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Abstract 
 
In the first chapter of my Thesis I propose a model of front-running in noisy 
market environment. I demonstrate that even if the front-runner/predator has no 
initial knowledge about the position of a distressed trader he will be still able to 
front-run his orders in a linear Bayesian-Nash equilibrium. This is possible 
because initial orders of the distressed trader tend to reveal his initial position. 
The contribution of this chapter is also in the analysis of long-term dynamics of 
predatory trading under Gaussian uncertainty. 
 
Second chapter treats about the dark-pools of liquidity which are highly popular 
systems that allow participants to enter unpriced orders to buy or sell securities. 
These orders are crossed at a specified time at a price derived from another 
market. I present an equilibrium model of coexistence of dark-pools of liquidity 
and the dealer market. Dealer market provides the immediate execution, 
whereas the dark-pool of liquidity provides lower cost of trading. Risk-averse 
agents in equilibrium optimally choose between safe dealer market and cheaper 
dark-pool of liquidity.  
 
In the third chapter I solve for a partial-equilibrium optimal consumption and 
investment problem, when one of the investment assets is traded infrequently. 
Opportunity to trade the "illiquid asset" arises upon the occurrence of a Poisson 
event. Only when such event occurs a trader is able to change (increase or 
decrease) her position in the illiquid asset. The investor can consume 
continuously from the bank account. After deriving HJB equation, I analyze in 
details the implications of illiquidity on the optimal level of consumption, 
allocation and welfare. The optimal policy is solved using algorithm from 
aeronautics. 
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Part I

Front-running in an Uncertain Environment

1 Introduction

In many �nancial market segments it is possible to �nd large market players that have signi�cantly

concentrated risk exposure. In some cases, single market participants are becoming a dominant

force, as they employ risk exposure that signi�cantly exceeds that of any other counterpart. His-

torically, notable examples of such market participants and the implications of the resulting risk

concentration have been studied extensively. In 1993, Metallgesellschaft AG built up large gross

notional exposure to oil futures contracts. This position, which was equivalent to yearly oil pro-

duction output in Kuwait, led to losses of over $1.4bn after the value of the contracts went down

signi�cantly. This forced Metallgesellschaft to the brink of bankruptcy, which was only avoided

after a consortium of banks and debtors agreed to a programme of far-reaching debt restructuring.

Another example of a company that built an enormous position in a particular asset class was

LTCM, a Greenwich Connecticut-based hedge fund, which amassed enormous spread positions in

government bonds and equity derivatives. The gross notional exposure in this case exceeded 1

trillion US dollars1. In 1994, the collapse of the hedge fund led to a bail-out �nanced by major

investment banks and coordinated by the Federal Reserve. Other examples of risk concentration

include the huge gas/energy exposure of Enron in the late 1990s, the equity derivatives exposure

of SocGen in 2008 and J.P. Morgan�s coal exposure in 2010.

When a large market participant su¤ers trading losses, the company may be forced to close-out

risk positions after margin calls or investor redemptions. The distress of a large trader, who is

forced to liquidate, can be exacerbated by the strategic behaviour of market participants front-

running his trades. This is what happened in 1994 when LTCM su¤ered initial signi�cant losses

caused by the Russian debt crisis. Financial institutions aware of LTCM�s distress �and armed

with knowledge of its trading books �began front-running and signi�cantly ampli�ed the losses of

the hedge fund. The collapse of LTCM spurred academic studies of front-running and predation in

�nancial markets, which resulted in a number of excellent academic papers.

The front-running that happened at the time of LTCM�s collapse was fairly speci�c. Front-

running investment banks had full knowledge of the trading positions of LTCM, which they gained

during bail-out negotiations. This knowledge and the immediate need of LTCM to unravel its

position made it much simpler for the front-runners to position themselves appropriately and to

bene�t from the distress of a collapsing hedge fund. In general, however, front-running happens

1For a full account of LTCM�s collapse, please refer to the excellent book by Lowenstein (2001).
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in an environment where there is no full knowledge about the position of the large trader and

the position of the trader does not need to be terminated immediately. An example of such a

situation may happen when a hedge fund, highly active in a certain market segment, receives

signi�cant redemption requests from its investors. The risky positions of the hedge fund need to

be liquidated to satisfy these request, and even though it may be widely known that this certain

market participant is active in a particular market segment, the precise position is usually unknown.

In particular, potential front-runners may be unaware of whether the large trader has long or short

exposure in the asset class at the time he learns he would need to unwind his positions. Also, a large

trader may be allowed to unwind his positions over a number of trading days, which complicates

front-running even further.

In this paper, I develop a tractable model that allows me to investigate the impact of uncertainty

surrounding a large trader�s position and the time priority of liquidation on the dynamics of the

front-running process. In particular, I show that front-running may occur even though market

participants may have no prior information about the large trader�s initial position and only know

about his need to unwind the position at some future point in time. In equilibrium, the large trader

splits liquidation across a number of periods to avoid immediate large price impacts. However, his

early trades reveal his initial position and allow other strategic traders to front-run his subsequent

orders. I also analyse the value for a large trader of keeping his position secretive.

Another contribution of this paper is a tractable model of multi-period dynamics in front-

running. In particular, I show that when a large trader has many periods in which to liquidate

his position, other strategic traders can in fact be liquidity providers and decrease the costs of

liquidation. However, if the allowed time for liquidation decreases and the large trader needs

to decrease his position very quickly, strategic traders become very aggressive in exploiting his

vulnerability and front-run his position, eventually leading to elevated trading costs.

2 Related Literature

The model presented in this paper relates directly to the literature on predation. Predatory trading

is de�ned as trading that induces and/or exploits other investors�needs to reduce their positions.

In their seminal contribution, Brunnermeier and Pedersen (2004) present the �rst notable model of

predation and front-running. They show that when a trader needs to sell an asset quickly, others,

with the knowledge about his position, also sell and subsequently buy back the asset. This leads

to overshooting price dynamics and a signi�cant reduction in the level of liquidity available to

the distressed trader. The paper also draws conclusions about the systemic impact of predatory

trading/front-running. Because of front-running, shocks in the market are ampli�ed and may lead to

systemic events. In this respect predatory trading is a source of destabilising speculation, similar in

8



spirit to DeLong, Shleifer, Summers and Waldmann (1990). On the technical side, Brunnermeier

and Pedersen (2004) implement their deterministic model in continuous time. They de�ne the

exogenous costs of trading that need to be paid by a trader who wants to trade with a higher

intensity than the (exogenously-) de�ned limit. These assumptions are justi�ed by market search

frictions in line with Du¢ e, Gârleanu and Pedersen (2005). More recent academic contributions to

the analysis of predatory trading and front-running are those of Attari, Mello and Ruckes (2005),

Carlin, Lobo and Viswanathan (2007), Parida and Venter (2010) and Fardeau (2010).

My paper also relates to the literature on limits to arbitrage, for example Shlieifer and Vishney

(1997), DeLong et al. (1990), Gromb and Vayanos (2002), Liu and Longsta¤ (2004), Mukarram,

Mello and Ruckes (2006), and an excellent review by Gromb and Vayanos (2010). In this branch

of literature, authors investigate how costs and constraints faced by arbitrageurs can prevent them

from eliminating mis-pricing and providing liquidity to other investors. These limits lead to de-

viation of the market price from the fundamentally justi�ed value. In my paper, risk-neutral

arbitrageurs fail to bring the price to fundamental equilibrium and even amplify the deviation

because of strategic considerations. During periods of distress experienced by a large trader, the

rational arbitrageur exploits fragility, removes liquidity from the market and ampli�es any deviation

of the price from fundamentals. Under certain conditions, an arbitrageur can therefore become a

destabilising force in the market. Importantly, the limits to arbitrage in my model are caused not

by any exogenous costs or by constraints, but rather result directly from strategic interactions.

My paper also references models of optimal trading in noisy markets, for example Kyle (1985)

or Vayanos (2001). In my proposed framework the large distressed trader is attempting to hide

his orders in market noise induced by the random orders of noise traders. A potential front-runner

needs to �lter the order of the large trader from the market noise. The solution to this trading game

is in the form of linear Bayesian-Nash equilibrium, which is a standard concept in the literature on

trading in noisy markets.

3 Benchmark model

We start by presenting the baseline framework. The model that we consider later in the text

includes modi�cations to this baseline scenario. This approach allows for consistency and helps to

investigate how di¤erent types of uncertainty a¤ect the optimal trading strategy of the predator

or front-runner. The speci�c feature of the baseline framework is the way we model the residual

demand curve, as we assume that a broad market may be represented by one non-strategic, risk-

averse trader with a short-term decision horizon. In this respect our model is very similar to those

introduced by Brunnermeier and Pedersen (2004), Parida and Venter (2010) and Fardeau (2010).

On the one hand, this feature allows for more straightforward comparison with previous models,
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but on the other makes it possible to focus purely on the e¤ects of predation or front-running.

Therefore, we do not consider a residual demand curve that could be formed by trading preferences

of the continuum of risk-averse agents with in�nite optimisation horizon as it was analysed, for

example, in Vayanos (2001).

The benchmark model is a full-information dynamic trading game between two risk-neutral

strategic agents that face a residual demand curve generated by the trading preferences of short-

horizon traders with CARA preferences and who are also in�uenced by the random orders of

liquidity traders. One of the two strategic traders will be referred to as �prey�. He is characterised

by the fact that he is required to close his position in a risky asset, which may be initially long or

short, by a certain point in time �a moment that we will call from now on the �time of liquidation�.

Consequently, the trader is not allowed to trade at any time following liquidation. The prey in our

model represents a fragile trader, who is required to close his position because of certain speci�c

constraints. The strict requirement of the liquidation restricts the set of possible trading strategies

available to him, so the prey may be forced to trade in an adverse market if the time of liquidation

is approaching. The distress of the prey will be exacerbated by the actions of a predator � a

risk-neutral strategic player, who is not restricted in his trading strategy. The predator, given his

knowledge of the position of the prey, will take advantage of his fragility. Below we formalise this

baseline model.

3.1 Model

Time is discrete and goes from t = �n to m. The time of liquidation is set at t = 0: and the

dividend for the risky asset is paid at time t = m+ 1. The prey trades only in rounds t � 0. After
this point (so for t > 0) only the predator is allowed to place orders. In all equations quantities for

the predator are marked with the superscript P , whereas the quantities for the prey are denoted

with the superscript S. There are two assets in the model. A risky asset pays the dividend after all

trading rounds, and the �nal payout has normal distribution v � N(0; �2). The return on a risk-free
asset (interest rate) with perfectly elastic supply is normalised to 0. The predator and prey start

trading with initial positions AP�n and A
S
�n in a risky asset. The initial money accounts are assumed

(without loss of generality) to be WP
�n = W

S
�n = 0 as strategic agents are risk-neutral, while the

initial positions in the money account do not in�uence trading dynamics2. The strategic objective

of these two traders is to maximise expected monetary wealth at the end of all trading rounds

(t = m+ 1). Strategic traders are allowed to submit market orders only, which not only allows us

2Of course, this would not be the case if the preferences of traders were of CARA type, for example. In such a
case the position in the money account would be an important state variable, which would have an impact on the
trading dynamics.
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to avoid the complexity of the calculus of variation3, but also will have important implications when

we introduce uncertainty present in the mutations of this model. A liquidity trader submits every

period a normally distributed market order that has zero mean and variance �2L, so ut � N(0; �2L).
Non-strategic short-horizon traders are modelled as CARA-type investors (with the coe¢ cient of

absolute risk aversion �) with the inventory. Their short-termism is re�ected in their expectations

concerning the asset�s �nal pay-o¤. At every point in time t, the non-strategic traders expect that

the asset�s �nal pay-o¤will be realised in time t+1. Given this speci�cation, we prove in Appendix

A the following proposition:

Proposition 1 Given our de�nition of the objective of the short-horizon traders it can be shown
that the price process of the risky asset is given by:

pt = �xMt � � + pt�1 (1)

where xMt is the total amount of risky asset acquired by the short-term investor in time t and � is

a �xed parameter, which depends on the variance of risky asset pay-o¤ and on the risk aversion of

the short-term investor.

Proof. In appendix
In what follows, we additionally assume that the price process can be generalised to include

price convergence � an empirically observed feature of price process in the �nancial markets4.

This price convergence may be caused in practice by the trading actions of non-myopic market

participants, who consider any deviation of the current price from its fundamental value (which is

0 in this case) as the result of trades made by liquidity traders. This e¤ect emerges in the model

through competition between predators (e.g. Fardeau (2010)). In this case, the price process can

be described by the following equation

pt = �xMt � � + � � pt�1 (2)

where � 2 (0; 1) is the constant that measures the strength of the price convergence. The price
process in equation (2) will be equivalent to the underlying price process in Parida and Venter

3 Interested readers are referred to Brunnermeier (2001) page 75 for an approach that does not require the calculus
of variation, but works in simpler settings to those in our model, or to Fleming and Soner (2006b) page 33 for an
analysis of the Calculus of Variation approach.

4Convergence of the price to the mean can be justi�ed by the assumption that there are some (unmodelled)
strategic risk-neutral traders who are trading to bring the price of the asset to equilibrium and are unaware of the
existence of the strategic trader in distress. The main reason for adding price convergence to the baseline model is to
cause all price deviations caused by noise traders to be temporary. The predator, when planning his behaviour, needs
to take into account that all opportunities resulting from noise trading are temporary, so he must decide whether his
trading is more focused on exploiting these opportunities or on exacerbating the weakness of the prey.
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(2010) and Brunnermeier and Pedersen (2004) for � = 0 and to the underlying price process in

Fardeau (2010) for � = 1. Parameter � measures the strength of the long-term price e¤ect. If � is

close to 1, then there is persistence in the market impact of the trades. If � is closer to zero, then

the price impact of the trades is mostly temporary. Parameter � is the measure of the immediate

price impact.

As we shall soon see, the price process is a natural object of consideration in our settings.

Although in practice we could solve the model directly in the space of asset holdings5 and treat the

price process implicitly, in some modi�cations of our model holdings are not observable to agents

directly and any inference must be based solely on the price dynamics, which is public knowledge.

3.2 General solution

The baseline model is solved recursively. First, we solve for the value function and dynamics of

trading in periods t > 0, so for the time when only the predator is allowed to trade. Given this

solution, we can solve for the more complicated dynamics in periods t < 0. In these derivations we

use the generalised price process from equation (2).

After liquidation (t > 0)
When the prey is absent, the predator trades only with the broad market and liquidity traders.

In this case in given period k, the market clearing condition implies that xPk + uk + x
M
k = 0, where

xMk is the amount of risky asset acquired by short-term investors, uk an order submitted by liquidity

traders and xPk the order submitted by the predator. In the last period t = n the programme of

the predator is therefore

max
xPn

E
�
(APn + x

P
n ) � v � xPn � pn +WP

n

�
(3)

where the dynamics of prices are given by pn = (xPn + un)� + �pn�1
6and APn is the position in

risky assets of the predator after time t = n� 1. By plugging the equation for pn back to equation
(3) and making use of the fact that E(v) = E(un) = 0, we see that the problem for the predator

in the last period is equivalent to

max
xPn

�(xPn )2� � xPn � �pn�1 +WP
n

with the corresponding FOC

xPn = �
�pn�1
2�

If the price in previous period pn�1 is above the fundamental value of the asset �0 �the predator

5We would denote by eMt andWM
t the current position of the broad market in the risky asset and the cash account,

respectively.
6The equation is equivalent to (xpn + un) =

pn��pn�1
�
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is submitting a sell order in the current period. The size of the order depends on market depth 1
� .

The higher the depth of the market, the bigger is the order of the predator. Knowing the optimal

order of the predator in the last period, we can calculate the value function for the predator at

time t = n, which is simply

V Pn (pn�1;W
P
n ) =

�2

4�
� (pn�1)2 +WP

n (4)

The value function does not depend on the amount of risky assets accumulated by the predator in

earlier periods because of the risk-neutrality of the predator and the fact that E(v) = 0. The value

function is the quadratic function in the past deviation of the market price from its fundamental

value. This particular feature will characterise the value function of the predator in all periods

t > 0. In the last trading round t = n, the variance of the order placed by the liquidity trader does

not a¤ect the value function of the predator.

The properties of the value functions and optimal market orders of the predator may be sum-

marised by the following proposition:

Proposition 2 The value function and optimal market orders for the predator in periods t>0 are
given by

V Pk (pk�1;W
P
k ) = Gk � (pk�1)2 +WP

k +Nk (5)

xPk =

�
2 �Gk
�

� �
�

�
� pk�1

where the law of motions of G and N is given recursively by

Gk =
�2

4�
� 1

(1�Gk+1�)

Nk = Nk+1 +Gk+1 � �2�2u

with the boundary condition

Gn =
�2

4�

Nn = 0

Proof. In appendix
The interpretation of Gk and Nk is straightforward. Variable Gk measures the bene�t the

trader can enjoy by trading optimally the current price deviation. As the number of trading rounds

that are left decreases (n� k decreases), the predator has less time to take advantage of the price
deviation, so he needs to trade quicker and the value of Gk is lower. Nk gives us the expected

value of future trading opportunities that may be caused by random orders placed by the liquidity
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traders, who place random orders that may lead to deviation of the price from the fundamentals.

The predator will take advantage of these future deviations and their value (in expectation) for his

utility is equal to Nk.

We can now calculate the limiting values of Gk that would prevail if n!1:

Corollary 1 For any �xed k

Gk ! 1�
p
1� �2
2�

(6)

xPk !
 
1�

p
1� �2 � �2
��

!
pk�1

Nk ! +1

as n ! +1

The value of Nk diverges to in�nity as the number of periods in which the liquidity trader can

e¤ect price divergence becomes in�nite. This means that the predator will have (in expectations)

an in�nite number of opportunities to trade on the convergence of the price to the fundamentals.

Before liquidation (t 6 0)
We now consider the dynamics of trading for the periods in which the prey trades along with

the predator. In this simple model, we assume a full information environment in that the predator

knows in any period the current inventory of the prey (we will relax this assumption in a subsequent

model). The model is solved backwards for the sub-game perfect Nash Equilibrium. First, we

outline a solution method for general values � and G1, and then later we consider more tractable

version with � = 1 and G1 equal to its limiting value from equation (6). For this more tractable

version we solve the model for an arbitrary number of periods.

We consider (for mathematical clarity) a general form of the value function as shown in Propo-

sition 2 in period t = 1, so for the �rst period after the liquidation

V P1 (p0;W
P
1 ) = G1 (p0)

2 +WP
1

and the problem of the predator at time t = 0 is

max
xP0

E0[V
P
1 (p0;W

P
1 )] (7)
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subject to

p0 = (xP0 �AS0 + u0) � � + � � pt�1
WP
1 = WP

0 � p0xP0

where AS0 is the position of the prey in a risky asset when he reaches t = 0. As the prey needs

to liquidate, he has to close this position; consequently, he submits order �AS0 . The �rst order
condition of programme (7) is given by

xP0 = �
(p�1��AS0 �)

2�
�
�
2� 1

1�G1�

�
(8)

and as �
2

4� 6 G1 6
1
2� and 0 6 � 6 1, we know that 1 � G1� >

1
2 , so the second part of equation

(8) is greater than zero. The predator will submit the buy order only if (p�1� � AS0 �) < 0, i.e.

only if the price in the previous period was far below fundamentals or if there is a large expected

sell order from the prey (the predator provides liquidity in this case). Plugging the optimal order

xP0 back into equation (7), we end up with the value function for period t = 0

V P0 (p�1;W
P
0 ; A

S
0 ) =

�
�p�1 � �AS0

�2
4�(1�G1�)

+WP
0 +G1�

2�2u

which has a fairly similar structure to the value function from Proposition 1. In fact, there is no

proper game between the predator and prey in period 0, as the only strategy allowed for the prey

is to sell his entire holdings of the risky asset. As we are now dealing with full-information settings

(the predator knows exactly the amount that will be sold by the prey), his problem in period t = 0

is not greatly di¤erent from those in all subsequent periods.

The proper game takes place in periods t < 0, during which the prey may decide about the size

of his trade. Below we solve for SPNE for the game played by the prey and the predator. In period

t = �1 the problem of the prey is

max
xS�1

E1
�
p�1x

S
�1 + p0(�AS�1 � xS�1)

�
(9)

subject to standard price dynamics. Element AS�1 is the prey�s holding of the risky asset in period

t = �1. In equation (9) the prey is just maximising the expected value of the future pay-o¤ from
selling the inventory. The only unknowns in this equation at time t = �1 are prices p�1 and p0

p�1 = �p�2 + (x
S
�1 + x

P
�1 + u1)� (10)

p0 = �(�p�2 + (x
S
�1 + x

P
�1 + u1)�) + (x

P
0 + (�AS�1 � xS�1) + u0)�
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By substituting (8) for xP0 into (10), substituting it back into (9) and then taking the �rst order

condition, we end up with

xS�1 = �
(p�2�+ xP�1�)

2�

�
1� 1

(3� �� 2G1�)

�
�

AS�1(2� �)
2(3� �� 2G1�)

(11)

This equation shows that the optimal order of the prey in period t = �1 can be decomposed
into two parts. First is the arbitraging component and second is the hedging component7. The

arbitraging component implies that even though the prey is aware of the necessity to close his

position in the risky asset, he is also trying to exploit trading opportunities that are induced by

the trading of noise traders. For the same period t=-1 the problem of the predator is

max
xP�1

EV P0 (p�1;W
P
0 ; A

S
0 )

subject to

AS0 = AS�1 + x
S
�1

WP
0 = WP

�1 � p�1xP�1
p�1 = �p�2 + (x

S
�1 + x

P
�1 + u1)�

The �rst order condition of the problem is given by

xP�1 = �
p�2�

2�

�
1� �2

(4� �2 � 4G1�)

�
�

�AS�1
(4� �2 � 4G1�)

�
xS�1
2

�
1 +

2�� �2
(4� �2 � 4G1�)

�
(12)

and then by combining equations (12) and (11) we can calculate the equilibrium values of market

orders for the prey and predator, which are given by

x
P
�1 =

�p2�(8� (4� �)�(1 + �)� 12G1� + 2G1�(2 + �)� + 4G21�
2)� AS�1�(�(6 + (1� �)�� 6G1�)� 4 + 4G1�)

�(20� �(8 + (3� �)�)� 32G1� + 2G1�(4 + �)� + 12G21�
2)

x
S
�1 =

�2p2�(1�G1�)(2� �� 2G1�)� AS�1�(8� 8G1� � �(6 + �� �2 � 6G1�))

�(20� �(8 + (3� �)�)� 32G1� + 2G1�(4 + �)� + 12G21�
2)

3.2.1 Interpretation

The baseline model with front-running in periods t = �1; 0 is already relatively rich and allows for
interesting observations. In particular, it is interesting to see that the prey can make an order in

7The second part of equation (11) re�ects the need of the prey to close his position in the risky asset before
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period t = �1, which instead of decreasing his risk position will increase it. This would happen if
following condition is satis�ed

p2

AS�1
<
��(8� 8G1� � �(6 + �� �2 � 6G1�))

2�(1�G1�)(2� �� 2G1�)

In this case the prey will accumulate risk, as the arbitraging component in equation (11) outweighs

the hedging component. In such a situation, the prey will be willing to trade the deviation of the

price from the fundamentals, even though this would increase his risky position. In this case the

prey considers the deviation of the price from the fundamentals to be an opportunity that could

warrant an increase in the risk present in his books, even though it is shortly before the time of

liquidation.

It may also happen in this simple model whereby the predator is a provider of liquidity and in

fact helps the prey instead of applying pressure. The condition for this behaviour is

p2

AS�1
<

��(�(6 + (1� �)�� 6G1�)� 4 + 4G1�)
�(8� (4� �)�(1 + �)� 12G1� + 2G1�(2 + �)� + 4G21�2)

In this case the predator �nds the exploiting price deviation caused by noise trading more pro�table

than predation. However, in normal market conditions, when deviation of the price for fundamentals

is small, the predator may submit an order that drains the market from any liquidity available for

the prey and move the price in an unfavourable direction, so the prey subsequently closes his

position at the worst price.

3.3 Multi-period numeric solution

In the previous subsection we showed analytical results for the general price process for one period

before liquidation. Unfortunately, in this speci�cation it is very di¢ cult to analyse analytically the

dynamics of trading for a greater number of periods before the liquidation. Nevertheless, this can

be achieved numerically for given numerical parameter values (�; �;G1; n). For this purpose we

use the following proposition, which is proved in the appendix. The proposition states that if the

�nal period value function is of a particular quadratic form (which is the case in our model), then

the value functions for earlier periods are also of the same quadratic form, with parameters that

can be calculated by backward induction.

Proposition 3 If the value functions of the prey and the predator in given period t < 0 (so strictly
before the liquidation) can be presented as

V Pt (pt0 ;W
P
t ; A

S
0 ) = A

P
t � p2t0 +B

P
t � pt0ASt + C

P
t �
�
ASt
�2
+WP

t +N
P
t

V St (pt0 ;W
S
t ; A

S
0 ) = A

S
t � p2t0 +B

S
t � pt0ASt + C

S
t �
�
ASt
�2
+WS

t +N
S
t
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where A
P
t ; B

P
t ; C

P
t ; N

P
t and A

S
t ; B

S
t ; C

S
t ; N

S
t are constants, then the optimal orders of the prey and

the predator in period t0 = t� 1 are given by

xPt0 = A
S
t0H

P
t + pt"I

P
t (13)

xSt0 = A
S
t0H

S
t + pt"I

S
t

where H
P
t ; H

S
t ; I

P
t ; I

S
t are the functions of A

P
t ; B

P
t ; C

P
t ; N

P
t and A

S
t ; B

S
t ; C

S
t ; N

S
t only and the value

functions for period t0 = t� 1 are in the form

V Pt0 (pt00 ;W
P
t0 ; A

S
t0) = A

P
t0 � p2t00 +B

P
t � pt00ASt0 + C

P
t0 �
�
ASt0
�2
+WP

t0 +N
P
t0

V St (pt00 ;W
S
t0 ; A

S
t0) = A

S
t0 � p2t00 +B

S
t � pt00ASt0 + C

S
t0 �
�
ASt0
�2
+WS

t0 +N
S
t0

where A
P
t0 ; B

P
t0 ; C

P
t0 ; N

P
t0 and A

S
t0 ; B

S
t0 ; C

S
t0 ; N

S
t0 are the functions of A

P
t ; B

P
t ; C

P
t ; N

P
t and A

S
t ; B

S
t ; C

S
t ; N

S
t

only.

Proof. In appendix
After proving Proposition 3 we outlined a detailed method of mapping the parameters of the

value function from period t to earlier period t0. The complexity of these transformations is the

prime reason why the elegant closed-form solution for this model for periods before liquidation does

not exist8.

Trading dynamics in the longer term can, however, be analysed relatively easily if we iterate the

mapping from Proposition 3 for some numerical boundary values. Setting A
P
0 ; B

P
0 ; C

P
0 ; A

S
0 ; B

S
0 ; C

S
0

equal to the values calculated in the previous section 9

A
P
0 =

�2

4�(1�G1�) B
P
0 =

���
2�(1�G1�) C

P
0 =

�
4(1�G1�)

A
S
0 = 0 B

S
0 =

�
2�2G1� C

S
0 =

�
2�2G1�

we can analyse how any variations in model parameters a¤ect the dynamics of trading. In particular,

we are interested in the e¤ects of changing the value of � on the dynamics of the front-running

process.

3.3.1 Variations in �

By changing � we are a¤ecting exogenous price convergence. If � is zero, then the market price

instantly adjusts to fundamentals. In such a case neither predator nor prey can bene�t from
8Even though the elegant solution is not available, all of the results we have here are closed-form. A brave reader

can calculate the optimal trading for any possible period in closed form.
9These �nal values are boundary conditions.
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trading the price convergence. It is interesting to observe that in such a market front-running is

an ine¢ cient strategy. As both predator and trader trades have only an immediate impact on the

market, and big orders are absorbed quickly in the market, a predator in the market with a small

� provides liquidity to his prey. This can be seen in the table below, which highlights the values of

H
P
t from equation (13) as a function of � and t for G1 = 0:25 and � = 1

H
P
t

� 0 0.25 0.5 0.75 1

t=0 0:3333 0:3333 0:3333 0:3333 0:3333

t=-1 0:2353 0:1646 0:0676 �0:0710 �0:2857
t=-2 0:1420 0:1194 0:0783 �0:0029 �0:2020
t=-3 0:1023 0:0891 0:0616 �0:0028 �0:2200
t=-4 0:0800 0:0707 0:0505 �0:0008 �0:2253
t=-5 0:0658 0:0585 0:0426 �0:0000 �0:2298
t=-6 0:0559 0:0498 0:0366 0:0002 �0:2337
t=-7 0:0486 0:0433 0:0320 0:0002 �0:2370
t=-8 0:0430 0:0384 0:0285 0:0002 �0:2397

H
P
t is an increasing function of �. The higher �, the more persistent are the price e¤ects and

the stronger incentive of the predator to front-run the orders of the prey. The persistence of the

price also a¤ects the behaviour of the prey. In an environment where � is high, the prey starts to

close out his position early in order to avoid costly execution close to the �nal time of liquidation.

However, if the price is less sticky, the prey is not afraid to close his position closer to the �nal

liquidation, where he gets additional help from the predator.

H
S
t

� 0 0.25 0.5 0.75 1

t=0 �1:0000 �1:000 �1:000 �1:000 �1:000
t=-1 �0:4706 �0:4346 �0:3919 �0:3149 �0:2857
t=-2 �0:2841 �0:2962 �0:3090 �0:3274 �0:3793
t=-3 �0:2046 �0:2195 �0:2387 �0:2694 �0:3668
t=-4 �0:1601 �0:1736 �0:1934 �0:2295 �0:3650
t=-5 �0:1316 �0:1434 �0:1619 �0:1990 �0:3630
t=-6 �0:1118 �0:1220 �0:1389 �0:1750 �0:3606
t=-7 �0:0972 �0:1061 �0:1214 �0:1558 �0:3582
t=-8 �0:0859 �0:0939 �0:1077 �0:1401 �0:3558
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As shown above, by changing the value of � we can change the dynamics of the trading game.

For � close to 1, the dynamics mimic what we could have seen in the model by Brunnermeier

and Pedersen (2004) � the prey is closing his position at the constant rate and the predator is

draining liquidity from the market. On the other hand, when � is close to 0, we have dynamics

similar to the one in the model pro¤ered by Parida and Venter (2010) �in which case our earlier

predator/front-runner now becomes a provider of liquidity.
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4 Uncertainty about the size of the initial position

In the benchmark case presented in the previous section, we analysed a dynamic trading game

between the predator and prey in a full information environment. In reality, however, the predator

does not usually possess perfect knowledge about the position of the prey; instead, this knowledge

needs to be inferred from observed price dynamics. In this section, we present a model of an

equilibrium trading, when the position of the prey is not common knowledge. The model is a

modi�cation of the baseline scenario presented in the previous section.

4.1 Model

The model set-up closely matches the benchmark model. The time in the economy goes from

t = �n = �2 to t = m. The dividend on the risky asset is paid at time t = m + 1. The prey is

allowed to trade in periods t 6 0 only. We call time t = 0 the time of liquidation �the prey needs
to close his position (which may be long or short) up to this point in time. For t > 0 the amount

of risky assets held in the portfolio of the prey must be equal to zero. The predator is not aware of

the initial size of the position of the prey, and he only knows that this position is drawn from the

certain distribution AS�2~N(0; �AS�2), which is common knowledge. As in the benchmark model, we

have non-strategic traders in the market and their existence implies the following price dynamics

pt = �xMt � � + pt�1 (14)

where xMt is the amount of assets acquired by a non-strategic trader. The addition of noise traders

completes the speci�cation of the model.

In this set-up it is clear why modelling a price process as in equation (14) is a more natural

task than setting up the model in the space of asset allocations �prices are directly observable by

market participants, whereas asset allocation is not common knowledge.

4.2 Solution

Our aim is to establish a dynamic linear Bayesian-Nash equilibrium for the dynamic trading game

speci�ed above. The solution of the dynamics of trading for periods t > 0 is the same as in the

baseline scenario. For periods t > 0 the prey trades only with a non-strategic trader and with a

noise trader �there is no uncertainty coming from the prey�s trades, so the solution of the trade

dynamics is exactly the same as in the baseline scenario. We can therefore directly recall and apply

our earlier results. Assuming an in�nite horizon and zero price convergence (� = 1), we have from

equation (6)

V P1 (p0;W
P
1 ) =

1

2�
� (p0 � 0)2 +WP

1 (15)
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where V P1 denotes the value function of the predator at time t = 1 and WP
1 is the cash account

of the predator. The value function of the predator at time t = 1 depends on the deviation of the

price from the fundamentals in earlier periods. As there is no other strategic market participant

in periods t > 0, the value function and the dynamics of trading are exactly the same as in our

baseline scenario.

At t = 0 the prey needs to liquidate his position, so the optimal (and only allowed) trade of the

prey at time t = 0 is

xS0 = �AS0

where �AS0 is the position of the prey in risky assets at the beginning of time t = 0. This order

is deterministic from the point of view of the prey �due to the constraint, he knows exactly how

much he will need to liquidate in the last period. This knowledge is, however, not available to the

predator, who only has an estimate of the amount of assets the prey will be buying or selling in the

last period. Let us assume for the moment (we will later show that this is a case in equilibrium)

that this estimate is at time t = 0 of the form A0~N(�A0 ; �
2
A0
). In addition to this estimate about

the position of the prey in the risky assets, the predator can condition his order on the price of

the risky asset observed in the past periods, which is common knowledge. The problem for the

predator is therefore

max
xP0

E(V P1 (p0;W
P
1 )) (16)

subject to

p0 = (x
S
0 + x

P
0 + u0) � � + p�1

and

xS0 = �A0 � N(��A0 ; �
2
A0) (17)

which after the substitution to equation (15) and then into equation (16) yields the problem of the

predator in period t = 0, namely

max
xP0

E(
1

2�
� ((xS0 + xP0 + u0) � � + p�1)2 +WP

1 )

The optimal order of the predator is described by the following proposition, which we prove in

the appendix.

Proposition 4 When there is no exogenous price convergence (� = 1) the optimal order of the

predator at time of liquidation (t = 0) is to refrain from trading. The predator thus submits an

order of zero size.
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Proof. In appendix
The fact that the predator does not submit any order at the time of liquidation depends crucially

on the assumed zero price convergence (� = 1). Intuitively, the predator refrains from trading,

because he knows that the price deviation (caused by the �nal liquidation of the position by the

prey) will be long-lived. The predator will have many future periods to e¤ectively take advantage

of the price deviation and therefore does not need to rush to exploit this opportunity. Of course, if

� < 1, then the order of the predator would be di¤erent �he will be a provider of liquidity to the

prey, as described in section 3 for the baseline model (this e¤ect is similar to what is observed in

Brunnermeier and Pedersen�s model).

In proving Proposition 4 on page 37 we derived the value function of the predator at time t = 0,

which is

V P0 (p�1;W
P
0 ; �A0 ; �

2
A0) =W

P
0 +

p2�1 � 2�A0p�1� + �
2(�2A0 + �

2
A0
+ �2L)

2�

where p�1 is the price of the asset in t = �1, WP
0 is the value of the predator�s money account at

time t = 0 and �A0 ; �
2
A0
are the moments of rational belief about the position of the prey.

From the above calculations we understand that the equilibrium at time t = 0 is fairly straight-

forward, as the prey just liquidates his position in the risky assets, so therefore there is no real

optimisation. The predator on the other hand optimally selects (for any beliefs) to refrain from

trading. The dynamics of trading becomes more interesting in period t = �1, when the prey can
choose the amount he will trade.

As we are looking for a linear Bayesian equilibrium, we posit that the optimal order of the prey

at time t = �1 is a linear function of his asset holdings

xS�1 = a1 + b1A�1

The predator does not know the position of the prey in risky assets A�1 (and therefore xS�1) with

certainty, but only has rational belief (resulting from the Bayesian updating in the prior periods

t = �2) about the current value of the assets held by the predator, namely A�1 � N(�A�1 ; �2A�1).

4.2.1 Bayesian updating

The predator updates his beliefs regarding the position of the prey in risky assets by observing the

price that realises in the market. Using information on the previous price p�2, the value of his order

xP�1 and the characteristics of the market (summarised in the price process) and the conjectured

equilibrium, the predator updates his beliefs about A�1. From the price process we have

p�1 = (x
P
�1 + x

S
�1 + u�1)� + p�2
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which implies that the signal of the predator is

S�1 = x
S
�1 + u�1 =

p�1 � p�2
�

� xP�1

which after utilising the conjectured equilibrium gives

S�1 = a1 + b1A�1 + u�1

Proposition 5 Given the conjectured strategy of the prey and the signal S�1 observed by the preda-
tor, the Bayesian beliefs of the predator in period t = 0 are given by

(A0jS�1) � N [a1 + (1 + b1) � (�A�1 +
b1 � �2A�1

b21 � �2A�1 + �2u
(S�1 � a1 � b1�A�1));

(1 + b1)
2 � (�2A�1 �

b21 � �4A�1
b21 � �2A�1 + �2u

)]

Proof. In appendix
The important point here is that the updated beliefs of the predator in period t = 0 are normal

and therefore consistent with what we assumed at the beginning of this subsection.

4.2.2 Problem of the predator at time t = �1

The programme of the predator at time t = �1 is

max
xP�1

E(V P0 (p�1;W
P
0 ; �A0 ; �

2
A0)), max

xP�1

E(WP
0 +

p2�1 � 2�A0p�1� + �
2(�2A0 + �

2
A0
+ �2L)

2�
) (18)

where

E(WP
0 ) = WP

�1 � p�1xP�1
p�1 = p�2 + �(x

S
�1 + x

P
�1 + u�1)

The solution to the problem of the predator is summarised by the following proposition.

Proposition 6 Given the conjectured strategy of the prey, the optimal order of the predator at
time t = �1 is a function of his expectations about the current position of the prey in risky assets

xP�1 = �a1 � (1 + b1)�A�1
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Proof. In appendix
Given the conjectured equilibrium, the predator puts the order which is exactly minus the

expected position of the prey in risky assets at time t = 0.

4.2.3 Problem of the prey at time t = �1

As highlighted earlier in Proposition 4, the optimal order of the predator at time t = 0 is equal to

0, irrespective of what the predator believes. The programme of the prey is therefore

max
xS�1

E(WS
�1 � p�1xS�1 � p0(�(A�1 + xS�1)))

where

p�1 = p�2 + �(x
S
�1 + x

P
�1 + u�1) = p�2 + �(x

S
�1 � a1 � (1 + b1)�A�1 + u�1)

p0 = p�2 + �(x
S
�1 � a1 � (1 + b1)�A�1 + u�1) + �(x

S
0 + u0)

which after substitution gives

max
xS�1

E(WS
�1 � (p�2 + �(xS�1 � a1 � (1 + b1)�A�1 + u�1))x

S
�1 (19)

�(p�2 + �(xS�1 � a1 � (1 + b1)�A�1 + u�1) + �(x
S
0 + u0))(�(A�1 + xS�1)))

Taking the �rst order conditions yields

xS�1 = �
A�1
2

which implies that the prey liquidates half of his position in period t = �1 �irrespective of the
beliefs of the predator. Substituting the optimal order back into equation (19) and simplifying

yields, the value function of the prey at time t = �1

V S�1(A�1; p�2;W
S
�1; �A�1) = A�1p�2 +W

S
�1 �

1

4
A�1(3A�1 + 2�A�1)�

The value function of the prey depends on the current amount of risky assets held by the predator,

the most recent market price and the beliefs of the predator at t = �1 about the position of the prey
in the risky assets. In equilibrium the beliefs of the predator are known to the prey. The reason for

this can be explained easily in following steps. First, the a priori distribution of risky assets held

by the prey is common knowledge. Second, (as we shall show on page 29) the equilibrium order

of the prey in period t = �2 is deterministic and depends only on the known parameters of the
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a priori distribution. The prey, who submits the order in period t = �2, knows exactly his order
and therefore can recover the value of the noise traders�order. The prey can also solve for how

the beliefs of the predator were updated, and in any period is able to disentangle the order of the

predator from the order of the noise trader. Conversely, the predator is unable to fully disentangle

the order of the prey from that of the noise trader. One important element here is that the beliefs

of the predator are not deterministic from the point of view of the prey, as these are a¤ected by the

random orders of the noise traders. However, the prey has full knowledge of how much the noise

traders have traded and is also aware of how the beliefs of the predator have changed. The ability

of the prey to know the beliefs of the predator at each point in time is speci�c to our pure strategy

equilibrium �mixed strategy equilibria will in general not allow for this scenario.

The form of the order of the prey allows him to recover instantly undetermined coe¢ cients,

which are

a1 = 0

b1 = �1
2

Substituting these coe¢ cients (which determine the Bayesian-Nash equilibrium of a trading

game) into the value function of the predator, we have10

V P�1(p�2;W
P
�1; �A�1 ; �

2
A�1) =W

P
�1 � �A�1p�2 +

p2�2
2�

+ U�1(�A�1 ; �
2
A�1)

4.2.4 Problem of the predator at time t = �2

At time t = �2 we are again positing the order of the prey as linear in his asset holdings

xS�2 = a2 + b2A�2

given this aspect, the problem of the predator is

max
xP�2

E

�
WP
�1 � �A�1p�2 +

p2�2
2�

+ U�1(�A�1 ; �
2
A�1)

�
(20)

The problem of the predator summarised in equation (20) is equivalent to the problem in period

t = �1 from equation (18), and the solution to this problem closely matches that of the earlier

problem, as shown in the following proposition.

Proposition 7 Given the conjectured strategy of the pre,y the optimal order of the predator at time
10More details are provided in the proof of Proposition 6.
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t = �2 is a function of his expectations about the current position of the prey in risky assets

xP�2 = �a2 � (1 + b2)�A�2

Proof. In appendix
Again, given the conjectured strategy equilibrium, the predator puts the order, which is exactly

minus the expected position of the prey, in risky assets at time t = �1.

4.2.5 Problem of the prey at time t = �2

The programme of the predator is

max
xS�2

E
h
V S�1(A�1; p�2;W

S
�1; �A�1)

i
= max

xS�2

E

�
A�1p�2 +W

S
�1 �

1

4
A�1(3A�1 + 2�A�1)�

�
(21)

where the prey maximises the expected value of the value function at time t = �1 subject to the
price process and the dynamics of the expectations of the predator. Intuitively the prey wants the

price in the next periods to be favourable (if the prey has assets to sell, he wants the price in period

t = �1 to be as high as possible and vice versa), but also wants to steer the beliefs of the predator,
so he is not subject to intensive front-running in period t = �1.

Given the suggested strategy of the prey, the beliefs of the predator will be updated according

to the following formula11

�A�1 = �A�2 +
b2�

2
A�2

b22�
2
A�2

+ �2u

�
xB�2 + u�2 � a2 � b2 � �A�2

�
with expected value

E(�A�1) = �A�2 +
b2�

2
A�2

b22�
2
A�2

+ �2u

�
xB�2 + 0� a2 � b2 � �A�2

�
It is important to note that when solving for the optimal order of the predator, we are allowing

for any possible order, not necessarily one consistent with the conjectured linear equilibrium. Later,

we solve for coe¢ cients a2 and b2, which would make the order of the predator consistent with the

equilibrium.

Equation (21) can be rewritten in a more convenient form

max
xS�2

E

�
WS
�2 � p�2 � xB�2 + (A�2 + xB�2)p�2 � �

3

4
(A�2 + x

B
�2)

2 + �
1

2
�A�1(A�2 + x

B
�2)

�
11More details about Bayesian updating can be found in the proof of Proposition 5 on page (38).
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The solution to this problem is given by the following proposition, proven in the appendix.

Proposition 8 Given the conjectured strategy, the optimal order of the prey at time t = �2 is

xS�2 =
a2b2�

2
A�2

� (a2 + (1 + b2)�A�2)�2u
b2(2 + 5b2)�2A�2 + 3�

2
u

+A�2

 
�
b2(1 + 2b2)�

2
A�2

� �2u
b2(2 + 5b2)�2A�2 + 3�

2
u

!

where �A�2 is the mean of the a priori distribution of the amount of the risky assets held by the

prey, while �2A�2 is the variance of this distribution.

Proof. In appendix
In order to calculate the undetermined coe¢ cients we need to solve the system of two following

equations:

a2 =
a2b2�

2
A�2

� (a2 + (1 + b2)�A�2)�2u
b2(2 + 5b2)�2A�2 + 3�

2
u

(22)

b2 = �
b2(1 + 2b2)�

2
A�2

+ �2u

b2(2 + 5b2)�2A�2 + 3�
2
u

(23)

Although an analytical solution is possible for a wide range of coe¢ cients, we focus now on the

case for which a priori distribution of risky assets held by the predator has the following parameters

�A�2 = 0 and �2A�2 = 1. This implies that the predator has no initial knowledge about whether

the prey is more likely to have a long or short position in the risky asset. In this case equation (22)

becomes

a2 =
a2b2 � a2�2u

b2(2 + 5b2) + 3�2u

where one of the solutions is a2 = 0:

Equation (23) is a cubic equation

b22(4 + 5b2)�
2
A�2 + b2(3�

2
u + �

2
A�2) + �

2
u = 0, b22(4 + 5b2) + b2(3�

2
u + 1) + �

2
u = 0 (24)

which needs to be solved using a standard approach (the depressed cubic method). Cubic equations

of this type always have three di¤erent roots, some of which can be complex. Fortunately, this

equation in our setting for the given value of �2u has only one real solution, with others having an

imaginary component, so we have a unique linear equilibrium for any value of �2u. The solution to

the problem (24) is given by
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b�2 = � 4

15
+

2
1
3 (45�2u � 1)

15(�52 + 135�2u + 15
p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

` (25)

�(�52 + 135�
2
u + 15

p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

15 � 2 13

b��2 = � 4

15
+

(1 + i �
p
3)(45�2u � 1)

15 � 2 23 � (�52 + 135�2u + 15
p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

(26)

�(1� i �
p
3)(�52 + 135�2u + 15

p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

30 � 2 13

b���2 = � 4

15
+

(1� i �
p
3)(45�2u � 1)

15 � 2 23 � (�52 + 135�2u + 15
p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

(27)

�(1 + i �
p
3)(�52 + 135�2u + 15

p
3
p
4� 20�2u � 9�4u + 540�6u)

1
3

30 � 2 13

The relationship between the volatility of the orders of noise traders and coe¢ cient b2 in the

linear Bayesian equilibrium is presented in Figure 1 below. The lower the volatility of the noise

traders�orders, the smaller fraction of his total risk position the prey unravels in period t = �2,
which can be understood intuitively. If there is very little noise in the market induced by the

activity of the noise traders, then the predator learns about the position of the prey relatively

quickly from the price process. The prey knowing about this element decreases the fraction of risky

position he unwinds in period t = �2 to avoid subsequent predation. The prey attempts to hide
his order in the market noise, so the predator is e¤ectively learning very little about the position

of the prey and is unable to front-run orders in period t = �1.
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Figure 1: Horizontal axis �2u; Vertical axis b2;

When the variance of the market noise increases, coe¢ cient b2 approaches 1=3, which is the

amount of the position the prey will decide to liquidate if there is no predator in the market at

all. A high level of variance in the orders of the noise traders �2u implies that the orders of the

prey are very well hidden in the noise and the predator is unable to learn about the prey�s position

and subsequently front-run his position. A higher level of noise in the market allows risk-neutral

prey to close his position at a cost lower than expected in the market, where the amount of noisy

trading is low.

5 Conclusion

In this part of my thesis, I study front-running in dynamic noisy markets. In the full-information

environment presented in Section 3, the random orders submitted by noise traders present an

opportunity that can be exploited by the prey and also by the predator if there is exogenous price

convergence in the market. As described in Section 3, the prey can in some circumstances increase

his risky position, particularly if the current price provides a signi�cant opportunity that can be

exploited. Depending on the strength of an exogenous price convergence12, the predator can either

drain liquidity from the market or (strong exogenous price convergence) provide liquidity to the

prey and allow him to decrease the overall expected costs of trading. At the end of Section 3 I show

the method used to analyse e¤ectively the dynamics of trading in multi-period settings. I- show

the recursive dynamics of the value functions of the prey and predator and their optimal orders in

Proposition 3 on page 18. The baseline model, in addition to adding randomness induced by the

12As discussed in Section 3, any price convergence can be meant to re�ect the market power of some un-modelled
strategic agents, who are unaware of the fragility of prey.

30



noise traders, bridges the gap between the models of Parida and Venter (2010), who assume ultra-

quick price convergence13 and the model of Brunnermeier and Pedersen (2004), who assume long-

lived price e¤ects. I am showing the dynamics of trading for di¤erent levels of price convergence.

In section 4 I present the model, which allows me to investigate whether front-running is possible

when the predator does not have full information about the initial size of the prey�s position in

risky assets. It transpires that front-running is possible even in this case, and I show the linear

Bayesian-Nash equilibrium in which the predator learns about the prey�s initial position from his

initial orders and then front-runs him in subsequent periods. Moreover, I show that the higher the

noise in the market caused by noise traders, the lower the expected costs of closing the position for

the prey. If the market is noisy the prey is able to hide in this noise and the predator fails to learn

about the position of the prey, so that front-running is not signi�cant. To the best of my knowledge

this is the �rst model in the literature that focuses on this aspect of predation. My results imply

that keeping one�s own position secret is an important issue for the prey. Furthermore, keeping

this position secret during the liquidation of the position allows the prey to close his position in

the expectation of higher prices and to avoid front-running.

13 In the Parida and Venter (2010) model there are no long-lived price e¤ects. Price instantly converges to the
fundamental value.
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6 Appendix to Part I

6.1 Proof of Proposition 1

At any point in time, a short-term horizon trader starts with the endowment of risky assets from

previous period AM�1 and a certain amount of cash on hand A
M
�1. Given his expectations concerning

the asset�s �nal pay-o¤, his optimisation problem is given by

max
x
E
�
U((x+AM�1) � v +WM

�1 � x � p)
�

which, because of CARA preferences and the normality of A, is equivalent to

max
x

h
(x+AM�1)E(v) +W

M
�1 � x � p�

�

2
(x+AM�1)

2 � V ar(v)
i

The �rst order condition of this problem is

p = �(x+AM�1) � �V ar(v)

which we rewrite for convenience as

p = �(x+AM�1)� (28)

where � is a positive constant that summarises an impact of the coe¢ cient of absolute risk aversion

� and the variance of the �nal asset pay-o¤.

We now know that condition will hold in any period, in particular in period t = �1. We can
therefore lag equation (28) and write

p�1 = �(x�1 +AM�2)� (29)

Then, by applying the fact that x�1 +AM�2 = A
M
�1 and combining equations (28) and (29), we end

up with

p = �x� + p�1

which with the observation that this equation applies to all periods completes the proof.

QED

6.2 Proof of Proposition 2

Assuming that the value function of the predator at t = k + 1 is given by

V Pk+1(pk;W
P
k+1) = Gk+1 � (pk)2 +WP

k+1 +Nk+1 (30)
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then the programme of the predator at t = k is

max
xk

Ek
�
V Pk+1(pk;W

P
k+1)

�
, max

xk
Ek
�
Gk+1 � (pk)2 +WP

k+1 +Nk+1
�

(31)

subject to price dynamics

pk = (x
P
k + uk) � � + � � pk�1 (32)

where Ek[] is the expectation operator with respect to knowledge at time t = k.

By substituting the price process from equation (32) into equation (31) we get

V Pk (pk�1;W
P
k ) = max

xk
Ek[Gk+1((x

P
k + uk)� + �pk�1)

2 + (33)

WP
k � xPk ((xPk + uk) � � + �pk�1) +Nk+1]

and then by taking FOC and observing that Ek[u2k] = �
2
L we have

xPk = �
pk�1 � �� 2Gk+1 � pk�1 � ��

2�(Gk+1� � 1)
(34)

After substituting(34) into (33) for xPk , and the application of some straightforward (but tedious)

algebra, we have

V Pk (pk�1;W
P
k ) =

�2

4�(1�Gk+1�)
� (pk�1)2 +WP

k +Nk+1 +Gk+1�
2�2L

which we can rewrite as

V Pk (pk�1;W
P
k ) = Gk � (pk�1)2 +WP

k +Nk

where

Gk =
�2

4�
� 1

(1�Gk+1�)
(35)

Nk = Nk+1 +Gk+1 � �2�2u

Solving equation (35) for Gk+1 and substituting it into (34) yields

xPk =

�
2 �Gk
�

� �
�

�
� pk�1

The value function in period t = n (equation (4) on page 13) is of the form assumed in equation

(30), so in line with the standard induction argument, Proposition 2 follows.

QED
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6.3 Proof of Proposition 3

We suggest that the value function of the predator and prey at certain point in time t is equal to

V Pt (pt0 ;W
P
t ; A

S
0 ) = A

P
t � p2t0 +B

P
t � pt0ASt + C

P
t �
�
ASt
�2
+WP

t +N
P
t (36)

V St (pt0 ;W
S
t ; A

S
0 ) = A

S
t � p2t0 +B

S
t � pt0ASt + C

S
t �
�
ASt
�2
+WS

t +N
S
t

where with t0 we denote time t
0
= t � 1. All other annotations are the same as before. At time t0

both agents maximise the expected value of their respective value function

max
xP
t0

Et0 [V
P
t (pt0 ;W

P
t ; A

S
t )] = max

xP
t0

Et0 [A
P
t � p2t0 +B

P
t � pt0ASt + C

P
t �
�
ASt
�2
+WP

t +N
P
t ]

max
xS
t0

Et0 [V
S
t (pt0 ;W

S
t ; A

S
t )] = max

xS
t0

Et0 [A
S
t � p2t0 +B

S
t � pt0ASt + C

S
t �
�
ASt
�2
+WS

t +N
S
t ]

subject to

pt0 = �pt00 + �(x
S
t0 + x

P
t0 + ut0)

ASt = ASt0 + x
S
t0

WP
t = WP

t0 � xPt0 pt0

WS
t = WS

t0 � xSt0pt0

which after substitution into the original equations gives, respectively,

max
xP
t0

Et0 [A
P
t

�
�pt00 + �(x

S
t0 + x

P
t0 + ut0)

�2
+B

P
t

�
�pt00 + �(x

S
t0 + x

P
t0 + ut0)

�
(ASt0 + x

S
t0) (37)

+C
P
t �
�
ASt0 + x

S
t0
�2
+WP

t0 � xPt0 (�pt00 + �(xSt0 + xPt0 + ut0)) +NP
t ]

max
xS
t0

Et0 [A
S
t

�
�pt00 + �(x

S
t0 + x

P
t0 + ut0)

�2
+B

S
t

�
�pt00 + �(x

S
t0 + x

P
t0 + ut0)

�
(ASt0 + x

S
t0) (38)

+C
S
t �
�
ASt0 + x

S
t0
�2
+WS

t0 � xSt0(�pt00 + �(xSt0 + xPt0 + ut0)) +NS
t ]

The �rst order conditions for the problems of prey and predators yield, respectively,

34



xPt0 = �pt00 �
�� 2��APt
2�
�
1�APt �

� +ASt0 � �B
P
t

2�
�
1�APt �

� � xSt0 � � �BPt � � 2APt �2
2�
�
1�APt �

�
xSt0 = �pt00

��+ �BSt + 2A
S
t ��

2(C
S
t � � +B

S
t � +A

S
t �

2)
+ASt0

�2CSt �B
S
t �

2(C
S
t � � +B

S
t � +A

S
t �

2)
� xPt0

�� +BSt � + 2A
S
t �

2

2(C
S
t � � +B

S
t � +A

S
t �

2)

which may be conveniently rewritten as

xPt0 = �pt00D
P
t +A

S
t0E

P
t � xSt0F

P
t

xSt0 = �pt00D
S
t +A

S
t0E

S
t � xPt0F

S
t

and under equilibrium (Nash) this implies that

xPt0 =
ASt0(E

P
t � E

S
t F

P
t ) + pt0(D

S
t F

P
t �D

P
t )

1� FPt F
S
t

xSt0 =
ASt0(E

S
t � E

P
t F

S
t ) + pt0(D

P
t F

S
t �D

S
t )

1� FPt F
S
t

which again can be conveniently rewritten as

xPt0 = A
S
t0H

P
t + pt0I

P
t

xSt0 = A
S
t0H

S
t + pt0I

S
t

which after substituting back into equations (37) and (38) will yield
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V Pt0 (pt00 ;W
P
t0 ; A

S
t0) = (pt00)

2 � [CPt (I
S
t )
2 + (�+ (I

P
t + I

S
t )�)(B

P
t I

S
t � I

P
t +A

P
t �+A

P
t (I

P
t + I

S
t )�)]

+ASt0pt00 � [2C
P
t (1 +H

S
t )I

S
t �H

P
t �+B

P
t (1 +H

S
t )�+

+B
P
t (I

P
t +H

S
t I
P
t + I

S
t +H

P
t I

S
t + 2H

S
t I
S
t )� +

�(2HP
t I

P
t +H

S
t I
P
t +H

P
t I

S
t � 2A

P
t (H

P
t +H

S
t )�)� + 2A

P
t (H

P
t +H

S
t )(I

P
t + I

S
t )�

2)]

+(ASt0)
2 � [CPt (1 +H

S
t )
2 + (H

P
t +H

S
t )�(B

P
t �H

P
t +B

P
t H

S
t +A

P
t (H

P
t +H

S
t )�)]

+NP
t +W

P
t0 +A

P
t �

2�2

and

V St0 (pt00 ;W
S
t0 ; A

S
t0) = (pt00)

2 � [CSt
�
I
S
t

�2
+ (�+ (I

P
t + I

S
t )�)(I

S
t (B

S
t +A

S
t � � 1) +A

S
t (�+ I

P
t �))]

+ASt0pt00 � [2C
S
t (1 +H

S
t )I

S
t �H

S
t �+B

S
t (1 +H

S
t )�+

+B
S
t (I

P
t +H

S
t I
P
t + I

S
t +H

P
t I

S
t + 2H

S
t I
S
t )� +

�(HS
t I
P
t +H

S
t I
S
t + 2H

S
t I
S
t � 2A

S
t (H

P
t +H

S
t )�)� + 2A

S
t (H

P
t +H

S
t )(I

P
t + I

S
t )�

2)]

+(ASt0)
2 � [CSt (1 +H

S
t )
2 + (H

P
t +H

S
t )�(B

S
t �H

S
t +B

S
t H

S
t +A

S
t (H

P
t +H

S
t )�)]

+NS
t +W

S
t0 +A

S
t �

2�2

so value functions for the period t0 are again of the form as in equation (36)

V Pt0 (pt00 ;W
P
t0 ; A

S
t0) = A

P
t0 � p2t00 +B

P
t � pt00ASt0 + C

P
t0 �
�
ASt0
�2
+WP

t0 +N
P
t0

V St (pt00 ;W
S
t0 ; A

S
t0) = A

S
t0 � p2t00 +B

S
t � pt00ASt0 + C

S
t0 �
�
ASt0
�2
+WS

t0 +N
S
t0

QED
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6.4 Proof of Proposition 4

The programme of the predator at time t = 0 is

max
xP0

E(
1

2�
� ((xS0 + xP0 + u0) � � + p�1)2 +WP

1 ) (39)

subject to beliefs about the position of the prey

xS0 = �A0 � N(��A0 ; �
2
A0)

and the distribution of the orders of the noise traders given by

u0 � N(0; �2L):

The value of the predator�s money account at time t = 1 is a function of his order at time t = 0

and the price of the asset at time zero �p0. Equation (39) can be therefore written as

max
xP0

E(
1

2�
� (p20) +WP

0 � p0 � xP0 )() max
xP0

1

2�
E(p20)� xP0 E(p0) (40)

By substituting the price process and by taking expectations we have

E(p0) = (x
S
0 � �A0) � � + p�1

and

E(p20) =

= E(p2�1 � 2�A0p�1 + 2p�1xP0 � +A20�2 � 2A0u0�2 + u20�2 � 2A0xP0 �2 + 2u0xP0 �2 + (xP0 )2�2)

= p2�1 � 2��A0p�1 + 2p�1x
P
0 � + (�

2
A0 + �

2
A0)�

2 + �2L�
2 � 2�A0x

P
0 �

2 + (xP0 )
2�2

By substituting E(p0) and E(p20) into equation (40), and then by taking �rst order conditions,

we know that

xP0 = 0

which concludes the proof of the proposition.

By substituting the optimal order of the prey to equation (39), and then by taking expectations,

we can calculate the value function of the predator at time t = 0, which is

V P0 (p�1;W
P
0 ; �A0 ; �

2
A0) =W

P
0 +

p2�1 � 2�A0p�1� + �
2(�2A0 + �

2
A0
+ �2L)

2�
(41)
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QED

6.5 Proof of Proposition 5

In proving this proposition we use a standard theory on Bayesian updating. Readers are referred

to Brunnermeier (2001) page 12 for more details.

We know that the beliefs of the predator about the risky assets held by the prey are given by

A�1 � N(�A�1 ; �2A�1). The signal observable by the predator is S�1 = a1+b1A�1+u�1. Therefore,
the mean vector and variance covariance matrix can be rewritten as

� =

"
�A�1
�S�1

#
=

"
�A�1

a1 + b1�A�1 + 0

#

� =

"
�2A�1 b1�

2
A�1

b1�
2
A�1

b21�
2
A�1

+ �2u

#
then by application of the projection theorem we have

(A�1jS�1) � N [�A�1 +
b1�

2
A�1

b21�
2
A�1

+ �2u
(S�1 � (a1 + b1�A�1)); �

2
A�1 �

b21�
4
A�1

b21�
2
A�1

+ �2u
]

As the order of the prey is (conjectured) to be xS�1 = a1+ b1A�1, the amount of risky assets in

the prey�s portfolio at time t = 0 is equal to A0 = A�1(1+ b1) + a1, and the beliefs of the predator

are given by

(A0jS�1) � N [a1 + (1 + b1) � (�A�1 +
b1�

2
A�1

b21�
2
A�1

+ �2u
(S�1 � (a1 + b1�A�1))); (42)

(1 + b1)
2 � (�2A�1 �

b21�
4
A�1

b21�
2
A�1

+ �2u
)]

QED

6.6 Proof of Proposition 6

The problem of the predator at time t = �1 is

max
xP�1

E(V P0 (p�1;W
P
0 ; �A0 ; �

2
A0)), max

xP�1

E(WP
0 +

p2�1 � 2�A0p�1� + �
2(�2A0 + �

2
A0
+ �2L)

2�
) (43)
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where

E(WP
0 ) = WP

�1 � E(p�1)xP�1
p�1 = p�2 + �(x

S
�1 + x

P
�1 + u�1)

and �A0 and �
2
A0
result from the Bayesian updating outlined in Proposition 5.

We can rewrite equation (43) as

max
xP�1

E(WP
0 +

p2�1 � 2�A0p�1�
2�

) + E(
�

2
(�2A0 + �

2
A0 + �

2
L)) (44)

and observe (given that equation (42) of Proposition 5 does not depend on the behaviour of the

predator) that the second part of this equation will not depend on the submitted order of the

predator xP�1, so the problem of the predator is equivalent to

max
xP�1

WP
�1 � E(p�1)xP�1 +

1

2�
E(p2�1)� E(�A0p�1)

By using the price process in the equation above we have

E(p�1)x
P
�1 = x

P
�1E(p�2 + �(a1 + b1A�1 + x

P
�1 + u�1)) = x

P
�1(p�2 + �(a1 + b1�A�1 + x

P
�1))

E(p2�1) = E((p�2 + �(a1 + b1A�1 + x
P
�1 + u�1))

2) =

= (p�2)
2 + 2p�2(a1 + b1�A�1 + x

P
�1)�

+�2(a21 + b
2
1(�

2
A�1 + �

2
A�1) + 2b1�

2
A�1x

P
�1 + (x

P
�1)

2 + 2a1(b1�A�1 + x
P
�1) + �

2
u)

E(�A0p�1) = E[(a1 + (1 + b1)(�A�1 +
b1�

2
A�1

b21�
2
A�1

+ �2u
(b1(A�1 � b1�A�1))))p�1] =

= ((1 + b1)�A�1 + a1)(p�2 + (a1 + b1�A�1 + x
P
�1)

Putting the above back into the value function, and taking the �rst order conditions with respect

to xP�1, yields

xP�1 = �a1 � (1 + b)�A�1
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In addition to this we have (after some tedious algebra)

E(�2A0) = (a1 + (1 + b1)�A�1)
2 +

b41(1 + b1)
2�4A�1

b21�
2
A�1

+ �2u
�
b41(b1 � 1)(1 + b1)3�4A�1

(b21�
2
A�1

+ �2u)
2

and

E(�2A0) = (1 + b1)
2(�2A�1 �

b21�
4
A�1

b21�
2
A�1

+ �2u
)

Then, by substituting the above into equation (44) and inserting an optimal order of the preda-

tor, we have the value function of the predator at time t = �1

V P�1(p�2;W
P
�1; �A�1 ; �

2
A�1) =W

P
�1 � �A�1p�2 +

p2�2
2�

+ U�1(�A�1 ; �
2
A�1)

where U�1(; ) is the function (introduced to clear the notation) that depends on �A�1 and �
2
A�1

only.

QED

6.7 Proof of Proposition 7

The problem of the predator at time t = �2 is

max
xP�2

E

�
WP
�1 � �A�1p�2 +

p2�2
2�

+ U�1(�A�1 ; �
2
A�1)

�
(45)

where

E(WP
�1) = WP

�2 � E(p�2)xP�2
p�2 = p�3 + �(x

S
�2 + x

P
�2 + u�2)

and �A�1 and �
2
A�1

are the results of the Bayesian updating outlined in Proposition 5.

We can rewrite equation (45) as

max
xP�2

E

�
WP
�1 � �A�1p�2 +

p2�2
2�

�
+ E

�
U�1(�A�1 ; �

2
A�1)

�
(46)

and observe (given that equation (42) of Proposition 5 does not depend on the behaviour of the

predator) that the second part of this equation will not depend on the submitted order of the
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predator xP�1, so the problem of the predator is equivalent to

max
xP�2

WP
�2 � E(p�2)xP�2 � E(�A�1p�2) +

1

2�
E(p2�2)

By using the same arguments as in Proposition 6 we have

E(p�2)x
P
�2 = x

P
�2(p�3 + �(a2 + b2�A�2 + x

P
�2))

E(p2�2) = (p�3)
2 + 2p�3(a2 + b2�A�2 + x

P
�2)�

+�2(a22 + b
2
2(�

2
A�2 + �

2
A�2) + 2b2�

2
A�2x

P
�2 + (x

P
�2)

2 + 2a2(b2�A�2 + x
P
�2) + �

2
u)

E(�A�1p�2) = ((1 + b1)�A�2 + a2)(p�3 + (a2 + b2�A�2 + x
P
�2)

Putting the above back into the value function, and taking the �rst order conditions with respect

to xP�2, yields (after some tedious algebra)

xP�2 = �a2 � (1 + b)�A�2

In addition to this we have

E(�2A�1) = (a2 + (1 + b2)�A�2)
2 +

b42(1 + b2)
2�4A�2

b22�
2
A�2

+ �2u
�
b42(b2 � 1)(1 + b2)3�4A�2

(b22�
2
A�2

+ �2u)
2

and

E(�2A�1) = (1 + b2)
2(�2A�2 �

b22�
4
A�2

b22�
2
A�2

+ �2u
)

Then, by substituting the above into equation (46) and inserting an optimal order of the preda-

tor, we have the value function of the predator at time t = �2

V P�2(p�3;W
P
�2; �A�2 ; �

2
A�2) =W

P
�2 � �A�2p�3 +

p2�3
2�

+ U�2(�A�2 ; �
2
A�2)

QED

41



6.8 Proof of Proposition 8

The programme of the prey at time t = �2 is

max
xS�2

E

�
WS
�2 � p�2 � xS�2 + (A�2 + xS�2)p�2 � �

3

4
(A�2 + x

S
�2)

2 + �
1

2
�A�1(A�2 + x

S
�2)

�
(47)

given the dynamics of prices

p�2 = p�3 + �(x
S
�2 + x

P
�2 + u�2)

and the dynamics of the beliefs of the predator

a2 + (1 + b2) � (�A�2 +
b2�

2
A�2

b22�
2
A�2

+ �2u
(xS�2 + u�2 � (a2 + b2�A�2)))

By substituting everything back into equation (47) and by taking expectations we have (after

simpli�cation)

max
xS�2

A�2p�2+W
S
�2�

1

4
(A�2+x

S
�2)�

 
3(A�2 + x

S
�2) + 2(a2 +

(1 + b2)(b2�
2
A�2

(xS�2 � a2) + �A�2�2u
b22�

2
A�2

+ �2u

!

Taking �rst order conditions of the equation above yields (after simpli�cation) we have

xS�2 =
b2(a2 �A�2(1 + 2b2))�2A�2 � (a2 +A�2 + (1 + b2)�A�2)�

2
u

b2(2 + 5b2)�2A�2 + 3�
2
u

which after appropriate reshu­ ing of the terms yields

xS�2 =
a2b2�

2
A�2

� (a2 + (1 + b2)�A�2)�2u
b2(2 + 5b2)�2A�2 + 3�

2
u

+A�2

 
�
b2(1 + 2b2)�

2
A�2

+ �2u

b2(2 + 5b2)�2A�2 + 3�
2
u

!

QED
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Part II

Dark Pools of Liquidity

1 Introduction

The past decade has been marked by signi�cant changes in the set-up of �nancial markets. New

terms such as dark pools of liquidity, algorithmic trading or �ash orders are now helping to de�ne

new mechanisms that take an important role in the everyday execution of orders across global

exchanges.

This recent revolution was made possible mainly because of constant improvements in IT and

communication technologies that became cheap and reliable. Nowadays, almost every investment

bank can a¤ord to set up up its own trading platform, which can provide many functions of well-

established global exchanges. Thanks to the current state of technology, these venues allow for the

reliable processing of submitted orders and e¤ective matching. One of the types of venues that

has become particularly popular in recent years is the dark pool of liquidity. Also known under
the name of �Crossing Networks�(CN), dark pools of liquidity are de�ned by SEC as �systems that

allow participants to enter un-priced orders to buy and sell securities, these orders are crossed at

a speci�ed time at a price derived from another market". Based on research by Ian Domowitz and

Yegerman (2008), as of 2008 over 40 independent dark pools operated in the US alone, and there

were more than 60 dark pools worldwide in total. The growing number of venues is accompanied

by the growing total volume of the trades executed within dark pools of liquidity. According to

research by Tabb (2004), the overall volume matched in dark pools in 2003 was between 5-10% of

the total volume, which is expected to increase to over 20% of the globally traded volume in 2011

(Tabb (2010)).

The emergence and growth of dark pools of liquidity was fuelled by RegNMS, a fairly new

security regulation in the US which requires that every trading venue ensures the best possible

execution. The regulation created common rules for various liquidity providers that helped to

standardise the trading space. This standardisation and the need of institutional investors to hide

their trading activity resulted in the growth of a number of trading venues and in an increase in

the volume cleared by them.

The rapid expansion of these alternative trading venues would not be possible without another

mechanism that de�nes today�s marketplace �algorithmic trading, also known as �algo trading�
or �automatic trading�. Algorithmic trading is a general name for methods involved in using com-

puter programs to drive trading decisions or any aspects such as a quantity or timing. Although

many algos di¤er signi�cantly �some are designed for automatic execution, arbitrage or pure spec-

43



ulation �their common feature is that they require a limited amount of human intervention and

are able to process enormous sets of data. It is estimated (Lati (July 2009)) that as of 2009 almost

73% of the US�s equity trading volume was executed through algos. Algos designed for optimal

execution are able to trade simultaneously in a number of di¤erent trading venues in order to gather

all dispersed liquidity and then execute large block orders. These are the algos that made trading

across dozens of venues possible, and therefore allowed for the increase in the number of dark pools.

In this paper I propose a tractable equilibrium model of the coexistence and competition for

liquidity between dark pools of liquidity and regular (dealer-oriented) exchanges. In regular ex-

changes dealers present their �rm bid and o¤er prices at which clients can trade. Clients executing

their orders on the exchange through a specialist can be sure their order will be executed at a

corresponding bid or ask price. However, as a specialist deals with both informational frictions (as

in Glosten and Milgrom (1985)) and inventory-carrying costs (as in Garman (1976) or Stoll (1978)),

investors need to pay some positive costs for trading with a competitive market-maker. Clients

who are willing to avoid these costs can attempt to execute the trade in the dark pool, which

would potentially allow them to avoid the need to pay the half-spread as a transaction cost14.

Unfortunately, dark pools do not guarantee execution. Because of imbalances in the dark pool of

liquidity, orders may not be executed, which makes an investor prone to the risk of a price change

in subsequent periods. If he is very risk-averse, he may be better o¤ trading through a dealer in

the market.

The model I present analyses the balance between a safe execution through a dealer and low-

cost, uncertain execution in the dark pool. I show how these two trading venues can coexist in a

stable equilibrium. In comparison to currently available models, I endogenise both dealers�spread

and the matching probability in the dark pool.

Before progressing with the model it is important to outline the most important practical

features of dark pools. For a full analysis and systematic categorisation of dark pools, please refer

to Mittal (2008). For the matter of this paper the relevant factors are as follows.

Pricing of the crosses �as written in the de�nition of the crossing network by SEC, �orders
are crossed at a speci�ed time at a price derived from another market". This essentially means

that the price at which the orders in the dark pool are crossed was established outside of this

venue. Typically, the price at which the orders are cleared is the mid price from the regular

exchange, which renders the execution/crossing price in the dark pool uninformative about any

order imbalance within the pool. In order to avoid the possibility of manipulation, the time of

sampling the reference mid-price for the crosses can be selected randomly. For example, it may be

that the mid-price selected for the cross is sampled at a random time of +/- 5 minutes before or

after the cross. As the crossing price is not an equilibrium price, some orders remain unmatched �

14Assuming that all orders are crossed in the dark pool at the mid-price in the market.
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which leads to the second important feature of dark pools.

Allocation rule �in the case of an imbalance between the buy and sell orders in the pool,
not all orders will be matched. Pools tend to di¤er in how they handle orders. Most common rules

for the selection of orders for matching are: pro-rata (orders from the excess side of the market

are matched pro-rata for all participants), time/volume preference (orders entered earlier have a

higher probability of being matched) or purely random matching (orders from the excess side are

selected randomly for matching).

Access to the dark pool �some pools limit the access to speci�c group of traders. One rule
that is particularly commonly used gives access to the pool only to institutional investors with a

certain historical volume of trades, while some other pools are only available to selected clients of

the manager of the pool. The important point here is that access to the dark pools can be limited

by the manager at his discretion.

Crossing Times �the majority of dark pools allow for a single cross every day. However, some
pools provide semi-continuous crossing for incoming orders (at the price derived from the major

exchange). In this paper, I focus on pools that provide the functionality of a single crossing during

a day.

2 Literature review

In this paper I analyse interactions and competition between dealer markets and crossing net-

works. Dealer markets have been analysed extensively by Garman (1976), Stoll (1978), Amihud

and Mendelson (1980), Ho and Stroll (1981), Amihud and Mendelson (1982), Ho and Stroll (1983),

Mildenstein and Schleef (1983), Glosten and Milgrom (1985), Grossman and Miller (1988) and

Biais (1993). The set-up of the dealer market I use in the model in this paper is related closely to

the set-up presented by Glosten and Milgrom (1985). The presence of traders with superior infor-

mation leads in my model to a positive bid-ask spread, even though the specialist is risk-neutral

and makes zero expected pro�ts �as such, the spread in the market is a consequence of adverse

selection. Alternatively, it might be possible to analyse the model in which the bid-ask spread was

induced by the inventory-carrying costs of a market-maker, as established in Ho and Stroll (1981).

Although the �rst papers explicitly analysing crossing networks are dated to the beginning of

2000s (e.g. Hendershott and Mendelson (2000)), some relevant contributions were presented much

earlier. In particular, the stream of literature analysing the market impact of large block trades is

particularly relevant for the analysis of dark pools of liquidity. Big institutional traders in many

cases use crossing networks to execute large block orders and avoid market impacts. Easley and

O�Hara (1987) investigate the e¤ects of trade size on security prices and show that dealers�optimal

pricing strategies must depend on trade size, with large trades being made at less favourable prices.
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This is because adverse selection arises, as informed traders prefer to trade larger sizes if both small

and large orders are priced uniformly. Dark pools of liquidity give large traders a chance to avoid

this price discrimination. In this respect, crossing networks play a similar role to syndicated trades

analysed by Burdett and O�Hara (1987) or the up-stair market analysed by Grossman (1992).

Competition between trading venues for order �ow and issues of the market and order �ow

fragmentation were analysed in a number of papers by notable authors such as Chowdhry and

Nanda (1991), Parlour and Seppi (2003) or more recently Rahi and Zigrand (2010). The basic

conclusion from the literature is that an increase in competition between the exchanges can lead to

a narrowing of bid-ask spreads, but order �ow fragmentation can have the opposite e¤ect and lead

to increases in the bid-o¤er spread. The relationship between the strengths of these two opposing

forces is crucial for the model presented in my paper. It is important to mention that speci�c

features of dark pools of liquidity introduce new observations that expand on and extend the

results of earlier studies. Dark pools of liquidity do not directly a¤ect price discovery, and orders

submitted to the pool are expected to have generally lower price impacts than those executed

through conventional means 15.

The earliest in�uential model on competition between the dealer market and the dark pool

was presented by Hendershott and Mendelson (2000). They directly model interactions between

the crossing networks and the dealer market in a static set-up. A random number (drawn from

geometric distribution) of uninformed and informed traders decide to submit orders to the dealer

market in which the number of market-makers operate. All dealers are in Bertrand price competi-

tion, so any market-maker can capture any fraction of the market by o¤ering the lowest possible

spread. A trader�s choice to trade depends on both trader-speci�c characteristics (like his valuation

or impatience to trade) and on endogenous characteristics such as the probability of execution in

the crossing network dealer�s half spread etc. Four possible equilibria may exist in the model: an

equilibrium with no trading at all, equilibria with trading only in the crossing network, an equi-

librium with an exclusive dealer market trading and a combination of crossing networks (CNs),

trading and dealer market (DM). The model I present in this paper is in many respects similar

to that created by Hendershott and Mendelson (2000), although I re�ne and extend some of the

results presented in their article. In particular, I add two period dynamics, the risk aversion of

traders and I solve explicitly for matching probabilities in the dark pool.

The �rst in�uential dynamic model of competition between the regular markets and dark pools

of liquidity was presented by Hans Degryse and Wuyts (2009). Authors adapt the model by

15The price impact of the orders submitted through the dark pool is, however, still non-zero. There is a second
order e¤ect. When a big institutional investor routes his order through the dark pool, and therefore decreases liquidity
in the exchange, this action has an indirect impact on the price discovery process of the exchange, i.e. the price in
the exchange can become more volatile because of the lower liquidity. Also in this situation the market volume starts
to convey important information � lower volume can indicate that more orders are being executed outside of the
exchange.
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Parlour (1998) to study the dynamics of order �ow to crossing networks and the dealer market. In

the model, traders are assumed to arrive sequentially and randomly in the marketplace during one

of two trading days. Each trader is characterised by his speci�c (and random) impatience to trade.

Upon arrival the trader decides between submitting the order to the dark pool of liquidity or to

the regular DM, where the spread is set exogenously to one tick. All trades in the crossing network

are matched at the end of each trading day and at the mid-price derived from the DM (CN does

not contribute to price discovery). Each trader at the moment of his decision as to whether he

trades through the DM or CN observes the order book of the CN and can assess the probability

of execution in the dark pool. Execution in the dark pool assumes time priority, so orders that

are entered earlier have a higher probability of execution. Importantly, the optimal strategies of

the traders are non-stationary and time-dependent �traders trading later have a lower probability

of their orders being executed in the dark pool, so they are less keen to submit their orders to

this venue. The main �ndings of the paper are as follows: increases in the DM�s relative spread

(which in this model is assumed to be exogenous) increase order �ow to the dark pool, which

should therefore be more successful in the markets, where the spreads are wide. In this set-up,

traders with higher willingness to trade prefer to go through the DM, which provides them with

instant execution. More patient traders choose to trade through the dark pool, which is cheaper in

expectation. The model suggested by Hans Degryse and Wuyts (2009) has some similar features

to the one I present in this paper. In particular, their model is dynamic, as it has multiple trading

rounds. In addition, the probability of matching in the dark pool is endogenous. My model extends

the set-up by providing the risk aversion of traders, and the impatience of traders is endogenous

rather then exogenous �as in the model of Hans Degryse and Wuyts (2009). In addition to this,

I assume the existence of informed traders, which allows me to endogenise the spread in the DM

and allows me to study the informational impact of dark pools of liquidity.

Although there is quite a substantial number of empirical studies on the interaction of the

trading systems (for a full overview, please see Biais, Glosten and Spatt (2005)), dark pools are

relatively secretive entities, and so the low availability of data means a relative paucity of empirical

studies. Jennifer Conrad and Wahal (2003) use proprietary data and examine institutional orders

and trades �lled by alternative electronic trading systems. Their dataset contains information

about institutional trades between the �rst quarter of 1996 and the �rst quarter of 1998. These

datasets allow one to distinguish between orders �lled by external crossing systems, electronic

communication networks (ECNs) and traditional brokers. They �nd that external crossing systems

are used largely to execute orders in listed stocks, while ECNs concentrate on Nasdaq stocks. On

average, broker-�lled orders are also larger and have a longer duration and higher �ll rates than

orders executed by alternative trading systems. Controlling for variation in order characteristics,

di¢ culty and endogeneity in the choice of trading venue, they �nd that realised execution costs

47



are, however, substantially lower for external crossing systems and ECNs.

3 The Model

In this section I �rst describe the set-up of the model economy. I de�ne assets available for trading,

market participants and available trading venues. Later, I solve the optimisation problem of market

participants and derive equilibrium in the economy.

One security is available for trading. This asset is a claim to a risky dividend that will be paid

in the last period of the trading game. The value of the �nal risky dividend v is either vh > 0 or

-vh, where a priori probability is P (v = vh) = 0:5.

There are three periods. In period t = 1, all agents submit their orders either to the risk-

neutral market-maker or to the dark pool. Orders that are submitted to the market-maker are

cleared with certainty at the prices quoted by the market-maker. Orders submitted to the dark

pool are attempted to be matched and (if matched) executed at the mid-price taken from the dealer

market (price equal to the average bid-ask shown by the market-maker)16. If there is an imbalance

between buy and sell orders in the dark pool, some orders are not executed and agents, in order to

satisfy their exogenous liquidity needs, are forced to resubmit their orders to the market-maker in

period t = 2. In the case of an imbalance between buy and sell orders, the agents for whom orders

are not executed are chosen randomly17. In period t = 3 the risky asset pays o¤.

In the economy there are n uninformed agents and 1 informed agent. The uninformed agents,

similar to classical noise traders, tend to have exogenous liquidity needs independent of the liquidity

needs of other uninformed agents. An uninformed agent is required to buy a single unit of risky

asset with probability pu
2 or to sell it with probability pu

2 and will not be required to trade with

probability 1�pu. The liquidity need of the uninformed trader is random and exogenous. The only
endogenous decision of the uninformed trader concerns the choice of trading venue to which his

order is submitted in the �rst place. In this respect our speci�cation of uninformed traders di¤ers

from the classical de�nition suggested by DeLong et al. (1990), where noise traders do not conduct

any optimisation at all and are in fact only automated. We can think of our uninformed agents as

traders executing their clients�orders �they are required by clients to buy or sell securities, but can

choose the venue they use to execute the order. This is exactly how dealers manage their positions

16The price setting mechanism assumed can be thought of as a good approximation of the price-setting mechanisms
implemented by dark pools of liquidity. In the majority of dark pools, additional mechanisms are used to avoid market
manipulation. For example, the price at which all orders are crossed in the dark pool is equal to the average dealer
market mid-price over a certain period before actual crossing. Alternatively, crossing prices can be set at a randomly
selected time before or after actual crossing in the dark pool.
17For instance, if there is n buy orders and m sell orders, where n > m, n �m buy orders will not be executed.

The agents whose buy orders will not be executed will be chosen randomly �so every agent who submits a buy order
has the same probability of having the order executed.
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�they receive orders from clients and execute these orders in the market by using the appropriate

trading venues. Uninformed traders are assumed to be risk-averse and therefore have preferences

for certain executions over others if both can be conducted at the same price. We assume that

each uninformed trader has the CARA utility function with the coe¢ cient of absolute risk aversion


. By choosing the trading venue in the �rst period an uninformed trader maximises the expected

utility of his terminal wealth

max
v2fMM;DPg

E(U(W ))

whereMM denotes trading (in the �rst period) through the market-maker and DP denotes trading

through the dark pool of liquidity. In equilibrium, the risk-averse uninformed trader submits his

order to the market-maker with probability q� (q� is endogenous). The trade is submitted to the

dark pool with probability (1 � q�). In an alternative speci�cation of the model we could suggest
that proportion q� of the market-maker goes to the MM �the results in this case would remain

essentially unchanged.

An informed agent has full prior knowledge of the terminal dividend of the risky asset. For

tractability purposes I assume that the informed agent is submitting only a single order to the

dealer market. He is always buying in the market when he knows that the dividend will be positive

and selling in the market and when he knows that the dividend will be negative. The set-up of

the informed agent is therefore identical to that introduced in Glosten and Milgrom (1985). In

addition, I assume, without the loss of generality, that the informed agent is allowed to trade only

in the �rst period. The model can be easily extended to accommodate variable numbers of informed

agents submitting their orders to the dealer market, and also their ability to trade in both periods.

In the model, I analyse the trading game with variable numbers of agents. Number n, which

is an integer re�ecting the size of the countable population of uninformed traders, is an important

model parameter because it allows for an explicit analysis of how the number of trading agents

entering the dark pool of liquidity a¤ects the probability of order matching in this dark pool.

Intuitively, if the number of uninformed agents (who independently submit buy and sell orders

with equal probability) entering the dark pool of liquidity increases, the probability of having the

order executed in this venue increases. In theory, if the number of uninformed agents entering

the dark pool tended to in�nity, the probability of having the order executed in the dark pool

would tend to one18 By increasing or decreasing n we are also able to check how changes in the

composition of market participants (the ratio of informed to uninformed agents �1 to n) a¤ects

market equilibrium.

The dealer market is represented by a single risk-neutral, competitive market-maker, who before

18 It can be shown that if the number of uninformed agents in the dark pool tended to in�nity the ratio between
the number of traders wishing to sell and buy would tend to one by law of large number and the probabilistic
independence.
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seeing the orders of the agents commits to the bid and ask prices at which he will execute any order

that may come to him. Uninformed agents have therefore (in equilibrium) full certainty about the

price at which their orders will be executed in the �rst period t = 1 in the dealer market. In the

second period the market-maker updates his beliefs about the �nal pay-o¤ using the information

about orders in the �rst period, and the spreads re�ect all information the market-maker learned

in this initial trading round. An important element of this set-up is that the market-maker does

not internalise information within a single time period19. Alternatively, we could assume that the

market-maker sets up bid and ask prices after he sees all the orders that have been submitted in

the trading round. However, in this set-up the dealer market would not provide a certain price

for the execution, which is empirically the most bene�cial feature of the market, i.e. the ability

to trade on �rm prices quoted by the market-maker. We can rationalise our set-up �in which the

market-maker commits to bid and ask prices before seeing the orders �by considering the maker-

maker to be in fact a composition of a large number of market-makers, each of whom receives

orders from informed or uninformed agents independently. Each of these market-makers can have

a maximum one client in a single period �the bid and ask prices quoted by such a single entity

would be equal to the prices quoted by the market-maker in our set-up. Each of these competitive

market-makers will set a spread that will provide him with zero pro�ts in expectation �the same

condition as for the market-maker in our set-up. After the initial trading round, all market-makers

process market-wide information about the observed orders and re�ne their beliefs about the true

asset pay-o¤. These can be thought of as happening through the inter-dealer broker market.

3.1 The Market-Maker�s Quoted Prices

In the �rst period the bid and ask prices quoted by the market-maker are given by

Proposition 9 Given the conjectured equilibrium-strategy pro�le (q�) the BID and ASK prices

quoted in the �rst period are given by:

PASK1 = vh � (
1

npuq� + 1
) (48)

PBID1 = �vh � (
1

npuq� + 1
)

where q� is an equilibrium (endogenous) probability of a market user choosing to trade through the

market-maker, while pu is the probability that a given market-user will be required to trade.

Proof. In appendix
19The market-maker is not able to update his spreads as new orders are coming in, so we assume that he sets the

spread and all orders appear at the same time.
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Obviously the spread of the market-maker�s quote widens if the order �ow becomes dominated

by the informed agent (q or pu decreases ). If q is low, the probability of trading through the

market-maker by the uninformed agents is low, so the spread quoted by the market-maker is

relatively wide. Our market-maker in this case is expecting that most likely he will be trading with

the informed agent, and a wide spread re�ects information cost. The important point here is that

from a single period perspective a decrease in q� decreases the bene�ts of trading in the dealer

market �spreads that e¤ectively represent the costs of trading through the dealer market increase.

There is, however, yet another multi-period implication of variation in q. Changes in value q lead

not only to a widening/narrowing spread in the current period, but also have an impact on the

ability of the market-maker to learn about the true asset value, which a¤ects quoted prices in the

following periods. The higher q, the less likely the market-maker is to learn about the true asset

value after he sees all orders in the �rst period. This e¤ect will be very important for the model,

so I will be discussing it in detail.

After the �rst trading round the market-maker observes the realised orders fk�1; k1g, where
k�1 is the number of sell orders and k1 the number of buy orders submitted to him in period t = 1.

Using this information he updates beliefs about the true asset�s value (which is either vh or -vh).

We know that the price quoted by the market-maker in the second period will be equal to20:

P2 = E(vjfk�1; k1g) =

= vhP (v = vhjfk�1; k1g)� vhP (v = �vhjfk�1; k1g)

where

P (v = vhjfk�1; k1g)

=
P (fk�1; k1gjv = vh)P (v = vh)

P (fk�1; k1g;buyjv = vh)P (v = vh) + P (fk�1; k1g;buyjv = �vh)P (v = �vh)

If k�1 and k1 are both greater than zero we have that

P (fk�1; k1g;buyjv = vh) = (
pu
2
q�)k1�1(

pu
2
q�)k�1

P (fk�1; k1g;buyjv = �vh) = (
pu
2
q�)k1(

pu
2
q�)k�1�1

so it can be easily seen that

P2 = E(vjfk�1; k1g) = 0
20Please bear in mind that in the current set-up of the model only uninformed agents are trading in the second

period, so there will be no bid-ask spread.
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If k�1 = 0 then

P2 = vh

If k1 = 0 then

P2 = �vh

We therefore have (given the equilibrium probability q�) the probability of both k�1and k1
being greater than zero equal to

P (k�1 > 0; k1 > 0) = P (v = �vh)P (k1 > 0jv = �vh) + P (v = vh)P (k�1 > 0jv = vh)

where we have

P (k1 > 0jv = �vh) = P (k�1 > 0jv = vh) = 1� (1�
pu
2
q�)n

so

P (k�1 > 0; k1 > 0) = 1� (1�
pu
2
q�)n (49)

Equation (49) gives the probability of the event that the true value will not be revealed after

the �rst trading round. The true value will be revealed if the market-maker observes that all orders

are of the same sign, which would mean that the informed agent must have submitted the order

that was observed (I assumed that the informed agent is always sending an order to MM and that

this order is consistent with the agent�s knowledge) and the true value of the dividend can be then

easily deduced.

Calculated probability in equation (49) is a decreasing function of q and an increasing function

of n (if q � pu > 0). This result implies that an increase in the probability of the uninformed

agent going to the MM decreases the probability of the information about the true dividend being

fully revealed in the �rst period. As I will show later, this actually increases the attractiveness of

opportunistic trading in the dark pool. If information about the true dividend is not revealed for

sure after the �rst trading round, an uninformed agent will prefer to trade in the dark pool. If his

order is executed in the dark pool, he will save on the spread. If his order is not executed in the

dark pool, he simply resubmits the order to the MM in period t = 2, where he likely receives a price

not much di¤erent to the price in the �rst period. Conversely, if it is very likely that information

on the true dividend is revealed in the �rst period, then trading through the dark pool becomes less

attractive. Nonetheless, an uninformed agent can save on the bid-ask spread if he trades through

the dark pool. However, if he is unlucky and his order is not executed in the dark pool, he risks

trading in period t = 2 where the price from t = 1 perspective is very volatile (is either vh or -vh).

As our agent is risk-averse he may prefer to submit his order to the market-maker in order to enjoy

a certain execution.
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Intuitively, the migration of orders from the dealer market to the dark pool by decreasing the

liquidity increases empirical market volatility, which can act against uninformed agents if the dark

pool fails to execute its orders. Therefore, by moving his order from the regular exchange to the

dark pool of liquidity, an uninformed agent has impact on market liquidity, which increases the

risks he may bear in period t = 2:

3.2 Matching in the dark pool

All orders submitted to the dark pool are considered for matching. However, as an imbalance

between the buy and sell order can occur, some orders will not be executed and will be forwarded

into the dealer market in period t = 2We assume that every order in the dark pool has a priori

the same probability of being successfully executed, which is consistent with the mechanics of a

number of dark pools of liquidity21. The operator of the dark pool does not favour any of the

market participants.

Below, we calculate the probability of a match for an order that was submitted by one unin-

formed agent into the dark pool of liquidity. This probability is conditional on the conjectured

probability q�. Because of the discrete nature of the problem the resulting equations are the �nite

sums of probabilities.

First, consider the probability of matching a buy order (exactly the same reasoning applies to

the sell order) if we have k agents already in the dark pool. If ks of these orders are sell orders,

then the probability of our buy order being executed in the dark pool is

P (k; ks) =MIN

�
1;

ks
k + 1� ks

�
The probability of having ks sell orders in the pool of k orders is�

k

ks

�
�
�
1

2

�ks �1
2

�k�ks
=

�
k

ks

�
�
�
1

2

�k
where the �rst part is a familiar binomial term k over ks. Therefore, we �nd that the probability

of having an order executed in the dark pool, when there are k agents in the dark pool (each

submitting independent orders to the dark pool �either buy or sell with equal probability) is

P (k) =

kX
i=0

�
k

i

�
�
�
1

2

�k
�MIN

�
1;

i

k + 1� i

�
21Some dark pools give time priority �orders that are received earlier have a higher chance of being executed than

orders that come in late. This set-up is analysed by Hans Degryse and Wuyts (2009).
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It is fairly easy to show, by virtue of the argument presented earlier, that P (k) goes to one

when k goes to in�nity.

Another complication, however, is that k also is a random variable on its own, depending on the

value of equilibrium quantity q�. Higher q� implies that uninformed agents prefer to trade through

the market-maker and k will be expected to be lower. Agents do not have certainty about how

many uninformed agents will appear in the dark pool. In equilibrium, each uninformed agent will

be trading through the dark pool of liquidity with probability pu(1� q�), so if we have n�1 agents
that could enter the dark pool (abstracting from the current agent), the probability of having s of

them in the dark pool is

P (s agents in the dark pool) =
�
n� 1
s

�
(pu(1� q�))s(1� pu(1� q�))n�1�s

The probability of having an order executed in the dark pool is therefore

Pr =

n�1X
s=0

"�
n� 1
s

�
(pu(1� q�))s(1� pu(1� q�))n�1�s �

"
sX
i=0

�
s

i

�
�
�
1

2

�s
�MIN

�
1;

i

s+ 1� i

�##
(50)

It can be seen relatively easily that the probability of having an order executed in the dark pool

is a decreasing function q. Higher q implies that more orders are routed to the market-maker and

there are less orders in the dark pool, which essentially suggests that the probability of having a

match in the dark pool is less likely. Another important observation is that the higher number of

uninformed agents n leads to a higher matching probability in the dark pool. These two observations

are illustrated in Figure 1 below.
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Figure 1: Matching probabilities in the dark pool depending on the number of uninformed agents
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(n = 10; 20; 30; 40; 50). For the same probability q higher n implies higher matching probability.

Assumed pu = 0:32.

3.3 The decision of an uninformed agent

An uninformed agent can decide on which trading venue will execute his orders. He can submit

his order directly to the market-maker or to the dark pool in the �rst period. The advantage of

executing the order through the market-maker is that there is certainty of execution. In equilibrium,

the price at which an investor will clear his order with MM is known with certainty. However, bid

and ask prices quoted by the risk-neutral market-maker are not equal �they entail a positive spread,

which re�ects the information cost borne by the market-maker. This cost can be avoided if the

order is matched in the dark pool. If the uninformed trader is lucky, his order will be executed

in the dark pool at a mid-price and he will However, if the order of the uninformed trader is not

executed in the dark pool, it will be forwarded to the market-maker at time t = 2. Unfortunately,

the price that will be quoted in period t = 2 is random from the perspective of the uninformed

agent in t = 1. It is possible that trading in period t = 1 will be informative regarding the true

asset pay-o¤, and the quoted price in t = 2 will be very di¤erent from the price the market-maker

quoted in the t = 2. This shows the quintessence of the decision of the uninformed agent, as he

needs to choose between the certain (but costly) execution at time t = 1 and the more risky, but

potentially cheaper, option through the dark pool. Every single uninformed agent, by changing

the probability of entering the dark pool, has an impact on the relative attractiveness of these two

trading venues.

3.3.1 Execution of the order through the market-maker

If an uninformed trader submits his buy order (same argument for the sell order) to the market-

maker, he knows that in equilibrium (when all agents submit their orders to the market-maker with

probability q�) his order will be executed at the price equal to

PASK1 = vh � (
1

npuq� + 1
)

so if he buys one unit of the asset from the market-maker his total wealth at the end of period

t = 3 will be

W = �vh � (
1

npuq� + 1
)

and the expected utility will be therefore equal to

EMM (U(W )) = � exp
�
�
 � (�vh � (

1

npuq� + 1
))

�
(51)
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The CARA utility function has been chosen as an example of the parametrised utility function,

which allows us to observe how the sets of equilibria are a¤ected by the risk aversion of an individual

agent. It is, however, worth mentioning that results from this paper are valid for any utility

functions that display the risk aversion of individual agents.

From the above equation we see that the �nal realised dividend will have no impact on the

expected utility of an uninformed agent. When an uninformed agent trades through the market-

maker he satis�es his liquidity need before the true dividend is revealed. After these liquidity needs

are satis�ed through the dealer an uninformed agent is fully hedged and has no exposure to �nal

risky dividend.

Execution through the market-maker allows for certain execution, but an uninformed investor

needs to bear the cost of trading, as exempli�ed in the standard framework of Glosten and Milgrom

(1985).

3.3.2 Execution in the dark pool of liquidity

If an uninformed trader decides to submit his order into the dark pool he faces the risk that it will

not be executed and he will need to forward it to the market-maker in period t = 2. Uncertainty

about the asset�s true pay-o¤may be by then revealed, and the uninformed trader may risk trading

at very unfavourable terms.

Essentially, three options are possible:

If the order of the uninformed agent is executed in the dark pool, he trades at zero price22 and

his terminal wealth is simply 0.
If the order of the uninformed agent is not executed in the dark pool, and asset uncertainty not

resolved, he still trades at zero cost in period t = 2. Zero spread in this case is a direct result of

the assumption that an informed trader places an order only in time t = 1. In the second period

the spread is equal to zero, as there are no informational costs of trading.

The last and the most risky possibility from the point of view of an uninformed trader is when

the order of the uninformed agent has not been executed in the dark pool and at the same time

the uncertainty about the true asset pay-o¤ has been fully resolved. In the second period an agent

will be forced to trade at either price �vh or �vh �which from the perspective of the �rst period

will have an equal probability.

I summarise the expected utility for an uninformed trader that decides to go to the dark pool

of liquidity through the following proposition.

Proposition 10 Given the conjectured equilibrium-strategy pro�le (q�) the expected utility of trad-

22 In the assumed set-up of the dark pool the execution price in DP is calculated as the average of the ask and bid
price observed in the dealer market, which is according to equation (48) equal to zero.
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ing through the dark pool by the uninformed trader is given by

EDP (U(W )) = Pr �(� exp (�
 � 0)) + (52)

(1� Pr) � [
�
1� (1� pu

2
q�)n�1

�
� (� exp (�
 � 0)) +

(1� pu
2
q�)n�1 � 1

2
� (� exp (�
 � �vh)� exp (�
 �+vh))]

Proof. In appendix
Each line in equation (52) corresponds to a relevant scenario outlined above, and P is the

probability of match (depending on q�) as calculated in equation (49) on page 52.
From a partial equilibrium perspective, if P is equal to 1 and the execution in the dark pool is

perfectly certain, the option of executing through the dark pool dominates the execution through

the market-maker. If the execution in the dark pool becomes uncertain, the uninformed agent may

start to favour certain executions in the dealer market depending on his risk aversion.

It is also worth mentioning that an investor with a linear utility function will always (weakly)

prefer opportunistic trading through the dark pool. In expectation that the price of the asset

in period t = 2 is equal to 0 and therefore the expected cost of trading is also zero, trading

opportunistically through the dark pool of liquidity is (for risk neutral investor) always a better

solution than trading through the dealer market, as it allows for saving on the informational cost

charge, which is the spread quoted by the market-maker in the �rst trading round.

3.4 Equilibrium

In this subsection I recover the symmetric equilibria (pure and mixed) of the trading game de�ned

in previous sections.

3.4.1 De�nition of symmetric equilibria

I de�ne the mixed strategy equilibrium of the economy as follows:

De�nition 1 The Symmetric Pure Strategy Bayesian equilibrium is a collection of PASK1(q�; pu; vh; n);
PBID1(q

�; pu; vh; n); Pr(q
�; pu; n), P2(q�; pu; vh; n; k�1; k1) such that:

1. A competitive market-maker sets the bid and ask prices PASK1 and PBID1, so he makes zero

pro�ts in expectations while trading with a counterpart.

2. All uninformed risk-averse agents trade optimally through the market-maker or through the

dark pool of liquidity.

3. The informed agent trades through the dealer market in period t = 1 only.
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4. The market price of the asset in period t = 2, de�ned as P2(q�; pu; vh; n; k�1; k1), utilises

(through Bayesian updating) all information available to the market-maker after trading in period

t = 1:

Mixed strategy equilibria are de�ned as follows:

De�nition 2 The Symmetric Mixed Strategy Bayesian equilibrium of the economy is a collection

of q�; PASK1(q�; pu; vh; n); PBID1(q�; pu; vh; n); Pr(q�; pu; n), P2(q�; pu; vh; n; k�1; k1) such that:

1. All uninformed agents submit their orders to the market-maker with probability q� and to the

dark pool of liquidity with probability (1� q�).
2. A competitive market-maker sets the bid and ask prices PASK1 and PBID1, so he makes zero

pro�ts in expectations while trading with a counterpart.

3. Probability q� maximises the utility for each uninformed risk-averse agent given prices quoted

by the market-maker and the probability of execution in the dark pool Pr(q�; pu; n). For mixed

strategy equilibria we understand that EMM (U(W (q
�))) = EDP (U(W (q

�)))

4. The informed agent trades through the dealer market in period t = 1 only.

5. The market price of the asset in period t = 2, de�ned as P2(q�; pu; vh; n; k�1; k1), utilises

(through Bayesian updating) all information available to the market-maker after trading in period

t = 1:.

Conditions 1 to 5 de�ne conditions for the Bayesian Nash-Equilibria for the dynamic trading

game. Condition 3 de�nes the optimality of the decision of each uninformed agent. Condition 4

sets the equilibrium condition for the action of the competitive market-maker. Condition 5 implies

rational Bayesian updating.

3.4.2 Pure strategy equilibria

For any choice of initial parameters (n; 
; pu; vh) there is always one symmetric equilibrium in pure

strategies q� = 0 (I denote this equilibrium q�DP ). In this case, all uninformed traders submit their

orders only to the dark pool in the �rst place. If this happens we know that

PASK1 = vh � (
1

npu0 + 1
) = vh

PBID1 = �vh � (
1

npu0 + 1
) = �vh

so the spread quoted by the market-maker is the widest expected and the market-maker expects that

he will be trading only with the informed agent. Therefore, no agent has any incentive to deviate

from a q� = 0 equilibrium strategy. It is possible that the uninformed agent�s order submitted
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to the dark pool will be executed in the dark pool, and in the worst case (when the order is not

matched in dark pool) the uninformed trader will be able to trade at no worse a price than that

quoted by the market-maker in the �rst period.

The second potentially obvious candidate for the symmetric equilibrium is an equilibrium with

q� = 1 (I denote this equilibrium q�MM ). This, however, is an equilibrium only for a speci�c choice

of model parameters (n; 
; pu; vh). In the model an investor may prefer to submit his order to

the dark pool, even though he knows de�nitely that this order will not be executed within DP

(all other players will submit their orders to the market-maker in the �rst period and the dark

pool will be empty). The trader knows, though, that there will be no informed trader in the

second period, so the market-maker will be quoting prices without the spread. The possible risk

of the single trader�s decision to go to the dark pool is that it may happen that uncertainty about

the asset value will be resolved in the �rst period and in the second period he may face a price

which is signi�cantly di¤erent from that quoted by the market-maker. If the risk aversion of the

uninformed agent is su¢ ciently low, he may prefer to trade opportunistically through the dark

pool of liquidity. Therefore, in general, a pure strategy equilibrium with q� = 1 will exist only if

investors are su¢ ciently risk-averse. In fact, we can provide an implicit condition for q� = 1 to be

an equilibrium. The condition for q� = 1 to be the equilibrium is23

� exp
�
�
 � (�vh � (

1

npu + 1
))

�
>

�
1� (1� pu

2
)n�1

�
� (� exp (�
 � 0)) (53)

+(1� pu
2
)n�1 � 1

2
� (� exp (�
 � �vh)� exp (�
 �+vh))

If the coe¢ cient of risk aversion is low and the above condition is not satis�ed, then q = 1 is

not an equilibrium. Agents prefer to deviate and go to the dark pool of liquidity instead of staying

with the market-maker.

3.4.3 Mixed strategy symmetric equilibria

In addition to at least one pure-strategy symmetric equilibrium we may have equilibria in mixed

strategies where 0 < q� < 1. Because of the discrete set-up of the model it is possible to �nd

these values only numerically using a simple Newton algorithm �for given model parameters I am

looking for q� that would equalise uninformed traders�bene�ts of executing the order through the

market-maker or submitting the order to the dark pool of liquidity.

The �rst mixed strategy equilibrium emerges when agents are risk-averse, but the condition

from equation (53) is still not satis�ed. In this case, as discussed, q = 1 cannot be an equilibrium
23Here, I just combine equations (51) and (52) and set matching probability Pr equal to zero (as there is no chance

the order will be matched in the dark pool).
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and agents consequently prefer to deviate and route their order to the dark pool. However, as

q decreases and agents symmetrically submit the order to the dark pool of liquidity with higher

probability, going to the dark pool becomes more risky. This is because now there are e¤ectively

less agents trading with the market-maker and there is a higher chance that the true asset value

will be revealed in period t = 2, leading to high uncertainty about the market-maker�s price in

t = 2. By further decreasing probability q we will at some point equalise the bene�ts of going

to the market-maker and to the dark pool. This would be a mixed strategy equilibrium with

probability q�1. In Figure 2, this equilibrium occurs for q
�
1 = 0:63. For this probability all agents are

indi¤erent to entering the dark pool or dealing with the market-maker; therefore, this equilibrium

can be sustained. If we now slightly decrease q (so we decrease the probability of going to the

market-maker), we �nd that investors are beginning to prefer MM. This is because the probability

of revealing the true asset value increases and the potential high swing of the price in period t = 2

poses a larger threat to the trader that submits his order to the dark pool of liquidity. An opposite

e¤ect happens when q probability is increased, as the threat of a highly uncertain price in the

second period is lower and agents can bene�t from execution in the dark pool of liquidity. The

properties of these equilibria therefore make it robust in the sense of Selten (1983)�s trembling hand

perfection. Another interesting observation about this equilibrium is that a decrease in the level

of risk aversion (
 in the model) leads to a decrease in equilibrium probability q�1. If agents are

less risk-averse they are less concerned with the risks of submitting orders through the dark pool

of liquidity. This result can be observed when we compare Figure 2 and �gure 3. A decrease in

risk aversion leads to a decrease in the q�1 probability.

The second mixed strategy equilibrium emerges for low levels of q. In the previous paragraph

I claimed that for a certain level of q a decrease in q leads to an increase of attractiveness for the

MM relative to DP. However, at some point if we decrease the value of q further, the MM starts to

lose its allure because the costs of trading with the market-maker become punitively high (as very

few uninformed agents trade with the market-maker, the spreads widen a lot), while the probability

of executing an order through the dark pool increases. At some point the cost of trading through

the market-maker is so high that a risk-averse agent becomes indi¤erent to DP and the MM. In

Figure 1 such an equilibrium exits for q� = 0:32.

For some values of the model parameters, mixed strategies may not exist. In particular, if agents

are not greatly concerned with risk, they might prefer the dark pool for all values of q (�gure 3), so

both the �rst and the second equilibria described above would not exist (please remember that for

risk-neutral investors there is only one equilibrium q� = 0). For high levels of risk aversion, when

condition (53) is satis�ed, investors prefer the MM for most q values and only decide to join the

dark pool when everyone else enters it with very high probability (�gure 4). In this case the only
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mixed strategy equilibrium is of the q�2 type.

3.4.4 Social welfare implications

In the model I present equilibria for which 0 < q� < 1 (equilibria in which uninformed agents trade

also through the dark pool) are characterised by a worse level of expected utility for risk-averse

agents than if all these agents traded through the market-maker only. This claim can be easily

proven using a simple argument. For all mixed strategy equilibria we have that

EMM (U(W (q
�))) = EDP (U(W (q

�)))

what combined with the fact that

@

@q
EMM (U(W (q

�))) > 0

that can be deducted from equation (51) on page 55 implies that the agent�s utility in equilibrium

increases with q. It is therefore possible to rank the equilibria that I identi�ed in subsection 3.4.3.

The gradation of utility can be seen in the upper left graph in Figure 2 �equilibria with the lower

level of q� provide lower level of utility to uninformed agents. As the utility of an informed agent

also decreases with decreasing q (the spread quoted by the dealer increases), the introduction of

the dark pool has a negative impact on overall social welfare. There are two intuitive explanations

for this e¤ect. First, the introduction of the dark pool of liquidity leads to a fragmentation of

the marketplace and therefore decreases risk sharing in the dealer market. The competitive, risk-

neutral market-maker prices the informational risk competitively and distributes its costs across

all clients. If q� is lower, the market-maker expects a lower order �ow and therefore distributes the

informational costs across a smaller number of informed agents, which leads to lower utility for each

of these agents. The second important element that needs to be taken into consideration when the

dark pool is introduced into the market is the fact that the it does not provide certainty of execution

�some orders submitted to the dark pool may be not executed, which forces the uninformed agent

to submit the order in period t = 2, when the price is volatile. By introducing the dark pool of

liquidity, uninformed risk-averse investors need to bear the risk of uncertain execution and price

volatility in period t = 2. In the market with a market-maker only, this risk is taken over by the

risk-neutral market-maker.

As described in section 3.4.2, q = 1 is not necessarily a symmetric (pure strategy) equilibrium.

In this case the introduction of the dark pool of liquidity leads necessarily to an overall loss of

welfare, as investors in any equilibrium start to use it �(q� < 1).
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Figure 2: pu = 0:32;
 = 0:70; n = 20; vh = 5
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Figure 3: pu = 0:32;
 = 0:68; n = 20; vh = 5
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Figure 5 (right): pu = 0:32;
 = 1:5; n = 20; vh = 5
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3.4.5 Existence of symmetric equilibria

Depending on certain model parameters, some equilibria mentioned in the previous subsections do

not actually exist. In particular, the set of available equilibria depends on the level of agents�risk

aversion 
 and the probability of having an exogenous liquidity need by the uninformed trader pu.

A high level of risk aversion favours equilibria in which agents trade mainly through the market-

maker. Lower risk aversion, on the other hand, supports equilibria in which uninformed agents

trade through the dark pool of liquidity. Probability pu has a similar impact on the existence of

equilibria in the model. Furthermore, high pu favours dark pool equilibria, while low pu supports

market-maker equilibria.

The impact of 
 and pu on the existence of equilibria is illustrated in Figure 6 below. The red

region denotes these pairs of 
 and pu for which equilibria q�DP ; q
�
MM ; q

�
2 can be sustained in the

model economy. In the blue region there is only one equilibrium: q�DP . In the region denoted by

the green colour we have the following equilibria: q�DP ; q
�
1; q

�
2.
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4 Concluding Remarks

This paper examines the implications of introducing an alternative trading venue into the market-

place. In a presented model I show how dark pools of liquidity can coexist in equilibrium with the

standard dealer market. During regular exchanges dealers present their �rm bid and o¤er prices. A

client executing an order on the exchange through a specialist can be sure his order will be executed
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at a corresponding bid or ask price. Investors willing to avoid paying a fee (spread) can decide to

move the order to a dark pool, which is a cheaper �but riskier �way of executing orders. In my

model the risk aversion of the investors is a force that drives the �nal market equilibrium. In a

market where investors are very risk-averse, agents have a tendency to execute their orders through

the market-maker. Conversely, low risk aversion favours services of the dark pool of liquidity.

My model can be compared to the model of Hendershott and Mendelson (2000). Similar to their

model, I also have multiple equilibria. The set-up of my model is, however, signi�cantly di¤erent

in that I have two period dynamics, the agents in my model are risk-averse and the spread quoted

by the market-maker is endogenous. Moreover, I solve explicitly for the matching probability in

the dark pool �something that is assumed in the majority of papers to be exogenous.

An important observation is the fact that the decision of a market participant whether to go

to a dark pool or execute the order through a market-maker has inter-temporal implications. If

an investor decides to route his order to the dark pool, he increases the probability that the true

value of the asset will be revealed in the current period and therefore increases expected volatility

of the price in a subsequent period, which can have negative implications for him if his order is not

executed in the dark pool of liquidity.

I �nd that equilibria in which investors execute their orders through the dark pool of liquidity

lead in general to lower social welfare than equilibria in which all investors trade through the

market-maker. The main reason for this is market segmentation and ine¢ cient risk sharing.
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5 Appendix to Part II

5.1 Proof of proposition 9

We �nd that

PASK1 = vh � P (v = vhjbuy)� vh � P (v = �vhjbuy) =

= vh � (2P (v = vhjbuy)� 1)

where

P (v = vhjbuy) =
P (buyjv = vh)P (v = vh)

P (buyjv = vh)P (v = vh) + P (buyjv = �vh)P (v = �vh)

P (v = vhjbuy) =
n
n+1

puq�

2 + 1
n+1

n
n+1

puq�

2 + 1
n+1 +

n
n+1

puq�

2

=
npuq

� + 2

2npuq� + 2

so we have after substitution

PASK1 = vh � (
1

npuq� + 1
)

Calculations for the ask price are equivalent.

QED

5.2 Proof of proposition 10

For the uninformed trader submitting the order to the dark pool of liquidity there are three possi-

bilities:

1. His order is executed in the dark pool. In this case his terminal wealth will be equal to zero

and the utility will be

U(0) = � exp (�
 � 0)

which will happen in an equilibrium with probability P (q�):.

2. With probability 1 � P (q�) an order submitted to the dark pool will not be executed. In
this case there are two further possible options. The true asset nature can be fully revealed after

trading in the dealer market in t = 1, which will happen with probability24

(1� pu
2
q�)n�1

24Please refer to the derivation of equation (49) on page 52.

66



In this case the price at which the uninformed trader will execute his order will be either vh or �vh
with equal probability. The expected utility of such a scenario is

1

2
� (� exp (�
 � �vh)� exp (�
 �+vh))

If the nature of the asset is not fully revealed after trading in period t = 1, then the uninformed

trader will trade at a price equal to zero.

Summing up all elements, we �nd that

EDP (U(W )) = P � (� exp (�
 � 0)) + (54)

(1� P ) � [
�
1� (1� pu

2
q�)n�1

�
� (� exp (�
 � 0)) +

(1� pu
2
q�)n�1 � 1

2
� (� exp (�
 � �vh)� exp (�
 �+vh))]

QED
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Part III

Portfolio Problem with Infrequent Trading

1 Introduction

Traditional continuous time asset-pricing and asset allocation theory is based on the assumption

that all assets are perfectly liquid and can be traded by economic agents continuously. In particu-

lar, it is assumed that market participants are allowed to rebalance their portfolios at any time. In

reality, however, completing an asset transaction may require a signi�cant amount of time. Eco-

nomic agents may need time to coordinate (search for each other), agree on the price and then

�nalise the transaction, which for some asset classes can require a substantial amount of time.

All of these delaying factors become even more severe in volatile markets, when the frequency of

trading decreases and it may take longer to �nd a counter-party for a trade. Rational investors,

when making their investment/consumption decisions, need to take into account any future e¤ects

of illiquidity.

Typical examples of illiquid assets are real estate, private equity and hedge fund investments. In

the case of real estate and private equity investment, signi�cant waiting time for the completion of a

transaction is linked to the unique nature of underlying. For example, when an investor sells a house,

he needs to �nd a buyer who is interested and will accept speci�c characteristics of the property

such as its location, quality, etc. The process of �nding a counter-party for such transactions can

be long -winded and characterised by uncertainty. In reality it may take many months before the

transaction in this asset class is completed. In addition, investors in private equity need to take into

account the variable time it takes them to enter/exit the investments. Unwinding an investment in

an unlisted company requires either �nding a specialist buyer (who will manage the newly acquired

company) or a long process of IPO. In addition, investors investing in hedge funds have limited

ability to move their capital from the fund in which they have invested, as the majority of hedge

funds require long-term capital commitment. Many money managers contractually allow themselves

to restrict the out�ow of funds at their discretion25. Rational investors into private equity or hedge

funds, who foresee limited liquidity in their investment, require an additional premium that will

compensate for this fact.

Issues surrounding optimal trading in illiquid markets have motivated an increasing amount of

research in the past few years. This paper contributes to this research threefold. First, I analyse

in detail the partial equilibrium optimal investment/consumption problem of an agent allowed to

25This restriction, known as �gating", was frequently used in the middle of the �nancial crisis in 2008. Hedge fund
managers restricted redemptions from entering their funds, arguing that many assets of the funds were very illiquid
and they wanted to avoid unwinding the position at a �re-sale price.
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allocate his capital to illiquid assets. I clearly highlight the mechanisms and show explicitly how

optimal portfolio choice depends on the level of illiquidity. Second, I propose an e¤ective numerical

algorithm to solve for the optimal policy. In order to �nd an answer to this degenerate elliptic

boundary value problem I modify the algorithm proposed by Kushner (1968). Third, I present

general equilibrium and welfare implications from earlier partial equilibrium results.

Di¤erent de�nitions of illiquidity can be found in the literature. For this paper, I assume that

it is the inability to trade an asset continuously. In my model investors can trade the asset only

at random moments, which are governed by a Poisson random process. When an investor has

an opportunity to trade, he is doing so at the fundamental value of the underlying asset26. Any

rebalancing of the position in the illiquid asset can be done only at random moments in time.

Nonetheless, the investor is allowed to consume from his cash account continuously, and any shocks

to his total wealth will be partially absorbed by a change in the rate of consumption from the cash

account. Another de�nition of illiquidity that is sometimes considered in the literature assumes

that it is the inability to trade at a fair price rather than the inability to trade at all. An investor

facing this type of illiquidity is allowed to trade at any point in time, but he pays high transaction

costs when making the transaction. In this set-up the illiquidity of the asset is simply re�ected

in the additional transaction cost an investor needs to pay to trade the asset. Probably the true

nature of this phenomenon is somewhere in between whereby investors willing to close their position

are required to pay signi�cant transaction costs (are trading at �re-sale price) if they want to close

the position instantly, or need to wait a random time for the opportunity to trade at the fair

fundamental price.

2 Related Literature

This paper relates to several branches in the literature. First it is directly connected to classical

literature on optimal investment/consumption in continuous time. Models presented in seminal

papers by Merton (1969) and Merton (1971) most likely provided the �rst successful applications

of mathematical optimal control of Markov processes in economics. This initial research was ex-

tended by Richard (1975), Kim and Omberg (1996), Fleming and Zariphopoulou (1991), Karatzas,

Lehoczky and Shreve (1987) and others. The continuous time approach with stochastic volatility

is based on the approach of Heston (1993). Models presented in this classical branch of literature

allowed in general for the closed form solution of the underlying stochastic optimisation problem,

which enabled their applications to appear in general equilibrium settings, as in the model by

Merton (1973).

Investment/consumption problems with transaction costs were studied in detail by, amongst

26To be de�ned in detail later
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others, Davis and A.R.Norman (1990), Dumas and Luciano (1989), Constantinides (1986), Vayanos

(1998) (in general equilibrium settings) and Liu and Loewenstein (2002). Transaction fees decrease

investors�allocations to assets, which are costly to trade. Models show that economic agents facing

transaction costs prefer a more conservative allocation, where a bigger portion of their total wealth

is devoted to the liquid asset, as it would otherwise be implied by a standard model such as that

posited by Merton (1971). Importantly, however, the transaction cost needs to be considerable

to observe large deviations from the baseline model. A framework with short-sell constraints was

studied extensively by Cvitanic and Karatzas (1992) and Chabakauri (2009).

My paper also relates to the literature on search in �nancial markets by Darrell Du¢ e (2005),

Vayanos and Wang (2007), Vayanos and Weill (2008) and Garleanu (2009). In these models agents

are required to wait for a random time before their orders are executed, which leads to a deviation

of equilibrium prices from the perfectly liquid case. An important point about this branch of

literature is that it focuses on the general equilibrium implications of illiquidity and not on the

portfolio selection of the individual agent. The majority of the results are obtained assuming that

the law of large numbers holds, which allows one to disregard the second-order considerations of a

single economic agent.

The most closely related papers to this paper are by Rogers and Zane (1998), Schwartz and

Tebaldi (2006), Pham and Tankov (2008) and Longsta¤ (2009). Rogers and Zane (1998) analysed

a very similar problem to the one I present in this paper. The solution presented relies on an linear

approximation, which is approximately valid only for small levels of illiquidity, so any deviation from

the standard result of Merton (1971) is relatively minor. Schwartz and Tebaldi (2006) showed a series

expansion solution to a related and simpli�ed27 HJB problem. This paper is also closely linked to the

literature on numerical methods for solving Stochastic Control Problems. In particular, I present

an e¢ cient numerical algorithm for solving the underlying HJB equation, which is a modi�cation of

Kushner (1968)�s numerical algorithm. This method was later re�ned by Fitzpatrick and Fleming

(1991) and Chellathurai and Draviam (2007).

A general overview of the issues concerning illiquidity can be found in the work by Vayanos

and Wang (2010), who review the current state of illiquidity theory. A good introduction to HJB

equations and stochastic optimal control can be found in a book by Fleming and Soner (2006a).

27 In their model there is an illiquid asset for which trading is not allowed until known a priori time T, when the
asset needs to be consumed. Similar to my model an investor adjusts the rate of consumption depending on the value
of the illiquid asset. Illiquidity in the model by Schwartz and Tebaldi (2006) does not have a Poisson nature as in
the model I present.
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3 Standard in�nite horizon Merton problem

I �rst start by reviewing the original results of Merton (1969), in order to reference them later and

show di¤erences in the case of an illiquid asset. I �rst �x the probability space (
;F ; P ) endowed
with a �ltration F = (Ft)t�0, satisfying the usual conditions. All stochastic processes involved in
this paper are de�ned on the stochastic basis (
;F ; F; P ).

An investor with a �xed time horizon of T has access to two assets. He can invest money in

the bank at the deterministic short rate of interest rso he has access to a risk-free cash account

growing deterministically as

dAt = Atrdt

The investor can also invest in a risky asset with price process St;, which is assumed to be governed

by standard geometric Brownian motions

dSt = �Stdt+ �StdBt

where Bt is a Wiener process adapted to �ltration F:.

The objective of an investor is to maximise the expected utility of future consumption

V (W0) = E

�Z +1

0
u(ct)dt

�
for admissible control fct; atg, where ct is the instantaneous rate of consumption and at the amount
of risky asset the investor holds in his portfolio at time t : The Bellman equation for the Merton

problem in di¤erential form is given by

V (Wt) = max
ct;at

�
u(ct)dt+ E

�
1

1 + �dt
� V (Wt+dt)

��
(55)

which is subject to the law of motion in regard to an agent�s wealth

dWt =Wt (rdt+ at(�� r)dt+ at�dBt)� ctdt

and non-negativity of wealth and consumption

ct > 0;Wt > 0 a:s: P

Equation (55) may be rewritten in the following form:

0 = max
ct;at

u(ct)dt+ E (V (Wt+dt)� V (Wt))� �dtV (Wt)
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which, after applying Ito lemma results in the corresponding HJB equation

0 = max
ct;at

u(ct) + VW (Wt)Wt(r + at(�� r))� VW (Wt)ct +
1

2
a2tW

2
t �

2VWW (Wt)� �V (Wt)

First-order conditions for this problem are

u0(ct) = VW (Wt)

and

�VW (Wt)(�� r)
Wt�2VWW (Wt)

= at

For u(ct) =
c
t

 we end up with the following highly non-linear PDE

0 =
(VW (Wt))




�1



+ VW (Wt)Wt(r �

VW (Wt)(�� r)2
Wt�2VWW (Wt)

)� (VW (Wt))




�1

+
1

2

�
VW (Wt)(�� r)
Wt�2VWW (Wt)

�2
W 2
t �

2VWW (Wt)� �V (Wt)

By conjecturing on the solution to the power utility form

V (Wt) =
KW 


t




and substituting it back into PDE we �nd

0 =

�
KW 
�1

t

� 


�1



+KW 
�1

t Wt(r �
KW 
�1

t (�� r)2

Wt�2(
 � 1)KW 
�2
t

)�
�
KW 
�1

t

� 


�1

+
1

2

 
KW 
�1

t (�� r)
Wt�2(
 � 1)KW 
�2

t

!2
W 2
t �

2(
 � 1)KW 
�2
t + �

KW 

t




which can be simpli�ed to

0 =
K

1

�1



+

�
r � 1

2

(�� r)2
�2(
 � 1)

�
�K




�1 + �

1




From this point we can recover the value of K , which is equal to

K =

�
�� 
r
(1� 
) �

1

2


(�� r)2
�2(1� 
)2

�
�1
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while the value function can be presented as

V (Wt) =

�
�� 
r
(1� 
) �

1

2


(�� r)2
�2(1� 
)2

�
�1
W 

t



(56)

The transversality condition holds (if K > 0), so we have a solution to the Merton problem. From

FOCs we �nd that the allocation to risky asset is

at =
(�� r)
�2(1� 
) (57)

and the intensity of consumption

ct = K
1


�1Wt (58)

The results imply that an investor invests a constant fraction of his wealth into a risky asset. His

rate of consumption is also a constant fraction of his total wealth. In this consumption/investment

problem the optimal rate of consumption follows an Ito process whereby

dct = ct

��
r �K

1

�1 +

(�� r)2
�2(1� 
)

�
dt+

(�� r)
�(1� 
)dBt

�
Important observations from this solution are as follows. The rate of consumption is a smooth

process without jumps (this will not be the case for the case of illiquid assets). The only state

variable is wealth Wt of the investor. As the portfolio composition can be adjusted instantly the

only thing that matters for the investor is the total sum of the assets. In this instance, when

one of the assets is illiquid there will be two state variables � the allocation to a liquid and an

illiquid asset. Another important observation is the fact that the desired portfolio composition is

constant through time, as described by equation (57). The desired composition of assets depends

on the relative risk and reward o¤ered by the risky asset. In particular, equation (57) can prescribe

either a short ((� � r) < 0) or long position in the underlying risky asset. In the illiquid case the
composition between assets is not constant through time. In particular, if the value of illiquid assets

increases, an investor is not able to instantaneously adjust the level of his cash account to re�ect

the higher value of his total wealth. Instead, he needs to wait for the opportunity to rebalance his

portfolio.

4 Merton problem with infrequently traded asset

The problem I would like to solve is the optimal consumption and investment that occurs when

one of the investment assets is traded infrequently. The opportunity to trade the �illiquid asset"
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arises upon the occurrence of a Poisson event. Only when such an event occurs is the trader able to

change (increase or decrease) his position in the illiquid asset. The investor can, however, consume

continuously from the bank account between the times that he is allowed to trade in the illiquid

asset. An important element in our set-up is that the investor observes the fair value of the illiquid

asset continuously and not only at the times at which he is able to trade it. This is one of the

di¤erences between my model and that of Pham and Tankov (2008), who assume that the investor

is only observing the value of the illiquid asset at the time he is allowed to trade it. Although the

value of the risky asset is internally governed by a Brownian log-normal process, the investor is

only observing discreet, randomly spaced valuations of this process. This di¤erence has important

implications for the solution. In my model, as an investor is able to observe the fair value of

his risky asset at each point in time, the intensity of the consumption between random trading

opportunities will be a function of the time from the last trading opportunity (as in Pham and

Tankov (2008)), but also the fair value of illiquid underlying. I believe that this set-up is consistent

with the nature of asset illiquidity; for example, let us consider an investor with his wealth divided

between illiquid housing and an amount of liquid cash. If he observes that the housing market is

su¤ering signi�cant losses and fair values are going down, he will decrease his level of consumption

in response to these changes. Consequently, I assume that even though the investor is not able to

trade the asset instantly, he is able to estimate its fair value at each point in time.

Holdings of the liquid asset are denoted by Lt, while those of the illiquid asset will be denoted

by It. An agent is able to trade illiquid assets only at random times f�kg governed by the Poisson
process with intensity � adapted to Poisson �ltration =. Obviously, in this case we cannot treat
total wealth Wt = It+Lt as a state variable, as evident in Merton (1969). Now, there are two state

variables �Lt and It �and the value function is a function of both their sum and ratio28. This can

be understood intuitively when we compare two possible situations of an investor. It is possible

that an investor has a very small fraction of his wealth held in a liquid asset, and even though he

may have considerable total wealth he is not able to consume as much as he would like 29; otherwise,

he may zero-out all the money he has in his bank account and will �starve". The investor with the

same level of total wealth, but with a more balanced split, will be better-o¤ because he will be able

to enjoy higher level of consumption, thus re�ecting his higher level of wealth.

Formally, the optimisation problem of the investor is (we assume without loss of generality that,

when the economy starts. the composition of the investor�s portfolio is given):

28The value function is time homogeneous, as I consider the in�nite horizon problem and the Poisson process as
memoryless.
29 I will shortly prove that in this set-up an investor is not allowed to borrow in excess of the wealth of his liquid

assets.
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V (Lt; It) = max
fc;ag

E

+1Z
0

e��tu(ct)dt (59)

subject to a law of motion

If t =2 f�kg then
(

dLt = (rLt � ct)dt
dIt = �Idt+ �IdBt

(60)

If t 2 f�kg then Lt + It = Lt� + It� and (Lt; It) = argmax
Lt+It=Lt�+It�

V (L; I) (61)

and non-negativity of the total wealth process30:

Lt + It > 0 a.s. P

The �rst observation is that the process involving both Lt and It cannot be expected to be neces-

sarily continuous. In fact, both are jump-di¤usion processes, where the values of both Lt and It
jump to optimum values at the times when an investor is given the opportunity to rebalance. At

these moments an investor adjusts the ratio between the Lt and It to the desired optimum.

From the initial set-up of the problem we can show important observations about both Lt and

It processes, which are summarised in the propositions below:

Proposition 11 The agent always sets Lt > 0 (the agent never borrows).

Proof. Non-negativity of the total wealth process implies that an investor can only choose
controls fct; atg such that Lt + It > 0 a.s. P . Let us now assume that the agent at time t = t�

opened a short position (borrowed) in a liquid risk-less asset and �Lt� = �t� , where �t� > 0. For
any intensity � let us denote a stopping time for the next Poisson event with ��. We �nd that

for any g, P (�� > t� + g) > 0. We also �nd (from the properties of the geometric Brownian

motion) P (It�+g < �t�) > 0 for any g;, so we have P (Lt�+g + It�+g < 0) > 0;, which contradicts the

non-negativity of the wealth condition.

The intuition behind Proposition 11 is as follows. An investor is not allowed to �nance his

investment in illiquid assets by borrowing in liquid assets, as he may be not able to liquidate the

position in the illiquid asset quickly enough when the value of the illiquid asset falls. In this case

an investor can end up in a position whereby his total wealth is negative, which will violate the

non-negativity of the wealth condition and ultimately a transversality condition. In the standard

case of Merton (1971) an investor can borrow to �nance a risky asset (this will happen if at > 1

30This is a standard requirement used in the literature whereby an investor cannot have negative total wealth, as
he may be not able to satisfy his future obligations.
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in equation (57) on page 73. Nevertheless, this is only possible because of negative shocks to risky

assets (i.e. the value of the risky asset going down), and as such an investor is able to decrease

exposure to this asset instantly and therefore avoid the risk of bankruptcy. In an illiquid case this

can turn out to be impossible with positive probability.

Proposition 12 The agent never sets It < 0 (the agent never goes short in the illiquid asset).

Proof. The proof of this proposition is similar to that of the previous proposition. Non-

negativity of the total wealth process implies that an investor can only choose controls fct; atg
such that Lt + It > 0 a.s. P . Let us now assume that the agent at time t = t� opened a short

position in the illiquid asset and �It� = �t� , where �t� > 0. Without losing generality we assume
that holding the liquid asset at time t� is Lt� . For any intensity � let us denote a stopping time

for the next Poisson event with ��. We �nd that for any g, P (�� > t� + g) > 0. From the

equation relating to the dynamics of liquid wealth (60) we �nd that31 Lt�+g 6 Lt�erg. We also �nd
(from the properties of geometric Brownian motion) P (�It�+g > Lt�erg) > 0 for any g; so we have
P (Lt�+g + It�+g < 0) > 0;, which contradicts the non-negativity of the wealth condition.

The intuition behind this proposition is straightforward. An investor in our set-up will never ,

as his potential losses on this position are uncapped. If an investor makes a long-only investment

into an illiquid asset the maximum he may lose before he is able to re-trade the assets is equivalent

to It �the current allocation to the illiquid asset. However, in the case of the short position an

investor may su¤er losses, which are in excess of his total wealth when the value of the asset he is

shorting rises signi�cantly.

An important conclusion from Proposition 11 and Proposition 12 is that exposure to an illiquid

asset equates to at 2 [0; 1). In particular, we cannot expect the closed form equation for at to be

of the same form as the standard problem of Merton (1969), which I presented in equation (57) on

page 73.

Proposition 13 (Homothetic property of the value function) For u(c) = c
=
 the value function32

is homogeneous to degree 
 in It and Lt, V (�It; �Lt) = �
V (It; Lt). For u(c) = ln(c) we �nd

V (�It; �Lt) =
1
� ln(�)V (It; Lt).

Proof. This property of the value function can be easily established from the de�nition. First,

let us denote with �(x; y) the class of admissible policies starting at (Lt; It). From equations (60)

and (61) we see that

�(�x; �y) = f(�c; �a) : (c; a) 2 �(x; y)g
31With equality only for the infeasible case of ct = 0 for t 2 (t�; t� + g).
32The set of felicity functions that I consider in this paper is HARA.
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By combining this observation with equation (59) we see that

V (�x; �y) = max
�(�x;�y)

E

+1Z
0

e��tu(ct)dt = max
�(x;y)

E

+1Z
0

e��tu(�ct)dt = V

where V is equal to �
V (x; y) for u(c) = c
=
 (as u(�c) = �
u(c)) and V is equal to V (x; y)+ln(�)=�

for u(c) = ln(c) (as ln(�c) = ln� + ln c).

The property stated by Proposition 13 is instrumental in helping to show the validity of Propo-

sition 14, which is crucial for an e¤ective numerical solution to the investor�s problem.

Proposition 14 The optimal solution to the problem max
L+I=w

V (L; I) always gives the same ratio

I�

L� for any w > 0.

Proof. Proof follows directly from the homogeneity of V (L; I). The �rst order conditions

for optimal solution (L�; I�) are VL(L�; I�) = VI(L
�; I�). However, homogeneity implies that

(L�=w; I�=w) will satisfy the �rst order conditions of a related problem max
L+I=1

V (L; I). By setting

w 2 R+ we complete proof of the proposition.
An important implication of Proposition 14 is that an investor, whenever he is allowed to re-

trade an illiquid asset, brings back the ratio of Lt=It to the same long-term optimum. At the

occurrence of Poisson events both Lt and It jump, so their ratio is adjusted back to optimum. This

implies that processes for both Lt and It are jump di¤usions with perfectly predictable jump sizes.

The dynamics of the ratio of Lt to It can be compared to those of relevant ratios in the Merton

problem with transaction costs (as in the model by Davis and A.R.Norman (1990)). Regarding

the problem with transaction costs, the ratio is adjusted whenever it deviates signi�cantly from

the optimum ratio. The investor is passive if the ratio is in an �inaction" area, and starts to trade

when it is out of it, in order to bring it back to the inaction area.

Although Proposition 14 implies that there is a �xed ratio with which an investor can bring

back his allocations to liquid and illiquid assets, it is important to remember that this ratio can be

di¤erent to a standard Merton solution, which is implied by Proposition 11 and Proposition 12. I

provide an e¢ cient algorithm to solve for this ratio numerically.

For the clarity of further analysis I de�ne function � as

�(Lt + It) = max
L�+I�=Lt+It

V (L�; I�)

where the function is the continuation utility, given the opportunity to re-trade the asset.
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4.1 Derivation of the HJB Equation

We start with the derivation of the Hamiltonian Jacobi Bellman equation for problem (59). The

problem for the investor presented in di¤erential form is

V (Lt; It) = max
ct
fu(ct)dt+ E(

1

1 + �dt
� ( 1

1 + �dt
V (Lt+dt; It+dt) (62)

+(1� 1

1 + �dt
) � �(Lt+dt + It+dt)))

where �() is a function de�ned in a previous paragraph. By multiplying both sides by ((1 + �dt)(1 + �dt))

we have

(1+�dt)(1+�dt)V (Lt; It) = max
ct
((1 + �dt)(1 + �dt)u(ct)dt+ E (V (Lt+dt; It+dt) + �dt�(Lt+dt + It+dt))

which can be simpli�ed by cancelling terms of order dt2. This results after simpli�cations in

0 = max
ct
(u(ct)dt+ E (V (Lt; It) + dV (Lt; It) + �dt�(Lt+dt + It+dt)� (1 + (�+ �)dt)V (Lt; It))

which after applying the Ito formula leads to

0 = max
ct
((u(ct)dt+ E[(

�
VLt(rLt � ct) + VIt�It +

1

2
VItIt�

2I2
�
dt

+VIt�dBt) + �dt�(Lt+dt + It+dt)� (�+ �)V (Lt; It)dt]

which by taking expectations simpli�es to

0 = max
ct
(u(ct)dt+ (VLt(rLt � ct) + VIt�It +

1

2
VItIt�

2I2)dt

+�dt�(Lt+dt + It+dt)� (�+ �)V (Lt; It)dt)

dividing by dt

0 = max
ct

�
u(ct) +

�
VLt(rLt � ct) + VIt�It +

1

2
VItIt�

2I2
�
+ ��(Lt+dt + It+dt)� (�+ �)V (Lt; It)

�
and taking the limit as dt! 0 results in the HJB Equation

0 = max
ct

�
u(ct) +

�
VLt(rLt � ct) + VIt�It +

1

2
VItIt�

2I2
�
+ ��(Lt + It)� (�+ �)V (Lt; It)

�
(63)

The corresponding �rst-order condition of the optimisation problem is:
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u0(ct) = VLt

4.1.1 Case of logarithmic utility function

Below, I calculate the form of HJB equation for the logarithmic felicity function. By substituting

the felicity function

u(ct) = ln(ct)

into equation (63) we have

0 = max
ct

�
ln(ct) +

�
VLt(rLt � ct) + VIt�It +

1

2
VItIt�

2I2
�
+ ��(Lt + It)� (�+ �)V (Lt; It)

�
while the �rst-order condition is

1

ct
= VLt

which implies following the HJB equation that

0 = ln(
1

VLt
) +

�
VLt(rLt �

1

VLt
) + VIt�It +

1

2
VItIt�

2I2
�
+ ��(Lt + It)� (�+ �)V (Lt; It)

4.1.2 The power utility function

For the case of the power utility function we �nd

u(ct) =
(ct)







and the corresponding �rst-order condition

(ct)

�1 = VLt

ct = (VLt)
1


�1

which after substitution into the HJB equation and basic simpli�cations give

0 = (
1



� 1) (VLt)




�1 + rLtVLt + VIt�It +

1

2
VItIt�

2I2 + ��(Lt + It)� (�+ �)V (Lt; It)

4.1.3 Using homogeneity and the ratio Rt = It
Lt

To simplify the corresponding HJB equation we can use the property stated in Proposition 13 �the

homogeneity of the value function. In particular, we can simplify the HJB PDE to a simpler ODE.
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Interestingly, we can achieve this by using the ratio of either It=Lt or Lt=It. These two di¤erent

choices result in di¤erent algebraic forms of the ODE. I start the analysis of the case with Rt = It
Lt
.

We �nd

V (It; Lt) = L



t � V (1;
It
Lt
) = L




t � V (1; Rt) = L



t � Z(Rt) (64)

where Rt is the ratio of illiquid to liquid assets in the investor�s portfolio. In this formulation we

have

VLt = 
L

�1
t V (1;

It
Lt
) + L




t VRt(1;
It
Lt
) �
�
� It
L2t

�
= 
L


�1
t V (1;

It
Lt
) + L


�1
t VRt(1;

It
Lt
) �
�
� It
Lt

�
= L


�1
t

�

Z(Rt)� Z 0(Rt) �Rt

�
VIt = L




t VRt(1;
It
Lt
) � 1
Lt
= L


�1
t Z 0(Rt)

VItIt = L

�2
t Z 00(Rt)

which after substitution back into the HJB gives

0 =

�
1




�
(L


�1
t

�

Z(Rt)� Z 0(Rt) �Rt

�
)




�1

+(L



t

�

Z(Rt)� Z 0(Rt) �Rt

�
)r

�(L
�1t

�

Z(Rt)� Z 0(Rt) �Rt

�
)




�1

+L



tZ
0(Rt)�Rt

+
1

2
L



tZ
00(Rt)�

2R2t

+��(Lt + It)

�(�+ �)L
t � Z(Rt)

which after simpli�cations yields

0 =

�
1



� 1
��

Z(Rt)� Z 0(Rt) �Rt

� 


�1 (65)

+(
r � �� �)Z(Rt)

+Z 0(Rt)(�� r)Rt

+
1

2
Z 00(Rt)�

2R2t

+
1

L
t
��(Lt + It)
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However, this is still not an ODE because of the �(Lt + It) component.

Function � used in previous equations is de�ned (as outlined earlier) as

�(Lt + It) = max
L�;I�

V (L�; I�)

s:t: L� + I� = Lt + It

Corresponding �rst-order conditions require that VL(L�; I�) = VI(L�; I�). Given Proposition 14

the solution of the above optimisation problem will give the constant ratio between L� and I�.

Let us denote this unknown ratio with A� (A�, which will be a function of the parameters of the


; r; �2; �; �: model). At the optimum point we therefore �nd

I�
L�

= A�

A�L� + L� = Lt + It

L� =
(Lt + It)

1 +A�

I� =
(Lt + It)A

�

1 +A�

so

�(Lt + It) = V

�
(Lt + It)

1 +A�
;
(Lt + It)A

�

1 +A�

�
while using the homogeneity of V we have

�(Lt + It) =

�
(Lt + It)

1 +A�

�

V (1; A�)

and

�(Lt + It) = L


t

�
1 +Rt
1 +A�

�

Z(A�) (66)

where we used the assumed ratio of Rt = It
Lt
. By substituting this equation into (65) we have

0 = (
1



� 1)

�

Z(Rt)� Z 0(Rt) �Rt

� 


�1 (67)

+(
r � �� �)Z(Rt)

+Z 0(Rt)(�� r)Rt

+
1

2
Z 00(Rt)�

2R2t

+�

�
1 +Rt
1 +A�

�

Z(A�)
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which is a non-linear Ordinary Di¤erential Equation for the ratio Rt = It
Lt
:.

4.1.4 Using homogeneity and the ratio Rt = Lt
It

Alternatively, we can de�ne ratio Rt as Lt=It for calculating the ODE. Using homogeneity of the

value function we �nd that

V (It; Lt) = I



t � V (1;
Lt
It
) = I




t � F (Rt)

VLt = I



t � F 0(Rt) �
1

It
= I


�1
t � F 0(Rt)

VIt = 
I

�1
t � F (Rt)� I




t � F 0(Rt) �
Lt
I2t
= I


�1
t

�

F (Rt)� F 0(Rt)Rt

�
VItIt = I


�2
t

�
(
2 � 
)F (Rt)� (2
 � 2)F 0(Rt) + F 00(Rt)R2t

�
which can be substituted back into the HJB to get

0 = (
1



� 1)I
t �

�
F 0(Rt)

� 


�1

+rI



t � F 0(Rt)Rt
+I




t

�

F (Rt)� F 0(Rt)Rt

�
�

+
1

2
I
t
�
(
2 � 
)F (Rt)� (2
 � 2)F 0(Rt)Rt + F 00(Rt)R2t

�
�2

+��(Lt + It)

�(�+ �)I
t � F (Rt)

which after simpli�cation leads to

0 = (
1



� 1) �

�
F 0(Rt)

� 


�1

+(r � �� (
 � 1)�2) � F 0(Rt)Rt

+
1

2
F 00(Rt)R

2
t�
2

�(�+ �� �
 � 1
2
(
2 � 
)�2)F (Rt)

+ (1=I
)��(Lt + It)

This can be further simpli�ed after
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derived in equation (66). After appropriate substitution we get

0 = (
1



� 1) �

�
F 0(Rt)

� 


�1 (68)

+(r � �� (
 � 1)�2) � F 0(Rt)Rt

+
1

2
F 00(Rt)R

2
t�
2

�(�+ �� �
 � 1
2
(
2 � 
)�2)F (Rt)

+�

�
1 +Rt
1 +A�

�

F (A�)

so for a given �xed A� the problem boils down to solving the non-linear ODE of the form

E = A � (y0(x))� +B � y(x) + C � y0(x)x+D � y00(x)x2 + E � (1 + x)


5 Numerical Solution

Unfortunately, despite a signi�cant amount of work, I could not �nd closed-form solutions to either

of the non-linear ODEs presented in equations (67) and (68). I suspect that such closed-form

solutions are unlikely to exist given Proposition 11 and Proposition 12, which suggest singularities

at both at = 0 and at = 1. In order to provide some insights into optimal policies it is therefore

necessary to provide an e¢ cient algorithm to solve for the optimal control problem numerically.

Initially, I started the numerical analysis by applying the standard explicit Runge-Kutta33

method. Unfortunately, it transpired that initial conditions for the ODEs are very di¢ cult to

specify and therefore the solution tends to be highly unstable. As an alternative I applied the

Crank-Nicolson34 method directly to the HJB and PDE. This algorithm unfortunately did not

work well either. This method is well suited for linear PDEs like heat equations, but does not

converge for problems of highly non-linear PDEs like the one I am solving in this paper.

The �nal �and successful �approach came after applying the modi�ed Controlled Markov Chain

method. This algorithm, developed by Kushner (1968), was initially used to solve degenerated

elliptic non-linear PDEs in aeronautics, but later found applications in economics and �nance (e.g.

Fitzpatrick and Fleming (1991)). The method is based on the discretisation of the Bellman equation

(62) and the solution to this discrete problem on the grid. It is possible to show, using the viscosity

property of the value function, that a discrete solution converges under mild regularity conditions

to the continuous solution35.
33Details regarding the Runge-Kutta method can be found in an excellent survey by Butcher (2003).
34Details about the Crank-Nicolson method can be found in a book by Du¢ e (2001) in Chapter 12.
35For more details regarding proof, please review the paper of Kushner (1968) or chapter IX in the book by Fleming
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We start with stating the discretised Bellman Equation

Vt(It; Lt) = max
ct

n
u(ct)�t+ e

���tE((1� e���t)Vt+�t(It+�t; Lt+�t) + e���t�t+�t(It+�t; Lt+�t))
o

where �t is a selected time step for discretisation. By de�ning a new control variable et = ct=Lt
(rate of consumption over total liquid wealth), and by using the property outlined in Proposition

14 and the result summarised in equation (66), we can transform the previous equation into the

following discrete equation:

Zt(Rt) = max
et
fu(et)�t+

L
t+�t
L
t

e�(�+�)�tE((e��t � 1)Zt+�t(Rt+�t) (69)

+ max
At+�t

�
1 +Rt+�t
1 +At+�t

�

Zt+�t(At+�t)g

where Zt(Rt) = Zt(It=Lt) = Vt(It=Lt; 1) = Vt(It; Lt)=L


t . From equation (60) on page 60 we observe

that in discrete form we have

Lt+�t � Lt = (rLt � ct)�t, Lt+�t = (1 + r�t)Lt � ct�t

which implies that
Lt+�t
Lt

= (1 + r�t)� et�t

We can substitute this into the previous equation for Zt(Rt). We then end up with a discrete

Bellman Equation for the single variable Rt

Zt(Rt) = max
et
fu(et)�t+ ((1 + r�t)� et�t)
 � e�(�+�)�tE((e��t � 1)Zt+�t(Rt+�t) (70)

+ max
At+�t

�
1 +Rt+�t
1 +At+�t

�

Zt+�t(At+�t)g

In my continuous time model, in the absence of Poisson event Rt is a standard controlled Ito

process. Given the dynamics of Lt and It

dLt = (rLt � ct)dt

dIt = �Itdt+ �ItdBt

and Soner (2006a).
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we can calculate the dynamics of Rt using Ito lemma

dRt = d

�
It
Lt

�
= Rt � (�� r + et)dt+Rt � �dBt (71)

Using the insights of Kushner (1968) and Fitzpatrick and Fleming (1991) we can approximate the

controlled di¤usion above with a controlled Markov Chain. Given selected grid size36 h > 0, we

set the state space of our Markov Chain as grid fih : 0 6 i 6 Ng. Control-dependent transition
probabilities on the grid are taken to be equal to

P etii+1 =

�
1

2
�2(i � h)2 + h [(i � h) � (�+ et)]

�
=Q

P etii�1 =

�
1

2
�2(i � h)2 + h [(i � h) � (r)]

�
=Q

P etii = 1� P etii+1 � P
et
ii�1

for 1 6 i 6 N � 1 and et 6 Nh. The boundary probabilities are equal to

P00 = 1

PNN�1 =

�
1

2
�2(Nh)2 + h [(Nh) � (r)]

�
=Q

PNN = 1� P etNN�1

where P00 implies that 0 is an absorbing state37. Q is a normalising constant taken to be

Q = (Nh)2�2 +Nh2 [�+ emax + r]

where emax is the maximum value of the intensity of consumption from the liquid wealth that I

consider in the numerical algorithm. The above transition probabilities and a scaling factor modify

the scheme proposed by Kushner (1968), who shows that for appropriate transition probabilities

and time step �t the Markov Chain will have �rst and second moments closely matching those of

the continuous Ito process. The transition probabilities speci�ed above, combined with the time

step �t = h2=Q, lead to a Markov Chain with �rst and second moments closely matching those of

36Which is the selected granularity of the state space of Rt.
37When Rt is equal to zero an investor does not invest into an illiquid asset. Therefore, no dynamics exist for a

stochastic process that could move Rt from zero unless there is an occurrence of the Poisson event.
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the continues stochastic process described by equation (71). This can be shown by observing that

E(�Rt) = E(Rt+1 �Rt)

= h �
�
1

2
�2(i � h)2 + h [(i � h) � (�+ et)]

�
=Q� h �

�
1

2
�2(i � h)2 + h [(i � h) � (r)]

�
=Q

= h2 f[(i � h) � (�+ et � r)]g =Q = �t � [(Rt) � (�+ et � r)]

V ar(�Rt) = E(�R2t )� E(�Rt)2 =

= �t �
�
�2(i � h)2 + h [(i � h) � (�+ et + r)]

	
+�t � [(Rt) � (�+ et � r)]

= �t � �2(Rt)2 +�t � h � (Rt) � (�+ et + r) + �t2 � [(Rt) � (�+ et � r)]

where terms�t�h and�t2 converge to zero quicker than�t when the time step of the approximation
approaches zero.

Given these transition probabilities we can implement standard techniques to solve for the

optimal policy and value function from equation (70). Two basic solution methods utilised are value

function iterations and the Howard Policy-Improvement Algorithm. The method I implemented to

solve the problem numerically was a value function iteration for the given assumed terminal utility

ZT (RT ). The algorithm for the method38 iterates the value function by using equation (70) and

transition probabilities of the process (71). The important point in the algorithm is that at each

iteration At+�t the ratio of illiquid to liquid assets that maximises

max
At+�t

(

�
1 +Rt+�t
1 +At+�t

�

Zt+�t(At+�t))

is calculated. This is the value of the value function that will be attained if an investor is given an

opportunity to re-trade the risky asset. After I obtain the solution to the value function Zt(Rt),

the value function Vt(Lt; It) can be quickly recovered using equation (64) on page 80. The optimal

consumption level ct can be recovered from relationship et � Lt = ct.
In the numerical algorithm I need to assume the terminal value function VT (LT ; IT ). I consider

two cases. In the �rst I assume that an investor will not be able to gain any bene�t from an illiquid

asset for t > T .This assumption is equivalent to saying that after T there will be no re-trade

38The value function iteration code is available for download on my personal website:
http://personal.lse.ac.uk/~zurawski
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opportunity. In this case the terminal value function is

VT (LT ; IT ) =

�
�� 
r
(1� 
)

�
�1 L
t



(72)

Alternatively, I can assume that that for t > T the illiquid asset becomes perfectly liquid and then

the terminal value function is equal to that of the standard Merton problem (as in equation (56)

on page 73), where the investor gets utility from both his liquid and illiquid wealth

VT (LT ; IT ) = VMerton(LT + IT )

As I will show shortly, the choice of terminal value function has important consequences for an

investor�s optimal allocation between liquid and illiquid assets as the time approaches T .

6 Results

Numerical analysis allows me to present a number of interesting observations on optimal consump-

tion and investment when one of the assets is illiquid. To gain insights into the real-life impact of

illiquidity I set model parameters to values that are close to those observed empirically:

Interest Rate r = 3% per annum

Discount Factor � = 10% per annum

Drift of Risky Asset � = 12% per annum

Volatility of Risky Asset �2 = 15% per annum

CRRA Coe¢ cient 1� 
 = 2

The time step in each numerical solution is set as equal to one day (1=360). For these coe¢ cients,

optimal allocation in the Merton problem will be

at =
(�� r)
�2(1� 
) = 0:3

which implies that an investor will keep 0:3 of his liquid wealth in the risky asset if he is allowed

to reallocate freely between his liquid and illiquid assets at each point in time.

6.1 Optimal ratio between a liquid and illiquid asset

The �rst observation that I make concerns the limiting case of our problem. In particular, we can

expect that if the risky asset becomes very liquid, then the solution to our problem �and indeed the

optimal allocation �converges to what we would expect in the standard Merton problem. This is, of
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course, subject to the solution to the Merton problem satisfying conditions imposed by Proposition

13 and Proposition 14 on page 8. For the model parameters outlined at the beginning of the section,

the terminal value function from equation (72) and the coe¢ cient � = 2000, the allocation between

the risky and risk-free asset is very close to the value of 0:3 implied by the fully liquid case. As can

be seen in Figure 1, most of the time an investor optimally invests around 30% of his liquid wealth

into the illiquid asset (if he is allowed to re-trade). Only when he approaches time T , after which

time he de�nitely will not be able to trade in his illiquid asset, does he rapidly decrease his allocation

to the illiquid asset. The interesting observation is that the result very closely matches the liquid

case/Merton result. Allocating an agent who is allowed to trade frequently closely matches the

allocation in a perfectly liquid case.
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Figure 2: The optimal allocation of wealth to an illiquid asset (r = 3%; � = 10%; � = 12%;

�2 = 15%, 1� 
 = 2, � = 20000)

However, if I start to adjust the liquidity of the asset I can see the impact of illiquidity on the

optimal allocation. In Figure 2 I can see the optimal allocation of an investor, who has an asset

for which it takes on average two days to re-trade (� = 365=2). Although the initial part (far

from time T ) is not greatly changed and is still close to the perfectly liquid value of 0:3 when an

investor approaches time T , he optimally decreases his position in the illiquid asset and in the last

two to three weeks before the �nal time T , after which he will not be able to trade the illiquid

asset he decides to totally unwind his position. Although the illiquidity of the asset has important

consequences just before T , it seems that the Merton result is relatively robust against minor levels

of liquidity.
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Figure 2: The optimal allocation of wealth to illiquid asset (r = 3%; � = 10%; � = 12%;

�2 = 15%, 1� 
 = 2, � = 182)

However, if we increase the level of liquidity even further and assume that � is equal to 365/31,

we can see that the optimal allocation in the illiquid case starts to deviate signi�cantly from the

standard Merton result. A selected level of liquidity implies an average time between re-trades

equal to a month, and can be compared to the time it takes to sell a car or other similar items.

For this level of liquidity an investor decreases his long-term allocation to the illiquid asset from

0:3 to just over 0:25 of his total wealth (at the time when he is able to re-trade). Lower optimal

allocation to the risky asset in the long-term re�ects the investor�s concern described in previous

sections. The value of the risky asset can start to drop signi�cantly and an investor may have no

ability to decrease exposure in the risky asset before a large portion of his total wealth is wiped

out.
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Figure 3: The optimal allocation of wealth to illiquid asset (r = 3%; � = 10%; � = 12%;

�2 = 15%, 1� 
 = 2, � = 11)

Of course, this e¤ect is more pronounced if the liquidity decreases even further. In Figure 4 I

present the results for � = 1, which can be assumed a good indication of the illiquidity of real

estate (one year to re-trade). For this level of illiquidity the optimal allocation is less than half of

the optimal allocation of the fully liquid case (0:11 vs 0:3).
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Figure 4: The optimal allocation of wealth to illiquid asset (r = 3%; � = 10%; � = 12%;

�2 = 15%, 1� 
 = 2, � = 1)

6.2 Optimal consumption

Another important observation concerns the shape of the consumption function of an investor. In a

perfectly liquid case we �nd that the ratio of the rate of consumption to total wealth is a constant.

In particular, from equation (58) on page 73 we �nd that the rate of consumption is a constant

fraction of total wealth
ct
Wt

=

�
�� 
r
(1� 
) �

1

2


(�� r)2
�2(1� 
)2

�
where all elements on the right-hand side are just the model parameters.

In an environment with illiquid assets the result above no longer holds. The relative rate of

consumption not only depends on the total level of wealth, but also on how this wealth is spread

between liquid and illiquid assets. A propensity to consume from total wealth actually depends on

the ratio of Rt = It=Lt. To exemplify this point I show that

ct
Wt

=
etLt
It + Lt

= et �
1

Rt
= et(Rt) �

1

Rt
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which allows me to reuse the values of et (which is itself a function of Rt) to present the propensity

to consume from total wealth as a function of ratio Rt. For the numerical example presented in

Figure 5 I use the values from the model parameters in the previous subsection (r = 3%; � = 10%;

� = 12%; �2 = 15%, 1 � 
 = 2, � = 1). For these coe¢ cients the optimal level of consumption

from liquid wealth in a perfectly liquid (Merton) case is ct=Wt = 0:0770, which essentially implies

that an investor consumes around 8% of his liquid wealth each year. In an illiquid case this value

is the function of coe¢ cient Rt, as shown in the �gure below.

0 1 2 3 4 5 6 7 8 9 10
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

R(t)

C
on

su
m

pt
io

n 
fro

m
 to

ta
l w

ea
lth

Figure 5: Optimal consumption from total wealth

The rate of consumption is uniformly lower than in the fully liquid case, as the investor consumes

less than in the fully liquid case. Interestingly, the level of consumption from total wealth is a

decreasing function of Rt. As ratio Rt increases, the more the wealth of the investor is found in the

illiquid asset. At some point, when more and more of the investor�s wealth is placed into the illiquid

asset, he needs to decrease the ratio of the rate of consumption to his total wealth; otherwise, he

may run down his liquid assets very quickly and then if the opportunity to re-trade the asset does

not come quickly (and borrowing is excluded on the basis of Proposition 11) he will �starve". This

high Rt solution corresponds to the situation of all investors who maybe quite rich, but because

most of their wealth is frozen in illiquid assets their consumption does not re�ect their perceived

wealth39.
39 I am thinking here for example about entrepreneurs, who may possess ventures of signi�cant value but because

it may take a long time to cash them in the level of consumption of such an investor is signi�cantly lower that one
would expect from someone with that level of total wealth.
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7 Conclusions

In this paper I analyse investment and consumption problems involved with illiquid assets. An

investor is allowed to invest into an asset that is not perfectly liquid �he can decrease or increase a

position in a risky asset only on the occurrence of a random Poisson event. The limited liquidity of

the investment has a number of important implications, which I outline in the paper. In particular,

I show that an investor will never open an illiquid asset in a position that will be greater than his

total wealth. In addition, I prove that an investor will never short an illiquid asset, as this could

potentially lead to his bankruptcy if the value of the assets increases signi�cantly before he can

re-trade. In my paper, I derive the HJB equation of the investor and propose an e¢ cient numerical

algorithm to solve for the optimal policy function. I show through calibrated examples that a higher

level of illiquidity leads to the lower long-term target allocation of wealth to an illiquid asset. In

particular, an allocation to the illiquid asset is lower than in a perfectly liquid benchmark Merton

case. I show in the model that the consumption process is characterised by jumps of perfectly

predictable size (jumps in the consumption rate happen at the same time as those found in Poisson

events). Moreover, I show that the investor�s rate of consumption depends not only on his total

wealth (as in the Merton case), but also on the ratio of wealth he has in illiquid and liquid assets. If

an investor places a signi�cant fraction of his wealth into an illiquid asset, the rate of consumption

from his total wealth is low.
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