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Abstract

This thesis contains three essays on asset pricing. The first chapter examines how introducing an

options market affects the liquidity and expected returns of underlying assets when the economy

features asymmetric information. I show that introducing derivatives can have opposite effects

on underlying asset prices: doing so increases (resp., reduces) prices when the market has

relatively more liquidity suppliers (resp., liquidity demanders). Thus the non-monotonic effects

of derivatives on underlying assets could reconcile the mixed empirical evidence on options

listing effects. Introducing derivatives reduces the price impact of liquidity demanders’ trades

on the underlying risky asset but has no effect on its price reversal dynamics. In the second

chapter, I solve for the equilibrium of a pure-exchange Lucas economy under jump diffusion and

populated by one unconstrained agent and one VaR agent in closed form. First, I show that the

VaR constraint can generate excess market volatility and the inclusion of the jump component

amplifies this effect, which provides a new mechanism to explain the prevalent smirk pattern

of Black-Scholes implied volatility in options markets. Second, the VaR constraint pushes up

the jump risk premium. Finally, the VaR constraint can generate a decline in the zero coupon

bond yields at the VaR horizon, which is consistent with a flight to safety phenomenon taking

place during a crisis. The third chapter, co-authored with Chunbo Liu and Zhiping Zhou,

documents a positive relationship between funding liquidity and market liquidity in the options

market. Further analysis reveals that the positive relationship is mainly driven by short-term

and deep out-of-the-money options. Furthermore, liquidity of puts is more sensitive to changes

in funding liquidity. In addition, this paper finds a positive relationship between the options

market liquidity and VIX, which is in contrast to the negative relationship documented in the

equity market.

4



Contents

1 The Effect of Options on Liquidity and Asset Returns 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Asymmetric Information Benchmark without an Options Market . . . . . 17

1.3 Introduction of A Squared Contract . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Introduction of an Options Market . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Options and Illiquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.3 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5 Analysis with Participation Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.5.1 Equilibrium without an Options Market . . . . . . . . . . . . . . . . . . . 42

1.5.2 Equilibrium with an Options Market . . . . . . . . . . . . . . . . . . . . . 46

1.6 Other General Derivative Securities . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.6.1 General Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.6.2 A Quadratic Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.9.1 Some useful results from Vayanos and Wang (2012a) . . . . . . . . . . . . 61

1.9.2 Asymmetric Information with a Squared Contract . . . . . . . . . . . . . 62

1.9.3 Asymmetric Information with an Options Market . . . . . . . . . . . . . . 66

1.9.4 Participation Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5



1.9.5 Asymmetric Information with General Derivatives . . . . . . . . . . . . . 77

2 Dynamic Equilibrium with Rare Events and Value-at-Risk Constraint 80

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3 Optimization under VaR constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4 Market Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Equilibrium Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.5.1 Implied Volatility Curve in the VaR Economy . . . . . . . . . . . . . . . . 92

2.5.2 Jump Risk Premium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.5.3 Term Structure of Interest Rates . . . . . . . . . . . . . . . . . . . . . . . 95

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3 From Funding Liquidity to Market Liquidity: Evidence from the Index Op-

tions Market 117

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2 Data and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.3.2 Subsample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3.3 Relation to the Liquidity of the US Equity Market . . . . . . . . . . . . . 131

3.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4.1 Split Sample Pre-Post Financial Crisis . . . . . . . . . . . . . . . . . . . . 132

3.4.2 Weekly Data Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6



List of Figures

1.1 Welfare gains from options. The left panel plots the welfare gains for liquidi-

ty demanders (the first term in (1.4.12)) and liquidity suppliers (the first ter-

m in (1.4.13)); the right panel plots the ratio—demanders/suppliers—of welfare

gains. The solid (resp. dashed) line marks the ratio of welfare gains with (resp.

without) options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2 Effects of options on the ex ante price of the risky asset. The solid (resp. dashed)

line plots the equilibrium ex ante price with (resp. without) options. . . . . . . . 34

1.3 Price reversal γ versus equilibrium ex ante price as a function of whether options

are (solid line) or are not (dashed line) available; here the population π drives the

cross-sectional variation in γ, and P0. . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Parameters m, λ, and γ (the latter two are illiquidity measures) versus equilibrium

ex ante price as a function of whether options are (solid line) or are not (dashed

line) available; here the precision parameter m (for the private signal) drives the

cross-sectional variation in λ, γ, and P0 (π = 0.49). . . . . . . . . . . . . . . . . 37

1.5 Parameters n, λ, and γ (the latter two are illiquidity measures) versus equilibrium

ex ante price as a function of whether options are (solid line) or are not (dashed

line) available; here the precision parameter n (for the liquidity shock) drives the

cross-sectional variation in λ, γ, and P0 (π = 0.49). . . . . . . . . . . . . . . . . 38

1.6 Relationship between illiquidity measures and liquidity improvement. . . . . . . . 40

1.7 Welfare gains from derivatives; g(y) = y. . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Optimal horizon wealth of two agents. . . . . . . . . . . . . . . . . . . . . . . . . 108

2.2 Lagrange multipliers of two agents. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.3 Equilibrium time-t market prices of two economies. . . . . . . . . . . . . . . . . . 110

7



2.4 Optimal time-t wealth of two agents. . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.5 Optimal time-t market volatility ratio. . . . . . . . . . . . . . . . . . . . . . . . . 112

2.6 Behavior of optimal time-t market volatility ratio with respect to VaR parameters.113

2.7 Equilibrium implied volatility curve. . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.8 Jump risk premium in the VaR economy. . . . . . . . . . . . . . . . . . . . . . . 115

2.9 Equilibrium term structure of interest rates. . . . . . . . . . . . . . . . . . . . . . 116

3.1 The evolution of options market liquidity. . . . . . . . . . . . . . . . . . . . . . . 148

3.2 The evolution of the TED spread. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.3 The evolution of VIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.4 The evolution of stock market liquidity. . . . . . . . . . . . . . . . . . . . . . . . 151

8



List of Tables

3.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.2 Stationarity test for key variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.3 Funding liquidity and the options market liquidity . . . . . . . . . . . . . . . . . 141

3.4 Funding liquidity and the liquidity of options with different maturities . . . . . . 142

3.5 Funding liquidity and the liquidity of options with different moneyness . . . . . . 143

3.6 Funding liquidity and the liquidity of call and put options with different moneyness144

3.7 Funding liquidity and options liquidity: controlling for stock market liquidity . . 145

3.8 Funding liquidity and options liquidity: different sample periods . . . . . . . . . 146

3.9 Funding liquidity and options market liquidity: Weekly data . . . . . . . . . . . . 147

9



Chapter 1

The Effect of Options on Liquidity

and Asset Returns

1.1 Introduction

Recent years have seen rapid development of the derivatives market.1 The effect of these new

assets on the whole financial market has led to heated discussion, and the topic has been of

extreme importance to practitioners and regulators since the recent financial crisis.2 Motivated

by policy concerns, a large body of empirical work examines how the introduction of derivative

assets, such as options, affects the underlying asset.

Most of this research has focused on how derivative securities affect the price level and

volatility of underlying assets, and little is known about how they affect market liquidity.3

Although a few theoretical studies have investigated the effect of derivatives on their underlying

assets through the price discovery channel (Cao, 1999; Huang, 2015), the theoretical framework

for these empirical findings is incomplete—especially with regard to the effect of derivatives on

liquidity of the underlying securities.

1In the United States, the trading volume of individual stock options has grown expo-
nentially from 5 million contracts in 1974 to more than 3,845 million contracts in 2014
(http://www.optionsclearing.com/webapps/historical-volume-query).

2Some regulators have argued that the complicated new derivatives products, which are designed to provide
risk management and liquidity benefits to the financial system, produced exactly the opposite effect during the
financial crisis of 2007 to 2010. In response to the 2007 credit crunch and the ensuing liquidity crisis, the Dodd-
Frank Wall Street Reform and Consumer Protection Act became federal law, bringing significant changes to
financial regulation of the derivative markets.

3See, for example, Damodaran and Lim (1991), Fedenia and Grammatikos (1992), and Kumar, Sabin, and
Shastri (1998).

10



This paper examines how introducing financial derivatives affects the underlying asset’s

price level and liquidity. I find that the advent of options trading improves that liquidity and

also the welfare of market participants, but it has a surprisingly non-monotonic effect on the

asset’s price. Further analysis reveals that the reported effects of derivatives on the asset’s

liquidity and price are dependent on the measures of illiquidity used and the factors driving

asset-specific characteristics. In this regard, the paper offers new and comprehensive guidelines

for empirical studies designed to analyze—via the liquidity channel—how securities are affected

by the introduction of derivatives.

This study of how derivatives affect liquidity employs a rational expectations equilibrium

(REE) model.4 I start by considering an economy with three dates and two assets as the

benchmark (Vayanos and Wang, 2012a,b).5 Specifically, at dates 0 and 1, agents can trade a

risk-free asset and a risky asset that pay off at date 2. At date 0, agents are identical and

therefore no trade occurs. At date 1, agents can be one of two types: a liquidity demander,

who at date 2 will receive a random endowment whose payoff is correlated with the risky asset’s

payoff; or a liquidity supplier, who will receive no such endowment. Only those agents who

receive the random endowment observe the covariance between that endowment and the risky

asset’s payoff. Liquidity demanders can hedge the liquidity shock, which is modeled here as a

random endowment, by trading with liquidity suppliers. Therefore, the existence of two agent

types results in trade at date 1.6 In addition, liquidity demanders receive private information

about the risky asset’s payoff before trade begins at date 1 whereas liquidity suppliers cannot

distinguish the private signal from the demanders’ liquidity shock.7

Next I introduce an options market into the economy. As in Cao and Ou-Yang (2009), the

options market consists of a complete set of European call and put options written on the risky

asset. At date 0, all agents know that options will be introduced into trade at date 1. Under

this setup, I compare the ex ante price and measures of illiquidity of the risky asset before and

after options are introduced—a comparison that quantifies the effects of this options market. To

4Because options have no effect on the underlying assets if the market is complete, competitive, and frictionless
(Black and Scholes, 1973), the focus here is on the case of asymmetric information between liquidity demanders
and suppliers.

5This setting is similar to that described by Grossman and Stiglitz (1980). The only difference is that Grossman
and Stiglitz introduce exogenous noise traders whereas Vayanos and Wang (2012a,b) replace the noise traders
with rational hedgers who are influenced by a liquidity shock.

6Endowment shocks have been modeled as a non-informational trading motive in different forms. See, for
example, Diamond and Verrecchia (1981), Wang (1994), O’Hara (2003), and Vayanos and Wang (2012a,b).

7Qiu and Wang (2010) employ a more general framework to analyze the asset pricing implications of asymmetric
information and endowment shocks.
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examine market liquidity, I follow Vayanos and Wang (2012a,b) and consider two widely used

empirical measures of illiquidity: price impact λ and price reversal γ.

I find that liquidity demanders who observe the private signal take short positions in the

introduced options, whereas liquidity suppliers who learn information through asset prices take

long positions in those options. The payoff structure is such that options may yield hedging

benefits for the second moment of the risky asset’s payoff. Since liquidity demanders have

more precise information, they always have less incentive than suppliers to hedge against such

volatility. Given that options are in zero net supply, liquidity demanders (resp. suppliers) take

short (resp. long) positions in options. Moreover, the trading volume of options increases with

the information dispersion across agents because widely dispersed information is followed by

high demand for options.

In this paper I establish that options provide hedging benefits and increase risk sharing

between liquidity demanders and liquidity suppliers. In my model, liquidity demanders trade

to hedge and/or exploit their information. Before options are introduced, uninformed liquidity

suppliers are unable to distinguish between these two motives, which reduces the incentive to

trade with liquidity demanders. Yet when financial derivatives are available, liquidity suppliers

can hedge against uncertainty in the risky asset’s payoff and so are more willing to accommodate

the trades of informed demanders. Because of this options-enabled increase in risk sharing, their

introduction increases all agents’ utilities. In other words, each market participant’s welfare has

improved at date 0.8

However, the effects of options on liquidity demanders and suppliers are not symmetric.

Intuitively, the relative benefit from more risk-sharing opportunities is determined by the com-

petition within each group. For example, if the market consists mostly of liquidity suppliers then

competition within that group is intense; hence the welfare improvement is greater for liquidity

demanders than for liquidity suppliers. These results are reversed when the market is dominated

by liquidity demanders. Although both agent types benefit when options are introduced, the

magnitude of that benefit differs by type and this difference affects the trading incentives of

agents at date 0.

More importantly, I show that introducing derivatives has (surprisingly) non-monotonic ef-

8The so-called noisy REE models usually introduce exogenous noise trading into the economy. That approach
complicates welfare analysis because one cannot compute the welfare of noisy traders. My model replaces noisy
traders with rational hedgers whose utility can be calculated, which enables a welfare analysis of the effects of
introducing derivatives.
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fects on the underlying asset prices—a finding that could reconcile, at least in part, conflicting

evidence on options listing and its effect on the underlying asset.9 When the market has many

more liquidity suppliers than demanders, the benefits stemming from options are greater for

the latter than the former. At date 0, the identical investor who can anticipate the effects of

options is thus less worried about liquidity shock. Hence this investor is more willing to hold the

risky asset at date 0, which increases that asset’s ex ante price. The opposite effect is observed

when the agent population consists mostly of liquidity demanders. The mechanism is robust to

derivatives with general payoff structures.

Further analysis shows that the effects of derivatives on the price of their underlying asset

are sensitive to the illiquidity measures used and to the particular factors that drive the asset-

specific characteristics. For example, if illiquidity is measured by price impact λ and if the

cross-sectional variation in λ is driven by the private signal’s precision, then introducing options

will lower (resp. raise) the prices of stocks that are relatively more (resp. less) liquid. Yet if

illiquidity is measured by price reversal γ then the opposite dynamic is observed. When the

cross-sectional variation in different illiquidity measures is due to the liquidity shock’s precision,

one observes different effects of options on the underlying asset’s price. These novel implications,

which concern how options affect their underlying assets, can be tested empirically.

I also find that introducing an options market reduces the price impact of liquidity deman-

ders’ trades on the underlying risky asset—but that it has no effect on price reversal. Options

expand the scope of risk sharing between liquidity demanders and suppliers and reduce the price

effect per trade captured by λ. Because the introduction of options increases the trade size, the

effect of options on overall trade, which is measured by γ, does not change. Furthermore, the

liquidity improvement of more liquid (low-λ) stocks is less than that of less liquid (high-λ) s-

tocks. When information becomes more asymmetric, the consequent adverse selection is more

severe and so the price impact λ is greater. In other words, high-λ stocks are more subject to

information asymmetry. The hedging benefit provided by options is greater for stocks that are

more likely to be subject to asymmetric information. That is, the improvement in liquidity is

greater for stocks with high λ than for stocks with low λ. The converse effect is observed when

illiquidity is instead measured by γ because asymmetric information can reduce γ.10

9Several empirical studies document that an options listing reduces the underlying asset’s price (e.g., Conrad,
1989; Detemple and Jorion, 1990; Skinner, 1989), although a few find just the opposite (e.g., Sorescu, 2000;
Mayhew and Mihov, 2000).

10In the model, price reversal γ captures the importance to price of liquidity shocks. When the private signal
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In order to endogenize further the participation decisions of agents, I examine a scenario

in which they must pay a participation fee to enter the market at date 1; this fee can be

interpreted as learning costs or opportunity costs, much as in Huang and Wang (2009, 2010). A

participation fee reduces the participation of liquidity suppliers, which changes the proportion

of liquidity suppliers in the population as a whole.11 I find that the introduction of an options

market always reduces the illiquidity discount in the ex ante price and also reduces the expected

return of the underlying asset—that is, irrespective of the proportion of liquidity demanders.

When options are introduced, more liquidity suppliers are willing to enter the market and to

accommodate the trades of liquidity demanders; the result is a decline in the illiquidity discount

that a demander would normally require. Moreover, both illiquidity measures decrease after

derivatives are introduced, which contrasts to the case without costly participation. The reason

is that an increased proportion of liquidity suppliers facilitates risk sharing and thus lowers both

price impact λ and price reversal γ. Finally, the model predicts that options trading volume is

not a monotonic function of the participation cost; rather, it should exhibit an inverse U shape

with respect to that cost.

Related Literature. My study is related to the literature that addresses market frictions and

liquidity.12 Most studies on REE with asymmetric information focus on price informativeness.

In contrast, market liquidity is the focus of most literature on strategic trading and sequential

trading. For example, Biais and Hillion (1994) investigate how derivatives affect market liquidity

in a strategic trading model. Vayanos and Wang (2012a,b) take a first step in analyzing how

imperfections such as asymmetric information affect ex ante prices and market liquidity in REE

models.13 Inspired by Vayanos and Wang (2012a,b), this paper is the first study of how—in a

competitive market—the introduction of an options market affects both the returns and market

liquidity of the underlying assets.

This paper contributes also to the theoretical literature on the effects of derivative securities

on underlying assets (Grossman, 1988; Back, 1993; Biais and Hillion, 1994; Brenna and Cao,

is extremely precise (i.e., when information asymmetry is severe), the effect of the liquidity shock captured by γ
is rather limited.

11Because it is the liquidity demanders who face the risk of liquidity shock, they stand to benefit more from
participation than do suppliers. Recall also that it is the relative measure of participating suppliers and demanders
that matters in this model. Thus I limit the analysis to an equilibrium under which liquidity demanders fully
participate and liquidity suppliers partially participate (cf. Vayanos and Wang, 2012b).

12The literature is vast; Vayanos and Wang (2012b) provide a comprehensive review.
13Several recent papers examine the effect of asymmetric information on expected returns (see e.g. O’Hara,

2003; Easley and O’Hara, 2004; Garleanu and Pedersen, 2004; Qiu and Wang, 2010).
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1996; Huang and Wang, 1997; Cao, 1999; Chabakauri, Yuan, and Zachariadis, 2014; Huang,

2015; Malamud, 2015). The most closely related to mine is the work of Biais and Hillion (1994),

who show that options can help prevent breakdowns caused by the adverse selection problem in

a noncompetitive market and thereby make the market more liquid. In Biais and Hillion (1994),

market makers are risk neutral and the expected returns on assets are always equal to the risk-

free rate. However, the analysis here is conducted in a competitive market and yields empirical

implications for how the expected returns of underlying assets are affected by options listing.

Brenna and Cao (1996) incorporate a quadratic option into a noisy rational expectations model

and find that the derivative allows agents to achieve a Pareto-efficient allocation. However,

they find that the underlying asset’s price is not affected by the option. There are, in addition,

several other studies that investigate the effects of derivatives on the underlying asset when the

acquisition of information is endogenous. Following Grossman and Stiglitz (1980) and Hellwig

(1980), Cao (1999) and Huang (2015) focus on the information acquisition channel and on how

introducing options affects the price of risky assets through price informativeness. In contrast,

I focus on market liquidity and show that the ex ante price of the risky assets is indeed affected

by options—even in the absence of an information acquisition channel (i.e., even if the price

informativeness remains unchanged). Furthermore, this paper is one of only a few studies

that introduce a set of explicit options into an economy with asymmetric information. Those

works include Chabakauri, Yuan, and Zachariadis (2014), who generalize the distribution of

asset payoffs, Huang (2015), who focuses on endogenous information acquisition, and Malamud

(2015), who examines price discovery under general preferences. My paper is also associated

with the strand of literature on financial innovation (Allen and Gale, 1994; Duffie and Rohi,

1995; Dow, 1998; Brock, Hommes, and Wagener, 2009; Dieckmann, 2011; Simsek, 2013a,b;

Chabakauri, Yuan, and Zachariadis, 2014).

The rest of the paper is organized as follows. Section 1.2 sets up the model and presents

the benchmark case with asymmetric information but without options, and Section 1.3 and 1.4

examine what happens when derivative assets are introduced into the economy. Section 1.5

extends the model further by considering costly participation, after which Section 1.6 discusses

some more general derivatives. Section 1.7 concludes. All proofs are given in the appendices.
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1.2 Model

1.2.1 Economy

Given the unified framework of liquidity with one risk-free asset and one risky asset as proposed

by Vayanos and Wang (2012a,b), I introduce an options market into the economy. To examine

the subsequent effects, I compare the price and two measures of the risky asset’s illiquidity before

and after options are introduced. Before solving in Section 1.4 the equilibrium for the economy

with options, I solve the equilibrium in the absence of an options market.

Timeline and Assets. As the benchmark, I consider an economy with three dates, t =

0, 1, 2, and two assets. The risk-free asset is in a supply of b shares and pays off one unit of a

consumption good at date 2. The supply of the risky asset is X̄ > 0 shares, each of which pays

off D units of the consumption good, where D ∼ N(D̄, 1/h). The price of the risky asset is

denoted by Pt at date t. With the risk-free asset as numéraire, the price of the risky asset at

date 2 is equal to D; that is, P2 = D.

There is a measure one of investors whose utility function over consumption follows a negative

exponential utility function with absolute risk aversion coefficient α:

− exp(−αC2), (1.2.1)

where C2 is the consumption at date 2. All investors are identical at date 0 and are endowed

with the per capita supply of both the risk-free asset and the risky asset. Then they become

heterogeneous, and that heterogeneity generates trade at date 1. At date 2, all asset payoffs are

realized and all investors consume their total wealth.

Investors and Asymmetric Information. At date 1
2 , investors’ types are realized. At this

interim date, investors learn whether or not they will receive an extra endowment at date 2. A

proportion π of these agents encounter the liquidity shock of receiving an additional endowment

z(D − D̄) of the consumption good at date 2; the remaining proportion 1− π of agents receive

no extra endowment. Only those who receive the endowment observe the liquidity shock z.

Because the endowment received by the proportion π of agents is correlated with D, the agents

have an incentive to hedge against the risk exposure induced by that liquidity shock.14 These

14Like Vayanos and Wang (2012a), for simplicity I assume that the endowment is perfectly correlated with the
payoff D. If the correlation is not perfect then the results remain qualitatively similar, since the crux of this study
is a nonzero correlation.
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agents are referred to as liquidity demanders because trades are initiated by their hedging

against the liquidity shock. When, for example, a positive endowment shock occurs (i.e., z is

positive), liquidity demanders are willing to sell the risky asset to hedge against the risk that

the payoff D will be low. The remaining agents accommodate this hedging demand and are

referred to as liquidity suppliers. The liquidity shock z is normally distributed with mean zero

and precision n—that is, z ∼ N(0, 1/n)—and is independent of D.15 In addition to the liquidity

shock, liquidity demanders receive a private signal s about the risky asset payoff D before trading

at date 1.16 The signal is

s = D + ε, (1.2.2)

where ε is normally distributed with mean zero and precision m (i.e., ε ∼ N(0, 1/m)) and is

independent of (D, z). To simplify the analysis, I assume that all liquidity suppliers are unin-

formed about the private signal s; the consequent information asymmetry serves as a benchmark

for the following studies.

At date 1, liquidity demanders and liquidity suppliers trade with each other on the basis of

their information and the liquidity shock. In this context, liquidity demanders have two trading

motives: speculating (informational) and hedging (non-informational). Specifically, demanders

can extract profit from the private signal they observe and also wish to hedge against the random

endowment they will encounter at date 2. The inability of liquidity suppliers to distinguish

between these two motives of demanders reduces the former’s incentive to trade with the latter.

As shown by Vayanos and Wang (2012a,b), an illiquidity discount in the price of the risky asset

at date 0 (i.e., P0) arises in response to a liquidity shock and is magnified when the economy

features asymmetric information.

1.2.2 Asymmetric Information Benchmark without an Options Market

Here I recall the results of Vayanos and Wang (2012a,b) obtained under asymmetric information.

It is the benchmark to be used for comparisons with the setting in which an options market has

been introduced.

I follow Vayanos and Wang (2012a,b) in first solving the equilibrium at date 1 and then

15The endowment z(D− D̄) can take large negative values under the normal distribution, which could yield an
infinitely negative expected utility. Similarly to Vayanos and Wang (2012a), I assume that the precisions of D
and z satisfy α2 < nh to ensure that utility is finite.

16Without loss of generality, I assume that all liquidity demanders are informed. Even if they do not receive
the private signal, they can perfectly infer it from the price because they observe the liquidity shock.
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working backward to obtain the equilibrium at date 0. Following the model setup, liquidity

demanders observe the signal s and know their liquidity status z. As a result, their information

comprises the private signal s, the liquidity shock z, and the prices P0 and P1; formally, Fd =

{s, z, P0, P1}. At the same time, liquidity suppliers cannot observe the private signal and so

their only information is the prices themselves. Hence the information set of these suppliers is

Fs = {P0, P1}. All investors formulate their demand functions conditional on their respective

information sets, and the equilibrium price clears the market. I shall denote by Xd and Xs the

demand of liquidity demanders and liquidity suppliers (respectively) for the risky underlying

asset.

In this study, I assume a linear price function and conjecture that the risky asset’s price is

a linear function of the signal s and the liquidity shock z:

P1 = A+B(s− D̄ − Cz), (1.2.3)

where A,B,C are constants. The expectations of liquidity demanders are such that the condi-

tional mean and variance of the risky asset payoff D are17

E[D|Fd] = D̄ + βs(s− D̄) and Var[D|Fd] =
1

h+m
, (1.2.4)

where βs = m
h+m . At date 1, liquidity demanders maximize their expected utility over the wealth

at date 2, Wd2 = W1 +Xd(D − P1) + z(D − D̄),18 and then submit a demand schedule for the

risky asset as follows:

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− z. (1.2.5)

As this equation shows, the demand schedule of liquidity demanders is affected by the liquidity

shock z. For instance, if a positive liquidity shock occurs then demanders will attempt to sell

the risky asset because they are overly exposed to the risk that the payoff D will be low.

In contrast to liquidity demanders, liquidity suppliers are unable to observe the private

signal; for this reason, they can learn about D only by observing the price of the risky asset.

17Given that the price P1 is a coarser indicator than the signal s, no additional information is conveyed
by the former than the latter. Furthermore, the liquidity shock z is independent of D and so is not used to
compute the conditional expectation and variance of D. It follows that, in the setting without options, we have
E[D|Fd] = E[D|s], Var[D|Fd] = Var[D|s], E[D|Fs] = E[D|P1], and Var[D|Fs] = Var[D|P1].

18Since investors are identical at date 0, it follows that the wealth of a liquidity demander and of a liquidity
supplier are the same at date 1: W1 = Wd1 = Ws1 = W0 + X0(P1 − P0). The wealth of a liquidity supplier at
date 2 is Ws2 = W1 +Xs(D − P1), which can be derived from Wd2 by setting z = 0.
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Conditional on their information set Fs, the payoff D is normal with mean and variance

E[D|Fs] = D̄ + βP (s− D̄ − Cz) and Var[D|Fs] =
1

h+ q
, (1.2.6)

respectively; here βP = q
h+q and q =

(
1
m + C2 1

n

)−1
. Similarly, liquidity suppliers maximize their

expected utility and submit a demand schedule for the risky asset as follows:

Xs =
E[D|Fs]− P1

αVar[D|Fs]
. (1.2.7)

After both groups of investors submit their demand schedules, the equilibrium price clears the

market and thereby equates investors’ aggregate demands and the asset supply X̄:

πXd + (1− π)Xs = X̄. (1.2.8)

The equilibrium price of the risky asset is affine in both the private signal and the liquidity

shock, per (1.2.3), and the coefficients A,B,C can be written as

A = D̄ − α

h+ πm+ (1− π)q
X̄, B =

πm+ (1− π)q

h+ πm+ (1− π)q
, C =

α

m
. (1.2.9)

Substituting the agents’ demands into the exponential utility function yields their expected

utilities at date 1. The expected utility of a liquidity supplier can be calculated as

− exp

{
− α

[
W0 +X0(P1 − P0) +

[D̄ + βP (s− D̄ − Cz)− P1]2

2αVar[D|Fs]

]}
. (1.2.10)

Similarly, one can calculate the expected utility of a liquidity demander as

− exp

{
− α

[
W0 +X0(P1 − P0) + z(P1 − D̄) +

[D̄ + βs(s− D̄)− P1]2

2αVar[D|Fd]

]}
. (1.2.11)

The expected utility at date 1 is affected not only by the private signal s but also by the liquidity

shock z—given that the price P1 depends on both s and z. I denote by Us and Ud the expected

utilities of (respectively) liquidity suppliers and demanders at the interim date 1
2 , which are

the expectations of (1.2.10) and (1.2.11) over (s, z). These interim utilities can be used to

derive the identical investor’s expected utility at date 0 as the weighted average of suppliers’
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and demanders’ utilities:

U ≡ πUd + (1− π)Us. (1.2.12)

At date 0, the identical investor chooses X0 to maximize utility. Then the ex ante price

P0 clears the market and we have X0 = X̄ in equilibrium. As shown in Vayanos and Wang

(2012a,b), the following linear equilibrium price exists at date 0:

P0 = D̄ − α 1

h
X̄ − πM

1− π + πM
∆1X̄, (1.2.13)

where

∆0 =
(B − βP )2

(
1
h + 1

q

)

π2 Var[D|Fs]
,

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π)2 − α2 1
nh

,

∆2 =
α3 1

nh2

[
1 +

(B−βs)2( 1
h

+ 1
m

)

Var[D|Fd]

]

1 + ∆0(1− π)2 − α2 1
nh

,

and

M = exp

(
1

2
α∆2X̄

2

)√
1 + π2∆0

1 + ∆0(1− π)2 − α2 1
nh

. (1.2.14)

The ex ante price P0 consists of three terms: the expected payoff D̄; the risk premium, which

compensates investors for the risk they bear; and the illiquidity discount. That discount is

itself the product of two other terms. The first of these, πM
1−π+πM , can be interpreted as the

risk-neutral probability of being a liquidity demander; π is the true probability and M is the

ratio of marginal utilities of demanders to those of suppliers. The illiquidity discount’s second

term, ∆1X̄, is the discount required if one is certain to be a liquidity demander.

To examine market liquidity, I consider two widely used empirical measures of illiquidity.

The first one is based on the price impact of trades by liquidity demanders. More specifically,

it is the coefficient derived by regressing the price change (between date 0 and date 1) on the

signed volume of liquidity demanders at date 1:

λ ≡ Cov[P1 − P0, π(Xd − X̄)]

Var[π(Xd − X̄)]
. (1.2.15)

A large λ indicates that trades have a strong price impact, which implies that the market is
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illiquid. The second measure is based on the autocovariance of price changes between two

periods:

γ ≡ −Cov[P2 − P1, P1 − P0], (1.2.16)

which is referred to as price reversal. The price reversal measure γ captures the price deviation

from fundamental value that a liquidity supplier requires to absorb a liquidity shock. When

γ is high, trades generate substantial price deviation and the market is illiquid. In the case of

asymmetric information without options, these two illiquidity measures are calculated as follows:

λ =
αVar[D|Fs]

(1− π)(1− βP
B )

; (1.2.17)

γ = B(B − βP )

(
1

h
+

1

q

)
. (1.2.18)

The foregoing results on the risky asset’s price, the price impact λ, and the price reversal γ

follow Vayanos and Wang (2012a,b). These results will be the benchmark for subsequent analysis

for the effects of derivatives. In the next section I explore how the introduction of derivative

assets affects the equilibrium. Then, in Section 1.5, I account for costly participation and

investigate how derivatives affect the underlying asset in an economy with both asymmetric

information and participation costs.

1.3 Introduction of A Squared Contract

Before solving in Section 1.4 for the economy with an options market, I first introduce a squared

contract whose payoff at date 2 is D2, where D is the risky asset’s payoff, into the economy. In

this section, I investigate the impact of the squared contract on asset prices, market illiquidity

and the welfare of market participants.

1.3.1 Equilibrium

At date 0, all agents know that the squared contract will be introduced to trade at date 1 and

its price at date 1 is denoted by PSC . The net supply of the squared contract is zero. The

demands of liquidity demanders and suppliers for this derivative asset are denoted by Xd,SC

and Xs,SC . Liquidity demanders and suppliers submit their demand schedules conditional on

their new information sets after this derivative is introduced. Specifically, the information set
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of liquidity demanders at date 1 is Fd = {s, z, P0, P1, PSC} whereas that of liquidity suppliers is

Fs = {P0, P1, PSC}. Equipped with the squared contract, the wealth of liquidity demanders at

date 2 is given by

Wd2 = W1 +Xd(D − P1) + z(D − D̄) +Xd,SC(D2 − PSC), (1.3.1)

and the wealth of liquidity suppliers is given by

Ws2 = W1 +Xs(D − P1) +Xs,SC(D2 − PSC). (1.3.2)

If the derivative asset is redundant and is not traded by investors, then the wealth calculated by

(1.3.1) and (1.3.2) is the same as that in the absence of derivatives. Once a squared contract is

introduced, there is a partially revealing rational expectations equilibrium.19 The equilibrium

at date 1 with the squared contract is closely related to Brenna and Cao (1996) who introduce

a quadratic option that pays off (D − P1)2.

Proposition 1.3.1. At date 1, there exists one equilibrium. The underlying risky asset’s price

is given by

P1 = D̄ − α

G
X̄ +

πm+ (1− π)q

G

(
s− D̄ − α

m
z

)
, (1.3.3)

and the price of the squared contract is given by

PSC = P 2
1 +

1

G
. (1.3.4)

The liquidity demander’s demands for the risky asset and the derivative are

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− G−Gd

α
P1 − z, (1.3.5)

Xd,SC =
G−Gd

2α
; (1.3.6)

the liquidity suppler’s demands for the risky asset and the derivative are

Xs =
E[D|Fs]− P1

αVar[D|Fs]
− G−Gs

α
P1, (1.3.7)

Xs,SC =
G−Gs

2α
. (1.3.8)

19The uniqueness of the equilibrium is left for future research.
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In (1.3.3)–(1.3.8), Gd ≡ 1
Var[D|Fd] = h+m, Gs ≡ 1

Var[D|Fs] = h+ q, and G ≡ πGd + (1− π)Gs =

h+ πm+ (1− π)q. The terms Gd and Gs represent the conditional precision of D for liquidity

demanders and suppliers, and G denotes the average precision for all investors.

There are several interesting features of the equilibrium at date 1. First, the squared contract

is not redundant and is traded by investors. In equilibrium, liquidity demanders take short

positions in derivatives whereas liquidity suppliers take long positions. Given its payoff structure,

the squared contract can provide hedging/speculation benefit for the volatility of the risky asset’s

payoff. Since liquidity demanders have more precise information, they always have less incentive

than suppliers to hedge against the volatility. Because the squared contract is in zero net

supply, liquidity demanders sell the squared contract to earn profit while liquidity suppliers

take long positions to hedge against the volatility. The factor that makes the squared contract

nonredundant is the difference in opinions of uncertainty caused by heterogeneous information,

which is clearly shown by (1.3.6) and (1.3.8). Second, introducing derivatives into an economy

with asymmetric information has no direct effect on the underlying asset’s equilibrium price at

date 1, which is in line with the result reported in Brenna and Cao (1996). Third, the price of

the squared contract is a function of the risky asset’s price but carries no additional information;

hence its introduction is considered to be “informationally redundant” (Chabakauri, Yuan, and

Zachariadis, 2014).

Before the squared contract is available to trade, the wealth of liquidity demanders at date 2

is given by

Wd2 = W1 +
E[D|Fd]− P1

αVar[D|Fd]
(D − P1) + z(P1 − D̄), (1.3.9)

and the wealth of liquidity suppliers is given by

Ws2 = W1 +
E[D|Fs]− P1

αVar[D|Fs]
(D − P1). (1.3.10)

The marginal rate of substitution of investor i, i ∈ {d, s}, between wealth contingent on D = Dh
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and D = Dl is given by

M i
hl =

exp
{
− (Dh − E[D|Fi])2Gi/2

}
exp{−αW2i(Dh)}

exp
{
− (Dl − E[D|Fi])2Gi/2

}
exp{−αW2i(Dl)}

= exp

{
− 1

2
Gi(Dh −Dl)(Dh +Dl − 2E[D|Fi])−

E[D|Fi]− P1

Var[D|Fi]
(Dh −Dl)

}

= exp

{
− 1

2
Gi(Dh −Dl)(Dh +Dl − 2P1)

}
. (1.3.11)

As shown by (1.3.11), the marginal rate of substitution is investor specific through Gi, the

conditional precision of the investor’s posterior beliefs. Therefore, the equilibrium in the economy

without the squared contract is not Pareto efficient. Proposition 1.3.2 establishes that the

introduction of the squared contract allows agents to achieve a Pareto efficient allocation.20

Proposition 1.3.2. The Pareto efficient allocation is achieved with the introduction of a squared

contract.

Intuitively, the introduced squared contract provides more instruments for hedging volatility

which cannot be achieved by merely trading the risky stock, and hence improves the overall

allocational efficiency. When the squared contract is available to trade, the market is complete

and the Pareto efficient allocation is achieved.

Lemma 1.3.1. At interim date t = 1
2 , if a squared contract is available then the utilities of

liquidity demanders are given by

Ud =
exp

(
G−Gd

2G

)
√
G/Gd

E

{
− exp

[
− α

(
W0 +X0(P1 − P0) + z(P1 − D̄)

+
[D̄ + βs(s− D̄)− P1]2

2αVar[D|Fd]

)]}
(1.3.12)

and the utilities of liquidity suppliers are given by

Us =
exp

(
G−Gs

2G

)
√
G/Gs

E

{
− exp

[
− α

(
W0 +X0(P1 − P0)

+
[D̄ + βP (s− D̄ + α

mz)− P1]2

2αVar[D|Fs]

)]}
. (1.3.13)

For π ∈ (0, 1) we have that both
exp
(
G−Gd

2G

)
√
G/Gd

< 1 and
exp(G−Gs2G )√

G/Gs
< 1, where E is the expectation

20The notion of Pareto efficiency here is ex post. That is, Pareto efficiency is conditional on P1 and realized
random endowments z, where expected utility is calculated using investors’ posterior beliefs.

24



over (s, z).

In the presence of a squared contract, the interim utilities of liquidity demanders and sup-

pliers are the product of two terms: one reflecting the impact of introducing derivative asset

and one capturing the interim utilities of agents before the derivative is introduced (see Ap-

pendix 1.9.1). Introducing a squared contract improves the utilities of both groups of agents

thanks to the improved risk sharing that it allows. More importantly, the effects of the financial

derivative on the interim utilities of the two groups of agents are not the same: the value of the

extra term—which appears when the squared contract is incorporated into the model—depends

on the conditional precision of the payoff D, which differs between liquidity demanders and

liquidity suppliers. Lemma 1.3.2 formally characterizes this distinction.

Lemma 1.3.2. Let π∗ ∈ (0, 1) be as defined in the Appendix. Then the following statements

hold:

(1) if 0 < π < π∗, then the welfare gain induced by a squared contract is greater for liquidity

demanders than for liquidity suppliers;

(2) if π∗ < π < 1, then the welfare gain induced by a squared contract is less for liquidity

demanders than for liquidity suppliers;

(3) if π = π∗, then the welfare gain induced by a squared contract for liquidity demanders is

the same as that for liquidity suppliers.

According to this lemma, the welfare gain due to a squared contract is much greater for

liquidity demanders than for liquidity suppliers when the market consists predominantly of the

latter. It is intuitive that if the population of liquidity suppliers is large then the long side of

derivatives is higher than the short side; this, in turn, drives up derivative price and increases

the profits of informed liquidity demanders who sell the derivative. Hence the welfare gain for

liquidity demanders is greater than that for liquidity suppliers. When the market is dominated

by liquidity demanders, these results are reversed. Derivatives benefit both types of agents—but

not to the same extent, which affects agents’ trading incentives at date 0.

Proposition 1.3.3. At date 0, the equilibrium price of the risky asset is given by

P0 = D̄ − α 1

h
X̄ − πMO

1− π + πMO
∆1X̄, (1.3.14)
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where

∆0 =
(B − βP )2

(
1
h + 1

q

)

π2 Var[D|Fs]
, (1.3.15)

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π)2 − α2 1
nh

, (1.3.16)

∆2 =
α3 1

nh2

[
1 +

(B−βs)2( 1
h

+ 1
m

)

Var[D|Fd]

]

1 + ∆0(1− π)2 − α2 1
nh

, (1.3.17)

and

MO = exp

(
Gs −Gd

2G

)√
Gd
Gs

exp

(
1

2
α∆2X̄

2

)√
1 + π2∆0

1 + ∆0(1− π)2 − α2 1
nh

. (1.3.18)

As shown in the above proposition, introducing derivatives affects only the ratio of marginal

utilities (liquidity demanders to liquidity suppliers)—that is, MO in the third term of P0. The

squared contract can improve the welfare of all agents, but this does not ameliorate the aversion

to holding the underlying asset at date 0 that results from the two agent groups enjoying

different levels of welfare gains. By Lemma 1.3.2, the population of liquidity demanders/suppliers

determines the relative benefits for the two groups of agents and is a key component of the

illiquidity discount component of P0. Hence the population π plays an important role in the

ex ante price P0. Proposition 1.3.4 summarizes the results.

Proposition 1.3.4. Let π∗ be as defined in the Appendix. Then the following statements hold:

(1) if 0 < π < π∗, then P0 is higher in the presence of a squared contract than in the absence

of a squared contract;

(2) if π∗ < π < 1, then P0 is lower in the presence of a squared contract than in the absence

of a squared contract;

(3) if π = π∗, then P0 is the same in the presence as in the absence of a squared contract.

This proposition shows that introducing a squared contract has non-monotonic effects—on

the ex ante price P0—that vary with the likelihood of being a liquidity demander. Specifically:

when the market consists mainly of liquidity suppliers, the benefits of derivatives are greater for

liquidity demanders than for liquidity suppliers. At date 0, the identical investor can anticipate

the effects of derivatives and so is less worried about liquidity shock. As a result, they are now
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more willing to hold the risky asset at date 0; that change leads to a higher ex ante price P0 and

a lower expected return. In the case of a population dominated by liquidity suppliers, a squared

contract benefits liquidity demanders more than it does suppliers. In this case, agents are

induced to take larger positions in the risky asset, which raises the price at date 0. The same

line of reasoning establishes that, when the population is dominated by liquidity demanders,

introducing derivatives results in a lower price P0. More implications of the non-monotonic

effects induced by introducing derivatives will be discussed in Section 1.4 which focuses on

introducing an options market.

Proposition 1.3.5. If a squared contract is available, then the price impact measure is

λ =
αVar[D|Fs]

(1− π)
[
π(m− q) Var[D|Fs] + 1− βP

B

] (1.3.19)

and the price reversal measure is

γ = B(B − βP )

(
1

h
+

1

q

)
. (1.3.20)

Introducing a squared contract reduces λ but has no effect on γ.

Compared with the symmetric information case, asymmetric information strengthens the

price impact λ because the information is dispersed across agents (Vayanos and Wang, 2012a,b).

In particular, uninformed liquidity suppliers learn the signal from the price; the consequent learn-

ing effect, which corresponds to the term βp/B, reduces the magnitude of (1.3.19)’s denominator

and so increases the price impact λ. Yet if a squared contract is available, then liquidity suppli-

ers can hedge against the uncertainty of the risky asset’s payoff despite not observing the signal.

In other words, derivatives act as a substitute for information in reducing risks. This effect is

clearly reflected by an increase in the magnitude of (1.3.19)’s denominator and a decrease in λ.

By Proposition 1.3.1, the squared contract carries no additional information beyond—and has

no effect on—the price P1 of the risky asset. The implication is that introducing a squared

contract is unrelated to price reversals of the risky asset. Derivatives reduce the price impact

per trade (as captured by λ), yet because their availability increases trade size, the price impact

of the entire trade (as measured by γ) is unaffected. Therefore, the introduction of derivatives

reduces the price impact measure λ but has no effect on the price reversal measure γ.
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More importantly, the squared contract can be synthesized using a collection of options

D2 = 2

∫ +∞

0
(D −K)+dK + 2

∫ 0

−∞
(K −D)+dK. (1.3.21)

Then the analysis conducted in this section can be extended to an economy with an options

market.

1.4 Introduction of an Options Market

In this section, an options market is introduced into the economy. I examine the effects of the

options market on the prices and liquidity of the underlying asset in the presence of asymmetric

information. Of particular interest are the illiquidity discount (as reflected in the ex ante price

of the risky asset) and two distinct measures of illiquidity.

1.4.1 Equilibrium

To model an options market in a static setting, I follow Cao and Ou-Yang (2009) and define

this market as a collection of call and put options. At date 0, all agents know that options will

be introduced to trade at date 1 and will expire at date 2. Let K denote the strike price. A

call option with strike price K pays off (D −K)+, and its price at date 1 is denoted by PCK .

Similarly, the payoff structure of a put option is (K − D)+ and its price at date 1 is denoted

by PPK . The net supply of each option is zero. In light of put-call parity, the analysis can be

simplified (without loss of generality) by considering only call options with positive strike prices

and put options with negative strike prices.21 I assume that the demand of a liquidity demander

for call options with strike prices ranging from K to K + dK is Xd,CK and that her demand for

put options with strike prices ranging from K to K + dK is Xd,PK . Likewise, the demand of

a liquidity supplier for call options with strike prices ranging from K to K + dK is Xs,CK and

his demand for put options with strike prices ranging from K to K + dK is Xs,PK . This paper

differs from Cao and Ou-Yang (2009) in that I model asymmetric information and they focus

on heterogeneous beliefs. The equilibrium at date 1 with options is closely related to Huang

(2015).

Liquidity demanders and suppliers submit their demand schedules conditional on their new

21The results are robust to introducing a complete set of calls and puts because call options with negative strike
prices can be replicated by a combination of stocks and put options with negative strike prices.
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information sets after options are introduced. Specifically, the information set of liquidity

demanders at date 1 is Fd = {s, z, P0, P1, PCK , PPK} whereas that of liquidity suppliers is

Fs = {P0, P1, PCK , PPK}. If there is an options market, then the wealth of liquidity demanders

at date 2 is given by

Wd2 = W1 +Xd(D − P1) + z(D − D̄) +

+∞∫

0

Xd,CK [(D −K)+ − PCK ] dK

+

0∫

−∞

Xd,PK [(K −D)+ − PPK ] dK (1.4.1)

and the wealth of liquidity suppliers is given by

Ws2 = W1 +Xs(D − P1) +

+∞∫

0

Xs,CK [(D −K)+ − PCK ] dK

+

0∫

−∞

Xs,PK [(K −D)+ − PPK ] dK. (1.4.2)

If options are redundant and are not traded by investors, then the wealth calculated by (1.4.1)

and (1.4.2) is the same as that in the absence of options. Once an options market is introduced,

there is a partially revealing rational expectations equilibrium—in the prices P1, PCK , and PPK

of different assets and the corresponding demands of each agent type at date 1—as follows.22

Proposition 1.4.1. At date 1, there exists one equilibrium. The price P1 of the risky asset is

given by

P1 = A+B(s− D̄ − Cz), (1.4.3)

where

A = D̄ − α

h+ πm+ (1− π)q
X̄,

B =
πm+ (1− π)q

h+ πm+ (1− π)q
,

C =
α

m
.

22The uniqueness of the equilibrium is left for future research.
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The prices PCK and PPK of (respectively) call and put options are given by

PCK = (P1 −K)N
(√
G(P1 −K)

)
+

1√
2πG

exp

(
− G(P1 −K)2

2

)
for K ≥ 0, (1.4.4)

PPK = (K − P1)N
(√
G(K − P1)

)
+

1√
2πG

exp

(
− G(K − P1)2

2

)
for K < 0, (1.4.5)

where N (·) is the standard normal cumulative distribution function. The liquidity demander’s

demands for the risky asset and the corresponding options are

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− G−Gd

α
P1 − z, (1.4.6)

Xd,CK =
G−Gd
α

, (1.4.7)

Xd,PK =
G−Gd
α

. (1.4.8)

The liquidity supplier’s demands for the risky asset and the corresponding options are

Xs =
E[D|Fs]− P1

αVar[D|Fs]
− G−Gs

α
P1, (1.4.9)

Xs,CK =
G−Gs
α

, (1.4.10)

Xs,PK =
G−Gs
α

. (1.4.11)

In (1.4.4)–(1.4.11), G = h+ πm+ (1− π)q, Gd = h+m, Gs = h+ q, and 1
q = 1

m + C2 1
n . The

terms Gd and Gs represent the conditional precision of D for liquidity demanders and suppliers,

and G denotes the average precision for all investors.

Similar to the introduction of a squared contract, the introduced options are not redundant

securities and are traded by investors. In equilibrium, liquidity demanders take short positions

in the options whereas liquidity suppliers take long positions. Given these payoff structures,

options are able to provide hedging benefits for the second moment of the risky asset’s payoff D.

In this sense, options can act as a substitute for information in reducing risk. Since liquidity

demanders have more precise information, they always have less incentive than suppliers to

hedge against the second moment. Because options are in zero net supply, liquidity demanders

sell the options to earn profit while liquidity suppliers take long positions to hedge against the

second moment. Second, introducing options into an economy with asymmetric information has

no direct effect on the underlying asset’s equilibrium price at date 1. Third, option prices are a
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function of the risky asset’s price but carry no additional information; hence the option prices

are considered to be “informationally redundant”.

Lemma 1.4.1. At interim date t = 1
2 , if options are available then the utilities of liquidity

demanders are given by

Ud =
exp

(
G−Gd

2G

)
√
G/Gd

E

{
− exp

[
− α

(
W0 +X0(P1 − P0) + z(P1 − D̄)

+
[D̄ + βs(s− D̄)− P1]2

2αVar[D|Fd]

)]}
(1.4.12)

and the utilities of liquidity suppliers are given by

Us =
exp

(
G−Gs

2G

)
√
G/Gs

E

{
− exp

[
− α

(
W0 +X0(P1 − P0)

+
[D̄ + βP (s− D̄ + α

mz)− P1]2

2αVar[D|Fs]

)]}
. (1.4.13)

For π ∈ (0, 1) we have that both
exp
(
G−Gd

2G

)
√
G/Gd

< 1 and
exp(G−Gs2G )√

G/Gs
< 1, where E is the expectation

over (s, z).

After an options market is introduced, the interim utilities of liquidity demanders and sup-

pliers are the product of two terms: one reflecting the impact of introducing options and one

capturing the interim utilities of agents before options are introduced (see Appendix 1.9.1). The

left panel of Figure 1.1 illustrates that, for all agents, the additional term induced by options is

less than 1. Owing to the negative exponential utility, a less negative number indicates greater

utility.23 Hence introducing options improves the utilities of both groups of agents thanks to the

improved risk sharing that options allow. When equipped with options, uninformed liquidity

suppliers are more willing to accommodate the trades of informed demanders. More importantly,

the effects of these financial derivatives on the interim utilities of the two groups of agents are

not the same: the value of the extra term—which appears when options are incorporated into

the model—depends on the conditional precision of the payoff D, which differs between liquidity

demanders and liquidity suppliers. Lemma 1.4.2 formally characterizes this distinction.

Lemma 1.4.2. Let π∗ ∈ (0, 1) be as defined in the Appendix. Then the following statements

hold:

23The parameters for all the figures are h = 1, m = 1, n = 1, and α = 0.7.
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Figure 1.1: Welfare gains from options. The left panel plots the welfare gains for liquidity
demanders (the first term in (1.4.12)) and liquidity suppliers (the first term in (1.4.13)); the
right panel plots the ratio—demanders/suppliers—of welfare gains. The solid (resp. dashed)
line marks the ratio of welfare gains with (resp. without) options.

(1) if 0 < π < π∗, then the welfare gain induced by options is greater for liquidity demanders

than for liquidity suppliers;

(2) if π∗ < π < 1, then the welfare gain induced by options is less for liquidity demanders than

for liquidity suppliers;

(3) if π = π∗, then the welfare gain induced by options for liquidity demanders is the same as

that for liquidity suppliers.

According to this lemma, the welfare gain due to options is much greater for liquidity de-

manders than for liquidity suppliers when the market consists predominantly of the latter. It

is intuitive that if the population of liquidity suppliers is large then the long side of options

is higher than the short side; this, in turn, drives up option price and increases the profits of

informed liquidity demanders who sell options. Hence the welfare gain for liquidity demanders is

greater than that for liquidity suppliers. When the market is dominated by liquidity demanders,

these results are reversed. That is, the relative benefit from more risk-sharing opportunities

is determined by the competition within each group. The right panel of Figure 1.1 shows this

pattern clearly. Options benefit both types of agents—but not to the same extent, which affects

agents’ trading incentives at date 0.
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Proposition 1.4.2. At date 0, the equilibrium price of the risky asset is given by

P0 = D̄ − α 1

h
X̄ − πMO

1− π + πMO
∆1X̄, (1.4.14)

where

∆0 =
(B − βP )2

(
1
h + 1

q

)

π2 Var[D|Fs]
, (1.4.15)

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π)2 − α2 1
nh

, (1.4.16)

∆2 =
α3 1

nh2

[
1 +

(B−βs)2( 1
h

+ 1
m

)

Var[D|Fd]

]

1 + ∆0(1− π)2 − α2 1
nh

, (1.4.17)

and

MO = exp

(
Gs −Gd

2G

)√
Gd
Gs

exp

(
1

2
α∆2X̄

2

)√
1 + π2∆0

1 + ∆0(1− π)2 − α2 1
nh

. (1.4.18)

This proposition states that there are also three terms in the ex ante price P0 when options

are available. Introducing options affects only the ratio of marginal utilities (liquidity demanders

to liquidity suppliers)—that is, MO in the third term of P0. Although introducing derivatives

improves agents’ welfare and the extent of risk sharing between them, it need not increase their

willingness to hold the risky asset at date 0 and thereby raise the price P0. Intuitively, agents are

unsure at date 0 about whether they will become suppliers or demanders. As a result, agents

are naturally reluctant to buy the risky asset at date 0 because with probability π they will

receive a liquidity shock that could increase their risk exposure. The uncertainty about this

liquidity shock is costly to risk-averse agents and hence reduces their willingness to hold the

asset at date 0, which explains the illiquidity discount reflected in P0. Asymmetric information

hampers risk sharing and makes liquidity demanders less able to hedge their liquidity risk, which

increases the illiquidity discount component of P0.

Options can improve the welfare of all agents, but this does not ameliorate the aversion to

holding the underlying asset at date 0 that results from the two agent groups enjoying different

levels of welfare gains (see Figure 1.1). Next I shall explore in detail how introducing an options

market affects the illiquidity discount in P0 as well as the illiquidity measures defined by (1.2.15)

and (1.2.16).

33



Population of Liquidity Demanders (:)
0 0.2 0.4 0.6 0.8 1

E
qu

ili
br

iu
m

 E
x 

an
te

 P
ric

e 
(P

0
)

0.9

1

1.1

1.2

1.3

1.4

1.5

:$

Economy without options
Economy with options

Figure 1.2: Effects of options on the ex ante price of the risky asset. The solid (resp. dashed)
line plots the equilibrium ex ante price with (resp. without) options.

1.4.2 Options and Illiquidity

We have seen that introducing options affects liquidity demanders and suppliers in different

ways. By Lemma 1.4.2, the population of liquidity demanders/suppliers determines the relative

benefits for the two groups of agents and is a key component of the illiquidity discount component

of P0. Hence the population π plays an important role in the ex ante price P0. Proposition 1.4.3

summarizes the results.

Proposition 1.4.3. Let π∗ be as defined in the Appendix. Then the following statements hold:

(1) if 0 < π < π∗, then P0 is higher in the presence of options than in the absence of options;

(2) if π∗ < π < 1, then P0 is lower in the presence of options than in the absence of options;

(3) if π = π∗, then P0 is the same in the presence as in the absence of options.

This proposition shows that introducing an options market has non-monotonic effects on the

ex ante price P0. Specifically: when the market consists mainly of liquidity suppliers (i.e., when

liquidity provision is sufficient), the benefits of options are greater for liquidity demanders than

for liquidity suppliers. At date 0, the identical investor can anticipate the effects of options and
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so is less worried about liquidity shock. As a result, they are now more willing to hold the risky

asset at date 0; that change leads to a higher ex ante price P0 and a lower expected return.

This mechanism is clearly evident in Figure 1.2. In the case of a population dominated by

liquidity suppliers, an options market benefits liquidity demanders more than it does suppliers.

In this case, agents are induced to take larger positions in the risky asset, which raises the

price at date 0. The same line of reasoning establishes that, when the population is dominated

by liquidity demanders, introducing options results in a lower price P0. Furthermore, P0 is a

decreasing function of π because a lower probability of receiving the liquidity shock translates,

at date 0, into both a lower discount and a higher price.

Before options are introduced to trade, two illiquidity measures are affected by the popu-

lation π of informed liquidity demanders.24 The price reversal measure γ defined in (1.2.16)

captures the price deviation from a fundamental value that liquidity suppliers require to absorb

the liquidity shock. A large population of liquidity demanders leads to a large price deviation,

which implies that γ is an increasing function of π. As illustrated in Proposition 1.4.3, the effect

of an options market depends on π; hence I can use π to establish a link between illiquidity and

asset price as a function of whether options are available. I find that the price of relatively more

liquid (low-γ) stocks rises in response to the introduction of options; in contrast, the price of

relatively less liquid (high-γ) stocks declines. This implication is clearly illustrated in Figure 1.3.

If stocks are sorted in terms of price reversal γ then I find, after the corresponding stock options

are listed, that more liquid stocks generally have a higher price and a lower expected return;

conversely, less liquid stocks tend to have a lower price and a higher expected return.

The results could also be interpreted in other ways. For example, if liquidity provision in the

market is scarce (which it usually is during “bad” states) then introducing new assets, such as

derivatives, increases the underlying asset’s expected return. In contrast, introducing derivatives

lowers that asset’s expected return when there is sufficient liquidity in the market. As argued

by Vayanos and Wang (2012a,b), the liquidity shock could be a consequence of institutional

frictions. One can therefore view liquidity demanders as institutional investors who usually

have more precise information yet are subject to some frictions (as might result from a change

in fund flows). At the same time, liquidity suppliers can be interpreted as designated market

makers who supply liquidity.25 Introducing an options market can increase expected returns of

24The price impact measure λ is not a monotonic function of π because it is affected by the extent of risk
sharing between the groups of agents. For that reason, in this section the focus is on the price reversal measure γ.

25It is worth remarking that the option positions taken by liquidity demanders and suppliers are in line with
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Figure 1.3: Price reversal γ versus equilibrium ex ante price as a function of whether options are
(solid line) or are not (dashed line) available; here the population π drives the cross-sectional
variation in γ, and P0.

the underlying stocks when agents include a high proportion of institutional investors (e.g., large

firms and firms with extensive coverage by analysts). Conversely, introducing an options market

can reduce expected returns of the underlying stocks when agents include a low proportion of

institutional investors (e.g., small firms and firms with low analyst coverage). These dynamics

yield new implications—which can be tested cross-sectionally—regarding how options affect the

underlying assets.

These results illustrate the relationship between illiquidity measures and asset prices when

cross-sectional variation in the illiquidity measures (λ and γ) and the illiquidity discount in P0 is

driven by the population π. One can likewise examine this relationship when the cross-sectional

variation is driven instead by the precision of the private signal and/or of the liquidity shock

(i.e., the parameters m and n). A higher m, the precision of ε’s distribution in (1.2.2), increases

both the illiquidity discount and λ but decreases γ. The intuitive explanation is that, when

the private signal is more precise, the consequent adverse selection becomes more severe and

thus increases the illiquidity discount and the price impact λ. In contrast, the effects of the

results reported in Garleanu, Pedersen, and Poteshman (2009): market makers take long positions in individual
stock options while end users take short positions.
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Figure 1.4: Parameters m, λ, and γ (the latter two are illiquidity measures) versus equilibrium
ex ante price as a function of whether options are (solid line) or are not (dashed line) available;
here the precision parameter m (for the private signal) drives the cross-sectional variation in λ,
γ, and P0 (π = 0.49).

liquidity shock captured by γ are not that important when the private signal is precise. Hence

an increase in m reduces the price reversal γ. Combining the effects of m on P0, on λ, and

on γ yields that the illiquidity measure λ is negatively correlated with the price P0 even as the

illiquidity measure γ is positively correlated with P0 (this is clearly shown by the dashed lines

in Figure 1.4).

After an options market is introduced, Proposition 1.4.3 establishes the existence of a thresh-

old π∗ that determines the sign of the effects generated by options. When π = π∗, the welfare

gains for liquidity demanders and suppliers are the same. The threshold π∗ increases with the

parameter m in that liquidity demanders who observe a more accurate private signal can ex-

tract more profits thanks to this information advantage, which compensates for the cost of more

intense competition due to more demanders. As the parameter m increases, a certain popu-

37



Precision of Liquidity Shock (n)
2 4 6 8 10

E
qu

ili
br

iu
m

 E
x 

an
te

 P
ric

e 
(P

0
)

1.15

1.25

1.35

1.45

Price impact 6 without options
10 20 30 40 50 60

E
qu

ili
br

iu
m

 E
x 

an
te

 P
ric

e 
(P

0
)

1.15

1.25

1.35

1.45

Price Reversal . without options
0.01 0.02 0.03 0.04 0.05 0.06

E
qu

ili
br

iu
m

 E
x 

an
te

 P
ric

e 
(P

0
)

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Figure 1.5: Parameters n, λ, and γ (the latter two are illiquidity measures) versus equilibrium
ex ante price as a function of whether options are (solid line) or are not (dashed line) available;
here the precision parameter n (for the liquidity shock) drives the cross-sectional variation in λ,
γ, and P0 (π = 0.49).
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lation of liquidity demanders close to π∗ (say, π = 0.49) is first larger and then smaller than

this threshold π∗. Consequently, one can observe a negative (resp. positive) effect of options

on the price of the underlying asset when the private signal is less (resp. more) accurate. This

pattern can be seen clearly in the upper left panel of Figure 1.4. Because λ is an increasing

function of m, we observe a similar pattern in the upper right panel of that figure. The results

are reversed in the lower panel because γ decreases with m. The upper right panel of Figure 1.4

shows that, if illiquidity is measured by λ and if the cross-sectional variation in λ is driven by m,

then introducing options lowers the prices of more liquid stocks but raises the price of less liquid

stocks. Yet if illiquidity of stocks is measured by γ then the opposite result obtains, as seen in

the lower panel of Figure 1.4.

I also examine how the underlying asset price is affected by derivatives if the cross-sectional

variations in asset-specific characteristics all stem from the liquidity shock’s precision n, which

is simply the reciprocal of the liquidity shock’s magnitude.26 In contrast to the effects of m, an

increase in n reduces both the illiquidity discount and γ because the shock’s effect is attenuated

as its magnitude becomes smaller. Consider the extreme case where n is infinite. At date 0,

agents know that the liquidity shock’s size is zero and so they do not expect the price P0 to

reflect an illiquidity discount. The price reversal γ, which captures the effect of a liquidity

shock, is likewise attenuated when that shock is of relatively low magnitude. The price impact λ

increases with n because a smaller liquidity shock renders price more informative and amplifies

the learning effect embedded in λ. After combining the effects of n on P0, on λ, and on γ, one

obtains that the illiquidity measure λ (resp. γ) is positively (resp. negatively) correlated with

the price P0. This relationship between illiquidity and asset price, which is plotted in Figure 1.5,

is totally opposite to the one in Figure 1.4.

Just as for the precision m, an increase in the precision parameter n increases π∗ as well. One

can therefore observe that options have a negative (resp. positive) effect on P0 when the liquidity

shock is large (resp. small); these effects are displayed in the upper left panel of Figure 1.5. The

upper right and lower panels of this figure show that, after an options market is introduced,

a liquid stock has a lower price if illiquidity is measured by λ but a higher one if illiquidity is

measured by γ; these results are similar to those plotted in the corresponding two panels of

Figure 1.4.

There is a large body of empirical work that investigates the link between illiquidity and

26Because its mean is zero, the liquidity shock’s variance (i.e., 1/n) measures its magnitude.
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Figure 1.6: Relationship between illiquidity measures and liquidity improvement.

expected asset returns. Among these studies, a basic premise is that a less liquid asset can

offer a higher expected return; in other words, there is a positive relationship between illiq-

uidity and expected returns. Figures 1.4 and 1.5 demonstrate that the empirical relationship

between illiquidity and asset returns depends on the source of cross-sectional variation and also

on how illiquidity is measured. If cross-sectional variation is driven by m, for instance, then

the relationship between illiquidity and expected returns is positive when illiquidity is measured

by λ but negative when measured by γ. Hence it is critical to identify the factors that drive

cross-sectional variation.

Proposition 1.4.4. If options are available, then the price impact measure is

λ =
αVar[D|Fs]

(1− π)
[
π(m− q) Var[D|Fs] + 1− βP

B

] (1.4.19)

and the price reversal measure is

γ = B(B − βP )

(
1

h
+

1

q

)
. (1.4.20)

Introducing options reduces λ but has no effect on γ.

This proposition shows that introducing an options market reduces the price impact measure

λ but has no effect on the price reversal measure γ. I have shown that the effect of options on the

underlying asset’s price depends both on precision parameters and on the illiquidity measure

chosen. A similar study could be conducted to examine how the beneficial effect of options
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on liquidity is distributed across stocks of various liquidity levels. As discussed previously, an

increase in either m or n raises λ and lowers γ. When information becomes more asymmetric,

the consequent adverse selection is more severe and so the price impact λ is greater. In other

words, high-λ stocks are more subject to information asymmetry. In comparison to the setting

without options, the additional term (viz., π(m− q) Var[D|Fs]) in the denominator of (1.4.19)

implies that the more asymmetric is information, the greater is the hedging benefit provided by

options. Taken together, the liquidity improvement of more liquid (low-λ) stocks is less than

that of less liquid (high-λ) stocks. However, if illiquidity is measured by γ then the liquidity

improvement of more liquid (low-γ) stocks is greater than that of less liquid (high-γ) stocks.

This converse effect is observed because asymmetric information can reduce γ. Figure 1.6 plots

these results.27 The findings based on illiquidity as measured by λ are consistent with the

empirical evidence reported by Kumar, Sabin, and Shastri (1998). In this sense, the measure λ

fits the empirical evidence well and seems to reflect frictions more accurately (see also Vayanos

and Wang, 2012a,b).

1.4.3 Welfare

Proposition 1.4.5. As defined in (1.2.12), an agent’s ex ante utility at date 0 is higher in the

presence than in the absence of options.

The identical investor’s expected utility at date 0 can be calculated as the weighted average

of the liquidity suppliers’ and demanders’ interim utilities. Introducing options will, of course,

increase expected utilities at date 0 because the options improve risk sharing among agents.

1.5 Analysis with Participation Costs

The results described so far all relate to an economy without participation costs. Recall that,

in the absence of such costs, introducing derivatives increases the utility of all investors; yet the

welfare gains derived by the two groups of agents are of different magnitudes, leading to distinct

effects on the ex ante price at date 0. In this section, I endogenize the participation decisions

of agents. More specifically, I assume that all investors must pay a fixed cost f in order to

participate in the market. My analysis of participation decisions and equilibrium at date 1 is

27Because the precision parameters m and n have similar effects on these two illiquidity measures, this figure
plots only the case where cross-sectional variation is driven by m.

41



closely related to the work of Huang and Wang (2009, 2010) and Vayanos and Wang (2012b),

who examine a setting in which investors have hedging (non-informational) motives for trading.

In contrast, I study the equilibrium when both non-informational and informational motives are

present.

1.5.1 Equilibrium without an Options Market

Like Vayanos and Wang (2012b), I seek to establish the existence of an equilibrium in which, at

date 1, all liquidity demanders participate in the market but only a (positive) proportion µ of

liquidity suppliers participate. Such a partial participation equilibrium reflects that only liquidity

demanders face the risk of liquidity shock and so can benefit more (than liquidity suppliers) from

participation; moreover, of most importance for my model is the relative measure of participating

suppliers and demanders. I assume that the decision to participate is made ex ante and therefore

that investors decide whether or not to pay the cost at date 1
2—in other words, after learning

whether or not they will receive the random endowment but before observing the price at date 1.

Once the date-1 price is observed, investors can make decisions contingent on that price. This

setup implies that the cost f is a fixed transaction cost, not a participation cost.28

I denote by Ud,P and Ud,NP the interim utilities of participating and non-participating liq-

uidity demanders at date 1
2 and likewise use Us,P and Us,NP with respect to liquidity suppliers.

Much as in the previous section without participation costs, I conjecture a linear price function

of the risky asset in the following form:

P1 = A+B(s− D̄ − Cz). (1.5.1)

Conditional on the information set Fd, liquidity demanders maximize their utilities over the

wealth at date 2, Wd2 = W1 +Xd(D − P1) + z(D − D̄)− f , and submit a demand schedule for

the risky asset:29

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− z. (1.5.2)

Similarly, the wealth of liquidity suppliers is Ws2 = W1 + Xs(D − P1) − f and their demand

28If the participation cost is introduced at date 0 then it can be viewed as an entry cost. An entry cost similarly
reduces the participation rate of agents and thereby reduces the underlying asset’s ex ante price. See Huang and
Wang (2009) for more details.

29The information structure does not differ in the case of participation costs, so agents have the same information
sets as before.
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schedule is

Xs =
E[D|Fs]− P1

αVar[D|Fs]
. (1.5.3)

After both groups of investors submit their demand schedules, the equilibrium price clears the

market and thus equates investors’ total demands and the asset supply X̄:

πXd + (1− π)µXs = [π + (1− π)µ]X̄. (1.5.4)

The equilibrium price of the risky asset is obtained as follows.

Proposition 1.5.1. At date 1, the price P1 of the risky asset in the presence of participation

costs is given by

P1 = A+B(s− D̄ − Cz), (1.5.5)

here

A = D̄ − α

h+ π̃m+ (1− π̃)q
X̄, B =

π̃m+ (1− π̃)q

h+ π̃m+ (1− π̃)q
, and C =

α

m
(1.5.6)

for π̃ = π
π+(1−π)µ .

Comparing (1.2.9) and (1.5.6) reveals that the coefficients in the price function with partic-

ipation costs take the same form as in the benchmark case without participation costs. Note

that E[P1], the expected equilibrium price at date 1, depends on the measure µ of participating

liquidity suppliers. This finding is in contrast to results for the no-information case studied

by Vayanos and Wang (2012b). Substituting the demands of liquidity demanders and liquidity

suppliers into their utility functions yields their expected utilities. The agents’ interim utilities

can be computed as in Section 1.2.2.

To find the equilibrium where all liquidity demanders and a positive fraction of liquidity

suppliers participate in the market, I first determine the participation decision by comparing

Ud,P to Ud,NP and Us,P to Us,NP . In particular, I discuss several scenarios defined by the

participation fraction µ of liquidity suppliers. It is intuitive that all liquidity suppliers choose

to enter the market when the participation cost f is low and that none of them will participate

when the cost f is high. However, liquidity demanders in this study receive a private signal s

in addition to the liquidity shock z. New findings will be compared with results from the

no-information case examined in Vayanos and Wang (2012b). I derive the following results
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concerning the participation decision of liquidity suppliers.

Proposition 1.5.2. Suppose that all liquidity demanders participate in the market. For c as

defined in the Appendix, there are three cases of the liquidity suppliers’ participation decisions

as follows.

Case 1: All liquidity suppliers participate in the market if f ≤ f1 ≡
log
(

1+ π2

[h+q+π(m−q)]2
c
)

2α .

Case 2: A positive fraction µ of liquidity suppliers participate in the market if f1 < f < f2,

where

µ =
π

1− π

{
m− q
h+ q

[√
h

q(e2αf − 1)
− 1

]
− 1

}
and f2 ≡

log
(
1 + 1

(h+m)2
c
)

2α
.

Case 3: No liquidity suppliers participate in the market if f ≥ f2.

Given the participation decision of liquidity suppliers, our next step is to find a sufficient

condition for all liquidity demanders to enter the market. To ensure their participation it is

enough that Ud,P be larger than Ud,NP . The sufficient condition for full participation of liquidity

demanders is formalized as follows.

Proposition 1.5.3. (1) Suppose that a positive fraction of liquidity suppliers participate in the

market. Then a sufficient condition for all liquidity demanders to participate is π ≤ (1− π)µ.

(2) An equilibrium where all liquidity demanders and a positive fraction of liquidity suppliers

participate in the market exists under the sufficient conditions π ≤ 1
2 and f ≤ f̂ , where

f̂ ≡ log
[
1 +

(
4[h+ q + 1

2(m− q)]2
)−1

c
]

2α

and c is as defined in the Appendix.

This sufficient condition for the existence of a partial participation equilibrium is similar to

that given in Vayanos and Wang (2012b). My results differ from theirs in the condition for the

fixed participation cost f owing to the presence of asymmetric information in the economy.30

Proposition 1.5.3 leads to the following statement as regards the ex ante price.

Proposition 1.5.4. At date 0, the equilibrium price of the risky asset is given by

P0 = D̄ − α 1

h
X̄ − πMP

1− π + πMP
∆1X̄, (1.5.7)

30As argued in Vayanos and Wang (2012a,b), there are two equilibria: the one described in the proposition and
the one where no investors participate. The latter can be excluded (for details, see Vayanos and Wang, 2012a,b).
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where

∆0 =
(B − βP )2

(
1
h + 1

q

)

(π̃)2 Var[D|Fs]
, (1.5.8)

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π̃)2 − α2 1
nh

, (1.5.9)

∆2 =
α3 1

nh2

[
1 +

(B−βs)2( 1
h

+ 1
m

)

Var[D|Fd]

]

1 + ∆0(1− π̃)2 − α2 1
nh

, (1.5.10)

and

MP = exp

(
1

2
α∆2X̄

2

)√
1 + (π̃)2∆0

1 + ∆0(1− π̃)2 − α2 1
nh

(1.5.11)

for π̃ = π
π+(1−π)µ .

In contrast to the benchmark case studied in Section 1.2.2, the new price P0 is obtained by

replacing π with π̃ when evaluating (∆0,∆1,∆2,M). After the equilibrium analysis, I turn to

investigate how the illiquidity measures and the illiquidity discount are affected by participation

costs when the economy is characterized by information asymmetry. The price impact measure

and price reversal measure are calculated as follows.

Proposition 1.5.5. In the presence of participation costs, the price impact measure is

λ =
α[πm+ (1− π)µq]

h(1− π)πµ(m− q) (1.5.12)

and the price reversal measure is

γ = B(B − βP )

(
1

h
+

1

q

)
, (1.5.13)

where B = π̃m+(1−π̃)q
h+π̃m+(1−π̃)q .

The new illiquidity measures are akin to those in the benchmark case except that now they

are affected by the participation fraction µ. It is therefore natural to posit that introducing

options affects illiquidity measures through the participation fraction because options enhance

agents’ utilities and so induce them to participate. Thus it is crucial to examine the effects of

participation costs f and of the participation rate µ on illiquidity measures and on the illiquidity

discount; these effects can then be compared to those for the case (discussed in Section 1.5.2)
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where options are available. The following proposition illustrates these effects.31

Proposition 1.5.6. A decrease in the fixed cost f leads to an increase in the participation rate

µ; hence a reduced f lowers both the price impact λ and the price reversal γ while raising the

ex ante price P0.

1.5.2 Equilibrium with an Options Market

In this section I study how the introduction of an options market, in the presence of participation

costs, affects the illiquidity discount and the two illiquidity measures. As shown in Section 1.4,

introducing derivatives reduces the price impact measure λ but has no effect on the price reversal

measure γ. In the presence of participation costs, however, the introduction of derivatives can

affect both liquidity measures through the participation rate µ. The reason is that introducing

options attracts more uninformed liquidity suppliers who would otherwise refuse to participate

because of the cost f . I formally present the effects of derivatives in the following results.

As in Section 1.4, I introduce a set of call and put options into the economy. I follow similar

procedures to solve for the equilibrium at date 0 and date 1, except that only a proportion

µ ∈ (0, 1) of liquidity suppliers participate. Proposition 1.5.7 characterizes the solution.

Proposition 1.5.7. At date 1, there exists one equilibrium. The price of the risky asset is

given by

P1 = A+B(s− D̄ − Cz), (1.5.14)

where

A = D̄ − α

h+ π̃m+ (1− π̃)q
X̄,

B =
π̃m+ (1− π̃)q

h+ π̃m+ (1− π̃)q
,

C =
α

m
.

31Without loss of generality, I consider only the region f > f1—that is, the region in which only some liquidity
suppliers participate. If f ≤ f1 then all liquidity demanders and suppliers participate, which reduces to the
benchmark case examined in Section 1.2.2.
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The prices PCK and PPK of call and put options are given by

PCK = (P1 −K)N
(√
GP (P1 −K)

)
+

1√
2πGP

exp

(
− GP (P1 −K)2

2

)
for K ≥ 0,

PPK = (K − P1)N
(√
GP (K − P1)

)
+

1√
2πGP

exp

(
− GP (K − P1)2

2

)
for K < 0,

where N (·) is the standard normal cumulative distribution function. The liquidity demander’s

demands for the risky asset and the corresponding options are

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− GP −Gd

α
P1 − z, (1.5.15)

Xd,CK =
GP −Gd

α
, (1.5.16)

Xd,PK =
GP −Gd

α
; (1.5.17)

the liquidity supplier’s demands for the risky asset and the corresponding options are

Xs =
E[D|Fs]− P1

αVar[D|Fs]
− GP −Gs

α
P1, (1.5.18)

Xs,CK =
GP −Gs

α
, (1.5.19)

Xs,PK =
GP −Gs

α
. (1.5.20)

Here GP = h + π̃m + (1 − π̃)q, Gd = h + m, and Gs = h + q. The term GP represents the

average precision of D for all investors in the presence of participation costs.

The equilibrium prices of the underlying asset and the derivatives take a form similar to

their presentation in Section 1.4 except that the proportion π is replaced by π̃. Once again, I

limit the scope of analysis to the equilibrium where liquidity demanders fully participate and

liquidity suppliers partially participate. The new average precision of D for all investors (GP )

is obtained by replacing the exogenous fraction π with the endogenous fraction π̃, where the

latter is determined by the fixed participation cost f . Therefore, it is first necessary to identify

a sufficient condition for the existence of this equilibrium.

Lemma 1.5.1. At interim date t = 1
2 , the utilities of liquidity demanders in the presence of
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options are given by

Ud =
exp

(
GP−Gd

2GP

)
√
GP /Gd

E

{
exp

[
− α

(
W0 +X0(P1 − P0) + z(P1 − D̄)

+
[D̄ + βs(s− D̄)− P1]2

2αVar[D|Fd]
− f

)]}
(1.5.21)

and the utilities of liquidity suppliers are given by

Us =
exp

(
GP−Gs

2GP

)
√
GP /Gs

E

{
− exp

[
− α

(
W0 +X0(P1 − P0)

+
[D̄ + βP (s− D̄ + Cz)− P1]2

2αVar[D|Fs]
− f

)]}
. (1.5.22)

For π̃ ∈ (0, 1) we have that both
exp

(
GP−Gd

2GP

)
√
GP /Gd

< 1 and
exp

(
GP−Gs
2GP

)
√
GP /Gs

< 1.

Lemma 1.5.1 states that the interim utility of any agent is the product of two terms after

options are introduced, which is just as in the case without participation costs. The first term

reflects the effect due to the presence of options, which compensates for the participation cost f

and so induces more agents to participate. Hence the previous sufficient condition—for the

equilibrium in which options are not available and liquidity suppliers participate partially—still

holds.

Proposition 1.5.8. In the presence of an options market, an equilibrium where all liquidity

demanders and a positive fraction of liquidity suppliers participate in the market exists under

the sufficient conditions π ≤ 1
2 and f ≤ f̂o, where

f̂o ≡
log
[(

1 + 1
4[h+q+ 1

2
(m−q)]2 c

)h+q+ 1
2

(m−q)
h+q

]
+ h+q

h+q+ 1
2

(m−q) − 1

2α

and c is as defined in the Appendix.

Given this sufficient condition for the equilibrium of partial participation, one can obtain

the equilibrium ex ante price at date 0 as follows.

Proposition 1.5.9. At date 0, the equilibrium price of the risky asset is given by

P0 = D̄ − α 1

h
X̄ − πMPO

1− π + πMPO
∆1X̄, (1.5.23)
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where

∆0 =
(B − βP )2

(
1
h + 1

q

)

(π̃)2Var[D|Fs]
, (1.5.24)

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π̃)2 − α2 1
nh

, (1.5.25)

∆2 =
α3 1

nh2

[
1 +

(B−βs)2
(

1
h

+ 1
m

)
Var[D|Fd]

]

1 + ∆0(1− π̃)2 − α2 1
nh

, (1.5.26)

and

MPO = exp

(
Gs −Gd

2GP

)√
Gd
Gs

exp

(
1

2
α∆2X̄

2

)√
1 + (π̃)2∆0

1 + ∆0(1− π̃)2 − α2 1
nh

. (1.5.27)

Proposition 1.5.10. The introduction of options raises the fraction µ of participating liquidity

suppliers.

When an options market is introduced into the economy, liquidity suppliers are more inclined

to provide liquidity. Thus their participation fraction µ increases as a consequence of the welfare

gains created by options. Yet when liquidity suppliers participate only partially, their interim

utilities are the same as if they do not participate at all. For a liquidity demander, in contrast,

expected utility is enhanced by options owing to her full participation (i.e., even before the

options were introduced). As a result of these two effects, the identical investors become more

willing to hold the risky asset at date 0, which in turn lowers the illiquidity discount and raises

the equilibrium ex ante price P0.

Proposition 1.5.11. The introduction of options increases the ex ante price P0, but it reduces

both the price impact λ and the price reversal γ.

This proposition indicates that, if liquidity suppliers participate partially (rather than fully)

in the market, then introducing derivatives always raises the ex ante price regardless of the

liquidity provision 1− π. This result is in line with the finding of Cao (1999), who studies how

stock prices can be affected—through the information acquisition channel—by options listing.

At this point, a comparative statics analysis can be used to generate predictions about the

effect of participation costs on trading volume in the derivatives market. The trading volume of

options is calculated as V O = 2π(1−π)µ
(π+(1−π)µ)2

(m− q) and depends on the participation cost f .
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Proposition 1.5.12. The trading volume of options exhibits an inverse U shape as a function

of the participation cost; thus an increase in the participation cost f raises (resp. lowers) V O

when f is less (resp. greater) than fo, where fo is as defined in the Appendix.

When the participation cost f is high, the participation rate µ of liquidity suppliers is low.

In this scenario, reducing the participation cost f leads more suppliers to participate. Then

these uninformed liquidity suppliers can buy options (which can be thought of as insurance) in

order to hedge the uncertainty of the risky asset’s payoff D. Hence the trading volume of options

increases, and that volume is a decreasing function of the cost f . If instead the participation

cost f is low, then the participation rate µ of liquidity suppliers is high; this scenario implies

that the competition among suppliers is intense. So even though a decrease in f attracts more

suppliers, the total trading volume of options becomes much lower because each supplier wants

to hold a reduced volume of options. Because the long side of options comes from uninformed

suppliers, the intense competition under a high participation rate µ makes options expensive.

Accordingly, the option trading volume for each liquidity supplier—and thus the total option

trading volume—declines. If participation is costly, then this result means that reducing the

participation cost could accelerate the growth of an options market (Cao and Ou-Yang, 2009).

That implication is consistent with the recent empirical literature on options. In addition, my

model offers new predictions about the relation between market participation cost and options

trading volume.

The options volume is also an increasing function of the information dispersion, which cor-

responds to the term m− q—that is, the difference in information precision between a liquidity

demander and a liquidity supplier. Since the uninformed liquidity suppliers cannot perfectly

identify the trading motive of liquidity demanders, they face the risk of trading against the

private information of informed demanders. As the adverse selection problem arising from this

information asymmetry worsens (higher m−q), the uninformed liquidity suppliers are more like-

ly to buy the options as insurance to hedge against the uncertainty; hence the trading volume

of options increases. A small peak is evident in the option trading volumes during the financial

crisis, a deviation that can be explained by my model.
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1.6 Other General Derivative Securities

In previous sections I examined the effect of introducing a set of vanilla options. This section

turns to the case of more general derivatives. Specifically, I first analyze what effect the intro-

duction of a generalized straddle has on the ex ante price of the risky asset and on our two

liquidity measures; then I check the robustness of this mechanism by examining some concrete

examples.

1.6.1 General Derivatives

I consider some general derivatives as modeled by Cao (1999). Specifically: I assume that a

general derivative, whose price is denoted by PG, pays off g(|D − P1|); here g(·) is a monotonic

function.32 Following the pattern of previous notation, the demand of liquidity demanders and

suppliers for this derivative are denoted by (respectively) Xd,G and Xs,G. At date 2, the wealth

of liquidity demanders who are equipped with a generalized straddle is given by

Wd2 = W1 +Xd(D − P1) +Xd,G(g(|D − P1|)− PG) + z(D − D̄), (1.6.1)

and the wealth of liquidity suppliers is given by

Ws2 = W1 +Xs(D − P1) +Xs,G(g(|D − P1|)− PG). (1.6.2)

I obtain a partially revealing rational expectations equilibrium that characterizes the effect of

introducing the generalized straddle at date 1 (cf. Cao, 1999). This result is stated formally as

follows.

Proposition 1.6.1. At date 1, there exists one equilibrium. The price of the risky asset is

given by

P1 = D̄ − α

h+ πm+ (1− π)q
X̄ +

πm+ (1− π)q

h+ πm+ (1− π)q

(
s− D̄ − α

m
z

)
. (1.6.3)

32Given that g(·) resides in the positive domain, the quadratic derivative is a special case of this general
derivative. A more detailed analysis is given in Section 1.6.2.
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Demand for the risky asset is given by

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− z (1.6.4)

for the liquidity demander and by

Xs =
E[D|Fs]− P1

αVar[D|Fs]
(1.6.5)

for the liquidity supplier. The liquidity demander’s demand for the general derivative satisfies

the equality
+∞∫

0

(g(u)− PG) exp

[
− 1

2
Gdu

2 − αXd,G g(u)

]
du = 0, (1.6.6)

and that of the liquidity supplier satisfies

+∞∫

0

(g(u)− PG) exp

[
− 1

2
Gsu

2 − αXs,G g(u)

]
du = 0. (1.6.7)

As for the general derivative, the market-clearing condition is

πXd,G + (1− π)Xs,G = 0, (1.6.8)

where Gd = h+m and Gs = h+ q.

Proposition 1.6.1 establishes that the introduction of a generalized straddle has no direct

influence on the underlying asset’s price at date 1, which is the same result as when calls and

puts were introduced in Section 1.4. Unlike those vanilla options, a straddle does not affect

the demand of agents for the underlying asset. Hence the price impact measure λ and the

price reversal measure γ remain unchanged. As before, the introduction of derivatives changes

investors’ utilities; the next lemma summarizes the results that concern their interim utilities.

Lemma 1.6.1. At interim date t = 1
2 , if a general derivative is available then the utilities of

liquidity demanders are given by

UGd = Ud

√
2Gd
π

+∞∫

0

exp

(
− 1

2
Gdu

2 − αXd,G(g(|u|)− PG)

)
du (1.6.9)
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Figure 1.7: Welfare gains from derivatives; g(y) = y.

and those of liquidity suppliers are given by

UGs = Us

√
2Gs
π

+∞∫

0

exp

(
− 1

2
Gsu

2 − αXs,G(g(|u|)− PG)

)
du; (1.6.10)

here UGi and Ui (i ∈ {s, d}) are the interim utilities of agents with and without the general

derivatives, respectively.

As suggested by Proposition 1.6.1 and Lemma 1.6.1, it is difficult to obtain analytical solu-

tions for the asset price, demand for the derivative, and interim utilities. I then turn to numerical

studies. Figure 1.7 illustrates the welfare gains to the two groups of agents when g(y) = y. The

welfare gains from derivatives are clearly much greater for liquidity demanders than for liquidity

suppliers when the latter dominate the market population (i.e., when π is small).33 This asym-

metric effect of the generalized straddle (as seen graphically in the figure) allows me to confirm

the ex ante price results derived previously for the case when vanilla options are introduced to

trade. The only difference here is that the two liquidity measures, λ and γ, are not changed

by introducing the generalized straddle thanks to the unchanged demand for the underlying

asset. To develop a clearer picture of the generalized straddle’s effects, I shall next investigate

a concrete example of generalized straddles that yields closed-form solutions.

33Because of the negative exponential utility, a smaller number indicates a larger welfare gain.
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1.6.2 A Quadratic Derivative

Brenna and Cao (1996) analyze the effect of a new quadratic derivative, which can be seen as a

special case of the aforementioned generalized straddle. In this section I study the effects of this

particular derivative in the presence of a liquidity shock. In particular, I focus on the effects of

the quadratic derivative on the illiquidity discount and our two liquidity measures.

In contrast to the case of vanilla options, here I introduce a derivative whose payoff is

a quadratic function of the risky asset’s payoff D. More specifically, this derivative pays off

(D − P1)2 and its price, prior to expiration, is denoted by PG1. Just as for the vanilla options,

this derivative is in zero net supply and expires at date 2. I use Xd,G1 and Xs,G1 to denote the

demand (of, respectively, liquidity demanders and liquidity suppliers) for this new derivative.

If that quadratic derivative is available, then the wealth of liquidity demanders at date 2 is

given by

Wd2 = W1 +Xd(D − P1) +Xd,G1((D − P1)2 − PG1) + z(D − D̄) (1.6.11)

and that of liquidity suppliers is given by

Ws2 = W1 +Xs(D − P1) +Xs,G1((D − P1)2 − PG1). (1.6.12)

I have the following partially revealing rational expectations equilibrium regarding the prices

P1 and PG1 of different assets and the corresponding demands of the two groups of agents at

date 1.

Proposition 1.6.2. At date 1, there exists one equilibrium. The underlying risky asset’s price

is given by

P1 = D̄ − α

h+ πm+ (1− π)q
X̄ +

πm+ (1− π)q

h+ πm+ (1− π)q

(
s− D̄ − α

m
z

)
, (1.6.13)

and the price of the quadratic derivative is given by

PG1 =
1

h+ πm+ (1− π)q
. (1.6.14)
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The liquidity demander’s demands for the risky asset and the corresponding derivative are

Xd =
E[D|Fd]− P1

αVar[D|Fd]
− z, (1.6.15)

Xd,G1 =
1

2α

(
1

PG1
− 1

Var[D|Fd]

)
; (1.6.16)

the liquidity suppler’s demands for the risky asset and the corresponding derivative are

Xs =
E[D|Fs]− P1

αVar[D|Fs]
, (1.6.17)

Xs,G1 =
1

2α

(
1

PG1
− 1

Var[D|Fs]

)
. (1.6.18)

As in Proposition 1.4.1, liquidity demanders take short positions in derivatives while liquidity

suppliers take long positions. Proposition 1.6.2 indicates that this result is robust to a derivative

with quadratic payoff. However, such a derivative has no effect on demand for the risky asset. In

contrast to the nonlinear price function of call and put options illustrated in Proposition 1.4.1,

the quadratic derivative’s price is the reciprocal of the average precision (over all investors) of the

risky asset’s payoff D (i.e., 1/G). This difference simply reflects the different payoff structure of

these derivatives and does not require any alterations in my mechanism. With regard to interim

utilities, the welfare gains stemming from quadratic derivative are of a different magnitude for

the two groups of investors; this finding, too, is in line with the results for vanilla options. The

following statement formalizes that claim.

Lemma 1.6.2. At interim date t = 1
2 , if a quadratic derivative is available then the interim

utilities of liquidity demanders are given by

Ud =
exp

(
G−Gd

2G

)
√
G/Gd

E

{
− exp

[
− α

(
W0 +X0(P1 − P0) + z(P1 − D̄)

+
[D̄ + βs(s− D̄)− P1]2

2αVar[D|Fd]

)]}
(1.6.19)

and the utilities of liquidity suppliers are given by

Us =
exp

(
G−Gs

2G

)
√
G/Gs

E

{
− exp

[
− α

(
W0 +X0(P1 − P0)

+
[D̄ + βP (s− D̄ + α

mz)− P1]2

2αVar[D|Fs]

)]}
. (1.6.20)
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For π ∈ (0, 1) we have that both
exp
(
G−Gd

2G

)
√
G/Gd

< 1 and
exp(G−Gs2G )√

G/Gs
< 1, where E is the expectation

over (s, z).

For the two groups of agents, the welfare improvement resulting from a quadratic derivative

is the same as that from a set of call and put options (the case analyzed previously). Hence the

new quadratic derivative will benefit liquidity demanders and suppliers in the same way that

options do and will also yield similar equilibrium prices at date 0.

Proposition 1.6.3. At date 0, the equilibrium price of the risky asset is given by

P0 = D̄ − α 1

h
X̄ − πMG

1− π + πMG
∆1X̄, (1.6.21)

where

∆0 =
(B − βP )2

(
1
h + 1

q

)

π2 Var[D|Fs]
, (1.6.22)

∆1 =
α3B 1

nh

(
1
h + 1

m

)

1 + ∆0(1− π)2 − α2 1
nh

, (1.6.23)

∆2 =
α3 1

nh2

[
1 +

(B−βP )2( 1
h

+ 1
m

)

Var[D|Fd]

]

1 + ∆0(1− π)2 − α2 1
nh

, (1.6.24)

and

MG = exp

(
Gs −Gd

2G

)√
Gd
Gs

exp

(
1

2
α∆2X̄

2

)√
1 + π2∆0

1 + ∆0(1− π)2 − α2 1
nh

. (1.6.25)

Proposition 1.6.4. (1) For π∗ as defined in the Appendix: if 0 < π < π∗, then P0 is higher in

the presence than in the absence of a quadratic derivative; if π∗ < π < 1, then P0 is lower in

the presence than in the absence of a quadratic derivative; and if π = π∗, then P0 is the same

in the presence as in the absence of a quadratic derivative.

(2) The introduction of a quadratic derivative alters neither the price impact measure λ nor

the price reversal measure γ.

1.7 Conclusion

This paper uses a rational expectations model to examine the effect—on asset returns and

liquidity—of introducing an options market. The main results are as follows. First, liquidity de-
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manders (who observe the private signal) take short positions in the introduced options whereas

liquidity suppliers (who are informed only by asset prices) take long positions in those options.

Second, options provide hedging benefits and increase risk sharing between the demanders and

suppliers of liquidity; thus the welfare of market participants is improved. Yet this improvement

in welfare is asymmetric across agent types, which affects their trading incentives at date 0.

More importantly, I find that introducing derivatives has surprisingly non-monotonic effects on

the underlying asset price and so could reconcile the mixed empirical evidence on the effects of

options listing. I also find that introducing an options market reduces the price impact λ but

leaves the price reversal γ unchanged. Finally, I show that the effects of derivatives on the price

and liquidity of the underlying asset are sensitive to the measures of liquidity used and the fac-

tors driving asset-specific characteristics. These results constitute new and empirically testable

implications concerning how the introduction of financial derivatives affects the underlying asset.

In addition, I endogenize the participation decisions of agents and examine the case where

agents must pay a participation fee to enter the market. Such a participation cost naturally

reduces the participation of liquidity suppliers and likewise their proportion in the overall agent

population. I find that introducing an options market always reduces the illiquidity discount

component of the ex ante price P0 as well as the expected return of the underlying assets—

that is, irrespective of the supply of liquidity. Moreover, both illiquidity measures decline after

derivatives are introduced. I also provide a new prediction that the trading volume of options

exhibits an inverse U shape with respect to the participation cost. Finally, the mechanism

proposed here is robust to derivatives with a general payoff structure.

There are several avenues for future research. First, extending the static setting to a dy-

namic model would be a worthwhile pursuit (see e.g. Cao, 1999). Moreover, because of the

CARA-normal framework (adopted to make the model tractable), the options considered in this

paper carry no additional information and so are informationally redundant. Relaxing these

assumptions and examining the effects of derivatives under more general utility functions and

asset payoff distributions may yield findings of considerable interest (see e.g. Chabakauri, Yuan,

and Zachariadis, 2014; Malamud, 2015).
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1.9 Appendix

1.9.1 Some useful results from Vayanos and Wang (2012a)

Following Vayanos and Wang (2012a), the interim utilities of liquidity suppliers and demanders

at t = 1
2 , denoted by Us and Ud, can be calculated as follows:

Us = E

{
− exp

{
−α

[
W0 +X0(P1 − P0) +

[
D + βP (s−D − α

mz)− P1

]2

2αVar(D|P1)

]}}

= − exp(−αFs)
1√

1 + (B−βP )2

Var(D|Fs)

(
1
h + 1

m + α2

m2
1
n

) , (1.9.1)

where

Fs = W0 +X0(D − P0)− α

2h
X2

0 +
α

(1−B)2 1
h2

Var(D|Fs)(X0 −X)2

2
[
1 + (B−βP )2

Var(D|Fs)( 1
h + 1

m + α2

m2
1
n)
] , (1.9.2)

and

Ud = E

{
− exp

{
−α

[
W0 +X0(P1 − P0) + z(P1 −D) +

[D + βs(s−D)− P1]2

2αVar(D|Fd)

]}}

= − exp(−αFd)
1√

1 + (B−βs)2
Var(D|Fd)( 1

h + 1
m)(1 + α2 1

m
1
n)− α2 1

h
1
n

, (1.9.3)

where

Fd =W0 +X0(D − P0)− α

h
X0X +

1

2

α

h
X

2

−
α

{
B2( 1

h + 1
m)(1 + α2 1

m
1
n)(X0 −X)2 + ( 1

h + 1
m)2 α2

n

[
2B 1

h
X0X

1
h

+ 1
m

+ [ (B−βs)2
hVar(D|s) −B2]X

2
]}

2
[
1 + (B−βs)2

Var(D|Fd)( 1
h + 1

m)(1 + α2 1
m

1
n)− α2 1

h
1
n

] .

(1.9.4)

Furthermore, it is easy to show that

(B − βs)2

Var(D|Fd)
(
1

h
+

1

m
)(1 + α2 1

m

1

n
) = ∆0(1− π)2, (1.9.5)

(B − βP )2

Var(D|Fs)
(
1

h
+

1

m
+
α2

m2

1

n
) = ∆0π

2. (1.9.6)
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When X0 = X, we have four useful equations:

dFs
dX0

= D − P0 −
α

h
X, (1.9.7)

Fs = W0 +X(D − P0)− α

2h
X

2
, (1.9.8)

dFd
dX0

=
dFs
dX0

−∆1X, (1.9.9)

Fd = Fs −
1

2
∆2X

2
. (1.9.10)

An agent chooses X0 to maximize his/her utility U ≡ πUd + (1− π)Us at t = 0. The first-order

condition is given by

π exp(−αFd)
dFd
dX0

1√
1 + ∆0(1− π)2 − α2 1

nh

+ (1− π) exp(−αFs)
dFs
dX0

1√
1 + ∆0π2

= 0 (1.9.11)

⇔ π(D − P0 −
α

h
X −∆1X)M + (1− π)(D − P0 −

α

h
X) = 0. (1.9.12)

Then we obtain the equilibrium price of the risky stock as shown in (1.2.13).

1.9.2 Asymmetric Information with a Squared Contract

Proof of Proposition 1.3.1. To prove that the proposed prices and demands are obtained in

equilibrium, we should verify that the market clears and the Euler condition holds for the risky

stock and the squared contract. We first prove that the proposed investors’ demands do clear

the market at the equilibrium prices. Specifically, for the risky stock, it is easy to check that

πXd + (1− π)Xs = X̄. (1.9.13)

Given the demands for the risky stock, checking the market clearing condition for the squared

contract is equivalent to verifying that the following relation holds

π

2α
(G−Gd) +

1− π
2α

(G−Gs) = 0. (1.9.14)

Then we need to show that the investors’ demands are optimal. The liquidity suppliers’ wealth

at t = 2 is given by

Ws2 = W1 +Xs(D − P1) +Xs,SC(D2 − PSC). (1.9.15)
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Using the conjectured equilibrium price of the squared contract, the optimization problem of a

liquidity supplier can be written as

− E [exp (−αWs2) |Fs]

=− 1√
1 + 2αXs,SCVar[D|Fs]

exp




Var[D|Fs](αXs+2αXs,SCE[D|Fs])
2

2(1+2αXs,SCVar[D|Fs])

−αXs,SC

(
E[D|Fs]2 − P 2

1 − 1
G

)
− α(W1 +Xs(E[D|Fs]− P1))




(1.9.16)

Thus, given the equilibrium securities prices, the first-order condition of liquidity suppliers utility

maximization problem leads to Equations (1.3.7)-(1.3.8). Along the same line of reasoning, we

obtain the liquidity demander’s demands for assets as shown in Equations (1.3.5)-(1.3.6).

Proof of Proposition 1.3.2. When a squared contract is available to trade, the wealth of

liquidity demanders at date 2 is given by

Wd2 = W1 +

(
E[D|Fd]− P1

αVar[D|Fd]
− G−Gd

α
P1

)
(D − P1) + z(P1 − D̄) +

G−Gd
2α

(
D2 − P 2

1 −
1

G

)
,

(1.9.17)

and the wealth of liquidity suppliers is given by

Ws2 = W1 +

(
E[D|Fs]− P1

αVar[D|Fs]
− G−Gs

α
P1

)
(D − P1) +

G−Gs
2α

(
D2 − P 2

1 −
1

G

)
. (1.9.18)

The marginal rate of substitution of investor i, i ∈ {d, s}, between wealth contingent on D = Dh

and D = Dl is given by

M i
hl =

exp
{
− (Dh − E[D|Fi])2Gi/2

}
exp{−αW2i(Dh)}

exp
{
− (Dl − E[D|Fi])2Gi/2

}
exp{−αW2i(Dl)}

= exp

{
− 1

2
Gi(Dh −Dl)(Dh +Dl − 2E[D|Fi])

−
(

E[D|Fi]− P1

Var[D|Fi]
− (G−Gi)P1

)
(Dh −Dl)−

G−Gi
2

(D2
h −D2

l )

}

= exp

{
− 1

2
G(Dh −Dl)(Dh +Dl − 2P1)

}
. (1.9.19)

As shown by (1.9.19), the marginal rate of substitution is the same for all investors. That is, the

introduction of the squared contract allows agents to achieve a Pareto efficient allocation.

Proof of Lemma 1.3.1. Given the equilibrium in Proposition 1.3.1, the expected utility of a
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liquidity demander at t = 1 can be written as

− E [exp (−αWd2) |Fd]

=− 1√
G
Gd

exp

{
−αW1 + αz(D − P1) +

G−Gd
2G

− Gd
2

(E[D|Fd]− P1)2

}

=−
exp

(
G−Gd

2G

)

√
G/Gd

{
exp

[
−α

(
W0 +X0(P1 − P0) + z(P1 −D) +

[ D + βs(s−D) − P1]2

2αVar[D|Fd]

)]}
.

(1.9.20)

Taking the expectation of (1.9.20) over (s, z) yields the interim utility Ud of the liquidity de-

mander at t = 1
2 , i.e. (1.3.12). Similarly, we can obtain the interim utilities of liquidity supplies

taking the form of (1.3.13).

As 0 < G
Gd

< 1,
exp
(
G−Gd

2G

)
√

G
Gd

is a decreasing function of Gd
G . Therefore,

exp
(
G−Gd

2G

)
√

G
Gd

< 1.

Likewise,
exp(G−Gs2G )√

G
Gs

is an increasing function of Gs
G due to the fact that G

Gs
> 1. Then we get

exp(G−Gs2G )√
G
Gs

< 1.

Proof of Lemma 1.3.2. The ratio of the additional factor in the interim utilities resulting

from introducing a squared contract is given by

exp
(
G−Gd

2G

)

√
G
Gd

/
exp

(
G−Gs

2G

)
√

G
Gs

= exp

(
Gs −Gd

2G

)√
Gd
Gs

. (1.9.21)

Define π∗ ≡ 1

log
(

1+m−q
h+q

) − h+q
m−q , we have

(1) exp
(
Gs−Gd

2G

)√
Gd
Gs

> 1 only if m−q
h+πm+(1−π)q + log

(
h+q
h+m

)
< 0, which is equivalent to

π > π∗.

(2) exp
(
Gs−Gd

2G

)√
Gd
Gs

< 1 only if m−q
h+πm+(1−π)q + log

(
h+q
h+m

)
> 0, which is equivalent to

π < π∗.

(3) exp
(
Gs−Gd

2G

)√
Gd
Gs

= 1 only if m−q
h+πm+(1−π)q + log

(
h+q
h+m

)
= 0, which is equivalent to

π = π∗.

As log
(

1 + m−q
h+q

)
< m−q

h+q , we have 1

log
(

1+m−q
h+q

) − h+q
m−q > 0.

Proof of Proposition 1.3.3. According to the calculation from Vayanos and Wang (2012a),
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we compute the expected utilities of liquidity demanders and liquidity suppliers at t = 1
2 as

following. For liquidity suppliers, as shown in Lemma 1.3.1

Us =
exp

(
G−Gs

2G

)
√

G
Gs

E

{
− exp

[
−α

(
W0 +X0(P1 − P0) +

[ D + βP (s−D + Cz) − P1]2

2αVar(D|Fs)

)]}
,

(1.9.22)

then we have

Us = −exp
(
G−Gs

2G

)
√

G
Gs

exp(−αFs)
1√

1 +
(B−βP1 )2

Var(D|Fs)( 1
h + 1

m + α2

m2
1
n)
, (1.9.23)

where Fs is the same as the case of Vayanos and Wang (2012a).

For liquidity suppliers, the interim utilities are given as

Ud =
exp

(
G−Gd

2G

)

√
G
Gd

E

{
− exp

[
−α

(
W0 +X0(P1 − P0) + z(P1 −D) +

[ D + βs(s−D) − P1]2

2αVar(D|Fd)

)]}
,

(1.9.24)

then we have:

Ud = −
exp

(
G−Gd

2G

)

√
G
Gd

exp(−αFd)
1√

1 + (B−βs)2
Var(D|Fd)( 1

h + 1
m)(1 + α2 1

h
1
n)− α2 1

m
1
n

, (1.9.25)

where Fd is the same as the case of Vayanos and Wang (2012a). Based on the above expected

utilities, the identical investor’s expected utility at t = 0 is given by

U ≡ πUd + (1− π)Us. (1.9.26)

The first-order condition of the optimization problem is given by

π exp(−αFd)
dFd
dX0

exp
(
G−Gd

2G

)
√

G
Gd√

1 + ∆0(1− π)2 − α2 1
nh

+ (1− π) exp(−αFs)
dFs
dX0

exp(G−Gs2G )√
G
Gs√

1 + ∆0π2
= 0 (1.9.27)

⇔ π(D − P0 −
α

h
X −∆1X)MO + (1− π)(D − P0 −

α

h
X) = 0. (1.9.28)
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Then we obtain the ex ante price of the risky asset

P0 = D − α

h
X − πMO

1− π + πMO
∆1X, (1.9.29)

where

MO = exp

(
Gs −Gd

2G

)√
Gd
Gs

exp

(
1

2
α∆2X

2
)√

1 + π2∆0

1 + ∆0(1− π)2 − α2 1
nh

. (1.9.30)

Proof of Proposition 1.3.4. See the proofs of Lemma 1.3.2 and Proposition 1.3.3.

Proof of Proposition 1.3.5. The signed volume of liquidity suppliers is

(1− π)(Xs −X) =(1− π)

(
E(D|Fs)− P1

αVar(D|Fs)
− G−Gs

α
P1 −X

)

=(1− π)

(
D + βP

P1−A
B − P1

αVar(D|Fs)
− π (m− q)

α
P1 −X

)
. (1.9.31)

According to the definition of the price impact shown in (1.2.15), we have

λ =
Cov

(
P1 − P0, π(Xd −X)

)

Var
[
π(Xd −X)

]

=
−Cov

(
P1 − P0, (1− π)

(
Xs −X

))

Var
[
(1− π) (Xs −X)

]

=
αVar(D|Fs)

(1− π)
[
π (m− q) Var(D|Fs) + 1− βP

B

] . (1.9.32)

As m > q, we have λ < αVar(D|Fs)
(1−π)(1−βP

B
)
, which completes the proof of the first part. From Proposi-

tion 1.3.1, P1 is unchanged after the introduction of derivatives. As a result, the price reversal

γ is not affected according to the definition of γ.

1.9.3 Asymmetric Information with an Options Market

Proof of Proposition 1.4.1. To prove that the proposed prices and demands are obtained in

equilibrium, we should verify that the market clears and the Euler condition holds for the risky

stock and options. We first prove that the proposed investors’ demands do clear the market at
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the equilibrium prices. Specifically, for the risky stock, it is easy to check that

πXd + (1− π)Xs = X. (1.9.33)

Given the demands for the risky stock, checking the market clearing condition for options is

equivalent to verifying that the following relation holds

π

α
(G−Gd) +

1− π
α

(G−Gs) = 0. (1.9.34)

For a liquidity demander, his wealth at t = 2 is given by:

Wd2 =W1 +Xd(D − P1) + z(D −D)

+

+∞∫

0

Xd,CK

[
(D −K)+ − PCK

]
dK +

0∫

−∞

Xd,PK

[
(K −D)+ − PPK

]
dK. (1.9.35)

Given the proposed equilibrium prices, we then show that the equilibrium demands for the risky

stock and call and put options satisfy the first-order conditions.

At t = 1, a liquidity demander holds Xd shares of the risky stock to maximize the expected

utility conditional on signal s,

− E exp (−αWd2) . (1.9.36)

We compute the terms in (1.9.36) separately. Firstly, it can be easily verified

+∞∫

0

(D −K)+dK +

0∫

−∞

(K −D)+dK =
D2

2
.

67



Then we compute the integration of option prices as follows

+∞∫

0

PCKdK +

0∫

−∞

PPKdK

=

+∞∫

0

(P1 −K)N
(√

G (P1 −K)
)

+

0∫

−∞

(K − P1)N
(√

G (K − P1)
)

+

+∞∫

−∞

1√
2πG

exp

(
−G(P1 −K)2

2

)
dK

=

+∞∫

0

(P1 −K)N
(√

G (P1 −K)
)

+

0∫

−∞

(K − P1)N
(√

G (K − P1)
)

+
1

G

=

+∞∫

0

(P1 −K)

√
G(P1−K)∫

−∞

1√
2π

exp

(
−1

2
x2

)
dxdK +

0∫

−∞

(K − P1)

√
G(K−P1)∫

−∞

1√
2π

exp

(
−1

2
x2

)
dxdK +

1

G

=
1√
2π





√
G(P1−K)∫

−∞

P1− x√
G∫

0

(P1 −K)dK exp

(
−1

2
x2

)
dx

√
G(K−P1)∫

−∞

0∫

P1+ x√
G

(K − P1)dK exp

(
−1

2
x2

)
dx





+
1

G

=
1√
2π

√
G(P1−K)∫

−∞

(
1

2
P 2

1 −
1

2G
x2

)
exp

(
−1

2
x2

)
dx+

1√
2π

√
G(K−P1)∫

−∞

(
1

2
P 2

1 −
1

2G
x2

)
exp

(
−1

2
x2

)
dx+

1

G

=
1

2
P 2

1 −
1

2G
+

1

G

=
1

2

(
P 2

1 +
1

G

)

Substituting above terms into liquidity demander’s wealth (1.9.35) yields

Wd2 = W1 +Xd(D − P1) + z(D −D) +
G−Gd

2α
D2 − G−Gd

2α

(
P 2

1 +
1

G

)
, (1.9.37)
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and the optimization problem of a liquidity demander can be rewritten as34

− E [exp (−αWd2) |Fd]

= −E

[
exp

(
−αW1 − αXd(D − P1)− αz(D −D)− G−Gd

2
D2 +

G−Gd
2

(
P 2

1 +
1

G

))
|s
]

= − 1√
1 + 1

Gd
(G−Gd)

∗

exp



...+ αXdP1 − α(Xd + z)E(D|Fd)−

G−Gd
2

E2(D|Fd) +
1

2

(α(Xd + z) + (G−Gd)E(D|Fd))2

(
1 + 1

Gd
(G−Gd)

)
Gd



 .

The first order condition with respect to Xd is

αP1 − αE(D|Fd) + α
α(Xd + z) + (G−Gd)E(D|Fd)(

1 + 1
Gd

(G−Gd)
)
Gd

= 0, (1.9.38)

which implies that

Xd =
E(D|Fd)− P1

αVar(D|Fd)
− G−Gd

α
P1 − z. (1.9.39)

We have shown that the Euler equation holds for the risky stock at the proposed demand. Next

we check whether the Euler condition holds for options. In other words, we need to prove

E[((D −K)+ − PCK) exp(−αWd2)|Fd] = 0, (1.9.40)

E[((K −D)+ − PPK) exp(−αWd2)|Fd] = 0. (1.9.41)

Based on the above results, we can write the liquidity demanders’ wealth at t = 2 as

Wd2 = W1 +
1

α
(GdE(D|Fd)−GP1−z)(D−P1)+z(D−D)+

G−Gd
2α

(
D2 − P 2

1 −
1

G

)
, (1.9.42)

Substituting (1.9.39) into (1.9.36) yields

− E [exp (−αWd2) |Fd]

=− 1√
G
Gd

exp

{
−αW1 + αz(D − P1) +

G−Gd
2G

− Gd
2

(E(D|Fd)− P1)2

}
. (1.9.43)

34To make the first-order condition clear, the constant mean term is dropped in our calculation and is replaced
by ....The dropped term is −αWd1 + αzD + G−Gd

2

(
P 2
1 + 1

G

)
.
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Let x = D − P1, µ = E(D|Fd)− P1, and G−1
d = V ar(D − P1|Fd), we have

E
[
(D −K)+ exp(−αWd2)|Fd

]

=
1√
G
Gd

exp

(
−αW1 + αz(D − P1) +

G−Gd
2G

)

×
+∞∫

K−P1

[x− (K − P1)]

√
Gd
2π

exp

(
−x(µGd −

1

2
x(G−Gd))−

Gd(x− µ)2

2

)
dx

=

√
G

Gd
E [exp (−αWd2) |Fd]

+∞∫

K−P1

[x− (K − P1)]

√
Gd
2π

exp

(
−G

2
x2

)
dx

=

√
G

Gd
E [exp (−αWd2) |Fd]

{√
Gd
G

1√
2π

exp(−G(P1 −K)2

2
) + (P1 −K)

√
Gd
G
N
(√

G(P1 −K)
)}

=E [exp (−αWd2) |Fd]
{

1√
2πG

exp

(
−G (P1 −K)2

2

)
+ (P1 −K)N

(√
G (P1 −K)

)}
.

(1.9.44)

Combining (1.9.40) and (1.9.44) results in the equilibrium price of call option in (1.4.4). This

verifies the proposed prices in the proposition. Following similar procedures, it is easy to demon-

strate that for liquidity suppliers, demands of risky asset and options do take the forms in the

proposition.

Proof of Lemma 1.4.1. See the proof of Lemma 1.3.1

Proof of Lemma 1.4.2. See the proof of Lemma 1.3.2.

Proof of Proposition 1.4.2. See the proof of Proposition 1.3.3.

Proof of Proposition 1.4.3. See the proofs of Lemma 1.4.2 and Proposition 1.4.2.

Proof of Proposition 1.4.4. See the proof of Proposition 1.4.4.

Proof of Proposition 1.4.5. The interim utilities of liquidity suppliers and demanders in the

presence of options are provided in Lemma 1.4.1, whereas the interim utilities in the absence of

options are given in (1.9.1) and (1.9.48). Because the ex ante utility is the expectation of the

interim utilities defined in (1.2.12), we can calculate the ratio of utilities of the case with options
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to the case without options as follows:

exp
(
G−Gd

2G

)

√
G
Gd

exp

(
−α∆1X

(
πMO

1− π + πMO
− πM

1− π + πM

))
πMO + 1− π

πMO + (1− π)M
O

M

. (1.9.45)

The ratio of ex ante utilities increases in π when the precision of the risky asset payoff is small

(i.e. h < h), whereas it first decreases and then increases in π when the precision of the risky

asset payoff is large (i.e. h > h). The maximum ratio is smaller than or equal to one. As we are

using the exponential utility which are negative, the ex ante utility in the presence of options is

higher than that in the absence of options.

1.9.4 Participation Costs

Proof of Proposition 1.5.1. Substituting the demand schedules of liquidity demanders (1.5.2)

and liquidity suppliers (1.5.3) into the market clear condition (1.5.4) yields the equilibrium price

of the risky asset.

Proof of Proposition 1.5.2. Following Vayanos and Wang (2012a), the interim utilities of

participating liquidity suppliers and demanders, Us,P and Ud,P , can be calculated as follows:

Us,P = − exp(−αFs)√
1 + (B−βP )2

Var(D|Fs)

(
1
h + 1

m + α2

m2
1
n

) , (1.9.46)

where

Fs = W0 +X0(D − P0)− α

2h
X2

0 +
α

(1−B)2 1
h2

Var(D|Fs)(X0 −X)2

2
[
1 + (B−βP )2

Var(D|Fs)( 1
h + 1

m + α2

m2
1
n)
] − f, (1.9.47)

and

Ud,P = − exp(−αFd)√
1 + (B−βs)2

Var(D|Fd)( 1
h + 1

m)(1 + α2 1
m

1
n)− α2 1

h
1
n

, (1.9.48)
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where

Fd =W0 +X0(D − P0)− α

h
X0X +

1

2

α

h
X

2

−
α

{
B2( 1

h + 1
m)(α2 1

m
1
n)(X0 −X)2 + ( 1

h + 1
m)2 α2

n

[
2B 1

h
X0X

1
h

+ 1
m

+ [ (B−βs)2
hVar(D|s) −B2]X

2
]}

2
[
1 + (B−βs)2

Var(D|Fd)( 1
h + 1

m)(1 + α2 1
m

1
n)− α2 1

h
1
n

] − f.

(1.9.49)

In the case of not participating, the interim utilities of liquidity suppliers are:

Us,NP = − exp

{
−α

[
W0 +X0(D − P0)− 1

2
αX2

0

1

h

]}
. (1.9.50)

Liquidity suppliers are willing to enter the market if Us,P ≥ Us,NP , that is

− exp(−αFs)√
1 + (B−βP )2

Var(D|Fs)

(
1
h + 1

m + α2

m2
1
n

) ≥ − exp

{
−α

[
W0 +X0(D − P0)− 1

2
αX2

0

1

h

]}
(1.9.51)

⇔ exp(2αf) ≤ 1 +
(π∗)2

[h+ q + π∗(m− q)]2
h2(m− q)2

h+ q

(
1

h
+

1

m
+
α2

m2

1

n

)
. (1.9.52)

Let c = h2(m−q)2
h+q

(
1
h + 1

m + α2

m2
1
n

)
= h

q (m− q)2. Based on the fact that (π∗)2

[h+q+π∗(m−q)]2 increases

in π∗ and thereby decreases in µ, we have the following three scenarios:

Case 1: if f ≤ f1 ≡
log

(
1+

(π)2

[h+q+π(m−q)]2
c

)
2α , then (1.9.52) holds for µ = 1, indicating that all

liquidity suppliers participate in the market.

Case 2: if f1 < f < f2, where f2 ≡
log
(

1+ 1
(h+m)2

c
)

2α , then (1.9.52) holds as an equality for

µ ∈ (0, 1) given by µ = π
1−π

{
m−q
h+q

[√
h

q(e2αf−1)
− 1
]
− 1
}

, indicating that a positive fraction of

liquidity suppliers participate in the market.

Case 3: if f ≥ f2, then (1.9.52) does not hold for any µ ∈ (0, 1], indicating no liquidity

suppliers participate.

Proof of Proposition 1.5.3. In the presence of participation costs, (1.9.5) and (1.9.6) can be
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rewritten as

(B − βs)2

Var(D|Fd)
(
1

h
+

1

m
)(1 + α2 1

m

1

n
) = ∆0(1− π∗)2, (1.9.53)

(B − βP )2

Var(D|Fs)
(
1

h
+

1

m
+
α2

m2

1

n
) = ∆0(π∗)2. (1.9.54)

Similarly, when X0 = X, (1.9.7)-(1.9.10) are rewritten as

dFs
dX0

= D − P0 −
α

h
X, (1.9.55)

Fs = W0 +X(D − P0)− α

2h
X

2 − f, (1.9.56)

dFd
dX0

=
dFs
dX0

−∆1X, (1.9.57)

Fd = Fs −
1

2
∆2X

2
. (1.9.58)

In the case of not participating in the market, the interim utilities of liquidity demanders are

Ud,NP = −
exp

{
−α

[
W0 +X0(D − P0)− α 1

h

2(1−α2 1
h

1
n

)
X

2
]}

√
1− α2 1

h
1
n

(1.9.59)

When liquidity demanders fully participate, we have Ud,P > Ud,NP , that is

exp

{
2α

[
− α3 1

h2
1
n

2(1− α2 1
h

1
n)
X

2
+

1

2
∆2X

2
+ f

]}
<

1 + ∆0(1− π∗)2 − α2 1
h

1
n

1− α2 1
h

1
n

(1.9.60)

The sufficient condition for (1.9.60) to hold is

exp

{
2α

[
− α3 1

h2
1
n

2(1−α2 1
h

1
n

)
X

2
+ 1

2∆2X
2

+ f

]}

exp(2αf)
<

1+∆0(1−π∗)2−α2 1
h

1
n

1−α2 1
h

1
n

1 + (B−βP )2

Var(D|Fs)( 1
h + 1

m + α2

m2
1
n)

(1.9.61)

⇔ exp

{
2α

[
− α3 1

h2
1
n

2(1− α2 1
h

1
n)
X

2
+

1

2
∆2X

2

]}
<

1+∆0(1−π∗)2−α2 1
h

1
n

1−α2 1
h

1
n

1 + ∆0(π∗)2
(1.9.62)

It is easy to show that − α3 1
h2

1
n

2(1−α2 1
h

1
n

)
X

2
+ 1

2∆2X
2
< 0, then we transform the sufficient condition

as
1+∆0(1−π∗)2−α2 1

h
1
n

1−α2 1
h

1
n

1 + ∆0(π∗)2
> 1, (1.9.63)
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which is equivalent to

∆0(1− π∗)2 > (1− α2 1

h

1

n
)∆0(π∗)2 (1.9.64)

Therefore, the sufficient condition is 1 − π∗ ≥ π∗ ⇔ π∗ ≤ 1
2 ⇔ π

π+(1−π)µ ≤ 1
2 ⇔ π ≤ (1 − π)µ.

Based on (1.9.52) and π∗ ≤ 1
2 , we have the sufficient condition with respect to f as follows

f ≤ f̂ =
log
(

1 + 1
4[h+q+ 1

2
(m−q)]2

h2(m−q)2
h+q ( 1

h + 1
m + α2

m2
1
n)
)

2α
. (1.9.65)

Then we check the sufficient condition for the existence of the equilibrium where all liquidity

demanders and a positive fraction of liquidity suppliers participate in the market.

Since π ≤ 1
2 , f1 ≤ f̂ < f2. When f1 < f ≤ f̂ and all liquidity demanders participate, then

µ is in (0, 1) and determined by (1.9.52) as an equality. According to (1.9.65), f ≤ f̂ results

in π∗ ≤ 1
2 , satisfying the sufficient condition for the full participation of liquidity demanders.

When f ≤ f1 and all liquidity demanders enter the market, then all liquidity suppliers enter the

market as well. On the other hand, π ≤ 1
2 implies that the sufficient condition for all demanders

to participate, π ≤ (1 − π)µ, is satisfied when µ = 1, hence all liquidity demanders participate

in the market.

Proof of Proposition 1.5.4. The investors at t = 0 choose X0 to maximize their utilities U =

πmax{Ud, Ud,NP } + (1 − π) max{Us, Us,NP }. The above Proposition implies that Ud ≥ Ud,NP

and Us ≥ Us,NP . Then the optimization problem can be rewritten U = πUd + (1 − π)Us, and

the consequent first-order condition is given by

π exp(−αFd)
dFd
dX0

1√
1 + ∆0(1− π∗)2 − α2 1

nh

+ (1− π) exp(−αFs)
dFs
dX0

1√
1 + ∆0(π∗)2

= 0

⇔π(D − P0 −
α

h
X −∆1X)MP + (1− π)(D − P0 −

α

h
X) = 0.

Then we obtain the ex ante price of the risky asset in the presence of participation costs

P0 = D − α

h
X − πMP

1− π + πMP
∆1X. (1.9.66)
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Proof of Proposition 1.5.5. The signed volume of liquidity demanders is

π(Xd −X) = −(1− π)µ(Xs −X) = −(1− π)µ

(
E(D|Fs)− P1

αVar(D|Fs)
−X

)
(1.9.67)

= −(1− π)µ

(
D + βP

B (P1 −A)− P1

αVar(D|Fs)
−X

)
. (1.9.68)

The price impact measure is calculated as

λ =
Cov

(
P1 − P0, π(Xd −X)

)

Var
[
π(Xd −X)

]

=
−Cov

(
P1 − P0, (1− π)

(
Xs −X

))

Var
[
(1− π) (Xs −X)

]

=
αVar(D|Fs)

(1− π)µ
(

1− βP
B

) (1.9.69)

=
α[πm+ (1− π)µq]

h(1− π)πµ(m− q) . (1.9.70)

Similarly, the price reversal measure is computed as

γ = −Cov(D − P1, P1 − P0) (1.9.71)

= B(B − βP )(
1

h
+

1

q
), (1.9.72)

where B = πm+(1−π)µq
(π+(1−π)µ)h+πm+(1−π)µq .

Proof of Proposition 1.5.6. Firstly, Proposition 1.5.2 indicates that a decrease in f leads to

an increase in µ. Secondly, it is easy to show that ∂λ
∂µ < 0 and B is a decreasing function of µ.

Then, (1.5.13) implies that ∂γ
∂µ < 0. To prove that the ex ante price is an increasing function

of µ, we check each terms of P0 separately. According to its definition, ∆0 can be rewritten

as h(m−q)2
q[h+q+π∗(m−q)]2 , indicating that ∆0 decreases in π∗ and thereby increases in µ. Additionally,

∆0(π∗)2 increases in π∗ and ∆0(1 − π∗)2 decreases in π∗. Further, Eqs. (1.5.9) and (1.5.10)

imply that ∆1 and ∆2 are both decreasing functions of µ. As a result, M decreases in µ, and

we conclude that an increase in µ raises the ex ante price P0.

Proof of Proposition 1.5.7, Lemma 1.5.1, Proposition 1.5.9. These proofs are very sim-

ilar to the proofs in Section 1.4 where agents fully participate. The only difference is that we

replace π with π∗.
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Proof of Proposition 1.5.8. Based on the results in Lemma 1.5.1, the condition that liquidity

suppliers are willing to participate in the market, i.e. (1.9.52), can be rewritten as

exp(2αf) ≤
(

1 +
(π∗)2

[h+ q + π∗(m− q)]2 c
) GP

Gs

exp
(
GP−Gs
GP

) . (1.9.73)

Denote by RHS the right hand side of the above inequality, and we can get that ∂RHS
∂π∗ > 0 and

∂RHS
∂µ < 0. Then we have three scenarios similar to those in Proposition 1.5.2:

Case 1: if f ≤ f̃1 ≡
log

[(
1+

(π)2

[h+q+π(m−q)]2
c

)
h+q+π(m−q)

h+q

]
+ h+q
h+q+π(m−q)−1

2α , then (1.9.73) holds for

µ = 1, indicating that all liquidity suppliers participate in the market.

Case 2: if f̃1 < f < f̃2, where f̃2 ≡
log
[(

1+ 1
(h+m)2

c
)
h+m
h+q

]
+ h+q
h+m

−1

2α , then (1.9.73) holds as an

equality for µ ∈ (0, 1), indicating that a positive fraction of liquidity suppliers participate in the

market.

Case 3: if f ≥ f̃2, then (1.9.73) does not hold for any µ ∈ (0, 1], indicating no liquidity

suppliers participate.

Here, f̃1 ≥ f1, and f̃2 ≥ f2.

As for the participation decision of liquidity demanders, the additional term in the interim

utilities reflecting the introduction of options ensures that (1.9.60) holds. Following the proof in

Proposition 1.5.3, we are able to achieve a similar sufficient condition for the equilibrium where

all liquidity demanders and a positive fraction µ of liquidity suppliers participate.

Proof of Proposition 1.5.10. Under the sufficient condition for the equilibrium where liquid-

ity suppliers partially participate, (1.9.73) holds as an equality for µ ∈ (0, 1). the introduction

of derivative enhances the expected utilities of liquidity suppliers and thus increases the partic-

ipation rate µ.

Proof of Proposition 1.5.11. This proof is similar to the proof of Proposition 1.4.3 and 1.5.6.

Proof of Proposition 1.5.12. The trading volume is calculated as follows

V O =
2π(1− π)µ

(π + (1− π)µ)2
(m− q). (1.9.74)

When the participation cost f decreases, µ will increase. It is easy to show that V O exhibits a

76



hump shape as a function of µ. Then we can complete the proof.

1.9.5 Asymmetric Information with General Derivatives

Generalized Straddles

Proof of Proposition 1.6.1 and Lemma 1.6.1. For a liquidity demander, his wealth at t =

2, i.e. (1.6.1), can be rewritten as:

Wd2 = W1 + z(P1 −D) + (Xd + z)(D − P1) +Xd,G (g(|D − P1|)− PG) , (1.9.75)

The expected utilities of liquidity demanders at t = 1 can be expressed as

− E(e−αWd2 |Fd)

=− e−α(W1+z(P1−D)−Xd,GPG)
+∞∫

−∞

1√
2πVar(u|Fd)

e
− 1

2

(u−E(u|Fd))
2

Var(u|Fd) e−α[(Xd+z)u+Xd,Gg(|u|)]du

=− e−α(W1+z(P1−D)−Xd,GPG)
√
Gd
2π

×
+∞∫

−∞

exp

(
− [α(Xd + z)−Gd(E(D|Fd)− P1)]u− 1

2
Gdu

2 − 1

2
Gd(E(D|Fd)− P1)2 − αXd,Gg(|u|)

)
du,

(1.9.76)

where u ≡ D − P1, E(u|Fd) = E(D|Fd) − P1 and Var(u|Fd) = Var(D|Fd) = G−1
d . Dropping

irrelevant terms, we obtain two Euler equations for liquidity demanders:

+∞∫

−∞

u exp

{
−[α(Xd + z)−Gd(E(D|Fd)− P1)]u− 1

2
Gdu

2 − αXd,Gg(|u|)
}
du = 0,

+∞∫

−∞

(g(|u|)− PG) exp

{
−[α(Xd + z)−Gd(E(D|Fd)− P1)]u− 1

2
Gdu

2 − αXd,Gg(|u|)
}
du = 0.

When Xd = E(D|Fd)−P1

αVar(D|Fd) − z, the linear term in the first Euler equation vanishes, and we obtain

an odd function of u as the integrand. Then the integral on the left-hand side of the Euler

equation with regard to the underlying asset is equal to zero. Along the same line of reasoning,

we employ the Euler equation for liquidity suppliers and the market clearing condition to obtain

the demands of liquidity suppliers and the equilibrium price for the risky asset. Substituting
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the demands for the risky asset into the Euler equations for the general derivative yields (1.6.6)

and (1.6.7). Finally, we get the price of the general derivatives through the market clearing

condition.

Based on the above results, we can write the liquidity demanders’ expected utilities at t = 2

as

− E(e−αWd2 |Fd)

=− e−α(W1+z(P1−D))
√
Gd
2π
× 2

+∞∫

0

exp

(
−1

2
Gdu

2 − 1

2
Gd(E(D|Fd)− P1)2 − αXd,G (g(|u|)− PG)

)
du

=− e
−α
(
W0+X0(P1−P0)+z(P1−D)+ 1

2

(E(D|Fd)−P1)
2

αVar(D|Fd)

)√
2Gd
π

+∞∫

0

exp

(
−1

2
Gdu

2 − αXd,G (g(|u|)− PG)

)
du.

(1.9.77)

Then we get (1.6.9) and (1.6.10).

Quadratic Derivatives

Proof of Proposition 1.6.2. The liquidity demanders’ wealth at t = 2 is given by

Wd2 = W1 +Xd(D − P1) +Xd,G1((D − P1)2 − PG) + z(D −D), (1.9.78)

The optimization problem of a liquidity demander can be written as

− E [exp (−αWd2) |Fd] (1.9.79)

=− 1√
1 + 2αXd,G1Var(D|Fd)

exp




Var(D|Fd)
[
α(Xd+z)−E(D|Fd)−P1

Var(D|Fd)

]2
2(1+2αXd,G1Var(D|Fd)) − 1

2
(E(D|Fd)−P1)2

Var(D|Fd)

−α(W1 −Xd,G1PG + z(P1 −D))




(1.9.80)

Then we have the demands for the stock and the derivative in the following forms

Xd =
E(D|Fd)− P1

αVar(D|Fd)
− z, (1.9.81)

Xd,G1 =
1

2α

(
1

PG1
− 1

Var(D|Fd)

)
. (1.9.82)

78



Along the same line of reasoning, we have

Xs =
E(D|Fs)− P1

αVar(D|Fs)
, (1.9.83)

Xs,G1 =
1

2α

(
1

PG1
− 1

Var(D|Fs)

)
. (1.9.84)

Employing the market clearing conditions for both stocks and derivatives markets, we can com-

plete the proof.

Proof of Lemma 1.6.2. See the proof of Lemma 1.4.1 regarding the vanilla options.

Proof of Proposition 1.6.3. See the proof of Proposition 1.4.2 regarding the vanilla options.

Proof of Proposition 1.6.4. See the proof of Proposition 1.4.3 regarding the vanilla options.
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Chapter 2

Dynamic Equilibrium with Rare

Events and Value-at-Risk Constraint

2.1 Introduction

The past few years have witnessed a global financial meltdown in which financial institutions

have incurred substantial trading losses. These losses have raised a heated discussion on the

massive failures of risk measurement and management in the financial industry. At the heart

of risk management practices is the use of Value-at-Risk (VaR) to measure and control tail

risks. As an easily understandable and interpretable measure of risk, VaR has been extensively

used by financial as well as nonfinancial firms, and over the past 15 years, it has become es-

tablished as the industry and regulatory standard in measuring market risk. Because of this

widespread popularity among practitioners and regulators, it is of interest to study the asset

pricing implications of the risk management practice governed by the prevalent VaR constraint.

The distinction between the VaR constrained agents and unconstrained agents generates an ob-

served heterogeneity in the financial markets, which is contrasted to the assumed heterogeneity

in beliefs that is common in the equilibrium pricing literature.1 Moreover, the recent crisis high-

lights the importance of incorporating jump components in theoretical frameworks as a proxy

for rare events.2 However, previous works studying the effectiveness of VaR-based risk manage-

1Previous studies assume agents have different beliefs on disaster magnitude and intensity, which have served
as the building block of numerous theoretical models established in the literature. See, for example, Liu, Pan,
and Wang (2004), Bates (2008), Dieckmann (2011), Chen, Joslin, and Tran (2012), Chen, Joslin, and Ni (2014),
among others.

2Recent research has shown that a model of rare disasters can explain the equity premium and a wide range of
other macro and asset pricing puzzles. See, for example, Rietz (1988), Liu, Pan, and Wang (2004), Barro (2006),
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ment systems only consider diffusive risk.3 Therefore, we build a model under jump diffusion

and attempt to see how this feature affects the asset dynamics in equilibrium.

In this paper, we investigate the asset pricing implications of a heterogeneity that is induced

by the VaR constraint faced by many institutional investors. We employ jump components to

model rare events in the financial market, such as the Lehman Brothers bankruptcy in the recent

crisis. Specifically, we solve the equilibrium of a pure-exchange Lucas economy that is populated

by one unconstrained agent and one VaR constrained agent and explore how the introduction

of VaR constraints affects the market volatility, the Black-Scholes implied volatility curve, the

jump risk premium, and the term structure of interest rates.

Our main results are as follows. First, we find that the VaR constraint leads to excess stock

market volatility, which is consistent with Basak and Shapiro (2001), and more importantly,

the introduction of the jump component intensifies this effect.4 In this sense, we provide a

new mechanism to explain the prevalent “smirk” pattern of the Black-Scholes implied volatility

in the option markets. Numerous models have been proposed to explain the shape of the

implied volatility, such as stochastic volatility models (Hull and White, 1987; Heston, 1993),

local volatility models (Dupire, 1994; Derman and Kani, 1994), jump diffusion models (Merton,

1976; Bates, 1991), and general equilibrium models (Liu, Pan, and Wang, 2004; Li, 2013). As

an alternative explanation, our model reveals that the premium for the at-the-money (ATM)

options can be rationalized when the economy is dominated by the VaR agent. Further, a sharp

downward trend is exhibited in the VaR economy as the option type goes from the out-of-

the-money (OTM) puts to the out-of-the-money (OTM) calls. More importantly, the downward

implied volatility curve steepens as the VaR agent dominates. Comparing volatility curves across

various jump scenarios yields an important observation that rarer and more severe negative

jumps result in a more pronounced smirk pattern. This is also one of our motivations for the

inclusion of the jump component. When the economy becomes more restricted by the VaR

constraint, the jump risk premium is pushed up because the VaR agent ignores the tail risk and

takes excessive equity exposure.

Second, our model sheds some light on flight to safety episodes. In bad economic conditions,

Gabaix (2012), Wachter (2013), Martin (2013), among others.
3See, for example, Basak and Shapiro (2001) and Alexander and Baptista (2006). Note that, in this sense

they rely on normal market distributions and ignore the empirically observed “skewed” and “fat-tailed” features
of stock return distributions, which can be generated by jump components.

4To make our model comparable with the case without jump, we calibrate the market volatility by taking into
account the impacts of the jump component. More details are discussed in the following sections.
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investors are inclined to hold less risky and more liquid securities, such as bonds, thereby result-

ing in low bond yields, which is known as a flight to safety (see e.g., Longstaff, 2004; Vayanos,

2004; Caballero and Krishnamurthy, 2008; Beber, Brandt, and Kavajecz, 2009; Routledge and

Zin, 2009). In particular, Caballero and Krishnamurthy (2008) and Routledge and Zin (2009)

find that the uncertainty aversion plays an important role in explaining this empirical fact. By

contrast, our model shows that the imposition of the VaR constraint results in a drop in the

risk-free rate in bad states. Because of the upward jump in the pricing kernel induced by the

VaR constraint, the bond price goes up and the yield drops at the VaR horizon. Intuitively,

facing bad states of the world, financial intermediations demand safer and more liquid assets to

meet the VaR constraints. After the VaR horizon, the zero coupon bond yield gradually returns

to its steady level, leading to an upward sloping term structure.

This article is related to the strand of literature on dynamic asset allocation and asset pricing

under risk measure constraints in a variety of settings, which includes Basak and Shapiro (2001),

Cuoco, He, and Isaenko (2008) and Shi and Werker (2012). The closest to our paper is Basak

and Shapiro (2001), who study the institutional investors’ optimal portfolio and wealth polices

subject to a VaR constraint and find that in the worst state of the world, the VaR agent takes on

larger risk than the unconstrained agent and consequently increases the stock market volatility.

We extend their paper by adding jump component. This is motivated by the ample evidence of

jumps in stock returns (see e.g., Bakshi, Cao, and Chen, 1997; Eraker, Johannes, and Polson,

2003) and the substantial impact of jump risk on portfolio choice and risk management (see e.g.,

Duffie, Pan, and Singleton, 2000; Liu, Longstaff, and Pan, 2003; Liu and Pan, 2003) documented

in the literature. We find that the addition of the jump component further amplifies the stock

market volatility, yielding a better fit to the volatility smirk in the options market than the

Basak and Shapiro’s model.

This paper also builds on the literature on rare events and the corresponding disagreement

over inferences regarding disasters. The model of rare disasters is shown to explain a wide range

of asset pricing puzzles: Liu, Pan, and Wang (2004) set up an equilibrium model in which a

representative agent is averse to the uncertainty of rare events and explore the implications for

option smirks. Bates (2008) examines how the presence of heterogeneous beliefs toward crash

risk helps explain various option pricing anomalies. Dieckmann (2011) explores the asset pricing

implications in an equilibrium model in which log-utility investors have heterogeneous beliefs

about the likelihood of rare events. Chen, Joslin, and Tran (2012) consider an equilibrium model
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with two Constant Relative Risk Aversion (CRRA) agents who disagree about rare event risk.

They study the risk sharing induced by heterogeneous beliefs and show that a small proportion

of optimistic investors can substantially reduce the impact of disaster risk on stock prices. Piatti

(2014) extends Chen, Joslin, and Tran (2012) by specifying a Lucas endowment economy with

multiple trees. More recently, the effect of the heterogeneous Epstein-Zin preference with a

rare event is examined by Chabakauri (2014). In contrast to previous studies that assume the

existence of heterogeneity in beliefs or preferences, we investigate the asset pricing implications of

an observed heterogeneity in financial markets, that is, the one generated by the VaR constraints

faced by many institutional investors.

The rest of the paper is organized as follows. Section 2.2 sets up the model. Section 2.3

characterizes the optimization problem of two CRRA agents with and without the constraint.

Section 2.4 investigates the market equilibrium. Section 2.5 explores the model implications for

asset dynamics and Section 2.6 concludes. All proofs are given in the appendices.

2.2 Model

We consider a continuous-time pure exchange economy with one consumption good (Lucas,

1978) and assume that this Lucas economy is populated by two types of agents: one agent

subject to the VaR constraint and one unconstrained agent. Both have CRRA utility functions

and derive utility from consumption streams over their lifetime [0, T ′]. The VaR constraint at

horizon T can be formulated as

P [W (T ) ≤W ] ≤ α, (2.2.1)

where the “floor” W and the loss probability α are exogenously specified. The VaR constraint

requires that the probability that the institutional investor’s wealth at the horizon falls below

the floor wealth W be α or less. Without loss of generality, we assume that the VaR horizon,

T , is shorter than the VaR agent’s investment horizon, T ′. There are two reasons for this

assumption. First, as shown by Basak and Shapiro (2001), the VaR agent’s wealth at the

VaR horizon is discontinuous over the states of world. This implies that a discontinuity in the

exogenous terminal consumption provision is needed to clear the goods market, which seems

too restrictive. To solve this problem, we make the aforementioned assumption so that the VaR

constraint is imposed on the intermediate wealth, which need not be directly governed by an

exogenous consumption supply. Second, the assumption is reasonable from a practical point
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of view, as the VaR horizon does not necessarily coincide with the investment (consumption)

horizon. In order to model rare events, we adopt a jump-diffusion model. The total endowment

(or dividend) dynamics are given as follows:

dδ (t)

δ (t−)
= µdt+ σdBt +

(
eZt − 1

)
dNt (2.2.2)

where B is a standard Brownian motion and N is a Poisson process with constant intensity λ. In

the absence of the jump component, the endowment is a standard geometric Brownian motion

with a constant growth rate µ and a constant volatility σ. Jump arrivals are captured by the

Poisson process N with intensity λ. Given a jump occurring at time t, the jump magnitude

is Zt, which is normally distributed with mean µJ and standard deviation σJ . As a result,

the mean percentage jump in the aggregate endowment is k = eµJ+ 1
2
σ2
J − 1. For the purpose

of modeling undesirable events, we focus our studies on negative jumps, that is k ≤ 0. Jump

amplitudes Zt and Zs are independent if t 6= s, and all three random shocks B, N , and Z are

independent of each other. A noteworthy feature of (2.2.2) is that the dividend growth is no

longer normally distributed because the presence of a negative jump risk produces skewness.

To this end, the inclusion of the jump component allows us to relax the assumption of the

normal market conditions and generates a large tail risk, which is consistent with the empirically

observed stock return distribution. Following Naik and Lee (1990), this specification of the

aggregate endowment provides a parsimonious way to incorporate both normal and rare events.

The market is assumed to be complete. Specifically, there are three securities available to

investors: a riskless bond in zero net supply, a risky stock in one unit net supply (which is the

claim to the stream of dividends generated by the Lucas tree), and a zero net supply option

written on the risky stock. We denote by B, S, O the price processes of the bond, the stock,

and the option, respectively. Finally, the state price density ξ is defined as a strictly positive

process such that ξB, ξS, and ξO are martingales.

2.3 Optimization under VaR constraint

In this section, we first state the VaR agent’s optimization problem. The institutional investor

has CRRA utility over intertemporal consumption c (t) and is subject to the VaR constraint.
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The optimization problem of the VaR agent can be formulated as follows:

max
(c(t),W (T−))

E

[∫ T
′

0

c (t)1−γ

1− γ dt

]
(2.3.1)

subject to E

[∫ T

0
ξ (t) c (t) dt+ ξ (T−)W (T−)

]
6 ξ (0)W (0) , (2.3.2)

E

[∫ T ′

T
ξ (t) c (t) dt|FT

]
6 ξ (T−)W (T−) , (2.3.3)

P (W (T−) ≤W ) ≤ α. (2.3.4)

The VaR constraint is imposed on the left limit of time-T wealth to maintain the standard

convention of right continuity of wealth processes. Obviously, the optimization of the VaR

agent is similar to Merton’s problem except for the additional VaR constraint. The static

budget constraint is split into two components, before and after the VaR horizon, as shown in

equations (2.3.2) and (2.3.3), to capture the effect of the VaR constraint on the optimization.

Following Basak and Shapiro (2001), we adopt the convex-duality approach (see e.g., Karatzas

and Shreve, 1998) to incorporate the VaR constraint and solve this problem using the martingale

representation method of Cox and Huang (1989). Proposition 2.3.1 characterizes the optimal

solutions for the constrained agent and the unconstrained agent.5

Proposition 2.3.1. The optimal consumption policies and time-T optimal wealth of the two

agents are

c (t) = (yξ (t))
− 1
γ , t ∈ [0, T ′], (2.3.5)

cV aR (t) =





(yV aR1ξ (t))
− 1
γ t ∈ [0, T ),

(yV aR2ξ (t))
− 1
γ t ∈ [T, T ′],

(2.3.6)

W (T−) =
1

ξ (T−)
y
− 1
γE

[∫ T ′

T
ξ (t)

1− 1
γ dt|FT

]
(2.3.7)

WV aR (T−) =





1
ξ(T−)y

− 1
γ

V aR1E
[∫ T ′
T ξ (t)

1− 1
γ dt|FT

]
if ξ (T−) < ξ

W if ξ 6 ξ (T−) < ξ,

1
ξ(T−)y

− 1
γ

V aR1E
[∫ T ′
T ξ (t)

1− 1
γ dt|FT

]
if ξ 6 ξ (T−)

(2.3.8)

5In what follows, we use the subscript ”VaR” to represent the VaR agent. For example, cV aR represents the
consumption of the VaR agent.
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where the Lagrange multipliers y, yV aR1, and the FT −measurable random variable yV aR2 satisfy

ξ (0)W (0) = y
− 1
γ ∗ E

[∫ T ′

0
ξ (t)

1− 1
γ dt

]
, (2.3.9)

ξ (0)WV aR (0) = E




[
ξ (T−)W − y−

1
γ

V aR1E
[∫ T ′
T ξ (t)

1− 1
γ dt|FT

]]

∗1{
1
W
y
− 1
γ

V aR1E

[∫ T ′
T ξ(t)

1− 1
γ dt|FT

]
6ξ(T−)<ξ

}



+y
− 1
γ

V aR1 ∗ E
[∫ T ′

0
ξ (t)

1− 1
γ dt

]
, (2.3.10)

y
− 1
γ

V aR2 ∗ E
[∫ T ′

T
ξ (t)

1− 1
γ dt

]
=

[
ξ (T−)W − y−

1
γ

V aR1E

[∫ T ′

T
ξ (t)

1− 1
γ dt|FT

]]

∗1{
1
W
y
− 1
γ

V aR1E

[∫ T ′
T ξ(t)

1− 1
γ dt|FT

]
6ξ(T−)<ξ

}

+y
− 1
γ

V aR1 ∗ E
[∫ T ′

T
ξ (t)

1− 1
γ dt

]
, (2.3.11)

and ξ ≡ 1
W y
− 1
γ

V aR1E
[∫ T ′
T ξ (t)

1− 1
γ dt|FT

]
, where ξ is defined by P

(
ξ (T−) ≥ ξ

)
≡ α. The VaR

constraint is binding if and only if ξ < ξ.

Proposition 2.3.1 shows that the optimal consumption strategy is governed by the Lagrange

multipliers, which can be thought of as the shadow price of the state. In accordance with

the separation of the VaR agent’s budget constraint, the VaR agent gives different weightings

to pre-VaR and post-VaR periods, which are reflected by the distinction between yV aR1 and

yV aR2 . If the Lagrange multiplier before the VaR horizon is larger than that after the VaR

horizon, i.e., yV aR1 > yV aR2 , the VaR agent is insuring himself. By contrast, if the two Lagrange

multipliers are equal, the VaR constraint slackens and the optimization problem collapses to an

unconstrained one, the solution to which is shown in equation (2.3.5). It is worth noting that

for the constrained agent, the post-horizon consumption not only provides him with utility but

also contributes to meeting the VaR constraint.

Moreover, if the VaR constraint is binding, the VaR agent’s optimal horizon wealth can be

classified into three distinct regions: in both the regions of “good states”
[
ξ (T−) < ξ

]
and

“bad states”
[
ξ (T−) > ξ̄

]
, his terminal wealth is decreasing in ξ(T−), while in the region of

“intermediate states”
[
ξ 6 ξ (T−) < ξ̄

]
, his terminal wealth is kept constant at the portfolio

insurance level, which is W . The definition of the upper bound ξ̄ implies that the probability
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under the bad states region stays constant at α. In contrast to the case in partial equilibrium

(Zhang, Zhou, and Zhou, 2016), the upper bound for the pricing kernel is no longer exogenous

as the only exogenous process is the dividend process generated by the Lucas tree.

Figure 2.1 illustrates the optimal terminal wealth of the VaR agent and of the unconstrained

agent.6 Consistent with Proposition 2.3.1, in both regions of good states and bad states, the

VaR agent behaves like the unconstrained agent. In contrast, in the intermediate states the VaR

agent adopts a portfolio insurance strategy as the portfolio insurance (PI) agent does. A striking

feature of the VaR agent’s horizon wealth strategy is that he leaves the bad states fully uninsured

as they are very costly to insure against; his wealth is even lower than the unconstrained agent’s

wealth in the worst state for any given ξ(T−). In other words, the VaR agent ignores losses in

the upper tail of the ξ(T−) distribution. This worse performance of the VaR agent unveils a

shortcoming of VaR that it creates incentive to take on tail risk. As one of the motivations of

this study, it is interesting to investigate how this feature drives the dynamics of asset prices

when risk management becomes more relevant and rare events are more likely to occur.

2.4 Market Equilibrium

In this section, we use the solutions of agents’ optimization shown in Proposition 2.3.1 to inves-

tigate market equilibrium. Applying the goods market clearing conditions yields the equilibrium

state price density. Proposition 2.4.1 solves the equilibrium state price density and its dynamics.

Proposition 2.4.1. The equilibrium state price density is given by

ξ (t) =





(
δ(t)

y
− 1
γ +y

− 1
γ

V aR1

)−γ
, t ∈ [0, T ),

(
δ(t)

y
− 1
γ +y

− 1
γ

V aR2

)−γ
, t ∈ [T, T ′],

(2.4.1)

where y, yV aR1, yV aR2 satisfy the budget constraints specified in Proposition 1. The jump size of

the equilibrium state price density at the VaR horizon is

η = ln (ξ (T−) /ξ (T )) = −γ ln

((
y
− 1
γ + y

− 1
γ

V aR2

)
/

(
y
− 1
γ + y

− 1
γ

V aR1

))
≤ 0. (2.4.2)

6If not explicitly stated otherwise, all numerical illustrations are based on the assumption that both agents
are initially endowed with half of the total wealth in what follows.
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Moreover, for s ∈ [0, T ) and t ∈ [s, T ′), the equilibrium state price density is given by

ξ (t) = ξ (s) exp

{
−γ
(
µ− 1

2
σ2

)
(t− s)− γσ (Bt −Bs) +

Nt∑

i=Ns+1

(−γZi)− η1{t≥T}

}
. (2.4.3)

Proposition 2.4.1 presents the equilibrium state price density in the economy populated

by one institutional agent subject to the VaR constraints and one unconstrained agent. It is

worth emphasizing the importance of the upward jump in the pricing kernel, namely e−η. The

distinction between the VaR economy and the benchmark economy is that the equilibrium state

price density in the former economy possesses a potential jump at the VaR horizon. As shown in

equation (2.4.1), a jump in the pricing kernel at the VaR horizon happens if the VaR constraint

is binding, which means that the VaR agent is in the insured states with wealth W . This horizon

wealth is the claim against the post-horizon consumption, and the VaR agent intends to increase

the post-horizon consumption since he has a much higher floor wealth as a result of postponing

consumption to meet the VaR constraint. Therefore, the pricing kernel needs an upward jump

to counteract this upward demand in consumption in order to clear the goods market; otherwise,

the VaR agent will consume too much in the post-VaR period with the insured wealth W , and the

market clearing conditions are unlikely to be satisfied. It is important to note that the upward

jump in the pricing kernel at the VaR horizon is conditional on whether the VaR constraint is

binding, but not on the Poisson jump in the endowment.

At the VaR horizon, the VaR agent’s optimal wealth can be classified into three regions

(see Figure 2.1). Accordingly, the Lagrange multipliers also fall into three distinct regions as

illustrated in Figure 2.2. The left panel is for the Lagrange multiplier in the unconstrained case,

and the right panel is for the Lagrange multipliers in the constrained case. In the intermediate

region, as the state of the world gets worse, the constraint becomes tighter and the shadow price

of such a constraint then increases. For the VaR agent, the Lagrange multiplier after the VaR

horizon, yV aR2 , decreases when the state deteriorates since the insured wealth W is fixed and

is more valuable in bad economic conditions. Comparing our results with those in Basak and

Shapiro (2001) reveals how the introduction of rare events amplifies the jump in the equilibrium
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pricing kernel.78

Let Wem be the price of the equity market portfolio, which is defined as the aggregate

optimally invested wealth in risky securities. Its market dynamics can be represented by

dWem (t) + δ (t) dt

Wem (t)
= µem (t) dt+ σem (t) dBt +

(
eZt − 1

)
dNt + ηdMt, (2.4.4)

where Mt is a (right-continuous) step function defined by Mt ≡ 1{t≥T}, so that dMt is a measure

assigning unit mass to time T , and k = eµJ+ 1
2
σ2
J−1. Proposition 2.4.2 presents the equity market

drift and volatility in equilibrium and contrasts them with the benchmark (B) economy without

constrained agents.

Proposition 2.4.2. The equilibrium market price, volatility, and risk premium in a benchmark

economy with only unconstrained agents, ∀t ∈ [0, T ′], are given by

WB
em (t) = δ (t)

{
eA(T ′−t) − 1

}

A
, σBem (t) = σ, µBem (t) = µ−A,

where A ≡ − (γ − 1)
(
µ− γ

2σ
2
)

+ λ
(
e−(γ−1)µJ+ 1

2
(γ−1)2σ2

J − 1
)

. Before the VaR horizon, the

equilibrium market price in the economy with one CRRA-utility long-lived VaR agent and one

CRRA-utility unconstrained agent is

W V aR
em (t) = δ (t)

[
eA(T−t) − 1

A
+ e
−η
(

1− 1
γ

)
eA(T ′−t) − eA(T−t)

A

]

+W
∞∑

n=0

p (n)


eΠ(t)−γΨ(n)




N
(
−d2

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−N
(
−d2 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)








− y
− 1
γ

V aR1

y
− 1
γ + y

− 1
γ

V aR1

e
−η
(

1− 1
γ

)
δ (t)

{
eA(T ′−T ) − 1

}

A

∗
∞∑

n=0

p (n)


eΓ(t)+(1−γ)Ψ(n)




N
(
−d1

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−N
(
−d1 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)






 , (2.4.5)

7To make our model comparable with the case without a jump, we calibrate the market volatility by taking into
account the impacts of the jump component. Let σ denote the volatility associated with the diffusive component,
λ the jump arrival intensity, and µJ and σJ the mean and standard deviation of the random jump magnitude.
Then, the total market volatility is calculated as

√
σ2 + λ (µ2

J + σ2
J). All of the following results stemming from

Basak and Shapiro (2001) are obtained using the calibrated market volatility instead of the diffusive volatility σ.
8Unreported results show that even if the jump parameter values are mild, such as µJ = −0.02 and λ = 0.5,

the jump in the equilibrium pricing kernel can be twice as large as the case without a jump.
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where N (.) is the standard normal cumulative distribution function and

Ψ (n) ≡ nµJ ,

Γ (t) ≡
(

(1− γ)2 σ
2
n

2
+ (1− γ)

(
µ− 1

2
σ2

))
(T − t) ,

Π (t) ≡
(
γ2σ

2
n

2
− γ

(
µ− 1

2
σ2

))
(T − t) ,

p(n, T − t) =
exp (−λ(T − t)) [λ(T − t)]n

n!
,

d1 (x) ≡ d2 (x) + σn
√
T − t,

d2 (x) ≡ ln δ(t)
x +

(
µ− 1

2σ
2
)

(T − t)
σn
√
T − t ,

σ2
n ≡ σ2 + σ2

J

n

(T − t) .

The market volatility ratio between the VaR economy and the benchmark economy without VaR

constraints is given by

σV aRem (t) = qV aRem (t)σBem (t) ,

where

qV aRem (t) = 1− W

WV aR
em (t)

∞∑

n=0

p (n)


eΠ(t)−γΨ(n)




N
(
−d2

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−N
(
−d2 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)








− W

WV aR
em (t)

∞∑

n=0

p (n)


e

Π(t)−γΨ(n)

σn
√
T − t





φ
(
−d2

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−φ
(
−d2 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)








+

y
− 1
γ

V aR1

y
− 1
γ +y

− 1
γ

V aR1

e−η(1− 1
γ )

{
eA(T ′−T)−1

}
A δ (t)

WV aR
em (t)

∗
∞∑

n=0

p (n, T − t)


e

Γ(t)+(1−γ)Ψ(n)

σn
√
T − t





φ
(
−d1

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−φ
(
−d1 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)






 (2.4.6)

After the VaR horizon, market prices, volatility, and risk premia in both economies are identical.

Consequently, before the VaR horizon,

(i) W V aR
em (t) > WB

em (t) ,

(ii) σV aRem (t) > σBem (t) and µV aRem (t) > µBem (t) under some certain regions.

As shown in Proposition 2.4.2, the equilibrium market volatility in the benchmark economy

coincides with the endowment volatility, while the equilibrium risk premium is the difference
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between the endowment growth rate and a component A, which is negative for γ > 1 and λ > 0.

In the case of log utility and no jumps, A becomes zero and the equilibrium risk premium reduces

to that in Basak and Shapiro’s case. The market portfolio price in the VaR economy is higher

than that in the benchmark economy. This follows from the fact that the VaR agent values

post-horizon dividends more than pre-horizon consumption as these dividends help him meet

the VaR constraint. The pre-horizon value of the equity market is then increased since equities

are claims against the post-horizon dividends, which is clearly illustrated in Figure 2.3.

Consistent with Basak and Shapiro (2001), equation (2.4.5) shows that the optimal time-t

wealth consists of three components: a myopic component that maximizes the Sharpe ratio and

represents the optimal wealth of the benchmark economy (in case of η = 0) and two option

components that correspond to a long position in an option whose payoff is the floor wealth

and a short position in an option whose payoff is related to the endowments. In contrast to

Basak and Shapiro (2001), the option prices in the presence of jump risk do not immediately

follow from the Black-Scholes option pricing formula but rather are computed as the expectation

of the Black-Scholes option prices conditional on jumps realized with respect to the jump risk

factor. The distinction between the two cumulative distribution functions in equation (2.4.5)

captures the probability that one adopts the insurance strategy. Here n denotes the number

of jumps and p(n) is the corresponding probability. The first line of equation (2.4.5) collapses

to the benchmark case when η = 0. Note that even for the case of log preference, the equity

price is affected by the heterogeneity induced by the VaR constraint, which is different from

the case of heterogeneity in beliefs (see e.g., Basak, 2005). Given the equilibrium market price,

we can easily derive the market volatility in the VaR economy and the volatility ratio between

two economies, which is denoted by qV aRem . In what follows, some numerical illustrations are

presented to facilitate the understanding of the market equilibrium.

Figure 2.4 shows the optimal wealth of the two agents in the VaR economy at time t prior

to the VaR horizon. Apparently, the optimal pre-horizon wealth of the unconstrained agent is

a linear function of the dividend. In both the good and bad states, the optimal pre-horizon

wealth of the VaR agent behaves similarly to that of the unconstrained agent. In contrast, in

the intermediate region, the VaR agent’s wealth is much higher than the unconstrained agent’s

wealth because he just begins to insure against the intermediate state. This option-like payoff is

also documented in Weinbaum (2009) who shows that the heterogeneity in risk aversion makes

agents demand non-linear payoffs.
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Figure 2.5 illustrates the time-t market volatility in the VaR economy relative to the bench-

mark economy. The volatility in the benchmark economy stays constant, which is reflected

by the straight dashed line against the dividend level. In the two extreme states, the market

volatility in the VaR economy acts similarly to the benchmark economy. In between, it fluc-

tuates considerably; when the dividend is not too low, the VaR agent elevates the demand for

risky assets to achieve the portfolio insurance level, but when the dividend is already very low,

it is unlikely to satisfy the VaR constraint and he simply behaves like the unconstrained agent.

Thus, the fluctuation of the volatility in the VaR economy is due to insuring against the inter-

mediate states. A comparison between our model and Basak and Shapiro’s model reveals that

the introduction of the jump component magnifies the oscillation of market volatility. Figure 2.6

shows a sensitivity analysis of qV aRem to the VaR constraint parameters α and W . Tighter VaR

constraint (lower α and higher W ) makes the market more volatile.

2.5 Equilibrium Implications

In this section, we discuss several implications of our model. Specifically, we investigate the

shape of the implied volatility curve in the options market, the amplification effect on the jump

risk premium, and the upward sloping term structure after the VaR horizon.

2.5.1 Implied Volatility Curve in the VaR Economy

As documented in the existing literature,9 at-the-money (ATM) options are priced with a pre-

mium and out-of-the-money (OTM) options with an even higher premium, leading to a smirk

pattern of the implied volatility curve. Several previous studies employ model uncertainty or

heterogeneous beliefs to explain this puzzling shape of the volatility curve implied by the option

prices (see e.g., Liu, Pan, and Wang, 2004; Bates, 2008; Li, 2013). In this section, we show

that the presence of the VaR constraint provides a new mechanism through which such a smirk

pattern is generated.

Equipped with the equilibrium state price density, we can price any derivative securities in

this economy. Let Ct be the time-t price of a European-style call option written on risky stock,

9See e.g., Jackwerth and Rubinstein (1996) and Rubinstein (1994).
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Sτ , with strike price K maturing at time τ .10 By no arbitrage condition, we have

Ct = Et

[
ξτ
ξt

max (Sτ −K, 0)

]
. (2.5.1)

Alternatively, we can use risk-neutral valuation to price derivatives. Specifically, the ex-dividend

stock price of the VaR economy shown in Proposition 2.4.2 can be rewritten as

dSt
St−

= (r − q)dt+ qV aRem σdBQ
t + qV aRem

(
eZt − 1

)
dNt − e−ηλQkQdt, (2.5.2)

where λQ = λe−γµJ+ 1
2
γ2σ2

J , kQ = (1+k)e−γσ
2
J−1 and r = γµ− γ(γ+1)

2 σ2−λ
(
e−γµJ+ 1

2
γ2σ2

J − 1
)

.11

Applying the option pricing method proposed in Merton (1976), we obtain the price of European

option prices.12 Specifically, we price one-month European-style options, both calls and puts,

with the strike to spot prices ratios ranging from 0.9 to 1.1 and quote the option prices in terms

of the Black-Scholes implied volatility.

To quantitatively study the optimal portfolio strategies under the VaR constraint in a jump

diffusion model, we carry out some numerical experiments. Here, we consider three different

jump cases: µJ = −1% jumps once every three years, µJ = −10% jumps once every 25 years, and

µJ = −20% jumps once every 100 years. The price of an option can have different sensitivities

to both infinitesimal and large changes in the price of the underlying stock. In other words, it

is capable of providing separate exposures to both the diffusive and jump risks and therefore is

non-redundant. For example, the deep OTM put options are more sensitive to the tail risk and

are effective in distinguishing the two risk factors.

Figure 2.7 depicts the Black-Scholes implied volatility curves with varying initial wealth

shares of the VaR agent or equivalently the extent to which the economy is restricted by the

VaR constraint in three jump size scenarios.13 In the first case with jump amplitude µJ = −1%,

10The security market clearing conditions imply that the aggregate wealth of this economy is equal to the total
wealth of the two agents invested in the securities. Both bond and option are in zero net supply. Thus, the
equilibrium price of the risky stock is the aggregate wealth of the economy, that is, Sτ = WV aR

em .
11In the following analysis, the dividend yield is set at q = 3%. Put differently, we are not using the equilibrium

dividend yield without much loss of generality. The dividend yield is a bit complicated as it is time varying in our
setting due to the finite horizon. However, we can change the model setup to examine the infinite horizon case.
Alternatively, we can set the horizon T ′ that is sufficiently large compared with the maturity of the options.

12The option prices in the case of jump diffusion are a weighted average of BS option prices. Please refer to,
for example, Merton (1976) and Bates (2008) for more details.

13Unlike in the models with heterogeneous beliefs, the Lagrange multiplier cannot be explicitly obtained in our
setting because it is complicated to track the wealth distribution between two agents at time t. To address this
issue, we instead use initial wealth to characterize the equilibrium jump risk premium without loss of generality
(see, e.g., Bates, 2008).
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the total market volatility is
√
σ2 + λ

(
µ2
J + σ2

J

)
= 15.19%. In the absence of the VaR constraint,

the BS implied volatility of the ATM options is very close to the volatility of the underlying

asset, implying that the model cannot capture the premium embedded in ATM options. On the

contrary, with an increasing wealth share of the VaR agent, our setting can predict the premium

for the ATM options.

Now we turn to examine the option prices across moneyness. As illustrated in Figure 2.7,

while in the benchmark economy the implied volatility curve is rather flat, a sharp downward

trend is exhibited in the VaR economy as the option type goes from the OTM puts to the OT-

M calls. More importantly, the downward implied volatility curve steepens as the VaR agent

dominates. This is consistent with the excess volatility that is observed in Figure 2.5; the intro-

duction of the VaR constraint amplifies the volatility of the underlying asset, especially in the

bad state, and therefore drives up the price of the OTM put. Another crucial ingredient that

explains the smirk pattern is the jump component in the equilibrium pricing kernel as illustrat-

ed in equation (2.5.2). When the economy becomes more restricted by the VaR constraint, the

jump risk premium is pushed up. As mentioned previously, the price of OTM put options can

effectively reflect the jump risk premium. In this sense, the BS implied volatility backed out

from the deep OTM put increases relative to the ATM option. Consequently, we end up with

a steep volatility curve, which is in line with the volatility smirk documented in the literature.

Comparing the volatility curves across the four panels of Figure 2.7 yields the important ob-

servation that as the negative jump becomes rarer and more severe, the smirk pattern becomes

more pronounced. This is consistent with one of our motivations for the inclusion of the jump

component. As illustrated in the top left panel, the VaR constraint alone cannot generate a

quantitatively reasonable level of implied volatility empirically observed in financial markets. It

is worth emphasizing that the maturity of the option does not have to match the investment

horizon as the rebalancing of the portfolio is allowed at each future point in time.

2.5.2 Jump Risk Premium

In this section, we will discuss how the presence of the VaR constraint affects the jump risk

premium. Using the equilibrium state price density in equation (2.4.3), one can easily derive

the jump risk premium in the VaR economy,

Jump Risk Premium = e−η
λQ

λ
= e−ηe−γµJ+ 1

2
γ2σ2

J , (2.5.3)
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where λ and λQ are the jump intensity associated with the jump process N under the physical

measure P and the risk neutral measure Q, respectively. A larger λQ over λ results in a higher

market price of the jump risk. Likewise, as the jump amplitude of the pricing kernel induced

by the VaR constraint becomes larger, (e−η), the jump risk premium becomes higher. If η = 0,

then our results reduce to those of Naik and Lee (1990). That is, the jump risk premium is

given by λQ over λ. As depicted in Figure 2.8, the extra component e−η resulting from the VaR

constraint pushes up the jump risk premium, while the ratio of λQ to λ is determined by the

jump parameters regardless of the wealth distribution of the two agents.

Figure 2.8 illustrates how the initial wealth distribution of the two agents affects the e-

quilibrium price of the jump risk. When the wealth is mainly owned by the VaR agent, the

amplification effect on the jump risk premium imposed by the VaR constraint is manifest. The

jump risk premium in the VaR economy is about four times as large as that in the unconstrained

economy, which is set at one. The intuition is that when the economy becomes more restricted

by the VaR constraint, the jump risk premium is enlarged due to the fact that the VaR agent

ignores the tail risk and takes excessive equity exposure.

2.5.3 Term Structure of Interest Rates

In this section, we explore the equilibrium term structure of interest rates in the VaR economy.

In the absence of the VaR constraint, interest rates stay constant across different maturities,

which is clearly shown in the left panel of Figure 2.9. In contrast, the constraint-induced jump

in the pricing kernel alters the shape of the term structure after the VaR horizon. The price

of a zero-coupon bond with a face value of $1 maturing at date τ is denoted by B(t, τ). For

τ ∈ (t, T ), the bond prices are

B(t, τ) =
1

ξ (t)
Et [ξ (τ)]

= exp

{
−γ
(
µ− γ + 1

2
σ2

)
(T − t) + λ (T − t)

(
e−γµJ+ 1

2
γ2σ2

J − 1
)}

, (2.5.4)

and the zero coupon bond yields are

y(t, τ) = − lnB(t, τ)

(τ − t)

= γµ− γ (γ + 1)

2
σ2 − λ

(
e−γµJ+ 1

2
γ2σ2

J − 1
)
. (2.5.5)
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However, when the maturity exceeds the VaR horizon, e.g., T ≤ τ ≤ T ′, the bond prices are

given by

B(t, τ) =
1

ξ (t)
Et [ξ (τ)]

= e−η exp

{
−γ
(
µ− γ + 1

2
σ2

)
(T − t) + λ (T − t)

(
e−γµJ+ 1

2
γ2σ2

J − 1
)}

,(2.5.6)

and the zero coupon bond yields then become

y(t, τ) = − lnB(t, τ)

(τ − t)

=
η

τ − t + γµ− γ (γ + 1)

2
σ2 − λ

(
e−γµJ+ 1

2
γ2σ2

J − 1
)
. (2.5.7)

As shown in equation (2.5.5), before the VaR horizon, the zero coupon bond yields are indepen-

dent of τ and thus the term structure is completely flat. By contrast, when the bond maturity

is longer than the VaR horizon, the bond price increases. This follows from the fact that the

pricing kernel has a potential upward jump and the zero coupon bond becomes more valuable

for the agents because its payoff remains unchanged irrespective of whether the jump takes

place or not. We can see from equation (2.5.6) that the extra component e−η is greater than

or equal to one as η is a non-positive number. As a consequence, the zero coupon bond yields

likely experience a drop at the VaR horizon. This is consistent with flight to safety phenomenon

where in times of economic distress, investors rebalance their portfolios toward less risky and

more liquid securities, especially in the bond markets (see e.g., Longstaff, 2004; Vayanos, 2004;

Caballero and Krishnamurthy, 2008; Beber, Brandt, and Kavajecz, 2009; Routledge and Zin,

2009). In particular, both Caballero and Krishnamurthy (2008) and Routledge and Zin (2009)

emphasize uncertainty aversion as a central ingredient in flight to safety episodes. In contrast,

our model reveals that flight to safety can also be attributed to the VaR constraints imposed

on financial intermediations as they need safe and liquid assets to satisfy the constraints at the

VaR review. After the VaR horizon, the interest rates converge to the original level and display

an upward trend as the maturity τ increases. As shown in equation (2.5.7), the first component

is driven by the VaR constraint and so it does not emerge before the VaR horizon. Figure 2.9

illustrates the pattern of the term structure of the interest rates described above.
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2.6 Conclusion

In this paper, we study the implications of the VaR constraint imposed by regulators for as-

set dynamics in a general equilibrium model with rare events. First, our model amplifies the

fluctuation of the equilibrium market volatility generated by the model in Basak and Shapiro

(2001) and provides an explanation for excess stock market volatility. Second, we offer a new

mechanism that helps explain the prevalent implied volatility smirk in the option market. Fur-

ther, the VaR constraint can explain the dramatic increase in the jump risk premium in the bad

economic conditions. Finally, the VaR constraint results in a potential drop in the zero coupon

bond yields at the VaR horizon. After the VaR horizon, bond yields converge to the original

level, and thus, the term structure exhibits an upward sloping trend.

There are several avenues for future research. First, it would be interesting to examine what

happens in the option market. In the current framework, the consumption share is a function

of endowment only. Thus, no other assets are needed besides the aggregate endowment claim,

and agents invest all wealth in the stock market. Without the demand for options, the risk

sharing between the two types of agents can hardly be studied (see e.g., Chen, Joslin, and Tran,

2012; Chen, Joslin, and Ni, 2014). Second, allowing for time-varying jump intensity will likely

produce more realistic asset dynamics (see e.g., Wachter, 2013).
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2.8 Appendix

Proof of Proposition 1

Applying the standard martingale representation approach yields optimal consumption policies

and optimal horizon wealth for an unconstrained agent. Regarding the solutions for the VaR

agents, one can see the Proof of Proposition 1 in the Appendix of Basak and Shapiro (2001)

for reference since we completely follow Basak and Shapiro (2001) in deriving optimal horizon

wealth for agents subject to such a constraint.

Proof of Proposition 2

Using the goods market clearing conditions, we get the equilibrium state price density. Applying

Itô’s lemma to equation (2.4.1) yields the process for the pricing kernel in our VaR economy,

namely equation (2.4.3).

Proof of Proposition 3

Given the equilibrium state price density given in equation (2.4.3), for s ∈ [t, T ),

Et [ξ (s)] = ξ (t) exp

{
−γ
(
µ− 1

2
σ2

)
(s− t) +

1

2
γ2σ2 (s− t)

}

∗
∞∑

n=0

[E exp Σn (−γ (µJ + σJε2)) |Ns −Nt = n] Pr (Ns −Nt = n)

= ξ (t) exp

{
−γ
(
µ− 1

2
σ2

)
(s− t) +

1

2
γ2σ2 (s− t)

}

∗




∞∑

n=0

(
ϕ−γ(µJ+σ

J
ε2)λ (s− t)

)n

n!
e−λ(s−t)





= ξ (t) exp

{
−γ
(
µ− 1

2
σ2

)
(s− t) +

1

2
γ2σ2 (s− t)

}

∗ exp
{
λ (s− t)

(
ϕ−γ(µJ+σ

J
ε2) − 1

)}

= ξ (t) exp

{
−γ
(
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2
σ2
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(s− t) +

1

2
γ2σ2 (s− t)

}

∗ exp
{
λ (s− t)

(
e−γµJ+ 1

2
γ2σ2

J − 1
)}

= ξ (t) exp

{
−γ
(
µ− γ + 1

2
σ2

)
(s− t) + λ (s− t)

(
e−γµJ+ 1

2
γ2σ2

J − 1
)}

, (2.8.1)
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where ϕ is the moment generating function. Similarly, it is easy to verify

Et

[
ξ (s)

1− 1
γ

]
= ξ (t)

1− 1
γ exp





− (γ − 1)
(
µ− γ

2σ
2
)

(s− t)
+λ (s− t)

(
e−(γ−1)µJ+ 1

2
(γ−1)2σ2

J − 1
)



 .

Let A ≡ − (γ − 1)
(
µ− γ

2σ
2
)

+ λ
(
e−(γ−1)µJ+ 1

2
(γ−1)2σ2

J − 1
)

. Then, the above equation implies

E

[∫ T ′

T
ξ (t)

1− 1
γ dt|FT

]
=

∫ T ′

T
E
(
ξ (t)

1− 1
γ dt|FT

)

= ξ (T )
1− 1

γ

∫ T ′

T
eA(t−T )dt

= ξ (T )
1− 1

γ
eA(T ′−T ) − 1

A
. (2.8.2)

Therefore, the equilibrium price for the market portfolio in a benchmark economy with only

unconstrained CRRA agents can be computed ∀t ∈ [0, T ′],

WB
em (t) =

1

ξ (t)
E

[∫ T ′

t
c (t) ξ (s) ds|Ft

]

=
1

ξ (t)
y
− 1
γ

[∫ T ′

t
E
(
ξ (s)

1− 1
γ ds|Ft

)]

=
1

ξ (t)
y
− 1
γ ξ (t)

1− 1
γ
eA(T ′−t) − 1

A

= δ (t)
eA(T ′−t) − 1

A
. (2.8.3)

Applying Itô’s lemma yields

dWB
em (t) =

eA(T ′−t) − 1

A
dδ (t)− eA(T ′−t)δ (t) dt

= WB
em (t)

{
µdt+ σdBt +

(
eZt − 1

)
dNt

}
−
(
AWB

em (t) + δ (t)
)
dt

= WB
em (t)

{
(µ−A) dt+ σdBt +

(
eZt − 1

)
dNt

}
− δ (t) dt.

Thus, the drift and volatility of the benchmark economy are given by µBem (t) = µ − A and

σBem (t) = σ. In contrast to the benchmark economy, there is an upward jump in the equilibrium

pricing kernel, which is captured by −η in the VaR economy. Therefore, the relation between

aggregate endowment and state price density is δ (T−) =

(
y
− 1
γ + y

− 1
γ

V aR1

)
ξ (T−)

− 1
γ , which is in
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contrast to δ (T−) = (yξ (T−))
− 1
γ in the benchmark economy. The optimal horizon wealth for

the VaR agents in both regions of good and bad states can be rewritten as

1

ξ (T−)
y
− 1
γ

V aR1E

[∫ T ′

T
ξ (t)

1− 1
γ dt|FT

]

=
1

ξ (T−)
y
− 1
γ

V aR1ξ (T )
1− 1

γ
eA(T ′−T ) − 1

A

=
y
− 1
γ

V aR1

y
− 1
γ + y

− 1
γ

V aR1

δ (T−) e
−η
(

1− 1
γ

)
eA(T ′−T ) − 1

A
.

Therefore, the optimal wealth of the VaR agent at the horizon is rewritten as

WV aR (T−) =





y
− 1
γ

V aR1

y
− 1
γ +y

− 1
γ

V aR1

δ (T−) e
A(T ′−T)−1

A if δ (T−) > δ

W if δ < δ (T−) 6 δ

y
− 1
γ

V aR1

y
− 1
γ +y

− 1
γ

V aR1

δ (T−) e
A(T ′−T)−1

A if δ (T−) 6 δ

.

Similarly, one can get the lower bound for the pricing kernel, which characterizes the regions of

horizon wealth

ξ (T−) <
1

W
y
− 1
γ

V aR1E

[∫ T ′

T
ξ (t)

1− 1
γ dt|FT

]

ξ (T−) <

(
We

η
(

1− 1
γ

)
y

1
γ
V aR1

A

eA(T ′−T ) − 1

)−γ
.

Thus, using this budget constraint, the lower bound for equilibrium state price density is

ξ ≡
(
y

1
γ
V aR1We

η
(

1− 1
γ

)
A

eA(T ′−T ) − 1

)−γ
.

This bound can be rewritten in terms of the upper bound for aggregate endowment

δ ≡ y−1/γ + y−1/γ
V aR1

y
−1/γ
V aR1

We
η
(

1− 1
γ

)
A

eA(T ′−T ) − 1
.

Given that ξ is defined by P
(
ξ (T−) ≥ ξ

)
≡ α, we get the lower bound of dividend

δ ≡ ξ−1/γ
(
y−1/γ + y−1/γ

V aR1

)
.
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Equipped with the upper and lower bounds for aggregate endowment and pricing kernel, we can

fully characterize the distribution of the optimal horizon wealth for the agents subject to the

VaR constraint. Consequently, using the market clearing conditions, we can determine the price

for the market portfolio before the VaR horizon.

Before calculating the equilibrium market price in an economy with one VaR-constrained a-

gent and one unconstrained agent, we first compute the unconstrained agent’s prehorizon wealth.

According to the definition that the wealth is a claim against all future consumption, the un-

constrained agent’s prehorizon wealth is given by

W (t) =
1

ξ (t)
E

[∫ T ′

t
c (t) ξ (s) ds|Ft

]

=
1

ξ (t)
E

[∫ T

t
+

∫ T ′

T
c (t) ξ (s) ds|Ft

]

=
1

ξ (t)
E

[∫ T

t
y
− 1
γ ξ (s)1−1/γ ds|Ft

]
+

1

ξ (t)
Et

[
ET

[∫ T ′

T
y
− 1
γ ξ (s)1−1/γ ds

]]

= (yξ (t))
− 1
γ

[
eA(T−t) − 1

A
+ e
−η
(

1− 1
γ

)
eA(T ′−t) − eA(T−t)

A

]

=
y
− 1
γ

y
− 1
γ + y

− 1
γ

V aR1

δ (t)

[
eA(T−t) − 1

A
+ e
−η
(

1− 1
γ

)
eA(T ′−t) − eA(T−t)

A

]
. (2.8.4)

Similarly, we can easily compute the VaR agents prehorizon wealth,

W V aR (t) =
1

ξ (t)
E

[∫ T

t
cV aR (t) ξ (s) ds+ ξ (T−)WV aR (T−) |Ft

]

=
1

ξ (t)
y
− 1
γ

V aR1Et

[∫ T ′

t
ξ (s)

1− 1
γ ds

]

+
1

ξ (t)
Et

[
ξ (T−)

[
W − 1

ξ (T−)
y
− 1
γ

V aR1ET

[∫ T ′

T
ξ (s)

1− 1
γ ds

]]
|δ < δ (T−) 6 δ

]

=
1

ξ (t)
y
− 1
γ

V aR1Et

[∫ T ′

t
ξ (s)

1− 1
γ ds

]

+
1

ξ (t)
WEt




 δ (T−)

y
− 1
γ + y

− 1
γ

V aR1



−γ

|δ < δ (T−) 6 δ




− 1

ξ (t)
Et


e−η

(
1− 1

γ

)
y
− 1
γ

V aR1


 δ (T−)

y
− 1
γ + y

− 1
γ

V aR1




1−γ
eA(T ′−T ) − 1

A
|δ < δ (T−) 6 δ


 .

(2.8.5)
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We compute the terms in (2.8.5) separately

Et

[
δ (T−)1−γ |δ < δ (T−) 6 δ

]
= Et

[
Et

[
δ (T−)1−γ |δ < δ (T−) 6 δ, σ (Σn

i=1Zi)
]]
,

where the conditioning σ-algebra σ (Σn
i=1Zi) is generated by the random variable Σn

i=1Zi.

It is easy to see lnξ (s) follows a normal distribution conditional on both Ft and σ (Σn
i=1Zi),

∀s ∈ [0, T ′)

lnξ (s) |Ft, σ (Σn
i=1Zi) ∼ N

(
lnξ (t)− γ

(
µ− 1

2
σ2

)
(s− t)− γnµJ − η1{s≥T}, γ

2
(
σ2 (s− t) + nσ2

J

))
.

Analogously, lnδ (s) follows another normal distribution conditional on both Ft and σ (Σn
i=1Zi),

∀s ∈ [0, T ′)

lnδ (s) |Ft, σ (Σn
i=1Zi) ∼ N

(
lnδ (t) +

(
µ− 1

2
σ2

)
(s− t) + nµJ ,

(
σ2 (s− t) + nσ2

J

))
. (2.8.6)

Let C ≡ lnδ (t)+
(
µ− 1

2σ
2
)

(T − t)+nµJ = lnδ (t)+
(
µ− 1

2σ
2
)

(T − t)+Ψ (n) and Ψ (n) ≡ nµJ .

Then, (2.8.6) implies

Et

[
δ (T−)1−γ |δ < δ (T−) 6 δ, σ (Σn

i=1Zi)
]

=

∫ ln δ

ln δ
e(1−γ) ln δ(T−) 1√

2π
(
σ2 (T − t) + nσ2

J

)e
− [ln δ(T−)−C]2

2(σ2(T−t)+nσ2J)d ln δ (T−)

= exp

(
(1− γ)2 σ

2 (T − t) + nσ2
J

2
+ C (1− γ)
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ln δ

e
− [ln δ(T−)−(C+(σ2(T−t)+nσ2J)(1−γ))]

2

2(σ2(T−t)+nσ2J)
√

2π
(
σ2 (T − t) + nσ2

J

) d ln δ (T−)

= δ (t)1−γ exp

(
(1− γ)2 σ

2 (T − t) + nσ2
J

2
+ (1− γ)

(
µ− 1

2
σ2

)
(T − t) + (1− γ)nµJ

)

∗





N
(

ln δ−lnδ(t)−(µ− 1
2
σ2)(T−t)−nµJ−(σ2(T−t)+nσ2

J)(1−γ)√
σ2(T−t)+nσ2

J

)

−N
(

ln δ−lnδ(t)−(µ− 1
2
σ2)(T−t)−nµJ−(σ2(T−t)+nσ2

J)(1−γ)√
σ2(T−t)+nσ2

J

)





= δ (t)1−γ eΓ(t)+(1−γ)Ψ(n)




N
(
−d1

(
δ
)
− Ψ(n)

σn
√
T−t + γσn

√
T − t

)

−N
(
−d1 (δ)− Ψ(n)

σn
√
T−t + γσn

√
T − t

)



 , (2.8.7)

where Γ (t) ≡
(

(1− γ)2 σ2
n
2 + (1− γ)

(
µ− 1

2σ
2
))

(T − t), d1 (x) ≡ d2 (x) + σn
√
T − t, d2 (x) ≡
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ln
δ(t)
x

+(µ− 1
2
σ2)(T−t)

σn
√
T−t , and σ2

n ≡ σ2 + σ2
J

n
(T−t) . Likewise, we have

Et
[
δ (T−)−γ |δ < δ (T−) 6 δ, σ (Σn
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]

= δ (t)−γ eΠ(t)−γΨ(Nt)


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√
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√
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)
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(
−d2 (δ)− (n)

σn
√
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)



 , (2.8.8)

where Π (t) ≡
(
γ2 σ

2
n
2 − γ

(
µ− 1

2σ
2
))

(T − t). Substituting (2.8.7) and (2.8.8) into (2.8.5) yields
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∗
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p (n)
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(
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√
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√
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σn
√
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)






 ,

where p(n, T − t) = exp(−λ(T−t))[λ(T−t)]n
n! captures the probability that n jumps arrive from t

to T .

The security market clearing conditions imply that the aggregate wealth of this economy

is equal to the total wealth of the two agents invested in the securities and that both bond

and option are in zero net supply. Thus, the equilibrium price of the market portfolio is the

aggregate wealth of the economy. We compute the equilibrium market price in an economy with

one constrained agent and one unconstrained agent as the sum of their wealth, which is shown

in equation (2.4.5).

Applying Itô’s lemma to (2.4.5), we get (2.4.6).
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Figure 2.1: Optimal horizon wealth of two agents. The figure plots the optimal horizon wealth
of the VaR agent (solid line) and the unconstrained agent (dashed line). ξ is the upper bound of
the equilibrium state price density separating the intermediate region and the bad state region.
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Figure 2.2: Lagrange multipliers of two agents. The left panel plots the lagrange multiplier of
the unconstrained agent, and the right panel depicts the lagrange multipliers for the VaR agent.
In the right panel, the solid line is for the VaR agent before the VaR horizon (yV aR1) and the
dashed line is for the VaR agent after the horizon (yV aR2).
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Figure 2.3: Equilibrium time-t market prices of two economies. This figure plots the equilibrium
market price of the VaR economy (solid line) and the benchmark economy (dashed line).
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Figure 2.4: Optimal time-t wealth of two agents. This figure plots the optimal time-t wealth of
the VaR agent (solid line) and the unconstrained agent (dashed line).
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Figure 2.5: Optimal time-t market volatility ratio. This figure plots the market volatility ratios
of the VaR economy (solid line) and the benchmark economy (dashed line). The left panel
represents the case with a jump component and the right panel the case without (Basak and
Shapiro). To compare our model with the case without jump, the market volatility is calibrated
by taking into account the impacts of the jump component.
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Figure 2.6: Behavior of optimal time-t market volatility ratio with respect to VaR parameters.
The left panel plots the optimal time-t market volatility ratio for varying levels of the VaR
probability α. The right panel plots the optimal market volatility ratio for varying levels of the
floor wealth W .
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(b) λ = 1/3, µJ = −1%
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(c) λ = 1/25, µJ = −10%
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Figure 2.7: Equilibrium implied volatility curve. This figure plots the implied volatility curves of
the VaR economy with various initial wealth distributions (three solid lines) and the benchmark
economy (dashed line). The four panels depict results for different jump cases. To compare our
model with the case without jump, the market volatility in the top left panel is calibrated by
taking into account the impacts of the jump component.
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Figure 2.8: Jump risk premium in the VaR economy. This figure plots the jump risk premium
in the VaR economy against the wealth share of the unconstrained agent.
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Figure 2.9: Equilibrium term structure of interest rates. This figure depicts the term structure
of interest rates in the VaR economy. The left panel and the right panel show the zero coupon
bond yields before and after the VaR horizon, respectively.
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Chapter 3

From Funding Liquidity to Market

Liquidity: Evidence from the Index

Options Market

3.1 Introduction

During the 2008 crisis, and especially in the periods when Lehman Brothers and other impor-

tant financial institutions failed, funding available to banks and non-financial firms was in short

supply. A number of institutions failed because they had difficulties in raising funds in illiquid

markets. It is thus timely and fitting to examine the dynamic changes in market liquidity in

regard to changes in funding liquidity. This paper provides empirical evidence that options

market liquidity is strongly influenced by funding liquidity during periods of high market uncer-

tainty. More specifically, we find that liquidity in the S&P 500 index options market is positively

correlated with funding liquidity, after controlling for VIX, a broad-based measure of market

uncertainty.1

A number of theoretical studies examine the link between market declines and asset illiquid-

ity. Based on the idea that market liquidity depends on the capital of financial intermediaries,

Gromb and Vayanos (2002) show that when arbitrageurs have enough wealth, they fully absorb

other investors’ supply shocks and thus provide market liquidity, but this situation is not so if

1VIX is calculated by the Chicago Board Options Exchange (CBOE), which measures the implied volatility of
options on the S&P 500 index. It is often referred to as the fear index or the fear gauge.
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arbitrageurs are less well capitalized. They explicitly point out that arbitrageurs act as interme-

diaries by providing liquidity to other investors. Brunnermeier and Pedersen (2009) elaborate on

the relationship between funding liquidity and market liquidity (FL-ML) and show that the two

notions are mutually reinforcing, leading to liquidity spirals. They argue that a huge market-

wide decline in prices reduces the ease with which market makers can obtain funding, which

feeds back as higher comovement in market liquidity during recessions. Garleanu and Pedersen

(2007) argue that tighter risk management reduces liquidity, which further tightens risk manage-

ment. This feedback effect helps explain the connection between sudden drops in liquidity and

increased volatility. In his 2010 AFA presidential address, Duffie (2010) argues that the financial

crisis and slow movement of investment capital increased the cost of intermediation and thus led

to increases in trading spreads. Moreover, Duffie (2012) points out that the 2008 financial crisis

not only affected banks’ lending function, but it also had a major impact on market liquidity.

He further argues that investors and issuers of securities found it more costly to raise capital

and obtain liquidity for their existing positions during the recent financial crisis.

The implications of these recent important theoretical findings have not been fully inves-

tigated from an empirical point of view and to date, to the best of our knowledge, there has

not been a thorough empirical analysis of the relationship between market liquidity and funding

liquidity over a long period of time. The relationship between funding liquidity and market

liquidity in the stock market has been tested by Hameed, Kang, and Viswanathan (2010) with

precrisis data. After the 2008 crisis, researchers have paid increased attention to the investi-

gation of the relationship between funding liquidity and market liquidity of different financial

markets, including the stock market (see e.g., Hu, Jain, and Jain, 2013), the corporate bond

market (see e.g., Dick-Nielsen, Gyntelberg, and Lund, 2013), and the foreign exchange market

(see e.g., Coffey, Hrung, and Sarkar, 2009; Mancini, Ranaldo, and Wrampelmeyer, 2013). How-

ever, none of the previous studies have examined the dynamics of funding liquidity and options

market liquidity.

This paper presents one of the first systematic empirical studies of liquidity in the S&P 500

index options market and analyzes the impact of funding liquidity on the index options market

liquidity during the recent financial crisis. We measure liquidity in the index option market on

a daily basis, relate index options market liquidity to measures of funding liquidity as well as

liquidity of equity markets, and provide solid evidence to support the theoretical predictions
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of Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2009). This paper tests and

validates the following hypotheses: H1: option market liquidity is positively correlated with

funding liquidity, and this effect is more prominent during periods of high market uncertainty;

and H2: the market liquidity of call and put options responds differently to funding liquidity.

We compute options liquidity using a comprehensive database. Ranging from January 2003

to January 2012, our sample includes the financial crisis and is thus highly relevant for analyzing

liquidity. Following Chordia, Roll, and Subrahmanyam (2000) and Cao and Wei (2010), we use

the proportional bid-ask (PBA) spread as our measure of index options liquidity. We compute

the PBA spread by dividing the difference between ask and bid quotes by the midquote. We

use the TED spread, the difference between the three-month LIBOR and the three-month U.S.

Treasury bill rate, as a proxy for the level of funding liquidity.2

We retrieve the residual of the TED spread from an OLS regression of the TED spread on VIX

in order to isolate the effect of funding liquidity from the influence of market-wide uncertainty.

The residual from the aforementioned regression, ResidualTED|V IX , is then included in an

ARMAX model as an exogenous regressor along with VIX to examine the relation between

liquidity in the index options market and funding costs. A positive relationship between the

PBA spread and the ResidualTED|V IX is found for the whole sample period, with the coefficient

is statistically significant at the 1% level.3 In particular, a one standard deviation increase in

the ResidualTED|V IX translates into an increase in bid-ask spread of 0.49 basis point, which is

about 11% of its standard deviation. Our empirical findings lend support to the first hypothesis

that market liquidity declines when liquidity providers face high funding costs.

We then examine whether the effect of funding liquidity on options market liquidity depends

on market uncertainty. This conjecture is tested by interacting the TED spread with VIX. We

find that shocks to funding liquidity positively affect options market liquidity only when VIX

is high enough, which implies that our main findings are very likely to be “conditional”. This

“conditional” effect can be observed for both call and put options and for options with different

2It’s common to employ the TED spread as a proxy for funding liquidity (see e.g., Brunnermeier, Nagel, and
Pedersen, 2008; Brunnermeier and Pedersen, 2009; Hameed, Kang, and Viswanathan, 2010; Boyson, Stahel, and
Stulz, 2010). An alternative proxy for funding liquidity in this paper is the LIBOR-OIS spread: the difference
between the LIBOR and the overnight index swap rate (OIS). The results based on the LIBOR-OIS spread are
similar and are available upon request.

3An ARMAX is estimated to fit the time series of the PBA spread, which is serially correlated and can
be explained by exogenous variables, such as VIX and the ResidualTED|V IX . AIC and BIC are employed to
determine the optimal number of lags of autoregressive and moving average terms.
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characteristics.4 For instance, only when VIX is higher than 28% can we observe that call

options liquidity exhibits a significant deterioration following an increase in funding costs. For

put options, the corresponding threshold value of VIX is 14%. Considering the sample median

of VIX is 18%, our findings indicate that put options market liquidity reacts to funding liquidity

shocks in a less “conditional” way. Since market uncertainty (VIX) stays at relatively high levels

even for a long time after the crisis, the “conditional” effect we document cannot be attributed

to the financial crisis.

Cao and Wei (2010) show that the effect of market movements on options’ liquidity differs

between calls and puts. Specifically, the liquidity of calls mostly responds to upward market

movements while the liquidity of puts responds mostly to downward movements. One can

therefore expect that the liquidity of put options mostly responds to funding liquidity during

periods of high market uncertainty. Our results show that the liquidity of puts and calls indeed

responds asymmetrically to funding liquidity.

We further split the whole sample according to maturity and moneyness (the ratio between

the strike price and the underlying spot price) of each option to study how the effect of funding

liquidity on options market liquidity is distributed across options of various maturities and

moneyness levels. We maintain the same specification of the ARMAX model, linking the option

market liquidity to funding liquidity and VIX. This exercise is related to the growing literature

on the information content of option trading (see e.g., Vijh, 1990; Easley, O’hara, and Srinivas,

1998; Jayaraman, Frye, and Sabherwal, 2001; Cao, Chen, and Griffin, 2003). Trading deep

out-of-the money options benefits from high leverage although these options are generally less

liquid with high proportional bid-ask spreads. In the presence of superior information, however,

the leverage effect may dominate the liquidity consideration. Similarly, to avoid a high option

premium, one may prefer a short-term option over a long-term one as the former offers high

leverage. One can therefore expect that the relationship between funding liquidity and market

liquidity of options is mainly driven by short-term and deep out-of-the-money options. First,

we document a positive relationship between the PBA spread of short-term options and the

ResidualTED|V IX . A reduction of funding liquidity is followed by a lower liquidity level of short

maturity options. Second, our results show that the ResidualTED|V IX is positively related to

4We are very cautious in generalizing this conclusion to a broader set of assets because of the distinctive
feature of options as well as its distinctive relation with market uncertainty, compared with other types of financial
instruments.
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the PBA spread and significant in explaining the liquidity of options with different moneyness.

Finally, to show that our results are not driven by specific samples, we conduct several ro-

bustness tests. First, we split the whole sample into three sub-periods: precrisis period (01/2003-

07/2007), crisis (08/2007-06/2009) and postcrisis period (07/2009-01/2012). After controlling

for the interaction term between the TED spread and VIX, the interaction term is significantly

positive during the crisis period. This suggests that the effect of funding liquidity on options

market liquidity is more prominent when market uncertainty is high, consistent with the theo-

retical predictions of Gromb and Vayanos (2002) and Brunnermeier and Pedersen (2009) that

market liquidity is affected by funding liquidity. Second, we reexamine the main findings using

weekly data. Compared with daily time series, weekly data are characterized by a much lower

volatility and therefore allow us to make more reliable inferences. In general, the results are

similar to what is found for the daily sample. It is also worth noting that the ResidualTED|V IX

is always positively related to the PBA spread. Probably due to the lower volatility of weekly

data, the coefficient magnitude of the ResidualTED|V IX has declined compared with the main

results. In short, results using the weekly sample have confirmed the main findings.

Our paper is related to the growing literature that investigates the relationship between

funding liquidity and market liquidity. Chordia, Sarkar, and Subrahmanyam (2005) examine

liquidity movements in stock and Treasury bond markets with daily data and build a link between

macro liquidity, or money flows, and micro or transactions liquidity. Using a dummy variable

as a proxy for the period of low funding liquidity, Hameed, Kang, and Viswanathan (2010) test

the relationship between funding liquidity and market liquidity in the stock market but only

cover precrisis data. Hu, Jain, and Jain (2013) explore the non-linear FL-ML relationship in the

stock market and show that the relationship weakens after the enactment of the Volcker Rule.

Dick-Nielsen, Gyntelberg, and Lund (2013) investigate how funding liquidity affects the bond

market liquidity in Denmark. They find that the ease of obtaining term funding in the money

markets determines the liquidity in the bond market, for both long- and short-term bonds.

Mancini, Ranaldo, and Wrampelmeyer (2013) use intraday trading and order data to measure

liquidity in the foreign exchange (FX) market and show that negative shocks in funding liquidity

lead to significantly lower FX market liquidity and systematic FX liquidity comoves with equity

liquidity.

Our paper is also related to the literature focusing on liquidity in the options market. While
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extensive literature studying liquidity in the equity markets exists, liquidity in the options market

is much less known, although the options market is by far one of the most important markets.5

For instance, Jameson and Wilhelm (1992) show that the bid-ask spread of options is determined

by the ability of market makers to rebalance options positions as well as uncertainty regarding

the return volatility of the underlying stock. Employing a simultaneous equation system, George

and Longstaff (1993) examine how trading activities of call (put) options depend on the bid-

ask spread of calls (puts) as well as puts (calls). They find that the bid-ask spread negatively

affects trading volume, and calls and puts are substitutes in terms of trading activities. A

recent paper by Wei and Zheng (2010) studies the relation between trading activities and bid-

ask spread on the individual options level. Using data on inventory positions of market makers,

Wu, Liu, Lee, and Fok (2014) consider the price risk for market makers and show that price risk

is not significantly related to option spreads, which seems to be consistent with the prediction

of derivative hedging theory. Using Ivy DB’s OptionMetrics data, Cao and Wei (2010) examine

the commonality among various liquidity measures such as the bid-ask spread, volumes and

price impact. In addition, they establish that the options liquidity responds asymmetrically to

upward and downward market movements. Furthermore, several studies investigate the effect of

liquidity in derivative prices. In an extended Black-Scholes economy, Cetin, Jarrow, Protter, and

Warachka (2006) derive the pricing of options with illiquid underlying assets. Their empirical

results support the conjecture that liquidity costs account for a significant portion of the option

price. Bongaerts, de Jong, and Driessen (2011) develop a theoretical asset pricing model of

liquidity effects in derivative markets and test the pricing of liquidity for the credit default

swap market. Using the OTC euro interest rate cap and floor data, Deuskar, Gupta, and

Subrahmanyam (2011) find that illiquid options trade at higher prices relative to liquid options.

The rest of the paper is organized as follows. In Section 3.2, we describe the data, define

the liquidity measures and report the summary statistics. Section 3.3 presents the main results

concerning the dynamics of market liquidity and funding liquidity. Some additional robustness

tests are provided in Section 3.4. Section 3.5 concludes.

5In the United States, the trading volume of individual stock options has grown expo-
nentially from 5 million contracts in 1974 to more than 3,727 million contracts in 2015
(http://www.optionsclearing.com/webapps/historical-volume-query).
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3.2 Data and Variables

In this section, we first discuss the data used to construct liquidity measures. Then we describe

how to calculate these measures and report the summary statistics.

3.2.1 Data

Our data consist of daily closing bid and ask quotes, daily volume and open interest on the

S&P 500 index options. We cover the period from January 17, 2003, to January 31, 2012, for

a total of 2,263 trading days, including the height of the recent crisis in the fall of 2008. We

extract the options data from the OptionMetrics IVY DB, which includes daily best bid and

ask closing quotes, open interest and volume for each option. We then apply several filters to

minimize possible data errors. To eliminate outliers and options with non-standard features, we

discard options with missing implied volatilities. Further, we drop observations violating basic

no-arbitrage conditions. We also remove all options with zero bid prices. In the S&P 500 index

options sample, we end up with 223,447 observations, of which 104,502 are calls and 118,945 are

puts. We have an average of about 99 options per day.

In addition to the whole sample analysis, we split the entire sample according to several

characteristics of options to obtain a clearer picture. Following Bakshi, Cao, and Chen (1997),

we first classify the time-to-maturity, measured in calendar days to expiration (ADTEi,t), into

three categories: short-term with less than 60 days, medium-term with more than or equal to

60 days and less than or equal to 180 days, and long-term with more than 180 days. Second,

we categorize the moneyness (mi,t, the ratio between strike price and the underlying spot price)

of options into five groups as follows: Deep-out-of-the-money (DOTM) if the contract is a call

and mi,t > 1.06 or if the contract is a put and mi,t < 0.94, Out-of-the-money (OTM) if the

contract is a call and 1.01 < mi,t ≤ 1.06 or if the contract is a put and 0.94 ≤ mi,t < 0.99,

At-the-money (ATM) if 0.99 ≤ mi,t ≤ 1.01 for either puts or calls, In-the-money (ITM) if the

contract is a call and 0.94 ≤ mi,t < 0.99 or if the contract is a put and 1.01 < mi,t ≤ 1.06, and

Deep-in-the-money (DITM) if the contract is a call and mi,t < 0.94 or if the contract is a put

and mi,t > 1.06 (Goncalves and Guidolin, 2006).

Following Cao and Wei (2010), we compute the proportional bid-ask spread (PBA) by di-
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viding the difference between the ask and bid quotes by the mid-quote. Then we employ a

volume-weighted average of the proportional spreads within each day and use this average to

implement our analysis.6

The funding liquidity measure used in this paper is the TED spread, which is from the

Federal Reserve Bank in St. Louis. Our proxy for market-wide uncertainty is the Chicago Board

Options Exchange Volatility Index (VIX) which is frequently used as a proxy for investors’ fear

and uncertainty in financial markets. Figure 3.1-3.3 depicts the evolution of options liquidity

(PBA), the TED spread and VIX from January 2003 to January 2012. Both the TED spread

and VIX shoot up during the financial crisis. However, the options market bid-ask spread seems

to reach its lowest level in the crisis. Before the crisis when both the TED and VIX stay at

low levels, the options bid-ask spread is almost twice as high as its level during the crisis. The

“cooling down” in the boom and “heating up” in the crisis of options market transactions point

directly to the distinctive features of this market.

3.2.2 Summary Statistics

Table 3.1 presents the summary statistics of both the bid-ask spread of various types of options

and the key explanatory variables. In addition to summarizing the whole sample, we also divide

the sample period into three sub-periods, namely, the precrisis period (01/2003-07/2007), the

crisis period (08/2007-06/2009) and the postcrisis period (07/2009-01/2012). During the whole

sample period, the mean bid-ask spread for all options is 12 basis points. It is consistent with

the calculation in Cao and Wei (2010) who find a 13-bps bid-ask spread during the period from

1996 to 2004. Since our sample period has spanned the financial crisis when the options market

was relatively more liquid, the PBA spread should be lower in this study. Several things are

worth noting. First, compared with call options, put options have a smaller bid-ask spread

in terms of both the mean and the median. The higher liquidity for puts in our paper might

be attributed to the high transaction activities during the financial crisis. Second, options in

general become more liquid during the financial crisis. For instance, options are traded with

a proportional bid-ask spread as high as 13 basis points before the crisis, and 12 bps after the

crisis. During the crisis, the bid-ask spread narrows down to 10 bps. Moreover, this pattern

6The option liquidity measures are defined in the Appendix. In an unreported analysis, we weigh the bid-ask
spread by the corresponding open interest and find that all results in the paper are qualitatively similar.
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applies to different types of options, such as options with different maturities and moneyness.7

Panel B contains the mean, median and standard deviation for independent regressors used

in this paper. It is observed that both the TED spread and VIX increase dramatically as the

crisis unfolds. The TED spread is more than 10 times higher after the crisis, indicating that the

funding liquidity suddenly drops in this period. We also notice that VIX is almost twice as high

as that before the crisis, implying that the market uncertainty perceived by investors increases

after the inception of the crisis. We also examine the dynamics of stock market liquidity, using

both bid-ask spreads and volume as the measure. The US stock market has an average bid-ask

spread of 14 cents when equally weighted and 2 cents when value weighted. The mean daily

volume and dollar volume are 6.3 billion trades and 189 billion dollars. In contrast to the options

market, the stock market has become much less liquid during the financial crisis.

3.3 Empirical Results

To model the relationship between options market liquidity and funding liquidity as well as

market uncertainty, we first have to test for the stationarity of these several time series. The

Augmented Dickey Fuller (ADF) test result is shown in Table 3.2, revealing that all of the

variables of interest are stationary. The null hypothesis of unit root is rejected at 1% for all of

our series. Therefore, we choose ARMAX to model the effect of funding liquidity and market

uncertainty on the options market liquidity.8 Given the high correlation between the TED

spread and VIX (0.776 over the whole sample period), we isolate the effect of funding liquidity

from the influence of market uncertainty. We adopt a two-step procedure in which only that

part of the TED spread which is orthogonal to VIX is used to predict options market liquidity.

Specifically, we run OLS regression in the first step where the TED spread is regressed on VIX:

TEDt = α0 + α1V IXt + µt (3.3.1)

7An exception is deep-in-the-money options, which are traded with higher bid-ask spreads during the crisis
compared with those before the crisis.

8For each specification in this paper, we also run OLS regressions with Newey and West (1987) standard errors.
The number of lags used to calculate Newey-West standard errors is set to be seven, the closest integer to the
fourth root of the number of observations in our main sample, as suggested by Greene (2011). All results are
qualitatively similar to those generated from ARMAX and thus are not tabulated for conciseness. Results from
Newey-West regressions are available upon request.
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We then obtain the residual ResidualTEDt|V IXt from Equation (3.3.1) and include it in an

ARMAX(p,q) model where the independent variable is the PBA spread of the index options

market:

PBAspreadt = β0+

p∑

i=1

πiPBAspreadt−i+

q∑

j=1

θjεt−j+β1ResidualTEDt−1|V IXt−1
+β2V IXt−1+εt

(3.3.2)

where p and q are the number of lags for autoregressive and moving average terms. β1 and β2

are the coefficient of the residual of TED spread and VIX, respectively. We use AIC and BIC

to determine the optimal number of lags.

3.3.1 Main Results

Table 3.3 shows the results of the ARMAX regressions linking the liquidity in the options market

to funding costs and VIX over the entire sample period from January 17, 2003, to January 31,

2012. After controlling for the lagged proportional bid-ask (PBA) spread, we first regress the

PBA spread on the ResidualTEDt|V IXt and VIX using simple OLS. As shown in column (1), a

significantly negative relationship between the PBA spread and VIX is documented. In terms

of magnitude, when market uncertainty increases by one standard deviation (9.89%) yesterday,

the current option market bid-ask spreads decline by 1.34 basis points, which is about 31% of

its standard deviation. This effect is in contrast to what Mancini, Ranaldo, and Wrampelmeyer

(2013) find in the currency market when an increase in market uncertainty is followed by a

decline in FX market liquidity. It arises from the fact that the convex payoff structure is

such that options can yield hedging benefits for volatility, which is more pronounced during

periods of high market uncertainty. Note that this effect is the net of controlling for one lag of

the proportional bid-ask spread. The magnitude of this effect estimated from OLS regressions

without controlling for lags of the PBA spread is actually doubled.

In line with Hypothesis 1, we find a significantly positive relationship between the current

PBA spread and the previous day’s ResidualTED|V IX . The coefficient is statistically significant

at the 1% level. One-standard deviation increase in ResidualTED|V IX (0.32%) can be translated

into an increase in options bid-ask spread as high as 0.26, which is about 6% of the standard

deviation of the PBA spread.
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In column (2), we estimate an ARMAX model with four autoregressive and three moving

average terms which generates the baseline result of this paper. The ResidualTED|V IX and

VIX lagged for one day are included as exogenous variables. The results are similar to those

in the OLS estimation. However, the magnitude of the effect of the ResidualTED|V IX on the

bid-ask spread is about twice as high as in the first column, highlighting the necessity of taking

into account the autocorrelation within the PBA spread at higher orders. Here, one standard

deviation increase in ResidualTED|V IX leads to an increase in the bid-ask spread as large as

0.49 basis point, which is about 11% of the standard deviation of the PBA spread. Therefore,

after controlling for VIX, the options market liquidity declines when liquidity providers face

higher funding costs, consistent with the theoretical prediction of Gromb and Vayanos (2002)

and Brunnermeier and Pedersen (2009).

In columns (3) and (4), we further distinguish between call and put options to see whether the

pattern of how funding liquidity and market uncertainty affect options liquidity differs between

calls and puts. As in previous regressions, we find a significantly negative relationship between

the PBA spread and VIX, in both the call and the put samples. This finding suggests that rising

market-wide uncertainty contributes to a lower bid-ask spread in both call and put options. The

magnitude of VIX’s effect on the PBA spread is higher in the put options sample. For call

options, one-standard-deviation increase in VIX is followed by a decrease in the PBA spread

by 0.14 (−9.89× 0.074/5.21 = −0.140) standard deviation. For puts, the sensitivity of options

liquidity to uncertainty is higher. A one-standard-deviation shock to VIX at time t− 1 leads to

a change in the PBA of puts as large as 0.109 standard deviation (−9.89×0.051/4.62 = −0.109)

at time t.

Interestingly, we only find a positive relationship between the market liquidity and the fund-

ing liquidity for the subsample of puts. A one-standard-deviation increase in theResidualTED|V IX

is followed by an increase in the PBA spread as large as 0.65 basis points, which is equivalent to

14% of its standard deviation. This effect is higher than that for options in the whole sample. It

lends support to Hypothesis 2. Overall, the results using daily options market liquidity support

our hypothesis that market liquidity deteriorates when the supply of capital is tight. We also

show that the options market becomes more liquid during periods of high market uncertainty.

We then examine whether the effect of funding liquidity on the index options market liquidity

is more prominent during periods of high uncertainty. We test this prediction by interacting
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the TED spread with VIX. If the effect is magnified when market-wide uncertainty is high,

one can expect the interaction term to be significantly positive. As shown in columns (5)-(7),

the interaction term is positive and statistically significant, irrespective of the sample we use.

However, the TED spread alone becomes insignificantly negative, indicating that the effect of

funding liquidity on index options market liquidity is very likely to be conditional in nature. In

other words, the index options market becomes illiquid following a shock to funding liquidity

only when market-wide uncertainty is high. For instance, as indicated in column (5), when VIX

is below 17%, the PBA spread of index options as a whole reacts negatively to shocks to the

TED spread.9 This relationship, however, becomes positive as VIX stays above 17%. According

to columns (6) and (7), the market liquidity for call and put options is positively correlated

with funding liquidity only when VIX is larger than 28% and 14%, respectively. Obviously, put

options market liquidity reacts to funding liquidity shocks in a less “conditional” way, showing

that put options react more sensitively to shocks to funding liquidity. These results are consistent

with the empirical findings of Cao and Wei (2010), who argued that the liquidity of puts and calls

respond asymmetrically to market movements. Specifically, they document that put options’

liquidity responds mostly to downward movements.

3.3.2 Subsample Analysis

To study the dynamics of options market liquidity in regard to changes in funding liquidity, we

further split the sample in three ways: (1) options with short, medium and long maturity; (2)

options with different moneyness; (3) call and put options with different moneyness.

Options Maturity

In Table 3.4, we split the sample according to maturity (Short-term if ADTEi,t < 60; Medium-

term if 60 ≤ ADTEi,t ≤ 180; Long-term if 180 ≤ ADTEi,t). To avoid a high option premium,

one may prefer a short-term option over a long-term one, as the former offers high leverage

and is generally more liquid. One can therefore expect that the FL-ML relationship is mainly

driven by short-term options. Table 3.4 shows the results of ARMAX regressions linking the

liquidity of options with various maturities to funding costs and VIX over the entire sample

9When VIX stays at 17.5% (1.35/0.077 = 17.53), the marginal effect of the TED spread on the PBA spread is
close to zero. The effect thus turns negative when VIX is below 17%.
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period. Again, VIX is strongly negatively related to short, medium, and long maturity options.

Also, the magnitude of the effect of VIX on the bid-ask spread of short maturity options is much

higher than that of medium and long maturity options. As a result, the liquidity of different

maturity options responds asymmetrically to market movements.

In column (1), we document a positive relationship between the PBA spread of short maturity

options and the ResidualTED|V IX , which is significant at the 10% level. Thus, a reduction

of funding liquidity is followed by a lower liquidity level for short maturity options, but the

coefficients are not significant for options with longer maturities. This lends support to our

conjecture that the relationship between funding liquidity and market liquidity is mainly driven

by short-term options.

As in Section 3.3.1, we include the interaction term between the TED spread and VIX to

examine whether the effect of funding liquidity on options’ liquidity is more pronounced during

periods of high market uncertainty. Columns (4)-(6) show that the market liquidity for short,

medium and long maturity options increases with funding liquidity only when VIX is larger than

18.6%, 29.9% and 33.7%, respectively. This further demonstrates that short maturity options

are the most sensitive to changes in funding costs, and thus the FL-ML relationship is mainly

driven by short maturity options.

Options Moneyness

Next, we split our sample according to the extent of options moneyness. Options are divided

into five categories based on the moneyness of each option, namely deep out of the money

(DOTM), out of the money (OTM), at the money (ATM), in the money (ITM) and deep in the

money (DITM). Trading deep out-of-the money options benefits from high leverage although

these options are generally less liquid with high proportional bid-ask spreads. In the presence

of superior information, however, the leverage effect may dominate the liquidity consideration.

So, we expect that the relationship between FL-ML is mainly driven by deep out-of-the-money

options. Our new results, shown in Table 3.5, indicate that both DOTM and DITM options

liquidity responds significantly to changes in the ResidualTED|V IX . Coefficient estimates for

the ResidualTED|V IX are significant in columns (1) and (5) at the 5% level.

Moreover, we find that although market uncertainty continues to have significant impact
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on options liquidity, the effect exhibits substantial heterogeneity among options with different

moneyness. Specifically, the coefficient estimates of VIX indicate that the DOTM and OTM

options become more liquid following an increase in market uncertainty, whereas the response of

DITM options is just the opposite. Coefficient estimates in columns (1)-(2) and (6)-(7) indicate

that DOTM and OTM options’ liquidity is significantly negatively correlated with VIX. The

coefficient becomes positive in columns (5) and (10) in which the PBA spread of DITM options

is the dependent variable. While there might not be one single explanation for this phenomenon,

one candidate could be that investors are less likely to trade the DITM options, which become

more costly during periods of high volatility. This arises from the fact that DITM options are

unable to hedge uncertainty but are with a high premium compared with ATM or OTM options.

As a result, the liquidity of these options decreases with VIX.

Columns (6)-(10) indicate that the conditional effect of funding liquidity seems to exist only

in DOTM, OTM and ATM options. The liquidity of in-the-money options appears to be very

insensitive to changes in funding costs, as it is not related to the TED spread either in an

unconditional or a conditional way. The liquidity of DITM options, however, is only related to

the TED spread unconditionally. In other words, the effect of the TED spread on the liquidity

of DITM options does not vary with VIX.

Call and Put Moneyness

We further examine whether the effect of funding liquidity on options liquidity is different

between call and put options with different moneyness. We hence split each of the call and put

subsample into five categories based on the moneyness of each option.10 Panel A of Table 3.6

shows the results of ARMAX regressions on the liquidity of call options with different extents of

moneyness. Different from the main results in Table 3.3 for call options, the liquidity of ATM,

ITM and DITM call options is found to react to shocks to funding liquidity in a significant way.

As shown in columns (3)-(5), the coefficient of the ResidualTED|V IX is positive and statistically

significant, especially when DITM call options liquidity is the dependent variable.

Columns (6)-(10) investigate the “conditional” effect of funding liquidity on the liquidity of

options with various moneyness. While the coefficient of the interaction term is positive in all

10For details regarding the definition of moneyness categories for call and put options, see the variable definition
table in the Appendix.

130



specifications, it is only significant for OTM, ATM and ITM calls. For these three types of call

options, funding costs start to have a positive impact on options’ liquidity when VIX is above

26%-30%.

We then turn to put options in Panel B. Similar to call options, the estimated coefficients of

the ResidualTED|V IX are significantly positive except for the DOTM and OTM options. An-

other finding in common between call and put options is that the response of options’ liquidity

to shocks on VIX varies substantially across options moneyness. One distinctive finding for put

options is the “conditional” effect. Although not all types of put options’ liquidity responds

to shocks to funding cost in a significant way, the conditional effect prevails. As indicated in

columns (6)-(10), the interaction term is always positive and highly significant. The turning

point of VIX around which the effect of funding costs on puts liquidity becomes positive lies

between 23% and 30%. Surprisingly, the DITM put options exhibit a totally different way of re-

sponding to funding liquidity shocks than other types of options. The impact of the TED spread

on the liquidity of DITM puts is significantly positive. As indicated by the significantly positive

interaction term, the above positive effect is then reinforced by increasing market uncertainty.

3.3.3 Relation to the Liquidity of the US Equity Market

In this section, we control for stock market liquidity to rule out the possibility that the effect

observed is due to the relation between funding liquidity and liquidity in the equity market.

There are a number of reasons to expect a connection between equity and index options market

liquidity. For instance, liquidity exhibits comovement across asset classes and can be driven by

common influences of the systemic shocks to the liquidity of the equity market. In particular, the

liquidity of the underlying assets is closely related to that of the corresponding derivatives. We

use three variables to proxy for aggregate stock market liquidity, namely the bid-ask spread, the

trading volume and the dollar volume. The data are from CRSP. The method used to calculate

stock liquidity measures can be found in the Appendix.

Table 3.7 shows the results of the ARMAX regressions linking options market liquidity, stock

market liquidity, and funding liquidity. We use equally- and value-weighted stock market bid-

ask spread as equity liquidity measures. The first two columns report the results of regressions

in which the bid-ask spread is used to proxy for stock liquidity. Consistent with the results of
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Cao and Wei (2010), the liquidity of the options market is closely linked to that of the equity

market.11 The coefficient of the stock’s bid-ask spread is positive, though only the value-weighted

measure is statistically significant. Importantly, the coefficients on the ResidualTED|V IX are

still significant and their signs are positive. This implies that the effect of funding liquidity

on options liquidity remains after considering the possible channel through the equity market

liquidity. In columns (3) and (4), we use volume and dollar volume as proxies for stock liquidity,

and we obtain similar results. After controlling for VIX and the equity market liquidity, there is

still a positive relationship between the options market liquidity and funding liquidity. Then we

include the interaction term between the TED spread and VIX. As shown in columns (5)-(8),

the coefficient of the TED spread becomes insignificantly negative, but the coefficient on the

interaction term is significantly positive. These findings are similar to that shown in Table 3.3.

3.4 Robustness

To show that our results are not driven by specific samples, we conduct several robustness tests

in this section. First, we test the relationship between funding liquidity and market liquidly

using different sample periods. Second, we test our hypotheses using weekly data.

3.4.1 Split Sample Pre-Post Financial Crisis

Table 3.8 examines the FL-ML relationship during different sample periods, using an ARMAX

model. The whole sample period is divided into three sub-periods: the precrisis period (01/2003-

07/2007), the crisis period (08/2007-06/2009) and the postcrisis period (07/2009-01/2012). In

Panel A, we use VIX and ResidualTED|V IX as independent variables. Columns (1)-(3) display

results of the precrisis period. Columns (4)-(6) and columns (7)-(9) are for the crisis and

postcrisis periods, respectively. We find that the PBA spreads of the precrisis and postcrisis

periods are negatively related to VIX. Thus, an increase in market uncertainty is followed by

higher options market liquidity. This is in line with what we find using the whole sample.

Different to specifications in Panel A, Panel B controls for the interaction term between the

lagged TED spread and lagged VIX. As shown in Panel B, the interaction term is not statistically

11Note that the positive coefficient seems to be inconsistent with the pattern of the bid-ask spread of options
and stocks shown in Figure 3.1 and 3.4. However, the positive correlation is net of the effect of other factors,
which affect both the stock market liquidity and options liquidity, such as VIX and the TED spread.
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significant during the precrisis period and postcrisis period, while it is significantly positive

during the crisis period, irrespective of the options sample we use. This suggests that the effect

of funding liquidity on options market liquidity is more prominent when market uncertainty is

high, consistent with the theoretical predictions of Gromb and Vayanos (2002) and Brunnermeier

and Pedersen (2009) that market liquidity is affected by funding liquidity.

3.4.2 Weekly Data Sample

In Table 3.9, we re-examine the main findings using weekly data. Compared with the daily

time series, weekly data are characterized by a much lower volatility and therefore allow us to

make more reliable inferences. Here the proportional bid-ask spread of options is calculated

on the weekly level. Weekly VIX and the ResidualTED|V IX are used as exogenous regressors

correspondingly. In general, the results are similar to what is found for the daily sample.

Consistent with the results in Table 3.3, an increase in market uncertainty in week t − 1 is

followed by a decrease in the PBA spread in week t, irrespective of sample used. It is also worth

noting that the ResidualTED|V IX is always positively related to the PBA spread. Probably due

to the lower volatility of weekly data, the coefficient magnitude of the ResidualTED|V IX has

declined, compared with the main results. In columns (5)-(7), we investigate the “conditional”

effect using weekly data. Again, we observe a significant effect of the TED spread on the liquidity

of options, which is especially large for put options. All in all, results using the weekly sample

have confirmed the main findings.

3.5 Conclusion

Funding liquidity and its impact on market liquidity have become a major focus of the academic

literature. Most studies investigate the relationship between funding liquidity and market liq-

uidity from a theoretical point of view. For instance, Brunnermeier and Pedersen (2009) explain

that a large market-wide decline in prices reduces the ease with which market makers can obtain

funding, which feeds back as higher comovement in market liquidity during recessions. Recent-

ly, some studies have emerged to examine the FL-ML relationship in stocks, corporate bonds,

and foreign exchange markets. However, none of the previous works study the relationship of

funding liquidity and options market liquidity during the crisis. This paper presents one of the
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first empirical studies of liquidity in the S&P 500 index options market, and studies the FL-ML

relationship.

Using data on the S&P 500 index options traded on the CBOE market covering the period

from January 17, 2003 to January 31, 2012, we establish convincing evidence of a positive

relationship between funding liquidity and options market liquidity during periods of high market

uncertainty. More specifically, we find a positive relationship between the PBA spread and the

ResidualTED|V IX , and the coefficient is statistically significant. These empirical findings lend

support to the hypothesis that market liquidity declines when liquidity providers face high

funding costs during the periods of high market uncertainty.

This paper serves as a first step toward understanding the relationship between funding

liquidity and index options market liquidity during periods of high market uncertainty. It opens

up several avenues for future research. One natural extension would be the in-depth examination

of the relationship of funding liquidity and individual options market liquidity. Another area of

future research would be to investigate the effect of funding constraints on the pricing of index

options.
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Appendix: Variable Definitions

Variable Definition

Dependent variables
Proportional bid-ask
spread (PBA)

∑J
j=1 V OLj ∗

askj−bidj
(askj+bidj)/2∑J

j=1 V OLj

where j is one specific trade
Trading volume (VOL)

J∑
j=1

V OLj

Dollar trading volume
(DVOL)

J∑
j=1

V OLj ∗ (askj + bidj) /2

Independent variables
Bid-ask spread of stocks
(equally weighted)

∑N
i=1 (aski − bidi)

N

where i is one specific stock
Bid-ask spread of stocks
(value weighted)

∑N
i=1 wi (aski − bidi)∑N

i=1 wi

where wi is the capitalisation of stock i
TED Spread The difference between the three-month LIBOR and the three-month U.S. T-bills
VIX CBOE S&P 500 volatility index
VXO CBOE S&P 100 volatility index
VXN CBOE NASDAQ-100 volatility index
VXD CBOE Dow Jones Industrial Average (DJIA) volatility index
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Table 3.2: Stationarity test for key variables

This table shows results of stationarity test for key variables used in this paper, namely proportional bid-ask
spread (PBA), dollar volume, the TED spread, VIX and several stock market liquidity measures. Augmented
Dickey-Fuller test statistics and the 1% critical value are reported in Columns (3) and (4). The corresponding
p-value is shown in the last column. ***, ** and * denote significance level at 1 %, 5 % and 10 %.

Variable # observations Dickey-Fuller test statistic 1% value p-value

Bid-ask spread 2263 -21.678*** -3.430 0.000

Volume 2263 -19.657*** -3.430 0.000

Dollar volume 2263 -12.075*** -3.430 0.000

TED spread 2263 -3.873*** -3.430 0.002

VIX 2263 -4.557*** -3.430 0.000

BAClose ew 2263 -46.758*** -3.430 0.000

BAHL ew 2263 -16.498*** -3.430 0.000

Stock Volume 2263 -11.009*** -3.430 0.000

Stock Dollar 2263 -11.038*** -3.430 0.000
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Table 3.3: Funding liquidity and the options market liquidity

This table shows results of ARMAX regressions linking liquidity in the options market to funding costs and market
uncertainty. The proxy for market uncertainty is VIX which is the CBOE S&P 500 volatility index. Our measure
for funding costs is the TED spread which is the difference between three-month LIBOR rate and U.S. Treasury
bill with the same maturity. We adopt a two-step procedure in which only that part of TED spread which is
orthogonal to VIX is used to predict options market liquidity. Specifically, we run an OLS regression in the first
step where TED spread is regressed on VIX: TEDt = α0 + α1V IXt + µt. The residual from the aforementioned
regression, ResidualTEDt|V IXt , is then included in an ARMAX(p,q) model as an exogenous regressor along with
VIX. Both VIX and the residual of TED spread are lagged for one period (day). The optimal number of lags of AR
and MA terms is selected according to BIC and AIC information criterion. Columns (1)-(4) include lagged VIX
and lagged ResidualTED|V IX as exogenous regressors, while Columns (5)-(7) add the interaction term between
VIX and TED spread into the regression. Below the exogenous regressors are several autoregressive terms for
each ARMAX model. For brevity, the coefficients of moving averaging terms are not displayed. T-statistics are
shown below the coefficient estimates inside parentheses. ***, ** and * denote significance level at 1 %, 5 % and
10 %.

(1) (2) (3) (4) (5) (6) (7)

Sample All All Call Put All Call Put

ResidualTEDt−1|V IXt−1
0.812*** 1.527** 0.644 2.036**

(3.40) (1.98) (0.61) (2.40)

TEDt−1 -1.350 -1.856 -1.283

(-1.15) (-1.28) (-1.03)

V IXt−1 -0.136*** -0.057** -0.074* -0.051* -0.218*** -0.179*** -0.249***

(-10.60) (-2.04) (-1.96) (-1.68) (-5.64) (-3.55) (-5.95)

TEDt−1 × V IXt−1 0.077*** 0.067** 0.091***

(2.92) (2.05) (3.52)

AR

1 0.419*** 2.385*** 1.524*** 2.114*** 3.352*** 1.466*** 2.079***

(21.97) (33.52) (16.86) (13.78) (74.70) (13.75) (12.70)

2 -2.226*** -0.525*** -1.572*** -4.508*** -1.395*** -1.510***

(-15.50) (-5.84) (-6.26) (-37.96) (-11.08) (-5.63)

3 0.914*** 0.457*** 2.857*** 1.340*** 0.430***

(8.05) (4.56) (24.09) (11.39) (4.01)

4 -0.074** -0.701*** -0.413***

(-2.24) (-15.69) (-4.25)

Model OLS ARMAX(4,3) ARMAX(2,2) ARMAX(3,3) ARMAX(4,4) ARMAX(4,4) ARMAX(3,3)

N 2263 2263 2263 2263 2263 2263 2263
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Table 3.4: Funding liquidity and the liquidity of options with different maturities

This table shows results of ARMAX regressions on liquidity of options with different maturities. An option is
considered to be short-term if ADTEi,t < 60, medium-term if 60 ≤ ADTEi,t ≤ 180, long-term if 180 ≤ ADTEi,t.
Columns (1)-(3) include lagged VIX and lagged ResidualTED|V IX as exogenous regressors, while Columns (4)-(6)
add the interaction term between VIX and TED spread into the regression. T-statistics are shown below the
coefficient estimates inside parentheses. Below the exogenous regressors are several autoregressive terms for each
ARMAX model. For brevity, the coefficients of moving averaging terms are not displayed. ***, ** and * denote
significance level at 1 %, 5 % and 10 %.

(1) (2) (3) (4) (5) (6)

Short Medium Long Short Medium Long

ResidualTEDt−1|V IXt−1
1.572* -0.149 -0.249

(1.72) (-0.30) (-0.82)

TEDt−1 -1.752 -1.675** -1.178***

(-1.36) (-2.57) (-2.84)

V IXt−1 -0.092*** -0.068*** -0.026*** -0.274*** -0.131*** -0.058***

(-2.71) (-4.27) (-2.65) (-6.08) (-4.64) (-3.14)

TEDt−1 × V IXt−1 0.094*** 0.056*** 0.035***

(3.19) (3.56) (3.71)

AR

1 2.366*** -0.375 -0.617*** 2.340*** -1.050*** -0.632***

(32.60) (-0.58) (-7.77) (29.46) (-72.29) (-7.08)

2 -2.222*** 0.945*** 0.490*** -2.170*** 0.816*** 0.474***

(-15.78) (12.74) (8.19) (-14.38) (28.87) (7.15)

3 0.946*** 0.295 0.785*** 0.918*** 0.909*** 0.758***

(8.69) (0.50) (10.36) (8.00) (60.25) (8.90)

4 -0.091*** -0.030 0.076*** -0.089*** 0.086***

(-2.77) (-0.95) (2.60) (-2.60) (2.87)

ARMAX(p,q) (4,3) (4,3) (4,3) (4,3) (3,4) (4,3)

N 2263 2263 2257 2263 2263 2257
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Table 3.7: Funding liquidity and options liquidity: controlling for stock market liquidity

This table shows results of ARMAX regressions linking liquidity in the option market to stock market liquidity.
BAClose ew and BAClose vw are equally- and value-weighted closing stock bid-ask spread for the whole market.
The other two exgoenous variables are Stock Volume and Stock Dollar Volume which denote the trading volume
and dollar volume of the whole stock market, both scaled down by 1 billion dollars. Columns (1)-(4) include lagged
VIX, lagged ResidualTED|V IX and stock market liquidity measures as exogenous regressors, while Columns (5)-
(8) add the interaction term between lagged VIX and lagged TED spread into the regression. T-statistics are
shown below the coefficient estimates inside parentheses. Below the exogenous regressors are several autoregressive
terms for each ARMAX model. For brevity, the coefficients of moving averaging terms are not displayed. ***, **
and * denote significance level at 1 %, 5 % and 10 %.

(1) (2) (3) (4) (5) (6) (7) (8)

ResidualTEDt−1|V IXt−1
1.527* 1.450* 1.391* 1.450*

(1.94) (1.77) (1.66) (1.70)

TEDt−1 -0.994 -0.952 -1.365 -1.803

(-0.87) (-0.83) (-1.16) (-1.49)

V IXt−1 -0.057** -0.071** -0.083** -0.083** -0.208*** -0.215*** -0.235*** -0.252***

(-1.97) (-2.28) (-2.42) (-2.48) (-5.57) (-5.77) (-5.77) (-6.04)

BAClose ew 0.029 0.036

(0.04) (0.05)

BAClose vw 25.011*** 24.409***

(3.15) (3.23)

Stock Volume 0.280*** 0.283***

(4.95) (5.14)

Stock Dollar Volume 0.009*** 0.010***

(5.32) (5.73)

TEDt−1 × V IXt−1 0.070*** 0.067*** 0.076*** 0.089***

(2.87) (2.70) (2.90) (3.22)

AR

1 2.384*** 2.396*** 2.373*** 2.379*** 2.354*** 2.379*** 2.337*** -0.037

(33.50) (36.61) (33.89) (34.56) (30.47) (34.66) (30.19) (-0.17)

2 -2.225*** -2.256*** -2.204*** -2.216*** -2.166*** -2.225*** -2.135*** -0.416***

(-15.49) (-16.90) (-15.69) (-15.97) (-14.18) (-16.06) (-14.12) (-3.14)

3 0.913*** 0.937*** 0.904*** 0.910*** 0.884*** 0.924*** 0.869*** 0.352***

(8.04) (8.76) (8.12) (8.25) (7.38) (8.35) (7.36) (2.94)

4 -0.074** -0.078** -0.074** -0.074** -0.073** -0.079** -0.072** 0.134**

(-2.23) (-2.46) (-2.23) (-2.27) (-2.10) (-2.41) (-2.08) (2.23)

ARMAX(p,q) (4,3) (4,3) (4,3) (4,4) (4,3) (4,3) (4,3) (4,4)

N 2263 2263 2263 2263 2263 2263 2263 2263
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Table 3.9: Funding liquidity and options market liquidity: Weekly data

This table uses weekly data and shows results of OLS and ARMAX regressions linking the liquidity in the option
market to funding costs and VIX. In addition to studying the liquidity of options as a whole, we also conduct
analysis on call and put options separately. Columns (1)-(4) include lagged VIX and lagged ResidualTED|V IX
as exogenous regressors, while Columns (5)-(7) add the interaction term between TED spread and VIX into
the regression. T-statistics are shown below the coefficient estimates inside parentheses. Below the exogenous
regressors are several autoregressive terms for each ARMAX model. For brevity, the coefficients of moving
averaging terms are not displayed. ***, ** and * denote significance level at 1 %, 5 % and 10 %.

(1) (2) (3) (4) (5) (6) (7)

Option Type All All Call Put All Call Put

ResidualTEDt−1|V IXt−1
0.521** 0.922* 1.070* 1.010*

(2.11) (1.75) (1.94) (1.72)

TEDt−1 -0.940 -0.426 -1.317

(-0.91) (-0.38) (-1.11)

V IXt−1 -0.112*** -0.103*** -0.099*** -0.112*** -0.176*** -0.170*** -0.206***

(-7.38) (-4.19) (-3.74) (-3.40) (-5.03) (-4.42) (-4.60)

V IXt−1 × TEDt−1 0.043* 0.035 0.055**

(1.80) (1.26) (2.09)

AR

1 0.477*** -0.660*** -0.802*** 1.143*** -0.942*** -0.729*** 1.138***

(12.14) (-11.58) (-15.95) (19.37) (-73.38) (-12.04) (20.16)

2 0.992*** 1.035*** -0.159*** 0.918*** 0.940*** -0.152***

(17.75) (19.48) (-2.92) (51.40) (16.41) (-2.91)

3 0.773*** 0.856*** 0.979*** 0.847***

(16.90) (20.39) (80.85) (15.28)

4 -0.149*** -0.127*** -0.092*

(-2.65) (-2.65) (-1.84)

Model OLS ARMAX(4,3) ARMAX(4,3) ARMAX(2,1) ARMAX(3,4) ARMAX(4,3) ARMAX(2,1)

N 470 470 470 470 470 470 470
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Figure 3.1: The evolution of options market liquidity. This figure illustrates the evolution of
the index option market liquidity from January 2003 to January 2012. The proportional bid-
ask spread is used as proxy for options market liquidity and the definition can be found in the
Appendix.
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Figure 3.2: The evolution of the TED spread. This figure illustrates the evolution of the TED
spread from January 2003 to January 2012.
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Figure 3.3: The evolution of VIX. This figure illustrates the evolution of VIX (%) from January
2003 to January 2012.
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Figure 3.4: The evolution of stock market liquidity. This figure illustrates the evolution of stock
market liquidity from January 2003 to January 2012. The proportional bid-ask spread for S&P
500 stocks is used as proxy for stock market liquidity.
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