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Abstract 

 

Biochemists often adopt what may be called the “Strategy of Decomposition” for the 

causal discovery of biochemical pathway dynamic behaviours. This involves 

decomposing a pathway into a set of isolated parts, which are then analysed 

separately. It is assumed that knowledge gained of the isolated parts can then be used 

to explain the dynamic behaviours of the whole pathway. My thesis addresses the 

extent to which use of the Strategy of Decomposition is warranted. I evaluate two 

challenges contained in Bechtel and Richardson’s Discovering Complexity. The first 

challenge is that pathways lack the ‘modular’ structure assumed in the Strategy of 

Decomposition. Bechtel and Richardson take biochemists to use a concept of 

modularity called ‘near decomposability’. The second challenge is that pathways have 

‘Pathway Emergent’ behaviours. I reject both challenges. I show that near 

decomposability is the wrong type of modularity to apply to pathways, and that the 

occurrence of Pathway Emergence has not been established. I argue that an 

underlying problem with Bechtel and Richardson’s analyses is that they overstate the 

consequences of feedback and nonlinearity for the Strategy of Decomposition. 

Instead, the analysis of pathway modularity and emergence needs to be centered on 

the context-sensitivity of pathways’ ‘local causal laws’. I identify that the type of 

modularity assumed in the Strategy of Decomposition is ‘causal law modularity’, 

which requires the invariance of local causal laws. I also identify a necessary 

condition for Pathway Emergence: a pathway must manifest at least one local causal 

law that is not manifested by its isolated parts. I argue that the use of the Strategy of 

Decomposition may often be unwarranted. This is because the local causal laws of 

pathways are highly context-sensitive, and pathways might often not be causal law 

modular. This context-sensitivity also leaves open the possibility of Pathway 

Emergence. 
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Chapter 1 - The Causal Discovery of Pathway Dynamic 

Behaviours 

 
 
1.1   Introduction 

There are formidable challenges to the causal discovery and explanation of 

biochemical pathway behaviours. Pathways are complex systems, consisting of 

sequences of interdependent chemical reactions that are nonlinear, context sensitive 

and often involve multiple feedback loops. Complexity is further increased when 

pathways are parts of large biochemical networks in which they interact with many 

other pathways. This complexity means that the causal discovery and explanation of 

pathway behaviours may sometimes be beyond our cognitive abilities. To make 

matters worse, there are also considerable barriers to gaining relevant data. For 

example, the physical structures in which a pathway occurs are often extremely 

fragile. Measuring pathway operations often appears practically impossible, without 

first destroying these structures. Yet these structures can play a critical role in 

determining pathway behaviours. 

  

I shall be focusing on pathway dynamic behaviours. These concern the flows and the 

changing chemical concentrations that occur within pathways. Pathways are 

composed of reaction steps, which are themselves composed of the chemicals that 

bring about that step’s reaction. Each reaction step has a rate law that specifies how 

its rates of reaction depends on the concentrations of its reactants. Pathways can 

exhibit a wide range of dynamic behaviours including maintaining a single steady 

state, switching between multiple steady states and oscillating. 

 

Within biochemistry, it is generally agreed that a pathway dynamic behaviour is 

explained by specifying the mechanism producing that behaviour. This involves 

specifying the salient parts, operations and organisation of the pathway. ‘Causal 

discovery’ of a pathway dynamic behaviour refers to the processes by which 

biochemists discover these parts, operations and organisation. However, given the 

complexity of pathways and the lack of data, how should the discipline of 

biochemistry proceed when attempting to identify these pathways? 
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Biochemists often respond by adopting what I shall term as the ‘Strategy of 

Decomposition’ for the causal discovery of pathway dynamic behaviours. The strategy 

has three broad stages: 

 

1. An extraction stage; in which the target pathway is separated from its 

biological context.  

2. A decomposition stage; in which the isolated pathway is decomposed into a 

set of isolated parts, that are then separately analysed. 

3. A reconstruction stage; involving using a simulation model to deduce the 

target behaviour. 

 

My thesis addresses the extent to which the Strategy of Decomposition is warranted. 

I will evaluate two related challenges to the strategy that are contained in Bechtel and 

Richardson’s book Discovering Complexity (2010) and in related papers.1 

 

The first challenge is that pathways lack the ‘modular’ structure assumed in the 

Strategy of Decomposition. Bechtel and Richardson take biochemists to be applying a 

concept of modularity called ‘near decomposability’ that was originally formulated by 

Herbert Simon (1962, 1973, 1977, 1999, 2002). Systems are modular, in this sense, 

when the intensity of intra-subsystem interactions is significantly greater than the 

intensity of inter-subsystem interactions. Bechtel and Richardson argue that 

pathways are often not nearly decomposable because of the effects of feedback loops. 

Nevertheless, the assumption of near decomposability has been heuristically useful in 

producing ‘false models as a means to truer theories’ (Bechtel and Richardson, 2010, 

p. xxvi).  

 
The second challenge is that pathways sometimes have a type of emergence, that I 

shall term ‘Pathway Emergence’. A key requirement for Pathway Emergence is that a 

pathway’s dynamics cannot be deduced from a ‘Deductive Base’ that contains 

statements of: the properties of the pathway’s isolated parts, the pathway’s 

organisation, and laws manifested in systems simpler than the whole pathway. But if 

this is correct, then it appears to undermine the Strategy of Decomposition, which is 

based on precisely being able to make these types of deductions.  

                                                           
1 These are papers that are endorsed in the second edition of Discovering Complexity and are authored or 

co-authored by either Bechtel or Richardson. In particular, the account of pathway emergence analysed 

in my thesis was originally proposed in Boogerd et al.’s (2005) paper, which was co-authored by 

Richardson.  
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The aim of this first chapter is to provide the biochemical and philosophical 

background to my thesis. In section 2, I provide an overview of pathways and 

pathway dynamic behaviours. In section 3, I review the philosophical literature on 

mechanisms and on scientific explanation in biochemistry. I argue that pathway 

dynamic behaviours are explained by ‘dynamic mechanistic explanations’ that 

reference local causal laws. In section 4, I explain how the complexity of pathways 

and the lack of data are formidable challenges to the causal discovery of pathway 

dynamic behaviours. In section 5, I describe the Strategy of Decomposition that has 

been employed in the causal discovery of pathway dynamic behaviours. I explain that 

biochemists often assume that pathways are ‘causal law modular’. In section 6, I 

provide an overview of the remaining chapters of my thesis.  

 
 

1.2    Pathways 

The operations of a cell are accomplished through series of biochemical reactions 

called pathways. Pathways are a basic analytic construct of biochemistry. It is by 

understanding pathways that we can understand much of how cells function. There is 

not a generally agreed definition of what a pathway is, but the following 

characterisation will suffice for our purposes: a pathway from a source chemical X to 

a target chemical Y is a sequence of chemical reactions in which:  

(i) X is a reactant of the first reaction, 

(ii) Y is a product of the last reaction, 

(iii) at least one product2 of each reaction is a reactant in the next reaction 

(with the exception of the last reaction in the pathway).  

 

There are three main types of pathway: 

 

• Metabolic pathways. These are either catabolic or anabolic. Catabolic 

pathways break down molecules into progressively smaller products. The 

products provide chemically available energy to the cell and metabolic 

                                                           
2 The product linking each step cannot be a ‘currency molecule’. Currency molecules are chemical species 

that appear in a large number of biological reactions and whose function is primarily to donate or receive 

electrons e.g. H2O, ATP, NAD+ (Holme (2008)). Currency molecules are excluded from providing the links 

between pathway steps, as otherwise the number of pathways within a biological network becomes too 

large for the concept of a pathway to be useful. Currency molecules are further discussed in section 3.5. 
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intermediates for anabolic pathways. Anabolic pathways start from these 

metabolic intermediates (and other small precursor molecules) and convert 

them progressively into larger molecules such as nucleic acids, lipids and 

polysaccharides, which enable the growth, maintenance and duplication of a 

cell. 

 

• Gene regulatory pathways. These activate or inhibit the production of specific 

gene products e.g. RNA and proteins. 

 

• Signal transduction pathways. These are triggered by cellular receptors 

responding to extra-cellular signals. Receptors can begin a pathway within 

their cell which will eventually elicit a response to the signal such as changing 

the cell’s metabolism, shape or gene expression.  

 

 

Each of the reactions in a pathway can be represented by a chemical reaction 

equation, for example: 

   B + C → D + E 

states that a molecule of species B combines with a molecule of species C and is 

transformed into a molecule of D and a molecule of E. The rate of a reaction is a 

measure of the rate of change in the concentrations of the reactants and products due 

to that reaction. A ‘rate law’ specifies this relationship between the rate of a reaction 

and the concentration of its reactants. In the above example the rate law is: 

  v =   𝑘[𝐵][𝐶]      ( v = − 
𝑑 [𝐵]

𝑑𝑡
= − 

𝑑 [𝐶]

𝑑𝑡
= + 

𝑑 [𝐷]

𝑑𝑡
= + 

𝑑 [𝐸]

𝑑𝑡
 ) 

where v is the rate of reaction, a square bracket [ ] denotes concentration and a lower 

case k denotes a proportionality constant called the rate constant.  

 

The chemical reaction equations below are for the glycolytic pathway and illustrate 

how the reactions of a pathway are linked together. For example, glucose-6-

phosphate is a product of the first reaction and a reactant in the second reaction step. 
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Step  Enzyme 

1 glucose + ATP → glucose-6-phosphate + ADP + H+ hexokinase 

2 glucose-6-phosphate  fructose-6-phosphate phosphoglucose isomerase 

3 fructose-6-phosphate + ATP → fractose-1,6-bisphosphate 

+ ADP + H+ 

phosphofructokinase 

4 fructose-1,6-bisphosphate  dihydroxyacetone phosphate 

+ glyceraldehyde-3-phosphate 

aldolase 

5 dihydroxyacetone phosphate  glyceraldehyde-3-

phosphate 

triose phosphate 

isomerase 

 (steps 6 to 10 are carried out twice)  

6 glyceraldehyde-3-phosphate + Pi + NAD+   1,3-

bisphosphoglycerate + NADH + H+ 

glyceraldehyde 3-

phosphate dehydrogenase 

7 1,3-bisphosphoglycerate + ADP   3-phosphoglycerate + 

ATP 

phosphoglycerate kinase 

8 3-phosphoglycerate   phosphoglycerate phosphoglycerate mutase 

9 2-phosphoglycerate   phosphoenolpyruvate + H2O einolse 

10 phosphoenolpyruvate + ADP + H+ → pyruvate +  ATP pyruvate kinase 

 
 
Fig 1.1 The glycolytic pathway. Similar representations can be found, for example, in Nelson and Cox 

(2113, p .545) or Alberts (2010, p. 430), the only significant difference being that they provide diagrams of 

the molecular structures of the substrates. Abbreviations: ATP, adenosine triphosphate; ADP, adenosine 

diphosphate; NAD+, nicotinamide adenine dinucleotide (oxidised form); NADH, nicotinamide adenine 

dinucleotide (reduced form).  

 
The glycolytic pathway will be used as the main case study in my thesis. This 

metabolic pathway produces adenosine triphosphate (henceforth: ATP), which 

provides the energy needed for many of the cell’s chemical reactions. For every two 

molecules of ATP that are initially consumed in the pathway, four molecules of ATP 

are later created. The chemical reactions in metabolic pathways are nearly always 

catalysed by enzymes.  

 

A ‘pathway dynamic behaviour’ is a trajectory in that pathway’s phase space; where 

the phase space has a separate dimension for the concentration values of each of the 

pathway’s chemicals. For example, a dynamic behaviour of the glycolytic pathway 

would be a trajectory specifying how the concentrations of glucose, glucose-6-

phosphate, ATP and so forth changed over time. 
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My thesis is concerned with the causal discovery and explanation of pathway 

dynamic behaviours that occur within living organisms. Such pathways are referred 

to as in vivo pathways; in vivo being Latin for ‘within the living’. As I shall be 

explaining, the causal discovery of pathways often proceeds by analysing pathways 

that are not located within a living organism, but instead are located in a laboratory 

apparatus such as a petri dish or a test tube. Such pathways are referred to as in vitro 

pathways; in vitro being Latin for ‘within the glass’.  

 

Two attributes of pathways that are critical to their dynamic behaviours are (i) 

pathways are often regulated by chemical feedback (henceforth: feedback) (ii) 

pathways are nonlinear. A detailed analysis of both pathway nonlinearity and 

feedback will be provided in my chapter 2. For now, the following brief overview will 

suffice. 

 

Chemical feedback occurs when the concentration of a reactant affects the rate of that 

reactants own production (Epstein and Pojman, 1998, p. 23). Positive feedback 

increases the rate of production and negative feedback decreases the rate of 

production. Pathways are often regulated by multiple chemical feedback loops. For 

example, the diagram below illustrates three of the feedback loops in the glycolytic 

pathway, that directly affect the third reaction step, in which fructose-6-phosphate 

(F-6-P) is transformed into fructose-1,6-biphosphate (FDP). These loops help to 

regulate the pathway, controlling the amount of ATP available in a cell. 

  

 
 
Fig 1.2 Feedback affecting reaction step 3 of the glycolytic pathway. The dashed arrows represent 

feedback, with (+) being positive feedback and (-) being negative feedback. The undashed lines represent 

sets of reactions of the glycolytic pathway or of the subsequent transformation of ATP into adenosine 

diphosphate (ADP). The enzyme for reaction step 3 is phosphofructokinase. Each of the three feedback 

loops involves a set of reactions that change the conformation of phosphofructokinase, leading to changes 

the rate of reaction step 3. These reactions between enzymes and reactants of ‘later steps’ are not usually 

shown in summary representations of pathways such as Fig 1.1, and hence the presence of feedback loops 

cannot usually be simply read off from such summary representations. A detailed account of feedback on 

phosphofructokinase is provided in my chapter 2. 
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In practice, all pathways are nonlinear. A physical system is nonlinear if it induces a 

system of equations that do not satisfy the ‘superposition principle’. The 

superposition principle is satisfied when (i) any two solutions to the equations can be 

added together to obtain another solution, and (ii) any solution can be multiplied by 

any numerical factor to obtain another solution. Nonlinearity has important 

implications for the explanation of pathway behaviours. Because of nonlinearity, the 

contributions of each of a system’s parts cannot be simply combined to calculate that 

pathway’s dynamic behaviour. Instead, pathway dynamic behaviours are usually 

calculated by the use of simulation.  

 
Pathways can exhibit a wide range of dynamic behaviours, including such ‘exotic 

dynamics’ as oscillating and switching between different steady states. Furthermore, 

small physical changes (such as changes to the crowdedness of the solution 

containing the pathway) can lead to sudden dramatic shifts in the dynamic behaviour 

of a pathway (e.g. via a bifurcation). I shall now illustrate some of these behaviours 

using case studies referenced in Bechtel and Abrahamsen’s (2010) account of the 

causal discovery of circadian rhythms. 

 

Circadian rhythms are endogenous, physiological cycles of living beings that have a 

duration close to 24 hours and are entrainable by environmental cues such as 

daylight and temperature. The multiple pathways for circadian rhythms involve large 

numbers of reactions, however it will be sufficient for our purposes to consider the 

relatively simple pathway that was proposed by Goldbeter (1995) for Drosophila (the 

common fruit fly). The mechanism for maintaining circadian rhythms is located in a 

small number of neurons of the Drosophila. The proposed mechanism involves the 

transcription of the per gene in the nucleus to produce m-RNA per, which is then 

transported to the cytoplasm and transcribed into the protein PER (in general the 

symbols for genes are in lower case and italicised, whilst the corresponding proteins 

are in capitals). PER then undergoes a set of reactions in which it is phosphorylated 

first to protein PER1 and then to protein PER2. The PER2 is then transported back to 

the nucleus where it inhibits the further transcription of the per gene (this is an 

example of negative feedback). PER2 gradually degrades and the per gene becomes 

active again and starts to be transcribed. The following diagram represents 

Goldbeter’s model: 
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Fig. 1.3 Goldbeter’s model of the circadian rhythm of Drosophila. The dashed arrows represent 

feedback, with  (-) being negative feedback. The undashed arrows represent sets of reactions. 

Abbreviations: M, per mRNA in the cytoplasm; PN, PER in the nucleus; P0,  PER in the cytoplasm; P1, PER 

with one phosphoryl group; P1, P2, PER with two phosphoryl groups. (Goldbeter, 1995, p. 320). 

 
Goldbeter’s model shows how small changes to the rates of a pathway’s reactions can 

result in the pathway changing its behaviour from being in a steady state to 

oscillating. The pattern of oscillations generated by the model are illustrated below. 

 

 
Fig. 1.4. Sample output from Goldbeter’s model of the circadian rhythm of Drosophila. Abbreviations: 

M, per mRNA in the cytoplasm; PN,  PER in the nucleus; P0,  PER in the cytoplasm; P1, PER with one 

phosphoryl group; P1, P2, PER with two phosphoryl groups; Pt = all forms of PER. (Goldbeter, 1995, p. 

321). 

 
Subsequent to Goldbeter’s model, other genes and proteins were found to play 

critical roles in the maintenance of circadian rhythms. These were incorporated in 

the Leloup and Goldbeter (2003) model for the mammalian circadian mechanism. 

The model was used in generating possible explanations for a variety of circadian 
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pathologies. These included Advanced Sleep Phase Syndrome in which the natural 

pattern of falling asleep around midnight is shifted by several hours, so that the 

subject falls asleep early in the evening and wakes up very early in the morning. 

Leloup and Goldbeter were able to show that this could be replicated by changing 

their model’s parameter values for the phosphorylation of PER. This is consistent 

with studies of families with Advanced Sleep Phase Syndrome, which identified the 

presence of a genetic mutation that affected the production of an enzyme involved in 

the phosphorylation of PER (Bechtel and Abrahamsen, 2010, p. 327).  

 

The above case studies illustrate the types of dramatic changes in pathway 

behaviours that can sometimes occur and which will need to be accounted for in the 

corresponding explanations of pathway dynamic behaviours. I take it that an 

adequate explanation will need to go beyond just stating the steps by which a 

pathway’s target chemical is produced, it will also need to explain why a pathway is 

exhibiting one type of dynamic behaviour rather than another. It should provide 

answers to what Woodward (2003, p. 260) calls ‘what-if-things-had-been-different?’ 

questions, such as how would the pathway’s dynamic behaviour be different if: 

- the initial conditions were different 

- there was a perturbation that changed the concentrations in the pathway 

- there was a physical change that changed the kinetic parameters of the 

pathway.  

 

 

 

1.3    Explaining Pathway Dynamic Behaviours 

How should pathway dynamic behaviours be explained? The deductive-nomological 

(henceforth: D-N) account of scientific explanation once dominated the philosophy of 

science. According to this, a phenomenon is explained by showing that it can be 

deduced from statements of (i) general laws of nature and (ii) initial conditions. But 

there are significant shortcomings with the D-N account and it does not match the 

actual explanations provided in biology. 

 

Instead, biologists provide mechanistic explanations, in which a phenomenon is 

explained by specifying the mechanism responsible for the phenomenon. Before the 

first publication of Discovering Complexity in 1993, little philosophical attention was 
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paid to this form of explanation. Since then a ‘new mechanistic philosophy of science’ 

has flourished. In this section, I will explain what mechanisms are. And that many, if 

not all the causal regularities found in biological mechanisms are described by ‘local’ 

rather than ‘general’ causal laws. I will then argue that the successful explanation of a 

pathway dynamic behaviour requires a ‘dynamic mechanistic explanation’. This 

consists of a (i) a qualitative account of a mechanism and (ii) a quantitative account 

showing that the target dynamic behaviour can be deduced from statements of the 

pathway’s rate laws and initial conditions. However, in contrast to D-N explanations, 

these laws are ‘local causal laws’. 

 

According to the D-N account of scientific explanation, to explain a phenomenon is to 

subsume it under general laws of nature. For systems with deterministic laws, 

successful scientific explanations were taken to have the form of the D-N model, as 

specified by Hempel and Oppenheimer (1948):  

 

 
 

The explanans must include statements of general laws of nature that are essential to 

the derivation of the explanandum. The laws are general, in the sense that statements 

of the laws make no reference to particulars and are true without exception. The 

explanandum is explained by showing that it is an instantiation of these laws. A 

similar account of explanation was held to apply for systems with probabilistic laws, 

but it is sufficient for our purposes just to focus on D-N explanations.  

 

The D-N Model has been subject to some well-known counterexamples (Salmon, 

1984. p. 46-50). Consider, for example, the following deductive argument: 

 

Every man who regularly takes birth control pills avoids pregnancy 

John Jones regularly takes birth control pills 

John Jones avoids becoming pregnant 

This satisfies the criteria for being a D-N explanation but clearly fails to be 

explanatory. Such counterexamples have highlighted serious shortcomings with the 

D-N Model, including that: (i) irrelevant premises can be used to deduce and hence 

‘explain’ an explanandum (ii) no temporal priority is required between the explanans 
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and the explanandum (iii) there is no requirement that the cause of the explanandum 

be included in the explanans. A further problem for the D-N account is that there are 

few general laws of nature to be found in biology (e.g. Dupre, 2009, p. 33). Instead 

the regularities that biologists term as ‘laws’ are often highly context-sensitive. If the 

D-N account is correct then few, if any, scientific explanations have been provided 

within biology. 

 

The D-N account of scientific explanation has been widely rejected by philosophers of 

biology. With respect to biochemistry, it is recognised that successful scientific 

explanations are causal explanations, in which a phenomenon is explained by 

specifying the mechanism that produces it.  

 

But what is a mechanism? The characterisation of a mechanism has been the subject 

of an intense debate amongst a group of philosophers that I shall refer to as the ‘New 

Mechanists’. The three most prominent characterisations are: 

“Mechanisms are entities and activities organized such that they are 

productive of regular changes from start or set-up to finish or 

termination conditions.” (Machamer et al., 2000, p .3) 

“A mechanism for a behaviour is a complex system that produces that 

behaviour by the interaction of a number of parts, where the interactions 

between parts can be characterized by direct, invariant, change-relating 

generalizations.” (Glennan, 2002, p. S344) 

 

“A mechanism is a structure performing a function in virtue of its 

component parts, component operations, and their organization. The 

orchestrated functioning of the mechanism, manifested in patterns of 

change over time in properties of its parts and operations, is responsible 

for one or more phenomena.” (Bechtel and Abrahamsen, 2005, p. 423) 

Each of these characterisations, sometimes with minor modifications, has its 

supporters. There are some differences in vocabulary between the characterisations, 

for example Machamer et al. use the terms ‘entities’ and ‘activities’ rather than ‘part’ 

and ‘operations’. But there are also some substantial differences, reflecting different 

views or emphasises on such matters as: 

a. the nature of causation 

b. the domains of science to which the concept of mechanism applies 
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c. the importance of cyclical organisation, including feedback within 

mechanisms. 

Nevertheless, there is now considerable agreement on a minimum concept of 

mechanism that applies across the sciences, and this has been captured by Illari and 

Williamson: 

“A mechanism for a phenomenon consists of entities and activities organised in 

such a way that they are responsible for the phenomenon”. (Illari and 

Williamson, 2012, p. 120) 

Illari and Williamson’s characterisation lays clear the three basic components of a 

mechanism: its phenomenon, its parts and operations, and its organisation. I shall 

use this as my base, from which to explain mechanisms.  

 

Craver (2007, p. 7) nicely represents the structure of mechanism: 

 

 

 
 
Fig 1.5. Craver’s schematic diagram of a mechanism. The mechanism consists of the organised parts 

(circles) and operations (arrows). The mechanism’s phenomenon is S’s ψ-ing, its parts are {X1, X2….. Xm} 

and its operations are {Φ1, Φ2…. Φn}. Mechanisms can have multiple levels, as each node can itself be a 

mechanism.  

 
A mechanism is a mechanism responsible for a phenomenon. It is functionally 

individuated by its phenomenon i.e. by the set of inputs and outputs delimiting that 

phenomenon. There are many types of phenomena. There are mechanisms 

responsible: for producing particular materials (e.g. for producing adenosine 

triphosphate and pyruvate from glucose); for exhibiting particular behaviours (e.g. 

for neurons exhibiting electrical oscillations); for maintaining particular states (e.g. 

maintaining homeostasis). A mechanism can also be responsible for a system having 

a capacity; Illari and Williamson (2012, p. 124) give the example of a cell having a 

capacity to metabolise lactose. A cell will only metabolise lactose when glucose is 
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unavailable. However, the mechanism responsible for having this capacity will exist, 

even if lactose is never metabolised.  

 

Operations (or ‘activities’ or ‘interactions’) are what the parts do within a mechanism. 

There is considerable disagreement between the New Mechanists as to the nature of 

causation, and consequently as to how operations should be characterised. 

Machamer et al. (2000) and Bogen (2005) incorporate a realist, productive view of 

causation in which “activities are types of causes” (Machamer et al., 2000, p. 7). “An 

entity acts as a cause when it engages in a productive activity. It is not penicillin that 

causes pneumonia to disappear, but what the penicillin does” (Machamer et al., 

2000, p. 7). They endorse Anscombe’s view that the term ‘cause’ is highly abstract 

and only becomes meaningful when filled in by more specific causal terms such as 

“scrape, push, wet, carry, eat, burn, knock over, keep off, squash, make (e.g. noises, 

paper boats), hurt” (Machamer et al., 2000, p. 7). By contrast, Glennan (2002) refers 

to a mechanism’s parts ‘interacting’, where an interaction “is an occasion in which a 

change in a property in one part brings about a change in a property of another part” 

(Glennan , 2002, S344). This is best understood within the context of Glennan’s 

wider project. Glennan (2009) is proposing an account of (non-fundamental) 

causation in terms of mechanisms. The proposal is that for two events to be causally 

related they must be connected by an intervening mechanism. In explaining his 

notion of interaction, Glennan invokes Woodward’s manipulationist theory of 

causation. Woodward’s theory is explained in my chapter 3, but the basic idea is that 

for X to be a cause of Y:  

a) there is an ideal intervention on X such that Y changes or the probability 

distribution of Y changes. 

b) the relationship between X and Y is invariant i.e. remains unchanged by the 

intervention. 

However, Glennan takes such invariant generalisations to be mechanically explicable 

i.e. the truth conditions for the generalisations are mechanisms (Glennan, 2009, p. 

322). Finally, Bechtel and Abrahamsen (2005, 2010), have been careful to avoid 

using the word ‘cause’ or taking any position on the nature of causation, instead 

simply citing examples of operations such as the adding or removing of hydrogen 

atoms from a molecule during a chemical reaction. (Bechtel and Abrahamsen, 2005, 

p. 433). I will return to the subject of causality, below.  
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There are several types of organisation that may be relevant to the functioning of a 

mechanism. These include spatio-temporal organisation, such as the locations and 

conformations of parts, and the temporal orderings, rates and durations of the parts’ 

operations. A second type of organisation, that is critical to the functioning of many 

complex systems, is the coordinating of the parts’ operations by feedback loops. 

Examples include the maintenance of states such as homeostasis, and ‘self-organising 

systems’ in which multiple feedback loops give rise to exotic behaviours such as the 

synchronised oscillations of neurons (self-organisation is discussed in my chapter 4). 

It is because of the importance of feedback that Bechtel and Abrahamsen’s 

characterisation of a mechanism refers to to the “orchestrated functioning of a 

mechanism”; Bechtel (2011, p. 539) elaborates that ‘like a player in an orchestra, an 

individual part may behave differently as a result of operations performed by other 

parts’. Bechtel criticises Machamer et al. for describing mechanisms as proceeding 

‘from start or set-up conditions to finish or termination conditions’, as this implies a 

sequential ordering to a mechanism’s operations and hence fails to recognize the 

importance of feedback loops (Bechtel, 2011, p. 536). A similar criticism can be made 

of Glennan’s characterisation. A third type of organisation is near decomposability. 

As I will explain in my chapter 3, sometimes a mechanism has this type of 

organisation, in which its parts’ behaviours are relatively autonomous of each other.  

 

With respect to my thesis’s analyses, Bechtel and Abrahamsen’s characterisation 

provides the best fit for pathway mechanisms. It is consistent with Illari and 

Williamson’s account but has been formulated specifically for the domain of biology, 

where feedback is ubiquitous. Both Machamer et al. and Glennan’s accounts are tied 

to particular theories of causation, and this does not fit with my thesis which is 

neutral between these theories. 

  

With respect to causality, my thesis is based on some uncontroversial claims that are, 

at least implicitly, incorporated into biochemists’ analyses of pathway dynamics: 

  
1) a change to the value of a cause will, at least sometimes, lead to a change to 

the value of its effect.  

2) causal relationships relate variables. Variables are properties or magnitudes 

that can have more than one value; and the values of variables are possessed 

by particular entities. (Woodward, 2003, p. 39). 
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3) causal relationships can be expressed as causal equations in which the 

dependent variable is the effect and independent variables are a complete set 

of its causes. Causal equations specify functionally correct relationships.  

4) A variable X is a direct cause of a variable Y, with respect to a set of variables 

V, if changing X will, at least sometimes, change Y when all other variables in 

V are held constant. Hence changing X can bring about a change in Y without 

having to change the value of an intermediate variable. The definition of a 

direct cause is relative to a set of variables V. X may be a direct cause of Y 

relative to the set V but an indirect cause relative to a different set V* (c.f. 

Woodward, 2003, p. 55).    

 

The causal equations describing the causal regularities of a system, are statements of 

that system’s ‘causal laws’ (see for example (Cartwright, 2007, p. 152 – 155)). Causal 

laws need not be general laws, applying without exception. Instead, they can be local 

laws, applying in a limited number of contexts. Small changes in context can ‘break’ a 

local causal law. Many, if not all, the causal laws that apply within biological 

mechanisms are local causal laws. For example, when biochemists refer to the rate 

laws of a pathway’s chemical reactions, they are not supposing that these rate laws 

are general laws. They know that rate laws are highly context sensitive; and this is 

reflected in the experimental procedures they use when discovering these laws (as I 

will explain in my chapter 3). The regularities that they call ‘rate laws’ are local causal 

laws; instantiated when that reaction’s reactants are located in the right sort of 

context. 

 

Biological mechanisms may be viewed as being examples of what Cartwright calls 

‘nomological machines’: 

A nomological machine is “a fixed (enough) arrangement of components, or 

factors, with stable (enough) capacities that in the right sort of stable 

(enough) environment will, with repeated operation, give rise to the right 

kind of regular behaviour that we represent in our scientific laws” 

(Cartwright, 1999, p. 50).  

Consider a toy example of an in vitro pathway S that is situated in a test tube in a 

laboratory. Let us assume that the rate laws for S’s reaction steps continues to apply 

over the full range of reactant concentrations occurring within the test-tube (this 

assumption is routinely made in biochemistry). However if, say, a particular catalyst 

is added into the test-tube or a powerful electromagnetic force is applied to the test-
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tube, then some of the original rate laws of S will be broken (i.e. they will no longer 

describe the causal regularities of S). S is an example of a nomological machine. If the 

nomological machine is changed, in this case by adding a new catalyst or applying an 

electro-magnetic force, then different local causal laws may arise. As I shall now 

explain, local causal laws play a key role in the explanation of pathway dynamic 

behaviours. 

 

 

In mechanistic explanations, a phenomenon is explained by specifying the 

mechanism responsible for the phenomenon. These specifications often reference 

multiple compositional levels and bottom out in parts and operations that are taken 

as relatively fundamental to scientists in that field of science (see Fig. 1.6).  

   

 
 
 
 
Fig. 1.6. The multiple levels that may be referenced in a mechanistic explanation. Craver (2007, p. 

190). 

 
Some New Mechanist accounts, most prominently Machamer et al. (2000) have 

portrayed mechanistic explanations as being qualitative descriptions of a mechanism. 

According to Machamer et al., a satisfactory explanatory text consists of a description 

of the producing mechanism in terms of the field or scientist’s bottom out activities 

and entities. For example, in molecular neuroscience the bottom out entities would 

typically include different types of neurons, ions, neural transmitters and so forth. 

The bottom-out activities for molecular biology and neuroscience fall into four 

categories (Machamer et al, 2000, p. 14): 
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Activities 

geometrico-mechanical  (e.g. turning, pushing) 

electro-chemical   (e.g. attracting, bonding) 

energetic   (e.g. diffusing) 

electro-magnetic   (e.g. conducting). 

 

Machamer et al. (2000, p. 8-13) provide an example of the mechanistic 

explanation of an action potential in a neuron. The explanation consists of a 

qualitative account of the bottom-out entities engaging in the types of bottom-

out activities listed above. 

 

Both Bechtel (2011, p. 537) and (Boogerd et al. p. 154) criticise Machamer et al. for 

portraying mechanistic explanations as being qualitative explanations. A qualitative 

account of a mechanism cannot, by itself, explain why a pathway is exhibiting a 

particular dynamic behavior, or why a small perturbation may result in an extreme 

change in behavior. It cannot, for example, explain why a pathway has sustained 

oscillations rather than damped oscillations (recall section 1.2). An answer to such 

questions requires an account of how the pathway’s dynamic behaviours arise from 

the multiple non-linear interactions between the pathway’s reactants (including 

feedback loops) and how small differences in concentrations or kinetic parameters 

can lead to substantially different behaviours. In practice, this requires the use of a 

simulation model. Such models consist of a system of ordinary differential equations 

(henceforth: ODEs) whose:  

“variables [and parameters] in the model reflect salient properties of the 

parts and operations in the mechanism and the equations capture how 

values of these variables change over time.” (Bechtel and Abrahamsen, 

2010, p. 19) 

A successful explanation of a dynamic behaviour has two components: (i) a 

qualitative account of the mechanism (ii) a quantitative account provided with the 

aid of a simulation model. The two accounts must be integrated, with the simulation 

model’s ODEs being ‘explicitly anchored’ to the qualitative mechanistic account. 

Bechtel and Abrahamsen call such explanations ‘dynamic mechanistic explanations’ 

(Bechtel and Abrahamsen, 2010, p. 323). By ‘anchoring’ Bechtel and Abrahamsen 

mean that there is a mapping from the variables and parameters in the equations to 

the parts and operations specified in the mechanistic account.  
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The two parts of a dynamic mechanistic explanation complement each other. The 

qualitative mechanistic account will contain salient details of the mechanism that are 

not explicitly stated in the ODEs. These should include the context in which the 

behaviour is occurring, how the parts are organised, how conformational changes of 

catalysts affect the rates of particular reactions and so forth. Much of this detail is 

needed for understanding a mechanism and identifying how it can be intervened on. 

In contrast, the explanation’s ODEs are often at a higher level, in effect quantifying 

aggregate effects of the factors detailed in the qualitative mechanistic account.  

I support Bechtel and Abrahamsen’s analysis of the need for dynamic mechanistic 

explanations, but with one addition. The equations in the simulation model must be 

causal equations. Kaplan and Craver’s (2011) make a similar point in their analysis of 

explanatory models in cognitive and systems neuroscience, when they formulate a 

‘model-to-mechanism-mapping’ (3M) constraint: 

‘(3M) In successful explanatory models in cognitive and systems 

neuroscience (a) the variables in the model correspond to components, 

activities, properties, and organizational features of the target 

mechanism that produces, maintains, or underlies the phenomenon, and 

(b) the (perhaps mathematical) dependencies posited among these 

variables in the model correspond to the (perhaps quantifiable) causal 

relations among the components of the target mechanism.’ (Kaplan and 

Craver, 2011, p. 611). 

I take the anchoring requirement for successful dynamic mechanistic explanations to 

be stronger than this: that the dependencies between the variables must be 

mathematically specified (i.e. in the model’s ODEs). A dynamic mechanistic 

explanation is incomplete, to the extent that its causal relationships are not specified 

in its ODEs, or there are variables or parameters in these ODEs that are not mapped 

to the qualitative mechanistic account. 

The structure of pathway ODE models for dynamic mechanistic explanations is 

discussed in my chapter 2. For now, it is sufficient to make the following points: 

- there will be one ODE for each of the pathway reactants being modelled.  

- the left-hand side of the ODE (the dependent variable) is the rate of change of 

a reactant’s chemical concentration and the right-hand side variables are 

direct causes of the quantity on the left-hand side. 
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- the other terms on the right-hand side of the ODE are parameters that are 

constants. In chemically homogenous solutions, these are rate constants (or 

functions of rate constants and fixed reactant concentrations) whose values 

depend on properties of the reactants and the context in which the reactants 

are situated. 

 

Goldbeter’s model illustrates the required structure: 

  

Fig 1.7 The ODEs used in Goldbeter’s model of the circadian rhythm of Drosophila (Goldbeter, 1995, 

p. 320). There are five variables, corresponding to the five modelled reactants. As before, M = per mRNA 

in the cytoplasm, PN = PER in the nucleus, P0 = PER in the cytoplasm, (P1 , P2) = phosphorylated forms of 

PER and Pt = all forms of PER. All other terms are constants. 

 

In Goldbeter’s model, the independent variables are parts in the mechanism, and 

there is a causal relationship between these parts and the part referred to in the 

dependent variable. For example, in the first equation, the independent variables M 

and PN (i.e. per mRNA and PER in the nucleus) are direct causes of changes in the 

rate of consumption of per mRNA. This corresponds to Goldbeter’s putative 

mechanism where (i) increasing the concentration of PN decreases the production of 

per mRNA, and (ii) increasing the concentration of per mRNA increases the 

consumption of per mRNA (per mRNA degrading in the cytoplasm).  
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But have we now gone full circle and returned to D-N explanations? After all, both D-

N explanations and dynamic mechanistic explanations involve explaining a 

phenomenon by showing that it can be deduced from laws of nature and initial 

conditions. But there are two important differences. First, the qualitative part of a 

dynamic mechanistic explanation plays a key role in describing the causal structure 

that produces the phenomenon. Second, as Bechtel notes, whilst D-N explanations 

use general laws of nature, the equations in dynamic mechanistic explanations’ are 

‘descriptions of the operations of specific parts’ (Bechtel 2011, p. 535). As I have 

explained, I take these ‘descriptions’ to be statements of local causal laws. 

 

In closing, pathways can exhibit a variety of ‘exotic’ dynamic behaviours. A pathway 

dynamic behaviour is explained by specifying the mechanism that produces it. 

Bechtel and Abrahamsen correctly emphasise the central role that feedback loops 

play in pathway mechanisms. An adequate explanation goes beyond just stating the 

steps by which a pathway’s target chemical is produced, it also explains why a 

pathway is exhibiting one type of dynamic behaviour rather than another. This 

requires an account of how pathway dynamic behaviours arise from the multiple 

non-linear interactions between the pathway’s reactants (including feedback loops) 

and how small differences in concentrations or kinetic parameters can lead to 

substantially different behaviours. This, in turn, requires explanations to have two 

complementary parts, one qualitative and one quantitative. In such dynamic 

mechanistic explanations, the quantitative part includes statements of the local 

causal laws for the mechanism. These are combined with statements of initial 

conditions to deduce the target dynamic behaviour. In this context, I take ‘causal 

discovery’ to refer to the processes by which biochemists discover these parts, 

operations and organisation referenced by the corresponding dynamic mechanistic 

explanation. This then includes the discovery of these local causal laws. My thesis will 

be focusing on the putative modularity and emergent behaviour of pathways; I shall 

argue in later chapters that it is the invariance of a pathway’s local causal laws that is 

key to these subjects.  
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1.4    Barriers to Causal Discovery 

In vivo pathways are complex systems and we currently have only sparse data on 

their operations. In this section, I will review four key factors that contribute to the 

complexity of in vivo pathways:  

(i) The large number of reactants that are shared between pathways 

(ii) The impact of non-reactive interactions between a pathway and other 

cellular components. 

(iii) The presence of multiple feedback loops 

(iv) Pathway non-linearity 

I will then review the reasons for the sparsity of in vivo data. If biochemists are to 

succeed in explaining in vivo pathway dynamic behaviours, their methodologies will 

need to overcome the formidable challenges posed by pathway complexity and by the 

sparsity of data. 

 

Pathways often share many of their reactants with multiple other pathways. The 

chemical reactions occurring with a cell can be represented by a set of biological 

networks, with separate networks for metabolic interactions, transcriptional 

regulation interactions, protein-protein interactions and so forth. These networks 

illustrate the extent to which pathways share reactants and hence have 

interdependent dynamic behaviours. I will use the metabolic networks of E. coli and 

streptococcus pneumoniae to illustrate this interdependency. 

 

Metabolites are the chemical substances that are either intermediates or products of 

metabolism; they do not include enzymes. In the metabolic networks considered in 

my thesis, vertices are used to represent specific metabolites and edges connect pairs 

of vertices that are related as reactant and product. For example, Zhao et al.’s (2006) 

metabolic network of E. coli depicts 924 metabolites engaged in 1437 reactions. 

Enzymes are not explicitly represented but it is implicitly understood that there will 

generally be a unique enzyme associated with each edge. The following graph by 

Silva, M. et al. (2008) represents the metabolic network for the streptococcus 

pneumoniae cell.  
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Fig. 1.8  Metabolic network for streptococcus pneumoniae. (Silva, M. et al, 2008, p. 238) 

 
This diagram illustrates that the metabolic operations with a cell are not organised 

into nicely delimited pathways. In vivo pathways are not almost closed systems; with 

each pathway being undisturbed by other pathways, apart from receiving reactants at 

some beginning stage and releasing products at some end stage. Instead in vivo 

pathways are, what I shall term as, ‘pervasively open systems’ with the 

concentrations of the reactants for any particular reaction often being directly 

determined both by (i) the outputs of its adjacent reactions steps and (ii) the 

reactions of other pathways. For example, glyceralderhyde-3-phosphate is a reactant 

in reaction step 6 of the glycolytic pathway:  

glyceraldehyde-3-phosphate + Pi + NAD+   1,3-bisphosphoglycerate + NADH + H+ 

The concentration of glyceralderhyde-3-phosphate available for reaction step 6, 

depends both on (i) the outputs of reaction steps 4, 5 and 7 of the glycolytic pathway 

and  (ii) the reactions of other pathways in the cytoplasm which consume or produce 

glyceralderhyde-3-phosphate (e.g. glyceraldehyde-3-phosphate is a reactant in the 

gluconeogenesis pathway, the pentose phosphate pathway, the pathway for thiamine 

and so forth - from the KEGG Pathway Database; accessed 16/07/2016). The 

‘pervasive openness’ of in vivo pathways may greatly increase the number of 

interactions that need to be determined in the causal discovery of a pathway dynamic 

behaviour.  

  

A pathway’s dynamics are also often highly dependent on non-reactive interactions 

between the pathway and other cellular components. In practice, biochemistry has 

historically assumed that pathway reactions occur in chemically homogenous 

solutions. But this ignores the cellular architecture that compartmentalises a cell and 
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the ‘crowded’ cellular solution which contains high concentrations of large 

macromolecules. Minter provides the following illustration of a eukaryotic cytoplasm.   

 
 
Fig 1.9. Cartoon of eukaryotic cytoplasm. (Minter, 2001, p. 10578) 

 
 
Trevors et al. (2012, p. 3) illustrates the heterogeneous solution in which in vivo 

pathways are located by listing some of the features of the bacterial cytoplasm. These 

include: 

“ - Structured and organized gel, not a watery sac enclosed by a cytoplasmic 

membrane. 

   -  Contains salts, ions, sugars, amino acids, macromolecules, vitamins, 

coenzymes and about 2000 different proteins... all nucleic acids… tens of 

thousands of ribosomes. 

  -  Spatially varied composition with some compartmentation. 

  -  Electrostatics is a dominant force. 

  -  Diffusion is also dominant (e.g. rotational and translational). 

  -  Hydrophobic effects.” 

Such non-reactive interactions can have large scale effects on reaction rates 

(van Eunen et al., 2012) and these will need to be determined as part of the 

causal discovery of a pathway dynamic behaviour.  

 

Feedback further adds to the complexity of pathways. To see this, let us first consider 

the case of an isolated in vitro pathway, where there are no inter-pathway 

interactions. The presence of feedback means that the behaviours of a particular 

reaction step cannot be explained just in terms of the intrinsic properties of that 

reaction step, plus the concentrations of reactants resulting from earlier stages in the 
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pathway. Instead account also has to be taken of later stages in the pathway whose 

products may also affect the reaction step. In the case of in vivo pathways, feedback 

can result in an additional layer of complexity, as there are often feedback loops 

involving multiple pathways. For example, many pathways are thermodynamically 

powered by converting ATP to ADP. There are positive feedback loops between these 

pathways and the glycolytic pathway, whereby increasing the concentration of ADP 

increases the rate of at which the glycolytic pathway increases production of ATP, 

which then increases the rate of production of ADP (see my Fig 1.2.). In my chapter 3, 

I will review Bechtel and Richardson’s account of how the failure to take account of 

feedback, delayed the causal discovery of the glycolytic pathway. 

 
A fourth factor that contributes to complexity is nonlinearity. Many of the 

interactions both within a pathway and with other cellular components are nonlinear 

(including the feedback interactions). Nonlinearity means that the cumulative effects 

of these interactions cannot be simply calculated, but instead will usually require the 

construction of a simulation model. 

  

A further challenge to causal discovery is that very little in vivo reaction rate data is 

currently available. For example, Davidi et al. note that kcat rate constants3 are a 

fundamental measure of the dynamic properties of enzymes, these constants are 

referenced in many models of cellular metabolism, and yet data on these constants ‘is 

scarce and measured in vitro, thus may not faithfully represent the in vivo situation” 

(Davidi et al., 2016, p. 3401).  

 

One reason for the lack of relevant in vivo data is the lack of technology that can 

measure chemical concentrations within intact cells. For example, Phillip and 

Schreiber (2013, p. 1050) note that it is “for this reason, quantitative in vivo 

measures of proteins is still rare”. Current technologies that are being pioneered 

include cross-correlation spectroscopy and in-cell NMR. However, as Zhou et al. 

(2008, p. 12-13) highlight, there are concerns that such techniques significantly 

impact on the operations within the target cell, inducing artificial interactions. 

 

Another reason for the sparsity of relevant in vivo data, is that the same reactants are 

often involved in multiple reactions. For example, dynamic mechanistic explanations 

will require data on the rate constants of that pathway’s individual reaction steps. 

                                                           
3 kcat rate constants specify the maximal turnover rates of enzymes (Vmax = kcat * concentration of enzyme)  
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Determining the values of these rate constants, in turn requires gaining data on the 

separate contribution that each reaction step makes to changes in its reactants’ 

concentrations. But, as I have explained, a pathway’s reactant concentrations are 

often affected both by multiple reactions within that pathway and by multiple 

reactions of their biochemical networks.  

 

The complexity of in vivo pathways and the lack of data are formidable challenges to 

the causal discovery of pathway dynamic behaviours. Biochemists have responded by 

adopting the Strategy of Decomposition. This assumes that a pathway can be 

analysed in isolation of its biological context and decomposed into subsystems called 

modules, that can be separately studied and used to infer the pathway’s mechanisms 

and explain its behaviours. 

 

 

1.5    Causal Discovery via the Strategy of Decomposition 

In this section, I will provide an overview of the Strategy of Decomposition and 

highlight some of its key assumptions. 

 

The Strategy of Decomposition consists of multiple steps and the details of the steps 

will vary from case to case. The process steps described below have been elicited 

from: Bechtel and Richardson’s account of the causal discovery of the glycolytic 

pathway (Bechtel and Richardson, 2010, p. 153-172), Bechtel and Abrahamsen’s 

account of dynamic mechanistic explanations (Bechtel and Abrahamsen, 2005) and 

van Eunen et al.’s analysis of differences between in vivo and in vitro conditions (van 

Eunen et al. (2014)). I shall be providing further analysis of these process steps in my 

chapter 3. The steps include: 

(i) Identifying the in vivo pathway dynamic behaviour to be explained.  

(ii) Extracting the in vivo pathway from its biological context, creating a 

corresponding in vitro pathway. 

(iii) Proposing a functional decomposition of the in vitro pathway dynamic 

behaviour. This will consist in proposing the reactants and products of 

each of the pathway’s reaction steps.  

(iv) Creating a separate chemical solution for each putative reaction step. 

Starting from the functional specification, a test solution is created for 

each putative reaction step. These will contain the proposed reactants and 
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products. It will also include any other putative parts of the step that were 

not specified in the functional decomposition (e.g. the reaction step’s 

enzyme). The test solutions can also be formulated so as to try and 

replicate salient features of the corresponding in vivo reaction steps by, for 

example, adding crowding agents, using physiological acid/alkaline levels 

and so forth. 

(v) Analysing each of the isolated putative reaction steps. Experiments are 

carried out to discover the salient properties of each reaction step, 

including their operations and rate laws.  

(vi) Confirming that the putative reaction steps combine to form the in vitro 

pathway and produce the dynamic behaviour to be explained. This will 

include using the rate laws determined in step (v) to construct a 

simulation model of the pathway (an account of how this is done is 

provided in section 2.2.2). The simulation model’s output is then validated 

against observations of the target pathway dynamic behaviour. 

The causal discovery of a pathway will normally involve many iterations of these 

process steps, with evidence from later process steps leading to changes in the parts, 

operations, organisation and rate laws proposed in earlier process steps. Ideally, 

there would also be an additional step: 

 
(vii) coupling the simulation model to models of other pathways, so as to 

construct a single model of the entire biochemical network that the 

pathway belongs to. The aim would be to calculate the effects of the 

network on the pathway’s dynamics. This would then resolve the 

‘complexity problem’ of discovering the effects of pathways sharing their 

reactants with multiple other pathways. This corresponds to part of the 

‘Silicon Cell philosophy’ that is advocated by Snoep et al. (2006). However, 

currently the reaction rate data has not been collected to enable such a 

model. 
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Overall, the above process steps correspond to a physical decomposition followed by 

an ‘in silico’ reconstruction. This is illustrated below: 

 

 

Fig 1.10 The Strategy of Decomposition for the causal discovery of pathway dynamic behaviours. 

 
 
The process steps above illustrate a general strategy of decomposition, that is widely 

used in both biology and in other sciences. The general strategy has three broad 

stages: 

 

1. An extraction stage; in which the target system is separated from its context.  

2. A decomposition stage; decomposing the isolated system into a set of isolated 

parts that can then be separately analysed. 

3. A reconstruction stage; involving using a simulation model to derive the target 

behaviour from statements of the properties of its isolated parts, their 

arrangement in the system and a general law for combining the rate laws of 

the isolated parts. 
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The strategy needs to be applied differently, on a case-by-case basis, based on such 

factors as the accessibility of data, the degrees to which subsystems interact with each 

other, and so forth. Sometimes, the strategy will involve a ‘physical decomposition’ of 

S, such that subsystems are physically isolated from each other. Other times, the 

strategy may only need to involve a ‘conceptual decomposition’ in which the 

subsystems remain in S but are each separately analysed, largely ignoring the 

interactions between S’s subsystems. In the case of in vivo pathways, their 

complexity and the lack of data means that physical decompositions will be required. 

Henceforth, unless otherwise stated, I shall use the term ‘Strategy of Decomposition’ 

just to refer to the strategy employed in the causal discovery of pathway dynamic 

behaviours. 

 

When applying the Strategy of Decomposition, biochemists are, at least implicitly, 

making an assumption about the invariance of reaction step rate laws. The 

assumption is that the in vitro isolated reaction steps manifest the same rate laws as 

the corresponding in vivo reaction steps. This corresponds to assuming that 

pathways have a type of modularity that I shall term as ‘causal law modularity’ (see 

section 3.6). Consider a system S composed of subsystems C1…Cn . S is ‘causal law 

modular’ if C1…Cn manifest the same local causal laws that are manifested by objects 

of the same kind as C1…Cn that are situated in ‘isolation’. In the case of pathways, 

C1…Cn are reaction steps and the local causal laws are their rate laws.  

 

If a pathway is causal law modular, then knowledge gained of its in vitro rate laws 

can be ‘exported’ and used to provide dynamic mechanistic explanations of its in vivo 

behaviours. Given the complexity of pathways and the lack of data, it is epistemically 

convenient to believe that pathways are causal law modular. But reaction step rate 

laws are often very context-sensitive. And the in vivo cytoplasm provides a very 

different context compared to an in vitro solution containing just the constituents of 

a single reaction step. Epistemic convenience is no warrant of truth. Biochemists do 

attempt to replicate in vivo conditions in their in vitro experiments. But given the 

context-sensitivity of rate laws, evidence is required as to why the assumption of 

causal law modularity is warranted in any particular study. Often no such evidence is 

provided and the risk exists that the analyses lack adequate epistemic foundations. 

This is an example of a far more general problem that applies not only to 

biochemistry but across the natural and social sciences. Namely, how to justify the 

use of causal knowledge, in cases where there is a difference between the context in 
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which the explanandum phenomenon occurs and the context in which we can gain 

causal knowledge about its parts (e.g. Cartwright’s (2007)).  

 

 

1.6    The Road Ahead 

I will be focussing on two related challenges to the Strategy of Decomposition that are 

contained in Bechtel and Richardson’s Discovering Complexity and in related 

papers. The first challenge is that pathways lack the ‘modular’ structure assumed in 

the Strategy of Decomposition. The second challenge is that pathways are sometimes 

‘Pathway Emergent’. Both challenges center on the putative consequences of 

pathways being nonlinear and having feedback. 

 

My Chapter 2 is on nonlinearity and feedback. I begin by defining nonlinearity, and 

then explain that in practice, all pathways are nonlinear. Nonlinearity is a necessary 

but insufficient condition for such exotic behaviours as multiple steady states and 

stable limit cycles (both of which will be explained). I then provide an analysis of 

feedback. I define feedback and explain the mathematical criteria that systems 

biologists use to identify the feedback loops of a pathway. I argue that feedback loops 

are circular causal chains, that can be identified from the system of causal equations 

referenced in a dynamic mechanistic explanation. I also identify a necessary 

condition for a pathway to have a feedback loop. My chapter provides the conceptual 

groundwork that will be used in my chapter 3 and 4 to argue that Bechtel and 

Richardson’s analyses overstate the consequences to the Strategy of Decomposition 

of the effects of feedback and nonlinearity.    

 

My Chapter 3 is on modularity. Bechtel and Richardson take biochemists to be 

applying a concept of modularity called ‘near decomposability’ that was originally 

formulated by Simon. I shall analyse Simon’s concept of near decomposability and 

explain how Bechtel and Richardson significantly modify this concept, and apply it to 

pathways. Bechtel and Richardson argue that pathways are often not nearly 

decomposable because of the effects of feedback loops. Nevertheless, the assumption 

of near decomposability has been heuristically useful in producing ‘false models as a 

means to truer theories’. I shall argue that the concept of near decomposability does 

not apply to pathways, as it is inconsistent with the substantial sharing of parts that 

occurs between a pathway’s reaction steps. I further argue that there is a significant 

shortcoming in both Simon’s and in Bechtel and Richardson’s analyses: neither 
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recognise that there is a plurality of types of modularity. Starting from their analyses 

of near decomposability, I identify five distinct types of modularity that are 

important either to the analysis of pathways or to biology more generally. One of 

these types is ‘causal law modularity’. It is causal law modularity that plays a key 

heuristic role in the causal discovery of pathway dynamic behaviours. I show that 

feedback does not affect this type of modularity. 

  

My Chapter 4 is on Pathway Emergence. The concept of Pathway Emergence was 

originally proposed by Boogerd et al. (2005). It is based on their interpretation of 

C.D. Broad’s theory of emergence. Boogerd et al. claim that their concept is relevant 

to the discovery practices of biochemistry. The concept was subsequently developed 

in Discovering Complexity. A key requirement for Pathway Emergence is that a 

pathway’s dynamics cannot be deduced from a ‘Deductive Base’ that contains 

statements of the properties of the pathway’s isolated parts, the pathway’s 

organisation, and laws manifested in simpler systems than the whole pathway. 

Boogerd et al. appear to be proposing a type of emergence that is incompatible with 

the successful application of the Strategy of Decomposition. The main argument 

presented for the occurrence of Pathway Emergence takes the form of a simulation 

case study. Pathway Emergence is linked to pathway nonlinearity and the presence of 

feedback. I show that their case study does not illustrate Pathway Emergence, and 

that the claims for existence of this type of emergence are unjustified. I then suggest 

that perhaps the concept of Pathway Emergence was meant to be based on a far more 

restrictive notion of non-deducibility than is stated in either Boogerd et al. or in 

Bechtel and Richardson’s writings. 

 

My Chapter 5 draws together the conclusions of my thesis. These can be grouped into 

two sets. The first set are deflationary about the consequences of feedback and 

nonlinearity. I take it that Strategy of Decomposition has been successfully developed 

by biochemists to fully incorporate the effects of nonlinearity and feedback. I reject 

Bechtel and Richardson’s claims about the challenges posed to pathway modularity 

and to the deducibility of pathway dynamic behaviours. My second set of conclusions 

emphasise the need to focus on the context sensitivity of pathways’ ‘local causal laws’ 

(i.e. rate laws). The analysis of pathway modularity and emergence should be 

centered on the invariance of these causal laws. With respect to modularity, it is 

causal law modularity that is assumed within the Strategy of Decomposition. With 

respect to emergence, my analysis identifies a necessary condition for Pathway 
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Emergence: a pathway must manifest at least one causal law for one of its reactions, 

which is not manifested by its isolated parts. I finish, by noting that even though 

Bechtel and Richardson’s arguments against the Strategy of Decomposition fail, it 

does not follow that biochemists’ use of the Strategy of Decomposition is thereby 

warranted. There is a significant risk that the context sensitivity of pathways’ local 

causal laws means that the assumption of causal law modularity is often incorrect. 

This context-sensitivity also leaves open the possibility of Pathway Emergence. 
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Chapter 2 -  Two Types of Pathway Nonlinearity 
 

 

2.1   Introduction 

In Discovering Complexity, Bechtel and Richardson claim that nonlinearity 

contributes both to non-modularity and to the emergent behavior of biochemical 

pathways (henceforth: pathways). If they are correct, then nonlinearity results in 

significant challenges to the Strategy of Decomposition used by biochemists to 

discover pathway dynamic behaviours (recall section 1.5). In this chapter, I explain 

that Bechtel and Richardson’s analysis uses the term nonlinearity in two senses. 

Sometimes ‘nonlinearity’ is used to refer to feedback between chemical reactants, at 

other times ‘nonlinearity’ is used to refer to a system of ordinary differential 

equations (i.e. ‘ODEs’) that do not satisfy the ‘superposition principle’ (see below). 

Bechtel and Richardson do not provide definitions for either type of nonlinearity. 

This chapter provides the conceptual groundwork for how the two types of 

nonlinearity apply to pathways, which will then be referenced throughout my thesis. 

The chapter also introduces an important part of the methodology used throughout 

my thesis: expressing pathways as sequences of ‘elementary reactions’. The rate laws 

for elementary reactions are very simple and focusing on these equations enables a 

concise analyses of pathway nonlinearity, modularity and emergence. 

The first type of nonlinearity shall be referred to as ‘equation nonlinearity’. A 

pathway is equation nonlinear if its dynamics induce an ODE system that does not 

satisfy the superposition principle; in which case the system of equations cannot be 

solved by taking each of its variables to be the sum of independent contributions. 

Equation nonlinearity is a necessary condition for such exotic dynamic properties as 

limit cycles and multiple steady states. Bechtel and Abrahamsen’s arguments for the 

need for ‘dynamic mechanistic explanations’ are based on the pathways having both 

types of nonlinearity (recall section 1.3). Bechtel and Richardson are sometimes 

referring to equation nonlinearity when they claim that ‘nonlinearity’ contributes to 

pathways having emergent behaviors. In chapter 4, I will use this chapter’s analysis 

of equation nonlinearity to dispute Bechtel and Richardson’s claim. 

The second type of nonlinearity is chemical feedback (henceforth: feedback). 

Feedback occurs when the concentration of a reactant affects the rate of that 
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reactants own production. Positive feedback increases the rate of production and 

negative feedback decreases the rate of production. In my thesis, I shall be focussing 

on two key claims that Bechtel and Richardson make about the effects of feedback on 

pathways. Their first claim is that feedback significantly reduces the modularity of 

pathways. Their second claim is that feedback also contributes to pathways having 

emergent behaviours. In chapters 3 and 4, I will use this chapter’s analysis to dispute 

both of their claims about feedback. 

 

My analysis of the two types of pathway nonlinearity includes defining each type, 

analysing its prevalence and explaining how it occurs. I shall also explain how the two 

types of nonlinearity are related to each other and how they each affect pathway 

behaviors. Section 2.2 is on equation nonlinearity. I begin by explaining the 

superposition principle. I then show that a pathway will be equation nonlinear, 

unless it has a ‘possible but highly improbable’ structure. I explain that equation 

nonlinearity is a necessary but insufficient condition for a set of exotic dynamic 

properties, the most salient to biochemistry being multiple steady states and stable 

limit cycles. Section 2.3 is on feedback. I provide a definition of feedback between 

chemical reactants and I explain that systems biology has an accompanying 

mathematical criterion for identifying feedback in pathways. This criterion will be 

analysed, in order to gain further insights into the concept of feedback. I elicit what I 

take to be the criterion’s underlying rationale: that feedback requires circular causal 

chains that can be identified by their pathway ‘concentration ODEs’. My analysis also 

identifies a necessary condition for feedback between elementary reactions. Section 

2.4 considers the relationship between the two types of nonlinearity. I explain that it 

is possible for a pathway to have feedback and not be equation nonlinear, but that 

this would require a ‘possible but highly improbable’ structure. Section 2.5 reviews 

the current consensus view on the necessary conditions for a pathway to have either a 

stable limit cycle or multiple steady states. I explain that the conditions include not 

only equation nonlinearity and feedback but also that a pathway’s reaction rate 

curves have a ‘sigmoidal shape’. 

  

In the later chapters of my thesis, I will be arguing that Bechtel and Richardson 

overstate the implications of the two types of nonlinearity for the Strategy of 

Decomposition. But first it is necessary to be clear as to what these types of 

nonlinearity are, and to understand how they affect pathway dynamic behaviours. 
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2.2    The First Type of Nonlinearity:  Equation Nonlinearity 

2.2.1   The Superposition Principle 

A mathematical function f (y) is linear with respect to y if it satisfies the following 

requirements: 

- additivity: f (𝑦1 + 𝑦2) = f (𝑦1) + f (𝑦2) 

- homogeneity: f (𝛼𝑦1) = 𝛼 f (𝑦1) 

These requirements are combined in the ‘superposition principle’: 

        f (𝛼𝑦1 + 𝛽𝑦2) = α f (𝑦1) + β f (𝑦2) 

where α and β are constants and y is a number or vector. If f(y) does not satisfy the 

superposition principle then it is nonlinear4 . This definition of linearity also applies 

to operators. An operator L is linear with respect to x (t) if: 

  L(α 𝑥1(𝑡) + β 𝑥2(𝑡)) = α L 𝑥1(𝑡)+ β L 𝑥2(𝑡) 

where 𝑥1(𝑡) and 𝑥2(𝑡) are functions.  

 

An equation that does not satisfy the superposition principle is nonlinear.  

 

If a first order ODE is linear with respect to x(t), then it can be expressed in the 

standard form 5: 

𝑑𝑥

𝑑𝑡
+ 𝑝(𝑡)𝑥(𝑡) = 𝑞(𝑡) 

This equation would be nonlinear if it contained an x(t) term raised to a power other 

than one  (e.g. x(t)2) or if the p (t) term was also a function of x (t). It is simple to 

show that the standard form satisfies the supposition principle: 

 

Let S = [
𝑑

𝑑𝑡
+ 𝑝(𝑡)]  then the standard form can be expressed as S x(t) = q(t) 

   

𝐒 (𝛼𝑥1(𝑡) + 𝛽 𝑥2(𝑡))   =  
𝑑(𝛼𝑥1 + 𝛽 𝑥2)

𝑑𝑡
+ 𝑝(𝑡)(𝛼𝑥1(𝑡) + 𝛽 𝑥2(𝑡)) 

 

= 𝛼 (
𝑑𝑥1
𝑑𝑡

+ 𝑝(𝑡)𝑥1(𝑡)) + 𝛽 (
𝑑𝑥2

𝑑𝑡
+ 𝑝(𝑡)𝑥2(𝑡)) 

                                                           
4 For the sake of readability, I do not always state the variable or function that linearity (nonlinearity) is 

with respect to. When referring to f(y) I am considering linearity (nonlinearity) with respect to y, for L x(t) 

with respect to x(t) and so forth. 
5 Ordinary differential equation means that there is a single independent variable. In the metabolic pathway 

models considered in this PhD the independent variable is time (t). These models assume that other possible 

independent variables such as temperature and pressure remain constant.  
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= 𝛼 𝐒 𝑥1(𝑡) + 𝛽 𝑺𝑥2(𝑡)   

 

A system of equations is ‘linked’ if each of its equations contains at least one variable 

that is referenced in at least one of the system’s other equations. A system of linked 

ODEs is nonlinear if any of its ODEs is nonlinear. 

 

Throughout the remainder of this chapter, unless otherwise stated, the term 

‘equation nonlinearity’ will only be used to refer to either an ODE that does not 

satisfy the superposition principle or an entity (such as a pathway) whose behaviour 

induces a system of linked ODEs one or more of which do not satisfy the 

superposition principle. My thesis will ignore systems whose dynamics do not 

correspond to a system of ODEs. 
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Examples 
 
𝑑𝑥

𝑑𝑡
+ 3𝑥(𝑡) = 𝑞(𝑡) is a linear ODE. This is illustrated by: 

 
𝑑𝑥

𝑑𝑡
+ 3𝑥(𝑡) = 1   has a solution x(t) = 

1 

3
  and 

 
𝑑𝑥

𝑑𝑡
+ 3𝑥(𝑡) = 𝑒−3𝑡   has a solution x(t) = 𝑡𝑒−3𝑡 therefore 

 
𝑑𝑥

𝑑𝑡
+ 3𝑥(𝑡) = 1 +  𝑒−3𝑡  has a solution x(t) = 

1

3
+  𝑡𝑒−3𝑡 

 
The above can be expressed more compactly using an operator T. 
 

Let  T = [
𝑑

𝑑𝑡
+ 3]  

 
T x (t) = q (t)     
 

T (
1 

3
) + T (𝑡𝑒−3𝑡) = T (

1 

3
+ 𝑡𝑒−3𝑡) 

 
 
An example of a nonlinear ODE is: 
 

dx

dt
+ 𝑥2(t) = q(t) 

 
This does not satisfy the superposition principle: 
 

Let U = [
𝑑

𝑑𝑡
+ ( )2] 

 
Then    U x1(t) = q1(t)  and    U x2(t) = q2(t) 
 
Attempting  to apply the superposition principle gives: 

    

𝐔(𝑥1(𝑡) + 𝑥2(𝑡) ) =
𝑑(𝑥1 + 𝑥2)

𝑑𝑡
+ (𝑥1(𝑡) + 𝑥2(𝑡))

2
 

 
 

= (
𝑑𝑥1
𝑑𝑡

+ 𝑥1
2(𝑡)) + (

𝑑𝑥2

𝑑𝑡
+ 𝑥2

2(𝑡)) + 2𝑥1(𝑡)𝑥2(𝑡)  

 
 
= 𝐔 𝑥1(t) +  𝐔 𝑥2(t) +  2𝑥1(𝑡)𝑥2(𝑡)  
      

 
 Therefore  𝐔(𝑥1(𝑡) + 𝑥2(𝑡) ) ≠  U x1(t) + U x2(t)  because of the 2𝑥1(𝑡)𝑥2(𝑡) term.  
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2.2.2   Pathway Nonlinearity  

I shall present an argument showing that, in practice, all pathways are equation 

nonlinear. Before doing so, I first need to explain the distinction between 

‘elementary’ and ‘stepwise’ chemical reactions. 

 

Biological networks are composed of intersecting pathways, each pathway is 

composed of a sequence of stepwise reactions and each stepwise reaction is 

composed of a sequence of elementary reactions.  

 

 
 
Fig 2.1  The Hierarchical Structure of a Biochemical Network. 

 
Elementary reactions are the most basic type of chemical reaction; they cannot be 

decomposed into more basic chemical reactions. They are the building blocks for all 

other types of chemical reaction (Marin, Gregory, Yablonsky, 2011, p. 19). In 

biochemistry, there are two types of elementary reaction: unimolecular and 

bimolecular. In unimolecular reactions, single molecules rearrange into one or more 

product molecules. Bimolecular reactions involve two molecular entities combining 

and being transformed into product molecules. The ‘Law of Mass Action’ states that 

the rates of elementary reactions are proportional to the product of the 

concentrations of their reactants (Murray, 2002, p. 176)6, for example for the 

bimolecular reaction {B + C → D + E} the rate law is: 

 

                                                           
6 The accuracy of the Law of Mass Action for crowded intercellular solutions has been challenged. Bajzer 

et al. (2008) identify two modified Laws of Mass Action that have been proposed by system biologists. The 

first is based on ‘fractal kinetics’. In this the rate coefficient is not constant but instead is a function of time; 

the law for the reaction A →  B + C is then v= k(t)[A][B]. The second uses a power law approximation 

where v= k(t)[A]a[B]b where a and b are constants. Throughout my thesis I will assume that the unmodified 

Law of Mass Action applies. However, mutatis mutandis, my thesis’s arguments will also apply with either 

of these modified laws, as the arguments only rely on the rates of elementary reactions being a function of 

their reactants’ concentrations.  
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    v =   𝑘[𝐵][𝐶]         ( v = − 
𝑑 [𝐵]

𝑑𝑡
= − 

𝑑 [𝐶]

𝑑𝑡
= + 

𝑑 [𝐷]

𝑑𝑡
= + 

𝑑 [𝐸]

𝑑𝑡
 ) 

Getting accurate measurements of the rates of elementary reactions is often very 

problematic; for example their products often have transient existences before being 

consumed in other elementary reactions. The rate equations used in modelling 

pathway dynamics therefore usually only refer to stepwise reactions. Stepwise 

reactions consist of a sequence of several elementary reactions, and their rate laws 

correspond to the aggregation of their elementary reaction’s rate laws. The rate laws 

for stepwise reactions can be very complex, often referencing several reactants and 

including several types of parameter (e.g. dissociation constants, Michaelis Menten 

constants etc.). However stepwise reactions are composed of elementary reactions 

and true stepwise rate laws can be deduced, at least in principle, from their 

elementary rate laws. Many of the most commonly used stepwise rate laws have been 

deduced by aggregating the rate equations of their elementary reactions (see section 

2.2.3). 

 

Throughout my thesis, I will explain pathway dynamics by explaining the dynamics 

of sequences of elementary reactions. I have chosen to do this solely for expository 

reasons. Whilst the rate laws of stepwise reactions are complex (see for example 

appendix 1), the rate laws for biochemical elementary reactions are much simpler 

having only one parameter, a rate constant, which is multiplied by the concentrations 

of either one or two reactants. Focussing on elementary reactions enables concise 

analyses, that can pick out the philosophically salient points about pathway 

dynamics, without being distracted by the complex rate laws that results from the 

aggregation of multiple elementary rate laws.  

 

I will be focussing on metabolic pathways, however my analysis only makes use of 

general characteristics of biochemical pathways and should apply equally to other 

biological domains such as genetics. In considering pathway dynamics, I will use the 

same assumptions that are commonly used in systems biology: (i) that a pathway 

takes place within a spatially homogenous chemical solution (ii) those substrates7 

that are not produced in ‘earlier’ reactions of the pathway flow into the solution at 

fixed rates (iii) those products that are not involved in ‘later’ reactions diffuse from 

the solution at rates proportional to their concentrations. For the sake of readability, 

                                                           
7 In biochemistry, the term ‘substrate’ refers to a chemical species that is acted upon by an enzyme. 
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I will omit these inflows and diffusions when specifying a pathway, as they do not 

affect this section’s conclusions.  

 

 

In the systems biology literature, the equation nonlinearity of pathways is 

simply taken to be self-evident: 

“Even the briefest consideration of the dynamics which arise from 

biochemical reactions kinetics underpinning almost all cellular 

processes reveals the ubiquity of nonlinear phenomena. The 

fundamental law of mass action states that when two molecules A 

and B react upon collision with each other to form a product C  

A + B → C. 

the rate of the reaction is proportional to the number of collisions per 

unit time between the reactants and the probability that the collision 

occurs with sufficient energy to overcome the free energy of 

activation of the reaction. Clearly, the corresponding differential 

equation  𝑑
𝐶

𝑑𝑡
= 𝑘 𝐴𝐵 [… ] is nonlinear” (Cosentino and Bates, 2012, 

p. 67) 

 

I will now present an argument for pathways being equation nonlinear, that is based 

on the above quote. My argument is in five stages. 

 

 

Stage 1. Only Elementary Reactions Need be Considered When Evaluating the 

Equation Nonlinearity of Pathway Dynamic Behaviours.  

 As I explained above, elementary reactions are the basic chemical reactions that 

occur, and stepwise reactions are just composed of sequences of these reactions. An 

analysis of equation nonlinearity can therefore be carried out at the level of 

elementary reactions. 

 

Stage 2. Bimolecular Elementary Reactions are Equation Nonlinear 

The sequences of elementary reaction that biochemistry classifies as pathways 

comprise of many elementary reactions, and it is uncontroversial to state that a very 

high proportion of these are likely to be bimolecular. I will now demonstrate that the 

rate laws for bimolecular reactions are nonlinear.  
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In rate equations, [X] stands for the concentration of chemical species X at a 

particular time. When needed, a time index can be added to this notation, in which 

case [X]t stands for the concentration of X at time t and [X]0 is a constant equal to the 

concentration of X at the beginning of the reaction. For the elementary reaction A + B 

→ C: 

𝑑 [𝐶]

𝑑𝑡
= 𝑘1[𝐴][𝐵] 

where k1 is a rate constant. [A] and [B] are both functions of [C] and hence this ODE 

does not satisfy the superposition principle. The actual relationship between [A], [B] 

and [C] will depend on experimental or in vivo conditions. Let us consider the case 

where [C]0 is equal to zero and the reaction takes place in a system where there is no 

exchange of matter with the surroundings then: 

[𝐴]𝑡 = [𝐴]0−[𝐶]𝑡 

[𝐵]𝑡 = [𝐵]0−[𝐶]𝑡 

as for every molecule of C produced, one molecule of A and one molecule of B are 

consumed. 

Substituting into the rate law equation gives: 

 

𝑑 [𝐶]𝑡
𝑑𝑡

= 𝑘1{[𝐶]𝑡
2
− ( [𝐴]0 + [𝐵]0)[𝐶]𝑡 + [𝐴]0[𝐵]0} 

 

Given that [𝐴]0 and [𝐵]0 are constants: 

 

𝑑 [𝐶]𝑡
𝑑𝑡

= 𝑘1[𝐶]𝑡
2
−𝑤2[𝐶]𝑡 +𝑤3 

Where  𝑤2 = 𝑘1( [𝐴]0 + [𝐵]0) and 𝑤3 = 𝑘1( [𝐴]0[𝐵]0)     

 

This does not satisfy the supposition principle because of the [𝐶]𝑡
2
 term.  

 

By contrast, the rate laws for unimolecular reactions are modelled using linear ODEs. 

For example, the rate law for the reaction {A →  B + C} is: 

 

   
𝑑 [𝐴]

𝑑𝑡
= − 𝑘1[𝐴].  
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Stage 3. Pathways Induce a System of ‘Concentration ODEs’ 

Biochemistry takes there to be a law of nature for homogenous chemical solutions, 

which I will term as the ‘Kinetic Law of Composition’.8 According to this law, the rate 

of change of the concentration of a chemical species is equal to the sum of the rates of 

those reactions that create that chemical species minus the rates of those reactions 

that consume that chemical species (this is for closed systems; for open systems the 

net flows into the pathway also need to be added). Consider the following toy closed 

pathway from B to I: 

 

 Chemical Equation   Rate Law 

Step 1 B + C → D + E   v1 = 𝑘1[𝐵][𝐶]          

Step 2  E + F → G     v2 = 𝑘2[𝐸][𝐹]       

Step 3 G + H  → C + I   v3 = 𝑘3[𝐺][𝐻]       

 

where “kx” is the rate constant of reaction step x. C is consumed in step 1 and 

produced in step 3. According to the Kinetic Law of Composition: 

 

𝑑[𝐶]

𝑑𝑡
=  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑒𝑝 3 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑒𝑝 1  

        =               𝑣3       −       𝑣1                  =             𝑘3[𝐺][𝐻] − 𝑘1[𝐵][𝐶]            

The above equation is the ‘concentration ODE’ for C in this pathway. A pathway 

induces a system of linked ODEs that incorporates the rate laws of its reactions. 

There is a separate concentration ODE for each of the pathway’s chemical species. 

For example, in the case of the toy pathway, the corresponding linked system consists 

of eight concentrations ODEs: 

  

𝑑[𝐵]

𝑑𝑡
=  −𝑣1            ,   

𝑑[𝐶]

𝑑𝑡
=  𝑣3 − 𝑣1  ,  

𝑑[𝐷]

𝑑𝑡
= 𝑣1  , 

 

𝑑[𝐸]

𝑑𝑡
=  𝑣1 − 𝑣2   ,   

𝑑[𝐹]

𝑑𝑡
= −𝑣2  , 

𝑑[𝐺]

𝑑𝑡
=  𝑣2 − 𝑣3   

 

𝑑[𝐻]

𝑑𝑡
= −𝑣3            ,   

𝑑[𝐼]

𝑑𝑡
=  𝑣3  . 

                                                           
8 Sauro (2014, p. 50) refers to this law of composition simply as ‘ Mass Balance’.   
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A dynamic behaviour of a pathway can be deduced from the pathway’s concentration 

ODEs plus initial conditions. 

  

 
 
Fig 2.2 Diagram illustrating how concentration ODEs are used to deduce pathway dynamic 

behaviours for a closed system. 

 
 
Stage 4.  A System of ‘Concentration ODEs’ That References Bimolecular Rate Laws 

Will be Equation Nonlinear 

(i) The concentration ODEs for a pathway reference that pathway’s elementary 

rate laws. (from stage 3)   

(ii) It is sufficient for a concentration ODE to be equation nonlinear, that one of 

the rate laws it references is equation nonlinear. (this follows from the 

superposition principle)  

(iii) A concentration ODE that references a bimolecular rate law will be equation 

nonlinear. (from (ii) and stage 2). 

(iv) A system of linked ODEs is equation nonlinear if one or more of its ODEs is 

equation nonlinear. (this follows from the superposition principle) 

Hence 

(v) A system of ‘concentration ODEs’ that references bimolecular rate laws will 

be equation nonlinear. (from (iii) and (iv)). 

 

Stage 5. There Are ‘Possible but Highly Unlikely’ Pathway Structures That are 

Equation Linear 

It is theoretically possible for there to be pathways consisting solely of unimolecular 

reactions i.e. where single molecules unilaterally undergo a sequence of 

decompositions, e.g. 

A →  B + C 

B →  D + E 

D →  F 
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Given that the rate laws for unimolecular reactions are equation linear, it follows that 

the pathway’s system of linked concentrations ODEs will also be equation linear. But 

such a pathway structure is ‘possible but highly unlikely’. By this I mean that it 

appears to be a contingent fact that such structures do not feature in the pathways of 

biological entities. This can be evidenced by perusing such pathway databases as 

BioPath, KEGG and Reactome.9 It may also be the case that other ‘possible but highly 

unlikely’ pathway structures can be concocted that would also be equation linear. For 

example, it appears theoretically possible for the nonlinear terms within each 

concentration ODE to cancel out, leaving linear ODEs. 

 

This completes my argument for the conclusion that: 

 

Pathways are equation nonlinear (unless they have a possible but highly unlikely 

structure). 

 

 

2.2.3   The Nonlinearity of Stepwise Reactions 

Given that chemical reactions occur at the level described by elementary reaction 

equations, it is sufficient in explaining the nonlinear dynamics of pathways to stay at 

this level. However, it is still useful to consider stepwise rate laws as it is these, for the 

most part, that are used in actual pathway models. It also provides an opportunity to 

highlight the importance of ‘sigmoid’ shaped reaction curves for the occurrence of 

some exotic dynamics. As will be explained in my section 2.5, systems biologists 

sometimes use the term ‘nonlinear’ to refer to these reaction curves. 

  

Before doing this, I need to explain what a reversible reaction is. A ‘reversible 

chemical reaction’ consists of two reactions occurring simultaneously. For example, if 

the following two reactions are both occurring: 

    P + Q → R + S  (‘forward reaction’) 

   R + S → P + Q  (‘backward reaction’) 

then these are represented by a chemical reaction equation containing a double 

headed arrow ‘’ i.e. 

P + Q  R + S 

                                                           
9 www.molecular-networks.com/databases/biopath,  www.genome.jp/kegg/pathway.html, 

www.reactome.org 

http://www.molecular-networks.com/databases/biopath
http://www.genome.jp/kegg/pathway.html
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I will now provide an overview of the Michaelis-Menten and Hill rate laws. Many of 

the rate laws used in modelling metabolic pathways are based either on the Hill or 

Michaelis-Menten equations. For example, Teusink et al.’s (2000) highly cited model 

of glycolysis has twelve rate laws of which seven are classified as reversible Michaelis-

Menten and one is classified as an irreversible Hill equation (see my appendix 1). The 

nonlinearity of both types of rate law is clear given that the substrate concentration 

terms are raised to powers (other than one). Given the high frequency with which 

rate laws based on Michaelis-Menten and Hill rate laws are used, their nonlinearity 

provides a good demonstration of the nonlinearity of metabolic pathway models. 

 

The Michaelis-Menten equation is derived by aggregating two elementary reactions 

and making a simplifying assumption. Consider a reaction in which an enzyme (E) 

catalyses the transformation of a substrate (S) into a product (P). The stepwise 

reaction is: 

 S → P  (enzyme: E)     

which is composed of two reactions: 

E + S    ES 

ES      →  P + E    

where ES is an intermediate enzyme-substrate complex. If the assumption is made 

that the ES complex rapidly reaches a steady state, then it is a simple derivation from 

elementary rate equations to the Michaelis-Menten equation which has the form: 

 

𝑑 [𝑃]

𝑑𝑡
=

𝑎 [𝑆]

𝑏 + [𝑆]
 

where a and b are constants (Cornish-Bowden, 2011, p. 29).   

 

There are several more complex equations that are also classified as being ‘Michaelis-

Menten’. These take account of additional factors such as: multiple substrates, 

product inhibition and reversible reactions. The derivations for these equations share 

the key assumption that steady states are rapidly achieved. The forms of these 

equations resemble that of the basic equation described above.  

 

One source of further complexity can be cooperativity effects, where the binding of 

one substrate to an enzyme molecule increases the probability of other substrates 

binding to the same enzyme molecule. This can lead to reaction rates that are 
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ultrasensitive to changes in substrate concentration. The simplest irreversible 

stepwise reactions of this type are modelled using the Hill equation which has the 

form: 

 

𝑑 [𝑃]

𝑑𝑡
=

𝑎 [𝑆]𝑛

𝑏 + [𝑆]𝑛
 

 

where n is a measure of cooperativity and a and b are constants (Cornish-Bowden, 

2011, p. 286). The Hill equation captures the way that cooperation can change the 

shape of reaction rate curves from hyperbolic to sigmoid.  

 

 
 

Fig 2.3 Graph comparing Hill kinetics with Michaelis-Menton kinetics.  (Sauro, H. 2012, p. 157). 

 
The sigmoid shape is important for the occurrence of exotic behaviour. This is 

illustrated by an example from Smits et al. (2006) of a simple gene network in which 

the rates of both the production and deactivation of a protein P are proportional to its 

concentration [P]. The rate of production is described by a Hill type equation whilst 

the rate of deactivation is described by a linear equation. When the rates of the 

production and deactivation are equal, then d [P]/d t = 0 and the system is in a 

steady state. The graph below illustrates how a sigmoid shape can lead to three 

steady states (corresponding to the three points where the lines intersect).  
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Fig 2.4 The reaction rate curves for a simple gene network (adapted from Smits et al. (2006, p. 261).  

 
The importance of sigmoid rate curves to exotic dynamics will be further discussed in 

section 2.5. This completes my explanation of how pathways are equation nonlinear. 

I will now consider some of the consequences of equation nonlinearity for the 

behaviour of pathways and the explanation of their dynamics. 

 

 

2.2.4   Exotic Pathway Behaviours 

Pathway equation nonlinearity is a necessary but insufficient condition for a set of 

exotic dynamic properties. The two that appear to be most salient to biochemistry are:  

1) multiple steady states 

2) stable limit cycles - these correspond to the dynamics of self-sustained 

oscillations. 

I shall provide an overview of these two dynamic properties, explaining their 

importance to biochemistry and highlighting their dependence on equation 

nonlinearity. 

 

 Multiple Steady States. In vivo systems are open systems, exchanging both matter 

and energy with surrounding systems. Within their pathways there are net flows of 

materials and their reactions are therefore not in equilibrium. However, a pathway 

can be at a ‘steady state’, where the concentrations of reactants and products remain 

constant over time. Let us consider a pathway that induces a system of concentration 

ODEs. The phase space of a pathway will have a dimension for the concentration of 

each of the pathway’s chemicals. A trajectory is then a time ordered set of states, with 

each state specifying the concentrations of all of the pathway’s chemicals. Let S be a 
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column vector of the concentrations of these chemicals. At the steady states of the 

phase space: 

𝑑[𝑆1]

𝑑𝑡
=

𝑑[𝑆2]

𝑑𝑡
=

𝑑[𝑆3]

𝑑𝑡
=  … .… .  = 0 

 

If a biochemical system’s ODEs were all linear then they could be written in matrix 

form. For example: 

𝑑[𝑆1]/𝑑𝑡 = 𝑎[𝑆1] + 𝑏[𝑆2] 

𝑑[𝑆2]/𝑑𝑡 = 𝑐[𝑆1] + 𝑑[𝑆2] 

could be written as:  �̇� = [
𝑎 𝑏

𝑐 𝑑
]  𝑺   . At steady state �̇� = 0, and the only solutions for 

such systems are either (i) a single steady state point at the origin of the phase space 

(i.e. 𝑺 = 0 ) if the matrix is nonsingular or (ii) a continuum of steady state points if 

the matrix is singular (see for example Strang (2009, p. 133-144) on the nullspaces of 

linear systems).  

 

By contrast equation nonlinear systems can have multiple isolated steady states. The 

graph below illustrates an output from a model by Steuer and Junker (2008) of 

glycolysis, that identifies three steady states. This model captures key aspects of the 

dynamics of glycolysis using only two variables: one for the concentration of ATP, the 

other for the concentration of glyceraldehyde-3-phosphate (henceforth: TP).  For two 

dimensional models, the steady states can be analysed by plotting direction field 

vectors and the x and y-nullclines. Direction field vectors indicate the direction that a 

trajectory would proceed from that point. The x-nullcline is the set of points 

corresponding to 
𝑑𝑥

𝑑𝑡
= 0  and the y-nullcline is the set of points corresponding to 

𝑑𝑦

𝑑𝑡
=

0 . In this graph, the x-axis is [ATP] and the y-axis is [TP] and hence the nullclines 

correspond to 
𝑑[𝐴𝑇𝑃]

𝑑𝑡
= 0  and  

𝑑[𝑇𝑃]

𝑑𝑡
= 0  respectively. 
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Fig 2.5 The nullclines of a minimal model of glycolysis.  (Steuer and Junker, 2008) – adapted from 

diagrams on pages 173 and 174. 

 
The model uses three reaction rate equations, the first being a Hill type equation, the 

second a bimolecular equation and the third a Michaelis-Menten equation. Steady 

states occur at the intersections of the two nullclines. There are three steady states (as 

indicated by the thin arrows). The two outer steady states are asymptotically stable 

meaning that they attract nearby points whereas the middle steady state is unstable 

and repels nearby points. The phase space is divided into two basins of attraction, 

one for each stable steady state. This is an example of a bistable system. If a bistable 

system is at one steady state, it will only switch to the other steady state if there is a 

perturbation that moves the system into the other basin of attraction. Bistability is an 

important system property for cellular signalling networks as it enables switch-like 

behaviour and ‘memories’ of perturbations. 

 

Stable Limit Cycles. A stable limit cycle is an isolated closed trajectory that attracts 

all neighbouring trajectories. This corresponds to the dynamics of self-sustained 

oscillators, which are systems whose oscillations are internally determined, rather 

than being determined by an external signal. Their “essential feature” (Pikovsky et 

al., 2001, p. 29) is that after a small perturbation, they return to their original 

oscillation. This makes them relatively robust. Biology has many examples of systems 

whose dynamics correspond to stable limit cycles; including glycolysis and cell 

division. Only nonlinear systems can have limit cycles. 
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Linear systems can also have oscillations, for example simple harmonic oscillations. 

However, such periodic trajectories are neighboured by other closed trajectories. If a 

state is perturbed it will not be attracted back to its original cycle, instead it will 

remain perturbed and oscillate at its new amplitude. The oscillations of linear 

systems are therefore not robust and are unlikely to be viable in noisy ‘biological 

reality’.10 The diagram below illustrates the difference between limit cycles and linear 

closed trajectories.  

 

 

 
                       Limit cycle             Linear System 
 
Fig 2.6  Comparison of the trajectories neighbouring a limit cycle and the trajectories for a linear 

system.  (Pikovsky et al., 2001, p. 30 & p. 36) 

 
In the limit cycle diagram, the bold curve is a limit cycle and the other two curves are 

trajectories being attracted towards the limit cycle. In the linear system, there is a 

continuum of closed trajectories. 

 

Pathways induce systems of nonlinear ODEs that cannot usually be analytically 

solved (i.e. there is no set of well-known mathematical operations that will enable 

exact solutions to be readily calculated). Instead numerical methods or simulation 

need to be used to find approximate solutions and to identify structures within their 

phase space such as steady-states and limit cycles. This has implications for 

providing satisfactory explanations of pathway dynamics. Purely qualitative 

explanations, such as those proposed by Machamer, Darden and Craver (2000) 

                                                           
10 Cosentino and Bates (2012, p. 154). A similar argument applies to Lotka-Voterra oscillations which can 

occur in nonlinear systems: “By reason of their stability or regularity, most biological rhythms correspond 

to oscillations of the limit cycle type rather than Lokta-Volterra oscillations.” (Goldbeter, 1996, p. 6). 
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(recall section 1.3), will not be able to account for some of the dramatic differences 

that sometimes occur in pathway behaviours. For example, they cannot account for 

why some pathways oscillate and others do not. Similarly, they cannot account for 

how small perturbations can lead to switch-like changes in behaviour. As Bechtel and 

Abrahamsen (2005) argue ‘dynamic mechanistic explanations’ are needed in these 

cases (recall section 1.3). Dynamic mechanistic explanations have two parts:  

a) a qualitative explanation of the pathway’s grounding mechanism 

b) a mathematical explanation of the pathway’s dynamics. This includes 

a statement of that pathway’s system of nonlinear ODEs and a 

description of the solutions to that system (usually determined by 

simulation). The variables in the ODEs should refer to entities stated 

in the qualitative explanation. 

Equation nonlinearity therefore has important consequences for both 

pathway behavior and the explanation of pathway dynamics. Equation 

nonlinearity is a necessary but insufficient condition for a set of exotic 

behaviours. Equation nonlinearity also means that explanations of pathway 

behaviours will often need to be dynamic mechanistic explanations.  

 

In conclusion, equation nonlinearity concerns ODEs that do not satisfy the 

superposition principle. I have explained that bimolecular rate laws are equation 

nonlinear and that this leads to pathways also being equation nonlinear (unless they 

have a highly unlikely structure). I have also highlighted that some equation 

nonlinear systems include reactions with sigmoid shaped rate curves and that these 

affect exotic dynamics. My analysis has illustrated the methodology of focusing on 

elementary reactions. As we shall see, treating pathways as sequences of elementary 

reactions (rather than stepwise reactions) enables concise studies of such subjects as 

pathway: nonlinearity, modularity, in principle predictability and reducibility. My 

analysis also helps to illustrate a likely limitation for the conclusions of such studies: 

that the scope for identifying universal generalisations will be very limited. This is 

because it may often be the case that a ‘possible but highly unlikely’ pathway 

structure can be concocted to provide a counter-example to a putative universal 

claim. Finally, I have explained that equation nonlinearity has important 

consequences for both pathway behavior and the explanation of pathway dynamics. 
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2.3    The Second Type of Nonlinearity: Chemical Feedback 

Discovering Complexity helped to bring the importance of feedback to the attention 

of the philosophy of biology. Bechtel and Richardson do not provide a definition of 

‘feedback’ in pathways but based on how the term is used it refers to ‘chemical 

feedback’. Chemical feedback occurs when the ‘concentration of some species affects 

the rate of its own production.’ (Epstein and Pojman, 1998, p. 23).11 The rate of 

production of a species is equal to its ‘rate of creation’ minus its ‘rate of being 

consumed’. Positive chemical feedback increases the rate of production and negative 

chemical feedback decreases the rate of production. Bechtel and Richardson 

sometimes use the term ‘nonlinear’ to refer to chemical feedback. A pathway is 

‘nonlinear’ in this sense, if there is chemical feedback between its reactants, 

otherwise it is linear. A linear pathway is ‘sequentially organised’ and a nonlinear 

pathway is ‘nonsequentially organised’.12 There are other types of feedback that are 

not ‘chemical’ but may also be relevant to metabolic pathways, for example ‘thermal 

feedback’ in which the heat generated by a reaction increases reaction rates. 

However, these other types of feedback are not part of Bechtel and Richardson’s 

analysis and do not appear to raise any further substantial philosophical points; 

hence they will not be addressed in my PhD. This section is solely on chemical 

feedback. The relationship between chemical feedback and equation nonlinearity will 

be discussed in my section 2.4. 

 

In section 2.3.1, I provide an overview of chemical feedback (henceforth: feedback). I 

explain that systems biology specifies a mathematical criterion for identifying 

feedback (henceforth: the ‘Systems Biology Criterion for Feedback’). This is a 

mathematical counterpart to the definition that chemical feedback occurs when the 

‘concentration of some species affects the rate of its own production.’ I examine this 

criterion, as a means to further analyse the concept of feedback. I elicit what I take to 

be the rationale underlying this criterion: that feedback loops are circular causal 

chains that can be identified by their ‘causal’ concentration ODEs. In section 2.3.2, I 

argue that the criterion needs to be modified, as it misidentifies individual 

bimolecular reactions as having positive feedback. In section 2.3.3, I identify a 

                                                           
11 Epstein and Pojman use the term ‘feedback’ rather than ‘chemical feedback’. 
12 For example, Bechtel and Richardson 2010 –p xxxviii. NB Bechtel and Richardson are discussing 

mechanisms rather than pathways, but I take it that pathways are mechanisms e.g. the glycolytic pathway is 

the mechanism for ‘the production of pyruvate and ATP from glucose.’ 
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necessary condition for feedback between reactions. In section 2.3.4. I will provide an 

account of ‘allosteric feedback’, and explain that this is also a type of chemical 

feedback.  

 

 

2.3.1   Feedback Between Chemical Reactions 

Feedback occurs by reactions affecting the concentrations of reactants. Feedback can 

occur within single reactions, for example:  

Y + X → 2X 

Here there is positive feedback on X, as increasing [X] increases the rate of 

production of X (Epstein and Pojman, 1998, p. 96). Feedback can also occur between 

reaction steps within a pathway, with the rate of a ‘later’ step affecting the rate of an 

‘earlier’ step. An ‘earlier’ step has a lower step number than a ‘later’ step. The 

numerical ordering of a pathway’s steps is the temporal order of the reactions that 

produce the target molecule (e.g. G) starting from the source molecule (e.g. B). For 

example, consider a simple pathway of elementary reactions from B to G: 

Step 1 A + B → C  

Step 2  C + D → E 

Step 3 E + A → G 

There is negative feedback on C as increasing [C] increases the rate of production of 

E (step 2), which increases the rate of consumption of A (step 3) and leads to a 

reduction in the rate of production of C (step 1). This illustrates how the rate of a 

‘later’ step (step 2) affects the rate of an ‘earlier’ step (step 1). It is feedback between 

reactions, rather than within a reaction, that is relevant to Bechtel and Richardson’s 

analysis of the Strategy of Decomposition. 

 

The ‘Systems Biology Criterion for Feedback’ uses a Jacobian matrix to identify 

feedback.13 When applied to the modelling of pathway kinetics, a Jacobian matrix’s 

elements are partial derivatives of the rate of production of chemical species xi with 

                                                           
13 For a set of m equations in m variables:     𝑦1 = 𝑓1(𝑥1, ……… . 𝑥𝑚) 

⋮ 
𝑦𝑚 = 𝑓𝑚(𝑥1, ……… . 𝑥𝑚) 

A Jacobian matrix is defined as: 

 

[
 
 
 
𝜕𝑓1

𝜕𝑥1
 ⋯

𝜕𝑓1

𝜕𝑥𝑚
 

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
 ⋯

𝜕𝑓𝑚

𝜕𝑥𝑚
 ]
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respect to the concentration of chemical species xj . Henceforth the term ‘Jacobian 

matrix’ will be used to refer only to matrices of this type. The matrix element aij is 

defined as:  

𝑎𝑖𝑗 = 
𝜕𝑓𝑖

𝜕[𝑥𝑗]
     where   𝑓𝑖 =

𝑑[𝑥𝑖]

𝑑𝑡
 

fi is the concentration ODE for xi.  Consider the above pathway from B to G. ‘A’ is 

consumed in reaction steps 1 and 3. The Law of Mass Action states that the rate of 

each step is proportional to the product of the concentrations of their reactants. 

Hence ‘A’ is consumed in step 1 at a rate equal to 𝑘1[𝐴][𝐵] and is consumed in step 3 

at a rate equal to  𝑘3[𝐴][𝐸]. Given the Kinetic Law of Composition (recall section 2.2): 

 

 

𝑓1 =
𝑑[𝐴]

𝑑𝑡
= − 𝑘1[𝐴][𝐵] − 𝑘3[𝐴][𝐸]                         𝑎𝐴𝐸 =

𝜕𝑓1

𝜕[𝐸]
 =  −𝑘3[𝐴] 

 

Similarly: 

 

𝑓2 =
𝑑[𝐶]

𝑑𝑡
=      𝑘1[𝐴][𝐵] − 𝑘2[𝐶][𝐷]                        𝑎𝐶𝐴 =

𝜕𝑓2

𝜕[𝐴]
 =  𝑘1[B] 

 

𝑓3 =
𝑑[𝐸]

𝑑𝑡
=  𝑘2[𝐶][𝐷] − 𝑘3[𝐴] [𝐸]                           𝑎𝐸𝐶 =

𝜕𝑓3

𝜕[𝐶]
 =  𝑘2[D] 

 

The Jacobian matrix for a biochemical system with m substrates is a square matrix of 

dimension m:14 

 

[
 
 
 

𝜕𝑓1

𝜕[𝑥1]
 ⋯

𝜕𝑓1

𝜕[𝑥𝑚]
 

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕[𝑥1]
 ⋯

𝜕𝑓𝑚

𝜕[𝑥𝑚]
 ]
 
 
 

 

y

 

 

where y is the point in the phase space at which the matrix is evaluated. If aij is non-

zero then [xj] is taken to directly affect [xi] . If aij is positive (negative) then increasing 

the concentration of xj  increases (decreases) the rate of production of xi . Feedback 

                                                           
14 There are no matrix operations involved in identifying feedback loops. As such the elements aij could also 

be used if they belonged to an alternative data structure such as a table. However, the matrix form is useful 

in attempting to define necessary conditions for self-sustained oscillations and multistationarity. 
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occurs when there is a set of non-zero matrix elements that connect in a loop i.e. aij 

ajk akl ….. ani ≠ 0  (Tyson, 2005, p. 234). The sign of the product of a loop’s elements 

indicates whether the feedback is positive or negative. For example, if xi inhibits the 

production of  xj, and xj inhibits the production of xi, then aij < 0, aji < 0 and aij aji > 0, 

showing that there is positive feedback. In the above toy pathway example, there is a 

negative feedback loop as aAE aEC aCA =  −𝑘3[𝐴]𝑘1[B] 𝑘1[D] < 0 (it is less than zero 

given that rate constants and concentrations are always positive) 

 

I will now argue that the criterion’s underlying rationale is that: 

(i) feedback loops are circular causal chains 

(ii) the direct causal links in these chains are between reactants 

(iii) concentration ODEs are ‘causal equations’ that can be used to identify 

these circular causal chains.  

 

The chemical equation for a reaction specifies a direct causal relationship between 

the reactants and the products. For example { A + B → C } specifies that [A] and [B] 

are both direct causes of [C]. [A] is a direct cause of [C], if changing the 

concentration of A whilst holding fixed the concentrations of all reactants/products 

other than A and C, leads to a change in [C] (recall section 1.3). 

 

Feedback requires the existence of a feedback loop, which is a circular causal chain.  

The reaction steps in a feedback loop are those with the direct causal relationships 

that form this chain. Let us consider the following toy pathway: 

 Step 1 A + B → C 

 Step 2  C + D → E 

 Step 3  E   → A + F 

There is positive feedback on A, as increasing [A] increases the rate of production of 

C (step 1), which increases the rate of production of E (step 2) and leads to an 

increase in the rate of production of A (step 3). The direct causes in the loop are 

identified by the ‘Systems Biology Criterion for Feedback’: 

[A]   is a direct cause of   [C]  𝑎𝐶𝐴 =
𝜕𝑓2

𝜕[𝐴]
 =  𝑘1[B] 

[C]   is a direct cause of   [E]  𝑎𝐸𝐶 =
𝜕𝑓3

𝜕[𝐶]
 =  𝑘2[D] 

[E]   is a direct cause of   [A]   𝑎𝐴𝐸 =
𝜕𝑓1

𝜕[𝐸]
 =  𝑘3 
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There is positive feedback as aAE aEC aCA > 0. The positive feedback loop links A, E, 

and C. The reaction steps in this loop can be identified by the rate constants of the 

corresponding matrix elements. For example, the equation for aCA has the rate 

constant for step 1 i.e. A is a direct cause of C in the reaction {A + B → C}. There is 

feedback on a species xi , if the concentration of xi affects the rate of xi’s production. 

This is the case for all the reactants of the reaction steps in a feedback loop. 

 

The ‘System’s Biology Criterion for Feedback’ implicitly requires that a pathway’s 

concentration ODEs are all ‘causal equations’ i.e. where each equation’s right-hand 

side variables are direct causes of the quantity on the left-hand side. [xj] is a direct 

cause of  
𝑑[𝑥𝑖]

𝑑𝑡
,  if xj is a reactant in a reaction that has either xi as a product (xi is 

created) or has xi as a co-reactant (xi is consumed).  Consider the above toy pathway. 

Applying the Law of Mass Action and the ‘Kinetic Law of Composition’:  

 

𝑓
2
    =

𝑑[𝐶]

𝑑𝑡
=  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 1 −  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 2 

       =  𝑘1[𝐴][𝐵] − 𝑘2[𝐶][𝐷] 

This is a causal equation as [A], [ B], [C] and [D] are direct causes of  
𝑑[𝐶]

𝑑𝑡
 (as they are 

reactants in chemical reactions in which C is either produced or consumed).  When a 

Jacobian matrix’s fi terms are all causal ODEs then a non-zero element aij identifies 

that [xj] is a direct cause of  
𝑑[𝑥𝑖]

𝑑𝑡
 . Hence direct causes of 

𝑑[𝑥𝑖]

𝑑𝑡
  are ‘picked out’ by 

partially differentiating xi’s concentration ODE with respect to each of the 

concentrations of the pathway’s reactants.   

 

I will now demonstrate how using ‘non causal’ concentration ODEs can lead to the 

criterion failing to correctly identify feedback loops. Consider again the toy pathway:  

 Step 1 A + B → C 

 Step 2  C + D → E 

 Step 3 E → A + F 

Let this pathway take place in a closed system with the starting concentration of D = 

[D]0 and the starting concentrations of E and F both equal to zero. The concentration 

of E at time t is given by: 

 [E]t = [D]0 – [D]t – [F]t 
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where [D]0 – [D]t  is the amount of [E] that has been created by time t and [F]t is the 

amount of [E] that has been consumed by time t. As explained in my section 2.2.2, 

the time indexes of concentrations are not normally explicitly stated in reaction rate 

equations; the default being that all concentrations are at time t. Hence:  

 [E] = kD – [D]– [F] 

where kD is a constant equal to D0. 

 

The causal concentration ODEs for A, C and E are: 

 

𝑓1 =
𝑑[𝐴]

𝑑𝑡
= − 𝑘1[𝐴][𝐵] + 𝑘3[𝐸]                         𝑎𝐴𝐸 =

𝜕𝑓1

𝜕[𝐸]
 =  𝑘3 

 

𝑓2 =
𝑑[𝐶]

𝑑𝑡
=      𝑘1[𝐴][𝐵] − 𝑘2[𝐶][𝐷]                  𝑎𝐶𝐴 =

𝜕𝑓2

𝜕[𝐴]
 =  𝑘1[B] 

 

𝑓3 =
𝑑[𝐸]

𝑑𝑡
=  𝑘2[𝐶][𝐷] − 𝑘3[𝐸]                            𝑎𝐸𝐶 =

𝜕𝑓3

𝜕[𝐶]
 =  𝑘2[D] 

 

The pathway has a positive feedback loop linking A, E and C; with the Jacobian 

elements aAE > 0, aEC > 0,  aCA > 0. However if in the equation for  f1 , the [E] term is 

substituted by  kD – [D]– [F] then: 

 

𝑓1 =
𝑑[𝐴]

𝑑𝑡
= − 𝑘1[𝐴][𝐵] + 𝑘𝐷– [𝐷]– [𝐹]                          𝑎𝐴𝐸 =

𝜕𝑓1

𝜕[𝐸]
 =  0 

The equation for f1 is now a non-causal ODE as it references [F] which is not a direct 

cause of changes in [C] (F is created in step 3 but is not a reactant in any reaction that 

creates or consumes C). But now that the equation for f1 is non-causal, it appears that 

there is no feedback loop linking A, E and C as aAEaECaCA = 0. 

 

 

2.3.2   The False Identification of Positive Feedback  

In this section, I highlight a limitation of the Systems Biology Criterion for Feedback: 

it incorrectly identifies that there is positive feedback within bimolecular reactions. 

As such, the criterion needs to be modified, so that it only identifies feedback 

between reactions. In its current form, the criterion is a necessary but insufficient 

condition for feedback between reactions. The Systems Biology Criterion for 

Feedback has been used to formally prove that positive feedback is a necessary 
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condition for the existence of multiple steady states (Soulé, 2003). But given the 

above problem with bimolecular reactions, such proofs do not reveal whether 

feedback between reactions is necessary for multiple steady states. Consider a simple 

system with only two chemical species B and C: 

 

   B + C → D 

 

with 

𝑓1 =
𝑑[𝐵]

𝑑𝑡
= − 𝑘1[𝐵][𝐶] 

 

𝑓2 =
𝑑[𝐶]

𝑑𝑡
= − 𝑘1[𝐵][𝐶] 

 

 

This will give the following elements for a Jacobian matrix whose first column 

elements are partial derivatives with respect to B and whose second column elements 

are partial derivatives with respect to C.  

 

𝑎𝐵𝐶 =
𝜕𝑓1

𝜕[𝐶]
 =  −𝑘1[𝐵] 

 

𝑎𝐶𝐵 =
𝜕𝑓2

𝜕[𝐵]
 =  −𝑘1[𝐶] 

 

Therefore 𝑎𝐵𝐶𝑎𝐶𝐵 > 0 and a ‘positive feedback loop’ is identified connecting B and C.  

  

The only confirmation I have found for this problem is Soliman (2013) entitled ‘A 

stronger necessary condition for the multistationarity of chemical reaction networks’. 

This does not provide an analysis of the Jacobian criterion for feedback but it does 

state that: 

“the existence of a positive loop in the Jacobian of the ODE system, is 

almost always satisfied. Indeed, any binary reaction equipped with Mass-

Action kinetics [ i.e. any bimolecular reaction obeying the Law of Mass 

Action] will lead to the mutual inhibition of the two substrates, and thus 

create such a loop.” (Soliman, 2013, p. 2290). 
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Soliman claims that because of this, the ODE modelling community has ‘turned to 

other types of conditions’ for multiple steady states other than positive feedback. He 

cites Craciun et al (2006) and Craciun and Feinburg (2005) as examples though 

neither of these discuss the ubiquity of positive feedback. Furthermore, there have 

continued to be papers that discuss the necessity of positive feedback without noting 

that this necessity is unproven e.g. Novak and Tyson (2008). The Systems Biology 

Criterion for Feedback needs to be modified to exclude feedback between reactants of 

the same reaction.  For now, it appears to be an open question whether positive 

feedback between reactions is a necessary condition for pathways having multiple 

steady states. 

 

2.3.3   A Further Necessary Condition for Feedback  

Given that feedback between reactions involves a circular causal chain in which a 

‘later’ reaction affects the rate of an ‘earlier’ reaction, I take it to follow that a 

necessary condition for a pathway to have such feedback is that it contains one of the 

following two types of ‘later’ reaction/ ‘earlier’ elementary reaction pairs: 

  

Type 1 Feedback.  xi is a reactant in an ‘earlier’ step and a product in the ‘later’ step. 

For example: 

 

Earlier step   C + X →  Y   +   other products (optional) 

Later step      Y + W → C   +    other products (optional)          

 

Type 2 Feedback.  xi is a reactant in both an ‘earlier’ step and the ‘later’ step. For 

example: 

 

 Earlier step    X + C →  Y  +   other products (optional) 

 Later step       Y + C →  W   +   other products (optional)  

 

This is a necessary condition for feedback, as there is simply no other way in which a 

‘later’ step can affect the rate of an ‘earlier’ steps via (chemical) feedback. This 

condition provides a ‘visual’ means of identifying feedback loops from statements of 

the elementary reaction steps of a pathway. 
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2.3.4   Allosteric Feedback  

I will finish my section on feedback by considering a possible objection to my 

analysis: that it does not take account of ‘allosteric feedback’. Allosteric enzymes are 

enzymes that change their conformation as a result of the binding of ‘effector’ 

molecules. A chemical species F is an ‘effector’, with respect to enzyme E, if F can 

bind to E, thereby interconverting E between a more-active and a less-active state.15 

This involves the formation of an enzyme-effector complex (Nelson and Cox, 2013, p. 

226- 227). This is a type of chemical feedback in which a ‘later’ reaction step changes 

the concentration of an effector, which is a reactant in an ‘earlier’ reaction step. 

Allosteric feedback occurs when: 

(i) the concentration of chemical species F affects the rate of 

production of F, and 

(ii) at least one reaction within F’s feedback loop is catalysed by an 

enzyme E to which F is an effector. 

Effectors change the rate at which an enzyme catalyses a reaction by changing the 

conformational states of that enzyme (which is now part of an enzyme-effector 

complex). Positive effectors promote the transition from less active to more active 

conformation states. Negative effectors promote the transition from more active to 

less active conformation states. 

 

 
 
 
Fig 2.7 Cartoon representation of an allosteric enzyme binding to a positive effector and a substrate. 
The effector’s binding leads to the enzyme having a higher affinity to bind to the substrate; this is illustrated 

by the shape of E changing as a consequence the effector’s binding. 

                                                           
15 Binding is an attractive interaction between two molecules. The bindings that occur between an allosteric 

enzyme, its effectors and substrates are non-covalent. There are also other types of feedback where the 

enzyme becomes covalently bonded to its effectors/substrates. Mutatis mutandis, my analysis of allosteric 

feedback will also apply in these cases. 
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Allosteric feedback can be contrasted with ‘simple feedback’ in which the 

conformational state of enzymes remains unaltered (in any sense that is relevant to 

the dynamics of the pathway). I will now explain that, with respect to my analysis of 

feedback, there is no significant difference between simple and allosteric feedback. This 

is because both types of feedback: 

- have the same necessary condition for ‘later reaction’ / ‘earlier 

reaction’ pairs 

- can be modelled using a system of linked concentration ODEs 

- are identified by Systems Biology Criterion for Feedback 

I will use the enzyme phosphofructokinase (henceforth: PFK) as a case study to 

illustrate allosteric feedback. 

 

PFK is often taken to be a paradigm example of an allosteric enzyme and plays a key 

role in the oscillation of the glycoltic pathway (Gustavsson et al., 2012). It catalyses 

the third reaction step of the pathway: 

fructose-6-phosphate + ATP → fractose-1,6-bisphosphate + ADP + H+ 

PFK consists of four identical subunits (A, B, C, D): 

 
Fig 2.8  Structure of phosphofructokinase. 

http://proteopedia.org/wiki/index.php/Phosphofructokinase_(PFK) (accessed 20/07/2016). 

 

 
Each PFK subunit has two ‘binding sites’, one for fructose-6-phosphate (henceforth: 

F6B) and one for ATP. The stepwise reaction proceeds first by F6B and ATP 

http://proteopedia.org/wiki/index.php/Phosphofructokinase_(PFK)
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separately attaching to their binding sites on a subunit. A phosphoryl group (PO3
2- ) 

is then transferred from ATP to F6B.  

Each PFK subunit also has an effector site, where an effector molecule can bind. 

Demin and Goryanin (2009, p. 170 – 186) provide an analysis of PFK in E. Coli, 

identifying its positive effectors as ADP and guanosine diphosphate and its negative 

effectors as ATP and phosphoenolpyruvate. In the more active conformational states, 

PFK has a greater affinity to bind to F6B and this in turn increases the rate at which 

F6B is transformed into fructose-1,6-bisphosphate (henceforth: F16bP).  

 

A possible misconception is that allosteric feedback does not satisfy the necessary 

condition for chemical feedback that I identified, i.e. that a pathway has either: 

     Type 1 Feedback.  xi is a reactant in an ‘earlier’ step and a product in the ‘later’ step 

or 

Type 2 Feedback.  xi is a reactant in both an ‘earlier’ step and the ‘later’ step. 

Textbook representations of allosteric pathways can sometimes give the false 

impression that this condition is not met. For example, in the summary 

representation of the glycolytic pathway below, it appears that phosphoenolpyruvate 

is not part of a feedback loop involving PFK; as phosphoenolpyruvate only appears to 

be in two reaction steps, and in its earlier step it is a product. 
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Step 

 Enzyme 

1 glucose + ATP → glucose-6-phosphate + ADP + H+ hexokinase 

2 glucose-6-phosphate  fructose-6-phosphate phosphoglucose isomerase 

3 fructose-6-phosphate + ATP → fractose-1,6-

bisphosphate + ADP + H+ 

phosphofructokinase 

4 fructose-1,6-bisphosphate  dihydroxyacetone phosphate 

+ glyceraldehyde-3-phosphate 

aldolase 

5 dihydroxyacetone phosphate  glyceraldehyde-3-

phosphate 

triose phosphate isomerase 

 (steps 6 to 10 are carried out twice)  

6 glyceraldehyde-3-phosphate + Pi + NAD+   1,3-

bisphosphoglycerate + NADH + H+ 

glyceraldehyde 3-

phosphate dehydrogenase 

7 1,3-bisphosphoglycerate + ADP   3-phosphoglycerate + 

ATP 

phosphoglycerate kinase 

8 3-phosphoglycerate   phosphoglycerate phosphoglycerate mutase 

9 2-phosphoglycerate   phosphoenolpyruvate + H2O einolse 

10 phosphoenolpyruvate + ADP +  H+ → pyruvate +  ATP pyruvate kinase 

 

However, summary representations such as above often omit many of the elementary 

reactions that occur between enzymes and effectors.  

 

In the case of phosphoenolpyruvate, there are a set of elemenary reactions that occur 

within reaction step 3 which involve PFK. These include the reaction: 

  3a.        PFK + phosphoenolpyruvate   PFK (phosphoenolpyruvate) 

where the bracket indicates that phosphoenolpyruvate is part of a complex in which it 

is binded to PFK. The PFK (phosphoenolpyruvate) complex then reacts with F6B and 

ATP to produce fructose-1,6-bisphosphate (F16bP). Reaction step 9 changes the 

concentration of phosphoenolpyruvate, which is an (unstated) reactant in reaction 

step 3. Reaction steps 3 and 9 therefore form a Type 1 Feedback pair of steps  and 

hence the necessary condition for feedback is satisfied. Similar accounts can be 

provided for the other effectors of PFK.16 

                                                           
16 The GDP feedback loop involves reactions in a second pathway. The ATP feedback loops are slightly 

more complex as ATP is actually in two forms. In reaction step 3 where it is a reactant it is bonded to 
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A second possible misconception is that the generic structure of a pathway ODE 

model described in section 2.2 does not capture the effects of the changing 

conformations of allosteric enzymes. But this is incorrect, the dynamics of any 

chemical pathway that obeys the Law of Mass Action17 can, at least in principle, be 

modelled at the level of elementary reactions with seperate concentration ODE being 

specified for each chemical species. In the case of the glycolytic pathway, this means 

there would be a separate concentration ODE for each type of PFK complex. For 

example there will be a concentration ODE for PFK(phosphoenolpyruvate) which will 

reference the reactions in which it is created (e.g. reaction step 3a) and the reactions 

in which it is consumed (e.g. when it reacts with F6B or ATP), In this way the effects 

of all the reactions involving PFK in its different conformations are captured. The 

only difference, compared with the glycoltic models found in the literature, would be 

that there would be many more concentration ODEs. The fact that PFK forms 

different complexes, with different conformations and different reaction rates does 

not amount to there being some new type of feedback process, that somehow needs 

to be differently modelled. All that is required is the rate laws for each PFK complex 

be included within a model.  

 

However in practice, the PFK complexes have only transient existences and kinetic 

data is usually not available for their elementary reactions. Instead biochemists make 

do with just modelling the entire stepwise reaction. Sometimes the concentrations of 

PFK (and its complexes) are not explicitly modelled; and instead the reaction rate is 

simply taken as being a function of F6P, ATP and effectors (e.g. Hynne et al., 2001). 

By contrast, Tsusink et al. (2000) provide a more detailed model in which PFK is 

assumed to have just two conformational states: a less active T (tense) conformation 

or a more active R (relaxed) conformation. The total concentration of PFK is taken to 

be constant, and the variations in concentrations of PFK in its R and T conformations 

are calculated from the concentrations of their effectors and the substrates. Tsusink 

et al.’s rate law equations are provided in my appendix 1. 

 

                                                           
magnesium i.e. MgATP2-, whereas the free form ATP4- acts a negative effector on PFK (Demin and 

Goryanin, 2009, p. 174). 
17 This includes any modified Law of Mass Action (see this chapter’s footnote 3). The only requirement is 

that rate of the reaction is a function of the concentrations of that reaction’s reactants.  
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In summary, pathways with ‘allosteric feedback’ can be fully specified in the same 

way as pathways with ‘simple feedback’ i.e. by systems of concentration ODEs. It 

follows that allosteric feedback loops can be identified by the Systems Biology 

Criterion for Feedback. Indeed, Tyson’s (2002) paper specifying the criterion, 

includes PFK as a paradigm example of biochemical feedback.    

 

 

In this section, I have provided an overview of feedback. This included using the 

‘Systems Biology Criterion for Feedback’ to elicit that feedback loops are circular 

causal chains that can be identified by their causal concentration ODEs. I also 

identified that a necessary condition for a pathway to have feedback between 

reactions is that it contains one of two types of a ‘later’ reaction/ ‘earlier’ reaction 

pairs. I have suggested that Systems Biology Criterion for Feedback needs to be 

modified to exclude feedback between reactants of the same reaction. Finally, I have 

explained that my analysis applies equally to ‘simple’ and ‘allosteric’ feedback. 

 

  

2.4    What is the Relationship Between the Two Nonlinearities? 

In this section, I will argue that it is possible for a pathway to have a feedback loop 

and not to be equation nonlinear but that this requires a possible but highly unlikely 

pathway structure. The structure of my argument is that both premises: 

1. feedback between reactions requires there to be at least one bimolecular 

reaction in a pathway. 

2. the existence of a bimolecular reaction within a pathway is sufficient for the 

pathway to be equation nonlinear. 

are true, unless there is a ‘possible but highly unlikely’ pathway structure. I have 

already argued that premise two is true unless there is some ‘possible but unlikely 

pathway structure’ that leads to the nonlinear terms within a pathway’s 

concentration ODEs cancelling out (recall section 2.2.2). I will now address the 

correctness of the first premise. My analysis will proceed by separately considering 

‘Type 1 Feedback’ and ‘Type 2 Feedback’.  

  

Type 1 Feedback. This involves xi being in two elementary reaction steps; in its 

‘earlier’ step it is a reactant, in its ‘later’ step it is a product. For example: 

Earlier Step      C + D → E + F 
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Later Step     F + G → H + C     

In this example, there is positive feedback as increasing [C] then increases the rate of 

C’s production. Can Type 1 Feedback occur without involving a bimolecular reaction? 

Not if at least one of the reactions within the feedback loop has two or more products. 

The following example illustrates why this is so: 

 
Consider a single molecular instantiation of a pathway with the following steps 

Step 1      C  → D + E 

Step 2      ? → C     

 i.e. a single molecule of C being transformed into a single molecule of D and a single 

molecule of E and so forth, then: 

 
 
Given (i)  In an elementary chemical reaction, the number of atoms of each 

chemical element is conserved. (The Law of Conserved Atoms) 

  e.g. there must be the same number of carbon atoms in the reactants 

as there are in the products etc. 

 (ii) Elementary chemical reactions are either unimolecular or 

bimolecular. 

(iii)   At least one product of each reaction step is a reactant in the next          

reaction step   (from the definition of a pathway) 

 (iv)    The pathway steps include: 

  step 1 = {C → D  +E} 

    step 2’s product is C                   

where C, D and E are chemical species and therefore are each 

composed of at least one atom. 

 

Then 

 From (i), (iv) A molecule of C has more atoms than either a molecule of D or a 

molecule of E. 

From (i), (iv) Steps 2’s reactants have the same number of atoms as one molecule 

of C.    

 From  (iii), (iv)  Step 2 must have at least one of D and E as a reactant.         

 From (i)-(iv) Step 2 must have at least one reactant molecule in addition to either 

a molecule of D or E.   i.e. step 2 must be a bimolecular 

elementary reaction. 
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This argument will generalise to longer Type 1 feedback loops where at least one 

unimolecular reaction has at least two products.  

 
The only way a pathway can have a Type 1 Feedback ‘later’ reaction/’earlier’ reaction 

pair and not include a bimolecular structure is for it to consist solely of unimolecular 

reactions and for the reactions in its feedback loops to each have only one product 

(otherwise a bimolecular reaction will be required to provide the atoms needed for 

reproducing the reactant that starts the loop). This requires a ‘possible but highly 

unlikely’ pathway structure, for example: 

Step 1  A → B + C  

Step 2  C → D  

Step 3  D → E 

Step 4 E → C 

Step 5 C → F + G 

 

Although the loop from C (step 2) to C (step 4) appears to be logically redundant, it is 

perfectly feasible for such loops to occur in open biochemical systems, with C, D and 

E being isomers (i.e. same atomic composition but different arrangements of atoms). 

  

Type 2 Feedback. This involves xi being a reactant in both an ‘earlier’ step and the 

‘later’ step. For example: 

Step 1  A + B → C     

Step 2  C + D → E    

Step 3 E + A → G    

 

In this example, there is negative feedback as increasing [A] increases the rate of 

creation of C (step 1), which increases the rate of creation of E (step 2), increasing the 

rate of consumption of A (step 3); i.e. increasing [A] decreases the rate of production 

of A.  

 

For Type 2 Feedback to occur without Type 1 Feedback also occurring, the ‘later’ step 

must be a bimolecular reaction.  Consider the above example, chemical A needs to be 

a reactant in step 3 but it cannot be a product of the preceding step, otherwise steps 1 

and 2 are a Type 1 ‘later’ reaction /’earlier reaction’ pair (and my previous argument 

for equation nonlinearity applies). The ‘later’ step therefore needs to include two 

reactants (i) chemical A to close the feedback loop and (ii) a product from the 
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preceding step (e.g. E) so that the ‘later’ step is linked to its preceding pathway step. 

The ‘later’ step must therefore be a bimolecular reaction. 

  

Hence, a feedback loop will include bimolecular reactions, unless it has a highly 

unlikely structure (a chain of unimolecular reactions). And as I argued in section 

2.2.2, a pathway that includes bimolecular reactions is highly likely to be equation 

nonlinear.  

 

In conclusion, in theory there could be pathways with feedback that are also equation 

linear. For example: (i) a pathway consisting solely of unimolecular reactions, with 

each of the reactions within its feedback loop having only one product. (ii) a pathway 

where the nonlinear terms in each concentration ODE cancel out. But such pathway 

structures are ‘possible but highly unlikely’.  

 

 

2.5    Exotic Dynamics and the Two Nonlinearities 

I will finish my analysis by summarising the current consensus view on the 

relationship between the two types of pathway nonlinearity and the occurrence of the 

dynamic properties of biochemical oscillations and multiple steady states. 

 

Biochemical  Oscillations. Novak and Tyson (2008) summarise the consensus view 

amongst systems biologists on the requirements for biochemical oscillations. They 

claim to have surveyed all known cases of biochemical oscillators and have identified 

three general factors that appear to be empirically necessary: 

1. delayed negative feedback 

2. ‘sufficient nonlinearity’ 

3. balanced times scales of opposing processes. 

The opposing processes are (i) a set of reactions that produce the chemical species 

whose concentration is oscillating and (ii) another set of reactions that reduce the 

concentration of that chemical species. ‘Balanced time scales’ refers to the need for 

these processes to occur with the right timings and strengths so as to produce a limit 

cycle.  If a given biochemical system is capable of oscillating at all, then it will usually 

only occur for a limited range of parameter values. The role of negative feedback is to 

bring the system back to its starting position. The role of the delay in this feedback is 

to make a system continually “overshoot and undershoot the steady state” (Novak 

and Tyson, 2008, p. 3). 
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Novak and Tyson use the term nonlinearity in ‘sufficient nonlinearity’ to refer to a 

requirement for at least one of the reaction rate curves to have a sigmoid-type shape 

(Novak and Tyson, 2008, p. 7). This ‘nonlinearity’ can be the consequence of 

cooperativity or some other types of activity involving the formation of multiple 

bonds on a substrate. The term sufficient in ‘sufficient nonlinearity’ is used to 

indicate that the value of a nonlinearity factor (e.g. the n in the earlier formulation of 

the Hill equation) needs to be within a particular range for oscillations to be feasible. 

 

Some ODE systems with delayed negative feedback and sigmoidal-type reaction 

curves are capable of producing oscillations for some range of parameter values. 

Novak and Tyson (2008, p. 7) say that negative feedback ‘seems necessary’ for self-

sustained oscillations. This necessity has been partially proven using Jacobian 

matrices, for example Snoussi (1998), however these proofs all involve making some 

simplifying mathematical assumptions; for example, that the Jacobian matrix 

elements are quasi-monotonous over phase space.  A literature search failed to find 

any published attempts to formally prove the necessity of sigmoidal-type reaction 

curves. Defining the necessary conditions for self-sustained oscillations is an on-

going research program. Based on what has so far been empirically established, it 

remains a conjecture that negative feedback and sigmoidal-type reaction curves are 

necessary conditions for self-sustained oscillations. 

 

Multiple Steady States. It remains an open question whether positive feedback is a 

necessary condition for the existence of multiple steady states (recall section 2.3.3). 

Again, a literature search failed to find any published attempts to formally prove the 

necessity of sigmoidal-type reaction curves. The same search also failed to find any 

cases of multiple steady states in biochemistry that did not involve a sigmoidal-type 

rate curve. It remains a conjecture whether a sigmoidal-type rate curve is a necessary 

condition for multiple steady states. 

 

 

2.6    Conclusion 

In Discovering Complexity, Bechtel and Richardson use the term ‘nonlinearity’ in 

two senses. A pathway can be equation nonlinear but not include feedback, and vice 

versa. My chapter has introduced the method that will be used throughout my thesis 

of expressing pathways as sequences of elementary reactions. This has helped to 
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illustrate that the scope for identifying universal generalisations about the two types 

of pathway nonlinearity is very limited. This is because it seems often to be the case 

that a ‘possible but highly unlikely’ pathway structure can be concocted to provide a 

counter-example to a putative universal claim. 

  

A pathway is equation nonlinear if its dynamics induce an ODE system that does not 

satisfy the superposition principle. I have shown that a pathway will have this 

nonlinearity, unless it has a ‘possible but highly unlikely’ structure. Equation 

nonlinearity is a necessary but insufficient condition for multiple steady states and 

for stable limit cycles. Bistability is an important system property for explaining the 

functioning of cell signaling networks. Stable limit cycles describe the dynamics of 

self-sustained oscillators, which are commonplace in biochemistry.  

 

Feedback occurs when the concentration of a reactant affects the rate of that 

reactants own production. Feedback loops are circular causal chains that can be 

identified from their causal concentration ODEs. Feedback between reactions occurs 

by a ‘later’ reaction changing the concentrations of reactants in ‘earlier’ reactions. I 

identified that a necessary condition for a pathway to have feedback between its 

reactions is that it contains one of two types of a ‘later’ reaction/ ‘earlier’ reaction 

pairs. The ‘Systems Biology Criterion for Feedback’ has been used to prove that 

positive feedback is a necessary requirement for multiple steady states. However, the 

criterion incorrectly identifies there being positive feedback within bimolecular 

reactions, and it remains an open question whether feedback between reaction is 

necessary for multiple steady states. The necessity of negative feedback for stable 

limit cycles is currently only conjectured; a general proof is yet to be provided. 

 

Bechtel and Richardson claim that nonlinearity contributes both to the non-

modularity and to the emergent behavior of biochemical pathways. This chapter has 

clarified the meanings of the two types of nonlinearity that they are referring to; and 

it has explained how each affects pathway dynamic behaviours. We are now ready to 

evaluate Bechtel and Richardson’s claims. In the remainder of my thesis, I shall avoid 

the confusion caused by using the term ‘nonlinearity’ to refer to two distinct 

concepts; henceforth ‘nonlinearity’ will only refer to ‘equation nonlinearity’.  
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Chapter 3 -  Pathway Modularity and the Effects of Feedback: 

From Near Decomposability to Invariance of Causal Laws 
 

 

 

3.1    Introduction 

Biological systems are often assumed to be ‘modular’. Werner Callebaut believes that 

modularity is ubiquitous (Callebaut, 2005, p. 4).  Denis Noble talks of ‘nature using 

modular systems’ (Noble, 2006, p. 62). Modularity is routinely assumed in systems 

biology. Herbert Simon pioneered the study of modularity, and took there to be a 

single type of modularity, with different systems having different degrees of 

modularity. But now there are considerable differences in how the term is used 

within biology (Wagner and Altenberg (1996), Newman and Girven (2004), Porcar et 

al. (2013)). A shared idea is that a system can be decomposed into ‘subsystems’ that 

are ‘relatively autonomous’ from each other. Yet what is meant by ‘subsystems’ and 

by ‘relatively autonomous’ is open to several interpretations and this has led to the 

variety of proposals as to how ‘modularity’ should be defined. 

 

This chapter is on the modularity of biochemical pathways, and how it is assumed 

within the Strategy of Decomposition. The Strategy of Decomposition is a strategy 

that biochemists often use for the causal discovery of pathway dynamics (recall 

section 1.5).  The Strategy of Decomposition has three broad stages: 

1. An extraction stage; in which the target in vivo pathway is separated from its 

biological context, creating an in vitro pathway.  

2. A decomposition stage; involving decomposing the in vitro pathway into a set 

of isolated parts that can then be separately analysed. 

3. A reconstruction stage; involving using a simulation model to deduce the 

target behaviour from statements of the properties of its isolated parts, their 

arrangement, plus the Kinetic Law of Composition. 

 

There are two dominant accounts of modularity found within the philosophy of 

science literature. The first is based on Herbert Simon’s concept of ‘near 

decomposability’. Systems are modular, in this sense, when the intensity of intra-

subsystem interactions is significantly greater than the intensity of inter-subsystem 

interactions. This is the type of modularity that Bechtel and Richardson claim is 
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assumed within the Strategy of Decomposition. My chapter focuses on Bechtel and 

Richardson’s analysis. The second dominant account comes from Woodward, and is 

part of his conceptual analysis of causality. Woodward’s concept has limited 

relevance to the Strategy of Decomposition; and I will delay considering it until after 

completing my analysis of near decomposability. At that point, I will be better placed 

to explain how Woodward’s concept would need to be adjusted, so as to be of greater 

relevance to the Strategy of Decomposition. 

 

Simon states that the complex systems found in biology are very often nearly 

decomposable (henceforth: ND). He claims that given human beings’ limited 

cognitive abilities, it is only because complex systems are ND that we are able to 

understand them. In Discovering Complexity, Bechtel and Richardson advance 

Simon’s work by analysing how the assumption of near decomposability has been 

used for causal discovery within biology. Contrary to Simon, they contend that 

biological systems are often only ‘minimally decomposable’. In the case of pathways, 

they claim that it is feedback that leads to this minimal decomposability. 

Nevertheless, the assumption of near decomposability is still meant to have been 

heuristically useful for the causal discovery of pathways, by producing ‘false models 

as a means to truer theories’ (Bechtel and Richardson, 2010, xxx).  

 

In contrast both to Simon and to Bechtel and Richardson, I shall argue that there is a 

plurality of types of modularity and that near decomposability is the wrong type to 

apply to the causal discovery of pathways. Instead, a different type of modularity, 

based on the invariance of causal laws is assumed within the Strategy of 

Decomposition. I shall call this type of modularity ‘causal law modularity’. It is the 

assumption of causal law modularity that plays a key heuristic role in pathway 

discovery. I shall further argue that Bechtel and Richardson overstate the importance 

of feedback in reducing pathway modularity. 

This chapter proceeds as follows. In section 3.2, I analyse Simon’s concept of near 

decomposability. In section 3.3, I explain how Bechtel and Richardson significantly 

modify this concept and apply it to pathways. I summarise their account of the causal 

discovery process for pathways (which I have incorporated into my specification of 

the Strategy of Decomposition in section 1.5). In section 3.4, I argue that the concept 

of near decomposability does not apply to pathways, as it is inconsistent with the 

substantial overlaps that exist between a pathway’s reaction steps. I also show that, 
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contrary to what Bechtel and Richardson claim, significant levels of feedback would 

not necessarily reduce near decomposability. In section 3.5, I argue that there is a 

significant shortcoming in both Simon’s and in Bechtel and Richardson’s analyses: 

neither recognise that there is a plurality of types of modularity. Starting from their 

analyses of near decomposability, I identify five distinct types of modularity that 

could be important either to the analysis of pathways or to biology more generally. 

One of these types is causal law modularity. In section 3.6, I explain how the 

assumption of causal law modularity is made within the Strategy of Decomposition. I 

explain that if a pathway is causal law modular then in vivo reaction step rate laws 

can be discovered by examining in vitro reaction steps. In section 3.7, I complete my 

analysis of modularity by reviewing Woodward’s concept and explaining how it might 

map onto causal law modularity. I then conclude my chapter on a cautionary note; 

the context-sensitivity of pathway rate laws means that there is a significant risk that 

pathways will often not be causal law modular. In such cases, the Strategy of 

Decomposition will fail to discover a pathway’s in vivo rate laws.  

 

 

3.2    Simon’s Analysis of Hierarchy and Near Decomposability 

Simon (1962, 1973, 1998, 2002) claims that many natural systems can be considered 

as hierarchical and ND. Simon bases his claims on both empirical observations and 

on evolutionary arguments. The aims of this section are: (i) to provide an overview of 

Simon’s theory (ii) to highlight those parts of his theory that are most salient to 

evaluating pathway near decomposability (iii) to show that Simon’s concept of near 

decomposability entails two distinct types of autonomy regarding the behaviours of 

subsystems (in section 3.5, these will be used to help identify different types of 

modularity that are useful to biology). 

 

I will begin this section by describing the hierarchical structure of ND systems. The 

criteria for a system to be ND will then be specified. I will then explain the two types 

of autonomy, which shall be termed as: ‘dynamic autonomy’ and ‘structural 

autonomy’. Dynamic autonomy concerns the mutual independence of subsystems’ 

dynamic behaviours and structural autonomy concerns subsystems continuing to 

function when the structure of their containing system is changed. I will then provide 

a summary of Simon’s claim that it is only because complex systems are ND that we 

are able to understand them. Finally, I will explain why Simon’s evolutionary 
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arguments for the ubiquity of near decomposability in biology leave open the 

possibility that pathways are not ND. 

 

Simon uses the image of Chinese boxes to explain hierarchy: 

  

“In application to the architecture of complex systems, “hierarchy” simply 

means a set of Chinese boxes of a particular kind […] Opening any given 

box in a hierarchy discloses not just one new box within, but a whole small 

set of boxes; and opening any one of these component boxes discloses a 

new set in turn [….] a hierarchy is a partial ordering- specifically a tree.” 

(Simon, 1973, p. 5). 

 

The wholes at one level are the parts of the next level up. Simon claims that biological 

systems have this hierarchical structure. Cells are organised into tissues, tissues into 

organs and organs into systems; whilst a cell is composed of several subsystems 

including the nucleus, the cell membrane and the mitochondria (Simon, 1962, p. 

469).  

 

A parable about two watchmakers is used to support the claim that biological systems 

are often organised as a hierarchy of stable subsystems (Simon, 1962, p. 470). Hora 

and Tempus both make watches consisting of a thousand parts. For each 

watchmaker, there is a probability p that they will be interrupted whilst a part is 

being added to an incomplete assembly of the watch’s parts. Tempus has holistically 

designed his watches. This has the consequence that if he is interrupted whilst 

assembling a watch, the partly assembled watch will fall apart. This means that the 

probability of Tempus completing a watch is (1-p)1000. By contrast Hora has 

hierarchically designed his watches. Assembly starts by putting together stable 

subsystems of ten parts each. Ten of these subsystems are then put together to form a 

larger stable subsystem and finally ten of these subsystems are put together to 

complete a watch. If Hora is interrupted whilst assembling, he only loses a small 

amount of work and this will occur with a probability of (1-p)10. Simon shows that if p 

equals 0.01 then Hora will make about four thousand watches in the time it takes 

Tempus to complete one. This parable is meant to illustrate that: 
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1. If a process of assembly of many parts is subject to interruption, it will be 

more successful when there is a hierarchy of stable subsystems. 

2. Complex systems will evolve much more rapidly from simple systems if there 

are stable subsystems. 

3. Hierarchical systems are the ones that have time to evolve. 

 

The dynamic properties of hierarchically structured systems can be decomposed into 

subsystems in order to analyse their behaviours (Simon, 1962, p. 468). A distinction 

is made between ‘fully decomposable’18 and ‘nearly decomposable’ systems. A system 

is ‘fully decomposable’ if its subsystems can be considered as mutually independent. 

Simon’s only example is of a noble gas, which is fully decomposable because its inter-

atomic forces are negligible (Simon, 1962, p. 474). Simon does not provide a tight 

specification of the necessary and sufficient conditions for near decomposability, 

however the following criteria can be elicited. A hierarchical system is ND if: 

(i) the intensity of intra-subsystem interactions is significantly greater than 

the intensity of inter-subsystem interactions (for a given level). 

(ii) the intensity of interactions (both inter- and intra- subsystem) 

significantly increases with the lowering of levels. 

(iii)  satisfaction of (i) and (ii) results in same-level subsystems having a 

high degree of ‘dynamic’ and ‘structural’ autonomy from each other: 

(a) ‘dynamic autonomy’ entails that the dynamic behaviours of 

subsystems are approximately independent of each other. 

(b) ‘structural autonomy’ entails that each subsystem can continue to 

function when the structure of its containing system is changed.  

I shall refer to the above criteria as The Criteria for Near Decomposability and these 

will be further explained below. Simon does not distinguish between what I am 

terming as ‘dynamic’ and ‘structural’ autonomy and seamlessly switches between the 

two. Both are taken to be consequences of (i) and (ii). 

 

Simon does not formally state what is meant by ‘intensity of interaction’. However, 

his concept of near decomposability is based on interactions of greater intensity 

occurring at faster rates and with greater strength. He provides two examples from 

the natural sciences in which the intensities of interactions are identified. The first 

                                                           
18 The term ‘fully decomposable’ is used by Bechtel’s (2010 –pxx). Simon refers to such systems as being 

‘decomposable systems’.   
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example concerns the Mellon Institute building reaching thermal equilibrium. In this 

case the ‘interactions’ are the transferring of heat between office cubicles, and 

‘intensity of interaction’ refers to the rate of flow of heat. The second example 

concerns vibrations within a molecular system. In this case the ‘interactions’ are the 

bondings, and ‘intensity of interaction’ is the frequency of vibration; with greater 

frequencies of vibration corresponding to greater bond strengths (i.e. bond energies) 

(Simon, 1962, p. 475-76). I will take intensity to be a function of the number and 

strength of interactions, per unit time. 

 

Simon provides the following explanation for the variabilities of intensities of 

interactions found within a system: 

“Most interactions that occur in nature, between systems of all kinds, decrease in 

strength with distance. Hence any given ‘particle’ has most of its strong 

interactions with nearby particles.” (Simon, 1977, p. 9). 

The importance of physical barriers for biological systems is not discussed. Yet this 

will often be a far more salient factor in explaining sharp changes in intensities of 

interactions than distance. For example, membranes are a critical factor in explaining 

the weak interactions between the parts of adjacent cells, or between organelles such 

as mitochondria, nuclei and the Golgi apparatus.  Another example of an important 

physical barrier is epithelial tissue which covers the surfaces of organs. 

 

The bottom-level of an ND system is characterised relative to a particular analysis. It 

contains those parts that have been chosen as basic for that analysis for that system. 

In the Mellon Institute example, the bottom-level parts are office cubicles. In the 

molecular system example, the bottom-level parts are neutrons, protons and 

electrons. The following matrix illustrates how the intensity of pairwise interactions 

at the bottom level determines its subsystems and levels. 
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Fig 3.1 A matrix representing the intensity of interactions occurring in a nearly decomposable system 
(Simon, 2002, p. 589). 

 
In the above matrix a >>ε1>> ε2. The intensity of the interactions of a part with other 

parts can be read horizontally, so for example part 1 has an intensity of interaction of 

magnitude ‘a’ with parts 2 and 3, ‘ε1’ with parts 4, 5 and 6, and ‘ε2’ with parts 7 

through 12.   

 

The matrix represents an ND system with three levels:  

 

 Subsystems 

3rd level components 1-6 , 7-12 

2nd level components 1-3, 4-6, 7-9, 10-12 

Bottom level  the individual components 

 

2nd level subsystems are determined by choosing an intensity threshold, in this 

example ε1, and then selecting those parts with pairwise interactions greater than 

this. In the example matrix, parts 1, 2 and 3 belong to the same subsystem because 

the intensities of their pairwise interactions with each other are all greater than ε1.  

 

3rd level subsystems can be determined by choosing a second intensity threshold and 

then selecting those parts with mutual interactions greater than this. The second 

threshold must be less than the first threshold. In the example matrix the second 

threshold is ε2; the parts 1, 2, 3, 4, 5, 6 will then belong to the same 3rd subsystem, 

because the intensity of interactions between them are all greater than ε2. 

1 2 3 4 5 6 7 8 9 10 11 12

1 1 a a

2 a 1 a

3 a a 1

4 1 a a

5 a 1 a

6 a a 1

7 1 a a

8 a 1 a

9 a a 1

10 1 a a

11 a 1 a

12 a a 1

 1
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 1  1 1

 1 1

 1

 1  1 1

 1  1 1
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Subsystems are defined in terms of intensity of interactions, rather than by their 

functions. As such a subsystem may be involved in a plurality of functions. 

 

This form of matrix will represent a ND system if (a) all the large elements form a 

diagonal block sequence (b) the other elements have small values (possibly including 

some zeros). Such a matrix is called a ‘nearly decomposable matrix’.  If all the other 

elements are zero then the system is decomposable (Ando and Simon, 1961, p. 114). A 

dynamic system that can be described by a nearly decomposable matrix has the 

properties of a nearly decomposable system (Simon, 1962, p. 475). 

 

The example of a molecular complex is used to illustrate how the partitioning of 

intensities of interactions can reveal a system’s ND structure (Simon, 1962, p. 475). 

The strengths of molecular interactions are: intra-atomic forces >> covalent bonds>> 

hydrogen bonds >> van der Waal forces. Let us consider a system consisting of just 

12 atoms. The subsystems are then: 

 

 Entities Strongest 

External 

Interactions  

   Subsystems 

3rd level (2)   Pairs of 

molecules 

van der Waal 

forces 

cells 1-6 , 7-12 

2nd  level (4)   Molecules  Hydrogen bonds  cells 1-3, 4-6, 7-9, 10-12 

Bottom level   (12) Atoms Covalent bonds individual cells 

 

 

It might be objected that Simon’s method for determining subsystems fails to take 

account of the context sensitivity of interactions. For instance, the interactions 

between two atoms may well be different if they are in an isolated system rather than 

being parts of a molecular complex. But this objection is wrong, as an ND matrix 

references only the interactions of entities fully situated within the system being 

analysed. 

 

I will use the Mellon Institute example (Simon and Ando (1961)) to illustrate the use 

of the ND matrix and to explain dynamic autonomy.  The example concerns heat 

flows within the building. The building is divided into rooms and each room is 

divided into cubicles. At a start time, all cubicles are set to different temperatures. 
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The dynamics of the building reaching temperature equilibrium are modelled using 

an ND matrix whose elements are the coefficients of heat transfer between cubicles. 

For example, the first row will contain the coefficients between the first cubicle and 

each of the other cubicles in the building. The diagonal block elements of the matrix 

will correspond to the rooms. Let Fi I (t) equal the temperature of the ith cubicle of the 

Ith room at time t, let F(t) be a row vector whose parts are Fi I (t) and let R be the ND 

matrix. Then:  

F(t+1) = F(t)R                           

 

For such dynamical systems (Simon and Ando,1961, p. 116-118): 

1. In the short run the values of each Fi I (t) are dominated by the coefficients of 

their Ith subset. In this example, this corresponds to changes in the 

temperatures of cubicles being dominated by interactions with other cubicles 

in the same room.  

2. In the long run the Fi I (t) within each ‘I’ will be approximately equal i.e. Fj I (t) 

≈ Fk I (t) for any pair <j, k> . However, there can be significant differences 

between aggregate values of the Fi I (t) of each ‘I’ i.e. it can be the case that Fi J 

(t) >> Fi K (t) if J ≠ K. The changes that occur to these aggregates can be 

successfully modelled using aggregations of each I subset. 

In the example, this corresponds to each cubicle now being almost at 

equilibrium with the other cubicles in its room (ie these are local approximate 

equilibria) but there still being significant differences in the temperatures of 

different rooms. The changes in each room’s average temperature can now be 

successfully modelled without reference to the temperatures of individual 

cubicles, which will remain in approximate equilibrium. 

3. In the end the values for all Fi I (t) will be approximately equal. In this example 

this corresponds to the temperature being almost equal throughout the whole 

building. 

The Mellon Institute building is “the archetype of an ND system [….] Its special 

characteristic is that equilibrating interactions within boxes at any level take place 

much more rapidly than the interactions between boxes at the same-level” (Simon, 

2002, p. 589).19 

                                                           
19 Although the Mellon Institute analysis is based on representing behaviours by linear ordinary differential 

equations, Simon claims that ‘the qualitative results can be extended to more general cases’ (Simon, 2012, 

p.589). However, his claim needs to further qualified, for example to allow that there may be non-linear 

systems whose intensity of interactions satisfies the form of an ND matrix but do not have the consequent 

autonomous behaviours because of sensitive dependence to initial conditions. 
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Simon and Ando’s mathematical analysis helps to unpack Simon’s well known ‘two 

propositions’:  

(a) in a nearly decomposable system, the short-run behaviour of each of the 

component subsystems is approximately independent of the short-run 

behaviour of the other components; (b) in the long run, the behaviour of 

any one of the components depends in only an aggregate way on the 

behaviour of the other components.” (Simon, 1962, p. 474) 

In the Mellon Institute example ‘behaviour’ refers to the ‘rates of change in 

temperature’ and the component subsystems are the rooms. ‘Short- run’ corresponds 

to the initial period when each room is in disequilibrium. At this point interactions 

between cubicles in different rooms have only a small effect. ‘Long-run’ corresponds 

to the period when approximate equilibrium has been established within each room. 

Only the aggregate of each room’s internal interactions now needs to be taken into 

account when modelling rooms moving to temperature equilibrium.  

 

Simon’s two propositions capture what I am terming as the ‘dynamic autonomy’ 

within ND systems. However, his wording is slightly unclear as to whether the 

‘components’ being referred to are meant to be on the same-level and what their 

relationship is meant to be to ‘component subsystems’. I will take dynamic autonomy 

to refer to: 

a) the short-run dynamic behaviours of same-level subsystems being 

approximately independent of each other,  

b) the long-run dynamic behaviours of each subsystem being 

approximately independent of the details of other same-level 

subsystems’ internal behaviours. 

It is on the basis of dynamic autonomy that Simon classifies molecular systems as 

ND: 

“Molecular systems are nearly decomposable, the short-run dynamics relating 

to the internal structures of the subsystems; the long-run dynamics to the 

interactions of these subsystems” (Simon, 1962, p. 476). 

 

The long-run independence from the details of other subsystems, follows from the 

internal interactions being of significantly greater intensity than their external 

interactions. The greater intensities of internal interactions means that “motions will 

be so rapid that the corresponding subsystems will appear to always be at 
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equilibrium” (Simon, 1971, p. 10).  Only aggregate properties of each subsystem’s 

internal interactions will be relevant to the behaviours of other same-level 

subsystems. 

 

Events at different levels of a ND system occur with different intensities of 

interaction, with higher level interactions having significantly lower intensities of 

interactions. This can have important implications both for the behaviour of a 

system and for our understanding of that system. When considering the dynamic 

behaviours at a given level, the slow interactions at the next level up might not be 

important and can then be ignored (in the short-run). Similarly, the details of the 

interactions at the next level down might not be important and can then be 

aggregated. Explanations for the behaviour at a given level will then only need to 

refer to two levels, the given level and aggregations of interactions from the next 

lower level. For example, when explaining the seasonal temperature changes for a 

region, the hourly changes in the temperatures of sub-regions can be aggregated 

over, whilst the global temperature changes over geological eras can be ignored 

(Simon, 1998, p. 15). 

 

Summary accounts of near decomposability sometimes fail to adequately refer to 

dynamic autonomy. For example, in the glossary of his book ‘Re-engineering 

Philosophy for Limited Beings’, Wimsatt defines near decomposability as: “The 

ability to break structures into parts and then reassemble them to solve or engineer 

problems”20 (Wimsatt, 2007, p. 358). This fits with ND’s being ‘structurally 

autonomous’ (see below) but ignores dynamic autonomy. I will be arguing in my 

section 3.4 that Bechtel and Richardson also fail to adequately take account of the 

dynamic autonomy required for systems to be ND. Yet dynamic autonomy is a 

consequence of the structure of ND systems and is extensively analysed by Simon. 

The following quote illustrates both the importance of dynamic autonomy to Simon’s 

concept of near decomposability and also its relevance to the practice of science: 

“ND systems have very special dynamic behaviour. When disturbed from 

equilibrium, the subsets at the lowest level of the system return to equilibrium 

while the sets at the next level above are still changing dynamically (relatively 

slowly) and the same is true (and even more decisively) for still higher levels, 

                                                           
20 However it should also be noted that Wimsatt’s book also contains an extensive treatment of near 

decomposability analysed in terms of intensities of interactions (see for example Wimsatt, 2007, p. 181-

185) 
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which are essentially stationary (but not at equilibrium) on this time scale. In 

fact-and this property is used continually by the sciences- we can study the 

equilibrium at any given level without much concern for the slow dynamics at 

the levels above, and we can study the dynamics at any level without much 

concern for the rapid return to equilibrium at the levels below” (Simon, 2002, 

p. 590-591).  

 

Simon focuses on subsystems relaxing towards local equilibria (or in the case of open 

biological systems: local steady states) following a perturbation to their state. 

However the concept of dynamic autonomy is more general than relaxation 

dynamics, concerning the different time scales that apply between:  

1. the internal and external interactions of subsystems 

2. the behaviours of subsystems at different levels of any ND system.   

 

ND subsystems are also ‘structurally autonomous’. This aspect of Simon’s theory is 

not directly relevant to Bechtel and Richardson’s analysis of pathway near 

decomposability. However structural autonomy forms the basis for two of the distinct 

concepts of modularity that I shall be discussing in my section 3.5. 

 

Structural autonomy concerns each subsystem being able to continue to function 

when the causal structure of its containing system is changed. Simon does not 

provide a definition of this type of autonomy but two types of structural change are 

considered: 

a. changes to the number and arrangement of the containing system’s 

subsystems21, 

b. changes to the internal interactions within a subsystem. 

I will refer to the accompanying autonomies as ‘external’ and ‘internal’ structural 

autonomy.  

 

Internal structural autonomy is discussed in terms of ‘functional equivalence’. A 

subsystem is ‘functionally equivalent’ to another if it maps the same inputs to the 

same outputs. “Functional equivalence permits mutation and natural selection to go 

on in particular subsystems without requiring synchronous changes in all the other 

systems that make up the total organism.” (Simon, 1977, p. 17). For example, as long 

                                                           
21 This would be consistent with Wimsatt’s (2007, p. 358) definition of near decomposability.  
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as functional equivalence is maintained, the metabolic efficiency of a subsystem 

could improve without disrupting other same-level subsystems (Simon, 1977, p.17). 

Another example given is the circulatory system being loosely coupled to the 

respiratory and digestive systems (Simon, 1977, p. 17). The circulatory system’s 

inputs include: oxygen from the respiratory subsystem, nutrients from the digestive 

subsystem and carbon dioxide from muscle subsystems. Its outputs include nutrients 

to muscle subsystems and so forth. How the circulatory system achieves its tasks is 

irrelevant to these other subsystems, all that matters are that they are achieved. 

Evolutionary changes may occur in the circulatory system without necessarily 

changing the respiratory and digestive systems.   

 

Internal structural autonomy is taken to follow from the ‘loose horizontal coupling’ 

between same-level subsystems. This loose coupling is due to the same factors that 

explain dynamic autonomy: (i) the intensity of subsystems’ internal interactions 

being significantly greater than the intensity of their external interactions, and hence 

(ii) only the aggregate properties of each subsystem being relevant to other same-

level subsystems’ behaviours: 

“The loose horizontal coupling permits each subassembly to operate 

dynamically in independence of the detail of the others; only the inputs it 

requires and the outputs it produces are relevant for the larger aspects of 

system behaviour. In programming terms, it is permissible to improve the 

system by modifying any one of the subroutines, provided that the 

subroutine’s inputs and outputs are not altered.” (Simon, 1977, p. 17). 

It is in this way Simon links what I am term ‘dynamic autonomy’ to ‘internal 

structural autonomy’.  

 

Simon seems to be claiming that:  if changes occur within a subsystem which do 

not change its inputs and outputs then other same-level subsystems will not be 

affected. This can appear to be an empty claim. Consider any group of causally 

connected entities within a system. Any interaction it has on any other part of its 

containing system is an input or an output. It seems vacuous to say that: ‘only 

the inputs it requires and the outputs it produces are relevant for the larger 

aspects of system behaviour” (Simon, 1977, p. 16). But internal structural 

autonomy is not an empty concept. The quote in this paragraph gains meaning if 

it is interpreted as emphasising the relatively large amount of activity that occurs 

within a subsystem that is irrelevant to other subsystems.  
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External structural autonomy is implicit in the Hora and Tempus parable. When this 

type of autonomy occurs, the parts of a system can be rearranged to form new 

systems. This is the case, for example, with electrical circuits, where parts such as 

resistors, capacitors, and inductors can be taken from one circuit and used to 

construct a new circuit.  This is the least developed part of Simon’s account of near 

decomposability. It is not clear why this type of autonomy follows from the relatively 

strong intensities of subsystems’ internal interactions. There is no obvious link 

between external structural autonomy and the other two types of autonomy. Instead 

external structural autonomy appears to belong to an unrelated concept of 

modularity. Simon also fails to explain why biological systems would be expected to 

have external structural autonomy. For example, why would biological subsystems 

continue to function in different contexts? Further details are also required as what 

the constraints would be on the combining such subsystems. This type of autonomy 

could be very important to biology, for example, the discipline of synthetic biology 

assumes this type of autonomy (as will be discussed in my section 3.5). However, 

developing a fuller account of external structural autonomy is outside the scope of 

this chapter. The disconnection between external structural autonomy and the other 

two types of autonomy points to the need for a plurality of types of modularity. 

 

Two evolutionary arguments are provided for the ubiquity of nearly decomposable 

biological systems: the Hora and Tempus parable and an argument for the need for 

internal structural autonomy. The Hora and Tempus parable has been shown to have 

significant shortcomings. These include: 

(i) It assumes that generating new kinds of higher level entities is simply an 

exercise in combinatorics but evolving multicellular individuals from 

unicellular ones requires solving many control problems (Lane, 2005, p.90).  

(ii)  Many evolutionary processes involve the reorganisation rather than addition 

of genetic material (Zawidski. 1998, p.545). 

By contrast, there is widespread support within the discipline of biology for Simon’s 

second argument that evolution requires biological systems to have some degree of 

internal structural autonomy. This is illustrated by Wagner and Altenberg’s (1996, 

p.971) proposed structure for evolutionary modules (see section 3.5). 

 

Even if biological systems are often ND into evolutionary modules, it does not follow 

that this provides support for the claims of near decomposability in such fields as 
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physiology, developmental biology and biochemistry.22 This is because a biological 

system can be decomposed in different ways, depending on which interactions are 

relevant to a particular analysis. This leads to what Wimsatt (1972) has called 

‘descriptive complexity’. Different biology sub-disciplines select different types of 

interactions and basic parts when decomposing a system and there is not a one-to-

one mapping between the subsystems of these different decompositions. Descriptive 

complexity means that evidence of one kind of near decomposability (e.g. 

evolutionary) might not be evidence for another kind of near decomposability (e.g. 

biochemical). This undermines Simon’s strategy of using an evolutionary argument 

to claim that near decomposability is ubiquitous in biology.  

Simon claims that given human beings’ limited cognitive abilities, it is only because 

many complex systems are ND that we are able to understand them. If there are 

complex systems that are not ND, then analysing their behaviour would involve such 

detailed knowledge and computation of their elementary interactions as to be beyond 

us (Simon, 1962, p. 477). Because of near decomposability, we can divide a system 

into subsystems, aggregate some interactions and, if appropriate, ignore others. The 

example is given of a system made of five components, each in turn consisting of five 

parts and each of these having five sub-parts. The system can be examined by 

analysing just thirty-one subsystems: one subsystem of five components, five 

subsystems of five parts and twenty-five subsystems of five sub-parts. This is likely to 

be a much simpler task than analysing a single system of one hundred and twenty-

five interacting parts (Simon, 1977, p. 179). Furthermore, we will often only be 

interested in the behaviours of parts corresponding to a particular level, in which 

case only the interactions of that level, plus the aggregation of interactions at the next 

level down might need to be considered. Simon claims that if complex systems are 

not ND, they may well escape our observation or understanding. 

 

In summary, Simon takes there to be a single type of modularity in which different 

systems have different degrees of decomposability. Near decomposability entails a 

conjunction of dynamic and structural autonomies. However external structural 

autonomy does not appear to be adequately related to other types of autonomy. 

Simon’s evolutionary argument for the ubiquity of near decomposability fails and this 

leaves open the possibility that pathways are not ND. Simon claims that it is only 

because many complex systems are ND that we are able to understand them. In 

                                                           
22 See for example Callebaut, W. et al. (2005). 
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section 3.4, I shall be arguing that pathways are not dynamically autonomous and 

therefore are not ND. In section 3.5, I shall explain that complex systems do not need 

to be ND to be understandable, as there are other types of modularity that can assist 

in this task. I will then use Simon’s analysis to help identify some of the different 

types of modularity that are important to biology. My claim that pathways are not ND 

is in contrast to Bechtel and Richardson, who take pathways that do not have 

feedback to be ND. I shall now consider their analysis.   

 

 

3.3    Bechtel and Richardson on the Minimal Decomposability of 

Pathways 

In contrast to Simon, Bechtel and Richardson argue that biological systems are often 

only ‘minimally decomposable’. Nevertheless, they claim that the assumption of near 

decomposability has been a key heuristic for causal discovery in biology. Bechtel and 

Richardson stay with Simon’s single concept of modularity, though they implicitly add 

three further criteria. These criteria concern subsystem: functionality, behaviour when 

isolated and self-control. Bechtel and Richardson explain that in minimally 

decomposable systems, the interactions between subsystems play an important role in 

determining the internal operations within subsystems. These are integrated systems 

in which the distinction between subsystems is blurred and systemic organisation 

provides significant constraints on subsystem functioning (Bechtel and Richardson, 

2010, p. 27). Bechtel and Richardson provide case studies to illustrate their claim that 

complex systems do not need to be ND in order to be understood. 

  

I will focus on Bechtel and Richardson’s analysis of biochemical pathways. They 

describe how the strategies of functional / structural decomposition, and localisation 

have been used in discovering pathway mechanisms. These twin strategies are claimed 

to be based on the assumption of near decomposability. They state that the failures of 

the twin strategies reveal that pathways are often only minimally decomposable. This 

minimal decomposability is attributed to the presence of feedback. Bechtel and 

Richardson use the discovery of the metabolic pathway for glycolysis to illustrate their 

claims. 

 

The aims of this section are to (i) summarise Bechtel and Richardson’s concept of 

near decomposability and explain how it is applied to pathways (ii) explain why 
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feedback is meant to reduce near decomposability (iii) highlight the key role that 

Bechtel and Richardson’s three additional criteria make to their analysis of pathway 

near decomposability and the effects of feedback.  

 

Bechtel and Richardson do not provide a concise definition of what a biological 

mechanism is. However, their analysis is consistent with the later definition provided 

by Bechtel and Abrahamsen (recall section 1.3): 

“A mechanism is a structure performing a function in virtue of its 

component parts, component operations, and their organization. The 

orchestrated functioning of the mechanism, manifested in patterns of 

change over time in properties of its parts and operations, is responsible 

for one or more phenomena.” (Bechtel and Abrahamsen, 2005, p. 423). 

 

Bechtel and Richardson claim that two types of decomposition are used in 

discovering pathway mechanisms: functional and structural. In a functional 

decomposition, a mechanism’s function is decomposed into constituent sub-

functions. Each sub-function corresponds to a component operation of the 

mechanism. For example, in metabolic pathways: 

 “component operations are then characterised in terms of individual 

chemical reactions on a series of substrates (e.g. oxidizing or reducing 

them, adding or removing H2O, etc.). A successful functional 

decomposition will identify each operation with its passive parts (the 

substrate and its resulting product). What it lacks is specification of its 

active parts – that is the enzyme that initiates and guides each reaction.” 

(Bechtel and Abrahamsen, 2005, p. 433). 

 

In a structural decomposition, a system is decomposed into its physical parts (i.e. 

subsystems). There are many ways in which a system can be partitioned.  What 

matters for causal discovery is identifying the ‘working parts’ i.e. the subsystems that 

perform the operations corresponding to the functional decomposition. In practice, 

researchers will often identify some of a mechanism’s working parts, prior to having 

completed the mechanism’s functional decomposition. For example, they might 

identify that a particular reactant is critical to a pathway without fully appreciating its 

functional role. 
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In a localisation, the proposed sub-functions are identified with the operations of 

specific working parts. Bechtel and Richardson state that: 

“The notion of decomposability stems from Simon and constitutes the 

descriptive counterpart of localisation” (Bechtel and Richardson, 2010, p. 25). 

 

Bechtel and Richardson describe a concept of near decomposability that implicitly 

goes beyond Simon’s original account. Their initial account does cover much of 

Simon’s specification, including his quote on his ‘two propositions’, the example of 

the intensities of interactions within molecular systems and the Hora and Tempus 

parable. They also state that: 

 ‘in relatively simple hierarchies, there will be a relatively high strength of 

interaction within subsystems as compared with the interactions among 

subsystems. These are systems that are nearly decomposable’ (Bechtel 

and Richardson, 2010, p. xxix).  

But three new criteria are also incorporated in their account of near decomposability, 

although they are not identified as being new. It is these three criteria, rather than 

Simon’s concept, that do most of the work in Bechtel and Richardson’s analysis of 

pathway causal discovery. This points towards the claim that I shall be making in my 

section 3.5, that rather than near decomposability, there is a different type of 

modularity (‘causal law modularity’) that plays a key heuristic role in pathway 

discovery. 

 

The first new criterion is that each ND subsystem has a discrete functional role. In 

the case of a pathway, each subsystem is assumed to perform a separate sub-function 

of the pathway’s overall function; with only minimal interaction with the pathway’s 

other subsystems. This goes beyond Simon’s stated concept, in which subsystems are 

selected only by the intensities of interactions of the elementary parts. Bechtel and 

Richardson appear to be providing an interpretation of near decomposability that 

better fits Simon’s evolutionary arguments. Although Simon does not discuss it, there 

may well be evolutionary advantages to ‘internally structurally autonomous’ 

subsystems having discrete functional roles that can alter in relative independence of 

each other (see section 3.5). Nevertheless, the requirement for discrete functional 

roles` goes beyond what Simon states. Bechtel and Richardson’s are adding an extra 

constraint on what will count as an ND system.  
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The second new criterion is for ND systems to possess an additional type of 

autonomy, in that the properties of each part can be determined in isolation of the 

system’s other parts: 

“the behaviour of parts is intrinsically determined. In these cases, it is feasible to 

determine component properties in isolation of other components, despite the 

fact that they interact.” (Bechtel and Richardson, 2010, p. 26). 

 

The third new criterion concerns the control of parts: 

“For near decomposability, individual components must be controlled by 

intrinsic factors.” (Bechtel and Richardson, 2010, p. 26).  

By ‘control’ is meant the turning on/off or changing the rates of component 

operations. This entails that the mechanism does not involve significant feedback, as 

the presence of feedback involves a subsystem having its rates of operation 

extrinsically controlled by another subsystem or subsystems. When subsystems are: 

“less governed by intrinsic factors, we [then] enter the domain of integrated 

composite systems, which are minimally decomposable.” (Bechtel and 

Richardson, 2010, p. 27). 

 

Bechtel and Richardson use the glycolytic pathway as a case study to illustrate how 

the twin strategies have been applied. The pathway’s reaction steps are: 
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Step  Enzyme 

1 glucose + ATP → glucose-6-phosphate + ADP + H+ hexokinase 

2 glucose-6-phosphate  fructose-6-phosphate phosphoglucose isomerase 

3 fructose-6-phosphate + ATP → fractose-1,6-

bisphosphate + ADP + H+ 

phosphofructokinase 

4 fructose-1,6-bisphosphate  dihydroxyacetone phosphate 

+ glyceraldehyde-3-phosphate 

aldolase 

5 dihydroxyacetone phosphate  glyceraldehyde-3-

phosphate 

triose phosphate isomerase 

 (steps 6 to 10 are carried out twice)  

6 glyceraldehyde-3-phosphate + Pi + NAD+   1,3-

bisphosphoglycerate + NADH + H+ 

glyceraldehyde 3-

phosphate dehydrogenase 

7 1,3-bisphosphoglycerate + ADP   3-phosphoglycerate + 

ATP 

phosphoglycerate kinase 

8 3-phosphoglycerate   phosphoglycerate phosphoglycerate mutase 

9 2-phosphoglycerate   phosphoenolpyruvate + H2O einolse 

10 phosphoenolpyruvate + ADP +  H+ → pyruvate +  ATP pyruvate kinase 

   

Fig 3.2 The glycolytic pathway - highlighting those chemicals that are parts of the feedback loop involving 

phosphofructokinase. Abbreviations: ATP, adenosine triphosphate; ADP, adenosine diphosphate; NAD+, 

nicotinamide adenine dinucleotide (oxidised form); NADH, nicotinamide adenine dinucleotide (reduced 

form); Pi, phosphate group. 

 
  

There are multiple feedback cycles occurring within the glycolytic pathway. In 

particular, there are feedback cycles that regulate the activities of some of the 

enzymes i.e. allosteric feedback (recall section 2.3.4). For example, 

phosphofructokinase (step 3) is inhibited by ATP and phosphoenolpyruvate but 

activated by both ADP and guanosine diphosphate (the latter is not part of the 

pathway but is affected by the concentrations of the metabolites in the pathway). 

Another example is pyruvate kinase (step 10) which is activated by fructose-1,6-

bisphosphate (steps 3 and 4) but inhibited by ATP.  These feedback cycles tightly 

regulate the production not only of ATP and NADH but also the intermediate 

products in the pathway which are used as building blocks in other pathways, for 

example fructose-6-phosphate is used in the production of amino sugars. 

 

The glycolytic pathway was discovered in the early decades of the twentieth century. 

Bechtel and Richardson describe how this process involved (i) conjecturing as to 

what the mechanism’s operations were (i.e. by proposing a functional decomposition) 

(ii) postulating the existence of substrates, products, enzymes and effectors within 
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the pathway that could perform these operations (i.e. by proposing a structural 

decomposition and localisation) (iii) attempting to isolate the reaction steps of the 

pathway and then seeking experimental evidence of these substrates, products, 

enzymes and effectors. Bechtel and Richardson identify a key constraint that the 

discipline of biochemistry placed on an acceptable account of the glycolytic pathway: 

that the mechanism would involve a linear sequence of reactions i.e. there were no 

feedback loops. This constraint reflected the lack of importance attached to feedback 

at the time; consequently it was assumed that pathways were linear. 

“The assumption was tantamount to near decomposability because, if it 

held, each reaction necessarily occurred in relative independence and could 

be studied in isolation, provided the appropriate inputs are available.” 

(Bechtel and Richardson, 2010, p. 157). 

This assumption hindered the discovery of glycolytic pathway. It was used to infer 

that any substrate that was an intermediary in the pathway should be able to produce 

pyruvate (step 10) at least as quickly as glucose. Consequently, the proposal that 

dihydroxyacetone phosphate (step 5) was an intermediary was initially rejected; as a 

pathway starting with dihydroxyacetone phosphate produced pyruvate at a slower 

rate than the glycolytic pathway. Eventually it was recognised that dihydroxyacetone 

phosphate was an intermediary, but that feedback loops increase the rate of 

production of pyruvate. But recognising that the glycolytic pathway involved 

feedback:    

“violated the assumption of linearity and which therefore had the effect of 

undermining near decomposability” (Bechtel and Richardson, 2010, p. 

163). 

 

Bechtel and Richardson’s analysis of pathway near decomposability is dependent on 

their three additional criteria. The first criterion requiring discrete functional roles is 

needed for their claim that using the ‘twin strategies’ amounts to assuming near 

decomposability. The second criterion on isolated subsystems is needed to support 

the claim that the discovery methods used by biochemists are centered on near 

decomposability. And, as I will in argue in the next section, the third criterion on self-

control is needed for their claim that feedback undermines near decomposability.   

 

Bechtel and Richardson’s description of the causal discovery of pathways is 

incorporated into my account of the Strategy of Decomposition in my section 1.5. My 



98 
 

account also incorporates some of the conclusions from Bechtel and Abrahamsen’s 

(2005) analysis on using simulation to recompose a target dynamic behaviour.  

 

Bechtel and Richardson’s case study successfully illustrates the impact that feedback 

can have on pathway dynamics. However, it makes two claims that I shall now argue 

against: 

- that pathways without feedback are ND. 

- that feedback undermines near decomposability. 

 

 

3.4    Pathways are not Nearly Decomposable 

The aims of this section are (i) to provide a set of arguments explaining why 

pathways are not ND, irrespective of whether they have feedback (ii) to show that 

even if pathways were ND, significant levels of feedback would not necessarily reduce 

that near decomposability (iii) to explain that Bechtel and Richardson’s three 

additional criteria do not affect the arguments for pathways not being ND. Showing 

that pathways are not ND will prepare the ground for my section 3.5, in which I 

consider alternative types of modularity. 

 

I will begin by reviewing the parts, interactions and intensities of interactions that 

would be relevant for a pathway near decomposition. Two reasons will then be 

provided as to why the concept of near decomposability does not apply to pathways. 

The first is that key interactions cannot be classified as being either intra-subsystem 

or inter-subsystem. The second is that pathways are not dynamically autonomous. I 

will also explain that for in vivo systems, a reaction step’s inter-subsystem 

interactions are likely to be of a greater intensity than their intra-subsystem 

interactions. I will then explain why the impact of feedback would not necessarily be 

to reduce near decomposability. Finally, I will consider Bechtel and Richardson’s 

three additional criteria. 

  



99 
 

 

Bechtel and Richardson’s analysis concerns the near decomposability of a pathway 

into its reaction steps (henceforth: RSs). A pathway is taken to have two levels: 

 

 Subsystems 

2nd level Reaction steps 

Bottom level  Reactants (including enzymes and effectors) and products 

 

The bottom level interactions are chemical reactions. 

 

Pathway near decomposability and the effects of feedback will be evaluated relative to 

The Criteria for Near Decomposability that were elicited from Simon’s writings: 

(i) the intensity of intra-subsystem interactions is significantly greater than 

the intensity of inter-subsystem interactions (for a given level). 

(ii) the intensity of interactions (both inter- and intra- subsystem) 

significantly increases with the lowering of levels. 

(iii)  satisfaction of (i) and (ii) results in same-level subsystems having a high 

degree of dynamic and structural autonomy.  

Bechtel and Richardson’s three additional criteria will then be considered and it will 

be explained why they are (a) not relevant to the arguments showing that pathways 

are not ND (b) are only trivially relevant to the claim that feedback would impact on 

near decomposability. 

 

In Simon’s two examples of ND systems, the interactions are between components 

that persist during their interactions. The office cubicles continue to exist whilst heat 

is transferred between them. Similarly, neutrons and protons continue to exist whilst 

bonding with each other. This is in contrast to the transformations that occur in 

chemical reactions where reactants are chemically changed into products. This 

transformational relationship will now be explained. 
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Consider an elementary reaction between chemical species B and C. The chemical 

reaction equation: 

   B + C → D + E 

states that a molecule of species B combines with a molecule of species C and is 

transformed into a molecule of D and a molecule of E. In biochemistry, there are two 

types of elementary reaction: unimolecular reactions which involve only one 

molecular entity and bimolecular reactions which involve two molecular entities. 

Elementary reactions occur via the formation of an activated complex. For the above 

reaction to occur a molecule of B needs to collide with a molecule of C to form an 

activated complex which is then transformed into the products. Not all collisions will 

be ‘effective’ and lead to the formation of the products. For a collision to be effective a 

variety of conditions will need to be satisfied, such as the molecules having sufficient 

kinetic energy and having the correct relative orientations. 

 

Bartholomay (1960) has formulated a ‘molecular set theory’ that mathematically 

represents the chemical equations of elementary reactions. This further clarifies the 

relationship between reactants and products. Bartholomay’s analysis can be 

illustrated for the same chemical reaction as above. A chemical reaction is 

represented in terms of events between elements of the sets: B, C, D, E. These 

elements are individual molecules, for example the initial number of molecules of B 

is nB and its elements are b(i), i.e. b(i)  ∈ B  (i= 1, 2,…, nB). A reaction occurs when an 

element of B ‘effectively collides’ with an element of C and the two elements are 

transformed into elements of D and E. The chemical equation is represented as the 

molecular set transformation: 

T:  B x C → D x E 

Where ‘x’ stands for the Cartesian product. The domain B x C is the set of all possible 

(b,c) pairs and the co-domain D x E   is the set of all possible (d, e) pairs. Each 

individual pair (d(ij),e (ij)) is traceable to an individual pair (b(i), c(j)). The individual 

values of the transformation: 

T(b, c) = (d, e) 

will depend on which random collisions between molecules of B and C are ‘effective’. 

In cases where b(i) ‘effectively collides’ with c(j) the above equation can be read as 

‘transformation T applied to molecule b(i) ∈ B and molecule c(j) ∈ C produces 

molecules d(ij) ∈ D and e(ij) ∈ E. 
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Applying the concept of near decomposability to chemical reactions might appear 

problematic, as there are no direct interactions between a specific reactant molecule 

and its product molecules. In each molecular level reaction, specific reactant 

molecules (e.g.  b(9), c(3)) are transformed into specific product molecules (e.g. d(9,3),e 

(9,3)). These product molecules therefore only come into existence after their 

corresponding reactant molecules no longer exist. The relationship between reactants 

and products is causal but not directly interactive. However, reactant molecules are 

connected to their product molecules by a chain of interactions that start with the 

‘effective’ collisions of reactants, include the relevant internal interactions of the 

structures in the activated complex and end with the formation of the product. It is 

these chains of interactions which would have to be considered in attempting to 

nearly decompose a pathway.  

 

Bechtel and Richardson do not explain what the intensities of interactions are for 

reaction steps. As previously explained, Simon does not formally state what is meant 

by ‘intensity of interaction’. However, he provides two examples from the natural 

sciences. In these ‘intensity of interaction’ refers to (1) the rate of flow of heat and (2) 

the strength and frequency of bonds. I am taking intensity to be the product of the 

number and strength of interactions, per unit time. 

 

In order to help analyse what the intensities of interaction are for RSs, consider the 

following elementary reaction: 

A + B → C + D 

Let us first consider the internal interactions. For step 1 these include molecules of A 

and B colliding, and the breaking and forming of various bonds leading to the 

formation of C and D. One possible measure is the ‘rate of a reaction’. This is the rate 

of change in the concentrations of reactants and products. For step 1: 

 

Rate of reaction  = - 
𝑑 [𝐴]

𝑑𝑡
  = - 

𝑑 [𝐵]

𝑑𝑡
  =  + 

𝑑 [𝐶]

𝑑𝑡
   =  + 

𝑑 [𝐷]

𝑑𝑡
  

 

Where [x] equals the concentration of substance x, a negative sign means that the 

concentration is decreasing and a positive sign means that the concentration is 

increasing. But the rate of a reaction does not measure the number of bonds being 

broken and formed, or the strengths of these bonds. This suggests that some 

thermodynamic factor should also be part of the measurement of the internal 

intensity. Further research would be needed to establish how the internal intensity of 



102 
 

reactions should be measured for near decompositions. This would need to ensure 

that the same measure is used for both internal and external intensities so that their 

relative magnitudes could be compared. However, I will now argue that such research 

is unnecessary, as the concept of near decomposability does not apply to pathways. 

 

I identify two main reasons for this non-applicability, both center on the overlap of 

the constituents of RSs. I will use the following toy pathway: 

Step 1  A + B  C + D 

Step 2  D + E  F + G 

Step 3 G + H  I 

where the double headed arrows indicate that the reactions are reversible. As I 

explained in section 2.2.2, a reversible chemical reaction actually consists of two 

reactions occurring simultaneously, a ‘forward reaction’ (e.g. A + B → C + D) and a 

backwards reaction (e.g. C + D → A + B). 

  

A substantial number of molecules in a pathway will be in more than one RS. For 

example, in the toy pathway RS2 is composed of molecules of D, E, F and G. 

However, the molecules of D are also constituents of RS1 and the molecules of G are 

also constituents of RS3.  The extent of the overlaps can be illustrated using an ND 

matrix, where the shaded cells highlight that D is in both RS1 and RS2, and that G is 

in both RS2 and RS3: 

 

 
Fig 3.3 A matrix representing the intensities of interactions within a toy pathway with three reaction 

steps. 
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The first reason for pathways not being ND is that key interactions cannot be 

classified as being either ‘inter-subsystem’ or ‘intra sub-system’. Let us consider RS2: 

Step 2  D + E  F + G 

Perhaps its inter-subsystem interactions are with steps 1 and 3? After all D is 

produced in step 1 and G is consumed in step 3. But what is the interaction between 

RS1 and RS2? It is not the transferring of D molecules, given that all the existing 

molecules of D are in both RSs. Perhaps it is the interactions within RS1 that produce 

D? However, these are intra-subsystem transactions of RS1 and if these are also 

counted as inter-system interactions for RS2, then there is double counting, which 

will invalidate the near decomposition of the pathway. We appear to be left in the 

absurd position of not being able to assign an inter-subsystem interaction between 

the two RSs. The Criteria for Near Decomposability cannot therefore be applied.  

 

Even if there was a satisfactory way of assigning inter-subsystem interactions, there 

might still be a problem insofar as they might not be of a significantly weaker 

intensity than intra-subsystem interactions. Simon’s stated rationale for why inter-

subsystem interactions are weaker is based on the intensity of interactions decreasing 

with distance (though undoubtedly he would have allowed for other reasons). But his 

stated reason, at least, does not apply to pathways where many reactants will often be 

in the same chemical solution and are effectively co-present.   

 

The second reason for non-applicability is that RS’s are not dynamically autonomous. 

This is illustrated by pathways not having the relaxation dynamics of ND systems. 

RSs usually cannot achieve approximate equilibrium in near independence of each 

other. For a pathway without feedback (or a portion of a pathway) to be in chemical 

equilibrium each of its reaction steps needs to be a reversible reaction that is itself in 

equilibrium.23 Consider again the reversible chemical reaction: 

A + B  C + D 

At equilibrium, the reaction rate of the forward reaction v1 is equal to the reaction 

rate of the backward reaction v2 and there is no net change in the concentrations of A, 

B, C and D. In order to show that the RSs usually cannot achieve approximate 

equilibrium in near independence of each other, we will consider a simple pathway 

                                                           
23 (i) Open biological systems have steady states rather than equilibrium. (ii) All chemical reactions are 

reversible. However, reactions are often classified as irreversible when their forward rate greatly exceeds 

their backward rate. 
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without feedback consisting of two reversible reactions. The same reasoning will also 

apply for longer pathways that do not have feedback. 

Step 1  A + B  C + D 

Step 2  D + E   F + G 

For RS1 to be at equilibrium, its forward and backward rates of reaction must be 

equal and the concentration of D must be constant. The same requirements apply to 

the RS2. This means that the two RSs have to come to equilibrium simultaneously.  

This is because if an RS is not at equilibrium then it is either producing or consuming 

a net quantity of D. The other RS will then not be able to satisfy both the 

requirements of (i) its forward and backward reaction rates being equal and (ii) 

maintaining a constant concentration of D. The problem is that D is a constituent of 

both RSs. Hence when starting from disequilibrium, the RSs’ short-term behaviours 

are not ‘approximately independent’.24 

 

The toy example understates the extent to which RSs overlap within actual pathways. 

This is because some chemicals are involved in several RSs. For example, in the 

glycolytic pathway ATP is a reactant or product in four of the ten RSs. The same is 

true for both ADP and H+. 

 

A possible counter-argument to my two reasons would be to claim that a near 

decomposition of a system should only use ‘component parts’, which are defined by 

their performing a specific function and their mapping onto a specific physical part. 

As such there can be several component parts corresponding to a single physical part. 

For example, the bottom level of the toy pathway would not include reactant D, but 

instead ‘D qua a reactant in RS1’ and ‘D qua a reactant in RS2’. I will refer to these as 

‘D1’ and ‘D2’ respectively. This approach would seem to be consistent with Bechtel 

and Richardson requiring that subsystems have discrete functional roles; it simply 

extends the same requirement to the bottom level of the ND system. If this approach 

is accepted, then there are no problems with RS’s having overlapping constituents. 

The corresponding ND matrix would then have the desired diagonal block sequence: 

 

                                                           
24 There will be some pathways that have an RS (or a few RSs) that can achieve approximate equilibrium 

independently of its pathway’s other RSs. This could be the case if an RS’s rates of reaction are much faster 

than its adjacent RSs. In such cases the RS can achieve equilibrium while its adjacent RSs remain 

effectively stationary. However, it seems highly unlikely that such a pattern of adjacent fast and slow RSs 

exists across a significant proportion of any pathway that is recognised by the discipline of biochemistry. 



105 
 

 
 
Fig 3.4 A matrix representing the intensities of interactions within a toy pathway with three reaction 

steps, in which reactant D is separated into ‘component parts’ D1 and D2. 

 
 
But this is an unacceptable representation of the pathway. By failing to identify that 

the same physical parts are constituents in two RSs, it is falsely implied that the RSs 

are dynamically autonomous and can independently come to separate equilibria. 

Using ‘component parts’ in this way leads to intra-subsystem interactions being 

omitted, for example D in RS2 is now independent of reactants A and B by being 

reclassified as D2. But this then leads to minimally decomposable systems being 

misclassified as being ND. Simon’s concept of ND is based on bottom-level entities 

being physical parts. This is demonstrated by his claim that if a dynamic system can 

be described by an ND matrix, then it has the properties of an ND system (Simon, 

1962, p. 475). If component properties are used, then this claim is false. It should also 

be noted that Bechtel and Richardson are focused solely on a concept of modularity 

that can play a useful role in the actual practice of biology. It would therefore be 

unacceptable to ‘save’ a putative application of near decomposability by concocting 

transient component parts whose identity depends on whether they have just been 

created or are about to be transformed. Such a concoction would be practically 

useless given that the component parts are co-present in the same chemical solution.  

 

Even if the concept of near decomposability did apply to pathways, it is likely that it 

would have very limited applicability to in vivo pathways. This is because in vivo 

pathways exist within large networks of biochemical reactions. This leads to many 

reactions being highly interdependent, with the same chemical substance often being 

involved in multiple reactions. I will illustrate this using a metabolic network of E. 
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coli. A recently constructed metabolic network of E. coli depicts 924 metabolites 

engaged in 1437 reactions (Zhoa et al., 2006, p. 2). Metabolites are the chemical 

substances that are either intermediates or products of metabolism; they do not 

include enzymes. A small subset of this network is the glycolytic, pentose 

phosphate and Entner-Doudoroff pathways which all convert glucose to 

pyruvate. The following diagram shows their interconnections.  

 

 
 

 

Fig 3.5 Diagram of the central metabolic pathways of E. coli . The left hand pathway is the 

glycolytic pathway. Some of the reaction steps have been omitted. Abbreviations: ADP, adenosine 

diphosphate; ATP, adenosine triphosphate; NADPH, nicotinamide adenine dinucleotide phosphate; NADH, 

nicotinamide adenine dinucleotide (reduced form); F6B, fructose-6-phosphate; PGALD, glyceraldehyde-3-

phosphate. PPP is the pentose phosphate pathway and ED is the Entner-Doudoroff pathway (White, D., 

2007, p. 197). 

 
 
 
Diagrams such as the above can give a misleading impression of the extent of 

interaction between pathways. This is because some of the metabolites are also 

components of many other pathways and reactions. For example,  Wagner and 

Fell (2001) carried out their analysis on a subset of E. coli’s metabolic network, 

consisting of only 367 reactions and found that 3-phosphoglycerate (steps 7 

and 8 of the glycolytic pathway) directly interacted with thirteen other 

metabolites, whilst pyruvate directly interacted with thirty-nine metabolites.25  

                                                           
25 Wagner, A. and Fell, D. (2001) –Details of the pathways included in their network are on p. 1804. Two 

metabolites ‘directly interact’ if they occur in the same chemical reaction (either as substrates or products), 

this is referred to as ’connectivity’ on p. 1806. 
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The strong interconnectivity between pathways means that in vivo pathways often 

would not be ND (even if the applicability problems did not apply). Many of the 

metabolites in individual RSs will be interacting (i.e. reacting) with the metabolites of 

other pathways; when attempting a decomposition these interactions between RSs 

will count as inter-subsystem interactions for the RS. Given the extent of these 

interactions, it seems highly likely that for many RSs, the intensity of their inter-

subsystem interactions will not be significantly smaller than the intensity of their 

intra-subsystem interactions.  

 

I have shown that the concept of near decomposability does not apply to pathways 

and, furthermore, that the RSs of in vivo pathways are subject to strong inter-

subsystem interactions. I will now evaluate the impact that feedback would have on 

pathways if, contrary to my arguments, pathways without feedback were ND. 

 

 

Bechtel and Richardson claim that feedback undermines near decomposability 

because it means that subsystems are almost continuously impinging on each other. 

They state: 

“What is important about mechanism with positive and negative feedback for 

our purposes is the tension they place on the assumption of decomposability or 

near decomposability. The more the various operations in the mechanism 

affect each other, the less successful is a sequential account of the mechanism 

in which each operation is treated as independent of the others.” (Bechtel and 

Richardson, 2010, p. xxxv) 

I will use a toy (non-chemical) example to illustrate that even significant levels of 

feedback do not necessarily reduce near decomposability.  

  



108 
 

 

Let us consider a toy example which consists of two non-overlapping subsystems X 

and Y. X receives feedback from subsystem Y. If it was not for the feedback the 

system would be ND. However, the feedback significantly increases the rate at which 

X completes its internal activities and produces its output. In turn, the increasing 

rate of output from X increases the rate at which Y operates. 

 
 
Fig 3.6 Toy example of pathway in which subsystem X receives feedback from subsystem Y 

 
 
Does the feedback then mean that the system is not ND? It depends on whether the 

feedback sufficiently lowers the intra-subsystem intensity / inter-subsystem 

intensity ratios of the subsystems. In this example, the feedback increases both the 

intensities of the intra and inter-sub-system interactions of X. The extent to which 

the ratios are increased or decreased by the feedback will depend on further details 

about the feedback and the internal rate laws of X  Without these details the effect of 

the feedback on near decomposability cannot be determined. 

 

The general point is that the impact of feedback is not necessarily to reduce near 

decomposability. It will depend on a variety of factors that are specific to each 

particular system. Bechtel and Richardson claim that feedback results in the 

glycolytic pathway not being ND. Even if pathways without feedback were ND, the 

correctness of their claim could not be established without an analysis of the effects 

of the feedback on the intra-subsystem intensity / inter-subsystem intensity ratios of 

the RSs. Such an analysis is not provided.  

 

Bechtel and Richardson’s three additional criteria for near decomposability do not 

affect my arguments that pathways are not ND. The additional criteria are: 

 

a) subsystems have discrete intrinsic functions. 

b) the properties of each subsystem can be determined in isolation of the 

system’s other subsystems  
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c) the subsystems of a mechanism are considered to be controlled by intrinsic 

factors. 

 

Given that these criteria are supplementary to Simon’s concept, the fact that Simon’s 

concept does not apply to pathways is sufficient for Bechtel and Richardson’s 

modified concept also to be inapplicable. In Bechtel and Richardson’s account of 

pathway causal discovery, most of the work is done by their three new criteria. At no 

point in their analysis of pathways are either intensities of interaction, dynamic 

autonomy or structural autonomy considered. Relative to just their new criteria, it is 

plausible that pathways without feedback are modular. Criterion (a) is satisfied with 

a reaction step’s functional role being to convert its substrate into products (recall 

section 3.3), criterion (b) is often assumed by the discipline of biochemistry to be 

correct, though I shall question the correctness of this assumption in my section 3.6, 

criterion (c) is satisfied as there is no feedback. It also trivially follows from criterion 

(c) that a pathway with significant levels of feedback would not be modular. Perhaps 

a different type of modularity, defined solely in terms of these additional criteria 

would better capture their claimed relationships between pathway causal discovery, 

modularity and feedback? But this would then be capturing a type of ‘modularity’ 

that was, perhaps, being assumed by biochemists in the early decades of the 

twentieth century; and is no longer relevant. The ubiquity of feedback in 

biochemistry is now well understood.  

 

 

3.5    A Plurality of Types of Modularity   

Simon claims that given our limited cognitive abilities it is only because complex 

systems are ND that we are able to understand them. But pathways are not ND and 

yet we have often gained a good understanding of their mechanisms. This points to a 

significant shortcoming in Simon’s analysis: that it does not recognise that there is a 

plurality of types of modularity that can be usefully applied both in biology and in 

science more generally. The same criticism applies to Bechtel and Richardson’s 

analysis. I propose a modified version of Simon’s claim:  

given our limited cognitive abilities, it is only to the extent that biological 

systems are nearly modular in some relevant sense, that we are able to 

understand them. 
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Furthermore, there are types of modularity whose primary benefit is not in enabling 

understanding, but in enabling the manipulation, partial replacing or the 

reengineering of biological systems.  

 

Starting from Simon’s and Bechtel/Richardson’s analyses of near decomposability, 

five types of modularity will be identified. I have already shown that their concepts of 

near decomposability entail a conjunction of distinct types of autonomy. I will 

demonstrate that each of these types of autonomy can be used to formulate a distinct 

type of modularity that is important either to the analysis of pathways or to biology 

more generally. And that these types capture some of the different ways in which 

biologists apply the notion of modularity. Some of these types of modularity apply to 

systems that are not ND. One of these is ‘causal law modularity’ and in my section 

3.6, I will argue that it is this type of modularity, rather than near decomposability, 

that is central to the pathway discovery (and is assumed within the Strategy of 

Decomposition). I take the identification of these five types of modularity to be an 

original contribution to the philosophy of biology.  

 

I shall only be concerned with types of modularity where a system S being modular is 

relative to an analysis of a target phenomenon of S. A satisfactory specification of a 

type of modularity needs to state both the criteria for identifying what constitutes a 

subsystem and the sense in which these subsystems are required to be autonomous. I 

take it that for any type of modularity to be generally useful in biology, its modules 

must correspond to a functional decomposition of the target phenomenon; for 

example, it is unlikely that a decomposition into non-functional modules would 

contribute to an explanation of a target phenomenon. For the five types of modularity 

that I identify, each module of a decomposition consists of the organised parts and 

operations that collectively achieve that module’s function. The different types of 

modularity, differ in their type of autonomy. 

 

Different types of modularity might be useful for different types of analysis. For 

example, a different type of modularity might be useful to an analysis concerning re-

engineering compared to an analysis concerning causal discovery. A system S may 

have only one of these types of modularity or it may have several. I will use the 

following notation: a system S is composed of subsystems C1…Cn . The first two types 

of modularity require invariance between properties manifested by C1…Cn and 

properties manifested by objects of the same kind as C1…Cn that exist in a different 
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context to S. The other three types of modularity solely concern the properties 

manifested by C1…Cn whilst situated within S.  

 

Causal law modularity. The first type of modularity relates to Bechtel and 

Richardson’s requirement that:   

"it is feasible to determine component properties in isolation of other 

components, despite the fact that they interact.”  (Bechtel and Richardson, 2010, 

p. 26). 

Bechtel and Richardson do not specify which types of properties this is meant to 

apply to. I take there to be two requirements. First, the properties need to be 

invariant in the sense of being manifested both by subsystems C1…Cn and by objects 

of the same kind as C1…Cn that are situated in isolation. Second, these properties 

need to be useful in helping to understand the target phenomenon. For biological 

systems, the required properties cannot be subsystem behaviours, as the interactions 

between subsystems mean their behaviours are not invariant relative to being in 

isolation. Instead, if we look to the practices of contemporary biochemistry, we see 

that the required properties are taken to be local causal laws. Local causal laws are 

the laws that apply in a particular context. They can be highly context sensitive, 

applying to a limited number of contexts and small changes in their context can 

‘break’ a law. Biochemistry assumes ‘causal law modularity’ in which subsystems 

C1…Cn are autonomous in the sense that they manifest local causal laws that are also 

manifested by objects of the same kind as C1…Cn that are situated in ‘isolation’. When 

analysing the dynamics of pathways, the relevant local causal laws are the RS’s rate 

laws.  Biochemistry takes it that these have the required invariance, that these can be 

combined to produce laws that apply to the whole system S, and can then be used to 

explain S’s behaviours (recall 2.2.2). In section 3.6, I will explain how biochemistry 

justifies its assumption that pathways are often causal law modular.  

 

External structural modularity. This requires subsystems C1…Cn to be autonomous 

in the sense that they have the same functionality (i.e. input-output relations), as 

objects of the same kind as C1…Cn that are parts of other target systems. The choice of 

target systems will be relative to a particular analysis. This is consistent with Simon’s 

account of ‘external structural autonomy’ but adds that this type of modularity is 

relative to a specific set of target systems. This added qualification is necessary for 

the concept of external structural modularity to have any general applicability in 

biology; given the context-sensitivity of biological sub-systems (as explained below). 
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When systems have external structural modularity, a part-based engineering 

approach can be used to construct new systems. Systems such as electrical circuits 

have this type of modularity. 

A central assumption of the discipline of synthetic biology is that genetic systems 

have external structural modularity. Synthetic biology aims to build novel biological 

functions and systems.  

“synthetic biology is perhaps best defined by some of its hallmark 

characteristics: predictable, off-the-shelf parts and devices with standard 

connections, robust biological chassis (such as yeast and E. coli) that readily 

accept those parts and devices, standards for assembling components into 

increasingly sophisticated and functional systems and open-source availability 

and development of parts, devices, and chassis." (www.synbioproject.org)26 

Subsystems (‘parts and devices’ in the above quote) can be either molecules or 

functional portions of molecules, for example promoters, ribosome binding sites 

and transcriptional repressors which are then joined together. One of the aims of 

synthetic biology is the construction of novel artificial pathways.  

However, it should be noted that the success of synthetic biology has so far been 

limited. For example, a recent editorial in Nature Methods noted that ‘the field has 

yet to reach the point where genetic parts can be predictably combined to a desired 

outcome’ (Nature Methods, Vol 11, No 5, 2014). This is because context sensitivity is 

a key characteristic of biological systems. The problem that context sensitivity poses 

to external structural modularity, can be illustrated by considering two toy molecules 

S1 and S2.  S1 consists of four subsystems A, B, C, D with the structure A-B-C-D, where 

the hyphens represent chemical bonds. Hence A is bonded to B, B is bonded to both 

A and C, and so forth. Now consider S2 which has the structure B-C-D-A.  The 

functionality of A might be very different when it is a part of S1 compared with being 

a part of S2. Amongst the reasons for this are that the functionality of a chemical 

subsystem can vary significantly depending on what it is directly bonded to. So, if B 

is electrophilic (‘electron loving’) and D is electrophobic (‘electron hating’), it might 

be the case that A has a positive electrical charge in S1 but a negative electrical charge 

in S2. Such differences can result in different functionalities. It should also be noted 

that the functionality of A may also be significantly affected by the context in which S 

is located. For example, A’s functionality may vary with the acidity of its surrounding 

                                                           
26  This is from the definition used by Synberc that is cited on www.synbioproject.org accessed 3/12/15 

http://www.synbioproject.org/
http://www.synbioproject.org/
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solution. Because of context sensitivity, the parts-based engineering vision of 

synthetic biology may simply not be realisable (Guttinger, 2013). Synthetic biology 

has been able to develop some interesting novel systems, but the methods it has used 

are closer to ‘kludging’ than ‘rational design methods’ of a parts-based approach 

(O’Malley, 2011). Kludging (klumsy, lame, ugly, dumb but good-enough) refers to an 

iterative process of trial and error, workarounds and tweaking.  

 

Synthetic biology is still in its infancy and the extent to which genetic systems are 

‘external structural modular’ is unclear. Before this can be properly evaluated, the 

concept of external structural modularity needs to be more fully developed. Simon’s 

account only provides the barest sketch of the required autonomy. Although 

synthetic biology frequently refers to the ‘modularity’ of biological systems, a 

rigorous conceptual analysis of the term seems lacking. Such an analysis is needed to 

address such factors as how the set of target systems should be selected and in what 

respective physical contexts are S and the target systems required to be modular. 

Providing such an analysis is beyond the scope of this PhD. 

 

Internal structural modularity. This requires that S’s subsystems are autonomous in 

the sense that changes to the internal causal relationships of a subsystem do not 

change the functionality of S’s other subsystems i.e. the input / output relationships 

of S’s other subsystems remain unaltered. I identify three ways in which this is 

important within biology. First, in enabling us to manipulate systems and hence 

learn about their causal structures. If S has this type of autonomy then, at least in 

principle, interventions can be carried out on one subsystem Ci in order to evaluate 

the causal relationships between Ci and S’s other subsystems. Such interventions 

could correspond to Woodward’s notion of ideal interventions, as described later in 

my section 3.7. Second, in providing opportunities for replacing subsystems within S. 

For example, it is possible to replace one subsystem with another that is functionally 

equivalent e.g. replacing a damaged cochlear with a cochlear implant. Third, in 

enhancing the evolutionary capabilities of organisms (recall section 3.2).  

Wagner and Altenberg (1996) provide a paradigm account of what the structure of 

evolutionary modules might be. They argue that adaptation requires that organisms 

can produce stepwise improvements in fitness, and that stepwise improvements are 

more likely if the effects of genetic mutations are restricted so as not to compromise 

past improvements.  This, in turn, requires that the effects of pleiotropy are limited 
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(Wagner and Altenberg, 1996, p. 971); pleiotropy being the condition in which a 

single gene influences more than one trait, an ‘array of phenotypic effects is typical 

for most genes and results from the interconnections between the biochemical and 

cellular pathways that the genes control” (Snustad and Simmons, 2015, p. 80).  

Wagner and Altenberg illustrate their proposed concept of evolutionary modularity: 

  

Fig 3.7 Example of two evolutionary modules (Wagner and Altenberg, 1996, p. 970). Wagner and 

Altenberg do not state what their arrows represent, but presumably the arrows between genes and character 

complexes represent causal relationships and the arrows between character complexes and functions 

represent constitutive relationships. 

 

A module includes a grouping of genes and their phenotypic characters. In the above 

diagram there are two modules: 

 

Module One    Module Two 

Genes    {G1, G2, G3}    {G4, G5, G6} 

Character complex  {A, B, C, D}    {E, F, G} 

Primary function          F1           F2 

Wagner and Altenberg say that the groupings are modular because there are more 

pleiotropic effects within each group than between them. The phenotype characters 

are grouped in a ‘character complex’ which has a primary function. These primary 

functions are largely independent of each other. Nature can then select for genetic 

mutations that improve one function without strongly impacting on other functions. 
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Examples of such low polygeny, low pleiotropy functions include hair colour, 

immunoglobin antigen binding and enzyme activity (Wagner and Altenberg, 1996. p. 

972). 

 

Few strong interactions modularity. S’s subsystems are autonomous in this sense 

when each part only has strong interactions with a small proportion of the system’s 

other parts. When this is the case then there can be a significant reduction in the 

number of interactions that need to be taken account of in order to understand the 

whole system. This type of autonomy is possessed by ND systems, as is illustrated by 

Simon’s example of the system of one hundred and twenty-five interacting parts 

being understandable in terms of the interactions between thirty-one parts. This type 

of modularity can also be possessed by non-ND systems. For example, when 

analysing pathways, it may often be the case that the chemical species of an RS will 

only have strong interactions with a limited number of the pathway’s other RSs.  

This appears to be the type of modularity that some systems biologists take to be 

present in biological networks, including metabolic networks. Biological networks are 

analysed using graph theory. Graphs are composed of vertices and edges, for example 

G = (V, E) where V is a set of vertices and E is a set of edges. An edge eij connects 

vertices vi to vj . In directed graphs edges are orientated so that eij ≠ eji, whilst in 

undirected graphs edges have no orientation so that eij = eji. A vertex’s ‘degree’ is the 

number of edges attached to it. In the case of metabolic networks, vertices are used to 

represent specific metabolites and edges connect pairs of vertices that are related as 

reactant and product. Enzymes are not explicitly represented but it is implicitly 

understood that there will generally be a unique enzyme associated with each edge. 

Directed edges are used to represent irreversible reactions and undirected edges to 

represent reversible reactions. 

  

Systems biologists have attempted to decompose graphs representing biological 

networks into sets of sub-graphs such that the vertices in each sub-graph are densely 

connected but the connections between the sub-graphs are sparse. In these cases, the 

sub-graphs are called ‘community structures’ or ‘modules’. The modularity of a  
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decomposition can be measured using Newman and Girvan’s (2004) ‘modularity 

coefficient’. Consider a network that is decomposed into k sub-graphs. A k x k 

symmetric matrix m can then be defined where mij is the fraction of the network’s 

edges that connect vertices in sub-graph i to vertices in sub-graph j. The trace of the 

matrix m is the sum of the elements on its main diagonal i.e. Tr 𝑚 = ∑ 𝑚ii𝑖  . This 

equals the fraction of the network’s edges that connect vertices within the same sub-

graph. Here is an example for a network of 150 vertices that has been decomposed 

into three sub-graphs: 

 

 

Fig 3.7 Example of the first steps in calculating the Newman Girvan modularity coefficient.  

 

The matrices show that there are twenty-five edges connecting vertices in sub-graph 1 

to other vertices in sub-graph 1, six edges connecting vertices in sub-graph 1 to 

vertices in sub-graph 2 and so forth. The row sum 𝑎i = ∑ mij𝑗  equals the fraction of 

edges that connect vertices in sub-graph i to other vertices in the network (including 

other vertices in sub-graph i). If the edges in a network were randomly distributed 

then the expected value of mij would equal ai aj . Hence if there is no clustering into 

modules then E(mii) = ai
2. The modularity coefficient Q is defined as:  

 

𝑄 = Tr 𝒎 − ∑ (𝑎i
2)𝑖        (Newman and Girvan, 2004, p. 026113 –7) 

 

If the number of edges in each putative module is randomly distributed then Q is 

likely to have a value near zero, whilst values of Q approaching one indicate strong 

modularity. Guimerá et al. (2004. p. 2) define the modularity of a network as being 

the largest modularity coefficient of all possible partitions of the network.  
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Graphs of metabolic networks have been generated with the aid of genome 

sequencing. Sequencing data enables the identification of an organism’s enzymes. 

Reaction databases (e.g.  the Kyoto Encyclopaedia of Genes and Genomes Database 

(henceforth: KEGG)) can then be used to match these enzymes to their chemical 

reactions and hence create a list of all the metabolic reactions occurring within an 

organism.  

 

In such graphs the highest degree vertices correspond to ‘currency metabolites’. 

These substances include ATP, ADP, NADH, NAD+ and Pi. They often function as 

electron carriers or carriers of functional groups such as phosphates or methyl 

groups. Other substances such as H2O and CO2 are also classified as currency 

metabolites; as such there does not appear to be a general functional definition for 

current metabolites, rather they just are substances that appear in a multitude of 

reactions. When graphs have been constructed that include currency metabolites, 

they have been found not to be modular. However, if the currency metabolites are 

then excluded the graphs are found to be ‘modular’. The effect of excluding currency 

metabolites is illustrated with the following graphs for Streptococcus pneumoniae, 

the left hand graph includes currency metabolites, the right hand does not. 

 

 
 

Fig 3.8 Diagrams of the metabolic network for Streptococcus pneumoniae - with and without 

currency molecules. (Silva, M. et al., 2008, p. 238)  

 
Holme (2009, p. 1) justifies the exclusion of currency metabolites on the view that the 

‘higher functionality, and thus the most interesting information’ is contained in the 

organisation of the non-currency metabolites. To illustrate this, Holme uses as an 

analogy a graph representing a science conference. Each vertex represents a person 

and two vertices are connected if the two people had a conversation with each other. 

Most of the scientists would have conversed only with the reception staff and with 
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some of the small cluster of scientists working in their particular field. The functional 

output of the conference was the advancement of science and what most mattered for 

this were the conversations within these clusters of scientists. The reception staff 

would have been important for the conference to work but they would have had a 

secondary, background role. If the reception staff were included in the graph their 

vertices would have the highest degrees and this would hide the modular structure of 

the scientists’ interactions. Ma and Zeng (2003) illustrate the currency metabolite 

interactions in the glycolysis pathway: 

  
 

Fig 3.9 Diagram of the glycolytic pathway highlighting the currency metabolites. Abbreviations of 

currency metabolites: ADP, adenosine diphosphate; ATP, adenosine triphosphate; NAD+, nicotinamide 

adenine dinucleotide (oxidised form); NADH, nicotinamide adenine dinucleotide (reduced form); Pi, 

phosphate group (Ma, H. and Zeng, A., 2003, p. 271) 

 
Zhoa et al. (2006) provide a modularity analysis of the E.coli’s metabolic network. 

By excluding currency metabolites and using the Newman and Girvan metric, 

twelve ‘modules’ are identified.  
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Fig 3.10 Modularity analysis of the E.coli’s metabolic network (Zhao et al., 2006,  p. 5) 

 
However, their analysis highlights a significant shortcoming in the systems 

biologists' approach to decomposing biological networks. There is no 

requirement for each of the ‘modules’ to have a recognised function. In the 

above decomposition, each module contributes to several functions 27 and each 

function has contributions from several modules. For example, module 5 is 

involved in: amino acid metabolism, carbohydrate metabolism, energy 

metabolism, lipid metabolism, nucleotide metabolism and the metabolism of 

cofactors and vitamins. Modules 1,2,3,5,6,7 and 9 contribute to carbohydrate 

metabolism. ‘Textbook’ pathways such as those for glycolysis, pentose 

phosphate and tricarboxylic acid are each spread over several modules.  The 

following table lists some of the metabolites and modules of the glycolysis 

pathway:28 

   
Substance Reaction Steps 

(as specified in 
section 2.2) 

Module 

glucose-6-phosphate 1,2 6 
fructose-6-phosphate 3,4 6 
glycerone phosphate 4,5 5 
3-phosphoglycerate 7,8 5 
Phosphoenolpyruvate 9,10 1 
Pyruvate 10,11 1 

 
Fig 3.11 Table listing some of the metabolites shared by ‘modules’ of Zhao et al.’s (2006) 

decomposition of E.coli’s metabolic network.  

                                                           
27 Zhoa uses the KEGG pathway classification of functions. 
28 Zhoa et al (2006) –p. 8 
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Module five also contains some of the metabolites from the pentose phosphate 

pathway.29 

 

Zhoa et al.’s findings are broadly representative of the (few) analyses that have 

been carried out on the modularity of metabolic pathways. Once currency 

metabolites are excluded, there is modularity but the modules do not 

correspond to pathways or have a recognisable function. Zhoa et al. are 

optimistic “Hopefully, more research will clarify the biological significance of 

the underlying difference between topological modules and traditional 

pathways” (Zhoa et al., 2006, p. 4). But it seems unclear whether the modules 

identified are ‘biologically meaningful’ or merely artefacts. I  take a 

fundamental problem with such analyses is that they are based on either the 

Newman- Girvan metric, or some variation of it, which count all edges as being 

equal. No account is taken of the vastly different rates of reactions or of the 

effects of feedback. 

 

 

Dynamic modularity. This requires S to be dynamically autonomous, which as 

previously specified requires that: 

i) the short-run dynamic behaviours of same-level subsystems are 

approximately independent of each other, 

ii) the long-run dynamic behaviours of each subsystem are approximately 

independent of the details of other same-level subsystems’ internal 

behaviours. 

Dynamic autonomy is a consequence of the relative intensities of a system’s intra-

subsystem and inter-subsystem interactions. This applies to ND systems. When a 

subsystem’s behaviour is dynamically modular then it may be possible to study and 

understand its behaviour in situ, whilst ignoring its interactions with other 

subsystems (at least in the short term). As such, dynamic modularity can be 

epistemically important when either (i) the assumption of causal law modularity fails 

i.e. when subsystems C1…Cn manifest local causal laws that are different to those 

manifested by objects of the same kind as C1…Cn that are situated in isolation or (ii) it 

is impracticable to study subsystems of S in isolation of each other. Arguably the 

                                                           
29 Ribose 5-phosphate and erythrose 4- phosphate from the pentose phosphate pathway  
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latter applies to much of cell biology, where subsystems are often too fragile to 

maintain their structures when separated from S. For example, in vitro analyses 

often require destroying much of the structure of a subsystem (e.g. an organelle) and 

analysing the behaviour of its constituents in chemically homogenous solutions. 

 

In summary, the analyses of both Simon and of Bechtel and Richardson miss that 

there is a plurality of types of modularity. Contrary to Simon, the complex systems 

found in biology do not need to be ND to be understood. Other types of modularity 

can assist in this task. Modularity can also be important for manipulating, replacing 

and reengineering of biological systems. I will now focus on causal law modularity, as 

it is this type of modularity that is central to the causal discovery of pathways. 

 

 

3.6    It’s Causal Law Modularity That Matters for Pathway Discovery 

The Strategy of Decomposition is based on the assumption that pathways are causal 

law modular. This is done by assuming that RS rate laws are invariant in the sense 

that: 

each of the rate laws manifested within a pathway will be manifested in 

its ‘appropriately formulated’ isolated reaction step. 

I will term this the ‘rate law invariance’ assumption. The rate law for an RS specifies 

how its rate varies with the concentrations of its reactants (recall section 1.2). An 

‘appropriately formulated’ isolated RS consists of that step’s substrates, products, 

enzymes and effectors, plus any non-reactive constituents of its pathway that impact 

on the dynamics of that step. If the ‘rate law invariance’ assumption is correct then a 

pathway’s RS rate laws can be studied in isolation of each other.  

 

There are three broad stages to the Strategy of Decomposition (recall section 1.5). In 

the ‘extraction stage’ the target in vivo pathway is separated from its biological 

context, creating an in vitro pathway. In the ‘decomposition stage’, a functional 

decomposition is proposed for the target pathway dynamic behaviour. A separate in 

vitro chemical solution is then created for each of the pathway’s putative RSs. Each 

chemical solution will contain the reactants, effectors, enzyme and products that are 

thought to constitute that RS. These are the putative ‘appropriately formulated’ 

isolated reaction steps for the pathway. Experiments are carried out to discover the 

salient properties of each isolated reaction step, including their operations and rate 

laws. In the ‘reconstruction stage’, simulation modelling is used to confirm that the 
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putative rate laws combine to produce the target pathway dynamic behaviour. The 

decomposition and recomposition stages are based on the ‘rate law invariance’ 

assumption being correct for the target pathway; i.e. it is assumed that knowledge 

gained of isolated RS rate laws can be used to model the in vivo RSs of the target 

pathway.  

 

Prima facie, the ‘rate law invariance’ assumption is problematic. This is because the 

rate constants referenced in a RS rate law are highly context sensitive and small 

changes in context can lead to changes in their values and therefore to changes in the 

rate law.  This is explained by the context sensitivity of rate constants of the 

elementary reactions that constitute an RS.30 The values of elementary rate constants 

are proportional to the fraction of reactant molecules that have ‘effective collisions’ 

per unit time. Effective collisions are those collisions that lead to a chemical reaction. 

Elementary rate constants vary by context because the number of ‘effective’ collisions 

varies by context (for given concentrations of reactants).  Many factors have been 

identified that contribute to this; for example, the reactivity of an enzyme can vary 

with the acidity of the solution or with the concentrations of other solutes that change 

that enzyme’s conformation. Also, there can be crowding and confinement effects 

that can have a large impact on the number of effective collisions. 

  

The requirement that the isolated RS be ‘appropriately formulated’ is meant to take 

account of the context sensitivity of their rate laws. van Eunen et al. (2012) is an 

example of an analysis which attempts this by using isolated reaction steps that are as 

“crowded” as the whole pathway and which have the same “effectors”. 31 However, the 

‘rate law invariance’ assumption may still sometimes be false. Consider a toy pathway 

consisting of the following steps: 

Step 1 B + C    D  

Step 2  D + E    F  

Step 3  F + G     H 

Step 1’s ‘appropriately formulated’ reaction step would include B, C, D but exclude E, 

F, G and H. The ‘rate law invariance’ assumption misses the importance of non-

                                                           
30 The rate constants for step-wise reactions will be functions of the rate constants of elementary reactions 

(plus some reactant concentrations). 
31 Crowders reduce the space available in which reactions can occur and also reduce rates of diffusion. The 

interactions between crowders and reactants are non-reactive and the interactions do not require a particular 

crowder to be present. The effects of crowding are particularly important when considering the differences 

between in vitro and in vivo dynamics. See for example García-Contreras et al. (2012). 



123 
 

reactive interactions between the constituents of a RS and the pathway’s other 

reactants and products. For example, the presence of E, F, G or H might be necessary 

before Step 1’s reactants acquire the same conformations they have in the pathway; 

and conformations can affect rates of reaction. I will term this as the ‘Other Reactants 

Objection’. 

 

It is epistemically desirable that in vivo pathways are causal law modular. Directly 

measuring the rate constants of pathway reactions is often difficult, if not infeasible 

(recall section 1.4). One of the reasons for this is that the same reactants will often be 

simultaneously involved in several reaction steps. Another reason is that it is often 

the case that the structures being investigated are very fragile, and we have very 

limited direct access without significantly disturbing their processes. Biochemists use 

the ‘invariance of rate laws’ assumption to warrant using the rate laws of in vitro 

preparations to model the corresponding in vivo mechanisms. But the in vitro 

preparations provide a very different context for the RSs they wish to analyse. There 

seem strong reasons to doubt that the correctness of the ‘invariance of rate laws’ 

assumption. In addition to the ‘Other Reactants Objection’, biochemists may simply 

not be able to adequately replicate the crowded, heterogenous environment found 

within a living cell. Evidence is therefore required as to why the ‘rate law invariance’ 

assumption is warranted in a particular study. Normally no such evidence is 

provided.  

 

How well does causal law modularity reconcile with Bechtel and Richardson’s 

analysis of pathway causal discovery? (recall section 3.3). Let us switch the type of 

modularity from near decomposability to causal law modularity. The focus is now on 

identifying the RS’s rate laws and assuming ‘rate law invariance’. This provides a 

good fit with Bechtel and Richardson’s methodology of using the twin strategies of 

decomposition and localisation to: (i) identify the functionality of each of a pathway’s 

RSs (ii) identify each RS’s working parts and (iii) ‘to determine component properties 

in isolation of each other’ (Bechtel and Richardson, 2010, p.26). However, as I will 

now explain, there is not a fit with the claim that feedback undermines modularity.  

 

For feedback to undermine a pathway’s causal law modularity, feedback would have 

to result in the ‘rate law invariance’ assumption being wrong for at least one of that 

pathway’s RSs. i.e. one of the rate laws manifested within the pathway would need to 

be not manifested by the corresponding appropriately formulated isolated RS. The 
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type of feedback that is being considered is chemical feedback, which occurs when 

the concentration of a chemical species X affects the rate of production of X (recall 

section 2.2). This feedback affects a RS by changing the concentrations of the 

constituents of that RS. Let us consider a pathway S with a step RSe consisting of a 

single elementary reaction: 

A + B → C 

Let us assume that if there is no feedback then: 

the rate law for ‘RSe in isolation’ = the rate law for ‘RSe in S’ 

What difference might feedback make to the rate law for ‘RSe in S’ ? Feedback from 

another of S’s RSs only affects the rate of RSe by changing the concentrations of A or 

B. Now it is an uncontroversial assumption of biochemistry that changes in the 

concentrations of reactants of an RS do not change its rate law.32  As such, feedback 

does not result in a different rate law being manifested in S than in the appropriately 

formulated isolated RSe. Mutatis mutandis, the same arguments apply for stepwise 

RSs which are aggregations of elementary RSs (recall section 2.2). 

  

But what if somehow the ‘uncontroversial assumption’ was wrong, and feedback led 

to some concentrations, say [A]new and [B]new at which a new rate law is manifested. 

Even this, in itself, would not undermine causal law modularity. As long as the new 

rate law is manifested by both the isolated RSe and by the RSe when it is part of S (at 

the concentrations [A]new and [B]new) then causal modularity is maintained.  

 

In my section 3.1, I stated that there are two dominant accounts of modularity found 

within the philosophy of science literature. The first is on ‘near decomposability’. My 

chapter’s starting point was Simon’s and Bechtel/Richardson’s analyses of near 

decomposability. From this I identified five types of modularity; one of these being 

causal law modularity. I have explained that the Strategy of Decomposition is based 

on the assumption that pathways are causal law modular; and that this is done by 

assuming that RSs are ‘rate law invariant’. I will now consider the second dominant 

account, which is provided by Woodward (1999, 2003, 2008, 2013). Prima facie, this 

might appear to be similar to causal law modularity, as it is also based on the 

                                                           
32 This is illustrated by the pathway ODE models referenced in this thesis having one-to-one relationships 

between their rate laws and reaction steps (see for example appendix 1), i.e. each reaction step is taken to 

have exactly one rate law. It is theoretically possible that feedback could result in a reactant having an 

extremely low concentration that would result in a different type of reaction kinetics occurring. However, 

(i) I am unaware of any pathways for which this is the case (ii) this possibility is covered by my next 

paragraph. 
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invariance of causal laws. However, it is a very different concept and has little 

relevance to the Strategy of Decomposition. 

 

 

3. 7   Woodward’s Concept of Modularity 

Woodward provides an alternative concept of modularity that is part of his 

counterfactual theory of causation. For Woodward, modularity concerns the 

invariance of causal generalisations relative to ‘ideal’ interventions (NB. Woodward 

prefers to use the term ‘causal generalisations’ rather than ‘causal laws’). The key idea 

is that in modular systems, causal generalisations are distinct and can, at least in 

principle, be changed independently of other causal generalisations. However, 

Woodward’s concept is significantly different to my ‘causal law modularity’ and is not 

assumed within the Strategy of Decomposition. 

 

For Woodward, causal relationships relate variables. Variables are properties or 

magnitudes that can have more than one value; and the values of variables are 

possessed by particular entities. (Woodward, 2003, p. 39). In summary, a variable X 

is a cause of variable Y if: 

a) there is an ideal intervention on X such that Y changes or the probability 

distribution of Y changes. 

b) the relationship between X and Y is invariant i.e. remains unchanged by the 

intervention. 

This involves the key notions of an ideal intervention and invariance, which I will 

now explain. 

 

An ‘ideal intervention’ on X with respect to Y exogenously changes the value of X, 

such that any change that occurs to the value of Y occurs only because of the change 

in the value of X. Woodward’s specification of an ideal intervention involves an 

‘intervention variable’ I which acts like a ‘switch’. When I is ‘switched on’: 

I1. I causes X. X’s value is solely a function of I. 

I2.  This means that all connections between X and its pre-intervention 

causes are ‘broken’. 

I3. I changes the value of Y, if at all, only by changing X. 

I4. I does not alter the relationship between Y and any of its causes Z that 

are not on a directed path from X to Y. (Woodward, 2008, p.202-203) 

An ideal intervention on X with respect to Y consists in I being ‘switched on’. 
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The relationship between X and Y is ‘invariant’ if it holds for at least one ‘testing 

intervention’. Let the relationship between X and Y be represented by the 

generalisation Y = G(X). A testing intervention is an ideal intervention that changes 

the value of X from, say, x0 to x1 and establishes that: 

G(x0) = y0 ≠ G(x1) = y1. 

A necessary and sufficient condition for a generalisation between variables X and Y to 

represent a causal relationship is that it is invariant (Woodward, 2003, p.250). 

 

An invariant generalisation is specified by a causal equation in which in which the 

dependent variable is the effect and the independent variables are a complete set of 

its causes. For example, consider a system S with three variables X, Y, Z, in which Y 

has a single direct cause X, and Z has two direct causes Y and X (see Fig 3.12). The 

corresponding causal equations are: 

equation (3.1)   Z = bX + cY  

equation (3.2) Y = aX  

where a,b,c are coefficients.  

 
 

Fig 3.12 The causal system corresponding to equations (3.1 - 3.2). The arrows represent direct causal 

relationships. 

 
Woodward’s concept of modularity applies to systems of causal equations. 

Woodward provides the following definition: 

“Modularity. A system of equations is modular iff (i) each equation is invariant 

under some range of interventions on its independent variables and (ii) for each 

equation, it is possible to intervene on the dependent variable in that equation in 

such a way that only the equation in which that dependent variable occurs is 

disrupted while the other equations in the system are left unchanged.” 

(Woodward, 2008, p. 221) 

A causal structure S (for example a mechanism) is modular if the system of equations 

specifying S’s causal generalisations is modular. It is important to note that 

Woodward is not claiming that modularity is relative to any set of interventions on 
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the dependent variables, only that there is at least one ideal intervention for each 

dependent variable which will not affect the correctness of the system’s other 

equations.  

 

In some of his earlier papers (e.g. Woodward, 1999) it is claimed that modularity is a 

universal characteristic of correctly specified systems of causal equations. This was 

based on the view that causal generalisations are always distinct and can, at least in 

principle, be independently changed.  It follows that an ideal intervention on a 

dependent variable (an effect) should not alter the correctness of a system’s other 

causal equations. For example, if system S is correctly specified by equations: 

equation (3.1)  Y = aX  

equation (3.2) Z = bX + cY 

then an intervention that fixes the value of Y to y (i.e. replaces equation (3.1) with Y= 

y) should not affect the correctness of equation (3.2) If an intervention on Y did lead 

to equation (3.2) being functionally incorrect, then this would mean that there was a 

causal connection between Y and Z, and S’s causal structure that had not been fully 

and accurately specified (Woodward, 2003, p.327). Woodward demonstrates how the 

causal relationships within S can be misrepresented by functionally correct 

equations, by substituting equation (3.1) into equation (3.2) giving: 

equation (3.1)  Y = aX  

equation (3.3)  Z = dX   (where d = b +ac) 

Equations {3.1, 3.3} is ‘observationally equivalent’ to equations {3.1, 3.2} in the sense 

that both imply the same patterns of correlations between X, Y and Z (Woodward, 

2003, p.330). However, equations {3.1, 3.3} misrepresents S, missing that Y is a 

direct cause of Z (see Fig 3.13). An ideal intervention that fixes the value of Y to y (i.e. 

replaces equation (3.1) with Y= y) would lead to equation 3.3 being incorrect i.e. Z ≠

𝑑𝑋 .Woodward’s general point being that of all the ‘observationally equivalent’ 

representations for a particular system, it is only the modular representation that 

correctly specifies that system’s causal structure.  

 

Fig 3.13  The causal system implied by equations {3.1, 3.3}. The arrows represent direct causal 

relationships. 
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However, Woodward’s claim about the universality of modularity has been subject to 

‘structure changing’ counter-examples. A prominent counter-example is Mitchell’s 

(2012, p. 70-84) analysis of a hypothetic gene network, in which a gene is made 

inoperative by a ‘knock out’ intervention. The network is robust, and the intervention 

leads to a global reorganisation of the entire genetic network such that it still 

produces the same output Z (see Fig 3.14). The robustness of the network means that 

it is not possible, even in principle, to carry out an intervention on the target gene 

without changing the causal generalisations that apply to the other network genes. As 

such, it appears that Woodward’s condition of modularity fails for this case. 

 

 

Fig. 3.14  The effects of knock-out experiment on the causal structure of a genetic network.  (a) is 

before intervention (b) is after intervention. (adapted from Mitchell, 2012, p. 72) 

 
One option for Woodward would be simply to claim that the above representation of 

the gene network is incomplete. For example, the knocking out of the gene would 

presumably trigger a series of chemical reactions that result in the re-organisation of 

the network; yet the causal relationships corresponding to these chemical reactions 

are not represented. Prima facie, it seems a plausible claim that if the full causal 

structure of the network were specified, then the network would have a modular 

structure.  
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Instead, Woodward reviews Mitchell’s counter-example (Woodward, 2013, p. 54-55) 

and concedes that it is plausible that some biological systems may not be modular. 

But there seems to be a considerable tension between Woodward’s theory of 

causation and his relaxing of his universality of modularity claim. This can be 

illustrated using the above gene network example. Let gene 1 be the gene that is to be 

knocked out. If gene 1 is a cause of the state of gene 2 then on Woodward’s account 

there must be an ideal intervention on gene 1 with respect to gene 2. Criterion I4 for 

an ideal intervention requires that the corresponding intervention variable I does not 

alter the relationship between gene 2 and any of its causes that are not on a directed 

path from gene 1 to gene 2. But in the example, gene 2’s causal relationships within 

the network are completely altered. Woodward does not address how his notion of 

ideal interventions is consistent with causal systems not being modular. However, 

further analysing the coherence of Woodward’s theory falls outside the scope of my 

PhD and will not be further considered.   

 

Woodward (2013) also makes clear that modularity is relative to a set of 

interventions. For a system of equations, even if there was an intervention for each 

dependent variable that does not disrupt the other equations, there may be other 

interventions on the dependent variables for which the system of equations breaks 

down. Woodward states: 

“modularity comes in degrees and is relative to a class of changes or 

interventions. Generalisation Gk characterising the causal relationships among 

one set of components might be stable under certain sorts of changes Ci in the 

causal relationships characterising other subsets of components but not under 

changes Cj ≠ Ci in these relationships. Or Gk might be stable under changes in 

some causal relationships elsewhere in the system but not under changes in 

other causal relationships. Or perhaps changes elsewhere change Gk but only in 

small or minor ways.” (Woodward, 2013, p. 52) 

 

How does Woodward’s concept of modularity fit into my analysis of the five types of 

modularity? One difference is that Woodward does not relate his criteria for 

modularity to the functional decomposition of a target system. Another difference is 

that Woodward does not seem to allow for modules consisting of multiple parts 

acting in accordance with multiple causal generalisations. Instead modules are 

characterised by their single causal generalisation. But these are both minor 

differences, and Woodward’s concept could be easily amended to incorporate these 
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points. Let us suppose they are incorporated, and let us also make the (highly 

contested) assumption that Woodward’s theory of causation is correct. Given that 

“modularity comes in degrees and is relative to a class of changes or interventions”, 

two of the types of modularity that I identify correspond to ways in which a system S 

can also be modular in Woodward’s sense: 

- Internal structural modularity, which requires that S’s subsystems are 

autonomous in the sense that changes to the internal causal relationships of a 

subsystem do not change the functionality of S’s other subsystems. Systems 

that are internal structural modular would also be modular in Woodward’s 

sense, relative to ideal interventions on the internal causal laws of single 

subsystems. 

- Causal law modularity, which requires that S’s subsystems C1…Cn are 

autonomous in the sense that they manifest local causal laws that are also 

manifested by objects of the same kind as C1…Cn that are situated in ‘isolation’. 

Systems that are causal law modular would also be modular in Woodward’s 

sense, relative to a set of ideal interventions on multiple variables that would, 

in effect, replicate a physical decomposition of S into isolated subsystems. 

Hence causal law modularity can imply ‘Woodward modularity’ but only if we 

accept Woodward’s theory of causality (and make minor amendments to his 

concept of modularity).  

The other three types of modularity are distinct from Woodward’s concept. External 

structural modularity compares S’s subsystems to other target systems which may 

have very different compositions. Few strong interactions modularity and dynamic 

modularity both concern the properties manifested by C1…Cn whilst situated within 

an un-intervened S.  

 

Woodward’s concept is not directly relevant to the causal discovery of pathways, and 

need not be further considered in my thesis. Although his concept concerns the 

invariance of causal laws, it is not specifically about the invariance between the 

properties manifested by C1…Cn and by objects of the same kind as C1…Cn that are 

situated in ‘isolation’. A system can be modular in Woodward’s sense but fail to be 

‘causal law modular’. It is only the latter that are relevant to the causal discovery of 

pathways. 
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3.8.   Conclusion 

Simon takes there to be a single concept of modularity, in which decomposability 

comes in degrees. Near decomposability is determined by the relative intensities of 

subsystem interactions and entails a conjunction of dynamic and structural 

autonomies. Simon states that the complex systems found in biology are often ND 

and it is only because they are ND that we can understand them. Bechtel and 

Richardson disagree. They think that biological systems are often only minimally 

decomposable but that the assumption of near decomposability has been 

heuristically useful in causal discovery.   

 

Bechtel and Richardson take the twin strategies of functional /structural 

decomposition and localisation to be based on the assumption of near 

decomposability. They implicitly add three criteria to Simon’s account and it is these 

criteria that do most of the work in their analysis of pathways. Bechtel and 

Richardson take pathways without feedback to be ND but state that feedback 

undermines near decomposability. 

 

I have shown that the concept of near decomposability does not apply to pathways 

because of the substantial overlap between their RSs. Furthermore, the assumption 

of near decomposability would have little relevance to in vivo pathways where there 

are substantial inter-pathway interactions. I have also shown that the claimed effects 

of feedback on near decomposability have not been established. 

 

A significant shortcoming in both Simon and in Bechtel and Richardson’s accounts is 

that neither recognizes that there is a plurality of types of modularity. Starting from 

their analyses of near decomposability I have identified five types of modularity that 

are important to the analysis of pathways or to biology more generally. These 

demonstrate that, contrary to Simon, the complex systems found in biology do not 

need to be ND to be understood. Other types of modularity can assist in this task. The 

different types of modularity can also be important for manipulating, replacing and 

reengineering of biological systems.  

 

The Strategy of Decomposition is based on an assumption of pathways being 

modular. But, contrary to Bechtel and Richardson, the assumed type of modularity is 

causal law modularity. Feedback does not undermine causal law modularity. It is 

highly desirable that pathways are causal law modular as otherwise our abilities to 



132 
 

determine pathway rate laws and explain pathway dynamics seem very limited. But 

rate laws are highly context-sensitive and some pathways may not be causal law 

modular. In such cases, the Strategy of Decomposition will fail to discover a 

pathway’s in vivo rate laws.  
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Chapter 4 -  Emergence in Biochemical Pathways 
 
 
 

4. 1  Introduction 

The term ‘emergent’ has frequently been used by scientists to describe some 

properties of non-linear biological systems. Yet they rarely define what they mean by 

emergence and when a definition is offered it is often vague. Several attempts have 

been made by philosophers to elicit an interesting concept of emergence from 

scientists' usage of the term. These have included: Wimsatt (1997), Bedau (2003, 

2008), Mitchell (2009, 2012) and Boogerd et al. (2005). A shared idea is that 

emergent properties are systemic properties which are in some way ‘novel’ relative to 

the properties of their system’s parts. But the notion of ‘novelty’ is itself open to many 

interpretations and this has contributed to the variety in the concepts of emergence 

being proposed.  

 

In what follows, I will focus on Boogerd et al.’s concept, which is based on their 

interpretation of C.D. Broad’s concept of emergence. Boogerd et al.’s concept applies 

to the dynamics behaviours of pathways and I will use the term ‘Pathway Emergence’ 

to refer to their concept. They claim that their concept is relevant to the discovery 

practices of biochemistry. There are two criteria for a pathway dynamic behaviour to 

be Pathway Emergent. The first is a ‘non-deducibility’ criterion requiring that the 

behaviour cannot in principle be deduced from a ‘Deductive Base’ that contains 

statements of the properties manifested by the pathway’s isolated parts, the 

pathway’s organisation, and laws manifested in simpler systems. The second is a 

‘qualitative difference’ criterion requiring that emergent behaviours must be 

qualitatively different to those manifested by the pathway’s isolated parts. Bechtel 

and Richardson (2010) further develop the concept of Pathway Emergence, linking it 

to nonlinearity and feedback. Boogerd et al.’s paper has been frequently cited in a 

number of prominent publications. Despite this considerable influence, it has been 

subject to very little critical evaluation. 33 

 

                                                           
33 Boogerd et al.’s paper has been cited 159 times, according to Google Scholar (18/09/2016). The only 

paper that appears to critique their concept is Theurer (2014), which focusses on problems with specifying 

the complexity of systems.  
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If pathways are Pathway Emergent, then this would seem to have significant 

consequences for the applicability of the Strategy of Decomposition. To recap, the 

strategy has three broad stages: 

1. An extraction stage; in which the target in vivo pathway is separated from its 

biological context, creating an in vitro pathway.  

2. A decomposition stage; involving decomposing the in vitro pathway into a set 

of isolated parts that can then be separately analysed. 

3. A reconstruction stage; involving using a simulation model to deduce the 

target behaviour from statements of the properties of its isolated parts, their 

arrangement, plus the Kinetic Law of Composition. 

If a pathway dynamic behaviour is Pathway Emergent, then it seems to follow that 

the deduction in the reconstruction stage will fail. Boogerd et al. appear to be 

proposing a type of emergence that is incompatible with the successful application of 

the Strategy of Decomposition.   

 

In this chapter, I argue that the claims for the existence of Pathway Emergence are 

unsuccessful. In section 4.2, I provide a literature review on emergence. In section 

4.3, I provide an analysis of Pathway Emergence. In doing so, I explain that there are 

significant gaps in the specifications provided by both Boogerd et al. and by Bechtel 

and Richardson. I then provide the best interpretation that I can find, that is 

consistent with Broad’s concept.  In section 4.4, I review the steps by which pathway 

dynamic behaviours are deduced in biochemistry. In section 4.5, I explain Boogerd et 

al.’s argument for Pathway Emergence, which takes the form of a case study. I 

identify a necessary condition for it to satisfy the non-deducibility criterion: the 

manifestation of at least one rate law in a pathway that is not manifested by its 

isolated parts. I then show that the case study does not satisfy this necessary 

condition. Hence, as it stands, the claims for Pathway Emergence are unjustified. 

 

Two options for advancing the analysis of Pathway Emergence are then considered. 

In section 4.6, I consider whether, even though it was not provided, there still is a 

plausible argument for the existence of Pathway Emergence. This is because the rate 

laws within a pathway are highly context sensitive; and these laws might sometimes 

be non-deducible from the pathway’s Deductive Base. But this argument is 

speculative, and hence the existence of Pathway Emergence has not been established. 

In section 4.7, I consider whether the concept of Pathway Emergence was meant to 

be based on a far more restrictive notion of non-deducibility than is stated in the 
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writings of either Boogerd et al. or in Bechtel and Richardson. I provide evidence that 

the ‘deductions’ referred to were intended to be restricted to only a particular type of 

law of composition that aggregates dynamic behaviours- thereby excluding 

simulations of a whole pathway. This yields an alternative concept of emergence that 

I call ‘Weak Pathway Emergence’. The case study does succeed in demonstrating 

Weak Pathway Emergence, but this is very different to Broad’s concept of emergence. 

Furthermore, the concept provides little insight into the challenges that biochemists 

face in the causal discovery of pathway behaviours. In section 4.8, I conclude that the 

claims that pathways manifest a type of emergence that challenges the Strategy of 

Decomposition are unsubstantiated. 

 

 

4. 2  Concepts of Emergence 

In this section, I review five concepts of emergence, that I take to be representative of 

the contemporary literature on emergence and which, prima facie, apply to pathway 

dynamics. These are the concepts of: Kim (1999), Wimsatt (1997), Bechtel and 

Richardson (1993)34, Bedau (2003, 2008), and Mitchell (2009, 2012). My review will 

not include the concept of Pathway Emergence, the analysis of which will begin in the 

next section. My aims are: 

i. to situate the concept of Pathway Emergence within the wider literature on 

emergence.  

ii. to illustrate that none of the other contemporary concepts challenges the 

applicability of the Strategy of Decomposition.  

 

First, let me explain some key terms. ‘Properties’ will be used to refer only to 

manifested properties, and I will include ‘behaviours’ as a subset of manifest 

properties. ‘Systemic properties’ are properties that belong to a system as a whole, 

including those that can also be possessed by its parts, such as weight. It is only 

systemic properties that can be emergent. ‘Physical monism’ is the ontological thesis 

that the only kind of substance is physical matter. All the concepts that I shall 

consider are physically monist. 

                                                           
34 I will be referring to Bechtel and Richardson’s 1993 concept of emergence as ‘Uniform Components 

Emergence’. It is conceptually distinct from the concept of Pathway Emergence. Identical accounts of 

Uniform Components Emergence are provided in both editions of Discovering Complexity i.e. in both the 

1993 and 2010 editions. When discussing Uniform Components Emergence, I have chosen only to 

reference the 1993 edition; this is to avoid any confusion with Bechtel and Richardson’s later analysis of 

Pathway Emergence, which is entirely in the 2010 edition of Discovering Complexity.  
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I will use the following notation, let: 

(i)  S be any system composed of parts C1…Cn in arrangement R 

(ii)  Ps be a systemic property of S 

(iii) P1…Pn denote the sets of properties that C1…Cn manifest within S 

(iv)  I1…In denote the sets of properties that objects of the same kind as C1…Cn 

manifest when in isolation. 

 

A ‘law of composition’ equates a systemic property to an aggregate function of its 

parts’ properties. I will take laws of composition to have the following form:  

 If parts C1…  Cn have properties P1…Pn, and S consists of these parts in 

arrangement R, then S has property 𝑃𝑆 = fR(P1, …,Pn), for some fR. 

where fR may be either a linear or a nonlinear function. An example of a law of 

composition is that the mass of S is the sum of the masses of its parts. Another 

example is the ‘Kinetic Law of Composition’ (recall section 2.2.2). 

Concepts of emergence can be classified into two general types: ‘strong emergence’ 

and ‘weak emergence’.  Strongly emergent properties are ‘ontologically irreducible’ to 

more fundamental properties and laws from which they emerge (Vintiadis, 2016). 

They have novel causal powers that are not present in their parts. A necessary 

condition for a systemic property Ps to be strongly emergent is that it must be in 

principle non-deducible, relative to a ‘Deductive Base’ that contains statements of S’s 

part properties, laws that apply to the parts, and the arrangement of the parts .35 But 

note, this in principle non-deducibility is an epistemological criterion for identifying 

what is a metaphysical type of emergence (Vintiadis, 2016; O’Connor and Wong, 

2015; McLaughlin, 2008, p. 55). Non-deducibility is a consequence of an emergent 

property being a novel addition to the ontology of the world. Hence, a Ps is non-

deducible because it is strongly emergent, it is not strongly emergent because it is 

non-deducible. Strong emergence is the type of emergence that was originally 

proposed by the British Emergentists, including Broad. For example, Broad thought 

that the behaviour of sodium chloride could not be deduced from the properties of 

sodium and chlorine in isolation (Broad, 1925 , p. 59). Today there is considerable 

                                                           
35Whenever my thesis refers to a property being deducible from a Deductive Base, it is to be understood 

that this is shorthand for there being a valid argument whose premises are statements of there being the 

cited properties, laws and organisational relationships and whose conclusion is a statement of there being 

the target systemic property.  
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scepticism as to whether there are any genuine cases of strong emergence. For 

example in his analysis of British Emergentism, McLaughlin states that there is ‘not a 

scintilla of evidence that there are emergent causal laws or powers’ (McLaughlin, 

2008, p. 23). By contrast, Chalmers (2006, p. 247) thinks there is exactly one clear 

case of strong emergence, and that is the phenomenon of consciousness. 

 

Different specifications for S’s Deductive Base lead to different concepts of strong 

emergence. For example, Pathway Emergence and Kim’s concept are both examples 

of strong emergence, using the following respective Deductive Bases: 

  

 
 

Fig 4.1 Example of Deductive Bases of strong concepts of emergence 

 
Weak emergent concepts do not require in principle non-deducibility. Instead, a 

necessary condition for a Ps to be emergent is that it is ‘unexpected’ in some specified 

sense, relative to a specified Deductive Base for S. Different specifications of 

‘unexpected’ and of S’s Deductive Base lead to different concepts of weak emergence. 

Unexpectedness is often cashed out, at least in part, by highlighting some aspect of 

the deduction of Ps that is taken to be philosophically interesting. For example, in 

Bedau’s concept a necessary condition for Ps to be weakly emergent is that it is 

deducible, but only by the use of simulation.36  

                                                           
36 Simulation is a form of deduction using µ-recursive functions. According to the Church-Turing thesis, the 

class of µ-recursive functions (a subset of the class of partial recursive functions) is exactly the class of 

functions which can be computed by Turing machines. For a discussion of this see Boolos, Burgess and 

Jefferey (2007). This came from a personal communication with my supervisor J. Alexander. 
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A further distinction is made between ‘diachronic’ and ‘synchronic’ concepts of 

emergence. Diachronic concepts are concerned with how an emergent property is 

produced i.e. with the dynamic history that leads to the emergent property. A 

diachronic emergent Ps temporally evolves from S’s earlier non-emergent state. 

Diachronic concepts have been proposed to try to specify the sense in which the term 

‘emergence’ is used in complexity science. For example, traffic jams (Bedau, 2008, p. 

448) and the patterns formed by raiding army ants (Camazine et al., 2001, p. 257) are 

putative examples of diachronic emergence. Diachronic concepts are usually also 

weak concepts of emergence (Vintiadis, 2016).  By contrast, synchronic concepts are 

‘timeless’ (Stephan, 1999) in that Ps is not compared with the properties that its parts 

C1…  Cn manifest at some earlier (or later) time. There are two types of synchronic 

concept found in the emergence literature. First, there are concepts that compare Ps 

with its coexisting part properties P1…Pn ; for example consciousness is claimed to be 

emergent relative to the part properties of its co-existing neurons. Second, there are 

concepts that compare Ps with properties manifested by objects of the same kind as 

C1…  Cn that are situated within other systems that are simpler than S; for example, 

Broad’s comparison of sodium chloride with properties manifested by chorine and 

sodium in isolation. 

 

Of the concepts that I shall now consider: Kim (1999) is a synchronic concept of 

strong emergence; Wimsatt (1997) and Bechtel and Richardson (1993) are both 

synchronic concepts of weak emergence, and Bedau (2003, 2008) and Mitchell 

(2012) are both diachronic concepts of weak emergence. Each of the concepts will be 

relevant to my later analysis of Pathway Emergence. 

 

Kim (1999) considers a paradigm formulation of strong synchronic emergence. A Ps 

is emergent iff it is: 

- supervenient. A systemic property Ps supervenes on properties P1…Pn  iff 

whenever anything has P1…Pn  it necessarily has Ps. 

- non-deducible from a Deductive Base containing statements of  P1…Pn , 

arrangement R and laws of composition manifested in simpler systems than S 

(henceforth: the Coexisting Systemic / Part Properties Deductive Base).  Only 

laws of composition manifested in simpler systems are allowed, so as to 

prevent the concept of emergence from being vacuous. For example, if 
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statements of the laws of composition that are actually manifested by S are 

included, then any Ps would be deducible. 

- causally efficacious. Ps should have novel causal powers that are functionally 

irreducible to the causal powers of its parts C1…  Cn in S. This involves 

‘downward causation’ whereby Ps can cause the instantiation of part 

properties. 

 

An emergent property Ps is novel because of its novel causal powers. This is a 

synchronic concept of emergence as P1…Pn and Ps, are simultaneously manifested by 

S. Having specified his concept of strong emergence, Kim then provides several 

convincing arguments against its occurrence. I will focus on just two of these 

arguments. The first claims that the concept of downward causation is incoherent. 

The second claims that if a systemic property Ps can be functionally defined, then it 

will be deducible from its Deductive Base. 

  

Kim’s Causal Exclusion Argument can be roughly summarised as follows: let there be 

two systemic properties M and M* which supervene on P and P* respectively. Let 

there be a putative causal relationship where an instantiation of M is the cause of an 

instantiation of M*, which I will denote by M=> M*. Given that M=> M* and M 

supervenes on P, Kim claims that it follows that P=> P*. The situation can be 

represented as: 

 

Fig. 4.2  Kim’s causal exclusion argument. 

Kim (1999, p. 24) stipulates his ‘principle of downward causation’: to cause the 

instantiation of any property (other than those at the bottom level) you must cause 

the constituent base from which it arises.  Hence M can only be the cause of M* by 

causing P*. But P alone is sufficient to cause P* which realises M*; Kim concludes 

that P does all the causal work, and that M is epiphenomenal and irrelevant to 

causing M*. Kim (2006, p. 548) states that “Downward causation is the raison d'être 

of emergence, but it might well turn out to be what in the end undermines it”.  
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Kim’s second argument is based on the functional reduction of systemic properties, 

such that any causally efficacious Ps is identified with its realisers in S i.e. with parts 

C1…Cn. and their properties P1…Pn . There are three steps: (Kim, 1999, p. 10-11) 

1. Define (or redefine) Ps in terms of its causal role i.e. in terms of the properties 

that cause Ps to be instantiated and the properties that Ps instantiates. 

2. Find the realisers of this causal role at the level of S’s parts. 

3. Find a theory at the level of S’s parts that explains how they fulfil the causal 

role constitutive of Ps. 

Kim claims that if a Ps is functionalisable then it can be reduced to the functions 

performed by S’s parts and is therefore not emergent. Kim concludes that 

emergentism may be an empty concept, but that the most promising candidate for 

being emergent are the phenomenal qualities of consciousness which he thinks may 

be ‘non-functionalisable’ (Kim, 1999, p. 18).  

 

Mitchell (2009, 2012) rejects Kim’s claim of the extent to which systemic properties 

are functionally reducible. She notes that Kim is making the assumption that there is 

always a unique and complete description of a Ps in terms of its lower level. However 

descriptions are idealisations or abstractions, they are always incomplete: 

“Any representation – be it linguistic, logical, mathematical, visual or 

physical - stands for something else. To be useful, it cannot include 

every feature in all the glorious detail of the original, or it is just another 

full blown instance of the item it represents. Something must be left out, 

and what is left out is a joint product of the nature of the representing 

medium (Perini, 2005) and the pragmatic purposes the representation 

serves……What now of the mapping between two different descriptions 

of a phenomenon, one higher level, one microstructural?” (Mitchell, 

2009, p. 31) 

Hence Kim’s functional reduction strategy is claimed to fail; there is no reason to 

think that a functional specification of a Ps will always be identical with a 

corresponding functional specification of S’s parts’ operations (Mitchell, 2012, p. 

178). 

 

Mitchell’s argument seems compelling when considering reductions between 

different domains of science; for example, reducing biochemical phenomena to the 

entities, properties and laws described by physics. However, I do not take it to apply 
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to functional reductions of pathways. This is because the functional descriptions of 

both the higher and lower levels will be made using the same theoretical vocabulary 

and referring to the same types of entities. For example, a functional specification of 

the glycolytic pathway will include terms for the quantities of reactants into the 

pathway (e.g. glucose, ATP, ….), the quantities of the products out of the pathway 

(e.g. pyruvate, ATP, …..) and so forth. Likewise, the functional specifications of each 

of S’s reaction steps will include terms for the quantities of reactants into that step 

(e.g. glucose, ATP) and products out of that step (e.g. glucose-6-phosphate, ADP, H+) 

and so forth. The mapping between the levels is clearly unproblematic. Indeed, 

Bechtel and Richardson’s account of causal discovery of pathways centers on the 

functional decompositions of pathway behaviours that biochemists actually carry out 

(recall section 3.3).  

 

I take Kim’s arguments to succeed in the case of pathways. Pathway do not have Ps 

with novel causal powers that are functionally irreducible to the causal powers of its 

parts C1…  Cn in S. As we shall see, Boogerd et al. also support Kim’s conclusions, and 

incorporate the assumption that pathway dynamic behaviours are deducible from 

their Coexisting Systemic / Part Properties Deductive Base into their analysis of 

Pathway Emergence. 

  

I will now consider some weak concepts of emergence. In weak concepts, an 

emergent property Ps is novel in the sense of being ‘unexpected’.  I will start with 

Wimsatt (1997) and Bechtel and Richardson (1993)’s synchronic concepts of 

emergence. Both are intended to draw attention to the dependence that a Ps may have 

on (i) the organisation of a system’s parts and (ii) the interactions between the 

system’s parts. 

 

In Wimsatt’s concept, emergence is defined negatively, as corresponding to a failure 

of aggregation. Emergent properties are systemic properties that are not ‘mere 

aggregates’ of their part properties. For a Ps to be aggregative with respect to a 

decomposition of S, it must satisfy the following equation and meet four conditions 

(Wimsatt, 1997, p. S376): 

𝑃𝑆 = fR(P1, …,Pn)  

1. Intersubstitution.  – Ps is invariant to rearranging of its parts or their inter-

substitution.  
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2. Size scaling. – Ps  remains qualitatively similar (identity or changing only in 

value) upon the adding or subtracting of component parts. 

3. Decomposition and reaggregation – Ps  is invariant under operations of 

decomposition and recomposition of its parts. Wimsatt states that this 

‘suggests an associative function’ (Wimsatt, 1997, p. S376) i.e. that the 

grouping of variables does not matter, for example for variables a,b,c  the 

following multiplications are equivalent: (a x b) x c = a x (b x c)  

4. Linearity –  fR must be a linear function. This requirement means that there 

are no cooperative or inhibitory interactions between the parts (Wimsatt, 

1997, p. S376).  

 To be ‘truly aggregative’ Ps must satisfy these conditions for all possible 

decompositions of S.  

  

Wimsatt recognises that the conditions for aggregativity are very demanding and will 

rarely be met. They require that Ps depends on P1,…,Pn  in a highly atomistic way. 

Consequently, emergence is ubiquitous. Amongst the examples of emergence that 

Wimsatt cites are traffic jams, the cooperative binding of oxygen by haemoglobin and 

even a heap of stones (as its shape and stability will depend on how the stones are 

organised). Different forms of emergence can then be classified by identifying the 

different ways in which the four conditions for aggregation fail. 

Relative to Wimsatt’s concept of emergence, the dynamic behaviours of pathways are 

emergent. The behaviours of a pathway’s parts (i.e. its reaction steps) are highly 

inter-dependent. Pathways are nonlinear systems, whose dynamic behaviours cannot 

be deduced by merely aggregating the properties of its parts. However, this type of 

emergence does not challenge the applicability of the Strategy of Decomposition to 

pathways. In the decomposition stage, each part (i.e. reaction step) is analysed in 

isolation, but the behaviours of the whole pathway are not then assumed to be some 

linear aggregation of the behaviours of the reaction steps. Instead in the 

reconstruction stage, a simulation model is used that is meant to fully captured the 

nonlinear interactions between the reaction steps. 

 

Bechtel and Richardson (1993) propose a concept of weak emergence that I will term 

as ‘Uniform Components Emergence’. Some biological networks may be emergent in 

the sense that they have a systemic property whose values are determined solely by 

the organisation of the network, rather than by distinctive properties of their parts 
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(Bechtel and Richardson, 1993, p. 202-229). They cite Kaufmann’s (1993) model of 

how genetic regulatory systems might function as a result of the patterns of 

connections between genes, with each gene acting as a Boolean operator. In such 

cases the isolated parts would not perform tasks that would feature in a functional 

decomposition of the whole system. According to Bechtel and Richardson, the 

Strategy of Decomposition would fail in such cases: 

“analysing the components in isolation throws no light on the 

phenomenon under investigation…..[such] systems thus defy some of 

our traditional tools for studying natural systems, for these tools rely 

on being able to decompose the system, work on components singly, 

and then build up again to understand the whole.” (Bechtel and 

Richardson, 1993, p. 228) 

For Wimsatt, emergence corresponds to there being any dependence between a Ps 

and S’s organisation R. For Bechtel and Richardson, Uniform Components 

Emergence corresponds to Ps being solely dependent on S’s organisation R (given 

that its components have certain uniform properties). Clearly pathways are not 

Uniform Components emergent, given they are not networks and have parts with 

very different properties. However, I have included this concept in my review as it 

illustrates how Bechtel and Richardson link emergence to the failure of the Strategy 

of Decomposition. This idea is carried forward, and incorporated into the concept of 

Pathway Emergence (Richardson is one of the co-authors of Boogerd et al. (2005)). 

 

Bedau (2003, 2008) and Mitchell (2009, 2012) both propose diachronic concepts of 

weak emergence. They both cite paradigm examples of complex behaviours that are 

taken from the complexity science literature. For example, a flock of birds might be 

flying without any apparent formation but over time a vee shaped pattern arises. The 

vee shaped pattern is taken to be a diachronic emergent property. 

 

Bedau’s key proposal is that emergent systems are ‘complex’ in the sense that their 

dynamic behaviours are ‘computationally incompressible’ and can only be deduced 

by the use of simulation. There can be no ‘short-cut derivation’ (Bedau, 2003, p. 15) 

of a target behaviour, it ‘cannot be determined by any computation that is essentially 

simpler than the intrinsic natural computational process by which the system’s 

behaviour is generated’ (Bedau, 2003, p.10).  
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According to Bedau, a Ps manifesting at time t, is weakly emergent iff it is: 

1. nominally emergent. A nominally emergent property is a systemic property 

that cannot be possessed by its parts. For example, ‘being a circle’ is a nominal 

emergent property as none of a circle’s parts are a circle; a circle being 

composed of individual points that do not have shape.  

2. locally reducible. This means that the value of Ps at any particular time t is 

required to be deducible from statements of the part properties manifested at 

that time t, the arrangement R of C1…Cn at that time t and the laws of 

composition manifested in simpler systems than S (i.e. Ps is deducible relative 

to S’s Coexisting Systemic / Part Properties Deductive Base). The reason why 

this type of reducibility is termed as ‘local’ is because Bedau wants to 

emphasis the context sensitivity of the properties manifested by C1…Cn . For 

example Ps might not be deducible using statements of the properties 

manifested by objects of the same kind as C1…Cn  which are not located in S 

(Bedau, 2003, p. 14). 

3. deducible, but only by simulation. This deducibility is relative to a Deductive 

Base stating: 

 the properties that C1…Cn manifest at an earlier time t1 

 the arrangement of C1…Cn at an earlier time t1 

 the laws of nature manifested in S 

 initial conditions 

 boundary conditions 

where t1 can be any earlier time in S’s temporal evolution. Bedau describes the 

use of simulation to perform such deductions as ‘‘crawling the micro-causal 

web’ of S and ‘aggregating and iterating the earlier local micro-interactions 

over time’ (Bedau, 2008, p. 446). 

Bedau has formulated a concept of emergence that is meant to correspond to one of 

the key ideas being researched in complexity science: that the complexity of a system 

can be measured by its ‘algorithmic complexity’. For example, Kolmogorov 

Complexity has been proposed as a possible measure. The Kolmogorov Complexity of 

an object is the shortest computer program that would generate a description of that 

object. For example, consider the following string of text: 

ACACACACACACACACACAC    (string 1) 

Only a short program specifying ‘Print AC ten times’ is needed to describe this string. 

Now consider the randomly generated string: 
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A C B C G C B A A G A B G G A A B A C   (string 2) 

Describing this string would require a longer program: Print “A C B C G C B A A G A 

B G G A A B A C”. String 2 is taken to be more complex because the description of it 

cannot be compressed. 

Bedau’s concept can be understood, at least in part, as an attempt to capture the idea 

of algorithmic complexity and apply it to Nature’s nonlinear physical systems. 

According to Bedau, weak emergence is commonplace; in biology it:  

“seems to characterize a vast number of global properties of complex systems in 

molecular and cellular biology, including regulatory gene networks, metabolic 

networks, and the process by which proteins fold into three-dimensional 

structures.” (Bedau, 2008, p. 454) 

Relative to Bedau’s concept, the dynamic behaviours of pathways seem to be 

emergent. But as with Wimsatt’s concept, this type of emergence does not challenge 

the applicability of the Strategy of Decomposition, but simply highlights the need for 

simulation modelling. 

 

Mitchell’s account of weak emergence focusses on self-organising systems: 

“Self-organization and feedback make scientific sense of emergent features 

of complex systems.” (Mitchell, 2012, p. 184).  

Mitchell does not provide a definition of self-organisation but her paper makes 

several references to Camazine et al. (2003) who provide the following 

definition: 

“Self-organisation is a process in which a pattern at the global level of a 

system emerges solely from numerous interactions among the lower-level 

components of the system. Moreover, the rules specifying interactions 

among the system’s components are executed using only local 

information, without reference to the global pattern.” (Camazine et al., 

2003, p. 8). 

Self-organising systems are one of the main types of systems studied in complexity 

science. In self-organised systems, there is no central controller, instead the 

components’ behaviours are coordinated through multiple nonlinear feedback loops. 

(Camazine et al., 2003, p.16-26).  

Mitchell cites Wimsatt’s analysis of emergence and states that “emergence is 

identified with certain types of non-aggregative compositional structures” (Mitchell, 
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2012, p. 179). However, in contrast to Wimsatt, Mitchell is proposing a diachronic 

concept of emergence. Kim’s explication of emergence is criticised for being too 

static and not capturing the dynamic nature of emergence.  Mitchell’s main 

examples of emergent behaviour are the self-organising behaviours of flocks of birds 

and of bees’ storage of honey in hives. She also cites Tyson (2003), whose paper is 

on pathway dynamic behaviours. 

According to Mitchell, there are three key requirements for a property to be 

emergent:  downward causation, unpredictability and novelty (Mitchell, 2012, p. 

181). Mitchell does not explain her novelty requirement, but it appears to include: (i) 

the requirement that properties be nominally emergent and (ii) that emergent 

properties are causally efficacious via downward causation (Mitchell, 2012, p. 179). 

Mitchell explains how feedback can result in downward causation: 

“negative and positive feedback both stabilize phenomena at a higher 

level and constrain the behavior of the components at the lower level. 

Feedback provides an operational understanding of one type of 

downward causation where system level properties constrain and direct 

the behavior of the components.” (Mitchell, 2012, p. 182) 

So characterised, downward causation does not pose a challenge to the Strategy of 

Decomposition. For example, feedback can lead to pathways having such topological 

structures as limit cycles (recall 2.2.4). These structures act as constraints on the 

behaviours of the parts of their systems, and can be portrayed as ‘directing’ a 

pathway’s reactants into patterns of rising and falling concentrations. But this is all 

explained by the regular causal interactions between reactants that are described by 

the pathway’s reaction rate laws (and by the Kinetic Law of Composition that 

combines these laws). There are no additional higher level laws that coordinate the 

reactions and orchestrate a pathway’s dynamic behaviours. This is illustrated by the 

specification of Teusink et al.’s (2000) model of the glycolytic pathway; the model 

consisting solely of the reaction rate laws and the Kinetic Law of Composition (see 

my appendix 1). In the case of pathways, the type of downward causation that 

Mitchell is characterising, is fully captured by the rate laws that the Strategy of 

Decomposition aims to discover. 

The only grounds Mitchell cites for unpredictability are that some deterministic 

non-linear systems have sensitive dependence to initial conditions (henceforth: 

sensitive dependence), which she states is often associated with chaotic systems 
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(sensitive dependence is a necessary but insufficient condition for a system to be 

chaotic (Smith, 1998, p.170)). Although not specified, I take it that this 

unpredictability is relative to the same Deductive Base that I specified in my account 

of Bedau’s concept. In summarising the emergent behaviours found in self-

organising systems, Mitchell states that: 

“Interactions are often chaotic, displaying both positive and negative 

feedback, which can generate novelty in the overall response which is not 

predictable from the intrinsic properties of the individual components.” 

(Mitchell, 2012, p. 184) 

 

Before I assess this part of Mitchell’s concept, I first need to explain sensitive 

dependence. The unpredictability due to sensitive dependence is that: “any bundle 

of initial conditions spreads out more than a specific diameter representing the 

prediction accuracy of interest” (Werndl, 2009, p. 202). In such cases, a dynamic 

behaviour cannot be predicted using our knowledge of initial conditions and the 

dynamic laws of that system. This is because immeasurably small differences in 

initial conditions can lead to significantly different outcomes. Hence Mitchell’s claim 

of unpredictability is a claim about predictability in practice. However, Mitchell is 

incorrect in taking sensitive dependence (or chaos) to be prevalent in biological self-

organising systems. In systems with sensitive dependence, small perturbations can 

lead to significantly different outcomes. This is not biologically viable, given the 

noisy environments in which biological systems exist. Biological systems would not 

be able to survive if their pathways were so highly sensitive to small perturbations. 

Camazine et al. notes that “natural selection tunes the parameters of living systems 

to avoid chaos”. Boogerd et al. (2005, p.143) take pathway dynamic behaviours to 

only be chaotic in pathological conditions. Relative to Mitchell’s diachronic concept, 

pathway dynamic behaviours do not appear to be emergent, at least in non-

pathological cases.  

This completes my review of the contemporary literature on emergence. None of the 

concepts considered challenges the applicability of the Strategy of Decomposition to 

pathway dynamic behaviours. The concept of Pathway Emergence was formulated 

against the same background of ideas that motivated the weak concepts of emergence 

that I have just considered. This was, and remains, a background in which the 

discipline of complexity science analysed systems that are: 

- nonlinear 
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- have multiple feedback loops 

- taken to be computationally incompressible. 

And in which complexity scientists term such system’s dynamic behaviours as 

‘emergent’. A further background to the concept of Pathway Emergence is Bechtel 

and Richardson’s concept of Uniform Components Emergence, which links 

emergence to a failure of the Strategy of Decomposition. As we shall now see, the 

concept of Pathway Emergence is very different to these weak concepts.  

 

 

4.3   The Concept of Pathway Emergence 

The concept of Pathway Emergence is based on Boogerd et al.’s (2005) interpretation 

of Broad. It is claimed to be a strong concept of emergence and applies to pathway 

dynamic behaviours. A key requirement for Pathway Emergence is for a pathway to 

have a systemic property that is ‘non-deducible’. Boogerd et al. state that a systemic 

property is emergent if it: 

“cannot be ‘deduced’ from the behavior of parts, together with a ‘complete 

knowledge’ of the arrangement of the system’s parts and the properties 

they have in isolation or in other simpler systems.” (Boogerd et al., 2005, 

p. 135). 

The concept was further developed by Bechtel and Richardson (2010) who link 

Pathway Emergence with pathway nonlinearity and the presence of feedback loops. 

But there are significant gaps and ambiguities in the two accounts provided of 

Pathway Emergences. This section provides the best interpretation that I can find for 

the specification of Pathway Emergence. This is primarily based on Boogerd et al. 

and Bechtel and Richardson’s explicit statements on Pathway Emergence but it also: 

(i) makes use of Broad’s writings to help fill in some gaps (ii) includes a criterion for 

Pathway Emergence that has only implicitly been included in their analyses. The 

section is in two parts; the first focuses on Boogerd et al.’s interpretation of Broad, 

the second explains how this is applied to pathway dynamics. 

 

In Mind and Its Place in Nature Broad formulates a strong synchronic concept of 

emergence. Chapter 2 of his book is entitled “Mechanism and its Alternatives” and is 

devoted to considering the possibility of emergence “before the level of life” (Broad, 

1925, p. 44). He states that he cannot give a conclusive example of emergentism but 

“it is logically possible with a good deal in its favour” (Broad, 1925, p. 59). He also 
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thinks that chemistry “seems to offer the most plausible example of emergent 

behaviour” (Broad, 1925, p. 65). Broad explains emergence by contrasting it to what 

he calls ‘mechanistic theory’. Consider any system S composed of parts C1…Cn in 

arrangement R. According to mechanistic theory, systemic properties of S can be 

deduced, at least in principle, from a Deductive Base containing statements of: 

1. properties that objects of the same kind as C1…Cn manifest when in simpler 

systems than S and   

2. arrangement R and 

3. laws of composition manifested in simpler systems than S and 

4. other laws of nature manifested in simpler systems than S. 

Broad cites artificial machines such as clocks as being paradigm examples of where 

the mechanistic theory successfully applies (Broad, 1925,  p. 460). The behaviour of a 

clock can be deduced from the behaviours and organisation of its springs, wheels etc. 

together with the appropriate laws of physics and laws of composition. 

 

For Broad, a systemic property Ps of system S is emergent if and only if it cannot 

be deduced, even in principle, from its Deductive Base. A Deductive Base is 

restricted to statements of properties and laws manifested in simpler systems 

than S. This captures the idea that emergent properties arise as the complexity 

of systems increases. ‘Simpler systems’ are taken to exclude systems of a similar 

complexity to S. This non-deducibility is not relative to our cognitive abilities or 

the current state of science, even a ‘mathematical archangel’ with ‘complete 

knowledge’ could not deduce an emergent property from its system’s Deductive 

Base (Broad, 1925, p. 70, and p. 61).  

Broad is proposing a metaphysical concept of emergence (Vintiadis, 2016; 

O’Connor and Wong, 2015; McLaughlin, 2008, p. 55; Wilson, 2015, p. 36). The 

requirement for in principle non-deducibility is an epistemological criterion for 

a metaphysical phenomenon. As Vintiadis (2016) explains:  

“The impossibility of prediction which he [i.e. Broad] cites as a 

criterion of emergence is a consequence of the metaphysical 

structure of the world; the mathematical archangel could not have 

predicted emergent properties not because of complexity or 

because of the limits of what may be expressed by lower-level 

concepts, but because emergent facts and laws are brute facts or 

else are laws that are in principle not reductively explainable.” 
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Boogerd et al.’s interpretation of Broad is inconsistent as to which properties should 

be stated in S’s Deductive Base. Their initial analysis refers to properties that objects 

of the same kind as C1…  Cn manifest when situated within other systems that are 

simpler than S (I will use the notation O1…On to refer to the sets of these properties). 

However, their paper then switches to referring to properties I1…In , that objects of 

the same kind as C1…Cn manifest when in isolation. Both options lead to viable 

notions of emergence. I will interpret Boogerd et al. as taking the properties to be 

I1…In., although mutatis mutandis, my arguments against the occurrence of Pathway 

Emergence will apply if the properties are taken to be  O1…On. I have chosen I1…In.  

as this is consistent with: (i) the bulk of their paper, which contains multiple 

references to properties of parts in isolation, (see for example (Boogerd et al, 2005, p. 

149, p. 150, p. 156- 159). (ii) their case study which contrasts an ‘emergent system’ 

with its ‘subsystems studied in isolation’ (Boogerd et al., 2005, p. 156) (iii) Bechtel 

and Richardson’s analysis in Discovering Complexity of the Strategy of 

Decomposition; which entails discovering I1…In  in order to explain a target Ps.37 

 

Boogerd et al. interpret Broad as having two conditions for emergence, one for each 

stage of deducing a systemic property 𝑃𝑆. In the first stage S’s Deductive Base is used 

to deduce the properties P1….Pn that C1…  Cn manifest within S. In the second stage 

properties P1….Pn, arrangement R and laws of composition are used to deduce 𝑃𝑆. My 

following diagram illustrates the two stages: 

                                                           
37 Theurer (2014) interprets Boogerd et al. as selecting  O1…On which is characterised as being the 

properties of ‘less complex systems’ than S. The paper then focuses on the problems of complexity being 

‘ill-defined and difficult to measure’ and argues that the concept of Pathway Emergence is therefore 

‘rendered unacceptably relative and epistemic’ (Theurer, 2014, p. 283). If Theurer’s argument is accepted, I 

take it to equally apply to Broad’s concept and to many other strong concepts of emergence. 
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Fig 4.3  Boogerd et al.’s interpretation of Broad’s concept of emergence  

 
If there is a part property of S that cannot be deduced in stage one, then any systemic 

property of S that is a function of that part property is also taken as being non-

deducible. This is the ‘horizontal condition’ for emergence. If there is a systemic 

property of S that cannot be deduced in stage two, then this is the ‘vertical condition’ 

for emergence. The following example illustrates the two conditions. 

 

Consider a system S consisting of parts C1, C2 which are organised in relation R. Let 

C1 have a property Q1 that is manifested when C1 is situated within S, but is not 

manifested when an object of the same kind as C1 is in isolation i.e. Q1∈ P1, Q1∉ I1. 

 

In the first stage, the horizontal stage, the properties P1, P2 that C1, C2 manifest when 

situated within S, are deduced from S’s Deductive Base: 

1. I1, I2, R and 

2. laws of composition manifested in simpler systems than S and 

3. other laws of nature manifested in simpler systems than S. 

If Q1 cannot be deduced from the above, then any systemic property of S that is a 

function of Q1 is also taken as being non-deducible and hence emergent.  

 

The second stage, the vertical stage, of the deduction starts with P1, P2 and R.  S’s 

systemic properties are deduced from: 

1. P1, P2, R and  

2. laws of composition manifested in simpler systems than S 

(NB. This is the Coexisting Properties Deductive Base used in Kim’s (1999) analysis). 

Any systemic property of S that cannot be deduced from the above is emergent. 
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It is only the horizontal condition that Boogerd et al. take to be relevant to the 

occurrence of Pathway Emergence. Boogerd et al. do not believe that vertical 

emergence occurs in biochemistry. (Boogerd et al., 2005, p. 142). They follow Kim 

(1999) and take it that the only plausible examples of vertical emergence would be 

properties that cannot be functionally defined, such as the qualitative character of 

our phenomenal experiences. For Boogerd et al., biochemical systemic properties can 

be functionally defined and hence can be ‘vertically deduced’. Boogerd et al. make a 

related point that biochemical systemic properties have mechanistic explanations 

(e.g. Machamer et al. (2000)) and that this entails rejecting vertical emergence. 

“Fulfilling the vertical condition means there would be a failure of mechanistic 

explanation. The properties (and behaviours) of the system would be inexplicable in 

terms of the properties (and behaviours) of the parts as they function in the system” 

(Boogerd et al. 2005, p. 136). Instead Boogerd et al. propose a concept of Pathway 

Emergence that is consistent with emergent properties being “both functionalizable 

and mechanistically explained” (Boogerd et al. 2005, p. 140).  

 

Boogerd et al. summarise their analysis of Broad: 

“We associate Broad’s emergence with a strong notion of emergence..[that 

includes].. synchronic unpredictability. In the form we have identified and 

described, synchronic unpredictability means that a systemic property is 

not predictable, even in principle, from the properties of subsystems in 

isolation.” (Boogerd et al., 2005, p.159) 

This concludes my analysis of Boogerd et al.’s interpretation of Broad.  

 

Boogerd et al. now apply their interpretation of Broad’s concept to the dynamic 

behaviours of pathways. A ‘pathway dynamic behaviour’ is a trajectory in that 

pathway’s phase space; where the phase space has a separate dimension for the 

concentration values of each of the pathway’s chemicals.38 Dynamic behaviours are 

the systemic properties that are meant, at least sometimes, to be Pathway Emergent.  

 

Boogerd et al. do not discuss whether emergence is relative to a particular 

decomposition of S. However, their case study shows that they allow for multiple 

decompositions. Boogerd et al. take the basic parts of a pathway to be its reaction 

                                                           
38  This comes from a personal communication with Bruggeman, who is one of the co-authors of Boogerd et 

al. 
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steps. They also consider sequences of reaction steps from S to be parts under 

alternative possible decompositions. I will take it that a dynamic behaviour will need 

to be non-deducible relative to any decomposition where: 

a) S consists of C1…Cn in some arrangement R and  

b) Each Ci is either a reaction step of S or a sequence of reaction 

steps of S and 

c) No Ci is of similar complexity to S. 

I will refer to any C1…Cn that satisfies these criteria as being an ‘admissible 

decomposition’ of S. For example, if S consists of three reaction steps then there are 

three admissible decompositions: 

 

 
 
Fig 4.4   Illustration of possible decompositions of a pathway with three reaction steps.  

 
 
A Deductive Base includes statements of the properties, arrangement and laws 

corresponding to any such decomposition. 

 

In order to be able to deduce a particular dynamic behaviour, it is necessary to 

include a statement of the state of that pathway for at least one time point. Boogerd 

et al. therefore implicitly expand Broad’s Deductive Base so that it includes initial 

conditions. Boogerd et al.’s analysis concerns ‘open’ pathways, whose behaviours are 

dependent on net chemical flows entering and exiting that pathway. They therefore 

further expand Broad’s Deductive Base to include boundary conditions.  
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In the 2nd edition of Discovering Complexity Bechtel and Richardson develop the 

concept of Pathway Emergence. They state that a system can ‘reasonably be counted 

emergent’ (Bechtel and Richardson, 2010, p. xlvi) if two conditions are met: 

(i) There is feedback. “The component operations will then systematically 

depend on each other and to the extent that feedback is system-wide, 

these dependencies will result in operations that are specific to the 

system…. the behavior of components within a system will not be 

“predictable” from the behavior in significantly simpler systems.” 

(Bechtel and Richardson, 2010, p. xlvi). 

(ii) “the nonlinearities affecting component operations must in turn affect 

the behavior of the system. For example, such organization can 

introduce oscillatory states or instabilities that would not be present in 

significantly simpler systems or linear systems.” (Bechtel and 

Richardson, 2010, p. xlvi). 

The rationale for these two conditions is not explained. Although Bechtel and 

Richardson do not state it, both are necessary conditions both for stable limit cycles 

and for multiple steady states (recall section 2.3).39 I take the two conditions to 

highlight a criterion for Pathway Emergence that has been only implicitly included in 

Boogerd et al. and is not part of Broad’s concept.40 The criterion restricts emergence 

to dynamic behaviours that are ‘qualitatively different’ from those manifested by 

their isolated parts. The phrase ‘qualitatively different’ comes from Boogerd et al.’s 

case study, when they are comparing a pathway with an unstable steady state to 

pathways with stable steady states (see section 4.5); however they do not define what 

the phrase means. I take it that two pathways have ‘qualitatively different’ dynamics 

if they have a different number of either: stable steady states, stable limit cycles, 

unstable steady states or unstable limit cycles.41 In biochemistry, as far as I am aware, 

pathways have been found only to have either zero or a very low number for any of 

these steady states or limit cycles. If two pathways differ in the number of any of 

these states or cycles then their phase spaces can be taken to have significantly 

different topologies and this can result in significantly different dynamic behaviours.  

 

                                                           
39 These are general requirements for pathways in homogenous solutions that are at constant temperature; 

see for example Novak et al. (2008).  
40 See for example Boogerd et al. (2005, p.156). This requirement has been confirmed in a personal 

communication with Bruggeman, e.g. see quote in section 4.5. 
41 This definition could be expanded to include other types of attractors / repellors that are not part of 

Boogerd et al.’s analysis e.g. strange attractors. For explanations of these see Strogatz (1994).  
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The requirement for qualitatively different dynamics appears to be an ad-hoc 

addition. But perhaps this is meant to capture the causal novelty required by a strong 

concept of emergence? It is not immediately clear. Let us first see what Boogerd et 

al.’s argument for Pathway Emergence is, and then we will return to the role of this 

‘qualitative difference’.   

 

In summary, I interpret the concept of Pathway Emergence as having both a ‘non-

deducibility’ and a ‘qualitative difference’ criterion. 

 

Let C1…Cn be the parts of a decomposition of pathway S such that (a) S consists of 

C1…Cn in arrangement R and (b) each Ci is either a reaction step of S or a sequence of 

reaction steps of S and (c) no Ci is of similar complexity to S. A dynamic behaviour of 

a pathway S is Pathway Emergent if and only if, for all such decompositions it: 

(a)  Cannot be deduced, even in principle, from: 

(i)  properties I1…In that objects of the same kind as C1…Cn manifest 

when in isolation and 

(ii)  the arrangement R and 

(iii)  laws of composition manifested in simpler systems than S and 

(iv)  other laws of nature manifested in simpler systems than S and 

(v)  initial conditions and 

(vi)  boundary conditions. 

 

(b) is ‘qualitatively different’ from the dynamic behaviours manifested 

by S’s isolated parts. 

 

Henceforth these shall be referred to as the ‘Criteria for Pathway Emergence’. 

 

 

4.4   Deducing Pathway Dynamic Behaviours 

In this section, I will briefly recap the steps by which pathway dynamic behaviours 

are deduced in biochemistry (recall section 2.2.2), and I will structure the material in 

a way that will facilitate my evaluation of Boogerd et al.’s case study.  

 

Elementary reactions are the most basic type of chemical reaction and involve one or 

more chemical species reacting directly to produce a product. However, the chemical 
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reaction equations used in modelling pathway dynamics usually only refer to 

stepwise reactions. A stepwise reaction is an aggregation of a sequence of elementary 

reactions where at least one product of each elementary reaction is a reactant in the 

next reaction. Stepwise reactions are composed of elementary reactions and true 

stepwise rate laws can be deduced, at least in principle, from their elementary rate 

laws. Therefore: 

 

only elementary reactions need be considered when evaluating the in 

principle deducibility of pathway dynamic behaviours. 

 

The dynamics of pathways are often modelled using ordinary differential equations 

(i.e. ‘ODEs’).  For chemically homogenous solutions at constant temperature, the 

discipline of biochemistry often assumes that the dynamic behaviours of a pathway 

are fully determined by statements of: 

a) the rate laws that its reaction steps have within that pathway and 

b) initial concentrations and 

c) net flows of chemicals entering/exiting the pathway and 

d) a law for combining these net flows with the pathway’s rate laws  

(i.e. the Kinetic Law of Composition). 

Henceforth this will be referred to as the ‘Biochemistry Base’. 

 

The deduction of a pathway dynamic behaviour can be viewed as having two stages. 

In the first stage, a separate concentration ODE is deduced for each of S’s chemical 

species from statements of S’s: reaction step rate laws plus the Kinetic Law of 

Composition. The Kinetic Law of Composition states that the rate of change of the 

concentration of a chemical species is equal to the sum of the rates of those reactions 

that create that chemical species minus the rates of those reactions that consume that 

chemical species (this is for closed systems; for open systems the net flows into the 

pathway also need to be added).  

 
For example, let us return to the toy pathway considered in section 2.2.2: 

 
Chemical Equation   Rate Law 

Step 1  B + C → D + E   v1 = 𝑘1[𝐵][𝐶]         

Step 2  E + F  → G    v2 = 𝑘2[𝐸][𝐹]       

Step 3  G + H → C + I   v3 = 𝑘3[𝐺][𝐻]       



157 
 

 

Consider chemical species E, which is produced in step 1 and consumed in step 3. 

According to the Kinetic Law of Composition: 

𝑑[𝐸]

𝑑𝑡
=  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑒𝑝 1 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑒𝑝 2  

         =               𝑣1            −       𝑣2      

 

        =        𝑘3[𝐵][𝐶] − 𝑘1[𝐸][𝐹]            

 

The above equation is the ‘concentration ODE’ for E in this pathway. A pathway’s 

concentration ODEs are taken by the discipline of biochemistry to fully determine the 

topography of a pathway’s phase space and its pathway’s dynamic behaviours.  

 

In the second stage, the target pathway dynamic behaviour is deduced from 

statements of the pathway’s concentration ODEs plus initial conditions and net flows 

into the pathway. This is usually carried out by the use of simulation.  

 

The following diagram summarises the relationship between the Biochemical Base, 

concentration ODEs and the deduction of dynamic behaviour (the square brackets 

group together the factors that are used to: (i) deduce the concentration ODEs and 

(ii) to deduce a dynamic behaviour). 

 

 
Fig 4.5  Diagram illustrating the relationships between the Biochemical Base, a pathway model and 

the   deduction of a dynamic behaviour  
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4.5.  Boogerd et al.’s Case Study – A Simulation Example of Pathway 

Emergence? 

Boogerd et al. argue for the occurrence of Pathway Emergence by providing ‘an 

explicit case study drawn from molecular cell physiology that [shows] biochemical 

networks display this kind of emergence” (Boogerd et al., 2005, p. 131). The case 

study is a simulation of a pathway and its dynamic behaviours are fully 

mathematically specified.  In order to evaluate the case study, this section will first 

identify a necessary condition for the pathway's dynamic behaviours to be non-

deducible from its Deductive Base. It will then be shown that the case study does not 

satisfy this condition and therefore fails to illustrate Pathway Emergence. Boogerd et 

al. link non-deducibility to the values of its ‘state-dependent component properties’. 

Bechtel and Richardson link non-deducibility to the presence of feedback. It will be 

argued that neither state-dependent component properties nor feedback affect the 

deducibility of dynamic behaviours.  

 

Boogerd et al.’s case study assumes that the Biochemical Base is sufficient for 

deducing its pathway’s dynamic behaviours. The Biochemical Base of a 

pathway contains statements of that pathway’s rate laws, net flows, initial 

concentrations and the Kinetic Law of Composition. A necessary requirement 

for pathway S to be Pathway Emergent is then: S’s Deductive Base does not 

entail its Biochemical Base. Given that statements of the Kinetic Law of 

Composition, initial concentrations and boundary conditions will be contained 

in both, it follows that S’s Deductive Base must not entail statements of S’s rate 

laws. This is illustrated below (the arrows represent relationships of 

entailment):  

 

 
 
Fig 4.6  Diagram illustrating a necessary requirement for a pathway S to be Pathway Emergent. 



159 
 

 

As the only type of reaction that needs to be considered when evaluating in 

principle deducibility are elementary reactions, it further follows that a 

necessary requirement for Pathway Emergence is that relative to all the 

admissible decompositions of a pathway S: 

 

S must manifest at least one rate law for one of its elementary 

reactions, which is not manifested by its isolated parts. 

 

Henceforth this shall be referred to as the ‘New Rate Law Requirement’. 

This requirement is not identified in Boogerd et al.  

 

The title of Boogerd et al.’s paper is ‘Emergence and Its Place in Nature: A Case Study 

of Biological Networks’ but their paper concerns emergence in pathways. The case 

study is a simple pathway with a single feedback loop. Given that biological networks 

are composed of pathways, it can be argued that if there is emergence at the level of 

pathways then there is also emergence at the level of biological networks. But it is 

important to understand that Boogerd et al. are not claiming that biological networks 

have emergent properties in virtue of being networks, rather the putative emergence 

is meant to be occurring at the level of pathways. It should also be noted that 

although Boogerd et al. are using a simulation case study to illustrate Pathway 

Emergence, the claim is that this kind of emergence occurs in actual biological 

pathways. 

  



160 
 

The case study consists of an ODE simulation model of a hypothetical metabolic 

pathway of three reaction steps: 

 

X0 , X1 , X2 and X3 are substrates and there is a positive feedback loop whereby X2 

increases the rate of the first reaction step. Boogerd et al. specify the conditions 

for model A to be in a stable steady state. They then decompose A into two 

isolated models:42 

 

 

The conditions for models A1 and A2 to be in a stable steady state are then 

specified. It is shown that it is possible for A1 and A2 to be stable but for A to be 

unstable. This is claimed to illustrate that A can have emergent behaviour.  

 

Models A, A1 and A2 are all constructed using different combinations of just 

three rate laws. A uses all three rate laws, A1 uses the first two and A2 uses the 

last two. The values of each rate constant remain the same across models; for 

example the rate constants for reaction step one will have the same values in 

both A and A1. Boogerd et al. use dynamic systems theory to identify some 

stability conditions. Model A has a stable steady state if the following two 

conditions are met (Boogerd et al, 2005, p. 158): 

 

                                                           
 42 I take it be a weakness of the case study that A1 and A2 compositionally overlap. Allowing such 

decompositions would unnecessarily complicate the concept of Pathway Emergence. For example, it is 

unclear how statements of properties of A1 and A2 could be advantageous for deducing systemic properties 

of A compared with only using properties from non-overlapping components. Furthermore, their inclusion 

would then seem to require a rule of aggregation that somehow adjusts for the overlapping. Such a rule 

would seem too ad-hoc to be regarded as a law of composition. 
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Where v1, v2 and v3 are the rates of the reaction steps and [X1], [X2], [X3] are 

concentrations of X1, X2 ,X3 respectively. Models A1 and A2 each have a stable steady 

state if: 

 
 

 
 
 
 
Notice that Term 1 and Term 2 of stability condition 2 are also terms in stability 

conditions 3. From this it follows that Model A will be unstable, yet Models A1 and A2 

stable if:     

 

 
This equation makes clear how stability conditions 3 can be true but stability 

condition 2 false and that hence “it is possible to have an unstable system even under 

the assumption that subsystems are stable in isolation” (Boogerd et al, 2005, p. 158). 

It also helps to illustrate that the same rate laws are being used in all three models.  
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 Boogerd et al. conclude that:   

 

“The behavior of A1, in isolation is sometimes qualitatively different 

from the behavior of A1 in A, and therefore, since the behavior of A is a 

function of A1, understood as a component, the behavior of A cannot 

generally be derived from studies on simpler subsystems of A. In 

general, the (dynamic) behavior of A is not simply the superposition of 

the (dynamic) behaviors of its subsystems studied in isolation. Dynamic 

interactions can bring about qualitatively new behavior in complex 

systems. This is precisely where prediction of system behavior on the 

basis of simpler subsystems fails. We cannot predict the behavior of the 

components within the entire system and so cannot predict systemic 

behavior. This is emergence, with novel system behavior that cannot be 

predicted on the basis of the behavior of simpler subsystems.” (Boogerd 

et al, 2005, p. 156). 

 

The case study does help to illustrate how the qualitatively different criterion could 

be satisfied: A has an unstable steady state whilst A1 and A2 have stable steady states. 

But the case study does not illustrate the type of non-deducibility needed for Pathway 

Emergence. A Deductive Base includes statements of all the properties that a 

system’s parts manifest in isolation. The manifested properties of A1 includes the rate 

laws for reaction step one and reaction step two.  The manifested properties of A2 

includes the rate law for reaction step three.  The rate laws for A are therefore 

manifested by its isolated parts and the dynamic behaviours of A can be deduced 

using these laws, the Kinetic Law of Combination, boundary conditions and initial 

concentrations. The case study fails to illustrate Pathway Emergence because it fails 

to satisfy the New Rate Law Requirement.  

 

In their overview of pathway simulation, Boogerd et al. emphasise the importance of 

‘state-dependent component properties’ and these are clearly meant to play a central 

role in illustrating Pathway Emergence. State-dependent component properties are 

functions of two types of properties (Boogerd et al, 2005, p. 158):43 

                                                           
43 Boogerd et al. refer to these simply as ‘component properties’. However I have termed them as ‘state-

dependent component properties’ in order to make clear how they differ from other properties of 

components.  
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(i) state properties of the system. These are systemic properties which vary as 

the state of the system varies. The relevant properties in the case study are a 

pathway’s concentrations. 

(ii) properties intrinsic to the component; these are state-independent, 

relational properties specifying the relationship between two or more 

chemicals. The relevant properties in the case study are rate constants. 

Boogerd et al. cite rates of reactions and elasticity coefficients amongst their 

examples of component properties. Both are ultimately functions of elementary rate 

constants and pathway concentrations. In the case study, the pathway concentrations 

are deduced by simulation and rate constants are known and do not change; hence 

the values of the state-dependent component properties are entirely deducible and do 

not provide any support to claims of non-deducibility relative to a Deductive Base. 

 

Perhaps the putative non-deducibility is meant to be related to Model A having a 

feedback loop? This would be consistent with Bechtel and Richardson’s including 

feedback as one of their two conditions needed for a system to ‘reasonably be counted 

emergent’. To recap, Bechtel and Richardson are referring to chemical feedback 

which occurs when the ‘concentration of some species affects the rate of its own 

production.’ (Epstein and Pojman, 1998, p. 23). Consider a toy pathway of the 

following elementary reactions: 

 

Step 1 B + C → D + E 

Step 2  E + F → G 

Step 3 G + H  → C + I 

 

There is feedback on C as: 

- increasing concentration [C] increases  

the rate of production of E which,      (in Step 1)  

- increases the rate of production of G which,    (in Step 2) 

- increases the rate of production of C.    (in Step 3) 

 

Neither in Bechtel and Richardson’s book nor in Boogerd et al.’s paper is the 

relationship between feedback and non-deducibility explained. As I have explained in 

section 3.3, Bechtel and Richardson provide an account of how in the early 20th 

century biologists assumed that the glycolytic pathway did not have feedback loops. 

This hampered the discovery of the actual reaction steps of the pathway; because the 
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rate of an isolated reaction step can be very different to the rate of the same reaction 

step when subject to feedback (Bechtel and Richardson, 2012, p. 149 -172). This is 

illustrated in the above example, where, ceteris paribus, the rate of step one would be 

faster when situated within the pathway than when in isolation (as step three 

produces C, which leads to an increases in the rate of step one). Bechtel and 

Richardson’s analysis illustrates how feedback can complicate the dynamic 

behaviours of a pathway, but it does not illustrate non-deducibility relative to its 

Deductive Base.  

 

Chemical feedback occurs as a consequence of there being at least one reaction 

within a pathway that changes the concentration of a chemical species X, where X is 

also a reactant of an ‘earlier’ step of the pathway (in the toy pathway this happens 

with chemical species C). The laws for all the reactions within a pathway are specified 

by a pathway’s concentration ODEs, including the reactions that cause feedback. As I 

have explained in my section 2.3, the Systems Biology Criterion for Feedback is based 

solely on a pathway’s concentration ODEs. Hence there is nothing about feedback per 

se that leads to a non-deducibility that would ground Pathway Emergence. The only 

way that feedback could lead to such non-deducibility would be if it was to lead to 

changes in the rate laws themselves, and this is something that neither Bechtel and 

Richardson nor Boogerd et al. claim. Nevertheless, the presence of a feedback loop in 

the case is not irrelevant, as it is a necessary condition for satisfying the ‘qualitatively 

different’ criterion for Pathway Emergence. 

 

In conclusion, a number of problems have been identified with Boogerd et al.’s case 

study: (i) it does not illustrate non-deducibility relative to its Deductive Base (ii) the 

emphasis on state-dependent component properties is unjustified (iii) there is no 

relationship between feedback and non-deducibility (iv) the New Rate Law 

Requirement has not been recognised. These problems strongly suggest that Boogerd 

et al. did not fully specify their intended concept of emergence. 
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4.6   Might There Still be Pathway Emergence? 

There is a plausible argument for pathways sometimes being Pathway Emergent. 

This is because elementary rate constants in biochemistry are highly context 

sensitive. The New Rate Law Requirement for pathway S can be satisfied if one of its 

elementary reactions: 

(i) manifests a rate constant with value ks , when situated within S, 

(ii) does not manifest a rate constant with value ks., when in isolation or 

when situated within any isolated part from an admissible 

decomposition of S. 

 

Prima facie, this often occurs within biochemistry. This is because elementary rate 

constants are proportional to the fraction of reactant molecules that have ‘effective 

collisions’ per unit time (recall section 3.6).  Effective collisions are those collisions 

that lead to a chemical reaction. Elementary rate constants vary by context because 

the number of ‘effective’ collisions varies by context (for given concentrations of 

reactants).  Many factors have been identified that contribute to this including: 

concentrations of solutes changing enzyme conformations, crowding and 

confinement effects. At present biologists are often not able to accurately deduce how 

rate constants will change with context. Perhaps this non-deducibility is sometimes 

indicative of Pathway Emergence? 

 

In Boogerd et al.’s case study, the New Rate Law Requirement is not satisfied.  A1 and 

A2 are specified such that their rate laws are also manifested by A. This is in line with 

the assumption that pathways are causal law modular. S is ‘causal law modular’ if 

C1…Cn manifest the same local causal laws that are manifested by objects of the same 

kind as C1…Cn that are situated in ‘isolation’. Biochemists often make this assumption 

via the Rate Law Invariance Assumption (recall section 3.6):  

each of the rate laws manifested within a pathway will be manifested in 

its ‘appropriately formulated’ isolated reaction step.  

An ‘appropriately formulated’ isolated reaction step consists of that step’s reactants 

and products, plus any non-reactive constituents of its pathway that impact on the 

dynamics of that step.  

 

I will take it that Boogerd et al. meant to specify that the reaction steps referenced in 

a pathway’s Deductive Base are ‘appropriately formulated’. This is consistent with (i) 
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their case study (ii) their claim that the concept of Pathway Emergence is relevant to 

the practices of biochemistry (see section 4.7) (iii) their claim that “Importantly, all 

kinetic values can be measured in vitro” (Boogerd et al. , 2005,  p. 147).  The New 

Rate Law Requirement is then a negative version of the Rate Law Invariance 

Assumption. When the Rate Law Invariance Assumption is correct, the New Rate 

Law Requirement is not satisfied and there is no instantiation of Pathway 

Emergence. Pathway Emergence and causal law modularity are then related 

concepts. For a pathway not to be causal law modular, it is necessary that at least one 

of its reaction steps manifests a rate law that is not manifested by the corresponding 

isolated reaction step i.e. the New Rate Law Requirement is a necessary condition for 

a pathway not to be causal law modular. And the New Rate Law Requirement is also 

a necessary condition for Pathway Emergence.  

 

The New Rate Law Requirement might therefore often be satisfied, for the same 

reasons that pathways might often not be causal law modular.  In section 3.6, I 

identified two reason why an appropriately formulated reaction step might manifest 

a different rate law compared to its corresponding pathway reaction step. First there 

is my ‘Other Reactants Objection’ i.e. the joint presence of all, or nearly all of the 

pathway’s reactants and products might be necessary before some reactants acquire 

the same conformations they have in the pathway; and conformations can affect rates 

of reaction . Second, biochemists may simply not be able to adequately replicate the 

crowded, heterogenous environment found within a living cell. Hence there are 

strong grounds for claiming that the New Rate Law Requirement might often be 

satisfied and this leaves open the possibility of Pathway Emergence.  

 

 

4.7   Perhaps the Deductive Base was Meant to be Further Restricted? 

I will argue that Boogerd et al. intended to specify a weaker criterion for the non-

deducibility of dynamic behaviour. The criterion is: 

A dynamic behaviour of a pathway S is ‘Weakly Non-Deducible’ if and only if 

for all admissible decompositions it cannot be deduced, even in principle, 

from: 

(i) the dynamic behaviour of S’s isolated parts and 

(ii) a ‘law of composition’ manifested in simpler systems than S, 

which aggregates these dynamic behaviours.           
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As earlier explained, ‘dynamic behaviour’ refers to a pathway’s trajectories in a 

pathway’s phase space, where the phase space has a separate dimension for the 

concentration values of each of the pathway’s chemicals.  It is these behaviours that 

are, at least sometimes, meant to be emergent. I will present evidence for Weak Non-

Deducibility being Boogerd et al.’s implicit notion of non-deducibility. Adding the 

qualitatively different criterion (as specified in the Criteria for Pathway Emergence) 

to this Weak Non-Deducibility criterion results in a concept of emergence that I will 

term ‘Weak Pathway Emergence’. I will argue that Weak Pathway Emergence is a 

very different notion of emergence to Broad’s. 

 

The Weak Non-Deducibility criterion clarifies the earlier quote from the case study 

that was meant to explain emergence: “In general, the (dynamic) behavior of A is not 

simply the superposition of the (dynamic) behaviors of its subsystems studied in 

isolation.” However, the notion of law of composition that this requires is different to 

that I specified in section 4.2. A law of composition was taken as specifying a 

relationship between a system and properties that its parts manifest when they are 

situated within that system. By contrast the type of law of composition that I take 

Boogerd et al. to imply has the form: 

If objects of the same kind as C1…Cn manifest properties I1…In when 

they are in isolation and S consists of C1…Cn in arrangement R, then S 

has property 𝑃𝑆 = fR(I1, …,In), for some function fR. 

A dynamic behaviour of pathway S would then be Weakly Non-Deducible if and 

only if there is no law of composition of the above form where: 

- properties I1…In are dynamic behaviours 

- 𝑃𝑆 is equal to the dynamic behaviour of S.  

I will continue to reserve use of the term ‘law of composition’ for laws that 

aggregate the properties P1…Pn that C1…Cn manifest in S and I will use the term 

‘law of composition (isolated parts)’ to refer to laws that aggregate I1…In. 

 

In general, pathways are Weakly Non-Deducible. This is because the concentrations 

of a pathway’s chemicals will often be dependent on all, or nearly all, of the reaction 

steps in the pathway.  This can be illustrated using another toy pathway T where all 

the reactions are reversible (which is typically the case in biochemistry): 

Step 1 B + C    D  

Step 2  D + E    F  

Step 3  F + G     H 
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Let system T1 be an isolated system consisting of just reaction step one and reaction 

step two. Let system T2 be an isolated system consisting of just reaction step three. 

Because all the reaction steps are reversible, the concentrations of T’s chemical 

species are dependent on all the reaction steps in the pathway. For example, the 

values of [D] in T depend on the rates of reaction step one, reaction step two and 

reaction step three. D is both a reactant and a product in reaction step one i.e. it is a 

product in the forward reaction B + C D and a reactant in the backwards reaction D 

 B + C. Similarly, D is both a reactant and a product in reaction step two. Even 

though D is neither a reactant nor a product in reaction step three, reaction step 

three still affects [D] as it affects [F] which in turn affects [D] via the backwards 

reaction F   D + E . The effects of these pathway-wide dependences means that the 

concentrations for T are Weakly Non-Deducible from the concentrations occurring in 

T1 and T2. 

 

In a personal communication, Bruggeman provides some support for my 

interpretation that the type of non-deducibility required was Weak Non-Deducibility. 

Bruggeman describes a pathway with three reaction steps with a different enzyme 

catalysing each step. He states that: 

  

“the behaviour of a part in the system depends on all parts; in this case 

this leads to nonlinear functions and, hence, aggregativity (simple 

reduction) does not apply. Now, if the system composed out of three 

enzymes can display a behaviour that is qualitatively different 

(qualitatively can be strictly defined in mathematics, in fact this is 

already done in bifurcation theory) from the behaviour of that of any of 

its subsystems (all single enzyme or pairs of enzymes systems) then one 

could call the behaviour "new" and hence, weakly emergent as it still 

reducible in principle if not analytically then by simulation. This is our 

argument and comes very close to Broad.”  

 

My interpretation also helps makes sense of the problems identified with the case 

study. First, whilst Model A’s dynamics are deducible relative to its Deductive Base, 

they are also Weakly Non-Deducible.  Second, the New Rate Law requirement does 

not need to be satisfied in order for a pathway to be Weak Non-deducible. Third, the 

focus on state-dependent component properties can be explained. In the case study, 

state-dependent component properties depend on pathway concentrations; whose 
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trajectories in phase space are, by definition, dynamic behaviours. As dynamic 

behaviours are Weakly Non-Deducible, it follows that the state-dependent 

component properties are also Weakly Non-Deducible. However, this interpretation 

does not explain the focus on feedback. A pathway that did not have a feedback loop 

would also be Weakly Non-Deducible.    

 

A recent paper by Kolodkin et al. on Pathway Emergence provides further support for 

this interpretation. The paper is written by twelve system biologists including 

Boogerd and two of the other co-authors of the Boogerd et al. paper: Bruggeman and 

Westerhoff. Kolodkin et al. summarise the account of Pathway Emergence provided 

by Boogerd et al. They state that: 

 “emergence arises when R(A,B,C), e.g. the behavior of A, B and C in 

organizational state R cannot be predicted from the properties of A,B and 

C in isolation or in configurations simpler than R.”  

 

However they then proceed: 

 “… we expect to be able to deduce R(A,B,C) from the complete knowledge 

of the behavior of A, B, and C in isolation or in other (perhaps crowded) 

systems such as S1(A,B), S2(A,C) and S3(B,C), if we add also the knowledge 

of state-dependent properties of A, B and C or S1(A,B), S2(A,C) and S3(B,C). 

For example, the behavior of A within the system R(A,B,C) may depend not 

only on relational properties of A (which can be determined in isolation), 

but also on the state of the system, i.e. on the activity of B and C….These 

(state-dependent) component properties and the state independent 

relational properties together constitute R(A,B,C). In fact, while given a 

mathematical description of a whole network, we are able to integrate both 

relational and state-dependent component properties of A, B and C. 

Theoretically, using a comprehensive computer simulation, we can 

replicate the network that contains all the biological molecules themselves 

and produce whatever emergent property may arise… even the strongest 

emergent property should become calculable.” (Kolodkin et al, 2012, pp. 

192-193). 

So emergent properties are taken to be entirely deducible by simulation. Also note 

that relational properties (which include rate constants) are taken as being 

determinable from isolated parts.  
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But what might the motivation be for formulating this concept of Weak Emergence? I 

suggest that it is the product of a synthesis of several ideas, some of which are present 

in other concepts of weak emergence (recall section 4.2). 

1. Non-aggregativity. Weak Pathway Emergence resembles Wimsatt’s concept of 

emergence. Indeed, Boogerd et al. reference Wimsatt’s concept in their 

discussion of pathway dynamics: 

 “If a system is purely aggregative, all its systemic properties depend 

only linearly on the properties of the parts (Wimsatt 1976, 1986). In 

complex biochemical systems, aggregative system properties are a 

function only of the intrinsic properties of the parts; for example, the 

mass of a bacterium is simply the sum of the masses of the parts. The 

flux through a biochemical pathway, in contrast, depends non-linearly 

on the concentrations of its constituent enzymes. This is not an 

aggregative property.” (Boogerd et al., 2005, p. 151)  

But there are several significant differences with Wimsatt’s concept. First, 

Wimsatt’s compositional equation: 

𝑃𝑆 = fR(P1, …,Pn) 

is not required to be a law of composition that is manifested in simpler 

systems than S. Second, Weak Pathway Emergence does not include 

Wimsatt’s requirements of:  invariance to inter-substitution, size scaling or 

‘decomposition and reaggregation’. Third, Weak Non-Deducibility aggregate 

properties I1…In, rather than P1, …,Pn. I will consider why Boogerd et al. 

might have chosen I1…In, in my point 4 below.  

2. Complexity. Pathways are complex systems, that are only deducible by 

simulation. In Weak Pathway Emergence, Ps is taken to be deducible from S’s 

Biochemical Base, by using simulation. In this respect Weak Pathway 

Emergence resembles Bedau’s concept of emergence. However, Bedau’s is a 

diachronic concept in which a Ps at a time t is emergent relative to properties 

manifested at some earlier time than t. By contrast, Weak Pathway Emergence 

is a synchronic concept with deductions using statements of properties, I1…In, 

and not comparing Ps to properties manifested at some earlier time. 

3. Qualitative difference. A motivation for the qualitatively different criterion 

appears to be that it captures the fact that as the number of reaction steps in a 

pathway incrementally increases, there can be sudden qualitative changes in 

the dynamics of that pathway. Such sudden changes can appear ‘surprising’. 

For example, in the case study the pathway comprising reaction step one and 
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reaction step two has a stable steady state but adding reaction step three leads 

to the pathway having an unstable steady state.  

4. Emergence as a challenge to the causal discovery of pathway dynamic 

behaviours. The idea of linking emergence with the Strategy of Decomposition 

is already present in Bechtel and Richardson (1993). Weak Pathway 

Emergence might be taken as being a useful concept for emphasising the need 

for the strategy to take account of all the interactions within a pathway. This 

interpretation is supported by Boogerd et al.’s concluding paragraph: 

“From a methodological point of view, if we attack a biological 

problem experimentally or theoretically, beginning with the 

constituents of cells treated in isolation, then the lack of a systemic 

context can be an impediment to scientific research. With some 

systemic effects, decomposition may reveal mechanistic explanations, 

but this depends critically on understanding the behavior of parts as 

components. Beginning with the behavior of parts in radically 

different contexts, or in much simpler contexts, will sometimes fail to 

reveal their contributions to system behavior. Sometimes it will 

succeed. Sometimes it does not (Boogerd et al. 2002). In these cases, 

systemic behavior cannot be extrapolated from the behavior of parts 

in simpler systems, rendering them emergent. We think that this is a 

general phenomenon for other complex systems.” (Boogerd et al. 

2005, p.160). 

 

However, it must be emphasised that Boogerd et al. are taking systemic effects 

to be fully captured by using simulation to deduce pathway dynamic 

behaviours. As such they are failing to allow for the possibility that the rate 

laws manifested in a pathway may be different to those manifested by their 

isolated reaction steps (i.e. that some pathways may not be causal law 

modular). 

  

If Boogerd et al. did intend to propose Weak Pathway Emergence, then this is a 

concept that is very different to Broad’s. Broad’s is a metaphysical concept of 

emergence, in which emergent properties are in principle non-deducible because 

they are ontologically novel. By contrast, Weak Non-Deducibility simply follows from 

pathways being nonlinear. Perhaps Weak Non-Deducibility can be described as being 

in some way ‘Broadian’, but this would be a highly qualified claim that needs to be 
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explicitly stated. In practice, virtually all pathways are likely to have Weakly Non-

Deducible dynamics. This would lead to the Criteria for Pathway Emergence 

effectively collapsing to just the qualitative difference criterion that a systemic 

property is emergent if it is ‘qualitatively different’ from the systemic properties of 

simpler systems. 

 

The concept of Weak Pathway Emergence highlights the fairly obvious point that 

pathway dynamic behaviours are non-aggregative. This provides little insight into the 

challenges that biochemists face in the causal discovery of pathway behaviours. 

Perhaps a more interesting concept of weak emergence could be formulated that 

centered on the in practice gap between the causal laws that are manifested in in 

vitro solutions and the causal laws that arise in the more complex environment of 

living cells. This would be a weak concept as it allows for the possibility of in 

principle deducibility. As I have argued in my chapter 3, the assumption of causal law 

modularity is the key assumption underpinning the Strategy of Decomposition, and 

there seem good reasons to think that this assumption will often be false. A weak 

concept of emergence that centered on this assumption could help to facilitate the 

debate on the extent to which biochemists are justified in using the Strategy of 

Decomposition.  

 

 

4.8   Conclusion 

Boogerd et al. claim that pathways can sometimes be Pathway Emergent. They state 

that it is a strong concept, based on Broad theory of emergence. A key requirement is 

that a pathway’s dynamics are non-deducible relative to their Deductive Base. Prima 

facie the existence of Pathway Emergence would undermine the Strategy of 

Decomposition that is used for the causal discovery of pathway dynamic behaviours. 

This is because the strategy’s reconstruction stage involves making exactly the same 

deduction that Pathway Emergence claims will sometimes not be possible. 

 

There are significant gaps in the specification provided for Pathway Emergence. 

Boogerd et al.’s argument for Pathway Emergence takes the form of a simulation case 

study. But the case study does not illustrate Pathway Emergence as it does not satisfy 

the New Rate Law Requirement.  
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There is still a plausible argument for pathway dynamics sometimes satisfying the 

Criteria for Pathway Emergence. This is because of the context sensitivity of rate 

constants in biochemistry. At present biologists are often not able to accurately 

deduce how rate constants will change with context. Perhaps this non-deducibility is 

sometimes indicative of Pathway Emergence. However, this is speculative and the 

claim that pathway dynamics are sometimes Pathway Emergent has not been 

established. 

 

Perhaps Boogerd et al. did not correctly specify what they meant by non-deducibility 

and their intended concept was meant to be Weak Pathway Emergence. But this is a 

very different notion of emergence to Broad’s. Furthermore, the concept provides 

little insight into the challenges that biochemists face in the causal discovery of 

pathway behaviours. I conclude that the claims that pathways manifest a type of 

emergence that challenges the Strategy of Decomposition are unsubstantiated. 
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Chapter 5 -  Conclusions 
 
 

“A central challenge of biochemistry is to understand 

the influences of cellular organisation and 

macromolecular associations on the function of 

individual enzymes and other biomolecules – to 

understand function in vivo as well as in vitro.”  

(Nelson and Cox, 2013, p. 10) 

 

The Strategy of Decomposition is used in biochemistry for the causal discovery of 

pathway dynamic behaviours. My thesis has addressed the question of whether the 

use of this strategy is warranted. I have focused on two challenges to the Strategy of 

Decomposition that are contained in Bechtel and Richardson’s Discovering 

Complexity and in related papers. The first challenge is that pathways lack the 

‘modular’ structure assumed in the Strategy of Decomposition, where Bechtel and 

Richardson interpret modularity as ‘near decomposability’. The second challenge is 

that pathways sometimes have ‘Pathway Emergent’ behaviours such that their 

dynamic behaviours cannot be deduced from statements of the properties manifested 

by the pathway’s isolated parts, the pathway’s organisation, and laws manifested in 

simpler systems. I have rejected both challenges.  I have argued that near 

decomposability is the wrong type of modularity to apply to pathways. I have also 

shown that the occurrence of Pathway Emergence has not been established. An 

underlying problem with Bechtel and Richardson’s analyses is that they overstate the 

consequences of feedback and nonlinearity for the Strategy of Decomposition. 

 

Instead, the analysis of pathway modularity and emergence needs to be centered on 

the context-sensitivity of pathways’ reaction step rate laws (henceforth: rate laws). 

These rate laws are local causal laws that are easily broken. I have argued that the key 

assumption that underpins the Strategy of Decomposition is that pathways are 

‘causal law modular’. A system is causal law modular if its subsystems C1…Cn 

manifest the same causal laws that are manifested by objects of the same kind as 

C1…Cn that are situated in ‘isolation’ (recall section 3.5). It is epistemically desirable 

that this assumption is correct. Knowledge gained of in vitro rate laws can then be 

‘exported’ and used to provide dynamic mechanistic explanations of in vivo 
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pathways. But the context-sensitivity of rate laws means that there is a significant 

risk that pathways will sometimes not be causal law modular, and hence the Strategy 

of Decomposition may fail to discover the in vivo rate laws. 

  

In this brief concluding chapter, I will draw together these and the other findings 

from my preceding chapters. I will also explain how my findings may be applied not 

just to pathways, but also to other types of self-organising systems found in biology.   

 

 

Pathway dynamic behaviours are explained by ‘dynamic mechanistic explanations’ 

(recall section 1.3).  Dynamic mechanistic explanations describe the causal structure 

(i.e. the mechanism) that produces the explanandum behavior. A dynamic 

mechanistic explanation consists of two parts: (i) a qualitative account of the 

mechanism that produces the behaviour (ii) a quantitative account, which is provided 

with the aid of a simulation model. The qualitative account includes describing the 

organised parts, operations and context in which the explanandum behaviour is 

occurring. The quantitative account shows how the explanandum behaviour follows 

from the dynamic laws of its parts, a law of composition plus initial conditions. I 

added one requirement to the general account of dynamic mechanistic explanations 

provided by Bechtel and Abrahamsen: that the equations in the simulation model 

must be causal equations. I have taken the ‘causal discovery’ of a pathway dynamic 

behaviour to refer to the processes by which biochemists discover the parts, 

operations, organisation and context referenced by the corresponding dynamic 

mechanistic explanation. This includes discovering a pathway’s rate laws. 

 

The complexity of pathways and the lack of in vivo data represent considerable 

barriers to the causal discovery of pathway dynamic behaviours. I identified four key 

factors that contribute to pathway complexity (recall section 1.4):  

(i) The large number of reactants that are shared between pathways. In vivo 

pathways are ‘pervasively open’ with reactants often interacting with 

multiple pathways. 

(ii) The impact of non-reactive interactions between a pathway and other 

cellular components. In vivo reactions take place in crowded, 

heterogeneous solutions in which, for example, there may be electrostatic 

interactions that change reactants’ conformations.    

   



176 
 

(iii) The presence of multiple feedback loops. 

(iv) Pathway non-linearity. 

I explained that the lack of in vivo data is due, in part, to the current lack of 

technology that can measure chemical concentrations of intact cells. It is also due, in 

part, to reactants often being involved in multiple reactions, preventing the 

identification of individual rate constants. 

 

Biochemists have adopted the Strategy of Decomposition as a response to these 

barriers to causal discovery (recall section 1.5). I characterised the strategy as having 

three broad stages: 

1. An extraction stage; in which the target in vivo pathway is separated from its 

biological context, creating an in vitro pathway.  

2. A decomposition stage; involving decomposing the in vitro pathway into a set 

of isolated parts that can then be separately analysed. 

3. A reconstruction stage; involving using a simulation model to deduce the 

target behaviour from statements of the properties of its isolated parts, their 

arrangement, plus the Kinetic Law of Composition. 

 

Critically, the Strategy of Decomposition incorporates the assumption that a target 

pathway is ‘causal law modular’ (recall section 1.5). If a pathway is causal law 

modular, then causal knowledge gained in the decomposition stage can be used to 

provide dynamic mechanistic explanations of in vivo pathway behaviours. I have 

argued that this is the key discovery heuristic being used in many biochemistry / 

systems biology analyses (such as those cited in my thesis). There seem strong 

reasons to think that biochemists use of this heuristic may be unwarranted. After all 

rate laws are highly context sensitive, and it is far from clear that the in vitro 

chemical solutions used by biochemists can adequately replicate in vivo conditions.  

 

Bechtel and Richardson are silent on this key heuristic. Instead, their analyses on the 

Strategy of Decomposition focus on the consequences of feedback and nonlinearity. 

Feedback is meant to undermine near decomposability, and both feedback and 

nonlinearity are meant to contribute to Pathway Emergence. An aim of my Chapter 2 

was to provide the conceptual groundwork of how these concepts apply to pathways, 

in order to later evaluate their claims.  
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I have explained that a pathway is nonlinear if its dynamics induce an ODE system 

that does not satisfy the superposition principle. All pathways are nonlinear, unless 

they have a ‘possible but highly improbable’ structure. Nonlinearity is a necessary but 

insufficient condition for various exotic dynamic properties such having multiple 

steady states or having limit cycles. Pathway nonlinearity has important implications 

for the explanation of pathway dynamic behaviours. It is because nonlinear ODEs do 

not usually have analytic solutions, that dynamic mechanistic explanations use 

simulation modelling to deduce target dynamic behaviours.  

Feedback is ubiquitous in biochemistry. I identified that feedback between reactions 

consists of circular causal chains, such that increasing the concentration of a reactant 

affects the rate of that reactants own production. Feedback occurs by ‘later’ reaction 

steps changing the concentrations of reactants of ‘earlier’ reaction steps (in the case 

of allosteric feedback this involves changing the concentrations of effectors). The 

presence of feedback means that the behaviours of a particular reaction step cannot 

be explained just in terms of the rate laws of that reaction step, plus the 

concentrations of reactants resulting from earlier stages in the pathway. Instead 

account may also need to be taken of later stages in the pathway. Negative feedback is 

taken to be a necessary condition for stable limit cycles, though a general proof is yet 

to be provided. Positive feedback appears to be a necessary requirement for multiple 

steady states, but the proofs for this are flawed, insofar as they fail to exclude 

‘feedback’ within bimolecular reactions.  

 

Bechtel and Richardson brought the importance of feedback and nonlinearity to the 

attention of the New Mechanists. And they correctly highlighted that these two types 

of ‘nonlinearity’ mean that biochemists need to adopt a holistic approach to causal 

discovery, being aware of how the reactions steps within a pathway can impact on 

each other’s operations. However, their analyses fail to show that feedback and 

nonlinearity lead to a type of pathway non-modularity or emergence that significantly 

challenges the Strategy of Decomposition.   

 

Bechtel and Richardson’s analysis of modularity is based on Herbert Simon’s concept 

of near decomposability (recall chapter 3). They claim that the assumption of near 

decomposability has been used in the causal discovery of pathways. They argue that 

because of feedback, pathways are often only ‘minimally decomposable’; but they 

claim that the assumption of near decomposability has still been heuristically useful 
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for the causal discovery of pathways. I have explained that, contrary to Bechtel and 

Richardson, the concept of near decomposability does not apply to pathways, as it is 

inconsistent with the substantial overlaps that exist between a pathway’s reaction 

steps. Furthermore, there is a significant shortcoming in both Simon’s and in Bechtel 

and Richardson’s analyses: neither recognise that there is a plurality of types of 

modularity. Starting from their analyses of near decomposability, I have identified 

five distinct types of modularity that could be important either to the analysis of 

pathways or to biology more generally. One of these types is causal law modularity. 

Neither feedback nor nonlinearity affects the causal law modularity of pathways.   

 

The theory of Pathway Emergence is based on Boogerd et al.’s interpretation of Broad 

(recall chapter 4). The theory was further developed by Bechtel and Richardson who 

link Pathway Emergence both to nonlinearity and to presence of feedback loops. 

There are two criteria for a pathway dynamic behaviour to be Pathway Emergent. The 

first is a ‘non-deducibility’ criterion requiring that the behaviour cannot in principle 

be deduced from a ‘Deductive Base’ that contains statements of the properties 

manifested by the pathway’s isolated parts, the pathway’s organisation, and laws 

manifested in simpler systems. The second is a ‘qualitative difference’ criterion 

requiring that emergent behaviours must be qualitatively different to those 

manifested by the pathway’s isolated components. 

 

As stated in Boogerd et al. (2005), Pathway Emergence is a strong concept of 

emergence. If a pathway were Pathway Emergent, then this would seem to have 

significant implications for the Strategy of Decomposition, as deductions of pathway 

dynamic behaviours would not be possible. As part of my analysis of Pathway 

Emergence, I identified a necessary condition for a pathway to satisfy the non-

deducibility criterion: the pathway must manifest at least one rate law that is not 

manifested by its isolated reaction steps (i.e. the pathway must not be causal law 

modular). Boogerd et al.’s argument for Pathway Emergence takes the form of a case 

study, but the case study does not satisfy this necessary condition. Hence Boogerd et 

al.’s argument for Pathway Emergence fails. Nevertheless, there still is a plausible 

argument for the existence of Pathway Emergence. This is because the rate laws 

within a pathway are highly context sensitive; and these laws might sometimes be 

non-deducible from the pathway’s Deductive Base. But this last argument is 

speculative and I have therefore concluded that the existence of Pathway Emergence 

has not been established. 
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I have also suggested that Boogerd et al. may have intended to propose a concept of 

emergence that is based on a far more restrictive notion of non-deducibility. I have 

termed this concept as Weak Pathway Emergence. The claim of in principle non-

deducibility would then amount to the claim that nonlinear systems have non-

aggregative properties. Perhaps Weak Pathway Emergence can be described as in 

some way ‘Broadian’, but this would be a highly qualified claim that needed to be 

explicitly stated. Feedback is not a factor in this ‘non-deducibility’, and virtually all 

pathways are likely to have Weakly Non-Deducible dynamics. The concept of Weak 

Pathway Emergence does highlight the need for the Strategy of Decomposition to use 

simulation modelling. But the concept provides little insight into the challenges that 

biochemists face in the causal discovery of pathway behaviours. Perhaps a more 

relevant concept of weak emergence could be formulated that centered on the in 

practice gap between the causal laws that are manifested in in vitro solutions and the 

causal laws that arise in the more complex environment of living cells 

 

My thesis conclusions can be grouped into two sets. The first are deflationary about 

the consequences of feedback and nonlinearity. I take it that Strategy of 

Decomposition has been successfully developed by biochemists to fully incorporate 

the effects of nonlinearity and feedback. I have rejected Bechtel and Richardson’s 

claims about the challenges posed to pathway modularity and to the deducibility of 

pathway dynamic behaviours. I now want to briefly note three other possible 

misconceptions (which are not part of Bechtel and Richardson’s analysis). First, it 

might be thought that pathway feedback involves some higher-level laws that are 

distinct from the rate laws of reaction steps.  But in the case of chemical feedback this 

is wrong, as is illustrated by my toy examples and by the sample pathway model in 

appendix 1. A pathway’s reaction steps interact with each other by adjusting the 

concentrations of reactants that are shared by two or more reactions steps. There is 

no further higher-level feedback law that also needs to be discovered.  Second, 

nonlinearity is not metaphysically interesting. For example, the nonlinearity of 

bimolecular reactions can be simply explained by collision theory (recall section 

2.2.2). Pathway nonlinearity does not imply that a pathway has some novel causal 

powers ‘over and above’ those possessed by its parts. Third, pathway nonlinearity 

does not lead to in practice unpredictability due to ‘sensitive dependence to initial 

conditions’ (at least in non-pathological cases). This is because biological systems 
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would not be able to survive in their noisy environments if their pathways were 

highly sensitive to small perturbations (recall section 4.2).  

My second set of conclusions emphasise the need to focus on the context sensitivity 

of reaction step rate laws. As I have already noted, the key assumption underpinning 

the Strategy of Decomposition is that pathways are causal law modular. This 

assumption is made by assuming that the context sensitivity of rate laws can be taken 

account of by using ‘appropriately formulated’ in vitro reaction steps (recall section 

3.6). Given the complexity of pathways and the lack of data, it is epistemically 

convenient to believe that pathways are causal law modular. But the in vivo 

cytoplasm may provide a very different context compared to an ‘appropriately 

formulated’ in vitro solution. Epistemic convenience is no warrant of truth and 

evidence is required as to why the assumption of causal law modularity will be 

correct in any particular study. Often no such evidence is provided and the risk exists 

that the analyses lack adequate epistemic foundations. This is an example of a far 

more general problem that applies not only to biochemistry but across the natural 

and social sciences (recall section 1.5). Namely, how to justify the use of causal 

knowledge, in cases where there is a difference between the context in which the 

explanandum phenomenon occurs and the context in which we can gain causal 

knowledge about its parts. 

I will close by suggesting how my analysis of the Strategy of Decomposition can be 

extended beyond the domain of pathways. Pathways can be paradigm examples of 

self-organising systems. In self-organised systems, there is no central controller, 

instead the components’ behaviours are coordinated through multiple nonlinear 

feedback loops. (recall section 4.2). In general, the dynamic behaviours of self-

organising systems also require dynamic mechanistic explanations. Camazine et al. 

(2003) provide case studies for several systems that they take to be self-organising. 

These include: pattern formation in slime molds, fish schooling, trial formation in 

ants, nectar selection by honey bees and feeding aggregations of bark beetles. In each 

of these, dynamic behaviours of the whole system are explained by determining the 

causal laws for the interactions between the system’s parts, applying a law of 

composition to combine these laws into a system of linked ODEs and then using a 

simulation model to derive the explanandum behavior (e.g. Camazine et al., 2003, p. 

206). As with pathways, the causal discovery of these behaviours requires 

determining the causal laws describing the local interactions between the parts. Once 

these have been discovered, it is taken as unproblematic to use a simulation model to 
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derive the effects of the parts’ nonlinear interactions, including their feedback loops. 

Nonlinearity and feedback are not, in themselves, significant problems to the causal 

discovery and explanation of a target behaviour. Problems may arise if a physical 

decomposition of the system is required to gain knowledge of its parts’ causal laws. In 

such cases, it is epistemically convenient to assume that the target system is causal 

law modular. But, as in the case of pathways, evidence is then required as to why the 

assumption of causal law modularity is warranted. 
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Appendix 1 - Example of a Pathway ODE Model of Glycolysis 
 

Teusink et al. (2000) provide a specification of an ODE model of glycolysis in their 

paper “Can yeast glycolysis be understood in terms of in vitro kinetics of the 

constituent enzymes? Testing biochemistry”. The paper documents how each of the 

rate laws for the stepwise reactions of glycolysis were experimentally determined 

from in vitro solutions. Statements of the rate laws were then combined using the 

Kinetic Law of Composition and used to simulate the glycolytic pathway. The model’s 

outputs were compared with aggregate in vivo flux data (e.g. the net consumption of 

glucose).  The model was initially very inaccurate and so was modified to include 

some of the interactions with other metabolic pathways of yeast. This improved the 

results though there were still some large errors (Teusink et al. p. 5317 – 5319).44  

The reason for adding a specification of Teusink et al.’s model as an appendix are: 

1. To confirm the description of the structure of pathway ODE models (recall 

section 2.2.2). 

2. To illustrate the complex structure of the stepwise rate laws that are often 

used in biochemistry. These rate laws often reference many types of kinetic 

parameter. However, true stepwise rate laws can be deduced, at least in 

principle, from the rate laws of elementary reactions (plus some reactant 

concentrations), and elementary rate laws have much simpler structures. It is 

for this reason that my thesis has used elementary rate laws, rather than 

stepwise rate laws, to explain pathway nonlinearity, feedback, modularity and 

emergence (recall section 2.2.2). 

3. To illustrate that pathway ODE models are fully specified by the rate laws of 

reaction steps (plus any equations for net flows in/out of the pathway and the 

Kinetic Law of Composition). There are no other ‘higher-level’ laws needed to 

model chemical feedback. The feedback results solely from individual 

reactions steps changing the concentrations of their own reactants / products, 

which are also reactants in some earlier reaction steps (recall section 2.3.3).   

  

                                                           
44 A later paper my van Eunen (2012) improved on these results by using crowded solutions. In a personal 

communication one of the co-authors H. Westerhoff characterized the average errors of the latter model as 

being ‘about 30%’.  
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A.1   The Yeast Glycolytic Pathway 

Step  Enzyme 

0 

1 

Transportation of glucose into the yeast cell 

glucose + ATP → glucose-6-phosphate + ADP + H+ 

 

hexokinase 

2 

2b 

2c 

glucose-6-phosphate  fructose-6-phosphate 

glucose-6-phosphate + ATP → glycogen     (branch 1) 

glucose-6-phosphate + ATP → trehalose     (branch 2) 

phosphoglucose isomerase 

3 fructose-6-phosphate + ATP → fractose-1,6-bisphosphate 

+ ADP + H+ 

phosphofructokinase 

4 fructose-1,6-bisphosphate  dihydroxyacetone phosphate 

+ glyceraldehyde-3-phosphate 

aldolase 

5 

5b 

dihydroxyacetone phosphate  glyceraldehyde-3-

phosphate 

dihydroxyacetone phosphate → glycerol      (branch 3) 

triose phosphate isomerase 

 (steps 6 to 10 are carried out twice)  

6 glyceraldehyde-3-phosphate + Pi + NAD+   1,3-

bisphosphoglycerate + NADH + H+ 

glyceraldehyde 3-

phosphate dehydrogenase 

7 1,3-bisphosphoglycerate + ADP   3-phosphoglycerate + 

ATP 

phosphoglycerate kinase 

8 3-phosphoglycerate   phosphoglycerate phosphoglycerate mutase 

9 2-phosphoglycerate   phosphoenolpyruvate + H2O einolse 

10 

11 

12 

12b 

phosphoenolpyruvate + ADP +  H+ → pyruvate +  ATP 

pyruvate   acetaldehyde + CO2 

acetaldehyde + NADH + H+  ethanol + NAD+ 

acetaldehyde + 3 NAD+ + 4 ATP → succinate + 3 NADH + 

4 ADP                                                               (branch 4) 

 

pyruvate kinase 

 

pyruvate decarboxylase 

alcohol dehydrogenase 

(Reaction steps 2b, 2c, 5b and 12b are branches to other metabolic pathways within 

the yeast cell). 
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A.2   The Concentration ODEs    (Teusink et al., 2000, p. 5314) 

(1)   
𝑑[𝐺𝑙𝑐𝑖𝑛]

𝑑𝑡
  =  𝑣𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 -  𝑣𝐻𝐾 

(2)   
𝑑[𝐺6𝑃]

𝑑𝑡
  =  𝑣𝐻𝐾 -  𝑣𝑃𝐺𝐼 -  𝑣𝑡𝑟𝑒ℎ𝑜𝑙𝑠𝑒 -  𝑣𝑔𝑙𝑦𝑐𝑜𝑔𝑒𝑛 

(3)   
𝑑[𝐹6𝑃]

𝑑𝑡
  =  𝑣𝑃𝐺𝐼 -  𝑣𝑃𝐹𝐾  

(4)   
𝑑[𝐹1,6𝑏𝑃2]

𝑑𝑡
  =  𝑣𝑃𝐹𝐾 -  𝑣𝐴𝐿𝐷  

(5)   
𝑑[𝑇𝑟𝑖𝑜−𝑃]

𝑑𝑡
  =  2 𝑣𝑃𝐺𝐼 -  𝑣𝐺𝑟𝑎𝑃𝐷𝐻 - ( 𝑣𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 ) 

(6)   
𝑑[𝐵𝑃𝐺]

𝑑𝑡
  =   𝑣𝐺𝑟𝑎𝑃𝐷𝐻 -  𝑣𝑃𝐺𝐾 

(7)   
𝑑[3𝐺𝑟𝑖𝑃]

𝑑𝑡
  =   𝑣𝑃𝐺𝐾 -  𝑣𝑃𝐺𝑀 

(8)   
𝑑[2𝐺𝑟𝑖𝑃]

𝑑𝑡
  =   𝑣𝑃𝐺𝑀 -  𝑣𝐸𝑁𝑂 

(9)   
𝑑[𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑒𝑛𝑜𝑙𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒]

𝑑𝑡
  =  𝑣𝐸𝑁𝑂 -  𝑣𝑃𝑌𝐾 

(10)   
𝑑[𝑃𝑌𝑅]

𝑑𝑡
  =  𝑣𝑃𝑌𝐾 -  𝑣𝑃𝐷𝐶 

(11)   
𝑑[𝐴𝑐𝐴𝑙𝑑]

𝑑𝑡
  =  𝑣𝑃𝐷𝐶  -  𝑣𝐴𝐷𝐻   ( - 2 𝑣𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ) 

(12)   
𝑑[𝑃]

𝑑𝑡
  =   𝑣𝐻𝐾  -  𝑣𝑃𝐹𝐾 -  𝑣𝑃𝐺𝐾 + 𝑣𝑃𝑌𝐾 -  𝑣𝐴𝑇𝑃𝑎𝑠𝑒  (-  𝑣𝑡𝑟𝑒ℎ𝑜𝑙𝑠𝑒 -  𝑣𝑔𝑙𝑦𝑐𝑜𝑔𝑒𝑛- 

𝑣𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ) 

(13)   
𝑑[𝑁𝐴𝐷𝐻]

𝑑𝑡
  =   𝑣𝐺𝑟𝑎𝑃𝐷𝐻 -  𝑣𝐴𝐷𝐻  ( -  𝑣𝑔𝑙𝑦𝑐𝑜𝑔𝑒𝑛- 𝑣𝑠𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 ) 

(14)   
𝑑[𝑁𝐴𝐷]

𝑑𝑡
  = 

𝑑[𝑁𝐴𝐷𝐻]

𝑑𝑡
   

where: [Trio – P ] = [glycerone phosphate] + [GraP] and P = 2[ATP] + [ADP]  

Abbreviations: AcAld, acetaldehyde; ADH, alcohol dehydrogenase; ALD, fructose-1,6-bisphosphate 

aldolase; ENO, phosphopyruvate hydratase; F1,6bP2, fructose-1,6-bisphosphate; F2,6bP2, fructose 2,6-

bisphosphate; F6P, fructose 6-phosphate; GraPDH, d-glyceraldehyde-3-phosphate dehydrogenase; G6P, 

glucose-6-phosphate; 2GriP, 2-phosphoglycerate; 3GriP, 3-phosphoglycerate; HK, hexokinase; PDC, 

pyruvate decarboxylase; PGI, phosphogluco isomerase; PFK, phosphofructokinase; PGK, phosphoglycerate 

kinase; PGM, phosphoglycerate mutase; PYK, pyruvate kinase; PYR, pyruvate. 
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A.3   The Rate Laws       (Teusink et al., 2000, p. 5326 - 5329) 

The rate laws reference numerous parameters such as equilibrium constants, 

Michaelis-Menten constants, control flux coefficients, mass-action ratios and 

maximal rates of reactions. I will not provide definitions of each of these; it is 

sufficient for our purposes to note these are each parameters is ultimately a function 

of the rate constants of elementary reactions and/or reactant (including enzyme) 

concentrations.  

 

1. Reaction steps 2, 8, 9. The rate laws for the reactions catalysed by PGI, PGM and 

ENO have the same form. These are reactions with one substrate, one product and 

are taken to have reversible Michaelis-Menten kinetics (recall section 2.2.3). 

(R1)    v = V
+ 

 
𝑎

𝐾𝑎
  ( 1 - 

Τ

𝐾𝑒𝑞
 ) / ( 1 + 

𝑎

𝐾𝑎
 + 

𝑝

𝐾𝑝
 ) 

where a and p  are the concentrations of the substrate and product, Τ is the mass 

action ratio (this is equal to a / p), Keq is the equilibrium constant ,  Ki is the 

Michaelis-Menten constant for chemical i and V+ 
 is the maximum rate of the 

reaction (see Sauro, 2012, p. 328).  

2. Reaction steps 1, 6, 7, 10. The rate laws for the reactions catalysed by HK, 

GraPDH, PGK and PYK all have the same form. This is the form for reversible 

Michaelis-Menten reactions for two non-competing substrate-product pairs. 

(R2)   v = V
+ 

 
𝑎𝑏

𝐾𝑎𝐾𝑏
  ( 1 - 

Τ

𝐾𝑒𝑞
 ) / ( 1 + 

𝑎

𝐾𝑎
 + 

𝑝

𝐾𝑝
 ) ( 1 + 

𝑏

𝐾𝑏
 + 

𝑞

𝐾𝑞
 ) 

where a and b are the concentrations of the substrates, and p and q are the 

concentrations of the products. 

3. Reaction step 0. The flow of glucose across the membrane and into the cell is 

modelled by a diffusion equation. 

(R3)   v transport = V
+ 

 
[𝐺𝑙𝑐𝑜𝑢𝑡]− [𝐺𝑙𝑐𝑖𝑛]

𝐾𝐺𝑙𝑐
    / ( 1 + 

[𝐺𝑙𝑐𝑜𝑢𝑡]

𝐾𝐺𝑙𝑐
 + 

[𝐺𝑙𝑐𝑖𝑛]

𝐾𝐺𝑙𝑐
 +Ki 

[𝐺𝑙𝑐𝑜𝑢𝑡]

𝐾𝐺𝑙𝑐

[𝐺𝑙𝑐𝑖𝑛]

𝐾𝐺𝑙𝑐
  ) 

GLcout  is extracellular glucose, GLcin  is intracellular glucose. Ki  are equilibrium 

constants that depend on the relative mobilities of the carriers of glucose.  

4. Reaction step 11. The reaction catalyzed by pyruvate decarboxylase (PDC) has 

cooperative kinetics and is modeled by an irreversible Hill equation, with the 
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parameter nH being a measure of cooperativity and K0.5 being the half maximal 

concentration constant (recall section 2.2.3). 

(R4)   v PDC = V
+ 

  (  
[𝑃𝑌𝑅]𝑛𝐻

𝐾0.5
 ) / ( 1 + 

[𝑃𝑌𝑅]𝑛𝐻

𝐾0.5
  ) 

5. Reaction step 12. The reaction catalysed by alcohol dehydrogenase (ADH) is taken 

to be ‘ordered bi-bi’, involving a sequence of two biomolecular reactions (hence 

‘bi-bi). First NADH  binds to ADH forming an enzyme-substrate complex and then 

the acetaldehyde then binds to that complex.  

(R5)  v ADH = V
+ 

 
𝑎𝑏

𝐾𝑎𝐾𝑏
    - V

- 
 

𝑝𝑞

𝐾𝑝𝐾𝑖𝑞
       / ( 1 + 

𝑎

𝐾𝑎
  + 

𝐾𝑎𝑏

𝐾𝑖𝑎𝐾𝑏
  +

𝐾𝑞𝑝

𝐾𝑝𝐾𝑖𝑞
  + 

𝑞

𝐾𝑖𝑞
  +  

𝑎𝑏

𝐾𝑎𝐾𝑏
    

𝐾𝑞𝑎𝑝

𝐾𝑖𝑎𝐾𝑝𝐾𝑖𝑞
    )  + 

𝐾𝑎𝑏𝑞

𝐾𝑖𝑎𝐾𝑏𝐾𝑖𝑞
 +  

𝑝𝑞

𝐾𝑝𝐾𝑖𝑞
    +  

𝑎𝑏𝑝

𝐾𝑖𝑎𝐾𝑏𝐾𝑖𝑞
   +   

𝑏𝑝𝑞

𝐾𝑖𝑎𝐾𝑏𝐾𝑖𝑞
       

where a is [ethanol], b is [NAD], p is [acetaldehyde] and q is [NADH], V+
 is the 

maximal reaction rate for the forward reaction and v – is the maximal reaction rate 

for the reverse reaction. 

6. Teusink et al. do not explicitly model the reaction processes in which ATP is 

consumed. Instead a simple linear rate law is assumed. 

 (R6)   v ATPase  =   k ATPase [ATP] 

7. Reaction step 4. PFK is an allosteric enzyme (recall 2.3.4). Teusink et al. model 

three positive effectors: ATP, F1,6bP2, F2,6bP2 and one negative effector AMP. 

Neither F1,6bP2, nor F2,6bP2 are reactants or products of the glycolytic pathway 

(except in their capacity of being effectors of PFK) but the concentrations of both 

are effected by the concentrations of products of the glycolytic pathway. Teusink 

et al. identify several other effectors of PFK which have not been modelled in 

order to avoid ‘combinatorial explosion (Teusink et al., 2000, p. 5329). The 

unmodeled effectors are: ammonium, phosphate, H+, fructose 2,6 – biphosphate 

and ADP. PFK is assumed to have only two conformational states: a relaxed state 

R and a Tense state T. They simplify their equation by assuming F6P does not 

bind to PFK in the T state. An adapted form of the Monod, Wymann, Changeux 

model for allosteric enzymes is used as the rate law. The overall rate law is very 

complex and is therefore broken down into several components. In effect, the 

rate law calculates the concentration of PFK that is in the R state from the 

concentrations of PFK’s effectors (and associated kinetic parameters). The rate of 

reaction step 4 is then determined from the concentrations of PFK in the R state 

and the concentrations of the reactants F6P and ATP.   
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(R7)    v PFK = V
+ 

 
𝑔𝑅𝜆1𝜆2

𝑅2+𝐿𝑇2 

where: 

(R 7.1)   λ1 = [F6P]  / KR, F6P 

(R 7.2)  λ2 = [ATP]  / KR, ATP 

(R 7.3)  R = 1 + λ1 + λ2 + gR λ1 λ2 

(R 7.4)  T = 1 + cATP λ2 

(R 7.5)           L =  L0  . (
1+

𝐶𝑖,𝐴𝑇𝑃
𝐾𝐴𝑇𝑃

 

1+ 
[𝐴𝑇𝑃]

𝐾𝐴𝑇𝑃

)

2

. (
1+

𝐶𝑖,𝐴𝑀𝑃
𝐾𝐴𝑀𝑃

 

1+ 
[𝐴𝑀𝑃]

𝐾𝐴𝑀𝑃

)

2

. (
1+

𝐶𝑖,𝐹2,6𝑏𝑃
𝐾𝐹2,6𝑏𝑃

 +
𝐶𝑖,𝐹1,6𝑏𝑃
𝐾𝐹1,6𝑏𝑃

 

1+ 
[𝐹2,6𝑏𝑃]

𝐾𝐹2,6𝑏𝑃
+ 

[𝐹1,6𝑏𝑃]

𝐾𝐹1,6𝑏𝑃

)

2

 

cij are control flux parameters (see Cornish-Bowden, 2014, section 13.4)  
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