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Abstract

This thesis consists of three chapters which represent my journey as a researcher during

this PhD. The uniting theme is nonparametric estimation and inference in the presence of data

problems. The first chapter begins with nonparametric estimation in the presence of a censored

dependent variable and endogenous regressors. For Chapters 2 and 3 my attention moves to

problems of inference in the presence of mismeasured data.

In Chapter 1 we develop a nonparametric estimator for the local average response of a

censored dependent variable to endogenous regressors in a nonseparable model where the un-

observable error term is not restricted to be scalar and where the nonseparable function need

not be monotone in the unobservables. We formalise the identification argument put forward in

Altonji, Ichimura and Otsu (2012), construct a nonparametric estimator, characterise its asymp-

totic property, and conduct a Monte Carlo investigation to study its small sample properties.

We show that the estimator is consistent and asymptotically normally distributed.

Chapter 2 considers specification testing for regression models with errors-in-variables. In

contrast to the method proposed by Hall and Ma (2007), our test allows general nonlinear regres-

sion models. Since our test employs the smoothing approach, it complements the nonsmoothing

one by Hall and Ma in terms of local power properties. We establish the asymptotic properties

of our test statistic for the ordinary and supersmooth measurement error densities and develop

a bootstrap method to approximate the critical value. We apply the test to the specification of

Engel curves in the US. Finally, some simulation results endorse our theoretical findings: our test

has advantages in detecting high frequency alternatives and dominates the existing tests under

certain specifications.

Chapter 3 develops a nonparametric significance test for regression models with measurement

error in the regressors. To the best of our knowledge, this is the first test of its kind. We use a

‘semi-smoothing’ approach with nonparametric deconvolution estimators and show that our test

is able to overcome the slow rates of convergence associated with such estimators. In particular,
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our test is able to detect local alternatives at the
√
n rate. We derive the asymptotic distribution

under i.i.d. and weakly dependent data, and provide bootstrap procedures for both data types.

We also highlight the finite sample performance of the test through a Monte Carlo study. Finally,

we discuss two empirical applications. The first considers the effect of cognitive ability on a range

of socio-economic variables. The second uses time series data - and a novel approach to estimate

the measurement error without repeated measurements - to investigate whether future inflation

expectations are able to stimulate current consumption.
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CHAPTER 1

Estimation of Nonseparable Models with Censored Dependent

Variables and Endogenous Regressors

1.1. Introduction

One of the greatest contributions of econometrics is the development of estimation and infer-

ence methods in the presence of endogenous explanatory variables. The classic literature mostly

focuses on linear simultaneous equation systems and has been extended to various contexts. In

the case of censored dependent variables, Amemiya (1979) and Smith and Blundell (1986) study

estimation and testing of simultaneous equation Tobit models, where the linear regression func-

tion and joint normality of the error distribution are maintained. In this chapter, we study how

to evaluate nonparametrically the marginal effects of the endogenous explanatory variables to

the censored dependent variable when both the regression function and distributional forms are

unknown and the error term may not be additively separable.

In particular, we seek to extend the work by Altonji, Ichimura and Otsu (2012), AIO hence-

forth, by introducing endogeneity into a nonseparable model with a censored dependent variable.

AIO (Sections 5.1 and 5.2) describe how to accommodate endogenous regressors into their identi-

fication analysis. The aims of this chapter are to formalise their identification argument, develop

a nonparametric estimator for the local average response, and derive its asymptotic properties.

We also carry out a Monte Carlo investigation to study the small sample properties.

Our estimator can be seen as an extension of the classic Tobit maximum likelihood estimator

in several directions. We allow the unobservable error term to enter into the model in a non-

separable manner; this is a far more realistic assumption and the popularity of such models in

the recent literature highlights this fact (see, for example Matzkin, 2007, and references therein).

We allow the dependent variable to depend on the regressors and error term in a nonlinear way,

in the same manner as AIO. We also do not constrain the dependent variable to be monotonic

in the error term and allow it to be censored from both above and below, moreover we allow the
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censoring points to depend on the regressors. Finally, we allow the regressors to be correlated

with the error term.

Since endogeneity is an issue that plagues many economic models, the possible applications

of the estimator we consider are extensive. Commonly cited examples of nonseparable models

with censoring are consumer demand functions at corner solutions. An interesting example is

Altonji, Hayashi and Kotlikoff (1997) where a monetary transfer from parents to children only

occurs if the marginal utility gained from the additional consumption of their child is greater

than the marginal utility lost from the fall in their own consumption. Auctions provide another

possible application for this estimator. Different forms of the Tobit estimator are commonly

used to analyse auction data because of the various forms of censoring found in these settings,

for example Jofre-Bonet and Pesendorfer (2003). In general, the estimator developed in this

chapter is applicable in all settings where the Tobit estimator is used. For example, Shishko and

Rostker (1976) estimate the supply of labour for second jobs using the Tobit estimator. In this

setting it is highly likely that unobservable characteristics such as ability and tastes for spending

enter the supply function in a nonseparable way. See McDonald and Moffitt (1980) for further

examples. More recently there has been much interest in nonseparable models, however many

cases have failed to take into account censoring. For example, several examples of hedonic models

considered in Heckman, Matzkin and Nesheim (2010) are likely to suffer from censoring.

The identification strategy used in this chapter follows AIO very closely. However, the

strategy must be adapted to take into account endogeneity. In this chapter we use a control

function approach. This involves conditioning on the residuals from a first stage regression of

the endogenous regressors on instruments to fix the distribution of the unobservable error term.

This conditioning is then undone by averaging over the distribution of the residuals (see Blundell

and Powell, 2003).

As a parameter of interest, we focus on the local average response conditional on the depen-

dent variable being uncensored. This is in contrast to the local average response across the whole

sample, which would be more suited to cases where censoring is due to failures in measurement.

AIO focus on the exogenous case and only briefly introduce endogeneity as an extension to the
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model. Whilst Altonji and Matzkin (2005) discuss identification and estimation of the local

average response in a nonseparable model without censoring.

There has been considerable interest in nonseparable models with endogenous regressors over

the last 15 years (see, for example, Imbens and Newey, 2009, Chernozhukov, Fernandez-Val and

Kowalksi, 2015, and a review by Matzkin, 2007). Schennach, White and Chalak (2012) consider

triangular structural systems with nonseparable functions that are not monotonic in the scalar

unobservable. They find that local indirect least squares is unable to estimate the local average

response, but can be used to test if there is no effect from the regressor in this general case.

Hoderlein and Mammen (2007) also drop the assumption of monotonicity and showed that by

using regression quantiles identification can be achieved. However, this result was obtained in the

absence of endogenous regressors. Censoring in nonseparable models has received little attention;

Lewbel and Linton (2002) consider censoring in a separable model and Chen, Dhal and Khan

(2005) study a partially separable model.

This chapter is organised as follows. Section 1.2 presents the main results: nonparametric

identification of the local average response (Section 1.2.1) and nonparametric estimation of the

identified object (Section 1.2.2). In Section 1.3, we assess the small sample properties of the

proposed estimator via Monte Carlo simulation. Section 1.4 concludes.

1.2. Main Results

In this section, we consider identification and estimation of the model based on cross-section

data. Our notation closely follows that of AIO. The model is set up such that the dependent

variable Y is observed only when a latent variable falls within a certain interval,

Y =


M(X,U) if L(X) < M(X,U) < H(X),

CL if M(X,U) ≤ L(X),

CH if H(X) ≤M(X,U),

where X is a d-dimensional vector of observables andM : Rd×U 7→ R is a differentiable function

with respect to the first argument, indexed by an unobservable random object U . The support

U of U is possibly infinite dimensional. Also L(X) and H(X) are scalar-valued functions of
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X,1 and CL and CH are indicators to signify censoring from below and above, respectively. For

example, they may be coded as CL =“censored from below” and CH =“censored from above”.

This model represents a generalisation of the Tobit model, whereM(X,U) = X ′β+U , L(X) = 0,

H(X) =∞, and U is normal and independent from X.

Let IM (X,U) = I{L(X) < M(X,U) < H(X)}, where I{·} is the indicator function. As a

parameter of interest, we focus on the local average response given that X = x and Y is not

censored, that is

β(x) = E[OM(X,U)|X = x, IM (X,U) = 1], (1)

where OM(X,U) is the partial derivative ofM with respect toX. AIO investigated identification

and estimation of β(x) when X and U are independent and discussed briefly identification of

β(x) when X is endogenous and can be correlated with U . Here we formalise their identification

argument and develop a nonparametric estimator of β(x).

Without censoring, the local average response βAM (x) = E[OM(X,U)|X = x] with endoge-

nous X was proposed and studied in Altonji and Matzkin (2005). They go on to discuss several

motivations of the local average response. Our object of interest, β(x), in (1) shares similar

motivations. As a particular example, Aaronson (1998) investigates the effects of average neigh-

bourhood income X on college attendance Y holding the distribution of U |X = x fixed. Thus,

the local average response is the parameter of interest in Aaronson’s (1998) empirical analysis.

We note that for the linear case M(X,U) = X ′β + U , the object β(x) coincides with the

slope parameter β in the Tobit model with endogenous X. Also, as briefly mentioned in Section

1.1, Altonji, Hayashi and Kotlikoff (1997) consider altruism based models of money transfers

from parents to children, and study the effects of endowments X to money transfers Y . The

money transfers are obviously censored from below by 0 and it is reasonable to suspect correlation

between the endowments X and unobserved preferences U of the parents and children. Thus,

β(x) is a parameter of interest in the empirical study of Altonji, Hayashi and Kotlikoff (1997).

See, for example, Raut and Tran (2005) and Kaziango (2006) for further examples.

1It is possible to allow both L(·) and H(·) to depend on additional observed variables, for example L(X̃) and
H(X̃) where X̃ contains X as a subvector, without affecting the proceeding results. We restrict attention only to
X for ease of exposition.
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1.2.1. Identification. We employ a control function approach to identify the average de-

rivative, β(x), in the presence of endogenous X. This is a standard approach in the literature

(see, for example, Blundell and Powell, 2003). It is assumed that the researcher observes a vector

of random variables W satisfying

X = ϕ(W ) + V, E[V |W ] = 0 a.s.,

U⊥W |V,

where V is the error term. Under this setup, we wish to identify the local average response

β(x) in (1) based on the observables (Y,X,W ). Note that the function ϕ(·) is identified by

the conditional mean ϕ(w) = E[X|W = w]. Thus in the identification analysis below, we

treat V as observable. Although conditional independence U⊥W |V is a strong assumption, it

is hard to avoid unless further restrictions are placed on the functional form of M(x, u), such as

monotonicity in a scalar u.

Using the auxiliary variable V , the parameter of interest can be written as

β(x) =

∫
u
OM(x, u)dP (u|X = x, IM (X,U) = 1)

=

∫
v
β(x, v)dP (v|X = x, IM (X,U) = 1), (2)

where dP is the Lebesgue density of U and β(x, v) =
∫
uOM(x, u)dP (u|X = x, IM (X,U) =

1, V = v). Note that we observe X and IM (X,U) = I{Y 6= CL, CH}, and that V is treated as

observable. Thus the conditional distribution of V given X = x and IM (X,U) = 1 is identified.

Based on (2), it is sufficient to identify β(x, v). LetGM (x, v) = Pr{IM (X,U) = 1|X = x, V = v}.

By using the assumptions on V , the object β(x, v) can be written as

β(x, v) =

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|X = x, V = v)/GM (x, v)

=

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|ϕ(W ) = ϕ(w), V = v)/GM (x, v)

=

∫
u∈{u:IM (x,u)=1}

OM(x, u)dP (u|V = v)/GM (x, v).
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Similarly, observe that

Ψ(x, v) = E[M(X,U)|X = x, IM (X,U) = 1, V = v]

=

∫
u∈{u:IM (x,u)=1}

M(x, u)dP (u|V = v)/GM (x, v).

Note that Ψ(x, v) is identified as the conditional mean of Y given X = x, V = v, and IM (X,U) =

1 (uncensored). The basic idea for identification is to compare the derivative of the conditional

mean OΨ(x, v) with the conditional mean of the derivative of β(x, v).

For expositional purposes only, we tentatively assume that M(x, u) is continuous and mono-

tonic in scalar u for each x; we show how this assumption can be dropped later. Using the

Leibniz rule to differentiate Ψ(x, v) with respect to x while holding v constant gives

O[Ψ(x, v)GM (x, v)] =

∫ uH(x)

uL(x)
OM(x, u)dP (u|V = v)

+M(x, uH(x))dP (uH(x)|V = v)OuH(x)

−M(x, uL(x))dP (uL(x)|V = v)OuL(x), (3)

where uH(x) and uL(x) solve M(x, u) = H(x) and M(x, u) = L(x), respectively, so that

M(x, uH(x)) = H(x) and M(x, uL(x)) = L(x). Denoting GH(x, v) = Pr{Y = CH |X = x, V =

v} and GL(x, v) = Pr{Y = CL|X = x, V = v}, we obtain OGH(x, v) = −dP (uH(x)|V =

v)OuH(x) and OGL(x, v) = dP (uL(x)|V = v)OuL(x). Combining these results, β(x, v) can be

written as

β(x, v) = OΨ(x, v) + {Ψ(x, v)OGM (x, v) +H(x)OGH(x, v) + L(x)OGL(x, v)}/GM (x, v). (4)

Since each term on the right hand side of this equation is identified, we conclude that the

parameter of interest β(x) is identified.

It is instructive to give an intuitive outline of why the identification argument of AIO fails

in the presence of endogeneity. Notice, under exogeneity of X,

Ψ∗(x)G∗M (x) =

∫ uH(x)

uL(x)
M(x, u)dP (u|X = x) =

∫ uH(x)

uL(x)
M(x, u)dP (u), (5)
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where Ψ∗(x) = E[M(X,U)|X = x, IM (X,U) = 1] and G∗M (x) = Pr{IM (X,U) = 1|X = x}.

Identification of β(x) in AIO is achieved by differentiating (5) with respect to x and solving for

β(x). However, when X is endogenous, this argument does not apply. In particular, letting

p(u|x) denote the conditional density of U |X = x, the Leibniz rule yields

O[Ψ∗(x)G∗M (x)] = O

[∫ uH(x)

uL(x)
M(x, u)p(u|x)du

]

= β(x) +

∫ uH(x)

uL(x)
M(x, u)Op(u|x)du

+M(x, uH(x))p(uH(x)|x)OuH(x)

−M(x, uL(x))p(uL(x)|x)OuL(x).

Note that the second term on the right hand side is not estimable. Therefore, the identification

strategy of AIO based on the above equation does not apply to the case of endogenous X.

We now show that the above argument for identification holds under more general conditions.

The following assumptions are imposed.

Assumption 1.

(i): X = ϕ(W ) + V with E[V |W ] = 0 a.s. and U ⊥W |V .

(ii): L(·) and H(·) are continuous at x and satisfy L(x′) < H(x′) for all x′ in a neigh-

bourhood of x, and Pr{M(X,U) = L(X)|X = x} = Pr{M(X,U) = H(X)|X = x} = 0.

(iii): GL(·, V ), GM (·, V ), and GH(·, V ) are differentiable a.s. at x and GM (x, V ) > 0 a.s.

(iv): M(·, U) is differentiable a.s. at each x′ in a neighbourhood of x, and there exists

an integrable function B : U → R such that |OM(x′, U)| ≤ B(U) a.s. for all x′ in a

neighbourhood of x.

Assumption 1 (i) is a key condition required to use a control function approach. This assump-

tion is considered as an alternative to using instrumental variables, say Z, satisfying U ⊥ Z. As

explained in Blundell and Powell (2003, p. 332), the control function assumption is “no more nor

less general” than the instrumental variable assumption, and both are implied by the stronger

assumption (U, V )⊥Z. Assumption 1 (ii)-(iv) are adaptations of those in AIO to allow endoge-

nous X. Assumption 1 (ii) is reasonable given that H(x) and L(x) are defined as the upper and

18



lower bound. Assumption 1 (iii) and (iv) simply reflect that we wish to estimate some form of

derivatives. The last condition of (iv) allows the order of integration and differentiation to be

changed. Note that we do not need to assume X is continuous, however, for ease of exposition

we restrict our attention to kernels for continuous variables. Under these assumptions, we can

show that the identification formula for β(x) based on (2) and (4) still holds true.

Theorem 1. Under Assumption 1, β(x) is identified by (2), where β(x, v) is identified by

(4).

This theorem formalises the identification argument described in AIO (Section 5.1). It should

be noted that for this theorem, the object U can be a scalar, vector, or even an infinite dimensional

object, the function M(x, u) need not be monotone in u, and the region of integration for u need

not be rectangular. A key insight for this result is that the Leibniz-type identity in (3) holds

under weaker conditions (see Lemma 1 in Appendix 1.5).

1.2.2. Estimation. Based on Theorem 1, the local average response is written as

β(x) =

∫
v

OΨ(x, v) +
1

GM (x, v)


Ψ(x, v)OGM (x, v)

+H(x)OGH(x, v)

+L(x)OGL(x, v)



 dP (v|X = x, IM (X,U) = 1). (6)

To estimate β(x), we estimate each unknown component on the right hand side by a nonparamet-

ric estimator. Suppose X and V are absolutely continuous with respect to the Lebesgue measure.

Let fM (·) be generic notation for the joint or conditional density given that IM (X,U) = 1 (Y

is uncensored). For example, fM (y|x) means the conditional density of Y given X = x and

IM (X,U) = 1; EM [·] and V arM (·) are defined analogously. For estimation, it is convenient to

rewrite β(x) in the following form

β(x) = fM (x)−1(1, 1, H(x), L(x))



ξ(x)

ζ(x)

η(x)

θ(x)


, (7)
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where

ξ(x) =

∫
y
yOfM (y, x)dy −

∫
v

∫
y yfM (y, x, v)dyOfM (x, v)

fM (x, v)
dv,

ζ(x) =

∫
v

∫
y
yfM (y, x, v)dy

OGM (x, v)

GM (x, v)
dv,

η(x) =

∫
v
fM (x, v)

OGH(x, v)

GM (x, v)
dv, θ(x) =

∫
v
fM (x, v)

OGL(x, v)

GM (x, v)
dv.

Each component in β(x) is estimated as follows. The boundary functions H(x) and L(x) are

estimated by the local maximum and minimum, respectively, i.e.,

Ĥ(x) = max
i:|Xi−x|≤bHn ,Yi 6=CL,CH

Yi,

L̂(x) = min
i:|Xi−x|≤bLn ,Yi 6=CL,CH

Yi,

where bHn and bLn are bandwidths. Let K(a) be a dim(a)-variate product kernel function such

that K(a) =
∏dim(a)
k=1 κ(a(k)). As a proxy for Vi we use

V̂i = Xi − ϕ̂(Wi),

where

ϕ̂(Wi) = τ(f̂(Wi), hn)
1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
,

f̂(w) = 1
nbdn

∑n
j=1K

(
w−Wj

bn

)
is the kernel density estimator for W , and

τ(t, hn) =


1/t if t ≥ 2hn,

1
8

{
49(t−hn)3

h4n
− 76(t−hn)4

h5n
+ 31(t−hn)5

h6n

}
if hn ≤ t < 2hn,

0 if t < hn

is a trimming function parameterised by hn. This trimming term, due to Ai (1997), is introduced

to deal with the denominator (or small density) problem of kernel estimators. The choice of hn is

briefly discussed in Ai (1997); it seems to be of little importance provided hn → 0. Integrating out

GM (x, v), our estimator for Pr{Yi 6= CL, CH} is given by ĜM = nM/n, where nM =
∑n

i=1 I{Yi 6=

CL, CH} is the number of uncensored observations. Similarly, define nH =
∑n

i=1 I{Yi = CH},

nL =
∑n

i=1 I{Yi = CL}, ĜH = nH/n, and ĜL = nL/n. The conditional densities and their
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derivatives are estimated by

f̂M (y, x, v) =
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

K

(
y − Yi
bn

)
K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

f̂M (x, v) =
1

nMb2dn

∑
i:Yi 6=CL,CH

K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

Of̂M (y, x) =
1

nMb
d+2
n

∑
i:Yi 6=CL,CH

K

(
y − Yi
bn

)
OK

(
x−Xi

bn

)
,

Of̂M (x, v) =
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

OK

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

f̂(x, v) =
1

nb2dn

n∑
i=1

K

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
,

Of̂(x, v) =
1

nb2d+1
n

n∑
i=1

OK

(
x−Xi

bn

)
K

(
v − V̂i
bn

)
.

The conditional probability GM (x, v) and its derivative are estimated by

ĜM (x, v) = ĜM
f̂M (x, v)

f̂(x, v)
,

OĜM (x, v) = ĜM
Of̂M (x, v)

f̂(x, v)
− ĜM

f̂M (x, v)Of̂(x, v)

f̂(x, v)2
.

Similarly, OGH(x, v) and OGL(x, v) are estimated by

OĜH(x, v) = ĜH
Of̂H(x, v)

f̂(x, v)
− ĜH

f̂H(x, v)Of̂(x, v)

f̂(x, v)2
,

OĜL(x, v) = ĜL
Of̂L(x, v)

f̂(x, v)
− ĜL

f̂L(x, v)Of̂(x, v)

f̂(x, v)2
,

respectively, where f̂H(x, v), f̂L(x, v),Of̂H(x, v),Of̂L(x, v), ĜH and ĜL are defined analogously

to their uncensored counterparts.
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Based on the above notation and introducing the trimming terms τ(f̂M (x, v), hn) and τ(f̂(x, v), hn),

the components in β(x) are estimated by

ξ̂(x) =

∫
y
yOf̂M (y, x)dy −

∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv,

ζ̂(x) =

∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yf̂M (y, x, v)dy

}
Of̂(x, v)τ(f̂(x, v), hn)dv,

η̂(x) =
ĜH

ĜM

∫
v
Of̂H(x, v)dv − ĜH

ĜM

∫
v
f̂H(x, v)Of̂(x, v)τ(f̂(x, v), hn)dv,

θ̂(x) =
ĜL

ĜM

∫
v
Of̂L(x, v)dv − ĜL

ĜM

∫
v
f̂L(x, v)Of̂(x, v)τ(f̂(x, v), hn)dv.

The estimator β̂(x) is obtained by plugging the above estimators into (7).2 Note that the integrals

are approximated using numerical methods. If there is no censoring from above or below (i.e.,

L(X) = −∞ or H(X) = +∞, respectively), then we remove the term η̂(x) or θ̂(x), respectively.

To analyse the asymptotic behaviour of β̂(x), we introduce the following assumptions. Let

| · | be the Euclidean norm and mM (x, v) = E[Y |X = x, IM (X,U) = 1, V = v].

Assumption 2.

(i): {Yi, Xi,Wi, Vi}ni=1 is i.i.d.

(ii): E[a(W,X)|X] <∞ for a(W,X) = E[Y 4|W,X], E
[∣∣∣OfM (X,V )

fM (X,V )

∣∣∣4∣∣∣∣W,X],
E

[∣∣∣Of(X,V )
f(X,V )

∣∣∣4∣∣∣∣W,X], E [∣∣∣Ov′ (OfM (X,V )
fM (X,V )

)∣∣∣4∣∣∣∣W,X], and E [∣∣∣Ov′ (Of(X,V )
f(X,V )

)∣∣∣4∣∣∣∣W,X].
Furthermore, E[|ϕ(W )|4|X] <∞, E[|mM (X,V )|4+δ] <∞, E[|GM (X,V )|4+δ] <∞,

E[|GH(X,V )|2+δ] <∞, and E[|GL(X,V )|2+δ] <∞ for some δ > 0.

(iii): fM (x, v) and f(w) are continuously differentiable of order s with respect to (x, v)

and w, respectively, and all the derivatives are bounded over (x, v) and w, respectively.

Also
∫
v

∫
x fM (x, v)1−adxdv <∞ and

∫
v

∫
x f(x, v)1−adxdv <∞ for some 0 < a ≤ 1.

2In this chapter, we employ the Nadaraya-Watson kernel estimator to construct β̂(x) because it simplifies the
theoretical analysis below. It is also possible to use the formula in (6) and estimate the right hand side by local
linear or polynomial estimators as in AIO. It is known that local polynomial fitting has some desirable properties,
such as an absence of boundary effects and minimax efficiency (see, Section 3.2 of Fan and Gijbels, 1996). On
the other hand, to estimate the conditional probabilities GM , GH , and GL, local polynomial estimators are
not constrained to lie between 0 and 1 (Hall, Wolff and Yao, 1999). Furthermore, the formula in (6) involves
the conditional density dP (v|X = x, IM (X,U) = 1), and its local polynomial fitting may require an additional
bandwidth parameter for the dependent variable (Fan, Yao and Tong, 1996). A full comparison of different
estimation methods is beyond the scope of this chapter.
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(iv): EM [Y |X = x, V = v]fM (x, v) and E[X|W = w]f(w) are continuously first-order

differentiable with respect to (x, v) and w, respectively. Also, sup
x,v
|EM [Y |X = x, V =

v]fM (x, v)| <∞ and sup
w
|E[X|W = w]f(w)| <∞.

(v): K is a product kernel taking the form of K(a) =
∏dim(a)
k=1 κ(a(k)), where κ is bounded

and symmetric around zero. K satisfies
∫
a |K(a)|2+δda <∞ for some δ > 0,

∫
a |aOK(a)|da <

∞, and |a||K(a)| → 0 as |a| → ∞, and the Fourier transform Ψ of K satisfies∫
u sup
b≥1
|Ψ(bu)|du <∞. In addition,

∫
a
ajK(a)du


= 1 if j = 0,

= 0 if 1 ≤ j ≤ s− 1,

<∞ if j = s.

(vi): As n→∞, it holds hn → 0, bn → 0, nbd+2
n →∞, nbd+2+2s

n → 0,

nbd+2
n

∫
w I{f(w) < 2hn}f(w, x)dw → 0,

√
nbd+2

n {Ĥ(x)−H(x)} p→ 0, and√
nbd+2

n {L̂(x)− L(x)} p→ 0.

(vii): The partial derivatives with respect to x of fM (y, x), f(x, v), fM (x, v), fH(x, v), and

fL(x, v) exist up to the third order and are bounded. The first order partial derivatives

with respect to v of fM (x, v), f(x, v), log(OfM (x, v)), and log(Of(x, v)) exist and are

bounded.

Assumption 2 (i) is on the sampling of data. This assumption can be weakened to allow

for near-epoch dependent random variables (see Andrews, 1995). Assumption 2 (ii) contains

boundedness conditions for the moments. Assumption 2 (iii) and (iv) are required to establish

uniform convergence results for the kernel estimators in β̂(x). In particular, the last condition

in (iii) is a restriction on the thickness of the tails of fM (x, v) and f(x, v), which is required for

the uniform convergence of the trimming terms. Assumption 2 (iv) is required for the uniform

convergence of the kernel estimators to conditional expectations. Assumption 2 (v) contains

standard bias-reducing conditions for a higher order kernel. Assumption 2 (vi) lists conditions

on the bandwidth bn and trimming parameter hn as well as assumptions on the speed of conver-

gence of the boundary function estimators Ĥ(x) and L̂(x). Chernozhukov (1998) and Altonji,

Ichimura and Otsu (2013) provide primitive conditions for the convergence rates of Ĥ(x) and
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L̂(x). Assumption 2 (vii) is required since we need to estimate the first order derivatives of these

functions.

The asymptotic distribution of the nonparametric estimator β̂(x) for the local average re-

sponse β(x) is obtained as follows.

Theorem 2. Under Assumptions 1 and 2,

√
nbd+2

n {β̂(x)− β(x)} d→ N(0, c(x)′V (x)c(x)),

where c(x) = (1, 1, H(x), L(x))′ and

V (x) =



σ2
ξ 0 0 0

0 σ2
ζ σζη σζθ

0 σζη σ2
η σηθ

0 σζθ σηθ σ2
θ


⊗ fM (x, v)−1G−2

M

∫
a
OK(a)OK(a)′da,

σ2
ξ =

∫
v

V arM (Y |x, v)

GM (x, v)
fM (x, v)dv,

σ2
ζ =

∫
v
mM (x, v)2GM (x, v)(1−GM (x, v))fM (x, v)dv,

σ2
η = H(x)2

∫
v
GH(x, v)(1−GH(x, v))fM (x, v)dv,

σ2
θ = L(x)2

∫
v
GL(x, v)(1−GL(x, v))fM (x, v)dv,

σζη = −H(x)2

∫
v
mM (x, v)GM (x, v)GH(x, v)fM (x, v)dv,

σζθ = −L(x)2

∫
v
mM (x, v)GM (x, v)GL(x, v)fM (x, v)dv,

σηθ = −H(x)2L(x)2

∫
v
GL(x, v)GH(x, v)fM (x, v)dv.

This theorem says that our nonparametric estimator β̂(x) is consistent and asymptotically

normal. Note that the
√
nbd+2

n -convergence rate of β̂(x) is identical to that of AIO for the case

of exogenous X. However, the asymptotic variance is different from that of AIO. Both c(x) and

V (x) can be estimated consistently in the same manner as the estimator itself; by replacing each

component by the nonparametric estimator.
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Here we focus on the estimation of β(x) for a given x. As a summary of β(x) over some

range X, it is also interesting to consider the average estimator

β̂ =

∑n
i=1 I{Xi ∈ X}β̂(Xi)∑n

i=1 I{Xi ∈ X}
.

For the case of exogenousX, the working paper version of AIO (Altonji, Ichimura and Otsu, 2008)

studied the asymptotic properties of β̂ and showed it is
√
n-consistent and asymptotically normal.

Although a formal investigation is significantly more complicated and lengthy, we conjecture that

β̂ possesses similar asymptotic properties.

1.3. Simulation

In this section we evaluate the small sample properties of our nonparametric estimator. As

a data generating process, we consider the following model:

Y =


M(X,U) if 1 < M(X,U) < 8,

1 if M(X,U) ≤ 1,

8 if 8 ≤M(X,U),

where

M(X,U) = α0 + α1X + α2XU + U,

X = W + U + ε,

W ∼ U [0, 6], ε ∼ U [−1, 1], U ∼ N(0, 1).

Note that L(X) = 1, H(X) = 8, ϕ(W ) = W and the variable V = U + ε plays the role of

the control variable. We consider four parameterisations (α0, α1, α2) = (1, 0.5, 0.5), (0, 1, 0.5),

(2, 0, 1.5), and (1.5, 1, 0) (called Models 1-4, respectively). In all cases the censoring points are

treated as known. The local average response β(x) is evaluated at x ∈ {1, 2, 3, 4, 5}. The sample

size is set at n = 1000.

The simulation results are reported in Appendix 1.6. All results are based on 1000 Monte

Carlo replications. In the tables, the rows labeled “Value of x” denote the values of x at which β(x)

is evaluated, and the rows labeled “True Value” report the true values of β(x) (computed by Monte
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Carlo integrations). The rows labeled “NPE” report the mean over Monte Carlo replications

for the nonparametric estimator developed in this chapter. The rows labeled “No Endogeneity

Control” report the mean for the nonparametric estimator without controlling for endogeneity,

which is created by excluding the control function from our estimator. This estimator is the

nonparametric estimator developed in AIO. Although in this simulation study, we use kernel

estimators rather than local polynomial estimators as adopted in AIO. The rows labeled “No

Censoring Control” report the mean for the nonparametric estimator without controlling for

censoring. This estimator is the nonparametric estimator developed in Altonji and Matzkin

(2005). In this chapter this estimator refers to using only ξ̂(x). For all nonparametric estimators,

we use Silverman’s plug-in bandwidth for bn and the Gaussian kernel for K(·). Also, in the

simulation study, we do not incorporate the trimming term (i.e., set as τ(t, hn) = 1/t) as there

appears to be little effect in the results. This may be due to the uniformly distributed variables

used, however, trimming tends to be necessary only insofar as proving theoretical properties

and rarely impacts practical performance. To evaluate the integrals in the estimators,we employ

adaptive quadratures. The rows labeled “Tobit” report the mean over Monte Carlo replications

for the maximum likelihood Tobit estimator using the fourth-order polynomial regression function

with no adjustment for endogeneity. The rows labeled “SD” report the standard deviation over

Monte Carlo replications for each estimator. Finally, the rows labeled “NPE (Half Bandwidth)”

report the mean over Monte Carlo replications for our nonparametric estimator using half of the

plug-in bandwidth.

Model 1 is the benchmark case. The proposed estimator “NPE” shows a superb performance.

It has small bias across all values of x and reasonably small standard deviations (compared to

the Tobit estimator, for example). The half bandwidth estimator also shows reasonable results.

Compared to “NPE”, as expected, the half bandwidth estimator yields smaller bias but larger

standard deviation. The “No Endogeneity Control” estimator proposed in AIO incurs biases

for all values of x. It seems there is no noticeable pattern in the bias. It has large upward

bias at x = 2 and large downward bias at x = 5. Also, the “No Censoring Control” estimator

proposed in Altonji and Matzkin (2005) shows severe downward biases. These results show that

in the current setting, it is crucial to control for both endogeneity and censoring problems at the
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same time. The “Tobit” estimator also shows considerable bias for most values of x which is not

surprising.

Models 2 and 3 consider the case without an intercept and without the linear term in X,

respectively. For both cases, we obtained similar results. The “NPE” estimator and the half

bandwidth estimator show reasonable performance for most values of x; other estimators are

(often significantly) biased. Model 4 considers the linear separable model. However, since X is

endogenous, the Tobit estimator is still inconsistent and the simulations confirms the presence

of this endogeneity bias.

Our “NPE” estimator works well for most cases. However, when x = 1 or 5 (i.e., near the

boundaries of the support of X), it may incur non-negligible bias (see, Model 3 with x = 1 and

Model 4 with x = 5). For such cases, we should introduce a trimming term to avoid low density

problems or a boundary correction kernel.

1.4. Conclusion

In this chapter we develop a nonparametric estimator for the local average response of a cen-

sored dependent variable to an endogenous regressor in a nonseparable model. The unobservable

error term is not restricted to be scalar and the nonseparable function need not be monotone in

the unobservable. We formalise the identification argument in Altonji, Ichimura and Otsu (2012)

in the case of endogenous regressors, and study the asymptotic properties of the nonparametric

estimator. Our simulation results suggest that it is important to correct for the effects of both

censoring and endogeneity.

Further research is needed in dynamic settings, as well as looking at how measurement error

impacts such models and how discrete regressors complicate the identification argument. It

could also prove possible to use the results from this chapter along with AIO to create a test for

endogeneity in this censored, nonseparable model.
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1.5. Appendix - Mathematical Proofs

1.5.1. Proof of Theorem 1. Theorem 1 follows directly from (2), (4), and Lemma 1 below.

Lemma 1. Under Assumption 1,

O
∫
M(x, u)IM (x, u)dP (u|V = v) =

∫
OM(x, u)IM (x, u)dP (u|V = v)

−H(x)OGH(x, v)− L(x)OGL(x, v),

for almost every v.

The proof of Lemma 1 follows trivially from the proof of AIO (2012, Lemma 3.1); the adapted

proof is included here for completeness.

It is sufficient to prove Lemma 1 for O1, the partial derivative with respect to the first element

of x:

O1

∫
M(x, u)IM (x, u)dP (u|V = v)

=

∫
O1M(x, u)IM (x, u)dP (u|V = v)−H(x)O1GH(x, v)− L(x)O1GL(x, v),

for almost every v. The left hand side is given by

lim
ε→0

[∫
M(x+ εe1, u)IM (x+ εe1, u)dP (u|V = v)−

∫
M(x, u)IM (x, u)dP (u|V = v)

]
/ε

= lim
ε→0

∫
[M(x+ εe1, u)−M(x, u)]IM (x+ εe1, u)dP (u|V = v)/ε

+ lim
ε→0

∫
M(x, u)[IM (x+ εe1, u)− IM (x, u)]dP (u|V = v)/ε

= T1 + T2,

where e = (1, 0, . . . , 0)′. Assumption 1 (ii) and (iv) imply

lim
ε→0

IM (x+ εe, U) = IM (x, U) a.s.

Thus, the Lebesgue dominated convergence theorem implies

T1 =

∫
O1M(x, u)IM (x, u)dP (u|V = v),
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for almost every v. For T2, using Assumption 1 (ii),

IM (x+ εe, U)− IM (x, U)

= I{L(x+ εe) < M(x+ εe, U)} − I{L(x) < M(x, U)}

+I{M(x+ εe, U) < H(x+ εe)} − I{M(x, U) < H(x)} a.s.,

for all ε > 0 sufficiently close to 0. Therefore,

T2 = lim
ε→0

∫
M(x, u)[I{L(x+ εe) < M(x+ εe, u)} − I{L(x) < M(x, u)}]dP (u|V = v)/ε

+ lim
ε→0

∫
M(x, u)[I{M(x+ εe, u) < H(x+ εe1)} − I{M(x, u) < H(x)}]dP (u|V = v)/ε.

Noting that I{L(x + εe) < M(x + εe, u)} = 1 − I{L(x + εe) ≥ M(x + εe, u)}, the proof is

completed by the following lemma.

Lemma 2. Under Assumption 1,

lim
ε→0

∫
M(x, u)[I{M(x+εe, u) > L(x+εe)}−I{M(x, u) > L(x)}]dP (u|V = v)/ε = −L(x)O1GL(x, v),

(8)

for almost every v.

Proof of Lemma 2. Presented here is only the argument for the lower bound. The argument

for the upper bound is analogous. To prove this lemma, it is sufficient to show that both an

upper bound and a lower bound of the left hand side converge to the right hand side as ε → 0.

The left hand side can be written as

lim
ε→0

∫
M(x, u)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
M(x, u)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v)/ε,

for almost every v. Assumption 1 (iv) implies that if M(x+ εe, u) ≤ L(x+ εe), then M(x, u) ≤

L(x + εe) + εB(u) for all ε sufficiently close to 0. Similarly, M(x + εe, u) > L(x + εe) implies

M(x, u) > L(x+ εe)− εB(u) for all ε sufficiently close to 0. Consequently, the left hand side of
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(8) can be bounded from below by

lim
ε→0

∫
L(x+ εe)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
B(u)I{M(x+ εe, u) > L(x+ εe)}I{M(x, u) ≤ L(x)}dP (u|V = v)

− lim
ε→0

∫
L(x+ εe)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v)/ε

− lim
ε→0

∫
B(u)I{M(x+ εe, u) ≤ L(x+ εe)}I{M(x, u) > L(x)}dP (u|V = v),

for almost every v. By Assumption 1 (ii) and (iv), the Lebesgue dominated convergence theorem

implies that the second and fourth terms converge to 0. The first and third terms can be combined

to give

lim
ε→0

L(x+εe)

∫
[I{M(x+εe, u) > L(x+εe)}−I{M(x, u) > L(x)}]dP (u|V = v)/ε = −L(x)O1GL(x, v),

for almost every v. The same reasoning obtains an equivalent result for −H(x)O1GH(x, v).

Therefore, the conclusion follows.

1.5.2. Proof of Theorem 2. Note that the convergence rates of f̂M (x), Ĥ(x), and L̂(x)

are faster than the derivative estimators contained in (ξ̂(x), ζ̂(x), η̂(x), θ̂(x)). Thus, under As-

sumption 2 (i), (ii), (v), and (vi),

√
nbd+2

n {β̂(x)− β(x)} = c(x)′
√
nbd+2

n



ξ̂(x)− ξ(x)

ζ̂(x)− ζ(x)

η̂(x)− η(x)

θ̂(x)− θ(x)


+ op(1),

where c(x)′ = fM (x)−1(1, 1, H(x), L(x)).

In the following lemma, we derive the asymptotic linear form of ξ̂(x) − ξ(x). Let f̃M (a) be

the object defined by replacing V̂i in f̂M (a) with Vi.
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Lemma 3. Under Assumption 2,

ξ̂(x)− ξ(x) =

 1

nMb
d+1
n

∑
i:Yi 6=CL,CH

YiOK

(
x−Xi

bn

)
−
∫
y
yOfM (y, x)dy


−

 1

nMb
d+1
n

∑
i:Yi 6=CL,CH

mM (x, Vi)OK

(
x−Xi

bn

)
−
∫
v
mM (x, v)OfM (x, v)dv


+op((nb

d+2
n )−1/2).

Proof of Lemma 3. Decompose

ξ̂(x)− ξ(x) =

∫
y
y{Of̂M (y, x)− OfM (y, x)}dy

−
∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
Of̂M (x, v)τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}τ(f̂M (x, v), hn)dv

−
∫
v

{∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

≡ T1 − T2 − T3 − T4.

For T2, decompose

T2 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}τ(f̂M (x, v), hn)dv

+

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

+

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v)τ(fM (x, v), 0)dv

≡ T21 + T22 + T23.

For T23,

T23 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yf̃M (y, x, v)dy

}
OfM (x, v)fM (x, v)−1dv

+

∫
v

{∫
y
yf̃M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v)fM (x, v)−1dv

≡ T231 + T232.
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For T232,

T232 =

∫
v

{
1

nMb
2d+1
n

∑
i:Yi 6=CL,CH

∫
y
yK

(
y − Yi
bn

)
dyK

(
x−Xi

bn

)
K

(
v − Vi
bn

)

−
∫
y
yfM (y, x, v)dy

}
OfM (x, v)

fM (x, v)
dv

=

∫
v

 1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

)
K

(
v − Vi
bn

)
−
∫
y
yfM (y, x, v)dy

 OfM (x, v)

fM (x, v)
dv

=
1

nMbdn

∑
i:Yi 6=CL,CH

Yi
OfM (x, Vi)

fM (x, Vi)
K

(
x−Xi

bn

)
−
∫
v

∫
y
y
OfM (x, v)

fM (x, v)
fM (y, x, v)dydv +Op(b

s
n)

= Op((nb
d
n)−1/2) +Op(b

s
n),

where the second equality follows from the change of variables a = y−Yi
bn

and Assumption 2 (v),

the third equality also follows from the change of variables a = v−Vi
bn

and Assumption 2 (v),

and the last equality follows from a central limit theorem for the kernel estimator in the form of

1
nM bdn

∑
i:Yi 6=CL,CH g1(Yi, Vi)K

(
x−Xi
bn

)
with g1(Yi, Vi) ≡ YiOfM (x,Vi)

fM (x,Vi)
.

For T231,

T231 =

∫
v

1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

){
K

(
v − Vi + êi

bn

)
−K

(
v − Vi
bn

)}
OfM (x, v)

fM (x, v)
dv

=

∫
v

1

nMb2dn

∑
i:Yi 6=CL,CH

YiK

(
x−Xi

bn

)
K ′
(
v − Vi
bn

)
êi
bn

OfM (x, v)

fM (x, v)
dv + op(n

−1/2)

=
1

nMbdn

∑
i:Yi 6=CL,CH

g2(Yi, Vi)êiK

(
x−Xi

bn

)
(1 + o(1)) + op(n

−1/2),

where the first equality follows from the change of variables a = y−Yi
bn

and the definition êi ≡

ϕ̂(Wi)−ϕ(Wi), the second equality follows from an expansion around êi = 0 and max1≤i≤n |êi| =

op(n
−1/4) (by applying the uniform convergence result in Andrews, 1995, Theorem 1, based on

Assumption 2), and the third equality follows from the change of variables a = v−Vi
bn

with
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∫
aK
′ (a) da = 0 and the definition g2(Yi, Vi) ≡ YiOv′

(
OfM (x,Vi)
fM (x,Vi)

) ∫
aK
′ (a) ada based on Assump-

tion 2 (ii) and (v). We can break down T231 further as follows

1

nMbdn

∑
i:Yi 6=CL,CH

êig2(Yi, Vi)K

(
x−Xi

bn

)

=
1

nMbdn

∑
i:Yi 6=CL,CH

τ(f̂W (Wi), hn)
1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
− ϕ(Wi)

 g2(Yi, Vi)K

(
x−Xi

bn

)

=
1

nMbdn

∑
i:Yi 6=CL,CH

{τ(f̂W (Wi), hn)− τ(f(Wi), 0)} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g2(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

f(Wi)
−1 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

)
− ϕ(Wi)

 g2(Yi, Vi)K

(
x−Xi

bn

)
= T2311 + T2312.

We denote T2312 = 1
nnM bdn

∑
i:Yi 6=CL,CH

∑n
j=1Cij . Using the definition of ϕ(Wi), the mean of Cij

is

E[Cij ]

= E

[
g2(Yi, Vi)

f(Wi)

{
Xj

1

bdn
K

(
Wi −Wj

bn

)
−
∫
x̃f(x̃,Wi)dx̃

}
K

(
x−Xi

bn

)]
= E

[{
E

[
Xj

1

bdn
K

(
Wi −Wj

bn

)∣∣∣∣Yi, Vi, Xi,Wi

]
−
∫
x̃f(x̃,Wi)dx̃

}
g2(Yi, Vi)

f(Wi)
K

(
x−Xi

bn

)]
.

Note that by the change of variables a = Wi−w
bn

and Assumption 2 (v),

E

[
Xj

1

bdn
K

(
Wi −Wj

bn

)∣∣∣∣Yi, Vi, Xi,Wi

]
=

∫
x̃f(x̃,Wi)dx̃+O(bsn),

and therefore E[T2312] = Op(b
s−d
n ). Similarly, we obtain E[C2

ij ] = Op(bn) by using Assumption

2 (ii), (v), and (vi), which implies V ar(T2312) = Op(n
−2b−d+1

n ). Combining these results, we

obtain T2312 = op((nb
d+2
n )−1/2).
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For T2311, an expansion of τ(f̂(Wi), hn) around f̂(Wi) = f(Wi) yields

T2311

=
1

nMbdn

∑
i:Yi 6=CL,CH

{τ(f(Wi), hn)− τ(f(Wi), 0)} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

{τ ′(f(Wi), hn)
{
f̂(Wi)− f(Wi)

} 1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)

+
1

nMbdn

∑
i:Yi 6=CL,CH

Op
(

max
1≤i≤n

|f̂(Wi)− f(Wi)|2
)

1

nbdn

n∑
j=1

XjK

(
Wi −Wj

bn

) g(Yi, Vi)K

(
x−Xi

bn

)
≡ T23111 + T23112 + T23113.

By applying the uniform convergence result of Andrews (1995, Theorem 1), we obtain max1≤i≤n |f̂(Wi)−

f(Wi)| = op(n
−1/4), which implies T23113 = op(n

−1/2). For T23111, using two change of variable

arguments, Taylor expansions, the Cauchy-Scwharz inequality, and noting that {τ(f(w), hn)f(w)−

1} is bounded, we can write the mean of T23111 as

E[T23111] = E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)} 1

bdn
XjK

(
Wi −Wj

bn

)
1

bdn
g2(Yi, Vi)K

(
x−Xi

bn

)]
= E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)}ϕ(Wi)f(Wi)

1

bdn
g2(Yi, Vi)K

(
x−Xi

bn

)]
+O(bsn)

=

∫
I{f(w) < 2hn}{τ(f(w), hn)f(w)− 1}ϕ(w)E[g2(y, v)|w, x]f(w, x)dw +O(bsn)

≤

√∫
I{f(w) < 2hn}f(w, x)dw

√∫
|ϕ(w)E[g2(y, v)|w, x]|2f(w, x)dw +O(bsn),

where
∫
|ϕ(w)E[g2(y, v)|w, x]|2f(w, x)dw <∞ by Assumption 2 (ii). Thus

√
nbd+2

n E[T23111]→ 0

by Assumption 2 (vi). Using similar arguments, we have

E[T 2
23111]

=
1

nnM
E

[
{τ(f(Wi), hn)− τ(f(Wi), 0)}2 1

b2dn
X2
jK

(
Wi −Wj

bn

)2 1

b2dn
g2(Yi, Vi)

2K

(
x−Xi

bn

)2
]

≤

√∫
I{f(w) < 2hn}f(w, x)dw

√∫
|E[g2(y, v)2|w, x]|2f(w, x)dwO(n−2b−2d+1

n ),

which implies
√
nbd+2

n V ar(T23111)→ 0. Combining these results, we obtain
√
nbd+2

n T23111
p→ 0.

For T23112, a similar argument to T2312 implies that T23112 = op((nb
d+2
n )−1/2).
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For T22, it holds

T22 =

∫
v

{∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

}
OfM (x, v){τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

≤ C sup
x,v

∣∣∣∣∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

∣∣∣∣ sup
x,v
|τ(f̂M (x, v), hn)− τ(fM (x, v), 0)|

= op(n
−1/2),

where the last equality follows from

sup
x,v

∣∣∣∣∫
y
yf̂M (y, x, v)dy −

∫
y
yfM (y, x, v)dy

∣∣∣∣ = Op(n
−1/2b−2d

n ),

sup
x,v

∣∣∣τ(f̂M (x, v), hn)− τ(fM (x, v), 0)
∣∣∣ = Op(n

−1/2b−2d
n ),

again, using Andrews (1995, Theorem 1). Thus we obtain
√
nbd+2

n T22
p→ 0. Similarly, we can

show that
√
nbd+2

n T21
p→ 0. Combining these results, we obtain

√
nbd+2

n T2
p→ 0. By a similar

approach to T2, we can show that
√
nbd+2

n T4
p→ 0. For T3, following a similar argument to T22

and T231,

T3 =

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− OfM (x, v)}{τ(f̂M (x, v), hn)− τ(fM (x, v), 0)}dv

+

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̂M (x, v)− Of̃M (x, v)}fM (x, v)−1dv

+

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̃M (x, v)− OfM (x, v)}fM (x, v)−1dv

=

∫
v

{∫
y
yfM (y, x, v)dy

}
{Of̃M (x, v)− OfM (x, v)}fM (x, v)−1dv + op((nb

d+2
n )−1/2).

For T1, again in a similar way to T231, we can show

T1 =

∫
y
y{Of̂M (y, x)− Of̃M (y, x)}dy +

∫
y
y{Of̃M (y, x)− OfM (y, x)}dy

=

∫
y
y{Of̃M (y, x)− OfM (y, x)}dy + op((nb

d+2
n )−1/2).

Combining these results, the conclusion follows.

By repeating these steps, we can obtain the asymptotic linear forms for ζ̂(x), η̂(x), and θ̂(x)

(the proofs are omitted).
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Lemma 4. Under Assumption 2,

ζ̂(x)− ζ(x) =
1

nMb
d+1
n

∑
i:Yi 6=CL,CH

mM (x, Vi)OK

(
x−Xi

bn

)

− 1

nMb
d+1
n

n∑
i=1

mM (x, Vi)GM (x, Vi)OK

(
x−Xi

bn

)

+

∫
v
mM (x, v)

fM (x, v)

f(x, v)
Of(x, v)dv −

∫
v
mM (x, v)OfM (x, v)dv + op((nb

d+2
n )−1/2),

η̂(x)− η(x) =
1

nMb
d+1
n

∑
i:Yi=CH

OK

(
x−Xi

bn

)
− 1

nMb
d+1
n

n∑
i=1

GH(x, Vi)OK

(
x−Xi

bn

)

+
GH
GM

∫
v

fH(x, v)

f(x, v)
Of(x, v)dv − GH

GM

∫
v
OfH(x, v)dv + op((nb

d+2
n )−1/2),

θ̂(x)− θ(x) =
1

nMb
d+1
n

∑
i:Yi=CL

OK

(
x−Xi

bn

)
− 1

nMb
d+1
n

n∑
i=1

GL(x, Vi)OK

(
x−Xi

bn

)

+
GL
GM

∫
v

fL(x, v)

f(x, v)
Of(x, v)dv − GL

GM

∫
v
OfL(x, v)dy + op((nb

d+2
n )−1/2).

It remains to derive the asymptotic variance for our estimator. By Lemma 3, the asymptotic

variance of ξ̂(x) is

V ar

(√
nbd+2

n {ξ̂(x)− ξ(x)}
)
→ lim

n→∞

n2

n2
Mb

d
n

E

[
I{Yi 6= CL, CH}(Yi −mM (x, Vi))

2OK

(
x−Xi

bn

)2
]

= G−2
M

∫
v

V arM (Y |x, v)

GM (x, v)
f(x, v)dv

∫
a
OK(a)2da,

where the equality follows from the change of variables. Also, by Lemma 4,

V ar

(√
nbd+2

n {ζ̂(x)− ζ(x)}
)
→ G−2

M

∫
v
mM (x, v)2GM (x, v)(1−GM (x, v))f(x, v)dv

∫
a
OK(a)2da,

V ar

(√
nbd+2

n {η̂(x)− η(x)}
)
→ G−2

M

∫
v
GH(x, v)(1−GH(x, v))f(x, v)dv

∫
a
OK(a)2da,

V ar

(√
nbd+2

n {θ̂(x)− θ(x)}
)
→ G−2

M

∫
v
GL(x, v)(1−GL(x, v))f(x, v)dv

∫
a
OK(a)2da.
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For the asymptotic covariance terms, we have

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {ζ̂(x)− ζ(x)}
)
→ 0,

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {η̂(x)− η(x)}
)
→ 0,

Cov

(√
nbd+2

n {ξ̂(x)− ξ(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)
→ 0.

Also note that

Cov

(√
nbd+2

n {ζ̂(x)− ζ(x)},
√
nbd+2

n {η̂(x)− η(x)}
)

= lim
n→∞

n2

n2
Mb

d
n



E

[
mM (x, Vi)GM (x, Vi)GH(x, Vi)OK

(
x−Xi
bn

)2
]

−E
[
I{Yi = CH}mM (x, Vi)GM (x, Vi)OK

(
x−Xi
bn

)2
]

−E
[
I{Yi 6= CH , CL}mM (x, Vi)GH(x, Vi)OK

(
x−Xi
bn

)2
]


= −G−2

M

∫
v
mM (x, v)GM (x, v)GH(x, v)f(x, v)dv

∫
a
OK(a)2da.

Similarly,

Cov

(√
nbd+2

n {ζ̂(x)− ζ(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)

→ −G−2
M

∫
v
mM (x, v)GM (x, v)GL(x, v)f(x, v)dv

∫
a
OK(a)2da,

and

Cov

(√
nbd+2

n {η̂(x)− η(x)},
√
nbd+2

n {θ̂(x)− θ(x)}
)

→ −G−2
M

∫
v
GL(x, v)GH(x, v)f(x, v)dv

∫
a
OK(a)2da.

Under Assumption 2, the proof is completed by applying a central limit theorem to the linear

form of (ξ̂(x), ζ̂(x), η̂(x), θ̂(x)) obtained in Lemmas 3 and 4.
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1.6. Appendix - Simulation results

Model 1 Y = 1 + 0.5X + 0.5XU + U , 58.5% uncensored

Value of x 1 2 3 4 5

True Value 0.799 0.752 0.709 0.657 0.601

NPE 0.735 0.678 0.623 0.619 0.666

SD (0.119) (0.119) (0.130) (0.155) (0.208)

NPE (Half Bandwidth) 0.781 0.754 0.675 0.634 0.611

SD (0.280) (0.316) (0.367) (0.446) (0.554)

No Endogeneity Control 1.086 1.231 0.808 0.553 0.194

SD (0.170) (0.251) (0.304) (0.341) (0.454)

No Censoring Control 0.392 0.529 0.509 0.414 0.341

SD (0.074) (0.088) (0.093) (0.104) (0.112)

Tobit 1.639 0.925 0.675 0.890 1.554

SD (0.152) (0.163) (0.109) (0.127) (0.182)
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Model 2 Y = X + 0.5XU + U , 60.4% uncensored

Value of x 1 2 3 4 5

True Value 1.399 1.252 1.154 1.052 0.949

NPE 1.336 1.119 0.986 1.051 1.024

SD (0.276) (0.234) (0.267) (0.340) (0.471)

NPE (Half Bandwidth) 1.415 1.264 1.083 1.015 0.892

SD (0.513) (0.500) (0.619) (0.756) (1.016)

No Endogeneity Control 1.667 1.695 1.180 0.913 0.522

SD (0.245) (0.319) (0.378) (0.477) (0.643)

No Censoring Control 0.496 0.809 0.765 0.611 0.489

SD (0.102) (0.114) (0.118) (0.124) (0.142)

Tobit 2.924 1.535 1.081 1.338 2.101

SD (0.285) (0.156) (0.120) (0.137) (0.174)

Model 3 Y = 2 + 1.5XU + U , 53.8% uncensored

Value of x 1 2 3 4 5

True Value 0.802 0.725 0.595 0.493 0.417

NPE 0.166 0.516 0.641 0.565 0.622

SD (0.121) (0.186) (0.252) (0.317) (0.441)

NPE (Half Bandwidth) 0.259 0.601 0.610 0.504 0.412

SD (0.309) (0.472) (0.689) (0.968) (1.234)

No Endogeneity Control 0.850 1.520 1.014 0.779 1.282

SD (0.180) (0.288) (0.382) (0.500) (0.680)

No Censoring Control 0.349 0.368 0.282 0.192 0.171

SD (0.072) (0.091) (0.108) (0.123) (0.138)

Tobit 0.597 0.830 0.768 0.930 1.873

SD (0.179) (0.136) (0.163) (0.215) (0.237)
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Model 4 Y = 1.5 +X + U , 79.5% uncensored

Value of x 1 2 3 4 5

True Value 1 1 1 1 1

NPE 1.024 0.984 0.939 0.721 0.448

SD (0.126) (0.134) (0.168) (0.202) (0.360)

NPE (Half Bandwidth) 1.091 0.990 1.016 0.866 0.477

SD (0.319) (0.365) (0.462) (0.589) (1.028)

No Endogeneity Control 1.221 1.442 1.033 0.286 -1.047

SD (0.123) (0.309) (0.360) (0.442) (0.696)

No Censoring Control 0.738 0.936 0.931 0.683 0.312

SD (0.069) (0.070) (0.070) (0.063) (0.086)

Tobit 1.350 1.115 1.039 1.116 1.352

SD (0.052) (0.050) (0.035) (0.050) (0.053)
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CHAPTER 2

Specification Testing for Errors-in-Variables Models

2.1. Introduction

As is the case with most decisions, the choice to employ nonparametric techniques over

parametric ones is not always obvious, and making the wrong decision can be costly. If we

are able to confirm that a parametric model is correctly specified, we can gain considerably by

using parametric estimators. Meanwhile, if we are not fully convinced of this, we should appeal

to nonparametric estimation. A popular solution to this problem of estimation choice involves

comparing the distance between some parametric and nonparametric estimator; this has been

studied in detail by Härdle and Mammen (1993). Other tests for the suitability of parametric

models have been studied by Azzalini, Bowman and Härdle (1989), Eubank and Spiegelman

(1990), Horowitz and Spokoiny (2001), and Fan and Huang (2001) among many others.

Measurement error is a problem that is rife in datasets from many disciplines. Examples from

biology, economics, geography, medicine, and physics are abundant (see, for example, Fuller,

1987, and Meister, 2009). Determining the validity of a parametric model becomes even more

important in the presence of measurement error because in this setting nonparametric estimators

have even slower convergence properties whilst in many cases parametric estimators retain their
√
n-consistency. However, when the data are contaminated by measurement error, conventional

specification tests have, in general, incorrect size and may also suffer from low power properties.

In this chapter, we propose a specification, or goodness-of-fit test, for (possibly nonlinear)

regression models with errors-in-variables by comparing the distance between the parametric and

nonparametric fits based on deconvolution techniques. We establish asymptotic properties of the

test statistic and propose a bootstrap critical value. As we discuss below, in contrast to existing

methods, our test allows nonlinear regression models and possesses desirable power properties.

In the enormous literature on specification testing, relatively little attention has been given

to the issue of measurement error despite its obvious need. Papers such as Zhu, Song and
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Cui (2003), Zhu and Cui (2005), and Cheng and Kukush (2004) propose χ2 statistics based on

moment conditions of observables implied from errors-in-variables regression models. However,

as is the case without measurement error, these tests are generally inconsistent for some fixed

alternatives. Song (2008) proposes a consistent specification test for linear errors-in-variables

regression models by comparing nonparametric and model-based estimators on the conditional

mean function of the dependent variable Y given the mismeasured observable covariatesW , that

is E[Y |W ]. As we clarify at the end of Section 2.2, this approach may not have sensible local

power for the original hypothesis on E[Y |X], where X is a vector of error-free unobservable

covariates. Hall and Ma (2007) propose a nonsmoothing specification test for regression models

with errors-in-variables which is able to detect local alternatives at the
√
n-rate. We propose

a smoothing specification test that complements Hall and Ma’s (2007) nonsmoothing approach

(see further discussion below).1

Consistent specification tests can be broadly split into those that use a nonparametric estima-

tor (called smoothing tests) and those that do not (called nonsmoothing or integral-transform

tests). In contrast to Hall and Ma (2007) who adopt the nonsmoothing approach, we pro-

pose a kernel-based smoothing test for the goodness-of-fit of parametric regression models with

errors-in-variables. There are two important features of our test. First, our smoothing test is not

restricted to polynomial models; allowing testing of general nonlinear regression models. Second,

analogous to the literature on conventional specification testing, our smoothing test complements

Hall and Ma’s (2007) test (if applied to polynomial models) due to its distinct power properties.

Rosenblatt (1975) explains that although local power properties of nonsmoothing tests suggest

they are more powerful than smoothing tests, ‘there are other types of local alternatives for

which tests based on density estimates are more powerful’. Fan and Li (2000) show that in

the non-measurement error case, smoothing tests are generally more powerful for high frequency

alternatives and nonsmoothing tests are more powerful for low frequency alternatives. Thus,

1Other papers that study specification testing under measurement error includes Butucea (2007), Holzmann and
Boysen (2006), Holzmann, Bissantz and Munk (2007), and Ma et al. (2011) (for testing probability densities),
Koul and Song (2009, 2010) (for Berkson measurement error models), and Song (2009) and Xu and Zhu (2015)
(for errors-in-variables models with validation data).
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smoothing tests ‘should be viewed as complements to, rather than substitutes for, [nonsmooth-

ing tests].’ Our simulation results suggest that this phenomenon extends to errors-in-variables

models.

In contrast to the above papers and our own, Ma et al. (2011) moves away from Wald-type

tests where restricted and unrestricted estimates are compared. They propose a local test that

is more analogous to the score test where only the model under the null hypothesis must be

estimated. They extend this idea to an omnibus test that is able to detect departures from

the null in virtually all directions using a system of different basis functions with which to test

against.

To determine critical values for our smoothing test, we propose a bootstrap procedure. Mea-

surement error can cause difficulties in applying conventional bootstrap procedures because the

true regressor, regression error, and measurement error are all unobserved. Moreover, in order to

estimate the distributions of test statistics, deconvolution techniques are typically required which

converge at a much slower rate than
√
n. Hall and Ma (2007) discuss this issue and note, ‘the

bootstrap is seldom used in the context of errors-in-variables’. They outline a procedure which

involves estimating the distribution of the unobservable regressor using a kernel deconvolution

estimator, and obtain bootstrap counterparts for the regression error using a wild bootstrap

method. We propose a much simpler procedure involving a perturbation of each summand of

our test statistic.

This chapter is organized as follows. Section 2.2 describes the setup in detail and introduces

the test statistic and its motivation. Section 2.3 outlines the main asymptotic properties of the

test statistic and discusses how to implement the test in the case where the distribution of the

measurement error is unknown but repeated measurements on the contaminated covariates are

available. Section 2.4 analyses the small sample properties of the test through a Monte Carlo

experiment and Section 2.5 applies the test to the specification of Engel curves. All mathematical

proofs are deferred to Appendix 2.6.
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2.2. Setup and Test Statistic

Consider the nonparametric regression model

Y = m(X) + U with E[U |X] = 0,

where Y ∈ R is a response variable, X ∈ Rd is a vector of covariates, and U ∈ R is the error

term. In this chapter, we focus on the situation where X is not directly observable due to

the measurement mechanism or nature of the environment. Instead a vector of variables W is

observed through

W = X + ε,

where ε ∈ Rd is a vector of measurement errors that has a known density fε(·) and is independent

of (Y,X). The case of unknown density fε(·) will be discussed in Section 2.3.1. We are interested

in specification, or goodness-of-fit, testing of a parametric functional form of the regression

function m(·). More precisely, for a parametric model mθ(·), we wish to test the hypothesis

H0 : m(x) = mθ(x) for almost every x ∈ Rd,

H1 : H0 is false,

based on the random sample {Yi,Wi}ni=1 of observables (whilst Xi is unobservable).

To test the null H0, we adapt the approach of Härdle and Mammen (1993), which compares

nonparametric and parametric regression fits, to the errors-in-variables model. As a nonpara-

metric estimator of m(·), we use the deconvolution kernel estimator (see, for example, Fan and

Truong, 1993, and Meister, 2009, for a review)

m̂(x) =

∑n
i=1 YiKb(x−Wi)∑n
i=1Kb(x−Wi)

,

where

Kb(a) =
1

(2π)d

∫
e−it·aK

ft(tb)

f ft
ε (t)

dt,
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is the so-called deconvolution kernel, i =
√
−1, b is a bandwidth, and K ft(·) and f ft

ε (·) are the

Fourier transforms of a kernel function K(·) and the measurement error density fε(·), respec-

tively. 2 K ft(·) acts as a regularisation factor to deal with the ill-posed inverse problem that

measurement error causes. Note that throughout this thesis, we denote the Fourier transform of

any function, h(x), as hft(t) =
∫
eit·xh(x)dx. Also, throughout this chapter we assume f ft

ε (t) 6= 0

for all t ∈ Rd and K ft(·) has compact support so that the deconvolution kernel is well-defined.

On the other hand, if one imposes a parametric functional form mθ(·) on the regression function,

several methods are available to estimate θ under certain regularity conditions. For example,

based on Butucea and Taupin (2008), we can estimate the parameter θ by the (weighted) least

squares regression of Y on the implied conditional mean function E[mθ(X)|W ]. In this chapter,

we do not specify the construction of the estimator θ̂ for θ except for a mild assumption on the

convergence rate (see Section 2.3 for details).

In order to construct a test statistic for H0, as in Härdle and Mammen (1993), we compare

the nonparametric and parametric estimators of the regression function based on the L2-distance,

Dn = n

∫ ∣∣∣m̂(x)f̂(x)− [Kb ∗mθ̂f̂ ](x)
∣∣∣2 dx,

where | · | is the Euclidean norm, f̂(x) = 1
n

∑n
i=1Kb(x−Wi) is the deconvolution kernel density

estimator forX, Kb(x) = 1
bd
K
(
x
b

)
, and [Kb∗mθ̂f̂ ](x) =

∫
Kb(x−a)mθ̂(a)f̂(a)da is a convolution.

The convolution by the (original) kernel function Kb(·) plays an analogous role to the smoothing

operator in Härdle and Mammen (1993) and removes the bias term from the nonparametric

estimator. Note that the Fourier transform of a convolution is given by the product of the

Fourier transforms. Thus by Parseval’s identity, the distance Dn is alternatively written as

Dn =
n

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

∣∣∣∣∣ 1n
n∑
i=1

Yie
it·Wi − [mθ̂f̂ ]ft(t)f ft

ε (t)

∣∣∣∣∣
2

dt.

Based on this expression, the distance Dn can be interpreted as a contrast of the nonparamet-

ric and model-based estimators for E[Y eit·W ]. To define the test statistic for H0, we further

2To simplify the exposition, we concentrate on the case where all elements of X are mismeasured. If X contains
both correctly measured and mismeasured covariates (denoted by X1 and X2, respectively), then the kernel esti-
mator is modified as m̂(x) =

∑n
i=1 YiK1b(x1−X1i)Kb(x2−Wi)∑n
i=1K1b(x1−X1i)Kb(x2−Wi)

, where K1b(a) =
1

bd1
K1

(
a
b

)
and K1(·) is a conventional

kernel function for X1, and analogous results can be established.
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decompose Dn as

Dn =
1

n

n∑
i=1

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

|ζi(t)|2dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ζi(t)ζj(t)dt

≡ Bn + Tn, (9)

where ζi(t) is the complex conjugate of ζi(t) ≡ Yie
it·Wi −

∫
eis·Wimft

θ̂
(t − s)K

ft(sb)
f ftε (s)

dsf ft
ε (t). The

second term Tn plays a dominant role in the limiting behavior of Dn and the first term Bn is

considered a bias term. That is to say, following similar arguments to those presented in Appendix

2.6, the appropriately normalised Bn is asymptotically negligible. Therefore, we neglect Bn and

employ Tn as our test statistic for H0. In the next section, we study the asymptotic behaviour

of Tn.

We close this section by a remark on an alternative testing approach. To test the null

hypothesis H0, one may consider testing some implication of H0 on the conditional mean E[Y |W ]

of observables, i.e., consider H ′0 : fW (w)E[Y
∣∣W = w] =

∫
mθ(w − u)fX(w − u)fε(u)du for

almost every w, and test H′0 by a conventional method, such as Härdle and Mammen (1993).

This approach was employed by Song (2008). To clarify the rationale of our testing approach

based on Tn against the conventional approach for H′0, consider the following local alternative

hypothesis for the regression function

mn(x) = mθ(x) + 2an cos(Anx)

(
sinx

x

)
,

where an → 0 and An → ∞ as n → ∞. In this case, mn(·) converges to mθ(·) at the rate of

an under the L2-norm, and the test based on Tn will have non-trivial power for a certain rate of

an. On the other hand, local power of the test based on the implied null H′0 is determined by

the L2-norm of the convolution {(mn−mθ)fX} ∗ fε. By Parseval’s identity and the Fourier shift

formula, we have

‖{(mn −mθ)fX} ∗ fε‖2 = a2
n

∥∥∥{qft(· −An) + qft(·+An)}f ft
ε

∥∥∥2
,

where q(x) =
(

sinx
x

)
fX(x). For example, if fε(·) is Laplace with f ft

ε (t) = 1/(1 + t2), then we

can see that the L2-norm ‖{(mn −mθ)fX} ∗ fε‖ is of order an/A2
n. By letting An diverge at an

46



arbitrarily fast rate, the rate an/A2
n becomes arbitrarily fast so that any conventional test for

H′0 fails to detect deviations from this null. Therefore, as far as the researcher is concerned with

testing the functional form of the regression function m(·), we argue that our statistic Tn tests

directly the null hypothesis H0 and possesses desirable local power properties compared to the

conventional tests on H′0.

2.3. Asymptotic Properties

In this section, we present asymptotic properties of the test statistic Tn defined in (9). We

first derive the limiting distribution of Tn under the null hypothesis H0. To this end, we impose

the following assumptions.

Assumption 3.

(i): {Yi, Xi, εi}ni=1 are i.i.d. ε is independent of (Y,X) and has a known density fε(·).

(ii): f ft,mft, ∂∂θ (mft
θ ) ∈ L1(Rd) ∩ L2(Rd).

(iii): K ft(t) is compactly supported on [−1, 1]d, is symmetric around zero (i.e., K ft(t) =

K ft(−t)), and is bounded.

(iv): As n→∞, it holds that b→ 0 and nbd →∞.

Assumption 3 (i) is common in the literature of classical measurement error. Extensions to the

case of unknown fε(·) will be discussed in Section 2.3.1. Assumption 3 (ii) contains boundedness

conditions on the Fourier transforms of the density f(·) of X and the regression function m(·),

as well as the derivative, with respect to θ, of the Fourier transform of mθ(·). Assumption 3 (iii)

and (iv) contain standard conditions on the kernel function K(·) and bandwidth b, respectively.

A popular choice for the kernel function in the context of deconvolution methods is the sinc

kernel K(x) = sinx
πx whose Fourier transform is equal to K ft(t) = I{−1 ≤ t ≤ 1}.

For additional assumptions, we consider two cases characterised by bounds on the decay

rate of the tail of the characteristic function of the measurement error, f ft
ε (·). Let σ2(x) =

E[U2|X = x] be the conditional variance of the error term. The first case, known as ordinary

smooth measurement error (or, in the statistics literature, the mildly ill-posed case), contains

the following assumptions.
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Assumption 4.

(i): f ft
ε (t) 6= 0 for all t ∈ Rd and there exist positive constants c, C, and α such that

c|t|−dα ≤ |f ft
ε (t)| ≤ C|t|−dα,

as |t| → ∞.

(ii):
∫
|[mf ]ft(t)|2dt <∞,

∫
|[m2f ]ft(t)|2dt <∞, and

∫
|[σ2f ]ft(t)|2dt <∞.

(iii): θ̂ − θ = op(n
−1/2b−d( 1

4
+α)) under H0.

Assumption 4 (i) requires that the Fourier transform f ft
ε (·) decays in some finite power. A

popular example of an ordinary smooth density is the Laplace density. Assumption 4 (ii) contains

boundedness conditions on the Fourier transforms of the density f(·) of X, regression function

m(·), and conditional error variance σ2(·). Assumption 4 (iii) is on the convergence rate of the

estimator θ̂ for θ when the parametric model is correctly specified. Note that this assumption is

satisfied if θ̂ is
√
n-consistent for θ. When the regression model under the null hypothesis is linear

(i.e., mθ(x) = x′θ), we can employ the methods in, for example Gleser (1981), Bickel and Ritov

(1987), or van der Vaart (1988). For nonlinear regression, we may choose the estimators by,

for example, Taupin (2001) or Butucea and Taupin (2008) under certain regularity conditions.

It is interesting to note that in contrast to the no measurement error case as in Härdle and

Mammen (1993), the limiting distribution of the estimation error
√
n(θ̂ − θ) does not influence

the first-order asymptotic properties of the test statistic Tn. This is because the measurement

error slows down the convergence rate of the dominant term of Tn.

For the second case, known as supersmooth measurement error (or, in the statistics literature,

the severely ill-posed case), we concentrate on the case of scalar X (i.e., d = 1), and impose the

following assumptions.

48



Assumption 5. Suppose d = 1.

(i): f ft
ε (t) 6= 0 for all t ∈ R and there exist positive constants Cε, µ, γ0, and γ > 1 such

that

f ft
ε (t) ∼ Cε|t|γ0e−|t|

γ/µ,

as |t| → ∞. Also, there exist constants A > 0 and β ≥ 0 such that

K ft(1− t) = Atβ + o(tβ),

as t→ 0.

(ii): E[Y 4] <∞, E[W 4] <∞,
∫
|t|2β

∣∣ ∂
∂θm

ft
θ (t)

∣∣2 dt <∞, and
∫
|t|2β|mft(t)|2dt <∞.

(iii): θ̂ − θ = op(n
−1/2b(γ−1)/2+γβ+γ0e1/(µbγ)).

Assumption 5 (i) is adopted from Holzmann and Boysen (2006). This assumption requires

that the Fourier transform f ft
ε (·) decays at an exponential rate. An example of a supersmooth

density satisfying this assumption is the normal density, where Cε = 1, γ0 = 0, γ = 2, and

µ = 2. However, due to the requirement γ > 1, the Cauchy density is excluded. As is clarified

in the proof of Theorem 3 (iii) below, the condition γ > 1 is imposed to make a bias term

negligible. Assumption 5 (i) also contains an additional condition on the kernel function. For

example, the sinc kernel K(x) = sinx
πx satisfies this assumption with A = 1 and β = 0. Similarly

to the ordinary smooth case, Assumption 5 (ii) contains boundedness conditions on some Fourier

transforms, and Assumption 5 (iii) regards the convergence rate of the estimator θ̂. Again, the
√
n-consistency of θ̂ is sufficient.

Under these assumptions, the null distribution of Tn is obtained as follows.
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Theorem 3.

(i): Suppose that Assumptions 3 and 4 hold true. Then under H0,

C
−1/2
V,b Tn

d→ N

(
0,

2

(2π)2d

)
,

where CV,b = O(b−d(1+4α)) is defined in (11) in Appendix 2.6.

(ii): Suppose that Assumptions 3 and 5 hold true with d = 1 and ε ∼ N(0, 1). Then under

H0,

ϕ(b)Tn
d→
∞∑
k=1

λk(Z
2
k − 1),

where ϕ(b) = (2π)22β

b1+4βe1/b
2
A2Γ(1+2β)

with the gamma function Γ, {Zk} is an independent

sequence of standard normal random variables and {λk} is defined in (21) in Appendix

2.6.

(iii): Suppose that Assumptions 3 and 5 hold true with d = 1. Then under H0,

ϕ(b)Tn
d→
∞∑
k=1

λk(Z
2
k − 1),

where ϕ(b) = (2π)22βγ1+2βC2
ε

µ1+2βbγ−1+2γβ+2γ0e2/(µb
γ )A2Γ(1+2β)

with the gamma function Γ, {Zk} is an

independent sequence of standard normal random variables and {λk} is defined in (21)

in Appendix 2.6.

Theorem 3 (i) says that for the ordinary smooth case, the test statistic Tn is asymptotically

normal. The normalising term CV,b comes from the variance of the U-statistic of the leading

term in Tn. Note that the convergence rate C−1/2
V,b = O

(
bd( 1

2
+2α)

)
of the statistic Tn is slower

than the rate O(bd/2) of Härdle and Mammen’s (1993) statistic for the no measurement error

case. As the dimension d of X or the decay rate α of f ft
ε (·) increases, the convergence rate of Tn

becomes slower.

Theorem 3 (ii) focuses on the case of normal measurement error, and shows that the test

statistic converges to a weighted sum of chi-squared random variables. The normalising term ϕ(b)

is characterised by the shape of the kernel function specified in Assumption 5 (i). For example, if

we employ the sinc kernel (i.e., A = 1 and β = 0), the normalisation becomes ϕ(b) = 2π

be1/b
2
Γ(1)

. In

this supersmooth case, the non-normal limiting distribution emerges because the leading term of
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the statistic Tn is characterised by a degenerate U-statistic with a fixed kernel (see, for example,

Serfling, 1980, Theorem 5.5.2). In contrast, for the ordinary smooth case in Part (i) of this

theorem, the leading term is characterised by a U-statistic with a varying kernel so that the

central limit theorem in Hall (1984) applies. An analogous result is obtained in Holzmann and

Boysen (2006) for the integrated squared error of the deconvolution density estimator.

Theorem 3 (iii) presents the limiting null distribution of the test statistic for the case of

general supersmooth measurement error. In this case, after normalisation by φ(b), the test

statistic obeys the same limiting distribution as the normal case in Part (ii) of this theorem.

Thus, similar comments to Part (ii) apply. The normalisation term φ(b) is characterised by the

shapes of the kernel function and the Fourier transform f ft
ε (t) of the measurement error specified

in Assumption 5 (i).

Although Theorem 3 (ii) and (iii) focus on the case of scalar ε, our technical argument may be

extended to the vector case. For example, if we assume that the elements of the d-dimensional

vector ε are mutually independent, then the Fourier transform fε(·) becomes the product of

the Fourier transforms of the marginals. We may impose Assumption 5 (i) for each marginal

density. To keep things simple we can choose the multivariate kernel function to be a product

kernel. With these assumptions in place, the deconvolution kernel analogously becomes a product

deconvolution kernel. The proofs of the theorem remain very similar using inner products and

terms defined as products over the d dimensions.

Theorem 3 can be applied to obtain critical values for testing the null H0 based on Tn.

Alternatively, we can compute the critical values by bootstrap methods. A bootstrap counterpart

of Tn is given by perturbing each summand in Tn as follows

T ∗n =
1

n

∑
i 6=j

ν∗i ν
∗
j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ζi(t)ζj(t)dt, (10)

where {ν∗i }ni=1 is an i.i.d. sequence which is mean zero with unit variance and independent of

{Yi,Wi}ni=1. The asymptotic validity of this bootstrap procedure follows by a similar argument

to Delgado, Dominguez and Lavergne (2006, Theorem 6).
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In order to investigate the power properties of the test based on Tn, we consider a local

alternative hypothesis of the form

H1n : m(x) = mθ(x) + cn∆(x), for almost every x ∈ Rd

where cn → 0 and ∆(x) is a non-zero function such that the limits limn→∞∆n and limn→∞ Υn

defined in (23) and (24), respectively, in Appendix 2.6 exist. The local power properties are

obtained as follows.

Theorem 4.

(i): Suppose that Assumptions 3 and 4 hold true. Then under H1n with cn = n−1/2b−d( 1
4

+α),

C
−1/2
V,b Tn

d→ N

(
lim
n→∞

∆n,
2

(2π)2d

)
.

(ii): Suppose that Assumptions 3 and 5 hold true with d = 1 and ε ∼ N(0, 1). Then under

H1n with cn = n−1/2b1/2+2βe1/(2b2),

ϕ(b)Tn
d→ lim
n→∞

Υn +

∞∑
k=1

λk(Z
2
k − 1).

(iii): Suppose that Assumptions 3 and 5 hold true with d = 1. Then under H1n with

cn = b(λ−1)/2+λβ+λ0e1/(µbλ),

ϕ(b)Tn
d→ lim
n→∞

Υn +
∞∑
k=1

λk(Z
2
k − 1),

Theorem 4 (i) says that under the ordinary smooth case, our test has non-trivial power against

local alternatives drifting with the rate of cn = n−1/2b−d( 1
4

+α). This is a nonparametric rate;

the test based on Tn becomes less powerful as the dimension d of X or the decay rate α of f ft
ε (·)

increases. For the non-measurement error case, Härdle and Mammen’s (1993) statistic has non-

trivial power for local alternatives with the rate of n−1/2b−d/4. Therefore, the test is less powerful

as a result of the measurement error. Theorem 4 (ii) and (iii) present local power properties of

our test for the normal and general supersmooth measurement error cases, respectively. Except

for the normalising constants, the test statistic has the same limiting distribution. Also, for

cn → 0, the bandwidth b should decay at a log rate. As an example, consider the case of
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ε ∼ N(0, 1). In this case, if we choose b ∼ (log n)−1/2, then the rate for the local alternative will

be cn ∼ (log n)−1/4−β . Therefore, for the supersmooth case, the rate for the local alternative is

typically a log rate.

2.3.1. Case of Unknown fε(·) . In practical applications, it is sometimes unrealistic to

assume that the density of the measurement error, fε(·), is known to the researcher. In the

literature on nonparametric deconvolution several estimation methods for fε(·) are available,

these are typically based on additional data (see, for example, Section 2.6 of Meister (2009) for

a review). Although the analysis of the asymptotic properties is different, we can modify the

test statistic Tn by inserting the estimated Fourier transform of the measurement error density,

f̂ ft
ε (·).

For example, suppose the researcher has access to repeated measurements on X in the form

of W = X + ε and W r = X + εr, where ε and εr are identically distributed and (X, ε, εr)

are mutually independent, see Delaigle, Hall and Meister (2008) for a list of examples of such

repeated measurements. If we further assume that the Fourier transform f ft
ε (·) is real-valued

(that is the density fε(·) is symmetric around zero), then we can employ the estimator proposed

by Delaigle, Hall and Meister (2008)

f̂ ft
ε (t) =

∣∣∣∣∣ 1n
n∑
i=1

cos{t(Wi −W r
i )}

∣∣∣∣∣
1/2

.

Delaigle, Hall and Meister (2008) studied the asymptotic properties of the deconvolution den-

sity and regression estimators using f̂ ft
ε (·) and found conditions to guarantee that the difference

between the estimators with known fε(·) and those with unknown fε(·) are asymptotically neg-

ligible. Under similar conditions, we can expect that the asymptotic distributions of the test

statistic Tn obtained above remain unchanged when we replace f ft
ε (·) with f̂ ft

ε (·). If the re-

searcher wishes to remove the assumption that f ft
ε (·) is real-valued, it may be possible to employ

the estimator by Li and Vuong (1998) based on Kotlarski’s identity.
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2.4. Simulation

We evaluate the small sample performance of our test through a Monte Carlo experiment. To

begin, we consider the same data generating process as Hall and Ma (2007) for ease of comparison.

We also compare our test to Song (2008). Recall that although Song’s (2008) and Hall and Ma’s

(2007) tests are confined to polynomial regression models, our test allows nonlinear models.

Specifically we take the true unobservable regressor {Xi}ni=1 to be distributed as uniformly on

[−3, 4] and Yi = 1+1.5Xi+C cos(Xi)+Ui, where Ui ∼ N(0, 1) and C is a constant to be varied.

The contaminated regressor is given by Wi = Xi + εi. We consider two distributions for εi to be

drawn from. For the ordinary smooth case, we use the Laplace distribution with variance of 0.5.

For the supersmooth case, we use N(0, 1). We use the following kernel for our simulations (Fan,

1992)

K(x) =
48 cos(x)

πx4

(
1− 15

x2

)
− 144 sin(x)

πx5

(
2− 5

x2

)
.

We report results for a range of sample sizes, bandwidths, and nominal levels of the test. Specif-

ically, for the ordinary and supersmooth cases, we choose the bandwidths according to the rules

of thumb b = c
(

5σ4

n

)1/9
and b = c

(
2σ2

log(n)

)1/2
, respectively, where σ is the standard deviation of

the measurement error and c varies in the grid {0.01, 0.05, 0.1, 0.5, 1, 1.5} so we can analyse the

sensitivity of our test to the bandwidth. For the parametric estimator we use the polynomial

estimator of degree 2 proposed by Cheng and Schneeweiss (1998) so as to remain consistent with

the experiment conducted by Hall and Ma (2007). For the test of Song (2008) we use the same

kernel as for our test and choose bandwidths by cross-validation (there was little dependence on

the bandwidths so we report only for these cross-validated values). All results are based on 1000

Monte Carlo replications.

Table 1 takes C = 0 so as to asses the level accuracy of our test. To study the power

properties of the test, we take C = 1.5 in Table 2. The critical values for all tests are based

on 99 replications of the bootstrap procedure (results were very similar for 199 replications and

hence are not reported). The perturbation random variable ν∗ for the bootstrap is drawn from

the Rademacher distribution.

Finally, to highlight the power advantages of our test under high frequency alternatives we

consider the slightly altered data generating process Yi = 1 + 1.5Xi + cos(πδXi) +Ui, where δ is
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a constant to be varied; larger values corresponding to higher frequency alternatives. All other

parameter settings remain unchanged. Results for these experiments are shown in Tables 3-5.

The columns labeled ‘HM’ correspond to the power of the test proposed in Hall and Ma (2007)

and the columns labeled ’S’ correspond to the power of the test proposed by Song (2008).

Table 1: Y = 1 + 1.5X + U

Ordinary Smooth Bandwidth

n Level 0.01 0.05 0.1 0.5 1 1.5

50

1% 3.0% 2.6% 2.3% 3.1% 2.4% 0.6%

5% 7.6% 7.1% 6.3% 6.5% 6.4% 2.4%

10% 12.7% 11.9% 10.7% 9.8% 10.1% 5.7%

100

1% 2.2% 2.0% 2.8% 2.3% 2.2% 0.6%

5% 4.9% 5.6% 6.8% 6.3% 6.9% 3.4%

10% 11.6% 10.5% 11.9% 12.4% 11.1% 7.3%

Super Smooth

50

1% 2.1% 1.9% 1.3% 1.4% 1.9% 1.2%

5% 5.3% 5.2% 4.9% 5.4% 5.7% 4.3%

10% 11.1% 9.3% 9.6% 10.8% 10.4% 7.7%

100

1% 2.9% 2.4% 2.7% 2.0% 1.7% 1.9%

5% 6.9% 6.5% 6.0% 6.6% 5.3% 5.8%

10% 12.3% 10.7% 10.3% 10.6% 10.8% 10.5%
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Table 2: Y = 1 + 1.5X + 1.5 cos(X) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

50

1% 43.2% 33.7% 26.5% 40.6% 81.8% 63.3% 71.0% 86.1%

5% 63.1% 52.7% 45.5% 61.6% 92.1% 78.3% 76.9% 92.8%

10% 73.5% 63.1% 57.8% 72.2% 94.8% 86.2% 85.3% 95.3%

100

1% 67.4% 50.1% 38.5% 66.5% 99.3% 97.6% 95.8% 88.6%

5% 84.2% 71.3% 61.4% 85.1% 99.8% 99.2% 97.1% 99.1%

10% 91.0% 80.1% 73.0% 92.3% 99.9% 99.9% 99.1% 99.9%

Super Smooth

50

1% 28.1% 22.3% 19.7% 12.2% 24.5% 36.1% 66.2% 67.2%

5% 46.6% 38.7% 33.5% 24.1% 44.5% 55.2% 72.0% 84.2%

10% 57.4% 48.4% 43.2% 34.9% 56.9% 67.3% 80.4% 88.6%

100

1% 54.0% 35.9% 23.5% 15.4% 47.2% 69.0% 94.3% 89.3%

5% 70.7% 52.5% 41.5% 28.8% 63.8% 84.6% 95.9% 94.5%

10% 78.1% 64.5% 53.9% 42.1% 73.7% 89.8% 97.7|% 97.8%
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Table 3: Y = 1 + 1.5X + cos(πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100

1% 21.3% 15.9% 13.7% 12.9% 6.6% 2.4% 13.2% 8.9%

5% 40.3% 30.3% 26.5% 27.5% 17.6% 6.8% 27.5% 19.6%

10% 51.4% 45.0% 38.2% 38.0% 26.5% 13.6% 38.7% 26.8%

200

1% 35.6% 19.7% 12.7% 19.4% 11.0% 2.6% 20.3% 14.4%

5% 54.5% 37.2% 27.9% 36.2% 22.2% 8.7% 37.4% 24.4%

10% 66.4% 50.0% 39.8% 49.0% 32.2% 17.0% 50.0% 39.0%

Super Smooth

100

1% 15.3% 12.4% 7.3% 4.3% 4.0% 2.6% 4.7% 11.2%

5% 29.0% 22.3% 18.1% 11.5% 9.6% 7.1% 11.0% 17.4%

10% 38.7% 31.7% 27.3% 19.5% 17.1% 14.8% 20.3% 30.3%

200

1% 23.8% 16.7% 10.6% 4.3% 5.3% 3.0% 5.7% 14.7%

5% 40.9% 29.1% 22.0% 13.7% 11.0% 8.2% 14.2% 26.0%

10% 52.9% 38.4% 32.3% 21.3% 18.6% 12.7% 24.3% 34.9%
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Table 4: Y = 1 + 1.5X + cos(2πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100

1% 20.9% 16.7% 13.8% 6.9% 5.6% 1.8% 9.2% 7.3%

5% 38.7% 31.5% 28.0% 17.1% 12.5% 5.6% 20.6% 13.6%

10% 49.3% 43.2% 37.8% 25.4% 19.5% 9.9% 29.7% 23.7%

200

1% 35.9% 20.8% 15.3% 7.8% 4.8% 1.3% 9.3% 13.6%

5% 55.9% 37.4% 28.9% 18.4% 11.2% 4.6% 21.7% 23.8%

10% 66.8% 49.8% 40.4% 28.6% 17.6% 10.1% 31.4% 31.9%

Super Smooth

100

1% 16.1% 11.2% 9.1% 5.3% 4.0% 3.1% 5.2% 7.6%

5% 30.4% 22.4% 17.9% 12.6% 11.0% 7.3% 11.6% 17.3%

10% 41.3% 35.0% 26.1% 20.6% 17.4% 13.7% 19.3% 27.1%

200

1% 23.6% 13.4% 9.4% 5.1% 4.7% 3.7% 5.3% 8.9%

5% 39.4% 25.0% 20.0% 11.8% 12.0% 8.4% 13.1% 25.0%

10% 50.8% 35.8% 30.5% 20.5% 19.4% 13.9% 20.3% 32.2%
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Table 5: Y = 1 + 1.5X + cos(3πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100

1% 22.8% 17.0% 11.8% 7.9% 5.4% 1.8% 9.4% 7.3%

5% 39.3% 32.6% 28.2% 17.7% 12.9% 5.9% 20.8% 19.0%

10% 50.6% 46.1% 38.1% 27.2% 19.8% 10.4% 31.8% 27.1%

200

1% 36.4% 20.1% 14.0% 8.1% 4.2% 1.9% 9.9% 7.9%

5% 54.1% 36.3% 29.2% 19.4% 10.7% 5.0% 21.8% 21.8%

10% 67.1% 48.9% 40.0% 27.6% 18.0% 10.3% 32.0% 27.7%

Super Smooth

100

1% 17.4% 10.9% 7.5% 4.7% 4.6% 3.3% 5.6% 8.5%

5% 31.4% 22.8% 19.6% 12.8% 10.1% 9.1% 12.0% 17.4%

10% 42.0% 33.2% 28.3% 20.8% 16.9% 14.3% 21.0% 26.1%

200

1% 21.5% 15.6% 9.3% 5.5% 4.6% 2.9% 4.8% 14.0%

5% 39.1% 29.0% 21.6% 12.3% 11.6% 8.1% 14.1% 22.5%

10% 50.9% 37.5% 30.2% 21.1% 17.9% 13.7% 22.6% 27.8%

The results are encouraging and seem to be consistent with the theory. Table 1 indicates that

our test tracks the nominal level relatively closely. There does appear to be some dependence on

the bandwidth; smaller bandwidths tending to lead to an over-rejection and larger bandwidths

leading to an under-rejection of the null hypothesis.

Table 2 gives a direct comparison to the tests proposed in Hall and Ma (2007) and Song

(2008). As we expected, in this low frequency alternative setting, our test is generally slightly

less powerful than the other tests. Having said this, in the ordinary smooth case for several

choices of bandwidth our test does display the highest power. Hall and Ma’s (2007) test is able

to detect local alternatives at the
√
n-rate for both ordinary and supersmooth measurement

error distributions, and the test of Song (2008) is able to detect local alternatives at the rate
√
nbd/2 in both cases. However, our test achieves a slower polynomial rate in the ordinary smooth

case and only a log(n)-rate in the super smooth case. Thus it is not surprising to see our test
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underperform when faced with Gaussian measurement error. However, the test is still able to

enjoy considerable power in this case especially for larger sample sizes.

On the other hand, as mentioned earlier, we suspect that our test is better suited to detecting

high frequency alternatives than Hall and Ma (2007). This is confirmed in Tables 3-5. We find

that for smaller bandwidths our test is more powerful across the range of δ. Unfortunately,

the power of our test shows considerable variation across the bandwidth choices. For smaller

bandwidths the power is generally much higher. This is intuitive and is explained in Fan and Li

(2000). Nonsmoothing tests can be thought of as smoothing tests but with a fixed bandwidth.

Thus it is the asymptotically vanishing nature of the bandwidth in smoothing tests that allows for

the superior detection of high frequency alternatives. When smaller bandwidths are employed,

the test is better able to pick up on these rapid changes.

As discussed at the end of Section 2.2, the test of Song (2008) will have poor power properties

for some high frequency alternatives due to testing the hypothesis based on E[Y |W ] rather than

E[Y |X]. This fact is also reflected in the Monte Carlo simulations where the power falls as we

move to higher frequency alternatives and is inferior to the test we propose. Interestingly the

test of Song (2008) appears to dominate the test of Hall and Ma (2007) for the supersmooth case

but not for the ordinary smooth case.

We can learn from these simulations that for reasonably small samples with supersmooth

measurement error, perhaps the tests proposed by Hall and Ma (2007) or Song (2008) would be

a wiser choice if one suspects deviations from the null of a low frequency type, otherwise our test

appears to be superior. However, we suggest that to avoid any risk of very low power the test

proposed in this chapter may be the best option.

In order to account for the dependence of our test on the bandwidth we may look to employ

the ideas of Horowitz and Spokoiny (2001) to construct a test that is adaptive to the smoothness

of the regression function. In order to do this we could construct a test statistic of the form

TA,n = max
bn∈Bn

Tn

where Bn is a finite set of bandwidths. To obtain valid critical values we can use a bootstrap

procedure similar to the one proposed in Section 2.3. Specifically we construct a bootstrap
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counterpart as

T ∗A,n = max
bn∈Bn

T ∗n

where T ∗n is defined in (10). It is beyond the scope of this chapter to determine the asymptotic

properties of such a test but this could prove to be a fruitful area for future research. Alterna-

tively, another interesting line of future work might consider obtaining an analytic expression

for the power function of the test which could be maximised with respect to the bandwidth to

obtain an optimal bandwidth choice.

2.5. Empirical Example

We apply our test to the specification of Engel curves for food, clothing and transport. An

Engel curve describes the relationship between an individual’s purchases of a particular good and

their total resources and hence provides an estimate of a good’s income elasticity. Much work

has been carried out on the estimation of Engel curves. In particular, the functional form has

been shown to significantly affect estimates of income elasticity (see for example Leser, 1963).

Hausmann, Newey and Powell (1995) highlighted the problem that measurement error plays in

the estimation of Engel curves. To the best of our knowledge no previous work has tested the

parametric specification of Engel curves whilst accounting for the inherent measurement error in

the data.

We concentrate on the Working-Leser specification put forward by Leser (1963)

Yi = a0 + a1

(
Xi log(Xi)

)
+ a2Xi + Ui

where Yi is the expenditure on a given good of consumer i and Xi is the true total expenditure

of consumer i. It is commonly believed that the measurement error in total expenditure is

multiplicative, hence we take X̃i = log(Xi) as our true regressor and adjust the specification

accordingly, as in Schennach (2004). We use data from the Consumer Expenditure Survey

where we take the third quarter of 2014 as our sample, giving 4312 observations. To account

for the measurement error we make use of repeated measurements of X. Specifically, we use

total expenditure from the current quarter as one measurement and total expenditure from

the previous quarter as the other. To estimate the parametric form we employ the estimator
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proposed by Schennach (2004). For the nonparametric estimator we use Delaigle, Hall and

Meister (2008) and select the bandwidth using the cross-validation approach also proposed in

that paper. To analyse the sensitivity of our test to the choice of bandwidth we report results

for various bandwidths around the cross-validated choice b ≈ 0.15. We use the same kernel and

bootstrap procedure as implemented in the Monte Carlo simulations.

Table 6 reports the p-value for our specification test on food, clothing and transport for a

range of bandwidths.

Table 6: Engel Curve (P-Values)

Good
Bandwidth

0.05 0.10 0.15 0.25 0.35 0.5

Food 0.00 0.00 0.00 0.00 0.00 0.07

Clothing 0.00 0.00 0.00 0.00 0.00 0.10

Transport 0.00 0.00 0.00 0.00 0.00 0.00

We can see that the test is reasonably robust to the choice of bandwidth. The parametric

specification is rejected for all bandwidths apart from 0.5 where we fail to reject the null hy-

pothesis at the 5% level for food and at the 10% level for clothing. Interestingly Härdle and

Mammen (1993) obtained similar findings in the case of transport but tended to fail to reject the

Working-Leser specification for food. Thus, it appears that accounting for measurement error is

indeed very important to draw the correct conclusions and must not simply be ignored.
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2.6. Appendix - Mathematical Proofs

Hereafter, f(b) ∼ g(b) means f(b)/g(b)→ 1 as b→ 0.

2.6.1. Proof of Theorem 3.

2.6.1.1. Proof of (i). First, we define the normalisation term CV,b and characterise its as-

ymptotic order. Let

ξi(t) = Yie
it·Wi −

∫
eis·Wimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t),

Hi,j =

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt.

Then CV,b is defined as

CV,b = E[H2
1,2] (11)

=

∫ ∫
|K ft(t1b)|2

|f ft
ε (t1)|2

|K ft(t2b)|2

|f ft
ε (t2)|2

∣∣∣∣ {[m2f ]ft(t1 + t2) + [σ2f ]ft(t1 + t2)
}
f ft
ε (t1 + t2)

+

∫ ∫
f ft
W (s1 + s2)mft(t1 − s1)mft(t2 − s2)

K ft(s1b)

f ft
ε (s1)

K ft(s2b)

f ft
ε (s2)

ds1ds2f
ft
ε (t1)f ft

ε (t2)

−
∫

[mf ]ft(t2 + s1)f ft
ε (t2 + s1)mft(t1 − s1)

K ft(s1b)

f ft
ε (s1)

ds1f
ft
ε (t1)

−
∫

[mf ]ft(t1 + s1)f ft
ε (t1 + s1)mft(t2 − s1)

K ft(s1b)

f ft
ε (s1)

ds1f
ft
ε (t2)

∣∣∣∣2dt1dt2.
To find the order of CV,b, we consider the square of each of these four terms and all of their cross

products. For example,

∫ ∫
|K ft(t1b)|2

|f ft
ε (t1)|2

|K ft(t2b)|2

|f ft
ε (t2)|2

∣∣∣{[m2f ]ft(t1 + t2) + [σ2f ]ft(t1 + t2)
}
f ft
ε (t1 + t2)

∣∣∣2 dt1dt2
∼ b−2d−4dα

∫ ∫
|K ft(a1)|2|K ft(a2)|2|a1|2dα|a2|2dα

∣∣∣1 + ((a1 + a2)/b)2
∣∣∣−dα

×
∣∣∣[(m2 + σ2)f ]ft((a1 + a2)/b)

∣∣∣2 da1da2

∼ b−d−4dα

∫ ∣∣1 + a2
∣∣−dα ∣∣∣[(m2 + σ2)f ]ft(a)

∣∣∣2 da∫ |K ft(a2)|4|a2|4dαda2

= O(b−d(1+4α)), (12)

where the first wave relation follows from the change of variables (a1, a2) = (t1b, t2b) and As-

sumption 4 (i), the second wave relation follows from the change of variables a = (a1 + a2)/b,
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and the equality follows from Assumption 3 (iii) and 4 (ii). All other squared and cross terms

can be bounded in the same manner, hence we obtain CV,b = O(b−d(1+4α)).

Second, we show that the estimation error of θ is negligible for the limiting distribution of

Tn. Decompose ζi(t) = ξi(t) + ρi(t), where

ρi(t) =

∫
eis·Wi{mft

θ (t− s)−mft
θ̂

(t− s)}K
ft(sb)

f ft
ε (s)

dsf ft
ε (t).

Then the test statistic Tn is written as

Tn =
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρi(t)ρj(t)dt

+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ρj(t)dt

≡ T̃n +R1n +R2n +R3n.

By an expansion around θ̂ = θ and Assumption 4 (iii), the term R1n satisfies

R1n = op(b
−d/2−2α)

∣∣∣∣∣∣ 1

n2

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

∣∣∣∣∣∣ , (13)

where ρ1i(t) =
∫
eis·Wi

∂mft
θ (t−s)
∂θ

Kft(sb)
f ftε (s)

dsf ft
ε (t). By the Cauchy-Schwarz inequality and Assump-

tion 3 (ii),

E

[∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

]
=

∫
|K ft(tb)|2

∣∣∣∣∫ f ft(s)
∂

∂θ

(
mft
θ (t− s)

)
K ft(sb)ds

∣∣∣∣2 dt
= O(1). (14)

Also, by applying the same argument to (12) under Assumption 4 (ii), we have

E

[(∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

)2
]

= O(b−d(1+4α)). (15)

Combining (13)-(15) and CV,b = O(b−d(1+4α)), we obtain C−1/2
V,b R1n = op(1). In the same manner

we can show C
−1/2
V,b R2n = op(1) and C

−1/2
V,b R3n = op(1) under Assumption 4 (ii) and (iii) and

thus C−1/2
V,b Tn = C

−1/2
V,b T̃n + op(1).
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Second, we derive the limiting distribution of C−1/2
V,b T̃n. Note that T̃n is written as T̃n =

1
n

∑
i 6=j

1
(2π)d

Hi,j and is a U-statistic with zero mean (because E[Y exp(it ·W )] = [mθf ]ft(t)f ft
ε (t)

under H0). To prove the asymptotic normality of T̃n, we apply the central limit theorem in Hall

(1984, Theorem 1). To this end, it is enough to show

E[H4
1,2]

n(E[H2
1,2])2

→ 0, and
E[G2

1,2]

(E[H2
1,2])2

→ 0, (16)

where Gi,j = E[H1,iH1,j |Y1,W1]. Recall that CV,b = E[H2
1,2] defined in (11) satisfies CV,b =

O
(
b−d(1+4α)

)
. By a similar argument to bound E[H2

1,2] in (12), we can show

E[H4
1,2] = E

[∫
· · ·
∫ 4∏

k=1

|K ft(tkb)|2

|f ft
ε (tk)|2

ξ1(tk)ξ2(tk)dt1 · · · dt4

]
= O(b−3d(1+8α)).

For E[G2
1,2], we can equivalently look at

E[H1,3H1,4H2,3H2,4]

=

∫
· · ·
∫ 4∏

k=1

|K ft(tkb)|2

|f ft
ε (tk)|2

ξ1(t1)ξ3(t1)ξ1(t2)ξ4(t2)ξ2(t3)ξ3(t3)ξ2(t4)ξ4(t4)dt1 · · · dt4

= O(b−d(1+8α)).

These results combined with Assumption 3 (iv) guarantee the conditions in (16). Thus, Hall

(1984, Theorem 1) implies

C
−1/2
V,b T̃n

d→ N

(
0,

2

(2π)2d

)
,

and the conclusion follows.

2.6.1.2. Proof of (ii). A similar argument to the proof of Part (i) guarantees ϕ(b)Tn =

ϕ(b)T̃n + op(1). Thus we hereafter derive the limiting distribution of T̃n. Decompose T̃n =

T̄n + r1n + r2n + r3n, where
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T̄n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

Yie
itWiYjeitWjdt, (17)

r1n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

(∫
eisWimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)(∫
eisWjmft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
dt,

r2n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

Yie
itWi

(∫
eisWjmft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
dt,

r3n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

(∫
eisWimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
YjeitWjdt.

First, we derive the limiting distribution of T̄n. Observe that

T̄n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2et2YiYj{cos(tWi) cos(tWj) + sin(tWi) sin(tWj)}dt

=
1

nb

∑
i 6=j

1

2π

∫
|K ft(t)|2e(t/b)2YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)
+ sin

(
tWi

b

)
sin

(
tWj

b

)}
dt

=

(
1

b

1

2π

∫
|K ft(t)|2e(t/b)2dt

)
1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+Op(b

2+4βe1/b2)

≡
(

1

b

1

2π

∫
|K ft(t)|2e(t/b)2dt

)
T̃n +Op(b

2+4βe1/b2), (18)

where the first equality follows from f ft
ε (t) = e−t

2/2 and eitWi = cos(tWi) + i sin(tWi), the second

equality follows from a change of variables, and the third equality follows from Holzmann and

Boysen (2006, Theorem 1) based on Assumption 5 (ii). Note that

T̃n =
1

n

∑
i 6=j

YiYj


{

cos
(
Xi
b

)
cos
(
εi
b

)
− sin

(
Xi
b

)
sin
(
εi
b

)}{
cos
(
Xj
b

)
cos
( εj
b

)
− sin

(
Xj
b

)
sin
( εj
b

)}
+
{

sin
(
Xi
b

)
cos
(
εi
b

)
+ cos

(
Xi
b

)
sin
(
εi
b

)}{
sin
(
Xj
b

)
cos
( εj
b

)
+ cos

(
Xj
b

)
sin
( εj
b

)}
 .

(19)

From van Es and Uh (2005, proof of Lemma 6), it holds
(
Xi
b mod 2π

)
d→ V X

i ∼ U [0, 2π] and(
εi
b mod 2π

) d→ V ε
i ∼ U [0, 2π] as b→ 0 for each i, where V ε

i is independent from (Yi, V
X
i ). Thus

by applying Holzmann and Boysen (2006, Lemma 1), T̃n has the same limiting distribution with
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T̃ Vn = 1
n

∑
i 6=j h(Qi, Qj), where Qi = (Yi, V

X
i , V ε

i ) and

h(Qi, Qj) = YiYj

 {
cos(V X

i ) cos(V ε
i )− sin(V X

i ) sin(V ε
i )
}{

cos(V X
j ) cos(V ε

j )− sin(V X
j ) sin(V ε

j )
}

+
{

sin(V X
i ) cos(V ε

i ) + cos(V X
i ) sin(V ε

i )
}{

sin(V X
j ) cos(V ε

j ) + cos(V X
j ) sin(V ε

j )
}
 .

Observe that Cov (h(Q1, Q2), h(Q1, Q3)) = 0 because E[cos(V ε
i )] = 0. Therefore, by applying

the limit theorem for degenerate U-statistics with a fixed kernel h (Serfling, 1980, Theorem 5.5.2),

we obtain

T̃ Vn
d→
∞∑
k=1

λk(Z
2
k − 1), (20)

where {Zk} is an independent sequence of standard normal random variables and {λk} are the

eigenvalues of the integral operator

(Λg)(Q1) = λg(Q1). (21)

where (Λg)(Q1) = E[h(Q1, Q2)g(Q2)|Q1]. Also, van Es and Uh (2005, Lemma 5) gives

1

2π

∫
|K ft(t)|2e(t/b)2dt ∼ b

ϕ(b)
, (22)

where Γ(·) is the gamma function. Combining (18)-(22),

ϕ(b)T̄n
d→
∞∑
k=1

λi(Z
2
i − 1).

Next, we show that r1n is negligible. Observe that

r1n =
1

nb3

∑
i 6=j

1

2π

∫
|K ft(t)|2

(∫
eisWi/bmft

(
t− s
b

)
K ft(s)

f ft
ε (s/b)

ds

)(∫
eisWj/bmft

(
t− s
b

)
K ft(s)

f ft
ε (s/b)

ds

)
dt

=
1

nb3

∑
i 6=j

1

2π

∫
|K ft(t)|2



{∫
cos
(
s1Wi
b

)
mft

(
t−s1
b

) Kft(s1)
f ftε (s1/b)

ds1

}
×
{∫

cos
(
s2Wj

b

)
mft

(
s2−t
b

) Kft(s2)
f ftε (−s2/b)

ds2

}
+
{∫

sin
(
s1Wi
b

)
mft

(
t−s1
b

) Kft(s1)
f ftε (s1/b)

ds1

}
×
{∫

sin
(
s2Wj

b

)
mft

(
s2−t
b

) Kft(s2)
f ftε (−s2/b)

ds2

}


dt

=

(
1

2π

∫ ∫ ∫
|K ft(t)|2K ft(s1)K ft(s2)

f ft
ε (s1/b)f ft

ε (−s2/b)
mft

(
t− s1

b

)
mft

(
s2 − t
b

)
ds1ds2dt

)
× 1

nb3

∑
i 6=j

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+Op(b

2+4βe1/b2),
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where the first equality follows from a change of variables, the second equality follows from a

direct calculation using eisWi = cos(sWi) + i sin(sWi), the third equality follows from Holzmann

and Boysen (2006, Theorem 1) based on Assumption 5 (ii). By a similar argument used to show

(20), it holds

1

n

∑
i 6=j

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
= Op(1).

Also, we obtain

1

2π

∫ ∫ ∫
|K ft(t)|2K ft(s1)K ft(s2)

f ft
ε (s1/b)f ft

ε (−s2/b)
mft

(
t− s1

b

)
mft

(
s2 − t
b

)
ds1ds2dt

=
b4e1/b2

2π

∫ ∫ ∫  |K ft(t)|2K ft(1− b2v1)K ft(1− b2v2)

×e
(1−b2v1)

2−1

2b2 e
(1−b2v2)

2−1

2b2 mft
(
t−1+b2v1

b

)
mft

(
1−b2v2−t

b

)
 dv1dv2dt

∼ A2b4+4βe1/b2

2π

(∫
|K ft(t)|2mft

(
t− 1

b

)
mft

(
1− t
b

)
dt

)(∫
vβ1 e
−v1dv1

)(∫
vβ2 e
−v2dv2

)
∼ A2Γ(β + 1)2b5+6βe1/b2

2π

∫
|t|2β|mft(t)|2dt

= O(b5+6βe1/b2),

where the first equality follows from changes of variables s1 = 1 − b2v1 and s2 = 1 − b2v2, the

wave relations follow from Assumption 5 (i), and the last equality follows from Assumption 5

(ii). Combining these results,

ϕ(b)r1n = Op(b
1+2β),

and thus r1n is negligible. Similar arguments imply that the terms r2n and r3n are also asymp-

totically negligible and the conclusion follows.

2.6.1.3. Proof of (iii). The proof for the general supersmooth case follows the same steps as

in the proof of Part (ii) for the normal case. As the proof is similar, we omit the most part.

Hereafter we show why the condition γ > 1 is imposed in this case. The dominant term T̄n

defined in (17) satisfies

T̄n ∼
1

nb

∑
i 6=j

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)
+ sin

(
tWi

b

)
sin

(
tWj

b

)}
dt.
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We now show that

Dcos ≡
1

nb

∑
i 6=j

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)}
dt

−

(
1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ dt

)
1

nb

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)}

is asymptotically negligible, as well as the correspondingly defined Dsin. We have seen that each

term is zero mean. Following the proof of Holzmann and Boysen (2006, Theorem 1), we obtain

∣∣∣∣cos

(
tWi

b

)
cos

(
tWj

b

)
− cos

(
Wi

b

)
cos

(
Wj

b

)∣∣∣∣ ≤ (1− t)(|Wi|+ |Wk|)
b

.

Thus, similar arguments to van Es and Uh (2005, Lemmas 1 and 5) using Assumption 5 (ii)

imply

Var(Dcos) ≤ O(n−2b4γ0−4)

(∫
(1− t)|K ft(t)|2 |t|−2γ0 e

2|t|γ
µbγ dt

)2∑
i 6=j

E
[
|Yi|2|Yj |2(|Wi|+ |Wk|)2

]
= O

(
b4γ0−4

(
bγ(2+2β)e

2
µbγ

)2
)
,

and we obtain Dcos = Op

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
. The same argument applies to Dsin. Note that

T̄n =

(
1

b

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ dt

)
1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+O

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
=

A2µ1+2βbγ−1+2γβ+2γ0e
2
µbγ Γ(2β + 1)

(2λ)1+2βπC2
ε

T̃n +O
(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
≡ T̃n

φ(b)
+O

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
,

where the second equality follows from the definition of T̃n in (19) and a modification of van Es

and Uh (2005, Lemma 5). Therefore, we obtain

φ(b)Tn = T̃n +O(bγ−1).

The limiting distribution of T̃n is obtained in the proof of Part (ii). The remainder term becomes

negligible if we impose γ > 1.
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2.6.2. Proof of Theorem 4.

2.6.2.1. Proof of (i). By a similar argument to the proof of Theorem 3 (i), the estimation

error θ̂ − θ is negligible for the asymptotic properties of Tn and thus it is written as

Tn =
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ηi(t)ηj(t)dt

+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ηj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ηi(t)ξj(t)dt+ op(C
1/2
V,b )

≡ T̃n +R∗1n +R∗2n +R∗3n + op(C
1/2
V,b ),

where

ηi(t) =

∫
eis·Wi{mft(t− s)−mft

θ (t− s)}K
ft(sb)

f ft
ε (s)

dsf ft
ε (t)

= cn

∫
eis·Wi∆ft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t),

under H1n. By Theorem 3 (i), it holds C−1/2
V,b T̃n

d→ N
(

0, 2
(2π)2d

)
. For R∗1n, observe that

E[C
−1/2
V,b R∗1n] =

(n− 1)c2
n

(2π)dC
1/2
V,b

∫ ∫ ∫
|K ft(tb)|2K ft(s1b)K

ft(s2b)∆
ft(t− s1)∆ft(s2 − t)f ft(s1)f ft(−s2)ds1ds2dt

≡ ∆n. (23)

By the definition of cn, CV,b = O(b−d(1+4α)) (obtained in the proof of Theorem 3 (i)), and

Assumption 3 (ii), it holds E[C
−1/2
V,b R∗1n] = O(1) and the limit of ∆n exists. Also, a similar

argument to (12) yields

E[R∗21n] = c4
n

∫
· · ·
∫
|K ft(t1b)|2|K ft(t2b)|2K ft(s1b)K

ft(s2b)K
ft(s3b)K

ft(s4b)

f ft
ε (s1)f ft

ε (−s2)f ft
ε (s3)f ft

ε (−s4)
f ft
W (s1 + s3)f ft

W (−s2 − s4)

×∆ft(t1 − s1)∆ft(s2 − t1)∆ft(t2 − s3)∆ft(s4 − t2)ds1 · · · ds4dt1dt2

= O(b−d(1+4α)).

Therefore, Var(C
−1/2
V,b R∗1n) → 0 and we obtain C−1/2

V,b R∗1n
p→ limn→∞∆n. Finally, using similar

arguments combined with E[ξi(t)] = 0, we can show that C−1/2
V,b R∗2n

p→ 0 and C
−1/2
V,b R∗3n

p→ 0.

Combining these results, the conclusion follows.
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2.6.2.2. Proof of (ii). Similarly to the proof of Part (i), we can decompose

Tn = T̃n +R∗1n +R∗2n +R∗3n + op(ϕ(b)−1).

Theorem 3 (ii) implies the limiting distribution of ϕ(b)T̃n. For R∗1n, note that

E[ϕ(b)R∗1n] = ϕ(b)(n− 1)c2
n

∫ ∫ ∫
|K ft(tb)|2K ft(s1b)K

ft(s2b)

×∆ft(t− s1)∆ft(s2 − t)f ft(s1)f ft(−s2)ds1ds2dt

≡ Υn, (24)

and the limit of Υn exists from the definition of cn. Also, by similar treatment to r1n in the proof

of Theorem 3 (ii), we can show Var(ϕ(b)R∗1n)→ 0 and thus ϕ(b)R∗1n → limn→∞ Υn. Using similar

arguments, combined with E[ξ1i(t)] = 0, we can again show that R∗2n and R∗3n are asymptotically

negligible. Therefore, the conclusion follows.

2.6.2.3. Proof of (iii). The proof is identical to that of Part (ii) with ϕ(b) replaced by φ(b)

and setting cn = b(λ−1)/2+λβ+λ0e
1

µbλ .
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CHAPTER 3

Nonparametric Significance Testing

in Measurement Error Models

3.1. Introduction

The importance of significance testing hardly needs stating; it is arguably the most widely

used of any statistical test. Significance tests are used to determine the validity of our economic

theories as well as to justify model simplification. This latter application is particularly relevant in

nonparametric estimation which suffers from convergence rates whose speed falls as the number of

regressors increase - ‘the curse of dimensionality’. Given the growing popularity of nonparametric

estimation, significance tests have never been more important. Moreover, measurement error in

nonparametric estimation amplifies the curse of dimensionality. Consequently, the benefit from

model parsimony, and hence the importance of significance testing, is even greater when working

with contaminated data.

Such contaminated data is a well known source of inconsistency in estimators, and corre-

spondingly, invalidity of test statistics. This is a problem that plagues economic, medical, social

and physical data sets; in fact, measurement error can be found in nearly every type of data.

One possible cause for such noisy data is an imperfect measurement instrument, for example

survey data is commonly held to be contaminated with error. However, we argue that mea-

surement error is a far more general phenomenon - whenever the variables in our theory do not

exactly match the variables in our data, measurement error is present. Given its prevalence and

undesirable consequences, contaminated data is a problem that cannot be ignored.

The main contribution of this chapter can be highlighted in the following way. In a linear

model, where some variables are mismeasured, to test the significance of a subset of regressors

(correctly or incorrectly measured) a Wald test can be used based on an IV regression. However,

if we wish to move beyond a simplistic linear specification, to allow the relationship between

the outcome and the full set of regressors to be left undetermined, there is currently no method
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to conduct such a test. This chapter solves this problem. It should be emphasised that the

situation with which we concern ourselves is very general - the measurement error need not

affect the variables whose significance we are testing, it may be that only one of the controlling

variables suffers from measurement error.

Theory often provides little guidance on model specification; in the majority of cases model

choice - linearity in particular - is determined according to simplicity rather than adequacy. Under

model misspecification, estimators are generally inconsistent, and consequently, statistical tests

which use such estimators have incorrect size. Hence, tests based on parametric choices are likely

to be invalid. To overcome this problem, many tests, including the one proposed in this chapter,

are conducted using nonparametric methods which impose less stringent conditions on functional

form. Moreover, significance testing in a nonparametric framework is likely to be more intuitive.

We ask, does variable X affect variable Y ? Rather than, for example, does X affect Y in a linear

way?

Unfortunately, the relaxation of assumptions when using any nonparametric estimator comes

at the cost of slower convergence rates. This results in a reduction in power for tests based on

such estimators. To remedy this problem, in the specification testing literature, so called ‘non-

smoothing’ tests were developed which only require estimation of the regression function under

the null hypothesis. For a specification test, this negates the need for nonparametric estimation

(as the model under the null is parametric) and allows the detection of local, linear alternatives at

the
√
n rate (see for example Bierens, 1990, and Stute, 1997). This approach was extended to the

problem of significance testing and, despite the model under the null now being nonparametric,

these tests also resulted in
√
n rates of detection (see for example Chen and Fan, 1999, and

Delgado and Manteiga, 2001). This is in contrast to ‘smoothing’ tests, which estimate the model

under the null and alternative, and typically attain slower then
√
n convergence in both testing

problems (see for example Härdle and Mammen, 1993, and Fan and Li, 1996).1 Hence, the key

benefit of non-smoothing tests is intrinsically linked to the curse of dimensionality. Since this is

exacerbated in the presence of measurement error we follow a non-smoothing approach in this

chapter.

1Of course, this is not to say that smoothing tests do not have benefits - in general they achieve greater power in
detecting high-frequency alternatives.
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However, there is a key difference between a conventional non-smoothing test and an analo-

gous one with measurement error. Non-smoothing tests are conducted by first converting a finite

number of conditional moment restrictions into uncountably many unconditional moment re-

strictions. A simple empirical average can then be taken to estimate these moment restrictions.

Unfortunately, when the data is contaminated we are not able to take this empirical average

since the regressors are unobservable. Instead, we must multiply by the estimated density of

the full set of regressors and integrate over their range. In this sense we refer to this approach

as a ‘semi-smoothing’ approach as we require nonparametric estimation using the full set of

regressors. Nonetheless, we show we are still able to retain
√
n convergence rates for this test.

There is a plethora of research on nonparametric significance testing when the data is uncon-

taminated. Fan and Li (1996), Aït-Sahalia, Bickel and Stoker (2001) and Lavergne and Vuong

(1996) among many others develop smoothing techniques for this problem, all of which suffer

from the curse of dimensionality. Whilst Delgado and Manteiga (2001) propose a consistent

test able to detect alternatives converging to the null hypothesis at the
√
n rate using the non-

smoothing approach. Neumeyer and Dette (2003) develop a general non-smoothing test for the

equality of two nonparametric regression curves, whilst Lavergne (2001) provides an analogous

result using smoothing techniques. Chen and Fan (1999) propose a non-smoothing significance

test in a time series context by extending the work of Robinson (1989), whilst Li (1999) develops

an analogous test using smoothing methods. There is also a recent line of research which cleverly

combines the two approaches. Lavergne, Maistre and Patilea (2015) consider a hybrid approach,

creating a consistent test that has rates of convergence that do not depend on the dimension

of the regressor but are equivalent to those achieved by smoothing tests with a single covariate.

Finally, Racine (1997) follows a different method, testing whether the partial derivatives of the

regression function with respect to the variables being tested are zero.

As of yet there appears to be no results on significance testing in the presence of measurement

error. However, there has been some work carried out on other testing problems in this setting.

Most notably, specification testing has received some attention with Hall and Ma (2007) and

Chapter 2 of this thesis proposing tests for this scenario.
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Finally, in this chapter we will use deconvolution techniques to estimate the regression func-

tion. The literature on nonparametric estimation and inference in the presence of measurement

error has used deconvolution methods rather extensively, the interested reader is referred to the

comprehensive survey of Schennach (2013). However, only in exceptional circumstances have
√
n

rates of convergence been obtained in these nonparametric settings (see for example Fan, 1995).

This chapter is organised as follows. Section 3.2 outlines the hypothesis of interest and the

test statistic, as well as discussing possible alternatives to our test. Section 3.3 presents the

asymptotic properties of our statistic, including theory for when the density of the measurement

error must be estimated. This section also extends our results to weakly dependent data and

provides bootstrap procedures to obtain critical values. Section 3.4 considers the small sample

performance of our test through a Monte Carlo study. Section 3.5 considers two empirical

applications of the test. The first uses cross-sectional data to test the effect of cognitive ability

on income, life satisfaction, health and risk aversion. The second answers the important policy

question of whether future inflation expectations are able to stimulate current consumption.

Finally, Section 3.6 concludes. We relegate all mathematical proofs to Appendix 3.7.

3.2. Methodology

Consider the nonparametric regression model

Y = m(X) + U with E[U |X] = 0.

Y ∈ R is a response variable, X = (X ′(1, X
′
(2))
′ ∈ Rd is a vector of regressors, where X(1) ∈ Rd1 ,

X(2) ∈ Rd2 with d = d1 + d2, and U ∈ R is the regression error term. Throughout this chapter

we denote the first d1 elements of any vector z ∈ Rd by z(1). Similarly, z(2) denotes the final d2

elements, whilst zj denotes the jth element of z.

We assume that X is not directly observable due to measurement error. Instead the variable

W is observed through the relation

W = X + ε,

where ε ∈ Rd is a vector of measurement errors with independent components, has a known

density fε(·) and is independent of (Y,X). Since this is the first attempt to deal with any
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form of measurement error, we start with the classical measurement error assumption and leave

nonclassical error for future work.2 The case of unknown fε(·) is considered in Section 3.3.4.

We are interested in testing the significance of the set of variables in X(2). More precisely,

define r(x(1)) ≡ E[Y |X(1) = x(1)], we wish to test the hypothesis

H0 : m(x(1), x(2)) = r(x(1)) for almost every (x(1), x(2)) ∈ Rd,

H1 : H0 is false,

based on the random sample {Yi,Wi}ni=1 of observables; the case of dependent data is deferred

until Section 3.3.3. It is important to emphasise that although we focus on the case in which

all variables are affected by measurement error, this test is applicable to any combination of

error-free and contaminated regressors. For example, X(1) may contain a single mismeasured

regressor and X(2) may be perfectly measured - to the best of our knowledge, this is the first

attempt to deal with such a situation.

Notice that the null hypothesis is equivalent to the conditional moment restriction

E
[
(Y − E[Y |X(1)])|X

]
= 0 a.s. (25)

In the spirit of Bierens (1982, 1990), we can write (25) as an unconditional moment restriction

of the form

T (ξ) ≡ E
[
(Y − E[Y |X(1)])fX(1)

(X(1))W(X; ξ)
]

= 0 for all ξ ∈ Ξ,

where fX(1)
(·) is the density function of X(1) and W(X; ξ) = W(X(1), X(2); ξ) is a ‘generically

totally revealing’ function (see Stinchcombe and White, 1998) indexed by ξ ∈ Ξ with Ξ ⊆ Rd a

compact set with non-empty interior. As in Bierens (1990), to simplify our analysis, without loss

of generality, we can define W(X; ξ) = W̄(Φ(X); ξ), where Φ(·) is a one-to-one mapping from

Rd to a compact set. Common choices for W̄(X; ξ) include eiξ′X and eξ′X used in Bierens (1982,

2In many situations of nonclassical measurement error, it is only the variance of the error which depends on the
true regressor. For example, the variance of the measurement error for reported income is likely to be larger for
larger values of the true income. In such a situation we could use a multiplicative error, W = Xε, where ε is still
independent of X, yet the variance of the error now depends on X. We can then convert this into an additive
structure by simply taking the natural logarithm.
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1990), respectively, the logistic function, 1/[1 + exp(c − ξ′X)], with c 6= 0, as used in White

(1989), as well as I(X ≤ ξ) proposed by Stute (1997), where I(·) is the indicator function.

The multiplication by fX(1)
(X(1)) in the definition of T (ξ) is used only to remove the random

denominator in E[Y |X(1)] and hence simplify analysis.

We propose to estimate T (ξ) as

T̂n(ξ) =

∫ ∫ (
y − r̂

(
x(1)

))
f̂X(1)

(
x(1)

)
f̂Y,X (y, x)W (x; ξ) dxdy.

Notice that our statistic is quite different from a conventional non-smoothing statistic which

would take the form
n∑
i=1

(
Y − r̂

(
X(1)i

))
f̂X(1)

(
X(1)i

)
W (Xi; ξ) .

By introducing measurement error, the true regressors become unobservable and an empirical

average is unable to be taken. Instead we must multiply by the estimated joint density of the

data and integrate over their range.

As a nonparametric estimator of r(·), we use the deconvolution kernel estimator

r̂(x(1)) =

∑n
i=1 YiKb

(
x(1)−W(1)i

b

)
∑n

i=1Kb
(
x(1)−W(1)i

b

) ,

where

Kb(a) =
1

(2πb)dim(a)

∫
e−it·a K

ft(t)

f ft
ε (t/b)

dt,

dim(a) is the dimension of the argument a, b is a bandwidth and K ft(·) and f ft
ε (·) are the Fourier

transforms of a kernel function K(·) and the measurement error density fε(·), respectively.

To estimate each of the densities we employ

f̂X(1)
(x(1)) =

1

n

n∑
i=1

Kb
(
x(1) −W(1)i

b

)
,

f̂Y,X(y, x) =
1

n

n∑
i=1

Kb

(
y − Yi
b

)
Kb
(
x−Wi

b

)
.

Since Y is observable we use a combination of a standard kernel and deconvolution kernel function

in the estimator for fY,X(·, ·). Throughout the chapter we assume f ft
ε (t) 6= 0 for all t ∈ Rd and

K ft(·) has compact support so that Kb(·) is well-defined. Both of these assumptions are common
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in the literature. The former assumption is satisfied by most conventional distributions, however,

a notable exception is the uniform distribution. If this assumption is unlikely to hold, a possible

solution involves using a ridge parameter approach (see for example Meister, 2009). The latter

assumption is merely a restriction on the choice of kernel; common choices which satisfy this

restriction include the Sinc kernel, K(x) = sinx
πx , where K ft(t) = I(−1 ≤ t ≤ 1), and the kernel

due to Fan (1992), K(x) = 48 cos(x)
πx4

(
1− 15

x2

)
− 144 sin(x)

πx5

(
2− 5

x2

)
, where K ft(t) = (1− t2)3I(−1 ≤

t ≤ 1).

Given these estimators we can write

T̂n(ξ) =

∫ ∫
1

n2

n∑
i=1

n∑
j=1

yKb

(
y − Yi
b

)
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dxdy

−
∫

1

n2

n∑
i=1

n∑
j=1

YjKb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx

=
1

n2

n∑
i 6=j

(Yi − Yj)
∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx,

where the second equality follows from
∫
yKb

(
y−Yi
b

)
dy = Yi, using a change of variables.

In order to construct a test statistic based on T̂n(ξ) we propose a Cramer-von Mises type

test

CMn =

∫
Ξ

∣∣∣T̂n(ξ)
∣∣∣2 dµ(ξ),

where µ(·) is an absolutely continuous probability measure on Ξ and | · | is the norm for complex

numbers. An alternative approach would be to use a Kolmogorov-Smirnov test of the form

Kn = sup
ξ∈Ξ

∣∣∣T̂n(ξ)
∣∣∣ .

It has been found that the Cramer-von Mises test tends to outperform the Kolmogorov-Smirnov

test when testing the equality of distributions and, as discussed in Chen and Fan (1999), the

Cramer-von Mises test can be better directed towards different alternatives by the choice of µ(·).

As such, we concentrate on the Cramer-von Mises test in this chapter; we conjecture that very

similar results would be found with the Kolmogorov-Smirnov form of the test.
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3.2.1. Alternative Approaches. Before we proceed to the properties of the test, it is

instructive to consider the available alternatives. First, we discuss why the naive approach of

conducting a conventional nonparametric significance test using the mismeasured regressors is a

poor choice. In this case we would test

H0 : E
[
Y |W(1) = w(1),W(2) = w(2)

]
= E

[
Y |W(1) = w(1)

]
for almost every (w(1), w(2)) ∈ Rd.

Chesher (1991) provides a simple relation between E[Y |W = w] and m(w),

E[Y |W = w] = m(w) +

d∑
j=1

σ2
εj

2

(
m(j)(j)(w) + 2m(j)(w)(ln(fX(w))(j)

)
+ o(σ2

εj ),

where σ2
εj is the variance of the measurement error associated with the jth regressor and for

any function, g(·), g(j)(·) and g(j)(j)(·) denote the first and second derivative with respect to the

jth argument. Although this expression is derived under small measurement error asymptotics,

it gives a good insight into the problem of conducting a nonparametric significance test using

mismeasured variables. Instead of investigating the distance m(w)− r(w(1)), the naive approach

would consider

(
m(w)− r(w(1))

)
+

d∑
j=1

σ2
εj

2

(
m(j)(j)(w)− r(j)(j)(w(1))

)
+ σ2

εj

(
(ln(fX(w))(j)m(j)(w)− (ln(fX1(w(1)))

(j)r(j)(w(1))
)

+ o(σ2
εj ),

where r(j)(·) ≡ 0 and r(j)(j)(·) ≡ 0 for j > d1. Notice that even if m(w) = r(w(1)), in general

d∑
j=1

σ2
εj

(
(ln(fX(w))(j)m(j)(w)− (ln(fX1(w(1)))

(j)r(j)(w(1))
)
6= 0

and the test has incorrect size and is inconsistent.

A second potential alternative to our test is to linearise the model by taking, for example, a

finite polynomial in the regressors, estimate the regression coefficients using an IV approach, and

conduct a Wald test. Note that for each transformation of each variable, the instrument, typically

a repeated measurement, is the analogous transformation. Of course, this is a simplification of
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the model we present and would not lead to a consistent test. However, for practical purposes

we may hope that this approach fares reasonably well. Unfortunately, as our simulation results

indicate in Section 3.4, this is not the case. The reason is twofold: nonlinear transformations of

mismeasured regressors generally exacerbate the measurement error problem, additionally the

strength of the instruments typically deteriorates with nonlinear transformations.

Finally, it may be tempting to appeal to the common textbook wisdom that measurement

error causes attenuation bias, hence any significance test in the presence of measurement error

is simply overly cautious. Unfortunately such an argument fails to hold once any additional

variables are included or any nonlinearities are added.

3.3. Asymptotic Properties

3.3.1. Distribution Under H0. In this section we derive the asymptotic distribution of

CMn under both the null hypothesis and a Pitman local alternative. We proceed by first clarify-

ing the asymptotic distribution of T̂n(ξ) before using the continuous mapping theorem to derive

the asymptotic distribution of CMn.

To simplify our analysis we will use product kernels of the following form. As in Masry (1993),

let K̃(·) be a univariate kernel and K̃ ft(·) denote its Fourier transform. Define the univariate

deconvolution kernel as

K̃b(xj) =
1

2πb

∫
e−ita K̃

ft(t)

f̃ ft
εj (t/b)

dt.

Finally, set K(x) =
∏dim(x)
j=1 K̃(xj) and Kb(x) =

∏dim(x)
j=1 K̃b(xj). Since we assume that ε is

vector valued with independent elements, we can write f ft
ε (t) =

∏dim(t)
j=1 f̃ ft

εj (tj), where f̃
ft
εj (·) is

the Fourier transform of εj . Together these imply K ft(x) =
∏dim(x)
j=1 K̃ ft(xj). 3

Throughout this paper we use the notation f(b) ∼ g(b) to mean f(b)/g(b)→ 1 as b→ 0 and

|| · ||1, and || · ||∞ to denote the L1 norm and the supremum norm, respectively. We impose the

following assumptions.

3Notice that it would be straightforward to adjust our estimator to allow for a combination of correctly measured
and mismeasured regressors by replacing the deconvolution kernel within the product with a standard kernel;
analogous results could be obtained. Furthermore, these correctly measured regressors may be discrete. How-
ever, our theory does not allow for discrete mismeasured regressors as this constitutes a form of nonclassical
measurement error.
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Assumption 6.

(i): {Yi,Wi}ni=1 and {εi}ni=1 are i.i.d. where ε is mutually independent as well as indepen-

dent of (Y,X) and has a known density fε(·).

(ii): supξ∈Ξ ||W(·; ξ)||2∞ <∞ with Ξ ⊆ Rd a compact set with non-empty interior.

(iii): K̃(·) is a second-order kernel and is infinitely differentiable. In particular, K̃ ft(·)

is compactly supported on [−1, 1], symmetric around zero (i.e., K̃ ft(t) = K̃ ft(−t)),

bounded, and satisfies

∫
ykK̃(y)dy

 1 for k = 0,

0 for k = 1,

and
∫
y2K̃(y)dy 6= 0.

(iv): M(·) ≡ fX(·)m(·) and R(·) ≡ fX(1)
(·)r(·) have continuous and bounded second

derivatives.

(v): Each of the following are finite: E
[
Y 4
]
, E

[
M(X)2

]
, E

[
R(X(1))

2
]
.

(vi): As n→∞ it holds that nb(d+d1) 5
4 →∞ and nb4 → 0.

Assumption 6 (i) is common in the literature of classical measurement error. The case of

unknown fε(·) is deferred until Section 3.3.4. For Assumption 6 (ii), since we have defined

W(·; ξ) = W̄(Φ(·); ξ), this condition is satisfied by all of the commonly used weight functions

given in Section 3.2. Assumption 6 (iii) is fairly standard in deconvolution problems and is

satisfied by the commonly used Sinc kernel or the kernel proposed in Fan (1992) which was

briefly mentioned in 3.2. Assumption 6 (iv) gives smoothness restrictions on the functions M(·)

and R(·), whilst Assumption 6 (v) contains standard assumptions on Y and the underlying

regression functions. The first condition of Assumption 6 (vi) is required to ensure the error of

the Hoeffding projection is asymptotically negligible, the second is required to remove the bias

from the nonparametric estimators. The second rate can be generalised to nb2q → 0 where q

is the order of the kernel (we have used a simple second-order kernel), i.e. higher order kernels

can be used to remove the bias more quickly. This will prove particularly relevant when working

with high dimensional data since the first condition in (vi) must hold simultaneously.
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As is typical in the nonparametric measurement error literature, we consider two separate

cases characterised by bounds on the decay rate of the tail of the characteristic function of the

measurement error, f̃ ft
εj (·). In each case we introduce some additional assumptions. For the

ordinary smooth case we impose the following.

Assumption 7.

(i): f ft
ε (t) 6= 0 for all t ∈ Rd and there exist finite constants C0, . . . , Cα with C0 6= 0 and

α > 0 such that

f̃ ft
εj (s) ∼

1∑α
v=0Cv|s|v

,

for all 1 ≤ j ≤ d as |s| → ∞.

Assumption 7 (i) is the ordinary smooth condition. Specifically, it requires that f̃ ft
εj (s) decays

to zero at a polynomial rate as |s| → ∞. Examples of densities that are ordinary smooth are

Laplace and gamma. Notice that this is slightly more general than the typical assumption that

is seen in the literature, f̃ ft
εj (s) ∼ C|s|

−α.

For the second case, known as supersmooth measurement error, we impose the following

assumption.

Assumption 8.

(i): f ft
ε (t) 6= 0 for all t ∈ Rd and there exist positive constants C, µ, γ0 ≤ 0 and γ > 0

such that

f̃ ft
εj (s) ∼ C|s|

γ0e−µ|s|
γ
,

for all 1 ≤ j ≤ d as |s| → ∞ with γ − γ0 an integer.

Assumption 8 (i) requires f̃ ft
εj (s) to decay to zero at an exponential rate as |s| → ∞. The

most common example of a density satisfying this supersmooth assumption is the normal density,

where C = 1, γ0 = 0, γ = 2, and µ = σ2

2 . The majority of conventional distributions satisfy the

integer constraint. Also, as opposed to some settings with supersmooth measurement error (see

for example Van Es and Uh, 2005), the Cauchy distribution is not excluded from our analysis.

The asymptotic distributions of CMn under the null hypothesis for both the ordinary smooth

and the supersmooth cases are given by the following theorem.
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Theorem 5.

(i): Suppose that Assumptions 6 and 7 hold true, then under H0,

nCMn →d

∫
|ZO,∞(ξ)|2 dµ(ξ) ∼

∞∑
i=1

λO,iν
2
i .

(ii): Suppose that Assumptions 6 and 8 hold true, then under H0,

nCMn →d

∫
|ZS,∞(ξ)|2 dµ(ξ) ∼

∞∑
i=1

λS,iν
2
i .

Where ZO,∞(·) and ZS,∞(·) are zero mean Gaussian processes on L2(Ξ, µ), with covariance

functions VO : Ξ × Ξ → R+ and VS : Ξ × Ξ → R+, respectively, where VO and VS are defined

in Appendix A. νi are i.i.d. N(0, 1) random variables and λO,i and λS,i are the solutions to the

eigenvalue problems

∫
VO(ξ, ξ′)ψO,i(ξ

′)dµ(ξ′) = λO,iψO,i(ξ),∫
VS(ξ, ξ′)ψS,i(ξ

′)dµ(ξ′) = λS,iψS,i(ξ),

respectively. The eigenvalues λO,i and λS,i are real valued, non-negative and satisfy∑∞
i=1 λO,i <∞ and

∑∞
i=1 λS,i <∞, respectively.

Theorem 5 shows that in each case the test statistic converges to a weighted sum of chi-

squared random variables. Unlike typical results in the deconvolution estimation and inference

literature we are able to achieve
√
n rates of convergence. To the best of our knowledge, this

is the first case in which parametric rates of convergence have been obtained when using non-

parametric estimation in the presence of supersmooth measurement error. However, two notable

papers deserve mention here. Hall and Ma (2007) develop a non-smoothing specification test

which is able to achieve
√
n rates of convergence but does not involve any nonparametric estima-

tion. Fan (1995) obtains
√
n convergence for average derivative estimators for ordinary smooth

measurement error, although does not extend this result to the supersmooth case.

There is a strong link between average derivative estimators - of the type studied by Powell,

Stock and Stoker (1989), for example - and non-smoothing tests. We exploit this connection and

use a similar approach to Fan (1995) in the derivation of the asymptotic properties of our test.
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We extend this approach to the supersmooth case by noticing that supersmooth error can be

thought of as an ordinary smooth problem with α =∞.

It is instructive to understand why we are able to achieve parametric rates in such nonpara-

metric problems. Heuristically, nonparametric estimators achieve slower rates of convergence,

typically
√
nb for univariate problems, because they effectively only use a window of nb obser-

vations at each point of the estimation. Non-smoothing tests are able to regain
√
n rates by

averaging these nonparametric estimators over the full range of the data and so use all n ob-

servations in the final test statistic. The same reasoning explains why nonparametric average

derivative estimators are also able to achieve a
√
n rate of convergence. However, the semi-

smoothing approach of this paper is slightly different to each of these cases since we are unable

to average over all observations as they are unobservable. Nonetheless, by integrating over the

range of all possible values the regressors may take, we implicitly draw all observations of the

mismeasured variable into the final test statistic and so recover the
√
n convergence rate. When

viewed in this light, it is perhaps not so surprising that even in the supersmooth case we can

escape the curse of dimensionality.

This theorem also shows that the asymptotic distribution of the test does not depend on the

bandwidth. As such, providing Assumption 6 (vi) is satisfied, we hope the test will show little

dependence on the bandwidth in finite samples and negate the need for an ‘optimal’ choice.

3.3.2. Distribution Under a Sequence of Local Alternatives. To study the power

properties of the test, we assume a local, linear alternative of the form

H1n : m(x) = r
(
x(1)

)
+

1√
n

∆(x), for almost every x ∈ Rd

where ∆(·) is a bounded, non-zero function. The local power properties are given by the following

theorem.
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Theorem 6.

(i): Suppose that Assumptions 6 and 7 hold true, then under H1n,

nCMn →d

∫ ∣∣∣Z̃O,∞(ξ)
∣∣∣2 dµ(ξ) ∼

∞∑
i=1

(
∆̄O,i +

√
λ̃O,iνi

)2

.

(ii): Suppose that Assumptions 6 and 8 hold true, then under H1n,

nCMn →d

∫ ∣∣∣Z̃S,∞(ξ)
∣∣∣2 dµ(ξ) ∼

∞∑
i=1

(
∆̄S,i +

√
λ̃S,iνi

)2

.

Where Z̃O,∞(ξ) and Z̃S,∞(ξ) are Gaussian processes with mean functions ∆̄O,(·) and ∆̄S,(·),

respectively, each defined in Appendix A, and covariance functions ṼO : Ξ × Ξ → R+ and ṼS :

Ξ×Ξ→ R+, respectively, again with each defined in Appendix A. ∆̄O,i ≡
∫

∆̄O,(ξ)ψ̃O,i(ξ)dµ(ξ)

where ψ̃O,i(·) are the eigenfunctions of the equation

∫
ṼO(ξ, ξ′)ψ̃O,i(ξ

′)dµ(ξ′) = λ̃O,iψ̃O,i(ξ),

and ∆̄S,i is defined analogously. As before, the eigenvalues λ̃O,i and λ̃S,i are real valued, non-

negative and satisfy
∑∞

i=1 λ̃O,i <∞ and
∑∞

i=1 λ̃S,i <∞ respectively.

Theorem 6 shows that under both ordinary smooth and supersmooth measurement error our

test is able to detect local, linear alternatives drifting at the rate n−1/2.

It is our belief that nonparametric measurement error techniques are underused in applied

work, in part, because of the very slow rates of convergence that are typically attained. In

particular, in perhaps the most likely setting of Gaussian measurement error, convergence is

usually at the rate ln(n). We hope that the results presented here encourage the use of this test

in future applied work.

3.3.3. Dependent Data. To increase the applicability of our test, it is important to allow

for applications involving time series data. In this section we extend our asymptotic results to

permit weakly dependent data.

To be precise, we assume that the data, in particular the correctly measured regressors and

the dependent variable, come from a strictly stationary, absolutely regular process. We borrow

the notation from Robinson (1989) to define the degree of dependence. Let M b
a denote the σ-
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algebra of events generated by Va, . . . , Vb, for −∞ ≤ a ≤ b ≤ ∞, where V = (Y,X). We assume

β(j) ≡ E

{
sup

A∈M∞j

∣∣Pr (A∣∣M0
−∞
)
− Pr(A)

∣∣}→ 0

as j →∞. Absolutely regular processes can be seen as lying somewhere between uniformly and

strongly mixing processes in terms of dependence.

Notice that the dependence is in the true regressor and not the measurement error and we

continue to impose the assumption of classical measurement error. It is possible to also allow for

dependence within the measurement error in a similar manner to the treatment of dependence

in the regressors, in this case we would need to assume a smoothness condition on the joint

distribution of εi and εj for 1 ≤ i, j ≤ n, however we concentrate on the i.i.d. case for ease of

derivations.

To show that our previous results continue to hold under weak dependence we require the

following additional assumptions.

Assumption 9.

(i): β(j) = O(j−η) for a particular η > 0 which is discussed in Appendix A.

(ii): For some ς > 0, as n→∞ it holds that n1− ς
2 b(d+d1) 5

4 →∞.

(iii): supξ∈Ξ ||W(·; ξ)||2+δ
∞ <∞ for some δ > 0 with Ξ ⊆ Rd a compact set with non-empty

interior.

(iv): MXj |Wi
(x
∣∣w) ≡ m(x)fXj |Wi

(x|w) and RX(1)j |W(1)i
(x(1)

∣∣w(1)) ≡ r(x(1))fX(1)j |W(1)i

(
x(1)|w(1)

)
have continuous and bounded second derivatives.

Assumption 9 (i) concerns the degree of dependence between events separated in time; the

larger η the more quickly the dependence decays to zero. Assumptions 9 (ii)-(iv) require a slight

strengthening of the corresponding Assumptions 6 (ii), (iv) and (vi). Notice that since we retain

the assumption of classical measurement error we retain the product form of our deconvolution

kernel which acts to simplify our theoretical analysis.
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Theorem 7.

(i): Suppose that Assumptions 6, 7 and 9 hold true, then under H0,

nCMn →d

∫
|ZOT,∞(ξ)|2 dµ(ξ) ∼

∞∑
i=1

λOT,iν
2
i ,

and under H1

nCMn →d

∫ ∣∣∣Z̃OT,∞(ξ)
∣∣∣2 dµ(ξ) ∼

∞∑
i=1

(
∆̄OT,i +

√
λ̃OT,iνi

)2

.

(ii): Suppose that Assumptions 6, 8 and 9 hold true, then under H0,

nCMn →d

∫
|ZST,∞(ξ)|2 dµ(ξ) ∼

∞∑
i=1

λST,iν
2
i ,

and under H1

nCMn →d

∫ ∣∣∣Z̃ST,∞(ξ)
∣∣∣2 dµ(ξ) ∼

∞∑
i=1

(
∆̄ST,i +

√
λ̃ST,iνi

)2

.

Each object is defined analogously to Theorems 1 and 2, the only substantial differences are

the limiting covariance functions as defined in Appendix A.

3.3.4. Unknown fε. In this section we discuss how, by estimating f ft
ε (·), it can be possible

to drop the rather restrictive assumption of a known measurement error density. Unsurprisingly,

we need additional information. Typically this comes in the form of two repeated measurements,

say W and W r, or may alternatively come from a validation data set. We abstract from the

estimation of f ft
ε (·) and simply require some consistent estimator, f̂ ft

ε (·). There are two leading

cases. The first uses repeated measurements of the form

W = X + ε

W r = X + εr

where ε and εr are identically distributed with zero mean and (X, ε, εr) are mutually independent.

Under the assumption that the density fε(·) is symmetric around zero, Delaigle, Hall and Meister
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(2008) propose the following estimator

f̂ ft
ε (t) =

∣∣∣∣∣ 1n
n∑
i=1

cos{t(Wi −W r
i )}

∣∣∣∣∣
1/2

.

Common examples of such data are found in medical studies where measurements and tests on

patients are repeated at different points in time, for example systolic blood pressure measure-

ments. It is also becoming increasingly popular to ask the same questions multiple times in

social and economic surveys to obtain repeated measurements. Other examples of repeated data

include different IQ tests (or other aptitude tests) which can be used as repeated measurements

of true intelligence, as well as GDP and GDI acting as two mismeasured versions of economic

activity (see Delaigle, Hall and Meister, 2008, for further examples).

The second estimator is due to Li and Vuong (1998) and requires weaker assumptions. Specif-

ically, the repeated measurements can take the same form but where ε and εr need not be iden-

tically distributed nor have densities that are symmetric around zero, however, they must still

have zero mean and (X, ε, εr) must still be mutually independent. Naturally, the estimation

procedure is more complex than the case of Delaigle, Hall and Meister (2008), the interested

reader is referred to Li and Vuong (1998) for further details.

The following theorem shows the asymptotic equivalence of the test using f ft
ε (·) with the test

using f̂ ft
ε (t). We first introduce the following additional assumptions.

Assumption 10.

(i): maxt≤ 1
b

∣∣∣f̂ ft
ε (t)− f ft

ε (t)
∣∣∣ = op(1).

Assumption 10 (i) is satisfied by the estimators of Li and Vuong (1998) (see Lemma 4 in

Evdokimov, 2010) and Delaigle, Hall and Meister (2008).

Theorem 8.

(i): Suppose that Assumptions 6, 10 and either 7 or 8 hold true, then Theorems 5 and 6

continue to hold if f ft
ε (·) is replaced with f̂ ft

ε (t).

(ii): Suppose that Assumptions 6, 9, 10 and either 7 or 8 hold true, then Theorem 7

continues to hold if f ft
ε (·) is replaced with f̂ ft

ε (t).
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3.3.5. Bootstrap. The asymptotic distributions derived in Theorem 5 can be used to obtain

critical values. However, as explained in Bierens and Ploberger (1997), the eigenvalues depend

on the covariance function which in turn depends on the underlying distribution of the data. As

such, the asymptotic distributions are case dependent and challenging to estimate in practice.

Given this difficulty, it may be wiser to implement a bootstrap procedure.

Measurement error models provide quite a challenge for bootstrap procedures because nei-

ther the true regressor nor the measurement error is observable. Any residual based bootstrap

approach is infeasible in a measurement error context since the true regressors are needed to

construct the residuals. It would be possible to follow an approach similar to Hall and Ma

(2007): estimating the density of the true regressor using deconvolution techniques, applying a

wild bootstrap approach for the measurement error, and sampling from these respective densities.

However, the estimated density will suffer from the slow rates of convergence associated with

deconvolution estimation and the approach is very computationally expensive. In addition, the

choice of several tuning parameters are needed. Instead, we suggest a simple alternative based

on a pairs bootstrap.

Recall, we write our statistic as

nCMn =

∫
Ξ

∣∣∣√nT̂n(ξ)
∣∣∣2 dµ(ξ).

We can construct a bootstrap sample, {Y ∗i ,W ∗i }ni=1, by resampling with replacement from

{Yi,Wi}ni=1. To impose the null hypothesis, construct T̃ ∗n(ξ) ≡ T̂ ∗n(ξ) − T̂n(ξ), where T̂ ∗n(ξ)

is defined in the same manner as T̂n(ξ) but using {Y ∗i ,W ∗i }ni=1. Finally, the bootstrap test

statistic is given by

nCM∗n =

∫
Ξ

∣∣∣√nT̃ ∗n(ξ)
∣∣∣2 dµ(ξ).

When working with dependent data we must adapt the above procedure. We use the

stationary bootstrap of Politis and Romano (1994) to obtain our bootstrap sample and pro-

ceed as above. We briefly outline the stationary bootstrap procedure here for ease of ref-

erence. The data, {Zt}Tt=1 = {Yt,Wt}Tt=1, is strictly stationary and absolutely regular. Let
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Bt,s = {Zt, Zt+1, . . . , Zt+s−1} be a block of data of length s. For Zk with k > T , Zk = Zk mod T

and Z0 = ZT . Let L1, L2, . . . be a sequence of i.i.d. geometric random variables independent of

Zt, such that Pr{Li = m} = (1−pT )(m−1)pT for m = 1, 2, . . . , where pT ∈ [0, 1] depends on the

sample size. Finally, let I1, I2, . . . be a sequence of i.i.d. random variables with a discrete uniform

distribution on {1, . . . , T} independent of Zt and Lt. To generate the bootstrap sample, {Z∗t }Tt=1

, sample a sequence of blocks of random length, BI1,L1 , BI2,L2 , . . . . The first T observations from

this sequence of blocks creates the bootstrap sample.

Proposition 1.

(i): Suppose that Assumptions D, and either Assumption O or S hold true, then the as-

ymptotic distribution of CMn under the the null hypothesis is the same as the asymptotic

distribution of CM∗n conditional on {Yi,Wi}ni=1.

(ii): Suppose that Assumptions D, T, and either Assumption O or S hold true, then,

using the stationary bootstrap, the asymptotic distribution of CMn under the the null

hypothesis is the same as the asymptotic distribution of CM∗n conditional on {Yi,Wi}ni=1.

3.4. Simulation

To study the small sample properties of our test we conduct a Monte Carlo experiment.

Since this is the first nonparametric significance test designed to account for measurement error,

it is difficult to give a direct comparison to any existing tests. However, we report results for

the test of Delgado and Manteiga (2001) (DM henceforth) as well as a Wald test based on an IV

regression with functional form: β0 + β1X1 + β2X
2
1 + β3X2 + β4X

2
2 . A repeated measurement,

as well as its square, are used as the instruments. We should make clear that the test of DM is

not designed for a measurement error setting whilst the IV test, although able to accommodate

measurement error, is a parametric test.

We concentrate on a regression with two regressors. The true, unobservable regressors

(X1, X2) are each distributed independently U [0, 1]. The contaminated regressors are given

by Wk = Xk + εk, for k = 1, 2. We generate a second independent measurement of Xk given

by W r
k = Xk + εrk where εrk is distributed independently and identically to εk. For the ordinary

smooth case, we take ε to be drawn from the Laplace distribution with variance equal to half

the variance of X. For the supersmooth case, we use a zero mean Gaussian error with variance
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also equal to half that of X. Hence, the signal to noise ratio in both cases is 2
3 . Since both

distributions are symmetric around 0 we can use the repeated data to estimate fftε (·) using the

estimator of Delaigle, Hall and Meister (2008).

We consider several data generating processes

Y = 1 +X1 + U DGP (1)

Y = 1 +X1 + 10 sin(2πX2)2 + U DGP (2)

Y = 1 +X1 + 10(X1 −X2
1 )(X2 −X2

2 ) + U DGP (3)

Y = 1 +X1 + 10(X2 −X2
2 ) + U DGP (4)

where U ∼ N(0, 1). Clearly, DGP(1) corresponds to the null model, whilst DGP (2)-(4) represent

a range of possible deviations from the null.

For our weighting function we choose W(·; ξ) = exp(ξ′·), which satisfies Assumption 6 (ii);

results were similar for other commonly used weighting functions. For all simulations we use the

Sinc kernel

K(x) =
sin(x)

x

which satisfies Assumptions 6 (iii). We report results for a small (n = 100) and a moderate

(n = 200) sample size as well as a range of bandwidths. Specifically, for the ordinary and

supersmooth cases, we use b0 =
(

1
n

)1/2(d+d1) which satisfies Assumption 6 (vi), but consider a

range of bandwidths around this choice, allowing us to analyse the sensitivity of our test to the

bandwidth. For the test of DM we use a similar set of bandwidths based on the rule-of-thumb

bDM =
(

1
n

)1/3d1 ; this is taken from the simulations carried out in DM. The critical values

for our test are constructed using the i.i.d. bootstrap procedure outlined in Section 3.3.5 with

499 replications. For DM we use the bootstrap procedure denoted as C∗∗n in their paper. The

perturbation random variable ν∗ for their bootstrap is the Mammen two-point distribution. All

results are based on 1000 Monte Carlo replications.

Table 1 shows results for the level accuracy of the three tests. The column labeled ‘My Test’

reports results for the test proposed in this chapter, the column labeled ‘DM’ refers to the test

of Delgado and Manteiga (2001), and ‘IV’ displays results for the Wald test based on the IV
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quadratic regression using the repeated measurement. Tables 2 - 4 display the power results for

DGP(2) - (4), respectively.

Table 1: Y = 1 +X1 + U

My Test DM IV
Ordinary Smooth Bandwidth
n Level b0 − 0.25 b0 b0 + 0.25 bDM − 0.1 bDM bDM + 0.1

100 5% 4.4 4.6 4.8 5.6 6.0 7.8 4.5
10% 9.3 8.8 9.5 11.3 11.2 16.2 9.9

200 5% 4.3 4.8 5.2 5.8 5.2 6.8 5.6
10% 9.9 11.6 10.9 11.5 10.2 14.7 9.6

Super Smooth

100 5% 4.9 3.8 3.9 5.3 4.5 6.4 4.6
10% 10.4 9.9 10.1 9.8 9.6 13.4 9.2

200 5% 4.5 5.6 5.5 5.3 5.7 8.2 5.7
10% 9.7 10.4 10.0 11.6 11.9 15.7 10.8

Table 2: Y = 1 +X1 + 10 sin(2πX2)2 + U

My Test DM IV
Ordinary Smooth Bandwidth
n Level b0 − 0.25 b0 b0 + 0.25 bDM − 0.1 bDM bDM + 0.1

100 5% 13.5 18.0 17.8 6.5 6.0 5.8 4.3
10% 22.7 29.2 29.8 14.4 12.5 11.4 8.1

200 5% 16.6 30.0 30.0 10.3 9.2 8.2 5.8
10% 27.4 41.3 42.2 19.0 18.1 17.1 12.9

Super Smooth

100 5% 11.3 17.6 18.8 7.2 6.4 5.8 4.8
10% 21.0 28.6 29.0 13.7 11.9 12.1 8.9

200 5% 15.7 30.0 31.4 7.5 6.1 6.0 8.8
10% 26.1 43.2 44.8 12.7 12.0 12.1 19.0

Table 3: Y = 1 +X1 + 10
(
X1 −X2

1

) (
X2 −X2

2

)
+ U

My Test DM IV
Ordinary Smooth Bandwidth
n Level b0 − 0.25 b0 b0 + 0.25 bDM − 0.1 bDM bDM + 0.1

100 5% 8.5 8.5 8.0 6.5 5.9 8.6 4.4
10% 17.0 16.0 15.3 11.4 12.1 16.9 10.1

200 5% 13.3 13.9 12.9 7.5 5.6 8.4 5.0
10% 22.8 21.5 21.2 14.4 11.9 16.4 9.2

Super Smooth

100 5% 7.5 9.2 9.0 5.2 4.1 6.2 4.4
10% 16.4 15.5 14.9 9.2 8.9 13.6 8.6

200 5% 9.2 11.9 12.0 5.8 5.3 9.2 5.5
10% 17.4 22.1 21.1 11.8 12.4 17.7 10.6
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Table 4: Y = 1 +X1 + 10
(
X2 −X2

2

)
+ U

My Test DM IV
Ordinary Smooth Bandwidth
n Level b0 − 0.25 b0 b0 + 0.25 bDM − 0.1 bDM bDM + 0.1

100 5% 81.7 81.3 79.8 29.4 21.1 16.1 13.7
10% 89.4 89.6 88.7 51.8 42.1 34.6 23.7

200 5% 96.5 97.8 96.3 73.1 59.5 43.5 44.3
10% 98.1 99.2 98.4 89.6 81.8 72.1 58.8

Super Smooth

100 5% 78.5 84.4 84.1 17.6 12.5 10.4 19.8
10% 88.3 91.1 91.1 35.5 27.0 22.1 30.9

200 5% 91.8 98.5 98.5 52.1 40.6 29.1 71.0
10% 96.4 99.1 99.1 76.1 63.1 50.3 80.6

The results appear to reflect the theoretical findings and look encouraging. The bootstrap

procedure controls the size of the test well for both Laplacian and Gaussian measurement error

with only a slight dependence on the bandwidth. The DM test also has relatively good size

control despite being invalid. This is likely due to the bootstrap procedure being used. However,

there is some size distortion for larger bandwidths which is also found and discussed in DM. The

t-test based on the IV seems slightly undersized, although as the sample size was increased it

did approach the nominal level.

In each of the three alternatives considered the test proposed in this chapter dominates the

two alternatives. Whilst this is unsurprising for DGP(2) and DGP(3), given the alternative tests

are not designed for these situations, for DGP(4) the IV test is based on the correct parametric

specification. This should act as a benchmark with which to compare our nonparametric test,

however, our test clearly dominates. This reflects the arguments given in Section 3.2.1. As can be

seen in Table 4, as we increase the sample size the IV test does gain considerable power but still

lags behind the test proposed in this chapter. In general, increasing the amount of measurement

error or increasing the degree of nonlinearity in the model, increases the gap between our test

and the two alternatives. Our test shows a slight dependence on the bandwidth despite the

theoretical results showing there should be none. Of course, this dependence may simply be

a result of using a finite sample. However, there appears to be a consistent pattern across all

models and measurement error specifications where the power drops relatively sharply for the

smallest bandwidth. This may be a result of a violation of Assumption 6 (vi) (nb(d+d1) 5
4 →∞)
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which requires the bandwidth to be large enough such that the approximation from the Hoeffding

projection is asymptotically negligible.

3.5. Applications

3.5.1. Cognitive Ability. In this section we use our test to determine whether cognitive

ability has a significant effect on a series of key socio-economic variables: income, life satisfaction,

health and risk aversion. Each of these relationships have received varying degrees of attention in

the past. However, little consideration has been given to either the effect of measurement error,

caused by using proxies for true cognitive ability, or to allowing a nonparametric relationship.

Notice that if we were instead interested in the effect of education on these variables holding

constant cognitive ability, our test would be equally applicable. It should be stated at the outset

that this section acts merely to give a flavour of the potential uses of our test and does not

attempt to give an in-depth analysis of such questions; this would require an entire paper in and

of itself.

To tackle these questions we use the novel data set known as the ‘Brabant survey’. The data

consists of information on nearly 3000 individuals from the Dutch province of North Brabant.

In 1952 a survey was taken of nearly 6000 12 year old children. Their names and addresses

were kept and 30 years later Joop Hartog tracked down and reinterviewed almost 3000 of the

original individuals. The data covers family background and three measures of IQ taken when the

participants were 12 years old as well as information on their education, income, marital status,

number of children, health, life satisfaction and a measure of their risk aversion taken in follow

up surveys in 1983 and 1993. Education is the highest level of education achieved measured on

a 4 point scale, whilst family background is based on the father’s occupation measured on a 3

point scale. The first IQ test is the Raven Progressive Matrices test designed to measure general

intelligence, the second is a verbal intelligence test, the third is an abstract thinking test. The

health and life satisfaction variables are self-reported ratings on a scale of 1-10. Finally, the

measure of risk aversion is the Arrow-Pratt absolute measure calculated from prices given for a

simple lottery.

The effect of cognitive ability on income has been studied extensively in the past. In general,

results have shown that cognitive ability has a positive impact on earnings, see for example
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Hernstein and Murray (1994) and Cawley, Heckman and Vytlacil (2001). One of the few papers

to tackle the problem of measurement error in this setting is Heckman, Stixrud and Urzua (2006)

who investigate the effects of cognitive and noncognitive ability on a range of social and economic

outcomes and conclude that cognitive ability has a significant, positive effect on wages.

There is a plethora of research which looks at the relationship between education and health

but there has been far less which has considered the role of cognitive ability in determining health

outcomes. A notable exception is Conti, Heckman and Urzua (2011) who provide a thorough

investigation of this topic, including allowing for measurement error in cognitive ability, however,

their focus is on estimating the treatment effect of education. They find that cognitive ability,

developed as early as age 10, is an important determinant of health at age 30, but these effects

differ between men and women and between mental and physical health.

Research into the effect of cognitive ability on happiness, or life satisfaction, has predomi-

nantly been confined to the field of psychology and can be broadly split into two categories. The

first investigates the effect at an individual level, the second looks at the aggregate level across

nations, see Veenhoven and Choi (2012) for an aggregation of these results. Findings have been

very mixed with both positive, negative and no effects being found.

Although there has been some work in the psychology literature, little attention has been

given to the effect of cognitive ability on risk aversion by economists, despite its importance.

Dohmen et al. (2010) is one of the few papers in the economics literature to look at this question

and highlight its important implications. They collect and analyse their own data to find that

more intelligent individuals are significantly less risk averse; this has important theoretical and

empirical implications in, for example, contract designs and screening. However, their analysis

does not account for measurement error and assumes a linear functional form for the regression.

In our study, we use the three IQ tests as repeated noisy measurements of true cognitive

ability and use a factor model approach. Specifically, we assume

T1 = α1C + ε1

T2 = α2C + ε2

T3 = α3C + ε3
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where T1, . . . , T3 denote IQ tests 1 - 3, C is latent cognitive ability, ε1, . . . , ε3 denote the mea-

surement errors for each test and α1, . . . , α3 are the factor loadings. Without loss of generality

we can normalise α1 = 1. To estimate α2 and α3, notice

Cov(T2, T3)

Cov(T1, T2)
=
α2α3V ar(C)

α2V ar(C)
= α3

and similarly for α2. Sample counterparts can then be used to construct

T1 = C + ε1

T2

α̂2
= C +

ε2
α̂2

T3

α̂3
= C +

ε3
α̂3
.

Notice, for example, if C and ε2 are independent so too are C and ε2
α̂2
. To use the estimator

proposed by Delaigle, Hall and Meister (2008) for the Fourier transform of the measurement

error requires the error terms to be identically distributed. Since this is unlikely to hold in this

case we use the estimator proposed in Li and Vuong (1998).

We use the i.i.d. bootstrap procedure discussed in Section 3.3.5, using the same parameter

settings as in Section 3.4. We also use the same kernel as used in Section 3.4. For the other

regressors we use a conventional product Gaussian kernel. For each dependent variable, in

addition to cognitive ability we control for education, marital status, number of children, gender

and, for all except the regression on income, income. All variables are standardised to have zero

mean and unit variance.

Unfortunately, there is currently no theory to guide the choice of a data driven bandwidth

for nonparametric testing with measurement error. However, Section 3.3 shows the asymptotic

properties of our test do not depend on the choice of bandwidth, providing they satisfy As-

sumption 6 (vi). As such, we choose b =
(

1
n

)1/2(d+d1) ≈ 0.65 which satisfies this assumption.

However, we consider a range of values around 0.65 to analyse the sensitivity of our results to

the bandwidth. The p-values of our test are displayed in Table 5, along with the test of Delgado

and Manteiga (2001) and t-tests based on IV and OLS quadratic regressions using IQ and IQ2.
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Table 5: Cognitive Ability (P-Values)

Dependent Variable

My Test DM

IV OLSBandwidth

0.45 0.65 0.85 0.35 0.55 0.75

Income 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Health 0.060 0.038 0.034 0.134 0.020 0.012 0.624 0.706

Life Satisfaction 0.286 0.022 0.021 0.236 0.096 0.082 0.161 0.738

Risk Aversion 0.477 0.310 0.273 0.910 0.874 0.770 0.908 0.855

Our results agree with the previous literature in finding that cognitive ability has a significant

impact on income and health. We also find a significant relationship for life satisfaction which

may help to add some more convincing evidence to this side of the debate. However, our findings

on risk aversion disagree with the results of Dohmen et al (2010). Given the agreement in our

results from the test of Delgado and Manteiga (2001), the IV and the OLS regressions, it would

appear that this difference is driven by the data. It is interesting to see in the Health and Life

Satisfaction regressions there are some clear differences in conclusions depending on whether a

nonparametric test is used or not. Furthermore, for the effect on life satisfaction, it appears

that in a nonparametric regression accounting for measurement error can lead to a change in

conclusions when testing at the 5% significance level. Unfortunately, the dependence on the

bandwidth rears its ugly head again. Similarly to the results in Section 3.4, it appears that the

power of the test falls for a small bandwidth. In the case of risk aversion, although the same

conclusion is reached with all tests, the difference in p-values is quite stark. It should also be

emphasised that knowing the result from one, or a combination, of the alternative tests would

not shed any light on the likely outcome of our test.

We provide regression plots of each of these relationships in Appendix 3.8 for the interested

reader.
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3.5.2. Inflation Expectations. What policy options does a central banker have when

their hands are tied by the zero lower bound on nominal interest rates? This is currently a very

important policy question in many developed economies. Several prominent commentators have

suggested that future inflation expectations provide an alternative route for monetary policy to

stimulate the current economy. For example, Paul Krugman has been a frequent advocate of

this ‘unconventional monetary policy’ (see for example Krugman, 1998 and 2013), as well as

Romer (2011) and Hall (2011) among many others. It has even been proposed, by Eggertsson

(2008), that increases in inflation expectations were a key contributing factor to the end of the

Great Depression, whilst Romer and Romer (2013) suggest that deflationary expectations were

part of the cause. Correia, Farhi, Nicolini, and Teles (2013) formalise this idea and construct a

framework to study the theoretical underpinnings of a relationship between inflation expectations

and consumption at the zero lower bound.

The classic Euler Equation relating current and future consumption is

U ′(Ct) = βU ′(Ct+1)
it+1

πt+1
,

where U ′(·) is the partial derivative of the utility function with respect to consumption, Ct

is consumption in period t, β is the discount factor, and it and πt are the nominal interest

rate and inflation rate, respectively, in period t. In theory, higher expected future inflation

should cause a tilting of consumption towards the present and away from the future through a

relative cheapening of current consumption. However, empirical findings on this intertemporal

substitution have been conflicting.

Using repeated cross sectional data from the Michigan Survey of Consumers, Bachman, Berg

and Sims (2015) find a small negative effect of inflation expectations on readiness to spend on

durable goods; Burke and Ozdagli (2013) find similar results using the New York Fed Survey

data. There are several suggested explanations for these findings. High inflation expectations

may indicate a loss in faith of policy makers and may suggest uncertain times ahead. This is an

often quoted argument against using unconventional monetary policy to stimulate the economy

(see for example Volcker, 2011). We aim to control for this channel by including the standard

deviation of inflation forecasts as a measure of uncertainty. Inflation can also be seen as a tax
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on cash or other liquid assets, as well as generally reducing real total wealth, each of which are

likely to reduce consumption in all time periods. Finally, Bachman, Berg and Sims (2015) point

to money illusion as a possible cause. It has been shown on numerous occasions that the public

struggle to understand the difference between nominal and real rates (see for example Shafir,

Diamond and Tversky, 1997).

In a much earlier work, Juster and Wachtel (1972) used aggregate time series data and

found a negative relationship between inflation expectations and current consumption of durable

goods. Finally, D’Acunto, Hoang and Weber (2016) take a different approach and exploit an

unexpected announcement of a future increase in VAT in Germany to construct a natural exper-

iment which suggests households do increase consumption in response to an increase in expected

future inflation. We hope that our analysis will add robustness to this somewhat contradictory

literature.

We use aggregate quarterly time series data from the USA for the period 1981-2016. The

dependent variables are the percentage change in expenditure on consumer durables and non-

durables, respectively, taken from The Bureau of Economic Analysis. We test the significance

of expected future inflation and control for the expected change in nominal interest rates, un-

employment and GDP as well as the standard deviation of expected future inflation across all

forecasters. The expectations data is taken from the Survey of Professional Forecasters. Our

choice to use aggregate time series data as well as the Survey of Professional Forecasters, rather

than individual level cross-sectional data, is motivated by the desire to avoid any effect that ask-

ing a survey respondent to think about future inflation may have on their consumption decisions.

We also believe that at the aggregate level, expectations by professional forecasters are likely to

be more representative of the entire population than a random subsample of that population.

The reason being that many people base their expectations of future economic conditions on the

advice of these professional forecasters.

Our baseline model is

Ct = m (Et[πt+2], Xt) + ut,

where Ct is expenditure at time t, Xt are the set of control variables and Et[πt+2] denotes

expected inflation over the next two quarters, formed at time t. Given our use of survey data,
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our measurement error is given by

πs(t+2)|t = Et[πt+2] + εt,

where πs(t+2)|t is the survey forecast at time t for the annualised inflation rate in 6 months’ time -

the first subscript denoting the forecast period and the second subscript denoting the period the

survey was taken - and εt denotes the measurement error. We should make it clear that this error

is not the forecast error, Et[πt+2]− πt+2, but simply the error made from using survey data and

the fact that we are using a subsample of experts to proxy for the population-wide expectation.

In the literature on New Keynesian Philips curve estimation, it has been suggested by

Mavroeidis, Plagborg-Møller and Stock (2014) that expectations formed at time t are likely

to cause endogeneity issues on top of any problems of measurement error. To mitigate any pos-

sibility of endogeneity, we use the predetermined variable πs(t+2)|(t−1), i.e. the expected inflation

rate over the next 6 months, but formed in the previous quarter, in place of πs(t+2)|t. However,

this adds another layer of measurement error to the problem. Notice

πs(t+2)|(t−1) = Et[πt+2] + vt + εt−1

where

vt = Et−1[πt+2]− Et[πt+2],

εt−1 = πs(t+2)|t−1 − Et−1[πt+2].

vt can be thought of as a news shock, that is, how the true expectation changes as you move

forward one period. εt−1 is the same measurement error we had previously, but lagged by one

period. If εt is considered to be classical measurement error, and the news shock is assumed to

be white noise, (vt + εt−1) can be seen as classical measurement error also.

The Survey of Professional Forecasters allows us access to repeated measurements since it

surveys several forecasters in each period. However, if we use the estimator proposed in Delaigle,

Hall and Meister (2008), although εt−1 is different for each forecaster, vt is constant across all
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forecasters, hence will be cancelled out in our estimate of the characteristic function of v+ ε. We

need a different approach. Notice

πs(t+2)|(t−1) − π
s
(t+2)|t = vt + εt−1 − εt

and, by lagging this difference by one period

πs(t+1)|(t−2) − π
s
(t+1)|(t−1) = vt−1 + εt−2 − εt−1

where

vt−1 = Et−2[πt+1]− Et−1[πt+1],

εt−2 = πs(t+1)|t−2 − Et−2[πt+1].

Hence

(
πs(t+2)|(t−1) − π

s
(t+2)|t

)
+
(
πs(t+1)|(t−2) − π

s
(t+1)|(t−1)

)
= vt + vt−1 + εt−2 − εt

and we can use the following estimator for the characteristic function of v + ε

f̂ ft
ε+v(u) =

∣∣∣∣∣ 1n
n∑
t=2

cos
{
u
(
πs(t+2)|(t−1) − π

s
(t+2)|(t) + πs(t+1)|(t−2) − π

s
(t+1)|(t−1)

)}∣∣∣∣∣
1/2

.

Interestingly, this novel estimator requires no repeated measurements, but instead utilises the

dynamics within the model. Notice that we must assume v and ε to be i.i.d., independent and

strictly stationary for the validity of this estimator, as well as the usual assumption that fε(·) is

symmetric around zero. Alternatively, we could use the estimator of Li and Vuong (1998). Again,

for this estimator we do not require repeated observations from our survey data. Instead we can

use πs(t+2)|t and πs(t+2)|t−1 as repeated measurements since the errors need not be identically

distributed for the validity of this estimator. For each of the other control variables involving

expectations, we follow the same approach.

As in Section 3.5.1 we choose the bandwidth b =
(

1
n

)1/2(d+d1) ≈ 0.75. Again, we consider a

range of bandwidths around this value to analyse the robustness of our results to the choice of

101



bandwidth. All other parameter settings are as in Section 3.5.1 and all variables are standardised

to have zero mean and unit variance.

Table 6 displays the p-values for our test, the test of Delgado and Manteiga (2001) and t-tests

from an IV and OLS quadratic regression with πs(t+2)|(t−1) and its square.

Table 6: Inflation Expectations (P-Values)

Dependent Variable

My Test DM

IV OLSBandwidth

0.5 0.75 1.00 0.45 0.65 0.85

Durables 0.088 0.040 0.044 0.294 0.300 0.266 0.190 0.855

Non-Durables 0.202 0.204 0.200 0.284 0.260 0.265 0.214 0.771

Our results indicate that there does appear to be a significant relationship between inflation

expectations and current expenditure in the case of durable goods. The differences in p-values

between our test and the test of Delgado and Manteiga (2001) indicates that measurement error

again has a considerable impact on our conclusions.

It is also interesting to see that for the case of non-durable goods we do not find a significance

effect of inflation expectations. This seems sensible given economic theory; durable goods are

more likely to be bought on credit and their purchase can be more easily substituted from one

period to the next in comparison to non-durable goods. Appendix 3.8 provides regression plots

of the two relationships. In each case there is a similar relationship; it appears that at low levels

of expected inflation there is the predicted positive effect on current consumption. However,

as inflation forecasts become very large this relationship becomes negative, most likely a result

of public anxiety about future economic conditions and/or a loss in faith in the ability of their

central bank. This may help to explain why, in the previous literature, linear specifications

have been unable to find a significant relationship, and why many actually report a negative

relationship.

As a result of these findings, it is useful to investigate whether the significance that is found

by our test is being driven by the positive relationship at lower inflation expectations or by the

negative relationship at the other end. Unfortunately, we do not have enough data for the high
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inflation subset of the data, however, we can still test the hypothesis on the low inflation subset.

In particular, we use observations for which the survey forecast was less than or equal to 5%.

We find little difference in our results for this subset as compared with the results from the full

dataset.4 This is perhaps not too surprising given that more then 90% of our data falls within

this low inflation range.

These findings have important implications for policy makers, suggesting that there is scope

to utilise inflation expectations to stimulate current consumption. However, we should proceed

with caution when inflation expectations are high since the relationship may reverse in this

case. In addition, these findings again highlight the need to account for measurement error when

conducting nonparametric testing.

3.6. Conclusion

This chapter develops, to the best of our knowledge, the first nonparametric significance test

for regression models with mismeasured regressors. In particular, the measurement error need not

enter the model through the regressors of interest and may only impact the controlling variables.

Our test is able to overcome the slow rates of convergence associated with kernel deconvolution

estimation and detect local alternatives at the
√
n rate. The asymptotic distribution is shown to

be case dependent and difficult to estimate in practice, as such we provide bootstrap procedures

to obtain critical values. We extend our results from the i.i.d. setting to the case of weakly

dependent data and outline the properties of the test when the density of the measurement error

is unobserved. Finally we consider two empirical applications to highlight the wide applicability

of the test. The first tests the significance of cognitive ability on income, life satisfaction, health,

and risk aversion. The second shows that future inflation expectations are a viable channel for

policy makers to stimulate current consumption. In this example we also showed a novel approach

to estimating the measurement error density without the need for repeated measurements.

There are a number of natural avenues for future work stemming from this chapter. We

have focussed solely on the case of classical measurement error, however in many situations this

is unlikely to hold, as such an equivalent test able to accommodate nonclassical error would

be extremely valuable. Also, there is currently no theory for the selection of a data dependent

4Detailed results can be obtained from the author upon request.
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bandwidth in testing problems when measurement error is present, furthermore bandwidth choice

when a mixture of error free and contaminated regressors are present is a very practical and

worthwhile problem to solve. Finally, it would not be difficult to extend the ideas and results in

this chapter to tests of general conditional moment equalities, or to add to the growing literature

on testing conditional moment inequalities.
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3.7. Appendix - Mathematical Proofs

3.7.1. Proof of Theorem 5.

3.7.1.1. Proof of (i). Throughout this and the proceeding proofs we will make use of the

following Lemma.

Lemma 5. Under Assumptions 6 and 7, for k = {0, 1}

∫
xkj K̃b(xj)dxj ∼

Ck

(2πi)k b(k+1)
.

�

Define Zi ≡ (Yi,W
′
i )
′. We write T̂n(ξ) as a second-order U-statistic

T̂n(ξ) =
1

2

(n− 1)

n

(
n

2

)−1 ∑
1≤i<j≤n

pn(Zi, Zj ; ξ)

≡ 1

2

(n− 1)

n
Un(ξ),

where pn(Zi, Zj ; ξ) is a symmetric kernel defined as

pn(Zi, Zj ; ξ) ≡ (Yi − Yj)
∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx

+(Yj − Yi)
∫
Kb
(
x−Wj

b

)
Kb
(
x(1) −W(1)i

b

)
W(x; ξ)dx.

For the time being we shall drop the notational dependence on ξ only to minimise excess notation,

however it should not be forgotten that all objects in the proceeding analysis depend on ξ. The

Hoeffding projection of Un, Ûn, is given by

Ûn = θn +
2

n

n∑
i=1

[rn(Zi)− θn],

where

rn(Zi) ≡ E[pn(Zi, Zj)|Zi]
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and

θn ≡ E[rn(Zi)] = E[pn(Zi, Zj)].

First, we need to show that the difference between Ûn and Un is asymptotically negligible. To this

end we appeal to Lemma 3.1 in Powell, Stock and Stoker (1989) which states that Ûn−Un = op(1)

if E
[
|pn(Zi, Zj)|2

]
= o(n) for i 6= j. In our case, we must show E

[
|pn(Zi, Zj ; ξ)|2

]
= o(n)

uniformly over ξ. Define m2(x) ≡ E
[
Y 2|X = x

]
,

E
[
|pn(Zi, Zj)|2

]
≤ 4E

∣∣∣∣(Yi − Yj) ∫ Kb(x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx

∣∣∣∣2
where we have used the Cr inequality. Using Hölder’s inequality, and assumption E|Yi|4 ≤ ∞,

we can bound this in the following manner

E
[
|pn(Zi, Zj)|2

]
= O(1)E

∣∣∣∣(Yi − Yj) ∫ Kb(x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx

∣∣∣∣2
= O(1)

(
E |Yi|4

) 1
2

×
∫ (

E

[∣∣∣∣Kb(x−Wi

b

)∣∣∣∣ 83
]) 3

4
(
E

[∣∣∣∣Kb(x(1) −W(1)j

b

)∣∣∣∣ 83
]) 3

4

dx.

Notice, for an arbitrary v

E

∣∣∣∣Kb(x−Wi

b

)∣∣∣∣v =

∫ ∣∣∣∣Kb(x− wb
)∣∣∣∣v fW (w)dw

= bd
∫
|Kb(z)|v fW (x− bz)dz

= O(bd)

∫
|Kb(z)|v dz

= O
(
bd−dv

)
using a change of variables, the boundedness of fW (·) and a simple extension of Lemma 5 in the

final equality. Hence

E
[
|pn(Zi, Zj)|2

]
= O

(
b−(d+d1) 5

4

)
= o(n),
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using Assumption 6 (ii) (nb(d+d1) 5
4 →∞).

The next step is to apply a central limit theorem to
(
rn(Zi; ξ) − θn(ξ)

)
. Since

(
rn(Zi; ξ) −

θn(ξ)
)
is i.i.d. and zero mean, if we can show E

[ ∫
(rn(Zi; ξ) − θn(ξ)

)2
dµ(ξ)

]
< ∞ (a sufficient

condition for tightness of the process), then the central limit theorem for Hilbert space-valued

random variables can be applied. This result shows that n−1/2
∑n

i=1[rn(Zi; ·)− θn(·)] converges

weakly to a zero mean Gaussian process, say ZO,∞(·), on L2(Ξ, µ), with covariance function

VO : Ξ× Ξ → R+ defined by VO(ξ, ξ′) = limn→∞E [(rn(Zi; ξ)− θn(ξ)) (rn(Zi; ξ
′)− θn(ξ′))] (see

Politis and Romano, 1994).

To show E
[∫

(rn(Zi; ξ)− θn(ξ)
)2
dµ(ξ)

]
=
∫
V ar

[
rn(Zi; ξ)

]
dµ(ξ) < ∞ we calculate the

bound of V ar
[
rn(Zi; ξ)

]
, uniformly in ξ, in the following proposition.

Proposition 2. Under Assumptions 6 and 7

V ar (rn(Zi; ξ)) = O(1).

�

Hence, we conclude
∫
V ar

[
rn(Zi; ξ)

]
dµ(ξ) <∞ allowing us to apply the central limit theorem

for Hilbert-space valued random variables. Combining these results we have shown that
√
nT̂n(ξ)

converges weakly to a Gaussian process with mean θn and covariance function

VO(ξ, ξ′) = lim
n→∞

E
[(
rn(Zi; ξ)− θn(ξ)

)(
rn(Zi; ξ

′)− θn(ξ′)
)]
.
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We must now consider the value of θn under the null hypothesis

θn = 2E

[
(Yi − Yj)

∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W (x; ξ) dx

]
= 2E

[(
m (Xi)− r

(
X(1)j

)) ∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W (x; ξ) dx

]

=
2

(2πb)d+d1
E

(m (Xi)− r
(
X(1)j

)) ∫ 
∫
e
−it
(
x−Wi
b

)
Kft(t)
f ftε (t/b)

dt

×
∫
e
−is(1)

(
x(1)−W(1)j

b

)
Kft(s(1))
f ftε (s(1)/b)

ds(1)

W (x; ξ) dx



=
2

(2πb)d+d1
E

m (Xi)

∫ 
∫
e
−it
(
x−Xi
b

)
K ft (t) dt

×
∫
e
−is(1)

(
x(1)−X(1)j

b

)
K ft

(
s(1)

)
ds(1)

W (x; ξ) dx



− 2

(2πb)d+d1
E

r (X(1)j

) ∫ 
∫
t e
−it
(
x−Xi
b

)
K ft (t) dt

×
∫
e
−is(1)

(
x(1)−X(1)j

b

)
K ft

(
s(1)

)
ds(1)

W (x; ξ) dx


= T1 − T2.

For T1

T1 =
2

(2πb)d+d1

∫ ∫ ∫
E

[
m (Xi) e

−it
(
x−Xi
b

)]
E

[
e
−is(1)

(
x(1)−X(1)j

b

)]
K ft (t)K ft

(
s(1)

)
W (x; ξ) dtds(1)dx

=
2

(2πb)d+d1

∫ ∫ ∫
[mfX ]ft

(
t

b

)
f ft
X(1)

(s(1)

b

)
e−it(xb )e

−is(1)

(x(1)
b

)
K ft (t)K ft

(
s(1)

)
W (x; ξ) dtds(1)dx

=
2

(2πb)d+d1

∫ ∫
[mfX ]ft

(
t

b

)
K ft (t) e−itx

b dt

∫
f ft
X(1)

(s(1)

b

)
K ft

(
s(1)

)
e−is(1)

x(1)
b ds(1)W (x; ξ) dx

= 2

∫ [
mfX ∗K

( ·
b

)]
(x)
[
fX(1)

∗K
( ·
b

)] (
x(1)

)
W (x; ξ) dx

where

[
mfX ∗K

( ·
b

)]
(x) =

∫
m (a) fX (a)K

(
x− a
b

)
da

[
fX(1)

∗K
( ·
b

)] (
x(1)

)
=

∫
fX(1)

(c)K

(
x(1) − c

b

)
dc.

By similar arguments

T2 = 2

∫ [
fX ∗K

( ·
b

)]
(x)
[
rfX(1)

∗K
( ·
b

)] (
x(1)

)
W (x; ξ) dx
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where

[
fX ∗K

( ·
b

)]
(x) =

∫
fX (a)K

(
x− a
b

)
da

[
rfX(1)

∗K
( ·
b

)] (
x(1)

)
=

∫
r (c) fX(1)

(c)K

(
x(1) − c

b

)
dc.

So

θn = 2

∫ 
[
mfX ∗K

( ·
b

)]
(x)
[
fX(1)

∗K
( ·
b

)] (
x(1)

)
−
[
rfX(1)

∗K
( ·
b

)] (
x(1)

) [
fX ∗K

( ·
b

)]
(x)

W (x; ξ) dx

= 2

∫ ∫ ∫
{m (a)− r (c)} fX (a) fX(1)

(c)K

(
x− a
b

)
K

(
x(1) − c

b

)
dadcW (x; ξ) dx

= 2

∫ ∫
M (x− ub)K (u) du

∫
ũ
fX(1)

(
x(1) − ũb

)
K (ũ) dũW (x; ξ) dx

−2

∫ ∫
R
(
x(1) − ub

)
K (u) du

∫
u
fX (x− ũb)K (ũ) dũW (x; ξ) dx

= 2

∫ ∫ {
m (x)− r(x(1))

}
fX (x) fX(1)

(
x(1)

)
W (x; ξ) dx+O

(
b2
)

where the final equality results from the use of a second-order kernel, as in Powell, Stock and

Stoker (1989). Under the null hypothesis m(x) = r(x(1)), hence
√
nθn = o(1) by Assumption 6

(vi) (nb4 → 0), and
√
nT̂n(·) converges weakly to a zero mean Gaussian process, say ZO,∞(·), on

L2(Ξ, µ), with covariance function VO : Ξ× Ξ→ R+.

Finally, we apply the continuous mapping theorem to show

nCMn(ξ)→d

∫
|ZO,∞(ξ)|2 dµ(ξ).

To characterise this asymptotic distribution we appeal to Bierens and Ploberger (1997) Theorem

3. This allows us to write
∫
|ZO,∞(ξ)|2 dµ(ξ) ∼

∑∞
i=1 λO,iν

2
i where νi are i.i.d. N(0, 1) random

variables and λO,i are the solutions to the eigenvalue problem

∫
VO(ξ, ξ′)ψO,i(ξ

′)dµ(ξ′) = λO,iψO,i(ξ).

The eigenvalues λO,i are real valued, non-negative and satisfy
∑∞

i=1 λO,i < ∞. This completes

the proof of Theorem 1 (i).
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3.7.1.2. Proof of (ii). For the supersmooth case we will make use of the following Lemma.

Lemma 6. Under Assumptions 6 and 8

∫
K̃b(xj)dxj =

Cµ

(
γ0
γ

)
b
(
γ0
γ

)
!

and

∫
xjK̃b(xj)dxj =

Cµ

(
1−γ0
γ

)
b22πi

(
1−γ0
γ

)
!
.

�

The method of proof is the same as for part (i). The first task is to show E
[
|pn(Zi, Zj ; ξ)|2

]
=

o(n) uniformly in ξ. In the same way that Lemma 5 was used in Theorem 1 (i), Lemma 6 can

be used to show

E

∣∣∣∣Kb(x−Wi

b

)∣∣∣∣v = O(bd−dv),

for an arbitrary v. Hence, in the same manner, we have

E
[
|pn(Zi, Zj)|2

]
= O

(
b−(d+d1) 5

4

)
= o(n).

To apply the central limit theorem for Hilbert-space valued random variables we must show∫
V ar

[
rn(Zi; ξ)

]
dµ(ξ) <∞. We appeal to the following proposition.

Proposition 3. Under Assumptions 6 and 8

V ar (rn(Zi; ξ)) = O(1).

�

Hence, we conclude
∫
V ar

[
rn(Zi; ξ)

]
dµ(ξ) <∞ and can again use the central limit theorem

for Hilbert-space valued random variables. Thus,
√
nT̂n(ξ) converges weakly to a Gaussian

110



process with mean θn and covariance function

VS(ξ, ξ′) = lim
n→∞

E
[(
rn(Zi; ξ)− θn(ξ)

)(
rn(Zi; ξ

′)− θn(ξ′)
)]
.

As in the proof of Theorem 1 (i)

√
nθn =

√
n2

∫ (
m(x)− r(x(1))

)
W(x; ξ)fX(x)fX(1)

(x(1))dx+O
(√
nb2
)

= o(1)

since m(x) = r(x(1)) under the null hypothesis and by Assumption 6 (vi) (nb4 → 0).

Again, we can apply the continuous mapping theorem and Theorem 3 in Bierens and Ploberger

(1997) to show

nCMn(ξ)→d

∫
|ZO,∞(ξ)|2 dµ(ξ) ∼

∞∑
i=1

λS,iν
2
i

where νi are i.i.d. N(0, 1) random variables and λS,i are the solutions to the eigenvalue problem

∫
VS(ξ, ξ′)ψS,i(ξ

′)dµ(ξ′) = λS,iψS,i(ξ).

The eigenvalues λS,i are real valued, non-negative and satisfy
∑∞

i=1 λS,i < ∞. This concludes

the proof of Theorem 1 (ii).
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3.7.2. Proof of Theorem 2.

3.7.2.1. Proof of (i). The proof follows along the same lines as Theorem 1 (i). However,

notice that under the alternative hypothesis

√
nθn =

√
n2

∫ (
m(x)− r(x(1))

)
W(x; ξ)fX(x)fX(1)

(x(1))dx+ o(1)

=
√
n2

∫
cn∆(x)W(x; ξ)fX(x)fX(1)

(x(1))dx+ o(1)

= 2

∫
∆(x)W(x; ξ)fX(x)fX(1)

(x(1))dx+ o(1)

≡ ∆̄O(ξ) + o(1).

Combining this with the results in Theorem 1 (i),
√
nT̂n(·) converges weakly to a Gaussian

process, say Z̃O,∞(·), on L2(Ξ, µ), with mean function ∆̄O(·) and covariance function

ṼO(ξ, ξ′) = lim
n→∞

E
[(
rn(Zi; ξ)− θn(ξ)

)(
rn(Zi; ξ

′)− θn(ξ′)
)]
.

Finally we apply the continuous mapping theorem to show

nCMn(ξ)→d

∫ ∣∣∣Z̃O,∞(ξ)
∣∣∣2 dµ(ξ).

To characterise this asymptotic distribution we again appeal to Theorem 3 of Bierens and

Ploberger (1997). This allows us to write
∫
|ZO,∞(ξ)|2 dµ(ξ) ∼

∑∞
i=1

(
∆̄O,i +

√
λ̃O,iνi

)2 where

νi are i.i.d. N(0, 1) random variables, λ̃O,i are the solutions to the eigenvalue problem

∫
ṼO(ξ, ξ′)ψ̃O,i(ξ

′)dµ(ξ′) = λ̃O,iψ̃O,i(ξ)

and ∆̄O,i =
∫

∆̄O,(ξ)ψO,i(ξ)dµ(ξ). As before, the eigenvalues λ̃O,i are real valued, non-negative

and satisfy
∑∞

i=1 λ̃O,i <∞. This completes the proof of Theorem 2 (i).

3.7.2.2. Proof of (ii). The proof is almost identical to Theorem 2 (i).
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3.7.3. Proof of Theorem 7.

3.7.3.1. Proof of (i). To show the residual from the Hoeffding projection is asymptotically

negligible we follow the arguments in Robinson (1989) which extends Proposition 2 of Denker

and Keller (1983) to allow the kernel of the U-statistic to depend on the sample size. For

some δ, ς > 0, assume β(j) = O(jη) = O
(
j(ς−2)(2+δ)/δ

)
, then the residual from the Hoeffding

projection can be bounded as

sup
ξ∈Ξ

(√
n
{
Û(ξ)− U(ξ)

})
= Op

(
n
−1+ς

2 s
1

2+δ

δ

)

where sδ = supξ∈Ξ maxi 6=j E
[
|pn(Zi, Zj)|2+δ

]
. In particular choose 1

η <
δ

2+δ <
2
η (see Robinson,

1989). Using Hölder’s inequality, and since we have assumed E|Yi|4 ≤ ∞, we can write

E
[
|pn(Zi, Zj)|2+δ

]
= O(1)E

∣∣∣∣(Yi − Yj) ∫ Kb(x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W(x; ξ)dx

∣∣∣∣2+δ

= O(1)
(
E |Yi|4

) 2+δ
4

×
∫ (

E

[∣∣∣∣Kb(x−Wi

b

)∣∣∣∣ 83
]) 3(2+δ)

8
(
E

[∣∣∣∣Kb(x(1) −W(1)j

b

)∣∣∣∣ 83
]) 3(2+δ)

8

dx.

As in the proof of Theorem 1 (i), for an arbitrary v

E

∣∣∣∣Kb(x−Wi

b

)∣∣∣∣v = O
(
bd−dv

)
.

Hence

sδ = O
(
b−(d+d1)

5(2+δ)
8

)
and

sup
ξ∈Ξ

(√
n
{
Û(ξ)− U(ξ)

})
= Op

(
n
−1+ς

2 b−(d+d1) 5
8

)
= op(1)

using Assumption 9 (ii) (n1− ς
2 b(d+d1) 5

4 →∞).

Next we make use of the central limit theorem for Hilbert-space valued, absolutely regular,

stationary random variables from Politis and Romano (1994) (Theorem 2.3, i). To use this result
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we must show supξ∈Ξ maxi 6=j E
[
|rn(Zi; ξ)|2+δ̃

]
<∞ for some δ̃ > 0. We appeal to the following

proposition.

Proposition 4. Under Assumptions 6, 7 and 9

E
[
|rn(Zi; ξ)|2+δ̃

]
= O(1).

�

The final step is to show θn = op(1).

θn = 2E

[
(Yi − Yj)

∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W (x; ξ) dx

]
= 2E

[(
m (Xi)− r

(
X(1)j

)) ∫
Kb
(
x−Wi

b

)
Kb
(
x(1) −W(1)j

b

)
W (x; ξ) dx

]

=
2

(2πb)d+d1
E

m (Xi)

∫ 
∫
e
−it
(
x−Xi
b

)
K ft (t) dt

×
∫
e
−is(1)

(
x(1)−X(1)j

b

)
K ft

(
s(1)

)
ds(1)

W (x; ξ) dx



− 2

(2πb)d+d1
E

r (X(1)j

) ∫ 
∫
t e
−it
(
x−Xi
b

)
K ft (t) dt

×
∫
e
−is(1)

(
x(1)−X(1)j

b

)
K ft

(
s(1)

)
ds(1)

W (x; ξ) dx


= T1 − T2.

For T1

T1 =
2

(2πb)d+d1

∫ ∫ ∫
E

[
m (Xi) e

−it
(
x−Xi
b

)
e
−is(1)

(
x(1)−X(1)j

b

)]
K ft (t)K ft

(
s(1)

)
W (x; ξ) dtds(1)dx

=
2

(2πb)d+d1

∫ ∫ ∫ [
mfXiX(1)j

]ft
(
t

b
,
s(1)

b

)
e−it(xb )e

−is(1)

(x(1)
b

)
K ft (t)K ft

(
s(1)

)
W (x; ξ) dtds(1)dx

=
2

(2πb)d+d1

∫ ∫ ∫ [
mfXiX(1)j

]ft
(
t

b
,
s(1)

b

)
K ft

(
t, s(1)

)
e
−i
{
t(xb )+s(1)

(x(1)
b

)}
dtds(1)W (x; ξ) dx

=
2

2π

∫ [
mfXiX(1)j

∗K
( ·
b

)] (
x, x(1)

)
W (x; ξ) dx

where the penultimate equality follows from the product form of K ft(·) and where

[
mfXiX(1)j

∗K
( ·
b

)]
(x, x1) =

∫ ∫
m (a) fXiX(1)j

(a, c)K

(
x− a
b

)
K

(
x(1) − c

b

)
dadc.
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By similar arguments

T2 =
2

2π

∫ [
rfXiX(1)j

∗K
( ·
b

)] (
x, x(1)

)
W (x; ξ) dx

where

[
rfXiX(1)j

∗K
( ·
b

)]
(x, x1) =

∫ ∫
r (c) fXiX(1)j

(a, c)K

(
x− a
b

)
K

(
x(1) − c

b

)
dadc.

So

θn =
2

2π

∫ 
[
mfXiX(1)j

∗K
( ·
b

)] (
x, x(1)

)
−
[
rfXiX(1)j

∗K
( ·
b

)]
(x, x1)

W (x; ξ) dx

=
2

2π

∫ ∫ ∫
{m (a)− r (c)} fXiX(1)j

(a, c)K

(
x− a
b

)
K

(
x(1) − c

b

)
dadcW (x; ξ) dx

=
2

2π

∫ ∫ ∫
m (x− ub) fXiX(1)j

(x− ub, x(1) − ũb)K (u)K (ũ) dudũW (x; ξ) dx

+
2

2π

∫ ∫ ∫
r
(
x(1) − ũb

)
fXiX(1)j

(x− ub, x(1) − ũb)K (u)K (ũ) dudũW (x; ξ) dx

=
2

2π

∫ ∫ {
m (x)− r(x(1))

}
fXiX(1)j

(x, x(1))W (x; ξ) dx+O
(
b2
)

where the final equality follows by similar arguments as for the proof of Theorem 1. Hence, we

conclude
√
nT̂n(·) converges weakly to a zero mean Gaussian process on L2(Ξ, µ) with covariance

function

VOT (ξ, ξ′) = lim
n→∞

∞∑
j=−∞

E
[(
rn(Zi; ξ)− θn(ξ)

)(
rn(Zi+j ; ξ

′)− θn(ξ′)
)]
.

and the rest of Theorem 1 (i) applies. The part of the theorem related to Theorem 2 (i) is proved

in an almost identical manner.

3.7.3.2. Proof of (ii). Very similar reasoning as above can be applied to the supersmooth

case. We omit the proof for brevity.

115



3.7.4. Proof of Theorem 8. The proofs of part (i), (ii) and (iii) follow in very similar

ways. For brevity we show only the proof for (i).

For some consistent estimator of f ft
ε (·), denoted f̂ ft

ε (·), we define

K̂b(a) ≡ 1

(2πb)dim(a)

∫
e−it·a K

ft(t)

f̂ ft
ε (t/b)

dt

and

ˆ̂
Tn(ξ) ≡ 1

n2

n∑
i 6=j

(Yi − Yj)
∫
K̂b
(
x−Wi

b

)
K̂b
(
x(1) −W(1)j

b

)
W(x; ξ)dx.

Using the identity 1
â = 1

a −
â−a
a2

1+ â−a
a

, we can write

ˆ̂
Tn(ξ) =

1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)

f̂ ftε (t/b)

Kft(s(1))
f̂ ftε (s(1)/b)

W(x; ξ)dtds(1)dx

=
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)
f ftε (t/b)

Kft(s(1))
f̂ ftε (s(1)/b)

W(x; ξ)dtds(1)dx

− 1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)
K ft(t)

×

(
f̂ ft
ε (t/b)− f ft

ε (t/b)

f ft
ε (t/b)2

) 1

1 + f̂ ftε (t/b)−f ftε (t/b)
f ftε (t/b)

 K ft
(
s(1)

)
f̂ ft
ε

(
s(1)/b

)W(x; ξ)dtds(1)dx

≡ T1 − T2.

For T1, we use the same reasoning to show

T1 =
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)
f ftε (t/b)

Kft(s(1))
f ftε (s(1)/b)

W(x; ξ)dtds(1)dx

− 1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)
K ft(t)

f ft
ε (t/b)

K ft(s(1))

×

(
f̂ ft
ε (s(1)/b)− f ft

ε (s(1)/b)

f ft
ε (s(1)/b)2

) 1

1 +
f̂ ftε (s(1)/b)−f ftε (s(1)/b)

f ftε (s(1)/b)

W(x; ξ)dtds(1)dx

≡ T11 − T12.
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Notice that T11 = T̂n(ξ) is the original statistic when f ft
ε (·) is known.

We now show T12 is asymptotically negligible. First, notice that depending on the speed of

convergence of f̂ ft
ε

(
s(1)/b

)
→p f

ft
ε

(
s(1)/b

)
and the order of f ft

ε

(
s(1)/b

)
 1

1 +
f̂ ftε (s(1)/b)−f ftε (s(1)/b)

f ftε (s(1)/b)


will either be op(1) or Op(1). In which case f̂ ft

ε

(
s(1)/b

)
− f ft

ε

(
s(1)/b

)
1 +

f̂ ftε (s(1)/b)−f ftε (s(1)/b)
f ftε (s(1)/b)

 = op(1)

by the consistency of f̂ ft
ε

(
s(1)/b

)
. Hence

T12 = op (1)

 1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)
f ftε (t/b)

Kft(s(1))
f ftε (s(1)/b)

2

W(x; ξ)dtds(1)dx

 .

Notice that the multiple in T12 is the same as the U-statistic we dealt with in Theorem 1

but divided by 1
f ftε (s(1)/b)

. So we have to deal with 1
f ftε (s(1)/b)

2 rather than 1
f ftε (s(1)/b)

. However,

recall that the convergence rate of the U-statistic in Theorem 1 did not depend on f ft
ε (·). We

could simply refer to f ft
ε (·)2 as being ordinary smooth with parameter 2α instead of α. For the

supersmooth case we can apply the same reasoning. Thus, we can use the same arguments as in

the proofs of Theorem 1 and 2 to show that T12 = op(1)Op(n
−1/2) in both the ordinary smooth

and supersmooth cases.
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We return to T2. As for T1, we write

T2 =
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)
K ft(t)

×

(
f̂ ft
ε (t/b)− f ft

ε (t/b)

f ft
ε (t/b)

) 1

1 + f̂ ftε (t/b)−f ftε (t/b)
f ftε (t/b)

 K ft
(
s(1)

)
f̂ ft
ε

(
s(1)/b

)W (x; ξ) dtds(1)dx

=
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)
K ft(t)

×

(
f̂ ft
ε (t/b)− f ft

ε (t/b)

f ft
ε (t/b)

) 1

1 + f̂ ftε (t/b)−f ftε (t/b)
f ftε (t/b)

 K ft
(
s(1)

)
f ft
ε

(
s(1)/b

)W (x; ξ) dtds(1)dx

− 1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)
K ft(t)

f ft
ε (t/b)2

K ft
(
s(1)

)
f ft
ε

(
s(1)/b

)2
×

 f̂ ft
ε (t/b)− f ft

ε (t/b)

1 + f̂ ftε (t/b)−f ftε (t/b)
f ftε (t/b)


 f̂ ft

ε

(
s(1)/b

)
− f ft

ε

(
s(1)/b

)
1 +

f̂ ftε (s(1)/b)−f ftε (s(1)/b)
f ftε (s(1)/b)

W (x; ξ) dtds(1)dx

≡ T21 − T22.

As for T12 we have

T21 = op(1)
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)
f ftε (t/b)

Kft(s(1))
f ftε (s(1)/b)

W (x; ξ) dtds(1)dx

= op(1)Op

(
n−1/2

)
.

For T22 we can write

T22 = op(1)
1

n2

1

(2πb)d+d1

n∑
i 6=j

(Yi − Yj)
∫ ∫ ∫ 

e
−it·

(
x−Wi
b

)
e
−is(1)·

(
x(1)−W(1)i

b

)

× Kft(t)

f ftε (t/b)2
Kft(s(1))
f ftε (s(1)/b)

2

W (x; ξ) dtds(1)dx

= op(1)Op

(
n−1/2

)
using similar arguments as for T12.

Hence, we have shown
√
n

ˆ̂
Tn(ξ) =

√
nT̂n(ξ) + op(1). The rest of the proofs of Theorem 1, 2

and 3 can be applied to obtain the result.
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3.7.5. Proof of Propositions.

3.7.5.1. Proof of Proposition 1. For the proof of part (i) it is straightforward to show that

T̃ ∗n(ξ) converges weakly to a zero mean Gaussian process conditional on the data; this follows

directly from the simple pairs resampling approach and the proof of Theorem 5. Hence, CM∗n

has the same limiting distribution as the limiting distribution of CMn under the null, conditional

on the data.

For part (ii), we first make use of Proposition 3.1 in Politis and Romano (1994) which shows

{Zt}Tt=1 = {Yt,Wt}Tt=1 is strictly stationary and absolutely regular. The proof then follows as in

the proof of Theorem 7.

3.7.5.2. Proof of Proposition 2. To study V ar[rn(Zi; ξ)], we write rn(Zi; ξ) as follows

rn(Zi; ξ) =

∫
Kb
(
x−Wi

b

)
YiE

[
Kb
(
x(1)−W(1)j

b

)∣∣∣∣Yi,Wi

]
−E
[
YjKb

(
x(1)−W(1)j

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

+

∫
Kb
(
x(1) −W(1)i

b

)
E

[
YjKb

(
x−Xj
b

)∣∣∣∣Yi,Wi

]
−YiE

[
Kb
(
x−Wj

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

≡ r1n(Zi; ξ) + r2n(Zi; ξ).

We deal with each term separately; consider first r1n(Zi; ξ). Using the fact that

E

[
YjKb

(
x(1)−W(1)j

b

) ∣∣∣∣Yi,Wi

]
= E

[
1
bd1
YjK

(
x(1)−X(1)j

b

) ∣∣∣∣Yi,Wi

]

r1n(Zi; ξ) = b−d1
∫
Kb
(
x−Wi

b

)
YiE

[
K

(
x(1)−X(1)j

b

)∣∣∣∣Yi,Wi

]
−E
[
YjK

(
x(1)−X(1)j

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

= bd−d1
∫
Kb
(
a
)

YiE

[
K

(
a(1) +

W(1)i−X(1)j

b

)∣∣∣∣Yi,Wi

]
−E
[
YjK

(
a(1) +

W(1)i−X(1)j

b

)∣∣∣∣Yi,Wi

]
W(Wi + ab; ξ)da.
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Then we can write

E

[
K

(
a(1) +

W(1)i −X(1)j

b

) ∣∣∣∣Yi,Wi

]
= bd1

∫
K(a(1) + s(1))fX(1)

(W(1)i − s(1)b)ds(1)

= bd1
∫
K(a(1) + s(1))ds(1)fX(1)

(W(1)i) + bd1
∫
K(a(1) + s(1))

d1∑
j=1

sjbYiOjfX(1)

(
W ∗(1)i

)
ds(1)

= bd1fX(1)
(W(1)i) + bd1

∫
K(a(1) + s(1))

(
fX(1)

(W(1)i − s(1)b)− fX(1)
(W(1)i)

)
ds(1)

where the first equality follows from a change of variables and the fact that the data is i.i.d.,

the second equality uses a multivariate Taylor expansion where W ∗(1)i lies between W(1)i and

(W(1)i − s(1)b), and the third equality uses the properties of the kernel stated in Assumption 6

(iii). Hence, we can write

r1n(Zi; ξ) = bd
(
YifX(1)

(W(1)i)−R(W(1)i)
)∫
Kb (a)W(Wi + ab; ξ)da

+bd+1
d1∑
j=1

∫
Kb
(
a
){∫

K(a(1) + s(1))sj

(
YiOjfX(1)

(
W ∗(1)i

)
− OjR

(
W ∗(1)i

))
ds(1)

}
×W(Wi + ab; ξ)da.

≡ r11n(Zi; ξ) + r12n(Zi; ξ).

We bound the variance of r11n(Zi; ξ) as follows

V ar[r11n(Zi; ξ)] ≤ E[r11n(Zi; ξ)
2]

≤ b2d||W(·; ξ)||2∞
(∫
Kb (a) da

)2

E

[(
YifX(1)

(W(1)i)−R(W(1)i)
)2
]

∼ b2d
(
C0

b

)2d

||W(·; ξ)||2∞E
[(
YifX(1)

(W(1)i)−R(W(1)i)
)2
]

= O(1)

where the wave relation follows from Lemma 5 which shows
∫
Kb (a) da ∼

(
C0
b

)dim(a), and the

final equality follows from Assumptions 6 (ii) and (v). Hence

n−1/2
n∑
i=1

(r11n(Zi; ξ)− E[r11n(Zi; ξ)]) = O(1).
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For r12n(Zi; ξ) we can bound the variance as

V ar [r12n(Zi; ξ)] ≤ E
[
r12n(Zi; ξ)

2
]

= O
(
b2d+2

)
E

[ d1∑
j=1

∫
Kb
(
a
) ∫

K(a(1) + s(1))sj

×
(
YiOjfX(1)

(
W ∗(1)i

)
− OjR

(
W ∗(1)i

))
ds(1)da

]2

= O
(
b2d+2

)
E
[
(1 + |Yi|)2

]∫ Kb(a)


d1∑
j=1

∫
K(a(1) + s(1))sjds(1)

 da

2

= O
(
b2(d+1)

) d1∑
j=1

∫
Kb
(
a
)
ajda

2

= O(1)

where the first equality follows from Assumption 6 (ii), the second uses Assumption 6 (iv), the

penultimate equality follows from the change of variables a(1) + s(1) = v(1) and the properties of

a second-order kernel to give
∫
K(a(1) + s(1))sjds(1) = aj , and the final equality makes use of

Lemma 5 which can be used to show
∫
Kb (a) a1da ∼ C1

2πib2

(
C0
b

)dim(a)−1.

Hence

n−1/2
n∑
i=1

(
r12n(Zi; ξ)− E[r12n(Zi; ξ)]

)
= Op(1).

For r2n(Zi; ξ) we follow a similar approach. Notice

E

[
K

(
x+

Wi −Xj

b

) ∣∣∣∣Yi,Wi

]
= bd

∫
K(x+ s)fX(Wi − sb)ds.

Then, similarly to r1n(Zi; ξ), we can split r2n(Zi; ξ) as

r2n(Zi; ξ) ≡ r21n(Zi; ξ) + r22n(Zi; ξ),

where

r21n(Zi; ξ) = bd1 (YifX(Wi)−M(Wi))

∫
Kb
(
a(1)

)
W(Wi + ab; ξ)da
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and

r22n(Zi; ξ) = bd1+1
d∑
j=1

∫
Kb
(
a(1)

){∫
K(a+ s)sj (YiOjfX (W ∗i )− OjM (W ∗i )) ds

}
W(Wi + ab; ξ)da.

Using arguments very similar to those used to bound V ar[r1n(Zi; ξ)], we have

V ar (r2n(Zi; ξ)) = O(1).

Combining these results we have

V ar (rn(Zi; ξ)) = O(1).

This concludes the proof Proposition 2.

3.7.5.3. Proof of Proposition 3. To study V ar[rn(Zi; ξ)], as in the proof of Proposition 2, we

write rn(Zi; ξ) as follows

rn(Zi; ξ) =

∫
Kb
(
x−Wi

b

)
YiE

[
Kb
(
x(1)−W(1)j

b

)∣∣∣∣Yi,Wi

]
−E
[
YjKb

(
x(1)−W(1)j

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

+

∫
Kb
(
x(1) −W(1)i

b

)
E

[
YjKb

(
x−Xj
b

)∣∣∣∣Yi,Wi

]
−YiE

[
Kb
(
x−Wj

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

≡ r1n(Zi; ξ) + r2n(Zi; ξ).

Again, we can write

r1n(Zi; ξ) ≡ r11n(Zi; ξ) + r12n(Zi; ξ),

where

r11n(Zi; ξ) ≡ bd
(
YifX(1)

(W(1)i)−R(W(1)i)
)∫
Kb (a)W(Wi + ab; ξ)da,
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and

r12n(Zi; ξ) ≡ bd+1
d1∑
j=1

∫
Kb
(
a
){∫

K(a(1) + s(1))sj

(
YiOjfX(1)

(
W ∗(1)i

)
− OjR

(
W ∗(1)i

))
ds(1)

}
×W(Wi + ab; ξ)da.

In the same manner as the proof of Proposition 2, we bound the variance of r12n(Zi; ξ) as

follows

V ar [r12n(Zi; ξ)] ≤ E
[
r12n(Zi; ξ)

2
]

= O
(
b2d+2

)
E

[ d1∑
j=1

∫
Kb
(
a
) ∫

K(a(1) + s(1))sj

×
(
YiOjfX(1)

(
W ∗(1)i

)
− OjR

(
W ∗(1)i

))
ds(1)da

]2

= O
(
b2d+2

)
E
[
(1 + |Yi|)2

]∫ Kb(a)


d1∑
j=1

∫
K(a(1) + s(1))sjds(1)

 da

2

= O
(
b2(d+1)

) d1∑
j=1

∫
Kb
(
a
)
ajda

2

= O
(
b2(d+1)

)
O
(
b−2(d+1)

)
= O(1)

where the penultimate equality follows from Lemma 6. Hence

n−1/2
n∑
i=1

(r12n(Zi; ξ)− E[r12n(Zi; ξ)]) = Op(1).

The remainder of the proof is almost identical to the proof of Proposition 2, hence is omitted

for brevity. This concludes the proof Proposition 3.
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3.7.5.4. Proof of Proposition 4. The proof is very similar to that of Propositions 2 and 3, as

such we only outline the parts of the proof that differ as a result of the dependence in the data

and concentrate on the ordinary smooth case. By a change of variables, we write r1n(Zi; ξ) as

follows

r1n(Zi; ξ) = b−d1
∫
Kb
(
x−Wi

b

)
YiE

[
K

(
x(1)−X(1)j

b

)∣∣∣∣Yi,Wi

]
−E
[
YjK

(
x(1)−X(1)j

b

)∣∣∣∣Yi,Wi

]
W(x; ξ)dx

= bd−d1
∫
Kb
(
a
)

YiE

[
K

(
a(1) +

W(1)i−X(1)j

b

)∣∣∣∣Yi,Wi

]
−E

[
YjK

(
a(1) +

W(1)i−X(1)j

b

)∣∣∣∣Yi,Wi

]
W(Wi + ab; ξ)da,

We can also write the following expectation as

E

[
K

(
a(1) +

W(1)i −X(1)j

b

) ∣∣∣∣Yi,Wi

]
=

∫
K

(
a(1) +

W(1)i − v(1)

b

)
fX(1)j |Yi,Wi

(
v(1)

∣∣Yi,Wi

)
dv(1)

= bd1
∫
K
(
a(1) + s(1)

)
fX(1)j |Yi,Wi

(
W(1)i − s(1)b

∣∣Yi,Wi

)
ds(1)

= bd1fX(1)j |Yi,Wi

(
W(1)i

∣∣Yi,Wi

)
+ bd1+1

d1∑
j=1

∫
K
(
a(1) + s(1)

)
sjYiOjfX(1)

(
W ∗(1)i

)
ds(1)

using similar arguments as in the proof of Proposition 2. Thus, we can split r1n(Zi; ξ) as

r1n(Zi; ξ) ≡ r11n(Zi; ξ) + r12n(Zi; ξ),

where

r11n(Zi; ξ) ≡ bd
{
YifX(1)j |Yi,Wi

(
W(1)i

∣∣Yi,Wi

)
−R

(
W(1)i

)}∫
Kb (a)W(Wi + ab; ξ)da,

and

r12n(Zi; ξ) ≡ bd+1
d1∑
j=1

∫
Kb
(
a
){∫

K(a(1) + s(1))sj

(
YiOjfX(1)j |Yi,Wi

(
W ∗(1)i

∣∣Yi,Wi

)
− OjR

(
W ∗(1)i

))
ds(1)

}
×W(Wi + ab; ξ)da.
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We bound E
[
|r11n(Zi; ξ)|2+δ̃

]
as follows

E
[
|r11n(Zi; ξ)|2+δ

]
≤ bd(2+δ̃)||W(·; ξ)||2+δ̃

∞

(∫
Kb (a) da

)2+δ̃

×E
[(
YifX(1)j |Yi,Wi

(
W(1)i

∣∣Yi,Wi

)
−R

(
W(1)i

))2+δ̃
]

∼ O
(
bd(2+δ̃)

)(C0

b

)2d

E

[(
YifX(1)j |Yi,Wi

(
W(1)i

∣∣Yi,Wi

)
−R

(
W(1)i

))2+δ̃
]

= O(1)

where the wave relation follows from Lemma 5.

We omit the rest of the proof for brevity since it is straightforward to extend the remainder of

Proposition 2 to the dependent case in the same manner as we have just shown. This concludes

the proof Proposition 4.
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3.7.6. Proof of Lemmas.

3.7.6.1. Proof of Lemma 5. We can write the deconvolution kernel as follows

K̃b(a) ∼ 1

2πb

∫ ∞
−∞

e−it·a
α∑
v=0

Cv

∣∣∣∣ tb
∣∣∣∣v K̃ ft(t)dt

=
1

2πb

∫ ∞
−∞

e−it·a
α∑
v=0

Cv

∣∣∣∣ tb
∣∣∣∣v K̃ ft(|t|)dt

=
1

2πb

(
α∑
v=0

Cv
(2πib)v

∫ ∞
−∞

e−it·aK̃(v)ft(|t|)dt

)

=
1

2πb

(
α∑
v=0

Cv
(−2πib)v

∫ ∞
−∞

e−it·aK̃(v)ft(t)dt

)

=
1

b

α∑
v=0

Cv
(−2πib)v

K̃(v)(a),

where we have used the fact K̃ft(t) = K̃ft(−t) in the first equality, in the second we use the

result that the Fourier transform of the pth derivative, f (p)ft(t), is equal to (2πit)pf ft(t), and in

the third we have used the result that for a symmetric kernel its derivative is anti-symmetric.

Given this, and the fact that for a second-order kernel we have: for any p ≥ 0 and k = {0, 1}

∫
xkj K̃

(p) (xj) dxj =

 (−1)kk! for k = p

0 for k 6= p.

Combinig these two results we can write

∫
K̃b(xj)dxj ∼

C0

b

and

∫
xjK̃b(xj)dxj ∼

C1

2πib2
.

Notice that for the gamma distribution C1 = 0, hence
∫
xjK̃b(xj)dxj = 0.
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3.7.6.2. Proof of Lemma 6. We can write the deconvolution kernel as follows

K̃b(a) ∼ C

b(2π)

∫ ∞
−∞

e−it·a
∣∣∣∣ tb
∣∣∣∣−γ0 eµ| tb |γK̃ ft(t)dt

=
C

b(2π)

∫ ∞
−∞

e−it·a
∣∣∣∣ tb
∣∣∣∣−γ0 eµ| tb |γK̃ ft(|t|)dt

=
Ce1

b(2π)

∫ ∞
−∞

e−it·a
∣∣∣∣ tb
∣∣∣∣−γ0 ∞∑

v=0

µv
∣∣∣∣ tb
∣∣∣∣γv 1

v!
K̃ ft(|t|)dt

=
C

b(2π)

( ∞∑
v=0

µv

(2πib)(γv−γ0) v!

∫ ∞
−∞

e−it·aK̃(γv−γ0)ft(|t|)dt

)

=
C

b(2π)

( ∞∑
v=0

µv

(−2πib)(γv−γ0) v!

∫ ∞
−∞

e−it·aK̃(γv−γ0)ft(t)dt

)

=
1

b

∞∑
v=0

Cµv

(−2πib)(γv−γ0) v!
K̃(γv−γ0)(a)

where we have used the fact K̃ ft(t) = K̃ ft(−t) in the first equality, in the second we use a Taylor

expansion around |t| = 0 to show ea
γ

=
∑∞

k=0
aγk

k! , in the third we use the result that the Fourier

transform of the pth derivative, f (p)ft(t), is equal to (2πit)pf ft(t), and the penultimate equality

follows from the fact that the derivative of a symmetric function is anti-symmetric. Notice that

we require γ− γ0 to be a natural number for the derivatives of the kernel function to exist. This

is satisfied by the majority of common distribution functions.

We also have the following property for a second-order kernel: for any p ≥ 0 and k = {0, 1}

∫
xkj K̃

(p) (xj) dxj =

 (−1)kk! for k = p

0 for k 6= p.

Combinig these two results we can write

∫
K̃b(xj)dxj =

Cµ

(
γ0
γ

)
b
(
γ0
γ

)
!

and

∫
xjK̃b(xj)dxj =

Cµ

(
1−γ0
γ

)
b22πi

(
1−γ0
γ

)
!
.
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3.8. Appendix - Empirical Applications

Figure 1. Nonparametric plots of the relationship between Cognitive Ability
and Income, Health, Life Satisfaction and Risk Aversion. All control variables are
set at their respective means and b = 0.65.
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Figure 2. Nonparametric plot of the relationship between Inflation Expectations
and Change in Expenditure on Durables and Non-Durables. All control variables
are set at their respective means and b = 0.85.
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