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Abstract

Biochemists often adopt what may be called the “Strategy of Decomposition” for the
causal discovery of biochemical pathway dynamic behaviours. This involves
decomposing a pathway into a set of isolated parts, which are then analysed
separately. It is assumed that knowledge gained of the isolated parts can then be used
to explain the dynamic behaviours of the whole pathway. My thesis addresses the
extent to which use of the Strategy of Decomposition is warranted. I evaluate two
challenges contained in Bechtel and Richardson’s Discovering Complexity. The first
challenge is that pathways lack the ‘modular’ structure assumed in the Strategy of
Decomposition. Bechtel and Richardson take biochemists to use a concept of
modularity called ‘near decomposability’. The second challenge is that pathways have
‘Pathway Emergent’ behaviours. I reject both challenges. I show that near
decomposability is the wrong type of modularity to apply to pathways, and that the
occurrence of Pathway Emergence has not been established. I argue that an
underlying problem with Bechtel and Richardson’s analyses is that they overstate the
consequences of feedback and nonlinearity for the Strategy of Decomposition.
Instead, the analysis of pathway modularity and emergence needs to be centered on
the context-sensitivity of pathways’ ‘local causal laws’. I identify that the type of
modularity assumed in the Strategy of Decomposition is ‘causal law modularity’,
which requires the invariance of local causal laws. I also identify a necessary
condition for Pathway Emergence: a pathway must manifest at least one local causal
law that is not manifested by its isolated parts. I argue that the use of the Strategy of
Decomposition may often be unwarranted. This is because the local causal laws of
pathways are highly context-sensitive, and pathways might often not be causal law
modular. This context-sensitivity also leaves open the possibility of Pathway

Emergence.
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Chapter 1 - The Causal Discovery of Pathway Dynamic
Behaviours

1.1 Introduction

There are formidable challenges to the causal discovery and explanation of
biochemical pathway behaviours. Pathways are complex systems, consisting of
sequences of interdependent chemical reactions that are nonlinear, context sensitive
and often involve multiple feedback loops. Complexity is further increased when
pathways are parts of large biochemical networks in which they interact with many
other pathways. This complexity means that the causal discovery and explanation of
pathway behaviours may sometimes be beyond our cognitive abilities. To make
matters worse, there are also considerable barriers to gaining relevant data. For
example, the physical structures in which a pathway occurs are often extremely
fragile. Measuring pathway operations often appears practically impossible, without
first destroying these structures. Yet these structures can play a critical role in

determining pathway behaviours.

I shall be focusing on pathway dynamic behaviours. These concern the flows and the
changing chemical concentrations that occur within pathways. Pathways are
composed of reaction steps, which are themselves composed of the chemicals that
bring about that step’s reaction. Each reaction step has a rate law that specifies how
its rates of reaction depends on the concentrations of its reactants. Pathways can
exhibit a wide range of dynamic behaviours including maintaining a single steady

state, switching between multiple steady states and oscillating.

Within biochemistry, it is generally agreed that a pathway dynamic behaviour is
explained by specifying the mechanism producing that behaviour. This involves
specifying the salient parts, operations and organisation of the pathway. ‘Causal
discovery’ of a pathway dynamic behaviour refers to the processes by which
biochemists discover these parts, operations and organisation. However, given the
complexity of pathways and the lack of data, how should the discipline of
biochemistry proceed when attempting to identify these pathways?



Biochemists often respond by adopting what I shall term as the ‘Strategy of
Decomposition’ for the causal discovery of pathway dynamic behaviours. The strategy

has three broad stages:

1. An extraction stage; in which the target pathway is separated from its
biological context.

2. A decomposition stage; in which the isolated pathway is decomposed into a
set of isolated parts, that are then separately analysed.

3. Areconstruction stage; involving using a simulation model to deduce the

target behaviour.

My thesis addresses the extent to which the Strategy of Decomposition is warranted.
I will evaluate two related challenges to the strategy that are contained in Bechtel and

Richardson’s book Discovering Complexity (2010) and in related papers.!

The first challenge is that pathways lack the ‘modular’ structure assumed in the
Strategy of Decomposition. Bechtel and Richardson take biochemists to be applying a
concept of modularity called ‘near decomposability’ that was originally formulated by
Herbert Simon (1962, 1973, 1977, 1999, 2002). Systems are modular, in this sense,
when the intensity of intra-subsystem interactions is significantly greater than the
intensity of inter-subsystem interactions. Bechtel and Richardson argue that
pathways are often not nearly decomposable because of the effects of feedback loops.
Nevertheless, the assumption of near decomposability has been heuristically useful in
producing ‘false models as a means to truer theories’ (Bechtel and Richardson, 2010,

p. Xxvi).

The second challenge is that pathways sometimes have a type of emergence, that I
shall term ‘Pathway Emergence’. A key requirement for Pathway Emergence is that a
pathway’s dynamics cannot be deduced from a ‘Deductive Base’ that contains
statements of: the properties of the pathway’s isolated parts, the pathway’s
organisation, and laws manifested in systems simpler than the whole pathway. But if
this is correct, then it appears to undermine the Strategy of Decomposition, which is

based on precisely being able to make these types of deductions.

! These are papers that are endorsed in the second edition of Discovering Complexity and are authored or
co-authored by either Bechtel or Richardson. In particular, the account of pathway emergence analysed
in my thesis was originally proposed in Boogerd et al.’s (2005) paper, which was co-authored by
Richardson.



The aim of this first chapter is to provide the biochemical and philosophical
background to my thesis. In section 2, I provide an overview of pathways and
pathway dynamic behaviours. In section 3, I review the philosophical literature on
mechanisms and on scientific explanation in biochemistry. I argue that pathway
dynamic behaviours are explained by ‘dynamic mechanistic explanations’ that
reference local causal laws. In section 4, I explain how the complexity of pathways
and the lack of data are formidable challenges to the causal discovery of pathway
dynamic behaviours. In section 5, I describe the Strategy of Decomposition that has
been employed in the causal discovery of pathway dynamic behaviours. I explain that
biochemists often assume that pathways are ‘causal law modular’. In section 6, I

provide an overview of the remaining chapters of my thesis.

1.2 Pathways

The operations of a cell are accomplished through series of biochemical reactions
called pathways. Pathways are a basic analytic construct of biochemistry. It is by
understanding pathways that we can understand much of how cells function. There is
not a generally agreed definition of what a pathway is, but the following
characterisation will suffice for our purposes: a pathway from a source chemical X to
a target chemical Y is a sequence of chemical reactions in which:

@) X is a reactant of the first reaction,

(ii)  Yisaproduct of the last reaction,

(iii)  atleast one product? of each reaction is a reactant in the next reaction

(with the exception of the last reaction in the pathway).

There are three main types of pathway:

e Metabolic pathways. These are either catabolic or anabolic. Catabolic
pathways break down molecules into progressively smaller products. The

products provide chemically available energy to the cell and metabolic

2 The product linking each step cannot be a ‘currency molecule’. Currency molecules are chemical species
that appear in a large number of biological reactions and whose function is primarily to donate or receive
electrons e.g. H,O, ATP, NAD* (Holme (2008)). Currency molecules are excluded from providing the links
between pathway steps, as otherwise the number of pathways within a biological network becomes too
large for the concept of a pathway to be useful. Currency molecules are further discussed in section 3.5.
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intermediates for anabolic pathways. Anabolic pathways start from these
metabolic intermediates (and other small precursor molecules) and convert
them progressively into larger molecules such as nucleic acids, lipids and
polysaccharides, which enable the growth, maintenance and duplication of a

cell.

e Gene regulatory pathways. These activate or inhibit the production of specific

gene products e.g. RNA and proteins.

e Signal transduction pathways. These are triggered by cellular receptors
responding to extra-cellular signals. Receptors can begin a pathway within
their cell which will eventually elicit a response to the signal such as changing

the cell’s metabolism, shape or gene expression.

Each of the reactions in a pathway can be represented by a chemical reaction
equation, for example:

B+C->D+E
states that a molecule of species B combines with a molecule of species C and is
transformed into a molecule of D and a molecule of E. The rate of a reaction is a
measure of the rate of change in the concentrations of the reactants and products due
to that reaction. A ‘rate law’ specifies this relationship between the rate of a reaction

and the concentration of its reactants. In the above example the rate law is:

_ __alel_ _aicl_ |, alo) _, aiB)
v= k[B]IC] (v= at dat + dt =+ dt)

where v is the rate of reaction, a square bracket [ ] denotes concentration and a lower

case k denotes a proportionality constant called the rate constant.
The chemical reaction equations below are for the glycolytic pathway and illustrate

how the reactions of a pathway are linked together. For example, glucose-6-

phosphate is a product of the first reaction and a reactant in the second reaction step.

11



Step Enzyme

1 glucose + ATP — glucose-6-phosphate + ADP + H* hexokinase
2 glucose-6-phosphate «» fructose-6-phosphate phosphoglucose isomerase
3 fructose-6-phosphate + ATP — fractose-1,6-bisphosphate ~ phosphofructokinase

+ ADP + H+

4 fructose-1,6-bisphosphate <> dihydroxyacetone phosphate  aldolase
+ glyceraldehyde-3-phosphate
5 dihydroxyacetone phosphate <> glyceraldehyde-3- triose phosphate

isomerase

phosphate
(steps 6 to 10 are carried out twice)

6 glyceraldehyde-3-phosphate + Pi + NAD+ <> 1,3- glyceraldehyde 3-
hosphate dehyd
bisphosphoglycerate + NADH + H+* phosphate delydrogenase

7 1,3-bisphosphoglycerate + ADP <> 3-phosphoglycerate +  Phosphoglycerate kinase
ATP

8 3-phosphoglycerate <> phosphoglycerate phosphoglycerate mutase

9 2-phosphoglycerate <> phosphoenolpyruvate + H,O einolse

10  phosphoenolpyruvate + ADP + H* — pyruvate + ATP pyruvate kinase

Fig 1.1 The glycolytic pathway. Similar representations can be found, for example, in Nelson and Cox
(2113, p .545) or Alberts (2010, p. 430), the only significant difference being that they provide diagrams of
the molecular structures of the substrates. Abbreviations: ATP, adenosine triphosphate; ADP, adenosine
diphosphate; NAD™, nicotinamide adenine dinucleotide (oxidised form); NADH, nicotinamide adenine
dinucleotide (reduced form).

The glycolytic pathway will be used as the main case study in my thesis. This
metabolic pathway produces adenosine triphosphate (henceforth: ATP), which
provides the energy needed for many of the cell’s chemical reactions. For every two
molecules of ATP that are initially consumed in the pathway, four molecules of ATP
are later created. The chemical reactions in metabolic pathways are nearly always

catalysed by enzymes.

A ‘pathway dynamic behaviour’ is a trajectory in that pathway’s phase space; where
the phase space has a separate dimension for the concentration values of each of the
pathway’s chemicals. For example, a dynamic behaviour of the glycolytic pathway
would be a trajectory specifying how the concentrations of glucose, glucose-6-

phosphate, ATP and so forth changed over time.

12



My thesis is concerned with the causal discovery and explanation of pathway
dynamic behaviours that occur within living organisms. Such pathways are referred
to as in vivo pathways; in vivo being Latin for ‘within the living’. As I shall be
explaining, the causal discovery of pathways often proceeds by analysing pathways
that are not located within a living organism, but instead are located in a laboratory
apparatus such as a petri dish or a test tube. Such pathways are referred to as in vitro

pathways; in vitro being Latin for ‘within the glass’.

Two attributes of pathways that are critical to their dynamic behaviours are (i)
pathways are often regulated by chemical feedback (henceforth: feedback) (ii)
pathways are nonlinear. A detailed analysis of both pathway nonlinearity and
feedback will be provided in my chapter 2. For now, the following brief overview will

suffice.

Chemical feedback occurs when the concentration of a reactant affects the rate of that
reactants own production (Epstein and Pojman, 1998, p. 23). Positive feedback
increases the rate of production and negative feedback decreases the rate of
production. Pathways are often regulated by multiple chemical feedback loops. For
example, the diagram below illustrates three of the feedback loops in the glycolytic
pathway, that directly affect the third reaction step, in which fructose-6-phosphate
(F-6-P) is transformed into fructose-1,6-biphosphate (FDP). These loops help to

regulate the pathway, controlling the amount of ATP available in a cell.

__________________________

Glucose ™ F-6-P —— FDP — ATP. — ATP — ATP .
S production . consumption
44 !
R |
i
H
e alaet ADP

Fig 1.2 Feedback affecting reaction step 3 of the glycolytic pathway. The dashed arrows represent
feedback, with (+) being positive feedback and (-) being negative feedback. The undashed lines represent
sets of reactions of the glycolytic pathway or of the subsequent transformation of ATP into adenosine
diphosphate (ADP). The enzyme for reaction step 3 is phosphofructokinase. Each of the three feedback
loops involves a set of reactions that change the conformation of phosphofructokinase, leading to changes
the rate of reaction step 3. These reactions between enzymes and reactants of ‘later steps’ are not usually
shown in summary representations of pathways such as Fig 1.1, and hence the presence of feedback loops
cannot usually be simply read off from such summary representations. A detailed account of feedback on
phosphofructokinase is provided in my chapter 2.

13



In practice, all pathways are nonlinear. A physical system is nonlinear if it induces a
system of equations that do not satisfy the ‘superposition principle’. The
superposition principle is satisfied when (i) any two solutions to the equations can be
added together to obtain another solution, and (ii) any solution can be multiplied by
any numerical factor to obtain another solution. Nonlinearity has important
implications for the explanation of pathway behaviours. Because of nonlinearity, the
contributions of each of a system’s parts cannot be simply combined to calculate that
pathway’s dynamic behaviour. Instead, pathway dynamic behaviours are usually

calculated by the use of simulation.

Pathways can exhibit a wide range of dynamic behaviours, including such ‘exotic
dynamics’ as oscillating and switching between different steady states. Furthermore,
small physical changes (such as changes to the crowdedness of the solution
containing the pathway) can lead to sudden dramatic shifts in the dynamic behaviour
of a pathway (e.g. via a bifurcation). I shall now illustrate some of these behaviours
using case studies referenced in Bechtel and Abrahamsen’s (2010) account of the

causal discovery of circadian rhythms.

Circadian rhythms are endogenous, physiological cycles of living beings that have a
duration close to 24 hours and are entrainable by environmental cues such as
daylight and temperature. The multiple pathways for circadian rhythms involve large
numbers of reactions, however it will be sufficient for our purposes to consider the
relatively simple pathway that was proposed by Goldbeter (1995) for Drosophila (the
common fruit fly). The mechanism for maintaining circadian rhythms is located in a
small number of neurons of the Drosophila. The proposed mechanism involves the
transcription of the per gene in the nucleus to produce m-RNA per, which is then
transported to the cytoplasm and transcribed into the protein PER (in general the
symbols for genes are in lower case and italicised, whilst the corresponding proteins
are in capitals). PER then undergoes a set of reactions in which it is phosphorylated
first to protein PER; and then to protein PER.. The PER. is then transported back to
the nucleus where it inhibits the further transcription of the per gene (this is an
example of negative feedback). PER2 gradually degrades and the per gene becomes
active again and starts to be transcribed. The following diagram represents
Goldbeter’s model:

14
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nuclear PER (Py)
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Fig. 1.3 Goldbeter’s model of the circadian rhythm of Drosophila. The dashed arrows represent
feedback, with (-) being negative feedback. The undashed arrows represent sets of reactions.
Abbreviations: M, per mRNA in the cytoplasm; Py, PER in the nucleus; Po, PER in the cytoplasm; P1, PER
with one phosphoryl group; P1, P2, PER with two phosphoryl groups. (Goldbeter, 1995, p. 320).
Goldbeter’s model shows how small changes to the rates of a pathway’s reactions can
result in the pathway changing its behaviour from being in a steady state to

oscillating. The pattern of oscillations generated by the model are illustrated below.

PER forms or M
total PER (P, )

. — —
0 12 24 36 48 &l 72
time [ h

Fig. 1.4. Sample output from Goldbeter’s model of the circadian rhythm of Drosophila. Abbreviations:
M, per mRNA in the cytoplasm; Pn, PER in the nucleus; Po, PER in the cytoplasm; P1, PER with one
phosphoryl group; P1, P2, PER with two phosphoryl groups; P: = all forms of PER. (Goldbeter, 1995, p.

321).
Subsequent to Goldbeter’s model, other genes and proteins were found to play

critical roles in the maintenance of circadian rhythms. These were incorporated in
the Leloup and Goldbeter (2003) model for the mammalian circadian mechanism.

The model was used in generating possible explanations for a variety of circadian

15



pathologies. These included Advanced Sleep Phase Syndrome in which the natural
pattern of falling asleep around midnight is shifted by several hours, so that the
subject falls asleep early in the evening and wakes up very early in the morning.
Leloup and Goldbeter were able to show that this could be replicated by changing
their model’s parameter values for the phosphorylation of PER. This is consistent
with studies of families with Advanced Sleep Phase Syndrome, which identified the
presence of a genetic mutation that affected the production of an enzyme involved in

the phosphorylation of PER (Bechtel and Abrahamsen, 2010, p. 327).

The above case studies illustrate the types of dramatic changes in pathway
behaviours that can sometimes occur and which will need to be accounted for in the
corresponding explanations of pathway dynamic behaviours. I take it that an
adequate explanation will need to go beyond just stating the steps by which a
pathway’s target chemical is produced, it will also need to explain why a pathway is
exhibiting one type of dynamic behaviour rather than another. It should provide
answers to what Woodward (2003, p. 260) calls ‘what-if-things-had-been-different?’
questions, such as how would the pathway’s dynamic behaviour be different if:

- the initial conditions were different

- there was a perturbation that changed the concentrations in the pathway

- there was a physical change that changed the kinetic parameters of the

pathway.

1.3 Explaining Pathway Dynamic Behaviours

How should pathway dynamic behaviours be explained? The deductive-nomological
(henceforth: D-N) account of scientific explanation once dominated the philosophy of
science. According to this, a phenomenon is explained by showing that it can be
deduced from statements of (i) general laws of nature and (ii) initial conditions. But
there are significant shortcomings with the D-N account and it does not match the

actual explanations provided in biology.
Instead, biologists provide mechanistic explanations, in which a phenomenon is

explained by specifying the mechanism responsible for the phenomenon. Before the

first publication of Discovering Complexity in 1993, little philosophical attention was

16



paid to this form of explanation. Since then a ‘new mechanistic philosophy of science’
has flourished. In this section, I will explain what mechanisms are. And that many, if
not all the causal regularities found in biological mechanisms are described by ‘local’
rather than ‘general’ causal laws. I will then argue that the successful explanation of a
pathway dynamic behaviour requires a ‘dynamic mechanistic explanation’. This
consists of a (i) a qualitative account of a mechanism and (ii) a quantitative account
showing that the target dynamic behaviour can be deduced from statements of the
pathway’s rate laws and initial conditions. However, in contrast to D-N explanations,

these laws are ‘local causal laws’.

According to the D-N account of scientific explanation, to explain a phenomenon is to
subsume it under general laws of nature. For systems with deterministic laws,
successful scientific explanations were taken to have the form of the D-N model, as

specified by Hempel and Oppenheimer (1948):

Libyodn  swenesotse msctmtne g,
C;, Cy...e. Cm
E statement of phenomenon to be explained ]- explanandum

The explanans must include statements of general laws of nature that are essential to
the derivation of the explanandum. The laws are general, in the sense that statements
of the laws make no reference to particulars and are true without exception. The
explanandum is explained by showing that it is an instantiation of these laws. A
similar account of explanation was held to apply for systems with probabilistic laws,

but it is sufficient for our purposes just to focus on D-N explanations.

The D-N Model has been subject to some well-known counterexamples (Salmon,

1984. p. 46-50). Consider, for example, the following deductive argument:

Every man who regularly takes birth control pills avoids pregnancy

John Jones regularly takes birth control pills

John Jones avoids becoming pregnant

This satisfies the criteria for being a D-N explanation but clearly fails to be
explanatory. Such counterexamples have highlighted serious shortcomings with the
D-N Model, including that: (i) irrelevant premises can be used to deduce and hence

‘explain’ an explanandum (ii) no temporal priority is required between the explanans

17



and the explanandum (iii) there is no requirement that the cause of the explanandum

be included in the explanans. A further problem for the D-N account is that there are

few general laws of nature to be found in biology (e.g. Dupre, 2009, p. 33). Instead

the regularities that biologists term as ‘laws’ are often highly context-sensitive. If the

D-N account is correct then few, if any, scientific explanations have been provided

within biology.

The D-N account of scientific explanation has been widely rejected by philosophers of

biology. With respect to biochemistry, it is recognised that successful scientific
explanations are causal explanations, in which a phenomenon is explained by

specifying the mechanism that produces it.

But what is a mechanism? The characterisation of a mechanism has been the subject

of an intense debate amongst a group of philosophers that I shall refer to as the ‘New

Mechanists’. The three most prominent characterisations are:

“Mechanisms are entities and activities organized such that they are
productive of regular changes from start or set-up to finish or

termination conditions.” (Machamer et al., 2000, p .3)

“A mechanism for a behaviour is a complex system that produces that
behaviour by the interaction of a number of parts, where the interactions
between parts can be characterized by direct, invariant, change-relating

generalizations.” (Glennan, 2002, p. S344)

“A mechanism is a structure performing a function in virtue of its
component parts, component operations, and their organization. The
orchestrated functioning of the mechanism, manifested in patterns of
change over time in properties of its parts and operations, is responsible

for one or more phenomena.” (Bechtel and Abrahamsen, 2005, p. 423)

Each of these characterisations, sometimes with minor modifications, has its

supporters. There are some differences in vocabulary between the characterisations,

for example Machamer et al. use the terms ‘entities’ and ‘activities’ rather than ‘part

b

and ‘operations’. But there are also some substantial differences, reflecting different

views or emphasises on such matters as:

a. the nature of causation

b. the domains of science to which the concept of mechanism applies

18



c. the importance of cyclical organisation, including feedback within
mechanisms.
Nevertheless, there is now considerable agreement on a minimum concept of
mechanism that applies across the sciences, and this has been captured by Illari and
Williamson:
“A mechanism for a phenomenon consists of entities and activities organised in
such a way that they are responsible for the phenomenon”. (Illari and
Williamson, 2012, p. 120)
Illari and Williamson’s characterisation lays clear the three basic components of a
mechanism: its phenomenon, its parts and operations, and its organisation. I shall

use this as my base, from which to explain mechanisms.

Craver (2007, p. 7) nicely represents the structure of mechanism:

Phenomemon

Mechanism

Fig 1.5. Craver’s schematic diagram of a mechanism. The mechanism consists of the organised parts
(circles) and operations (arrows). The mechanism’s phenomenon is S’s y-ing, its parts are {Xi, Xo..... Xm}
and its operations are {®1, ®».... ®y}. Mechanisms can have multiple levels, as each node can itself be a
mechanism.

A mechanism is a mechanism responsible for a phenomenon. It is functionally
individuated by its phenomenon i.e. by the set of inputs and outputs delimiting that
phenomenon. There are many types of phenomena. There are mechanisms
responsible: for producing particular materials (e.g. for producing adenosine
triphosphate and pyruvate from glucose); for exhibiting particular behaviours (e.g.
for neurons exhibiting electrical oscillations); for maintaining particular states (e.g.
maintaining homeostasis). A mechanism can also be responsible for a system having

a capacity; Illari and Williamson (2012, p. 124) give the example of a cell having a

capacity to metabolise lactose. A cell will only metabolise lactose when glucose is
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unavailable. However, the mechanism responsible for having this capacity will exist,

even if lactose is never metabolised.

Operations (or ‘activities’ or ‘interactions’) are what the parts do within a mechanism.
There is considerable disagreement between the New Mechanists as to the nature of
causation, and consequently as to how operations should be characterised.
Machamer et al. (2000) and Bogen (2005) incorporate a realist, productive view of
causation in which “activities are types of causes” (Machamer et al., 2000, p. 7). “An
entity acts as a cause when it engages in a productive activity. It is not penicillin that
causes pneumonia to disappear, but what the penicillin does” (Machamer et al.,
2000, p. 7). They endorse Anscombe’s view that the term ‘cause’ is highly abstract
and only becomes meaningful when filled in by more specific causal terms such as
“scrape, push, wet, carry, eat, burn, knock over, keep off, squash, make (e.g. noises,
paper boats), hurt” (Machamer et al., 2000, p. 7). By contrast, Glennan (2002) refers
to a mechanism’s parts ‘interacting’, where an interaction “is an occasion in which a
change in a property in one part brings about a change in a property of another part”
(Glennan , 2002, S344). This is best understood within the context of Glennan’s
wider project. Glennan (2009) is proposing an account of (non-fundamental)
causation in terms of mechanisms. The proposal is that for two events to be causally
related they must be connected by an intervening mechanism. In explaining his
notion of interaction, Glennan invokes Woodward’s manipulationist theory of
causation. Woodward’s theory is explained in my chapter 3, but the basic idea is that
for X to be a cause of Y:

a) there is an ideal intervention on X such that Y changes or the probability

distribution of Y changes.
b) the relationship between X and Y is invariant i.e. remains unchanged by the
intervention.

However, Glennan takes such invariant generalisations to be mechanically explicable
i.e. the truth conditions for the generalisations are mechanisms (Glennan, 2009, p.
322). Finally, Bechtel and Abrahamsen (2005, 2010), have been careful to avoid
using the word ‘cause’ or taking any position on the nature of causation, instead
simply citing examples of operations such as the adding or removing of hydrogen
atoms from a molecule during a chemical reaction. (Bechtel and Abrahamsen, 2005,

p- 433). I will return to the subject of causality, below.
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There are several types of organisation that may be relevant to the functioning of a
mechanism. These include spatio-temporal organisation, such as the locations and
conformations of parts, and the temporal orderings, rates and durations of the parts’
operations. A second type of organisation, that is critical to the functioning of many
complex systems, is the coordinating of the parts’ operations by feedback loops.
Examples include the maintenance of states such as homeostasis, and ‘self-organising
systems’ in which multiple feedback loops give rise to exotic behaviours such as the
synchronised oscillations of neurons (self-organisation is discussed in my chapter 4).
It is because of the importance of feedback that Bechtel and Abrahamsen’s
characterisation of a mechanism refers to to the “orchestrated functioning of a
mechanism”; Bechtel (2011, p. 539) elaborates that ‘like a player in an orchestra, an
individual part may behave differently as a result of operations performed by other
parts’. Bechtel criticises Machamer et al. for describing mechanisms as proceeding
‘from start or set-up conditions to finish or termination conditions’, as this implies a
sequential ordering to a mechanism’s operations and hence fails to recognize the
importance of feedback loops (Bechtel, 2011, p. 536). A similar criticism can be made
of Glennan’s characterisation. A third type of organisation is near decomposability.
As I will explain in my chapter 3, sometimes a mechanism has this type of

organisation, in which its parts’ behaviours are relatively autonomous of each other.

With respect to my thesis’s analyses, Bechtel and Abrahamsen’s characterisation
provides the best fit for pathway mechanisms. It is consistent with Illari and
Williamson’s account but has been formulated specifically for the domain of biology,
where feedback is ubiquitous. Both Machamer et al. and Glennan’s accounts are tied
to particular theories of causation, and this does not fit with my thesis which is

neutral between these theories.

With respect to causality, my thesis is based on some uncontroversial claims that are,

at least implicitly, incorporated into biochemists’ analyses of pathway dynamics:

1) achange to the value of a cause will, at least sometimes, lead to a change to
the value of its effect.

2) causal relationships relate variables. Variables are properties or magnitudes
that can have more than one value; and the values of variables are possessed

by particular entities. (Woodward, 2003, p. 39).
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3) causal relationships can be expressed as causal equations in which the
dependent variable is the effect and independent variables are a complete set
of its causes. Causal equations specify functionally correct relationships.

4) Avariable X is a direct cause of a variable Y, with respect to a set of variables
V, if changing X will, at least sometimes, change Y when all other variables in
V are held constant. Hence changing X can bring about a change in Y without
having to change the value of an intermediate variable. The definition of a
direct cause is relative to a set of variables V. X may be a direct cause of Y
relative to the set V but an indirect cause relative to a different set V* (c.f.

Woodward, 2003, p. 55).

The causal equations describing the causal regularities of a system, are statements of
that system’s ‘causal laws’ (see for example (Cartwright, 2007, p. 152 — 155)). Causal
laws need not be general laws, applying without exception. Instead, they can be local
laws, applying in a limited number of contexts. Small changes in context can ‘break’ a
local causal law. Many, if not all, the causal laws that apply within biological
mechanisms are local causal laws. For example, when biochemists refer to the rate
laws of a pathway’s chemical reactions, they are not supposing that these rate laws
are general laws. They know that rate laws are highly context sensitive; and this is
reflected in the experimental procedures they use when discovering these laws (as I
will explain in my chapter 3). The regularities that they call ‘rate laws’ are local causal
laws; instantiated when that reaction’s reactants are located in the right sort of

context.

Biological mechanisms may be viewed as being examples of what Cartwright calls
‘nomological machines’:

A nomological machine is “a fixed (enough) arrangement of components, or

factors, with stable (enough) capacities that in the right sort of stable

(enough) environment will, with repeated operation, give rise to the right

kind of regular behaviour that we represent in our scientific laws”

(Cartwright, 1999, p. 50).
Consider a toy example of an in vitro pathway S that is situated in a test tube in a
laboratory. Let us assume that the rate laws for S’s reaction steps continues to apply
over the full range of reactant concentrations occurring within the test-tube (this
assumption is routinely made in biochemistry). However if, say, a particular catalyst

is added into the test-tube or a powerful electromagnetic force is applied to the test-
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tube, then some of the original rate laws of S will be broken (i.e. they will no longer
describe the causal regularities of S). S is an example of a nomological machine. If the
nomological machine is changed, in this case by adding a new catalyst or applying an
electro-magnetic force, then different local causal laws may arise. As I shall now
explain, local causal laws play a key role in the explanation of pathway dynamic

behaviours.

In mechanistic explanations, a phenomenon is explained by specifying the
mechanism responsible for the phenomenon. These specifications often reference
multiple compositional levels and bottom out in parts and operations that are taken

as relatively fundamental to scientists in that field of science (see Fig. 1.6).

Top -Level _ .4>

Level 2

Level 3 —KCT

Fig. 1.6. The multiple levels that may be referenced in a mechanistic explanation. Craver (2007, p.
190).

Some New Mechanist accounts, most prominently Machamer et al. (2000) have
portrayed mechanistic explanations as being qualitative descriptions of a mechanism.
According to Machamer et al., a satisfactory explanatory text consists of a description
of the producing mechanism in terms of the field or scientist’s bottom out activities
and entities. For example, in molecular neuroscience the bottom out entities would
typically include different types of neurons, ions, neural transmitters and so forth.
The bottom-out activities for molecular biology and neuroscience fall into four

categories (Machamer et al, 2000, p. 14):
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Activities

geometrico-mechanical  (e.g. turning, pushing)

electro-chemical (e.g. attracting, bonding)
energetic (e.g. diffusing)
electro-magnetic (e.g. conducting).

Machamer et al. (2000, p. 8-13) provide an example of the mechanistic
explanation of an action potential in a neuron. The explanation consists of a
qualitative account of the bottom-out entities engaging in the types of bottom-

out activities listed above.

Both Bechtel (2011, p. 537) and (Boogerd et al. p. 154) criticise Machamer et al. for
portraying mechanistic explanations as being qualitative explanations. A qualitative
account of a mechanism cannot, by itself, explain why a pathway is exhibiting a
particular dynamic behavior, or why a small perturbation may result in an extreme
change in behavior. It cannot, for example, explain why a pathway has sustained
oscillations rather than damped oscillations (recall section 1.2). An answer to such
questions requires an account of how the pathway’s dynamic behaviours arise from
the multiple non-linear interactions between the pathway’s reactants (including
feedback loops) and how small differences in concentrations or kinetic parameters
can lead to substantially different behaviours. In practice, this requires the use of a
simulation model. Such models consist of a system of ordinary differential equations
(henceforth: ODEs) whose:

“variables [and parameters] in the model reflect salient properties of the
parts and operations in the mechanism and the equations capture how
values of these variables change over time.” (Bechtel and Abrahamsen,

2010, p. 19)

A successful explanation of a dynamic behaviour has two components: (i) a
qualitative account of the mechanism (ii) a quantitative account provided with the
aid of a simulation model. The two accounts must be integrated, with the simulation
model’s ODEs being ‘explicitly anchored’ to the qualitative mechanistic account.
Bechtel and Abrahamsen call such explanations ‘dynamic mechanistic explanations’
(Bechtel and Abrahamsen, 2010, p. 323). By ‘anchoring’ Bechtel and Abrahamsen
mean that there is a mapping from the variables and parameters in the equations to

the parts and operations specified in the mechanistic account.
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The two parts of a dynamic mechanistic explanation complement each other. The
qualitative mechanistic account will contain salient details of the mechanism that are
not explicitly stated in the ODEs. These should include the context in which the
behaviour is occurring, how the parts are organised, how conformational changes of
catalysts affect the rates of particular reactions and so forth. Much of this detail is
needed for understanding a mechanism and identifying how it can be intervened on.
In contrast, the explanation’s ODEs are often at a higher level, in effect quantifying

aggregate effects of the factors detailed in the qualitative mechanistic account.

I support Bechtel and Abrahamsen’s analysis of the need for dynamic mechanistic
explanations, but with one addition. The equations in the simulation model must be
causal equations. Kaplan and Craver’s (2011) make a similar point in their analysis of
explanatory models in cognitive and systems neuroscience, when they formulate a

‘model-to-mechanism-mapping’ (3M) constraint:

‘(3M) In successful explanatory models in cognitive and systems
neuroscience (a) the variables in the model correspond to components,
activities, properties, and organizational features of the target
mechanism that produces, maintains, or underlies the phenomenon, and
(b) the (perhaps mathematical) dependencies posited among these
variables in the model correspond to the (perhaps quantifiable) causal
relations among the components of the target mechanism.” (Kaplan and

Craver, 2011, p. 611).

I take the anchoring requirement for successful dynamic mechanistic explanations to
be stronger than this: that the dependencies between the variables must be
mathematically specified (i.e. in the model’s ODEs). A dynamic mechanistic
explanation is incomplete, to the extent that its causal relationships are not specified
in its ODEs, or there are variables or parameters in these ODEs that are not mapped

to the qualitative mechanistic account.

The structure of pathway ODE models for dynamic mechanistic explanations is

discussed in my chapter 2. For now, it is sufficient to make the following points:

- there will be one ODE for each of the pathway reactants being modelled.
- the left-hand side of the ODE (the dependent variable) is the rate of change of
a reactant’s chemical concentration and the right-hand side variables are

direct causes of the quantity on the left-hand side.
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- the other terms on the right-hand side of the ODE are parameters that are
constants. In chemically homogenous solutions, these are rate constants (or
functions of rate constants and fixed reactant concentrations) whose values
depend on properties of the reactants and the context in which the reactants

are situated.

Goldbeter’s model illustrates the required structure:

M Kr M
dt  *Kr+Pr ™K. +M
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N _ kP, —k,P,
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Fig 1.7 The ODEs used in Goldbeter’s model of the circadian rhythm of Drosophila (Goldbeter, 1995,
p. 320). There are five variables, corresponding to the five modelled reactants. As before, M = per mMRNA
in the cytoplasm, Py = PER in the nucleus, Po = PER in the cytoplasm, (P1, P2) = phosphorylated forms of
PER and P; = all forms of PER. All other terms are constants.

In Goldbeter’s model, the independent variables are parts in the mechanism, and
there is a causal relationship between these parts and the part referred to in the
dependent variable. For example, in the first equation, the independent variables M
and Px (i.e. per mRNA and PER in the nucleus) are direct causes of changes in the
rate of consumption of per mRNA. This corresponds to Goldbeter’s putative
mechanism where (i) increasing the concentration of Px decreases the production of
per mRNA, and (ii) increasing the concentration of per mRNA increases the

consumption of per mRNA (per mRNA degrading in the cytoplasm).
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But have we now gone full circle and returned to D-N explanations? After all, both D-
N explanations and dynamic mechanistic explanations involve explaining a
phenomenon by showing that it can be deduced from laws of nature and initial
conditions. But there are two important differences. First, the qualitative part of a
dynamic mechanistic explanation plays a key role in describing the causal structure
that produces the phenomenon. Second, as Bechtel notes, whilst D-N explanations
use general laws of nature, the equations in dynamic mechanistic explanations’ are
‘descriptions of the operations of specific parts’ (Bechtel 2011, p. 535). As I have

explained, I take these ‘descriptions’ to be statements of local causal laws.

In closing, pathways can exhibit a variety of ‘exotic’ dynamic behaviours. A pathway
dynamic behaviour is explained by specifying the mechanism that produces it.
Bechtel and Abrahamsen correctly emphasise the central role that feedback loops
play in pathway mechanisms. An adequate explanation goes beyond just stating the
steps by which a pathway’s target chemical is produced, it also explains why a
pathway is exhibiting one type of dynamic behaviour rather than another. This
requires an account of how pathway dynamic behaviours arise from the multiple
non-linear interactions between the pathway’s reactants (including feedback loops)
and how small differences in concentrations or kinetic parameters can lead to
substantially different behaviours. This, in turn, requires explanations to have two
complementary parts, one qualitative and one quantitative. In such dynamic
mechanistic explanations, the quantitative part includes statements of the local
causal laws for the mechanism. These are combined with statements of initial
conditions to deduce the target dynamic behaviour. In this context, I take ‘causal
discovery’ to refer to the processes by which biochemists discover these parts,
operations and organisation referenced by the corresponding dynamic mechanistic
explanation. This then includes the discovery of these local causal laws. My thesis will
be focusing on the putative modularity and emergent behaviour of pathways; I shall
argue in later chapters that it is the invariance of a pathway’s local causal laws that is

key to these subjects.
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1.4 Barriers to Causal Discovery

In vivo pathways are complex systems and we currently have only sparse data on
their operations. In this section, I will review four key factors that contribute to the
complexity of in vivo pathways:

(1) The large number of reactants that are shared between pathways

(ii))  The impact of non-reactive interactions between a pathway and other

cellular components.

(iii))  The presence of multiple feedback loops

(iv)  Pathway non-linearity
I will then review the reasons for the sparsity of in vivo data. If biochemists are to
succeed in explaining in vivo pathway dynamic behaviours, their methodologies will
need to overcome the formidable challenges posed by pathway complexity and by the
sparsity of data.

Pathways often share many of their reactants with multiple other pathways. The
chemical reactions occurring with a cell can be represented by a set of biological
networks, with separate networks for metabolic interactions, transcriptional
regulation interactions, protein-protein interactions and so forth. These networks
illustrate the extent to which pathways share reactants and hence have
interdependent dynamic behaviours. I will use the metabolic networks of E. coli and

streptococcus pneumoniae to illustrate this interdependency.

Metabolites are the chemical substances that are either intermediates or products of
metabolism; they do not include enzymes. In the metabolic networks considered in
my thesis, vertices are used to represent specific metabolites and edges connect pairs
of vertices that are related as reactant and product. For example, Zhao et al.’s (2006)
metabolic network of E. coli depicts 924 metabolites engaged in 1437 reactions.
Enzymes are not explicitly represented but it is implicitly understood that there will
generally be a unique enzyme associated with each edge. The following graph by
Silva, M. et al. (2008) represents the metabolic network for the streptococcus

pneumoniae cell.
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Fig. 1.8 Metabolic network for streptococcus pneumoniae. (Silva, M. et al, 2008, p. 238)

This diagram illustrates that the metabolic operations with a cell are not organised
into nicely delimited pathways. In vivo pathways are not almost closed systems; with
each pathway being undisturbed by other pathways, apart from receiving reactants at
some beginning stage and releasing products at some end stage. Instead in vivo
pathways are, what I shall term as, ‘pervasively open systems’ with the
concentrations of the reactants for any particular reaction often being directly
determined both by (i) the outputs of its adjacent reactions steps and (ii) the
reactions of other pathways. For example, glyceralderhyde-3-phosphate is a reactant

in reaction step 6 of the glycolytic pathway:
glyceraldehyde-3-phosphate + Pi + NAD* «<» 1,3-bisphosphoglycerate + NADH + H*

The concentration of glyceralderhyde-3-phosphate available for reaction step 6,
depends both on (i) the outputs of reaction steps 4, 5 and 7 of the glycolytic pathway
and (ii) the reactions of other pathways in the cytoplasm which consume or produce
glyceralderhyde-3-phosphate (e.g. glyceraldehyde-3-phosphate is a reactant in the
gluconeogenesis pathway, the pentose phosphate pathway, the pathway for thiamine
and so forth - from the KEGG Pathway Database; accessed 16/07/2016). The
‘pervasive openness’ of in vivo pathways may greatly increase the number of
interactions that need to be determined in the causal discovery of a pathway dynamic

behaviour.

A pathway’s dynamics are also often highly dependent on non-reactive interactions
between the pathway and other cellular components. In practice, biochemistry has
historically assumed that pathway reactions occur in chemically homogenous

solutions. But this ignores the cellular architecture that compartmentalises a cell and
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the ‘crowded’ cellular solution which contains high concentrations of large

macromolecules. Minter provides the following illustration of a eukaryotic cytoplasm.

test species (protein) -RNA

intermediate
filament

actin fiber
ribosome

soluble
protein

Cartoon of eukaryotic cytoplasm at a magnification of
1,000,000 x. The test protein molecule (red) is in a fluid medium that
is crowded by soluble proteins (green), RNA species (yellow), and ribo-
somes (pink) and confined by cytoskeletal fibers (blue).

Fig 1.9. Cartoon of eukaryotic cytoplasm. (Minter, 2001, p. 10578)

Trevors et al. (2012, p. 3) illustrates the heterogeneous solution in which in vivo
pathways are located by listing some of the features of the bacterial cytoplasm. These
include:

“- Structured and organized gel, not a watery sac enclosed by a cytoplasmic
membrane.

- Contains salts, ions, sugars, amino acids, macromolecules, vitamins,
coenzymes and about 2000 different proteins... all nucleic acids... tens of
thousands of ribosomes.

- Spatially varied composition with some compartmentation.

- Electrostatics is a dominant force.

- Diffusion is also dominant (e.g. rotational and translational).

- Hydrophobic effects.”

Such non-reactive interactions can have large scale effects on reaction rates
(van Eunen et al., 2012) and these will need to be determined as part of the

causal discovery of a pathway dynamic behaviour.

Feedback further adds to the complexity of pathways. To see this, let us first consider
the case of an isolated in vitro pathway, where there are no inter-pathway
interactions. The presence of feedback means that the behaviours of a particular
reaction step cannot be explained just in terms of the intrinsic properties of that

reaction step, plus the concentrations of reactants resulting from earlier stages in the
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pathway. Instead account also has to be taken of later stages in the pathway whose
products may also affect the reaction step. In the case of in vivo pathways, feedback
can result in an additional layer of complexity, as there are often feedback loops
involving multiple pathways. For example, many pathways are thermodynamically
powered by converting ATP to ADP. There are positive feedback loops between these
pathways and the glycolytic pathway, whereby increasing the concentration of ADP
increases the rate of at which the glycolytic pathway increases production of ATP,
which then increases the rate of production of ADP (see my Fig 1.2.). In my chapter 3,
I will review Bechtel and Richardson’s account of how the failure to take account of

feedback, delayed the causal discovery of the glycolytic pathway.

A fourth factor that contributes to complexity is nonlinearity. Many of the

interactions both within a pathway and with other cellular components are nonlinear
(including the feedback interactions). Nonlinearity means that the cumulative effects
of these interactions cannot be simply calculated, but instead will usually require the

construction of a simulation model.

A further challenge to causal discovery is that very little in vivo reaction rate data is
currently available. For example, Davidi et al. note that ke rate constantss are a
fundamental measure of the dynamic properties of enzymes, these constants are
referenced in many models of cellular metabolism, and yet data on these constants ‘is
scarce and measured in vitro, thus may not faithfully represent the in vivo situation”

(Davidi et al., 2016, p. 3401).

One reason for the lack of relevant in vivo data is the lack of technology that can
measure chemical concentrations within intact cells. For example, Phillip and
Schreiber (2013, p. 1050) note that it is “for this reason, quantitative in vivo
measures of proteins is still rare”. Current technologies that are being pioneered
include cross-correlation spectroscopy and in-cell NMR. However, as Zhou et al.
(2008, p. 12-13) highlight, there are concerns that such techniques significantly

impact on the operations within the target cell, inducing artificial interactions.

Another reason for the sparsity of relevant in vivo data, is that the same reactants are
often involved in multiple reactions. For example, dynamic mechanistic explanations

will require data on the rate constants of that pathway’s individual reaction steps.

3 keat rate constants specify the maximal turnover rates of enzymes (Vmax = Keat * concentration of enzyme)
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Determining the values of these rate constants, in turn requires gaining data on the
separate contribution that each reaction step makes to changes in its reactants’
concentrations. But, as I have explained, a pathway’s reactant concentrations are
often affected both by multiple reactions within that pathway and by multiple

reactions of their biochemical networks.

The complexity of in vivo pathways and the lack of data are formidable challenges to
the causal discovery of pathway dynamic behaviours. Biochemists have responded by
adopting the Strategy of Decomposition. This assumes that a pathway can be
analysed in isolation of its biological context and decomposed into subsystems called
modules, that can be separately studied and used to infer the pathway’s mechanisms

and explain its behaviours.

1.5 Causal Discovery via the Strategy of Decomposition

In this section, I will provide an overview of the Strategy of Decomposition and

highlight some of its key assumptions.

The Strategy of Decomposition consists of multiple steps and the details of the steps
will vary from case to case. The process steps described below have been elicited
from: Bechtel and Richardson’s account of the causal discovery of the glycolytic
pathway (Bechtel and Richardson, 2010, p. 153-172), Bechtel and Abrahamsen’s
account of dynamic mechanistic explanations (Bechtel and Abrahamsen, 2005) and
van Eunen et al.’s analysis of differences between in vivo and in vitro conditions (van
Eunen et al. (2014)). I shall be providing further analysis of these process steps in my
chapter 3. The steps include:

(i) Identifying the in vivo pathway dynamic behaviour to be explained.

(ii)  Extracting the in vivo pathway from its biological context, creating a
corresponding in vitro pathway.

(iii)  Proposing a functional decomposition of the in vitro pathway dynamic
behaviour. This will consist in proposing the reactants and products of
each of the pathway’s reaction steps.

(iv)  Creating a separate chemical solution for each putative reaction step.
Starting from the functional specification, a test solution is created for

each putative reaction step. These will contain the proposed reactants and
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v)

(vi)

products. It will also include any other putative parts of the step that were
not specified in the functional decomposition (e.g. the reaction step’s
enzyme). The test solutions can also be formulated so as to try and
replicate salient features of the corresponding in vivo reaction steps by, for
example, adding crowding agents, using physiological acid/alkaline levels
and so forth.

Analysing each of the isolated putative reaction steps. Experiments are
carried out to discover the salient properties of each reaction step,
including their operations and rate laws.

Confirming that the putative reaction steps combine to form the in vitro
pathway and produce the dynamic behaviour to be explained. This will
include using the rate laws determined in step (v) to construct a
simulation model of the pathway (an account of how this is done is
provided in section 2.2.2). The simulation model’s output is then validated

against observations of the target pathway dynamic behaviour.

The causal discovery of a pathway will normally involve many iterations of these

process steps, with evidence from later process steps leading to changes in the parts,

operations, organisation and rate laws proposed in earlier process steps. Ideally,

there would also be an additional step:

(vii)

coupling the simulation model to models of other pathways, so as to
construct a single model of the entire biochemical network that the
pathway belongs to. The aim would be to calculate the effects of the
network on the pathway’s dynamics. This would then resolve the
‘complexity problem’ of discovering the effects of pathways sharing their
reactants with multiple other pathways. This corresponds to part of the
‘Silicon Cell philosophy’ that is advocated by Snoep et al. (2006). However,
currently the reaction rate data has not been collected to enable such a

model.
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Overall, the above process steps correspond to a physical decomposition followed by

an ‘in silico’ reconstruction. This is illustrated below:
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Fig 1.10 The Strategy of Decomposition for the causal discovery of pathway dynamic behaviours.

The process steps above illustrate a general strategy of decomposition, that is widely
used in both biology and in other sciences