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Abstract

The first part of my thesis deals with the factor modeling for high-dimensional time series

based on a dimension-reduction viewpoint. we allow the dimension of time series N to be as

large as, or even larger than the sample size of the time series. The estimation of the factor

loading matrix and subsequently the factors are done via an eigenanalysis on a non-negative

definite matrix constructed from autocorrelation matrix. The method is dubbed as AFA.

We give explicit comparison of the convergence rates between AFA with PCA. We show that

AFA possesses the advantage over PCA when dealing with small dimension time series for

both one step and two step estimations, while at large dimension, the performance is still

comparable.

The second part of my thesis considers large integrated covariance matrix estimation.

While the use of intra-day price data increases the sample size substantially for asset alloca-

tion, the usual realized covariance matrix still suffers from bias contributed from the extreme

eigenvalues when the number of assets is large. We introduce a novel nonlinear shrinkage

estimator for the integrated volatility matrix which shrinks the extreme eigenvalues of a re-

alized covariance matrix back to acceptable level, and enjoys a certain asymptotic efficiency

at the same time, all at a high dimensional setting where the number of assets can have the

same order as the number of data points. Compared to a time-variation adjusted realized

covariance estimator and the usual realized covariance matrix, our estimator demonstrates

favorable performance in both simulations and a real data analysis in portfolio allocation.

This include a novel maximum exposure bound and an actual risk bound when our estimator

is used in constructing the minimum variance portfolio.
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Chapter 1

Introduction

My thesis consists of two pieces of work, the first piece of work deals with factor modeling

for time series data, and the second piece of work deals with the estimation of integrated

covariance matrix. In this chapter, we give the motivations, question formulation, research

hypotheses to investigate, and proposed solutions for both pieces of work.

1.1 Motivation for the first piece of work

In economic or financial time series data, it is typical that on top of serial correlations driven

by several common factors, some components of the observed time series can have a specific

correlation structure. For instance, world wide performance index of health sector can be

driven up by diseases spreading over a certain region on earth, while the global market index

can actually be going down suffering from general economic downturn. The disease factor

is only affecting the performance index which is specific to the index itself and cannot be

explain by other factors driving many other economic indicators. Therefore, it is natural to

distinguish the more pervasive factors from the local factors.

In chapter 2, we try to estimate the factors using the so called autocorrelation factor

analysis (AFA). By assuming certain regularity conditions, we propose theorems concerning

the convergence rate of the methods. It is clear from the theoretical results, AFA method

has a big advantage when the noise is very heteroscedatic. For comparison, we have give the

counterpart rates for principle components methods (PCA). When we have a large panel of

time series where there are many small categories, for example, a panel of macroeconomic

indicators, we can use AFA to firstly estimate the more pervasive factors, and remove the

effect of the pervasive factors, and use a two step procedure to estimate the local factors. The
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1.2. Motivation for the second piece of work 8

convergence rates of the two step procedure with known and unknown grouping structures

are also proved. We also design numerical experiments and using a set of real macro economic

data to demonstrate our methods.

The contribution of my part is that I explicitly proved the theorems in the chapter and

do the numerical and real data examples.

1.2 Motivation for the second piece of work

The second piece of work is concerned with the estimation of the so-called Integrated Covari-

ance. This is a particular type of covariance matrix that arises in financial econometrics from

data sets of high-frequency stock returns. The fundamental difference with standard covari-

ance matrix estimation is that the intra-day variance patterns are extremely time-varying,

and must be taken into account. Intuitively speaking, the ICV matrix is best understood as

the average over a certain time period of instantaneous covariance matrices. In the frame-

work of large-dimensional asymptotics, the largest (smallest) estimated eigenvalues tend to

be too high (low) and have to be pushed downwards (upwards).

In chapter 3, we propose a nonparametric estimation method which ‘cross fertilize’ the

nonlinear shrinkage estimation of the covariance matrix onto the large-dimensional ICV

matrix estimation problem. The properties of proposed methods are studied and numerical

examples are given to demonstrate its usefulness.

The contribution of my part is that following the idea of Dr Lam, I explicitly give the

estimator and complete the proofs with Dr Lam together, the simulation and numerical

studies were also my work.



Chapter 2

Autocorrelation-based factor analysis

2.1 Relevant methods in the literature

The study of multivariate time series data becomes more and more important in many

different fields, including macroeconomics, finance, and environment studies. In practice,

due to the number of parameters needed to estimate is often too many, the method is rarely

used without proper dimension reduction or regularization.

Factor modeling is one of the main techniques used in order to achieve dimension reduc-

tion for multivariate time series. The goal is to try to find factors which drive the dynamics

of the time series. To this end, Lam, Yao and Bathia [12] propose to decompose a times

series into two parts: a dynamic part which we expect to be driven by a lower dimension

factor time series, and a static part which is a white noise vector. The estimation of the

factor loading matrix and subsequently the factors are done via an eigenanalysis on a non-

negative definite matrix constructed from autocorrelation matrix. We refer to this method

as Autocorrelation-based Factor Analysis (AFA).

The vast majority of existing literature deal with factor models using a different decom-

position yt than AFA method does. Most of those factor models decompose differently in a

way that they try to identify the common factors that affect the dynamics of most of the p

components in the original time series and separate the so-called idiosyncratic noise compo-

nents, in which each of them may affect at most a few original time series, from the common

factors. This decomposition has its own merits in econometrics and finance applications. An

important example utilizing this decomposition is by Bai and Ng [5] which was the method

of PCA to estimate the factors and factor loadings.
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2.2. Models and estimation 10

However, technical difficulties arise in both model identification and inference: such

decomposition requires that the dimension of time series goes to infinity for the common

factors and idiosyncratic noises to be identified. In contrast, the decomposition by Lam,

Yao and Bathia [12] is exempted from this identifiability problem. AFA works in both high

and low dimension circumstances.

In [12], there is no direct comparison of the convergence rates for AFA and PCA. In this

chapter, we give an explicit comparison of the convergence rates between AFA with PCA. We

show that AFA possesses the advantage over PCA when dealing with small dimension time

series for both one step and two step estimations, while at large dimension, the performance

is still comparable. At the end of this chapter, we also include a discussion paper to a journal

article in section 2.8.

2.2 Models and estimation

2.2.1 The Models and assumptions

Suppose we want to analyze the linear dynamic structure of time series yt, we may decompose

yt into two parts: a static part (a white noise), and a common component which is driven

by a low-dimensional process. Therefore, for t = 1, ..., n, we may consider the model

yt = Axt + εt, (2.2.1)

where yt is the observed time series of dimension p, xt is the unobserved factor time series

of dimension r, and it is assumed to be weakly stationary with finite first two moments.

Here we assume both means of yt and xt are removed. The matrix A denotes the unkown

constant factor loading matrix of size p× r. Here we assume the number of factors r is much

smaller than p. Finally, εt is a p× 1 white noise vector with mean zero and some covariance

matrix Σε.

By noting the fact that the RHS is unchanged if we replace the pair (A, xt) by (AH,H−1xt)

for any invertible r × r matrix H, we can always find an A such that the columns of

A = {a1, · · · , ar} are orthonormal, therefore, we may assume A′A = Ir, where Ir denotes

the r× r identity matrix and A′ denotes the transpose of A. Let B be a p× (p− r) matrix

for which (A,B) forms p× p orthogonal matrix. Although the factor loading matrix is not

uniquely defined, the factor loading space M(A), which is the r−dimensional linear space

spanned by columns of A is uniquely defined. Also, it is sensible to assume that any white
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noise linear combination of xt are absorbed into εt, and the rank of A is r as otherwise we

may express (2.2.1) equivalently in terms of lower-dimensional factors.

In our model, the only observable series is yt. How well we can recover xt from yt thus

depends on the factor strength reflected by the coefficients in loading matrix A. For example,

in the case of A = 0, yt carries no information on xt, Therefore, it is intuitive to characterize

the ‘strength’ of a factor using the number of non-zero elements in a column of A. Intuitively,

pervasive factors are those factors that affect most part of the series, and local factors are

those affect only part of the series. Now assume we have r1 pervasive factors (the numbers

of non-zero elements in the corresponding columns are of order � p), and r2 local factors

with strength pi
p

. Then the model can be written as

yt = Axt + εt = Asxts + Awxtw + εt, (2.2.2)

where A′sAw = 0. In addition, for Aw, we assume it adopts a known factor structure group:

Aw =


Aw1 0 · · · 0

0 Aw2 0
...

... 0
. . . 0

0 · · · 0 Awr2 ,

 , Awi ∈ Rpi . (2.2.3)

Here is some more notations. Define Σs(k) = Cov(xts, x(t−k),s), Σwj(k) = Cov(xt,wj , x(t−k),wj)

and Σxε(k) = Cov(xt+k, εt). For k = 0, 1, 2, · · · , k0. Also put

Σy(k) = Cov(yt, yt−k), Σx(k) = Cov(xt, xt−k),

Σxε(k) = Cov(xt, εt−k).

Now, we have some regularity conditions.

(C1) In model (2.2.1), no linear combination of xt is white noise and Σx(k) is of full rank

for k = 0, · · · , k0, where k0 ≥ 1 is a positive integer. In addition, A′A = Ir.

(C2) The covariance matrix Cov(εt, xt−s) = 0 for all s ≥ 0.

(C3) The observable series yt is strictly stationary and Ψ-mixing with mixing coefficient Ψ(·)

satisfying that
∑

t≥1 tΨ(t)
1
2 <∞, and E(|yt|4) <∞ element-wise.

(C4) For pervasive factors, it holds that ‖Σs(k)‖ � p � ‖Σs(k)‖min, and for a local factor

wj, ‖Σwj(k)‖ � pj � ‖Σwj(k)‖min. Here, pj denotes the number of non-zero elements

in a specific local factor wj.

(C5) For k = 0, 1, · · · , k0, ‖Σxε(k)‖ = o(pj).
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2.2.2 Estimation for the factor loading space

For the purpose of estimation, we want to find an estimator Â for the p × r factor loading

matrix A. Recall that we have A being orthonormal, then the factor process xt can be

estimated by Â′yt and the resulting residual is (Ip − ÂÂ′)yt.

In [27], they propose a method to estimate the factor loading matrix by performing an

eigenanalysis on a non-negative semi-definite matrix. The method is outlined here.

(C2) implies that

Σy(k) = AΣx(k)A′ + AΣxε(k), k ≥ 1.

Define the p× p nonnegative definite matrix M by

M =

k0∑
k=1

Σy(k)Σy(k)′, where k0 is a prescribed integer.

This matrix is constructed to accumulate the information from different time lags. Since

Σy(k) = AΣx(k)A′ + AΣxε(k), k ≥ 1,

we have MB = 0, i.e. the columns of B are the eigenvectors of M corresponding to zero-

eigenvalues. We use this non-negative definite matrix to avoid the cancellation of the in-

formation from different lags. Therefore, the value of k is taken from 1 rather than 0. In

practice, small lag would be enough, as the autocorrelation is often at its strongest at the

small time lags, large k0 would not make a significant effect on the estimation.

The factor loading space is then spanned by the eigenvectors of M corresponding to

its nonzero eigenvalues. We take the r orthonormal eigenvectors corresponding to non-zero

eigenvalues of M as the columns of A.

Finally, Â is found by performing an eigenanalysis on the sample version M̂:

M̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)′,

where Σ̂y(k) denotes the sample covariance matrix of yt at lag k.

2.3 Theoretical properties

In our notation, we use a � b to denote a = OP (b) and b = OP (a), and for any matrix

G, ‖G‖ is the L2 norm, ‖G‖F is the Frobenius norm and ‖G‖min is the square root of the

smallest non-zero eigenvalue of GG′.
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In Bai and Ng (2002), they propose a method (PCA) to find the factor loading matrix

by doing an eigenanalysis on the matrix Σy = Cov(yt, yt). The following theorem gives the

convergence rates for PCA and AFA respectively.

Theorem 1 Let conditions (C1)-(C5) hold. Further if we assume ‖Σε‖ = O(pγ), γ ∈ (0, 1),

and denote the PCA estimator for fact loading matrix by ÂPCA, it holds for PCA that:

‖ÂPCA−A‖ = Op(

(
p

minj pj

)1/2

n−
1
2‖B′ΣεB‖

1
2 (1 +

(
p

minj pj

)1/2

pγ/2) + min
j
p−1j ‖B′ΣεA‖),

and for AFA,

‖Â−A‖ = OP (

(
p

minj pj

)1/2

n−
1
2‖B′ΣεB‖

1
2 (1 +

(
p

minj pj

)1/2

pγ/2).

From theorem 1, we can see the difference of those two rates is that PCA has an extra

term minj p
−1
j ‖B′ΣεA‖ than AFA. For large pj, this term tends to zero, and PCA and AFA

have the same rates asymptotically. However, when pj is small, min p−1j ‖B′ΣεA‖ may be

dominant and PCA may even be inconsistent. This manifests the advantage AFA has when

we deal with groups with small dimension.

In Lam and Yao (2012), they introduce a two-step estimation procedure, which is superior

to the one-step estimation. The method is outlined here.

In equation (2.2.2), we first obtain the estimator Â ≡ (Âs, Âw) for the factor loading

matrix A = (As,Aw), then the effects of pervasive factors can be removed from the data

using

y∗t = yt − ÂsÂ
′
syt.

Next, we perform the same estimation for the new data {y∗t }, and obtain the estimated factor

loading matrix Ãw for the local factors. The final estimator is then

Ã = (Âs, Ãw).

To highlight the benefits of the two-step estimation procedure, we replace condition (C5)

by a stronger condition:

(C5)’ Cov(xt, εs) = 0 for any t, s.

The convergence rate for two step estimation is presented in Theorem 2 below.
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Theorem 2 (Two step rates) Let conditions (C1)-(C4) and (C5)’ hold. Denote pm =

minj pj and pM = maxj pj. Let n = O(p) and if we do not know the structure of the factor

loading matrix, then for PCA, we have

‖ÃPCA −A‖ = OP (r
1
2
2 p

1
2p

1
2
Mp
−1
m n−

1
2 + p−1m ‖B′ΣεAw‖),

and the counterpart rate for AFA is

‖Ã−A‖ = OP (r
1
2
2 p

1
2p

1
2
Mp
−1
m n−

1
2 ).

If we know the local factor structure group, and denote Σ(i)
ε as the covariance for ith group

of noise, then for local factors ith group A
(i)
w ,

‖Ã(i)
PCA −A(i)

w ‖ = OP (n−
1
2 + p−1i ‖B′Σ(i)

ε A(i)
w ‖),

and

‖Ã(i) −A(i)
w ‖ = OP (n−

1
2 ).

2.4 Simulations

We conduct the following simulation examples to illustrate our method. The comparison

with principal components method of Bai & Ng [?] is also reported.

We set r = 11 as the number of factors in model (2.2.2) , including one pervasive factors

and 10 local factors. And the 100 × 11 factor loading matrix has the following structure:

(hence the factor structure group is known as we assumed.)

A =


As1 Aw1 0 · · · 0

As2 0 Aw2 0
...

...
...

. . . . . . 0

As10 0 · · · 0 Aw10

 Awi , Asi ∈ R10 (2.4.1)

Every non-zero entry in A comes from U(0, 1) distribution and the first column is orthogonal

to every other column (This is done by QR decomposition, the local factors are automatically

orthogonal as non-zero entries are not overlapping). The factors are defined by xt = 0.9xt−1+

ηt, where is ηt are independent N(0, 1) random variables. The performance of estimator is

measured by

d(Â) = ‖(I−AA′)Â‖, (2.4.2)
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which measures the ‘distance’ between the estimated factor loading matrix and the true fact

loading matrix and a smaller number means a better estimation of the factor loading matrix.

We consider two scenarios for noise structure εt.

Scenario I

In scenario I, εt ∼ N(0,Σ1), where the (i, j)th element of Σ1 is defined as

σij =
1

2
{(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H}, (2.4.3)

and H is the Hurst parameter which takes value in [0.5, 1]. Larger Hp means stronger cross-

correlations for the components in εt and larger Hn accounts for stronger autocorrelations

for εt’s.

Table 2.1 reports the results obtained for scenario I. The experiments is conducted with n =

1000 and 100 repetitions. AFA1 and PCA1 are the results obtained without the knowledge

of data structure and AFA2 and PCA2 are the results obtained with known data structure.

Table 2.1: Scenario I

Errors/s.d.

Hp Hn AFA1 PCA1 AFA2 PCA2

0.5 0.5 26(22) 22(15) 27(60) 21(47)

0.7 0.5 26(22) 41(61) 26(70) 20(50)

0.9 0.5 26(36) 86(64) 26(69 29(30)

0.5 0.7 42(28) 32(17) 27(58) 21(41)

0.7 0.7 43(37) 47(62) 27(65) 22(44)

0.9 0.7 46(61) 86(70) 26(57) 32(35)

0.5 0.9 89(91) 71(123) 29(58) 22(41)

0.7 0.9 88(89) 72(124) 31(61) 23(45)

0.9 0.9 81(115) 83(91) 29(65) 27(49)

Table: Means (true value multiplied by 100)

and standard deviation (in brackets, true value multiplied by 1000)

The results show that when both serial and cross-correlations are not too strong, our

methods perform similar to PCA, with cross-correlations are strong, AFA has better accuracy

in estimating the factor loading space. However, When the serial correlation is strong as

well, PCA outperforms our methods.



2.4. Simulations 16

Scenario II

In scenario II, εt ∼ N(0,Σ2), where Σ2 =


H 0 · · · 0

0 H 0
...

...
. . . . . . 0

0 ... 0 H,

, and each H is a 10 × 10

diagonal matrix. In this case, the white noise εt adopts a heteroscedastic and diagonal

covariance structure.

To obtain εt in scenario II, we first generate p× n matrix Z with entries being indepen-

dently identically distributed standard normal random variable. And let

H = diag{σ2
1, σ

2
1, σ

2
2, σ

2
2, σ

2
2, σ

2
3, σ

2
3, σ

2
3, σ

2
3, σ

2
3}. Therefore Σ

1
2
2 Z would give the required noise

structure for scenario II.

The performance is reported for both AFA and PCA, AFA1 and PCA1 are done without

the knowledge of factor structure group, AFA2 and PCA2 are the results obtained with a

known factor structure group. For each of the following cases, we replicate the simulation

100 times.

Firstly, we conduct experiment for homogeneous noise, i.e., Σ2 has all diagonal entries

equal one.

Table 2.2: Scenario II Homogeneous noise

Error/s.d.

n AFA1 PCA1 AFA2 PCA2

200 91(79) 74(92) 52(115) 42(95)

500 48(64) 36(30) 35(78) 28(64)

1000 26(21) 21(17) 26(70) 20(58)

Table: Means (true value multiplied by 100)

and standard deviation (in brackets, true value multiplied by 1000)

From Table 2.2, we can see that by knowing the factor structure group, both methods

perform better. And PCA outperforms our method in general. This is consistent with our

asymptotic results.

However, the situation changes once we introduce heteroscedastic noise.
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Table 2.3: Scenario II Heteroscedastic noise

Error/s.d.

σ1/σ2/σ3 AFA1 PCA1 AFA2 PCA2

1/1/1 26(22) 22(16) 26(68) 19(52)

1/1.2/1.3 32(32) 30(23) 25(59) 20(43)

1/1.3/1.5 35(29) 37(29) 26(75) 23(46)

1/1.4/1.8 43(50) 53(53) 28(70) 29(42)

1/1.5/2 47(49) 62(60) 27(61) 34(35)

Table: Means (true value multiplied by 100)

and standard deviation (in brackets, true value multiplied by 1000)

From Table 2.3, The performance of our method catches up with PCA as the noise

gradually becomes larger and more heteroscedastic. In addition, AFA2 does not change

as we increase the variance of the noise. This is consistent with our theoretical results:

when we estimate with the knowledge of factor loading matrix, the convergent rate is only

dependent on n for our estimator, which is robust against the change in noise structure.

On the other hand, the performance with PCA would deteriorate if the noise becomes more

heteroscedastic.

To further demonstrate the performances for those two methods, we choose {σ1, σ2, σ3} =

{1, 1.4, 1.8} as the parameters in H and combine with the Hurst noise matrix with Hp = 0.8.

Table 2.4: Scenario II Heteroscedastic noise 2

Error

n AFA1 PCA1 AFA2 PCA2

100 99 99 77 91

200 99 99 55 87

300 99 99 48 81

400 99 99 40 67

500 98 99 37 66

1000 60 99 28 52

2000 28 98 20 49

5000 16 99 13 37

Table: Means (true value multiplied by 100)

From Table 2.4 , it is clear that when noise becomes more heteroscedastic, PCA simply
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does not work in estimating the factor loading. However, our method can give a sensible

estimation. As we increase the sample size, the estimation becomes very good.

2.5 Real data example

We compare AFA and PCA methods using a macroeconomic data set obtained from Stock

and Watson (2005). The data consists of monthly data from January 1959 to December

2003. There are 132 U.S. macroeconomic time series in total, and they are categorized into

14 categories (numbers in the brackets denote the number of variables in each category):

personal income (2); consumption (1); real retail, manufacturing and trade sales (2); in-

dustrial production indices (15); employment and hours (30); housing starts and sales (10);

orders and real inventories (10); money and credit quantity aggregates (11); stock prices

(4); interest rates and spreads (17); exchange rates (5); price indices (21); average hourly

earnings (3); and miscellaneous (1).

Amongst those 14 categories, two of them have over 20 variables, five have 10 to 17

variables, another five categories have 2 to 5 variables, and the rest have only 1 variable

each. Therefore, the data has a natural grouping, and if on top of some pervasive factors,

there are some categories specific factors, then forecast may not be done well as the size of

the categories are small compared to sample size.

Effectively, we are working with yt of dimension 132, and t = 1, 2, · · · , 526. We perform

the factor modeling on each of 36 rolling windows with length of 490 each. We applied AFA

and PCA to the data for each window. We use an autoregressive model of order 3 to forecast

the (i + 490)th value of the estimated factor series x
(1)
i+490, so as to obtain a one-step ahead

forecast ŷ
(1)
i+490 = Âxi+490 for yi+490. For comparison, we calculated the forecast error for the

(i+ 490)th month for each method, defined by

Forecast error = p−
1
2‖ŷ(1)i+490 − yi+490‖. (2.5.1)

Firstly, we need to estimate the number of factors. We plot the average forecast error

for different number of factors r in Figure 2.1. We estimate the total number of factors to

be around 20, and the number of more pervasive factors to be 3.

Figure 2.2 shows that the cumulative forecast errors obtained without assuming specific

data structure are roughly the same for both PCA and AFA. Since we have a natural grouping

structure, this suggests us to first estimate the three pervasive factors, and we estimated the
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Figure 2.1: red line for AFA, black line for PCA.

local factors for categories with more than 4 variables. The cumulative forecast errors for

estimation with known factor structure groupare plotted in Figure 2.3.

From the graph, we can see that the performance of AFA is better than PCA, this is

expected as when estimating the local factors, PCA is not as good as AFA as suggested by

Theorem 2.

2.6 Summary of this chapter

In this chapter, we explore the factor modeling for high-dimensional time series based on

a dimension-reduction viewpoint. we allow the dimension of time series to be as large as,

or even larger than the sample size of the time series. The estimation of the factor loading

matrix and subsequently the factors are done via an eigenanalysis on a non-negative definite

matrix constructed from autocorrelation matrix. Under the condition of PCA, We give

explicit comparison of the convergence rates between AFA with PCA. We show that AFA

possesses the advantage over PCA when dealing with small dimension time series for both one

step and two step estimations, while at large dimension, the performance is still comparable.

We also demonstrate in numerical examples and real data from macro economic data, that

our method would have a better performance when the noise level is high.
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Figure 2.2: cumulative forecast error for estimation without assuming a known structure,

blue line for AFA, black line for PCA

2.7 Proofs for this chapter

The idea of proofs for both theorem 1 and 2 is based on the following lemma which is

Theorem 8.1.10 of Golub and Van Loan (2013).

Lemma 1 Suppose A and A + E are n-by-n symmetric matrices and that Q = [Q1 Q2] is

an orthogonal matrix such that span(Q1) is an invariant subspace for A. Here Q1 has size

n× r and Q2 has size n× (n− r). Partition the matrices Q′AQ and Q′EQ as follows:

Q′AQ =

D1 0

0 D2

 , Q′EQ =

E11 E ′21

E21 E22

 .

If sep(D1, D2) = minλ1∈λ(D1),λ2∈λ(D2) |λ1−λ2| > 0, where λ(M) denotes the set of eigenvalues

of the matrix M , and ‖E‖ ≤ sep(D1, D2)/5, then there exists a matrix P ∈ R(n−r)×r with

‖P‖ ≤ 4

sep(D1, D2)
‖E21‖.
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Figure 2.3: cumulative forecast error for estimation using known structure, red line for AFA,

green line for PCA.

such that the columns of Q̂1 = (Q1 + Q2P )(I + P ′P )−1/2 define an orthonormal basis for a

subspace that is invariant for A+ E.

Proof of Theorem 1. For PCA, we do eigenanalysis on

Σy = AΣxA
′ + Σε,

Its corresponding sample version is

Σ̂y = n−1Σn
t=1yty

′
t

= AΣ̂xA + AΣ̂xε + Σ̂εxA
′ + Σ̂ε.

Define L̂ = AΣxA
′ + (Σ̂y −AΣxA

′), where we refer to the first term as L, and the second

term as E. It follows that  A′

B′

L(A B) =

 D 0

0 0

 .

Hence,

sep(D, 0) = λmin(D)
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= λmin(Σx)

� pj.

Now we need to find ‖E21‖, where E21 is defined through

Q′EQ =

 E11 E ′21

E21 E22

 .

In our case,

Q′EQ =

 A′

B′

 (Σ̂y −AΣxA
′)(A B),

So we have E21 = B′Σ̂εx + B′Σ̂εA.

Let xt = Σ
1
2
x zt and εt = Σ

1
2
ε ut, where zt and ut are vectors consist of i.i.d. random variables

with mean 0 and variance 1. Also denote ε = (ε1, ε2, · · · , εn) and u = (u1, u2, ..., un).

Therefore,

‖E21‖ ≤ ‖B′Σ̂εx‖+ ‖B′ΣεA‖+ ‖B′(n−1εε′ −Σε)A‖.

B′Σ̂εx = B′n−1εtx
′
t

= B′Σ
1
2
ε n
−1utz

′
tΣ

1
2
x .

This implies,

‖B′Σ̂εx‖ ≤ ‖B′Σ
1
2
ε ‖ · ‖Σ̂uz‖ · ‖Σ

1
2
x‖.

Using ‖Σ̂uz‖ = OP (p
1
2n−

1
2 ), and ‖Σ

1
2
x‖ = OP (p

1
2
j ), we have

‖B′Σ̂εx‖ = OP (‖B′ΣεB‖
1
2 · p

1
2
j · p

1
2n−

1
2 )

Then for the last term,

B′(n−1εε′ −Σε)A = B′(Σ
1
2
ε n
−1uu′Σ

1
2
ε −Σ

1
2
ε Σ

1
2
ε )A

= B′Σ
1
2
ε (n−1uu′ − I)Σ

1
2
ε A.

To analyse the expression on the right hand side term by term, ‖n−1uu′ − I‖ = OP (pn−
1
2 ),

‖Σ
1
2
ε ‖ = OP (pγ/2) and ‖A‖ = 1.

Put everything together, we have

‖B′(n−1εε′ −Σε)A‖ ≤ ‖B′ΣεB‖
1
2OP (pn−

1
2 )OP (pγ/2)
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= OP (‖B′ΣεB‖
1
2pn−

1
2pγ/2).

This leads to

‖E21‖ = OP (‖B′ΣεB‖
1
2p

1
2
j · p

1
2n−

1
2 + ‖B′ΣεB‖

1
2pn−

1
2pγ/2 + ‖B′ΣεA)‖

= OP ((ppj)
1
2n−

1
2‖B′ΣεB‖

1
2 ((

p

pj
)
1
2pγ/2 + 1) + ‖B′ΣεA)‖).

Finally,

‖ÂPCA −A‖ =
‖E21‖

sep(D, 0)

= OP ((ppj)
1
2n−

1
2‖B′ΣεB‖

1
2 ((

p

pj
)
1
2pγ/2 + 1) + ‖B′ΣεA)‖)/pj

= OP (
p

pj
)
1
2n−

1
2‖B′ΣεB‖

1
2 (1 + (

p

pj
)
1
2pγ/2) + p−1j ‖B′ΣεA)‖).

This proves the PCA rate in Theorem 1.

Now, for AFA, define

L =

k0∑
k=1

Σy(k)Σy(k)′

= A

(
k0∑
k=1

(Σx(k)A′ + Σxε(k))(Σx(k)A′ + Σxε(k))′

)
A′.

and

L̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)′

=

k0∑
k=1

(AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k))

(AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k))′.

Define E = L̂ − L, and from proof of Theorem 1, Lam et al. (2011), by assuming κmax =

o(pj), we have sep(D, 0) � p2j .

Since B′L = 0 and noting that B′A = 0, we have

E21 = B′(L̂− L)A

= B′L̂A.

Then,

B′
k0∑
k=1

(AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k))
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(AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k))′A

=

k0∑
k=1

(B′Σ̂εx(k)A′ + B′Σ̂ε(k))(AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k))′A.

We can write,

AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k) = Σ̂y(k)

= Σ̂y(k)−Σy(k) + Σy(k)

.

From proof of Theorem 1 and 2, Lam et al. (2011), if conditions 8 and 9 are satisfied,

we have

‖Σ̂y(k)−Σy(k)‖ = OP ((ppj)
1
2n−

1
2 )

‖Σy(k)‖ = O(pj).

Therefore if we assume ( p
pj

)
1
2n−

1
2 = o(1), we have

‖AΣ̂x(k)A′ + AΣ̂xε(k) + Σ̂εx(k)A′ + Σ̂ε(k)‖ ≤ ‖Σ̂y(k)−Σy(k)‖+ ‖Σy(k)‖

= OP ((
p

pj
)
1
2n−

1
2 + pj)

= OP (pj).

Or if we do not assume ( p
pj

)
1
2n−

1
2 = o(1), then ‖Σ̂y(k) − Σy(k)‖ = OP (pn−

1
2 ), then it

may be too restrictive for the inclusion of local factors, for instance, we need log(
pj
p

) > 1
2

when p � n to get the same rate of OP (pj).

What is left is to find the order of ‖B′Σ̂εx(k)A′ + B′Σ̂ε(k)‖.

Recall we have defined εt = Σ
1
2
ε ut and xt = Σ

1
2
ε zt, so we have

B′Σ̂εx(k)A′ = B′
1

n− k
Σ

1
2
ε utz

′
t−kΣ

1
2
xAT

= B′Σ
1
2
ε Σ̂uz(k)Σ

1
2
xAT .

This implies,

‖B′Σ̂εx(k)A′‖ ≤ ‖B′ΣεB‖
1
2 · ‖Σ̂uz(k)‖ · ‖Σ

1
2
x‖

= OP (‖B′ΣεB‖
1
2p

1
2n−

1
2p

1
2
j )
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= OP (‖B′ΣεB‖
1
2 (ppj)

1
2n−

1
2 ).

And (recall that Σε(k) = 0),

‖B′Σ̂ε(k)‖ = ‖B′(Σ
1
2
ε (n− k)−1utu

′
t−kΣ

1
2
ε )‖

≤ ‖B′ΣεB‖
1
2 · ‖Σ̂u(k)‖ · ‖Σ

1
2
ε ‖

= OP (‖B′ΣεB‖
1
2pn−

1
2p

γ
2 ).

Therefore,

‖B′Σ̂εx(k)A′ + B′Σ̂ε(k)‖ ≤ ‖B′Σ̂εx(k)A′‖+ ‖B′Σ̂ε(k)‖

= OP ((ppj)
1
2n−

1
2‖B′ΣεB‖

1
2 (1 + (

p

pj
)
1
2p

γ
2 )).

Finally, we have

‖Â−A‖ =
OP ((ppj)

1
2n−

1
2‖B′ΣεB‖

1
2 (1 + ( p

pj
)
1
2p

γ
2 ) · pj)

sep(D, 0)

=
OP (p

1
2p

3
2
j n
− 1

2‖B′ΣεB‖
1
2 (1 + ( p

pj
)
1
2p

γ
2 ))

p2j

= OP ((
p

pj
)
1
2n

1
2‖B′ΣεB‖

1
2 (1 + (

p

pj
)
1
2p

γ
2 ). �

Proof of Theorem 2. For PCA, we perform eigen-analysis on

Σ̂y =n−1Σn
t=1yty

′
t

=AsΣ̂sA
′
s + AsΣ̂swA′w + AsΣ̂sε

+ AwΣ̂wsA
′
s + AwΣ̂wA′w + AwΣ̂wε

+ Σ̂εsA
′
s + Σ̂εwA′w + Σ̂ε.

Now, since factors are uncorrelated with noise, and pervasive factors are uncorrelated

with local factors, we have

Σy = AsΣsA
′
s + AwΣwA′w + Σε.

We write L̂ = Σ̂y = AsΣsA
′
s + AwΣwA′w + (Σ̂y −AsΣsA

′
s −AwΣwA′w).

Firstly, we need to find sep(Ds, Dw). We first do this pervasive factors, then Ds is of size

r1 × r1.
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Clearly, As and Aw contain r1+r2 eigenvectors of L. Let B be the orthogonal complement

of (As Aw), that is B′B = Ip−r1−r2 , and B′As = B′Aw = 0. Then
A′s

A′w

B′

L(As Aw B) =


Ds 0 0

0 Dw 0

0 0 0

 ,

where A′sLAs = Ds. To find the order of ‖Âs−As‖, we need to know sep

Ds,

 Dw 0

0 0

.

sep

Ds,

 Dw 0

0 0

 =λmin(Ds)− λmax(Dw)

=λmin(Σs)− λmax(Σw)

�p− max
1≤j≤r2

pj

�p.

Q′EQ =


A′s

A′w

B′

 (Σ̂y −AsΣsA
′
s −AwΣwA′w)(As Aw B)

=

 E11 E ′21

E21 E22

 .

In our case, Q = [Q1 Q2], where we take Q1 = As and Q2 = [Aw As],

E21 = (

 A′

B′

 (Σ̂y −AsΣsA
′
s −AwΣwA′w)As =

 A′wΣ̂yAs

B′Σ̂yAs

 .

Let xt = Σ
1
2
x zt and εt = Σ

1
2
ε ut, where xt and εt are vectors with Var(xt) = I and Var(εt) = I

and Σ
1
2
x and Σ

1
2
ε are square roots of matrices Σx and Σε, Then

‖A′wΣ̂yAs‖ =‖Σ̂ws + Σ̂wεAs + A′wΣ̂εs+ A′wΣ̂εAs‖

≤‖Σ
1
2
w(n−1zwz

′
s)Σ

1
2
s ‖+ ‖Σ

1
2
w(n−1zwu

′)Σ
1
2
ε As‖

+‖A′wΣ
1
2
ε (n−1uz′s)Σ

1
2
s ‖+ ‖A′wΣ

1
2
ε (n−1uu′)Σ

1
2
ε As‖.

Using the facts that pervasive factors are uncorrelated with local factors and factors are

uncorrelated with noise and ‖Σε‖ = O(pγ), after some algebra,

‖Σ
1
2
wΣzwzsΣ

1
2
s ‖+ ‖Σ

1
2
w(n−1zwz

′
s −Σzwzs)Σ

1
2
s ‖ = OP (max

j
p

1
2
j · p

1
2 · n−

1
2 ),
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‖Σ
1
2
wΣzwεΣ

1
2
ε As‖+ ‖Σ

1
2
w(n−1zwu

′ −Σzwε)Σ
1
2
ε As‖ = OP (max

j
p

1
2
j · p

γ
2 · p

1
2n−

1
2 ),

‖A′wΣ
1
2
ε ΣεzsΣ

1
2
s ‖+ ‖A′wΣ

1
2
ε (n−1uz′s −Σεzs)Σ

1
2
s ‖ = OP (p

γ
2 · p

1
2 · p

1
2n−

1
2 ),

‖A′wΣεAs‖+ ‖A′wΣ
1
2
ε (n−1uu′ − I)Σ

1
2
ε As‖ = OP (pγ + pn−

1
2 ).

This gives

‖A′wΣ̂yAs‖ = OP (p
γ
2 pn−

1
2 + pγ + pn−

1
2 ).

‖B′Σ̂yAs‖ =‖B′Σ̂εs + B′Σ̂εAs‖

≤‖B′Σ̂εs‖+ ‖B′Σ̂εAs‖

=OP (‖B′ΣεB‖
1
2pn−

1
2 + ‖B′ΣεB‖

1
2p

γ
2 pn−

1
2 + ‖B′ΣεA‖)

=OP (‖Σε‖
1
2pn−

1
2 + ‖Σε‖−

1
2p

γ
2 pn−

1
2 + ‖Σε‖)

=OP (p
γ
2 pn−

1
2 + p

γ
2 p

γ
2 pn−

1
2 + pγ),

‖B′Σ̂yAs‖ =OP (p
γ
2 pn−

1
2 + pγ + pγpn−

1
2 ).

Therefore, if pγ ≥ 1,

‖E21‖ = OP (pγ + pγpn−
1
2 ).

Finally,

‖Âs −As‖ =
‖E21‖

sep

Ds,

 Dw 0

0 0


=
OP (pγ + pγpn−

1
2 )

p

=OP (pγ−1 + pγn−
1
2 ).

The overall rate is determined by the local factor convergence speed. If we remove the

effect of pervasive factors, then we have

Σy∗ = AwΣwA′w + AsΣsA
′
s + AsΣ̂wεHs + HsΣεHs, where Hs = I−AsA

′
s.

Σ̂y∗ = ĤsΣ̂yĤs, where Ĥs = I− ÂsÂ
′
s.

therefore,



2.7. Proofs for this chapter 28

Σ̂y∗ = ĤsAsΣ̂sA
′
sĤs + ĤsAsΣ̂swA′wĤs + ĤsAsΣ̂sεĤs

+ ĤsAwΣ̂wsA
′
sĤs + ĤsAwΣ̂wA′wĤs + ĤsAwΣ̂wεĤs

+ ĤsΣ̂εsA
′
sĤs + ĤsΣ̂εwA′wĤs + ĤsΣ̂εĤs

We want to find ‖Ãw −Aw‖ = OP (
‖E∗

21‖
sep(D∗

w,0)
).

 A′w

B′

 (AwΣwA′w)(Aw B) =

 D∗w 0

0 0

 .

Hence,

sep(D∗w, 0) = λmin(D∗w)

� min
1≤j≤r2

pj.

Q′EQ =

 A′w

B′

 (Σ̂y∗ −AwΣwA′w)(Aw B)

=

 E∗11 E∗T21

E∗21 E∗22

 .

After some algebra, we have

‖E∗21‖ = OP (‖B′Σ̂y∗Aw‖)

= OP (‖B′ĤsΣ̂εwA′wĤsAw‖+ ‖B′ĤsΣ̂εĤsAw‖)

= OP (r
1
2
2 (p ·max pj)

1
2n−

1
2 + ‖B′ΣεAw‖),

and finally, the two step estimation rate for PCA is

‖Ãw −Aw‖ = OP (
‖E∗21‖

sep(D∗w, 0)
)

= OP (
r

1
2
2 (p ·max pj)

1
2n−

1
2 + ‖B′ΣεAw‖

min pj
)

= OP (r
1
2
2 p

1
2 max p

1
2
j min p−1j n−

1
2 + min p−1j ‖B′ΣεAw‖)

The proof for AFA method is in principle the same as that of Theorem 3 in Lam and Yao

(2012), and thus omitted.

For the second part of the theorem, suppose we know the structure of the data as defined

in (2.2.3), then, for ith local factor,

‖Ãwi −Awi‖ = OP (
‖B′iEiAwi‖
sep(Σ(i)

w , 0)
),



2.7. Proofs for this chapter 29

where Bi is the orthogonal complement of Awi , and Σ(i)
w is the covariance matrix for the ith

group local factors. For ith group of local factors, we data y∗t,i, that is the corresponding

rows of y∗t . Then we have

Ei = Σ̂y∗i
−AwiΣ

(i)
w A′wi .

Therefore,

B′iEiAwi = B′iĤ
(i)
s AsΣ̂sA

′
sĤ

(i)
s Aw + B′iĤ

(i)
s AsΣ̂

(i)

swA′wĤ(i)
s Aw + B′iĤ

(i)
s AsΣ̂

(i)

sε Ĥ
(i)
s Aw

+ B′iĤ
(i)
s AwΣ̂

(i)

wsA
′
sĤ

(i)
s Aw + B′iĤ

(i)
s AwΣ̂

(i)

w A′wĤ(i)
s Aw + B′iĤ

(i)
s AwΣ̂

(i)

wεĤ
(i)
s Aw

+ B′iĤ
(i)
s Σ̂

(i)

εs A′sĤ
(i)
s Aw + B′iĤ

(i)
s Σ̂

(i)

εwA′wĤ(i)
s Aw + B′iĤ

(i)
s Σ̂

(i)

ε Ĥ(i)
s Aw

= Σ9
j=1Ij.

Also we have,

‖Σ̂
(i)

s ‖ = OP (p),

‖Σ̂
(i)

w ‖ = OP (pi),

‖Σ̂
(i)

sw‖ = ‖Σ̂
(i)

ws‖ = OP (r
1
2
2 pin

− 1
2 ),

‖Σ̂
(i)

sε ‖ = ‖Σ̂εs‖ = OP (p
1
2n−

1
2 ),

‖Σ̂
(i)

wε‖ = ‖Σ̂εw‖ = OP (pin
− 1

2 ),

‖Σ̂
(i)

ε −Σ(i)
ε ‖ = OP (pin

− 1
2 ).

Hence the dominating terms are ‖I8‖+ ‖I9‖, therefore,

B′iEiAwi = OP (pin
− 1

2 + ‖B′iΣ(i)
ε A(i)

w ‖). (2.7.1)

Finally, if we know the local factor structure group, for ith group of local factors,

‖Ã(i)
w −A(i)

w ‖ == OP (
pin
− 1

2 + ‖B′iΣ(i)
ε A

(i)
w ‖

pi
)

= OP (n−
1
2 + p−1i ‖B′Σ(i)

ε A(i)
w ‖). (2.7.2)

We can use a similar argument to prove the rate for AFA. �
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2.8 Discussion to “Large covariance estimation by thresh-

olding principal orthogonal complements”

We congratulate the authors for this insightful paper.1 Here we suggest a method to address

two concerns:

1. The potential underestimation of the number of factors K;

2. The potential non-sparseness of the estimated principal orthogonal complement.

The first point is addressed by using a larger K. With pervasive factors assumed in the

paper, it is relatively easy to find such K. However, in an analysis of macroeconomic data for

example, there can be a mix of pervasive factors and many weaker ones; see [15, 12, 27], for

a general definition of local factors. In [39], a monthly data of p = 132 U.S. macroeconomic

time series from 1959 to 2003 (n = 5261) is analyzed. Using principal component analysis

(PCA) [?], the method in [12] and a modified version called the autocovariance-based factor

modeling (AFA) (details omitted), we compute the average forecast errors of 30 monthly

forecasts using a vector autoregressive model VAR(3) on the estimated factors from these

methods with different number of factors r (Figure 2.4). While 3 pervasive factors decrease

forecast errors sharply, including more factors, up to r = 35, decrease forecast errors slower,

showing the existence of many weaker factors. Hence it is not always possible to have

Figure 2.4: Average forecast errors for different number of factors r.

1This section is the discussion paper [26] to the article [22] by Jianqing Fan, Yuan Liao and Martina

Mincheva.
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“enough” factors for accurate thresholding of the principal orthogonal complement, which

can still include contribution from many local factors and is not sparse. Points 1 and 2 can

therefore be closely related, and can be addressed if we regularize the condition number of the

orthogonal complement instead of thresholding. While [7] restrict the extreme eigenvalues

with a tuning parameter to be chosen, we use the idea of [1] (properties are not investigated

enough unfortunately). We simulate 100 times from the panel regression model

yt = Xtβ + εt, β = (−0.5, 0.5, 0.3,−0.6)′, (2.8.1)

with xit being independent AR(1) processes and εt the standardized macroeconomic data

in [6] plus independent N(0, 0.2) noise. Following Example 5 of the paper, we estimate Σ−1ε

using different methods and plot the sum of absolute bias for estimating β using generalized

least square (GLS) against the number of factors r used in Figure 2.5. Clearly regularizing

on condition number leads to stabler estimators.

Figure 2.5: Sum of absolute bias (averaged over 100 simulations) for estimating β using GLS

against the number of factors r used in POET (C=0.5) and the condition number regularized

estimator. Bias for least square method is constant throughout.

Parallel to section 7.2 in [22], we compare the risk of portfolios created using POET

and the method above. Again Figure 2.6 shows stabler performance of regularization on

condition number.
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Figure 2.6: Risk of portfolios created with POET (C=0.5) and condition number regularized

estimator.



Chapter 3

Nonlinear shrinkage of large

integrated covariance matrix

3.1 An overview of relevant estimation methods in the

literature

3.1.1 The problem of covariance matrix estimation

In data analysis, one of the most widely used entity is the covariance matrix. It has many

applications in different fields of studies, including principle component analysis, network

analysis, linear discriminant analysis and so on. In particular, covariance matrix plays an

important role in Markowitz’s mean-variance optimization [34], the covariance matrix of

stock returns concerns risk management. Suppose we denote Y to be the p× n data matrix

consists of n independent and identically distributed sample that we can observe,1 sample

covariance matrix which is defined by

Sn =
1

n
YY′, (3.1.1)

is an often used estimator due to its simplicity.

However, when the dimensionality of the data is high, the number of parameter needs to

be estimated grows very fast. To be specific, suppose we have a p × p matrix, the number

of parameters needs to be estimated is of order p2 (1
2
p(p + 1)). When the dimensionality

p grows, the number of parameters to be estimated increases proportional to p2, but the

1Without loss of generality we assume that the mean of each row vector of Y is zero.

33
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number of observations available only grow proportional to p. In parameter estimation for

a structured covariance matrix, simulation results show that parameter estimation becomes

very poor when the number of parameters is more than four [6]. This renders the sample

covariance matrix unreliable, the coefficients in the sample covariance contain an extreme

amount of error and when the dimension is larger than the sample size, the sample covariance

matrix even becomes singular. In this case, improved estimator methods for the underlying

true covariance matrix are needed.

The most commonly used methods for covariance estimation can be categorized into two

broad classes. The first one is by imposing certain structural assumptions on the underlying

matrices, and develop certain convergence results. Additional knowledge assumed including

sparseness, a graph model or a factor model

Nonlinear shrinkage

Another class of estimator does not assume a specific structure of the underlying covariance

matrix. Since the sample covariance accumulates errors through its coefficients, and the

most extreme estimated coefficients contribute a lot of errors. The idea of shrinkage arises

to rectify the problem. In [29], Ledoit and Wolf demonstrated that the largest sample

eigenvalues are systematically biased upwards, and the smallest ones downwards. Intuitively,

we want to find a way to ‘pull’ those extreme coefficients towards the center.

Stein [38] advocated the use of the class of rotation-equivariant estimator2 that shrink

the eigenvalues of sample covariances and keep the eigenvectors intact.

Many methods are proposed along this line. The goal is to find an estimator that minimize

the frobenius norm of the difference between the estimator and true underlying matrix:

min
D
‖PDP ′ −Σ‖F . (3.1.2)

The solution to this optimization problem is D = diag(d1, · · · , dp), where

di = p′iΣpi, i = 1, · · · , p, piistheeigenvector. (3.1.3)

However, the quantity di is not readily available and needs to be estimated. Ledoit and

Wolf [31] propose a nonlinear shrinkage formula to do this. Whereas Lam [23] introduces

2An estimator is rotation-equivariant if and only if it has the same eigenvectors as the sample covariance

matrix so a rotation-equivariant can be written as PDP ′, where matrix P consists of eigenvector of sample

covariance matrix and D is a diagonal matrix .
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the so-called Nonparametric Eigenvalue-Regularized COvariance Matrix Estimator (NER-

COME) to achieve the goal of shrinking eigenvalues by subsampling the data. Those methods

are asymptotically equivalent[23].

3.1.2 Large dimension integrated covariance matrix estimation

In financial econometrics, when it comes to high-frequency data regime, the independent

assumption of data is no longer appropriate. For instance, if one looks at intra-day high-

frequency stock returns, the variance patterns are highly time-varying and cannot be assumed

to be independent. In this case, instead of using the sample covariance matrice, one can use

the so-called Integrated Covariance matrix (ICV) which essentially can be thought as the

average over a certain time period of instantaneous covariance matrices.

The ICV matrix is difficult to estimate due to the integrated nature of the estima-

tion problem. By considering a particular class of underlying multivariate process, Zheng

and Li [43] manage to develop the so-called Time-Variation Adjusted Realized Covariance

(TVARCV) matrix. Intuitively speaking, it serves as a counterpart of the standard sample

covariance matrix in the ICV framework.

As in the standard covariance matrix estimation case, in the large dimension asymptotic

setting, the use of sample eigenvalues is not appropriate. Neither the use of population

eigenvalues is optimal due to the estimation errors in the sample eigenvector.

In fact, the eigenvalues should be shrunk nonlinearly to a set of less dispersed values.

Therefore, by applying nonlinear shrinkage method, one should expect to obtain a better

estimator for large dimension ICV estimation. Chapter 3 explicitly propose an estimator for

the ICV, reports its theoretical properties and numerical studies.

3.2 Introduction

With the easily obtainable intra-day trading data nowadays, financial market analysts and

academic researchers enjoy more accurate return or volatility matrix estimation through the

substantial increase in sample size. Yet, with respect to the integrated covariance matrix

estimation for asset returns, there are several well-known challenges using such intra-day

price data. For instance, when tick-by-tick price data is used, the contamination by market

microstructure noise [2, 4] can hugely bias the realized covariance matrix. Non-synchronous
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trading times presents another challenge when there are more than one asset to consider.

To present a further challenge, it is well-documented that with independent and identi-

cally distributed random vectors, random matrix theories imply that there are biased extreme

eigenvalues for the corresponding sample covariance matrix when the dimension of the ran-

dom vectors p has the same order as the sample size n, i.e., p/n→ c > 0 for some constant

c > 0. See for instance [7] for more details. This suggests that the realized covariance matrix,

which is essentially a sample covariance matrix when all covolatilities are constants and all

log prices have zero drift with equally-spaced observation times (see the diffusion process

for the log price defined in (3.3.1) for more details), can have biased extreme eigenvalues

under the high dimensional setting p/n → c > 0. The resulting detrimental effects to risk

estimation or portfolio allocation are thoroughly demonstrated in [8] when inter-day price

data is used.

To rectify this bias problem, many researchers focused on regularized estimation of co-

variance or precision matrices with special structures. These go from banded [11] or sparse

covariance matrix [10, 13, 25, 37], sparse precision matrix [20, 35], sparse modified Cholesky

factor [36], to a spiked covariance matrix from a factor model [16, 18], or combinations of

these [19].

Recently, Ledoit and Wolf [30] proposed a nonlinear shrinkage formula for shrinking the

extreme eigenvalues in a sample covariance matrix without assuming a particular structure

of the true covariance matrix. The method is generalized in [32] for portfolio allocation

with remarkable results. However, such a nonlinear shrinkage formula is only applicable

to the independent and identically distributed random vector setting. It is not applicable

to intra-day price data since the volatility within a trading day is highly variable, so that

asset returns at different time periods, albeit independent theoretically, are not identically

distributed.

Lam [23] proves that by splitting the data into two independent portions of certain sizes,

one can achieve the same nonlinear shrinkage asymptotically without the need to evaluate

a shrinkage formula as in [30], which can be computationally expensive. At the same time,

such a data splitting approach can be generalized to adapt to different data settings. In this

chapter, we modify the method proposed in [23] to achieve nonlinear shrinkage of eigenvalues

in the realized covariance matrix using intra-day price data. We use the same assumption as

in [43] (see Assumption 3.3.1 in Section 3.3 and the details therein) to overcome the difficulty

of time-varying volatilities for all underlying stocks. Ultimately, our method produces a
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positive definite integrated covariance matrix asymptotically almost surely with shrinkage

of eigenvalues achieved nonlinearly, while local integrated covolatilities are adapted and

estimated accurately. Our method is fast since it involves only eigen-decompositions of

matrices of size p×p, which is not computationally expensive when p is of order of hundreds.

This is usually the typical order for p in the case of portfolio allocation. We also present

the maximum exposure bound and the actual risk bound for portfolio allocation using our

estimator as an input for the minimum variance portfolio. These bounds are important in

practice as seen in the real data analysis results in Section 3.5.2, when our portfolio do not

over-invest in individual assets, and the actual risk is small compared to other methods.

The rest of the chapter is organized as follows. We first present the framework for the data

together with the notations and the main assumptions to be used in Section 3.3. Our method

of estimation is detailed in Section 3.3.1, while Section 3.4 presents all related theories.

Simulation results are given in Section 3.5, with the theorem concerning the maximum

exposure bound and the actual risk bound in portfolio allocation using our method presented

in Section 3.5.1. A real data example of portfolio allocation is presented in Section 3.5.2.

All proofs are presented at the end of the chapter.

3.3 Framework and Methodology

Let Xt = (X
(1)
t , · · · , X(p)

t )T be a p-dimensional log-price process which is modeled by the

diffusion process

dXt = µtdt+ ΘtdWt, t ∈ [0, 1], (3.3.1)

where µt is the drift, Θt is a p×p matrix called the (instantaneous) covolatility process, and

Wt = (W
(1)
t , . . . ,W

(p)
t )T is a p-dimensional standard Brownian motion. We want to estimate

the integrated covariance matrix

Σp =

∫ 1

0

ΘtΘ
T

t dt. (3.3.2)

It is well-known that the log-price process Xt is contaminated by market microstructure

noise; see [42] for instance when the tick-by-tick high-frequency trading data is used to

calculate an integrated covariance estimator. In this paper, instead of using the tick-by-

tick data which has the highest observation frequency possible, we use sparsely sampled

data synchronized by refresh times [3, 9], so that the theory in our paper should be readily

applicable. Hence in the sequel, we assume that we can observe the price Xt at synchronous
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time points τn,`, ` = 0, 1, . . . , n. The realized covariance matrix is then defined as

ΣRCV
p =

n∑
`=1

∆X`∆XT

` , where ∆X` := Xτn,` −Xτn,`−1
. (3.3.3)

[21] shows that as n goes to infinity, the above estimator converges weakly to the true one

defined in (3.3.2). Hence the realized covariance matrix is one of the most frequently used

estimator for the integrated covariance matrix.

While the intra-day volatility can change hugely within a short time period, it is not

unreasonable to assume that the correlation of any two price processes stays constant within

such a period, say within a trading day. Following [43], for j = 1, . . . , p, write

dX
(j)
t = µ

(j)
t + σ

(j)
t dZ

(j)
t ,

where µ
(j)
t , σ

(j)
t are assumed to be càdlàg over [0, 1], and the Z

(j)
t ’s are one dimensional

standard Brownian motions. Both the σ
(j)
t ’s and the Z

(j)
t ’s are related to Θt and Wt in

(3.3.1). We assume further, defining 〈X, Y 〉t to be the quadratic covariation between the

processes X and Y :

Assumption 3.3.1 The correlation matrix process of Zt = (Z
(1)
t , . . . , Z

(p)
t )T, defined by

Rt =
(
〈Z(j), Z(k)〉t/t

)
1≤j,k≤p,

is constant and non-zero on (0, 1] for each j, k. Furthermore, the correlation matrix process

of Xt, defined by ( ∫ t
0
σ
(j)
s σ

(k)
s d〈Z(j), Z(k)〉s√∫ t

0
(σ

(j)
s )2ds ·

∫ t
0
(σ

(k)
s )2ds

)
1≤j,k≤p

,

is constant on (0, 1] for each j, k.

The rest of the assumptions in this paper can be found in Section 3.4. We present this

assumption first since following Proposition 4 in [43], the log-price process Xt defined in

(3.3.1) satisfying Assumption 3.3.1 is such that there exist a càdlàg process (γt)t∈[0,1] and a

p× p matrix Λ satisfying tr(ΛΛT) = p such that

Θt = γtΛ. (3.3.4)

The nonlinear shrinkage estimator described in the next section is based on this property.
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3.3.1 Nonlinear shrinkage estimator

When the dimension p is large relative to the sample size n, even for a sample covariance

matrix constructed from independent and identically distributed random vectors, its extreme

eigenvalues will be severely biased from the true ones (see chapter 5.2 of [7] for example).

While various assumptions have been made on the true integrated covariance matrix like

sparsity [41] or having a factor structure [40], in this paper we follow [30] and introduce non-

linear shrinkage for regularization, which does not need a particular structural assumption

on the true integrated covariance matrix itself.

However, since intra-day covariance can vary hugely within a short time period, the

∆X`’s defined in (3.3.3) are not identically distributed, and hence we cannot directly apply

the nonlinear shrinkage formula in [30] to the realized covariance matrix in (3.3.3). Instead,

we use the data splitting idea for nonlinear shrinkage of eigenvalues in [23], and modify their

method to accommodate the intra-day volatility change base on (3.3.4), which is a condition

derived from Assumption 3.3.1 as proved in [43].

To this end, observe that by (3.3.4), the integrated covariance matrix in (3.3.2) can be

written as Σp =
∫ 1

0
γ2t dt · ΛΛT. [43] proposed a so-called Time-variation adjusted realized

covariance matrix, defined as

Σ̌p :=
tr(ΣRCV

p )

p
Φ̌, where Φ̌ :=

p

n

n∑
`=1

∆X`∆XT
`∥∥∆X`

∥∥2 , (3.3.5)

and
∥∥ ·∥∥ denotes the norm of a vector. They demonstrate that Σ̌p is a good estimator for Σp

by showing that tr(ΣRCV
p )/p is a good estimator for

∫ 1

0
γ2t dt, while Φ̌ is good for Φ = ΛΛT.

Here Φ̌ plays the role of a sample covariance matrix for estimating Φ. Hence if p/n→ c > 0,

then Φ̌ suffers from bias to the extreme eigenvalues as well.

Remark 3.3.2 An intuition of why Φ̌ is similar to a sample covariance matrix can be seen

as follows. If µt = 0 in (3.3.1) and the τn,`’s are independent of Wt (see Assumptions 3.4.1

and 3.4.2 respectively in Section 3.4), then by model (3.3.1), we can write

∆X` =

∫ τn,`

τn,`−1

γtΛdWt
d
=
(∫ τn,`

τn,`−1

γ2t dt
)1/2

Φ1/2Z`,

where
d
= stands for equal in distribution, and the Z`’s are independent random vectors each

with Z` ∼ N(0, Ip). Then

Φ̌
d
=

1

n

n∑
`=1

Φ1/2Z`Z
T
`Φ

1/2

ZT
`ΦZ`/p

= Φ1/2
( 1

n

n∑
`=1

Z`Z
T
`

ZT
`ΦZ`/p

)
Φ1/2.
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We can actually show that ZT
`ΦZ`/p goes to 1 almost surely, leaving the above being the

sample covariance matrix constructed from the Z`’s sandwiched by Φ1/2.

Following [23], since the ∆X`’s are independent following model (3.3.1), we split the

data ∆X = (∆X1, . . . ,∆Xn) into two independent parts, say ∆X = (∆X1,∆X2), with

∆Xi having size p× ni for i = 1, 2, such that n = n1 + n2. Define

Φ̃i =
p

ni

∑
`∈Ii

∆X`∆XT
`∥∥∆X`

∥∥2 , (3.3.6)

where Ii = {` : ∆X` ∈ ∆Xi}. Carrying out an eigen-analysis on Φ̃1 defined in (3.3.6) above,

suppose Φ̃1 = P1D1P
T
1 . Then we introduce our estimator as

Σ̂p :=
tr(ΣRCV

p )

p
Φ̂, where Φ̂ := P1diag(PT

1 Φ̃2P1)P
T

1 , (3.3.7)

with diag(·) setting all non-diagonal elements of a matrix to 0. The estimator Φ̂ above

belongs to a class of rotation equivariant estimator Φ(D) = P1DPT
1 , where D is a diagonal

matrix, and P1 is the matrix containing all the eigenvectors of Φ̃1. The choice of D =

diag(PT
1 Φ̃2P1) comes from solving

min
D

∥∥P1DPT

1 − Φ̃2

∥∥
F
,

where
∥∥A∥∥

F
= tr1/2(AAT) is the Frobenius norm of a matrix. Similar to [23], regularization

of the eigenvalues in D = diag(PT
1 Φ̃2P1) comes from the independence between P1 and Φ̃2,

since ∆X1 is independent of ∆X2.

3.4 Asymptotic Theory and Practical Implementation

We introduce two more assumptions needed for our results to hold. Assumption 3.3.1 is

presented in Section 3.3.

Assumption 3.4.1 The drift in (3.3.1) satisfies µt = 0 for t ∈ [0, 1]. All eigenvalues of

ΘtΘ
T

t are bounded uniformly from 0 and infinity in t ∈ [0, 1].

Assumption 3.4.2 The observation times τn,`’s are independent of the log-price Xt, and

there exists a constant C > 0 such that for all positive integer n,

max
1≤`≤n

n(τn,` − τn,`−1) ≤ C.
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We set µt = 0 in Assumption 3.4.1 for the ease of proofs and presentation. If µt is slowly

varying locally, the results to be presented are still valid at the expense of longer and more

complex proofs. The uniform bounds on the eigenvalues of ΘtΘ
T

t are needed so that indi-

vidual volatility process for each X
(i)
t are bounded uniformly. Also,

∫ 1

0
γ2t dt > 0 uniformly,

and finally,
∥∥Σp

∥∥ = O(1) uniformly as a result, which are all needed for our results to hold.

These assumptions essentially treat γt as non-random. Extension to γt being stochastic can

follow the lines of [43], but we keep it non-random for the ease of presentation and proofs as

well.

Lemma 2 Let Assumptions 3.3.1, 3.4.1 and 3.4.2 hold for the log-price process Xt in

(3.3.1). Then for the estimator Φ̂ in (3.3.7), writing P1 = (p11, . . . ,p1p), if p/n → c > 0

and
∑

n2≥1 pn
−5
2 <∞, we have

max
1≤i≤p

∣∣∣pT
1iΦ̃2p1i − pT

1iΦp1i

pT
1iΦp1i

∣∣∣ a.s.→ 0,

where
a.s.→ represents almost sure convergence.

Since the eigenvalues of Φ̂ are the pT
1iΦ̃2p1i’s, the above Lemma shows that they are regu-

larized to pT
1iΦp1i asymptotically almost surely, which has values bounded by λmin(Φ) and

λmax(Φ), the minimum and maximum eigenvalues of Φ respectively. Assumption 3.4.1 en-

sures that these eigenvalues are uniformly bounded away from 0 and infinity, and hence Φ̂

is asymptotically almost surely positive definite. This is true even when the constant c > 1,

i.e., when p is larger than n as they grow together to infinity.

With this result, we can present the following theorem.

Theorem 3 Let all the assumptions in Lemma 2 hold. Then as p, n→∞ such that p/n→

c > 0, Σ̂p defined in (3.3.7) is almost surely positive definite.

This is an important result since Σp is always assumed to be positive definite, and we

want our estimator to be so too. This is certainly not the case for a sample covariance matrix

when p > n, and is still not the case for Σ̌p defined in (3.3.5) by [43], which is demonstrated

in our simulation results in Section 3.5.

Remark 3.4.3 Both Lemma 2 and Theorem 3 requires
∑

n2≥1 pn
−5
2 < ∞. Following [23],

we set n2 = an1/2 where a is a constant, so that when p/n→ c > 0, the condition is satisfied.

See Section 3.4.1 for more details on how to find n2 with finite sample.
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To present the rest of the results, we introduce a benchmark estimator for comparisons

to our estimator. This estimator is called the ideal estimator, defined by

Σideal =

∫ 1

0

γ2t dt ·Pdiag(PTΦP)PT.

This is similar to the proposed estimator defined in (3.3.7), except that the estimator

tr(ΣRCV
p )/p is replaced by the population counterpart

∫ 1

0
γ2t dt, while Φ̃2 is replaced by the

population counterpart Φ. Also, P1 is replaced by P, which is the matrix containing all

orthonormal eigenvectors for the covariance-type matrix Φ̌ defined in (3.3.5) using all data

points. This is in line with the ideal estimator defined in [30] and [23] which utilizes all

data points for calculating the eigenmatrix P, and assumes the knowledge of Φ and
∫ 1

0
γ2t dt.

With this, we define the efficiency loss of any estimator Σ̂ as

EL(Σp, Σ̂) := 1− L(Σp,ΣIdeal)

L(Σp, Σ̂)
,

where L(Σp, Σ̂) is a loss function for estimating Σp by Σ̂. We consider the Frobenius loss

L(Σp, Σ̂) =
∥∥Σ̂−Σp

∥∥2
F
, (3.4.1)

and the inverse Stein’s loss function in this paper,

L(Σp, Σ̂) = tr(ΣpΣ̂
−1

)− log det(ΣpΣ̂
−1

)− p. (3.4.2)

The class of rotation-equivariant estimator Σ(D) = PDPT minimizes the Frobenius norm

exactly at ΣIdeal, while similar to Proposition 2 in [23], ΣIdeal also minimizes the inverse

Stein’s loss within such a class of estimator. Hence it is intuitive that our estimator Σ̂p will

be relatively less efficient in the sense that EL(Σp, Σ̂p) > 0. It turns out that asymptotically,

Σ̂p is doing as good as ΣIdeal, as shown in the Theorem 4 below. To present this theorem,

we need to make two more assumptions:

Assumption 3.4.4 Let vn,1 ≥ · · · ≥ vn,p be the p eigenvalues of Φ. Define Hn(v) =

p−1
∑p

i=1 1{vn,i≤v} the empirical distribution function of the population eigenvalues. We

assume Hn(v) converges to some non-random limit H at every point of continuity of H.

Assumption 3.4.5 The support of H defined above is the union of a finite number of

compact intervals bounded away from zero and infinity. Also, there exists a compact interval

in (0,+∞) that contains the support of Hn for each n.
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These two assumptions are essentially Assumptions (A3) and (A4) in [23] applied on Φ.

Theorem 4 Let all the assumptions in Lemma 2 hold, together with Assumption 3.4.4 and

3.4.5. Then as p, n→∞ such that p/n→ c > 0, we have EL(Σp, Σ̂p) ≤ 0 almost surely with

respect to both the Frobenius and the inverse Stein’s loss functions, as long as p−1L(Σp,ΣIdeal)

does not tend to 0 almost surely.

The requirement p−1L(Σp,ΣIdeal) not going to 0 almost surely eliminates the case Σp =∫ 1

0
γ2t dt · Ip, when both the loss functions will attain 0 for the the ideal estimator. Our

estimator will still do a good job in such a case since tr(ΣRCV
p )/p will still be a good estimator

for
∫ 1

0
γ2t dt by the proof of Theorem 3, while Φ̂ can still do a fine job when permutation

of the data is allowed as demonstrated in the simulation results in [23]. Improvement by

averaging and permutation will be described in Section 3.4.1.

3.4.1 Practical Implementation

Following Assumption 3.3.1, ∆X`∆XT
` /
∥∥∆X`

∥∥2 is independent of γt and is similar to a data

point in constructing a sample covariance matrix, which is independent of each others for

different `; see Remark 3.3.2 in Section 3.3.1. This observation permits us to permute the

data beforehand, say at the jth permutation, we form a data matrix ∆X(j) = (∆X
(j)
1 ,∆X

(j)
2 ),

with ∆X
(j)
i having size p× ni for i = 1, 2, such that n = n1 + n2. Then we construct

Φ̃
(j)

i =
p

ni

∑
`∈I(j)i

∆X`∆XT
`∥∥∆X`

∥∥2 , (3.4.3)

where I
(j)
i = {` : ∆X` ∈ ∆X

(j)
i }, and perform eigen-analysis on Φ̃

(j)

1 , say Φ̃
(j)

1 = P
(j)
1 D

(j)
1 P

(j)T
1 .

The we can form the jth estimator as

Σ̂
(j)

p :=
tr(ΣRCV

p )

p
Φ̂

(j)
, where Φ̂

(j)
:= P

(j)
1 diag(P

(j)T
1 Φ̃

(j)

2 P
(j)
1 )P

(j)T
1 . (3.4.4)

If we perform M permutations and get M estimators as above, we can define the averaged

estimator as

Σ̂p,M :=
1

M

M∑
j=1

Σ̂
(j)

p . (3.4.5)

Note that in all M estimators, we are only using one split location, n1, for the data, instead

of using several of them and then average the results similar to the grand average estimator

in [1]. To find the best split location empirically, we minimize the following function:

g(m) =
∥∥∥ 1

M

M∑
j=1

(Φ̂
(j)

p − Φ̃
(j)

2 )
∥∥∥2
F
, (3.4.6)
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where Φ̃
(j)

2 is defined in (3.4.3) and Φ̂
(j)

in (3.4.4). A very similar function is also used to

determine the split location for nonlinear shrinkage of a covariance matrix in [23].

We now show that the averaged estimator defined in (3.4.5) also enjoys good asymptotic

efficiency.

Theorem 5 Let all the assumptions in Lemma 2 hold, together with Assumption 3.4.4 and

3.4.5. Suppose the number of permutations M is finite in (3.4.5). Then as p, n → ∞ such

that p/n→ c > 0, we have EL(Σp, Σ̂p,M) ≤ 0 almost surely with respect to both the Frobenius

and the inverse Stein’s loss functions, as long as p−1L(Σp, Σ̂Ideal) does not tend to 0 almost

surely.

In practice, the estimator Σ̂p,M , with a good choice of m, performs much better than using

just M = 1. We use M = 50 which provides a good trade-off between computational

complexity and estimation accuracy with respect to the Frobenius or the inverse Stein’s loss

functions. For minimizing g(m) defined in (3.4.6), we search the following split locations:

m = [2n1/2, 0.2n, 0.4n, 0.6n, 0.8n, n− 2.5n1/2, n− 1.5n1/2].

Except for the case Σp =
∫ 1

0
γ2t dtIp which needs n to be as small as possible (see the

arguments provided in [23]), the two split locations [n− 2.5n1/2] and [n− 1.5n1/2] are those

satisfying the condition
∑

n2≥1 pn
−5
2 <∞ needed in all theorems presented when p/n→ c >

0. We include 0.2n to 0.8n for accommodating finite sample performance.

3.5 Empirical Results

We carry out simulation studies to compare the performances of our estimator in (3.3.7),

the time variation-adjusted realized covariance matrix in (3.3.5) and the realized covariance

matrix in (3.3.3) by comparing their Frobenius and inverse Stein’s losses defined in (3.4.1)

and (3.4.2) respectively. Then in Section 3.5.1, we consider a trading exercise using simu-

lated market data and compare the risks associated with the minimum variance portfolios

constructed using these three different estimators. Finally, in Section 3.5.2, we consider real

data from the New York Stock Exchange.

Consider two different scenarios for the diffusion process {Xt} defined in (3.3.1), with

µt = 0 and Θt = γtΛ as in (3.3.4). One has γt being piecewise constant, the other has γt

being continuous, detailed as follows:
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Design I: Piecewise constants. We take γt to be

γt =


√

0.0007, t ∈ [0, 1/4) ∪ [3/4, 1],
√

0.0001, t ∈ [1/4, 3/4).

Design II: Continuous path. We take γt to be

γt =
√

0.0009 + 0.0008 cos(2πt), t ∈ [0, 1].

We assume Λ = Ip and the observation times are taken to be equidistant, where τn,` =

`/n, ` = 1, . . . , n. We generate {Xt} using model (3.3.1) and get n = 200 discrete observa-

tions, and consider p = 100, 200. For each design and each (n, p) combination, we repeat 1000

times the simulations, and compare the mean Frobenius and inverse Stein’s losses for our

proposed estimator, the time variation-adjusted realized covariance matrix and the realized

covariance matrix.

Table 3.1 presents the simulation results. It is clear that overall, our proposed estimator

performs the best. In particular, since the realized covariance or the time variation-adjusted

realized covariance matrices are singular when p = 200, their inverses do not exist. In

contrast, our proposed estimator is always non-singular and stable even in this case, which

is in line with Theorem 3.

3.5.1 A market trading exercise

As an application in finance, we simulate market trading data in this section and construct

minimum variance portfolio using the three different estimators compared in the previous

section. Given an integrated covariance matrix Σp, the minimum variance portfolio solves

minw:wT1p=1 wTΣpw, where 1p is a vector of p ones. The solution to the above is given by

wopt =
Σ−1p 1p

1T
pΣ
−1
p 1p

. (3.5.1)

Before presenting our simulation settings, we present a theorem concerning the minimum

variance portfolio (3.5.1) constructed using our integrated covariance matrix estimator Σ̂p,M .

In the sequel, we denote
∥∥ · ∥∥

max
the maximum absolute value of a vector, and define the

condition number of a positive semi-definite matrix A to be Cond(A) = λmax(A)/λmin(A).

Theorem 6 Let all the assumptions in Lemma 2 hold. Suppose the number of permutations

M is finite in (3.4.5). Then as p, n→∞ such that p/n→ c > 0, almost surely,

p1/2
∥∥ŵopt

∥∥
max
≤ Cond(Φ), pR(ŵopt) ≤ Cond2(Φ)λmax(Σp),
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Design I Proposed Time variation-adjusted Realized covariance

Frobenius loss

p = 100 .13(.02) 2.8(.04) 3.6(.06)

p = 200 .55(.17) 69(31) 1564(63)

Inverse Stein’s loss

p = 100 .17(.014) 5.63(.058) 7.08(.08)

p = 200 88(15) - -

Design II Proposed Time variation-adjusted Realized covariance

Frobenius loss

p = 100 .29(.03) 6.32(.09) 7.55(.1)

p = 200 .38(.03) 13(10) 15(20)

Inverse Stein’s loss

p = 100 .54(.1) 693(31) 1232(53.8)

p = 200 88(16) - -

Table 3.1: Mean and standard deviation (in bracket) of losses for different methods. All

values reported in this table are multiplied by 1000. Upper table: results for Design I. Lower

table: results for Design II. For p = 200, the time variation-adjusted and realized covariance

matrices are always singular, and hence inverse Stein’s loss are at infinity.
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where ŵopt is the weight in (3.5.1) with Σp substituted by Σ̂p,M defined in (3.4.5). The

function R(ŵopt) = ŵT
optΣpŵopt represents the actual risk when investing using ŵopt as the

portfolio weights.

This theorem shows that the maximum absolute weight, we name it the maximum exposure

of the portfolio, is decaying at a rate p−1/2, while the actual risk is decaying at a rate p−1.

It is an important quality of our estimator when applied to portfolio allocation, since we

do not want to over-invest into a single asset when there are many other assets for risk

diversification. Such over-investment can result in huge loss if the involved asset suddenly

drops in price due to random events over the investment period. At the same time, the actual

risk of the portfolio is decaying linearly as we have more and more assets for diversification.

We demonstrate the results in Theorem 6 in Table 3.2 and Section 3.5.2.

For simulating the price data, following [9] and [17], we simulate p = 100 stock prices for

200 days using X
o(i)
t = X

(i)
t + ε

(i)
t , where X

(i)
t is the underlying log-price, and ε

(i)
t models the

market microstructure noise, with ε
(i)
t ∼ N(0, 0.00052) and are assumed to be independent

of each other. The underlying log-price X
(i)
t is generated by the stochastic volatility model.

For i = 1, . . . , 100,

dX
(i)
t = µ(i)dt+ ρ(i)σ

(i)
t dB

(i)
t +

√
1− (ρ(i))2σ

(i)
t dWt + ν(i)dZt,

where {Wt}, {Zt} and the {B(i)
t }’s are all independent standard Brownian motions. The

process {Zt} plays the role of a pervasive factor, which is usually the market factor in asset

returns. The spot volatility σ
(i)
t = exp(%

(i)
t ) follows the independent Ornstein-Uhlenbeck

process

d%
(i)
t = α(i)(β

(i)
0 − %

(i)
t )dt+ β

(i)
1 dU

(i)
t ,

where the {U (i)
t }’s are independent standard Brownian motions. We use (µ(i), β

(i)
0 , β

(i)
1 , α(i), ρ(i)) =

(0.03x
(i)
1 ,−x

(i)
2 , 0.75x

(i)
3 ,−1/40x

(i)
4 ,−0.7) and ν(i) = exp(β

(i)
0 ), where the x

(i)
j ’s are indepen-

dent and uniformly distributed on the interval [0.7, 1.3]. The initial value of each log-price

is set at X
(i)
0 = 1 and the starting spot volatility %

(i)
0 = 0.

We simulate the trading times independently from the price data assuming the trans-

action times for each stock follow independent Poisson processes with rates λ1, · · · , λ100
respectively, where λi = 0.01i × 23400. We set this because a normal trading time for one

day is 23400 seconds.

After simulating the data, we split a trading day into 15-minute intervals and set the

price data for each stock at the end of each interval as the price observed at the trade right
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Theoretical risk .735

Proposed Time variation-adjusted Realized covariance

Actual risk .922 3.918 4.115

Perceived risk .753 3.869 4.034

Table 3.2: Mean of theoretical risk R(wopt), actual risk R(ŵopt) and perceived risk R̂(ŵopt).

before the end of the interval. The data is used to calculate various integrated covariance

estimators, including our proposed one.

At the start, we invest 1 unit of capital using the minimum variance allocations (3.5.1)

constructed from using different estimators of the integrated covariance matrix. Each time

we use a 60-day training window (so the first trade starts on day 61, and the last one on day

200) and we re-evaluate our portfolio weights every 5 days, using the past 60 days of data

as a training set until we reach day 195.

In Table 3.2, we report the mean of three risks. The first one is the theoretical risk

R(wopt) = wT
optΣpwopt, where wopt is calculated as in (3.5.1) using the true integrated

covariance matrix of the underlying log-return over the past 60-day training period and Σp

is the true integrated covariance matrix over the 5-day investment period. The second one

is the actual risk R(ŵopt) = ŵT
optΣpŵopt, where ŵopt is calculated using different integrated

covariance matrix estimators. Finally the perceived risk is defined by R̂(ŵopt) = ŵT
optΣ̂pŵopt.

We can see from Table 3.2 that our method has the best performance among all three

different methods, and has the risk closest to the theoretical one. In particular, our method

has the smallest actual risk, which is the most relevant risk in practice. Such a small actual

risk for our method is also consistent with the actual risk bound in Theorem 6, when the

number of assets is p = 100 which is relatively large.

3.5.2 Portfolio allocation on NYSE data

We consider p = 45 stocks from the New York Stock Exchange from January 1 of 2013 to

December 31 of 2013 (245 trading days). We choose the stocks from mid-cap energy sector

stocks. We downloaded all the trades of these stocks from Wharton Research Data Ser-

vices (WRDS, https://wrds-web.wharton.upenn.edu/). The raw data are of high-frequency

nature. As mentioned before, the stocks have non-synchronous trading times and all the
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log-prices are contaminated by market microstructure noise.

Like the market trading exercise in Section 3.5.1, we consider trades in 15-minute intervals

on every trading day from 9:30 to 16:00, with each log-price being the observed one from

a trade right before a 15-minute interval ends. This results in a total of 6732 observations

over the 245 trading days. Hence on average there are around 27 observations per day.

We consider two settings. For the first one, we consider 20-day training windows and

re-evaluate portfolio weights every 5 days. Another setting use 5-day training windows

and re-evaluate portfolio weights everyday. We use the annualized out-of-sample standard

deviation σ̂, together with the annualized portfolio return µ̂ and the Sharpe ratio µ̂/σ̂ to

gauge the performance of each method. For 20-day training windows and 5 day re-evaluation

period, µ̂ and σ̂ are defined by

µ̂ = 52× 1

45

49∑
i=5

wT

i ri, σ̂ =
(

52× 1

45

49∑
i=5

(wT

i ri − µ̂)2
)1/2

.

We use the annualized out-of-sample standard deviation since we do not know the true

underlying integrated covariance matrix, and hence the actual risk cannot be calculated.

For 5-day training windows with daily re-evaluation of portfolio weights, µ̂ and σ̂ are defined

by

µ̂ = 252× 1

240

245∑
i=6

wT

i ri, σ̂ =
(

252× 1

240

245∑
i=6

(wT

i ri − µ̂)2
)1/2

.

On top of all the above, we also report the mean maximum exposure
∥∥ŵopt

∥∥
max

over all

investment periods for the portfolios constructed under different methods.

Table 3.3 shows the results. For both settings, we see that the annualized out-of-sample

standard deviation is the smallest for our method. The difference between different methods

for the setting with 20-day training windows is less pronounced. This is because for a 20-day

window, we have on average 27 × 20 = 540 data points for calculating different integrated

covariance estimators. The time variation-adjusted and realized covariance matrices will

not be too much disadvantaged since the bias problem from having high dimension is not

too serious as we have p/n = 45/540 = 0.083. On the other hand, the second setting has

on average 27 × 5 = 135 data points and so p/n = 45/135 = 0.33, so that the bias from

having high dimension for the two estimators is much more serious than the first case. Our

estimator has clearly done a good job in minimizing the risk in both situations. It would

seem that we can solve the problem simply by using a longer training window. However,

the problem of using a longer training window is that the true integrated covariance matrix
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20-day training window Proposed Time variation Realized

Re-evaluate every 5 days (%) adjusted(%) covariance(%)

Annualized return 5.50 5.87 10.59

Annualized out-of-sample SD 11.07 11.16 12.67

Sharpe ratio 49.66 52.62 83.59

Mean maximum exposure 15.19(3.26) 19.82(4.74) 28.86(11.05)

5-day training window Proposed Time variation Realized

Re-evaluate everyday (%) adjusted(%) covariance(%)

Annualized return 7.40 8.25 7.39

Annualized out-of-sample SD 10.78 11.66 13.89

Sharpe ratio 68.69 73.92 53.19

Mean maximum exposure 11.47(2.19) 24.06(7.11) 31.27(18.76)

Table 3.3: Percentage annualized return, out-of-sample standard deviation, Sharpe ratio

and mean maximum exposure (standard deviation in bracket) for different methods. Upper

table: Use 20-day training windows and re-evaluate portfolio weights every 5 days. Lower

table: Use 5-day training windows and re-evaluate portfolio weights everyday.
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from the training period will likely to be different from the investment period ahead if such

a window is too long.

Observe also the mean maximum exposure for our method is always smaller than other

methods, with smaller standard deviations. For the case of 5-day training window, the

differences in maximum exposure among the three different methods are huge, with our

method having this at 11.5% which is reasonable, and compatible with the results in Theorem

6. At around 25% or even 30% for the other two methods, there is a much bigger risk of

suffering a loss due to random events from the heavily invested individual assets.

3.6 Summary of this chapter

In this chapter, we first review the relevant estmiation methods in the literature, and then in-

troduce a novel nonlinear shrinkage estimator for the integrated volatility matrix. The prop-

erties of our estimation methods including that the estimator shrinks the extreme eigenvalues

of a realized covariance matrix back to acceptable level, and enjoys a certain asymptotic ef-

ficiency at the same time, all at a high dimensional setting where the number of assets can

have the same order as the number of data points. By using some numerical examples and

real data from NYSE trading data, we demostrated that our estimator has a favorable per-

formance compared to a time-variation adjusted realized covariance estimator and the usual

realized covariance matrix. This includes a novel maximum exposure bound and an actual

risk bound when our estimator is used in constructing the minimum variance portfolio.

3.7 Proofs for this chapter

Proof of Lemma 2. Using Remark 3.3.2, we can write

∆X` =
(∫ τn,`

τn,`−1

γ2t dt
)1/2

Φ1/2Z`,

where the Z`’s are independent of each other and each Z` is a p dimensional vector with

independent standard normal entries. Then we can decompose

pT
1iΦ̃p1i − pT

1iΦp1i

pT
1iΦp1i

= Ii1 + Ii2,

where

Ii1 =
pT
1iΦ̃2p1i − n−12

∑
`∈I2(p

T
1iΦ

1/2Z`)
2

pT
1iΦp1i

, Ii2 =
n−12

∑
`∈I2(p

T
1iΦ

1/2Z`)
2 − pT

1iΦp1i

pT
1iΦp1i

.
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First of all, since we can write

n−12

∑
`∈I2

(pT

1iΦ
1/2Z`)

2 = pT

1i

(
n−12

∑
`∈I2

Φ1/2Z`Z
T

`Φ
1/2
)
p1i,

with n−12

∑
`∈I2 Φ1/2Z`Z

T
`Φ

1/2 a proper sample covariance matrix for estimating Φ, we can

use Lemma 1 of [23] to conclude that

max
1≤i≤p

|Ii2|
a.s.→ 0.

Hence it remains to show that max1≤i≤p |Ii1|
a.s.→ 0. To this end, consider

max
1≤i≤p

|Ii1| = max
1≤i≤p

∣∣∣∣n−12

∑
`∈I2

(pT
1iΦ

1/2Z`)
2

ZT
` ΦZ`/p

− pT
1i

(
n−12

∑
`∈I2 Φ1/2Z`Z

T
`Φ

1/2
)
p1i

pT
1iΦp1i

∣∣∣∣
= max

1≤i≤p

∣∣∣∣n−12

∑
`∈I2

(
1

ZT
` ΦZ`/p

− 1
)
pT
1iΦ

1/2Z`Z
T
`Φ

1/2p1i

pT
1iΦp1i

∣∣∣∣
≤ max

`∈I2

∣∣∣ 1

ZT
`ΦZ`/p

− 1
∣∣∣ · (1 + max

1≤i≤p
|Ii2|)

a.s.→ 0,

if we can show further that max`∈I2

∣∣∣ 1
ZT
` ΦZ`/p

− 1
∣∣∣ a.s.→ 0.

To show this, using Lemma 2.7 of [8], we have

E(ZT

`ΦZ` − tr(Φ))6 ≤ K6(E
3|z`,1|4tr3(Φ2) + E|z`,1|12tr(Φ6)),

where K6 is a constant independent of `, n and p. This implies that, since tr(Φ) = p,

E

(
max
`∈I2

∣∣∣ZT
`ΦZ`

p
− 1
∣∣∣6) ≤ n2 ·K6

(
E3|z`,1|4

tr3(Φ2)

p6
+ E|z`,1|12

tr(Φ6)

p6

)
= O(n2p

−3).

The rate in the last line comes from Assumption 3.4.1 that ΘtΘ
T

t = γ2t Φ has all its eigenval-

ues uniformly bounded away from 0 and infinity, so that tr3(Φ2) = O(p3) and tr(Φ6) = O(p),

and the fact that the higher order moments of the z`,1’s are all finite since they are all nor-

mally distributed.

Finally, since n2 = O(n1/2) and p has the same order as n, we have O(n2p
−3) =

O(n−5/2). Since
∑

n≥1 n
−5/2 < ∞, through the Borel-Cantelli lemma, we have proved that

max`∈I2

∣∣∣ZT
` ΦZ`
p
− 1
∣∣∣ a.s.→ 0, meaning that max`∈I2

∣∣∣ 1
ZT
` ΦZ`/p

− 1
∣∣∣ a.s.→ 0 as well. This completes

the proof of the lemma. �

Proof of Theorem 3. Firstly, by Lemma 2, Φ̂ defined in (3.3.7) is almost surely positive

definite since all its eigenvalues are almost surely pT
1iΦp1i for some i as n, p → ∞ such
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that p/n → c > 0, and Assumption 3.3.1 ensures that these values are uniformly bounded

away from 0 and infinity. Hence, the proof of the theorem is complete if we can show that

tr(ΣRCV
p )/p > 0 uniformly almost surely.

To this end, consider∣∣∣∣tr(ΣRCV
p )

p
−
∫ 1

0

γ2t dt

∣∣∣∣ =

∣∣∣∣∑n
`=1 ∆XT

` ∆X`

p
−
∫ 1

0

γ2t dt

∣∣∣∣
=

∣∣∣∣
∑n

`=1

∫ τn,`
τn,`−1

γ2t dt · ZT
`ΦZ`

p
−
∫ 1

0

γ2t dt

∣∣∣∣
≤ max

1≤`≤n

∣∣∣∣ZT
`ΦZ`

p
− 1

∣∣∣∣ ∫ 1

0

γ2t dt.

From the proof of max`∈I2

∣∣∣ZT
` ΦZ`
p
− 1
∣∣∣ a.s.→ 0 in the last part of the proof of Lemma 2, we can

replace n2 there by n and conclude that

E

(
max
1≤`≤n

∣∣∣ZT
`ΦZ`

p
− 1
∣∣∣6) ≤ n ·K6

(
E3|z`,1|4

tr3(Φ2)

p6
+ E|z`,1|12

tr(Φ6)

p6

)
= O(np−3) = O(n−2).

Since
∑

n≥1 n
−2 < ∞, we have proved that max1≤`≤n

∣∣∣ZT
` ΦZ`
p
− 1
∣∣∣ a.s.→ 0. This shows that

tr(ΣRCV
p )/p

a.s.→
∫ 1

0
γ2t dt, which is uniformly larger than 0 by Assumption 3.3.1. This com-

pletes the proof of the theorem. �

To prove Theorem 4, we first present the following lemma and its proof.

Lemma 3.7.1 Let all the assumptions in Lemma 2 hold, together with Assumption 3.4.4 and

3.4.5. Denote by v
(1)
1 ≥ · · · ≥ v

(1)
p the eigenvalues of Φ̃1 defined in (3.3.6) with corresponding

eigenvectors p11, . . . ,p1p, and v1 ≥ · · · ≥ vp the eigenvalues of Φ̌ defined in (3.3.5) with

corresponding eigenvectors p1, . . . ,pp. Then there exist positive functions δ1(·) = δ(·) 3

and distribution functions F1 = F such that

p−1
p∑
j=1

1{x≥v(1)j }
a.s.→ F1(x), p−1

p∑
j=1

1{x≥vj}
a.s.→ F (x),

3The explicit form of the functions δ1(·) and δ(·) are given here, since they are not important for the

proof of any subsequent theorems. For any λ ∈ R, δ(λ) =


λ

|1−c−cλm̆F (λ)|2 , if λ > 0;

1
(c−1)m̆F (0) if λ = 0 and c > 1;

0, otherwise.

δ1(λ) =


λ

|1−c1−c1λm̆F1
(λ)|2 , if λ > 0;

1
(c1−1)m̆F1

(0) if λ = 0 and c > 1;

0, otherwise.
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p−1
p∑
j=1

pT

1iΦp1i1{x≥v(1)j }
a.s.→
∫ x

−∞
δ1(λ)dF1(λ), p−1

p∑
j=1

pT

i Φpi1{x≥vj}
a.s.→
∫ x

−∞
δ(λ)dF (λ).

Proof of Lemma 3.7.1. Write ∆X` =
( ∫ τn,`

τn,`−1
γ2t dt

)1/2
Φ1/2Z` as in Remark 3.3.2. Define

for i = 1, 2,

Φ̃i,sam = n−1i
∑
`∈Ii

Φ1/2Z`Z
T

`Φ
1/2, Φ̌sam = n−1

n∑
`=1

Φ1/2Z`Z
T

`Φ
1/2,

which are all proper sample covariance matrices. Let v
(i)
1,sam ≥ · · · ≥ v

(i)
p,sam be the eigenvalues

of Φ̃i,sam with corresponding eigenvectors pi1,sam, . . . ,pip,sam. Also, let v1,sam ≥ · · · vp,sam be

the eigenvalues of Φ̌sam with corresponding eigenvectors p1,sam, . . . ,pp,sam. Suppose we are

able to show the following. For any z ∈ C+,

p−1tr
(
(Φ̃1,sam − zIp)−1

)
− p−1tr

(
(Φ̃1 − zIp)−1

) a.s.→ 0,

p−1tr
(
(Φ̌sam − zIp)−1

)
− p−1tr

(
(Φ̌− zIp)−1

) a.s.→ 0,

p−1tr
(
(Φ̃1,sam − zIp)−1Φ

)
− p−1tr

(
(Φ̃1 − zIp)−1Φ

) a.s.→ 0,

p−1tr
(
(Φ̌sam − zIp)−1Φ

)
− p−1tr

(
(Φ̌− zIp)−1Φ

) a.s.→ 0.

(3.7.1)

The above can in fact be written as differences of Stieltjes transforms of certain nondecreasing

functions. The differences in their inverse Stieltjes transforms must then converge to 0 almost

surely as well, i.e., at the point of continuity x of these nondecreasing functions,

p−1
p∑
j=1

1{x≥v(1)j,sam}
− p−1

p∑
j=1

1{x≥v(1)j }
a.s.→ 0,

p−1
p∑
j=1

1{x≥vj,sam} − p−1
p∑
j=1

1{x≥vj}
a.s.→ 0,

p−1
p∑
j=1

pT

1j,samΦp1j,sam1{x≥v(1)j,sam}
− p−1

p∑
j=1

pT

1jΦp1j1{x≥v(1)j }
a.s.→ 0,

p−1
p∑
j=1

pT

j,samΦpj,sam1{x≥vj,sam} − p−1
p∑
j=1

pT

jΦpj1{x≥vj}
a.s.→ 0.

(3.7.2)

Interested readers are referred to [23] or [28] for the definitions of Stieltjes transform and its

inversion. Theorem 4 of [28] indicates that for all x ∈ R, there exist functions δ1(·) and δ(·)

with corresponding distribution functions F1 and F such that

p−1
p∑
j=1

1{λ≥v(1)j,sam}
a.s.→ F1(λ),

p−1
p∑
j=1

1{λ≥vj,sam}
a.s.→ F (λ),
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p−1
p∑
j=1

pT

1j,samΦp1j,sam1{x≥v(1)j,sam}
a.s.→
∫ x

−∞
δ1(λ)dF (λ),

p−1
p∑
j=1

pT

j,samΦpj,sam1{x≥vj,sam}
a.s.→
∫ x

−∞
δ(λ)dF (λ).

At the same time, since p/n1 and p/n both go to c > 0, Theorem 4.1 of [7] tells us that

the two limits F1 and F are equal, and since δ1(·) and δ(·) depend on F1 and F respectively

(both depend on the same c also; see equation (2.7) and (2.9) in [23] for more details), we

must have δ1(·) = δ(·) also.

With the above, (3.7.2) immediately implies the results we need. Hence it remains to

show (3.7.1).

To prove the first and third results of (3.7.1), consider for k = 0, 1,

p−1tr
(
(Φ̃1 − zIp)−1Φk

)
= p−1tr

(
(Ip − (Φ̃1,sam − zIp)−1(Φ̃1,sam − Φ̃1))

−1(Φ̃1,sam − zIp)−1Φk
)

= p−1tr
(
(Φ̃1,sam − zIp)−1Φk

)
+R, with

R =
∑
j≥1

p−1tr
(
[(Φ̃1,sam − zIp)−1(Φ̃1,sam − Φ̃1)]

j(Φ̃1,sam − zIp)−1Φk
)
,

where R comes from a Neumann series expansion. Such an expansion is valid since

r :=
∥∥(Φ̃1,sam − zIp)−1(Φ̃1,sam − Φ̃1)

∥∥ ≤ ∥∥(Φ̃1,sam − zIp)−1
∥∥ · ∥∥Φ̃1,sam − Φ̃1

∥∥
≤ 1

|Im(z)|
·max
`∈I1

∣∣∣∣ 1

ZT
`ΦZ`/p

− 1

∣∣∣∣∥∥Φ̃1,sam

∥∥
≤
∥∥Φ1/2

∥∥2
|Im(z)|

·max
`∈I1

∣∣∣∣ 1

ZT
`ΦZ`/p

− 1

∣∣∣∣∥∥n−11

∑
`∈I1

Z`Z
T

`

∥∥
≤
∥∥Φ1/2

∥∥2(1 +
√
c)2

|Im(z)|
·max
`∈I1

∣∣∣∣ 1

ZT
`ΦZ`/p

− 1

∣∣∣∣ a.s.→ 0,

where we used Lemma S.2 of [24] to conclude
∥∥(Φ̃1,sam − zIp)−1

∥∥ ≤ 1/|Im(z)|, and we used

Theorem 5.11 of [7] to conclude that
∥∥n−11

∑
`∈I1 Z`Z

T
`

∥∥ ≤ (1 +
√
c)2 almost surely, since

p/n1, like p/n, goes to c > 0 also. Finally, the term max`∈I1
∣∣ 1
ZT
` ΦZ`/p

− 1
∣∣ a.s.→ 0 by the last

part of the proof of Lemma 2. With this,

|R| ≤
∑
j≥1

rj
∥∥Φk

∥∥ · ∥∥(Φ̃1,sam − zIp)−1
∥∥ ≤ r

∥∥Φk
∥∥

(1− r)|Im(z)|
a.s.→ 0,

so that we have proved the first and third results in (3.7.1). For the other two results, the

proof follows exactly the same lines as before after replacing Φ̃1,sam by Φ̌sam and Φ̃1 by Φ̌.

This completes the proof of the lemma. �
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Proof of Theorem 4. Define θ =
∫ 1

0
γ2t dt, θ̂ = tr(ΣRCV

p )/p and ΦIdeal = Pdiag(PTΦP)PT.

We can easily see that

EL(Σp, Σ̂p) ≤ 1−
(

p−1/2
∥∥(θ̂ − θ)Φ̂

∥∥
F

p−1/2θ
∥∥ΦIdeal −Φ

∥∥
F

+
p−1/2

∥∥Φ̂−Φ
∥∥
F

p−1/2
∥∥ΦIdeal −Φ

∥∥
F

)−2
, (3.7.3)

where p−1/2
∥∥(θ̂ − θ)Φ̂

∥∥
F
≤ |θ̂ − θ|max1≤i≤p pT

1iΦ̃2p1i
a.s.→ 0 by Lemma 2 and the proof of

Theorem 3. Since we are equivalently assuming that p−1/2
∥∥ΣIdeal −Φ

∥∥
F

is not going to 0,

it remains to show that the rightmost term above is going to 1. To this end, observe that

p−1
∥∥Φ̂−Φ

∥∥2
F

p−1
∥∥ΦIdeal −Φ

∥∥2
F

=
p−1

∑p
i=1(p

T
1iΦ̃2p1i − pT

1iΦp1i)
2

p−1
∥∥Pdiag(PTΦP)PT −Φ

∥∥2
F

+
p−1
∥∥P1diag(PT

1ΦP1)P
T
1 −Φ

∥∥2
F

p−1
∥∥Pdiag(PTΦP)PT −Φ

∥∥2
F

.

By Assumptions 3.4.4 and 3.4.5, and the results of Lemma 3.7.1, we have

p−1
∥∥P1diag(PT

1ΦP1)P
T

1 −Φ
∥∥2
F

= p−1tr(Φ2)− p−1
p∑
i=1

(pT

1iΦp1i)
2

a.s.→
∫
τ 2dH(τ)−

∫
δ21(λ)dF1(λ)

=

∫
τ 2dH(τ)−

∫
δ2(λ)dFs(λ),

which is non-zero if Φ 6= Ip. This is also the almost sure limit of p−1
∥∥ΦIdeal−Φ

∥∥2
F

, and hence

the rightmost term in (3.7.3) is indeed going to 1 if we can also show that p−1
∑p

i=1(p
T
1iΦ̃2p1i−

pT
1iΦp1i)

2 a.s.→ 0. By Lemma 2,

p−1
p∑
i=1

(pT

1iΦ̃2p1i − pT

1iΦp1i)
2 ≤ max

1≤i≤p

∣∣∣∣pT
1iΦ̃2p1i − pT

1iΦp1i

pT
1iΦp1i

∣∣∣∣ · max
1≤i≤p

pT

1iΦp1i
a.s.→ 0.

This completes the proof for the Frobenius loss.

For the inverse Stein’s loss, by Lemma 3.7.1, we have

p−1L(Σp,ΣIdeal) = p−1
p∑
i=1

log(pT

i Φpi)− p−1
p∑
i=1

log(vn,i)

a.s.→
∫

log(δ(λ))dF (λ)−
∫

log(τ)dH(τ),

where vn,i is the ith largest eigenvalue of Φ. Now consider the decomposition

p−1L(Σp, Σ̂p) = I1 + I2 + I3 + I4 + I5, where

I1 = log(θ̂/θ),

I2 =
(θ
θ̂
− 1
)
p−1

p∑
i=1

(
pT
1iΦp1i

pT
1iΦ̃2p1i

)
,
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I3 = p−1
p∑
i=1

(
pT
1iΦp1i

pT
1iΦ̃2p1i

)
− 1,

I4 = p−1
p∑
i=1

log

(
pT
1iΦp1i

pT
1iΦ̃2p1i

)
,

I5 = p−1
p∑
i=1

log(pT

1iΦp1i)− p−1
p∑
i=1

log(vn,i).

We can prove easily that I1, I2, I3 and I4 are all almost surely 0 by the proof of Theorem 3,

and the result of Lemma 2. By Lemma S.3.7.1, we can show that

I5
a.s.→
∫

log(δ(λ))dF (λ)−
∫

log(τ)dH(τ),

so that p−1L(Σp,ΣIdeal)/p
−1L(Σp, Σ̂p)

a.s.→ 1, showing EL(Σp, Σ̂p)
a.s.→ 0. This completes the

proof of the theorem. �

Proof of Theorem 5. For the Frobenius loss,

‖Σ̂p,M −Σp‖2F = ‖ 1

M

M∑
i=1

(Σ̂
(i)

p −Σp)‖2F ≤ (
1

M

M∑
i=1

‖Σ̂
(i)

p −Σp‖F )2

≤ 1

M

M∑
i=1

‖Σ̂
(i)

p −Σp‖2F ,

so that

EL(Σp, Σ̂p,M) ≤ 1− ‖Σ̂Ideal −Σp‖2F
1
M

∑M
i=1 ‖Σ

(i)
p −Σp‖2F

= 1− 1
1
M

ΣM
i=1

1

1−EL(Σp,Σ̂
(i)
p )

a.s.→ 0,

since EL(Σp, Σ̂
(i)

p )
a.s.→ 0 by Theorem 4.

For the inverse Stein’s loss, we can follow exactly the same lines as in the proof of Theorem

6 in [23] to prove the result. �

Proof of Theorem 6. We have

p1/2
∥∥wopt

∥∥
∞ ≤

p1/2
∥∥Σ̂−1p ∥∥1

1T
pΣ̂
−1
p 1p

=
p1/2

∥∥Φ̂−1∥∥∞
1T
pΦ̂
−1

1p
≤ p1/2 · p1/2λ−1min(Φ̂)

pλmin(Φ̂
−1

)

=
λmax(Φ̂)

λmin(Φ̂)
≤ max1≤i≤p pT

1iΦ̃2p1i

min1≤i≤p pT
1iΦ̃2p1i

a.s.→ max1≤i≤p pT
1iΦp1i

min1≤i≤p pT
1iΦp1i

≤ λmax(Φ)

λmin(Φ)
= Cond(Φ),
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where we used the results of Lemma 2 for the almost sure convergence. For the actual risk

bound,

pR(Σ̂p) =
p1T

pΣ̂
−1
p ΣpΣ̂

−1
p 1p

(1T
pΣ̂
−1
p 1p)2

≤
p · pλ2max(Σ̂

−1
p )λmax(Σp)

p2λ2min(Σ̂
−1
p )

=

(
λmax(Φ̂)

λmin(Φ̂)

)2

λmax(Σp)(
max1≤i≤p pT

1iΦ̃2p1i

min1≤i≤p pT
1iΦ̃2p1i

)2

λmax(Σp)
a.s.→
(

max1≤i≤p pT
1iΦp1i

min1≤i≤p pT
1iΦp1i

)2

λmax(Σp)

≤
(
λmax(Φ)

λmin(Φ)

)2

λmax(Σp) = Cond2(Φ)λmax(Σp).

This completes the proof of the theorem. �
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large variance matrices, The Rimini Centre for Economic Analysis,, WP 10-17 (2010).
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