2.1 Environment

We start by describing the primitive of the model. There are N principals6 (these are

females, called 1, 2, . . ., and N, respectively) and an agent (who is male and sometimes

called 0), all of whom will live in periods t = 0, 1, . . . until infinity. Denote the set of the

principals byN := {1, 2, . . . ,N}.

In period t, the agent chooses a decision at ∈ A where A is a compact subset of RL.

Each player i ∈ N ∪ {0} gets the one-shot benefit vi(at) ∈ R from the decision. Assume

that vi(·) is continuous for all i ∈ N ∪ {0}. These assumptions ensure the existence of the

maximum and minimum of vi(a) and then for all i ∈ N ∪ {0}, let

A
i

:= arg max
a∈A

vi(a), Ai := arg min
a∈A

vi(a), vi := max
a∈A

vi(a), vi := min
a∈A

vi(a).

We sometimes use a notation ai and ai as a representative element of A
i
and Ai respectively.

s(a) :=
∑N

i=0 vi(a) be the one shot total benefit and denote A∗ := arg maxa∈A s(a) and s∗ :=

maxa∈A s(a).

Each principal has an opportunity to make a payment to the agent after he chose a

decision. Given a decision at and a vector of payments (b1
t , . . . , b

N
t ), principal j’s one-shot

net payoff is given by v j(at) − b j
t and the agent’s is v0(at) + Bt where Bt :=

∑N
k=1 bk

t .

In period t, the players play the following two stage game;

• stage 1: the agent chooses a decision at from the decision setA,

6All the results in this chapter hold even when N = 1.
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• stage 2: given at, each principal j simultaneously and non-cooperatively pays b j
t ∈

[0,M] to the agent where M ≥ max j∈N δ(v j − v j)/(1 − δ).

The restriction on the action space of payment implies that the principals cannot make a

negative transfer (i.e. receive money from the agent). The assumption on M is just for

guaranteeing that the action space of payment is compact.

Assume that at the beginning of each period t, all past decisions and payments

{aτ, {b j
τ}Nj=1}t−1

τ=0 are observable to all the players. The purpose of each player in the entire

game is to maximize the average discounted sum of her/his payoff with common discount

factor δ ∈ [0, 1); that is, (1−δ)
∑∞
τ=0 δ

τ[v j(aτ)−b j
τ] for principal j and (1−δ)

∑∞
τ=0 δ

τ[v0(aτ)+Bτ]

for the agent.

The strategy of the repeated game is defined by a mapping from an observed history

to a decision or payment in the current period. Formally letH := ∪∞t=1(A× [0,M]N)t. The

strategy7 is defined as σ0 : {φ} ∪ H → A for the agent and σ j : ({φ} ∪ H) ×A → P j(δ) for

principal j whereφdenotes the null history. Let σ := (σ0, σ1, . . . , σN) be its profile. The strat-

egy profile generates the on-path outcome such as ((a0, a1, . . .), (b1
0, b

1
1, . . .), . . . , (b

N
0 , b

N
1 , . . .))

and then the discounted average payoffs can be computed from it. Denote player i’s

discounted average payoff by ui(σ). We adopt the subgame perfect equilibrium (SPE) as

our equilibrium concept where, for any history ht ∈ {φ} ∪H or (ht, at) ∈ ({φ} ∪H)×A, the

strategy maximizes her/his own payoff given the others’ strategy. Let Σ∗ be the set of SPE.

3.2.2 Simple Strategy Representation

The equilibrium analysis is substantially simplified by recursive formulation and the

simple strategy introduced by Abreu (1988).

7We focus on the pure strategy.
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Let σ be an arbitrary SPE and σ(i) ∈ Σ∗ be a SPE which yields the lowest equilibrium

payoff for player i, i.e. ui(σ(i)) ≤ ui(σ) for any σ ∈ Σ∗. Abreu (1988) calls σ(i) the “optimal

penal code” (OPC).

Now consider the following “simple strategy” profile ς(σ, σ(0), σ(1), . . . , σ(N)), meaning

that

• to follow σ if no player has deviated,

• to pay nothing and follow σ(0) from next period if the agent deviated, and

• to change to σ( j) from next period if principal j deviated.

By construction of ς, if player i chooses strategy ςi (provided that the other players follow

ς−i), she/he follows strategy σi if no player has deviated from the outcome path of σ and

immediately moves to the strategy which yields the lowest equilibrium payoff for the

deviating player otherwise.

Now the useful result by Abreu (1988, Proposition 2 and 5) can be directly applied.8

Lemma 3.1 1. The optimal penal code exists for each i ∈ N ∪ {0}.

2. For each i ∈ N ∪ {0}, let σ(i) be the OPC. If σ ∈ Σ∗, then ς(σ, σ(0), σ(1), . . . , σ(N)) ∈ Σ∗.

The generating outcome of ς(σ, σ(0), σ(1), . . . , σ(N)) ∈ Σ∗ is same as that of σ. Then

Lemma 3.1 allows us to focus on the simple strategy with the OPC to analyse the equi-

librium outcome. In what follows, we focus the simple strategy SPE with the OPC and

denote this simply by σ̂ unless noted explicitly.9

8Abreu (1988) shows it when the stage game is in normal form, while it is in extensive form here.
Nevertheless it is enough to modify his proof a little for proving the result. The proof is omitted here.

9Notice that the OPC can also have a simple strategy representation such as σ( j) =
ς(σ( j), σ(0), σ(1), . . . , σ(N)).
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The one-shot deviation principle implies that σ̂ is a SPE if and only if (i) the players

have no deviation incentive in period 0, and (ii) the continuation strategy profile is a SPE.

We now formally describe these conditions.

From σ̂ we can construct the equilibrium path such that â0 = σ̂0(φ), b̂ j
0 = σ̂ j(â0), and the

continuation strategy profile σ̂1(·) ≡ σ̂(â0, b̂0, ·) where b̂0 := (b̂1
0, . . . , b̂

N
0 ). First, look at the

agent’s deviation incentive in period 0. If the agent follows σ̂0 in period 0, the average

payoff the agent obtains has the following recursive expression

u0(σ̂) = (1 − δ)
[
B̂0 + v0(â0)

]
+ δu0(σ̂1)

where B̂0 :=
∑

j∈N b̂ j
0. If he deviates to another decision a′, then he gains the benefit v0(a′) in

period 0 and, since the players start the punishment on the agent, he receives nothing and

the continuation strategy profile would be σ(0). Then the utility is (1− δ)v0(a′) + δu0(σ(0)).

Notice that (1 − δ)v0(a′) + δu0(σ(0)) ≤ (1 − δ)v0
+ δu0(σ(0)) for all a′ ∈ A. Thus the agent

does not deviate from σ̂ in period 0 if and only if

(1 − δ)
[
B̂0 + v0(â0)

]
+ δu0(σ̂1) ≥ (1 − δ)v0

+ δu0(σ(0))

⇐⇒ B̂0 ≥ v0 − v0(â) − δ
1 − δ

[
u0(σ̂1) − u0(σ(0))

]
. (3.1)

Next, look at principal j’s deviation incentive in period 0. However we only have to

check it on the equilibrium path because, for the case where the agent has already deviated

from â0, she plays the punishment strategy, paying nothing and following σ(0), in which

she has no deviation incentive by the assumption that σ(0) is SPE.10 On the equilibrium

10Strictly speaking, we have implicitly assumed that the players play σ(0) regardless of the payment in
period 0 when the agent has already deviated. Expecting that, the principals would optimally choose to
pay nothing.
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path, if principal j follows σ̂ j in period 0, her utility can be expressed in a recursive way

similar to the agent as

(1 − δ)[v j(â0) − b̂ j
0] + δu j(σ̂1).

If she deviates to another payment b′ ≥ 0, then she pays only b′ ≥ 0 and since the players

start the OPC on her from next period, her continuation payoff would be u j(σ( j)). Then

the utility is (1 − δ)(v j(â0) − b′) + δu j(σ( j)). Notice that (1 − δ)(v j(â0) − b′) + δu j(σ( j)) ≤

(1− δ)v j(â0) + δu j(σ( j)) for any b′ ≥ 0. Thus principal j does not deviate from σ̂ in period 0

if and only if

(1 − δ)[v j(â0) − b̂ j
0] + δu j(σ̂1) ≥ (1 − δ)v j(â) + δu j(σ( j)) ⇐⇒ b̂ j

0 ≤
δ

1 − δ
[
u j

1(σ̂1) − u j(σ( j))
]
.

Note that since the payment must be non-negative, b̂ j
0 ≥ 0 for all j ∈ N . By imposing it,

we obtain that

0 ≤ b̂ j
0 ≤

δ
1 − δ

[
u j

1(σ̂1) − u j(σ( j))
]
. (3.2)

In order to check whether σ̂ is a SPE or not, the following conditions are necessary and

sufficient.11

Lemma 3.2 σ̂ ∈ Σ∗ if and only if (i) (3.1) holds, (ii) (3.2) holds for all j ∈ N , and (iii) σ̂1 ∈ Σ∗.

We abuse Lemma 3.2 to characterize decision-stationary equilibria, where the agent

chooses the same decision repeatedly and the OPC. In the next section, we first investigate

11 It is worth noting that even if σ(i) is not the OPC, these conditions are still necessary and sufficient
for that the simple strategy σ̂ is a SPE as long as σ(i) is also a SPE for all i ∈ N ∪ {0}. For instance, these
conditions can be used for the model where each player has an outside option by substituting the outside
value into ui(σ(i)) for each i ∈ {0} ∪ N .
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the decision-stationary equilibria given the OPC {σ(i)}Ni=0.

3.3 Decision-Stationary Equilibria

This section focuses on the equilibria where the agent chooses the same decision â every

period. Formally, the definition is as follows.

Definition 3.1 σ̂ is a decision-stationary strategy profile of â ∈ A if it generates the outcome path

where the decision â is repeatedly chosen every period.

Let Σ̂∗(â) be the set of decision stationary equilibria of â and Û∗(â) := {(u0(σ),u1(σ), . . . , uN(σ)) |

σ ∈ Σ̂∗(â)} be its payoff set. Given the OPC {σ(i)}Ni=0, consider a strategy profile σ̂ which is

decision-stationary of â. By applying Lemma 3.2, σ̂ is a SPE if and only if

ψ̂(â) ≥ v0 − v0(â) − δ
1 − δ

[
u0(σ̂1) − u0(σ(0))

]
(3.3)

0 ≤ σ̂ j(â) ≤ δ
1 − δ

[
u j

1(σ̂1) − u j(σ( j))
]
, j ∈ N (3.4)

σ̂1 ∈ Σ̂∗(â)

where ψ̂(â) :=
∑

k∈N σ̂
k(â) and σ̂1 is the continuation strategy of σ̂ on the equilibrium path.

Note that σ̂1 must also be a decision-stationary SPE of â.

While we have so far allowed that the equilibrium payment in some period to differ

from that in another period, we will show that it is without loss of generality to restrict the

payment schedule to being stationary for deriving the decision-stationary SPE payoff. The

principal’s strategy (or payment) is called stationary if the payment on the equilibrium

path is determined only by the decision in the current period. The formal definition is as

follows.
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Definition 3.2 Let σ̂ be a strategy profile which generates the equilibrium path (ât, {b̂ j
t}Nj=1)∞t=0 and

denote ĥ0 := φ and ĥt := (âτ, {b̂ j
τ}Nj=1)t−1

τ=0 for t ≥ 1. σ̂ is payment-stationary for principal j if σ̂ j can

be described by

σ̂ j(ĥt, a) = β j(a)

for any a ∈ A and t ≥ 0. σ̂ is stationary if it is decision-stationary and payment-stationary.

The following proposition implies that as long as the agent implements the same

decision repeatedly, the stationary-payment strategy is without loss of generality no matter

how many principals are there.12

Proposition 3.1 Suppose that σ̂ ∈ Σ̂∗(â). Then there exists a stationary strategy profile in Σ̂∗(â)

which generates the same payoff vector.

When the strategy is stationary, the players repeat the same stationary strategy σ̂ for

the continuation game every period, which makes the continuation payoff identical in any

period. Then in the stationary strategy of decision â, (3.3) and (3.4) are equivalent to

B̂(â) ≥ v0 − v0(â) − δ
1 − δ

[
u0(σ̂) − u0(σ(0))

]
(3.5)

0 ≤ β̂ j(â) ≤ δ
1 − δ (u j(σ̂) − u j(σ( j))) (3.6)

where β̂ j(a) is the stationary payment of principal j and B̂(·) :=
∑N

j=1 β̂
j(·). Since the players

repeat the same stationary strategy every period, the one-shot net payoff is same across

12 It should be emphasized that while the proof here is similar to Levin (2003), the limited liability might
make his proof collapse. The key idea of his proof is that the variation of the continuation payoff, depending
on the current decision can be completely transformed to the variation of the current payment. However
under limited liability, this transformation might violate the limited liability constraint. Here we show that
this limited liability does not matter when there is no asymmetric information.
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all periods and identical to the average payoff in the entire game, i.e. u0(σ̂) = v0(â) + B̂(â)

and u j(σ̂) = v j(â) − β̂ j(â) for j ∈ N . Thus (3.5) and (3.6) are further reduced to

u0(σ̂) ≥ (1 − δ)v0
+ δu0(σ(0)) (3.7)

v j(â) ≥ u j(σ̂) ≥ (1 − δ)v j(â) + δu j(σ( j))). (3.8)

With the restriction that the total net payoff among the players is always identical with

s(â), the set of payoff vectors of decision-stationary equilibria is characterized as follows;

Û∗(â) =





u0

u1

...

uN



′∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑N
j=0 u j = s(â),

u0 ≥ (1 − δ)v0
+ δu0(σ(0))

v j(â) ≥ u j ≥ (1 − δ)v j(â) + δu j(σ( j)), ∀ j ∈ N



. (3.9)

Now we investigate the condition for the existence of (decision-)stationary equilibria of

â. Combining (3.5) and (3.6) to eliminate β̂ j(â) yields the necessary condition for existence,

that is,

v0 − v0(â) − δ
1 − δ

[
u0(σ̂) − u0(σ(0))

]
≤

N∑

j=1

δ
1 − δ

[
u j(σ̂) − u j(σ( j)

]
.

Since
∑N

j=0 u j(σ̂) = s(â), it is

δ
1 − δ

s(â) −
N∑

j=0

u j(σ( j))

 ≥ v0 − v0(â). (3.10)

Conversely, given (3.10), if we can construct β̂ j(â) which satisfies (3.7) and (3.8) (where

u j(σ̂) = v j(â) − β̂ j(â) for j ∈ N and u0(σ̂) = v0(â) + B̂(â)), the stationary strategy consisting
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of payment schedule {β̂ j}Nj=1 and decision â is a SPE, implying the sufficiency for the

existence of a decision-stationary SPE. It is actually the case and the following proposition

is obtained.

Proposition 3.2 Σ̂∗(â) , ∅ if and only if (3.10) holds.

Finally, we investigate the socially optimal equilibrium which maximizes the average

discounted sum of the benefits among the players. The socially optimal equilibrium is

interesting to us because not only could it be a focal point, but also the strategy which

generates the maximum total benefit helps us to investigate the OPC later. The following

proposition states that it is without loss of generality that the socially optimal equilibrium

is decision-stationary.13 Thus together with Proposition 3.2, (3.10) plays an important role

for examining the OPC.

Proposition 3.3 Ifσ ∈ Σ∗, then there exists a strategy profile σ̂∗(â) ∈ Σ̂∗(â) such that
∑N

i=0 ui(σ̂∗(â)) ≥
∑N

i=0 ui(σ).

3.4 The Optimal Penal Code

In this section, we investigate the optimal penal code. We first briefly summarize this

section. Our model is a special case of Wen (2002)’s repeated sequential game and Propo-

sition 3 in his paper states that the equilibrium payoff must be larger than or equal to the

effective minimax value. The effective minimax value in our model is given by v0 for the

agent and vi for principal i.14 We will show that the OPC on the agent achieves v0 by the

Nash reversion whereas it is not necessarily the case that either the OPC on the principal

13The optimal equilibrium for one of the players is not necessarily decision-stationary. See for instance
Ray (2002).

14These are actually the same as the standard minimax value of the period game where all the players
move simultaneously. In what follows we simply call it the minimax value.
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is the Nash reversion or it can achieve v j for principal j. On the OPC on the principal, we

formulate and solve the minimization problem and demonstrate that, in general, the OPC

would be the so-called two-phase scheme demonstrated by Abreu (1986) in the model of

tacit collusion in repeated Cournot oligopoly.

3.4.1 The Optimal Penal Code on the Agent

If there exists an equilibrium strategy by which the agent’s payoff becomes his minimax

value, it would be the OPC. Consider the one-period game in our model. On the subgame

perfect equilibrium of the one-period game, the principals pay nothing and the agent

chooses a0 ∈ A
0
, which achieves the agent’s payoff v0. Thus in the repeated game, the

minimax payoff can be easily attained by repetition of it (after every history). Then

u0(σ(0)) = v0.

3.4.2 The Optimal Penal Code on the Principals

Characterization of the OPC payoff

Consider the OPC on principal k, σ(k). Let (a0(k), (b1
0(k), . . . , bN

0 (k))) be the associated out-

come path in period 0 generated by σ(k) and σ1(k) be the continuation strategy from period

1 on the equilibrium path. Then, by Lemma 3.2, σ(k) is a SPE if and only if

(1 − δ)[v0(a0(k)) + B0(k)] + δu0(σ1(k)) ≥ v0, (3.11)

0 ≤ b j
0(k) ≤ δ

1 − δ[u j(σ1(k)) − u j(σ( j))], j ∈ N , (3.12)

and σ1(k) ∈ Σ∗.15

15In (3.11), it is taken into account that u0(σ(0)) = v0.
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Sinceσ(k) leads to the lowest SPE payoff for principal k, the N+2-tuple (a0(k), {b j
0(k)}Nj=1, σ1(k))

can be characterized by the solution of the minimization problem where the objective is

uk(σ(k)) = (1−δ)[vk(a0(k))−bk
0(k)]+δuk(σ1(k)) subject to (3.11), (3.12), and σ1(k) ∈ Σ∗. Namely,

it is the solution of the following problem;

min
(a0(k),{b j

0(k)}Nj=1,σ1(k))
(1 − δ)[vk(a0(k)) − bk

0(k)] + δuk(σ1(k)) (3.13)

subject to (3.11), (3.12), σ1(k) ∈ Σ∗.

Suppose that the solution satisfies that bk
0(k) < δ(uk(σ1(k))−uk(σ(k)))/(1−δ). By increasing

bk
0(k) slightly to keep to satisfy (3.12) for j = k, (3.13) is decreasing without any violations of

the constraints. Thus it is not the solution, implying that bk
0(k) = δ(uk(σ1(k))−uk(σ(k)))/(1−δ).

Substituting it into (3.13) yields the following result.

Lemma 3.3 uk(σ(k)) = vk(a0(k)) for all k ∈ N .

Lemma 3.3 states that uk(σ(k)) must be identical to the benefit in the first period on

σ(k). In other words, the average equilibrium payoff on the OPC can be represented

by a decision in A and then in the minimization problem, it is enough to seek a0(k) for

minimizing principal k’s benefit vk(a0(k)) subject to the conditions for ensuring σ(k) a SPE.

We have already seen that (3.12) for j = k is binding. Now look at (3.12) for principal

j , k. When b j
0(k) is not binding, increasing it slightly makes the degree of freedom in

(3.11) greater without any effects on the other constraints and the objective function. Then

without loss of generality (3.12) holds with equality at the upper bound for all j ∈ N ,

i.e. b j
0(k) = δ(u j(σ1(k)) − ui(σ(k)))/(1 − δ).16 Substituting them to (3.11), we can reduce the

16Note that u j(σ1(k)) − u j(σ( j)) ≥ 0 by the definition of σ( j). Then it is obvious that b j
0(k) ≥ 0 for all j ∈ N .
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constraints into σ1(k) ∈ Σ∗ and

(1 − δ)v0(a0(k)) + δ


N∑

j=1

(
u j(σ1(k)) − u j(σ( j))

)
 + δu0(σ1(k)) ≥ v0.

Applying Lemma 3.3 for all j ∈ N and rearranging yields

δ
1 − δ


N∑

i=0

ui(σ1(k)) −
v0

+

N∑

j=1

v j(a0( j))



 ≥ v0 − v0(a0(k)).

Furthermore, due to Proposition 3.3, if σ1(k) is a SPE, then there exists a decision-stationary

SPE the total benefit of which is not less than
∑N

i=0 ui(σ1(k)). Then without loss of generality

we can restrict σ1(k) on decision-stationary SPE. Since the total benefit is s(a1(k)) when σ1(k)

is a decision stationary strategy of a1(k), this condition can be further rewritten as

δ
1 − δ

s(a1(k)) −
v0

+

N∑

j=1

v j(a0( j))



 ≥ v0 − v0(a0(k)). (3.14)

Recall that thanks to Proposition 3.2, in order to check whether σ1(k) is a decision stationary

SPE of a1(k) or not, condition (3.10) (for â = a1(k) and u j(σ( j)) = v j(a0( j))) is necessary and

sufficient, that is,

δ
1 − δ

s(a1(k)) −
v0

+

N∑

j=1

v j(a0( j))



 ≥ v0 − v0(a1(k)). (3.15)

To summarize, the problem for finding the OPC for principal k is to minimize vk(a0(k))

subject to (3.14) and (3.15);

Problem (k)

min
a0(k),a1(k)

vk(a0(k))
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subject to
δ

1 − δ

s(a1(k)) −
v0

+

N∑

j=1

v j(a0( j))



 ≥ v0 −min
{
v0(a0(k)), v0(a1(k))

}
.

Notice that the solution of Problem (k) depends on a0(`) for ` , k which must be the

solution of Problem (`). It means that the 2n-tuple (a0(1), a1(1), a0(2), a1(2), . . . , a0(N), a1(N))

must be the solution of Problem (k) for all k ∈ N simultaneously. However this 2n-tuple

(a0(1), a1(1), a0(2), a1(2), . . . , a0(N), a1(N)) can be reduced to the n+1-tuple (a0(1), a0(2), . . . , a0(N), â)

thanks to the following lemma.

Lemma 3.4 Suppose that the 2n-tuple (a0(1), a1(1), a0(2), a1(2), . . . , a0(N), a1(N)) is the solution

of Problem (k) for all k ∈ N simultaneously. Then there exists â ∈ A such that for all k ∈ N

(a0(k), â) is the solution of Problem (k).

This lemma simplifies the problem into finding the n + 1-tuple (a0(1), a0(2), . . . , a0(N), â)

that minimizes vk(a0(k)) for all k ∈ N simultaneously subject to only the following one

constraint;

δ
1 − δ

s(â) −
v0

+

N∑

j=1

v j(a0( j))



 ≥ v0 −min
{
v0(â),min

k∈N
v0(a0(k))

}
. (3.16)

Denote a(N) := (a(1), . . . , a(N)) ∈ AN17 and define

APC
1 (a(N)) :=

â ∈ A
∣∣∣∣∣∣∣
δ

1 − δ

s(â) −
v0

+

N∑

j=1

v j(a( j))



 ≥ v0 −min
{
v0(â),min

k∈N
v0(a(k))

} ,

APC
0 :=

{
a(N) ∈ AN | APC

1 (a(N)) , ∅
}
.

Note that (3.16) is satisfied if and only if a0(N) ∈ APC
0 . It means that APC

0 is the feasible set

of the problem and then the pair of the first period decisions of the OPC is chosen from

APC
0 in the following way.

17Similarly, denote a0(N) := (a0(1), . . . , a0(N)) and a(N)′ := (a(1)′, . . . , a0(N)′).
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Proposition 3.4 (u1(σ(1)), . . . , uN(σ(N))) = (v1(a0(1)), . . . , vN(a0(N))) where a0(N) ∈ APC
0 and

for all a(N) ∈ APC
0 , vk(a0(k)) ≤ vk(a(k)) for all k ∈ N .

Notice that Proposition 3.4 says that the pair of decisions a0(N) must weakly Pareto-

dominate any pair of decisions in APC
0 (in the negative sense) and then the existence of the

pair satisfying Proposition 3.4 does not seem to be trivial. However it is assured in the

following way.

Proposition 3.5 The pair a0(N) satisfying the condition of Proposition 3.4 exists and if both

a0(N) and a0(N)′ satisfy the condition, then vk(a0(k)) = vk(a0(k)′) for all k ∈ N .

It is straightforward that if there exists (a1, . . . , aN) ∈∏N
j=1 A j such that (a1, . . . , aN) ∈ APC

0 ,

it is immediately the pair of first decisions in the OPCs. The condition for it can be simply

expressed as follows.

Corollary 3.1 The optimal penal code satisfies u j(σ( j)) = v j for all j ∈ N if and only if there exists

a vector (â, a1, . . . , aN) ∈ A ×∏N
j=1 A j such that

δ
1 − δ

s(â) −
v0

+

N∑

j=1

v j



 ≥ v0 −min
{
v0(â),min

k∈N
v0(ak)

}
. (3.17)

Whether (3.17) is satisfied or not depends on the discount factor δ. For example, as

an extreme case, when δ = 0, (3.17) implies that mink v0(ak) ≥ v0 meaning that it is not

satisfied unless ak ∈ A
0

for all k ∈ N . As δ becomes higher, the more severe punishment is

available and, if δ is feasibly large enough, (3.17) holds meaning that the first best OPC is

possible.

Proposition 3.6 1. For all k ∈ N , vk(a0(k)) is non-increasing in δ.

2. There exists δ
OPC∗ ∈ [0, 1) such that for δ ∈ [δ

OPC∗
, 1), uk(a0(k)) = vk for all k ∈ N .
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The Path of the OPC on a Principal

Recall that, on strategy σ(k), the agent chooses decision a0(k) in the first period and strategy

σ1(k) in the continuation periods, the latter of which is replaced with some decision-

stationary strategy of â. Thus the punishment scheme, in general, consists of two phases,

a0(k) and â. From (3.13) for i = k,

uk(σ(k)) = (1 − δ)(vk(a0(k)) − bk
0(k)) + δ(vk(â) − b̂k)

where b̂k is the stationary payment in the continuation strategy.18 Lemma 3.3 implies that

vk(a0(k)) = (1 − δ)(vk(a0(k)) − bk
0(k)) + δ(vk(â) − b̂k),

and if δ > 0,19 it is equivalently

vk(a0(k)) = vk(â) − (1 − δ)
δ

bk
0(k) − b̂k.

Since the payment must be nonnegative, this equation implies that vk(a0(k)) ≤ vk(â).

First, suppose that vk(a0(k)) = vk(â). It immediately implies that bk
0(k) = b̂k = 0 and

principal k gains the same level of benefit and pays nothing over time. This is illustrated

in Figure 3.1. Especially if â = a0(k),20 the agent chooses the same decision and principal

k has to be punished by the harsh decision a0(k) over time. In this sense, she is excluded

from the other players and we can call this punishment strategy an “Exclusion-type” of

18The stationarity of the payment is without loss of generality due to Proposition 3.1.
19If δ = 0, the OPC is just the Nash reversion, i.e. the agent repeatedly chooses a decision from the set

arg max
a∈A0 vk(a) and the principals pay nothing.

20In general, a0(k) could be different from â. However notice that since a0(N) ∈ APC
0 and vk(â) = vk(a0(k)),

(a0(0), . . . , a0(k − 1), â, a0(k + 1), . . . , a0(N)) is also in APC
0 , which means that â can be also used as the first

decision of σ(k). Thus it is without loss of generality.
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vk(a0(k)) = vk(â)

payoff

40 1 2 3

uk(σ(k)) = uk(σ1(k))

one shot payoff
averaged payoff

t

Figure 3.1: In Case of Exclusion-type

punishment.

Next, suppose that vk(a0(k)) < vk(â). Note that

uk(σ1(k)) = v j(â) − b̂k = vk(â) −
(
vk(â) − vk(a0(k)) − (1 − δ)

δ
bk

0(k)
)

= vk(a0(k)) +
(1 − δ)
δ

bk
0(k)

≥ vk(a0(k)) = uk(σ(k))

and since bk
0(k) ≥ 0, we obtain vk(a0(k)) − bk

0(k) ≤ vk(a0(k)) = uk(σ(k)). In words, the one-

shot net payoff in the first period is less than the average payoff in the OPC and the

average payoff in the continuation game must be more than that of the OPC. This process

is illustrated in Figure 3.2. On the punishment path, principal k is severely punished

first and rewarded later. Specifically, in the first period, after she incurs the cost from

the undesirable decision, she must additionally make the positive amount of transfer. It

can be interpreted as the “sanction fine” for deviation and once she pays it, the situation

becomes “normal”. In this sense, we call this punishment strategy a “Sanction-type”

of punishment. This is qualitatively similar to the so-called “stick and carrot” strategy

shown by Abreu (1986) where the first phase stands as the punishing “stick phase” and

the remaining phase stands as the rewarding “carrot phase”.
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vk(a0(k))

payoff

40 1 2 3
bk

0(k)(≤ δ(vk(â) − vk(a0(k)))/(1 − δ))

uk(σ(k))

uk(σ1(k)) one shot payoff
averaged payoffvk(â) − b̂k

vk(â)

(1 − δ)bk
0(k)/δ

payment

t

Figure 3.2: In Case of Sanction-type

Decision v1(a) v0(a) v2(a)
l G1 −C −D
c 0 0 0
r −D −C G2

Table 3.1: Example 1

In the Cournot oligopoly in Abreu (1986), the optimal punishment on deviation is

always the stick and carrot strategy. Then it seems that the OPC in our model is always

a Sanction-type without loss of generality. However it is demonstrated by the following

example that an Exclusion-type can be the unique OPC.

Example

The example used here is as follows. Suppose that N = 2 andA = {l, c, r} and the private

benefit for each player is given in Table 3.1 where G1, G2, C, and D are all positive. We

identify the threshold of the discount factor above which u j(σ( j)) = −D for some j = 1, 2.21

First, assume that G j < C + D for j = 1, 2. Then c is socially optimal and can be

implemented on a stationary equilibrium for any δ. Thus from corollary 3.1, u j(σ( j)) = −D

21If δ is less than the threshold derived later, it is easy to see that u j(σ( j)) = 0 for j = 1, 2.
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for j = 1, 2 if and only if

δ
1 − δ [0 − (0 − 2D)] ≥ 0 −min {0,−C} ⇐⇒ δ ≥ C

2D + C
.

The question is whether the players can achieve this punishment by an Exclusion-type

strategy or not. If principal 2 can be punished by an Exclusion-type strategy, there must be

a decision-stationary SPE of l. From (3.10), given u j(σ( j)) = −D for j = 1, 2, it is equivalent

to

δ

1 − δ
[
(G1 −D − C) − (0 − 2D)

]
≥ 0 − (−C) ⇐⇒ δ ≥ C

G1 + D
. (3.18)

Notice that C/(G1 + D) is greater than C/(2D + C). Then, if δ ∈ [C/(2D + C),C/(G1 + D)),

the first best OPC can be achieved only through a Sanction-type strategy.

By contrast, we can obtain the opposite statement when the assumption on the param-

eters is changed. Now assume G1 > C + D ≥ G2. Then l is the socially optimal decision.

Given the punishment payoff being −D for both principals, l can be implemented by a

decision stationary SPE if and only if (3.18) holds. Further, since a decision-stationary

SPE of l achieves a payoff no more than −D for principal 2, the punishment payoff −D

for principal 2 can be achieved by an Exclusion-type strategy such that l is repeatedly

chosen. The question is whether a Sanction-type strategy can achieve −D for principal 2.

For instance, if the punishment strategy is such that l is chosen first and c is repeatedly

chosen after that, then (3.16) for â = c must be satisfied, that is,

δ
1 − δ [0 − (0 − 2D)] ≥ 0 − (−C) ⇐⇒ δ ≥ C

2D + C
.

Our hypothesis assures that C/(2D + C) is greater than C/(G1 + D). Then, if δ ∈ [C/(G1 +
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D),C/(2D + C)), this Sanction-type punishment cannot attain the first best OPC. Similar

analysis shows that with this discount factor, a Sanction-type punishment such that r is

chosen from the second period cannot attain the first best OPC neither.22

The interesting implication from this example is that both Sanction-types and Exclusion-

types could be the unique OPC. It is in sharp contrast to the optimal tacit collusion

in Cournot oligopolistic markets. The characterization of the OPC here shares Abreu

(1986)’s property in the sense that in general the OPC would be a two-phase scheme,

the “punish” phase and the “reward” phase. In Cournot markets, in order to punish the

deviating firm credibly, at the punish phase every firm must suffer from the punishment

payoff led by the predatory behaviour and then every firm must be rewarded later by

sharing the monopolistic profit in the industry. In this sense the phases are distinguishable

from each other. By contrast, in our political contribution model, it is not necessary that

all the players suffer in the punishment phase because there might be a decision which

is quite terrible only for the punished principal and even if such a decision is not much

preferable for the agent, monetary transfer can adjust the distribution of the total benefit

so that the other principals can incentivize the agent to choose it. In the above example,

this situation is clearly described when G1 > C + D because decision l is the worst for

principal 2 but socially optimal and then principal 1 is willing to compensate the agent for

choosing l (as long as the players are somewhat patient). Because the agent and principal

1 cannot benefit from deviating from this situation, exclusion of principal 2 proceeds.

22Precisely, this Sanction-type of punishment is impossible if and only if δ < C/(G2 + D) and it is obvious
that C/(G2 + D) is greater than C/(2D + C).

111



3.5 Validity of Menu Auction for Political Contribution

This section discusses whether BW’s menu auction is suitable for analyses of political

contribution. As mentioned in the introduction, the menu auction assumes that the

principals can fully commit to a compensation plan contingent on the agent’s decision,

which is not as realistic as our self-enforcing situation. If an equilibrium in the menu

auction can be replicated by our equilibrium, the long term relationship between players

can be a good justification for analysing political contribution using the menu auction

model. However, if it cannot, we should keep in mind that the lack of enforcement power

is a serious concern in studying political contribution. In order to address this question,

we will compare the set of stationary equilibrium payoffs in our model with that of BW.

More specifically, we derive the conditions under which the equilibrium payoff in BW is

not included in our stationary equilibrium.

3.5.1 BW’s Model

For reader’s convenience, we first describe the corresponding static model of BW. Here-

after we call it “Static Menu Auction (SMA)” and an equilibrium in it a SMA-equilibrium.

By contrast, we will call our repeated game environment “Relational Political Contribution

(RPC)”.

SMA is the following one-shot game. First, each principal simultaneously and non-

cooperatively offers a contract w j : A → R+, that is the payment schedule contingent on

the agent’s decision and then the agent accepts it.23 Second, the agent makes a decision

and the payment is enforced. Let (â, {{ŵ j(a)}a∈A}Nj=1) be the equilibrium decision and the

payment contract contingent on the decisions in SMA and (ŷ0, ŷ1, . . . , ŷN) := (v0(â) +

23Because we assume the nonnegative payment, the agent automatically accepts any offer.

112



Ŵ(â), v1(â)− ŵ1(â), . . . , vN(â)− ŵN(â)) be the equilibrium net payoff in SMA. While Lemma

2 in BW derives the necessary and sufficient condition for SMA-equilibria, the following

lemma is sufficient for our analysis.

Lemma 3.5 Let (â, ŵ1(·), . . . , ŵN(·)) be a SMA-equilibrium and (ŷ0, ŷ1, . . . , ŷN) be its payoff vector.

Then ŷ0 ≥ v0 and ŷ j ≥ v j for each j ∈ N .

3.5.2 Comparison between SMA and RPC

Recall that, thanks to Proposition 3.1, all the decision-stationary RPC-equilibria can be

expressed by stationary strategies consisting of the decision and the payment on the path,

say (â, {β̂ j(â)}Nj=1). If there exists a stationary RPC-equilibrium such that â is chosen and

ŵ j(â) is paid from principal j to the agent, the net payoff vector of the SMA-equilibrium

(â, ŵ1(·), . . . , ŵN(·)) can be supported by the RPC-equilibrium.

The set of decision-stationary RPC-equilibrium payoffs is characterized by (3.9). Then

the question is whether a specific SMA-equilibrium payoff (ŷ0, ŷ1, . . . , ŷN) is included in it.

Recall that due to Lemma 3.3, the OPC payoff can be described by u j(σ( j)) = v j(a0( j)) for

j ∈ N and u0(σ(0)) = v0. The following proposition says that the SMA equilibrium cannot

be achieved by RPC-equilibria if and only if the amount of the equilibrium contribution

exceeds some upper bound defined by â and a0( j).

Proposition 3.7 Let (â, ŵ1(·), . . . , ŵN(·)) be a SMA-equilibrium and (ŷ0, ŷ1, . . . , ŷN) be its payoff

vector. Then (ŷ0, ŷ1, . . . , ŷN) < Û∗(â) if and only if ŵ j(â) > δ[v j(â) − v j(a0( j))] for some j ∈ N .

The term δ[v j(â)−v j(a0( j))] is interpreted as the discounted benefit relative to deviation.

If this value is not high enough to exceed the payment on the SMA-equilibrium ŵ j(â), she

cannot credibly pay this amount in RPC-equilibria. Note that this upper bound is weakly
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increasing in δ due to two effects; the direct effect through caring more about the future

benefit (i.e. δ is increasing)24 and the indirect effect through more severe punishment (i.e.

v j(a0( j)) is weakly decreasing).

The next question is whether all SMA-equilibria can be supported by RPC-equilibria

if the discount factor is sufficiently high. The answer is somewhat surprisingly negative.

First, the following proposition provides the necessary and sufficient condition for this

notion.

Proposition 3.8 Let (â, ŵ1(·), . . . , ŵN(·)) be a SMA-equilibrium. Then (ŷ0, ŷ1, . . . , ŷN) < Û∗(â)

for any δ ∈ [0, 1) if and only if there exists j ∈ N such that

ŵ j(â) = v j(â) − v j > 0. (3.19)

It can be interpreted as a direct implication from Proposition 3.7. For principal j, the

possible worst payoff is v j. Then the upper bound of the credible payment from principal

j is at most v j(â)− v j no matter how much δ is. Hence it is never a RPC-equilibrium to pay

an amount no less than v j(â) − v j to the agent for rewarding decision â. Thus, if a SMA-

equilibrium requires principal j to pay an amount no less than v j(â)−v j on the equilibrium,

it can never be implemented in RPC-equilibria. By contrast, if the equilibrium payment

in SMA is less than v j(â)− v j, then by making the players sufficiently patient, punishment

by the minimax payoff v j becomes credible and hence it is possible to require principal j

to pay it even in RPC.

So far we have referred to any given strategy (â, ŵ1(·), . . . , ŵN(·)) satisfying Lemma

3.5 as a SMA-equilibrium. An important question is whether there exists such a SMA-

24If v j(â) < v j(a0( j)), then it is easy to show that there is no stationary RPC-equilibrium of â. Thus δ has
the direct effect only if v j(â) > v j(a0( j)).
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equilibrium which satisfies (3.19). We now demonstrate that in some cases there actually

exists such a SMA-equilibrium. Specifically, we illustrate it by truthful equilibria proposed

by BW. The truthful equilibria are defined as follows.

Definition 3.3 The payment schedule ŵ j(·) is truthful relative to â if ŵ j(·) satisfies

ŵ j(a) = max{ŵ j(â) + v j(a) − v j(â), 0}

for all a ∈ A. (â, ŵ1(·), . . . , ŵN(·)) is a truthful equilibrium in SMA (henceforth SMAT-

equilibrium) if this is a SMA-equilibrium and ŵ j(·) is truthful relative to â for all j ∈ N .

BW show that SMAT-equilibria have some appealing properties; (i) it could be fo-

cal in the sense that there is always a truthful strategy which is the best response, (ii)

SMAT-equilibria are (Pareto) efficient, and (iii) on SMAT-equilibria, the principals have

no incentive to deviate jointly (i.e. coalition-proof). Because there typically exist many

SMA-equilibria, many applied works adopt the SMAT-equilibrium as an equilibrium re-

finement. As we will see, however, this appealing equilibrium is sometimes vulnerable

to the commitment problem explicitly introduced in our model.

(3.19) consists of two conditions, ŵ j(â) = v j(â)−v j and v j(â) > v j. Note that from Lemma

3.5 if ŵ j(·) is a SMA-equilibrium contract, then ŵ(â) must be no more than v j(â) − v j. Thus

the first condition can be interpreted as that where principal j pays the maximum payment

on SMA-equilibria. On SMAT-equilibria, the sufficient condition for it is characterized as

follows.

Lemma 3.6 Let (â, ŵ1(·), . . . , ŵN(·)) be a SMAT-equilibrium. Then ŵ j(â) = v j(â)−v j if A j∩A∗ ,

∅.

The intuition is obtained from the sketch of the proof of the lemma. If there exists
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a decision a j ∈ A j ∩ A∗, choosing a j maximizes the total benefit. Moreover, since a j

minimizes principal j’s benefit, the aggregate benefit in the coalition of all the players

except for principal j (i.e.
∑

i, j vi(a)) is also maximized. Then in SMA all the players

except for principal j wish to implement a j and are willing to reward for a j rather than the

other decisions. In order to avoid being “isolated” by a j chosen, principal j has to pay the

maximum credible amount.

In what follows, we call the set A j∩A∗ and abusively its element “completely isolating

decision of j”. Now suppose that there exist two principals, say j and k, the completely

isolating decisions of which exist, i.e. A j ∩ A∗ , ∅ and Ak ∩ A∗ , ∅. If their preference

is not congruent in the sense that they do not share the completely isolating decisions,

i.e. A∗ ∩ A j ∩ Ak = ∅, then, for any a∗ ∈ A∗, either a∗ < A j or a∗ < Ak (or both). Since

any SMAT-equilibrium decision must be socially efficient, i.e. â ∈ A∗, either v j(â) > v j or

vk(â) > vk must be satisfied. Then all possible SMAT-equilibria have principal j or k which

satisfies (3.19).

Proposition 3.9 Suppose that there exist j, k ∈ N (where j , k) such that A j∩A∗ , ∅, Ak∩A∗ , ∅

and A∗∩A j∩Ak = ∅. Then for any δ ∈ [0, 1) there are no RPC-equilibria which attain the SMAT-

equilibrium payoff vector.

To see the intuition further, suppose that N = 2 and there is a completely isolating

decision of principal 2. Since it maximizes the joint benefit of the agent and principal 1,

they prefer the completely isolating decision of principal 2 the most and since there is no

enforcement cost in SMA, they would readily agree to the contract, which leads to the

completely isolating decision of principal 2 unless principal 2 is there. This agreement

works as a credible threat to exploit principal 2 by the agent. At the same time, if there is

also a completely isolating decision of principal 1, the agent can make the same credible
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threat to principal 1. Thus the agent can exploit both principals.

If â is the SMAT-equilibrium decision, the exploitation has either of the following

forms: i) the agent actually chooses the completely isolating decision (i.e. â ∈ A j ∩ A∗), or

ii) the agent receives the maximum credible amount of transfer (i.e. ŵ j(â) = v j(â)− v j > 0).

Now if A∗ ∩A1 ∩A2 = ∅, the latter necessarily happens on the SMAT-equilibrium because

the former is never satisfied for both j = 1, 2 simultaneously. However according to

Proposition 3.8, the latter is impossible in the RPC.

Proposition 3.7 shows that the upper bound for principal j on RPC-equilibria of â is at

most δ[v j(â)− v j] which never exceeds v j(â)− v j for any δ ∈ [0, 1). The reason is that even if

the players are patient enough to generate the strongest punishment payoff on principal

j, v j, this effect is discounted by δ. In the RPC, reneging is punished endogenously by the

players and the punishment is delayed by one period. Then the effect of the punishment

is necessarily discounted and it does not allow principal j to pay v j(â) − v j in the RPC.

It can be interpreted that under the condition in Proposition 3.9, principal j and k

are in conflict via their completely isolating decisions. The idea that SMAT-equilibria

are vulnerable due to conflict between the principals can be confirmed by redistributive

politics specified as follows. Suppose that s(a) = s∗ for all a ∈ A so that the total benefit

does not change at all and the decision determines only the distribution of the benefit

among the players. Under this condition any non-trivial SMAT-equilibrium payoff –

in that the agent’s choice is indeed altered by the principals’ payment schedule on the

equilibrium – cannot be supported by RPC-equilibria.

Proposition 3.10 Suppose that s(a) = s∗ for all a ∈ A. Then any SMAT-equilibrium payoff where

â < A
0

cannot be supported by RPC-equilibria of â for any δ ∈ [0, 1).

Proposition 3.9 and 3.10 implies that the assumption of sufficient patience is sometimes
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Decision v1(a) v0(a) v2(a)
l C + D −C −D
c 0 0 0
r −D −C C + D

Table 3.2: Example 2

not enough to justify the SMA model in political economy, especially when conflict among

the players is severe.

3.5.3 Example

We revisit the example discussed in section 3.4 to demonstrate the results above. Now

further assume that G1 = G2 = C+D and then the benefit function is given in Table 3.2. Then

a unique SMAT-equilibrium is2526 (ŵ1(l), ŵ1(c), ŵ1(r)) = (2D + C,D, 0), (ŵ2(l), ŵ2(c), ŵ2(r)) =

(0,D, 2D + C), and the agent chooses c. The SMAT-equilibrium net payoff vector is then

given by (ŷ0, ŷ1, ŷ2) = (2D,−D,−D).

This SMAT-equilibrium payoff cannot be achieved by any RPC-equilibria for any

δ ∈ [0, 1). Notice that s(c) = s(l) = s(r) and ŵ j(c) > 0 for j = 1, 2, implying that the

condition in Proposition 3.10 is satisfied.27 Recall that from (3.9) the lower bound of the

RPC-equilibrium payoff of c for principal j is (1 − δ)v j(c) + δv j(a0( j)) which satisfies

(1 − δ)v j(c) + δv j(a0( j)) = (1 − δ) · 0 + δv j(a0( j)) = δv j(a0( j)) ≥ −δD > −D

for any δ ∈ [0, 1). Then on all the RPC-equilibria of c, principal j’s net payoff must be

25Bergemann and Välimäki (2003) propose the marginal contribution equilibrium and they show that if
the game has a marginal contribution equilibrium, then a SMAT-equilibrium payoff is unique and coincides
with that of the marginal contribution equilibrium. By applying this property, it can be seen that a SMAT-
equilibrium decision is uniquely given as c. See Bergemann and Välimäki (2003) for the detail of the
marginal contribution equilibrium.

26It is still a SMAT-equilibrium as long as G j ≤ C + D for j = 1, 2.
27It is easy to confirm that the conditions in Proposition 3.8 and 3.9 also hold.
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strictly greater than the SMAT-equilibrium.

3.6 Discussion

3.6.1 Approximation

The above example has another interpretation that provides the opposite meaning. Given

sufficiently high δ, according to (3.9), the RPC-equilibrium payoff that attains the lowest

payoff for the principals is (u0,u1,u2) = (2δD,−δD,−δD). Then the principals’ payoff

is never less than −D but the vector approaches (2D,−D,−D) as δ goes to 1. In this

sense, every SMA-equilibrium payoff can be approximately implemented in the RPC-

equilibrium.

This approximation is in general true. Namely, even if the SMA-equilibrium payoff

satisfies the condition in Proposition 3.9, it can be implemented in the RPC-equilibrium ap-

proximately.28 If the approximation is appropriate, the assertion that the SMA-equilibrium

could be vulnerable is no longer valid. Thus the validity of the approximation is an im-

portant factor for the economics implication.

The approximation is not realistic for the following reasons. First, to assume δ close

to one seems to be unrealistic in many applications. The discount factor δ would be

interpreted as the probability of continuing the same period game in the next period and

the players obtain zero payoff on average when the game ends. Since many political

positions stipulate a finite length for the term of office, the probability of continuing the

game in the long run is obviously far from 1. Second, even if it is appropriate to assume

that δwould be almost 1, the approximation can be achieved only if both the principals and

28It is directly from the folk theorem in Wen (2002). Since the payoff vector some of the components of
which contain the exact minimax value is just a neighbourhood of the payoff which is strictly greater than
the minimax payoff which can be supported for sufficiently high δ by his folk theorem.
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the agents can coordinate their behaviour, especially for punishment. There are typically

multiple SPE and then they need coordination for “choosing” the future equilibrium

behaviour. Third, although we have not assumed any kinds of renegotiation-proofness

on the equilibrium behaviour, it is often taken into consideration in the theory of relational

contracts since it is natural to imagine that contracting parties in a long term relationship

frequently meet each other. Imposing renegotiation-proofness on the equilibrium could

makes the OPC weaker, which leads the impossibility of approximation.

In summary, the approximation is possible only when the players can overcome these

difficulties; the players are fairly patient, rational in the sense that they can coordinate in

a sophisticated way, and able to commit themselves not to renegotiate with each other.

It would be unrealistic in many situations. Furthermore, Proposition 3.9 and 3.10 show

that it could be the case that the SMA-equilibrium cannot be supported exactly even if the

difficulties mentioned here can be ignored. From these factors, we would conclude that

every SMA-equilibrium is not necessarily robust to the lack of commitment.

3.6.2 Conflict Makes the SMA Vulnerable

Proposition 3.9 and 3.10 clarify that conflict between principals makes it difficult to justify

the SMAT-equilibria. This argument can be seen even if the conditions in Proposition

3.9 or 3.10 are not satisfied. In order to understand it, look at Example 3.1 with 0 <

G j − C < D for j = 1, 2. It is verified that a unique SMAT-equilibrium payoff is given by

(ŷ0, ŷ1, ŷ2) = (G1 + G2−2C,−G2 + C,−G1 + C) and it is replicated by RPC-equilibria of c only

if δ ≥ max{(G1−C)/D, (G2−C)/D}.29 Here G j−C is the aggregate benefit between the agent

and principal j and as G j − C is larger, the total benefit of l and r is approaching that of c,

29Additionally, to assure the effective punishment, it is required that δ ≥ C/(2D + C). See section 3.4.2.

120



meaning that the environment becomes more similar to the one described in Proposition

3.10. By observing the SMAT-equilibrium payoff vector, we see that as G j − C is larger,

the agent can exploit principal k(, j) more in the SMAT-equilibrium. At the same time,

however, as G j − C becomes larger, δ must become higher to achieve the SMAT outcome

in the RPC environment.

3.6.3 Other SMA Equilibria

While we have focused on the relation between SMAT-equilibria and RPC-equilibria in

Proposition 3.9 and 3.10, we can also discuss the relation between SMA-equilibria (which

are not necessarily SMAT-equilibria) and RPC-equilibria by Proposition 3.8. For instance,

consider again Example 3.1 and suppose that G j − C − D < 0 for j = 1, 2. Under this

assumption, the following strategy profile is a SMA-equilibrium (which is not a SMAT-

equilibrium); (ŵ1(l), ŵ1(c), ŵ1(r)) = (2D + C,D, 0), (ŵ2(l), ŵ2(c), ŵ2(r)) = (0,D, 2D + C), and

the agent chooses c. It can be shown that this SMA-equilibrium satisfies the condition

in Proposition 3.8 and then it cannot be supported in RPC-equilibria. It implies that

there would be more environments where SMA-equilibria cannot be supported in RPC-

equilibria than those conditioned by Proposition 3.9 and 3.10.

3.6.4 SMA with Caps on Transfer

The implication from the analysis of the RPC is that if the amount of compensation is

restricted to be below some upper bound, SMA-equilibria could be implemented even if

there is a lack of commitment ex ante. It means that one of the appropriate ways to analyse

lobbying by SMA is to introduce an upper bound on the amount of compensation.

Consider Example 3.1 again with G1 = G2 = G. Now assume that there is a (common)
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upper bound L ≥ 0 below which the principals’ compensation must be, i.e. w j(a) ≤ L

for a = l, c, r and j = 1, 2. This is a special case of Dixit et al. (1997) and the conditions

for truthful equilibria are characterized by Proposition 3 in their paper. According to

the conditions, it can be shown that when L ≥ 2G − C, the SMAT-equilibrium satisfies

(ŵ1(l), ŵ1(c), ŵ1(r)) = (2G−C,G−C, 0) and (ŵ2(l), ŵ2(c), ŵ2(r)) = (0,G−C, 2G−C) as before.

By contrast, when C < L < 2G−C, the compensation schedule in the truthful equilibrium

becomes (ŵ1(l), ŵ1(c), ŵ1(r)) = (L, (L − C)/2, 0) and (ŵ2(l), ŵ2(c), ŵ2(r)) = (0, (L − C)/2,L).

It means that the amount to be paid to the agent in the equilibrium is (weakly) de-

creasing as L is decreasing. However this is not necessarily due to the direct effect in that

the principals’ equilibrium payment is capped by L. In fact, if G − C ≤ L < 2G − C, it is

obviously possible for the principals to commit to pay G − C when the agent chooses c.

Instead of the direct effect of caps on transfer, decreasing the amount of compensation

in equilibrium is caused by the strategic effect. When L < 2G − C, principal 2 cannot

commit to pay 2G − C when the agent chooses r and then the agent is less incentivized

to choose r. Since r is the least preferred decision for principal 1, she can avoid r being

implemented without a large amount of compensation for the other decisions. In other

words, principal 2’s inability to commit lowers principal 1’s compensation.

This chapter argues the importance of commitment ability and it is captured by the

maximum amount to be committed to the compensation. Thus the SMA-model with such

caps on transfer should be adopted in the analysis of lobbying. It is actually a special case

of the model of Dixit et al. (1997).30 However, even though the framework has already been

established by them, as discussed above, there have been no papers taking into account

the upper bounds explicitly. Including the generalization of the above discussion, this

30Although their most important innovation seems to be to allow the payoff functions to be not quasi-
linear in the transfer, it should be argued that to allow the institutional restriction on the compensation
schedule is also important for analyses of lobbying.
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should be a future research topic.

3.7 Conclusion

This chapter has formally analysed political contribution delivered only via self-enforcing

agreements that is abstracted from in most of the literature. There are two main results.

First, the optimal punishment is either an “Exclusion-type” in which the agent excludes

the deviating principal forever or a “Sanction-type” in which a short-term punishing

decision and fine are implemented. Second, when the contract must be self-enforcing, the

outcome in the menu auction is not necessarily guaranteed even if the players are patient.

We conclude the chapter by proposing a direction for future research. The model

presented in this chapter is a first step toward relational contracts under common agency.

Incorporating asymmetric information would be an interesting and important extension.

Moreover since our approach to characterize equilibria does not require patient players

(i.e. our objective was not focused on proving the Folk theorem), it can be applied to many

application works of special interest politics. In particular, our analysis on the OPC and

comparison with SMA suggests that conflict in the principals’ preference could give us a

new insight on political contributions which cannot be obtained from the menu auction

model. Then embedding a political factor which causes conflict among lobbyists would

stimulate the discussion on special interest politics.
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3.8 Appendix: Proofs

3.8.1 Proof of Proposition 3.1

For an arbitrary decision-stationary strategy σ̂ of â, let principal j’s stationary strategy

(payment schedule) be

β̂ j(â) := σ̂ j(â) +
δ

1 − δ
[
u j(σ̂) − u j (σ̂1)

]

and β̂ j(a) = 0 if a , â, and consider the following stationary strategy profile;

• the agent always chooses â as long as no player has deviated,

• principal j pays β̂ j(·) described above every period as long as no player has deviated,

and all players play the OPC once some player deviated.

Since the new strategy profile is also decision-stationary of â, the total surplus does

not change. Then, if each of the principals obtains the same payoff as σ̂, the agent’s payoff

is also the same. Under this stationary strategy, principal j’s average payoff is

(1 − δ)
∞∑

t=0

δt[v j(â) − β̂ j(â)] = v j(â) − β̂ j(â)

= v j(â) − σ̂ j(â) − δ
1 − δ

[
u j(σ̂) − u j (σ̂1)

]

=
1

1 − δ
[
(1 − δ)(v j(â) − σ̂ j(â)) + δu j (σ̂1) − δu j(σ̂)

]

=
1

1 − δ
[
u j(σ̂) − δu j(σ̂)

]
= u j(σ̂).

Thus the payoff vector is the same as σ̂.

Now, we will show that the new stationary strategy is a SPE. Since the chosen decision

and payment schedule are completely identical in each period, the on-path continuation

124



strategy profile is the same among every periods. Thus according to Lemma 3.2, if the new

stationary strategy satisfies (i) and (ii), then it also satisfies (iii) since there is no incentive

to deviate after period 1 and then it is a SPE. Since, by construction, the continuation

payoff is given by ui(σ̂) for i ∈ {0} ∪ N , the new stationary strategy satisfies (i) if and only

if

∑

j∈N
β̂ j(â) ≥ v0 − v0(â) − δ

1 − δ
[
u0(σ̂) − u0(σ(0))

]

⇐⇒ ψ̂(â) +
δ

1 − δ
∑

j∈N

[
u j(σ̂) − u j(σ̂1)

]
≥ v0 − v0(â) − δ

1 − δ
[
u0(σ̂) − u0(σ(0))

]

⇐⇒ ψ̂(â) +
δ

1 − δ


N∑

j=0

u j(σ̂) −
N∑

j=0

u j(σ̂1)

 ≥ v0 − v0(â) − δ
1 − δ

[
u0(σ̂1) − u0(σ(0))

]

in which
∑N

j=0 u j(σ̂) =
∑N

j=0 u j(σ̂1) = s(â) because both σ̂ and σ̂1 are decision-stationary

strategy. Thus (3.3) assures that it is true. The new stationary strategy satisfies (ii) for

j ∈ N if and only if

β̂ j(â) ≤ δ
1 − δ [u j(σ̂) − u j(σ( j))] ⇐⇒ σ̂ j(â) +

δ
1 − δ

[
u j(σ̂) − u j(σ̂1)

]
≤ δ

1 − δ
[
u j(σ̂) − u j(σ( j))

]

⇐⇒ σ̂ j(â) ≤ δ
1 − δ

[
u j(σ̂1) − u j(σ( j))

]
,

which is implied by (3.4) and

β̂ j(â) = σ̂ j(â) +
δ

1 − δ
[
u j(σ̂) − u j (σ̂1)

]

= σ̂ j(â) +
δ

1 − δ
[
(1 − δ)(v j(â) − σ̂ j(â)) + δu j (σ̂1) − u j (σ̂1)

]

= σ̂ j(â) + δ
[
v j(â) − σ̂ j(â) − u j (σ̂1)

]

≥ σ̂ j(â) − δσ̂ j(â) = (1 − δ)σ̂ j(â) ≥ 0
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where the first inequality is due to decision stationarity of σ̂1 and the condition of non-

negative payment implying that v j(â) ≥ u j(σ̂1). Therefore the new stationary strategy is a

SPE.

3.8.2 Proof of Proposition 3.2

It is enough to show the sufficiency. First of all, we will prove the following lemma.

Lemma 3.7 If â ∈ A satisfies (3.10), then v j(â) ≥ u j(σ( j)) for all j ∈ N .

Proof (Lemma 3.7) Let

J := { j ∈ N | v j(â) < u j(σ( j))}

and J := N \ J. Suppose that J , ∅. Since â satisfies (3.10),

δ
1 − δ


∑

j∈J

[v j(â) − u j(σ( j))] +
∑

j∈J

[v j(â) − u j(σ( j))] + v0(â) − u0(σ(0))

 ≥ v0 − v0(â)

⇐⇒ δ


∑

j∈J

v j(â) −
∑

j∈J

u j(σ( j))

 ≥ (1 − δ)v0
+ δu0(σ(0)) − v0(â) − δ

∑

j∈J

[
v j(â) − u j(σ( j))

]
,

which implies that, by the definition of J,

δ


∑

j∈J

v j(â) −
∑

j∈J

u j(σ( j))

 ≥ (1 − δ)v0
+ δu0(σ(0)) − v0(â). (3.20)

Now we will construct a stationary strategy which is a SPE. Here, however, we do not use the

simple strategy. Instead we use the following modified simple strategy where the players ignore
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deviation by principal j ∈ J on the equilibrium path. Specifically, let

β j(â) :=



δ
[
v j(â) − u j(σ( j))

]
for j ∈ J

0 for j ∈ J,

β j(a) = 0 for all a , â and j ∈ N . In addition, let B(â) :=
∑

j∈J β
j(â). Notice that β j ≥ 0 for all

j ∈ N . The agent’s strategy is

• to choose â in the first period and keep it if no players have deviated,

• to change to σ0( j) if principal j ∈ J deviated from paying β j(â), and

• to change to σ0(0) if the agent deviated from â.

• (Even if principal j′ ∈ J deviated from the on-equilibrium path, he keeps to choose â).

Principal j(∈ N)’s strategy is

• to pay β j(â) in each period if no players have deviated,

• to change to σ j( j′), if principal j′ ∈ J deviated, and

• to pay nothing and change to σ j(0) if the agent deviated from â.

• (Even if principal j′′ ∈ J deviated from the on-equilibrium path, she keeps to pay β j(â)).

Because the strategy is stationary, each of the players gets the same net payoff in each period

(v0(â) + B(â) for the agent and v j(â)− β j(â) for principal j) and their continuation payoff is also the

same in each period. Furthermore, since σ(i) is a SPE for all i ∈ N ∪ {0}, the incentive on σ(i) does

not need to be checked. Thus in order to check that it is a SPE, we only have to check (i) the agent

does not deviate in period 0 and (ii) each of the principals does not deviate in period 0 given a0 = â.

127



The agent does not deviate in period 0 if and only if

(1 − δ)
(
v0(â) + B(â)

)
+ δ

(
v0(â) + B(â)

)
≥ (1 − δ)v0

+ δu0(σ(0))

⇐⇒ B(â) ≥ (1 − δ)v0
+ δu0(σ(0)) − v0(â),

which is equivalent to (3.20). Then (i) is satisfied.

For principal j ∈ J, she does not deviate in period 0 if and only if

(1 − δ)
(
v j(â) − β j(â)

)
+ δ

(
v j(â) − β j(â)

)
≥ (1 − δ)

(
v j(â) − 0

)
+ δu j(σ( j))

⇐⇒ β j(â) ≤ δ
[
v j(â) − u j(σ( j))

]
,

which is satisfied by the construction of β j(â). For principal j ∈ J, when she follows β j(â) = 0, her

payoff is v j(â). Moreover even if she deviates to b j′ > 0, her continuation payoff does not change

from v j(â) since the players do not punish her. Then her payoff is

(1 − δ)v j(â) − b j′ + δv j(â) = v j(â) − b j′,

which is strictly less than the payoff without deviation, v j(â) for any b j′ > 0. Hence she prefers to

follow this strategy. Therefore (ii) is also satisfied.

We have shown that the constructed stationary strategy is a SPE. Note that for j ∈ J, the SPE

payoff is v j(â) implying that, by the definition of σ( j), v j(â) ≥ u j(σ( j)). It contradicts the hypothesis

v j(â) < u j(σ( j)) we supposed first. �

Suppose that (3.10) holds. Now consider the following stationary strategy σ̂;

• the agent always chooses â as long as no players have deviated,

• principal j pays β̂ j(·) (described below) every period as long as no players have
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deviated,

and all players play the OPC once some player deviated. β̂ j(·) is defined as

β̂ j(â) := δ
[
v j(â) − u j(σ( j))

]

and β̂ j(a) = 0 for all a , â. Notice that due to Lemma 3.7, it is nonnegative.

Because the strategy is stationary, each of the players gets the same net payoff in

each period and it is identical with the average payoff. Then u0(σ̂) = v0(â) + B̂(â) where

B̂(·) =
∑

k=1 β̂
k(·) and u j(σ̂) = v j(â) − β̂ j(â) for j ∈ N . Thus

u0(σ̂) − (1 − δ)v0 − δu0(σ(0)) = v0(â) + B̂(â) − (1 − δ)v0 − δu0(σ(0))

= v0(â) +

N∑

j=1

δ
[
v j(â) − u j(σ( j))

]
− (1 − δ)v0 − δu0(σ(0))

= (1 − δ)v0(â) + δ

s(â) −
N∑

j=0

u j(σ( j))

 − (1 − δ)v0

= (1 − δ)


δ

1 − δ

s(â) −
N∑

j=0

u j(σ( j))

 v0(â) − v0

 ≥ 0

where the last inequality is due to (3.10). It implies that (3.7) holds. For j ∈ N ,

u j(σ̂) − (1 − δ)v j(â) − δu j(σ( j))) = v j(â) − β̂ j(â) − (1 − δ)v j(â) − δu j(σ( j)))

= v j(â) − δ
[
v j(â) − u j(σ( j))

]
− (1 − δ)v j(â) − δu j(σ( j))) = 0

and v j(â) − u j(σ̂) = β̂ j(â) ≥ 0. These imply that (3.8) holds.

Therefore, since the stationary strategy satisfies (3.7) and (3.8), it is a SPE implying the

existence.

129



3.8.3 Proof of Proposition 3.3

Suppose that σ is a SPE and the associated equilibrium decision and payment path are

given by ((a0, a1, . . .), (b1
0, . . . , b

N
0 ), (b1

1, . . . , b
N
1 ), . . .)). Now define a sequence {ãt}∞t=0 as follows;

ã0 := a0 and

ãt =



at if s(at) ≥ s(ãt−1)

ãt−1 otherwise.

Note that by construction s(ãt) ≥ s(ãt−1) for all t ≥ 0. Since A is compact, by Bolzano-

Weierstrass theorem, we can choose a converging subsequence {ã′t}∞t=0 of {ãt}∞t=0. Let ã′ :=

limt→∞ ã′t. Now we will show that;

Claim 3.1 s(ã′) ≥ ∑N
j=0 u j(σt) for all t ≥ 0 where σt is the on-path continuation strategy of σ in

period t.

Claim 3.2 Σ̂∗(ã′) , ∅.

These claims imply that there exists a decision-stationary equilibrium of ã′ which

generates the total surplus at least
∑N

j=0 u j(σ).

Proof of Claim 3.1 Notice the following observations.

1. By construction of ãt, s(ãt) ≥ s(at) for all t ≥ 0.

2. Since {ã′t}∞t=0 is a subsequence of {ãt}∞t=0, s(ã′t) ≥ s(ãt) and s(ã′t) ≥ s(ã′t−1) for all t ≥ 0.

These imply that s(ã′t) ≥ s(at) for all t ≥ 0. Furthermore because s(·) is continuous and

bounded and {s(ã′t)}∞t=0 is a bounded and nondecreasing sequence, we obtain that for any

130



t ≥ 0

s(ã′t) ≤ sup
k≥0

s(ã′k) = lim
k→∞

s(ã′k) = s
(
lim
k→∞

ã′k
)

= s(ã′), (3.21)

implying that s(at) ≤ s(ã′) for any t ≥ 0. It follows that

N∑

j=0

u j(σt) =

N∑

j=0

(1 − δ)
∞∑

k=t

δk−tv j(ak)



= (1 − δ)
∞∑

k=t

N∑

j=0

δk−tv j(ak)

= (1 − δ)
∞∑

k=t

δk−ts(ak)

≤ (1 − δ)
∞∑

k=t

δk−ts(ã′) = s(ã′).

Proof of Claim 3.2 Since σ is a SPE, neither the agent nor the principals deviate in any

period t, that is,

(1 − δ)(v0(at) + Bt) + δu0(σt+1) ≥ (1 − δ)
(
max
at∈A

v0(at) + δu0(σ(0))
)

= (1 − δ)v0
+ δu0(σ(0))

for the agent and

(1 − δ)(v j(at) − b j
t) + δu j(σt+1) ≥ (1 − δ)(v j(at) − 0) + δu j(σ( j)).

for j ∈ N . Combining them to eliminate b j
t implies that

δ
1 − δ


N∑

j=0

u j(σt+1) −
N∑

j=0

u j(σ( j))

 ≥ v0 − v0(at)
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for all t. Because
∑N

j=0 u j(σt+1) ≤ s(ã′) by Claim 3.1 and ã′t = as for some s ≥ 0, we obtain

that

δ
1 − δ

s(ã′) −
N∑

j=0

u j(σ( j))

 ≥ v0 − v0(ã′t)

for all t ≥ 0. Since {ã′t}∞t=0 is a converging sequence to ã′ and v0(·) is continuous, both sides

are converging. Then the inequality still holds at the limit, which means that

δ
1 − δ

s(ã′) −
N∑

j=0

u j(σ( j))

 ≥ v0 − lim
t→∞

v0(ã′t) = v0 − v0(ã′).

Hence by Proposition 3.2 we obtain Claim 3.2.

3.8.4 Proof of Lemma 3.4

Suppose that the 2n-tuple a := (a0(1), a1(1), a0(2), a1(2), . . . , a0(N), a1(N)) is the solution of

Problem (k) for all k ∈ N simultaneously. Let ` ∈ arg max j∈N s(a1( j)). We show that for all

k ∈ N , (a0(k), a1(`)) is the solution of Problem (k).

Notice that for all k ∈ N , a1(k) is only in the constraint of Problem (k) and not in the

objective function of Problem (k). Since a0(k) achieves the minimum value in Problem (k),

it is enough to check that (a0(k), a1(`)) satisfies the constraints of Problem (k), that is

δ
1 − δ

s(a1(`)) −
v0

+

N∑

i=1

vi(a0(i))



 ≥ v0 −min
{
v0(a0(k)), v0(a1(`))

}
. (3.22)

Since (a0(`), a1(`)) satisfies the constraint of Problem (`),

δ
1 − δ

s(a1(`)) −
v0

+

N∑

i=1

vi(a0(i))



 ≥ v0 −min
{
v0(a0(`)), v0(a1(`))

}

≥ v0 − v0(a1(`)) (3.23)
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and since s(a1(`)) ≥ s(a1(k)) and (a0(k), a1(k)) satisfies the constraint of Problem (k),

δ
1 − δ

s(a1(`)) −
v0

+

N∑

i=1

vi(a0(i))



 ≥
δ

1 − δ

s(a1(k)) −
v0

+

N∑

i=1

vi(a0(i))





≥ v0 −min
{
v0(a0(k)), v0(a1(k))

}

≥ v0 − v0(a0(k)). (3.24)

(3.23) and (3.24) imply (3.22).

3.8.5 Proof of Proposition 3.5

For any a(N),a(N)′ ∈ APC
0 , define a(N)′′ := (a(1)′′, . . . , a(N)′′) where a( j)′′ ∈ arg mina∈{a( j),a( j)′} v

j(a)

for all j ∈ N . The following claim is useful to show the result.

Claim 3.3 If a(N),a(N)′ ∈ APC
0 , then a(N)′′ ∈ APC

0 .

Proof (Claim 3.3) Suppose that without loss of generality mink∈N v0(a(k)) ≤ mink∈N v0(a(k)′).

Since a(N) ∈ APC
0 , the following must hold; for any â ∈ APC

1 (a(N)),

δ
1 − δ

s(â) −
v0

+

N∑

i=1

vi(a(i))



 ≥ v0 −min
k∈N

v0(a(k)) (3.25)

δ
1 − δ

s(â) −
v0

+

N∑

i=1

vi(a(i))



 ≥ v0 − v0(â). (3.26)

Since
∑N

i=1 vi(a(i)′′) ≤ ∑N
i=1 vi(a(i)) by the definition of a(N)′′, (3.25) and (3.26) imply that

δ
1 − δ

s(â) −
v0

+

N∑

i=1

vi(a(i)′′)



 ≥ v0 −min
k∈N

v0(a(k)) (3.27)

δ
1 − δ

s(â) −
v0

+

N∑

i=1

vi(a(i)′′)



 ≥ v0 − v0(â). (3.28)

If mink∈N v0(a(k)′′) ≥ mink∈N v0(a(k)), then (3.27) and (3.28) imply that â ∈ APC
1 (a(N)′′) and
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a(N)′′ ∈ APC
0 and the proof is completed.

Pick up ` ∈ arg mink∈N v0(a(k)′′). Notice that for each j ∈ N , either v0(a( j)′′) = v0(a( j)) or

v0(a( j)′′) = v0(a( j)′). If v0(a(`)′′) = v0(a(`)), then

min
k∈N

v0(a(k)′′) = v0(a(`)′′) = v0(a(`)) ≥ min
k∈N

v0(a(k))

and if v0(a(`)′′) = v0(a(`)′), then

min
k∈N

v0(a(k)′′) = v0(a(`)′′) = v0(a(`)′) ≥ min
k∈N

v0(a(k)′) ≥ min
k∈N

v0(a(k)).

Therefore in both cases mink∈N v0(a(k)′′) ≥ mink∈N v0(a(k)). �

Let

AOPC
0 :=


a(N) ∈ APC

0

∣∣∣∣∣∣∣∣∣∣
@ã(N)′ ∈ APC

0 such that
∀ j ∈ N , v j(ã( j)) ≤ v j(a( j)) and

∃k ∈ N , vk(ã(k)) < vk(a(k))


,

that is, the Pareto-frontier of APC
0 . The proof is completed if AOPC

0 , ∅ and for any

a(N),a(N)′ ∈ AOPC
0 , v j(a( j)) = v j(a( j)′) for all j ∈ N . Since a ∈ APC

0 where a := (a0, . . . , a0) ∈

a0, APC
0 is nonempty. Moreover, it is obviously compact. These imply that AOPC

0 is also

nonempty. Claim 3.3 implies that for any a(N),a(N)′ ∈ APC
0 , a(N)′′ ∈ APC

0 and by the

definition of a(N)′′ ∈ APC
0 , v`(a(`)′′) = min{v`(a(`)), v`(a(`)′)} for all ` ∈ N . Then, if,

for some a(N),a(N)′ ∈ AOPC
0 , there exists k ∈ N such that (without loss of generality)

vk(a(k)) < vk(a(k)′), then it can be seen that v j(a(k)′′) = min{vk(a(k)), vk(a(k)′)} < vk(a(k)′) and

vi(a(i)′′) ≤ vi(a(i)′) for all i ∈ N . It contradicts the hypothesis that a(N)′ ∈ AOPC
0 . Hence

v j(a( j)) = v j(a( j)′) for all j ∈ N .
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3.8.6 Proof of Corollary 3.1

It is a direct implication from Lemma 3.3 and Proposition 3.4.

3.8.7 Proof of Proposition 3.6

1. For treating δ explicitly, change to denote APC
1 (a(N)), APC

0 , and a0(N) by APC
1 (a(N); δ),

APC
0 (δ), and a0(N ; δ) ≡ (a0(1; δ), . . . , a0(N; δ)) respectively. We will show that if 1 > δ′ > δ ≥

0, then v j(a0( j; δ′)) ≤ v j(a0( j; δ)) for all j ∈ N . It is straightforward that if â ∈ APC
1 (a(N); δ),

then â ∈ APC
1 (a(N); δ′), which means that APC

1 (a(N); δ) ⊂ APC
1 (a(N); δ′) for any given

a(N) ∈ AN. It implies that if APC
1 (a(N); δ) , ∅, then APC

1 (a(N); δ′) , ∅. Then we obtain

APC
0 (δ) ⊂ APC

0 (δ′) and Proposition 3.4 implies that a0(N ; δ) ∈ APC
0 (δ′). Proposition 3.4

also implies that for all j ∈ N , v j(a0( j; δ′)) ≤ v j(a( j)) for all a(N) ∈ APC
0 (δ′) and then

v j(a0( j; δ′)) ≤ v j(a0( j; δ)).

2. If there exists â ∈ A such that s(â) −
(
v0

+
∑N

i=1 vi
)
> 0, the left-hand side of (3.17) is

unbounded above in δ ∈ [0, 1). Then we can pick δ
OPC∗ ∈ [0, 1) which satisfies (3.17).

Conversely suppose that s(â) −
(
v0

+
∑N

i=1 vi
)
≤ 0 for all â ∈ A. However, no matter

when we choose a0 ∈ A
0
, s(a0) =

∑N
j=0 v j(a0) = v0

+
∑N

j=1 v j(a0) ≥ v0
+

∑N
j=1 v j, which

implies that s(a0) −
(
v0

+
∑N

j=1 v j
)
≥ 0. Then there must exist a decision a0 which satisfies

s(a0) −
(
v0

+
∑N

j=1 v j
)

= 0. It immediately implies that
∑N

j=1 v j(a0) =
∑N

j=1 v j. Since v j(a0) ≥ v j

for all j ∈ N , it can be seen that v j(a0) = v j for all j ∈ N implying that a0 ∈ A j for all j ∈ N .

Then we see that a vector (a0, a0, . . . , a0) ∈ A ×∏N
j=1 A j satisfies inequality (3.17) (where

both sides are 0).
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3.8.8 Proof of Lemma 3.5

Suppose that (â, ŵ1(·), . . . , ŵN(·)) is a SMA-equilibrium. If ŷ j < v j for some j ∈ N , then

principal j can improve her own payoff by offering another compensation plan w̃ j(a) = 0

for all a ∈ A, a contradiction. If ŷ0 < v0, then the agent can improve his own payoff by

choosing a0 ∈ A, a contradiction.

3.8.9 Proof of Proposition 3.7

(Necessity) Due to Lemma 3.5 and the assumption that the compensation must be non-

negative, if (ŷ0, ŷ1, . . . , ŷN) is a SMA-equilibrium net payoff vector, it satisfies

(ŷ0, ŷ1, . . . , ŷN) ∈ Y(â) :=

(y0, y1, . . . , yN)

∣∣∣∣∣∣∣
N∑

j=0

y j = s(â), y0 ≥ v0, v j(â) ≥ y j ≥ v j, ∀ j ∈ N
 .

Now suppose that ŵ j(â) ≤ δ[v j(â)− v j(a0( j))] for all j ∈ N . Then it is straightforward to see

that Y(â) is a subset of Û∗(â), which implies that (ŷ0, ŷ1, . . . , ŷN) ∈ Û∗(â).

(Sufficiency) Suppose that ŵ j(â) > δ[v j(â) − v j(a0( j))] for some j ∈ N . Then the SMA-

equilibrium payoff of principal j is ŷ j = v j(â) − ŵ j(â) < (1 − δ)v j(â) + δv j(a0( j)). It cannot be

attained in any RPC-equilibria from (3.9).

3.8.10 Proof of Proposition 3.8

(Necessity) Recall that from Proposition 3.6 there exists δ
OPC∗ ∈ [0, 1) such that for

δ ∈ [δ
OPC∗

, 1), u j(a0( j)) = v j for all j ∈ N . Then for δ ∈ [δ
OPC∗

, 1),

Û∗(â) =

(u0,u1, . . . ,uN)

∣∣∣∣∣∣∣
N∑

j=0

u j = s(â),u0 ≥ v0, v j(â) ≥ u j ≥ (1 − δ)v j(â) + δv j, ∀ j ∈ N
 .

Now suppose that every principal violates (3.19), i.e. for every j ∈ N , ŵ j(â) , v j(â)− v j
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if v j(â) > v j. Let J̃(1) := { j ∈ N | v j(â) > v j} and J̃(2) := N \ J̃(1). Since v j(â) = v j for j ∈ J̃(2),

for δ ∈ [δ
OPC∗

, 1) Û∗(â) can be written as

Û∗(â) =


(u0,u1, . . . ,uN)

∣∣∣∣∣∣∣∣∣∣

N∑

j=0

u j = s(â),u0 ≥ v0,
v j(â) ≥ u j ≥ (1 − δ)v j(â) + δv j, ∀ j ∈ J̃(1)

u j = v j, ∀ j ∈ J̃(2)


.

Note that the SMA-equilibrium net payoff satisfies that
∑N

j=0 ŷ j = s(â), ŷ j = v j(â) − ŵ j(â) ≤

v j(â) for j ∈ J̃(1), ŷ j = v j for j ∈ J̃(2), and ŷ0 ≥ v0. Then the SMA-equilibrium net payoff vec-

tor is in Û∗(â) if ŷ j ≥ (1−δ)v j(â)+δv j for all j ∈ J̃(1). Let δ̃ := max{δOPC∗
,max j∈J̃(1) ŵ j(â)/(v j(â)−

v j)}. Since the SMA-equilibrium payoff is not less than the minimax value by Lemma 3.5

and v j(â) , v j(â) − ŵ j(â) for each j ∈ J̃(1), it is obtained that v j(â) − ŵ j(â) > v j for j ∈ J̃(1),

which implies that δ̃ < 1. For δ ≥ δ̃, it can be seen that ŷ j ≥ (1 − δ)v j(â) + δv j for j ∈ J̃(1).

(Sufficiency) Suppose that principal j satisfies (3.19). The SMA-equilibrium payoff of

principal j is v j(â) − ŵ j(â) = v j. Notice that v j(a0( j)) ≥ v j for any δ ∈ [0, 1), which implies

that (1 − δ)v j(â) + δv j(a0( j)) ≥ (1 − δ)v j(â) + δv j > v j for any δ ∈ [0, 1). Then from (3.9) the

SMA-equilibrium payoff vector cannot be in Û∗(â) for any δ ∈ [0, 1).

3.8.11 Proof of Lemma 3.6

For each j ∈ N , let M j := s∗ −maxa∈A[s(a)− v j(a)] which is called the marginal contribution

of principal j. Let (â, ŵ1(·), . . . , ŵN(·)) be a SMAT-equilibrium and (ŷ0, ŷ1, . . . , ŷN) be the

corresponding net payoff. Theorem 1 of Bergemann and Välimäki (2003) implies the

following statement.

Claim 3.4 (ŷ0, ŷ1, . . . , ŷN) is a SMAT-equilibrium payoff vector only if ŷ j ≤M j for all j ∈ N .
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Suppose that A j ∩A∗ , ∅ and then there must exist a decision a j ∈ A j ∩A∗. Then this a j

satisfies s(a j) = maxa∈A s(a) = s∗ and v j(a j) = mina∈A v j(a) = v j. Notice that

s(a j) − v j(a j) ≤ max
a∈A

[s(a) − v j(a)] ≤ max
a∈A

s(a) −min
a∈A

v j(a) = s∗ − v j = s(a j) − v j(a j),

which implies that maxa∈A[s(a) − v j(a)] = s(a j) − v j(a j) = s∗ − v j. Then by applying Claim

3.4, it is obtained that ŷ j ≤ s∗−
[
s∗ − v j

]
or equivalently ŷ j ≤ v j. Then by Lemma 3.5 ŷ j = v j.

Since ŷ j = v j(â) − ŵ j(â), ŵ j(â) = v j(â) − v j.

3.8.12 Proof of Proposition 3.10

Since s(a) = s∗ for all a ∈ A, it is obvious that A∗ = A and then A j ∩ A∗ , ∅ for all j ∈ N . It

implies that by Lemma 3.6, for any SMAT-equilibrium (â, ŵ1(·), . . . , ŵN(·)), ŵ j(a) = v j(a)−vi

for all a ∈ A and j ∈ N . Then thanks to Proposition 3.8, if the decision on the SMAT-

equilibrium satisfies v j(â) > v j for some j ∈ N , the SMAT-equilibrium payoff cannot be

that of RPC-equilibria. Conversely, suppose that v j(â) = v j for all j ∈ N . Since â < A
0
,

there exists a0 ∈ A
0

such that v0(a0) > v0(â). Since s(â) = s(a0)(= s∗), it implies that

∑

i∈N
vi(a0) <

∑

i∈N
vi(â) =

∑

i∈N
vi,

which is not true since vi(a0) ≥ vi for all i ∈ A.
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Chapter 4

Strategic Candidacy via Endogenous
Commitment

4.1 Introduction

In September 2007, Taro Aso, the former Prime Minister of Japan between 2008 and 2009,

stood for election as the president of the Liberal Democratic Party (LDP) in Japan, standing

opposed to sole rival Yasuo Fukuda. All of the media, politicians, and even Aso himself

expected that Fukuda would almost certainly win.1 Despite facing this adversity, Aso

decided to stand for the election and lost as expected.

Aso’s decision cannot be explained by the standard logic of strategic candidacy devel-

oped in the literature of political competition with policy-motivated candidates. Roughly

speaking, it argues that strategic candidacy can emerge only if the candidates entry into

the election can alter the winner (or probability distribution of the winner over the rivals

in general). In that scenario, given that a candidate attempting strategic candidacy exists,

there must be at least two other rivals in the election. By contrast, in the episode of Aso,

Fukuda was the sole rival against him. As such, given that Aso had no chance to win the

election, Fukuda would be the winner regardless of Aso’s entry and Aso’s decision was

inconsistent with an intention to change the winner in the election.

1BBC News on 16 September 2007 (http://news.bbc.co.uk/1/hi/world/asia-pacific/6997190.stm).
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To solve this puzzle, we develop a dynamic model of political competition with policy-

motivated citizens. Specifically, our model is based on the canonical model of political

competition with citizen candidates developed by Besley and Coate (1997, hereafter BC).

We consider an infinitely repeated model of the political competition with citizen can-

didates and demonstrate the strategic candidacy Aso attempted, which is impossible to

show using BC’s model.

In BC’s model, there are a finite number of citizens, each of whom decides whether to

stand for the election with (small) positive cost or not and votes for one of the candidates,

and then the elected citizen implements a policy. Since the political competition ends after

implementing a policy, the representative would implement her most preferred policy on

the equilibrium. In other words, each of the candidates cannot commit to implementing

any policies different from her ideal policy.

In our model, while we focus on a simple trigger strategy on the equilibrium, it is

enough to show that the repeated relationship could guarantee an ability to commit to an

implemented policy via reputational concerns which makes a key difference from BC’s po-

litical equilibrium. In the dynamic relationship, the citizens can alter the political process

depending on implemented policies. Thus an elected representative may choose a policy

different from her ideal policy for the fear of a worse political process after implementing

the ideal policy. This can credibly expand the set of policies to be implemented.

More importantly, the implemented policy can be contingent on the set of the rival

candidates. For instance, a candidate can attempt to implement a policy different from her

ideal policy when and only when there are rival candidates in the election. Thus, even if

the rival’s candidacy cannot alter the identity of the winner in the election, it can alter the

consequent policy through a change in the winner’s implementing policy. It motivates

him to stand for the election even when he has no chance to win and no possibility to
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change the winner.

To see it more intuitively, consider the Downsian spatial model in which there are two

potential candidates, an extreme (female) leftist and a mild (male) rightist, and if each of

them implements their ideal policy, then the mild rightist gains the strict majority of the

votes. Now suppose that the leftist can credibly implement the median policy in addition

to the left policy, but attempts to implement the median policy only when the mild rightist

also stands for the election against her. Given her intention, the rightist has no chance to

win since she would implement the policy closest to the median voter. Nevertheless the

rightist still has an incentive to stand for the election. If he did not stand for the election,

then the leftist would implement the left policy, which is less preferred to the median

policy by him. In other words, he can induce policy compromises from the leftist simply

by entering the race. Actually, this is consistent with Aso’s intention, as he explains the

reason for standing in the election for the president of the LDP as follows:

In terms of history and international relations, my perspective is extremely

opposed to Fukuda’s even within the party. [...] Fukuda’s ideology and beliefs

are different from those that conservatism has been reviving in and dominating

the LDP with recently. I thought of expressing a different position fairly. [...]

I believed that only after fighting in the election for the president, the prime

minister would get tough and could fight against Ozawa’s Democratic Party

of Japan (DPJ) in the decisive battle. (Aso, 2007, 110-111)2

At that time, Aso understood that DPJ, the growing party as the opposition to the LDP,

would have been a tough rival in the next general election and that it was important to

establish conservatism in the LDP. While Aso recognized that he was unlikely to win the

2Translated by the author.
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election for the president of the LDP, he actually stood for election since he wanted to

induce the stance of the conservatism from Fukuda, whose ideology was different from

that of Aso.

This intuition is confirmed in the necessary condition for the existence of the political

equilibrium, in which there are exactly two candidates and only one of them has a positive

probability to win (Proposition 4.3). The necessary condition is not restricted to one-

dimensional spatial competition and it states that if there exists such a dynamic political

equilibrium, then (i) the loser’s entry must induce political compromises, the benefit from

which outweigh the cost of entry, (ii) the policy implemented by the winner must be

supported by strict majority of the citizens, and (iii) the winner must be able to credibly

implement a different policy from her ideal one.

In order to support our argument of strategic candidacy, we should also provide

the sufficient conditions of its existence. Whereas the sufficient condition is stronger

in general, the necessary condition is almost sufficient under one-dimensional spatial

competition (Proposition 4.5).

As the necessary condition argues, it is essential for strategic candidacy in a two-

candidate competition to induce political compromises from the winner. Nevertheless

the converse is not necessarily true; strategic candidacy is not necessarily required for

inducing political compromises. Actually, as long as the winner can credibly commit

to multiple policies due to the fear of a worse political process after the deviation, the

political compromise could be induced without any other candidates. With this in mind,

we ask a question of whether a political compromise induced by strategic candidacy can

be supported by the political process without the strategic candidacy.

We demonstrate that in one-dimensional spatial competition, if the compromised pol-

icy is not close enough to the median and either the median citizen or any citizen around
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the median cannot commit to policies far from their own ideal policy, then the compro-

mised policy cannot be implemented without strategic candidacy whereas it is possible

with strategic candidacy (Proposition 4.6). In this situation, the expected winner cannot

deter the median citizen, or anyone around the median, from standing for the election

opposed to her and then she is no longer the unique candidate. This result implies that

strategic candidacy is not a trivial factor from the perspective of political compromises.

Possibilities of strategic candidacy have been already pointed out by Osborne and

Slivinski (1996) and BC in the models of political competition with citizen candidates.3

However, in their model, strategic candidacy emerges only when there are three or more

citizens to stand for election. The contribution of this chapter is to show that in the

dynamic political competition, strategic candidacy can emerge even when there are only

two candidates.4 Recently, Asako (2010) independently addresses the same question as

ours in a modified model of political competition with citizen candidates. He considers a

one-shot spatial model rather than a dynamic model and assumes “betrayal cost” which

is increasing in the distance between the promises made before the election and the actual

implementing policy.5 While some of our results are shared with his paper, our model

demonstrates it by studying the political reputation sustained endogenously in a dynamic

political process instead of assuming the betrayal cost exogenously.6 Furthermore our

3Recently, strategic candidacy is also studied in the theory of social choice. This literature takes axiomatic
approaches and addresses under what rule of political competition implementation of social choice function
is immune to the threat of strategic candidacy. See Dutta et al. (2001, 2002), Ehlers and Weymark (2003),
Eraslana and McLennan (2004), Samejima (2007) among others.

4Besley and Coate (1998) investigate a finite repeated political competition with citizen candidates. They
mainly study normative issues to ask whether efficient outcome can be implemented through the dynamic
political competition and do not address strategic candidacy as we ask in this chapter.

5In addition, his model assumes sincere voting while our model adopts strategic voting.
6Our result could be interpreted as a microfoundation of the betrayal cost. Strictly speaking, however,

it is somewhat difficult to justify his model by the repeated political competition since replicating the
continuous betrayal cost function requires very sophisticated punishment strategy. We believe that if we
construct a one-shot model with commitment ability which is justified by a repeated situation implicitly
assumed, then the commitment ability should be defined as a set of the policies to be committed credibly
rather than the continuous function increasing in the distance between the promise and the actual policy.
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main results are not restricted to a one-dimensional spatial competition as he assumes.

Our model is also related to the repeated elections including Alesina (1988), Dixit

et al. (2000), Duggan and Fey (2006), and Aragonès et al. (2007). These papers show

that even when candidates are policy-motivated, they can implement a different policy

from their most preferred one in the repeated relationship. However all of these papers

consider a competition with two candidates (or two parties) and there is no endogenous

decision to choose to stand for the election as there is in the citizen-candidate model.

Our contribution to this literature is intended to uncover equilibrium characteristics of

endogenous entry decisions in dynamic competition. In particular, we show that decisions

to stand for election may be purely strategic in a two-candidate competition which cannot

be explained in the models without endogenous entry decisions.

The rest of this chapter is organized as follows. Section 4.2 reviews a one-shot political

competition model of BC. Section 4.3 extends the political competition to the repeated set-

ting. Section 4.4 discusses a two-candidate equilibrium with strategic candidacy emerging

in a simple example and identifies the conditions for the existence of such equilibria. Sec-

tion 4.5 discusses the relationship between political compromises and strategic candidacy

and shows that political compromises induced by strategic candidacy are not necessarily

induced without the strategic candidacy. Section 4.6 concludes. The Appendix con-

tains the proofs of the formal results and provides the supplementary results on voting

decisions.
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4.2 One-Shot Political Competition

4.2.1 Environment

We first describe one-shot political competition, denoted by G, which is essentially the

same as BC. There are a set of citizens N = {1, 2, . . . ,N} with N ≥ 2 and let N := 2N \ {∅},

that is, the collection of non-empty subsets of N . The policy space is defined byA ⊂ RK

where K is a positive integer. The political process is described as the following three

stage game.

• Stage 1 (Entry Stage): each citizen i ∈ N decides whether to stand in the election or

not.

• Stage 2 (Voting Stage): given the set of candidates C ∈ N, each citizen votes for one

of the candidates and the candidate who receives the most votes is elected as the

representative.

• Stage 3 (Policy Stage): the elected representative I implements a policy aI ∈ A.7

There are several assumptions as follows. First, when a citizen stands for election, she

incurs a utility cost for the candidacy d > 0.8 Second, if the set of the candidates is empty

after Stage 1, then the status quo policy a0 ∈ A is immediately implemented and the game

ends. Third, given C ∈ N, each of the citizens, including the candidates, can abstain from

voting. Finally, given the votes, if there are two or more candidates who obtain the most

votes, the representative is chosen with equal probability from the tying candidates.

7It implies that every citizen can choose any policy from A when she becomes representative. We can
also assume that if citizen i becomes representative, she chooses a policy fromAi ⊂ A. This extension does
not change our results qualitatively.

8We assume that the entry cost is common among all the citizens. None of the following results can be
changed qualitatively even if the entry cost is heterogeneous among the citizens.
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Given that policy a ∈ A is implemented, citizen i obtains political benefit vi(a).9 The

citizen’s net payoff is the sum of the expected political benefit from the policy and the

disutility from the decision to enter. More specifically, when policy a is chosen, the ex post

payoff for citizen i is given by vi(a) − d if she stood for election and vi(a) if not.

LetAi ≡ arg maxa∈A vi(a) be the set of citizen i’s ideal policy. Throughout the chapter,

we assume that Ai
is singleton for each i ∈ N and let Ai

= {ai}. We further assume that

ai , a j for any i, j ∈ N with i , j. The preference described above is assumed to be common

knowledge for all the citizens. Further, we naturally assume that the set of candidates, the

identity of the representative, and the implemented policy are all observable while voting

choice is private information for each citizen.

4.2.2 Political Equilibria

A political equilibrium of G is defined as a subgame perfect equilibrium with some

refinement, which is explained later. The backward induction implies that when candidate

i becomes the representative, she will choose policy ai regardless of whatever happened

before. Then citizen i’s pure strategy in game G is essentially defined by a dupleχi ≡ (γi, ωi)

whereγi ∈ {0, 1} is the probability to stand for the election andωi = (ωi
C)C∈N withωi

C ∈ C∪{0}

is the voting decision meaning that citizen i votes for ωi
C or abstains (when ωi

C = 0). A

mixed strategy is defined by a lottery over the pure strategies. Specifically, with a slight

abuse of notation, let γi ∈ [0, 1] denote the probability of entry and ∆i
ωC

( j) denotes the

probability to vote for j ∈ C∪{0} given a set of candidates C. In what follows, we use both

ωi
C and ∆i

ωC
for the notation of the decision of the vote and if it is expressed by ωi

C, then

citizen i’s vote given C is implicitly supposed to be deterministic. Let Vi(χ) be the ex ante

9As BC, we can generalize the political benefit function to vi(a, I) where I is the representative.
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payoff for citizen i where χ is a (possibly mixed) strategy profile.

In addition to subgame perfection, we impose weakly undominated voting decisions

on our political equilibrium. Given C ∈ N, for any deterministic voting profile ω ≡

(ω1, . . . , ωN) ∈ (C ∪ {0})N, denote the set of the possible winning candidates by W(ω | C) ≡

arg maxk∈C #{i ∈ N | ωi = k}.

Definition 4.1 Given C ∈ N and aC ≡ (a j) j∈C ∈ A#C, a (deterministic) voting decision ωi
C ∈

C ∪ {0} is weakly dominated with respect to (C, aC) if there exists j ∈ C ∪ {0} such that

∑

k∈W( j,ω− j
C |C)

vi(ak)
#W( j, ω−i

C | C)
≥

∑

k∈W(ωi
C,ω

−i
C |C)

vi(ak)
#W(ωi

C, ω
−i
C | C)

for all ω−i
C ∈ (C ∪ {0})N−1 and it holds with strict inequality for some ω−i

C ∈ (C ∪ {0})N−1.

This definition is generalized from BC’s requirement on their political equilibrium. We

explicitly introduce the notion of a pair of policies to be implemented. This generalization

is required in the dynamic model we investigate later since the implemented policy on

the equilibrium does not necessarily coincide with the representative’s ideal policy.

The following definition of our (static) political equilibrium is exactly the same as BC’s

definition.

Definition 4.2 A strategy profile χ ≡ (γ,∆ω) is a political equilibrium (hereafter PE) of G if χ is

a subgame perfect equilibrium of G and the (mixed) voting decision ∆i
ω ≡ (∆i

ωC
)C∈N satisfies that

for each C ∈ N, if ∆i
ωC

( j) > 0, then to vote j (or to abstain if j = 0) is not weakly dominated with

respect to (C, aC) where aC ≡ (a j) j∈C.

In what follows, let ∆W(k | ∆ωC ,C) be the probability with which candidate k becomes

the representative under a (mixed) voting decision profile ∆ωC given a set of candidates C.
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Proposition 4.1 1. There exists a PE of G.

2. For any C ∈ N and aC ≡ (ai)i∈C ∈ A#C, there exists a voting profile ∆ω satisfying that for all

i ∈ N , j ∈ { j′′ | ∆i
ω( j′′) > 0} and for all j′ ∈ C,

∑

n∈C
∆W(n | ( j, ∆̂−i∗

ωC
),C)vi(an) ≥

∑

n∈C
∆W(n | ( j′, ∆̂−i∗

ωC
),C)vi(an),

and to vote j is not weakly dominated with respect to (C, aC).

Since the set of the strategy is finite, the standard fixed point argument implies not only

the existence of PE but also that of weakly undominated Nash equilibria of subgames

after the entry stage given (any) pair of policies to be implemented.10 Let Ξ be the set of

PE of G.

4.2.3 Impossibility of Strategic Candidacy with Two Candidates

In the one-shot political competition, there is never PE in which there are two candidates

to stand for the election either of which has no chance to win.

Proposition 4.2 Suppose that a strategy profile χ satisfies that

γi =



1 for i = k, l

0 otherwise,
and ∆W(k | ∆ω{k,l}

, {k, l}) = 1.

Then χ is not a subgame perfect equilibrium (and hence χ < Ξ).

The result is straightforward. If citizens k and l are the candidates and l has no chance

to win, then regardless of l’s entry, k becomes the representative and implements her

10The detail of the proof is omitted.
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ideal policy ak with probability 1. Hence l can save the entry cost d by withdrawing the

candidacy. In other words, whenever there are exactly two candidates in the election,

both of the candidates must have positive probability to become the representative in

BC’s setup and then there is no possibility of strategic candidacy.

The key assumption behind this impossibility result is that whatever happens in the

political process, the representative implements her most preferred policy, which is due

to the (implicit) assumption that candidates cannot make any binding agreements on

implementing policy before the voting stage. Although this assumption is fairly reason-

able under some situations, a reputational concern due to the repeated interaction can

guarantee a credible commitment to the implementing policy which is different from the

ideal policy. In the following sections, we analyze a repeated version of the political

competition and show that when the implementing policy can be contingent on the set of

the rival candidates due to political reputation, there could be a political equilibrium in

which there are two candidates associated with strategic candidacy.

4.3 Repeated Competition

In the repeated model, all the citizens live in infinite periods t = 0, 1, . . ., and they play the

one-shot political competition G described above in each period. Each citizen maximizes

the average discounted sum of the period net payoff with the common discount factor

δ ∈ (0, 1).11

Denote the infinite repeated game by G∞. Let hi
t ≡ (Ct,wi, It, at) be the event in period t

observable to citizen i, that is, the set of the candidates, i’s vote,12 the elected representative,

11None of the following results can be changed qualitatively if the discount factor is heterogeneous among
the citizens.

12Recall that each citizen cannot observe the others’ vote.
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and the implemented policy, and hit ≡ (h0, h1, . . . , ht−1) be the private history after period

t. LetH i be the set of citizen i’s private histories. Citizen i’s pure strategy in G∞ is a pair

of mappings σi ≡ (γ̃i, (ω̃i
C)C∈N, (α̃i

C)C∈{C′∈N|i∈C′}) where γ̃i : H i → {0, 1} be the entry decision,

ω̃i
C : H i → C ∪ {0} be the voting decision, and α̃i

C : H i → A be the implementing policy

where C ∈ N is the set of the candidates. Similar to the previous section, the mixed

decision is defined as a lottery over the decisions.

In what follows, we focus on the following trigger strategy on the equilibrium. Citizen

i’s trigger strategy is denoted by σi∗ ≡ (χ̂i∗, χ∗,F∗) where χ∗ ∈ Ξ is a PE of G and F∗ ⊂ N

is a subset of the citizens. It consists of two phases; Phase R (“reputational phase”) and

Phase D (“defection phase”). Under phase R, in each period citizen i plays according to

χ̂i∗ := (γ̂i∗, (∆̂i∗
ωC

)C∈N, (α̂i∗
C)C∈{C′∈N|i∈C′}), that is a pair of the decisions at the entry, voting, and

policy stage. We assume that the policy decision must be deterministic while the entry

and the voting decision can be mixed. In period 0, the phase is R and it is changed from R

to D if and only if in the last period, the set of the candidates was C and the representative

j ∈ F∗∩C implemented a policy different from α̂ j∗
C .13 Once the phase becomes D, it is never

changed and the citizens play the game according to χ∗ forever.

We define a dynamic political equilibrium of G∞ as follows.

Definition 4.3 A trigger strategy σi∗ is a dynamic political equilibrium (hereafter DPE) of G∞

if σi∗ is a subgame perfect equilibrium of G∞ and the (mixed) voting decision ∆̂i∗
ω ≡ (∆̂i∗

ωC
(·))C∈N

satisfies that for each C ∈ N, if ∆̂i∗
ωC

( j) > 0, then to vote j (or to abstain if j = 0) is not weakly

dominated with respect to (C, α̂∗C) where α̂∗C ≡ (α̂ j∗
C ) j∈C.

The dynamic political equilibrium is a subgame perfect equilibrium with weakly un-

dominated voting decisions. In the dynamic model, this definition is generalized from

13It means that when j < F∗ ∪ C, the phase is kept to be R even after deviation by the representative j.
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BC’s requirement of their political equilibrium. The implemented policy can be changed

depending on the set of the rival candidates. The DPE requires that in addition to subgame

perfection, given that the implemented policies at the period begin as expected, each of

the citizens votes for a candidate which is not weakly undominated.

4.4 Strategic Candidacy in Two-Candidate Competition

4.4.1 Definition

Our main interest in this chapter is to explain the reason why strategic candidacy can

emerge in two-candidate competition. This situation is formally described as follows.

Definition 4.4 A trigger strategy σ∗ causes (k, l) strategic candidacy (hereafter “(k, l)-SC”) if

γ̂i∗ =



1 for i = k, l

0 otherwise,
and ∆W(k | ∆̂∗ω̂{k,l} , {k, l}) = 1.

On the equilibrium path of a strategy causing (k, l)-SC, two citizens, k and l, stand for

the election and k wins in the election with probability 1. In one-shot political competition

G, Proposition 4.2 states that this could not be the case. We now see that it is sustained by

a trigger strategy DPE of G∞ under some conditions. In order to understand the intuition

behind the strategic candidacy, we first demonstrate it with a spatial example.

4.4.2 Example: A Spatial Model with Five Citizens

Suppose that there are five citizens (N = 5) andA = [−1, 1]. Citizen i’s political benefit is

given by vi(a) = − | a− ai |where ai
= −1 + (i− 1)/2. The status quo is assumed to be a0 = 0

and let d ∈ (0, 1/2). For explanatory reason, we assume that citizen 2 is female and citizen
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3 and 4 are male.

According to the propositions in BC, we can find a pure strategy PE of G satisfying the

following;

• citizens 2 and 4 stand for the election,

• citizens 1 and 2 vote for 2, citizens 4 and 5 vote for 4, and citizen 3 abstains,

• 2 or 4 wins with probability 1/2 (and if i ∈ {2, 4} wins, then ai is implemented).

On the equilibrium, there are exactly two candidates standing for the election and both of

them have a positive probability to win. As shown in Proposition 4.2, if either candidate

had zero probability to win, then she would strictly prefer not to stand for the election

since it saves the entry cost d without altering the policy implemented by the rival. Thus,

whenever there are exactly two candidates, strategic candidacy never arises.14

Denote this PE by χ ≡ (γ,ω). Now consider the following trigger strategy σ∗;

γ̂i∗ = γi, ω̂i∗
C =



2 if i = 3, C = {2, 4},

ωi
C otherwise,

α̂i∗
C =



−a2
+ q if i = 2, C = {2, 4},

ai otherwise,

χ̂∗ = χ, F∗ = {1, 2, 3}

where q ∈ [d, δ/2]. We assume that δ ≥ 2d to guarantee the existence of such q.

This trigger strategy causes (2, 4)-SC. Under Phase R, the set of the candidates is

still {2, 4} which is the same as the PE of G. However, as figure 4.1 shows, the policy

implemented by candidate 2 is more closed to the median by q > 0 from her most

preferred policy a2. The voting decision under phase R implies that candidate 2 actually

14There is another pure strategy PE in which citizen 1 and 5 stand for the election. The same argument is
exactly applied for this PE.
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−1 −1/2 0 1/2 1
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q

−1/2 + q

Figure 4.1: Consequent Policy

obtains the strict plurality in the election and then wins with probability 1. It obviously

means that although citizen 4 actually stands for the election, he has no chance to win.

It can be shown that σ∗ is a DPE. Here we check two relevant constraints to assure

the equilibrium and discuss the implication.15 The first constraint is that citizen 2 has

an incentive to choose a policy different from a2. Specifically, when the phase is R and

C = {2, 4}, candidate 2 chooses α̂2∗
{2,4} = a2

+ q , a2. If she follows to implement a2
+ q, then

she obtains the current political benefit −|q + a2 − a2| and the future discounted sum of the

net payoff by χ̂∗, (δ/(1− δ))(−|q + a2− a2| − d). By contrast if she deviates a2 instead of a2
+ q,

she obtains the current political benefit by deviation −|a2 − a2| and the future discounted

sum of the net payoff by χ∗, (δ/(1−δ))(−|a2−a2|/2−|a4−a2|/2−d). The comparison between

these implies that the constraint is described as

−q +
δ

1 − δ (−q − d) ≥ 0 +
δ

1 − δ
(1
2

0 +
1
2

(−1) − d
)
⇐⇒ δ ≥ 2q.

The second constraint is that under Phase R, citizen 4 stands for election. If he stands

for election, then candidate 2 becomes the representative and implements a2
+ q with

probability 1 and then citizen 4’s current net payoff is − | a2
+ q − a4 | −d. By contrast if

he withdraws the candidacy, candidate 2 implements a2 for sure (rather than a2
+ q) and

15The detail of the equilibrium conditions is stated later in Proposition 4.3 and 4.5.
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then citizen 4 obtains the current net payoff − | a2 − a4 |. The comparison between these16

implies that this constraint is described as

−
∣∣∣∣∣−

1
2

+ q − 1
2

∣∣∣∣∣ − d ≥ −
∣∣∣∣∣−

1
2
− 1

2

∣∣∣∣∣ ⇐⇒ q ≥ d.

Since d ≤ q ≤ δ/2, both of these constraints are satisfied and it can be shown that the other

constraints for σ∗ being a DPE are also satisfied.

The intuition is as follows. When candidate 2 is opposed to candidate 4 in the election,

citizen 2 wants to implement a policy close to the median in order to attract more votes

to increase her probability of winning. The trigger strategy makes it possible; as long as

the distance from her ideal policy is sufficiently small relative to the future benefit from

the reputation, she can credibly commit to the policy closed to the median, the condition

of which is given by q ≤ δ/2.

It is important to notice that citizen 2 implements the compromised policy only if

citizen 4 stands against her. The trigger strategy σ∗ stipulates that if citizen 4 does not

enter, then citizen 2 would implement her ideal policy. In other words, if citizen 4 actually

enters, he can induce a policy compromise from the winning rival. The condition q ≥ d

expresses that the effect of the policy compromise from candidate 2 dominates the cost of

entry for citizen 4. If this condition is satisfied, citizen 4 stands for election even she has

no chance to win.

As we will see, to induce a political compromise from the winner is, in general, the

necessary condition for causing strategic candidacy in two-candidate competition.17 The

key condition for inducing political compromises is that the winner can credibly undertake

16Since the entry decision does not change the phase, the continuation payoff from the next period is the
same between these.

17It does not necessarily mean that strategic candidacy alters the rival’s policy from her ideal policy. We
explain the detail in footnote 18.
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an opponent-dependent policy, which is supported by political reputation in our dynamic

model. This kind of political compromise never emerges in political competition with

citizen candidate without commitment as shown in Osborne and Slivinski (1996) and BC.

4.4.3 The Necessary and Sufficient Condition

We now investigate the necessary and sufficient conditions of the existence of DPE in-

ducing strategic candidacy with two candidates in a more general setting. First, we

provide the necessary conditions for the existence of DPE causing strategic candidacy in

a two-candidate competition.

Proposition 4.3 Suppose that there exists a trigger strategy DPE causing (k, l)-SC and on the

equilibrium k chooses ak on the equilibrium path. Then there exist (al, ak
k, a

l
l) ∈ A3 and χ ∈ Ξ such

that

1.

vl(ak) − d ≥ vl(ak
k), v

k(ak) − d ≥ vk(al
l),

2.

#
{
i ∈ N | vi(ak) ≥ vi(al)

}
> #

{
i ∈ N | vi(ak) < vi(al)

}
,

and

3. for i = k, l and ai′ = ai, ai
i, either ai′ = ai or

δ
1 − δ

[
vi(ak) − d − Vi(χ)

]
≥ vi(ai) − vi(ai′)
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(or both).

Suppose that there exists a DPE σ∗ ≡ (χ̂∗, χ∗,F∗) causing (k, l)-SC. Then ak, al, ak
k, and al

l

in the necessary condition above are corresponding to α̂k∗
{k,l}, α̂

l∗
{k,l}, α̂

k∗
{k}, and α̂l∗

{l} respectively.

In contrast to the one-shot political competition, α̂i∗
C can be different from ai in general.

However in order to assure the implementation of a policy different from her ideal policy,

the fear of the future loss from deviation is required. Part 3 in the proposition captures

this condition and implies that depending on χ∗ and δ, the commitment ability is limited.

Part 2 assures that given the pair of the implemented policies (αk∗
{k,l}, α

l∗
{k,l}), candidate k can

receive the strict majority and win the election with probability 1, implying that l’s entry

is purely strategic.

Part 1 in the proposition ensures that both k and l benefit from the entry. Importantly,

although citizen l has zero probability of winning the election, he has an incentive to

enter into the election since his entry alters the policy implemented by k from ak
k to ak.

In particular, ak must be strictly preferred to ak
k by l.18 It implies that the punishment

on the deviation by citizen k is required; otherwise, citizen k cannot credibly commit to

implementing a policy different from her ideal one. This is emphasized by the following

corollary.

Corollary 4.1 If a trigger strategy σ∗ causing (k, l)-SC is a DPE, then k ∈ F∗ and vk(α̂k∗
{k,l}) − d >

Vk(χ∗).

In order to ensure the existence of DPE causing (k, l)-SC, the additional requirements

must be satisfied; that is, the citizens other than k and l have no incentive to enter. One of

the sufficient conditions for satisfying this requirement is as follows.

18 In the example of Section 4.4.2, we have seen that ak
k = ak, meaning that candidate k implements her

ideal policy if there is no rival in the election. In general, however, it is not necessarily the case since the
implemented policy by k does not necessarily coincide with ak even when there is no rival in the election.
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Proposition 4.4 In addition to the conditions in Proposition 4.3, suppose that there exists

(ak
i , a

l
i, a

i
i)i∈N\{k,l} ∈ A3(N−2) such that for each i ∈ N \ {k, l},

1. for each j = k, l, i, and a j′ = ai
j, either a j′ = a j or

δ
1 − δ

[
v j(ak) − γ̂ j∗d − V j(χ∗)

]
≥ v j(a j) − v j(a j′)

(or both), and

2. there exists j ∈ {k, l, i} such that vi(ak) ≥ vi(a j
i ) − d and

#
{

n ∈ N
∣∣∣∣∣vn(a j

i ) = max
j′∈{k,l,i}

vn(a j′

i )
}
>

N
2

or (4.1)

N ≥ 4 and #
{

n ∈ N
∣∣∣∣∣vn(a j

i ) , min
j′∈{k,l,i}

vn(a j′

i ) or vn(ak
i ) = vn(al

i) = vn(ai
i)
}
>

N
2

+ 1. (4.2)

Then there exists a DPE causing (k, l)-SC on which citizen k implements ak.

Part 1 assures that all the policies chosen under phase R are credibly feasible. Part 2

assures us to construct a voting decision under phase R so that the entry by citizen i , k, l

cannot improve on i’s payoff given that the candidates are supposed to implement ak
i , al

i,

and ai
i respectively. Proposition 4.4 allows the citizens to deter the entry of citizens other

than k and l by a deterministic voting decision profile and it simplifies the proof of the

existence of DPE.

Another approach for the sufficient condition is to assume one-dimensional spatial

competition. When the policy space is one-dimensional and the political benefit only

depends on the distance from the ideal policy, the necessary condition in Proposition 4.3

is almost sufficient. The one-dimensional spatial competition is a generalization of the

example in Section 4.4.2 and satisfies the following assumption.
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Assumption 4.1 1. A is a closed interval of R.

2. For all i ∈ N, vi(a) is continuous in a and decreasing in |a − ai|.

3. N ≥ 5 and N is an odd number.

4. (Without loss of generality) ai < ai+1 for all i = 1, . . . ,N − 1 and denote M ≡ (N + 1)/2.

Proposition 4.5 Suppose that all of the conditions in Proposition 4.3 are satisfied under Assump-

tion 4.1. Then, whenever

1. ak = aM or

2. ak , al and

(a) N = 5 and ak, al ∈ [2a2 − a3, 2a4 − a3] or

(b) N ≥ 7,

there exists a DPE causing (k, l)-SC in which citizen k implements ak.

In a general setting, the construction of DPE to prevent citizens other than k and l from

candidacy is not a trivial problem and then the additional sufficient condition is required

as in Proposition 4.4. In one-dimensional spatial competition, we can construct a voting

decision under phase R so that given that j , k, l enters, at most one citizen votes for

j. Under mild conditions as described in Proposition 4.5, this voting decision deters j’s

entry.

4.5 Is Candidacy Necessary for Political Compromises?

So far we have investigated DPE causing strategic candidacy in two-candidate competition

and shown that a political compromise is necessary for the loser’s strategic candidacy.
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This result gives rise to the following question; whether the political compromise can be

induced without strategic candidacy. Actually, even if there is only one candidate in the

election, this candidate might implement policies different from her preferred one due to

the fear of losing her office in the future after the deviation.

In this section, we demonstrate that under some conditions while a political com-

promise can be induced by strategic candidacy with two candidates, the same political

compromise cannot be induced in a single-candidate political competition. Throughout

this section, we maintain Assumption 4.1 and suppose k < M, meaning that citizen k is

on the left side of the median citizen. The symmetric argument is applicable for k > M.

Given that k is a left citizen, we define unopposed political compromise by k as follows.

Definition 4.5 A trigger strategyσ∗ induces unopposed political compromises by k < M (hereafter

“k-UPC”) if

γ̂i∗ =



1 for i = k

0 otherwise
and α̂k∗

{k} ∈ (ak, aM].

In a trigger strategy inducing k-UPC, citizen k is the unique candidate in the election

(and then becomes the representative) and the implemented policy α̂k∗
{k} is strictly closer to

the median.

4.5.1 Example Revisited

We first revisit the example in Section 4.4.2 and show that there exists an interval of the

discount factor for which a policy compromise can be achieved by strategic candidacy, but

cannot without strategic candidacy. This example tells us that it is sometimes impossible

to deter entry by the median citizen for constructing a DPE inducing unopposed political
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compromises.

Let χ(2) be a PE which attains the worst net payoff for citizen 2 and suppose that

a2 ∈ (a2
+ d,−d) and

δ
1 − δ

[
−a2 + a2 − d − V2(χ(2))

]
≥ a2 − a2 ⇐⇒ δ ≥ δ(a2) ≡ a2 − a2

−(d + V2(χ(2)))
, (4.3)

a2 + d < â1
3 ≡ −

δ
1 − δ

[
a2 + 1

]
⇐⇒ δ < δ(a2) ≡ a2 + d

−(1/2 − d)
. (4.4)

Note that since there exists a PE such that citizens 1 and 5 stand for election and the former

wins with probability d/2, it is confirmed that V2(χ(2)) ≤ −d/2(1/2) − (1 − d/2)(3/2) =

−3/2 − d and for sufficiently small d > 0, there always exists a2 such that δ(a2) < δ(a2).

(4.3) assures that there exists a DPE causing (2, 4)-SC in which candidate 2 implements

a policy a2. However, if (4.4) is satisfied, then there is no trigger strategy DPE inducing

2-UPC in which citizen 2 implements a2.

To see the reason, suppose that a trigger strategy σ∗∗ ≡ (χ̂∗∗, χ∗∗,F∗∗) inducing 2-UPC is

a DPE in which α̂2∗∗
{2} = a2. Then citizen 3, the median voter, has no incentive to stand for

the election against citizen 2. Now consider α̂3∗
{2,3}, the policy implemented by candidate 3

when he is chosen as the representative from the set of candidates {2, 3}. (4.4) means that

α̂3∗
{2,3} must not be far away from a3. This is illustrated in Figure 4.2. In the figure, given that

candidate 2 implements a2, the set of policies citizen 3 can credibly implement is within

the interval from â3
1 to â3

2 where â3
1 is what we defined in (4.4) and â3

2 = −â3
1.19 In particular,

(4.4) implies that citizen 3 cannot credibly implement any policy which is less than a2 + d

or in other words â3
1 > a2 + d.

19Formally, a ∈ [â3
1, â

3
2] if and only if δ(a2 + 1)/(1− δ) ≥ − | a |. Note that in the one shot competition, citizen

3’s worst political benefit is −1 which is achieved at a = −1, 1. Given the worst political benefit, by choosing
not to stand for the election, he can assure the net payoff at least −1. Then there exists no PE χ such that
V3(χ) < −1. Given this fact, citizen 3 must choose his policy from the interval [â3

1, â
3
2]. See Lemma 4.2 in the

appendix for the detail of the equilibrium conditions.
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Figure 4.2: Policies by citizen 2 and 3

Now consider citizen 3’s incentive to stand for election against citizen 2. Since there

are two candidates in this case, the candidate whom the median voter prefers wins in the

election. It means that citizen 2 wins with a positive probability only if α̂2∗
{2,3} ∈ [â3

1, â
3
2], that

is, the policy citizen 2 would implement is closer to citizen 3’s ideal policy. As a result,

whoever wins in the election, the policy implemented by the representative is between

â3
1 and â3

2 when citizen 3 stands for election against citizen 2. Recall that if citizen 3 does

not stand for the election, then candidate 2 would implement a2 and citizen 3’s (one-shot)

political benefit is a2. Meanwhile, if citizen 3 does stand for election, then citizen 3’s

(one-shot) net payoff is −|a3| − d with a3 ∈ [â3
1, â

3
2] which is strictly greater than a2 since

− | a3 | −d − a2 ≥ â3
1 − d − a2 > 0. It means that citizen 3 strictly prefers to stand for the

election, which contradicts that σ∗ inducing 2-UPC is a DPE.

4.5.2 Deterrence of the Median’s Candidacy

The lesson from the above example is that for a strategy inducing k-UPC to be a DPE,

the median voter must be able to implement the policies in a wide range. Otherwise

the median citizen’s entry cannot be prevented. This idea is more generally applicable.

In particular, not only the exact median citizen, but also all the citizens closed to the

median policy must be able to commit to policies far from their own ideal policy unless

the implemented policy on the strategy inducing k-UPC is sufficiently close to the median.
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Formally, it is stated as follows.

Proposition 4.6 Suppose that under Assumption 4.1 a trigger strategy σ∗ causing (k, l)-SC with

k < M and α̂k∗
{k,l} ∈ (ak, aM] is a DPE and let

Ξ∗ ≡
{
χ ∈ Ξ

∣∣∣∣∣
δ

1 − δ
[
vk(α̂k∗

{k,l}) − d − Vk(χ)
]
≥ vk(aK) − vk(α̂k∗

{k,l})
}
.

If there exists k′ ∈ N and â ∈ (α̂k∗
{k,l}, a

M] such that

vk′(â) − d > vk′(α̂k∗
{k,l}), (4.5)

and either of the following conditions is satisfied, then there exists no trigger strategy DPE inducing

k-UPC where citizen k implements α̂k∗
{k,l}.

1. k′ ∈ {k′ > k | aM > ak′ ≥ α̂k∗
{k,l}} and for any χ ∈ Ξ∗.

δ
1 − δ [vk′(α̂k∗

{k,l}) − Vk′(χ)] < vk′(ak′) − vk′(â), and (4.6)

δ
1 − δ [vk(α̂k∗

{k,l}) − Vk(χ)] < vk(ak) − vk(max{â, 2ak′ − â}). (4.7)

2. k′ ∈ {k′ ≥M | â ≤ 2aM − ak′} and for any χ ∈ Ξ∗.

δ
1 − δ [vk′(α̂k∗

{k,l}) − Vk′(χ)] < vk′(ak′) − vk′(2aM − â). (4.8)

If the conditions in Proposition 4.6 are satisfied, then we cannot construct a DPE

inducing k-UPC since it cannot prevent citizen k′ from entering. Let σ∗∗ be a trigger

strategy inducing k-UPC with α̂k∗∗
{k} = α̂k∗

{k,l}. The following figures are helpful to explain

why the entry by citizen k′ cannot be excluded.
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ak ak′ aM

âk′
1 âk′

2

α̂k∗∗
{k}

d

â 2ak′ − â

âk
1 âk

2

Figure 4.3: When k′ < M

First, Figure 4.3 illustrates the case where k′ < M.2021 (4.5) means that â is beneficial for

citizen k′ and since k′ > k, â should be on the right side of ak. (4.6) implies that the policy

implemented by candidate k′, α̂k′∗∗
{k,k′}, is restricted into a “small” interval between âk′

1 to âk′
2 .

Then in order to prevent citizen k′ from entering, the policy implemented by candidate

k against k′, α̂k∗∗
{k,k′}, must be outside of [â, 2ak′ − â]; otherwise regardless of the election

outcome the implemented policy is more preferred by citizen k′ to α̂k∗∗
{k} . On the one hand,

if α̂k∗∗
{k,k′} is less than â, it is not supported by the majority since α̂k′∗∗

{k,k′} is closer to the median.

On the other hand, (4.7) guarantees that candidate k cannot choose a policy greater than

2ak′ − â; this constraint means that the greatest policy candidate k can implement, âk
2 in the

figure, is less than 2ak′ − â.

Figure 4.4 explains the reason why entry by citizen k′ cannot be excluded when k′ ≥M.

Similar to (4.6) in the case of k′ < M, (4.8) implies that α̂k′∗∗
{k,k′}, is restricted between âk′

1 to âk′
2 . In

addition, with condition ak′ < 2aM− â, it must be less than 2aM− â. Since α̂k′∗∗
{k,k′} is preferable

for citizen k′, in order to prevent candidate k′ from winning, the policy implemented

by candidate k against k′, α̂k∗∗
{k,k′}, must be close to the median policy, specifically, at least

between â and 2aM − â. However by definition of â, if α̂k∗∗
{k,k′} is greater than â, then it is

20Both Figure 4.3 and 4.4 implicitly assume that vi(a) = − | a − ai | for all i ∈ A.
21Figure 4.3 assumes that â < ak. The same result is established if â ≥ ak.
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Figure 4.4: When k′ ≥M

more preferred by citizen k′ to α̂k∗∗
{k} . Thus, whoever the representative is, the implemented

policy is more preferred by citizen k′ to α̂k∗∗
{k} and then citizen k′ can enjoy the political

benefit created by his entry.

In general, Proposition 4.6 means that ifσ∗∗ inducing k-UPC is a DPE, then all the citizens

around the median citizen must implement a policy other than their own preferred one

when each of them actually stands for election. It is obviously applicable for the exact

median citizen M. Nevertheless it is somewhat strange in the sense that while the median

citizen can implement his ideal policy which is the Condorcet winner, he must choose a

different one. To take this notion into account, suppose that trigger strategy σ∗∗ inducing

k-UPC must satisfy that α̂M∗∗
{k,M} = aM. Then it can be a DPE only when the implemented

policy on the equilibrium, α̂k∗∗
{k} , is sufficiently close to the median and the entry cost is

sufficiently large.

Proposition 4.7 Under Assumption 4.1, if a trigger strategy σ∗∗ inducing k-UPC where α̂M∗∗
{k,M} =

aM is a DPE, then vM(aM) − d ≤ vM(α̂k∗∗
{k} ).

In contrast with this result, given that the entry cost is small enough, there can be a DPE

causing (k, l)-SC even if the equilibrium policy is not close to the median. For instance, in

the example of Section 4.4.2, α̂3∗
C = 0 for any C ∈ N such that 3 ∈ C. The existence result
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is generally true if the conditions in Proposition 4.5 are satisfied and l , M.22 Intuitively,

the median citizen is less attractive to stand for the election in a strategy causing (k, l)-SC

since he is the third entrant and cannot enjoy the advantage of the median voter theorem.

Therefore, if we should require reasonable behaviour for the median citizen as mentioned

above, political compromises may be more robust with strategic candidacy than without

strategic candidacy.

In summary, a strategy inducing k-UPC can replicate the policy implemented by (k, l)-

SC only when the implemented policy is close to median or all the citizens around the

median can commit to implementing policies far from their preferred one. However, the

latter is somewhat unreasonable since the citizens close to the median must commit to a

policy far from the median to prevent an improvement of political benefit by entry. Thus,

even if candidacy is costly, it is often essential for inducing the political compromise from

the representative. In other words, strategic candidacy is often necessary for explaining

political compromises.

4.6 Concluding Remarks

The outcome caused by a political process usually depends on the characteristics of

the potential candidates who make a strategic decision to stand for election. As the

example of Aso in the introduction points out, this strategic interaction may happen even

when there are only two potential candidates. In this chapter, we have investigated a

repeated model of political competition with citizen candidates and showed that strategic

candidacy in two-candidate competition can emerge in an election when the candidate

22In the proof of Proposition 4.5, we construct a DPE strategy σ∗ causing (k, l)-SC satisfying that α̂ j∗
C = a j

for j , k, l. It implies this statement.
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has a reputational concern and commits to implementing a policy different from her ideal

policy. We have also demonstrated that it is often easier to induce political compromises

from the representative with a strategic candidacy rather than an unopposed political

process.

Throughout the chapter, we have mainly focused on situations in which there are

exactly two candidates either one of which is sure to lose. For capturing the idea of

strategic candidacy for inducing political compromises, it is enough to focus on two-

candidate equilibria. Nevertheless to investigate equilibria with three or more candidates

also seems to be important for future research as in equilibria with three or more candidates

there might coexist two kinds of strategic candidacy, one for changing the winner, which

the literature has pointed out, and one for inducing political compromise as studied in

this chapter. The interaction of these motives could have interesting implications.

Beyond strategic candidacy, the repeated political competition with citizen candidates

has other issues to be investigated for the future. One of the important topics is character-

ization of the set of policies implemented in repeated political competition which would

suggest how an implicit agreement behind the society or some kind of atmosphere influ-

ences the implemented policy.23 While the folk theorem in repeated game theory states

that every individually rational payoff can be attained by a subgame perfect equilibrium

for a sufficiently high discount factor, it does not necessarily argue that every action in

the stage game can be implemented. In addition, a more complicated strategy than the

trigger strategy we focus on is typically required for establishing the folk theorem. As

a result, it is interesting to ask whether every policy can be implemented in a repeated

political competition with citizen candidates and if so, whether it requires a complicated

23Besley and Coate (2001) and Felli and Merlo (2006, 2007) study the effect of lobbying on the implemented
policy through the political competition with citizen candidates.
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strategy or not.

4.7 Appendix: Proofs

4.7.1 Proof of Proposition 4.2

Suppose that χ is a subgame perfect equilibrium. The backward induction tells us that if

citizen l stands for election against k, then by assumption on ∆ω{k,l}
, candidate k implements

ak with probability 1 and then Vl(χ) = vl(ak)− d. If citizen l withdraws the candidacy, then

since k is the unique candidate, candidate k implements ak with probability 1. Then citizen

l’s payoff is vl(ak) which is strictly greater than Vl(χ). Therefore χ is not a subgame perfect

equilibrium.

4.7.2 Proof of Proposition 4.3, 4.4, and 4.5 and Corollary 4.1

The following lemma is useful to prove the propositions.

Lemma 4.1 Denote Γ̂∗ ≡ {k, l} and N̂∗ = {{k}, {l}, Γ̂∗, Γ̂∗ ∪ {1}, . . . , Γ̂∗ ∪ {N}}. Then there exists a

trigger strategy DPE causing (k, l)-SC if there exists a trigger strategy σ∗ ≡ (χ̂∗, χ∗,F∗) satisfying

all of the following;

vl(α̂k∗
Γ̂∗

) − d ≥ vl(α̂k∗
{k}), (4.9)

vk(α̂k∗
Γ̂∗

) − d ≥ vk(α̂l∗
{l}), (4.10)

∀i ∈ N \ Γ̂∗, vi(α̂k∗
{k,l}) ≥

∑

j∈Γ̂∗∪{i}
∆W( j | ∆̂∗ωΓ̂∗∪{i}

, Γ̂∗ ∪ {i})vi(α̂ j∗
Γ̂∗∪{i}) − d, (4.11)

#
{
i ∈ N | vi(α̂k∗

Γ̂∗
) ≥ vi(α̂l∗

Γ̂∗
)
}
> #

{
i ∈ N | vi(α̂k∗

Γ̂∗
) < vi(α̂l∗

Γ̂∗
)
}
, (4.12)

∀ j ∈ N \ Γ̂∗, ∀i ∈ N , ∀m ∈
{
m′ | ∆̂i

ωΓ̂∗∪{ j}
(m′) > 0

}
, ∀m′′ ∈ Γ̂∗ ∪ { j, 0},
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∑

n∈Γ̂∗∪{ j}
∆W(n | (m, ∆̂−i∗

ωΓ̂∗∪{ j}
), Γ̂∗ ∪ { j})vi(α̂n∗

Γ̂∗∪{ j})

≥
∑

n∈Γ̂∗∪{ j}
∆W(n | (m′′, ∆̂−i∗

ωΓ̂∗∪{ j}
), Γ̂∗ ∪ { j})vi(α̂n∗

Γ̂∗{ j}), (4.13)

and to vote m is not weakly dominated with respect to (Γ̂∗ ∪ { j}, α̂∗
Γ̂∗∪{ j}), (4.14)

∀i ∈ F∗, ∀C ∈ N̂∗ such that i ∈ C,
δ

1 − δ
[
vi(α̂k∗

{k,l}) − γ̂i∗d − Vi(χ∗)
]
≥ vi(ai) − vi(α̂i∗

C)(4.15)

∀i ∈ N \ F∗, ∀C ∈ N̂∗ such that i ∈ C, α̂i∗
C = ai. (4.16)

Furthermore, if σ∗ is a trigger strategy DPE causing (k, l)-SC, then there exists a trigger strategy

DPE (χ̂∗, χ∗,F∗′) satisfying all of the conditions from (4.9) to (4.16) for F∗ = F∗′.

Proof (Lemma 4.1) (Necessity) Suppose that σ∗ satisfies (4.9) to (4.16). Construct a trigger

strategy σ∗∗ ≡ (χ̂∗∗, χ∗∗,F∗∗) causing (k, l)-SC where

∀i ∈ N , γ̂i∗∗ = γ̂i∗,

∀i ∈ N , ∀C ∈ N∗ \ {Γ̂∗}, ∆̂i∗∗
ωC

= ∆̂i∗
ωC
, ω̂i∗

Γ̂∗
=



k if vi(α̂k
Γ̂∗

) ≥ vi(α̂l
Γ̂∗

)

l if vi(α̂k
Γ̂∗

) < vi(α̂l
Γ̂∗

),
,

∀C ∈ N∗, ∀i ∈ C, α̂i∗∗
C = α̂i∗

C,
∀C < N∗, ∀i ∈ C, α̂i∗

C = ai

χ∗∗ = χ∗,F∗∗ = F∗,

and for each C < N∗ and i ∈ N , ∆̂i∗∗
ωC

satisfies that for all m ∈ {m′ | ∆̂i∗∗
ωC

(m′) > 0} and m′′ ∈ C∪ {0},

∑

n∈C∪{0}
∆W(n | (m, ∆̂−i∗∗

ωC
),C)vi(an) ≥

∑

n∈C∪{0}
∆W(n | (m′′, ∆̂−i∗∗

ωC
),C)vi(an)

and to vote m is not weakly dominated with respect to (C, aC) where aC ≡ (ai)i∈C. Part 2 in

Proposition 4.1 implies that for each C < N∗ and i ∈ N , there exists ∆̂i∗∗
ωC

satisfying these constraints.

Constraints (4.9) to (4.16) imply that on σ∗∗ there is no citizen to have a deviation incentive after

any history and by construction, the voting decision is not weakly dominated. Then the one-shot
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deviation principle implies that σ∗∗ is a DPE.

(Sufficiency) Suppose that σ∗ causing (k, l)-SC is a trigger strategy DPE. Then the one-shot

deviation principle implies that (4.9) and (4.10) mean that citizens k and l prefer to stand for

election, (4.11) means that the other citizens prefer to exit from the election. If (4.12) is not

satisfied, then there is no voting profile which is weakly undominated with respect to (Γ̂∗, α̂Γ̂∗) and

candidate k wins with probability 1. (4.13) and (4.14) mean that the voting profile is consistent with

DPE for a set of the candidates Γ̂∗ ∪ { j}. Finally, for i ∈ F∗, when i is chosen as the representative

from C, she implements policy α̂i∗
C if and only if

vi(α̂i∗
C) +

δ

1 − δ [vi(α̂k∗
Γ̂∗

) − γ̂i∗d] ≥ sup
a∈A\{α̂i∗

C}
vi(a) +

δ

1 − δVi(χ∗)

⇐⇒ δ
1 − δ

[
vi(α̂k∗

Γ̂∗
) − γ̂i∗d − Vi(χ∗)

]
≥ sup

a∈A\{α̂i∗
C}

vi(a) − vi(α̂i∗
C).

Note that it must be satisfied for all C ∈ N such that i ∈ C. If α̂i∗
C , ai, then the right hand side is

vi(ai) − vi(α̂i∗
C) > 0 while if α̂i∗

C = ai, then the right hand side is nonpositive. It implies that if there

exists C ∈ {C′ ∈ N | i ∈ C′} such that α̂i∗
C , ai, then

max
C∈{C′∈N|i∈C′}

 sup
a∈A\{α̂i∗

C}
vi(a) − vi(α̂i∗

C)

 = max
C∈{C′∈N|i∈C′}

[
vi(ai) − vi(α̂i∗

C)
]

which further implies that

δ
1 − δ

[
vi(α̂k∗

Γ̂∗
) − γ̂i∗d − Vi(χ∗)

]
≥ max

C′′∈{C′∈N|i∈C′}

[
vi(ai) − vi(α̂i∗

C′′)
]
≥ vi(ai) − vi(α̂i∗

C)

for all C ∈ N. Thus (4.15) is satisfied. For i ∈ N \ F∗, when i is chosen as the representative from
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C, she implements policy α̂i∗
C if and only if

vi(α̂i∗
C) +

δ
1 − δ [vi(α̂k∗

Γ̂∗
) − γ̂i∗d] ≥ sup

a∈A\{α̂i∗
C}

vi(a) +
δ

1 − δ [vi(α̂k∗
Γ̂∗

) − γ̂i∗d]

which is satisfied only when α̂i∗
C = ai. Then (4.16) is satisfied.

Now consider the trigger strategy (χ̂∗, χ∗,F∗′)

F∗′ ≡
{
i ∈ F∗

∣∣∣∃C ∈ N, i ∈ C, α̂i∗
C , ai

}
.

The above discussion implies that the new trigger strategy satisfies all of the inequalities in the

lemma. �

Proof (Proposition 4.3) Consider a trigger strategy DPE σ∗ causing (k, l)-SC. Let ak = α̂k
Γ̂∗

,

al = α̂l
Γ̂∗

, ak
k = α̂k

{k}, al
l = α̂l

{l}, and χ = χ∗. Then (4.9), (4.10), (4.12), (4.15), and (4.16) in Lemma

4.1 imply the results

Proof (Corollary 4.1) Suppose that k < F∗. Then (4.16) implies that α̂k∗
Γ̂∗

= α̂k∗
{k} = ak which

does not satisfy (4.9). Given k ∈ F∗, if vk(α̂k∗
{k,l}) − d ≤ Vk(χ∗), then the left hand side of (4.15)

for i = k is nonpositive while the right hand side is positive for C = {k, l} since α̂k∗
{k,l} , ak, a

contradiction.

Proof (Proposition 4.4) For each m ∈ N\Γ̂∗, let j(m) be j satisfying Part 2 of the proposition

andN(m) ≡ {n ∈ N|vn(a j
m) , min j′∈{k,l,m} vn(a j′

m) or vn(ak
m) = vn(al

m) = vn(ai
m)}.

Consider a trigger strategy σ∗ satisfying the following;

∀i ∈ N , γ̂i∗ =



1 if i = k, l

0 otherwise,
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∀i ∈ N , ∀ j = k, l, ω̂i∗
{ j} = j, ω̂i∗

Γ̂∗
=



k if vi(ak) ≥ vi(al)

l if vi(ak) < vi(al),

∀m ∈ N \ Γ̂∗, ω̂i∗
Γ̂∗∪{m}



= j(m) for i ∈ N if (4.1) is satisfied or

i ∈ N(m) if (4.2) is satisfied

∈ arg max j′∈{k,l,m} v
i(a j′

m) otherwise,

∀ j = k, l, α̂ j∗
{ j} = a j

j, α̂
j∗
Γ̂∗

= a j, ∀i ∈ N \ Γ̂∗, ∀ j = k, l, i, α̂ j∗
Γ̂∗∪{i} = a j

i ,
∀ j ∈ N , ∀C < N∗, α̂ j∗

C = a j,

χ∗ = χ, F∗ = {i ∈ N | vi(ak) − γ̂id > Vi(χ)}.

The conditions on a j
i for i ∈ N and j = i, k, l andχ imply that the trigger strategy satisfies

(4.9), (4.10), (4.11), (4.12), (4.15), and (4.16). Thus Lemma 4.1 implies that there exists a

DPE causing (k, l)-SC if σ∗ satisfies (4.13) and (4.14). Note that all the voting decisions

are deterministic and according to Lemma 4.3 shown in Section 4.8, no voting decision is

weakly dominated and then (4.14) is satisfied. When Part 4.1 in the proposition is satisfied,

the voting profile implies that candidate j(m) obtains strictly more than N/2 votes and

then wins in the election with probability 1. Changing citizen i’s vote with ωi∗
Γ̂∗∪{m} , j(m)

cannot change the election outcome. When citizen i with ωi∗
Γ̂∗∪{m} = j(m) changes his vote

to other n′ ∈ Γ̂∗ ∪ {m} \ { j(m)}, the probability the most preferable candidate for i, α j(m)
Γ̂∗∪{m}, is

winning is weakly decreased and that of less preferred policies is weakly increased. Then

i has no incentive to change his vote. When Part 4.2 in the proposition is satisfied, the

voting profile implies that candidate j(m) obtains strictly more than N/2 + 1 votes which

means that no one can alter the winner by changing his vote. Then (4.13) is satisfied.
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Proof (Proposition 4.5) Consider a trigger strategy σ∗ satisfying the following;

∀i ∈ N , γ̂i∗ =



1 if i = k, l

0 otherwise,

∀i ∈ N , ∀ j = k, l, ω̂i∗
{ j} = j, ω̂i∗

Γ̂∗
=



k if vi(ak) ≥ vi(al)

l if vi(ak) < vi(al),

∀ j ∈ N \ Γ̂∗, ω̂i∗
Γ̂∗∪{ j} =



j if vi(ak) = vi(al) < vi(a j)

ω̂i∗
Γ̂∗

otherwise,

α̂i∗
C =



ai
i for i = k, l,C = {i},

ai for i = k, l,C ∈ N∗ \ {{k}, {l}},

ai otherwise,

χ∗ = χ, F∗ = {i ∈ N | vi(ak) − γ̂id > Vi(χ)}.

The conditions on ak, al, ak
k, al

l and χ imply that the trigger strategy satisfies (4.9), (4.10),

(4.12), (4.15), and (4.16). Thus Lemma 4.1 implies that there exists a DPE causing (k, l)-SC

if σ∗ satisfies (4.11), (4.13), and (4.14).

There are two cases to be considered.

When ak = al: Note that by hypothesis, ak = al = aM and ω̂i∗
Γ̂∗

= k for all i ∈ N .

Then, since ω̂i∗
Γ̂∗∪{ j} stipulates that each i votes for the candidate who would implement

the most preferable policy, Lemma 4.3 implies that ω̂i∗
Γ̂∗∪{ j} is not weakly dominated for

any j ∈ N \ Γ̂∗. Since ak = aM, strictly more than half of the citizens vote for k meaning

that candidate k wins with probability 1. Changing citizen i’s vote with ω̂i∗
Γ̂∗∪{ j} , k cannot

change the election outcome. When citizen i with ω̂i∗
Γ̂∗∪{ j} = k changes his vote to other

n′ ∈ Γ̂∗ ∪ { j} \ {k}, the probability with which ak is implemented is weakly decreased and
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that of al or a j are weakly increased which implies that i has no incentive to change his vote

since vi(ak) = vi(al) ≥ vi(a j). Thus (4.13) is satisfied. Finally, since ∆W(k | ω̂∗
Γ̂∗∪{ j}, Γ̂

∗ ∪ { j}) = 1

for each j ∈ N \ Γ̂∗ and α̂k∗
Γ̂∗∪{ j} = α̂k∗

Γ̂∗
, (4.11) is satisfied.

When ak , al: We show the case where ak < al. The symmetric argument can be

applied for the case where ak > al.

Since N ≥ 5, Lemma 4.3 implies that for each j ∈ N \ Γ̂∗, ωi∗
Γ̂∗∪{ j} is not weakly dominated

for any j ∈ N \ Γ̂∗. Since K = 1, there is at most one citizen who is indifferent between

ak and al. Then for each j ∈ N \ Γ̂∗, there is at most one citizen who votes for j and then

the probability for j to win is 0. Furthermore, Part 2 in Proposition 4.3 implies that the

number of citizens voting for k is at least weakly greater than l.

We furthermore separate three cases to show that (4.13) is satisfied. First, suppose that

all the citizens vote for either k or l. Changing the voting decision alters the implemented

policy only when k obtains (N + 1)/2 votes and l obtains (N− 1)/2 votes. Even in this case,

a citizen voting for l cannot alter the election outcome by changing her votes. Note that

the voting profile implies that a citizen voting for k prefers ak to al and when she changes

her vote to either l , j, or abstaining, it weakly decreases the winning probability of k and

weakly increases that of l. It means that she has no incentive to change her vote.

Second, suppose that there is a citizen voting for j. and candidate k obtains at least

(N + 1)/2 + 1 votes. It implies that k wins with probability 1. Note that k obtains at least 4

votes since N ≥ 5. Thus a citizen voting for l cannot alter the election outcome by changing

the vote. When a citizen voting for k changes her vote to either l, j, or abstaining, it weakly

decreases the winning probability of k and weakly increases that of l. Since she weakly

prefers ak to al, she has no incentive to change her vote. Finally, citizen j has no incentive

to change vote from j since v j(a j) > v j(ak) = v j(al) and there is no possibility to make j win.
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Third, suppose that there is a citizen that votes for j and both candidates k and l obtain

exactly (N + 1)/2 − 1 votes. When N = 5, we see that j = 3 and ak < a3 < al. Since

ak ≥ 2a2 − a3, citizens 1 and 2 prefer ak to a3 and a3 to al and then vote for k. It implies that

when citizen 1 or 2 changes her vote to l, 3 or abstaining, it weakly decreases the winning

probability of k and weakly increases that of 3 or l. Then they have no incentive to change

their vote. Similarly, citizen 4 and 5 have no incentive to change their vote. Finally, citizen

3 has no incentive to change vote since she is indifferent between ak and al. When N ≥ 7,

citizens 1 to M − 1 vote for k and N + 1 to N votes for l and both k and l obtain at least 3

votes. When a citizen voting for k changes her vote to l, j or abstaining, it implies that l

wins with probability 1. Since she weakly prefers ak to al, she has no incentive to change

her vote to l. Similarly, a citizen voting for l has no incentive to change her votes. Finally,

a citizen M whose vote goes to j has no incentive to change vote since she is indifferent

between ak and al.

The voting profile discussed above implies that if there is no vote for j, then k wins with

probability 1. By contrast, if there is one vote for j, then l wins with a positive probability

only when k also wins with a positive probability and v j(ak) = v j(al). Since α̂i∗
Γ̂∗∪{ j} = α̂i∗

Γ̂∗
for

i = k, l, (4.11) is satisfied for each j ∈ N \ Γ̂∗.

4.7.3 Proof of Proposition 4.6 and 4.7

The following lemma24 is useful to prove the propositions.

Lemma 4.2 There exists a trigger strategy DPE inducing k-UPC if there exists a trigger strategy

24Lemma 4.2 holds without Assumption 4.1.
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σ∗ ≡ (χ̂∗, χ∗,F∗) satisfying all of the following;

vk(α̂k∗
{k}) − d ≥ vk(a0), (4.17)

∀i ∈ N \ {k}, vi(α̂k∗
{k}) ≥

∑

j∈{k,i}
∆W( j | ∆̂∗ω{k,i} , {k, i})vi(α̂ j∗

{k,i}) − d, (4.18)

∀n ∈ N , ∀i ∈ N \ {k}, ∀ j ∈ {k, i} such that ∆̂n
ω{k,i}( j) > 0, vn(α̂ j∗

{k,i}) = max
m∈{k,i}

vn(α̂m∗
{k,i})(4.19)

∀C ∈ {{k}} ∪ {{k, j} | j ∈ N \ {k}}, δ
1 − δ

[
vk(α̂k∗

{k}) − d − Vk(χ∗)
]
≥ vk(ak) − vk(α̂i∗

C), (4.20)

∀i ∈ F∗ \ {k}, δ
1 − δ

[
vi(α̂k∗

{k}) − Vi(χ∗)
]
≥ vi(ai) − vi(α̂i∗

{k,i}), (4.21)

∀i ∈ N \ F∗, α̂i∗
{k,i} = ai. (4.22)

Furthermore, if σ∗ is a trigger strategy DPE inducing k-USC, then there exists a trigger strategy

DPE (χ̂∗, χ∗,F∗′) satisfying all of the conditions from (4.17) to (4.22) are satisfied for F∗ = F∗′.

Proof (Lemma 4.2) (Necessity) Suppose that σ∗ satisfies (4.17) to (4.22). Construct a trigger

strategy σ∗∗ inducing k-UPC where

∀i ∈ N , γ̂i∗∗ = γ̂i∗,

∀i ∈ N , ∀C ∈ {C′ ∈ N | #C′ = 2, k ∈ C′}, ∆̂i∗∗
ωC

= ∆̂i∗
ωC
,

∀C ∈ {C′ ∈ N | #C′ ≤ 2, k ∈ C′}, ∀i ∈ C, α̂i∗∗
C = α̂i∗

C,

∀C < {C′ ∈ N | #C′ ≤ 2, k ∈ C′}, ∀i ∈ C, α̂i∗
C = ai

χ∗∗ = χ∗, F∗∗ = F∗

and for each C < {C′ ∈ N | #C′ ≤ 2, k ∈ C′} and i ∈ N , ∆̂i∗∗
ωC

satisfies that for all m ∈ {m′ |

∆̂i∗∗
ωC

(m′) > 0} and m′′ ∈ C ∪ {0},

∑

n∈C∪{0}
∆W(n | (m, ∆̂−i∗∗

ωC
),C)vi(an) ≥

∑

n∈C∪{0}
∆W(n | (m′′, ∆̂−i∗∗

ωC
),C)vi(an)
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and to vote m is not weakly dominated with respect to (C, aC) where aC ≡ (ai)i∈C. The fixed point

argument implies that for each C < {C′ ∈ N | #C′ ≤ 2, k ∈ C′} and i ∈ N , there exists ∆̂i∗∗
ωC

satisfying these constraints. Conditions (4.17) to (4.22) imply that on σ∗∗ there is no citizen to

have a deviation incentive after any history and by construction, the voting decision is not weakly

dominated. Then the one-shot deviation principle implies that σ∗∗ is a DPE.

(Sufficiency) The one-shot deviation principle implies the above inequalities by the same proce-

dure of the proof of the sufficiency part in Lemma 4.1. The detail is omitted. �

Proof (Proposition 4.6) Let σ∗ be a trigger strategy DPE causing (k, l)-SC and suppose

that there exists a trigger strategy DPE σ∗∗ inducing k-UPC with α̂k∗∗
{k} = α̂k∗

{k,l}. We show that

when the conditions in the proposition are satisfied, not all the constraints from (4.17) to

(4.22) (where “∗” is replaced with“∗∗”) are satisfied.

First, suppose that for some k′ = k + 1, . . . ,M− 1 with α̂k∗∗
{k} ≤ ak′ , there exists â satisfying

(4.5), (4.6), and (4.7). Let w ≡| â − ak′ |. (4.6) implies that for any a ∈ A \ (ak′ − w, ak′
+ w)

and χ ∈ Ξ∗,

δ
1 − δ [vk′(α̂k∗∗

{k,l}) − Vk′(χ)] < vk′(ak′) − vk′(a).

Since σ∗∗ is a DPE inducing k-UPC and α̂k∗∗
{k} = α̂k∗

{k,l}, Lemma 4.2 implies that either α̂k′∗∗
{k,k′} = ak′

or

δ
1 − δ

[
vk′(α̂k∗∗

{k} ) − Vk′(χ∗∗)
]
≥ vk′(ak′) − vk′(α̂k′∗∗

{k,k′})

for some χ∗∗ ∈ Ξ∗. These imply that α̂k′∗∗
{k,k′} ∈ (ak′ − w, ak′

+ w) and then since | α̂k′∗∗
{k,k′} − ak′ |<

w =| â−ak′ |, (4.5) further implies that vk′(α̂k′∗∗
{k,k′})−d > vk′(α̂k∗∗

{k} ). If α̂k∗∗
{k,k′} ∈ (ak′−w, ak′

+w), then

the similar argument implies that vk′(α̂k∗∗
{k,k′})− d > vk′(α̂k∗∗

{k} ) and then (4.18) is not satisfied no
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matter what ∆W( j | ∆̂∗∗ω{k,k′} , {k, k′}) is. If α̂k∗∗
{k,k′} ≤ ak′ −w, then since aM > ak′ −w, | α̂k∗∗

{k,k′} − aM |≥|

ak′ − w − aM |>| α̂k′∗∗
{k,k′} − aM | which implies that with (4.19), ∆W(k′ | ∆̂∗∗ω{k,k′} , {k, k′}) = 1 and

then (4.18) is not satisfied. Hence α̂k∗∗
{k,k′} ≥ ak′

+ w. However note that since ak < ak′
+ w,

| α̂k∗∗
{k,k′} − ak |>| ak′

+ w− ak |≥| ak′
+ ak′ − â− ak |=| 2ak′ − â− ak | and then vk(α̂k∗∗

{k,k′}) < vk(2ak′ − â).

Furthermore, recall that by definition of â, max{2ak′ − â, â} > ak. Then from (4.7)

δ
1 − δ

[
vk(α̂k∗∗

{k} ) − Vk(χ)
]
< vk(ak) − vk(α̂k∗∗

{k,k′})

for anyχ ∈ Ξ∗which contradicts (4.20). Therefore there is no α̂k∗∗
{k,k′} satisfying the conditions.

Suppose now that for some k′ ≥M with â ≤ 2aM − ak′ , there exists â satisfying (4.5) and

(4.8). Let y ≡ 2aM − â − ak′ ≥ 0. Then (4.8) implies that for any a ∈ A \ (ak′ − y, ak′
+ y) and

χ ∈ Ξ∗,

δ
1 − δ [vk′(α̂k∗∗

{k,l}) − Vk′(χ)] < vk′(ak′) − vk′(a).

Note that since â ≤ aM ≤ ak′ ≤ 2aM − â, | 2aM − â − ak′ |≤| 2aM − â − aM |=| aM − â |≤| â − ak′ |.

Then the above inequality is satisfied for a = â. Meanwhile Lemma 4.2 implies that either

α̂k′∗∗
{k,k′} = ak′ or

δ
1 − δ

[
vk′(α̂k∗∗

{k} ) − Vk′(χ∗∗)
]
≥ vk′(ak′) − vk′(α̂k′∗∗

{k,k′})

for some χ∗∗ ∈ Ξ∗. These imply that α̂k′∗∗
{k,k′} ∈ (ak′ − y, ak′

+ y) and y > 0. Note that since

| α̂k′∗∗
{k,k′} − ak′ |< y ≤ ak′ − â < ak′ − α̂k∗∗

{k} =| α̂k∗∗
{k} − ak′ |, vk′(α̂k′∗∗

{k,k′}) − d > vk′(α̂k∗∗
{k} ). First, suppose

that α̂k∗∗
{k,k′} ≥ ak′

+ y. If aM ≤ α̂k′∗∗
{k,k′} < ak′ , then it is obvious that | α̂k′∗∗

{k,k′} − aM |<| α̂k∗∗
{k,k′} − aM |

and if aM > α̂k′∗∗
{k,k′} then since α̂k′∗∗

{k,k′} > ak′ − y and ak′ ≥ aM, | α̂k′∗∗
{k,k′} − aM |<| ak′ − y − aM |≤|

−y |= 2aM − â − ak′ ≤| α̂k∗∗
{k,k′} − ak′ |≤| α̂k∗∗

{k,k′} − aM |. Then in both cases (4.19) implies that
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∆W(k′ | ∆̂∗∗ω{k,k′} , {k, k′}) = 1 and then (4.18) is not satisfied. Next, suppose that α̂k∗∗
{k,k′} ∈

[â, ak′
+ y). If α̂k∗∗

{k,k′} ∈ (ak′ − y, ak′
+ y), then the argument similar to α̂k′∗∗

{k,k′} implies that

vk′(α̂k∗∗
{k,k′}) − d > vk′(α̂k∗∗

{k} ) and if α̂k∗∗
{k,k′} ∈ (â, ak′ − y], then since ak′ − y < ak′ , the definition of â

implies that vk′(α̂k∗∗
{k,k′})−d > vk′(α̂k∗∗

{k} ). Then in both cases (4.18) is not satisfied no matter what

∆W( j | ∆̂∗∗ω{k,k′} , {k, k′}) is. Finally suppose that α̂k∗∗
{k,k′} ≤ â. Note that since â ≤ ak′ − y < α̂k′∗∗

{k,k′}. If

aM ≥ α̂k′∗∗
{k,k′}, then it is obvious that | α̂k′∗∗

{k,k′} − aM |<| α̂k∗∗
{k,k′} − aM | and if aM < α̂k′∗∗

{k,k′}, then since

α̂k′∗∗
{k,k′} < ak′

+ y = 2aM − â, | α̂k∗∗
{k,k′} − aM |≥| 2aM − â− aM |=| â− aM |≥| α̂k′∗∗

{k,k′} − aM |. Then in both

cases (4.19) implies that ∆W(k′ | ∆̂∗∗ω{k,k′} , {k, k′}) = 1 and then (4.18) is not satisfied. Therefore

there is no α̂k∗∗
{k,k′} satisfying the conditions.

Proof (Proposition 4.7) Suppose that a trigger strategy σ∗∗ inducing k-UPC with α̂M∗∗
{k,M} =

aM is a DPE. Since σ∗∗ is a DPE, all the constraints from (4.17) to (4.22) (where “∗” is

replaced with“∗∗”) must be satisfied. Suppose that α̂k∗∗
{k,M} , aM. Then under Assumption

4.1, more than half of the citizens strictly prefer aM to α̂k∗∗
{k,M} which implies that with (4.19),

∆W(M | ∆̂∗∗ω{k,M} , {k,M}) = 1. Then from (4.18), vM(α̂k∗∗
{k} ) ≥ vM(aM) − d. Suppose now that

α̂k∗∗
{k,M} = aM. Then, since vM(aM) = vM(α̂k∗∗

{k,M}), no matter what ∆W(M | ∆̂∗∗ω{k,M} , {k,M}) is, (4.18)

implies that vM(α̂k∗∗
{k} ) ≥ vM(aM) − d.

4.8 Appendix: Characterization of Weakly Dominated Vot-

ing

Lemma 4.3 Given a set of candidates C and a profile of policies (aC) ≡ (ai
C)i∈C, a weakly undomi-

nated voting decision for citizen i with respect to (C, aC) is characterized as follows.

• If vi(ax
C) = vi(ay

C) for all x, y ∈ C, any voting decision is not weakly dominated.
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• If there exist x, y ∈ C such that vi(ax
C) > vi(ay

C),

– to abstain or to vote for l ∈ arg min j∈N vi(a j
C) is weakly dominated,

– to vote for l < arg max j∈N vi(a j
C) is weakly dominated if N = 3, C = {x, y, z}, and x, y,

and z satisfy that

vi(ax
C) > vi(ay

C) > vi(az
C) (4.23)

vi(ax
C) + vi(az

C)
2

≥ vi(ay
C), (4.24)

and

– otherwise the voting decision is not weakly dominated.

Proof of Lemma 4.3

First, consider i ∈ N such that vi(ax
C) = vi(ay

C) for all x, y ∈ C. Then her voting does not

change the payoff vi(·) at all and all the voting decisions including to abstain are indifferent

for i regardless of the opponent’s decision. Thus no voting decision is weakly dominated.

For the rest of the proof, consider voter i ∈ N such that there exist x, y ∈ C such that

vi(ax
C) > vi(ay

C). The proof consists of several steps. Let C ≡ C ∪ {0}. Given voting profile

ω ∈ C, denote

W̃(ω) ≡ arg max
j∈C

#{i ∈ N | ωi(aC) = j},

L̃(ω) ≡
{
j ∈ C

∣∣∣#{i ∈ N | ωi(aC) = j} = #W̃(ω) − 1
}
,

T̃(ω) ≡
{
j ∈ C

∣∣∣#{i ∈ N | ωi(aC) = j} = #W̃(ω) − 2
}

those are respectively, the set of the winning candidates, that of the candidates obtaining
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exactly one vote less than the winners, and that of the candidates obtaining exactly two

less votes than the winners. Fix m ∈ arg max j∈C vi(a j
C). If ωi , m, then we see that

W̃(m, ω−i) =



{m} if m ∈ W̃(ω) or ω−i = (0, . . . , 0)

W̃(ω) ∪ {m} \ {ωi} if m ∈ L̃(ω)

{ωi} ∪ L̃(ω) ∪ {m} if m ∈ T̃(ω) and W̃(ω) = {ωi}

W̃(ω) \ {ωi} otherwise.

Step 1: We show that when ωi ∈ (arg min j∈C vi(a j
C)) ∪ {0}, to vote for m makes voter i

weakly better off for any ω−i ∈ CN−1 and strictly better off for some ω−i ∈ CN−1.

Fix ωi ∈ (arg min j∈C vi(a j
C)) ∪ {0} and ω−i ∈ CN−1. Suppose that m ∈ W̃(ω) or ω−i =

(0, . . . , 0). Then the net payoff by changing to vote m from ωi is

vi(am
C ) −

∑
n∈W̃(ω) vi(an

C)

#W̃(ω)
=

∑
n∈W̃(ω)

#W̃(ω)
[vi(am

C ) − vi(an
C)] ≥ 0. (4.25)

Suppose that m ∈ L̃(ω). When ωi ∈ W̃(ω) (implying that ωi , 0), #W̃(ω) = #W̃(m, ω−i).

Then the net payoff by changing to vote for m from ωi is

∑
n∈W̃(ω)∪{m}\{ωi} vi(an

C)

#W̃(ω)
−

∑
n∈W̃(ω) vi(an

C)

#W̃(ω)
=

1
#W̃(ω)

[vi(am
C ) − vi(aω

i

C )] > 0. (4.26)

When ωi < W̃(ω), W̃(m, ω−i) = W̃(ω) ∪ {m} implying that #W̃(m, ω−i) = #W̃(ω) + 1. Then

the net payoff by changing to vote for m from ωi is

∑
n∈W̃(ω)∪{m} vi(an

C)

#W(ω) + 1
−

∑
n∈W̃(ω) vi(an

C)

#W̃(ω)
=

1
(#W̃(ω) + 1)#W̃(ω)

∑

n∈W̃(ω)

[
vi(am

C ) − vi(an
C)

]

≥ 0 (4.27)
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with strict inequality holds if there exists l ∈ W̃(ω) such that l < arg maxn vi(an
C).

Suppose that m ∈ T̃(ω). When W̃(ω) = {ωi}, the net payoff by changing to vote for m

from ωi is

∑
n∈L̃(ω)∪{m}∪{ωi} vi(an

C)

#L̃(ω) + 2
− vi(aω

i

C ) =
1

#L̃(ω) + 2

∑

n∈L̃(ω)∪{m}∪{ωi}
[vi(an

C) − vi(aω
i

C )] > 0. (4.28)

When W̃(ω) , {ωi} and ωi ∈ W̃(ω), #W̃(m, ω−i) = #W̃(ω) − 1. Then the net payoff by

changing to vote for m from ωi is

∑
n∈W̃(ω)\{ωi} vi(an

C)

#W̃(ω) − 1
−

∑
n∈W̃(ω) vi(an

C)

#W̃(ω)
=

1
(#W̃(ω) − 1)#W̃(ω)

∑

n∈W̃(ω)\{ωi}
[vi(an

C) − vi(aω
i

C )]

≥ 0. (4.29)

When W̃(ω) , {ωi} and ωi < W̃(ω), the set of the policies to possibly be implemented is

not altered by changing the vote for m from ωi implying that to vote m is indifferent from

ωi for i.

Finally, suppose that m < W̃(ω)∪ L̃(ω)∪ T̃(ω). When ωi ∈ W̃(ω) (implying that ωi , 0),

W̃(m, ω−i) = W̃(ω) \ {ωi} and #W̃(m, ω−i) = #W̃(ω) − 1. The net payoff by changing to vote

for m from ωi is

∑
n∈W̃(ω)\{ωi} vi(an

C)

#W̃(ω) − 1
−

∑
n∈W̃(ω) vi(an

C)

#W̃(ω)
=

1
#W̃(ω)(#W̃(ω) − 1)

∑

n∈W̃(ω)

[
vi(an

C) − vi(aω
i

C )
]

≥ 0. (4.30)

When ωi < W̃(ω), W̃(m, ω−i) = W̃(ω). Then the set of the alternatives possibly to be

implemented is not altered by changing the vote for m from ωi implying that to vote m is

indifferent from ωi for i.
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Thus for any ω−i ∈ CN−1, to vote for m makes voter i weakly better off. To show that it

makes her strictly better off for some ω−i, consider

• For ωi ∈ arg minn∈N vi(n), ω−i = (0, . . . , 0)

• For ωi = 0, ω−i = (l, 0, . . . , 0) where l ∈ arg minn∈N vi(an
C) (or ω−i = l when N = 2)

In each case, it is easy to see that m ∈ L̃(ω) and (4.26) and (4.27) imply that to vote for m

makes voter i strictly better off.

Step 2: We show that if #C = 2, then to vote for m ∈ arg maxn∈N vi(an
C) is not weakly

dominated. Step 1 directly implies that if #C = 2, then the unique voting decision which

is not weakly dominated is to vote for m.

Step 3: We show that if N = 3, C = {m, y, z}, vi(am
C ) > vi(ay

C) > vi(az
C), and (vi(am

C )+vi(az
C))/2 ≥

vi(ay
C), then to vote for m makes voter i weakly better off than to vote ωi = y for any ω−i

and strictly better off for some ω−i.

By the same procedure as the proof of Step 1, we can show that if ω satisfies that

m ∈ W̃(ω) ∪ L̃(ω) or ωi < W̃(ω), then to vote m makes voter i weakly better off for any of

such ω−i (and strictly better off for some of such ω−i). Thus it is satisfied for any ω−i ∈ CI−1

if and only if

• for any ω−i such that m ∈ T̃(ω) and W̃(ω) = {ωi}, (4.28) is satisfied (with weak

inequality),

• for any ω−i such that m ∈ T̃(ω), W̃(ω) , {ωi}, and ωi ∈ W̃(ω), (4.29) is satisfied, and

• for any ω−i such that m < W̃(ω) ∪ L̃(ω) ∪ T̃(ω) and ωi ∈ W̃(ω), (4.30) is satisfied.

Note that whenever m ∈ T̃(ω) and ωi = y ∈ W̃(ω), it must be the case that #{i ∈ N |

ωi(aC) = m} = 0, #{i ∈ N | ωi(aC) = y} = 2, and W̃(ω) = {y}. Then the possible voting profile

182



is (ωi, ω−i) = (y, y, 0), (y, 0, y), (y, y, z), (y, z, y). For (ωi, ω−i) = (y, y, 0), (y, 0, y), it is obvious

that L̃(ω) = ∅ implying that (4.28) is satisfied. For (ωi, ω−i) = (y, y, z), (y, z, y), we see that

L̃(ω) = {z} and then (4.28) is satisfied if and only if

∑

n=m,y,z

vi(an
C) − 3vi(ay

C) ≥ 0 (4.31)

or equivalently (vi(am
C ) + vi(az

C))/2 ≥ vi(ay
C).

When m < W̃(ω) ∪ L̃(ω) ∪ T̃(ω) and ωi = y ∈ W̃(ω), the unique possible voting profile

is (ωi, ω−i) = (y, y, y). Then W(ω) = {y} implying that (4.30) is satisfied with equality.

Step 4: We show that if N = 3, C = {m, y, z}, vi(am
C ) > vi(ay

C) > vi(az
C), and (vi(am

C )+vi(az
C))/2 <

vi(ay
C), then there is an opponents’ voting file ω−i such that to vote for m makes voter i

strictly worse off than to vote ωi = y.

As (4.31) shows, given ω−i = (y, z) or (z, y) to vote for m makes voter i strictly worse off

than to vote ωi = y.

Step 5: We show that if N > #C = 3 or N ≥ #C ≥ 4, then for anyωi < arg minn∈C vi(an
C)∪{0},

there is an opponents’ voting profile ω−i ∈ CN−1 such that to vote for ωi is the strict best

response for ω−i.

Note that the hypothesis implies that N ≥ 4. Now for ωi < arg minn∈N vi(an
C) ∪ {0},

consider the following opponent profile;

ω−i = (l, l, ωi, 0, . . . , 0)

(or ω−i = (l, l, ωi) when N = 4) where l ∈ arg minn∈N vi(an
C). Then we see that W̃(ω) = {ωi, l}

and W̃(n, ω−i) = {l} for any n , ωi. The difference of the payoff between voting for n , ωi
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and ωi is

vi(aωi

C ) + vi(al
C)

2
− vi(al

C) =
vi(aωi

C ) − vi(al
C)

2
> 0

which means that to vote for ωi is the strict best response for ω−i.

184



Bibliography

A, D. (1986): “Extremal Equilibria of Oligopolistic Supergame,” Journal of Economic

Theory, 39, 191–225.

——— (1988): “On the Theory of Infinitely Repeated Games with Discounting,” Econo-

metrica, 56, 383–396.

A, A. (1988): “Credibility and Policy Convergence in a Two-Party System with

Rational Voters,” American Economic Review, 78, 796–805.

A, R.  N. M (2007): “Relational Delegation,” RAND Journal of Eco-

nomics, 38, 1070–1089.

A̀, E., T. P,  A. P (2007): “Political Reputations and Campaign

Promises,” Journal of the European Economic Association, 5, 846–884.

A, Y. (2010): “Why Do Some Candidates Run to Lose?: Partially Binding Platforms

and Endogenous Candidates,” mimeo, Bank of Japan.

A, B. (1989): “Manufacturer-Supplier Relationships in Japan and the Concept of

Relation-Specific Skill,” Journal of the Japanese and International Economies, 3, 1–30.

A, T. (2007): “Orega Atarashii Jimintoo Tsukuru (I Make the New LDP),” Bungei Shunju,

185



106–115, (in Japanese, Available at http://www.aso-taro.jp/lecture/2007 11bungei.pdf

with the title “Jiminto Sosaisen (LDP President Election)”).

A, S.  D. A. M (2007): “Efficiency in Repeated Trade with Hidden Valuations,”

Theoretical Economics, 299–354.

B, G., R. G,  K. J. M (1994): “Subjective Performance Measures in

Optimal Incentive Contracts,” Quarterly Journal of Economics, 109, 1125–1156.

——— (2002): “Relational Contracts and the Theory of the Firm,” Quarterly Journal of

Economics, 117, 39–84.

B, M. (2005): “Long-Term Contracting with Markovian Consumers,” American

Economic Review, 95, 637–658.

B, D.  J. V̈̈ (2003): “Dynamic Common Agency,” Journal of Economic

Theory, 111, 23–48.

B, B. D.  M. D. W (1986): “Menu Auctions, Resource Allocation, and

Economic Infuluence,” Quarterly Journal of Economics, 101, 1–32.

——— (1998): “Incomplete Contracts and Strategic Ambiguity,” American Economic Re-

view, 88, 902–932.

B, T.  S. C (1997): “An Economic Model of Representative Democracy,”

Quarterly Journal of Economics, 112, 85–114.

——— (1998): “Sources of Inefficiency in a Representative Democracy: a Dynamic Anal-

ysis,” American Economic Review, 88, 139–156.

——— (2001): “Lobbying and Welfare in a Representative Democracy,” Review of Economic

Studies, 68, 67–82.

186



B, S. (2010): “Relational Contracts and the Value of Loyalty,” American Economics

Review, forthcoming.

C, G.  G. S (2010): “Relational Contracts and Competitive Screening,”

Centre for Economic Policy Research Discussion Paper No. 7434.

C, F. R.  F. H. F (2007): “Inefficient Lobbying, Populism and Oli-

garchy,” Journal of Public Economics, 91, 993–1021.

D, K. (2006): “Formal and Relational Incentives in a Multitask Model,” International

Review of Law and Economics, 26, 380–394.

D, M., I. J,  J. T (1999): “The Economics of Career Concerns,

Part II: Application to Missions and Accountability of Government Agencies,” Review

of Economic Studies, 66, 199–217.

——— (2000): “Multitask Agency Problems: Focus and Task Clustering,” European Eco-

nomic Review, 44, 869–877.

D, A., G. M. G,  F. G (2000): “The Dynamics of Political Compromise,”

Journal of Political Economy, 108, 531–568.

D, A., G. M. G,  E. H (1997): “Common Agency and Coordination:

General Theory and Applicatoin to Government Policy Making,” Journal of Political

Economy, 105, 752–769.

D, J.  M. F (2006): “Repeated Downsian Electoral Competition,” International

Journal of Game Theory, 35, 39–69.

D, B., M. O. J,  M. L B (2001): “Strategic Candidacy and Voting

Procedures,” Econometrica, 69, 1013–1037.

187



——— (2002): “Voting by Successive Elimination and Strategic Candidacy,” Journal of

Economic Theory, 103, 190–218.

E, L.  J. A. W (2003): “Candidate Stability and Nonbinary Social Choice,”

Economic Theory, 22, 233–243.

E, H.  A. ML (2004): “Strategic Candidacy for Multivalued Voting

Procedures,” Journal of Economic Theory, 117, 29–54.

F, L.  A. M (2006): “Endogenous Lobbying,” Journal of the European Economic

Association, 4, 180–215.

——— (2007): “If You Cannot Get Your Friends Elected, Lobby Your Enemies,” Journal of

the European Economic Association, 5, 624–635.

F, Y.-F.  J. L (2010): “Relational Contract, Efficiency Wages, and Employment

Dynamics,” mimeo, Northwestern Univesity.

F, D., D. L,  E. M (1994): “The Folk Theorem with Imperfect

Public Information,” Econometrica, 62, 997–1039.

G, R. (1998): “Incentives in Organizations,” Journal of Economic Perspectives, 12,

115–132.

——— (2005a): “Four Formal(izable) Theories of the Firm?” Journal of Economic Behavior

and Organization, 58, 200–245.

——— (2005b): “Incentives between Firms (and Within),” Management Science, 51, 2–17.

G, G. M.  E. H (1994): “Protection for Sale,” American Economic Review,

84, 833–850.

188



——— (2001): Special Interest Politics, Cambridge, MA: MIT Press.

H, M. (2009): “Relational Contracts and the Value of Relationships,” mimeo, Columbia

University.

H̈, B.  P. M (1991): “Multitask Principal-Agent Analyses: Incentive

Contracts, Asset Ownership, and Job Design,” Journal of Law, Economics and Organization,

7, 24–52.

I, E.  G. S (2009): “Contracts as Threats: on a Rationale for Rewarding A

While Hoping for B,” mimeo, Brunel University.

I, H. (1994): “Job Design, Delegation and Cooperation: A Principal-Agent Analysis,”

European Economic Review, 38, 691–700.

I, H.  H. M (2010): “Formal Contracts, Relational Contracts, and the Threat-

Point Effect,” mimeo, Hitotsubashi University.

J, M. O.  H. F. S (2007): “Overcoming Incentive Constraints by

Linking Decisions,” Econometrica, 75, 241–257.

K, N. (2010): “Debt Contracts with Partial Commitment,” mimeo, Arizona State

University.

K, O.  T. E. O (2009): “Endogenous Verifiability and Relational Contracting,”

American Economic Review, 99, 2193–2208.

L, J. (2002): “Multilateral Contracting and the Employment Relationship,” Quarterly

Journal of Economics, 117, 1075–1104.

——— (2003): “Relational Incentive Contracts,” American Economic Review, 93, 835–857.

189



ML, W. B. (2007): “Reputations, Relationships, and Contract Enforcement,” Journal

of Economic Literature, 45, 595–628.

ML, W. B.  J. M. M (1989): “Implicit Contracts, Incentive Compatibility,

and Involuntary Unemployment,” Econometrica, 57, 447–480.

——— (1998): “Motivation and Markets,” American Economic Review, 88, 388–411.

M, J. M. (2010): “Relational Incentive Contracts,” mimeo, Oxford Univesity.

M, H., K. M,  N. Y (2010): “Role of Linking Mechanisms in

Multitask Agency with Hidden Information,” Journal of Economic Theory, 145, 2241–

2259.

MC, N.  L. S. R (1996): “Commitment and the Campaign Contribution

Contract,” American Journal of Political Science, 40, 872–904.

M, M. A., T. E. O,  G. T (1996): “Limited Intertemporal Commitment

and Job Design,” Journal of Economic Behavior and Organization, 31, 401–417.

M, P.  I. S (2002): “Envelope Theorems for Arbitrary Choice Sets,” Econo-

metrica, 70, 583–601.

M, D. (2006): “Decentralization, Hierarchies, and Incentives: A Mechanism

Design Perspective,” Journal of Economic Literature, 44, 367–390.

O, M. J.  A. S (1996): “An Model of Political Competition with Citizen

Candidates,” Quarterly Journal of Economics, 111, 65–96.

P, D. G.  E. S (1998): “The Interaction of Implicit and Explicit Contracts

in Repeated Agency,” Games and Economic Behavior, 23, 75–96.

190



R, D. (2002): “The Time Structure of Self-Enforcing Agreements,” Econometrica, 70,

547–582.

R, L. (2007): “Relational Incentives and Moral Hazard in Teams,” Review of Economic

Studies, 74, 937–963.

S, Y. (2007): “Strategic Candidacy and Single-Peakedness,” Japanese Economic

Review, 58, 423–442.

S, K. M.  M. S (1995): “The Interaction of Explicit and Implicit Con-

tracts,” Economics Letters, 48, 193–199.

S̈, A. (2008): “Relational Contracts, Multitasking, and Job Design,” Journal of

Law, Economics and Organization, 24, 138–162.

S, C.  J. S (1984): “Equilibrium Unemployment as a Worker Discipline

Device,” American Economic Review, 74, 433–444.

S, J., J. M. (1992): “Long-term Investing in Politicians; or, Give Early, Give Often,”

Journal of Law and Economics, 35, 15–43.

S, R. (2006): “Deterministic versus Stochastic Mechanisms in Principal-Agent Mod-

els,” Journal of Economic Theory, 128, 306–314.

T, J.  T. W (1994): “Foreign Direct Investment and the Risk of Expropri-

ation,” Review of Economic Studies, 61, 81–108.

W, Q. (2002): “A Folk Theorem for Repeated Sequential Games,” Review of Economic

Studies, 69, 493–512.

W, A. (2010): “Dynamic Monopoly with Relational Incentives,” Theoretical Eco-

nomics, 5, 479–518.

191


