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Abstract

The thesis consists of three independent chapters on environmental and urban eco-
nomics. A central theme explored in this thesis is what determines the distribution
of economic activities across space. My exploration in this direction begins with the
roles of industrial pollution and transportation infrastructure in shaping the spa-
tial distribution of skills, and extends to evaluate the spatial allocation efficiency of
renewable energy projects.

The first chapter,“The Long Shadow of Industrial Pollution: Environ-
mental Amenities and the Distribution of Skills” , investigates the role of in-
dustrial pollution in determining the competitiveness of post-industrial cities, with
a focus on their ability to attract skilled workers and shift to a modern service econ-
omy. I assemble a rich database at a fine spatial resolution, which allows me to
track pollution from the 1970s to the present and to examine its impacts on a whole
range of outcomes related to productivity and amenity, including house prices, em-
ployment, wages, and crime. I find that census tracts downwind of highly polluted
1970s industrial sites are associated with lower housing prices and a smaller share
of skilled employment three decades later, a pattern which became evermore promi-
nent between 1980 and 2000. These findings indicate that pollution in the 1970s
affected the ability of parts of cities to attract skills, which in turn drove the process
of agglomeration based on modern services. To quantify the contribution of different
mechanisms, I build and estimate a multi-sector spatial equilibrium framework that
introduces heterogeneity in local productivity and workers’ valuation of local ameni-
ties across sectors and allows the initial sorting to be magnified by production and
residential externalities. Structural estimation suggests that historical pollution is
associated with lower current productivity and amenity; the magnitudes are higher
for productivity, more skilled sectors and central tracts. I then use the framework
to evaluate the impact of counterfactual pollution cuts in different parts of cities on
nationwide welfare and cross-city skill distribution.

The second chapter, “Travel Costs and Urban Specialization: Evidence
from China’s High Speed Railway” examines how improvements in passenger
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transportation affect the spatial distribution of skills, exploiting the expansion of
high speed railway (HSR) project in China. This natural experiment is unique be-
cause as a passenger-dedicated transportation device that aims at improving the
speed and convenience of intercity travel, HSR mostly affects urban specialization
through encouraging more frequent intercity trips and face-to-face interactions. I
find that an HSR connection increases city-wide passenger flows by 10% and em-
ployment by 7%. To further deal with the issues of endogenous railway placement
and simultaneous public investments accompanying HSR connections, I examine the
impact of a city’s market access changes purely driven by the HSR connection of
other cities. The estimates suggest that HSR-induced expansion in market access
increases urban employment with an elasticity between 2 and 2.5. The differential
impacts of HSR on employment across sectors suggest that industries benefiting
more from enhanced market access are the ones intensive in nonroutine cognitive
skills, such as finance, IT and business services. These findings highlight the role
of improved passenger travel infrastructure in promoting the delivery of services,
facilitating labour sourcing and knowledge exchange across cities, and ultimately
shifting the specialization pattern of connected cities towards skilled and communi-
cation intensive sectors.

In the last chapter, “Where does the Wind Blow? Green Preferences and
Spatial Misallocation in the Renewable Energy Sector” , I focus on the spatial
allocation efficiency of renewable energy projects. How efficiently are renewable
energy projects distributed across the US? Are “greener” investors worse at picking
sites? Using extensive information on wind resources, transmission, electricity prices
and other restrictions that are relevant to the siting choices of wind farms, I calculate
the predicted profitability of wind power projects for all possible locations across
the contiguous US, use this distribution of this profitability as a counterfactual for
profit-maximizing wind power investments and compare it to the actual placement
of wind farms. The average predicted profit of wind projects would have risen by
47.1% had the 1770 current projects in the continental US been moved to the best
1770 sites. I also show that 80% and 42% respectively of this observed deviation can
be accounted for by within-state and within-county distortions. I provide further
evidence that a large proportion of the observed within-state spatial misallocation
is related to green investors’ tendency of invest locally and sub-optimally. Wind
farms in more environmentally-friendly counties are more likely to be financed by
local and non-profit investors, are closer to cities, are much less responsive to local
fundamentals and have worse performance ex-post. The implementation of state
policies such as Renewable Portfolio Standard (RPS) and price-based subsidies are
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related to better within-state locational choices through attracting more for-profit
investments to the “brown" counties, while lump-sum subsidies have the opposite or
no effects. My findings have salient implications for environmental and energy policy.
Policy makers should take account of the non-monetary incentives of renewable
investors when determining the allocative efficiency of policies.
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Chapter 1

The Long Shadow of Industrial
Pollution: Environmental Amenities
and the Distribution of Skills

This paper presents theory and evidence on the role of environmental amenities in
shaping the competitiveness of post-industrial cities. I assemble a rich database at
a fine spatial resolution to examine the impact of historical pollution on the distri-
bution of skilled workers and residents within cities today. I find that census tracts
downwind of highly polluted 1970s industrial sites were associated with higher pol-
lution levels in the 1970s but not after 2000. However, they were less skilled and
had lower wage and housing values in 2000, a pattern which became more promi-
nent between 1980 and 2000. These findings suggest the presence of skill sorting on
pollution and strong subsequent agglomeration effects. To quantify the contribu-
tion of different mechanisms, I build and estimate a multi-sector spatial equilibrium
framework that introduces heterogeneity in local productivity and workers’ valu-
ation for local amenities across sectors, and allows initial sorting to be magnified
by production and residential externalities. Estimation of the model suggests that
historical pollution is associated with lower current productivity and amenity levels.
The effects are more pronounced for productivity, more skilled sectors and central
tracts. I use the framework to evaluate the impact of counterfactual pollution cuts
in different parts of cities on nationwide welfare and the cross-city distribution of
skills.
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1.1 Introduction

The comparative advantages of cities has slowly evolved over: during the indus-
trial era, cities served as production centers where firms benefited from proximity to
natural resources, shared infrastructure and pooled labour markets. More recently,
cities have increasingly reshaped themselves into innovation hubs and consumption
centres. During this transition, while some cities and towns have managed to adapt
by shifting the focus of their production towards services, others have struggled, wit-
nessing declining populations and deteriorating economic conditions. Urban decline
associated with structural transformation is commonplace in many regions: from
Northeast England in the first half of the twentieth century to the US Rust Belt
in the past few decades, and North China’s heavily industrialised cities today. The
experiences of early industrialised cities in the developed world may provide valuable
lessons for policymakers in recently industrialized countries that are beginning to
feel the pressure of urban industrial pollution.

A central puzzle in examining the decline of industrial cities is why they fail
to attract new service industries despite their convenient location, developed infras-
tructure, existing agglomeration benefits and declining land values. There have been
many proposed explanations for this failed transition, which include the structural
mismatch of jobs and workers, a lack of entrepreneurship due to the dominance of
large corporations and misplaced public policies that attempted to subsidize the
failing manufacturing sector. In this paper, I focus on a new explanation-how urban
industrial pollution may cast a long shadow over the pattern of economic develop-
ment within cities. In particular, I look at whether past pollution undermines the
attractiveness of these cities today. In the post-industrial era, when local amenities
play an increasingly important role in the location choice of skilled workers and ag-
glomeration forces are increasingly shaped by the interaction of skilled workers and
residents (Glaeser and Saiz (2004a); Moretti (2012)), past pollution may limit the
ability of parts of the cities to attract skilled workers.

To examine the causal link between historical industrial pollution and the cur-
rent distribution of economic activity, I assemble a rich dataset of historical land
use, pollution and census tract level outcomes in US metropolitan areas. To mitigate
concerns that areas that were more exposed to historical pollution differ in economic
outcomes because of the endogenous placement of polluting industries and closer eco-
nomic links to the manufacturing industry, I consider the role of wind in distributing
pollutants by comparing areas that are downwind of historically polluting plants to
those that are equally close but in upwind positions. The identification assumption
is that equidistant tracts established similar economic links to the nearby industrial
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areas and experienced similar labour market shocks when these areas deindustri-
alised. My empirical analysis yields three sets of results. First, areas downwind
of historical industrial sites were more heavily polluted during the 1970s but this
was no longer the case in the 2000s, partly because pollution has largely been cut
in American cities due to the decline of manufacturing. Second, a wide range of
economic outcomes continued to be influenced by historical pollution.Census tracts
which were close to and downwind of heavily industrial areas in the 1970s were less
skilled and had lower housing value in 2000. Third, these tracts also experienced
declining housing prices, wages and shares of skilled employment from 1980 to 2000.
Taken together, these findings highlight the role of historical pollution, rather than
current pollution, in shaping the current distribution of skills, and are indicative of
the strong production and residential agglomeration effects that set cities on diverg-
ing paths of development.

What makes the areas that were more exposed to historical pollution underper-
form today? Were these areas simply becoming undesirable places to live because
historical pollution changed the composition of surrounding communities, which in
turn led to deteriorating amenities; or were they also evolving to be less productive
as high-quality firms in emerging skilled service industries avoided them? I examine
the mechanisms at work in two steps. First, I look for qualitative evidence on the
relationship between historical pollution and endogenous amenities. If historical pol-
lution is associated with higher crime rates today, it most likely operates through
channels of residential sorting and externalities. Second, I estimate a structural
spatial equilibrium model that allows me to recover sector-specific productivity and
amenity parameters from observable data. With these estimates, we can tell how
far IT firms value a particular location as a productive place relative to construction
firms, and how far finance versus manufacturing workers prefer to live in certain
location in order to enjoy a better quality of life. I then decompose the aggregate
productivity and amenity estimates into exogenous parts driven by fundamentals
and endogenous ones determined by agglomeration forces and check (1) the effects
of historical pollution on current sector-specific productivity and perceived amenity;
and (2) the contribution of production and residential agglomeration effects in ac-
counting for these effects.

The spatial general equilibrium model, which builds on Ahlfeldt et al. (2015) and
extends their analysis by embedding the internal structure of individual cities into
a system of cities, introducing sectoral heterogeneity in productivity and people’s
valuation of local amenities and allowing the initial sorting of skills to be magnified
by production and residential externalities. These features allow me to separately
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estimate sector-specific productivity and amenity parameters using information on
sectoral wages and employment at the census tract level observed at both place
of work and place of residence, tract-to-tract bilateral commuting costs and hous-
ing values in 2000 and 2010. By checking the correlation between early pollution
exposure and estimated productivity and amenity parameters, I show that, con-
trolling for current pollution, tracts that were more exposed to historical pollution
due to their position downwind of industrial areas had both lower productivity and
amenity in 2000. I also find that these negative effects are stronger for productivity,
skill-intensive sectors and central tracts.

To account for the contribution of production and residential externalities to the
estimated negative impacts of historical pollution on local productivity and ameni-
ties, I follow the literature by defining these externalities as increasing functions
of the workplace and residence employment density of surrounding tracts, respec-
tively. To capture more flexible cross-industry interactions of workers, I allow the
productivity of a particular sector to depend on the employment density of different
sectors according to the industrial linkages across sectors specified by Glaeser et al.
(2015). On the residential side, I assume that residents’ valuation of local quality
of life depends on both residential density and the skill-mix of the neighbourhoods.
I then decompose both estimated local productivity and amenity into exogenous
components driven by fundamentals and endogenous ones determined by agglomer-
ation effects. The endogenous agglomeration terms highly correlate with historical
pollution explain a large proportion of the estimated effects of historical pollution
on both current productivity and amenity

To evaluate the differences in the costs and benefits of pollution abatement across
time and space, I consider policy experiments that cut pollution levels in central and
non-central tracts and evaluate the overall welfare and distributional impacts. These
exercises require estimates of the elasticities of local production and residential fun-
damentals to pollution changes. To identify the contemporaneous productivity and
amenity benefits from cutting pollution, I exploit quasi-experimental reductions in
Particulate Matter (PM10) concentrations from 2000 to 2010 induced by differen-
tial local regulator responses to the Clean Air Act Amendments (CAAA), studied
in Auffhammer et al. (2009) and Bento et al. (2015). In an instrumental variable
specification, I show that changes in productivity and perceived amenity by workers
from different sectors respond to the evolution in the PM10 concentration level in
a way that mirrors the responses from the cross-sectional estimation. The counter-
factual policy analyses reveal that cutting pollution in central cities leads to both
larger cross-city flows of skilled workers and higher welfare gains, especially in the
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case with endogenous local productivity and amenity levels.

1.2 Related Literature

The paper studies the long-run impacts of historical industrial pollution on the cur-
rent distribution of skills. It contributes to a number of different strands of literature,
such as urban pollution, the geographical sorting of households and workers and the
persistence of economic activities within cities. While the existing literature in en-
vironmental economics has mainly focused on the contemporary effects of pollution
on health, residents’ quality of life and local labour productivity and supply (Currie
et al. (2015), Sullivan (2016), Hanna and Oliva (2015), Zivin and Neidell (2012)),
this paper reveals an oft-ignored hidden cost of industrial pollution: its effects on
the attractiveness of industrial cities in the wake of industrial decline. This puts
these cities at a disadvantage during the structural transformation process.

In examining the mechanisms at work, my findings highlight the importance of
skill sorting at both workplace and residence, which complements a long history
of literature examining the geographic sorting of different types of agents (Tiebout
(1956); Epple and Sieg (1999); Kuminoff et al. (2013)). A small literature deal
specifically with the sorting of households on environmental amenities, such as Wu
(2006),Banzhaf and Walsh (2008) and Bayer et al. (2009).

These findings also build on previous research on the persistence of economic ac-
tivities within cities. For instance, Hornbeck and Keniston (2014) and Siodla (2015)
examine the long-lasting impacts of great fires in cities. Ambrus et al. (2015) find
that historical cholera outbreaks are associated with poorer neighbourhoods decades
later. Redding and Sturm (2016) and Dericks and Koster (2016) examine how the
negative impacts of Second World War bombings in London persist today. Heblich
et al. (2016) document, in particular, residential sorting responses to pollution in
the 19th century that persist today in British cities. My contribution to these two
strands of literature is to embed the sorting mechanism into a general equilibrium
setting, which helps me to identify the impacts on local productivity and amenity
separately, and quantify the contribution of local agglomeration effects. I find a
greater impact of historical pollution on local productivity, which is relatively new
to this literature, since previous empirical studies have focused on residential sorting
and neighbourhoods effects.

On the theory side, this paper extends the single city spatial equilibrium frame-
work of Ahlfeldt et al. (2015) by integrating their model of the internal structure
of cities into a system of cities. This allows me to examine how the distribution
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of pollution within a city shapes its overall competitiveness and the distribution
of population and skilled employment across cities. My theoretical framework also
introduces sectoral heterogeneity in productivity and amenity to generate the sort-
ing of jobs and residents in response to pollution, while still remaining tractable.
My framework contributes to a burgeoning literature on modelling and structurally
estimating the internal structure of cities, such as Ahlfeldt et al. (2015), Davis and
Dingel (2014), and Allen et al. (2015).

Methodologically, this paper also contributes to the literature on measuring the
quality of life in cities Blomquist et al. (1988); Albouy (2008)). To my knowledge,
this paper is one of the first attempts to measure the quality of life at a highly disag-
gregated level. It is also one of the first to directly measure locational quality-of-life
as perceived by workers with different characteristics. I find that the variation in
measured quality of life within cities is much greater than between cities. Residents
who work for different sectors differ in their valuation of the same observable ameni-
ties; in particular, workers from skilled sectors display greater aversion to urban
disamenities such as pollution and crime.

There is a small literature documenting the recent gentrification of inner cities
(Fee et al. (2012), Couture and Handbury (2015), Baum-Snow and Hartley (2016)).
My paper contributes to this literature by proposing central city industrial pollution
as a particular contributor to the excessive decentralization of post-war industrial
cities. I also examine to what extent the clean-up of inner city pollution could revive
city centres. My preliminary results suggest that central city amenities perceived
by high-skilled workers improved disproportionately from 2000 to 2010, which is
consistent with the results presented in Couture and Handbury (2015).

Another strand of the literature studies endogenous productivity and amenity
changes in response to the density and composition of an area’s residents. Moretti
(2004) and Ciccone and Peri (2006) look at the response of a city’s productivity of a
city to its skill-mix, while Bayer et al. (2009), Guerrieri et al. (2013) and Diamond
(2016) study residential sorting on the basis of neighborhood characteristics and
the endogenous supply of amenities to the city level skill-mix. I incorporate both
channels into my analytical framework and find both to be important in accounting
for the negative impact of historical pollution on current economic outcomes.

My findings also relate to the literature on the structural transformation of cities
from manufacturing agglomerates to innovation clusters and consumption centres,
with the agglomeration of high-skilled labour playing an increasingly important role
(Glaeser and Saiz (2004a), Moretti (2012), Diamond (2016)). In my paper, I take this
structural shift as given and consider how it magnifies the importance of historical
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industrial pollution in determining a city’s growing potential.
Finally, this paper also contributes to the literature on the causes and conse-

quences of the decline of the Rust Belt. Most importantly, technological change and
economic globalization had profound impacts on regions oriented towards goods-
production, especially in the Rust Belt (Feyrer et al. (2007)). Glaeser and Ponzetto
(2007) argue that the Rust Belt’s location-specific advantage, which stemmed from
easier access to waterways and railroads, declined over time. Alder et al. (2014)
cite the lack of competition in both output and factor markets as a key element in
Rust Belt decline from a macroeconomics perspective. Glaeser et al. (2015) further
suggest that proximity to old mines leads to specialization in heavy industries, the
dominance of big firms and subsequently dampened entrepreneurial human capital
across several generations.

1.3 Data

To examine the relationship between historical industrial pollution and the contem-
porary distribution of skilled labour within and across cities, I assemble a database
of tract level outcomes from 1940 to 2010. I draw my data from three main sources:
census outcomes from 1940 to 2000, matched across years according to the Longitu-
dinal Tract Data Base (LTDB); U.S. Geological Survey (USGS) land use data in the
1970s, and EPA pollutants ambient concentration data collected at each monitoring
site from 1957.

1.3.1 Workplace and Residence Location Choices

The main outcome variables are obtained from the Census Transportation Planning
Package (CTPP) of the Bureau of Transportation (BTS). The CTPP includes three
parts: tabulations by place of residence, tabulations by workplace, and flows from
residence to workplace, all at the census tract level. It provides detailed information
on the counts of employed population by gender (2), industry (15), occupation
(25) and race (4) who live or work in certain census tracts, the median earnings
by industry of people who live or work in these tracts, the number of people who
commute between any census tract pairs, and the average travel time by four modes
of transportation1 between any census tract pairs. The CTPP data are available at
the census tract level for only a few cities in 1990 and all metropolitan areas in 2000
and 2010. To calculate bilateral travel cost across tracts, I obtain the estimated

1Automobiles, public transportation, walking or cycling, other

7



driving time between the centroids of census tracts from OpenStreetMap.
I complement the CTPP data with decennial tract level information on employ-

ment, skill composition housing value and quality at the place of residence from 1940
to 2010. To normalize the NHGIS and CTPP data to 2010 census tract boundaries,
I use the Longitudinal Tract Database (LTDB) Logan et al. (2014). I end up with
an unbalanced panel of census tracts from 1970 to 2010, with 52,210 observations in
1970 and 66,438 observations in 2010. I use constant 2010 CBSA boundaries. The
CBD is defined according to the CTPP 1990 Urban Geographic Data. 2

sector-specific employment and earnings data by both place of work and place of
residence are essential for me to separately identify the amenity and productivity pa-
rameters in my structural model. More specifically, earning by industry, partialling
out educational attainment, gender, race, and occupation, serves as a measure of
labour productivity of each industry at the tract level. Tract level quality-of-life
perceived by people from different industries can be backed out using information
on the counts of employed population by industry, local housing value and their
access to job opportunities within this industry, measured as industrial productivity
of nearby tracts inversely weighted by travel cost.

1.3.2 Historical Land Use

I obtain information on the location of historical industrial areas from the Enhanced
Historical Land-Use and Land-Cover Datasets of the U.S. Geological Survey (USGS).
This dataset depicts land use and land cover from the 1970s and has previously been
published by the U.S. Geological Survey (USGS) in other file formats.3 The basic
sources of land use compilation data are NASA high-altitude aerial photographs,
and National High-Altitude Photography (NHAP) program photographs. Urban or
built-up land use is classified as residential, commercial, industrial, transportation,
communications and utilities, industrial and commercial complexes, or mixed urban
land use. In my paper, I define industrial areas as the land exclusively allocated as
industrial land use.

2http://www.transtats.bts.gov/TableInfo.asp?Table_ID=1279&DB_Short_Name=CTPP%
201990&Info_Only=1

3The original digital data sets were created by the USGS in the late 1970s and early 1980s
and were later converted by USGS and the U.S. Environmental Protection Agency (USEPA) to a
geographic information system (GIS) format in the early 1990s. (Price et al. (2007))
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1.3.3 Pollution and Wind Data

The contemporary and historical air pollution data are drawn from the Environmen-
tal Protection Agency (EPA) airdata. The EPA monitors different air pollutants
over time and their earliest data dates back to 1957. The data is available at monitor
level, and I match the monitors to census tracts according to their coordinates. In
this paper, I focus my attention on Total Suspended Particles (TSP) or Particulate
Matter smaller or equal to 10micron in diameter (PM10) because there are more
TSP/PM10 monitors than those of other pollutants and they are closely related to
industrial pollution. Before 1990, the EPA mostly monitored TSP, during the 1990s
the EPA mostly monitored PM104.

In my empirical analysis, I leverage the quasi-experimental variation in wind
direction differences in distributing pollution from industrial sources. I draw the
information on local wind conditions from NOAA’s Quality Controlled Local Cli-
matological Data (QCLCD). It consists of monthly summaries of wind direction
and wind speed for approximately 1,600 U.S. locations, from January 1, 2005 and
continues to the present.

1.3.4 Amenity Data

I collect a diverse set of data on tract level local amenities, such as public schools
and crime rates, for two purposes. First, by directly examining the relationship
between historical pollution and endogenous amenities, I can test for the relevance of
residential agglomeration effects in driving the main results. Second, the observable
amenities can be compared to the estimated amenity parameters as an additional
validation of the structural estimation.

Data on public schools are drawn from the National Center for Educational
Statistics’ Common Core of Data (CCD)5. The CCD is NCES’ primary census
database that includes annual information for the universe of all public elementary
and secondary schools, school districts, and other educational administrative and
operating units across the U.S. The CCD contains three types of data: descriptive
information on school location and type; demographic data on students and staff,
and fiscal data on revenues and expenditure. I match schools to census tracts using
their coordinates, which allows me to infer the number of public schools, average

4In 1987, EPA replaced the earlier Total Suspended Particulate (TSP) air quality standard
with a PM10 standard. TSP standard counts for particles that are smaller or equal to 50micron
in diameter. While the new PM10 standard focuses on smaller particles that are likely to be
responsible for adverse health effects because of their ability to reach the lower regions of the
respiratory tract.

5https://nces.ed.gov/ccd/pubschuniv.asp
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student teacher ratio, total revenues and expenditures at the census tract level.
I obtain crime data from the National Neighborhood Crime Study (NNCS),

20006. It reports tract-level crime data pertaining to seven of the FBI’s crime index
offenses for 10,851 census tracts, as well as tract-level information on social disorga-
nization, structural disadvantage, socioeconomic inequality, mortgage lending, and
other control variables garnered from the 2000 United States Census of Population
and Housing Summary File 3 (SF3) and other publicly available sources.

I also collect information on a variety of natural amenities, following Lee and
Lin (2015), including distances to a water body, average slope, flood hazard risk,
average 1971–2000 annual precipitation, July maximum temperature and January
minimum temperature.

1.4 Reduced-form Evidence

In this section, I estimate the effects of early industrial pollution exposure on sub-
sequent growth and specialization patterns within cities. To exploit variation in
pollution independent from local economic conditions, I consider the role of wind
in disseminating pollutants. I first investigate whether areas that are closer to and
downwind of 1970 industrial areas are more polluted in the 1970s and today, be-
fore proceeding to explore the “reduced form" relationship between 1970s industrial
activities and contemporary economic outcomes, exploiting variation in wind direc-
tion.

1.4.1 Proximity to Early Industrial Areas and Local Pollu-

tion

Empirical Settings

To examine the relationship between pollution and industrial activities in the 1970s,
I adopt the following specification using monitor-level pollution data.

pi,1971−1979 =
4∑

k=1

Iikmβk +X ′iγ + αc + εic (1.1)

where pi,1971−1979 denotes the average total suspended particle (TSP) readings from
1971 to 1979 recorded by TSP monitor i, Iikm is an indicator variable for whether
or not monitor i lies within a distance buffer k from the closest industrial area m
in the 1970s; In practice I examine the results over four distance buffers: within 1

6http://www.icpsr.umich.edu/icpsrweb/RCMD/studies/27501
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km, 1-2 km, 2-3 km and 3-4 km. αc are Core Based Statistical Area (CBSA)7 fixed
effects; Xi is a vector of controls that includes the distances to natural amenities,
CBD and transportation lines.

To exploit the variation in ambient air pollution driven by factors not directly
related to industrial activities, I also estimate a model similar to Equation (1), where
I interact the same set of distance buffers to the closest industrial areas with wind
directions. Holding constant the distances to industrial areas, monitors that are
downwind should be more exposed to industrial pollution, thus, they should capture
relatively higher TSP readings. For monitor i in CBSA c, I estimate following
specification:

pic =
5∑

k=1

Iikm ∗Downwindimβk1 +
4∑

k=1

Iikm ∗ βk2 +X ′iδ + αc + εic (1.2)

where Downwindim is an indicator of whether or not monitor i is downwind of its
closest industrial aream. Apart from the interacted terms between the four distance
buffers and the downwind dummy, I also include that between the excluded group
(4 km or more away from the closest industrial area) and the downwind indicator.

The definition of downwind status is central to my empirical specification. The
data I use for this purpose keeps track of monthly wind speeds and directions at
over 1600 weather stations in the continental US from 2005 to 2014. As the purpose
of this paper is to examine the long-run impacts of early industrial pollution on
location choices of residents and firms, wind directions should be a concern only if
they are stable enough throughout the year. Therefore, instead of pooling monthly
observations to get an annual average of wind direction, I define the seasonal wind
coverage ranges in spring-summer (April-September) and autumn-winter (October-
March) and consider a monitor to be downwind of the closest industrial area only
if it is exposed to this area through wind in both winter and summer. The lower
part of Figure 1.1 illustrates the way I define these ranges. The winter/summer
ranges are defined by the 10th and 90th percentile of all monthly observations on
wind directions from 2005 to 2014. I drop observations with monthly average wind
speed lower than 0.5 m/s and force the downwind dummy to be zero if any of the
calculated wind ranges exceed 180 degrees (the 90th and 10th percentiles differ by
over 180 degrees). In the end, this definition suggests that about 9% of monitors
are downwind of its closest industrial area.

As a further attempt to link observed pollution to industrial activities, I exploit
7A CBSA is a US geographic area defined by the Office of Management and Budget (OMB)

that consists of one or more counties around by an urban center of at least 10,000 people and
adjacent counties that are socioeconomically tied to the urban center by commuting.
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another layer of variation in the pollution intensity of each industrial area. It is
highly likely that the exposure to industrial areas through wind may only matter
when these areas are sufficiently polluted. Thus, we can go one step further to
check if the additional effects of being downwind of industrial estates on pollution
also appear to be larger around more heavily polluted plants, by dividing the full
sample of monitors into two according to whether or not the pollution intensity
of the industrial areas these monitors are closest to is above the median, and run
specification (1) and (2) on both subsamples separately.

To obtain a pollution intensity measure of each industrial area, I match them to
their nearest TSP monitors. The upper graph of Figure 1.2 maps the location of
industrial areas and TSP monitors with at least one year of readings from 1971 to
1979 in central Detroit. It is apparent that most of the industrial areas in my sample
have a TSP monitor close-by, largely because these monitors are intended to oversee
the most polluted parts of the city. I define the pollution intensity of industrial
area m to be the average TSP readings from 1971 to 1979 collected at its closest
monitor. to mitigate concerns over measurement errors, I only keep industrial areas
with a TSP monitor less than 2 km away. The middle figure of Figure 1.2 shows
the assignment, with dark areas being industrial zones kept in the sample. The
division of the full sample of monitors according to whether or not the industrial
areas they are closest to are above of below the median pollution level is illustrates
at the bottom of Figure 1.2. It is apparent that industrial areas of different pollution
intensity are distributed quite evenly across central Detroit.

I run specifications (1) and (2) on the two subsamples and check if the magnitudes
are larger for monitors that are closer to more heavily polluted industrial areas.
Another possible approach to exploit both the variation in pollution intensity and
wind direction is a triple difference design, where the variables of interest are the
triple interaction terms of the distance-to-industrial-areas indicators with the level
of historical pollution of these areas and a downwind dummy. I adopt the triple-
difference estimation method as a robustness check and report results in Appendix
B.

The main purpose of this paper is to explore the long run negative impacts of
early industrial pollution. However, it is likely that more polluted areas in the 1970s
also tend to be more polluted now, making it hard to tell the long-run effects of
historical pollution from those of current pollution. Figure A1 plots the pollution
level in 2000 (measured by PM10) against that in the 1970s (measured by TSP)8.

8PM10 levels are adjusted to be comparable to TSP levels, according to the average PM10/TSP
ratio among all the readings collected at monitors that record PM10 and TSP at the same time.
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It is clear that although tracts that are heavily polluted in the 1970s do indeed
appear to be more polluted three decades later, the average pollution level has fallen
significantly from 1970 to 2000. There also exists a significant amount of churning
in the pollution distribution during this period. In particular, some of the most
polluted tracts (TSP> 200µg/m3) in the 1970s appear near the bottom of pollution
distribution in the 2000s. To check if the areas downwind of historical industrial sites
still remain dirty today, I re-estimate Equations (1) and (2), replacing the dependent
variable with monitor-level pollution measures of PM10 from 2000 to 2010.

Results

Table 1.1 reports estimation results of specifications (1) and (2), where the depen-
dent variable is the average TSP level at monitors from 1971 to 1979. Each column
represents a different regression, where columns (1) and (2) report estimates on a
full sample of TSP monitors with at least one reading from 1971 to 1979 and not
located within any industrial areas. Columns (3) and (4) report results on a subset
of TSP monitors that are closest to industrial areas with above-median pollution
intensity, while columns (5) and (6) report regression estimates on the subset of
monitors adjacent to below-median polluted areas. Standard errors are clustered at
CBSA level. The unit of TSP is µg/m3 and the average TSP from 1971 to 1979 is
69 µg/m3.

Columns (1) and (2) report the results on the full sample. Monitors that are close
to industrial areas record higher measures of TSP and the effects drop as they move
away from the sources of pollution. Monitors within one kilometre of the closest
industrial area capture 23.7 more units of TSP, while those within 2 to 3 kilometres
capture 6.5 more. Wind appears to be important in disseminating pollutants from
the sources, as is apparent in Column (2). We observe that, conditional on the
distance to the nearest industrial area, the downwind monitors record higher levels
of TSP. However, the effects do not appear to fade away linearly with distance. In
terms of the point estimate, downwind matters most for tracts that are within 1
kilometre and from 2 to 3 kilometres of the closest industrial area, leading to 8.9
and 11.9 extra units of TSP measured respectively. Wind directions do not appear
to matter much for areas that are more than 4 kilometres away from industrial areas.
In general, the observed sphere of influence is consistent with the nature of airborne
particles’ movements. Wilson and Suh (1997) suggests that the travel distance of
coarse particles, such as TSP and PM10, is up to 10 kilometres. Hence, it is natural
that the effect of wind largely drops when we move four kilometres away from the
pollution source.
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The estimation results on the subsample of monitors nearest to above-median
polluted industrial areas are shown in columns (3) and (4). It is clear that the
magnitudes of estimated coefficients for the interaction terms are higher, which is
consistent with the intuition that wind matters more around more heavily polluted
sources. Conversely, as shown in Columns (5) and (6), the estimated coefficients
of both distance buffers and their interaction terms with the downwind dummy
are smaller in the subsample of monitors that are nearest to below-median polluted
industrial areas. Most of the coefficients on the interaction terms are not significantly
greater than zero. It suggests that wind matters in pollution diffusion only around
sufficiently polluted sources. Therefore, in our next step in exploring the relationship
between historical pollution and tract-level outcomes, we focus our attention on the
tracts that are close to heavily-polluted industrial areas only.

Table 1.2 reports the estimation results with monitor-level average PM10 levels
from 2000 to 2010 as the dependent variable. Similarly, Columns (1)-(2) show
estimates for the full sample, Columns (3)-(4) for a subsample of the PM10 monitors
closest to the above-median polluted industrial areas and Columns (5)-(6) on a
subsample of the monitors closest to the below-median polluted areas. The average
PM10 from 2000 to 2010 is 21 µg/m3.

Column (1) shows that the monitors close to historical industrial areas also
appear to be more polluted in the 2000s, but the magnitudes are much lower. The
PM10 monitors within 1 kilometre of the closest industrial area record an extra 3.2
units of PM10, which is about 15% above the median level, compared to about 33%
more TSP recorded in the 1970s. It suggests that areas near historical industrial
sites remain more polluted in 2000, but the pollution level has fallen significantly
since 1970. It is clear from Column (2) that all the coefficients on the interaction
terms are either not statistically significantly different from zero or negative, which
suggests that areas downwind to 1970s industrial sites are not more polluted today,
if not less polluted. I believe it is mostly because the transportation of pollutants
by wind appears to be important only around sufficiently polluted areas.

The estimation results for the subsample with the monitors nearest to the above-
median and below-median polluted industrial areas are shown in Columns (3)-(4)
and Columns (5)-(6), respectively. Quite surprisingly, being closer to historically
more polluted industrial areas induces less current pollution than being closer to
less polluted areas. This suggests that, although industrial zones in the 1970s are
more likely to be industrial zones today, the pollution intensity of each industrial
area changed greatly over recent decades. One explanation is that the most polluted
industrial areas in the 1970s were under stricter regulatory oversight after the Clean
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Air Act, which led to significant industrial relocation. Meanwhile, the coefficients
on the interaction terms between the distance buffers and the downwind dummy
remain small and insignificant in both subsamples. Putting these pieces of evidence
together, the long-term impact of historical pollution on current economic outcomes,
identified through variations in both the pollution intensity of industrial areas and
wind conditions, are not likely to confound the effects of current pollution.

1.4.2 Early Industrial Pollution Exposure and Current Eco-

nomic Outcomes

Empirical Setting

In the previous section, I presented evidence on the impact of proximity to industrial
areas on local pollution and the additional role of wind in disseminating pollutants.
In this section, I further to examine the relationship between historical industrial
pollution and current economic outcomes. Do tracts that were dirtier in the 1970s
underperform in the post-industrial era? How much of their failure to attract skilled
workers and residents can be attributed to historical air pollution? To test this, I
look at the “reduced form" relationship between economic outcomes in 2000 and
exposure to 1970s industrial pollution in the following specification:

yic =
5∑

k=1

Iikm ∗Downwindimβk1 +
4∑

k=1

Iikm ∗ βk2 +X ′iδ + αc + εic (1.3)

where yic denotes the economic outcomes of interest observed in 2000, which
include housing prices, shares of high-skilled workers and residents, median earning
of workers and residents and the share college graduates; αc are CBSA fixed effects;
Iikm is an indicator that switches to one if tract i lies within a distance buffer k
from the closest industrial area m in 1970s; Downwindim is a dummy variable that
takes value one if tract i is located downwind of industrial area m; Xi are tract-level
characteristics, which include the distances to natural amenities and transportation
lines, indicators for different distance buffers to the CBD and route distance buffers
to the same industrial area m and the predicted manufacture job growth from 1970
to 2000 based on the industrial composition in 1970.

The coefficients of interest here are βk1 , which account for the additional effects
of being downwind of an industrial area for census tracts that are within a distance
buffer k of the industrial area. Controlling for CBSA fixed effects limits our atten-
tion to within-city variation. The identification of our main results relies on the
assumption that, in the absence of pollution, tracts that are downwind and upwind
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of the same industrial areas are similar in economic prosperity and skill composition.
However, estimates of βk1 may be inconsistent if being downwind of industrial tracts
correlates with other geographical features of tracts that are relevant for economic
development. For instance, for coastal cities, the wind could mostly come from wa-
ter, which makes coastal tracts more likely to be located downwind of industrial
tracts. To deal with this, I control not only for the distance to a body of water in
all my regressions, but also re-examine my main results in a sample that excludes
coastal cities.

Another concern is that that the location choice of early industrial sites may
take account of its pollution impact on nearby neighbourhoods, driven by wind
patterns. More specifically, a potentially heavily polluted plant might avoid locations
upwind of wealthy neighbourhoods if the latter could exert enough influence on
industrial location. To confirm that the placement of early industrial sites does
not weigh in differently the socioeconomic characteristics of downwind and upwind
neighbourhoods, I run a set of falsification tests and replace the outcomes from
specification (3) to those observed in 1940 or 1950. A problem with running the
falsification tests using 1970s industrial areas directly is that some of these industrial
sites might have been set up before 1970, or maybe even before 1940 and as a result
we may capture partial early treatment effects in this specification. To circumvent
this issue, I try to get an idea of the location of industrial areas emerging from 1950
to 1970 using information on pollution changes during this period. An industrial
area is considered to be newly added if the TSP reading from monitors within 5
kilometres increased by 30% from 1950 to 19709. Similarly, the full sample is split
into two according to the pollution intensity of the industrial areas.

Finally, to make use of the variation in the pollution intensity of different indus-
trial areas, I split the full sample of census tracts into two, according to whether or
not the pollution intensity of the closest industrial area from each tract is above-
median. Similarly, pollution intensity is defined as the average measure of TSP
ambient concentration at the TSP monitor closest to each industrial area from 1971
to 1979. Only industrial areas that are within 2 kilometres to the closest industrial
area are kept in the sample.

9I do not require the readings from 1950 and 1970 to come from the same monitor. In other
words, an industrial area’s pollution levels in the 1950s and 1970s can come from two different
monitors as long as both are located within 5 km to the industrial area. I make this compromise
because there are less TSP monitors with valid readings in the 1950s. On average, the TSP levels
decreased by 20% during this period. So if we observe an opposite 30% increase it is a strong
indication that a new industrial areas was added nearby.
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Results

Table 1.4 presents regression results on 2000 economic outcomes. The upper panel
reports estimates on a sample of census tracts whose closest industrial areas are
above-median polluted. The outcomes reported are employment density, share of
high-skilled10 employment and median wage at the place of work, as well as density,
share of high-skilled employment, median wage, housing value and share of college
graduates at the place of residence. The key coefficients of interest are reported in
the first four rows, which report the additional effects of being downwind of a 1970s
industrial areas within 0-1, 1-2, 2-3, 3-4 and over 4 kilometres. It is clear that census
tracts that are downwind of and close to heavily polluted industrial areas have lower
housing prices, are occupied by less educated residents from less skilled sectors and
earn less. Meanwhile, the workers who work in these tracts are also less likely to
be employed in high-skilled sectors and are earning less, which is suggestive of a
negative impact of historical pollution on current labour productivity.

Estimates from a sample of census tracts closest to the below-median industrial
areas are reported in the lower panel. It is clear that most of the estimated coef-
ficients on the interaction terms between distance buffers and downwind are much
smaller and statistically insignificant, which is consistent with the results on histor-
ical pollution: a downwind position appears to be detrimental to current economic
outcomes only when the nearby industrial areas are sufficiently polluted because the
wind direction only significantly affects the pollution concentration around industrial
areas that are sufficiently polluted, as reported in Table 1.1.

We can compare the magnitudes of the coefficients from the “reduced form"
estimation to those from the first stage. In the upper row of Figure 1.3, I plot
the coefficients on the interaction terms between several 500 metre distance buffers
and the downwind dummy in regressions with the monitor-level TSP reading as
the dependent variable. It appears that being downwind matters most when the
monitor is within 3 km of the closest industrial area, and when this industrial area
is heavily polluted. In Figure 1.4, I repeat the same exercises using 2000 outcomes
as the dependent variables. The negative impact of downwind position on most
economic outcomes also appears to matter most when the census tract is within 3
km of its closest industrial area.

As briefly discussed in Section 4.2.1, one concern over specification (3) is that the
location choice of early industrial sites may take account of its pollution diffusion to
nearby neighbourhoods driven by wind patterns. To address this concern, I run a

10"High-skilled" industries are defined as finance, insurance and real estates (FIRE), information
and professional services.
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set of falsification tests to check if the census tracts that are close to industrial areas
added during 1950-1970 differ from other tracts in 1950 in terms of socioeconomic
outcomes, and if the tracts that are both closer to and downwind of the same
newly-added industrial areas appear to be poorer or less educated than the upwind
ones. Table 1.5 presents the results. We can see that the tracts within 4 km
of the industrial areas emerging from 1950 to 1970 do appear to be poorer, less
educated and with a lower share of residents working as managers and in professional
and technical occupations, especially when these industrial areas are more polluted
(upper panel). This is a sign that the placement of industrial areas from 1950 to
1970 was not random but tended to be closer to poorer neighbourhoods. However,
the interaction terms of the dummy of being within 4 km and downwind are close to
zero in both samples. This suggests that, although the placement of early industrial
areas avoided rich areas, it was not sophisticated enough to take wind directions into
active consideration. In other words, downwind richer neighbourhoods do not seem
to have deterred nearby industrial placement more than their upwind counterparts
did.

I do not adopt an instrumental variable specification as my main specification,
because only a small proportion of census tracts in my sample can be matched to
TSP monitors with readings from 1971 to 1979. Nevertheless, in a subsample of
tracts with TSP monitors nearby, I look into the relationship between economic
outcomes and historical pollution instrumented by proximity to industrial areas and
wind directions. The results are presented in Table A11. Even in such a small
sample, we still observe a negative relationship between TSP readings in the 1970s
and current distribution of skills, with historical pollution instrumented by distance
buffers and a downwind dummy, although some of the coefficients are not significant
due to the small sample size and relatively weak first stages.

1.4.3 Dynamic Effects from 1980-2000

We have established that census tracts that were more exposed to 1970s industrial
pollution were poorer and less skilled in 2000. But it is unclear whether or not they
were equally poor in the 1970s, or if they improved or declined with the subdued
industrial activities during this period. Without any agglomeration forces in the
trend of de-industrialization, these areas should have experienced an improvement
in air quality and a loss of manufacturing jobs, both leading to a higher ratio of
employment in the high-skilled service sector. However, if agglomeration forces in
skill-intensive service sectors are strong enough, the failure to attract high-skilled
workers in the wake of industrial decline put these areas at a disadvantage through-
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out the whole structural transformation process and they may have ended up with
an even lower share of high-skilled service employment.

To explore the evolution of census tracts in the post-industrial era, I replace
outcomes in specification (4) with the growth rates of key outcomes from 1980 to
2000, including housing prices, median income, share of college graduates and the
employment of different sectors. As workplace outcomes are not available before
2000, I look only at the growth of outcomes counted at place of residence.

The estimates identified through variation in wind direction are presented in Ta-
ble 1.6. It is apparent from the upper panel of Table 1.6 that the tracts downwind
and close to the 1970 industrial areas are not only poorer and less skilled in 2000,
but also experience slower growth in total employment, median income, housing
price and the share of college graduates from 1980 to 2000. If we compare the re-
sults on manufacturing employment (Column (2)) to those on FIRE employment
(Column (3)), it is clear that the tracts that were more exposed to historical pol-
lution experience lower growth of the residents who work in FIRE sectors but not
in manufacturing. It is clear that historical pollution is associated not only with
lower housing prices and less skilled communities, but also with declining economic
conditions and worsening skill compositions, which is the opposite to what we might
have expected from cleaner air accompanying de-industrialization. A plausible story
would be that tracts that were more severely affected by industrial pollution ended
up with less-skilled neighbourhoods and labour pools by the end of 1970s, which
became a huge disadvantage when they tried to attract newly-available service jobs,
high-tech firms or college graduates as the country made the transition from a man-
ufacturing economy to a service-oriented one.

1.4.4 Mechanisms

In the above sections I have shown that census tracts that were more exposed to
industrial pollution in the 1970s were poorer and less skilled in 2000 and displayed
lower growth rates in housing prices, income and employment from 1980 to 2000.
These pieces of evidence strongly suggest the relevance of agglomeration forces in
shaping the evolution of industrial cities during waves of de-industrialization. But
we are still unclear about the nature of the agglomeration effects in operation here.
In the rest of this paper, I approach this issue from two angles. First, in this
section, I check if any observed endogenous amenities such as crime rates or the
provision of public schools respond to early industrial pollution. Second, in the
next two sections, I lay out a theoretical framework that helps me to recover local
productivity and amenity estimates, so that I can check whether historically polluted
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areas fail to attract skilled workers and residents in the post-industrial era because
they fail to offer high-quality jobs or a high quality of life. I then further decompose
both estimated local productivity and amenity into exogenous components driven
by fundamentals and endogenous ones determined by agglomeration effects under
assumptions on production and residential externalities.

A straightforward way to test for check the existence of residential agglomeration
forces is to examine the relationship between early industrial pollution exposure and
observable endogenous amenities, such as local crime rates and public school shares.
Higher crime rates or a lower provision of public schools in 2000 in historically more
polluted tracts purely driven by being downwind of 1970 industrial areas could
only be an outcome of the sorting of local residents and resultant changes in local
community compositions or tax bases. Housing durability could also play a role
here: if housing units constructed around more heavily polluted areas in the 1970s
were of poorer quality, and housing stocks are persistent, they may still exist thirty
years later and act as a particular kind of disamenity, especially to high-income
residents.

Table 1.7 shows the results. The upper panel reports the estimation results
on the sample of census tracts closest to above-median polluted industrial areas,
and the lower panel on that to below-median polluted ones. For simplicity, I use
only one distance dummy (within 4 kilometres) instead of four finer divisions. The
interaction terms between this distance dummy and a downwind dummy are positive
and significant for both violent crime rate and the number of public schools per
capita in the heavily-polluted sample. This suggests that census tracts that are
predicted to be more polluted in the 1970s due to wind direction end up being
more dangerous and less accessible to public schools in 2000. The evidence on
housing quality is less conclusive. I use the share of housing units without kitchen
or plumbing devices as a proxy for low housing quality. Additional exposure to
historical pollution through wind did not affect housing quality in 1980 or 2000.
Therefore, housing durability does not appear to be an important mechanism here,
which is different from the findings of Heblich et al. (2016).

1.5 Theoretical framework

The previous section presents the negative effects of historical pollution on the at-
tractiveness of local areas to both skilled workers and residents. Naturally we would
like to know if it is due to the fact that the areas that were more exposed to histori-
cal pollution simply offer lower quality of life, as a result of changing neighbourhood
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composition, or that they also offer worse job opportunities, due to diverging location
choices of firms. Additionally, with qualitative evidence on endogenous amenities, it
makes sense to quantitatively account for the contribution of agglomeration effects
at both place of work and place of residence.

To achieve both ends, I develop a multisector model of internal city structure
based on Ahlfeldt et al. (2015), which allows to me recover sector-specific local
productivity and amenity parameters, and decompose them into exogenous and
endogenous components. My model differs from Ahlfeldt et al. (2015) in two key
dimensions. First, to take into consideration the sorting of skills around historical
pollution, I extend their framework to allow for systematic sectoral heterogeneity in
productivity and amenities at different locations. Second, to examine the cross-city
implications of the historical distribution of pollution, I extend embed their single
city framework into a system of cities, which allows me to examine the effects of
a counterfactual pollution cut in a subset of cities on the cross-city distribution of
skills.

In my model, ex-ante identical workers simultaneously sort across sectors, and
choose locations (census tracts in data) to work and live based on the amenity and
productivity at these locations. The same local fundamentals, such as clean air, the
distance to natural resources or to the CBD, could be of different production and
consumption value for workers from different sectors in a systematic way. Admit-
ting sectoral heterogeneity in both production and amenity valuation enables me to
account for the sorting of sectors around both local productivity and amenities.

We consider a set of discrete locations or tracts, indexed by i = 1, ..., P , exoge-
nously distributed across C discrete cities. The whole economy is populated by H
workers, who are perfectly mobile across all the locations, within or across different
cities. The mass of H workers can also move costlessly across S sectors. Firms from
different sectors produce a single costlessly-traded final good, which is chosen as the
numeraire.

Locations differ in their final goods productivity, amenities, floor space supply
and access to the transport network11. Commuting is allowed across different loca-
tions within a city but not across cities.

11Floor space is assumed to be fixed at each tract. It can be microfounded as the product of a
fixed supply of land and capital. The density of development (floor space to land ratio) can vary
across tracts but is assumed to be exogenous to this model.
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1.5.1 Preferences

Worker o from sector s residing in tract i and commuting to tract j derives her
utility from consumption of the single final good cijso, consumption of housing hijso
and local amenities.

Uijso =
Biszijso
dij

(cijso
β

)β( hijso
1− β

)1−β
(1.4)

where Bis stands for common residential amenities that makes a particular location
more or less attractive to live for workers from sector s; dij captures the disutility
from commuting from tract i to j for work (dij = eκτij > 1), where τij is the
bilateral travel time between tract i and j, and κ regulates the response of bilateral
commuting cost of travel time. Travel time is measured in minutes. In this model,
commuting is only allowed within each city, so a worker cannot live and work in
different cities.

Following Ahlfeldt et al. (2015), I assume heterogeneity in the utility that workers
derive from living and working in different parts of the city as a employees of different
sectors, and allow this idiosyncratic component of utility zijso to be drawn from an
independent Frechet distribution. In my model, utility derived from living and
working in different tracts is allowed to differ across workers’ chosen sectors.12 The
heterogeneous utility that a worker o from sector s living in tract i and commuting
to work in tract j, modelled as zijso, comes from the following Frechet distribution:

F (zijso) = e−TisEjsz
−ε
ijso (1.5)

where the scale parameter Tis determines the average utility derived from working
for sector s and living in tract i; the scale parameter Eis determines the average
utility derived from working for sector s in tract j; and the Frechet shape parameter
ε governs the dispersion of idiosyncratic utility. After observing her realizations for
idiosyncratic utility, each worker chooses a sector and a pair of locations to live and
work in.

Solving the workers’ utility maximization problem, taking local fundamentals,
wages and prices, as well as other worker’ sector and location choices as given, we
are able to derive conditions on each worker’ commuting probabilities. Using the

12Since the workers are ex-ante identical in preferences apart from the idiosyncratic component,
the differences in amenities valuation across sectors are interpreted as characteristics specific to
each sector, including the fixed skills or earning capabilities of workers from different sectors. One
could think of it as a simplified version of a model where ex-ante heterogeneous workers sort
across sectors first and choose their locations to live and work subsequently, where the systematic
differences in utility realization across sectors are partially capturing the sorting of workers across
sectors by their inherent characteristics.
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feature that the maximum of a Frechet distribution is itself Frechet, the probability
that a worker chooses to live in tract i, work in tract j and for sector s is:

πijs =
TisEjs(dijq

1−β
i )−ε(Biswj)

ε∑O
o=1

∑P
p=1

∑S
s=1 TosEps(dopq

1−β
o )−ε(Boswp)ε

(1.6)

We can sum the probabilities across workplaces for a given residence i and sector
s, which gives us the probability that a worker from sector s lives in tract i, πRjs;
as well as across residences for a given workplace (j) and sector s, which gives us
the probability that a worker from sector s works in tract j.

1.5.2 Production

The single final good in this model can be produced by different sectors. The pro-
ductivity is allowed to differ across sectors in the same location and also allowed to
be different across different locations for the same sector. The good is the costlessly-
traded numeraire that takes common price p = 1 across all tracts. I follow assume
the production technology to be Cobb-Douglas, and the final good production func-
tion of sector s in tract j to be:

yjs = Ajs(HMjs)
α(LMjs)

1−α (1.7)

where Ajs is the location-sector specific productivity, HMjs and LMjs is the
amount of labour and floor space hired by sector s at location j.

Firms choose a sector to specialize in and a location to produce. They take
final goods productivity Ajs, goods and factor prices, the utility distribution of
workers, and the location decisions of other firms as given. Combining the first-
order conditions of firms’ profit maximization problem and a zero-profit condition,
we have:

Ajs = q1−α
j (wjs)

α (1.8)

where qj is the floor space price at location j, and wjs is the local wage of sector
s. It is clear that conditional on local floor space prices, firms in tracts with higher
productivity are able to pay their workers higher wages.

1.5.3 Housing market clearing

In characterizing housing market clearing, we assume each tract to be endowed with
fixed floor space supply Li, among which LMis is allocated to sector s for production
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purposes, and LRis is allocated to workers from sector s as residential floor space.
Solving for consumers’ utility maximization problem yields:

(1− β)
E[wps|i]HRis

qi
= LRis (1.9)

where E[wps|i] is defined as
∑P

p=1
Eps(wps/dip)ε∑P
r=1 Ers(wrs/dir)

ε
, which stands for the expected

wage a worker living in tract i could get.
Similarly, firms’ maximization problem yields:

((1− α)Ajs
qj

) 1
α
HMjs = LMjs (1.10)

Housing market clearing has
∑S

s=1(LRis + LMis) = Li.
Floor space is also allowed to be allocated entirely to residential or commercial

use of a particular sector. In a corner solution where all the floor space is allocated to
residential use, qi = (1−β)

∑S
s=1 E[wps|i]HRis

Li
. When floor space is used for commercial

purposes only, we have qi =
∑S

s=1

(
(1−α)Ajs

Lj

) 1
α .

1.5.4 Equilibrium

In a competitive general equilibrium, individuals maximize utility; final good pro-
ducers maximize profits, and both labour and housing market clear. I follow Ahlfeldt
et al. (2015) by starting with a benchmark of the model with exogenous location
characteristics, before introducing agglomeration forces in section 6.1

Given the model’s parameters α, β, µ, ε, κ, exogenous location-sector specific char-
acteristics T,E,A,B,L, τ,H, the general equilibrium of the model is referenced by
vectors πRs, πMs, LMs, LRs,q,w

The equilibrium is characterized by the following equations:

πRis =

∑P
p=1 TisEjs(dijq

1−β
i )−ε(Biswjs)

ε∑O
o=1

∑P
p=1

∑S
s=1 TosEps(dopq

1−β
o )−ε(Boswps)ε

(1.11)

πMis =

∑O
o=1 TisEjs(dijq

1−β
i )−ε(Biswjs)

ε∑O
o=1

∑P
p=1

∑S
s=1 TosEps(dopq

1−β
o )−ε(Boswps)ε

(1.12)

Ajs = q1−α
j (wjs)

α (1.13)

(1− β)

∑P
p=1

Eps(wps/dip)ε∑P
r=1 Ers(wrs/dir)

ε
HRis

qi
= LRis (1.14)
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((1− α)Ajs
qj

) 1
α
HMjs = LMjs (1.15)

S∑
s=1

(LRis + LMis) = Li; (1.16)

1.6 Model Calibration and Estimation

In Section 4, I presented evidence of the long-run negative impacts of industrial pol-
lution on the current distribution of skills. Additional results on growth trends and
endogenous amenities suggest that the endogenous interactions between different
types of agents play an important role in explaining the observed patterns.

The structural estimation of the theoretical framework presented in Section 6
further guides my empirical analysis in three ways. First, the model allows me to
separately estimate the productivity and amenities perceived by workers from differ-
ent sectors and test how they respond to historical pollution exposure. Second, I can
quantify the contribution of production and residential externalities in magnifying
the initial impact of pollution. Third, the model makes possible a quantitative eval-
uation of various counterfactual policies. For instance, I could look at the changes
in the distribution of population and skilled labour across cities following counter-
factual pollution cuts in particular parts of a subset of cities and check whether
welfare gains can be achieved by moving industrial zones out of central cities, under
different assumptions about production and residential agglomeration forces.

I calibrate the model’s key parameters following Ahlfeldt et al. (2015), reported in
the upper panel of Table 1.9. The data sources of the key variables used in recovering
local productivity and amenity parameters are reported in the lower panel of Table
1.9. One major difference of my method from that of Ahlfeldt et al. (2015) is that
with additional data on sectoral median earnings at workplace, I am able to back out
the productivity parameters directly from observed earning data without relying on
imputed commuting flows. In addition, my model introduces sectoral heterogeneity
in both local productivity and amenities, which requires productivity and amenity
parameters backed out by sectors. It is made possible by sector-specific wage and
employment data observed both at workplaces and residence locations.
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1.6.1 Productivity and Production Fundamentals

In the model, firm profit maximization and zero profit conditions imply

Ajs = q1−α
j (wjs)

α (1.17)

Therefore, we can directly back out local sector-specific productivity Ajs from
the observed sectoral earnings wjs and housing value qj. In mapping the actual data
to model variables, one empirical issue is that contrary to the model assumption
of an ex-ante identical workforce, workers are heterogeneous in abilities in reality,
and those of higher ability might sort into higher productive places (Combes et al.
(2008), Behrens et al. (2014)). As a result, wjs may capture variations in both local
productivity and local workers’ average abilities. To deal with this concern, I follow
Albouy (2008) and estimate a Mincerian-type wage equation:

ln(wojs) = X ′ojsβ + µjs + εoj

where o stands for individuals, j and s stand for census tracts and sectirs; ln(wojs) is
the log earning of individual o who works for sector s in tract j, Xojs are individual
characteristics including gender, race, educational attainment and the occupations of
workers who work for sector s in tract j; µjs are tract level fixed effects that capture
tract level sector-specific productivity. Using µjs instead of wjs as a measure of
local productivity minimizes the potential biases driven by the sorting of workers on
observable characteristics. Although it remains a possibility that workers also sort
on unobserved characteristics, such as the quality of education, I believe that this
plays a less important role than sorting on observables. 13

A practical issue in estimating µjs using microdata is that the census microdata
from the Integrated Public Use Microdata Series (IPUMS) sample only reports geo-
graphical locations of individuals at the Public Use Microdata Area (PUMA) levels.
A PUMA is a geographical unit much larger than a census tract. To get around this
difficulty, I first estimate the relationship between log earnings and workers’ charac-
teristics conditional within each sector, including gender (2), race (4), educational
attainment (9), and occupation (25), from a Mincerian model using the 5% IPUMS
microdata, and combine the estimated coefficients with tract-level averages of all
the observable characteristics (share of male, college graduates, managers, etc. by

13De la Roca et al. (2014) discovers little sorting on unobservable ability within broad occupation
or education groups across metropolitan areas, using NLSY97 data. In Appendix, I will compare
results obtained using raw and residual median earnings data to check the sign and magnitude of
potential biases driven by sorting on observables, which should be able to give us a basic idea on
the extent of biases driven by sorting on unobservables.
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each sector at each tract). For each sector s, I run the following specification

ln(wojs) = X ′oijsβ + αPUMA,s + εojs

where αPUMA,s are PUMA fixed effects. β̂s captures how different individual
characteristics account for the variations in earnings within sector and PUMAs. I
then obtain wjs = µjs as the residuals between the actual and predicted log sector-
specific earnings at tract level:

µjs = ¯ln(wjs)− X̄js
′
β̂ (1.18)

where ¯ln(wjs) is approximated as log median earning by industry at tract level, and
X̄js are individual characteristics averaged by industry at the tract level. I use µjs
in place of wjs in obtaining Ajs = q1−α

j (µjs)
α.

I use the local gross rental rate collected from NHGIS as an estimate of qj. In
section 4.4, I do not find housing quality, measured by the share of housing stocks
without kitchen or plumbing services, to differ systematically across tracts with
different levels of historical pollution. Nevertheless, I still account for the possibility
that housing quality differs across tracts of different amenity value in a systematic
way by obtaining residuals of housing rental rate controlling for the number of rooms,
kitchen and plumbing facilities, type and age of building and the number of residents
per room, in a way similar to that described in obtaining µjs.

The estimated sector-specific productivity can be further decomposed into an
exogenous part that reflects local fundamentals and an endogenous part that reflects
the spatial interactions of different agents.

I follow the literature in assuming that productivity externalities are dependent
on the travel-time weighted sum of workplace employment density. I start with
the simplest case by assuming production externalities to be the same for different
sectors:

Ajs = ajsΥ
λ
j , Υj ≡

P∑
p=1

e−δτjp
(HMp

Lp

)
(1.19)

where HMp/Lp is the workplace employment density; τjp is the travel time in
minutes from tract j to p; δ governs the rate of spatial decay and λ controls the
importance of agglomeration effects in determining local productivity.

The specification above implicitly assumes that the access to workers outside
one’s own industry is as important as that to workers within one’s own industry.
However, in reality, it is reasonable to argue that the interactions with workers from
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the same industry may be more important. Therefore, I consider a more general
specification of production-side agglomeration effects. I assume the production ex-
ternalities of a particular sector s to depend on the employment density of both its
own density and the density of other industries, but its dependence on the employ-
ment density of other industries is smaller. The cross-sector production externalities
are stronger if the sectors are more similar to each other in workers’ characteristics
and input-output relationship. In another word:

Ajs = ajsΥ
λ
js, Υjs ≡

P∑
p=1

e−δτjp
( S∑
r=1

SimrsHMpr

Lp

)
(1.20)

where Simrs is the weighted14 average of pairwise labour pool similarity and
input-output similarity specified in Glaeser et al. (2015). This similarity index is
standardized to range from 0 to 1 and Simss = 1.

1.6.2 Amenities and Residential Fundamentals

With detailed information on sector-specific productivity at the tract level, the nat-
ural next step is to recover measures of amenity.

In my model, we start from the residential choice condition (Equation (11)),
multiply both side of the equation with the population mass H15, and assume
adjusted sector-specific amenities B̃is and adjusted sector-specific wage w̃ps to be
B̃is ≡ Bis ∗ Tis and w̃ps ≡ wis ∗ Eps16

HRis =
P∑
p=1

(
dipq

1−β
i

)−ε(
B̃isw̃ps

)ε
(1.21)

where HRis stands for sector-specific employment by place of residence, w̃ps are
sector-specific adjusted wages, which can be approximated by sector-specific median
earnings collected at place of work. qi is housing price of tract i, dip stands for
commuting cost from residence tract i to workplace j. It is clear that the adjusted
sector-specific amenity measures, B̃ps, can be recovered as:

14Weight is determined by the contribution of these measures to coagglomeration patterns in
Glaeser et al. (2015). I ignore technology similarity because the knowledge spillovers across most
service industries that I am studying are not patented, and technology similarity plays a relatively
small role in explaining coagglomeration patterns according to Glaeser et al. (2015).

15Normalization:
∑O
o=1

∑P
p=1

∑S
s=1 TosEps(dopq

1−β
o )−ε(Boswp)

ε = H̄;
16As defined in the model, Tis and Eps represent the Frechet scale parameters drawn at each

residence and workplace for each industry, they enter the model isomorphically with amenity Bis
and wage wps in determining the relative attractiveness of a location to residents and workers.
Therefore, in my actual structural estimation, I treat wps and w̃ps, Bis and B̃is as the same for
simplicity.
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B̃is = H
1
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Risq

1−β
i /
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p=1
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w̃ps/dips

)ε) 1
ε (1.22)

Similarly, estimated amenities can also be decomposed into an exogenous part
that captures local fundamentals and an endogenous part that captures the bene-
fit from living closer to other people. I adopt similar specifications of residential
externalities as for production externalities:

B̃is = b̃isΩ
η
i , Ωi ≡

P∑
p=1

e−ρτip
(HRp

Lp

)
(1.23)

where HRp/Lp is the density of residents; residential externalities decay with
travel time τip; the importance of access to surrounding density in determining local
amenities is governed by η. It is worth noting that the nature of residential exter-
nalities could be very different from agglomeration forces at workplace. Specifically,
the distinction between own-industry and other industry access may not be as im-
portant in the residential case. Residents tend to care more about other aspects of
their neighbours, such as income or education, other than sector. Therefore, apart
from the basic specification, I consider an alternative case where the access to a
higher-educated population is allowed to play an additional role in shaping local
amenities apart from the access to total population:

B̃is = b̃isΩ
η
iΩ

νs
Hi, Ωi ≡

P∑
p=1

e−ρτjp
(HRp

Lp

)
, ΩHi ≡

P∑
p=1

e−ρτjp
(HRHp

Lp

)
(1.24)

where HRHp/Lp is the density of college graduates, here Omegai captures the
access to all the neighbours from tract i, and ΩHi captures that only to the college-
educated neighbours. When ν = 0, it collapses to the standard one. This additional
assumption echoes empirical findings on gentrification and neighborhood effects. For
instance, Diamond (2015) shows that the endogenous supply of amenities such as
safety and public school quality depends on the skill mix of cities. Such a spec-
ification requires estimation of the parameters νs, which capture the influence of
access to highly-educated neighbours on the amenities perceived by workers from
different sectors. For identification, I need an instrument that correlates not with
local amenities but with the skill-mix of residents for each tract. A natural idea is
to use productivity shocks that affect the local demand for workers with different
skills. Here I base my identification on changes in amenities in response to changes
in access to highly-educated neighbours from 2000 to 2010. I instrument changes in
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access to highly-educated neighbours with Bartik-style predicted shifts in the num-
ber of residents with college degrees depending on the industrial employment from
80 industries in each tract in 2000, the skill requirement of each industry and the
national growth of each industry from 2000 to 2010. The predicted change in the
number of college graduates living in tract i between 2000 and 2010 is:

ˆ∆HRHi =
∑(HRis′,2000

HRi,2000

)
∗ CollegeShares′,2000 ∗∆HRs′

where HRis′,2000 is the number of workers over age 25 from sector s′ living in tract
i in 2000; HRi,2000 is the total number of workers over age 25 who live in tract i
in 2000; CollegeShares′,2000 is the national share of college graduates for sector s′;
and ∆HRs′ is the national growth in employment in sector s′. Correspondingly, the
change in access to college-educated neighbours ΩHi ≡

∑P
p=1 e

−ρτjp(
HRHp
Lp

), can be
instrumented by:

Ω̂Hi =
P∑
p=1

e−ρτjp
( ˆ∆HRHp

Lp

)

1.6.3 Productivity and Amenities Estimation Results

Table A5 shows the correlation between my estimated aggregate amenities B̃is by
sector and some observable amenity measures at the tract level. My estimated
amenities correlate as expected with these “real-world” measures of amenities, such
as the number of public schools, crime rate, pollution17 and access to beaches. Be-
sides, the valuation of the same observable amenities varies across workers from
different sectors. For example, living in a tract that encompasses an industrial area
reduces the subjective utility of FIRE workers by 8.6% and that of manufacturing
workers by only 3.4%. Access to a beach increases the subjective utility of FIRE
workers by 7.6% and that of manufacturing workers by only 5.3%. Being closer to
the CBD and railways appear to be disamenities.

As a more straightforward presentation of the estimated amenity measures, Fig-
ure 1.9, 1.10 and 1.11 map amenities perceived by FIRE and manufacturing workers
to areas around New York, Detroit and San Francisco. It is clear that the per-
ceived amenity varies considerably within cities. From Figure 1.9, we observe the
stark contrasts in neighbourhood desirability between the Upper East Side and East
Harlem of New York City. It is also apparent that in New York, FIRE workers, more

17Since data on crime rate and direct pollution measures at the census tract level are only
available for a subset of tracts, I do not include them in my main specification. instead, the results
are shown in Table A6 and Table A7
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than manufacturing workers, prefer central Manhattan as a place to live and display
weaker preferences over non-central locations. This pattern is reversed in Detroit,
as shown in Figure 1.10, where FIRE workers exhibit stronger preferences over the
suburbs than manufacturing workers. The San Francisco Bay Area is overall a much
more desirable place to live and the preferences across different locations within the
city do not vary as greatly as in New York or in Detroit. San Francisco downtown
is a desirable place to live for both types of workers but more desirable for FIRE
workers. From these maps, it can be seen that one difference distinguishing Detroit
from the more successful cities such as New York or San Francisco is its considerably
lower urban amenity in downtown, especially for FIRE workers.

It appears to be a piece of evidence consistent with the observed centralized
poverty in former industrial towns. As these cities fail to create favourable living
conditions for the skilled labour force around locations where the skilled sectors are
more productive, they are becoming increasingly unattractive to these sectors.

Table A8 shows the correlation between my estimated aggregate productivity
Ais by sectors with the same set of covariates. It is clear that being closer to
industrial areas brings about productivity loss, especially in high-skilled sectors, but
the magnitudes are small compared to those on amenity. In contrast to the findings
on amenity, being closer to the CBD increases the productivity of all sectors, and
the relationship is stronger for high-skilled sectors. Understandably the productivity
of these sectors relies strongly on human interactions, which are more likely to be
achieved in dense urban cores where commuting costs are relatively low. Being close
to highways is also associated with higher productivity, but the effects do not vary
systematically by the skill intensity of sectors.

1.6.4 How do Productivity and Amenity Respond to Early

Industrial Pollution?

In the previous sections, I backed out sector-specific productivity and amenity pa-
rameters (Ajs and B̃is), and isolated parts of the productivity and amenities deter-
mined by local fundamentals, ajs and b̃is, under several assumptions on the extent
and forms of production and residential externalities. In this section, I will check
how these four sets of parameters correlate with historical pollution exposure driven
purely by wind patterns.

In Figure 1.12, I plot the estimated coefficients on the interaction term between
an indicator of within 4 km from the closest 1970 industrial area and a downwind
dummy, where the dependent variables are sector-specific productivity or amenity
estimates in a sample with census tracts that are closest to the above-median pol-
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luted industrial areas. They presents the way in which historical industrial pollution
affects estimated productivity and amenity today and how these impacts vary across
industries. To make the point that early industrial pollution creates self-fulfilling
skill sorting, I plot the estimated coefficients against the skill intensity of each in-
dustry. It is clear that more skilled industries suffer more in productivity as a result
of being more exposed to industrial pollution in the 1970s. FIRE productivity in
tracts that are close and downwind of 1970s industrial areas is 8% lower, compared
to manufacturing productivity that is only 4% lower. To highlight the role of ag-
glomeration effects, I present the estimated coefficients from a sample with only
central tracts in the right figure18. The effects are three times as large, suggesting
that agglomeration forces play an important role in this pattern, since the closer to
CBD, the denser are the tracts and the stronger are the agglomeration benefits.

In Figure 1.13, I repeat the exercise with sector-specific amenity parameters as
the outcomes. The patterns are quite similar except for relatively lower magnitudes.
Employees from more skilled sectors find the historically dirtier tracts less pleasant
now, more than do employees from other sectors. The estimated amenity perceived
by FIRE employees in tracts that are close to and downwind of 1970s industrial
areas is 2.5% lower and the amenity perceived by manufacturing employees does not
appear to respond strongly to historical pollution.

In the next step, I decompose the estimated productivity and amenity into an
endogenous agglomeration term and an exogenous local fundamental term. As dis-
cussed in sections 6.1 and 6.2, there are different assumptions on the functional forms
of agglomeration effects. Here I consider the general case where sector-specific pro-
ductivity depends on both own-industry employment and that from other industries
according to the similarity between them, while sector-specific amenity depends on
both residential density and the share of college graduates (Equations (20) and (24)).

If we believe the impact of early industrial pollution on contemporary variables
is largely driven by agglomeration forces, we should observe much smaller estimated
coefficients on the responsiveness of production and residential fundamentals (ajs
and b̃is) to pollution. The results are shown in Figure 1.14 and 1.15. In both fig-
ures, I plot the estimated elasticities of aggregate productivity/amenity to historical
pollution exposure on the left panel and the those of fundamentals to pollution on
the right. Comparing the magnitudes of the estimated impacts between the two pan-
els in Figure 1.14, it is clear that accounting for the agglomeration effects explains
about 50% of the variation in the impact of historical pollution on productivity.

18Central tracts are defined as tracts closest to the CBD holding up to 25% of total CBSA
population.
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Taking away the agglomeration effects also makes the slope of the estimated coef-
ficients over sector-specific skill intensity much flatter, although most of them still
remain negative. This is a clear sign that agglomeration effects play an important
role in driving the observed relationship between historical pollution and sector-
specific productivity, but are not sufficient to account for all the estimated impacts.
There are two possible ways to explain the second observation. It might be that
lingering pollution still exerted an instantaneous negative impact on productivity
fundamentals in 2000, or that the actual production-side agglomeration forces that
shaped the evolution of American neighbourhoods are stronger than those estimated
in the literature. I believe the second one to be more relevant quantitatively, as Fig-
ure 1.3 shows that being downwind of a historical industrial site plays almost no
role in explaining the variation in pollution after 2000. In addition, we are looking
at changes during a period of rapid structural transformation and massive churning
in the labour market. As a result, the initial distribution of skills across the coun-
try can be quite important in shaping local creativity and competitiveness at the
beginning of a period of prolonged growth in skilled service sectors.

In Figure 1.15, we consider the responsiveness of sector-specific residential amenity
parameters B̃is and fundamentals b̃is to pollution. The patterns are similar to those
on productivity in the sense that accounting for the agglomeration effects explains
a high proportion of the impacts of historical pollution, leaving the average of es-
timated pollution impacts on amenity measures across different industries close to
zero. However, the slope of the estimated impacts against sectoral skill intensity
does not change after deducting the contribution of access to residential density
to amenity. Again, it confirms the role of residential agglomeration effects in ac-
counting for the long-run impact of historical pollution, which is consistent with my
findings on observable endogenous amenities, presented in Table 1.7. But we may
need to be more flexible about the functional forms of agglomeration effects across
different industries.

1.6.5 How do Productivity and Amenity Respond to Con-

temporary Industrial Pollution?

One of the major objectives of the theoretical framework is to lay a foundation for
policy counterfactual analyses. One scenario is to examine the general equilibrium
implications of cutting pollution in particular parts of cities. To achieve this, we need
a set of reliable estimates on the elasticities of sectoral productivity and amenity to
pollution.

To uncover the causal impacts of changes in air pollution on local productivity
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and amenity, I implement an identification strategy that exploits differential regu-
lation intensity in response to the Clean Air Act Amendments (CAAA) after 1990,
studies by Auffhammer et al. (2009) and Bento et al. (2015).

In 1990, the US Environmental Protection Agency (EPA) started to regulate
PM10 seriously. The regulation under the 1990 CAAA assigns “nonattainment”
status to counties with PM10 concentrations exceeding the federal ceiling. Indus-
trial polluters in nonattainment counties would face stricter regulatory oversight. A
county is designated to be out of attainment if at least one of the monitors within the
county had daily or annual PM10 concentrations exceeding any of these standards.
Following Bento et al. (2015), I capture the differential enforcement of CAAA within
a nonattainment county by assigning nonattainment status to each monitor within
the county and use monitor attainment status as an instrument for localized pollu-
tion reductions. The intuition is that local regulators have incentives to target the
areas around nonattainment monitors as a strategy to comply with federal standards
in the least costly way. As workplace employment and earnings data are available
only for the years 2000 and 2010 in a full US sample, we focus our attention on
changes in productivity and amenity during this period, and see how they respond
to pollution cut driven by within-county differential implementation of CAAA.

The National Ambient Air Quality Standard (NAAQS) for PM10 before 2012
not only stipulated the maximum level of the PM10 annual average but also required
the daily reading of PM10 concentration not to exceed a particular level more than
once per year, which creates some randomness in regulatory stringency conditional
on the initial level of pollution, in that a county could break the standard with only
two bad days. Ideally, we could check how annual PM10 changes respond to monitor
level nonattainment status in the following way:

∆PM10ji,t = α1MonitorNonAttji,t + θt + ∆εi,t (1.25)

where ∆PM10ji,t is the change in PM10 readings from year t − 1 to year t, at
monitor i in county j. To minimize the concerns of mean reversion in pollution, I
focus only on the nonattainment status that relies on the second highest reading
throughout a year, defining MonitorNonAttji,t to be a dummy that takes one if the
second highest PM10 reading in year t − 1 exceeds 150µg/m3, effectively breaking
the second NAAQS standard. In other words, I capture the variation in pollution
reduction induced by differential regulatory efforts as a result of two bad days in the
past year, which is pretty random in nature. As my outcomes are observed only in
decades, I need to aggregate the above specification to the whole period from 2000
to 2010 by adding up both sides of the equation. The adjusted first stage of my
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instrumental variable specification is accordingly:

∆PM102010−2000
ic = σNi +X ′iµ+ αc + εi (1.26)

where ∆PM10i is the change in tract-level PM10 measures from 2000 to 2010;
the instrument Ni is equal to the ratio of nonattainment years during 2001 to 2007.

In the second stage, I examine the impacts of regulation-induced PM10 cut on
estimated productivity and amenity parameters, taking the form of:

∆ln(y2010−2000
is ) = β∆ ˆPM10i +X ′iΓ + αc + εi (1.27)

where yis stands for sector-specific local productivity Ais or amenity B̃is. ∆ln(yis)

measures their log changes from 2000 to 2010. ∆ ˆPM10i is the change in PM10 from
2000 to 2010, instrumented by Ni, the ratio of nonattainment years during 2001 to
2007. Xi are time-invariant observable tract characteristics; µ and Γ capture changes
over time in the premium to these characteristics; αc are city fixed effects that control
for city-wide shocks in productivity and amenities. I only keep the tracts within 2
km of the closest PM10 monitor with positive readings in year 2000,2002-2007 and
2010, and assign monitor-level pollution cut and nonattainment status to the closest
tracts when I map monitor-level first stage results to the tract-level second stage.

The upper panel of Table 1.10 reports the responsiveness of estimated sector-
specific amenity changes from 2000 to 2010 to the reductions of PM10 concentra-
tions, instrumented by monitor level nonattainment. I also include changes in the
number of public schools during the same period as a control variable to check if the
measured amenity changes are able to pick up changes in other observable amenities.

It is clear that policy-induced pollution cuts lead to growth in perceived local
amenity, especially among workers from skilled sectors. A unit decrease in PM10
leads to a 0.9% appreciation of local amenity perceived by FIRE workers, 1.48% by
IT employees, but 0.08% by manufacturing workers. In this context, the regulated
tracts (tracts with at least one year in nonattainment status) experienced 5 more
units of PM10 decreases from 2000 to 2010, which translated into an average 5%
increase in local amenity. In the meantime, amenity also responds positively to new
public schools. One additional public school makes local FIRE employees 1.95%
more appreciative of the tract as an ideal place to reside, compared to 1.16% for
manufacturing workers.

The lower panel of Table 1.10 reports similar results on productivity changes.
Although the coefficients are not significant for most of the outcomes, their signs are
mostly negative, which suggests that a reduction in PM10 level induces a positive
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but insignificant growth in productivity. Figure 1.16 plot the coefficients from both
productivity and amenity regressions on sectoral skill intensity. It is clear that the
responsiveness of both sector-specific amenity and productivity to contemporary
pollution cuts increases in the skill intensity of the industry.

1.6.6 Model Validation

In this section, I use my calibrated model of 1970 to predict how TSP cut in the
1970s cause housing prices to change during this period. I then compare the model
predictions to reduced form estimates in the literature. The experiment I consider
is cutting TSP by 10 µg/m3 for a random sample of census tracts.

In Table 1.12, I report the simulated change in housing price and population.
It appears that a 10 µg/m3 cut in TSP leads to a significant 11.7% increase in
housing price. Given the baseline TSP levels in the 1970s, the implied elasticity
of housing prices to TSP reductions is -1.4, which suggests that a 1% cut in TSP
leads to a 1.4% growth in housing value. I consider two pieces of reduced-form
evidence from the literature. The first is Chay and Greenstone (2003)’s estimate of
housing price responses to Clean-Air-Act-induced TSP cuts in the 1970s. The time
frame and pollutant type match my experiment but their unit of analysis is county.
It is clear that my estimates are 4-6 times as large as theirs. It is likely that the
difference in the unit of observation is partially driving the observed discrepancy.
Population mobility across census tracts should be larger than that across county,
and one could argue that the lack of mobility limits the responses of housing prices.
Another possibility is that pollution monitors are usually installed in the dirtier
parts of a county, examining pollution changes captured by the weighted average
of monitor readings might overestimate the extent of pollution cut, and eventually
underestimate the response elasticity.

To address this, I bring in a second piece of evidence from Bento et al. (2015),
where they consider the effects policy-induced PM10 cut from 1990 to 2000 on
housing price changes in a sample of US census tracts. They find that 10 units cut
in PM10 lead to about 10% increase in housing price, and the implied elasticity of
house prices with respect to PM10 reductions is about -0.6, two times as large as
Chay and Greenstone (2003). Their estimates are closer to the ones I get out of the
model but still smaller. One possibility is that the effects I get are based on a model
with both production and residential side agglomeration effects. So the housing
price changes should be interpreted as the difference between initial housing price
and the final equilibrium housing price. If the process of sorting and agglomeration
lasts longer than a decade, the period of focus of both Chay and Greenstone (2003)
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and Bento et al. (2015), then their estimates are naturally smaller than mine since
their changes are only halfway through the initial price and final equilibrium ones.

1.7 Counterfactual Analysis

In the previous sections, I presented empirical evidence linking historical pollution
to the distribution of skills and long-run city development patterns. In this section,
I will further quantify the aggregate impact of pollution reduction on welfare and
the cross-city distribution of economic activities through the lens of the theoretical
framework outlined in section 5.

1.7.1 Settings

The policy experiments I consider here are pollution reductions in different parts
of cities. In practice, I divide the 310 metropolitan CBSAs in my sample into two
halves and simulate the general equilibrium effects of partial pollution reduction in
the “treated" half. To illustrate different implications of the same level of pollution
cuts in different parts of a city, I consider the case of a pollution cut of 10 µg/m3 in all
central tracts, or in a subset of similar non-central tracts, within each “treated" city.
Central tracts are defined as the top quartile of tracts in distance to the CBD. To
mimic real-life tradeoffs between environmental externalities and economic benefits
in environmental regulation decisions, I select the subset of non-central tracts based
on their manufacturing productivity. I match each treated central tract with a
non-central tract based on their estimated manufacturing productivity, and ensure
the average manufacturing productivity of non-central treated tracts to be similar
to that of central treated tracts. The idea is that the environmental benefits of
relocating industries from the city centre to the suburbs might be compromised if
this process is related to a large drop in manufacturing productivity and economic
losses. So we want to make sure that we are comparing welfare gains from pollution
reductions across tracts with similar costs from the contraction in manufacturing
activities.

Throughout my framework, pollution cuts will be realized as changes in local
production and amenity fundamentals (ais and b̃is). Section 6.5 discusses the proce-
dure to obtain productivity and amenity elasticities to pollution cuts. Although the
coefficients reported in Table 1.10 correspond to the elasticity of aggregate produc-
tivity and amenity (Ais and B̃is) changes to pollution change, under the assumption
that agglomeration forces are limited within ten years, we approximate these to be
the estimates on the responsiveness of local production and residential fundamen-
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tals (ais and b̃is) to pollution cuts. As is apparent from Table 1.10, the coefficients
on amenity are negative across the board, but positive on productivity for a few
sectors, although the coefficients are not statistically significant in the second case.
Since conceptually we believe pollution per se is detrimental to local productivity
(Zivin and Neidell (2012)), I impose the elasticity to be zero in my counterfactual
analysis if the coefficients are positive. For now I do not incorporate the cost of
environmental regulation such as loss in manufacturing TFP and workers’ welfare
(Greenstone et al. (2012), Walker (2013)).

The model is calibrated using 2000 data, but we are more interested in the welfare
implications of pollution reductions before the industrial decline. Therefore the
parameters need to be adjusted in order to reflect realities in the 1970s. Here I make
two key assumptions on the evolution of productivity and residential fundamentals
from 1970 to 2000. First, the changes in residential fundamentals during this period
are assumed to be induced by changes in air quality only. Second, the changes in
productivity fundamentals from 1970 to 2000 correspond only to the national growth
trends of different sectors19. I recalibrate the model with the assumed fundamental
values to solve for the other variables. In the presence of agglomeration forces, there
is the possibility of multiple equilibria. I impose the equilibrium selection rule of
solving for the closest 1970 equilibrium to the observed equilibrium with original
fundamental values.

To illustrate the quantitative relevance of agglomeration effects, I undertake two
sets of counterfactual analyses, keeping and shutting down agglomeration mecha-
nisms respectively. In a model without agglomeration effects, pollution reduction is
assumed to affect aggregate productivity and amenity estimates ais and b̃is, directly.
In a model with agglomeration effects, it exerts an initial impact on the fundamen-
tals Ais and B̃is, which in turn leads to further changes in aggregate productivity
and amenity through changes in workplace and residence employment density. As
discussed in sections 6.1 and 6.2, there are different assumptions on the functional
forms of agglomeration effects. Here I consider the general case where sector-specific
productivity depends on both own-industry employment and that from other indus-
tries according to the similarity between them, and sector-specific amenity depends
on residential density only. (Equations (19) and (23))

19To be more specific, I assume the same percentage growths in productivity across all the
census tracts in the US from 1980 to 2000. For each sector, the productivity growth is de-
termined by growth in national sectoral employment from 1980 to 2000: HMs,2000/HMs,1980 =(
As,2000/As,1980

)ε
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1.7.2 Results

Table 1.11 reports the simulated income and employment distributions after the
proposed pollution cut experiments. Conceptually, the same levels of pollution re-
duction in different parts of a city may entail different aggregate welfare or distribu-
tional impacts for several reasons. First, similar initial impacts are exacerbated to a
different extent in areas with different residential and workplace density through ag-
glomeration effects. Second, commuting enables workers to access high productivity
locations. As a result, productivity growth in well-connected tracts is more easily
propagated to surrounding areas, and hence is expected to increase welfare more
than similar growth in less well connected areas. Third, a fixed floor space supply
means that uneven increases in productivity and amenity fundamentals will lead to
a relocation of floor space across residential and business uses and a corresponding
labour relocation. This channel may lead to negative overall welfare effects in the
presence of agglomeration: an increase in amenity in highly productive areas with
high workplace density will lead to a conversion of floor space use from business
to residence and potentially a drop in workplace employment, which will then lead
to lower productivity for the surrounding areas due to a drop in nearby workplace
density. From a welfare perspective, this drop in production-side agglomeration ben-
efits may outweigh the accompanying growth in local amenity and agglomeration
benefits from higher residential density.

The upper panel reports the results obtained from an exogenous model when
agglomeration effects are removed on the left and those from an endogenous model
on the right. It is evident that pollution cuts always lead to overall welfare gains
across the US, in the form of higher rent and labour incomes. In the exogenous
model shutting down agglomeration effects, cutting pollution in 3500 central tracts
from 155 treated cities leads to a 0.43% and 0.36% growth in rent and labour income
respectively for the whole US. It also encourages a relocation of labour across indus-
tries, generating 2% growth in employment in the skilled sectors. Apart from the
aggregate impacts, these empirically-realistic changes in pollution also result in sub-
stantial changes in the spatial distribution of employment across locations. Cities
with pollution cuts in central tracts experience a 1.8% inflow of residents/workers
and an even higher 6.3% growth in employment in skilled sectors, compared to a
population loss of 1.4% in other cities. The aggregate welfare gains are only slightly
higher under the endogenous model, with growth in rent and labour incomes of
0.46% and 0.43% respectively, compared to a much larger labour relocation effect.
Pollution cutting in central tracts leads to 4.7% and 12.4% growth in employment
and skilled employment in treated cities and a 1.9% and 2.9% drop in employment
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and skilled employment in other cities.
Moving to the bottom panel, we examine the welfare and distributional impacts

of cutting pollution in non-central census tracts. Without agglomeration effects, a
10 µg/m3 cut in TSP level leads to a 0.035% growth in rent income and 0.048% in
labour income for the whole US, which are much smaller than the impact of cutting
the same level of pollution in central tracts. The extent of both cross-city and cross-
industry labour relocation is smaller than the previous policy experiment. In general,
central tracts have higher productivity in the service sector and lower overall amenity
than non-central tracts. As a consequence, cutting pollution in central tracts leads
to a higher productivity change than the amenity change compared to non-central
tracts. In the meantime, central tracts are more conveniently connected to other
tracts, which means that extra productivity benefits are realized as a employment
and income growth in a larger number of surrounding tracts.

A somewhat surprising result, presented in the lower-right panel of Table 1.11,
is that the overall welfare gains are lower under the endogenous model than the
exogenous model following pollution cuts in non-central tracts, although the same
policy experiment leads to a greater labour relocation across cities and industries. A
plausible explanation is that agglomeration effects are likely to drive larger inflows
of employees and residents into suburban tracts from both central tracts and other
cities. The agglomeration benefits from inflows in these tracts are outweighed by the
loss in agglomeration benefits in tracts with population and employment outflows,
as these suburban tracts are less dense and connected to surrounding tracts. A
relevant lesson is that when we consider place-based policies, including targeted
pollution abatement, we need to take full account of the possible agglomeration
effects at both targeted and the surrounding areas in terms of population loss.

1.8 Conclusion

The prolonged decline of former industrial cities in recent decades has gathered con-
siderable attention and interest within both academic and policy circles. In this
paper, I evaluate the role of former industrial pollution in shaping the competi-
tiveness of post-industrial US cities. Severe pollution incurred during an industrial
city’s manufacturing heyday affected the location choices of skilled workers and res-
idents, which reduced their attractiveness to modern service jobs. This, in turn,
affect their ability to transition into a new type of service economy, which relies
on the presence of high skilled workers and residents. This is an important issue
because apart from the contemporary negative impacts on health, productivity, and
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quality-of-life, pollution is associated with a more subtle long-run cost of shifting
the development trajectory of cities. And this growth effect of pollution has largely
been ignored in the existing literature. My findings from the US have profound
contemporary implications in developing countries such as China and India, where
high levels of pollution might cast a long shadow on the prospect of developing new
industries within cities many decades later. The lessons from the US are particularly
important and timely as early signs of deindustrialisation have already emerged in
the Chinese economy.

To look at this issue, I assemble a rich database at a fine spatial resolution that
allows me to link industrial pollution in the 1970s to current economic outcomes. To
overcome the empirical challenge that the placement of polluting industries in the
1970s was not random, I use the fact that wind patterns generate quasi-exogenous
variation in pollution exposure, holding constant local manufacturing activity. I first
show that being downwind of an industrial site was associated with higher pollution
levels in the 1970s but this was no longer the case in the 2000s, partly because pollu-
tion has largely been cut in American cities with manufacturing decline. However, a
wide range of economic outcomes continues to be influenced by historical pollution.
Census tracts downwind of highly polluted 1970s industrial sites have lower housing
prices and a smaller share of skilled workers and residents three decades later, a pat-
tern which became more prominent between 1980 and 2000. These findings suggest
that early pollution limited the ability of cities to attract skilled workers, which in
turn affect the subsequent agglomeration patterns.

To delve further into the mechanisms at work, I construct a structural model
that allows me to back out sector-specific productivity and amenity parameters. As
such, we can tell how far IT firms value a particular location relative to construction
firms, and how far finance versus manufacturing workers prefer to live in certain
areas in order to enjoy a better quality of life. I find the magnitude of effects of
historical pollution on current productivity are higher than those on amenity, which
suggests that the sorting of skilled workers and productive businesses away from
historically-polluted areas plays a particularly important role in determining the
post-industrial distribution of skills.

With the help of the model, I am also able to carry out a variety of policy
counterfactual experiments. I look at the effects of cutting pollution in central or
suburban tracts of a subset of cities on aggregate welfare and the distribution of
skilled workers across industries and cities. I find the benefits to be much larger
with pollution cut in central city census tracts. The key lesson is that the long-
run social cost of pollution differs markedly across areas with different employment
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density and transportation connectivity. This should be taken into consideration by
policy makers from countries at different stages of development. For industrialising
countries in Africa, urban planners should consider the long-run negative external-
ities of industrial pollution in determining the location of polluting industries in
cities, while in newly industrialised countries such as China and India, immediate
actions should be taken to control pollution in central cities, which involves stricter
standards on central city pollution or a relocation of manufacturing activities to
suburban industrial zones.

There are several extensions worth exploring. First, one critical and to some
extent surprising finding of this paper is the larger impact of historical pollution on
current productivity than amenity, especially among skilled sectors. A meaningful
follow-up project would be to delve further into the channels involved. I plan to
examine the relationship between historical pollution exposure and the current lo-
cation of firms and patenting activities to see if the documented productivity effects
arise from the sorting of productive firms and the clustering of innovation activities.
Second, there are a variety of model extensions and counterfactual analyses that
could be considered, such as incorporating amenities derived at workplace into the
model and simulating outcomes taking account of the economic losses from pollution
abatement. Finally, as the findings of this paper offer particularly relevant lessons
for newly industrialised countries such as China and India, it would be worthwhile
to check for evidence of skill sorting on environmental amenities within Chinese or
Indian cities, using a combination of online retailing and social network data to map
out the distribution of young professionals within-city.
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Table 1.1: Industrial Activities and Pollution in the 1970s

Variables Monitor-level average TSP from 1971 to 1979

Sample Full Sample
Monitors closest to
above-median polluted
industrial area

Monitors closest to
below-median polluted
industrial area

(1) (2) (3) (4) (5) (6)

1(disind ∈ 0− 1km) 23.71*** 23.48*** 22.36*** 22.83*** 11.11*** 9.137***
(1.510) (1.683) (2.526) (2.923) (0.808) (0.749)

1(disind ∈ 1− 2km) 12.07*** 12.14*** 8.897*** 11.20*** 7.130*** 5.935***
(1.455) (1.663) (2.377) (2.786) (0.825) (0.795)

1(disind ∈ 2− 3km) 6.456*** 5.005*** 3.598 4.623 5.154*** 4.631***
(1.500) (1.687) (2.729) (3.072) (0.756) (0.804)

1(disind ∈ 3− 4km) 7.329*** 6.996*** 4.606 4.842** 4.813*** 4.132***
(1.752) (1.940) (3.330) (2.342) (0.875) (0.889)

1(disind ∈ 0− 1km)*Downwind 8.997** 11.75** 0.203
(3.921) (5.461) (2.535)

1(disind ∈ 1− 2km)*Downwind 4.403 9.872* 2.523
(3.082) (5.268) (2.364)

1(disind ∈ 2− 3km)*Downwind 11.98*** 11.86*** -0.401
(3.292) (3.779) (2.492)

1(disind ∈ 3− 4km)*Downwind 5.224 3.300 1.226
(5.674) (9.281) (3.978)

1(disind > 4km)*Downwind 1.112 -2.138 -2.624
(2.930) (6.520) (3.040)

Observations 4,968 4,968 2,471 2,471 2,422 2,422
p-value (Sum of interactions=0) 0.0001 0.0028 0.5620

Notes: Dependent variables are the average measure of TSP ambient concentration from 1971 to 1979 collected
at each TSP monitor with positive reading during this period. 1(disind ∈ a − bkm) is an indicator of whether or
not the distance from a TSP monitor to the closest 1970s industrial area is within a and b km. Downwind is an
indicator of whether or not the TSP monitor is located downwind of the industrial area, which is defined by Figure
1.1. Results from columns (1) and (2) are obtained from a full sample of monitors with positive TSP readings from
1971 to 1979, those from columns (3) and (4) are obtained from a sample of monitors that are closest to industrial
areas with above-median pollution intensity in the 1970s, and those from columns (5) and (6) are from a sample
of monitors closest to industrial areas with below-median pollution level. Controls include CBSA fixed effects, the
distance from each monitor to transportation lines, natural amenities and the CBD. Robust standard errors are
clustered at CBSA level.
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Table 1.2: Industrial Activities in the 1970s and Current Pollution

Variables Monitor-level average PM10 from 2000 to 2010

Sample Full Sample
Monitors closest to
above-median polluted
industrial area

Monitors closest to
below-median polluted
industrial area

(1) (2) (3) (4) (5) (6)

1(disind ∈ 0− 1km) 3.233*** 3.252*** 1.845 1.912 3.369*** 3.321***
(0.849) (0.892) (1.726) (1.853) (0.863) (0.925)

1(disind ∈ 1− 2km) 1.877** 1.832** 1.163 0.854 2.219** 2.336**
(0.820) (0.861) (1.746) (1.822) (1.098) (1.168)

1(disind ∈ 2− 3km) 1.921** 1.887* 0.282 0.272 2.349* 2.277
(0.902) (0.978) (1.710) (1.862) (1.250) (1.412)

1(disind ∈ 3− 4km) 2.328 1.982 4.129 3.795 1.191 1.278
(1.799) (1.931) (3.859) (4.321) (1.275) (1.330)

1(disind ∈ 0− 1km)*Downwind -2.566* -3.710** -0.142
(1.362) (1.876) (2.093)

1(disind ∈ 1− 2km)*Downwind -1.235 1.067 -1.363
(1.544) (3.922) (2.082)

1(disind ∈ 2− 3km)*Downwind -2.393 -5.743 -0.254
(2.183) (3.965) (3.307)

1(disind ∈ 3− 4km)*Downwind 2.015 -0.750 -3.225
(3.647) (5.336) (6.775)

1(disind > 4km)*Downwind -2.897* -3.819 -1.343
(1.475) (2.755) (2.439)

Observations 1,893 1,893 951 951 942 942
R-squared 0.299 0.301 0.358 0.360 0.377 0.378
p-value (Sum of interactions=0) 0.3975 0.3089 0.5625

Notes: Dependent variables are the average measure of PM10 ambient concentration from 2000 to 2010 collected
at each PM10 monitor with positive reading during this period. 1(disind ∈ a− bkm) is an indicator of the distance
of a PM10 monitor from the closest 1970 industrial area is within a and b km. Downwind is an indicator of whether
or not the PM10 monitor is located downwind of the industrial area, which is defined by Figure 1.1. Results from
columns (1) and (2) are obtained from a full sample of monitors with positive PM10 readings from 2000 to 2010,
those from columns (3) and (4) are obtained from a sample of monitors that are closest to industrial areas with
above-median pollution level in the 1970s, and those from columns (5) and (6) are from a sample of monitors closest
to industrial areas with below-median pollution level. Controls include CBSA fixed effects, the distance from each
monitor to transportation lines, natural amenities and the CBD. Robust standard errors are clustered at CBSA
level.
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Table 1.3: Industrial Activities in the 1970s and Current Pollution: Other Pollutants

Monitor-level average pollutants from 2000 to 2010

Variables Ozone CO SO2 NO2

1(disind ∈ 0− 1km) -0.00193*** -0.00160** 0.0790 0.0904* 5.892*** 6.163*** 10.21*** 9.700***
(0.000597) (0.000630) (0.0515) (0.0545) (1.431) (1.474) (1.853) (1.801)

1(disind ∈ 1− 2km) -0.000373 -0.000448 0.0733* 0.0697 4.836*** 5.786*** 9.168*** 8.671***
(0.000631) (0.000667) (0.0434) (0.0441) (1.552) (1.573) (2.082) (2.078)

1(disind ∈ 2− 3km) -0.00110 -0.00118 0.0157 0.0480 1.985 1.384 5.651** 4.981**
(0.000674) (0.000725) (0.0533) (0.0636) (1.453) (1.807) (2.229) (2.248)

1(disind ∈ 3− 4km) -0.00179** -0.00207** 0.0315 0.0317 1.983 2.474 3.642 2.702
(0.000905) (0.000830) (0.0645) (0.0675) (2.009) (2.201) (2.571) (2.637)

1(disind ∈ 0− 1km)*Downwind -0.00289 -0.140 -1.596 2.249
(0.00186) (0.121) (1.682) (3.292)

1(disind ∈ 1− 2km)*Downwind 0.000668 -0.0587 -6.899*** 3.542
(0.00162) (0.149) (2.535) (3.463)

1(disind ∈ 2− 3km)*Downwind 0.000794 -0.278** 3.296 2.785
(0.00128) (0.137) (3.162) (4.732)

1(disind ∈ 3− 4km)*Downwind 0.00300 -0.0192 -3.502 9.853
(0.00336) (0.0950) (5.277) (6.886)

1(disind > 4km)*Downwind -8.69e-05 0.125 2.151 -3.954*
(0.000920) (0.137) (2.208) (2.310)

Observations 1,330 1,330 594 594 664 664 538 538
R-squared 0.445 0.450 0.486 0.496 0.473 0.482 0.592 0.598

Notes: Dependent variables are the average measures of ambient concentration of four alternative pollutants
(Ozone, CO, SO2 and NO2) from 2000 to 2010 collected at each monitor with positive reading during this period.
1(disind ∈ a − bkm) is an indicator of the distance of a PM10 monitor from the closest 1970 industrial area is
within a and b km. Downwind is an indicator of whether or not the PM10 monitor is located downwind of the
industrial area, which is defined by Figure 1.1. Controls include CBSA fixed effects, the distance from each monitor
to transportation lines, natural amenities and the CBD. Robust standard errors are clustered at CBSA level.
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Table 1.4: Economic outcomes in 2000: Downwind dummy

Outcomes in 2000: Tracts closest to above-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*Downwind -0.0955 -0.0213* -0.0346* -0.0633 -0.0215*** -0.0124 -0.0957*** -0.0356***
(0.102) (0.0117) (0.0194) (0.0447) (0.00709) (0.0194) (0.0291) (0.0148)

1(disind ∈ 1− 2km)*Downwind -0.117 -0.0204*** -0.0280** 0.0114 -0.0320** -0.0739*** -0.0814*** -0.0493***
(0.0970) (0.00629) (0.0123) (0.0389) (0.0125) (0.0260) (0.0273) (0.0155)

1(disind ∈ 2− 3km)*Downwind -0.115 -0.0100 -0.0190 -0.0954 -0.00510 -0.0192 -0.0124 -0.0190
(0.116) (0.00658) (0.0176) (0.0832) (0.0125) (0.0263) (0.0308) (0.0120)

1(disind ∈ 3− 4km)*Downwind -0.232 -0.00939 -0.0536** -0.0196 -0.00364 -0.0236 0.0190 -0.0256
(0.154) (0.00985) (0.0229) (0.105) (0.0166) (0.0277) (0.0537) (0.0229)

1(disind > 4km)*Downwind 0.174 0.00614 0.0237 0.194 -0.00294 -0.0301 0.0225 -0.0206
(0.185) (0.0120) (0.0217) (0.135) (0.0106) (0.0407) (0.0519) (0.0193)

1(disind ∈ 0− 1km) 0.0190 -0.0267 0.0428 -0.0136 -0.0344*** -0.163*** -0.188*** -0.0960***
(0.238) (0.0164) (0.0362) (0.252) (0.00939) (0.0460) (0.0569) (0.0219)

1(disind ∈ 1− 2km) 0.0612 -0.0179 0.0299 0.0688 -0.00684 -0.0965** -0.113** -0.0580***
(0.231) (0.0140) (0.0270) (0.223) (0.0107) (0.0415) (0.0470) (0.0184)

1(disind ∈ 2− 3km) -0.0153 -0.0144 0.0131 0.113 -0.00966 -0.0788* -0.0631 -0.0439**
(0.145) (0.0113) (0.0300) (0.172) (0.00685) (0.0466) (0.0444) (0.0213)

1(disind ∈ 3− 4km) 0.0228 -0.00779 0.0279 0.0473 0.00579 -0.0251 -0.0108 -0.00287
(0.106) (0.00759) (0.0215) (0.0840) (0.00660) (0.0346) (0.0452) (0.0194)

Observations 8,173 8,173 8,023 8,203 8,203 8,020 7,933 8,176
R-squared 0.375 0.080 0.179 0.551 0.266 0.252 0.558 0.175
p-value (Sum of interactions=0) 0.1241 0.0159 0.0016 0.3498 0.2919 0.0870 0.0938 0.0027

Outcomes in 2000: Tracts closest to below-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*Downwind -0.153* -0.00808 -0.0204 -0.0228 -0.00320 0.0225 -0.00648 -0.0133
(0.0781) (0.00637) (0.0133) (0.0653) (0.00627) (0.0198) (0.0268) (0.0106)

1(disind ∈ 1− 2km)*Downwind 0.00521 0.00123 -0.0179 0.0237 2.47e-05 -0.0124 -0.0233 -0.00582
(0.104) (0.00538) (0.0140) (0.0794) (0.00614) (0.0301) (0.0367) (0.0123)

1(disind ∈ 2− 3km)*Downwind -0.122 -0.00629 0.0191 -0.0525 0.00331 0.0238 -0.0192 -0.00780
(0.126) (0.00876) (0.0127) (0.112) (0.00615) (0.0322) (0.0316) (0.0135)

1(disind ∈ 3− 4km)*Downwind -0.177 0.00707 -0.0400* -0.0489 0.00241 0.00793 0.00539 0.0144
(0.136) (0.0106) (0.0238) (0.110) (0.0102) (0.0253) (0.0443) (0.0158)

1(disind > 4km)*Downwind -0.391** -0.0157 -0.00880 -0.186 -0.00779 -0.0233 -0.0239 -0.0269
(0.112) (0.00903) (0.0132) (0.107) (0.0122) (0.0328) (0.0551) (0.0233)

1(disind ∈ 0− 1km) 0.442*** -0.0330*** -0.0172 0.338** -0.0403*** -0.179*** -0.262*** -0.109***
(0.158) (0.0101) (0.0208) (0.157) (0.00817) (0.0290) (0.0355) (0.0187)

1(disind ∈ 1− 2km) 0.403*** -0.0287*** -0.0388* 0.406*** -0.0309*** -0.155*** -0.209*** -0.0875***
(0.140) (0.00917) (0.0209) (0.151) (0.00676) (0.0290) (0.0332) (0.0183)

1(disind ∈ 2− 3km) 0.267** -0.0170* -0.0391* 0.296** -0.0204*** -0.130*** -0.147*** -0.0632***
(0.119) (0.00883) (0.0204) (0.134) (0.00707) (0.0315) (0.0350) (0.0183)

1(disind ∈ 3− 4km) 0.178* -0.0119* -0.0196 0.214** -0.0103* -0.0431* -0.0741** -0.0392***
(0.103) (0.00677) (0.0128) (0.0986) (0.00530) (0.0220) (0.0300) (0.0135)

Observations 8,139 8,139 7,740 8,139 8,139 7,734 8,038 8,139
R-squared 0.327 0.105 0.267 0.424 0.330 0.310 0.540 0.254
p-value (Sum of interactions=0) 0.0629 0.7770 0.1600 0.7035 0.8898 0.5932 0.6523 0.7199

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to 1970 industrial
areas with above-median pollution intensity measure, and those from the lower panel from a sample of census tracts
closest to industrial areas with below-median pollution level. Dependent variables of the first three columns are
employment density, the ratio of FIRE, IT and professional services in total employment, and median earnings,
counted at the place of work. The last five columns report results on employment density, the ratio of FIRE, IT
and professional services in total employment, median earnings, median housing value and ratio of college graduates
among the population over 25 years old, counted at their place of residence. 1(disind ∈ x− ykm) is an indicator of
whether or not the distance from a tract to its closest industrial area is within x to y km. Downwind is an indicator
of whether or not the TSP monitor is located downwind of the industrial area, defined by Figure 1.1. Controls
include CBSA fixed effects, the distance from each tract to transportation lines, natural amenities and the CBD, as
well as route distance buffers to the same industrial area, and predicted manufacture job growth from 1970 to 2000
based on the industrial composition in 1970. Robust standard errors are clustered at CBSA level.
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Table 1.5: Placebo Checks: 1940 and 1950 outcomes

VARIABLES %College
graduates50

%College
graduates40

log income
1950

Manager
share50

Professional
share50

Tracts closest to above-median polluted industrial areas

1(disind ∈ 0− 4km) -0.0402* -0.0340*** -0.123*** -0.0185*** -0.00587
(0.0232) (0.0115) (0.0401) (0.00656) (0.00848)

1(disind ∈ 0− 4km)∗
Downwind 0.0332 0.0196 0.0503 0.0174 0.00771

(0.0274) (0.0262) (0.127) (0.0136) (0.0175)
Downwind -0.0134 -0.0195** 0.00746 -0.00935 -0.00788

(0.0100) (0.00851) (0.0547) (0.00597) (0.00842)
Observations 2,418 4,084 3,563 3,984 3,984
R-squared 0.248 0.218 0.321 0.219 0.132

Tracts closest to below-median polluted industrial areas

1(disind ∈ 0− 4km) 0.00399 -0.0250** -0.0985** -0.0220*** -0.0109***
(0.0139) (0.0101) (0.0466) (0.00792) (0.00403)

1(disind ∈ 0− 4km)∗
Downwind -0.0114 -0.00426 0.00858 0.00750 -0.00484

(0.0152) (0.0120) (0.0704) (0.0120) (0.00829)
Downwind 0.0105 0.0278* 0.0586* 0.0217*** 0.0153

(0.0174) (0.0149) (0.0328) (0.00549) (0.00969)
Observations 1,886 4,236 3,504 4,202 4,202
R-squared 0.261 0.231 0.251 0.151 0.131

Notes: Results from the upper panel are obtained from a sample of 1950 census tracts that are closest to industrial
areas with above-median pollution level in the 1970s, and those from the lower panel from a subsample of tracts
closest to industrial areas with below-median pollution level. Dependent variables are the share of college graduates
in 1940 and 1950, log median income in 1950, the share of managers and professional/technical workers in total
employment in 1950, 1(disind ∈ 0− 4km) is an indicator of whether or not the distance from a tract to the closest
industrial area is within 0 to 4 km. Downwind is an indicator of whether or not the TSP monitor is located downwind
of the industrial area. Controls include CBSA fixed effects, the distance from each monitor to transportation lines,
natural amenities and the CBD. Robust standard errors are clustered at CBSA level.
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Table 1.6: Growth from 1980-2000: Downwind dummy

Growth from 1980 to 2000: Tracts closest to above-median pollution level

VARIABLES Employment Manufacture
employment

FIRE
employment

Median
income

Housing
value

College
graduates

1(disind ∈ 0− 1km)*Downwind -0.0561* -0.0372 -0.119** -0.0315*** -0.0578*** -0.0822**
(0.0285) (0.0382) (0.0478) (0.00962) (0.0201) (0.0374)

1(disind ∈ 1− 2km)*Downwind -0.0641* -0.00678 -0.146** -0.0629*** -0.0530* -0.143***
(0.0351) (0.0463) (0.0683) (0.0228) (0.0274) (0.0473)

1(disind ∈ 2− 3km)*Downwind -0.0162 0.00772 -0.0597 -0.0226 -0.0126 -0.0577
(0.0351) (0.0476) (0.0424) (0.0178) (0.0206) (0.0524)

1(disind ∈ 3− 4km)*Downwind -0.0454 -0.0768 -0.0381 -0.0209 -0.000550 -0.0258
(0.0412) (0.0799) (0.0453) (0.0208) (0.0299) (0.0497)

1(disind > 4km)Downwind 0.101 0.157 0.141 0.00478 0.00788 0.147
(0.0971) (0.138) (0.0952) (0.0282) (0.0336) (0.0930)

1(disind ∈ 0− 1km) 0.165 0.364** 0.223 0.0175 0.139** 0.341
(0.153) (0.176) (0.197) (0.0324) (0.0546) (0.253)

1(disind ∈ 1− 2km) 0.145 0.267* 0.243 0.0369 0.126** 0.300
(0.125) (0.153) (0.167) (0.0272) (0.0524) (0.204)

1(disind ∈ 2− 3km) 0.0955 0.194 0.113 0.0140 0.0830*** 0.208
(0.100) (0.129) (0.125) (0.0256) (0.0314) (0.153)

1(disind ∈ 3− 4km) 0.0751 0.170 0.0791 0.0302 0.0646*** 0.128
(0.0711) (0.120) (0.0926) (0.0195) (0.0214) (0.105)

Observations 7,983 5,895 7,584 8,035 7,683 7,921
R-squared 0.326 0.337 0.247 0.229 0.545 0.204
p-value (Sum of interactions=0) 0.0557 0.3579 0.0120 0.0036 0.0085 0.0027

Growth from 1980 to 2000: Tracts closest to below-median pollution level

VARIABLES Employment Manufacture
employment

FIRE
employment

Median
income

Housing
value

College
graduates

1(disind ∈ 0− 1km)*Downwind 0.0223 0.0697 0.0504 0.0124 -0.00289 0.0499
(0.0439) (0.0531) (0.0542) (0.0155) (0.0196) (0.0523)

1(disind ∈ 1− 2km)*Downwind 0.00732 -0.00384 0.00881 0.0129 -0.00151 0.0558
(0.0286) (0.0391) (0.0438) (0.0167) (0.0206) (0.0379)

1(disind ∈ 2− 3km)*Downwind -0.0637 -0.0910 -0.0891* 0.0130 0.00270 -0.0146
(0.0424) (0.0604) (0.0512) (0.0139) (0.0175) (0.0439)

1(disind ∈ 3− 4km)*Downwind 0.213** 0.211** 0.134* 0.00647 -0.0247 0.188**
(0.0518) (0.0688) (0.0592) (0.0216) (0.0331) (0.0807)

1(disind > 4km)Downwind 0.0585 0.0669 0.00883 0.0288 0.00547 0.0721
(0.0971) (0.138) (0.0952) (0.0282) (0.0336) (0.0930)

1(disind ∈ 0− 1km) -0.0883 -0.0118 -0.204*** -0.0394* -0.0149 -0.213**
(0.0629) (0.0617) (0.0771) (0.0235) (0.0358) (0.0931)

1(disind ∈ 1− 2km) -0.0957* -0.0366 -0.182*** -0.0446** -0.0128 -0.214***
(0.0525) (0.0546) (0.0661) (0.0192) (0.0277) (0.0760)

1(disind ∈ 2− 3km) -0.0799 -0.0352 -0.137** -0.0533*** -0.0145 -0.176***
(0.0492) (0.0541) (0.0686) (0.0181) (0.0267) (0.0673)

1(disind ∈ 3− 4km) -0.0559 -0.0106 -0.0875* -0.0308* 0.000763 -0.113**
(0.0391) (0.0460) (0.0512) (0.0157) (0.0193) (0.0568)

Observations 7,786 6,284 7,533 7,827 7,627 7,761
R-squared 0.381 0.334 0.334 0.244 0.523 0.250
p-value (Sum of interactions=0) 0.0733 0.1950 0.3408 0.2258 0.6812 0.0141

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to industrial
areas with above-median pollution level from 1971 to 1979, and those from the lower panel from a sample of census
tracts closest to industrial areas with below-median pollution level during the same period. Dependent variables are
growth in total, manufacture, FIRE employment, median household income, median housing value and the number
of college graduates from 1980 to 2000, all counted at the place of residence. 1(disind ∈ x − ykm) is an indicator
of whether or not the distance from a tract to its closest industrial area is within x to y km. Downwind is an
indicator of whether or not the TSP monitor is located downwind of the industrial area. Controls include CBSA
fixed effects, the distance from each tract to transportation lines, natural amenities and the CBD, as well as route
distance buffers to the same industrial area, and predicted manufacture job growth from 1970 to 2000 based on the
industrial composition in 1970. Robust standard errors are clustered at CBSA level.
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Table 1.7: Observable amenities and housing quality

Tracts closest to above-median polluted industrial areas

VARIABLES 2000 Violent
crime rate

2000 public
school per capita

1980 share no
kitchen/plumbing

2000 share no
kitchen/plumbing

1(disind ∈ 0− 4km)∗
Downwind 0.000346* -0.000227* 0.000964 -0.000063

(0.000185) (0.000144) (0.00264) (0.000541)
1(disind ∈ 0− 4km) 0.00076 0.000603 -0.000074 -0.000173

(0.000674) (0.000377) (0.00171) (0.000933)
Downwind 0.00003 0.000029 0.00322 -0.00151

(0.000299) (0.000422) (0.00452) (0.00151)
Observations 2,315 4,841 2,206 7,939
R-squared 0.343 0.005 0.2 0.088

Tracts closest to below-median polluted industrial areas

VARIABLES 2000 Violent
crime rate

2000 public
school per capita

1980 share no
kitchen/plumbing

2000 share no
kitchen/plumbing

1(disind ∈ 0− 4km)∗
Downwind -0.000163 0.000016 -0.000531 -0.00187

(0.000198) (0.000018) (0.00161) (0.00121)
1(disind ∈ 0− 4km) 0.000350*** 0.000061*** -0.000921 0.00144*

(0.000115) (0.000023) (0.0023) (0.000808)
Downwind 0.00125*** -0.000027 0.00085 0.00152

(0.000307) (0.000031) (0.00374) (0.00138)
Observations 1,209 3,822 2,224 5,925
R-squared 0.29 0.114 0.316 0.077

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to 1970 industrial
areas with above-median pollution intensity measure, and those from the lower panel from a subsample of tracts
closest to industrial areas with below-median pollution level. Dependent variables are tract level violent crime rate
in 2000, the number of public schools per capita in 2000, share of housing units without kitchen or plumbing devices
in 1980 and 2000. 1(disind ∈ 0 − 4km) is an indicator of whether or not the distance from a tract to the closest
industrial area is within 0 to 4 km. Downwind is an indicator of whether or not the TSP monitor is located downwind
of the industrial area. Controls include CBSA fixed effects, the distance from each monitor to transportation lines,
natural amenities and the CBD. Robust standard errors are clustered at CBSA level.
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Table 1.8: CBSA-level evidence

VARIABLES Employment growth Population growth

Share of 1(disind ∈ 0− 4km)
tracts in total -0.376*** -0.421*** -0.265*** -0.126 -0.244** -0.0758

(0.113) (0.1000) (0.101) (0.119) (0.114) (0.123)
Share of 1(disind ∈ 0− 4km)*central
tracts in total -0.336 -0.458 -0.428 -0.606**

(0.310) (0.293) (0.269) (0.275)
Share of downwind
tracts in total -0.135 -0.117 -0.151 -0.400 -0.499 -0.542

(0.387) (0.454) (0.419) (0.433) (0.489) (0.467)
Share of 1(disind ∈ 0− 4km)*downwind
tracts in total -0.229 -1.079** 0.0868 -0.262

(0.361) (0.430) (0.345) (0.399)
Share of 1(disind ∈ 0− 4km)*central
downwind tracts in total 6.407 10.33***

(5.018) (3.846)
Observations 198 198 198 198 198 198
R-squared 0.727 0.716 0.746 0.835 0.832 0.843

Notes: Dependent variables are CBSA level employment growth from 1983 to 2003 or population
growth from 1980 to 2000. Share of 1(disind ∈ 0 − 4km) tracts in total is the ratio between
the number of census tracts within 4 km to the nearest industrial area and the total number of
tracts of a CBSA. Share of 1(disind ∈ 0− 4km) tracts in total counts the share of tracts that are
both within 4 km to the nearest industrial area and located in central city in the total number of
tracts. Central tracts are defined as the top quartile of tracts in distance to the CBD. Share of
1(disind ∈ 0 − 4km)*downwind tracts in total denotes the share of tracts in total that are both
within 4 km to the nearest industrial area and downwind of it. Full control includes historical
population level, census division dummies, physical geography and socioeconomic controls used in
Duranton and Turner (2012). SE clustered at census division level.
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Table 1.9: Parameter Calibration and Data Sources

Definition and Value of Key parameters

Parameter Definition Value

1− β Consumer expenditure share in land 0.25
1− α Firm expenditure share in land 0.2
ε Frechet Shape parameter 6.83
κ Semi-elasticity of commuting cost on travel time 0.01
λ Production externalities elasticity 0.07
δ Production externalities spatial decay 0.36
η Residential externalities elasticity 0.15
ρ Residential externalities spatial decay 0.75

Sources of Data Used in Structural Estimation

Variables Description Source

HMis Sectoral workplace employment CTPP
HRis Sectoral residents CTPP
wis Sectoral wage at workplace CTPP

Educational attainment at workplace LODES
Gender,race and occupation
by sector at workplace CTPP

qi Gross rental rate NHGIS
Housing quality measures NHGIS

τip Bilateral travel time between tracts OpenStreetMap
Notes: The upper panel shows the calibrated value of key parameters of the model, all of which
come from Ahlfeldt et al. (2015). The lower panel presents data sources of the observed variables
used in my structural estimation.
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Table 1.10: Change in amenity and productivity from 2000 to 2010

Industries FIRE IT Edu Med Professional Public admin Art Entertain Manufacture Wholesale Retail Utility

Change in log aggregate amenity from 2000 to 2010

∆PM10 -0.00923* -0.0148* -0.00667** -0.00466* -0.00488* -0.00099 -0.0008 -0.0053 -0.0081 -0.00241
(0.00556) (0.00769) (0.0029) (0.000245) (0.00289) (0.00478) (0.00653) (0.0043) (0.00619) (0.00444)

Public Schools 0.0195*** 0.00496 0.0140** 0.0146** 0.00983** 0.00719 0.0116** 0.0117* 0.00553 0.00762
(0.00514) (0.00580) (0.00632) (0.00651) (0.00492) (0.00490) (0.00491) (0.00618) (0.00394) (0.00525)

Observations 2,294 1,882 2,653 2,630 2,204 2,400 2,368 2,067 2,396 2,274
R-squared 0.792 0.844 0.734 0.730 0.826 0.936 0.817 0.744 0.923 0.811

Change in log aggregate productivity from 2000 to 2010

∆PM10 -0.00427 -0.0069 -0.0068 -0.0150 0.0170 0.0346 0.00139 -0.00544 -0.0031 -0.00206
(0.0060) (0.0063) (0.0083) (0.0109) (0.0198) (0.0269) (0.0120) (0.0268) (0.0026) (0.00191)

Public Schools 0.00657 0.0200 0.0537 0.000358 0.0164 0.0232 0.00370 -0.0185 -0.0104 -0.00402
(0.0130) (0.0219) (0.0631) (0.0231) (0.0170) (0.0258) (0.0221) (0.0244) (0.0174) (0.0203)

Observations 1,982 1,127 2,298 2,170 1,572 1,632 2,072 1,873 2,049 1,718
R-squared 0.088 0.085 0.154 0.171 0.114 0.119 0.151 0.109 0.078 0.104

Notes: Dependent variables in the upper panel are the log changes in aggregate amenity perceived by workers from different sectors from 2000 to 2010.
Dependent variables in the upper panel are the log changes in aggregate productivity of different sectors from 2000 to 2010. The change in PM10 is
instrumented by the share of monitor level nonattainment ratio in PM10 from 2002 to 2007. Only tracts within 2 km to a PM10 monitor station are kept
in the sample. CBSA fixed effects are controlled for. Robust standard errors are clustered at CBSA level.
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Table 1.11: Counterfactuals: Cutting pollution

Experiment: Cutting TSP by 10 µg/m3 in 3500 central tracts

Exogenouse case Endogenous case

%Change in Whole U.S. Treated cities Other cities Whole U.S. Treated cities Other cities
Rent income 0.430% 2.248% -0.674% 0.464% 3.305% -1.684%
labour income 0.364% 2.250% -0.674% 0.426% 3.312% -1.689%
Employment 0 1.807% -1.386% 0 4.670% -1.948%
Employment
in skilled sector 1.966% 6.373% -1.386% 3.741% 12.447% -2.879%

Experiment: Cutting TSP by 10 µg/m3 in 3500 non-central tracts

Exogenous case Endogenous case

%Change in Whole U.S. Treated cities Other cities Whole U.S. Treated cities Other cities
Rent income 0.035% 0.424% -0.250% 0.007% 0.745% -0.535%
labour income 0.048% 0.437% -0.237% 0.006% 0.746% -0.537%
Employment 0 0.603% -0.462% 0 1.135% -0.870%
Employment
in skilled sector 0.388% 1.506% -0.462% 0.922% 3.283% -0.873%

Notes: Policy experiment is cutting TSP levels by 10 µg/m3 of either central city or non-central tracts randomly
drawn from 155 out of 310 US CBSAs. Central tracts are defined as top quartile tracts in distance to the CBD.
Counterfactual percentage changes in total rental income, labour income, total employment and employment in
skilled sectors (FIRE, IT and professional services) obtained under a model with only exogenous productivity and
amenity are presented in the left panel, while those under a model with agglomeration effects are presented on the
right.

Table 1.12: Model Validation

Variable Housing price

Source Model Chay and Greenstone (2005) Bento, Freeman
and Lang (2014)

Treatment 10 units drop in TSP 10 units drop in TSP 10 units drop in PM10
Unit of obs. Census tract County Census tract
Time period From 1970 1970-1980 1990-2000
Estimated effects 0.117 0.022-0.036 0.09-0.133
Implied elasticity between
pollution and housing value -1.4 -0.2 to -0.35 -0.6

Notes: The first column reports the effects of a 10 units TSP cut on housing price predicted by my structural
model. The second and third report estimated reduced form results from similar treatments in the literature. The
last column reports the implied elasticity between housing price change and pollutants changes.
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Figure 1.1: Definition of downwind

Notes: The upper graph maps the location of 1970 industrial areas (shaded areas) and TSP monitors with at least
one year of readings from 1971-1979 around central Detroit. The lower graph shows a map of central Detroit census
tracts and the same industrial areas. These graphs illustrate my definition of whether or not a TSP monitor or a
census tract is in the downwind direction of its closest industrial area. The solid arrowed line depicts the direction
from the closest industrial area to the highlighted census tract. The light shaded area in the left draws the range
of summer wind direction around the highlighted monitor/tract. This range is defined by wind directions within
the 10th and 90th percentiles of all the observations of April to September monthly wind direction from 2005 to
2014, after dropping months with wind speed lower than 0.5 m/s. The right light shaded area draws the range of
winter wind direction, based on October to March monthly wind direction observations. A TSP monitor or a tract
is only defined to be downwind of its closest industrial area if its direction (black arrowed line) to the area lies
within BOTH wind ranges. In the upper graph, downwind TSP monitors are market as larger, darker dots and in
the lower graph, downwind tracts are marked as shaded striped areas.
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Figure 1.2: 1970 industrial areas and TSP monitors

Notes: These graphs illustrate the way the pollution intensity of each industrial area is defined. The top map
shows industrial areas and TSP monitors in the 1970s in central Detroit, along with a 2 km buffer around each
TSP monitor. In practice, for each industrial area, I define its pollution intensity as the TSP reading of the closest
TSP monitor to this area. I only keep industrial areas within 2 km to the closest TSP monitors. The middle
map shows industrial areas with (darker) and without pollution intensity assignment. I also divide the industrial
areas with pollution intensity assignment into two groups according to whether or not the pollution intensity is
above the national median. The full samples of monitors or tracts are also divided into two subsamples according
to whether or not they are nearest to above/below-median polluted industrial areas. The bottom map shows the
distribution of above and below median polluted industrial areas around central Detroit, with the darker areas
denoting above-median polluted ones.
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Figure 1.3: Estimated coefficients of downwind on 1970 and 2000 pollution

Notes: The three figures above display the estimated coefficients and 95% confidence intervals in regressions where the dependent variable is average TSP
ambient concentration at monitor level from 1971 to 1979. The independent variables are dummies of whether or not the distance from each monitor to
its closest industrial area falls into specific 500 metres buffers, interacted with a dummy of whether or not the TSP monitor is downwind of the industrial
area. The three figures below display the estimated coefficients and 95% confidence intervals in regressions where the dependent variable is average PM10
ambient concentration at monitor level from 2000 to 2010. The independent variables are dummies of whether or not the distance from each monitor to its
closest industrial area falls into specific 500 metres buffers, interacted with a dummy of whether or not the PM10 monitor is downwind of the industrial
area. The graphs from the left to the right are coefficients obtained in the full sample, a sample with monitors closest to above-median polluted industrial
areas and a sample with those closest to below-median polluted industrial areas.
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Figure 1.4: Downwind interactions on above-polluted sample: Economic outcomes
in 2000

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables from top-left to botton-right are high skilled employment share at
workplace and residence, median wage at workplace and residence, housing price and college grad-
uates share at residence. The independent variables are dummies of whether or not the distance
from each tract to its closest industrial area falls into specific 500 metres buffers, interacted with
a dummy of whether or not the tract is downwind of the industrial area. All the coefficients are
obtained in regressions on a sample of census tracts that are closest to above-median polluted in-
dustrial areas. Those on the subsample of census tract nearest to below-median pollution industrial
areas are reported in Figure 1.7.
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Figure 1.5: Downwind interactions on above-polluted sample: Dynamic effects

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables from top-left to botton-right are growth rates from 1980 to 2000
in total employment, manufacture employment, FIRE employment, median income, housing price
and the number of college graduates, all counted at place of residence. The independent variables
are dummies of whether or not the distance from each tract to its closest industrial area falls into
specific 500 metres buffers, interacted with a dummy of whether or not the tract is downwind of
the industrial area. All the coefficients are obtained in regressions on a sample of census tracts
that are closest to above-median polluted industrial areas. Those on the subsample of census tract
nearest to below-median pollution industrial areas are reported in Figure 1.8.
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Figure 1.6: Estimated coefficients of downwind on 2000 pollution: other pollutants

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables from top-left to botton-right are high skilled employment share at
workplace and residence, median wage at workplace and residence, housing price and college grad-
uates share at residence. The independent variables are dummies of whether or not the distance
from each tract to its closest industrial area falls into specific 500 metres buffers, interacted with
a dummy of whether or not the tract is downwind of the industrial area. All the coefficients are
obtained in regressions on a sample of census tracts that are closest to below-median polluted in-
dustrial areas. Those on the subsample of census tract nearest to above-median pollution industrial
areas are reported in Figure 1.4.
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Figure 1.7: Downwind interactions on below-polluted sample: Economic outcomes
in 2000

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables from top-left to botton-right are average ambient concentrations
of Ozone, CO, SO2 and NO2 at monitor level from 2000 to 2010. The independent variables are
dummies of whether or not the distance from each tract to its closest industrial area falls into
specific 500 metres buffers, interacted with a dummy of whether or not the tract is downwind of
the industrial area. All the coefficients are obtained in regressions on a sample of census tracts
that are closest to below-median polluted industrial areas.
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Figure 1.8: Downwind interactions on below-polluted sample: Dynamic effects

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables from top-left to botton-right are growth rates from 1980 to 2000
in total employment, manufacture employment, FIRE employment, median income, housing price
and the number of college graduates. The independent variables are distance buffers of 500 metres
interacted with downwind dummy. All the coefficients are obtained in regressions on a sample of
census tracts that are closest to below-median polluted industrial areas. Those on the subsample
of census tract nearest to above-median pollution industrial areas are reported in Figure 1.5
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Figure 1.9: Perceived quality-of-life by FIRE and manufacture workers around Manhattan, 2010

Notes: Figure 1.(A) maps the perceived amenity by FIRE workers in 2000 around Manhattan, New York. Figure 1.(B) maps the perceived
amenity by manufacture workers in 2000 in the same area. Perceived amenity is defined in equation (22).
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Figure 1.10: Perceived quality-of-life by FIRE and manufacture workers in Detroit, 2000

Notes: Figure 2.(A) maps the perceived amenity by FIRE workers in 2010 in Detroit. Figure 2.(B) maps the perceived amenity by manufacture
workers in 2000 in Detroit. Perceived amenity is defined in equation (22).
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Figure 1.11: Perceived quality-of-life by FIRE and manufacture workers in the San Fransisco Bay Area, 2000

Notes: Figure 3.(A) maps the perceived amenity by FIRE workers in 2010 in the San Fransisco Bay Area. Figure 3.(B) maps the perceived
amenity by manufacture workers in 2010 in the San Fransisco Bay Area. Perceived amenity is defined in equation (22).
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Figure 1.12: Impacts of early pollution exposure on 2000 estimated sectoral productivity parameters

Notes: Figure 1.12(A) plots the impacts of 1970 pollution exposure on sector-specific aggregate productivity Ajs in 2000 (y-axis) against the skill intensity
of these industries (x-axis). The y-axis shows the estimated coefficients of the interaction term between the 0-4 km distance buffer from each tract to
the 1970 industrial areas and a dummy of being downwind of these industrial areas, where the LHS variables are sector-specific productivity parameters
estimated from the structural model. The sample is limited to census tracts that are closest to industrial areas with pollution intensity above the median.
The x-axis plots the skill intensity of each industry proxied by the average years of schooling of their employees. Figure 1.12(B) is the same except that
the estimates are obtained in a sample of tracts within the central city.
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Figure 1.13: Impacts of early pollution exposure on 2000 estimated sectoral amenity parameters

Notes: Figure 1.13(A) plots the impacts of 1970 pollution exposure on sector-specific aggregate amenity (B̃is) in 2000 (y-axis) against the skill intensity of
these industries (x-axis). The y-axis shows the estimated coefficients of the interaction term between the 0-4 km distance buffer from each tract to the 1970
industrial areas and a dummy of being downwind of these industrial areas, where the LHS variables are sector-specific amenity parameters estimated from
the structural model. The sample is limited to census tracts that are closest to industrial areas with pollution intensity above the median. And the x-axis
is the skill intensity of each industry proxied by the average years of schooling of their employees. Figure 1.13(B) is the same except that the estimates are
obtained in a sample of tracts within the central city.
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Figure 1.14: Impacts of early pollution exposure on 2000 estimated sectoral production fundamental parameters

Notes: Figure 1.14(A) plots the impacts of 1970 pollution exposure on sector-specific production fundamentals (ajs) in 2000 (y-axis) against the skill
intensity of these industries (x-axis). The y-axis shows the estimated coefficients of the interaction term between the 0-4 km distance buffer from each tract
to the 1970 industrial areas and a dummy of being downwind of these industrial areas, where the LHS variables are sector-specific production fundamental
parameters estimated from my structural model. Production fundamentals are defined as aggregate productivity divided by a workplace agglomeration
intensity function. The sample is limited to census tracts that are closest to industrial areas with pollution intensity above the median. The x-axis plots
the skill intensity of each industry proxied by the average years of schooling of their employees. Figure 1.14(B) presents similar coefficients with aggregate
productivity estimates as LHS variables for comparison, the same as Figure 1.12(A).
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Figure 1.15: Impacts of early pollution exposure on 2000 estimated sectoral residential fundamental parameters

Notes: Figure 1.15(A) maps the impacts of 1970 pollution exposure on sector-specific residential fundamentals (b̃is) in 2000 to the skill intensity of these
industries. The y-axis shows the estimated coefficients of the interaction term of 0-4 km distance buffer to the 1970 industrial areas and a dummy of
being downwind of them where the LHS variables are sector-specific residential fundamental parameters estimated from my structural model. Residential
fundamentals are defined as aggregate amenity divided by a residence agglomeration intensity function. The sample is limited to census tracts that are
closest to industrial areas with pollution intensity above the median. The x-axis plots the skill intensity of each industry proxied by the average years of
schooling of their employees. Figure 1.15(B) presents similar coefficients with aggregate amenity estimates as LHS variables for comparison, the same as
Figure 1.13(A).
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Figure 1.16: Responses of changes in productivity and amenity to PM10 changes (2000-2010)

Notes: Figure 1.16(A) maps the impacts of pollution reduction on sector-specific aggregate productivity changes from 2000 to 2010 to the skill intensity
of these industries. The y-axis shows the estimated coefficients of the regression specified in equation (25), where the LHS variables are sector-specific
productivity parameters changes and RHS variable is the instrumented PM10 change from 2000-2010. And the x-axis plots the skill intensity of each
industry proxied by the average years of schooling of their employees. Figure 1.16(B) is the same except that the triple difference estimates are obtained
in a sample of tracts within the central city.
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Appendix A

Appendix of "The Long Shadow of
Industrial Pollution: Environmental
Amenities and the Distribution of
Skills"

A.1 Exploiting variation in topography

As briefly discussed in Section 4.1 and 4.2, apart from exploiting the variation in
wind direction to identify the impact of historical pollution on current economic
outcomes, we can also consider the role of topography in explaining pollution ex-
posure. Significant elevation gaps between the locations of pollution sources and
receptors will prevent pollutants from being transported. To test it, I estimate a
model similar to Equation (3), taking the form

yic =
∑

Iikm ∗ SameElevationimβk1 +
∑

Iikm ∗ βk2X ′iδ + αc + εic (A.1)

where SameElevationim is an indicator of whether or not the elevations of mon-
itor i and its closest industrial area m are the same. Elevation data come from the
National Elevation Dataset (NED), available at one arc-second resolution (approxi-
mately 30 metres) for the continental US. It is noted that the emission of airborne
industrial pollutants usually comes from tall smokestacks, so it is essential to account
for the height of stacks. In practice, I define SameElevationim to be one if the mon-
itor is at the same elevation or less than 100 metres higher than the industrial area it
is exposed to, based on the idea that the height of a typical smokestack is lower than
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100 metres. Moreover, apart from the elevation difference between monitor and in-
dustrial area, the elevation of areas between them also matters. The transportation
of pollutants will be blocked if the tracts located in between the pollution source
and receptor are higher in elevation than both. To account for this, I draw a straight
line between a monitor and its closest industrial area and force SameElevationim
to be zero if the maximum elevation of areas covered by this straight line exceeds
the elevations at both ends. yic represents the outcomes of interest, which include
pollution in the 1970s and after 2000, 2000 economic outcomes and growth rates
from 1980 to 2000.

The results on historical and current pollution are reported in Table A1. It
is clear that monitors that are not obstructed from the closest pollution source
by terrain report higher TSP readings, and the effects are stronger at mid-to-long
distance range. The TSP readings in unobstructed monitors are about 4-5 units
higher when they are within 2-4 kilometres away from the closest industrial area than
their obstructed counterparts. Similar to the results obtained using wind direction
variation, coefficients on the interaction terms between distance buffers and the same
elevation dummy are also larger in the sample of monitors closest to above-median
industrial areas, as reported in Columns (2) and (3). The last three columns present
results with PM10 from 2000 to 2010 as the outcome variables, and it is observed
that the coefficients on the interaction terms remain small and insignificant in all
three samples.

To examine the impacts of topography-driven variation in historical pollution
on economic outcomes, the identification assumption here is that in the absence of
industrial pollution, tracts that are at the same elevation as its nearby industrial
area and those with significant elevation gaps from the same industrial area are
similar in economic outcomes and growth prospects. A reasonable challenge here is
that elevation gaps not only act as obstacles to the transmission of pollution but also
weakens the economic linkages between industrial areas and nearby tracts. To check
how big a concern is might be, I check the correlation between the route distance1 to
the closet industrial area and the same elevation dummy. It appears that elevation
gaps do not make the nearby industrial areas significantly more difficult to access
from each tract. Throughout my analysis, I control for route distance buffers to the
same industrial area m, and a local ruggedness measure.

In Table A2, I report the results on 2000 economic outcomes. The patterns
are largely consistent with those uncovered using the downwind variation. Census
tracts that were more exposed to historical pollution due to a similar elevation to the

1Shortest distance to the closest industrial area by highway or railway.

73



closest industrial areas have lower housing value, the share of college graduates and
median residents’ income in 2000, and the effects are only statistically significant in
a sample with tracts exposed to above-median polluted industrial areas. However,
the patterns are less clear for workplace employment outcomes. One possible ex-
planation is that the specification that exploits variation in elevation difference still
suffers from biases driven by unobservable differential economic linkages to indus-
trial areas. In this case, it is likely that stronger economic links to industrial areas
lead to a higher wage, therefore the potential bias work against identifying the full
effects of pollution on productivity.

Results on the dynamic effects are reported in Table A3. Similar to the results
obtained using wind direction variation, census tracts that were more polluted in the
1970s due to topography characteristics witnessed slower growth in median income
and college graduates from 1980 to 2000, although the effects are less apparent
for other variables. Overall, this exercise of using elevation gaps in identifying the
impacts of historical pollution on current economic outcomes are consistent with the
main results using the wind variation.

A.2 Triple difference approach

A.2.1 Reduced form evidence

In the main text, I explore the variation in historical pollution driven by wind
patterns by interacting a dummy of downwind with distance indicators. I also exploit
the variation in the pollution intensity of historical industrial sites by splitting the
sample into two according to the pollution intensity of industrial areas that each
census tract is closest to, and find wind only matters for monitors/census tracts
that are closest to industrial areas with above-median pollution intensity. Another
way to exploit both the variation in pollution intensity and wind direction is a
triple difference design. The main outcomes of interest are the triple-interaction
terms across distance-to-industrial-areas indicators, the level of historical pollution
of these areas and a dummy of downwind. The specification takes the form of:

yic =
∑

Iikm ∗TSPm ∗Downwindimβk1 +
∑

Iikm ∗Downwindimβk2 +
∑

Iikm ∗βk3
+
∑

Iikm∗TSPmβk4+θTSPm+γDownwindim+δTSPm∗Downwindim+X ′iη+αc+εic

(A.2)
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where TSPm is the average measure of total suspended particle reported by EPA
from 1971-1979 around industrial area m, Downwindim is a dummy variable that
takes value one if tract i is located in the downwind of industrial area m. Similarly, I
assign TSP readings of the closest monitor averaged from 1971 to 1979 to industrial
area m as the pollution intensity of it ( TSPm) I drop industrial areas that are not
within 2 kilometres to the closest monitor, which takes up about 30% in my sample.
I standardize the TSP measures to be of mean zero and standard deviation one for
ease of interpretation.

From Table A9, It is clear that being more exposed to 1970s industrial pollution
due to downwind position translates into higher 1970s pollution levels measured by
average TSP reading from 1971-1979. The triple difference terms are negative across
the board for most of my outcomes, apart from residential density. The patterns are
quite comparable across variables counted at place of work and place of residence:
early industrial pollution not only negatively affects the share of high-skilled workers
who live in more exposed areas and their earnings, but also the share of skilled
employees who work in more affected tracts. Median earnings of both workers who
work and residents who live in dirtier tracts are lower. Housing prices and the share
of college graduates are also lower in these tracts. It suggests that historically dirtier
places are low in both productivity and amenity now. The coefficients on double
difference terms of distance buffers to the closest industrial area and its historical
pollution are negative and significant for most of the outcomes. But the signs and
significance are mixed for coefficients on double difference terms of distance buffers
and downwind dummy, which suggests that whatever the wind conditions are, being
closer to an industrial area hurts, but being downwind of an industrial area only
matters if this area is polluted enough.

Table A10 report results on growth from 1980 to 2000, following the same spec-
ifications. It is clear that tracts closer to 1970 industrial areas experience slower
growth in total, manufacture, FIRE employment, median income, housing value
and the number of college graduates in the subsequent two decades, and these neg-
ative growth effects are stronger if the relevant industrial areas are more polluted
prior to 1980, and the tracts are more exposed to the pollutants emitted from these
heavily-polluted industrial areas due to being downwind of them. Since from 1980
onward the air quality around the US is improving greatly, and the improvement is
greater in areas that are more heavily polluted initially, the negative growth impact
is not caused by worsening air pollution, but more of a result of self-reinforcing
agglomeration forces. Tracts that have been able to attract more educated work-
force and residents due to better environmental amenities are able to attract more
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if educated people would like to live and work near other educated people.
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Table A1: Industrial Activities in the 1970s and 1970 Pollution

Variables Monitor-level TSP: 1971-1979 Monitor-level PM10: 2000-2010

Sample Full Sample Above-median polluted
industrial area

Below-median polluted
industrial area Full Sample Above-median polluted

industrial area
Below-median polluted
industrial area

1(disind ∈ 0− 1km) 26.85*** 22.36*** 13.41*** 7.159** 9.808** 2.899
(2.528) (1.876) (1.588) (2.980) (4.125) (3.520)

1(disind ∈ 1− 2km) 14.79*** 11.85*** 8.491*** 2.400 5.450** 0.154
(2.922) (4.352) (1.760) (2.385) (2.230) (3.463)

1(disind ∈ 2− 3km) 6.910*** 5.333 6.040*** 2.679 0.158 -1.492
(2.967) (5.618) (1.500) (2.159) (3.109) (2.488)

1(disind ∈ 3− 4km) 8.054*** 1.323 8.837*** 4.442** 4.917 3.523**
(3.092) (5.061) (1.639) (2.183) (5.408) (1.769)

1(disind ∈ 0− 1km)*Same elevation 1.056 0.337 -0.575 -0.991 -3.664 2.097
(2.468) (3.660) (1.408) (2.858) (3.881) (2.452)

1(disind ∈ 1− 2km)*Same elevation 1.637 0.869 0.622 2.724 0.103 1.319
(2.793) (3.949) (1.422) (2.536) (2.255) (3.598)

1(disind ∈ 2− 3km)*Same elevation 4.732* 2.450 1.336 2.445 4.289 2.553
(2.796) (5.084) (1.503) (2.128) (2.934) (2.664)

1(disind ∈ 3− 4km)*Same elevation 4.473 9.392** -2.812 0.863 5.817 -4.458*
(3.388) (4.716) (2.003) (2.958) (6.686) (2.425)

Same elevation 5.629*** 5.152 2.550** 5.206*** 6.203** 3.045**
(2.008) (3.684) (1.242) (1.227) (2.596) (1.416)

Observations 4,968 2,471 2,422 1,893 821 842
R-squared 0.312 0.521 0.435
p-value (Sum of interactions=0) 0.0757 0.0213 0.5604 0.3421 0.8766 0.9539
p-value (Sum of elevation interacts=0) 0.0869 0.2029 0.5972 0.3069 0.4226 0.8452

Notes: Dependent variables are the average measure of TSP ambient concentration from 1970 to 1979 collected at each TSP monitor with positive reading during this period.
1(disind ∈ a − bkm) is an indicator of the distance of a TSP monitor from the closest 1970s industrial area being within a and b km. Downwind is an indicator of whether or not
the TSP monitor is located downwind of the industrial area. Same elevation is a dummy that takes one if the TSP monitor is at the same elevation or less than 100m lower than its
closest industrial area, and not obstructed by other areas in between. Controls include CBSA fixed effects, the distance from each monitor to transportation lines, natural amenities
and the CBD. Robust standard errors are clustered at CBSA level.
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Table A2: Economic outcomes in 2000: Same elevation dummy

Outcomes in 2000: Above-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*same elevation 0.654*** 0.00869 -0.0169 0.586*** -0.00737 -0.0982*** -0.148*** -0.0437***
(0.161) (0.00736) (0.0190) (0.140) (0.00753) (0.0276) (0.0407) (0.0127)

1(disind ∈ 1− 2km)*same elevation 0.415*** 0.0167** -0.00766 0.358*** -0.00211 -0.0328 -0.0649 -0.0231
(0.157) (0.00680) (0.0215) (0.123) (0.00567) (0.0301) (0.0498) (0.0166)

1(disind ∈ 2− 3km)*same elevation 0.463** -0.00397 0.000573 0.426*** -0.00493 -0.0613 -0.0496 -0.0295
(0.180) (0.0112) (0.0284) (0.145) (0.00853) (0.0513) (0.0503) (0.0281)

1(disind ∈ 3− 4km)*same elevation 0.144 -0.0261 -0.0252 0.0818 -0.00868 -0.0916** -0.145*** -0.0431*
(0.178) (0.0264) (0.0309) (0.184) (0.0120) (0.0400) (0.0472) (0.0259)

1(disind > 4km)*same elevation 0.345** 0.00589 -0.0540** 0.345** -0.00260 0.0324 0.0478 0.0191
(0.157) (0.00813) (0.0251) (0.151) (0.00882) (0.0406) (0.0332) (0.0192)

1(disind ∈ 0− 1km) -0.344 -0.0417** -0.00219 -0.298 -0.0277*** -0.0609 -0.0732 -0.0560**
(0.249) (0.0161) (0.0291) (0.257) (0.00878) (0.0470) (0.0743) (0.0261)

1(disind ∈ 1− 2km) -0.0571 -0.0417*** -0.0348 0.0424 -0.0212** -0.0873 -0.0857 -0.0463*
(0.218) (0.0149) (0.0305) (0.202) (0.00818) (0.0577) (0.0772) (0.0247)

1(disind ∈ 2− 3km) -0.174 -0.0153 -0.0633* -0.0281 -0.0229** -0.0342 -0.0444 -0.0242
(0.221) (0.0170) (0.0331) (0.188) (0.0106) (0.0767) (0.0640) (0.0358)

1(disind ∈ 3− 4km) -0.120 0.00414 0.0111 -0.0281 0.00132 0.0278 0.0665 0.0129
(0.209) (0.00934) (0.0287) (0.166) (0.00584) (0.0361) (0.0510) (0.0185)

Observations 8,255 8,255 8,111 8,282 8,282 8,107 7,997 8,258
R-squared 0.401 0.060 0.191 0.583 0.273 0.246 0.550 0.166
p-value (Sum of elevation interacts=0) 0.0002 0.7616 0.2014 0.0002 0.1759 0.0113 0.0189 0.0419

Outcomes in 2000: Below-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*same elevation -0.0974 -0.00862 -0.0113 -0.161 -0.00463 -0.0158 -0.102 -0.0187
(0.190) (0.0160) (0.0301) (0.199) (0.0214) (0.0635) (0.0909) (0.0442)

1(disind ∈ 1− 2km)*same elevation -0.143 -0.0435** -0.0373 -0.252 -0.000998 -0.0302 -0.0747 -0.0273
(0.191) (0.0189) (0.0316) (0.155) (0.0173) (0.0512) (0.0731) (0.0331)

1(disind ∈ 2− 3km)*same elevation -0.234 -0.0262 -0.0245 -0.189 -0.00997 0.00329 -0.0269 -0.0155
(0.199) (0.0165) (0.0419) (0.149) (0.0123) (0.0619) (0.0694) (0.0249)

1(disind ∈ 3− 4km)*same elevation -0.293 -0.0320* -0.0308 -0.239 -0.0122 -0.0368 -0.0995 -0.0117
(0.202) (0.0173) (0.0341) (0.193) (0.0180) (0.0768) (0.0833) (0.0324)

1(disind > 4km)*same elevation 0.942*** 0.0310** 0.0265 0.898*** 0.00551 -0.0498 0.0187 -0.00460
(0.158) (0.0128) (0.0165) (0.139) (0.0155) (0.0513) (0.0629) (0.0310)

1(disind ∈ 0− 1km) 0.748*** 0.000832 0.0201 0.543*** -0.0241 -0.115* -0.0928 -0.0467
(0.208) (0.0201) (0.0332) (0.205) (0.0233) (0.0669) (0.0984) (0.0464)

1(disind ∈ 1− 2km) 0.662*** 0.0354* 0.0214 0.641*** -0.0192 -0.0785 -0.0800 -0.0204
(0.199) (0.0200) (0.0312) (0.160) (0.0179) (0.0520) (0.0743) (0.0328)

1(disind ∈ 2− 3km) 0.564*** 0.0252 0.0252 0.435*** -0.00150 -0.0685 -0.0592 -0.00979
(0.175) (0.0153) (0.0379) (0.139) (0.0113) (0.0621) (0.0633) (0.0233)

1(disind ∈ 3− 4km) 0.534*** 0.0317** 0.0226 0.442** 0.0114 0.0252 0.0768 0.00616
(0.195) (0.0152) (0.0341) (0.185) (0.0163) (0.0727) (0.0749) (0.0286)

Observations 7,870 7,870 7,371 7,869 7,869 7,367 7,803 7,870
R-squared 0.373 0.111 0.287 0.451 0.330 0.351 0.562 0.273
p-value (Sum of elevation interacts=0) 0.5421 0.0666 0.3677 0.8676 0.6487 0.2519 0.4629 0.3606

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to 1970 industrial
areas with above-median pollution intensity measure, and those from the lower panel from those closest to industrial
areas with below-median pollution level. Dependent variables of the first three columns are employment density,
the ratio of FIRE, IT and professional services in total employment, and median earnings, counted at the place of
work. The last five columns report results on employment density, the ratio of FIRE, IT and professional services in
total employment, median earnings, median housing value and ratio of college graduates among the population over
25 years old, counted at their place of residence. 1(disind ∈ x− ykm) is an indicator of whether or not the distance
from a tract to its closest industrial area is within x to y km. Same elevation is a dummy that takes one if the
PM10 monitor is at the same elevation or less than 100m lower than its closest industrial area, and not obstructed
by other areas in between. Controls include CBSA fixed effects, the distance from each monitor to transportation
lines, natural amenities and the CBD. Robust standard errors are clustered at CBSA level.
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Table A3: Growth from 1980-2000: Same elevation dummy

Growth from 1980 to 2000: Above-median pollution level

VARIABLES Employment Manufacture
employment

FIRE
employment

Median
income

Housing
value

College
graduates

1(disind ∈ 0− 1km)*Same Elevation 0.0436 0.0837 0.0918 -0.0347 -0.0152 0.0118
(0.0374) (0.0640) (0.0573) (0.0260) (0.0341) (0.0540)

1(disind ∈ 1− 2km)*Same Elevation -0.0712 -0.0541 -0.0625 0.0147 -0.0222 -0.0282
(0.0691) (0.102) (0.0712) (0.0198) (0.0222) (0.0823)

1(disind ∈ 2− 3km)*Same Elevation -0.162** -0.208* -0.168* -0.0683*** -0.0437 -0.245**
(0.0816) (0.109) (0.0997) (0.0237) (0.0312) (0.105)

1(disind ∈ 3− 4km)*Same Elevation -0.0441 -0.164 -0.123 -0.0264 -0.0547 -0.0945
(0.114) (0.123) (0.134) (0.0323) (0.0377) (0.160)

1(disind > 4km)*Same Elevation 0.165** 0.141 0.122 -0.0358 -0.0932** 0.0677
(0.0736) (0.0948) (0.0929) (0.0231) (0.0365) (0.0863)

1(disind ∈ 0− 1km) 0.272* 0.335* 0.178 0.0275 0.0416 0.337
(0.162) (0.189) (0.217) (0.0410) (0.0661) (0.248)

1(disind ∈ 1− 2km) 0.346** 0.394** 0.295 -0.0201 0.0211 0.291
(0.159) (0.189) (0.203) (0.0323) (0.0598) (0.231)

1(disind ∈ 2− 3km) 0.378** 0.443** 0.297* 0.0421 0.0243 0.426**
(0.155) (0.189) (0.175) (0.0304) (0.0328) (0.191)

1(disind ∈ 3− 4km) 0.227** 0.330* 0.228* 0.0257 0.0300 0.230*
(0.111) (0.170) (0.136) (0.0318) (0.0351) (0.138)

Observations 6,563 5,154 6,329 6,598 6,423 6,532
R-squared 0.371 0.344 0.324 0.245 0.504 0.257
p-value (Sum of elevation interacts=0) 0.2596 0.2594 0.2796 0.0363 0.1296 0.2050

Growth from 1980 to 2000: Below-median pollution level

VARIABLES Employment Manufacture
employment

FIRE
employment

Median
income

Housing
value

College
graduates

1(disind ∈ 0− 1km)*Same Elevation -0.0809 -0.0419 -0.0742 -0.0278 0.0368 -0.0295
(0.0758) (0.0860) (0.0734) (0.0256) (0.0329) (0.0768)

1(disind ∈ 1− 2km)*Same Elevation -0.0649 -0.0693 -0.0935 -0.0251 0.0676* -0.0678
(0.0767) (0.0859) (0.105) (0.0307) (0.0398) (0.0959)

1(disind ∈ 2− 3km)*Same Elevation -0.0103 -0.178 -0.124 -0.0417 0.00760 -0.0613
(0.0866) (0.147) (0.143) (0.0285) (0.0323) (0.0891)

1(disind ∈ 3− 4km)*Same Elevation 0.145*** 0.116 -0.0548 0.0229 0.00848 0.0923
(0.0479) (0.0739) (0.0904) (0.0577) (0.0495) (0.0693)

1(disind > 4km)*Same Elevation 0.0936 0.0999 -0.0446 0.00326 -0.0014 0.0543
(0.114) (0.131) (0.110) (0.0226) (0.029) (0.113)

1(disind ∈ 0− 1km) 0.0946 0.109 -0.0318 0.00174 -0.0167 -0.0507
(0.0822) (0.114) (0.0917) (0.0345) (0.0397) (0.0988)

1(disind ∈ 1− 2km) 0.0477 0.0717 -0.0321 -0.00237 -0.0505 -0.0451
(0.0871) (0.109) (0.121) (0.0377) (0.0458) (0.110)

1(disind ∈ 2− 3km) 0.00140 0.157 0.0289 -0.00280 -0.00229 -0.0273
(0.0935) (0.154) (0.138) (0.0316) (0.0360) (0.0996)

1(disind ∈ 3− 4km) -0.118** -0.0878 0.00896 -0.0453 -0.000972 -0.135*
(0.0478) (0.0799) (0.0768) (0.0581) (0.0461) (0.0746)

Observations 6,563 5,154 6,329 6,598 6,423 6,532
R-squared 0.371 0.344 0.324 0.245 0.504 0.257
p-value (Sum of elevation interacts=0) 0.9307 0.3793 0.1403 0.4668 0.2417 0.7083

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to 1970 industrial
areas with above-median pollution intensity measure, and those from the lower panel from those closest to industrial
areas with below-median pollution level.Dependent variables are growth in total, manufacture, FIRE employment,
median household income, median housing value and the number of college graduates from 1980 to 2000, all counted
at the place of residence. 1(disind ∈ x − ykm) is an indicator of whether or not the distance from a tract to its
closest industrial area is within x to y km. Same elevation is a dummy that takes one if the tract is at the same
elevation or less than 100m lower than its closest industrial area, and not obstructed by other areas in between.
Controls include CBSA fixed effects, the distance from each monitor to transportation lines, natural amenities and
the CBD. Robust standard errors are clustered at CBSA level.
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Table A4: Exclude coastal cities: economic outcomes in 2000

Outcomes in 2000: Tracts closest to above-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*Downwind 0.0124 0.00335 0.000700 -0.0235 -0.00416 0.00980 -0.0625** -0.0214*
(0.0872) (0.00791) (0.0126) (0.0568) (0.00413) (0.0231) (0.0297) (0.0121)

1(disind ∈ 1− 2km)*Downwind 0.0946 -0.0103 -0.0157 0.101 -0.0112*** -0.0391** -0.0881*** -0.0370***
(0.0819) (0.00846) (0.0147) (0.0681) (0.00378) (0.0182) (0.0319) (0.0131)

1(disind ∈ 2− 3km)*Downwind -0.129 -0.00844 -0.0382* -0.139 -0.0148*** -0.0280 -0.0193 -0.0212
(0.114) (0.00848) (0.0205) (0.0998) (0.00502) (0.0250) (0.0362) (0.0163)

1(disind ∈ 3− 4km)*Downwind -0.174 -0.0152 -0.0169 -0.135 -0.0127* -0.0241 -0.0608 -0.0451*
(0.177) (0.0109) (0.0291) (0.105) (0.00695) (0.0323) (0.0622) (0.0238)

1(disind > 4km)*Downwind 0.178 0.0144 0.0269 0.192 0.00580 -0.0103 0.0338 -0.0120
(0.198) (0.0109) (0.0215) (0.152) (0.00778) (0.0359) (0.0463) (0.0153)

1(disind ∈ 0− 1km) -0.261 -0.0297* 0.0759** -0.365** -0.0188** -0.143*** -0.220*** -0.0878***
(0.189) (0.0169) (0.0294) (0.180) (0.00888) (0.0462) (0.0667) (0.0240)

1(disind ∈ 1− 2km) -0.310* -0.0217 0.0446* -0.268* -0.0105 -0.0808* -0.136** -0.0548**
(0.173) (0.0150) (0.0253) (0.147) (0.00841) (0.0429) (0.0583) (0.0210)

1(disind ∈ 2− 3km) -0.242* -0.0131 0.0405 -0.118 -0.00468 -0.0338 -0.0700 -0.0282
(0.128) (0.0120) (0.0270) (0.113) (0.00692) (0.0391) (0.0506) (0.0192)

1(disind ∈ 3− 4km) -0.0822 -0.00912 0.0334 -0.0377 0.00103 -0.0160 0.0116 -0.00140
(0.113) (0.00761) (0.0233) (0.0814) (0.00580) (0.0304) (0.0422) (0.0165)

Observations 4,907 4,907 4,767 4,914 4,914 4,765 4,865 4,908
R-squared 0.292 0.108 0.247 0.384 0.345 0.281 0.487 0.232

Outcomes in 2000: Tracts closest to below-median pollution level

By place of work By place of residence

VARIABLES Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

1(disind ∈ 0− 1km)*Downwind -0.101 -0.00410 -0.00445 -0.0452 -0.00164 0.0153 -0.0206 -0.0186*
(0.0953) (0.00747) (0.0126) (0.0725) (0.00387) (0.0154) (0.0289) (0.0102)

1(disind ∈ 1− 2km)*Downwind -0.107 0.000508 0.00197 -0.0518 -0.00281 0.0138 -0.0482 -0.0123
(0.0877) (0.00623) (0.0180) (0.0612) (0.00348) (0.0189) (0.0302) (0.0109)

1(disind ∈ 2− 3km)*Downwind -0.159 -0.00585 0.0238 -0.225* -0.00112 0.0347 -0.0252 -0.00551
(0.135) (0.00962) (0.0202) (0.116) (0.00557) (0.0263) (0.0385) (0.0148)

1(disind ∈ 3− 4km)*Downwind -0.113 0.000953 -0.0246 0.00298 -0.00641 -0.00991 -0.0255 0.00417
(0.132) (0.0152) (0.0242) (0.110) (0.00770) (0.0297) (0.0586) (0.0210)

1(disind > 4km)*Downwind -0.124 0.00372 -0.0250** 0.0450 0.00452 0.0236 0.0446 0.0195
(0.121) (0.00656) (0.0125) (0.108) (0.0104) (0.0413) (0.0641) (0.0262)

1(disind ∈ 0− 1km) 0.472** -0.0292*** -0.00467 0.285* -0.0239*** -0.150*** -0.229*** -0.0842***
(0.189) (0.0109) (0.0243) (0.170) (0.00656) (0.0273) (0.0394) (0.0185)

1(disind ∈ 1− 2km) 0.431** -0.0231** -0.0341 0.330** -0.0183*** -0.131*** -0.180*** -0.0639***
(0.168) (0.00894) (0.0211) (0.150) (0.00634) (0.0237) (0.0370) (0.0164)

1(disind ∈ 2− 3km) 0.204 -0.0101 -0.0249 0.221* -0.00925 -0.0780*** -0.0996** -0.0339**
(0.140) (0.00795) (0.0181) (0.115) (0.00663) (0.0283) (0.0386) (0.0161)

1(disind ∈ 3− 4km) 0.153 -0.00573 -0.0148 0.155 -0.00319 -0.0170 -0.0375 -0.0201
(0.122) (0.00689) (0.0151) (0.101) (0.00540) (0.0234) (0.0326) (0.0149)

Observations 5,878 5,878 5,558 5,875 5,875 5,554 5,835 5,878
R-squared 0.324 0.126 0.260 0.393 0.430 0.322 0.505 0.283

Notes: Results from the upper panel are obtained from a sample of census tracts that are closest to 1970 industrial
areas with above-median pollution intensity measure, and those from the lower panel from those closest to industrial
areas with below-median pollution level, in non-coastal cities. Dependent variables of the first three columns are
employment density, the ratio of FIRE, IT and professional services in total employment, and median earnings,
counted at the place of work. The last five columns report results on employment density, the ratio of FIRE, IT
and professional services in total employment, median earnings, median housing value and ratio of college graduates
among the population over 25 years old, counted at their place of residence. 1(disind ∈ x− ykm) is an indicator of
whether or not the distance from a tract to its closest industrial area is within x to y km. Downwind is an indicator
of whether or not the TSP monitor is located downwind of the industrial area. Controls include CBSA fixed effects,
the distance from each monitor to transportation lines, natural amenities and the CBD. Robust standard errors are
clustered at CBSA level.
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Table A5: Determinants of local amenity perceived by workers from different sectors

VARIABLES FIRE IT Edu Med Professional Public admin Art entertain

1(industrialarea) -0.0867*** -0.0741*** -0.0778*** -0.0825*** -0.0681*** -0.0471***
(0.00968) (0.0111) (0.00785) (0.00855) (0.00823) (0.00797)

disind<1km -0.0911*** -0.0728*** -0.0824*** -0.0884*** -0.0819*** -0.0575***
(0.0106) (0.0122) (0.00788) (0.00935) (0.0108) (0.0101)

disind∈ 1− 2km -0.0653*** -0.0520*** -0.0645*** -0.0677*** -0.0678*** -0.0467***
(0.0109) (0.0113) (0.00830) (0.0103) (0.0108) (0.0108)

disind∈ 2− 3km -0.0435*** -0.0399*** -0.0457*** -0.0508*** -0.0462*** -0.0358***
(0.00998) (0.0113) (0.00841) (0.0100) (0.00991) (0.00955)

disind∈ 3− 4km -0.0149** -0.0176** -0.0249*** -0.0185** -0.0268*** -0.0147***
(0.00609) (0.00801) (0.00556) (0.00713) (0.00570) (0.00539)

Public school 0.0116*** 0.00867*** 0.0147*** 0.0104*** 0.0149*** 0.0124***
(0.00206) (0.00253) (0.00162) (0.00216) (0.00161) (0.00153)

Distance to highway -7.87e-07 3.56e-07 -8.38e-07 -1.02e-06 6.22e-07 5.39e-08
(7.69e-07) (8.25e-07) (7.28e-07) (6.99e-07) (8.07e-07) (6.56e-07)

Distance to the CBD 0.00604*** 0.00534*** 0.00640*** 0.00557*** 0.00681*** 0.00591***
(0.000504) (0.000438) (0.000633) (0.000519) (0.000467) (0.000427)

Beach 0.0764*** 0.0485* 0.0552* 0.0425 0.0787*** 0.0626**
(0.0287) (0.0268) (0.0281) (0.0278) (0.0245) (0.0252)

Distance to railway 0.00610*** 0.00514*** 0.00471*** 0.00502*** 0.00268* 0.00379***
(0.00156) (0.00157) (0.00131) (0.00133) (0.00152) (0.00102)

Distance to water 1.22e-08 2.82e-07 6.03e-07 8.08e-07 2.72e-07 1.28e-07
(5.12e-07) (7.27e-07) (3.96e-07) (6.08e-07) (6.92e-07) (5.06e-07)

Observations 27,529 26,986 27,639 27,625 27,431 27,621
R-squared 0.781 0.832 0.870 0.785 0.830 0.918

VARIABLES Manufacture Wholesale Retail Farming Construction Utility

1(industrialarea) -0.0336*** -0.0569*** -0.0559*** 0.00204 -0.0554*** -0.0505***
(0.00778) (0.00875) (0.00808) (0.0173) (0.00859) (0.00686)

disind<1km -0.0540*** -0.0678*** -0.0623*** 0.0210 -0.0727*** -0.0625***
(0.00659) (0.0112) (0.00878) (0.0189) (0.00875) (0.00775)

disind∈ 1− 2km -0.0498*** -0.0535*** -0.0489*** -0.00524 -0.0626*** -0.0442***
(0.00680) (0.0129) (0.00937) (0.0235) (0.0103) (0.00835)

disind∈ 2− 3km -0.0408*** -0.0439*** -0.0370*** 0.0219 -0.0546*** -0.0428***
(0.00684) (0.0109) (0.00930) (0.0224) (0.00906) (0.00722)

disind∈ 3− 4km -0.0186*** -0.0198*** -0.0213*** 0.0229 -0.0126*** -0.0174***
(0.00626) (0.00547) (0.00545) (0.0250) (0.00613) (0.00604)

Public school 0.0157*** 0.0138*** 0.0138*** -0.0192*** 0.0158*** 0.0151***
(0.00188) (0.00160) (0.00177) (0.00467) (0.00159) (0.00143)

Distance to highway -1.11e-08 -2.55e-07 -5.41e-07 -1.03e-06 -1.47e-07 2.58e-08
(8.29e-07) (6.89e-07) (7.18e-07) (7.72e-07) (8.06e-07) (7.30e-07)

Distance to the CBD 0.00762*** 0.00686*** 0.00672*** -0.00210*** 0.00777*** 0.00618***
(0.000500) (0.000618) (0.000537) (0.000469) (0.000666) (0.000418)

Beach 0.0531* 0.0317 0.0786*** -0.0297 0.0815** 0.0855***
(0.0289) (0.0269) (0.0292) (0.0577) (0.0325) (0.0317)

Distance to railway 0.00165 0.00374** 0.00374** 0.00674** 0.00306** 0.00320**
(0.00128) (0.00169) (0.00157) (0.00309) (0.00144) (0.00139)

Distance to water 4.66e-07 -4.99e-08 6.16e-07* -4.13e-07 1.99e-07 3.89e-07
(4.51e-07) (5.46e-07) (3.57e-07) (3.02e-07) (4.93e-07) (4.72e-07)

Observations 27,586 27,230 27,628 9,218 27,490 27,522
R-squared 0.844 0.816 0.901 0.120 0.844 0.797

Notes: Dependent variable is estimated amenity level in 2000 perceived by workers from different
sectors, defined in equation (22), with HRis standing for the number of workers from sector s at
place of residence and w̃ps standing for adjusted wages of sector s at place of work. CBSA fixed
effects are controlled for. SE clustered at CBSA level.
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Table A6: Determinants of local amenity perceived by different sectors

VARIABLES FIRE IT Edu Med Professional Public admin

violent crime rate -0.00506*** -0.00465*** -0.00482*** -0.00446*** -0.00494***
(0.000665) (0.000580) (0.000515) (0.000514) (0.000581)

1(industrialarea) -0.0998*** -0.122*** -0.0914*** -0.104*** -0.0538***
(0.0179) (0.0261) (0.0135) (0.0164) (0.0109)

disind<1km -0.0836*** -0.0968*** -0.0724*** -0.0843*** -0.0494***
(0.0178) (0.0242) (0.0131) (0.0162) (0.0106)

disind∈ 1− 2km -0.0783*** -0.0886*** -0.0751*** -0.0846*** -0.0472***
(0.0176) (0.0222) (0.0134) (0.0151) (0.0116)

disind∈ 2− 3km -0.0635*** -0.0796*** -0.0484*** -0.0696*** -0.0341***
(0.0164) (0.0199) (0.0126) (0.0159) (0.0119)

disind∈ 3− 4km -0.0499*** -0.0644*** -0.0363** -0.0449*** -0.0253**
(0.0158) (0.0161) (0.0138) (0.0126) (0.0104)

Public school 0.00194 0.000695 0.00635* 0.000994 0.00658*
(0.00281) (0.00364) (0.00322) (0.00328) (0.00336)

Distance to highway 2.58e-06 1.55e-06 4.85e-06* 1.46e-06 7.00e-06**
(2.11e-06) (2.91e-06) (2.50e-06) (2.62e-06) (2.84e-06)

Distance to the CBD 0.0113*** 0.00545*** 0.00659*** 0.00896*** 0.00654***
(0.000701) (0.00137) (0.00128) (0.000925) (0.000951)

Dostance to railway 0.0146*** 0.0161*** 0.0102*** 0.00752*** 0.0106***
(0.00317) (0.00266) (0.00194) (0.00225) (0.00376)

Distance to water 5.64e-07 -2.38e-06*** 7.20e-07 -1.60e-06* -5.90e-07
(1.39e-06) (7.49e-07) (8.79e-07) (8.03e-07) (1.23e-06)

Beach -0.0829** 0.0137 0.0324*** 0.0204 -0.0358**
(0.0345) (0.0411) (0.00987) (0.0281) (0.0135)

Observations 3,446 3,369 3,465 3,464 3,424
0.831 0.823 0.868 0.825 0.835

VARIABLES Art Entertain Manufacture Wholesale Retail Farming

violate crime rate -0.00349*** -0.00318*** -0.00358*** -0.00394*** -0.00120
(0.000427) (0.000493) (0.000583) (0.000566) (0.00200)

1(industrialarea) -0.0360* -0.0153 -0.0179 -0.0649*** -0.0821
(0.0194) (0.0104) (0.0140) (0.0178) (0.124)

disind<1km -0.0292* -0.0286*** -0.0244* -0.0643*** 0.00171
(0.0167) (0.00908) (0.0125) (0.0156) (0.115)

disind∈ 1− 2km -0.0280 -0.0356*** -0.0290** -0.0632*** -0.0270
(0.0174) (0.0100) (0.0111) (0.0146) (0.124)

disind∈ 2− 3km -0.0209 -0.0282*** -0.0374*** -0.0488*** 0.00518
(0.0148) (0.00974) (0.0106) (0.0114) (0.128)

disind∈ 3− 4km -0.00341 -0.00899 -0.0219** -0.0268** -0.0581
(0.0184) (0.00907) (0.0107) (0.0122) (0.130)

Public school 0.00863*** 0.00631 0.00841* 0.00571 0.00519
(0.00301) (0.00539) (0.00455) (0.00405) (0.00471)

Distance to highway -1.86e-06 8.48e-07 3.36e-07 2.08e-06 6.00e-06
(3.57e-06) (2.48e-06) (2.31e-06) (2.81e-06) (1.66e-05)

Distance to the CBD 0.00453** 0.00914*** 0.00729*** 0.00680*** -0.00454
(0.00202) (0.00134) (0.00203) (0.00154) (0.00637)

Dostance to railway 0.00615*** 0.00301 0.0114*** 0.00753** 0.0181
(0.00201) (0.00315) (0.00315) (0.00296) (0.0202)

Distance to water -7.66e-07 4.72e-07 -3.22e-06*** -9.44e-07 3.34e-06
(1.25e-06) (1.53e-06) (9.79e-07) (1.38e-06) (3.98e-06)

beach 0.0790*** -0.0148 -0.0388** 0.000829 -0.395*
(0.0142) (0.0330) (0.0152) (0.0155) (0.208)

Observations 3,461 3,453 3,375 3,463 618
0.892 0.825 0.747 0.908 0.138

Notes: Dependent variable is estimated amenity level in 2000 perceived by different sectors, defined
in equation (22). Only tracts with 2000 crime rate data are kept. CBSA fixed effects are controlled
for. SE clustered at CBSA level.
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Table A7: Determinants of local amenity perceived by different sectors

VARIABLES FIRE IT Edu Med Professional Public admin

PM10 2000 -0.00418** -0.00418** -0.00469*** -0.00308** -0.00606***
(0.00163) (0.00184) (0.00145) (0.00144) (0.00117)

1(industrialarea) -0.101*** -0.0719*** -0.0984*** -0.0994*** -0.0705***
(0.0287) (0.0267) (0.0203) (0.0251) (0.0247)

disind<1km -0.0887*** -0.0500* -0.0917*** -0.0971*** -0.0666***
(0.0282) (0.0273) (0.0207) (0.0262) (0.0256)

disind∈ 1− 2km -0.0714*** -0.0412 -0.0813*** -0.0877*** -0.0668***
(0.0267) (0.0260) (0.0196) (0.0242) (0.0238)

disind∈ 2− 3km -0.0572* -0.0275 -0.0576*** -0.0761*** -0.0473*
(0.0294) (0.0282) (0.0205) (0.0264) (0.0250)

disind∈ 3− 4km -0.00755 0.00766 -0.0184 -0.00944 4.05e-05
(0.0217) (0.0202) (0.0145) (0.0195) (0.0190)

Public school 0.00703** 0.00427 0.0111*** 0.00680** 0.00825***
(0.00321) (0.00347) (0.00292) (0.00303) (0.00298)

Distance to highway 6.21e-07 2.76e-06 -2.34e-08 1.05e-06 2.81e-06*
(1.11e-06) (2.59e-06) (1.19e-06) (1.66e-06) (1.54e-06)

Distance to the CBD 0.00554*** 0.00434*** 0.00558*** 0.00548*** 0.00573***
(0.000658) (0.000778) (0.000671) (0.000598) (0.000720)

Distance to railway 0.00856 0.00648 0.00666* 0.00512 0.000507
(0.00529) (0.00565) (0.00391) (0.00466) (0.00530)

Distance to water -8.69e-07 -3.79e-07 3.84e-08 3.26e-07 -7.08e-07
(8.23e-07) (1.20e-06) (7.08e-07) (6.22e-07) (8.97e-07)

Observations 4,636 4,487 4,662 4,659 4,597
R-squared 0.822 0.866 0.903 0.847 0.856

VARIABLES Art Entertain Manufacture Wholesale Retail Farming

PM10 2000 -0.00231 -0.00331 -0.00387** -0.00308*** -0.00383*
(0.00165) (0.00206) (0.00174) (0.00145) (0.00399)

1(industrialarea) -0.0591*** -0.0358* -0.0371 -0.0406* 0.0499
(0.0190) (0.0185) (0.0248) (0.0207) (0.0819)

disind<1km -0.0598*** -0.0517*** -0.0452* -0.0474** 0.0452
(0.0204) (0.0180) (0.0254) (0.0208) (0.0795)

disind∈ 1− 2km -0.0632*** -0.0688*** -0.0498** -0.0487** -0.0409
(0.0177) (0.0174) (0.0252) (0.0191) (0.0775)

disind∈ 2− 3km -0.0461** -0.0462*** -0.0273 -0.0281 0.113
(0.0181) (0.0169) (0.0237) (0.0177) (0.123)

disind∈ 3− 4km -0.0143 -0.0256 -0.0128 0.00632 0.0246
(0.0142) (0.0160) (0.0186) (0.0146) (0.121)

Public school 0.00978*** 0.00751*** 0.00672** 0.00908*** -0.0119
(0.00258) (0.00286) (0.00286) (0.00295) (0.0147)

Distance to highway 4.51e-06** 3.24e-06 3.36e-06 3.28e-06 6.19e-06***
(2.09e-06) (2.24e-06) (2.39e-06) (2.00e-06) (2.17e-06)

Distance to the CBD 0.00497*** 0.00704*** 0.00628*** 0.00637*** -0.00198
(0.000687) (0.00106) (0.000814) (0.000820) (0.00163)

Distance to railway 0.00642** 0.000235 0.00506 0.00700 0.0159
(0.00313) (0.00423) (0.00388) (0.00477) (0.0166)

Distance to water 4.24e-07 4.15e-07 -7.17e-07 7.16e-08 -1.85e-06
(1.04e-06) (5.57e-07) (1.01e-06) (7.92e-07) (1.28e-06)

Observations 4,658 4,647 4,552 4,658 1,298
R-squared 0.941 0.862 0.854 0.921 0.203

Note Dependent variable is estimated amenity level in 2000 perceived by different sectors, defined
in equation (22). Only tracts within 2 km to a PM10 monitor station are kept in the sample. CBSA
fixed effects are controlled for. SE clustered at CBSA level.
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Table A8: Determinants of local productivity by different sectors

VARIABLES FIRE IT Edu Med Professional Public admin Art entertain

1(industrialarea) -0.0412*** -0.0315** -0.0231*** -0.0209** -0.00424 -0.0222**
(0.00912) (0.0138) (0.00589) (0.00822) (0.0103) (0.00955)

disind<1km -0.0464*** -0.0316*** -0.0148** -0.0328*** 0.00119 -0.0282***
(0.00920) (0.0136) (0.00610) (0.00769) (0.0101) (0.0101)

disind∈ 1− 2km -0.0252*** -0.0312** -0.0114* -0.0284*** 0.00436 -0.0162
(0.00948) (0.0150) (0.00608) (0.00838) (0.0114) (0.0115)

disind∈ 2− 3km -0.0382*** -0.0315* -0.00321 0.00165 0.0118 -0.00166
(0.0116) (0.0165) (0.00683) (0.00824) (0.0104) (0.0116)

disind∈ 3− 4km 0.00140 0.0270* 0.00251 0.00635 0.0228 0.00575
(0.0130) (0.0159) (0.00717) (0.0127) (0.0145) (0.0115)

Public School -0.00536*** -0.00681** 0.0284*** -0.00455** -0.00718*** -0.0177***
(0.00197) (0.00295) (0.00154) (0.00195) (0.00204) (0.00206)

Distance to highway -2.37e-06*** -3.93e-06*** -1.76e-06*** -2.31e-06*** -3.08e-06*** -2.59e-07
(5.42e-07) (9.79e-07) (3.95e-07) (6.26e-07) (6.65e-07) (5.26e-07)

Distance to CBD -0.00110*** -0.00123*** -0.00146*** -0.000914*** -0.00206*** -0.00184***
(0.000358) (0.000357) (0.000228) (0.000344) (0.000404) (0.000230)

Beach -0.0463 0.0207 -0.0535 0.0861** 0.0149 -0.0193
(0.0500) (0.0687) (0.0376) (0.0341) (0.0469) (0.0492)

Distance to railway 0.00820*** 0.00741*** 0.00439*** 0.00670*** 0.00612*** 0.00567***
(0.00147) (0.00213) (0.00118) (0.00142) (0.00177) (0.00127)

Distance to water -4.26e-08 -4.03e-07** -1.29e-07 -6.29e-08 -1.53e-07 1.90e-07
(2.15e-07) (1.66e-07) (1.46e-07) (1.87e-07) (1.95e-07) (1.98e-07)

Observations 24,345 17,497 27,210 25,455 19,301 22,864
R-squared 0.136 0.104 0.199 0.138 0.185 0.138

VARIABLES Manufacture Wholesale Retail Farming Construction Utility

1(industrialarea) -0.0111 -0.0222 -0.0195** 0.00204 -0.0105 -0.00346
(0.0101) (0.0118) (0.00818) (0.0173) (0.00722) (0.0101)

disind<1km -0.0116 -0.0449*** -0.0256*** 0.0210 -0.0206** -0.0159
(0.0126) (0.0116) (0.00941) (0.0189) (0.00807) (0.0128)

disind∈ 1− 2km -0.0291** -0.0170 -0.0227** -0.00524 -0.0188** -0.00631
(0.0118) (0.0132) (0.00990) (0.0235) (0.00872) (0.0138)

disind∈ 2− 3km -0.0119 -0.0153 -0.0351*** 0.0219 -0.0117 -0.00835
(0.00997) (0.0140) (0.0114) (0.0224) (0.00932) (0.0156)

disind∈ 3− 4km -0.00487 0.0124 -0.00669 0.0306 0.0148 0.00184
(0.0133) (0.0158) (0.0108) (0.0250) (0.0107) (0.0134)

Publich School -0.0133*** -0.00862*** -0.0182*** -0.0192*** -0.00722*** -0.00604***
(0.00277) (0.00307) (0.00204) (0.00467) (0.00226) (0.00224)

Distance to highway -3.45e-06*** -2.95e-06*** -2.32e-06*** -1.03e-06 -3.07e-06*** -2.40e-06***
(7.29e-07) (6.94e-07) (5.16e-07) (7.72e-07) (5.53e-07) (5.75e-07)

Distance to CBD 0.000173 -0.000388 -0.000884** -0.00210*** -0.000495 -0.000471
(0.000612) (0.000489) (0.000352) (0.000469) (0.000333) (0.000353)

Beach 0.0117 0.0405 0.00136 -0.0297 -0.00680 0.0127
(0.0582) (0.0532) (0.0455) (0.0577) (0.0277) (0.0357)

Distance to railway 0.00633*** 0.00599*** 0.00358** 0.00674** 0.00448*** 0.00570***
(0.00161) (0.00207) (0.00155) (0.00309) (0.00138) (0.00142)

Distance to water 1.03e-07 -2.66e-07 7.67e-08 -4.13e-07 -1.69e-07 -1.57e-07
(2.39e-07) (3.62e-07) (2.66e-07) (3.02e-07) (2.43e-07) (1.98e-07)

Observations 24,273 21,643 25,640 9,218 25,537 21,310
R-squared 0.115 0.095 0.129 0.120 0.192 0.084

Notes: Dependent variable is estimated productivity of different sectors in 2000, defined in equa-
tion (17). CBSA fixed effects are controlled for. SE clustered at CBSA level.
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Table A9: Triple-differences specification: 2000 outcomes

By place of work By place of residence

VARIABLES 1971-79
log TSP

Employ
density

Highskill
ratio

Median
earnings

Employ
density

Highskill
ratio

Median
earnings

Housing
value

College
ratio

IND1*TSP7179*Downwind 0.00904 -0.0890 -0.0158 -0.0183 0.0297 -0.0186** -0.0712** -0.108** -0.0370**
(0.0316) (0.101) (0.0162) (0.0226) (0.0594) (0.00836) (0.0286) (0.0495) (0.0163)

IND2*TSP7179*Downwind 0.0355 -0.114 -0.0179 -0.0172 -0.0645 -0.0200* -0.0620*** -0.146*** -0.0423**
(0.0359) (0.162) (0.0226) (0.0198) (0.0707) (0.0109) (0.0238) (0.0460) (0.0193)

IND3*TSP7179*Downwind 0.0303 -0.133 -0.0334* -0.0319* 0.0240 -0.0180 -0.0165 -0.0750* -0.0231
(0.0325) (0.114) (0.0171) (0.0193) (0.0824) (0.0111) (0.0268) (0.0445) (0.0153)

IND4*TSP7179*Downwind 0.115** -0.0250 0.0448 -0.103** -0.00473 -0.0283 -0.0996 -0.0778 -0.0457
(0.0561) (0.370) (0.0335) (0.0430) (0.274) (0.0211) (0.108) (0.0957) (0.0384)

IND1*TSP7179 0.136*** -0.101** -0.00708 0.00169 -0.124*** -0.00846** 0.00612 0.0151 0.00470
(0.0108) (0.0454) (0.00514) (0.00673) (0.0357) (0.00396) (0.0156) (0.0239) (0.0105)

IND2*TSP7179 0.104*** -0.0627 0.00211 -0.00322 -0.0855** -0.00424 0.00767 0.0250 0.00691
(0.0236) (0.0572) (0.00459) (0.00753) (0.0395) (0.00288) (0.0170) (0.0252) (0.0111)

IND3*TSP7179 0.101*** 0.0153 0.00255 -0.00322 -0.00939 -0.00982* -0.0191 -0.0113 -0.00933
(0.0175) (0.0489) (0.00608) (0.00665) (0.0442) (0.00547) (0.0194) (0.0255) (0.00996)

IND4*TSP7179 0.0439* -0.0998 -0.000489 0.00727 -0.104* -0.000947 0.0207 0.0410 0.0171
(0.0263) (0.0676) (0.00461) (0.00797) (0.0542) (0.00197) (0.0184) (0.0253) (0.0107)

IND1*Downwind 0.0186 -0.00178 0.0235 -0.00679 0.167 0.00714 0.0945** -0.0150 0.0135
(0.204) (0.204) (0.0241) (0.0293) (0.151) (0.0143) (0.0475) (0.0689) (0.0267)

IND2*Downwind -0.102 -0.115 0.0230 -0.0453 0.155 0.00363 0.0844* 0.0106 0.0165
(0.221) (0.220) (0.0251) (0.0313) (0.154) (0.0167) (0.0455) (0.0747) (0.0290)

IND3*Downwind -0.0248 0.00929 0.0242 0.00107 -0.0207 0.000126 0.0132 -0.0663 -0.00561
(0.257) (0.255) (0.0296) (0.0364) (0.187) (0.0183) (0.0544) (0.0784) (0.0309)

IND4*Downwind 0.525* 0.642** 0.0332 -0.0566 0.391** 0.000686 -0.0516 0.0193 0.0368
(0.278) (0.301) (0.0276) (0.0356) (0.172) (0.0160) (0.0674) (0.0716) (0.0295)

IND1 0.0584** 0.516** -0.0186 0.0168 0.239 -0.0412*** -0.205*** -0.255*** -0.105***
(0.0292) (0.220) (0.0168) (0.0240) (0.193) (0.00942) (0.0329) (0.0529) (0.0198)

IND2 0.0435* 0.455** -0.00562 -0.00315 0.287 -0.0259*** -0.165*** -0.201*** -0.0820***
(0.0257) (0.195) (0.0144) (0.0179) (0.184) (0.00871) (0.0311) (0.0432) (0.0172)

IND3 0.00560 0.217 -0.000269 -0.00773 0.181 -0.0137* -0.122*** -0.115** -0.0539***
(0.0194) (0.135) (0.0118) (0.0183) (0.132) (0.00736) (0.0324) (0.0480) (0.0196)

IND4 0.00913 0.107 -0.00136 -0.0138 0.0890 -0.00464 -0.0519** -0.0487 -0.0249*
(0.0157) (0.0953) (0.0111) (0.0149) (0.0897) (0.00556) (0.0224) (0.0417) (0.0143)

Observations 10,565 10,508 10,508 10,176 10,532 10,532 10,170 10,251 10,510
R-squared 0.635 0.369 0.072 0.228 0.521 0.296 0.291 0.552 0.225

Notes: Dependent variable is estimated productivity of different sectors in 2000, defined in equa-
tion (17). CBSA fixed effects are controlled for. SE clustered at CBSA level.
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Table A10: Triple-differences specification: Growth from 1980 to 2000

Growth from 1980 to 2000

VARIABLES Employment Manufacture
employment

FIRE
employment

Median
income

Housing
value

College
graduates

IND1*TSP7179*Downwind -0.0161 -0.00800 -0.0363 -0.0214** 0.0128 -0.0131
(0.0233) (0.0297) (0.0332) (0.0101) (0.0159) (0.0302)

IND2*TSP7179*Downwind -0.0503* -0.0547 -0.0645* 0.00935 0.00900 -0.0446
(0.0277) (0.0523) (0.0332) (0.0135) (0.0146) (0.0329)

IND3*TSP7179*Downwind -0.0441 -0.0686 0.000227 -0.00646 0.00956 -0.0639
(0.0327) (0.0439) (0.0466) (0.0110) (0.0179) (0.0500)

IND4*TSP7179*Downwind -0.0481 -0.0177 -0.0659 -0.0399* -0.0167 -0.0922
(0.0548) (0.0696) (0.0550) (0.0241) (0.0189) (0.0694)

IND1*TSP7179 -0.0157 -0.00949 -0.0197 0.000921 -0.00178 -0.0100
(0.0127) (0.0184) (0.0182) (0.00438) (0.00545) (0.0144)

IND2*TSP7179 -0.000302 -0.00225 0.00494 -0.00663 0.00356 -0.00855
(0.0110) (0.0139) (0.0138) (0.00546) (0.00745) (0.0144)

IND3*TSP7179 0.00303 0.0328 -0.0556 -0.0171* -0.00678 -0.0175
(0.0299) (0.0377) (0.0361) (0.00998) (0.0113) (0.0365)

IND4*TSP7179 -0.0224 -0.0290* -0.0387 0.00320 -0.000243 -0.0176
(0.0138) (0.0166) (0.0248) (0.00400) (0.00339) (0.0190)

IND1*Downwind -0.00143 -0.0430 -0.0169 -0.0122 0.0221 -0.00299
(0.0547) (0.0532) (0.0705) (0.0142) (0.0356) (0.0541)

IND2*Downwind 0.0355 0.0203 0.0584 -0.0312*** -0.0233 0.0181
(0.0390) (0.0560) (0.0451) (0.0114) (0.0231) (0.0396)

IND3*Downwind 0.00124 0.00544 -0.0193 -0.0135 -0.0143 0.00977
(0.0480) (0.0588) (0.0536) (0.0193) (0.0234) (0.0581)

IND4*Downwind -0.0342 -0.0200 -0.104* -0.0222 -0.0378 -0.0206
(0.0557) (0.0726) (0.0618) (0.0226) (0.0248) (0.0696)

IND1 -0.0196 -0.0737*** -0.0208 0.0224*** 0.0207** -0.0678**
(0.0223) (0.0279) (0.0295) (0.00818) (0.00925) (0.0291)

IND2 -0.0443** -0.0973*** -0.0576* 0.0133 0.0127 -0.0927***
(0.0215) (0.0265) (0.0300) (0.00873) (0.0117) (0.0251)

IND3 -0.0355 -0.115*** -0.0687* -0.00702 0.00616 -0.0867**
(0.0320) (0.0332) (0.0404) (0.0126) (0.0178) (0.0407)

IND4 -0.0170 -0.0719** -0.0117 0.0126 0.0238 -0.0566
(0.0268) (0.0312) (0.0365) (0.0123) (0.0229) (0.0416)

Observations 12,499 9,602 11,889 12,607 12,200 12,420
R-squared 0.306 0.305 0.244 0.233 0.502 0.184
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Table A11: IV estimation results

IV: downwind*8 distance buffers

By place of work By place of residence

VARIABLES Highskill
ratio

Median
earnings

Highskill
ratio

Median
earnings

Housing
value

College
ratio

∆TSP1971− 1979 -0.00151 -0.00182 -0.00360 -0.00437 -0.00261 -0.00518
(0.00143) (0.00200) (0.00371) (0.00413) (0.00518) (0.00378)

Observations 6,903 6,782 6,926 6,777 6,629 6,905
F1stStage 4.179 4.201 4.098 4.075 4.123 4.255
R-squared 0.044 0.177 0.132 0.252 0.553 0.078

IV: downwind*1 distance buffer

By place of work By place of residence

VARIABLES Highskill
ratio

Median
earnings

Highskill
ratio

Median
earnings

Housing
value

College
ratio

∆TSP1971− 1979 -0.00178 -0.00252 -0.00497 -0.00663 -0.00235 -0.00667*
(0.00176) (0.00206) (0.00480) (0.00468) (0.00588) (0.00406)

Observations 6,903 6,782 6,926 6,777 6,629 6,905
F1stStage 5.827 5.881 5.515 5.498 6.672 5.903
R-squared 0.027 0.079 0.080 0.220 0.553 -0.031

Notes: Dependent variables are the average measure of TSP ambient concentration from 1971 to 1979 collected
at each TSP monitor with positive reading during this period. 1(disind ∈ a − bkm) is an indicator of whether or
not the distance from a TSP monitor to the closest 1970s industrial area is within a and b km. Downwind is an
indicator of whether or not the TSP monitor is located downwind of the industrial area, which is defined by Figure
1.1. Controls include CBSA fixed effects, the distance from each monitor to transportation lines, natural amenities
and the CBD. Robust standard errors are clustered at CBSA level.
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Table A12: Placebo Checks: Split sample

VARIABLES %College
graduates40

%College
graduates50

log income
1950

Manager
share50

Professional
share50

1(disind ∈ 0− 1km)*Downwind -0.00943 -0.0103 0.0851** -0.000378 -0.00769
(0.00645) (0.00880) (0.0409) (0.00462) (0.00701)

1(disind ∈ 1− 2km)*Downwind 0.0250* 0.0219** 0.0731 0.0163* 0.00924
(0.0122) (0.00995) (0.0454) (0.00854) (0.00734)

1(disind ∈ 2− 3km)*Downwind 0.00584 0.0408 0.107 -0.0303 0.0350**
(0.0592) (0.0417) (0.0973) (0.0296) (0.0171)

1(disind ∈ 3− 4km)*Downwind -0.0224 0.0253 0.159 -0.0377 0.203***
(0.0675) (0.0436) (0.126) (0.0438) (0.0545)

Downwind 0.00854 -0.0383 -0.114 0.0134 -0.0188
(0.0613) (0.0402) (0.0938) (0.0307) (0.0174)

1(disind ∈ 0− 1km) -0.0575 -0.0502 -0.178 -0.0111 -0.00714
(0.0596) (0.0443) (0.124) (0.0226) (0.0290)

1(disind ∈ 1− 2km) -0.0485 -0.0454 -0.152 -0.0114 -0.00645
(0.0564) (0.0401) (0.110) (0.0212) (0.0243)

1(disind ∈ 2− 3km) -0.0286 -0.0513 -0.110 -0.00355 -0.0182
(0.0491) (0.0352) (0.0932) (0.0203) (0.0212)

1(disind ∈ 3− 4km) -0.00909 -0.0328 -0.0598 -0.00271 -0.0159
(0.0645) (0.0384) (0.106) (0.0207) (0.0175)

Observations 1,012 2,241 1,987 2,244 2,244
R-squared 0.167 0.189 0.273 0.236 0.121

VARIABLES %College
graduates40

%College
graduates50

log income
1950

Manager
share50

Professional
share50

1(disind ∈ 0− 1km)*Downwind -0.0287** -0.0332** 0.0330 -0.0222*** -0.0147**
(0.0140) (0.0157) (0.0462) (0.00671) (0.00658)

1(disind ∈ 1− 2km)*Downwind -0.00382 0.0702 0.0278 0.00287 0.0454
(0.0315) (0.0644) (0.0664) (0.0181) (0.0395)

1(disind ∈ 2− 3km)*Downwind -0.00574 -0.0108 -0.158 -0.0336** 0.0209
(0.0262) (0.0540) (0.165) (0.0154) (0.0225)

1(disind ∈ 3− 4km)*Downwind 0.142* -0.0143 -0.0660 -0.0469** -0.00900
(0.0701) (0.104) (0.350) (0.0230) (0.0508)

Downwind -0.0534 -0.0694 0.0681 0.000358 -0.000425
(0.148) (0.106) (0.101) (0.0173) (0.0720)

1(disind ∈ 0− 1km) -0.0593 0.0202 -0.187* -0.0190 0.0139
(0.0424) (0.0377) (0.103) (0.0192) (0.0196)

1(disind ∈ 1− 2km) -0.0605* 0.00327 -0.110 -0.0154 0.00331
(0.0347) (0.0288) (0.0821) (0.0156) (0.0149)

1(disind ∈ 2− 3km) -0.0332 0.00154 -0.104* -0.0140 0.00721
(0.0242) (0.0211) (0.0541) (0.0114) (0.0102)

1(disind ∈ 3− 4km) -0.0200 0.00533 0.00339 -0.000348 -0.00247
(0.0193) (0.0129) (0.0374) (0.00967) (0.0102)

Observations 1,023 2,071 1,713 2,076 2,076
R-squared 0.358 0.281 0.413 0.230 0.172

Notes: Results from the upper panel are obtained from a sample of 1950 census tracts that are closest to industrial
areas with above-median pollution level in the 1970s, and those from the lower panel from those closest to industrial
areas with below-median pollution level. Dependent variables are the share of college graduates in 1940 and 1950,
log median income in 1950, the share of managers and professional/technical occuptions in total employment,
1(disind ∈ x−ykm) is an indicator of whether or not the distance from a tract to its closest industrial area is within
x to y km. Downwind is an indicator of whether or not the TSP monitor is located downwind of the industrial area.
Controls include CBSA fixed effects, the distance from each monitor to transportation lines, natural amenities and
the CBD. Robust standard errors are clustered at CBSA level.
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Figure A1: Pollution in the 1970s and 2000s

Notes: The graph plots the scatterplots of tract-level PM10 measures (y axis) in the 2000s against
TSP measures (x axis) in the 1970s. For tracts with more than one monitor, an arithmetic average
is taken. PM10 levels are normalized to TSP levels for better comparison according to the average
TSP/PM10 ratio in a sample of monitor-year observations with both TSP and PM10 readings.
Both axises are adjusted to the same scale.
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Figure A2: Estimated coefficients on same elevation*distance buffers: Economic
outcomes

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables are housing price, college graduates share at residence, high skilled
employment share at workplace and residence, median wage at workplace and residence. The
independent variables are dummies of distance buffers of 500 metres are obtained from a sample
of census tracts that are closest to industrial areas with above-median pollution level in the 1970s,
and those from the lower panel from those closest to industrial areas with below-median pollution
level. interval from each TSP monitor to the closest industrial area, interacted with a dummy of
whether or not the TSP monitor is at the same elevation or less than 100 metres lower than the
industrial area, and not obstructed by anything between them.All the coefficients are obtained in
regressions on a sample of census tracts that are closest to above-median polluted industrial areas.
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Figure A3: Estimated coefficients on same elevation*distance buffers: Economic
outcomes

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables are housing price, college graduates share at residence, high skilled
employment share at workplace and residence, median wage at workplace and residence. The
independent variables are dummies of distance buffers of 500 metres are obtained from a sample
of census tracts that are closest to industrial areas with above-median pollution level in the 1970s,
and those from the lower panel from those closest to industrial areas with below-median pollution
level. interval from each TSP monitor to the closest industrial area, interacted with a dummy of
whether or not the TSP monitor is at the same elevation or less than 100 metres lower than the
industrial area, and not obstructed by anything between them.All the coefficients are obtained in
regressions on a sample of census tracts that are closest to above-median polluted industrial areas.
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Chapter 2

Travel Costs and Urban
Specialization Patterns: Evidence
from China’s High Speed Railway
System

How does intercity passenger transportation shape urban employment and special-
ization patterns? To shed light on this question I study China’s High Speed Railway
(HSR), an unprecedentedly large-scale network that connected 81 cities from 2003 to
2014 with trains running at speeds over 200 km/h. Using a difference-in-differences
approach, I find that an HSR connection increases city-wide passenger flows by 10%
and employment by 7%. To deal with the issues of endogenous railway placement
and simultaneous public investments accompanying HSR connection, I examine the
impact of a city’s market access changes purely driven by the HSR connection of
other cities. The estimates suggest that HSR-induced expansion in market access
increases urban employment with an elasticity between 2 and 2.5. Further evidence
on sectoral employment suggests that industries with a higher reliance on nonroutine
cognitive skills benefit more from HSR-induced market access to other cities.

2.1 Introduction

Transportation costs play an important role in the location, agglomeration and evo-
lution of economic activities. Yet, despite abundant research on the relationship
between the cost of goods transportation and trade patterns, relatively little atten-
tion has been paid to the costs of passenger travel and their implications for labour
markets. Reducing the cost of travel between cities not only removes obstacles to
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migration (Morten and Oliveira (2016), but also reduces the cost of face-to-face
meeting across cities and allows remote sourcing of jobs. As airplanes or speedy
trains make frequent day trips more feasible, firms may be more willing to locate
their headquarters or R&D centres in centrally-located cities with large pools of tal-
ented employees, who can exert effective control over production plants in smaller
cities with much lower urban costs. How significant are the benefits of infrastruc-
ture projects that dramatically increase the speed of intercity travelling, and how
are these benefits distributed across sectors?

In this paper, I exploit the high speed railway (HSR) project in China, the largest
in the world, as a natural experiment to study the benefits of improving passenger-
dedicated transportation infrastructure. I examine the impacts of HSR connection
through changes in its access to all the other cities, and focus on the one driven by
indirect HSR connection to address endogeneity issues such as non-random route
placements or simultaneous investments in other areas. The differential impacts of
HSR on employment across sectors suggest that industries benefiting more from en-
hanced market access are either tourism-related or intensive in nonroutine cognitive
skills. These findings highlight the role of improved passenger travel infrastructure
in promoting the delivery of services across cities, facilitating cross-city labour sourc-
ing and knowledge exchanges, and ultimately shifting the specialization pattern of
connected cities towards skilled and communication intensive sectors.

The HSR expansion in China is an appropriate context for such a study. As of
2014, China had the world’s longest and busiest HSR network with 15,399 km of
track in service, connections between 81 cities, and an annual ridership of 857 million
as of 2014.1 HSR had a marked impact on people’s travel patterns: after being
connected to the HSR network, a city experiences an 18% increase in the number
of passengers travelling by train and a 9.6% increase in the number of passengers
travelling by any forms of transportation. The top-down rapid expansion of the HSR
network also creates plausibly exogenous variation in each city’s connectivity which
does not depend on its own its own direct connection to the HSR system, since
passengers from unconnected cities use HSR to travel to other cities by transferring
at a nearby HSR hub.

In a difference-in-differences specification, I demonstrate that being connected to
the HSR network leads to a significant increase in GDP and urban employment. As a
first attempt at dealing with the problem of endogenous routes placement, I restrict
my study sample to the cities that are either connected by the end of 2014 or will
be connected by HSR according to the HSR plan of the Ministry of Railway (MOR)

1Table A6 and Figure A1
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(MOR (2008)). Therefore, the analysis is identified through the timing of a city’s
connection to the HSR, which is affected by idiosyncratic factors such as the length of
the line and engineering difficulties. I also test whether connected and unconnected
cities have experienced differential trends in GDP or employment growth before the
actual HSR connection by including the leads of the initial connection dummy. No
HSR effects are found on GDP or employment before the actual connection.

To further explore the mechanisms at work, I adopt a “market access” approach
similar to that in Donaldson and Hornbeck (2016), which is micro-founded by a
model of cross-city labour sourcing. I measure how the expansion of the HSR
network affects each city’s “market access”, and estimate the impacts of enhanced
market access on the city’s transportation and specialization patterns, as well as
aggregate economic outcomes. A city’s market access is approximated using an
average of other cities’ GDP inversely weighted by the bilateral costs of passenger
travel. To account for the changes in cities’ market access driven by improvements
in different modes of transportation, including HSR, I assemble a network database
of highways and railways in China from 2000 to 2014 to construct a time-varying
travel cost matrix that takes account of the changes in time and fare costs brought
by both highway and HSR expansions in China.

A major empirical advantage of this “market access” method is that it allows a
city’s market access to be affected by the HSR connections of other cities. Employ-
ees in non-HSR cities can travel to a nearby HSR town and transfer there for other
destinations2. The separation of HSR-induced market access growth from direct
HSR placements assists in dealing with the identification challenges of both endoge-
nous infrastructure placement and simultaneous public spending and investments in
relevant sectors. In my main specification, I use a measure of market access which
deducts the increase in market access driven by a city’s own connections. A one
percent increase in this “non-connection-induced market access” (NCIMA) leads to
an 8% increase in railway ridership and 2% increase in employment. The impacts
are largest for tourism-related employment, followed by skilled employment includ-
ing IT, finance, business services, education and scientific research, and smallest for
other types of service and non-service employment.

Another benefit of this approach is that I can evaluate the impacts of alternative
market access measures that capture different sources of improvement in intercity
connectivity during this period. In particular, I evaluate the separate effects of
improvements in HRS expansion, highway expansion, and parts of HSR development

2Ollivier et al. (2014) documents that 40% of the passengers taking the Wuhan-Guangzhou
HSR line come from other railway lines or alternative modes of transportation.
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that face little competition from air travel. This helps us to get a complete picture
on the way various infrastructure improvements change transportation patterns and
economic outcomes. HSR expansion does not reduce highway usage but highway
expansion affects railway ridership significantly. A larger drop in air travel usage
is observed in cities that benefit more from HSR over shorter distance trips. Over
longer trips, HSR does not appear to steal passengers from civil aviation or road
transportation, but it manages to attract new passengers. Regarding the economic
outcomes, service employment is much more responsive to HSR-induced market
access changes, particularly those over shorter distance trips, than highway-induced
ones, while manufacturing employment and GDP responds more to highway-induced
market access changes.

One of the most important findings in this paper is the implications of an im-
provement in intercity passenger transportation on cross-city specialization patterns.
Conceptually, better intercity passenger transportation reduces the cost of face-to-
face interactions across space, and should exert larger impacts on industries that
are communication intensive. To test it, I begin by estimating the impacts of HSR
across sixteen Chinese industries, and compare the estimated coefficients to the task
contents of each industry, as per Autor et al. (2003). It is revealed that the ben-
efits of better intercity passenger transportation increase in the industry-specific
requirement of nonroutine cognitive tasks, and decrease in their reliance on manual
or routine cognitive skills. On the contrary, the estimated impacts of highway ex-
pansion do not correlate with the nonroutine contents of industries. These results
highlight the distinctive role of HSR in shifting the specialization patterns of cities
towards interactive industries, compared to other forms of transportation.

This paper contributes to a growing literature on estimating the economic im-
pacts of transportation infrastructure projects. Recent papers have studied the skill
premia in local labour markets (Michaels (2008), long-term GDP growth (Banerjee
et al. (2012), income volatility (Burgess and Donaldson (2010), gains from trade
(Donaldson (Donaldson), and asymmetric effects on core and peripheral markets
(Faber (2014). Also, papers in urban economics have explored the effects of urban
transportation improvements on urban growth (Duranton and Turner (2012)) and
urban form (Baum-Snow et al. (2016)). Relative to the existing literature, this arti-
cle draws attention to a different type of transportation infrastructure, the inter-city
passenger transportation and a new mechanism, the sourcing of labour across cities.

This paper also contributes to an extensive literature on urban growth and spe-
cialization. Previous research has emphasized the importance of agglomeration ef-
fects (Glaeser et al. (1992), amenities (Clark et al. (2002), human capital (Glaeser
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and Saiz (2004b) and intra-city transportation (Duranton and Turner (2012). This
paper shows that better intercity passenger transportation can also act as a new
engine of urban growth. Since I focus on how improved intercity transportation
facilitates labour sourcing across cities and reshapes urban employment patterns,
the paper is also related to the international trade literature on offshoring, such as
Grossman and Rossi-Hansberg (2008), and Ottaviano et al. (2013).

Finally, this paper provides a rigorous empirical evaluation of the largest HSR
project in the world up to now. Earlier evaluations of HSR projects in Japan
and Europe have presented mixed evidence. Sasaki et al. (1997) suggests that
the Shinkansen in Japan promoted local development and did not cause regional
inequality. Bernard et al. (2014) bernard et al. (2014) further examines the re-
sponse of Japanese firms to a particular Shinkansen line with a focus on supplier
relationships. Behrens and Pels (2012) documents a significant change in passenger
travel behavior along the Paris-London corridor after the high speed Eurostar was in
operation. Ahlfeldt and Feddersen (2010) present evidence that the HSR line con-
necting Cologne and Frankfurt in Germany substantially increases the GDP of the
regions that enjoy an increase in accessibility. While Albalate and Bel (2012) discov-
ers that French HSR has neither accelerated industrial concentration nor promoted
economic decentralization from Paris. The HSR project in China provides me with
an excellent opportunity to evaluate the potential economic benefits of HSR due
to its large scale. An earlier paper on Chinese HSR Zheng and Kahn (2013) finds
that HSR connection boosts housing prices in China, using cross-sectional data. My
paper looks at a wider range of economic outcomes with more detailed HSR data
and different identification strategies.

2.2 Background and Discussion of HSR Usage in

China

In 2008, the State Council in its revised Mid-to-Long Term Railway Development
Plan set the goal of a national high-speed rail grid composed of four north-south
corridors and four east-west corridors, with a budget of around 4,000 billion yuan
(Council (2004). The construction costs of HSR range from 80-120 million RMB
per km (US$13-20 million) excluding stations Bullock et al. (2012). The expansion
of the HSR network in China from 2003 to 2014, is shown in Figure 2.1. Detailed
information on the construction start date, opening date, distance and speed of all
the operating lines is listed in Table A3 and A4. The objective of this HSR grid,
as stated in the Plan, is to connect provincial capitals and other major cities with
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faster means of transportation. The placement of lines, according to the Ministry of
Railway (MOR), should be based on a comprehensive consideration of the economic
development, population and resource distribution, national security, environmental
concerns and social stability of each region MOR (2008). Finally, HSR lines are
expected to complement existing transportation networks as much as possible.

Before exploring the role of HSR in city specialization patterns, we first need to
understand how it affects the way people travel. I pay attention to two key questions.
First, how does HSR compete with other forms of transportation? Second, what
are the socioeconomic characteristics of HSR passengers? I explore these questions
using collected passenger surveys and official ridership data.

Table A5 reports results from three pieces of passenger surveys, conducted by
Jianbin (2011), Wu et al. (2013) and Ollivier et al. (2014), respectively. Interviewees
are drawn from four HSR lines, two short lines, and two long-haul ones. I collect
answers to four kinds of question: (1) passengers’ income; (2) purposes of travel; (3)
means of transport to the HSR station and whether or not transfers on and off HSR
are made, and (4) their alternative intercity travel choice before the introduction of
HSR. From the second column, we learn that the average monthly income of HSR
passengers ranges from ¥4300 to ¥6700, which roughly falls into the high-income
group in China.3. A large proportion (25% to 40% along shorter HSR lines and 40%
to 60% along longer HSR lines) of the passengers travel for business purposes. Re-
garding the substitution between the HSR and other forms of transport, as reported
in column 4, none of the HSR passengers on the two short journeys preferred to
fly to their destination before the advent of HSR, while 36% (Changchun-Jilin) and
61.5% (Beijing-Tianjin) of them listed conventional railway as their primary choice of
transportation at that time, and 50% (Changchun-Jilin) and 32% (Beijing-Tianjin)
of them had preferred road transport (including coaches/buses and private cars).
Over the long-haul trip (Tianjin-Jinan), a large proportion (77%) mentioned air
travel as their main choice before the HSR was in operation, followed by 18% who
chose conventional rail travel, and almost none considered long-distance coach jour-
neys. It is clear that HSR mainly competes with air travel for longer trips and with
traditional railway/road travel over shorter lines.

I collect ridership4 data on HSR and other forms of transportation from two
3According to the Chinese Statistics Bureau, in 2013, the average monthly income of urban

residents is ¥2462, residents with average monthly income over ¥4700 are categorized into the
high-income group.

4Ridership is defined by the National Statistics Bureau of China as the total number of trips
made on a particular kind of transportation device. For road ridership, it only includes paid road
trips (coaches, etc.), and excludes self-driving trips. For railway, the trips can start and end at any
stops, including both destinations.
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sources: the railway yearbook series and Department of Transportation reports.
Table A6 reports selected ridership data on most of the HSR lines in service from
2009 to 2012, collected from China Railway Yearbooks. We observe a clear increas-
ing trend in ridership for all the lines listed that have more than one year’s ridership
data, showing people’s gradual acceptance of HSR as a new form of transporta-
tion. Among different lines, the most heavily used ones are median-to-short lines
connecting two central cities, such as the Beijing-Tianjin, Shanghai-Nanjing, and
Guangzhou-Shenzhen lines.

Turning to the total ridership data across different forms of transportation, pre-
sented in Figure A1. As noted, more than 85% of the trips were made by cars, buses,
and coaches, followed by somewhat more than 10% using the railway. Air and water
transport services were relatively less used, accounting for less than 2%. From 2010
to 2014, we observe a steady increase of HSR ridership, from 300 million in 2010 to
830 million in 2014. Over the course of HSR expansion, few changes can be seen in
the percentage of passenger trips made by air or water. But we do observe a slight
drop in the proportion of passengers carried by conventional railway from 8% to a
little less than 7% and by road from 87% to 86%, although the number of railway
and road ridership increases steadily. This evidence is consistent with the view that
conventional railways face the strongest competition from HSR, most likely because
a few of the services on some conventional railway lines are cut when the parallel
HSR starts operation (Qin (2016)) and the fact that conventional railway and HSR
are closer to each other in the fare/time-cost trade-off spectrum.

To put these numbers into perspective, we can compare the transportation pat-
tern in China to that in the US. In 2014, the total HSR ridership in China was
830 million, more than the combined ridership by air and intercity rail/Amtrak of
about 698 million in the US 5. On the contrary, the total passenger-miles count on
US highway (excluding private passenger cars) doubles its Chinese counterpart6. In
a relative term, HSR appears to be twice as important as air and intercity railway
combined in the US.

5The data on passenger travel in the US are obtained from the National Transportation Statistics
by the Bureau of Transportation Statistics. In 2014, the total passenger-miles on air were 607,772
million, and the average length of travel by air is 1,440 miles in 2013, wich translates into 679
million trips made by air. Similarly, we obtain a ridership of 19 million on intercity rail/Amtrak.

6In 2014, the total passenger-miles on highways that excludes passenger cars are 1,492,801
miles in the US. In China, total road ridership is 19,082 million, with an average length of 39.14
miles, which adds up to 744,198 million. The information is obtained from the Department of
Transportation annual report.
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2.3 Conceptual framework

The main focus of this paper is to examine the impacts of improved cross-city
transportation on specialization patterns across cities. Conceptually, when we think
about the differential impacts of HSR connection on different industries, the reliance
of these industries on face-to-face contact is essential. By facilitating face-to-face
interactions of people, particularly skilled workers, HSR effectively reduces the unit
cost of production in communication-intensive sectors, either through productivity
boost brought by intense knowledge sharing or through enhanced remote sourcing.

To formalize the intuition on the general equilibrium effects of an improvement in
cross-city passenger transportation, I begin with a simple model of labour sourcing
based on Grossman and Rossi-Hansberg (2008)7. In this model, a tradable final
good is produced using multiple tasks, and the production of a task can take place
in one city while using the technology from another city, subject to communication
costs between them. Therefore, a reduction in face-to-face communication cost
through HSR connection allows a high productive city to source more tasks from
other cities. Some quantitative predictions are generated from the model. The
model predicts that the benefits of HSR connection work through enhancing the
passenger access to other cities, which leads to employment growth proportional to
the change in HSR-induced market access measure, approximated using an average
of other cities’ GDP inversely weighted by the bilateral costs of passenger travel.
One could interpret an increase in this “passenger market access" not only as better
chances in labour sourcing, but also as better access to other cities knowledge or
customer pools.

The model features a single sector, where an improvement in market access
translates directly into growth in aggregate city employment. To further evaluate
the implications of HSR-induced market access on urban specialization, it could
be extended to a multisector one. Think of the simplest case with two different
industries, one interactive and one non-interactive; and two different sets of tasks,
interactive and non-interactive. The production of the final good in the interactive
industry depends on interactive tasks only, and vice versa. A reduction in passenger
travel cost reduces the unit cost of interactive tasks production, to an extent that
is proportional to the growth in passenger market access. With free final goods
and labor mobility across cities and industries, HSR connection leads to a shift in
comparative advantage towards the interactive industry, and ultimately to relatively
higher growth in this industry in connected cities.8

7Details of the model are reported in Appendix A.
8It is noted that the aggregate cross-industry relocation of employment will depend on the equi-
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Based on this line of thinking, I derive the following empirically testable hypoth-
esis:

Hypothesis HSR connection will lead to relatively higher growth in employment
of communication-intensive industries in connected cities. And the benefits of HSR
connection will appear as improved passenger access to other cities.

To obtain a sensible measure of industry-specific dependence on face-to-face in-
teractions, I consider the types of tasks required in each industry following Autor
et al. (2003). They divided the required task contents in a particular industry into
the following five categories: routine manual, routine cognitive, nonroutine man-
ual, nonroutine analytical and nonroutine interactive; further, they came up with a
measure of task intensity of these five types across 140 consistent census industries.
According to their analysis, industries high in nonroutine analytical and interactive
tasks involve more abstract thinking, problem-solving and complex communication
activities. Naturally, a reduction in communication cost will more directly impact
the cross-city employment patterns of these industries, other than the ones that
focus more on manual or routine cognitive tasks.

The impacts of HSR on city economic outcomes are realized through improve-
ments in the accessibility of connected cities to other cities as a result of a faster
and more convenient means of transportation. Therefore, we should expect larger
impacts for cities that are connected to a greater number of more prosperous destina-
tions. In my subsequent empirical analysis, I will first check how direct connections
to the HSR network lead to employment growth across different industries, before
exploring the relationship between HSR-induced market access changes and urban
specialization patterns.

2.4 Empirical Specification

2.4.1 Data

Prefecture-level socioeconomic data are drawn from China City Statistical Year-
books from 2000 to 2013 and China Regional Economic Statistical Yearbooks from
2000 to 2011, since many of the variables are missing for years before 2000. The City
Statistical Yearbook series report prefecture-level passenger ridership and volumes
of goods transported by different modes of transportation, GDP, population, em-

librium relative price of the two final goods. Therefore, the model may have clear predictions over
the absolute effects of HSR on the interactive industry employment in connected cities. However,
to generate an expansion in interactive industry as a whole, we can introduce further assump-
tions on non-homothetic preferences or international markets to regulate the possible relative price
changes.
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ployment in 18 sectors9, average wage, local government revenue and expenditure,
total number and revenue of industrial firms, total number and sales of retail firms
and a variety of city level infrastructure measures. The Regional Economic Statisti-
cal Yearbooks report statistics on prefecture-level housing prices. In my analysis, I
only focus on prefecture-level cities, excluding prefecture-level autonomous regions.
Haikou and Sanya are left out of my sample because they are cities on the Hainan
Island and their accessibility to all the other cities cannot be changed by HSR con-
nection easily. Some key socioeconomic data are missing along the time series for
a few cities, which leaves me with 278 cities to work with throughout most of my
analysis. Table A1 summarizes the source, year range, the total number of obser-
vations, number of cities with at least one year of observation and number of cities
without missing values along the time series of all the outcome and control variables
I use in this paper. Since I control for average city and provincial level GDP and
population growth in the past three years throughout my analysis, I am effectively
using only outcomes from 2003 to 2013 as my dependent variables.

The yearbooks also report ridership data on railway, road, air and water. Rid-
ership is defined as the number of paid trips made on each form of transportation.
Self-drive trips and trips on public transportation are not included in road ridership
count. It should be noted here that ridership here is not limited to intercity rider-
ship by definition. Road ridership could include coach trips made across towns or
villages within the same prefecture city. But we have reasons to believe that most
parts of the ridership come from intercity trips, especially for railway and air travel,
as a city typically has only one main railway station and airport.

A prefecture-level city usually has an urban core (Shixiaqu) that consists mainly
of urban residents and surrounding counties with a relatively larger proportion of
rural population. For each variable, two separate statistics, one aggregated only to
urban-ward (Shixiaqu) level and the other covering the whole area of the prefec-
ture, are reported in the yearbooks. Throughout my analysis, I use the statistics
counted at urban ward (Shixiaqu) level of prefecture cities since I am interested in
the employment and resources flows across urban areas.10

High speed railway (HSR) lines are defined as railway lines running at an av-
erage speed of 250km/h or more, or passenger-dedicated-intercity-lines running at
an average speed of 200km/h or more11. As the end of 2014, there were 43 HSR

9Detailed descriptions of these sectors, as well as the comparison with NAICS 2-digit industries,
are reported in Table A2

10Although I stick to statistics counted at the urban core level. This level of aggregation is not
available for some variables, such as ridership on variables modes of transport, and I have to use
the one counted at the whole prefecture level.

11Major technical stipulation on railway, the Ministry of Railway, 2012.
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lines in operation, with a total mileage of 11152 km (Table A3). Most informa-
tion on the Chinese HSR system, including construction starting date, open date,
length, designed speed and ridership on selected lines, is obtained from the Major
Events, Finished and Ongoing Projects sections in the China Railway Yearbooks
from 1999 to 2012. For a small proportion of lines that are opened in 2013 and
2014 and future HSR lines in plan, this information is not available from the most
updated (2012) railway yearbook, so I have to rely on official news published on
http://news.gaotie.cn as well as other online news sources12 I doublechecked the
information on the stops along each existing line from the official railway service
website (www.12306.cn). Geo-referenced administrative unit data, as well as con-
ventional railway routes, are obtained from the ACASIAN Data Center at Griffith
University in Brisbane, Australia. Highway networks data of China in 2000, 2002,
2003, 2005, 2007 and 2010, from Baum-Snow et al. (2016) ,are kindly shared by the
authors.

To check other mechanisms at work, I also bring in patent application data in
China from the SIPO (State Intellectual Property Office) as a proxy for innovation
activities within a city. In China, patents are divided into invention and utility-
model patents, with the former category being more stringent and lasts longer.

2.4.2 Definition of market access variables

As briefly discussed in section 3, the benefits of HSR connection appear as improved
passenger access to other cities. To better capture the treatment effects of HSR
connection, I introduce measures of market access and examine the impacts of mar-
ket access growth, induced by HSR or highway, on cross-city transportation and
specialization patterns.

In practice, the market access of city k is defined as MAk =
∑N

j=1 τ
−θ
kj Xj, where

τkj is the travel cost between city k and j, and Xj is the GDP of city j 13. Intuitively,
a city enjoys higher market access if it boasts lower transportation cost to larger
cities. τkj can be reduced through the expansion of transportation infrastructures,
such as HSR or highways.

I use four market access measures throughout my analysis:
(1) Market access measure that captures both highway and HSR network expan-

sion (MAall)
12Information on the construction starting date, designed speed and length for lines that started

construction before 2012 is also included in the Railway yearbooks major events section. But I
need to rely on online news sources for their exact opening date.

13This specification of market access can be derived from a labour sourcing model described in
Appendix A.
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(2) Market access measure that captures HSR network expansion only (MAHSR).
Given the highway network of each year, the changes in market access purely driven
by HSR network expansion are counted.

(3) Market access measure that captures highway network expansion only (MAhigh-
way). Assuming that there is no change in HSR network, I calculate the changes
in market access compared to the base year (2000) purely attributable to highway
network changes.

(4) Market access measure that captures indirect HSR network expansion only
(non-connection-induced market access, NCIMA): For a city i connected in year t,
the market access changes for it using a counterfactual HSR network that bypasses
city i but is otherwise the same as the real one. This measure considers only HSR
expansion.

(5) Market access measure that captures the impacts of HSR on short distance
trips (less than five hours) only (MAHSRless5). Only changes in bilateral travel costs
for trips less than five hours are counted in this measure. This measure considers
only HSR expansion.

These different measures allow me to examine differential impacts of different
sources of improvements in intercity connectivity. We can look at the responses of
ridership and economic outcomes to market access induced by highway and HSR
connection separately.

The calculation of the market access variable requires the construction of a time-
varying transportation cost matrix, τkm, for each city pair. In my definition, I
allow τkm to incorporate both time and fare cost in travel. Conventional roads,
highways and HSR represent different fare-time cost combinations and passengers
face tradeoffs between fare and time cost. The upgrade from conventional roads
to highways and to HSR changes τkm by offering passengers alternative options to
travel. The information on highway network is obtained from Baum-Snow et al.
(2016), and the timing of HSR network expansion is shown in Table A3.

We have to rely on a few assumptions to construct τkm, and the details are
reported in Appendix E.

In Figure 2.2, I plot the distribution of log(MAHSR), the market access measure
that considers only HSR expansion, both across cities and through time. The left
graph presents the distribution of log(MAHSR) over all the observations. And the
right graph shows the distribution of the residuals of log(MAHSR) conditional on
city fixed effects. These graphs give us a basic idea on the pooled and within city
variation of log market access. Meanwhile, the lower panel of Table 2.1 shows the
mean and standard deviation of five logged market access measures from 2001 to

103



2014. The growth in HSR-driven market access during this period is roughly 2.4%
and the growth in non-connection-induced market access is about 1.9%.

2.4.3 Difference in differences specification

In this section, I explore the aggregate impacts of HSR connection by regressing my
outcome variables on a HSR connection dummy. The baseline estimation strategy
is a difference in differences specification of the form:

ln(yit) = αi + βrt + γ ∗ Connectit + Controlsit + εit (2.1)

where yit is an outcome of interest of city i within region r in year t, αi is a city fixed
effect, βrt is a region14 by year fixed effect, and Connectit is an indicator of whether
city i of region r was connected to HSR in year t. The error term εit is clustered at
the city level. Standard errors allow spatial dependence decaying in distance as in
Conley (1999).

To test hypothesis 1, I divide the total employment into four groups: tourism-
related employment, which includes hotels and catering services and wholesale and
retail trade; skilled employment, which includes finance and insurance, real estate,
information, business services, scientific research and technical services and educa-
tion; other service employment, and other non-service employment. Apart from
employment, I also look at other aggregate outcomes at city level, which include
GDP, housing price, total fixed investments, retail sales, and total patents applica-
tion.

The identifying assumption of difference-in-differences estimations is the parallel
trends of outcomes between HSR-connected cities and the other cities should there
be no HSR. However, if an HSR placement decision is based on past growth and ex-
pected future growth, this assumption may possibly not hold in reality. To mitigate
this problem, I restrict my sample to 172 cities that are either connected or planned
to be connected by HSR by 2020.

The primary identification challenge is not whether a city is connected to the HSR
network, but rather what factors determine the timing of its connection. Several
idiosyncratic factors appear to influence the opening time of HSR lines. First, as
is evident from Table A3, the construction work on many of the existing lines (12
out of 45) began in 2005, following the passage of the Mid-to-Long Railway Plan
in 2004. The timing of when each line opens is determined by the construction

14 Cities are divided into 8 regions (Northeast, Northern Costal, Eastern Coastal, Southern
Costal, Southwest, Northwest, the middle reaches of Yangtze River, the middle reaches of Yellow
River.
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progress, which largely depends on engineering difficulties. In Appendix F.1., I
exploit variation in HSR connection timing purely driven by engineering difficulties
and find similar effects on railway ridership, service and private employment as in
the main regressions.

Another obstacle to identification is the possibility of simultaneous investments
in other areas. Local governments may take HSR connection as a new engine for local
economic growth and invest heavily in related projects. This government spending
would create jobs that can be mistakenly interpreted as the direct impacts of HSR
connection. At this stage, to deal with these concerns, I control for local government
spending, other infrastructure measures such as the length of roads above a certain
standard, the total area of new urban roads built, the area of green land, the number
of public facilities such as theatres, hospitals, and public libraries. 15 Controlling for
region-by-year fixed effects should be able to take care of any region-specific yearly
shocks to local economic conditions. Apart from that, I also control for average
city and province GDP and population growth for the past three years, as well as
interactions of year dummies with distance to regional central cities for fear that the
HSR connection decisions of a line connecting multiple nearby cities are correlated
with temporary regional shocks at different levels, and that geographical centrality
is both correlated with economic growth and connectivity improvement.

To check the parallel trend assumption, I run a variation of equation (1), con-
trolling for the leads and lags of the initial connection dummy.

ln(yit) = αi+βrt+
3∑

m=1

γmFirstConnecti,t−m+
4∑

n=0

γnFirstConnecti,t+n+Controlsit+εit

(2.2)
where FirstConnectit is a dummy variable indicating whether a city is first con-

nected to the HSR network in year t. It switches to 1 only if the HSR line connecting
city i is opened in year t. FirstConnecti,t−m is its m-th lag, and FirstConnecti,t+n
is its n-th lead. Controlling for leads allows me to examine the pre-HSR effects of
future railways as a placebo test and helps to disentangle anticipatory effects from
actual connection effects. Controlling for lags enables me to trace the treatment
effects in the years after initial connection. In reality, we expect anticipatory effects

15A potential problem with including these controls on the right-hand side of the regressions
is that government spending and investment itself is endogenous—a government expecting better
growth prospects invests more with or without HSR. However, if the correlations between the un-
observable and government spending and that between HSR connection and government spending
are both positive, then the coefficients on HSR connection or market access are underestimated by
controlling for local government spending.
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to be relevant for some outcome variables but not for others. For example, housing
prices can respond positively to the HSR connection before the railway becomes op-
erative because news about a future HSR station is usually known about five years
before it opens and people make investment decisions based on this information.
However, HSR-induced changes in employment are expected to be observed only
after actual HSR lines are in operation since people can only benefit from HSR for
travelling and commuting after it is in operation.

2.4.4 Market Access Approach

As briefly outlined in the conceptual framework, the benefits of HSR connection
appear as improved passenger access to other cities. In this section, I use HSR-
induced market access measures as the main independent variables to capture finer
variations in the treatments of HSR connection.

One major empirical advantage of this market access approach is that it allows
me to exploit the variation in a city’s access to other cities driven by HSR expan-
sion but has nothing to do with its own HSR placement. In short, an unconnected
city can still benefit from HSR connection if a city close to it receives connection,
which allows its passengers faster trips to other destinations through transfers. It
effectively deals with the identification challenges of both endogenous route place-
ment and simultaneous investments. In my main empirical specification, I examine
the response of outcomes of interest to increase in a non-connection-induced market
access for both connected16 and unconnected cities.

Another benefit of this approach is that it enables me to examine differential
impacts of different sources of improvements in intercity connectivity. We can look
at the responses of ridership and economic outcomes to market access induced by
highway and HSR connections separately. Another market access measure worth
considering is the one that captures HSR impacts on shorter trips only. As I do not
explicitly account for the changes in air travel costs during this period, I could be
overestimating the effects of HSR on connectivity if passengers prefer air travel to
HSR over longer-distance trips. Focusing on the impacts of HSR-induced market
access changes for short distance trips only helps to alleviate the concern, as HSR
holds strong advantages over air travel for shorter trips.

Throughout my analysis, my preferred specification is:
16For a connected city, its non-connection-induced market access is defined as its access to other

cities through a hypothetical HSR network which is the same as the actual one except for bypassing
this city.
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ln(yit) = αi + βrt + γ ∗NCIMAit + θ ∗MAhighwayit + Controlsit + εit (2.3)

where yit is an outcome of interest of city i within region r in year t, αi is a city
fixed effect, βrt is a region by year fixed effect, NCIMAit and MAhighwayit are
non-connection-induced market access and highway access respectively.

Two concerns over identification using the non-connection-induced market access
measure may arise here. First, apart from basing the HSR placement decision on
the economic conditions of each city, the railway authority might design the network
expansion plan to maximize the market access of connected cities intentionally and
target at prosperous regions first. So “better located” cities that are close to other
developed cities might experience larger increase in market access that may or may
not depends on its own connection. Thus, throughout my analyses, I control for the
past average city and provincial GDP as well as the interaction terms of year fixed
effects and distance to provincial capital cities. Another challenge for identification
is the common regional shocks that might jointly affect a city’s economic outcome
and the HSR placement of nearby cities. It is less of an issue after controlling for
region-year effects and past city and provincial average GDP. Furthermore, I also
adopt a specification similar to equation (2), by including the leads and lags of the
increments in non-connection-induced market access (NCIMA) as main independent
variables. The formal specification is:

ln(yit) = αi+βrt+
3∑

m=1

γm∆logNCIMAi,t−m+
4∑

n=0

γn∆logNCIMAi,t+n+Controlsit+εit

(2.4)
Similarly, this specification helps us to check if the growth in the non-connection-

induced-market-access (NCIMA) measure correlates with the trends of a variety of
outcomes prior to the year when the actual increase in market access takes place. I
plot the coefficients on the leads and lags of ∆logNCIMA in Figures 2.4 and 2.7.

2.4.5 Event-study for non-connection-market access

A potential challenge for identification using my non-connection-induced market
access (NCIMA) measure is that some cities closer to each other may be able to drag
HSR lines to their region, and their incentive and capacity of lobbying is correlated
with their growth prospect. Controlling for region-specific year fixed effects may
not be able to fully address this issue as the collective bargaining might occur at a
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smaller geographical scale. So apart from controlling for past provincial GDP, I also
rerun my non-connection-induced market access regressions by including the leads
and lags of increments in market access. If regions with better growth prospects are
more likely to get HSR placement, then we should expect positive coefficients for
leads of market access increments in the cities in these regions, no matter whether
they are connected or not. The specification is:

The results are shown in Figures A2 and A3. We do not observe large differ-
ences in the pretrends across cities that experience higher and lower non-connection-
induced market access growth, and there are clear trend breaks around the time
when a city actually experiences changes in market access.

2.5 Estimation Results

2.5.1 Transportation patterns

I start by examining the effects of HSR connection on passenger transportation
patterns before studying its implications on economic outcomes. The upper panel
of Table 2.2 presents the difference-in-differences estimation results on the usage of
different modes of transport. Controlling for city and region-by-year fixed effects,
it is observed from Column (1) that HSR connection significantly increases railway
ridership by 18%. The coefficient of total ridership on all forms of transportation
(Column 4) is a smaller 9.6%) but still positive and significant, suggesting that
HSR creates extra demands for transportation, and the poaching of ridership from
other forms of transport is small. From Columns (2) and (3), it is clear that HSR
connection leads to a small positive effects on road ridership, but a large 12% drop
in the number of passengers who travel by air, which indicates that travelling by
HSR is a close substitute for air travel, but not road transportation. It is also worth
noting that no significant impacts of HSR are observed on the volume of goods
transported by railway (Column 5), confirming our intuition that HSR is bringing
changes to intercity passenger travel cost, but not goods trade cost.

A back-of-the-envelope calculation suggests that HSR brings in about 901 million
extra passengers since its inception until 2013, taking into consideration the sub-
stitution and complementarity relation between HSR and other forms of transport
17. To put this number in perspective, my HSR ridership data on the main existing
lines (Table A6) suggests that the aggregate HSR ridership on 11 major lines (out

17My estimation suggests that cities with HSR connection experience 9.6% increase in total
ridership. Using 2008 total ridership of all the cities with HSR connection by 2013 (9387 million)
as a benchmark, this translates into 901 million new ridership.
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of 28) in 2012 is 320 million, and the aggregate annual HSR ridership data reported
by the Department of Transportation is 300 million in 2010, 420 in 2011, 470 in
2012 and 602 in 2013. It is observed that the estimated aggregate increase in total
ridership is about half the size of the aggregate HSR ridership during this period.
The difference could either be attributed to the substitution between HSR and other
means of transport, most notably conventional railway and air travel, or due to the
fact that in this simple difference-in-differences design, we assume cities with no
HSR station to be ‘untreated’ while in reality, they could still benefit from HSR
connection in other cities by transferring. But without a doubt, such sizable newly
generated passenger flows, with a large proportion of business travellers, indicate
large improvement in the communication and economic ties across Chinese cities,
yielding large impacts on local economic outcomes possible.

The lower panel of Table 2.2 reports the responses of passenger travelling pat-
terns to a city’s non-connection-induced HSR and highway market access changes.
The estimates are largely consistent with our intuition about the substitution and
complementarity between different modes of transportation. One percent increase
in HSR-induced market access18 translates into an 8 percent increase in railway
ridership, 2 percent drop in road transportation, and 7.4 percentage drop in air
travel, while a one percent increase in highway-induced market access leads to 5.7%
growth in road ridership and 4.2% drop in railway ridership and do not seem to af-
fect air travel negatively. In sum, both HSR and highway expansions increase total
passenger ridership but the estimated elasticity is larger for highway market access.

Table 2.3 reports how ridership on different forms of transportation responds
to other market access measures, including the market access measure that incor-
porates both HSR and highway expansions (MAall), and that limited to short dis-
tance trips. For each variant of the market access measures apart from MAhighway,
the regressions control for both the connection dummy and highway market access
(MAhighway), to show that the main results on the relationship between market
access and employment growth are not driven by direct connections per se or simul-
taneous highway expansion. It is worth noting that for the market access measure
capturing only HSR impacts over short distance trips (MAHSRless5), the estimated
elasticities are in general larger in magnitude, showing that connectivity improve-
ments are more important when they decrease the travel costs between cities that
are closer to each other. Interestingly, the estimated elasticity is six times larger in
absolute value than the one in baseline for air travel ridership, but only less than

18Summary statistics on different measures of market access are reported in Table 2.1. From
2001 to 2014, the average NCIMA grows by 2.23% as a result of HSR expansion, and the average
MAhighway grows by 1.86% following concurrent highway expansion.
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doubles for railway ridership. A story consistent with this observation is that the
substitution between HSR and air travel is strong over shorter-distance trips: HSR
expansion at a closer range leads to a much larger drop in air travel ridership. For
longer distance trips, civil aviation faces little competition from the newly available
HSR service so the increase in HSR ridership is more likely to be newly-generated
passenger flows. However, even for short distance trips where the substitution be-
tween HSR and air travel is stronger, the effect of a boost in market access on total
ridership is large and positive, with an estimated elasticity of 8.2%. Piecing together
the evidence, it is not hard to conclude that the estimated impacts of different as-
pects of market access changes echo with our intuition on the ways different modes
of transport compete with each other and the qualitative evidence shown in section
2. Therefore, we should have more confidence in the validity of the "market ac-
cess" approach and the estimation results on the impacts of HSR-led market access
changes on economic outcomes of interest.

2.5.2 Specialization patterns

In my conceptual framework, I hypothesize that industries that rely more on com-
munication and interpersonal skills will benefit more from HSR that reduces the cost
of face-to-face interaction and communication across cities. In this section, I will di-
rectly test the implications of HSR connection on the specialization patterns across
cities. I will first roughly divide total employment into skilled service employment,
tourism-related service employment, other service and non-service employment and
examine the impacts of HSR on them separately. I will then carry on a more de-
tailed analysis on the effects of HSR on 16 industries and rank the estimated effects
according to the cognitive content of each one.

The estimated coefficients on connection dummy are presented in Table 2.4. A
city is estimated to experience a statistically significant 7% higher growth in em-
ployment after being connected to HSR compared to the unconnected. Columns (2)
to (4) report the results on employment of four subcategories19. It is certain that
the aggregate employment effects are largely driven by growth in tourism-related
employment, which grows by 13% following the HSR connection. The effect on
skilled employment (4.8%) is moderate, lower than that on non-service employment
such as manufacturing, utility, and construction. One possible explanation is that
the HSR connection effects on non-service sectors, such as manufacturing and con-

19Total employment is divided into tourism-related employment (retail and wholesale, hotel and
restaurant), skilled employment (FIRE, IT, business services, research and technical services and
education), non-service employment (agriculture, manufacture, construction, utilities) and other
service employment.
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struction, are driven by subsequent investments in public infrastructure and fixed
assets. Market access results reported in the lower panel of Table 2.4 supports this
interpretation. One percent increase in NCIMA leads to 2.5 and 3.9 percent growth
in skilled and tourism-related employment, both higher than the estimated elas-
ticity on aggregate employment, but exerts almost no effects on other non-service
employment. It suggests that the benefits of better passenger access to other cities
are mostly limited to skilled and tourism-related employment. Therefore, the signif-
icant positive impact of direct HSR connections on construction and manufacturing
comes partly from subsequent investments accompanying HSR connections. On the
contrary, highway-led market access growth leads to growth in non-service employ-
ment, most notably manufacturing, construction and utility, which is consistent with
the idea that highway expansion has larger effects on trade cost, which benefits the
tradable sectors more.

Table 2.5 reports the estimation results using alternative market access mea-
sures, controlling for both the direct HSR connection and highway market access
expansion. The evidence presented here is consistent with the main effects: both
HSR-driven and total market access growths have positive impacts on total em-
ployment, and the coefficients are largest for tourism-related sectors, followed by
skilled sectors. Controlling for direct connection dummy does not take away much
of the explanatory power of this non-connection-induced market access (NCIMA),
compared to the results presented in Table 2.4, which suggests that this measure
captures mostly market access improvements orthogonal to cities’ own connections.
The estimated elasticities are also larger in magnitude for the market access measure
that captures only HSR impacts over short distance trips (MAHSRless5), which is
consistent with the transportation patterns results. It shows that the connectivity
boost across cities that are relatively close to each other plays a more important role
in explaining both variation in railway ridership and employment growth.

Figure 2.4 shows event study results on employment of different categories, spec-
ified by equation (4). In these graphs, I plot the estimated elasticity on the leads
and lags of the changes in non-connection-induced market access measure (NCIMA).
It is clear that the coefficients on the leads of NCIMA are close to zero for all four
categories of employment, which supports the parallel trends assumption: the boost
in HSR-induced market access does not correlate with previous trends in employ-
ment across different sectors. Meanwhile, all four categories of employment grow
gradually following HSR-induced market access boost, and the effects are largest for
tourism-related and skilled service sectors. The treatment effects of HSR-induced
market access are smallest in magnitudes for non-service employment, which is dif-
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ferent from the results obtained using the connection dummy.
Subsequently, I present the estimated HSR effects across sixteen different in-

dustries in Table 2.6. It is clear that most industries respond positively to both
non-connection-induced market access (NCIMA) and highway induced market ac-
cess (MAhighway), but there exists considerable heterogeneity across sectors. For
instance, manufacturing employment responds significantly to highway-led market
access growth but little to HSR-induced one, while employment in finance, retail,
medical services, etc. grow significantly as a result of better passenger access through
HSR.

To establish a closer link between an industry’s employment response to better
intercity passenger transportation and its dependence on human interactions, I com-
pare the industry-specific estimated coefficients to Autor et al. (2003)’s measures of
the task requirement of each industry in nonroutine interactive activities, quanti-
tative reasoning, routine cognitive skills, nonroutine and routine manual activities.
In their context, routine tasks are defined as procedural, rule-based activities that
are codifiable, and nonroutine tasks as those relying a lot on abstract skills such
as problem-solving, intuition, persuasion, and creativity. We believe that industries
with a focus on nonroutine tasks should benefit more from HSR connection as it
improves face-to-face contacts of people across space.

It is evident from the left panel of Figure 2.5 that there exists a strong positive
relationship between the importance of nonroutine interactive cognitive skills and
the estimated impacts of better HSR-induced market access across all 16 industries.
Industries that require a lot of intuition, creativity and human interactions such
as FIRE, IT and business services both have higher measures of nonroutineness
and respond more strongly to HSR-induced market access. On the contrary, the
correlation between the impacts of highway-induced market access and the industry-
specific task interactive task requirement drops to almost zero, as shown in the
right panel. It suggests that HSR promotes specialization towards more interactive
tasks much more than the highway and shows a clear distinctive role of passenger-
dedicated transportation device in shaping cross-city specialization patterns. Similar
contrasts can be drawn by comparing the sector-specific impacts of HSR and highway
to the manual task requirement of each industry. Contrary to the patterns with
interactive task content, we discover in Figure 2.6 that the estimated impacts of
HSR decrease in the reliance of each industry on manual tasks, while the impacts of
highway do not differ much across industry-specific manual task intensity. Analogous
results on the other two dimensions of task intensity (routine cognitive skills and
nonroutine quantitative reasoning skills) are presented in A2 and A3, with similar
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patterns: the estimated HSR impacts on sector-specific employment increase in
nonroutine quantitative skills but decrease in routine cognitive skills.

Finally, I explore deeper into the impacts of HSR on tourism. It is clear that
employment in catering and retailing experience huge boosts following the HSR
connection. In the left graph of Figure 2.5, both the coefficients on retailing and
catering employment lie above the fitted line, suggesting that there are factors other
than the reliance on "people skills" that contribute to the observed impacts of HSR
on these two industries. It would be interesting to account for the contribution of
tourism to the observed patterns. In Table A7, I check if the responses of tourism-
related economic activities to HSR connection is disproportionally larger for cities
with better tourism resources. The China National Tourism Administration (CNTA)
has divided major Chinese tourist attractions into five categories based on the code
“Categories and Rating Standard of Tourist Attractions”. 20 Here I define the
indicator for tourism resources of a city as the number of 5A-class tourist attractions
in that city. An additional 5A tourist attraction makes a city’s total employment
26% more responsive to growth in market access compared to a city with none, but
its retail/wholesale employment 130% more responsive.21 Similar patterns show up
if we compare the results across GDP and the total sales of wholesale/retail firms.
The coefficient on the interaction term of tourism resources and market access is
negative for GDP but is substantial and significant for retail sales. An additional
5A site makes the effect of HSR market access 56% stronger compared to the zero
5A site baseline on retail sales.

2.5.3 Broader Economic Impacts

In the previous sections, I have presented evidence on the impacts of HSR in shifting
urban specialization patterns towards more communication-intensive and human-
centred sectors. But it still remains a question whether or not HSR connections will
exert any aggregate effects at the city level to justify the cost of HSR construction.
In this section, I take a look at the impacts of HSR on other aggregate outcomes,
such as GDP, investments and housing price.

The results are reported in the first column of Table 2.7. The direct HSR con-
nection effect on GDP is estimated to be 3%, though not statistically significant,

20Chris Ryan, Gu Huimin and Fang Meng (2009). “Destination planning in China”. In Chris
Ryan and Gu Huimin. Tourism in China: Destination, Cultures, and Communities (1 ed.). pp.
11–37. ISBN 9780203886366.

21Both ratios are calculated by dividing the coefficients on the interaction terms of tourism
resources and log(NCIMA) and the coefficients on log(NCIMA), yielding 0.571/2.187=0.26 and
2.826/2.171=1.3, respectively.
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which is very similar to the estimates of 2.7% to 4.7% in Ahlfeldt and Feddersen
(2010). Housing price also grow by 3% following the HSR connection. The patterns
are similar with market access measures as the explanatory variables, reported in
the lower panel of Table 2.7. One percent growth in non-connection-induced market
access leads to significant 2.1%, 3.9% and 1.7% increases in aggregate employment,
GDP and housing price. In the meantime, market access growth created by high-
way expansion only significantly improves GDP with an elasticity of 2.1%, with
little effects on employment. It is consistent with the fact that the reduction in
trade costs has larger impacts on goods market as opposed to the labour market,
and consequently exerts more substantial effects on GDP other than employment.

To check if the GDP growth is largely driven by simultaneous investments, I
observe the effects of HSR on the aggregate fixed investments of all the industrial
firms22 in China in column (4). The coefficient on connection dummy is negative
and statistically significant, suggesting a decrease in fixed investments following HSR
connections. I believe it is mostly due to the fact that the construction of HSR lines
and stations leads to a boost in fixed investments before the actual operating of HSR
lines. Considering the next row, the total fixed investments of all industrial firms
do not respond to HSR or highway driven market access changes, which indicates
that the observed GDP growth is not a result of expansion in fixed assets. On
the contrary, HSR connection is associated with a significant 10% growth in total
wholesale and retail sales, with an estimated elasticity in response to NCIMA growth
being a significant 3.4. It confirms that a boost in retailing accounts for a significant
part of the HSR-driven growth in GDP.

Finally, it is conceivable that HSR might generate growth in innovation through
knowledge spillovers and enhanced scientific collaboration across cities. In the last
column of Table 2.7, I check whether or not HSR connection leads to growth in
patenting activities. The coefficient is positive but not statistically significant. How-
ever, in the last figure of Figure 2.7 and A4, I find a strong effect of direct HSR
connections on patent applications after 2 to 3 lags, and a positive and significant
coefficient on the third lag of NCIMA, as well. A plausible explanation is that inno-
vation and patent application take time, and it is natural for the response in patents
to take longer to show up.

22For industrial firms, the data include all the state-owned firms and all the private firms with
industrial output larger than 5 million RMB per year. For wholesale/retail firms, the data include
all the firms with annual sales greater than 5 million RMB

114



2.6 Robustness Checks

2.6.1 Robustness to alternative parameters and specifications

Table A9 reports the sensitivity analysis of the estimated market elasticity to alter-
native definitions of market access.

First of all, in constructing the travelling cost matrix, I assume that on average
two trips per month are necessary for a task to be sourced, which is quite arbitrary.
So I experiment with other required number of trips ranging from 0.5 time per month
to 10 times per month. Given the same expansion in transportation networks, the
percentage increase in market access induced by HSR should be mechanically larger
for more frequent face-to-face contacts requirement. As shown in rows (1)-(4) of
Table A9, most of the coefficients on ridership, employment, GDP and housing
price remain positive and statistically significant at 0.01 level.

The calculation of market access also requires an approximate of θ, a parameter
on the productivity distribution of cities. Following Donaldson (Donaldson), my
baseline measure assumes a value of 3.6. For robustness, I adopt two other values of
θ proposed by Eaton and Kortum (2002), 8.28 and 12.86. The signs and significance
levels of most of the estimates are maintained with different θ.

2.6.2 Results on cities without an airport

As briefly mentioned, I do not incorporate air travel into my calculation of market
access because air travel is less popular in China compared to railway and highway,
and it is hard to get reliable information on the fare cost of planes as it fluctuates a lot
across time. A potential problem with this oblivion is that I could be overestimating
the impacts of HSR on city connectivity if planes and HSR are very close substitutes.
Although I have shown that the substitutability of HSR and air travel is limited over
mid-to-long distance trips, the increase in HSR ridership far more than compensate
for the drop in civil aviation usage, and my results are robust to an alternative
market access measure that captures only changes over short distance trips that face
little competition from air travel, it makes sense to double-check my main results
with a sample of cities that do not have an airport by the end of year 2013. The
information on civil airports is obtained from the official website of CAAC (Civil
Aviation Administration of China).

As shown in Table A8, The estimated coefficients on railway ridership and total
ridership are larger in this small sample, and those on most economic outcomes are
slightly lower than the baseline results. But the sign and significance of all the main
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results are preserved in the subsample of cities without airports.

2.7 Conclusion

This paper aims to make two primary contributions. First, I evaluate the impacts
of one of the largest transportation infrastructure projects in the world, the high
speed railway project in China, on local passenger travel patterns and economic out-
comes. Second, I extend Donaldson and Hornbeck (2016)’s market access approach
to evaluate different sources of intercity transportation improvements on cross-city
sectoral employment patterns.

Despite the abundance of research on the cost of goods transportation and trade
patterns, minimal attention has been paid to the cost of moving people or to the
implications of it for the labour market. This paper exploits China’s high speed
railway (HSR) network expansion as a source of plausibly exogenous variation in
passenger travel cost across Chinese cities over time. I find that an increase in HSR-
induced market access leads to higher growth in industries with higher requirements
in nonroutine cognitive skills rather than manual or routine cognitive skills, which
is notably distinctive from the effects of highway development.
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Figure 2.1: Evolution of HSR expansion from 2003 to 2014

Notes: These figures display the evolution of HSR expansion from year 2003 to 2014.
The lines in bold black are lines in use by the end of that year. Each dot represents a
prefecture-level city.
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Table 2.1: Summary Statistics

Connected Non-connected

2001-2007 2007-2013 2001-2007 2007-2013
Employment growth 0.143 0.539 0.088 0.392

(0.106) (0.388) 0.(428 (0.361)
GDP growth 1.718 1.713 1.733 1.79

(0.945) (0.563) (1.64) (0.688)
Population growth 0.312 0.112 0.223 0.099

(0.643) (0.201) (0.714) (0.177)

2001-2006 2006-2011 2001-2006 2006-2011
Housing price growth 0.810 1.399 0.695 1.330

(0.453) (0.464) (0.432) (0.338)

2007 2013 2007 2013
Employment 43.71 67.59 14.6 20.04

(7.16) (11.79) (1.41) (2.05)
GDP 104.36 202.14 28.92 59.59

(18.13) (32.66) (3.71) (7.45)
Population 196.11 215.87 95.26 103.25

(23.78) (26.16) (6.27) (6.59)

2006 2011 2006 2011
Housing price 2633.68 5577.08 1811.75 3712.23

(1555.28) (3421.74) (700.96) (1435.61)

Growth in market access measures

Year 2001 2003 2007 2010 2014

log(MAall) 17.9249 17.9264 17.9338 17.9422 17.9656
( 0.4431) (0.4453) (0.4439) (0.4456) (0.4420)

log(MAHSR) 17.9187 17.9193 17.9193 17.9274 17.9415
(0.4452) (0.4454) (0.4454) (0.4475) (0.4433)

log(MAHSRless5) 17.9187 17.9187 17.9187 17.9239 17.9266
(0.4453) (0.4453) (0.4453) (0.4464) (0.4464)

log(NCIMA) 17.9186 17.9191 17.9191 17.9261 17.9374
(0.4453) (0.4454) ((0.4454) (0.4472) (0.4428)

log(MAhighway) 17.9248 17.9257 17.9332 17.9335 17.9433
(0.4443) (0.4450) (0.4438) (0.4434) (0.4439)

Notes: Unit: GDP: 1 billion RMB; Population and employment: 10000 people; Wage: RMB;
Housing price: RMB/m2; Market access: 1 billion RMB. A city is defined to be connected if it is
connected by HSR by the end of year 2014. As housing price data only exist until 2011, I look at
it over a slightly different time frame.

118



Figure 2.2: Pooled and within city variation of log(MAHSR)

Notes: Left: the distribution of log(MAHSR) over all the observations (city*year level). Right: the distribution of the residuals of log(MAHSR) netting
out city fixed effects (within city variation)

119



Table 2.2: Impacts of HSR connection on transportation patterns

VARIABLES log railway
ridership

log road
ridership

log air
ridership

log total
ridership

log railway
goods

connect 0.186*** 0.0283 -0.127** 0.0957*** 0.106
(0.0450) (0.0344) (0.0541) (0.0261) (0.0815)

Observations 1,637 1,746 731 1,773 1,642
R-squared 0.033 0.036 0.044 0.057 0.024

log(NCIMA) 8.096*** -2.095 -7.437** 1.244* 0.696
(2.447) (1.629) (3.559) (0.737) (3.713)

log(MAhighway) -4.213** 5.722** 1.958 3.312* 3.631
(1.871) (2.419) (3.837) (1.972) (3.376)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.020 0.020 0.039 0.025 0.015

Notes: Data from the upper table are a panel of 172 Chinese prefecture cities annually from 2003
to 2013 that are connected or planned to be connected by HSR lines by the end of 2014. Connect is
a dummy which is zero unless a city is connected to HSR before the end of that year, in which case it
takes the value one. Data from the lower table are a panel of 278 Chinese prefecture cities annually
from 2003 to 2013. NCIMA is the non-connection-induced-market-access measure. MAhighway
accounts for market access changes by highway network expansion only. The dependent variables
as listed are logs of railway passenger ridership (not restricted to high speed railway ridership),
road ridership, air travel ridership, total ridership and volume of goods transported by railway (in
tons). All outcome variables are counted at urban wards (shixiaqu) of prefecture cities. Cities are
divided into 8 regions (Northeast, Northern Costal, Eastern Coastal, Southern Costal, Southwest,
Northwest, the middle reaches of Yangtze River, the middle reaches of Yellow River. All regressions
include city fixed effects and region-by-year fixed effects. Controls include government spending,
other infrastructure measures, past city and provincial GDP, and interactions of year dummies with
geographical centrality measures. Standard errors, reported in parentheses, are heteroskedasticity
robust and clustered at the city level, allowing spatial dependence decaying in distance as in Conley
(1999).* significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 2.3: Impacts of HSR on transportation patterns: other market access variables

VARIABLES log railway
ridership

log road
ridership

log air
ridership

log total
ridership

log railway
goods

log(MAHSR) 5.610** 0.588 -5.300 1.883* -1.370
(2.408) (1.767) (3.862) (1.059) (3.264)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.024 0.016 0.020 0.017 0.014

log(NCIMA) 7.433*** -2.140 -6.435* 1.212 -0.280
(2.604) (1.746) (3.535) (0.803) (3.853)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.026 0.016 0.021 0.017 0.013

log(MAall) 5.895** 0.847 -5.483 2.052* -1.131
(2.444) (1.803) (4.915) (1.080) (3.336)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.024 0.016 0.021 0.017 0.013

log(MAHSRless5) 12.80** 5.075 -41.42*** 8.261** 3.072
(6.346) (4.787) (15.96) (3.832) (11.28)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.022 0.016 0.029 0.018 0.013

log(MAhighway) -2.653 4.781** 1.803 3.421** 1.664
(1.949) (2.537) (4.191) (1.976) (3.440)

Observations 2,480 2,791 1,175 2,808 2,544
R-squared 0.020 0.020 0.039 0.025 0.015

Notes: Data are a panel of 278 Chinese prefecture cities annually from 2003 to 2013. Each cell
corresponds to a separate regression. MAHSR is the market access measure accounting for HSR
network changes only. NCIMA is the non-connection-induced-market-access measure. MAall is
the market access measure accounting for both changes in HSR and highway networks. MAHSR-
less5 only accounts for market access changes by HSR when the bilateral travel time is less than
5 hours. MAhighway accounts for market access changes by highway network expansion only. For
the regressions with log(MAall), log(MAHSR), log(NCIMA) and log(MAHSRless5) as indepen-
dent variables, both the direct HSR connection dummy and log(MAhighway) are controlled for.
The dependent variables as listed are logs of railway passenger ridership (not restricted to high
speed railway ridership), road ridership, air travel ridership, total ridership and volume of goods
transported by railway (in tons). All outcome variables are counted at urban wards (shixiaqu) of
prefecture cities. All regressions include city fixed effects and region-by-year fixed effects. Controls
include government spending, other infrastructure measures, past city and provincial GDP, and
interactions of year dummies with geographical centrality measures. Standard errors, reported
in parentheses, are heteroskedasticity robust and clustered at the city level, allowing spatial de-
pendence decaying in distance as in Conley (1999).* significant at 10%; ** significant at 5%; ***
significant at 1%.
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Figure 2.3: Event study: Transportation patterns

Notes: The figures display the estimated coefficients and 95% confidence intervals in regressions
where dependent variables (from up to down) are the logs of railway ridership, road ridership and
air travel ridership. The independent variables on the left column are the leads and lags of the
initial connection dummy. The independent variables on the right column are the leads and lags of
the increments in non-connection-induced market access (NCIMA). For both sets of regressions, the
sample is a balanced panel from 2003-2011, as HSR connection information is available only until
2014, and the third lead is a missing value for observations after 2011. For the connection dummy,
the panel includes 172 Chinese prefecture cities that are connected or planned to be connected by
HSR lines by the end of 2014. For NCIMA, the panel includes 278 Chinese prefecture cities.
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Table 2.4: Impacts of HSR on specialization patterns

VARIABLES log
employment

log skilled
employment

log tourism
employment

log other service
employment

log other non-service
employment

connect 0.0736*** 0.0482*** 0.131*** 0.0225** 0.0650**
(0.0123) (0.0131) (0.0247) (0.0123) (0.0283)

Observations 1,801 1,774 1,795 1,680 1,751
R-squared 0.035 0.030 0.031 0.011 0.029

log(NCIMA) 2.156*** 2.466*** 3.917*** 1.032 0.551
(0.677) (0.515) (1.165) (0.718) (1.937)

log(MAhighway) -0.718 1.686*** -0.401 -0.346 6.393*
(0.602) (0.584) (1.290) (0.717) (3.683)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.026 0.022 0.026 0.011 0.047

Notes:Data from the upper table are a panel of 172 Chinese prefecture cities annually from 2003 to
2013 that are connected or planned to be connected by HSR lines by the end of 2014. Connect is a
dummy which is zero unless a city is connected to HSR before the end of that year, in which case it
takes the value one. Data from the lower table are a panel of 278 Chinese prefecture cities annually
from 2003 to 2013. NCIMA is the non-connection-induced-market-access measure. MAhighway
accounts for market access changes by highway network expansion only. The dependent variables
as listed are logs of total employment, skilled employment (includes IT, FIRE, education, business
service and scientific research), tourism-related employment (includes wholesale and retail trade,
hotels and catering service), other service and non-service employment. All outcome variables are
counted at urban wards (shixiaqu) of prefecture cities. All regressions include city fixed effects
and region-by-year fixed effects. Controls include government spending, other infrastructure mea-
sures, past city and provincial GDP, and interactions of year dummies with geographical centrality
measures. Standard errors, reported in parentheses, are heteroskedasticity robust and clustered at
the city level, allowing spatial dependence decaying in distance as in Conley (1999).* significant at
10%; ** significant at 5%; *** significant at 1%.
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Table 2.5: Impacts of HSR on specialization patterns: other market access variables

VARIABLES log
employment

log skilled
employment

log tourism
employment

log other service
employment

log other non-service
employment

log(MAall) 1.365** 2.328*** 3.708*** 1.150** -0.182
(0.640) (0.521) (1.112) (0.560) (1.127)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.028 0.027 0.029 0.012 0.015

log(MAHSR) 1.343** 2.281*** 3.571*** 1.120** -0.217
(0.628) (0.511) (1.096) (0.547) (1.108)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.028 0.027 0.029 0.012 0.015

log(NCIMA) 1.557** 1.969*** 2.806** 1.434** 0.795
(0.653) (0.508) (1.119) (0.567) (1.094)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.029 0.025 0.028 0.013 0.015

log(MAHSRless5) 9.022*** 7.322*** 13.46*** 6.136 -0.144
(2.012) (1.919) (3.543) (3.770) (3.345)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.033 0.026 0.029 0.014 0.015

log(MAhighway) -0.500 1.937*** -0.0142 -0.258 6.451*
(0.579) (0.589) (1.267) (0.711) (3.579)

Observations 2,877 2,813 2,847 2,604 2,788
R-squared 0.021 0.015 0.022 0.011 0.047

Notes: Data are a panel of 278 Chinese prefecture cities annually from 2003 to 2013. MAHSR
is the market access measure accounting for HSR network changes only. NCIMA is the non-
connection-induced-market-access measure. MAall is the market access measure accounting for
both changes in HSR and highway networks. MAHSRless5 only accounts for market access changes
by HSR when the bilateral travel time is less than 5 hours. MAhighway accounts for market access
changes by highway network expansion only. For the regressions with log(MAall), log(MAHSR),
log(NCIMA) and log(MAHSRless5) as independent variables, both the direct HSR connection
dummy and log(MAhighway) are controlled for. The dependent variables as listed are logs of to-
tal employment, skilled employment (includes IT, FIRE, education, business service and scientific
research), tourism-related employment (includes wholesale and retail trade, hotels and catering
service), other service and non-service employment. All outcome variables are counted at urban
wards (shixiaqu) of prefecture cities. All regressions include city fixed effects and region-by-year
fixed effects. Controls include government spending, other infrastructure measures, past city and
provincial GDP, and interactions of year dummies with geographical centrality measures. Standard
errors, reported in parentheses, are heteroskedasticity robust and clustered at the city level, allow-
ing spatial dependence decaying in distance as in Conley (1999).* significant at 10%; ** significant
at 5%; *** significant at 1%.
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Figure 2.4: Event study: Specialization patterns

Notes:The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables are log skilled service employment, tourism-related service employ-
ment, other service and non-service employment. The independent variables are the leads and lags
of the increments in non-connection-induced market access (NCIMA). For all the regressions, the
sample is a balanced panel of 278 Chinese prefecture cities from 2003-2011, as HSR connection
information is available only until 2014, and the third lead is a missing value for observations after
2011.
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Table 2.6: Impacts of market access across industries

VARIABLES log manufacture
employment

log utility
employment

log construct
employment

log retail
employment

log hotel/restaurant
employment

log transport
employment

log finance
employment

log IT
employment

log(NCIMA) 0.599 -0.250 -1.358 3.516** 1.991 -1.556 4.929*** 1.794
(3.541) (1.515) (1.771) (1.425) (1.536) (1.240) (1.077) (1.927)

log(MAhighway) 12.13** -0.925 -5.519*** -2.784* 2.027 -1.608 -1.552 -1.068
(5.892) (1.446) (1.839) (1.528) (1.425) (1.164) (0.962) (1.623)

Observations 2,796 2,350 2,354 2,621 2,363 2,618 2,362 2,338
R-squared 0.043 0.014 0.009 0.019 0.009 0.009 0.025 0.007

VARIABLES log real estate
employment

log research
employment

log public
employment

log medical
employment

log education
employment

log business
service employment

log facility
employment

log entertain
employment

log(NCIMA) 2.327 2.138* 0.399 2.817*** 1.628*** 1.602 2.678* 2.645***
(1.717) (1.160) (0.739) (0.553) (0.487) (1.827) (1.466) (0.839)

log(MAhighway) 2.640 2.962** 0.231 0.477 2.831*** -0.769 1.676 -1.178
(1.773) (1.305) (0.844) (0.699) (0.829) (1.854) (1.354) (1.220)

Observations 2,847 2,864 2,269 2,363 2,363 2,557 2,358 2,354
R-squared 0.014 0.010 0.016 0.019 0.027 0.028 0.017 0.008

Notes The dependent variables are logs of sectoral employment across sixteen industries. Detailed definitions of these sectors are reported
in Table A2. NCIMA is the non-connection-induced-market-access measure. MAhighway accounts for market access changes by highway
network expansion only. All regressions include city fixed effects and region-by-year fixed effects. Controls include government spending, other
infrastructure measures, past city and provincial GDP, and interactions of year dummies with geographical centrality measures. Standard
errors, reported in parentheses, are heteroskedasticity robust and clustered at the city level, allowing spatial dependence decaying in distance
as in Conley (1999).* significant at 10%; ** significant at 5%; *** significant at 1%.
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Figure 2.5: Sector-specific HSR and highway impacts and nonroutine interactive task intensity

Notes:The figures plot estimated coefficients on the impacts of NCIMA and highway-induced market access (MAhighway) on sectoral employment reported
in Table 2.6 against sector-specific nonroutine interactive task intensity (interactive, communiction and managerial skills) reported in Autor et al. (2003).
The matching between Chinese industries and the US industries is reported in Table A2.
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Figure 2.6: Sector-specific HSR and highway impacts and manual task intensity

Notes:The figures plot estimated coefficients on the impacts of NCIMA (left) and highway-induced market access (MAhighway) (right) on sectoral
employment reported in Table 2.6 against sector-specific manual task intensity reported in Autor et al. (2003). The matching between Chinese industries
and the US industries is reported in Table A2.
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Table 2.7: Impacts of HSR on aggregate economic outcomes

VARIABLES log
employment logGDP log housing

price
log industrial
fixed investment

log retail
sales logpatent

connect 0.0736*** 0.0354 0.0303** -0.0846*** 0.101** 0.0352
(0.0123) (0.0250) (0.0152) (0.0278) (0.0423) (0.0232)

Observations 1,801 1,801 1,468 1,315 1,803 1,563
R-squared 0.035 0.023 0.023 0.050 0.028 0.132

log(NCIMA) 2.156*** 3.932*** 1.669** -1.348 3.431** 1.616
(0.677) (1.483) (0.763) (1.537) (1.378) (1.263)

log(MAhighway) -0.718 2.141** 0.612 -0.0346 1.301 0.0414
(0.602) (0.913) (0.801) (1.280) (2.149) (0.598)

Observations 2,877 2,871 2,332 2,098 2,879 2,397
R-squared 0.026 0.051 0.074 0.053 0.022 0.079

Notes:Data from the upper table are a panel of 172 Chinese prefecture cities annually from 2003
to 2013 that are connected or planned to be connected by HSR lines by the end of 2014. Con-
nect is a dummy which is zero unless a city is connected to HSR before the end of that year, in
which case it takes the value one. Data from the lower table are a panel of 278 Chinese prefecture
cities annually from 2003 to 2013. NCIMA is the non-connection-induced-market-access measure.
MAhighway accounts for market access changes by highway network expansion only. The depen-
dent variables as listed are logs of total employment, GDP, housing price, total fixed investment
of industrial firms, sales of retail firms and total patents. All outcome variables are counted at
urban wards (shixiaqu) of prefecture cities. All regressions include city fixed effects and region-
by-year fixed effects. Controls include government spending, other infrastructure measures, past
city and provincial GDP, and interactions of year dummies with geographical centrality measures.
Standard errors, reported in parentheses, are heteroskedasticity robust and clustered at the city
level, allowing spatial dependence decaying in distance as in Conley (1999).* significant at 10%;
** significant at 5%; *** significant at 1%.
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Figure 2.7: Event study: Aggregate economic outcomes

Notes:The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables are log total employment, GDP, housing private, fixed investments,
total retail sales and patents. The independent variables are the leads and lags of the increments in
non-connection-induced market access (NCIMA). For all the regressions, the sample is a balanced
panel of 278 Chinese prefecture cities from 2003-2011, as HSR connection information is available
only until 2014, and the third lead is a missing value for observations after 2011.
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Appendix B

Appendix of "Travel Costs and
Urban Specialization: Evidence from
China’s High Speed Railway"

B.1 A Model of labour Sourcing

B.1.1 Preferences and Endowments

The economy consists of N cities and a single final good sector. Each city j is
endowed with an inelastic supply of land (H̄j). The economy as a whole is endowed
with an inelastic supply of workers who are perfectly mobile across cities. The
representative consumer’s preferences are defined over a final consumption good
(Cj), housing (Hj) , and local-amenities (δj) taking the Cobb-Douglas form:

Uj = δjC
α
j H

1−α
j , 0 < α < 1 (B.1)

Consumption good price is normalized to be 1. Housing rental rate is represented
as qj. The indirect utility function is:

Vj = bδjwj(qj)
α−1 (B.2)

where b = αα(1− α)(1−α) is a constant.
For simplicity we assume that the final good is freely traded across cities. Cobb-

Douglas utility function indicates that housing expenditures should take up 1 − α
of total income. We assume that housing expenses are redistributed as a lump-sum
to consumers, as in Helpman (1998). Therefore for city j, its total income can be
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represented as:
vjLj = wjLj + (1− α)vjLj = wjLj/α (B.3)

Combined with housing market clearing condition, we obtain equilibrium housing
rental rate:

qj =
1− α
α

wjLj
H̄j

(B.4)

where H̄j represents city j’s inelastic housing supply.

B.1.2 Production

The final good y in city j is produced from a continuum of tasks i ∈ [0, 1] as in
Grossman and Rossi-Hansberg (2008) under CES technology. Perfect competition
and constant returns to scale apply.

yj = [

∫ 1

0

x(i)(σ−1)/σdj]σ/(σ−1) (B.5)

Tasks are produced using labour according to a linear technology:

lj(i) =
xj(i)

zj(i)
(B.6)

A city j can remote source tasks from another city k. The productivity of
producing task i at city k for city j is zjk(i). The origin city j’s productivity on
task i can be summarized by a vector zj(i) = (zj1(i), ...zjI(i)). I assume that the
productivity vector for i ∈ [0, 1] and k = 1, 2, ..., I, is a random variable drawn
independently across tasks and destination cities from a multivariate Frechet distri-
bution with zero correlation across draws, Fj(zj(i) = exp(−

∑
l Tj(zjl(i))

−θ). The
marginal distribution of zjk(i) is then Fj(zjl)) = exp(−Tj(zjl(i))−θ) .

Here I use the multivariate Frechet distribution instead of the single-variable
version because I would like to have the ex-ante probabilities of a city j sourcing
out its tasks to any cities to be positive.

By remote sourcing a task i from city k to city j, firms take advantage of city
j’s higher productivity zjk(i) and city k’s lower labour cost wk, subject to iceberg
transportation costs, τjk > 1. The iceberg cost can be interpreted as the loss of
efficiency in management over longer distances.

When a task i is sourced from city k to city j, the labour requirement ljk(i) and
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total cost of production gjk(i) are:

ljk(i) =
τjkxj(i)

zjk(i)
(B.7)

gjk(i) =
τjkwk(i)

zjk(i)
(B.8)

Firms in city j that sources in task i looks for a lowest cost source of supply for that
task. Following Eaton and Kortum (2002), the cost of sourcing task i from city k
to city j has the distribution:

Gjk(g) = Pr[gjk(i) ≤ g] = Pr(
wk(i)

zjk(i)
τjk ≤ g) = 1− exp((−Tj(wkτjk)−θ)gθ) (B.9)

The cost of production in city j then has the distribution:

Gj(g) = Pr[gjk(i) ≤ g, k = 1, 2...N ] = 1−
N∏
k=1

[1−Gjk(g)] = 1−exp(−Φjg
θ) (B.10)

where the parameter Φj of city j’s cost distribution is:

Φj =
N∑
k=1

Tj(wkτjk)
−θ (B.11)

The actual unit cost of production of final good for the CES production function,
assuming σ < 1 + θ, is

cj = γΦ
−1/θ
j (B.12)

B.1.3 Flows in Tasks Sourcing

Perfect competition implies that all firms receive zero profits. Prices of the final good
are equalized across cities because of free trade. Therefore, unit cost of production
of final goods should also be equalized across cities, that is:

cj = γΦ
−1/θ
j = c,∀j (B.13)

A direct implication is that Φj =
∑N

i=1 Tj(wiτji)
−θ is also equalized across cities.

In equilibrium, this cost equalization condition indicates that higher productivity in
a central city usually goes with higher wages not only in the city itself, but also in
surrounding cities. Additionally, a decrease in communication costs τkj between two
cities is likely to drive up wages in these two cities relative to those in other cities.
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Another important result derived following Eaton and Kortum (2002) describes
Xjk, the total labour cost in city k of producing for city j, as:

Xjk = Tj(wkτkj)
−θ(

N∑
k=1

Tj(wkτkj)
−θ)−1Xj (B.14)

where Xj is city j’s total cost of labour production (domestically produced or
sourced to other cities). It is obvious from the above equation that city j sources
more tasks to city k if city k has a lower wage, or is closer to j.

Note here
∑N

k=1 Tj(wkdk)
−θ = Φ is the same across all cities due to the unit

labour cost equalization condition. And we have:

Yk =
N∑
j=1

Xjk = Φ−1(w−θk )
N∑
j=1

τ−θkj XjTj (B.15)

Here Yk is the total labour income of city k, and can be represented as lkwk. To
guide the empirical analysis, I define MAk =

∑N
j=1 τ

−θ
kj XjTj as the “market access”

of k. Intuitively, the “market access” in city k is a weighted average of all other
cities’ “market size” scaled up by their productivity and scaled down by distances.
It can be roughly thought to represent the “perceived” demand of k’s labour from
the whole country.

B.1.4 Spatial Equilibrium

Free labour mobility implies that indirect utility is equalized across all cities in
equilibrium.

Vj = bδjWj(qj)
α−1 = V, ∀i (B.16)

Combined with the “market access” equation (18) and the market clearing condi-
tion (6), we are now able to characterize a similar spatial equilibrium with endoge-
nous variables Nk, wk, qk, and exogenous variables Tk, δk, H̄k,MAk, as in Glaeser and
Gottlieb (2009).

Given {Tk, δk, H̄k,MAk}, a spatial equilibrium is {Nk,Wk, qk} such that
1. qj = 1−α

α

wj lj
H̄j

(Housing Market Clearing)
2. Vj = bδjwj(qj)

α−1 = V, ∀i (Workers Mobility)
3. lkwk = Φ−1(w−θk ) ∗MAk (labour Income and Market Access)
4.
∑

k lk = N (Aggregate labour market clearing)
5.
∑

k Ck =
∑

k yk (Aggregate goods market clearing)
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To summarize, my model has the following implications: First, a city’s labour
income wjlj is increasing in its market access, defined as the access to all the other
cities’ technology. Second, housing prices increase following wages because of free
labour mobility. Whether the increase in market access translates into higher em-
ployment or higher wage depends on the housing supply restrictions of the city.

B.2 Services and fares of HSR

Most of the HSR lines in China operate intensively, but there is a large variety in the
number of services across lines: the busiest Nanjing-Shanghai line carries more than
160 trains one way per day while the number of services for the Western Chengdu-
Dazhou line is only 7. Detailed information on the number of services for each line
is listed in Table A4. A typical HSR train normally carries eight cars, with a total
capacity of about 600.

There are two main categories of high speed trains in China. One set of trains
runs at a designed speed of 350km/h, and their train numbers start with G. The
other runs at a designed speed of 250km/h with their train numbers led by D,
compared to a top speed of 120km/h for pre-HSR trains. There are national fare
scales for the two speeds but in practice, HSR fares vary slightly from line to line.
The price, travelling time and cost per kilometer for passengers are listed in Table
A4. For the lines served by trains of different speeds I report the price and travelling
time of the category starting with G (350km/h).

Undoubtedly, the introduction of HSR drastically decreases the travel time across
cities. The travel time between Beijing and Shanghai has been shortened from 13
hours to 5 after the introduction of the Beijing-Shanghai HSR line in 2011, for a
second-class price of 553 RMB (90 USD). By comparison, a flight from Beijing to
Shanghai usually takes a bit more than two hours for a full price of 1290 RMB (210
USD, including 160 RMB fees and taxes). Even if discounts are usually available for
flights, HSR still proves to be a good value of money if we consider the extra time
to get to the airport and occasional delays by air.

B.3 Market Access: Construction of cost parame-

ters

As briefly mentioned in section 4.2, the calculation of the market access variables
requires the construction of a time-varying transportation cost matrix for each city
pair. We have to rely on a few assumptions to construct τkm.

136



First, I allow τkm to incorporate both time and fare cost in travel. I generalize
passenger choices among different modes of transportation into three distinct com-
binations of time-fare tradeoffs. (1) Travel by conventional roads (not highways) or
slower railway at a speed of 60 km/h and monetary cost of 0.1 km/h (2) Travel by
highways or faster conventional rail (K or T initials) at a speed of 100 km/h, with a
fare/monetary cost of ¥0.23/km 1 (3) Travel by HSR at a speed of 220 km/h, with
a fare cost of ¥0.432 per kilometer. I assume that all cities are connected by con-
ventional roads had they not been connected by highway or HSR. The information
on highway network is obtained from Baum-Snow et al. (2016). A city is defined to
be connected by highway if the distance between the centroid of the city and the
nearest highway is less than 30 km. 3

Second, wage plays an essential role in passengers’ fare-time cost tradeoff: people
who earn more have a higher value of time and are more likely to take high speed
trains at a higher cost. For a particular city pair, I assume that the value of time is
determined by the average wage of these two cities. If the value of hours saved by
taking HSR does not cover the extra cost in fares, I assume that the HSR connection
between these two cities does not reduce bilateral travel cost. To avoid additional
endogeneity, I use the wage data in 2007, the year before most HSR lines were
opened, in all the calculations, since there are a few wage data missing from 2000.

Third, I restrict the maximum number of transfers to be two to better capture
people’s travelling behavior. It is therefore assumed that if passengers need to make
more than two transfers travelling by HSR, they will stick to alternative forms of
transportation and HSR does not change their travel cost.

Fourth, to capture the nature of travel cost facilitate intercity communication,
we need an approximation of the required frequency of face-to-face contacts from
one city to another for an intercity link to be successfully built. Without sensible
estimates on labour sourcing cost, I assume that on average, two trips per month

1The fare of traditional railway is set according to a formula, adding up three parts: 0.06/km for
seaters, 0.016/km extra for air-conditioning, 0.024/km extra for pre-HSR top speed, and usually
scaled up by 50% for new air-conditioned trains, which are prevalent nowadays. The fare is also
allowed to be scaled up by local railway authorities according to the operational costs; here I use
an arbitrary scaling up rate of 50%. As for highways, the monetary cost usually consists of toll fees
and fuel cost. The former is around ¥0.5/km for a small vehicle and the latter around 0.8/km for
average fuel efficiency. Assuming on average four passengers occupy a small vehicle, the cost per
person is 0.33/km. Taking long-distance coach would cost slightly less. For convenience I assume
the fare and time cost are the same for conventional trains and road travel.

2Imputed from Table A3. For long-haul trains with a travel time above 10 hours, I scale up the
average fare rate by a half to account for the extra cost of sleepers.

3Baum-Snow et al. (2016) only reports changes in highway network for the year 2000, 2002,
2003, 2005, 2007 and 2010. According to them, data on the year 2000, 2005 and 2010 are more
accurate. For years without data, I assume the highway network follows the previous year.
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are necessary for all kinds of tasks. In Section 8, I experiment with multiple values
of the number of trips from 0.5 to 10 per month as robustness checks.

Finally, an estimation of market access as MAk =
∑N

m!=k τ
−θ
kmYm, requires an

estimation of the decay parameter θ. In my model, the parameter θ measures
the dispersion of productivity. I follow Eaton and Kortum (2002) and Donaldson
(2014) and try several different measures over a wide range (3.6, 8.28 and 12.86)
for robustness, but stick to 3.6 from Donaldson (2014) in my main analysis. I find
the results to be robust to the selection of θ, as reported in Table A9. To avoid
endogeneity caused by geographically correlated local shocks, I use base year (2000)
GDP in calculations of all the market access variables.

B.4 Additional robustness checks

B.4.1 Exploiting variation in HSR opening time due to vari-

ation engineering difficulties only

As mentioned in Section 3.2, one way to get around the concerns that there are
economic and political reasons to push some lines to be finished earlier that are
correlated with the expected growth prospects of the connected cities is to focus on
a subset of connected cities where the construction of HSR starts at the same year
and to exploit the variation in project completion solely driven by engineering dif-
ficulties. Specifically, I look at the cities where HSR construction work commences
in 2005, following the passage of “Mid-to-long run HSR plan” immediately. I col-
lect data on the construction duration, length, the number of stations, bridge and
tunnel length of the eleven HSR lines that started construction in 2005. From an
engineering point of view, an HSR line takes longer to be built if it is longer, has
more stations and has a higher bridge and tunnel ratio. To implement the idea, I
regress the duration of construction on HSR line length, the number of stations and
bridge/tunnel ratio and get a predicted duration of construction of these lines as
the fitted value of this regression. I then set the engineering-difficulty-determined
opening date of each earlier HSR lines to be the construction starting date plus pre-
dicted duration of construction. The new engineering-difficulty-determined opening
year changes for four lines (Wuhan-Guangzhou, Zhengzhou-Xi’an, Fujian-Xiamen,
and Jiangmen-Xinhui). Although this operation leaves me with a very small sample
(27 cities), I still find similar effects on railway ridership, service employment and
private employment as in the main regressions (Table A10). However, the effects on
manufacturing employment are negative in this case, which might be attributable to
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especially large construction effects as they are the earlier connectors, and the con-
struction work might be more costly and requires more input with fewer experiences.
It means that we should observe larger manufacture and construction employment
increase before the actual connection of HSR, leaving the coefficient of connection
dummy to be negative.

B.4.2 HSR impacts on peripheral areas

Table A11 presents the results on the impacts of HSR connection or HSR-induced
market access on the peripheries of prefecture cities. I run separate regressions
and replace the dependent variables as the outcomes of the whole prefecture city
excluding its central urban area. I find small but insignificant negative impacts of
direct HSR connection on GDP and employment in the peripheral areas of prefecture
cities. It suggests that a small proportion of the positive impacts of HSR connection
on urban-core employment is a result of an accelerating urbanization process. Direct
HSR connection or HSR induced market access boost promote the attractiveness of
central cities and draws people and economics activities from rural areas to urban
centers.
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Table A1: Data Appendix

Variables Source Year Range Obs. No. of cities No. of cities with
no missing values

GDP City Statistical Yearbook 2000-2013 3888 282 261
Population City Statistical Yearbook 2000-2013 3887 282 261
Employment City Statistical Yearbook 2000-2013 3887 282 261
manufacturing employment City Statistical Yearbook 2000-2013 3799 282 261
Service Employment City Statistical Yearbook 2000-2013 3887 282 261
Wage City Statistical Yearbook 2000-2013 3794 282 261

Housing Price Regional Economic
Statistical Yearbooks 2000-2011 3311 281 261

Railway Ridership City Statistical Yearbook 2000-2013 3441 255 230
Road Ridership City Statistical Yearbook 2000-2013 3940 284 268
Air Ridership City Statistical Yearbook 2000-2013 1488 134 98
Total Ridership City Statistical Yearbook 2000-2013 3960 284 268
Goods Transported by Railway City Statistical Yearbook 2000-2013 3465 252 231

SOE employment Regional Economic
Statistical Yearbooks 2000-2011 3355 282 261

Utility employment City Statistical Yearbook 2000-2013 3870 282 261
Construction employment City Statistical Yearbook 2000-2013 3880 281 261
FIRE employment City Statistical Yearbook 2000-2013 3705 282 261
IT employment City Statistical Yearbook 2003-2013 3069 282 274
Business service employment City Statistical Yearbook 2003-2013 3033 282 271
Retail employment City Statistical Yearbook 2002-2013 3331 282 270
Catering employment City Statistical Yearbook 2003-2013 3092 282 277
Educaion employment City Statistical Yearbook 2003-2013 3101 282 277
Mining employment City Statistical Yearbook 2000-2013 2887 206 198
Government Spending City Statistical Yearbook 2000-2013 3641 282 261
Area of urban paved roads City Statistical Yearbook 2002-2013 3423 282 277
Urban green land area City Statistical Yearbook 2003-2013 3105 284 281
Number of theatres City Statistical Yearbook 2000-2013 3856 282 262
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Table A2: Match between Chinese industries and US two-digit industries

Code Chinese industries US industries NAICS

A Agriculture, forestry,
animal production and hunting, fishing

Forestry, Fishing, Hunting
and Agriculture Support 11

B Mining and quarrying Mining 21
C Manufacturing Manufacturing 31

D Production and distribution of electricity
heating power, gas and water Utilities 22

E Construction Construction 23
F Wholesale and retail trade Wholesale and retail trade 42,43
G Transportation, warehousing and post Transportation and Warehousing 48
H Hotels and catering services Accommodation and Food Services 72

I Information transmission,
computer services and software Information 51

J Finance and Insurance Finance and Insurance 52
K Real estate Real Estate and Rental and Leasing 53
L Leasing and business sevices Professional, Scientific, and Technical Services 54
M Scientific research, technical services Professional, Scientific, and Technical Services 54

N Management of water conservancy,
environment and public facilities

O Household services, repair and other services
P Education Educational Services 61
Q Health,social work Health Care and Social Assistance 62
R Culture, sports and entertainment Arts, Entertainment, and Recreation 71
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Table A3: HSR lines in use before the end of 2014

HSR lines Construction Time Openning Time Length(km)
Qinhuangdao-Shenyang 01/01/1999 01/07/2003 405
Hefei-Nanjing 11/06/2005 19/04/2008 154
Beijing-Tianjin 07/04/2005 01/08/2008 120
Qingdao-Jinan 28/01/2007 20/12/2008 393
Shijiazhuang-Taiyuan 11/06/2005 01/04/2009 190
Hefei-Wuhan 01/08/2005 01/04/2009 351
Dazhou-Chengdu 01/05/2005 07/07/2009 148
Ningbo-Taizhou-Wenzhou 27/10/2005 28/09/2009 268
Wenzhou-Fuzhou 08/01/2005 28/09/2009 298
Wuhan-Guangzhou 23/06/2005 26/12/2009 968
Zhengzhou-Xian 01/09/2005 06/01/2010 455
Fuzhou-Xiamen 01/10/2005 26/04/2010 275
Chengdu-Dujiangyan 04/11/2008 12/05/2010 65
Shanghai-Nanjing 01/07/2008 01/07/2010 301
Nanchang-Jiujiang 28/06/2007 20/09/2010 131
Shanghai-Hangzhou 01/04/2009 26/11/2010 150
Yichang-Wanzhou 01/12/2003 22/12/2010 377
Wuhan-Yichang 17/09/2008 23/12/2010 293
Haikou-Sanya
(Eastern Coastal line) 29/09/2007 30/12/2010 308
Changchun-Jilin 01/04/2008 30/12/2010 111
Jiangmen-Xinhui 18/12/2005 07/01/2011 27
Beijing-Shanghai 18/04/2008 30/06/2011 1433
Guangzhou-Shenzhen 20/08/2008 26/12/2011 116
Longyan-Xiamen 25/12/2006 01/07/2012 171
Zhengzhou-Wuhan 15/10/2008 28/09/2012 536
Hefei-Bengbu 20/05/2009 16/10/2012 132
Haerbin-Dalian 23/08/2007 01/12/2012 921
Beijing-Zhengzhou 26/12/2007 26/12/2012 693
Nanjing-Hangzhou 01/04/2009 01/07/2013 249
Panjin-Yingkou 31/05/2009 12/09/2013 89
Tianjin-Qinhuangdao 08/11/2008 01/12/2013 261
Xiamen-Shenzhen 23/11/2007 28/12/2013 502
Xi’an-Baoji 18/12/2009 28/12/2013 148
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Guangxi Coastal
(Nanning-Qinzhou-Beihai)

11/12/2008 28/12/2013 261

Liuzhou-Nanning 27/12/2008 28/12/2013 223
Wuhan-Xianning 26/03/2009 28/12/2013 90
Taiyuan-Xi’an 03/12/2009 01/07/2014 678
Nanchang-Changsha 26/02/2009 16/09/2014 344
Hangzhou-Nanchang 18/04/2010 10/12/2014 582
Lanzhou-Wulumuqi 01/01/2010 26/12/2014 1776
Guangzhou-Nanning 11/09/2008 18/04/2014 577
Huanggang-Wuhan
-Huangshi

02/10/2009 18/06/2014 97

Notes: Data are obtained from the Major Events and the Finished and Ongoing Projects
sections in the China Railway Yearbooks from 1999 to 2012.
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Table A4: Service and fare information of HSR lines

HSR lines Trains/day Speed (km/h) Price Duration Cost/km
Qinhuangdao-Shenyang 20 250 125 02:30 0.31
Hefei-Nanjing 57 250 60.5 00:44 0.36
Beijing-Tianjin 87 350 54.5 00:33 0.47
Qingdao-Jinan 35 250 116.8 02:28 0.32
Shijiangzhuang-Taiyuan 16 250 68 01:35 0.36
Dazhou-Chengdu 7 200 110 02:45 0.74
Ningbo-Taizhou 44 250 49 00:59 0.32
Taizhou-Wenzhou 48 250 35.5 00:45 0.31
Wenzhou-Fuzhou 37 250 88.5 02:05 0.3
Wuhan-Guangzhou 58 350 463.5 04:10 0.48
Zhengzhou-Xian 28 350 229 02:27 0.5
Hefei-Wuhan 41 250 105 02:02 0.3
Fujian-Xiamen 65 250 71.5 01:39 0.26
Chengdu-Dujiangyan 6 220 15 00:33 0.23
Shanghai-Nanjing 162 350 139.5 01:30 0.46
Nanchang-Jiujiang 14 250 42 01:05 0.32
Shanghai-Hangzhou 81 350 73 00:50 0.49
Yichang-Wanzhou 16 200 162 04:47 0.43
Haikou-Sanya
(Eastern Coastal line) 26 250 83.5 01:50 0.27
Changchun-Jilin 42 250 31.5 00:50 0.28
Jiangmen-Xinhui 19 200 10 00:07 0.37
Beijing-Shanghai 37 350 553 05:05 0.31
Guangzhou-Shenzhen 127 350 74.5 00:33 0.64
Longyan-Xiamen 15 200 48.5 01:10 0.31
Zhengzhou-Wuhan 54 350 244 02:10 0.46
Hefei-Bengbu 29 350 70 00:57 0.53
Haerbin-Dalian 18 350 403.5 04:14 0.44
Beijing-Zhengzhou 55 350 309 03:22 0.45
Nanjing-Hangzhou 73 350 117.5 01:45 0.47
Panjin-Yingkou 5 350 27.5 00:26 0.31
Xiamen-Shenzhen 39 350 150.5 03:50 0.30
Xi’an-Baoji 18 350 51.5 00:59 0.35
Tianjin-Qinhuangdao 16 350 120 01:25 0.46
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Guangxi Coastal
(Nanning-Qinzhou-Beihai)

23 250 61 01:38 0.30

Liuzhou-Nanning 31 250 65.5 01:30 0.30
Wuhan-Xianning 48 250 24.5 00:24 0.27
Hangzhou-Nanchang 42 350 263.5 02:57 0.46
Nanchang-Changsha 45 350 157 01:42 0.46
Lanzhou-Wulumuqi 3 250 548.5 11:25 0.31
Taiyuan-Xi’an 15 250 178.5 03:47 0.28
Guangzhou-Nanning 34 250 169 00:39 0.30
Huanggang-Wuhan
-Huangshi

127 250 74.5 00:33 0.64
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Table A5: HSR passenger survey results

Line Sample
Size

Average
monthly
Income

Purpose
of travel5

Connecting or
transfer modes4

Alternative
modes 7

Changchun-
Jilin
(110km)1

1001 4300

Non-commute
business: 26%

Car/Taxi:
48%

Bus/Coach:
50%

Leisure: 46% Public
transport: 43%

Ordinary
train: 36%

Commuting: 19% Air:
0%

Beijing-
Tianjin3
(120km)

1108

Non-commuting
Business: 39%

Car/Taxi:
34.7% Bus: 20.5%

Leisure:
33% Public

transport: 60.1%
Other train: 61.5%

Commuting:
around 15% Car: 11.60%

Wuhan-
Guangzhou2
968km)

556 4500

Non-commute
Business: 39%

No
transfer: 49%

Leisure: 33% Transfer
to road: 40%

Commuting:
around 15%

Transfer
to air:1.5%

Tianjin-Jinan1
(Part of
Beijing-
Shanghai
1318km)

1001 6700

Non-commute
Business: 62%

Transfer
to road
67%

Short
trip 6

Long
trip

Leisure: 28%
Other: 29%

Bus 32% 1%

Commuting:
0%

Other
Train 40% 18%

Air 7% 77%
Notes: 1. Passenger survey results from Ollivier et al. (2014)
2. Passenger survey resultsJianbin (2011)
3. Passenger survey results Wu (2006)
4. The exact questions differ across surveys. For the survey on Wuhan-Guangzhou line, the
question is “What are your transfer choices off HSR to your final destination, if any?". For the
other surveys, the question is “What are your transportation choices to the HSR station?"
5. The percentages of business travel, leisure and commuting do not add up to 100% and the
remaining respondents choose other purposes.
6. Short trips are defined as trips shorter than 300 km, and long trip longer than 300 km.
7. Passengers are asked “What are your preferred ways to travel before the introduction of HSR
for similar trips?" in the surveys.
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Table A6: Annual ridership for major HSR lines 1, (in millions passengers)

HSR lines 2009 2010 2011 2012

Qingdao-Jinan 21.22 23.95 26.74 29.63
Beijing-Tianjin 16.41 20.22 21.04 21.50
Changchun-Jilin 8.84 9.12
Shijiazhuang-Taiyuan 2 4.64 (6.19) 7.46 8.48 8.83
Hefei-Wuhan 2 1.62 (2.16) 2.97 3.49 4.57
Shanghai-Shenzhen 3 2.17 20.89 35.06
Zhengzhou-Xian X5 3.74 3.82 6.37
Guangzhou-Shenzhen 4 33.49 36.95 39.05 35.78
Guangzhou-Shenzhen
-Hong Kong 10.56

Guangzhou-Zhuhai 14.06 16.31
Beijing-Guangzhou 3 20.52 30.87 38.57
Beijing-Shanghai 2 20.59 (35.29) 54.81
Shanghai-Nanjing 52.46 56.96
Shanghai-Hangzhou 16.29 18.52
Nanchang-Jiujiang 10.80 11.53
Dalian-Shenyang 1.01
Haikou-Sanya
(Eastern Coastal line) 9.82 10.48

Hefei-Nanjing 1.37 2.83
Notes:1. The ridership data on Guangzhou-Shenzhen line are obtained from the annual report of
the GUANGSHEN Railway Co.,Ltd. The other ridership information is obtained from the China
Railway Yearbooks from 1999 to 2012.
2. The Hefei-Wuhan and the Shijiazhuang-Taiyuan lines were opened on April 1st, 2009. The
Beijing-Shanghai line was opened on June 30th, 2011. Therefore the ridership is counted for only 9
months and 7 months, respectively. Projected ridership numbers of the whole year for these three
lines in 2009 and 2011 are reported in the parentheses.
3. The Shanghai-Shenzhen line contains several segments: Ningbo-Taizhou-Wenzhou (open on
28/09/2009), Wenzhou-Fuzhou (open on 28/09/2009), Shanghai-Hangzhou (open on 26/10/2010),
Fujian-Xiamen (26/04/2010), Hangzhou-Ningbo (in construction), Xiamen-Shenzhen (open on
26/12/2013). Similarly, the Beijing-Guangzhou line consists of three line segments: Wuhan-
Guangzhou line (opened on 26/12/2009), Wuhan-Shijiazhuang line (opened on 28/09/2012) and
Shijiazhuang-Beijing line(opened on 26/12/2012). Therefore the change in ridership reflects both
the change for existing lines and the newly-generated ridership on new segments.
4. This line is an upgraded line (D-initial) opened in 2007 with a top speed of 200km/h, different
from the newly constructed high speed line (Shenzhen-Guangzhou-Hong Kong) opened in 2011
with a top speed of 350km/h)
5. X denotes missing data. The blank indicates that the line is not opened in that year.
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Table A7: Tourism

VARIABLES log
employment

log retail
employment

log cater
employment

log skilled
employment

log other service
employment

log other non-service
employment logGDP log retail

sales

log(NCIMA) 2.187*** 2.171 -0.958 1.467*** -0.342 1.228 3.666** 2.426
(0.648) (1.655) (1.728) (0.533) (0.767) (1.791) (1.538) (1.515)

tourism resources*
log(NCIMA) 0.571** 2.826*** 5.021*** 1.336*** 1.656*** -0.350 -0.683** 1.363*

(0.263) (0.761) (0.560) (0.326) (0.370) (1.132) (0.322) (0.735)
Observations 2,805 2,550 2,547 2,747 2,546 2,717 2,800 2,807
R-squared 0.048 0.030 0.032 0.040 0.020 0.060 0.131 0.033

Notes: Data are a panel of 278 Chinese prefecture cities annually from 2003 to 2013. NCIMA is the non-connection-induced-market-access measure.
log(NCIMA) is interacted with the number of 5A tourist attractions of each city. The dependent variables as listed are logs of total employment, retail
and wholesale trade, hotel and restaurants employment, skilled employment (includes IT, FIRE, education, business service and scientific research), other
service and non-service employment, total GDP and total retail sales. All outcome variables are counted at urban wards (shixiaqu) of prefecture cities. All
regressions include city fixed effects and region-by-year fixed effects. Controls include government spending, other infrastructure measures, past city and
provincial GDP, and interactions of year dummies with geographical centrality measures. Standard errors, reported in parentheses, are heteroskedasticity
robust and clustered at the city level, allowing spatial dependence decaying in distance as in Conley (1999).* significant at 10%; ** significant at 5%; ***
significant at 1%.
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Table A8: Robustness: Limited to cities without an airport

VARIABLES log railway
ridership

log road
ridership

log total
ridership

log railway
goods

connect 0.144** -0.0450 0.142*** 0.200*
(0.0577) (0.122) (0.0438) (0.102)

Observations 829 735 840 806
R-squared 0.056 0.012 0.069 0.031
log(NCIMA) 10.98*** -0.787 3.265* -4.562

(3.894) (2.254) (1.808) (6.670)
log(MAhighway) -2.159 5.784* 5.110** -1.395

(2.054) (3.459) (2.559) (4.191)
Observations 1,207 1,329 1,341 1,229
R-squared 0.051 0.045 0.050 0.037

VARIABLES log
employment logGDP log housing

price
log skilled
employment

log tourism
employment

log other service
employment

log other non-service
employment logpatent

connect 0.0960*** 0.0493** 0.0389* 0.0583*** 0.118*** 0.0575** 0.0709 0.00541
(0.0192) (0.0199) (0.0198) (0.0149) (0.0315) (0.0260) (0.0560) (0.0391)

Observations 840 841 685 835 839 796 817 754
R-squared 0.050 0.034 0.042 0.042 0.044 0.016 0.040 0.172
log(NCIMA) 1.393 3.949*** 1.530 2.752*** 0.5327 2.193** 1.065 -2.631*

(1.041) (1.269) (0.961) (0.612) (2.1036) (1.079) (3.062) (1.578)
log(MAhighway) -0.136 3.490*** -1.304 1.937*** 1.937*** 1.632* 4.065 -0.513

(0.862) (0.903) (1.028) (0.715) (1.7022) (0.902) (2.691) (0.694)
Observations 1,341 1,339 1,087 1,326 1,320 1,226 1,303 1,141
R-squared 0.024 0.122 0.041 0.033 0.033 0.022 0.029 0.121

Notes:Data are a panel of 130 Chinese prefecture cities without any airports by the end of 2013 annually from 2003 to 2013. * significant at 10%; **
significant at 5%; *** significant at 1%.
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Table A9: Robustness to Alternative Parameters and Specifications

VARIABLES log railway
ridership

log
employment

log manufacture
employment

log service
employment loggdp log housing

price

Set required trips
to be 0.5 per month 19.31*** 8.093*** 8.530 9.363*** 11.51** 4.801**

(7.134) (1.878) (10.85) (1.565) (4.654) (2.400)
Set required trips
to be 1 per month 10.25*** 4.386*** 4.637 5.070*** 6.149** 2.580**

(3.800) (1.015) (5.833) (0.839) (2.514) (1.304)
Set required trips
to be 5 per month 3.013*** 1.418*** 1.470 1.612*** 1.777** 0.773*

(1.115) (0.316) (1.785) (0.252) (0.762) (0.418)
Set required trips
to be 10 per month 2.101*** 1.041*** 1.041 1.164*** 1.185** 0.532*

(0.768) (0.224) (1.254) (0.175) (0.521) (0.302)
Set parameter θ to 8.28
in equation (19) 5.652** 2.442*** 7.559*** 2.382*** 1.614 1.210

(2.877) (0.867) (2.903) (0.701) (1.149) (1.178)
Set parameter θ to 12.86
in equation (19) 5.667*** 2.112*** 3.767 2.838*** 2.771*** 1.589*

(2.097) (0.560) (2.783) (0.431) (0.993) (0.924)

Notes:Each row reports a set of estimates from the indicated specification, as discussed in the text
(section 6.1). The relevant market access measure is the one that only captures the HSR-induced
market access changes (MAHSR). Robust standard errors clustered at city level are reported in
parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A10: Exploiting variation in HSR connection timing purely due to engineering
difficulty differences

VARIABLES lograilpas logemployment logmanuemp logserviceemp logwage loggdp loghouseprice

connectalt 0.159** -0.00342 -0.0701* 0.0476* 0.0518** -0.0605** 0.00317
(0.0680) (0.0297) (0.0392) (0.0242) (0.0251) (0.0302) (0.0417)

Observations 213 226 227 227 225 227 226
No. of cities 27 27 27 27 27 27 27
R-squared 0.323 0.297 0.299 0.220 0.253 0.545 0.121

VARIABLES log SOE
employment

log
other service
employment

log catering
employment

log
industrial
firm numbers

log
industrial
revenue

log retail
firm numbers

log retail
sales

connectalt 0.0199* 0.0656** -0.0772 0.00412 -0.00751 -0.0118 0.207***
(0.0108) (0.0256) (0.0705) (0.0424) (0.127) (0.0598) (0.0667)

Observations 224 227 227 227 227 224 227
No. of cities 27 27 27 27 27 27 27
R-squared 0.147 0.265 0.289 0.288 0.215 0.200 0.213

Notes:Data are a panel of 27 Chinese prefecture cities annually from 2003 to 2013, whose HSR
construction started in 2005. Connectalt is a dummy of an alternative connection measure. It
is the projected year of HSR opening based purely on engineering difficulty driven construction
duration predicted by the length of HSR lines and total bridge/tunnel percentage. Standard errors,
reported in parentheses, are heteroskedasticity robust and clustered at the city level, allowing
spatial dependence decaying in distance as in Conley (1999).* significant at 10%; ** significant at
5%; *** significant at 1%.

Table A11: Impacts of HSR on peripheral areas

VARIABLES log suburban
employment

log suburban
population

log suburban
GDP

log suburban
employment

log suburban
population

log suburban
GDP

connect -0.0325 0.00464 -0.0644
(0.0302) (0.00677) (0.0459)

log(NCIMA) -0.724 -0.428 -5.710*
(1.254) (0.375) (3.439)

Observations 1,768 1,771 1,771 2,801 2,806 2,801
No. of cities 172 172 172 279 279 279
R-squared 0.043 0.022 0.036 0.032 0.020 0.034

Notes:Data are a panel of 278 Chinese prefecture cities annually from 2003 to 2013. The outcome
variables are employment, population, and GDP at the peripheries (areas out of urban wards)
of prefecture cities. Standard errors, reported in parentheses, are heteroskedasticity robust and
clustered at the city level, allowing spatial dependence decaying in distance as in Conley (1999).*
significant at 10%; ** significant at 5%; *** significant at 1%.
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Figure A1: Aggregate ridership on different modes of transportation: 2010 to 2014

Notes:The figures display the aggregate number and percentage of ridership on high speed railway,
conventional railway, road, air and water travel from 2010 to 2014. The unit is 100 million.
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Figure A2: Sector-specific HSR and highway impacts and routine cognitive task intensity

Notes:The figures plot estimated coefficients on the impacts of NCIMA highway-induced market access (MAhighway) on sectoral employment reported in
Table 2.6 against sector-specific routine task intensity reported in Autor et al. (2003). The matching between Chinese industries and the US industries is
reported in Table A2.
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Figure A3: Sector-specific HSR and highway impacts and nonroutine analytical task intensity

Notes:The figures plot estimated coefficients on the impacts of NCIMA highway-induced market access (MAhighway) on sectoral employment reported in
Table 2.6 against sector-specific nonroutine analytical task intensity reported in Autor et al. (2003). The matching between Chinese industries and the US
industries is reported in Table A2.
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Figure A4: Event study with connection dummy: Aggregate economic outcomes

Notes:The figures display the estimated coefficients and 95% confidence intervals in regressions
where the dependent variables are log total employment, GDP, housing private, fixed investments,
total retail sales and patents. The independent variables are the leads and lags of the initial
connection dummy. For all the regressions, the sample is a balanced panel of 172 Chinese prefecture
cities from 2003-2011, as HSR connection information is available only until 2014, and the third
lead is a missing value for observations after 2011.
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Chapter 3

Where does the Wind Blow?
Green Preferences and Spatial
Misallocation in the Renewable
Energy Sector

Are “greener" investments less efficient? This paper looks at the location choices
of wind power investors. I measure the efficiency loss in this sector due to location
choices away from profit-maximization and explore the factors contributing to it.
Using extensive information on wind resources, transmission, electricity prices and
other restrictions are relevant for the siting choices of wind farms, I calculate the
predicted profitability of wind power projects for all the possible places across the
contiguous US, use the distribution of this profitability as a counterfactual for profit-
maximizing wind power investments and compare it to the actual placement of wind
farms. The average predicted profit of wind projects would have risen by 47.1%
had the 1770 current projects in the continental US been moved to the best 1770
sites. It is also shown that 80% and 42% respectively of this observed deviation
can be accounted for by within-state and even within-county distortions. I show
further evidence that a large proportion of the within-state spatial misallocation is
attributable to green investors’ “conspicuous generation" behaviour: wind farms in
more environmental-friendly counties are more likely to be financed by local and non-
profit investors, are closer to cities, are much less responsive to local fundamentals
and have worse performance ex-post. The implementation of state policies such as
Renewable Portfolio Standard (RPS) and price-based subsidies are related to better
within-state locational choices through attracting more for-profit investments to
the "brown" counties, while lump-sum subsidies have the opposite or no effects.
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My findings have salient implications for environmental and energy policy: policy
makers should take account of the non-monetary incentives of renewable investors
when determining the allocative efficiency of policies.

3.1 Introduction

Location is the most important determinant of some industries’ productivity. Large
economic loss can occur when plants are located in wrong places due to insufficient
information on site suitability, distorting land use restrictions or certain place-based
policies. Although spatial misallocation has widely acknowledged as an important
source of inefficiency, it is hard to measure the exact loss in productivity caused
by poor location for two reasons. First, a lot of the locational fundamentals that
matter for specific industries are not observed by researchers. Second, various ag-
glomeration and dispersion make the suitability of locations for firms in particular
sectors dependent on the pretense of other firms from the same or related industries
nearby. In this paper, I attempt to circumvent these problems by looking at the
locational efficiency within the renewable energy sector, a sector where locational
fundamentals are very important and largely observable, where agglomeration and
dispersion forces are relatively weak, and where regional energy policies play a sig-
nificant role. My research design also allows me to uncover factors that contribute
to the mislocation-induced efficiency loss within the wind power sector.

Economic efficiency and environmental benefits of renewable energy sector, as
suggested by Cullen (2013), Zivin et al. (2014) and Callaway et al. (2015), critically
rely on the proper siting of these projects. As a general rule, wind turbines should
be located in places with strong and stable winds, reasonably good access to electric-
ity transmission, high wholesale electricity prices and no restrictions on wind farm
development. In this paper, I adopt a novel method to directly compare the location
choices of actual wind projects across the contiguous US to a profit-maximization
counterfactual spatial allocation using rich information on local wind intensity, grid
access, electricity price, as well as restrictions on wind power placement.

In practice, I divide the contiguous US into 75,147 10km*10km grid-cells and
evaluate the profitability of placing wind power projects in each of these cells, subject
to necessary exclusions. I then calculate the differences in predicted profits between
existing cells and the best N cells in predicted profitability, where N is the number
of grid-cells with wind power projects. I find a discrepancy of 47.1% in predicted
profits: if we move all of the 1770 current wind projects to the best possible sites, the
predicted average profit of these projects will grow by 47.1%. Moreover, I find the
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within-state misallocation alone accounts for an efficiency loss of 37.4%, over 80% of
the total observed distortion. Even if we focus only on within county distortion, the
most conservative loss in efficiency is still measured as 19.8%. Large efficiency gains
are expected had wind power investors been better at picking sites within their own
states or even within their own counties. In fact, equalizing state-level incentives for
green energy is only able to boost aggregate efficiency by 1% to 5% 1 since cross-state
distortion is not large in magnitude compared to within-state distortion.

The natural next step is to examine potential explanations for the significant
observed locational inefficiency. A closer look at the data reveals that wind farms
located in "greener" counties, measured by local support for the Democratic and
Green Party in presidential elections, are located at less windy sites and perform
worse ex-post. They also tend to be invested by non-profit and local investors. They
are also more likely to be placed in urban areas, commonly thought to be not suitable
for wind power projects2 but obviously make these wind turbines more salient to
the public. I further show that differences in green preferences are quantitatively
important in accounting for the observed within-state and within-county distortion.
Moving from 25 to 75 percentile in the local “greenness" measure leads to the location
of wind farms 20% less responsive to local fundamentals and more than doubles the
within-county distortion measure.

One possible explanation for this behaviour is that instead of doing a global
search for the most productive sites, "greener" developers of renewable energy
projects might prominently install wind turbines on their own properties or at
least within their local counties as a demonstration of preferences for environmen-
tal protection. It could also be that green investors are smaller and unspecialized
organizations with disproportionally higher search and monitoring costs. In either
case, the existence of non-monetary motives for renewable energy is central to this
particular locational misallocation, a phenomenon with novel and interesting policy
implications. Policies that are ex-ante equivalent and are equally attractive to profit-
maximizing investors might actually screen investors with different levels of green

1The aggregate efficiency gain from equalizing state-level incentives is calculated by estimating
the policy treatment effects and generating the predicted wind capacity addition for each state by
assuming the intensity of policies to the same across states, while keeping the aggregate treatment
effects of wind capacity addition to be the same. Some assumptions are needed to evaluate the
change in aggregate efficiency level in the counterfactual configuration. I assume the average effi-
ciency level for each state under the counterfactual allocation is the same as the mean/median/max
estimated profitability of occupied cells (before any renewable policies are applied). The estimated
change ranges from 1% to 5% under these different assumptions.

2"Locations in narrow valleys and canyons, downwind of hills or obstructions, or in
forested or urban areas are likely to have poor wind exposure.", by the National Renewable
Energy Lab (NREL), http://www.bbc.co.uk/blogs/ethicalman/2009/12/why_micro_wind_
turbines_dont.html

158

http://www.bbc.co.uk/blogs/ethicalman/2009/12/why_micro_wind_turbines_dont.html
http://www.bbc.co.uk/blogs/ethicalman/2009/12/why_micro_wind_turbines_dont.html


preferences differently, resulting in starkly different ex-post allocative efficiency.
Therefore, I further investigate the role of state-level renewable policies in chang-

ing allocative efficiency within-state and how it interacts with investors’ green pref-
erences. I collect information on these policies from DSIREUSA (Database of State
Incentive for Renewables and Efficiency), and loosely divide them into three cate-
gories: quantity-based policies such as Renewable Portfolio Standard (RPS), per-
unit-price-based (performance-based) policies such as feed-in-tariff and certain cor-
porate tax breaks, and direct subsidies (non-performance-based) such as tax breaks
on equipment and property. I try to aggregate several different policies into a single
index of policy intensity under these three categories based on their impacts on the
predicted profits of a typical wind farm project. In a simple difference-in-differences
specification, I find RPS and price-based policies associated with significantly better
locations of wind projects within-state. An important reason is that these policies
are more attractive to pure profit-maximizing investors, who are adding capacities
mainly in "brown" counties. Direct subsidies neither change within-state allocative
efficiency nor have differential impacts on wind power capacity addition across coun-
ties with different environmental attitudes. For better identification, I restrict my
sample to gridcells around state borders and check the dynamic effects of renewable
policy incentives before and after their actual implementation. The key results are
robust to these alternative specifications.

I then come up with a model of private provision of public good with heteroge-
neous green preferences, similar to Jacobsen et al. (2014). I introduce search costs
for picking a suitable site for wind farms and assume that green investors derive
additional utility from having wind farms in their local areas, rendering fewer bene-
fits from searching. This model nicely accommodates all my key empirical findings.
It also predicts that when comparing the extra public benefits of policies, direct
subsidies are dominated by other performance-based or mandate-type policies with
the existence of green preferences.

My empirical findings have several novel and important policy implications. The
most important rationale of renewable support schemes is that they are the more
politically-accepted way to internalize the public benefits generated by renewable
electricity generation. Therefore, they should be designed in a way to realign public
and private benefits/costs of renewable investments. However, one of the most
important lessons we learn here is that we have paid too little attention to the
importance of green preferences in green investors’ private benefits, which is shown
to be negatively correlated to the public benefits generated by a wind farm project
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given the same amount of private costs3. In light of this, non-performance-based
renewable support schemes are clearly dominated since they tend to screen in greener
but less efficient investments. The tradeoff between price-based instruments and
renewable energy standard largely depends on to what extent the standard is able
to incorporate each location’s unique mix of electricity generation resources and
other restrictions associated with the public benefits of renewable energy. On a
related note, to engage agents with strong environmental preferences, promoting
markets for green electricity where people can purchase electricity generated from
renewable sources at a premium and get visible awards for it would be a better idea
than encouraging them to invest in their own renewable energy projects.

This paper contributes to a burgeoning literature on green preferences and con-
sumer behaviour. Kahn and Kok (2014) looks at the capitalization of green labels in
California housing market. Sexton and Sexton (2014) attributes consumers’ enthusi-
asm on Prius to “conspicuous conservation", a costly signalling of one’s concerns for
the environment. Bollinger and Gillingham (2012) underscores peer effects as the
motives for people to install solar panels. Instead, I am exploring the importance
of green preferences in steering investors’ behaviour and it is somewhat surprising
to notice that the importance of green preferences is also significant in this setting,
where agents are perceived to be more “rational" and profit-oriented. A major dis-
tinction of this paper from the previous research is that I explicitly document and
quantify the loss in efficiency due to this special “conspicuous generation" motive of
green investors and examine the effects of financial incentives in partially offsetting
it. It also relates to the intrinsic incentive crowding out topics in psychology and
public economics literature, also from a very different angle. I show that extrinsic
incentives such as renewable energy subsidies, albeit crowd out intrinsic motivation
in green investments, encourage the investors to adopt a more “profit-maximizing"
thinking, which could be desirable from the policy makers’ perspective.

I also evaluate the impacts of renewable energy policies from an unusual angle. In
my paper, I assess how the implementation of state-level renewable energy policies
reshape the cross-state and within-state allocative efficiency of wind farms. Among
plenty of papers that explicitly looked at the effectiveness of renewable energy poli-
cies (Bird et al. (2005),Yin and Powers (2010), Delmas and Montes-Sancho (2011))
systematically analyses the causes and effectiveness of typical US state-level policies
in adding capacities. At a more micro level, Cook and Lin (2015) finds that Dan-
ish renewable incentives significantly impacted the timing of shutdown and upgrade

3In the United States, the correlation between environmental friendliness and local wind re-
sources is negative. Moreover, the additional environmental benefits of wind power generation are
smaller with a higher proportion of other renewable or clean energy in local energy mix.
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decisions made by turbine owners.
This paper is also related to the broader practical question of second-best energy

policy design in face of large multidimensional heterogeneity when the first-best
is unattainable. I document an unintended source of distortion in this case: the
tendency of some subsidies to attract environmentalism-inspired but less efficient
investments. Other papers have looked at different policies at different scenarios.
Ryan (2012) shows how regulation might hurt social welfare through increasing
market power. Fowlie (2010) shows that heterogeneity in plant ownership structure
largely affects the effectiveness of environmental regulation. Ito and Sallee (2015)
discusses the pros and cons of attribute-based regulation, which helps to equalize
compliance costs but brings in extra distortion.

Finally, this paper makes a contribution to the spatial economics literature by
directly estimating the loss in aggregate productivity due to spatial misallocation.
The particular setting of my problem allows me to quantify this kind of loss by
directly comparing the actual location distribution to a well-established counterfac-
tual using rich information specific to the industry, without relying on a structural
model as in Bryan and Morten (2015) and Fajgelbaum et al. (2015). My findings
underline the importance of investors’ preferences in determining industrial location,
consistent with a “jobs follow people" story.

The paper is structured as follows: section 2 prepares the readers with the back-
ground knowledge of US wind power industry and relevant renewable energy policies;
section 3 introduces the data and methods to measure wind farm locational distor-
tions; section 4 presents the main findings on different sources of distortion; section 5
shows evidence on the distorting roles of green preferences and counteracting policy
effects; section 6 presents a simple model of private provision of public goods with
green preferences that brings together all my empirical findings; section 7 concludes.

3.2 Background

3.2.1 Wind power in the US

Wind power in the United States expands quickly during the past several years and
is taking up an increasingly important role in the energy mix of the US. As of the
end of 2014, the total wind capacity was 65,879 MW, which generates 4.45% of the
total electricity produced in the US. Over the past ten years, the US wind industry
has had an average annual growth of 25.6% over the last 10 years.

Wind power is widely considered to be the most cost-effective type of renewable
energy apart from hydropower and is therefore expected to grow even more in the
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future as the country relies more on renewable energy. A US Department of Energy
report finds 35% wind penetration by 2050 is “plausible", in terms of grid reliability
and cost, as well as the industry’s ability to scale up.4 And the EPA projects that
renewables could rise to 28 percent of the electricity supply by 2030 with Clean
Power Plan in place.5 Therefore it is time for us to think about how efficiently have
we been able to place existing wind projects and what can we do to improve the
allocative efficiency of this sector. Removing the persistent distortion in this sector
may prove to be as important as innovation in wind power generation and storage
technology in bringing renewable energy to be cost-competitive with fossil fuels.

Figure 1 shows the distribution of wind farms across the US. Figure 2 looks
deeper into the allocative efficiency of them. Figure 2.1 plots the density of wind
farm distribution across different wind power classes. Wind power class is a mea-
sure of wind resources, where 7 stands for the strongest wind and 1 stands for the
weakest. The NREL (National Renewable Energy Lab) suggests that only areas
with WPC greater or equal to 3 are suitable for utility-scale wind turbine appli-
cations6. However, from figure 1.1 we can see that about 30% of the current US
wind projects are located in areas with WPC smaller than 3. Figures 2.2 and 2.3
further show that the wind farms that are located in low wind areas (WPC=1 & 2)
are not closer to electricity grid or are in areas with higher retail electricity prices
than their counterparts in the middle range wind areas (WPC=3 & 4), suggestive
of a significant amount of spatial misallocation of wind farms across the country.
Finally, Figure 2.4 plots the average local environmental attitude measure7 of wind
farms across different wind classes. Quite interestingly, I find that the wind farms
exposed to little wind are located in counties with higher preferences for environ-
mental protection. Therefore strong green preferences of the investors could work
against incentivizing them to look for sites that make the most economic sense. In
section 5, I am going to explore these phenomena quantitatively.

3.3 Data

My analysis draws on three main sources of data: the database on the fundamen-
tals of wind farm location, information on the distribution and performance of wind
power projects, and a comprehensive dataset on state-level renewable energy incen-

4http://energy.gov/sites/prod/files/WindVision_Report_final.pdf
5http://www.vox.com/2015/8/4/9096903/clean-power-plan-explained
6http://www.nrel.gov/gis/wind_detail.html
7Local environmental attitude at county level is measured as a linear combination of aver-

age county income, college graduate share, votes share for democratic and Green Party in 2012
presidential election, similar to Allcott (2015)
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tives. I will describe them in turn.

3.3.1 Locational fundamentals

To establish a reliable counterfactual of profit-maximizing wind farm distribution,
we need information on the local fundamentals that are critical to the profitability
of wind farms. I collect information on wind resources, electricity transmission lines,
electricity prices, and the restrictions on wind placement. I then compile a database
of 75,147 10km*10km gridcells covering the whole continental US and match all the
locational fundamental attributes to each gridcell. It allows me to work out a single
measure of potential wind power project profitability at the cell level.

Wind resources: The main wind resource data I use are drawn from the an-
nual average wind resource data used in the Renewable Electricity Futures Study
(http://www.nrel.gov/analysis/re_futures) from the National Renewable En-
ergy Laboratory (NREL). The majority of the onshore wind data was modelled at a
50 m hub height and vertically adjusted to 80 m height to better represent current
wind technology. Wind resources are divided into 7 categories with 1 representing
the worst and 7 the best.

One particular drawback of using an annual average wind resource measure lies
in the fact that there is a large variation in wind intensity from time to time, and the
revenue generated from wind production largely depends on how the peak of wind
power coincides with that of electricity demand. To deal with this issue, I obtain
alternative simulated wind production data the National Renewable Energy Labora-
tory’s (NREL) Eastern Wind dataset8 and Western Wind dataset9. These datasets
are created for energy integration studies by NREL and its partners. Simulated
power production from hypothetical wind plants in every ten minutes from 2004 to
2006 is generated for 32,043 sites across the Western United States and 1,326 across
the Eastern United States. Mapping these sites to my gridcells generates time-series
wind production information for 5866 gridcells.

Electricity transmission: I draw the information on electricity transmission
infrastructure from a GIS file on 2001 US main electricity transmission lines above
60KV.

Agricultural land value: The county-level agricultural land value for 2014
is collected from the United States Department of Agriculture (USDA) statistics
service dataset 10.

8http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html
9http://www.nrel.gov/electricity/transmission/western_wind_methodology.html

10www.nass.usda.gov
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Electricity prices: I obtain 2010 retail electricity rates by residential, com-
mercial and industrial uses across over 4,000 pricing units from data reported by
Energy Information Agency of the US (EIA). Rates were matched from EIA data
and Ventyx (2010) territory shapes. I complement this data with hourly wholesale
electricity rates from 2004-2010 across 24 pricing hubs gathered from Bloomberg.

Exclusions: I rely on the National Land Cover Database 2001 (NLCD2001) to
eliminate places that are not suitable for wind power development. Incompatible
land use includes urban, wetlands and perennial snow areas. Mountainous areas with
a slope steeper than 20 degrees, calculated using the USGS national 90-meter spatial
resolution National Elevation Dataset, are also excluded. Finally, I exclude Bureau
of Land Management (BLM) and National Science Foundation (NSF) protected
areas, brownfield, national parks, federally owned land, national trails and tribal
lands, according to the BLM. GIS data on exclusion are matched to the gridcell
database. A gridcell is defined as not suitable for wind power development if over
70% of its area is covered by excluded areas.

3.3.2 Wind power projects distribution and performance

I merge three datasets to get an as complete as possible picture of the characteristics
and performances of current wind power projects across the continental US. US Ge-
ological Survey (USGS) gather information on the exact location, mode, operation
date and owner wind farm of over 48,000 wind turbines in the US through March 2,
2014. Energy Information Agency (EIA) publishes annual reports on power plant
generation (EIA-923) and generators (EIA-861) up to 2013, which includes infor-
mation on capacity, generation, emission, interconnection and other characteristics
of 821 wind power plants whose operation commenced before 2013. I also obtain
detailed ownership, developer and operator information on over 1214 wind projects
from Thewindpower (www.thewindpower.net). I merge these three datasets to-
gether by the names of the plant/project and year of operation. Over 70% plants in
the EIA dataset are matched to both USGS turbine-level dataset and Thewindpower
project-level dataset.

3.3.3 State Level Renewable Policies

There are various support schemes for renewables across the US implemented at
different levels. At the federal level, we have the Production Tax Credit (PTC) and
the Investment Tax Credit (ITC), which reduces federal income taxes for qualified
tax-paying owners of renewable energy facilities based on either electrical output or
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capital investment in renewable energy projects.
At the state level, the most important policy is the Renewable Portfolio Stan-

dard (RPS), where utilities within the implementing states are required to source
a given proportion of its electricity generation from renewable sources. Apart from
it, there exists a number of different kinds of subsidies. I try to categorize them
into performance-based and non-performance-based ones for my analysis. Support
schemes can also be awarded by individual utilities or municipals, but many of them
are direct responses to RPS. Therefore, throughout this paper, I am going to limit
my attention on state-level policies only.

Information on state-level renewable energy policies and incentives is gathered
from the Database of State Incentives for Renewables and Efficiency (DSIREUSA,
www.dsireusa.org). Since there are so many different types of renewable policies
and incentive schemes, I categorize them into three main groups and generate a
single index of policy intensity within each group. I use a few criteria of exclusion
to simplify my categorization. These three groups are:
(1) Direct fixed cost subsidies that cover parts of the fixed cost of wind projects
and are not dependent on performances, including equipment sales tax exemption,
property tax exemption, grants, interconnection cost subsidy, support on feasibility
studies etc.;
(2) Price based subsides given to per unit electricity generated, hence depends on
performances, including feed-in-tariff, performance-based rebates, and corporate tax
credits;
(3) Quantity based policies that stipulate the minimum amount of renewable elec-
tricity generated, such as renewable portfolio standard (RPS).
I then apply the following rules to exclude policies that are not considered for my
analysis.
1. I focus only on state-level policies. Policies on the federal or municipal level
are not considered. Policies implemented by individual utilities are not included as
well.
2. I exclude policies that cannot be categorized loosely into the aforementioned
three groups. Policies like green power purchase options or loan programs are not
counted.
3. I exclude policies that are not awarded directly to wind farm developers, such as
industrial support for wind turbine and parts manufacturers.
4. I exclude policies with too restrictive size or ownership requirements. (Policies
with a maximum limit over 10MW and a minimum limit under 100MW, or are
dedicated to particular ownership groups (i.e. residential only) are excluded)
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With these requirements in mind, I define the index for per-unit-price-based
(performance-based) policies as the total amount of extra money given to per unit
electricity generation, the index for direct subsidies (non-performance-based) as
the estimated percentage of total upfront cost saved, and the index for quantity
based policy (RPS) as the “real" measure of target stringency each year (RPSst =

Norminal RPSst − Renewables,t−1

Totals,t−1
), where Norminal RPSst is the nominal RPS tar-

get on the minimum proportion of electricity sales from renewable sources, and
Renewables,t−1

Totals,t−1
is the actual proportion of electricity sales from renewable sources last

year.

3.4 Measuring Locational Distortions

I follow three steps to obtain a systematic measure of locational misallocation at
different levels in wind power industry. First, I evaluate the contribution of locational
fundamentals to wind power plant performance. Second, I divide the continental
US into 75,147 10km*10km gridcells and calculate the predicted profitability of each
cell. Third, I define my distortion measure as the difference between the average
profit of current wind projects and the average that can be attained should they be
reallocated to the best gridcells.

To weigh the contribution of different locational factors such as local wind re-
sources and transmission access to the general profitability of wind power projects,
I define the location-varying predicted revenue per kW of wind capacity installed as:

PredictedCapacity Factor∗(1−%Loss in Transmission)∗AverageElectricityPrice/kW

As there are different measures on wind resources and electricity prices, I come
up with multiple measures of revenue for robustness, which I will discuss later.

On the cost side, two of the most important sources of location-varying fixed cost
are grid interconnection cost and land rental cost11. I subtract the location-varying
fixed cost from the revenue function to get a profitability measure of wind farms.
The interconnection cost is calculated based on the distance of wind farms to the
closest electricity grid. EIA-861 series report interconnection costs for most of the
wind power generating units in the US. Therefore I regress the actual interconnection

11A report by the European Wind Energy Association http://www.ewea.org/fileadmin/
files/library/publications/reports/Economics_of_Wind_Energy.pdf shows that grid con-
nection and land rent takes up 8.9% and 3.9% of the total setting up cost of a typical 2 MW wind
turbine

166

http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf
http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf


cost on the distance to electricity transmission lines and the size of the power plant
to and get a prediction of interconnection costs for each wind turbine installed in
any of the 75,147 gridcells. I amortize these two sources of fixed cost over 15 years,
the lifespan of a typical wind farm, with an annual interest rate of 3%.

To calculate predicted wind power production, capacity factor is a common mea-
sure in electrical engineering defined as the ratio between annual total electricity
generation and the maximum amount of electricity generated at full capacity during
one year. Since wind power is an intermittent energy source and wind turbines are
not working when there is no wind, the capacity factor of a typical wind power plant
usually ranges from 20% to 40%. I predict the capacity factor for a typical wind
power plant in a given gridcell using information on the annual average wind speed
of that gridcell. To obtain a reliable relationship between average wind speed and
power plant capacity factor, I look into the National Renewable Energy Laboratory
(NREL) Eastern and Western wind datasets, which reports hourly wind speed and
simulated capacity factor over two years across 30,000 sites in the US. I regress the
simulated capacity factor on yearly average wind speed to get a coefficient of the
importance of wind resources to production efficiency.

A shortcoming of this method in predicting wind power generated revenue lies
in the fact that there is a large variation in wind intensity from time to time, and
the revenue generated from wind production largely depends on how the peak of
wind power coincides with that of electricity demand. So as an alternative I also
use the simulated capacity factor reported by the NREL Eastern and Western wind
datasets directly. The advantage of the second source is that it provides us with
detailed variation in simulated wind power production per hour for three years, and
the disadvantage being this information is only available for only 5866 of my 75,147
gridcells. Among them, only 317 of the 1,770 occupied cells are covered. To avoid
dropping too many occupied cells from my sample, for those occupied cells without
detailed time-series wind production information, I use the information from the
closest sites to them as a proxy as long as the distance between the cell and the
observed simulation site is less than 30 km. This operation leaves me with 1128
occupied cells in the end.

I use both wholesale and retail electricity prices in my revenue calculation. Both
methods have their respective pros and cons. Wholesale electricity prices are the
prices faced by wind power plants and they are available at high frequency, allowing
us to capture the fluctuation of electricity demand across different points of time
within a day. But they are only observed at 24 trading hubs. Retail electricity
prices are available at over 4000 price units across the US annually. But they are
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the prices faced by consumers and markups between retail and wholesale prices
could be different across places. I use the retail prices for my main specification
as I believe it could better capture the demand side differences but I use wholesale
prices for robustness. I then factor in the loss in transmission and get an estimate
of the amount of money received per unit electricity generated by the wind farm
((1−%Loss in Transmission) ∗average electricity price). The loss in transmission
depends, of course, on the type of prices I use. With retail prices, the loss depends
on the distance to the distribution lines, and with wholesale prices, the loss depends
on both the distance to the closest 375 kV electricity transmission lines and the
distance to the electricity trading hub.

For robustness, I define four different profitability measures. On the production
side, I use either the predicted wind power production based on annual average wind
speed, or the simulated wind power production hourly data that are available only
for a subset of gridcells. As for the price, I use either retail or wholesale price data.
For simplicity, to generate the profitability measure using hourly simulated data and
wholesale prices, I define off-peak time to be 12:00 p.m. to 8:00 a.m. next morning,
and peak time to be the rest. I then aggregate both wholesale electricity price data
and simulated wind production data to peak and off-peak ones and generate the total
predicted revenue. The combination of two production estimation methods and two
price sources produces four profitability measures. The baseline one is the one that
uses annual average wind speed and retail electricity price. Table 3.1 reports the
correlation across these four measures. As Eastern and Western Wind datasets use
a different methodology in simulation. I split them into two separate samples and
report the correlation separately. It is clear that the correlation between them are
quite high.

With a reliable measure of potential profitability of wind power projects across
the continental US, I define the total loss in wind farm spatial misallocation as:

Average profit of 1770 best cells nationwide− Average profit of1770 built up cells nationwide

Average profit of N built up cells nationwide
(3.1)

Over concerns about grid stability, I impose a restriction on the upper bound of
wind penetration: in the optimal allocation, the proportion electricity coming from
the wind should not be more than 30% of the total generation for any states.

Similarly, I am able to produce a within-state(county) measure of mis-location
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loss:

Average profit of theN best cells in state(county)− Average profit of N built up cells

Average profit of N built up cells
(3.2)

As mentioned, for robustness I generate four different measures of wind power
profitability. Accordingly, I come up four distortion measures. Table 3.2 report
these spatial misallocation measures at national level. The baseline reveals a total
efficiency loss measure of 47.1%. That being said, the average profit of 1,770 conti-
nental US wind farms will increase by 47.1% should they be moved to the best 1,770
gridcells in the US. The measured distortion (43.6%) is slightly smaller if we are us-
ing wholesale other than retail electricity prices. Because the simulation method is
different across the Eastern and Western datasets, I generate the distortion measures
for Eastern/Western US separately. So the distortion measure from Row 3 to Row 6
can be interpreted as the change in average profit by moving the current wind farms
to the best cells in Eastern/Western US. Since the simulation data are only avail-
able for a subset of gridcells (4,661 for the Western US, 2,003 for the Eastern US.),
distortion measures based on them are more likely to be underestimated, and the
extent of underestimation is larger for the Eastern subsample with less alternative
gridcell’s. They report alternative distortion measures from 11% to 37%.

Within-state allocative efficiency loss for different states is reported in Table
3.3. The first column and the second column report the distortion measures based
on profitability measures using predicted production data based on annual average
wind speed. The third and fourth columns report distortion measure based on the
simulated production measures that take account of fluctuation in wind resources
across time. It is clear that these four within-state distortion measures are highly
correlated. For the rest of my analysis, I stick to the first column as my baseline.

We can see that there is a large variation in the current allocation efficiency across
the US states. In Iowa, the observed efficiency loss due to the mislocation of wind
projects is less than 10%, while in Maine, the average profit of wind power plants
can go up by 110% if they are placed optimally. Weighting state-specific within-
state efficiency loss with the total wind capacity of each state gives us a 37.4%
efficiency loss driven purely by suboptimal wind farm siting choices within state.
Even more surprisingly, the measured efficiency loss remains at 19.8% even if we only
consider within-county distortion, which should be relatively free of most concerns
on scheduled electricity demand and supply at the state level. It means that instead
of placing wind farms in the wrong states, we should worry more about wind power
investors not choosing the right sites within their own states or even within their
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own counties. To take a closer look at what might drive within-county misallocation,
Figure 2 plots the relationship between measured within-county misallocation and
the support for the Democratic Party at the county level, revealing a significant
and negative relationship. Moving from the 25th to 75th percentile in the local
"greenness" measure more than doubles the within-county distortion measure.

As a more rigorous attempt to examine the factors that contribute to this ob-
served within-county spatial misallocation, I turn to regression analysis. Table 3.4
reports the correlation between a normalized distortion measure and county-level
greenness measures, the mean and standard deviation of profitability within-county,
the percentage of cells that are not suitable for wind power placement, as well as a
variety of demographic and social economic measures. It is shown that the support
for the democratic and Green Party is positively correlated with the county-level
distortion measures. Apart from that, the distortion measure is also increasing in
the college graduates share in some specifications. Other county characteristics do
not seem to correlate with this within-county distortion measure in a systematic
way.

It is noted that the calculation of profitability inevitably relies on some assump-
tions. Several factors not considered in my calculation might still play a role in the
decisions of wind power investors, such as the economics of scale for maintenance,
unobservable local regulatory constraints and concerns for grid resilience. If these
factors make the current locations of wind farms better for wind development than
my profitability measure predicts, then I overestimate the aggregate misallocation
based on this measure. Another question is whether or not some unobservable fac-
tors also account for the correlation of local environmental friendliness and measured
misallocation. One possibility is that environmental friendly communities also care
about the "side effects" of wind power development more, such as bird strikes, noises
and degradation of scenic views. In that sense, deviation from profit maximization
is not necessarily suboptimal among these "green" communities. However, previous
empirical research on the hedonic effects of wind turbines reveal that the negative
impacts of wind turbine construction on local property prices are modest in the US
(Heintzelman and Tuttle (2012)). Given the size of measured profitability loss, and
the fact that a large proportion of wind farms actually locates in places with little
wind, I believe measurement errors stemming from omission of these unobservable
factors do not take away the main message of misallocation measures.
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3.5 Green Preferences and Spatial Misallocation

In this section, I attempt to evaluate the efficiency loss from the suboptimal siting
choices made by those who invest in wind power out of environmental concerns.
My main hypothesis is that for either inner satisfaction or a demonstration of the
pro-social behaviour, wind farm developers who invest out of environmental con-
cerns display stronger local bias: instead of surveying more sites to place their wind
turbines, they tend to have them in their backyards. This behaviour can be inter-
preted as a particular way to signal one’s "greenness" through producing their own
electricity, a phenomenon we term "conspicuous generation". Previous papers have
documented this kind of behaviour by comparing solar panel placement patterns
across "green" and "brown" communities. (Bollinger and Gillingham (2012)) I will
focus more on the potential efficiency loss stemming from this phenomenon. More-
over, I will further explore how the implementation of renewable energy policies
interact with these intrinsic motives and shifts the overall allocative efficiency level
in particular ways.

In the following sections I document the following empirical findings:
(1) Wind farms in "greener" counties are located in less profitable sites, are less

responsive to local fundamentals and perform worse ex-post. The negative relation-
ship between wind farm performance and county level environmental attitude only
exists in a sample of wind farms that are invested by local investors, but not those
invested by national or international developers.

(2) Wind farms in "greener" counties are more likely to be invested by non-profit
organizations and local investors, and located in cities.

(3) Performance-based renewable energy policies improve the within-state allo-
cation of wind farms, partly through attracting more wind investments to "brown"
counties.

3.5.1 "Green" wind farm performance

Here I use the merged plant-level data to look for any significant disparities in ex-
ante location choices and ex-post performances of wind farms across counties of
different environmental attitude. The baseline specification is:

yit = α ∗ demratec + βstate + γt + εit (3.3)

The sample is the plant-level dataset with 774 plants (out of 821 in total) fully
matched to the project level dataset. yit are characteristics of wind power plant
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i that starts operating in year t, including capacity factor (productive efficiency),
predicted profitability based on locational fundamentals, actual profit calculated us-
ing capacity factor and retail electricity price, ownership type, indicators of whether
or not the investor is local and located in cities. I control for state and operation
year fixed effects for the first three variables in linear regressions and only year fixed
effects for the latter three in logit regressions. Standard errors are clustered at state
level. demratec is the votes share for the Democratic Party in 2012 presidential
election.

The results are shown in the upper panel of Table 3.5. Column 1-3 indicate
that wind farms located in greener counties are placed in worse location ex-ante and
perform worse in terms of productivity and revenue ex-post. Column 4 shows that
their investors are more likely to be non-profit, such as governments, public organi-
zations (NGOs and universities), municipal and cooperative utilities, which reveals
significant differences in the nature of renewable investments across counties with
different green preferences. Column 5 shows that wind power projects in greener
counties are also more likely to be set up by local investors, defined as investors whose
investments are limited within their own state, contrary to international or national
developers such as EDF Renewables or GE energy, who spread their projects in
various states. Column 6 indicates that the wind farms from "greener" counties are
more likely to be located in urban areas, defined by the US Census Bureau. Having
wind farms in urban areas is usually considered suboptimal because of more ob-
struction to incoming winds, higher land price and more restrictions on production
due to noises and other potential disturbance of wind turbine operation to human
activities. As a result locating wind farms closer to cities is likely to serve other pur-
poses for green investors: they could be signaling their concerns for environmental
protection to people who can easily see their wind turbines working; or as non-profit
organizations, they are less efficient in monitoring and maintaining wind farms due
to the lack of specialized personnel, which forces them to have their properties closer
to where they are.

Another plausible interpretation of the worse site choice and ex-post perfor-
mances for wind farms located in greener counties is that these counties are more
welcoming to renewables and set lower entry barriers for wind farm investors. I
address this issue in the lower panel of Table 3.5 by splitting the sample of wind
farms into a local subsample that contains only wind farms whose investors only
invest within-state and a non-local one. It is quite clearly that the worse ex-ante
site choice and ex-post profitability of wind farms in greener counties are almost
purely driven by those owned by local investors, which is contradictory to what we
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would expect if the lower entry barrier of wind farms to greener counties is the main
story behind my findings.

To check this hypothesis from another perspective, I further leverage the gridcell
level data to see if the placement of wind farms are less responsive to local funda-
mentals in greener counties. A major advantage of this specification is that it takes
account of the possibilities that more environmentally friendly counties might start
with systematic differences in terms of wind resources or restrictions in wind farm
development, and evaluate the efficiency of location choices given these constraints.
My main specification takes the form of:

Capacityit = α∗profitabilityi+β∗demratec+γ∗profitabilityi∗demratec+θs+δt+controlsi+εit
(3.4)

Capacityit is the wind capacity added to cell i in year t, profitabilityit is a measure
of predicted wind farm profitability at cell i; demratec represents the green prefer-
ences of county c, measured as the votes share for Democratic Party in the 2012
presidential election of that county. γ shows how the responsiveness of wind power
placement to profitability varies across "green" and "brown" counties. State and
year fixed effects, as well as the interactions between profitability and polynomials
of year trends are controlled for.

Since my dependent variable is lower-bounded by zero, linear regression might
not be the most suitable specification. For robustness, I try different estimation
methods that pay extra attention to the zeros in the left-hand side variables. Due
to the censorship nature of this problem, I employ panel data Tobit estimation
for all the regressions involving gridcell-level data. I follow Honoré (1992) practice
to consistently estimate the coefficients in a panel Tobit setting with fixed effects.
Since the distribution of the wind capacity added to each gridcell per year is highly
dispersed with a large proportion (99.99%) of it clustered at zero, for the sake of
computational convenience, I assemble a new sample with information on all the
cell with wind farm placement, as well as a 10% sample randomly drawn from the
remaining cells, keeping the panel structure.

Table 3.5 shows that profitability indeed plays a lessor role in the location choices
of wind farms in greener counties, mostly because they are less prone to be placed
in windier places. One standard deviation in the greenness measure makes the
placement of wind farms 12% less responsive to the profitability of potential sites.
The results hold with an alternative measure of environmental friendliness, such as
votes share of the Green Party.
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The above results not only show that wind farms located in greener counties
perform worse, they also indicate that the deviation of wind farm placement from
the optimum within-county is larger for more environmentally friendly counties. So
it is not just that greener counties set lower entry barriers for green energy invest-
ments, but their investors are actually worse in placing given the amount of wind
capacities within counties. The fact that green investors in renewable energy make
worse location decisions grant us with novel and interesting policy implications: to
maximize the impact of subsidies on renewable in generating public benefits, policy
makers should focus on bringing more "brown" but profit-maximizing investors into
the market instead of encouraging green and utility-maximizing agents to produce
more. In the next part, I evaluate the role of three different types of renewable en-
ergy policies in correcting or exacerbating this green-preferences-related suboptimal
misallocation within-state.

3.5.2 Renewable policies and allocative efficiency

As has been shown in section 4, most of the observed efficiency loss due to subopti-
mal siting of wind farms can be accounted for by spatial misallocation within-state,
or even within-county. In this part, I manage to check if renewable policies affect
the within-state allocation of wind farms. It is worth noting that in theory, if all
the existing wind power investments are outcomes of profit-maximization and the
search cost for better sites is a fixed cost, then only price-based subsidies should be
effective in improving within-state allocation since it increases the benefit of con-
ducting a more thorough search. Even if that is the case, we should not expect any
differences in the policy impacts between "green" and "brown" counties, under the
assumption that the only differences between investors from "green" and "brown"
counties lie in their entry standards. The other two types of policies should only
change participation constraints and attract less profitable projects. The baseline
specification is:

Capacityit = Σ3
pβp∗policiespst+Σ3

pγp∗profitabilityi∗policiespst+θi+δt+εit (3.5)

Capacityit stands for wind capacity added to gridcell i in year t, profitabilityi is the
measure of the predicted distant-varying profit for a typical wind farm operating in
gridcell i, policiespst is the intensity of policy p implemented in state s in year t,
where p indicates which group (per-unit-price-based, direct subsidies, RPS) does the
policy index belong to. Cell and year fixed effects are controlled and the standard
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errors are clustered at the state level. I am also controlling for the interactions
between profitability and polynomials of year trend in case there is a year trend
governing the response of wind power placement to profitability.

Coefficients on policiespst are the estimates of the treatment effects of renewable
energy policies on wind capacity addition in a basic difference in differences setting.
The identification assumption is that conditional on the gridcell-level predicted prof-
itability, as well as cell and year, fixed effects, the growth in wind capacity addition
should follow a parallel trend across different states in absence of any policies. These
assumptions are challenged if there are active business groups pushing for certain
policies and they are also investing more heavily in local renewable energy programs,
which could well be true in reality. I try some other measures to sharpen my iden-
tification in my robustness checks. First, I restrict my sample to only cells around
state borders only, where they are much more similar to each other apart from the
timing and intensity of state-level renewable policies. However, there is still the con-
cern that apart from the policies I am examining there might be other unobservable
policies or change of rules implemented at the same time. So furthermore, I restrict
my sample to gridcells in states that have implemented at least one of the policies so
their effects are identified through the variation of when the policies are implemented
and how significant these policies are, instead of which states manage to implement
policies. Finally, since the lobbying usually takes time and for most of the policies
and there is usually a time gap between the enacting and implementation of policies,
if the concern for avid green investors pushing policies is valid, we should be able
to see the capacity addition diverges across treated and control states even before
the implementation of policies. So as another robustness check, I look at the leads
and lags of incentive changes to trace the dynamic impacts of policies before and
after their actual implementation. There seem to be no discernible differences in
pretrends across treated and control cells. The results on these extra specifications
are reported in the appendix and the main results are largely robust.

The coefficients of the interaction terms, profitabilityi ∗ policiesst, measure how
the implementation of policies changes the responsiveness of wind farm placement
to profitability. Positive coefficients indicate that with renewable energy policies in
place, the placement of wind farms follows local fundamentals better. Even if we
believe that the identification of the treatment effects of policies on wind capacity
addition is plagued with concerns about policy endogeneity and anticipation effects,
it is hard to think about an alternative explanation on why should the responsiveness
of wind farm placement to profitability would change hand in hand with renewable
policies.
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As shown in Table 3.7, both RPS and price-based subsidies improve the within
state allocative efficiency of wind power projects. The magnitude is quite large: one
standard deviation increase in the intensity of RPS increases the responsiveness
of wind placement decision to profitability by 42% and one SD increase in the
intensity of price-based policies improves that by 57%. Direct subsidies that are
not performance-based do not seem to change the within-state allocation of wind
farms quite significantly after we control for the cross terms of profitability and year
fixed effects. Results from Tobit estimation are shown in the last two columns and
the signs and significance of coefficients largely hold.

Needless to say, the interpretation of our results on the estimated coefficient of
responsiveness γp largely depends on the distribution of cells by their measured po-
tential profitability in different states. Suppose the states that implement renewable
energy policies have larger dispersion in the higher end of the wind resources dis-
tribution, then even if both treated and control states experience the same trend
that moves the placement of wind farms up to more profitable gridcells by the same
percentiles, our estimates will pick up some improvement in allocative efficiency
attributable to policies. Therefore it is crucial to adopt an alternative specifica-
tion that looks at the role of renewable policies in shifting the placement of wind
farms within the distribution of gridcells by potential profitability in each state.
This specification will also help us to know if subsidies lift efficiency level through
reducing the number of worst located projects or attracting the best ones.To im-
plement the idea, I adopt the expected profitability distribution of the occupied
cells for each state before any renewable subsidies are placed as a benchmark, di-
vide all the cells into different groups according to their places in the benchmark
and check the differential impacts of policies across different groups. Specifically, I
divide the cells within each state into three groups: the ones above the 75th per-
centile of pre-subsidy occupied cells, the ones below the 25th percentile and the ones
in between. A particular type of renewable policy that significantly improves the
efficiency level of wind projects may work through either increasing the number of
projects in the first group, decreasing the number of projects in the second group,
or both. I interact the indicators for these three groups with the intensity measures
of renewable energy policies policiespst to examine the impacts effects of different
kinds of renewable policies on shifting the profitability distribution of occupied cells.

The results are shown in Table 3.7. As can be seen, price-based performance
subsidies are most effective in reducing the probability of bad project placement
in cells with expected profitability lower than the 25th percentile of pre-subsidy
occupied cells, while quantity-based renewable portfolio standard (RPS) appears to
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be both reducing the occurrence of bad project placement and adding capacities to
the good cells at the same time, Consistent with our intuition, non-performance-
based fixed subsidies have similar effects in adding wind capacities in cells across
different profitability groups.

3.5.3 Renewable policies and green preferences

The significance and magnitude of the previous results on the impacts of renewable
policies on within-state allocative efficiency present a stark contrast to what we
should expect if the investors had been following constrained profit maximization
in making location decisions before the policies are put in place. Combined with
the evidence on the characteristics of wind power plants in environmentally friendly
counties, it is reasonable to argue that the improvement of within-state allocation
of wind farms could come from the fact that these policies manage to counteract
some pre-existing distortions: the local bias of green investors in choosing project
sites seems to be a salient and prominent one.

We have reasons to believe that extra financial benefits related to wind power
investments might incentivize "green" and "brown" investors differentially. A quick
look at the incentive scheme of our three groups of policies suggests that direct sub-
sidies should be equally attractive to all kinds of investors while profit-maximizing
investors prefer price-based subsidies since they are getting more with higher pro-
duction efficiency. Under RPS, all the utilities within the implementing states are
required to source a given proportion of its electricity sold from renewable sources.
To comply with this requirement, utilities are either investing in their own wind
farms or trying to encourage efficient and stable sources of supply from private in-
vestors. Given its mandate nature, a utility serving mainly "brown" counties with
less pre-existing green investments is required to expand its renewable energy supply
much more aggressively than their "green" counterparts. Also, extra capacities in-
vested by utilities as a purpose to meet the mandate are more likely to follow where
the wind is in order to maximize the amount of "dirty" electricity replaced.

Therefore, we expect RPS and price-based subsidies to be more effective in
adding capacities to "brown" counties with better wind resources as they have been
under-targeted by previous wind power investments driven by environmental con-
cerns. To sum up, assuming the existence of green preferences, there are two sources
of potential gains in within-state allocative efficiency following the implementation
of renewable energy policies. First, performance-based financial incentives and pos-
sibly RPS increase the returns to better site choice and encourage project developers
to invest more in searching for better sites. Second and more interestingly, there ex-
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ists a relocation effect: these policies are shifting new wind capacities from "green"
counties to "brown" counties, where renewable investments are more profit-oriented
and follow fundamentals more strongly. It is likely to be the result of more for-profit
investors with less local biases entering the markets in response to renewable energy
incentives.

I check it with the following simple regression:

Capacityit = Σ3
pβp ∗ policiespst + Σ3

pγp ∗ demratec ∗ policiespst + θi + δt + εit (3.6)

This regression aims at checking if certain renewable energy policies that are
proven to be effectively improving the within-state allocation of wind farms also
manage to shift new capacities from "greener" but less efficiently located places
to "browner" and more profit-oriented ones. From Table 3.9, we see that both
RPS and price-based subsidies are adding more wind capacities to "brown" counties
disproportionally. On the contrary, direct subsidies are adding disproportionally
more wind capacities to more environmentally-friendly counties, most likely due
to the fact that their non-performance-based nature ensures the same amount of
payments to different kinds of projects, and green but less efficient investors are not
punished by their worse performances. This could be one of the reasons why RPS
and price-based subsidies work better in improving the within-state responsiveness
of wind farm placement to profitability while fixed subsidies do not.

To account for the importance of this relocation effect in explaining the policy-
induced improved within-state allocation, I adopt a slight variation of specification
(6) by replacing the greenness index with a dummy that switches to 1 for counties
above the 75th percentile of the continuous greenness index. We find green counties
under this metric to be 40% less responsive to profitability and RPS/price-based
policies seem to be adding capacities to brown counties only. These results indicate
that the pure relocation of new capacities to brown counties by RPS and price-
based subsidies is going to increase the responsiveness of wind farm placement to
profitability by 10% and is hence able to explain about 25%-30% of the improved
responsiveness due to RPS and price-based policies.

Another way to check the differential effects of different policies in screening
investors is to check how the ownership types of wind power projects respond differ-
ently to these three types of renewable incentives. Obviously, RPS should be more
effective in attracting utility-invested wind capacities as it directly applies to util-
ities. Meanwhile, private and for-profit investments should respond more to price
subsidies than fixed subsidies. I test these hypotheses in Table 3.10. It is clear
that the results are largely consistent with the mechanism examined in this paper
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previously, with RPS adding more utility-invested wind capacity and price subsidies
more effective in adding private capacity.

3.6 Model

In this section, I will present a very simple model on the private provision of public
goods. A distinctive feature of this model is that providers in public goods differ in
their environmental attitudes.Those with green preferences display local biases when
choosing sites, which decreases their incentives to search. Performance-based sub-
sidies not only increase the return to site searching but also relax the participation
constraint of for-profit investors more. Therefore the efficiency gains act through
both intensive and extensive margins.

3.6.1 Wind power production

In the model, I assume that the production of renewable energy is solely determined
by the locational fundamentals xi ∈ (0, 1) of location i. To model the location
choices of wind farm investors, I assume that an investor based at i can search for
better sites by paying a search cost s. By searching, she moves closer to the best
spot for wind power production. The profit function for her is thus defined as:

πi = xi + s(1− xi)1/2 − s2 − F (3.7)

where xi represents the local fundamentals at the investor’s original place, s is the
search cost and F is other fixed costs in setting up a wind power plant.

For a pure profit-maximizing agent, s∗ = (1−xi)1/2
2

, indicating that conditional on
participation, the wind power investors coming from places with worse fundamentals
search more.

3.6.2 Green preferences

We then start with a simple model of utility over a numeraire private good, c and the
pleasure derived from supplying public goods. We assume there are two dimensions
of heterogeneity for investor i: her local fundamentals for wind power development
xi ∈ (0, 1) and her environmental preference bi ∈ (0, b̄). The pleasure from supplying
public goods is proportional to her environmental preference bi. In the meantime,
investors display local biases to varying extent. My previous empirical evidence
reveals that wind projects are more likely to be locally invested in "greener" counties,
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suggesting that more environmentally friendly investors might display stronger local
biases, due to either demonstration effects or the fact that green investors are worse
at searching for an ideal site. In the model, I assume that the dis-utility from locating
a project further away from the investor’s original place is an increasing function
of her green preference bi and the difference between the local fundamentals of her
original and final location.

The final utility function is defined as:

Ui = ci − sbi(1− xi)1/2 + bi

s.t. ci = πi = xi + s(1− xi)1/2 − s2 − F

The electricity price is normalized as 1.
The public benefit generated from a wind project is the amount of greenhouse

gas emission reduction, thus should be proportional to the total amount of electricity
it produces, xi + s(1− xi)1/2.

The utility-maximizing search effort can be solved as s∗ = (1−bi)(1−xi)1/2
2

, the
utility derived from wind investment is therefore U∗ = xi + (1−bi)2(1−xi)

4
+ bi − F ,

and the public benefit generated is e∗ = xi + (1−bi)(1−xi)
2

. It is easy to see that the
optimal search effort is decreasing in bi, a direct consequence from green investors
reluctance to locate their wind farms away.

Without subsidies, only investors with U∗ > 0 invest in wind projects. Given bi,
the cutoff in local fundamental xi is x̄ = 4F−(bi+1)2

2bi−b2i+3
, where only investors located in

places with local fundamentals xi > x̄ choose to invest.
Lemma 1. When bi < 1, x̄ is decreasing in b, greener investors are more likely

to invest
Proof: ∂x̄

∂bi
< 0 when bi < 1.

3.6.3 Policy choices

In this section, I discuss how the introduction of different types of renewable subsi-
dies affect investors’ search efforts and the participation constraints for wind power
development.

Here I focus on two types of renewable energy policies. Performance-based
subsidy changes the electricity price received by investors to be p > 1. With
performance-based subsidy, the expected profit for Direct subsidy takes f from the
fixed cost F . Therefore, the profit function becomes πi = p∗(xi+s(1−xi)1/2)−s2−F
under performance-based subsidy and πi = xi+ s(1−xi)1/2− s2−F +f under fixed
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subsidy.
Corollary 1. Performance-based policies increase search efforts for all the in-

vestors. The effects do not differ across investors with different environmental atti-
tudes.

Proof s∗ = (p−bi)(1−xi)1/2
2

, ∂s
∗

∂p
> 0, ∂s∗

∂bi∂p
= 0

Proposition 1. For sufficiently small bi and reasonable restrictions on value of
parameters F and p, in response to performance-based subsidies, the cutoff in xi

drops more for smaller bi, in other words, performance-based policy is going to add
more wind capacity to areas with less environmental oriented investors.

Proof: x̄ = 4F−(bi+p)
2

4−(bi−p)2 ,
∂x̄

∂bi∂p
> 0 if F > 0, 1 < p < 2 and 0 < bi < 2.71

Proposition 2. In response to direct subsidies, the cutoff in xi drops by the same
proportion for investors with different bi, in other words, direct subsidies add same
amount of capacity to areas with different environmental orientation, conditional on
local fundamentals,

Proof: ∂x̄
∂bi∂f

= 0

This simple stylized model could accommodate the following empirical findings
I have documented in the previous sections. First, "greener" investors are less
responsive to fundamentals because they search less. Second, "greener" investors
are more likely to invest in renewables. Third, performance-based policies are going
to improve the allocative efficiency through inducing more wind capacity added by
less environmental-friendly but more profit-oriented investors.

3.7 Concluding Remarks

This paper aims to make two primary contributions. First, I quantify the efficiency
loss in the renewable energy sector due to spatial misallocation of wind farms and
decompose it into a within-state and cross-state components. These measures are
important for us to understand some special characteristics of this industry and to
think about the potential impacts of alternative policies on its overall efficiency.
Second, I manage to link a significant proportion of the observed within-state dis-
tortion to green investors’ "conspicuous generation" behavior, namely placing their
wind turbines close to where they are instead of locating them in places that make
more economic sense. I then come forward to evaluate the role of certain renewable
energy policies in partially offsetting the efficiency loss in this way. In short, apart
from the heterogeneity in the physical cost of producing GHG free energy, hetero-
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geneity in people’s green preferences is also important in determining the public
benefits of renewable energy investments. Therefore policy makers should bear in
mind the screening effects of policies on investors’ non-pecuniary incentives in mak-
ing a comparison across different types of incentive schemes that are equivalent in
other dimensions. In light of this, to encourage people’s involvement in supporting
renewable energy, extra efforts should be made to create and promote a market
for green electricity where people concerned with environmental protection can buy
renewable electricity at a premium and possibly awarded in a visible way, instead
of encouraging individual households to generate their own clean electricity. Ad-
vocates of gird-free distributed energy generation and "home-energy independence"
should not only look at the positive side of distributed generation on grid stability
but also pay due attention to the potential gains from trade and economics of scale
abandoned in this movement.

My next step is to quantify the effectiveness of different types of policies in (1)
Adding renewable energy capacity; (2) Improving the efficiency of renewable invest-
ments; with the existence of large heterogeneity in green preferences across investors
in a more structural way. Given the importance and observability of fundamentals
in renewable energy sector, it would be interesting to know how much information
on the profitability of projects in different locations would policy makers be able to
incorporate into their decisions.
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Figure 3.1: Wind resources and wind farm distribution

Notes: Each red dot represents a wind farm. WPC (wind power class) is a categorical
measure of wind resources on a 1-7 scale, 7 being the strongest. Each wind power class is
represented by a color, as shown in the legend. Data visualization courtesy of The Wind
Prospector - NREL.
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Figure 3.2: Distribution of wind farms across different wind power classes

Notes: WPC (wind power class) is a categorical measure of wind resources on a 1-7 scale, 7
being the strongest. Figure 1.1 plots the density of wind farms across WPC. Figure 1.2 and
1.3 shows the average distance to the electricity grid and the average local retail electricity
prices of wind farms across different WPC, respectively. Figure 1.4 plots the average local
environmental attitude of the county where the wind farms locate across different WPC
classes.
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Table 3.1: Correlation across different measure of wind farm profitability

NREL Western Wind Dataset Sample
Measure 1 Measure 2 Measure 3 Measure 4

# of gridcells 4661 4661 75147 75147

Correlation Measure 1 Measure 2 Measure 3 Measure 4
Measure 1 1.0000
Measure 2 0.8519 1.0000
Measure 3 0.6558 0.3671 1.0000
Measure 4 0.3814 0.4856 0.6662 1.0000

NREL Eastern Wind Dataset Sample
Measure 1 Measure 2 Measure 3 Measure 4

# of gridcells 2003 2003 75147 75147

Correlation Measure 1 Measure 2 Measure 3 Measure 4
Measure 1 1
Measure 2 0.601 1
Measure 3 0.6091 0.1176 1
Measure 4 0.2598 0.1594 0.7979 1

Notes: I report the correlation of four different wind power profitability measures. Measure
1 is the baseline measure that combines predicted production based on wind speed data
with retail electricity price. Measure 2 is generated with predicted production based on
wind speed data with Bloomberg wholesale price data. Measure 3 and 4 takes account of
the variation in wind power production. Measure 3 is generated using Eastern/Western
Wind datasets wind power simulated production data and Bloomberg wholesale price data.
Measure 4 uses Eastern/Western Wind datasets wind power simulated production data and
average retail electricity data, under the assumption that offpeak electricity price is 0.63
of peak electricity price. As the methodology in simulating wind power production is
different for the Eastern and Western wind datasets, I split the sample into two (Eastern
and Western US) and report the correlation separately for them.

Table 3.2: Alternative measures of aggregate spatial misallocation

Specification Sample Measure

NREL wind power class data & retail electricity price (baseline) Full sample 0.4719
NREL wind power class data & wholesale electricity price Full sample 0.4366
NREL Eastern/Western datasets & retail electricity price Eastern sample 0.1846
NREL Eastern/Western datasets & retail electricity price Western sample 0.3761
NREL Eastern/Western datasets & wholesale electricity price Eastern sample 0.1177
NREL Eastern/Western datasets & wholesale electricity price Western sample 0.2376
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Table 3.3: Within-state locational misallocation

State Measure 1 Measure 2 Measure 3 Measure 4

IA 0.140439 0.199903 0.049872 0.072414
IN 0.143414 0.14436 0.236253 0.2098
IL 0.148962 0.291946 0.074424 0.168646
WV 0.209326 0.173536 0.059405 0.003158
ND 0.221021 0.189135 0.073325 0.071608
WA 0.23381 0.135259 0.121944 0.129677
CO 0.256589 0.19782 0.252514 0.256425
NH 0.281912 0.308476 0.098451 0.128257
ID 0.305632 0.31702 0.158998 0.150273
VT 0.316129 0.332688 0.089663 0.113455
OR 0.321848 0.289195 0.316987 0.337921
KS 0.363492 0.145481 0.164593 0.17919
OH 0.385767 0.41451 0.410419 0.72385
NE 0.404587 0.177351 0.143211 0.237728
OK 0.416231 0.155157 0.167612 0.056249
NC 0.433151 0.799545 0.175103 0.15487
CA 0.460538 0.701351 0.289593 0.280029
MN 0.485057 0.23437 0.339635 0.206461
MD 0.565588 0.520721 0.213071 0.259811
MO 0.577686 0.405438 0.192134 0.183553
MT 0.633305 0.259725 0.377029 0.375105
SD 0.407496 0.219858 0.297603 0.414985
TX 0.373097 0.345533 0.149471 0.152742
WY 0.392716 0.367695 0.339811 0.338902
NM 0.822967 0.281664 0.425106 0.274453
PA 0.892974 0.959326 0.281608 0.182485
MI 0.908642 0.639816 0.210498 0.145349
WI 0.95731 1.229424 0.210885 0.505282
ME 1.194982 1.283586 0.30433 0.652842
NY 1.218893 1.353304 0.307033 0.18198
US .37402001 .3447733 .1855745 .1846892

Notes: Distortion is the measure of within-state distortion in wind farm placement calcu-
lated from (2). Four different measures of distortion are reported. The first is the baseline
measure that combines predicted production based on wind speed data with retail electric-
ity price. The second one is generated with predicted production based on wind speed data
with Bloomberg wholesale price data. The third one and fourth take account of the vari-
ation in wind power production. The third one is generated using Eastern/Western Wind
datasets wind power simulated production data and Bloomberg wholesale price data. The
fourth one uses Eastern/Western Wind datasets wind power simulated production data
and average retail electricity data, under the assumption that offpeak electricity price is
0.63 of peak electricity price. For the whole US, the distortion measure is a weighted
average of within-state distortion by total capacity.
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Figure 3.3: Within-county distortion and county level green preferences

Notes: The construction of within-county measure of locational distortion in wind farm
placement is described in section 4. Demrate is the votes share for Democratic Party in
the 2012 presidential election of that county. The slope of fitted line is 0.35 (standard error
0.088).
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Table 3.4: Within-county distortion and county characteristics

VARIABLES distortion distortion distortion distortion

demrate 1.185* 1.024**
(0.694) (0.518)

greenrate 59.70 90.29**
(57.29) (45.46)

SD(profitability) 0.00590 -0.00501 0.0144 0.000617
(0.0262) (0.0348) (0.0284) (0.0371)

Mean(profitability) 0.0115 0.0241** 0.0117 0.0264**
(0.0118) (0.0106) (0.0123) (0.0115)

No. of wind farms in county -0.0239 -0.0118 -0.0262 -0.0150
(0.0245) (0.0257) (0.0245) (0.0257)

% of non-suitable cells -0.779*** -0.756*** -0.798*** -0.697***
(0.279) (0.222) (0.298) (0.249)

Median household income 9.11e-05 0.000104** 7.35e-05 8.97e-05
(6.97e-05) (5.24e-05) (7.34e-05) (5.85e-05)

Building permits -0.000162 -0.000451* -0.000158 -0.000490*
(0.000122) (0.000271) (0.000124) (0.000269)

Retail sales pc -1.01e-05 1.31e-05 -6.78e-06 1.60e-05
(1.08e-05) (1.70e-05) (1.09e-05) (1.75e-05)

% of college graduates 0.0393** 0.0120 0.0364* 0.0110
(0.0196) (0.0192) (0.0196) (0.0191)

% of high school graduates -0.0234 -0.00878 -0.0101 -0.00358
(0.0265) (0.0211) (0.0236) (0.0201)

% female 0.00829 -0.0298 0.00872 -0.0309
(0.0295) (0.0346) (0.0295) (0.0349)

% while alone 0.0259 0.0112 0.0277 0.0106
(0.0295) (0.0312) (0.0291) (0.0307)

% African alone -0.0117 -0.0368 -0.00742 -0.0406
(0.0406) (0.0464) (0.0404) (0.0469)

% Asian alone 0.0168 0.00311 0.0235 0.00584
(0.0309) (0.0331) (0.0302) (0.0328)

Mean travel time to work 0.00838 0.0109 0.00774 0.0103
(0.0185) (0.0205) (0.0187) (0.0206)

Housing units 1.02e-06 4.45e-06 1.27e-06 4.31e-06
(2.12e-06) (4.64e-06) (2.17e-06) (4.70e-06)

Homeownership rate 0.0167 0.00144 0.0142 -0.00203
(0.0163) (0.0110) (0.0162) (0.0114)

Median housing value 5.63e-07 -9.52e-07 6.99e-07 -9.24e-07
(1.26e-06) (2.93e-06) (1.26e-06) (2.97e-06)

No. of firms -2.04e-06 -7.70e-06 -2.92e-06 -5.99e-06
(7.75e-06) (1.75e-05) (7.93e-06) (1.75e-05)

Observations 398 262 398 262
R-squared 0.075 0.082 0.068 0.080

Notes: Distortion is the normalized measure of deviation from the optimal level at the
county level, defined as the ratio between the percentage gain in average profitability
should current projects be placed at the best positions and the percentage gain from a
random allocation to the optimal allocation. Robust clustered standard error at the state
level. I exclude the counties that have only one gridcell occupied from the sample and
report the regression results in column 2 and 4.188



Table 3.5: Characteristics and performances of wind farms in Counties with different
level of greenness

Method Linear regression Logit

VARIABLES CF wpc Revenue 1(nonprofit) 1(local) 1(urban)

Demrate -0.049** -1.516** -1.290* 1.483* 1.385* 1.974**
(0.023) (0.667) (0.732) (0.806) (0.720) (0.957)

Observations 756 760 756 774 774 774
R-squared 0.433 0.509 0.368 0.0123 0.00981 0.0159
STATE FE YES YES YES NO NO NO
YEAR FE YES YES YES YES YES YES

Sample Non-local Local
Method Linear regression

VARIABLES CF wpc nonprofit CF wpc nonprofit

Demrate -0.0071 -0.918 -0.008 -0.144* -2.771** 0.246*
(0.034) (0.744) (0.005) (0.071) (1.0681) (0.122)

Observations 414 417 418 354 355 355
R-squared 0.473 0.561 0.027 0.445 0.61 0.207
State FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Notes: In the upper panel, the sample is a matched wind power plants data. Column
1-3 show results for linear regressions with state and operating year fixed effects. CF
is the capacity factor of the power plant (total electricity produced/maximum electricity
production at full capacity). WPC stands for the wind resource category measure of
where the plant is. Revenue is the product of the capacity factor and wholesale electricity
price (deducting transmission loss). Column 4-6 are logit regressions where the dependent
variable is a dummy on whether or not the power plant is invested by non-profit investors,
by local investors and located in urban areas. In the lower panel, I split the full sample into
a local and a non-local subsamples. The local subsample includes only wind farms whose
investors only invest within the state. The non-local one contains the wind farms whose
investors have wind power projects in more than one state. Robust clustered standard
error at the state level. * significant at the 0.1 level; ** significant at the 0.05 level; ***
significant at the 0.01 level.
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Table 3.6: Responsiveness to fundamentals of wind farms with different level of
greenness: linear regressions

Variables capacity capacity capacity capacity capacity capacity

wind speed 0.000240*** 0.000245*** 4.62E-05 7.66E-05
(8.60E-05) (8.60E-05) (7.30E-05) (6.92E-05)

distgrid -2.27e-06* -2.46e-06* -2.02e-06** -2.19e-06**
(1.22E-06) (1.30E-06) (8.75E-07) (9.69E-07)

urban 0.00015 -3.37E-05
(0.00012) (0.00013)

profitability 0.000043*** 0.000041***
(8.14e-06) (6.80e-06)

wind speed*greenrate -0.0135*** -0.0109***
(0.00386) (0.00343)

distgrid*greenrate 0.000737*** 0.000327
(0.00025) (0.00024)

urban*greenrate 0.0209*
(0.0128)

profitability*greenrate -0.00183**
(0.000798)

wind speed*demrate -0.000143* -0.000103**
(8.20E-05) (4.44E-05)

distgrid*demrate 1.58E-05 1.24E-06
(1.80E-05) (9.84E-06)

urban*demrate 0.000314*
(0.00022)

profitability*demrate -0.000016*
(9.30e-06)

Observations 1,421,225 1,421,225 2,464,110 2,464,110 1,421,225 1,421,225
R-squared 0.002 0.002 0.001 0.001 0.002 0.002
State FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Notes: Sample is gridcell level panel data. The dependent variable is the amount of wind
capacity installed per km2 to a gridcell in a year. Wind speed is the average wind speed
of the gridcell calculated according to NREL wind resrouces categorization. distgrid is the
distance from the gridcell to the closest main electricity grid (in km). Profitability is the
distance-varying profit measure of the gridcell. Urban is a dummy on whether or not the
gridcell is inside urban areas. The first two and last two columns report results on a sample
leaving out the cells that are considered to be not suitable for wind power development,
while results on the middle two columns are estimated on the full sample. State and year
fixed effects, as well as state-specific year trends are controlled. Robust clustered standard
error at the state level. * significant at the 0.1 level; ** significant at the 0.05 level; ***
significant at the 0.01 level.
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Table 3.7: Renewable policies and within-state allocation: profitability measure

Linear Linear Tobit Logit
VARIABLES capacity 1(plant) capacity 1(plant)

profitability 2.09e-05*** 4.95e-05*** 0.0702*** 0.0343***
(5.32E-06) (7.54E-06) (0.0160) (0.0133)

RPS -0.0306** -0.0778*** -10.07 -3.238
(0.012) (0.0267) (8.909) (3.065)

fixsubsidy -0.00235 -0.00678 2.215 0.797
(0.00664) (0.0237) (2.473) (1.075)

pricesub -0.0251 -0.0553 -38.85*** -14.44***
(0.0153) (0.0354) (13.88) (4.839)

profitability*rps 0.00294*** 0.00732*** 0.649*** 0.202***
(0.0008) (0.00186) (0.221) (0.0749)

profitability*fixsub 0.000735* 0.00304* -0.0954 -0.0198
(0.00038) (0.00129) (0.132) (0.0564)

profitability*pricesub 0.00463** 0.00908* 2.419*** 1.045***
(0.00183) (0.00472) (0.695) (0.283)

Observations 2,464,143 2,464,143 254,331 254,331
State FE NO NO YES YES
Gridcell FE YES YES NO NO
Year FE YES YES YES YES
R-squared 0.002 0.004 0.012 0.015

Notes:Sample is gridcell level panel data. Dependent variables in column (1) and (3) are the
amount of wind capacity installed per km2 to a gridcell in a year. Dependent variables in
column (2) and (4) are dummies on whether or not a wind power plant is built at a gridcell
in a year. RPS is the real stringency of Renewable Portfolio Standard for implementing
states, defined in section 3.3. Pricesub is the amount of subsidy given to per unit electricity
generation. Fixsub is the proportion of total upfront cost reduced by subsidies. Robust
clustered standard error at the state level. * significant at the 0.1 level; ** significant at
the 0.05 level; *** significant at the 0.01 level.
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Table 3.8: Renewable policies and within-state allocation: Change in wind farm
profitability distribution

Linear Linear Tobit Logit
VARIABLES capacity 1(plant) capacity 1(plant)

1(above 75th pct)*pricesub 0.0147 0.0078 6.891 11.9
(0.00201) (0.00428) (4.84) (7.98)

1(75th-25th pct)*pricesub 0.0249** 0.0493*** 1.419 -2.092
(0.0117) (0.0123) (3.193) (7.993)

1(below 25th pct)*pricesub -0.00303*** -0.00740** -3.916 -14.62
(0.00087) (0.00323) (4.476) (13.7)

1(above 75th pct)*fixsub 0.00936 0.0368 1.257 2.665
(0.0178) (0.0511) (0.917) (1.962)

1(75th-25th pct)*fixsub 0.0151 0.0127 0.293 0.897
(0.0126) (0.0527) (0.304) (0.752)

1(below 25th pct)*fixsub 0.00152 0.0186 1.426 3.279
(0.00327) (0.0137) (0.962) (2.011)

1(above 75th pct)*RPS 0.0347*** 0.110*** 3.555* 9.559*
(0.0121) (0.031) (1.902) (5.196)

1(75th-25th pct)*RPS 0.0153 0.032 0.562 1.453
(0.0126) (0.0271) (2.387) (6.05)

1(below 25th pct)*RPS -0.00739*** -0.0131*** -3.19 -5.714
(0.00174) (0.00429) (2.939) (7.976)

Observations 1,937,364 1,937,364 224,532 210,924
State FE NO NO YES YES
Gridcell FE YES YES NO NO
Year FE YES YES YES YES
R-squared 0.002 0.004 0.012 0.015

Notes:Sample is gridcell level panel data. Dependent variables in column (1) and (3)
are the amount of wind capacity installed per km2 to a gridcell in a year. Dependent
variables in column (2) and (4) are dummies on whether or not a wind power plant is built
at a gridcell in a year. 1(above 75th pct) is a dummy that switches to one if expected
profitability of the cell is higher than the 75th percentile of existing wind projects within
the state before any renewable subsidies are applied. 1((75th-25th pct) is the indicator
of whether or not the profitability of the cell falls into the 75th and 25th percentile of
existing wind projects within the state before any renewable subsidies are applied, while
1(below 25th pct) indicates whether or not the profitability of cell is lower than the 25th
percentile of existing pre-subsidy wind projects. RPS is the real stringency of Renewable
Portfolio Standard for implementing states, defined in section 3.3. Pricesub is the amount
of subsidy given to per unit electricity generation. Fixsub is the proportion of total upfront
cost reduced by subsidies. Robust clustered standard error at the state level. * significant
at the 0.1 level; ** significant at the 0.05 level; *** significant at the 0.01 level.
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Table 3.9: Differential Impacts of Policies on wind capacity across "green" and
"brown" counties

Linear Linear Tobit Logit
VARIABLES capacity capacity capacity capacity

RPS 0.014 0.00202* 2.281 1.573
(0.0168) (0.0167) (3.828) (3.981)

pricesub 0.0241* 0.0153** 0.103 -3.721
(0.0131) (0.0073) (7.409) (6.054)

fixsubsidy -0.0175** -0.0009 -1.604** -1.543
(0.00628) (0.00406) (0.784) (0.839)

greenrate*RPS -0.388 -45.994
(0.284) (66.886)

greenrate*pricesub -1.885** -10.516
(0.329) (153.610)

greenrate*fixsub 1.732 47.015***
(1.118) (14.999)

demrate*RPS -0.0248 -2.861
(0.0294) (7.304)

demrate*pricesub -0.0397** -7.302
(0.0198) (11.025)

demrate*fixsub 0.0542*** 4.556***
(0.0165) (1.266)

Observations 2,464,110 2,464,110 284658 284658
R-squared 0.002 0.002 0.14 0.14
State FE NO NO YES YES
Gridcell FE YES YES NO NO
Year FE YES YES YES YES

Notes:Sample is gridcell level panel data. The dependent variable is the amount of wind
capacity installed per km2 to a gridcell in a year. The first two columns report results from
linear regression in the full grid-cell sample and the last two columns report results from
Tobit estimation in a sample with all the built-up cells and 10% of the other cells. Demrate
and greenrate are the democratic and Green Party votes share in 2012 presidential election
of the county. RPS is the increment in RPS requirement for implementing states. Pricesub
is the amount of subsidy given to per unit electricity generation. Fixsub is the proportion
of total upfront cost reduced by subsidies. Robust clustered standard error at the state
level. * significant at the 0.1 level; ** significant at the 0.05 level; *** significant at the
0.01 level.
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Table 3.10: Differential impacts of policies on wind different types of investments

VARIABLES Utility Nonprofit Private 1(Utility) 1(Nonprofit) 1(Private)
capacity(MW) capacity(MW) capacity(MW)

RPS 0.00295* -0.000059 0.010546 0.00184 0.000134 0.018026
(0.00178) (0.000078) (0.007972) (0.00126) (0.00034) (0.01532)

pricesub 0.00254 0.000081 0.008287 0.0016 0.000303 0.023791***
(0.0029) (0.000145) (0.006103) (0.00179) (0.000434) (0.011433)

fixsub 0.00026 0.000089 0.004007*** 0.0004 0.000123 0.012869***
(0.00065) (0.000021) (0.001464) (0.00067) (0.000159) (0.004166)

Obs 142,3073 142,3073 142,3073 142,3073 142,3073 142,3073
Gridcell FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
R-squared 0.0002 0.0001 0.0013 0.0002 0.0001 0.0026

Notes: Sample is gridcell level panel data. Gridcells that are considered not suitable for
wind power development are dropped The dependent variables of the first three columns
are the amount of wind capacity installed per km2 by utilities, nonprofit investors and
private profit-oriented investors to a gridcell in a year. The dependent variables of the
last three columns are whether or not a gridcell has wind power capacity installed by
utilities, nonprofit investors, and private profit-oriented investors. RPS is the increment
in RPS requirement for implementing states. Pricesub is the amount of subsidy given to
per unit electricity generation. Fixsub is the proportion of total upfront cost reduced by
subsidies. Robust clustered standard error at the state level. * significant at the 0.1 level;
** significant at the 0.05 level; *** significant at the 0.01 level.
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Appendix C

Appendix of "Where does the Wind
Blow? Green Preferences and Spatial
Misallocation in the Renewable
Energy Sector"

C.1 Robustness

C.1.1 Dynamic impacts of renewable subsidies

As mentioned in section 5.2, as an extra robustness check, I manage to trace the
dynamic impacts of renewable policies before and after their actual implementation,
based on the idea that if these policies are seriously endogenous, their “treatment
effects" might show up even before the actual implementation of them. In practice,
I adopt the following specification:

Capacityit = αi+βt+
3∑

m=1

γmp∗∆policiesp,s,t−m+
2∑

n=0

γnp∆policiesp,s,t−m+Controlsit+εit

(C.1)
where ∆policiesp,s,t is the increment in the intensity of policy p implemented in

state s in year t, while ∆policiesp,s,t−m and ∆policiesp,s,t+n are the m-th lead and
n-th lag of the variable. The estimated coefficients are reported in Figure A1. I
interact ∆policiesp,s,t−m and ∆policiesp,s,t+n with cell-level profitability to check if
the changes in responsiveness to profitability also go hand in hand with the actual
implementation of policies.The exact specification is:
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Capacityit = αi + βt +
3∑

m=1

γmp ∗∆policiesp,s,t−m +
2∑

n=0

γnp∆policiesp,s,t−m+

3∑
m=1

ζmp ∗∆policiesp,s,t−m ∗ profitabilityi +
2∑

n=0

ζnp∆policiesp,s,t−m ∗ profitabilityi + Controlsit + εit

(C.2)

Similarly, I interact them with support for the Democratic Party at county level
following specification (6) to see if different kinds of policies add capacities to coun-
ties with different environmental attitude. The coefficients on the interaction terms,
as well as their 95% confidence intervals, are shown in Figure A2 and A3.

C.1.2 Responses of other projects attributes to renewable

policies

Another related question is whether of not the observed response of location choices
of wind farms to changes in renewable policies is just a proxy of other responses.
The investment of a wind farm involves a series of joint decisions, including the
choices of project size, turbine type, and location. These choices depend on each
other in different ways. For instance, a fixed non-performance-based subsidy might
help the project with upfront costs, inducing the investor to pursue larger projects
and more advanced turbine types. In the meantime, large projects have a higher
land requirement, resulting in different location choices that might be more or less
efficient depending on the context. Although these explanations will not invalidate
my main story directly, as they are also examples of the selection effects of financial
incentives. It would be interesting to check if other attributes of the wind projects
other than location also respond to renewable energy subsidies, and if so, to which
direction.

In this section, I look at two other project attributes: the size of the project,
measured in total capacity installed, and the characteristics of the turbines, mea-
sured by turbine height and blade length. It is generally believed that higher turbine
and longer blade makes use of wind resources more efficiently. 1 I check how they
correlate with the local fundamentals and respond to renewable subsidies.

Table A2 shows the results. The upper panel reports the regression results on
1http://www.siemens.com/innovation/en/home/pictures-of-the-future/

energy-and-efficiency/sustainable-power-generation-windpower-hexcrete-tower.html;
http://cleantechnica.com/2015/03/23/us-energy-dept-prowl-bigger-longer-wind-turbine-blades/
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the relationship between various project characteristics and local wind resources,
and the lower panel reports results on how these characteristics respond to state
renewable energy policies and differ across counties with different environmental
attitudes. The analysis on project size is carried out with plant level data and that
on turbine height and blade size uses turbine level data. It is clear from the upper
panel that there’s no strong correlation between all these three project attributes to
local wind conditions, suggesting that location decision is probably made relatively
independent from project size and turbine type choices, or at least the latter decisions
does not seem to push the relevant project to a place with definite better or worse
wind conditions. It is also not the case that less than desirable location choices are
compensated by more powerful wind turbines.

Results reported from the lower panel of Table A2 suggest that the introduction
of price-based subsidies and RPS do not lead to significant changes in project size
and the quality of wind turbines. However, larger non-performance-based fixed sub-
sidies do seem to encourage larger projects. A possible explanation is that larger
fixed subsidies paid out upfront help the wind power investors overcome financial
constraints that prevent them from building larger wind farms. The right three
columns show the relationship between wind farm characteristics and local environ-
mental attitudes and there is no significant correlation between green preferences
and the wind arm attributes that we are interested in.

Therefore one conclusion we can draw from the previous analysis is that the
robust relationship between renewable energy policies and improved efficiency of
wind farms documented in the paper is most likely capturing the direct responses
of wind farm site choices to financial incentives instead of proxies of other responses
regarding other aspects of the wind farm projects.
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Table A1: Robustness: Cells on state borders

VARIABLES capacity capacity capacity

RPS -0.00675 0.00836 0.00861
(0.00638) (0.0146) (0.013)

pricesub -0.0132 0.107*** 0.126***
(0.0149) (0.0297) (0.0282)

fixsubsidy -0.0244*** -0.0184** -0.0076
(0.00891) (0.00769) (0.00932)

profitability*RPS 0.000803
(0.0005)

profitability*pricesub 0.00450***
(0.00136)

profitability*fixsubsidy 0.00074
(0.00067)

demrate*RPS -0.00755
(0.0195)

demrate*pricesub -0.162***
(0.0508)

demrate*fixsubsidy 0.0452**
(0.0182)

greenrate*RPS -0.0806
(0.152)

greenrate*pricesub -2.130***
(0.491)

greenfix 0.209
(0.141)

Observations 748,869 748,869 748,869
R-squared 0.002 0.002 0.002
Number of cells 22,693 22,693 22,693

Notes:Sample is gridcell level panel data, limited to gridcells within 25 kilometers distance
from state borders. The dependent variable is the amount of wind capacity installed per
km2 to a gridcell in a year. Robust clustered standard error at the state level. RPS is the
real stringency of Renewable Portfolio Standard for implementing states, defined in section
3.3. Pricesub is the amount of subsidy given to per unit electricity generation. Fixsub is
the proportion of total upfront cost reduced by subsidies. Profitability is the predicted
profitability of a typical wind farm at the gridcell. Demrate and greenrate are county level
votes shares for the democratic and Green Party at 2012 presidential election. Cell FE and
year FE are all controlled. * significant at the 0.1 level; ** significant at the 0.05 level; ***
significant at the 0.01 level.
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Figure A1: Coefficients on the leads and lags of renewable policy intensity

Notes: This graph plots the coefficients and 95% CI on the leads and lags of renewable
energy policy intensity, as specified in equation (10).
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Figure A2: Coefficients on the interactiosn of cell profitability and policy intensity
leads/lags

Notes: This graph shows the coefficients and 95% CI on the interactions of the leads
and lags of renewable energy policy intensity and cell level profitability measure, in a
specification includes both leads/lags, profitability and their interaction terms.
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Figure A3: Coefficients on the interactions of Democratic Party support and policy
intensity leads/lags

Notes: This graph shows the coefficients and 95% CI on the interactions of the leads and
lags of renewable energy policy intensity and county level support for Democratic Party, in
a specification includes both leads/lags, democratic support and their interaction terms.
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Table A2: Responses of other project attributes

VARIABLES projectsize bladelength towerheight projectsize bladelength towerheight

WPC -1.738 -0.774 -1.648 0.646 0.391 0.743
(7.177) (0.521) (0.99) (6.23) (0.301) (0.595)

Observations 817 39,718 39,574 817 39,718 39,574
R-squared 0.291 0.949 0.913 0.311 0.941 0.907
State FE NO NO NO YES YES YES
Year FE YES YES YES YES YES YES

VARIABLES projectsize bladelength towerheight projectsize bladelength towerheight

Pricesub -18.4 1.07 -3.644
(100.1) (10.46) (39.05)

Fixsub 885.7** 54.85 -41.36
(388.5) (43.04 ) (59.92)

RPS -232.5 3.161 7.58
(273.8) (9.211) (35.99)

Demrate 35.23 0.886 -2.18
(37.99) (1.957) (2.398)

Observations 817 39,718 39,574 767 39,500 39,356
R-squared 0.319 0.919 0.95 0.311 0.92 0.952
State FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Notes:The dependent variables as listed are the size of wind project measured by total MW
installed, turbine blade length and turbine tower height. The sample with wind project
size as the dependent variable is matched plant-project level data and the sample with
turbine blade length and tower height as dependent variables is turbine level data. WPC
(wind power class) is a categorical measure of wind resources on a 1-7 scale, 7 being the
strongest. RPS is the real stringency of Renewable Portfolio Standard for implementing
states, defined in section 3.3. Pricesub is the amount of subsidy given to per unit electricity
generation. Fixsub is the proportion of total upfront cost reduced by subsidies. Demrate is
the county level votes shares for a Democratic Party at 2012 presidential election. Robust
clustered standard error at the state level. * significant at the 0.1 level; ** significant at
the 0.05 level; *** significant at the 0.01 level.
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