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Abstract

One of the conceptual limitations of the orthodox game theory is its inability
to offer definitive theoretical predictions concerning the outcomes of non-
cooperative games with multiple rationalizable outcomes. This prompted
the emergence of goal-directed theories of reasoning – the team reasoning
theory and the theory of hypothetical bargaining. Both theories suggest that
people resolve non-cooperative games by using a reasoning algorithm which
allows them to identify mutually advantageous solutions of non-cooperative
games.

The primary aim of this thesis is to enrich the current debate on goal-
directed reasoning theories by studying the extent to which the principles
of the bargaining theory can be used to formally characterize the concept of
mutual advantage in a way which is compatible with some of the conceptually
compelling principles of orthodox game theory, such as individual rationality,
incentive compatibility, and non-comparability of decision-makers’ personal
payoffs.

I discuss two formal characterizations of the concept of mutual advan-
tage derived from the aforementioned goal-directed reasoning theories: A
measure of mutual advantage developed in collaboration with Jurgis Kar-
pus, which is broadly in line with the notion of mutual advantage suggested
by Sugden (2011, 2015), and the benefit-equilibrating bargaining solution
function, which is broadly in line with the principles underlying Conley and
Wilkie’s (2012) solution for Pareto optimal point selection problems with
finite choice sets. I discuss the formal properties of each solution, as well as
its theoretical predictions in a number of games. I also explore each solution
concept’s compatibility with orthodox game theory.

I also discuss the limitations of the aforementioned goal-directed reason-
ing theories. I argue that each theory offers a compelling explanation of how
a certain type of decision-maker identifies the mutually advantageous solu-
tions of non-cooperative games, but neither of them offers a definitive answer
to the question of how people coordinate their actions in non-cooperative so-
cial interactions.
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Chapter 1

Introduction

In most general terms, orthodox game theory1 can be defined as ‘the study
of mathematical models of conflict and cooperation between intelligent ra-
tional decision-makers’ (Myerson 1991: 1). In terms of research objectives,
game theory can be divided into normative and descriptive branches: Nor-
mative game theory explores the ‘nature and the consequences of idealized
full rationality in strategic interactions’, while descriptive game theory ‘aims
at the explanation and prediction of observed behavior’. (Selten 1988: vii).
In other words, normative game theory focuses on answering the question of
what a perfectly rational decision-maker should be expected to do in certain
idealized strategic situations, while the aim of descriptive game theory is
to develop game theoretic models which would better explain and/or pre-
dict people’s behaviour in certain types of real-world interdependent decision
problems. According to the proponents of the position known as ‘method-
ological dualism’, game theorists both can and should avoid a conflation of
normative and descriptive research goals (see, for example, Aumann 1985).

As has been pointed out by Selten (1988), ‘the distinction between nor-
mative and descriptive game theory is blurred in the practice of applied
research’, since the ‘methods developed in normative theory are used in the

1In orthodox game theory, each agent is assumed to be a rational decision-maker who
engages in strategic deliberations aimed at finding a course of action which maximally
advances his or her personal interests. In some evolutionary game theory models, how-
ever, players need not be thinking creatures at all. For example, the models of replicator
dynamics are based on assumption that each player is simply programmed to play a par-
ticular strategy in every interaction with other individuals, irrespective of what strategies
the other players play. This chapter is dedicated primarily to the exploration of the con-
ceptual problems of ‘rationalistic’ orthodox game theory. Some of the issues pertaining
to conceptual foundations of evolutionary game theory will be discussed in chapter 4.
For a more detailed discussion of the differences between rationalistic and evolutionary
branches of game theory, see, for example, Binmore 2008.
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analysis of applied models in the hope for empirical relevance.’ (Selten 1988:
vii). In other words, analytic methods and solution concepts developed for
the purposes of normative analysis of highly idealized mathematical models
of strategic interactions are also used for the development and analysis of
models which purport to explain people’s actions in certain types of social
interactions.

Due to its abstract nature and, consequently, extremely general scope,
game theory has become one of the most important tools of social scientists:
Various more or less complex interactions between two or more social agents
are modelled as games played by rational agents. The theoretical predictions
of decision-makers’ actions in idealized mathematical models of strategic in-
teractions, or games, are viewed as offering ‘insights into any economic, po-
litical, or social situation that involves individuals who have different goals
and preferences.’ (Myerson 1991: xi). Yet despite its widespread use, or-
thodox game theoretic analysis has certain conceptual limitations: Even the
simplest of games have multiple rational solutions. From the perspective
of orthodox game theory, every rational solution of a game is as valid and
credible as any other. This leads to a problem which has been clearly stated
by Bacharach and Bernasconi:

‘It has become apparent that for many important classes of games
traditional game theory is indeterminate, since tightening tradi-
tional solution concepts to the limit still leaves multiple solutions.
Explaining players’ behaviour therefore requires an addition to
game theory, a theory of how players select one solution from sev-
eral that are equally eligible as far as game theory is concerned.’
(Bacharach and Bernasconi 1997: 1-2)

In other words, one of the widely recognized conceptual limitations of the or-
thodox game theory is its inability to offer theoretical predictions of players’
actions in games with multiple rational solutions. This is a non-trivial prob-
lem, since many real-world interdependent decision problems are modelled as
non-cooperative games with multiple rational solutions. Therefore, descrip-
tive models based on the principles of orthodox game theory cannot explain
and/or predict social agents’ behaviour in many important real-world social
interactions, thus making descriptive game theory a far less useful explana-
tory tool than it could prima facie be expected to be.

This prompted the emergence of a number of more or less empirically suc-
cessful descriptive theories, all of which purport to explain how people choose
their actions in games with multiple rational solutions. Two of the more re-
cent theories are the team reasoning theory, pioneered by Sugden (1993) and
the hypothetical bargaining theory, pioneered by Misyak and Chater (2014)
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and Misyak et al. (2014). Both theories suggest that people resolve non-
cooperative games by identifying outcomes which are mutually advantageous
– individually advantageous for every interacting decision-maker. By iden-
tifying and playing their part in the attainment of mutually advantageous
outcomes, decision-makers either manage to resolve the coordination prob-
lem completely or, in games with multiple mutually advantageous outcomes,
increase the coordination success rate. Both the team reasoning theory and
the hypothetical bargaining theory can be viewed as goal-directed reasoning
theories: In both theories, decision-makers are assumed to follow a spe-
cific reasoning procedure in order to identify a combination of strategies, or
strategy profile, that leads to the attainment of a specific goal – a mutually
advantageous outcome of the game.

A number of properties have been discussed in the literature for a mutu-
ally advantageous outcome to satisfy: Pareto efficiency, feasibility, successful
coordination of interacting decision-makers’ actions and equitable distribu-
tion of individuals’ personal payoff gains. Yet so far very few formal charac-
terizations of the concept of mutual advantage which could be incorporated
into formal game theoretic analysis have been proposed.

The primary aim of this thesis is to enrich the current debate on goal-
directed reasoning models with a study of how the formal concept of mutual
advantage could be incorporated into formal game theoretic analysis, as well
as to explore the extent to which such models of strategic reasoning are com-
patible with the principles of orthodox game theory. In this study, two novel
formal characterizations of the concept of mutual advantage, which can be
derived from the principles of team reasoning theory and hypothetical bar-
gaining theory, will be proposed: A measure of mutual advantage developed
in collaboration with Karpus (Karpus and Radzvilas 2016), which is broadly
in line with the principles of the version of team reasoning theory suggested
by Sugden (2011, 2015), and a benefit-equilibrating (BE) solution concept,
which is broadly in line with the principles of hypothetical bargaining theory
suggested by Misyak and Chater (2014) and Misyak et al. (2014). The for-
mal properties as well as the theoretical predictions of each solution concept
will be discussed. In addition, each solution concept’s compatibility with the
principles of orthodox game theory will be explored.

In section 1 of this introductory chapter, I introduce the basic concepts
of the orthodox non-cooperative game theory, such as game, payoff, strategy,
best response, best-response reasoning and the Nash equilibrium. In section
2 I will discuss the best-response reasoning model and explain the reasons
of why it cannot rule out certain intuitivelly unreasonable solutions of non-
cooperative games. In section 3 I will briefly overview some of the descriptive
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theories which purport to explain how people resolve games with multiple
rational solutions. In section 4 I will introduce descriptive theories which
purport to explain people’s behaviour as resulting from their attempts to
resolve games in a mutually advantageous way. With section 5 I conclude
this introductory chapter with an outline of the structure of this thesis.

1.1 The Basic Elements of Non-Cooperative Game
Theory

A game is a formal representation of a certain type of interdependent decision
problem – a complete formal description of the strategic interaction, which
includes all of the constraints on the actions that individuals can take as
well as players’ personal interests, but does not include a specification of
actions that individuals do take (Rubinstein and Osborne 1994). The formal
structure of the game represents both the structure of the real-world strategic
interaction – the sets of strategies available to each of the interacting players
in a particular interdependent decision problem – and players’ preferences
over the physical outcomes of the game – the combinations of players’ actions,
resulting from each player’s strategy choice (for extensive discussion, see, for
example, Luce and Raiffa 1957, Rubinstein 1991 and Binmore 2009a).

1.1.1 A Formal Representation of a Normal Form Game

Formally, a normal form game2 Γ can be defined as a triple (I , {Si ,ui}i∈I ),
where I = {1, ...,m} is the set of players of the game, Si = {1, 2, ...,ki} is
the set of pure strategies of every player i ∈ I , and ui : S→ R is the payoff
function of each player i ∈ I , where S = ×i∈ISi is the set of strategy profiles,
or outcomes, of Γ.

A strategy is a complete algorithm for playing the game, which fully
specifies what the player does (i.e. what action or actions the player takes)
in every possible situation throughout the game (for extensive discussion, see
Rubinstein 1991)3. A strategy profile s = (s1, ..., sm ), where si ∈ Si is a pure
strategy of player i ∈ I , is a vector of pure strategies, which fully specifies
players’ actions in the game. The set of strategy profiles of the game defines
the set of all the possible outcomes.

2The following chapters will focus on the analysis of players’ behaviour in one-shot
complete information games, which can be represented as normal form games.

3In terms of epistemic game theory, player’s strategy is a function from states of the
world to actions, where each state of the world is characterized by a specific combination
of all the other players’ strategy choices. For extensive discussion, see Perea 2012.
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A payoff function ui : S→ R of each player i ∈ I maps all the possible
strategy profiles of the game Γ into the set of real numbers. In standard game
theoretic analysis of non-cooperative normal form games, it is assumed that
players have complete preferences over the possible outcomes, and so each
player i ∈ I has a certain payoff ui (s) ∈ R associated with every possible pure
strategy profile s ∈ S. The combined pure strategy payoff function u : S→ R

of Γ assigns a full vector u (s) = (u1 (s) , ...,um (s)) of payoffs to every strategy
profile s ∈ S.

1.1.2 What do Payoffs Actually Represent?

An important question pertaining to players’ payoff functions is what exactly
the real numbers associated with game’s outcomes actually represent. The
orthodox interpretation of payoffs is that they represent players’ von Neu-
mann and Morgenstern utilities. In rational decision theory, von Neumann
and Morgenstern utilities represent players’ preferences over the choice op-
tions, satisfying the axioms of the expected utility theory – completeness,
transitivity, independence and continuity4. These axioms are viewed as defin-
ing choice consistency, and must be satisfied in order for the construction
of the von Neumann and Morgenstern utility function to be possible (for a
detailed discussion of the expected utility theory, see, for example, Luce and
Raiffa 1957 and Kreps 1988).

Decision-maker’s von Neumann and Morgenstern utility function should
capture all the motivations relevant for a decision-maker’s choice in a par-
ticular decision problem, including his or her attitude to risk. According to
the revealed preference theory, pioneered by Samuelson (1938) and later ad-
vocated by Little (1949) and many other economists, decision-makers’ pref-

4Let x , y and z be three alternative choice options. Let ≻, ∼ and ⪰ denote strong
preference, indifference and weak preference relations over choice options respectivelly.
The choice consistency axioms are the following:

1. Completeness: For any two choice options x and y, it is always the case that x ⪰ y
or y ⪰ x .

2. Transitivity : For any three choice options x , y and z, if x ⪰ y and y ⪰ z, then x ⪰ z.

3. Independence: For any three choice options x , y and z, if x ⪰ y, then, for any
probability p ∈ [0, 1], it must be the case that px + (1 − p) z ⪰ py + (1 − p) z.

4. Continuity : For any three choice options x , y and z, if x ⪰ y ⪰ z, then there must
exist a probability p ∈ [0, 1] such that px + (1 − p) z ∼ y.

It can be shown that if decision maker’s preferences satisfy axioms 1-4, they can be
represented numerically by a function u, such that x ⪰ y if and only if u (x ) > u (y). For
technical details and proofs, see, for example, Kreps 1988.
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erences over choice options are revealed in their choices, and so a decision-
maker’s preferential ranking of the choice options can be reconstructed from
the observations of decision maker’s choice behaviour (see, for example,
Samuelson 1938 and Little 1949). The von Neumann and Morgenstern util-
ity function can, at least in theory, be constructed from the observations
of decision-maker’s choices between objective lotteries (that is, lotteries in-
volving some randomization device, the workings of which are known to
the decision-maker) over choice options. Decision maker’s choices between
lotteries should, in theory, reveal his or her attitude to risk (for extensive
discussion, see Luce and Raiffa 1957, Kreps 1988 and Hausman 2012). The
resulting numerical representation of decision maker’s preferences should be
the von Neumann and Morgenstern utility function, which is unique only
up to positive affine transformations: If u is a function representing decision
maker’s preferences over choice options, then so is any function u′ = au + c,
where a > 0 and c are constants (for a detailed discussion of why this is so
see, for example, Luce and Raiffa 1957).

The interpersonal non-comparability of utility is a standard assumption
of rational choice theory. From the axioms of the expected utility theory,
one cannot draw a conclusion that the interpersonal comparisons of numbers
representing decision-makers’ cardinal preferences are meaningful. It must
be emphasized, however, that the expected utility theory does not negate
the possibility that interpersonal comparisons of utilities could be shown to
be meaningful. That is, it does not show that a theory providing conceptual
tools which would allow for meaningful interpersonal comparisons of utility
numbers could not be developed5. Yet the expected utility theory itself
does not justify the interpersonal comparisons of utility. In the absence of
a compelling theory of how meaningful interpersonal comparisons of utility
could be made, most of the orthodox decision and game theorists take the
utility numbers not to be interpersonally comparable.

In game theory, players’ payoffs do not represent their preferences over
the available choice options – their strategies. The payoffs represent play-
ers’ preferences over the outcomes of the game. An important principle of
game theory, advocated by Binmore (1992, 2005, 2009a,b) and many other
game theorists, is that the payoff structure of the game has to fully cap-
ture everything that is motivationally relevant in players’ evaluations of the
possible outcomes of the game. This principle implies that payoffs must cap-
ture all the relevant motivations of players, no matter what the nature of

5For a defense of a theoretical position that such a theory of interpersonal comparisons
of utilities is conceptually possible, see, for example, Binmore 2005. For a critical overview
of the attempts to justify interpersonal comparisons of utility, see Hammond 1991.

16



those motivations is, and that game theoretic analysis of any real-world in-
terdependent decision problem is only meaningful if the payoffs of the game
accurately represent the motivations of the interacting social agents (for a
comprehensive discussion of this principle, see, for example, Binmore 1992,
2005 and 2009a).

An important problem associated with this definition of payoffs is that
players’ of the game choose strategies, not outcomes. An outcome, which is
determined by a combination of players’ strategy choices, is not something
that any of the players can individually choose. As has been pointed out by
Hausman (2012), players’ strategy choices reflect not only their preferences
over the outcomes of the game, but also their beliefs about the opponents’
strategy choices. This means that players’ strategy choices do not reveal,
in Hausman’s terms, the ‘all-things-considered’ preferential rankings of out-
comes. They reveal players’ preferential rankings of the available strategies,
based both on players’ preferences over outcomes and their beliefs about the
opponents’ strategy choices – beliefs, which should play no role in players’
evaluations of outcomes (see Hausman 2012).

Binmore’s (2009a) response to this problem is that players’ preferences
over the outcomes could, in principle, be elicitated with ‘games against na-
ture’ – one person decision problems, in which one of the players has to
choose a strategy while already knowing the combination of opponents’ strat-
egy choices. From the observations of player’s strategy choices in decision
problems representing all the possible combinations of opponents’ strategy
choices, it should be possible to reconstruct player’s preferential ranking of
outcomes (see Binmore 2009a).

The problem with this method is that a rational player may never choose
to bring about certain outcomes in one player games, which means that
player’s complete preferential ranking of all the possible outcomes of the
game will not be revealed. For example, consider the Prisoner’s Dilemma
game. The game is shown in Figure 1.1, where one player chooses between
the two options identified by rows and the other—by columns. The left and
the right number in each cell represents row and column player’s payoffs
respectively.

c d

c 3, 3 0, 4

d 4, 0 1, 1

Figure 1.1: Prisoner’s Dilemma
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This game has a unique pure strategy Nash equilibrium (d,d ). Strategy
c is, for every player, strictly dominated by strategy d. This means that it
is never optimal to choose c, no matter what the opponent does. Acoording
to orthodox game theory, a rational player should never choose strategy c.

Suppose that two rational social agents are playing a Prisoner’s Dilemma
game. The observer does not know the structure of individuals’ motivations,
and so attempts to reconstruct each individual’s preferential ranking of out-
comes by observing his or her choices in two ‘games against nature’ . Ac-
cording to Binmore’s suggestion, in one game an individual should be given
a choice between strategies c and d while knowing that the other individual
has chosen strategy c. In the second game, an individual should be given a
choice between strategies c and d while knowing that the other individual
has chosen strategy d. Assuming that the choosing individual is rational and
that his or her personal motivations are like the motivations of a player in
the Prisoner’s Dilemma game (Figure 1.1), s/he should be observed choosing
strategy d in both ‘games against nature’ . The observer could conclude that
individual prefers outcome (d, c ) over outcome (c, c ), and outcome (d,d ) over
outcome (c,d ). Individual’s choices, however, reveal neither the preference
relation between outcomes (c,d ) and (d, c ), nor the preference relation be-
tween outcomes (d,d ) and (c, c ). Therefore, a complete preferential ranking
of all the outcomes of the game cannot be reconstructed, and the payoff
matrix like the one depicted in Figure 1.1 cannot be produced (for an ex-
tensive discussion of the limitations of the revealed preference approach, see
Rubinstein and Salant 2008 and Hausman 2012).

The preceding example suggests that individual’s preferences over the
outcomes could only be reconstructed from his or her choices between options
in a set of hypothetical decision problems, each of which gives the decision-
maker a choice between a pair of outcomes of the game. Individual’s choices
in a set of decision problems representing every possible pair of outcomes
of a game should, in theory, give the observer enough information to con-
struct decision-maker’s complete ordinal preferential ranking of outcomes.
This information, however, would not be sufficient for the von Neumann
and Morgenstern utility representation of decision-maker’s preferences. To
capture decision-maker’s attitude to risk, his or her choices between objec-
tive lotteries over the outcomes of the game would have to be observed. Since
the outcomes of many real-world interdependent decision problems cannot
be expressed in terms of quantities of material resources, the elicitation of
real-world players’ preferences is a challenging problem. Currently no com-
pelling answer to this problem can be found in game theoretic literature,
and so an accurate representation of people’s cardinal preferences over the
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outcomes of real-world interdependent decision problem can viewed as one
of the major methodological challenges of descriptive game theory.

In standard game theoretic models of complete information, the payoff
structure of the game is assumed to be common knowledge. That is, it is
assumed that each player knows the payoff structure of the game, knows
that every other player knows it, knows that every player knows that every
player knows it, and so on ad infinitum. In many real-world interdependent
decision problems, the common knowledge of cardinal payoffs assumption is
simply unrealistic: In many cases people, at best, know each other’s ordinal
preferences over outcomes. Therefore, a solution concept which can be de-
fined in terms of purely ordinal information about players’ preferences may
in some cases be better suited to explain how they resolve an interdependent
decision problem. For this reason, a solution concept which can be defined
on the basis of ordinal information about players’ preferences will be given
considerable attention in the following chapters.

1.1.3 The Complete Information Assumption

In standard game theoretic analysis of non-coperative complete information
games, the payoff structure of the game is assumed to be common knowl-
edge. In other words, it is assumed that each player’s cardinal preferences
over outcomes and the set of available strategies are common knowledge
among the interacting players. It plays an important role in game theoretic
analysis of one-shot games. If the payoff structure of the game were not
common knowledge, the players would face an incomplete information game
where uncertainty would be extreme: Each player would have to consider a
potentially infinite set of games that the opponents could be playing, and
assign a subjective probability distribution over it. In addition, the player
would have to assign subjective probabilities to opponents’ strategies in ev-
ery possible game, and then choose an optimal response (for an extensive
discussion of incomplete information games see, for example, Kreps 1990 and
Fudenberg and Tirole 1991). The structure of the resulting complex incom-
plete information game would not be the same as the structure of the original
one-shot game, and so the conclusions resulting from game theoretic analysis
of players’ strategy choices in the incomplete information game could not be
taken to be representative of the conclusions of game theoretic analysis of
players’ strategy choices in the commonly known one-shot game.

In normative game theory, the complete information assumption is un-
problematic: Normative game theoretic analysis is simply a theoretical ex-
ploration of how perfectly rational agents should behave in various highly
idealized strategic interactions, some of which may not even resemble any
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real-world social interactions. Its status in descriptive applications of game
theoretic models is, however, far more ambiguous. First, complete infor-
mation assumption implies that every social agent somehow knows all the
relevant motivations of every interacting individual, even the subtle psy-
chological and social motivations that influence individuals’ evaluations of
outcomes, such as his or her attitude to risk and inequity, sensitivity to social
norms and personal moral considerations. Even very close family members
cannot be expected to be always fully aware of each other’s motivations, and
such awareness seems to be even less likely to be present in social interactions
involving less closely related social agents.

Second, the complete information assumption implies that each interact-
ing individual is certain that every other interacting individual understands
the structure of the interdependent decision problem in the same way as s/he
does. Social reality, however, is complex: Social agents continuously engage
in new or repeated interactions with other agents, and most social agents
engage in more than one type of social interaction at once. The boundaries
between different types of interactions are often less than obvious. Social
agent’s ability to recognize social interaction’s type often depends on his
or her ability to interpret various subtle situational cues and signals, which
in turn depends on social agent’s knowledge of other players’ motivations,
as well as knowledge of an intricate network of cultural norms and conven-
tions (for a detailed discussion, see Bicchieri 2006 and Gintis 2008). Even if
players were perfectly rational Bayesian deliberators, their ability to identify
different types of social interactions would often rely on their background
knowledge of social rules and practices. Therefore, common knowledge of
rationality alone does not give social agents a reason to expect each other
to understand the structure of the social interaction in the same way. The
players who share no substantial information about each other’s background
and have not engaged in repeated interactions with each other are likely to
be uncertain about each other’s ability to correctly identify the type of social
interaction. The complete information assumption applied in game theoretic
explanations of social behaviour may, in a considerable number of cases, be a
false assumption about social agents’ knowledge of the game and its players.

The extent to which the use of such a seemingly unrealistic assumption
in a descriptive model is problematic largely depends on the interpretation
of the explanatory scope of the model. Infante et al. (2014) suggest two
possible interpretations of behavioural models. Under the first interpreta-
tion, descriptive models are approximately accurate descriptions of observ-
able choices. That is, a descriptive model only suggests that people behave
as if they were expected utility maximizers with rational preferences over
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outcomes (i.e. consistent and stable preferences which represent decision-
maker’s all-things-considered evaluations of possible outcomes). The aim
of the model is not to explain how people actually reason, just to predict
their actions. It does not offer an answer to the question of whether peo-
ple’s preferences satisfy the axioms of the expected utility theory. Under
this interpretation, the complete information assumption plays merely an
instrumental role: Social agents are assumed to behave as if the informa-
tion about the structure of the game were common knowledge. The model
does not suggest that social agents actually know each others payoffs and
available strategies, know that every other player knows it, and so on ad in-
finitum. Under this ‘thin’ interpretation of descriptive models, the complete
information assumption seems to be relatively unproblematic: The model
explains the behaviour of social agents by describing and/or predicting it,
not by providing an explanation of why social agents choose one or another
action.

Another possible interpretation is that descriptive models offer an ap-
proximately true description of how people reason. That is, a descriptive
model is an approximately accurate description of the process of reasoning
by which people arrive at their strategy choices. Under this interpretation of
descriptive models, the complete information assumption plays a non-trivial
role in the explanation of people’s choices: If the process of reasoning by
which people arrive at their choices is (roughly) similar to the reasoning
algorithm which underlies the orthodox game theoretic analysis of strategy
choices, then player’s beliefs obviously play an important role in the expla-
nation of why s/he has identified a particular action as an optimal response
to a particular interdependent decision problem. A question of whether the
structure of a social interaction can reasonably be assumed to be common
knowledge among the interacting players must play an important role in the
evaluation of the explanatory relevance of the suggested model.

If behavioural models were truly intended to be used merely as tools
for description and/or prediction of observed behaviour, the complete infor-
mation assumption could be deemed completely unproblematic. The actual
practices of behavioural economists, however, show this not to be the case: A
clear distinction between the two interpretations of behavioural models is not
maintained in the practice of applied research. Game theorists working on
behavioural models often put considerable effort in providing empirical jus-
tifications for the assumptions pertaining to social agents’ preferences and
beliefs. Such behaviour should be taken as an indication that descriptive
models are, at least implicitly, treated as approximately true descriptions
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of the process of reasoning by which people arrive at their action choices6.
Because of this, the information assumptions of descriptive models will not
be treated as merely instrumentally useful components of the models, but
rather as approximately true descriptions of social agents’ beliefs. The prob-
lems associated with the epistemic assumptions of descriptive theories will
play an important role in the following discussion.

1.1.4 Best Response

The original definition of best response, due to Nash (1950b, 1951), is that
best response is a pure or mixed strategy which maximizes player’s expected
payoff against a fixed combinations of opponents’ strategies.

This idea can be easily represented as a formal concept. Suppose that
players are playing a normal form game Γ = (I , {Si ,ui}i∈I ), where I = {1, ...,m}
is the set of players, Si is a set of pure strategies of player i ∈ I , and ui : S→R

is the von Neumann and Morgenstern utility function, where S = ×i∈ISi is the
set of strategy profiles, or outcomes, of Γ. A mixed strategy of player i ∈ I is
a probability distribution over Si . Let Σi denote a set of all such probability
distributions and let σi ∈ Σi denote a mixed strategy of i ∈ I , where σi (si ) is
a probability assigned to pure strategy si ∈ Si . A mixed strategy outcome is
a mixed strategy profile σ = (σ1, ...,σm ). Let Σ = ×i∈IΣi denote the set of all
mixed strategy profiles of Γ. The expected payoff associated with a mixed
strategy profile σ ∈ Σ is, for every player i ∈ I ,

ui (σ ) =
∑
s∈S

*,
∏
i∈I

σi (si )+-ui (s) . (1.1)

Let σ−i = (σ1, ..,σi−1,σi+1, ...,σm ) be a combination of mixed strategies of all
the players other than i ∈ I . Strategy σi ∈ Σi is player i’s best response to

6As has been noted by Infante et al. (2014), in recent years there has been a trend
among behavioural economists to appeal to dual-process theories of the mind in order to
justify the assumption that real-world decision-makers have rational preferences – stable
and cognitive bias-free preferences which are consistent with the axioms of the expected
utility theory. This justification strategy rests on assumption that system 2 is a general-
purpose mode of practical reasoning which produces preferences and modes of strategic
reasoning consistent with the expected utility maximization model (for details, see Infante
et al. 2016). A similar trend can be noticed among behavioural models suggested by
game theorists: System 2 is effectively assumed to be a best-response reasoning mode.
For example, a belief-based model of homophily, suggested by Kets and Sandroni, rests
on assumption that system 2 is a reasoning mode which, if it gets activated, ‘overrules’
the choice impulses generated by system 1, unless following the impulse in a particular
game is a best response (for details, see Kets and Sandroni 2014).
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σ−i if it is the case that

ui (σi ,σ−i ) ≥ ui (σ̃i ,σ−i ) ∀σ̃i ∈ Σi . (1.2)

Let βi (σ−i ) ⊆ Σi be a set of i’s best responses to a combination of opponents’
strategies σ−i . It can be defined as follows:

βi (σ−i ) = {σi ∈ Σi : ui (σi ,σ−i ) ≥ ui (σ̃i ,σ−i ) ∀σ̃i ∈ Σi} . (1.3)

Soon it was realized that the strategy-based definition of best response is
epistemically inadequate: In many important types of games, such as one-
shot non-cooperative games, players do not respond to other players’ ac-
tual strategy choices, but rather to their beliefs about opponents’ strat-
egy choices7. This simple observation facilitated the emergence of epistemic
game theory8, which then prompted the development of the epistemic def-
initions of basic concepts of orthodox game theory. The modern epistemic
interpretation of a best response is that it is a strategy which maximizes
player’s expected utility, given player’s consistent probabilistic beliefs about
the opponents’ strategy choices.

The epistemic concept of best response can be formally represented with
an epistemic model of the game: A formal representation of each player’s
beliefs about the game and its players. There are two types of epistemic
models that can be used to represent this idea – the state-space models and
the type-space models. A state-space model will be used as a first example
due to its relative prominence and intuitiveness.

7In non-cooperative one-shot games, players choose their strategies simultaneously, and
so cannot observe each other’s strategy choices before making their own strategy choices.
In dynamic games, players cannot observe the future choices of their opponents, and,
in some cases, even opponents’ past strategy choices. When opponents’ strategy choices
cannot be observed, a rational player chooses a strategy which is optimal in light of his
or her beliefs about the opponents’ strategy choices. For extensive discussion, see Kreps
1990 and Fudenberg and Tirole 1991.

8Epistemic game theory is a subfield of game theory which focuses on the formal
representation and analysis of players’ belief structures and reasoning processes. One of
the major objectives of epistemic game theory is to provide epistemic characterizations
of the standard concepts of game theory, such as the Nash equilibrium. In epistemic
game theory, non-cooperative games are treated as one-person decision problems under
uncertainty. The combinations of opponents’ strategies are viewed as possible states of
the world, and the player is uncertain about the state of the world in which s/he has to
make a strategy choice. The player is assumed to assign an internally consistent subjective
probability distribution over the possible states of the world, and choose a strategy which
maximizes his or her expected utility. For an extensive discussion of the principles and
conceptual developments of epistemic game theory, see Dekel and Siniscalchi (2014) and
Perea (2012). For a historical overview of the development of epistemic approach to game
theory, see Perea (2014).
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LetMΓ (Ω, {πi ,Hi , ςi
}
i∈I
)

be the state-space epistemic model of a normal
form game Γ. The epistemic model consists of a set of possible states of
the world Ω and, for every player i ∈ I , the information partition Hi , a
probability measure πi on Ω, and a strategy function ςi : Ω → Ai , where
Ai is the set of actions of i ∈ I . Each state of the world ω ∈ Ω includes
a complete specification of all the parameters which may be the object of
uncertainty on the part of any player of the game. Most importantly, each
state ω includes a complete specification of actions chosen by every player
of the game in that state. The information partition Hi plays an important
role in the characterization of player i’s beliefs and the state of the world:
It assigns a set hi (ω) to each ω ∈ Ω in such a way that ω ∈ h (ω) for all
ω. The set hi (ω) consists of those states of the world that i deems possible
when the actual state of the world is ω. That is, if the true state of the
world is ω ∈ hi (ω), then player i ∈ I knows that the true state of the world
is some element of hi (ω), but s/he does not know which one it is9. The
probability measure πi is player i’s prior on Ω. Note that in the epistemic
model players’ strategies are treated as Hi-measurable maps from states of
the world to actions10.

Strategy ςi of player i ∈ I is a best response if and only if, for every
strategy ς̃i of player i ∈ I ,∑

ω∈Ω
πi ({ω})ui (ςi (ω) , ς−i (ω)) ≥∑

ω∈Ω
πi ({ω})ui (ς̃i (ω) , ς−i (ω)) . (1.4)

The epistemic concept of best response can also be characterized using
the type-space epistemic model. In this model, it is assumed that each
player holds not only beliefs about other players’ strategy choices, but also
beliefs about other players’ beliefs about other players’ strategy choices,
beliefs about other players’ beliefs about other players’ beliefs, and so on ad
infinitum. In other words, each player i ∈ I is modelled as a decision-maker
with an infinite hierarchy of beliefs about opponents’ strategy choices and
beliefs.

Formally, a type-space epistemic model of Γ can be defined as a tu-
ple EΓ = ({Ti}i∈I , {bi}i∈I ), where Ti is the set of types of player i ∈ I and
bi : Ti → ∆ (S−i ×T−i ) is a function which assigns, to every type ti ∈ Ti , a
probability measure on the set of opponents’ strategy-type combinations. A
set of opponents’ strategy-type combinations is a cartesian product of a set

9For extensive technical discussion of the state-space model, see Aumann 1974, 1976
and 1987

10For an in-depth technical discussion of epistemic best response and subjective corre-
lated equilibrium concepts, see Brandenburger and Dekel 1987.
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S−i = ×j∈I\{i}Sj of possible combinations of opponents’ strategies and a set
T−i = ×j∈I\{i}Tj of possible combinations of opponents’ types. The interpreta-
tion is that bi (ti ) represents a belief that type ti ∈ Ti holds about opponents’
choices and beliefs11. For each strategy si ∈ Si , the expected utility of type
ti ∈ Ti , given his or her beliefs about the opponents’ strategy combination, is

ui (si , ti ) =
∑

s−i∈S−i
(bi (ti )) (s−i )ui (si , s−i ) . (1.5)

From definition (1.5) it follows that, given the belief about opponents’ strat-
egy choices of the type ti ∈ Ti , strategy si ∈ Si is a best response to type ti if
and only if, for every strategy s̃i ∈ Si ,∑

s−i∈S−i
(bi (ti )) (s−i )ui (si , s−i ) ≥

∑
s−i∈S−i

(bi (ti )) (s−i )ui (s̃i , s−i ) . (1.6)

1.1.5 Best Response and The Nash equilibrium

Best-response reasoning plays a central role in the characterization of the
Nash equilibrium – the central solution concept of game theory12. The
Nash equilibrium can be also defined both in terms of players’ strategies
and in terms of players’ beliefs. In terms of strategies, the Nash equilib-
rium is a strategy profile where each player’s strategy is a best response
to a combination of other players’ strategies. In other words, the Nash
equilibrium is a strategy profile such that no player has an incentive to uni-
laterally deviate by changing his or her strategy. A mixed strategy profile
σ ∗ =

(
σ ∗1 , ...,σ

∗
m

)
is a Nash equilibrium of Γ if and only if, for every player

i ∈ I , ui
(
σ ∗i ,σ

∗
−i
)
≥ ui
(
si ,σ

∗
−i
)

for all si ∈ Si13.
The aforementioned characterization of the Nash equilibrium, due to

Nash (1950b, 1951), is now sometimes referred to as an ex post definition
of the Nash equilibrium, since each player’s strategy is defined as a best re-
sponse to a fixed combination of opponents’ actual strategies. Some critics
have argued that this definition implies that each player somehow knows the
opponents’ strategy choices before those choices are actually made, and that

11For an in-depth technical discussion of the type-space epistemic models, see Perea
2012 and Dekel and Siniscalchi 2014.

12A Nash equilibrium refinement is a Nash equilibrium which has a specific set of
mathematical properties, and so the concept of best-response reasoning is central to all
of the Nash equilibrium refinements. For extensive discussion of equilibrium refinements,
see Myerson 1991 and Weibull 1995.

13A pure strategy equilibrium is a profile of pure strategies which satisfies the same
condition. For extensive discussion, see Myerson 1991.
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it is difficult to incorporate this epistemic assumption into a game theoretic
analysis of those games where players choose their strategies simultaneously
and without communication (see, for example, Perea 2014).

In a more recent epistemic characterization of the Nash equilibrium, this
solution concept is defined in terms of players’ conjectures – subjective prob-
ability distributions over opponents’ strategy choices. Aumann and Bran-
denburger have shown that if players’ payoff functions, rationality and their
conjectures are mutually known in a two player game, then players’ conjec-
tures constitute a Nash equilibrium. In a game with more than two players,
players’ conjectures always constitute a Nash equilibrium if payoff functions
and rationality of the players are mutually known, each player’s conjecture
is commonly known, and players’ have a common prior (for detailed discus-
sion and proofs, see Aumann and Brandenburger 1995). This result allows
for an ex ante characterization of the Nash equilibrium, according to which
Nash equilibrium is a combination of players’ beliefs. Aumann and Bran-
denburger’s seminal work allows us to talk about the players of the game
being in equilibrium before their strategy choices are observed14.

The Nash equilibrium concept has several important functions in both
normative and descriptive game theory. In formal game theoretic analysis,
the Nash equilibrium concept is the definition of the rational solution of a
game: If a game has a solution that is common knowledge among the ra-
tional players, it must necessarily be a Nash equilibrium (Binmore 2005).
The logic behind this requirement is fairly obvious: If the strategy profile
of the game known to the players is not a Nash equilibrium, at least one
player will have an incentive to deviate, which means that non-equilibrium
strategy profile, by definition, cannot be the solution of the game. In fact,
an even stronger argument for the Nash equilibrium concept, supported by
some game theorists, is that rational players who know about each other’s
rationality should only expect the outcome of the game to be a Nash equi-
librium, at least in cases where rationality is common knowledge. In other
words, Nash equilibrium is assumed to be a consequence of common knowl-
edge of rationality. Other theorists, however, reject this assumption as being

14For an extensive discussion of the epistemic interpretation of the Nash equilibrium,
see, for example, Perea 2012.

26



too strong15.
Despite the differing opinions on whether players’ choice of strategies

constituting the Nash equilibrium can be viewed as a consequence of ra-
tionality, there is a wide consensus among the game theory experts that
Nash equilibrium plays a fundamental role as a stability concept which, in
descriptive models of game theory, explains the recurring patterns of social
agents’ behaviour. The underlying idea is that the reason of why social
agents repeatedly choose the same behavioural response to a certain type of
interdependent decision problem is that social agents’ responses constitute
a Nash equilibrium – a combination of individuals’ actions, such that no
interacting individual can find a personally more advantageous action, given
the expected actions of other individuals16.

Over the last couple of decades, several important conceptual relations
between the Nash equilibrium and the stability concepts of evolutionary
game theory have been established. In evolutionary game theory, the concept
of evolutionarily stable state is used to characterize the dynamic properties
of the population. A population is in an evolutionarily stable state if, after
a disturbance, it returns to playing a certain strategy or mix of strategies,
provided that the disturbance is not too large (for a technical discussion, see
Thomas 1984 and Weibull 1995). A closely related concept to evolutionar-

15For example, Bernheim (1984) argues that Schelling’s (1960) work on focal points
involves an assumption that players share a common belief that the outcome of the game
must be a Nash equilibrium. An assumption that players only consider the Nash equilibria
of the game can also be found in Harsanyi and Selten’s work on equilibrium selection
principles (1988). It is important to note that the idea that rational players should expect
the outcome of the game to be a Nash equilibrium has not been endorsed by the proponents
of epistemic game theory, some of whom have argued that Nash behaviour is neither a
necessary consequence of rationality, nor even a plausible empirical proposition. For an
extensive discussion of the relationship between common knowledge of rationality and the
Nash equilibrium, see, for example, Ellsberg 1956, Luce and Raiffa 1957, Bernheim 1984,
and Perea 2014.

16This explanatory strategy can be applied to both one-shot and repeated games. For
example, Binmore (2005) applies this explanatory strategy to repeated games in order
to explain the emergence of social norms. Bicchieri (2006) and Gintis (2008) offer game
theoretic accounts of social conventions based on one-shot games. Fehr and Schmidt’s
(1999) inequity aversion model shows that a relatively frequently observed cooperative
outcome of the experimental Prisoner’s Dilemma game (a game where, for both players,
cooperation is irrational in the orthodox game theoretic sense) can be modelled as a
Nash equilibrium of a game, the payoff structure of which captures players’ motivation
to avoid unequal distribution of material (e.g. monetary) payoffs – a motivation which is
not represented in the payoff structure of the original experimental Prisoner’s Dilemma
game (for details, see Fehr and Schmidt 1999). In all cases, the persistence of a certain
pattern of behaviour is explained as a consequence of players’ actions constituting a Nash
equilibrium of the game.
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ily stable state is evolutionarily stable strategy – a strategy which, if used
by every individual in the population, makes the population uninvadable,
over evolutionary time, by mutants using other strategies, provided that the
initial proportion of invading mutants is not too large (see, for example,
Maynard Smith and Price 1973)17. A population state where everyone plays
an evolutionarily stable strategy is an evolutionarily stable state. It has
been shown that a set of evolutionarily stable states is a subset of the Nash
equilibria of the evolutionary game. Arguably the most important result
is that any state where everyone plays an evolutionarily stable strategy is
a perfect and proper Nash equilibrium of the evolutionary game, and that
every strict Nash equilibrium18 of the evolutionary game is an evolution-
arily stable state. Therefore, if everyone in the population plays a strict
Nash equilibrium strategy, the population is in an evolutionarily stable state
(for discussion and proofs, see van Damme 1987 and Weibull 1995). From
the aforementioned theoretical results it follows that, since the evolutionary
process leads the population to converge to an evolutionarily stable state,
the population in the evolutionarily stable state must be playing a Nash
equilibrium of the game.

Evolutionary game theory is now widely viewed as providing an impor-
tant non-rationalistic justification of the Nash equilibrium concept: Even if
players were strategically unsophisticated agents (in fact, even if they were
unable to reason at all), the evolutionary process should, over time, lead
the population to an evolutionarily stable state – a state which is a Nash
equilibrium of the population game. A considerable number of social phe-
nomena, such as social norms and conventions, are viewed as products of
a lengthy process of cultural and possibly even biological adaptation (for
example, see Gintis 2008). Social agents who repeatedly respond to a cer-
tain type of interdependent decision problem in the same way are viewed
as playing a Nash equilibrium of a certain recurring game19. Any theory
suggesting that a decision-making mechanism which leads individuals to an
out-of-equilibrium behaviour could have been selected due to its evolution-

17A population state which is asymptotically stable is an evolutionarily stable state. It
has been shown that every regular evolutionarily stable strategy is asymptotically stable
under the replicator dynamic (Taylor and Jonker 1978, Hines 1980), general imitative
dynamic (Cressman 1997), any impartial pairwise comparison dynamic, such as the Smith
dynamic, any separable excess payoff dynamic, such as the Brown-von Neumann-Nash
dynamic, and under the best response dynamic (Sandholm 2010b).

18A strategy profile s∗ =
(
s∗1, ..., s

∗
m

)
is a strict Nash equilibrium if and only if, for every

i ∈ I , it is the case that ui
(
s∗i , s

∗
−i
)
> ui

(
si , s

∗
−i
)

for all si ∈ Si .
19For a critical overview of the use of evolutionary game theoretic models in explanations

of social phenomena, see, for example, Alexander 2007.
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ary advantages is therefore generally viewed as being deeply conceptually
problematic20.

Evolutionary justification aside, any theory which claims to show that
player’s decision to knowingly21 play a part in an out-of-equilibrium strat-
egy profile is a reasonable response to certain types of interdependent de-
cision problems is viewed as objectionable because of another reason – its
incompatibility with the orthodox conception of rationality.

1.1.6 Rationality as Best-Response Reasoning

In orthodox game theory, a rational player is a best-response reasoner. Best-
response reasoning is a process by which a rational player arrives at his or
her strategy choice. Best-response reasoner is a player who always chooses
a strategy which is a best response – a strategy which maximizes player’s
expected utility, given his or her consistent probabilistic beliefs about oppo-
nents’ strategy choices.

In most rationalistic game theoretic models, players’ rationality is as-
sumed to be common knowledge or, in more recent epistemic models, a
common belief. That is, each player is assumed to believe that every other
player of the game is rational, believe that every other player believes that
every other player of the game is rational, and so on ad infinitum (for an
in-depth technical discussion of the role the common belief in rationality
assumption in game theoretic analysis, see Perea 2012). Common knowl-
edge or a common belief in rationality assumption implies that each player

20The idea that a mode of reasoning leading the individuals to out-of-equilibrium out-
comes could have been selected for its group fitness enhancing property has been defended
by, among others, Gauthier (1986), McClennen (1988) and Bacharach (2006). The argu-
ment rests on the observation that certain mixed motive games, such as the Prisoner’s
Dilemma game, have a unique Pareto inefficient Nash equilibrium and a Pareto-optimal
out-of-equilibrium outcome which is mutually beneficial – each player gets a higher ex-
pected payoff than the one associated with a Pareto inefficient Nash equilibrium of the
game. However, the out-of-equilibrium outcome creates an incentive for each player to
unilaterally deviate in order to maximize the personal expected payoff, at the expense of
the player who resists the temptation to deviate. The incentive to deviate thus makes
cooperation impossible. A mechanism which allows all the players of the game to resist,
for whatever reason, the temptation to maximize their personal expected utility and co-
operate in implementing a mutually beneficial outcome increases the fitness of the group,
making it more likely to succeed at the group selection level. This idea will be discussed
in considerable detail in chapter 2.

21A substantial number of game theorists reject the idea that an outcome of the game
played by rational players must necessarily be a Nash equilibrium. The reason of this
is that players’ conjectures (i.e. beliefs about opponents’ strategy choices) are, in many
cases, private information. This possibility will be discussed in subsection 1.1.6.
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knows/believes that every player of the game is a best-response reasoner.
Common belief in rationality is a weaker epistemic assumption than com-

mon knowledge of rationality. The common knowledge assumption implies
that the player cannot be mistaken in his or her belief that every opponent
is rational, while a probability 1 belief may be either true or false. In recent
years, the common belief of rationality assumption tends to be preferred
over the common knowledge of rationality assumption due to its purported
realism. The conceptual differences between the common knowledge of ra-
tionality and the common belief in rationality concepts will not be important
in the following discussion, and so these two concepts will be used as inter-
changeable terms22.

The aforementioned definition of best response reasoning implies that
a best-response reasoner never chooses a strategy which is not a best re-
sponse. It also implies that a best-response reasoner never chooses a non-
rationalizable strategy – a strategy which is never optimal, irrespective of
what probabilistic beliefs the player holds about opponents’ strategy choices
(for technical definition, see Bernheim 1984 and Pearce 1984).

In the standard analysis of non-cooperative games, each player’s prob-
abilistic beliefs about the opponents’ strategy choices, or conjectures, are
assumed to be private information. That is, players are assumed not to
know each other’s conjectures. However, common knowledge of rationality
allows the players to eliminate non-rationalizable strategies from strategic
considerations. Common knowledge of rationality implies that every player
knows that none of the opponents will choose a non-rationalizable strategy,
knows that every opponent knows this, and so on ad infinitum. Common
knowledge of rationality assumption is central to the iterative elimination of
strictly dominated strategies, which is a procedure used to identify the set
of rationalizable strategies of the game – strategies, the choice of which is
consistent with a common knowledge of rationality assumption23.

Best-response reasoning assumption is one of the reasons of why a com-
monly known rational solution of the game in the orthodox game theoretic
sense must be a Nash equilibrium: A non-equilibrium solution of the game
creates an incentive for at least one of the rational players to maximize his

22For an extensive technical discussion of the common belief concept, see Samet 2013.
23In two player games, iterated elimination of non-rationalizable strategies coincides

with the iterated elimination of strictly dominated strategies. This relationship, however,
does not hold in games with more than two players. Every strategy which gets eliminated
in the process is non-rationalizable, but the converse is not necessarily true: A strategy
may survive the iterated elimination procedure, and yet be non-rationalizable. For a
detailed discussion, see Bernheim 1984, Pearce 1984, Fudenberg and Tirole 1991 and
Perea 2012.
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or her expected utility by choosing a different strategy, which means that
the commonly known solution of the game will not be implemented via play-
ers’ joint actions. A player who knows that the opponent is rational should
expect him or her to deviate in a situation where a unilateral deviation is
beneficial, and respond by choosing an optimal response to the expected
deviation. In other words, the commonly known out-of-equilibrium solution
of the game is inherently unstable due to being incompatible with the in-
dividual incentives of best-response reasoners (for extensive discussion, see
Myerson 1991 and Bicchieri 1995).

The question of whether a Nash equilibrium is a necessary outcome of a
complete information game played by rational players, and whether rational
players should expect a Nash equilibrium to be the outcome of such a game,
requires a more thorough examination. The currently prevailing position
is that common knowledge of rationality and of the payoff structure of the
game does not imply that a Nash equilibrium is going to be played. To
see why this is the case, consider the following two player Weak Dominance
game depicted in Figure 1.2:24:

t1 t2

s1 10, 0 5, 2

s2 10, 1 2, 0

Figure 1.2: Weak Dominance game

In this game, the row player has to choose between pure strategies s1
and s2, while the column player has a choice between pure strategies t1
and t2. The game has two pure strategy Nash equilibria (s1, t2) and (s2, t1)
and a mixed strategy Nash equilibrium

(
1
3s1,

2
3s2; t1

)
. There are no strictly

dominated strategies25, which means that common knowledge of rationality
alone does not allow the players to eliminate any of the strategies from
their strategic considerations. Suppose that the row player believes that the

24This game is due to Kreps 1990.
25Strategy s2 is weakly dominated for the row player: It gives the same payoff against

strategy t1 as strategy s1, but a strictly worse payoff against strategy t2. However,
strategy s2 cannot be eliminated on the basis of common knowledge of rationality alone,
since it is a best response against a conjecture that the column player will play strategy
t1 with probability 1. For an in-depth discussion of the epistemic assumptions underlying
the elimination of weakly dominated strategies, see Perea 2012.
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probability of the column player choosing strategy t1 is 126. The row player
should then be indifferent between playing strategies s1 and s2, since the
expected payoff from playing either of the two strategies would be the same
– 10. Suppose that the column player believes that the probability of the
row player choosing s2 is 1. In that case, the column player’s best response is
t1. If the row player plays s1, the players end up playing the strategy profile
(s1, t1) which, unlike the strategy profile (s2, t2), is not a Nash equilibrium
of the game. However, the players could not be blamed for being irrational,
since each player’s strategy is optimal in light of his or her private belief
about the other player’s strategy choice27.

1.2 Social Coordination and the Conceptual Lim-
itations of the Best-Response Reasoning Mod-
els

The aforementioned example indicates a more general issue with the stan-
dard game theoretic analysis based on best-response reasoning: In every
game with multiple rationalizable outcomes, standard game theoretic anal-
ysis is indeterminate. More specifically, the theory cannot predict, which
combination of strategies will be the outcome of a gameplay. The reason of
this result can be traced to the logic of best-response reasoning. Each best-
response reasoner is supposed to choose an optimal action in light of his or
her beliefs about the opponents’ strategy choices. The problem is that each
player’s choice depends on his or her beliefs about each opponent’s strategy
choice, and each opponent’s strategy choice depends on his or her beliefs
about the player’s own strategy choice. From the common knowledge of
rationality and of the payoff structure of the game, the player cannot infer
the opponents’ strategy choices, and so s/he is left in a state of strategic
uncertainty having no indication as to what the opponents can be expected
to do. Consequently, the player cannot decide, which one of the available
strategies is a best response (for extensive discussion of this problem, see
Bicchieri 1995 and Bacharach 2006).

In more recent epistemic game theory models, the players are assumed
26It is important to note that common knowledge of rationality implies that each player

assigns zero probability to the event of the opponent choosing a strictly dominated strat-
egy. It does not, however, imply that each player must assign a strictly positive probability
to every rationalizable strategy. For extensive discussion, see Perea 2012.

27For a technical discussion of the difference between ex ante and ex post optimality of
choice, see, for example, Brandenburger and Dekel 1987 and Perea 2012.
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to have a prior on the set of possible states of the world (in type space
model, on the set of opponents’ strategy-type combinations). A prior does
not automatically imply that players will end up playing a Nash equilibrium
of the game, or that they will successfully coordinate their actions. The
players may have different priors and choose strategies which, although ex
ante optimal, do not constitute a Nash equilibrium. In some cases, the
players may end up with an undesirable outcome. To see why this might be
the case, consider the two player coordination game depicted in Figure 1.3:

t1 t2

s1 2, 1 1, 2

s2 4, 3 0, 1

Figure 1.3: Coordination game

In this game, the row player has to choose either to play strategy s1 or
strategy s2, while the column player has to choose between strategy t1 and
strategy t2. This game has two Nash equilibria in pure strategies – (s1, t2)
and (s2, t1)28.

Suppose that, for each player, the set Ω contains two possible states of
the world – ω1 and ω2. In state ω1 ∈ Ω the opponent plays strategy s1/t1
and in state ω2 ∈ Ω the opponent plays strategy s2/t2. Suppose that row
player’s prior assigns probability 3/4 to state ω1 and probability 1/4 to state
ω2, while column player’s prior assigns probability 5/6 to state ω1 ∈ Ω and
probability 1/6 to state ω2 ∈ Ω. In such case, row player’s best response
is strategy s2, column player’s – t2. Strategy profile (s2, t2) is not a Nash
equilibrium. It is also the worst possible outcome for both players in this
game. However, each player’s response is ex ante optimal.

With certain priors, coordination is, of course, possible. In epistemic
models of game theory, a common prior is a fairly standard assumption.
Recall that in state-space epistemic models, each player i ∈ I is assumed
to have a prior probability distribution pi over the set of possible states of
the world Ω (in type-space models, over the set of opponents’ strategy-type
combinations). An information structure is said to have a common prior if

28The game also has a mixed Nash equilibrium
(
2
3s1,

1
3s2;

1
3t1,

2
3t2
)
. However, in epis-

temic models of one-shot non-cooperative games, it is standard to treat mixed strategies
not as players’ actual randomizations over their pure strategies, but as players’ probabilis-
tic beliefs about opponents’ actions – subjective probability distributions over opponents’
pure strategies. In other words, players are assumed to use only pure strategies in one-shot
games. For extensive discussion, see Osborne and Rubinstein 1994 and Perea 2012.
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pi = p for all i ∈ I . With common prior assumption, coordination can be
achieved. For example, if both players were to assign probability 1/2 to both
state ω1 and state ω2, the row player’s best response would be strategy s2
while the column player’s best response would be strategy t1. The players
would thus end up playing strategy profile (s2, t1) – a Pareto efficient29

Nash equilibrium of this game (for extensive discussion, see Aumann 1987
and Brandenburger and Dekel 1987).

A common prior assumption imposes substantial restrictions on players’
possible beliefs. Aumann (1976) has shown that if two players are Bayesian-
rational decision-makers and have a common prior, and if their posteriors
are common knowledge, then their posteriors must be equal. In other words,
with a common prior, it cannot be common knowledge that different players
hold different posterior beliefs about any event (for discussion and proofs,
see Aumann 1976).

A common prior assumption is based on Harsanyi’s doctrine: An idea
that any two rational players who have access to the same information will
necessarily have the same probabilistic assessment of the situation, and any
difference in players’ assessments must necessarily be due to differences in the
information available to them (for extensive discussion, see Harsanyi 1967,
1968a,b, Morris 1995 and Bicchieri 1995). The problem with the common
prior assumption is that it offers very little in terms of explaining how peo-
ple coordinate their actions. Common knowledge of rationality and of the
payoff structure of the game does not provide enough information for the
players to form beliefs about each other’s strategy choices. It is therefore
not clear, what kind of information about the non-cooperative game which
is available to the players justifies the common prior assumption, let alone
the common prior which leads the players to choosing strategies constituting
a Nash equilibrium. As has been pointed out by Bicchieri (1995), even in
situations where it is common knowledge that players only consider the set of
Nash equilibria as possible solutions, the question of how they should assign
subjective probabilities to opponents’ actions in games with multiple Nash
equilibria does not have a clear answer (for details, see Bicchieri 1995). In
other words, an assumption that players have a common prior which allows
them to coordinate their actions is a substantial assumption which requires
a compelling conceptual justification – a justification which the theory of

29An outcome of a game is Pareto efficient, or Pareto optimal, if there is no other
outcome available which would make some player better-off without making anyone else
worse-off.
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games itself does not offer30.
Because of the conceptual limitations of the best-response reasoning

model, the theory is sometimes criticized for its inability to single out unique
solutions in games with multiple Nash equilibria, even in those which, at
least intuitively, seem to have an ‘obvious’ solution. A canonical example
of a game where the standard game theoretic analysis leads to conclusions
which contradict our common sense intuitions concerning rational behaviour
is the Hi-Lo game depicted in Figure 1.4:

hi lo

hi 2, 2 0, 0

lo 0, 0 1, 1

Figure 1.4: Hi-Lo game

In this game, two players must simultaneously and independently choose
either to play hi or to play lo. If both players choose hi, each gets a payoff
of 2. If both choose lo, each gets a payoff of 1. If one player chooses hi
while the other chooses lo, both players get a payoff of 0 – the worst payoff
attainable in this game.

Both hi and lo are rationalizable strategies. The game has two pure strat-
egy Nash equilibria – (hi,hi ) and (lo, lo). The third one is a mixed strategy
Nash equilibrium, in which players randomize between pure strategies hi and
lo with probabilities 1/3 and 2/3 respectively. The mixed Nash equilibrium
yields each player an expected payoff of 2/3. From the perspective of or-
thodox game theory, every Nash equilibrium is a rational solution of this
game: It is rational for a player to play hi with probability 1/3 and lo with

30One of the attempts to justify the common prior assumption is based on idea that
individuals coming from the same population may have pre-formed beliefs about the
behaviour of the members of the population in situations of a certain type. In other
words, individuals sharing similar social experiences will likely have similar expectations
concerning each other’s behaviour, and therefore may successfully coordinate their actions
(see, for example, Bicchieri 2006 and Gintis 2008). The problem with this justification of
the common prior assumption is that it rests on empirical claim about the population state
– a claim which may or may not be true and which may be difficult, if not impossible, to
test. This justification of the common prior assumption will be discussed in considerable
detail in chapter 4.
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probability 2/3 if s/he believes that the opponent will do the same thing31.
It is also rational to play lo if s/he believes that the probability of opponent
playing lo is higher than 2/3. For many people, however, pure strategy Nash
equilibrium (lo, lo) and the mixed strategy Nash equilibrium do not appear
as convincing solutions of what they perceive to be a common interest game:
Nash equilibrium (hi,hi ) is clearly the best outcome for both players, and
there is no conflict of players’ interests in this game. The perfect alignment
of player’s personal interests seems to be the primary reason of why an idea
that a rational player could expect another rational player to choose lo is
not compelling.

The critics of the orthodox game theory argue that the failure of game
theory to agree with our ‘high quality intuitions’ concerning rational be-
haviour should be viewed as a conceptual limitation of the theory, which
should not be dismissed as insignificant and, ideally, addressed with a model
of reasoning compatible with our intuitions about rational behaviour in non-
cooperative games (for a defense of this view, see, for example, Olcina and
Urbano 1994 and Bacharach 2006).

The aforementioned critique, however, should be taken with a grain of
salt: It relies on the interpretation of game theory as aiming to provide
a ‘unique rational recommendation on how to play’ (Bicchieri 1995: 316).
Strictly speaking, best-response reasoning, which is the main target of criti-
cism, is not a model of strategic reasoning, but rather a consistency require-
ment. A rational player is supposed to have internally consistent proba-
bilistic beliefs about opponents’ strategy choices, and never choose a strat-
egy which is not optimal in light of those beliefs. A rational player who
knows the opponents to be rational is only supposed never to expect them
to play non-rationalizable strategies (Bicchieri 1995). Notice, however, that
best-response reasoning model is not a theory of how rational players form
beliefs about opponents’ choices of rationalizable strategies (Olcina and Ur-
bano 1994). Therefore, it is not surprising that the theory cannot single out
unique solutions in games with multiple Nash equilibria, or that it cannot
address a criticism that certain Nash equilibria are not compelling solutions
due to intuitively unreasonable beliefs that the players would have to hold
in order to end up playing them. It can be argued that the question of what
a rational player should believe about opponents’ rationalizable strategies

31Strictly speaking, if the player believes that the opponent will randomize between
hi and lo with probabilities 1/3 and 2/3 respectively, the player is indifferent between
playing hi or lo with probability 1 and playing strategy hi with probability 1/3 and lo
with probability 2/3. The expected payoff associated with each option is the same – 2/3.
This result raises the question of whether it is reasonable to assume that players would
play randomized strategies in a one-shot game.
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falls outside of the scope of game theory or, even if it does not, that there is
no uniquely rational belief-formation model for non-cooperative games (for
a defence of a latter position, see, for example, Perea 2012).

However, the criticism is valid in a sense that the question of how real-
world decision-makers choose among rationalizable strategies is of funda-
mental importance for the descriptive branch of game theory. Experiments
suggest that people are fairly successful in coordinating their actions in games
with multiple rationalizable outcomes32. The aim of the descriptive models
of game theory is to explain people’s behaviour, and so they should provide
definitive theoretical predictions concerning people’s actions. Therefore, the
question of how social agents manage to coordinate their actions in non-
cooperative games is an important explanatory challenge for the descriptive
branch of game theory.

1.3 Social Coordination Theories

Currently there are several descriptive theories which purport to explain how
people resolve games with multiple rationalizable outcomes. These theories
will be briefly introduced in this section. This introduction should not be
viewed as a comprehensive overview: Most of the theories have multiple
different versions, and this overview will cover only the general principles of
each approach.

1.3.1 Cognitive Hierarchy Theory

The cognitive hierarchy theory33 suggests that players can be classified into
types on the basis of their ability to engage in strategic reasoning. The theory
postulates a hierarchy of cognitive levels (0, 1, 2...). Each type of player can
be characterized by a cognitive level, which represents the degree to which
that type of player can reason about the other players. Level 0 players
are unable to engage in strategic reasoning at all. They are assumed to
be randomizing between strategies according to some exogenous probability
distribution po. The standard assumption is t hat probability distribution po

32For experimental results suggesting that people can achieve high rates of coordination
in non-cooperative games with multiple Nash equilibria, see, for example, Mehta et al.
1994, Bacharach and Bernasconi 1997, Colman and Stirk 1998, Crawford et al. 2008,
Bardsley et. al. 2010, Cabon-Dhersin and Etchart-Vincent 2010, Faillo et al. 2013, 2016.

33For early and more recent theoretical developments and experimental tests of cognitive
hierarchy theory, see Nagel 1995, Stahl and Wilson 1994, 1995, Ho et al. 1998, Costa-
Gomes et al. 2001, Camerer et al. 2004, Crawford et al. 2008, Bardsley et al. 2010, Faillo
et al. 2013, 2016.
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is uniform, which means that level 0 players choose each pure strategy with
equal probability (see, for example, Stahl and Wilson 1995 and Camerer et
al. 2004). It is often assumed that distribution p0 is common knowledge,
although in some versions of the theory this assumption is replaced with a
presumably more realistic assumption that players may have different beliefs
about the distribution p0 (see, for example, Bardsley et al. 2010). In some
versions of the theory, a non-uniform probability distribution is used to
represent a tendency of unsophisticated players to opt for strategies that
they perceive as being salient for some non-strategic (e.g. psychological)
reason (see, for example, Crawford et al. 2008).

A level 1 player believes that all the opponents are level 0 reasoners who
randomize between pure strategies according to p0. Level 1 player chooses a
strategy which, given this belief, maximizes his or her expected payoff.

A level 2 player believes that each opponent is either level 0 or level
1 player. With probability qo/ (q0 + q1) the opponent is a level 0 player
who randomizes between pure strategies according to distribution po (it is
important to note that this theory relies on assumption that q0 > 0). With
probability q1/ (q0 + q1) the opponent is a level 1 player who expects the
opponents to be level 0 players and chooses a best response to that belief.
Level 2 player chooses a strategy which, given his or her probabilistic beliefs
about opponents’ types, maximizes his or her expected payoff.

A level 3 player believes that opponents can be either level 0, level 1
or level 2 players and, like level 1 and level 2 players, chooses a best re-
sponse to his or her probabilistic beliefs about the opponents’ types. The
same principles of modelling apply to reasoning of players of higher cognitive
levels34.

Cognitive hierarchy theory rests on a fundamental assumption that there
is no type of player who can conceive the possibility that other players may
be either of the same or of the higher cognitive level that s/he is. In other
words, each possible type of player is boundedly rational in a sense that
s/he can only think of opponents as being less strategically sophisticated
than s/he is (Camerer et al. 2004). Another important assumption is that
level k ≥ 1 players ‘have an accurate guess about the relative proportions
of players who are doing less thinking than they are’ (Camerer et al. 2004:

34In a simpler version of the theory, it is assumed that level 1 player best-responds to
beliefs about the behaviour of level 0 players, level 2 player best-responds to beliefs about
the behaviour of level 1 player, and so on. In other words, each k ≥ 1 level player is
assumed to believe that all the other players are level (k − 1) players, and chooses a best
response accordingly. This simplifies the model in a sense that players are not uncertain
about opponents’ types. In some versions of the theory, it is assumed that no player can
be of higher cognitive level than level 2. See, for example, Crawford et al. 2008.
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864).
The simplest version of the cognitive hierarchy theory – the one which as-

sumes that probability distribution p0 is uniform – can explain coordination
in certain types of coordination games, such as in common interest games
with a unique Pareto optimal Nash equilibrium. For example, it explains
coordination in the aforementioned Hi-Lo game (Figure 1.4). For level 1
player, the optimal response in the Hi-Lo game is to play strategy hi, since
s/he expects the level 0 opponent to play hi with probability 1/2. A level
2 player expects the opponent to be either level 0 or level 1 player. Level 2
player expects the level 1 player to play hi, and so his or her optimal response
is hi. Just like level 1 player, level 2 player expects the level 0 opponent to
play strategy hi, and so his or her best response is, again, hi. Strategy hi
is therefore level 2 player’s best response to both level 1 and level 0 player’s
actions. It can easily be checked that strategy hi is a best response for a
player of any higher cognitive level, irrespective of what probability distri-
bution s/he assigns over the opponent’s cognitive types (given the constraint
that q0 > 0).

A probability distribution p0 which represents a tendency of unsophisti-
cated players to choose salient strategies more frequently than other available
strategies can be used to account for the role of non-payoff-relevant factors,
such as strategy labels or their position in the game matrix35.

One of the perceived advantages of the cognitive hierarchy theory is
that it retains some of the elements of orthodox best-response reasoning
model: Although players are assumed to have limited reasoning abilities and
therefore cannot be treated as Bayesian-rational decision-makers, the players
whose cognitive level is higher than 0 are assumed to make choices consis-
tent with the expected utility maximization principle. In other words, the
players are bounded best-response reasoners: They choose optimal responses
to their beliefs about opponents’ actions, even though their ability to form
consistent beliefs about the opponents’ types is restricted by their cognitive
limitations.

The theory can be criticized on empirical as well as on conceptual grounds.
Some critics have pointed out that the theory fails to explain coordination in
games with multiple payoff-identical Pareto optimal outcomes and a unique
Pareto suboptimal outcome. For example, experiments suggest that in a
two player game where players have to coordinate by choosing the same
payoff outcome from a set of possible outcomes {(10, 10) , (10, 10) , (9, 9)},

35For example, in a version of the theory suggested by Crawford, Gneezy, and Rotten-
streich (2008), level 0 players are assumed to choose payoff salient strategies and use label
salience to resolve cases where two or more strategies are payoff salient.
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people often coordinate their actions on a Pareto suboptimal outcome (9, 9).
According to the principles of cognitive hierarchy theory, level 1 or higher
cognitive level players would not choose outcome (9, 9) (for extensive discus-
sion of this criticism, see, for example, Bardsley et al. 2010 and Faillo et al.
2016).

The theory also faces difficulties explaining high coordination rates in
games where players have conflicting preferences over the Pareto optimal
outcomes. For example, consider the following two player three strategy
coordination game depicted in Figure 1.5:

l c r

u 11, 9 0, 0 0, 0

m 0, 0 10, 10 0, 0

d 0, 0 0, 0 9, 11

Figure 1.5: Coordination game

This game has three Pareto optimal pure strategy Nash equilibria – (u, l ),
(m, c ) and (d, r ). Experiments suggest that an absolute majority of people
end up playing the Nash equilibrium (m, c ) (see, for example, Faillo et al.
2013). The cognitive hierarchy theory cannot explain this result. Consider
the game from the row player’s perspective. Level 1 row player should expect
that level 0 column player will play each pure strategy with probability 1/3
and respond by playing u. A level 2 row player should expect the column
player to be either level 0 or level 1 player. If the row player believes that the
column player is a level 0 player, his or her best response is strategy u. If the
row player believes that the column player is a level 1 player, s/he expects
the column player to choose strategy r , and so his or her best response is
d. Since the row player is uncertain about the opponents’ cognitive level,
s/he will choose either u or d, depending on the probability distribution over
the column player’s cognitive types: The row player will choose strategy
u if the probability of the opponent being a level 0 player is higher than
27/29 and strategy d if the probability of the opponent being a level 0 player
is lower than 27/29. For level 3 row player, a best response will also be
either strategy u or strategy d, depending on the probability distribution
over column player’s types. It is easy to check that the same result holds for
any player of higher cognitive level.

A level 1 column player should always choose strategy r . For a column
player of any higher cognitive level, a best response can be either strategy
l or strategy r , depending on the probability distribution over row player’s
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cognitive types. Notice that level k ≥ 1 row player never plays strategym and
level k ≥ 1 column player never plays c. The theory is thus unable to explain
why approximately 86% of people end up playing the Nash equilibrium (m, c )
(for experimental results, see, for example, Faillo et al. 2013).

The most serious conceptual criticism of the theory can be directed
against the suggested structure of players’ beliefs about the opponents’ types.
In cognitive hierarchy theory, level k ≥ 1 player’s beliefs are anchored in be-
liefs about level 0 player’s behaviour. The explanatory power of the theory
rests on assumptions that the proportion of level 0 players in the population
is sufficiently high. In some versions of the theory, it is assumed that level
0 players do not exist at all, and the population is a mixture of level 1 and
level 2 players (see, for example, Crawford et al. 2008). This assumption
implies that every level k ≥ 1 player holds incorrect beliefs about the oppo-
nents’ types. The theory offers no explanation of how players form a belief
that a non-existing player type is present in the population, or why players
do not realize, over time, that level 0 players do not exist. This version of
the theory also implies that players are not only boundedly rational when it
comes to reasoning about the opponents’ cognitive abilities, but also inca-
pable of checking their beliefs against the available information: If players
were able to update their beliefs on information obtained by observing other
players’ behaviour, the proportion of players believing in the presence of
level 0 players in the population would decrease over time. The cognitive
hierarchy theory would become explanatory irrelevant in the long run.

In other versions of the theory, the possibility that level 0 players are
actually present in the population is not ruled out. However, an idea that
a non-negligibe number of real-world players cannot engage in strategic rea-
soning and choose their strategies at random seems empirically implausible,
particularly when used to explain players’ behaviour in simple common in-
terest games, such as the Hi-Lo game. Therefore, a level k ≥ 1 player’s belief
that a non-negligible proportion of social agents are level 0 players must, in
most cases, be false.

It is important to note that the criticism directed against a belief in the
non-negligible presence of level 0 players has no relevance if cognitive hierar-
chy theory is interpreted merely as a model offering an approximately accu-
rate description of observed behaviour. In that case, any worries about the
realism of the assumptions characterizing players’ beliefs can be dismissed
as irrelevant. However, the criticism is valid if we interpret the theory as
offering an approximate description of the process of reasoning by which
different types of players arrive at their action choices.

41



1.3.2 Stackelberg Reasoning

Stackelberg reasoning, or Stackelberg heuristic, suggests that each player
chooses a strategy on the basis of a belief that the opponent will correctly
predict his or her strategy choice and choose a best response to it. If the
player uses Stackelberg heuristic, s/he expects the opponent to always play
the same Nash equilibrium as s/he does. Given such expectations, player’s
choice of a strategy which constitutes a Nash equilibrium associated with the
highest personal payoff is an optimal response. For example, consider the
Hi-Lo game (Figure 1.4). A player who uses Stackelberg heuristic should
choose strategy hi, since s/he should expect the opponent to predict the
choice of hi and respond by playing hi as well (for extensive discussion, see
Colman and Bacharach 1997 and Colman 1997).

One of the perceived advantages of the theory is that it retains some of the
basic principles of the orthodox best-response reasoning model: Each player
who uses Stackelberg reasoning is assumed to be choosing a Stackelberg strat-
egy – a strategy which maximizes his or her expected payoff in light of a belief
that the opponent will correctly guess his or her strategy choice and choose a
best response to it (Colman and Bacharach 1997). The theory, however, can
be criticized on both empirical and conceptual grounds. The proponents of
the theory suggest that decision-makers only use Stackelberg heuristic in the
so called Stackelberg-soluble games – games where a combination of players’
Stackelberg strategies is a Nash equilibrium of the game which, for every
player, is associated with a strictly higher personal payoff than any other
Nash equilibrium of the game (Colman and Bacharach 1997, Colman and
Stirk 1998). The theory offers no definitive theoretical predictions concern-
ing outcomes of games with multiple payoff dominant Nash equilibria. In
addition, it does not offer an explanation of how players coordinate actions
in games where players have conflicting preferences over the Nash equilib-
ria of the game. For example, in the coordination game depicted in Figure
1.5, the Stackelberg-reasoning decision-makers should end up playing strat-
egy profile (u, r ): The Stackelberg-reasoning row player should choose u due
to expectation that the column player will respond by playing l , while the
Stackelberg-reasoning column player should choose r due to expectation that
the row player will respond by playing d. According to the proponents of
the theory, the players should not be using Stackelberg heuristic in such
cases, which means that the theory cannot be criticized for suggesting that
players are using a form of strategic reasoning which guarantees a coordina-
tion failure. Yet it can be criticized on the grounds that other descriptive
theories, such as, for example, team reasoning theory or social convention
theory, can explain coordination both in Stackelberg-soluble and in at least

42



some of the Stackelberg non-soluble games, thus rendering the Stackelberg
reasoning model explanatory irrelevant.

If interpreted as an extension of the orthodox reasoning model, the Stack-
elberg heuristic is conceptually problematic. A player who uses Stackelberg
heuristic engages in ‘magical reasoning’ by fallaciously attributing causal
power to his or her own choices. In other words, a Stackelberg reasoner
takes his or her own strategy choice as evidence of the opponent’s strat-
egy choice, even though a player who understands the structure of the game
should know that players’ choices are causally independent (for extensive dis-
cussion of this criticism, see Elster 1989 and Bacharach 2006). Stackelberg
reasoner’s beliefs about the opponents’ strategy choices are thus inconsistent
with his or her beliefs about the structure of the decision problem.

From the perspective of epistemic game theory, Stackelberg reasoning
violates the state-action independence principle, since player’s choice is not
independent from his or her probabilistic beliefs about the states of the
world – the combinations of opponents’ strategy choices36. Thus, Stackel-
berg heuristic is incompatible with the fundamental principles of orthodox
game theory, and so any explanation of social coordination which employs
this heuristic cannot be taken to be a natural extension of orthodox game
theory37.

1.3.3 Social Conventions Theory

One of the older theories which offers an explanation of how real-world play-
ers resolve games with multiple Nash equilibria is the social conventions
theory, the different versions of which have been discussed, among others,
by Schelling (1960), Lewis (1969), Sugden (1984), Binmore (2005, 2008),
Bicchieri (2006) and Gintis (2008). According to Bicchieri (2006), a social
covention can be defined as a behavioural rule c followed by convention fol-
lowers – a subset of the members of the population P who know that a
behavioural rule c exists and applies to situations of type G, where G is a
coordination game with two or more strict Nash equilibria. The players who
conform to behavioural rule c are playing one of the strict Nash equilibria

36For an early formulation of the state-action independence principle in decision theory,
see Savage 1954. For an extensive discussion of the role of state-action independence
principle in epistemic game theory, see Perea 2012.

37It is important to emphasize that Colman and Bacharach have proposed the Stackel-
berg heuristic primarily as an empirical hypothesis concerning people’s actual reasoning in
games, not as a model of reasoning compatible with the orthodox conception of rationality
(see Colman and Bacharach 1997, Colman 1997, Colman and Stirk 1998). Therefore, an
argument can be made that a criticism of Stackelberg reasoning for being incompatible
with the principles of orthodox game theory is misdirected.
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of the game, which means that any unilateral deviation from the convention
yields the deviating player a strictly worse payoff. A convention follower
has a conditional preference to follow a convention: If a convention follower
expects the other players of the game to follow c, then his or her own de-
cision to follow c is an expected payoff maximizing choice. In other words,
players’ conformity to a convention is modelled as an expected payoff maxi-
mizing behaviour (for discussion, see Bicchieri 2006). Conditional preference
assumption implies that convention followers’ conformity to c relies on a mu-
tual expectation of conformity: Each player expects the opponents to follow
the behavioural rule c in situations of type G, and this expectation makes
conformity to c an optimal response38.

Arguably the main difference between the various versions of the social
convention theory lies with the structure of beliefs which is assumed to be
necessary for sustaining players’ conformity. In Lewis’s (1969) account, a be-
havioural rule counts as a social convention if (almost) everyone’s conformity
to behavioural rule c, (almost) everyone’s expectation of (almost) everyone’s
conformity to c and (almost) everyone’s conditional preference to conform to
c is common knowledge (see Lewis 1969: 60-80). Lewis’s account has been
criticised for imposing implausibly strict requirements on individuals’ beliefs
about each other’s beliefs and motivations (see, for example, Binmore 2008),
although there is a disagreement over whether the criticisms are based on
the same conception of common knowledge as Lewis’s theory (see Cubitt and
Sugden 2003). Subsequent accounts of social conventions attempted to relax
the common knowledge assumptions. For example, in Bicchieri’s (2006) ac-
count, a behavioural rule c is a convention in a population P if there exists a
sufficiently large subset P f ⊆ P , such that each individual i ∈ P f knows that
a rule c exists and applies to situations of type G, and believes that a suffi-
ciently large subset of P are convention followers – individuals who actually
follow c in situations of type G (for extensive discussion, see Bicchieri 2006).

To see how the social convention theory can explain coordination in non-
cooperative games, consider the following two player Battle of the Sexes

38It is important to note that this definition of convention is not universally accepted.
Some theorists have argued that a convention need not be coordination equilibria, and
that convention followers’ preference for everyone’s conformity to a behavioural rule is
not necessary for a behavioural rule to be a convention (see, for example, Sugden 1984
and Vanderschraaf 1998). Other authors have argued that conventions should be treated
as correlated equilibria of the game – systems of directives which are such that, given the
directives of other players, no player has an incentive not to follow his or her directive
(see, for example, Skyrms 1996, Vanderschraaf 1995, 2001 and Gintis 2008). In games
with multiple Nash equilibria, the set of correlated equilibria is larger than the set of
Nash equilibria, which means that the set of possible conventions is even larger than in
the models suggested by Lewis (1969) and Bicchieri (2006).
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game depicted in Figure 1.6. In this game, each player has to idependently

o b

o 2, 1 0, 0

b 0, 0 1, 2

Figure 1.6: Battle of the Sexes game

choose either to play b or o. The game has two strict pure strategy Nash
equilibria – (b,b) and (o,o). The third is a mixed strategy Nash equilibrium(
2
3o,

1
3b;

1
3o,

2
3b
)
. Both players strictly prefer coordinating their actions on any

Nash equilibrium to playing an out-of-equilibrium strategy profile. However,
the players also have conflicting preferences over the pure Nash equilibria of
the game: The row player prefers outcome (o,o) over outcome (b,b), while
the column player prefers outcome (b,b) over outcome (o,o). The players
are complete strangers who cannot communicate, and the payoff structure
of this game offers no cues on how to coordinate their actions.

Suppose that the row player believes that there is a convention to play o
in this game. If the row player believes that the probability of the column
player being a convention follower is higher than 1/3, then playing o is a
best response. The row player has an incentive to play o, since his or her
choice of b yields a strictly worse payoff. If the column player believes that
the probability of the row player being a convention follower is higher than
2/3, then o is column player’s best response as well.

It is easy to notice that social convention theory relies on assumption that
convention followers share a belief that the proportion of convention followers
in the population is sufficiently high. This is an empirical assumption about
individuals’ shared beliefs, which may or may not be true, and which may be
difficult to test empirically. One of the attempts to provide a theoretical jus-
tification of this assumption is based on the principles of evolutionary game
theory. In theory, any population should, over time, converge to an evolu-
tionarily stable state in which everyone is playing an evolutionarily stable
strategy. A convention can then be interpreted as a system of evolution-
arily stable strategies which can resist invasions of ‘mutants’ playing other
strategies (for evolutionary accounts of social norms and conventions see, for
example, Sugden 1986, Skyrms 1996, Bicchieri 2006 and Alexander 2007).
This interpretatation offers an explanation of why conventions may persist
for long periods of time, and why individuals living in the same population
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hold beliefs which sustain their conformity to a convention39.
Since every strict Nash equilibrium of the evolutionary game is an evolu-

tionarily stable state, any game with more than one strict Nash equilibrium
has more than one evolutionarily stable state. Depending on the initial pop-
ulation state (the initial proportions of players using different strategies), the
population can converge on any evolutionarily stable state. In a game with
multiple strict Nash equilibria, each strict Nash equilibrium may become a
conventional solution of the game. Since the trajectory of evolutionary dy-
namics depends on the initial population conditions, none of the multiple
possible evolutionarily stable states can be ruled out on the basis of formal
analysis alone. Thus, evolutionary game theory does not warrant a conclu-
sion that, for example, playing hi in the Hi-Lo game must necessarily be a
conventional solution of the Hi-Lo game for every population, since Nash
equilibrium (lo, lo) is an evolutionarily stable state of the evolutionary game,
and so playing lo may also, over evolutionary time, become a convention.

In any game with multiple strict Nash equilibria, players’ ability to reg-
ularly coordinate their actions on a strict Nash equilibrium can always be
explained as individuals’ conformity to a some pre-existing convention. For
this reason it is difficult to test the social convention theory empirically. Since
conventions are usually defined as behavioural rules which govern players’
actions in a particular game (i.e. a particular type of social interaction), no
general regularities of behaviour accross multiple games can be expected, and
so social convention theory can only be tested on a case-by-case basis. As-
suming that individuals from different populations or even groups within the
same population may be following different conventions – a possibility the
proponents of the social convention theory do not rule out40 – virtually any
outcome of a gameplay can be explained as a product of the interaction of in-
dividuals following (possibly different) conventions. In games with multiple
strict Nash equilibria, the question of whether individuals who manage to
regularly coordinate their actions on a Nash equilibrium do so by following a
convention, or by using some other type of decison-making procedure cannot

39The underlying idea is that if a population reaches an evolutionarily stable state
in which everyone plays an evolutionarily stable strategy of a certain population game,
then every member of the population who interacts whith other individuals is almost
guaranteed to observe other individuals playing that evolutionarily stable strategy in a
specific type of social interaction, and thus form a belief that there exists a behavioural rule
followed by the majority of population in situations of that type (for extensive discussion,
see, for example, Bicchieri 2006 and Gintis 2008). This evolutionary justification of the
correlated beliefs assumption will be discussed in considerable detail in chapter 4.

40See, for example, Bicchieri 2006 and Elster 1989 who discuss a number of examples
of norms and conventions followed by specific social groups, but not by the population in
general.
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be answered solely on the basis of information about the observed behaviour
of individuals – information which, by a substantial number of prominent
game theorists, is considered to be the only type of evidence which can be
legitimatelly used for testing competing descriptive game theory models (for
extensive discussion, see, for example, Binmore 2005, 2009a and Hausman
2012).

However, there are good reasons to believe that experiments which record
psychological data above and beyond individuals’ choices must be consid-
ered in order to resolve this underdetermination problem (Dietrich and List
2016). The amount of available psychological data is limited: So far not
enough experiments have been conducted which not only recorded partic-
ipants’ choices, but also attempted to elicit participants’ beliefs and mo-
tivations. A handful of experiments with coordination and mixed motive
games, in which participants were asked to report either the reasons of their
choices or their beliefs about opponents’ choices, suggest that few people
choose strategies as best-response reasoners. Rubinstein and Salant (2016)
asked participating decision-makers to report their beliefs about other play-
ers’ choices either before or after making their own choice. They found a
sizeable proportion of decision-makers not to best respond to their elicited
beliefs (see Rubinstein and Salant 2016). Some of the available data indi-
cates that a sizeable proportion of individuals justify their strategy choices
by appealing to some notion of mutual advantage. These results support
the goal-directed reasoning theories which suggest that people resolve non-
cooperative games by identifying the mutually advantageous strategy profiles
and playing their part in realizing them (for experimental results, see, for
example, Colman and Stirk 1998). Currently there seems to be not enough
empirical evidence to definitively conclude that people view their own strat-
egy choices in experimental games as conformity with the behavioural rules
of society.

Another, yet related, criticism of the social convention theory is that it
does not account for the complexity of players’ normative attitudes towards
what they perceive to be the ‘appropriate’ solution of the game41. Social
conventions are arbitrary behavioural rules. According to the theory, each
convention follower’s conformity to a behavioural rule is sustained by his or

41The term ‘normative’ in this context should not be associated with ethical consider-
ations, but rather with prudential ones. The term ‘normative attitude’ refers to player’s
belief that a certain strategy profile should or should not be the outcome of a game
played by intelligent players aiming to advance their personal interests. It is important to
note, however, that social convention theory has been criticised for its inability to capture
the ethical dimension of the non-theoretical folk notion of convention. For an extensive
discussion, see, for example, Guala 2013.
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her expectation that other individuals will follow that rule, not by a belief
that a conventional solution of the game is, in some sense, better than other
possible solutions. In other words, player’s conformity is based on expec-
tation of what strategies the other players will choose, not what strategies
they should choose. The theory fails to explain why people often have, in
Bacharach’s (2006) terms, ‘high quality intuitions’ that some solutions of
games are more compelling than others.

For example, the majority of people have a strong intuition that hi is the
‘obvious’ choice in the Hi-Lo game. But the reason of why people recognize hi
as the obvious choice is, as Bacharach suggests, not their belief that everyone
plays hi. People expect everyone else to choose hi because they believe that
an intelligent player who understands the structure of this game should never
choose lo, since playing lo obviously goes against the mutual interest of the
players (for extensive discussion, see Bacharach 2006). The presence of such
intuitions indicates that people are not only capable of following the social
rules, but also of using relatively sophisticated concepts, such as the concept
of mutual interest, when reasoning about solutions of non-cooperative games.

1.4 Strategic Reasoning and Mutual Advan-
tage

Several theories suggest that people resolve at least some of the non-cooperative
games by adopting a mode of reasoning which allows them to narrow down
the set of possible solutions by identifying those solutions which are mutually
advantageous to the interacting players. These theories will be the focus of
the subsequent discussion.

1.4.1 Coalitional Rationalizability

The standard rationalizability imposes weak restrictions on players’ beliefs
and, consequently, strategy choices: Common knowledge of rationality al-
lows the players to eliminate non-rationalizable strategies, yet they are left
with multiple rationalizable outcomes in every game with multiple Nash
equilibria. Coalitional rationalizability (Ambrus 2006, 2009, Luo and Yang
2009) is a more restrictive solution concept for non-cooperative normal form
games than standard rationalizability. It rests on assumption that players
of non-cooperative games can coordinate their actions by acting as a tacit
‘coalition’: Each coalition member confines his or her play to a subset of
strategies if it is mutually advantageous for coalition members to do so.
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This solution concept rests on the generalization of the standard assump-
tion of game theory that every player aims to maximize his or her expected
utility by choosing an optimal response to probabilistic beliefs about oppo-
nents’ strategy choices. In coalitional rationalizability model, each player is
also assumed to be looking for implicit ‘coalitional agreements’ – restrictions
on the strategy space. Each ‘coalitional agreement’ restricts each coalition
member’s play to a specific subset of strategies, but does not specify play
within the set of non-excluded strategies. This means that a coalitional
agreement does not always single out a unique strategy profile42.

A coalitional agreement is said to be mutually advantageous if, for ev-
ery coalition member, every best response within agreement (a strategy not
excluded by restriction which maximizes players’ expected payoff) to some
conjecture compatible with the agreement (i.e. compatible with the assump-
tion that opponents do not play strategies excluded by agreement) yields a
higher expected payoff than any best response outside the agreement (i.e. a
strategy which maximizes players’ expected payoff in light of a belief that
opponents may choose strategies outside the agreement)43.

Coalitional rationalizability theory suggests that players use a specific
reasoning algorithm – an iterative addition of mutually advantageous, or
supported, restrictions44. In the first step, the players look for supported
restrictions given the set of all the strategies available to players. In the
next step, the players consider a set of strategy profiles consistent with the
supported restrictions added in the first step, and search for further sup-
ported restrictions. The process continues until no further restrictions can
be added. The remaining set of strategies is the set of coalitionally rational-

42In the original definition of coalitional rationalizability, due to Ambrus (2006), players
are assumed to be using only pure strategies. However, Ambrus also shows that coalitional
rationalizability can be extended to mixed strategy space. For details, see Ambrus 2006,
2009.

43In other words, if we associate each conjecture with the expected payoff that a best
response strategy to that conjectures yields, then players in the group prefer every con-
jecture compatible with the agreement to any conjecture to which a strategy outside the
agreement is a best response.

44The original coalitional rationalizability concept rests on assumption that each player
is certain that every other player understands the implicit agreements implied by sup-
ported restrictions and always complies with them, and that this certainty is common
knowledge among the interacting players. In the cautious rationalizability model, it is
allowed that each player thinks that with at most probability ϵ other coalition mem-
bers are playing outside the supported restriction. Ambrus (2009) shows how a set of
ϵ−coalitionally rationalizable strategies can be defined. Luo and Yang 2009 offer an epis-
temic model of coalitional rationalizability, in which players are assumed to be using a
Bayes rule in forming expectations concerning opponents’ strategy choices (see Luo and
Yang 2009).
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izable strategies of the game (for a technical discussion, see Ambrus 2006).
In some games with multiple Nash equilibria, coalitional rationalizability

singles out a unique solution. For example, consider the Hi-Lo game (Figure
1.4). It is easy to check that {lo} × {lo} is a supported restriction. For each
player, strategy lo is a unique best response to any conjecture which assigns a
probability higher than 2/3 to the event of the opponent playing strategy lo.
Notice that strategy lo yields an expected payoff of at most 1 for each player
(when chosen as a best response to a belief that the opponent plays lo with
probability 1). Given restriction {lo} × {lo}, each player assigns probability
1 to the event of the opponent playing strategy hi, and so strategy hi yields
each player an expected payoff of 2. Nash equilibrium (hi,hi ) is the unique
coalitionally rationalizable solution of this game.

As all of the theories mentioned before, coalitional rationalizability can-
not explain how people resolve certain games with multiple Nash equilibria,
even those which seem to have intuitively obvious solutions and create no
problems for real-world decision-makers. For example, consider the following
two player ‘Weak’ Common Interest game depicted in Figure 1.7:

t1 t2

s1 11, 10 0, 0

s2 0, 0 10, 10

Figure 1.7: ‘Weak’ Common Interest game

This game has two pure strategy Nash equilibria (s1, t1) and (s2, t2). The
third is a mixed strategy Nash equilibrium

(
1
2s1,

1
2s2;

10
21t1,

11
21t2
)
. At least

intuitively, the Nash equilibrium (s1, t1) seems to be an ‘obvious’ solution
of this game, since it maximizes both players’ personal payoffs. However,
the Nash equilibrium (s1, t1) is not the unique coalitionally rationalizable
solution of this game.

To see why this is so, suppose that players consider restriction {s2}×{t2}.
For the row player, strategy s2 is a best response to any conjecture which
assigns a probability higher than 11/21 to column player’s choice of strategy
t2. Strategy s2 yields an expected payoff of at most 10 (when chosen as a
best response to a belief that the column player chooses t2 with probability
1). Given restriction {s2}× {t2}, the row player assigns probability 1 to the
event of the column player choosing s1, and so strategy s1 yields an expected
payoff of 11.

The same analysis yields different results for the column player. Strat-
egy t2 is column player’s best response to any conjecture which assigns a
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probability higher than 1/2 to the row player choosing s2. Strategy t2 yields
an expected payoff of at most 10. However, given restriction {s2} × {t2},
strategy t1 also yields an expected payoff of 10, which means that strategy
t1 does not yield a higher expected payoff than every possible conjecture to
which strategy t2 is column player’s best response. Therefore, restriction{s2} × {t2} is not supported, which means that Nash equilibrium (s2, t2) is
a coalitionally rationalizable outcome. At least intuitively, this result seems
problematic.

The iterative addition of supported restrictions becomes a relatively com-
plex reasoning procedure when applied to games with more than two strate-
gies: The identification of supported restrictions requires players to identify
best responses to various conjectures concerning opponents’ strategy choices
and compare expected payoffs. If coalitional rationalizability were to be in-
terpreted as an approximate description of the process of reasoning by which
people arrive at their strategy choices, an argument could be made that, due
to complexity, real-world players could only apply such a complex reason-
ing procedure to simple interdependent decision problems. For example, in
two strategy games with two players, any restriction considered by the play-
ers automatically leaves them with just one internally consistent conjecture
concerning opponents’ actions – a conjecture which assigns probability 1 to
non-excluded strategy. In such cases, the identification of the supported re-
striction involves a fairly basic expected utility calculation, which should not
create any problems for relatively unsophisticated decision-makers.

In addition, coalitional rationalizability relies on each player’s high confi-
dence in the opponents’ ability to identify supported restrictions and comply
with them. It could be argued that player’s degree of confidence should de-
pend on the perceived complexity of the game: In simple games, the player
can be reasonably expected to be highly confident in the opponents’ abili-
ties, while in complex games high confidence should not be expected. This,
again, raises doubts whether players should be expected to confine their play
to a set of coalitionally rationalizable strategies in complex games.

Despite certain limitations, coalitional rationalizability offers a novel be-
lief formation model that goes beyond the standard conception of individual
rationality. The main conceptual innovation is the idea that players may
act as a coalition by engaging in mutually beneficial joint actions in strate-
gic situations where no communication or binding agreements are possible.
In other words, the players are assumed to be using a specific criterion of
mutual advantage in order to eliminate certain strategies that could not be
eliminated on the basis of standard individualistic considerations. In some
games with multiple Nash equilibria, players’ ability to identify mutually
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advantageus outcomes resolves the game definitively (e.g. the Hi-Lo game).
In other games it does not single out a unique solution, but at least narrows
down the set of possible solutions, thus increasing the probability of success-
ful coordination. The concept of mutual advantage, although formulated
somewhat differently, plays a central role in two goal-directed reasoning the-
ories – the team reasoning theory and the hypothetical bargaining theory –
which will be the focus of this thesis.

1.4.2 Goal-Directed Reasoning and Mutual Advantage

In recent decades, game theorists have given more attention to the idea that
players’ choices in games may be influenced by frames – systems of con-
cepts that players use when thinking about the game. Player’s adoption of a
specific frame may depend on the structural and contextual features of the
game, some of which may not be captured by the mathematical representa-
tion of the game, and, according to some theorists, may lie outside of rational
evaluation45. This realization prompted an emergence of an idea that certain
structural and/or contextual features of the interdependent decision problem
may prompt player’s adoption of a goal-directed reasoning mode. A player
who adopts a goal-directed reasoning mode follows a specific set of inference
rules in order to reach a conclusion on what action(s) s/he should take in a
particular environment in order to achieve a certain goal. More specifically,
when the player adopts a goal-directed mode of reasoning in a game, s/he
identifies a certain strategy profile(s) as the desirable solution(s) of the game,
and uses a set of inference rules to figure out what strategy s/he ought to
choose in order to make the attainment of that outcome possible, given his
or her beliefs about the structure of the game and opponents’ actions. The
identification of the modes of goal-directed reasoning adopted by the players
can thus explain their actions in certain types of games (for extensive dis-
cussion, see Gold and List 2004, Bacharach 2006, Gold and Sugden 2007b,
Smerilli 2014).

Two goal-directed reasoning models – the team reasoning theory and
the hypothetical, or virtual, bargaining theory – suggest that players of non-
cooperative games may adopt a goal-directed reasoning mode, which enables
them to identify outcomes which are mutually beneficial for the interacting
decision-makers.

45The idea of frames have been discussed, among others, by Gauthier 1975, Bacharach
1993, 2006, Sugden 1995, Bacharach and Stahl 2000, Janssen 2001, Gold and Sugden
2007b and Smerilli 2012.
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1.4.3 Team Reasoning and Mutual Advantage

The core idea of team reasoning is that certain structural and/or contex-
tual features of games may trigger a shift in individual’s mode of reason-
ing from individualistic best-response reasoning mode into team reasoning
mode. When a person is reasoning as an individualistic decision-maker, s/he
focuses on the question ‘what it is that I should do in a game in order to best
promote my personal interests?’ The answer to this question involves the
identification of a strategy which, given player’s beliefs about the other play-
ers’ strategy choices, maximizes his or her expected payoff. When a person
adopts a team reasoning mode, s/he focuses on the question ‘what it is that
we should do in order to best promote our interests?’ The answer to this
question involves the identification of a strategy profile or profiles leading
to the attainment of the best possible outcome for the group of individu-
als acting together as a team. When the player identifies the best possible
outcome or outcomes for a team, s/he can work out the strategy that s/he
has to choose in order to make the attainment of the team optimal outcome
possible (Bacharach 2006, Gold and Sugden 2007a).

According to Bacharach (2006), a simple team reasoning framework can
be defined as a triple (T ,O,U ), where T is the set of players in a team
reasoning mode, O is the set of feasible strategy profiles (outcomes) and
U is a team objective function representing a shared ranking of feasible
strategy profiles. Team reasoning is as a mode of reasoning where each
player i ∈ T first works out the best strategy profile o∗ ∈ O for the team,
and then plays his or her component o∗i of that profile. More complex models
of team reasoning have been developed for scenarios where team reasoning
players either know that some of the players are not team reasoning, or are
uncertain as to whether the other players of a game are team reasoning or
not46.

The idea of team reasoning has been developed in a number of different
ways, producing various (sometimes incompatible) accounts of the princi-
ples underlying team play in non-cooperative games. In general, each ac-
count tries to address two key questions: why do players adopt this mode
of reasoning in non-cooperative games, and what properties an outcome of
the game must have in order to be identified by team reasoners as the best

46In circumspect team reasoning model, which has been suggested by Bacharach, a team
reasoner is uncertain as to whether the other players of the game are team reasoning or not.
The probability of each player adopting a team reasoning mode is given by an exogenous
probability distribution ω, which is assumed to be common knowledge. Bacharach shows
how team reasoning players can use this information to determine team-optimal actions.
See Bacharach 2006.
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outcome for the team.
Several answers have been offered to the first question. According to a

view attributed to Bacharach (2006), the adopted mode of reasoning depends
on a decision-maker’s psychological frame of mind, which, in turn, may de-
pend on a number of circumstantial factors, but needs not necessarily be
driven by conscious deliberation. Bacharach suggested a strong interdepen-
dence hypothesis, according to which team reasoning is most likely to be
adopted by players in games with a strong interdependence property. These
are games in which a Nash equilibrium in pure strategies is Pareto-dominated
by some feasible outcome which may or may not be a Nash equilibrium of
the game and which can only be attained by players acting together (for
extensive discussion, see Bacharach 2006 and Smerilli 2014).

Sugden (2003) suggests that a decision-maker may choose to endorse a
particular mode of reasoning, but this choice may lie outside of rational eval-
uation. In Sugden’s version of the team reasoning theory, an individual only
plays his or her part in realizing a mutually beneficial outcome if s/he has a
reason to believe that the others will play their part in the attainment of that
outcome as well. Hurley (2005a,b) defends the view that player’s adoption of
team reasoning may be a result of conscious and rational deliberation: Indi-
viduals may rationally choose to regard themselves as ‘members’ of a single
collective agency, and consciously commit to acting solely on the interests
universalizable to their ‘membership’.

Even fewer answers to the second question can be found in the literature
on team reasoning. There seems to be a consensus that team reasoners
search for solutions of games which are, in some sense, beneficial for the
players as a group. Only a handful of suggestions of what properties a team
optimal outcome should have can be found in the literature. Bacharach
mentions Pareto efficiency as the minimal requirement that a team optimal
outcome should satisfy. More specifically, a team optimal outcome should be
a Pareto optimal strategy profile which is a Pareto improvement47 over the
Nash equilibrium of a game (see, for example, Bacharach 1999 and 2006).

Sugden (2011, 2015) proposed the notion of mutual advantage as an-
other property that a team optimal outcome should have. The idea is that
an outcome selected by a team should be mutually beneficial from every
team member’s perspective. According to Sugden, an outcome is mutually
advantageous if each player’s personal payoff associated with that outcome
satisfies a particular threshold. The suggested threshold is each player’s

47An outcome x is said to be a Pareto improvement over another outcome y if, in terms
of players’ personal payoffs, outcome x makes at least one player better-off without making
anyone else worse-off.
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personal maximin payoff – the highest payoff that a player can guarantee
to himself or herself, irrespective of what the other players do (see Sugden
2015).

Despite these suggestions, there seems to be no satisfactory answer to the
question of how the notion of mutual advantage could be operationalized and,
provided that operationalization is possible, applied in the formal analysis
of games. In fact, some of the authors suggest that a specification of team
interests that applies to a wide range of games may not be possible, since
team-reasoning player’s beliefs about mutually advantageous solutions of
games may be based on arbitrary conventions (see, for example, Sugden
2011, 2015).

However, if a general representation of team interests is not possible,
then a specification of the structural and/or contextual factors which prompt
decision-maker’s adoption of the team mode of reasoning may not be possible
as well. Without a clear answer to the question of what outcomes the team-
reasoning players aim to attain in non-cooperative games, team-reasoning
decision-makers cannot be clearly distinguished from those who do not, and
so a rigorous empirical test of the team reasoning theory is virtually impos-
sible. Therefore, there seems to be a serious theoretical reason for believing
that a question of whether some generalizable principles underlying team-
reasoning decision-maker’s identification of mutually advantageous solutions
of games can be identified should be the primary focus of research.

The working assumption of this thesis is that certain generalizable prin-
ciples underlying team-reasoning decision-maker’s identification of mutually
advantageous solutions of games can be identified. In chapter 2, I discuss
a possible formal representation of team-reasoning players’ interests, devel-
oped in collaboration with Karpus (Karpus and Radzvilas 2016), which, a
few differences aside, is broadly in line with the notion of mutual advantage
suggested by Sugden (2011, 2015). I also discuss some of the conceptual
limitations of the team reasoning theory: Its departure from the standard
ex-post stability concepts of game theory, such as the Nash equilibrium,
and implicit motivation-transformation assumptions, which can be viewed
as having a negative impact on the explanatory power of the team reasoning
theory.

1.4.4 Hypothetical Bargaining

One of the features of the theory of team reasoning is that it moves away
from the orthodox notion of individual rationality. Team-reasoning decision-
makers are seeking to maximally advance the interests of the team, but the
team optimal outcome does not necessarily maximally advance the personal
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interests of every individual who acts as a member of a team.
Like coalitional rationalizability, the theory of hypothetical, or virtual,

bargaining is an attempt to incorporate the notion of mutual advantage
into game theoretic analysis in a way which would be broadly compatible
with the orthodox conception of individual rationality. The core idea of
hypothetical bargaining is that players of non-cooperative games choose their
strategies on the basis of what strategy profile(s) they would agree to play
if they could openly bargain – engage in real negotiations, in which each
player can communicate his or her offers to other players and receive their
counteroffers. Unlike a team-reasoning player whose aim is to maximally
advance the interests of the team, hypothetical bargainer is a self-oriented
decision-maker – an individual who aims to maximally advance his or her
personal interests, and only cares about the interests of other players insofar
as their actions can promote or hinder the advancement of his or her own
personal interests. Like a best-response reasoner, a hypothetical bargainer
is assumed to deviate from the agreement in situations where unilateral
deviation is personally beneficial.

A player who reasons as a hypothetical bargainer views the set of mixed
and pure strategy profiles of the game as a set of possible agreements. S/he
then identifies a set of feasible agreements. Each feasible agreement is a
pure or mixed strategy profile, such that no player can exploit the other
player(s) by deviating from it. The player then identifies a feasible agreement
which, s/he believes, the players would agree on playing in open bargaining,
and plays his or her part in realizing the agreement, provided that s/he
has a reason to believe that the other players are hypothetical bargainers
and will carry out their end of that agreement. An agreement identified
by hypothetical bargainers is assumed to be the mutually beneficial and
agreeable solution of the game (for details, see Misyak and Chater 2014,
Misyak et al. 2014).

Like team reasoning, hypothetical bargaining can be viewed as a goal-
directed mode of reasoning: A player accepts certain premises about his or
her goal in the decision problem (the player conceptualizes a certain non-
cooperative game as a bargaining problem which requires a solution), and
then follows a set of well-defined inference rules in order to reach a conclusion
on what action s/he should take in order to make the attainment of the
goal possible (the player identifies the bargaining solution of the game, and
what strategy s/he must to play in order to carry out his or her end of the
agreement).

It is important to note that Misyak and Chater (2014) suggest their vir-
tual bargaining model as a cognitive model – an approximately true descrip-
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tion of the mental process by which people arrive at their strategy choices.
In other words, the proponents of the theory claim that people actually en-
gage in a mental, or ‘virtual’, simulation of the open bargaining process in
order to resolve non-cooperative games. However, Misyak and Chater only
use their model to predict people’s behaviour in certain experimental games.
The psychological evidence supporting the mental simulation of open bar-
gaining hypothesis has not yet been provided (see Misyak and Chater 2014,
Misyak et al. 2014).

The model of virtual bargaining can also be interpreted as a purely de-
scriptive model – either as an approximate accurate description of the prac-
tical, or goal-directed, reasoning rules that people use when searching for
solutions of non-cooperative games or, purely instrumentally, as an approx-
imately accurate description of people’s choices. A commitment to the em-
pirically ambiguous cognitive interpretation of the model does not seem to
be necessary. Since the focus of this study is a descriptive rather than a cog-
nitive interpretation of the model, the term hypothetical bargaining rather
than virtual bargaining will be used throughout this thesis.

Hypothetical bargaining is intuitively appealing. In bargaining games
where players’ agreements are not binding, the set of feasible agreements is
the set of correlated equilibria. A bargaining solution is a correlated equilib-
rium which satisfies a number of intuitively desirable properties. According
to Myerson (1991), a bargaining solution can be interpreted as an expectation
of the outcome of the open bargaining process between players of roughly
equal bargaining abilities (see Myerson 1991). Therefore, it seems reason-
able to believe that certain properties of bargaining solutions that players
deem desirable may play a role in the identification of mutually beneficial
solutions of non-cooperative games. Conceptual connections between bar-
gaining and equilibrium selection problems in non-cooperative games have
been discussed, among others, by Raiffa (1953), Luce and Raiffa (1957), Au-
mann (1959), Schelling (1960), Myerson (1991), Moreno and Wooders (1996)
and Ambrus (2006, 2009).

One of the fundamental questions pertaining to the theory of hypotheti-
cal bargaining is what properties a strategy profile must have in order to be
identified by hypothetical bargainers as the hypothetical bargaining solution
of the game. Misyak and Chater suggest that ‘existing formal accounts of
explicit bargaining, such as Nash’s theory of bargaining, while incomplete,
are nonetheless useful as a starting point for the analysis of virtual bargain-
ing’ (Misyak and Chater 2014: 4), and use the Nash bargaining solution
as an approximation to what hypothetical bargainers would identify as the
mutually advantageous and agreeable solution of a non-cooperative game.
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In chapter 3 of this thesis, I will argue that the use of the Nash bar-
gaining solution is conceptually problematic, since it is a bargaining solution
function which is not sensitive to the relevant information about the possi-
ble alternative allocations of players’ individual payoff gains, and therefore
does not offer a compelling answer to the question of how hypothetical bar-
gainers identify solutions of games with multiple (weakly) Pareto optimal
alternatives associated with different allocations of players’ personal payoff
gains.

In this chapter, I also propose a benefit-equilibrating (BE) hypothetical
bargaining solution concept for non-cooperative games, broadly in line with
the principles underlying Conley and Wilkie’s (2012) ordinal egalitarian so-
lution for Pareto optimal point selection problems with finite choice sets,
which can be applied to cases where interpersonal comparisons of players’
payoffs are assumed not to be meaningful. I offer both the ordinal and the
cardinal versions of this solution concept, discuss their formal properties, and
illustrate their applications in the analysis of non-cooperative games with a
number of experimentally relevant examples.

Hypothetical bargaining theory has been introduced primarily as a ra-
tional social coordination account – a theory which purports to explain how
rational social agents manage to coordinate their actions in various coordina-
tion games, in which players cannot communicate and no commonly known
social rule of behaviour is available. In chapter 4 I will argue that although
hypothetical bargaining theory offers a relatively parsimonious explanation
of how people identify the mutually beneficial solutions in a large variety
of non-cooperative interdependent decision problems, at best it offers only a
partial explanation of how people coordinate their actions in non-cooperative
games. I will focus on two epistemic limitations of the theory. I will argue
that the theory of hypothetical bargaining, if interpreted as a model of ra-
tional decision-making, is vulnerable to the choice rationalization problem:
The model of hypothetical bargaining does not fully account for the struc-
ture of beliefs which sustains hypothetical bargainers’ motivation to play
their part in the implementation of hypothetical bargaining solutions. I will
discuss several responses to this problem and their limitations. I will also
argue that hypothetical bargaining, if interpreted as a rational social coor-
dination theory, is vulnerable to the problem of common beliefs: The theory
cannot account for the structure of beliefs which makes it a functioning so-
cial coordination mechanism. I will also discuss several possible responses to
this problems. Finally, I will argue that even a fully developed hypothetical
bargaining theory might not be able to provide a single generalizable model
of players’ final choices due to non-uniqueness of hypothetical bargaining
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solutions.

1.5 The Structure of the Thesis

Each chapter of this thesis is a self-contained study of a specific concep-
tual issue of a particular goal-directed reasoning model. In each chapter,
occasional references are made to other chapters in places where conceptual
differences and similarities between goal-directed reasoning models are being
discussed.

In chapter 2 I will discuss a formal representation of team-reasoning play-
ers’ interests, developed in collaboration with Karpus (Karpus and Radzvilas
2016), which, a few differences aside, is broadly in line with the notion of
mutual advantage suggested by Sugden (2011, 2015). In this chapter I will
also discuss several conceptual problems of the team reasoning theory.

In chapter 3 I will suggest the benefit-equilibrating (BE) hypothetical
bargaining solution for non-cooperative games, discuss its formal proper-
ties, and illustrate its application in the analysis of non-cooperative games
with a number of experimentally relevant examples. I will argue that a
model of hypothetical bargaining based on the benefit-equilibrating solu-
tion concept offers a conceptually credible explanation of how self-oriented
decision-makers identify the stable mutually advantageous solutions of non-
cooperative games.

In chapter 4 I will discuss the epistemic problems of the hypothetical
bargaining theory, and argue that it does not offer a simple answer to the
social coordination problem.

With chapter 5 I conclude.
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Chapter 2

Team Reasoning and the Measure
of Mutual Advantage

2.1 Introduction

One of the conceptual limitations of the best-response reasoning model is its
inability to offer theoretical predictions of players’ actions in games with mul-
tiple rationalizable outcomes, even in those which intuitively seem to have
an ‘obvious’ solution. A canonical example of a game where the standard
game theoretic analysis based on best-response reasoning yields conclusions
which contradict our intuitions is the Hi-Lo game depicted in Figure 2.1:

hi lo

hi 2, 2 0, 0

lo 0, 0 1, 1

Figure 2.1: Hi-Lo game

In this game, two players must simultaneously and independently choose
either to play strategy hi or to play strategy lo. If both players choose
strategy hi, each gets a payoff of 2. If both choose lo, each gets a payoff of
1. If one player chooses hi while the other one chooses lo, both players get a
payoff of 0 – the worst payoff attainable in this game.

Both hi and lo are rationalizable strategies. The game has two pure strat-
egy Nash equilibria – (hi,hi ) and (lo, lo). The third one is a mixed strategy
Nash equilibrium, in which players randomize between pure strategies hi and
lo with probabilities 1/3 and 2/3 respectively. The mixed Nash equilibrium
yields each player an expected payoff of 2/3.
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Thereby, best-response reasoning identifies a number of rational solutions
of this game and, as a result, it does not resolve the game definitively for
the interacting decision-makers1.

It is true that if one player expected the other player to play lo with
probability higher than 2/3, then choosing lo would be a best response to
his or her belief about the other player’s choice. In other words, playing lo
would be the rational thing for a player to do. It would also be rational
for a decision-maker to choose strategy hi with probability 1/3 and strategy
lo with probability 2/3 if s/he expected the other decision-maker to do the
same. For many people, however, both the Nash equilibrium (lo, lo) and
the mixed strategy Nash equilibrium do not appear as convincing rational
solutions, while the attainment of the Nash equilibrium (hi,hi ), which is
unambiguously the best outcome for both players, appears to be an ‘obvious’
definitive resolution of this game. The perfect alignment of player’s personal
interests seems to be the primary reason of why people find an idea that
a rational player could expect another rational player to choose lo in this
game not compelling (Bacharach 2006). Experimental results suggest that
over 90% of the time people do opt for strategy hi in this game2.

This prompted the development of the theory of team reasoning, which
suggests that certain contextual and/or structural features of games may
trigger a shift in decision-makers’ mode of reasoning from individualistic
best-responding to reasoning as members of a team – a group of individuals
who act together in the attainment of some common goal3. With certain
formal definitions of the team goal, the theory can be operationalized to
select (hi,hi ) as the only solution of the Hi-Lo game for those who reason as
members of a team. As such, it offers an intuitively compelling explanation
of how people resolve certain games with multiple Nash equilibria.

The idea of team reasoning has been developed in a number of different
ways, producing various and sometimes even incompatible accounts of the
principles underlying team play in non-cooperative games. In general, the

1To be accurate, best-response reasoning coupled with a common belief about its ap-
plication can rationalize certain non-Nash-equilibrium outcomes as well (for extensive
discussion, see Bernheim 1984, Pearce 1984, and Perea 2012). For the moment, this dis-
cussion will be limited to sets of the Nash equilibria. It is important to note, however,
that the possibility of best-response reasoning producing a greater number of rationaliz-
able outcomes only makes the ideas discussed in this chapter more relevant.

2See Bardsley et al. (2010) who, among a number of other games, report experimental
results from two versions of the Hi-Lo game where the outcome (hi,hi ) yields a payoff of
10 while the outcome (lo, lo) yields a payoff of 9 or 1 to both players.

3For early developments of this theory see Sugden (1993, 2000, 2003) and Bacharach
(1999, 2006). For some of the more recent work see Gold and Sugden (2007a,b), Sugden
(2011, 2015) and Gold (2012).
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theory of team reasoning needs to address two important questions: ‘when
do people reason as members of a team?’ and ‘what do people do when they
reason as members of a team?’. In other words, it needs to suggest why and
under what circumstances people may reason as members of a team and,
once they do, what it is that they take team interests to be.

There seems to be a consensus that team reasoners search for solutions
of games which are, in some sense, beneficial for individuals as a group.
However, only a handful of suggestions of what properties a team optimal
outcome must have can be found in the literature. What needs further
development is a specification of team interests or team goals that applies, if
such generalization is possible, across a wide range of games. In this chapter
I will predominantly focus on this question, although some tentative ideas
concerning the question of what factors may prompt people to reason as
members of a team will be suggested towards the end.

In this chapter I will focus on discussing a function of team interests
based on the notion of mutually advantageous play discussed by Sugden
(2011, 2015), which have been developed in collaboration with Jurgis Kar-
pus (Karpus and Radzvilas 2016). Our proposed function is compatible with
the orthodox conception of payoffs in games, which means that its applica-
tion does not require payoffs to be interpersonally comparable. Thus, our
approach differs from those that use aggregative functions to represent the
interests of players who reason as members of a team, such as the maxi-
mization of the sum or the average of interacting decision-makers’ personal
payoffs.

This chapter is structured as follows. In Section 2 I will discuss the theory
of team reasoning in more detail and explain how it differs from the standard
payoff transformation approach. In Section 3 I discuss a few properties that
Karpus and I believe a potential function of team interest ought to satisfy,
and show why aggregative functions may be ill-suited for this purpose. In
Section 4 I discuss our proposed measures of individual and mutual advan-
tage in games, and present a function of team interests as the maximization
of mutual advantage attained by the interacting decision-makers. I will re-
view the function’s prescriptions in a few examples and discuss some of its
properties. In this section I will also revisit the topic of interpersonal compa-
rability of payoffs in order to distinguish interpersonal comparisons of utility
from the interpersonal comparisons of advantage based on our working def-
inition of the latter. In Section 5 I will present some of our tentative ideas
about why and under what circumstances people may reason as members of
a team. In section 6 I will discuss our response to the coordination problem
which arises in games when our function produces multiple solutions. In sec-
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tion 7 I will consider a couple of conceptual criticisms which can be directed
not only against our proposed function of team interests, but also against
the theory of team reasoning in general. With section 8 I conclude.

2.2 Team Reasoning

2.2.1 What is Team Reasoning?

When an individual reasons as an individualistic best-response reasoner, s/he
focuses on the question ‘what it is that I should do in order to best promote
my interests, given what I know/believe about the motivations and actions
of others?’. By answering this question, an individualistic best-response
reasoner identifies a strategy which is associated with the highest expected
personal payoff, given his or her beliefs about the actions of others.

When a person reasons as a member of a team, s/he focuses on the ques-
tion ‘what it is that we should do in order to best promote our interests?’.
The answer to this question identifies a strategy profile – one strategy for
each player in a game – that leads to the attainment of the best possible
outcome for the group of individuals acting together as a team4. As ex-
plained by Gold and Sugden, ‘when an individual reasons as a member of a
team, she considers which combination of actions by members of the team
would best promote the team’s objective, and then performs her part of that
combination’5 (Gold and Sugden 2007a: 121).

Bacharach (2006) suggests that a simple team reasoning framework can
be defined as a triple (T ,O,U ), where T is the set of players who reason
as members of a team, O is the set of feasible strategy profiles (outcomes)
and U is a team objective function representing a shared ranking of feasible
strategy profiles. Team-reasoning decision-maker i ∈ T first works out the
best strategy profile o∗ ∈ O for the team and then plays his or her component

4Some versions of the theory of team reasoning consider scenarios in which not all
individuals reason as members of a team and where this is recognized by the interacting
players. In such cases, the answer to the second question identifies a strategy for every
player in a game who does reason as a member of a team. (For an overview see Gold
and Sugden, 2007a.) Also, as already noted, the answer to the first question may identify
more than one strategy for any one player in a game. This can happen with strategy
profiles selected for a team too. Such cases will be discussed later.

5In Sugden’s (2003, 2011, 2015) version of the team reasoning theory, player’s com-
mitment to playing his or her part in the attainment of a team optimal outcome may be
conditional on the assurance that other players are reasoning as members of a team as
well.
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o∗i of that profile6.
If in the Hi-Lo game the outcome (hi,hi ) is identified as the unique team

optimal outcome by players who reason as members of a team, team rea-
soning can be said to resolve this game definitively for those players who
endorse it. This would be so if, for example, the team objective function
U was defined as maximizing the sum/average of the interacting decision-
makers’ personal payoffs. In that case, a decision-maker who endorsed team
mode of reasoning would identify strategy profile (hi,hi ) as the uniquely op-
timal outcome for the team and, consequently, would choose hi in order to
play a part in the attainment of this outcome.

A known example of a game where team reasoning can be operationalized
to prescribe the attainment of an out-of-equilibrium outcome is the Prisoner’s
Dilemma game depicted in Figure 2.2:

c d

c 2, 2 0, 3

d 3, 0 1, 1

Figure 2.2: Prisoner’s Dilemma game

In this game, two players simultaneously and independently choose whether
to cooperate (play strategy c) or defect (play d). This game has a unique
pure strategy Nash equilibrium (d,d ). Strategy d strictly dominates strategy
c: It is always optimal to play d, no matter what the opponent does. In terms
of best-response reasoning, strategy c is non-rationalizable, and so a rational
player should not be expected to play it. Therefore, strategy profile (c, c ) is a
non-rationalizable outcome. From the perspective of orthodox game theory,
cooperation is not rationalizable in the Prisoner’s Dilemma game.

If, however, any of the outcomes involving the play of strategy c is asso-
ciated with the attainment of team’s goal, then strategy c can be selected
by team-reasoning decision-makers – individuals aiming to play their part
in the attainment of team’s goal. If, for example, the team’s goal were
to maximize the average or the sum of individuals’ payoffs, then the team
would select outcome (c, c ). As such, with reference to results from numerous

6In a circumspect team reasoning model, Bacharach (2006) considers a scenario where a
team reasoner is uncertain as to whether the other players of the game are team reasoning
or not. The probability of each player adopting a team reasoning mode is given by
an exogenous probability distribution ω, which is assumed to be common knowledge.
Bacharach shows how team reasoning players can use this information to determine team-
optimal actions. See Bacharach 2006.
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experiments showing that in a one-shot version of the Prisoner’s Dilemma
game people tend to cooperate about 50% of the time, the theory of team
reasoning operationalized this way provides a suggestion of why that is the
case7.

2.2.2 Team Reasoning and Transformations of Payoffs

A number of game and rational choice theorists have stressed the point that
the payoff structure of a game has to capture all the motivations relevant for
each player’s evaluation of the possible outcomes of a game8. Without an
accurate information of what game people are playing in terms of their true
motivations, it would, in most cases, be impossible to make any conclusions
as to whether players’ choices are rational and why they make the strategy
choices that they do. To see this, consider the monetary Prisoner’s Dilemma
game depicted in Figure 2.3(a):

c d

c £2,£2 £0,£3

d £3,£0 £1,£1

(a)

c d

c 2, 2 3, 0

d 0, 0 1, 1

(b)

Figure 2.3: Monetary Prisoner’s Dilemma game (a) and its transformation
(b)

Suppose that the row player is an altruist when it comes to decisions
involving money: S/he always strives to maximize the other individual’s
monetary gains. The column player, on the other hand, is not an altruist,
yet s/he is averse to inequitable distributions of monetary gains among the
interacting decision-makers. Suppose that his or her inequity aversion is
such that any unequal distribution of monetary gains is just as good for
him or her as personally gaining nothing. A correct representation of such
decision-maker’s motivations transforms the monetary Prisoner’s Dilemma
game into the game shown in Figure 2.3(b). In the transformed game, there

7In numerous studies it has been observed that on many occasions cooperation tends
to decrease with repetition (that is, when people play the Prisoner’s Dilemma game a
number of times in a row). This result will be discussed later. See Ledyard 1995 and
Chaudhuri 2011 for surveys of experiments with public goods games, which involve more
than two players but are otherwise similar in their structure to the two-player Prisoner’s
Dilemma game.

8See, for example, Binmore 1992, 2009a and Hausman 2012.
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is one pure strategy Nash equilibrium (c, c ), which means that strategy profile
(c, c ) is a rationalizable outcome: The players would cooperate if they both
were individualistic best-response reasoners and expected each other to play
strategy c.

If a theorist were to analyze the observed cooperation using a monetary
representation of the game, s/he could reach an incorrect conclusion that
players’ choices were irrational or that they were reasoning as members of a
team.

This raises the question of whether a shift in player’s mode of reasoning
from individualistic best-response reasoning to reasoning as a member of a
team could, in a similar way as in the case of inequity aversion and altru-
ism discussed above, be represented as a transformation of payoffs reflecting
decision-makers’ motivation to attain the team’s goal. To see that this could
not be achieved, consider, again, the Hi-Lo game (Figure 2.1). Suppose that
team-reasoning decision-makers view outcome (hi,hi ) as the best outcome for
a team. The outcome (lo, lo) is deemed to be the second-best. The outcomes
(hi, lo) and (lo,hi ) are deemed the worst. Replacing any of the two players’
original payoffs in each cell of the game matrix with those corresponding to
the team’s ranking of the four outcomes does not change the payoff struc-
ture of the original game. As a result, the set of Nash equilibria and, hence,
individualistically rational solutions of the transformed game would be the
same as the set of rational solutions of the original game. It is exactly the
result that the theory of team reasoning was developed to contest. The key
difference between the team reasoning theory and the descriptive accounts
of transformations of players’ personal payoffs based on best-response rea-
soning is that individualistic best-response reasoning prescribes evaluating
and choosing a particular strategy based on the expected personal payoff
associated with that strategy, whereas team reasoning prescribes evaluating
outcomes of a game from the perspective of a team (given the interacting
players’ personal preferential rankings of those outcomes) and then choosing
a strategy which is an element of the optimal outcome (i.e. strategy profile)
for the team. As such, the motivational shift that takes place with a switch
from one mode of reasoning to another cannot be captured by transforming
players’ payoff numbers in the cells of considered game matrices9.

Another important question pertaining to the theory of team reasoning
is whether a shift in player’s mode of reasoning from individualistic best-

9The fact that standard transformations of payoffs cannot be used to represent a mo-
tivational shift associated with a switch from individualistic reasoning to team reasoning
can also be viewed as a more general indication that standard payoff transformation ap-
proach cannot be used to capture certain types of relevant motivations of the interacting
players.
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response reasoning mode to team reasoning mode, or vice versa, changes not
only the way in which a decision-maker reasons about which course of action
it is best to take, but also the way s/he personally values the outcomes of
a game. In other words, team reasoning theory raises an important ques-
tion of whether a shift in player’s mode of reasoning transforms the payoff
structure of the game itself. In the formal representation of mutual advan-
tage developed in collaboration with Karpus (2016), we assumed that this
does not happen. We believe there to be reasonable grounds for taking this
approach. If a shift in decision-maker’s mode of reasoning may change the
way in which a decision-maker personally values the possible outcomes, then
interactions between individuals could become games of incomplete informa-
tion about the payoff structure of the game. In other words, team-reasoning
decision-makers may become uncertain as to what game they are playing.
The solutions prescribed by best-response reasoning, team reasoning, and
other possible modes of reasoning (e.g. regret minimization and maximin
reasoning) in games of incomplete information would often be different from
those in complete information games. In a game of incomplete information,
decision-makers’ strategy choices would depend not only on their modes of
reasoning, but also on their probabilistic beliefs about the payoff structure
of their interaction (for extensive discussion, see chapter 1). The theory
of team reasoning was originally developed to resolve complete information
games in which orthodox best-response reasoning model was deemed to pro-
duce inadequate conclusions. For example, in the case of the Hi-Lo game,
the theory was meant to resolve precisely this complete information game
with its particular payoff structure10. Because of the aforementioned consid-
erations, our proposed notion of mutual advantage is based on assumption
that players’ personal payoffs are common knowledge and a shift in decision-
makers’ reasoning mode leave their personal payoffs unchanged.

However, later I will argue that team reasoning approach allows for mod-
elling of team-reasoning decision-makers’ incentives to play their part in the
attainment of the team’s goal as being independent from decision-makers’
personal incentives that motivate their actions before a shift from individ-
ualistic to team mode of reasoning occurs, and that this means that team
reasoning may not always avoid making implicit personal motivation trans-
formation assumptions.

The last point to note is that the payoffs attained by the members of a
team are assumed not to be transferable. If players were able to share their
gains with others, such strategies and the associated payoff distributions

10It is an important question whether the assumption of common knowledge of payoffs
in games is too strong. For extensive discussion, see chapter 1.
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would have to be included in representations of their strategic interactions.

2.3 Team Interests and the Notion of Mutual
Advantage

2.3.1 Self-Sacrifice and Mutual Advantage

There seems to be a consensus that team reasoners search for solutions of
games which are, in some sense, beneficial for the players as a group. How-
ever, only a handful of suggestions of what properties an outcome must have
in order to be identified by team-reasoning decision-makers as the best out-
come for a team can be found in the literature. Bacharach (1999, 2006)
mentions Pareto efficiency as the minimal requirement that a team optimal
outcome should satisfy. More specifically, a team optimal outcome should
be a Pareto optimal strategy profile which is a Pareto improvement11 over
the Nash equilibrium of a game. A function which satisfies this criterion
is the maximization of the average or the sum of the interacting decision-
makers’ payoffs. As an example, it has been discussed in some of the earlier
developments of the theory (see, for example, Bacharach, 1999), as well as in
some of the more recent papers (see, for example, Colman et al., 2008, 2014,
and Smerilli, 2012). Although it is used merely as an illustration of how the
notion of team-optimal outcome could be incorporated into formal analysis
of games, the function is able to offer intuitively compelling theoretical pre-
dictions in a number of experimentally relevant games. It is easy to see that
in the Hi-Lo (Figure 2.1) and the Prisoner’s Dilemma (Figure 2.2) games it
selects the outcomes (hi,hi ) and (c, c ) respectively.

If team reasoning is to be interpreted as a mode of reasoning which does
not change the original motivations of the interacting individuals, one of
the intuitively undesirable features of the aforementioned function is that in
some games it singles out outcomes which require one or more players to
completely sacrifice their personal interests for the benefit of others. Con-
sider a slight variation of the Prisoner’s Dilemma game depicted in Figure
2.4. In this version of the Prisoner’s Dilemma game, the aforementioned
function selects strategy profile (d, c ) as the unique team-optimal outcome.
As such, it would require the column player to completely sacrifice his or
her personal interests for the benefit of the row player alone. This example

11An outcome x is said to be a Pareto improvement over another outcome y if, in terms
of players’ personal payoffs, outcome x makes at least one player better-off without making
anyone else worse-off.
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c d

c 2, 2 0, 3

d 5, 0 1, 1

Figure 2.4: A variation of the Prisoner’s Dilemma game

suggests that Pareto optimality is not a sufficient property to define team
optimal outcomes.

Sugden (2011, 2015) suggested the notion of mutual advantage as an-
other property that a team optimal outcome should have. The idea is that
an outcome selected by a team should be mutually beneficial from every
team member’s perspective. Although he does not present an explicit func-
tion, Sugden proposes to define an outcome as mutually advantageous if
each decision-maker’s personal payoff associated with that outcome satis-
fies a particular threshold. The suggested threshold is each player’s personal
maximin payoff – the highest payoff that a player can guarantee to himself or
herself, irrespective of what the other players do. For example, in the Hi-Lo
game (Figure 2.1) the maximin payoff for both players is 0. In the Prisoner’s
Dilemma games depicted in Figures 2.2 and 2.4 the maximin payoff for both
players is 1.

For Sugden, an outcome of a game is mutually beneficial if everyone’s
maximin threshold is met and each player participates in the attainment of
that outcome (that is, in the attainment of personal payoffs associated with
that outcome). According to this definition, however, all the Nash equilibria
in the Hi-Lo game are mutually beneficial. This is because every equilib-
rium yields each player a higher payoff than his or her personal maximin
payoff, and each player’s strategy associated with a particular equilibrium
is necessary for the attainment of those payoffs. Thus, the above definition
of mutual advantage does not exclude Pareto inefficient outcomes and, by
itself, it does not suggest of how further ranking of mutually advantageous
outcomes could be established.

2.3.2 Interpersonal Comparisons of Payoffs

Another problematic property of any function which aggregates decision-
makers’ personal payoffs is that it requires them to be interpersonally com-
parable. Such comparisons go beyond the standard assumptions of expected
utility theory, which make numerical representations of individuals’ prefer-
ences possible, but do not automatically grant their interpersonal compara-
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bility. For example, the von Neumann and Morgenstern utility representa-
tion of decision-makers’ preferences in the Prisoner’s Dilemma game depicted
in Figure 2.4 allows us to to say that the row player prefers the outcome (c, c )
over the outcome (d,d ), or that s/he prefers the outcome (d, c ) over the out-
come (c, c ) more than s/he prefers the outcome (d,d ) over the outcome (c,d ).
It does not, however, allows us to say that the row player prefers the out-
come (d, c ) over the outcome (c, c ) more than the column player prefers the
outcome (c,d ) over the outcome (d,d ).

This is a consequence of the properties of the von Neumann and Mor-
genstern utility representation of decision-makers’ preferences, which can be
derived from the axioms of the expected utility theory, but is unique only
up to positive affine transformations: If u is a function representing decision
maker’s preferences over choice options, then so is any function u′ = au + c,
where a > 0 and c are constants (for a detailed discussion of why this is
so see, for example, Luce and Raiffa 1957). One of the implications of this
result is that the payoff structure of the Prisoner’s Dilemma game depicted
in Figure 2.2 represents exactly the same preferences of decision-makers as,
for example, the Prisoner’s Dilemma game depicted in Figure 2.512:

c d

c 6, 4 0, 5

d 9, 2 3, 3

Figure 2.5: Another representation of preferences in the Prisoner’s Dilemma
game.

Because of this, a formal representation of team interests should be ex-
pected to select the same outcome under both representations of decision-
makers’ preferences (that is, be invariant under positive affine transforma-
tions of players’ payoffs). A function which maximizes the sum or average
of the interacting players’ payoffs, however, selects different outcomes: out-
come (c, c ) in a game depicted in Figure 2.2 and outcome (d, c ) in a game
depicted in Figure 2.5.

Any team reasoning model based on a function which aggregates decision-
makers’ personal payoffs will be applicable to cases where interpersonal com-

12The row and the column players’ payoffs in the Prisoner’s Dilemma game depicted in
Figure 2.5 are derived using the following positive affine transformations of their payoffs
in a game depicted in Figure 2.2:
u ′r = 3urow
u ′col = ucol + 2
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parisons of payoffs are meaningful. However, an interpersonal comparability
of payoffs assumption goes beyond the principles of expected utility theory
and thus requires a separate justification13. In the absence of a compelling
theory justifying such comparisons, most of decision and game theorists as-
sume that payoff numbers are not interpersonally comparable.

In the following section I will present a formal characterization of mu-
tual advantage developed in collaboration with Karpus, which, we contend,
is applicable in both cases. I will first present our suggested function for
cases where decision-makers’ payoffs are assumed not to be interpersonally
comparable. I will later explain how, we suggest, the function could be mod-
ified to be applicable to cases where interpersonal comparisons of payoffs are
possible.

2.4 Team Interests as the Maximization of Mu-
tual Advantage

Let us return to Sugden’s (2011, 2015) notion of mutually beneficial out-
comes. By itself, the notion of a mutually beneficial outcome does not sug-
gest how much of mutual benefit is gained. In order to make comparisons of
outcomes in terms of mutual advantage, we need measures of individual and
mutual advantage. In a joint work with Karpus, we propose the following
definitions:

Individual advantage: An outcome of a game is individually advanta-
geous to a particular player if that player’s attained personal payoff is
higher than his or her reference point — a payoff level from which the
advantage to that player is measured. The level of individual advan-
tage gained is the extent by which that outcome advances the player’s
personal payoff from his or her reference point relative to the largest
advancement possible, where the latter is associated with the attain-
ment of an outcome that s/he prefers the most in the game.

Mutual advantage: An outcome of a game is mutually advantageous to
the interacting players if each player’s attained personal payoff is higher
than his or her reference point — a payoff level from which the advan-
tage to that player is measured. The level of mutual advantage associ-
ated with an outcome is the largest level of individual advantage that
is gained by every player.

13This point is also discussed in Sugden 2000.
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By definition, the maximum level of individual or mutual advantage is 1.
To avoid working with decimals when discussing examples, we can express
the levels of individual and mutual advantage in percentage terms, which
simply means that the values are multiplied by a factor of 100. For example,
if, in a two-player game, both players’ reference points are associated with
a payoff of 0 and their most preferred outcomes with a payoff of 100, a
particular outcome associated with payoffs of 30 and 20 to the two players
is said to yield 20 units of mutual advantage. The additional 10 units of
individual advantage to one player is not mutual. In other words, a level
of individual advantage is simply a percentage of the maximum level of
individual advantage attainable to a player in a game (which, by definition,
is 1), relative to his or her reference point. A level of mutual advantage is
the largest percentage of the maximum attainable individual advantage that
is gained by every interacting decision-maker.

Note that our proposed definition of individual advantage is simply a
decision-maker’s personal payoff when his or her payoff function is normal-
ized so that the most personally preferred outcome of a game is assigned the
payoff value of 1, while his or her reference payoff is assigned a payoff value
of 0. This can always be achieved by applying an appropriate positive affine
transformation of that player’s original payoffs14.

Given the measures of individual and mutual advantage, team interests
can now be defined as the attainment of outcomes associated with the maxi-
mum mutual advantage. In line with Sugden’s (2015) suggestion, we imposed
a constraint that each player’s personal payoff should be at least as high as
his or her personal maximin threshold. As for Sugden (2015), this restriction
is motivated by the assumption that any team play driven by a joint pursuit
of team interests should at least yield each member of a team a payoff that
s/he can guarantee to himself or herself individually. Notice that since the
level of mutual advantage is the largest level of individual advantage that is
gained by every player, this is identical to the maximization of the minimum
level of individual advantage across the interacting players15.

14For an extensive discussion of the 0-1 normalization, or Raiffa normalization, see
section 2.4.7.

15There is a connection between our suggested definition of mutual advantage and Gau-
thier’s (2013) ideas on rational cooperation. For Gauthier, rational cooperation in games
is associated with the attainment of Pareto efficient outcomes. His proposal, similarly as
here, is to maximize the minimum level of personal gains across players relative to some
thresholds below which the players do not cooperate. Gauthier does not specify further
what these thresholds are, and he hints at justifying rational cooperation based on the
idea of ‘social morality’. Somewhat differently from Gauthier’s suggestion, cooperative
play in our model is explained as a result of interacting players’ attempts to resolve games
in a mutually advantageous way.
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2.4.1 Formalization

For a formal presentation of the proposed function of team interests, let
I = {1, ...,m} be a finite set of m players and Si be a set of pure strategies
available to player i ∈ I . A pure strategy outcome is defined as a strategy
profile s = (s1, ..., sm ), where si ∈ Si is a particular pure strategy of player
i ∈ I . Let S = ×i∈ISi denote the set of all possible pure strategy profiles
in a game, and ui : S→ R denote a payoff function that maps every pure
strategy profile to a personal payoff for player i ∈ I . A mixed strategy of
player i ∈ I is a probability distribution over Si . Let Σi be a set of all
such probability distributions and σi ∈ Σi be a particular mixed strategy
of player i ∈ I , where σi (si ) denotes probability assigned to si ∈ Si . A
mixed strategy outcome (henceforth, outcome) is defined as a strategy profile
σ = (σ1, . . . ,σm ). Let Σ = ×i∈IΣi be the set of all possible mixed strategy
profiles and ui (σ ) =

∑
s∈S (
∏

i∈I σi (si ))ui (s) be the expected payoff of player
i ∈ I associated with a mixed strategy profile σ ∈ Σ.

In what follows, the function is presented for a case when any mixed
strategy play is possible.16 (For a version of the function when only pure
strategies are considered simply replace σi , σ , Σi , and Σ with si , s, Si ,
and S.) Let umax

i := maxσ∈Σui (σ ) denote player i’s personal payoff as-
sociated with his or her most preferred outcome, let u

re f
i denote i’s ref-

erence payoff from which individual advantage to i is measured, and let
umaximin
i := maxσi∈Σi{minσ−i∈Σ−iui (σ )} denote i’s maximin payoff level in the

game (where σ−i ∈ Σ−i denotes a combination of strategies of all players
other than i).

For any game where umax
i , u

re f
i , the level of individual advantage of

player i ∈ I associated with a particular strategy profile σ ∈ Σ can be defined
as follows:

uιi (σ ) =
ui (σ ) − ure fi

umax
i − ure fi

. (2.1)

(Notice that if i’s payoff function ui is normalized so that umax
i = 1 and

u
re f
i = 0, then uιi (σ ) = ui (σ )).

For any game where umax
i , u

re f
i for every i ∈ I , the level of mutual

16In this paper we focus on one-shot interactions. There is a division of opinion on
whether mixed strategy play makes sense in such cases. Perea, for example, refers to
mixed strategies in one-shot games as useful “theoretical objects”, but ‘not something that
people actually use in practice’ (Perea 2012: 32). The function of team interests which
is suggested here can be used with and without mixed strategy play. In some games
its prescriptions will differ in the two cases and we will indicate this when discussing
examples.
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advantage of the set of players I = {1, ...,m} associated with σ ∈ Σ can be
defined as follows:

uτ (σ ) =mini∈Iu
ι
i (σ ) . (2.2)

The proposed function of team interests τ : P (Σ) → P (Σ), where τ (Σ) =
Στ ⊆ Σ, selects a subset from the set of all the possible strategy profiles
in a game, such that each selected strategy profile maximizes the level of
mutual advantage to the interacting players, subject to each player’s personal
payoff being at least as high as his or her maximin payoff level in the game.
Formally, each σ ∈ Στ is such that

σ ∈ arд maxσ∈Σu
τ (σ ) , subject to ∀i ∈ I : ui (σ ) ≥ umaximin

i (2.3)

or, inserting equations (2.1) and (2.2) into equation (2.3),

σ ∈ arд maxσ∈Σ
mini∈I

ui (σ ) − ure fi

umax
i − ure fi

 , subject to ∀i ∈ I : ui (σ ) ≥ umaximin
i .

(2.4)
If ure fi = umax

i for some i ∈ I , then uιi is undefined and there is no outcome
which is individually advantageous to i ∈ I . Consequently, there is no out-
come which is mutually advantageous for the set of players I = {1, ...,m} as
a group, and so τ (Σ) = ∅. To summarize,

τ (Σ) =

Στ , ∅ when u

re f
i , umax

i ∀i ∈ I
∅ otherwise

. (2.5)

2.4.2 Two Properties of the Function

Two properties of τ can be derived without further specification of ure fi . First,
provided there is a finite number of players and pure strategies available to
each player (an assumption on which the whole discussion in this chapter
is based), the set of strategy profiles selected by τ is nonempty, unless for
any player in a game the reference payoff u

re f
i is the same as the payoff

associated with that player’s most preferred outcome, umax
i , in which case

it is empty. This is so because, for every player i in a game, there always
exists at least one maximin strategy σmaximin

i ∈ argmaxσi∈Σi{minσ−i∈Σ−iui (σ )},
such that ui (σmaximin

i ,σ−i ) ≥ umaximin
i . As such, there is at least one strategy

profile σmaximin = (σmaximin
1 , . . . ,σmaximin

m ), such that ui (σ
maximin ) ≥ umaximin

i
for every player i ∈ I , which satisfies the constraint defined in (2.3) and
(2.4). So long as u

re f
i , umax

i for every i ∈ I , since the function τ selects
strategy profiles associated with maximum mutual advantage from those
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that satisfy the above constraint, and since there is at least one strategy
profile that satisfies it, it follows that Στ is nonempty. If, on the other hand,
u
re f
i = umax

i for some i ∈ I , then uιi is undefined for that player. In such
cases τ (Σ) = ∅. In words, if, in a particular game, there is nothing that
is individually advantageous to some player relative to his or her reference
payoff, ure fi , then there can be nothing that is mutually advantageous to all
the interacting players as a group.

Another property of τ is that every strategy profile that it selects is
efficient in the weak sense of Pareto efficiency.17 To see this, suppose that
τ selects the strategy profile σx ∈ Σ when there exists another strategy
profile σy ∈ Σ, such that ui (σ

y ) > ui (σ
x ) for every player i ∈ I (in other

words, σx is not Pareto efficient in the weak sense). As long as ure fi , umax
i

for every i ∈ I , it follows that mini∈Iuιi (σ
y ) > mini∈Iuιi (σ

x ). Hence, σx <
argmaxσ∈Σ{mini∈Iuιi (σ )}, and so σx < Στ .

2.4.3 Reference points

Our suggested function can be used with any set of reference points, relative
to which the levels of individual advantage are measured. We have proposed
three possible reference points. One of them will be used in a review of
examples in the next section.

In every game, each of the possible outcomes can be attained via decision-
makers’ joint actions. Therefore, one possibility to define players’ reference
points is to set each decision-maker’s reference point to be the worst payoff
that s/he can attain in a particular game. This will be the payoff associated
with each player’s least personally preferred outcome:

u
re f
i =minσ∈Σui (σ ) . (2.6)

Such an approach, however, may be criticized on the basis that outcomes
which are non-rationalizable should not be considered on an equal foot-
ing with rationalizable outcomes when it comes to establishing decision-
makers’ reference points. In other words, an argument can be made that
non-rationalizable outcomes should be left out from the set of outcomes con-
sidered as possible reference points. This rationalizability requirement would

17A strategy profile is Pareto efficient in the weak sense if there is no other strategy
profile available that is strictly preferred to it by every player.
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exclude outcomes defined in terms of strictly dominated strategies18. By let-
ting Σbr ⊆ Σ to denote the set of rationalizable strategy profiles, we can use
the following definition of reference points:

u
re f
i =minσ∈Σbrui (σ ) . (2.7)

However, rationalizability is a concept specifically associated with the best-
response reasoning. This prompts the question of whether a criterion based
on the orthodox notion of individual rationality should be used for estab-
lishing the reference points of a reasoning mode that is not based on indi-
vidualistic best-response considerations.

We suggested that there are two ways to justify the use of the restricted
set Σbr ⊆ Σ instead of Σ. The first is to argue that decision-makers approach
the game as best-response reasoners to begin with and after that, having
drawn conclusions about outcomes they could reach through the application
of best-response reasoning, they evaluate everything that follows relative to
those conclusions, including what is mutually advantageous for them.

The second way to justify this restriction is to argue that decision-makers’
reference points, relative to which they evaluate their individual advantage
and, subsequently, the mutual advantage associated with each outcome are,
essentially, individualistic. These are decision-makers’ personal thresholds,
such that anything that is preferentially inferior to them is not individually
advantageous to them. Hence it may be argued that their establishment
should be based on self-oriented individualistic reasoning and, as such, ra-
tionalizability is a conceptually sound restriction to impose.

The third approach, which is closest to the definition of mutual advantage
suggested by Sugden (2015), is to use each players’ maximin payoff level as
his or her reference point in a game:

u
re f
i =maxσi∈Σi

{
minσ−i∈Σ−iui (σ )

}
. (2.8)

This definition of a reference point ensures that the maximin constraint in the
function τ is met automatically. However, a criticism that such a definition
of a reference point does not rule out non-rationalizable outcomes could
still apply, since strategy profiles associated with decision-makers’ maximin
payoffs may be excluded from the set of rationalizable outcomes.

18In any two-player game, an outcome is rationalizable if and only if it does not disap-
pear during the process of iterated elimination of strictly dominated strategies. If there
are more than two players, however, an outcome that disappears during such elimination
is never rationalizable in the above sense, but the converse is not necessarily true: An
outcome may survive iterated elimination of strictly dominated strategies, yet neverthe-
less be non-rationalizable. For a discussion of these results, see Bernheim 1984, Pearce
1984 and Fudenberg and Tirole 1991.
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It is important to note that outcomes associated with maximin thresh-
olds, when, in relative preferential terms, they are close to players’ most
preferred outcomes of games, may sometimes serve as definitive solutions of
those games when best-response reasoning leads to indeterminacies. That is,
maximin thresholds themselves may be mutually advantageous. An example
of such a game will be provided in the following section.

2.4.4 Examples

This section shows what the function τ selects in a few simple examples. Two
of these – the Hi-Lo and the Prisoner’s Dilemma games – have already been
introduced. The other two are a version of the Chicken game and the High
Maximin game depicted in Figure 2.6. In this discussion of examples, the
levels of individual and mutual advantage are computed using the second of
the three possible reference points discussed in the previous section: ure fi =

minσ∈Σbrui (σ ). A detailed derivation of results in the Chicken game will be
presented first and the proposed function’s prescriptions for the remaining
games will be summarized afterwards.

l r

u 10, 1 0, 0

d 4, 4 1, 10

(a)

l r

u 10, 1 0, 0

d 9, 0 9, 10

(b)

Figure 2.6: Chicken (a) and High Maximin (b) games

There are three Nash equilibria in the Chicken game depicted in Figure
2.6(a): (u, l ), (d, r ), and (67u, 1

7d; 1
7l ,

6
7r). Notice that the third is a mixed

strategy equilibrium, in which row player randomizes between u and d with
probabilities 6/7 and 1/7, while column player randomizes between l and
r with probabilities 1/7 and 6/7 respectively. This yields both players an
expected payoff of 10/7.

For both players, the least preferred rationalizable outcome from the
set Σbr is (u, r ), the maximin payoff level is 1 (the lowest possible payoff
associated with strategies d and l), and the most preferred outcome yields
a payoff of 10. Thus, for each player, ure fi = 0, umax

i = 10, and umaximin
i = 1.

The levels of individual and mutual advantage, uιi and uτ , associated with
the four pure strategy outcomes of the game are shown in Table 2.1 (sorted
by uτ ). These, as noted earlier, are expressed in percentage terms (uιi and uτ
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Outcome uιr uιc uτ

(d, l ) 40 40 40
(u, l ) 100 10 10
(d, r ) 10 100 10
(u, r ) 0 0 0

Table 2.1: The levels of individual and mutual advantage associated with
each outcome.

are multiplied by a factor of 100). When only pure strategies are considered,
the maximally mutually advantageous outcome is (d, l ) and, since it satisfies
the maximin constraint for both players, it is the unique outcome selected
by function τ . The result is slightly different, albeit also yielding a unique
solution, if mixed strategies are considered as well. In the latter case, the
maximum level of mutual advantage is associated with the mixed strategy
profile ( 3

14u, 11
14d; 11

14l ,
3
14r), which yields both players an expected payoff

(with reference to the payoff structure in Figure 2.6a) of approximately 4.32.
The corresponding approximate level of mutual advantage is 43.2, which
is higher than the level of mutual advantage associated with the outcome
(d, l ). As a result, Sτ = {(d , l)} when only pure strategies are considered,
and Στ = {( 3

14u, 11
14d ; 11

14 l ,
3
14r)} when mixed strategies are considered as

well. Either way, Sτ and Στ are singletons, which means that the function τ
resolves this game definitively for those who reason as members of a team.
Note that in both cases τ selects a non-Nash-equilibrium outcome. Results
for the remaining three games are summarized in Table 2.2:

Pure strategies alone u
re f
i umax

i umxm
r umxm

c Sτ

The Hi-Lo 0 2 0 0 {(hi,hi )}
The Chicken 0 10 1 1 {(d, l )}

The High Maximin 0 10 9 0 {(d, r )}
The Prisoner’s Dilemma 1 3 1 1 {(c, c )}

Mixed strategies u
re f
i umax

i umxm
r umxm

c Στ

The Hi-Lo 0 2 2
3

2
3 {(hi,hi )}

The Chicken 0 10 1 1
{(

3
14u,

11
14d;

11
14l ,

3
14r
)}

The High Maximin 0 10 9 10
11

{
(d; [p] l , [1 − p] r )}∗

The Prisoner’s Dilemma 1 3 1 1 {c, c}
∗In Στ for the High Maximin 0 ≤ p ≤ 1

10 .

Table 2.2: A summary of the results for the remaining games

The top section of the table shows parameter values and the selected
outcomes in Sτ when only pure strategies are considered (umaximin

i is abbrevi-
ated for row and column player as umxm

row and umxm
col

respectively). The bottom
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section shows these values and the selected outcomes in Στ when mixed
strategies are considered as well.

In the case of mixed strategies in the Hi-Lo game, the maximin strategy
for both players is to randomize between hi and lo as in the mixed strategy
Nash equilibrium. Irrespective of whether mixed strategies are considered
or not, however, (hi,hi ) is the unique outcome selected by τ .

The three Nash equilibria in the High Maximin game are (u, l ), (d, r ),
and ( 1011u, 1

11d; 9
10l ,

1
10r ). The mixed strategy equilibrium yields an expected

payoff of 9 and 10/11 to row and column player respectively. In the case
of mixed strategies, column player can secure an expected payoff of at least
10/11 by randomizing between l and r with probabilities 10/11 and 1/11. As
in the Chicken game, the output of τ depends on whether mixed strategies
are considered or not. If they are, any strategy profile in which the row player
plays d while the column player randomizes between l and r with probabilities
0 ≤ p ≤ 1/10 and 1−p respectively is maximally mutually advantageous and
is included in the set Στ , which means that Στ is not a singleton. This still
resolves the game definitively for the interacting players, since τ prescribes
a unique strategy choice to row player and it is up to column player alone
to select any outcome from the set Στ using 0 ≤ p ≤ 1/10 of his or her
choice. If only pure strategies are considered, τ selects (d, r ). Note that
mutually advantageous play in both cases yields the row player his or her
maximin payoff. As such, this is an example of a case where a personal
payoff associated with maximally mutually advantageous outcome(s) is also
player’s maximin level. By contrast, if ure fi were set for both players to
their personal maximin payoffs, τ would select the outcome (u, l ), with and
without mixed strategy play.

Lastly, in the Prisoner’s Dilemma game the function τ selects (c, c ). Pa-
rameter values in the Table 2.2 are based on the Prisoner’s Dilemma game
depicted in Figure 2.2, but the result is the same for all versions of this game
discussed in this chapter.

2.4.5 No Irrelevant Player

One of the potentially problematic properties of our suggested definition of
mutual advantage is that the function τ does not rule out any of the interact-
ing players in determining the maximally mutually advantageous outcomes.
This implies that no player can be ruled out from strategic considerations as
being irrelevant. One of the consequence of this definition is that the player
who is indifferent between all the outcomes of a game, with u

re f
i = umax

i ,
renders Στ = ∅. This result is consistent with our definition of mutual ad-
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vantage: If a player does not care about how an interdependent decision
problem is going to be resolved, there is nothing that would give him or her
an incentive to seek out a mutually advantageous resolution of a game.

In cases where one or more players have no incentive to play a part in the
attainment of a mutually advantageous outcome, the remaining players may
consider searching for a mutually beneficial solution on the game by tak-
ing into account their predictions of what strategies the non-team-reasoning
decision-makers are going to choose. In such cases, a mutually advantageous
play is obviously not possible for all players of the game as members of
one team. Note, however, that due to a possibility that non-team-reasoning
decision-makers’ actions may determine the set of outcomes attainable for
team-reasoning decision-makers, the latter may not be able to rule out the
actions of the former from their strategic considerations.

2.4.6 Independence of Irrelevant Strategies

As the Prisoner’s Dilemma example shows, an addition of a strictly domi-
nated strategy to a game can result in changes in the set of outcomes that the
team-reasoning decision-makers would identify as being maximally mutually
advantageous. This means that even strictly dominated strategies cannot be
treated as irrelevant.

Notice, however, that this result is avoided if the outputs of function τ
are limited to rationalizable outcomes. This modification requires all the
outcomes outside the set Σbr ⊆ Σ to be excluded from those considered as
potential outputs of τ , and the parameters u

re f
i with umax

i to be assigned
payoff values associated with each decision-maker’s least and most preferred
outcome or outcomes in Σbr ⊆ Σ.

Returning to examples discussed in section 2.4.4, this modification would
not change the results in the Hi-Lo game, yet the results in the Chicken and
the High Maximin games would be different: The outcomes selected by τ
when mixed strategies are allowed would be the same as those selected in
cases where only pure strategies are considered. This is due to mixed strategy
outcomes being non-rationalizable. Finally, the modified function would
pick no mutually advantageous outcomes in the Prisoner’s Dilemma game,
since the Nash equilibrium (d,d ) is the only rationalizable outcome. Notice
that the modified function allows us to rule out all the strictly dominated
strategies as irrelevant.
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2.4.7 Interpersonal Comparisons of Advantage

As has been noted earlier, we suggested our function as being applicable
to cases where interpersonal comparisons of decision-makers’ payoffs are as-
sumed not to be possible. The suggested definition of mutual advantage,
however, relies on a specific interpersonal comparison: It equates one unit of
individual advantage gained by one individual with one unit of individual ad-
vantage gained by the other individual. This potentially raises the question
of whether the function τ really avoids making interpersonal comparisons of
payoffs in the sense in which they are not warranted by the expected utility
theory (see subsection 2.3.2). To defend our claim that it does, we propose
the following argument.

Our proposed function relies on a ‘zero-one rule’, which in the game
theory literature is often referred to as Raiffa normalization (see Raiffa 1953,
Luce and Raiffa 1957). Hausman (1995) suggests a version of a ‘zero-one
rule’ as the only legitimate procedure for comparisons of decision-makers’
preference satisfaction levels. That is, as a procedure which does not go
beyond the principles of the expected utility theory:

‘If it is possible to determine a “correct” cardinal and bounded
index of preferences for individuals that is unique up to a positive
linear transformation, then . . . there is, I contend, one right way
to make interpersonal utility comparisons. One should simply
compare the following ratios:

Ui (x ) −minUi

Max Ui −minUi

Uj (y) −minUj

Max Uj −minUj

where Max Ui and minUi are the upper and lower limits of Ira’s
utility function (roughly, the utilities of his best and worst alter-
natives), Max Uj and minUj the limits of Jill’s utility function.
The so-called “zero-one rule” assigns the utility value of “1” to
the tops of everybody’s utility functions and “0” to the bottoms.’
(Hausman 1995: 480)

Hausman’s version of a ‘zero-one rule’ is very similar to the Raiffa nor-
malization procedure used in our proposed function. The major difference
is that in our discussion the minimum is, in line with Raiffa’s (1953) sug-
gestion, each player’s reference payoff and the maximum is each player’s
payoff associated with his or her most preferred outcome in a particular
game. Hausman notes that he is ‘not proposing that one assign zeros and
ones to the best and worst of the feasible options available in a given de-
cision problem’ (Hausman: 1995: 482; Hausman’s emphasis). He discusses
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the ‘zero-one rule’ as representing ‘people’s “full” preference rankings of at
least all the options they have conceived of’ (Hausman 1995: 482). In Haus-
man’s interpretation, people’s comparisons of preference satisfaction levels
are made against a backdrop of a much wider context than some particular
decision problem in question.

In principle, our proposed function τ could be used in this setting: The
parameters u

re f
i and umax

i could be set to represent decision-makers’ least
and most preferred conceivable prospects in general. In this case, the extent
of mutual advantage would indicate how individually advantageous an out-
come is in the context of the interacting decision-makers’ lives in general.
This interpretation of mutual advantage, however, would be different from
our intended interpretation of mutual advantage as a representation of how
mutually beneficial an outcome is within the context of a particular interde-
pendent decision problem, relative to each decision-maker’s most and least
preferred outcomes in that game, as well as to what the decision-makers can
expect to attain via individual actions.

According to Hausman, the ‘zero-one rule’ does not imply that the sug-
gested minimums and maximums are comparable in terms of individuals’
well-being or any kind of comparable welfare:

‘To question whether, for example, Jill’s bottom might be “lower”
than Ira’s bottom is implicitly to reject the notion of utility as
merely representing how well preferences are satisfied. If Jill’s
and Ira’s preferences are not satisfied to any extent at all, then
there is no way that Jill’s preferences could be better satisfied
than Ira’s or that Ira’s preferences could be better satisfied than
Jill’s. Nothing is relevant to the comparison except the extent
to which preferences are satisfied, and “extent to which prefer-
ences are satisfied” is simply position in a preference ranking.’
(Hausman 1995: 480-481)

Hausman’s argument seems to apply to the context of interdependent
decision problems discussed here. Even if the interacting players’ levels of
well-being are not interpersonally comparable, they can still compare the
levels to which their personal interests are advanced (i.e. satisfied) within
the context of a particular interdependent decision problem that they are
aiming to resolve19.

The ‘zero-one rule’ is, however, often criticized for implicitly ascribing
a particular ratio for making interpersonal comparisons of payoffs at the

19Luce and Raiffa (1957) also defend the 0-1 normalization as a procedure for establish-
ing a comparison of decision-makers’ interests for cases ‘where interpersonal comparisons
are not initially meaningful’ (Luce and Raiffa 1957: 154).
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point of establishing a common 0-1 scale. Some theorists have argued that
0-1 scale may lead to inappropriate results when used in decision problems
where the difference between the best and the worst options is trivial for one
individual and a matter of great importance for another. Binmore (2009b)
gives the following example:

‘If Eve is a jaded sophisticate who sees [the best option] as only
marginally less dull than [the worst option], whereas Adam is a
bright-eyed youth for whom the difference seems unimaginably
great, what sense does it make to adopt a method of utility com-
parison that treats the two equally?’ (Binmore 2009b: 550)

Hausman (1995) quotes similar arguments from other scholars’ works.
Hammond (1992: 216), for example, questions the validity of such com-
parisons in situations where one person is ‘undemanding’ while another is
‘greedy’. Sen (1970: 98) suggests that a disabled person’s preference satis-
faction may be ‘uniformly lower’ than that of someone who is fully abled.
Rawls (1971: 323) argues that a person who is generally ‘pleased with less’
may often (unfairly) appear as more satisfied than somebody else. Griffin
(1986: 120) summarizes this line of criticism by stating that ‘[i]t is not the
case that we all reach the same peaks and valleys’.

According to Hausman (1995), the aforementioned criticisms are based on
a misinterpretation of what exactly the ‘zero-one rule’ is applied to compare.
That is, the criticisms implicitly associates individuals’ preference satisfac-
tion levels with some interpersonally comparable objective notion of welfare
or well-being. As such, they are based on an implicit assumption that in-
terpersonal comparisons of welfare can be made and that such comparisons
may not always coincide with the interpersonal comparisons of levels of pref-
erence satisfaction which, according to Hausman, are compatible with the
interpretation of preferences based on the expected utility theory.

Hausman’s analysis of the aforementioned criticisms also applies to po-
tential criticisms of the proposed measures of individual and mutual advan-
tage. If in the context of a game someone contemplates the possibility that
for one player stakes might be significantly higher than they are for another,
that someone makes an implicit assumption that players’ payoffs can be in-
terpersonally compared. The proposed measures of individual and mutual
advantage, expressed as levels of relative advancement of players’ personal
interests towards their most preferred outcomes of a game, are supposed
to be used in situations where such comparisons are not meaningful. The
reason of why the suggested measures of individual and mutual advantage
can be applied to such cases is the fact that the scales for these measures
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can be established from the commonly known and objectively identifiable
points in games without any need of interpersonal comparisons of players’
attainable payoffs. In order to use the proposed measures, decision-makers
need to know each other’s preferences over the possible outcomes of games
and their reference points, but they need not be able to make any further
interpersonal comparisons of their attained well-being in some objectively
comparable way. In other words, decision-makers who know the reference
points could work out the maximally mutually advantageous outcomes from
the information about their cardinal payoffs provided in the payoff matrix,
and so our proposed measures can be used in cases where decision-makers
have no clue as to what kind of personal motivations those payoff numbers
actually represent.

For the aforementioned reasons, the interpersonal comparisons of individ-
ual advantage implied by the suggested function τ are different from the in-
terpersonal comparisons considered in the aforementioned criticisms. When
players consider mutually advantageous play in games, they simply equate
units of measures of their individual advantage – the advancement of their
personal interests relative to what each of them deems to be the personally
best and the personally worst outcome of a particular interdependent deci-
sion problem. Such comparisons can be performed without decision-makers
being able to compare units of the attained personal well-being. In order
to make interpersonal comparisons of individual advantage in games, all the
players need to know is how much a particular outcome is individually ad-
vantageous to a player relative to his or her reference point and the most
preferred outcome of a game.

However, this is not to say that interpersonal comparisons of payoffs
are never possible, or that people never make them when interacting with
each other. According to Binmore (2005, 2009b), human beings may have
evolved the ability to make such interpersonal comparisons. Therefore, it
is important to note that this possibility does not negate the applicability
of the proposed function. In situations where interpersonal comparisons are
meaningful, the only step that needs to be added before function τ is applied
is the rescaling of decision-makers’ measures of individual advantage uιi . That
is, the appropriate scaling factors must be used to equate these units on the
basis of how their preference-satisfaction interpersonally compares.
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2.5 Mutual Advantage and the Problem of Co-
ordination

Certain versions of the team reasoning theory are considered by theorists as
potentially providing an explanation of how people coordinate their actions
in non-cooperative games (see, for example, Crawford et al. 2008, Bardsley
et al. 2010, Faillo et al. 2013, 2016). In many games, however, the proposed
function of team interests τ will select more than one outcome. In some
interdependent decision problems, such as the Hi Maximin game depicted
in Figure 2.6b, this will not cause a difficulty for players to coordinate their
actions. In many cases, however, the non-uniqueness of maximally mutually
advantageous outcomes will create considerable coordination problems. This
prompts a question of whether the coordination success rate on a particular
outcome should be reflected in the measure of the level of mutual advantage
associated with that outcome. To answer this question, we considered several
games in which our proposed function leaves the team-reasoning decision-
makers with a coordination problem.

Consider a version of the extended Hi-Lo game depicted in Figure 2.7(a):

hi1 hi2 lo

hi1 10, 10 0, 0 0, 0

hi2 0, 0 10, 10 0, 0

lo 0, 0 0, 0 9, 9

(a)

hi1 hi2 lo

hi1 10, 10 0, 8 0, 0

hi2 8, 0 10, 10 0, 0

lo 0, 0 0, 0 9, 9

(b)

hi1 hi2 lo

hi1 10 ∗ 10 0, 0 0, 0

hi2 0, 0 10, 10 0, 0

lo 0, 0 0, 0 9, 9

(c)

Figure 2.7: Three versions of the extended Hi-Lo game

There are seven Nash equilibria in this game: three in pure strategies
and four in mixed strategies. The four mixed strategy Nash equilibria yield
each player an expected payoff of at most 5. The proposed function would
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select both the outcome (hi1,hi1) and the outcome (hi2,hi2) as the max-
imally mutually advantageous solutions of this game. As such, it leaves
the interacting team-reasoning decision-makers facing a coordination prob-
lem. Since in terms of payoffs both outcomes are indistinguishable (at this
point, a possibility of using strategy labels and the positions of outcomes in
the payoff matrix as coordination aids will be ignored), the team-reasoning
decision-makers who were to attempt to coordinate their actions on one of
the two outcomes without communicating with each other could expect to
succeed with probability 1/2. Such a coordination attempt would yield each
decision-maker an expected payoff of 5.

The Pareto inefficient outcome (lo, lo), however, is unique: It is the only
outcome in this game yielding each player a payoff of 9. For this reason, it
may be beneficial for the interacting team-reasoning players to focus on the
attainment of the outcome (lo, lo) rather than to attempt to coordinate their
actions on one of the two Pareto efficient yet indistinguishable outcomes,
since the former approach would guarantee each player an expected payoff
of 9 instead of the maximum payoff of 5 which could be expected from the
latter approach.

Bardsley et al. (2010) and Faillo et al. (2016) suggest the idea that the
perceived success rates of the attainment of one from a number of indistin-
guishable outcomes, or coordination success rate, should be incorporated into
the function of team interests itself, and use such a representation of team
interests to interpret the data obtained from a number of experiments20.

Our proposed measure of mutual advantage uτ can be easily modified to
represent the perceived coordination success rates. That is, in games with a
number of outcomes which are indistinguishable in terms of mutual advan-
tage, and in the absence of other coordination aids, the original measures
of mutual advantage associated with indistinguishable outcomes could be
divided by the number of indistinguishable outcomes in question. For ex-
ample, in the extended Hi-Lo game depicted in Figure 2.7(a), the level of
mutual advantage associated with outcomes (hi1,hi1) and (hi2,hi2), given
the coordination success rate of 1/2, would be 50. Notice that the level
of mutual advantage associated with the outcome (lo, lo) would, due to its
uniqueness, remain to be 90. With the inclusion of the perceived coordina-
tion success rate, our proposed function τ would now select (lo, lo) as the
uniquely optimal outcome for a team.

20It is important to note that all the games discussed by Bardsley et al. (2010) and
Faillo et al. (2016) are such that players’ failure to coordinate their actions on one of
the available pure strategy Nash equilibria yields each player a personal payoff of 0. This
applies to the extended version of the Hi-Lo game depicted in Figure 2.7(a), but is not
the case in a few of its variations which will be discussed here.
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On the other hand, team-reasoning decision-makers’ coordination of ac-
tions may often be possible due to properties of the payoff structure other
than the aforementioned coordination success rate. For example, consider
another version of the extended Hi-Lo game depicted in Figure 2.7(b). The
set of pure strategy Nash equilibria of this game is the same as the set of
the Nash equilibria of the extended Hi-Lo game depicted in Figure 2.7(a).
The original version of the proposed function τ (i.e. the one which does
not account for the perceived coordination success rate) would, again, select
outcomes (hi1,hi1) and (hi2,hi2) as team optimal. Notice, however, that
although from the perspective of the proposed definition of mutual advan-
tage the two outcomes are just as indistinguishable as they were in the game
depicted in Figure 2.7(a), in this case the personal payoff of 8 to the row and
the column player associated with outcomes (hi2,hi1) and (hi1,hi2) off the
matrix diagonal can serve as an aid in players’ coordination of their actions
in the attainment of outcome (hi2,hi2). The coordination aid in this case is
still the payoff structure of the game, but it is not a pair of payoffs associated
with any of the outcomes on which the team-reasoning decision-makers aim
to coordinate their actions.

Even more importantly, team-reasoning decision-makers’ coordination of
actions may be possible due to completely arbitrary factors which have noth-
ing to do with the payoff structure of the game. For an example, consider a
version of the extended Hi-Lo game depicted in Figure 2.7(c). This game is
identical to the extended Hi-Lo game depicted in Figure 2.7(a), with the ex-
ception that outcome (hi1,hi1) is marked with a star. The perceived salience
of this outcome has nothing to do with the payoff structure of the game, yet
this star can potentially serve as a coordination aid. In fact, there is a num-
ber of coordination aids that team-reasoning decision-makers could consider
choosing: (1) the presence of a star among the outcomes which are maximally
mutually advantageous in terms of the original measure uτ , (2) the absence
of a star among the outcomes which are maximally mutually advantageous
in terms of measure uτ , (3) the uniqueness of the payoff pair associated with
outcome (lo, lo). Which one of the potential coordination aids will ultimately
be chosen will depend on team-reasoning decision-maker’s beliefs concerning
the likelyhood that one of the multiple available coordination aids will be
recognized and considered by others.

The goal of the preceding discussion of examples was to demonstrate
that team-reasoning decision-makers’ ability to coordinate their actions in
games with multiple team optimal outcomes may depend on factors that
have nothing do to with how mutually advantageous the outcomes are for
the interacting individuals. In addition, due to a possibility of a game hav-
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ing multiple coordination aids, team-reasoning decision-makers may face a
second-order coordination problem – one related to the choice of a coordi-
nation aid. It seems that decision-makers’ choice of the coordination aid in
such cases will depend on their beliefs about which aids are most likely to
be recognized and considered by every interacting individual. These beliefs
may largely depend on the interacting decision-makers’ social experiences,
cultural backgrounds, social norms and conventions of the society, and other
factors which are not related to the payoff structure of the game itself21.

Because of the aforementioned reasons, we believe that it is conceptu-
ally fruitful to keep the question of which outcomes are mutually beneficial
for the interacting team-reasoning decision-makers separate from the ques-
tion of how team-reasoning decision-makers coordinate their actions in non-
cooperate games with multiple team optimal outcomes. In fact, we believe
that a separation of the two questions may be useful from the research point
of view: In the presence of multiple potential coordination aids, our proposed
measure of mutual advantage uτ may help to identify a subset of coordination
aids that team-reasoning decision-makers should be expected to use in order
to coordinate their actions, while maintaining their commitment to resolve
the interdependent decision problem in a mutually advantageous way.

2.6 The Triggers of Team Reasoning

As has been noted in the introduction, the theory of team reasoning needs to
address the question of why and under what conditions real-world decision-
makers may reason as members of a team.

So far, several answers to this question have been suggested in the lit-
erature. According to a view attributed to Bacharach (2006), the adopted
mode of reasoning depends on decision-maker’s psychological frame of mind,
which, in turn, may depend on a number of circumstantial factors, but need
not necessarily be driven by conscious deliberation. Bacharach suggested
a strong interdependence hypothesis, according to which team reasoning is
most likely to be adopted by players in games with a strong interdependence
property. These are games in which a Nash equilibrium in pure strategies
is Pareto-dominated by some feasible outcome which may or may not be a
Nash equilibrium of the game and which can only be attained by players
acting together (see Bacharach 2006 and Smerilli 2014).

21Bacharach (1993), Bacharach and Bernasconi (1997) and Bacharach and Stahl (2000)
developed a formal model — the variable frame theory — for incorporating such consid-
erations into formal representations of coordination problems.
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Sugden (2003) suggests that decision-maker may choose to endorse a par-
ticular mode of reasoning, but that this choice may lie outside of rational
evaluation. Hurley (2005a,b) defends the view that player’s adoption of team
reasoning may be a result of conscious and rational deliberation: Individuals
may rationally choose to regard themselves as ‘members’ of a single collective
agency, and consciously committ to acting solely on the interests universaliz-
able to their ‘membership’. A detailed review of these developments will not
be provided here (for a survey see, for example, Gold and Sugden 2007a,b),
but some tentative suggestions in connection to our proposed function τ will
be discussed.

The development of the team reasoning theory was primarily motivated
by the fact that the standard best-response reasoning model is unable to
single out intuitively compelling solutions in certain types of interdependent
decision problems with multiple rationalizable outcomes. We are inclined to
believe that a decision-maker who first approaches the interdependent de-
cision problem as a best-response reasoner may switch into team mode of
reasoning in situations where the best-response reasoning is unable to re-
solve the interdependent decision problem definitively. Player’s subsequent
endorsement of the team mode of reasoning – his or her decision to play
a part in the attainment of the maximally mutually advantageous outcome
– may depend on a number of factors, such as his or her beliefs about the
modes of reasoning endorsed by other decision-makers, as well as beliefs
about the outcomes s/he could expect to attain by playing as a best-response
reasoner. With respect to our proposed function τ , this provides a reason
for considering only rationalizable outcomes as reference points for our pro-
posed measures of individual and mutual advantage: If decision-makers first
approach the interdependent decision problems as best-response reasoners,
they should base their further evaluations of outcomes on the conclusions
which they can draw from the (possibly common) application of the best-
response reasoning approach. This could explain why players may switch
from individualistic best-response reasoning into team reasoning mode in
games with multiple rationalizable outcomes, such as the Hi-Lo game, the
Chicken game, and the High Maximin game discussed in section 2.4.4, but
it does not explain why some people allegedly reason as members of a team
in the Prisoner’s Dilemma game.

It seems plausible that a shift in decision-maker’s mode of reasoning in
the Prisoner’s Dilemma and similar games may be triggered by efficiency
considerations. However, if the perceived inefficiency (say, in terms of weak
Pareto efficiency) of the best-response solution may indeed trigger a shift
in decision-makers’ mode of reasoning, then such decision-makers may end
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up facing two competing definitive resolutions of a game: One based on
best-response reasoning and another one based on mutual advantage consid-
erations. A game which is a trivial decision problem from the perspective
of orthodox game theory (e.g. Prisoner’s Dilemma) may turn into a com-
plicated dilemma about which mode of reasoning a decision-maker should
endorse when choosing his or her strategy, with efficient mutually advan-
tageous solution from which the other players may be tempted to deviate
pitted against inefficient yet less risky best-response solution. This story
seems to fit with the aforementioned findings from experiments with the
Prisoner’s Dilemma game, which show that cooperation rate is around 50%
in one-shot versions of this game22.

Another possibility is that decision-makers first approach the interde-
pendent decision problems as team reasoners. In this case, a team-reasoning
decision-maker may be motivated to switch to best-response reasoning mode
in situations where a unilateral deviation from the attainment of a mutually
advantageous outcome is personally beneficial to him or her, or when team
reasoning mode is unable to resolve the game definitively. This can explain
why team-reasoning decision-makers may switch to best-response reasoning
in certain games, such as the Prisoner’s Dilemma, the Chicken game and the
High Maximin game (depending, of course, on which outcome of the High
Maximin game the team-reasoning decision-makers consider to be mutually
advantageous). With respect to our proposed function τ , if decision-makers
approach the interdependent decision problems as team reasoners, then their
reference points need not be rationalizable outcomes.

However, if in certain games, such as, for example, the Prisoner’s Dilemma
game, a decision-maker may end up vacillating between the two modes of
reasoning when deciding which one to endorse for choosing his or her actions,
s/he should engage in a comparison of the perceived advantages associated
with both reasoning modes: The advantages associated with team reason-
ing should be compared with the advantages associated with best-response
reasoning23. It seems reasonable to expect a decision-maker to measure the
advantages of team reasoning relative to outcomes which could result from

22In the Prisoner’s Dilemma, a decision to play a part in the attainment of a mutually
advantageous outcome is risky compared to a choice of a best-response, since the former
decision is only beneficial to a particular player if the other player does likewise. This
may explain why, in a repeated setting, the cooperation rate in this game drops in the
presence of a few defectors. A decision-maker who first endorses team reasoning, but
recognizes that best-response, albeit less efficient when endorsed by everyone, is less risky
when it comes to the worst case scenario, may quickly switch to endorsing best-response
reasoning after encountering a player who defects.

23Smerilli (2012) provides a formal model representing the vacillation process between
competing modes of reasoning.
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the application of best-response reasoning. This provides further grounds
for establishing reference points on the basis of rationalizable outcomes of a
game.

2.7 Conceptual Limitations

In sections 2.2 to 2.6, I presented a function of team interests developed
in Karpus and Radzvilas (2016). In this section I will consider a couple of
conceptual criticisms which can be directed not only against our proposed
function of team interests, but also against the theory of team reasoning in
general.

2.7.1 Implicit Motivation Transformations

In our collaborative work which led to the development of function τ , we
primarily focused on the question of what properties an outcome of a game
must have in order to be identified as mutually advantageous by the inter-
acting team-reasoning decision-makers. As has been pointed out in section
2.2.2, our proposed function is based on assumption that a shift in decision-
maker’s mode of reasoning from individualistic best-response reasoning to
reasoning as a member of a team does not change the way in which that
decision-maker personally values the outcomes of the game. Our proposed
function operates on the basis of players’ payoffs as their are represented in
the original game. That is, team-reasoning decision-makers are assumed to
identify the team optimal outcomes from the commonly known information
about their personal evaluations of the possible outcomes of a game.

As a model which purports to explain how team-reasoning decision-
makers identify the mutually advantageous outcomes of non-cooperative
games, our proposed function and its underlying assumptions are, I con-
tend, rather unproblematic. However, the original aim of the team reasoning
theory was to explain people’s actual choices in certain types of social inter-
actions, including those types of interactions where a mutually advantageous
outcome is neither a Nash equilibrium of a game, nor even a rationalizable
outcome (e.g. the Prisoner’s Dilemma game).

If a strategy profile of a game is not a Nash equilibrium, then, by defini-
tion, at least one player can maximize the advancement of his or her personal
interests by playing a different strategy than his or her strategy in that pro-
file. In other words, at least one player who expects the other players to
play their part in the attainment of an out-of-equilibrium outcome has an
opportunity to maximally advance his or her personal interests by playing
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a different strategy than the one leading to decision-makers’ attainment of
that out-of-equilibrium outcome. From the perspective of orthodox game
theory, a player who foregoes such an opportunity to advance his or her
personal interests can be said to be irrational, provided, of course, that the
payoff structure of a game used to analyze decision-maker’s actions correctly
represents his or her personal motivations (see Binmore 2005, 2009a).

The theory of team reasoning predicts an out-of-equilibrium play in cer-
tain types of games. That is, it predicts that at least one team-reasoning
decision-maker will play his or her part in the attainment of a mutually ad-
vantageous outcome while having an opportunity to choose a strategy leading
to the attainment of an outcome which the decision-maker personally val-
ues more than the team optimal outcome. In other words, team-reasoning
decision-makers’ attainment of an out-of-equilibrium team optimal outcome
implies that at least one decision-maker has foregone an opportunity to at-
tain the outcome which s/he personally values more than the team optimal
outcome.

From the perspective of orthodox game theory, according to which pay-
offs effectively represent decision-makers’ choices over outcomes (that is, the
‘all-things-considered’ evaluations of outcomes)24, an argument can be made
that a team-reasoning decision-maker’s choice to play a part in the attain-
ment of a team-optimal outcome while having an opportunity to attain a
more personally advantageous outcome is an indication that team-reasoning
decision-maker’s personal motivations are different from his or her individ-
ualistic motivations which are represented by the payoff structure of the
original game. More specifically, a decision-maker’s team-reasoning-based
personal evaluation of outcomes which leads him or her to playing a part
in the attainment of a team optimal outcome may be different from his
or her best-response-based personal evaluation of outcomes which is rep-
resented by the payoff structure of the original game. This would imply
that a shift in decision-maker’s mode of reasoning from individualistic best-
response reasoning to reasoning as a member of a team, and possibly vice
versa, may transform decision-makers’ personal evaluation of outcomes, even
if such a transformation cannot be represented with a simple transformation
of decision-maker’s personal payoffs, similar to the ones which have been
discussed in section 2.2.2. This would mean that team-reasoning decision-
makers may be playing a game, the structure of which is different from the
original game.

This criticism may be viewed as revealing certain explanatory limitations
of the team reasoning theory. If it is the case that decision-makers who

24For extensive discussion, see chapter 1.
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reason as members of a team may be playing a game with a different payoff
structure than the game that those decision-makers would be playing as
best-response reasoners, then team reasoning theory can be criticized for
not being able to show that team-reasoning decision-makers actually play a
part in the attainment of an out-of-equilibrium team optimal outcome. For
this reason, it could be criticized for not being able to explain why people
cooperate in situations where their personal motivations are identical to, for
example, the motivations of players in the Prisoner’s Dilemma game.

A criticism that team reasoning involves implicit transformations of decision-
makers’ personal evaluations of outcomes can also be applied to cases where
the team optimal outcome is a Nash equilibrium. Consider the coordination
game depicted in Figure 2.8:

r1 r2 r3

r1 10, 8 0, 0 0, 0

r2 0, 0 8, 10 0, 0

r3 0, 0 0, 0 8, 9

Figure 2.8: Coordination game with a conflict of players’ preferences

This game has three weakly Pareto optimal pure strategy Nash equilib-
ria: (r1, r1), (r2, r2) and (r3, r3). Notice that as individualistic reasoners, the
players of this game have conflicting preferences over the three outcomes: As
an individualistic reasoner, the row player prefers the attainment of outcome
(r1, r1) over the attainment of outcomes (r2, r2) and (r3, r3), while the col-
umn player prefers the attainment of outcome (r2, r2) over the attainment
of outcomes (r3, r3) and (r1, r1) (also notice that the column player prefers
the attainment of outcome (r3, r3) over the attainment of outcome (r1, r1).

The aforementioned structure of personal motivations would not be pre-
served if the interacting decision-makers were to adopt the team reasoning
mode and search for a mutually advantageous solution of this game in a way
which has been discussed in this chapter. Coordination success considera-
tions aside, our proposed function τ would select all three Nash equilibria as
maximally mutually advantageous outcomes. Our proposed function leads to
a conclusion that a team-reasoning decision-maker should be indifferent be-
tween the three outcomes. That is, an individual whose only motivation is to
play a part in the attainment of a maximally mutually advantageous outcome
should see all the three outcomes as equally good, since all of them maximize
mutual advantage. It can be argued that self-oriented decision-makers whose
joint actions were motivated purely by individual advantage maximization
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considerations would not endorse such a resolution of this game. In other
words, even if self-oriented decision-makers were to search for a mutually
advantageous resolution of the aforementioned game, they would, due to in-
dividual advantage allocation considerations, not be indifferent as to which
one of the three weakly Pareto optimal outcomes to implement. The set
of outcomes which self-oriented decision-makers would identify as mutually
advantageous and implementable solutions of a game may thus be different
than the set of maximally mutually advantageous outcomes identified by the
team-reasoning decision-makers.

This example suggests that team-reasoning decision-makers’ actions may
be driven by incentives which are different from their individualistic incen-
tives as they are represented by the payoff structure of the original game.
It also reveals one of the features of the team reasoning approach in gen-
eral: It allows for modelling of team-reasoning decision-maker’s incentive to
play a part in the attainment of the team’s goal as being independent from
decision-maker’s personal incentives that motivate his or her actions before a
shift from individualistic best-response reasoning to reasoning as a member
of a team occurs.

2.7.2 Stability Issues

The possibility of team-reasoning decision-makers choosing strictly domi-
nated strategies, as well as the possibility that team-reasoning decision-
makers may consciously choose strategies leading to out-of-equilibrium out-
comes makes it difficult to defend Bacharach’s (2006) theory that people’s
ability to team reason is an evolutionary adaptation. According to Bacharach,
people’s ability to reason as members of a team in the attainment of efficient
outcomes can be explained as an outcome of the group selection process.
The idea is that a group of individuals whose members have the ability to
coordinate their actions in the attainment of efficient outcomes will have a
higher average fitness25 than the group whose members have no such ability
(provided, of course, that individuals belonging to a group whose members
have the efficient coordination ability interact with each other sufficiently
frequently). A group of individuals with efficient coordination ability could
thus grow faster than a group of individuals with no such ability. For exam-
ple, a group of team-reasoning decision-makers who only interact with each
other would attain a higher payoff in social dilemmas, such as the Prisoner’s

25In standard models of evolutionary game theory, such as those based on replicator
dynamics, individual’s expected payoff is assumed to represent his or her fitness – the
expected number of offspring or imitators who will have individual’s trait. For details,
see Weibull 1995.
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Dilemma game, than a group of best-response reasoners who only interact
with each other.

The problem with this evolutionary explanation is that a group of in-
dividuals whose members are choosing strategies that do not constitute a
Nash equilibrium of the game cannot be evolutionarily stable (for proofs,
see van Damme 1987 and Weibull 1995). This means that a group of team
reasoners could be invaded by ‘mutants’ – individuals using other reason-
ing modes, such as, for example, best-response reasoning. Note that best-
response reasoners could exploit team-reasoning individuals in many games
where team-reasoning individuals’ strategy choices do not constitute a Nash
equilibrium, such as the Prisoner’s Dilemma game or the Chicken game. In
such interactions, best-response reasoners would get a higher payoff when
playing against the team-reasoning individuals than individuals who reason
as members of a team. Depending on what games and how frequently a
group is playing, best-response reasoners’ ability to exploit team-reasoning
individuals may allow them to spread in the group and drive the individuals
who reason as members of a team out of the group. From the perspective
of evolutionary game theory, an argument can be made that team-reasoning
should at least not be observed in recurring games where the team optimal
outcome is an out-of-equilibrium strategy profile26.

2.8 Conclusion

In this chapter I predominantly focused on discussing a possible formal repre-
sentation of team-reasoning decision-makers’ interests based on the notion of
mutual advantage in games, which has been developed in collaboration with
Karpus. We are inclined to believe that the spirit of our working definition
of mutual advantage is broadly in line with the notion of mutual advantage
suggested by Sugden (2015). Our proposed function of team interests allows
us to further discriminate the outcomes which satisfy Sugden’s (2015) crite-
rion of mutual benefit, as well as to define team-reasoning players’ interests
as the attainment of an outcome yielding a maximum mutual advantage. I
discussed our argument that the proposed function τ is applicable to cases
where interpersonal comparisons of the interacting decision-makers’ payoffs
are assumed not to be meaningful, as well as to cases where such comparisons
are possible.

It is important to emphasize that the proposed model should not be
26For an extensive evolutionary game theoretic analysis of the evolutionary success of

cooperative behaviour in social dilemmas, see, for example, Skyrms 1996 or Alexander
2007.
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viewed as a complete account of the theory of team reasoning, but merely
as an attempt to provide a formal characterization of the properties that an
outcome must have in order to be identified as maximally mutually advan-
tageous by players who reason as members of a team. Only a few tentative
ideas concerning factors that may motivate decision-makers to adopt the
team reasoning mode or to switch between individualistic best-response and
team modes of reasoning have been suggested. Further empirical research is
required to test the competing theories about the modes of reasoning that
people use when interacting with each other. One of the major challenges is
the problem of underdetermination: Since decision-makers’ actions can often
be explained in terms of multiple competing descriptive theories, further em-
pirical research on the team reasoning theory may need to consider a broader
evidence base than mere observations of people’s behaviour. According to
Dietrich and List, our evaluation of theories concerning people’s choices in
games may need to consider ‘novel choice situations, psychological data over
and above choice behaviour, verbal reports, related social phenomena, and
occasionally (for plausibility checks) even introspection’ (Dietrich and List
2016: 273). Elicitation of people’s beliefs about each other’s actions and
further development of such experimental techniques may ultimately be the
only viable approach to test the ideas discussed here empirically.

A question of how team-reasoning decision-makers coordinate their ac-
tions in games with multiple maximally mutually advantageous solutions
also warrants further empirical and conceptual investigation. In fact, since
team-reasoning decision-makers’ ability to coordinate their actions may de-
pend on arbitrary factors which have nothing to do with payoff structures
of games, a single generalizable model of team-reasoning decision-makers’
final choices may not be possible at all. As has been pointed out by Sugden,
mutually beneficial team play may be based on players’ conformity ‘to com-
plex and sometimes arbitrary conventions that could not be reconstructed
by abstract rational analysis’ (Sugden 2015: 156).

While a view that decision-makers’ final choices in coordination games are
often based on arbitrary rules and conventions is almost certainly the right
one to hold, I nevertheless believe that some generalizable principles of how
the interacting decision-makers identify the mutually advantageous outcomes
of games before they address the coordination issue can be identified.

However, as I have pointed out in section 2.7, one of the potential prob-
lems of the proposed function is that it may involve an implicit result that a
shift in decision-makers’ mode of reasoning from individualistic best-response
reasoning to reasoning as a member of a team involves a transformation of
decision-makers’ personal incentives: Team-reasoning decision-makers moti-
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vated by mutual advantage considerations would not care about the distri-
bution of their individual advantage gains as long as the set of considered
outcomes contained only the maximally mutually advantageous outcomes.
It could be argued that the proposed function’s insensitivity to informa-
tion about the possible alternative allocations of individual advantage gains
makes it unsuitable to represent the notion of mutual advantage which could
guide the actions of self-oriented decision-makers whose motivation to engage
in joint actions is based purely on individual advantage maximization con-
siderations.

In the next chapter, I will provide an alternative formal characteriza-
tion of mutual advantage based on the principles of hypothetical bargaining
theory. I will argue that hypothetical bargaining theory offers conceptual
foundations for an individualistic explanation of how people identify mutu-
ally advantageous and implementable solutions of non-cooperative games.
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Chapter 3

Hypothetical Bargaining and the
Equilibrium Selection In
Non-Cooperative Games

3.1 Introduction

A central solution concept of the orthodox game theory is the Nash equilib-
rium – a pure or mixed strategy profile which is such that no rational player
is motivated to unilaterally deviate from it by playing a different strategy.
However, at least intuitively certain Nash equilibria are more convincing ra-
tional solutions of games than others. Even a very simple game may have a
Nash equilibrium which seems unlikely to be played by decision-makers who
understand the structure of that game.

Consider a common interest game shown in Figure 3.1, in which two
players simultaneously and independently choose between two strategies:
The row player chooses between strategy s1 and strategy s2, and the column
player chooses between strategy t1 and strategy t2. The left and the right
number in each cell represents row and column player’s payoffs respectively1.

At least intuitively, the outcome (s1, t1) stands out as an ‘obvious solu-
tion’ of this game: A player who knows the payoff structure of the game
should realize that strategy profile (s1, t1) is the best outcome for both play-
ers, and that there is no conflict of players’ interests in this game. According
to Bacharach (2006), such an alignment of players’ personal interests in a

1Unless it is stated otherwise, the payoff numbers in the matrices are the von Neu-
mann and Morgenstern utilities. The payoffs are assumed to represent all the relevant
motivations of players, including pro-social preferences, such as inequity aversion, altru-
ism, sensitivity to social norms, and so on.
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t1 t2

s1 4, 4 1, 2

s2 2, 1 3, 3

Figure 3.1: Common interest game

game is the primary reason of why most people have a ‘high-quality intuition’
that strategies s2 and t2 are unlikely to be chosen by intelligent decision-
makers who understand the structure of this game. Experimental results
support this intuition by revealing that over 90% of the time people opt for
strategies s1 and t1 in this game2.

From the perspective of orthodox game theory, there are three rational
solutions of this game – two pure strategy Nash equilibria (s1, t1) and (s2, t2)
and a mixed strategy Nash equilibrium

(
1
2s1,

1
2s2;

1
2s1,

1
2t2
)
. Contrary to

intuition, the theory does not single out the Nash equilibrium (s1, t1) as the
unique rational solution of this game.

The reason of this result becomes clear when we look into the model of
reasoning which underpins the standard game theoretic analysis. In standard
game theoretic analysis of complete information games, players’ rationality
and the payoff structure of the game are assumed to be common knowledge3.
In orthodox game theory, a player is said to be rational if s/he always chooses
a best response – a strategy which, given player’s consistent probabilistic be-
liefs about the opponents’ strategy choices, maximizes his or her expected
payoff. If rationality is common knowledge, then every decision-maker knows
that none of the opponents’ will ever choose a non-rationalizable strategy –
a strategy which is never a best response for a player, irrespective of what
probabilistic beliefs s/he holds about the opponents’ strategy choices. If the
payoff structure of the game is also common knowledge among the interact-
ing players, then each player can iteratively eliminate the non-rationalizable
strategies, thus identifying the set of rationalizable strategies of the game.
Each rationalizable strategy is a best response to some possible consistent
probabilistic belief about the opponents’ strategy choices (for a detailed tech-

2See Colman and Stirk (1998) who, among a number of other games, report results
from experiments with the game depicted in Figure 3.1.

3There is an important question of whether the assumption that players’ von Neumann
and Morgenstern utilities are common knowledge is not implausibly strong (see chapter
1). This question, however, illuminates an important conceptual problem of game theory
in general, not a conceptual problem of the hypothetical bargaining theory in particular.
The question of how hypothetical bargaining could be applied to cases where information
about players’ cardinal utilities is not available will be addressed in section 3.3.
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nical discussion and proofs, see Bernheim 1984 and Pearce 1984).
Every Nash equilibrium is a strategy profile, such that each player’s

strategy is a best response to a combination of opponents’ strategies. By
definition, each Nash equilibrium is a rationalizable strategy profile – a com-
bination of players’ rationalizable strategies. Therefore, every game with
multiple Nash equilibria has multiple rationalizable outcomes, which means
that at least one player has more than one rationalizable strategy. For ex-
ample, the Nash equilibrium (s2, t2) in the common interest game depicted
in Figure 3.1 is, like the Nash equilibrium (s1, t1), a rationalizable outcome:
It is rational for the row/column player to play strategy s2/t2 if s/he believes
that the probability of the opponent playing strategy s2/t2 is higher than
1/2, since in that case strategy s2/t2 is the unique best-response. Therefore,
all the strategies available to players in the game depicted in Figure 3.1 are
rationalizable.

Classical game theory does not offer a model of how rational players
form beliefs about each other’s rationalizable strategy choices, and therefore
cannot answer certain important questions, such as how players coordinate
their actions on a Nash equilibrium, or which Nash equilibrium, if any 4,
will be the most likely outcome of a rational gameplay (Olcina and Urbano
1994).

This prompted the emergence of multiple theories which purport to ex-
plain how players resolve games with multiple rationalizable outcomes. One
of those theories is the team reasoning theory, which suggests that certain
structural and/or contextual features of a game may trigger a shift in player’s
mode of reasoning from individualistic best-response reasoning to reasoning
as a member of a team. A decision-maker who reasons as a member of a team
identifies a strategy profile that leads to the attainment of the best possible
outcome for the group of individuals acting together as a team, and works

4Aumann and Brandenburger (1995) have established the epistemic conditions of Nash
equilibrium, both for two player games and games with n > 2 players. In a two player
game, if rationality of the players and each player’s conjecture (that is, a subjective
probability distribution over opponent’s strategies) are mutually known, then players will
end up playing one of the Nash equilibria of the game. In a game with more than two
players, the epistemic conditions of Nash equilibrium are more complicated: Players must
have a common prior about the state of the world, and their conjectures must be common
knowledge. Common knowledge of rationality is not one of the necessary conditions for
the Nash equilibrium to obtain. In standard game theory models, players’ conjectures
are not assumed to be mutually (commonly) known. If players’ conjectures are private
and uncorrelated, they may choose best-response strategies to their private beliefs, and
the combination of their best response strategies may not be a Nash equilibrium of the
game. For a detailed discussion and proofs, see Aumann and Brandenburger 1995 and
Perea 2012.
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out the strategy that s/he has to choose in order to make the attainment of
that outcome possible. This theory offers an explanation of how people may
use a certain concept of mutual advantage to resolve certain non-cooperative
games with multiple rationalizable outcomes. However, it achieves that by
making a potentially conceptually problematic departure from the orthodox
notion of individual rationality – one of the central principles of the orthodox
game theory5.

The theory of virtual bargaining (Misyak and Chater 2014 and Misyak et
al. 2014) is a hypothetical, or fictitious, bargaining model. It is an attempt
to incorporate the notion of mutual advantage into game theoretic analysis
of non-cooperative games in a way compatible with the basic principles of
orthodox game theory. The theory suggests that decision-makers choose
their strategies on the basis of what strategy profile(s) they would agree
to play if they could openly bargain – engage in real negotiations, in which
each player can communicate his or her offers to the other players and receive
their counteroffers.

An idea that certain principles of bargaining theory can be used in the
game theoretic analysis of other types of non-cooperative games is not en-
tirely new: Conceptual connections between bargaining and the equilibrium
(rationalizable strategy) selection problems in non-cooperative games have
been discussed, among others, by Raiffa (1953), Luce and Raiffa (1957),
Aumann (1959), Schelling (1960), Myerson (1991), Moreno and Wooders
(1996), and Ambrus (2006, 2009). The virtual bargaining theory is novel in
a sense that the suggested model of hypothetical bargaining is treated not
merely as a descriptive tool providing approximately accurate descriptions
of people’s choices (the so-called as if model), but as a tool providing an
approximately accurate description of the outcome of an actual process of
mental simulation of open bargaining by which people arrive at their strat-
egy choices in non-cooperative games. In other words, the proponents of the
theory claim that people actually engage in mental, or ‘virtual’, simulation
of the open bargaining process in order to resolve non-cooperative games
(see Misyak and Chater 2014, Misyak et al. 2014).

Hypothetical bargaining is a conceptually appealing idea. In bargaining
games where players’ agreements are not binding, the set of feasible agree-
ments is the set of correlated equilibria. A bargaining solution is a correlated
equilibrium which satisfies a number of intuitively desirable properties. Ac-
cording to Myerson, a bargaining solution can be interpreted as a reasonably
accurate expectation of the outcome of open bargaining process involving
self-oriented individuals of roughly equal bargaining abilities (see Myerson

5For a detailed discussion, see chapter 2.
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1991). Therefore, it seems reasonable to believe that certain properties of
bargaining solutions that decision-makers recognize as being desirable may
also play a role in players’ identification of mutually beneficial solutions of
other types of non-cooperative games.

In addition, bargaining theory is a branch of non-cooperative game the-
ory: It relies on the same basic principles of the orthodox game theory as
solution concepts of non-cooperative games (for extensive discussion, see
Myerson 1991). Unlike a team-reasoning decision-maker whose aim is to
maximally advance the interests of a team, a bargainer is a self-oriented
decision-maker – an individual who aims to maximally advance his or her
personal interests, and only cares about the interests of other interacting
individuals insofar as their actions may promote or hinder the advancement
of his or her own personal interests. Like a best-response reasoner, a bar-
gainer is assumed to deviate from the agreement in situations where such
deviation is personally beneficial. For this reason, bargaining solutions have
some conceptually appealing stability properties.

Finally, like the team reasoning theory, the theory of hypothetical bar-
gaining suggests that players aim to resolve games by identifying and im-
plementing a mutually advantageous solution. This hypothesis has some
indirect empirical support. Colman and Stirk (1998) conducted an experi-
ment with coordination games, in which participants were asked to report
the reasons of their strategy choices. The results suggest that a substantial
proportion of people use some notion of mutual advantage when reasoning
about non-cooperative games6.

However, the theory of hypothetical bargaining is relatively new and
therefore has substantial conceptual limitations. A formal model represent-
ing the process of mental bargaining is not yet available (for discussion,
see chapter 1). One of the fundamental questions pertaining to the the-
ory of hypothetical bargaining which, I believe, does not have a satisfactory
answer is what properties a strategy profile must have in order to be identi-
fied by hypothetical bargainers as the hypothetical bargaining solution of a
game. Misyak and Chater suggest that the ‘existing formal accounts of ex-
plicit bargaining, such as Nash’s theory of bargaining, while incomplete, are
nonetheless useful as a starting point for the analysis of virtual bargaining’
(Misyak and Chater 2014: 4). In other words, at its current state the the-

6Colman and Stirk (1998) report results from multiple common interest and mixed
motive games, including the Hi-Lo game, the Chicken game, the Stag Hunt Game, the
Battle of the Sexes game, the Prisoner’s Dilemma game and the Deadlock game. Their
results suggest that a substantial proportion of participants justified their choices in one-
shot games by appealing to some notion of mutual benefit (‘most points for both’, ‘mutual
benefit’, etc.)
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ory is, essentially, the Nash bargaining solution applied to non-cooperative
games.

In this chapter I will argue that the application of the Nash bargain-
ing solution to non-cooperative games is problematic for two reasons. First,
the Nash bargaining solution function is not sensitive to the relevant infor-
mation about the possible alternative allocations of players’ personal payoff
gains, and therefore it does not offer a compelling answer to the question of
how hypothetical bargainers identify a hypothetical bargaining solution in
games with multiple (weakly) Pareto optimal alternatives, each of which is
associated with a different allocation of players’ personal payoff gains.

Second, I will argue that the standard Nash bargaining solution can only
be applied to cases where players have information about each other’s pref-
erences over the lotteries over the set of possible agreements (i.e. cardinal
preferences over the possible agreements), and so cannot be meaningfully ap-
plied to cases where only ordinal information about preferences is available
to the interacting decision-makers.

In this chapter I propose a benefit-equilibrating (later abbreviated as BE)
hypothetical bargaining solution concept for non-cooperative games, which
is broadly in line with the principles underlying Conley and Wilkie’s (2012)
ordinal egalitarian solution for Pareto-optimal point selection problems with
finite choice sets. I will argue that the proposed solution concept can be
applied to cases where players only have information about each other’s or-
dinal payoffs, as well as to cases where interpersonal comparisons of decision-
makers’ cardinal payoffs are assumed not to be meaningful. I offer both
the ordinal and the cardinal versions of this solution concept, discuss their
formal properties, and illustrate their application in the formal analysis of
non-cooperative games with a number of experimentally relevant examples.

The rest of the chapter is structured as follows. In section 2 I discuss the
virtual bargaining theory and the reasons of why the use of the Nash bargain-
ing solution for representation of the outcomes of hypothetical bargaining in
non-cooperative games may be conceptually problematic. In sections 3 and
4 I propose the ordinal and the cardinal versions of the benefit-equilibrating
(BE) bargaining solution for two player games. In section 5 I discuss a ver-
sion of the BE solution concept for n-player games. With section 6 I conclude
and discuss some of the limitations of the proposed model.
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3.2 Hypothetical Bargaining

3.2.1 Misyak and Chater’s Virtual Bargaining Model

According to virtual bargaining theory, hypothetical bargainers resolve non-
cooperative games by identifying those strategy profiles which, they believe,
they would agree to play if they could openly bargain – engage in real ne-
gotiations, in which each player communicates his or her offers to the other
players and receives their counteroffers. A player who reasons as a hypothet-
ical bargainer interprets all the pure and mixed strategy profiles of a game
as possible agreements. S/he then identifies a set of feasible agreements – a
subset of possible agreements, where each element of this subset is a strategy
profile, such that no player can exploit the other players by deviating from
it. The player then identifies a feasible agreement (or agreements) which,
s/he believes, the players would agree to play in open bargaining, and plays
his or her part in realizing that agreement, provided that s/he has a reason
to believe that the other players are hypothetical bargainers and will carry
out their end of that agreement by choosing the appropriate strategies. An
agreement (or agreements) identified as the hypothetical bargaining solution
is the mutually beneficial and agreeable solution of the game for players who
reason as hypothetical bargainers (for details, see Misyak and Chater 2014
and Misyak et al. 2014).

To grasp the intuition behind this model of reasoning, consider the Hi-Lo
game depicted in Figure 3.2:

hi lo

hi 2, 2 0, 0

lo 0, 0 1, 1

Figure 3.2: Hi-Lo game

This game has two Nash equilibria in pure strategies – (hi,hi ) and (lo, lo).
The third rational solution is a mixed Nash equilibrium

(
1
3hi,

2
3lo;

1
3hi,

2
3lo
)
.

The best-response reasoners who cannot communicate with each other face
a coordination problem. Yet if the players were to negotiate a joint action
plan, they would immediately agree to play (hi,hi ), since this strategy profile
is associated with the best possible payoffs for both players. The joint action
plan to realize strategy profile (hi,hi ) is a self-enforcing, or feasible, agree-
ment: If one player chooses hi, the self-oriented co-player can do nothing
more personally advantageous than to choose hi as well, since this strategy
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is a unique best response to opponent’s choice of strategy hi.
The fundamental question pertaining to this theory is what formal bar-

gaining solution concept could be used to identify the outcomes that hypo-
thetical bargainers would recognize as hypothetical bargaining solutions of
non-cooperative games. Misyak and Chater suggest that the ‘goodness of a
feasible bargain is, following Nash’s theory of bargaining, the product of the
utility gains to each player (relative to a no-agreement baseline) of adhering
to that agreement’ (Misyak and Chater 2014: 4).

Misyak and Chater do not provide a formal model of how the Nash
bargaining solution is supposed to be applied to non-cooperative games, yet
an attempt to (re)construct it will be made in order to illuminate some of
the non-trivial technical assumptions of this theory.

Suppose that two hypothetical bargainers are playing a normal form game
Γ in which each player i ∈ {1, 2} has a set of pure strategies Si . A mixed
strategy of player i ∈ {1, 2} is a probability distribution over Si . Let Σi be a
set of all such probability distributions and σi ∈ Σi be a mixed strategy of
i ∈ {1, 2}, where σi (si ) is a probability assigned to pure strategy si ∈ Si . A
mixed strategy outcome is defined as a mixed strategy profile σ = (σ1,σ2).

Let Σ = Σ1×Σ2 be the set of all the mixed strategy profiles of Γ. Accord-
ing to the principles of Nash bargaining theory, each player’s preferences over
the possible agreements must capture their attitude to risk (for an extensive
discussion, see Nash 1950a). Each player’s preferences must therefore be de-
fined over the set of lotteries. Each lottery ‘prize’ is a particular combination
of players’ mixed or pure strategies, or strategy profile.

Let L (Σ) be a set of lotteries over Σ and ui : L (Σ) → R be a pay-
off function of player i ∈ {1, 2}. From the set of possible agreements, hy-
pothetical bargainers must establish a disagreement point – a utility pair
d =
(
u
re f
1 ,u

re f
2

)
representing each player’s expectation of a personal outcome

that s/he would get if the players were to fail to reach an agreement. A set
of possible agreements B can then be defined as a set of utility pairs where
each player gets at least his or her disagreement payoff:

B =
{
(u1 (σ ) ,u2 (σ )) : ui (σ ) ≥ u

re f
i ∀i ∈ {1, 2}} (3.1)

In standard bargaining games the set of self-enforcing agreements in cases
where no external enforcement is available is taken to be the set of correlated
equilibria of a game7. If the players were able to communicate, they could,

7In cases where players’ agreements are enforced by an external party, the feasibility
set includes all the possible agreements. If the external enforcer is not available, the
set of feasible agreements is composed only of correlated equilibria – the self-enforcing
agreements of the game. Misyak and Chater seem to suggest that virtual bargaining
mimics the procedure of bargaining where external an external enforcer is not available.
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in principle, implement any correlated equilibrium. In the context of non-
cooperative games, however, the players cannot communicate. They cannot
agree to coordinate their actions by observing some correlation device, such
as, for example, a toss of a fair coin. Therefore, it seems natural to assume
that only the Nash equilibria8 are the feasible (i.e. both implementable
and self-enforcing) agreements in a non-cooperative game. A set of feasible
agreements F ∈ P (B) can thus be defined in the following way:

F =
{
(u1 (σ ) ,u2 (σ )) ∈ B : σ ∈ ΣNE

}
. (3.2)

The Nash bargaining solution function N (·, ·) satisfies, for every (F ,d ),

N (F ,d ) ∈ arдmax (u1 (σ ),u2 (σ )∈F )

(
u1 (σ ) − ure f1

) (
u2 (σ ) − ure f2

)
. (3.3)

3.2.2 The Limitations of the Model

The standard bargaining solution concepts, including the Nash bargaining
solution, have been developed for a specific class of games, known as bar-
gaining problems. In a standard bargaining problem, there exists a unique
disagreement point – an outcome that obtains when individuals fail to reach
an agreement. Each player can enforce the disagreement outcome: If s/he
decides not to accept any offers, the bargainers end up with the disagreement
outcome. For example, in the Nash (1950a) bargaining problem a disagree-
ment point is assumed to be an outcome in which both players gain nothing.
In axiomatic bargaining theory, players’ disagreement points are used to de-
termine each player’s personal utility gains from each feasible agreement, and
thus it plays a fundamental role in formal characterizations of the standard
bargaining solutions 9. In strategic (alternating offers) bargaining models,
disagreement points are interpreted as threat points: At each step of the
bargaining process, each player has the ability to reject the opponent’s offer
and force him or her to consider a counteroffer by threatening to play his or
her disagreement strategy, which would harm the opponent by bringing him

8Misyak and Chater (2014) suggest that real-world decision-makers may be using a less
restrictive feasibility criterion than the one which underlies the Nash equilibrium concept.
That criterion will be discussed separately in section 3.5.2.

9In axiomatic bargaining theory, the disagreement point is used to identify the feasible
agreements which satisfy a certain set of desirable properties, such as Pareto efficiency,
symmetry, independence of irrelevant alternatives, proportionality, etc. See, for example,
Luce and Raiffa 1957, Kalai and Smorodinsky 1975, Kalai 1977, Myerson 1977, Roth
1979.
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or her down to his or her personal disagreement payoff as well10.
The Nash bargaining solution has been developed to resolve a specific

type of game, known as the Nash bargaining problem. In the standard for-
mulation of the Nash bargaining problem, two players have to decide on how
to split a perfectly divisible good. Each player’s utility function represents
his or her preferences over lotteries over the set of feasible allocations of the
good. The Nash bargaining solution of this problem is a unique distribution
of the good11.

In other types of non-cooperative games, however, player’s utility func-
tion is not always defined over allocations of some divisible good. They
may represent any motivations which are relevant for player’s evaluation of
the possible outcomes. A non-cooperative game may have multiple feasible
agreements which maximize the Nash product, yet each agreement may be
associated with a different allocation of personal payoff gains. Since hypo-
thetical bargainers are assumed to be self-oriented decision-makers, it stands
to reason to assume that they would not be indifferent between agreements
associated with different personal payoff gains, and so the question of how a
conflict over allocations of players’ personal payoff gains would be resolved
becomes a crucial one.

For example, consider the two player four strategy coordination game
with four weakly Pareto optimal outcomes12 depicted in Figure 3.3(a). To
simplify the analysis, it will be assumed that players only consider pure
strategy outcomes as possible agreements. There are three weakly Pareto
optimal pure strategy Nash equilibria in this game: (s1, t1), (s2, t2) and
(s3, t3). Notice that each player can guarantee himself or herself a minimum
payoff of 1 by playing strategy s4/t4, which is player’s pure maximin strategy.
A profile of players’ maximin strategies (s4, t4) is a Pareto inefficient Nash
equilibrium.

Suppose that in case of disagreement each player reverts to playing his
or her maximin strategy s4/t4, and so the disagreement point is the Nash
equilibrium (s4, t4). Relative to this disagreement point, the Nash bargaining
solution is the Nash equilibrium (s1, t1), since it maximizes the product of

10In a strategic bargaining model with exogenous risk of breakdown, there is an addi-
tional assumption that bargaining will terminate without agreement, with players getting
their disagreement payoffs. For an extensive discussion of strategic bargaining models,
see Binmore 1980, Rubinstein 1982 and Binmore et al. 1986.

11For an extensive discussion of the Nash bargaining theory, see Nash 1950a, Luce and
Raiffa 1957, and Myerson 1991.

12An allocation of payoffs associated with an outcome is said to be weakly Pareto
optimal if there is no alternative outcome associated with an allocation of payoffs which
makes each interacting player strictly better off.
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t1 t2 t3 t4

s1 10, 9 0, 0 0, 0 0, 1

s2 0, 0 9, 9 0, 0 0, 1

s3 0, 0 0, 0 9, 9 0, 1

s4 1, 0 1, 0 1, 0 1, 1

(a)

t1 t2 t3 t4

s1 10, 9 0, 0 0, 0 0, 1

s2 0, 0 9, 9 0, 0 0, 1

s3 0, 0 0, 0 9, 10 0, 1

s4 1, 0 1, 0 1, 0 1, 1

(b)

t1 t2 t3 t4

s1 10, 2 0, 0 0, 0 0, 1

s2 0, 0 4, 4 0, 0 0, 1

s3 0, 0 0, 0 2, 10 0, 1

s4 1, 0 1, 0 1, 0 1, 1

(c)

Figure 3.3: 4x4 games with three weakly Pareto optimal Nash equilibria

players’ payoff gains. Notice that this outcome is associated with the highest
possible payoffs for both players. Given the set of weakly Pareto optimal
Nash equilibria available in this game, no player could raise an objection
against an offer to play strategy profile (s1, t1).

This, however, would not be the case in games depicted in Figures 3.3(b)
and 3.3(c). Relative to disagreement point (s4, t4), the game depicted in
Figure 3.3(b) has two Nash bargaining solutions — (s1, t1) and (s3, t3). No-
tice, however, that players have conflicting preferences over the two solutions:
The row player’s most preferred outcome is (s1, t1), while the column player’s
most preferred outcome is (s3, t3). This means that players’ personal pay-
offs could not be simultaneously maximized: If one of the outcomes were
chosen for implementation, one of the players would maximize his or her
personal payoff, while the other player would loose an opportunity to max-
imally advance his or her personal interests and, relative to the maximum
payoff attainable in this game, suffer a certain payoff loss. Therefore, if
one of the two Nash bargaining solutions were chosen for implementation,
a disadvantaged player could raise a reasonable objection that the offer is
‘unreasonable’, since it prioritizes the advancement of one player’s personal
interests over another’s. If, on the other hand, the players were to choose
outcome (s2, t2), both of them would suffer a certain loss of maximum attain-
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able personal payoff, but neither of them could raise an objection that the
advancement of the opponent’s personal interests were given priority over
the advancement of his or her own personal interests.

A similar conflict of interests would arise in game 3.3(c). In this game, all
three weakly Pareto optimal Nash equilibria maximize the product of players’
payoffs, relative to disagreement point (s4, t4). Notice that each of the three
agreements is associated with a different allocation of players’ personal payoff
gains. If either outcome (s1, t1) or (s3, t3) were chosen for implementation,
one of the players would maximize his or her personal payoff, while the
other player would get a payoff which is only slightly higher than his or her
maximin payoff. The disadvantaged player could raise a reasonable objection
that, given the set of feasible agreements available in this game, the offer
is ‘unreasonable’. If the players were to choose outcome (s2, t2), both of
them would suffer a substantial loss of maximum attainable personal payoff.
However, neither of them could raise an objection that the advancement of
the opponent’s personal interests were given priority over the advancement
of his or her own personal interests. The Nash bargaining solution, however,
does not single out any of the three Nash equilibria as the most reasonable
allocation of personal gains. This and the previous example suggest that
an arbitration scheme based on the Nash bargaining solution concept may
not capture all the considerations which would be relevant for players when
resolving games with multiple weakly Pareto optimal feasible agreements13.

Each player could threaten the opponent to end the negotiations if s/he
were to deem the opponent’s offer unreasonable. The disadvantaged player
could simply revert to playing his or her maximin strategy (s4/t4), thus leav-
ing the opponent no better option than playing his or her maximin strategy
as well. Alternatively, the disadvantaged player could simply leave the ne-
gotiations without giving any indication as to what s/he intends to do (for
an extensive discussion of this threat strategy, see Luce and Raiffa (1957)).
In such a situation of strategic uncertainty, the opponent could either play
his or her maximin strategy, or attempt to guess the disadvantaged player’s

13Misyak and Chater (2014) discuss a version of the Battle of the Sexes game, in which
one Nash equilibrium is associated with what they refer to as ‘asymmetric payoffs’ (1, 11),
while the other Nash equilibrium is associated with what they deem to be ‘mutually good’
payoffs (10, 9). They suggest that the Nash equilibrium with ‘mutually good’ payoffs is
a more likely bargaining outcome than the Nash equilibrium with ‘asymmetric payoffs’,
since the disadvantaged player will likely reject the offer with ‘asymmetric payoffs’. How-
ever, they do not consider a situation where multiple outcomes which maximize the Nash
product (in their example, the mutually good outcome is the unique Nash bargaining
solution of the game) may be associated with different allocations of payoff gains, nor do
they offer a theoretical explanation of how a choice between multiple Nash bargaining
solutions could be made without interpersonal comparisons of payoffs.
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strategy. In either case, the opponent would risk getting a strictly lower
payoff than the one that s/he would attain if the players were to agree on
playing any of the three weakly Pareto optimal Nash equilibria. Notice that
disadvantaged player’s threat to end the negotiations in response to what
s/he perceives as an unreasonable offer satisfies Raiffa’s credible threat con-
dition, since, in case of failed negotiations, the disadvantaged player would,
relative to payoffs associated with an unreasonable offer, face a risk of suffer-
ing a smaller payoff loss than the player making an unreasonable offer (for
extensive discussion, see Raiffa 1953 and Luce and Raiffa 1957).

Because of the risks associated with a failure to reach an agreement, a
rational player should be motivated to reach an agreement rather than to
face the consequences of failed negotiations. Therefore, each player should
be motivated to focus on the feasible solutions which would minimize the risk
of failed negotiations — the set of feasible agreements which the opponent
would deem reasonable.

There are several game theoretic models which purport to explain players’
choices in experimental games by incorporating fairness considerations and
other types of pro-social preferences into players’ payoff functions. One of
the well-known models is the inequity aversion theory suggested by Fehr
and Schmidt (1999). These theories, although useful in explaining players’
choices in games with material payoffs, cannot be applied to games where
players’ payoffs are their von Neumann and Morgenstern utilities, which are
supposed to represent all the motivations relevant for players’ evaluations
of outcomes, including, among other things, players’ pro-social preferences,
such as inequity aversion, altruism, sensitivity to social norms, and so on.

Another limitation of the standard Nash bargaining solution is that it
can only be applied to cases where players’ cardinal preferences over lotter-
ies are common knowledge among the interacting players. This is a strong
epistemic requirement: In many real-word interdependent decision problems,
people, at best, know each other’s ordinal preferential rankings of feasible
alternatives. The standard Nash bargaining solution cannot be applied to
such cases. However, it is obvious that people engage in negotiations even
in situations where they only have ordinal information about each other’s
preferences. If hypothetical bargaining is supposed to represent the actual
process of reasoning by which real-world decision-makers resolve games, then
solution concept’s applicability to cases where decision-makers have rudimen-
tary information about each other’s preferences is a desirable feature.

In the following sections, I will suggest an alternative bargaining-based
explanation of how players resolve the payoff allocation problems. I will
suggest two versions of the formal benefit-equilibrating (BE) solution concept
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– one for ordinal and one for cardinal cases. I will argue that a certain
type of comparison of foregone opportunities plays an important role in
hypothetical bargaining, and that the benefit-equilibrating solution offers
a plausible explanation of how such comparisons of foregone opportunities
may determine players’ choices in non-cooperative games.

3.3 The Ordinal Benefit-Equilibrating Solution

3.3.1 The Intuition Behind the Ordinal BE Solution

In every negotiations, each self-oriented individual wants to maximally ad-
vance his or her personal interests. S/he is therefore interested in pushing
the other bargaining party or parties to accept as many of his or her initial
demands as possible. In cases where individuals’ personal interests coincide
perfectly, they may reach an agreement without giving up any of their ini-
tial demands. However, in cases where individuals have conflicting interests
(e.g. in cases where their demands cannot be met simultaneously), an agree-
ment can only be reached by at least one of the bargaining parties making
a concession – giving up some of the initial demands. In such situations,
a self-oriented negotiator will be interested in reaching an agreement which
minimizes the number of his or her foregone initial demands, since such an
agreement would maximize the advancement of negotiator’s personal inter-
ests. A negotiator can therefore evaluate the ‘goodness’ of each feasible
agreement on the basis of the number of initial demands that s/he would
have to forego in order for that agreement to be reached: An agreement
which could be reached with a smaller number of foregone initial demands
should always be deemed better than the one which would require a larger
sacrifice of initial demands (Zhang and Zhang 2008).

In addition, the bargainers can use another criterion for evaluating the
feasible bargaining agreements. Assuming that each bargainer knows the set
of each opponent’s initial demands, s/he can also determine the number of
initial demands that each of the bargainers would have to forego in order
to reach a particular agreement. Each bargainer can therefore compare the
number of initial demands that s/he would have to give up in order to reach a
particular agreement with the number of initial demands that would have to
be sacrificed by every other bargainer. The ‘reasonableness’ of each feasible
agreement can then be evaluated on the basis of the distributions of foregone
initial demands.

The ordinal benefit-equilibrating (BE) solution is based on the princi-
ple that hypothetical bargainers compare the acceptability of each feasible
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agreement by comparing the distributions of foregone initial demands asso-
ciated with each feasible agreement: An agreement with a more equitable
distribution of foregone initial demands is deemed more acceptable than the
one with a less equitable distribution of foregone initial demands. In other
words, it is assumed that hypothetical bargainers not only care about the
properties of the agreement itself, but also about how that agreement is
reached. Each feasible agreement can be reached by each bargainer giving
up a certain number of personal initial demands. An agreement associated
with a more equitable distribution of foregone initial demands among the
interacting individuals gets picked over an agreement with a less equitable
distribution of foregone initial demands.

These principles can be applied to the analysis of non-cooperative games
where players only have ordinal information about each other’s preferences
over possible outcomes. For example, consider a simple two player three
strategy non-cooperative ordinal coordination game depicted in Figure 3.4.
The left and the right number in each cell represent the row and the column
player’s ordinal preferences over outcomes respectively.

t1 t2 t3 t4

s1 100, 3 0, 0 0, 0 0, 0

s2 0, 0 60, 5 0, 0 0, 0

s3 0, 0 0, 0 40, 9 0, 0

s4 0, 0 0, 0 0, 0 20, 1

Figure 3.4: Ordinal coordination game

Suppose that players do not know each other’s preferences over lotteries
over the pure strategy profiles of the game, and so only consider pure strat-
egy profiles as possible agreements. It will be assumed that the set of feasible
(i.e. self-enforcing) agreements for such players is the set of pure strategy
Nash equilibria. The game depicted in Figure 3.4 has four Nash equilib-
ria in pure strategies – (s1, t1) ,(s2, t2), (s3, t3) and (s4, t4). Each feasible
agreement can be interpreted as a possible state of the world that players
could bring about if they were to agree on playing a particular combination
of strategies. Assuming that players’ ordinal preferences over outcomes of
this game are common knowledge, each player could determine the num-
ber of preferred alternative agreements that each player would forego if each
of the feasible agreements were chosen to be implemented. If the outcome
(s1, t1) were chosen, the row player’s personal interests would be maximally
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advanced, since s/he prefers this agreement over all the other feasible al-
ternative agreements (in this case over all the possible outcomes) of this
game. The row player would therefore loose no opportunities to advance his
or her personal interests. The column player, on the other hand, prefers the
outcome (s2, t2) and the outcome (s3, t3) over the outcome (s1, t1). If the
outcome (s1, t1) were chosen, the column player would forego two preferred
alternative agreements.

If the outcome (s3, t3) were chosen, the column player would forego no
opportunities to advance his or her personal interests, since s/he prefers this
agreement over all the other feasible alternative agreements of this game.
The row player, however, prefers the outcome (s1, t1) and the outcome (s2, t2)
over the outcome (s3, t3). If the outcome (s3, t3) were chosen, s/he would
forego two preferred alternative agreements.

By choosing outcome (s2, t2), each player would forego one preferred
alternative agreement: The row player prefers the outcome (s1, t1) over the
outcome (s2, t2), while the column player prefers the outcome (s3, t3) over
the outcome (s2, t2). If the outcome (s4, t4) were chosen, each player would
loose three preferred alternative agreements: Each player prefers outcomes
(s1, t1) , (s2, t2) and (s3, t3) over the outcome (s4, t4).

Assuming that each player is self-oriented, s/he will always prefer a feasi-
ble agreement associated with a smaller number of foregone preferred alter-
natives over a feasible agreement associated with a larger number of foregone
preferred alternatives. If this preference relation is common knowledge, each
player must be able to construct, for every player of the game, a preferential
ranking of feasible agreements based on the numbers of foregone preferred
alternatives. These rankings are shown in Table 3.1:

Agreement Foregone alt. Agreement Foregone alt.
(s1, t1) 0 (s3, t3) 0

Row: (s2, t2) 1 Column: (s2, t2) 1
(s3, t3) 2 (s1, t1) 2
(s4, t4) 3 (s4, t4) 3

Table 3.1: Players’ foregone preferred alternatives

Both bargainers would easily agree to restrict their negotiations to a sub-
set of feasible agreements including outcomes (s1, t1) , (s2, t2) and (s3, t3).
Such a restriction of the bargaining set is clearly mutually beneficial: For
each bargainer, any agreement in the aforementioned subset guarantees a
strictly lower number of foregone preferred alternatives than the agreement
(s4, t4). Therefore, each player should strictly prefer any agreement within
the aforementioned subset over the agreement (s4, t4). In other words, self-
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oriented players would easily agree not to consider weakly Pareto dominated
feasible agreements. Among the feasible agreements (s1, t1), (s2, t2) and
(s3, t3), however, there is no mutually beneficial agreement: Each of the
agreements in the subset is associated with a particular distribution of fore-
gone preferred alternatives, yet no agreement in this subset is, relative to
any other agreement in that subset, associated with strictly lower numbers
of foregone preferred alternatives for both players. It means that there is
no agreement in the subset which, relative to any other agreement in that
subset, would make both players strictly better off. In this case, hypotheti-
cal bargainers could evaluate the feasible agreements by comparing how the
foregone preferred alternatives would be distributed among the interacting
individuals if each of the agreements were chosen.

Since players’ personal interests cannot be maximally advanced simul-
taneously, they would have to agree on how to distribute the losses of the
preferred alternative agreements: If either the agreement (s1, t1) or the agree-
ment (s3, t3) were chosen, one of the players would forego none of the pre-
ferred alternative agreements, while the other one would forego two. If the
outcome (s2, t2) were chosen, each player would forego one preferred alter-
native agreement.

Notice that each player could threaten the opponent to end the negotia-
tions if s/he were to deem the opponent’s offer unreasonable. The disadvan-
taged player’s threat to end the negotiations in response to an unreasonable
offer satisfies Raiffa’s credible threat condition, since, in case of failed ne-
gotiations, the disadvantaged player would face a risk of loosing a strictly
lower number of foregone preferred alternatives than the player making an
unreasonable offer. If the players were to fail to reach an agreement, they
would end up with no joint plan on how to resolve the game. In such a situa-
tion, each player could revert to playing his or her maximin strategy in order
to secure the best possible outcome that s/he can guarantee to himself or
herself, irrespective of what strategy the other player chooses. However, the
maximin outcome for each player is worse than agreements (s1, t1), (s2, t2)
and (s3, t3). Alternatively, each player could attempt to guess the oppo-
nent’s strategy choice. However, by doing this the player could end up with
the worst possible outcome. Because of the risks associated with a failure
to reach an agreement, a rational player should be motivated to reach an
agreement rather than to face the consequences of failed negotiations.

Notice that outcome (s2, t2) is a weakly Pareto optimal agreement which
minimizes the difference between the numbers of players’ foregone preferred
alternatives. In other words, among the three weakly Pareto optimal agree-
ments (s1, t1), (s2, t2) and (s3, t3), agreement (s2, t2) ensures a maximally
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equitable distribution of foregone preferred alternatives. If the agreement
(s2, t2) were chosen, no player could raise an objection that, given the possi-
ble ways in which each player’s personal interests could be advanced in this
game, the advancement of the other player’s personal interests – the min-
imization of the number of other player’s foregone alternatives – has been
given priority over the advancement of his or her own personal interests.
The pure strategy Nash equilibrium (s2, t2) is the benefit-equilibrating (BE)
solution of this game.

The ordinal BE solution concept is based on the principles which are quite
similar to the ones underlying Conley and Wilkie’s (2012) ordinal egalitarian
bargaining solution for finite sets of Pareto optimal points. In Conley and
Wilkie’s (2012) model, each bargainer has an ordinal ranking of Pareto opti-
mal points, based on calculations of player’s cardinalities of the preferred sets
of alternatives of each Pareto optimal point. A cardinality of the preferred
set of any Pareto optimal point x is simply the number of Pareto optimal
points that a particular bargainer prefers over the point x . An ordinal egali-
tarian bargaining solution is a Pareto optimal point which, for both players,
is associated with equal numbers of foregone preferred alternatives (for an
in-depth discussion, axiomatic characterization and proofs, see Conley and
Wilkie 2012).

The ordinal BE solution, however, is based on a weaker equity require-
ment: It is any weakly Pareto optimal outcome which, given a particular
set of weakly Pareto optimal outcomes, minimizes the difference between
the numbers of players’ foregone preferred alternatives. This means that,
in some games, a BE solution may not be ordinally egalitarian in the sense
suggested by Conley and Wilkie. It is, however, a maximally ordinally equi-
table outcome available in a particular set of feasible weakly Pareto optimal
agreements. This weaker equity requirement is based on assumption that
hypothetical bargainers would not revert to playing a Pareto suboptimal
agreement in games where a strictly ordinally egalitarian and weakly Pareto
optimal agreements were not available, but would rather agree on playing
a weakly Pareto optimal agreement associated with a maximally equitable
distribution of foregone preferred alternatives. Despite this difference, a BE
solution, like the ordinally egalitarian solution, singles out solutions which
are compatible with an intuitively compelling principle that, in every bar-
gaining problem where bargainers have conflicting preferences over a set of
weakly Pareto optimal outcomes, an agreement which, compared to other
feasible weakly Pareto optimal agreements, decreases the number of foregone
preferred alternatives of one player at the expense of increasing the number
of other player’s foregone preferred alternatives will not be agreed upon by
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self-oriented bargainers.

3.3.2 Formalization

Let Γo =
({1, 2} , {Si , ⪰i}i∈{1,2}) be any two player ordinal game, in which

each player i ∈ {1, 2} has a finite set of strategies Si . Let S = S1 × S2
denote the set of all pure strategy profiles, or outcomes, of Γo. Each player
i ∈ {1, 2} has a complete and transitive preference ranking ⪰i over the set
S. Every pure strategy outcome is a pure strategy profile s = (s1, s2). It will
be assumed that players do not know each other’s preferences over lotteries
over pure strategy outcomes, and only consider pure strategy outcomes as
possible agreements.

Let Sbri ⊆ Si denote the set of rationalizable strategies of i ∈ {1, 2}. A
strategy si ∈ Si of i ∈ {1, 2} is rationalizable if, for some opponent j’s strategy
sj,i ∈ Sj , (

si , sj
)
⪰i
(
s̃i , sj
)
∀s̃i ∈ Si . (3.4)

Let Sbr = Sbr1 × Sbr2 denote the set of rationalizable strategy profiles of Γo .

For each rationalizable outcome s ∈ Sbr , we can define the cardinality of the
preferred set of alternatives for every player i ∈ {1, 2}:
Ci
(
s,Sbr

)
≡

{
|T |where s′ ∈ T if and only if s′ ∈ Sbrand s′ ≻i s

}
. (3.5)

Let Cre fi

(
Sbr
)

denote the reference point of player i ∈ {1, 2}. With respect
to the reference point, two definitions seem reasonable. One possibility is
to define the reference point as the worst possible outcome in rationalizable
strategies. In terms of cardinalities of the preferred sets of alternatives, this
reference point can be defined as follows:

Cre fi

(
Sbr
)
=maxs∈Sbr

{
Ci
(
s,Sbr

)}
. (3.6)

The intuition behind this definition is as follows: Hypothetical bargainers
who fail to reach an agreement in open bargaining have no joint plan on how
to play the game. In such a situation of strategic uncertainty, the players
may attempt to coordinate their actions by guessing each other’s strategy
choice (this definition relies on assumption that players cannot choose not
to play the game in case of a failure to reach an agreement). If rationality is
common knowledge, the players should only consider rationalizable strate-
gies. This means that players should expect any outcome of their attempt to
coordinate actions to be a profile of rationalizable strategies. Each player’s
reference point is the worst possible personal outcome that such an attempt
to coordinate actions may yield.
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Another possibility is to define the reference point as the maximin out-
come in rationalizable strategies. In terms of cardinalities of preferred sets of
alternatives, the maximin outcome in rationalizable strategies can be defined
as follows:

Cre fi

(
Sbr
)
=minsi∈Sbri

{
maxsj,i∈Sbrj

Ci
(
s,Sbr

)}
. (3.7)

The intuition behind this definition is as follows: If hypothetical bargainers
fail to reach an agreement, each decision-maker expects the opponent to
choose one of his or her rationalizable strategies, yet s/he is uncertain as to
which one of the rationalizable strategies the opponent is going to choose.
The player will respond to strategic uncertainty by choosing a strategy which
guarantees the best possible outcome (i.e. the outcome with the smallest
cardinality of the preferred set of alternatives), irrespective of which one of
the rationalizable strategies the opponent is going to choose.

The question of which one of the suggested reference points is the best
approximation to how real-world hypothetical bargainers reason about their
options in games cannot be answered on the basis of formal theoretical anal-
ysis alone. Further empirical research is required to answer this question. It
seems reasonable to expect the decision-maker’s choice of a reference point
to depend on how high his or her personal stakes are in a particular game:
It is possible that a decision-maker would adopt a more cautious approach
in a game where the personal stakes were high, while would be more willing
to risk in a game where the personal stakes were low. For the purposes of
the following theoretical discussion, each hypothetical bargainer’s reference
point will be assumed to be the worst outcome in rationalizable strategies.
This assumption concerning player’s reference point seems reasonable for a
model describing hypothetical bargainers’ behaviour in experimental games,
in which participants’ personal stakes are usually relatively low.

Let A = P (S) denote the set of feasible agreements of Γo, where A , ∅.
A pure strategy Nash equilibrium can be defined on the basis of ordinal
information about players’ preferences. It will be assumed that the set of
feasible agreements is the set of pure strategy Nash equilibria of Γo:

A =
{
s ∈ Sbr : s ∈ SNE

}
, where SNE ∈ P (S). (3.8)

Since each bargainer is a self-oriented decision-maker, s/he always prefers
a feasible agreement associated with a smaller cardinality of the preferred
set of alternatives. That is, for any two agreements s ∈ A and s′ ∈ A
such that s′ ≻i s, it must be the case that Ci (s′,A) < Ci (s,A). When
negotiating an implementation of any of the two feasible agreements s ∈ A
and s′ ∈ A, hypothetical bargainers agree to realize agreement s′ ∈ A rather
than agreement s ∈ A if, for every bargainer i ∈ {1, 2}, it is the case that
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Ci (s′,A) < Ci (s,A). From this we can define the set of maximally mutually
advantageous feasible agreements Am ⊆ A. A feasible agreement s ∈ A is
in the set of maximally mutually advantageous feasible agreements Am ⊆ A
only if there is no alterative feasible agreement s′ ∈ A which, for both
bargainers, is associated with a strictly lower cardinality of the preferred set
of alternatives:

s ∈ Am ⇒ s′ < A : Ci
(
s′,Sbr

)
< Ci

(
s,Sbr

)
∀i ∈ {1, 2} . (3.9)

Let Cmax
i

(
Sbr
)

denote the cardinality of the preferred set of alternatives
associated with the best rationalizable outcome for player i ∈ {1, 2}. From
the definition of cardinality of the preferred set of alternatives, it follows that
the best rationalizable outcome is the one which minimizes i’s cardinality of
the preferred set of alternatives:

Cmax
i

(
Sbr
)
=mins∈Sbr

{
Ci
(
s,Sbr

)}
. (3.10)

Let ϕoi (·, ·) be an ordinal measure of loss of attainable individual advantage
of player i ∈ {1, 2}. For an ordinal game, such that, for every i ∈ {1, 2}, it
is the case that Cmax

i

(
Sbr
)
≤ Ci

(
s,Sbr

)
for all s ∈ Sbr , a loss of attainable

individual advantage of player i ∈ {1, 2} associated with a feasible agreement
s ∈ A can be defined in the following way:

ϕoi
(
s,Sbr

)
=
���(Cmax

i

(
Sbr
)
− Cre fi

(
Sbr
))
−
(
Ci
(
s,Sbr

)
− Cre fi

(
Sbr
)) ��� , (3.11)

which can be simplified to

ϕoi
(
s,Sbr

)
=
���Cmax

i

(
Sbr
)
− Ci
(
s,Sbr

) ��� . (3.12)

From definitions (3.5) and (3.10), it follows that Cmax
i

(
Sbr
)
= 0 for every

i ∈ {1, 2}. Therefore, for an ordinal game, such that, for every i ∈ {1, 2}, it
is the case that Cmax

i

(
Sbr
)
≤ Ci

(
s,Sbr

)
for all s ∈ Sbr , an ordinal measure

of loss of attainable individual advantage of i ∈ {1, 2} can be defined in the
following way:

ϕoi
(
s,Sbr

)
=
���−Ci (s,Sbr ) ��� = Ci (s,Sbr ) . (3.13)

The ordinal BE solution function φo (·, ·) satisfies, for every Am,

φo
(
A,Sbr

)
∈ arд mins∈Am

{���ϕoi (s,Sbr ) − ϕoj,i (s,Sbr ) ���} . (3.14)

By inserting (3.13) into (3.14), we get the following definition of the ordinal
BE solution function:

φo
(
A,Sbr

)
∈ arд mins∈Am

{���Ci (s, Sbr ) − Cj,i (s, Sbr ) ���} . (3.15)
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3.3.3 Ordinal BE Solution Properties

An ordinal BE solution (not necessarily unique) exists in every finite two
player ordinal game with at least one Nash equilibrium in pure strategies, in
which each player has a finite set of pure strategies. For any such game, the
set Sbr ⊆ S is finite. It follows that SNE ∈ P (S) is also finite. Since A = SNE ,
the set A is finite as well. It is therefore possible to define, for every feasible
agreement s ∈ A, the cardinality of the preferred set of alternatives for every
i ∈ {1, 2}. In every finite set A = SNE , there must exist a feasible agreement
s ∈ A, such that

s′ < A : Ci
(
s′,Sbr

)
< Ci

(
s,Sbr

)
∀i ∈ {1, 2} . (3.16)

It follows that s ∈ Am, which means that Am , ∅, and so a BE solution
exists.

Every ordinal BE solution is a weakly Pareto optimal feasible agreement.
Let Awpo ⊆ A denote the set of weakly Pareto feasible agreements of Γo. A
feasible agreement s ∈ A belongs to a set of weakly Pareto optimal feasible
agreements only if there is no alternative feasible agreement s′ ∈ A such that
s′ ≻i s ∀i ∈ {1, 2}. In terms of cardinalities of preferred sets, this condition
can be defined as follows:

s ∈ Awpo ⇒ s′ < A : Ci
(
s′, Sbr

)
< Ci

(
s,Sbr

)
∀i ∈ {1, 2} . (3.17)

Condition (3.17) is equivalent to condition (3.9), which implies that
Awpo = Am. Since the ordinal BE solution function always picks a subset
of Am ⊆ A, it follows that BE solution is always a weakly Pareto optimal
feasible agreement.

Weak Pareto optimality property is intuitively compelling: It seems un-
reasonable to expect the intelligent players who understand both the struc-
ture of the game and each other’s motivations to implement an agreement if
there is another feasible agreement which is deemed strictly better by every
player. Unlike a strict Pareto improvement, which may not make every inter-
acting individual better-off, a weak Pareto improvement is always beneficial
to every interacting individual, and so it seems reasonable to expect it to
be chosen by self-oriented decision-makers – individuals who aim to advance
their personal interests as much as possible14.

14An outcome x is said to be a strict Pareto improvement over the outcome y if it makes
at least one individual better-off without making anyone else worse off. A self-oriented
individual who does not gain anything from implementing a strict Pareto improvement
x has no personal incentive to implement it. An outcome x is said to be a weak Pareto
improvement over the outcome y if it makes everyone strictly better off. In case of a weak
Pareto improvement, each interacting individual has a personal incentive to implement it.
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Every ordinal BE solution is invariant under additions of weakly Pareto
irrelevant alternatives. In other words, a BE solution will remain invariant
under additions of rationalizable strategy profiles which are weakly Pareto
dominated by every feasible agreement in the set of maximally mutually ad-
vantageous feasible agreements. Suppose that an ordinal game Γo

′ is derived
from an ordinal game Γo by extending it with a strategy profile s∗ ∈ Sbr .
Recall that Am = Awpo for every Γo. A strategy profile s∗ ∈ Sbr is a weakly
Pareto irrelevant alternative if and only if, for every i ∈ {1, 2}, it is the case
that s ≻i s∗ ∀s ∈ Am. In terms of cardinalities of the preferred sets of alter-
natives, strategy profile s∗ ∈ Sbr is a weakly Pareto irrelevant alternative if
and only if, for every i ∈ {1, 2},

Ci
(
s∗,Sbr

)
> Ci

(
s,Sbr

)
∀s ∈ Am . (3.18)

It follows that s∗ < Am, which means that ordinal games Γo and Γo
′ are such

that Am = Am′. From definitions (3.5) and (3.18), it follows that, for every
i ∈ {1, 2}, it is the case that Ci

(
s,Sbr

′)
= Ci

(
s,Sbr

)
for every s ∈ Am′. Since

Am′ = Am, it follows that φo
(
A′,Sbr ′

)
= φo

(
A,Sbr

)
.

Every ordinal BE solution also satisfies a version of the individual ratio-
nality axiom. In standard cardinal bargaining models, a cardinal bargaining
solution function satisfies the axiom of individual rationality if and only if, for
every bargaining problem, it selects an agreement which yields each player at
least his or her disagreement payoff. The intuition behind this requirement
is that a rational bargainer should not accept any agreement which provides
him or her a payoff lower than a certain threshold. There are multiple sug-
gestions of how this threshold could be defined. One of the suggestions is
that a rational bargainer should not accept an agreement which yields him or
her a utility lower than his or her maximin payoff (for extensive discussion,
see Luce and Raiffa 1957, Roth 1977, and Myerson 1991). In game theoretic
context, a maximin payoff can be defined as the maximum personal payoff
that a player can guarantee to himself or herself, irrespective of what the
other players choose to do. In ordinal terms, a maximin threshold can be
defined as a pure strategy outcome that a player prefers over all the other
pure strategy outcomes which s/he can guarantee to himself of herself, ir-
respective of the opponents’ strategy choices. For example, in the ordinal
coordination game depicted in Figure 3.4, each player’s maximin outcome is
every pure strategy profile associated with the ordinal payoff of 0.

For any strategy profile s ∈ S (including any non-rationalizable strategy
profile), the cardinality of the preferred set of alternatives can be defined as
follows:

Ci (s,S) ≡
{��T ′��where s′ ∈ T ′ if and only if s′ ∈ S and s′ ≻i s

}
. (3.19)
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In terms of cardinalities of preferred sets of alternatives, the ordinal maximin
threshold of i ∈ {1, 2} can be defined as follows:

Cmxm
i (S) =minsi∈Si

{
maxsj,i∈S jCi (s,S)

}
. (3.20)

The ordinal BE solution function satisfies the individual rationality re-
quirement if and only if, for every i ∈ {1, 2}, every BE solution is a strategy
profile s ∈ S, such that

Cmxm
i (S) ≥ Ci (s,A) ∀s ∈ arд mins∈Am

{���ϕoi (s,Sbr ) − ϕoj,i (s,Sbr ) ���} . (3.21)

Since A = SNE , it follows that every ordinal BE solution is a Nash equi-
librium. If a strategy profile s ∈ S is a Nash equilibrium, the preferences of
player i ∈ {1, 2} are as follows:(

si , sj,i
)
∈ SNE ⇒

(
si , sj
)
⪰i
(
s̃i , sj
)
∀s̃i ∈ Si . (3.22)

In terms of cardinalities of preferred sets, property (3.22) can be defined as
follows:(

si , sj,i
)
∈ SNE ⇒ Ci

((
si , sj
)
,S
)
≤ Ci

((
s̃i , sj
)
, S
)
∀s̃i ∈ Si . (3.23)

Notice that the maximin strategy smxm
i ∈ Si of each player i ∈ {1, 2} is

such that
Ci
((
smxm
i , sj,i

)
,S
)
≤ Cmxm

i (S) ∀sj ∈ Sj . (3.24)

Every Nash equilibrium of Γo must have the following property:(
si , sj,i

)
∈ SNE ⇒

(
si , sj
)
⪰i
(
smxm
i , sj

)
∀i ∈ {1, 2} . (3.25)

In terms of cardinalities of preferred sets, property (3.25) can be character-
ized as follows:(

si , sj,i
)
∈ SNE ⇒ Ci

(
si , sj
)
≤ Ci

(
smxm
i , sj

)
∀i ∈ {1, 2} . (3.26)

Since every ordinal BE solution is a Nash equilibrium, the individual
rationality requirement is always satisfied.

Every ordinal BE solution is invariant under additions of non-rationalizable
outcomes. Suppose that f o (·) is some ordinal bargaining solution function.
The axiom requires that, for any two games Γo and Γo

′, such that Sbr = Sbr
′,

it must be the case that f o
(
Sbr
)
= f o

(
Sbr

′).
Since Cmax

i and Cre fi are, for every i ∈ {1, 2}, associated with outcomes
in Sbr ⊆ S, the cardinality of the preferred set of alternatives associated with
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every s ∈ Sbr remains invariant under additions of outcomes which are such
that s < Sbr .

For any two games Γo and Γo
′, such that Sbr = Sbr

′, it must be the case
that SNE = SNE ′. Since Am ⊆ SNE , it follows that, for any two games, such
that Sbr = Sbr

′, it must be the case thatAm = Am′. Since ordinal BE solution
function pics a subset of Am ⊆ Sbr , it follows that φo

(
A,Sbr

)
= φo

(
A′,Sbr ′

)
for any two games Γo and Γo

′, such that Sbr = Sbr
′.

Since ordinal BE solution is invariant under additions of non-rationalizable
outcomes, it also satisfies a version of the independence of irrelevant strate-
gies axiom, which requires the solution to be invariant under additions of
non-rationalizable strategies.

Every Nash equilibrium of an ordinal game is invariant under order-
preserving transformations of ordinal representations of players’ preferences.
A BE solution is always a Nash equilibrium of the ordinal game, and so it
satisfies this ordinal invariance axiom.

3.3.4 Examples

In ordinal games with a unique Pareto efficient Nash equilibrium, the BE
solution is always the unique Pareto efficient Nash equilibrium. For exam-
ple, consider the two player coordination game with a unique Pareto efficient
Nash equilibrium depicted in Figure 3.5. There are two feasible agreements

t1 t2

s1 50, 10 70, 20

s2 70, 15 60, 5

Figure 3.5: Ordinal coordination game with a unique Pareto efficient Nash
equilibrium

in this game – pure strategy Nash equilibria (s2, t1) and (s1, t2). Neither
of the two feasible agreements weakly Pareto dominates the other, which
means that both agreements are maximally mutually beneficial. Players’
losses of attainable individual advantage, as well as differences of players’
losses of attainable individual advantage, are shown in Table 3.2. Notice
that the row player is indifferent between the two agreements. If any of
the two agreements were chosen, the row player would loose no preferred
alternatives. The column player, on the other hand, prefers the agreement
(s1, t2) over the agreement (s2, t1). If the agreement (s2, t1) were chosen, the
column player would forego one preferred alternative. A feasible agreement
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Agreement ϕor ϕoc
��ϕor − ϕoc ��

(s1, t2) 0 0 0
(s2, t1) 0 1 1

Table 3.2: Comparison of players’ losses of attainable individual advantage

which minimizes the difference between players’ losses of attainable indi-
vidual advantage is the Nash equilibrium (s1, t2). It is the unique ordinal
BE solution of this game, which means that hypothetical bargainers would
face no coordination problems in this game. The ordinal BE solution func-
tion would also resolve coordination problem in other ordinal games with a
unique Pareto optimal Nash equilibrium, such as the Hi-Lo game and the
Stag Hunt game.

In ordinal games with multiple Pareto efficient pure strategy Nash equi-
libria, a BE solution may not be unique. Therefore, hypothetical bargainers
would face a coordination problem. For example, consider an ordinal version
of the Chicken game depicted in Figure 3.6. In this game, each player must

s ns

s 40, 4 20, 5

ns 50, 2 10, 0

Figure 3.6: Ordinal Chicken game

simultaneously and independently choose between strategies s (swerve) or
ns (not swerve). It has two Nash equilibria in pure strategies – (s,ns ) and
(ns, s ). Players’ losses of attainable individual advantage, as well as differ-
ences of players’ losses of attainable individual advantage, are shown in Table
3.3: Both Nash equilibria are strictly Pareto optimal, and so both are max-

Agreement ϕor ϕoc
��ϕor − ϕoc ��

(ns, s ) 0 2 2
(s,ns ) 2 0 2

Table 3.3: Comparison of players’ losses of attainable individual advantage

imally mutually advantageous feasible agreements. Notice that both (ns, s )
and (s,ns ) are the ordinal BE solutions of this game. The game has a BE
solution, yet hypothetical bargainers face an action coordination problem.
This is an example of a game where ordinal information about players’ pref-
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erences is not sufficient to resolve the Nash equilibrium selection problem15.
Other coordination mechanisms, such as, for example, social conventions,
are necessary to resolve the coordination problem in this game.

In an ordinal bargaining game with a finite number of possible divisions
of resource, a Pareto efficient BE solution will always exist16. Let us first
consider a discrete Divide-the-Cake game with an even number of slices of
cake depicted in Figure 3.7. The numbers represent players’ ordinal payoffs.
In this game, two players are presented with a cake that is cut into four

0 1 2 3 4

0 0, 0 0, 1 0, 2 0, 3 0, 4

1 1, 0 1, 1 1, 2 1, 3 0, 0

2 2, 0 2, 1 2, 2 0, 0 0, 0

3 3, 0 3, 1 0, 0 0, 0 0, 0

4 4, 0 0, 0 0, 0 0, 0 0, 0

Figure 3.7: Divide-the-Cake game (even number of pieces)

equal-sized pieces and simultaneously place a demand for the number of
pieces for themselves (from 0 to 4). If the sum of their demanded pieces
does not exceed 4, they both get what they have asked for. If, on the other
hand, the sum exceeds 4, they both get nothing. The game has five Pareto
efficient pure strategy Nash equilibria (4, 0), (3, 1), (2, 2), (1, 3), (0, 4) and
one Pareto inefficient Nash equilibrium (4, 4). Players’ losses of attainable
individual advantage, as well as the differences of players’ losses of attainable
individual advantage, are shown in Table 3.4.

A (strictly) Pareto efficient strategy profile (2, 2) is the BE solution of this
game. This result usually appeals to most decision-makers, and is supported
by experimental results17.

Let us consider a case where players have to split a larger cake which is
cut into five equal-sized pieces. Each of them has to place a demand from
0 to 5 pieces. This discrete Divide-the-Cake game with an odd number of

15It will later be shown that the cardinal BE solution function can resolve the coordi-
nation problem in the cardinal version of the Chicken game.

16In games with infinite number of possible divisions of resource, the number of feasible
agreements is countably infinite, and so the cardinalities of the preferred sets cannot be
established with the procedure suggested in this chapter.

17See Nydegger and Owen (1974) for an experiment in which two players are asked to
divide $1 among themselves and virtually everybody agrees on a 50%-50% split.
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Agreement ϕor ϕoc
��ϕor − ϕoc ��

(4, 0) 0 4 4
(3, 1) 1 3 2
(2, 2) 2 2 0
(1, 3) 3 1 2
(0, 4) 4 0 4
(4, 4) 4 4 0

Table 3.4: Comparison of players’ losses of attainable individual advantage

pieces is shown in Figure 3.8:

0 1 2 3 4 5

0 0, 0 0, 1 0, 2 0, 3 0, 4 0, 5

1 1, 0 1, 1 1, 2 1, 3 1, 4 0, 0

2 2, 0 2, 1 2, 2 2, 3 0, 0 0, 0

3 3, 0 3, 1 3, 2 0, 0 0, 0 0, 0

4 4, 0 0, 0 0, 0 0, 0 0, 0 0, 0

5 5, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 3.8: Divide-the-Cake game (odd number of pieces)

This game has six Pareto efficient pure strategy Nash equilibria (5, 0),
(4, 1), (3, 2), (2, 3), (1, 4), (0, 5), and one Pareto inefficient Nash equilibrium
(5, 5). Players’ losses of attainable individual advantage, as well as the dif-
ferences of players’ losses of attainable individual advantage, are shown in
Table 3.5:

Agreement ϕor ϕoc
��ϕor − ϕoc ��

(5, 0) 0 5 5
(4, 1) 1 4 3
(3, 2) 2 3 1
(2, 3) 3 2 1
(1, 4) 4 1 3
(0, 5) 5 0 5
(5, 5) 5 5 0

Table 3.5: Comparison of players’ losses of attainable individual advantage

The feasible maximally mutually advantageous agreements which mini-
mize the difference between players’ losses of attainable individual advantage
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are the Nash equilibria (3, 2) and (2, 3). Hypothetical bargainers would iden-
tify them both as the BE solutions of this bargaining game. Hypothetical
bargaining narrows down the set of solutions, yet hypothetical bargainers
would nevertheless face a coordination problem in this game.

3.4 The Cardinal Benefit-Equilibrating Solu-
tion

3.4.1 The Intuition Behind the Cardinal BE Solution

To grasp the intuition behind the cardinal BE solution, consider the two
player three strategy coordination game depicted in Figure 3.9:

t1 t2 t3

s1 100, 98 0, 0 0, 0

s2 0, 0 2, 99 0, 0

s3 0, 0 0, 0 1, 100

Figure 3.9: Coordination game with three weakly Pareto optimal outcomes

There are three pure strategy Nash equilibria in this game: (s1, t1) , (s2, t2)
and (s3, t3). There are also four Nash equilibria in mixed strategies18. To
simplify the presentation of the key principles underlying the cardinal BE
solution, in this particular example only the pure strategy Nash equilibria
will be considered. Notice that each pure strategy Nash equilibrium is a
weakly Pareto optimal outcome. There is a conflict of players’ personal in-
terests in this game: The row player’s most preferred Nash equilibrium is
(s1, t1), which is the least preferred Nash equilibrium for the column player.
The column player’s most preferred Nash equilibrium is (s3, t3), which is the
least preferred Nash equilibrium for the row player. The Nash equilibrium
(s2, t2) is, for both players, the second best pure strategy Nash equilibrium
in this game.

If the players were hypothetical bargainers and treated this game as an or-
dinal bargaining problem, they would identify the Nash equilibrium (s2, t2)
as the ordinal BE solution of this game: If the Nash equilibrium (s2, t2)

18The four mixed strategy Nash equilibria are: (1)
(
99
197s1,

98
197s2;

1
51t1,

50
51t2
)
,

(2)
(
4950
14701s1,

4900
14701s2,

4851
14701s3;

1
151t1,

50
151t2,

100
151t3

)
, (3)

(
50
99s1,

49
99s3;

1
101t1,

100
101t3

)
, (4)(

100
199s2,

99
199s3;

1
3t2,

2
3t3
)
.
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were chosen, each player would forego one opportunity to advance personal
interests. Given the available information about players’ cardinal payoffs,
however, such a solution of this game intuitively seems unreasonable: The
column player’s utility loss seems to be insignificant compared to the utility
loss of the row player. In real-world negotiations, the row player could be ex-
pected not to accept any agreement other than (s1, t1). If the column player
refused, the row player would suffer relatively insignificant payoff losses from,
for example, playing his or her mixed maximin strategy19 rather than playing
a part in realizing any agreement other than (s1, t1).

Although this intuition is compelling, it is based on an implicit com-
parison of players’ payoffs. In orthodox game theory, players’ payoffs are
assumed to be von Neumann and Morgenstern utilities. The interpersonal
comparisons of von Neumann and Morgenstern utilities are conceptually
problematic: The expected utility theory does make numerical representa-
tions of individuals’ preferences possible, but its principles do not imply their
interpersonal comparability (for extensive discussion of why this is so, see,
for example, Luce and Raiffa 1957). In other words, the theory offers no an-
swer to the question of how one player’s utility units should be ‘converted’
into utility units of another player.

Although players’ utility units may not be interpersonally comparable in
the aforementioned sense, there seems to be a conceptual reason to believe
that hypothetical bargainers would identify the Nash equilibrium (s1, t1) as
the bargaining solution of this game. This would happen if the players were
to evaluate the feasible outcomes by comparing their losses of the maximum
attainable individual advantage associated with the implementation of each
feasible agreement.

Assuming that players’ cardinal payoffs are common knowledge, each
player should be able to identify the personally best outcome for every in-
teracting player. For each player, the personally best outcome is maximally
individually advantageous. Any agreement associated with a lower personal
payoff than the best outcome can be said to be less individually advanta-
geous than the personally best outcome. If such an agreement were chosen,
a player would suffer a certain loss of maximum attainable individual ad-
vantage. Each player’s loss of the maximum attainable individual advantage
could be determined if the levels of individual advantage associated with
each outcome could be determined.

This, I contend, can be done with a relatively simple Raiffa normalization
procedure (Raiffa 1953), also known as the ‘zero-one rule’, which can be used

19In this case, the maximin strategy of the row player is mixed strategy(
4950
14701s1,

4900
14701s2,

4851
14701s3

)
, yielding the row player a payoff of 100/151.
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to measure the level of satisfaction of decision-maker’s preferences and which,
according to Hausman (1995), is the only legitimate method for comparisons
of decision-makers’ preference satisfaction levels (for extensive discussion, see
chapter 2)20. According to this procedure, the level of individual advantage
gained from a particular outcome can be defined as the extent by which that
outcome advances player’s personal payoff from his or her reference point
relative to the largest advancement possible, where the latter is associated
with the attainment of the outcome that s/he prefers the most.

For the purposes of the BE solution, each hypothetical bargainer’s most
preferred outcome will be defined as the best possible payoff associated with
a rationalizable outcome of the game:

umax
i =maxs∈Sbrui (s) , where Sbr =

(
Sbr1 × Sbr2

)
⊆ S. (3.27)

As in the case of the ordinal BE solution, two definitions of hypothet-
ical bargainers’ reference points seem reasonable. One possibility is to set
each hypothetical bargainer’s reference point to be the worst personal payoff
associated with a rationalizable outcome of the game:

u
re f
i =mins∈Sbrui (s) . (3.28)

Another possibility is to set each hypothetical bargainer’s reference point to
be his or her maximin payoff level in rationalizable strategies – a maximum
payoff that a player can guarantee to himself or herself, irrespective of which
one of the rationalizable strategies the opponent is going to choose:

u
re f
i =maxsi∈Si

{
mins−i∈Sbr−i

ui (s)
}
. (3.29)

For the purposes of the following theoretical discussion, each hypothetical
bargainer’s reference point will be assumed to be the worst possible payoff
associated with a rationalizable outcome of the game.

Consider, again, the coordination game depicted in Figure 3.9. For the
row player, the most preferred rationalizable outcome is the Nash equilib-
rium (s1, t1) (which is also one of the feasible agreements of this game),
while the least preferred rationalizable outcome is any outcome of this game
associated with a payoff of 0. In line with Raiffa normalization procedure,
the value of the row player’s most preferred outcome, which will be denoted
umax
r , is set to 1, since this outcome leads to the maximum advancement
20Raiffa 1953 and Luce and Raiffa 1957 suggest that the 0-1 normalization is a procedure

which can be used to make meaningful interpersonal comparisons of preference satisfaction
levels in games where comparisons of players’ payoff units are initially not meaningful.
See Raiffa 1953 and Luce and Raiffa 1957.
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of row player’s individual advantage (i.e. the maximum satisfaction of row
player’s preferences). The value of the least preferred rationalizable out-
come, which will be denoted as ure fr , is set to 0, since it is associated with
the lowest advancement of the row player’s personal advantage. The levels of
individual advantage associated with each of the feasible agreements can be
established by applying the appropriate transformation of the row player’s
original payoffs:

uιr (s) =
ur (s) − ure fr

umax
r − ure fr

,where s ∈ Sbr . (3.30)

It is easy to check that this transformation applied to the row player’s ref-
erence point will set the value of the reference outcome to 0. The same
transformation applied to the row player’s most preferred rationalizable out-
come (which in this case is the most preferred feasible agreement (s1, t1))
will set its value to 1.

The value of the outcome (s2, t2) is a ratio of the utility associated with
outcome (s2, t2) to the maximum attainable utility, relative to row player’s
reference utility:

ur (s2, t2) − ure fr

umax
r − ure fr

=
2 − 0
100 − 0 = 0.02. (3.31)

The value 0.02 is simply the proportion of the maximum individual advan-
tage that the row player would gain if outcome (s2, t2) were chosen, relative
to his or her reference outcome. Since the maximum attainable level of in-
dividual advantage is 1, the row player would loose, relative to his or her
reference outcome, 0.98 of the maximum attainable individual advantage if
this outcome were chosen.

The value of the outcome (s3, t3) can be determined with the same pro-
cedure:

ur (s3, t3) − ure f

umax
r − ure fr

=
1 − 0
100 − 0 = 0.01. (3.32)

The value of the outcome (s3, t3) shows that, relative to reference outcome,
the row player would gain 0.01 of the maximum individual advantage attain-
able in this game. This means that s/he would loose 0.99 of the maximum
attainable individual advantage if the outcome (s3, t3) were chosen for im-
plementation.

The same procedure can be used to determine the column player’s levels
of individual advantage associated with each feasible agreement. For the
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column player, the feasible agreement (s3, t3) is the best rationalizable out-
come. The worst rationalizable outcome is any strategy profile associated
with a payoff of 0. By applying the aforementioned procedure, we establish
that the values of outcomes (s1, t1), (s2, t2) and (s3, t3) for the column player
are 0.98, 0.99 and 1 respectively. The column player’s individual advantage
losses associated with outcomes (s1, t1), (s2, t2) and (s3, t3) are thus 0.02,
0.01 and 0 respectively.

The values determined with the aforementioned procedure can be inter-
preted in following way. If outcome (s1, t1) were chosen, the row player would
loose 0 per cent of the maximum attainable individual advantage (i.e. the
maximum satisfaction of preferences), while the column player would loose
2 per cent of the maximum attainable individual advantage. If outcome
(s2, t2) were chosen, the row player would loose 98 per cent of the maximum
attainable advantage, while the column player would loose only 1 per cent.
Finally, if outcome (s3, t3) were chosen, the row player would loose 99 per
cent of individual advantage, while the column player would loose none. It is
clear that the outcome which minimizes the difference between players’ losses
of maximum attainable individual advantage is outcome (s1, t1). Outcome
(s1, t1) is the cardinal BE solution of this coordination game.

Notice that all of the aforementioned measures are established using
commonly known and objectively identifiable points in games. When hy-
pothetical bargainers evaluate the feasible agreements, they equate units of
measures of their individual advantage – the advancement of their personal
interests relative to what they personally deem to be the best and the worst
outcome of their interactions – while not being able to equate the units of
the attained personal well-being. All they know is how much a particular
outcome is individually advantageous to a player relative to that player’s
reference outcome and his or her most preferred outcome. In order to use
these measures, hypothetical bargainers need to know each other’s cardinal
payoffs and reference points, but they do not need to be able to make inter-
personal comparisons of their attained well-being. In other words, the BE
solution is a purely formal arbitration scheme: It can operate purely on the
basis of information about players’ reference points and the cardinal pay-
offs represented by the numbers in the payoff matrix, and so can be used in
cases where hypothetical bargainers have no clue as to what kind of personal
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motivations those utility numbers actually represent21.

3.4.2 Formalization

Let Γ =
({1, 2} , {Si ,ui}i∈{1,2}) be a two player normal form game, in which

each player i ∈ {1, 2} has a finite set of pure strategies Si . Let Σi be a set of all
probability distributions over the set of pure strategies Si , and let σi ∈ Σi be
a mixed strategy of i ∈ {1, 2}, where σi (si ) denotes the probability assigned
to pure strategy si ∈ Si . Each mixed strategy outcome is a mixed strategy
profile σ = (σ1,σ2). Each mixed strategy profile should be interpreted as a
profile of players’ randomized actions. Let Σ = Σ1 × Σ2 denote the set of
mixed strategy profiles of Γ, and ui : L (Σ) → R denote the cardinal utility
function of player i ∈ {1, 2}, which represents i’s preferences over the lotteries
over the set of possible agreements – the set of mixed strategy profiles of Γ22.

For each player i ∈ {1, 2}, let Σbr
i ⊆ Σi be a set of rationalizable strategies,

and let Σbr =
(
Σbr
1 × Σbr

2

)
be a set of rationalizable strategy profiles of Γ.

Player i’s utility associated with his or her least preferred rationalizable
outcome in Σbr ⊆ Σ will be denoted as u

re f
i := minσ∈Σbrui (σ ). Player i’s

utility associated with his or her most preferred rationalizable outcome in
Σbr ⊆ Σ will be denoted as umax

i :=maxσ∈Σbrui (σ ).
Let Σ f ⊆ Σbr be a set of feasible agreements of Γ. As in the ordinal

version of the BE solution, it will be assumed that only the self-enforcing
agreements are feasible. Since every pure and mixed Nash equilibrium is
self-enforcing, the set of feasible agreements can be defined as follows:

Σ f =
{
σ ∈ Σbr : σ ∈ ΣNE

}
, which implies that Σ f = ΣNE . (3.33)

21Raiffa normalization is sometimes criticized on the basis of it implicitly ascribing
a particular ratio for making interpersonal comparisons of players’ payoffs at the point
of establishing a common 0–1 scale to legitimize those comparisons. This, it is argued,
may lead to inappropriate results when, in some games, the difference between the worst
and the best case scenario for one player may be trivial while for another it may be a
matter of great importance (see, for example, Sen 1970, Rawls 1971, Griffin 1986 and
Hammond 1991). As has been pointed out by Luce and Raiffa 1957 and Hausman 1995,
this criticism itself is based on an implicit assumption that players’ cardinal utilities
represent some objectively comparable levels of welfare, and that comparisons of welfare
may not always coincide with comparisons of players’ preference satisfaction levels. Yet
Raiffa normalization is supposed to be applied to cases where such comparisons are not
meaningful in the first place. For extensive discussion, see Luce and Raiffa 1957 and
Hausman 1995. This criticism has also been discussed in chapter 2.

22This definition of players’ utility functions represents the assumption that players
view the set of mixed strategy profiles as a set of ‘goods’ over which negotiations take
place.

131



In any game where umax
i , ure fi for every i ∈ {1, 2}, the level of individual

advantage of every player i ∈ {1, 2} associated with any feasible agreement
σ ∈ Σ f can be defined as follows:

uιi (σ ) =
ui (σ ) − ure fi

umax
i − ure fi

. (3.34)

Notice that if i’s function is normalized so that umax
i = 1 and umin

i = 0, then
uιi (σ ) = ui (σ ).

A feasible agreement σ ∈ Σ f is maximally mutually advantageous only if
there is no alternative feasible agreement σ ′ ∈ Σ f which is, for every player
i ∈ {1, 2}, associated with a strictly higher level of individual advantage than
agreement σ ∈ Σ f . That is, for every σ ∈ Σ f ,

σ ∈ Σ f m ⇒ σ ′ < Σ f : uιi (σ
′) > uιi (σ ) ∀i ∈ {1, 2} 23. (3.35)

Let ϕci (·, ·) be a cardinal measure of loss of maximum attainable individual
advantage of player i ∈ {1, 2}. A loss of maximum attainable individual
advantage associated with a feasible agreement σ ∈ Σ f m can, for every player
i ∈ {1, 2}, be defined in the following way:

ϕci
(
σ ,Σbr

)
= *,

umax
i − ure fi

umax
i − ure fi

+- − *,
ui (σ ) − ure fi

umax
i − ure fi

+- . (3.36)

Since
umax
i − ure fi

umax
i − ure fi

= 1 for any Σ f = ΣNE , the definition of function ϕc (·, ·)

can be simplified in the following way:

ϕci
(
σ ,Σbr

)
= 1 − *,

ui (σ ) − ure fi

umax
i − ure fi

+- = 1 − uιi (σ ) . (3.37)

The difference between players’ losses of maximum attainable individual
advantage associated with every σ ∈ Σ f m can be defined as follows:

23As in the ordinal case, this restriction on the set of feasible agreements is based on as-
sumption that self-oriented players would disregard weakly Pareto dominated agreements.
The idea is that self-oriented decision-makers will always prefer any weakly Pareto efficient
agreement over any weakly Pareto dominated agreement, since every weakly Pareto effi-
cient agreement is associated with a strictly higher utility for every self-oriented decision-
maker, irrespective of which weakly Pareto efficient agreement is chosen. A decision to
implement a weakly Pareto dominated agreement is incompatible with the assumption
that hypothetical bargainers are rational and self-oriented decision-makers – individuals
who aim to advance their personal interests as far as possible. For discussion, see Luce
and Raiffa 1957, Kalai and Smorodinsky 1975, and Maschler et al. 2013.
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���(1 − uιi (σ )) − (1 − uιj,i (σ )) ��� = ���ϕci (σ ,Σbr
)
− ϕcj,i

(
σ ,Σbr

) ��� . (3.38)

The cardinal BE solution function φc (·, ·) satisfies, for every Σ f ,

φc
(
Σ f ,Σbr

)
∈ arд minσ∈Σf m

{���ϕci (σ ,Σbr
)
− ϕcj,i

(
σ ,Σbr

) ���} . (3.39)

In cases where some player’s preferences over the rationalizable outcomes
are such that umax = ure f , the proposed 0−1 normalization procedure used to
represent the level of player’s individual advantage cannot be applied, since
the function in such cases is undefined. Such a player is indifferent between
all the agreements in Σ f m ⊆ Σ f , and so there is no agreement in Σ f m which
would advance his or her individual interests more than any other agreement
in Σ f m. This also implies that an individual cannot view the implementation
of any σ ∈ Σ f m as being associated with a loss of maximum attainable
individual advantage. Therefore, in cases where player’s preferences are such
that umax = ure f , it seems reasonable to assume that uı (σ ) = 1 for every
σ ∈ Σ f m, and so ϕc

(
σ ,Σ f m

)
= 0 for every σ ∈ Σ f m.

3.4.3 The Properties of the Cardinal BE Solution

A (possibly non-unique) cardinal BE solution exists in every finite two player
non-cooperative game. Nash (1950b, 1951) proved that a Nash equilibrium
in mixed strategies exists in every finite game with a finite set of players. In
every finite set Σ f = ΣNE , there must exist at least one σ ∈ Σ f , such that

σ ′ < Σ f : uιi (σ
′) > uιi (σ ) ∀i ∈ {1, 2} . (3.40)

It follows that σ ∈ Σ f m, which means that Σ f m , ∅, and so a BE solution
exists.

Cardinal BE solution is always a weakly Pareto optimal feasible agree-
ment. Let Σwpo ⊆ Σ f denote the set of weakly Pareto optimal feasible
agreements of Γ. A feasible agreement σ ∈ Σ f belongs to a set of Pareto
optimal feasible agreements only if there is no alternative feasible agree-
ment σ ′ ∈ Σ f , such that ui (σ

′) > ui (σ ) ∀i ∈ {1, 2}. In terms of levels of
individual advantage, this condition can be defined as follows:

σ ∈ Σwpo ⇒ σ ′ < Σ f : uιi (σ
′) > uιi (σ ) ∀i ∈ {1, 2} . (3.41)

Condition (3.41) is equivalent to condition (3.35), which implies that Σwpo =

Σ f m. Since the cardinal BE solution function always picks a subset of Σ f m ⊆
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Σ f , it follows that BE solution is always a weakly Pareto optimal feasible
agreement.

Cardinal BE solution satisfies a version of the axiom of individual ratio-
nality, which requires the bargaining solution to be an outcome which, for
each player, yields a payoff which is at least as high as his or her maximin
payoff. The cardinal maximin threshold of player i ∈ {1, 2} can be defined
as follows:

umxm
i =maxσi∈Σi

{
minσj,i∈Σjui (σ )

}
. (3.42)

The cardinal BE solution satisfies the individual rationality requirement if
and only if, for every i ∈ {1, 2},

ui (σ ) ≥ umxm
i ∀σ ∈ arд minσ∈Σf m

{���ϕci (σ ,Σbr
)
− ϕcj,i

(
σ ,Σbr

) ���} . (3.43)

The maximin strategy σmxm
i ∈ Σi of player i ∈ {1, 2} is such that

ui
(
σmxm
i ,σj,i

)
≥ umxm

i ∀σj ∈ Σj . (3.44)

If a strategy profile σ ∈ Σ is a Nash equilibrium, then the following condition
must be satisfied:(

σi ,σj,i
)
∈ ΣNE ⇒ ui

(
σi ,σj

)
≥ ui
(
σ̃i ,σj

)
∀σ̃i ∈ Σi . (3.45)

It follows that every Nash equilibrium must satisfy the following condition:(
σi ,σj,i

)
∈ ΣNE ⇒ ui

(
σi ,σj

)
≥ umxm

i ∀i ∈ {1, 2} . (3.46)

Since every cardinal BE solution is a Nash equilibrium, the individual ratio-
nality requirement is satisfied.

Cardinal BE solution is invariant under additions of non-rationalizable
outcomes. Suppose that f c (·) is some cardinal bargaining solution function.
The axiom requires that, for any two games Γ and Γ′, such that Σbr = Σbr ′,
it must be the case that f c

(
Σbr
)
= f c

(
Σbr ′
)
.

Since u
re f
i and umax

i are, for every i ∈ {1, 2}, associated with outcomes
in Σbr ⊆ Σ, the level of individual advantage uιi (σ ) associated with every
σ ∈ Σbr remains invariant under additions of outcomes which are such that
σ < Σbr . For any two games Γ and Γ′, such that Σbr = Σbr ′, it must the case
that ΣNE = ΣNE ′. Since Σ f m ⊆ ΣNE , it follows that, for any two games, such
that Σbr = Σbr ′, it must be the case that Σ f m = Σ f m′. Since the cardinal BE
solution function picks a subset of Σ f m ⊆ Σbr , it follows that φc

(
Σ f m,Σbr

)
=

φc
(
Σ f m′,Σbr ′

)
for any two games Γ and Γ′, such that Σbr = Σbr ′.
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Since cardinal BE solution is invariant under additions of non-rationalizable
outcomes, it also satisfies a version of the independence of irrelevant strate-
gies axiom, which requires the solution to be invariant under additions of
non-rationalizable strategies.

The pure strategy Nash equilibria are invariant under positive affine
transformations of the interacting players’ payoffs: If a pure strategy pro-
file s ∈ S is a Nash equilibrium of Γ, in which player i’s preferences over
outcomes are represented by a payoff function ui : S → R, it will remain a
pure strategy Nash equilibrium in any game Γ′, in which i’s preferences over
outcomes are represented by a payoff function u′i = aui + c, where a > 0 and
c are constants (for a detailed discussion of why this is so, see, for example,
Luce and Raiffa, 1957). The mixed strategy Nash equilibria, however, are
not invariant under positive affine transformations of payoffs. Since a cardi-
nal BE solution of a game may be a mixed strategy Nash equilibrium, this
solution concept is not invariant under positive affine transformations of the
interacting players’ payoffs. It is, however, invariant under positive scalar
transformations of payoffs. A mixed strategy Nash equilibrium σ ∈ ΣNE of a
game Γ, in which player i’s preferences are represented by a payoff function
ui : S → R, is a mixed strategy Nash equilibrium in any game Γ′, in which
player i’s preferences are represented by a payoff function u′i = aui , where
a > 0 (for a technical discussion of why this is so, see, for example, Chen et
al. 2009).

3.4.4 Relation to other Bargaining Solutions

The cardinal BE solution shares some conceptual similarities with the Kalai-
Smorodinsky bargaining solution (Kalai and Smorodinsky 1975), as well as
with the bargaining solution which minimizes the maximum relative conces-
sion among the interacting players, which has been suggested by Gauthier
(1986).

The Kalai-Smorodinsky bargaining solution can be defined as follows:
Suppose that (F ,d ) is a two player bargaining problem, where d =

(
u
re f
1 ,u

re f
2

)
is a disagreement point associated with disagreement payoffs of player 1 and
player 2 respectively, and F is the set of feasible agreements. Let umax

1 and
umax
2 denote players’ ‘ideal payoffs’ – the best possible personal payoffs that

player 1 and player 2 can attain in the game. The Kalai-Smorodinsky solu-
tion function K (F ,d ) picks a point (u1,u2) ∈ F on a Pareto frontier of F
which maintains the ratio of players’ ‘ideal’ payoff gains:

u1 − ure f1

u2 − ure f2

=
umax
1 − ure f1

umax
2 − ure f2

. (3.47)
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In the context of non-cooperative games, the Kalai-Smorodinsky bargaining
solution could be interpreted as a solution function which picks a feasible
agreement on a Pareto frontier of the set of feasible agreements which main-
tains the ratio of players’ ‘ideal’ payoff gains. That is, the Kalai-Smorodinsky
bargaining solution is a strategy profile σ ∈ Σ f p f , such that

u1 (σ ) − ure f1

u2 (σ ) − ure f2

=
umax
1 − ure f1

umax
2 − ure f2

. (3.48)

From definition (3.48) it follows that Kalai-Smorodinsky bargaining solution
is a strategy profile σ ∈ Σ f p f , such that(

u1 (σ ) − ure f1

) (
umax
2 − ure f2

)
=
(
u2 (σ ) − ure f2

) (
umax
1 − ure f1

)
. (3.49)

A strictly egalitarian cardinal BE solution is a strategy profile σ ∈ Σ f m, such
that

ϕc1
(
σ ,Σbr

)
= ϕc2

(
σ ,Σbr

)
. (3.50)

Since ϕci = 1 − uιi (σ ) for every i ∈ {1, 2}, it follows that a strictly egalitarian
cardinal BE solution is a strategy profile σ ∈ Σ f m, such that uι1 (σ ) = u

ι
2 (σ ).

From definition (3.34) it follows that a strictly egalitarian BE solution is
a strategy profile σ ∈ Σ f m, such that

u1 (σ ) − ure f1

umax
1 − ure f1

=
u2 (σ ) − ure f2

umax
2 − ure f2

, (3.51)

which is equivalent to(
u1 (σ ) − ure f1

) (
umax
2 − ure f2

)
=
(
u2 (σ ) − ure f2

) (
umax
1 − ure f1

)
. (3.52)

Notice that (3.52) is equivalent to (3.49). It follows that a strictly cardinal
BE solution which is on a Pareto frontier of Σ f m ⊆ Σbr will have the prop-
erties of the Kalai-Smorodinsky bargaining solution. Note, however, that
Kalai-Smorodinsky bargaining solution function cannot be applied to cases
where a feasible agreement on a Pareto frontier which maintains the ratios
of players’ ‘ideal’ payoff gains does not exist, while the cardinal BE solution
function pics a (possibly non-unique) solution in such cases.

The cardinal BE solution also shares some conceptual similarities with
Gauthier’s (1986) minimax relative concession bargaining solution, which is a
point on a Pareto frontier which minimizes the maximum relative concession
among the interacting individuals. In the context of non-cooperative games,
the minimax relative concession solution function could be defined as follows.
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Let umax
i and u

re f
i denote the ‘ideal’ payoff and the reference payoff of player

i ∈ {1, 2} respectivelly. A relative concession of player i ∈ {1, 2} associated
with some feasible agreement σ ∈ Σ f can be defined as follows:

umax
i − ui (σ )
umax
i − ure fi

. (3.53)

A minimax relative concession solution is a strategy profile σ ∈ Σ f p f , such
that

σ ∈ arд minσ∈Σf pf

maxi∈{1,2} *,
umax
i − ui (σ )
umax
i − ure fi

+-
 . (3.54)

From definitions (3.34), (3.36) and (3.51), it follows that a strictly egalitarian
cardinal BE solution is a strategy profile σ ∈ Σ f m, such that


*.,
umax
1 − ure f1

umax
1 − ure f1

+/- −
*.,
u1 (σ ) − ure f1

umax
1 − ure f1

+/-
 =


*.,
umax
2 − ure f2

umax
2 − ure f2

+/- −
*.,
u2 (σ ) − ure f2

umax
2 − ure f2

+/-
 ,

(3.55)
which can be simplified to

*.,
umax
1 − u1 (σ )
umax
1 − ure f1

+/- =
*.,
umax
2 − u2 (σ )
umax
2 − ure f2

+/- . (3.56)

From definitions (3.54) and (3.56), it follows that a strictly egalitarian car-
dinal BE solution minimizes the maximum relative concession among the
interacting players. It means that a strictly egalitarian BE solution which
is on a Pareto frontier of Σ f m ⊆ Σbr will have the properties of Gauthier’s
minimax relative concession bargaining solution. However, unlike the cardi-
nal BE solution, the minimax relative concession solution does not rely on
a measure of the difference of players’ relative concessions. Therefore, the
cardinal BE solution function will often pick a different set of feasible agree-
ments than Gauthier’s minimax relative concession solution function. For
example, in a game depicted in Figure 3.3(a), Gauthier’s solution function
picks outcomes (s1, t1) and (s3, t3), while the cardinal BE solution function
picks outcome (s2, t2).

3.4.5 Examples

In some games with multiple weakly Pareto optimal agreements, the cardinal
BE solution resolves the coordination problem. For example, consider the
following two player three strategy coordination game depicted in Figure
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l c r

u 5, 2 0, 0 0, 0

m 0, 0 4, 4 0, 0

d 0, 0 0, 0 2, 5

Figure 3.10: Coordination game with three weakly Pareto optimal outcomes

3.10. This game has three pure strategy Nash equilibria (u, l ) , (m, c ) and
(d, r ). The game also has four Nash equilibria in mixed strategies. Since each
of the mixed Nash equilibria is weakly Pareto dominated by at least one pure
strategy Nash equilibrium, none of them is in the set of maximally mutually
advantageous agreements. For the row player, the maximally individually
advantageous outcome is the Nash equilibrium (u, l ), while for the column
player the maximally individually advantageous outcome is (d, r ). For both
players, the worst outcome is any strategy profile associated with a payoff of
0. The row and the column players’ levels of individual advantage, the losses
of the maximum attainable individual advantage, as well as the differences
between losses of maximum attainable individual advantage associated with
each feasible agreement are depicted in Table 3.6:

Agreement uιr ϕcr uιc ϕcc
��ϕcr − ϕcc ��

(u, l ) 1 0 0.4 0.6 0.6
(m, l ) 0.8 0.2 0.8 0.2 0
(d, r ) 0.4 0.6 1 0 0.6

Table 3.6: Comparison of players’ losses of maximum individual advantage

A feasible agreement which uniquely minimizes the difference between
players’ maximum attainable individual advantage losses is the outcome
(m, l ). It is the BE solution of this game. Since this solution is unique,
hypothetical bargainers should not face any difficulties coordinating their
actions in this game.

In some cases, the BE solution of a game is a mixed strategy Nash equi-
librium. Consider the payoff asymmetric Chicken game depicted in Figure
3.11. There are two pure strategy Nash equilibria in this game – (s,ns ) and
(ns, s ). The third is a mixed strategy Nash equilibrium

(
1
2s,

1
2ns;

1
2s,

1
2ns
)
,

which yields an expected payoff of 3.5 for the row player and 2.5 for the
column player. This mixed strategy Nash equilibrium is not weakly Pareto
dominated by any other Nash equilibrium, which means that it is in the
set of maximally mutually advantageous agreements of this game. For both
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s ns

s 4, 3 3, 5

ns 6, 2 1, 0

Figure 3.11: Chicken game

players, the worst outcome is (ns,ns ). Notice, however, that it yields differ-
ent payoffs to the interacting players: The row player’s payoff is 1, while the
column player’s payoff is 0. The row and column player’s levels of individ-
ual advantage, maximum attainable individual advantage losses, as well as
the differences between losses of maximum attainable individual advantage
associated with each feasible agreement are depicted in Table 3.7:

Agreement uιr ϕcr uιc ϕcc
��ϕcr − ϕcc ��

(s,ns ) 0.4 0.6 1 0 0.6
(ns, s ) 1 0 0.4 0.6 0.6(

1
2s,

1
2ns;

1
2s,

1
2ns
)

0.5 0.5 0.5 0.5 0

Table 3.7: Comparison of players’ losses of maximum individual advantage

The feasible agreement which uniquely minimizes the difference between
players’ losses of maximum attainable individual advantage is the mixed
strategy Nash equilibrium

(
1
2s,

1
2ns;

1
2s,

1
2ns
)
, and so it is the unique BE so-

lution of this game.
Even relatively simple games may have more than one BE solution. For

example, consider the following payoff-symmetric Battle of the Sexes game
depicted in Figure 3.12. There are three Nash equilibria in this game: pure

o b

o 10, 5 0, 0

b 0, 0 5, 10

Figure 3.12: Battle of the Sexes game

strategy Nash equilibria (o,o) and (b,b), and a mixed strategy Nash equilib-
rium

(
2
3o,

1
3b;

1
3o,

2
3b
)
. The pure strategy Nash equilibria (o,o) and (b,b) are

weakly Pareto efficient. The mixed strategy Nash equilibrium yields each
player a payoff of 313 . It is therefore weakly Pareto dominated by the pure
strategy Nash equilibria of this game. For both players, the worst rational-
izable outcome is one of the two outcomes associated with a payoff of 0. The

139



two pure strategy Nash equilibria are the maximally mutually advantageous
agreements in this game. Players’ levels of individual advantage, individ-
ual advantage losses, as well as the differences between losses of maximum
attainable individual advantage associated with each feasible agreement are
depicted in Table 3.8:

Agreement uιr ϕcr uιc ϕcc
��ϕcr − ϕcc ��

(o,o) 1 0 0.5 0.5 0.5
(b,b) 0.5 0.5 1 0 0.5

Table 3.8: Comparison of players’ losses of maximum individual advantage

In this payoff symmetric version of the Battle of the Sexes game, both
pure strategy Nash equilibria minimize the difference between players’ losses
of maximum attainable individual advantage. Although a BE solution exists
in this game, it is not unique. The hypothetical bargainers would face a
coordination problem. It is important to note, however, that the BE solution
function resolves the coordination problem in a considerable number of payoff
asymmetric versions of the Battle of the Sexes game.

3.4.6 Hypothetical Bargaining in Pie Games

One of the fundamental questions pertaining to the hypothetical bargaining
theory is whether it can explain real-world decision-maker’s behaviour in
strategic interactions. A pair of experiments, the design of which seems to
be the most suitable for testing the theory, were carried out by Faillo et
al. (2013, 2016). In both experiments, the participants played two player
coordination games, known as ‘pie games’, in which they had to choose one
of the three outcomes represented as segments of a pie. An example of a pie
game is shown in Figure 3.13. If we call the top left slice r1, the top right
slice r2, and the bottom slice r3, then the pairs (r1, r1), (r2, r2) and (r3, r3)
can be viewed as outcomes yielding pairs of payoffs (9, 10), (10, 9) and (9,
9) to the players respectively. The labels r1, r2 and r3 were hidden from
participants and the positions of the slices were varied across three different
treatment groups (see Figure 3.14). If both participants chose the same
outcome (i.e. managed to coordinate their actions), they received positive
payoffs. A normal form representation of this game is provided in Figure
3.15. The type of pie games used and the conclusions drawn in the two
experiments were fairly similar.

The original experiments were designed to pit the team reasoning the-
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Figure 3.13: An example of a pie game from Faillo et al. (2013, 2016)
experiments (Source: Faillo et al. 2013)

Figure 3.14: An example of a pie game depicted in Figure 3.13 as seen by the
two interacting players in one treatment. The positions of the three slices
were varied across treatments (Source: Faillo et al. 2013)

ory24 against the cognitive hierarchy theory25. However, the structure of pie
24For an extensive discussion of the team reasoning theory, see chapters 1 and 2.
25The cognitive hierarchy theory postulates the existence of players of different cognitive

levels. Each cognitive level represents the degree to which that type of player can reason
about the other players. The level 0 decision-makers choose any of the available strategies
at random (i.e. they play each available strategy with equal probability). The level 1
reasoners assume everybody else to be level 0 players and best respond to the level 0
player’s strategy. The level 2 reasoners assume everybody else to be either level 1 or level
0 player (in simpler versions of the theory, level 2 player believes that everyone else is a
level 1 player) and, similarly, best respond to the expected strategies of level 1 and/or level
0 players (in simpler models, always to level 1 player’s strategy). The same logic applies
to players of higher cognitive levels. Although in principle the cognitive hierarchy theory
allows for any number of cognitive types (where each type assumes the other players to
be of a lower cognitive level than themselves), in practice it is usually assumed that most
decision-makers are level 1 or level 2 reasoners. For details, see Nagel 1995, Stahl and
Wilson 1995, Ho et al. 1998, Camerer et al. 2004, Crawford et al. 2008, Bardsley et al.
2010, Faillo et al. 2016.
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r1 r2 r3

r1 9, 10 0, 0 0, 0

r2 0, 0 10, 9 0, 0

r3 0, 0 0, 0 9, 9

Figure 3.15: 3x3 pie game depicted in Figure 22 represented in normal form

games is particularly suitable to test the theory of hypothetical bargaining,
and even compare it with the team reasoning function based on the notion
of mutual advantage suggested in chapter 2. Notice that pie games share
substantial structural similarities with standard bargaining games, such as
the Divide-the-Cake game. The players have to choose between several dif-
ferent allocations of payoffs and, in case their choices disagree, they do not
receive a positive payoff. In addition, each allocation of payoffs is a Nash
equilibrium. Since the labels are hidden and the positions of slices can be
varied, the choices of players are less likely to be influenced by factors other
than the payoff structure of the game itself (i.e. the number of the available
allocations of payoffs and their properties). Table 3.9 summarizes the results
of Faillo et al. (2013). All the outcomes which satisfy the properties of a
cardinal BE solution (i.e. would be selected by the cardinal BE solution
function) are indicated by be . The outcomes which maximize the mutual
advantage of team-reasoning decision makers (i.e. would be selected by the
team reasoning function based on the notion of mutual advantage suggested
in chapter 2) are indicated by τ . Assuming that hypothetical bargainer/team

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
r1 9, 10 9, 10 9, 10 9, 10 10, 10 10, 10 10, 10 10, 10 9, 12 10, 10 9, 11
r2 10, 9 10, 9 10, 9 10, 9 10, 10 10, 10 10, 10 10, 10 12, 9 10, 10 11, 9
r3 9, 9 11, 11 9, 8 11, 10 9, 9 11, 11 9, 8 11, 10 10, 11 11, 9 10, 10

N (%) r1 14τ 0 51beτ 16 48beτ 1 51beτ 26τ 16 43beτ 6
N (%) r2 11τ 1 45beτ 4 34beτ 3 31beτ 22τ 11 27beτ 7
N (%) r3 74beτ 99beτ 4 80beτ 18 96beτ 18 52beτ 73beτ 30 86beτ

Table 3.9: Summary of Faillo et al 2013 results. Choices predicted by the
cardinal BE model are indicated by be . Choices predicted by the team rea-
soning model are indicated by τ

reasoning decision-maker always chooses to play his or her part in the at-
tainment of a mutually advantageous outcome (in case of multiple solutions,
s/he chooses to play a part in the attainment of one of the multiple mutually
advantageous solutions at random), we can compare the theoretical ‘predic-
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G1 G2 G3 G4 G5
l 5, 6 5, 10 5, 6 5, 6 6, 7
r 6, 5 10, 5 6, 5 6, 5 7, 6
b 5, 5 5, 5 6, 5 7, 5 7, 5

N (%) l (P1) ;N (%) l (P2) 6; 7τ 0; 13τ 53; 21beτ 40; 38τ 35; 33beτ
N (%) r (P1) ;N (%) r (P2) 6; 0τ 7; 13τ 16; 33beτ 35; 29beτ 40; 33beτ
N (%) b (P1) ;N (%) b (P2) 88; 93beτ 93; 73beτ 32; 46beτ 25; 33τ 0, 14

Table 3.10: Summary of Crawford et al 2010 results. The choices of player
1 (P1) and player 2 (P2) are presented separately. Choices predicted by
the cardinal BE model are indicated by be . Choices predicted by the team
reasoning model are indicated by τ

tions’ of the hypothetical bargaining model with the theoretical ‘predictions’
of the model of team reasoning based on the notion of mutual advantage.

In Faillo et al. 2013 experiment, the aforementioned model of team rea-
soning based on the notion of mutual advantage is a reasonably good pre-
dictor of choices in 9 out of 11 games (G2, G3, G4, G5, G6, G7, G9, G10,
G11). The cardinal BE solution is a good predictor of choices in 10 out of
11 games (G1, G2, G3, G4, G5, G6, G7, G8, G9, G11).

In a series of experiments carried out by Crawford et al. (2008), the
participants were presented with five pie games. The players had to choose
one of the three weakly Pareto optimal outcomes: (l , l ), (r , r ) and (b,b).
It seems reasonable to assume that the asymmetry of payoffs present in
some of the pie games made the comparison of outcomes a more cognitively
demanding task.

Table 3.10 summarizes the results of Crawford et al. (2008). The choices
of Player 1 and Player 2 are presented separately. All the outcomes which
satisfy the properties of a cardinal BE solution are indicated by be . The
outcomes which maximize the mutual advantage of team-reasoning decision
makers are indicated by τ .

The results suggest that a hypothetical bargaining model based on the
cardinal BE solution concept is a reasonably good predictor of participants’
choices in 4 out of 5 games – G1, G2, G3 and G5. In game G4, outcome
(r , r ) is the unique cardinal BE solution, and so the theory fails to predict
a considerable number of participants choosing outcomes (l , l ) and (b,b)26.
The theory of team reasoning based on the notion of mutual advantage
suggested in chapter 2 offers reasonably good predictions in 3 out of 5 games:

26It can be argued that this model offers extremely weak theoretical predictions in game
G3, since every outcome is the BE solution.
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G3, G4 and G527.
Given the assumption that hypothetical bargainers/team-reasoning play-

ers always choose to play a part in the attainment of a mutually beneficial
solution (in games with multiple solutions, one of the multiple mutually ben-
eficial solutions at random), the hypothetical bargaining model based on the
cardinal BE solution seems to offer slightly more accurate theoretical predic-
tions of decision-makers’ choices in the aforementioned games than the team
reasoning theory based on the notion of mutual advantage. It is important to
note, however, that both the hypothetical bargaining theory and the theory
of team reasoning based on the notion of mutual advantage are theories of
how players identify the mutually advantageous solutions of games, not how
such decision-makers actually choose their strategies. As such, neither of the
two theories offers an answer to the question of how and under what condi-
tions the players should be expected to play their part in the attainment of
a mutually advantageous outcome. More importantly, both theories do not
offer a theoretically sound answer to the question of how players coordinate
their actions in games with multiple mutually advantageous solutions. For
either theory to be adequately tested, the model must be complemented with
an epistemic model of choice, specifying the conditions under which a player
should be expected to play his or her part in the attainment of a mutually
advantageous outcome, as well as with a model of how players resolve coor-
dination problems in games with multiple mutually advantageous solutions.
However, since the coordination aids used by the interacting decision-makers
may be based on shared cultural norms and social practices, a general formal
game theoretic model of such players’ final strategy choices in games may not
be possible. For an extensive discussion of the aforementioned problems, see
chapters 2 and 4.

3.5 Possible Extensions of the Model

3.5.1 Application to N -Player Games

So far, the discussion focused on the question of how the principles of the
bargaining theory could be applied in the game theoretic analysis of non-
cooperative two player games. The BE solution concept suggested in this
chapter can be applied to any two player finite game. However, another im-
portant question pertaining to the hypothetical bargaining theory is whether

27It can be argued that this model offers extremely weak theoretical predictions in
games G3 and G4, since every outcome maximizes the mutual advantage of the interacting
individuals.
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it can be used to analyze games with more than two players.
It is clear that the model can be easily applied to any game which has a

unique Pareto optimal feasible agreement, since hypothetical bargainers will
identify such an agreement as the unique BE solution of the game. In games
with multiple weakly Pareto optimal feasible agreements, however, the task
of identifying the most equitable distribution of individual advantage losses
(in ordinal case, the foregone preferred alternatives) becomes much more
complex.

In games with a strictly egalitarian feasible maximally mutually advanta-
geous agreement, the identification of the BE solution is unproblematic. In
most games, however, a strictly egalitarian BE solution will not exist. Nev-
ertheless, the hypothetical bargainers could still distinguish the maximally
individually advantageous (i.e. weakly Pareto optimal) feasible agreement
associated with a more equitable distribution of individual advantage losses
(foregone preferred alternatives in the ordinal case) from the one associated
with a less equitable distribution of individual advantage losses by making
pairwise comparisons of players’ losses of maximum individual advantage.

Recall that, in games with two players, the BE solution is identified by
comparisons of feasible agreements based on the differences between the row
player’s and the column player’s losses of the maximum attainable individual
advantage. In games with more than two players, the difference between the
losses of maximum attainable individual advantage can be determined for
any possible pair of players.

Suppose that a set I = (1, ...,m) of hypothetical bargainers are playing
a normal form finite game with a set Σ f m ⊆ ΣNE of maximally mutually
advantageous agreements. It is clear that, for any two players i ∈ I and jj,i ∈
I , the difference between their losses of the maximum attainable individual
advantage associated with the implementation of each maximally mutually
advantageous feasible agreement σ ∈ Σ f m can be determined in the same
way as in the two player case:���(1 − uιi (σ )) − (1 − uιj,i (σ )) ��� . (3.57)

Any two feasible agreements σ ∈ Σ f m and σ ′ ∈ Σ f m should be deemed
indistinguishable in terms of comparisons of losses of maximum attainable
individual advantage if, for every pair of players, the difference between
their losses of maximum attainable individual advantage associated with
each agreement is the same. An agreement σ ∈ Σ f m should be deemed
more egalitarian than any agreement σ ′ ∈ Σ f m if, for every pair of players,
agreement σ ∈ Σ f m is associated with a strictly smaller difference between
their losses of maximum attainable individual advantage than agreement
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σ ′ ∈ Σ f m. That is, an agreement σ ′ ∈ Σ f m should be ruled out as a possible
cardinal BE solution if, for every possible pair of players i ∈ I and jj,i ∈ I ,

���(1 − uιi (σ )) − (1 − uιj (σ )) ��� < ���(1 − uιi (σ ′)) − (1 − uιj (σ ′)) ��� (3.58)

For example, consider a three player game depicted in Figure 3.16. In this

t1 t2

s1 10, 9, 9 0, 0, 0

s2 0, 0, 0 5, 5, 5

m1

t1 t2

s1 5, 5, 5 0, 0

s2 0, 0 6, 8, 10

m2

Figure 3.16: Three player coordination game played by three hypothetical
bargainers

game, the row player chooses between strategies s1 and s2, the column player
chooses between strategies t1 and t2, and the matrix player chooses between
strategies m1 and m2. To simplify the example, it will be assumed that
players only consider pure strategy outcomes.

This game has two weakly Pareto optimal pure strategy Nash equilibria:
(s1, t1,m1) and (s2, t2,m2). The hypothetical bargainers should therefore
identify both outcomes as the maximally mutually advantageous feasible
agreements of this game. For each player, the worst rationalizable outcome
is any strategy profile associated with a payoff of 0. Players’ levels of indi-
vidual advantage, their losses of maximum attainable individual advantage
associated with each feasible agreement, and the differences between players’
losses of maximum attainable individual advantage are shown in Table 3.11:

Agreement uιr ϕcr uιc ϕcc uιm ϕcm
��ϕcr − ϕcc �� ��ϕcr − ϕcm�� ��ϕcc − ϕcm��

(s1, t1,m1) 1 0 1 0 9
10

1
10 0 1

10
1
10

(s2, t2,m2) 6
10

4
10

8
9

1
9 1 0 13

45
4
10 0

Table 3.11: Players’ levels of individual advantage, losses of maximum indi-
vidual advantage, and differences of individual advantage losses

Table 3.11 shows the differences between the row player’s and the column
player’s, the row player’s and the matrix player’s, and the column player’s
and the matrix player’s losses of the maximum attainable individual ad-
vantage. Notice that, for each pair, the outcome (s1, t1,m1) is associated
with a strictly lower difference of losses of maximum attainable individual
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advantage than the outcome (s2, t2,m2). Therefore, the Nash equilibrium
(s1, t1,m1) would be identified as the one associated with the most equitable
distribution of losses of maximum attainable individual advantage, and so
it is the cardinal BE solution of this game. Notice that this result is in-
tuitively compelling. If the outcome (s2, t2,m2) were chosen, the matrix
player would loose no maximum attainable individual advantage, while the
row player and the column player would loose 40% and 20% of their max-
imum attainable individual advantage attainable in this game respectively.
If, on the other hand, the outcome (s1, t1,m1) were chosen, the row player
would loose no maximum attainable individual advantage, while the row
and the column player would each loose 10% of the maximum attainable
individual advantage. The differences between players’ losses of maximum
attainable individual advantage associated with the outcome (s2, t2,m2) are
clearly larger than those associated with the outcome (s1, t1,m1).

There is another way in which the more equitable agreements can be
distinguished from the less equitable ones. Notice that a strictly egalitarian
cardinal BE solution is a feasible agreement, such that players’ losses of
the maximum attainable individual advantage are equal. This implies that
players’ individual advantage levels associated with a strictly egalitarian BE
solution must also be equal. That is, a strictly egalitarian BE solution is a
strategy profile σ ∈ Σ f m, such that uιi (σ ) = uιj,i (σ ), for every pair i, j ∈ I ,
where I = (1, ...,m) is the set of players. If we were to sum up the individual
advantage levels of every interacting player in some m-player game, the ratio
of each player’s level of individual advantage to the sum of players’ individual
advantage levels should always be 1/m.

Let
∑

i∈I u
ι
i (σ ) be the sum of individual advantage levels associated with

a strategy profile σ ∈ Σ f m of every i ∈ I . If a strategy profile σ ∈ Σ f m is a
strictly egalitarian BE solution, it must necessarily be the case that

uιi (σ )∑
i∈I u

ι
i (σ )

=
1

m
, for every i ∈ I . (3.59)

In many games, a strictly egalitarian cardinal BE solution will not exist.
However, the equity of any two feasible maximally mutually advantageous
agreements can be evaluated by comparing each player’s actual ratio of in-
dividual advantage level to the sum of players’ individual advantage levels
associated with each agreement with an ideal strictly egalitarian ratio of
1

m
. That is, for any maximally mutually advantageous feasible agreement

σ ∈ Σ f m and every player i ∈ I , we can determine the distance between the
actual ratio of player’s individual advantage level to the sum of all individ-
uals’ advantage levels and the ideal egalitarian ratio:
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����� uιi (σ )∑
i∈I u

ι
i (σ )

− 1

m

����� ≥ 0. (3.60)

Any two agreements σ ∈ Σ f m and σ ′ ∈ Σ f m can then be compared by
comparing the distance between the actual ratio and the ideal egalitarian ratio
of 1/m of every player i ∈ I . Any agreement σ ∈ Σ f m should be deemed more
egalitarian than any agreement σ ′ ∈ Σ f m if, for every i ∈ I ,����� uιi (σ )∑

i∈I u
ι
i (σ )

− 1

m

����� <
����� uιi (σ

′)∑
i∈I u

ι
i (σ
′)
− 1

m

����� 28. (3.61)

For example, consider, again, the game depicted in Figure 3.16. Let
U ι{r ,c,m} = uιr (s)+uιc (s)+uιm (s) denote the sum of players’ individual advantage
levels associated with some s ∈ Sf m. If this game had an egalitarian cardinal
BE solution, it would be some s = (sr , sc , sm), such that

uιr (s)

U ι{r ,c,m} (s)
=

uιc (s)

U ι{r ,c,m} (s)
=

uιm (s)

U ι{r ,c,m} (s)
=

1

3
. (3.62)

The sum of players’ individual advantage levels associated with the agree-
ment (s1, t1,m1) is 2.9. The sum of players’ individual advantage levels asso-
ciated with the agreement (s2, t2,m2) is 2.48889. The ratio of each player’s
individual advantage level to the sum of players’ individual advantage lev-
els, and the distance between each player’s actual ratio and the hypothetical
strictly egalitarian cardinal BE solution ratio are shown in Table 3.12. The
numbers are rounded off to 3 decimal places.

Agreement uιr
U ι{r,c,m}

uιc
U ι{r,c,m}

uιm
U ι{r,c,m}

���� uιr
U ι{r,c,m} −

1
3

���� ���� uιc
U ι{r,c,m} −

1
3

���� ���� uιm
U ι{r,c,m} −

1
3

����
(s1, t1,m1) 0.345 0.345 0.310 0.011 0.011 0.023
(s2, t2,m2) 0.241 0.357 0.402 0.092 0.023 0.069

Table 3.12: The ratios of each players individual advantage level to the sum
of players individual advantage levels, and the distance between each players
actual ratio and the strictly egalitarian ratio

It is easy to see that, for each player, the outcome (s1, t1,m1) is asso-
ciated with a smaller difference between the ratio of his or her individual
advantage level to the sum of players’ individual advantage levels and the

28In any n-player ordinal game, a feasible agreement s ∈ Am is more egalitarian that
s′ ∈ Am if, for every i ∈ {1, ...,m},���� Ci (s,A)∑

i∈{1, . . .,m} Ci (s,A) −
1
n
���� < ���� Ci (s′,A)∑

i∈{1, . . .,m} Ci (s′,A) −
1
n
���� .
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ideal strictly egalitarian ratio of 1/3 than the outcome (s2, t2,m2). Since
the outcome (s1, t1,m1) is associated with a more equitable distribution of
individual advantage gains than the outcome (s2, t2,m2), hypothetical bar-
gainers should identify the agreement (s1, t1,m1) as the cardinal BE solution
of this game.

The preceding discussion relied on the assumption that every player of
the game is a hypothetical bargainer, and that this fact is common knowledge
among the interacting players. In a two player game, it seems reasonable to
assume that a hypothetical bargainer will not search for the BE solution of
the game if s/he does not believe that the opponent will do that as well. More
complicated problems arise in m-player games when some of the players are
hypothetical bargainers while others are not. If hypothetical bargainers were
aware of the fact that some of the players are not hypothetical bargainers,
or were uncertain about the players’ type, they could still consider playing
their part in realizing the BE solution of the game by taking into account
their predictions of the strategy choices of players who are not reasoning as
hypothetical bargainers. However, the strategy choices of the players who
are not reasoning as hypothetical bargainers may render the implementation
of the BE solution impossible.

For example, consider the three player coordination game depicted in
Figure 3.17. This game has two weakly Pareto optimal pure strategy Nash

t1 t2

s1 10, 9, 10 0, 0, 0

s2 0, 0, 0 5, 5, 5

(m1)

t1 t2

s1 4, 4, 5 0, 0

s2 0, 0 8, 10, 10

(m2)

Figure 3.17: Three player coordination game, in which the matrix player is
not a hypothetical bargainer

equilibria: (s1, t1,m1) and (s2, t2,m2). For each player, the worst rationaliz-
able outcome is one of the pure strategy outcomes associated with a payoff
of 0. For hypothetical bargainers, the cardinal BE solution of this game is
the Nash equilibrium (s1, t1,m1).

Suppose that it is common knowledge among the row and the column
player that they are hypothetical bargainers, but they have no informa-
tion about the matrix player’s type. They could not attain the outcome
(s1, t1,m1) without the matrix player choosing strategy m1.

If the row and the column player were to believe that the matrix player
will choose m1, they would have a reason to believe that their choices of
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strategies s1 and t1 will actually lead to the attainment of the outcome
(s1, t1,m1). Notice, however, that the matrix player is indifferent between
the Nash equilibria (s1, t1,m1) and (s2, t2,m2). The payoff structure of the
game does not provide any cues as to which strategy the matrix player is
more likely to choose.

In such a situation of strategic uncertainty, the row and the column player
could consider playing a combination of strategies (s2, t2), since it guarantees
each player a minimum payoff of 5, irrespective of what the matrix player
does. Notice that if the players were to play a combination of strategies
(s1, t1), they could only guarantee themselves a minimum payoff of 4.

This example shows that the BE solution may not be chosen in a strategic
situation, in which some of the players are not hypothetical bargainers, or in
a strategic situation, in which hypothetical bargainers are uncertain about
each other’s type. It also shows that hypothetical bargainers must hold
fairly complex shared beliefs in order to be motivated to implement the BE
solution29.

3.5.2 Social Interactions and the Set of Feasible Agree-
ments

The BE solution proposed in this chapter is based on the assumption that
the set of agreements deemed feasible by hypothetical bargainers is the set of
the Nash equilibria of a game. From the perspective of orthodox game the-
ory, this assumption seems reasonable: If a hypothetical bargainer believes
that his or her opponents are individualistically rational decision-makers,
s/he should expect them to deviate from any agreement which creates them
a personal incentive to do so. Therefore, a hypothetical bargainer should
not expect his or her opponent to play a part in realizing a strategy profile
if that opponent’s agreement strategy is not a best response to the agree-
ment strategies of other hypothetical bargainers. If rationality is common
knowledge, hypothetical bargainers should expect each other to deviate from
non-self-enforcing agreements, and so only deem an agreement feasible if it
creates no ‘double crossing’ incentives (for an extensive discussion of the role
of feasibility criterion in bargaining theory, see, for example, Myerson 1991).

In real-world social interactions, however, social agents may be using a
less restrictive feasibility criterion. For example, a decision-maker may only
be concerned about the personal payoff losses, and so deem an agreement
feasible if opponents’ deviations cannot lead to a loss of his or her personal

29The structure of beliefs which is required to motivate the hypothetical bargainers to
implement the BE solution will be discussed in considerable detail in chapter 4.
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payoff. If decision-makers were to use such a feasibility criterion, some of the
non-equilibrium strategy profiles would be identified as feasible agreements.

Misyak and Chater (2014) have suggested this possibility, and, to test this
hypothesis, conducted an experiment with the Boobytrap game depicted in
Figure 3.18. Like the Prisoner’s Dilemma game, the Boobytrap game has

cooperate defect boobytrap

cooperate 30, 30 10, 40 30, 29

defect 40, 10 20, 20 −100, 9
boobytrap 29, 30 9,−100 29, 29

Figure 3.18: The Boobytrap Game

a unique pure strategy Nash equilibrium (de f ect ,de f ect ). However, each
player has an additional option of playing the boobytrap strategy. If one of
the players chooses this strategy, the other player’s best response is strategy
cooperate, while the choice of the strategy de f ect yields the player the worst
personal payoff in this game. If both players choose the strategy boobytrap,
each of them gets a payoff higher than the one associated with the Nash
equilibrium (de f ect ,de f ect ).

Strategy profile (boobytrap,boobytrap) is not a Nash equilibrium: Both
players have an incentive to deviate by choosing the strategy cooperate. A
unilateral or even bilateral individually advantageous deviations from the
strategy profile (boobytrap,boobytrap) do not harm any of the players: If
one of the players were to choose to deviate by playing strategy cooperate,
the player who were to play the strategy boobytrap would get the same payoff
of 29, while the deviating player would get a slightly better payoff of 30. If
both players were to choose to deviate by playing strategy cooperate, both
of them would get a payoff of 30.

The problem with the tempation to deviate by playing cooperate is that
an opponent expecting such a deviation will have an incentive to deviate
himself or herself by playing de f ect . According to Misyak and Chater (2014),
this could be prevented if both players were to play a mixed strategy of
‘cooperative choices’ boobytrap and cooperate, in which strategy boobytrap
is played with a sufficiently high probability (in this particular game with
a probability infinitesimally higher than 1/14) to deter the opponent from
playing strategy de f ect . In that case, the players could prevent each other
from playing strategy de f ect , and would attain a more mutually beneficial
outcome than by playing the Nash equilibrium (de f ect ,de f ect ): Under the
former solution, the expected payoff of each player would very nearly be 30
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– much better than the payoff associated with the latter. The results from
Misyak and Chater’s experiments with the boobytrap game seem to suggest
that combinations of cooperation and boobytrap strategies constitute 82%
of game outcomes (for an extensive discussion of experimental results, see
Misyak and Chater 2014).

From the perspective of orthodox game theory, however, Misyak and
Chater’s suggestion is conceptually problematic. To see why, notice that
even the aforementioned profile of players’ mixed strategies is an inherently
unstable agreement: Each player will be motivated to deviate from the mixed
strategy profile by not playing the strategy boobytrap at all, since random-
ized strategy where the pure strategy boobytrap is played with a positive
probability yields him or her a strictly lower expected payoff than the pure
strategy cooperate. In other words, each self-oriented (i.e. expected util-
ity maximizing) player will be motivated not to implement a strategy that
eliminates the opponent’s incentive to choose strategy de f ect . An oppo-
nent expecting such a deviation will be motivated to play strategy de f ect .
If players were self-oriented, and this fact were common knowledge, they
would expect each other to deviate from the agreement, and respond opti-
mally by playing strategy de f ect . An agreement to play the aforementioned
randomized strategy profile would thus unravel.

Although problematic from the perspective of orthodox game theory,
Misyak and Chater’s suggestion cannot be ruled out as a description of what
strategy profiles the real-world decision-makers view as feasible agreements.
If Misyak and Chater’s suggestion is correct, then in certain games the set of
feasible agreements considered by real-world hypothetical bargainers may be
larger than the set of the Nash equilibria. Hypothetical bargaining could thus
potentially explain how people identify mutually advantageous agreements
in certain games with inefficient Nash equilibria. For this reason, Misyak
and Chater’s suggestion warrants further empirical testing.

3.6 Conclusion

Misyak and Chater’s virtual bargaining theory offers a conceptually inno-
vative explanation of how self-oriented decision-makers resolve games with
multiple rationalizable outcomes. However, I have argued that theory’s re-
liance on the standard Nash bargaining solution for modelling hypothetical
bargaining in non-cooperative games is conceptually problematic. My argu-
ments focused on the standard Nash bargaining solution function’s insensi-
tivity to alternative feasible distributions of players’ personal payoff gains.

In this chapter I have suggested a model of hypothetical bargaining based
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on the benefit-equilibrating bargaining solution concept, the principles of
which are broadly in line with the principles underlying the ordinal egali-
tarian bargaining solution concept for finite sets of Pareto optimal points
suggested by Conley and Wilkie (2012). I have argued that the hypotheti-
cal bargaining model based on the suggested BE solution function offers a
plausible theoretical explanation of how players resolve conflicts over alter-
native allocations of individual gains in non-cooperative games, in which the
interpersonal comparisons of their payoffs are assumed not to be meaningful.

In my account I primarily focused on the question of what properties
an outcome must have in order to be identified by hypothetical bargainers
as the BE solution of a game. The question of how hypothetical bargainers
coordinate their actions in games with multiple BE solutions warrants further
investigation and discussion. For example, consider the extended Hi-Lo game
depicted in Figure 3.19(a). There are two BE solutions of this game – pure
strategy Nash equilibria (hi1,hi1) and (hi2,hi2). Hypothetical bargainers
would face a coordination problem. The model proposed in this chapter does
not offer an answer to the question of how hypothetical bargainers should
coordinate their actions in this game: In terms of the formal properties, both
solutions are equivalent.

hi1 hi2 lo

hi1 10, 10 0, 0 0, 0

hi2 0, 0 10, 10 0, 0

lo 0, 0 0, 0 9, 9

(a)

hi1 hi2 lo

Hi1 10, 10 0, 0 0, 0

Hi2 0, 0 10, 10 0, 0

Lo 0, 0 0, 0 5, 5

(b)

Figure 3.19: Two versions of the extended Hi-Lo game

It must be stressed that the suggested bargaining model should not be
viewed as a coordination theory, but rather as a theory of how players may
use the commonly known information about the payoff structure of the game
in identifying a feasible and mutually beneficial solution. In games where the
BE solution is unique, its identification resolves the coordination problem for
hypothetical bargainers. In games with multiple BE solutions, however, hy-
pothetical bargainers could take multiple approaches towards resolving the
coordination problem. For example, they could choose their BE solution
strategies randomly (that is, they could play each of their BE strategies
with equal probabilities). Alternatively they could take into consideration
the perceived coordination success rate, and then consider playing ex ante
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weakly Pareto dominated feasible agreements if, given the coordination suc-
cess rate, the ex ante weakly Pareto dominated feasible agreement yields a
higher expected payoff for every bargainer than the ex ante weakly Pareto
optimal feasible agreement30. For example, in the aforementioned extended
Hi-Lo game depicted in Figure 3.19(a), hypothetical bargainers could choose
the outcome (lo, lo) which, although ex ante not maximally mutually ad-
vantageous, is unique. By playing their part in realizing outcome (lo, lo),
both players could gain a guaranteed payoff of 9, which is higher than the
expected payoff of 5 associated with the aforementioned randomized choices
of strategies hi1 and hi2.

The model suggested in this chapter could, in principle, be modified to
include coordination success rates into the formal characterization of the
BE solution. However, this ad hoc modification of the solution concept is
conceptually problematic. First, the solution could not be taken to represent
the outcome of the mental simulation of the actual bargaining process, since
in open negotiations the bargainers would definitely agree on playing either
the Nash equilibrium (hi1,hi1) or the Nash equilibrium (hi2,hi2).

Second, such a modification of the solution concept would not resolve
the coordination problem in every possible scenario. For example, consider
a version of the extended Hi-Lo game depicted in Figure 3.19(b).

In this game, the players would get the same expected payoff from ran-
domizing between strategies hi1 and hi2 as they would get from playing the
Nash equilibrium (lo, lo). The question of what the players should choose to
do in such situations of strategic uncertainty cannot be answered with the
tools of the theory suggested in this chapter, and further research into the
psychological factors that influence players’ belief formation process may be
necessary to explain coordination in such games. Since players’ ability to
coordinate their actions may often depend on factors that are not related to
payoff structures of games alone, a single generalizable formal model of their
final choices may not be possible31.

30In the context of team reasoning theory, this idea has been discussed by Bardsley et
al. 2010 and Faillo et al. 2016.

31For an in-depth discussion of this problem, see chapters 2 and 4.
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Chapter 4

Hypothetical Bargaining, Social
Coordination and Evolution

4.1 Introduction

In most general terms, orthodox game theory can be defined as the study
of mathematical models of conflict and cooperation between two or more
perfectly rational decision-makers. The proponents of a position known as
‘methodological dualism’ defend the view that a clear distinction can and
ought to be maintained between normative and descriptive game theory (see,
for example Aumann 1985). The normative game theory explores the ‘nature
and the consequences of idealized full rationality in strategic interactions’,
while the descriptive game theory ‘aims at the explanation and prediction of
observed behavior’. (Selten 1988: vii). The question of empirical adequacy
is of fundamental importance for descriptive game theory, but less so for the
normative game theory.

As has been pointed out by Selten, the distinction between the norma-
tive and the descriptive game theory, is ‘blurred in the practice of applied
research’, since the ‘methods developed in normative theory are used in the
analysis of applied models in the hope for empirical relevance’ (Selten 1988:
vii). In other words, the analytic methods and solution concepts used in the
normative analysis are also used in the formal models pertaining to explain
and/or predict the behaviour of social agents.

In recent decades, descriptive game theory has become an important
analytic tool of social sciences: Various more or less complex interactions
between two or more social agents are modelled as games played by ratio-
nal agents. The theoretical predictions of perfectly rational decision-makers’
actions in the idealized models of strategic interactions are taken to be infor-
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mative of the actions of social agents in real-world interdependent decision
problems.

Despite its widespread use, the orthodox game theoretic analysis has
certain conceptual limitations, one of them being the indeterminacy of its
theoretical predictions in non-cooperative games with multiple Nash equi-
libria (Bacharach and Bernasconi 1997). Even the simplest of games which
are interpreted by social scientists as idealized models of real-world social
interactions have multiple Nash equilibria. From the perspective of ortho-
dox game theory, every Nash equilibrium of a game is a rational solution,
and so games with multiple Nash equilibria have multiple rational solutions.
Yet some of the games with multiple Nash equilibria seem to have intu-
itively ‘obvious’ unique rational solutions. Experimental evidence suggests
that such games create virtually no coordination problems for real-world
decision-makers. The orthodox theory of games, however, offers no com-
pelling explanation of why people identify one Nash equilibrium as an ‘ob-
vious’ solution of a game rather than any other Nash equilibrium, or why
people expect each other to play the ‘obvious’ solution. An example of a
game where the standard game theoretic analysis leads to conclusions which
contradict our common sense intuitions about rationality is the three strat-
egy common interest game depicted in Figure 4.1:

r1 r2 r3

r1 9, 10 0, 0 0, 0

r2 0, 0 10, 9 0, 0

r3 0, 0 0, 0 11, 10

Figure 4.1: Common interest game

There are three pure strategy Nash equilibria in this game: Strategy
profiles (r1, r1) , (r2, r2) and (r3, r3). In addition, the game has four Nash
equilibria in mixed strategies1. From the perspective of orthodox game the-
ory, all the Nash equilibria are rational solutions of this game. Yet for many
people the Nash equilibrium (r3, r3) stands out as a more compelling solution
of this game than any other Nash equilibrium. It is a strategy profile which,
for each player, is associated with the highest personal payoff attainable
in this game. Intuitively it seems that intelligent players who understand

1The four mixed strategy Nash equilibria of this game are:
(
9
19r1,

10
19r2;

10
19r1,

9
19r2
)
,(

9
28r1,

5
14r2;

9
28r3;

110
299r1,

99
299r2,

90
299r3

)
,
(
1
2r1,

1
2r3;

11
20r1,

9
20r3
)
,
(
10
19r2,

9
19r3;

11
21r2,

10
21r3
)
.
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the structure of this game should expect each other to play the Nash equi-
librium (r3, r3) and choose their strategies which are consistent with this
expectation (for extensive discussion, see Bacharach 2006). Results from
experiments support this intuition by revealing that approximately 80% of
people opt for strategy r3 (for experimental results, see, for example, Faillo
et al. 2013).

The critics have argued that the failure of the standard game theory
to agree with our ‘high quality’ intuitions about the solutions of common
interest games, similar to the one depicted in Figure 4.1, indicates its failure
to capture all the relevant strategic considerations of real-world decision-
makers, such as collective optimality considerations, and so should be viewed
as a conceptual limitation of descriptive game theory (see for example, Olcina
and Urbano 1994, Bacharach 2006). Some of the critics have suggested that
a development of a model of reasoning which better approximates the actual
process of reasoning by which people arrive at their strategy choices is the
appropriate response to this problem (see, for example, Bacharach 2006,
Misyak and Chater 2014).

One of the more recent theories which offers an answer to this question
is the hypothetical, or virtual, bargaining theory (Misyak and Chater 2014,
Misyak et al. 2014), which suggests that players choose their actions in non-
cooperative games on the basis of what they believe they would agree to play
if they could openly bargain – engage in real negotiations, in which each
player can communicate his or her offers to the other players and receive
their counteroffers. When a player reasons as a hypothetical, or virtual,
bargainer, s/he views the pure and mixed strategy profiles, or outcomes, as
possible agreements that players could implement via joint actions. S/he
then identifies a set of feasible agreements – a subset of agreements, such
that each agreement in that subset is a pure or mixed strategy profile which
does not allow any of the players to exploit the other player(s) by unilaterally
deviating from it. The player then identifies a feasible agreement which, s/he
believes, the players would agree on playing in open bargaining, and plays
his or her part in realizing it, provided that s/he has a reason to believe that
the other players are hypothetical bargainers and will carry out their end
of the agreement. The strategy profile that hypothetical bargainers believe
they would agree to play in open negotiations is the mutually beneficial and
agreeable resolution of the game (for details, see Misyak and Chater 2014,
Misyak et al. 2014).

Hypothetical bargaining theory shares many conceptual similarities with
Sugden’s recent version of the theory of team reasoning based on the notion
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of mutual advantage (Sugden 2011, 2015)2. Team reasoning is a theory
that certain structural and/or contextual features of games may trigger a
shift in decision-maker’s mode of reasoning from individualistic best-response
reasoning to reasoning as a member of a team – a group of individuals who
act together in the attainment of some common goal. When a person reasons
as a member of a team, s/he identifies a strategy profile – one strategy for
each player in a game – that leads to the attainment of the best possible
outcome for the group of individuals acting together as a team. The team-
reasoning decision-maker then chooses a strategy which, in combination with
other team-reasoning decision-makers’ strategies, leads to the attainment of
that outcome.

In Sugden’s (2011, 2015) recent version of the team reasoning theory,
an outcome selected by decision-makers who reason as members of a team
must be perceived as being mutually advantageous by every interacting team-
reasoning decision-maker. Sugden proposes to define mutually advantageous
outcomes as those that are associated with decision-makers’ personal payoffs
satisfying a particular threshold. The suggested threshold is each player’s
personal maximin payoff – the maximum payoff that a player can guarantee
to himself or herself in a particular game irrespective of what the other
players are going to do (for details, see Sugden 2015).

Both theories can be viewed as the so-called goal-directed reasoning theo-
ries : A decision-maker accepts certain premises about the decision problem
and his or her goal, and then follows a set of well-defined inference rules
in order to identify an action that s/he should take in order to make the
attainment of the goal possible3. Both theories are also mutual advantage-
directed reasoning theories, since they both suggest that decision-makers
aim to resolve games by identifying outcomes which they perceive as being
mutually advantageous. In other words, both theories suggest that the goal
of decision-makers in non-cooperative games is the identification and attain-
ment of mutually advantageous outcomes – strategy profiles which, relative
to each decision-maker’s reference point, advance his or her personal inter-
ests. In fact, some of the proponents of the hypothetical bargaining theory
suggest that hypothetical bargaining can be viewed as a complement of the
team reasoning theory. According to Misyak and Chater, hypothetical, or
virtual, bargaining theory ‘can be viewed as providing a link between indi-

2For early developments of this theory see Sugden (1993, 2000, 2003) and Bacharach
(1999, 2006). For some of the more recent work see Gold and Sugden (2007a,b), Sugden
(2011, 2015) and Gold (2012).

3For an extensive discussion of goal-directed reasoning models, see, for example, Gold
and List 2004, Bacharach 2006, Gold and Sugden 2007b, Smerilli 2014, Misyak and Chater
2014, Misyak et al. 2014.
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vidual beliefs and values and the behaviour of “the team” – by viewing the
preferences of the team as resulting from what “the team” would agree, if
its members had the opportunity to bargain.’ (Misyak and Chater 2014:
4). This interpretation of hypothetical bargaining, however, may not be ac-
ceptable to all of the proponents of team reasoning, since team reasoning is
sometimes interpreted as a mode of reasoning which only characterizes the
reasoning of players who identify themselves with a team due to overlapping
personal interests (see, for example, Bacharach 2006, Zizzo and Tan 2007
and Smerilli 2014), while hypothetical bargaining can occur between ‘adver-
saries’ – self-oriented individuals with incompatible private interests (Misyak
et al. 2014).

Hypothetical bargaining theory has been introduced primarily as a so-
cial coordination account – a theory which purports to explain how social
agents coordinate their actions in coordination problems where they cannot
communicate and cannot use a commonly known social rule of behaviour to
coordinate their actions. The proponents of the theory argue that hypothet-
ical bargaining is the origin of various ‘unwritten rules’ of social interactions:
Hypothetical bargainers ‘compose’ the rules for social interactions as they
go along, by engaging in a process of mental bargaining. In other words,
the proponents of this theory suggest that people do not need to know the
pre-existing rule of social behaviour (e.g. a social norm or a convention)
in order to be able coordinate their actions in an interdependent decision
problem: They can figure out the appropriate response by identifying the
hypothetical bargaining solution of the game. That is, when a hypothetical
bargainer identifies an outcome as a bargaining solution of the game, s/he
also identifies a strategy that s/he must choose in order to make the attain-
ment of that outcome possible. If every player of a game is a hypothetical
bargainer and chooses the appropriate strategy, hypothetical bargainers end
up playing the outcome which they identify as the bargaining solution of the
game. Thus, hypothetical bargainers’ ability to identify the same outcome of
the game as the hypothetical bargaining solution resolves the coordination
problem (for extensive discussion, see Misyak et al. 2014).

On the surface of it, it might seem that the theory of hypothetical bar-
gaining is a parsimonious social coordination theory. Unlike, for example, the
social convention theory (see, for example, Bicchieri 2006 and Gintis 2008),
which presupposes that players know the appropriate behavioural rule for
every type of interdependent decision problem, expect each other to know it,
expect each other to follow it, and so on, the hypothetical bargaining theory
offers an explanation of how people can coordinate their actions in a large
variety of games with a relatively simple reasoning algorithm – a reasoning
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procedure which allows each decision-maker who uses it to determine a solu-
tion of a game from a commonly known information about decision-makers’
preferences over the possible outcomes. It could also be viewed as providing
a credible explanation of why one individual’s deviation from the expected
pattern of behaviour trigger a negative response from other individuals: If
decision-makers view an implementation of a specific strategy profile as an
implicit ‘agreement’ leading to the attainment of a mutually beneficial reso-
lution of a game, then they may also view each deviation from that strategy
profile as a ‘violation’ of their hypothetical agreement – a deviation from a
‘pre-agreed’ pattern of behaviour, which warrants a punitive response.

In this chapter I will argue that although the hypothetical bargaining
theory offers a relatively parsimonious explanation of how people identify
the payoff salient solutions in a large variety of non-cooperative interdepen-
dent decision problems, at best it offers only a partial explanation of how
people coordinate their actions in non-cooperative games. I will focus on
two epistemic limitations of the theory. In section 2 I will discuss the epis-
temic assumptions of the hypothetical bargaining model, and argue that,
since the theory of hypothetical bargaining is supposed to be interpreted as
a model of rational decision-making, it is vulnerable to the rationalization
problem: The model of hypothetical bargaining does not fully account for
the structure of beliefs which sustains hypothetical bargainer’s motivation
to play his or her part in the implementation of a hypothetical agreement. I
will discuss several responses to this problem and point out their limitations.
In section 3 I will argue that hypothetical bargaining, if interpreted as a ra-
tional social coordination theory, is vulnerable to the problem of common
beliefs: The theory cannot account for the structure of beliefs which makes
it a functioning social coordination mechanism. In section 4 I will discuss
a possible evolutionary game theoretic response to this problem, and high-
light its explanatory limitations. In section 5 I will argue that even a fully
developed hypothetical bargaining theory would not provide a single gener-
alizable model of players’ final choices due to non-uniqueness of hypothetical
bargaining solutions. With section 6 I conclude.

4.2 Hypothetical Bargaining and Rational Choice

4.2.1 Hypothetical Bargaining as a Reasoning Algorithm

The proponents of the theory suggest that hypothetical bargaining ‘operates
within the framework of rational-choice theory’ (Misyak et al. 2014: 512).
In other words, they seem to suggest that hypothetical bargaining is a model
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of strategic decision-making which is compatible with the principles of the
standard game and decision theory.

In standard game theory models, a rational player is assumed to be a
best-response reasoner – a decision-maker who always chooses a strategy
which, given his or her beliefs about the opponents’ strategy choices, maxi-
mizes expected payoff. In a hypothetical bargaining model, the players are
assumed to be hypothetical bargainers – decision-makers who choose their
strategies on the basis of what they would agree to play if they could openly
bargain. In other words, a hypothetical bargainer views non-cooperative
games as bargaining problems, and aims to resolve them by identifying a
strategy profile, or outcome, which s/he believes the players would agree to
play in real negotiations, in which players can communicate their offers and
counteroffers to each other until an agreement is reached (Misyak and Chater
2014). An outcome identified by hypothetical bargainers as the hypothet-
ical bargaining solution of a game is the expected outcome of an explicit
bargaining process. According to the proponents of the theory, hypothetical
bargaining process mimics the explicit bargaining process with no external
enforcement of agreements, and so idealized game theoretic models of ex-
plicit bargaining can be used as idealized models of hypothetical bargaining.
In other words, the principles and solution concepts used in the analysis of
game theoretic models of explicit bargaining can be used in the game the-
oretic models of hypothetical bargaining (Misyak and Chater 2014, Misyak
et al. 2014).

Given the aforementioned assumptions, hypothetical bargaining could
be interpreted as the following reasoning algorithm. Each hypothetical bar-
gainer views the set of mixed and pure outcomes of a game as the set of
possible agreements that bargainers could implement by engaging in joint
actions. Hypothetical bargainer then identifies a set of feasible agreements.
There are several suggestions of how the notion of feasibility could be de-
fined as a theoretical concept. In standard bargaining models without ex-
ternal enforcement, the set of feasible agreements is assumed to be the set
of correlated equilibria of the game (for extensive discussion of why this is
so, see Myerson 1991 and Maschler et al. 2014). In non-cooperative games,
however, decision-makers are assumed not to be able to communicate at
all, which means that an agreement to implement a correlated equilibrium
which requires a correlation device is impossible. Therefore, the set of feasi-
ble agreements of a non-cooperative game could be defined as the set of its
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Nash equilibria4.
Misyak and Chater (2014) suggest an alternative and less restrictive def-

inition of feasibility, according to which a strategy profile is a feasible agree-
ment if no player can exploit the other players by varying his or her strategy
and gaining individual advantage to the disadvantage of others. If hypothet-
ical bargainers were to adopt this feasibility criterion, then in certain games
the set of agreements which they would identify as feasible would be larger
than the set of Nash equilibria (for discussion, see chapter 3). In the follow-
ing discussion, the set of feasible agreements will be assumed to be the set
of Nash equilibria. This assumption will not make the following discussion
any less general, since the problems of the hypothetical bargaining model
based on assumption that the set of feasible agreements is the set of Nash
equilibria will also be present in any hypothetical bargaining model based
on a less restrictive feasibility criterion.

After determining the set of feasible agreements, a hypothetical bargainer
identifies a feasible agreement which s/he believes the players would most
likely agree to play in open bargaining. By identifying the hypothetical
bargaining solution of a game, each hypothetical bargainer also identifies a
strategy that s/he must play in order to make the implementation of that
solution possible. If hypothetical bargainer expects the other bargainers to
play their part in the implementation of the identified bargaining solution,
s/he will be motivated to play his or her part in the implementation of that
solution as well.

One of the central questions pertaining to hypothetical bargaining theory
is what properties a feasible agreement must have in order to be identified
by hypothetical bargainers as the bargaining solution of a non-cooperative
game. Misyak and Chater (2014) suggest the Nash bargaining solution (Nash
1950a) as a reasonably good approximation to what hypothetical bargainers
would identify as the hypothetical bargaining solution of a game, since this
solution ‘follows from very simple and natural axioms concerning bargaining’
(Misyak and Chater 2014: 4)5.

As I have argued in chapter 3, the Nash bargaining solution may not
be the best solution concept to represent hypothetical bargaining in non-
cooperative games, since it is insensitive to information about the possible
alternative allocations of players’ personal payoff gains. Because of these rea-

4Every Nash equilibrium is also a correlated equilibrium, which means that the set of
Nash equilibria in a non-cooperative game is a subset of the set of its correlated equilibria.
For extensive discussion, see Aumann 1987 and Brandenburger and Dekel 1987.

5The Nash bargaining solution satisfies the following axioms: Pareto optimality, invari-
ance with respect to affine utility transformations, independence of irrelevant alternatives
and symmetry. For extensive discussion, see Nash 1950a.
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sons, other bargaining solution concepts, such as the benefit-equilibrating
bargaining solution suggested in chapter 3, may serve as better approxi-
mations to what hypothetical bargainers would identify as the bargaining
solution of a game. However, the following discussion will focus on the gen-
eral epistemic assumptions of the hypothetical bargaining theory, and so
the arguments will apply to any model of hypothetical bargaining, irrespec-
tive of which bargaining solution concept is chosen as an approximation to
what hypothetical bargainers identify as the bargaining solution of a game.
Therefore, the games used as examples in the following discussion will be
such that the outcome which will be assumed to be the hypothetical bar-
gaining solution of a game will be in line with the Nash bargaining solution
(nash 1950a), the Kalai-Smorodinsky bargaining (Kalai and Smorodinsky
1975) solution6, as well as with the benefit-equilibrating bargaining solution
suggested in chapter 3.

4.2.2 The Rationalization Problem

Every game theoretic model of strategic interactions relies on certain as-
sumptions about players’ beliefs. The hypothetical bargaining models are
no exception. A simple model of hypothetical bargaining, such as the one
suggested by Misyak and Chater (2014), relies on assumption that every
decision-maker is a hypothetical bargainer and this fact is common knowl-

6The Kalai-Smorodinsky bargaining solution can be defined as follows: Suppose that
(F ,d ) is a two player bargaining problem, where d =

(
u
r ef
1 ,u

ref
2

)
is a disagreement point

associated with disagreement payoffs of player 1 and player 2 respectively, and F is the
set of feasible agreements. Let umax

1 and umax
2 denote players’ ‘ideal payoffs’ – the best

possible personal payoffs that player 1 and player 2 can attain in the game. The Kalai-
Smorodinsky solution function K (F ,d ) picks a point (u1,u2) ∈ F on a Pareto frontier of
F which maintains the ratio of players’ ‘ideal’ payoff gains:

u1 − ur ef1

u2 − ur ef2

=
umax
1 − ur ef1

umax
2 − ur ef2

.

The Kalai-Smorodinsky bargaining solution satisfies the following axioms: Pareto optimal-
ity, symmetry, invariance with respect to affine utility transformations and monotonicity.
Unlike the Nash bargaining solution (Nash 1950a), the Kalai-Smorodinsky bargaining so-
lution does not satisfy the independence of irrelevant alternatives axiom. For extensive
discussion, see Kalai and Smorodinsky 1975.
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edge7 among the interacting individuals. The model also relies on a rela-
tive standard assumption that the payoff structure of the game is common
knowledge. In other words, it is assumed that each hypothetical bargainer
knows that every other player is a hypothetical bargainer who knows the
payoff structure of the game, knows that every other player knows that ev-
ery other player is a hypothetical bargainer who knows the payoff structure
of the game, and so on ad infinitum. Assuming that decision-makers only
deem possible one type of hypothetical bargainer (i.e. the players believe
that every hypothetical bargainer is using the same reasoning algorithm),
the aforementioned common knowledge assumptions imply that each player
knows that every player of the game has identified the same outcome as the
bargaining solution of the game, knows that every other player knows it, and
so on ad infinitum8. Every player also knows that every player has identified
a strategy that s/he must choose in order to play a part in the attainment
of that outcome, knows that every other player knows this, and so on ad
infinitum. If a hypothetical bargainer expects the other bargainers to carry
out their part in the attainment of the identified outcome, s/he will choose
to play his or her part in the attainment of that outcome as well. In other
words, a hypothetical bargainer will play a part in the attainment of the
outcome only if s/he expects the others to do the same.

The fundamental problem of this model is revealed by the following ob-
servation: Hypothetical bargainer’s knowledge of the fact that every player
has identified a certain outcome as the hypothetical bargaining solution does
not give him or her a valid (i.e. rational) reason to believe that the other
hypothetical bargainers will play their part in the attainment of that out-
come, even if the identified outcome is a Nash equilibrium. In other words,
even if every hypothetical bargainer identifies a certain Nash equilibrium
as the hypothetical bargaining solution of a game, and this fact is common

7In more recent epistemic models of game theory, a common belief in rationality as-
sumption tends to be preferred over the common knowledge of rationality assumption
due to its purported realism. Common knowledge of rationality assumption is viewed as
a stronger epistemic assumption than common belief in rationality assumption: Common
knowledge assumption implies that the player cannot be mistaken in his or her belief,
while a common probability 1 belief may be either true or false. For the purposes of
brevity, the standard common knowledge term will be used in most cases, since the con-
ceptual differences between the common knowledge and the common belief concepts will
not play any significant role in the following discussion (that is, the terms can be used
interchangeably without undermining the validity of arguments). For an extensive dis-
cussion of the differences between common knowledge and common belief concepts, see
Samet 2013.

8The coordination problems which arise in games with multiple hypothetical bargaining
solutions will be discussed separately in section 4.5.
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knowledge, each player’s decision to play his or her part in the attainment of
that Nash equilibrium cannot be explained as an expected utility maximizing
choice by appeals to the fact that everyone has identified that equilibrium
as the bargaining solution and that this fact is common knowledge. It is
only rational for a player to play his or her part in the Nash equilibrium if
s/he expects the opponent to do that as well. Yet if the decision-maker be-
lieves that the opponent is rational, s/he should expect the opponent to play
his or her part in the Nash equilibrium only if s/he has a reason to believe
that the opponent expects the decision-maker to play his or her part in that
equilibrium himself or herself. Hypothetical bargainers who believe in each
other’s rationality thus end up in an infinite regress which gives neither of
them a valid reason for playing his or her part in the attainment of the Nash
equilibrium which they identify as the bargaining solution9. Thus, common
knowledge of the fact that a certain outcome is the hypothetical bargaining
solution of a game is not sufficient to rationalize hypothetical bargainer’s de-
cision to play a part in the attainment of that outcome. A similar problem
would obviously arise with any out-of-equilibrium outcome which satisfies
the feasibility criterion suggested by Misyak and Chater (2014).

If hypothetical bargaining model is to be interpreted as a model explain-
ing players’ actual strategy choices rather than merely as a model of rea-
soning, its epistemic assumptions must be strengthened considerably. More
specifically, common knowledge of the fact that every player is a hypothet-
ical bargainer must be complemented with a common p−belief that each
bargainer will play his or her part in the attainment of the outcome identi-
fied as the bargaining solution. In other words, hypothetical bargainers must
express a common belief that each hypothetical bargainer will choose to play
a part in the attainment of that outcome with probability of at least p ≥ 0,
which is high enough to make the choice of playing a part in the attainment
of that outcome optimal for every interacting hypothetical bargainer10.

There are two possible ways in which the model could be modified to sat-
isfy the aforementioned epistemic requirement. The simplest modification of
the theory would be to treat the hypothetical bargaining as a ‘mechanistic’
choice algorithm rather than as a belief-based choice algorithm. That is, a

9This argument is similar to Gilbert’s (1989) criticism of Schelling’s (1960) theory of
salience. Gilbert’s argument rests on a simple observation that player’s decision to play
a salient equilibrium cannot be justified as being rational by appeals to the fact that the
Nash equilibrium is recognized as salient by every player and this recognition is common
knowledge. The players must have a reason to expect each other to actually choose the
strategies constituting the salient equilibrium. For details, see Gilbert 1989.

10For a technical characterization of the common p-belief concept, see Monderer and
Samet 1989 and Kajii and Morris 1997.
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hypothetical bargainer could be assumed to be a decision-maker who always
plays his or her part in the attainment of an outcome that s/he identifies as
the bargaining solution of a game (i.e. players commitment to the attain-
ment of that outcome is unconditional). Such a mechanistic model of choice
would, contrary to claims made by Misyak et al. 2014, obviously involve a
non-trivial departure from the standard game theoretic model of strategic
reasoning, which rests on the principle that each player’s strategy choice de-
pends on his or her preferences over outcomes, as well as probabilistic beliefs
about the opponents’ strategy choices. Although such a model of hypothet-
ical bargaining is relatively unproblematic as a descriptive model of choice,
no claims about its normative appeal could be justified.

Another, and more subtle, approach is to treat the hypothetical bargain-
ing reasoning procedure as a belief-formation algorithm: A reasoning proce-
dure by which the decision-maker forms a belief about the combination of
strategies that the other players are going (or most likely going) to play. In
other words, a strategy profile that a hypothetical bargainer identifies as the
hypothetical bargaining solution is simply a hypothetical bargainer’s belief
about the strategy profile that the other hypothetical bargainers will (or
most likely will) be implementing. If a hypothetical bargainer expects ev-
eryone else to play their part in a particular Nash equilibrium, then playing
his or her part in that equilibrium is an optimal response.

For example, consider a normal form game Γ = (I {Si ,ui}i∈I ), where I ={1, ...,m} is the set of players, Si is the set of pure strategies and ui : S→ R is
the payoff function of player i ∈ I , where S = ×i∈ISi is the set of pure strategy
profiles of Γ. Each pure strategy profile s = (s1, ..., sm ) is a combination of
player’s pure strategies – one for each player of the game. For every game
Γ, it is possible to define a set S−i = S1 × ... × Si−1 × Si+1 × ... × Sm which
represents all the possible combinations of strategies of all the players other
than player i ∈ I . Each combination of strategies s−i = (s1, ..., si−1, si+1, ..., sm)
is a combination of strategies of all the players other than player i. Each
pure strategy profile s ∈ S can then be written as a tuple s = (si , s−i ), where
s−i ∈ S−i is a combination of components (pure strategies) of all the players
other than i and si ∈ Si is i’s component of the strategy profile s ∈ S.

Let Σi be a set of probability distributions over Si . Each mixed strategy
σi ∈ Σi is a particular probability distribution over player i’s pure strategies,
where σi (si ) denotes the probability assigned to pure strategy si ∈ Si . Let
Σ = ×i∈IΣi be the set of all the mixed strategy profiles of Γ, and ui (σ ) =∑

s∈S (
∏

i∈I σi (si ))ui (s) be player i’s expected utility associated with a mixed
strategy profile σ ∈ Σ, where σ = (σ1, ...,σm ) is a particular combination
of players’ mixed strategies. Similarly as in the pure strategy case, we can
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define a set Σ−i = Σ1× ...×Σi−1×Σi+1× ...×Σm of all the possible combinations
of mixed strategies of every player other than player i ∈ I , where each element
σ−i ∈ Σ−i is a particular combination of mixed strategies of all the players
other than player i ∈ I . A mixed strategy profile σ ∈ Σ can be written as a
tuple σ = (σi ,σ−i ), where σ−i ∈ Σ−i is a combination of mixed strategies of all
the players other than i and σi ∈ Σi is i’s component of the strategy profile
σ ∈ Σ.

The hypothetical bargaining could be interpreted as a belief-formation
algorithm in the following way. Suppose that every player i ∈ I is a hypothet-
ical bargainer, and this is common knowledge among the interacting players.
Suppose that hypothetical bargainer identifies a strategy profile σ ∗ ∈ Σ as
the unique hypothetical bargaining solution of Γ. By identifying outcome
σ ∗ ∈ Σ as the hypothetical bargaining solution, hypothetical bargainer i ∈ I
forms a probability 1 belief that every hypothetical bargainer will play his or
her part in the combination of strategies σ ∗−i =

(
σ ∗1 , ..,σ

∗
i−1,σ

∗
i+1, ...,σm

)
. Since

the fact that every player is a hypothetical bargainer is common knowledge,
each player i ∈ I believes that the probability of every other player of that
game playing his or her part in the combination of strategies σ ∗−i is 1. Given
this structure of beliefs, hypothetical bargainer i ∈ I will be motivated to
play his or her part σ ∗i ∈ Σi in the profile σ ∗ ∈ Σ if and only if

ui
(
σ ∗i ,σ

∗
−i
) ≥ ui

(
σi ,σ

∗
−i
) ∀σi ∈ Σi . (4.1)

Notice that if σ ∗ ∈ Σ is a Nash equilibrium, then i’s strategy σ ∗i ∈ Σi

is a best response to σ ∗−i ∈ Σ−i . Assuming that hypothetical bargainer al-
ways forms a probability 1 belief that the other hypothetical bargainers will
play their part in the attainment of an outcome identified as the bargain-
ing solution of a game, and that the set of agreements which hypothetical
bargainers deem feasible is always the set of the Nash equilibria of a game,
a hypothetical bargainer will always play a part in the implementation of
the hypothetical bargaining solution, provided that it is common knowledge
among the interacting players that every player of the game is a hypothetical
bargainer.

The suggested interpretation of hypothetical bargaining can be shown to
share certain similarities with some of the more recent epistemic models of
strategic reasoning for non-cooperative games, in which decision-makers use
certain reasoning algorithms to form probabilistic beliefs about opponents’
strategy choices from the commonly known information about opponents’
preferences (for an overview, see Perea 2012). For example, the utility pro-
portional beliefs model, developed by Bach and Perea (2014), suggests that
real-world decision-makers can be modelled as agents holding utility propor-
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tional beliefs – entertaining beliefs on their opponents’ choices proportional
to the respective utilities that those choices yield. That is, a player assigns
probabilities to opponents’ strategy choices in such a way that, for every op-
ponent, the difference in probability assigned to strategies is proportional to
difference in utility that those strategies yield. This assumption is supposed
to represent an idea that a real-world decision-maker expects the opponent
to choose a strategy yielding a higher personal payoff with a higher proba-
bility than a strategy yielding a lower personal payoff, and chooses his or her
response accordingly. The players are also assumed to express a common
belief in utility-proportional beliefs, which allows them to form beliefs about
each other’s beliefs about each other’s actions, thus making the coordination
problem resolvable in certain types of games. The theoretical predictions of
players’ choices derived from the utility proportional beliefs model seem to
better fit with certain experimental findings than the theoretical predictions
derived from the standard best-response reasoning model (for details, see
Bach and Perea 2014).

An even more sophisticated model of how players form probabilistic be-
liefs about the opponents’ actions from the available information about oppo-
nents’ preferences is Perea’s (2011) proper rationalizability algorithm based
on lexicographic belief structures. In Perea’s (2011) model, each player holds
a lexicographic belief about his or her opponents’ strategy choices, which is
a finite sequence λi =

(
λ1i , ..., λ

K
i

)
of probability distributions on the set S−i

of all the possible combinations of opponents’ strategy choices. A sequence
of probability distributions is such that every possible combination s−i ∈ S−i
has a positive probability under some probability distribution λki in this se-
quence. For every k ∈ {1, ...,K}, a probability distribution λki in this sequence
is called the level k belief of player i ∈ I . The idea behind the assumption
that every possible combination has a positive probability under some prob-
ability distribution in the sequence λi =

(
λ1i , ..., λ

K
i

)
is that each player is

‘cautious’ – does not exclude any combination of opponents’ strategies from
consideration, even though s/he believes that some of those combinations
are infinitely more likely to be played by the opponents than other possible
combinations. Player i ∈ I deems a combination of opponents’ strategies
s−i ∈ S−i infinitely more likely than combination s

′
−i ∈ S−i if combination

s−i ∈ S−i has a positive probability under some level k belief λki , while the
combination s′−i ∈ S−i has zero probability under the first k levels11.

In proper rationalizability model, each player is assumed to respect his
or her opponents’ preferences and express a common belief in respect for

11For a technical discussion of the properties of lexicographic probability systems, see
Blume et al. 1991a,b.
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opponents’ preferences – believe that every other player respects his or her
opponents’ preferences, believe that every other player believes that every
other player respects his or her opponents’ preferences, and so on ad infini-
tum. A player i ∈ I is said to express the preferences of player jj,i ∈ I if,
for any two j’s strategies sj ∈ Sj and s′j ∈ Sj , player i deems it infinitely more
likely that player j will choose sj than s′j if player i believes that opponent j

prefers strategy sj over strategy s′j
12.

Given the structure of common beliefs, the player performs an iterative
addition of restrictions on the set of opponents’ combinations of strategies,
in light of a belief that every other player performs the same procedure in
light of the same belief about every other player, and so on ad infinitum.
The player starts with a set of all the possible combinations of opponents’
strategies S−i and identifies a subset D−i ⊆ S−i of combinations of opponents’
strategies, such that each combination of opponents’ strategies in the subset
D−i is deemed by player i to be infinitely more likely than any combination
of opponents’ strategies outside the subset D−i . The player continues adding
restrictions on the set S−i until no further restrictions can be added. A subset
of strategies of player i ∈ I which can be optimally chosen as responses to
combinations of opponents’ strategies which survive the iterative addition of
restrictions is the set of player i’s properly rationalizable strategies (for an
extensive technical discussion and proofs, see Perea 2011).

In principle, lexicographic probability systems are flexible enough to be
useful as a reasonable starting point for a formal representation of hypothet-
ical bargainers’ beliefs about each other’s actions. In Perea’s (2011) proper
rationalizability model, each player’s beliefs about the opponents’ strategy
choices are assumed to be determined by his or her beliefs about the oppo-
nents’ preferences over strategies. This assumption, however, can be replaced
with a different assumption postulating a different kind of relation between
player’s beliefs about opponents’ choices and the information available to
the player about opponents’ preferences and/or opponents’ beliefs about the
structure of the game and its players.

According to Misyak and Chater (2014), hypothetical bargainers choose
their actions on the basis of what they would agree to play if they could
openly bargain. Hypothetical bargainers identify a combination of strate-
gies which they would agree to play in open bargaining by evaluating the
‘goodness’ of the feasible agreements and finding an agreement which, given
their criterion of ‘goodness’, they perceive as the ‘best’ feasible agreement

12That is, player i ∈ I believes that player jj,i ∈ I prefers strategy sj ∈ S j over strategy
s ′j ∈ S j if there is some level k ∈ {1, ...,K} such that uj

(
sj , λ

k
j

)
> uj

(
s ′j , λ

k
j

)
and uj

(
sj , λ

l
j

)
=

uj
(
s ′jλ

l
j

)
for all l < k. For details, see Perea 2011.
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(Misyak and Chater 2014). In principle, Misyak and Chater’s suggestion
can be interpreted as an idea that hypothetical bargainer’s beliefs about the
other hypothetical bargainers’ actions are determined by his or her beliefs
regarding other hypothetical bargainers’ perceived relative ‘goodness’ of fea-
sible bargains. In other words, a hypothetical bargainer could be assumed
to believe that, given the set of available feasible agreements, the opponent,
given his or her criterion of ‘goodness’, is more likely to play a part in the
implementation of an agreement which s/he deems better than to play a part
in the implementation of an agreement which s/he deems worse. Assuming
that each hypothetical bargainer is using the same criterion of ‘goodness’
and that this fact is common knowledge, it can be shown that hypotheti-
cal bargainers could form correlated lexicographic beliefs about each other’s
actions.

For an example of how, in principle, hypothetical bargainer’s beliefs
could be represented, suppose that two hypothetical bargainers are play-
ing a normal form game Γ =

({1, 2} , {Si ,ui}i∈{1,2}), where Si is the set of
pure strategies and ui : S → R is the utility function of player i ∈ {1, 2},
where S = (S1 × S2) is the set of pure strategies of Γ. To simplify this exam-
ple, I will assume that players only consider pure strategy profiles as possible
agreements.

Suppose that every hypothetical bargainer only deems an agreement fea-
sible if it creates no incentive for any of the players to deviate from it. That
is, the set of feasible agreements is the set of pure strategy Nash equilib-
ria SNE ∈ P (S). It will be assumed that players are playing a game where
SNE , ∅.

For this particular example, it will be assumed that players evaluate the
‘goodness’ of feasible agreements using a criterion underlying the cardinal
BE solution suggested in chapter 3. That is, hypothetical bargainers iden-
tify the best feasible agreement by identifying a weakly Pareto optimal Nash
equilibrium which minimizes the difference between players’ losses of maxi-
mum attainable individual advantage. The choice of the ‘goodness’ criterion
in this case is arbitrary, since it will not have any significant effect on the
structure of the considered epistemic model.

Let umax
i denote the maximum payoff of player i ∈ {1, 2} associated with

some rationalizable outcome of the game, and let ure fi denote player i’s ref-
erence payoff – the personal payoff, relative to which i ∈ {1, 2} evaluates
the individual advantage gains from feasible agreements13. For each player
i ∈ {1, 2}, the level of individual advantage associated with a feasible agree-

13For an extensive discussion of how a reference point could be defined, see chapter 3.
For the purposes of this discussion, the properties of the reference point will not matter.
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ment s ∈ SNE is the following ratio:

uιi (s) =
ui (s) − ure fi

umax
i − ure fi

. (4.2)

It is easy to check that the maximum level of individual advantage attain-
able to each player relative to his or her reference point is 1. Recall that a
benefit-equilibrating solution is a weakly Pareto optimal Nash equilibrium
s ∈ SNEwpo which minimizes the difference between players’ losses of maxi-
mum attainable individual advantage:

φc
(
SNE
)
∈ arд mins∈SNEwpo

{���(1 − uιi (s)) − (1 − uιj,i (s)) ���} . (4.3)

In epistemic terms, hypothetical bargainers can be modelled as players who
evaluate the ‘goodness’ of each weakly Pareto optimal feasible agreement by
comparing the difference between players’ losses of maximum attainable in-
dividual advantage associated with each feasible agreement: An agreement
associated with a smaller difference between players’ losses of maximum at-
tainable individual advantage is deemed ‘better’ than the one associated with
a larger difference between players’ losses of maximum attainable individual
advantage. If both players are hypothetical bargainers and this fact is com-
mon knowledge, each player can be modelled as holding a belief that, for
any two feasible agreements, the opponent is infinitely more likely to play
his or her part in realizing an agreement that s/he deems ‘better’.

Given the set of agreements SNEwpo ⊆ SNE , every hypothetical bargainer
i ∈ {1, 2} can be modelled as holding a belief that hypothetical bargainer
jj,i ∈ {1, 2} will play his or her part in realizing some feasible agreement
s ∈ SNEwpo by playing his or her component in the strategy profile s = (s1, s2).
Player j’s component in strategy profile s ∈ SNEwpo will be denoted as cj (s).
Given the set of agreements SNEwpo, player i ∈ {1, 2} can identify the set of
components Cj ⊆ Sj that player j would choose in order to play a part in the
implementation of some agreement from the set SNEwpo.

An epistemic model of a game is a tuple M = (Ti , λ1)i∈{1,2}, where Ti
is the set of possible types of player i ∈ {1, 2} and λi is a function which
assigns a lexicographic probability system λi (ti ) to every type ti ∈ Ti . A
lexicographic probability system λi (ti ) represents the beliefs that type ti ∈ Ti
holds about the component of the strategy profile that his or her oppo-
nent jj,i ∈ {1, 2} is going to play in order to implement some agreement in
SNEwpo, as well as beliefs about j’s beliefs (i.e. j’s type). A lexicographic
belief λi (ti ) =

(
λ1i , ..., λ

K
i

)
of player i ∈ {1, 2} is a lexicographic probability

system on the set of possible statesCj,i×Tj , which is the set of all the possible
component–type combinations of player j ∈ {1, 2}. Every component–type
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combination
(
cj (s) , tj

)
∈ Cj × Tj can be interpreted as i’s belief that player

j ∈ {1, 2} plays his or her component of the strategy profile s ∈ SNEwpo and
holds a lexicographic belief λj

(
tj
)
. For every component–type combination(

cj (s), tj
)
∈ Cj × Tj , we can define its rank ℘

((
cj (s) , tj

)
, λi (ti )

)
within lexi-

cographic probability system λi (ti ) of type ti ∈ Ti as the lowest level k such
that λki

(
cj (s) , tj

)
> 0. Type ti ∈ Ti is said to deem component–type com-

bination
(
cj (s) , tj

)
infinitely more likely than component–type combination(

cj (s
′) , t ′j
)

if and only if

℘
((
cj (s), tj

)
, λi (ti )

)
< ℘
((
cj (s

′) , t ′j
)
, λi (ti )

)
. (4.4)

If the fact that players are hypothetical bargainers is common knowledge
among the interacting players, then every type ti ∈ Ti knows that every type
tj ∈ Tj is a hypothetical bargainer, and so deems the agreement s ∈ SNEwpo

‘better’ than the agreement s′ ∈ SNEwpo only if���(1 − uιi (s)) − (1 − uιj,i (s)) ��� < ���(1 − uιi (s′)) − (1 − uιj,i (s′)) ��� . (4.5)

Given the assumptions about the relationship between i’s beliefs about the
relationship between j’s actions and j’s evaluations of outcomes, as well as i’s
beliefs about j’s evaluations of feasible agreements, the following relationship
will hold for every type ti ∈ Ti :

℘
((
cj (s) , tj

)
λi (ti )

)
< ℘
((
cj (s

′) , tj
)
λi (ti )

)
(4.6)

only if the following condition is satisfied:���(1 − uιi (s)) − (1 − uιj,i (s)) ��� < ���(1 − uιi (s′)) − (1 − uιj,i (s′)) ��� . (4.7)

Given the aforementioned assumptions, each player will have a lexico-
graphic ranking of opponent’s actions, in which opponent’s choice of a com-
ponent of an agreement with a smaller difference between players’ losses
of maximum attainable individual advantage will have a lower rank than
the choice of a component of an agreement with a larger difference between
players’ losses of maximum attainable individual advantage. In other words,
each player will hold a belief that his or her opponent is infinitely more likely
to play his or her component of an agreement with a smaller difference be-
tween players’ losses of maximum attainable individual advantage than his
or her component of an agreement with a larger difference between players’
losses of maximum attainable individual advantage. The feasible agreement
with the lowest rank will be the one which, given the set of agreements,
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minimizes the difference between players’ losses of maximum attainable in-
dividual advantage. If the fact that both players are hypothetical bargainers
is common knowledge, each player knows that the other players holds the
same lexicographic belief, knows that the other player knows this, and so on
ad infinitum

Suppose that type ti ∈ Ti holds a lexicographic belief λi (ti ) =
(
λ1i , ..., λ

K
i

)
on the set Cj,i ×Tj . For every level k ∈ {1, ...,K}, the expected utility from
playing a component ci (s) of agreement s ∈ SNEwpo can be defined as follows:

ui
(
ci (s) , λ

k
i

)
=

∑
(c j (s),tj )∈Cj×Tj

λki
(
cj (s) , tj

)
ui
(
ci (s) , cj (s)

)
. (4.8)

Recall that a component–type combination with a lower rank in lexicographic
probability system is deemed infinitely more likely than any component–type
combination with a higher rank. This means that, for every type ti ∈ Ti , it
is always the case that, for any two agreements s ∈ SNEwpo and s′ ∈ SNEwpo,

ui (ci (s) , λi (ti )) > ui (ci (s
′) , λi (ti )) (4.9)

if it is the case that

℘
((
cj (s), tj

)
, λi (ti )

)
< ℘
((
cj (s

′) , tj
)
, λi (ti )

)
. (4.10)

Since the agreement with the lowest rank is the one which minimizes the
difference between players’ losses of maximum attainable individual advan-
tage, a hypothetical bargainer will be motivated to play his or her compo-
nent of that agreement. If it is common knowledge that each player is a
hypothetical bargainer, each player knows that the other player holds the
same lexicographic belief and is motivated to play his or her component of
the same agreement, knows that the other player knows this, and so on ad
infinitum. Thus, given the aforementioned assumptions about the relation
between player’s beliefs about opponent’s actions and opponent’s evaluations
of outcomes, hypothetical bargainers will always be motivated to play their
part in the attainment of an outcome that they identify as the BE solution
of Γ.

It is important to stress that the considered model of lexicographic beliefs
should not be viewed as a model offering a compelling answer to the ques-
tion of why hypothetical bargainers are motivated to play their part in the
implementation of the bargaining solution, but merely as a theoretical ex-
ploration of how, in principle, hypothetical bargaining could be modelled as
a belief–formation process. The considered model has considerable empirical
and conceptual limitations. Although lexicographic beliefs become increas-
ingly popular in epistemic game theory, there is no evidence that real-world
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decision-makers can form beliefs, the structure of which even remotely re-
sembles the structure of lexicographic beliefs. Another major conceptual
problem is that lexicographic probability systems can be used to rationalize
virtually any strategy choice, provided that the strategy is rationalizable in
the standard game theoretic sense and that no restrictions are imposed on
how players use the information about the game and its players in forming
beliefs about the opponents’ actions.

The assumed relationship between player’s beliefs about the opponents’
actions and player’s beliefs about the opponents’ evaluations of outcomes
may also be viewed as conceptually problematic: Although each player’s
probabilistic beliefs about the possible states of the world (i.e. combinations
of opponents’ strategies) are independent from player’s own evaluations of
outcomes, the player is assumed to believe that the probability of each possi-
ble state is not independent from opponents’ evaluations of outcomes. That
is, each player believes that the opponent is more likely to play a part in the
attainment of an outcome that s/he personally deems better than to play a
part in the attainment of an outcome which s/he personally deems worse.
This assumption can be criticized as being a departure from the standard
rational choice theory, since it implies that each player believes that his or
her opponents violate the so-called Aesop’s principle, which requires rational
decision-maker’s preferences and beliefs to be independent of each other (for
extensive discussion, see, for example, Binmore 2009a and Perea 2012).

Nevertheless, an interpretation of hypothetical bargaining which treats
it as a belief-formation algorithm seems to involve a less radical departure
from the rational choice framework than any interpretation which treats it as
a choice algorithm. A mechanistic interpretation of hypothetical bargaining
must be based on assumption that hypothetical bargainers always play their
part in the attainment of an outcome which they recognize as a bargaining
solution, irrespective of what they believe about the other players’ actions.
This interpretation implies that a hypothetical bargainer will try to achieve
the identified goal – implement the hypothetical bargaining agreement – in
situations where s/he has no reason to believe that the other players will do
their part in the attainment of that goal.

If, on the other hand, hypothetical bargaining were to be interpreted as a
belief-formation algorithm, then each hypothetical bargainer’s choice could
at least be shown to be consistent with his or her beliefs about the choices
of other hypothetical bargainers. As has been pointed out by Ulcina and
Orbano (1994), the standard best-response reasoning model is not a belief
formation model but rather a choice consistency model: A rational player is
required to choose a strategy which is optimal in light of his or her beliefs
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about the opponents’ actions. The theory, however, does not provide an
answer to the question of how rational players should form beliefs about
opponents’ rationalizable strategy choices (Olcina and Urbano 1994).

The proponents of hypothetical bargaining suggest that this theory should
be viewed as a model of rational choice. I have argued that their suggested
interpretation of the hypothetical bargaining theory is not tenable without
an adequate theory of why and under what conditions a hypothetical bar-
gainer’s decision to play a part in the attainment of an outcome identified
as the bargaining solution of a game is a rational choice. Until an adequate
explanation is provided, the model remains incomplete. If hypothetical bar-
gaining were to be interpreted as a belief-formation model, it could at least
be shown to be consistent with the most basic choice consistency principle
of the standard game theory: Hypothetical bargainers could be modelled as
players who choose a best-response to their beliefs about opponents’ strategy
choices. However, it seems that such a belief-formation model may not be
possible without a non-trivial departure from the epistemic rationality prin-
ciples endorsed by the orthodox game theory, which means that hypothetical
bargaining, if interpreted as a model of rational strategy choice rather than
merely as a model of how players identify mutually beneficial solutions of
games, may not be compatible with the epistemic principles of orthodox
game theory.

4.3 Hypothetical Bargaining and Social Coor-
dination

4.3.1 Hypothetical Bargaining and the Problem of Com-
mon Beliefs

Besides the aforementioned failure of the theory to explain the reason of why
hypothetical bargainers would have a rational incentive to play their part in
the attainment of outcomes identified as bargaining solutions, a rational
choice interpretation of the theory also makes it vulnerable to the problem
of common beliefs. Even if hypothetical bargainers were always motivated to
play their part in the attainment of the identified bargaining solution under
common knowledge assumptions, the descriptive relevance of the theory can
still be questioned on empirical grounds.

In real world social interactions, social agents face uncertainty about each
other’s type. A social agent who reasons as a hypothetical bargainer may
thus be uncertain as to whether the other player is a hypothetical bargainer
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or not. In that case, hypothetical bargainer’s motivation to play a part in
the attainment of an outcome that s/he identifies as the bargaining solution
of a particular interdependent decision problem will depend on his or her
beliefs about the other decision-maker’s type.

For example, consider the three strategy coordination game depicted in
Figure 4.2. This game has three pure strategy Nash equilibria: (u, l ),(m, c )

l c r

u 7, 3 0, 0 0, 2

m 0, 0 5, 5 0, 2

d 2, 0 2, 0 3, 7

Figure 4.2: Coordination game

and (d, r ). The are also two Nash equilibria in mixed strategies14. Suppose
that the row player is a hypothetical bargainer who identifies the Nash equi-
librium (m, c ) as the unique hypothetical bargaining solution of this game.
The row player believes that if the column player is a hypothetical bargainer,
s/he will play c with probability 1. However, the row player is uncertain
whether the column player is a hypothetical bargainer, and so assigns prob-
ability p > 0 to the event of the column player being of another type than
s/he is.

Suppose that the row player believes that there is some probability p > 0
that the column player is a type of player who plays each pure strategy at
random (that is, plays each strategy with probability 1/3). The row player
thus believes that the probability of the column player being a hypothetical
bargainer is (1 − p). If the opponent were a hypothetical bargainer, the
row player’s best response would be strategy m. If, on the other hand,
the opponent were to choose each of the pure strategies at random, the
optimal response for the row player would be to play either strategy u or
strategy d (notice that both strategies would yield the row player the same
expected payoff of 213). It is easy to check that the row player is indifferent
between playing strategies u, d and m when p = 15/17. If the row player
were to believe that the probability of the column player being a hypothetical
bargainer were higher than 2/17, s/he would be motivated to play a part in
the attainment of the outcome (m, c ).

14The two mixed strategy Nash equilibria of this game are:
(
7
8u,

1
8d;

3
8l ,

5
8r
)
,(

7
10m,

3
10d;

1
2c,

1
2r
)
.
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The result would be different if the row player were to hold a different
belief regarding the actions of non-hypothetical bargainer. Suppose, for ex-
ample, that the row player believes that the column player may be a type
of decision-maker who always chooses his or her maximin strategy. The
row player thus believes that the column player may choose his or her max-
imin strategy r . If the column player chooses strategy r , the row player’s
best-response is to play d. It is easy to check that the row player is indif-
ferent between playing strategies d and m when p = 5/8. It means that the
row player would be motivated to play his or her part in the attainment of
outcome (m, c ) if the probability of the column player being a hypothetical
bargainer were higher than 3/8.

This example shows that for a hypothetical bargainer to be motivated
to play a part in the attainment of an outcome which s/he identifies as the
hypothetical bargaining solution, s/he has to believe that the probability of
the opponent being a hypothetical bargainer is sufficiently high. An answer
to the question of whether players’ beliefs must be common knowledge in
order to sustain their motivation to act as hypothetical bargainers depends
on how the model of hypothetical bargaining is interpreted. If a hypothet-
ical bargainer is assumed to be a decision-maker who always believes that
every other hypothetical bargainer always plays his or her part in the at-
tainment of the identified bargaining solution, then hypothetical bargainers’
beliefs about each other’s beliefs do not need to be common knowledge. If,
on the other hand, a hypothetical bargainer is assumed to be a decision-
maker who believes that other hypothetical bargainers’ motivation to play
the appropriate strategies is conditional on their belief that the probability
of their opponents being hypothetical bargainers is sufficiently high, then
a hypothetical bargainer must not only believe that the probability of the
opponents being hypothetical bargainers is sufficiently high, but also believe
that each hypothetical bargainer believes this, believe that each hypothetical
bargainers believes that each hypothetical bargainer believes this, and so on
ad infinitum15.

More specifically, hypothetical bargaining can operate in a population
P if there is a subset Phb ⊆ P of hypothetical bargainers, such that each

15According to Gintis 2008, the game theoretic models which purport to explain indi-
vidual’s decision to comply with a social norm as a rational choice face a somewhat similar
problem: For a rational individual to be motivated to comply with a norm in a situation
of type C, s/he has to believe that the other rational individuals are aware that the norm
applies to situations of type C and will actually follow it. Each rational individual’s com-
pliance with the norm is thus conditional on expectation that other rational individuals
will comply with the norm as well. Therefore, each player must believe that every other
player will comply with the norm, believe that every other player believes this, and so on.
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individual i ∈ Phb believes that:

1. There exists a subset Phb of hypothetical bargainers in the population
P ,

2. The subset Phb ⊆ P is sufficiently large,

3. Each individual jj,i ∈ Phb believes that 1 and 2 is the case,

4. Each individual jj,i ∈ Phb believes that each individual kk,j ∈ Phb

believes that 1 and 2 is the case,

5. Each individual jj,i ∈ Phb believes that each individual kk,j ∈ Phb be-
lieves that each individual ll,k ∈ Phb believes that 1, 2 is the case,

and so on16.

In other words, hypothetical bargaining can operate as a coordination
device in situations where hypothetical bargainers express a common belief
that the proportion of hypothetical bargainers in the population is suffi-
ciently large. Given this necessary (due to rationalization problem, possibly
not sufficient) epistemic requirement, the question concerning the conditions
under which hypothetical bargainers could be expected to express such a
common belief becomes particularly important.

Misyak et al. (2014) argue that although hypothetical bargaining relies
on common knowledge assumptions, this epistemic requirement is not partic-
ularly problematic, since ‘a history of social interactions, communication and
common culture can foster common knowledge among individuals, thereby
facilitating virtual bargaining’, while ‘previous virtual bargains (and, more
broadly, real bargains and past outcomes) provide precedents for current and
future virtual bargains’ (Misyak et al. 2014: 516). This explanation seems
to be in line with Gintis’s (2008) suggestion that common beliefs emerge

16Note that the structure of common beliefs is relatively simple due to assumption that
each hypothetical bargainer believes that every hypothetical bargainer always plays his or
her part in the attainment of an outcome that s/he identifies as the bargaining solution
of a game. In other words, it is assumed that the rationalization problem discussed in
section 4.2 does not arise in the first place. Otherwise the structure of beliefs would be
much more complicated, since each hypothetical bargainer’s motivation to play a part
in the implementation of the hypothetical bargaining solution would be conditional on
a belief that other hypothetical bargainers will play their part in the attainment of that
outcome. This would obviously make hypothetical bargaining an even more problematic
social coordination theory.
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as a result of common experiences of social agents. The idea is that indi-
viduals who live in the same population form similar beliefs by repeatedly
interacting with other individuals from the same population. That is, by
repeatedly interacting with other individuals from the same population, an
individual begins to recognize the differences in other individuals’ behaviour
and, provided that communication is possible, even differences in how other
individuals conceptualize the decision problems. At least some individuals
begin to classify other decision-makers into types. An individual who devel-
ops the ability to classify decision-makers into types can also learn to distin-
guish the types of decision-makers that s/he interacts with more frequently
from those types which are less prevalent in his or her environment. Such
an individual can thus form a belief about the relative frequency of each
type of decision-maker in his or her environment. Since individual knows
that his or her beliefs are based on the experience gained through repeated
interactions with other individuals, s/he expects the other individuals from
the same population to have gained similar experience and, consequently, to
have similar beliefs about the relative frequencies of decision-makers’ types
as s/he does. As is explained by Gintis, ‘the members of our species, H.
Sapiens, have the capacity to conceive that other members have minds and
respond to experience in a manner parallel to themselves’ (Gintis 2008: 140).
Therefore, ‘if agent i believes something, and if i knows that he shares cer-
tain environmental experiences with agent j, then i knows that j probably
believes this thing as well’ (Gintis 2008: 140).

Even if we were to accept Gintis’s story as a plausible explanation of
how common beliefs emerge (for a critical discussion, see Binmore 2008),
it relies on assumption that hypothetical bargainers interact in a popula-
tion where the proportion of hypothetical bargainers is already sufficiently
large. In other words, for a hypothetical bargainer to form a belief that the
proportion of hypothetical bargainers in the population is sufficiently large,
s/he must be interacting with other hypothetical bargainers sufficiently fre-
quently. This would be very unlikely to happen in a population with very
few hypothetical bargainers and a large number of individuals using other
decision-making approaches. The theory seems to fall into a vicious cycle:
Hypothetical bargainers can only form a belief which motivates them to
act by interacting in a population where a sufficiently large proportion of
the population are acting as hypothetical bargainers, yet such a population
state is only present when a sufficient number of players are already acting
as hypothetical bargainers. In other words, the theory cannot explain how
a population can reach a state where the number of hypothetical bargain-
ers is large enough to sustain hypothetical bargainers’ motivation to act as
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hypothetical bargainers.
There seems to be a plausible response to this problem which, however,

involves a departure from the rational choice interpretation of hypothetical
bargaining. Hypothetical bargaining could be viewed as a reasoning algo-
rithm which have evolved out of a relatively primitive choice heuristic – a
simple decision rule which required little to no strategic deliberation17 and
which, due to its fitness-enhancing properties, was able to spread in the
population either via genetic inheritance or via cultural imitation.

For this explanation to be credible, a primitive version of hypothetical
bargaining must be shown to be an evolutionary advantageous decision rule.
This possibility will be considered in the next section.

4.4 Hypothetical Bargaining and Evolution

4.4.1 Evolutionary Game Theory and Population Dy-
namics

Historical research does not offer much in terms of showing that certain
decision rules were more advantageous than others. In order to fill this
explanatory gap, game theorists and other social scientists have turned to
evolutionary game theoretic models of social interactions. Relatively simple
evolutionary game theoretic models can be used to explore the possibility
that individuals who were making choices as if they were using a certain
decision rule would, given certain initial population conditions, be evolu-
tionary successful in certain types of social interactions, since their responses
would have given them a fitness advantage over individuals who were making
choices as if they were using other decision rules.

In simple evolutionary models, such as in those based on replicator dy-
namics (Taylor and Jonker 1978), each player is assumed to be playing one
of the pure strategies of the game. It is also assumed that there is a certain
small probability ϵ > 0 that each player will ‘mutate’ – spontaneously change
his or her strategy. In each ‘round’ of an evolutionary game, an individual
plays against an opponent from the same population (in simplest models,
the players are assumed to be drawn from the population at random). The
population consists of a large but finite number of individuals, each of which
is programmed to play some pure strategy si of the game, where i ∈ {1, ...,K}
is the set of pure strategies of an evolutionary game. Letting pi (t ) ≥ 0 denote

17For extensive discussion of decision-making heuristics, see, for example, Pearl 1983,
Gigerenzer et al. 1999, Gigerenzer and Selten 2001 and Alexander 2007.
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the number of players using pure strategy si at time t and p (t ) =
∑

i∈K pi (t )
denote the total population at time t , we can define the population share
playing strategy si at time t as follows:

xi (t ) =
pi (t )

p (t )
. (4.11)

At every point in time t , a population can be characterized by its state – the
population shares playing each of the pure strategies of the game. That is, a
population state is a vector x (t ) = (x1 (t ) , ...,xk (t )), where each component
xi (t ) is the population share using strategy si at time t . When population
shares playing each of the pure strategies of the game change, a population
state is said to change. Notice that each population state is formally identical
to a mixed strategy18.

Assuming that players are matched at random, the expected payoff as-
sociated with a pure strategy si given the population state x (t ) is u

(
si ,x
)
.

The population average payoff – the expected payoff of an individual drawn
from the population at random – can be defined as follows:

u (x ,x ) =
k∑
i=1

xiu
(
si ,x
)
. (4.12)

In evolutionary models based on replicator dynamics, individual’s expected
payoff is interpreted as fitness – the expected number of offspring or imi-
tators19 who will be using individual’s strategy. Those individuals whose
strategies earn them a higher expected payoff than the population average

18That is, a vector representing a population state can be interpreted as a mixed pop-
ulation strategy, where each population share is the probability weight assigned to a pure
strategy of the game. Therefore, each player can be viewed as using his or her pure
strategy against the mixed strategy of the population. For details, see Thomas 1984.

19Replicator dynamics, introduced by Taylor and Jonker (1978) is a simple and ar-
guably the most widely-used evolutionary dynamics model. It is an abstract mathemati-
cal model which can be interpreted as representing either biological or cultural evolution.
If the model is interpreted as a model of biological evolution, individual’s payoff is inter-
preted as the expected number of offspring that will inherit a gene or genes responsible for
producing player’s phenotypic trait, such as a certain behavioural response to a specific
environmental stimulus. If the model is treated as a model of cultural evolution, indi-
vidual’s payoff is interpreted as the expected number of players who will imitate player’s
behaviour. Evolutionary learning models, such as those based on best response dynamics,
are specifically tailored to represent the dynamics of a population of decision-makers who
can consciously change their strategy, and so are more suitable for representing cultural
rather than biological evolution. For extensive technical discussion of the different evo-
lutionary models and their assumptions, see Weibull 1995, Fudenberg and Levine 1998,
Alexander 2007 and Sandholm 2010a.
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payoff tend to have more offspring or imitators than the population average.
Therefore, the proportion of players who use such evolutionary successful
strategies tends to increase over time.

Assuming that the reproduction (imitation) is continuous over time, and
that individuals’ background fitness β ≥ 0 is independent from the outcomes
of the evolutionary game in question, the birth/imitation rate of an individ-
ual using strategy si can be defined as follows:

{
β + u

[
si ,x (t )

]}
. (4.13)

The following discussion will rely on a standard assumption that the
death rate δ ≥ 0 is the same for all individuals. With dots for time derivatives
and suppressing the time arguments, the replicator dynamics can be defined
as follows:

ṗi =
[
β + u

(
si ,x
)
− δ

]
pi . (4.14)

The corresponding replicator dynamics for each population share xi can be
defined as follows:

ẋi =
[
u
(
si ,x
)
− u (x ,x )

]
xi . (4.15)

A population is said to be in a stationary, or rest, state when no pure
strategy earns its user a higher expected payoff than the population average
payoff. In some of the stationary states, virtually everyone in the population
uses the same pure strategy, while in other stationary states two or more
pure strategies may be used by substantial proportions of the population20.

In evolutionary models based on replicator dynamics, players are mod-
elled as individuals programmed to play a specific pure strategy of the game.
That is, individuals do not update their strategies, even if their strategies
yield poor payoffs. Evolutionary models based on other types of dynamics
can, however, be used to model the learning process of individuals capable of
consciously adopting other individuals’ strategies in response to information
that other individuals’ strategies yield a better expected payoff than their
own strategies. For example, the best response dynamics (Gilboa and Matsui
1991, Matsui 1992) can be used to model the learning of myopic best respon-
ders. A myopic best responder is a decision-maker who adopts the strategy
that will confer the highest expected payoff in the next generation under
assumption that other individuals in the population will not change their
strategies. If there is more than one such strategy, a myopic best responder
chooses one at random.

20For an in-depth technical discussion of replicator dynamics, see Taylor and Jonker
1987, Weibull 1995, Hofbauer and Sigmund 1998 and Sandholm 2010a.
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A myopic best responder is a decision-maker similar to the best-response
reasoner insofar as s/he performs expected payoff calculations and chooses
a strategy yielding the highest expected payoff. However, a best responder
is not a Bayesian-rational decision-maker21, since s/he does not engage in
complex deliberations to figure out an optimal response to the expected fu-
ture population state – a population state that a Bayesian-rational decision-
maker expects to encounter after other individuals will update their strate-
gies22. Compared to a perfectly rational Bayesian deliberator, a myopic
best-response reasoner is a boundedly rational agent (for extensive discus-
sion, see Alexander 2007).

The best response dynamics seems to offer a more realistic representa-
tion of how real-world decision-makers update their strategies than either the
replicator dynamics or the Bayesian models. People are capable of learning
from their own mistakes, as well as from the mistakes and successes of oth-
ers, yet at the same time they are not Bayesian-rational decision-makers
with unlimited computational capabilities. In evolutionary models based on
best response dynamics, individuals update their strategies, yet they do that
purely on the basis of the observed results of other individuals’ actions, not
on the basis of complex calculations of what the other individuals can be
expected to do in the future. This model of learning captures the idea that
social agents improve their own actions by observing what the other social
agents do in certain situations, as well as by comparing the success of their
own actions to the success of the actions of other social agents (for exten-
sive discussion, see Bicchieri 2006). In addition, the relatively problematic
common knowledge assumptions underlying the Bayesian learning models –
common knowledge of rationality and (often) common knowledge of priors –
do not play any role in evolutionary learning models based on best response
dynamics (for extensive discussion, see Nisan et al. 2011).

Formally, best response dynamics is based on assumption that every
player in the population is a myopic best-response reasoner who, when given
a chance to update his or her strategy, does it by following a best response

21A Bayesian rational player is usually assumed to be a decision-maker who always
uses all the available information to form consistent beliefs about the opponents’ choices
and has no computational limitations. Such a player takes all the information about
the payoffs received by other players, and, assuming that s/he knows how they update
their strategies in response to received payoffs, calculates the changes in the proportions
of players using the pure strategies available in the game. A Bayesian rational player
then chooses a strategy which is optimal in light of his or her beliefs about the future
population state.

22In other words, a myopic best-responder is assumed to be incapable to predict the
future mixed strategy of the population, and so s/he cannot choose a best-response to it.
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rule23.
Suppose that BR (x ) is the set of all (mixed) best responses to a popu-

lation state (i.e. mixed population strategy) x24. With dots for time deriva-
tives and suppressing time arguments, the best response dynamics can be
representing as follows:

ẋ = BR (x ) − x . (4.16)

It is easy to see that best response dynamics is the classical Cournot best
response process, which in the present context would read

x (t + 1) = BR [x (t )] 25. (4.17)

When applied in the analysis of decision rules, evolutionary game the-
oretic approach can reveal two things. First, it can show that a decision
rule has ‘resistance’ against other decision rules. That is, it can show that a
stationary population state where everyone is using the same decision rule
to choose a pure strategy of the game is an evolutionarily stable state – a
population state, such that no ‘mutant’ using a different decision rule lead-
ing to a choice of a different pure strategy or strategies can, in evolutionary
time, invade and take over the population, provided that the share of mu-
tants emerging in the population at the same time is not too large26. If
the population is in an evolutionarily stable state where everyone is using

23The best response dynamics is similar to the deliberational dynamics of rational my-
opic players suggested by Skyrms (1990). The major difference is that best response dy-
namics is a population model, and so the state space represents all the possible population
states, while in Skyrms’s model the state space represents all the possible combinations of
players’ subjective probability distributions over pure strategies. For details, see Skyrms
1990.

24In some games, the set BR (x ) is not a singleton, meaning that multiple trajectories
can sprout from a single initial state, and solution trajectories can cycle in and out of the
Nash equilibria. In such cases, the dynamics can be interpreted as a differential inclusion:
.
x ∈ BR (x ) − x (Hofbauer 1995b). This problem can be avoided with the introduction
of random perturbations of player’s payoffs, meaning that players called to adjust their
strategy would not always choose a best response (Hopkins 1999). In some cases, however,
the smooth best response dynamics can only be achieved with the introduction of large
perturbations of players’ payoffs, and so it is questionable whether such models can be
interpreted as representing the behaviour of best responders. For a detailed discussion
of this problem and possible solutions, see Hofbauer 1995b (unpublished manuscript),
Hopkins 1999, and Sandholm 2010a.

25For a detailed technical discussion, see Gilboa and Matsui 1991, Matsui 1992, Hof-
bauer 1995a,b, Hopkins 1999 and Sandholm 2010a.

26Each evolutionarily stable state has an invasion barrier, which is the maximally large
proportion of mutants entering the population at the same time that an evolutionarily
stable state can resist. For a technical discussion, see Hofbauer and Sigmund 1998, Weibull
1995.
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the same decision rule that leads to the choice of the same strategy, then
the strategy prescribed by decision rule is an evolutionarily stable strategy
– a strategy which, if used by every individual in the population, makes
the population uninvadable by mutants using other strategies, provided that
the initial proportion of invading mutants is not too large (see, for example,
Maynard Smith and Price 1973)27.

Suppose that a population is in a state where every individual is using an
incumbent decision rule which always leads him or her to playing strategy
x , and so each individual’s payoff from any interaction with another player
can be defined as u (x ,x ). Suppose that ε is the share of mutants using
a decision rule which leads them to playing strategy y28, where ε ∈ (0, 1).
Assuming that player’s interactions are random, the probability of each in-
dividual playing against the mutant is ε, while the probability of playing
against the individual using the incumbent decision rule is (1 − ε ). Individ-
ual’s expected payoff from using an incumbent decision rule in such a mixed
population state can be defined as follows:

u (x , εy + (1 − ε ) x ) . (4.18)

Strategy x is said to be evolutionarily stable if and only if

u (x , εy + (1 − ε ) x ) > u (y, εy + (1 − ε ) x ) ∀y , x . (4.19)

An equivalent way of stating that strategy x is an evolutionarily stable strat-
egy is to say that it satisfies the first-order (equation 4.20) and the second-
order (equation 4.21) best response conditions29:

27Technically, a population is in an evolutionarily stable state if, after a disturbance, it
returns to playing a certain strategy or mix of strategies, provided that the disturbance
is not too large. Under replicator dynamics, a population state which is asymptotically
stable is an evolutionarily stable state (Taylor and Jonker 1978, Hines 1980). It has been
shown that every regular evolutionarily stable strategy is asymptotically stable under
the general imitative dynamics (Cressman 1997), any impartial pairwise comparison dy-
namics, such as the Smith dynamic, any separable excess payoff dynamics, such as the
Brown-von Neumann-Nash dynamic, and under the best response dynamics (Sandholm
2010b).

28In evolutionary game theory models, the set of possible mutant strategies is often
assumed to be the set of pure strategies available in the game. In other words, it is
assumed that no mutant playing exogenous strategy (i.e. strategy which is not available
in the original game) is possible. This assumption simplifies the tractability and analysis
of the model, but may be seen as failing to account for the exogenous shocks that may
radically change the structure of the population game, and, consequently, the evolutionary
dynamics.

29For a technical discussion of why this is the case, see Weibull 1995.
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u (y,x ) ≤ u (x ,x ) ∀y, (4.20)

u (y,x ) = u (x ,x ) ⇒ u (y,y) < u (x ,y) ∀y , x . (4.21)

It is important to note that an evolutionarily stable state need not be
a state where everyone plays the same evolutionarily stable strategy. In
polymorphic evolutionarily stable states, several pure strategies are played
by substantial population shares (for extensive discussion, see Weibull 1995
and Skyrms 1996).

Second, evolutionary game theoretic analysis can reveal the conditions
under which a certain decision rule could spread in the population. Evolu-
tionary dynamics is always modelled as a process starting from some initial
population state, which is some vector of population shares playing different
strategies30. A decision rule which picks a strategy that, starting with the
initial population state, is evolutionary successful may spread in the popu-
lation up to a point where an absolute majority of individuals will be using
that strategy. If a population state where everyone is using that strategy
is an evolutionarily stable state, the evolutionary model can be viewed as
offering a plausible story of how a decision rule could have ‘taken over’ the
population, provided, of course, that the initial population state from which
such a takeover can be shown to be theoretically possible is a plausible rep-
resentation of the real-world population conditions.

The question of which initial population states represent the plausible
real-world population conditions does not have a clear answer. Evolutionary
models are highly idealized, and the precise criteria of how the realism of the
parameter values of such models ought to be evaluated has no satisfactory
answer. There seems to be a general rule that a scenario in which a strategy
can be shown to spread successfully when the population share using it is
small in the initial population state is a more plausible evolutionary story
than the one where a strategy can only be shown to spread successfully if
the population share using it in the initial population state is large31. This

30In some initial population states, one or more pure strategies may be completely
absent, which means that the proportion of players using the absent strategies is 0. This,
however, does not mean that such strategies will be absent for the whole duration of
the evolutionary process: Assuming that spontaneous mutations are possible, a mutant
playing a strategy which was absent in the initial population state can appear in later
stages of the process.

31For an extensive discussion of the explanatory significance of the initial population
conditions in evolutionary game theoretic models, see, for example, Skyrms 1996 and
Alexander 2007.
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criterion is mostly based on intuition that a formation of a population state
in which a population share using a particular decision rule is small seems
to be a more likely event than the formation of a population state with a
large population share using that rule. This intuition is, to some extent,
supported by the theoretical assumptions about the spontaneous mutations:
The probability of a small number of individuals simultaneously switching to
using the same decision rule due to independent random mutations is higher
than the probability of a large number of individuals mutating in the same
way simultaneously 32.

4.4.2 Hypothetical Bargaining as an Evolutionary Adap-
tation

Assuming that hypothetical bargainers always play a (weakly) Pareto opti-
mal Nash equilibrium, a population where everyone is using such a decision
rule will be in an evolutionarily stable state if the bargaining solution of a
game is a strict Nash equilibrium: A population state in which everyone is
playing a strict Nash equilibrium of the game is always evolutionarily sta-
ble (for a technical discussion and proofs, see van Damme 1987 and Weibull
1995). This result, however, does not give much evolutionary justification for
hypothetical bargaining. All it suggests is that a population where everyone
is a hypothetical bargainer and hypothetical bargaining solution of a game is
a strict Nash equilibrium cannot be invaded by mutants using decision rule
which prescribes any other strategy of the game, provided that the share of
invading mutants is not too large. However, any mutant decision rule which
prescribes its users the same strict Nash equilibrium as the hypothetical
bargaining can invade the population of hypothetical bargainers and survive
in it. In addition, in games where hypothetical bargaining solution is not
a strict Nash equilibrium, a population of hypothetical bargainers may not

32Suppose a finite population where every player is playing strategy si . There are two
possible mutant strategies that could invade the population – strategies s j and sk . Suppose
that each player’s mutation rate (i.e. mutation probability) is ϵ ∈ (0, 1), and that mutation
events are independent. Suppose that the probability of a mutating player switching from
strategy si to either strategy s j or strategy sk is 1

2 . Thus, the probability of each mutating
player ending up using strategy s j or strategy sk is the same – ϵ

2 . Suppose that, for
the strategy s j to exceed the invasion threshold (that is, to spread in the population), 7
individuals must simultaneously switch their strategies from si to s j , while 9 individuals
have to simultaneously switch from strategy si to strategy sk in order for strategy sk to
spread. The probability of 7 players simultaneously switching from strategy si to strategy
s j is

(
ϵ
2

)7
, while the probability of 9 players simultaneously switching from strategy si to

strategy sk is
(
ϵ
2

)9
. The probability of the former event is higher than that of the latter.
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resist the invasion of mutants, since it may not be in an evolutionarily stable
state.

This means that hypothetical bargaining, if interpreted as a decision rule
leading players to playing a Nash equilibrium of a game, will be resistant to
invasions of mutants using decision rules which lead them to playing other
strategies than strategies used by hypothetical bargainers, but this will be
true only in games where hypothetical bargaining solution is a strict Nash
equilibrium. This result does not rule out the possibility that hypothetical
bargaining could have survived in the evolutionary competition, at least as a
coordination rule for games with strict (weakly) Pareto optimal Nash equi-
libria. Yet it does not show that hypothetical bargaining is the decision rule
which outcompeted other decision rules with the same or better resistance
to invasions.

According to the proponents of the hypothetical bargaining theory, hypo-
thetical bargaining is a mode of reasoning which allows people to coordinate
their actions (Misyak and Chater 2014, Misyak et al. 2014). More specifi-
cally, it is a set of inference rules which allows the decision-makers to identify
the bargaining solution of a game – an outcome which has a specific set of
properties. The set of hypothetical bargaining solutions of a game is sup-
posed to be smaller than the set of all the possible outcomes. Assuming
that the set of feasible agreements is the set of Nash equilibria, the set of
hypothetical bargaining solutions of a game will be a subset of the Nash
equilibria. In some games, that subset will be considerably smaller than the
set of Nash equilibria. Therefore, by choosing to play their part in the at-
tainment of a bargaining solution of a game, hypothetical bargainers either
resolve the coordination problem completely or, in games where the bargain-
ing solution is not unique, increase the probability of successful coordination
and, consequently, their expected payoff. Even in games where players have
conflicting preferences over the Nash equilibria of the game, playing a part in
the attainment of a hypothetical bargaining solution may be the best option
for everyone solely due to higher probability of coordination success.

In addition, hypothetical bargaining is a mode of reasoning which incor-
porates certain benefit distribution considerations. Recall that hypothetical
bargainers are assumed to search for an efficient solution of a game which
each self-interested player would be motivated to accept. Like the team rea-
soning theory, hypothetical bargaining theory suggests that players seek for
mutually advantageous solutions of games: Hypothetical bargainers always
choose a (weakly) Pareto optimal outcome, provided that there is a (weakly)
Pareto optimal outcome which satisfies the feasibility criterion. According
to Bacharach (2006), people’s ability to coordinate their actions in the at-
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tainment of efficient outcomes can be explained as an outcome of the group
selection process. A group of individuals whose members have the ability to
coordinate their actions in the attainment of efficient outcomes should have
a higher average fitness than the group whose members have no such ability
(provided, of course, that individuals belonging to a group whose members
have the efficient coordination ability interact with each other sufficiently
frequently). Thus, a group of individuals with efficient coordination abil-
ity would tend to grow faster than other groups (for details, see Bacharach
2006).

For the aforementioned reasons, it is worthwhile to explore the possibility
that hypothetical bargainers were able to spread in the population because
hypothetical bargaining was a reasoning procedure which allowed the hy-
pothetical bargainers to resolve interdependent decision problems efficiently,
and thus gave them an evolutionary advantage against individuals who used
other types of decision-making procedures.

It seems plausible that hypothetical bargaining started as a type of fa-
miliarity heuristic – a relatively primitive decision rule based on decision-
maker’s recognition of certain similarities between different decision prob-
lems and/or decision contexts. More specifically, a decision-maker using a
familiarity heuristic recognizes that a new or less frequently encountered de-
cision problem is, in some respect, similar to another recurrent decision prob-
lem, the solution of which is already known to the decision-maker. Decision-
maker’s recognition of the similarities between the new or less frequently
encountered decision-problem and the recurrent decision problem with the
known solution prompts him or her to choose a solution of a new or less fre-
quently encountered decision problem which is, in some respect, similar to
the already known solution of the recurrent decision-problem (for extensive
discussion, see Ashcraft 2006, Tversky and Kahneman 1974).

There seems to be several reasons to believe that prehistoric decision-
makers could have developed the ability to recognize the structural similari-
ties between resource division problems and other types of decision problems.

Various types of conflicts over divisions of limited resources is one of the
most common problems faced by every human population, irrespective of its
size or level of cultural development. In fact, various animal species, espe-
cially those capable of engaging in collective actions or exhibiting basic level
of social organization, also face this type of problem. It seems reasonable
to believe that prehistoric human populations had to deal with the resource
division problem very frequently. Some kind of cognitive response to this
type of problem had to emerge relatively early, at least in those populations
which managed to survive for an extended period of time. In other words,
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individuals had to develop the ability to recognize this type of problem, and
respond to it by taking a certain course of action. Given the frequency
with which individuals had to face this type of problem, it is possible that
individuals developed a habitual response to it.

This assumption is indirectly supported by the empirical fact that even
animal species of lesser intelligence than monkeys are capable of following
certain food allocation algorithms. For example, it has been observed that
packs of wolves follow a hierarchy-based procedure where the pack leader
(alpha animal) gets access to food first, and is then followed by beta animals,
gamma animals, and so on (Mech 1999). The prehistoric human populations
probably followed much more sophisticated resource division rules than those
followed by wolves or monkeys.

Assuming that a habitual response to resource division problems was one
of the first to develop, it seems reasonable to believe that some individuals
used the same response to other, possibly newly encountered, types of de-
cision problems, most likely to problems for which a habitual response was
not available at that time and/or which shared some structural similarities
with resource division problems.

An instinct of survival should drive the individual to use any means
necessary to secure the resources which are essential for survival, even if those
means involve an infliction of a physical harm to other individuals and/or
the risk of getting physically harmed by others. It stands to reason to believe
that an individual receiving a lesser than necessary share of resources should
be more likely to engage in aggressive actions towards other individuals, even
at the expense of his or her own safety. This is likely to occur in situations
where an individual would interpret the actions of other individuals as a
takeover of the basic resources necessary for individual’s survival.

In the absence of any sophisticated measures of the sizes of resource
shares, individual’s response in the resource division games was likely based
on crude comparisons of the shares of resources received by each interact-
ing individual. It seems reasonable to believe that an individual was more
likely to engage in aggressive behaviour in situations where s/he recognized
a disadvantageous inequality between the shares of resources received by the
interacting parties. In other words, an individual was more likely to engage
in aggressive behaviour if s/he recognized that his or her share of the basic
resources was smaller than the shares of resources gained by others.

In the absence of an external arbitrator who can keep the actions of con-
flicting individuals in check, the conflicts over division of resources may have
considerable destructive power, especially if physical violence is involved be-
tween individuals of roughly similar physical abilities. Frequent physical
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conflicts pose a risk for individual’s and even population’s survival. Due to
high frequency with which the prehistoric societies had to face the resource
division problem, and due to a looming threat of each conflict over resources
escalating to destructive levels, it seems likely that individuals developed an
impulse to respond to this problem in a way which reduced the likelihood
of destructive conflicts. In order to resolve such conflicts in a way which
minimized the likelihood of violent conflicts, individuals had to develop the
ability to take other individual’s reactions to their own actions into account.
More specifically, individuals had to develop the ability to recognize the
relationship between their actions and their opponents’ reactions, and to
avoid the types of actions which triggered the dangerous reactions of other
individuals. Since each individual’s violent reactions were likely associated
with unequal divisions of resources, individuals had developed an impulse
to avoid such unequal divisions, at least between individuals of roughly sim-
ilar physical and mental abilities, possibly of roughly similar standing in
the social hierarchy. The benefit distribution considerations, which underlie
bargaining-based approach to decision-making, may be based on fundamen-
tal self-preservation considerations, not on pro-social motivations.

The preceding arguments are, by no means, decisive. However, it is diffi-
cult to deny an intuition that our understanding of what is the appropriate
solution of an interdependent decision problem is influenced by some deeply
ingrained collective acceptability considerations. Resource allocation prob-
lem was, almost certainly, one of the first interdependent decision problems
that prehistoric societies faced frequently. Therefore, a hypothesis that in-
dividuals’ reasoning about interdependent decision problems in general was
shaped by their repeated engagement in resource division games seems plau-
sible.

Even if hypothetical bargaining offers a plausible story of how some
individuals developed the ability to resolve interdependent decision prob-
lems, there is no obvious reason to believe that hypothetical bargainers out-
competed other types of decision-makers and became the dominant type
of decision-maker. The success of hypothetical bargaining in evolutionary
competition with other decision rules would depend on the initial popula-
tion conditions – the types of decision-makers that hypothetical bargainers
had to compete with. Hypothetical bargainers can be convincingly shown
to be advantageous when competing with some extremely primitive forms
of behaviour, but results are far from conclusive when more sophisticated
decision-makers are assumed to be present in the population.

For example, suppose that population plays a three strategy coordination
game depicted in Figure 4.3. This game has three pure strategy Nash equilib-

191



s1 s2 s3

s1 7, 3 0, 0 0, 0

s2 0, 0 5, 5 0, 0

s3 0, 0 0, 0 3, 7

Figure 4.3: Coordination game

ria (s1, s1),(s2, s2) and (s3, s3) and four Nash equilibria in mixed strategies33.
It will be assumed that each player’s expected payoff represents his or her
fitness – the expected number of offspring or imitators34.

Let us assume that a population consists of unsophisticated decision-
makers who choose one of the pure strategies at random (that is, behave
like the level 0 players in the cognitive hierarchy theory). The incumbent

decision rule thus prescribes strategy x =
(1
3
s1,

1

3
s2,

1

3
s3
)

to every interacting
individual. Each individual’s payoff from using the incumbent decision rule
is thus

u (x ,x ) =
((1
9
× 7
)
+

(1
9
× 5
)
+

(1
9
× 3
))
=

15

9
=

5

3
. (4.22)

Suppose that a small share ε > 0 of hypothetical bargainers appears in
the population. Each hypothetical bargainer identifies the Nash equilibrium
(s2, s2) as the solution of this game and thus always plays strategy s2. As-
suming that players’ matching is random, hypothetical bargainer’s expected
payoff from using hypothetical bargaining decision rule in a new population
state is

u (s2, εs2 + (1 − ε ) x ) = 5ε +
5

3
(1 − ε ) . (4.23)

The unsophisticated decision-maker’s payoff from using an incumbent deci-
sion rule is

u (x , εs2 + (1 − ε ) x ) = 5

3
ε +

5

3
(1 − ε ) . (4.24)

Notice that the equality 5
3ε +

5
3 (1 − ε ) =

5
3 holds for any ε ∈ (0, 1).

Hypothetical bargainers will spread in the population if the following
condition is satisfied:

u (s2, εs2 + (1 − ε ) x ) > u (x , εs2 + (1 − ε ) x ) . (4.25)

33The two mixed strategy Nash equilibria of this game are:
(
5
8s1,

3
8s2;

5
12s1,

7
12s2
)
,(

7
10s1,

3
10s3;

3
10s1,

7
10s3
)
,
(
7
12s2,

5
12s3;

3
8s2,

5
8s3
)
,
(
35
71s1,

21
71s2,

15
71s3

15
71s1,

21
71s2,

35
71s3,

)
34This model can be interpreted as a biological reproduction model, as well as a model

of cultural imitation.
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It is easy to check that 5ε + 5
3 (1 − ε ) >

5
3 for any ε > 0. Hypotheti-

cal bargainers could therefore be expected to spread in this population of
unsophisticated decision-makers.

In the aforementioned example, hypothetical bargainers do not need to
have a perfectly developed ability to recognize the outcome (s2, s2) as the
bargaining solution. Suppose that each hypothetical bargainer’s ability to
recognize outcome (s2, s2) is imperfect, but s/he manages to do that with
some positive probability µ > 0 which is the same for every player of this
type. With probability (1 − µ), each hypothetical bargainer chooses one of
the pure strategies at random as other unsophisticated decision-makers.

Suppose that ε > 0 is the share of hypothetical bargainers, while (1 − ε )
is the share of unsophisticated decision-makers. For each hypothetical bar-
gainer, the probability of being matched with another hypothetical bargainer
is ε. If two bargainers are drawn to play the game, they will both choose
strategy s2 with probability µ2. With probability µ (1 − µ ), one of them will
play strategy s2 while the other one will choose one of the pure strategies at
random. Finally, with probability (1 − µ )2 both bargainers will choose their
strategies randomly.

The expected payoff of each hypothetical bargainer from his or her inter-
action with the other hypothetical bargainer is

ub =
(
5µ2 +

5

3
µ (1 − µ ) + 5

3
(1 − µ )2

)
. (4.26)

Recall that each unsophisticated decision-maker’s expected payoff is 5
3 for

any ε ∈ (0, 1). Hypothetical bargainer’s expected payoff from playing against
the unsophisticated decision-maker is 5

3 for any ε ∈ (0, 1). It follows that hy-
pothetical bargainer’s strategy yields the same expected payoff when matched
with the strategy of an unsophisticated decision-maker as unsophisticated
decision-maker’s strategy when matched with itself. It means that hypo-
thetical bargainers will be able to spread in the population if hypothetical
bargainer’s strategy yields a higher expected payoff when matched with itself
than the strategy of an unsophisticated decision-maker when matched with
the hypothetical bargainer’s strategy:

5µ2 +
5

3
µ (1 − µ ) + 5

3
(1 − µ )2 > 5

3
. (4.27)

A relatively simple computation reveals that the inequality will hold for any
µ > 1

3
35. In other words, a hypothetical bargainer must only be able to iden-

35It is easy to check that equality 5µ2 + 5
3 µ (1 − µ ) +

5
3 (1 − µ )2 = 5

3 holds when µ = 0 and
µ = 1

3 . The output of function f (µ ) =
[(
5µ2 + 5

3µ (1 − µ ) +
5
3 (1 − µ )2

)
− 5

3

]
is positive for

any µ > 1
3 . The probability of each bargainer getting the impulse to choose strategy s2 in

order to be evolutionarily successful must be higher than 1
3 .
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tify the bargaining solution with a probability of higher than 1/3 in order for
hypothetical bargainers to outcompete the unsophisticated decision-makers.

Assuming that hypothetical bargainer’s ability to identify the bargaining
solution is improving over time (meaning that µ is increasing over time), their
advantage over unsophisticated players will increase as well, meaning that
hypothetical bargainers will spread in the population more rapidly. If the
population reaches a state where everyone is a perfect hypothetical bargainer
(that is, a hypothetical bargainer, such that µ = 1), individuals will play a
strict Nash equilibrium (s2, s2) in every interaction, and such a population
state is evolutionarily stable.

The preceding example offers a scenario where bargainers could be ex-
pected to spread in the population. In that scenario, a population state
where everyone is using an incumbent decision rule is not an evolutionarily
stable state: A strategy profile in which each decision-maker plays one of
the pure strategies with probability 1/3 is not a Nash equilibrium (for an ex-
tensive technical discussion of the relationship between the concept of Nash
equilibrium and the concept of evolutionary stability, see Weibull 1995).
The model could be criticized for being based on ‘convenient’ assumptions
concerning the behaviour of unsophisticated decision-makers.

Although there is no obvious reason to believe that a population of unso-
phisticated players must necessarily be in an evolutionarily stable state when
hypothetical bargainers appear, one could argue that such a scenario is less
likely than the one where unsophisticated players are in some evolutionar-
ily stable state: A population of unsophisticated players would, even by a
sequence of accidental deviations from the standard behaviour (in the afore-
mentioned example, from the choice of each pure strategy with probability
1/3), end up playing a Nash equilibrium of the game, since evolutionary
successful deviants would take over the population36.

There are reasons to believe that hypothetical bargainers would be much
less successful in a population of more sophisticated decision-makers. In
other words, other types of decision-makers could be following simple yet
evolutionary competitive decision-making rules. In addition, the population
of more sophisticated decision-makers could already be in an evolutionarily
stable state, thus making the invasion of hypothetical bargainers far less
likely.

In such cases, the evolutionary success of hypothetical bargainers would
depend on a number of factors, such as their share in the initial population
state, their ability to successfully identify the bargaining solutions of the
game, the structure of the game, and the types of decision-making rules

36For an extensive discussion of this view, see Binmore 2005.
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followed by other individuals in the population.
For example, suppose that a population is playing a three strategy mixed-

motive game depicted in Figure 4.4. Notice that this game is structurally

s r e

s 5, 5 0, 2 1, 4

r 2, 0 2, 2 2, 0

e 4, 1 0, 2 0, 0

Figure 4.4: Mixed motive game

similar to the Stag Hunt game: It has two pure strategy Nash equilibria (s, s )
and (r , r ), and a mixed strategy Nash equilibrium

(
2
5s,

3
5r ;

2
5s,

3
5r
)
.

Suppose that some individuals in the population are hypothetical bar-
gainers – decision-makers who always get an impulse to choose strategy s.
Another type of individual is a ‘survivalist’ – a type of decision-maker who
gets an impulse to choose an action which guarantees a positive payoff, ir-
respective of what the other player does. An assumption that some individ-
uals in the population have this impulse seems rather plausible, since such
a strategy is likely to ensure survival in an environment where the resources
necessary for survival are scarce. In game theoretic terms, a survivalist al-
ways plays a maximin strategy r , which is also the risk-dominant strategy
of this game.

Finally, the third type of individual is an ‘exploiter’ – a type of decision-
maker who initially mimics cooperative behaviour, yet later gets an impulse
to force the players engaged in genuine cooperative actions to invest most
of their efforts into getting the resources for the exploiter rather than for
themselves. This strategy will be assumed to be useless against survivalists
and other exploiters.

It will be assumed that every type of player always gets the same impulse
and follows it perfectly: The bargainers always choose strategy s, the sur-
vivalists always choose strategy r , and the exploiters always choose strategy
e.

From this set of assumptions, it follows that a population state where
every individual is a hypothetical bargainer will be playing a strict Pareto
efficient Nash equilibrium (s, s ), while a population state where every indi-
vidual is a survivalist will be playing a strict risk-dominant Nash equilibrium
(r , r ). Both population states are evolutionarily stable.

A global dynamic picture under the replicator dynamics is shown below
in Figure 4.5(a). A global dynamic picture under the best response dynamics
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is shown in Figure 4.5(b)37.

s

r e

(a)

s

r e

(b)

Figure 4.5: Mixed motive game under (a) replicator dynamics and (b) best
response dynamics

The three vertices of the simplex represent three extreme population
states: One in which everyone plays s, one in which everyone plays r , and
one in which everyone plays e. The dots in both diagrams represent the
stationary states, or rest points. The black dots represent the evolutionarily
stable states, while the white dots represent the unstable stationary points.
The diagram shows that this game has two evolutionarily stable states: One
in which everyone plays strategy s and one in which everyone plays strategy
r . The white dot on the left edge of the simplex represents a mixed station-
ary population state where 2

5 of the population plays strategy s, and 3
5 of

the population plays strategy r . This stationary state is not evolutionarily
stable, meaning that a small perturbation of shares of individuals playing
these strategies would move the population to another stationary state. The
arrows indicate the trajectories of the evolutionary dynamics.

Both dynamics show that the population may be in one of the two evo-
lutionarily stable states: In one state everyone is a hypothetical bargainer,
while in the other one everyone is a survivalist. The white dot on the left
edge of the simplex represents a stationary mixed population state where
2
5 of the population are hypothetical bargainers and 3

5 are survivalists. The

37All the simulations and diagrams have been produced with Dynamo package for Wol-
fram Mathematica developed by Sandholm, Documaci and Franchetti (2012).
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dynamics shows that exploiters would not survive in the competition against
hypothetical bargainers and survivalists, and that a population state where
everyone is an exploiter is not evolutionarily stable. Exploiters should thus
be driven out of the population from any initial population state. Both
dynamics show that if the share of hypothetical bargainers in the initial
population state were larger than 2

5 , this strategy would outcompete the
survivalists and take over the population. This also means that if every in-
dividual in the population were a survivalist (meaning that the population
was in the evolutionarily stable state where everyone plays r), the hypothet-
ical bargainers could invade the population, but only if the share of mutants
were larger than 2

5 of the total population. An event of such a large number
of survivalists simultaneously mutating into hypothetical bargainers seems
to be fairly unlikely. It is easy to check that the proportion of hypothetical
bargainers needed for the strategy to take over the population decreases with
increasing payoff gains associated with cooperative behaviour38.

The evolutionary success of hypothetical bargaining also depends on how
individuals update their strategies. For example, in a population of myopic
best responders in which exploiters are extremely efficient, hypothetical bar-
gainers could neither compete against the survivalists, nor could they invade
such a population. For example, suppose that the exploiter mimics the be-
haviour of a cooperative individual, yet later takes all the cooperative prod-
uct and leaves a genuine cooperator without any resources. Such a strategic
interaction may look like the game depicted in Figure 4.6. This game also

s r e

s 5, 5 0, 2 0, 5

r 2, 0 2, 2 2, 0

e 5, 0 0, 2 0, 0

Figure 4.6: Mixed motive game with efficient exploiters

has two pure strategy Nash equilibria (s, s ) and (r , r ), and six mixed strat-
38For example, suppose that, ceteris paribus, the payoffs associated with the Nash equi-

librium (s, s ) increases from 5 to 10 (say, due to increased production efficiency associated
with new technology). The mixed strategy Nash equilibrium of the new game would
become

(
1
5 ,

4
5 ;

1
5 ,

4
5

)
. Given this new game, the hypothetical bargainers would take over

the population if their share in the population were strictly larger than 1
5 of the total

population.
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egy Nash equilibria39. The global dynamic picture under the best response
dynamics is shown in Figure 4.7(a).

s

r e

(a)

s

r e

(b)

Figure 4.7: Mixed motive game with efficient exploiters under (a) best re-
sponse dynamics and (b) replicator dynamics.

In this case there is only one evolutionary stable population state – a
state where everyone is a survivalist playing strategy r . Notice that hy-
pothetical bargainers would not drive the survivalists from the population
if the destructive exploiters were present, even in cases where the share of
bargainers in the initial population state were large. The dynamics shows
that, due to exploitative strategy being advantageous against the coopera-
tive strategy of hypothetical bargainers, the hypothetical bargainers would
swiftly change their strategy into exploitative strategy and the population
would shift to a state with more exploiters (the arrows on the upper part of
the simplex indicate the direction of this process). However, this state is not
stationary, which means that the population would not stay in that state for
long. In the long run, the survivalists would take over the population. To
see why this would happen, notice that hypothetical bargainers would get no
payoff from interacting with exploiters and therefore, when given a chance,
they would change their strategy into exploitative strategy. The share of
hypothetical bargainers would drop. The share of exploiters, however, drops

39The six mixed strategy Nash equilibria of this game are:
(
s; 2

5s,
3
5e
)
,
(
2
5s,

3
5r ;

2
5s,

3
5r
)
,(

2
5s,

3
5r ;

2
5s,

3
5e
)
,
(
2
5s,

3
5e; s
)
,
(
2
5s,

3
5e;

2
5s,

3
5e
)
,
(
2
5s,

3
5e;

2
5s,

3
5e
)
.
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due to their strategy being ineffective against the strategy of survivalists.
The exploiters are thus motivated to adopt the strategy of survivalists. In
the end, the survivalists would dominate the population.

If the players were not able to update their strategies using such a rel-
atively sophisticated rule, the hypothetical bargainers could be much more
successful. For example, consider the global dynamic picture of the same
game under the replicator dynamics depicted in Figure 4.7(b). The dy-
namics shows that multiple mixed population states in which hypothetical
bargainers are present are evolutionarily stable (notice the mixed evolution-
arily stable states in which survivalists are absent). In addition, a population
state in which everyone is a hypothetical bargainer is an evolutionarily stable
state. The analysis reveals that hypothetical bargainers could spread from
any initial population state in which more than 2

5 of the total population
were hypothetical bargainers. Hypothetical bargainers could also invade a
population in which everyone were a survivalist, yet the number of mutants
would have to be larger than 2

5 of the population. This example suggests that
a higher sophistication of individuals may not work in favor of hypothetical
bargaining.

In conclusion, evolutionary game theory offers only a limited support to
the idea that hypothetical bargaining evolved as an evolutionary response to
coordination problems. Interpreted as a simple decision rule, hypothetical
bargaining can be shown to successfully spread in populations where other
types of individuals are using extremely primitive responses to coordination
problems (e.g. choose their strategies at random). In evolutionary games
where hypothetical bargainers play a strict Nash equilibrium, a population
state in which everyone is a hypothetical bargainer is evolutionarily stable.
This means that, in principle, hypothetical bargaining could have emerged
as an evolutionary response to certain types of interdependent decision prob-
lems and resisted the invasions of other decision rules.

However, in populations where other types of individuals are using more
sophisticated decision rules, hypothetical bargaining can spread only if their
share in the initial population state is sufficiently large to begin with. This
also means that, in many cases, hypothetical bargainers could only invade
the population if a sufficiently large number of individuals were to adopt
this decision rule simultaneously. The question of why a sufficiently large
number of individuals would adopt this decision rule simultaneously when
playing a particular game cannot be answered with the purely formal analytic
tools provided by evolutionary game theory. Several speculative responses
could be provided. One possibility is that hypothetical bargaining emerged
among unsophisticated decision-makers who were playing games in which
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hypothetical bargaining could have easily outcompeted the unsophisticated
responses. This speculation, however, does not explain why hypothetical
bargaining rather than some other possible decision rule would have invaded
such a population. Another possible response, suggested by Bacharach 2006,
is that players capable of achieving efficient coordination were interacting
more frequently with each other than with other types of players, thus allow-
ing them to gain advantage over other types of individuals. In Bacharach’s
evolutionary story, populations are assumed to be divided into groups of in-
dividuals. Individuals belonging to the same group are assumed to interact
more frequently with each other than with individuals from other groups. A
group containing more individuals capable of achieving efficient coordination
would have a higher average fitness than a group of individuals lacking this
ability. Consequently, a group containing more efficient coordinators would
grow faster, thus outcompeting other groups (for extensive discussion, see
Bacharach 2006).

This story has some conceptual credibility: Skyrms (1996) has shown
that a correlation assumption (i.e. an assumption that individuals of the
same type interact more frequently with each other than with other types of
individuals) may indeed eliminate certain evolutionarily stable mixed popu-
lation states, and work in favor of certain types of strategies by reducing the
number of players which would have to be using that strategy in the initial
population state in order for it to spread in the population (for details, see
Skyrms 1996). Without empirical support, however, such explanations re-
main highly speculative, since they postulate certain assumptions about the
prehistoric population which cannot be evaluated empirically (for a critical
discussion of Skyrms’s correlation assumption, see D’Arms 1996).

It is important to note that the aforementioned analysis was based on
the assumption that decision rule’s evolutionary success in a particular game
depends purely on the success of its prescribed strategy. It is possible that
such a simplistic behavioural interpretation of evolutionary selection of deci-
sion rules is inadequate to represent the evolutionary selection of reasoning
modes. However, without an adequate model of mental bargaining process,
a more sophisticated interpretation of hypothetical bargaining is currently
not feasible.

4.5 The Non-Uniqueness Problem

Even if hypothetical bargaining could be developed into a conceptually sound
model of strategic reasoning, there are serious reasons to believe that it would
not be a single generalizable model from which the theoretical predictions of
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players’ choices in any non-cooperative game could be derived. The reason
lies in the nature of non-cooperative game itself. In standard bargaining
problems, two players have to decide on how to split a divisible good. Each
player’s utility function represents his or her preferences over the feasible
allocations of the good, and the bargaining solution is the unique distri-
bution of the good which satisfies a specific set of desirable properties. In
non-cooperative games, however, players’ utility functions may represent any
kind of personal motivations, and so there may be multiple outcomes in a
game having the same set of desirable formal properties. Hypothetical bar-
gainer’s choice among the multiple outcomes which s/he identifies as having
the set of desirable properties cannot be derived from the formal model of
hypothetical bargaining. Hypothetical bargainers’ ability to coordinate their
actions in such situations would thus likely be based on conformity ‘to com-
plex and sometimes arbitrary conventions that could not be reconstructed by
abstract rational analysis’ (Sugden 2015: 156). This seems to be acknowl-
edged by Misyak et al. 2014 who argue that successful coordination will
depend on players’ common knowledge of previous hypothetical bargains,
since ‘common knowledge of the precedent marks that coordination solution
as “special” and thus acts as a possible tiebreaker for choosing between future
solutions’ (Misyak et al. 2014: 516).

For example, suppose that two individuals are participating in an exper-
iment where they are asked to pick a strategy in the extended Hi-Lo game
which is presented to them in the form depicted in Figure 4.8:

r1 r2 r3

r1 10 ∗ 10 0, 0 0, 0

r2 0, 0 10, 10 0, 0

r3 0, 0 0, 0 5⋄5

Figure 4.8: Extended Hi-Lo game

For simplicity, suppose that both individuals are hypothetical bargainers
and this fact is common knowledge. Hypothetical bargainers may believe
that in open negotiations they would easily agree to attain either outcome
(r1, r1) or outcome (r2, r2): In terms of formal properties, both outcomes
are identical. Without communication, however, the players could not send
each other any signals which would allow them to coordinate their actions
in the attainment of one of the two formally identical bargaining solutions.
This means that hypothetical bargainers would face a coordination problem.
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In some games, hypothetical bargainers could resolve this problem by
taking into consideration the perceived coordination success rate, and then
consider playing ex ante Pareto dominated outcome if, given the coordi-
nation success rate, the ex ante Pareto dominated option yields a higher
expected payoff for every hypothetical bargainer40. In this game, however,
this approach would not resolve the problem: From playing strategies r1 and
r2 at random (that is, with probability 1/2), each player would get the same
expected payoff of 5 as s/he would get from playing strategy r3.

Hypothetical bargainers could notice that the Pareto optimal outcome
(r1, r1) is marked with a star, while the other one is not. The players could
thus attempt to use this star as a coordination aid. Hypothetical bargain-
ers could also use the absence of a star to coordinate their actions on the
Pareto optimal outcome (r2, r2). Finally, the players could recognize that
the outcome (r3, r3) is marked with a diamond, and use it (or its absence)
as a coordination aid as well. Each of the arbitrary attributes which has
nothing to do with the payoff structure of the game (or its absence) could
potentially be used as a coordination aid. Hypothetical bargainer’s choice
of the coordination aid will depend on his or her beliefs about which one of
the aids is most likely to be recognized, considered, and adopted by another
hypothetical bargainer. These beliefs may in turn depend on hypothetical
bargainers’ cultural backgrounds, the prevalent social conventions in their
societies, and other factors unrelated to the formal game theoretic proper-
ties of the game itself. Thus, a formal model of hypothetical bargaining
which could predict players’ final choices in such context-sensitive decision
problems may not be possible at all.

4.6 Conclusion

Hypothetical bargaining theory suggests that people choose their strategies
in non-cooperative games on the basis of what they believe they would agree
to play if they could openly bargain. The hypothetical bargaining should be
viewed as a goal-directed mode of reasoning – a set of inference rules which
allows the players to identify the outcomes of a game with a specific set of
desirable properties.

The proponents of the theory suggest that hypothetical bargaining is
compatible with the principles of rational choice theory. For this interpreta-
tion of hypothetical bargaining to be credible, it must be possible to show
that hypothetical bargainer’s decision to play a part in the attainment of the

40In the context of team reasoning theory, this idea has been discussed by Bardsley et
al. 2010 and Faillo et al. 2016.
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outcome identified as the bargaining solution of a game is compatible with
the orthodox choice consistency principles.

In this chapter I have argued that there are several reasons of why the ra-
tional choice interpretation of hypothetical bargaining is conceptually prob-
lematic. The first reason is hypothetical bargaining theory’s vulnerability
to choice rationalization problem: Common knowledge of the fact that each
player is a hypothetical bargainer and has identified a certain outcome as
the hypothetical bargaining solution of the game does not give the hypo-
thetical bargainer a rational reason to play his or her part in the attainment
of that outcome. Hypothetical bargainer’s decision to choose a part in the
attainment of the outcome is rational only if s/he expects the other players
to do that as well. The theory does not offer an explanation of why each
hypothetical bargainer should be expected to hold such a belief, and so does
not provide an explanation of why a hypothetical bargainer should be mo-
tivated to actually play his or her part in realizing the outcome which s/he
recognizes as the hypothetical bargaining solution of a game.

I have argued that this difficulty could, in principle, be resolved if hy-
pothetical bargaining were to be interpreted as a belief-formation algorithm
rather than as a choice algorithm, and suggested that lexicographic belief
systems used in epistemic rationalizability models could, in principle, serve
as an imperfect yet useful starting point for the development of an adequate
formal representation of such a belief-formation algorithm. However, I have
also indicated that such an interpretation of hypothetical bargaining involves
a non-trivial departure from the epistemic principles of the orthodox game
theory.

The second reason is that hypothetical bargaining, if interpreted as a
rational choice explanation of social coordination, can only account for the
actions of individuals who express a common belief that the share of hypo-
thetical bargainers in the population is sufficiently large. I have argued that
such a belief can only form in a population where a sufficiently large number
of individuals are acting as hypothetical bargainers. If interpreted as a ra-
tional choice explanation of social coordination, the theory seems to fall into
a vicious cycle: Hypothetical bargainers can only be motivated to act in a
population state that cannot be reached without a sufficient number of play-
ers acting as hypothetical bargainers. I have argued that the most plausible
explanation of how such a population state could have emerged in the first
place is that hypothetical bargaining first emerged as a familiarity heuris-
tic which was able to spread in the population due to its fitness-enhancing
properties.

However, evolutionary game theoretic models considered in this chapter
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only show that individuals using such a familiarity heuristic could have been
more successful than individuals using certain extremely primitive decision
rules. I have argued that the question of whether basic evolutionary game
theory models are adequate for representing the actual evolution of decision-
making rules cannot be answered with the tools of the evolutionary game
theory itself, and so the evolutionary game theoretic explanation suggested
in this chapter is valid insofar as it shows that an intuition that people’s
choices in non-cooperative games may be driven by an evolved sensitivity to
benefit distribution considerations has some conceptual credibility.

Finally, decision-makers’ ability to coordinate their actions in games with
multiple hypothetical bargaining solutions would depend on factors that are
not related to payoff structures of games alone, such as shared cultural norms
and conventions. Therefore, even if hypothetical bargaining were developed
into a conceptually sound model of strategic reasoning, a development of a
single generalizable model of hypothetical bargainers’ final choices in non-
cooperative games would not necessarily be possible.
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Chapter 5

Conclusion

Orthodox game theoretic analysis of non-cooperative games is based on best-
response reasoning. It is often criticized for producing multiple solutions,
even in games which seem to have intuitively obvious unique solutions and
create no coordination problems for the real-world decision-makers. This
prompted the emergence of multiple theories which purport to explain how
people resolve games that, from the perspective of orthodox game theory,
have multiple rational solutions. Two of the more recent theories – the team
reasoning theory and the hypothetical bargaining theory – suggest that peo-
ple resolve non-cooperative games by following a reasoning procedure which
allows them to identify the mutually advantageous solutions. A number of
properties have been suggested in the literature for a mutually advantageous
solution to satisfy: Pareto efficiency, feasibility, successful coordination of
the interacting decision-makers’ actions, and equitable distribution of indi-
viduals’ personal payoff gains. Yet so far very few formal characterizations
of the concept of mutual advantage which could be incorporated into the
formal game theoretic analysis have been proposed.

In this thesis, I have suggested two possible formal characterizations of
mutual advantage which could be derived from the aforementioned theories:
The notion of mutual advantage as the maximization of the minimum level
of individual advantage among the interacting players, developed in collab-
oration with Karpus (Karpus and Radzvilas 2016), which is broadly in line
with the notion of mutual advantage suggested in Sugden’s (2011, 2015) ver-
sion of the team reasoning theory, and the benefit-equilibrating hypothetical
bargaining solution, which I have suggested as a possible formal characteri-
zation of outcomes which hypothetical bargainers would identify as mutually
advantageous and agreeable solutions of games. I have discussed their formal
properties and theoretical predictions in a number of experimentally relevant
games.
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The solution concepts suggested in this thesis share certain conceptual
similarities: Both of them are based on the principle that decision-makers
will never identify a feasible solution as mutually advantageous if there is
another feasible solution which is strictly better for every interacting player.
Weak Pareto efficiency seems to be one of the natural properties that any
mutually advantageous solution of a game should satisfy. The differences be-
tween the properties of the suggested solution concepts reflect the differences
between the core assumptions of the theories from which they are derived.

According to the team reasoning theory, certain structural and/or con-
ceptual features of games may trigger a shift in decision-maker’s mode of
reasoning from individualistic reasoning to reasoning as a member of a team.
This shift of reasoning involves a transformation of agency: A team-reasoning
decision-maker identifies himself or herself with a group of individuals who
act together in the attainment of some common goal. More specifically,
team-reasoning decision-maker identifies the attainment of his or her goal
in a game with team’s success in the attainment of its goal. This creates a
personal motivation for a team-reasoning decision-maker to play his or her
part in the attainment of an outcome that s/he recognizes as the team’s goal.
According to team reasoning theory, team’s goal may not be the maximum
advancement of the personal interests of every member of a team, and so
team reasoning decision-maker’s choice to play a part in the attainment of
the team’s goal may not lead to the maximum advancement of his or her
personal interests. In other words, in order to play a part in the attainment
of the team’s goal, a decision-maker who reasons as a member of a team may
choose a strategy which, given the expected actions of other team-reasoning
decision-makers, does not lead to the maximum advancement of decision-
maker’s own personal interests.

Because of this, the theory of team reasoning predicts an out-of-equilibrium
play in certain experimentally relevant games, such as the Prisoner’s Dilemma
game. It also offers an explanation of why people cooperate in social dilem-
mas – interdependent decision problems where individual incentives and so-
cial optimality diverge.

Yet according to the principles of orthodox game theory, team-reasoning
decision-makers’ actions could be interpreted as being driven by a struc-
ture of incentives which is different from the structure of incentives which
is represented by the payoff structure of the original game. The theory of
team reasoning thus allows for modelling of team-reasoning decision-maker’s
incentive to play a part in the attainment of the team’s goal as being inde-
pendent from decision-maker’s personal incentives that motivate his or her
actions before a shift from individualistic best-response reasoning mode to
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team mode of reasoning occurs.
This feature of the team reasoning theory is also reflected in the notion

of mutual advantage as the maximization of the minimum extent of individ-
ual advantage among the interacting players. In a considerable number of
games, there may be multiple outcomes with this property, yet each outcome
may be associated with a different allocation of players’ individual advan-
tage gains. A team-reasoning decision-maker would identify every outcome
with the aforementioned property as leading to the attainment of the team’s
goal, irrespective of how individual advantage gains were distributed among
the interacting players. This implies that a team-reasoning decision-maker
who aims to maximally advance the interests of a team would be indifferent
between playing a part in the attainment of a team optimal outcome associ-
ated with a lower level of his or her own individual advantage and playing a
part in the attainment of a team optimal outcome associated with a higher
personal advantage gain.

Unlike the team-reasoning decision-makers, hypothetical bargainers are
assumed to be self-oriented decision-makers – individuals who, like the best-
response reasoners, aim to maximize their individual advantage as much as
possible. A hypothetical bargainer expects the other hypothetical bargain-
ers to deviate from any outcome which creates them a personal incentive to
do so. This expectation restricts the set of outcomes that hypothetical bar-
gainers deem implementable via their joint actions. A hypothetical bargainer
only cares about the personal interests of the other players insofar as their ac-
tions may promote or hinder the advancement of his or her personal interests,
and expects the other hypothetical bargainers to have similar motivations as
s/he does. That is, s/he expects every other hypothetical bargainer to pre-
fer a more personally advantageous feasible outcome over any less personally
advantageous feasible outcome. A hypothetical bargaining solution, such as
the benefit-equilibrating solution suggested in this thesis, represents hypo-
thetical bargainer’s expectation of how self-oriented decision-makers would
agree to distribute their maximum attainable individual advantage losses in
order to reach an agreement to implement a weakly Pareto optimal feasible
outcome rather to end up with no agreement on how to play the game at all.
Hypothetical bargainers may use this common expectation as a resolution
of a game with multiple Nash equilibria.

Because of the assumption that hypothetical bargainers are individual-
istic decision-makers, the hypothetical bargaining theory makes a less rad-
ical departure from individualistic non-cooperative game theory than the
team reasoning theory. It offers an individualistic explanation of how peo-
ple resolve non-cooperative games by identifying mutually advantageous and
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agreeable outcomes. In addition, the benefit-equilibrating solution concept
suggested in this thesis seems to better account for people’s choices in cer-
tain experimentally relevant coordination games than the theory of team
reasoning based on the notion of mutual advantage suggested in this thesis.
Although extensive empirical research will be required to test the hypo-
thetical bargaining hypothesis, the available data suggests that a version of
hypothetical bargaining based on the benefit-equilibrating solution concept
may offer an empirically relevant alternative explanation of how people iden-
tify mutually advantageous solutions of games with multiple Nash equilibria,
and so the theory warrants further empirical testing.

It is important to note that although hypothetical bargaining is presented
as a separate theory, the benefit-equilibrating solution concept suggested in
this thesis is not incompatible with Sugden’s (2011, 2015) version of the
team reasoning theory based on the notion of mutual advantage: A ‘team’
can be viewed as a group of self-oriented decision-makers who act together in
the attainment of an outcome which they identify as mutually advantageous
by engaging in hypothetical bargaining. Note, however, that hypothetical
bargaining is not compatible with those versions of the team reasoning theory
which suggest that team reasoning requires group-identification based on
overlapping interests and/or common experiences: Hypothetical bargaining
can occur between complete strangers with incompatible personal interests.

On the surface of it, hypothetical bargaining is a parsimonious social co-
ordination theory. It offers an explanation of how people coordinate their
actions in a large variety of games with a relatively simple reasoning algo-
rithm – a reasoning procedure which allows each decision-maker who uses it
to identify a solution of a game from a commonly known information about
decision-makers’ preferences. It could also be viewed as providing a credible
explanation of why one individual’s deviation from the expected pattern of
behaviour may trigger a negative response from other individuals: If hypo-
thetical bargainers view a specific combination of players’ strategies as an
implicit agreement leading to the attainment of a mutually beneficial and
agreeable outcome of a game, then each deviation from that strategy profile
is viewed by them as a violation of their agreement.

According to the proponents of the theory, hypothetical bargaining is a
rational social coordination theory. For this interpretation of hypothetical
bargaining to be credible, a hypothetical bargainer’s decision to play a part
in the attainment of an outcome identified as the bargaining solution of a
game must be shown to be compatible with the orthodox choice consistency
principles. In this thesis, I have argued that a rational choice interpretation
of hypothetical bargaining is conceptually problematic. The first reason
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is hypothetical bargaining theory’s vulnerability to choice rationalization
problem: Common knowledge of the fact that each player is a hypothetical
bargainer and has identified a certain outcome as the hypothetical bargaining
solution of a game does not give the hypothetical bargainer a rational reason
to play his or her part in the attainment of that outcome. Hypothetical
bargainer’s decision to play a part in the attainment of that outcome is only
rational if s/he expects the other players to do that as well. The theory does
not offer an explanation of why each hypothetical bargainer should hold such
a belief, and so it does not provide an explanation of why s/he should be
motivated to actually play his or her part in realizing an outcome which s/he
recognizes as the hypothetical bargaining solution of a game.

I have argued that this difficulty could, in principle, be resolved if hypo-
thetical bargaining were to be interpreted either as a choice or as a belief-
formation algorithm, and suggested that lexicographic belief systems used in
epistemic rationalizability models could, in principle, serve as an imperfect
yet useful starting point for the development of an adequate formal represen-
tation of a belief-formation algorithm. However, both of the suggested in-
terpretations of hypothetical bargaining involve non-trivial departures from
the principles of orthodox game theory.

The second problem is that hypothetical bargaining, if interpreted as a
rational-choice explanation of social coordination, can only account for the
actions of individuals who express a common belief that the share of hy-
pothetical bargainers in the population is sufficiently large. I have argued
that such a belief can only form in a population where a sufficient num-
ber of individuals are acting as hypothetical bargainers. If interpreted as a
rational-choice explanation of social coordination, the theory seems to fall
into a vicious cycle: Hypothetical bargainers can only be motivated to act
in a population state that cannot be reached without a sufficient number of
players acting as hypothetical bargainers.

I have argued that the most plausible explanation of how such a popu-
lation state could have emerged in the first place is that hypothetical bar-
gaining first emerged as a familiarity heuristic which required little to no
rational deliberation and was able to spread in the population due to its
fitness-enhancing properties. However, evolutionary game theoretic models
considered in this thesis only show that individuals using such a familiarity
heuristic could be more successful than individuals using certain primitive
decision rules. I have argued that the question of whether basic evolution-
ary game theory models are adequate for representing the actual evolution
of decision-making rules cannot be answered with the tools of the evolution-
ary game theory itself. Therefore, evolutionary game theoretic explanation
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suggested in this chapter is only valid insofar as it shows that the intuition
that people’s choices in non-cooperative games may be driven by an evolved
sensitivity to benefit-allocation considerations has some conceptual credibil-
ity.

Finally, I have argued that hypothetical bargainers’ ability to coordinate
their actions may often depend on factors that are not related to payoff
structures of games at all. Therefore, even if hypothetical bargaining could
be developed into a complete and conceptually sound theory of strategic rea-
soning, a single generalizable model of hypothetical bargainers’ final choices
in non-cooperative games may not be possible after all.

The model of hypothetical bargaining based on the benefit-equilibrating
solution concept which has been suggested and discussed in this thesis should
not be viewed as a complete theory of social coordination, but rather as a
conceptual exploration of the general principles of reasoning which may un-
derly decision-makers’ reasoning in various real-world interdependent deci-
sion problems, and as a study of how these principles could be incorporated
into formal analysis of games. This thesis does not cover a considerable
number of conceptually and empirically important questions that a com-
plete theory of social coordination based on the notion of mutual advantage
should be capable of answering.

Although the theoretical predictions of players’ actions based on the
benefit-equilibrating solution concept fits with some experimental findings
from games discussed in this thesis, further empirical tests will need to be
constructed to test the empirical validity of this account. One of the biggest
empirical challenges is the problem of underdetermination. Further empirical
research is needed to test competing theories about the modes of reasoning
that people use in their interactions with each other. Such research will
require sophisticated empirical tests specifically designed to distinguish the
hypothetical bargaining theory from other competing approaches, such as
team reasoning theory, cognitive hierarchy theory, social conventions theory,
and coalitional rationalizability. Since individuals’ actions can often be ex-
plained in terms of multiple accounts of what players try to achieve in games
they play, these studies may need to consider a broader evidence base than
mere observations of decision-makers’ choices.

Another important question which has not been addressed in this thesis is
what properties of decision-problems trigger individuals’ search for mutually
advantageous solutions of games. An adequate answer to this question will
require an extensive empirical study of the structural and contextual features
of decision problems in which people exhibit patterns of behaviour consistent
with the theoretical predictions of the theory. Such empirical research could
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answer some of the fundamental questions pertaining to the explanatory
scope of the model, such as, for example, whether a behaviour consistent
with the theoretical predictions of hypothetical bargaining can be observed
in extensive form games.

One of the fundamental conceptual limitations of the hypothetical bar-
gaining model discussed in this thesis is that it only provides a description of
the formal properties that an outcome must have in order to be identified by
the interacting decision-makers as the bargaining solution of a game. It does
not offer a description of the process of mental bargaining that individuals
go through in order to identify the bargaining solution. The actual details
of the process of mental bargaining, such as players’ perception of the de-
cision problem and its context, as well as their beliefs about each other’s
perception of the decision problem, beliefs and motivations, may play a
non-trivial role in the process of identification of hypothetical bargaining
solutions. Therefore, there are serious reasons to believe that a highly ide-
alized bargaining solutions may, at best, offer only approximately accurate
predictions of hypothetical bargainers’ actions. Further research of the psy-
chological processes which underpin hypothetical bargaining may eventually
lead to a development of a formal model of reasoning which could account
for at least some of the factors which influence decision-makers’ reasoning
in real-world interdependent decision problems, and thus provide more ac-
curate and testable predictions of hypothetical bargainers’ actions. Further
psychological research and, hopefully, a development of a reasonably accu-
rate model of mental bargaining may ultimately be the only possible way to
show that hypothetical bargaining is not merely a descriptive model which,
like the other competing models, provides reasonably accurate predictions of
people’s choices, but as a model which provides an approximately accurate
description of how people actually reason in non-cooperative games.
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