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Abstract

The dissertation consists of four chapters. The �rst two chapters are devoted to

exploring information acquisition and disclosure in contests. The third chapter is

devoted to exploring how risk attitude a�ects bidding behavior in all-pay auctions.

The last chapter is devoted to exploring behavioral biases in advice-giving.

In Chapter 1, I study player's incentive to spy on opponents' private information

in contests. I show that each player's equilibrium e�ort is non-decreasing (non-

increasing) in the posterior probability that the opponent has the same (a di�erent)

valuation. Accounting for the cost of spying, players are strictly better o� than not

spying on each other at all.

In Chapter 2, I focus on how a contest organizer should disclose information in

order to achieve certain objectives. In particular, I compare private signals with pub-

lic signals. I show that there is no general ranking of the two signals in terms of the

performance of maximizing players' expected payo�, but public signals outperforms

private signals in maximizing expected e�ort.

In Chapter 3 (co-authored with David Ong and Ella Segev), we extend previous

theoretical work on n-players complete information all-pay auction to incorporate

heterogeneous risk and loss averse utility functions. We provide su�cient and neces-

sary conditions for the existence of equilibria with a given set of active players with

any strictly increasing utility functions and characterize the players' equilibrium

mixed strategies.

Finally, in Chapter 4 (co-authored with Tobias Gesche), we show experimental

evidence that a one-o� incentive to bias advice has a persistent e�ect on advisers'

own actions and their future recommendations.
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Chapter 1

Spying in Contests

Abstract Two players compete for a prize and their valuations are private infor-

mation. Before the contest, each player can covertly acquire a costly, noisy and

private signal regarding the opponent's valuation. In equilibrium, each player's ef-

fort is non-decreasing in the posterior probability that the opponent has the same

valuation. Accounting for the cost of spying, players are strictly better o� spying

when the spying technology is partially but not perfectly informative. Suppose in-

stead that each player can, at no cost, ex ante commit to disclose a signal about

her valuation to the opponent, but cannot observe realizations of the signal. Then

every equilibrium involves non-disclosure by at least one player, even though some

disclosure by each player would bene�t both.

1



1.1 Introduction

Winner-take-all contests, like rent-seeking contests for monopoly rights, patent races,

lobbying, political campaigns and competitions for promotion, burden participants

with the prospect that their investments may yield no reward. The e�orts, time and

resources invested in competing for the prizes are unrecoverable, and typically, only

the participant with the highest investment reaps the rewards of the contest. Thus,

anticipating the rivals' intentions becomes particularly valuable; learning that rivals

will invest little can save on the investment to win the prize, and, conversely, learning

of an excessive investment outlay by rivals would lead a �rm to avoid investing in

a lost cause. This paper studies players' incentives of acquiring information about

the opponents prior to winner-take-all contests.

In competing for a procurement contract, for example, suppliers spend enormous

time, resources and e�orts to prepare proposals for a buyer to evaluate.1 This process

is even costlier when it also involves bribing the procurement agent (Celentani and

Ganuza, 2002; Burguet and Che, 2004). Since each supplier may value the contract

di�erently, their willingness to commit resources to win the contract or to bribe the

procurement agent may di�er. Gathering intelligence on the opponent's valuation

can prove particularly valuable. To obtain these intelligence, suppliers may hire

hackers to steal information from rival supplier's computer, investigators to search

through o�ce trash or detectives to steal �les from o�ce safe, etc.2

The existing literature suggests that players will overall not bene�t from such

spying. Kovenock et al. (2015) show that the payo�s to players are the same when

valuations are commonly known and when they are private information. However,

perfect information about the opponent is extremely hard � if not impossible � to

acquire in reality.

In this paper, we model the action of information acquisition as a continuous

variable which allows players to acquire partial information. In this novel set up,

we seek to answer the following questions: What's the impact of partial intelligence

about opponents on a player's competitive behavior in contests? What's the implica-

1Airbus and Boeing spent 10 years in competing for the U.S. Air Force tanker contract and
their proposals included several thousand pages (Kovenock et al., 2015).

2On the one hand, acquisition of intelligence can be illegal. Detectives hired by Larry Ellison,
the head of Oracle, bribed the cleaning sta� at Microsoft's o�ce to gather sensitive information
from the o�ce trash until the year when the scandal was exposed by the media. In 2001, sta�s
of Procter&Gamble were found searching the garbage of Unilever � its competitor in the hair-
care market � for "the Organics and Sunsilk brands of shampoo" which contains commercially
sensible information. On the other hand, intelligence may also be acquired through legal and
organized methods. Large companies usually hire competitive intelligence agencies to study their
competitors; some major multinational �rms like General Motors, Kodak and BP even set up their
own separate competitive intelligence units (Billand et al., 2016).

2



tion of such spying behavior on social welfare and allocative e�ciency? In addition,

a large set of contests are welfare destroying in the sense that resources invested by

players are wasted (Tullock, 1967; Posner, 1974), as these resources only determine

the winner but do not contribute to value creation.3 For instance, the estimated

social cost of rent-seeking for the US is 22.6 percent of GNP in 1985 (Laband and

Sophocleus, 1988); and it is been long argued (since (Wright, 1983)) that patent

races generate wasteful duplication of e�ort. So how do spying activities a�ect total

e�orts in such wasteful contests?4

Section 1.2 presents a model of a contest with one indivisible prize and two players

who have independent private valuations (IPV) for the prize. In particular, each

player's valuation can be either high or low. Before participating in the contest,

each player covertly acquires a costly, noisy and private spying signal about her

opponent's valuation. The spying signal can be drawn from an arbitrarily large set of

distribution functions. In acquiring the spying signal, she chooses a level of accuracy

for it ranging from completely uninformative to perfectly informative.5 She then

observes both her valuation and the spying signal and exerts e�ort in the contest.

The player who exerts more e�ort wins. This payo� structure is the same as in a �rst

price all-pay auction. For example, in competitive procurement each supplier may

have a high or low valuation of the contract, according to its estimation of pro�t

which depends on its own production cost. The supplier can obtain intelligence

regarding the opponent's valuation from its pre-existing competitive intelligence

unit, and then decides how much e�ort to invest in the competition.

In Section 1.3.1 we consider a simpli�ed setting where the accuracy of the spy-

ing signal is �xed and the signal costless. When the signals are partially infor-

mative, e�ort by each player in the unique symmetric equilibrium of the contest

is stochastically increasing in her valuation. Furthermore, spying has a motiva-

tion/demotivation e�ect on a player (Proposition 1): when the player's valuation

is high, her equilibrium e�ort is non-decreasing in the posterior likelihood that the

opponent's valuation is also high ("motivation e�ect" of spying); instead, when her

valuation is low then her e�ort is non-increasing in such a likelihood ("demotivation

e�ect" of spying). As a result, players increase their e�orts when they are perceived

to be evenly matched. In competitive procurement process, a supplier only devotes

more resources, e�orts and time after learning the opponent might have the similar

production cost, and thus a similar valuation for the procurement contract. A �rm

would increase investments in R&D after learning that the opponent in the patent

3 See Congleton et al. (2008) for the overview of rent-seeking contests.
4The results are also applicable to other contests where e�orts are productive.
5Accuracy is de�ned by rotation order (Johnson and Myatt, 2006) for tractability.
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race owns a research team with the similarly background as the �rm does.

Section 1.3.2 considers endogenous acquisition of spying signals. In the symmet-

ric equilibrium, each player acquires a partially informative spying signal. Account-

ing for the cost of spying, players are strictly better o� than not spying on each other

at all (Proposition 3). Meanwhile, the total expected e�ort in the contest is strictly

lower. Therefore, spying in wasteful contests actually contributes to social welfare

by reducing duplication of e�orts or other resources wasted in the competition. In

procurement contests, money spent on bribery and e�orts exerted in the process are

lower if suppliers hack into each others' computers or steal �les from rivals' o�ces

for information. This result is particularly important because public procurement is

a hotbed for bribery among OECD countries (Ehlermann-Cache and Others, 2007)

which creates social ine�ciencies and is hard to detect. When suppliers spy on each

other, such costs are reduced without actually detecting the bribing behavior.6 In-

terestingly, the same welfare outcome is not achievable if the cost of spying is zero,

as then players would acquire a perfect signal about the opponent. As mentioned

earlier, players' payo�s in this situation are the same as when they do not spy at

all.

Spying maybe prohibitively costly (or illegal). The previous result suggests, how-

ever, that players would bene�t if they were to disclose to each other a noisy signal

of their valuation. This raises the question: would such disclosure be supported

in equilibrium? To address the question, Section 1.4 considers a twist of the main

model in which each player commits to disclose a signal about her own valuation to

the opponent before the contest.7 In doing so, she chooses an accuracy for the signal

which the opponent will receive. Neither disclosing nor receiving the signal incurs

any cost to any player. This corresponds to each supplier choosing its security level

of o�ce buildings or �rewall.8 Should suppliers loosen their security measures to

make it easier to steal sensible �les or downgrade its �rewall so it is easier to hack

into the computers?

Section 1.4.2 considers the case when players set up an agreement to disclose

6There is a similar implication to rent-seeking and lobbying contests: bribes to politicians are
social costs and spying in these contests improves welfare. In the patent race example, if �rms ac-
tively acquire intelligence about the opponents', say, research budgets, capabilities, breakthroughs
as well as data of the new products, then there will be less duplicated investments in R&D.

7Most of information disclosure in contest literature often take a centralized view and analyze
how a contest organizer should disclose information to players in order to maximize total e�ort (Lu
et al., 2016; Zhang and Zhou, 2016; Chen, 2016; Serena, 2015; Denter et al., 2014). The current
paper, however, takes a decentralized view and considers players disclose information to each other.

8Alternatively, in the patent race example, information disclosure corresponds to providing the
opponent, for instances, a prototype of the new product, or samples of a new drug. Given such
a piece of hard evidence (i.e. a given accuracy), the opponent �rm can test the product and test
results are unavailable to the �rm who discloses the information.

4



signals to each other. If players agree to disclose partially informative signals to

each other, then both players are strictly better o� (Proposition 6). This is in

contrast to Kovenock et al. (2015) which restricts attention to binary disclosure, i.e.

non-disclosure or full disclosure, and shows that full disclosure has no impact on

players' expected payo�s.9 However, Section 1.4.3 shows that disclosing a partially

informative signal is weakly dominated by disclosing an uninformative signal for

each player (Lemma 7). Even though partial disclosure by both players lowers ex

ante expected e�orts and increases payo�s, each player can do better by adding

noise to the signal disclosed to the opponent, as then the evenly matched opponent

is more likely to be demotivated. Therefore, there does not exist any equilibrium in

which both players disclose any partially informative signals (Proposition 7). This

provides one reason for suppliers seldom sharing private information to each other

in real procurement competitions or any other winner-take-all contests.

These results suggest that social welfare can be improved through mandatory,

albeit imperfect, disclosure between players. In a patent race, the government can

require all participating �rms to disclose information about their research teams,

or their research budget, or any other related information which a�ects their R&D

investments. In lobbying competitions, lobbyists should be required to disclose their

estimation of pro�t when their preferable policy is implemented. The results also

provide a nice interpretation of why we observe spying/espionage but information

disclosure/sharing in reality.

The contributions of this paper are threefold. First, the clandestine nature of

spying is captured in the model as both spying signal realizations and accuracy of the

signal are private information to each player. Microsoft was unaware of whether or

how the detectives hired by Oracle acquired any information and was also unaware

of what kind of information Oracle had obtained. Interestingly, the results suggest

spying on each other may improve both players welfare as they receive additional

information about each others' strategy and thus, are able to coordinate. Second,

Section 1.3.1 of the current paper considers the all-pay auction with an information

structure between incomplete information (Lu and Parreiras, 2014; Konrad, 2004;

Amann and Leininger, 1996) and complete information setting (Baye et al., 1996;

Ellingsen, 1991; Hillman and Riley, 1989). By varying the accuracy of the spying

signal from completely uninformative to perfectly informative, the current paper

characterized the equilibrium in an arbitrarily large set of information structure

between incomplete and complete information.10 Third, this paper provides the

9Yet, the allocative e�ciency is compromised and the total expected e�ort in the contest is
reduced.

10There has been some recent progresses in all-pay auction with common valuation and a�liated
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�rst analytical framework of all-pay contests with endogenous information structure.

The model is applied to study endogenous information acquisition (spying) and

endogenous information sharing (disclosure) in the current paper, and is applicable

to other endogenous information settings, including overt information acquisition,

centralized information disclosure and discriminatory information acquisition, etc.

There are few studies on spying/information acquisition in contests. The paper

most related to the current paper in the economics literature is Baik and Shogren

(1995) who compare covert information acquisition with overt acquisition in contests.

However, the paper does not model contests as a game of incomplete information and

is subject to the criticism for "the negligence of strategic interdependency between

the two players" (Bolle, 1996).11 Alternatively, Zhang (2015) considered one-sided

private information setting in which the public player spies on the private player in

both all-pay auction and Tullock contest (Tullock, 1967). The author shows that

espionage is more common in a more discriminatory contest and can be discour-

aged by the increasing probability of spying detection. The current paper does not

consider detection of spying or double agent. Another closely related strand of lit-

erature is the information acquisition in winner-pay auction literature (Miettinen,

2013; Shi, 2012; Persico, 2000; Matthews, 1984). In all-pay auctions, Morath and

Münster (2013) considers players' incentive to acquire information about their own

valuation, and the decision of information acquisition is binary. Alternatively, Fang

and Morris (2006) from which the research idea of the current paper was originated

shows a numerical example of acquiring information about the opponent in a �rst

price winner-pay auction. Built on Fang and Morris (2006), Tian and Xiao (2007)

studies endogenous information acquisition on the opponent's valuation in the �rst

price auction. Finally, in the IO literature, spying/espionage are also considered in

entrant deterrence (Barrachina et al., 2014; Solan and Yariv, 2004), in price and

quantity competition in duopoly (Kozlovskaya, 2016; Wang, 2016; Whitney and Ga-

isford, 1999), and in multi-market competitions (Billand et al., 2016).

The remainder of the paper are organized as follows. Section 1.2 presents the

preliminaries of the main model of spying in contests. Section 1.3 shows the results

on spying � endogenous information acquisition � in contests, and Section 1.4 on

information disclosure. Section 1.5 concludes.

signals (Rentschler and Turocy, 2016; Chi et al., 2015), as well as with interdependent valuations
(Siegel, 2013; Krishna and Morgan, 1997). These studies assume players can learn some information
regarding the opponent from the signal about their own valuations, because of common valuation
or interdependent value assumption. The current paper is di�erent from this line of research in the
independence between the information regarding the bidder's own valuation and the information
regarding the opponent.

11See discussions in Baik and Shogren (1995), Bolle (1996) and Baik and Shogren (1996)
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1.2 The model

There are two risk neutral players, indexed by i ∈ {1, 2}, who compete in a contest

with one indivisible prize for which they have independent private valuations (IPV).

Player i (i = 1, 2) may value the prize at θh with probability ph ∈ (0, 1) or at θl with

probability pl = 1− ph, where θh > θl > 0. Players know only their own valuations,

and the distributions of opponents' valuations. We refer to a generic player i as

"she" and her opponent, player j, as "he".

Information acquisition (spying): Player i can acquire additional information

regarding the opponent by receiving a private spying signal (hereafter "signal")

about the opponent's valuation. The possible signal realization πi is drawn from a

compact set [π, π]. Player i acquires information about θj by choosing from a family

of joint distributions over [π, π]× {θh, θl}

{F (πi, θj|αi)}αi∈[α,α]

indexed by αi ∈ [α, α]. We refer to F (πi, θj|αi) the signal, αi the accuracy (de�ned

shortly) of the signal and πi the realization of the signal. Since the conditional

distribution of πi depends only on θj, and the prior distribution of θi is independent

of the distribution of θj, πi is thus independent of πj.

Let F (·, αi) denote the marginal distribution of πi with corresponding density

f(·, αi), given any αi. Furthermore, denoted by Fh(·, αi) (Fl(·, αi) ) the conditional
cumulative distribution of πi given θj = θh (θj = θl). Let fh(·, αi) and fl(·, αi) be

the corresponding probability density functions, and assume both are di�erentiable

on both arguments. We assume w.l.o.g. the marginal distribution of πi, F (πi, αi) is

uniform on [0, 1] for every given αi,
12 i.e.,

phFh(πi, αi) + plFl(πi, αi) = πi (1.1)

phfh(πi, αi) + plfl(πi, αi) = 1 (1.2)

given any αi ∈ [α, α]. Thus, π = 0, π = 1.

Spying cost: Player i's cost of acquiring the signal is captured by Ci(αi), and Ci(·)
12For any alternative signals, the marginal cumulative distribution as a random variable is always

uniformly distributed. For example, if player i's, i = 1, 2, signal realization si is drawn from
F (s|θh, α) (F (s|θl, α)) conditional on player j's (j = 2, 1, respectively) valuation being θh (θl), then
we can always de�ne an alternative signal with realizations: πi = phF (si|θh, α)+plF (si|θl, α), being
the probability integral transformation of the original signal. Thus, πi is the percentile function of
si, which is always distributed uniformly in [0, 1].
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is assumed to be convex and increasing in αi for i = 1, 2, with Ci(α) = 0. Let

MCi(α) = ∂Ci(α)
∂α

> 0 be the marginal cost of acquiring the signal with accuracy α.

Posterior belief: Observing πi leads player i to update her belief on θj according

to Bayes' rule. Denote player i's posterior belief that player j has valuation θh upon

receiving πi by µ(πi, αi), thus

µ(πi, αi) =
phfh(πi, αi)

phfh(πi, αi) + plfl(πi, αi)

According to (1.2), µ(πi, αi) = phfh(πi, αi) and 1 − µ(πi, αi) = plfl(πi, αi). For the

rest of the paper, we assume:

Assumption 1. Monotonic likelihood ratio property (MLRP): Given any α ∈ [α, α],
fh(π,α)
fl(π,α)

is non-decreasing in π ∈ [π, π].

Assumption 1 implies µ(πi, αi) is non-decreasing in πi �xing αi.

Information order: To rank signals by accuracy, we adopt the rotation order

which was �rst introduced by Johnson and Myatt (2006), and was applied to auction

settings by Shi (2012).13

De�nition 1 (Rotation order). The family of distributions F (πi, αi) is rotation-

ordered if there exists a point π+ ∈ [0, 1] such that: ∂fh(πi,αi)
∂αi

≷ 0 if πi ≷ π+, for all

αi ∈ [α, α].

When αi increases, fh(πi, αi) rotates counter clockwise around π
+, which implies

the updated belief µ(πi, αi) becomes steeper. Meanwhile, fl(πi, αi) rotates clockwise

around π+, which implies the updated belief 1− µ(πi, αi) also becomes steeper.

Let us consider an example with two information acquisition choices, α′ < α′′. By

de�nition, it must be true that fh(π, α
′) > fh(π, α

′′) when π < π+ and fh(π, α
′) <

fh(π, α
′′) when π > π+; and that fl(π, α

′) < fl(π, α
′′) when π < π+ and fl(π, α

′) >

fl(π, α
′′) when π > π+. This example is shown in the Figure 1.1 and 1.2.

When player i chooses αi = α, i.e. to acquire a completely uninformative signal

about θj, then any realization of the signal does not convey any information about

the opponent. In this case, fh(πi, α) = fl(πi, α) = 1 for all πi ∈ [π, π], see Figure 1.9.

When player i chooses αi = α, i.e. to acquire a perfectly informative signal about θj,

then each realization conveys perfect information about the opponent. In this case,

13See Ganuza and Penalva (2010) for thorough discussion on signal ordering by precision which
is de�ned by dispersion of the distribution of posterior estimation.
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fh(π, α)

ππ+

fh(π, α
′)

fh(π, α
′′)

Figure 1.1: Increasing α means counter
clockwise rotation of fh(π, α)

fl(π, α)

ππ+

fl(π, α
′)

fl(π, α
′′)

Figure 1.2: Increasing α means clockwise
rotation of fl(π, α)

fh(πi, α) = 0 if πi 6 pl and fh(πi, α) = 1
ph

if πi > pl, see Figure 1.4. Throughout the

paper, we impose the following assumption:

Assumption 2. All signals are rotation ordered around π+ = pl.

π+ = pl is the only rotation point such that all signals indexed from α to α are

ordered.

fh(π, α)

π

1

1

fh(π, α)

Figure 1.3: Completely uninformative
signal α

fh(π, α)

π1π+ = pl

1
ph

fh(π, α)

Figure 1.4: Perfectly informative signal α

E�ort in the contest: Player i decides her e�ort after observing θi and πi. Thus,

the contest stage of the game is a Bayesian game with two-dimensional types, and

the e�ort of player i is a two-to-one mapping:14 b : {θh, θl} × [0, 1]→ R+.

14The two-to-one mapping strategy in the contest creates complications in analysis, especially in
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Payo�s in the contest: Players choose their e�orts in the contest simultaneously.

The player who exerts higher e�ort wins the prize, whereas the losing player's e�ort

is unrecoverable. Ties are broken with equal probabilities. Thus, player i with

valuation θi exerting e�ort bi earns a payo�:

U(bi, bj, θi) =


−bi, if bi < bj

θi − bi, if bi > bj
1
2
θi − bi, if bi = bj

A contest with the above payo� function, U(bi, bj, θi), is also known as a �rst price

all-pay auction.15

Timing: The timing of spying in the contest game is shown in Figure 1.5. Firstly,

player i chooses the accuracy αi for the signal to be acquired on the opponent.

Secondly, Nature determines the valuation pro�le according to the prior distribution

and player i observes θi. Thirdly, according to θj and αi, Nature determines a signal

realization πi observed by player i. Finally, player i chooses her e�ort bi according

to her private information (θi, πi).

chooses αi player i observes θi player i observes πi chooses bi
Player i Nature determines and Nature determines and Player i

Figure 1.5: Timing of spying in the contest (i = 1, 2)

Social welfare and allocative e�ciency: In the contest environment considered

in this paper, e�orts are wasted and thus, are not accounted as a part of social

characterizing the equilibrium strategy. In the previous studies involving two-to-one mapping in
auctions, either the model was set up in a way that the auction has an equilibrium bidding strategy
monotonically increasing with both dimensions (Tan, 2016), or the two-dimensional signal can be
translated into a summary statistic which is positively correlated with the value with an assumption
on the distributions of signals (Goeree and O�erman, 2003). Auctions with bi-dimensional types
were considered in Fang and Morris (2006) where the authors studied a model of independent
private value �rst-price auction in which players' valuations are drawn from a binary distribution,
and each player receives a noisy two-valued signal about the opponent's valuation (with exogenous
accuracy). The authors also characterized the equilibrium bidding strategy which is a two-to-one
mapping. However, it is well known in the literature that the equilibrium strategy in auctions
with multidimensional types are di�cult to characterize, due to the fact that "monotonicity is not
naturally de�ned" (Tan, 2016) or even non-existence of equilibrium (Jackson, 2009).

15Another type of model used in the contest literature is "Tullock contest" (Tullock, 1967) where
player i's winning probability increases in her e�ort continuously instead of discontinuously as in
U(bi, bj , θi) above. This type of model is sometimes called the imperfectly discriminating contest,
whereas the all-pay auction is a perfectly discriminating contest in the sense that player i wins
with probability one as long as her e�ort is larger than the opponent. See Konrad (2009) for survey
of the literature.
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welfare. Formally, social welfare is de�ned as the following:

De�nition 2. Social welfare is the total expected payo� of players: Σ2
i=1 [Vi(αi, αj)− Ci(αi)],

where Vi(αi, αj) is player i's equilibrium expected payo� in the contest where the pro-

�le of information acquisition choice is (αi, αj).

In the context of competitive procurement, suppliers' total expected pro�t (net

of spying cost) is the social welfare, as the e�ort spent in competing for the contract

is unproductive. The allocative e�ciency is formally de�ned as the following:

De�nition 3. An equilibrium of the contest is allocative e�cient if the type (θh, s)

player's e�ort is higher than type (θl, t) player's e�ort with probability one for any

s, t ∈ [0, 1].

De�nition 3 follows from standard de�nition of allocative e�ciency in auction

literature. A competition for procurement contract is allocative e�cient if suppliers

with lower production cost always gets the contract.

1.3 Spying in contests

1.3.1 The contest with exogenous accuracy

In this section we �rst study a simpli�ed model where both players exogenously

receive a free, noisy and private spying signal about the opponent's valuation with

the same accuracy, i.e. α1 = α2 = α ∈ [α, α]. The accuracy α is common knowledge.

Equilibrium e�ort in the contest

Denoted by bl(π, α) and bh(π, α) the e�ort strategy of types (θl, π) and (θh, π),

respectively.

Lemma 1. Given any α ∈ [α, α], then in any symmetric, allocative e�cient, pure

strategy equilibrium of the contest, the following must be true:

1. Monotonicity: the type (θh, π) of player i's e�ort is non-decreasing in π and

the type (θl, π) of player i's e�ort is non-increasing in π;

2. Continuity: both players' strategies are continuous without any atom;

3. Initial conditions: bl(1, α) = 0 and bl(0, α) = bh(0, α).
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Lemma 1 states that the e�orts are monotonic in π �xing valuations in any

allocative e�cient equilibrium of the contest. Lemma 2 below provides the nec-

essary condition for existence of any symmetric allocative e�cient, pure strategy

equilibrium.16

Lemma 2 (E�ciency). Given that α ∈ [α, α], there exists a symmetric, allocative

e�cient, pure strategy equilibrium in the contest only if fh(π,α)
fl(π,α)

> θl
θh

for all π ∈ [0, 1].

Note that the necessary condition given in Lemma 2 imposes a lower bound on

the likelihood ratio. Thus, this is a restriction on the accuracy of the signal.

De�nition 4. Denoted by α̂ the highest possible accuracy of a signal which satis�es
fh(π,α)
fl(π,α)

> θl
θh

for all π ∈ [0, 1].

Thus, Lemma 2 indicates that any symmetric, pure strategy equilibrium must

have α ∈ [α, α̂].17. To understand the necessary condition in Lemma 2, recall the

monotonicity property given by Lemma 1. When the type (θh, πi) of player i chooses

her equilibrium e�ort bh(πi, α), then she wins against a high valuation type oppo-

nent with probability
∫ πi

0
fh(t, α)dt. If she instead chooses type (θl, πi)'s equilib-

rium e�ort, bl(πi, α), then she loses to a low valuation opponent with probability∫ πi
0
fh(t, α)dt. Therefore, an increase of e�ort from bl(πi, α) to bh(πi, α) earns type

(θh, πi) of player i a gain of

θh

[
µ(πi, α)

∫ πi

0

fh(t, α)dt+ [1− µ(πi, α)]

∫ πi

0

fh(t, α)dt

]
= θh

∫ πi

0

fh(t, α)dt

Similarly, the gain for type (θl, πi) from the same increase of e�ort is θl
∫ πi

0
fl(t, α)dt.

Allocative e�ciency requires the gain of increasing the e�ort for type (θh, πi) out-

weighs the cost, whereas the cost of increasing the e�ort outweighs the gain for type

(θl, πi). Since the cost are the same across the two types, this necessary condition

is equivalent of θh
∫ πi

0
fh(t, α)dt > θl

∫ πi
0
fl(t, α)dt for any πi ∈ [0, 1], which implies

θhfh(π, α) > θlfl(π, α). Thus, we have the condition given in Lemma 2.

In light of Lemma 1 and 2, we now derive the equilibrium strategy for the sym-

metric, pure strategy equilibrium with e�cient allocation, assuming the condition

given in Lemma 2 is satis�ed. The expected payo�s of types (θl, π) and (θh, π) of

player i when choosing b, given that player j plays the strategy bh(π, α) and bl(π, α),

16In fact, the proof of Proposition 1 in the appendix shows that this necessary condition is also
su�cient for e�ciency.

17By MLRP and rotation order, for all α ∈ [α, α̂] the condition in Lemma 2 is satis�ed for all
π ∈ [0, 1], and for all α ∈ (α̂, α] the condition is not satis�ed for at least π = 0.
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is given by:

U(b|θl, π) = θl [1− µ(π, α)]

∫ 1

b−1
l (b,α)

fl(Π, α)dΠ− b (1.3)

U(b|θh, π) = θh

[
[1− µ(π, α)] + µ(π, α)

∫ b−1
h (b,α)

0

fh(Π, α)dΠ

]
− b (1.4)

where b−1
l (b, α) and b−1

h (b, α) are the inverse of e�ort strategies by player j. Take

the �rst order derivative w.r.t. b on both (1.3) and (1.4):

∂bl(π, α)

∂π
= − [1− µ(π, α)] fl(π, α)θl

∂bh(π, α)

∂π
= µ(π, α)fh(π, α)θh

By the initial conditions given in Lemma 1, bl(1, α) = 0 and bh(0, α) = bl(0, α), the

pure strategy equilibrium with e�cient allocation is derived and given in Proposition

1. Furthermore, Proposition 1 also provides the equilibrium strategy when the

allocation is not e�cient, i.e. when the condition given in Lemma 2 is not satis�ed.

Proposition 1. Suppose Assumption 1 is satis�ed.

• If α ∈ [α, α̂], then there exists a unique pure strategy, symmetric, allocative

e�cient equilibrium:

bl(π, α) = θl

∫ 1

π

[1− µ (Π, α)] dFl(Π, α)

bh(π, α) = θh

∫ π

0

µ (Π, α) dFh(Π, α) + θl

∫ 1

0

[1− µ (Π, α)] dFl(Π, α)

• If α ∈ [α̂, α], then there exists a unique, symmetric equilibrium in which the

type (θl, π) and (θh, π) with π > π∗ play pure strategy:

bl(π, α) = θl

∫ 1

π

[1− µ (Π, α)] dFl(Π, α)

bh(π, α) = θh

∫ π

π∗
µ (Π, α) dFh(Π, α)

+ θl

∫ 1

π∗
[1− µ (Π, α)] dFl(Π, α) +

θhθl
phθl + plθh

π∗;

and type (θl, π) and (θh, π) with π 6 π∗ mix over [bl(π
∗, α), bh(π

∗, α)] according
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to CDF σl(b|π, α) and σh(b|π, α) respectively:

σl(b|π, α) = σh(b|π, α)

=
phθl + plθh
θhθlπ∗

(
b− θl

∫ 1

π∗
[1− µ (Π, α)] dFl(Π, α)

)
where π∗ is given by

θl

∫ π∗

0

fl(Π, α)dΠ = θh

∫ π∗

0

fh(Π, α)dΠ (1.5)

See Figure 1.6 for the allocative e�cient equilibrium and Figure 1.7 for the al-

locative ine�cient equilibrium. The intuition of the e�cient equilibrium can be

understood in competitive procurement process: a supplier would only spend ad-

ditional e�ort in preparing the proposal or bribing the procurement agent after

learning that the opponent is likely to be equally competitive, e.g., with similar

production cost.

b

π0 1

bh(π, α)

bl(π, α)

Figure 1.6: Allocative e�cient
equilibrium

b

π0 1

bh(π, α)

bl(π, α)

σh(b|π, α) = σl(b|π, α)

π∗

Figure 1.7: Allocative ine�cient
equilibrium

To gain some intuition on the equilibrium e�ort strategy, we rewrite type (θl, π)

of player i's strategy as:

θl

∫ 1

πi

[1− µ(Π, α)] dFl(Π, α) = θlE [(1− µ(πj, α)) |πi 6 πj, θi = θl] (1.6)

Equation (1.6) suggests the type (θl, πi)'s e�ort is her valuation times her expectation

of the opponent's posterior belief that she has low valuation, conditional on she

indeed has low valuation and she wins (i.e. when πi 6 πj).
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Similarly, the part of a type (θh, πi)'s e�ort on top of bl(0) can be rewritten in

the same manner:

θh

∫ πi

0

µ(Π, α)dFh(Π, α) = θhE [µ(πj, α)|πi > πj, θi = θh]

This part of the player i's e�ort is θh times her expectation of the opponent's poste-

rior belief that she has high valuation, conditional on she indeed has high valuation

and she wins (i.e. when πi > πj).

Two observations worth mentioning.

Observation 1. Player i's e�ort is �rst order stochastically increasing in her val-

uation.

In the allocative e�cient equilibrium, the high valuation player's e�ort is strictly

higher than the low valuation player's e�ort. In the allocative ine�cient equilibrium,

the former is higher than the latter in the sense of �rst order stochastic dominance,

as there is an interval over which players with both valuations randomize. In the

ine�cient equilibrium, both players' signals are su�ciently informative. The rela-

tively lower signal realizations (π < π∗) credibly reveal that the opponent is a low

valuation type, thus both (θh, π) and (θl, π) with π < π∗ are con�dent that the

opponent has θl. Furthermore, player i with valuation θl realizes that the opponent

is very likely to receive those lower signal realizations. Therefore, there cannot be

an equilibrium in which type (θl, π) with π < π∗ plays pure strategy, as then she

loses almost for sure and is better o� to deviate to choose zero e�ort. This indicates

both types (θh, π) and (θl, π) of the opponent with π < π∗ plays mixed strategy as

well.18

In fact, type (π∗, α) is indi�erent between the e�ort levels bh(π
∗, α) and bl(π

∗, α),

by the de�nition of π∗. This is consistent with the idea behind Lemma 2: only type

(θl, π) (type (θh, π)) with π > π∗ �nds the cost (gain) of increasing the e�ort from

bl(π, α) to bh(π, α) outweighs the gain (cost), which is why they play pure strategy

with (θh, π)'s e�ort higher than (θl, π). For types with π < π∗ the condition for

e�ciency is no long satis�ed and thus, (θl, π) and (θh, π) play mixed strategy in a

common interval, as discussed above.

18The all-pay auction with complete information has only mixed strategy equilibrium (Baye
et al., 1996) for the same reason. To see why, suppose player i with θh plays pure strategy b in
equilibrium against the opponent with θl. Then the opponent would either bid slightly above b,
e.g., b+ ε � if b is lower than θl � or bid zero � if b is no less than θl. In the former, player i would
�nd it pro�table to bid slightly higher instead, say b+ 2ε, suggesting b is suboptimal. In the latter,
player i would �nd it pro�table to bid ε which, again, suggests b is not optimal. Therefore, the two
players with di�erent valuations play mixed strategies in a common interval suggesting a positive
probability that the low valuation player wins. Hence the allocation in equilibrium is ine�cient.
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Observation 2. High valuation type of player i's e�ort is non-decreasing in π; low

valuation type of player i's e�ort is non-increasing in π.

The belief that the opponent is a high valuation player � induced by higher re-

alizations of the signal � encourages the high valuation type of player i to compete

aggressively to increase the odds of winning, and discourages the low valuation type

of player i to compete conservatively to save the cost of competition. In other words,

players compete aggressively when there is higher posterior probability that the op-

ponent has the same valuation, i.e. "motivation e�ect", and compete conservatively

when there is lower posterior probability that the opponent has the di�erent val-

uation, i.e. "demotivation e�ect". This observation is also true for the allocative

ine�cient equilibrium with the same intuition.

Proposition 2 below suggests players are strictly better o� in the equilibrium

given in Proposition 1 with accuracy α ∈ (α, α). Denoted by Vi(α, α) player i's

expected payo� when both players endogenously receive a free signal about the

opponent with accuracy α.

Proposition 2. In the equilibrium given by Proposition 1:

• Player i's expected payo� is higher when α ∈ (α, α) than when α = α:

Vi(α, α) > Vi(α, α).

• Furthermore, the total expected e�ort is strictly lower when α ∈ (α, α) than

when α = α.

The proof of the proposition is similar to that in Proposition 3 in the next section

and thus, is omitted. The intuition is that the "motivation" and "demotivation"

e�ects increase each player's marginal return of e�ort. In particular, a player only

increases her e�ort when it is worthwhile to do so � when the opponent is more likely

to have the same valuation as she does. In other words, given the same amount of

additional e�ort, the additional gain of probability to win is higher when players

receive the signal about the opponent.

Some features of the equilibrium

Corollary 1 suggests it is never a good news that the opponent is more likely to have

high value, no matter what the player's valuation is. Denoted by V (θl, π, α) and

V (θh, π, α) the equilibrium expected payo� for types (θl, π) and (θh, π), respectively.

Corollary 1. In the equilibrium given by Proposition 1, the following must be true:
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(i) For all α ∈ [α, α], both the high and the low valuation types' expected payo�s

are non-increasing in π:

∂V (θl, π, α)

∂π
= plθl

∂fl(π, α)

∂π

∫ 1

π

fl(Π, α)dΠ 6 0

∂V (θh, π, α)

∂π
= −phθh

∂fh(π, α)

∂π

∫ 1

π

fh(Π, α)dΠ 6 0

where the equalities are only satis�ed when π = 1.

(ii) The pure strategies are weakly convex in the signal π:

∂2bl(π, α)

∂π2
= −2plθlfl(π, α)

∂fl(π, α)

∂π
> 0

∂2bh(π, α)

∂π2
= 2phθhfh(π, α)

∂fh(π, α)

∂π
> 0

and the mixed strategies are independent of π.

When both players' accuracies of signal is increased, i.e. α is increased, the equi-

librium e�ort strategies are more sensitive to a marginal change of π, see Corollary

2.

Corollary 2 (Sensitivity). When the signal becomes more informative in rotation

order, then the slopes of bh(π, α) and bl(π, α) are decreased for π < π+, and are

increased for π > π+. Furthermore, ∂π∗

∂α
> 0.

See Figure 1.8 for this result. For realizations lower (higher) than the rotation

point, bh(π, α) becomes �atter (steeper) while bl(π, α) becomes steeper (�atter).

Intuitively, when the signal becomes more informative, the high valuation player

would not increase her e�ort as much as before in response to a marginal increase of π

in the interval [0, π+), as this interval more credibly indicates that the opponent has

low valuation. However, she would increase her e�ort more than before in response

to a marginal increase of π in the interval (π+, 1], as this interval more credibly

indicates that the opponent has high valuation. The same intuition can be applied

to explain the change in sensitivity of bl(π, α). When there is a marginal decrease of

π in the interval [0, π+) ((π+, 1]), the low valuation player would increase her e�ort

more than before, as this interval more credibly indicates that the opponent has low

(high) valuation.

Corollary 3 shows that the equilibrium given in Proposition 1 replicates the

mixed strategy equilibrium of all-pay auction with independent private value when

α = α.

Corollary 3. When α = α in the equilibrium given in Proposition 1:
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b

π

bh(π, α1)

bl(π, α1)

bh(π, α2)

bl(π, α2)

Figure 1.8: Rotation and sensitivity: rotation from α1 to α2 decreases the slope of
e�ort strategies for π < π+ and increases the slope for π > π+

• The ex ante distribution of equilibrium e�ort of player i with valuation θh is

uniform in the interval [plθl, plθl + phθh];

• The ex ante distribution of equilibrium e�ort of player i with valuation θl is

uniform in the interval [0, plθl].

See Figure 1.9 for the equivalence of equilibrium in all-pay auction with IPV and

the equilibrium in Proposition 1 when α = α. The equilibrium with α = α simply

puri�es the mixed strategy equilibrium in the IPV setting. In particular, bh(π, α)

puri�es Gh(b) and bl(π, α) puri�es Gl(b).

b

phθh + plθl

plθl

0

Gl(b) = b
plθl

Gh(b) = b−plθl
phθh

b

π0 1

bh(π, α)

bl(π, α)

Figure 1.9: Gh(b) and Gl(b) are CDFs of the mixed strategy by each player with
the high and the low valuation respectively in the equilibrium of all-pay auction

with IPV.

Corollary 4 states that the equilibrium strategy with α = α in Proposition 1

replicates the equilibrium of the complete information all-pay auction .
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Corollary 4. When α = α in the equilibrium given in Proposition 1:

• The type (θl, π) of player i with π > π∗ chooses zero with certainty;

• The type (θl, π) and (θh, π) of player i with π < π∗ mixing over [0, θl] uniformly;

• The type (θh, π) of player i with π > π∗ plays pure strategy bh(π, α) which is

linear in π and increases from θl to θh.

See Figure 1.10 and 1.11 for the equivalence of the equilibrium in all-pay auction

with IPV and the equilibrium in Proposition 1 with α = α. In particular, Figure

1.10 corresponds to the case when player i has θl and Figure 1.11 to θh. For example,

when player i with θl competes against an opponent with the same valuation in the

complete information setting (which occurs with probability pl), her equilibrium

mixed strategy is given by Gll(b) in Figure 1.10. This part of the equilibrium is

replicated by σl(b|π, α) when π < π+ (which occurs with probability pl as well).

b

θl

Gll(b) = b
θl

θj = θl

b

π0 1π+ = pl

σl(b|π, α)
θl

b

Glh(b) = θh−θl+b
θh

θj = θh

θl

π∗

Figure 1.10: Gll(b) and Glh(b) are the CDFs of mixed strategy by a player with θl
who encounters an opponent with θl and θh respectively in complete information

all-pay auction.

1.3.2 Information acquisition � spying

In this section we characterize the symmetric equilibrium of spying, i.e. the choices

of α1 and α2. First, de�ne the marginal expected payo� as the following:

De�nition 5. Let AMR(η, α) be player i's marginal expected payo� from the contest

when she chooses αi = η while player j chooses αj = α and (wrongly) believes that

player i has chosen the same.
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b

θl

Ghl(b) = b
θl

θj = θl

b

π0 1π+ = pl

θl
σh(b|π, α)

b

θl

θj = θhπ∗

θh
bh(π, α)

Ghh(b) = b
θh

θh

Figure 1.11: Ghl(b) and Ghh(b) are the CDFs of mixed strategy by a player with θh
who encounters an opponent with θl and θh respectively in complete information

all-pay auction.

Suppose player j chooses α and believes that player i has also chosen α, then the

distribution of his e�ort will be exactly the same as in the symmetric equilibrium

given by Proposition 1. Thus, for any η that player i may choose, her choice of e�ort

is a decision problem instead of a strategic one. Increasing η would improve player

i's estimation of player j's e�ort distribution and revise her decision accordingly,

and AMR(η, α) is the marginal increase of her expected payo� due to a marginal

increase of η.

Lemma 3. AMR(η, α) > 0 for all η 6 α and η, α ∈ [α, α).

Lemma 3 states that player i can always increase expected payo� in the contest

by increasing η, as long as it is no larger than α.19 It then follows that increasing η

always gives player i a better estimation of player j's valuation and thus, a clearer

idea of his e�ort distribution. However, suppose player j chooses α and expects

player i to do the same, then player i has no incentive to increase η.

Lemma 4. AMR(η, α) = 0 for all η ∈ [α, α].

Let MR(α) = AMR(α, α) be the marginal expected payo� of player i through

increasing η when both players have chosen α. When the marginal cost function

MC(·) crosses with MR(·) from below, then there must exist an interior solution

at η = α to the problem maxηV (η, α)−C(η), where V (η, α) is player i's maximum

expected payo� from the contest when player j plays the symmetric equilibrium

strategy believing that both players have chosen α.

19When η > α, AMR(η, α) may still be positive, but it is irrelevant to the later results.
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Proposition 3 (Information acquisition). Given any convex spying cost function

C(α) with C(α) = 0, if there exists a symmetric equilibrium (α∗, α∗) where α∗ ∈
(α, α), i.e.

MR(α∗) = MC(α∗),

then each player is strictly better o� than not spying at all:

V (α∗, α∗)− C(α∗) > V (α, α)

Players are better o� by spying on each other, even taking the cost of spying

into account. To see the intuition, recall that in any Bayesian Nash equilibrium all

players correctly anticipate the equilibrium strategy played by each type of other

players. Thus, when players acquire information about the opponent's type, they

in e�ect acquire information about the strategy that the opponent is likely to play.

This means the behavior of information acquisition has a similar impact as collusion:

Players anticipate their opponents' strategies on expectation and aware that their

own strategies are anticipated by the opponents. The additional rent players extract

through such coordination of strategies is high enough that the cost of spying is

compensated for.

Proposition 3 also shows that the symmetric equilibrium choice of information

acquisition α∗ is within (α, α), i.e. between the incomplete information and complete

information setting, as long as the cost function is convex enough. In fact, such

information acquisition increases the social welfare to the level higher than complete

information setting.

Corollary 5. In any symmetric equilibrium of the information acquisition game as

speci�ed in Proposition 3, it must be true that V (α∗, α∗)− C(α∗) > V (α, α), where

the equality is satis�ed when either α∗ = α or α∗ = α.

Corollary 5 follows directly from Proposition 3, as it had been con�rmed in the

literature that V (α, α) = V (α, α) (Kovenock et al., 2015). In the complete informa-

tion setting, the loss of e�ciency cancels the gain from coordination. However, when

each player acquires a noisy signal about the opponent, the gain from coordination

outweighs the loss of e�ciency. An interesting implication of Corollary 5 is that

social welfare can only be improved by spying when it is costly to do so.

Corollary 6. When both players acquire a partially informative signal, the total

expected e�ort they exert in the contest is strictly lower than when they do not spy

on each other.
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Corollary 6 follows directly from Proposition 3. The total surplus in the contest

is the sum of e�ort and players' expected payo�s. And such a surplus is equals to

p2
l θl+(1−p2

l )θh in the e�cient equilibrium, and is lower in the ine�cient equilibrium.

The fact that both players are better o� after spying on each other implies they cut

a larger share of the surplus than when they don't spy at all.

1.4 Information disclosure in contests

Given the previous results that spying activities improves players' welfare, a question

naturally arises: do players have incentives to disclose their private information to

each other? According to Proposition 3, players are strictly better o� when they

both acquire a partially informative and costly signal about the opponents. Suppose

players simply disclose such partially informative signals to each other, then players'

welfare should be even higher than when they spy on each other because they can

now avoid the cost of spying.

The model in Section 1.2 can be modi�ed to study information disclosure in

contests where each player commits to disclose a noisy signal about her own valuation

to the opponent. Contrary to the spying situation where player i chooses αi, i.e.

the accuracy of the signal regarding the opponent's valuation θj, in the information

disclosure situation player i chooses the accuracy αj of the signal regarding her own

valuation θi. Players can observe the accuracies of both signals. However, player i

does not observe any realization of the signal she discloses � only her opponent does.

A supplier competing for a procurement contract may allow the opponent to conduct

some independent research/investigation on its production process, materials used

in the proposal, or other information relevant to the bidding process. The supplier

i controls the materials to be shared with the opponent, i.e. αj, but the results of

the investigation is not observable to supplier i, i.e. πj.
20

The timing of the information disclosure game is given in the Figure 1.12. In de-

scribing the timing, let i = 1, 2 and j = 2, 1. Firstly, player j chooses the accuracy αi

for the signal to be received by his opponent, player i. Secondly, Nature determines

valuation pro�le according to the prior distribution and both players observes their

own valuations. Thirdly, Nature determines signal realization πi according to θj and

αi and player i observes it. Finally, player i chooses e�ort bi based on her private

20In the patent race example, companies may disclose information by allowing each other to
investigate internal research materials, chemicals, run some experiments, or provide a prototype
of their product. The company who discloses the information decides what kind of investigation
the opponent can conduct, yet the result of investigation is not observable to it. In the lobbying
example, lobbying �rms representing di�erent companies may disclose the CVs or backgrounds of
their lobbyists to each other, yet they don't know how the opponent will interpret these information.
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information (θi, πi). Note that the di�erence between information disclosure and

spying is only in that the accuracy of the signal regarding the opponent is chosen

by the opponent instead of the player.

chooses αi player i observes θi player i observes πi chooses bi
Player j Nature determines and Nature determines and Player i

Figure 1.12: Timing of information disclosure in the contest (i = 1, 2; j = 2, 1)

Since the accuracy pro�le (αi, αj) is common knowledge, the �rst step of solv-

ing the information disclosure game is to �nd the equilibrium e�ort when players

exogenously receive signals with di�erent accuracies for free. In other words, an

"asymmetric version" of Proposition 1.

1.4.1 The contest with exogenous asymmetric accuracy

Suppose each player receives a signal about the opponent, and the exogenously

given accuracy of player 1's signal is α1 whereas that of player 2's signal is α2, where

α1 6= α2, i.e. the accuracy is asymmetric. Denoted by bil(π, αi, αj) and bih(π, αi, αj)

the e�orts of type (θl, π) and (θh, π) respectively, when player i's accuracy is αi and

the opponent's accuracy is αj. Similar to the symmetric α case, the monotonicity

of player i's e�ort in equilibrium depends on her valuation, see Lemma 5.

Lemma 5. Suppose α1 6= α2, then in any allocative e�cient, pure strategy equilib-

rium of the contest, the following must be true for both players:

1. Monotonicity: the type (θh, π) of player i's e�ort is non-decreasing in π and

the type (θl, π) of player i's e�ort is non-increasing in π;

2. Continuity: both players' strategies are continuous without any atom;

3. Common support: b1l(1, α1, α2) = b2l(1, α2, α1) and b1h(1, α1, α2) = b2h(1, α2, α1);

4. Initial conditions: b1l(1, α1, α2) = b2l(1, α2, α1) = 0 and b1l(0, α1, α2) = b1h(0, α1, α2) =

b2l(0, α2, α1) = b2h(0, α2, α1).

Part 1 of Lemma 5 implies type (θl, 1) of both players chooses the lowest e�ort, 0,

and type (θh, 1) of both players choose the highest e�ort, in the allocative e�cient,

pure strategy equilibrium. Part 3 of Lemma 5 indicates the upper bound of each

valuation of player must be the same. Part 4 is useful later in solving the equilibrium

e�ort and in proving the uniqueness of such an equilibrium.

Lemma 6 below provides the necessary conditions for any symmetric, pure strat-

egy and allocative e�cient equilibrium to exist.
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Lemma 6 (E�ciency). Suppose α1 6= α2, then there exists a symmetric, pure strat-

egy, allocative e�cient equilibrium in the contest only if fh(π,αi)
fl(π,αi)

> θl
θh

for all π ∈ [0, 1]

and i = 1, 2.

In fact, this condition is also the su�cient condition for the existence of such

an equilibrium, as shown in the proof of Proposition 4. This contest is ex ante

asymmetric in the sense that players' accuracy of signals about the opponent are

di�erent. However, this does not mean that the equilibrium e�ort strategy must be

asymmetric.

For simplicity, we restrict attention to the symmetric, pure strategy and alloca-

tive e�cient equilibrium, thus we make the following assumption:

Assumption 3.

fh(π, αi)

fl(π, αi)
>
θl
θh
, for all π ∈ [0, 1] and i = 1, 2.

Assumption 3 restricts the accuracy of both players' signal for the similar reason

as the symmetric case, i.e. α1 = α2.

We now derive the equilibrium of the contest given α1 6= α2. Denote b
−1
il (b, αi, αj)

and b−1
ih (b, αi, αj) the inverse e�ort strategy of the low and the high valuation types

of player i. According to Lemma 5, the expected payo� for type (θl, π) and (θh, π)

of player j when choosing an e�ort b can be written as Uj(b|θl, π) and Uj(b|θh, π)

respectively:

Uj(b|θl, π) = θl[1− µ(π, αj)]

∫ 1

b−1
il (b,αi,αj)

fl(Π, αi)dΠ− b

Uj(b|θh, π) = θh

[
(1− µ(π, αj)) + µ(π, αj)

∫ b−1
ih (b,αi,αj)

0

fh(Π, αi)dΠ

]
− b

By the �rst order approach and the initial conditions provided in part 4 of Lemma

5, the equilibrium strategy in the contest can be derived, as shown in Proposition 4

following.

Proposition 4. If Assumption 3 is satis�ed, then the unique pure strategy, allocative

e�cient equilibrium of the contest is given by:

bil(π, αi, αj) = θl

∫ 1

π

[1− µ (Π, αi)] dFl(Π, αj)

bih(π, αi, αj) = θh

∫ π

0

µ (Π, αi) dFh(Π, αj) + θl

∫ 1

0

[1− µ (Π, αi)] dFl(Π, αj)
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where i = 1, 2 and j = 2, 1.

Recall that 1− µ(·, αi) = plfl(·, αi) and µ(·, αi) = phfh(·, αi), we can then make

the following observation:

Observation 3. The equilibrium e�ort given in Proposition 4 is symmetric, in

particular:

bil(π, αi, αj) = bjl(π, αj, αi) and bih(π, αi, αj) = bjh(π, αj, αi)

This also suggests the probability that type (θh, πi) wins against the high val-

uation opponent is equal to the probability of πi > πj, and the probability that

type (θl, πi) wins against the low valuation opponent is equal to the probability of

πi < πj.

To gain some intuition, suppose type (θl, π) of player i increases her e�ort from

bil(π, αi, αj) to bil(z, αi, αj) which costs her an additional e�ort of θl
∫ π
z

[1− µ (Π, αi)]

dFl(Π, αj), according to Proposition 4. This increases her probability of winning by

[1− µ(π, αi)]
∫ π
z
dFl(Π, αj). At the optimum the cost must be equal to the gain, i.e.

θl

∫ π

z

[1− µ (Π, αi)] dFl(Π, αj) = θl[1− µ(π, αi)]

∫ π

z

dFl(Π, αj) (1.7)

which is only true when z = π, implies optimality of bil(π, αi, αj). Similarly, if type

(θh, π) of player i increases her e�ort from bih(π, αi, αj) to bih(z, αi, αj) which costs

her an additional e�ort of θh
∫ z
π
µ (Π, αi) dFh(Π, αj). This increases her probability of

winning by µ(π, αi)
∫ z
π
dFh(Π, αj). Again, at the optimum the cost of the additional

e�ort must match the gain:

θh

∫ z

π

µ (Π, αi) dFh(Π, αj) = θhµ(π, αi)

∫ z

π

dFh(Π, αj) (1.8)

which is only true when π = z, implies optimality of bih(π, αi, αj).

Based on Proposition 4, the sensitivity of player i's e�ort to π depends on both

her own and the opponent's accuracies, αi and αj respectively, see Corollary 7.

Corollary 7 (Sensitivity). When either αi or αj increases, the slope of bih(π, αi, αj)

and bil(π, αi, αj) are decreased for π < π+, and are increased for π > π+.

When αi increases, player i's e�ort choice becomes more sensitive to changes of

π, similar as in Corollary 2. However, when αj increases, that is, player j's signal

becomes more informative, player i's e�ort choice also becomes more sensitive to π.

This is because player i also knows αj and thus, anticipates the e�ect on player j's

e�ort, so she has to adjust her own e�ort in response.
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To see the intuition, consider the gain from increasing the e�ort by type (θl, π)

of player i, i.e. θl[1−µ(π, αi)]
∫ π
z
dFl(Π, αj). When αj increases, i.e. the opponent's

signal becomes more informative, this gain is increased for π, z ∈ (0, π+) and is

decreased for π, z ∈ (π+, 1), as the probability that the opponent's signal realization,

πj lies in the former interval is larger but the probability that πj lies in the latter

interval is smaller. Since in equilibrium the gain must be equal to the cost, as shown

in (1.7), the cost of additional e�ort by player i, bil(z, αi, αj) − bil(π, αi, αj), must
also be increased for π, z ∈ (0, π+) and decreased for π, z ∈ (π+, 1). Fixing π−z, the
slope of bil(π, αi, αj) must be steeper in π, z ∈ (0, π+) and �atter in π, z ∈ (π+, 1).

The intuition for the sensitivity of bih(π, αi, αj) is similar and can be derived by

referring back to (1.8).

As one might expect, each player's ex ante expected payo� in this contest with

asymmetric accuracy is again higher than when none of the players receive any signal

about the opponent.

Proposition 5. When α1 6= α2 ∈ (α, α) and suppose Assumption 3 is satis�ed, then

Vi(αi, αj) > Vi(α, α)

The intuition is similar as in the symmetric exogenous accuracy setting. Next

we turn to the information disclosure of players. We �rst show that if players set

up an information disclosure agreement, then they are both better o�.

1.4.2 Disclosure agreement

The players in an information disclosure agreement commit to simultaneously dis-

close a signal to the opponent with pre-speci�ed accuracy. Here we focus on the

symmetric agreement where the accuracies of the signals are the same. We refer to

the disclosure agreement where players commit to disclose signals with accuracy α

as the "information disclosure agreement α". The following result suggests that an

agreement to disclose partially informative signals is bene�cial to both players.

Proposition 6. Any information disclosure agreement α ∈ (α, α) makes player i

(i = 1, 2) strictly better o� than no disclosure agreement or full disclosure agreement,

i.e. Vi(α, α) > Vi(α, α) = Vi(α, α).

The proof follows directly from that of Proposition 3, thus omitted. When

both players obey the agreement and discloses a partially informative signal to
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the opponent, they can then coordinate the e�orts and thus earn higher expected

payo�s. Note that the disclosure agreement is only pro�table if the signals are

partially informative. This suggests that there is some loss of generality to only

consider full disclosure and full concealment.

Would players obey the disclosure agreement if there is no external enforcement?

In other words, if players choose disclosure strategies to maximize their expected

payo�s, do we have the same outcome as in the disclosure agreement equilibrium?

1.4.3 Endogenous information disclosure

To solve the equilibrium disclosure decision, (α∗j , α
∗
i ), note that players' equilibrium

e�orts are the ones shown in Proposition 4. Thus, player i chooses αj to maximize

her equilibrium expected payo� in the contest, denoted by Vi(αi, αj), given αi, i.e. αj

is chosen to best response to αi. The best response function of player i is derived by

the �rst order condition of her equilibrium expected payo� in the contest, Vi(αi, αj),

w.r.t. αj:

∂Vi(αi, αj)

∂αj
=

∫ 1

0

[
θh + θl

pl

θh − θl
− fh(Π, αi)

(
θh + phθl

pl

θh − θl
− Π

)
− Fh(Π, αi)

]
∂fh(Π, αj)

∂αj
dΠ = 0

(1.9)

It then follows that no player would obey the information disclosure agreement

α ∈ (α, α̂] as it is strictly dominant to choose α when the opponent chooses α > α.

See Lemma 7 below.

Lemma 7. If player j chooses αi ∈ (α, α̂]21, then player i strictly prefers to choose

αj = α.

Player i wants to avoid the motivation e�ect and take advantage of the demoti-

vation e�ect on the opponent. Speci�cally, type (θh, π) of player i �nds it pro�table

to lower the accuracy of the signal she discloses, as then the high valuation oppo-

nent is relatively more likely to receive low realizations. Similarly, type (θl, π) of

player i also �nds it pro�table to lower the accuracy of the signal she discloses, as

then the low valuation opponent is relatively more likely to receive high realizations.

Therefore, player i earns higher expected payo� ex ante by decreasing the accuracy

of the signal she discloses to the opponent.

This interpretation can be demonstrated formally. Denoted by Vi(θh, π, αi, αj)

and Vi(θl, π, αi, αj) player i's equilibrium expected payo� when she is type (θh, π) and

(θl, π), respectively. The intuition of the above result can be shown by rearranging

21Recall that α̂ is the highest possible accuracy given that the equilibrium is allocative e�cient.
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Vi(θh, π, αi, αj):

Vi(θh, π, αi, αj) = phθh

∫ π

0

[fh(π, αi)− fh(Π, αi)] dFh(Π, αj)

−plθl
∫ 1

0

fl(Π, αi)dFl(Π, αj) + plθhfl(π, αi) (1.10)

By the de�nition of rotation order, the larger αi is, the larger gap between fh(π, αi)

and fh(Π, αi) in (1.10). Fixing αi, this gap is also larger for higher realizations

Π, when Π ∈ [0, π], see Figure 1.13. It is thus pro�table for player i to lower

the distribution of the opponent's signal, Fh(Π, αj), stochastically. In other words,

player i has an incentive to lower the accuracy of the signal she discloses to the

opponent.22 Therefore, it is then optimal for player i to choose αj = α, i.e. to

disclose an uninformative signal to the opponent.

The similar interpretation can be applied to the type (θl, π) of player i's disclosure

decision. Her equilibrium expected payo� is rewritten as in (1.11):

Vi(θl, π, αi, αj) = plθl

∫ 1

π

[fl(π, αi)− fl(Π, αi)] fl(Π, αj)dΠ (1.11)

The larger αi is, the larger gap between fl(π, αi) and fl(Π, αi) is. Note that this gap

is larger for higher realizations Π, when Π ∈ [π, 1]. See Figure 1.14. Thus, �xing

αi > α, it is pro�table for player i to increase the distribution of the opponent's

signal, fl(Π, αj), stochastically. Thus, it is optimal for player i to choose αj = α,

i.e. to disclose an uninformative signal to the opponent. When αi = α, i.e. the

fh(Π, αi)

Ππ

fh(π, αi)

fh(Π, αi)

Figure 1.13

fl(Π, α)

Ππ

fl(π, αi)

fl(Π, αi)

Figure 1.14

22The second term in (1.10), i.e. −plθl
∫ 1

0
fl(Π, αi)dFl(Π, αj), also becomes larger when αj

decreases as fl(Π, αi) is decreasing in Π when αi > α.
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opponent discloses to player i an uninformative signal, then by (1.10) and (1.11),

Vi(θh, π, αi, αj) and Vi(θl, π, αi, αj) becomes constants, and player i is indi�erent

about the accuracy of the signal she discloses to the opponent. This suggests when

the opponent discloses an uninformative signal, then player i is indi�erent about the

accuracy of the signal she discloses. This result is shown in Lemma 8 below.

Lemma 8. When the player j chooses αi = α, i.e. discloses an uninformative

signal, then the disclosure decision of player i is irrelevant to his own expected payo�,

as Vi(αi = α, αj) = phpl (θh − θl) for all αj ∈ [α, α̂].

Both player's strategy are ex ante uniform. In other words, when player i ob-

serves an uninformative signal, she would expect the distribution of the opponent's

e�ort is uniformly distributed, the same as in the IPV setting. This implies the best

response of player i is to choose e�ort as if she is in the IPV setting. This then

explains why her expected payo� is the same as in the IPV setting.

Lemma 7 and 8 jointly imply the following result.

Proposition 7. There does not exist any equilibrium in which both player disclose

an informative signal.

Even though disclosing private information can improve total welfare, the in-

dustry cannot rely on decentralized information disclosure by players. Nevertheless,

the regulator may be able to set up a minimum information disclosure requirement

which speci�es the accuracies of signals that players should disclose.

1.5 Conclusion

When players spy on each other, the additional information about the opponent

allows them to coordinate, i.e. only exert higher e�ort when it is more likely that

the opponent is evenly matched with the player. Such a coordination improves

players' welfare even taking the cost of spying into account. This, however, is only

true when spying is costly so that players acquire partially informative signals. An

information disclosure agreement in which players commit to disclose a partially

informative signal to each other can achieve an even better outcome, as the cost

on spying is saved. However, players would unilaterally deviate by disclosing an

uninformative signal if there is no external power to enforce the agreement. This

is due to the incentive of players to avoid the motivation e�ect and to induce the

demotivation e�ect on the opponent.

This paper yields di�erential policy implications dependent on nature of contests.

For contests with wasteful e�orts, e.g., rent-seeking, patent race and lobbying, it is
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advisable for regulators to impose a minimum disclosure requirement which speci�es

the minimum accuracy of signals players disclose to each other. For contests with

productive e�orts, e.g., sports tournaments, promotion contests and sales competi-

tions, banning spying and disclosure maximizes total e�ort.

The model can potentially be extended in di�erent directions. Firstly, the distri-

bution of valuations may be generalized to a continuous distribution. Secondly, the

model can be twisted a little to study overt information acquisition in which players

are aware of the accuracy of the opponent's spying signal. Finally, the model can

also be extended to contests with n players, and each player receives n − 1 sig-

nals regarding the opponents' valuations. In order to facilitate the analysis, more

restrictions may be imposed on the signal distribution.

1.6 Appendix: proofs

Proof of Lemma 1

Proof. Since now we consider α as exogenously given, we simplify the notations

of e�ort strategy bh(π, α) and bl(π, α) into bh(π) and bl(π) respectively, and the

posterior belief µ(π, α) into µ(π). We start by proving part 1 of the lemma. Suppose

in a symmetric, pure strategy equilibrium with e�cient allocation, we have bh(π1) <

bh(π2) for π1 > π2. Then it must be true that the type (θh, π1) �nds the cost of

increasing her e�ort from bh(π1) to bh(π2) dominates the gain from such an increase

of e�ort, formally:

bh(π2)− bh(π1) > µ(π1) Pr{bh(π1) 6 bj < bh(π2)}θh.

where bj is the opponent, player j's e�ort. The cost must outweigh the gain to

prevent type (θh, π1) from deviating to bh(π2). However, type (θh, π2)'s gain must

outweigh her cost of such an increase of e�ort:

bh(π2)− bh(π1) 6 µ(π2) Pr{bh(π1) 6 bj < bh(π2)}θh.

where bj is the opponent's e�ort. Combining the two conditions, we have µ(π2) >

µ(π1) which contradicts the fact that π1 > π2, due to Assumption 1. A similar

argument can prove that bl(π1) 6 bl(π2) for any π1 > π2.

To prove continuity of the strategies, i.e. the part 2 of the lemma, suppose there

exists a discontinuous point on bh(π), say π̂ ∈ (0, 1), such that bh(π̂) < bh(π̂+ ε) for

an arbitrarily small ε. Then type (θh, π̂+ ε) will �nd it pro�table to deviate to some
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b̂ ∈ (bh(π̂), bh(π̂+ ε)). Similarly, suppose there exists a discontinuous point on bl(π),

π̃ ∈ (0, 1), such that bl(π̃) > bl(π̃ + ε) for arbitrarily small ε. Then type (θl, π̃) will

�nd it pro�table to deviate to some b̃ ∈ (bl(π̃ + ε), bl(π̃)).

To prove that there is no atom on any player's e�ort, suppose there exists p and

q such that 1 > q > p > 0 and that bh(x) = b where x ∈ [p, q] and b is a constant.

Then type (θh, p− ε) will �nd it pro�table to deviate to choosing b+ ε, as the gain

of such deviation will be µ(p − ε)
∫ q
p
fh(Π)dΠ and the cost is negligible when ε is

arbitrarily small. A similar argument can show that there is no atom on bl(π).

Finally, for part 3, given part 1 is true, type (θh, 0) chooses the lowest e�ort

among all types with valuation θh, whereas type (θl, 0) chooses the highest among

all types with valuation θl. If bh(0) > bl(0) then type (θh, 0) will be strictly better

o� by lowering her e�ort by a small amount ε satisfying bh(0) − ε > bl(0), thus

bh(0) = bl(0). Again, by part 1, the lowest e�ort is made by type (θl, 1) among all

types, thus any positive e�ort is strictly dominated by choosing zero for (θl, 1).

Proof of Lemma 2

Proof. Note that allocative e�ciency implies bh(π, α) > bl(π, α) for all π ∈ [0, 1]

�xing α, and the probability of tie between a high valuation and a low valuation

player is zero. Then the type (θh, πi)'s incentive compatibility condition such that

she has no incentive to deviate to bl(πi, α), implies that:

bh(πi, α)− bl(πi, α)

6 [µ(πi, α)Pr{bj < bh(πi, α)|(θh, θh)}+ [1− µ(πi, α)]Pr{bj > bl(πi, α)|(θh, θl)}] θh

= µ(πi, α)

∫ πi

0

fh(Π, α)θhdΠ + (1− µ(πi, α))

∫ πi

0

fh(Π, α)θhdΠ

=

∫ πi

0

fh(Π, α)θhdΠ (1.12)

In other words, the cost saved from choosing the lower e�ort (LHS of (1.12)) must

be less than the gain forgone (RHS of (1.12)). This ensures that type (θh, πi) does

not want to deviate to choosing bh(π, α). However, type (θl, πi) should �nd her cost

31



saved by choosing the lower e�ort outweighs her gain forgone:

bh(πi, α)− bl(πi, α)

> [µ(πi, α)Pr{bj < bh(πi, α)|(θl, θh)}+ (1− µ(πi, α))Pr{bj > bl(πi, α)|(θl, θl)}θl

= µ(πi, α)

∫ πi

0

fl(Π, α)θldΠ + (1− µ(πi, α))

∫ πi

0

fl(Π, α)θldΠ

=

∫ πi

0

fl(Π, α)θldΠ

Combining the two conditions:∫ πi

0

fh(Π, α)θhdΠ >
∫ πi

0

fl(Π, α)θldΠ

we then have fh(π,α)
fl(π,α)

> θl
θh

for all πi ∈ [0, 1].

Proof of Proposition 1

Proof. The proposition is proved by checking whether type (θh, π) ((θl, π)) would

deviate to any e�ort outside of their equilibrium support. Here we only show the

idea of the proof by proving that the type (θh, π) of player i does not �nd it pro�table

to deviate to any e�ort that the type (θl, π) might choose in the allocative e�cient

equilibrium. The rest of the proofs are available in the online appendix.

We will refer to the interval [bl(1, α), bl(0, α)], i.e. the equilibrium support of low

valuation types, as the "low pure support", and refer to the interval [bh(0, α), bh(1, α)],

i.e. the equilibrium support of high valuation types, as the "high pure support".

Let's start by checking whether the type (θh, π) of player i �nds it pro�table to

deviate to any e�ort in the low pure support. This requires a comparison of the

type (θh, π) of player i's expected payo� in the allocative e�cient equilibrium:

V (θh, π, α) = θh

∫ π

0

[µ(π, α)− µ(Π, α)] fh(Π, α)dΠ

+

∫ 1

0

{[1− µ(π, α)] θh − [1− µ(Π, α)] θl} fl(Π, α)dΠ,

to the maximum expected payo� from deviation. When deviating to β ∈ [bl(1, α), bl(0, α)],

the expected payo� of the type (θh, π) of player i given that the player j plays the

allocative e�cient equilibrium bl(π, α) as given in the proposition is:

Ũ l(β|θh, π, α) = θh [1− µ(π, α)]

∫ 1

b−1
l (β,α)

fh(Π, α)dΠ− β. (1.13)
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Obviously, among all β ∈ [bl(1, α), bl(0, α)], player i would prefer to deviate to the

optimal e�ort: β∗ = arg maxβ Ũ(β|θh, π). The optimal deviation e�ort, β∗, can be

found by the �rst order condition with respect to β. Let the type (θl, t) be the one

who chooses β∗ in equilibrium, i.e. bl(t, α) = β∗. We can �nd t by the FOC of

Ũ l(β|θh, π) w.r.t β, and rearrange:

1− µ(π, α) =
θl
θh

fl(t, α)

fh(t, α)
(1− µ(t, α)) (1.14)

Note that both sides are decreasing functions of their arguments, π and t, respec-

tively. Since θl
θh

fl(t,α)
fh(t,α)

6 1, thus π > t. Then there must exists ŝ ∈ [0, 1] such

that

1− µ(ŝ, α) ≡ θl
θh

fl(0, α)

fh(0, α)
[1− µ(0, α)] (1.15)

For π < ŝ, the LHS of the equation (1.14) is always strictly larger than the RHS,

for all t ∈ [0, 1]. This implies the �rst order derivative is positive and thus type

(θh, π) does not want to deviate to the low pure support, whenever π < ŝ. On the

other hand, if π > ŝ, there is always a unique interior solution of t ∈ [0, 1] satisfying

equation (1.14) given π. In this case, we need to directly compare the equilibrium

payo� with the payo� of choosing β∗. The maximum deviation expected payo� can

be calculated by plugging β∗ into (1.13). The �rst order derivative of the di�erence

between the equilibrium expected payo� and the maximum deviation payo�, i.e.

V (θh, π, α)− Ũ l(β∗|θh, π, α), w.r.t π, is, in fact, non-negative:

∂
(
V (θh, π, α)− Ũ(β∗|θh, π, α)

)
∂π

= θhµ
′(π, α)

(∫ π

0

fh(Π, α)dΠ−
∫ t

0

fh(Π, α)dΠ

)
> 0

This suggests this di�erence is non-decreasing in π. By (1.15) it can be proved

that V (θh, ŝ) − Ũ(bl(0, α)|θh, π) = θhµ
′(ŝ, α)

∫ ŝ
0
fh(Π, α)dΠ > 0. Thus, V (θh, π) −

Ũ(β∗|θh, π) > 0 for all π ∈ [ŝ, 1]. Therefore, type (θh, π) does not �nd it pro�table

to deviate from equilibrium strategy.

In the ine�cient equilibrium, the proof involves checking whether the type who

plays pure strategy �nds it pro�table to deviate to the mixed strategy support and

vice versa. The uniqueness of both the allocative e�cient and ine�cient equilibrium

are due to the initial conditions given in the Lemma 1.

Proof of Corollary 2

Proof. The �rst part of the corollary is obvious after taking the �rst order derivative

of bh(π, α) and bl(π, α) w.r.t α, thus is omitted. Here we show the calculation of
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∂π∗

∂α
. Rewrite equation (1.5) in Proposition 1 to

∫ π∗

0

[fl(Π, α)θl − fh(Π, α)θh] dΠ = 0

and take �rst order derivative w.r.t α, we have

∂π∗

∂α
=

∫ π∗
0

[
∂fh(Π,α)

∂α
θh − ∂fl(Π,α)

∂α
θl

]
dΠ

fl(π∗, α)θl − fh(π∗, α)θh

Since
∫ π∗

0
∂fh(Π,α)

∂α
dΠ < 0 and

∫ π∗
0

∂fl(Π,α)
∂α

dΠ > 0, and by (1.6) we have fl(π
∗, α)θl −

fh(π
∗, α)θh < 0 (as π∗ > π+ according to (1.5)), it must be true that ∂π∗

∂α
> 0.

Proof of Lemma 3

Proof. Suppose player j chooses αj = α and (wrongly) believes that player i has

chosen the same, yet player i instead chooses αi = η. Thus, player j plays the

symmetric equilibrium given in Propositions 1. To prove that the marginal expected

payo� from increasing η by player i in this situation is positive, i.e. AMR(η, α) > 0,

we �rst �nd the maximum expected payo� of each type of player i. We will refer

to the interval [bl(1, α), bl(0, α)], i.e. the equilibrium support of low valuation types,

as the "low pure support"; and refer to the interval [bh(0, α), bh(1, α)], i.e. the

equilibrium support of high valuation types, as the "high pure support". Denoted

by Uk(b|θi, πi, η, α) the expected payo� of the type (θi, πi) of player i chooses b in

the equilibrium support of types with θk (k ∈ {h, l}) when player j chooses α and

believes that player i has chosen the same, whereas player i, in fact, chooses η.

Denoted by V k(θi, πi, η, α) where k ∈ {h, l}, the maximum of Uk(b|θi, πi, η, α).

First, we focus on the case when α 6 α̂, i.e. when player j will play the sym-

metric, pure strategy equilibrium with e�cient allocation. Note that both the type

(θh, π) and the type (θl, π) of player i may choose an optimal e�ort in either the high

or the low pure support, dependent on which interval would provide them higher

expected payo�.

Speci�cally, if type (θh, π) of player i chooses an e�ort in the high pure support,

then her expected payo� is:

Uh(b|θh, π, η, α) = θh

[
1− µ(π, η) + µ(π, η)

∫ b−1
h (b,α)

0

fh(Π, α)dΠ

]
− b. (1.16)

where b−1
h (b, α) is the inverse of the equilibrium pure strategy that player j plays.

By the �rst order condition w.r.t b we know that the type (θh, π) of player i must
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�nd it optimal to choose bh(s, α) where s satis�es fh(π, η) = fh(s, α), which also

implies fl(π, η) = fl(s, α). In other words,

s = f−1
h (fh(π, η), α) = f−1

l (fl(π, η), α) (1.17)

When η < α, by de�nition of rotation order, there always exists an s satisfying

(1.17) for all π ∈ [0, 1]. Therefore, the maximum expected payo� for type (θh, π)

when she chooses the optimal e�ort in the high pure support is given by:

V h(θh, π, η, α) = θh

∫ s

0

[µ(π, η)− µ (Π, α)] fh(Π, α)dΠ + [1− µ(π, η)] θh

−θl
∫ 1

0

[1− µ (Π, α)] fl(Π, α)dΠ

Suppose instead that type (θh, π) of player i chooses an e�ort in the low pure

support, then her expected payo� is:

U l(b|θh, π, η, α) = θh [1− µ(π, η)]

∫ 1

b−1
l (b,α)

fh(Π, α)dΠ− b (1.18)

where b−1
l (b, α) is the inverse of the equilibrium pure strategy that player j will play.

The �rst order condition w.r.t b requires:

fl(π, η) =
fl(ŝ, α)

fh(ŝ, α)

θl
θh
fl(ŝ, α)

meaning that player i would �nd it optimal to exert an e�ort bl(ŝ, α) when she

chooses η. Note that fl(s, α) = fl(π, η) < fl(ŝ, α), thus, s > ŝ. The maximum

expected payo� for the type (θh, π) when choosing an e�ort level in the low pure

support is thus,

V l(θh, π, η, α) = θh [1− µ(π, η)]

∫ 1

ŝ

fh(Π, α)dΠ− θl
∫ 1

ŝ

[1− µ (Π, α)] fl(Π, α)dΠ
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The di�erence between the two maximum expected payo�s is

V h(θh, π, η, α)− V l(θh, π, η, α)

= θh

∫ s

0

µ(s, α)− µ (Π, α)︸ ︷︷ ︸
>0

 fh(Π, α)dΠ

+θh

∫ ŝ

0

[
[1− µ(π, η)]− [1− µ (Π, α)]

fl(Π, α)

fh(Π, α)

θl
θh

]
fh(Π, α)dΠ

> θh

∫ s

0

[µ(π, η)− µ (Π, α)] fh(Π, α)dΠ + θh

∫ ŝ

0

[µ (Π, α)− µ(π, η)] fh(Π, α)dΠ

> θh

∫ ŝ

0

[µ(π, η)− µ (Π, α)] fh(Π, α)dΠ + θh

∫ ŝ

0

[µ (Π, α)− µ(π, η)] fh(Π, α)dΠ

= 0

Therefore, type (θh, π) of player i's expected payo� when choosing η is V h(θh, π, η, α),

and thus, the marginal expected payo� from increasing η is given by

∂

∂η
V h(θh, π, η, α) = −phθh

∂fh(π, η)

∂η

∫ 1

s

fh(Π, α)dΠ

Now we turn to the types with the low valuation. If type (θl, π) of player i chooses

an e�ort in the low pure support, i.e. [bl(1, α), bl(0, α)], then her expected payo� is:

U l(b|θl, π, η, α) = θl [1− µ(π, η)]

∫ 1

b−1
l (b,,α)

fl(Π, α)dΠ− b (1.19)

where b−1
l (b, , α) is the inverse of the equilibrium pure strategy that player j will

play. By the �rst order condition w.r.t b we know that the type (θl, π) of player

i should optimally choose bl(t, α) where t satis�es fl(π, η) = fl(t, α), which also

implies fh(π, η) = fh(t, α). In other words,

t = f−1
h (fh(π, η), α) = f−1

l (fl(π, η), α). (1.20)

Note that (1.17) and (1.20) suggests t = s. When η < α, by de�nition of rota-

tion order, there always exists t and s satisfy (1.20) and (1.17) for all π ∈ [0, 1],

respectively. Therefore, the expected payo� for the type (θl, π) is given by:

V l(θl, π, η, α) = θl

∫ 1

t

[µ (Π, α)− µ(π, η)] fl(Π, α)dΠ

Suppose instead that type (θl, π) of player i chooses an e�ort in the high pure
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support, i.e. [bh(0, α), bh(1, α)], then her maximum expected payo� is:

V h(θl, π, η, α) = phθl

∫ t̂

0

[
fh(π, η)− fh(Π, α)

fh(Π, α)

fl(Π, α)

θh
θl

]
fl(Π, α)dΠ

+phθl

∫ 1

0

[fh (Π, α)− fh(π, η)] fl(Π, α)dΠ

Again, we need to compare the two maximum expected payo� to determine whether

type (θl, π) of player i should choose an e�ort in [bl(1, α), bl(0, α)] or [bh(0, α), bh(1, α)].

It turns out that the former earns the type (θl, π) higher expected payo�:

V h(θl, π, η, α)

= phθl

∫ t̂

0

[
fh(π, η)− fh(Π, α)

fh(Π, α)

fl(Π, α)

θh
θl

]
fl(Π, α)dΠ

+phθl

∫ t

0

[fh (Π, α)− fh(π, η)] fl(Π, α)dΠ + phθl

∫ 1

t

[fh (Π, α)− fh(π, η)] fl(Π, α)dΠ

< phθl

∫ t

0

[
1− fh(Π, α)

fl(Π, α)

θh
θl

]
fh (Π, α) fl(Π, α)dΠ + phθl

∫ 1

t

[fh (Π, α)− fh(π, η)] fl(Π, α)dΠ

< phθl

∫ 1

t

(fh (Π, α)− fh(π, η)) fl(Π, α)dΠ

= V l(θl, π, η, α)

Therefore, type (θl, π) of player i's expected payo� is V l(θl, π, η, α), and thus, the

marginal expected payo� from increasing η is given by

∂

∂η
V l(θl, π, η, α) = −phθl

∂fh(π, η)

∂η

∫ 1

t

fl(Π, α)dΠ

Now, it can be proved that the ex ante marginal expected payo� from increasing η

is positive:

AMR(η, α) =

∫ 1

0

[
pl
∂

∂η
V l(θl, π, η, α) + ph

∂

∂η
V h(θh, π, η, α)

]
dπ

= −ph
∫ 1

0

plθl ∫ 1

t

fl(Π, α)dΠ + phθh

∫ 1

s

fh(Π, α)dΠ︸ ︷︷ ︸
A

 ∂fh(π, η)

∂η
dπ

= ph

[
plθl

∫ 1

ν

fl(Π, α)dΠ + phθh

∫ 1

ν

fh(Π, α)dΠ

] ∫ 1

π+

∂fh(π, η)

∂η
dπ

−ph
[
plθl

∫ 1

ξ

fl(Π, α)dΠ + phθh

∫ 1

ξ

fh(Π, α)dΠ

] ∫ 1

π+

∂fh(π, η)

∂η
dπ

> 0

37



where ν ∈ [0, π+] and ξ ∈ [π+, 1]. Recall that s = t which is why the third equality is

true. Note that by de�nition of rotation order, −
∫ π+

0
∂fh(π,η)

∂η
dπ =

∫ 1

π+

∂fh(π,η)
∂η

dπ >

0, and also that the term A is decreasing with s and t. Thus, by applying the

intermediate value theorem for integrals, we have the inequality given at the end.

We have proved that AMR(η, α) > 0 given that α 6 α̂. The proof for the part

when α 6 α̂ follows the same idea, i.e. by checking for pro�table deviation. This

part of the proof is omitted and is available in the online appendix.

Proof of Lemma 4

Proof. Recall from Section 1.2, when the signals players receive are perfectly in-

formative, we have fh(πi, α) = 0 if πi 6 pl and fh(πi, α) = 1
ph

if πi > pl; and

correspondingly, that fl(πi, α) = 1
pl

if πi 6 pl and fl(πi, α) = 0 if πi > pl. The

notations of this proof follows from Lemma 3.

When type (θl, π) of player i chooses an e�ort in the low pure support, the

expected payo� given that player j playing the symmetric equilibrium in the contest

with exogenously given α is:

U l(b|θl, π, η, α) = θl [1− µ(π, η)]

∫ 1

b−1
l (b,α)

fl(Π, α)dΠ− b

= 0

When type (θl, π) of player i chooses an e�ort in the mixed support, the expected

payo� is

Um(θl, π, η, α) = θl

∫ 1

π∗
(µ(π, η)− µ (Π, α)) fl(Π, α)dΠ

= 0

When the type (θl, π) of player i chooses an e�ort in the high pure support, the

expected payo� is:

Uh(b|θl, π, η, α) = θl

[
1− µ(π, η) + µ(π, η)

∫ b−1
h (b,α)

0

fl(Π, α)dΠ

]
− b

The �rst order derivative of Uh(b|θl, π, η, α) w.r.t. b is:

fh(π, η)fl(ŝ, α)θl
fh(ŝ, α)fh(ŝ, α)θh

− 1 < 0 (1.21)
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Thus, the type (θl, π) of player i does not want to choose any e�ort in the high pure

support. She �nds it optimal to choose an e�ort in the mixed support and thus, her

maximum expected payo� is zero.

Now we turn to type (θh, π) of player i's optimal e�ort given she chooses η. When

she chooses an e�ort in the high pure support, the expected payo� is:

Uh(b|θh, π, η, α) = θh

(
(1− µ(π, η)) + µ(π, η)

∫ b−1
h (b,α)

0

fh(Π, α)dΠ

)
− b

and by taking the �rst order derivative w.r.t. b we have fh(t,α)
fh(π,η)

− 1 = −1 6 0. Thus,

player i does not want to choose any e�ort in the high pure support and again, she

�nds it optimal to choose an e�ort in the mixed e�ort, which earns her zero expected

payo�.

When the type (θh, π) of player i chooses an e�ort in the low pure support, the

expected payo� is:

U l(b|θh, π, η, α) = θh(1− µ(π, η))

∫ 1

b−1
l (b,α)

fh(Π, α)dΠ− b

The �rst order derivative w.r.t b gives

fl(π, η)fh(t̂, α)

fl(t̂, α)fl(t̂, α)

θh
θl
− 1 = +∞

Thus, the type (θh, π) of player i does not want to choose any e�ort in the low pure

support. In other words, the optimal e�ort is always in the mixed support.

When type (θh, π) of player i chooses an e�ort in the mixed support, the expected

payo� is:

Um(b|θh, π, η, α) = V m(θh, π, η, α) = plθhfl(π, η)

∫ 1

π∗
fh(Π, α)dΠ

The �rst order derivative of V m(θh, π, η, α) w.r.t η is:

∂V m(θh, π, η, α)

∂η
= −phθh

∂fh(π, η)

∂η

∫ 1

π∗
fh(Π, α)dΠ

We are now able to calculate the ex ante marginal expected payo� of player i
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w.r.t η:

AMR(η, α) = ph

∫ 1

0

∂Um(b|θh, π, η, α)

∂η
dπ

= −p2
hθh

∫ 1

0

∂fh(π, η)

∂η

∫ 1

π∗
fh(Π, α)dΠ

= 0

Proof of Proposition 3

Proof. Given that AMR(η, α) > 0 for any η < α ∈ [α, α], it must be true that

MR(α) > 0. Suppose there exists some convex cost function with marginal cost

function MC(·) which crosses MR(·) only once from below, and there is an interior

solution α∗ ∈ (α, α) of MR(α) = MC(α). Then there exists an equilibrium of

the information acquisition game in which both players chooses α∗ and MR(α∗) =

MC(α∗).

We now turn to prove the second part of the proposition. By the �rst order

conditions derived from (1.19) and (1.16) we know that type (θl, π) of player i who

chose α should choose bl(t, α) when t satis�es 1 = fl(π, α) = fl(t, α), i.e. t = π̂.

Type (θh, π) of player i should choose bh(s, α) when s satis�es 1 = fh(π, α) = fh(s, α)

thus s = π̂. The maximum expected payo� for the type (θl, π) and (θh, π, ) are given

by:

V (θl, π, α, α) = phθl

∫ 1

π̂

[fh(Π, α)− fh(π, α)] dFl(Π, α) > 0

V (θh, π, α, α) = ph

∫ π̂

0

[1− fh(Π, α)] [fh(Π, α)θh − fl(Π, α)θl] dΠ︸ ︷︷ ︸
>0

+plθl

∫ 1

π̂

[1− fl(Π, α)] fl(Π, α)dΠ︸ ︷︷ ︸
>0

+pl (θh − θl)

This suggests player i's ex ante expected payo� when she chose α given player j plays

symmetric equilibrium in the contest believing both players have chosen α > α, i.e.

V (α, α) =
∫ 1

0
plV (θl, π, α, α) + phV (θh, π, α, α)dπ, is larger than when both players

chose α, i.e. phpl (θh − θl). Note that V (α, α) may not be the maximum ex ante

expected payo� of player i, but the fact that the above is larger than phpl (θh − θl)
suggests the optimal must be always larger.
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Since Lemma 3 has shown that AMR(η, α) > 0, suggesting V (η, α) is increasing

in η, it must be true that

V (α∗, α∗)− C(α∗) > V (α, α)− C(α) > V (α, α) = V (α, α)

The inequality equality is due to the optimality of α∗. The inequality is due to

V (α, α) > phpl(θh − θl) = V (α, α) as shown above, and the fact that C(α) = 0.

Therefore, player i's expected payo� in the entire game is strictly higher than

when both players choosing α, i.e. not spying on each other. Furthermore, by

V (α, α) = V (α, α), player i's expected payo� in the game is also higher than when

both players receive a perfect signal about the opponent for free.

Proof of Lemma 5

Proof. For ease of notation, in this proof we simplify the notations of e�ort choice

functions bih(π, αi, αj) and bil(π, αi, αj) into bih(π) and bil(π), respectively. We start

by proving part 1. Suppose in a pure strategy equilibrium with e�cient allocation,

we have bih(π1) < bih(π2) for some π1 > π2. Then type (θh, π1) of player i must �nd

the cost of increasing her e�ort from bih(π1) to bih(π2) dominates the gain from such

increase, formally:

bih(π2)− bih(π1) > µ(π1) Pr{bih(π1) 6 bjh < bih(π2)}θh.

where bjh is player j's e�ort. The LHS of the above is the cost from increasing

e�ort from bih(π1) to bih(π2), and the RHS is the gain from doing so. The cost must

outweigh the gain to prevent type (θh, π1) from deviating to bih(π2). However, type

(θh, π2) would require her gain outweighs her cost of such increase of e�ort:

bih(π2)− bih(π1) 6 µ(π2) Pr{bih(π1) 6 bjh < bih(π2)}θh.

Combining the two condition, we have µ(π2) > µ(π1) which contradicts to π1 > π2,

due to Assumption 1. Similar arguments can prove that bil(π1) 6 bil(π2) for any

π1 > π2.

To prove continuity of e�ortding strategies in part 2, suppose there exists a

discontinuous point on player i's e�ort strategy bih(π), π̂ ∈ (0, 1), such that bih(π̂) <

bih(π̂ + ε) for an arbitrarily small ε. Then type (θh, b
−1
jh (bih(π̂ + ε))) of player j will

�nd it pro�table to deviate to some b̂ ∈ (bih(π̂), bih(π̂ + ε)), where b−1
jh (·) is the

inverse of player j's e�ort strategy. Similarly, suppose there exists a discontinuous

point on bil(π), π̃ ∈ (0, 1), such that bil(π̃) > bil(π̃ + ε) for arbitrarily small ε.
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Then type (θl, b
−1
jl (bil(π̃))) of player j will �nd it pro�table to deviate to some b̃ ∈

(bil(π̃ + ε), bil(π̃)), where b−1
jl (·) is the inverse of player j's e�ort strategy.

To prove that there is no atom on any player's e�ort, suppose there exists p and

q such that 1 > q > p > 0 and that bih(x) = b where x ∈ [p, q] and b is a constant.

Then by continuity there must be a type (θh, b
−1
jh (b − ε)) of player j who chooses

b− ε, and he will �nd it pro�table to deviate to choosing b + ε, as the gain of such

deviation will be µ(b−1
jh (b− ε), αj)

∫ q
p
fh(Π, αi)dΠ > 0 and the cost is negligible when

ε is arbitrarily small. A similar argument can show that there is no atom on bil(π).

For part 3, given part 1 is true, type (θh, 1) of player i chooses the highest e�ort

among all types in an allocative e�cient equilibrium, whereas type (θl, 1) chooses

the lowest e�ort among all types in an allocative e�cient equilibrium. Thus, it

must be true that bil(1) = bjl(1) = 0 as these are the lower bound of equilibrium

support. They must be the same and cannot be positive. It must also be true

that bih(1) = bjh(1) as these are the highest e�ort exerted by players, and in any

equilibrium the equality is satis�ed.

Finally, by part 1, type (θh, 0) of player i chooses the lowest e�ort among all

types with valuation θh, whereas type (θl, 0) chooses the highest among all types

with valuation θl. Suppose bih(0) > bil(0), then it implies that there is a gap in the

equilibrium support of player i's e�ort. This cannot be part of any equilibrium as

then player j would not choose any e�ort in [bil(0), bih(0)], which contradicts the

optimality of bih(0), as player i would want to deviate to any b ∈ (bil(0), bih(0)).

Suppose bih(0) < bil(0), then in any equilibrium with e�cient allocation, it must

be true that bjl(0) 6 bih(0) < bil(0) 6 bjh(0). But then this implies there is a

gap in the equilibrium support of player j's e�ort, which we showed above to be

impossible in any equilibrium with e�cient allocation. Therefore, in any equilibrium

with e�cient allocation, it must be true that bil(0) = bih(0) for i = 1, 2. Now

we prove bil(0) = bih(0) = bjl(0) = bjh(0). Without loss of generality, suppose

bil(0) = bih(0) > bjl(0) = bjh(0), but then this contradicts e�cient allocation as

bil(0) > bjh(0). Thus, in any pure strategy equilibrium with e�cient allocation, it

must be true that bil(0) = bih(0) = bjl(0) = bjh(0).

Proof of Proposition 4

Proof. There are two steps to take to prove the proposition. First, we show that

the equilibrium strategies of each valuation type given in the proposition are indeed

the optimal strategy in their equilibrium support. Second, we show that each type

do not want to deviate to any e�ort level outside of their equilibrium support.

Following the notation in the previous proofs, we refer to the equilibrium support
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of low valuation types as the "low pure support", and refer to the equilibrium support

of high valuation types as the "high pure support".

Given that player j chooses his strategy according to the proposition. Suppose

type (θl, π) of player i chooses an alternative e�ort level b = bil(s, αi, αj), then her

expected payo� is

Ui(b|θl, π, αi, αj) = θl

∫ 1

s

[µ(Π, αi)− µ(π, αi)]dFl(Π, αj)

Thus,

Vi(θl, π, αi, αj)− Ui(b, θl, π, αi, αj) = θl

∫ s

π

[µ(Π, αi)− µ(π, αi)]dFl(Π, αj) > 0

regardless of whether π > s or π < s.

Suppose type (θh, π) of player i chooses an alternative e�ort level b = bih(t, αi, αj),

then her expected payo� is

Ui(b|θh, π, αi, αj) = θh[(1− µ(π, αi)) + µ(π, αi)

∫ t

0

fh(Π, αj)dΠ]

−θh
∫ t

0

µ (Π, αi) dFh(Π, αj)− θl
∫ 1

0

[1− µ (Π, αi)] dFl(Π, αj)

Again, compare this payo� to the equilibrium payo�:

Vi(θh, π, αi, αj)− Uj(b, θh, π, αi, αj) = θh

∫ π

t

[µ(π, αi)− µ (Π, αi)] dFh(Π, αj) > 0

regardless of π > t or π 6 t. Thus, the strategy given in the proposition is indeed

optimal for players if they choose e�orts in the equilibrium support.

Now we turn to the case when each valuation type deviates by choosing an e�ort

in the other valuation type's support, e.g. the high valuation type chooses an e�ort

in the support of the low valuation type's support. When the type (θh, π) of player

i deviates to an e�ort level β in the low pure support of player j, that is β ∈
[0, bjl(0, αj, αi)], then the expected payo� given the opponent playing equilibrium

strategy bjl(π, αj, αi) is:

Ũi(β|θh, π, αi, αj) = θh[1− µ(π, αi)]

∫ 1

b−1
jl (β,αj ,αi)

fh(Π, αj)dΠ− β.

Among all the possible deviating e�orts player i would prefer to deviate to the e�ort

level that maximizes the deviation expected payo�, i.e. β∗ = arg maxβ Ũi(β|θh, π, αi, αj).
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β∗ can be found by the �rst order condition with respect to β:

fl(π, αi) =
θl
θh

fl(t, αj)

fh(t, αj)
fl(t, αi) (1.22)

where t is given by bjl(t, αj, αi) = β∗, i.e. type (θl, t) of player j bids β∗ in

equilibrium. It is easy to check that both sides of (1.22) are decreasing func-

tions of their arguments, π and t, respectively. Furthermore, Assumption 3 implies

fl(π, αi) 6 fl(t, αi) and thus, π > t. Then, there must exists some π̂ satisfying

fl(π̂, αi) ≡
θl
θh

fl(0, αj)

fh(0, αj)
fl(0, αi)

If the equality in Assumption 3 is satis�ed at π = 0, then π̂ = 0. For π < π̂, we

always have the LHS of the equation (1.22) strictly larger than the RHS, for all

t ∈ [0, 1]. This implies the �rst order derivative is positive and thus type (θh, π) of

player i doesn't want to deviate.

For π > π̂, there always exists a unique solution of equation (1.22) given π.

In this case, we need to directly compare the equilibrium payo� with the payo�

of choosing β∗. The di�erence between the equilibrium expected payo� and the

optimal deviation payo�:

Vi(θh, π, αi, αj)− Ũi(β∗|θh, π, αi, αj)

= phθh

∫ π

0

[fh(π, αi)− fh(Π, αi)] fh(Π, αj)dΠ

+ plθh

∫ t

0

(
fl(π, αi)−

fl(Π, αi)θl
fh(Π, αj)θh

fl(Π, αj)

)
dΠ

is increasing with π, as its �rst order derivative w.r.t π is positive (as π > t):

∂
(
Vi(θh, π, αi, αj)− Ũi(β∗|θh, π, αi, αj)

)
∂π

= ph
∂fh(π, αi)

∂π
θh

(∫ π

0

fh(Π, αj)dΠ−
∫ t

0

fh(Π, αj)dΠ

)
> 0

Note that in the above derivation we applied equation (1.22). Since we also know

that

Vi(θh, π̂, αi, αj)−Ũi(β∗|θh, π̂, αi, αj) = phθh

∫ π̂

0

[fh(π̂, αi)− fh(Π, αi)] fh(Π, αj)dΠ > 0
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the di�erence is thus, positive. Therefore, type (θh, π) of player i does not �nd it

pro�table to deviate to any e�ort in [0, bjl(0, αj, αi)].

When a type (θl, π) of player i deviates to an e�ort level β in the high pure sup-

port, that is β ∈ [bjl(0, αj, αi), bjh(1, αj, αi)], the expected payo� given the opponent

playing equilibrium strategy bjh(π, αj, αi) is:

Ũi(β|θl, π, αi, αj) = θl

[
µ(π, αi)

∫ b−1
jh (β,αj ,αi)

0

fl(Π, αj)dΠ + (1− µ(π, αi))

]
− β.

Again, we �nd the optimal deviation e�ort β∗ = arg maxβ Ũi(β|θl, π, αi, αj) by

the �rst order condition with respect to β:

fh(π, αi) =
θh
θl

fh(s, αj)

fl(s, αj)
fh(s, αi) (1.23)

where s is given by bjh(s, αj, αi) = β∗. It is easy to check that both sides are increas-

ing functions of their arguments, π and s, respectively. Furthermore, Assumption 3

implies fh(π, αi) > fh(s, αi) and thus, π > s. Then, there must be some ̂̂π satis�es

fh(̂̂π, αi) =
θh
θl

fh(0, αj)

fl(0, αj)
fh(0, αi)

If the equality in condition (3) is satis�ed at π = 0, then we must have ̂̂π = 0. For

π < ̂̂π, we always have the LHS of the equation (1.23) strictly less than the RHS,

for all s ∈ [0, 1]. This implies the �rst order derivative is negative and thus type

(θl, π) doesn't want to deviate.

For π > ̂̂π, there always exists a unique valuation of s satisfying equation (1.23)

given π. In this case, we need to compare the equilibrium payo� with the payo� of

choosing β∗. The di�erence between the two

Vi(θl, π, αi, αj)− Ũi(β∗|θl, π, αi, αj)

= plθl

∫ π

0

[fl(Π, αi)− fl(π, αi)] fl(Π, αj)dΠ

+ph

∫ s

0

[
fh(Π, αj)θh
fl(Π, αj)θl

fh(Π, αi)− fh(π, αi)
]
fl(Π, αj)θldΠ
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is positive because its �rst order derivative w.r.t π is positive:

∂
(
Vi(θl, π, αi, αj)− Ũi(β∗|θl, π, αi, αj)

)
∂π

= phθlf
′
h(π, αi)

(∫ π

0

fl(Π, αj)dΠ−
∫ s

0

fl(Π, αj)dΠ

)
> 0

and Vi(θl, ̂̂π, αi, αj)−Ũi(β∗|θl, ̂̂π, αi, αj) = plθl
∫ ̂̂π

0

[
fl(̂̂π, αi)− fl(π, αi)] fl(Π, αj)dΠ >

0. Thus, there is no pro�table deviation for any type of player i.

Proof of Proposition 5

Proof.

De�nition 6. Let AMR(η, αi, αj) be player i's marginal expected payo� from the

contest by choosing η when player j chooses αj and (wrongly) believes that player i

has chosen αi.

The above de�nition of marginal expected payo� from the contest is di�erent

from the symmetric case only in the player j's belief of αi. In the current asymmetric

setting, player j chooses αj but believes that player i chooses αi. Thus, j plays

according to the asymmetric equilibrium given in Proposition 4. By the same logic

as in the symmetric case, player i would �nd it pro�table to increase η as it provides

a more accurate estimation of j's e�ort distribution.

First we prove the following lemma:

Lemma 9. AMR(η, αi, αj) > 0 for all η 6 αi and η, αi, αj ∈ [α, α̂).

Given that AMR(η, αi, αj) > 0 for any η < αi ∈ [α, α], it must be true that

AMR(αi, αi, αj) > 0.

If player i chooses η = α, and suppose player j still believes that player i chose

αi and plays the symmetric equilibrium strategy in the contest as given in the

Proposition 4, then type (θl, π) and (θh, π) of player i's maximum expected payo�
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are given by:

U l
i (θl, π, α, αi, αj) = θl(1− µ(π, α)) + θl

∫ ̂̂π
0

µ(π, α)− µ(Π, αi)
θh
θl

fh(Π, αj)

fl(Π, αj)︸ ︷︷ ︸
>0

 fl(Π, αj)dΠ

Uh
i (θh, π, α, αi, αj) = ph

∫ π̂

0

[1− fh(Π, αi)] [fh(Π, αj)θh − fl(Π, αj)θl] dΠ︸ ︷︷ ︸
>0

+plθl

∫ 1

π̂

[1− fl(Π, αi)] fl(Π, αj)dΠ︸ ︷︷ ︸
>0

+pl (θh − θl)

where π̂ satis�es fh(π, α) = 1 = fh(π̂, αi) and ̂̂π is the solution for t̂ in:

fl(π, α) = 1 =
fl(t̂, αj)

fh(t̂, αj)

θl
θh
fl
(
t̂, αi

)
Given that AMR(η, αi, αj) > 0, Vi(η, αi, αj) must be increasing in η. This means

Vi(αi, αj) > Ui(α, αi, αj) > Vi(α, α)

where Ui(α, αi, αj) =
∫ 1

0
plU

l
i (θl, π, α, αi, αj) + phU

h
i (θh, π, α, αi, αj)dπ. The �rst in-

equality is due to the optimality of αi. The second inequality is due to Ui(α, αi, αj) >

phpl(θh − θl) shown above.

Proof of Lemma 7

Proof. The marginal ex ante expected payo� when player i increases αj is:

∂Vi(αi, αj)

∂αj

= p2
h (θh − θl)

∫ 1

0

θh + θl
pl

θh − θl
− fh(Π, αi)

(
θh + phθl

pl

θh − θl
− Π

)
− Fh(Π, αi)︸ ︷︷ ︸

L(Π)

 ∂fh(Π, αj)∂αj
dΠ

47



Note that the terms inside the bracket, L(Π), is monotonically decreasing with Π as

∂L(Π)

∂Π
= −∂fh(Π, αj)

∂Π

(
θh + phθl

pl

θh − θl
− Π

)
< 0

Thus, applying the intermediate value theorem for integrals can prove that
∂Vi(αi,αj)

∂αj
<

0. Rewrite
∂Vi(αi,αj)

∂αj
for player i into:

∫ π+

0

L(Π)
∂fh(Π, αj)

∂αj
dΠ +

∫ 1

π+

L(Π)
∂fh(Π, αj)

∂αj
dΠ

= L(ζ)

∫ π+

0

∂fh(Π, αj)

∂αj
dΠ + L(ι)

∫ 1

π+

∂fh(Π, αj)

∂αj
dΠ < 0

where ζ ∈ [0, π+] and ι ∈ [π+, 1]. Recall that
∫ π+

0

∂fh(Π,αj)

∂αj
dΠ+

∫ 1

π+

∂fh(Π,αj)

∂αj
dΠ = 0,

and since L(ζ) > L(ι), we thus have
∂Vi(αi,αj)

∂αj
< 0.

Proof of Lemma 8

Proof. The interim expected payo� for each type of player i in equilibrium are given

by (1.10) and (1.11) in the main text. Then, the ex ante interim expected payo� for

θh and θl can be found:

Vi(θh, αi, αj) = phθh

∫ 1

0

∫ π

0

[fh(π, αi)− fh(Π, αi)] fh(Π, αj)dΠdπ

+pl

∫ 1

0

∫ 1

0

[fl(π, αi)θh − fl(Π, αi)θl] fl(Π, αj)dΠdπ

Vi(θl, αi, αj) = plθl

∫ 1

0

∫ 1

π

fl(π, αj)fl(Π, αi)dΠdπ − plθl
∫ 1

0

∫ 1

π

fl(Π, αj)fl(Π, αi)dΠdπ

And thus, the ex ante expected payo� for player i can be calculated by

Vi(αi, αj) = phVi(θl, αi, αj) + plVi(θh, αi, αj)

Let αi = α, i.e. when the opponent shares no information to player i, then player

i's ex ante expected payo� is a constant: Vi(αi = α, αj) = phpl (θh − θl)

Proof of Proposition 7

Proof. To prove the proposition, we need to show that the �rst order conditions for

both player 1 and 2 are both satis�ed given the strategy pro�les speci�ed in the

proposition. That is,
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∂V1(α1, α2)

∂α2

= p2
h (θh − θl)

∫ 1

0

[
θh + θl

pl

θh − θl
− fh(Π, α1)

(
θh + phθl

pl

θh − θl
− Π

)
− Fh(Π, α1)

]
∂fh(Π, α2)

∂α2

dΠ = 0

∂V2(α2, α1)

∂α1

= p2
h (θh − θl)

∫ 1

0

[
θh + θl

pl

θh − θl
− fh(Π, α2)

(
θh + phθl

pl

θh − θl
− Π

)
− Fh(Π, α2)

]
∂fh(Π, α1)

∂α1

dΠ = 0

For the symmetric equilibrium, Lemma 8 has shown that given the opponent

choosing α, player i is indi�erent between any α ∈ [α, α̂) as she always receives the

same expected payo� as in the IPV setting without spying. This suggests (α, α) is

a symmetric equilibrium. Lemma 8 also implies the above FOCs are satis�ed with

(α, α). Now, we prove that this equilibrium is the unique symmetric equilibrium.

Suppose both players choose some α1 = α2 = α > α, then Lemma 7 implies, say,

player 1 �nds it pro�table to deviate to α2 = α. Thus, there is no symmetric

equilibrium in which α1 = α2 = α > α.

Now we turn to asymmetric equilibria. From Lemma 8 and Lemma 7, it can be

seen that any strategy pro�le with one player chooses α and the other player chooses

α > α is an equilibrium. Without loss of generality, assume that player i chooses

αj = α and her opponent chooses αi > α. By Lemma 7, player i strictly prefers

to choose αj = α when αi > α. By Lemma 8, player j is indi�erent with choosing

any αi ∈ [α, α̂), thus he has no pro�table deviation. Therefore, any strategy pro�le

(α1, α2) with either α1 = α and α2 > α, or α1 > α and α2 = α, is an equilibrium of

the information disclosure game.
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Chapter 2

Information Disclosure in Contests:

Private vs. Public Signals

Abstract Two players with independent private valuations compete in the �rst-price

all-pay auction. Apart from each player's own valuation, she also observes a noisy

signal regarding the opponent's valuation. We characterize the unique symmetric

equilibrium of the contest when the signal is (1) conditionally independent private,

or (2) public. In the former, each player's expected payo� (expected e�ort) is always

higher (lower) than when they do not receive any signals regarding the opponent.

In the latter, the expected payo� (expected e�ort) can be either higher or lower

than when they do not receive any signals, and the upper bound of expected payo�s

is characterized. Numerical examples show that some private signals may induce

higher expected payo�s than the maximum payo� induced by any public signals,

and that some public signals can always induce higher total expected e�orts than

the maximum expected e�orts induced by any private signals.
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2.1 Introduction

In contests, e.g., rent-seeking, lobbying, promotion, and patent race, the amount

of e�ort to be invested often hinges on the player's belief about the opponents'

competitiveness. The contest organizer can thus manipulate the belief via disclosing

information about the opponents to manipulate competitive behavior indirectly. The

objective of the organizer may be to increase total e�ort. For example, the employer

who organizes a promotion contest wish to boost employees' e�orts. Alternatively,

the objective may also be to increase players' payo�s. For instances, the objective

of a trade association is to protect the interests of member �rms who compete in

the same industry.

In this paper, we study how the organizer should disclose information before

contests to ful�ll the above objectives. The contest is modeled by the �rst-price

all-pay auction with two players and one prize. Players' private valuations for the

prize are independently drawn from a binary distribution, {vh, vl} with vh > vl. In

addition to their own valuations, they can also observe a binary distributed signal

({h, l}) disclosed by the contest organizer and which contains information about the
opponent's valuation.We consider two classes of disclosure policies: disclosing via

conditionally independent private (hereafter private) signals or via public signals.

In the former, each player receives a signal conditional on the opponent's valuation

and the signal realization is private information to the player. In particular, with

probability q the signal is "correct", i.e. Pr(si = h|v−i = vh) = Pr(si = l|v−i = vl) =

q. In the latter, both players observe a public signal conditional on the valuation

pro�le. In particular, when both players have vh (vl), they observe the signal h with

probability kh (kl); when players have di�erent valuations they observe the signal h

with probability r. For each class of disclosure policies, the contest organizer chooses

these parameters before the contest to ful�ll her objectives.

We characterized unique symmetric equilibrium in the contest under both classes

of disclosure policies. The equilibrium strategy may be non-monotonic in the sense

that the high valuation player's e�ort may be lower than that of the low valuation

player. With partially informative private signals, on one hand, each player's ex-

pected payo� is always higher than when they do not receive any signals about the

opponent, and the total expected e�ort is always lower. The public signals, on the

other hand, can be designed to maximize players' expected payo� and its upper

bound is also strictly higher than when players do not receive any signals about the

opponents. Numerical examples suggest that there is no general ranking between

the two classes of signals in maximizing players' expected payo�s. The organizer

can also design the public signals in a way that the total expected e�ort is strictly
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higher than when players do not receive any signals � thus it is also higher than the

total e�ort in the contest with any private signals. Therefore, some public signals

dominate all private signals in terms of increasing total expected e�ort.

The prior literature has shown that the total e�ort in the contest can be boosted

by concealing all players' private information in all-pay auctions (Fu et al., 2014;

Lu et al., 2016), partially revealing such information to the opponents in Tullock

contest (Serena, 2015), providing reviews (Gershkov and Perry, 2009) of previous

performance or publicly announcing (Aoyagi, 2010) it in multi-stage contests, dis-

closing opponent's previous performance (Sheremeta, 2010) or rent-seeking expen-

diture (Fallucchi et al., 2013) in rent-seeking contests. The study closely related to

the current paper is Lu et al. (2016) who extend the study on the partial informa-

tion disclosure in Tullock contests (Serena, 2015) to the �rst-price all-pay auction.

According to Serena (2015), the partial disclosure policy is a mapping from the

anonymous1 valuation pro�le, {vh, vh}, {vh, vl} and {vl, vl}, to a binary decision

between Concealing or Disclosing the pro�le to both players, i.e. C or D. For ex-

ample, {C,C,D} corresponds to the disclosure policy which conceals the valuation

pro�le {vh, vh}, i.e. both players have high valuation, and {vh, vl}, i.e. when the

players have di�erent valuation, and discloses the pro�le only when it is {vl, vl}, i.e.
both players have low valuation. Such partial disclosure policies are special cases of

public signals considered in the Section 2.4 of the current paper. Lu et al. (2016)

shows that the disclosure policy {C,C,D} maximizes each player's expected pay-

o�, and the maximum is min{ph(vh − vl), phplvh}. Interestingly, this coincides with
the maximum of expected payo�s characterized in the current paper. However, the

current paper shows that there exists a broad set of public signals which can induce

this maximum. When the objective is to maximize total e�ort, Lu et al. (2016)

shows that fully concealing the valuation pro�le, i.e. {C,C,C}, maximizes the total
expected e�ort, whereas Section 2.4 of the current paper shows that some public

signals can induce strictly higher e�orts.

Fang and Morris (2006) was the �rst to consider the setting in which play-

ers receive conditional independent private signals about opponents in winner-pay

auctions. In the �rst-price auction with binary distribution of valuations, the low

valuation type of player always bid his valuation and the high valuation type of

player's bid increases �rst order stochastically in her signal regarding the opponent.

The authors show that the revenue in the �rst-price auction is lower than in the

second-price auction in which players still bid their own valuations in equilibrium

1The disclosure policy is anonymous in the sense that the policy depends on the type pro�le
that does not di�erentiate the identities of players. See Serena (2015) for more details.
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even when they receive a signal about the opponent. Azacis and Vida (2015) then

generalized the model to any correlated signals and characterized the optimal signal

which maximizes player's expected payo�. This is closely related to the second part

of the current paper which considers public signal. Also built on Fang and Morris

(2006), Tian and Xiao (2007) studied a model in which players endogenously acquire

costly information about their opponent in the �rst-price auction.

In winner-pay auctions, auctioneers may �nd it pro�table to selectively disclose

information to bidders (Li and Shi, 2013; Eso and Szentes, 2007; Ganuza and Pe-

nalva, 2010; Bergemann and Pesendorfer, 2007). In the current paper, we show how

a contest organizer can in�uence the competitive behavior of players via disclosing

a signal regarding the opponents' private information. This type of information dis-

closure in contests has been studied in one-sided private information setting (Zhang

and Zhou, 2016; Denter et al., 2014), or two-sided private information with disclo-

sure policies (Lu et al., 2016; Serena, 2015) which are special cases of the public

signals considered in the current paper.

Finally, the Bayesian persuasion literature (Kamenica and Gentzkow, 2011)

has studied how a sender should design signals which reveal information to vot-

ers (Alonso and Câmara, 2016, 2015; Wang, 2013), or to consumers (Anderson and

Renault, 2006; Johnson and Myatt, 2006; Rayo and Segal, 2010), about their payo�

relevant states in order to in�uence their behavior.

2.2 Preliminaries

The Contest: Two players compete for an indivisible prize in a contest. Player i's

(i ∈ {1, 2}) private valuation is independently drawn from the binary distribution:

vi = vh with probability ph ∈ (0, 1), and vi = vl with probability pl ∈ (0, 1), where

vh > vl > 0 and ph + pl = 1. In addition to her own valuation, player i also

observes an additional signal, si ∈ {h, l}, regarding her opponent's valuation v−i.

The distribution of the signal will be discussed in detail shortly.

Players choose their e�orts, (bi, b−i), simultaneously. The player who chooses

higher e�ort wins and both players incur the costs of their own e�orts. Ties are

broken with equal probability. Thus, the contest is equivalent to the �rst-price all-

pay auction. The player with the valuation vi chooses e�ort bi earns the following

expected payo�:

Ui(bi, b−i, vi) =


−bi, if bi < b−i

vi − bi, if bi > b−i
1
2
vi − bi, if bi = b−i
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Equilibrium: In the contest as a Bayesian game, each player's type has two di-

mensions, i.e. valuation and signal: (vi, si). Denote by G(vi,si)(b) the cumulative

distribution function of e�ort in the equilibrium mixed strategy of type (vi, si) of

player i, and denote by Gi(b) player i's ex ante cumulative distribution of equilibrium

e�ort. Formally, a Bayesian Nash Equilibrium is de�ned as the following.

De�nition 7. A Bayesian Nash Equilibrium (BNE) of the contest is a vector of

strategies G = (G1, G2) such that for all bi ∈ supp[G(vi,si)], we have

bi ∈ arg max
b
Ui(b, vi, si;G−i)

In Section 2.3, we consider private signals where the distribution of si is con-

tingent on realizations of the opponent's valuation v−i. In Section 2.4, we consider

public signals where the distribution of si is contingent on realizations of valuation

pro�le (vi, v−i). Finally, we compare the two signals in terms of players' expected

payo� and total expected e�ort in Section 2.5.

2.3 Private signals

In the private signals setting, player i's signal is generated as the following:

Pr(si = l|v−i = vl) = Pr(si = h|v−i = vh) = q ∈ [
1

2
, 1]

Pr(si = h|v−i = vl) = Pr(si = l|v−i = vh) = 1− q.

That is, q is the probability that player i receives a "correct" signal. The signal

si is player i's private information. Thus, the type space becomes two dimensional

with four types in total: (vi, si) ∈ {vh, vl} × {h, l}. Denote by Pr(v−i|si) the proba-
bility that the opponent's valuation is v−i conditional on player i's signal si. Upon

receiving a signal si, player i updates her belief according to Baye's rule:

Pr(vh|h) =
phq

phq + pl (1− q)

Pr(vl|h) =
pl (1− q)

phq + pl (1− q)

Pr(vh|l) =
ph (1− q)

ph (1− q) + plq

Pr(vl|l) =
plq

ph (1− q) + plq

To facilitate later analyzes, we de�ne the following condition:
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Condition 1. Pr(vl|h)vh > Pr(vl|l)vl;

Alternatively, we refer to the condition with the opposite inequality, i.e., Pr(vl|h)vh 6

Pr(vl|l)vl, as the Condition ¬1.2

In the above conditions, Condition 1 is equivalent of (1 − q)vh > qvl, i.e., q 6

q∗ ≡ vh
vh+vl

, and Condition ¬1 is equivalent of (1 − q)vh 6 qvl, i.e., q > q∗ ≡ vh
vh+vl

.

Condition 1, in fact, is the su�cient condition for the existence of monotonic strategy

equilibrium (MSE). In all-pay auctions with one dimensional a�liated signals, the

existence of MSE depends on whether a "monotonicity condition" is satis�ed, which

states that the product of the conditional probability of the opponent's signal and

the player's valuation increases in the player's signal (Rentschler and Turocy, 2016;

Chi et al., 2015; Krishna and Morgan, 1997). In such single dimensional settings,

players obtain information regarding both their own valuation and the opponent's

valuation from one signal. In the two dimensional signal setting considered in the

current paper, however, players obtain the two sorts of information from separated

channels. Condition 1 therefore, is the two dimensional version of "monotonicity

condition".

2.3.1 Equilibrium

The following result shows that the structure of equilibrium depends on whether

Condition 1 or ¬1 is satis�ed.

Proposition 8. If q ∈ [1
2
, 1], then there exists a unique symmetric equilibrium

in which all types randomize over connected supports. When the Condition 1 is

satis�ed, then

• type (vl, h) mixes over [0, b(vl,h)] uniformly according to

G(vl,h)(b) =
pl(1− q) + phq

pl(1− q)2vl
b

• type (vl, l) mixes over [b(vl,h), b(vl,l)] uniformly according to

G(vl,l)(b) =
ph(1− q) + plq

plq2vl
b

• type (vh, l) mixes over [b(vl,l), b(vh,l)] uniformly according to

G(vh,l)(b) =
ph(1− q) + plq

ph(1− q)2vh
b

2Note that Condition 1 and ¬1 are equivalent when the equalities are satis�ed simultaneously.
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• type (vh, h) mixes over [b(vh,l), b(vh,h)] uniformly according to

G(vh,h)(b) =
pl(1− q) + phq

phq2vh
b

where

b(vl,h) =
pl(1− q)2vl

pl(1− q) + phq

b(vl,l) = b(vl,h) +
plq

2vl
ph(1− q) + plq

b(vh,l) = b(vl,l) +
ph(1− q)2vh
ph(1− q) + plq

b(vh,h) = b(vh,l) +
phq

2vh
pl(1− q) + phq

When the Condition ¬1 is satis�ed, then

• type (vh, h) mixes over [b, b(vh,h)] uniformly according to

G(vh,h)(b) =
phq + pl(1− q)

phq2vh
b− phqvh + plvl

phq2vh
(1− q) ,

and mixes over [b, b] according to

G(vh,h)(b) =
1

2q − 1

(
q

vh
− 1− q

vl

)
b− 1− q

2q − 1

pl (1− q)
phq + pl(1− q)

qvl − (1− q) vh
qvh − (1− q)vl

vh − vl
vh

• type (vh, l) and (vl, l) mix over [b, b] uniformly according to

G(vh,l)(b) = G(vl,l)(b) =
1

2q − 1

(
q

vl
− 1− q

vh

)
b− 1− q

2q − 1

pl (1− q)
phq + pl(1− q)

vh − vl
vh

• type (vl, h) mixes over [b, b] uniformly according to

G(vl,h)(b) =
1

2q − 1

(
q

vh
− 1− q

vl

)
b

− 1− q
2q − 1

pl (1− q)
phq + pl(1− q)

qvl − (1− q) vh
qvh − (1− q)vl

vh − vl
vh

− vh − vl
(1− q)vl − qvh

and mixes over [0, b] according to

G(vl,h)(b) =
phq + pl(1− q)
pl (1− q)2 vl

b
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CDF

b

1

b(vl,h) b(vl,l) b(vh,l) b(vh,h)
vh0

(vl, h) (vl, l) (vh, l) (vh, h) CDF

b

1

b(vh,h)bb vh0

(vl, h)
(vl, l) (vh, l)

(vh, h)

Figure 2.1: Example: ph = 1
2
, vh = 2, vl = 1 thus q∗ = 2

3
. The non-overlapping

equilibrium is given in the left panel, where q = 1
2
; the overlapping equilibrium is

given in the right panel, where q = 3
4
.

where

b(vh,h) =
phqvh + pl(1− q)vl
phq + pl(1− q)

b =
q [phq + (pl − ph)(1− q)] vh − (1− q)2 plvl

[phq + pl(1− q)] [qvh − (1− q)vl]
vl

b =
pl (1− q)

phq + pl(1− q)
(1− q) vl

qvh − (1− q)vl
(vh − vl)

Speci�cally, if Condition 1 is true, the model has a unique non-overlapping equi-

librium in the sense that types play mixed strategies distributed on contagious non-

overlapping intervals, similar to the independent private valuation setting (Konrad,

2004). If, however, Condition ¬1 is true, the model has an overlapping equilibrium

in the sense that the supports of all types intersect at a common interval which

becomes a singleton when Condition ¬1 satis�es with equality. This is consistent

with complete information setting (Baye et al., 1996) which corresponding to the

case when q = 1. See Example 1 for the graphical structure of the equilibrium.

Example 1. Suppose ph = 1
2
, vh = 2, vl = 1 thus q∗ = 2

3
. Thus, when q = 1

2
< q∗

the equilibrium supports of all types are non-overlapping, and the upper bounds are

given by: b(vl,h) = 0.25, b(vl,l) = 0.5, b(vh,l) = 1 and b(vh,h) = 1.5. This equilibrium is

shown in the left panel of Figure 2.1. When q = 3
4
> q∗, the equilibrium supports of

all types are overlapping, and the bounds of supports are given by: b = 0.05, b = 0.85

and b(vh,h) = 1.75. The overlapping equilibrium is shown in the right panel of Figure

2.1.
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2.3.2 Expected payo� and total expected e�ort

Proposition 9 indicates that both players are better o� with any partially informative

private signals.

Proposition 9. Player i (i = 1, 2) earns strictly higher expected payo� when q ∈
(1

2
, 1) than when q = 1

2
, 1; the total expected e�ort is strictly lower when q ∈ (1

2
, 1)

than when q = 1
2
, 1.

Figures 2.2 and 2.3 are two examples of player i's expected payo� and the total

expected e�ort. As can be seen from the �gures, the di�erence between overlapping

and non-overlapping equilibrium has signi�cant impact on the expected e�ort. The

total expected e�ort experiences a sudden drop at q = q∗ ≡ vh
vh+vl

during the transi-

tion from the non-overlapping to the overlapping equilibrium. The expected payo�

is, however, continuous at the cuto� value of q.

0.06

0.08

0.1

0.6 0.7 0.8 0.9 1q
0.04

0.045

0.05

0.055

0.6 0.7 0.8 0.9 1q

Figure 2.2: Expected payo� when vh = 1 and vl = 0.5: left ph = 0.2; right ph = 0.9

0.44

0.48

0.52

0.56

0.6 0.7 0.8 0.9 1q
0.8

0.85

0.9

0.95

0.6 0.7 0.8 0.9 1q

Figure 2.3: Revenue/Total expenditure when vh = 1 and vl = 0.5: left ph = 0.2;
right ph = 0.9

The above example is consistent with Morath and Münster (2008) in the sense

that the total expected e�ort is lower when q = 1 than when q = 1
2
. The fact
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that players earn higher expected payo� with q ∈ (1
2
, 1) suggests the total expected

e�ort when q ∈ (1
2
, 1) must be lower than when q = 1

2
, i.e., when players receive

uninformative signals about opponents.

2.4 Public signals

Now we turn to public signals. We focus only on the symmetric distribution of

public signals, which are generated as the following:

kh = Pr(s1 = s2 = h|v1 = v2 = vh)

kl = Pr(s1 = s2 = l|v1 = v2 = vl)

r = Pr(s1 = s2 = h|vi 6= v−i)

where kh, kl, r ∈ [0, 1]. kh (kl) is the probability that a high (low) valuation player

receives the signal realization h (l) conditional on both players having high (low)

valuation. r is the probability that a player receives the signal realization h when

players have di�erent valuations. This is summarized in Table 2.1. We refer to the

vector (kh, kl, r) as the "public signal (kh, kl, r)".

(vh, h) (vh, l) (vl, h) (vl, l)

(vh, h) p2
hkh 0 phplr 0

(vh, l) 0 p2
h(1− kh) 0 phpl(1− r)

(vl, h) phplr 0 p2
l (1− kl) 0

(vl, l) 0 phpl(1− r) 0 p2
l kl

Table 2.1: Public signal

Denote by Pr(v−i|vi, si) the probability that player −i has value v−i condi-

tional on player i has value vi and receives signal si. Note that Pr(v−i|vi, si) =

Pr(v−i, s−i|vi, si), e.g. Pr(vh, h|vl, h) = Pr(vh|vl, h), since the signal realization is

59



common knowledge. Thus, the conditional probabilities can be written down as:

Pr(vh|vl, h) =
phr

phr + pl (1− kl)

Pr(vh|vh, h) =
phkh

phkh + plr

Pr(vh|vl, l) =
ph (1− r)

ph (1− r) + plkl

Pr(vh|vh, l) =
ph (1− kh)

ph (1− kh) + pl (1− r)

In order to determine the equilibrium strategies for types of players who receive

signal h, we de�ne the Conditions 2 and 3:

Condition 2. Pr(vl|vh, h)vh > Pr(vl|vl, h)vl;

Condition 3. Pr(vh|vh, h)vh > Pr(vh|vl, h)vl;

To determine the equilibrium strategies for types (vh, l) and (vl, l), we de�ne the

Conditions 4 and 5:

Condition 4. Pr(vl|vh, l)vh > Pr(vl|vl, l)vl;

Condition 5. Pr(vh|vh, l)vh > Pr(vh|vl, l)vl

All the above conditions can again be understood in analogous to the "mono-

tonicity condition" in the previous literature. Indeed, as shown in Proposition 10,

Conditions 2-5 ensures the existence of monotonic strategy equilibrium in which

the player with high valuation randomizes in the support higher than and non-

overlapping with the support of the low valuation player. In addition, we also char-

acterized the unique equilibrium when Conditions ¬2-¬5 are satis�ed, i.e., when the
directions of inequalities in Conditions 2-5 are reversed.3

Before going into the next section, note that Conditions ¬2 and ¬3 cannot be

both satis�ed, as Condition ¬2 implies

Pr(vh|vh, h)vh = vh − Pr(vl|vh, h)vh > vh − Pr(vl|vl, h)vl > Pr(vh|vl, h)vl

which is in contradiction to Condition ¬3. Similarly, Conditions ¬4 and ¬5 cannot
be both satis�ed, as Condition ¬4 implies

Pr(vh|vh, l)vh = vh − Pr(vl|vh, l)vh > vh − Pr(vl|vl, l)vl > Pr(vh|vl, l)vl
3For instances, Condition ¬2 is Pr(vl|vh, h)vh 6 Pr(vl|vl, h)vl, and Condition ¬5 is

Pr(vh|vh, l)vh 6 Pr(vh|vl, l)vl.
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which contradicts Condition ¬5.
Therefore, in the equilibrium analysis we need to consider the cases when the

following conditions are satis�ed: Conditions 2 and 3 (4 and 5), Conditions 2 and

¬3 (4 and ¬5), Conditions ¬2 and 3 (¬4 and 5).

2.4.1 Equilibrium

Proposition 10. When players receive the public signal (kh, kl, r), the unique equi-

librium is symmetric, and all types randomizes over connected supports.

Speci�cally, for type (vh, h) and (vl, h):

• If Conditions 2 and 3 are satis�ed, then type (vl, h) mixes over [0, b(vl,h)] and

(vh, h) mixes over [b(vl,h), b(vh,h)] according to CDF G(vl,h)(b) and G(vh,h)(b),

respectively:

G(vl,h)(b) =
phr + pl (1− kl)
pl (1− kl) vl

b

G(vh,vh)(b) =
phkh + plr

phkhvh
b− vl

vh

pl (1− kl)
phkh

phkh + plr

phr + pl (1− kl)

where b(vl,h) = pl(1−kl)
phr+pl(1−kl)

vl and b(vh,h) = phkh
phkh+plr

vh + b(vl,h).

• If Conditions 2 and ¬3 are satis�ed, then type (vh, h) mixes over [b(vh,h), vl]

according to CDF G(vh,h)(b):

G(vh,h)(b) =
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

ph (r2 − kh (1− kl)) vhvl
b

− (1− kl)
plr + phkh

ph (r2 − kh (1− kl)) vh
(vh − vl)

while type (vl, h) mixes over [b(vh,h), vl] according to CDF G(vl,h)(b):

G(vl,h)(b) =
−kh (phr + pl (1− kl)) vh + r (plr + phkh) vl

pl (r2 − kh (1− kl)) vhvl
b

+r
plr + phkh

pl (r2 − kh (1− kl)) vh
(vh − vl)

and mixes over [0, b(vh,h)] according to CDF G(vl,h)(b):

G(vl,h)(b) =
phr + pl (1− kl)
pl (1− kl) vl

b

where b(vh,h) = (1−kl)(plr+phkh)
r(phr+pl(1−kl))vh−(1−kl)(plr+phkh)

vl (vh − vl) vl.
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• If Conditions ¬2 and 3 are satis�ed, then type (vh, h) mixes over [0, b(vl,h)]

according to CDF G(vh,h)(b):

G(vh,h)(b) =
(1− kl) (phkh + plr) vl − r (phr + pl (1− kl)) vh

ph (kh (1− kl)− r2) vlvh
b

and mixes over [b(vl,h), vh] according to CDF G(vh,h)(b):

G(vh,h)(b) =
phkh + plr

phkhvh
b− plr

phkh

while type (vl, h) mixes over [0, b(vl,h)] according to G(vl,h)(b):

G(vl,h)(b) =
kh (pl (1− kl) + phr) vh − r (plr + phkh) vl

pl (kh (1− kl)− r2) vhvl
b

where b(vl,h) =
pl(kh(1−kl)−r2)vhvl

kh(pl(1−kl)+phr)vh−r(plr+phkh)vl

For type (vh, l) and (vl, l):

• If Conditions 4 and 5 are satis�ed, then type (vl, l) mixes over [0, b(vl,l)] and

type (vh, l) mixes over [b(vl,l), b(vh,l)] according to CDF G(vl,l)(b) and G(vh,l)(b),

respectively:

G(vl,l)(b) =
ph(1− r) + plkl

plklvl
b

G(vh,l)(b) =
ph(1− kh) + pl(1− r)

ph(1− kh)vh
b− vl

vh

plkl
ph(1− kh)

ph(1− kh) + pl(1− r)
ph(1− r) + plkl

where b(vl,l) = plkl
ph(1−r)+plkl

vl and b(vh,l) = ph(1−kh)
ph(1−kh)+pl(1−r)

vh + b(vl,l).

• If Conditions 4 and ¬5 are satis�ed, then type (vh, l) mixes over [b(vh,l)
, vl]

according to CDF G(vh,l)(b):

G(vh,l)(b) =
(1− r) (ph (1− r) + plkl) vh − kl (ph (1− kh) + pl (1− r)) vl

ph((1− r)2 − (1− kh) kl)vhvl
b

−kl
pl (1− r) + ph (1− kh)

ph((1− r)2 − (1− kh) kl)vh
(vh − vl)

while type (vl, l) mixes over [b(vh,l)
, vl] according to CDF G(vl,l)(b)

G(vl,l)(b) =
− (1− kh) (ph (1− r) + plkl) vh + (1− r) (pl (1− r) + ph (1− kh)) vl

pl((1− r)2 − (1− kh) kl)vhvl
b

+ (1− r) pl (1− r) + ph (1− kh)
pl((1− r)2 − (1− kh) kl)vh

(vh − vl)
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and mixes over [0, b(vh,l)
] according to CDF G(vl,l)(b)

G(vl,l)(b) =
ph(1− r) + plkl

plklvl
b,

where b(vh,l)
= kl(ph(1−kh)+pl(1−r))

(1−r)(plkl+ph(1−r))vh−kl(ph(1−kh)+pl(1−r))vl
(vh − vl) vl.

• If Conditions ¬4 and 5 are satis�ed, then type (vh, l) mixes over [0, b(vl,l)]

according to CDF G(vh,l)(b):

G(vh,l)(b) =
kl (ph(1− kh) + pl(1− r)) vl − (1− r) (ph(1− r) + plkl) vh

ph ((1− kh)kl − (1− r)2) vlvh
b

and mixes over [b(vl,l), vh] according to CDF G(vh,l)(b):

G(vh,l)(b) =
ph(1− kh) + pl(1− r)

ph(1− kh)vh
b− pl(1− r)

ph(1− kh)

while type (vl, l) mixes over [0, b(vl,l)] according to CDF G(vl,h)(b):

G(vl,h)(b) =
kh (ph(1− r) + plkl) vh − r (ph(1− kh) + pl(1− r)) vl

pl ((1− kh)kl − (1− r)2) vhvl
b

where b(vl,l) = pl((1−kh)kl−(1−r)2)vhvl
(plkl+ph(1−r))(1−kh)vh−(1−r)(ph(1−kh)+pl(1−r))vl

.

See the following for a numerical example for the structure of the equilibrium

when players receive "h". The structure of the equilibrium when players receive "l"

is qualitatively the same.

Example 2. Suppose ph = 1
2
, vh = 2, vl = 1. When (kh, kl, r) = (2

3
, 2

3
, 1

3
), then

Conditions 2 and 3 are satis�ed. Thus, the corresponding equilibrium mixed strategy

is given in the left panel of the Figure 2.4. When (kh, kl, r) = ( 1
10
, 2

3
, 1

3
), then Condi-

tions 2 and ¬3 are satis�ed. Thus, the corresponding equilibrium mixed strategy is

given in the middle panel of the Figure 2.4. When (kh, kl, r) = (2
3
, 2

3
, 1

10
), then Con-

ditions ¬2 and 3 are satis�ed. Thus, the corresponding equilibrium mixed strategy

is given in the right panel of the Figure 2.4.

2.4.2 Optimal public signal

Given the equilibrium strategy we can identify the optimal information structure

which maximizes each player's expected payo�.

Proposition 11. Player i's maximum expected payo� is min{ph(vh − vl), phplvh}.
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b(vl,h)

(vl, h)

(vh, h)

b(vh,h)

1

0
b

CDF

b(vh,h)

(vl, h)

(vh, h)

vl

1

0
b

CDF

b(vl,h)

(vl, h)

(vh, h)

vh

1

0
b

CDF

Figure 2.4: Equilibrium mixed strategies when vh = 2, vl = 1 and ph = 0.5.
(kh, kl, r): left: (2

3
, 2

3
, 1

3
); middle ( 1

10
, 2

3
, 1

3
); right: (2

3
, 2

3
, 1

10
).

When phvh ≥ vl the maximum expected payo� is phplvh and when phvh ≤ vl

the maximum expected payo� is ph(vh − vl). See Table 2.2 and Table 2.3 for two

examples of the public signal which maximizes expected payo� of each player.

(vh, h) (vh, l) (vl, h) (vl, l)

(vh, h) p2
h 0 phpl 0

(vh, l) 0 0 0 0

(vl, h) phpl 0 0 0

(vl, l) 0 0 0 p2
l

Table 2.2: The optimal public signal
under Conditions 2, 3, 4 and 5

(vh, h) (vh, l) (vl, h) (vl, l)

(vh, h) 0 0 0 0

(vh, l) 0 p2
h 0 phpl

(vl, h) 0 0 p2
l 0

(vl, l) 0 phpl 0 0

Table 2.3: The optimal public signal
under Conditions ¬2, 3, 4 and ¬5

There are some common features of the two examples: 1) the high valuation

player only receives one of the signal realizations (in Table 2.2 the high valuation

type only receives h whereas in Table 2.3 the high valuation type only receives l),

and when she does so she cannot di�erentiate the valuation of the opponent; 2) the

low valuation type of player either only competes against a high valuation type or

only competes against a low valuation type, i.e., she can di�erentiate her opponent's

valuation. This drives the low valuation types to choose zero e�ort with probability

1 when competing against a high valuation type, and the high valuation player

randomizes in an interval with the lower bound equals zero.

The examples given in Tables 2.2 and 2.3 are consistent with the studies concern-

ing the partial disclosure policy {C,C,D} in the all-pay auction (Lu et al., 2016)

and in Tullock contest (Serena, 2015). In particular, such a disclosure policy requires

concealment of valuation pro�le when it is {vh, vh} or {vl, vl}, and fully disclose the
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pro�le to both players when it is {vh, vl}.4 Proposition 12 below indicates that there

exists a much broader set of public signals than {C,C,D} or the signals given in

Table 2.2 and 2.3, which maximize each player's expected payo�.

Proposition 12. There exists an open set of public signal (kh, kl, r) which maximizes

player i's (i = 1, 2) expected payo�.

See an example to understand Proposition 12. Suppose Conditions 2, ¬3, 4 and
¬5 are satis�ed, then the expected payo� of the player is always ph(vh − vl). In the

equilibrium under this combination of conditions, type (vh, h) of player i mixes over

[b(vh,h), vl] and type (vh, l) of player i mixes over [b(vh,l)
, vl], thus a player with high

valuation earns vh − vl. But a player with low valuation mixes over [0, vl] and thus,

earns zero. Therefore, whenever phvh ≤ vl, we can use any public signal satisfying

Conditions 2, ¬3, 4 and ¬5 to maximize players' expected payo�. Since the values

(kh, kl, r) satisfying these conditions are not unique, the proposition follows.

2.5 Comparing private and public signals

In this section, we compare private and public signals in terms of increasing players'

expected payo�s or the total expected e�ort. We start by showing some numerical

examples which suggest that there is no general ranking between the two signals

in terms of increasing players' expected payo�s. On the one hand, the following

example suggests expected payo� can be larger with public than private signals.

Example 3. Suppose ph = 1
2
, vh = 2 and vl = 1. According to Proposition 11,

the maximum expected payo� for player i with public signals is phplvh = ph(vh −
vl) = 1

2
. The expected payo� with private signals in non-overlapping equilibrium

is −5
2

(
q − 13

20

)2
+ 49

160
which takes the maximum at 49

160
< 1

2
when q = 13

20
, and with

overlapping equilibrium is 23
36
− 1

9(3q−1)
− 1

3
q which takes the maximum at 11

36
< 1

2
when

q = 2
3
.

On the other hand, the following example suggests the expected payo� with

private signals can be larger than ph(vh − vl), i.e., the maximum expected payo� of

each player with public signals when phvh 6 vl.

Example 4. Suppose ph = 2
10
, vh = 2, vl = 1 and q = 0.7. Firstly, note that

the cuto� value of q is 2
3
, thus with private signals the set of parameters entails

an overlapping equilibrium, thus the expected payo� is 0.2297. Secondly, note also

4Since the disclosure policy they consider is anonymous, {vh, vl} represents any valuation pro�le
when the two players' valuations are di�erent.
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that phvh − vl = −0.6 < 0, thus the maximum expected payo� with public signals is

ph(vh − vl) = 0.2 < 0.2297.

Similarly, the following example suggests the expected payo� with private signals

can be larger than phplvh, i.e., the maximum expected payo� of each player with

public signals when phvh > vl.

Example 5. Suppose ph = 1
2
, vh = 100, vl = 1 and q = 0.7. Firstly, note that

the cuto� value q∗ is 100
101

, thus with private signals the set of parameters entail a

non-overlapping equilibrium, thus the expected payo� is 27.844. Secondly, note also

that phvh − vl = 49 > 0, thus the maximum expected payo� with public signals is

phplvh = 25 < 27.844.

Let us turn to the comparison of signals in terms of increasing total expected

e�ort. Recall that Proposition 9 indicates that the total expected e�ort with private

signals when q ∈ (1
2
, 1) is always lower than when q = 1

2
. Thus, if there exists an

example in which the total expected e�ort with public signals is higher than that

in the IPV setting, i.e., q = 1
2
, then it must be true that public signals outperform

private signals.

Proposition 13. There exists an open set of public signals with which the total

expected e�ort in the contest is higher than that with any private signal.

Again, we provide an example showing that the total expected e�ort can be

higher with public signal than in IPV setting.

Example 6. Suppose (kh, kl, r) = ( 1
10
, 2

3
, 1

3
) and ph = 1

2
, vh = 2, vl = 1. The total

expected e�ort in this case is 1.2553, which is larger than the expected e�ort in the

IPV setting, p2
hvh + (1− p2

h)vl = 1.25.

Recall that private signals always lower total expected e�ort, thus the exam-

ple indicates that the public signal dominates private signal in maximizing total

expected e�ort.

2.6 Conclusion

When players receive additional information regarding the opponent's valuation,

they are always better o� if the information is disclosed through conditional in-

dependent signals. They may be worse o� if the information is disclosed through

public signals. To maximize total expected e�ort, it is advised to disclose informa-

tion through some public signals.
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There are multiple directions to generalize the current paper. Firstly, the signals

can be partially correlated and/or take more than two values. Since none of the

two information structure considered in the current paper dominants the other, it

can then be expected that a partially correlated signal might perform better. Sec-

ondly, there is an emerging literature on auctions with general information structure

(Bergemann et al., 2015). It is also interesting to consider the lower or upper bound

of players' expected payo� or total expected e�ort when there is no restrictions on

information structure.

2.7 Appendix

Proof of Proposition 8

Proof. The non-overlapping part is proven by showing that no pro�table deviation

exists. Here, we show the process of checking type (vh, h)'s pro�table deviation.

The checking of other types' deviation can be done in the same fashion and thus is

omitted.

The expected payo� of type (vh, h) when choosing an e�ort within her own

equilibrium support, (b(vh,l), b(vh,h)):

pl(1− q) + phq(1− q)
pl(1− q) + phq

+
phq

2

pl(1− q) + phq
G(vh,h)(b)vh − b

Plug in (vh, h)'s mixed strategy G(vh,h)(b), the expected payo� is vh− b̄(vh,h), which is

exactly her equilibrium payo�. Now we check whether type (vh, h) want to deviate

to the supports of other players.

If type (vh, h) deviate to (vh, l) 's support, the expected payo� becomes{
pl(1− q)

pl(1− q) + phq
+

phq(1− q)
pl(1− q) + phq

G(vh,l)(b)

}
vh − b

plug in the equilibrium mixed strategy of (vh, l), G(vh,l), and rearrange, the parameter

of e�ort, b, becomes
plq + ph(1− q)
pl(1− q) + phq

q

1− q
− 1 (2.1)

which is also the �rst order derivative of the above expected payo� function w.r.t

b. If ph 6 pl, that is, expression (2.1) is positive, then type (vh, h) can increase

her payo� by increasing b, until it reaches the upper bound of (vh, l)'s support,

b(vh,l), which is also the lower bound of (vh, h)'s support. This suggests deviating to

(vh, l)'s support is not pro�table. If, however, ph > pl and thus (2.1) is negative,
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type (vh, h) should choose the lower bound of (vh, l)'s support, b(vl,l), instead of any

e�ort higher. Thus we need to check whether the expected payo� of choosing b(vl,l)

is higher than (vh, h)'s equilibrium expected payo� when choosing an e�ort within

her own support.

Let (vh, h)'s equilibrium expected payo� be π∗(vh,h) and her payo� from choosing

b(vl,l) be π(vh,h)(b(vl,l)), then the di�erence between the two:

π∗(vh,h) − π(vh,h)(b(vl,l)) = ph(1− q)
[

q

phq + pl(1− q)
− 1− q
ph(1− q) + plq

]
vh > 0

Thus we have shown that type (vh, h) do not want to deviate to (vh, l)'s support.

An important observation is that the expected payo� from a type deviate to another

type's support is always a linear function of b, due to the all-pay rule. This fact

ensures no strictly pro�t maximizing e�ort exists between the boundaries of any

types' support. This means a simpler way of checking the equilibrium is to compare

the equilibrium payo�s of each type with the payo�s from choosing each types' upper

bounds of their equilibrium supports.

Now the only thing left to check is the pro�tability of choosing b(vl,h) and zero.

When (vh, h) chooses b(vl,h), the expected payo� is

(1− p)(1− q)q
pq + (1− p)(1− q)

vh −
(1− p)(1− q)2

pq + (1− p)(1− q)
vl

The gap between her equilibrium expected payo� and the above is:

(1− p)(1− q)
pq + (1− p)(1− q)

[(1− q)vh − qvl]

which is positive when (1 − q)vh > qvl. It is trivial to show that choosing zero

cannot be more pro�table. Thus it is not pro�table for (vh, h) to choose outside of

her equilibrium support.

When qvl > (1−q)vh, the proof, again, consists of showing the indi�erence when
choosing an e�ort inside the equilibrium support, and no pro�table deviation exists.

It is easy to check that all types are indi�erent when choosing an e�ort in [b, b], thus

it is omitted. Here, we show that type (vh, h) doesn't �nd it pro�table to deviate

on [0, b] and that type (vh, l) doesn't want to deviate to [b, b(vh,h)].

If type (vh, h) deviate to (0, b), then the expected payo� is

pl(1− q)q
phq + pl(1− q)

G(vl,h)(b)vh − b =
qvh − (1− q)vl

(1− q) vl
b
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is increasing with b since qvh > (1− q)vl.
If type (vh, l) deviate to (0, b)

plq
2

ph(1− q) + phq
G(vl,h)(b)vh−b =

q2((1− q)pl + phq)vh − (1− q)2 (ph(1− q) + plq) vl

vl (q − 1)2 (ph(1− q) + plq)
b

It's increasing because

q2(phq + (1− q)pl)vh − (1− q)2 (ph(1− q) + plq) vl

> q2(phq + (1− q)pl)vl − (1− q)2 (ph(1− q) + qpl) vl

= (2q − 1)
(
ph(1− q) + phq

2 + qpl(1− q)
)
vl > 0

If type (vl, l) deviate to (0, b), the expected payo�:

ph(2q − 1)

(1− q) (ph(1− q) + plq)
b

increasing with b.

If type (vh, l) deviate to (b, b(vh,h)), the parameter of b in the expected payo�

−pl(2q − 1)

q (ph(1− q) + plq)
b

decreasing with b.

If type (vl, l) deviate to (b, b(vh,h)), the parameter of b in the expected payo�:

(1− q)2 (phq + pl(1− q)) vl − q2 (ph(1− q) + plq) vh
q2vh (ph(1− q) + plq)

<
(1− q)2 (phq + pl(1− q))− q2 (ph(1− q) + plq)

q2vh (ph(1− q) + plq)
vl

= −(2q − 1) (q(ph (1− q) + plq) + (1− q)pl)
q2vh (ph(1− q) + plq)

vl < 0

If type (vl, h) deviate to (b, b(vh,h)), the parameter of b in the expected payo�:

(1− q)vl − qvh)
qvh

= −qvh − (1− q)vl
qvh

< 0

Thus no type has pro�table deviation. The uniqueness of the symmetric equilibrium

is proven in the �rst chapter of this thesis.
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Proof of Proposition 9

Proof. Note �rst that when q = 1
2
, the model is equivalent to the IPV setting and

thus it is well known that the expected payo� of a player is phpl(vh − vl). Note also
that when q = 1, the model is equivalent to the complete information setting, thus

the expected payo� of a generic player is also phpl(vh − vl).
Under non-overlapping equilibrium, that is, when (1− q)vh ≥ qvl, the expected

payo� of each type are the following:

(vh, h)'s payo�:

πove(vh,h) = vh −
phq

2vh + pl(1− q)2vl
phq + pl(1− q)

− plq
2vl + ph(1− q)2vh
ph(1− q) + plq

(vh, l)'s payo�:

πove(vh,l)
=

plqvh − plq2vl
ph(1− q) + plq

− pl(1− q)2vl
phq + pl(1− q)

(vl, l)'s payo�:

πove(vl,l)
=

plq(1− q)vl
ph(1− q) + plq

− pl(1− q)2vl
phq + pl(1− q)

(vl, h)'s payo�: πove(vl,h) = 0

Thus, the ex ante expected payo� of a player is

π = p((phq + pl(1− q))πove(vh,h) + (ph(1− q) + plq)π
ove
(vh,l)

) + pl(ph(1− q) + plq)π
ove
(vl,l)

= phpl(vh − vl) + phpl(2q − 1)[
ph(1− q)(phq + pl(1− q))vh

(ph(1− q) + plq)(phq + pl(1− q))

− (−ph − q − 3phq
2 − p2

hq + 2p2
hq

2 + 4phq + q2)vl
(ph(1− q) + plq)(phq + pl(1− q))

]

> phpl(vh − vl) + ph(2q − 1)
pl(1− q)vl

phq + pl(1− q)
> phpl(vh − vl)

The greater equality used the condition (1− q)vh ≥ qvl. Recall that both SPA and

the non-overlapping equilibrium in the model ensures e�cient allocation, thus the

social surplus are the same across the two auctions. The total expected e�ort is thus

higher in SPA than in APA.

If (1 − q)vh 6 qvl, i.e., under overlapping equilibrium, the expected payo� are

the following:
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(vh, h)'s payo�:

πnon(vh,h) = vh − b(vh,h)

=
pl(1− q)

phq + pl(1− q)
(vh − vl)

(vh, l)'s payo�:

πnon(vh,l)
=

plq
2

ph(1− q) + plq
G(vl,h)(b)vh − b

=
(vh − vl)

qvh − (1− q)vl
(

plq
2

ph(1− q) + plq
vh −

pl(1− q)2)

phq + pl(1− q)
vl)

(vl, l)'s payo�:

πnon(vl,l)
=

plq(1− q)
ph(1− q) + plq

G(vl,h)(b)vl − b

=
(1− q)vl

qvh − (1− q)vl
(

q

ph(1− q) + plq
− (1− q)
phq + pl(1− q)

)pl(vh − vl)

(vl, h)'s payo�: πnon(vl,h) = 0.

Thus player's surplus

π = phpl(vh − vl)
q(phq + pl(1− q))vh − (1− q)(−ph − 3q + 2phq + 2)vl

(qvh − (1− q)vl)(phq + pl(1− q))

= phpl(vh − vl)(1 +
(1− q)(2q − 1)vl

(qvh − (1− q)vl)(phq + pl(1− q))
)

> phpl(vh − vl)

This completes the proof of the �rst part of the equilibrium, now we turn to the

second part. The social surplus, SS, is p2
l vl + (1 − p2

l )vh in the non-overlapping

equilibrium as the allocation is e�cient, and is less than that in the overlapping

equilibrium. Proposition 9 shows each player's expected payo� when q ∈ (1
2
, 1) is

higher than when q = 1
2
, 1, i.e., π(q) > phpl(vh − vl). Thus the total expected e�ort

equals the social surplus minus the joint expected payo� of players which is

R = SS − 2π(q)

6 p2
l vl + (1− p2

l )vh − 2π

< p2
l vl + (1− p2

l )vh − 2phpl(vh − vl)

= p2
hvh + (1− p2

h)vl
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This completes the proof.

Proof of Proposition 10

Lemmas 10, 11, 12 proves that the strategy pro�le given under the Conditions 2 and

3 is indeed the unique equilibrium.

Lemma 10. When Conditions 2 and 3 are satis�ed, then types (vh, h) and (vl, h)

randomize in non-overlapping supports. Furthermore, the support of type (vh, h) is

higher than the support of (vl, h).

Proof. For the �rst part of the lemma, suppose both the two types randomize in an

interval, then in this interval it must be true that(
phkh

phkh + plr
G(vh,h) +

plr

phkh + plr
G(vl,h)

)
vh − b = K(vh,h)(

phr

phr + pl(1− kl)
G(vh,h) +

pl(1− kl)
phr + pl(1− kl)

G(vl,h)

)
vl − b = K(vl,h)

Thus,

G(vh,h)(b) =
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

ph (r2 − kh (1− kl)) vhvl
b

− (1− kl)
plr + phkh

ph (r2 − kh (1− kl)) vh
(vh − vl)

G(vl,h)(b) =

{
−kh(phr+pl(1−kl))vh+r(plr+phkh)vl

pl(r2−kh(1−kl))vhvl
b+ r(plr+phkh)(vh−vl)

pl(r2−kh(1−kl))vh
, for b ∈ [b(vh,h), vl]

phr+pl(1−kl)
pl(1−kl)vl

b, for b ∈ [0, b(vh,h)]

In this case, the slop of G(vh,h)(b) is

r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl
ph (r2 − kh (1− kl)) vhvl

= (phr + pl (1− kl)) (phkh + plr)

plr
(phkh+plr)

vh − pl(1−kl)
(phr+pl(1−kl))

vl

plph (r2 − kh (1− kl)) vhvl

In this case, the slop of G(vl,h)(b) is

−kh (phr + pl (1− kl)) vh + r (plr + phkh) vl
pl (r2 − kh (1− kl)) vhvl

= (phr + pl (1− kl)) (plr + phkh)

phr
(phr+pl(1−kl))

vl − phkh
(plr+phkh)

vh

phpl (r2 − kh (1− kl)) vhvl

For the slop of G(vh,h)(b) to be positive and the Condition 2 to be satis�ed, it must
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be true that (r2 − kh (1− kl)) > 0, for the slop of G(vl,h)(b) to be positive and

the Condition 3 to be satis�ed, it must be true that (r2 − kh (1− kl)) < 0. Thus,

when Conditions 2 and 3 both satis�ed, type (vh, h) and (vl, h)'s support cannot be

overlapping.

Now we prove that the support of (vh, h) must be higher than the support of

(vl, h). Suppose instead that the type (vl, h) mixes over the interval [̂b, b̃], but the

type (vh, h) randomizes in the interval [0, b̂], as the lowest possible e�ort for each

player must be 0. However, this then implies type (vh, h) must earns an expected

payo� of 0, which cannot be true in any equilibrium as she can also deviate by

choosing vl to earn positive payo�.

Lemma 11. When Conditions 2 and 3 are satis�ed, the mixed strategies given in

the proposition form a symmetric equilibrium.

Proof. When Conditions 2 and 3 are satis�ed, we �rst show that a player with type

(vl, h) is indi�erent in the equilibrium support. By plugging in the mixed strategy

G(vl,h)(b) in equilibrium, the expected payo� indeed equals zero:

G(vl,h)(b)
pl (1− kl)

phr + pl (1− kl)
vl − b = 0

For type (vh, h), we plug in G(vh,h)(b) and the expected payo� is also constant and

equals the expected payo� given in the proposition:(
plr

phkh + plr
+G(vh,h)(b)

phkh
phkh + plr

)
vh − b =

plr

phkh + plr
vh −

pl (1− kl)
phr + pl (1− kl)

vl

Note that Condition 2 guarantees the expected payo� of type (vh, h) is non-negative.

Now we check for pro�table deviations when each type deviates to choose outside

of her equilibrium support. When type (vh, h) deviate to the support of (vl, h), the

expected payo� becomes

G(vl,h)(b)
plr

phkh + plr
vh − b

=
phr + pl (1− kl)
pl (1− kl) vl

b
plr

phkh + plr
vh − b

=

(
r

(1− kl)
phr + pl (1− kl)
phkh + plr

vh
vl
− 1

)
b

This expected payo� is increasing with b given the Condition 2 is satis�ed. Thus,

type (vh, h) does not want to deviate to the support of (vl, h). When type (vl, h)
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deviates to the support of (vh, h), the expected payo� is:(
pl (1− kl)

phr + pl (1− kl)
+G(vh,h)(b)

phr

phr + pl (1− kl)

)
vl − b

=
pl (1− kl)

phr + pl (1− kl)
vl

+

(
phkh + plr

phkhvh
b− vl

vh

pl (1− kl)
phkh

phkh + plr

phr + pl (1− kl)

)
phr

phr + pl (1− kl)
vl − b

=

(
vl
vh

r

kh

phkh + plr

phr + pl (1− kl)
− 1

)
b

+ vl

(
pl (1− kl)

phr + pl (1− kl)
− vl
vh

(1− kl)
kh

plr
rpl + khph

(rph + (1− kl) pl)2

)
This expected payo� is decreasing in b given the condition if Condition 3 is satis�ed.

Thus, this is not a pro�table deviation.

Lemma 12. When Conditions 2 and 3 are satis�ed, then there is no asymmetric

equilibrium.

Proof. Denote by b1(vh,h) and b2(vh,h) the upper bound of equilibrium support of

player 1 and 2, respectively. From a similar argument from the proof of Lemma

above, for both players the type (vh, h) must choose higher than (vl, h). Thus, it

must be true in any equilibrium that b1(vh,h) = b2(vh,h). If there exists an asymmetric

equilibrium, then it must be true that b1(vl,h) 6= b2(vl,h). Suppose without loss that

b1(vl,h) > b2(vl,h). Since type (vl, h) of player 1 is indi�erent between any e�ort in

[0, b2(vl,h)], thus her expected payo�

pl(1− kl)
phr + pl(1− kl)

G2(vl,h)(b)vl − b = 0

which gives

G2(vl,h)(b) =
phr + pl(1− kl)
pl(1− kl)vl

b

and b2(vl,h) = pl(1−kl)vl
phr+pl(1−kl)

= b(vl,h) as given in the proposition. Since type (vl, h) of

player 2 is also indi�erent between any e�ort in [0, b2(vl,h)], thus her expected payo�

pl(1− kl)
phr + pl(1− kl)

G1(vl,h)(b)vl − b = 0

which then gives

G1(vl,h)(b) =
phr + pl(1− kl)
pl(1− kl)vl

b

and it can be shown that G1(vl,h)(b(vl,h)) = 1. Thus, it must be true that b1(vl,h) =
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b2(vl,h).

Lemmas 13, 14, 15 proves that the strategy pro�le given under the Conditions 2

and ¬3 is indeed the unique equilibrium.

Lemma 13. When Conditions 2 and ¬3 are satis�ed, then in any equilibrium types

(vh, h) and (vl, h) randomize in overlapping supports. Furthermore, the upper bound

of supports b(vh,h) = b(vl,h). Finally, the expected payo� of (vl, h) must be 0 and the

expected payo� of (vh, h) must be vh − vl.

Proof. Suppose types (vh, h) and (vl, h) randomize in non-overlapping equilibrium.

Then the support of (vh, h) must be higher than (vl, h), thus type (vl, h)'s expected

payo� must be zero. However, by choosing b(vh,h) the type (vl, h)'s expected payo�

must be vl − b(vh,h) = phr
phr+pl(1−kl)

vl − phkh
phkh+plr

vh > 0, as the Condition ¬3 is strictly

satis�ed. Thus, in any symmetric equilibrium it cannot be true that the supports

are overlapping.

In any symmetric equilibrium, it cannot be true that both types earn positive

payo�, as one of the types must have the lower bound of support equals 0. Suppose

both types have lower bound equals 0, then both earn a payo� of 0. In that case,

the indi�erence conditions in the overlapping interval of their supports are(
phkh

phkh + plr
G(vh,h)(b) +

plr

phkh + plr
G(vl,h)(b)

)
vh − b = 0(

phr

phr + pl(1− kl)
G(vh,h)(b) +

pl(1− kl)
phr + pl(1− kl)

G(vl,h)(b)

)
vl − b = 0

and thus

G(vh,h)(b) =
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

ph (r2 − kh (1− kl)) vhvl
b

G(vl,h)(b) =
−kh (phr + pl (1− kl)) vh + r (phkh + plr) vl

pl (r2 − kh (1− kl)) vhvl
b

By letting G(vh,h)(b) = G(vl,h)(b) = 1, we have

b(vh,h) =
phpl (r

2 − kh (1− kl)) vhvl
(phr + pl (1− kl)) (phkh + plr)

1
plr

(phkh+plr)
vh − pl(1−kl)

(phr+pl(1−kl))
vl

and

b(vl,h) =
phpl (r

2 − kh (1− kl)) vhvl
(phr + pl (1− kl)) (plr + phkh)

1

− phkh
(plr+phkh)

vh + phr
(phr+pl(1−kl))

vl
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thus

b(vh,h) − b(vl,h)

=
phpl (r

2 − kh (1− kl)) vhvl
(phr + pl (1− kl)) (phkh + plr)

(
1

plrvh
(phkh+plr)

− pl(1−kl)vl
(phr+pl(1−kl))

− 1
phrvl

(phr+pl(1−kl))
− phkhvh

(plr+phkh)

)

<
phpl (r

2 − kh (1− kl)) vh
(phr + pl (1− kl)) (phkh + plr)

(
1

plr
(phkh+plr)

− pl(1−kl)
(phr+pl(1−kl))

− 1
plr

(plr+phkh)
− pl(1−kl)

(phr+pl(1−kl))

)
= 0

This means b(vh,h) < b(vl,h). Then it must be true that b(vl,h) 6 vl as any e�ort above

vl is strictly dominated to type (vl, h). But then type (vh, h) has an incentive to

choose b(vl,h) to earn vh − b(vl,h) > vh − vl > 0. Thus, it cannot be true that both

types have lower bound of support equals 0.

So the only case left is type (vh, h) earns positive expected payo� whereas type

(vl, h) earns 0. Thus, the lower bound of (vh, h)'s support must be positive. It

cannot be true that b(vh,h) < b(vl,h) < vl, as then the expected payo� of (vl, h) would

be positive. It cannot be true that b(vh,h) < b(vl,h) = vl, as type (vh, h) will increase

the e�ort until b(vl,h) in the interval [b(vh,h), b(vl,h)]. In particular, we have for type

(vl, h) in the interval [b(vh,h), b(vl,h)] that:(
pl(1− kl)

phr + pl(1− kl)
G(vl,h)(b) +

phr

phr + pl(1− kl)

)
vl − b = 0

thus

G(vl,h)(b) =
phr + pl(1− kl)

pl(1− kl)
b

vl
− phr

pl(1− kl)

Now if type (vh, h) increase the e�ort from b(vh,h) to b ∈ (b(vh,h), b(vl,h)) the expected

payo� increases by

plr

phkh + plr

[
G(vl,h)(b)−G(vl,h)(b(vh,h))

]
vh −

[
b− b(vh,h)

]
=

[
plr

phkh + plr

phr + pl(1− kl)
pl(1− kl)

vh
vl
− 1

] [
b− b(vh,h)

]
> 0

According to Condition 2 this is positive. Thus we must have b(vh,h) > b(vl,h). Sup-

pose b(vh,h) > b(vl,h), then in the interval [b(vl,h), b(vh,h)], type (vh, h) must be indi�er-

ent (
phkh

phkh + plr
G(vh,h)(b) +

plr

phkh + plr

)
vh − b = π̂(vh,h)
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nd thus the mixed strategy is

G(vh,h)(b) =
phkh + plr

phkh

b+ π̂(vh,h)

vh
− plr

phkh

If type (vl, l) increases her e�ort from b(vl,h) to b ∈ (b(vl,h), b(vh,h)) then the expected

payo� increases by

phr

phr + pl(1− kl)
[
G(vh,h)(b)−G(vh,h)(b(vl,h))

]
vl −

[
b− b(vl,h)

]
=

[
phr

phr + pl(1− kl)
phkh + plr

phkh

vl
vh
− 1

] [
b− b(vl,h)

]
> 0

According to Condition ¬3 this is positive. Thus, it must be true that b(vh,h) = b(vl,h).

Consider the interval [b(vh,h), b(vh,h)], where type (vh, h) and (vl, h)'s indi�erence con-

ditions must be(
phkh

phkh + plr
G(vh,h)(b) +

plr

phkh + plr
G(vl,h)(b)

)
vh − b = π̂(vh,h)(

phr

phr + pl(1− kl)
G(vh,h)(b) +

pl(1− kl)
phr + pl(1− kl)

G(vl,h)(b)

)
vl − b = 0

and thus

G(vh,h)(b) =
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

ph (r2 − kh (1− kl)) vhvl
b

− (1− kl)
plr + phkh

ph (r2 − kh (1− kl)) vh
π̂(vh,h)

G(vl,h)(b) =
−kh (phr + pl (1− kl)) vh + r (plr + phkh) vl

pl (r2 − kh (1− kl)) vhvl
b+ r

plr + phkh
pl (r2 − kh (1− kl)) vh

π̂(vh,h)

Given that b(vh,h) = b(vl,h) = β, we have G(vh,h)(β) = G(vl,h)(β) = 1, this implies

π̂(vh,h) = vh − vl and β = vl.

Lemma 14. When Conditions 2 and ¬3 are satis�ed, the mixed strategies given in

the proposition form a symmetric equilibrium.

Proof. When Conditions 2 and ¬3 are satis�ed, we show that type (vl, h) and (vh, h)

are indi�erent in their equilibrium support. In the interval [b(vh,h), vl], for type (vl, h),

the expected payo� is calculated by plugging in the expression of G(vh,h)(b) and

G(vl,h)(b), the expected payo� is zero:(
G(vh,h)(b)

phr

phr + pl (1− kl)
+G(vl,h)(b)

pl (1− kl)
phr + pl (1− kl)

)
vl − b = 0
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Similarly, type (vh, h)'s expected payo� can be shown to be a constant vh − vl:(
G(vh,h)(b)

phkh
phkh + plr

+G(vl,h)(b)
plr

phkh + plr

)
vh − b = vh − vl

Since only type (vl, h) is choosing an e�ort in the interval [0, b(vh,h)], by plug the

G(vl,h)(b) in, her expected payo� in this interval is

G(vl,h)(b)
pl (1− kl)

phr + pl (1− kl)
vl − b = 0

Now we prove that both types do not want to deviate to any e�ort outside

of their equilibrium support. When type (vh, h) deviates to [0, b(vh,h)], then her

expected payo� would be

G(vl,h)(b)
plr

phkh + plr
vh − b

=
phr + pl (1− kl)
pl (1− kl) vl

b
plr

phkh + plr
vh − b

= b
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

vl (1− kl) (rpl + khph)

This is increasing in b.

Lemma 15. When Conditions 2 and ¬3 are satis�ed, then there is no asymmetric

equilibrium.

Proof. If player 1 has b1(vh,h) = b1(vl,h) = vl, then player 2 must have b2(vh,h) =

b2(vl,h) = vl. To see why, suppose b2(vh,h) < b2(vl,h) = vl, then by the same argument

in the previous lemma, type (vh, h) of player 1 is strictly better o� by reallocating

probability mass from the interval (b2(vh,h), b2(vl,h)) to vl. Similarly, if b2(vh,h) = vl >

b2(vl,h), then the previous lemma indicates that type (vl, h) is strictly better o� by

reallocating probability mass from the interval (b2(vl,h), b2(vh,h)) to vl. Thus, it must

be true that b1(vh,h) = b1(vl,h) = b2(vh,h) = b2(vl,h) = vl, which means the expected

payo� are the same as in the unique symmetric equilibrium.

By G1(vh.h)(b1(vh,h)) = 0, it can be checked that b1(vh,h) = b(vh,h) as in the symmet-

ric equilibrium. Similarly, it can be found that b2(vh,h) = b(vh,h) by G2(vh.h)(b2(vh,h)) =

0. Therefore, b1(vh,h) = b2(vh,h) = b(vh,h) in any equilibrium.

Lemmas 16, 17, 18 proves that the strategy pro�le given under the Conditions

¬2 and 3 is indeed the unique equilibrium.
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Lemma 16. When Conditions ¬2 and 3 are satis�ed, then in any equilibrium types

(vh, h) and (vl, h) randomize in overlapping supports. Furthermore, the expected

payo� for both types are zero.

Proof. Suppose (vh, h) and (vl, h) randomize in non-overlapping supports in a sym-

metric equilibrium, then again it must be true that (vh, h)'s support is higher

than (vl, h). This implies type (vh, h)'s expected payo� must be vh − b(vh,h) =
plr

phkh+plr
vh− pl(1−kl)

phr+pl(1−kl)
vl 6 0, as Condition ¬2 is satis�ed. Therefore, the two types

must have overlapping supports.

Again it cannot be true that both types earn positive payo�. Now, suppose type

(vh, h) earns positive payo� and type (vl, h) earns zero. Thus b(vh,h) > b(vl,h) = 0. In

the interval [0, b(vh,h)], type (vl, h)'s indi�erence condition is

pl(1− kl)
phr + pl(1− kl)

G(vl,h)(b)vl − b = 0

thus

G(vl,h)(b) =
phr + pl(1− kl)

pl(1− kl)
b

vl

Now if type (vh, h) decreases her e�ort from b(vh,h) to b ∈
(
0, b(vh,h)

)
, her expected

payo� increses by

plr

phkh + plr

[
G(vl,h)(b)−G(vl,h)(b(vh,h))

]
vh −

[
b− b(vh,h)

]
=

[
plr

phkh + plr

phr + pl(1− kl)
pl(1− kl)

vh
vl
− 1

] [
b− b(vh,h)

]
> 0

According to Condition ¬2, the above is positive. Thus, it is pro�table for type

(vh, h) to decrease the e�ort until 0. This then implies the expected payo� of type

(vh, h) must also be 0. This then implies b(vh,h) = vh, as any vh > b(vh,h) suggests

type (vh, h) earns positive expected payo�.

Lemma 17. When Conditions ¬2 and 3 are satis�ed, the mixed strategies given in

the proposition form a symmetric equilibrium.

Proof. When Conditions ¬2 and 3 are satis�ed, both type (vh, h) and (vl, h) are

indi�erent in the equilibrium support [0, b(vl,h)], and they both get zero:(
G(vh,h)(b)

phr

phr + pl (1− kl)
+G(vl,h)(b)

pl (1− kl)
phr + pl (1− kl)

)
vl − b = 0(

G(vh,h)(b)
phkh

phkh + plr
+G(vl,h)(b)

plr

phkh + plr

)
vh − b = 0
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Type (vh, h) also get zero when choosing an e�ort in [b(vl,h), vh] as(
plr

phkh + plr
+G(vh,h)(b)

phkh
phkh + plr

)
vh − b = 0

Type (vl, h) does not want to deviate to [b(vl,h), vh] as(
G(vh,h)(b)

phr

phr + pl (1− kl)
+

pl (1− kl)
phr + pl (1− kl)

)
vl − b

=

(
r (plr + phkh)

kh (pl (1− kl) + phr)

vl
vh
− 1

)
b+ vl

(
pl (1− kl)

pl (1− kl) + phr
+

r

kh

plr

pl (1− kl) + phr

)
which is decreasing in b. Thus none of the two types want to deviate.

Lemma 18. When Conditions ¬2 and 3 are satis�ed, then there is no asymmetric

equilibrium.

Proof. Only thing to check is that b1(vl,h) = b2(vl,h). Suppose b1(vl,h) > b2(vl,h). Type

(vh, h) and (vl, h) of player 2's expected payo� is(
phkh

phkh + plr
G1(vh,h)(b) +

plr

phkh + plr
G1(vl,h)(b)

)
vh − b = 0(

phr

phr + pl(1− kl)
G1(vh,h)(b) +

pl(1− kl)
phr + pl(1− kl)

G1(vl,h)(b)

)
vl − b = 0

when means

G1(vh,h)(b) =
r (phr + pl (1− kl)) vh − (1− kl) (phkh + plr) vl

ph (r2 − kh (1− kl)) vhvl
b

G1(vl,h)(b) =
−kh (phr + pl (1− kl)) vh + r (plr + phkh) vl

pl (r2 − kh (1− kl)) vhvl
b

Then according to G1(vl,h)(b1(vl,h)) = 1, we have b1(vl,h) = b(vl,h). Similarly we can

�nd G2(vl,h)(b), and according to G2(vl,h)(b2(vl,h)) = 1, we have b2(vl,h) = b(vl,h).

Finally, the part of the proof for types (vh, l) and (vl, l) can be obtained by

exchanging kh with 1− kh, kl with 1− kl and r with 1− r in the above proofs.

Proof of Proposition 11

Proof. Note �rst that there are 3× 3 possible cases as it is not possible to have ¬2
and ¬3 satis�ed simultaneously or ¬4 and ¬5 satis�ed simultaneously.

Case 1: When Conditions 2, ¬3, 4 and ¬5 are satis�ed, then by the equilibrium

strategy given in the Proposition 3, the expected payo�s of each type are: Type
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(vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = vh − vl; type (vl, h)'s expected payo�:

V(vl,h)(kh, kl, r) = 0; and type (vh, l)'s expected payo�: V(vh,l)(kh, kl, r) = vh − vl;

type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) = 0.

Thus, player i's expected payo� is ph (vh − vl) for all values of (kh, kl, r) satisfying

Conditions 2, ¬3, 4 and ¬5. Suppose phvh > vl then according to Condition ¬3

phkh
phkh + plr

vh −
phr

phr + pl (1− kl)
vl

>

(
kh

phkh + plr
− phr

phr + pl (1− kl)

)
vl

And according to Condition ¬5

ph (1− kh)
ph (1− kh) + pl (1− r)

vh −
ph (1− r)

ph (1− r) + plkl
vl

>

(
(1− kh)

ph (1− kh) + pl (1− r)
− ph (1− r)
ph (1− r) + plkl

)
vl

After rearrange, we have (1− kl) kh 6 phr (r − kh) and kl (1− kh) 6 ph (1− r) (kh − r)
which then implies kh = r. But this is inconsistent with ¬3 and ¬5 since we also

have phvh − phr
phr+pl(1−kl)

vl >
pl(1−kl)

phr+pl(1−kl)
vl > 0 which contradicts ¬3; and since we

also have phvh − ph(1−r)
ph(1−r)+plkl

vl >
plkl

ph(1−r)+plkl
vl > 0 which contradicts ¬5. Therefore,

it must be true that phvh ≤ vl, and thus, ph(vh − vl) 6 phplvh.

Case 2: When Conditions 2, 3, 4 and 5 are satis�ed, then the expected payo�s

of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = plr
phkh+plr

vh −
pl(1−kl)

phr+pl(1−kl)
vl; type (vl, h)'s expected: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected

payo�: V(vh,l)(kh, kl, r) = pl(1−r)
ph(1−kh)+pl(1−r)

vh − plkl
ph(1−r)+plkl

vl; type (vl, l)'s expected:

V(vl,l)(kh, kl, r) = 0

Thus, player i's expected payo� is

V (kh, kl, r) = ph (phkh + plr)V(vh,h) + ph (ph (1− kh) + pl (1− r))V(vh,l)

= phplvh −
(

(1− kl)
phkh + plr

phr + pl (1− kl)
+ kl

ph (1− kh) + pl (1− r)
ph(1− r) + plkl

)
phplvl

Note that the expected payo� is maximized if the second term is zero, which is

when kh = kl = r = 1, and the Conditions 2 and 3 now becomes plvh > 0 and phvh−
vl > 0 The Conditions 4 and 5 are irrelevant in this case as the probability of

receiving a signal l is zero for players with vh. Thus, the maximum is phplvh. Note

that Condition 3 implies ph(vh − vl) > phplvh = V (kh, kl, r).

Case 3: When Conditions ¬2, 3, 4 and 5 are satis�ed, then the expected payo�s
of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = 0; type (vl, h)'s
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expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected payo�: V(vh,l)(kh, kl, r) =
pl(1−r)

ph(1−kh)+pl(1−r)
vh − plkl

ph(1−r)+plkl
vl; type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) = 0

Thus, player i's expected payo� is

V (kh, kl, r) = ph (ph (1− kh) + pl (1− r))
(

pl(1− r)
ph(1− kh) + pl(1− r)

vh −
plkl

ph(1− r) + plkl
vl

)
= phpl(1− r)vh −

ph (1− kh) + pl (1− r)
ph(1− r) + plkl

phplklvl

and when kl = r = 0, V (kh, kl, r) reaches its maximum phplvh. Check the conditions

when kl = r = 0 in the order of Conditions ¬2, 3, 4 and 5:

−vl 6 0 and vh > 0
pl

ph(1− kh) + pl
vh − vl > 0 and

ph (1− kh)
ph (1− kh) + pl

vh − vl > 0

Thus Conditions ¬2 and 3 are satis�ed, but Conditions 4 and 5 impose some re-

strictions on kh: kh ∈ [1 − pl
ph

vh−vl
vl

, 1 − pl
ph

vl
vh−vl

]. Since kh is restricted to be

between zero and one, we need 1 − pl
ph

vl
vh−vl

> 0 which implies phvh > vl, thus,

ph(vh − vl) > phplvh = V (kh, kl, r).

Case 4: When Conditions ¬2, 3, ¬4 and 5 are satis�ed, then the expected payo�s
of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = 0; type (vl, h)'s

expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected payo�: V(vh,l)(kh, kl, r) =

0; type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) = 0. Thus, player i's ex ante expected

payo� is 0.

Case 5: When Conditions 2, 3, ¬4 and 5 are satis�ed, then the expected pay-

o�s of each type are: type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = plr
phkh+plr

vh −
pl(1−kl)

phr+pl(1−kl)
vl; type (vl, h)'s expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s ex-

pected payo�: V(vh,l)(kh, kl, r) = 0; type (vl, l)'s expected: V(vl,l)(kh, kl, r) = 0

Thus, player i's ex ante expected payo� is:

V (kh, kl, r) = phplrvh −
phkh + plr

phr + pl (1− kl)
phpl (1− kl) vl

Let kl = r = 1, then it is maximized at phplvh. See below that Conditions ¬4
and 5 are satis�ed, whereas Conditions 2 and 3 impose some restrictions on kh:

kh >
pl
ph

vl
vh−vl

:

pl
phkh + pl

vh > 0 and
phkh

phkh + pl
vh − vl > 0

−vl 6 0 and vh − vl > 0
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Since kh has to be between zero and one, we need pl
ph

vl
vh−vl

6 1 which implies vl 6

phvh, and thus ph(vh − vl) > phplvh.

Case 6: When Conditions ¬2, 3, 4 and ¬5 are satis�ed, then the expected payo�s
of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = 0; type (vl, h)'s

expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected payo�: V(vh,l)(kh, kl, r) =

vh − vl; type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) = 0.

Thus, player i's ex ante expected payo� is:

V (kh, kl, r) = ph (ph (1− kh) + pl (1− r)) (vh − vl)

which is maximized at ph (vh − vl) when kh = r = 0. In this case ¬5 implies

phvh 6 vl, then ph (vh − vl) 6 phplvh

Case 7: When Conditions 2, 3, 4 and ¬5 are satis�ed, then the expected pay-

o�s of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = plr
phkh+plr

vh −
pl(1−kl)

phr+pl(1−kl)
vl; type (vl, h)'s expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s ex-

pected payo�: V(vh,l)(kh, kl, r) = vh−vl; type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) =

0.

Thus, player i's ex ante expected payo� is:

V (kh, kl, r) = ph (phkh + plr)V(vh,h) + ph (ph (1− kh) + pl (1− r))V(vh,l)

= ph (pl + ph (1− kh)) vh − ph
(

1− phr

phr + pl (1− kl)
(phkh + plr)

)
vl

Since the Condition 3 is equivalent of phkhvh − phr
phr+pl(1−kl)

(phkh + plr) vl > 0,

we thus have V (kh, kl, r) 6 ph (vh − vl). In other words, when the Condition 3 is

binding, the expected payo� reaches its maximum of ph (vh − vl). Thus, any public

signal (kh, kl, r) satis�es the Condition 3 when it is binding and satis�es Condition

2, 4, ¬5 maximizes the expected payo�.

Suppose phvh > vl, then ¬5 implies 0 6 ph(1−kh)
ph(1−kh)+pl(1−r)

vh − ph(1−r)
ph(1−r)+plkl

vl >(
(1−kh)

ph(1−kh)+pl(1−r)
− ph(1−r)

ph(1−r)+plkl

)
vl and thus,

(1−kh)
ph(1−kh)+pl(1−r)

6 ph(1−r)
ph(1−r)+plkl

thus kl (1− kh) 6
ph (1− r) (kh − r). Similarly, 3 implies kh

phkh+plr
6 phr

phr+pl(1−kl)
thus (1− kl) kh 6

phr (r − kh). Thus, it must be true that kh = r. Thus, phvh − ph(1−r)
ph(1−r)+plkl

vl >
plkl

ph(1−r)+plkl
vl and ¬5 implies kl = 0. But this is inconsistent with 3 binding, as

phvh − phr
phr+pl

vl > pl
phr+pl

vl > 0. Therefore, we must have phvh 6 vl and thus,

ph (vh − vl) 6 phplvh = V (kh, kl, r).

Case 8: When Conditions 2, ¬3, 4 and 5 are satis�ed, then the expected pay-

o�s of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = vh − vl;

type (vl, h)'s expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected payo�:
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V(vh,l)(kh, kl, r) = pl(1−r)
ph(1−kh)+pl(1−r)

vh − plkl
ph(1−r)+plkl

vl; type (vl, l)'s expected payo�:

V(vl,l)(kh, kl, r) = 0.

Thus, player i's ex ante expected payo� is:

V (kh, kl, r) = ph (phkh + plr)V(vh,h)(kh, kl, r) + ph (ph (1− kh) + pl (1− r))V(vh,l)(kh, kl, r)

= ph (phkh + pl) vh − ph
(
phkh + plr +

ph (1− kh) + pl (1− r)
ph(1− r) + plkl

plkl

)
vl

It is decreasing with kl, thus let kl = 0, and we have

V (kh, kl, r) = ph (phkh (vh − vl)− plrvl) + phplvh

which is increasing with kh and decreasing with r. Now given that kl = 0, the

conditions become the following (in the order of Conditions 2, ¬3, 4 and 5)

plr

phkh + plr
vh −

pl
phr + pl

vl > 0 and
phkh

phkh + plr
vh −

phr

phr + pl
vl 6 0

pl (1− r)
ph(1− kh) + pl(1− r)

vh > 0 and
ph (1− kh)

ph (1− kh) + pl (1− r)
vh − vl > 0

The Condition 5 then implies: ph (vh − vl)− plvl > phkh (vh − vl)− plrvl and thus,

V (kh, kl, r) 6 ph (vh − vl). To reach the maximum, Condition 5 must be binding, i.e.,
ph(1−kh)

ph(1−kh)+pl(1−r)
vh = vl. Suppose phvh > vl, then we have vl = ph(1−kh)

ph(1−kh)+pl(1−r)
vh >

(1−kh)
ph(1−kh)+pl(1−r)

vl thus kh > r. This then violates Condition ¬3 as phkh
phkh+plr

vh −
phr

phr+pl
vl >

(
kh

phkh+plr
− phr

phr+pl

)
vl >

(
1− phr

phr+pl

)
vl > 0. Thus, it must be true that

ph (vh − vl) 6 phplvh.

Case 9: When Conditions 2, ¬3, ¬4 and 5 are satis�ed, then the expected

payo�s of each type are: Type (vh, h)'s expected payo�: V(vh,h)(kh, kl, r) = vh − vl;
type (vl, h)'s expected payo�: V(vl,h)(kh, kl, r) = 0; type (vh, l)'s expected payo�:

V(vh,l)(kh, kl, r) = 0; type (vl, l)'s expected payo�: V(vl,l)(kh, kl, r) = 0.

Thus, player i's ex ante expected payo� is:

V (kh, kl, r) = ph (phkh + plr) (vh − vl)

which is maximized at ph (vh − vl) when kh = r = 1. In this case ¬3 implies

ph(vh − vl) 6 phplvh.

Therefore, the maximum expected payo� is min{phplvh, ph(vh − vl)}.

84



Proof of Proposition 13

Proof. First, we show that with all possible set of parameters of the all-pay auction,

i.e., any ph ∈ (0, 1) and vh > vl, there exists a public signal which raises at least the

same total expected e�ort as the IPV setting, which is the highest total expected

e�ort the all-pay auction can raise with private signal. Suppose kh = r = 1−kl = s,

then it can be easily checked that Conditions 2, 3, 4 and 5 are satis�ed. Thus,

all types randomize in non-overlapping intervals. Furthermore, player i's expected

e�ort equals:

pl(phr + pl(1− kl))
1

2

pl (1− kl)
phr + pl (1− kl)

vl (2.2)

+ ph(phkh + plr)

(
pl (1− kl)

phr + pl (1− kl)
vl +

1

2

phkh
phkh + plr

vh

)
(2.3)

+ pl(ph(1− r) + plkl)
1

2

plkl
ph(1− r) + plkl

vl (2.4)

+ ph(ph(1− kh) + pl(1− r))(
plkl

ph(1− r) + plkl
vl +

1

2

ph(1− kh)
ph(1− kh) + pl(1− r)

vh

)
(2.5)

where (2.2) is pl(phr + pl(1 − kl)) times the expected e�ort of type (vl, h), (2.3) is

ph(phkh + plr) times the expected e�ort of type (vh, h), (2.4) is pl(ph(1− r) + plkl)

times the expected e�ort of type (vl, l), and (2.5) is ph(ph(1− kh) + pl(1− r)) times
the expected e�ort of type (vh, l). Let

kh = r = 1− kl = s ∈ [0, 1], (2.6)

then the above becomes p2
hvh + (1− p2

h)vl which is equivalent of the total expected

e�ort in the IPV setting, i.e., the maximum total expected e�ort with the private

signal. Thus, for any value of ph and vh > vl, we can always let the public signal

satis�es (2.6). This means using public signal can at least raise a total expected

e�ort no less than using private signal.

Next, we provide an example in which public signal raises higher total expected

e�ort.

Example 7. Suppose (kh, kl, r) = ( 1
10
, 2

3
, 1

3
) and ph = 1

2
. The total expected e�ort in

this case is 1.2553, which is larger than the total expected e�ort in the IPV setting,

i.e., 1.25.

Therefore, using public signal, the all-pay auction can always raise a total ex-

pected e�ort equals to that in the IPV setting, and with some set of parameters
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(e.g. the open ball centered at the point (kh, kl, r) = ( 1
10
, 2

3
, 1

3
)), public signal in-

duces higher expected e�ort.
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Chapter 3

Heterogeneous Risk/Loss Aversion in

Complete Information All-Pay

Auctions

Zhuoqiong Chen, David Ong and Ella Segev

Abstract We extend previous theoretical work on n-players complete information

all-pay auction to incorporate heterogeneous risk and loss averse utility functions.

We provide su�cient and necessary conditions for the existence of equilibria with

a given set of active players with any strictly increasing utility functions and char-

acterize the players' equilibrium mixed strategies. Assuming that players can be

ordered by their risk aversion (player a is more risk averse than player b if when-

ever player b prefers a certain payment over a given lottery so will player a), we

�nd that, in equilibrium, the more risk averse players either bid higher (in terms

of �rst order stochastic dominance of their mixed strategy cumulative distribution)

than the less risk averse players and win with higher ex-ante probability � or they

drop out. Furthermore, while each player's expected bid decreases with the other

players' risk aversion, her expected bid increases with her own risk aversion. Thus,

increasing a player's risk aversion creates two opposing e�ects on total expected

bid. A su�cient condition for the total expected bid to decrease with a player's

risk aversion is that this player is relatively more risk averse compared to the rest of

the players. Our �ndings have important implications for the literature on gender

di�erences in competitiveness and for gender diversity in �rms that use personnel

contests for promotions.
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3.1 Introduction

Sunk cost contests, where e�ort is unrecoverable, are pervasive. Especially impor-

tant are those where the winners need only perform slightly better to take all (Frank

and Cook, 2010; Rosen, 1981). These are in e�ect all-pay auctions in their incen-

tive structure. Indeed, all-pay auctions theory has been used to study many types

of contest and tournaments, e.g., rent seeking contest and lobbying (Baye et al.,

1993; Ellingsen, 1991; Hillman and Riley, 1989), election campaigns (Che and Gale,

1998), R&D races (Dasgupta et al., 1982), college admission (Andreoni and Brown-

back, 2014; Hickman, 2014), and job promotion (Rosen, 1986). In these contests,

the risk of lost e�ort, opportunities, or resources to individuals can be signi�cant.

Furthermore, even contests between organizations, like �rms, can involve signi�cant

loss to individuals to the extent that decisions are made by individual CEOs and

managers who care about the consequences of those decisions on their own wel-

fare, through such mechanisms, for example, as options in compensation packages

(Bertrand, 2009), and of course, in promotions and in dismissals based upon relative

performance. However, despite the importance of risk in such contests which can be

modeled as all-pay auctions, the modeling of all-pay auction incentives has generally

been restricted to risk neutral players or to speci�c utility functional forms (Par-

reiras and Rubinchik, 2010; Klose and Schweinzer, 2014) or to local approximations

(Fibich et al., 2006)1. Moreover, in the case of gender, the di�erence in risk aversion

is observable. Observability is important because there is accumulating evidence of

a gender di�erence in risk aversion, where women are found to be more risk averse

than men (Charness and Gneezy, 2012; Croson and Gneezy, 2009). These observ-

able gender di�erences in risk attitudes and their interactions with all-pay auction

incentives in the business world could contribute to an explanation of the paucity

of women among top executives (Bertrand, 2009), particularly in entrepreneurial

settings (Coates et al., 2009).

In order to �ll this gap in the theory of all-pay auctions, we extend Baye,

Kovenock, and De Vries (1996)'s n-player, complete information all-pay auction

model to incorporate heterogeneous risk averse players. We provide su�cient and

necessary conditions for any equilibrium to exist and more importantly, closed-form

solutions to the equilibrium strategies for any strictly increasing utility functions,

focusing on weakly concave utility functions as well as loss averse utility function.

After characterizing equilibrium strategies, we derive novel comparative statistics

1Siegel (2009) gives a general framework of �nding equilibria with heterogeneous players, but
does not explicitly characterize the equilibria or provide comparative statics of heterogeneous risk
averse players as we do here.
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for equilibria in which active players randomize continuously from 0 to the common

value of the prize, given that players can be ordered by their risk aversion (player a

is more risk averse than player b if whenever player b prefers a certain payment over

a given lottery so will player a).

We �nd that, in equilibrium, the more risk averse players either bid higher than

the less risk averse players (in terms of �rst order stochastic dominance of their mixed

strategy cumulative distribution) and win with higher ex-ante probability � or they

drop out. When players are homogeneous in their risk aversion, the total expected

bid decreases with their risk aversion. We �nd, surprisingly, in the heterogeneous

risk aversion case, that while each player's expected bid decreases with the other

players' risk aversion, her expected bid increases with her own risk aversion. Thus,

increasing a player's risk aversion creates two opposing e�ects on total expected

bid. A su�cient condition for the total expected bid to decrease with a player's risk

aversion is that this player is relatively more risk averse compared to the rest of the

players.

With only two risk aversion types of players, we show that the total expected

bid decreases monotonically with the share of the more risk averse players, when

the di�erence between the two types is not too large. Our �ndings have important

implications for the literatures on gender di�erences in competitiveness and for gen-

der diversity in �rms that use personnel contests for promotions. We discuss these

implications after the main results.

3.2 The model

There arem players who have a common valuation, v1 = · · · = vm = v for the prize2.

Players compete in an all-pay auction for one prize by submitting a bid (exerting

an e�ort): xi. The vector of bids is denoted (x1, x2, . . . , xm). The payo� function in

an all-pay auction is given by:

πi(x1, x2, . . . , xm) =

{
−xi if ∃j, xj > xi

vi − xi if xj < xi for all j
.

Moreover, there exists some tie breaking rule to determine the winner in case

there is more than one bidder with the highest bid. Any tie breaking rule is ap-

plicable in our model. We assume that players are risk/loss averse with strictly

2The model we will present can be trivially extended to the case in which one player has
higher valuation, while all other players have the same lower valuation. However, when there are
�nite many possible valuations, the interaction between valuation and risk attitude signi�cantly
complicates the model. We leave this for future work.
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increasing utility functions which we denote by U1(x), U2(x), . . . , Um(x). These util-

ities are common knowledge and potentially di�erent from each other. We discuss

two cases separately: 1) risk averse and 2) loss averse. For case 1), we assume only

continuity and concavity of the utility functions. For case 2), we assume that the

utility functions take the following form:

Ui(x) =


gi(x) if x > 0

0 if x = 0

li(x) if x < 0

, (3.1)

where the utility from gains, gi(x) is a concave function while the utility from losses,

li(x) is a convex function, and both are continuous in their domains.

In this paper, we focus on mixed strategy equilibria. In any such equilibria, any

active player (a player who bids a positive amount with positive probability) i is

indi�erent between all the bids in her equilibrium support. Formally, that means,

ρUi(v − x) + (1− ρ)Ui(−x) = Ui(Eπi (x, b−i)) (3.2)

where x is in the support of the player's equilibrium strategy, ρ denotes the proba-

bility that bidder i wins when she bids x, and Eπi (x, b−i) is the certainty equivalent

of bidding x given the other players bid b−i. We can rewrite equation (3.2) as:

Pr(i wins|x, b−i) = ρ =
Ui(Eπi)− Ui(−x)

Ui(v − x)− Ui(−x)

We de�ne KUi(x) to facilitate the analysis of the mixed strategy equilibria.

KUi(x) =
Ui(0)− Ui(−x)

Ui(v − x)− Ui(−x)
,

In our analysis of equilibria, the equilibrium probability of winning that makes player

i indi�erent between bidding x > 0 and bidding zero (since bidding zero yields a

zero payo� for sure) will be equal to KUi(x). We sometimes abuse notation and

write KUi(x) as Ki(x).

In what follows, we will exploit the following important property of KUi(x). Its

magnitude only depends on player i's risk attitude and not on any other players' risk

attitude or bids. This is already evident in the de�nition. In fact, we will show that

KUi(x) is monotonic in player i's risk aversion in the lemma below. All proofs are in

the Appendix. We �rst de�ne increasing risk aversion and increasing loss aversion.

De�nition 8. A concave utility function U(·) represents a more risk averse player
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Figure 3.1: K(x) increases with risk aversion.

than the concave utility function Ũ(·), if for any lottery l over a set of prizes Z, the

lottery's certainty equivalent is smaller under U than under Ũ . In that case, we say

that the risk aversion of the player increases from Ũ to U .

De�nition 9. For a player with a utility function U(·) of the form (3.1), a convex

loss averse function l(·) represents a more loss averse player than the convex function
l̃(·), if l (x) < l̃ (x) for all x < 0.

Lemma 19. If Ui (x) is concave, then for any x ∈ (0, v), Ki(x) increases with

player i's risk aversion, i.e., if Ui represents a more risk averse player than Ũi then

KUi(x) > KŨi
(x) for any x ∈ (0, v). When players are both risk and loss averse

as described above by the utility function of the form (3.1), then for any x, Ki(x)

increases with player i's loss aversion.

Note that Lemma 19 above also suggests that the function K(x) of di�erent

players will never cross if the players can be ordered by their risk or loss aversions.

The following is an example of the function K(x) when the player has CARA utility

function:

Example 8. If a player has CARA utility function: Ui(c) = 1 − e−βic and v = 1,

then Ki(x) = 1−e−βix
1−e−βi . In this case, player i is more risk averse than player j if

βi > βj. In �gure 3.1 we plot Ki(x) for β = 1 (black solid), 2 (green dotted), and 3

(red dashed).

In fact, the su�cient and necessary conditions for the existence of equilibrium

that we �nd below, and the closed-form expressions for the mixed strategies we

provide in the next section, rely only on the assumption that the utility functions

are strictly increasing, i.e., utility functions do not have to be rankable by their
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certainty equivalent. The rest of the results apply to any utility function that is

rankable by their certainty equivalent, irrespective of whether the utility function is

risk averse, loss averse, or even risk seeking. All the results with risk loving players

can be derived analogously, as long as the more risk loving utilities have higher

certainty equivalent than the less risk loving utilities for every lottery. We focus

only on risk and loss averse utilities due to their ubiquity in the literature.

3.3 Equilibrium

In this section, we characterize the su�cient and necessary conditions for the exis-

tence of any possible equilibrium, and then, we characterize the mixed strategies in

all of these equilibria. We also highlight some interesting features of the equilibria.

In discussing these features, for simplicity, we focus only on the equilibria in which

all active players randomize on the entire interval [0, v].

3.3.1 Existence and closed-form solution

Our �rst proposition, Proposition 14 provides the necessary and su�cient conditions

for the existence of an equilibrium in which a given subset of players is active. We

start by de�ning an active player.

De�nition 10. A player is active when she bids zero with a probability strictly less

than 1. A player is inactive when she bids zero with probability 1.

Let B ⊆ {1, . . . ,m} be a set of players. For convenience and without loss of

generality, we assign i = 1, 2, ..., |B| as the index for the active players.

Proposition 14. An equilibrium in which a set B ⊆ {1, . . . ,m} of players is active,
and

1. players i = 1, 2, . . . , h, where 2 6 h 6 |B|, randomize continuously over [0, v],

and

2. players i = h + 1, h + 2, . . . , |B| randomize continuously over [bi, v] and have

an atom at zero, with 0 = bh < bh+1 6 bh+2 6 . . . 6 b|B| 6 b|B|+1 = v, and

3. players j = |B|+ 1, . . . ,m are inactive,

exists if and only if the following conditions hold for all 0 6 t 6 |B| − h:

(I) Incentive Constraints:
∏

l6h+tKl (x) 6 Kh+t−1
j (x), for all x ∈ [bh+t, bh+t+1]

and j > h+ t;
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(II) Feasibility Constraints:
∏

l6h+tKl (x) 6 Kh+t−1
i (x), for all x ∈ [bh+t, bh+t+1]

and i 6 h+ t.

We now prove the proposition and characterize the equilibrium bidding strate-

gies. We �rst restrict our attention to the case where all the active players in the

equilibrium randomize continuously on [0, v], i.e., bh+1 = bh+2 = . . . = b|B| = 0.

In this case h = |B|, and we can simplify the constraints for the existence of this

equilibrium to:

(i) Incentive Constraints:
∏

l∈BKl (x) 6 K
|B|−1
j (x), for all x ∈ [0, v] and for all

j > |B|;
(ii) Feasibility Constraints:

∏
l∈BKl (x) 6 K |B|−1

i
(x), for all x ∈ [0, v] and for

all i 6 |B|.
Let player i's mixed strategy cumulative distribution function denoted by Gi (x).

For player i 6 |B| and x ∈ [0, v], we have in equilibrium:

∏
l 6=i,l∈B

Gl(x)Ui(v − x) + (1−
∏

l 6=i,l∈B

Gl(x))Ui(−x) = Ui(0) (3.3)

where Gl(x) is the probability player l 6= i bid lower than x, so
∏

l 6=i,l∈B Gl(x) is

player i's probability of winning when bidding x. Note that by bidding zero the

player's payo� is zero with certainty, and therefore, she must be indi�erent between

bidding any x ∈ (0, v] or getting zero. We thus have for all i 6 |B| and x ∈ [0, v]

∏
l 6=i,l∈B

Gl(x) = Ki(x)

We solve this system of |B| equations and get the equilibrium strategy of player

i ∈ B

Gi(x) =

( ∏
l∈B,l 6=i

Kl(x)

) 1
|B|−1

Ki(x)−
|B|−2
|B|−1 (3.4)

We are now able to calculate the probability of winning of an inactive player

who deviates to some positive bid x:

∏
i∈B

Gi (x) =
∏
i∈B

( ∏
l∈B,l 6=i

Kl(x)

) 1
|B|−1

Ki(x)−
|B|−2
|B|−1

 =
∏
l∈B

Kl (x)
1

|B|−1 (3.5)

Note that if the probability of winning given in equation (3.5) is less than Kj(x),

where j /∈ B, as indicated by the incentive constraint for player j, then player j will

earn an expected payo� less than zero should he bid any positive amount x, which
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makes him worse o� than staying inactive. Therefore, the incentive constraints

ensure that inactive players do not want to deviate to positive bids.

The feasibility constraints guarantee that the mixed strategies played by the

active players are well de�ned (between zero and one). This can be obtained from

equation (3.4). By restricting Gi(x) 6 1, we have

∏
l∈B

Kl (x) 6 K |B|−1
i

(x)

which is the feasibility constraint for player i ∈ B. Together we have shown that if

both the incentive and the feasibility constraints on the K functions hold, then the

strategy pro�le de�ned by (3.4) constitutes an equilibrium.

The above derivation can be extended to the case with 0 < bh+1 6 bh+2 6 . . . 6

b|B| 6 v. Speci�cally, by de�nition, there are exactly h+t players (players 1, ..., h+t)

who place bids in the interval [bh+t, bh+t+1], and thus, a system of h + t equations

for any bid x ∈ [bh+t, bh+t+1]. The equilibrium strategy, incentive and feasibility

constraints can then be derived through the same procedure shown above. The

incentive constraints now guarantee not only that an inactive player will not want

to deviate and bid a positive bid but also that an active player will not want to

deviate and bid outside her support. Moreover, none of the players would want to

deviate to any bid above v, as they will earn negative payo� for sure.

We now characterize the equilibrium bidding strategies. Assume an equilibrium

strategy pro�le as described in Proposition 14, then the equilibrium strategies for

the active players must make each active player indi�erent between any point on her

support and a payo� of zero. (Recall that active players have zero in their support

which yields a zero payo�.) Therefore, from (3.3) we must have for ∀x ∈ [b|B|, v]

Gi (x) =

(∏
l∈B

Kl(x)

) 1
|B|−1

Ki(x)−1, (3.6)

where i = 1, . . . , |B|. For t = h+ 1, h+ 2, . . . , |B| − 1; we have for ∀x ∈ [bt, bt+1]

Gi (x) =

(∏
l6tKl(x)∏
l>tGl(bl)

) 1
t−1

Ki(x)−1 (3.7)

where i = 1, 2, . . . , t; and

Gk(x) = Gk(bk) (3.8)
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where k = t+ 1, . . . , |B|. Finally, for ∀x ∈ [0, bh+1]

Gi(x) =

(∏
l6hKl(x)∏
l>hGl(bl)

) 1
h−1

Ki(x)−1 (3.9)

where i = 1, 2, . . . , h; and

Gk(x) = Gk(bk) (3.10)

where k = h+ 1, . . . ,m.

This completes the proof of the proposition.

Example 9. Assume there are three players with CARA utility functions Ui (x) =

1 − e−βix and a valuation v = 1 for i = 1, 2, 3. Assume that β3 = 1, β2 = 2,

β1 = 10. Then, there exists no equilibrium in which all three players are ac-

tive and all randomize continuously on [0, 1] since the feasibility constraint is vi-

olated on [0.13035, 1]. Speci�cally, we have G3 (x) = (K1(x)K2 (x))
1
2 K3(x)−

1
2 =(

1−e−2x

1−e−2
1−e−10x

1−e−10

) 1
2
(

1−e−x
1−e−1

)− 1
2
, which is larger than 1 for x > 0.13035. However there

exists an equilibrium in which only players 2 and 3 are active and they randomize

continuously on the interval [0, 1] according to the following strategies: G2 (x) =

K3(x) = 1−e−x
1−e−1 and G3 (x) = K2 (x) = 1−e−2x

1−e−2 since then all the conditions hold.

The incentive constraints determine who participates and who does not. The

inactive players require better odds of winning (higherK(x)) for each positive bid (x)

than what the active players in equilibrium can provide. The feasibility constraints

impose a restriction on active players: they cannot be too di�erent in terms of

risk attitudes. This condition restricts the level of heterogeneity of active players.

According to Proposition 1, our model entails multiple equilibria in which di�erent

numbers of players are active in equilibrium. However, this fact does not restrict the

power of our theory in making predictions either for empirical or experimental data,

since in reality we can generally observe the number of active players, especially if

players play over multiple rounds.

3.3.2 Some features of equilibria

In real life competitions, it is not uncommon for participants to di�er in observable

characteristics like gender, ethnicity, culture...etc. It is then important to examine

whether risk attitudes associated with these characteristics help to explain the dif-

ference in competitive behaviour. For example, women are under-represented in the

elites of many competitive industries (Bertrand, 2009), yet women are also more

likely to achieve academic success (Angrist et al., 2009; DiPrete and Buchmann,
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2013; Fortin et al., 2015)3. Importantly, our results below are consistent with this

empirical evidence.

Corollary 8. If there exists an equilibrium where the set of all active players, B,

randomize continuously on the interval [0, v], and these players can be ranked by

their risk aversions: KB1 (x) > KB2 (x) > . . . > KB|B| (x) for all x ∈ [0, v], then

the cumulative distribution function of player s's strategy �rst order stochastically

dominates that of player t for every t > s and the players' expected bids have the

same ranking as their levels of risk aversion.

Corollary 8 suggests that more risk averse players bid higher in expectation than

less risk averse players among all active players. Given that the more risk averse

a player is, the higher she bids conditional on her being active in equilibrium, one

may expect that her probability of winning is also higher. Corollary 9 indicates that

this conjecture is generally true but is not always the case.

Corollary 9. Assume an equilibrium where the set of all active players, B, random-

ize continuously on the interval [0, v]. For any two active players, s, t ∈ B, if player
s is more risk averse than player t, i.e., Ks(x) > Kt(x) for all x ∈ [0, v], then player

s's probability of winning is higher or equal to that of player t if Kt(x) dominates

Ks(x) in terms of the reverse hazard rate, i.e.,
K′t(x)

Kt(x)
> K′s(x)

Ks(x)
for all x ∈ [0, v].

Note that Ks(x), Kt(x) are also the joint cumulative distributions of opponents'

bids that players s and t are competing against (e.g., Πl∈B,l 6=sGl (x) = Ks (x)),

respectively. Corollary 9 suggests that the more risk averse player s is more likely to

win the contest compared to player t, if in player t's view (as measured by Kt(x)) the

contest is su�ciently more competitive (i.e., dominates in terms of reverse hazard

rate) than in player s's view (as measured by Ks(x)).

Interestingly, the more risk averse players not only bid higher and win with higher

probability, they are also more likely to dropout in the following sense.

Corollary 10. Assume an equilibrium where the set of all active players, B, ran-

domize continuously on the interval [0, v]. If for some i ∈ B and j /∈ B, we have

Ki(x) > Kj(x) for all x ∈ [0, v], then the existence of the equilibrium with the set B

of active players implies the existence of another equilibrium with the set B̃ of active

players who randomize continuously on the interval [0, v], where B̃ = (B ∪ {j}) \ {i}.

Corollary 10 suggests that the conditions for the existence of the equilibrium

in which a relatively more risk averse player bids actively is su�cient for the ex-

istence of the equilibrium in which a less risk averse player bids actively, holding

3See detailed discussion and literature review in section 3.5.
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all other active and inactive players constant, but the opposite is not necessarily

true. This implies that mere di�erences in risk attitudes can result in di�erent non-

entry/dropouts decisions, without having heterogeneity in valuations or incomplete

information. The player with the higher risk aversion may not participate in the

competition because she �nds that the potential returns from bidding any positive

amount do not su�ciently compensate her for the risk.

One implication of this �nding is that the well established gender di�erence in risk

aversion (Croson and Gneezy, 2009) alone may be su�cient to explain di�erences

in participation rates found in gender di�erences in competitiveness experiments

(Niederle and Vesterlund, 2007)4, without the need to hypothesize gender di�erences

in competitiveness, con�dence, or other characteristics.

A question naturally follows: are the dropouts always of the players who are

more risk averse than the active ones? The answer is not necessarily. Example 10

suggests there might exist equilibria in which the intermediary risk aversion players

drop out.

Example 10. Assume there are three players with CARA utility functions Ui (x) =

1−e−βix and a valuation v = 1 for i = 1, 2, 3. Assume also that β1 = 2, β2 = 1, β3 =
1
2
. Then there exists an equilibrium in which only players 1 and 3 are active, while

player 2 is inactive. See (3.11) below for the incentive constraint for player 2 and

(3.12) for the feasibility constraints for player 1 and 3.

Incentive constraint: K1(x)K3(x) =
1− e−2x

1− e−2

1− e− 1
2
x

1− e− 1
2

6
1− e−x

1− e−1
= K2(x)(3.11)

Feasibility constraints: K1(x) =
1− e−2x

1− e−2
6 1 and K3(x) =

1− e− 1
2
x

1− e− 1
2

6 1(3.12)

Thus, there exists an equilibrium in which the most and the least risk averse players

are active while the player with the intermediary risk aversion is inactive.

3.4 Comparative statics

We now discuss the e�ect of increasing players' risk aversion on their expected bids.

Our results in this section are derived for the equilibrium in which all active players

randomize continuously in [0, v]. We �rst show in subsection 3.4.1 that if players

are homogeneous in their risk attitude, then increasing all players' risk aversion

decreases the total expected bid. Then, we show in subsection 3.4.2 that in contrast

4These papers examine entry into what are in e�ect all-pay auctions to measure gender di�er-
ences in competitiveness. See Niederle (2014) for a recent survey.
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Figure 3.2: Homogeneously increasing all players' risk aversion decreases G(x).

in the case with heterogeneous risk aversion, each player's expected bid increases

with her own risk aversion, though it still decreases with other active players' risk

aversions.

3.4.1 Homogeneous risk aversion

The equilibrium strategy with homogeneous risk aversion is a special case of the

equilibrium strategy with heterogeneous risk aversion derived above.

Lemma 20. Assume all the players are homogeneous, and there exists an equilib-

rium where a set B of players randomize continuously on the interval [0, v] and all

other players are inactive. If all the players' risk aversion increases homogeneously,

then their bids and the total expected bid in the equilibrium in which the same set

B of players randomize continuously on the interval [0, v] are decreased in terms of

�rst order stochastic dominance.

We illustrate Lemma 20 with the following example.

Example 11. Assume there are three players, each with the CARA utility function:

Ui (x) = 1 − e−βx and valuation v = 1. Figure 3.2 shows the unique symmetric

equilibrium strategy when β = 1 (black solid), 5 (green dotted), and 10 (red dashed).

It is clear that as all players become more risk averse, the distribution function of

their bids decreases in terms of �rst order stochastic dominance, i.e., the probability

that they bid below x for any x ∈ [0, v] is higher when they are more risk averse.

The total expected bid decreases from 0.812 to 0.357 and then to 0.184.

In the complete information all-pay auction with homogenous risk averse players,

the total expected bid decreases in the players' risk aversion. As they become more
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risk averse, all players require better odds of winning in order to be compensated

for the same risk. To maintain each others' indi�erence conditions as required by

equilibrium, all players bid lower in the sense of �rst order stochastic dominance to

compensate each other for the disutility of risk.

3.4.2 Heterogeneous risk aversion

In this section, we �rst show in Lemma 21 that each player's expected bid increases

with her own risk aversion, but decreases with other active players' risk aversions.

With the insights from this result, we characterize the su�cient condition for the

total expected bid to decrease when the more risk averse players become even more

risk averse in Proposition 15. We again assume that players can be ordered according

to their risk aversion. Without loss of generality, let K1(x) > K2(x) > . . . > Km(x)

for all x ∈ [0, v], so that player 1 is the most risk averse player.

Lemma 21. Assume there exists an equilibrium where a set B of players randomize

continuously on the interval [0, v] and all other players are inactive. Assume, fur-

thermore, that the level of risk aversion for some player i ∈ B has increased, i.e.,

Ki (x) changes to K̃i (x) > Ki (x) for every x ∈ [0, v]. Assume that after this change,

there still exists an equilibrium where the set B of players randomize continuously

on the interval [0, v] , and all other players are inactive. Then, the expected bid of

player i increases with her level of risk aversion, while the expected bid of player k

decreases with player i's level of risk aversion, for k ∈ B, k 6= i.

The following example illustrates this result.

Example 12. Assume there are three players with CARA utility functions Ui =

1 − e−βic with β1 = 1, β2 = 0.5, β3 = 0.1 and valuation v = 1 for i = 1, 2, 3. Then,

player 1 is the most risk averse and K1 (x) > K2 (x) > K3 (x) for all x ∈ [0, 1]. In

the equilibrium in which all three players are active and randomize continuously on

the interval [0, 1], the equilibrium strategies of the players (the CDFs of their mixed

strategies) are given in the left part of �gure 3.3: G1(x) (black) 6 G2(x) (green)

6 G3(x) (red). Assume now that β1 changes to β̃1 = 1.2, then the players strategies

change to the dashed lines as in the right part of �gure 3.3. It can be seen that player

1's mixed strategy (black) increases to G̃1(x) 6 G1(x) while players 2's (green) and

3's (red) mixed strategy decreases to G̃2(x) > G2(x) and G̃3(x) > G3(x) in the sense

of �rst order stochastic dominance, respectively.

Next we discuss the e�ect of a change in the risk attitude of an active player on

the total expected bid in equilibrium. We �rst interpret the intuition behind Lemma
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Figure 3.3: A player's bid increases with her own risk aversion and decreases with
other players' risk aversions.

21. In a mixed strategy equilibrium, any active player t is made indi�erent between

any of his bids by the strategies of the other players. When player t becomes even

slightly more risk averse, the other players will have to lower their bids to ensure

player t stays indi�erent (in order for an equilibrium with the same set of active

bidders to continue to exist). Thus, by equilibrium strategy (3.4), increasing t's risk

aversion has two e�ects on total expected bid, �xing the same set of active players:

1. Player t bids higher, since the CDF of her new equilibrium strategy �rst or-

der stochastically dominates the CDF of her equilibrium strategy before she

became more risk averse;

2. The rest of the players bid lower, since their CDF decrease in the sense of �rst

order stochastic dominance when Kt(x) increases.

The net e�ect on total expected bids is not obvious. We provide in Proposition

15 a su�cient condition for the total expected bid to decrease when one player's

risk aversion increases, assuming the equilibrium with the same set of active players

still exists after the increase of the player's risk aversion.

Proposition 15. Assume an equilibrium with a set B of active players who ran-

domize continuously on the interval [0, 1]. For an active player i, if

Ki(x) >
|B| − 2∑

l∈B,l 6=iKl(x)−1
, for all x ∈ [0, v] (3.13)

then, the total expected bid decreases in i's risk aversion.

100



Note that the r.h.s. of (3.13) can be rewritten into the harmonic mean of the

K(x) functions of the rest of the active players multiplied by a constant:

|B| − 2∑
l∈B,l 6=iKl(x)−1

=
|B| − 1∑

l∈B,l 6=iKl(x)−1

|B| − 2

|B| − 1

Thus, condition (3.13) requires that player i be su�ciently risk averse compared

to the rest of the active players to guarantee that an increase in her risk aversion

decreases the total expected bid. See example 13 for an illustration of Proposition

15.

Example 13. Assume there are three players B = {1, 2, 3} who have CARA utility

functions with β1 = 2, β2 = 1, β3 = 1
2
, and valuation v = 1. Then, K1(x) = 1−e−2x

1−e−2 ,

K2(x) = 1−e−x
1−e−1 , K3(x) = 1−e−

1
2x

1−e−
1
2
. Note that the condition (3.13) for i = 1 is satis�ed:

K1(x) =
1− e−2x

1− e−2
>

(
1− e− 1

2

1− e− 1
2
x

+
1− e−1

1− e−x

)−1

=
(
K−1

2 (x) +K−1
3 (x)

)−1

and the total expected bid in the equilibrium in which all three players are active and

randomize continuously on [0, 1] is:

3−
∫ 1

0

(K2(x)K3(x))
1
2 (K1(x))−

1
2 dx−

∫ 1

0

(K1(x)K3(x))
1
2 (K2(x))−

1
2 dx

−
∫ 1

0

(K1(x)K2(x))
1
2 (K3(x))−

1
2 dx = 0.779

Assume now that we increase player 1's risk aversion to β1 = 3, then the total

expected bid decreases to 0.723.

Many real-life competitions are composed of participants with evidently di�erent

risk attitudes, e.g., mixed gender contests. We now analyze how the composition of

contests of two di�erent risk types a�ects participation. Formally, assume there are

two sets of contestants in the competition: type 1 players with risk attitude de�ned

by K1(x); and type 2 players with attitude de�ned by K2(x). There are m players

in total. Let µ be the percentage share of type 1 players. Thus, the total number of

type 1 players is µm, and similarly, the total number of type 2 players is (1− µ)m.

Note that µ ∈ {0, 1
m
, 2
m
, ..., 1} so that µm and (1 − µ)m are always integers. All

players have the same valuation v for the prize and K1 (x) > K2 (x) for all x ∈ [0, v].

Type 1 players are thus more risk averse than type 2 players.

Based on Proposition 14, the feasibility constraints are the only conditions re-

quired for the existence of the equilibrium in which all m players are active and
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randomize continuously on [0, v]. The following result suggests that the feasibility

constraints are sensitive to the number of players and the di�erence between the

two types' risk aversion.

Corollary 11. There exists an equilibrium in which all m players are active and

randomize continuously on [0, v] if and only if the number of type 1 players satis�es

µm 6
lnK2(x)

lnK2(x)− lnK1(x)
, for all x ∈ [0, v]. (3.14)

In other words, the number of the more risk averse players must be bounded

from above given K1(x) and K2(x), to ensure that all players are active. The bound

given by the r.h.s. of (3.14) depends on how di�erent the two types of players are

in terms of their risk preferences. The bound is lower when the di�erence between

the two risk preferences is larger.

Corollary 12. For any µ ∈ [0, 1], there exists an equilibrium in which all players

randomize continuously on the interval [0, v] if and only if

Km
1 (x) 6 Km−1

2 (x), for all x ∈ [0, v]. (3.15)

Corollary 12 follows directly from Corollary 11. There always exists an equilib-

rium with all players active for any µ ∈ [0, 1], when (3.14) is satis�ed for µ = 1,

which boils down to the inequality (3.15).

Corollary 13. When there are two risk aversion types of players with K1 (x) >

K2 (x) for x ∈ (0, v), assume condition (3.15) in Corollary 12 is satis�ed. Then the

total expected bid is monotonically decreasing with the share of the K1(x) players,

µ, if

K2(x) >
m− 2

m− 1
K1(x) (3.16)

Corollary 13 explicates the transition in terms of total revenue from the case

where all players are homogeneously less risk averse to the case where all players

are homogeneously more risk averse. As the share of the more risk averse players

increases, the total expected bid monotonically decreases. According to (3.16), this

is true if the two types of players are not too di�erent, as

K1(x) > K2(x) >
m− 2

m− 1
K1(x)

has to hold.
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3.5 Discussion

Our �ndings suggest the possibility that the higher risk aversion of women can simul-

taneously lead them to avoid participating in all-pay auction type incentives, while

bidding higher and having a higher probability of winning than men, when they do

participate. Heterogeneous risk aversion, therefore, could be an important factor

in explaining most of the stylized facts about gender di�erences in competitiveness,

including women's greater reluctance to enter contests with all-pay auction incen-

tives, like elections, unless they have a good chance of winning (Fulton et al., 2006),

women's greater willingness to exert e�ort in preparation (Duckworth and Seligman,

2006) and their higher odds of success in academic contests (Angrist et al., 2009;

DiPrete and Buchmann, 2013; Fortin et al., 2015), and women's greater reluctance

to enter laboratory contest (Niederle and Vesterlund, 2007), where either e�ort does

not a�ect performance or for which they cannot prepare.

Moreover, our �ndings imply that if women are more risk averse than men, they

will simultaneously work harder than men and decrease everyone's e�ort in the �rm

in personnel contests that have an all-pay auction structure. In these contests, if

men and women are not too di�erent in their levels of risk aversions, then a higher

share of women may lead to increased odds of women dropping out. This result itself

suggests an alternative and possibly more parsimonious explanation for the paucity

of women in the upper management of �rms in highly competitive industries.

However, our �nding that the more risk averse player bids higher, and therefore,

has a higher probability of winning, while at the same time depressing the bids of

others suggests a further possible reason. While women may be more likely to win

internal personnel contests, �rms that promote women according to their individ-

ual competitiveness may su�er a general decrease in its competitiveness from the

competition diminishing externality that women's greater risk aversion imposes on

other personnel. Thus, �rms which discriminate against women could do better

against �rms that do not. This �nding suggests a potentially important exception

to the intuition that competitive markets should eliminate taste-based discrimina-

tion (Becker, 2010). Moreover, our �ndings suggest that equilibrium discrimination

against women in such industries should be stronger in countries in which the gen-

ders are more similar, i.e., developed rather than developing countries. Thus, the

prospects for greater representation by women in competitive industries are not reas-

suring if women are indeed also less competitive than men (Niederle and Vesterlund,

2007). However, recent evidence suggests that when risk aversion is fully controlled

for, women may actually be more competitive than men (Chen et al., 2015).
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3.6 Appendix

Proof of Lemma 19

If player i becomes more risk averse (from Ũi to Ui), then the certainty equivalent of

winning v− x with probability KŨi
(x) and −x with probability

(
1−KŨi

(x)
)
is less

than zero, which is the certainty equivalent of this gamble with a utility function

Ũi. Therefore, the player can be restored to indi�erence between winning zero for

sure and the gamble above only if the probability of winning the larger prize v − x
increases. Thus KUi(x) > KŨi

(x). For loss averse players, we rewrite their KUi(x)

function as

KUi(x) =
−li(−x)

gi(v − x)− li(−x)
= 1− gi(v − x)

gi(v − x)− li(−x)

Thus, when player i gets more loss averse, li(−x) gets smaller and KUi(x) increases.

Proof of Corollary 8

If player s is more risk averse than player t, where s, t ∈ B, then we have Ks(x) >

Kt(x) for x ∈ [0, v]. Based on the equilibrium strategy given in (3.4), the di�erence

in the distributions of their mixed strategies is:

Gs(x)−Gt(x) =

( ∏
l∈B,l 6=s

Kl(x)

) 1
|B|−1

Ks(x)−
|B|−2
|B|−1 −

( ∏
l∈B,l 6=t

Kl(x)

) 1
|B|−1

Kt(x)−
|B|−2
|B|−1

=

(∏
l∈B

Kl(x)

) 1
|B|−1 (

Ks(x)−1 −Kt(x)−1
)
6 0

Thus, player s's expected bid is higher than player t's and the cumulative distribution

function of player s �rst order stochastically dominates the cumulative distribution

function of player t. Therefore, the ranking of expected bids is the same as the

ranking of risk aversion.
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Proof of Corollary 9

The expected probability of winning for player s is given by (note that Ks (v) =

Kt (v) = 1): ∫ v

0

Ks(x)dGs(x) = 1−
∫ v

0

Gs(x)dKs(x)

For player t: ∫ v

0

Kt(x)dGt(x) = 1−
∫ v

0

Gt(x)dKt(x)

Thus, the di�erence between the probabilities of winning is:∫ v

0

Ks(x)dGs(x)−
∫ v

0

Kt(x)dGt(x)

=

∫ v

0

[Gt(x)dKt(x)−Gs(x)dKs(x)]

=

∫ v

0

(∏
l∈B

Kl(x)

) 1
|B|−1 [

dKt(x)

Kt(x)
− dKs(x)

Ks(x)

]
(3.17)

Therefore, the di�erence is non-negative if

dKt(x)

Kt(x)
− dKs(x)

Ks(x)
=
K ′t(x)

Kt(x)
− K ′s(x)

Ks(x)
> 0

for all x ∈ [0, v].5

Proof of Corollary 10

To prove the corollary, we need to show that after the replacement of player i with

player j, the incentive constraint of player i and the feasibility constraint for player

j are both satis�ed. Note that after the replacement of j and i, the l.h.s of the

incentive constraints and the feasibility constraints are weakened from
∏

l∈BKl (x) to

Kj(x)
∏

l∈B,l 6=iKl (x) 6
∏

l∈BKl (x). Thus, we only need to show that the incentive

constraint for player i:

Kj(x)
∏

l∈B,l 6=i

Kl (x) 6 K |B|−1
i

(x)

5 The reverse hazard rate dominance is not implied by the fact that Kt(x) �rst order stochas-
tically dominates Ks(x). In fact, the reverse hazard rate dominance implies �rst order stochastic
dominance. However, it is easy to show that the reverse hazard rate dominance condition is equiv-
alent to �rst order stochastic dominance for CARA and CRRA utility functions. Readers can refer
to Appendix B in Krishna (2009) which provides a useful introduction of stochastic dominance.
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and the feasibility constraint for player j:

Kj(x)
∏

l∈B,l 6=i

Kl (x) 6 K |B|−1
j

(x)

are satis�ed after the replacement. Furthermore, since j is inactive in B, her incen-

tive constraint must hold: ∏
l∈B

Kl (x) 6 K |B|−1
j

(x)

Therefore, player i's incentive constraint is satis�ed since

Kj(x)
∏

l∈B,l 6=i

Kl (x) 6
1

Ki(x)
K |B|

j
(x) 6 K |B|−1

i
(x)

Player j's feasibility constraint in the new equilibrium is also satis�ed since:

Kj(x)
∏

l∈B,l 6=i

Kl (x) 6
∏
l∈B

Kl (x) 6 K |B|−1
j

(x)

Proof of Lemma 20

When players are homogeneous, we have K1(x) = K2(x) = ... = Km(x). By the

equilibrium strategy given in (3.4), the strategy under homogeneous risk aversion is

given by

Gi(x) = K(x)
1

|B|−1 , where i ∈ B

It is then obvious that any active player i's bid is decreased in the sense of �rst order

stochastic dominance when all players become more risk averse. The total expected

bid can be calculated as

R =

|B|∑
i=1

Ri =

|B|∑
i=1

∫ v

0

xdGi(x)

where

Ri =

∫ v

0

xdGi(x) = v −
∫ v

0

Gi(x)dx

is the expected bid of any player i. The second equality follows from integration by

parts. Since Gi(x) for i ∈ B is increased, Ri is decreased and thus the total expected

bid R is decreased when K (x) increases for x ∈ (0, v).
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Proof of Lemma 21

An active player i's expected bid is given by

Ri =

∫ v

0

xdGi (x)

where in equilibrium we have (from (3.4))

Gi (x) =

( ∏
l∈B,l 6=i

Kl(x)

) 1
|B|−1

Ki(x)−
|B|−2
|B|−1

Therefore, when Ki (x) changes to K̃i (x) > Ki (x) , then Gi (x) decreases for every

x ∈ (0, v), and therefore, Ri increases. Moreover, for any other active players k ∈ B,
k 6= i we have

Gk (x) =

( ∏
l∈B,l 6=i,k

Kl(x)

) 1
|B|−1

Kk(x)−
|B|−2
|B|−1Ki (x)

1
|B|−1

Therefore, when Ki (x) changes to K̃i (x) > Ki (x) , then Gk (x) increases for every

x ∈ (0, v), and therefore, Rk decreases.

Proof of Proposition 15

As each player j's expected bid can be written as Rj =
∫ v

0
xdGj(x), we can write

the total expected bid R as:

R =
∑
j∈B

Rj = |B| v −
∫ v

0

∑
j∈B

Gj(x)dx.

Rewrite the second term:∫ v

0

∑
j∈B

Gj(x)dx =

∫ v

0

(
∏
l∈B

Kl(x))
1

|B|−1

∑
j∈B

Kj(x)−1dx. (3.18)
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Thus, the marginal e�ect of an increase of Ki(x) for every given x ∈ (0, v) on (3.18)

can be written as:

∫ v

0

d
(∑

j∈B Gj(x)
)

dKi(x)
dx

=

∫ v

0

1

|B| − 1

(∏
l∈B

Kl(x)

) 1
|B|−1

Ki(x)−1

( ∑
l∈B,l 6=i

Kl(x)−1 − (|B| − 2)Ki(x)−1

)
dx,

This expression is positive if
∑

l∈B,l 6=iKl(x)−1−(|B|−2)Ki(x)−1 > 0 for all x ∈ [0, v],

which is condition (3.13). Therefore, the marginal e�ect on R is negative if the con-

dition (3.13) is satis�ed.

Proof of Corollary 11

Based on Proposition 1, the feasibility constraints in the current context are:

K1(x)µmK2(x)(1−µ)m 6 Km−1
1

(x) , for all x ∈ [0, v] (3.19)

K1(x)µmK2(x)(1−µ)m 6 Km−1
2 (x) , for all x ∈ [0, v] (3.20)

Rewrite the equation (3.19): (
K1(x)

K2(x)

)µm
6
Km−1

1
(x)

K2(x)m

i.e.,

µ 6 1 +
lnK−1

1 (x)

m (lnK1(x)− lnK2(x))
(3.21)

Since the r.h.s. of inequality (3.21) is always larger than one, the feasibility con-

straint (3.19) always holds. Rewrite the equation (3.20):(
K1(x)

K2(x)

)µm
6 K−1

2 (x)

i.e.,

µ 6
lnK−1

2 (x)

m (lnK1(x)− lnK2(x))
(3.22)

which is the condition in the corollary.
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Proof of Corollary 12

Let the r.h.s. of inequality (3.22) be no less than one:

1

m

lnK−1
2 (x)

lnK1(x)− lnK2(x)
> 1

After rearrange, we have

Km
1 (x) 6 Km−1

2 (x)

Therefore, whenever Km
1 (x) 6 Km−1

2 (x) for all x, we have that for all µ there is an

equilibrium in which all players active.

Proof of Corollary 13

Let µ ∈ {0, 1
m
, 2
m
, ..., m−1

m
} be the current share of K1(x) players. Substitute a K2(x)

player with aK1(x) player. Then, by Proposition 15 the total expected bid decreases

if

K2(x) >
m− 2

µm
K1(x)

+ m−1−µm
K2(x)

(3.23)

It can be veri�ed that the r.h.s. of the above inequality is increasing with µ, and

thus, is less than m−2
m−1

K1(x). Therefore, condition (3.16) is su�cient for condition

(3.23), and we have proved that increasing µ decreases total expected bid.
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Chapter 4

Persistent Bias in Advice-Giving

Zhuoqiong Chen and Tobias Gesche

Abstract We show that a one-o� incentive to bias advice has a persistent e�ect on

advisers' own actions and their future recommendations. In an experiment, advisers

obtained information about a set of three di�erently risky investment options to

advise less informed clients. The riskiest option was designed such that it is only

preferred by risk-seeking individuals. When advisers are o�ered a bonus for recom-

mending this option, half of them recommend it. In contrast, in a control group

without the bonus only four percent recommend it. After the bonus was removed,

its e�ect remained: In a second recommendation for the same options but without

a bonus, those advisers who had previously faced it are almost six times more likely

to recommend the riskiest option compared to the control group. A similar increase

is found when advisers make the same choice for themselves. To explain our results

we provide a theory based on advisers trying to uphold a positive self-image of being

incorruptible. Maintaining a positive self-image then forces them to be consistent

in the advice they give, even if it is biased.
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4.1 Introduction

When making risky decisions, we often seek advice. Doctors, investment advisers,

scientists, and other experts have speci�c skills and knowledge to assess the potential

consequences of important choices. Their job is to use their specialized information

and skills to provide recommendations which are supposed to be in the best interest

of patients, investors, politicians, and other clients. However, advisers may face

a con�ict of interest. Often, third parties pay commissions or create situations

such that advisers owe them and then bias advice in their interest.1 Advisers who

give in to such third-party incentives can morally accommodate this behaviour by

convincing themselves that they would have given the same advice, even if there

had not been such a con�ict of interest. For example, when a �nancial adviser

recommends an investment fund as opposed to a less risky asset because of a sales

commissions, this can later be justi�ed by believing that it would have been the

appropriate advice anyway. However, to uphold such a justi�cation, the adviser has

to act consistently. That is, an adviser has to issue the same biased advice even

when the con�ict of interest does not exist anymore.

This paper presents evidence for such persistent e�ects from advisers' con�icts of

interest. In an experiment, we o�er advisers a bonus which pays if they recommend

less informed clients an investment option that is preferred only by risk-seeking

individuals. Among advisers in a control group without such a bonus, almost no-

one recommends this risky option. In contrast, almost half of the advisers to whom

the bonus was o�ered do recommend it. Afterwards, advisers have to choose for

themselves among the same options and then make a second recommendation for

another client. For these tasks, it was explicitly stated that there would not be

any bonus. Our results show that advisers who were previously exposed to the

bonus were six times more likely to recommend the risky option than those who

were not. We also �nd a similar increase in the probability that advisers choose the

risky option for themselves. In consequence, being exposed to a con�ict of interest

in advice-giving in one single instance creates an externality on the advice which

another client receives and the adviser's own choices.

We present a behavioural mechanism which can explain such persistent e�ects

1 For example, US �nancial advisers administered more than $38 trillion for more than 14
million clients in 2011 (SEC, 2011). Despite laws like the Dodd-Frank Act which require them to
"[...]to act in the best interest of the customer" (United States Congress, 2010, Sec. 913g), they
receive sales commissions and bias their advice accordingly (Mullainathan et al., 2012; Malmendier
and Shanthikumar, 2014). Other experts face such con�icts of interest too: Although supposed
to be impartial, doctors reciprocate gifts from pharmaceutical companies (Dana and Loewenstein,
2003; Cain and Detsky, 2008) and scientists are dependent on industries sponsoring their research
(Hilgartner, 2000; Taylor and Giles, 2005).
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on repeated advice and advisers' own choices. It is based on the human tendency to

interpret own actions to infer one's own morality (Mazar et al., 2008; Benabou and

Tirole, 2011). To avoid a negative and immoral self-image, biased advisers can per-

ceive their recommendations as those which they actually should have recommended,

had they actually been impartial. However, when advisers morally accommodate

their corrupted behaviour in such a manner, they have to stick with their advice.

The reason is that changing it, in particular when the con�ict of interest disappears,

would signal to themselves that their initial advice was corrupted, and therefore,

that they acted immorally.

Our results also show more exactly what advisers take as a reference for giving

impartial advice and thus, how they try to keep a positive self-image: In principle,

an adviser can internally disguise the fact that his advice was biased by forming a

motivated belief (Kunda, 1990) about the clients' preferences, for example that a

client is su�ciently risk-seeking.2 In the adviser's view it is then in the client's best

interest and therefore moral to recommend the risky option, even though the actual

motive is the con�ict of interest. This would not put the adviser under any pressure

to act accordingly for himself, since his motivated belief is only about the client's

risk preferences, not his own. However, prior research has shown that when forming

beliefs about others' preferences, in particular risk preferences, we do so by starting

from our own (Mullen et al., 1985; Faro and Rottenstreich, 2006). The question

"What would I choose if I were in the client's situation?" then also determines what

an adviser should recommend. Under such a rule, advisers who want to perceive

themselves as incorruptible should then also choose for themselves what they have

recommended to others. Our data indicate that this is the case: Having been exposed

to a bonus leads advisers to choose the risk-seeking option more often. This is in

line with the recent �ndings of Linnainmaa et al. (2016). In a large sample, they

show that �nancial advisers hold the same expensive, under-performing portfolios

as their clients, even after having left the industry.

Related literature: Our work combines �ndings from self-signaling, motivated be-

liefs, and self-deception to obtain new insights about their implications in the con-

text of advice-giving. It captures the fact that people assign informational value to

their actions to infer about their personal traits (Bodner and Prelec, 2003; Benabou

and Tirole, 2004) and in particular their moral values (Benabou and Tirole, 2011).

Self-signaling then means that actions are also in�uenced by the consequences they

subsequently have on peoples' self-image. For example, Mazar et al. (2008) argue

2Without referring to any actual gender roles we will call advisers and clients "he" and "she",
respectively.
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that we often do not lie as much as we, in principle, could because strong, outright

lies would damage our self-perception of being honest and moral persons. Gneezy

et al. (2012) present the seemingly paradoxical �nding that sales under a pay-as-you-

want scheme are lower than under a low, �xed price. They explain the consumers'

reluctance to set a su�ciently low pay-as-you-want-price with consumers' desire to

not perceive themselves as greedy. Related to this, Fallis et al. (2015) report that

the demand for goods which a share of the sales price is donated is increasing in this

price. They also present evidence that this is due to the decrease in social image

utility which consumer derive from purchasing such good-donation-bundles.

Prior research has also shown that when it comes to morally-ladden situations,

people form self-serving assessments about what norms should apply and about oth-

ers' preferences when it helps them to obtain a positive, moral self-image. Loewen-

stein et al. (1993) give subjects information about legal cases. These subjects then

di�er strongly in what they consider as appropriate, fair settlement values for these

cases after they argued in �ctitious roles of being the plainti� as opposed to the de-

fendant. Di Tella and Pérez-Truglia (2015) show evidence that people form beliefs

about others behaving anti-socially, i.e. that others steal from a common pot, in or-

der to justify their own anti-social behaviour of not splitting the pot equally. People

also employ uncertainty and ambiguity in a related manner to form self-serving be-

liefs and probability assessments which allow them to obfuscate their own immoral

behaviour (Haisley and Weber, 2010).

In this paper, we connect these �ndings to obtain insights about their lasting

implications in the context of advice-giving. Closely related to our results is Gneezy

et al. (2016): In several experiments, the authors show that advisers bias their

recommendations relatively strongly when they learn about their con�ict of interest

before they receive the information about a client's decision situation. When they

�rst learn about the situation, then consider what to recommend, and then about the

con�ict of interest, their advice is less biased. Following Trivers (2011), they label

this behaviour self-deception. Our theory and results describe behaviour which is in

line with such self-deception, i.e. that advisers e�ectively bias their own choices. We

make the point that the reason for this behaviour and the consistency in advisers'

biased recommendation is that advisers try to avoid a negative self-inference.3 This

also relates to Konow (2000), who examines a dictator game where the pie to be split

3 Falk and Zimmermann (2016) show that agents also act consistently to signal their skills to
a principal. In Falk and Zimmermann (2015), they provide evidence that people act consistently
without any external observers. The general idea which underlies the mechanism we propose also
applies in these settings: Acting inconsistently shows that one's �rst action was somehow �awed,
acting consistently therefore avoids such a inference to oneself and/or outside observers.
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is dependent on the dictator's and the recipient's prior joint e�ort. He �nds that

dictators who allocate themselves larger shares of the pie interpret their personal

contribution in establishing the common pot more favorably than outside observers.

Documenting the persistence of such a self-serving bias, these dictators apply their

persistent biased judgment about others' e�ort when they act as outside observers

themselves.

Recent �ndings on actual advisers' behaviour by Linnainmaa et al. (2016) relate

to ours. Using matched data on about 5900 Canadian �nancial advisers and their

more than 580,000 clients, these studies show that the most important determinants

of advice to these clients are not the clients' personal characteristics, but rather the

identity of their advisers. Even more important in our context, they show that these

recommendations to clients are also re�ected by the choices which advisers make for

their own portfolios. For example, advisers prefer the return-chasing and actively

managed funds they sell to clients also for themselves. This is puzzling since these

investments do not perform better than the market. When fees are subtracted,

clients' and their advisers' investments even signi�cantly under-perform relative to

the market. Our results and the theory we propose resonate with these �ndings. In

addition, the experimental setup we use allows to abstract from concerns of advisers

self-selecting into suitable environments which may drive such �ndings (e.g. risk-

seeking advisers who choose to sell risky investments with sales commissions).

We identify a strong, causal, and lasting e�ect of bonuses in advice-giving. Our

�ndings therefore contribute to the recent literature on the adverse e�ects of bonus

payments (Agarwal and Itzhak, 2014; Bénabou and Tirole, 2016). We also point

out the role of self-signaling in such a setting which connects directly to the recent

research on the work culture and self-perception of those working in the �nancial

industry (Cohn et al., 2014; Zingales, 2015). However, our �ndings apply also outside

this speci�c �nancial context to advice on risky decisions more generally.

In the remainder of this paper, we present our �ndings in more detail. The next

section describes a mechanism of how moral and self-image concerns can lead to

persistent bias after advisers have faced a con�ict of interest. Section 3 explains the

design and procedures of the experiment in which we investigate this mechanism.

Section 4 derives predictions and section 5 presents our results. Section 6 concludes

by reviewing these results with respect to their implications for the economics of

motivated beliefs, advice giving and its regulation. An appendix contains a formal

model in which the predictions are derived; it also contains further data analysis

and the experimental instructions.
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4.2 Mechanism

In this section, we describe a behavioural mechanism in which advisers' concerns

to appear impartial and moral can lead to the opposite behaviour � a persistent

bias in their advice. The framework presented here also provides the assumptions

that underlie a formal model which can be found in the appendix. To analyze

an adviser's behaviour, we assume his overall utility to depend on three parts: 1)

consumption utility derived from monetary payo�s, 2) the moral cost of not giving

impartial advice, and 3) diagnostic (dis-)utility of learning from actions which reveal

that one's previous advice was biased.

While the �rst element of an adviser's overall utility is standard, the second

re�ects the fact that advisers might feel compelled, and often are, to act solely in a

client's best interest. Not doing so then creates a moral cost. To determine when

such a cost occurs, the question then arises what constitutes a "client's best interest",

i.e. what constitutes impartial advice. We assume that an adviser can form a belief

about his clients' preferences and therefore about the utility that clients experience

when they follow his advice. Giving advice which does not maximize this assumed

utility of the client would then be a violation of giving impartial advice and creates

the moral cost. However, predicting others' preferences is inherently di�cult. This

applies in particular for risk preferences (Hsee andWeber, 1997; Eckel and Grossman,

2008; Harrison et al., 2013), even when the inference is conducted by trained �nancial

advisers and there is no con�ict of interest (Roth and Voskort, 2014). In the presence

of external incentives which creates such a con�ict, the uncertainty in estimating

others' risk preferences can be instrumentalized in a self-serving manner: Advisers

may form a belief about their clients' preferences such that their, potentially biased,

advice is compatible with it.

However, there are limits to such self-serving beliefs. It is a robust psychological

fact that people base their inferences about others' preferences on their own (Marks

and Miller, 1987), in particular for risk preferences (Faro and Rottenstreich, 2006).4

In consequence, advisers' own preferences also play a role in determining what is

impartial advice. We capture this by assuming that advisers incur a moral cost

when they recommend an option which they would not choose for themselves if they

were in the client's position.

4Though initially coined by Ross et al. (1977) as a "false consensus e�ect", the falsity of esti-
mates of others' preferences based on one's own is not evident. Works by Hoch (1987) and Dawes
(1990) demonstrate that such projection is not just statistically correct; they also show that people
can often improve their accuracy in predicting others' preferences by relying more strongly on their
own. Engelmann and Strobel (2000) show that subjects do so when they are incentivized to make
accurate predictions.
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The third factor which matters for advisers is the diagnostic (dis-)utility they

derive when they learn to have given biased advice, based on a model of self-signaling

(Bodner and Prelec, 2003; Benabou and Tirole, 2011). In contrast to the moral cost

of acting immorally, this dis-utility only occurs to an adviser after he has biased his

advice, at the point when his later actions indicate exactly this fact to him. This can

be captured by a dual-self model in which the "diagnostic self" of an adviser learns

ex post about the other self's motive for giving advice, e.g. whether prior advice

was issued impartially and therefore was morally sound or whether it was corrupted.

The important implication of such an inference is that advisers can only uphold a

positive and self-serving belief of their prior motives for giving advice as long as they

do not take actions which are incompatible with this.5 Dual-self models have been

used previously to explore how people infer about themselves, in particular their

moral behaviour (Benabou and Tirole, 2004; Grossman, 2015). Here, we use it as

a crucial device to describe the trade-o� between keeping self-serving beliefs about

one's own motives and taking contradictory actions.6

These three components together then have implications for how and, most im-

portantly for how long, a con�ict of interest a�ects advisers' choices and their rec-

ommendations. To see this, consider an adviser who issued a biased advice, thus

an adviser whose pecuniary payo� for biasing advice outweighed his moral cost of

doing so. If he is also concerned about the self-image, he then needs to continue

to give the same biased advice again, especially when the con�ict of interest has

disappeared. The reason is that in order to later entertain the (counterfactual) idea

that his initial advice was unbiased, it should be una�ected by the presence of an ex-

ternal incentive. Changing advice when the the con�ict of interest disappears would

then signal just the opposite. When an adviser's own preference stipulates what

he should recommend to a client, this mechanism has even further consequences.

This is because such a rule implies that in order to perceive oneself as unbiased, an

adviser has to act according to his biased advice for himself.

In consequence, a behavioural trait which generally seems to be desirable, the

preference to perceive oneself as a moral person, can lead to persistent biases in

the context of advice giving. In addition, it can have a lasting e�ect on advisers'

5In essence, this re�ects the desire to avoid cognitive dissonance (Festinger and Carlsmith, 1959)
� a discrepancy between one's actions and one's beliefs about what is the norm one should follow
(for economic models of cognitive dissonance, see Akerlof and Dickens (1982) and Rabin (1994)).
For a discussion about how cognitive dissonance and motivated (self-)perception relate see also
Kunda (1992).

6Apart from enabling us to capture this cognition, it also captures the fact that the inferring
self "forgets" about the other self's motives. This is in line with research showing that people
cannot perfectly recall their past decision motives nor foresee their future ones (Kahneman et al.,
1997; Loewenstein and Schkade, 1999)
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own choices to the degree that they assign diagnostic value to them. With this

behavioural mechanism in mind, we set up the following experimental design to

explore it in more detail.

4.3 Experimental design and procedures

At the beginning of the experiment, subjects were allocated to computer terminals

in cubicles where instructions were shown to them on screen. Subjects acting as

advisers were then informed that they would get GBP 5.00 as a show-up fee for

participating in the experiment and that there would be further possibilities to earn

money. They were also informed that they would act as advisers for clients who

would be drawn from the same pool of subjects for a future experimental session

and that clients would also receive the same show-up fee.

It was then explained to advisers that they would have to recommend which out

of three investments, referred to as option A, B, and C, their clients should take.

They were told that clients would only know that option A's payo� would depend

more on luck than option C's while option B is intermediate in this regard. They

were also told that clients would not know the options' payo�s or the associated

probabilities. Advisers were informed that they, as advisers, would soon learn these

exact parameters of the investment options before they had to make a recommen-

dation.

The advisers' superior information was then given to them on a paper sheet

which explained the three investment options in detail (for a copy of this sheet and

the experimental interface see the appendix). The text on the sheet explained the

following procedure of how an option's payo� was determined: After an option was

chosen, a six-sided die would be rolled. Depending on the chosen option, this would

then yield either a safe payo� or a lottery. This lottery was described as a (fair)

coin toss with heads yielding GBP 20 and tails nothing. The following table which

was also on that sheet summarizes how the die's result maps into these possible

outcomes, depending on the chosen investment option:

Die equal to: Option A Option B Option C
1 or 2 lottery: GBP 20 or 0 safe payment: GBP 12 safe payment: GBP 12
3 or 4 lottery: GBP 20 or 0 lottery: GBP 20 or 0 safe payment: GBP 8
5 or 6 lottery: GBP 20 or 0 lottery: GBP 20 or 0 lottery: GBP 20 or 0

Table 4.1: Description of the investment options as shown to advisers, "lottery" is
a coin toss.

The text explained this procedure in detail and also contained several examples.
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Note that a choice among the three compound lotteries which these three options

represent, allows to categorize the underlying risk preferences.7 Comparing the

di�erences between option A and B, only those who are willing to give up a safe

payo� of GBP 12 to play a lottery with an expected payo� of GBP 10 instead,

i.e. risk-seeking individuals, choose option A. Conversely, option C is preferred

to option B only by those who want to sacri�ce an expected payo� of GBP 10

for a safe payo� of GBP 8. Thus, only risk-averse individuals choose option C.

Accordingly, Option B is chosen by individuals who are neither su�ciently risk-

averse nor su�ciently risk-seeking. Re�ecting this ordering based on risk-preferences

we will henceforth, with slight abuse of the precise meaning, refer to option A/B/C

as the "risk-seeking/neutral/averse option".

Step 1 � First recommendation R1:

After having studied the instructions and choice situations, advisers were asked

to make a recommendation to clients. For this, they had to write the sentence "I

recommend you to choose option A/B/C", depending on what they wanted to advise,

on a piece of paper which had their cubicle number on it. They were instructed to

put this recommendation into an envelope, close it, and then click on a button on

their screen. The envelope was then collected by an experimenter and put into a

box. Before they made their recommendations, they were told that at the end of

the experiment, one of the envelopes would be randomly drawn from the box to be

presented to a client and that the corresponding cubicle number would be read aloud.

An adviser thus knew that he would eventually know whether his recommendation

was chosen to a be shown to a client.

Step 2 � Own choice O:

After all advisers had written down their recommendation R1 and all envelopes were

collected, they were informed that they would now have to choose an investment

option for themselves. Advisers were previously not informed about this step. The

procedure was the same as for issuing advice: Subjects had to write on a sheet "I

choose option A/B/C." and then put it in an envelope. An experimenter came by

and collected the envelopes and put it in a separate box. Again, they were informed

that at the end of the experiment, one of the envelopes would be chosen randomly,

its number would be announced aloud, and that the respective adviser would be

asked later to roll the die to determine his chosen option's payo�. Ex-ante, the

choice situation and its implementation probability was thus the same as the one

on which they had previously advised a client on.

7 This choice between possible sub-lotteries within a compound lottery is essentially a stripped-
down version of a similar task used previously by Hsee and Weber (1997).
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Step 3 � Second recommendation R2

After advisers made their own choice O, they were asked to make a second recom-

mendation. The procedure was exactly the same as for R1, including the collection

of envelopes in a separate box, sampling one from it and announcing its number.

Again, advisers did not know in advance about this step. Advisers were also in-

formed that this second advice, if it was sampled, would be shown to a di�erent

client in the same future session with clients.

Step 4 - Questionnaire and implementation:

After all recommendations were collected, subjects �lled out a short questionnaire

which elicited personal characteristics. The experimenter then sampled one enve-

lope from each of the boxes which contained the envelopes for R1, O, and R2 and

announced the respective cubicle numbers. Subjects were then paid out in private

based on whether they were o�ered a bonus and their recommendations; the subject

in each session whose own choice O was sampled also rolled the die and received the

corresponding payo�.

NO BONUS versus BONUS treatment: The above describes the experimental

procedure in our baseline condition to which we will refer as NO BONUS. Our

experimental manipulation was to o�er some advisers a bonus for recommending

the risk-seeking option A in R1. We will refer to this treatment as BONUS. After

having been informed about the advice they had to give and how to do so, but

before seeing the sheet with the detailed information about the investment options,

every second adviser (in total 48) in a given session was randomly determined to

be in that treatment. These advisers were informed that they would get a bonus

of GBP 3 if they recommended option A. This bonus was only paid for subject's

�rst recommendation R1. For those advisers who were o�ered the bonus, there

were explicit noti�cations on the screens which explained the O and R2 tasks which

clearly stated that there would not be any bonus for these tasks.8 This within-

session, across-subjects intervention with regard to the bonus is the only di�erence

between our NO BONUS and BONUS.

Veri�ability: In order to ensure that advisers believed that a recommendation,

if randomly chosen to be shown to a client, would be actually seen by the client

we allowed advisers to sign their recommendations and to address the envelopes

to themselves. Advisers were explained that if their recommendation was chosen

to be shown a client, the sheet would be signed by the respective client. In case

8Since advisers' payo� in BONUS do not depend on the clients' decisions, they were not ex-
plicitly informed about whether clients would learn about the bonus. Also none of the advisers
asked for this information. In the session with clients, they were informed of the bonus when they
received a recommendation R1 from an adviser who had been in the BONUS treatment.
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that the corresponding adviser had provided us with his or her address, this subject

would then get a copy of the signed recommendation by post. In addition, they

were informed that this mailing would also contain information on how they could

see the original, signed receipts which were deposited with the lab's o�cial record

depository. Subjects were informed of this before making their �rst recommendation.

Since an adviser knew that he would know whether his envelope was sampled, this

procedure pre-committed us to actually show the sampled advice letters to actual

clients.

General procedures: Throughout the experiment, we enforced a strict no com-

munication policy. We conducted eight sessions, each with 11 to 14, in total 99,

subjects acting as advisers. Advisers earned on average GBP 6.68 ($9.51 at the

time of the experiment) while no session lasted longer than 45 minutes. All sub-

jects were students across several degrees and �elds of studies. Table 12 in the

appendix shows descriptive statistics. The experimental sessions were conducted

in late January 2016 at the London School of Economics's Behavioural Research

Lab with subjects from its pool. The experimental interface was implemented using

zTree (Fischbacher, 2007). A week after the eight adviser sessions, we invited 16

additional subjects from the same pool for an additional session. In this session,

they acted as clients and received the sampled recommendations from the previous

adviser sessions, made their choices, and were paid their resulting payo�s. In this

paper, we only focus on advisers and their recommendations.9

4.4 Predictions

In this section, we derive predictions for our experiment. They are based on the as-

sumptions which we described in section 2, thus on advisers maximizing their overall

utility from pecuniary payo�s, the moral cost of giving in-appropriate advice, and

the self-image concern. Given our treatment intervention, we make the predictions

with regards to how often the risk-seeking option A is recommended and chosen.

All predictions derived and presented in this section are also derived in the formal,

mathematical model which can be found in the appendix.

Predictions for R1: In NO BONUS, there is no pecuniary gain of issuing any

speci�c recommendation. Since this is the �rst choice which an adviser makes it does

9With only 16 client observations which are not balanced over treatments (only three are even-
tually with recommendations from BONUS; recall that the probability of a recommendation being
chosen is independent of the treatment), any analysis of client would have limited statistical power.
However in the two experiments of Gneezy et al. (2016) which are in a related setting but have
much more client observations, clients followed advisers in 74% and 85% of all cases, respectively.
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not have signaling value with regards to past behaviour. Absent pecuniary motives,

only the moral cost of issuing inappropriate advice therefore remains. Beliefs about

client's preference can be formed in a self-serving way, i.e. such that they suit an

adviser's recommendation, up to the point that they contradict his own preference.

To minimize the cost from recommending something that one would not choose

for oneself, advisers thus recommend option A only if they prefer it. Thus, only

risk-seeking adviser recommend option A.

In the BONUS treatment this is di�erent: Advisers are now paid for recommend-

ing option A and derive pecuniary utility from the bonus when they do so. Clearly,

those who would have recommended it anyhow, i.e. risk-seeking advisers, also rec-

ommend it in this treatment and in addition, get the bonus. However, those who

would not have recommended it in the NO BONUS because they do not prefer it

themselves now face a trade-o�: When the moral cost of recommending something

they would not choose for themselves are smaller than the pecuniary value of the

bonus, they recommend option A. Otherwise, they recommend their preferred op-

tion. In both cases, they hold self-serving beliefs about the client's preference which

is compatible with their issued advice. Assuming that some advisers have su�ciently

low moral cost and follow the o�ered bonus, we get the following prediction:

Prediction 1. There are more advisers in BONUS than in NO BONUS who rec-

ommend option A for the �rst recommendation R1.

Predictions for O: In contrast to the �rst recommendation, advisers now make

choices for themselves. The moral cost of giving inappropriate advice are therefore

absent. Since the NO BONUS did not feature a bonus, there was no incentive

to act immorally and to give biased advice. In consequence, there is no concern

about drawing any (negative) inference from the own choice about one's preceding

advice. The only relevant decision criterion is thus one's own risk preference and

only risk-seeking advisers should choose option A for themselves in NO BONUS.

The own choice situation in BONUS and the NO BONUS is identical. Di�erences

in behaviour must occur because advisers in BONUS have previously been exposed

to the bonus and, potentially, have given in to it. To the degree that they assign

diagnostic value to their choices, advisers' own choices can then reveal to themselves

that they were corrupted by the bonus: Advisers who recommended option A in

R1 should, in order to appear as having given appropriate advice, also prefer it for

themselves. In order to uphold the self-image that they were not corruptible, advisers

who recommended option A just for the bonus must then mimic the incorruptible
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ones by choosing option A for themselves.10 However, these advisers lose expected

pecuniary utility because they choose the option which they do not actually prefer.

In consequence, only those corruptible advisers who have su�ciently high image

concerns, relative to their loss in expected pecuniary utility, choose option A for

themselves, in addition to the incorruptible, risk-seeking ones. Note, however, that

this only applies if own choices have su�cient diagnostic value, i.e. if advisers

acknowledge the reverse implication of "I should recommend to my client what I

would choose in her situation". Under the assumption that advisers assign such

diagnostic value to their own choices we predict the following:

Prediction 2. There are more advisers in BONUS than in NO BONUS who rec-

ommend option A for the the own choice O.

Second recommendation R2: The predictions for the second recommendation

combine insights from above. In NO BONUS, an adviser's pecuniary utility is

una�ected by his second recommendation. Also, absent any previous bonus to give

inappropriate advice, self-signaling concern do not play any role either. Accordingly,

only the moral cost for giving inappropriate advice matters, as in R1. A previously

formed self-serving belief coincides with the previous recommendation. For this

recommendation, an adviser's own preference was the determining factor so that

again, only risk-seeking advisers recommend option A (again).

In the BONUS treatment, the second recommendation does not entail any bonus

either. However, the bonus which was o�ered to advisers in R1 opens the possibility

that this recommendation was biased and therefore, the concern for signaling one's

own corruptibility matters. Advisers who truly prefer option A can then minimize

the moral cost of giving inappropriate advice and the self-signaling concern by rec-

ommending option A again in R2. As outlined above, advisers who do not prefer

option A but recommended it in R1 for the bonus may mimic the incorruptible ones

by choosing option A in O to prevent dis-utility from learning that they gave biased

advice. Following the same logic, they can then mimic the incorruptible ones by

re-recommending option A in R2. Note that the situations in R2 and R1 are identi-

cal, except for the bonus. Therefore, an inconsistency is more directly attributable

10 In terms of a signaling model, this is an equilibrium where corruptible advisers pool with those
who truly prefer option A. In principle, there could be other equilibria where corruptible advisers
and those who truly prefer option A pool on choosing non-A options, together with incorruptible
advisers who actually prefer these options. However, in terms of self-signaling, these are rather
unrealistic equilibria. This is so because in such equilibria, those who behaved morally obfuscate
their behaviour while those who behaved immorally do not. We therefore exclude them. We discuss
this in more detail in the formal model in the appendix. There, we also show that these excluded
equilibria do not even need to exist. In contrast, the former one where corruptible advisers mimic
incorruptible ones by choosing option A does always exist.
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to one's corruptibility; the second recommendation should have higher diagnostic

value than the own choice. We thus get the following prediction:

Prediction 3. There are more advisers in BONUS than in NO BONUS who rec-

ommend option A for the second recommendation R2.

Conditional on a scenario in which at least some advisers are corrupted by the

bonus, thus that prediction 1 is true, our design enables us to investigate two main

questions. First, by testing prediction 3 we can �nd evidence for self-image concerns

which cause repeated bias in advice-giving. If advisers are only steered by pecuniary

incentives and not by the diagnostic value of their actions, we would not expect

di�erences between BONUS and NO BONUS. In addition, comparing the own choice

O across treatments allows to test whether they also have diagnostic value. If they

do not, advisers should just implement their preferred choices which, due to random

treatment assignment, should not di�er between BONUS and NO BONUS. However,

if prediction 2 is also con�rmed, this indicates that advisers make choices which are,

from a purely pecuniary point of view, sub-optimal just to appear incorruptible. It

would therefore indicate that they assign diagnostic value to their own actions.

With this in mind, we will next examine the actual advisers' behaviour in our

experiment. Before doing so, it is noteworthy that the proposed mechanism is, in

principle, also capable of explaining the �ndings by Gneezy et al. (2016). They

report on an experiment in which they expose advisers to a bonus and to a decision

situation similar to ours. They then examine the e�ect of when this exposure to

the bonus happens. They �nd that recommendations are less a�ected by the bonus

when advisers learn about it after they have �rst considered what to recommend.

In contrast, when they know about the bonus before such a consideration, their

following advice is more biased. If the act of actively considering what to recommend

also has diagnostic value, then changing one's actual recommendation afterward,

once one has learned about the bonus, would also signal one's corruptibility. If in

contrast an adviser knows from the beginning about the bonus, this can already be

taken into account when initially considering what to recommend. He can then form

a self-serving belief which supports his biased consideration and therefore also the

actual recommendation. This would prevent a negative self-inference.

4.5 Results

Results for R1: This is where our treatment manipulation occurred. In the

BONUS treatment, advisers were paid a bonus to recommend option A. Accord-
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ingly, we expect some to give in to this incentive and recommend it. This is also

what we observe: In the NO BONUS only 3.9% of advisers recommend option A

in their �rst recommendation. In contrast, about half of all advisers (54.2%) in

BONUS recommend this option � an increase by 50.3 percentage points which is

highly signi�cant (Fisher exact test: p = 0.000).11 Figure 4.1 shows the overall

distribution of choices across these treatments:
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Figure 4.1: Frequency for each option being recommended in R1, bars depict
standard errors.

We also employed a parametric approach via the following linear probability model

which allows us to control for the e�ect of remaining heterogeneity across treatments

or sessions:

Prob[r1,i = A] = α + β ·BONUSi + δ · ci + γ · si + εi (4.1)

In the above, r1,i is subject i's �rst recommendation out of the set of possible rec-

ommendations {A,B,C} and BONUSi is a dummy indicating whether this subject
was randomly assigned to the treatment BONUS. The vector ci collects control

variables which indicate a subject's age, gender, monthly budget, dummies for re-

gions of origin, the highest degree a subject holds or pursues and his or her �elds

of studies. Control dummies for each session are collected in si. The error term εi

captures idiosyncratic noise in the decision for an adviser's recommendation. Table

4.2 presents the results when controls are successively added. It shows that the

increase of about 50 percentage points in the probability of recommending option

A is almost una�ected by the addition of these controls and remains highly signi�-

cant. We also repeat the same estimation procedure by probit and do not �nd any

qualitative di�erences (see table 8 in the appendix). We therefore note that our

treatment manipulation worked and that prediction 1 is con�rmed.

11Although we have directed hypothesis, the reported p-value here and in the the following
always refer to more conservative two-sided hypotheses.
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(1) (2) (3) (4)

BONUS 0.502*** 0.497*** 0.489*** 0.481***
(0.078) (0.076) (0.093) (0.092)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 99 99
Adjusted R2 0.304 0.323 0.280 0.310

Table 4.2: OLS estimates of the probability to recommend option A in R1
robust standard error in parentheses, signi�cance levels: *** p < 0.01, ** p < 0.05,

* p < 0.1
personal controls: age, gender, monthly budget, subject's region of origin and �eld

of studies

It is also noteworthy that our results indicate that when o�ered a bonus, almost

half of our subjects do not recommend option A. If subjects were confused or in-

decisive we would expect them all to take the money. However, there is something

which stops a signi�cant share, 45.8% (t-test: p = 0.000), of all advisers in BONUS

from recommending this option, even for money. The notion of advisers refusing to

recommend it because they consider it inappropriate or immoral advice is consistent

with this observation.

Own choice O: For their own choice, no bonus is paid to advisers in both conditions.

Figure 4.2 displays their choices. In the baseline NO BONUS we observe that 9.8%
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Figure 4.2: Frequency for each option being chosen in O, bars depict standard
errors.

choose option A for themselves. In BONUS however, when advisers were previously

o�ered the bonus for their �rst recommendation, 27.1% of all advisers, almost three

times as much as in NO BONUS, choose the risk-seeking option A for themselves.

This increase by 17.3 percentage point is signi�cant (Fisher exact test: p = 0.036).

This �nding is also con�rmed when we re-estimate model (4.1) with a dummy
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indicating that an adviser chooses option O for himself as the dependent variable.

Table 4.3 reports the corresponding results when the same control variables as in

the preceding analysis are successively added. The e�ect of being in BONUS even

increases and this pattern is again similar when the model is estimated by probit

(see table 9 in the appendix). Therefore, we regard prediction 2 as con�rmed.

(1) (2) (3) (4)

BONUS 0.173** 0.178** 0.219** 0.218**
(0.077) (0.081) (0.095) (0.087)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 99 99
Adjusted R2 0.040 0.010 0.065 0.088

Table 4.3: OLS estimates of the probability to choose option A for oneself in O
robust standard error in parentheses, signi�cance levels: *** p < 0.01, ** p < 0.05,

* p < 0.1
personal controls: age, gender, monthly budget, subject's region of origin and �eld

of studies

Given these �ndings, it is helpful to recall the mechanism which underlies our

prediction since we can examine this causal channel more closely. The mechanism

argues that if advisers assign diagnostic value to their own choice, they have to

act according to their (biased) advice in order not to self-signal that they were

corrupted. Our �ndings for R1 indicate that the bonus corrupted about half of all

advisers; it leads to an increase of recommending option A by 50.3 percentage points

for BONUS relative to NO BONUS. The �ndings on advisers' own choice O just

presented, show that there is an increase of 17.3 percentage points for those who were

potentially corrupted, i.e. those who were exposed to the bonus. These estimated

probabilities then imply the share of advisers who choose option A for themselves

because they have previously given in to the bonus but do not want to self-signal

their corruptibility is given by 34.4% (, 0.173/0.503).12 This estimate shows that

12 This follows from re-arranging the following: The observed increase between NO BONUS
and BONUS in own choices for A (17.3%) has, according to the described mechanism, to equal
advisers' propensity of feeling compelled to choose option A for themselves due to their previous
recommendation for it, multiplied with the increase in the probability of them recommending
option A as caused by the bonus (50.3%). To capture this e�ect in our regression framework, we
implemented the following two-stage procedure: In the �rst stage, we took our regression results
for (4.1) to obtain an estimate of how strongly the bonus lead advisers to recommend option A.
To see how this causal channel a�ected their own choice, denoted by ci, we then estimated in a

second step the model Prob[ci = A] = α + β · ̂r1,i = A + δ · ci + γ · si + εi where ̂r1,i = A is the
predicted probability of adviser i recommending option A because i is exposed to the bonus, thus
we take Bonusi and our �rst-stage results to instrument r1,i. The estimate for β in the second
stage then re�ects the causal e�ect of the bonus on the probability of choosing option A for oneself.
The point estimates range from 0.344 to 0.452, depending on the speci�cation, and are signi�cant
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more than a third of those advisers who were put on the spot by biasing their

recommendations and then having to choose for themselves behaved consistently by

choosing option A for themselves.

We can also take our choice rate for option A in NO BONUS, which is 9.8%, as

an estimate of how many people actually prefer it independent of possible image con-

cerns due to the bonus. Adding this to the above estimate, we would expect that a

total of 44.2%(=34.4%+9.8%) of the advisers in BONUS who initially recommended

option A in R1 behaved consistently and also chose it in O. What we empirically

observe is that 42.3% of the advisers in BONUS who initially recommended option

A exhibit such a behaviour, a percentage which is not di�erent from the expected

one (t-test: p = 0.850). Furthermore, this observed frequency also means that a

signi�cant share of advisers in treatment BONUS who have initially recommended

option A, 57.7% (t-test: p = 0.000), do not choose it for themselves. Again, if

advisers were just confused and took the bonus as an indication of what they should

recommend, we would expect them all to also act accordingly for themselves.

Second recommendation R2: For their second recommendation, the decision

situation for advisers in NO BONUS is the same as for their �rst. Accordingly, we

expect a similar pattern of recommendations. The left panel of �gure 4.3 shows

the recommendation frequencies for each option. Comparing it to the left panel of
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Figure 4.3: Frequency for each option being recommended in R1, bars depict
standard errors.

�gure 4.1 shows that this is largely the case: 82.4% of the advisers in NO BONUS

recommend again exactly the same option they recommend initially. In particular,

exactly the small minority of 3.9% of the advisers who recommended option A

(p < 0.05). Strictly speaking, the results of this two-stage procedure may however be biased
since the exclusion restriction for the instrument Bonusi could be violated (being in the BONUS
treatment could in�uence the own choice via channels other than the �rst recommendation). Given
the �t to our above estimates and observations, we however consider the results of this procedure
noteworthy.
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recommends it again.

This picture is very di�erent when we compare this to the recommendations

in BONUS. Although there is no bonus for recommending option A in R2 either,

the rate of recommendation for option A is almost �ve times as high as in the NO

BONUS: 22.9% of those advisers who had previously been exposed to the bonus rec-

ommend option A, a signi�cant increase by 19.0 percentage points relative to the NO

BONUS (Fisher exact test: p = 0.007). This is also con�rmed by a regression anal-

ysis which re-estimates model (4.1) when a dummy which indicates whether option

A is recommended in the second recommendation is the dependent variable. Table

4.4 presents the results and shows that this point estimate even increases. Again,

(1) (2) (3) (4)

BONUS 0.190*** 0.203*** 0.211** 0.213**
(0.067) (0.067) (0.092) (0.087)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 99 99
Adjusted R2 0.070 0.073 0.038 0.064

Table 4.4: OLS estimates of the probability to recommend option A in R2
robust standard error in parentheses, signi�cance levels: *** p < 0.01, ** p < 0.05,

* p < 0.1
personal controls: age, gender, monthly budget, subject's region of origin and �eld

of studies

this pattern is also observed for probit estimates (see table 10 in the appendix). We

therefore treat prediction 3 as con�rmed.

As above for advisers' own choices O, we can estimate the causal e�ect of having

given in to the bonus on the repeated recommendation for the risk-seeking option.

The initial e�ect of an increase in the probability of recommending A in R1 due to

the bonus was estimated by 50.3 percentage points. The observed increase of 19.0

percentage point in R2 then implies that, in expectation, 37.8% (, 0.190/0.503) of

advisers recommend option A again just because they have previously given in to the

bonus.13 To estimate the frequency of advisers in BONUS who recommend option

A twice we add the 3.9% who do so in the NO BONUS treatment as an estimate

for the proportion of those who recommend it for reasons unrelated to the bonus.

The implied point estimate from this decomposition is 41.7%(=37.8%+3.9%). This

13We also repeated the two-step instrumental-variable-procedure as explained in footnote 12.
That is, we estimate the probability of recommending option A again in R2 when one's �rst
recommendation R1 has been biased the bonus. With the same caveat as described there applying
here, the resulting IV-estimates of this causal channel range from 0.372 to 0.442 percentage point,
depending on the speci�cation, and are signi�cant (p < 0.01).
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estimate in the region of the actually observed frequency of advisers in BONUS who

re-recommend option A in R2: It is given by 34.6% which is not statistically di�ered

from the above estimate (t-test: p = 0.417).

Further results: There are some further �ndings which support our theory and its

underlying assumptions. Given our previous results, we expect high consistency be-

tween advisers' own choices and their �rst recommendation when there is no con�ict

of interest. Our results are largely in line with this: Table 4.5a) shows the frequen-

cies of advisers choosing for themselves, conditional on their �rst recommendation

in NO BONUS. Only the o�-diagonal entries are not in line with this prediction.

They amount to a total of 17.7% of the observation in this treatment; 82.3% of our

observations in NO BONUS are therefore in line with the predicted consistency. In

O =

A B C

A 3.9% 0.0% 0.0%

R1 = B 2.0% 23.5% 11.8%

C 3.9% 0.0% 54.9

a) NO BONUS

O =

A B C

A 22.9% 8.3% 22.9%

R1 = B 0.0% 6.3% 0.0%

C 4.2% 4.2% 31.3

b) BONUS
Table 4.5: Frequencies of advisers' own choices O conditional on their �rst

recommendation R1.

BONUS, our theory predicts that some of those who have previously recommended

option A stick to it in order to avoid a negative self-image. Other advisers who

have recommended it but who do not have su�ciently strong image concerns choose

their preferred option instead. Accordingly, we can explain the diagonal entries in

table 4.5b) plus the o�-diagonal ones in the �rst row. Again, this leaves only a small

fraction of 8.4% of our observations unexplained.

We �nd similar results with regards to the consistency between advisers' �rst

and second recommendations. Table 4.6a) and b) show the respective conditional

frequencies across our experimental conditions. In NO BONUS, noise is somewhat

R2 =

A B C

A 3.9% 0.0% 0.0%

R1 = B 0.0% 35.3% 2.0%

C 3.9% 15.7% 43.1%

a) NO BONUS

R2 =

A B C

A 18.8% 16.7% 18.8%

R1 = B 0.0% 6.3% 0.0%

C 4.2% 8.3% 27.1%

b) BONUS
Table 4.6: Frequencies of advisers' second recommendations R2 conditional on

their �rst R1.
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higher than for the previous comparison. We observe a total of 21.6% to be incon-

sistent, i.e. to be outside table 4.6a)'s diagonal. However, one should note �rstly,

that these inconsistencies are primarily due to switches from having initially rec-

ommended option C and then option B, thus between neighboring, non-risk-seeking

options. Secondly, almost eighty percent of recommendations are consistent and

thus in line with our theory. With regard to variations in the BONUS treatment the

results are even stronger. In total, 87.5% of our observations fall into an explainable

pattern, thus are either on the diagonal or the �rst row. Overall, the consistency

predicted by our theory can be observed in at least four �fth of the relevant cases

and often, in even higher proportions.

Further evidence comes from our exit questionnaire. It contained a question on

advisers' general risk attitudes. More precisely, it asked subjects to indicate on an

11-point Likert-scale "How willing are you to take risk, in general?". Although this

question was not incentivized, answers to it has previously been shown to correlate

with peoples' actual choices under risk. While in NO BONUS, the average response

was 5.0 points, it increased by almost one point or alternatively, 39.8% of its stan-

dard deviation, to 5.9 points in the treatment BONUS. This increase is marginally

statistically signi�cant (Wilcoxon ranksum-test: p = 0.059).14 This result becomes

even stronger, both numerically and statistically, in an OLS regression analysis when

additional control variables are included. Table 4.7 represents the results from es-

timating model (4.1) when the dependent variable is this self-assessed risk-measure

and controls are successively added. The results are also robust to estimation via

ordered probit (see table 11 in the appendix). This increase in an adviser's self-

stated risk measure is consistent with our theory: Advisers who have previously

given in to the bonus can self signal that this advice was appropriate from their

point of view when they consider themselves as more risk-seeking.15 Once again,

this is also consistent with advisers who are not just confused about their choices and

14Due to a data-glitch in the �rst two sessions, we had to collect the risk-measure along with the
other post-experimental questionnaire separately. When we exclude these sessions, the increase
is 1.1 points, 46% of the measure's standard deviation, and is similarly signi�cant (Wilcoxon
ranksum-test: p = 0.062.). The same pattern (higher point estimates and slightly lower but still
signi�cant p-values) holds when we exclude these observations from the regressions reported in
table 4.7. Note that our primary data on the recommendations R1/R2 and own choices O were
not a�ected by this data glitch since they were collected by advisers writing them on paper.

15We also repeated the two step instrumental variable procedure laid out along with its caveats
in footnote 12. This allows us to estimate the e�ect on the risk measure through having recom-
mended option A by instrumenting this choice via an advisers' random exposure to the bonus. The
estimated coe�cient ranges from a 1.8 to 2.2, depending on the speci�cation and are signi�cant
(p < 0.05). Given the �rst stage increase in the probability of recommending option A due to the
bonus of 50.3 percentage points, the implied causal increase of 0.9 to 1.1 (1.8×0.503 to 2.2×0.503)
is consistent with these estimates.
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(1) (2) (3) (4)

BONUS 0.914** 1.030** 1.244** 1.306**
(0.453) (0.436) (0.576) (0.590)

Constant 4.961*** 3.534*** 5.185** 5.819*
(0.335) (0.634) (2.284) (3.090)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 99 99
Adjusted R2 0.040 0.199 0.374 0.415

Table 4.7: OLS estimates on the self-assessed preference for risk (Likert scale, 0 to
10)

robust standard error in parentheses, signi�cance levels: *** p < 0.01, ** p < 0.05,
* p < 0.1

personal controls: age, gender, monthly budget, subject's region of origin and �eld
of studies

recommendations but who, on the contrary, do even understand the more general

behavioural implications of their recommendations outside the given set of options.

4.6 Conclusion

In this paper, we provide experimental evidence that incentives to bias advice have

a lasting and causal e�ect on both, advisers' future recommendations for risky de-

cisions and their own choices. When advisers are paid a bonus to recommend an

investment option which is only preferred by risk-seeking individuals, about half of

them recommend it. Without such a bonus only four percent do so. Prior expo-

sure to a bonus leads a signi�cant share of advisers to re-recommend this option

when there is no bonus anymore and even to choose it for themselves. We provide

a psychological mechanism which is capable of explaining these �ndings. It is based

on advisers' desire to not self-signal their corruptibility. This forces them to be

consistent in their recommendations and own choices, even when this means to bias

further advice and even their own choices. With this theory we can consistently

decompose the recommendation and choice pattern of advisers in our experiment.

We estimate that around 35 to 40 percent of those advisers whose advice has been

corrupted by the bonus engage in such continuing deception of advisers and also of

themselves in order to preserve a positive self-image.

A straightforward policy implication of our �ndings is therefore that removing

advisers' con�icts of interest does not necessarily eliminate their e�ect on advice

giving. For example, the Retail Distribution Review (RDR) in the UK whose step-
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wise implementation started in 2013 bans commission-based �nancial advice. Our

results indicate that, while it may improve such advice in the long run, its full e�ects

may be considerably delayed. Experienced advisers, who have spent their hitherto

professional life in an environment which featured such incentives, will likely exhibit

persistent biases in their recommendations.

Our proposed mechanism also has profound consequences on how accountable

advisers feel. It implies that it is the desire to see oneself as a moral, impartial

adviser which can lead to exactly the opposite behaviour. Those who stop giving

biased advice after bonuses are removed identify themselves as having previously

been corrupted. In contrast, those who continue to give biased advice do so just

to avoid this inference and therfore, do not feel corrupted. In consequence, the

awareness of acting in a corrupted manner and actually giving biased advice do not

coincide, in fact they are asymmetric. This provides challenges for the remedy of

the biases resulting from con�icts of interest as those who do the damage might not

even feel culpable. Given the demand for advice in many situations, we think that

exploring these mental processes by advisers and the adverse consequences it has on

their job is a fruitful avenue for further research.
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Appendix A � A simple model of self-signaling and

corrupted advice-giving

In the following, we formally derive three predictions I to III which are analogous to

their respective counterparts, predictions 1 to 3 in then main text. These derivations

are based on a formal model presented below with assumptions capturing those

described in section 2.

First recommendation R1: We consider an adviser who recommends a client

which action out of a discrete set S to take. In our experiment, these are three

investment options A, B, and C, thus S = {A,B,C}. We denote an adviser's (�rst)

recommendation by r1 ∈ S. In addition, there is a bonus b(r1) which depends

on the issued recommendation. In our experiment, an adviser gets a bonus b if

he recommends option A, otherwise he does not get any bonus. We thus have

b(r1) = b · 1[r1 = A]. We denote the utility which advisers get from a pecuniary

payo� x by the strictly increasing vNM-utility function u(x).

In addition, an adviser i su�ers dis-utility ki > 0 to the extend that he recom-

mends an option which is not in the client's best interest. What constitutes a client's

best interest is based on two factors: First, it is the choice c∗ which the adviser would

make if he had to make the client's decision for himself, thus c∗ = arg maxc∈S E[u(c)].

Second, we allow the adviser to hold a (motivated) belief about the client's prefer-

ences. This is captured by the vNM-utility function ũ which denotes the adviser's

belief about the client's preference. We can then denote the implied optimal choice,

based on this �rst-order belief, by c̃∗ = arg maxc∈S E[ũ(c)]. We let γ ∈ [0, 1] de-

note the weight which advisers assign to their own preference in determining what

it is the client's best interest as opposed to optimal recommendations based on

their �rst-order beliefs about the client's preferences. An adviser's overall utility of

recommending r1 is then given by the following expression:

Ṽ (r1) = u(b · 1[r1 = A])− ki
(
γ · 1[r1 6= c∗] + (1− γ) · 1[r1 6= c̃∗]

)
(2)

This allows several interpretations: When γ = 1, the question of what constitutes
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appropriate, morally sound advice is the same as "What would I choose if I were

in the client's position?". Conversely, γ = 0 means that only what an adviser be-

liefs about others' preferences, not his personal consideration, is relevant for issuing

appropriate advice. Values of γ within the unit interval can represent situations

in between or when an adviser believes that a client has utility represented by u

with probability γ and otherwise represented by ũ. The magnitude of ki then scales

concerns about issuing unsuited advice relative to pecuniary payo�s.

Advisers can form a belief about the client's preferences in a self-serving manner.

That is, whenever they issue a recommendation r1 they can maximize their overall

utility by self-servingly believe that the clients' preferences ũ are such that c̃∗ =

r1. In this regard, γ can also be interpreted as how far such a self-serving belief

can be formed, independently of and adviser's own preferences. Therefore, the

recommendation r1 which maximizes (2) is the maximizer of the following, more

simple, expression:

v(r1) = u(b · 1[r1 = a)])− γki · 1[r1 6= c∗] (3)

We letKc∗ denote the cdf of the distribution of an adviser's moral cost ki, conditional

on this adviser preferring option c∗, e.g. KA(x) = Pr[ki ≤ x|c∗ = A]. For simplicity,

we assume that each of these conditionals cdf's has pdf which is strictly positive over

its support.16 We also let αc∗ > 0 denote the share in the population of advisers

who have preferred action c∗ ∈ S.17 For easier noti�cation, we let α = αA, i.e.

in our experiment α is the share of advisers who are su�ciently risk-seeking to

choose option A. We assume the above distributions and parameters to be common

knowledge.18

R1 � NO BONUS: Since there is no incentive to bias advice, only the second part

of (3) matters. This is maximized by r∗1 = c∗. In consequence, the share of advisers

16Results do not change when the cdfs are allowed to be partially non-increasing, as
long as at least one of the pdfs has some mass on su�ciently low values, i.e. that
Kc∗ (min{u(b)− u(0),E[u(c∗)− u(A)]}) > 0 for at least one c∗ ∈ S \ {A}.

17In consequence, the unconditional cdf Pr[ki ≤ x] is given by
∑

c∗∈S αc∗Kc∗(x).
18Note that when the signaling concern refers to a dual-self model where advisers ex-post infer

their own type from actions, this common prior only refers to these selves. A common prior between
individuals is not required.
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who recommend option A equals α.

R1 � BONUS: For those who have c∗ = A, it follows from (3) that they should

also recommend it. For those with c∗ 6= A, they can either recommend option A

nevertheless to earn the bonus or they recommend their preferred option c∗ 6= A and

obtain a utility of u(0). Advisers who do not prefer option A then recommend it if

and only if γki < u(b) − u(0). By using the convention that Kc∗

(
u(b)−u(0)

γ

) ∣∣
γ=0

=

limx→+∞Kc∗(x) = 1 we can then de�ne the following

β ≡
∑

c∗∈S\{A}

αc∗Kc∗

(
u(b)− u(0)

γ

)
= αBKB

(
u(b)− u(0)

γ

)
+αcKc

(
u(b)− u(0)

γ

)
> 0

Thus with a bonus, a share β of advisers is corrupted by the bonus and recommends

option A, in addition to the share α who would have recommended this option

anyhow.

Given the same expected population of advisers across BONUS and NO BONUS,

as achieved by random treatment assignment, we can then state the following:

Prediction I. Pr[r1 = A | bonus ] = α + β > Pr[r1 = A | no bonus ] = α

It will be helpful to categorize advisers along three behavioural types θ ∈ {1, 2, 3}.

These types re�ect the motives underlying their recommendation r1 as follows:

Type 1 (θ = 1): Advisers who have c∗ = A and recommend r1 = c∗, share α.

Type 2 (θ = 2): Advisers who have c∗ 6= A but recommend r1 6= c∗, share β.

Type 3 (θ = 3): Advisers who have c∗ 6= A and recommend r1 = c∗, share

1− α− β.

Type 1 and 3 advisers give the same advice they would have given had the bonus been

absent. Type-2-advisers are corrupted: They recommend option A not because they

prefer it but because they were paid to do so. Note that this above categorization

of types also applies in the NO BONUS-treatment, the respective shares however

di�er: Share α also recommends option A without a bonus. Type-2-advisers do not

exist in this treatment thus we can treat β as if it were equal to zero and the share

of type-3-advisers is given by 1− α.
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Own choice O: The extent to which advisers take their own choice as a "diagnosis"

of the moral type in R1 is given by λ ≥ 0. A value λ ∈ (0, 1) would re�ect that

choosing for one-self is not exactly the same as recommending to others but also

that is not unrelated; λ = γ is then a natural case. In general, we assume that λ

is some increasing function Λ of γ with λ = Λ(γ) = 0 if and only if γ = 0. This

means that own choices only have diagnostic value to assess an adviser's previous

recommendation when his own preference is, at least partly, relevant for issuing

appropriate advice.

When λ is positive, an adviser's own choice c ∈ S signals his underlying motives

for his previous recommendation in R1. In particular, an adviser can potentially

infer that he was a type-2-adviser according to the above classi�cation. The cost

of inferring that one is such a type, thus that one-seld is corruptible yield image

dis-utility li > 0. By denoting the expected utility from choosing a lottery c ∈ S by

E[u(c)], the overall utility of advisers is then given by

V (c|r1) = E[u(c)]− λli · Pr[θ = 2|r1, c] (4)

As before, we assume that li can be described by a family of commonly known

conditional cdfs (Lc∗)c∗∈S , e.g. LA(x) = Pr[li ≤ x|c∗ = A].19

O � NO BONUS: When there was no prior bonus, there are no type-2 advisers. In

consequence, Pr[θ = 2|r1, c] ≤ Pr[θ = 2] = 0 holds and c = c∗ maximizes (4) via

E[u(c)]. The share of advisers choosing option A for themselves is thus given by α.

O � BONUS: We start with the case that λ > 0. First note that type-3-advisers who

have previously recommended r1 6= A cannot infer to be type-2-advisers, i.e. Pr[θ =

2|r1 6= A, c] = 0. All type-3-advisers therefore choose c = r1 = c∗ 6= A to maximize

(4). Type-1 and type-2 advisers can however both infer to be type-2 and would

then su�er dis-utility li because they have the same initial recommendation r1 = A.

Denote the likelihood that a type-1-adviser chooses c = A with τc = Pr[c = A|θ = 1]

19This e�ectively constitutes a intrapersonal signaling game where an adviser of type (ki, li)
sends a message (c|r1) and then gets dis-utility when he infers from this that his type is such the
he behaves according to the behavioural type θ = 2.
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and that a type-2-adviser makes the same choice with πc = Pr[c = A|θ = 2]. One

then gets the following for the corresponding posteriors:

Pr[θ = 2|c = A, r1 = A] =
πc · β

τc · α + πc · β
(5)

Pr[θ = 2|c 6= A, r1 = A] =
(1− πc) · β

(1− τc) · α + (1− πc) · β
(6)

It is easily veri�ed that Pr[θ = 2|c 6= A, r1 = A] ≥ Pr[θ = 2|c = A, r1 = A] whenever

τc ≥ πc. If this condition holds, type-1-advisers who choose c 6= A su�er for two

reasons: First, they loose expected pecuniary utility by choosing a suboptimal choice

c = A 6= c∗. Second, they expect dis-utility from damage to self-image which is at

least as big as when they had chosen their preferred option. In consequence, there

is only one equilibrium with τc ≥ πc in which τc = 1 and all type-1-advisers are

consistent by choosing r1 = c = A. While other equilibria with τc < πc cannot be

excluded but also do not need to exist, the one with τc = 1 is a natural candidate: In

it, type-1-advisers who are not corrupted by the bonus do also not deviate from their

preferred choice just because of the fear of perceiving themselves as corruptible type-

2-advisers while type-2-adviser, who want to uphold a positive self-image, might do

so. Also, while there is always the equilibrium with τc = 1, those with τc < πc may

not even exist.20

Type 2-advisers then face a trade-o�: They would not like to choose option A

for themselves, since for them c∗ 6= Aholds. However, if they switch from their �rst

recommendation to their preferred option, they then generate a perfect signal of

being type-2 since all other types are consistent by choosing c = r1 and therefore,

Pr[θ = 2|c 6= A, r1 = A] = 1 holds. Using the posterior (5), a type-2-adviser

therefore chooses his preferred option c∗ 6= A if and only if

E[u(c∗)]− λli > E[u(A)]− λli ·
πc · β

α + πc · β

That is, an adviser reveals himself when his image concern is su�ciently low, i.e.

20If the dis-utility of not choosing option A although one prefers it is too large, type-1 would
not choose another option just to appear less as a type 2.
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when li <
α+πcβ
λα

(E[u(c∗)]− E[u(A)]). For this, they have to take into account that

by not choosing option A, they decrease πc. This in turn simpli�es pooling and

thereby raises the opportunity cost of such a choice. It follows that, in equilibrium,

the share of type-2-advisers who choose option A to uphold a positive image balance

this e�ect. This share is therefore given by the solution to the following expression:

1− πc =
∑

c∗∈S\{A}

αc∗Lc∗

(
α + πcβ

λα
(E[u(c∗)]− E[u(A)])

)

= αBLB

(
α + πcβ

λα
(E[u(B)]− E[u(A)])

)
+ αCLC

(
α + πcβ

λα
(E[u(C)]− E[u(A)])

)
(7)

Note that for all values of πc ∈ [0, 1], the above RHS is strictly positive and non-

decreasing in πc. Also note that from α = αA > 0 it holds that
∑

c∗∈S\{A} αc∗Lc∗ (x) <∑
c∗∈S αc∗Lc∗ (x) ≤ 1 for every x ∈ R++.

21 The above RHS is therefore strictly less

than one. Since the LHS is strictly decreasing in πC and takes all values in [0, 1]

over that interval, there is a unique solution π∗c ∈ (0, 1) to (12). Also note that since

the RHS of (12) is decreasing in λ, the implied consistency in own choice π∗c is also

strictly increasing in this parameter.

Now consider λ = 0: The second part in (4) does not count then and irrespective

of their prior behaviour, all advisers choose c∗. This is equivalent to π∗c = 0.

In summary, share α of type-1-advisers initially recommend and then choose for

themselves option A. Type-3-advisers initially recommend and then choose their

preferred non-A option. Type-2-advisers, whose total share is given by β, split in

two subgroups: Advisers in the �rst subgroup who represent share π∗cβ of all advisers

choose option A to uphold a positive image. Advisers in the second subgroup with

population share (1 − π∗c )β put their own payo� above image concerns and choose

their preferred non-A options. The �rst sub-group then has mass only when they

advisers assign diagnostic value to their choices, thus if γ > 0. Assuming that this

is true, the following predictions can then be stated:

21This also holds under the condition for weakly-increasing cdfs laid out in footnote 16 (it is the
reason for the second expression in the min-term).
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Prediction II. Suppose λ > 0. Then Pr[c = A|bonus] = α + π∗cβ > Pr[c =

A|no bonus] = α

Second recommendation R2: As before, the dis-utility of inferring to be cor-

ruptible, thus to be a type-2-adviser, is given by li > 0. Since the advice in R2 is

the same as in R1 we do not discount the diagnostic value by some λ < 1. The

recommendation does not a�ect the adviser himself but the client. We thus assume,

as for the �rst recommendation, that he su�ers dis-utility from giving inappropri-

ate advice, measured by ki. Note that advisers initially formed a self-serving belief

about ũ. In consequence, they have to stick to it. This means that there is addi-

tional dis-utility ki(1−γ), of not living up to one's prior motivated belief to c̃∗ = r1.

An adviser's ex-ante utility from giving recommendation r2, given his prior actions

and beliefs, is then described by

V (r2|r2, r1, c) = −ki (γ · 1[r2 6= c∗] + (1− γ) · 1[r2 6= r1])− li ·Pr[θ = 2|r2, c, r1] (8)

R2 � NO BONUS: Again, without a previous bonus type-2-advisers do not exist and

Pr[θ = 2|r1, c] ≤ Pr[θ = 2] = 0. Since r1 = c = c∗ was chosen initally, recommending

r2 = c∗ then maximizes (8). The share of advisers recommending option A (again)

in NO BONUS is therefore α.

R2 � BONUS: For type-3-advisers, their previous behaviour with c = r1 = c∗ 6= A

prevents them from inferring to be type-2-advisers since Pr[θ = 2|r2, c = r1 6= A] ≤

Pr[θ = 2|c = r1 6= A] = 0. Since for them c = r1 = c∗ holds, they maximize (8) by

recommending r2 = c = r1 = c∗ 6= A.

First, consider the case that own actions in O had diagnostic value, thus λ > 0

and therefore π∗c ∈ (0, 1). Share 1− π∗c of type-2-advisers has then already revealed

himself as such. For them, Pr[θ = 2|r2, c 6= r1 = A] = Pr[θ = 2|c 6= r1 = A] = 1

applies. Their second recommendation r2 is thus una�ected by image concerns.

Accordingly, r2 = c∗ 6= A maximizes (8) when γ > 1
2
and r2 = r1 = A when it holds

that γ ∈ (0, 1
2
].22

22Note that when γ > 1
2 , their prior, self-serving belief leads even those advisers who have

139



It follows that the mass of candidates for continued pooling with type-1-advisers

in R2 is given by the overall share π∗cβ > 0 of advisers who has not yet revealed

themselves to be type-2. They, together with type-1-advisers have a history of

c = r1 = A. By denoting the likelihood that a type-1-adviser chooses r2 = A with

τr2 = Pr[r2 = A|θ = 1] and the corresponding probability for a type-2-adviser who

has not revealed himself by πr2 = Pr[r2 = A|θ = 2, c = r1 = A] we get the following

posteriors:

Pr[θ = 2|r2 = c = r1 = A] =
πr2 · π∗cβ

τr2 · α + πr2 · π∗cβ
(9)

Pr[t = 2|r2 6= A, c = r1 = A] =
(1− πr2) · π∗cβ

(1− τr2) · α + (1− πr2) · π∗cβ
(10)

Analogously to the comparison of (5) and (6), (10) is larger than (9) whenever

τr2 ≥ πr2 . Repeating the analogous reasoning for an equilibrium with τc = 1 in O,

there is an equilibrium where all type-1-advisers choose option A for their second

recommendation, thus with τr2 = 1. This is the equilibrium on which we focus (see

the above discussion on this selection for O, the same arguments carry over to R2).

Type 2-advisers who have so far not revealed themselves through inconsistent

actions (i.e. c 6= r1 = A) face again a trade-o�: On the one hand, they could

recommend their preferred choice r2 = c∗ 6= A to prevent the cost γki of giving

inappropriate advice, based on their personally preferred action. However, this

would then reveal them to be type-2s and get them dis-utility li. In addition, they

would give inappropriate advice based on their self-serving belief c̃∗ = A = r1 they

formed in R1 which would now create costs of (1 − γ)ki when they recommend

r2 6= r1. The alternative is to continue in recommending option A to pool with

type-1-advisers and therefore uphold a positive self-image. By using (9), together

with τr2 = 1, a type-2-adviser then recommends r2 = c = r1 = A 6= c∗ if and only if

− kiγ − li ·
πr2 · π∗cβ

α + πr2 · π∗cβ
> −ki(1− γ)− li ⇔

ki
li

(2γ − 1) <
α

α + πr2
· π∗c (11)

In consequence, a type-2-adviser who re-issues biased advice by recommending r2 =

already revealed themselves to re-issue their biased advice for option A.
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A has low concerns of giving inappropriate advice (ki) relative to their image concern

(li). To formalize this, it will be useful to denote the family of cdfs of the ratio

distribution ki/li, conditional on an adviser's preferred option c∗, by (Rc∗)c∗∈S . For

example, a typical member is RB = Pr[ki/li ≤ x|c∗ = B].23

First consider the case that γ > 1
2
. Again, revealing one-self by recommending a

non-A option increases the opportunity cost of doing so as pooling becomes easier.

In equilibrium, advisers take this into account. From (11), it then follows that the

share π∗r2 of hitherto not revealed type-2-advisers who continue to pool with type-1s

has to solve the following expression:

πr2 =
∑

c∗∈S\{A}

αc∗Rc∗

(
α

(2γ − 1)(α + πr2 · π∗cβ)

)

= αBRB

(
α

(2γ − 1)(α + πr2 · π∗cβ)

)
+ αCRC

(
α

(2γ − 1)(α + πr2 · π∗cβ)

) (12)

By analogous reasoning as for the RHS of (12), the above RHS is strictly less than

one. It is also non-increasing in πr2 . Therefore, there has to be a unique intersection

π∗r2 ∈ (0, 1) with the 45-degree line over the unit interval. We then get the following:

Prediction III.a) Pr[r2 = A|bonus] = α + π∗r2π
∗
cβ > Pr[c = A|no bonus] = α

when γ ∈ (1
2
, 1].

Alternatively, if γ ∈ (0, 1
2
] the second inequality in (11) is always ful�lled since

its RHS is strictly positive while the LHS is strictly negative. It then follows that

π∗r2 = 1 and all of the unrevealed type-2s choose r2 = A. In addition, the share

1 − π∗c who have previously revealed themselves also choose r2 = A (see above).

This prediction then follows:

Prediction III.b) Pr[r2 = A|bonus] = α + β > Pr[c = A|no bonus] = α when

γ ∈ (0, 1
2
].

Lastly, consider γ = 0. Own choices then have no diagnostic value as λ = 0.

The main di�erence to the preceding analysis is that not choosing c = r1 = A for

23Since ki and li are positively-valued and their distributions are commonly known, Rc∗ is de�ned
and also commonly known.
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type-2-advisers does not necessarily reveal them to be of this type. In consequence,

there is no mass πcβ of candidates for continued pooling but all type-2-adviser are

candidates for pooling with the moral type-1-advisers in R2 and none has previously

revealed. The mass of those who potentially mimic type-1-advisers is thus given by β.

The analogs to the inference posteriors (9) and (10) are equivalent to setting πc = 1

in these expression.24 Also, they are independent of the adviser's previous choice c

since it does not have diagnostic value because λ = γ = 0 applies. Expression (11)

then becomes

− li ·
πr2 · β

α + πr2 · β
> −ki − li ⇔

ki
li
> − α

α + πr2
(13)

and is always ful�lled, thus all type-2-advisers re-recommend r2 = A:

Prediction III.c) Pr[r2 = A|bonus] = α + β > Pr[c = A|no bonus] = α when

γ = 0.

From predictions III.a) through III.c) we get that for any weight γ ∈ [0, 1], option

A is more often re-recommended in BONUS than in NO BONUS, thus prediction 3

in the main text.

24Note that in slight contradiction to the initial de�nition of πc as the share of type-2-advisers
which behaves consistently in the own choice, setting this value equal to one does not mean that
all behave consistently. It is however mathematically equivalent to this situation since the choice
c has no diagnostic value. This is the same as if all type-2-advisers would have pooled with
type-1-advisers. In both cases, the mass for (continued) pooling is the same and given by β.
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Appendix B � Further data and analysis

(1) (2) (3) (4)

BONUS 0.440*** 0.420*** 0.441*** 0.467***
(0.047) (0.041) (0.059) (0.060)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 89� 89�

Table 8: Average marginal e�ect of probit estimates for recommending option A in
R1

(1) (2) (3) (4)

BONUS 0.170** 0.175** 0.210** 0.217***
(0.074) (0.071) (0.090) (0.071)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 99 79� 79�

Table 9: Average marginal e�ect of probit estimates for choosing option A for
oneself in O

For the above tables:
Robust standard error in parentheses, signi�cance levels: *** p < 0.01, **

p < 0.05, * p < 0.1.
Personal controls: age, gender, monthly budget, subject's region of origin and �eld

of studies.
Observations with �: some combinations of the control variables predicted

outcomes perfectly which is why the respective observations are not used in the
ML-estimation.
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(1) (2) (3) (4)

BONUS 0.194*** 0.251*** 0.182** 0.284***
(0.071) (0.072) (0.087) (0.107)

Personal Controls no yes no yes
Session Controls no no yes yes
Observations 99 87� 81� 66�

Table 10: Average marginal e�ect of probit estimates for recommending option A
in R2

(1) (2) (3) (4)

BONUS 0.409** 0.508** 0.584** 0.624***
(0.206) (0.212) (0.230) (0.234)

Personal controls no yes no yes
Session controls no no yes yes
Observations 99 99 99 99

Table 11: Ordered probit estimates on the self-assessed preference for risk (Likert
scale, 0 to 10)

For the above tables:
Robust standard error in parentheses, signi�cance levels: *** p < 0.01, **

p < 0.05, * p < 0.1.
Personal controls: age, gender, monthly budget, subject's region of origin and �eld

of studies.
Observations with �: some combinations of the control variables predicted

outcomes perfectly which is why the respective observations are not used in the
ML-estimation.
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NO BONUS BONUS OVERALL rank-sum/χ2-test
mean s.d. mean s.d. mean s.d. p-value

age 24.824 8.002 23.208 5.411 24.040 6.882 0.264
male 0.451 0.070 0.354 0.070 0.404 0.050 0.339
region of origin 0.194
UK or Ireland 0.196 0.401 0.063 0.244 0.131 0.034 -
other Europe 0.137 0.348 0.188 0.394 0.162 0.370 -
N. America/Australia/New Zealand 0.020 0.140 0.083 0.279 0.051 0.220 -
South America 0.039 0.196 0.021 0.144 0.030 0.172 -
Asia 0.608 0.493 0.645 0.483 0.626 0.486 -
other 0.000 0.000 0.000 0.000 0.000 0.000 -

degree 0.220
bachelor 0.607 0.493 0.500 0.505 0.555 0.050 -
master 0.353 0.483 0.479 0.504 0.414 0.050 -
phd 0.000 0.000 0.000 0.000 0.000 0.000 -
other postgraduate 0.000 0.000 0.020 0.144 0.101 0.100 -
none 0.039 0.196 0.000 0.000 0.020 0.014 -

subject 0.261
economics/business/�nance 0.216 0.415 0.375 0.489 0.293 0.457 -
other social sciences 0.353 0.483 0.229 0.425 0.293 0.458 -
psychology 0.059 0.237 0.021 0.144 0.040 0.198 -
public administration 0.039 0.196 0.062 0.244 0.051 0.220 -
math/sciences/engineering 0.157 0.367 0.083 0.279 0.121 0.328 -
arts or humanities 0.157 0.367 0.146 0.357 0.152 0.360 -
other 0.020 0.140 0.083 0.279 0.051 0.220 -

monthly budget (in GBP) 606.275 450.719 640.00 563.775 622.626 506.328 0.964
number of observations 51 48 99

Table 12: Summary statistics for advisers' personal characteristics and dummy variable based on categorical data.
The rightmost column provides p-values for a randomization check between NO BONUS and BONUS

(Wilcoxon rank-sum tests for the variables age and budget; χ2-tests for the remaining categorical variables).
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Appendix C � Experimental instructions

The following pages contain screenshots of instructions shown to subjects in ztree
and on the information about the investment options printed on paper. They are
presented in the order as they were seen by the subjects in the experiment.

• Screen 1: Welcome stage and general instructions

• Screens 2a and 2b: Explanation for R1. Two screens which explain the client's
choice situation, the adviser's role, and the investment options.

• Information on the investment options shown to advisers, printed on paper

• Screen 2c: Instructions for giving the �rst recommendation R1

• Screen 3: Instructions for making the own choice O

• Screen 4: Instructions for giving the second recommendation R2

• Screen 5: Exit questionnaire

The screens show the information shown to advisers in treatment BONUS. The parts
which are not shown to advisers in NO BONUS are put in square brackets.

Screen 1
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Screens 2a (top) and 2b (bottom)
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A risky choice 

One of the following options must be chosen. Then the following happens: 

Option A:  

 Roll die: for every outcome, play the lottery.  

Option B: 

 Roll die: if it shows 1 or 2, one earns GBP 12.00 for sure; 
 Roll die: if it shows 3, 4, 5 or 6, one has to play the lottery 

Option C: receive a chance to roll the same six-sided die:  

 Roll die: if it shows 1 or 2, one earns GBP 12.00 for sure; 
 Roll die: if it shows 3 or 4, one earns GBP 8.00 for sure; 
 Roll die: if it shows 5 or 6, one has to play the lottery 

The lottery: 

For the lottery one has to toss a coin. “Heads” then yields GBP 20.00, “Tails” nothing. 

 

Each row of the table below represents a possible result of the die. The columns 
describe the possible consequences, depending on the chosen option. 

Die equal 
to…. 

Option A 
is chosen 

Option B 
is chosen 

Option C 
is chosen 

1 or 2 
lottery: 

GBP 20 or 0 
GBP 12  GBP 12 

3 or 4 
lottery: 

GBP 20 or 0 
lottery: 

GBP 20 or 0 
GBP 8 

5 or 6 
lottery: 

GBP 20 or 0 
lottery: 

GBP 20 or 0 
lottery: 

GBP 20 or 0 

 

Example: 

Suppose the die yielded 3: If option A or B was chosen before, one has to play the 
lottery. If option C was chosen, one would have gotten GBP 8.00 for sure instead.  

 

Suppose the die yielded 1. If option B or C was chosen before, one gets GBP 12.00 
for sure. If option A was chosen, one plays the lottery instead. 

 

Suppose the die yielded 6. Independently of the chosen option one plays the lottery. 

Information sheet shown to advisers
(It was placed face down on each adviser's table with the following print on its

back: "Information � do not turn until explicitly told so".)
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Screens 2c (top) and 3 (bottom)
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Screens 4 (top) and 5 (bottom)
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