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A B S T R A C T

This thesis contains three essays on the role of tasks and technology in explaining the

trends in reallocation of employment across occupations and sectors, and inequalities

in the labor market.

The first two chapters focus on the task content of occupations with special empha-

sis on the effect of interpersonal interactions in the changing structure of employment

in the labor market. Chapter 1 studies structural change of employment at the task

level. Interactions with customers are a key friction against the implementation of po-

tentially better production styles and technologies, since customers are hard to train

and should be satisfied according to their tastes. Using a wide range of data sources

on tasks, detailed occupation employment, labor productivity, and computer adop-

tion, Chapter 1 develops a novel task measure, interpersonal-service task intensity,

to study the growing importance of service activity in the US labor market in recent

decades and explores its linkages with technical change. The chapter explains the

empirical findings with a model of structural change at the task level which suggests

two distinct roles for interpersonal-service intensity and task-routinizability.

Concerned with the reallocation of employment jointly across occupations and sec-

tors, Chapter 2 quantifies the impact of interpersonal-service task intensity and rou-

tinization on job polarization and structural change of sector employment. I estimate

a task-biased technical change model which is capable to address occupation-specific

and sector-specific technical change separately and show that substantial portion of

occupational and sectoral employment reallocation between 1987 and 2014 in the US

can be explained by the two task aspects. While both types of tasks are significant

drivers of job polarization, interpersonal-service tasks stand out in explaining the

growth of service sector employment. Using the framework I also suggest answers to

several issues in the related literature.

Chapter 3 switches the focus of study from the task content to skills while keep-

ing the occupation-based perspective. The last chapter studies the importance of

within-occupation heterogeneity of skills in understanding the rising labor market
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inequalities. I document that employment and wage growth of occupations tend to

increase monotonically with various measures of skill intensity since 1980 in the US,

in contrast to the existing interpretation of labor market polarization along occupa-

tional wages. I establish robustness of the documented fact, explore the sources of the

seemingly contrasting finding and argue that labor market polarization cannot be in-

terpreted as polarization of skills that are comparable across occupations. The chapter

reconciles the documented facts in an extended version of the canonical skill-biased

technical change model which incorporates many occupations and within-occupation

heterogeneity of skill types.
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Chapter 1

I N T E R P E R S O N A L - S E RV I C E TA S K S

A N D T H E O C C U PAT I O N A L

S T R U C T U R A L C H A N G E

The rise of service economy is a constant of modern economic growth. This chapter takes a

task-based perspective on the growth of services. Customers are inseparable from the produc-

tion of interpersonal-service tasks and retard the productivity growth through their preferences

and own capabilities. Customers, unlike workers, are hard to train and direct; and any change

in the production process to increase efficiency potentially disturbs customer satisfaction. I

document that the key task aspect characterizing service sector specialization of occupations

is interpersonal interactions with customers (interpersonal-service tasks). The growth of oc-

cupation employment after 1970 in the US is strongly predicted by the interpersonal-service

task intensity. The evidence suggests that interpersonal-service task content is associated with

slower labor productivity growth while it is not related to computer adoption that revolution-

ized the workplace in recent decades. I reconcile the empirical findings of the chapter in a

model of occupation-based structural change with two distinct channels of technology where

interpersonal-service task intensity of occupations is linked to slower occupation-specific tech-

nical change, and routinizability leads to deepening of ICT capital.
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1.1 Introduction

Modern economic development is attached to the rising importance of services in

the economy and particularly in the labor market, where this transformation can be

seen in great detail. It is well documented that employment has been reallocated into

the broad service sector, more detailed service producing industries, and even into

occupations which are relatively specialized in service production.1 The leading tech-

nology based explanation for the rise of services has been their relatively low levels

of productivity growth.2 Particular emphasis since the early studies on the service

economy has been placed on the presence of customers during the production pro-

cess, which potentially leads to slower productivity growth in two ways. First, an

improvement in the efficiency of production is subject to customers’ approval (Bau-

mol, 1967). Second, customers influence the efficiency of output also with their own

skills (Fuchs, 1968).3 Despite this clear stress on the task content, the literature lacks

evidence linking structural change to task attributes.

In this paper, I provide a wide-ranging analysis of tasks that are defined by inter-

actions of workers with outside of the firm, which I dub interpersonal-service tasks,

in the US labor market in recent decades.4 There are three contributions of this paper

that shed light on the disaggregate characteristics of the increasing importance of ser-

vice activity in the labor market. First, I document for the first time that interpersonal-

service tasks are in fact the key task aspect characterizing service sector employment.

Second, I introduce evidence suggesting that interpersonal-service tasks can be con-

sidered as a distinct task attribute in comparison to other types of interactiveness,

and other task aspects that are studied in the recent literature. Third, I provide novel

evidence on the links of interpersonal-service tasks to the changing structure of oc-

1 Herrendorf, Rogerson, and Valentinyi (2014) provide a review on the literature on structural change as
well as illustrating the stylized facts of structural change on sectors. See Duernecker and Herrendorf
(2017) for the employment share growth of service occupations.

2 See Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008) for examples of technology based
mechanisms. See Kongsamut, Rebelo, and Xie (2001) for an example of a mechanism based on preference
and income effect

3 Although lower labor productivity growth in services is well known in the literature and widely used
in models of structural change, its determinants are surprisingly understudied in the recent economics
literature. An exception is Young (2014), who argues that slower service productivity growth can be
driven by the reallocation of labor itself within a multisector Roy model framework.

4 In the terminology of this paper the term interpersonal-service tasks excludes service provision without
interpersonal interactions, and interactions without service content. Here the service content is defined
according to the existence of an actual customer.
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cupation employment and technology, and explain them in a task-based model of

structural change.

I take a technology-based perspective to explain the continuous rise of interpersonal-

service intensive occupations. Interpersonal-service task intensity acts as an occupation-

specific friction on productivity growth. This friction is inherent to the nature of in-

terpersonal interactions with customers since customers are simultaneously the con-

sumers of the service and an input of production. When interactions with customers

are the core activity of a task, any reduction in a worker’s time devoted to a customer

as a result of the implementation of a better production style potentially disturbs

the perceived quality by customer, hence customer satisfaction. Customers, unlike

workers, are difficult to train and direct. Accordingly, complications arising from cus-

tomers severely limit the capacity of firms in reflecting the existing economy-wide

innovations as well as in the flexibility of managers in restructuring the workplace

practices.5 As long as occupations that perform different tasks are complements, rel-

atively slower pace of technical change in interpersonal-service intensive occupations

leads to increasing relative labor demand for interpersonal-service tasks.

Such frictions are effective regardless of whether the task is suited to routinization,

a process which has been substituting routine labor on the back of falling computer

prices (Autor, Levy, and Murnane, 2003). A care worker whose task is manual inten-

sive is subject to similar levels of customer-driven barriers to efficiency compared to

a doctor who is complemented by the use of better equipment, or to a sales worker

whose job can be easily codified and partly replaced by computers. Consequently, dif-

ferences in interpersonal-task intensity can help explain the changing relative demand

between two occupations that share a similar level of routinizability.

Innovations in ICT mainly operate through the changing structure of capital, i.e.

increasing use of computers in production, that can also decrease the demand for

labor. On the other hand, customer interactions continue limiting productivity even

when the task is highly computerized. Computerization has been extensively taking

place in customer services thanks to automated response systems, in retail sales jobs

following the increasing use of internet shopping, and in cashier jobs through self-

service checkouts despite their high intensity in interpersonal-service tasks. While

5 The productivity challenges particular to services has been studied relatively more in management
literature. Lovelock and Young (1979) provide several examples on how customers complicate switching
to more productive service provision. Drucker (1991) and Van Biema and Greenwald (1996) argue that
the productivity problem of services involve elements that go beyond the insufficiency of skills, capital
intensity and investment.
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it is true that these occupations are not among the fastest growing, an increasing

employment demand for these jobs compared to other routinizable ones is at odds

with what is expected from their automation experience. This is in sharp contrast

with the remarkably falling demand for office and administrative support workers or

machine operators whose tasks are also affected by computerization while involving

low levels of service oriented interactions with customers.6

I begin the analysis by developing a one dimensional index of interpersonal-service

task intensity (ITI) considering a large set of task characteristics from the O*NET

database. The ITI index focuses on work context and activities rather than worker

skills and abilities. The index measures the importance of interpersonal interactions

with customers and not the complexity of the interactions.7 The set of jobs with the

highest ITI includes childcare and social workers, nurses, therapists, teachers, clergy,

sales agents, and bartenders, all of which can be found throughout the skill and wage

distribution of occupations.

Key in my classification of interpersonal tasks is the direction of interactions. As

ITI is distinguished by interactions with the outside of the firm, I carefully compare it

with its complement, interpersonal interactions within the firm. Although correlated

due to common interactive content, the two task aspects exhibit notable differences.

While ITI can explain service sector specialization of occupations remarkably well and

does not show a significant association with skill intensity of occupations, I find that

a similarly constructed measure of within-firm interactions intensity is not related to

service specialization, monotonically increases with cognitive skill-intensity, and is

most concentrated in high-wage occupations. In this sense, within-firm interactions

fit very well into non-routine cognitive interpersonal task classification of Autor, Levy,

and Murnane (2003).

Since this paper argues ITI as the task-level source of structural change, an im-

portant question is to find out whether ITI can be considered a distinct task aspect

when compared with the existing task-based drivers of occupational reallocation of

employment. Therefore, I compare ITI with other relevant task aspects relating to rou-

6 More precisely, from 1980 to 2000 customer service representatives, cashiers, and retail sales workers
all increased their employment share that sums up to 2.2 percentage points. On the other hand, office
clerks, sewing machine operators and shoe machine operators all experienced declining shares which
totals 1.53 percentage points. Both group of occupations have been subject to intensive routinization but
the former managed to grow in employment share.

7 For instance, sales jobs can be as interpersonal-service intensive as the tasks of architects working with
clients, though the latter requires a superior level of interactive complexity.
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tinization and offshoring hypotheses.8 ITI appears to be negatively correlated with

measures of routinizability and offshorability, but they are both conceptually and ob-

servationally distinct task attributes.

Routinizability is higher when the occupation’s required set of tasks are more

routine, less abstract and less manual intensive (Autor, Levy, and Murnane, 2003).

Interpersonal-service tasks cover a wide range of activities that involve both routiniz-

able and non-routinizable elements. Routine sales jobs, manual personal service jobs,

and abstract professional jobs have above-average ITI scores. When it comes to off-

shorability the key concept is whether a service is delivered personally or imperson-

ally (Blinder, 2009). ITI does not essentially belong to any of these sets. An exam-

ple is helpline jobs in call centers. Although they perfectly fulfill the definition of

an interpersonal-service task, they are actually among the most offshored services.

On the other hand, many on-site jobs that can never be offshored have only little

interpersonal-service content such as construction workers. I discuss in detail how

these alternative task measures differ from ITI in the paper.

My analysis on the post-1970 US labor market reveals that ITI is closely connected

to the changing structure of occupation employment. In particular, the economy has

been steadily becoming more interpersonal-service intensive in contrast to slower and

intermittent growth patterns observed for other task aspects. Between 1980 and 2010

ITI seems to be the leading task attribute that can explain the employment and wage

bill growth of detailed occupations. Furthermore, I show that none of the alternative

task attributes can overturn ITI’s success.

The finding that places ITI as the most important driver of occupational employ-

ment trends is in line with the motivation of ITI as the source of slower productivity

growth in services according to models of structural change (e.g., Ngai and Pissarides,

2007), however the exact link of ITI to productivity is obscure in the literature. Cus-

tomer preferences and capabilities stressed by Baumol (1967) and Fuchs (1968) limit

the set of innovations in the workplace that can be successfully applied. Customer-

driven barriers may increase the cost of innovation and putting them into practice,

acting as an occupation-specific brake on technology growth.9 Alternatively, contexts

8 Routinization refers to decline in the labor demand in routine tasks as a result of increasing use of
computers which efficiently performs codifiable tasks. Offshoring refers to relocation of task input from
domestic labor market to other countries as a result of technology and globalization. See the literature
review section below for more discussion and the references.

9 The case for jobs that require interactions within the firm is quite the opposite. The key distinction
between within-firm and customer interactions is such that the former is easier to restructure while the
latter is not. A manager can change the way people interact for work within the firm as well as its
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that are intensive in interpersonal-service tasks could be inherently resistant to au-

tomation. In this case, the rise of high-ITI occupations would be driven by routiniza-

tion.

The last empirical task of this paper is to explore ITI’s connection with technology.

Using BLS labor productivity data I observe association of ITI with slower industry la-

bor productivity growth. Furthermore, using several indicators of ICT intensification

at occupation, sector, and local labor market level I confirm that ITI is not central to

routinization driven by increasing use of computers in the workplace, suggesting that

the relative stagnancy in interpersonal-service intensive occupations does not stem

from the changing structure of capital after computers.

I qualitatively explain the empirical findings of the paper in a model of structural

change that occurs at the task level. In a framework involving several industries

and occupations, occupation-specific technical change is assumed to be slower with

ITI. Therefore with technological progress, labor productivity of interpersonal-service

intensive production units grows slower while employment is reallocated into these

industries and occupations if there is poor substitutability across tasks, and sectors.

This aspect of the model can be seen as an extension of Ngai and Pissarides (2007)

to include occupations. Following the literature, routinization is introduced in the

model as decline in the price of ICT capital relative to other kinds of capital inputs.

Occupational variation in the impact of routinization is given by occupation-specific

shares of ICT capital in the task-capital. Consequently, ICT capital deepening and

different ICT shares in occupations lead to a higher labor productivity growth and

slower employment demand growth in production units that are more routinizable.10

The rest of the paper is organized as follows. I provide a review of the relevant liter-

ature in the next section. In Section 1.3, I introduce ITI index and study its properties

in comparison with other relevant task characteristics. An analysis of ITI’s impact

on employment demand shifts is provided in Section 1.4, and on technical change in

Section 1.5. In Section 1.6, I study an industry-occupation model of structural change

that can explain the empirical observations of previous sections. Finally, Section 1.7

concludes the paper.

intensity with great flexibility to boost performance. The workers are an input of production on the
performance of whom the firm is primarily responsible. Given the importance of complementarities
between management practices and different forms of technology (see e.g., Bloom, Sadun, and Van
Reenen, 2010, for a review), the technological change has the potential to augment productivity in tasks
where within-firm interactions are intense (see, e.g., Deming, 2015).

10 In this respect the model applies the idea of capital deepening and sector-specific capital shares as a
source of structural transformation in Acemoglu and Guerrieri (2008) in the context of computerization.
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1.2 Related Literature

The paper is connected to several strands of literature which are briefly reviewed in

this section. The first set of papers are related in terms of how services are viewed

with respect to employment growth and labor productivity. The motivation of ITI as

the relevant metric of service activity in this sense can be found in the early work on

service economy. In fact, discussions in the literature regarding the low productiv-

ity growth of services cluster around the lack of impersonal tasks in certain services.

Fuchs (1968) stresses the importance of customer-worker interactions in the produc-

tion process for understanding the service sector productivity. Baumol (1967) argues

that the required modification in production style to increase efficiency may not be

welcomed by the consumer whose satisfaction is not necessarily aligned with the ef-

ficiency of the production.11 Independently, a similar theme is also discussed in the

management literature. Lovelock and Young (1979) argue that customer acceptance

is a key issue in productivity growth in services which introduces several barriers to

implementation of the existing knowledge. The literature observes that the problem

is inherent to the nature of service work, which involves great heterogeneity in terms

of the tasks performed, rather than a matter of investment and allocating physical re-

sources; and that the interpersonal element is an obstacle on productivity growth on

managing a more productive service work (Van Biema and Greenwald, 1996). The rel-

ative stagnancy of service tasks persists despite the adoption of capital-augmenting

technological development (Drucker, 1991; Van Biema and Greenwald, 1996). My

results broadly support the insights of these papers on the service economy.

The paper also connects to the recent literature on services and reallocation of em-

ployment at occupation level. Barány and Siegel (2017) argue that labor market po-

larization stems from structural change mainly due to slower productivity growth in

service sectors and service sector specialization intensity of jobs at the tails of wage

distribution. Duernecker and Herrendorf (2017) take a slightly different view and

emphasize the role of structural change at the level of occupations rather than sectors.

While this paper shares the perspective of both papers on the key role of service ac-

tivity, it is closer to the latter in assuming service-driven changes at occupation level.

11 In Baumol’s words: "A half hour horn quintet calls for the expenditure of 2 1/2 man hours in its performance,
and any attempt to increase productivity here is likely to be viewed with concern by critics and audience alike."
(Baumol, 1967)
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Different from Duernecker and Herrendorf (2017), I study a model extended to many

sectors and occupations, and also allow for routine-biased technical change. Another

key difference is that in this paper I emphasize the role of interpersonal-service tasks

in characterizing the service content of an occupation or sector and thereby provide a

continuous extension of the binary approach of these papers on service classification.

Another set of papers, those on routine-biased technical change and globalization,

relate to this one mainly on two grounds. First, both include direct arguments on in-

terpersonal interactions in the labor market. Second, they are suggested as significant

drivers of occupational labor reallocation and it is of interest of this paper to see how

the proposed channel of relative demand growth of this study compares to them.

Autor, Levy, and Murnane (2003) develop the framework of routinization where

tasks are grouped in five categories: routine cognitive, non-routine cognitive, rou-

tine manual, non-routine manual, and non-routine interpersonal. The classification

is designed to argue how recent technical advances in computers affect the task de-

mand. Their interpersonal measure is closely related to hierarchical contexts within

the firm where complex task requirements such as coordination, direction, and plan-

ning are required. In a related paper, Autor, Katz, and Kearney (2008) combine non-

routine cognitive and non-routine interpersonal task aspects under the single title of

abstract tasks. My contribution to this literature is that I find that the interpersonal

task dimension these papers utilize is similar to within-firm interpersonal tasks, and

that interpersonal-service task content, which is essentially characterized by interac-

tions of workers with other parties outside the firm, is distinctly positioned in rela-

tion to routinizability. While computers cannot easily replace cognitive interpersonal

tasks such as managing a firm or complex interactions among coworkers, its effect

on interpersonal-service tasks is not straightforward. In fact, there are interpersonal-

service intensive occupations that can be routinized (e.g. retail sales) as well as ones

that are hard to be replaced by computers (e.g. care workers). Another contribution

of this paper to this literature is showing that ITI is not associated to ICT intensity

measures from several sources.

One exception in the routinization literature that uses an interpersonal task variable

apart from cognitive interpersonal measure is Goos, Manning, and Salomons (2009).

Similar to this paper Goos, Manning, and Salomons (2009) generate a variable to

measure service tasks and assess how it relates to job growth. While there is some

overlap between their service index and ITI, my paper differs in two aspects. First,
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they view service content as part of non-routinizable tasks and assign a role to service

tasks similar to manual tasks while I emphasize that interpersonal-service tasks and

elements of routinization hypothesis are distinct in several ways. Second, they find

that their service task variable is not a significant source of occupational employment

growth in Europe while this paper suggests that ITI plays a central role in explaining

demand changes in the US.12

This paper is also related to the literature on routine-biased technical change hy-

pothesis due to how routinization is modeled. I depart from the original Autor, Levy,

and Murnane (2003) framework by assuming homogeneous labor skills in the pro-

duction of tasks, and similar to Goos, Manning, and Salomons (2014) my modeling

of routinization results in faster decline in occupation-specific cost of capital in more

routinizable jobs. Furthermore, I contribute by endogenously having this result by

assuming varying shares of ICT capital in the total capital used in task production of

each occupation.

The literature on offshoring predicts outsourcing of certain tasks to other coun-

tries due to globalization and technological change (e.g., Blinder, 2009; Blinder and

Krueger, 2013; Feenstra and Hanson, 1999; Grossman and Rossi-Hansberg, 2008;

Jensen and Kletzer, 2010). The task characteristics that are correlated with offshora-

bility of an occupation share interpersonal elements. In particular, it is argued in

this strand of literature that the jobs that cannot be replaced by international trade

are characterized by the need of material presence of the worker including some of

the tasks with high ITI. However, my approach to interpersonal tasks is essentially

distinct from that of papers on offshoring because high ITI occupations also include

offshorable ones, and offhsorability of an occupation does not distinguish between

interactions among coworkers or with customers. In addition my results confirm the

finding in recent papers in task literature on the relatively minor role of offhsorabil-

ity in explaining occupational employment demand changes (Autor and Dorn, 2013;

Goos, Manning, and Salomons, 2014).

There is a growing interest on labor market implications of non-cognitive skills

in general, and in particular several aspects of interpersonal skills in the economics

12 Michaels, Rauch, and Redding (2016) can be considered as another exception within the routinization
framework that introduces additional interpersonal variables. They provide the most detailed and far-
reaching inspection of tasks and technology using a methodology based on matching thesaurus verbal
meaning categories to occupation definitions. They observe that metro areas are becoming increasingly
specialized in interactive tasks. Their definition of interactive tasks may involve common elements with
ITI such as intersocial volition division in Roget’s Thesaurus. However, the interactiveness measure has
no special emphasis to interactions with outside of the firm, making it hard to compare with ITI.
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literature.13 Finally, this paper is also related to the papers on the role of interpersonal

tasks and skills in the labor market which are briefly reviewed below. A fundamental

departure of my paper from those is that I solely focus on task heterogeneity and

reallocation of employment while they study skill heterogeneity of workers as well as

tasks and its implications on the labor market outcomes, particularly wages.

Borghans, Ter Weel, and Weinberg (2008) classify interpersonal interactions as car-

ing and directness. The former is more important for teachers and nurses and the

latter in sales jobs. They motivate this classification on the psychology and manage-

ment literature on the grounds that these styles matter in effective communication.

Rather than interpersonal styles, I focus on a particular direction of interactions with

reference to the unit of production.

Deming (2015) studies a particular subset of interpersonal skills and argues that so-

cial skills are disproportionately rewarded in the high-skilled labor market as opposed

to cognitive skills that do not require social skills. Social skills in the paper involve

elements like negotiation, persuasion, coordination which require complex skills. The

author particularly focuses on interactions within the firm. Consequently, the paper

develops the importance of social interactions in a model of team-production where

the complementarity of social and cognitive skills are emphasized. It is also pointed

out in the paper that this task aspect is different from what he calls service tasks

which is possibly related to ITI.

While the two papers mentioned above focus on specific types of interpersonal in-

teractions depending on the context there are others which aim to combine all aspects

of interpersonal tasks. Borghans, Ter Weel, and Weinberg (2014) develop a compre-

hensive interpersonal measure by combining people tasks from DOT to understand

the impact of technology on the labor market outcomes of underrepresented groups.

Postel-Vinay and Lise (2015) study multidimensional skills in relation to human cap-

ital and classify the tasks in three as cognitive, manual, and interpersonal. From

O*NET the authors develop a measure of interpersonal interactions including all in-

terpersonal task variables in O*NET. One of their key findings is that interpersonal

task aspect is a distinct productive attribute in the labor market.

13 See Borghans et al. (2008) for a review.
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1.3 The Interpersonal-Service Task Intensity Index

In this section I develop the ITI index and study its properties. In order to untan-

gle the service-relevant task content, ITI emphasizes a particular direction regarding

interpersonal interactions: those between workers and customers. Therefore in the

following I introduce the ITI measure in contrast to interactions that take place within

the firm. I also carefully evaluate how ITI compares to other interpersonal-related

task aspects in the literature as well as skills.

The strategy I employ for selecting the types of interpersonal tasks is based on

O*NET database which provides detailed task variables and is increasingly used in

the existing task literature. The organization of O*NET database follows the con-

tent model which provides a rich and detailed set of occupational characteristics.

The database includes a set of occupational content categories which contain several

types of task information. Some content information is worker-oriented and includes

worker characteristics, worker requirements, and experience requirements. These

characterize the people in those occupations, and hence are relevant for studies on abili-

ties, interests, values, styles, skills, education, experience and training. Others are job-

oriented that reflect the character of occupations: occupational requirements, work-

force characteristics, and occupation-specific information. Some of the O*NET task

categories enable comparisons across occupations and some are occupation-specific.

The ITI index targets measuring the task characteristics that are related to the nature

of the work in terms of interpersonal-interactions with outside of the firm rather than

the skills of workers. It also aims to form a one-dimensional occupational index, and

hence should be comparable across different occupations. Therefore in this paper

I mainly focus on job-oriented and cross-occupation task characteristics of O*NET.

This leaves me with task information on work activities and work context under the

title of occupational requirements. Work activities include job behaviors that can be

observed in many occupations. Work context contains factors that shape the nature

of the work. Both include a variety of interpersonal task characteristics. The former

has 17 variables titled interacting with others and the latter has 14 characteristics of

interpersonal relationships.
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Interpersonal Interactions, Service Activity, and Skills

The key to my classification of interpersonal tasks is the required direction of inter-

actions for the performance of the task. Jobs may require their workers to interact

with other parties outside the organization, while workers may be required to inter-

act horizontally with peers, and vertically with supervisors and subordinates within

the firm. Since not every interpersonal variable of O*NET is relevant in terms of my

division of tasks, I select 7 to form the ITI index and another 7 to reflect within-firm

interactions. The variables included in the two indexes are listed in Table 1.1. The ex-

cluded variables are those that are too general to indicate the direction of interaction

such as contact with others, or face-to-face discussions; and those that are not directly

relevant such as e-mail, telephone, monitoring and controlling resources.

I compute task score in two steps. First is the aggregation of scores at detailed

O*NET SOC categories to a set of 322 consistent Census occupations based on the

classification of Dorn (2009). I standardize each detailed task variable to have mean

of 0 and standard deviation of 1.14 Next, I calculate the mean across related task

variables to calculate the two indexes for each occupation group, which is again stan-

dardized as explained above. The resulting measures for interpersonal-service tasks

and within-firm interactions are positively correlated with an employment-weighted

correlation coefficient of 0.46. This correlation is not unexpected as jobs may jointly

require outside or within-firm interactions, and detailed task variables might imper-

fectly capture both types of interactions to some extent.

I start studying the comparative analysis of interpersonal tasks by showing in Table

1.A.1 the top and bottom ranked occupations for both of the interpersonal variables.

The table is instructive as it shows the typical jobs associated with both sides of inter-

personal tasks. The upper panel shows the top-bottom jobs list for ITI. The top-ITI

list is exclusively occupied by jobs in health, education, social work and clergy, sales,

and personal services.

The lower panel of the table shows top and bottom occupational rankings of within-

firm interactions. While the top is dominated by management and supervisory jobs,

the bottom is mostly characterized by manual task intensive jobs. Although there is

some overlap between typical ITI and within-firm intensive occupations, the list sug-

gests that they capture different aspects of interactions. For instance, the occupation

14 See data appendix for initial steps of task variable construction.
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of barbers in the bottom within-firm interactions list suggests that this job requires

very low levels of help of or coordination with others in the firm. Yet its ITI score is

above average as it requires communication with customers.

Two additional insights are suggested by the comparison of upper and lower pan-

els of Table 1.A.1. First, in terms of skills, ITI shows great diversity while within-firm

interpersonal interactions seem to be positively sorted. High-skilled occupations such

as therapists and pharmacists in contrast to bartenders and parking lot assistants ap-

pear as the typical high-ITI occupations, whereas computer programmers and lower

skilled machine operators coexist among the lowest-ITI jobs. On the other hand, the

divide between skills in highest and lowest within-firm interpersonal intensive oc-

cupations is clear. Secondly, ITI occupations tend to be correlated with all kinds of

service-related jobs while there is no clear pattern for within-firm interactions with

respect to services.

Differences in their distribution along skills and service activity are potentially two

key distinctions between ITI and within-firm interactions. Another piece of evidence

in the same direction is given by Figure 1.1 which shows smoothed task scores by

mean occupational wages in 1980. This graphical tool is frequently employed in the

literature on labor market polarization. Mean occupational wages can be seen as

a proxy for market-relevant skills (e.g, Autor, Katz, and Kearney, 2008; Autor and

Dorn, 2013; Goos and Manning, 2007). It is also known that both tails of the wage

distribution host jobs that are intensive in service activity (Barány and Siegel, 2017).

The figure indicates that ITI is equally high in the lowest and highest paid jobs while

lowest scores are recorded for the middling jobs. On the other hand, within-firm

interactions display a roughly monotonic increase along the wage structure.

Guided by the information on the typical interpersonal-service and within-firm

interactive occupations, next I formally test how both measures differ in terms of

reflecting service-activity and skills using direct measures in Table 1.2. The left hand

side variables on the left and right panel of the table are occupational measures of skill

and service sector specialization calculated from Census as the long-run (1980-2010)

mean years of education and employment share of service sector for each occupation.

The left panel shows the partial correlates of two types of interpersonal interactions

with skills. Columns (1) and (3) indicate that both measures are correlated with skills

though the association is much smaller for ITI. Columns (2) and (4) include major

occupation-group dummies in order to see the strength of relationship within certain
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occupation types. Under this specification within-firm interactions are still related to

skills (column (4)) while ITI is not (column (2)).

The diverging roles with respect to service specialization is starker compared to

skills as shown on the right panel. ITI is strongly related to service-activity (columns

(5) and (6)). Within-firm interpersonal tasks are not associated with services in general

(columns (7)). When the major occupation dummies are in the regression, shown in

the last column, the coefficient of within-firm interactions changes sign to negative.

The table suggests that ITI not only conceptually but also empirically stands out as a

measure that captures the key character of service activity in the labor market without

having a particular emphasis on skills.

ITI and Other Task Characteristics

The previous discussion limits the comparison of ITI according to the direction of

interpersonal interactions. In this part, I extend the discussion to include other types

of task characteristics. These include interpersonal variables from other occupational

information sources and relevant alternative task variables in the literature.

Dictionary of Occupational Titles (DOT) is the predecessor of O*NET and still used

as a reference for occupational task characteristics. It is also rich in terms of interper-

sonal task aspects. Using the interpersonal variables of DOT can provide additional

insights on ITI. I show how selected DOT measures are related to ITI and within-firm

interactions in Table 1.3 by partial correlations. The first observation is that the two

measures are distinct in their association with DOT tasks reflecting intelligence, data

and creative requirements. ITI seems unrelated to these set of characteristics, while

within-firm interpersonal tasks are strongly correlated. The fourth row shows the

partial correlation between direction, control, and planning variable of DOT, which

is the original non-routine cognitive and interpersonal measure of Autor, Levy, and

Murnane (2003). Insignificant and low correlation with ITI and significant and high

correlation with the within-firm measure summarize the difference between two kind

of interactions. The two types of interpersonal tasks also have similarities, which are

mainly regarding common interpersonal communication that are measured by DOT

variables of dealing with people, talking, and people complexity. The last row shows

that the variable measuring the task intensity for influencing people is positively re-
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lated to ITI and does not exhibit significant correlation with within-firm interactions.

The main message of the table, which complements Table 1.2, is that ITI is unattached

to task requirements that involve more cognitive and complex abstract skills in con-

trast to within-firm interpersonal tasks. On the other hand, both are significantly

related to people tasks that are dominantly characterized by non-cognitive content,

though ITI shows a stronger association.

The literature on task demand discusses the impacts of technology and trade at

the task level, and some of them include elements of interpersonal interactions. First,

routinization hypothesis asserts that the ICT revolution that took place in the last

decades of 20th century replaced workers who are performing tasks that are intensive

in routine content and at the same time low in abstract and manual content. The ab-

stract content is composed of two non-routine cognitive task aspects: analytical and

interpersonal. Therefore, it is important to establish whether ITI represents a distinct

task aspect relative to cognitive interpersonal tasks. I already show in the discussion

above that ITI is not closely connected to tasks requiring direction, control, and plan-

ning (DCP), which is used as the cognitive interpersonal measure in the routinization

literature. Cognitive interpersonal tasks are particularly intense in managerial and

organizational roles in the workplace, and hence are more related to within-firm in-

teractions.

Second, I compare ITI with the offshoring measures in the literature. Offshoring

hypothesis predicts that tasks, which do not require the material presence of the

worker while performing the task, are subject to replacement by international trade

in tasks (Blinder, 2009). Following this line of reasoning the literature developed

measures of offshorability building on O*NET database (Autor and Dorn, 2013; Firpo,

Fortin, and Lemieux, 2011; Jensen and Kletzer, 2010). The task characteristic subject to

offshorability is conceptually not related to ITI. However the indicators of offshoring

in the literature suggest a correlation with ITI score because some of the jobs requiring

interactions with customers also necessitates the presence of worker. Nevertheless this

overlap is only partial since there are occupations with high ITI and offshorable at the

same time such as some clerical and sales occupations; and also occupations that

cannot be offshored and low in ITI such as manual intensive repair jobs.15

15 Blinder (2009) compares a subjective measure of offshoring to an objective measure developed from the
O*NET database. The 3 out of 5 O*NET attributes used in the objective measure are also included in
ITI, making both measures potentially highly correlated. Blinder (2009) reports that their subjective mea-
sure has a low rank correlation (ρ = 0.16 ) with the objective one and that there are large discrepancies
between the two. Blinder (2009) and Blinder and Krueger (2013) argue that subjective measures by ex-
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The current literature often only discusses the conceptual differences between rou-

tinization and offshorability measures, as I did in the previous paragraphs for ITI.

Conceptual differences are necessary to establish the essential independence of tasks,

however the overlapping elements have the potential to dominate the distinctive char-

acteristics in the constructed measures. Whether this is the case is hard to assess. The

main difficulty arises since the constructed measures combine several occupational

characteristics that share common elements across different measures. For instance,

non-routine manual tasks decrease both offshorability and routinizability while rou-

tine cognitive tasks increase both. Furthermore, non-routine manual and routine cog-

nitive tasks form quite distinct task aspects. Fortunately, this does not apply when

it comes to comparing ITI to main drivers of task demand in the literature since the

task variables that make ITI are conceptually quite close, i.e., they are all about cus-

tomer related interactions. Therefore in the following I compare a task variable that

sufficiently characterizes interpersonal-service tasks to several others which span the

range of task routinizability and offshorability. Such comparison can be seen as a

validity check for the claims suggested as conceptual differences.

The proxy used for ITI is the O*NET variable "dealing with external customers". In

Figure 1.A.1 I plot the standardized task score of this variable against several individ-

ual variables of routinization and offhsorability for the 322 consistent occupations. ITI

is positively related to the importance of repeating the same tasks, which captures the

basic element of routine and offshorable work. It does not show a monotonic overall

pattern with the non-routine manual task intensity variable, moving and handling

objects, which makes the task less likely to be replaced by computers and workers

in foreign countries. These two observations sharply contrast with the approach that

places non-cognitive interpersonal tasks into non-routine manual (e.g., Goos, Man-

ning, and Salomons, 2009), as customer interactions seem to be neither non-routine

nor manual. ITI is positively related to communication technologies, proxied by the

use of telephone and email while performing the task, and in this sense contains off-

shorable characteristics. In sum, interactions that target customers seem to be either

increasing or unrelated with the key elements of routinizability and offshorability

despite the negative correlations between constructed measures.

perts are better in determining the offhsorability of occupational tasks. Therefore it can be expected that
better offshorability measures exhibit low correlation with ITI, supporting the importance of conceptual
differences.
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Finally, Table 1.A.2 provides an overall summary regarding the comparison of task

measures by showing average task scores transformed into percentiles for each major

occupation category. 16 Interpersonal-service task measure differs from the routiniz-

ability and offshoring mainly because it is jointly and similarly intensive in manage-

rial/professional, clerical and sales, and personal service jobs. This signifies the key

properties of ITI discussed above, that is, reflecting the service-task content with a

weak association with worker skills.17 In fact, routinizability and offshorability mea-

sures are distributed more similarly compared to ITI across major occupation groups.

It is also evident from the table that the mean intensities of within-firm interactiveness

and abstract tasks follow very similar distributional patterns.

1.4 ITI and the Shifting Task Demand

ITI, both conceptually and empirically, captures the key aspects of service production

in the labor market. Therefore, considering the continuous rise of service employment

it can be expected that employment is attracted to jobs with higher interpersonal-

service content. In this section I document and characterize the shifting task demand

into interpersonal-service intensive occupations. I first study the aggregate measures

of task demand and also track the evolution of economy-wide task representation

since the late 1960s. Then I evaluate the average impact of ITI in explaining relative

employment demand growth across occupations in the long run. I keep the compara-

tive approach of the previous section throughout the analysis.

The first evidence regarding shifting task demand towards interpersonal tasks is

provided by Figure 1.2, showing the employment-weighted mean task scores in the

US labor market from 1968 to 2014, where 1968 scores are normalized to 1. Task

scores are time invariant percentiles of corresponding task variables for each occu-

pation, hence the variation through time comes from the changing representation of

occupations in the economy.18 In the figure, the two popular explanations for task

16 Routinizability measure, referred to as RTI, is developed by Autor and Dorn (2013), which is the stan-
dardized score of the log of routine task divided by the multiplication of abstract and manual tasks
intensity scores. Routine, abstract and manual task scores are developed as a combination of the orig-
inal DOT variables following Autor, Levy, and Murnane (2003). Offshoring measure is developed by
Autor and Dorn (2013) following the categorization of Firpo, Fortin, and Lemieux (2011).

17 In addition, Table 1.A.3 shows that routinizability and offshorability measures have no association with
service sector specialization of occupations.

18 This approach follows Autor, Levy, and Murnane (2003) which is then used by others (e.g., Borghans,
Ter Weel, and Weinberg, 2014; Deming, 2015).
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demand changes in the US economy are compared to ITI. The evolution of ITI in

the economy can be well approximated by a linear trend while routinizability and

offshorability follows a non-monotonic course. The almost-monotonic rise of ITI’s

representation in the labor market is in line with the growth of services during the

same period. Routinizable occupations, measured by RTI index, expand during 1970s,

followed by a steady decline starting with 1980 until early 2000s when the trend is

even reversed for a short time. Overall, the bulk of the impact of routinization seems

to take place in a period when personal computers had been increasingly adopted in

the workplace, consistent with routinization hypothesis. The economy-wide offshora-

bility oscillates around its 1968 level until mid-1990s, which then displays a mild

trend of decline. The decline accelerates further in early 2000s and then aggregate

offshorability follows a flat path. This appears to be consistent with offshorability hy-

pothesis which suggests that the task demand for offshorable jobs decline as a result

of increasing globalization together with global adoption of ICT. As of 2014 the US

labor market is considerably more interpersonal-service intensive, less routinizable to

a lesser extent, and slightly less offshorable compared to the late 1960s.

An indirect insight from the figure is that the task variables are quite different with

respect to how the task demand evolves over time. There are periods when the course

of different tasks in the economy exhibit certain correlations and others when they

correlate in the opposite direction. This observation supports the viewpoint of this

paper on the distinctive labor market-relevant characteristics represented by ITI, as

well as the essential difference between routinizability and offshorability emphasized

in the previous literature (Autor and Dorn, 2013; Blinder and Krueger, 2013; Goos,

Manning, and Salomons, 2014), despite correlations across occupation scores.

Figure 1.2 suggests ITI and RTI as the two important task aspect regarding the

changing occupational structure in the economy. Therefore in the following, I dig

deeper into the potential connection between ITI and RTI by performing the same

analysis in Figure 1.2, this time comparing ITI and components of RTI index. Panel

A of Figure 1.3 includes the computed series for abstract, routine, and manual tasks,

which form the key task categories of routinizability. The figure captures the rise in

non-routine abstract tasks, the decline of routine tasks and relatively stable movement

of manual tasks as in Autor, Levy, and Murnane (2003). Decline of routine occupa-

tions start with 1980s, roughly matching the period when computerization intensifies.

The figure also reveals the source of stagnating RTI starting with 2000s. Routine and
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abstract tasks both slow down compared to 1980-2000 period although the flat move-

ment is more emphasized in abstract tasks.19

The figure also indicates that roughly between 1980 and 2000 both ITI and abstract

tasks followed similar trajectories. Given the cognitive interpersonal element embed-

ded in the abstract task measure (i.e., tasks summarized by direction, control and

planning activities) this comovement can stem from correlations between the two mea-

sures. In order to address this concern I show the result of a counterfactual exercise

at Panel B. The solid lines indicate the original task variables while dashed lines show

the adjusted series. The grey dashed line, Abstract*, is the residuals from the regres-

sion of abstract measure on ITI. The other, ITI*, is the residuals from regressing ITI on

the abstract measure. Therefore the former shows the abstract measure that is uncor-

related with ITI and the latter shows the alternative ITI measure that is orthogonal to

the abstract attributes. Both are transformed into percentiles and subject to the same

computation steps with the original series.

The adjustment yields lower growth in both tasks but in different ways. ITI and

its adjusted version decouple starting with early 1980s. The gap widens throughout

1990s then remains roughly the same. This can be potentially explained considering

the impact of ITI’s positive correlation with the non-routine interpersonal tasks since

routinization intensifies after the 1980s and reaches its peak during the 1990s. On

the other hand, adjusted abstract task measure disengages from its original since the

initial sample period while the difference only gets larger with time. The slowdown

in abstract tasks is more emphasized in its adjusted version. More precisely, between

2000 and 2014 the abstract measure that is orthogonal to ITI grows at a rate of −0.01

percent per annum compared to average annual growth rate of 0.41 percent between

1980 and 2000. In contrast, adjusted ITI indicates a more pronounced rise by growing

annually 0.30 percent after 2000, which is almost identical to the growth of the original

ITI measure during the same period and quite close to the historical growth rate

before 2000.

Though the visual evidence from Figure 1.2 is instructive, a more sophisticated

understanding on the rising importance of non-cognitive interpersonal tasks in the

labor market can be obtained by a regression model. Motivated by Figure 1.2 on

the long-run stability of task shifts towards ITI, I use 1980-2010 changes in occupa-

19 In an attempt to update Autor, Levy, and Murnane (2003), Autor and Price (2013) documented the flat
movement in abstract tasks for the first time.

31



tional employment demand indicators from Census and ACS and run the following

regressions:

∆ej = c+
∑
x∈X

βxyxj + uj, (1.1)

where ∆ej denotes the long-run log change of the employment demand variable (total

hours or total wage income) e between 1980 and 2010 for occupation j; x is some

variable computed at the task level such as ITI, belonging to a set of occupation-

specific variables X; βxy corresponds to the impact of task x on employment demand

growth; and c is the constant term.

Estimated OLS coefficients of equation (1.1) when dependent variable is the log

change in total hours are reported in Table 1.4. I address different specifications

under each column. Column (1) estimates a significant positive impact for ITI alone.

Column (2) reports a significant negative coefficient for routinizability index. Under

column (3) I include both variables. Interestingly, RTI becomes insignificant as ITI’s

coefficient does not shrink too much. Column (4) reports the specification where the

three elements of routine task intensity are separately in the regression. Abstract and

routine tasks are significantly associated with increasing and decreasing employment

demand, respectively. The manual task intensity on the other hand, is not associated

with demand growth. This is in line with the literature on routinization as well as

the introductory analysis of this section. Similar to the joint routinization measure,

having elements of routinization does not change the high and significant impact of

ITI (column (5)). In column (6) the offshorability measure has an impact similar to RTI,

which also vanishes with the presence of ITI (column (7)). Another alternative is SBTC

at the occupation level. I use long-run mean years of schooling for an occupation as

the skill variable. Column (8) confirms the skill-biased rise in employment demand

at the level of detailed occupations. In column (9) when they are in the regression

jointly with ITI, both variables remain with positive and significant impact. Column

(10) reports the regression with all variables, which once again confirms that ITI is a

strong predictor of employment growth.

In the last two columns of Table 1.4, I include dummies for six major occupation

groups that are listed in Table 1.A.2. Using major occupation group dummies can

also be seen as way to jointly account for many factors that lead to job polarization

(e.g., routinization, offshoring, decline of manufacturing, de-unionization) since the
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literature typically observes a rise in employment share and wages in managerial,

professional and technical jobs as well as service occupations; and a decline in relative

demand for production, sales, operators, transportation, and construction jobs. In

column (11) the coefficient of ITI shrinks by a considerable amount while still being

a significant predictor. In column (12) all other alternative task variables are included

in addition to ITI. ITI’s estimated coefficient is the highest and the only significant

estimate. Taking the lower bound of ITI estimates, one standard deviation higher ITI

leads to 0.5 percentage points faster annual growth in occupation employment.

Table 1.5 shows identical specifications to the previous table when dependent vari-

able is 1980-2010 change in log wage bill. It also includes information on the relative

price of the occupational labor input. Compared to Table 1.4 higher coefficients are

estimated for ITI. On the other hand within-occupation group associations of ITI to

employment and wage bill growth are similar.

The importance of the simple analysis here is that it provides a horse race of tasks

in occupation growth using data that are consistently available in the long run at the

most detailed level of occupations. Tables 1.4 and 1.5 establish that ITI is the domi-

nant long-run driver of relative employment demand growth.20 In the next section,

I complement the study of ITI’s role in the economy by exploring its linkages with

productivity and technology.

1.5 ITI and Technology

From simple correlations to occupational distributions, or through inspecting the re-

lationship with occupational demand, the evidence suggests that ITI stands out as an

important task aspect. However, nothing is yet known about how it relates to tech-

nology. Nevertheless, considering the close connection of ITI to service production,

insights from the literature on the service economy suggests a certain direction on

ITI-technology relationship.

20 These tables aim to show the growing importance of interpersonal-service tasks in the labor market
through comparisons with popular task measures used in the literature. Table 1.A.4 provides evidence
that ITI performs also superior also compared to within-firm interactions, which are closely correlated
with social and cognitive skills. A key observation from that table is that controlling for the skill in-
tensity of occupations leaves no predictive value for within-firm interactive task content, in contrast to
interpersonal-service content.

33



Low productivity growth in services has been known by economists for a long time.

It is also a widely believed channel of structural change, which often finds its represen-

tation in the structural change models as a slower sector-specific technology growth

in services. Even starting with early works of William Baumol and Victor Fuchs, the

central argument on why services have lower productivity growth is concentrated on

the customer-producer interactions that are complex, fragile and hard to change in

terms of the style of production. This aspect of interpersonal interactions is precisely

what ITI measures. Therefore a task-based explanation for slower sector-specific tech-

nology growth rate in services suggests slower occupation-specific technology growth

correlated with ITI.

The recent literature on tasks and technology is dominated by routinization hypoth-

esis. Similar to the role of sector-specific productivity growth in the structural change

models, in the literature the success of RTI in explaining employment reallocation

(in the reverse direction) stems from the fact that RTI-intensive occupations have a

faster productivity growth as a result of more intensive computerization. Since both

ITI and RTI are important task aspects in terms of the reallocation of employment,

the comparison between the two with respect to technology is the main discussion

in this section. Recently, both technological growth that is slower in service activities

(Barány and Siegel, 2017; Duernecker and Herrendorf, 2017) and faster in routinizable

ones (Autor and Dorn, 2013; Goos, Manning, and Salomons, 2014) are studied, but

characterization on how the two connect to the technological change at the task level

remains obscure. Below I first show that the stylized view on productivity and tasks

hold at industry level.21 Then I provide novel evidence on how interpersonal-service

content relates to developments in ICT technologies, which are well known to be the

basis of recent routinization experience.

If customers really act as a brake on productivity, we should observe slower labor

productivity growth not only in the broad service sector but also in detailed sec-

tors that more intensively employ interpersonal-service tasks. While the well known

examples of industries with slowest labor productivity growth or with highest rela-

tive price increases such as health and education services can be easily recognized

as high-ITI industries, it is of interest of this section whether this association holds

throughout the economy. In addition, if routinization enables more exposure to labor-

21 Unfortunately, to the best of my knowledge there exist no data that measure productivity across years
at the occupation level.
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saving technologies, labor productivity should grow faster in industries with higher

RTI. I formally test these claims using labor productivity data from BLS between years

1987-2014 below. The productivity data is detailed at finer industry categories how-

ever they cannot be reliably matched to industry codes in CPS or Census where I

compute employment-weighted industry-task intensities. Instead, I generate industry

task intensities for 12 broad NAICS categories. In particular, I estimate the following

equation:

ait =
∑
x∈X

βxm (xm × time) + dt + ηi + uit (1.2)

where ait is the log of labor productivity index for detailed industry i at time t; xm

is the time invariant measure of broader sector task intensity22 of task x performed

by the workers in broader sector m in a set of tasks denoted by X; time is a running

variable for year; dt are year dummies; ηi are industry dummies. βxm captures the

impact of industry task intensity on the growth rate of productivity in broader NAICS

sector m.

Table 1.6 column (1) reports βITI and its standard error. As expected, the coefficient

of ITI is significantly negative and statistically significant. Sectors with higher ITI

exhibits slower labor productivity growth. Column (2) reports positive and significant

coefficient for βRTI. The last column includes both RTI and ITI in the regressions,

where reported coefficients shrink only little compared to individual estimates under

other columns. Industry labor productivity trends are in line with the predictions of

the stylized view.

In the remaining I explore the potential channel of technology through which ITI

operates. Given that routinization is driven by widespread use of ICT technologies,

there are two potential cases that can explain the trends in employment and productiv-

ity. In the first case, although ITI and RTI are distinct tasks, they are complementary

measures of routinization. The implication under this scenario is that the framework

of Autor, Levy, and Murnane (2003) should be improved by considering interpersonal-

service tasks. This result is similar to how Goos, Manning, and Salomons (2009) ap-

proach routinization. The second possible case is that interpersonal-task intensity is

not related to routinization process, and hence it should be evaluated as a separate

22 I simply use standardized long-run mean task scores for each sector using CPS labor supply weights.
Task score rankings across sectors are remarkably stable over time, the evidence for which is available
upon request.
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channel. The second case is closer to how the structural change literature tends to

view the service activity.

The literature suggests a specific channel regarding how RTI leads to faster labor

productivity growth. The mechanism of routine-biased technical change assigns a

key role to capital, specifically to ICT capital. High RTI occupations, industries, and

economies go through greater levels of ICT intensification, or computerization (Autor

and Dorn, 2013; Autor, Levy, and Murnane, 2003). Given the negative association

between routine tasks and ITI it is a valid concern whether slower productivity growth

associated with ITI also stems from lack of automation. Therefore in the last part of

this section I discover how ITI is related to recent technological advances in computing

technology. I do it by providing evidence at the level of occupations, industries and

local labor markets.

The first evidence comes from the O*NET database. I combine two occupational

task variables on computerization and automation. The first one provides occupa-

tional information on the importance of interactions with computers. This variable

reflects computerization but since it measures interactions with computers it might

fail to capture computerization that took place without interactions. Therefore I use

another variable, degree of automation, which indicates how automated the job is.

Using only the latter variable might lead to overrepresentation of automation history

beyond the recent technologies. Therefore, the combined measure is an average of

two aspects of technology.

Table 1.7 reports the OLS estimation results from regression of the computerization

measure on ITI, RTI and components of routinization framework.23 The specification

at Column (1) includes only ITI. The insignificant coefficient suggests that ITI is not

a good predictor of computerization at occupation level. This reflects the fact that

interactions with customers may or may not be subject to computerization depending

on the other task characteristics of the job. One can find examples where ITI is related

to lack of routinization (e.g., barbers) as well as cases with successful computerization

(e.g., sales workers).

In contrast, column (2) shows that RTI is significantly related to computerization

as expected by routinization hypothesis. Column (3) where both variables are in the

23 In particular, I estimate equations of the following kind: Cj = β0 +
∑
x∈X βxxj, where Cj is the com-

puterization measure for occupation j, x is a task measure in the task set X, and xj is the corresponding
task score.
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specification reports similar point estimates for RTI while ITI’s coefficient remains

small and insignificant.

Remaining specifications go one step further from using the composite routineness

measure and include the elements of routinization framework in the specifications.

Column (4) reports the three task variables of DOT from Dorn (2009). As predicted by

the routinization framework of Autor, Levy, and Murnane (2003), abstract and routine

task intensive occupations experience greater computerization as cognitive complex

tasks are complemented and routine tasks are substituted by computers. On the other

hand, manual task intensity decreases computerization quite strongly, as computers

are not capable of replacing non-routine physical tasks nor directly helping them.

Column (5) reports that controlling for the components of the routinizability measure

do not impact the ITI’s (lack of) connection to computerization.

The last two columns give further insight by providing the most detailed break-

down of RTI. I use Acemoglu and Autor (2011)’s measures from O*NET. Column

(6) suggests a nuanced understanding for the impact of non-routine cognitive tasks,

which are mentioned as abstract in the previous paragraph. The source of comple-

mentarity in abstract content seems to be coming from analytic tasks, while cognitive

interpersonal tasks which emphasize the managerial content has a negative effect on

computerization. Cognitive and routine tasks lead to computerization while routine

manual ones do not appear to be related to it. Finally, the non-routine cognitive task

content from O*NET has a coefficient quite similar to manual task intensity variable

of DOT. Column (7) indicates that ITI at the occupation level seems unrelated to the

computerization measure in the face of the most detailed elements of the routinization

framework.

Table 1.7 uses measures for ITI, RTI, and components of routinization that are con-

structed from detailed task variables, and the data are aggregated to 322 consistent

occupations. In order to see whether results of Table 1.7 hold for more detailed oc-

cupation categories and more direct task variables Figure 1.A.2 plots the O*NET task

variables "importance of repeating the same tasks" and "dealing with external cus-

tomers" with the same computerization variable using 942 O*NET SOC occupation

units. Obviously, the former is a rough measure for routineness and the latter is a

good proxy for ITI. Occupations that are characterized by repeating the same tasks

are the ones with greater levels of ICT intensity. Confirming the results from Table 1.7,

occupations which require dealing with customers are not negatively related to ICT
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intensity. Instead, there is a slight positive association. The existing evidence from

the detailed task database is far from suggesting a role for interpersonal-service tasks

within the existing routinization framework.

Second piece of evidence is at industry level. BEA Capital Flow Table, 1997, pro-

vides a basic source for studying new purchases of ICT capital. It reports the pur-

chases of new capital for 123 detailed industries. From the full set of detailed indus-

tries I redefine 66 that are compatible with CPS industry codes. ICT purchases are

calculated as the sum of computers and peripheral equipment, office and accounting

equipment, software and communication equipment. ICT share in new capital pur-

chases is calculated as ICT purchases divided by total equipment purchases. I simply

run regressions of the ICT intensification ratio on long-run employment weighted

task intensities in Table 1.8.24 Column (1) indicates a positive, small coefficient of ITI

with a relatively large standard error. The unconditional association of ITI with ICT’s

share in new purchases does not provide any useful correlation as R2 reported for

column (1) is zero. This should be compared with the impact estimated for RTI since

routinization hypothesis suggests a strong positive connection between RTI of an in-

dustry and intensification of ICT technologies. The large and significant coefficient of

RTI in column (2) indicates that ITI is not very much related to ICT intensification of

industries. This result does not change when ITI and RTI are jointly present, which is

reported in the last column.

Last evidence on computerization and tasks comes from the US local labor markets

in Table 1.9. I run regressions of adjusted PCs per employee in the local labor market

on labor market-wide initial task intensities. The analysis here is similar to Autor and

Dorn (2013)’s column (3) of Table 3. They show that routine specialization of an initial

zone can predict the computer adoption in the following 10 years quite well. Here my

aim is to see how ITI is compared to RTI, when the dependent variable is the computer

intensity instead of adoption. I use Doms and Levis’s adjusted personal computers

per person measure calculated for 675 Commuting Zones (CZ) of the US for years

1990 and 2002 from Autor and Dorn (2013). This data counterpart of ICT intensity is

relevant but incomplete since personal computers account for only a portion of ICT

24 Equations estimated are of the following form: ICTi = β0 +
∑
x∈X βxxi, where ICTi is the ICT intensi-

fication measure for industry i, and xi is the industry mean score of task x.
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capital. Commuting Zones provide a natural geographic unit in terms of economic

connections at the local level. In particular I estimate the following equation:

PCkst = δs + dt +
∑
x∈X

βxxkst0 + εkst, (1.3)

where PCkst is the adjusted PCs per employee at commuting zone k, state s and time

t for 1990 and 2000; δs are state fixed effects; dt are time fixed effects; xkst0 is the

commuting zone task intensity for task x at initial time period, i.e. 1980.25

In Table 1.9 column (1) suggests that ITI is positively related to computer adoption.

However, the effect becomes small and insignificant when controlled by the initial

skill intensity of local labor markets, defined by the percentile ranking of commuting

zone college worker share in employment, as shown in column (2). Columns (3) and

(4) show that RTI leads to higher computer intensity even when conditioned on the

skill intensity. The last column confirms that having ITI in the regression changes

nothing regarding the RTI’s coefficient and the fit of the model.

The evidence on ITI and ICT intensity is remarkably consistent at occupation, indus-

try and local labor market level. It also suggests that ITI and RTI are not only distinct

task characteristics, but they also reshape the structure of employment through differ-

ent channels. While computerization enables faster productivity growth in high RTI

tasks, high ITI tasks are relatively stagnant due to a reason apart from non-neutral

progress in ICT. ITI slows down the productivity growth most likely in the form of a

friction on the growth of neutral technology, which is effective regardless of worker

skills and intensity of better capital. In the next section, I conceptually introduce this

as task-specific technical change and develop a model which is consistent with the

empirical observations documented in this paper.

1.6 Analytical Framework

In this section I study a general equilibrium model that can rationalize the empirical

findings of the paper. First, I describe layers of production in the model where I intro-

duce firms’ problem in industry, task, investment and task capital production. Then

25 Commuting zone task intensity variables are first calculated following Autor and Dorn (2013) as the
commuting zone share of employment that works in ITI or RTI intensive occupations. An occupation is
ITI or RTI intensive if the occupation’s corresponding task score lies within the highest tercile. I use the
percentile transformed versions of the task intensities to allow comparison between ITI and RTI.
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I include the household’s consumption decision and analyze general equilibrium im-

plications of the model regarding industrial and occupational reallocation of labor

subject to exogenous changes in technology.

The task-based approach of the model suggests that technological innovations are

occupation-specific. The model is similar to Goos, Manning, and Salomons (2014) and

Duernecker and Herrendorf (2017) in having the industry-occupation structure. The

model here is different from the former since I model routinizability of an occupa-

tion as an outcome of computing capital intensity and additionally study occupation-

specific technical change in a general equilibrium setting.26 It differs from the lat-

ter by allowing for routinization, and studying many sectors and occupations. The

approach here can be seen as an extension of technology-driven structural change

models (Acemoglu and Guerrieri, 2008; Ngai and Pissarides, 2007). Two forces of

labor reallocation is occupation-specific technical change and capital deepening. The

first channel can be seen as the occupation analog of Ngai and Pissarides (2007)’s

industry-specific productivity growth. Though the idea employed is similar, the sec-

ond channel is slightly different than what Acemoglu and Guerrieri (2008) suggest.

They have homogenous capital and different capital shares in sectors leading to struc-

tural change while here I emphasize different ICT-capital shares within occupations

while the share of task-capital aggregate (combination of ICT and other capital) is

constant among occupations.

1.6.1 Industry Production

Perfectly competitive firms carry out industry production by combining task inputs

produced for that industry. The output of each industry is then consumed by the

household. The total number of industries is I and total number of occupations is J.

The production follows the following CES functional form:

Yit =

 J∑
j

(φij)
1
θ (Tijt)

θ−1
θ

 θ
θ−1

, (1.4)

where i = 1, . . . , I; j = 1, . . . , J; Yi is output in industry i; Tij is industry i’s task

input from occupation j; φij is exogenous task weight; and θ > 0 is the elasticity of

26 Goos, Manning, and Salomons (2014) do not study the general equilibrium model, but take into account
demand effects in their empirical analysis.
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substitution between task inputs, which is assumed to be the same across industries.

Firms take industry output price, pi, and task price, τj as given and maximize profits

at time t:

max
Tijt

pitYit − J∑
j

τjtTijt

. (1.5)

First order conditions imply that the optimal task input demand increases with

higher output demand, output price, and lower task price:

Tijt = φijt

(
pit
τjt

)θ
Yit. (1.6)

1.6.2 Task Production

At each industry there is a set of occupations that produce tasks by combining la-

bor and task capital in the form of computing and non-computing capital.27 I as-

sume perfect competition within each occupation-industry pair and technology is

only occupation-specific. Task producers hire labor and task capital to produce tasks

to be used in industrial production:

Tijt = AjtL
α
ijtE

1−α
ijt , (1.7)

where Aj is occupation-specific technology term; Lijt and Eijt denote labor and task

capital respectively for occupation j operating under industry i. There are two types

of task capital required for production. In particular I further assume that task capital

is a Cobb-Douglas aggregator of computing capital, KCijt, and other capital, KNijt:

Eijt =
(
KCijt

)κj (
KNijt

)1−κj , (1.8)

where κj is the occupation-specific share of computers in task capital.

Profit maximization problem of the task producer is as follows:

max
Lijt,KCijt,K

N
ijt

[
τjtTijt −wjtLijt − p

C
t K

C
ijt − p

N
t K

N
ijt

]
, (1.9)

27 By computing capital, computers, or ICT capital I refer to all equipment that has been the subject of
ICT revolution. The remaining task capital includes all other equipment and/or structures required to
perform the task.

41



where wj, pC, pN respectively denote wage rate, price of computing and other capital.

Occupation-specific technical change in the model is captured by the differential

growth rates of Aj across occupations and the degree of routinizability is determined

by a higher share of computer capital, κj. In order to see key mechanism of routiniza-

tion one can construct the ideal price index for aggregate task capital Eij:

pEjt =

(
pCt
pNt

)κj
pNt Ωj, (1.10)

where Ωj = κ
−κj
j

(
1− κj

)−(1−κj). Equation (1.10) implies that across occupations

relative price of task capital depends on κj only. The price of task capital aggregate,

pEj , is also specific to occupation because of the share of computing capital. Therefore

occupations effectively differ in terms of the cost of task capital they are subject to.

Consider a simple comparative statics exercise where the relative price of comput-

ing capital falls. The decline in the price of computers is the same for every occupation,

but the cost of total capital decreases more in occupations with a higher share of com-

puters. This leads to increasing use of computers relative to other capital. Therefore, a

higher κj corresponds to a greater degree of computerization in an occupation while

computers are becoming cheaper. Moreover, under Cobb-Douglas task capital aggre-

gator, profit maximizing implies that the share of computers in total capital purchases

should always be larger in occupations with higher κj:

pCt K
C
ijt

pEjtEijt
= κj. (1.11)

The demand for labor and the composit capital input is given by first order condi-

tions of (1.9):

Lijt =
ατjTijt

wt
(1.12)

Eijt =
(1−α)τjtTijt

pEjt
, (1.13)

where pEjt is defined as in equation (1.10).
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1.6.3 Investment and Task Capital

In this section, I study the investment sector and production of the task capital. I start

with a clarification on the the use of the term capital in the model. There are two

types of capital. First is the household capital which is allocated to either investment

sector or rented to be used in goods production. Second is the task capital that is

obtained by transformation of household capital and then used as an input of task

production. In this sense, task capital is measured in efficiency units of household

capital. To avoid confusion, note that all K with an upper script letter corresponds to

task capital as in the previous subsection, and K with lower script letter corresponds

to household capital.

Investment Sector

There is a simple investment sector with AK production function. The investment

good is given by YXt = BXKXt, where KXt is the household capital allocated to invest-

ment sector and BX is the level of investment technology. The price of capital is rt,

hence the competitive structure of the sector ensures zero profits, i.e. rt = r = BX.28

In addition, capital accumulates according to the following:

Kt+1 = (1− δ)Kt + YXt, (1.14)

where K represents total capital stock in the economy.

Production of Task Capital

All task capital is produced in another sector which is simply characterized by two

types of firms transforming household’s capital into computing or other task capital.

I assume there is a continuum of perfectly competitive firms in each task capital sub-

sector which use different technologies. Therefore, firms take prices pCt and pNt . The

production function is given by Kmt = Bmt Kmt for m = {C,N}, where Bm is the level

of technology to produce capital type m. Recall that K with a lower script represents

28 Price of the investment good is normalized to one.
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the quantity of household capital devoted to a particular type of task capital rented at

price r. Capital prices and task capital technologies are connected by the following:

r = pCt B
C
t = pNt B

N
t (1.15)

Equation (1.15) implies that the result of faster developments in the ICT technolo-

gies relative to technology of other capital is a greater decline in the relative price of

computer.

There are two important things to note regarding the nature of capital-embodied

technical change in this model. First, any fall in the price of capital does not neces-

sarily mean computerization. What happens to relative price of computing is the key.

Second, within each industry capital-embodied technical change may or may not be

labor substituting, depending on industry-task demand. This point is further clarified

in the last part of this section.

1.6.4 The Household

The representative household in this economy consumes the final output produced

by industries, Ci for i = 1, . . . , I, and has the following life-time utility:

∞∑
t=0

βt logCt, (1.16)

where Ct =
(∑I

i (λiCit)
ε−1
ε

) ε
ε−1

is the CES consumption aggregator. ε > 0 is the elas-

ticity of substitution between goods, and λi is a preference weight of the consumer to

good i. Consumers maximize utility by choosing the optimal saving and consumption

subject to the following budget constraint:

I∑
i

pitCit +Kt+1 = (1− δ+ rt)Kt +wtLt. (1.17)

The left hand side of the budget constraint is the total consumption in the current pe-

riod plus household capital allocated for the next period. The right hand side involves

the capital and wage income of the household plus the undepreciated household cap-

ital. The optimal allocation of consumption across goods and optimal allocation of
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total consumption across periods can be analyzed separately. First order conditions

imply the following consumer demand for industry output:

Cit = λ
ε−1
i

(
pit
Pt

)−ε

Ct, (1.18)

where the price index, P, is given by

Pt =

[
I∑
i

(
pit
λi

)1−ε] 1
1−ε

. (1.19)

The inter-temporal consumption decision is governed by the following:

Pt+1Ct+1
PtCt

= β (1− δ+ rt) . (1.20)

1.6.5 Equilibrium

At each time t > 1, given occupation-specific technology for each occupation
{
Ajt
}J
j=1

,

technology for computing and other capital BCt and BNt , time invariant investment

technology BX, total hours of household Lt, and the initial household capital stock

K0, equilibrium in this economy is defined by industry output prices {pit}
I
i=1, task

prices
{
τjt
}J
j=1

, price of computing capital pCt , price of other capital pNt , wage rate

wt, rental price of capital rt; consumption bundle {Cit}
I
i=1, industry output {Yit}

I
i=1,

task output
{{
Tijt
}J
j=1

}I
i=1

, labor hours, computing and other capital, and invest-

ment capital
{{
Lijt,KCijt,K

N
ijt,KXt

}J
j=1

}I
i=1

such that:

1. Households choosing Cit and Kt+1 maximize utility in (1.16) subject to (1.17),

2. In each industry, firms maximize profits according to (1.5),

3. In each occupation of each industry, firms maximize profits according to (1.9),

4. As a result of competition and profit maximization (1.15) holds in the task-

capital market, and rt = BX holds in the investment sector,

5. Household capital accumulates subject to (1.14),

6. Markets clear:

a) Cit = Yit for i = 1, . . . , I,
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b) YXt = BXKXt

c) Lt =
∑I
i=1

∑J
j=1 Lijt,

d) Kt = KXt+KCt+KNt = KXt+
KCt
BCt

+
KNt
BNt

= KXt+
∑I
i=1

∑J
j=1

(
KCijt
BCt

+
KNijt
BNt

)
.

It can be shown that the economy is subject to a generalized balanced growth path

where aggregate output, aggregate capital, total consumption expenditure, and wages

grow at rate β (1− δ+BX). The key in the reallocation of labor is industry output and

task prices which are given by the following equations:

pit =

 J∑
j

φij
(
τjt
)1−θ 1

1−θ

, (1.21)

τjt =
1

Ajt

(wt
α

)α( pEijt

1−α

)1−α
. (1.22)

1.6.6 Technical Change, and Predictions of the Model

In this part I study the model predictions that can explain the empirical observations

of previous sections. I proceed by linking technology to tasks based on two indepen-

dent assumptions. First, I assume that ITI of an occupation is inversely proportional

to the growth rate of occupation-specific technology parameter Ajt. This reflects the

idea that interactions with customers slow down technological progress realized in an

occupation for reasons other than improvements in task capital, such as customer ac-

ceptance and incapabilities. Second, I assume that the time invariant share of ICT (or

computing) capital in task production κj is proportional to RTI of an occupation. Al-

though in fact this share may change with respect to time and technical developments,

I follow the literature on assuming a fixed level of routinizability at the task level. The

rest of the assumptions characterize the well-known fall in the relative price of ICT

capital. That is straightforward to achieve in the model by assuming an increasing

time-path for BCt /B
N
t , i.e., higher relative growth rate in computer technology.

The following two results characterize the model’s task-driven forces of employ-

ment reallocation. Note that all claims are stated under the characterization of tech-

nology above.
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result 1 (occupational reallocation of labor): Suppose that θ < 1. Em-

ployment and wage bill growth is higher in more interpersonal-service intensive and less rou-

tinizable occupations.

I simply illustrate this result by comparing two different occupations, j and j ′,

within industry i. Using equations (1.6), (1.12), and (1.22) the relative demand for

labor is given by

Lijt

Lij ′t
=

(
Ωj

Ωj ′

)(1−α)(1−θ)( φij
φij ′

)(
Aj ′t

Ajt

)1−θ(
pCt
pNt

)(1−α)(1−θ)(κj−κj ′)

,

where Ωj is defined as in equation (1.10). Inspection of the equation above reveals

that when θ < 1 the occupation-specific technology is inversely related to relative

employment levels between two occupations. Therefore, occupation that has a slower

growth in Ajt, i.e., occupation with higher ITI, attracts more employment. In addition,

given the declining relative price of ICT capital and θ < 1 the last fraction on the right-

hand side is decreasing when κj > κ ′j, i.e, higher RTI leads to lower employment

growth and declining share in employment. Since the same holds in every industry

the result generalizes to the overall employment share of occupations. Since wages

across occupations equalize in this model the result for wage bill follows.

result 2 (reallocation of labor across industries): Suppose that ε < 1.

Industry employment growth is increasing (decreasing) in greater specialization in occupations

of higher ITI (RTI).

This result can be simply illustrated by comparing the labor in two arbitrary indus-

tries. Zero profit in industry production, and equations (1.12) and (1.18) imply that

employment in industry i relative to industry i ′ is

Lit
Li ′t

=

(
γi
γi ′

)−(1−ε)(
pit
pi ′t

)1−ε
,

where Li =
∑J
j=1 Lij is total employment in industry i. Last term on the right-hand

side is the relative industry price. Inspection of (1.21) reveals that industry price is

increasing in the task prices proportional to their production weights φij. From (1.22)

task prices are increasing in ITI and decreasing in RTI. Relative price of industries

with higher φij in growing occupations consequently increase more, which turns into

a relative rise in employment if ε < 1.
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Both results above are directly related to proposition 2 of Ngai and Pissarides (2007).

When task intensities and industries are poor substitutes in production and consump-

tion, respectively, employment is reallocated into occupations and industries exhibit-

ing slower productivity growth. Next result explicitly connects task intensities to

labor productivity growth.

result 3 (labor productivity growth): Occupation and sector labor produc-

tivity growth is decreasing in ITI and increasing in RTI.

An occupation’s log of labor productivity is given by the following:

log
(
Tijt

Lijt

)
= (1−α) log

(
1−α

α

)
+ (1−α) logwt + logAjt − (1−α) logpEijt.

It is clear that occupations with higher growth in occupation-specific technology

(i.e. lower ITI) and lower growth in task-capital prices (i.e. higher RTI) are subject

to faster growth in occupational labor productivity. Similarly, the model implies the

following sectoral labor productivity equation:

log

(
Yit
Lit

)
= log

(wt
α

)
− logpit.

As argued in Result 2, inspection of (1.21) and (1.22) suggests that costs grow slower

in sectors with lower ITI and higher RTI intensity. Since ITI and RTI are occupation-

specific this implies that sectors that are specialized towards occupations with low ITI

and high RTI exhibit faster productivity growth. In fact, labor productivity regressions

of Table 1.6 can be obtained from the above equation when θ = 1.29

Results studied so far do not require the model’s specific assumptions linking ITI

and RTI to different sources of technical change. It does not matter for results 1-3

whether both tasks are modeled as affecting occupation-specific technical change or

ICT capital share. The next one shows where the distinct roles assigned to both tasks

matter.

29 In this case, the right hand side of log labor productivity equation becomes (1−α) log
(
1−α
α

)
+

(1−α) logwt +
∑J
j=1 sj|i logAjt −

∑J
j=1 (1−α) sj|ilogp

E
ijt, where sj|i is the constant share of task j

in sector i’s production such that
∑J
j=1 sj|i = 1. This form enables linear estimation of labor productiv-

ity on industry employment-weighted means of occupation-specific characteristics.
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result 4 (ict intensification): ICT intensification is only related to RTI. In

particular, share of ICT capital to other capital, the share of ICT in new purchases of capital,

and ICT-capital per employment in the economy depends on RTI and not on ITI.

This result is intuitive since the only difference with respect to capital across occupa-

tions is κj in the model which is assumed to be proportional to RTI. In the remaining

discussion I show that for different measures of ICT intensification the estimated lin-

ear equations in the paper follow directly from the model when θ = 1, i.e., sector

production function is in Cobb-Douglas form.30

The most direct ICT intensity measure that can be derived from the model is the

ratio of ICT capital to the other task capital:

KCjt

KNjt
=

(
pNt
pCt

)(
κj

1− κj

)
,

which is straightforward from (1.10) and (1.11). It is clear from this representation that

ICT capital has a greater share for occupations with greater RTI, and regardless of the

relative price of computers, the ranking of occupations in terms of ICT capital’s share

is constant. Consequently, the change in the computer capital intensity, which can be

seen as a measure of computerization, is proportional to RTI. Taking the occupation

level measure that combines the importance of interacting with computers and the

degree of automation as a proxy for ICT intensity (or intensification following the

reasoning in Autor, Levy, and Murnane (2003)), its strong and significant association

with RTI (and not with ITI) in Table 1.7 is predicted by the model.

The second ICT intensification measure is the change in ICT capital value relative

to total task-capital change in an occupation or industry. For occupation j this ratio is

given simply by κj:
pct+1K

c
ijt+1 − p

c
tK
c
ijt

pEt+1K
E
ijt+1 − p

E
t K
E
ijt

= κj.

One can compute this measure at sector level rather than occupation, it becomes

the following:

∑J
j=1 p

c
t+1K

c
ijt+1 −

∑J
j=1 p

c
tK
c
ijt∑J

j=1 p
E
t+1K

E
ijt+1 −

∑J
j=1 p

E
t K
E
ijt

=

J∑
j=1

sj|iκj.

30 In this case the sector production function becomes Yit =
∏J
j=1 T

sj|i
ijt , where sj|i is defined as in footnote

29.
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Therefore the ICT intensification in a sector’s total purchases of capital should be

predicted by its RTI score as a weighted average across occupations employed in that

sector. This sheds light on the results of Table 1.8, where sj|i is approximated by

occupation j’s share in industry i employment over the long-run.

Lastly, I study the model’s implication on ICT capital per employment in the whole

economy. Let’s assume that there is a set of closed economies indexed with e. For an

economy e the ratio is calculated as:

KCet
Let

=
wet

pCt

1−α

α

I∑
i=1

J∑
j=1

Leijt

Let
κj,

where Let is the total labor supply in the economy.

The equation above suggests that ICT capital per labor employed in the economy

depends on wages, ICT capital price and an economy-wide average of ICT’s share

in task-capital, κj. It is clear that the economy’s aggregate level of routinizability

predicts its ICT intensity, and that ITI plays no role in it. Assuming that ICT price

is similar across economies, the equation also suggests that economies with higher

wages should also have higher adoption of ICT capital (as well as other capital since

labor’s marginal productivity is higher). Considering each local labor market as a

distinct economy, this equation justifies the regressions of computer adoption in Table

1.9. Furthermore, it provides an explanation for why skill intensity of commuting

zones successfully predicts computer adoption too.

1.7 Conclusion

In this paper I document that from many aspects, interpersonal-service task content

that refers to interactions of workers with customers is a distinct task characteristic

and plays a key role in shifting task demand in the last decades of the US labor market.

I also provide novel evidence linking ITI to slower labor productivity growth, while

finding no association with ICT revolution. Therefore ITI and RTI reflect the effect

of two different types of technical change at the occupation level. ITI appears as a

natural candidate to extend the relative stagnancy of services argument, which goes

back to Baumol (1967) and Fuchs (1968), into detailed industries and occupations.
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Using these empirical facts in a model of structural change with many industries

and occupations, I derive all of the results observed for employment and technology

discussed above. Moreover, the model allows, both conceptually and empirically, dis-

tinguishing routinization, through increasing adoption of computers which has been

a key aspect of technological developments in recent decades, from the relatively

stagnant nature of interpersonal-service tasks which is possibly related to occupation-

specific technology and the changing structure of the economy towards services. This

distinction is empirically interesting as the emerging literature on occupational reallo-

cation of labor suggests both type of channels as being responsible from the employ-

ment trends in the labor market.

There are directions for future research that can be motivated by the results of this

paper. First, given that interpersonal-service tasks play a central role in changing em-

ployment demand it is important to quantitatively assess the impact of these tasks in

job polarization and structural change separately, which might also require updating

the aggregate impact of routinization. Second, while the evidence in this paper is

in line with a theory of occupation-specific technical change that is inversely related

to interpersonal-service tasks, more direct evidence is needed to disentangle sector

and occupation-specific technical change. This last point is particularly important for

understanding the role of occupations as the driving unit of structural changes in the

labor market.
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1.A Tables

Table 1.1: O*NET Interpersonal Tasks

1. Interpersonal-service Tasks

Deal With External Customers
Deal With Unpleasant or Angry People
Deal With Physically Aggressive People

Communicating with Persons Outside Organization
Assisting and Caring for Others

Selling or Influencing Others
Performing for or Working Directly with the Public

2. Within-Firm Interpersonal Tasks

Work With Work Group or Team
Coordinate or Lead Others

Communicating with Supervisors, Peers, or Subordinates
Coordinating the Work and Activities of Others

Developing and Building Teams
Guiding, Directing, and Motivating Subordinates

Coaching and Developing Others

Source: O*NET database.
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Table 1.2: Distinctive Features of Interpersonal Tasks: Skill Intensity and Service Specializa-
tion

(Dependent Variables: Skill Intensity and Service Sector Intensity)

A. Skill Intensity B. Service Sector Intensity

(1) (2) (3) (4) (5) (6) (7) (8)

ITI 0.62*** 0.06 0.21*** 0.11***
(0.16) (0.09) (0.02) (0.01)

Within-Firm Int. 1.04*** 0.26*** 0.03 -0.05**
(0.13) (0.09) (0.03) (0.02)

Constant 12.85*** - 12.79*** - 0.63*** - 0.66*** -
(0.17) (0.12) (0.03) (0.03)

R2 0.11 0.76 0.36 0.77 0.34 0.69 0.01 0.64

Notes: The table shows OLS estimates from the regression of dependent variables on dif-
ferent interpersonal measures shown in each row. There are 322 observations in each spec-
ification. The variable for skill intensity of an occupation (dependent variable of Panel A)
is 1980-2010 long-run mean years of schooling. The variable for service sector intensity of
an occupation (dependent variable of Panel B) is 1980-2010 long-run mean occupational
employment share of service-sector workers relative to all employment. All regressions are
weighted by occupations’ 1980 employment shares. Columns (2), (4), (6), (8) include major
occupation group dummies, hence constant term is not reported for these specifications.
Major occupation groups are listed in Table 1.A.2. Employment shares and dependent vari-
ables are computed using 1980 Census and 2010 American Community Survey. Robust
standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 1.3: Partial Correlates of Interpersonal Tasks from DOT

OLS Coefficients

ITI Within-firm
Intelligence aptitute -0.07 0.10*

(0.06) (0.05)
Data Complexity -0.05 0.21***

(0.05) (0.06)
Creative preference 0.04 0.27***

(0.07) (0.07)
Direction, Control, and Planning -0.04 0.45***

(0.10) (0.09)
Dealing with people beyond instructions 0.68*** 0.40***

(0.07) (0.08)
Talking 0.47*** 0.34***

(0.07) (0.08)
People Complexity 0.32*** 0.29***

(0.10) (0.08)
Influencing People 0.29** -0.04

(0.14) (0.11)

Notes: Each value in the table corresponds to a separate regression where right-hand side variable
is the interpersonal variable indicated in the column and the dependent variable is the variable from
DOT indicated in the row. All regressions are weighted by 1980 employment shares and include
dummies for major occupation groups in Table 1.A.2. Robust standard errors are in parentheses.
Intelligence aptitude, data complexity, people complexity variables are multiplied by minus one, since
higher scores of original measures correspond to lower intensity or complexity of the task attribute.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 1.4: Employment Growth of Occupations: Interpersonal-Service Tasks and Alternatives, 1980-2010

(Dependent Variable: Log Change in Total Hours)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ITI 0.39*** 0.36*** 0.32*** 0.43*** 0.32*** 0.35*** 0.20*** 0.17**
(0.05) (0.06) (0.05) (0.07) (0.05) (0.07) (0.05) (0.09)

RTI -0.15*** -0.06 -0.09** -0.04

(0.05) (0.04) (0.04) (0.05)
Offshorability -0.15** 0.08 0.12 -0.02

(0.06) (0.07) (0.08) (0.08)
Years of Education 0.16*** 0.10*** 0.09*** 0.01

(0.02) (0.03) (0.03) (0.06)
Routine -0.20*** -0.06*

(0.05) (0.04)
Manual 0.05 0.02

(0.05) (0.04)
Abstract 0.18** 0.17**

(0.07) (0.07)
Occupation Group Dummy - - - - - - - - - - X X

R2 0.23 0.05 0.24 0.18 0.29 0.03 0.24 0.14 0.29 0.30 0.40 0.41

Notes: The table shows the OLS estimates of variables indicated in each row. Dependent variable is the 1980-2010 log change in employment. Employment is defined
as total annual working hours computed from Census 1980 and American Community Survey 2010. All regressions are weighted by 1980 employment share that is
calculated for each of 322 consistent occupations, which is the number of observations for each specification. Robust standard errors are in parentheses. See the main
text for information on task measures. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 1.5: Wage Bill Growth of Occupations: Interpersonal-Service Tasks and Alternatives, 1980-2010

(Dependent Variable: Log Change in Total Wage Bill)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ITI 0.45*** 0.44*** 0.39*** 0.52*** 0.34*** 0.40*** 0.21*** 0.19**
(0.06) (0.06) (0.06) (0.07) (0.06) (0.07) (0.06) (0.08)

RTI -0.15*** -0.04 -0.07 -0.01

(0.06) (0.05) (0.05) (0.05)
Offshorability -0.14* 0.14* 0.15* -0.02

(0.07) (0.08) (0.08) (0.08)
Years of Education 0.23*** 0.17*** 0.16*** 0.04

(0.03) (0.03) (0.03) (0.06)
Routine -0.20*** -0.04

(0.05) (0.04)
Manual 0.00 -0.03

(0.05) (0.04)
Abstract 0.26*** 0.24***

(0.08) (0.08)
Occupation Group Dummy - - - - - - - - - - X X

R2 0.26 0.04 0.26 0.22 0.36 0.02 0.27 0.24 0.37 0.39 0.49 0.49

Notes: The table shows the OLS estimates of variables indicated in each row. Dependent variable is the log change in wage bill for an occupation. Wage bill is
defined as total annual wage income computed from Census 1980 and American Community Survey 2010. All regressions are weighted by 1980 employment share
that is calculated for each of 322 consistent occupations, which is the number of observations for each specification. Robust standard errors are in parentheses. See
the main text for information on task measures. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 1.6: Labor Productivity Growth and Tasks

(Dependent Variable: Industrial Log Labor Productivity
Index, 1987-2014)

(1) (2) (3)

Time Trend × ITI -0.22*** -0.16***
(0.06) (0.05)

Time Trend × RTI 0.61*** 0.53***
(0.12) (0.14)

R2 0.61 0.62 0.62

Notes: The table shows OLS estimates of each variable indi-
cated in rows. Observations come from 279 industry categories
of BLS labor productivity and cost series from 1987 to 2014.
Task scores are calculated for 12 NAICS industries. Number
of observations is 5438 in each specification. Time interaction
coefficients of task scores are multiplied by 100. Year and in-
dustry dummies are used in all regressions. Standard errors
clustered by NAICS industry classification are in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.

57



Table 1.7: Tasks and Technology: Computerization at Occupation Level

(Dependent Variable: Combined Computerization-Automation Measure from O*NET)

(1) (2) (3) (4) (5) (6) (7)

ITI -0.05 0.08 0.07 -0.06

(0.08) (0.08) (0.07) (0.07)

RTI 0.36*** 0.38***

(0.07) (0.07)

RTI Breakdown (DOT)

Abstract 0.26*** 0.26***

(0.06) (0.06)

Routine 0.19*** 0.22***

(0.06) (0.07)

Manual -0.40*** -0.41***

(0.09) (0.09)

RTI Breakdown (O*NET)

Non-Routine Cognitive:

Analytic 0.47*** 0.43***

(0.08) (0.09)

Interpersonal -0.26*** -0.22**

(0.07) (0.09)

Routine:

Cognitive 0.47*** 0.48***

(0.05) (0.05)

Manual -0.01 -0.05

(0.06) (0.06)

Non-Routine Manual -0.50*** -0.48***

(0.07) (0.08)

Constant 0.09 0.08 0.07 0.06 0.06 0.02 0.03

(0.10) (0.09) (0.09) (0.07) (0.07) (0.05) (0.05)

R2 0.00 0.19 0.19 0.38 0.38 0.64 0.65

Notes: The table shows the OLS estimates of technology measure from O*NET as the arith-
metic mean of "interaction with computers" and "degree of automation" variables on each
task variable indicated in rows. Dependent variable as well as the independent variables are
normalized to have 0 mean and 1 standard deviation. There are 322 observations for each
specification. All regressions are weighted by 1980 employment share. Robust standard
errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 1.8: Tasks and Technology: Industry ICT Intensification

(Dependent Variable: 100 × ICT Share in New Capital Purchases,
1997)

(1) (2) (3)

ITI 0.71 1.46

(2.41) (2.30)
RTI 8.34*** 8.47***

(2.21) (2.34)

Constant 34.84*** 34.84*** 34.84***
(2.96) (2.78) (2.79)

R2 0.00 0.12 0.13

Notes: The table shows OLS estimates of each task variable that reflects
the long-run mean industry task intensity indicated in rows. The depen-
dent variable, ICT share of an industry, is the ratio of the sum of com-
puter, office, accounting, software and communication equipment pur-
chases to all purchases of capital computed from 1997 Capital Flow Table
of Bureau of Economic Analysis. Number of observations is 66 in each
specification. Robust standard errors are in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 1.9: Tasks and Technology: Computer Adoption in commuting Zones

(Dependent Variable: Adjusted PCs per Employee in Commuting
Zone, 1990-2000)

(1) (2) (3) (4) (5)

ITI 0.07** -0.01 0.01

(0.03) (0.02) (0.02)
RTI 0.16*** 0.06** 0.06***

(0.01) (0.01) (0.01)
Skill Intensity 0.19*** 0.15*** 0.15***

(0.01) (0.01) (0.01)

R2 0.35 0.62 0.50 0.63 0.63

Notes: The table shows OLS estimates of each task variable that reflects the
mean commuting zone task intensity indicated in rows. All regressions in-
clude dummies for time and state. Observations come from 675 commuting
zones for 1980-1990 and 660 commuting zones for 1990-2000. Number of ob-
servations is 1335 in each specification. For construction of commuting zones
and PC per employee data see Autor and Dorn (2013). Task scores and skill
intensity at the commuting zone level are computed from 1980 Census. Stan-
dard errors clustered by state are in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1.

60



Table 1.A.1: Top and Bottom Interpersonal Occupations

A. Interpersonal-Service Intensity (ITI) Rankings

1. Top 15 Occupations 2. Bottom 15 Occupations

Police and detectives Mathematical Technicians

Correctional Officers Woodworking Machine Setters, Operators, and Tenders, Except Sawing

Licensed Practical and Licensed Vocational Nurses Shoe Machine Operators and Tenders

Child, Family, and School Social Workers Sawing Machine Setters, Operators, and Tenders, Wood

Registered Nurses Foundry Mold and Coremakers

Parking Lot Attendants Pressers, Textile, Garment, and Related Materials

Health Educators Computer Programmers

Clergy Remote Sensing Scientists and Technologists

Bartenders Proofreaders and Copy Markers

Animal Control Workers Prepress Technicians and Workers

Forest Fire Fighting and Prevention Supervisors Actuaries

Substance Abuse and Behavioral Disorder Counselors Plating and Coating Machine Setters, Operators, and Tenders, Metal and Plastic

Travel Agents Packaging and Filling Machine Operators and Tenders

Pharmacists Tool and Die Makers

Physical Therapists Forging Machine Setters, Operators, and Tenders, Metal and Plastic

B. Within-Firm Interactions Intensity Rankings

1. Top 15 Occupations 2. Bottom 15 Occupations

Chief Executives Barbers

Clergy Sewers, Hand

Medical and Health Services Managers Postal Service Mail Carriers

Education Administrators, Preschool and Childcare Center/Program Pressers, Textile, Garment, and Related Materials

Urban and Regional Planners Demonstrators and Product Promoters

First-Line Supervisors of Mechanics, Installers, and Repairers Shoe and Leather Workers and Repairers

Actors Camera and Photographic Equipment Repairers

First-Line Supervisors of Office and Administrative Support Workers Automotive and Watercraft Service Attendants

First-Line Supervisors of Construction Trades and Extraction Workers Forging Machine Setters, Operators, and Tenders, Metal and Plastic

Spa Managers Textile Knitting and Weaving Machine Setters, Operators, and Tenders

Licensed Practical and Licensed Vocational Nurses Sewing Machine Operators

Aircraft Cargo Handling Supervisors Postal Service Clerks

Dentists, General Shoe Machine Operators and Tenders

Financial Managers, Branch or Department Door-To-Door Sales Workers, News and Street Vendors, and Related Workers

Advertising and Promotions Managers Furniture Finishers

6
1



Table 1.A.2: Average Task Score Percentile Rank in Occupation Groups

ITI Within-Firm Offshorability RTI Routine Manual Abstract

Manag/Prof/Tech/ 65 80 46 32 32 45 80

Finance/Public Safety

Clerical/Retail Sales 58 42 70 80 61 20 47

Personal Service 66 39 56 42 28 61 28

Production/Craft 40 60 37 42 62 45 69

Machine Operators/ 19 34 58 65 69 57 22

Assemblers

Transportation/Costruction/ 53 40 29 33 52 79 33

Mechanics/Mining/Farm

Notes: The table shows mean task scores in percentiles (times 100) for each occupation group from Autor and Dorn (2013).
Mean scores are computed by weighting according to 1980 employment share of occupations. Employment share is the sum
of total hours worked in an occupation divided by total hours worked in the economy. All calculations are weighted by 1980

Census labor supply weights.

6
2



Table 1.A.3: Routinization, Offhsoring, and Service

Sector Specialization

(Dependent Variable: Service Sector Intensity)

(1) (2) (3) (4)

RTI 0.02 0.04**
(0.03) (0.02)

Offshorability -0.00 0.02

(0.03) (0.02)
ITI 0.12*** 0.12***

(0.01) (0.02)

R2 0.00 0.70 0.00 0.69

Notes: The table shows OLS estimates of dependent vari-
able on different interpersonal measures shown in each
row. Dependent variable is 1980-2010 long-run mean em-
ployment of service sector workers relative to all employ-
ment in an occupation. There are 322 observations in
each specification. All regressions are weighted by oc-
cupations’ 1980 employment shares. Columns (2) and
(4) include major occupation group dummies. Occupa-
tion groups are listed in Table 1.A.2. Employment shares
and dependent variables are computed using 1980 Cen-
sus and 2010 American Community Survey. Robust stan-
dard errors are in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Table 1.A.4: Changing Task Demand and Within-Firm Interactions

(1) (2) (3) (4) (5) (6)

A. ∆ Log Hours B. ∆ Log Wage Bill

Within-Firm Int. 0.25*** 0.11* 0.02 0.33*** 0.18*** 0.02

(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)
ITI 0.33*** 0.32*** 0.36*** 0.34***

(0.06) (0.06) (0.07) (0.06)
Years of Education 0.10*** 0.16***

(0.03) (0.04)

R2 0.12 0.25 0.29 0.17 0.30 0.37

Notes: The table shows the OLS estimates of variables indicated in each row. Dependent
variable is 1980-2010 log change in total hours (Panel A) and 1980-2010 log change in wage
bill (Panel B) of an occupation. Wage bill is defined as total annual real wage income
computed from Census 1980 and American Community Survey 2010. All regressions are
weighted by 1980 employment share that is calculated for each of 322 consistent occupa-
tions, which is the number of observations for each specification. Robust standard errors
are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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1.B Figures

Figure 1.1: Smoothed Interpersonal Task Scores by 1980 Mean Wage Percentile

Notes: The figure shows smoothed occupational task variable percentile rank by 1980 occupational mean
wages computed as employment weighted average from 1980 Census. Smoothing is according to a local
polynomial using Epanechnikov kernel and default bandwidth of the statistical package.
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Figure 1.2: Tasks in the Labor Market, 1968-2014

Notes: The figure shows mean task score in the labor market for each year where 1968 score
is normalized is one. Mean task score is employment-weighted average percentile rank of
time-invariant task scores from O*NET and DOT. Employment weights are from CPS.
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Figure 1.3: The Evolution of ITI and Routinizability in the Labor Market, 1968-2014

Notes: The figure shows mean task score in the labor market for each year where 1968 score
is normalized is one. Mean task score is employment-weighted average percentile rank of
time-invariant task scores from O*NET and DOT. Employment weights are from CPS. Panel
A involves Autor, Levy, and Murnane (2003)’s routine-based classification that is summed
into three variables by Autor and Dorn (2013), and the ITI task variable developed in this
paper. Panel B focuses on two of them, abstract and interpersonal-service. Abstract* (ITI*) is
obtained as standardized residuals from the regression of Abstract (ITI) on ITI (Abstract).
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Figure 1.A.1: ITI vs. Elements of Routinization and Offshoring

Notes: The figure plots the proxy ITI measure, "deal with external customers" against the
key elements of routinization and offshoring hypotheses. All task variables are directly from
O*NET database. Each variable is aggregated to 322 consistent occupations and standardized
as explained in the text. Circle size is proportional to the average labor supply weight of each
occupation between 1980 and 2010. Solid lines show the fit of a third order polynomial.
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Figure 1.A.2: ICT Intensity and Tasks: Alternative Variables and Detailed Occupations

Notes: The figure plots the ICT intensity measure against alternative task measures for 942

O*NET SOC occupations. All variables reflect importance scores and are standardized to have
zero mean and unitary standard deviation. ICT intensity is generated as the mean of two task
variables, "interaction with computers" and "degree of automation". Solid lines correspond to
the linear fit.
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1.C Data Appendix

Census and CPS Data

The Census data cover 1980 Census 5% extract and 2010 American Community Survey.

The sample in this study includes workers of age 16-64, employed workers excluding

armed forces and self-employed who reported positive wage income. Employment in

an occupation is total annual hours worked computed as usual weekly hours times

weeks worked variables. Labor supply weights are calculated as annual hours times

population weights. Wage bill of an occupation is defined as total annual wage in-

come. Wage income is subject to top-code treatment such that top-coded observations

are multiplied by 1.5.

CPS data refer to CPS March extracts. The sample includes workers of age 16-64,

employed workers employed workers excluding armed forces, self-employed, and

unpaid family workers who reported positive wage income. Employment definition

and calculation follow the same steps with the Census data described above.

Data on Productivity and ICT

The data source for labor productivity is BLS labor productivity statistics. Labor

productivity is computed as the amount of goods and services produced (output)

divided by the number of hours worked to produce those goods and services.31 The

labor productivity indexes used in the study are available for a total of 176 detailed

industries.

ICT share in purchases of new capital is calculated using the BEA 1997 Capital

Flow Table.32 BEA reports purchases by capital type for 123 industries. I compute

the variable of interest based on an aggregation of 123 industries for establishing

consistency with CPS industry definitions.

Occupation level ICT measure follows the procedure for task variables described

below. Local labor market level ICT variable is downloaded from David Autor’s

webpage and all related calculations follow Autor and Dorn (2013).

31 Labor productivity data are available from https://download.bls.gov/pub/time.series/ip/
32 Capital Flow Table data are available from https://www.bea.gov/industry/capflow_data.htm.
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Task Data

There are two sources of task characteristics used in this study. The main source is

the Occupational Information Network (O*NET) under the sponsorship of US Depart-

ment of Labor/Employment and Training Administration. O*NET provides a vast

range of task information that are reported at occupation level. I use the July 2014 re-

lease of the database downloaded from https://www.onetcenter.org/db_releases.

html.

O*NET database provides task information for different scales. I either use the

importance scale or the context scale which assign task scores ranging from 1 to 5.

The original task variables are reported for 942 O*NET-SOC occupations. I merged

these occupations to occsoc codes, then match occsoc codes to occ1990dd using 2010

Census. Then I merged the task scores to occ1990dd. At each level of aggregation I

use Census labor supply weights. I standardize each task score to have mean of 0 and

standard deviation of 1. The derived task scores in the paper computed as means of

individual task scores, or sector or labor market wide intensities are standardized in

the same fashion.

The second data source on tasks is Dictionary of Occupational Titles (DOT). DOT

by Bureau of Labor Statistics is the predecessor of O*NET. The data set I employ

comes from England and Kilbourne (1988) who provide information from the "Fourth

Edition Dictionary of Occupational Titles" merged into 1980 Census occupation codes

through what is known as the TREIMAN file.33 Using the crosswalk provided by

Dorn (2009) and associated labor supply weights, I merged DOT variables into occ1990dd

codes. Again all variables from this source are standardized in the way described

above prior to analyses.

33 The data set is available from http://doi.org/10.3886/ICPSR08942.v2.
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Chapter 2

TA S K - B A S E D S O U R C E S O F J O B

P O L A R I Z AT I O N A N D S T R U C T U R A L

C H A N G E O F E M P L O Y M E N T I N T H E U S

Are there any links between the declining labor market importance of the middle-wage jobs

(polarization) and the rise of services (structural change) in the recent decades? This chap-

ter estimates a task-biased technical change model and shows that between 1987 and 2014 a

substantial portion of occupational and sectoral employment share changes in the US labor

market can be accounted for by interpersonal-service tasks, i.e. tasks requiring interactions

with customers, and task-routinizability, i.e. the suitability of the task to be replaced by com-

puters. While both task aspects are significant drivers of job polarization, interpersonal-service

tasks stand out in explaining the growth of service sector. The results imply a key role for

task-specific technical change compared to sector-specific technical change in driving the dis-

aggregate employment trends. I also observe that the negative impact of task-routizability on

employment demand changes vanishes for the post-2000 period, suggesting that most of the

contribution of routine-biased technical change to job polarization took place during 1990s.
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2.1 Introduction

The occupation and sector structure of employment in advanced economies evolve on

the back of two trends in recent decades: job polarization and structural change. Job

polarization refers to declining employment shares of occupations that are intensively

found in the middle of wage distribution as opposed to rising shares of occupations

at both tails, and is observed in the US (Autor and Dorn, 2013; Autor, Katz, and

Kearney, 2006), UK (Goos and Manning, 2007), Germany (Spitz-Oener, 2006), and

many European economies (Goos, Manning, and Salomons, 2009, 2014; Michaels,

Natraj, and Van Reenen, 2014) after 1980s. Recent evidence suggests that polarization

in the labor market might have started as early as the 1950s (Barány and Siegel, 2017).

Structural transformation literature documents the declining employment share of

agriculture and manufacturing relative to service sector throughout the world with

the course of economic development (Herrendorf, Rogerson, and Valentinyi, 2014;

Kuznets, 1957; Maddison, 1980).1,2 The two trends are equally important in shaping

the structure of employment. In the US between 1987 and 2014 around 11 percent of

occupational employment, and 9 percent of sectoral employment reallocated out of

middle-wage occupations and non-service sector, respectively.3 In this paper I aim to

quantify the task-based sources of the two labor market trends.

Two particular task aspects are key in this paper. Customers are embedded in the

production process of interpersonal-service tasks and intense interactions with them

severely limit the adoption of technologies due to costs associated with customers’

satisfaction and capabilities. On the other hand, tasks that are easily codified benefit

more from the increasing use of computers in the workplace. These task attributes

can affect employment dynamics, since changes in relative productivities in occupa-

tions and industries lead to reallocation of employment (e.g., Goos, Manning, and

Salomons, 2014; Ngai and Pissarides, 2007). In Chapter 1 of this thesis I introduce

interpersonal-service tasks as the key task attribute characterizing service activity and

1 The literature also shows that trends in expenditure and value added shares follow the same pattern (see,
e.g., Herrendorf, Rogerson, and Valentinyi, 2014). In this paper I only focus on the structural change of
employment.

2 The employment share of manufacturing and services were rising together before the second world war.
From then on structural change at broad sector level boils down to the growth of service sector relative
to non-service sectors (see, e.g., Ngai and Pissarides, 2008).

3 Based on my own calculations using CPS data. See Table 1 and 2 for occupation and sector classification,
respectively.
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the changing structure of occupation employment.4 In addition, the leading explana-

tion of job polarization is routinization (e.g., Autor, Katz, and Kearney, 2008; Autor

and Dorn, 2013). This is the first paper that brings together these two task attributes

to estimate their impact on labor demand changes based on a model that enables

separating sector-specific and occupation-specific technical change.

I build on a simplified version of the occupational structural change model sug-

gested in Chapter 1 where occupations intensive in interpersonal-service content and

those with lower levels of routinizability are subject to slower labor productivity

growth.5 Given the imperfect substitutability between the industry output in con-

sumption, and between the task input in production, employment shifts into sectors

and occupations that employ interpersonal-service tasks more and routinizable tasks

less intensively. While sector employment changes are fully driven by occupation-

specific labor productivity as a combination of the two task aspects, reallocation of

employment across occupations is affected both by occupation and sector task inten-

sities.

The paper follows the estimation strategy of Goos, Manning, and Salomons (2014).

Using employment and industry data for the US between 1987 and 2014, I estimate

the conditional labor demand of the model at sector-occupation level and confirm that

interpersonal-service tasks and routinizability are two significant channels of chang-

ing employment demand. Employment share predictions based on the estimated

impacts of task measures and elasticities from model’s equations suggest that the

model can explain substantial part of occupational and sectoral change in employ-

ment shares. The model strikingly implies that roughly two thirds of the predicted

job polarization and nearly all of the predicted service sector growth is explained by

interpersonal-service tasks. On the other hand, routinization has a limited impact on

job polarization and seems to play a negligible role in driving structural change.

There are two additional contributions of the paper. First, my results suggest that

most of the changes in the employment structure is task-specific rather than sector

driven. Estimating conditional labor demand growth under sector-occupation struc-

4 I also show in Chapter 1 that interpersonal-service tasks exhibit different characteristics with respect to
within-firm interpersonal interactions, non-routine cognitive interpersonal tasks and non-routine man-
ual tasks. Moreover, interpersonal-service tasks are essentially unrelated to ICT intensification. Overall,
the evidence suggests that customer-oriented interpersonal interactions cannot be adequately character-
ized within the existing task frameworks studied in the literature.

5 Baumol (1967), Fuchs (1968) and Chapter 1 argue that ITI limits productivity growth due to the pres-
ence of customers during the production process; (among others) Autor, Levy, and Murnane (2003),
Autor and Dorn (2013) and Goos, Manning, and Salomons (2014) associate routinization with higher
productivity growth as a result of the use of cheaper ICT.
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ture allows for disentangling task-specific demand shifters from sectoral ones.6 Labor

demand estimations augmented with sector-time fixed effects, and broad and detailed

sector-specific growth rates suggest that the estimated task-based growth is not signif-

icantly affected by sector-specific factors and trends. Therefore the model’s task-based

perspective with respect to the source of technical change, and consequently, the real-

location of employment across occupations and sectors by task-specific forces appear

to be a valid representation of disaggregate employment trends in the economy.

Lastly, I observe that routinization has a big impact on employment demand changes

during the 1990s which completely disappears after 2000 as opposed to the relatively

stable impact of interpersonal-service task intensity in both periods. If routine-biased

technical change operates through a greater transmission of falling computer prices

in more routinizable occupations7, this finding implies that the price of computers

should have declined a lot less after the 2000s. As a matter of fact, the official statis-

tics indicate substantial slowdown in the falling relative price of computers during

mid-2000s (Gordon, 2015). Estimating the model for different time periods suggests

bulk of the effect of computers in the occupational employment structure was real-

ized in the 1990s, in line with the literature on polarization (Autor, Katz, and Kearney,

2008; Autor, Katz, and Kearney, 2006).

The paper is closest to Chapter 1 of this thesis. By estimating the task-based model,

I complement Chapter 1 with answering two important questions it does not address.

First, whether the observed predictive success of the task intensities on occupation

employment persists when the industry structure is explicitly taken into account. The

second answer is on the relative importance of different tasks in jointly understanding

the trends in occupation and sector employment.

This paper is also closely related to Goos, Manning, and Salomons (2014). There

are three differences between this paper and theirs. First, I study the US economy

whereas their analysis covers 16 countries in Europe. Second, they explore the role of

routinization and offshoring while I also study the impact of the novel task dimension

6 In the emerging literature that combines structural change and polarization, the basis of technical change
is not clear. Trends in occupational and sectoral employment can be qualitatively explained both by
sector-specific technical change (Barány and Siegel, 2017), and occupation-specific technical change
(Duernecker and Herrendorf, 2017), given patterns in occupations’ sectoral specialization.

7 The idea is first employed in this context by Autor and Dorn (2013) for the special case where there
is a routine occupation that is affected by falling computer prices and a non-routine one which is not
affected at all. Goos, Manning, and Salomons (2014) extend the idea so that occupations effectively face
different declines in the price of capital input proportional to their routinizability.
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of interpersonal-service tasks.8 Last, I compute the impact of task measures on em-

ployment reallocation across sectors and occupations while their analysis is confined

to employment share changes across occupations and their shift-share decomposition.

Lee and Shin (2017) provide an analysis similar to this paper in the sense that they

also study an economy with occupation-sector structure in the labor market and as-

sess the impact of task-specific technical change. By calibrating occupation-specific

TFP rates in their model they argue that faster productivity growth in middle-wage

occupations not only drives polarization but also capable of explaining the structural

change. This paper supports their result that a task-based model is capable of ex-

plaining both trends. In addition, while the calibration exercises cannot rule out the

hypothesis that all of the growth of services is driven by sector-specific productivity

growth, the sector-fixed effects estimation strategy employed here assures that the

predictions of the task model, which can explain almost all of the service sector em-

ployment change, is free from sector-specific factors. They show that the occupation-

specific productivity growth rates are in line with measures of routinization, and

hence indirectly relate the model’s performance to routinizability.9

The paper is related to others that reconcile both important employment trends by

emphasizing the role of services in the economy. Barány and Siegel (2017) suggest

differential sector-specific productivity growth as the main driver of both structural

change and polarization, which contrasts with the results of this paper. Duernecker

and Herrendorf (2017) argue that occupation-specific technical change, rather than

sector-specific, that occurs at a slower pace in service occupations can lead to both

trends. While my results support their view, the approach of this paper can be seen

as an extension of their binary service occupation classification.

This paper provides evidence in favor of others in bringing out the importance

of task-specific nature of technological and structural changes in the labor markets

(e.g., Acemoglu and Autor, 2011; Autor, Katz, and Kearney, 2006; Autor, Levy, and

Murnane, 2003; Goos and Manning, 2007), while suggesting a more limited role for

routinization for the US case.

8 I leave out offshoring in the analysis following the growing evidence on its poor performance with
respect to predicting occupational employment demand changes (Autor and Dorn, 2013; Goos, Manning,
and Salomons, 2014; Lee and Shin, 2017, and Chapter 1 of this thesis). Nevertheless, I confirm, by
estimating the model of this paper using an offshoring measure, that unlike interpersonal tasks and
routinization, offshoring alone is not a major factor in explaining changes in employment shares of
occupations and sectors.

9 In particular, Lee and Shin (2017) argue that routine manual and non-routine interpersonal measures of
Acemoglu and Autor (2011) display high correlations with task-specific TFP rates.
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The rest of the paper is structured as follows. I introduce the analytical model

used to estimate conditional demand for labor and sector output in the next section.

Section 2.3 performs estimations of key demand equations of the model. Then it

provides occupational and sectoral employment share predictions by task attributes

and evaluates the performance of the model. I conclude the paper in Section 2.4.

2.2 Analytical Framework

In this section I outline a general equilibrium model suitable for empirical analysis of

structural change and job polarization together. The model is a simplified version of

the one introduced in Chapter 1 of this thesis. Here I assume that labor is the only

input of production and hence there is no accumulation of capital. I briefly introduce

the model below and characterize the equilibrium.

2.2.1 Production Technology

Sector output is produced by perfectly competitive firms which combine task inputs

from occupations. The output of each sector is then consumed by the household.

There are I sectors and J occupations in the economy. The production follows the

following CES functional form at each period t:

Yit =

 J∑
j

(φij)
1
θ (AjtLijt)

θ−1
θ

 θ
θ−1

, (2.23)

where i = 1, . . . , I; j = 1, . . . , J; Yit is output in sector i; Lijt is sector i’s labor input

from occupation j; Ajt is occupation-specific technology; φij is exogenous task weight;

and θ > 0 is the elasticity of substitution between task inputs, which is assumed to

be the same across sectors. The sector output is produced by combining several task

input, each of which are performed by the labor of a particular occupation using

the occupation-specific technology.10 The level and growth rates of an occupation’s

technology can change depending on the nature of the task content of the occupation.

10 Here the task is defined at the occupation level as the set of required small pieces of work that define an
occupation.
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Firms take sector output price, pit, as given and maximize profits:

max
Tijt

pitYit − J∑
j

wjtLijt

, (2.24)

where wijt is the wage rate. I abstract from Roy-type occupation-specific worker

skill or preference heterogeneity and assume perfect mobility across industries and

occupations, hence there is a single wage rate wt in the economy.

First order conditions imply the following demand for labor conditional on sector

output, output price (equal to maginal cost), and wages:

Lijt = φijA
(θ−1)
jt

(
pit
wjt

)θ
Yit. (2.25)

2.2.2 Households

The representative household in this economy consumes the goods produced by sec-

tors, Ci for i = 1, . . . , I, and has the following utility in each time t:

logCt, (2.26)

where Ct =
(∑I

i (λiCit)
ε−1
ε

) ε
ε−1

is the CES consumption aggregator. ε > 0 is the elas-

ticity of substitution between goods, and λi is a preference weight of the consumer to

good i. Consumers maximize utility by choosing the optimal saving and consumption

subject to the following budget constraint:

I∑
i

pitCit =Mt. (2.27)

The left hand side of the budget constraint is the total expenditure on consumption.

The right hand side,Mt, is the total household resources that simply amounts to labor

income in this economy.

First order condition for the optimal consumption is given by the following:

Cit = λ
ε−1
i

(
pit
Pt

)−ε

Ct, (2.28)
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where the price index, P, is given by

Pt =

[
I∑
i

(
pit
λi

)1−ε] 1
1−ε

. (2.29)

2.2.3 Equilibrium

For all t > 1, given occupation-specific technology for each occupation
{
Ajt
}J
i=1

,

equilibrium in this economy is defined by industry output prices {pit}
I
i=1, wage rate

wt; consumption bundle {Cit}
I
i=1, sector output {Yit}

I
i=1, labor allocated to each occu-

pation in each sector
{{
Lijt
}J
j=1

}I
i=1

such that:

1. Households maximize utility in (2.26) subject to (2.27) by choosing how much

to consume from each sector output,

2. In each sector firms maximize profits according to (2.24),

3. Markets clear:

a) Cit = Yit for i = 1, . . . , I,

b) Lt =
∑I
i=1

∑J
j=1 Lijt.

Sector output prices are pinned down by the following equation:

pit =

 J∑
j

φij

(
wt

Ajt

)1−θ 1
1−θ

, (2.30)

2.2.4 Evolution of Technology

I assume that occupation-specific technology Ajt follows a growth trajectory that is

potentially a linear combination of several orthogonal task characteristics:

logAjt = γt +
∑
x∈X

γxxj × trend, (2.31)

where γt is the time-specific effect on technology that captures general technology

shocks, γx is the task-specific growth factor of the task aspect x in a set of tasks X; xj

is the time invariant task score for occupation j; and trend is the linear time trend.
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In particular, I characterize the evolution of technology by interpersonal-service task

intensity (ITI) and routinizability (RTI). Hence occupation-specific technical change

follows:

logAjt = γt + γITIITIj × trend+ γRTIRTIj × trend. (2.32)

Higher ITI occupations are relatively harder to be restructured to benefit from or-

ganizational and technical developments due to the complexity of direct interactions

with customers. Independently, advances in computing technology trigger greater

technical improvements in occupations that are characterized by higher RTI. There-

fore I expect that γITI < 0 and γRTI > 0.

2.3 Accounting for Job Polarization and Structural

Change

In this section I evaluate the impact of task-based sources of technological change

on job polarization and structural change in the US labor market between 1987 and

2014. Using annual data on occupations and sectors, I first estimate the conditional

labor and output demand equations implied by the model. This enables not only

comparing the direct effect of task measures on labor demand, but also assess the

relevance of the model and some of its predictions. Then I calculate the contributions

of each task variable on the changes of employment share for each occupation and

sector and evaluate the predictive performance of the model.

2.3.1 Data

In order to perform the analysis I bring together employment data at occupation and

sector level, sectoral measures of output, costs and prices, and data on occupational

tasks. Below I briefly describe the data used in this section.
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Sector and Occupation Classification

The unit of analysis is sector-occupation. Sector classification is based on BEA’s

NAICS sectors in value added tables, which are 13 industry groups in total.11 For

occupations I use a modified version of 2 digit SOC codes in order to increase com-

parability with Goos, Manning, and Salomons (2014) who perform a similar analysis

for European Countries based on International Standard Classification of Occupations

(ISCO) as well as to increase model’s sensitivity to occupations. The analysis utilizes

20 occupation groups in total.12 Occupations and sectors are listed in Table 2.1 and

2.2.

Employment Data

I use 1987-2014 waves of CPS data at annual frequency. The measure of employment

is total annual hours. Each sector and occupation group is manually mapped using

consistent detailed industry and occupation categories of CPS. Then for each industry-

occupation group of this study, I calculate total employment as total annual hours

adjusted by population weights.

Sector Output and Costs

The source of sector output data is BEA’s GDP by Industry Accounts. Output is

calculated by dividing production, which is industry value added index, by the corre-

sponding industry price index. I also use industry marginal costs as an alternative to

output value added price indexes. Industry marginal costs are measured by a variable

that is calculated in two step. First, net operating surplus is subtracted from industry

value added. Then the difference is divided by the output measure. Net operating sur-

plus is derived from GDP by Industry Components Table as gross operating surplus

minus consumption of fixed capital.

Task Data

The sources of task data are O*NET and the Dictionary of Occupational Titles (DOT),

which are the two main references for occupational task attributes. ITI combines 7

variables in work context and work activities categories of O*NET in order to measure

11 The analysis excludes agriculture and government sector.
12 Agriculture occupations are also dropped from the sample.
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customer oriented interpersonal interactions.13 Task-routinizability is measured by

the RTI variable of Autor and Dorn (2013). RTI is constructed by combining the

abstract, routine and manual task measures of Autor, Levy, and Murnane (2003) using

DOT.

For this analysis the task measures for 322 detailed consistent occupations of Dorn

(2009) are merged into broader occupation groups of this study. Occupation group

mean task scores are computed over the sample period using labor supply weights,

i.e., annual hours times CPS weights. The measures are standardized in order to have

zero mean and unitary standard deviation.

2.3.2 Summary: Trends in Employment, and Tasks

The summary of employment changes and mean task scores for occupations and sec-

tors are reported in Tables 2.1 and 2.2. Table 2.1 summarizes occupations in three

broad categories, following the job polarization literature. In order to emphasize job

polarization, occupations in Table 2.1 are ranked according to mean hourly wages.

Panel A of Table 2.1 clearly outlines job polarization: Between 1987 and 2014 high-

wage occupations increase their employment share by about 8 and low-wage jobs

roughly by 3 percentage points. A related and interesting observation is the homo-

geneity in the sign of employment share changes within each wage group. The only

exceptions are community and social service workers, and drivers in the middle-wage

group.

Similarly, Panel A of Table 2.2 summarizes level and changes in employment de-

mand across industries for the same period. Service sector employment growth to a

large extent develops through education, health-care and social assistance industries.

The wholesale industry is an outlier in the service sector with employment share loss

of 2 percentage points. Manufacturing sector accounts for about 60% of employment,

and almost all of the contraction in employment share, in goods producing sector.

Table 2.1 and 2.2 also provide information about mean ITI and RTI scores for occu-

pation and sectors. Panel B of Table 2.1 suggests two observations regarding average

task intensities for occupations. First, general tendency of the two task measures con-

13 ITI consists of the following task attributes: deal with external customers, deal with unpleasant or
angry people, deal with physically aggressive people, communicating with persons outside organization,
assisting and caring for others, selling or influencing others, performing for or working directly with the
public.
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trasts across broad occupation groups such that high- and low-wage jobs on average

have higher ITI and lower RTI while middling occupations on average display low

ITI and high ITI score. On the other hand, within each part of the wage distribution

ITI and RTI are not correlated. Some high-wage occupations such as engineering and

technician jobs have low ITI scores, and others such as the legal category score high in

RTI.14 For sectoral averages a different picture emerges (Panel B of Table 2.2). While

goods (service) sector is specialized in low (high) ITI tasks, both sectors have moder-

ate levels of routinizability. Service sector is slightly more routinizable compared to

goods. Similar to occupations, industries overall do not exhibit significant correlation

between the two task measures.

The summary tables give initial indication of the association between task scores

and change of employment demand. Greatest increases in occupation and industry

employment shares coincide with a high score of ITI and low score of RTI, and vice

versa. For instance, among high-wage occupations managerial and health-care jobs

attract highest share of employment, and both are high-ITI and low-RTI jobs. In the

middle of wage distribution, machine operators go through the largest loss in employ-

ment share. Unsurprisingly this group is highly routinizable and non-interpersonal-

service intensive. From the lens of industries, a similar association can be made be-

tween task scores and structural change of employment. The most remarkable flows

of employment are observed from manufacturing industries which are specialized in

routine and non-interpersonal-service tasks to education, health and social assistance

industries which have the opposite tendency in terms of average tendency of tasks.

The tables also suggest that employment share changes are associate with a given

task score also conditional on the other. Two examples are instructive. Considering

the high RTI score that ranks the second after office and administrative occupations,

one would expect a sharp decline in employment share of legal occupations. However,

legal occupations rank also high in ITI and in fact, end up with a higher employment

share in 2014. A declining emloyment share of mechanics and repairers, which are

highly manual intensive occupations and consequently score low in RTI, is more con-

sistent with the lack of interpersonal-service interactions.

Regardless of how insightful they are, information from these tables can provide

only an incomplete characterization of the connection of task characteristics to the

changing structure of employment. The next section, guided by the theoretical frame-

14 The overall correlation coefficient between ITI and RTI is −0.08.

83



work introduced above, explores how task characteristics are related to the evolution

of employment demand in the disaggregate parts of the economy.

2.3.3 Estimation and Results

2.3.3.1 Labor Demand Estimation

I use the model’s implied equations in order to estimate the impact of task measures

on labor demand. In particular, I estimate labor demand equation conditional on

industry output and marginal costs. Labor demand is given by equation (2.25). The

following shows the log of labor demand:

logLijt = −θ logwt + logφij − (1− θ) logAjt + θ logpit + log Yit. (2.33)

The model does not feature worker heterogeneity and assumes a perfectly compet-

itive labor market. Therefore wages equalize for all workers in all occupations and

industries. The wage of the model is not a direct counterpart of the wages in the data,

given substantial variation of wages and wage growth across occupations. Therefore

I control wages with time and sector-occupation fixed effects in the empirical model.

Imposing the model’s assumptions on technology and the fixed effects I get the fol-

lowing estimable labor demand equation:

logLijt = ζij + ζt + θ logpit + log Yit (2.34)

−(1− θ)γITIITIj × trend− (1− θ)γRTIRTIj × trend,

where ζij and ζt represent fixed effects for sector-occupation and time, respectively.

Table 2.3 presents the estimates of labor demand for 260 sector-occupation pairs

from 1987 to the end of 2014. Columns (1)-(4) estimate conditional labor demand

subject to the restriction that the coefficient of sector output is 1, as the model suggests.

The last column shows the estimated coefficients when the restriction is not imposed.

Column (1) indicates that conditional on sector output and marginal costs, an oc-

cupation with one standard deviation larger ITI is subject to around 0.7 percentage
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points higher growth in employment each year. Column (2) suggests that an occu-

pation that is one standard deviation more routinizable grows nearly 0.4 percentage

points slower each year. Column (3) is the specification suggested by the model since

it includes both task attributes. Estimated impacts of ITI and RTI on labor demand

growth change only little when estimated jointly.

In the model sector marginal costs equal their price due to perfect competition.

However, in reality these prices might differ both in levels as well as in terms of

changes between periods. In order to see how much the choice of sector price affects

task estimates, column (4) uses value added prices instead of marginal costs. The

differences of task estimates between column (3) and (4) are small and statistically

insignificant. The coefficients of marginal cost and prices are also similar, indicating

that model’s simple view on the market structure does a god job.

I report the estimation results the model without the restriction on sector output’s

coefficient in Column (5). The estimate on sector output shrinks to 0.86 and is pre-

cisely estimated. Moreover the task coefficient estimates are nearly identical to those

in column (3). Column (5) also enables a formal test of model’s assumption of one to

one relationship between sector output and conditional labor demand. With a stan-

dard error of 0.11 the estimated coefficient is not significantly different from unity.

2.3.3.2 Occupation-specific vs. Sector-specific Technical Change

The model assumes that all technical change operates at the level of occupations. On

the other hand, most models of structural change solely focus on aggregate sector

employment. If there is sector-specific technical change and sectoral specialization of

occupations are significant then the results reported in Table 2.3 could be an artifact

of reallocation of employment across sectors, which makes sector-specific technical

change an important alternative channel to be addressed.

This can be easily illustrated by studying a hybrid version of the model with tech-

nical change occurring both at sector and occupation level. For our purposes it is

sufficient to add a sector-specific technology term, Ait, to the existing model. In this

case, the sector production function becomes:

Yit = Ait

 J∑
j

(
φij
) 1
θ
(
AjtLijt

)θ−1
θ

 θ
θ−1

. (2.35)
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First order conditions of the firm problem implies that the labor demand equation

of the hybrid model is the same except that now it includes a term for industry

technology:

logLijt = −θ logwt + logφij − (1− θ) logAjt + θ logpit + log Yit

− (1− θ) logAit (2.36)

The last component of the summation in (2.36) reflects an additional factor on real-

location of labor: conditional on industry output and prices, employment growth rate

is greatest in the industry with the slowest technology growth provided that tasks are

poor substitutes in production (θ < 1).

Absence of the industry-specific technology in estimation of (2.34) can yield mis-

leading estimates for task coefficients if technical change really happens at the in-

dustry level. The bias from the omitted technology term will be greater if certain

industries particularly specialize in specific tasks.

Table 2.4 presents the results of various attempts to disentangle occupation-specific

growth factors from sector-specific ones. First, I add sector-year fixed effects to the

regressions which capture the impact of potential industry-specific and time vary-

ing technology as well as sector output and marginal costs. Therefore this strategy

also has the additional benefit of limiting the potential biases on task estimates com-

ing from the association of marginal cost growth with occupation-specific technical

change.

The results are reported in columns (1)-(3). Comparing the estimates of task coeffi-

cients under these columns respectively with those of Table 2.3 clearly suggests that

the estimated impacts are not driven by potential sector-specific technology growth.

As an alternative to industry-time fixed effects, I report the estimates of task coef-

ficients when sector-specific time trends are included in the estimation. This reflects

that sector-specific technology is modeled to grow linearly with potentially differing

slopes across sectors. In particular, I estimate two versions in the remaining columns

of Table 2.4. First is differential sector-specific technology growth at the broad sector

level estimated by adding an interaction of service sector dummy with time trend. Ac-

cording to column (4), occupations in service sector grow on average 0.26 percentage

points faster compared to occupations in the goods sector, but the estimated effect is
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insignificant. Columns (5) to (7) show that task estimates are similar to regressions

with full set of fixed effects shown in the first three columns.

The second version of sector-specific technology growth is reflected in the regres-

sion model by adding time trend interactions of detailed sector category dummies.

Columns (8)-(10) reports again very similar results compared to other specifications

in Table 2.4 and those in Table 2.3.

2.3.3.3 The Role of Tasks in The Evolution of Employment Demand in 1990s,

and 2000s

I model occupation-specific technical change as a combination of linearly growing ITI

and RTI related parts. While this approach, in general, is practical to estimate the

long-run average impact of different channels of technology in the labor market (e.g.,

Katz and Murphy, 1992), there are reasons for doubting the linearity assumption.

The US economy during the sample period has been marked by different phases

of technical changes, especially in terms of the impact of computers. The literature

documents that during 1990s, and especially through the last 5 years of the decade,

labor productivity growth surged on the back of ICT intensive industries. On the

other hand, this impetus did not live long. After mid-2000s the aggregate productivity

growth as well as those sectors with high ICT use significantly regressed. A reflection

of slowing productivity growth of ICT is thought to be tracked in the relative price of

computers after early 2000s (Gordon, 2015).

In order to check the stability of the estimates in different parts of the sample, I

run conditional demand estimation by splitting the sample into two from the end of

2000. Columns (1)-(3) and (4)-(6) of Table 2.5 report the task coefficient estimates for

the two consecutive 13 years of the sample. The estimates for RTI is negative, large

and statistically significant before 2000, while they are small and insignificant for the

following sub-period. The vanishing impact of RTI on employment demand growth

is consistent with the view that the routinization operates through declining relative

price of ICT capital and consequently, faster productivity growth in occupations of

higher RTI. Therefore most of the impact of routinization on the labor market took

place during 1990s when productivity growth due to ICT was remarkable and the

relative price of ICT capital was decreasing at an increasing rate.

For ITI, however, the change in the estimated effect on employment growth between

the sub-periods is small and statistically insignificant, suggesting that the impact is
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more homogeneously distributed across time. Considering the fact that ITI reflects

the service content at the task level, the stable growth of employment towards more

interpersonal-service intensive employment seems to be in line with the continuous

growth of services in the economy.

2.3.3.4 Industry Demand Estimation

In order to quantify the full effect of task measures in occupational and industrial

employment reallocation, one needs to take into account the demand effects on sector

output in general equilibrium. Since sectors with high RTI and low ITI exhibit faster

productivity growth, relative prices in these sectors fall, affecting the demand for final

output from consumers. In particular, elasticity of substitution across sector output,

ε, is a key parameter for understanding the shifts of labor demand. Inspection of

equation (2.28) suggests that if sectoral elasticity of substitution is smaller (greater)

than one, relative demand for a sector increases (decreases) following a rise in its

relative price. I estimate the parameter through the following equation:

log Yit = γ̃i + γ̃t − ε log
(
pit
Pt

)
, (2.37)

which is log-transformed and market clearing imposed version of equation (2.28)

with industry output consumption weights and aggregate real income captured by

industry- and time-fixed effects γ̃i and γ̃t.

As in the labor demand estimation, I provide the estimation of equation (2.37) using

the two sector price measures of value added prices and marginal costs. Table 6

reports the output demand estimation. Column (1) uses sectoral value added price

indexes from BEA. The data go back to 1947 and column (1) suggests a postwar

elasticity of substitution of 0.52. In order to have sample period compatibility with

conditional labor demand estimation, column (2) narrows the time span to start from

1987, with estimated elasticity of 0.45. Column (3) uses the constructed marginal cost

measure, which is available starting with 1987. It suggests the elasticity parameter

as 0.49, which is remarkably close to value added price’s coefficient. These estimates

suggest that detailed industry output are poor substitutes, i.e. ε < 1.
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2.3.4 Growth Accounting of Employment Demand

Using the impacts of task measures and elasticity coefficients estimated by the model,

I compute the contributions of task components on the employment share changes of

occupations and sectors. This not only allows assessing the predictive power of the

model regarding long run employment demand shifts, but also evaluating relative

role of task measures and associated technology change. Moreover it is possible to ag-

gregate the impacts to broader occupation categories and sectors to see the predicted

impacts on two important aspects of long run employment trends: job polarization,

and structural change of employment across sectors.

2.3.4.1 Employment Share Growth

Given the occupation-sector structure of employment in the model, the growth of

occupational employment share can be expressed as follows:

∂sjt

∂t
=

∂Ljt

∂t

1

Ljt
sjt −

∂Lt

∂t

1

Lt
sjt

=

 I∑
i=1

∂ logLijt
∂t

si|jt −

I∑
i=1

sit

 J∑
j=1

∂ logLijt
∂t

sj|it

 sjt, (2.38)

where sj(i)t =
Lj(i)t
Lt

is the occupation j’s (sector i’s) employment share in year t;

si|jt =
Lijt
Ljt

is share of industry i employment in a given occupation j and year t;

sj|it =
Lijt
Lit

is share of occupation j employment in a given industry i and year t.

Combining employment demand equation (2.34), price equation (2.30), and output

demand equation (2.37), I express (2.38) in terms of estimated task impacts, elasticity

parameters and task scores:15

15 I use the following approximation for the industry marginal cost equation:

log(pit) ≈
J∑
j=1

sj|it ×
(

1

θ− 1
log
(
φij
)
+ log (wt) − log

(
Ajt
))

.
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∂sjt

∂t
=

(
γIITIj + γRRTIj +

(θ− ε)

(1− θ)

(
I∑
i=1

si|jt
(
γIITI

I
it + γRRTI

I
it

)))
sjt

−

(
1− ε

1− θ

(
γIITI

A
t + γRRTI

A
t

))
sjt, (2.39)

where γI = −(1− θ)γITI, γR = −(1− θ)γRTI are estimated task impacts from labor

demand equations; ITIIit and RTIIit are industry averages of task measures; ITIAt and

RTIAt are economy averages of task measures.16

Equation (2.39) summarizes the effects of task-based technology on employment

share growth. It can be inspected in three separate parts. First two summation ele-

ments on the right hand side (including occupation level task scores) correspond to

direct effect of technology on labor demand. Higher ITI occupations increase their

employment share since slower growing productivity in these jobs results in a higher

demand due to less than unitary elasticity of substitution among tasks.17

The second group of summation involving industry mean task scores corresponds

to the indirect demand effect on occupations. This effect ultimately depends on the

difference between industry production task elasticity and consumption sector elas-

ticity. Ceteris paribus, an occupation with higher average industry ITI increases its

employment share if substitutability in production is higher than substitutability in

consumption. The estimated elasticity parameters suggest that θ > ε, which implies

that both direct and sector effects operate in the same way with regards to relative

labor demand of an occupation. This channel effectively changes employment shares

across occupations through variations in occupations’ specialization in industries.

The last group in the summation (including economy-wide task scores) reflects the

effect of relative demand change when aggregate task intensities change. The key in

this effect is elasticity of substitution among industry output in consumption. If it is

less than unitary, the occupation’s employment demand falls with a higher economy-

wide ITI score as a result of increased level of inefficiency. However this part plays

no role in employment share changes across occupations since it is the same for all

occupations.

16 Let Z denote the task variable. Industry task intensity is given by ZIt =
∑J
j=1 sj|itZj, and aggregate task

intensity is given by ZAt =
∑I
i=1

[
sit

(∑J
j=1 sj|itzj

)]
for Z=ITI, RTI.

17 Throughout the text, the effects are exemplified through ITI. The results in the examples go in the
opposite direction for higher RTI.
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The setup also allows calculating the growth of industry employment share:

∂sit
∂t

=
∂Lit
∂t

1

Lit
sit−

∂Lt

∂t

1

Lt
sit =

 I∑
j=1

∂ logLijt
∂t

sj|it −

I∑
i=1

sit

 J∑
j=1

∂ logLijt
∂t

sj|it

 sit.
(2.40)

Using labor demand, output demand, and price equations (2.40) can be expressed

as the following:

∂sit
∂t

=
(1− ε)

(1− θ)

(
γI
(
ITIIit − ITI

A
t

)
+ γR

(
RTIIit − RTI

A
t

))
sit. (2.41)

The change of employment share depends on the elasticity of substitution in con-

sumption, ε.18 An industry with a relatively higher ITI score exhibits a relatively

slower productivity growth. If ε < 1 demand for that industry increases and conse-

quently labor share grows. This is equivalent to the well-known labor reallocation

result of structural transformation literature. Industry averages of task measures in

this representation replace industry-specific TFP growth rates in the structural trans-

formation models.

2.3.4.2 Actual and Predicted Change in Employment Shares

In this subsection I evaluate the model’s performance in predicting occupational and

sectoral employment shares. The model’s prediction of occupational employment

change between 1987 and 2014 is shown in Figure 2.1. The model performs quite well

in mimicking changes in long run employment shares. The correlation coefficient

between actual and total predicted is 0.89. The high correlation reflects matching

signs as well as the magnitudes of changes by the model. To be more precise on the

accuracy I calculate the weighted mean absolute percent error (WMAPE) as follows:

WMAPEocc = 100×
J∑
j=1

s̄j

∣∣∣spj,2014 − sj,2014∣∣∣
sj,2014

, (2.42)

where sj is occupation’s employment share, s̄ stands for average employment share

over 1987 and 2014 (rescaled to sum up to 1), and upper script p denotes the pre-

diction. WMAPE measures how much (in percentage terms) the prediction deviates

18 Note that (1− θ) term cancels after multiplication with γI or γR.
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from the actual on average. WMAPE calculated for occupation predictions is 13.45.19

In other words, the task-based model on average is off by slightly below 14 percent.

Lighter and darker gray bars in Figure 2.1 illustrate the breakdown of predictions

by the ITI and RTI measures, respectively. Bulk of the predicted contributions come

from ITI, which is not surprising given the higher point estimate of ITI’s impact on em-

ployment demand. The breakdown also suggests supportive evidence regarding the

nature of task measures. For instance, clerical (office and administration support) jobs

shrink in employment share by 3.02 percentage points. Exactly as the routinization

hypothesis suggests, almost all of the decline is explained by RTI, while ITI suggests

only a mild decline of 0.67 points. A notable example for counteracting task impacts

is in laborers. Since those occupations are not so routinizable due to manual task

requirements, employment is expected to grow relatively more in those occupations,

which is consistent with RTI prediction indicated by the corresponding dark gray bar

in the figure. However, the relatively impersonal nature of these jobs suggests that

relative labor demand should fall for workers in this occupation group. In fact em-

ployment share of laborers contracts by 0.56 percentage points, which is predicted as

0.53 by the model thanks to ITI.

Figure 2.2 presents actual and predicted employment share changes for sectors. The

predictions are based on equation (2.41). The overall fit of the model is again quite

strong with a correlation coefficient of 0.91. This performance is remarkable given

that most changes stem from a minority of sectors. I calculate the prediction error

measure employed above, now for sectors as follows:

WMAPEind = 100×
I∑
i=1

s̄i

∣∣∣spi,2014 − si,2014∣∣∣
si,2014

, (2.43)

where where si is industry’s employment share, s̄ stands for average employment

share over 1987 and 2014 (rescaled to sum up to 1), and upper script p denotes the pre-

diction as above. WMAPE of sector predictions is calculated as 14.17, which implies

that the task-based model’s predictive performance in sectoral employment changes

is similar to its capacity to explain occupational employment share changes.

The breakdown of predictions by task measures for sectors emphasizes again the

fact that ITI and RTI counteract or complement each other depending on the context

of production. Notable examples for the former are construction and retail trade

19 The same statistic can be computed for Table 4 of Goos, Manning, and Salomons (2014). Their task-based
technical change model has WMAPE of 13.38 for European countries between for 1993-2010 period.
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sectors. Construction sector is essentially non-routinizable and at the same time non-

interpersonal. The effect of this on relative labor demand of construction industry is

as expected: while predicted employment share rises 1.23 points due to RTI, it falls by

0.52 points as a result of low ITI score. Overall, there is a slight rise in employment

share as predicted. For retail trade the story is reversed: a high routinizable content

discouraging employment flows that is balanced by high interpersonal content that

attracts employment.

There are also cases where both task channels act together such as manufacturing,

and health and education sectors. These turn out to be the biggest players in employ-

ment shifts across sectors. Low ITI and high RTI content of manufacturing sector as

well as high ITI and low RTI content of health and education seems to dominate to-

gether the employment share changes across sectors. What is more striking is the key

role of ITI. It accounts for 92 percent of the fall in manufacturing, and 88 percent of

health and education sector growth. Bulk of inter-sectoral reallocation of labor cannot

be predicted if the impact of ITI is turned off.

2.3.4.3 Implications for Job Polarization and Structural Change

The disaggregated analysis above strongly suggests ITI as an important driver of

occupational and industrial employment demand after taking the impact of RTI into

account. Furthermore the contribution of ITI is significantly higher than RTI. In the

following, I analyze the success of the model and relative impact of task measures on

aggregated occupation and industry groups in order to have a clear understanding of

both task dimensions in explaining job polarization and structural change.

Panel A of Table 2.7 aggregates the actual and predicted employment share changes

to occupations grouped according to their place in the wage distribution following

Table 2.1. The model performance in explaining aggregate employment shifts across

occupation groups is notable: around 70 percent of high-pay and the middling, and

80 percent of low-pay occupation employment share change can be explained by the

model.

The role of both task measures can be quantified by comparing the last three

columns of predictions in the Table. The predicted portion explained by ITI is around

2/3. Together with the overall performance of the model, the implication is that most

of job polarization can be explained by ITI while RTI plays a significant but limited

role.
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Panel B of Table 2.7 aggregates the employment change predictions for service pro-

ducing sector following the classification in Table 2.2 as goods and services. The

model can predict 90 percent of employment shift from goods to services. Interest-

ingly, almost all of the prediction can be attributed to ITI leaving no significant role

for RTI in explaining sectoral aggregate trends of employment growth.

2.3.4.4 Addressing Issues on the Interpretation of Results

The predictions discussed above can be interpreted that the task-based model of struc-

tural change provides a good description of the US labor market after late 1980s in

respect of employment reallocation dynamics across occupations and sectors. In par-

ticular, measures of interpersonal-service intensity and routinizability jointly seem to

form the key task aspects of structural changes of employment. On the other hand,

one needs to be careful on the task measures before accepting their individual predic-

tive capacity at face value.

robustness by variable choice : The most important potential concern is

whether the individual predictions are sensitive to the choice of task variables. In

order to have an idea of the robustness of the results, I construct alternative variables

for measuring ITI and RTI.

For ITI, I use "deal with external customers" variable from O*NET database. It is

one of the variables that make the original ITI index and it is conceptually sufficient

for capturing the key aspect. On the other hand, the literature seems to reach a

consensus in using RTI as a reliable measure of routine task intensity. Therefore, it

is hard to argue here that an alternative measure is as a good proxy for routinization

as the composite RTI variable constructed from Autor, Levy, and Murnane (2003)’s

original task aspects. As the best alternative, I generate the O*NET version of RTI

using Acemoglu and Autor (2011)’s proposed alternatives to original DOT variables.

Table 2.A.1 compares the predictions obtained when alternative variables are used

in the estimation of the model.20 As shown at Panel A, the overall performance of the

model in predicting job polarization changes as the alternative variables predict top

occupations better at the expense of bottom jobs while the contraction in middle wage

occupations is predicted similarly by both the original original and the alternative set

20 Note that in terms of predictive capacity of the model both the point estimates from the conditional labor
demand estimation and the distribution of task scores across occupations and sectors are important.
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of task variables. Panel B of the table reports that the alternative variables overshoot

the growth of service sector employment share by around 2.75 percentage points,

which is about 30 percent of the actual.21

Observing such changes in the overall performance of the model is not surprising

given that original variables are more carefully constructed for the purpose of this

study and the routinization framework. What is more important for the current dis-

cussion is the key result of this paper that bulk of the predictive capacity of the model

comes from interpersonal-service tasks. Comparing individual predictions to total,

Table 2.A.1 suggests that ITI measure in the alternative model accounts for 57, 61 and

102 percent of the total predicted change for the top, middle, and bottom occupations,

respectively. Similarly, ITI continues to dominate the predictions for service sector

growth as almost all of the predicted changes in service employment share comes

from interpersonal-service task variable.

interpretation of iti with respect to routinization : The second con-

cern could be the following: the result that interpersonal-service tasks are the most

important dimension of task demand changes does not necessarily mean that overall

routinization is less effective, since ITI can potentially capture unmeasured elements

of routinizability. This concern is worth addressing here because although a valuable

measure of routinizability, RTI is still an imperfect one. If this concern is right, per-

haps interpersonal-service tasks complement the routinization view. In particular, ITI

augments the existing framework in adding a new element to the non-routine tasks.

In fact this approach is taken by some papers in the literature (Goos, Manning, and Sa-

lomons, 2009; Lee and Shin, 2017). Moreover, the bottom wage occupations are mostly

characterized by personal services, which have high interpersonal-service content and

often are the typical examples of non-routine manual tasks in the routinization liter-

ature (e.g., Autor and Dorn, 2013; Goos, Manning, and Salomons, 2014). However,

interpersonal-service tasks are not addressed formally in the original routinization

framework. It is true that many interpersonal-service intensive personal service jobs

have also above-average scores in non-routine manual tasks, however among high ITI

tasks there are routine and abstract intensive jobs too.

21 The correlation coefficient between actual and predicted occupational employment share changes is
0.72 and the WMAPE for occupation employment share predictions is 19.93. The correlation coefficient
between actual and predicted sectoral employment share changes is 0.91 and the WMAPE for occupation
employment share predictions is 15.61.
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Whether ITI is part of the routinization framework is extensively studied in Chapter

1 of this thesis. The Chapter argues that ITI does not fit into the existing routinization

framework since (i) it is different than non-routine cognitive interactive tasks; (ii) it is

different than non-routine manual tasks; (iii) it is not negatively associated to direct

ICT intensification measures as one expects according to the routinization hypothesis.

Therefore the existing evidence does not support a clear role for interpersonal-service

tasks within the routinization view. The estimated impact of ITI on employment

reallocation largely reflects the technical change apart from computerization.

alternative hypotheses : Finally, I evaluate other potential drivers of task de-

mand in the literature, namely offshoring and demand shifts due to non-homothetic

preferences. There is growing evidence in the literature on the poor performance of

offshorability in reallocation of employment (Autor and Dorn, 2013; Goos, Manning,

and Salomons, 2014; Lee and Shin, 2017). In Figure 2.A.1 and 2.A.2 I show the pre-

dictions and actual changes when I model technology growth as a linear function of

offshorability.22 The offshorability variable is from Autor and Dorn (2013). The fig-

ures clearly confirm with the dataset of this paper that offshorability does not seem

as a significant task-based channel in changing occupational and sectoral structure.

The recent task literature also lacks empirical support for a significant impact of

non-homothetic preferences on labor demand.23 Preferences are conceptually argued

to impact both sector (e.g., Kongsamut, Rebelo, and Xie, 2001) and occupation de-

mand (e.g., Manning, 2004). The sector-time fixed effects discussed in section 3.3 can

be argued to partially account for the impact of non-homothetic preferences. To the

extent that the household directly consumes only final goods and services of sectors

as currently modeled in the paper, sector-time fixed effect estimation results suggest

that sector-based non-homotheticities perhaps do not play a big impact in the chang-

ing task demand. However, there are cases where occupation-specific demand growth

of such type is not fully absorbed by sectors. For instance, customer service jobs are

demanded by customers regardless of the sector and consumers might be willing to

disproportionately get more of them as income grows. This is a more relevant con-

cern for ITI as the preference explanation is based on a growing demand for services.

22 The observationally equal case is having capital in the model and assuming faster declines in capital
prices in more offshorable tasks (Goos, Manning, and Salomons, 2014).

23 Non-homotheticity is found more useful in the structural change literature. However the key role of pref-
erences is in explaining the behavior of real consumption and expenditure shares (Herrendorf, Rogerson,
and Valentinyi, 2014), which is outside the scope of the current analysis.
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Therefore, the estimated impact of ITI can be affected by preferences, which is not in

line with the technology perspective of this paper. Although the current specification

does not allow a direct control for this possibility, Figure 2.A.3 provides indirect evi-

dence. The idea is to compare the predictive performance of ITI for service intensive

occupations against non-service ones, as non-service occupations are a lot less likely

to grow due to income effects favoring services. If the preference channel is a major

concern, then we should observe that the model has a good fit among service inten-

sive jobs and a bad one within non-service occupations. The figure evidently shows

that ITI does not have a superior fit for service occupations. If anything, predictions

for non-service occupations seem to have a better fit, suggesting that income effects

are not driving the model’s success.

2.4 Conclusion

In this paper I estimate an occupation-specific technical change model for the US

economy. The key assumption of the model is that the technical change is biased

against interpersonal-service tasks and in favor of routinizable ones. Consistent with

the model, these two task aspects play a substantial role in the reallocation of employ-

ment across occupations and sectors. Moreover the task-based model can account for

a substantial part of the changing structure of employment in the last 3 decades.

This paper estimates a dominating impact for interpersonal-service tasks in explain-

ing both job polarization and the growth of service sector employment in the US. On

the other hand, routinization has a substantial impact on polarization of employment,

but arguably more limited than the previous task-based literature expects. Further-

more, I observe that the employment impact of routine-biased technical change largely

took place during 1990s, while reallocation of employment into interpersonal-service

intensive occupations follows a more balanced course throughout the sample period.

As a result of continuously rising relative demand, the service economy has become

the most important part of the labor markets. Therefore, the research on the chang-

ing structure of employment across different segments in the economy demands a

better knowledge of within-sector forces of resource reallocation. By illustrating the

success of the task-based model to explain sector as well as occupation employment
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dynamics, and emphasizing the role of customer oriented interactions I hope this

paper contributes in this direction.
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2.A Tables

Table 2.1: Occupations, Task Scores and Change in Employment

A. Task Scores B. Employment Share

ITI RTI 1987 2014 Change

High-Wage Occupations 0.26 -0.38 37.28 45.52 8.24
Legal 0.86 2.00 0.71 0.92 0.21

Computer, math sciences and eng. -1.12 -0.97 2.79 3.34 0.55

Managers 0.60 -0.92 11.00 13.00 2.00

Life, physical and social sciences -0.98 -0.17 0.64 0.68 0.04

Healthcare practitioners and techn. 1.59 -0.48 4.04 5.91 1.88

Technical except health -1.33 -0.12 2.10 2.85 0.75

Business, finance, and management rel. 0.10 0.70 9.78 10.38 0.60

Education, training, library 0.46 -1.64 4.76 6.61 1.85

Arts, design, sports and media -0.51 0.28 1.46 1.83 0.36

Middle-Wage Occupations -0.40 0.83 52.64 41.39 -11.25
Mechanics and repairers -0.34 -0.24 4.82 3.59 -1.24

Precision production -1.36 0.89 3.80 2.42 -1.39

Extraction and construction trades -0.32 -0.83 4.64 3.82 -0.82

Community and social service 2.15 0.09 0.91 1.29 0.38

Drivers and mobile plant operators 0.31 -1.33 4.04 4.14 0.10

Office and administrative support -0.37 2.49 15.32 12.31 -3.02

Sales and related 0.83 0.80 6.58 5.75 -0.82

Machine operators and assemblers -1.56 0.81 8.41 4.53 -3.88

Laborers -0.70 0.04 4.10 3.54 -0.56

Low-Wage Occupations 0.40 -0.18 10.09 13.09 3.01
Personal services 0.19 -0.13 8.46 10.10 1.63

Healthcare support 1.52 -0.47 1.62 3.00 1.37

Notes: Occupations are ordered according to CPS mean wages over all years from 1987 to 2014.
Employment is annual hours worked. Employment shares are multiplied by 100.
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Table 2.2: Industries, Mean Task Scores and Change in Employment

A. Task Scores B. Employment Share

ITI RTI 1987 2014 Change

Goods Sector -0.54 0.08 29.86 21.34 -8.53
Mining -0.40 -0.15 0.87 1.06 0.18

Utilities -0.41 0.20 1.65 1.42 -0.23

Construction -0.21 -0.47 6.56 6.82 0.26

Manufacturing -0.69 0.31 20.78 12.04 -8.74

Service Sector 0.20 0.18 70.13 78.67 8.53
Wholesale trade 0.12 0.49 5.00 3.03 -1.97

Retail trade 0.17 0.41 16.17 16.80 0.63

Transportation and warehousing -0.03 0.09 4.97 5.35 0.38

Information -0.38 0.20 4.64 4.99 0.34

Finance, ins., real est., rental, leasing 0.00 0.79 7.77 8.19 0.42

Professional and business services -0.07 0.42 6.88 9.17 2.29

Education, health care, social assistance 0.63 -0.32 17.54 23.75 6.22

Arts, ent., rec., accom., and food services 0.15 0.02 1.95 2.68 0.72

Other services, except government 0.15 0.08 5.21 4.71 -0.50

Notes: Industries are according to NAICS classification. Employment is annual hours worked. Em-
ployment shares are multiplied by 100. Industry task scores are industry averages across occupations
using labor supply weights in the pooled sample.
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Table 2.3: Labor Demand Estimation

(Dependent Variable: Log Annual Hours Worked, 1987-2014)

(1) (2) (3) (4) (5)

Time Trend ×

ITI 0.69*** 0.64*** 0.68*** 0.65***
(0.21) (0.21) (0.22) (0.21)

RTI -0.42*** -0.35*** -0.34** -0.35***
(0.14) (0.13) (0.14) (0.13)

Industry output 1 1 1 1 0.86***
(0.11)

Industry marginal 0.85*** 0.86*** 0.86*** 0.77***
cost (0.08) (0.08) (0.08) (0.09)

Industry value-added 0.75***
price index (0.09)

Observations 6,400 6,400 6,400 6,400 6,400

R2 0.95

Notes: Table reports estimated coefficients from different specifications of labor de-
mand in columns. Observation unit is industry-occupation. Estimates of interaction
of time trend with task measures are multiplied by 100. Industry output, marginal
cost, and value-added price index is in logs. (1) to (4) are estimated as constrained
regressions. All columns contain industry-occupation and year dummies. Standard
errors clustered by occupation-industry are in parentheses. *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 2.4: Change in Labor Demand: Occupation-Specific and Sector-Specific Growth

(Dependent Variable: Log Annual Hours Worked, 1987-2014)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Time Trend ×

ITI 0.66*** 0.62*** 0.69*** 0.64*** 0.66*** 0.62***
(0.20) (0.20) (0.21) (0.21) (0.19) (0.19)

RTI -0.42*** -0.35*** -0.42*** -0.35*** -0.41*** -0.34***
(0.13) (0.13) (0.13) (0.13) (0.13) (0.12)

Service Sector 0.26 0.19 0.25 0.18

Dummy (0.41) (0.38) (0.40) (0.38)

Sector Dummies - - - - - - - X X X

(Detailed)
Industry-Year X X X - - - - - - -
Fixed Effects
Observations 6,400 6,400 6,400 6,400 6,400 6,400 6,400 6,400 6,400 6,400

R2 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Notes: Table reports estimated coefficients from different specifications of labor demand in columns. Observation unit is industry-
occupation. Estimates of interaction of time trend with task measures and sector dummies are multiplied by 100. (1) to (3) include
industry-occupation dummies. (4) to (10) include year and industry-occupation dummies, and industry output and marginal cost variables.
Industry output and marginal cost are in logs. Standard errors clustered by occupation-industry are in parentheses. *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 2.5: Change in Labor Demand and Tasks: Subperiods

(Dependent Variable: Log Annual Hours Worked, 1987-2014)

1987-2000 2001-2014

(1) (2) (3) (4) (5) (6)

ITI 0.84** 0.72** 0.95*** 0.96***
(0.36) (0.35) (0.28) (0.28)

RTI -0.99*** -0.91*** -0.01 0.10

(0.21) (0.21) (0.20) (0.19)

Observations 3139 3139 3139 3261 3261 3261

R2 0.97 0.97 0.97 0.96 0.96 0.96

Notes: The table reports estimated coefficients of task measures multiplied by time
trend in different labor demand specifications in columns. Reported coefficients
are multiplied by 100. Observation unit is industry-occupation. All regressions
contain industry-occupation and industry-year dummies. Standard errors clustered
by occupation-industry are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.6: Industry Demand Estimation

(Dependent Variable: Log Output, Value Added)

1947-2014 1987-2014

(1) (2) (3)

Log Relative Price -0.52*** -0.45***
(0.04) (0.05)

Log Relative -0.48***
Marginal Cost (0.03)

Observations 884 364 364

R2 0.96 0.99 0.99

Notes: The table reports estimated coefficients in different speci-
fications of industry output demand in columns. All regressions
contain industry and year dummies. Output and relative price and
cost data are from BEA. Robust standard errors are in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 2.7: Trends in Employment Demand: Actual vs Model

(100 × Employment Share Change, 1987-2014)

Actual Predicted

A. Job Polarization Total Total ITI RTI

High-Wage 8.24 5.72 3.41 2.31

Middle-Wage -11.25 -8.16 -5.19 -2.96

Low-Wage 3.01 2.42 1.77 0.65

B. Structural Change

Service Sector 8.53 7.72 8.02 -0.31

Notes: Occupation groups and service sector definition follow Table
2.1 and Table 2.2. Actual refers to the long change in employment
share observed in the data. Column Total reports predictions as
described in Figure 2.1 notes (for Panel A) and 2.2 notes (for Panel
B). Last two columns report individual predictions by the respective
task measure when the effect of the other on labor demand is held
constant.
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Table 2.A.1: Predictions with Alternative Measures: Actual vs Model

(100 × Employment Share Change, 1987-2014)

Actual Predicted

A. Job Polarization Total Total ITI* RTI*

High-Pay 8.24 7.74 4.41 3.33

Middle-Pay -11.25 -8.50 -5.18 -3.32

Low-Pay 3.01 0.76 0.77 -0.01

B. Structural Change

Service Sector 8.53 11.27 10.37 0.90

Notes: The predictions use task coefficients of alternative measures
of ITI (ITI* in the table) and RTI (RTI* in the table) as defined in the
text. For all other details see Figure 2.1 notes (for Panel A) and 2.2
notes (for Panel B). Last two columns report individual predictions
by the respective task measure when the effect of the other on labor
demand is held constant.
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2.B Figures
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Figure 2.1: Occupation Employment Share Changes: Actual vs. Predictions

Notes: The figure shows the actual and predicted occupation employment share changes, and breakdown of predictions by ITI and RTI. Predictions are
based on equation 2.39. Parameter values are from column (3) of Table 2.3 for tasks’ impact on labor demand growth; the simple average of the coefficient
of industry marginal cost in column (3) and industry value-added price index in column (4) of Table 2.3 for task input elasticity in sector production; and
the simple average of the coefficient of relative industry marginal cost in column (2) and relative industry value-added price index in column (3) of Table 2.6
for output elasticity in consumption. Individual predictions by each task measure are computed such that the effect of the other on labor demand is held
constant.
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Figure 2.2: Sector Employment Share Changes: Actual vs. Predictions

Notes: The figure shows the actual and predicted occupation employment share changes, and breakdown of predictions by ITI and RTI. Predictions are
based on equation 2.41. Parameter values are from column (3) of Table 2.3 for tasks’ impact on labor demand growth; the simple average of the coefficient
of industry marginal cost in column (3) and industry value-added price index in column (4) of Table 2.3 for task input elasticity in sector production; and
the simple average of the coefficient of relative industry marginal cost in column (2) and relative industry value-added price index in column (3) of Table 2.6
for output elasticity in consumption. Individual predictions by each task measure are computed such that the effect of the other on labor demand is held
constant.
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Figure 2.A.1: Performance of Offshorability Measure: Actual vs. Predicted Changes in Occupation Employment Shares

Notes: The figure shows the actual and predicted occupation employment share changes from the estimation of the task model of offshorability which
provides the coefficient of the offshorability measure. For other details of the computation see Figure 2.1 notes.
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Figure 2.A.2: Performance of Offshorability Measure: Actual vs. Predicted Changes in Sector Employment Shares

Notes: The figure shows the actual and predicted occupation employment share changes from the estimation of the task model of offshorability which
provides the coefficient of the offshorability measure. For other details of the computation see Figure 2.2 notes.
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Figure 2.A.3: ITI and Employment Growth: Actual vs. Predicted Changes Employment Shares by Service Intensity of Occupations

Notes: The figure plots the actual vs. predicted occupation employment share changes from the estimation of the task model. The predictions are ITI’s
individual contributions as in Figure 2.1. The service occupation definition is adopted from Duernecker and Herrendorf (2017). Non-service occupations
are mechanics and repairers; extraction and construction workers; precision production workers; machine operators and assemblers; drivers and mobile
plant operators; laborers in transport, manufacturing, construction and extraction. All other occupations belong to service intensive occupations.
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2.C Data Appendix

I describe the details of CPS sample used in this study here. CPS data refer to CPS

March extracts. The sample includes workers of age 16-64, employed workers, exclud-

ing armed forces, self-employed, and unpaid family workers who reported positive

wage income. Employment of an occupation is total annual hours worked computed

as usual weekly hours times weeks worked variables. Labor supply weights are cal-

culated as annual hours times population weights.
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Chapter 3

S K I L L - B I A S E D T E C H N I C A L C H A N G E

A N D L A B O R M A R K E T P O L A R I Z AT I O N :

T H E R O L E O F S K I L L H E T E R O G E N E I T Y

W I T H I N O C C U PAT I O N S

I document that employment share change and wage growth of occupations tend to increase

monotonically with various measures of skill intensity since 1980 in the US, in contrast to the

existing interpretation of labor market polarization along occupational wages. The observation

is not particularly driven by a specific decade, gender, age group, or occupation classification.

The evidence suggests that polarization by wages does not imply polarization of skills that

have cross-occupation comparability. Skill-biased and polarizing occupation demand coexist

as a result of the weak connection of wage and observable skill structure particularly among

the low-wage jobs in the 1980. The empirical findings of the chapter can be reconciled in an

extended version of the canonical skill-biased technical change model which incorporates many

occupations and within-occupation heterogeneity of skill types.
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3.1 Introduction

The task-based view in labor economics has had a profound impact on the way

economists perceive inequalities in the labor market. Perhaps, this impact is most no-

table in our understanding of skill-biased technical change (henceforth SBTC), which

has been a cornerstone in the wage inequality literature.1 The canonical model of

SBTC typically assumes skilled and unskilled workers in the economy where tasks

and skills are implicitly equivalent (Katz and Murphy, 1992). The task perspective em-

phasizes the conceptual difference of work activities (tasks) from the set of productive

worker capabilities (skills) (Acemoglu and Autor, 2011), and the practical importance

of occupations as the unit of empirical analysis (Firpo, Fortin, and Lemieux, 2011).

One implication of the task perspective in the literature has been the development

of a nuanced view on technical change, where recent advances in computer technol-

ogy affect abstract, routine, and manual tasks in different ways (Autor, Levy, and

Murnane, 2003). The resulting emphasis on occupations revealed an important as-

pect of labor market inequalities that the canonical model could not predict, namely

labor market polarization referring to slower growth in employment and wages in

middle-wage jobs relative to others located at the tails of the wage distribution.2 The

literature often interprets polarization in terms of skills, as the manifestation of non-

monotonic changes in the demand for skills as opposed to the monotonicity implied

by the canonical model (see, e.g., Acemoglu and Autor, 2011; Autor and Dorn, 2013;

Autor, Katz, and Kearney, 2006; Goos and Manning, 2007)

Untangling tasks from skills has proved itself as an empirically remarkable im-

provement over the canonical model, however both approaches still share a common

assumption that strictly isolates skill-types in the performance of a given task. In other

words, a task can only be performed by a single type of worker, either absolutely (as

1 See Goldin and Katz (2008) both for the empirical evidence on how the simple demand and supply
framework of SBTC, which is referred to as the canonical model in Acemoglu and Autor (2011), can
successfully help to understand the evolution of the labor market inequalities, and for a review of the
literature on the SBTC.

2 Polarization is shown to be a pervasive phenomenon both in the US (Autor, Katz, and Kearney, 2008; Au-
tor and Dorn, 2013; Autor, Katz, and Kearney, 2006), the UK (Goos and Manning, 2007), and many other
advanced economies (Goos, Manning, and Salomons, 2009, 2014). Barány and Siegel (2017) argue that
polarization starts as early as the 1950s in the US. Polarization has been the most influential illustration
of how the canonical SBTC model fails to explain trends of inequality at occupation level (e.g., Autor,
Katz, and Kearney, 2008; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007). See Acemoglu and
Autor (2011) and Acemoglu and Autor (2012) for other evidence which cannot be explained within the
canonical model.
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in the canonical model) or conditional on the state of technology (as in task-based

models).3 The aim of this paper is to relax this assumption and explore the role of

occupational skill heterogeneity by providing a characterization of the evolution of

inequalities with respect to differences in observable skill intensities across tasks.

The motivation for this study can be summarized in Figure 3.1, which plots smoothed

shares of skill groups in 1980 occupational employment by occupations’ wage per-

centile ranking. The education shares of employment imply substantial heterogeneity

within occupations when ranked by wages. All types of skills are found in significant

shares in employment throughout the distribution with varying weights. Further-

more, from the lens of education intensities it does not seem realistic to character-

ize occupations throughout the wage distribution as high-, low- and middle-skilled.

While the high school dropouts tend to have a higher share in employment towards

the lower tail of the distribution, this group appears nowhere as the dominating skill

component of jobs. Similarly, both high school graduates and workers with some

college education, who can be considered as the middle-skill workers, do not show

a drastic tendency to grow in the middle of the wage distribution compared to the

lower tail.4 Instead, there is a clear disconnect between education and wages for

occupations below the median wage.

Figure 3.1 raises two important questions regarding the skill-based interpretation of

the cross-occupation inequality trends. Can labor market polarization be consistently

confirmed by skill measures other than wages? Are there any implications of within-

occupation heterogeneity of skill types in the reallocation of employment across tasks

and in the evolution of wages? While answering these questions this paper contributes

to the existing literature in the following aspects.

The first contribution of the paper is to document that polarization observation

in the long run is only limited to wage ranking of occupations in a set of available

skill measures. When the skill measure used is the share of college workers in em-

ployment, which is the relevant variable for assessing the skill content according to

SBTC hypothesis, occupational employment and wage changes follow a monotonic

path proportional to occupational skills rather than a u-shape. Other education-based

3 The existing task literature is well aware of skill heterogeneity within occupations (e.g., Goos and Man-
ning, 2007). However, this is not reflected in the task-based models and explanations of inequality
trends.

4 There is no consensus in the task literature on the educational content of the middle-skill type. Acemoglu
and Autor (2011) include both high-school graduates and workers with some college education while
Autor and Dorn (2013) exclude the latter group of workers.
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variables as well as measures of trainability and ability also suggest that employment

and wage growth of occupations are proportional to skill intensity. The observed

monotonic growth is broadly robust to the choice of occupation classification, pre-

vails within each decade from 1980 to 2010, and holds within the labor market for

each gender and age group.

The second contribution is a set of empirical observations that speak to the determi-

nants of the documented contrasting patterns of inequality by wage and skill rankings

and explore the connection between the structure of occupational wages and skills in

1980. In order to understand what stands behind the observed mismatch between

polarization and monotonic changes in task demand, I extend the evidence leading

to Figure 3.1. Using a broad set of skill measures, I argue that occupational mean

wage is not a good proxy of worker skills for jobs at the lower half of the wage dis-

tribution. In addition, occupational wages reflect other occupation-specific attributes

such as how demanding the job is in terms of working time and cognitive process-

ing capacity, and the level of exposure to hazardous conditions, better than acquired

skills or education for the low-wage jobs in 1980. The data also reveals that distribu-

tion of skills by wages in broader occupation groups is beyond the stylized three-skill

view that matches specific occupation groups to certain skill types. Remarkably, the

so-called low-skill service occupations on average exhibit higher skills than many of

the so-called middle-skill occupations along the wage distribution. Finally, I bring evi-

dence showing that college workers are a significant part of lower skilled occupations

and both college and non-college workers played a substantial role in the relative

employment growth of bottom and top wage occupation groups.

Third contribution is to reconcile the first two set of findings. I present a simple

extension of the canonical SBTC model to many occupations, which nests the skill pre-

mium equation of Katz and Murphy (1992), and show that the observed monotonic

employment and mean wage growth is consistent with it. Furthermore, if the occupa-

tional wage structure does not solely depend on the mean observable skill intensity

but other task-based attributes such as occupation-specific differences in preferences,

the model is also qualitatively capable of explaining labor market polarization along

wage distribution jointly with monotonic changes by skills.5

5 I illustrate a framework based on compensating differentials across occupations. Same qualitative results
can also be motivated by a Roy-type occupation-specific productivity that is heterogeneously distributed
across workers (see, e.g. Barány and Siegel, 2017). My modeling choice for compensating differentials
is due to my observation that occupational wage structure can be better predicted by task attributes
that are potentially associated with disutility from work (such as required hours of work for the job)
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The most important element of the model is that low-skill and high-skill work-

ers, though in different proportions, jointly contribute to the production of tasks in all

occupations. The key mechanism to generate the labor demand forces is given by vari-

ation in SBTC-driven labor productivity growth across occupations and differences in

the share of college to non-college workers. Hence, occupation-specific productivity

growth drives labor reallocation as in models of structural change.6 Having multiple

skill types to perform the same task is also the distinctive feature of the model com-

pared to the existing models of SBTC. While the model successfully rationalizes the

monotonic occupation growth patterns, a simple predictive exercise on major occupa-

tion groups suggests that predictions of employment share change and wage growth

by skill intensity differences across occupations are also compatible with polarization

by wages.

I suggest that a labor market view where technical change favors not only high-

skill workers but also the occupations employing better skilled ones is an acceptable

characterization of the reality. This perspective is also partially compatible with non-

monotonic evolution of employment demand along occupational wages. I put for-

ward an additional modification to the task approach by stressing the importance of

within-occupation heterogeneity of skills for the dynamics of inequality.

This paper is located within the broad SBTC literature that aims to characterize

labor market inequalities in terms of skills. The approach held here can be seen as a

combination of the canonical SBTC model with the task-based models. I extend the

canonical model to include occupations. On the other hand, this paper diverges from

the existing task-based SBTC literature by relaxing the strict assignment of skills to

tasks conditional on the state of technology.7 SBTC at occupation level introduces an

alternative channel of task demand shift. Therefore this paper complements the lit-

erature on task level sources of disaggregate inequality trends such as routine-biased

compared to three task elements of routinization hypothesis. See Bryson and MacKerron (2016) for
evidence on the negative impact of working on happiness. Authors also document that the negative
impact is significantly lower for individuals at lower income levels. Bryson, Barth, and Dale-Olsen
(2012) presents direct evidence on the negative association of wages with worker wellbeing.

6 The structural change literature suggests that sector-specific differential growth in TFP is a source of
labor reallocation (e.g., Ngai and Pissarides, 2007). The same idea can also be applied in the context
of occupational structural change (e.g., Autor, Katz, and Kearney, 2008; Goos, Manning, and Salomons,
2014).

7 Acemoglu and Autor (2011) develop a model where three skill types are assigned to a continuum of tasks
such that the assignment is subject to change following changes in skill-specific technologies. Autor,
Katz, and Kearney (2006) and Autor and Dorn (2013) assume that college workers can only perform
abstract tasks. Non-college workers can move between routine and manual tasks. In both type of
models, conditional on the technology parameters, there is a one-to-one mapping from skill types to
tasks.
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technical change (e.g., Autor and Dorn, 2013; Autor, Levy, and Murnane, 2003; Goos,

Manning, and Salomons, 2014), offshoring (e.g., Blinder, 2009; Blinder and Krueger,

2013; Jensen and Kletzer, 2010), institutional changes (e.g., Lemieux, 2008), and struc-

tural change (Barány and Siegel, 2017; Duernecker and Herrendorf, 2017).

On the other hand, this paper contrasts with the existing skill-based interpretation

of labor market polarization, which argues that the observed polarization patterns

imply polarization of skills in the labor market.8 The results of this study suggest

that the existing occupational polarization can at most be interpreted as polarization

of the market value of occupation-specific skills in the face of evidence on monotonic

occupation growth by skills that are comparable across occupations. Therefore my

results indirectly support the use of models on polarization that employ task-specific

skills (e.g., Firpo, Fortin, and Lemieux, 2011).9

The paper is closest to Cerina, Moro, and Rendall (2017) outside the task-based lit-

erature. Cerina, Moro, and Rendall (2017) develop a multisector model with worker

heterogeneity in gender, education and sector-specific ability, where the driver of po-

larization is SBTC as in this paper. The intuition of the mechanism in their model is

that increasing skill premium attracts more women from home production into high-

skill service sector, and consequently the demand for services that are substitutable to

those produced at home, which are mostly located at the bottom of wage distribution,

increases. Two papers differ mainly in terms of the basis of production in the econ-

omy. While they have a sector-based model, my study solely focuses on employment

and skills in occupations and abstracts from sectors.10

The rest of the paper is structured as follows. Section 3.2 introduces the data used

in this paper. Section 3.3 documents the empirical observations. In particular, first

I show the evolution of occupational employment and wages throughout the skill

distribution followed by analyses for robustness and validity of the observation. Then

I discuss the evidence on the distribution of skills along the wage structure and across

occupation groups using several alternative skill measures and on the role of college

workers in job polarization. Section 3.4 introduces the theoretical framework that

8 The discussion in this paper is limited to skill-based interpretation of polarization. Papers that di-
rectly test the effect of intensification of recent technologies on the demand for different skill types (e.g.,
Michaels, Natraj, and Van Reenen, 2014) remain outside the scope of this paper.

9 Barány and Siegel (2017) and Cerina, Moro, and Rendall (2017) also develop Roy-type models to explain
job polarization in the US. Although these models apply to sectors the idea can be easily adopted to
task-specific abilities.

10 A further difference is in terms of methodology. Cerina, Moro, and Rendall (2017) calibrate their model
to explore the implications of the model whereas I follow an essentially descriptive approach here.
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rationalizes the observations made in previous sections. Section 3.5 concludes the

paper.

3.2 Data

The main unit of analysis throughout this paper is detailed occupations. I classify

occupations following Dorn (2009) who develops a consistent and balanced set of

occupation codes that allow comparability across 1980, 1990, 2000 Census, and 2005

American Community Survey (ACS). For occupations in 2010 ACS I first transform

2010 occ codes to ACS 2005 occ equivalents, and then merge according to the cross-

walk by Dorn (2009). Excluding farming and fishing occupations, I end up with a

balanced panel of 322 occupations. In some parts of the empirical analyses I also em-

ploy six broader (major) occupation groups constructed from the detailed occupations

following Autor and Dorn (2013).

I use 1980, 1990, 2000 IPUMS Census, and 2010 ACS data for calculating occupa-

tional employment shares, real wages and skill variables based on formal schooling.

The measure of employment is annual hours worked which is aggregated to occupa-

tions using Census weights. Wages used are hourly and computed as annual wage

income divided by annual hours. Real wages are calculated by an adjustment of nom-

inal hourly wages by Personal Consumption Expenditure (PCE) Index. I have two

main skill variables generated from Census data, mean years of education and share

of college workers. College worker unless stated otherwise is defined by having any

level of education above high school. In the calculation of all occupational averages

observations are weighted by labor supply weights which are calculated as annual

hours times population weights.

I complement the Census-based education measures by employing a set of variables

reflecting different aspects of skills. From National Longitudinal Survey of Youth

(NLSY) 1979 I get The Armed Forces Qualification Test (AFQT) score, which is widely

used as a measure of general innate ability (Heckman, Stixrud, and Urzua, 2006).

From 1983 to 1992 the survey reports AFQT scores as well as 3 digit 1980 Census

occupation codes. After pooling observations in all years and using the crosswalk by

David Dorn to match occupation classification used in this study, I calculate occupa-

tional mean AFQT scores weighted by customized longitudinal weights.
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From the occupational network (O*NET) database published by the US Depart-

ment of Labor I obtain the occupational Job Zone information which measures the

occupation-specific training requirements. I translate the original intervalled variable

to months of training using the table provided by O*NET. I further use three addi-

tional variables from the database as proxies for working conditions. One indicates

how demanding a job is in terms of working time with a measure of “the typical

length of workweek”. The other provides a proxy for cognitive demands of the job

by the variable “analyzing data or information”. Last one is a combined measure of

hazardous conditions of the job computed as an average of several related variables.11

I merge the SOC 2010 codes provided by O*NET to the dataset using 2010 ACS’s

reported SOC codes and 2010 labor supply weights.

The last source of occupational data is Dictionary of Occupational Titles (DOT) 4th

edition. I employ general educational development (GED) and specific vocational

preparation (SVP) as alternative skill intensity measures. GED for a particular occu-

pation is given by the highest score out of three categories (reasoning, math, language)

each of which is computed in a 6 point scale. SVP provides a more job-specific mea-

sure which only includes the training (acquired in school, work, military, institutional

or vocational environment) in order to achieve the average performance of the tasks

required by the occupation. It does not include schooling without vocational content.

I use a version of this variable which translates the 9 point scale of the original variable

into training time in months. The dataset I utilize reports the mean DOT variables for

Census 1980 occupation codes is prepared by England and Kilbourne (1988). I merge

1980 Census occupations to my occupational dataset using 1980 Census labor supply

weights and the crosswalk provided by David Dorn. In addition I use the relevant

aspects of the three-task view (abstract, routine, manual) computed from DOT in a

similar way by Autor and Dorn (2013).

11 Following variables are included in the hazard measure: “Deal With Physically Aggressive People”,
“Deal With Unpleasant or Angry People”, “Exposed to Contaminants”, “Exposed to Disease or Infec-
tions”, “Exposed to Hazardous Conditions”, “Exposed to Hazardous Equipment”, “Exposed to High
Places”, “Exposed to Minor Burns, Cuts, Bites, or Stings”, “Exposed to Radiation”, “Exposed to Whole
Body Vibration”, “Extremely Bright or Inadequate Lighting”, “Very Hot or Cold Temperatures”.
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3.3 Occupational Skills and Trends in Occupation

Growth

3.3.1 U-Shaped or Monotonic?

In the literature almost all of the evidence for polarization comes from skill percentiles

represented by mean or median wages. If the skill-based interpretation of polariza-

tion is true then we expect to confirm it using more direct measures for skills too. The

key skill classification in the literature on SBTC is based on college education. There-

fore, I simply start reassessing the role of skills in changing labor market trend by

comparing occupational employment and wage growth patterns when occupations

are ranked by mean wages to rankings based on high-skill worker intensity. Two al-

ternative variables capture the skill intensity. The first one, college worker share, is

the ratio of employment of workers with any college education to the occupation’s

total employment. The second, college graduate share, is the intensity of workers

with at least a college degree in occupation’s employment. Figure 3.2 presents the

growth pattern of occupation employment and wages based on the three alternative

measures of occupational skill. Panel A and Panel B plot the smoothed employment

share changes and real hourly wage growth by the skill percentiles in the 1980 US

labor market. Small diamonds in the figure correspond to changes by mean wage

ranking and confirm the polarization for the US between 1980 and 2010 in both of

measures occupation growth. Comparison with Autor and Dorn (2013) who report

a similar figure for 1980-2005 period reveals that the last half of the 2000s did not

impose a significant change in the long-run polarization outlook.

In the same figure the evolution of occupational employment share and real wages

can also be tracked when skill percentiles are formed by high-skill intensity variables.

Both relative employment and wage growth of occupations follow monotonic paths

along skill percentiles, which strikingly contrasts with the u-shaped growth suggested

by wage percentiles.

A further remark from the figure is that the trend in occupation growth is almost

identical according to both high-skill intensity variables. This is not completely sur-

prising, but there are reasons for potential divergence. One reason could be that many

workers with some college education but without a degree, which arguably does not
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add too much over a high-school degree compared to a college degree, are concen-

trated in some of the least paying jobs such as babysitters and waiters. Therefore

college worker share could persistently rank this type of jobs towards the middle of

distribution while college graduate share, similar to mean wages, might have sug-

gested a lower place in the skill/quality hierarchy of occupations. Evidence in Figure

3.2 excludes such concerns.

Figure 3.2 leads to a puzzle when considering the consensus view on labor market

polarization. From the perspective of SBTC, however, the interpretation could not be

clearer. Just as the demand for high-skill workers, the relative demand for occupations

that employ better skilled employees has increased over the last decades. However,

it is too early to rule out the skill-based interpretation of polarization by looking at

Figure 3.2. Important questions are whether other measures of skills beyond college

education are supporting the polarization observation, and whether the observed skill-

biased occupation growth is driven by a certain decade, gender, age group or the

choice of occupational classification. In the remaining part of this section, I clarify

the role of skills in the changing structure of occupational employment from several

angles and shed light on the sources of the contrasting patterns.

3.3.2 Choice of Skill Measure

College worker or college graduate share of employment are relevant metrics for skill

intensity from the lens of SBTC hypothesis, but there are other direct measures of skill

intensity to check the external validity of the observations in Figure 3.2. Investigating

the robustness of the monotonicity observation with other skill measures can also help

understanding the contrasting patterns. For instance, a concern on college intensity

measures can be that the skill quality in the lower parts of wage distribution is low

because of the high share of dropouts so that the college intensity variables do not

sense the difference between a high school graduate working in a middling job and a

worker in the lowest-paid job with just a few years of schooling. Figure 3.3 addresses

this matter by utilizing a continuous education measure, mean years of schooling.

The smoothed employment share change (Panel A) and wage growth (Panel B)

provide evidence in favor of the results based on high-skill intensity in the previous

figure. Though, the tendency of occupation growth is not strictly increasing according
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to mean years of schooling. This is not in contrast with SBTC since the hypothesis does

not claim an increasing demand for every year of education. Nevertheless, the linear

prediction of the smoothed changes, shown by the continuous line surrounded by the

95 percent confidence interval in Figure 3.3, can successfully represent the pattern as

the R2 in both panels are above 0.90 and the linearity is statistically significant.

The visual evidence provided above is clear and shares a common methodology

to similar studies on labor market polarization. However, construction of percentiles

and smoothing procedure can potentially exaggerate the difference between results

by wage and education rankings. In addition, it is of interest whether skill measures

beyond formal schooling also align with monotonic demand shift towards more skill

intensive occupations. Therefore, I formally test the hypothesis whether occupation

growth in employment and wages fit better to a u-shaped or linear relationship with

respect to skill measures with regressions in the spirit of Goos and Manning (2007).

In particular, I estimate the following for testing the u-shape:

∆dj = γ0 + γ1sj + γ2s
2
j , (3.44)

where ∆dj denotes occupation j’s change in employment share or log real hourly wage

over 1980-2010 period and sj denotes the occupational skill measure. Alternatively, for

testing the linear relationship I simply estimate equation (3.44) when γ2 = 0.

Table 3.1 and Table 3.2 report the regression coefficients on several skill measures

when the occupation growth measure is employment share change and real wage

growth, respectively. Column (1) of both tables confirm the well-known u-shape with

a negative and significant coefficient of the mean wage and a positive significant one

for the quadratic term. The u-shape for employment share change in Table 3.1 is not

only significant but strong as suggested by rejection of a simple linear relationship

due to the insignificance of the linear term alone in column (2).

Columns (3) to (6) of both tables reestablish the significance of a linear positive

relationship between employment share changes and initial mean college share of

employment or years of schooling, and further suggest rejection of a u-shaped rela-

tionship in line with the evidence provided in previous figures.

The evidence presented so far clearly marks the contrast between wages and educa-

tion variables in interpreting the direction of occupational demand changes. Yet it may

not be sufficient to perfectly overturn the skill-based interpretation of polarization due
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to two reasons. First, there is unobserved heterogeneity in the quality of education,

and the quality of workers is directly reflected into average wages. Therefore wages

could reflect the true skill intensity of an occupation better than education variables.

This concern is addressed in the regressions by introducing the AFQT scores for each

occupation. AFQT is designed to measure trainability and widely used as a cognitive

skill measure in the literature. Assuming that workers with high AFQT represent

better qualities in the market and more likely to end up in better-paid jobs, using this

measure sheds light on whether poorly reflected quality by education variables is the

main driver of contrasting occupation growth patterns. According to columns (7) and

(8) of both tables employment share change and wage growth are significantly char-

acterized by a linear positive relationship and not u-shaped with respect to cognitive

skill intensity.

The second concern on the education measures of Census can be that while they

show the obtained education they could mask the education required to perform

the job. A low-wage occupation may employ workers seemingly as skilled as in the

middle-pay one, but if the required level of ability is lower in the low-wage job for the

same level of skill compared to middle-wage one, then observed skill intensity again

overestimates the true ability proxied by wages. Similarly, the middle-wage occupa-

tions can also look artificially less skill-intensive if they require education/training

on the job while low wage jobs do not. This alternative is tested in columns starting

with (9) in both tables by three measures developed to quantify the actual required

skill intensity of jobs. The first is GED variable from DOT. It measures the formal and

informal aspects of education that shapes the worker’s ability in several dimensions

to perform the task. It is a measure of training requirement that involves general skills

including but not limited to formal education. The other two focus on the required

occupation-specific training from two different sources introduced in the data section:

SVP from DOT and JZ from ONET. The former is indicated as Training (DOT) and

the latter as Training (O*NET) in the tables. In all alternative specifications for both

employment share and wage growth equations, there is no evidence of a significant u-

shaped pattern. On the contrary all variables perform better in the linear framework.

A wide range of skill variables suggest that growth of occupations goes hand in hand

with skill intensity.

The long run pattern for the dynamics of employment and wages across occupa-

tions depends crucially on the metric used to measure skill. Polarization is an out-
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come only when skill is measured by occupational wages. All other metric for skills,

namely share of college workers, college graduates, mean years of education, ability,

skill requirement, and training, deliver a significant monotonic pattern. The implica-

tion of these findings is that the skill-based interpretation of polarization should be

approached with caution. In the following, I dig deeper to establish the robustness

of this observation across time, gender and age groups, and then by occupational

classification.

3.3.3 Growth Patterns by Decade and Demographic Groups

3.3.3.1 Occupation Growth in Each Decade

SBTC hypothesis predicts a continuously increasing demand for the more educated. If

relative demand changes at occupation level also move in a similar way, then I expect

to observe the monotonic employment share and wage changes not only in the long-

run but also in smaller frames of time. Figure 3.4 plots the tendency of employment

share changes in each decade from 1980 to 2010 by skill percentiles according to the

mean college share in 1980. It should be noted that there is a fall in the strength

of linearity of the tendency after 2000, which can be seen by comparing smoothed

changes with their linear fit at the Panel C of the figure. Also both the coefficient

of each skill percentile and the R2 decrease in each following decade. Nevertheless,

the monotonically increasing pattern for employment growth is confirmed for each

decade after 1980.12

Figure 3.5 performs the decadal analysis this time for wage growth. As in employ-

ment share change figures, the long-run pattern of occupation growth proportional to

skills can be validated within each decade. The monotonicity is slightly violated for

the lowest decile of distribution in 1980s and 1990s, which is yet far from implying po-

larization. Also, in 1990s the wage growth of lower skilled percentiles is higher than

their growth in 1980s and 2000s. However in 2000s the monotonic wage growth comes

back even stronger as the smoothed changes is perfectly indistinguishable from their

12 Two related papers (Autor, Katz, and Kearney, 2008; Autor, Katz, and Kearney, 2006) observe polar-
ization according to both wage and years of education percentiles during 1990s, which contrasts with
the evidence provided here. In appendix section 3.C I discuss the issue in detail and provide evidence
showing that the contrasting results stem mainly from the choice of occupational classification.
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linear fit. Figures 3.4 and 3.5 jointly support the continuity of skill-biased demand

growth at occupation level.

3.3.3.2 Occupation Growth in Gender Groups

The literature provides plentiful evidence that the aggregate demand for skilled work-

ers increases regardless of gender. Therefore, it could be expected that the monotonic

growth pattern also holds within gender groups. On the other hand, recent papers

argue that growth trends in the disaggregate sections of the economy has been af-

fected by female workers (e.g., Cerina, Moro, and Rendall, 2017; Ngai and Petrongolo,

2017). In order to see if the occupation growth with respect to skills differs by gender,

Figure 3.6 plots smoothed changes by college share of employment when the labor

market is split by gender. Both employment and wage growth clearly indicate that

the monotonic wage and employment changes take place within both gender groups.

The figure provides additional insights regarding the evolution of gender gaps. In

Panel A, employment share of occupations at the upper half of skill distribution in-

creases for both genders at the expense of jobs with lower skill intensity. The shift to-

wards higher skilled occupations is sharper in female employment suggesting that fe-

male workers are increasingly represented in skill intensive jobs. While wage growth

by gender shown in Panel B is in line with the key observation in this study, it is

also possible to track the narrowing gender wage gap from the figure. The change in

women’s occupational wages tend to be above men. At the same time, wage growth

in both gender tend to converge towards higher occupational skill intensity. Both

panels therefore imply the previously documented slowdown in the narrowing wage

gap after 1980s from a different perspective: women are disproportionately allocated

into higher skilled jobs where their wage growth is more similar to men.13 The im-

plication of this from the occupational perspective is that women are improving the

quality of their representation in the labor market which simultaneously comes with

a slowdown in the closing rate of gender wage gap.14

13 Among others see Blau and Kahn (2006) for the narrowing of the wage gap and slowing down after
1980s and Goldin, Katz, and Kuziemko (2006) for the disappearance of the gender college gap in the US.

14 Goldin (2014) documents that convexity in hourly earnings with respect to working hours plays a role
in the slowdown. The famous examples of jobs characterized by wage-hours convexity are among the
ones of highest skill intensity.
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3.3.3.3 Occupation Growth in Age Groups

The behavior of age groups is potentially related to the growth patterns of occupation

employment and wages for a number of reasons. First, the demographic structure of

the US labor market is significantly affected by the baby-boom cycle. Following the

initial decline, the post-1980 period witnessed a sharp increase in the relative supply

of experience in both high- and low-skilled labor market (Caselli, 2015). A possible

implication is that older workers in the economy can drive occupation employment

growth in the skill-intensive occupations if they have a comparative advantage in

these jobs. Furthermore, if there is experience-biased technical change then also the

wages in these jobs may contribute to the relative wage growth.15 If this channel

is strong enough to drive monotonicity in the entire labor market, then upper tail

growth should be dominated by relatively older age groups.

Second, occupational reallocation of employment is potentially associated with the

changing age-structure of occupations. In particular, Autor and Dorn (2009) observe

that routine-intensive occupations are becoming older. As a result, other occupations

might have been growing solely on the shoulders of younger workers flowing out of

the routine-intensive jobs. It would be consistent with this argument to observe that

the monotonic growth by skills is driven by employment of relatively younger groups.

In order to address age-related concerns on the key observation of the paper, I plot

smoothed occupation growth of employment share and wages for three age groups in

Figure 3.7. Panel A shows employment share change by skills. As opposed to the first

concern, the upper tail growth is not particularly confined to older age groups. On

the contrary, the employment share growth for the young-age group is significantly

higher above the 80th percentile. In contrast to the second concern, it does not seem

that young workers play a special role in employment share changes as they evolve

very similarly throughout most of the skill distribution.16

Panel B presents the occupational wage growth by skills with respect to the three

age groups. The figure suggests evidence in favor of the experience-biased technical

change as the wage growth tends to be higher for older groups. Aggregate pattern

observed in wage growth by skills is also not particularly driven by any of the groups.

The only violation to monotonicity is seen for prime age and older groups confined

15 The term is introduced by Caselli (2015).
16 The exception is for occupations of highest skills. However, this is not predicted by the routine-biased

technical change model, where workers that are employed (or can potentially work) in routine-intensive
jobs are reallocated in the low-wage services occupations (Autor and Dorn, 2013).
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to the last 5 percentile of employment. Moreover, the size of twist at the bottom of

distribution is limited in size.17

In sum, the evidence across time and demographic groups suggests that occupation

growth in favor of relatively skilled occupations is a pervasive fact of the US labor

market.

3.3.4 Sensitivity to Occupational Classification

All the analysis so far is performed using the occupational classification of Dorn (2009).

In addition there are two more occupation categories provided by IPUMS Census

that are comparable across Census waves, namely occ1950 and occ1990.18 These two

classifications are inclusive of all the existing occupations but are not balanced in the

sense that some occupations in later years do not exist. David Dorn’s classification,

occ1990dd, is an improved version of Meyer and Osborne (2005)’s modification on 1990

Census 3-digit occupation codes (occ1990) and provides a balanced set of occupations.

Nevertheless, it involves merging of more detailed Census occupation codes and this

has the potential of affecting the results. Therefore in order to enable comparison, in

this subsection I present the graphical analysis regarding different occupation codes

suggested by Census.

Figure 3.8 shows long run smoothed employment share and wage changes by skill

percentiles of college share of employment in 1980 calculated according to different

occupation classifications. Under all classifications I confirm the key long-run obser-

vation of monotonic occupation employment and wage growth by skill intensity.

Since skill-biased occupation growth is a robust observation it is important to un-

derstand the sources of contrast with the polarization observation, which is the aim

of the following subsection.

17 Quadratic polynomial fit of wage changes by prime and older groups are not statistically different from
the linear fit.

18 See Meyer and Osborne (2005) for a related working paper that provides a comparison of two classifica-
tions in depth.
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3.3.5 Occupational Wage Structure

Why do we observe polarization by wages but not by other skill measures? The

answer partially lies in the strength of the connection between wages and direct skill

measures for low and high wage jobs, on which Figure 3.1 provides an early insight:

occupational wages in 1980 reflect skills well for the upper half of wage distribution,

whereas the occupations’ pay structure in the lower part is different than what is

predicted by their skill intensity. This is important in skill-based interpretation of

polarization since occupational wages are treated as a one dimensional index of skills

(Goos and Manning, 2007).

In order to formally test this, I present in Table 3.3 the partial correlates of wages

in both halves of wage distribution using the set of occupational skill measures intro-

duced above. To enable comparison across specifications by different skill variables

I use the percentile rank of variables in regressions. In all cases wages correlate well

with skill measures for the upper half of wage distribution (Panel B) and show no

significant correlation for the lowest paying half of jobs (Panel A). Additional obser-

vations can be made from the table. First, the reported coefficients are small and

insignificant for the lower half of wage distribution and the R2s are too small. Sec-

ond, training variables have a higher coefficient compared to education variables and

AFQT in low wage occupations which implies that firm-specific training possibly have

some weight in occupational wage determination but the association is imprecisely es-

timated and much smaller compared to the high wage group.

Therefore in the determination of occupational wage structure, skill intensity does

not appear to play the leading role particularly for the low-wage jobs, which clearly

suggests that the rising employment demand in low-wage occupations does not imply

a trade-off between middle-skill and low-skill workers but something else. The liter-

ature on polarization often associates skill types with certain tasks. While majority

of the models assume a hierarchy of skill types, task-specific skills that have different

labor market price might also lead to the observed wage structure (see Barány and

Siegel, 2017, for an example with sector-specific skills).

Therefore as an alternative predictor of the wage structure, I turn to the three-

task view of routinization hypothesis (Autor, Katz, and Kearney, 2006). According

to the three-task view manual jobs have relatively lower productivity so that labor
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market return to working in those jobs is also low. On the other hand, abstract tasks

involve a lot of complex thinking and interactions which are needed to solve the

hardest problems and have the highest returns. Cognitive or non-cognitive routine

tasks require precision which puts those jobs somewhere in between and dominates

the middling jobs. Consequently, one expects to see the wage structure to associate

negatively to manual task intensity and positively to routine task intensity for the

lower half of the distribution. Furthermore, the upper half of the wage structure

should be increasing in abstract intensity and decreasing in routine task intensity.

Similarly, the combined routinizability measure of Autor and Dorn (2013), RTI, which

jointly reflects routine, non-manual, and abstract task intensity should be increasing

along the lower and decreasing along the upper half of the wage structure.

In Table 3.4 I run occupational wage regressions this time on the task characteristics.

First three columns show the association of three task aspects in Autor and Dorn (2013)

with wages in the upper and lower half of occupational wage structure. Abstract task

content and wages are positively related as expected but not significantly for the low

wage jobs. Routine task intensity is positively related to wages for low wage jobs

and inversely for high wage group as expected but lacks significance. Contrary to the

stylized view I do not find a declining wage structure with manual task intensity for

the low-wage jobs. Column (4) of panel A of the table shows an unexpected negative

association of combined routine task intensity measure of Autor and Dorn (2013)

with the lower part of wage structure. The stylized three-task view is also incapable

of capturing the 1980 wage structure at detailed occupation level.

Another task driven wage structure explanation is provided by compensating wage

differentials literature (Rosen, 1974, 1986). In this explanation wages are higher if a job

requires a less desired task performance requirement, e.g. it is more difficult, riskier

and demanding. In the last three columns of Table 3.4 I use three task measures to

quantify how demanding a job is. The first measure is on the time demand of the job

proxied by the O*NET work context variable “Duration of Typical Work Week”. The

second one is a measure of cognitive demands of the job. I proxy this aspect by O*NET

work activity variable “Analyzing Data or Information”. The last one measures the

hazard involved in the performance of a job by a combination of O*NET variables

introduced in Section 3.2. These three capture the opportunity cost of leisure, the cost

of mental effort, and the riskiness of the task, all of which are potentially related to

wellbeing of the worker and often dictated by the working conditions. All three of the
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measures correlate well with wages for low wage group. For high wage occupations

all continue to have a positive association except hazardous conditions.

Obviously, these simple OLS regressions do not intend to prove that wages are

solely determined according to compensating differentials, but just to show that the

skill-based interpretation of polarization remains too naive in assuming lowest skills

for occupations of lowest wages. One can find more task-specific aspects that accord

with occupational wages better than skill measures, or argue that occupational wages

reflect occupation-specific innate ability in the spirit of Roy-type models. All of these

potential explanations for why occupational wages and general skill intensity do not

overlap at the bottom half of distribution are essentially unrelated to the increasing

relative demand for college workers.

The main message from the correlations shown here is that in 1980 the wage struc-

ture was not strongly determined by the skill intensity. This sheds light on why

skill-based interpretation of labor market polarization does not hold. To the extend

that skill intensity and task-specific attributes of jobs deviate in the determination

of occupational wages, it becomes harder to observe similar patterns in occupational

demand growth by wages and by skills.

3.3.5.1 Distribution of Skills Across Broader Occupation Groups

The three-skill view of polarization on broader occupation groups suggests distinct

roles for some of them. According to this perspective, management, professional

and technical jobs are the highest skilled and dominate the top wage distribution.

These experience the greatest increases in employment demand. The middle-wage

jobs involve production, crafts, transportation, mechanics, operators as well as clerical

and office workers whose importance in the labor market sharply declines. The lower

tail of wage and skill distribution is occupied by service occupations. Autor and

Dorn (2013) show that this last group is responsible from the polarization of the

employment demand at the lower half of distribution in the US.19 Here I present

evidence using different skill measures to improve the insights from the broken wage-

skill association for lower skilled occupations documented above.

Figure 3.9 shows the smoothed local means of skills by occupational wage per-

centiles in 1980 for the set of skill variables regarding six major occupation categories.

19 For Europe similar observations regarding the role of low wage service occupations are made by Goos
and Manning (2007) and Goos, Manning, and Salomons (2009, 2014).
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Calculations are weighted by the 1980 employment share reflecting local means ac-

cording to labor market importance. Two facts stand in contrast with the stylized

three-skill view. First, skills in the service occupations are not very much different

than many of the middle-wage occupations. For the lowest wage percentiles where

service occupations are the most important regarding polarization, they are never the

least skill-intensive occupation group. This observation does not depend on the skill

aspect. Education, cognitive capacity or training requirement measures all suggest

that low-wage service occupations exhibit skills at least as high as middling occupa-

tions except clerical/sale occupations. Second, clerical occupations exhibit the highest

skills among middling jobs despite the fact that they get the lowest wages after service

occupations. According to most skill measures these jobs are quite close to top wage

jobs in terms of skill intensity.

3.3.6 The High-skill Worker and Polarization

An important implication of the skill-based interpretation of labor market polariza-

tion is that high-skill workers are seen as negligible in the reallocation of employment

towards the low-wage jobs. In the literature this assumption can be as stark as com-

pletely ignoring college workers in the growth of low wage and the decline of middle

wage jobs (Autor and Dorn, 2013). Here I briefly argue that the evidence suggests the

contrary.

Figure 3.10 shows the 1980-2010 employment share growth of major occupations

for college and non-college employment share ranked according to their 1980 wages.

Each skill type is separately treated. Darker bars show the growth of non-college

employment and lighter bars represent growth rates calculated for college worker em-

ployment share. The figure suggests that employment in major occupation groups

homogeneously polarizes regardless of the skill category. Workers of both skill type

reallocate towards the tails of distribution. An analysis of polarization should there-

fore involve the presence and growth of high skill workers not only for the top paying

jobs but everywhere in the labor market.
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3.3.7 Summary of the Empirical Results

I briefly summarize the key findings of empirical section here. First, employment

and wage growth of occupations is increasing in the skill intensity while they fol-

low u-shaped pattern by occupational wages. The skill-biased employment and wage

growth of occupations is robust to the choice of skill measure and not particularly

driven by a specific decade, gender, age group, or occupation classification. Second,

the wage structure in 1980, specifically at the lower half, does not reflect the skill

structure of occupations. Rather, task-specific working conditions do a better job in

lining up with the wage structure. Third, clerical/sales and service occupations tend

to have higher skill intensity throughout the wage distribution although they are paid

the lowest wages. Fifth, college and non-college workers seem to take their part in

the polarization of employment in every major occupation group. The evidence as

a whole suggests that the dispersion in the within-occupation heterogeneity of skills

provides valuable information regarding the characterization of trends in occupation

growth. In terms of modeling, the results suggest skill-biased technical change at oc-

cupation level. In order for this to be consistent with the polarization along the mean

wage of occupations, one should include both general skills and other dimension of

work conditions, amenities or some form of occupation-specific technical change.

3.4 A Model of SBTC Within Occupations

3.4.1 The Model

3.4.1.1 Overview

The model is an extension of the canonical SBTC model of Katz and Murphy (1992).

The environment is essentially static and exogenous technical change is assumed.

There are two types of worker skills which are imperfect substitutes and both con-

tribute to the production of the task output of an occupation. The same task could

be performed by both skill types though the skill intensities across occupations differ

according to the importance of each skill type for the task output. For surgeons the

weight of high skilled in the production function can be assumed as maximum so

134



only college workers can perform the job whereas for artists it can be lower, reflecting

the fact that some of this activity could be performed by non-college workers. These

weights can change but since skill structure is very stable in the long term, I assume

them as fixed.20

Occupations’ task output are combined in an aggregate production function to pro-

duce the final output which is then consumed. There is a final good sector where all

task production is used as inputs as imperfect substitutes. In sum, the production

side of the model is simply an extension of the canonical model to include occupa-

tions. The crucial distinctive feature of the model compared to the recent task-based

SBTC models (e.g, Acemoglu and Autor, 2011; Autor and Dorn, 2013) is the joint pres-

ence of both skill types in the production of the same task output. Therefore what

makes occupational skills in this setting is the share or intensity of each skill type

rather than the skill of a single type.

Wage inequality across occupations in the model is introduced through occupa-

tional variation of disutility from work (Rosen, 1986). This aims to account for the

empirical observation in the previous section that the occupational wage structure

does not accord well with the skill structure and more with task characteristics related

to the disutility attached to the job such as time requirement of the job.21 I assume

the simplest form of compensating differentials such that workers are homogeneous

in preferences and skills, which can be relaxed to have richer dynamics with respect

to technology. For instance, one can further assume that workers of each skill type

are heterogeneous in terms of their sensitivity to disutility. In this model, workers

experience a different level of satisfaction depending on the type of job they choose,

in addition to the consumption provided through wage income. In the following, I

lay out each piece of the model as introduced above. Then I describe the equilibrium

of the model followed by a study of the impact of technical change in this analytic

framework.

20 See Figure 3.A.1 for stability of the occupational skill structure. The figure compares the wage and skill
structure in 1980 and 2010. From the figure it is clear that skill intensity is quite stable both in absolute
terms and also when compared to the wage structure in 1980 and 2010.

21 Another alternative to generate a wage structure that does not overlap with skill-intensity is to assume
occupation-specific ability distributions as in Roy-type models.
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3.4.1.2 Final Good Production

The aggregate production function at time t is the following:

Yt =

 J∑
j

γj
(
Tjt
)ρ 1

ρ

, (3.45)

where Yt is aggregate output, Tjt is task output by occupation j and total number of

occupations is J. γj > 0 is the occupation-specific constant weight in production and

ρ < 1. 1
1−ρ is the elasticity of substitution across occupations.22

The representative firm in the final good market takes task prices pjt as given

maximizes profits by choosing task inputs optimally according to:

max
Tjt

{Yt −

J∑
j=1

pjtTjt}. (3.46)

3.4.1.3 Task Production

The task production function at time t for occupation j is given by:

Tjt =
((
βj
)(1−µ) (

AHtHjt
)µ

+
(
1−βj

)(1−µ) (
ALtLjt

)µ) 1µ , (3.47)

where Hjt and Ljt is the labor input by high-skill and low-skill workers respectively.

There is no endogenous skill choice so total labor supplies Ht and Lt are exogenous in

the model as in the canonical model of SBTC. 0 6 β 6 1measures occupation- specific

skill intensity, and µ < 1. The elasticity of substitution between skilled and unskilled

workers that is constant across occupations is given by 1
1−µ . AHt and ALt represent

skill-specific technologies which potentially grow in different and constant rates. In

the SBTC literature, the bias of technology in favor of skills usually refers to the case

when high-skill technology grows faster than technology of low-skill workers.

The representative firms in each task market maximize profit by choosing skill in-

puts optimally according to:

max
Hjt,Ljt

{pjtTjt −wHjtHjt −wLjtLjt}. (3.48)

22 If one assumes a time varying version of γj one can also study occupation-specific demand shifters with
this model.
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3.4.1.4 Households

The consumer side is characterized by the following utility function for each worker

with skill level S working in occupation j:

USjt = log(CSjt) − log(dj), (3.49)

where CSjt is consumption of final output by worker of skill S = {H,L} who works in

occupation j at time t. dj is occupation-specific disutility of work. It is higher in jobs

that are more demanding than others which reflects difficulty or risks associated with

the task. The utility of worker of a given skill depends on the occupation decision.

Since the model is static there is no saving and the wage earned from working in

occupation j is fully consumed:

CSjt = wSjt, (3.50)

where the wage wSjt is the same for all workers of the same occupations and in the

same skill group due to worker homogeneity.

3.4.1.5 Equilibrium

An equilibrium at time t is defined by allocations of the labor of each skill group

across occupations {Sjt}
J
j=1, and the consumption choices of workers of each skill

type {CSjt}
J
j=1, occupational wages for each skill group {wSjt}

J
j=1, and prices of task

output {pjt}
J
j=1 given fixed occupation weights in final output production {γj}

J
j=1,

high skill weight in task production {βj}
J
j=1, occupation-specific disutility parameters

{dj}
J
j=1, skill supplies Ht, Lt and skill-specific productivity {AHt,ALt}Jj=1 such that:

1. Workers choose the occupation that yields the highest utility.

2. The representative firm of final output optimally chooses the task input Tjt for

each occupation j according to (3.46), and task producers in each occupation

optimally choose high-skill (Hjt) and low-skill (Ljt) labor input following (3.48).

3. Occupational wages clear the labor market so that Ht =
∑J
j=1Hjt and Lt =∑J

j=1 Ljt.

4. All output is consumed so that
∑J
j=1

(
HjtCHjt + LjtCLjt

)
= Yt
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3.4.2 Occupational Wage and Skill Hierarchy, and Their Stabil-

ity

Working in some occupations yields lower utility. Therefore in an equilibrium where a

positive level of employment exists in each occupation, workers should be indifferent

between occupations. This implies that differences in disutility should be compen-

sated by wage:
wSjt

dj
=
wSj′t

dj′
. (3.51)

Equation (3.51) suggests that conditional on skill-type the wage ordering is given by

disutility parameters. On the other hand, occupational wage structure (employment-

weighted average of wages in each occupation) is not independent from the skill

specialization of occupations. An occupation can offer lower wages compared to

another one in both skill types but the average wage can still be higher because of the

share of high-skill workers.23 This can be seen by comparing the mean wages in two

arbitrary occupations:

wjt

wj′t
=

Hjt
Hjt+Ljt

wHjt +
Ljt

Hjt+Ljt
wLjt

Hj′t
Hj′t+Lj′t

wHj′t +
Lj′t

Hj′t+Lj′t
wLj′t

=

(
dj

dj′

) Hjt
Hjt+Ljt

wHj′t +
Ljt

Hjt+Ljt
wLj′t

Hj′t
Hj′t+Lj′t

wHj′t +
Lj′t

Hj′t+Lj′t
wLj′t

 ,

(3.52)

where wjt is the mean occupational wage calculated as the employment-weighted

average of the wages of skill-types in an occupation. The second part of the equation

is derived using the wage indifference condition. From equation (3.52) it is clear that

less desirable working conditions increase the average wage, and the relative share

of high-skill workers is another determinant. For instance, a less demanding job on

average could yield higher wages compared to a job with more challenging attributes

if it is sufficiently more skill intensive. Hence, the wage structure of occupations

depend on the skill structure too.

Another implication of the model on occupational wage structure is related to its

stability. Inspection of equation (3.52) also suggests that relative wages are affected

by the increase in high-skill wage premium. Therefore it is possible to have signifi-

23 I implicitly assume here a higher relative wage for the high-skill worker in each occupation. This can be
given by assuming a level of relative technology AHt

ALt
that is sufficiently low or high depending on the

sign of µ.
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cant changes in the wage structure as the premium rises since skill intensity across

occupations are different.

The model’s implication on the skill structure, however, is relatively straightforward.

Using the indifference condition and the first order conditions of task production for

each occupation and skill type the following is derived:

βj

βj′

1−βj′
1−βj

=
Hj

Hj′

Lj′

Lj
. (3.53)

Equation (3.53) implies that the relative skill intensity hierarchy across occupations

is constant. The supply of skills Ht and Lt might be subject to change, yet this is never

translated into a change in the relative skill intensities. Furthermore occupations’ skill

structure is pinned down simply by βs independent of the occupations’ wage. Given

a set of skill intensity parameters the equation predicts a stable occupational skill

structure.

In fact the model’s prediction for stable skill structure and potentially changing

wage structure is confirmed by the long-run comparison of occupational rankings

based on average wages and share of high-skill worker in Figure 3.A.1. Occupational

wage ranking in 1980 is correlated to ranking in 2010 although there is substantial

change for some occupations. On the other hand, occupational ranking based on

high-skill share looks quite stable in the long-run.

3.4.3 The College Wage Premium

It is possible to derive the aggregate skill premium that nests the equation suggested

by the canonical SBTC model. The skill premium equation is given by the ratio of

economy-wide high skilled wages to low skilled wages both of which are calculated

as the mean wage for the corresponding skill group weighted by occupations’ em-

ployment share. Using the first order conditions of optimal task production the skill

premium equation can be expressed as follows:

log
(
wHt
wLt

)
= log

(
β1

1−β1

)
+ µ log

(
AHt
ALt

)
+ (µ− 1) log

(
Ht

Lt

)
+ ΓHLt, (3.54)
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where ΓHLt = (µ− 1) log
(
αH1t
αL1t

)
+ log

(
αH1t+

(
d2
d1

)
αH2t+···+

(
dJ
d1

)
αHJt

αL1t+
(
d2
d1

)
αL2t+···+

(
dJ
d1

)
αLJt

)
, and αSjt =

Sjt
St

for S = {H,L}.

The skill premium equation resembles the premium equation of the canonical model

in terms of the two forces that is expressed as the race between education by Tinbergen

(1974), namely the relative growth of skill-specific technology (relative skill demand)

and of relative skill supply. The evolution of skill premium differs from the canonical

model because of the last term on the right hand side. It captures that in the occu-

pation augmented SBTC model there are two additional potential sources which can

affect the aggregate skill premium. First is the changes in the ratio of high skill to low

skill employment in each occupation, second is the changing representation of relative

skills across occupations. These are directly related to the extensions this model has

over the canonical one. Consequently, equation (3.54) is identical to canonical SBTC

model if skill intensity parameter β and disutility parameter d are identical across

occupations.

3.4.4 Technical Change and the Evolution of Occupational De-

mand

In this part of the section I study the implications of the model on occupational wage

growth and reallocation of labor. Since the model is static, the results are based on

assumptions on the direction of the technical change following the literature. Skill-

biased technical change when combined with the model’s key feature of skill het-

erogeneity within occupations, appears as a fundamental driver of the occupational

reallocation of labor. The simple reason is that substantial bias of demand growth

towards high-skill workers may also increase the demand for tasks that welcome high-

skill workers relatively more. As a result SBTC acts as an occupation-specific demand

shifter in the economy. The following proposition summarizes the model’s results

on changes in occupational labor demand, which brings together the key empirical

observations of the previous section.

140



proposition 1 : Suppose that AHtALt
grows and 0 < µ < ρ < 1. Occupational employ-

ment share change and mean wage growth rate are increasing in skill intensity implied by βj

and do not depend on the wage structure. There exists a combination of disutility parameters

dj and skill intensity parameters βj so that employment share changes and mean wage growth

implies polarization, i.e., higher growth of employment and mean wage at the tails of wage

structure relative to middle.

I provide the formal proof in Appendix section 3.E and an intuitive discussion here.

The economic forces shaping the reallocation of employment and the wage growth

easily fit in the framework of SBTC. Suppose as in the canonical SBTC model that

technical change is faster for high-skill worker and that different types of skills are

gross substitutes in task production. Then demand increases towards the input which

becomes relatively more efficient, and consequently the relative wages of high-skill

workers increase. This is the relative demand force in the canonical SBTC model.

In order for skill demand to translate into demand for skill intensive occupations a

further assumption should be made on the substitutability of tasks in the production

of output. If elasticity of substitution across tasks in the production of final output

is larger than the elasticity of substitution between skills in task production, then

the demand for more skill intensive occupation also rises more since that occupation

produces at relatively increased level of efficiency thanks to the specialization towards

more skilled workers. Therefore both the price of high-skill type and the task price

of skill intensive occupations increase. This translates into higher growth of mean

occupational wage in skill intensive occupations since the equally rising skill premium

is reflected more heavily due to a greater share of high-skill workers. Note that in

these results the key parameter is skill intensity, hence these results hold under any

wage structure.24

The model does not strictly imply polarization. However, it is possible to observe

polarization-like patterns along occupational mean wages if the least skill intensive

occupations are positioned in the middle of wage distribution. As discussed in the

previous part, the wage structure is given by a combination of disutility and skill in-

tensity parameters. If the disutility parameters are low enough for jobs of moderate

24 Note that same qualitative results of the proposition hold under the alternative symmetric assumption
such that ALt

AHt
grows and ρ < µ < 0. Since the paper is not explicitly about modeling skills in the

production function but concerned with the direction of the relative demand growth, I simply follow
the SBTC literature in this assumption.
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skill intensity, that is they welcome high-skill workers more than many other occupa-

tions while they are not among the least desirable ones, then the wage structure is

subject to polarization of employment share changes and mean wage growth. This

result is only a matter of how occupational wages are ordered, but if the ordering

is suitable the driving force of the observed polarization is skill-biased occupational

demand change of the model. Therefore, the model is capable of combining the key

observation made in the section 3.3, that is monotonic growth by occupational skills

simultaneously with polarization along occupational wages.

3.4.4.1 Alternative Drivers of Occupation Growth

The proposition suggests the economy-wide skill-biased technical change together

with time-independent skill intensity differences across occupations as the driver of

occupation growth in the economy. However, clearly there are other sources within

the model’s framework that affect the reallocation of employment and wage growth.

First, the model can address the rise of the exogenous relative skill supply, which

is an important part of the canonical model as a determinant of skill premium. In

addition, in this model changes in the relative skill supplies have a distributional

impact. Intuitively, when there are relatively more high-skill workers in the economy

their allocation across occupations will be proportional to occupations’ skill intensity

parameter (equation (3.53)). As a result, the exogenous rise in the relative skill supply

translates into higher productivity in occupations with higher skill intensity. This

effectively has the same impact with SBTC in the model, hence both employment

shares and mean wages change in favor of the relatively skill-intensive jobs. This

alternative channel only strengthens the model’s predictions. On the other hand,

similar to the canonical model, relatively more high-skill workers in the economy has

a negative impact on the skill premium (equation (3.54)) as µ < 1.

Second, although introduced as fixed in the model the skill intensity parameter βj

can be subject to change. In this case, an additional impact comes from the alteration

of the skill structure. In this case, occupations which improve their place in the skill

intensity ladder relatively grow in size and wages. The stability of the skill-intensity

over time (shown in Figure 3.A.1) suggests that this potential driver of occupation

growth is very likely to have limited impact.

Figure 3.A.2 summarizes the occupational information on the two channels. The

figure plots the 1980-2010 log change in skill intensity (HjLj ) against 1980 wages (upper
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panel), and against 1980 skill intensity (lower panel). The evidence is in line with what

is predicted by the model following an exogenous increase in relative skill supply

while βj is fixed for all occupations. The absolute change in skill-intensity is expected

to be higher for more skill intensive occupations while percentage changes should be

similar to keep the relative skill intensities constant. As a result, the log change in

skill intensity should be a flat line with positive intercept, regardless of the ranking of

occupations, which is close to the tendency of actual changes in skill intensity shown

in the figure.

3.4.5 Predicting Labor Market Polarization by Skill Intensity

It is beyond the aim of this paper to quantify the impact of occupation-based SBTC

in actual polarization, however suggestive evidence is presented here to complement

the discussion. In order to illustrate how much the extended SBTC view introduced

above can help to understand labor market polarization in addition to monotonic

demand shifts, I perform a simple prediction with the data used in Section 3.3. I

predict the employment share change and mean wage growth of major occupation

groups between 1980 and 2010 using 1980 skill intensity of occupation groups.

Figure 3.11 shows the skill intensity-predicted and actual employment share changes

in the upper panel, and mean wage growth in the lower panel, by 1980 mean wage

of occupation groups on the horizontal axis. The dashed lines with rectangles repre-

sent actual changes of the corresponding variable. The solid lines with circles show

the predicted change in employment share or mean log real wage. Employment and

wage polarization are manifested by greatest increases in the high-wage management,

professional, and finance as well as lowest paid clerical, and personal services occu-

pations at the expense of middling occupation groups in both parts of the figure. A

remarkably similar pattern is shown by the skill intensity predictions. Using occu-

pation level measures of skills is promising in generating the non-monotonic trends

observed in the labor market.

While predicted employment share and log wage changes are quite close to actual

in general and exhibit the employment polarization pattern, the details in the figure

provide additional insights. First, the predicted employment share change is a little

higher than the actual for clerical and retail sales occupation group and lower for
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personal services occupations, which suggests that the rise of personal services can

only be partially explained by skill-biased technical change. On the other hand, skill

intensity can successfully capture the relatively higher growth of wages in clerical

occupations, which is found as puzzling in routinization literature (Autor and Dorn,

2013).

3.5 Conclusion

In this paper I argue that occupational employment and wage growth trends in the US

imply different patterns depending on the type of the metric for skills. The labor mar-

ket polarization observed along occupational wage distribution after 1980 disappears

when the skill measure is changed to other and more direct measures of occupational

skill intensity based on education, cognitive ability, and training requirements. In-

stead, the occupational employment demand change fits better to a pattern where it

continuously and consistently favors relatively skill intensive jobs almost monotoni-

cally, suggesting that the current extrapolation of labor market polarization onto the

occupational skill space can be misleading.

I suggest an extension of the canonical SBTC model to occupations that can ex-

plain the skill-biased shifts of employment demand. If the level of wages are deter-

mined by occupation-specific factors rather than general skills, the model can also

help understanding part of polarization phenomena. This does not rule out existing

explanations of polarization based on occupation-specific demand shifters, namely

institutional changes, routinization, international trade, and structural change. My

results emphasize the importance of the high-skill worker in the changing structure

of labor market even for jobs placed low in the occupational quality ladder. The find-

ings presented here suggest that labor market polarization does not contrast with the

growing demand for general skills in the labor market, but rather happens somewhat

by virtue of it. My results are encouraging for future research, and potentially poli-

cies, on the connection between wage inequality and tasks from the perspective of

working conditions, and on the determinants of observable skill intensity differences

across occupations.
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Table 3.1: Employment Share Change and Skills

(Dependent Variable: Change in Occupational Employment Share, 1980-2010)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Wage -8.05*** 0.10

(2.87) (0.28)
Wage 1.54***
Squared (0.55)

College Share 0.28 0.92***
(1.41) (0.21)

College Share 0.65

Squared (1.40)

Years of Sch. -0.11 0.12***
(0.51) (0.03)

Years of Sch. 0.01

Squared (0.02)

AFQT -0.23 0.13***
(0.34) (0.04)

AFQT 0.04

Squared (0.03)

GED -0.51 0.21***
(0.60) (0.07)

GED 0.10

Squared (0.08)

Training (DOT) 0.01 0.06

(0.13) (0.04)
Training (DOT) 0.01

Squared (0.02)

Training (O*NET) 0.22** 0.11***
(0.10) (0.03)

Training (O*NET) -0.02

Squared (0.01)

Constant 10.20*** -0.46 -0.44* -0.54*** -0.23 -1.70*** 0.03 -0.84*** 0.35 -0.96*** -0.27* -0.32** -0.52*** -0.40***
(3.71) (0.80) (0.23) (0.15) (3.33) (0.42) (0.82) (0.24) (1.09) (0.26) (0.16) (0.14) (0.18) (0.14)

Observations 322 322 322 322 322 322 321 321 322 322 322 322 322 322

R2 0.06 0.00 0.13 0.12 0.10 0.10 0.08 0.07 0.08 0.06 0.03 0.02 0.09 0.08

Notes: Each column shows the coefficients estimated by OLS from the regression of 1980-2010 occupational employment share changes
on the corresponding skill measure shown in the rows. Wages, years of schooling and college share are computed from 1980 Census.
See text for variable definitions. Regressions are weighted by occupations’ 1980 employment share. Robust standard errors are in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3.2: Wage Growth and Skills

(Dependent Variable: Change in Mean Log Real Wage, 1980-2010)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Wage -1.49*** 0.09*
(0.55) (0.05)

Wage 0.30***
Squared (0.11)

College Share 1.00*** 0.38***
(0.18) (0.06)

College Share -0.63***
Squared (0.21)

Years of Sch. 0.27*** 0.05***
(0.10) (0.01)

Years of Sch. -0.01**
Squared (0.00)

AFQT 0.06 0.07***
(0.05) (0.01)

AFQT 0.00

Squared (0.01)

GED 0.02 0.11***
(0.11) (0.02)

GED 0.01

Squared (0.02)

Training (DOT) 0.03 0.03***
(0.03) (0.01)

Training (DOT) 0.00

Squared (0.00)

Training (O*NET) 0.11*** 0.05***
(0.02) (0.01)

Training (O*NET) -0.01***
Squared (0.00)

Constant 1.99*** -0.07 -0.09*** 0.01 -1.89*** -0.49*** -0.17 -0.21*** -0.09 -0.26*** 0.09** 0.09*** 0.00 0.06***
(0.69) (0.13) (0.03) (0.02) (0.65) (0.11) (0.13) (0.04) (0.20) (0.06) (0.04) (0.03) (0.03) (0.02)

Observations 322 322 322 322 322 322 321 321 322 322 322 322 322 322

R2 0.06 0.02 0.43 0.37 0.37 0.33 0.38 0.38 0.32 0.32 0.14 0.14 0.38 0.32

Notes: Each column shows the coefficients estimated by OLS from the regression of 1980-2010 occupational mean log real wage changes on
the corresponding skill measure shown in the rows. Wages, years of schooling and college share are computed from 1980 Census. See text
for variable definitions. Regressions are weighted by occupations’ 1980 employment share. Robust standard errors are in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3.3: Predicting Occupational Skills with Wages

(Dependent Variable: Percentile Ranking of Occupational Skill Measures)

A. Lower Half of 1980 Wage Distribution

College Shr. Years of Sch. AFQT GED Training Training
(DOT) (O*NET)

Wage -0.02 0.04 -0.05 0.14 0.38 0.18

Percentile Rank (0.19) (0.20) (0.17) (0.22) (0.25) (0.17)

Constant 0.36*** 0.34*** 0.38*** 0.30*** 0.18*** 0.29***
(0.05) (0.06) (0.05) (0.06) (0.05) (0.06)

Observations 161 161 160 161 161 161

R2 0.00 0.00 0.00 0.01 0.08 0.01

B. Upper Half of 1980 Wage Distribution

College Shr. Years of Sch. AFQT GED Training Training
(DOT) (O*NET)

Wage 0.65*** 0.68*** 0.67*** 0.59*** 0.86*** 0.58***
Percentile Rank (0.21) (0.19) (0.17) (0.15) (0.14) (0.18)

Constant 0.16 0.14 0.14 0.23* 0.01 0.25*
(0.17) (0.16) (0.14) (0.12) (0.11) (0.14)

Observations 161 161 161 161 161 161

R2 0.11 0.13 0.14 0.14 0.22 0.12

Notes: Table shows the coefficients estimated by OLS from the regression of occupational percentile rank of
corresponding skill measure in columns on percentile rank of average occupational wage in 1980. Panel A (B)
shows the results for occupations below (above) the median of 1980 mean wage distribution. Wages, years of
schooling and college share are computed from 1980 Census. See text for skill variable definitions. Regressions
are weighted by 1980 employment share of occupations. Robust standard errors are in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3.4: Predicting Occupational Skills with Tasks

(Dependent Variable: Percentile Ranking of Occupational Task Measures)

A. Lower Half of 1980 Wage Distribution

Abstract Manual Routine RTI Time Demand Cognitive Demand Hazard

Wage 0.15 0.48 0.12 -0.46*** 0.90*** 0.57*** 0.67***
Percentile Rank (0.25) (0.34) (0.15) (0.34) (0.17) (0.16) (0.18)

Constant 0.31*** 0.36*** 0.50*** 0.70*** 0.10*** 0.23*** 0.29***
(0.05) (0.10) (0.10) (0.04) (0.04) (0.05) (0.06)

Observations 161 161 161 161 161 161 161

R2 0.01 0.05 0.00 0.05 0.35 0.15 0.13

B. Upper Half of 1980 Wage Distribution

Abstract Manual Routine RTI Time Demand Cognitive Demand Hazard

Wage 0.86*** -0.27 -0.56* -0.53*** 0.70*** 0.84*** -0.56***
Percentile Rank (0.15) (0.23) (0.29) (0.17) (0.16) (0.21) (0.19)

Constant 0.07 0.68*** 0.83*** 0.77*** 0.21* 0.02 0.90***
(0.11) (0.18) (0.22) (0.13) (0.11) (0.15) (0.15)

Observations 161 161 161 161 161 161 161

R2 0.24 0.02 0.05 0.05 0.19 0.18 0.06

Notes: Table shows the coefficients estimated by OLS from the regression of occupational percentile rank of corresponding task
measure in columns on percentile rank of 1980 average occupational wage. Panel A (B) shows the results for occupations below
(above) the median of 1980 mean wage distribution. Wages, years of schooling and college share are computed from 1980 Census. See
text for task variable definitions. Regressions are weighted by 1980 employment share of occupations. Robust standard errors are in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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3.B Figures

Figure 3.1: Occupational Skill Intensity and Wage Structure

Notes: Figure shows smoothed shares of each skill group in occupations’ employment in 1980

by the 1980 occupational mean wage percentile rank. Smoothing is based on 322 consistent
occupation codes following Dorn (2009)’s classification and performed by local polynomials
of degree 0 with bandwidth of 10 and weighted by 1980 occupational employment shares. Em-
ployment shares and mean wages are calculated using labor supply weights in 1980 Census,
that is Census weight times total annual hours worked for each individual. Smoothed points
may not sum up to one since smoothing is done separately for each skill-group.
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Figure 3.2: Change in Occupational Employment Share and Log Real Wages by Wage and
Skill Percentiles

Notes: Figure shows smoothed 1980-2010 changes in occupational employment shares and mean log real
wages computed for each employment percentile ranked according to 1980 occupational mean high-skill
worker intensity or wages of 322 consistent non-farm occupations following Dorn (2009)’s classification.
Construction of employment percentiles, computation of mean wages in each percentile and smooth-
ing procedure follows Autor and Dorn (2013). The data comes from 1980 Census and 2010 American
Community Survey. College worker share is the ratio of annual hours by workers with at least some
college education in occupation’s total labor supply. College graduate share is the ratio of annual hours
by workers with at least a college degree in occupation’s total labor supply. Real wages are calculated as
total labor income divided by total hours and adjusted using personal consumption expenditure index.
Labor supply weights are used in the computation of education and wages at occupation level.

151



Figure 3.3: Occupational Employment Share Change and Real Wage Growth by Mean Years
of Education

Notes: The figure shows smoothed 1980-2010 changes in occupational employment share and
log real wages of occupations ranked by 1980 occupational mean years of education. The
gray colored squares represent the smoothed points. The solid line represents the linear fit of
smoothed points with 95 percent confidence interval indicated as shaded areas. The equation
shows the OLS coefficients and R2 from the regression of smoothed points on skill percentiles.
For all other details see Figure 2 notes.
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Figure 3.4: Decadal Changes in Occupational Employment Share by Skill

Notes: The figure shows smoothed 1980-1990, 1990-2000, and 2000-2010 changes in occupational employ-
ment share of occupations ranked by 1980 share of college workers in occupations’ employment. The
gray colored squares represent the smoothed points. The solid line represents the linear fit of smoothed
points with 95 percent confidence interval indicated as shaded areas. The equation shows the OLS co-
efficients and R2 from the regression of smoothed points on skill percentiles. For all other details see
Figure 2 notes.
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Figure 3.5: Decadal Changes in Occupational Real Wage by Skill

Notes: The figure shows smoothed 1980-1990, 1990-2000, and 2000-2010 changes in occupational mean
log real wages of occupations ranked by 1980 share of college workers in occupations’ employment. The
gray colored squares represent the smoothed points. The solid line represents the linear fit of smoothed
points with 95 percent confidence interval indicated as shaded areas. The equation shows the OLS
coefficients and R2 from the regression of smoothed points on skill percentiles. For all other details see
Figure 2 notes.
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Figure 3.6: Monotonic Occupation Growth by Gender

Notes: The figure shows smoothed 1980-2010 changes in occupational employment shares and
mean log real wages of occupations ranked by 1980 share of college workers in occupations’
employment separately by labor markets of males and females. For all other details see Figure
2 notes.
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Figure 3.7: Monotonic Occupation Growth by Age

Notes: The figure shows smoothed 1980-2010 changes in occupational employment shares and
mean log real wages of occupations ranked by 1980 share of college workers in occupations’
employment separately by labor markets of age groups. Young, prime, and older groups
correspond to workers of age 16-29, 30-54, and 55-64. For all other details see Figure 2 notes.
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Figure 3.8: Monotonic Occupation Growth and Occupation Classification

Notes: The figure shows smoothed 1980-2010 changes in occupational employment shares
and real log wages of occupations ranked by 1980 share of college workers in occupations’
employment according to different occupation codes. See text for details on occupation codes.
For all other details see Figure 2 notes.
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Figure 3.9: Skills and Wages by Occupation Group

Notes: The figure shows smoothed 1980 occupational mean skill intensity measures by occupa-
tions’ 1980 mean wage percentile ranks (from 0 to 1) for major occupation groups. Smoothing
is performed by local polynomials and weighted by occupations’ employment shares. See text
for details on skill variables.
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Figure 3.10: Polarization of College and Non-college Employment

Notes: The figure shows percentage change in employment share of major occupation groups
separately by college and non-college workers. Occupation groups are ordered from left to
right according to 1980 mean wages.
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Figure 3.11: Actual and Predicted Employment Share Change and Wage Growth, 1980-2010

Notes: The figure shows actual and predicted employment share and mean log real wage
changes by major occupations. Predicted changes are obtained by regressing the actual
changes on the occupation group’s skill intensity proxied by the college worker share of the
median occupation in that group.
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Figure 3.A.1: Wage and Skill Structure in the Long Run, 1980-2010

Notes: The figure compares 1980 and 2010 wage and skill rankings of occupations. Mean wage
ranks are calculated as the percentile rank of real mean log wages, and mean skill intensity
rank is calculated as the percentile rank of mean college employment share. The size of each
point is proportional to corresponding occupation’s employment share.
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Figure 3.A.2: Change in Skill Intensity, 1980-2010

Notes: The figure plots 1980-2010 change in the log of skill intensity by initial wages (Panel
A) and initial skill intensity (Panel B). Skill intensity is defined as annual hours worked by
college workers divided by annual hours worked by non-college workers in each occupation.
Circle size is proportional to the employment share in 1980. Solid lines inside boxes show the
smoothed mean relationship by a local polynomial using labor supply weight, surrounded by
95% confidence interval.
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Figure 3.A.3: Smoothed Changes in Employment Share by Skill Percentile and Occupation
Codes

Notes: Figure shows smoothed 1980-1990, and 1990-2000 employment share changes in oc-
cupational employment percentiles using the two occupation code system. Percentiles are
ordered by occupational mean years of education in 1980. The data and smoothing proce-
dure follows Autor, Katz, and Kearney (2008). occ1990dd occupation codes are merged to the
original data by a crosswalk from Autor and Dorn (2013).
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Figure 3.A.4: Smoothed Occupational Employment Growth of occ1990 Occupations

Notes: Figure shows smoothed 1990-2000 employment growth by occupational employment
percentile ranks using occ1990 codes. Percentile ranks are based on occupational mean years
of education in 1980. The smoothing is done by local polynomial smoothing with bandwidth
10 and weighted by 1980 employment. AKK(2008) indicates that the data used is Autor, Katz,
and Kearney (2008). Current sample indicates the data used in this paper.
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3.C Occupational Employment Growth in 1990s

Although the main indicator for job polarization in the literature is occupational em-

ployment changes by occupations’ wage percentiles, there are two influential papers

(Autor, Katz, and Kearney, 2008; Autor, Katz, and Kearney, 2006) in the literature

that report non-monotonic employment changes along occupational mean education,

particularly between 1990 and 2000. Since these findings seem to contrast with my

observation on monotonic demand growth along the skill distribution, it is important

to explore the source of difference between this paper and others. Therefore I pro-

vide a discussion on results of earlier papers here. I approach to untangle the set of

puzzling results by directly using data released in David Autor’s web page on Autor,

Katz, and Kearney (2008).

The main practical difference between my paper and the two papers documenting

polarization along education percentiles is the occupational classification. Autor, Katz,

and Kearney (2008) use occ1990 while this paper employs occ1990dd. As discussed in

the main text the two coding schemes lead to similar observations of employment

changes in the long-run, but this might not be the case in smaller frames of time. In

order to be certain that occupation coding preference is the true source of divergence,

next I report the results of the following data exercise. Autor, Katz, and Kearney

(2008) provide their dataset including both occ1990 and original Census codes occ

in 1980, 1990, and 2000. Merging these occ codes to occ1990dd from the crosswalk

provided by David Dorn, I redo the analysis in Autor, Katz, and Kearney (2008) on

the basis of occ1990dd instead of occ1990.

Figure 3.A.3 shows the smoothed employment share changes according to two dif-

ferent occupation codes. The upper panel replicates corresponding Autor, Katz, and

Kearney (2006) and Autor, Katz, and Kearney (2008) that shows smoothed 1980-1990

and 1990-2000 changes by means years of education percentiles where occupations

are in occ1990 codes. The lower panel shows the same with occ1990dd codes. The

comparison between two shows that the particular trend in occupational employment

growth during 1990s depends on occupation definitions.25

Considering that occ1990dd is an improved version of occ1990, and that in the long-

run two codes lead to similar patterns of employment demand changes as I show

25 As shown in Section 3, however, the long run monotonicity of demand growth is not classification-
specific.
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in section 2, the striking contrast may seem puzzling. For this reason, I compare

two coding schemes based on their stability of occupation coverage in Autor, Katz,

and Kearney (2008)’s data. occ1990dd have 330 number of occupations with non-zero

employment share in 1980, 1990, and 2000. There is little change in terms of represen-

tation of occupations. On the contrary occ1990 reports 381 occupations in 1980, 380

in 1990 while there is only 336 in 2000. The difference between 1980 and 2000 cover-

age corresponds to around 3 percent of 1980 employment. The instability of occ1990

might lead to inconsistency in terms of comparison of employment between 1980 and

2000 since each percentile is assumed to contain 1 percent of employment. Therefore

percentiles formed according to employment shares can be misleading when using

occ1990.

Finally, I check whether occ1990 based figures imply polarization when a simpler

method is used. Instead of forming percentiles of employment using employment

shares I directly generate percentile rank of occupations by education. Also, since

employment shares suffer from occupational inconsistency under occ1990, I directly

use occupational employment growth. Figure 3.A.4 shows smoothed log change of

1990-2000 employment sorted by education percentiles in 1980. In order to see how

my own sample compares with theirs I do the exercise both with Autor, Katz, and

Kearney (2008) data and with the one used in this paper. Although it is true that

occ1990 codes do not indicate a sharp monotonic rise in 1990s when sorted by mean

years of education, the resulting pattern surely does not imply polarization. The

observation is also confirmed by the smoothed line from my data using occ1990 and

the same method, which suggests that differences between the observations of Autor,

Katz, and Kearney (2006) or Autor, Katz, and Kearney (2008), and mine do not stem

from sample or methodological differences.

In summary, the previous literature’s direct evidence on employment polarization

by education is not robust to the occupation codes used. Particularly, from 1990

to 2000 the coverage of occ1990 significantly shrinks which makes smoothed graphs

based on employment percentiles much less comparable between the periods. Hence

occ1990dd used in later studies of labor market polarization (Autor and Dorn, 2013,

e.g.,) provides a more reliable comparison which supports the monotonic employment

growth by skill shares that is observed in this paper during each decade after 1980.
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3.D Data Appendix

The data sources and variables are described in Section 2. In this appendix section I

describe the details on Census samples used in the paper. The Census data cover 1980,

1990, 2000 Census 5% extracts, 2005 and 2010 surveys of ACS. The sample includes

workers of age 16-64, employed workers excluding armed forces and self-employed

who reported positive wage income. Employment of an occupation is total annual

hours worked computed as usual weekly hours times weeks worked variables. Labor

supply weights are calculated as annual hours times population weights. Wage bill of

an occupation is defined as total annual wage income. Wage income is subject to top-

code treatment such that top-coded observations are multiplied by 1.5. Real wages

are computed in terms of 2010 dollars and the adjustment is done by PCE index. Real

hourly wages are computed as real annual wage income divided by annual hours. For

each sample year I assign real hourly wages smaller than the first percentile of wage

distribution equal to the first percentile’s real hourly wage.

3.E Theory Appendix

In this appendix section I show the existence and uniqueness of the equilibrium solu-

tion of the model and provide the proof of the claims in proposition 1. The case with

J = 3 is sufficient to prove all parts of the proposition. Therefore without loss of gen-

erality I study the economy with three occupations. Generalizing the proof for J > 3

number of occupations is straightforward. First, I show that there exists a unique

equilibrium allocation of labor across occupations in the model. Secondly, I show that

under the assumptions in proposition, the occupations’ employment growth is pro-

portional to βj. Then, I show that occupational mean wage growth is monotonically

increasing in βj. Lastly, for the labor market polarization result I construct a case

which illustrates that polarization of employment and wages can be obtained as the

model’s outcome.

Before the proof of the proposition, I first show the existence of the unique equilib-

rium in terms of employment allocations of each skill type across occupations. Com-

bining the first order conditions for optimal task choice, and optimal skill type de-
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mand the following can be derived for relative share of employment of skill-type H

in two arbitrarily chosen occupations j and j′:

(
hjt
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=
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, (3.55)

where sjt =
Sjt
St

for S = H,L denotes the employment share within the skill group.

The resource constraint on employment together with equation (3.53) implies the

following for the ratio of high-skill worker to low-skill in occupation j:

Hjt

Ljt
=
Ht

Lt

(
ajj′ +

(
1− ajj′

)
hjt +

(
aji − ajj′

)
hit
)

, (3.56)

where amn = βm(1−βn)
βn(1−βm) for two occupation index number m and n; and j, j′, i denote

the three occupations.26

In order to characterize the equilibrium allocation, I plug (3.56) into (3.55) and

express h1t as a function of h2t from the comparison of occupations indexed as 1 and

3:

h1t = (1− h1t − h2t)
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.

Let’s assume that β1 > β2 > β3. From the equation it can be verified that h2t = 1

implies h1t = 0; and h2t = 0 implies 0 < h1t < 1. In this relation h1t can be found as

the intersection of 45 degree line representing the left hand side and the curve given

by the right hand side, treating h2t as exogenous. The left hand side is increasing

in h1t and independent of h2t. The right hand side is decreasing in both h1t and

h2t since it is assumed that 0 < µ < ρ < 1. Therefore, a higher h2t is a downward

26 Note that given relative skill supply in an occupation, relative skill supply for any other occupation can
be obtained simply by equation (3.53).

168



shift of the right hand side and leads to a lower value for h1t. Consequently, h1t is

monotonically decreasing in h2t while 0 < h2t < 1.

In the same way, h2t can be written as a function of h1t from the comparison of

occupations indexed as 2 and 3. By symmetry, h1t = 1 implies h2t = 0; h1t = 0

implies 0 < h2t < 1; and h2t is strictly decreasing in h1t. The relations described in

this and previous paragraph has a single intersection point within the assumed range

of employment shares. Therefore there exists only one pair of (h1t,h2t) that satisfies

both equations. Since h3t is given by h1t and h2t, and l1t, l2t, l3t can be uniquely ob-

tained using (3.56), within the unit square there exists a unique equilibrium allocation.

Here the assumption on the ordering of the βs is not restrictive, for any other ordering

the same argument holds after suitable adjustments in the occupation sub-indexes.

Now I move to proving that rising relative technology for high-skill workers implies

reallocation of labor into more skill intensive occupations. Let’s keep assuming that

β1 > β2 > β3. Then it follows that a13 > a12 > 1. First, consider the alternative case

that AHtALt
rises and h1t

h2t
falls. By symmetry of (3.55), h2th3t decreases too. From (3.56) it

is clear that H1tL1t increases which, together with skill-biased technology growth, (3.55)

implies that h1th2t increases, contradicting the constructed case. Similarly, consider the

other alternative that h1th2t does not change following the change in technology. By

symmetry, h2th3t is fixed too. As a result H1tL1t is constant, and (3.55) implies a rising
h1t
h2t

, which is a contradiction. Therefore the new unique equilibrium allocation is con-

sistent only with reallocation of high-skill labor into more skill intensive occupations,

i.e., those with higher β. Equation (3.53) suggests that the same holds for low-skill em-

ployment. Hence, occupational employment growth and consequently employment

share change is an increasing function of βj.

The relative occupational mean wages at equilibrium can be shown in the following

representation for two arbitrarily chosen occupations j and j′:
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 (3.57)

The part of the proposition on wage growth follows from the equation. The right-

hand side of the equation is strictly increasing when βj > βj′ because second and

third brackets increase when there is skill-biased technology growth. The term in the
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second bracket rises since
Hj′t
Lj′t

falls and ajj′ > 1.27 The last term in the brackets is also

increasing since the numerator grows faster than denominator (ajj′ > 1).28

I end the proof by constructing a wage structure that enables employment and

wage polarization along occupational wages. Since the relative employment and wage

growth is entirely determined by the relative skill intensity, the construction aims to

put the lowest βj occupation in the middle of the wage ranking. I construct the case

such that β2 < β1 = β3. Then the desired wage structure is obtained if w1t > w2t >

w3t. This is possibly the case for d1 > d2 > d3 where d1 is sufficiently large and

d3 is sufficiently low. Inspecting equation (3.57) for j = 2 and j′ = 1 indicates that

the last two term in brackets on the right-hand side are both bounded. The second

term in brackets converge to 1 as the skill intensity goes to zero from above. The last

term in brackets converges to a21.29 Hence, there exists d1 high enough to ensure

w2t/w1t < 1 for given time t. Similarly, inspecting equation (3.57) for j = 2 and j′ = 3

shows that the last two term in brackets on the right-hand side are both bounded,

and converge to 1 and a23, respectively. Hence, there exists d3 low enough to ensure

w2t/w3t > 1 for given time t.

�

27 This follows (3.56) as a result of the reallocation of high-skill workers towards more skill intensive
occupations.

28 Note that growth of AHt
ALt

implies growth of
Hj′tAHt

Lj′tALt
in equilibrium for any occupation j′. This is given

by the first part of the proposition and equation (3.55).
29 This can be derived by applying L’Hôpital’s rule while

Hj′tAHt

Lj′tALt
goes to infinity.
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