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Abstract

This thesis comprises of four essays that seek to advance understanding of the role that

climatic constraints have on agricultural productivity in India and Pakistan. This work em-

phasises that the constraints posed to agricultural production must be understood within

the context of an evolving set of environmental and technological conditions. The thesis

employs empirical methods to understand these relationships, where particular emphasis

is placed on methods suitable for learning about the challenges agriculture will face in

the future. The first chapter studies the impact of climate change on rice yields in India

by modelling the inter-annual distribution of yield conditional on projected temperature

increases. The results suggest a decrease in average yield and a substantial increase in the

probability of low yields. It is also shown that yields have become increasingly resilient

to heat over time. The second chapter studies the e↵ect of drought on cereal production

in India by estimating thresholds of drought impact. By examining thresholds over time,

evidence is found of decreasing average impacts, but with evidence of an abrupt increase

in average drought impacts in more recent years. Thresholds of precipitation are also

estimated, indicating substantial heterogeneity in resilience to drought across crop types

and regions of India. The third chapter examines how changes in agricultural technology

brought about by the Green Revolution a↵ected the relative importance of agro-climatic

factors in determining crop yields. Using a detailed measure of crop suitability it is found

that yields increased relatively more in areas of higher suitability, indicating complemen-

tarity between agricultural technologies and favourable agro-climatic characteristics. The

final chapter uses farm-level data from a specifically-designed survey to assess the impact

and determinants of climate change adaptation strategies on crop productivity in Pakistan.

Adaptation has a beneficial e↵ect on rice yields, but not on wheat yields. This chapter also

finds that a number of household and institutional factors are strongly related to whether

households have adapted to climate change.
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Chapter 1

Introduction

T
his introductory chapter aims to motivate the importance of understanding the

evolving constraints to agricultural productivity to assess the challenges facing

agriculture in the twenty-first century. Firstly, I outline the importance of un-

derstanding these constraints due to the need to meet a growing demand for food in the

future. Secondly, I discuss a number of the evolving constraints to increasing production.

In particular, I highlight the significance of understanding constraints related to agricul-

tural productivity and the climate. After this, I provide an overview of these issues in

the context of my study area, South Asia. Finally, I outline each of the thesis chapters

by providing brief summaries of the aim, contribution, methodology and results of these

chapters.

1.1 The growing demand for food

In the coming decades, the agricultural sector must produce enough food to meet the

demands of an increasingly a✏uent and growing population. By the middle of the century,

global population is expected to reach 9.7 billion, adding a further 2.4 billion people

compared to the present day (UN, 2015). Economic growth, especially in developing

economies, is also projected to continue to increase in the coming decades, boosting the

incomes of many (Rodrik, 2014). Put together, these trends will have major implications
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for the global demand for food. The demand for staple cereal crops, such as rice, wheat,

maize, and soybeans is likely to be of particular importance given the vital role that these

crops play in the diets and expenditure of a large part of the global population. For

example, these four crops made up 46 percent of all calories globally consumed in 2010,

with this percentage significantly larger in many low income countries (Pingali, 2015).

Although the contribution of these crops to total calories consumed tends to decline as

income levels increase (Deaton and Dreze, 2009), the demand for staple cereal crops is still

projected to increase by around 60 to 100 percent by 2050 compared with 2010 (Tilman

et al., 2011; Fischer et al., 2014).

Failure to increase the supply of these crops is likely to result in higher prices for these

agricultural goods, putting the food security of many consumers at risk. The vulnerability

of the global food system was highlighted between the years 2007 and 2008, in which

prices for agricultural commodities elevated rapidly. During this period, average prices of

food commodities increased by over 50% (Tadesse et al., 2014). These price increases were

particularly steep for a number of the aforementioned staple cereals, however. Rice, wheat,

and maize saw respective prices increases of 225%, 81% and 87% during this period (Headey

and Fan, 2008). It has become clear following this period that there may be winners and

losers from price increases such as these. On the one hand, price increases could actually

increase the incomes of many producers if higher consumer prices translate into higher

farm gate prices. On the other hand, the distributional e↵ect of price increases would

likely disproportionately fall on many of the world’s poor, particularly urban consumers

and rural net buyers of food, who spend larger portions of their income on food (Dorward,

2012). For instance, in the majority of developing countries, the poorest 20 percent tend to

be net buyers of food (FAO, 2011). The knock-on e↵ects of rising food prices have also been

linked to wider social impacts, such as the increased incidence of social unrest(Bellemare,

2015).

2



1.2 Assessing the constraints to agriculture

1.2.1 The role of productivity in the twenty-first century

Increasing amounts of scholarly attention has already been devoted to bringing attention

to the evolving constraints that will be important for determining the production of food

in the future (Naylor, 1996; Tilman et al., 2002). Although the exact nature of these

constraints depends on the context in question and will later be explored in the main

body of the thesis, a number of these constraints are common across much of the world’s

agricultural sector. For instance, one way to increase production in future will be to

increase the amount of land that is cultivated. Historically, increases in area cultivated

have been important for increasing the supply of agricultural goods. For example, between

1970 and 2005, cultivated area for the ten major global crops, which make up nearly 60%

of cultivated area, increased by 26% (Rudel et al., 2009). The prospects for continuing to

increase cultivated area appear to be very limited, however. A primary issue is that there

is increasing international recognition of the threat posed by agricultural land expansion

to biodiversity, such as the encroachment of agriculture into fragile ecosystems, including

forests (Bulte and Engel, 2006). Similarly, increased land use competition from biofuels and

other non-food crops is also predicted to restrict the amount of land that can be devoted

to food crops (Lobell et al., 2014; Rueda and Lambin, 2014). Expanding cultivatable area

is therefore unlikely to be the solution to increasing the supply of agricultural production

in the future. This means that increases in yield will form the basis for increasing the

supply of crops (Barbier, 2011).

Past experience has highlighted agriculture’s ability to substantially increase the produc-

tivity of land. For instance, sustained rates of yield growth for a number of staple crops

were characteristic of the sector in many parts of the world during the twentieth century

(Ruttan, 2002; Federico, 2005). Key to this was the increased use of a range of modern

agricultural technologies. These technologies transformed land previously farmed using

more traditional methods, into land that delivered much greater output per acre in many

areas of the world. The utilisation of improved crop varieties and the use of modern farm
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inputs, such as fertiliser and irrigation, were integral to increasing the productivity of land

in most areas of the world. For example, across developing countries yields for wheat

increased by over 200% and yields for rice increased by over 100% (Pingali, 2012). The

increased supply of staple crops has had very substantial e↵ects on the real price of food,

which showed trend rates of decline in the latter part of the twentieth century (Rudel

et al., 2009). Evenson and Rosegrant (2003) estimate that rice prices would have been 80-

124% higher and wheat prices 29-61% higher without the productive gains spurred by crop

genetic improvement programmes that occurred as part of the Green Revolution. Global

food challenges in the present day are in many ways comparable to those fifty years ago.

For example, between 1970 and 2005, total production of staple crops increased by 123%.

Concerns about an impending Malthusian crisis due to rapid and concentrated population

growth were thus successfully averted.

Despite previous success in increasing the productivity of agriculture, a crucial issue per-

tains to whether rates of productivity growth in agriculture will be sustained in the future.

There is increasing evidence that the productivity gains made from switching to modern

farming techniques are slowing. A number of studies have noted a slowdown and a even

stagnation in the rate of yield growth for key staple crops in recent decades. Ray et al.

(2012) estimate that globally, 24-39% of areas growing cereals such as rice, wheat, maize

and soybeans display non-increasing trends in yield growth. In addition, Lin and Huybers

(2012) show that 50% of major wheat growing areas show stagnant growth rates. Levels

of public R&D in agriculture have also fallen over time, meaning that research into main-

taining and improving the yield potential of cultivars has decreased (Piesse and Thirtle,

2010). In light of this, the primary challenge facing agriculture in the coming decades will

be to maintain the productive success of the past and continue to increase the supply of

these crops to meet future demand. In order to do this, agriculture will have to increas-

ingly confront constraints to productivity on existing cultivated land (Tilman et al., 2002;

Hertel, 2011). How significant these constraints are for current productivity and whether

these constraints are likely to evolve in future is thus a first order concern for research on

food security in the twenty-first century.

4



1.2.2 The changing role of the climate in agriculture

Given the importance of continuing to increase the productivity of agriculture in the com-

ing years, it is crucial to understand the evolving constraints the sector could be exposed

to. In recent years, increasing amounts of research e↵ort has been devoted to understand-

ing the interaction between environmental features and economic production systems in

general. Much of this research has been motivated by overwhelming evidence that human-

induced emissions of greenhouse gases, such as carbon dioxide, are contributing to rising

global temperatures. According to the IPCC (2014), average surface temperatures around

the world have increased by 0.85°C between 1880-2012. For example, previous work has

shown that since 1980 yields of major cereals across the world have already reduced due to

temperature increases, o↵setting some of the gains made by technological improvements

over this period (Lobell et al., 2011). Projections of future warming, although su↵ering

from significant uncertainties about the sensitivity of the climate system to changes in

greenhouse gas emissions and the uncertain nature of future emissions trajectories, indi-

cate substantial increases in global temperatures. Warming by the end of the century is

likely to exceed 2°C and in extreme cases could amount to 5°C. These projected increases

in temperature have been predicted to substantially lower the productivity of agriculture

in the future owing to the harmful e↵ect of heat on crop growth (Schlenker and Roberts,

2009; Challinor et al., 2014; Deryng et al., 2014).

Moreover, climate change is also likely to a↵ect other climatic inputs integral to agricul-

ture, such as rainfall patterns and extreme heat, which could influence the probability of

events generally considered harmful for agriculture, like drought and floods (IPCC, 2012).

How resilient the agricultural sector is to these shocks will be crucial to avoiding the ad-

verse e↵ect shocks to productivity for global markets and for producers and consumers

more locally. The share of food traded internationally has risen steadily over time, and a

range of government support schemes have been introduced aiming to stabilise the price

of agricultural commodities so that local productivity shocks in agriculture tend to have

less e↵ect on local food prices (Anderson, 2010). However, the productivity of agriculture

still remains crucial as a source of income for farmers and labourers.
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Although these changes in climate present a challenge from a global food security perspec-

tive, a crucial point pertains to the expected geographical distribution of climate change

impacts. For instance, growing areas in lower latitude regions (those nearer to the equa-

tor) have been identified as areas most vulnerable to the adverse e↵ects of climate change

(Mendelsohn et al., 2006; Au↵hammer and Schlenker, 2014). This stems from the fact

that already these areas tend to be hotter and thus prone to extreme weather (Nordhas,

2006). Output from climate models predicts that by the end of the this century, growing

season temperatures in the majority of tropical and sub-tropical areas will exceed those

historically recorded as hottest more often than not (Battisti and Naylor, 2009). Despite

this, research examining the potential economic impacts of climate change on agriculture

has largely taken place in the United States and other developed countries (Burke et al.,

2015). Increased amounts of research are thus needed to assess exactly how agricultural

production could be a↵ected in areas of the world that may be particularly vulnerable to

these changes and to understand the opportunities for reducing the adverse impacts of

future changes borne by climate change.

1.3 Research location: South Asia

To contribute to understanding the evolving constraints to agriculture, the work contained

in this thesis examines these issues in the context of two countries in South Asia: India

and Pakistan.

The challenges to agriculture at the global level are readily reflected in South Asia. Grow-

ing domestic demand for staple crops like wheat and rice will to continue to grow. The

current population of India numbers 1.25 billion and 182 million in Pakistan. In India,

the population is expected to reach 1.66 billion by 2050 and in Pakistan will likely reach

300 million by 2050 (UN, 2015). To meet the demands of these increasing populations,

the role of domestic agricultural production will remain integral for the food security of

these countries.

To further reflect trends at the global level, constraints to future production growth in
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South Asia are pressing. The inability of agriculture to expand onto more land is a critical

constraint in most agricultural areas of India and Pakistan. While rates of urbanisation

will continue to increase, and burgeoning modern sectors of the economy will continue

to reduce the relative share of agriculture in national income, these changes are likely to

place additional competition on land currently used for agriculture, placing the onus on

agricultural productivity growth to meet future demand.

Previously, India and Pakistan were able to benefit immensely from technological inno-

vation during the Green Revolution, which began in the mid-1960s. Following colonial

independence in 1947, agriculture in both countries was in a state of low productivity

with stagnant growth rates (Chaudhry and Chaudhry, 1997; Roy, 2007). In a relatively

short amount of time however, the increased production of key staple crops, especially rice

and wheat, meant that agricultural sectors of these economies produced enough food to

consistently cater to the increasing internal demand from rapidly growing populations. In

both countries, average wheat yields at the end of twentieth century were roughly three

times those in 1960, and had increased by more than double for rice (Evenson, 2005).

The initial gains in productivity from the Green Revolution and the subsequent di↵usion

of these technologies to wider areas delivered sustained productivity growth for a number

of decades. However, more recent analyses have highlighted that the rate of increase in

yields is not increasing and even declining in many areas. This is particularly notable

in India, where wheat yields have stagnated or actually declined in 70% of areas in the

previous decade. For rice, trends suggest that yields are not increasing in 35% of rice areas

(Ray et al., 2012).

Importantly, the sustainability of the Green Revolution model of development which forms

the basis for the agricultural production systems of both countries is being called into

question. Overexploitation of groundwater and land degradation are particular concerns

in high productivity areas of both India and Pakistan (Murgai, 2001). Indeed, recent

satellite estimates show that groundwater depletion is particularly acute in many areas

(Rodell et al., 2012). Additionally, claims that increases in average productivity masked

regional inequalities in agricultural development by consolidating the productivity of the
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most favourable growing areas casts further doubt on the suitability of this model in the

coming years (Pingali, 2012).

The constraints to agricultural production are also compounded by projections of future

climate change. Models suggest that average temperature increases across the region are

likely to amount to increases in average surface temperature of between 1 and 2°C by

2050, and between 3-4.5°C by the end of century relative to observed temperatures in the

middle of the twentieth century (Ahmed and Suphachalasai, 2014). Moreover, changes in

the climate may also manifest themselves by a↵ecting a particularly salient feature of the

South Asian agricultural sector, the monsoon. The probability of extreme rainfall events,

which can lead to drought and floods, has significantly increased over the last fifty years

(Singh et al., 2014). Although there is no scientific consensus about whether levels of

rainfall will change in the future, there is more agreement that climate change is likely to

increase the variability of monsoon patterns, leading to more extreme precipitation events

(Turner and Annamalai, 2012).

Finally, assessing the performance of agriculture in these two countries is motivated by the

crucial role agriculture continues to play in the economic lives of millions in the region.

The proportion of people living below the internationally-determined extreme poverty line

of $1.90 a day amounts to 21.3% of the population in India and 8.3% in Pakistan (World

Bank, 2016). These numbers are more startling given the absolute number of people that

these statistics refer to. In India, this represents one-quarter of a billion falling below this

line. Symptomatic of these poverty rates is that agriculture remains the dominant form of

employment throughout the region. According to the International Labour Organisation,

50% of those employed work in agriculture in India, with this figure at 45% in Pakistan in

2010. Although absolute levels of urbanisation will continue to increase, rural populations

who primarily rely on income from agriculture will remain very large and roughly constant

in absolute terms by the middle of this century in both countries (United Nations, 2014).

As such, the role of agriculture as a source of income and employment will remain an

important factor for the living standards of many in these areas (Datt and Ravallion,

1998; de Janvry and Sadoulet, 2010). Higher levels of productivity have increased the

incomes of rural farmers and agricultural labourers. Similarly, greater food availability
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can also reduce the price of food for rural and urban consumers alike, with some estimates

suggesting that rates of growth in the agricultural sector can reduce poverty by three times

more than growth in other sectors of the economy (Christiaensen et al., 2011).

In assessing the future of food security in these areas, it is crucial to consider the evolv-

ing nature of the constraints to agriculture and how these could a↵ect prospects for the

future. Research assessing the constraints borne by climate change is crucial for assessing

implications for productivity of the sector. On top of this, understanding possibilities to

adapt and cope quickly enough so as not to compromise the livelihoods of the millions

dependent the sector is of foremost importance. These themes are pursued in the rest of

the thesis.

1.4 Data and methodological approach

The chapters that follow employ a number of di↵erent empirical methods in order to assess

a number of constraints to agricultural productivity. The data used and the empirical

methodology are described in detail in each chapter. Before describing each separate

paper that makes up the thesis, however, it is important to note the di↵erent types of data

used throughout this thesis.

The first three chapters exploit a lengthy set of panel data pertaining to district-level

agricultural outcomes in India. The use of panel data in this context is advantageous since

it allows for the application of a number of empirical approaches to isolate the e↵ect of

various climatic constraints to agriculture. Over recent years, a burgeoning literature has

sought to apply empirical methods to assess the role that various climatic variables play in

a↵ecting agricultural production (Au↵hammer and Schlenker, 2014). A key development

is the substantial increase in the availability of historical data relating to both physical

variables, such as temperature and rainfall, and corresponding data on various economic

outcomes that could be a↵ected by variation in these physical variables (Au↵hammer et al.,

2013). The panel data on agricultural outcomes is also matched with a set of state-of-the-

art weather data and agro-climatic suitability indices. Detailed descriptions of this data
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and construction of the variables used to undertake the analysis are discussed in depth in

each paper.

The fourth chapter takes a slightly di↵erent approach by utilising a set of data from

Pakistan. This data di↵ers from data used in the previous chapters in two ways. Firstly,

the data is measured at the household level as opposed to the district-level. Second, the

data is cross-sectional since it resulted from an agricultural survey undertaken in 2013.

The relative benefits and costs of examining data at this level are discussed in the chapter.

1.5 Thesis outline

Given the issues previously outlined, the aim of this thesis is to assess the role that a

number of di↵erent climatic constraints have on agricultural production in South Asia.

In doing so, empirical methods will be used to understand these relationships in order to

learn about the challenges South Asian agriculture will face in the future. A key point

made throughout this thesis is that the role of climatic constraints should be understood

within the context of a changing agricultural sector. As such, a particular emphasis is

placed on understanding how the e↵ect of relevant climate variables may have changed

over time and whether we can use knowledge of the past to more accurately provide policy

makers with information about how to better plan for the future. The individual chapters

of this thesis proceed as follows.

In Chapter 2, I assess the e↵ect of climate change on rice yields in India. An important

contribution of this paper is the assessment of the impact that temperature increases

have on the year-to-year distribution of rice yields as well on average productivity. Given

that low productivity outcomes can lead to significant welfare costs to producers and

consumers, an assessment of whether climate change has the potential to significantly alter

the likelihood of these occurrences is of high importance. This is achieved by applying the

moment-based maximum entropy technique, which is used to construct distributions of rice

yield conditional on future temperature scenarios. A district-level database of rice yields

in India is combined with records of daily weather data to empirically model the historic
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response that temperature has had on crop productivity. I first estimate that based on the

relationship between temperature and rice productivity between 1970 and 2009, average

yields decline by 4.4% for the period 2011-2040 and 9.9% by 2041-2070. Importantly, the

e↵ect of warming also leads to a large increase in the probability of particularly low yields.

By the middle of the century, I predict that low yields that historically occurred with

25 percent probability increase to 38 percent. One important finding from this study is

that rice yields have become more resilient to heat over time. Although absolute yield

losses from heat have remained constant over time, there has been a significant reduction

in the relative e↵ect of heat on yields over time. These findings suggest that researchers

should examine changes in heat tolerance of agriculture in order to provide more accurate

predictions about future impacts and investigate the possible mechanisms behind these

changes.

To further examine the vulnerability of the agricultural sector in India to climatic threats,

in Chapter 3 I conduct an assessment of an enduring obstacle for agriculture: drought.

This is conducted with co-authors Francisco Fontes and Charles Palmer. The consequences

of drought continue to pose a substantial challenge for farmers and policy makers alike

given the adverse e↵ect drought tends to have on agricultural production. In order to

assess the vulnerability of cereal production in India to drought, we adopt a threshold

regression approach in order to identify data-driven ranges for which the magnitude of

drought impacts on cereal production di↵ers. This is first applied to understand whether

the e↵ect of cereal production has changed over time and to identify whether there are

distinct periods of time between which average drought impacts vary. We find evidence

of a non-linear pattern in average district cereal yields over time. While drought impacts

have reduced over time, we find evidence of a sharp break in this trend towards the end

of the sample period. A number of evolving issues are discussed to explain this pattern of

impacts. In addition, we estimate precipitation thresholds for drought impacts. This allows

us to determine levels of rainfall at which drought becomes particularly harmful for crop

yields. An advantage of this approach is that we are able to compare estimated thresholds

with o�cial classifications of drought based on precipitation deficiency. Overall, we find

significant and negative marginal impacts of drought for levels of rainfall below 70 to 80
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percent of long-term rainfall, which corresponds with o�cial drought definitions. These

results suggest, however, that drought definitions that do not account for local di↵erences

in average climate and crop choice are likely to provide misleading policy guidance about

the e↵ects of drought on crop productivity.

Agricultural technologies are crucial for allowing farmers to grow crops e↵ectively across

a range of environments. The ability of agricultural technologies to grow e↵ectively under

harsher environments will be important for whether technologies will be e↵ective in areas

exposed to environmental changes, such as climate change, in the future. In Chapter 4,

I examine whether technological change in agriculture changes the relative importance of

environmental characteristics that determine crop productivity. To do this I study the

changes in agricultural technology brought about by the Green Revolution. A common

claim is that high yielding variety seeds, which facilitated yield increases over time, were

complementary in the production process to areas better endowed with more favourable

climates and fertile soil. Consequently, this complementarity could have led to yield growth

that was land quality biased, increasing yields relatively more on better quality land fol-

lowing the Green Revolution. I test the validity of this hypothesis by examining whether

yields for rice and wheat increased relatively more in areas most suited to crop growth

after the Green Revolution in India. Particularly important for this chapter is the accurate

measurement of agro-climatic conditions. Accordingly, I adopt a crop-specific measure of

land quality from the FAO Global Agro-Ecological Zones project. The results of this anal-

ysis show that for both rice and wheat, yield gains after the Green Revolution significantly

increased the productive advantages of districts with higher agro-climatic suitability for

crop growth. This result is consistent across a number of subsets of geographical regions,

over time, and does not seem to be driven by di↵erences in the di↵usion of technology

across districts. This work highlights that developing agricultural technologies that work

e↵ectively under increasing environmental strain is important for maintaining agricultural

productivity in the future.

Chapter 5 di↵ers from the previous chapters in two ways. First, I turn my attention

to Pakistan. Second, I use farm-level data taken from a specifically-designed agricultural

household survey that collected data on farmers’ observed adaptation strategies, farm pro-
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duction and household characteristics. While several studies have estimated that average

crop yields may decline with climate change, no prior work has empirically examined the

role that adaptation to climate change might play. A detailed understanding of the range

of strategies available to farmers and the productive benefits of these strategies is there-

fore needed. The data from this study is employed to assess whether the use of climate

change adaptation strategies has a positive e↵ect on farm productivity. The empirical

approach used in the paper addresses the issue of farmer self-selection into adaptation

by utilising an endogenous switching regression framework. It is found that the impact

of employing adaptation measures di↵ers according to crop. We predict that the use of

adaptation strategies for rice farmers has, on average, increased yields by 9%. In contrast,

for wheat farmers, we predict positive but statistically insignificant productive gains from

adaptation. We also estimate the counterfactual gains for non-adapting farmers had they

adapted to climate change. We find these e↵ects to be much larger, suggesting that policies

aimed at relaxing the constraints to undertaking adaptation could have significant e↵ects

on food security. This chapter also finds that a number of household and institutional fac-

tors are strongly related with whether households have adapted to climate change. This

indicates that in order to allow farmers to e�ciently adapt to climate change in the future,

policies are required to relax some of the persistent constraints that hamper agricultural

development.

13



References

M. Ahmed and S. Suphachalasai. Assessing the Costs of Climate Change and Adaptation

in South Asia. Technical report, Asian Development Bank, 2014.

K. Anderson. Globalization’s E↵ects on World Agricultural Trade, 1960–2050. Philo-

sophical Transactions of the Royal Society of London B: Biological Sciences, 365(1554):

3007–3021, 2010.

M. Au↵hammer and W. Schlenker. Empirical Studies on Agricultural Impacts and Adap-

tation. Energy Economics, 46:555–561, 2014.

M. Au↵hammer, S. Hsiang, W. Schlenker, and A. Sobel. Using Weather Data and Climate

Model Output in Economic Analyses of Climate Change. Review of Environmental

Economics and Policy, 7(2):181–198, 2013.

E. Barbier. Scarcity and Frontiers: How Economies Have Developed Through Natural

Resource Exploitation. Cambridge University Press, Cambridge, 2011.

D. Battisti and R. Naylor. Historical Warnings of Future Food Insecurity with Unprece-

dented Seasonal Heat. Science, 323:240–244, 2009.

M. Bellemare. Rising Food Prices, Food Price Volatility, and Social Unrest. American

Journal of Agricultural Economics, 97(1):1–21, 2015.

E. Bulte and S. Engel. Conservation of Tropical Forests: Addressing Market Failure. In

R. Lopez and M. Toman, editors, Economic Development and Environmental Sustain-

ability. Oxford University Press, Oxford, 2006.

M. Burke, J. Dykema, D. Lobell, E. Miguel, and S. Satyanath. Incorporating Climate Un-

14



certainty into Estimates of Climate Change Impacts. Review of Economics and Statis-

tics, 97(2):461–471, 2015.

A. Challinor, J. Watson, D. Lobell, S. Howden, D. Smith, and N. Chhetri. A Meta-Analysis

of Crop Yield Under Climate Change and Adaptation. Nature Climate Change, 4:287–

291, 2014.

M. Chaudhry and G. Chaudhry. Pakistans Agricultural Development since Independence:

Intertemporal Trends and Explanations. The Pakistan Development Review, 36(4):593–

612, 1997.

L. Christiaensen, L. Demery, and J. Kuhl. The (Evolving) Role of Agriculture in Poverty

Reduction - An Empirical Perspective. Journal of Development Economics, 96(2):239–

254, 2011.

G. Datt and M. Ravallion. Farm Productivity and Rural Poverty in India. Journal of

Development Studies, 34(4):62–85, 1998.

A. de Janvry and E. Sadoulet. Agricultural Growth and Poverty Reduction: Additional

Evidence. World Bank Research Observer, 25(1):1–20, 2010.

A. Deaton and J. Dreze. Food and Nutrition in India: Facts and Interpretations. Economic

and Political Weekly, 44(7):42–65, 2009.

D. Deryng, D. Conway, N. Ramankutty, J. Price, and R. Warren. Global Crop Yield Re-

sponse to Extreme Heat Stress Under Multiple Climate Change Futures. Environmental

Research Letters, 9:034011, 2014.

A. Dorward. The Short- and Medium-Term Impacts of Rises in Staple Food Prices. Food

Security, 4:633–645, 2012.

R. Evenson. The Green Revolution and the Gene Revolution in Pakistan: Policy Implica-

tions. The Pakistan Development Review, 44(4):359–386, 2005.

R. Evenson and M. Rosegrant. The Economic Consequences of Crop Genetic Improvement

Programmes. In R. Evenson and D. Gollin, editors, Crop Variety Improvement and its

15



E↵ect on Productivity: The Impact of International Agricultural Research. CABI, Oxon,

2003.

FAO. The State of Food Insecurity in the World. Technical report, Food and Agriculture

Organization of the United Nations, Rome, 2011.

G. Federico. Feeding the World: An Economic History of Agriculture, 1800-2000. Prince-

ton University Press, Princeton, New Jersey, 2005.

R.A. Fischer, D. Byerlee, and Edmeades G.O. Crop Yields and Global Food Security: Will

Yield Increase Continue to Feed the World? ACIAR Monograph No. 158, Australian

Centre for International Agricultural Research, Canberra, 2014.

D. Headey and S. Fan. Anatomy of a Crisis: The Causes and Consequences of Surging

Food Prices. Agricultural Economics, 39:375–391, 2008.

T. Hertel. The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm

in the Making? American Journal of Agricultural Economics, 93(2):259–275, 2011.

IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change

Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel

on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 2012.

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

IPCC, Geneva, Switzerland, 2014.

M. Lin and P. Huybers. Reckoning Wheat Yield Trends. Environmental Research Letters,

7:021002, 2012.

D. Lobell, W. Schlenker, and J. Costa-Roberts. Climate Trends and Global Crop Produc-

tion Since 1980. Science, 333:616–620, 2011.

D. Lobell, R. Naylor, and C. Field. Food, Energy, and Climate Connections in a Global

Economy. In R. Naylor, editor, The Evolving Sphere of Food Security. Oxford University

Press, Oxford, 2014.

16



R. Mendelsohn, A. Dinar, and L. Williams. The Distributional Impact of Climate Change

on Rich and Poor Countries. Environment and Development Economics, 11:159–178,

2006.

R. Murgai. The Green Revolution and the Productivity Paradox: Evidence from the

Indian Punjab. Agricultural Economics, 25:199–209, 2001.

R. Naylor. Energy and Resource Constraints on Intensive Agricultural Production. Annual

Review of Energy and the Environment, 21:99–123, 1996.

W. Nordhas. Geography and Macroeconomics: New Data and New Findings. Proceedings

of the National Academy of Sciences of the United States of America, 103(10):3510–3517,

2006.

J. Piesse and C. Thirtle. Agricultural R&D, Technology and Productivity. Philosophical

Transactions of the Royal Society B, 365:3035–3047, 2010.

P Pingali. Green Revolution: Impacts, Limits, and the Path Ahead. Proceedings of the

National Academy of Sciences, 109(3):12302–12308, 2012.

P. Pingali. Agricultural Policy and Nutrition Outcomes Getting Beyond the Preoccupation

with Staple Grains. Food Security, 7:583–591, 2015.

D. Ray, N. Ramankutty, N. Mueller, P. West, and P. Foley. Recent Patterns of Crop Yield

Growth and Stagnation. Nature Communications, 3:239–254, 2012.

M. Rodell, I. Velicogna, and J. Famiglietti. Satellite-based Estimates of Groundwater

Depletion in India. Nature, 460:999–1002, 2012.

D. Rodrik. The Past, Present, and Future of Economic Growth. Challenge, 57(3):5–39,

2014.

T. Roy. A Delayed Revolution: Environment and Agrarian Change in India. Oxford Review

of Economic Policy, 23(2):239–250, 2007.

R. Rudel, L. Schneider, M. Uriarte, B. Turner, R. DeFries, D. Lawrence, J. Geoghegan,

S. Hecht, A. Ickowtiz, E. Lambin, T. Birkenholtz, S. Baptista, and R. Grau. Agricultural

17



Intensification and Changes in Cultivated Areas, 19702005. Proceedings of the National

Academy of Sciences in the United States of America, 106(49):20675–20680, 2009.

X. Rueda and E. Lambin. Global Agriculture and Land Use Changes in the Twenty-First

Century. In R. Naylor, editor, The Evolving Sphere of Food Security. Oxford University

Press, Oxford, 2014.

V. Ruttan. Productivity Growth in World Agriculture: Sources and Constraints. Journal

of Economic Perspectives, 16(4):161–184, 2002.

W. Schlenker and M. Roberts. Nonlinear Temperature E↵ects Indicate Severe Damages

to U.S. Crop Yields Under Climate Change. Proceedings of the National Academy of

Sciences, 106(37):15594–15598, 2009.

D. Singh, M. Tsiang, B. Rajaratnam, and N. Di↵enbaugh. Observed Changes in Extreme

Wet and Dry Spells During the South Asian Summer Monsoon Season. Nature Climate

Change, 4:456–461, 2014.

G. Tadesse, B. Algieri, M. Kalkuhl, and J. von Braun. Drivers and Triggers of International

Food Price Spikes and Volatility. Food Policy, 47:117–128, 2014.

D. Tilman, K. Cassman, P. Matson, R. Naylor, and S. Polasky. Agricultural Sustainability

and Intensive Production Practices. Nature, 418:671–677, 2002.

D. Tilman, C. Balzer, J. Hill, and B. Befort. Global Food Demand and the Sustainable

Intensification of Agriculture. Proceedings of the National Academy of Sciences, 108

(50):20260–20264, 2011.

A. Turner and H. Annamalai. Climate Change and the South Asian Summer Monsoon.

Nature Climate Change, 2:587–595, 2012.

UN. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables.

Working paper no. esa/p/wp.241, United Nations, Department of Economic and Social

A↵airs, Population Division, 2015.

United Nations. World Urbanization Prospects: The 2014 Revision, Highlights

18



(ST/ESA/SER.A/352). Technical report, Department of Economic and Social A↵airs,

Population Division, New York, 2014.

World Bank. The Little Data Book 2016. World Bank, Washington, DC., 2016.

19



Chapter 2

Worse than average? Assessing

the impact of higher temperatures

on the distribution of rice yields in
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Abstract

Empirical studies examining the impact of climate change in agriculture typically evaluate impacts

using measures of average productivity. Assessing the e↵ect that climate change could have on

other economically relevant measures of productivity is important for a fuller assessment of any

potential costs. In this paper, I examine the e↵ect that increased exposure to higher temperatures

has on the rice yields in India, predicting the e↵ect on average yields and the probability of low

productivity events, or downside risk. District-level data between 1970 and 2009 is used along with

daily weather data to estimate the historical relationship between rice yield and temperature in

India. The moment-based maximum entropy approach is then employed to estimate the e↵ect of

temperature on the higher order moments of yield and to construct probability distributions of

yield conditional on future temperature scenarios. While I predict that average yields will decline

by 4.4% for the period 2011-2040 and 9.9% by 2041-2070, I also predict that climate change leads to

substantial increases in the probability of low yield events. Projected warming by the middle of the

century implies that the likelihood of yields below those that occurred with a 5 percent probability

under baseline temperatures increases to 15 percent. The likelihood of yields falling below the

lowest 25th percentile of historic yield distribution increases to 38 percent by the middle of the

century. There is substantial regional heterogeneity in estimated impacts, with districts in northern

states likely to be most a↵ected by increased heat exposure both in terms of reduced average yield

and substantial increases in the probability of low yield events. This study also finds that rice

yields have become more resilient to heat over time. These findings suggest that researchers should

examine changes in heat tolerance of agriculture in order to provide more accurate predictions

about future impacts and investigate the possible mechanisms behind these changes.
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2.1 Introduction

T
emperatures are projected to continue to rise around the globe due to increases

in greenhouse gas emissions. Economic production in a number of sectors is

expected to be negatively a↵ected by higher temperatures, which have histori-

cally been shown to lead to reductions in economic activity (Dell et al., 2012; Burke et al.,

2015b). The e↵ects of temperature increases could be particularly significant in the agri-

cultural sector, where average crop yields have been predicted to significantly decrease in

many parts of the world owing to the harmful e↵ect of heat on crop growth (Challinor

et al., 2014; Deryng et al., 2014).

To evaluate the e↵ect of climate change in the agricultural sector, the vast majority of

previous studies have examined e↵ects on average agricultural outcomes (Deschenes and

Greenstone, 2007; Schlenker and Roberts, 2009; Au↵hammer and Schlenker, 2014). The

economic e↵ects of climate change, however, may not be well-summarised by restricting

analysis to measures of average productivity. One possibility is that more exposure to

hotter weather leads to the increased likelihood of extreme productivity outcomes (IPCC,

2012). These changes could be a concern if climate change substantially a↵ects the proba-

bility of unfavourable outcomes, such as when crop yields fall to particularly low levels. As

such, if modest changes in average productivity are accompanied by a significant change

in the likelihood of particularly bad events, then previous studies may be underestimating

the e↵ects of increased temperature in the agricultural sector by not considering changes

in tails of the distribution of crop yields.

Researchers and policymakers have generally been concerned about evaluating outcomes

beyond averages in agriculture (Hardaker et al., 1997). While a number of studies have

shown that farmers tend to be averse to the increased probability of unexpected outcomes

(Binswanger, 1981; Chavas and Holt, 1996), an associated issue is the likelihood of un-

favourable events, which refer to downside risk. Typically producers show preferences

that imply a particular aversion to downside risk (Menezes et al., 1980; Hanemann et al.,

2016). Exposure to downside risk is particularly relevant in many developing countries,

where a large proportion of the population is dependent on income derived from agricul-
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tural production. A large literature has found a causal link between productivity shocks

in agriculture and a range of factors relevant to welfare, such as declines in rural wage

rates (Jayachandran, 2006), increases in morbidity and mortality (Burgess et al., 2014),

and higher probability of conflict (Hsiang et al., 2013). The consequences of productivity

shocks in agriculture are usually much larger in areas of the world where a significant

fraction of the population is poor and not able to access income-smoothing mechanisms

like credit markets (Jayachandran, 2006; Burgess et al., 2014), which owing to problems of

enforcement, moral hazard, and adverse selection tend to be underprovided in many rural

areas (Besley, 1994). Thus, understanding whether climate change could increase the oc-

currence of these productivity shocks is a crucial for further understanding the implications

of higher temperatures in agriculture.

Given the importance of considering measures of agricultural productivity beyond the

mean, only a small number of studies have examined the relationship between climate

change and higher order moments of crop yield. These studies have primarily focused on

estimating the e↵ect that certain climatic variables have on measures of the variability

of crop yields. Chen et al. (2004) and Isik and Devadoss (2006) study the e↵ect that

increases in average temperature and changes in precipitation could have on inter-annual

crop yield variability using panels of county and state-level. Both papers use stochastic

production function methods (Just and Pope, 1978, 1979), enabling them to estimate the

variance of inter-annual yields conditional on changes in exogenous climate variables. Chen

et al. (2004) find that higher temperatures reduce average corn yields and increase their

variance. On the other hand, Isik and Devadoss (2006) predict that climate change will

not have large e↵ects on average yields and will reduce the variance of yields. More recent

work by Urban et al. (2012) further explores the e↵ect that temperature increases could

have on the inter-annual variability of county maize yields in the U.S. They argue that an

increase in the variability of yield can occur if climate change increases the probability of

temperatures that are damaging for yields.1 They confirm this by estimating the e↵ect

1This pertains to the findings of numerous empirical studies that show that yield is a concave function
of temperature, such that higher temperatures first increase yields until the optimum point is reached,
after which yields then begin to decline (Schlenker and Roberts, 2009; Burke et al., 2015b). While average
yields would fall owing to more exposure to hotter temperatures, the additional e↵ect of greater exposure to
harmful temperatures substantially increases the set of low yields that occur since the new climate implies
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that higher temperatures have on coe�cient of variation of maize yield, predicting this will

increase by 47 percent nationally by 2030-2050. A key implication from these results is

that the distribution of crop yields is unlikely to be stationary in the future, which means

risk managers should be aware of factoring in extra risk to crop yields posed by climate

change in the future (McCarl et al., 1998).

These works, however, only permit a limited understanding of the consequences of climate

change on downside risk for a number of reasons. First, restricting interest to general mea-

sures of variability, such as the variance and coe�cient of variation, does not allow for the

possibility that changes in the yield distribution may be asymmetric. Incorporating the

possibility that temperature increases a↵ect the skewness of yields over time may be im-

portant, since increasing negative skewness leads to an increase in downside risk (Menezes

et al., 1980). Second, although it is possible to extend previous work to study e↵ects on

higher moments of yield (Antle, 1983), these studies do not allow for the estimation of the

probability distribution of yields, which is useful for quantifying the likelihood of yields in

the lower tail of the crop yield distribution, which in turn are important for quantifying

changes in downside risk due to climate change (Hanemann et al., 2016). Third, as with

the vast majority of research on climate change impacts in agriculture, these studies have

been undertaken in the U.S. (Burke et al., 2015a), which creates a need for a better un-

derstanding of impacts in developing country contexts, which may di↵er both in exposure

to climate change and the technological capacity to deal with these changes (Mendelsohn

et al., 2006).

In this paper, I predict the e↵ect that changes in temperature will have on district-level rice

yields in India by assessing the e↵ect on average yields and on exposure to downside risks.

Rice is the dominant crop grown across Asia and plays an integral role in the food security

of the region. For India specifically, rice is grown in most parts of the country and makes

up around one-third of cropped area. Its successful growth is thus integral to the welfare

of millions of farmers and consumers.2 To do this, I construct conditional probability

distributions of inter-annual rice yields using data covering the period 1970-2009. Yield

that temperatures are on an increasingly downward sloping part of the yield-temperature curve.
2This is particularly true for the poorest households in India who spend around 20% of income on rice

(Groom and Tak, 2015).

24



distributions are constructed using the moment-based maximum entropy approach (Wu,

2003; Tack et al., 2012).3 The method is a two-step procedure that initially estimates the

e↵ect that temperature has on di↵erent raw moments of yield. Information from these

estimations is then used to map moments of yield into a distribution of yields. This allows

me to predict how changes in temperature for the periods 2011-2040 and 2041-2070 will

a↵ect the probability of low yields.4 This is done by using a measure of downside risk that

assesses the probability of yields falling below certain levels of interest.

The yield data is combined with gridded daily data on temperatures and rainfall over

the entire period. Many earlier studies examining the e↵ects of climate on crop yields

have relied on simplistic measures of average temperatures over long periods, such as a

growing season (Au↵hammer et al., 2012). These studies have been criticised for poorly

representing the agronomic impact that temperature has on crop yields. More recent work

has emphasised the non-linear relationship between crop yields and daily temperature,

where exposure to abnormally hot days significantly harms crop growth (Schlenker and

Roberts, 2009; Lobell et al., 2012). To account for this, I specify each moment of yield as a

semi-parametric function of daily temperature, which allows for potential non-linearities.

Previous studies that have examined the e↵ect of climate change on average agricultural

yields in India have found mixed results on the direction of impacts depending on method-

ological approach and modelling assumptions (Mall et al., 2006). Only a handful of papers

have applied empirical methods to estimate the e↵ect of temperature on observed yields

(Guiteras, 2009; Burgess et al., 2014), although these studies focus on aggregate measures

of agricultural productivity which are problematic for deciphering crop-specific relation-

ships between temperature and yield which may di↵er significantly.5 Statistical approaches

have a key advantage over crop model simulation approaches since they allow for the es-

timation of yield-temperature relationships under actual conditions. As such, this paper

3This approach has also been applied by Tack and Ubilava (2013, 2015) to study the e↵ect of the El
Nino Southern Oscillation and its implications for the distribution of crop yields in the U.S.

4Future changes in precipitation are not considered since projections vary widely depending on climate
model used. A better understanding of the physical processes governing monsoon patterns across India is
still an ongoing area of research (Turner and Annamalai, 2012).

5Au↵hammer et al. (2012) is a notable study on the impact of climate change on rice yields in relation
to climate change. These authors focus on the implications of changing rainfall patterns. Additionally,
Fishman (2012) considers the impact of the inter-annual distribution of rainfall and the role of irrigation.
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builds on these existing approaches using detailed weather data to specifically study the

implications of climate change for rice yields, examining both impacts on average yields

and the likelihood of low yields.

The estimated historical relationship between temperature and yield suggests that heat

has a highly significant e↵ect on rice yields. For India as a whole, average yields are

projected to decline by 4.4% for the period 2011-2040 and 9.9% by 2041-2070 relative to

the baseline historic temperature scenario. Given the variety of conditions under which

rice is grown in India, there is substantial heterogeneity in mean impacts at the regional

level, with northern and central areas of the country expected to be most a↵ected by

increases in temperature. In contrast, districts in the south are shown to be less a↵ected

by increases in temperature, although these impacts are still projected to be negative. Rice

yields in these areas show a weaker response to temperature fluctuations compared with

other areas. This may be driven by lower average baseline temperatures in these areas or

due to rice being grown over a number of di↵erent seasons.6

The rise in projected temperatures implies significant changes to the likelihood of very

low yields. This is done by comparing the conditional yield distributions under historic

temperatures with the distribution under projected future temperatures. I then compare

likelihood of rice yields falling below the level of yield that was historically in the lowest

25th and 5th percentile. The results show that the projected temperature increase by 2050

increases the probability of achieving yields in the lowest 5th percentile to 15 percent. The

likelihood of yields falling below the level that defined the 25th percentile in the baseline

scenario increases to 38 percent by the middle of the century. The change in exposure to

low levels of yield due to higher temperatures is driven by two factors. First, a decline in

average yield shifts the yield distribution. Second, there is a significant fattening of the

tails of the distribution due to an increase in the probability of extreme outcomes. The

increase in variability is particularly pronounced in northern areas, which may reflect that

exposure to downside risk will be highest to those areas already locating in the hottest

areas of the country.

6Previous studies using a variety of methods have predicted that rice yields in the south may be less
a↵ected and even benefit from small temperature increases (Soora et al., 2013; Barnwal and Kotani, 2013).
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One potential issue in using the historical response of heat on crop productivity to learn

about future impacts is the degree to which this relationship has remained stable over time.

If there has been a significant change in the response of yields to heat over time, the use

of data over long time scales could lead to erroneous assessments of the impact of future

warming. Thus, I compare the response of rice yields to temperature for data in early time

periods (1970-1989) relative to later time periods (1990-2009). My findings indicate that

heat exposure had roughly the same e↵ect on absolute yields in both periods. However,

since average yields have increased over time, the e↵ect of heat exposure on relative yields

has decreased substantially. By re-calculating distributions for future temperature scenar-

ios by each period sub-sample, it is shown that future impacts are substantially lower using

the later period as the baseline period. These results may be due to a number of possible

factors, such as improvements in agricultural technology over time or policies have enabled

farmers to react better to higher temperatures. There is also some evidence to suggest

that irrigation is not driving the results. I estimate that results are broadly comparable for

irrigated versus non-irrigated areas suggesting that these areas have similar reactions to

fluctuations in heat. These findings suggest that researchers should examine the stability

of e↵ects over time in order to provide more accurate predictions about future impacts.

The rest of the paper is structured as follows. Section 2.2 reviews issues surrounding the

impacts of climate change on the agricultural sector in India and details the importance

of rice. The agricultural and climate data used in this study are then detailed in Section

2.3. In Section 2.4 the empirical methodology is described and results are presented in

Section 2.5. The implications of these results are discussed in Section 2.6 and Section 2.7

concludes.

2.2 Climate change and rice in India

Temperature is likely to play an increasingly important role in Indian agriculture in the

coming decades. Climate models predict that average temperatures will rise markedly by

the middle of this century. Figure 2.1 shows predicted changes in annual mean temper-

ature (relative to the 1961-90 average) across the country for the periods of 2011-2040
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and 2041-2070 using an ensemble average across a range of climate models and emissions

scenarios. The baseline average temperature over the 1961-1990 period is also shown for

the months of June-October, the main growing season. For baseline temperatures, a clear

spatial pattern can be seen, with northern areas, such as Punjab and Haryana, on average

hotter, with daily temperatures averaging close to 30°C. In a number of southern areas,

particularly those on the west coast, temperatures are much lower. The average of the

model projections for future temperatures are shown in panels (b) and (c). These pro-

jections suggest that there will be significant increases in temperature across the country,

with northern areas expected to experience absolute gains in temperature of over 2°C in

the middle of the century. For the country as a whole, average temperature is expected to

increase by 1.02°C in the years 2011-2040 and by 1.87°C in 2041-2070.

Research into the consequences of temperature increases on economic production has

drawn particular attention to its e↵ect on the agricultural sector owing to weather as

a natural but uncontrollable input into the production process. In general, vulnerability

to future warming is expected to be greater in regions or areas of the world, such as India,

that are already prone to hot temperatures since crops in these areas are already nearer

to the biological limits for plant growth (Au↵hammer and Schlenker, 2014).

Future climate change is likely to be disruptive for many rice growing areas, which are

mainly located in Asia, where the vast majority of the crop is both grown and consumed

domestically. The success of rice production is highly significant in India where it is grown

in almost all states of the country and is the largest single crop planted, with 36 percent

of planted area devoted to its cultivation (Shreedhar et al., 2012). Future temperature

increases are hypothesised as unlikely to benefit rice growth given that the majority of

the crop is cultivated in areas where temperatures frequently exceed those shown to be

optimal, with agronomic studies suggesting that temperatures in the range of 20-30°C

are most conducive to rice growth (Krishnan et al., 2009). The increased likelihood of

high temperatures due to climate change may have substantial impacts on heat stress-

induced damage to rice growth during the growing season, since high temperatures disrupt

a number of biological mechanisms that govern rice growth, such as grain filling and spikelet

formation (Wassman et al., 2009).
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Although high temperatures are generally known to be harmful for rice growth, determin-

ing the degree to which rice yields in India will be a↵ected by future climate change is a

pressing area of research. Modelling approaches used to quantify the impact of climate

change on rice production in India can generally be divided into two. The first, crop model

simulation studies, use more detailed scientific models to estimate temperature’s e↵ect on

plant growth to estimate rice yields under di↵erent climatic conditions. Mall et al. (2006)

review earlier studies using simulation models in India. They conclude that these models

do not generally agree on the direction of yield changes due to climate change. For in-

stance, an earlier result by Aggarwal and Mall (2002) found that future climate change

would benefit yields in all areas of the country. However, more recent work by Soora et al.

(2013), incorporating more detailed information such as temperature thresholds e↵ects on

growth, estimate that irrigated yields are projected to decline by 7% by 2050, and by 2.5%

in rain-fed areas.

A criticism of simulation studies is that they do not reflect actual growing conditions in the

field. To address this issue the ‘statistical’ approach is often applied using observational

data on crop yields to understand the e↵ect that weather variables, such as precipitation

and temperature, have on crop yields in a number of parts of the world (Au↵hammer and

Schlenker, 2014). For instance, in India, Au↵hammer et al. (2012) study the relationship

between state-level rice yields and monsoon rainfall patterns under climate change. This

work, however, does not study the contribution that future temperature rises could have

on rice production.

Recently, the increased availability of high resolution weather data has allowed for the

improved measurement of the historical relationship between crop output and temperature.

A primary finding from this work, as noted by Au↵hammer and Schlenker (2014), is that

the relationship between yield and temperature is non-linear and that seasonal exposure

to extreme heat is a good predictor of yields for many crops. Since average temperatures

over a long period, such as a growing season, may poorly categorise the range of harmful

temperatures, the e↵ects of future increases in temperature on agricultural yields may be

poorly estimated by earlier studies. A prominent study by Schlenker and Roberts (2009)

uses yearly, county-level data on a range of crops including corn, soybeans and cotton in
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the U.S to show that exposure to daily temperatures beyond 29-32°C significantly harm

yields.

Similar methods have been applied to understand the e↵ects of climate change on agri-

culture in India, although these studies focus on the e↵ect of temperature on aggregated

measures of agricultural output rather than crop-specific relationships. Burgess et al.

(2014) argue that rural areas are most vulnerable to the e↵ects of heat since agricultural

productivity, the primary means of rural employment, falls significantly with more expo-

sure to heat. They specify a model of aggregate district agricultural productivity against

daily temperatures. Their findings indicate that daily temperatures above 80°F (27°C)

negatively a↵ect district agricultural yields, and that an additional day above 85°F (29°C)

reduces annual yield by 0.5%. Guiteras (2009) uses a similar model to study the e↵ect of

climate change on average district agricultural productivity. He estimates that increased

warming could reduce average yields by 4.5-9 percent by 2010-2039 and by 25 percent

by 2070-2099. These studies, however, are likely to be less informative for studying the

impacts of climate change since, as shown by Schlenker and Roberts (2009), the yield

response to temperature is likely to be crop-specific. Additionally, since crops such as rice

are traditionally grown in the summer as opposed to wheat which is primarily grown in

the winter, growing seasons should be defined separately for these crops. The only paper

to apply detailed weather data to rice yields in India is Fishman (2012), who studies the

e↵ect that the distribution of rainfall has on rice and wheat yields at the district level. He

uses numerous measures of weather, such as annual rainfall, the distribution of rainfall,

and accumulated temperature over the growing season to study their relative influence in

driving climate change impacts in 2080-2100. A key finding from this study is that climate

change-induced temperature increases dominate any potential changes in rainfall in the

future. This is for two reasons. First, a number of climate models predict increases in an-

nual precipitation across India, which tend to increase average rice yields. Second, while it

is estimated that the expansion of irrigation can reduce the impact of precipitation shocks,

irrigation does not seem to be related to reducing the impact of temperature fluctuations.

One crucial aspect of quantifying the e↵ect of climate change on rice yields in India is ac-

counting for the regional heterogeneity in growing environments. As was shown in Figure
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2.1, parts of the country di↵er substantially in their exposure to high average temperatures.

Given the range of temperatures considered optimal for rice growth, which generally occur

in the range of 20-30°C, warming will increase exposure to harmful temperatures most in

areas already close to the top of this range. On the other hand, di↵erent rice varieties have

been successfully grown in most agro-ecological regions of India suggesting that areas of

the country may di↵er in their sensitivity to especially hot temperatures due to varieties

being chosen to suit particular local growing conditions (Gollin et al., 2005). Investigat-

ing di↵erences in spatial patterns of vulnerability is an important part of understanding

whether there are likely to be distributional consequences of climate change across India.

Previous studies using simulation models have made an important contribution in high-

lighting that climate change impacts on rice production are likely to vary substantially

across the country. For instance, Soora et al. (2013) use a model of rice growth to show

that although average yields in India are predicted to be 4% lower between 2010-2039

due to climate change. States such as Punjab, Haryana, and Rajasthan will experience

significantly larger impacts owing to their exposure to already hot temperatures. In com-

parison, some southern areas like the large rice-producing state of Andhra Pradesh, are

predicted to benefit from increased warming. In order to investigate this question from an

empirical perspective later in the paper, India is divided into four areas that have broadly

similar growing conditions. These contain districts located in Northern, Western, Eastern,

and Southern areas. Northern districts are all districts within the states of Punjab and

Haryana. These states have historically been highly important in the food security of the

country given the high levels of productivity of farms across these states. Rice production is

also undertaken under fully irrigated conditions owing to the generally hot, semi-arid con-

ditions that require supplemental water. Central districts are Gujarat, Madhya Pradesh

and Maharashtra. Although not large producers of rice compared to other states, rice is

grown in these districts under a variety of conditions including rain-fed lowland, rain-fed

upland and irrigated conditions. The states of Bihar, Uttar Pradesh, Orissa and West

Bengal make up the eastern region. Given the high levels of annual rainfall normally

experienced in these areas, rice is often grown under rain-fed conditions, sometimes in

flooded conditions. The southern rice areas are defined as Andhra Pradesh, Tamil Nadu,
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Karnataka and Kerala. These states are generally more temperate than others states with

ample rainfall.

2.3 Data

Agricultural data used in this study are taken from an annual district-level dataset com-

piled by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT,

2012). I use data on annual rice production and area cropped to construct yield data

for rice between 1970 and 2009. Only districts that contain non-missing data over this

period are used in the study. Additionally, the states of Himachal Pradesh and Assam are

excluded from the analysis. This leaves a total of 155 districts.7

Daily temperature and precipitation data are taken from two gridded databases collected

by the Indian Meteorological Department. Data on daily average temperature are available

at a 1°x1° resolution (Srivastava et al., 2009). Daily temperature is measured as the

average of minimum and maximum temperature over a 24 hour period. Precipitation data

at 0.25°x0.25° resolution are also used (Pai et al., 2014). The gridded weather data is

mapped to districts by using a weighted average of the proportion of each grid cell falling

within a district boundary. District boundaries correspond to those drawn in 1966.

To simulate the e↵ect of climate change, I use projections of future temperatures contained

in the Global Agro-ecological Zones (GAEZ) v3.0 database (IIASA/FAO, 2012). The

database contains projected increases in annual mean temperatures. Data is available

globally in gridded format and is mapped to district boundaries to calculate projected

future temperature for each district.

Temperature projections are related to two future time periods which are used to reflect

short and medium term changes in the temperatures over the periods 2011-2040 and 2041-

2070 respectively. To deal with the inherent uncertainty of future climate projections I use

two strategies. Firstly, annual temperature projections are taken from four general circula-

tion models. The four climate models used are: HadCM3 (Hadley Centre, UK Meteorolog-

7Unfortunately, during the 2000s there is substantial missing data on rice production in Central and
Eastern regions.
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ical O�ce); ECHAM4 (Max Planck Institute for Meteorology, Germany); CSIRO (Com-

monwealth Scientific and Industrial Research Organisation, Australia); CGCM2 (Canadian

General Circulation Model). These models di↵er both in magnitudes of average temper-

ature increases across India and also in their projections about regional warming within

India. Second, given uncertainties surrounding the trajectory of future greenhouse gas

emissions, I use projections from these models under di↵erent emissions scenarios. These

vary depending on assumed rates of demographic change, economic development, and

technological advancement (IPCC, 2000). Four scenarios, A1, A2, B1 and B2 are used.

2.4 Methodology

The approach used to model the e↵ect of climate change on the crop yield distribution

is that of moment-based maximum entropy introduced by Wu (2003) to model income

distributions and by Tack et al. (2012) who applied this to the study of crop yield distri-

butions. This method allows for the calculation of yield probability distribution functions

conditional on changes in relevant independent variables. The estimation proceeds in two

parts. The first step is to model the e↵ect that temperature has on each separate yield mo-

ment so that crop yield moments can be estimated conditional on changes in the relevant

climate variables. The second step uses the information provided by the yield moments to

construct yield distributions using maximum entropy techniques.

2.4.1 Modelling the e↵ect of temperature on rice yield

This modelling approach is similar to that of Antle (1983, 2010) who specifies a flexible

moment based approach in order to study the e↵ect that explanatory variables have on

higher order moments, which characterise the shape of the probability density function of

output.8

A key distinction between these approaches relates to the dependent variable used in the

8This approach has been applied to a number of settings relevant to agriculture including the e↵ect of
crop diversity on farm productivity (Di Falco and Chavas, 2009), technological change on production risk
(Wu and Wang, 2003), and drought management practices on farm profits (Groom et al., 2008).
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higher order moment equations. The Antle approach uses centred moments, where the

second and third order moment equations are specified as powers of the residuals from the

mean (first moment) equation. The approach used in this paper is to specify the higher

order moment equations using the uncentred or raw moments of yield, which are used to

estimate conditional probability distributions of yield. This approach has previously been

demonstrated by Tack et al. (2012) as a way to construct crop yield distributions condi-

tional on a set of weather variables. The Antle approach uses centred moments, where

the second and third order moment equations are specified as powers of the residuals from

the mean (first moment) equation. As is noted by Zhang and Antle (2016), the uncen-

tered and centered approaches are theoretically equivalent ways of modelling the mean and

higher order e↵ects of the independent variables on crop yield. One disadvantage of the

uncentered approach relative to the centered approach is the assessment the behavioural

e↵ect that certain explanatory variables have on the higher moments of yield. The cen-

tered approach, for instance, would allow one to assess how marginal changes in weather

variables a↵ect the variance or skewness of crop yields. While this provides one way of

assessing possible impacts of climate change on crop yields, this paper assesses climate

change impacts by evaluating changes in the overall crop yield distribution by estimating

uncentered moments of crop yield and using maximum entropy techniques to approximate

conditional crop yield distributions.

To model the impact of temperature on the distribution of crop yields, it is necessary to

consider how temperature a↵ects moments of yield above and including the first moment.

Crop yield in district i at time t is denoted as y
it

, so that the jth raw moment of yield,

yj
it

, is specified as yield to the power of j = 1, 2, 3. These three moments are su�cient to

allow for yield distributions to vary in terms of the mean, spread around the mean and

asymmetry about the mean.9

The vector of explanatory variables x
it

can then be related to each crop yield moment by

the following j regressions:

9More than the three moments could plausibly be estimated, although the economic relevance of these
measures is not explored in this paper.
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yj
it

= x0
it

�
j

+ ✏
jit

(2.1)

where the coe�cient vector �
j

estimates the e↵ect that independent variables x0
it

have on

the jth raw moment. The error term for each equation is denoted as ✏
jit

.

The population mean for each moment j = 1, 2, 3 can be represented by µ
j

= E[Y j

it

],

which is the expected value of the random variable denoting yield in area i at time t

Y j

it

, calculated over a specified collection of individuals and/or time periods. Since we are

interested in calculating each moment conditional on the state of a set of climate variables,

conditional moments can be expressed as µ
j

= E[Y j

it

|X = x]. The sample counterpart for

each moment is computed by taking a linear prediction of the estimated model, which is

an estimate of the population mean given the law of large numbers. This makes it possible

to compare the value of each moment under the observed set of covariates with moments

estimated using predicted values of covariates under di↵erent climate change scenarios.

2.4.2 Empirical specification

To empirically model the e↵ect of weather variables on yield moments, I specify the fol-

lowing reduced form equation for each moment:

yj
it

= ↵
i

+
kX

1

�
jk

TempDays
it

+ �1jRain
it

+ �2jRain2
it

+ d1it+ d2it
2 + ✏

jit

(2.2)

where moments of crop yield, measured in tonnes per hectare, are represented by Y j

it

for district i at time t. The key variables of interest are those representing the e↵ect of

temperature. The semi-parametric temperature ‘bins’ approach is chosen to model the

e↵ect of daily temperatures on raw moments of the yield. By specifying k temperature

bins, each of which contains the number of days spent within each temperature interval

during a growing season, a separate coe�cient is estimated for the e↵ect of temperature

within each interval. This allows for the measurement of the e↵ect that one additional

day spent in each bin has on rice yield. The width of each interval is 2°C, although for
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temperatures greater than 34°C, a single bin is specified owing to a lack of observations

beyond this range. The strength of this specification is that it allows for temperature to

a↵ect yield moments in a non-linear fashion. This is consistent with findings of Schlenker

and Roberts (2009), who identify the strongly negative impact of extreme temperatures

on crop yields in a more flexible way than other agronomic temperature measures.10

The parameters that capture the e↵ect of the daily temperature bins on yield, �
jk

, are

identified based on the assumption that temperature realisations in each year represent

random deviations from average district-level conditions which are captured in the district

fixed e↵ect term, ↵
i

. This controls any unobserved district-level characteristics that are

constant over time. For instance, di↵erences in soil quality or altitude across districts may

a↵ect the impact that weather variables have on crop yields.

Similarly, given that Indian agriculture has gone through a rapid process of modernisation

since the 1960s, it is necessary to control for the e↵ect of technology on yields. I include

deterministic district-specific quadratic time trends, t and t2 to account for the upward

trend in yields that are likely to be due to technological innovations, such as new seed

varieties. The inclusion of quadratic time trends is likely to be particularly important

given that steady rates of yield increase since the 1960s have tended to slowdown in recent

years (Pingali, 2012).11

The key identifying assumption of the coe�cients �
jk

is that variability in temperature in

each bin over a growing season is orthogonal to omitted variables that determine crop yields

(Deschenes and Greenstone, 2007; Schlenker et al., 2006), such that short-run temperature

deviations are not correlated with unobserved decisions, such as inputs choices, that could

condition the impact of temperature on crop yields. Inclusion of the district fixed e↵ect

term ↵
i

means the coe�cients are estimated by exploiting random year-to-year variation

in number of days in each bin relative to the average number of days spent within each

bin in a district.12

10Closely related to the temperature bins approach is the growing degree days approach. This is similar in
that it measures the e↵ect of accumulated heat over the growing season. However, as is noted by Schlenker
et al. (2006) it relies on assumptions about the temperature ranges that are beneficial or harmful for crop
growth. The bins approach is thus more flexible since it does not depend on defining these bounds.

11A cubic time trend was added but this did not improve the overall fit of the model.
12In addition to district fixed e↵ects, another plausible strategy to deal with other potential confounding
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Accurately defining crop growing seasons is an important aspect of deciphering the re-

sponse of crop yield to temperature. The timing of sowing and harvesting of rice varies

significantly across India owing to di↵erences in climate. It is thus necessary to allow

growing seasons to vary by location. To do this I utilise monthly data on crop calendars

which are available at the Indian state level (Portmann et al., 2010). Only days falling

within the main rice growing season in a state, usually between June and November, are

used to construct the temperature variables.13

I control for the e↵ect of rainfall on crop yield by including a regressor Rain
it

to measure

the level of rainfall that fell over the monsoon period. Rainfall has a strong impact on rice

yields owing to the rain-fed conditions under which much of the country grows rice. Also

included is a squared regressor Rain2
it

to capture the strong possibility that the relationship

between rainfall and yield is non-linear. For instance, Au↵hammer et al. (2012) find that

both extremely high or low rainfall years have serious impacts on yield. In this paper I

do not consider the impact that climate-induced changes in rainfall could have on crop

yields. Regional climate models predict wide variations in the magnitude and spatial

extent of changes in future rainfall due to an inadequate understanding of the physical

forces driving the summer monsoon (Turner and Annamalai, 2012). As such, all estimates

should be interpreted as holding levels of rainfall constant.

The error term ✏
it

contains unobserved determinants of district yield. As is noted by

Burgess et al. (2014), it is plausible that the error terms for each district are correlated

over time. To account for potential autocorrelation, error terms are clustered by district.

factors would be to include an additional set of fixed e↵ects that vary over time. For instance, in India,
state-by-year fixed e↵ects are likely to account for a number of factors that commonly vary within a state in
a year, such as prices or agricultural subsidies. However, a number of authors caution against the inclusion
of too many fixed e↵ect terms in estimating relationships between agricultural yields and short-run weather
fluctuations (Fisher et al., 2012; Au↵hammer and Schlenker, 2014). This is because using time-varying fixed
e↵ects clustered by geographically contiguous units, such as states, are likely to account for a substantial
part of the variation in the weather variables. The likelihood of measurement error in the weather variables,
owing to the need to interpolate observations from di↵erent weather stations to match grids or political
boundaries, means that the resulting coe�cient estimate of the e↵ect of the weather variables is likely to
be close to zero, since the much of the real variation in weather has been absorbed by the time-varying
fixed e↵ects and measurement error still remains.

13An empirical issue is that rice is sometimes grown over multiple seasons during the year. In this
analysis I focus only on areas that that primarily crop rice during the wet Kharif season, which broadly
takes place during the months of June to November. For India as a whole, 85 percent of annual rice is
cropped during this season (Burney and Ramanathan, 2014).
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Additionally, there exists substantial di↵erences in rice area cropped between districts. For

instance, some districts contain large urban areas or plant crops other than rice. I weight

regressions by the square root of the proportion of area cropped within a district to give

greater weight to districts that plant more of the crop. The same procedure is applied by

(Deschenes and Greenstone, 2007).14

2.4.3 Deriving distributions

Using the estimated relationship between yield and temperature for each moment as spec-

ified in equation 2.2, I predict the value of each moment conditional on various climate

change scenarios. For each scenario, a set of three moments is calculated. The esti-

mated moments do not directly allow for the e↵ect of climate change to be summarised

in a useful way. The moments can, however, be used as information to construct the a

yield distribution which can then be applied to characterise the probability density func-

tion of yield conditional on climate. Nonetheless, a problem remains that even with a

well-estimated set of yield moments, µ
j

, the overall density function of yield cannot be

analytically determined since there are an infinite number of potential densities that could

fit these conditions (Golan et al., 1996). A solution to this is to ascertain the shape of the

distribution based on the information provided in the moment conditions. This can be

achieved by employing maximum entropy techniques.15 These methods have been applied

in a number of settings where limited information is available, such as physics (Jaynes,

1982), linguistics (Berger et al., 1996), and finance (Zhou et al., 2013).

Formally, the method works by picking the yield distribution f(y) that maximises the

function
14This would likely lead to more precise estimates for two reasons. First, since annual weather is averaged

over the whole district area, districts with larger proportionally cropped areas would more accurately reflect
the e↵ect of weather on district crop yields. Second, areas that only plant a small amount may be prone
to fluctuations in area cropped and production which may lead to noisier district yield measures.

15This approach is succinctly stated by Jaynes (1982, p.940) as: “The MAXENT [maximum entropy]
principle, stated most briefly, is: when we make inferences based on incomplete information, we should
draw them from that probability distribution that has the maximum entropy permitted by the information
that we have”
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H(f) = �
Z

f(y) ln f(y)dy (2.3)

where H(.) is the entropy function.16

The shape of the density function can be derived by maximising the entropy function

subject to the information provided by the estimated moment conditions. This amounts

to choosing the set of densities that are most consistent subject to known information

(Golan et al., 1996). The moment conditions, µ
j

, thus, act as constraints in a maximisation

problem and are expressed as

Z
yjf(y)dy = µ

j

and

Z
f(y)dy = 1, j = 1, 2, 3 (2.4)

where the former expression denotes the moment-consistency constraints and the latter

expression denotes the standard normalisation condition that the densities must sum to

unity.

The problem is solved by constrained optimisation by forming the Lagrangian function

L = �
Z

f(y) ln f(y)dy �

�0

Z
f(y)dy � 1

�
�

JX

j=1

�
j

 Z
yjf(y)dy � µ

j

�
(2.5)

in which the Lagrange multipliers are represented as �0, ..., �j for the constraints shown in

equation (2.4). Following Wu and Wang (2011), the necessary conditions for the solution

to the constrained optimisation problem are given by:

ln f(y) + 1� �⇤0 �
JX

j=1

�⇤
j

yj = 0 (2.6)

in addition to the constraints from equation (2.4). The maximum entropy density function

f⇤(y) can be written as

16The entropy function was derived by Shannon (1947) to describe the uncertainty of a set of values y.
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f⇤(y) = exp


JX

j=1

�⇤
j

yj � 1 + �⇤0

�
= exp


JX

j=1

�⇤
j

yj � (�⇤)
�

(2.7)

such that  (�⇤) = ln

 R
exp(

P
J

j=1 �
⇤
j

yj)dy

�
is a normalisation factor so that the integral

of the density function is equal to one. The optimal values of the Lagrange multipliers

found from the solutions to equation (2.5) are then used to characterise the function f⇤(y).

To practically estimate the maximum entropy technique, I use the sequential updating

method described by Wu (2003). This method o↵ers the most tractable way to solve the

optimisation problem given that higher order moments are generally not independent of

their lower order counterparts. Higher order moments can be more easily estimated with

information provided by lower order moments.17 An advantage of the maximum entropy

approach is that it allows for a range of possible distributions in the generalised exponen-

tial family, which include exponential, normal, lognormal, and gamma distributions (Wu,

2003).

2.5 Results

2.5.1 Moment regressions

This section begins by discussing the regression results used to estimate the e↵ect of climate

change on rice yields. Table 2.1 displays the estimated coe�cients for each of the three raw

moments of rice yield for all districts. The main variables of interest are the temperature

variables, where each coe�cient is interpreted as the e↵ect of one additional day spent in

each temperature interval on rice yield relative to a day spent in the temperature range 24-

26°C which is used as the reference category. The 24-26°C temperature bin thus takes the

value of zero. To easily visualise the e↵ect that daily temperature has on the first moment

of yield, Figure 2.2 plots these estimated coe�cients along with their 95% confidence

17The superiority of the sequential updating approach was found during the empirical estimation. In a
number of cases, an algorithm that was used to estimate maximum entropy densities that introduced the
moment conditions simultaneously failed to achieve convergence. I am grateful to Jesse Tack for suggesting
the use of the sequential algorithm and sharing Matlab code with which to apply the method.
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interval. The e↵ect of temperature on the first moment of yield, Y , can clearly be seen.

Low temperatures are clearly beneficial for rice yields, as seen by the positive coe�cient

for days spent in average daily temperatures between 16-24°C. In contrast, the harmful

e↵ect of temperatures beyond 28-30°C is clear, consistent with previous statistical studies

on the e↵ect of daily temperatures on crop yields in countries such as the U.S (Schlenker

and Roberts, 2009). At temperatures above 34°C these findings suggest that, on average,

one additional day spent above this threshold reduces rice yield by 0.006 tonnes (6 kg) per

hectare.

Figure 2.2: Marginal e↵ect of daily temperature on yield in India 1970-2009

Note: The plot shows coe�cient estimates for the e↵ect of one day extra spent within each 2°C temperature
bin on rice yield. Estimated coe�cients are relative to that of a day in the 24-26°C interval. The solid line
shows the estimated value of each coe�cient at in each interval. The 95% confidence interval is indicated
by dotted line either side of the solid line. Standard errors are clustered at the district level.

Reverting back to Table 2.1, temperature extremes are also particularly significant for the

higher order moments of yield Y 2 and Y 3, indicating that exposure to temperature in these
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Table 2.1: Regression results of temperature’s impact on raw yield moments for the whole
sample of Indian districts

Dependent variable: Y Y 2 Y 3

Temperature bins (°C)

16-18 0.008*** 0.026*** 0.061
(0.002) (0.009) (0.050)

18-20 0.008*** 0.028*** 0.085**
(0.001) (0.007) (0.033)

20-22 0.006*** 0.030*** 0.124***
(0.001) (0.006) (0.032)

22-24 0.004*** 0.019*** 0.071***
(0.001) (0.004) (0.018)

26-28 -0.001 0.003 0.025*
(0.001) (0.004) (0.015)

28-30 -0.001* -0.001 0.013
(0.001) (0.004) (0.019)

30-32 -0.003** -0.004 0.012
(0.001) (0.005) (0.028)

32-34 -0.004** -0.010 -0.013
(0.002) (0.008) (0.037)

>34 -0.006*** -0.032*** -0.135***
(0.001) (0.006) (0.034)

Controls

Time trend/1000 57.326*** 168.645*** 322.669***
(4.200) (21.201) (106.706)

Time trend squared -431.979*** -39.059 6475.648**
(94.360) (536.026) (2912.904)

Monsoon rainfall (m) 0.128* 0.262 0.385
(0.069) (0.330) (1.431)

Monsoon squared -0.037** -0.106 -0.289
(0.017) (0.076) (0.318)

Constant 0.623*** -1.268** -9.101***
(0.100) (0.500) (2.330)

District fixed e↵ect Y Y Y

N 6,045 6,045 6,045
R2 0.850 0.834 0.790

* p<0.10 ** p<0.05 *** p<0.01. Standard errors clustered by district.
Estimated temperature coe�cients are relative to the e↵ect of an extra
day in the 24-26°C temperature interval which is the omitted category.

43



ranges is key for driving the distribution of crop yields. This is consistent with the intuition

that high temperatures are particularly damaging for yields, impacting the possible range

of low outcomes that could occur. Low temperatures are also highly significant for higher

moments, suggesting that these temperatures, since they are associated with better plant

growth, increase the range of good yield outcomes that can occur.

The control variables also have the expected signs. The upward trend in district-specific

yields over time is clear given that the coe�cient on the time trend variable is positive

and significant, with evidence of a slowdown in the average rate of yield growth over time

as seen by the negative and significant squared time trend. Rainfall also shows a clear and

expected e↵ect, with higher levels of rainfall associated with higher yields, although this

relationship is concave given the negative squared rainfall coe�cient.

To examine the heterogeneity of temperature impacts across India, each set of moment

equations is estimated separately for groupings of districts in certain geographical areas.

Four separate regions are examined: North, Central, East, and South. Table 2.2 displays

the coe�cient estimates for each region. As before, the coe�cients on the temperature

variables for the first moment are plotted graphically to ease interpretability of the results.

These are shown in Figure 2.3. The harmful e↵ect of additional daily temperatures above

34°C on average yields can clearly be seen for Northern, Central and Southern areas, with

all coe�cients negative and statistically significant at least at the 10% level. Owing to non-

exposure to temperatures greater than 34°C, this coe�cient is not estimated for Southern

districts. In these districts, additional days above 26°C have negative but statistically

insignificant impacts on mean rice yields. The e↵ect of extremely high temperatures on

higher moments is also apparent in all regions except for the South, although in all regions

exposure to relatively low temperatures has a clearly significant positive e↵ect in all areas.

Interestingly, there is also significant heterogeneity in the e↵ect of the control variables on

yields. For instance, the beneficial e↵ect of rainfall on average yields can be seen in all

states apart from the two Northern states of Punjab and Haryana which likely explained

by the fact that districts in these states were almost fully irrigated throughout the sample
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period.18

2.5.2 Baseline distributions

Using the maximum entropy approach described in the previous section, these moments

can be used to estimate the baseline distribution of rice yields conditional on observed

temperature over the sample period. To do this, the estimated coe�cients from Tables 2.1

and 2.2 are used to calculate the value of each of the three moments of rice yield conditional

on the baseline climate. These are predicted by using the values of each coe�cient along

with the corresponding sample average of each of the variables over the sample period.

The estimated moments are shown in Table 2.3. It is clear from the first moment, m1,

that average rice yields vary substantially across the country. The early Green Revolution

states in the North are most productive, whereas districts in eastern states have on average

the lowest productivity. Using the maximum entropy approach described in the previous

section, these moments can be used to estimate the distribution of rice yields over the

sample period. In Figure 2.4 these distributions are plotted. Panel (a) shows the distri-

bution of rice yields in India. This distribution should be seen as one that characterises

the average Indian district since it is derived from the estimated behaviour of all districts

in the sample. The distribution is roughly symmetric with the mass of the distribution

centred around yields of two tonnes per hectare. As seen from the estimated moments in

Table 2.3, there is substantial regional heterogeneity in rice yields. This is reflected in the

estimated distributions for the four regions in Figure 2.4. It can be seen that the distri-

bution for Northern states is much further towards higher yields relative to other districts

reflecting higher productivity in these areas, compared particularly with states in the East

which have much lower productivity. The importance of considering the whole distribution

of yields can also be seen from the varying shapes of the regional distributions, which may

have a substantial bearing on the regional variation in the impact of temperature increases

described in the following section.

18For instance, in 1970 around 85% of rice cultivated in these states was grown under irrigated conditions.
By 1985, e↵ectively all rice grown in these areas was done so using irrigation.

47



Figure 2.4: Baseline estimated rice yield distribution in India 1970-2009

(a) All India

(b) Regional
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Table 2.3: Estimated moments of Indian rice yields 1970-2009

Region

Moment All North Central East South

m1 2.191 3.199 1.975 1.848 2.344
m2 5.458 10.676 4.044 3.819 5.997
m3 15.098 36.945 8.586 8.563 16.587

2.5.3 Climate change scenarios

To simulate the e↵ect of climate change on the distribution of yields, I use temperature

projections for the periods 2011-2040 and 2041-2070. In order to estimate this using

the temperature bins approach, the number of days spent in each bin under each new

temperature scenario is calculated. This is done by assuming that daily temperatures

in each district uniformly increase by the amount projected in each model. The average

number of days spent in each temperature bin is then re-calculated under each model

scenario.19

To get a sense of the magnitude of the e↵ect that increased temperatures are projected

to have on the number of days spent in each temperature interval, Figure 2.7 shows the

distribution of the change in the number of days spent in at each 1°C interval. On the top

row is the historical frequency distribution of the number of days spent in each temperature

bin per growing season across districts. The grey shaded boxes show the interquartile range

of each scenario with the median number of days displayed by the horizontal line inside.

Minimum and maximum adjacent values are also indicated by the black vertical lines.

Between 1970 and 2009, the majority of days fall in the range of 24-30°C with days where

average daily temperature exceeds 30°C a rare occurrence. The lower two graphs in Figure

2.7 show the change in the number of days spent in each temperature interval based on

projected temperature increases for the periods 2011-2040 and 2041-2070. For both future

19Although climate here is not represented strictly as a distribution, it is assumed that the variability of
climatic outcomes is the same, so that climate change represents a location shift in the distribution. Em-
pirical support for this assumption comes from Donat and Alexander (2012) who find that a comparison of
observed global temperatures between 1951-1980 and 1981-2010 shows a significant shift in the distribution
but not an increase in the variance.
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scenarios, the number of days above 28°C increases substantially, with the majority of this

increase occurring in the 28-32°C range. There is also a substantial increase in the number

of days above 34°C, which is likely to be significant for climate change impacts given that

estimated exposure to these temperatures is associated with particularly harmful e↵ects

in yields.

2.5.4 E↵ect on average yields

Before reporting the e↵ect of climate change on the full distribution of rice yields, it is

useful to quantify the e↵ect on average yields by examining changes in the first moment

only. This is done by comparing mean rice yields under future temperature scenarios with

those estimated over the historic sample period. The estimated coe�cients for the period

of 1970-2009 are used to characterise the relationship between yield and temperature.

Then, the number of days projected to be spent in each temperature interval under future

temperature scenarios are used to predict the moment estimates. All other variables are

held constant at their observed sample mean. It should be noted here that the relationship

between historical yield and temperature is used to make these predictions. As such,

assumptions about future adaptation options to climate change are not made. I discuss

the implications of this later in the paper.

Table 2.4 shows the predicted change in mean yield. For an Indian district on average, rice

yields are projected to decline by 4 percent between 2011 and 2040 and by 10 percent in the

later period of 2041-2070. There is substantial regional variation in these estimates. The

most heavily a↵ected districts are those in the central states of Maharashtra and Madhya

Pradesh where productivity is predicted to decline by over 11% by the 2050s. These

results are highly consistent with the results of Soora et al. (2013) who use a regional crop

simulation model to project that average yields will decline by 4-6% in the period 2010-

2039 and by around 7% in 2040-2069. Similarly, districts in southern areas are projected

to be the least a↵ected by projected climate change, which reflects the weaker relationship

between temperature fluctuations and yields in these districts.20

20A crucial di↵erence between the results in this paper and those of Soora et al. (2013) is the latter’s
inclusion of projected changes in rainfall. For instance, Soora et al. (2013) project that rain-fed yields in
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Table 2.4: Predicted climate change impact on mean rice yields

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

1970-2009 2011-2040 2041-2070

All 2.191 2.094 1.973
-4.4% -9.9%

North 3.200 3.091 2.976
-3.4% -7.0%

Central 1.976 1.861 1.765
-5.8% -10.7%

East 1.849 1.791 1.705
-3.1% -7.8%

South 2.345 2.305 2.186
-1.7% -6.8%

Average yield for future scenarios 2011-2040 and 2041-2070 are calculated by taking the average
of estimated yields under climate change for the nine di↵erent temperature scenarios.

2.5.5 Changes in distribution

To investigate the e↵ect that projected temperature increases have on the distribution of

rice yields, I re-estimate each yield moment under the set of new temperature scenarios.

The distribution for each scenario is then calculated using the moment-based maximum

entropy approach. The historical baseline distribution is shown as a solid line and projected

distributions shown as dotted lines.

The results using the sample of all districts are shown in Figure 2.6. Qualitatively, the

results for the period 2011-2040 suggest a modest leftward shift in the probability distribu-

tion of yields at the all-India level. There is, however, a clear flattening of the distribution

that increases the weight of the lower tail, implying the possibility of low yields increases

despite a relatively small e↵ect on average yields. This pattern is compounded in the later

2041-2070 period. Interestingly, there does not appear to be a decrease in the probability

of achieving yields in the upper tail of the distribution. This implies that climate change

does not act as a limiting factor in achieving very good yields but does have a substantial

impact on the likelihood of low yield outcomes. It is important to note that the increase

Tamil Nadu and Andhra Pradesh will benefit due to increased levels of rainfall.
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in the probability of very low yields is driven by the combination of both a shift in the

distribution towards lower average yields and an increase in the spread of yields, similar

to the e↵ect predicted by Urban et al. (2012).

Figure 2.7 shows the distributions for each region. In the top row, the distributions for

2011-2040 are shown and the estimates for 2041-2070 on the bottom. There is a substantial

change in the distribution for the Northern states of Punjab and Haryana. Although mean

yield declines by around 4%, there is a large increase in mass around the tails of the

distribution, implying a substantial increase in the variability of average yields around the

mean. The probability of low yields increases along with the probability of higher than

average yields, suggesting the increased variability of yields occurs. The e↵ect of additional

warming in the 2050s is to further shift the distribution towards lower yields. Despite these

areas being highly irrigated, this finding suggests that higher temperatures substantially

a↵ect the yields in these states. This is again similar to the findings of Urban et al. (2012)

who find that increases in variability under climate change are positively correlated with

higher baseline temperatures for maize yields in the U.S. Since Northern states tend to have

higher average growing season temperatures than many other rice growing areas in India,

greater exposure to harmful temperature seems to substantially increase the likelihood of

extremely low yields.

The distribution in Central areas, predicted to be the area with highest impacts on mean

yields suggests both a substantial shift of this distribution towards lower yields and a

flattening of the distribution. Temperature increases in the 2050s are in particular likely

to increase exposure to very low yields. Interestingly, although there is a downward shift

in average yield in Eastern districts, there seems to be no corresponding increase in the

probability of low yield tail events even in the 2050 warming scenario. This implies that

higher temperatures have the potential to decrease the variability of yields in eastern

areas, which is in stark contrast to its e↵ect in Northern and Central areas. In line with

results from the mean productivity e↵ect in the previous section, the yield distribution for

Southern districts is only marginally a↵ected, with little change in the distribution in the

2020s, although increased exposure to downside risk appears to be more substantial in the

2050s with both a shift and flattening of the distribution.
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Figure 2.6: Impact of climate change on Indian crop yield distribution

(a) 2011-2040

(b) 2041-2070
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2.5.6 Change in downside risk

The previous interpretation of the estimated change in rice yield distributions is highly

qualitative. In order to quantify the estimated e↵ect of climate change on the crop yield

distribution, I calculate the change in probability of achieving yields in the lower tails of

the distribution. This is a simple measure of downside risk that assesses the probability of

achieving yields within a given yield percentile. This is done by first using the historical

baseline distribution of crop yield to estimate the level of yield Y associated with the

lowest 5th and 25th percentile of yield. If b⇤ is used to express the level of yield associated

with the lowest zth percentile, then b⇤ is estimated by calculating the area under the yield

probability density function f
Y

(y):

P [Y  b⇤] =

Z
b

⇤

0
f
Y

(y)dy = z (2.8)

where z = {0.05,0.25}. Once the value of b⇤ is estimated from the historical distribution,

then the yield density functions under future climate change scenarios are used to estimate

the probability of yields below b⇤.

The results of this exercise are shown in Table 2.5. For India as a whole, the consequences

of climate change are to substantially increase the risk of previously rare tail events. Yields

that were historically associated with the 5th percentile of yields are projected to increase

to around 10 and 15 percent for the 2020s and 2050s respectively. Yields that historically

occurred one-quarter of the time are projected to happen around one-third of the time

with future climate change.

As seen by qualitatively examining changes in distributions in Figures 2.6 and 2.7, changes

in exposure to yields in di↵erent areas of the yield distribution vary regionally. For in-

stance, the substantial ‘fattening’ of the distribution in northern states implies much more

exposure to downside risks, increasing the probability of 5% events to over 20% by the

middle of the century, and 25% yields to over 40%. What is stark from these results is

the large change in the distribution even under fairly modest amounts of warming, as

temperatures increasingly occur in ranges that are hotter than is optimal for rice growth.
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Table 2.5: Predicted changes in exposure to downside risk under climate change scenarios

Yield Pr(Yield < b⇤)
b⇤ 1970-2009 2011-2040 2041-2070

All
1.0 5 10.9 15.0
1.7 25 31.9 38.1

Northern
2.1 5 19.3 23.4
2.8 25 40.6 45.1

Central
1.4 5 19.2 25.6
1.7 25 30.4 38.1

Eastern
0.9 5 5.4 1.3
1.4 25 24.2 12.7

Southern
1.3 5 10.2 13.7
1.9 25 30.9 36.8

The consequences for downside risk are also very similar in magnitude for central states.

Southern regions which were estimated to be least a↵ected in terms of mean yields do,

however, show increased exposure to low yields, where yields in the historical 5th and 25th

percentile to increase in probability to 14 and 37 percent respectively. In contrast to the

rest of India, there actually seems to be a decrease in exposure to low yields in eastern

states even though mean yields are projected to decline.

2.5.7 Comparing early and late sample periods

The previous results show the average relationship between temperature and yield mo-

ments over the entire sample period. It is, however, plausible that the e↵ect of temperature

on rice yields has not remained constant over time. For instance, agricultural technology,

such as higher yielding seed varieties, fertilisers and pesticides, has di↵used across the

country since the Green Revolution beginning in the 1960s. As is argued by Mendelsohn

et al. (2006), it is possible that as farmers increase levels of technology, the climate sen-

sitivity of agriculture decreases. Although it is di�cult to isolate the e↵ect that such
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practices have on the heat tolerance of crops, it is possible to look for indirect evidence of

improved heat tolerance over time that might indicate such changes. To examine whether

this is the case, I split the sample period in two. The early period corresponds to the years

1970-1989 and the later period covers the more recent years 1990-2009.

The e↵ect of temperature on the first moment of rice yields for each sample period is

shown in Figure 2.8. Two di↵erent model specifications are included to study both the

absolute and relative e↵ects. The absolute impact on rice yields for the two time periods

is shown in the top row. The curves are broadly similar in terms of the predicted e↵ects of

temperature on levels of yield. One additional day above 34 degrees significantly reduces

rice yield by around the same amount in both periods, suggesting that extreme heat has

roughly the same absolute impact on yields over time. There is also evidence of a smaller

e↵ect of moderately high temperatures in the latter period. Temperatures in the range

28-32°C only have a statistically significant negative impact on rice yields in the earlier

sample period.

Given that yields have increased over time due to technological progress, measuring the

e↵ect that temperature has on the absolute level of rice yield may understate the degree

to which the historical temperature relationship has changed over time. Accordingly, I

specify a model with the logarithm of yield as the dependent variable for the first moment

of rice yields. These estimates are shown in the bottom row of Figure 2.8. Here it can

clearly be seen that the e↵ect of temperature on relative yield has decreased substantially

over time. For the period 1970-1989, an additional day at temperatures above 32°C was

associated with a 0.5% decline in annual yield. In contrast, in the later sample period,

the marginal e↵ect of daily temperature on yield is largely statistically indistinguishable

from zero. Temperatures above 30°C are estimated to adversely a↵ect yield but this e↵ect

is small. For temperatures above 34 degrees, the point estimate is -0.002 (which implies

that an additional day spent above 34°C decreases average yield by 0.2%) and significant

at the 10% level, implying that very high temperatures continue to damage crop yields

although this e↵ect is roughly half the e↵ect compared with the earlier period.

These results contrast with results from studies in other contexts. For instance, Schlenker
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Table 2.7: Probability of yields falling below historic thresholds under climate change by
di↵erent time periods

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

Early period 1970-1989 2011-2040 2041-2070
1.719 1.579 1.458

-8.13% -15.7%

Late period 1990-2009 2011-2040 2041-2070
2.584 2.532 2.470

-1.9% -4.2%

Yield Pr(Yield < b⇤)

Early period

b⇤ 1970-1989 2011-2040 2041-2070
0.8 5 15.1 15.0
1.3 25 21.3 48.6

Late period

b⇤ 1990-2009 2011-2040 2041-2070
1.4 5 6.2 7.0
2.1 25 28.0 30.0

and Roberts (2009) estimate the extent of adaptation by considering the di↵erence in the

yield-temperature relationship at di↵erent time periods. They find that the relative heat

tolerance of corn, soybean and cotton in 1950-1977 has remained very similar to that

estimated between 1978 and 2005.21

In light of these findings, I re-estimate projections of future yield distribution for each

sample period separately. These results are shown in Table 2.7. It can easily be seen that

by using the estimated yield-temperature relationship over the period 1990-2009 dramat-

ically reduces the projected impacts of future temperature increases. For instance, while

average yield would be reduced by around 16% in the 2050s using the early sample period

as representative, estimated average yield decline could be as small as 4% given the rela-

tionship between yield and temperature since 1990. Exposure to low yields also declines

substantially. Whereas temperature rises were predicted to increase the risk of historically

occurring 25th percentile events to roughly fifty percent by 2050 using the early sample

period, the increased risk of these events only increases to 30% when the later period

21A related study by Burke and Emerick (2016) compares the di↵erence in yield response between short
run temperature fluctuations and long run changes (where adaptation is assumed to be possible) and find
little di↵erence between these estimates.
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is used. Overall, these results imply that significant progress has been made over time

in making Indian agriculture more resilient to heat stress which a↵ects the arithmetic of

projecting future climate change impacts.

2.5.8 Comparing irrigated areas with rain-fed areas

Identifying pathways through which the adverse impacts of temperature increases can be

avoided is a crucial empirical question (Hertel and Lobell, 2014). In the previous section,

it was shown that the relative e↵ect of temperature on rice yields has reduced over time.

One plausible pathway for mitigating the e↵ect of heat on crop yields is through irrigation.

This has previously been estimated by Birthal et al. (2015) to be the driving force behind

the reduction in drought impacts on rice in India. To investigate whether temperature

a↵ects the behaviour of irrigated yields to rain-fed areas di↵erently, the sample is split

depending on the proportion of district area under irrigation.22

A district is defined as irrigated if more than 50 percent of rice area is irrigated over the

sample period (Fan et al., 2000). The resulting relationship between yield and temperature

for these sub-samples are shown in Figure 2.9 with the full set of estimated coe�cients

shown in Table 2.8. For both rain-fed and irrigated areas, daily temperatures above

34°C have clear negative e↵ect on yields, which is statistically significant at the 1% level.

Other coe�cients in the table confirm the di↵erences between irrigated and rain-fed areas.

For instance, the coe�cient estimating the e↵ect of rainfall on yields is only significant

for rain-fed districts, which highlights how successful many irrigated areas have been at

utilising water from irrigation to substitute for rainfall. The e↵ect of temperature on rice

yields are similar for each sub-sample, with daily temperatures above 30 degrees associated

negatively with yield. Interestingly, temperature has a more adverse impact on rice yields

in irrigated areas than non-irrigated areas in terms of the absolute level of yields. This is

perhaps expected however, since yields in irrigated areas tend to be higher than those in

predominantly rain-fed areas. The relative e↵ect of temperature on yields is shown in the

22Splitting the sample between irrigated versus rain-fed areas is analogous to the approach of Schlenker
et al. (2005) who study the e↵ect that irrigation has on hedonic estimates of climate change impacts in
U.S. agriculture. They argue that omission of irrigation from the regression means that the estimated
parameters on temperature are likely to reflect the impact of irrigation.
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bottom row of Figure 2.9. In this case, we see that the e↵ects are roughly comparable,

although the estimation for high temperature days above 34 degrees Celsius is noisier for

the non-irrigated sub-sample. In sum, it appears that although irrigation is an e↵ective

means of increasing average yields, it is not associated with a reduction in sensitivity

to heat. For both rain-fed and irrigated areas, temperatures above 34°C have a clearly

negative e↵ect on yields which is statistically significant at the 1% level.

To see whether higher temperatures have heterogeneous e↵ects on average yields and

downside risk exposure between irrigated and rain-fed areas, I calculate the e↵ects of

climate change for these two groups. These results are shown in Table 2.9. Average

yields are projected to decline most in areas without irrigation with losses of 7.4% by

2050. This compares with declines of 4.6% in irrigated areas. However, it should be noted

that although average yields do not decline as substantially in irrigated areas, exposure to

downside risk increases in a similar manner for both groups highlighting the importance

of considering the e↵ects of temperature on the wider distribution.

Table 2.9: Probability of yields falling below historic thresholds under climate change by
irrigation group

Yield (tonnes/hectare) Observed Estimated average yield
% change from baseline

Rain-fed 1970-2009 2011-2040 2041-2070
1.873 1.827 1.734

-2.5% -7.4%

Irrigated 1970-2009 2011-2040 2041-2070
2.449 2.437 2.334

-0.4% -4.6%

Yield Pr(Yield < b⇤)

Rain-fed

b⇤ 1970-2009 2011-2040 2041-2070
0.9 5 10.7 17.0
1.5 25 29.1 36.9

Irrigated

b⇤ 1970-2009 2011-2040 2041-2070
1.1 5 8.2 11.9
1.8 25 27.8 33.5

The finding that irrigation is an ine↵ective means of coping with increased heat exposure

accords with that of a related study by Fishman (2012) who studies the relative impor-
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tance of irrigation in mitigating the e↵ects of precipitation and temperature. He uses an

interaction term between proportion of district area irrigated and accumulated growing

season temperature to show irrigation has an insignificant e↵ect on reducing the e↵ects of

heat exposure on rice yields. This is attributed to the idea that increased water use does

not substitute for the physical damage that heat does to plants. In addition, rice is grown

under irrigated conditions in hotter northern areas such as in Punjab. Regional results

shown earlier in the paper confirm that these areas are likely to be those a✏icted most

by future increases in temperature. In these areas, since temperatures are already further

away from optimal rice growing temperatures, it is plausible to expect that additional heat

exposure will be harmful for rice growth even under highly irrigated conditions.

2.6 Discussion

In assessing the future e↵ects of climate change on agricultural yields it is important

to discuss the limitations of the statistical modelling approach used to generate these

predictions and weigh up how important these limitations are likely to be for the validity

of any research findings.

One issue is that using historical relationships between weather variables and measures of

productivity to infer future relationships may not yield accurate predictions if substantial

adaptation occurs (Au↵hammer and Schlenker, 2014). Indeed, studies based on crop

models have predicted significant opportunities for adaptation to o↵set some of these

projected impacts (Soora et al., 2013; Challinor et al., 2014). Although it is impossible

to predict the range of options that will be available to farmers in the future, there are a

number of factors over the observed sample period that may inform us about the likelihood

of this happening. On the one hand, the ability of farmers to mitigate crop yield losses

due to short-run fluctuations in heat seems to have increased over time. The exact reason

for this is unclear and is a downside of using the reduced-form estimation employed in this

paper. Interestingly, a possible pathway for this, irrigation, does not seem to explain this

relationship, since irrigated areas show similar relative response to short-term temperature

fluctuations. Although it is often purported that rain-fed regions are likely to be most
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a↵ected by climate change (Wassmann and Dobermann, 2007), these results imply that

areas where rice is grown under irrigated conditions are likely to be a↵ected as much,

if not more, than rain-fed areas. Whereas previous studies have identified irrigation as

a key factor in reducing the sensitivity of Indian agriculture to precipitation deficiencies

(Fishman, 2012; Birthal et al., 2015), irrigation seems to be less e↵ective at coping with

heat stress.

Other explanations for a reduction in the relative importance of temperature fluctuations

are less straightforward to quantify using the available data. The use of varieties better

suited to growing under local temperatures could be a significant factor. The first adoption

of Green Revolution technologies coincided with the period 1970-1989 when yields were

shown to be more sensitive to temperatures. Understanding of how best to cultivate these

new Green Revolution seed technologies could have improved over time. Similarly, given

that earlier varieties have continued to be replaced by newer varieties, it is plausible to

expect that this has led to local adaptation and less volatile production (Gollin et al.,

2005). Understanding which mechanisms are responsible for driving reduced sensitivity of

rice to temperature is an integral area of future research for reducing the e↵ects of future

warming in the agricultural sector. Although a number of studies have used crop yield

data at aggregated levels such as district and state levels, the use of data at lower spatial

scales such as the farm-level will be crucial to identifying the mechanisms behind these

aggregate relationships.

An aspect previously mentioned as important for the distribution of crop yields is the

preferences of farmers themselves regarding risk. This study finds that over time farmers

have become increasingly resilient to fluctuations in temperature. One possible explanation

for this is that farmers have become increasingly risk averse over time, deploying methods

to reduce exposure to certain types of risk, in this case temperature, and settling for lower

average yields. This hypothesis is not possible to verify in the current analysis for a number

of reasons: First, the aggregate nature of the district level data used in this study makes it

more di�cult to model farm decisions. Second, the reduced form regression methods used

in this study focus primarily on the role of weather variation on output. The inclusion of

other input variables, which have previously been used in farm-level studies to study risk
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behaviour, is not possible in the current study.

Despite substantial yield gains over time and the estimated increase in heat tolerance found

in this study, the ability to deal with the e↵ect of future climate change may be more

limited. Numerous studies have highlighted the unsustainable use of water in many key

rice growing areas (Rodell et al., 2012; Panda and Wahr, 2016). This is especially apparent

in areas that this study predicts to be most a↵ected by future temperature increases, such

as the northern states of Punjab and Haryana. Since water has been successfully used to

construct growing environments more suited for rice production, the combination of even

higher temperatures in these relatively arid areas and growing pressure on water resources

highlights the challenges for agriculture in India.

As with all empirical studies of climate impacts, the possible beneficial e↵ect of increased

levels of CO2 due to the carbon dioxide fertilisation e↵ect are also not studied in this

paper. For plants that grow using C3 photosynthesis, such as rice and wheat, these e↵ects

could be significantly positive, with around a 5% increase relative to historical production

for a 100 parts per million elevation in CO2 for rice in South Asia (McGrath and Lobell,

2012).

In lieu of factors that reduce the impact of temperature on crop yield, institutions to help

farmers deal with the consequences of low yields on welfare is a clear way to address these

issues. One potential solution is crop insurance. For instance, the absolute number of

farm households under some form of crop insurance scheme in India is already larger than

anywhere else in the world, with 22 million households enrolled (Swain, 2014). Insured

farmers remain a large minority, however, so that the continued development of schemes

such as the National Agricultural Insurance Scheme will be vital to the future welfare

of farmers. As well as the need to expand insurance services to cover a broader set of

farmers due to more exposure to risk, this paper also highlights the increase in risk to

insurers through climate change. Well-functioning markets for insurance depend on the

correct valuation of risk that farmers are exposed to. Understanding the increased risk that

climate change poses to agriculture by examining the e↵ect of climate on the distribution of

yields is important to understand the changes in future exposure to historically rare events.
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While many studies have focused on estimating the correct shape of yield distributions

to accurately assess the probability of low crop yields that are covered by crop insurance

programs (Just and Weninger, 1999; Sherrick et al., 2004),23 those involved in managing

these risks, such as governments and private insurers, should work to design schemes that

account for the potential increase in risk over time. For instance, as is noted by McCarl

et al. (1998), the assumption of stationarity of the yield distribution may be a poor one

as the climate changes.

Finally, future climate change-related losses in the agricultural sector may also increase

due to a higher occurrence of extreme weather events. The modelling approach used in

this paper to quantify future temperature increases assumes a shift in the distribution of

mean temperature. This modelling approach does not allow me to model the e↵ect that

extreme events, such as the possibility of more droughts and floods, and the e↵ect these

may have on crop yields. Similarly, since I assume that the distribution of temperature

within a year does not matter for annual crop yields, I cannot account for recent observed

changes in the intra-seasonal distribution of heat. For instance, increasing trends in the

number of heatwaves have been found across parts of India (Rohini et al., 2016). The e↵ect

that these patterns could have on crop yields is an important area of future research.

2.7 Conclusion

This paper examines the e↵ect that temperature has on district-level rice yields in India.

Detailed records of daily temperature are used to quantify the relationship between tem-

perature and di↵erent moments of yield. The moment-based maximum entropy approach

is then used to construct yield distributions. A key point from this study is that increases

in average temperature have the potential to significantly damage crop yields and increase

the probability of low rice yields that were historically rare. Based on projections of fu-

ture temperature, I estimate that average district yield will decline by 4.4% in the period

2011-2040 and by 9.9% in 2041-2070. Temperature is shown to have a significant e↵ect

23Other prominent studies include Goodwin and Ker (1998) Ramirez et al. (2003), and Harri et al. (2009)
and Koundouri and Kourogenis (2011).
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on higher moments of yield. Using predicted changes in the distribution of crop yields

under climate change, I estimate that based on the historical relationship between yield

and temperature between 1970 and 2009, exposure to yields that previously had a 25%

likelihood of occurring increases to 38% while yields in the lowest 5th percentile increase

to 15% by the middle of the century. A salient issue in estimating the impact of future

climate change is the extent to which farmers may be able to cope with greater exposure to

heat. To examine this issue, I examine the sensitivity of rice yields to heat for two distinct

sample periods. These findings suggest that in more recent years, the relative e↵ect of

temperature on yield has reduced. Using more recent periods to predict the impact of

future temperature increases suggests that average yields only decline by 4% and exposure

to 25th percentile events increases to 30 percent. This has a number of implications for

future research. Firstly, researchers who use historical data to predict future outcomes

should be aware of changes over time that may a↵ect the sensitivity of economic variables

to environmental variables, such as weather. Secondly, this creates a need for researchers

to understand potential mechanisms of increased resilience of the sector to heat to inform

future adaptation choices.
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Abstract

Understanding the impacts of drought on agricultural production is crucial for meeting food se-

curity needs during the twenty-first century. This is particularly the case in India, where the

looming prospect of increased intensity and frequency of drought due to climate change threatens

the wellbeing of hundreds of millions dependent on income from the sector. Using district-level

agricultural data for six major cereals grown in India between 1966 and 2003, we adopt a threshold

regression approach along with a flexible definition of drought in order to measure the full range

of potential drought events. This approach enables us to identify data-driven ranges for which the

magnitude of drought impacts on cereal production di↵ers. First, we apply this model to identify

whether there are distinct periods of time between which average drought impacts vary. We find

evidence of a non-linear pattern in average district cereal yields over time. Although yields became

more resilient to drought impacts in the middle of our sample period, average impacts increased

markedly for droughts since 1998. This highlights the mounting challenges that farmers face in

e↵ectively mitigating drought impacts in the future. Second, we estimate precipitation thresholds

for drought impacts. This allows us to determine levels of rainfall at which drought becomes par-

ticularly harmful for crop yields. An advantage of this approach is that we are able to compare

estimated thresholds with o�cial classifications of drought based on precipitation deficiency. Over-

all, we find significant and negative marginal impacts of drought for levels of rainfall below 70 to

80 percent of long-term rainfall, which corresponds with o�cial drought definitions. Arid areas are

resilient to small deviations of rainfall, but, due to low levels of absolute rainfall, are badly a↵ected

by severe droughts. Crop-level results suggest very di↵erent impacts by cereal, with rice being

the worst a↵ected cereal. These results suggest that drought definitions that do not account for

local di↵erences in average climate and crop choice are likely to provide misleading policy guidance

about the e↵ects of drought on crop productivity.
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3.1 Introduction

D
rought has widespread and recurrent impacts on economic activity in many

parts of the world. Periods of low rainfall and high temperature reduce the

availability of moisture relative to normal conditions leading to the occurrence

of drought. The resilience of the agricultural sector to drought is a pressing concern given

that these conditions tend to adversely a↵ect crop production, leading to significant welfare

costs to producers through lost income and to consumers through higher food prices. In

parts of the world where the reliance on agricultural income is high, drought can have

particularly devastating e↵ects on human welfare and pose a challenge to policymakers who

manage the response to these events. Accurately assessing the vulnerability of agriculture

to drought is also paramount given the growing threat from climate change. Although

drought occurs as a natural part of climate variability, the combined e↵ects of increasingly

erratic precipitation and higher average temperatures mean that the likelihood of dry

conditions conducive with drought will increase in many areas (IPCC, 2012).

A key challenge for researchers seeking to inform policymakers about future vulnerability to

drought is how to use past climatic variation to learn about the resilience of the agricultural

sector (Au↵hammer and Schlenker, 2014). One approach to this is the use of past variation

to understand the conditions under which drought has particularly negative e↵ects on the

productivity of agriculture. This may be particularly important if there are critical points

that indicate conditions under which drought impacts are prone to increase. In general, this

could refer to thresholds “beyond which the biophysical, socioeconomic, or institutional

system in question is significantly a↵ected by, or fundamentally changes (Naylor et al.,

2007, p.7752).” If agricultural production systems are prone to threshold behaviour in

drought impacts, then identifying where particular thresholds occur is an important way

of assessing the vulnerability of the sector to drought.

In this paper we assess drought impacts on cereal productivity by adopting a threshold

regression approach (Hansen, 1999, 2000). We apply this to a panel of district-level agri-

cultural data from India spanning the years 1966-2003. This estimation approach allows

us to identify data-driven ranges between which average impacts of drought significantly
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change for a variable of interest. The advantage of this empirical approach amounts to

being able to estimate the location of thresholds of drought impact that can be used to

determine cut-o↵ points associated with increased vulnerability to drought.

We first evaluate drought impacts over time by using the threshold model to identify

whether average impacts can be divided into specific periods. Previous research has indi-

cated trends of reduced impact on crop yields in recent decades. Yu and Babcock (2010)

use county-level data on corn and soybean yields in the U.S. between 1980 and 2008 and

find that yields of these crops have become more tolerant to drought over time. Addition-

ally, Birthal et al. (2015) study the drought tolerance of rice yields in India between 1970

and 2005 and find the same pattern. These studies, however, may provide a misleading

reflection of the resilience of the agricultural sector over time if impacts are prone to abrupt

changes that may be caused by periods of increased drought intensity or changes in the

availability of resources to mitigate drought impacts. For instance, a number of studies

have linked recent improvements in yield-improving technology with lower tolerance to

drought (Lobell et al., 2014; Hornbeck and Keskin, 2014).1 In recent years, studies have

also indicated that the depletion of water resources is increasingly likely to act as a limit-

ing factor on farmers’ ability to respond to drought (Rodell et al., 2012; Panda and Wahr,

2016). The strength of the threshold approach in this context is that it can be used to

identify sudden shifts in drought impacts that may signal periods of increased vulnerability

to drought that cannot easily be determined by looking at slow-moving trends over time.

Second, assessing the e↵ect that climatic variables have on production losses during

drought is also crucial for furthering our understanding of the resilience of agriculture.

Of particular interest is identifying critical levels of precipitation deficiency that are harm-

ful to agricultural production. The threshold regression approach allows us to measure

impacts of drought non-linearly by analysing critical levels of precipitation after which

impacts of drought significantly change. While other studies have used methods to iden-

tify temperature thresholds that tend to be harmful for crop growth (e.g. Schlenker and

Roberts (2009)), to our knowledge no studies have identified thresholds for precipitation.

1Another recent study by Lesk et al. (2016) finds that globally droughts between 1985 and 2007 had
more severe impacts on production compared with droughts over the period 1964-1984.
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The assessment of precipitation thresholds is of high policy relevance. Droughts are often

declared by governments using simple measures of precipitation deficiency. In India, these

indices are used to declare drought if precipitation falls below a given threshold (Ministry

of Agriculture, 2009). Comparison of o�cially determined thresholds with those deter-

mined according to agricultural impacts is important for e↵ective response to these events

in the future. Often the management of drought events is dictated according to arbitrar-

ily defined precipitation thresholds, which may have little relevance to the actual impact

drought has on production (Wilhite and Glantz, 1985).

An important challenge in evaluating drought impacts is consideration of which climatic

variables shape the severity of drought impacts. Researchers interested in evaluating

drought impacts in agriculture tend to define drought di↵erently to policymakers tasked

with managing impacts. On the one hand, policymakers frequently base their evalua-

tion of drought on simple indices of precipitation deficiency. A fundamental criticism of

this approach is that important interactions between precipitation and temperature are

omitted. Exposure to high temperatures has been shown to reduce the yield of major

crops worldwide (Schlenker and Roberts, 2009; Lobell et al., 2012; Deryng et al., 2014).

These e↵ects are likely to exacerbate the e↵ects of low rainfall, increasing the severity

of a drought event and its impact on agricultural production. On the other hand, re-

searchers estimating drought impacts on agriculture have developed indices to incorporate

both precipitation and temperature (Yu and Babcock, 2010). However, these approaches

often restrict the definition of drought to exclude events that are considered droughts by

policymakers, sometimes omitting instances of serious drought leading to significant bias

in the assessment of drought impacts in agriculture. As such, both of these approaches

fail to account for drought events that have potentially disastrous impacts for farmers,

thereby limiting the relevance of these research findings for policymakers. We address this

shortcoming by utilising a drought index that includes both temperature and precipitation

in a more flexible way than previous research has done, thus incorporating all potential

droughts considered by policymakers and researchers alike.

We apply these techniques to study drought impacts in India, which remains one of the

most drought-prone countries in the world (Mishra and Singh, 2010). Exposure to the wel-
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fare e↵ects of drought are especially high in this context, since the agricultural sector still

represents about 20% of gross domestic product (GDP), and employs half of the working

population. Between 1951 and 2003, severe droughts were estimated to have lowered the

country’s annual GDP by 2 to 5 percent (Gadgil and Gadgil, 2006). More specifically, low

rainfall events have also been linked to measures of welfare that are a↵ected by shocks to

crop productivity such as rural wages, poverty, conflict, and human capital accumulation

(Jayachandran, 2006; Sarson, 2015; Shah and Steinberg, forthcoming). Identifying how

vulnerable the agricultural sector is to drought is crucial for prioritising policies that re-

duce the impact of these events on crop production and provide e↵ective relief in response

to these events in the future. Climate models predict greater inter-annual variability of

rainfall (Turner and Annamalai, 2012), suggesting that the need to understand climate ex-

tremes and their impact is of growing importance for the future of agriculture in a country

that is widely expected to become the most populous in the world before the middle of the

century (UN, 2015). Only a small number of studies have undertaken detailed analyses

of drought on agriculture in the country, however. Birthal et al. (2015) and Au↵hammer

et al. (2012) examine its impact on rice yields at the district and state level respectively.

Pandey et al. (2007b) similarly look at the impacts on rice production in eastern India. As

well as limiting analysis to a single crop, these studies all su↵er from restrictive definitions

of drought which may reduce the validity of these findings leading to potential biased

assessments of the e↵ects of drought in India.

Previous studies have failed to consider heterogeneity across India in agro-climatic factors

that may substantially a↵ect crop losses from drought. For instance, arid areas of the

country experience low average levels of rainfall and may respond di↵erently to drought

than humid areas that are characterised by high average rainfall. These di↵erences may

mean that precipitation thresholds di↵er substantially across regions, which would inval-

idate approaches that assume thresholds to be the same across the country. Accordingly,

we separately estimate drought impacts by agro-climatic region to test for di↵erences

across these regions. Partly due to these agro-climatic di↵erences, crop choices also dif-

fer markedly across districts. Since di↵erent crops have di↵erent sensitivity to heat and

water stress, drought impacts are likely to vary across crops. Since previous research has
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highlighted that di↵erent crops have benefited unevenly in improving drought resistance

over time in other contexts (Yu and Babcock, 2010), we estimate drought e↵ects on the

six main cereal crops in India: rice, wheat, maize, barley, millet, and sorghum.

Of considerable interest is how an area’s resilience to drought is influenced by the avail-

ability of alternative water sources in the form of irrigation. In the case of India, area

under irrigation varies substantially across the country. Previous studies on crop exposure

to a range of weather events have highlighted the importance of irrigation in conditioning

the impacts of adverse weather events (Schlenker et al., 2005; Duflo and Pande, 2007;

Fishman, 2012; Birthal et al., 2015). We consider the di↵erences in drought impacts for

high irrigation areas versus low irrigation areas by separately estimating regressions across

these two sub-samples.

The results of this study show that impacts of drought on cereal productivity have generally

decreased over time since the 1960s, with particularly low impacts in the 1990s. However,

contrary to previous literature, we identify significant thresholds of increased drought

impact in the late 1990s and early 2000s. These impacts were comparable in terms of

production losses with drought in the 1960s, suggesting that despite a period of relative

stability in average impacts, the agricultural sector remains acutely vulnerable to drought

in recent years. This pattern occurs for aggregate district cereal productivity but also

for rice, the most water-intensive crop we study. Whereas the pattern of reduced impacts

seems to align with previous studies that have found increased levels of irrigation important

in mitigating drought (Birthal et al., 2015), increased vulnerability to drought in the late-

1990s may correspond with the observed depletion of groundwater resources that constrain

the ability of farmers to substitute rainfall with water from irrigated sources (Shah et al.,

2009). This highlights the evolving challenges of achieving food security under drought in

areas that have previously relied on abundant supplies of water from irrigation.

We also determine thresholds of precipitation. We find that for India as a whole, the

marginal impacts of drought become negative and significant for levels of rainfall below

70%-80% of long-term rainfall. Impacts are more severe in areas with low irrigation. We

also find that arid areas, probably as a result of long-run adaptation, tend to be more
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resilient to small deviations of rainfall. These areas are, however, acutely a↵ected by

severe droughts as a result of low levels of absolute rainfall. In addition to this, our results

suggest that the impacts di↵er widely by cereal, with rice clearly being the most adversely

a↵ected cereal. These findings are of relevance to policymakers and researchers alike since

they highlight that the sensitivity of production to deviations from average rainfall varies

substantially according to the agro-climatic setting. This is crucial in order to understand

the potential distributional impacts of climate change as well as challenging the idea of

studying a large country like India as a single, homogeneous unit.

The rest of the paper proceeds as follows. Section 3.2 provides the background to drought

in India and reviews related literature from other contexts. Section 3.3 outlines issues in

measuring drought on agricultural production. Section 3.4 discusses the construction of

the drought index used in this paper. The data used in the study is introduced in Section

3.5. In Section 3.6 we discuss the threshold regression technique. Section 3.7 presents the

results and Sections 3.8 and 3.9 discuss and conclude to the paper.

3.2 Drought in India

India is particularly exposed to the consequences of drought since over two-thirds of the

country is classed as vulnerable to drought (Ministry of Agriculture, 2009). This is com-

pounded by the dependence of the majority of agricultural production on annual rainfall,

given that 57% of cropped area is farmed under rain-fed conditions (Sharma, 2011). The

production of crops in many areas during the wetter summer (Kharif ) season relies di-

rectly on rainfall as their main source of water. Crops grown in the subsequent drier (Rabi)

season also rely on rainfall from the previous season for soil moisture and water stored in

sources such as tanks and canals.

Drought years in India generally occur because of deficient monsoon rainfall. For the coun-

try on average, 80% of rainfall falls between the monsoon months of June to September.

Although the monsoon occurs annually, its intensity varies substantially from year-to-

year. Studies have identified a decrease in average levels of annual rainfall over the past

86



half century, while the probability of extreme rainfall events, which can lead to drought

and floods, has significantly increased (Singh et al., 2014; Turner and Annamalai, 2012).

For drought in particular, Pai et al. (2011) found that changes in exposure to precipita-

tion drought significantly increased for approximately 10 percent of Indian districts over

the last century. Kumar et al. (2013) additionally argue that the conditions for drought

have been exacerbated by rising temperatures over time. They find evidence of increas-

ing average drought intensity across the country, which they attribute to the increased

air temperatures. Future projections of climate change-induced changes in rainfall pat-

terns across India will result in increasingly erratic rainfall, although uncertainty over the

physical mechanisms underpinning future monsoon dynamics are not yet understood well

enough to yield discernible spatial patterns of future rainfall (Ghosh et al., 2012; Turner

and Annamalai, 2012).

Of high policy relevance are the factors that a↵ect how severely crop productivity is im-

pacted in a given drought year. Identifying these features is crucial for evaluating how

drought impacts vary across time and across space, which may indicate periods of time

or regions that are particularly vulnerable to drought. The impacts of drought in India

are likely to be conditioned by a number of factors that vary across the country. Given

that India is a large country, it is debatable whether we are able to properly characterise

drought impacts based on a country-wide average. As such, the rest of this section reviews

sources of heterogeneity that may a↵ect drought impacts.

3.2.1 Agro-climatic di↵erences

One important aspect is that average climatic conditions vary substantially across growing

regions. This is illustrated in Figure 3.1. Panel (a) shows average levels of annual rainfall

in each district across the country. Areas in the north-west of the country are characterised

by extremely low average rainfall, in contrast with areas in the east and coastal-west that

have much higher levels of average rainfall. These di↵erences in mean rainfall are primary

determinants of a permanent feature of regions: aridity.

Estimating drought impacts separately for these di↵erent zones is important for a number
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of reasons. Firstly, identifying areas of drought vulnerability based on climatic di↵er-

ences is important for informing policy about future vulnerability. For instance, if regions

that are on average drier and hotter are most a↵ected by drought, it is likely that future

warming could exacerbate these already challenging growing conditions. Secondly, un-

derstanding the di↵erence in sensitivity to rainfall deviations can help policymakers more

accurately ascertain when a drought is likely to start harming agricultural productivity.

Given that, for instance, arid areas experience generally low levels of absolute rainfall, it

may be simplistic to assume that a given proportional deviation below average would have

comparable e↵ects on agricultural productivity than an area with very high absolute levels

of rainfall. While a 20% deviation in rainfall from the long term average would amount to

30mm in arid areas, the same proportional deviation would be around 200mm in humid

areas. This may have substantially di↵erent e↵ects on crop growth between these areas.

Given that physical exposure to drought may vary substantially across the country, we

divide India into distinct regions based on their average agro-climatic characteristics. Panel

(b) in Figure 3.1 displays a characterisation of Indian districts based on similar agro-

climatic factors. Prior research has suggested that India can be split into twenty agro-

climatic regions based on a number of climatic variables, such as rainfall, temperature,

and soil characteristics (Gajbhiye and Mandal, 2010). We simplify this agro-climatic

zones classification to group districts depending on whether they fall into arid, semi-

arid, sub-humid, or humid zones. This allows us to maintain a relatively large number of

districts in each zone to aid the empirical analysis. It can be seen by comparing panels (a)

and (b) that this classification of zones corresponds very clearly with patterns of average

rainfall, indicating that average rainfall is a key driving factor behind the variation in

agro-climatic conditions across the country. The arid areas of the country are mainly

located in the states of Gujarat and Rajasthan. Semi-arid districts span the majority

of the Maharashtra, Madhya Pradesh, Karnataka, and Andhra Pradesh. Eastern states

such as Bihar, Orissa, and West Bengal make up the wetter sub-humid states. Finally,

western coastal districts in Kerala, Karnataka and Maharashtra fall into the humid district

classification.
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3.2.2 Crop type

Another crucial aspect that may be important in determining drought impacts is crop

type. Consideration of the impacts of drought at the crop level may be important for two

reasons. First, given the variation in average climatic conditions shown in Figure 3.1, crop

choice in a district is likely to reflect these conditions. For instance, water-intensive crops,

such as rice, are more likely to be grown in less arid areas. Figure 3.2 shows the spatial

distribution of the proportion of area planted to the six crops examined in this study. Rice

is planted most intensively in areas with high rainfall in the south and east of the country,

under semi-humid and humid regions. In contrast, wheat is grown mainly in the more arid

northern part of the country reflecting a lower dependence on rainfall. The crops most

suited to growth in dry environments, sorghum and millet are both sown across arid and

semi-arid regions in the north-west. These patterns place additional emphasis on possible

variations in drought impacts within India if crops vary substantially in their resilience

to water stress (FAO, 2012). Whether crops grown in areas used to lower absolute levels

of rainfall, such as sorghum and millet, are better at coping with drought conditions is a

question considered in the empirical analysis.

Examining drought impacts at the crop-level is also important since changes in the drought

tolerance of crops over time may also be crop specific. One reason for this is that genetic

advancement in some crops may have been more successful at improving drought resistance

of certain crops. For instance, Yu and Babcock (2010) argue that past e↵orts to reduce

pest damage to crops thus enabling them to survive better in drought conditions, has

increased the drought tolerance of county-level corn and soybean yields in the U.S. Other

authors have argued that increased drought resistance is not an inevitable outcome of

agricultural modernisation, however. Lobell et al. (2014) use data at the field-level and

find that soybean and corn yields in the U.S. between 1995-2012 have recently become

more sensitive to drought due to cultivar improvements focused on maximising yields under

optimal weather conditions. To add to this, other studies have argued that agricultural

modernisation has not led to a decline in drought’s impact on Indian agriculture. Since the

adoption of new seed varieties has been very successful at increasing average yields across
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the country, a measure of the success of the country’s Green Revolution depends on how

resilient the agricultural sector remains to drought. A number of studies have argued that

the adoption of higher yielding seeds by farmers has increased the year-to-year variability

of production since these varieties do not cope well when conditions deviate from those

considered optimal for growth (Hazell, 1984; Larson et al., 2004).2

3.2.3 Irrigation

Irrigation is likely to be a highly significant factor that a↵ects production losses during

a drought. Since both a decrease in rainfall and an increase in temperature e↵ectively

imply lower moisture availability, irrigation often appears to be a panacea to drought.

The rationale behind irrigation is simple in that moisture deficiencies can be replaced by

water from irrigation. On the one hand, a number of studies have shown that irrigation

is strongly associated with mitigating the impact of low rainfall. Duflo and Pande (2007)

show that the construction of dams across India reduces the sensitivity of district crop

yields to extreme rainfall in India. In a study on the resilience of district rice yields in

India to drought over time, Birthal et al. (2015) argue that irrigation was the main driver

in mitigating drought impacts on rice productivity at the district level given that irrigated

area increased dramatically since the 1960s. Irrigation’s impact is, however, limited to the

availability of a water source, and half of total cropped area remains rain-fed.

Although it seems intuitive to link the expansion of irrigation to lower drought impacts, a

number of recent studies have questioned the long-run e↵ect of increasingly water-intensive

farming practices on the drought sensitivity of production. Hornbeck and Keskin (2014)

consider the dynamic impact of irrigation on the drought sensitivity of agriculture in the

U.S., noting that although the utilisation of water from aquifers initially lowers drought

sensitivity of production, sensitivity subsequently increases due to the adoption of more

profitable, water-intensive crops over time. Another study by Fishman (2012) emphasises

that although the e↵ectiveness of irrigation in mitigating low seasonal rainfall in India is

2In related agronomic work by Prashant et al. (2015), the authors study the genetic traits of ‘modern
varieties’ and argue the introduction of these varieties has increased the susceptibility of key Green Revo-
lution crops, such as rice and wheat, to drought since genes associated with drought tolerance were lost in
favour of higher yielding characteristics, such as semi-dwarf properties.
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high, this has little impact in reducing the e↵ect that high temperatures have on rice yields

in India, which may limit the extent to which irrigation remains an e↵ective strategy in

the face of hotter droughts driven by increases in average temperatures.

Increasingly, the sustainability of the Green Revolution model of agricultural development,

based on the use of irrigation often from groundwater sources, to large drought shocks has

been called into question by a number of recent studies. Work by Rodell et al. (2012)

and Panda and Wahr (2016) uses satellite-based methods to assess changes in stocks

of groundwater over time in India. These studies conclude that sustained depletion of

aquifers has occurred particularly in the Ganges Basin region, where groundwater is vital

for sustaining the rice-wheat production systems in what is a primarily semi-arid climate.

The slow recharge rate of aquifers in this region means that the consequences of previous

levels of groundwater extraction are likely to be a pressing concern for farmers in the

future, and of particular importance for farmers during drought years. Firstly, aquifer

depletion over time lowers water tables, so that water becomes more costly and di�cult

to access since farmers must dig deeper wells and use more energy to pump water from

the ground. This limits the ability of farmers to mitigate the adverse impacts of drought

on crop growth. Secondly, as is shown by Chen et al. (2014) and Panda and Wahr (2016),

rates of groundwater extraction increase substantially during drought years. This works

to reduce groundwater stocks in the years following a drought which in turn limits the

potential for farmers to use irrigation to mitigate the e↵ects of droughts in future years.

As such, it is plausible that although the increased use of irrigation is a useful strategy

in mitigating drought when water is abundant, its diminishing availability may act as a

source of increased vulnerability of Indian agriculture over time.

3.3 Measuring the physical severity of drought

In order to assess the impacts of drought, it is important to define the climatic conditions

that cause drought. While there is no universal definition of the conditions that constitute

a drought (Wilhite, 2000), drought is generally referred to as an extreme natural event

associated with water deficiency over an extended period of time (Mishra and Singh,
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2010). The severity of a drought and its impacts are however, determined by a number

of other aspects, both physical and human, which may di↵er substantially across space

and time. As such, given that drought is such a complex phenomenon and its impacts

are highly dependent on a number of aspects, natural and man-made, it is unsurprising

that a wide range of indices have been used in research and policy. These range from

simple precipitation indices, which are highly favoured among policymakers, to very data-

intensive multidimensional measures.

A number of studies have estimated impacts of drought on agricultural production using

simple metrics of precipitation deficiency in India. These measures of drought have the

advantage of being easily interpretable and capture the most obvious characteristic of

drought, rainfall deficiency. For instance, a commonly used method to define drought is

used by Pandey et al. (2007b) who define drought as annual rainfall 80 percent below

normal levels. Moderate drought is defined if rainfall is 80-70 percent of normal, with

severe drought 70 percent below normal. They use this definition to estimate drought

impact in areas that grow rice in Asia at the aggregate and household level. They find

that drought impacts vary markedly across countries. While drought is associated with

a 36% loss in production value in rain-fed areas in Eastern India, production losses in

Thailand and China are much lower at 10% and 3% loss of output respectively. A similar

definition is also used by Au↵hammer et al. (2012) to study the e↵ect of monsoon rainfall

on rice yields for states in India. They define drought if monsoon rainfall is 15% below

normal and find that drought was associated with a 12 percent fall in state rice yield.

Studies such as those above that use simple definitions of drought are problematic for our

understanding of the impacts for two reasons. Firstly, they impose arbitrary thresholds to

define drought, evaluating drought impacts only after a given level of precipitation. It is

not clear, however, whether such thresholds have any agronomic or empirical basis (Wilhite

and Glantz, 1985). Secondly, variables in addition to precipitation may have important

e↵ects when determining the physical severity of a drought. Overall, the misspecification

of the variables that cause drought could lead to substantial bias in the estimation of

impacts since potentially destructive drought events may be overlooked.
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One factor that undeniably a↵ects the severity of a drought is temperature. A number of

recent studies emphasise the detrimental e↵ect that high temperatures have on crop yields.

Schlenker and Roberts (2009) find that high temperatures reduce county-level yields for

corn, soybeans, and cotton in the United States. In India, Guiteras (2009) and Burgess

et al. (2014) both show that, on average, daily temperatures above 34°C tend to reduce

agricultural productivity of a district. Lobell et al. (2012) identify the same threshold as

harmful for wheat yields in the country.

High temperatures have particularly acute e↵ects on crop growth during periods of low

precipitation since the rate of evapotranspiration, the combined process of water evapo-

rated from land surfaces and plants, increases as temperatures rise (Prasad et al., 2008;

Lobell and Gourdji, 2012). In general, this increases a plant’s demand for water at a time

when water availability is already lowered due to deficient precipitation. The importance

of temperature in determining the physical severity of drought is also of high importance

given temperature increases driven by climate change (Hatfield et al., 2011). Recent re-

search has documented that droughts over a range of settings have increased in severity as

mean temperatures have increased. These studies have shown that higher temperatures,

rather than the increased intensity of low rainfall events, have been responsible for these

drying trends (Vicente-Serrano et al., 2014; Di↵enbaugh et al., 2015). As such, not consid-

ering the e↵ect that temperature could have on the severity of a drought event could lead

to a serious underestimation of the severity of a drought and give misleading information

about the likelihood of future production losses driven by climate change.

In order to improve the understanding of the impacts of drought in agriculture, recent

literature has worked on the incorporation of both precipitation and temperature into

the measurement of drought. Yu and Babcock (2010) study drought as a period over

the growing season when precipitation is below its average level as well as temperature

being higher than average. The findings of this study suggest that soybeans and corn have

become increasingly drought-tolerant over time. Birthal et al. (2015) use the same index

to study the resilience of rice yields to drought in India. Their results indicate that rice

yields have become more resilient to drought over time. A key weakness of these studies

however, is that the index used in these approaches restricts drought to be an event that
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only occurs if a period of low rainfall is accompanied by higher than average temperatures.

For instance, a year when rainfall is very low but temperature was not above average would

not be considered as a drought. Omission of potentially destructive droughts could lead

to significant bias in estimates of drought impact. Since events that could be considered

drought are included in the control group, the index suggested by Yu and Babcock (2010)

is likely to underestimate the total impact of drought. In the following section, we detail

a drought index that builds on this previous work that allows us to consider the whole

range of potential drought events.

3.4 Drought index

In this section, we build on the approach taken by Yu and Babcock (2010) to construct

an index of drought incorporating both rainfall and temperature. According to their

classification, a drought occurs in a year when both temperature is uncommonly high

and precipitation low, relative to the long term average of these variables.3 As such, the

intensity of a drought increases with lower levels of precipitation and hotter temperatures.

The strength of this index lies in its ability to capture the potential that high temperatures

exacerbate the e↵ects of low rainfall on crop production.

A crucial weakness of this index, however, is that drought is defined only in years when

an area su↵ers both low rainfall and high temperatures. An important omission is that

years when rainfall is low but temperature is not uncommonly high are not considered as

potential droughts. This can be illustrated by considering Figure 3.3. Defining drought

events according to both low rainfall and high temperature restricts the measure of drought

to the lower right quadrant of events (I). However, events in the lower left quadrant (II),

where area rainfall is low but temperatures are not unusually hot, are not considered

droughts. It can be clearly seen that a large number of low precipitation events occur

3We limit our analysis to considering drought as a prolonged absence of rainfall over a year. As such, we
do not analyse shorter or longer periods of drought. For instance, Fishman (2016) studies the intra-annual
distribution of rainfall in India and concludes that this has important e↵ects on productivity. To analyse
the impacts of rare, multi-year droughts we would require a drought measure with ‘memory’ that takes
into account soil moisture conditions. Since drought in India is mainly driven by variation in the annual
monsoon, we argue that this annual measure is most relevant in this context.
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in this quadrant which is likely to have serious implications for assessing the impact of

drought.

Figure 3.3: Potential droughts events and their categorisation in the drought index

To address this, we use the logic of the Yu and Babcock (2010) index to consider a wider

set of drought events. First, we calculate district-specific cumulative rainfall over the

growing season, R
it

, and then calculate its long term average LTAR
it

for the growing

season (June-September) over the period 1956-2009. A standardised measure of rainfall is

then estimated as ZR
it

= (R
it

� LTAR
i

)/sdR
i

, where sdR
i

is the standard deviation of

R
it

.

Analogously, we calculate the district-specific cumulative growing season temperature,

HDD
it

, for the growing season (June-September) as the cumulative number of daily

degree days above the mean daily growing season temperature over the period 1956-

2009.4 Similar to rainfall, this variable is standardised by estimating ZHDD
it

=

(HDD
it

� LTAHDD
i

)/sdHDD
i

, where LTAHDD
it

is average cumulative daily degree

4The growing season daily degree days are calculated as follows. First, we obtain the average growing
season temperature for each district. Second, for each day we subtract the average temperature from
the observed temperature and obtain the number of degrees above the average temperature for each day.
Finally, we sum all the positive temperature deviations for each day of the growing season and obtain the
cumulative daily-degree days
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days over the growing season and sdHDD
i

is the standard deviation of HDD
it

.

We di↵er from Yu and Babcock (2010) in creating a normalised version of the rain and

temperature variables such that they vary strictly between 0 and 1. Normalising the

negative of rainfall, rather than rainfall directly, allows us to generate a variable bounded

between 0 and 1, with higher values signalling a more severe precipitation deficiency. We

construct a variable, R
it

, which is simply the negative of R
it

(i.e. R
it

= �R
it

). The

following is estimated to obtain NR
it

and NHDD
it

:

NR
it

= (R
it

�Rmin

i

)/(Rmax

i

�Rmin

i

) (3.1)

where Rmin

i

denotes the minimum observed value for district i (i.e. the maximum rainfall

observed), and Rmax

i

denotes its maximum observed value (i.e. lowest rainfall). The same

normalisation procedure is then applied to the temperature variables:

NHDD
it

= (HDD
it

�HDDmin

i

)/(HDDmax

i

�HDDmin

i

) (3.2)

where HDDmin

i

denotes the minimum observed value for district i (i.e. the maximum

number of degree days observed), and HDDmax

i

denotes its maximum observed value (i.e.

lowest number of degree days observed).

From these two variables, we then create a normalised rainfall-temperature index NRTI
it

,

which is simply a product of these variables:

NRTI
it

= NR
it

⇤NHDD
it

(3.3)

We illustrate these events in equation (3.4). Potential droughts can be classified as D1

which corresponds with that of Yu and Babcock (2010) where rainfall is below normal

and temperature above normal. D2 then corresponds with low rainfall in the absence

of abnormally high temperatures. The value of both of these indexes is increasing in

temperature but decreasing in precipitation. The multiplicative relationship generated
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between the two normalised variables, is used to illustrate the comparison between di↵erent

types of drought event. Formally, we have:

Drought =

8
>>>>><

>>>>>:

D1
it

= NR
it

⇤NHDD
it

if ZR
it

< 0 & ZHDD
it

> 0, 0 otherwise

D2
it

= NR
it

⇤NHDD
it

if ZR
it

< 0 & ZHDD
it

< 0, 0 otherwise

D12
it

= NR
it

⇤NHDD
it

if ZR
it

< 0, 0 otherwise

(3.4)

As such, D1
it

can be interpreted as a normalised version of Yu and Babcock’s (2010)

index. It captures all events in the lower right quadrant (quadrant 1) of Figure 3.3,

taking a strictly positive value for all events characterised by below-average precipitation

and above-average temperatures. The second index, D2
it

, only takes non-zero values for

events with below-average rainfall and below-average temperature, the category Yu and

Babcock omit. Finally, a third index, D12
it

, simply combines D1
it

and D2
it

and hence,

captures all the events in the lower half of Figure 3.3.

To illustrate the e�cacy of the drought index, Figure 3.4 plots the average value of the

index over time for all districts included in our sample. The particular sample period that

we examine (explained in the next section) is shown between the red vertical lines. There

is substantial variation in the average severity of drought over time. In particular, we

note that the index takes particularly high values in years historically identified as serious

droughts across wide areas of the country. For instance, the years 1972, 1979, 1987, and

2002 were particularly serious droughts across the country (Wang, 2006) and subsequently

are the years when our drought index takes the highest values.

In order to study precipitation thresholds it is necessary to make a small innovation to

this index. In particular, we need a precipitation index that is continuous in proportion of

rain. As such, for the case of the precipitation index, we give a non-zero value to the cases

where rain is above average but temperatures are also high. In terms of the events shown

in Figure 3.3, this refers to quadrant III. Although these events should not be considered

as potential droughts, their inclusion is necessary in the index so that rainfall can be
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Figure 3.4: Average severity of drought in India 1956-2010

treated as a fully continuous variable so that we can test for where structural breaks for

precipitation deficiency are located.5

This approach has the advantage of allowing us to remain agnostic in terms of the re-

lationship between precipitation and the drought impacts. However, it also has a slight

disadvantage, in that our index is not easily interpretable at regions of precipitation above

1 since a higher value of the index could both mean a value of rain closer to normal rain (in

which case we would expect a positive relationship) or a very high temperature irrespective

of the precipitation level (in which case we may expect a negative relationship). But since

our goal is to focus on the analysis of drought, we are more concerned about the parts of

the index for proportions of rain below one and, as such, we believe that the flexibility

that the index confers outweighs the di�culty of interpretability for regions above normal

5It is unnecessary to include events in quadrant IV since by any definition these do not constitute
drought.
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rainfall.

The rationale for utilising this index relates to practical issues concerning data ideally

needed to measure variables that a↵ect crop growth. An ideal measure of drought would

measure soil moisture in a particular area at a given time. Comprehensive measurements

of observed soil moisture do not, however, exist over the time period studied in this paper

or for the spatial extent needed to study drought across India. The unavailability of this

type of data has led researchers to construct indices that proxy for variables a↵ecting soil

moisture. The specific index chosen in this paper has been chosen over other indices due to

the nature of the data available. Although drought indices have been constructed to try to

attempt to accurately model soil moisture conditions, variables needed to construct these

are unavailable in the context of this study. For instance, the Palmer Drought Severity

Index (PDSI) is frequently used to monitor drought in the U.S. Its applicability elsewhere

is more limited, however, due to its computational intensity and data needs, which include

evaporation measurements and water runo↵. Additionally, it has been criticised for the

arbitrariness of some of its modelling assumptions. See Alley (1984) for an overview of

issues surrounding the use of the PDSI. Thus, in order to construct an index over the whole

sample period, the drought index used throughout the rest of this paper is constrained by

the availability of data over this period.

3.5 Data

The agricultural data is taken from the ICRISAT Meso-level Database, which contains

information on a range of agricultural and socioeconomic variables at the district-level

(ICRISAT, 2012).6 We use data for the years 1966-2003 to conduct the analysis. Although

the panel extends to 2009 for most districts, a number of missing observations occur in the

2000s. Given that the empirical analysis requires a balanced panel data set, districts with

missing observations are dropped from the analysis. Since it is impractical to exclude all

of these districts from the analysis, we choose to compromise by only using years up until

6Since 1966 a number of districts have split into smaller districts. To maintain spatial consistency over
time, district splits are dealt with by returning split districts to their parent districts in 1966.
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2003 which allows us to keep the largest number of districts. Consequently, out of the 311

available in the database, 240 districts that have non-missing data for all years are used

in the main analysis.

Data are available on annual crop production and area, which are used to construct crop

yield variables. Rice, wheat, maize, barley, sorghum, and millet production statistics are

used.7 We investigate drought impacts on an aggregate cereal productivity index and

separately for each crop. The aggregate cereal index is constructed by taking a weighted

average of district cereal yield for each of these six cereals weighted by the proportion of

each crop’s area planted in a district. Data on the area irrigated and fertiliser use in a

district are also used. These variables are available as district-level aggregates and are not

crop-specific. In addition, socioeconomic census data is available on district population.

To construct the drought index, we use weather data on daily rainfall and daily average

temperatures from the Indian Meteorological Department. The rainfall data is available

in gridded format at a resolution of 0.25°x 0.25°(Pai et al., 2014). Gridded temperature

data is at a resolution of 1°x1°(Srivastava et al., 2009). District-wise weather data is then

obtained by taking a weighted average of gridded weather observations from grid cells that

fall within a district’s boundary based on the proportion of the grid cell that falls in each

district.

3.6 Empirical methodology: Threshold regression

To estimate the impact of drought on Indian agriculture, we employ a threshold regression

estimation strategy with fixed e↵ects (Hansen, 1999).8 This model augments the standard

linear fixed e↵ects model by estimating how the e↵ect of the drought variable on crop yield

di↵ers between thresholds of a variable of interest.

The equation below illustrates the model in the case of a single threshold, �. D
it

is

the drought index variable and ln y
it

is the natural logarithm of crop yield.9 Since the
7For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity

of millet.
8To estimate the fixed e↵ects threshold model we utilise Stata code which is described in Wang (2015).
9We use the log transformation of yield because we are interested in the relative impact of drought. This
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threshold regression approach precludes the use of trended data and integrated processes,

prior to running the regression we detrend crop yield, Y
it

, by fitting a district-specific

quadratic time trend which gives us a detrended logarithm of yields, which we denote by

y
it

. Detrending in this way removes trends in yields that are associated with technological

progress over time. To check if the yield variable is stationary in all model specifications

after the detrending procedure, we apply a number of panel unit root tests.10 For all

specifications we reject the null hypothesis of the dependent variable having a unit root

at a 1% significance level. A set of control variables are also included in X
it

and the error

term, which is clustered at the district level to account for potential autocorrelation in the

error term, is represented by e
it

.

ln y
it

= ↵
i

+Dj

it

(q
it

< �)�1 +Dj

it

(q
it

� �)�2 +X
it

� + e
it

(3.5)

which can be written more compactly as

ln y
it

= ↵
i

+Dj

it

(q
it

, �)� +X
it

� + e
it

(3.6)

where

ln y
it

=

8
><

>:

↵
i

+Dj

it

�1 +X
it

� + e
it

if q
it

< �

↵
i

+Dj

it

�2 +X
it

� + e
it

if q
it

� �

Rather than the e↵ect of drought being identical across all values of the threshold variable

q
it

, the threshold model estimates the value q
it

= �, at which the e↵ect of drought on

cereal productivity changes in a statistically significant way. This means that the average

e↵ect of drought before q
it

= � is di↵erent from the e↵ect after q
it

= �. In this case,

�1 and �2 represent the impacts of drought for members of the sample either side of the

threshold, �. This method allows us to test, firstly, whether such a threshold exists and,

specification also allows for better comparison of drought impacts across areas where absolute di↵erences
in productivity may be large.

10The Levin-Lin-Chu, Harris-Tzavalis, Breitung, and Im-Pesaran-Shin unit roots tests are deployed.
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secondly, how the e↵ects of drought vary across values of a specified variable of interest

q
it

.

The threshold value is estimated by least squares and involves picking the value of � that

minimises the residual sum of squares of the model (Hansen, 2000). Even if a threshold

is estimated, it may not be statistically significant. Accordingly, a likelihood ratio test of

whether H0 : �1 = �2 is implemented. However, as is noted by Hansen (2000), asymp-

totic sampling distributions of Wald statistics are known to behave poorly when these

distributions depend on unknown parameters, as is the case for threshold regressions. Ac-

cordingly, inference in the model relies on a bootstrap procedure where individual sample

observations are drawn with replacement, holding the values of regressors and the thresh-

old variable fixed. For each bootstrap sample, the model is then estimated to calculate

the likelihood ratio. This procedure is repeated 300 times to calculate the proportion

of simulated sample draws that yield likelihood ratio statistics greater than the observed

sample. This gives the asymptotic p-value at which the null hypothesis of no threshold can

be rejected. If we fail to reject H0, the model is equivalent to the linear model where the

e↵ect of the regressors included in the model are not significantly di↵erent across values

of the proposed threshold variable.

It may be possible that more than one threshold of drought impact exists. We thus test

for the existence of multiple thresholds. The number of thresholds tested for is sequential

in the sense that if we first predict a model with a significant single threshold, we then

test for the existence of a second threshold. This procedure is continued by allowing for a

maximum of three threshold values.11

We estimate separate models for two threshold variables, namely for time and the pro-

portion of rainfall below normal (from long-term district average rainfall). For the set of

regressions using time as a threshold variable, the model works by testing whether there

are years that demarcate periods when drought has distinctly di↵erent impacts on cereal

yields. This is analogous to a multiple-point Chow test for structural instability in drought

11We are constrained in estimating a maximum of three thresholds by the code described in Wang (2015).
However, we posit that this does not pose a problem for the analysis since, as will be seen in the following
section, the number of times that we fail to reject a three threshold model is very rare. This implies that
the likelihood of the number of thresholds beyond three is very low.
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impacts where the break points are a priori unknown.12 The second threshold variable we

use is rainfall. This is to test for the values of proportion of rainfall below average between

which drought impacts are di↵erent.

A benefit of using panel data to measure drought impacts is that it allows us to credibly

identify the e↵ect of drought on agricultural productivity. This comes from a number of

characteristics of the statistical model. Inclusion of district fixed e↵ects terms control for

the influence of time-invariant district factors, such as soil types or institutional di↵erences,

that may a↵ect the impact of drought. Inclusion of the district fixed e↵ect also means that

identification of the impact of drought relies on plausibly random variability in the severity

of drought within-districts over time.

We also estimate our results with and without a set of time-varying control variables X
it

.

These control variables are detrended at the district-level using the same procedure as

for crop yields. This is to account for the likelihood that the level of these variables may

be trending over time. Although identification using the reduced form approach assumes

that drought is a random, exogenous shock to agricultural productivity, it is plausible

that drought may be correlated with a number of time-varying district factors that may

condition drought’s impact. A key factor could be that input decisions change as drought

unfolds over time, which would mean that our estimate of drought impact on productivity

is picking up the influence of various factors that condition drought impact. In order to

test whether this a↵ects our estimates of the impact of drought, we control for a number of

factors that drought may be correlated with, which may provide a more precise estimate

of the drought impacts.

We include census data on rural population density to try to control for the e↵ect that

labour availability could have on productivity during drought years. A period of drought

could induce temporary or permanent migration away from a rural area, reducing the

availability of labour.

12A number of papers have used similar techniques to identify points of structural change using time
series data. A prominent example of this approach is Bai and Perron (1998) who suggest a method for
identifying multiple potential breakpoints in a data series over time. Interestingly, this method has been
applied by Chand and Parappurathu (2012) to understand distinct periods of productivity growth in Indian
agriculture.
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Annual cereal area cultivated is also included as a control. This is motivated by the

finding of Siderius et al. (2016) who find that farmers in the Ganges Basin make dynamic

adjustments to land use in response to rainfall variability. For instance, farmers tend to

decrease cropped area of rice and wheat in rain-fed areas in response to water stress. These

adjustments could lead to an underestimate of the impact of drought on productivity if,

for instance, lower productivity land is taken out of production during a drought year in

order to conserve water resources for higher productivity land.

It is also plausible that farmers’ input decisions vary in response to a drought. One

possibility is that farmers respond to drought by increasing the area under irrigation.

This could lead us to underestimate the impact of drought on productivity. Use of other

inputs may also be a↵ected. Another possibility is that fertiliser use may decline during a

drought year. For instance, Pandey et al. (2007a) find that fertiliser use decreases during

drought years, although they observe that most input decisions do not change substantially

during drought years since many input decisions are made before the extent of drought is

known. In the following results section, we test whether these control variables a↵ect the

drought impact estimates by reporting results with and without the set of controls.

3.7 Results

In this section we present the results from the threshold regressions of drought impact.

Each table is split into three parts and should be read as follows. The top section of

each table displays the p-values from the likelihood ratio test for the existence of the

number of thresholds of drought impact. The selection rule used is to select the highest

number of thresholds that are accepted at a p-value of less than 0.1 (10% significance

level). The section below displays the location of the estimated thresholds (�1, �2, �3) and

their associated confidence intervals in square brackets. The thresholds are listed from

smallest to largest. The third section shows the estimated coe�cients. The first coe�cient

in the variable list shows the coe�cient on a dummy variable included to measure the

average e↵ect of drought over the sample period. This captures the intercept change

(in terms of yield) of having less than normal rainfall. This variable takes the value of
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one if precipitation is below normal and zero otherwise.13 Omitting this variable would

mean that the estimated coe�cients of marginal drought impact would capture both the

intercept change and the marginal e↵ect of the drought index on yield. The next set of

coe�cients display the marginal e↵ects of the drought index each side of the estimated

threshold value along with coe�cients of the included control variables.

3.7.1 Time thresholds of drought impact

Table 3.1 displays the threshold regression results using time as a threshold variable. The

dependent variable is the natural logarithm of district cereal yield. The first two columns

show results for the whole sample, while the following four columns display results for non-

irrigated and irrigated districts respectively. For India as a whole, the model estimates

that average drought impacts can be divided into three distinct periods given that two

thresholds have been estimated. The first threshold occurs in 1987. Here, the marginal

e↵ect of drought on cereal yield is statistically significant at -0.271. Recall that the drought

index takes values from one to zero, with the worst drought in a district over the sample

period taking the value of one. As such, for a drought which takes the value 0.5, this is

estimated to lead to a negative deviation in yields from trend of 13.5%. Consistent with

findings in Birthal et al. (2015), we also see that average impacts decreased substantially

for the 1987-1998 period, as opposed to the pre-1987 period. This could potentially be

explained by the increased use of irrigation technologies which spread across the country

following the Green Revolution. While initially confined to a small number of areas such

as the northern ‘grain belt’ states such as Punjab and Haryana, technologies became more

readily available to farmers across the country. Chand and Parappurathu (2012) argue

that beginning in the late 1970s, a period of ‘wider technology dissemination’ saw the

increased adoption of new seed varieties and complementary inputs, such as groundwater

irrigation, across the country. One advantage of our approach is that it does not impose

linearity to the evolution of the impacts over time and allows us to identify sharp breaks in

average drought impact. As a result, we also find that in the later periods of the sample,

13In terms of the the distribution of potential drought events shown in Figure 3.3, this corresponds to
all events in quadrants I and II.
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more specifically after 1999, we find very large coe�cients for average drought impact,

with these magnitudes broadly comparable to those of the pre-1987 period. This suggests

that, despite extensive technological progress, the Indian agricultural sector is not immune

to large shocks, such as the droughts that characterised the early 2000s. The severity of

drought in this period can clearly be seen in Figure 3.4, which previously displayed average

drought severity over time. The value of the drought index over the sample period is, on

average, highest for the years 2001/02. Additionally, other authors have argued that high

impacts in these later years may also reflect water scarcity over the medium term. As

is argued by Shah et al. (2009), while 1998 was a moderate drought for much of India,

this was followed by subdued rainfall in the 1999-2001 time period, which aggravated the

impacts of the drought in 2002, when the negative rainfall deviations were very high.

The inclusion of control variables does not substantially change the results. For the full

sample we do see a change in one of the estimated threshold locations from 1987 to 1992,

although the new threshold estimated includes the old threshold in the confidence interval.

The included control variables also take the expected signs, although the likelihood that

these variables are endogenous means that no causal interpretation is attached to these

estimated coe�cients. The marginal e↵ect of cereal area on yield is negative, implying

possible diminishing returns to yield from increasing cereal area. The marginal e↵ect of

fertiliser and irrigation is positive during the sample. The e↵ect that rural population

density has on yield is not clear.

The results by irrigation category suggest drought impacts over time have di↵ered substan-

tially between the two groups. The third column, which looks at low irrigation districts

highlights that, with the exception of the period between 1985 and 1987 (when many areas

of the country were hit by particularly severe droughts), there has been a general trend of

decreasing impacts. Conversely, for high irrigation districts, we reject the threshold model

against the conventional fixed e↵ects model which implies that we could not reject the

hypothesis that impacts were not significantly di↵erent over two sub-periods.

Table 3.2 shows the results for whether there have been significant thresholds of drought

impact over time when the sample is split into four agro-ecological zones (AEZ). The

existence of significant thresholds only occurs in one AEZ, where the years 1984-1987 were
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Table 3.1: Time threshold regressions of drought in India

Existence of thresholds Full sample Low irrigation High irrigation

P-value
Single 0.027 0.010 0.017 0.027 0.840 0.723
Double 0.000 0.010 0.000 0.000 0.147 0.320
Triple 0.210 0.810 0.260 0.327 0.810 0.590

Threshold location

�1 1987 1992 1984 1984
CI [1986,1988] [1987,1993] [1983,1985] [1983,1985]
�2 1998 1998 1987 1987
CI [1997,1999] [1997,1999] [1986,1988] [1986,1988]
�3
CI

Variables

Drought dummy -0.046*** -0.025* -0.025 -0.026 -0.016 -0.010
(0.015) (0.013) (0.025) (0.023) (0.011) (0.011)

Period< �1 -0.271*** -0.278*** -0.380*** -0.351*** -0.149*** -0.135***
(0.044) (0.042) (0.060) (0.060) (0.028) (0.027)

�1  Period < �2 0.013 -0.005 -0.791*** -0.824***
(0.039) (0.030) (0.133) (0.135)

Period> �2 -0.278*** -0.300*** -0.235*** -0.254***
(0.039) (0.035) (0.058) (0.047)

Controls
Cereal area (log) -0.099*** -0.167*** -0.003

(0.036) (0.047) (0.055)
Fertiliser (log) 0.082*** 0.051** 0.126***

(0.016) (0.022) (0.015)
Irrigation (log) 0.137*** 0.074** 0.180***

(0.025) (0.032) (0.037)
Rural population (log) 0.040 0.119*** -0.120**

(0.032) (0.042) (0.053)

Constant 0.064*** 0.061*** 0.089*** 0.091*** 0.038*** 0.032***
(0.006) (0.006) (0.010) (0.010) (0.005) (0.005)

N 8,917 8,436 4,477 4,218 4,440 4,218
No. of districts 241 228 121 114 120 114
R-squared 0.073 0.209 0.105 0.168 0.047 0.21

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part
of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations
are shown corresponding with the number of thresholds estimated. The final part of the table shows the regression estimates for
the impact of drought between each of the thresholds and also the a set of control variables included in the regression.
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Table 3.2: Time threshold regressions of drought in India across agro-ecological zones

Existence of thresholds Arid Semi-arid Sub-humid Humid

P-value
Single 0.053 0.000 0.270 0.240 0.293 0.560 0.343 0.330
Double 0.070 0.030 0.040 0.010 0.467 0.000 0.027 0.073
Triple 0.223 0.190 0.787 0.673 0.567 0.813 0.480 0.670

Threshold location

�1 1984 1984
CI [1982,1990] [1982,1989]
�2 1987 1987
CI [1986,1989] [1981,1989]
�3
CI

Variables

Drought dummy -0.188** -0.127* -0.027* -0.004 -0.029* -0.018 0.017 -0.006
(0.072) (0.063) (0.014) (0.013) (0.016) (0.017) (0.014) (0.026)

Period< �1 -0.476* -0.565** -0.206*** -0.212*** -0.161*** -0.158*** -0.234*** -0.280*
(0.242) (0.233) (0.043) (0.039) (0.038) (0.038) (0.054) (0.115)

�1  Period < �2 -1.142** -1.188***
(0.438) (0.378)

Period > �2 -0.184 -0.267**
(0.163) (0.113)

Controls
Cereal area (log) 0.022 -0.070 0.105* -0.276**

(0.114) (0.046) (0.057) (0.087)
Fertiliser (log) 0.138** 0.044*** 0.081*** 0.035

(0.059) (0.016) (0.026) (0.026)
Irrigation (log) 0.273** 0.256*** 0.098*** 0.003

(0.126) (0.026) (0.024) (0.024)
Rural population (log) -0.002 -0.020 -0.204*** 0.074

(0.116) (0.039) (0.073) (0.08)

Constant 0.184*** 0.164*** 0.058*** 0.047*** 0.047*** 0.041*** 0.025*** 0.052***
(0.033) (0.034) (0.006) (0.006) (0.006) (0.006) (0.008) (0.009)

N 851 777 4,551 4,551 2,886 2,849 629 259
No. of districts 23 21 123 123 78 77 17 7
R-squared 0.166 0.361 0.055 0.24 0.054 0.185 0.067 0.196

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table shows the
results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding with the number
of thresholds estimated. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds and also
the a set of control variables included in the regression.
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Table 3.3: Time threshold regressions by crop (I)

Existence of thresholds Rice Wheat Maize

P-value
Single 0.010 0.013 0.030 0.010 0.607 0.063
Double 0.060 0.820 1.000 1.000 0.460 0.960
Triple 0.750 0.637 0.540 0.900 0.163 0.803

Threshold location

�1 1987 1986 1967 1967 1967

CI [1986,1988] [1979,1987]
�2 1999
CI
�3
CI

Variables

Drought dummy -0.050*** -0.031** -0.036*** -0.018* 0.146*** 0.147***
(0.016) (0.015) (0.011) (0.010) (0.019) (0.019)

Period< �1 -0.355*** -0.372*** -0.517*** -0.484*** -0.336*** -0.046
(0.037) (0.041) (0.086) (0.083) (0.041) (0.085)

�1  Period < �2 -0.015 -0.168*** -0.079*** -0.100*** -0.335***
(0.044) (0.033) (0.023) (0.023) (0.040)

Period > �2 -0.301***
(0.044)

Controls
Cereal area (log) 0.026 -0.023 0.138***

(0.060) (0.047) (0.051)
Fertiliser (log) 0.120*** -0.025 0.026

(0.022) (0.021) (0.022)
Irrigation (log) 0.117*** 0.254*** 0.026

(0.031) (0.025) (0.027)
Rural population (log) -0.161*** -0.078** -0.090**

(0.055) (0.039) (0.044)

Constant 0.076*** 0.073*** 0.042*** 0.036*** -0.009 -0.014**
(0.006) (0.006) (0.004) (0.004) (0.007) (0.007)

N 6,882 6,475 6,586 6,549 5,402 5,365
No. of districts 186 175 178 177 146 145
R-squared 0.093 0.159 0.04 0.18 0.015 0.027

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The
top part of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the
threshold locations are shown corresponding with the number of thresholds estimated. Confidence intervals are not given
if the interval overlaps with the first or last year of the sample period. The final part of the table shows the regression
estimates for the impact of drought between each of the thresholds and also the a set of control variables included in the
regression.
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Table 3.4: Time threshold regressions by crop (II)

Existence of thresholds Barley Sorghum Millet

P-value
Single 0.037 0.023 0.577 0.593 0.363 0.270
Double 0.577 0.557 0.107 0.090 0.780 0.470
Triple 0.797 0.687 0.740 0.767 0.277 0.360

Threshold location

�1 1984 1984
CI [1983,1985] [1982,1985]
�2
CI
�3
CI

Variables

Drought dummy -0.019 -0.024** 0.021 0.02 0.008 0.02
(0.012) (0.012) (0.018) (0.019) (0.018) (0.017)

Period< �1 -0.197*** -0.199*** -0.131*** -0.137*** -0.211*** -0.241***
(0.040) (0.041) (0.043) (0.043) (0.041) (0.041)

Period > �1 -0.017 -0.014
(0.024) (0.022)

Controls
Cereal area (log) -0.022 -0.067 -0.033

(0.051) (0.051) (0.047)
Fertiliser (log) -0.058*** -0.018 0.019

(0.018) (0.018) (0.022)
Irrigation (log) 0.045 0.037 0.114***

(0.032) (0.023) (0.043)
Rural population (log) 0.014 0.004 0.102**

(0.043) (0.041) (0.051)

Constant 0.030*** 0.033*** 0.016** 0.017*** 0.037*** 0.037***
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006)

N 2,997 2,997 5,069 5,069 4,699 4,662
No. of districts 81 81 137 137 127 126
R-squared 0.034 0.044 0.05 0.045 0.017 0.049

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The
top part of the table shows the results for the testing procedure for the number of thresholds estimated. Below this the
threshold locations are shown corresponding with the number of thresholds estimated. The final part of the table shows the
regression estimates for the impact of drought between each of the thresholds and also the a set of control variables included
in the regression.
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associated with very large impacts. It should be noted that the confidence intervals of

these threshold locations are fairly large, so much so that these two thresholds cannot

be statistically distinguished from one another. Despite this, we estimate that drought

impacts have substantially reduced over time where drought impacts in the most recent

period were around half those in the earliest period.

Tables 3.3 and 3.4 look at the crop-specific impacts of drought on yields over time. For rice,

we notice the same pattern as for district cereal yields as a whole. Drought impacts were

significantly negative for the years before 1987, but were insignificant in the years following

until 1999. After this period, however, drought impacts were large and comparable to those

before 1987. For wheat and maize, the threshold model picks the first year as a threshold

value which reflects the fact that a very large drought occurred at this time. After this,

however, average drought impacts are estimated to have remained constant. Evidence of

increased drought tolerance over time is clearly visible for barley where the mid-1980s are

estimated as the threshold. For the two most drought tolerant crops, sorghum and millet,

the existence of significant thresholds are rejected. It is important to note at this point that

the rejection of significant thresholds over time does not necessarily imply that average

impacts have not changed over time. While the threshold model is useful for picking up

sharp changes in average impacts, it is less useful for assessing slow moving trends over

time. Thus, we are cautious about stating that impacts have not changed over time in the

case where a threshold is not estimated.

3.7.2 Precipitation thresholds of drought impact

Table 3.5 shows estimates of precipitation thresholds for district cereal yields. Units of

precipitation of the threshold variable relate to the proportion of annual rainfall relative

to a district’s long term average. To begin with, we separately estimate regressions using

two di↵erent drought indices to investigate the importance of considering the full range

of drought events. For instance, earlier in the paper we discussed that previous studies

had neglected to consider a wide set of drought events that are potentially harmful for

agriculture (Yu and Babcock, 2010; Birthal et al., 2015). The first relevant factor is that
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the two drought dummy variables are large, negative and significant, indicating that on

average low rainfall is bad for crop growth. For both indices, two thresholds are estimated.

In terms of the marginal e↵ect, we observe the same pattern across all specifications with

very large, significant and negative impacts for very large (first threshold) and large (second

threshold) negative deviations from long-term rainfall.

We see that the marginal e↵ect of an increase in the drought index for precipitation levels

below 0.597 of normal rain is strongly negative, suggesting that this threshold is associated

with particularly severe droughts. Drought impacts are considerably lower (about half)

between the two thresholds. Above the second threshold, which ranges from 0.738 to

0.808 across model specifications, the drought index is not significant. However, this does

not mean that there are no impacts of drought at this level of rainfall, since the large

coe�cients on the dummy variables suggests that even at low deviations of rainfall, the

average impacts are negative. These results indicate that marginal impacts of drought start

to turn negative, on average, when rainfall falls below 0.738-0.808 of normal rainfall. The

inclusion of a set of control variables does not change the results considerably. Interestingly,

we also note that, for the whole of India, the estimated thresholds are not very di↵erent

from the drought thresholds used by the Indian government to denote droughts (0.75 and

0.5).

Given that previous approaches to measuring drought impact have confined interest to

what we denote as Type 1 droughts (Yu and Babcock, 2010; Birthal et al., 2015), it can

clearly be seen that this leads to the omission of a whole set of events that have highly

significant negative e↵ects on crop yields. The first two columns of Table 3.5 clearly show

that both Type 1 and Type 2 droughts seriously harm crop yields. The results for the

drought index used in this paper, which considers the whole range of potential drought

events, shown in the next two columns illustrate that this index captures the e↵ect of both

these types of drought in a single index.

Results for low and high irrigation districts are shown in Table 3.6.14 The first threshold is

close to 0.6 for both groups and below this value of rainfall the coe�cient on the impacts

14In this paper we define high- and low-irrigation as districts with average levels of irrigation over the
sample period above and below the median, respectively.
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of drought for the low irrigated districts is over three times larger than for irrigated areas

below this threshold. This indicates that severe droughts have very serious impacts in

low irrigated areas. This is also suggestive of the role that irrigation has in substantially

mitigating severe droughts. Between the two thresholds, as we would expect, we find lower

impacts for highly irrigated areas but the di↵erences between drought impacts between

the two groups are less stark.

Estimates of drought threshold e↵ects for districts within di↵erent AEZs are shown in

Table 3.7. A clear pattern is present for the location of the thresholds for each of the

AEZs. The more arid the climate, the lower the threshold for precipitation. Compared

with the marginal impacts estimated for other AEZs, we find that arid areas are more

resilient to smaller negative deviations in rainfall. However, at larger deviations from the

average levels of rainfall (more specifically below 0.64) the impacts are extremely severe.

This is most likely explained by the fact that crops require a minimum amount of water

with which to grow. Although areas with low rainfall are better at coping with smaller

precipitation deviations away from the average, beyond a certain threshold of rainfall

deficiency achieving crop growth is very di�cult. In semi-arid areas, we notice the same

pattern, even if it is less pronounced. We find very large impacts below 0.59 and large

impacts between 0.59 and 0.79, but no significant negative marginal impacts for rainfall

levels above 0.79. In semi-humid areas, the impacts are, on average lower but, in the case

of semi-humid areas, the thresholds occur much earlier. In AEZ5, which represents humid

regions, we see significant drought e↵ects below the estimated threshold, although the

magnitudes are fairly similar to those in sub-humid areas for similar rainfall deficiencies.

In the specification where control variables are included, a second threshold is estimated

at 0.72. Here the marginal e↵ect of drought on district cereal yield is comparable to

very severe droughts in semi-arid areas, where the threshold is estimated at 0.59. This is

probably indicative of the fact that humid areas are used to very high absolute levels of

rainfall, and a relatively small proportional deviation away from normal rainfall reduces

water availability substantially.

Precipitation thresholds estimated separately by crop are shown in Tables 3.8 and 3.9. It

is interesting that for the two main crops grown in India, rice and wheat, the location of
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precipitation thresholds are similar. There is a negative and significant marginal e↵ect

of the drought index on yields at proportions of rainfall of 0.85 for rice and 0.86-0.93 for

wheat. The second threshold is located between 0.68-0.75 for both crops. However, we note

that marginal impacts of the drought index on rice yields are much higher for comparable

levels of rainfall. Since rice is more water-intensive than wheat, water deficiency has more

serious implications for rice yields. Similarly, since rice is mainly grown during the main

monsoon period, rainfall deficiency plausibly has a larger direct e↵ect on crop yield. For

maize, three thresholds are identified, although only the lowest two thresholds are relevant

for drought. Compared with rice and wheat, these thresholds are lower and, interestingly,

the coe�cients for the marginal e↵ects of maize for rainfall deviations between 0.61 and

0.75 are similar to those of wheat for rainfall deviations below 0.75. A clear pattern of

threshold impacts is also present for barley, sorghum and millet. The first threshold is

estimated at between 0.81 and 0.86 for all of these crops, suggesting the rainfall deficiency

first becomes problematic for crop yields below this level. Additional thresholds at 0.62

are also estimated for sorghum and millet, indicating severe damage to yields below this

proportion of normal rainfall. It is interesting to note that for millet, known as one of

the most drought-tolerant cereals, drought impacts do not become significantly negative

until a precipitation threshold of 0.73 is passed, confirming its ability to grow under even

moderate drought conditions.
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Table 3.5: Precipitation threshold regressions and comparision of drought indices

Existence of thresholds Two indices Single index

P-value
Single 0.000 0.000 0.000 0.000
Double 0.000 0.000 0.000 0.000
Triple 0.163 0.157 0.790 0.740
Threshold location

�1 0.587 0.586 0.587 0.586
CI .
�2 0.738 0.745 0.791 0.808
CI [0.731,0.747] [0.732,0.751] [0.785,0.798] [0.788,0.815]
�3
CI
Variables

Drought dummy (type 1) -0.067*** -0.067*** Drought dummy (two types) -0.073*** -0.064***
(0.010) (0.010) (0.008) (0.008)

Drought index (type 1) Drought index (two types)
Rain< �1 -0.496*** -0.500*** Rain< �1 -0.560*** -0.585***

(0.073) (0.074) (0.068) (0.070)
�1  Rain < �2 -0.140*** -0.131*** �1  Rain < �2 -0.164*** -0.176***

(0.035) (0.029) (0.025) (0.020)
Rain > �2 0.065** 0.075*** Rain> �2 0.092*** 0.070***

(0.029) (0.023) (0.022) (0.017)

Drought dummy (type 2) -0.072*** -0.071***
(0.010) (0.009)

Drought index (type 2)
Rain< �1 -0.943*** -0.862***

(0.123) (0.115)
�1  Rain < �2 -0.424*** -0.345***

(0.064) (0.060)
Rain > �2 0.169*** 0.240***

(0.058) (0.046)
Controls
Cereal area (log) -0.132*** -0.134***

(0.035) (0.035)
Fertiliser (log) 0.076*** 0.074***

(0.015) (0.015)
Irrigation (log) 0.133*** 0.133***

(0.023) (0.023)
Rural population (log) 0.063** 0.064**

(0.030) (0.031)

Constant 0.041*** 0.033*** 0.049*** 0.052***
(0.010) (0.008) (0.006) (0.005)

N 8,917 8,436 8,917 8,436
No. of districts 241 228 241 228
R-squared 0.127 0.272 0.116 0.260

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table
shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding
with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year of the sample
period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds and also the a set
of control variables included in the regression.
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Table 3.6: Precipitation threshold regressions by irrigated area

Existence of thresholds Low irrigation High irrigation

P-value
Single 0.000 0.000 0.000 0.000
Double 1.000 1.000 0.003 0.007
Triple 0.877 0.917 0.237 0.307

Threshold location

�1 0.601 0.602 0.793 0.791
CI . [0.784,0.798] [0.781,0.797]
�2 0.998 1.004
CI [0.989,1.004] [0.990,1.010]
�3
CI

Variables

Drought dummy -0.105*** -0.117*** -0.079*** -0.066***
(0.013) (0.013) (0.013) (0.012)

Rain< �1 -1.001*** -1.068*** -0.155*** -0.143***
(0.123) (0.124) (0.028) (0.026)

�1  Rain < �2 -0.022 -0.004 0.087*** 0.086***
(0.033) (0.023) (0.032) (0.029)

Rain> �2 -0.090*** -0.062**
(0.027) (0.024)

Controls
Cereal area (log) -0.218*** -0.008

(0.044) (0.052)
Fertiliser (log) 0.049** 0.125***

(0.019) (0.014)
Irrigation (log) 0.065** 0.176***

(0.029) (0.036)
Rural population (log) 0.166*** -0.107**

(0.040) (0.051)

Constant 0.083*** 0.089*** 0.059*** 0.049***
(0.009) (0.007) (0.007) (0.007)

N 4,477 4,218 4,440 4,218
No. of districts 121 114 120 114
R-squared 0.174 0.262 0.081 0.24

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the
district level. The top part of the table shows the results for the testing procedure for the number of
thresholds estimated. Below this the threshold locations are shown corresponding with the number
of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or
last year of the sample period. The final part of the table shows the regression estimates for the
impact of drought between each of the thresholds and also the a set of control variables included in
the regression.
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Table 3.7: Precipitation threshold regressions across agro-ecological zones

Existence of thresholds Arid Semi-arid Sub-humid Humid

P-value
Single 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010
Double 0.103 0.410 0.000 0.000 0.043 0.013 0.933 0.030
Triple 0.487 0.413 0.733 0.050 0.807 0.780 0.910 0.580

Threshold location

�1 0.638 0.669 0.585 0.585 0.793 0.744 0.882 0.718
CI [0.610,0.672] [0.619,0.707] [0.785,0.807] [0.728,0.751] [0.842,0.895]
�2 0.792 0.786 1.026 0.874 0.884
CI [0.783,0.799] [0.777,0.792] [1.005,1.030] [0.796,0.880] [0.832,0.894]
�3
CI

Variables

Drought dummy -0.146*** -0.121*** -0.072*** -0.055*** -0.098*** -0.047*** -0.014 -0.044***
(0.034) (0.034) (0.010) (0.009) (0.016) (0.011) (0.013) (0.009)

Rain< �1 -0.690*** -0.725*** -0.552*** -0.530*** -0.183*** -0.015 -0.218*** -0.555***
(0.232) (0.193) (0.076) (0.076) (0.038) (0.010) (0.045) (0.125)

�1  Rain < �2 0.116 0.014 -0.140*** -0.173*** 0.104*** -0.232*** -0.031 -0.254**
(0.117) (0.077) (0.029) (0.025) (0.034) (0.038) (0.060) (0.070)

�2  Rain < �3 0.103*** 0.080*** -0.073* -0.091*** -0.024
(0.023) (0.019) (0.038) (0.032) (0.083)

Rain> �3 0.031
(0.025)

Controls
Cereal area (log) 0.022 -0.110** 0.088 -0.278**

(0.103) (0.045) (0.054) (0.092)
Fertiliser (log) 0.129** 0.045*** 0.073*** 0.033

(0.059) (0.015) (0.026) (0.025)
Irrigation (log) 0.271** 0.238*** 0.097*** 0.001

(0.128) (0.025) (0.024) (0.024)
Rural population (log) 0.002 0.015 -0.181** 0.074

(0.090) (0.039) (0.072) (0.094)

Constant 0.079** 0.105*** 0.050*** 0.047*** 0.063*** 0.045*** 0.032*** 0.061***
(0.037) (0.026) (0.008) (0.007) (0.007) (0.006) (0.010) (0.014)

N 851 777 4,551 4,551 2,886 2,849 629 259
No. of districts 23 21 123 123 78 77 17 7
R-squared 0.193 0.376 0.138 0.312 0.094 0.211 0.082 0.273

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the table shows the results for the testing
procedure for the number of thresholds estimated. Below this the threshold locations are shown corresponding with the number of thresholds estimated. Confidence intervals
are not given if the interval overlaps with the first or last year of the sample period. The final part of the table shows the regression estimates for the impact of drought between
each of the thresholds and also the a set of control variables included in the regression.
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Table 3.8: Precipitation threshold regressions by crop (I)

Existence of thresholds Rice Wheat Maize

P-value
Single 0.000 0.000 0.000 0.000 0.000 0.000
Double 0.000 0.000 0.027 0.080 0.000 0.000
Triple 0.677 0.663 0.810 0.927 0.100 0.030

Threshold location

�1 0.731 0.745 0.678 0.715 0.608 0.607

CI [0.713,0.815] [0.718,0.824] [0.631,0.698] [0.677,0.731]
�2 0.841 0.850 0.859 0.926 0.756 0.755
CI [0.821,0.853] [0.819,0.861] [0.846,0.871] [0.860,0.936] [0.732,0.772] [0.723,0.772]
�3 1.089
CI [1.057,1.104]

Variables

Drought dummy -0.082*** -0.079*** -0.049*** -0.027*** 0.006 0.046***
(0.012) (0.011) (0.009) (0.009) (0.013) (0.016)

Rain< �1 -0.411*** -0.366*** -0.158*** -0.157*** -0.482*** -0.494***
(0.036) (0.036) (0.024) (0.023) (0.063) (0.066)

�1  Rain < �2 -0.184*** -0.137*** -0.030 -0.056** -0.203*** -0.241***
(0.037) (0.034) (0.024) (0.022) (0.032) (0.036)

�2  Rain < �3 0.028 0.048* 0.058*** 0.025 0.012 -0.075**
(0.027) (0.026) (0.020) (0.022) (0.032) (0.035)

Rain > �3 0.214***
(0.053)

Controls
Cereal area (log) -0.001 -0.033 0.112**

(0.058) (0.049) (0.050)
Fertiliser (log) 0.122*** -0.02 0.022

(0.021) (0.021) (0.021)
Prop irrigated (log) 0.111*** 0.251*** 0.015

(0.030) (0.025) (0.027)
Rural population (log) -0.146*** -0.080** -0.063

(0.054) (0.038) (0.044)

Constant 0.078*** 0.071*** 0.028*** 0.027*** 0.041*** 0.029***
(0.007) (0.007) (0.007) (0.007) (0.010) (0.010)

N 6,882 6,475 6,586 6,549 5,402 5,365
No. of districts 186 175 178 177 146 145
R-squared 0.108 0.182 0.035 0.175 0.043 0.052

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the
table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown
corresponding with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year
of the sample period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds
and also the a set of control variables included in the regression.
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Table 3.9: Precipitation threshold regressions by crop (II)

Existence of thresholds Barley Sorghum Millet

P-value
Single 0.080 0.037 0.000 0.000 0.000 0.000
Double 0.223 0.340 0.000 0.000 0.013 0.023
Triple 0.593 0.697 0.667 0.670 0.053 0.083

Threshold location

�1 0.831 0.831 0.623 0.623 0.616 0.615

CI [0.793,0.848] [0.793,0.848] [0.585,0.646] [0.585,0.645]
�2 0.812 0.812 0.728 0.727
CI [0.787,0.824] [0.787,0.824] [0.709,0.745] [0.689,0.745]
�3 0.855 0.856
CI [0.810,0.868] [0.809,0.868]

Variables

Drought dummy -0.016 -0.021* -0.023** -0.027** -0.057*** -0.053***
(0.011) (0.011) (0.012) (0.012) (0.013) (0.012)

Rain< �1 -0.094*** -0.096*** -0.548*** -0.572*** -0.393*** -0.439***
(0.021) (0.022) (0.065) (0.067) (0.058) (0.060)

�1  Rain < �2 0.001 0.002 -0.091** -0.110*** -0.217*** -0.255***
(0.026) (0.024) (0.039) (0.038) (0.045) (0.046)

�2  Rain < �3 0.139*** 0.136*** 0.028 0.001
(0.029) (0.027) (0.042) (0.041)

�3  Rain 0.175*** 0.158***
(0.031) (0.029)

Controls
Cereal area (log) -0.036 -0.115** -0.064

(0.049) (0.050) (0.050)
Fertiliser (log) -0.055*** -0.013 0.02

(0.019) (0.017) (0.022)
Irrigation (log) 0.043 0.012 0.106**

(0.034) (0.022) (0.041)
Rural population (log) 0.005 0.052 0.128**

(0.044) (0.039) (0.050)

Constant 0.013 0.015* 0.021** 0.026*** 0.039*** 0.044***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

N 2,997 2,997 5,069 5,069 4,699 4,662
No. of districts 81 81 137 137 127 126
R-squared 0.026 0.036 0.059 0.064 0.059 0.095

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level. The top part of the
table shows the results for the testing procedure for the number of thresholds estimated. Below this the threshold locations are shown
corresponding with the number of thresholds estimated. Confidence intervals are not given if the interval overlaps with the first or last year
of the sample period. The final part of the table shows the regression estimates for the impact of drought between each of the thresholds
and also the a set of control variables included in the regression.
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3.8 Discussion

The fact that agricultural production in India as a whole became more resilient to drought

after the mid-1980s highlights the role that intensive production techniques can have in

allowing a large number of farmers to avoid crop losses due to drought. Indeed, the

substantial reduction in drought impact on cereal productivity after this time coincides

with the wider di↵usion of Green Revolution technologies across growing region beyond the

first adopters of these technologies. Perhaps the most significant move was the increased

use of irrigation from groundwater sources, which became increasingly available due to

improvements in low-cost pumping technology (Sekhri, 2014). Groundwater irrigation is

particularly e↵ective at mitigating drought since its application can be timed to match

periods of rainfall deficiency. However, the pattern of drought impacts that we observe

in this paper highlights potential challenges that India faces in mitigating drought in

the future. Given that we identify drought years in the early 2000s as having the same

relative impact on production losses as drought thirty years earlier, we show that large

drought events continue to pose a considerable problem for Indian agriculture. Tellingly,

although we find this pattern holds for our measure of district cereal yield, the pattern

is also identified for rice, the most commercially important cereal. This has two main

implications. Firstly, it challenges the finding of Birthal et al. (2015) which posits that rice

yields have become more drought tolerant over time. Second, it also highlights possible

vulnerability of rice production systems to drought in India in the future. Given that

many high productivity rice areas, such as in Punjab, have historically benefitted from

abundant irrigation primarily from groundwater, the ability of these areas to deal with

drought in the future is increasingly being called into question. Indeed, one of the leading

explanations for this upswing in drought impacts in recent years is the increasing pressure

on water resources, especially those from groundwater sources. For instance, as is noted

by Shah et al. (2009, p.12), a heavy reliance of groundwater can be problematic since,

“During a drought, groundwater aquifers are doubly hit: there is less rainfall and little

recharge to aquifers but there is also additional demand pressure on the resource as farmers

struggle to save their crops and livelihoods.” Since unchecked exploitation has led to
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depletion of key aquifers over time, farmers have in recent years, lacked the ability to

mitigate drought losses e↵ectively by exploiting water that previously allowed them to

deal with periods of deficient rainfall. This was particularly the case for drought years

in the early-2000s when a series of consecutive droughts in many areas led to high levels

of groundwater use which lowered water tables, making it more di�cult to extract water

from these sources in successive drought years.15 While it would be premature to conclude

that the severity of impacts in the latter part of our sample constitutes a new trend of

increasing impacts of drought on agriculture in India, these findings suggest that there

is no room for policymakers to be complacent about resilience to drought in the future.

Further work into investigating drought impacts up until the present day are vital for

understanding the evolving vulnerability to drought.16

A key advantage of the method we use to evaluate drought impacts is that it allows us

to evaluate the suitability of definitions used by policymakers to define droughts. The

definition used to declare drought in India is whether rainfall falls below 75% of long-

run average seasonal rainfall. Additionally, a drought is classified as severe if rainfall

falls below 50% of the average. The definition of drought is crucial for the declaration

of drought in an area and thus how quickly resources can be diverted into managing the

consequences of this event. The declaration is decided at state-level generally by the end of

the monsoon rains in October. Funds can then be requested from the central government

to provide relief (Ministry of Agriculture, 2009). While our results find empirical support

for these thresholds for the country on average, we also find substantial heterogeneity

in terms of agro-climatic characteristics and crop choice. For instance, in arid areas,

probably as a result of the need to grow relatively drought tolerant crops to cope with

persistently low levels of rainfall, we find that o�cially imposed thresholds misspecify the

conditions necessary for a drought to significantly harm agricultural productivity. This

may lead to the ine�cient allocation of resources. The findings from this work suggest that

15Hornbeck and Keskin (2014) also find that in the context of U.S agriculture, increasing exploitation of
groundwater irrigation does not necessarily lead to the reduced sensitivity of crop productivity to drought
in the long term. However, in contrast to explanations o↵ered in India which emphasise growing depletion
of these resources as the primary limiting factor in mitigating drought, they suggest that the adoption of
more profitable but more water-intensive crops increases the sensitivity of production to drought.

16At the time of writing in 2016, India was undergoing one of its most severe droughts in decades.
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policymakers should account for such heterogeneity when designing policies for e↵ective

drought declaration and response to these events in the future.

3.9 Conclusion

This paper has studied the impacts of drought on cereal production in India. To address

some of the shortcomings of previous studies, we assess these impacts using an index of

drought intensity that does not omit drought events that are commonly overlooked by

alternative definitions. This allows us to provide a full assessment of drought impact re-

gardless of how drought is defined. When combined with the threshold regression model

we are able to estimate ranges of a given threshold variable for which drought impacts dif-

fer significantly from each other. A crucial strength of the empirical modelling approach

used in this paper is that we are able estimate the locations of thresholds of drought im-

pact. The advantage of this can clearly be seen when applied to drought impacts over

time. Rather than assuming that trends in drought impact are smooth over time, we

have been able to identify a period of abrupt increase in average drought impacts in recent

years. This contrasts with previous research that has suggested that drought impacts have

steadily decreased over time. The recent period of increased drought impact corresponds

with a series of particularly severe droughts. However, evidence from work done elsewhere

highlights the increasing scarcity of water resources that may have led to a reduced abil-

ity on behalf of farmers to access su�cient water during drought. This underscores the

potential vulnerability of water-intensive production systems that have previously been

able to e↵ectively cope during periods of drought. Future work is needed to ascertain the

interaction between water availability and drought years in order to understand whether

the agricultural sector in India will be able to cope with the threat of more frequent and

intense droughts due to climate change.

This paper also investigates the ranges of proportion of rainfall for which the impacts are

negative. The estimation approach we use enables us to examine the validity of drought

definitions frequently used to declare drought by the Indian government by identifying

thresholds of precipitation that indicate increased drought impact. We find that the rain-
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fall thresholds previously used by policymakers to measure drought severity by the In-

dian government are not very far from the thresholds beyond which we estimate negative

marginal e↵ects for drought for the whole of India. However, it is important to notice

that our estimated thresholds di↵er substantially according to agro-ecological zones and

the particular cereal under consideration. This suggests that a criteria that takes into

account the agro-ecological heterogeneity of a large country like India would provide more

e↵ective indicators of drought. The fact that we perform the analysis for the six major

cereals in India highlights that impacts di↵er substantially and that rice seems to be the

least drought tolerant of the crops in our sample. Similarly, the fact that the crop-specific

impacts are so heterogeneous seems to highlight that crop choice may be an important

aspect of coping with droughts in the future.
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Chapter 4

The growing importance of nature:

Did the Green Revolution

consolidate agro-climatic

productive advantages in India?
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Abstract

This paper examines the extent to which modernisation in agriculture consolidates productivity

gains in the most naturally suited areas. A common contention is that characteristics of higher-

yielding variety (HYV) seeds developed during the Green Revolution made them complementary

to higher quality land attributes such as soil quality, climate, and terrain. As such, yield increases

achieved since the Green Revolution may have been biased towards areas of higher land quality.

I investigate this claim by empirically estimating whether yields for rice and wheat increased

relatively more in relatively favourable environments following the onset of the Green Revolution

in India. To do this I use half a century of district-level data combined with continuous and crop-

specific measures of land suitability from the FAO Global Agro-Ecological Zones project. I attempt

to identify the bias of Green Revolution technologies by exploiting the di↵erential timing of district-

level adoption of new seed varieties, comparing variation in yields and agro-climatic suitability for

districts within the same state. I find evidence that for both rice and wheat, yield gains after

the Green Revolution significantly increased the productive advantages of districts with higher

agro-climatic suitability for crop growth. This result is consistent across subsets of geographical

regions, over time, and does not seem to be driven by di↵erences in the di↵usion of HYVs across

districts. I also estimate that gains to land quality were highest in irrigated areas, suggesting that

the availability of controllable water was key for determining whether more suitable area could

take advantage of favourable land characteristics. Overall, this work suggests that increased e↵ort

should be put into designing agricultural technologies that grow more e↵ectively in less favourable

areas in order to maintain agricultural productivity under increased environmental stress.
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4.1 Introduction

A
gro-ecological characteristics, such as climate and soil quality, are amongst

the most fundamental factors determining the production possibilities of agri-

culture. Understanding the role that these factors play in the production pro-

cess is now a burgeoning area of research owing to concerns that future environmental

problems, such as climate change and land degradation, may make growing conditions

more challenging in coming years (Naylor, 1996). A crucial consideration is the role that

certain types of technology play in potentially relaxing these environmental constraints.

The ability of agricultural technologies to e↵ectively increase crop yields under a wide

range of agro-ecological conditions will be of high importance in continuing to increase the

productivity of the sector (Hornbeck, 2012).

The extent to which agricultural technologies allow farmers to achieve higher crop yields

across di↵erent agro-ecological environments depends on the interaction of technology and

environmental features in the production process (Mendelsohn et al., 2006). On the one

hand, a new technology could act as a substitute for certain agro-ecological factors. For

instance, fertiliser could substitute for soil nutrients, allowing farmers to achieve high yields

in areas of low soil quality. On the other hand, technology may require a set of suitable

conditions in which to be e↵ective, such as a stable and temperate climate. In this case,

technology is complementary to agriculturally favourable aspects of land. The extent to

which either of these interactions is true will determine how reliant production systems

are on underlying environmental quality as technology becomes more advanced.

Previous evidence shows that agricultural technologies have helped to markedly increase

the average productivity of land in many areas of the world (Ruttan, 2002; Federico, 2005).

These production practices, broadly characterised as intensification, typically involve the

replacement of traditional seed varieties with improved varieties that are more responsive

to the application of inputs, such as inorganic fertilisers, pesticides, and irrigation. These

intensive practices now form the dominant model for crop production across the world

(Tilman et al., 2002). A leading example of this was the Green Revolution. With this

came the adaptation of improved varieties of widely grown staple crops, such as rice and
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wheat, to new growing conditions which enabled farmers to achieve higher yields in many

parts of Asia in the latter half of the twentieth century (Evenson and Gollin, 2003; Hazell,

2009). For India in particular, the aggregate increase in productivity allowed the country

to become self-su�cient in major food grains a decade or so following the introduction of

new technology in the mid-1960s (Shreedhar et al., 2012).

Despite impressive increases in average yields, however, the Green Revolution model of

agricultural development continues to attract a number of critics. A common contention

is that Green Revolution technologies failed to evenly spread yield benefits across growing

areas (Pingali, 2012). Specifically, areas where soil was of high quality, had good supplies

of water, and flat terrain are perceived to have experienced yield gains that were greater

compared with areas less well endowed with these features. The basis for these claims rests

on the idea that technological change during the Green Revolution led to the development

of technologies that were complementary in the production process to better quality land

(Evenson and Gollin, 2003; Barbier, 2010). A centralised agricultural innovation process

during this period focused on developing a small number of varieties that would deliver

yields gains under ‘optimal’ growing conditions (Anderson et al., 1982; Baranski, 2015).

The consequence of this environment-technology complementarity would plausibly mean

that yield growth was biased towards land of higher quality, increasing the productive

advantage of areas that were already most naturally favourable for agricultural production.

The aim of this paper is to empirically test the validity of this hypothesis. Two previous

studies have examined this question by studying di↵erences in regional agricultural pro-

ductivity growth in India following the Green Revolution (Fan et al., 2000a; Palmer-Jones

and Sen, 2003). These papers find that regions defined as ‘more favourable’ for agriculture

saw yields increase by more than in ‘less favourable’ areas. These studies, however, su↵er

from a number of shortcomings that could lead to a misunderstanding of the role Green

Revolution technology played in increasing the returns to land quality. First, favourability

for agriculture is arbitrarily defined according to groupings of areas sharing similar agro-

ecological characteristics. This leads to potential problems in isolating the e↵ect of natu-

ral suitability on productivity due to confounding factors that also influence agricultural

productivity, such as political institutions, that may be common across agro-ecological re-

135



gions. The discrete classification of regions also precludes estimating the magnitude of any

possible land quality bias, since agro-ecological conditions between regions are not quan-

titatively comparable. Second, the agronomic conditions required to grow specific crop

types, such as rice and wheat, vary substantially. Thus, a measure of aggregate favoura-

bility for agriculture is likely to lead to a misleading measure of the conditions that make

an area suitable for growing specific crops. Therefore, measures of crop-specific suitability

should ideally be used to study this question.

To address the shortcomings of previous studies, I use district-level agricultural data be-

tween 1957 and 2009, covering years before, during, and after the Green Revolution in

India. This allows me to study whether the arrival of new technology increased produc-

tive gains in more naturally suited areas relative to less suitable areas. I study rice and

wheat, which were both the focus of international and national research e↵orts to increase

yields of crops crucial to Indian food security. While both crops are cultivated across a

range of di↵erent growing conditions, individual crop needs in terms of climate, soil, and

terrain di↵er. Accordingly, I separately test whether productivity growth for each crop

was highest in districts most naturally suited for growing that crop. To do this, I exploit

a crop-specific measure of agricultural suitability, which integrates natural characteristics

such as climate, soil quality, and terrain to assess the potential suitability for growing each

crop.

I model the onset of the Green Revolution as a productivity shock to agriculture within

a di↵erences-in-di↵erences framework. To implement this strategy, I exploit the staggered

timing in the di↵usion of technology across districts, indicated by high yielding seed va-

rieties (HYVs). This allows me to examine whether the arrival of new technology led to

higher yield growth in more suitable districts relative to less suitable districts. This strat-

egy rests on the assumption that technological innovation embodied in seed varieties was

largely a result of external, international research e↵orts that led to the development of

HYVs (Foster and Rosenzweig, 1996). One issue with implementing this strategy is that

a range of institutional factors may have a↵ected a district’s exposure to this productivity

shock. To account for this, I exploit within-state variation by accounting for a set of state-

by-year fixed e↵ects. Since expenditure on rural education, infrastructure, and agricultural
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support policies, such as public research and extension services, are largely budgeted at the

state-level (Fan et al., 2000b; McKinsey and Evenson, 2003), this minimises concerns that

regional institutions drove di↵erences in productivity over time. This empirical strategy

thus enables me to model di↵erences in yield gains across areas of varying agro-ecological

suitability within areas that share similar institutional characteristics and exposure to new

technologies.

The results of this study show that the arrival of Green Revolution technology, on aver-

age, increased the relative productive advantage of areas more naturally suited to crop

growth. This is common for both rice and wheat. I estimate that a one-standard devia-

tion increase in district land quality led to a 4% increase in the relative yield advantage to

more suitable areas for rice growing districts. For wheat, this e↵ect is larger. A standard

deviation increase in land quality increased relative yield advantage by 8%. These results

remain robust to the inclusion of a set of time-varying controls, such as rural population

density, farm size and literacy, which could explain variation in agricultural productivity

between districts. These results are also apparent for di↵erent sub-sets of geographical

regions, suggesting that technology had similar e↵ects across di↵erent types of land and

institutional settings. The results also show that these e↵ects have remained similar in

magnitude over time. One possibility is that these results reflect the uneven di↵usion of

Green Revolution technology over time. To investigate this, I test whether HYV seeds

were more intensely adopted in more suitable areas. I find that there is no significant cor-

relation between proportion of cropped area devoted to HYVs and the higher district land

suitability, which provides some evidence that di↵erences in yield gains were not driven

by unequal di↵usion of HYVs across districts.

In addition to agro-climatic suitability, irrigation has been posited as important in de-

termining how favourable an area is for the use of modern seed varieties (Hazell, 2009).

Previous studies have shown that the availability of supplementary water from sources such

as dams and groundwater, markedly improved agricultural productivity (Duflo and Pande,

2007; Sekhri, 2014). Accordingly, I estimate separate regressions for high and low irrigation

areas. The results suggest that for both crops, irrigated areas saw increased yield gains to

land quality. This e↵ect was not significant for low irrigation areas. These results support
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the view that irrigation was a key facilitating factor in allowing farmers to achieve higher

yields during the Green Revolution, although its availability was particularly important

for allowing farmers to consolidate advantageous environmental characteristics.

Overall, these findings support the hypothesis that, although achieving impressive increases

in aggregate production, the type of agricultural modernisation seen during the Green

Revolution in India increased the relative importance of favourable agro-ecological factors

in achieving higher yields. These findings have a number of implications. First, given that

the marginal productivity of technology increases with land quality, deterioration in factors

that determine land quality, such as climate and soil quality, means that these technologies

become less e↵ective as the resource base declines. This suggests that the adaptation

challenge to declining environmental quality with current technology is likely to be greater

compared with a counterfactual scenario where technology e↵ectively substitutes for high

quality environmental characteristics and reduces agriculture’s relative dependence in these

factors. Indeed, a growing research area uses historical data to assess whether agricultural

technology has substantially changed the relative importance of natural factors, such as

climate and soil, in determining agricultural outcomes. Whether land as a resource has

declined in its importance for agriculture has been debated by Schultz (1951) and Johnson

(2002). Both authors argue that the relative importance of land has reduced due to

modernisation. Empirical support for this is, however, not found by Hornbeck (2012)

who shows that land characteristics have maintained their dominance in terms of land

values on farms in the United States. He groups farm land in the U.S. into discrete

categories based on average temperature, precipitation, and soil group to examine whether

agricultural modernisation has changed the relative influence of these characteristics on

farm values over time. He finds that there is no evidence of a change in the influence of

these characteristics on farm values between 1920 and 2002. This suggests that, on average,

improvements in agricultural technology preserve relative environmental advantages.1 My

findings suggest a stronger result than this: the relative importance of agro-ecological

1The degree to which improvements in agricultural technology have enabled farmers to adjust to new
environments is also studied by Olmstead and Rhode (2010) who examine the spatial distribution of wheat
growing areas between 1939-2009. They find evidence of very substantial adaptation of wheat to harsher
growing environments over time and attribute this to biological innovation, which led to improvements in
wheat cultivars that could be grown in previously unsuitable growing areas.
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characteristics can increase with higher levels of technology.

Second, these findings also relate to works that examine reasons for variation in regional

agricultural growth in India. Previous work has highlighted that higher agricultural pro-

ductivity is associated with substantial reductions in rural poverty, since farm incomes and

wages increase as a result (Datt and Ravallion, 1998). Determining whether one of the

explanations for di↵erences in regional productivity is due to the inadequacy of technol-

ogy to work e↵ectively across agro-climatic regions is important for prioritising resources

that address these inequalities. For instance, a failure of technology to work e↵ectively

across growing areas places precedence on diverting resources into improvements to make

technologies more applicable to work under diverse agro-ecological contexts rather than

on policies that support technology uptake. One lesson that can be learned from this is

that while centralised research into agricultural technologies may be an e↵ective strategy

for delivering productivity increases on average, more emphasis on tailoring technology to

suit local conditions is needed to address crop growing constraints to lower quality land.

The rest of this paper is structured as follows. Section 4.2 provides background on the

Indian Green Revolution and describes the basis for the claim that areas already most

suitable for production benefitted the most from the introduction of new technology. The

empirical approach is outlined in Section 4.3. The data used in the study are described in

Section 4.4 with particular attention paid to the construction of the land suitability index.

Results and discussion follow in Sections 4.5 and 4.6, with Section 4.7 concluding.

4.2 Green Revolution in India

4.2.1 Background

The rapid intensification of the agricultural sector in India, known as the Green Revolution,

began in the mid-1960s after a period of relative stagnation in the productivity of staple

crops following colonial independence in 1947. The productive gains brought about by

the Green Revolution are credited with allowing India, and a number of other countries

across Asia, to become self-su�cient in the production of key foodgrains, such as rice
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Figure 4.1: Average rice and wheat yields in India (1957-2009)

and wheat, for domestic consumption in the decades following its onset (Shreedhar et al.,

2012). These two crops were the principal beneficiaries of productivity gains over this

period. This is illustrated in Figure 4.1, which shows the increase in average yields for

rice and wheat for this period. A steady upward trend can be seen for both crops in the

late 1960s, with average productivity increasing by 212% and 290% for rice and wheat

respectively between 1957-1966 and 2000-2009. These two crops continue to make up

a highly significant proportion of India’s agricultural sector, with 36 percent of current

cropped area planted to rice and 22 percent devoted to wheat (Shreedhar et al., 2012).

This growth in land productivity over time was primarily facilitated by the development

and use of new varieties of seeds that embodied characteristics that allowed for higher

yields. These improved crop varieties, known as ‘High Yielding Varieties’, were first re-

leased to Indian farmers in 1966 as the result of international collaboration to develop
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new varieties better suited to growth in many Asian countries.2 These seed varieties were

integral to the success of the Green Revolution since, when combined with other modern

inputs, like fertiliser and pesticide, much higher yields could theoretically be achieved.

The most significant development common to these new varieties was the incorporation

of ‘semi-dwarf’ characteristics which had previously been used successfully in a number

of countries, such as Mexico. The significance of dwarf features was that they allowed

for substantial increases in the amount of fertiliser that could be applied to these new

varieties, in contrast to traditional varieties which, due to their long stems, were prone to

falling over when heavily fertilised (Dalrymple, 1979).3

4.2.2 The importance of irrigation

Even in areas where climate and soil are deemed amenable for crop production, HYVs

generally required the steady supply of water to realise their yield potential. As is argued

by (Hazell, 2009), the Green Revolution involved a package of inputs. Although HYV seeds

allowed for higher yield growth, this occured when combined primarily with fertiliser and

irrigation. This meant a premium was placed on abundant and stable supplies of water,

since HYV seeds were more responsive to higher water application. Indeed, previous work

by Fan et al. (2000a) has shown that rates of productivity growth following the Green

Revolution were highest in irrigated areas of India. Additionally, Sekhri (2014) shows that

the availability of more abundant groundwater irrigation was associated with higher levels

of fertiliser use. Furthermore, Duflo and Pande (2007) find that districts benefitting from

irrigation as a result of large dams planted more HYVs. Given that irrigation was a crucial

part of the Green Revolution package, evaluating how the availability or non-availability

of irrigation a↵ected the ability of farmers to grow crops under varying agro-ecological

conditions is of high importance.

2Institutions such as the Consultative Group on International Agricultural Research (CGIAR), the
International Maize and Wheat Improvement Centre (CIMMYT) and the International Rice Research
Institute (IRRI) were amongst the most important of a number of institutions that played a role in the
development of new technologies (Pingali, 2012).

3This point was succinctly summarised by Norman Borlaug in his Nobel Peace Prize acceptance speech:
“If the high-yielding dwarf wheat and rice varieties are the catalysts that have ignited the Green Revolution,
then chemical fertilizer is the fuel that has powered its forward thrust (Borlaug, 1970).”
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4.2.3 Land and technology complementarity

Despite impressive yield increases on average, a common criticism of agricultural produc-

tivity growth since the Green Revolution has been its inequality in achieving growth across

the country (Evenson and Gollin, 2003).4 One explanation for this inequality is related to

the contention that the characteristics of newly developed seed varieties made them most

e↵ective on land closest to optimal conditions. Although agricultural technologies can

act as substitutes for various features of the environment (Sunding and Zilberman, 2001;

Hornbeck, 2012), a number of authors have emphasised that the nature of technological

change during the Green Revolution was to develop technologies that were complemen-

tary to higher quality land attributes (Evenson and Gollin, 2003; Barbier, 2010). As is

written by Barbier (2010, p.569), “the application of the Green Revolution agronomic

technologies, such as fertilizers, pesticides, irrigation and mechanization, mainly boosted

the productivity of arable lands suitable to agricultural intensification and located in fa-

vorable environments with good quality soils, plentiful rainfall and freshwater supplies,

and low or moderate slopes.”5

A key reason for these claims stems from the nature of technological innovation during the

Green Revolution. Particularly important is the reliance on externally-driven biological

innovation to improve crop yields (Anderson et al., 1982). For instance, as is argued in

recent work by Baranski (2015) on the history of Green Revolution breeding programmes,

the focus of plant breeding programmes by international organisations and later by Indian

scientists underwent a structural change in the years leading up to the Green Revolution.

This influenced the degree to which new biological innovations were successful at spread-

ing productivity gains across di↵erent growing environments. The reasons for this were

twofold. First, in order to avert future crises in food availability, breeding e↵orts were fo-

cused on areas of existing high productivity that could be counted on to yield substantial

increases in aggregate domestic supply. Hence, breeding e↵orts were focused on areas of

high productivity, such as Punjab, owing to the impact that increasing productivity in

4See Pingali (2012) for a discussion of some of the other potential limitations of the Green Revolution,
including soil and water degradation, reduced dietary diversity, and gender inequality.

5For instance, Pingali (1989) argues that soil that can hold a greater amount of water and nutrients can
yield higher gains from intensification.
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these areas would have on aggregate production. Second, it was assumed by agricultural

scientists at the time that it was possible to breed a small set of crop varieties that had

wide application by assuring these varieties worked best on high quality land.6 These

varieties would then be assumed to work under more marginal conditions. Thus, breed-

ing e↵orts focused on this idea of ‘wide adaptation’ meant that research e↵orts went into

development of varieties under optimal conditions, which lead to a “systemic bias against

marginal agriculture” (Baranski, 2015).7

4.2.4 Crop-specific di↵erences

It is also of policy relevance to determine whether the pattern of productivity gains with

respect to land quality has been homogenous across crop types since the Green Revolution.

Information about the relative success or failure to transform crop breeding improvements

into yield gains across environments is crucial to prioritising future investments with re-

spect to particular crop types. Rice and wheat, the two crops studied in this paper, were

the prime beneficiaries of these improvements.

Rice is largely grown under flooded conditions during the warm summer season in India.

These growing conditions mean that water is a key determinant of how successfully rice can

be grown. Water requirements for rice are substantially higher when compared with many

other crops, including wheat (Dalrymple, 1979).8 The highest yields are, thus, achieved

where average rainfall is high and predictable, or where irrigation facilities are available

(FAO, 2012). For early HYV varieties in India, water was indeed a crucial requirement.

This meant that productivity gains were largely confined to fertile land with very good

supplies of water (Estudillo and Otsuka, 2013). Wheat is grown globally across of range of

agro-climatic regimes, including extreme conditions in arctic, humid, and highland areas.

In India, wheat is generally grown in drier parts of the country and over winter or spring

6For instance, as is noted by Anderson et al. (1982, p.7) “The conception of scientific research as
embodied in IRRI was exogenous, simple, and centralist.”

7Baranski (2015) additionally goes on to argue that a biased focus on producing varieties suited to the
best environments was due to a combination of the research goals of international organisations and the
centralised power of scientists based primarily in north-western states which led to biased focus on fertile
areas as opposed to more marginal growing areas.

8For instance, globally, rice is estimated to receive 24-30 percent of available freshwater supplies
(Bouman et al., 2006).
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seasons. The amount of irrigation needed depends on exposure to high temperature,

variety type and soil (FAO, 2012), although the amount of water needed is significantly

less than the amount needed to grow rice. Thus, access to irrigation is less important for

wheat compared to rice.

On top of the general adaptability of these crop types across agro-ecological conditions,

progress in developing new varieties to grow under a range of conditions may also be crop-

specific. For instance, rice growing areas in India tend to be more heterogeneous in growing

conditions which may have made it more di�cult to develop rice varieties suited specially

to each area (Evenson and Gollin, 2003; Estudillo and Otsuka, 2013). In contrast, wheat

varieties released at the onset of the Green Revolution were better suited to cope with

application across wider growing areas. This has led to a small number of ’multi-zonal’

varieties maintaining their dominance as primary cultivars since early on in the Green

Revolution (Munshi, 2004). In addition, Lantican et al. (2003) provide evidence using

yield trial data that, globally, the Green Revolution has been successful in pushing forward

the production possibility frontier of marginal wheat environments. Similarly, Olmstead

and Rhode (2008, 2010) chronicle the impact of cultivar improvements in allowing wheat

production in North America to spread to areas that were previously thought unsuitable

for cultivation.9

4.2.5 Biased technological change

The focus of this paper is to investigate how the arrival of new agricultural technology

a↵ects the relative importance of land quality characteristics such as soil and climate in

determining agricultural productivity. In particular, I am interested in whether techno-

logical progress increases the returns to higher quality land. Conceptually this refers to

the potential complementarity between technology and the land quality in the agricul-

9This view of agricultural development places emphasis on the role of technological innovation in
spurring agricultural productivity growth over time. This accords with the view of Olmstead and Rhode
(1993) who argue that the success of public research e↵orts in developing improved crop varieties suited to
di↵erent growing environments were the primary ingredient a↵ecting regional success in U.S. agriculture.
This contrasts with other prominent theories used to explain development, such as the induced innovation
hypothesis, which posits that technological change takes place due to changes in factor prices, so that
technologies will be developed that are factor-saving in the most scarce factor (Hayami and Ruttan, 1971).
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tural production function. Two inputs will be complementary in the production process

if an increase in the level of one input increases the marginal product of the other in-

put. In the case of the Green Revolution, the hypothesis that new technology that was

geared towards achieving high yields under optimal growing conditions would mean that

the marginal product of land quality increases with technology.

In order to illustrate this relationship, I outline a simple agricultural production function

that maps inputs used in the production process to output. This particular specification

makes explicit the role that new technology has on certain inputs and borrows from work

by Ackerman et al. (2015) and Berman (2000) who study the role technological change

has on the productivity of workers of varying skill levels. This can be illustrated using a

Cobb-Douglas production function, which takes the form:

Y
it

= e↵0+Dit↵1K�k0+Dit�k1
it

L�l0+Dit�l1
it

e✏it (4.1)

Y
it

is the yield of a particular crop (production per unit land) in a district i and at time

t. Output is produced using a combination of district-level inputs which are given by

per unit of land. K
it

could embody various inputs, such as the stock labour or capital,

that are available in a district. The term L
it

refers to land quality. I model land quality

as an input into the production process, which is a composite measure of the relative

suitability of factors such as climate, soil and terrain. For each district this is represented

as a scalar for which higher values indicate more favourable conditions for crop growth.

The term e captures average total factor productivity (TFP), which refers to how much

output can be explained by factors not due to the inputs used in the production process.

For example, this could relate to the e�ciency with which inputs are combined to produce

output (Comin, 2008). The error term will capture the district-specific variations from

average TFP over time.

An important innovation of this model is the incorporation of technological change in the

exponent terms, which describes the e↵ect that technology has on the output elasticity

of each factor of production. New technology is modelled by the dummy variable D
it

,

which reflects a shift in technology used in production. This takes the value of one in
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the period that new technology is utilised (and thereafter) and zero in the period before.

An advantage of this specification is that it allows for various possibilities concerning the

nature of technological change. For instance, if technological change leads to an increase

in the marginal product of a particular input, then the coe�cients �
k1 and �

l1 would

take positive values. The focus of this paper is to test the hypothesis that returns to land

quality increased following the introduction of Green Revolution technology. This amounts

to testing whether �
l1 > 0. 10

A convenient feature of the Cobb-Douglas formulation is that it can easily be transformed

into an empirically tractable equation. By taking the natural logarithm of equation 4.1,

we get:

y
it

= ↵0 +D
it

↵1 + �
k0kit +D

it

�
k1kit + �

l0lit +D
it

�
l1lit + ✏

it

(4.2)

As such, a change in the returns to land quality will be seen by sign and significance of the

coe�cient �
l1. In the next section I describe how I empirically estimate this parameter.

4.3 Empirical strategy

4.3.1 Baseline specification

As a baseline estimation strategy, I choose a generalised di↵erences-in-di↵erences approach.

This allows me to test whether district crop yield following the introduction of HYV seeds

increased by more on higher quality land. The benefits of this approach are that I am able

to implement a number of strategies in order to reduce the influence of possible confounding

factors that could explain di↵erences in productivity across districts.

The strategy rests on the assumption that the Green Revolution was a ‘shock’ to agricul-

tural productivity. A key identifying assumption is that this shock was common across

10If, in contrast, the shift in technology is not biased towards any of these factors, then it is the case
that ↵1 is non-zero, so that technology works primarily through increasing total factor productivity and
not through its e↵ect of increasing the returns to particular inputs.
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districts with di↵ering land quality. In one regard, this is likely to be the case since early

research into HYVs was primarily as a result of external, international research that led

to the development of new seed varieties (Foster and Rosenzweig, 1996). On the other

hand, however, it is possible that exposure to this shock was conditioned by a set of other

factors that led to heterogeneity in how exposed certain areas were to this shock. If areas

of higher land quality were more exposed to Green Revolution technology, this would likely

overestimate land quality bias caused by the complementarity of new technology and land

quality. In this section I outline my strategy to account for potential heterogeneity.

To do this I estimate the following baseline equation:

y
ijt

= �0GR
it

+ �1SUIT
i

+ �2SUIT
i

⇥GR
it

+ �X
it

+ ↵
i

+ �
jt

+ ✏
ijt

(4.3)

The dependent variable y
ijt

measures the natural logarithm of crop yield for district i in

state j at time t.11

The crop-specific measure of district land suitability, SUIT
i

, enters the model as an ex-

ogenous, time invariant variable. The construction of this variable is described in the next

section. This variable is continuously ordered so that areas most naturally suited to crop

growth take a higher value in the index. Since the constituent components of suitability

are average climate, soil and terrain characteristics, these are set as fixed over time.12

Technology is included in the model by the inclusion of the variableGR
it

, a dummy variable

indicating the beginning of the Green Revolution, and zero in years before. Importantly, I

allow the onset of the Green Revolution to vary across districts, since some districts began

the process of technology adoption earlier than others. This allows for a more accurate

11The log transformation is preferred for two reasons. First, it generally makes strictly positive variables
like yield behave more in accordance with the normal distribution (Wooldridge, 2015). Secondly, since
district productivity may di↵er substantially between regions, it is more informative to investigate the
relationship between di↵erences in land quality and relative changes in yield rather than absolute changes
in yield.

12Two arguments could potentially be made about land quality not being fixed over time. Firstly,
climate change may have altered the suitability over the sample period. However, since average climate
is calculated between 1961-90, this matches most of this period of study. Secondly, it could be argued
that land degradation is a relevant factor since intensive methods have reduced the natural fertility of soil
over time. Quality data on land degradation is not available to evaluate the possible e↵ect of this claim,
however. The implications of this for agricultural productivity in India are left to future work.
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measurement of the e↵ect of technological change on yields, since it allows me to capture

upward trends in yields associated with Green Revolution technology. I proxy the use of

Green Revolution technology with the adoption of high yielding variety seeds in a district.

These new seeds represent a good indicator of Green Revolution technology since these

allowed for yield increases when combined with other modern, complementary inputs, such

as fertiliser. Thus, the adoption of seeds represents a suite of farming practices adopted

under the Green Revolution umbrella.

Figure 4.2 illustrates the varying times of adoption across the country. The threshold of ten

percent of crop area planted to HYVs is chosen to indicate the onset of the Green Revolu-

tion in each district. This threshold is found by Griliches (1957) to represent “acceptance”

of a technology (in his case hybrid corn) and is motivated by the common assumption

in the technology di↵usion literature that cumulative adoption of a technology tends to

conform to a logistic relationship. For rice, the earliest adopters in the late-1960s were

mainly in the northern states of Punjab and Haryana, as well as in the southern states of

Andhra Pradesh and Tamil Nadu. For wheat, early adoption is also seen for the northern

states and western areas like Gujarat. Areas in the east also adopted early, although these

areas only plant small amounts of wheat. For both crops, most districts in Uttar Pradesh

and Madhya Pradesh adopted later. Interestingly, adoption dates for non-typical wheat

growing areas such as West Bengal are early, although these areas only produce a small

amount of wheat.

The main variable of interest in the model is represented by the interaction term SUIT
i

⇥

GR
it

. The coe�cient of this variable, �2, shows the e↵ect of land suitability has on yields in

the post-GR period relative to earlier periods. A positive estimate of this coe�cient would

indicate that districts with land more suitable for crop production grew faster relative to

less suitable districts after the introduction of modern agricultural technology.

The central empirical aim is to identify whether the application of modern technologies

are biased towards land of higher quality. A key empirical concern is that productivity of

agriculture is likely to be a↵ected by a range of other factors not due to natural constraints

imposed on production, but due to other factors that are omitted from the regression. For
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instance, Fan et al. (2000a) and Binswanger et al. (1993) argue that more ‘favourable’ areas

i.e. those with better land quality, received higher levels of investment in productivity-

enhancing factors. As such, higher productivity growth in more suitable areas may be

due to factors that relate to the political economy of agricultural development rather than

due to technology-land quality complementarity. This may lead to an overestimate of the

e↵ect of technological bias. To deal with these concerns, I pursue a number of empirical

strategies.

Omitted time-invariant factors at the district-level could explain di↵erences in productiv-

ity. For instance, locational factors like the distance to coastal areas, altitude, and major

cities could be systematically related to crop yield in the post-Green Revolution period.

The district fixed e↵ects could also capture variables like culture or the persistence of

institutions, which themselves might have important influences on productivity. The dis-

trict fixed e↵ect would also wipe out any unmeasured aspects of land quality that are not

included in the GAEZ measure. To address this, I include the district fixed e↵ect term, ↵
i

,

which absorbs the influence of such variables. The inclusion of district fixed e↵ects means

that I am exploiting within-district variation in returns to land quality. As such, I am

comparing returns to land quality following the Green Revolution relative to the returns

to land quality prior to its onset.

Additionally, I include a set of state-by-year fixed e↵ects, indicated by �
jt

. The inclusion

of these variables is used to account for omitted variables that vary annually in each state.

Accounting for these factors are very important for the empirical strategy for a number of

reasons. Firstly, state policies were a crucial factor in enabling farmers to take advantage of

Green Revolution technologies. Owing to India’s federal structure, a large amount of public

investment happens at the state level. For instance, expenditure on rural education and

agricultural policies, such as public research and extension services, are largely budgeted

at the state level (McKinsey and Evenson, 2003). Importantly, state seed corporations

were a primary means of distributing new varieties of seeds (Singh et al., 2008). Other

important productive factors such as electricity provision are also determined at the state

level (Gulati and Narayanan, 2003). Indeed, substantial inequalities in levels of state

investment have been shown by Fan et al. (2000b), who find that state level spending on
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agricultural research and building roads has had important e↵ects in explaining variations

in productivity growth. If state investments over time were significantly higher in areas

of better land quality, this would create a bias in the estimate of the technological e↵ect

on land quality upwards. Controlling for state-by-year e↵ects enables me to wipe out the

influence that di↵erences in annual state policies have on yields. Secondly, the inclusion

of state-by-year fixed e↵ects influences the type of variation in land quality and yields

that I am exploiting, since state-by-year fixed e↵ects means that I am comparing within-

state di↵erences in land quality and yields. As such, I am not comparing the e↵ect of

technology between districts in humid areas with districts in arid areas, which are likely

to di↵er significantly in terms of institutions, technology, and land quality. By confining

interest to areas that are similar both institutionally and geographically, it is likely that I

am capturing the areas exposed to a similar technological shock. For instance, I am not

comparing tropical wet areas, such as Kerala, with arid areas like Rajasthan.

Despite addressing a range of omitted variable concerns that can be addressed by the inclu-

sion of district and state-by-year fixed e↵ects, it is still possible that inter-district variation

within states could explain the relationship between yield and land quality after the Green

Revolution. To explore this, I control for a set of covariates that vary over time at the

district-level. Rural population density is included to proxy for the availability of labour.

Since Green Revolution technologies were typically more labour-intensive than traditional

varieties (Headey et al., 2010), areas with higher population densities may have been bet-

ter able to supply labour to make e↵ective use of these varieties. Investments in public

infrastructure projects, such as roads, could lower the costs of marketing agricultural com-

modities and buying key inputs. This would allow farmers better access to yield improving

technologies available since the Green Revolution (Antle, 1984; Binswanger et al., 1993).

Controls for road length are thus included. Related to this, average farm size may be re-

lated to crop yields (Chand et al., 2011). Farm size is also a factor that could explain the

productive returns to technology. Although Green Revolution technology was in theory

scale-neutral, a number of authors have shown that smaller farmers may have been less

able to take advantage of these technologies (Feder and O’Mara, 1981).13 Accordingly, I

13A good review of these issues in India is provided by Verma and Bromley (1987) who conclude, however,
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control for the proportion of large (>10 hectares) and medium (4-10 hectares) sized farms

in a district.

Regressions are also weighted to account for the di↵erential size of rice and wheat areas in

each district. This is important since the variable SUIT
i

measures average land suitability

in a district. It could be the case that a district that has, on average, low suitability may

have small pockets particularly suitable for growing rice or wheat. This may lead us to

wrongly conclude that for this district, high yield growth occurred on less suitable land.

To minimise this possibility, each regression is weighted according to the proportion of

area devoted to rice or wheat relative to the total area of a district. Areas that only grow

a small proportion of that crop will receive less weight in the estimation.14

4.3.2 Extension: Technology time trend

The specification shown in equation 4.3 does not allow me to investigate whether the value

of �1 is equal over time. To examine this I interact the suitability measure with dummy

variables indicating each year:

y
ijt

= �
t

+ �1SUIT
i

+ �
k

qX

k=�m

SUIT
i

⇥ �
it

+ �X
it

+ ↵
i

+ �
jt

+ ✏
ijt

(4.4)

where m is the number of time periods after Green Revolution technology was released and

q the years before. This approach has two advantages. First, it is possible that returns to

land quality were not constant over time. Gains could have been higher at earlier stages

of technology than later. This specification, thus, lets the e↵ect of land quality vary over

time. This approach is similar to that of Baltagi and Gri�n (1988) who show that this

variable represents a general technology index that can be interacted with input variables

in the production function to identify factor bias in technology. Second, it allows me to

assess the validity of the parallel trends assumption. This assumption would be violated

that the relationship is not conceptually clear.
14Unweighted regressions were also run to check consistency. These results were similar to the weighted

regression.
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if �
k

was significant for m years before the Green Revolution. Since I am interested in

measuring the e↵ect that Green Revolution technologies have on changing the relationship

with land quality, a significant relationship between land quality and changes in yield

before the Green Revolution would suggest other factors not related to the introduction

of new technology were responsible for driving changes in the importance of land quality

over time.

4.3.3 Extension: Unequal di↵usion

A weakness of the above strategy is that it imposes certain restrictions on the nature of

technological change during the Green Revolution. Specifically, it assumes that the Green

Revolution is a common shock to agricultural productivity across districts, conditional on

a set of fixed e↵ects and controls. One criticism of this strategy is that the di↵usion of

technology is not accounted for. A number of studies have pointed to the complex patterns

with which the Green Revolution spread over space and time, that led to di↵erential rates

in the di↵usion of technology. Explanations for heterogeneous di↵usion in India includes

social learning (Munshi, 2004), farm size (Feder and O’Mara, 1981), and irrigation (Sekhri,

2014).

Another explanation may be that the di↵usion of HYV technology was unequal across

districts with varying land quality. For instance, areas with higher than average land

quality adopted technologies with more intensity than areas of lower land quality. These

di↵erences could be driving any possible positive relationship yield gains following the

Green Revolution. In order to test this competing hypothesis, I regress a measure of

di↵usion on a time trend interacted with the district land suitability measure for rice and

wheat:

HY V
ijt

= �
t

+ �
j

qX

k

SUIT
i

⇥ �
t

+X
it

+ ↵
i

+ �
jt

+ ✏
ijt

(4.5)

The measure of di↵usion is the proportion of area planted to HYVs in a district relative

to the total area planted to that crop. The term �
t

is specified as a dummy variable equal
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to one for each year after the di↵usion of HYVs. This measures the average intensity of

di↵usion across the country. The additional term SUIT
i

⇥�
t

measures whether there was

an additional e↵ect of land quality on di↵usion. A positive estimate of this coe�cient

would imply that HYVs were, on average, more prevalent in districts with higher land

quality. The regression is estimated by also including the full set of district and state-year

fixed e↵ects as well as control variables.

4.4 Data

4.4.1 Land suitability data

To measure the natural suitability of districts for agricultural production, this paper ex-

ploits a land suitability index from the FAO’s Global Agro-Ecological Zones (GAEZ)

database (IIASA/FAO, 2012). The GAEZ database has recently been used to study a

number of aspects of agriculture, including climate change (Costinot et al., 2015) and the

link between agricultural productivity and structural transformation (Bustos et al., 2016).

The database contains detailed maps of agricultural suitability for 19 major crops grown

across the globe, which are ranked from most suitable to least suitable for crop growth.

The data are available at a very fine resolution enabling measures of agricultural suitability

to be calculated at the district-level.15

The GAEZ methodology aggregates a rich set of data on climate16, soil, and terrain to

create a composite measure of suitability based on agronomic models of crop growth.

Since this measure is calculated using models of agronomic growth according to a range

of natural characteristics, and not based on observations of past yields, it can be classified

as exogenous. A key advantage of the methodological approach used to construct the

GAEZ suitability indices is that it allows for crop-specific measures of suitability that

improve on basic classifications of agricultural suitability according to broadly defined

15The GAEZ estimates of agricultural suitability are available as gridded data at the scale of 5 arc
minutes. At the equator, 5 arc minutes are roughly equal to 10 kilometres.

16Climate data pertains to rainfall, temperature, wind, sunshine and relative humidity. A detailed
explanation of the modelling methodology can be found in IIASA/FAO (2012).

154



agro-ecological zones. For instance, Palmer-Jones and Sen (2003) divides India into 19

areas of similar agro-ecological characteristics. A key advantage of using the GAEZ index

is that it is a continuous measure of suitability, where each grid cell is rated according

to a scale from ‘most suitable’ to ‘unsuitable’. This allows me to estimate the extent

to which suitability matters rather than comparing areas in one distinct agro-ecological

category with another. This also improves on papers that use an ‘aggregate suitability

index’ that orders land based on various natural endowments. This would be problematic

since di↵erent land characteristics can make an area suitable for varied types of crop.

Even within a class of crops like cereals, di↵erent agro-climatic conditions would create

conditions di↵erentially suited for growing di↵erent crops. For example, drier areas would

be more suitable for growing wheat, and wetter areas more naturally suited to rice. Thus,

an aggregate suitability index of cereal production would mean that most areas would

be classed as ‘suitable’ for a given crop. This would make it hard to derive an ordering

comparing more and less suitable areas.

The GAEZ data are available in raster form and grid cells are matched to district bound-

aries using GIS technology.17 Where grid cells overlap district boundaries, a grid cell is

given to a district if more than half of the cell falls in that district. The GAEZ database

contains data on crop-specific suitability at varying levels of inputs. Low, medium, and

high input scenarios are available. In this study, the medium intensity input scenario is

chosen.18 The construction of a suitability measure for rice is, however, complicated by

the disaggregation of GAEZ data. The database contains separate measures for rain-fed

and wetland rice. Since the production data available does not report separate data for

these two types of rice, I follow Costinot et al. (2015) in allowing the type of rice with the

highest level of suitability. In each grid cell k within a district i, rice suitability is chosen

such that:

SUITRICE

ki

= max
�
SUITRF

ki

, SUITWL

ki

 

17A shapefile of district boundaries for the census year 1961 was obtained from ML Infomap:
https://www.mlinfomap.com/.

18There is, however, little variation in district suitability at di↵erent crop-specific GAEZ input intensity
levels.
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The values of the index of agricultural suitability are then summed across the districts in

order to gain a district-specific measure of suitability. The aggregate sum of suitability

is then divided by the total area of the district. Agricultural suitability for each district

across India is then standardised to yield a variable with a mean of zero and standard

deviation of one.

The suitability indices for rice and wheat mapped to district boundaries are shown in

Figure 4.3. Panel (a) shows the geographical distribution for rice. Districts in the east

and south of the country are clearly most suitable for rice production owing to their wetter,

more temperate climates. In Panel (b), it can be seen that areas most suitable for wheat

production are located on the stretch of land running from the state of Punjab along to

West Bengal which forms much of the Ganges basin. In contrast to rice, which has a

fairly wide geographical spread of particularly suitable growing areas, districts amenable

for wheat production are mainly located in the north and east. most areas in the southern

part of the country are very unsuitable for wheat growth.

4.4.2 Agricultural data

The agricultural data used in this study are primarily taken from a district-level

database complied by the International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT). The dataset includes a range of key variables relating to agricultural outputs

and inputs, infrastructure, and demographics, with data available on an annual basis for

the years 1966-2009. Data on rice and wheat production and area are used, as well as data

on the area of HYVs planted and area irrigated.

A total of 305 districts are available over time.19 One criticism of the ICRISAT data,

however, is that its starting year of 1966 roughly coincides with the beginning of Green

Revolution policies in India and does not allow for a su�cient ‘before and after’ study. To

address this, I add production data for the years 1957-1965 to the ICRISAT panel. The

19The analysis at district-level presents a potential empirical challenge in India due to the division of
districts over the period of study. For instance, the number of districts rose by 67% between 1971-2001,
from 356 to 593 (Kumar and Somanathan, 2009). In the ICRISAT data, boundary splits are dealt with by
returning separated districts to their parent districts according to boundaries in 1966 (ICRISAT, 2012).
All analysis is thus carried out according to these historically-defined boundaries.
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pre-Green Revolution data are taken from the Indian Agriculture and Climate (IAC) Data

Set (Sanghi et al., 1998), a precursor data set to the more recent ICRISAT data. Both

data sets use the same district boundaries so that merging the data is straightforward. The

result of merging agricultural outcomes from these two data sets is a panel of agricultural

outcomes for the years 1957-2009. It is improtant to note, however, that the number

of available districts is less in the IAC data, since districts in the states of Assam and

Kerala, and also less agriculturally important states of Himachal Pradesh and Jammu and

Kashmir are not included. Assam, Kerala, and Himachal Pradesh are thus only included

for years succeeding 1966. In total, 297 districts are used for rice and 277 for wheat.

4.5 Results

4.5.1 Crop yields and land quality pre-Green Revolution

To begin studying the role that land quality plays in Indian agriculture, I examine the

association between crop productivity and the land quality index described in the previous

section. Specifically, I examine the correlation between crop productivity and crop-specific

suitability in the period before the onset of the Green Revolution. Figure 4.4 graphs the

linear correlation between the logarithm of average crop yield in a district before the

onset of Green Revolution technology and the value of suitability index. As is the case

throughout the paper, the suitability measure is standardised so that the district with

mean suitability takes the index value zero. This relationship is plotted separately for rice

and wheat.

A positive linear relationship between crop yield and suitability can clearly be seen for

both crops, such that areas where agro-climatic features make land more amenable for

crop growth seem to have an important bearing on variation in crop yields. To get a

better sense of the magnitude and statistical significance of this relationship, I run a pooled

ordinary least squares regression of yield on agro-climatic suitability using each district-

year observation before the Green Revolution. I also include a set of control variables to

account for potential factors that could explain di↵erences in crop yields between districts
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that could also be correlated with land quality. Table 4.1 displays these results. The clear

positive relationship between land quality and crop yield can be seen across each of these

specifications. For rice, it is estimated that a one standard deviation increase in land

quality increases yields by around 7.5 percent on average. For wheat, the magnitude of

the association between land quality and yield is larger, with estimates suggesting that

a one standard deviation in land quality increases yield by around 12 percent. Inclusion

of control variables in columns (2) and (4) does not substantially alter the size of the

e↵ect in both cases, suggesting that these factors were not systematically correlated with

crop-specific suitability over this period. Overall, these results give an indication of the

important role that underlying agro-climatic factors play during a period of relatively low

agricultural development. In the next section, I study how the relative dependence on

these underlying characteristics changes as increased levels of technology are deployed.

4.5.2 Crop yield, land suitability, and the Green Revolution

The e↵ect that the onset of the Green Revolution had on the returns to land quality is

estimated in Table 4.2. The first two columns display coe�cient estimates for districts

that grow rice. The latter two columns are for those that grow wheat. The coe�cient of

interest is for the interaction term Suitability⇥GR. This coe�cient shows, on average, how

much yields increased on more suitable land following the onset of the Green Revolution

relative to before the Green Revolution. Since the suitability measure is standardised with

mean zero and standard deviation of one, the estimated coe�cient Suitability ⇥ GR is

interpreted as the change in the logarithm of yield given a one standard deviation increase

in land suitability. All regressions are run by including fixed e↵ects at the district level.

Additionally, state-by-year fixed e↵ects are included to control for the e↵ect of omitted

variables that vary annually at the state-level.

In columns (1) and (2) the estimates for rice are shown. The results show that an increase in

land quality was associated with higher yields following the onset of the Green Revolution.

Specifically, a one deviation increase in suitability for rice was, on average, associated with

yields that were 3.7% following the uptake of HYV seeds in a district. This estimate
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Table 4.1: District crop yield and suitability pre-Green Revolution

Dependent variable: ln(Yield) Rice Wheat

(1) (2) (3) (4)

Suitability 0.074*** 0.085*** 0.127*** 0.114***
(0.008) (0.009) (0.009) (0.012)

Controls
Population/km2 0.026*** 0.035***

(0.006) (0.009)
Percentage urban 0.250*** -0.041

(0.059) (0.069)
Literate percentage rural 0.665*** 0.867***

(0.057) (0.075)
Proportion of large farms 0.000 -0.000

(0.002) (0.002)
Road length/km2 0.044*** 0.005

(0.005) (0.007)
Cropped area 0.000** 0.002***

(0.000) (0.000)

Constant -0.217*** -0.517*** -0.324*** -0.522***
(0.007) (0.017) (0.009) (0.020)

N 5,409 5,338 3,780 3,750
R2 0.016 0.098 0.054 0.110

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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is statistically significant at the 5% level. The inclusion of control variables increases

this estimate slightly. A similar result is seen in columns (3) and (4), which shows the

change in returns to land suitability in wheat growing areas. Here we can see that a one

standard deviation increase in land suitability for wheat is associated with yields that were

8% higher, which is significant at the 1% level. Including a set of time varying control

variables in this regression increases the magnitude of the coe�cient Suitability ⇥ GR

slightly, suggesting there may be some correlation between the control variables and land

suitability.

Although this estimation exploits within-state variation, it is plausible that the estimated

coe�cients at the national level may be hiding considerable di↵erences in the e↵ects of

Green Revolution technology across di↵erent regions. To investigate whether the relation-

ship averaged over districts at the national level holds for subsets of regions, Tables 4.3 and

4.4 show these split into four di↵erent regions, Northern, Western, Eastern, and South-

ern areas. Northern districts are all districts within the states of Punjab and Haryana.

These states have historically been highly important in the food security of the country

given the high levels of productivity of farms across these states. Central districts are Gu-

jarat, Madhya Pradesh and Maharashtra. The states of Bihar, Uttar Pradesh, Orissa and

West Bengal make up the eastern region. The southern rice areas are defined as Andhra

Pradesh, Tamil Nadu, Karnataka and Kerala.

At this level, the relationship between within-state di↵erences in land quality and yields

after the Green Revolution shows some heterogeneity. For rice, the Green Revolution

is estimated to only have had a statistically significant e↵ect on the relative importance

of land quality in southern districts, where this coe�cient implies a standard deviation

increase in suitability led to a 8% relative increase. This may reflect the transformation

that areas such as Tamil Nadu underwent during the Green Revolution, since these areas

are often considered as ‘model’ Green Revolution states. For the rest of the regions, this

e↵ect is not statistically significant, although it is positive for all areas apart from central

districts (although this e↵ect is very close to zero). There is a large estimated point

estimate for the northern states of Punjab and Haryana, although this is not significant not

significant. This presents some evidence that in states that were considered as fundamental
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Table 4.2: Yield and land suitability post-Green Revolution

Dependent variable: ln(Yield) Rice Wheat

(1) (2) (3) (4)

Suitability x GR 0.037** 0.039** 0.081*** 0.091***
(0.018) (0.020) (0.020) (0.020)

GR 0.023 0.017 -0.045 -0.046
(0.029) (0.027) (0.032) (0.032)

Controls
Population/km2 0.041** -0.010

(0.020) (0.012)
Percentage urban 0.162 -0.370

(0.148) (0.235)
Literate percentage rural 0.148 -0.448**

(0.146) (0.210)
Proportion of large farms 0.000 -0.001

(0.001) (0.002)
Road length/km2 0.002 -0.004

(0.003) (0.005)
Cropped area 0.000 0.000

(0.000) (0.000)

Constant 0.556*** 0.190 0.878*** 1.241***
(0.033) (0.133) (0.038) (0.154)

District FE Y Y Y Y
State-year FE Y Y Y Y

N 12,063 11,987 11,065 10,975
R2 0.887 0.888 0.939 0.940

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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Table 4.3: Yield and land suitability post-Green Revolution by region: Rice

Dependent variable: ln(Yield) Rice
North Central East South

(1) (2) (3) (4)

Suitability x GR 0.081 -0.005 0.022 0.082***
(0.064) (0.141) (0.026) (0.025)

GR 0.151** 0.023 0.019 -0.053
(0.064) (0.071) (0.031) (0.043)

Controls
Population/km2 -0.021 -0.009 0.051** 0.021

(0.051) (0.064) (0.025) (0.028)
Percentage urban -1.400* 0.253 -0.140 1.211***

(0.688) (0.537) (0.157) (0.273)
Literate percentage rural -1.668** 0.720 -0.196 1.124***

(0.690) (0.902) (0.129) (0.420)
Proportion of large farms -0.224 0.264 0.000 -0.073

(0.250) (0.228) (0.001) (0.073)
Road length/km2 0.007 0.004 0.002 -0.004

(0.007) (0.020) (0.004) (0.005)
Cropped area -0.000 0.001 0.000 0.001**

(0.000) (0.001) (0.000) (0.000)

Constant 2.804*** -0.490 0.239 -0.300
(0.655) (0.612) (0.175) (0.266)

District FE Y Y Y Y
State-year FE Y Y Y Y

N 706 2,402 5,961 2,647
R2 0.932 0.797 0.829 0.823

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district
level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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Table 4.4: Yield and land suitability post-Green Revolution by region: Wheat

Dependent variable: ln(Yield) Wheat
North Central East

(1) (2) (3)

Suitability x GR 0.069*** 0.024 0.118***
(0.023) (0.061) (0.041)

GR -0.038 -0.015 -0.082*
(0.054) (0.065) (0.042)

Controls
Population/km2 0.042 0.070 -0.017

(0.034) (0.045) (0.013)
Percentage urban -0.852** 1.436** -0.306

(0.295) (0.688) (0.312)
Literate percentage rural -0.386 0.503 -0.750**

(0.397) (0.360) (0.305)
Proportion of large farms 0.029 -0.050 -0.001

(0.176) (0.101) (0.002)
Road length/km2 -0.005 -0.032* 0.000

(0.005) (0.018) (0.006)
Cropped area 0.000 -0.000 0.000

(0.000) (0.000) (0.000)

Constant 1.756*** 0.198 1.334***
(0.390) (0.304) (0.191)

District FE Y Y Y
State-year FE Y Y Y

N 749 2,974 5,978
R2 0.969 0.903 0.914

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at
the district level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
Districts in Southern region are excluded due to unsuitable wheat growing conditions
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to driving production increases for the country as a whole, the consolidation of favourable

land quality was highest.

For wheat, a stronger regional pattern emerges. Both for northern and eastern states, there

was on average a consolidation of productive advantages, implying gains to a standard

deviation increase in land quality of around 6-10%. For both of these areas, estimates

are significant below the 1%. In central areas, this coe�cient is still estimated to be

positive but is not statistically significant. It should be noted that the e↵ect of wheat is

not estimated for southern districts owing to the fact that there is little variation in land

suitability, owing to the general unsuitability for wheat growth in these areas. Overall,

these regional regressions indicate that the consolidation of favourable land following the

onset of the Green Revolution followed a fairly widespread regional pattern.

4.5.3 Dependence on land suitability over time

In the previous results, the e↵ect of Green Revolution technology is modelled using a single

dummy variable to indicate years after onset of the Green Revolution in a district. This

captures the average gains to land quality for all periods following the Green Revolution’s

onset. To investigate the extent to which this e↵ect may have varied over time, Figure 4.5

displays the coe�cient estimates when district land suitability is interacted with a dummy

variable for each year. The magnitude of each coe�cient is reported relative to the year

of adoption of HYV seeds.

In panel (a) the coe�cient estimates for rice are shown. There is a clear, steady upward

trend seen over time, suggesting that the returns to land quality become more important

as technology matured. Encouragingly, for the years before the onset of the Green Rev-

olution, it can clearly be seen that there is a generally very noisy relationship between

land suitability and yield. This adds support to the theory that the introduction of Green

Revolution technology was the driving force behind the consolidation of yield gains on

more naturally suited land.

For wheat, in panel (b), a similar pattern emerges. It does, however, seem that gains to

land quality were particularly large for a short period after the adoption of technology.
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This e↵ect was tempered somewhat in the years after, although the value of this coe�cient

is consistently positive following the onset of the Green Revolution.

4.5.4 Heterogenous adoption of HYVs

Evidence presented in the previous sections shows that there is a clear positive relationship

between increases in yield and higher quality land following the Green Revolution. To get

a better understanding of why this might be, I investigate whether higher yield gains

due to land quality were driven by heterogeneous adoption of seeds succeeding the Green

Revolution. If higher levels of adoption were seen on better quality land, then this would

provide some evidence to suggest that gains in yield were not realised due to lower adoption

on di↵erent types of land. To investigate this, I estimate equation 4.5. The only di↵erence

between this equation and my main estimating equations is the dependent variable used.

In this case, I specify proportion of crop area devoted to HYVs. This is specified separately

for rice and wheat. One shortcoming of the ICRISAT data used in this study is that the

data covering the use of HYV seeds becomes very patchy in the 1990s, with around half of

all districts showing missing data for area under HYVs after 1994.20 Accordingly, I only

study the relationship between HYVs and land suitability up until this year, in order to

maintain the vast majority of districts in my sample.

These estimates are shown in Figure 4.6. In both cases, there does not appear to be a

clearly discernible pattern in di↵erences in the proportion of crop area planted to HYVs

on varying land suitability over time. For rice, there is a small amount of evidence sug-

gesting that proportion of cropped area was higher on better land, although the confidence

intervals for this estimate are very wide. For wheat, the estimation is statistically more

significant although the coe�cients are estimated very close to zero for the vast majority

of the sample.

20This may reflect that by 1994, 67% of rice area was cropped using HYVs and 80% of wheat area was
planted with HYVs. As such, interest in collected data on HYVs may have waned because their use became
so widespread.
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4.5.5 Access to irrigation

To test whether the relative gains to land quality were consistent across irrigated and

rain-fed areas, I divide the sample according to the amount of irrigated area in a district.

I follow Fan et al. (2000a) in classifying a district as irrigated if more than 50 percent of

crop-specific area is irrigated. The results show a clear pattern. The relative importance of

land suitability following the Green Revolution increases significantly in irrigated districts.

For rice, a standard deviation increase in the index of land suitability increases yields by

4% (significant at the 5% level) following the Green Revolution. For wheat, this e↵ect

amounts to gains of 9 percent and is highly significant at the 1% level. In contrast to rain-

fed areas, the relative gains to land suitability are not statistically significant from zero.

These results suggest that irrigation played an important role in facilitating the growth

of HYVs on higher quality land. Indeed, the availability of water may itself have been a

key factor in enabling farmers in more productive areas to exploit the complementarity

between HYVs and higher quality land. This supports the view that although aspects

of natural suitability such as climate and soil quality were important determinants of the

suitability of an area for successful growth of HYVs, the availability of irrigation was crucial

to whether these areas could take advantage of these beneficial natural characteristics.
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Table 4.5: Yield and land suitability post-Green Revolution: Irrigation

Dependent variable: ln(Yield) Rice Wheat
Rainfed Irrigated Rainfed Irrigated

(1) (2) (3) (4)

Suitability x GR 0.026 0.043** -0.009 0.091***
(0.027) (0.024) (0.091) (0.020)

GR 0.021 0.049 -0.047 -0.039
(0.031) (0.043) (0.041) (0.040)

Controls
Population/km2 0.033 0.049 0.113** -0.010

(0.025) (0.041) (0.056) (0.014)
Percentage urban 0.055 0.660 -0.896 -0.324

(0.140) (0.413) (0.816) (0.242)
Literate percentage rural 0.126 0.013 -0.527 -0.485**

(0.184) (0.281) (0.523) (0.237)
Proportion of large farms -0.000 0.001 -0.002** 0.002***

(0.001) (0.002) (0.001) (0.000)
Road length/km2 0.002 0.001 -0.019 -0.005

(0.005) (0.006) (0.020) (0.005)
Cropped Area 0.000 0.000 0.001 0.000

(0.000) (0.000) (0.001) (0.000)

Constant -0.120 0.451 0.479 1.487***
(0.160) (0.325) (0.441) (0.160)

District FE Y Y Y Y
State-year FE Y Y Y Y

N 7,224 4,763 4,185 6,790
R2 0.820 0.912 0.858 0.942

* p<0.1, ** p<0.05, *** p<0.01. Standard errors are shown in parentheses and are clustered at the district level.
All regressions are weighted by the proportion of district area devoted to rice or wheat.
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4.6 Discussion

Innovations in agricultural technology during the Green Revolution allowed farmers across

India to achieve higher crop yields and increase the supply of food. Whilst this was highly

successful from an aggregate production perspective, evaluating the shortcomings of the

Green Revolution is an important part of a balanced assessment. In particular, if these

shortcomings are relevant for understanding the future of agriculture in the country, as-

sessing their importance is integral to learning about the vulnerability of the agricultural

sector in the future. Over recent years, a growing number of studies have focused on

estimating the role that environmental factors, such as climate, have on agricultural out-

comes (see Mendelsohn et al. (1994)and Deschenes and Greenstone (2007) for examples

of prominent approaches used). However, a smaller amount of evidence exists about how

changes in production techniques over the long-run have changed the importance of nat-

ural constraints. Recent work by Hornbeck (2012) and Olmstead and Rhode (2008, 2010)

has argued that historical evidence of the relationship between agricultural outcomes and

environmental quality is important for learning about the extent to which technological

innovation has altered agriculture’s dependence on the environment. Such evidence is im-

portant for evaluating the long-run persistence of environmental features that are integral

for agriculture. For instance, the costs of climate change, which could make many areas

hotter and rainfall more erratic, will be larger if technologies have primarily exploited

more beneficial environments, such as those with moderate temperatures. This is because

a farmers’ ability to utilise technologies under harsher conditions will be more limited if

technologies require a set of increasingly favourable agro-climatic conditions with which to

grow. The results of this paper indicate that this was the case for the Green Revolution in

India. This paper does, however, only provide a partial understanding of how agriculture

becomes relatively more dependent on agro-climatic factors over time. One limitation of

the way in which agro-climatic conditions are assessed in this study is that it is not possible

to disentangle the relative contribution of the various factors that determine the index of

suitability. This lays out the possibility for future work to help further our understanding

of specific agro-climatic characteristics have been most important for the complementary
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relationship between technology and agro-climatic factors over time.

Furthermore, broader criticisms of the Green Revolution also point to its reliance on other

types of resources that may be subject to degradation in future. For instance, the role

of water was integral to successful growth in many areas (Fan et al., 2000a). Increasing

scarcity of water, especially from groundwater sources, may make growing conditions even

more challenging in the future. This presents an additional challenge for policymakers,

since the set of ‘optimal’ conditions under which the Green Revolution thrived may be sub-

ject to substantial stress in the near future. This suggests that policy should shift focus to

future agricultural development that puts these constraints at the forefront of developing

new technologies to help continue and bolster the productivity of Indian agriculture. The

arguments put forth in this paper maintain that the reason for the patterns of productivity

growth since the Green Revolution were likely to have been driven by biological innova-

tions in seed technology. It is perhaps not a surprise therefore, that technologies tended to

favour areas that would deliver the highest yield increases, since a primary policy objective

of researchers and policymakers before the onset of the Green Revolution was to increase

aggregate food production (Baranski, 2015). In this objective they were undeniably suc-

cessful. However, in order to continue to increase productivity in the future, this model of

development is likely to be less suitable and not sustainable. Given that climate change is

projected to increase the challenges to crop growth di↵erently in many areas of India, the

model of centralised research based on developing a small set of technologies that grow

successfully under a wide range of conditions will be of less use. Localised, targeted ap-

proaches to technological development may be of more use for generating new technologies

that can be tailored to specific growing areas or certain environmental stresses, such as

drought tolerance.

4.7 Conclusion

This paper studies how technological change in agriculture a↵ects the relative importance

of environmental characteristics, such as climate and soil quality, in determining agricul-

tural productivity. The use of high resolution land suitability data is a key part of this
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paper, since it allows for an accurate measurement of agro-climatic factors important for

crop growth. In addition to this, variation in crop suitability within areas that share similar

institutional characteristics allows for the comparison of crop yield growth between dis-

tricts exposed to a similar set of policies over the period studied. The findings of this study

suggest that the gains in yield witnessed since the Green Revolution have placed a greater

emphasis on exploiting characteristics of the environment that make an area more natu-

rally advantageous for agriculture. Specifically, relative yield di↵erences due to variation

in these characteristics have increased in magnitude as agriculture moves from a state of

low technology into an increasingly productive state. Overall, these results reinforce claims

that the Green Revolution model of development, which relied on centralised technological

innovation processes to increase aggregate production, increased inequalities with regards

to di↵erences in land quality. The consequence of the increased exploitation of favourable

land characteristics to generate productivity gains signals a challenge for future of Indian

agriculture. Whereas these e↵orts to increase the production of agricultural goods in the

twentieth century relied on the complementarity between technology and environmental

characteristics to meet food security needs, the onus will increasingly fall on technologies

that can successfully substitute for less favourable characteristics. These technologies will

be important both for increasing the productivity of less favourable areas and for ensuring

technologies maintain their e↵ectiveness under future environmental stress due to climate

change.
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Chapter 5

Crop productivity and adaptation

to climate change in Pakistan
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Abstract

The e↵ectiveness of adaptation strategies is crucial for reducing the costs of climate change in

agriculture. Using plot-level data from a specifically designed survey conducted in Pakistan, we

investigate the productive benefits for farmers who adapt to climate change. The impact of imple-

menting on-farm adaptation strategies is estimated separately for two staple crops grown across

Sindh and Punjab provinces: wheat and rice. We employ an endogenous switching regression model

to account for the possibility that farmers self-select into adapting to climate change. Estimated

productivity gains are 9 percent for rice farmers who adapted but negligible for wheat. Counter-

factual gains for non-adapters were significantly larger. We found evidence of unobserved selection

into adaptation, with more productive farmers more likely to adapt. Other factors associated with

adaptation were formal credit mechanisms and extension services, underscoring the importance of

addressing institutional and informational constraints that inhibit farmers from improving their

farming practices.
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5.1 Introduction

C
limate change is likely to be problematic for the food security of farmers in

Pakistan. Annual average mean temperatures in the country have increased

by 0.47°C since 1960, with current projections from regional climate models

predicting that temperatures in the last quarter of this century will increase by around 3°C

relative to 1961-90 (Chaudhry et al., 2009; Islam et al., 2009). Observed rainfall has also

become more erratic with extreme precipitation events now increasingly common (Hijioka

et al., 2014; Turner and Annamalai, 2012). As a largely arid country, future climate change

is likely to exacerbate already challenging growing conditions. With 45% of the labour

force employed in agriculture and 24% of gross domestic product derived from the sector

(Government of Pakistan, 2010), the resilience of agricultural production to climate change

is of high importance to the continued development of Pakistan’s economy.

Many studies predict that climate change will have a negative e↵ect on average crop yields

(Au↵hammer and Schlenker, 2014). Economic studies typically estimate the cost of cli-

mate change using cross-sectional (Mendelsohn et al., 1994) or panel estimation techniques

(Deschenes and Greenstone, 2007). Similar methods applied in Pakistan have estimated

significant negative e↵ects due to climate change for widely grown staple crops like rice

and wheat (Siddiqui et al., 2012). What is less clear from these approaches, however, is

the impact that adaptation might have in o↵setting the e↵ects of climate change. Whether

e↵ective means of adaptation can be identified is a key part of reducing the uncertainty of

climate impacts and informing policy about how best to reduce these costs in the future

(Fankhauser et al., 1999; Au↵hammer and Schlenker, 2014).

To estimate the impact of adaptation, we study its role in explaining the crop productivity

of farmers who have already altered their agricultural activities in response to perceived

changes in climate. We focus our interest on autonomous adaptations, which are those

undertaken by individual farmers.1 These adaptations are key to altering agricultural

systems in the future given that they are likely to be implemented most e�ciently based

1While planned adaptations carried out by governments or other institutions may also be important at
ameliorating the costs of climate change (Lobell and Burke, 2010), we constrain our interest to autonomous
adaptation.
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on farmers’ private interests (Mendelsohn, 2000). Identifying the impact that adaptation

measures have on current yields is important to understanding whether already available

technologies or practices could ameliorate projected adverse impacts of climate change.

In addition, by measuring the impact of adaptation on current farm yields, we consider

whether there are gains to food security in the short-term. If such gains exist, identi-

fying barriers to adaptation and encouraging use of these practices should be a primary

consideration for policymakers interested in immediate economic development goals.

This paper is the first to study the impact of climate change adaptation strategies in

Pakistan.2 We use a new cross-sectional data set collected in 2013 from a specifically

designed survey of 1,422 farm households of Sindh and Punjab provinces. The study

was conducted to understand how agricultural households in the major agricultural areas

of the country produce and how a range of household and institutional features a↵ect

production. The survey also collected detailed information on the range of adaptation

strategies that farmers use to adapt to climate change. The various strategies employed

include switching crop types or varieties, changing farm inputs, as well as soil and water

conservation practices.

We apply an endogenous switching regression first used by Di Falco et al. (2011) to es-

timate the productive e↵ect of adaptation in agriculture. Since the decision to employ

adaptation practices may be the result of unobservable di↵erences between farmers, stan-

dard regression techniques such as ordinary least squares may result in biased impact

estimates. The endogenous switching framework allows us the estimate the impact of

adaptation by comparing observed productivity with counterfactual productivity. Thus,

it is possible to estimate the gains from adaptation for groups of farmers who actually

adapted and for farmers that did not adapt.

To build on earlier studies, we estimate the impact that adaptation has on the produc-

tivity of two of the most widely grown crops in Pakistan: wheat and rice. Since climate

change may a↵ect the productivity of these crops unevenly (Siddiqui et al., 2012) and

that agronomic constraints and farm management options di↵er across these crops, it is

2Most of the literature on the microdeterminants and impact of adaptation strategies has been conducted
in the context of African agriculture. A useful review of these studies can be found in Di Falco (2014).
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important to understand whether adaptation has heterogeneous e↵ects for di↵erent crops.

Additionally, consideration of the institutional determinants and constraints to adaptation

is of high interest in a country with a complex mix of formal and informal institutions.

Identifying relevant characteristics that determine whether or not farmers adapt to cli-

mate change is crucial to providing policymakers with information about what constrains

farmers from undertaking adaptation.

The results of this study show that the productive benefits of adaptation are heterogeneous

across crops in the sample. For wheat, we estimate a positive but not statistically signif-

icant impact of adaptation. For rice, however, the estimated impact implies productive

gains of 9 percent. Estimated potential gains from adaptation for non-adapting farmers

are significantly larger, indicating barriers to employing measures to adapt to changes

in climate. For both crops there is evidence of selection into adaptation suggesting that

farmers who have adapted to climate change in Pakistan are more productive than the

average farmer. There is also suggestive evidence about characteristics that drive the de-

cision to adapt. Credit seems to be important for adaptation. However, households that

received credit from informal sources such as middlemen, were significantly less likely to

adapt. This underscores the importance of a well-functioning credit market for funding

changes in farm practices. There also seems to be significant scope to expand the reach

of extension services to encourage adaptations since these services are only utilised by a

small proportion of the sample.

The remainder of the paper is structured as follows. Section 5.2 reviews issues the sur-

rounding climate change impact and agriculture. Section 5.3 describes the survey and the

variables used in the paper. Section 5.4 outlines the empirical specification of the study

with Section 5.5 presenting the results. Finally, Section 5.6 discusses implications of the

results and concludes.
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5.2 Adapting agriculture to climate change

While the literature investigating impacts of climate change in agriculture has grown sub-

stantially, work on possible adaptative responses is smaller in comparison (Au↵hammer

and Schlenker, 2014). Modelling approaches have focused more on identifying the e↵ects of

weather and climate variables on agricultural production. For instance, Mendelsohn et al.

(1994) use a hedonic approach where cross-sectional variation in climate conditions and

land use enables them to estimate the costs of climate change on farm values. The strength

of this approach is its ability to implicitly model the range of adaptation available to farm-

ers (Schlenker et al., 2006). With ample data, panel approaches to measuring economic

impacts concentrate on estimating the reduced form relationship between weather vari-

ables and economic activity while accounting for potential bias induced by locational time

invariant factors (see (Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009)).

An extension of this approach by Burke and Emerick (2016) uses long term climate trends

to identify the degree to which adaptation has occurred. A key limitation of these ap-

proaches is that they do not provide policymakers and researchers with an idea of specific

strategies available to farmers to adapt to climate change and the e�cacy of these mea-

sures. While extensions of the Ricardian approach have worked on incorporating explicit

types of adaptation strategies, such as irrigation and crop switching (Kurukulasuriya and

Mendelsohn, 2007, 2008), detailed information on the range of strategies available and

their direct impact is lacking.

Additionally, many studies do not consider the factors that drive the decision to adapt to

climate change. As is argued by Hertel and Lobell (2014), many technologies currently

available to farmers could have significant positive benefits. These could embody a range

of agronomic strategies or investments that could enhance productivity in the face of

environmental change. The role of autonomous adaptation, where farmers decide on their

own course of action, is of high importance in agriculture given the atomistic nature of

production which is often undertaken by a large number farmers operating on small plots

of land (Mendelsohn, 2000). Di Falco (2014) argues that it is crucial to account for a range

of ecological, social, and institutional characteristics that a↵ect the farm-level adaptation
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decision. Studies by Maddison (2007) and Deressa et al. (2009) estimate these factors in the

context of African agriculture. Maddison (2007) finds that the majority of farmers in Africa

perceive temperatures to have increased and precipitation to have decreased. Farmers,

however, cite poor access to credit and poverty as barriers to adaptation. Similarly, Deressa

et al. (2009) find that over 50 percent of farmers in Ethiopia think that temperatures have

increased or rainfall has decreased in the last 20 years. Barriers to adaptation are found to

be access to information related to climate change as well as a lack of financial resources.

Many of the identified factors that influence the probability of adaptation taking place

are similar to those identified in the more general literature on technology adoption in

agriculture (Foster and Rosenzweig, 2010). Often, switching farming practices or adopting

new technology involves significant upfront costs which are hard to bear for resource-

constrained farmers. Additionally, adoption may be a↵ected by risk or uncertainty in

relation to returns from adopting. As such, the ability of farmers to adapt may be a↵ected

by ine�ciencies in a number of markets (Jack, 2011). For instance, poor access to credit

would hinder many farmers from undertaking practices that bear a significant up-front

cost. As such, this literature highlights the importance of studying the determinants

of adaptation both in terms of farmer characteristics and also the broader institutional

environment in which farmers operate.

A method of both estimating the impact of adaptation and investigating its various de-

terminants has been applied by Di Falco et al. (2011) and Di Falco and Veronesi (2013).

This method rests on the idea that farmers have already used measures to adapt to cli-

mate change. Modelling the e↵ect these adaptive measures have on farm productivity is

an important way of identifying how e↵ective adaptation might be. Findings from this

approach indicate that households that adapted to climate change saw productivity ben-

efits of around 20% in terms of yield gains. Access to credit and extension services were

shown to be important determinants of adaptation among Ethiopian farmers. Whether

these results can be extrapolated outside of this context and expanded to other parts of

the world is an open question.

In the next section we detail the context of our study and discuss the variables we use to

assess the determinants and impact of adaptation. We also discuss the set of adaptations
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that we observed farmers using to adapt to climate change in Pakistan.

5.3 Data

We use data collected during April-June 2013 from a detailed household survey designed to

specifically address the determinants and impact of climate change adaptation for agricul-

tural households in Pakistan. The survey collected data on agricultural practices, house-

holds characteristics, as well as a range of institutional characteristics. In total, 1,422

households were surveyed in the provinces of Sindh and Punjab, the two most commer-

cially important agricultural areas. Within these provinces, survey sites were then chosen

to reflect a range of di↵erent agro-climatic conditions and cropping patterns. Figure 5.1

plots the location in which each survey site falls and the agro-climatic zone each falls into.

The sampling of our survey covers four areas: Barani (rainfed) agriculture in Punjab;

cotton and wheat in Punjab; cotton and wheat in Sindh; and rice growing in Sindh. In

Punjab, the survey sites were located in the districts of Chakwal, Rawalpindi, Rahim Yar

Khan, and Jhang. In Sindh, responses to the survey were gathered across the districts of

Sangar, Sukkur, and Larkana.

Figure 5.1: Map of Survey Sites and Agro-climatic Zones in Sindh and Punjab
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As a preliminary to the survey, a reconnaissance study was carried out in December 2012.

18 focus group meetings were held in 3 di↵erent villages to identify key areas of interest.

Using information obtained from these meetings, a detailed household survey was designed.

The total sample of farmers were then surveyed by a team of trained enumerators. Survey

modules on household characteristics, farm production and inputs, institutional features,

and adaptation practices were collected as part of the survey.

Table 5.2 summarises variables used in the present study and their sample mean for sample

households.

5.3.1 Definition of adaptation

In this paper, we are careful to focus only on actions taken by farmers in response or

anticipation of factors attributed to climate change. Since farmers may undertake some of

these strategies as part of more general processes of agricultural technology adoption, we

require that these strategies are undertaken because of climate change for it to constitute

adaptation. Accordingly, in one section of the survey, farmers were asked: “How has your

household adapted to cope with climatic changes?” For the present study, our interest is on

the impact of autonomous, on-farm adaptation measures on productivity. In the survey,

some farmers identified o↵-farm work as their adaptation strategy. We do not include this

strategy in our definition of adaptation since its impact on farm productivity is ambiguous,

although we include this variable in the set of controls to study.3 Similarly, we further

exclude public infrastructure investments, such as large irrigation schemes, since these are

not part of the farmers adaptation choice set.

The adaptation variable was then constructed as a binary variable equal to one if farmers

were classed as adapters and zero otherwise. To define adapters, we used a simple rule

that identified adapting farmers as those that had responded that they had used at least

one of the on-farm adaptations listed. Non-adapters were then defined as those that that

3On the one hand, income earned o↵-farm could alleviate household liquidity constraints allowing in-
vestment into productivity improving agricultural technologies. For example, Kousar and Abdulai (2016)
find that households that had a member working o↵-farm were more likely to invest in soil conservation
methods in Punjab. On the other, lost household labour could plausibly reduce productivity by reducing
the amount of household labour input available.
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had either responded that they had not adapted or did not carry out any of the on-farm

adaptations listed. To ensure that these made up mutually exclusive categories, a check

was done to test for discrepancies in these definitions. This was done by identifying whether

there were any farmers who had been classed as adapters but had also answered that they

had not adapted. This check revealed that a total nine farmers had erroneously been

categorised as adapters but had responded negatively to the adaptation question. Since

it was not possible to tell whether the farmers or enumerators had incorrectly responded

with a false positive or false negative to the adaptation question, a decision was made to

exclude these farmers from the sample.

On-farm adaptation strategies can be grouped into the following categories. These were

alterations in crop timing, crop switching, agricultural inputs, or the adoption of soil or

water conservation technologies. These are listed and described in detail in Table 5.1. The

survey revealed that the majority of farmers use a combination of these strategies. The

average number of strategies undertaken by farmers was 2.14.4

Changing crop timing is a strategy to avoid planting or harvesting during adverse seasonal

climatic conditions. For instance, higher average temperatures may mean that the planting

of summer crops needs to be brought forward to reduce exposure to high temperatures in

early growing stages. Survey responses showed that 25% of farmers who adapted used this

strategy. Of those who changed crop timings, the majority had reverted to later sowing

or earlier harvesting of crops. For wheat, farmers have switched to planting in November

rather than October. Harvesting has also taken place earlier in April or in late-May. For

rice, some farmers have switched to planting in April to May.

Changing variety or type of crop could be beneficial if certain crops grow better in more

adverse conditions. For instance, a farmer facing an increased likelihood of drought may

switch to faster maturing varieties of the same crop or switch into a di↵erent crop that is

more tolerant to lower water availability (Lobell and Burke, 2010). A study by Kuruku-

4Here we acknowledge the alternative approach taken by Di Falco and Veronesi (2013) who use a multi-
nomial endogenous switching regression model to study the importance of separate adaptation strategies.
They find that a combination of strategies is superior to strategies used in isolation in terms of their impact
on farm revenue. Strategies used in isolation do not have a statistically significant impact on household
revenue. We do not employ this method due to the problem of estimating a relevant baseline for impact
since the number of potential combinations of adaptation strategies is large.
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lasuriya and Mendelsohn (2008) found that incorporating crop switching into calculations

using the Ricardian framework significantly lowers the cost of climate change across African

farms. One-third of adapting farmers had done so by switching crops. One concern is that

by including crop switching (which includes both switching types and/or varieties) in the

definition of adaptation at the household level, we may not pick up the productivity ef-

fects since farmers may be switching out of the measured crop type. However, the survey

revealed that of households that only adapted by using crop switching, only 9 households

switched crop variety into something other than rice or wheat. The vast majority of these

households (45) switched into new varieties of wheat or rice, which in over two-thirds of

these cases meant the adoption of two recently released wheat varieties, Sehar-2006 and

Shafaq-2006.

Farmers may also change the input mix they apply to crops in response to past or expected

climate change. Perhaps the most obvious strategy is increasing the amount of water

applied to crops to counter extreme heat and/or low precipitation. Along with this, the

survey also showed that a substantial number of farmers increased the amount of fertiliser

used. This is the dominant adaptation type with over half of adapters changing inputs in

some way.

Increased temperatures and more erratic rainfall may have significant impacts on the state

of both soil and water resources, meaning that investments to conserve these resources help

farmers adapt to climate change. Higher temperatures are likely to increase the rate at

which water is lost from the soil, meaning that they will have to exert more e↵ort into

maintaining soil moisture. In addition, heavy rainfall would increase the amount of soil

erosion, placing greater emphasis on the need to invest in techniques to reduce these

impacts. Investments to counter these e↵ects in Pakistan include contour planting, use of

shelterbelts, or manure application. Overall, soil conservation was used by half of adapters.

Given the aridity of the climate, more e�cient use of water is paramount to adaptation

strategies in Pakistan (Baig et al., 2013). These strategies are clearly important since 47

percent of adapters use them. Farmers could utilise rainwater harvesting methods or the

construction of bunds around fields to reduce run-o↵. Water conservation used by farmers
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Table 5.1: Types of on-farm adaptation

Category Description Used by x% of adapters

Crop timing Changed the timing of crop-
ping activities e.g. sowing
and/or harvesting dates have
been changed

25

Crop type/variety Household has either changed
the crop variety (e.g. switched
to a di↵erent type of wheat) or
changed the crop grown

34

Input alteration Change in the amount of a vari-
able input used. This could
relate to increased water use
on irrigated farms, higher rate
of seed, fertiliser, and/or pesti-
cide use

55

Soil conservation Adoption of measures to main-
tain the fertility of soil or re-
duce erosion. Includes the
application of organic matter
(manure, crop residue), zero
tillage methods, shelterbelts,
or contour farming

52

Water conservation Adoption of measures to use
water more e�ciently on-
farm. Rainwater harvesting,
construction of bunds, land
levelling, furrow irrigation
techniques

47

in our sample show a distinct pattern. In areas where irrigation is scarce, bunding is the

primary strategy used. In areas where irrigation is available, more emphasis is put on

more water-e�cient methods such as furrow irrigation.

5.3.2 Crop types

In this analysis we study farmers who grow either wheat or rice. The average productivity

of farmers for each crop is shown in Table 5.2. In contrast to Di Falco et al. (2011),

who estimate a model using an aggregation of five major crop types, we study each crop

separately. Aggregation of di↵erent crops into a single production function, however, may
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have significant disadvantages for studying adaptation’s e↵ect on productivity.5 Primarily,

aggregation may confuse analysis when growing conditions di↵er significantly or inputs

are used di↵erently. Similarly, the seasonal nature of production in Pakistan over the

Rabi (harvested in spring) and Kharif (harvested in autumn) seasons may also complicate

the interpretation of an aggregated production function. To account for this, we estimate

separate regressions for each crop and test whether the impacts of adaptation di↵er between

crops.

The primary crop grown in our sample is wheat. According to FAO (2013), 80% of

farmers in Pakistan grow wheat and the crop makes up around 37% of energy intake of

the population. Wheat production takes place over the Rabi season when temperatures

and rainfall are lower than the summer. Yields of wheat, however, are low based on

the agro-ecological potential of the growing environment.6 A lack of suitable irrigation

infrastructure and access to productive inputs are argued to be behind persistent low

yields (FAO, 2013). The implications for wheat yields in the face of climate change are

important to whether farmers adapt. Sultana et al. (2009) use agronomic crop models to

predict the impacts of climate change on wheat yields across di↵erent climatic zones in

Pakistan. They conclude that increases in temperature will decrease wheat yields in arid,

semi-arid and sub-humid zones, although increases in temperature could increase yields in

humid areas. The authors also explore the possibility of adaptation by shifting growing

to cooler months and conclude that this might be an e↵ective adaptation to mitigate the

e↵ects of increases in temperature. Siddiqui et al. (2012) estimate the yield response of

district-level wheat to temperature and precipitation changes in Punjab. They conclude

that projected climate change would have a non-negative impact on the production of

wheat.

Rice is one of the most important Kharif (summer) crops grown in Sindh and Punjab. It

is important as both a food crop and cash crop. Its growth requires access to a good water

5To a certain degree, aggregation across di↵erent types of crop is hard to avoid. For instance, aggregation
is done even within the same crop type. In our sample, 19 di↵erent wheat varieties are grown. It is plausible
that factors such as input requirements may substantially di↵er even within crop types.

6There is a significant amount of variation in the varieties of wheat grown across Sindh and Punjab.
Di↵erent varieties may be more suited to location-specific agronomic factors. Smale et al. (1998) use district-
level data from Pakistan’s Punjab to show that the diversity of wheat varieties grown is synonymous with
higher yields and lower variance of yields in rainfed areas.
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Table 5.2: Variable summary

Variable name Description Mean SD

Adaptation

Adapt 1 if adapted to climate change, 0 otherwise 0.47 0.49

Productivity

Yield (Wheat) Wheat output (maunds/acre) 18.22 10.38
Yield (Rice) Rice output (maunds/acre) 31.39 18.10

Explanatory variables

Plot size (acres) Crop area (acres) 4.07 4.39
Total land (acres) Household land (acres) 8.49 11.03
Seed (kg/acre) Seed used (kg/acre) 36.33 46.13
Fertiliser (kg/acre) Fertiliser used (kg/acre) 2.84 2.38
Labour Adult labourers (number) 4.12 4.19
Irrigated 1 if plot is irrigation, 0 otherwise 0.76 0.42
Maximum education Maximum household education (1-7) 1.12 2.03
Females in household Percentage of females in household 0.45 0.14
Work o↵-farm 1 if household member has o↵-farm job, 0 otherwise 0.59 0.49
Owns livestock 1 if owns cattle or bu↵alo 0.73 0.44
Bank credit 1 if credit from formal finance institution, 0 otherwise 0.08 0.27
Informal credit 1 if credit from informal lender, 0 otherwise 0.19 0.40
Owns land 1 if land is owned, 0 otherwise 0.74 0.43
Formal extension 1 if receives formal extension services, 0 otherwise 0.07 0.24
A↵ected by flooding 1 if a↵ected by flooding (2010-2012), 0 otherwise 0.62 0.48
Village school 1 if village has a school, 0 otherwise 0.87 0.33
Ave. temp increase Perceives average temperature increased 0.79 0.40
Change in rain amount Perceives amount of rain changed 0.88 0.31
Change in rain timing Perceives timing of rainy season changed 0.08 0.27
Extreme events inc e Perceives extreme events (drought, flood) increased 0.55 0.49

supply mostly supplied by irrigating the crop during the hot summer months, although it

is sometimes grown under rainfed conditions. Given that high summer temperatures are

already present across rice growing areas in Pakistan, increased temperatures driven by

climate change have been projected to negatively a↵ect rice productivity (Siddiqui et al.,

2012).
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Table 5.3: Characteristics of adapters and nonadapters: Di↵erences

Adapters Non-adapters Di↵erence

Productivity

Yield (Wheat) 19.58 17.20 2.38***

Yield (Rice) 33.94 28.37 5.56***

Explanatory variables

Plot Size 4.60 4.24 0.36

Total land (acres) 9.82 7.68 2.13***

Seed 56.97 44.33 12.64***

Fertiliser 3.00 2.51 0.48***

Labour 4.05 4.32 -0.26

Irrigated 0.82 0.62 0.19***

Maximum education 0.78 1.17 -0.39***

Females in household 0.46 0.43 0.03***

Work o↵-farm 0.54 0.68 -0.13***

Owns livestock 0.78 0.69 0.09***

Bank credit 0.10 0.04 0.06***

Informal credit 0.16 0.22 -0.05**

Owns land 0.72 0.77 -0.05**

Formal extension 0.08 0.04 0.04***

A↵ected by flooding 0.69 0.52 0.17***

Village school 0.88 0.86 0.02

Ave. temp increase 0.82 0.76 0.06***

Change in amount of rain 0.89 0.88 0.01

Change in timing of rainy season 0.09 0.06 0.03

Extreme events increase 0.56 0.51 0.04

Chakwal 0.07 0.19 -0.11***

Jhang 0.13 0.12 0.01

Rahim Yar Khan 0.13 0.06 0.07***

Rawalpindi 0.01 0.10 -0.09***

Sanghar 0.17 0.14 0.03

Sukkur 0.24 0.17 0.07***

Observations 746 916 1662

*p<0.1, **p<0.05, ***p<0.01
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5.3.3 Variables

The variables shown in Table 5.2 are used to conduct the empirical analysis described in

the next section. Table 5.3 additionally displays the di↵erence in the sample mean of these

characteristics between adapters and non-adapters. As defined previously, adaptation is a

dummy variable indicating whether or not the household has adapted to climate change.

In our sample, just under half the households have undertaken on-farm measures to adapt

to climate change.

Agricultural input data was collected at the plot level to account for the fact that house-

holds often grow more than a single crop.7 We also include the total landholdings of a

household to examine the relationship between farm size and adaptation. On average,

households in our sample are two acres larger than the national average which stands at

6.4 acres (Government of Pakistan, 2010). Adapters tend to be households that farm more

land. Plot-level inputs include seed, fertiliser, and labour. The labour input was computed

as the number of adult labourers working each plot of land. Di↵erences between adapters

and non-adapters suggest that adapters are more input intensive.

We include a dummy variable indicating whether a plot is irrigated to account for the

likelihood that irrigated yields are higher than rainfed yields. It can be seen that a high

proportion of farms (76%) are irrigated, underscoring the importance of irrigation for farms

across Punjab and Sindh.

As well as production input variables, we also include a set of variables to control for

observable di↵erences between households that could influence their productivity and like-

lihood of adapting. To control for the education status of households, we include a variable

indicating the maximum education of a household member. This variable takes values from

one if the highest level of education is that someone in the household can read and write

and seven if somebody has an advanced degree. On average, levels of education are low

although most households are equipped with basic reading and writing skills.

We include a variable to measure the gender composition of the household. Women play

7On average, households crop three di↵erent crops.
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an important part in farming activities, supplying a large amount of labour. Their role in

farming activities is often constrained, however, since they are excluded from many of the

most productive activities such as operating machinery (Samee et al., 2015).8

A crucial aspect in the decision to conduct on-farm adaptation may be the existence of

o↵-farm employment. To study this, we include a dummy variable indicating whether a

household member is engaged in o↵-farm labour. Nearly sixty percent of households have

at least one member o↵-farm. Interestingly, non-adapters are significantly more likely to

have at least one member that works o↵-farm.

As well as the decision to supplement income o↵-farm, the ability to generate other forms

of agricultural income may a↵ect whether farmers engage in adaptation involving their

cropping activities. The variable Livestock was included to indicate whether the household

owned cattle or bu↵alo which can be used for dairy farming. The majority of households

in our sample own livestock, although adapters are more likely to do so.

Numerous studies have cited the di�culty of obtaining credit as a crucial factor in deter-

mining the ability of farmers to adapt to climate change in other settings (Deressa et al.,

2009; Maddison, 2007). Credit markets are an important feature of Pakistan’s rural agri-

cultural economy owing to the range of di↵erent types of lenders that o↵er credit (Aleem,

1990). They may be an important part of the adaptation decision because some adapta-

tions require significant up-front investment that may have to be leveraged with credit.

We distinguish between two types of credit. Formal credit is provided by established insti-

tutions like banks and microfinance organisations. Chandler and Faruqee (2003) find that

formal credit only accounts for 7% of households who are in receipt of credit, but makes

up 22% of the volume of loans since formal loans are larger than informal loans. Informal

credit is provided by a range of actors, such as family members or landlords. Most salient

in Pakistan is the role of the middleman who often supplies credit in exchange for pro-

viding farmers with marketing services. There is a common perception that middlemen

charge high rates of interest on loans (Haq et al., 2013), although it is argued by Aleem

(1990) that higher rates of interest reflect high screening costs and the riskiness of lending

8A related paper by Udry (1996) documents that plots farmed by women in Burkino Faso have yields
30% lower than those controlled by men due to unequal access to farm inputs.
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to farmers. We test for the role that di↵erent types of credit play by including dummy

variables for farmers in receipt of both formal and informal lines of credit. Only a small

proportion of households in our sample have access to formal credit, while a fifth of house-

holds are reliant on informal credit. More adapters use formal credit whereas non-adapters

use more informal credit.

A variable to indicate whether the household owns their land is included to test whether

property rights are an important institutional determinant of adaptation. Di↵erent land

rights may a↵ect the decision to adapt. For instance, Jacoby and Mansuri (2008) link

higher investments in land-improving practices with the security of tenure in Pakistan.

Similarly, Ali et al. (2012) show that investments in land and farm productivity are lower

for leased relative to owned land in Punjab. Of the farmers sampled here, three quarters

own their land.

Formal extension services, those provided by government and NGOs, may be one way in

which farmers learn about new farming information. Those that are best informed about

suitable adaptation practices may be more likely to adopt these practices. For instance,

work by Hussain et al. (1994) concludes that the Training and Visit extension programme

in Punjab in the late 1980’s was successful at encouraging the adoption of new agricultural

technologies. A surprisingly low proportion (7%) of farmers are in receipt of these services

in our sample, although adapters are more likely to be in receipt.

Given the heavy losses endured due to flooding between 2010-2012 in areas of Sindh and

Punjab, the experience of extreme events may condition whether farmers adapt to climate

change. On the one hand, experience of extreme events may prime the farmer to the

possibility of such events in future. On the other, extreme events may have prolonged

e↵ects that constrain a farmer’s ability to invest in costly adaptive measures. We thus

include a dummy variable to indicate whether households have experienced income losses

due to flooding in the last three years. Over sixty percent of farmers experienced losses

due to flooding in the years prior to the survey, with more adapters experiencing flooding

than non-adapters.

Factors at the village-level could reflect the relative development of some areas over others.
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To proxy for these factors we indicate whether a school is present in the village. Schools

are present in the vast majority of villages sampled.

The final four variables in the table relate to farmers’ subjective opinions about whether

the climate is changing. Since a necessary condition for adapting is the perception that

the climate is changing, we investigate which aspects of the climate farmers think are

changing. The first variable in this set shows that the majority of farmers, 79 percent,

perceive average temperatures to have increased, although this proportion is greater for

adapters. An even larger proportion felt that the amount of rain was changing, reflecting

the observation that the South Asian summer monsoon has become more erratic (Singh

et al., 2014). Only a low proportion of farmers perceive the timing of this phenomenon

to have changed, however. Given the experience of extreme events previously mentioned,

we also include a variable that relates to whether extreme events, defined as droughts and

floods, have increased in frequency. Over half the sample perceives this to be the case.

5.4 Empirical framework

5.4.1 Theoretical model

To model the impact of adaptation on farmer productivity an endogenous switching frame-

work is employed. This has previously been applied to the study of climate adaptation

and crop productivity by Di Falco et al. (2011).

We begin by assuming that farmers are risk neutral and therefore evaluate the benefits of

adaptation based on their productive benefits.9 Farmers will choose to adapt to climate

change if the expected benefit is greater than not adapting. We assume that the necessary

condition for adaptation is that productivity under adaptation is higher than under no

adaptation. This can be represented by an unobserved variable A⇤
i

which represents a

farmer’s productive benefits from adaptation. We can express the decision to adapt based

on a set of observed Z
i

and unobserved !
i

factors. The observed factors could include

9In assuming risk neutrality, we do not consider the role risk aversion may play in the adaptation
decision.

199



household characteristics and other variables that a↵ect the benefits from adapting to

climate change. This decision can be expressed as:

A⇤
i

= Z
i

⇡ + !
i

(5.1)

where

A
i

= 1 if A⇤
i

= Z
i

⇡ + !
i

> 0

or

A
i

= 0 if A⇤
i

= Z
i

⇡ + !
i

 0

where the variable A
i

represents the observed decision to adapt or not.

An important empirical concern in impact evaluation is the possibility that unobservable

farmer characteristics a↵ect both the decision to undertake adaptation and the productiv-

ity of farmers. As such, farmers self-select into adaptation in ways that do not mimic an

idealised experiment where adaptation is the result of a random allocation process. Simple

approaches to estimating the impact of adaptation by including a dummy variable in single

production function, such as by ordinary least squares, could result in inconsistent esti-

mates of the impact of adaptation on productivity. An example could be that households

that have better farm management skills are likely to be more productive and also have

a higher propensity to adapt their farming activity to climate change. In this case, the

influence of such an unmeasured characteristic could lead us to over-estimate adaptation’s

impact on crop productivity.

To address concerns about selection bias in estimating the impact of adaptation, we use an

endogenous switching regression model. This method is based on that of Heckman (1979)

who treats selection bias as an omitted variable that can be estimated.

To empirically estimate this relationship, the sample is split in two based on whether the

household has adapted or not:
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y1i = X1i�1 + ✏1i if Ai

= 1 (5.2)

y2i = X2i�2 + ✏2i if Ai

= 0 (5.3)

The variables y1i and y2i represent crop yields for adapters and non-adapters respectively.

The vectors X1i and X2i contain explanatory variables and �1 and �2 are vectors of

estimated coe�cients. The errors for each equation are contained in ✏1i and ✏2i.

As mentioned previously, the possibility that farmers self-select into adaptation may lead

to correlation between the error terms in the production equations and the error in the

selection into adaptation equation. The correlation between these terms represented in the

covariance matrix ⌃ containing the three error terms ✏1i, ✏2i and !
i

. These are assumed

to be distributed with trivariate zero mean and take the form:

⌃ =

�����������

�2
!

�
!1 �

!2

�
!1 �2

1 .

�
!2 . �2

2

�����������

where �2
!

represents the variance of the error term in the selection equation. Similarly,

the variances of the production equations are represented by �2
1 and �2

2. �1! and �2!

are the covariances between the errors in the selection and production regimes 1 and 2

respectively. Since the outcomes of regimes 1 and 2 are not simultaneously observed for

each household, the covariance between the two production equations are not specified

and are represented simply with a dot (.).

In the presence of selection bias, the expectations of the error terms for the two produc-

tion regimes will be non-zero depending on whether farmers have adapted or not. Thus,

conditional on sample selection, the expected error terms can be expressed as follows:
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E[✏1i|Ai

= 1] = �
!1

�(Z
i

⇡)

�(Z
i

⇡)

= �
!1�1i

(5.4)

and

E[✏2i|Ai

= 0] = ��
!2

�(Z
i

⇡)

1� �(Z
i

⇡)

= �
!2�2i

(5.5)

where � and � are standard normal probability distributions and standard normal cumu-

lative distributions respectively. The terms �1i and �2i are interpreted as inverse Mills

ratios (Heckman, 1979) which are included in the productivity equations as explanatory

variables to account for any selection bias.

Of empirical interest is the direction of correlation between the decision to adapt and

productivity. This relationship can be written as:

⇢1 = �2
!1/�!�1 (5.6)

and

⇢2 = �2
!2/�!�2 (5.7)

were the terms ⇢1 and ⇢2 are correlation coe�cients between the error term in the selection

equation !
i

and the errors from the productivity equations ✏1i and ✏2i respectively. The

sign and significance of the estimated correlation coe�cients ⇢1 or ⇢2 indicate the presence

of selection bias since unobservable factors associated with productivity are correlated

with unobserved characteristics that determine whether farmers adapt to climate change.

If either of these coe�cients is significantly di↵erent from zero, it can be concluded that

there is evidence of unobserved selection into adaptation which would likely bias estimates

of the impact of adaptation on crop productivity using straightforward techniques such as
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OLS.

The estimation of the parameters of the model are estimated using the full information

maximum likelihood procedure. This involves the simultaneous estimation of both the

selection and production equations and is superior to two-step estimators which are inef-

ficient in deriving standard errors of the parameters (Lokshin and Sajaia, 2004).

5.4.2 Treatment e↵ects

The aim of this study is to identify whether the use climate change adaptation strate-

gies have increased the productivity of farmers measured in terms of yields, expressed in

maunds per acre. To estimate this impact, we use the standard treatment e↵ects frame-

work to estimate yields of farmers in a counterfactual adaptation scenario. Adaptation is

defined as the treatment variable which can take discrete values 0 or 1, where D = {0, 1}.

Following Heckman et al. (2003), the expected value of the crop productivity Y
i1 for farmers

that adapted can be written as:

E(Y
i1|D = 1) = X1i�1 + �

!1�1i (5.8)

where the last term adjusts for unmeasured characteristics of the adapters in the sample.

In the same way, the outcome Y
i2 for non-adapters is expressed as:

E(Y
i2|D = 0) = X2i�2 + �

!2�2i (5.9)

These equations represent the observed outcomes for the adapters and non-adapters. The

switching regression framework can also be used to estimate counterfactual outcomes for

adapters and non-adapters. For the adapters, the counterfactual is the scenario where

they do not adapt, represented by:

E(Y
i2|D = 1) = X1i�2 + �

!2�1i (5.10)
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The case where non-adapters do adapt can be represented similarly as:

E(Y
i1|D = 0) = X2i�1 + �

!1�2i (5.11)

Using a generalised treatment e↵ects framework, the impact of adaptation can be estimated

for adapters and non-adapters. The average predicted e↵ect of adaptation on those that

adapted is calculated as the average treatment e↵ect on the treated (ATT),

ATT = E(Y
i1|D = 1)� E(Y

i2|D = 1)

= X1i(�1 � �2) + (�1! � �2!)�1i

(5.12)

The predicted impact of adaptation on those that did not adapt can be calculated as the

average treatment e↵ect on the untreated (ATU), defined as

ATU = E(Y
i1|D = 0)� E(Y

i2|D = 0)

= X2i(�1 � �2) + (�1! � �2!)�2i

(5.13)

Estimating the ATU is useful for assessing whether any potential productive gains from

adaptation could be extended to those who have not yet adapted. If this e↵ect is posi-

tive, this could provide motivation for policies to further the reach of existing adaptation

practices.

5.4.3 Selection instrument

Estimation and identification using the endogenous switching approach requires the in-

clusion in the selection equation of at least one variable that a↵ects the probability of

adapting but not the productivity of farmers.10 Di Falco et al. (2011) use climate infor-

mation sources as selection instruments. We argue against the use of these instruments

in the context of this study given that our survey identified that farmers gathered advice

10It is theoretically possible to identify this model without the inclusion of additional instruments since
�1i and �2i are non-linear functions of the included variables in the selection equation. However, problems
of multicollinearity can make this type of identification weak in practice (Huber and Mellance, 2014).
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on farming practices and associated climate information from a range of sources including

landlords and middlemen. Since these agents may have important implications for farmers’

productivity, other than through adaptation, we choose not to follow in the use of these

instruments.

The variables we include relate to farmer perceptions about climate change. We argue that

farmers who perceive certain changes in the climate are more likely to adapt. Although we

would expect that the perception of climate change in general is a prerequisite for farmers

adapting, perceiving di↵erent types of change may be important predictors of adaptation.

For instance, farmers perceiving increases in average temperatures may be more likely to

adapt than farmers who perceive other types of climate change.

In order for these selection instruments to appropriately identify the impact of adaptation

on farmer productivity, two conditions are required. First, the instruments should not be

correlated with any unobserved determinants on the productivity of farmers (instrument

validity). Second, in order for the instruments have su�cient predictive power in explain-

ing adaptation, they must significantly correlate with the observed adaptation decision

(instrument relevance).

Although instrument validity cannot be directly tested, a way of providing support for this

assumption is to test whether the included selection instruments drive the productivity of

farmers who do not adapt. If perceptions are both informative and valid as instruments,

they should impact productivity only indirectly through the adaptation variable. Hence,

these instruments should not correlate with the productivity of farmers who have not

adapted. A test for this is carried out by Di Falco et al. (2011). They conduct an auxil-

iary regression of selection instruments on productivity using the subset of non-adapting

farmers. Only non-adapting farmers are included in this regression since if these instru-

ments were valid predictors of adaptation, they would likely be significant determinants of

productivity for farmers that had adapted.11 Thus, non-significance of the perception vari-

ables in the productivity equation would signal that these variables were not significantly

11Since adaptation would be included in the residual of the productivity equation for farmers that
adapted, if adaptation had a significant impact on productivity, the perceptions selection instruments
would likely be significant for the adapters.
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correlated with unobserved determinants of productivity.

To test the second condition, referred to as instrument relevance, it is possible to add

empirical justification to this assumption by testing the correlation between the decision

to adapt and the selection instruments. Evidence that these instruments did not correlate

with the adaptation decision would signal the presence of weak instruments. To test this

assumption, the joint significance of the perception variables is tested. Evidence that the

instruments have su�cient explanatory power is done through a Wald test. A rejection of

then null hypothesis that these variables are jointly insignificant when included in a probit

regression modelling the decision to adapt would signal that these instruments were not

weak predictors of adaptation.

Table 5.4 shows how strongly the selection instruments perform in a) predicting the prob-

ability of adaptation and b) predicting productivity of non-adapters. The inclusion of four

climate perception variables in probit regressions predicting the probability of adaptation

are both jointly significant at the 5% level for wheat and at the 10% level for rice. This

provides evidence that the included instruments do not fail at providing su�cient pre-

dictive power and are not classed as weak instruments. It is the case, however, that the

strength of the instruments appears to be stronger for rice than wheat. An F-test of joint

linear significance of these variables in the productivity for non-adapters finds no evidence

of a statistically significant linear association for both wheat and rice, providing evidence

that these variables are not correlated with the productivity of farmers. While this test

does not mean that the selection are valid (since this assumption is untestable), but it

does add credence to the validity of the instruments since if these variables were not valid

and correlated with unobserved determinants of productivity, it is likely that the selection

variables would fail this test.
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Table 5.4: Test of the validity of selection instruments

Wheat Rice

Probit OLS Probit OLS

Adaptation 1/0 Yield (nonadapters) Adaptation 1/0 Yield (nonadapters)

Perceptions

Ave. temp increase 0.239** -2.047 0.404* 2.395

(0.095) (1.274) (0.215) (3.944)

Change in amount of rain 0.054 0.304 -0.276 1.831

(0.125) (2.483) (0.253) (5.600)

Change in timing of rainy season 0.262* -0.666 -0.323 4.292

(0.144) (2.005) (0.284) (5.239)

Extreme events increase -0.107 -1.979 -0.398 -3.358

(0.090) (1.571) (0.237) (5.972)

Wald Statistic �2(4) 12.41** 8.57*

F test F(4,751) = 0.88 F(4,109) = 0.33

R2 0.138 0.330 0.176 0.352

Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
In this table we omit the other covariates used in the regressions and only report the perception variables

5.5 Results

5.5.1 Household determinants of adaptation

We start by looking at the determinants of adaptation for each household with simple

logit regression in Table 5.5. Only households that crop either wheat or rice are included.

A binary variable indicating whether a household has adapted or not is the dependent

variable. Each explanatory variable is measured at the household level. We do not in-

clude variables measured at the plot level, such as production inputs, in this regression.

A set of district fixed e↵ect terms are included in the regression to control for average

regional characteristics such as climate and farming practices which vary across the coun-

try.12 Although the estimated coe�cients cannot be interpreted causally, we investigate

the correlation between adaptation and these variables to see if they have the expected

relationship on the probability of adaptation.

The results show some support for the role that gender could play in the adaptation de-

cision since households with a higher proportion of women are more likely to undertake

adaptation. There is also some support for the hypothesis that adaptation on-farm is

12We initially experimented with the inclusion of weather and climate variables but found these to be
highly collinear with the regional dummy variables.
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Table 5.5: Household determinants of adaptation: logit regression

Logit regression

Dependent variable: Adapt (0/1) Coef./se

Irrigated 0.001
(0.258)

Max educ. -0.001
(.038)

Females in household 1.092**
(0.449)

Work o↵-farm -0.347**
(0.146)

Bank credit 0.586**
(0.266)

Informal credit -0.460**
(0.182)

Owns land 0.076
(0.175)

Formal extension 0.590**
(0.277)

A↵ected by flooding 0.906***
(0.281)

Village school 0.586***
(0.215)

Owns livestock 0.320**
(0.159)

Total land (acres) 0.007
(0.006)

Ave. temp increase 0.368**
(0.179)

Change in amount of rain 0.195
(0.234)

Change in timing of rainy season 0.360
(0.257)

Extreme event increase -0.448***
(0.171)

Constant -1.831***
(0.549)

Pseudo-R2 0.129
N 1065

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01

208



substitutable for working o↵-farm, as those households with a member o↵-farm are signifi-

cantly less likely to adapt. Interestingly, formal credit is positively related to the propensity

to adapt, whereas informal credit is negatively related, providing suggestive evidence that

credit channels a↵ect the costs and benefits of investing in new technologies.

As expected, households who receive extension from the government or NGOs are more

likely to adapt. Surprisingly, previous exposure to floods is positively related to adaptation,

perhaps supporting the view that experience of extreme events primes households to adapt.

Perhaps counterintuitively, households who also own livestock are positively associated

with adaptation, not supporting the hypothesis that livestock rearing is a substitute for

adaptation.

Subjective opinions of climate change are also interestingly related to whether households

have adapted. It seems that those who adapted are more likely to perceive that average

temperatures are increasing. However, adapters are significantly less likely to perceive

extreme events, such as droughts or floods to have increased.

5.5.2 Endogenous switching regressions

In Tables 5.6 - 5.7 we present results for the crop-specific yield and determinants of adap-

tation. In column (1) of each table, coe�cients are estimated by OLS where production

functions are pooled across adapters and non-adapters. Columns (2) and (3) then present

separate production functions for non-adapters and adapters. Column (4) shows the esti-

mated determinants of adaptation which are read as probit estimates.

Wheat

Table 5.6 displays the coe�cient estimates for farmers who crop wheat. Column (1) first

displays coe�cient estimates using OLS estimation, when adapting and non-adapters are

pooled together in the same production function. The preliminary estimate of the impact

of adaptation is shown by the the variable Adapt, a dummy equal to one if farmers have

adapted and zero if not. This coe�cient is significantly positive at the 10% level providing
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preliminary evidence that adaptation is associated with higher wheat yields. Given average

wheat yields of 18.39 maunds/acre, this suggests a gain in productivity of approximately

8%.

The productive e↵ect of plot-level inputs on productivity can also be seen for the pooled

sample and in separate productivity equations for non-adapters and adapters in columns

(2) and (3). Fertiliser and labour intensity both show expected positive coe�cients, while

there is evidence of diminishing returns to scale in plot size due to the negative sign

of this coe�cient. There is also some evidence to indicate the importance of household

characteristics on farm production. Households who earn income o↵-farm seem to be less

productive. Interestingly, households who use credit from formal sources are also less

productive.13

The determinants of adaptation for wheat producers are shown in column (4). Here we see

that households with a higher proportion of females are more likely to adapt, whereas those

with a member working o↵-farm are less likely to adapt. This suggests that adaptation

on-farm may be substitutable to earning income o↵-farm. Similarly, there is a lower

probability of adapting for households that use informal credit. As is noted by Chandler

and Faruqee (2003), this may be because informal loans are typically granted to fund

consumption over short durations and are not su�cient to fund productive investments

on-farm.

The significance of the extension service variable highlights the important role extension

services play in facilitating farm adaptation. This accords with previous evidence that

generally finds that extension services have positive e↵ects on the adoption of productivity-

enhancing technologies (Birkhauser et al., 1991; Hussain et al., 1994). Previous experience

of flooding and ownership of livestock are also shown to be positively related to adaptation.

The significance of the selection instruments can also be seen from coe�cients on the

climate change perception variables. These variables are included on the assumption that

13One explanation may be the finding of Chandler and Faruqee (2003) who document that households
with very large landholding (>25 acres) account for 41.6% the receipt of formal credit. They argue that
larger households are less productive than smaller households. This is the case for wheat farmers in the
sample. Total land area was 14.7 acres for farmers using formal credit, compared with 8.5 acres for those
without. Similarly, wheat plot size was on average 2 acres larger for formal credit farmers. As such,
diminishing marginal returns to land may be driving this result.
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Table 5.6: OLS and endogenous switching regressions: Wheat

(1) (2) (3) (4)
OLS Yield Non-Adapters Yield Adapters Adapt(0/1)

Coef./se Coef./se Coef./se Coef./se
Adapt 1.473*

(0.857)
Plot size (acres) -0.530*** -0.858*** -0.250 -0.011

(0.137) (0.175) (0.155) (0.009)
Fertiliser (kg/acre) 0.316** 0.236** 0.279 -0.006

(0.125) (0.106) (0.258) (0.009)
Pesticide (kg/acre) 0.668 -0.090 1.915*** 0.045*

(0.712) (0.509) (0.412) (0.026)
Labour intensity (no. of adults/acre) 1.219*** 1.345*** 1.037*** -0.020*

(0.227) (0.312) (0.264) (0.011)
Seed (kg/acre) 0.010 0.060*** -0.011** 0.002***

(0.007) (0.020) (0.005) (0.001)
Irrigated 0.696 2.903* -1.705 0.081

(1.210) (1.568) (1.787) (0.135)
Max educuation 0.072 -0.022 0.225 0.001

(0.210) (0.273) (0.307) (0.022)
Females in household -1.459 -0.622 -6.443* 0.594**

(3.017) (4.520) (3.556) (0.243)
Work o↵-farm -1.858** -1.137 -1.719 -0.174**

(0.880) (1.184) (1.245) (0.080)
Bank credit -5.616*** -6.963*** -4.424*** 0.216

(1.282) (2.362) (1.431) (0.150)
Informal credit -0.328 -1.503 0.928 -0.306***

(1.109) (1.461) (1.513) (0.099)
Owns land 1.311 2.444 0.578 -0.033

(1.168) (1.837) (1.461) (0.095)
Formal extension -0.435 -0.480 -0.116 0.524***

(1.709) (2.385) (2.147) (0.155)
A↵ected by flooding 0.871 2.348 -2.126 0.518***

(1.580) (2.295) (2.180) (0.157)
Village school 0.987 1.782 -1.208 0.291**

(1.531) (2.163) (1.856) (0.118)
Owns livestock -0.314 -1.223 -0.087 0.192**

(0.942) (1.188) (1.374) (0.086)
Total land (acres) 0.031 0.175** -0.090** 0.005

(0.043) (0.082) (0.043) (0.004)
Ave. temp increase 0.224**

(0.102)
Change in amount of rain 0.100

(0.134)
Change in timing of rainy season 0.322**

(0.161)
Extreme event increase -0.114

(0.097)
Constant 16.049*** 9.299** 30.015*** -1.504***

(3.327) (4.645) (4.939) (0.309)

Region dummies Yes Yes Yes Yes

ln� 2.673*** 2.527***
(0.110) (0.061)

⇢ 0.033 -0.243***
(0.109) (0.123)

Log psuedolikelihood -6288.513
Wald test of indep. eq. (�2(2)) 0.128
N 1364 779 585

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
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they influence the probability of adaptation but do not a↵ect realised productivity. It

can be seen that farmers who perceived temperatures to be increasing and also those who

thought that the timing of the rainy season had changed were more likely to have adapted.

To validate the importance of accounting for selection bias using endogenous switching

regression approach, the results also show that the term ⇢ is negative and statistically

significant for the adapters in the sample, indicating the presence of positive selection

bias in the adaptation decision (Lokshin and Sajaia, 2004). Intuitively, this implies that

those households with higher than average productivity are more likely to have adapted

to climate change. This finding is similar to that of Abdulai and Hu↵man (2014) in the

case of adoption of soil and water conservation technologies in Ghana.

Rice

The results for rice farmers are shown in Table 5.7. Immediately it can be seen from

column (1) that the OLS estimate for adaptation’s impact is positive and significant at

the 5% level. The magnitude of this coe�cient implies that gains from adaptation could

be as high as 21% given average rice yield of 22.67 maunds per acre.

As expected, fertiliser intensity and farm labour has a positive e↵ect on yields given their

positive coe�cients. Irrigation is also associated with strong productive benefits high-

lighting the importance of water use for a water-intensive crop like rice. Interestingly,

household characteristics that are associated with labour availability have a negative ef-

fect on productivity. In particular, a higher proportion of females and o↵-farm work is

associated with lower productivity. Reasons for the lower productivity of households with

a high number of females may relate to the fact that in some cases, despite the availability

of farm equipment, women’s access to this is undermined, thus reducing the productivity

of their labour supplied (Samee et al., 2015).14 The lower productivity of households who

engage in o↵-farm labour likely reflects the opportunity cost of using labour to produce

income on-farm versus o↵-farm. This finding is in line with Fafchamps and Quisumbing

14Although women contribute heavily to crop production, they play an integral role in non-crop agricul-
ture such as livestock rearing and in household chores such as food preparation, water collection, and care
of children and the elderly (Samee et al., 2015).
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Table 5.7: OLS and endogenous switching regressions: Rice

(1) (2) (3) (4)
OLS Yield Non-Adapters Yield Adapters Adapt(0/1)

Coef./se Coef./se Coef./se Coef./se
Adapt 4.744**

(2.085)
Plot size (acres) 0.029 0.550* -1.547* -0.037

(0.476) (0.294) (0.835) (0.033)
Fertiliser (kg/acre) 1.388** 1.963* 0.326 0.093*

(0.603) (1.036) (0.754) (0.053)
Pesticide (kg/acre) 0.857 -0.470 0.792 0.111**

(0.530) (0.577) (0.740) (0.053)
Labour intensity (no. of adults/acre) 0.507** 0.357 0.895** -0.024

(0.233) (0.247) (0.361) (0.019)
Seed (kg/acre) -0.026 -0.085 -0.062 0.009

(0.061) (0.086) (0.084) (0.006)
Irrigated 5.924** 4.173 2.863 0.454*

(2.578) (2.733) (5.014) (0.252)
Max educ -0.397 -0.519 -0.693 0.025

(0.578) (0.811) (1.010) (0.064)
Females in household -14.285** -16.302* -14.939 1.171**

(7.061) (8.736) (9.928) (0.555)
Work o↵-farm -4.192* -3.451 -6.954** -0.132

(2.319) (2.989) (3.446) (0.188)
Bank credit 0.756 1.330 -1.779 0.458

(3.394) (4.272) (4.506) (0.337)
Informal credit 0.757 1.654 0.133 -0.321

(2.574) (3.523) (3.663) (0.220)
Owns land 2.518 6.000* 1.860 -0.530***

(2.401) (3.221) (3.493) (0.192)
Formal extension 0.204 -1.435 1.647 -0.631

(3.001) (2.788) (5.834) (0.454)
A↵ected by flooding 7.720** 13.332*** 4.146 1.305***

(3.570) (3.983) (4.810) (0.338)
Village school -4.308 -3.003 -11.718** 0.346

(2.999) (3.073) (5.149) (0.263)
Owns livestock -0.007 -2.723 4.228 0.597***

(2.940) (3.345) (4.130) (0.215)
Total land (acres) 0.097 0.155 0.006 0.018

(0.147) (0.203) (0.217) (0.012)
Ave. temp increase 0.508**

(0.203)
Change in amount of rain -0.263

(0.234)
Change in timing of rainy season -0.333

(0.263)
Extreme events increase -0.525*

(0.272)
Constant 7.653 9.617 40.858*** -2.099***

(6.260) (7.084) (14.536) (0.603)

Region dummies Yes Yes Yes Yes

ln� 2.619 2.832
(0.070) (0.101)

⇢ 0.153 -0.651*
(0.226) (0.357)

Log psuedolikelihood -1384.125
Wald test of indep. eq. (�2(2)) 0.128
N 297 161 136

Regression includes regional dummy variables
Standard errors are heteroskedasticity robust
*p<0.1, **p<0.05, ***p<0.01
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(1999) who find that male household members earn higher incomes o↵-farm, thus diverting

their labour allocation away from farming.

Interestingly, households with experience of flooding are shown to be more productive.

The magnitude of this e↵ect is large for both groups, although only significant for the

non-adapters. Although we must be cautious in interpreting this e↵ect causally, there are

two plausible reasons for this. Firstly, flooding can lead to the transportation and deposit

of organic matter that increases soil fertility. Secondly, flooding could increase the amount

of irrigation available, most likely from canal irrigation.15

The selection equation in column (4) shows that households that have access to modern

inputs such as fertiliser and pesticide, as well as irrigation are more likely to adapt. This

may be indicative of adaptation as a decision that, in line with many studies of technology

adoption, is more likely to be undertaken by households that engage in more advanced

cropping activities. As with wheat, households with more women are more likely to adapt.

Contrary to studies that predict that land ownership increases incentives to invest in

productivity-improving measures on-farm, ownership of land is negatively associated with

adaptation (Jacoby and Mansuri, 2008; Ali et al., 2012). Similarly, exposure to past

natural hazards as evidenced by previous flooding has a positive e↵ect on adaptation as

with wheat farmers. The need to address unobserved selection into adaptation can be

seen by the significance the parameter, ⇢, for the adapters in the sample. As with wheat,

farmers with higher unobserved productivity are more likely to undertake adaptation.

5.5.3 Impact of adaptation

Adapters

A simple estimation of the impact of adaptation using a dummy variable to indicate

adaptation in the crop productivity equations estimated by OLS showed that this variable

was positive and significant for both wheat and rice. However, the above regressions

15Since rice is a water intensive crop, increased availability of water from irrigation could increase pro-
ductivity. The most recent floods in 2011 and 2012 occurred in Sindh province. In our survey, a large
proportion of households in Sangar and Sukkur districts were a↵ected in both floods. Households from
these districts form nearly half of rice producers in the sample.
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Table 5.8: Impact of adaptation on yields of adapters

Mean Outcome (units: maunds/acre)

Adapt Not Adapt Di↵erence (ATT) % Change

Wheat 19.573 19.274 0.299 1.6
(0.345) (0.460) (0.367)

Rice 33.926 31.175 2.751*** 8.8
(0.844) (0.636) (0.742)

Table 5.9: Impact of adaptation on yields of non-adapters

Mean Outcome (units: maunds/acre)

Adapt Not Adapt Di↵erence (ATU) % Change

Wheat 23.398 17.193 6.204*** 36.1
(0.351) (0.361) (0.231)

Rice 47.245 28.376 18.869*** 66.4
(1.186) (0.836) (1.020)

indicated the presence of positive selection bias for farmers that adapted to climate change.

As such, more productive households were those that were more likely to have adapted. To

estimate the impact of adaptation to account for this, we estimate the average treatment

e↵ect on the treated (ATT) derived in equation (5.12).

Table 5.9 shows the estimated change in crop productivity for those that actually adapted.

For rice, compared to the OLS estimate of 1.473 maunds per acre increase in yield for

adapters, the selection bias corrected estimate of adaptation is estimated at 0.299 maunds

per acre and not statistically significant from zero. For rice, the treatment e↵ect estimated

by the endogenous switching approach is also less than that when estimated by OLS, falling

from 4.744 to 2.751 maunds per acre. In contrast to the impact estimate for wheat, this is

significantly positive, indicating productivity benefits of around 9 percent for farmers that

adapted. The results for rice compare in magnitude to those in a recent meta-analysis of

the e↵ect of temperature and adaptation on crop yields at the regional-scale using crop

simulation models. For instance, Challinor et al. (2014) find that adaptations at crop-level
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for both rice and wheat increase yields by 7-15% on average.16 The benefits of adaptation

are also studied by Soora et al. (2013) for rice yields in India using a simulation model.

They find that in irrigated rice areas, agronomic improvements, such as shifting cropping

dates and switching rice varieties, o↵set expected climate change damages of around 5%

up until 2040.

Non-Adapters

Using the treatment e↵ects framework we are also able to estimate the change in produc-

tivity for non-adapters had they adapted. The average treatment e↵ect on the untreated

(ATU) for these farmers is shown in Table 5.9. It is noticable that the estimated gains from

adapting for this group of farmers are much larger than for adapters. For wheat farmers,

we estimate that the adoption of adaptation strategies could lead to yield gains of around

36%. The gains for rice are even larger at over 60%.17 These results are large, and indeed,

suprising given the relatively smaller gains estimated for adapters. The explanation may

lie in the counterfactual that is being estimated. As is noted by Shiferaw et al. (2014),

the ATU reflects the di↵erence in outcomes if non-adapters had similar characteristics to

adapters. As such, these di↵erences could reflect the e↵ect of relaxing the constraints on

non-adapters and the associated benefits that this would have on productivity.

5.6 Discussion and Conclusion

This study investigates whether strategies used by farmers to adapt to climate change lead

to higher crop productivity for farmers in Punjab and Sindh provinces of Pakistan. We

also study factors that a↵ect whether farmers have adapted to climate change or not.

We estimate that farmers who have previously adapted to climate change have benefited

in terms of productivity improvements for rice. The results for wheat farmers suggest that

16In accord with our study, Challinor et al. (2014) consider only ‘incremental’ changes to current crop
production practices such as changes in cropping dates or switching varieties.

17A similar result was found by Di Falco et al. (2011) in Ethiopia who estimate much larger gains for
non-adapting farmers.
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there are positive gains to adaptation but these are not statistically di↵erent from zero.

This highlights the importance of considering di↵erences in crop responses to adaptation.

While gains from adaptation for rice estimated here at the farm-level in Pakistan add

credence to results at more aggregated scales from crop simulation models, it is interesting

that we do not see very significant gains for wheat. One possible explanation could be that

adaptations are not e↵ective at increasing average yields. As is noted by Sultana et al.

(2009), shifting planting dates of wheat to later in the year is a key adaptation strategy.

Indeed, one-quarter of farmers in our sample use this strategy. Since this e↵ectively reduces

the length of the growing season, it is possible that farmers are trading-o↵ the potential

benefits of a longer growing season for the security of growing wheat during more temperate

months. For instance, Semenov et al. (2014) study adaptation of wheat to climate change in

Europe and find that although the use of quicker maturing varieties are a useful adaptation

for avoiding months where temperatures are hottest, use of these varieties is associated

with lower yields due to the shorter growing durations. As such, avoiding yield losses due

to risk averse preferences may be a primary factor in farmers’ adaptation decision. This

highlights an interesting area for future work that examines whether risk preferences of

farmers are significant in explaining their adaptation and the benefits of these decisions in

terms of productivity.

The regression results showed the importance of accounting for unobservable di↵erences

between adapting farmers and non-adapters. Specifically, it was shown that unobserv-

able factors associated with higher crop productivity were present among adapters in our

sample. This appears to explain why estimates obtained by OLS were larger than those

when accounting for selection bias. Positive selection was present for both wheat and rice.

These findings suggest that it is important to account for factors that drive the decision

for farmers to adaptation.

Estimated productivity gains for non-adapters are found to be large. Given that adaptation

is practiced by more productive farmers on average, we interpret this finding to indicate

that there are significant opportunities to increase the food security of farmers. Unobserved

di↵erences between farmers may indicate the existence of high transaction costs that inhibit

current non-adapters from adapting. Given that many farmers perceive the climate to have
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changed to some degree, the reason for not adapting could reflect di↵erences in the cost

of adapting or other constraints that hinder non-adapting farmers from make potentially

yield improving adaptations.

Observable determinants of adaptation also provide evidence that institutional factors

play an important part in allowing farmers to adapt. We find that access to credit is

important. However, it appears that the type of credit crucially a↵ects the propensity to

adapt. Whereas informal credit reduces the probability of adapting, formal credit increases

the probability of adaptation. This underlines the need for a greater expansion of the reach

of formal credit, which is currently used by only a minority of farmers. The heterogeneity

of institutions providing credit to farmers in rural Pakistan is large. This study underlines

that variation in the specific form of these institutions has important e↵ects on agricultural

development. Similarly, it is also the case that access to extension services provided by

governmental and non-governmental organisations is associated with a higher probability

of adaptation. An obvious policy response to this would be to increase access to these

services.

Growth in the wider economy may provide opportunities and incentives for household

members to earn income o↵-farm. We find evidence that households engaging in these

alternative income generating activities are less likely to engage in on-farm adaptation.

Given that the o↵-farm labour variable is associated with lower productivity also, it ap-

pears that there is some substitutability between investing in productivity-enhancing mea-

sures on-farm versus allocating time and e↵ort o↵-farm. What this pattern implies for the

incentives to conduct adaptation on-farm over a longer time horizon is a very relevant

question that also warrants further examination. Overall, these results imply that farmers

can potentially increase crop productivity in the short term whilst also undertaking mea-

sures that could prepare themselves for climate change. Policymakers thus should focus

on encouraging the adoption of these practices as a strategy for addressing future food

security in Pakistan.
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Chapter 6

Conclusion

This thesis comprised four essays that sought to assess the role that environmental con-

straints to production, in particular those related to the climate, have on agricultural

productivity in India and Pakistan. In employing empirical methods to understand these

relationships, special emphasis was placed on how these methods can be used to learn more

about the challenges that agriculture will face in the future. In addition, understanding

how farmers have previously reacted to these constraints is also vital for discerning whether

or not attempts to alleviate these constraints have been successful at reducing the future

costs of climate change. What is identified in this thesis is that the constraints posed

to agricultural production must be understood within the context of an evolving set of

environmental and technological conditions. If both of these factors are not considered,

it is likely that future assessments of food security in South Asia will provide a mislead-

ing account regarding the future of the region’s agricultural production. This concluding

chapter summarises the results of each of the preceding chapters as well as discussing the

implications of the findings of this research for policy and directions for future research.

The degree to which climate change could a↵ect agricultural productivity is examined in

Chapter 2 by assessing how projected temperature increases could a↵ect rice production

in India. The findings of this paper predict that, in addition to a decline in average yields,

higher temperatures also have important e↵ects on the overall probability distribution of

rice yields. Rather than an increase in temperature entailing a simple shift in average
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yields, greater exposure to heat was shown to increase the likelihood of yields at the

extreme ends of the distribution. This e↵ect increases the exposure to downside risk.

These findings have implications for both researchers and policy makers. Firstly, future

climate change impact studies would benefit from considering changes in the shape of the

crop yield distribution, which may be substantial. Although this chapter highlights this

empirically, there is room for future work to theoretically understand these mechanisms.

Mapping how changes in temperatures could theoretically alter the shape of crop yield

distributions would be an important step to a more detailed understanding of the e↵ects

of climate change in agriculture. Secondly, policy makers should also be aware of the extra

risk that may be posed to agriculture by increases in temperature. This may entail greater

emphasis put on dealing with ex post risk, such as crop insurance.

A key finding from this study is the relative decline in the e↵ect that short-run temperature

deviations have on agricultural productivity over time. This underscores the importance of

considering climate change within the context of a changing agricultural sector. There are

two main implications that stem from this. Firstly, it emphasises the need for future work

to understand the drivers behind increased resilience of crop yields to heat. Given that

higher temperatures are predicted to adversely a↵ect rice production in India both in terms

of a↵ected average yields and downside risk, understanding exactly how these negative

impacts can be avoided is a first order concern for policy makers in India. Secondly, in

predicting the impacts of future climate change on agriculture, this work highlights that

researchers should pay attention to how the resilience of the sector has changed over time

in order to accurately assess these impacts. Since many empirical studies rely on variation

between weather outcomes and measures of productivity over time, it should not simply

be assumed that conditions in the past necessarily reflect those of the present.

In line with the findings of the previous chapter, Chapter 3 also presents evidence that

crop production in India has become more resilient to drought. By examining drought

impacts over time, this chapter was able to identify a reduction in average yield losses

owing to drought conditions. As with the previous study, the reasons for these trends are

not studied in this chapter. The decline in drought impacts does, however, accord with

the wider di↵usion and maturing of a suite of yield-increasing technologies by farmers in
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India that began during the Green Revolution. Judging by this evidence alone, it might

be tempting to conclude that the threat to agricultural productivity from drought in the

future is not a pressing concern.

What is made clear in this study, however, is that there is evidence that these trends may

be prone to significant changes in the future. By employing an empirical approach able to

identify critical points between which drought impacts have significantly changed, we no-

tice a substantial increase in average impacts towards the end of our sample period. While

this period corresponded with the significant period of increased drought intensity, this

result highlighted that policy makers should certainly not be complacent about previous

trends in increased resilience of the sector. Indeed, this result may bring some credence

to concerns about the unsustainability of a number of aspects of India’s agricultural sec-

tor. One aspect of this is likely to be the availability of water. Previous studies have

highlighted the key role this resource has played in constructing production environments

suitable for modern agriculture and to increase resilience of crop yields during drought

(Duflo and Pande, 2007; Birthal et al., 2015). The unchecked exploitation of the resource,

however, has led to observations of severe depletion of water sources (Rodell et al., 2012).

This is unlikely to be helpful for farmers during periods of drought and casts a shadow

over the findings of increased resilience of the India agricultural sector to climatic stress

over time. This highlights the need for future work that integrates information on the

resources available to farmers and how changes in the availability of these resources may

constrain future adaptation strategies to cope with climatic stresses.

The results in Chapters 2 and 3 also place emphasis on understanding the regional distri-

bution of food security challenges. The policy relevance of considering regional exposure

to drought impacts is underlined in Chapter 3. Given the variety of growing environments

in which agriculture takes place in India, it is hardly surprising that these areas di↵er

in vulnerability to drought. However, what is clear from this analysis is that failing to

account for the regional heterogeneity in exposure to drought impacts would lead to an in-

e�cient way for policy makers to prioritise resources to deal with the adverse consequences

of drought for agricultural production.
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The importance of considering regional heterogeneity is also explored in Chapter 2. Here it

was shown that the impacts of future temperature increases are likely to be larger in areas

already more exposed to higher baseline temperatures. In addition to this, these areas

could see significant changes in the likelihood of yields that were historically relatively

rare events. In particular, the vulnerability of India’s most productive regions in the

north of the country may increase relative to other areas, such as areas in the south,

which will likely be subject to smaller increases in absolute temperature. The regional

heterogeneity of impacts presents some interesting challenges to policy makers. Given

that higher temperatures will make hotter areas in India increasingly less suitable for rice

production, it will fall on policy makers to decide whether resources would be better aimed

at areas projected to be less a↵ected by climate change. Given that the sustainability of

Green Revolution production systems are also facing constraints due to water scarcity,

the added e↵ect of rising temperatures could add to the unsustainability of the rice-wheat

production systems in areas such as Punjab, which have historically been important for the

food security of India. The political feasibility in reality may, however, be more limited.

Given the political clout of some of the most productive areas in India that benefitted

substantially from the Green Revolution, a significant diversion of resources away from

these areas may be hard to achieve.

The long-term consequences of India’s Green Revolution and its relationship with the en-

vironment are further investigated in Chapter 4. While the productive success of these

technologies over the past fifty years is well documented, evaluating potential weaknesses

of this model is important for understanding the long-term consequences of these tech-

nologies. This paper studies whether agricultural technologies employed during this pe-

riod were more e↵ective at increasing yields on land more agro-climatically suitable for

crop growth. This has historically been a criticism of the Green Revolution owing to the

contention that Green Revolution technologies had an uneven e↵ect across regions and

subsequently led to divergent productivity growth in agriculture across India. What is

emphasised in Chapter 4, however, is the importance of understanding this question in

the context of developing technologies that work e↵ectively across di↵erent environments.

This study finds that yield growth was highest in areas that were agro-climatically most

228



suitable. In one respect, these findings point to a weakness in the Green Revolution model

of centralised technological innovation and infrastructure development. On the other hand,

the productive success of this model should not be wholly overlooked for addressing the

challenges of the future. A hard-headed approach by policy makers may be needed in the

coming years to ensure these productive gains continue. One strategy may be to target

resources into developing technologies at growing areas that may be less a↵ected by future

climate change to maintain levels of total production.

Assessing the cost of the future impacts of climate change is limited by the inherent

uncertainty about the range of options that will be available to farmers in the future.

Although this uncertainty is ever present, learning about the range of options available

to farmers to mitigate potential climate change in the future is important. Chapter 5

sought to provide a greater understanding of the impact that climate change adaptation

strategies could have on productivity. This is undertaken within the context of two major

agricultural areas in Pakistan. Crucial to this study was the use of farm-level data from

a specifically designed survey on farmers’ climate change adaptation strategies. While

previous studies have examined the impact of climate change adaptation strategies in

other parts of the world, providing information to policy makers in other contexts about

the nature of these strategies and their productive impact is needed. This study found some

evidence that adapting to climate change can have short-term productive benefits. This

provides evidence that by using technologies and practices that are currently available,

farmers can productively benefit. While we should be cautious not to necessarily attribute

these findings to how successful these techniques will be at dealing with future climate

change, it does provide some evidence that these technologies work better under current

climatic conditions.

A particularly relevant finding for policy from this study pertains to the importance of the

set of constraints that farmers face in e↵ectively adapting to climate change. Indeed, a

counterfactual analysis undertaken in this paper found that gains from adapting to climate

change could be very substantial. This highlights a crucial lesson to policy makers for

enabling farmers to autonomously react to changes in the climate. If farmers will be able

to act to undertake suitable adaptations in the future, it is necessary for policy makers to
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make it easier for them to do so. What is apparent from this study is that a number of the

determinants concerning whether or not farmers have adapted correspond to constraints

to technology adoption identified in many other developing country contexts (Sunding and

Zilberman, 2001; Foster and Rosenzweig, 2010). While relaxing these adoption constraints

is likely to increase the welfare of individual farmers, policy makers should also be aware of

the importance of allowing farmers to e�ciently undertake adaptation in order to maintain

aggregate food security under the stress of climate change. In short, it is important not

just to consider the constraints of that are posed by climate change. It is also vital to

consider the opportunities that exist to increase agricultural productivity in the future

and make sure that these are utilised.
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Appendix A

Survey Evaluation: The

Determinants, Impact and Cost

E↵ectiveness of Climate Change

Adaptation in the Indus

Ecoregion: A Micro Econometric

Study

A.1 Survey context

The survey was conducted with the aim of increasing understanding of the resilience of

Pakistan’s agricultural sector to climate change and was supported by the International

Development Research Centre (IDRC Project Number 106857-001). The survey was jointly

undertaken by partners from the WWF-Pakistan, Lahore University of Management Sci-

ences, and the London School of Economics and Political Science.
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The main data collection part of the survey took place between the 20th April 2013 and

the 29 June 2013. In total, 1,422 households were surveyed.

The final survey comprised of six separate sections that gathered information on household

characteristics; agricultural outputs and inputs; labour use; institutional arrangements;

climate change adaptation measures; and household income. The detailed nature of the

survey was intended to understand a range of characteristics that may a↵ect agriculture

and resilience to climate change in Pakistan. A copy of the survey is included at the end

of this thesis.

A.2 Sampling frame

The survey took place in the two provinces of Punjab and Sindh, and was sampled in four of

the nine key agro-climatic zones in Pakistan. Barani (rainfed) agriculture in Punjab; cotton

and wheat in Punjab; cotton and wheat in Sindh; and rice growing in Sindh. Although it

was initially considered to survey households in Baluchistan, security concerns at the time

of scoping the survey meant it was not possible to study this area.

To further narrow down the sampling frame in these two provinces, seven di↵erent districts

were chosen across the chosen agro-ecological zones. These districts were thus selected non-

randomly based on whether they fell in the chosen growing areas. In Punjab, the survey

sites were located in the districts of Chakwal, Rawalpindi, Rahim Yar Khan, and Jhang.

In Sindh, responses to the survey were gathered across the districts of Sangar, Sukkur,

and Larkana.

A.3 Sample selection

To select sample sites within agro-climatic zones a two-stage cluster sampling strategy was

applied to the seven districts. This meant that a set of random villages or ’clusters’ were

selected in each district. Within the selected clusters, a set of randomly chosen households

were then surveyed.This approach allowed us to o↵set the prohibitive financial, time, and
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informational constraints required to elicit a simple random sample.

A.4 Design and pre-testing

Prior to the design of the full survey, a reconnaissance survey was conducted during 15-18th

December 2012. This survey had a number of objectives. First, it was essential to establish

relationships and gain trust of key village informants who would provide local knowledge

and ensure that survey teams could freely travel around survey sites. Second, focus group

sessions were held with local farmers in order to gain a preliminary understanding of local

agricultural issues. A copy of this survey is also included at the end of the thesis.

Focus groups comprised groups of roughly eight to ten farmers, who were interviewed by

enumerators from WWF-Pakistan. The focus groups were asked a total of 84 questions

on their farming activities (types of inputs and outputs used; prices; water use; cropping

dates; harvesting methods), institutional arrangements (types of credit, subsidies), and

farmers’ perceptions and reactions to climate change. The focus groups questions on cli-

mate change were integral for designing an e↵ective set of questions concerning farmers

climate change adaptation strategies. Accordingly, the focus group asked farmers whether

their farming practices had changed in the past five years and their motivations for this

change. Responses ranged from changing practices due to the availability of new tech-

nologies to utilising a series of strategies to cope with changes in climate patterns, such as

increased heat earlier in the growing season and unseasonal rains. What was clear from the

survey was that farmers were concerned about a range of climatic phenomena that they

felt had changed over time, more specifically in the last 5 to 10 years. Audio recordings

of the focus groups were also made for use in designing the main survey.

A key finding from the focus group concerned the complexity of institutional arrangements

governing farm production in Punjab and Sindh. This identified two key aspects that had

previously not been given due consideration. The first concerned the role of that credit

played in allowing farmers to buy inputs and generally smooth consumption. The most

important aspect of this related to the providers of credit. In particular, the role of informal
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moneylenders or ‘middlemen’ was identified as a crucial. This enabled for a more thorough

set of questions on sources of credit and the role of middlemen to be incorporating into

the survey. Second, the role of tenure arrangements was specified by farmers as having

a bearing on their ability to conduct on-farm decisions. This often related to farmers

often receiving instructions from landowners about farming decisions, which could act as

a constraint to changing farming practices. These findings were used to inform a set of

questions on institutional arrangements in the main survey.

In addition, the focus groups allowed for a greater understanding of the various strategies

used by farmers in response to climate change and their perceptions about how the climate

was changing. Accordingly, farmers were asked about whether they had used any strategies

in response to climate change, and to explain what these strategies were. These responses

were then used to group adaptation strategies by type for the main survey. It was also

made clear from the focus groups that farmers perceived that various aspects of the climate

had changed over time, including higher average temperatures and changing patterns of

rainfall. The responses from the focus group were used to design survey questions that

allowed farmers to pick from a number of possible types of adaptation measures and aspects

of the climate that they perceived to have changed.

Using the results of from the focus groups, a survey was then drafted to collect data on

the areas of interest for research. A first draft of this survey was then sent to experts

specialising in agronomy and rural economics in Pakistan for feedback. Comments from

these experts were then incorporated into the final draft of the survey.

A.5 Training of enumerators and field conduct

In order to train enumerators in how to conduct the survey in the field, a one-day workshop

was held in Karachi to ensure that enumerators followed the same collection procedures

across survey sites. Senior members of the team who had played a part in the survey

design took enumerators through the survey. This included explaining the purpose of each

of the questions and specifying the way that each question should be asked and how each
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response should be filled in on the questionnaire. After this, the enumerators were then

split into pairs to mimic asking and responding to questions in the field.

The survey was designed and recorded in English. The decision was taken for enumerators

to translate the questions in the field. During the training session, senior members of the

survey team discussed and trained the enumerators in how to translate each question and

what would be possible terminology used by the local people/farmers. The decision to

administer the survey through enumerator translation was taken for two reasons. First,

the primary languages spoken across Punjab and Sindh di↵ered, so that translating the

surveys into di↵erent languages would lead to additional costs and time. Second, since

it was expected that a number of surveyed farmers would not be literate, enumerators

skilled in the local language would have to ask these questions nonetheless. Therefore,

this method of translating the survey was chosen as the most practical means of eliciting

survey responses.

Senior enumerators undertook pre-testing of the survey in order to test the length of time

needed for each survey to be undertaken. This allowed for the identification of possible

translation issues. Senior enumerators then accompanied hired enumerators into the field

to ensure that issues identified in pre-testing were corrected during the main survey. Senior

enumerators accompanied the hired enumerators to at least three surveys before these

enumerators were left to survey in their specified teams, although senior members of sta↵

were available by phone to answer queries brought up in the field. On average, the survey

took 30 to 40 minutes to complete and were completed on paper. In the main, surveys

took place on respondents’ farms or in their houses. The household head responsible

for farming activities was asked for their responses to the survey. In a number of cases,

household heads were not found on farm but in local communal areas, such as teahouses.

Surveys were then conducted in these areas if the respondent agreed to be surveyed.

Once all of the surveys were completed, the responses were entered into a single Excel table

by WWF-Pakistan sta↵ in Karachi. This raw data was then sent to London for analysis.
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A.6 Possible sources of bias

A.6.1 Length, complexity, and inaccuracy of survey responses

The survey aimed to gather a comprehensive set of data on farm household behaviour

and characteristics in Pakistan. One downside of this approach was that the survey was

lengthy and required considerable concentration from the enumerators and survey partic-

ipants. Although it is not clear whether the length of the survey led to biased responses

from participants, some evidence of errors in the reporting of responses was clear. This

manifested itself in some repeated responses to questions (e.g. the amount of fertiliser

used on separate plots of land). Without follow up questions to assess the suitability and

length of the survey, it is not possible to understand whether this was a significant factor

in the survey.

Two strategies were undertaken at the data cleaning stage to improve the accuracy of

survey responses that may have been prone to error in recording. First, the data was

viewed by eye in Excel tables to check for inconsistencies. Obvious data entry errors, such

as data clearly being entered in the wrong columns, was corrected. Second, incoherent

responses were dropped from the analysis if these occurred in data that was used to

construct variables used in the analysis.

Since farmers were asked a variety of complex questions related to quantities and timings,

it is perhaps understandable that some error would have occurred in the collection of

survey responses. In particular, inaccurate assessments of land holdings would clearly lead

to error in the recording of acreage and, hence, farm yield estimates. It was discussed

prior to the data collection phase whether it would be possible to accurately collect data

on plot sizes through independent verification by enumerators during the survey. This

method, however, was deemed not suitable since it placed additional costs and need for

expertise from the enumerators. It would also have meant additional intrusion on farm

households. Thus, future surveys could build extra resources and technology into more

accurately recording these variables and taking some of the onus o↵ farmers. Despite this,

it is the case that most of the responses in the survey require accurate recollection from the
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farmers. Eliminating any recall bias that could have occurred in the survey would require

a more thorough, timely, and resource-intensive data collection procedure. Future surveys

would benefit from explicitly assessing the time and resource trade-o↵s that exist between

the number of households surveyed and the amount of time ensuring data is collected to

the highest possible accuracy.

A.6.2 Measuring farm input and output prices

It was the aim of the survey to gather detailed data on the price of farm outputs sold

and inputs bought so that it would be possible to construct net revenue functions. It was,

however, apparent during the data cleaning stage that significant problems had occur-

ring in correctly ascertaining farm prices. There was significant variation in prices across

farmers for the prices that were paid for farm outputs. Enumerators questioned about

this following the data collection responded that many farmers had problems identifying

the prices certain crops were sold for since often these were sold as part of interlinked

transaction with moneylenders or landlords. This made it di�cult to accurately assess

output prices and it was decided that the primary variable of interest would be crop yield

(amount produced divided by area). Another problem encountered was for input price

data. Prices were missing for many inputs used. There are two main reasons this may

have happened. Firstly, as with farm outputs, many farmers used inputs in tandem with

complex interlinked arrangements, meaning that they were not fully aware of prices paid.

Second, a number of inputs, such as water, did not have a clear price since institutional

arrangements covering water usage and pricing are complicated. These variables showed

significant amounts of missing data and it was not clear whether this was due to prices

being zero or whether farmers were unable to answer this question.

A.6.3 Measuring adaptation practices

An important and novel aspect of the survey pertained to the collection of data concerning

whether or not farmers had adapted to climate change. Significant e↵ort was put into

ensuring that information on adaptation was as accurate as possible.
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A key concern during the survey design stage was that farmers would attribute general

changes in farming methods, such as the adoption of higher yielding seeds, to adaptation

even if these were not adopted to cope with changes in climate. To minimise this possibility,

enumerators were instructed to directly ask farmers, ‘How has your household adapted

to cope with climatic changes?’. A concern was that farmers might be prompted by

enumerators to answer that they had adapted when they had not. To minimise this risk,

the farmers response to the question was recorded rather than a series of options being

read out to the farmer. Farmer responses were then grouped according to the type of

adaptation by the enumerator. This was recorded in question E6 in the survey.

In addition, to minimise the possibility that farmers were giving vague answers to adap-

tation survey questions, a series of follow up questions specifically related to adaptation

strategies were asked. These are shown in sections E8 to E12 in the survey. For instance,

farmers who answered that they had changed their planting or harvesting dates were asked

for new planting dates and previous planting dates.

Given the large amount of information collected on adaptation practices, the analysis

reported in Chapter 5 of this thesis serves to answer only a direct question about the

nature of climate change adaptation in Pakistan. Further analyses using this data could

interrogate particular types of adaptation, their determinants and impact.
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Reconnaissance)Survey)/)Schedule)))(15)/)18)Dec)2012))

15)Dec)2012)/)Day)1))

Meeting)with)WWF/)P)staff)
and)key)informants)
!

" Arrival!in!Sanghar!by!12!pm!

" Meetings!with!key!informants!to:!

• To!finalise!itinerary!for!the!field!visit,!and!decide!meeting!point!and!date/!time!

for!focus!group!meeting!at!all!clusters.!

• To!establish!3!groups!of!enumerators!(3"4!each)!and!assign!deliverables!for!

next!days’!focus!group!meeting!respectively.!!

• Collate!data!from!WWF"!P!staff!and!key!informants!for!sampling!excel!sheet!

containing!villages’!names,!number!of!households,!average!household!size,!etc!

for!output!4.!!

• Collect!information!to!complete!output!1,!2,!and!3.!!!

• Input!on!logistical!concerns,!e.g.!CBO!Rep!or!guide!availability!for!the!main!

survey.!!

)
16)Dec)2012)/)Day)2!

Focus)Group)Meeting)in)
Cluster)1)(Union)Council:)
Mian))
)
Villages)include)_____)

" Reach!the!village!at!10!am.!!

" Conduct!meeting!with!3!focus!groups!(of!preferably!of!8"10!wheat!growers)!

which!are!to!be!interviewed!by!3!groups!of!enumerators!respectively.!!!

" Enumerators!to!administer!the!given!questionnaire!with!each!group.!!

" Further,!each!enumerator!group!to!assign!a!specific!output!based!on!the!above!

mentioned!deliverables.!!

" Record!the!complete!interview!and!take!notes.!!

" Finish!the!meetings!by!5!pm.!!

" Compile!and!streamline!collected!data!in!the!required!format.!!

!

17)Dec)2012)/)Day)3)!
Focus)Group)Meeting)in)
Cluster)2)
(UC:)Shah)Sikandarabad))
)
Villages)include)_____)
)

" As!above!!

18)Dec)2012)/)Day)4)!

Focus)Group)Meeting)in)
Cluster)3)
(UC:)Mian))
)
Villages)include)_____)

" As!above.!!

!

!

!

!

!

!

!

!



Survey)Output:)

) Task) Description) Output) Responsibility)

1! Homogenous!

Sample!

• Establish!homogeneity!of!farmers!based!on!

types!of!crops!grown,!Land!size!holding,!rain!

fed!vs.!irrigation,!fixed!capital.!!

Work!Sheet! IA!and!AS!

2! Stratification!and!

Sub"groups!

• Deliberate!sampling!of!certain!characteristics!

for!treated,!untreated!and!control!group:!!

a) Treatment!type!1:!Farmer!field!school!

participants!(WWF!or!others)!for!adapter!vs.!

non!adapters!grouping.!!

b) Treatment!type!2:!Flood!affectees!with!in!last!

3!years!and!within!last!10!years.!!

• Evaluate!feasibility!of!sampling!!such!as!

possibility!through!CBO!Rep,!cost!of!the!

sample,!etc.!

Listed!by!total!

numbers!on!work!

sheet!

IA!and!AS!

3! Target!No!of!

Questionnaire!!

• Identification!of!zones!at!each!site,!and!sub"

division!of!zone!into!clusters!to!achieve!a!

sample!size!of!250!at!each!site.!!

• !Identification!of!villages!within!each!cluster!

respectively.!!!

• Setting!target!number!of!respondents!per!

zone,!by!cluster,!by!hour!of!the!day,!etc.!

Representation!of!

zones!with!villages!

marked!on!a!Map!!

IA!and!AS!

4! Excel!sheet!for!

random!

sampling!

procedure!

• Work!sheet!with!column!on!!

a) Village!name,!b)!average!household!

family!size,!c)!!!number!of!households!in!

each!village,!d)!village!population.!

• Work!sheet!for!treated!groups!type!1!and!2!

Excel!Sheet,!

(format!attached).!!

AS!

5! Questionnaire!

Design!

• Details!on!farming!activities,!processes!and!

naturally!occurring!payment!vehicle.!!

• Phrasing!of!the!questions!

• Terms!in!the!local!language!!

• Input!on!unit!of!measurement!(acre,!maund)!

• Information!on!Adaptation!practices!

Audio!recording!of!

focus!group!

meetings,!and!

detailed!notes!

Enumerators!

6! Logistic!

arrangement!

• Distance!between!clusters,!and!other!

logistical!aspects!that!would!finalise!the!total!

number!of!enumerators!and!vehicles!

needed.!!

• Identify/!meet!1"2!CBO!representatives!for!

each!zone!who!could!assist!in!gathering!

respondents!for!the!survey.!Set!meeting!

point!and!date/!time!for!each!settlement,!or!

possible!zone.!!

Excel!Sheet.! AS!

)
)
)
)



Questions)for)Focus)Group)meeting:))
)
Details)on)farming)activities,)Input,)Output))
1. What!crops!are!grown!in!past!12!months?!Name!and!duration!in!months?!!

2. Date!of!sowing!and!harvesting!for!all!crop!grown!in!a!year.!!

3. Are!these!typical!for!the!past!10!years?!What!other!crops!do!you!grow?!

4. What!is!the!yield!of!each!crop!this!year!(in!maund)?!What!was!it!last!year?!

5. What!is!the!selling!price!of!each!crop!this!year?!(in!maund)!What!was!it!last!year?!

6. What!is!the!area!of!your!farm?!(In!acres)!

7. Are!you!the!owner!or!is!it!on!lease?!What!are!the!terms!of!lease?!

8. Are!terms!affecting!by!owner!offloading!cost!of!crop!loss!onto!you?!Is!this!because!of!climate!change!or!other!

reasons?!

9. Have!you!cultivated!wheat!as!yet?!Date!of!sowing?!!

10. What!was!the!crop!immediately!before,!and!immediately!after!wheat?!!

11. Is!this!cropping!order!strictly!observed!each!year?!
12. What!is!the!support!price!of!wheat!in!2011!and!2012?!

)
Water)Source:)
13. Is!this!a!Barani!area!or!Katcha?!
14. Do!you!receive!water!through!Canal!system?!

15. Does!it!lower!cost!of!your!irrigation?!First,!second!or!which!one?!By!how!much!does!it!reduce!unit!cost!of!the!

concerned!irrigation?!

16. Is!the!canal!water!available!throughout!the!season?!If!not,!which!month!is!it!available!and!for!how!long?!

Reasons?!

17. What!are!its!charges!per!season!in!PKR?!

18. Who!collects!the!money!for!canal!system?!Extension!officer!or!do!you!deposit!yourself!in!Bank?!What!month!

of!the!season?!!

19. Do!you!also!use!tubewell!for!water?!For!which!crop?!
20. Is!it!owned!or!rented?!!
21. Where!do!you!rent!from?!What!is!this!year!rent!(in!PKR)?!Are!the!terms!of!rent!in!days!or!for!No!of!hours!

used?!!

22. Do!you!rent!the!tubewell!for!the!complete!season!or!for!each!application?!!

23. What!is!the!method!of!irrigation?!e.g.!flood,!drip,!furrow!etc.!!

24. How!many!hours!in!a!day!do!you!receive!electricity!for!tubewell?!!

25. If!not,!electricity,!how!do!you!power!your!tubewell?!!
26. How!many!times!do!you!normally!irrigate!for!a!wheat!crop?!And!for!other!crops!grown!in!a!year?!How!many!

hours!each!time?!

!

Land)Preparation:)))
27. How!many!days!are!needed!for!land!preparation!for!wheat!and!the!other!crops!grown?!Explain!the!steps?!!

28. What!equipment!are!needed!for!land!preparation?!Names!in!Sindhi,!Urdu!and!English!as!well.!!

29. Are!the!equipment!rented!or!owned?!!

30. Cost!of!equipment!and!rent!in!PKR?!Is!the!rent!inclusive!of!fuel!charges?!

31. How!many!household!people!are!involved!in!land!preparation!activity?!!

32. How!many!days!by!each!household!member?!How!many!hours!do!they!work!in!a!day?!

33. Do!you!involve!household!female!and!children!in!this!activity?!How!many!hours!in!a!day?!!!

34. Do!you!hire!labor!for!this!particular!activity?!Is!the!hiring!by!number!of!days,!or!for!the!complete!season?!!

35. Do!you!pay!wages!daily,!monthly!or!for!season?!Do!you!also!pay!in!kind!or!money?!

36. What!is!the!wage!rate/day?!

37. How!much!water!is!required!for!this!activity?!(In!hours)!

38. Do!you!apply!pesticides,!weedicides,!UREA!or!DAP!as!this!stage?!
39. How!many!Kgs!of!each!item!for!1!acre!land?!!!

40. What!is!the!cost!of!one!bag!of!each!item?!!

41. Do!you!receive!information!from!any!source!on!when!to!cultivate?!Name!the!source?!!

42. Do!you!pay!for!this!service?!And!Is!it!reliable?!



!

Planting)Activity))
43. How!many!Kg!of!seed!is!required!for!one!acre!of!land?!

44. Where!do!you!buy!the!seed!from?!Is!it!your!own?!!

45. Do!you!receive!advice!from!any!source!on!which!variety!of!seed!to!use?!Name!the!source?!

46. How!do!you!sow!seed?!Method?!!

47. Do!you!broadcast!the!seed!yourself,!household!member!or!hire!labour?!!

48. How!many!people!do!you!hire!for!one!acre!of!land?!For!how!many!days?!!

49. What!do!you!do!for!planking?!Name!the!equipment!and!its!rent?!!

50. Do!you!water!the!field!as!well?!Name!the!source!used?!!

51. How!many!hours!do!you!water!at!this!stage?!!

52. Do!you!also!use!fertilizers!and!Weedicides!at!this!stage?!How!many!kgs?!!

53. Which!input!among!all!your!input!is!the!most!critical!for!the!success!of!wheat!crop?!Cotton?!And!any!other!

grown!crop?!

54. Does!wind!lower!wheat!or!other!crops’!yield!(via!dust!gathering!on!leaves)?!Do!you!ever!do!an!additional!
irrigation!or!use!labor!to!wipe!leaves?!

55. Have!higher!night!time!temperature!caused!a!decline!in!yield?!

56. Has!the!yield!been!affected!by!extreme!heat!stress?!How!much!does!it!affect!irrigation!cost?!Give!example.!

!

Harvesting:))
57. Which!equipment!do!you!use!at!this!stage?!Name!the!equipment!and!its!rent?!!

58. What!is!the!fuel!cost!of!this!machinery!for!one!acre!of!land?!!

59. Do!you!hire!labor!for!threshing?!Or!is!it!done!by!household!members?!

60. How!many!people!are!required!for!one!acre!of!land?!And!for!how!many!days?!!

)
Post/Harvest)Activity:))
61. Where!do!you!sell!your!produce?!Local!market!or!middle!men?!!

62. Is!this!a!government!middleman?!

63. What!is!the!commission!of!the!middleman?!(%!per!mound)!!!

64. Do!you!store!your!produce!or!sell!immediately?!Where?!(Underground!or!Silo)!

65. What!is!the!cost!of!storage!per!year?!

66. How!do!you!transport!your!produce!to!the!market?!!

67. Is!it!a!rented!vehicle?!What!is!the!rent!in!PKR?!!

68. Typically!what!is!the!share!of!home!consumption!of!wheat!or!rice?!Is!it!used!for!feeding!cattle!or!given!to!any!

other!relative!or!neighbor?!Free!or!charged?!!

!

Institutional)Arrangements:)
69. Have!you!asked!for!a!loan!in!the!last!five!year?!Source?!!
70. What!are!the!terms!of!the!loan?!Interest?!Duration?!!

71. Do!you!receive!any!government!subsidy?!On!seed,!fertilizers,!etc.?!

72. Is!it!provided!annually!or!for!each!season?!!
73. Any!other!subsidy!from!other!sources!like!NGO!etc?!

!

Adaptation)Practices)and)other)information:)
74. Were!you!affected!by!flood!in!2010!or!flash!rains!in!2011!and!12?!

75. Did!you!suffer!any!loss!in!these!events?!
76. Were!you!affected!in!floods!in!the!past!10!years?!!

77. Have!you!changed!your!agricultural!practices!or!cropping!pattern!in!the!past!5!years?!
78. What!was!the!motivation!for!this!change?!Provide!an!example.!!

79. Have!you!brought!any!changes!in!your!agricultural!practices!due!to!delay!in!rain?!
80. What!cost!did!you!incur?!Give!concrete!example.!

81. Have!you!done!any!measures!to!cope!with!unseasonal!rain?!!

82. What!are!typical!economically!motivated!adjustments!in!farming!activities?!Provide!example!

83. !Have!you!participated!in!any!farmer!field!school!programme!by!WWF?!

84. Or!any!other!Farmer!field!school!participation!(Govt!or!other!NGO)?!!



!

Questionnaire+No.+|__|__|__|+ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+

+
+

“The+Determinants,+Impact+and+Cost+Effectiveness+of+Climate+Change+Adaptation+in+the+Indus+Ecoregion”+
Micro+Econometric+Study+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

HOUSEHOLD+SURVEY+(1,600+households)+
(Household+is+defined+as+group+of+people+living+under+the+same+roof+and+sharing+a+budget+for+food)+

+
+
+
+
+

+
+
+
+
+



2!
!

+
Complete+address:_______________+village+name:+_______________+Union+Council:+____________+++
+
+Village+GPS+Code:________++++++HH+GPS+code__________+
+
Name+of+Respondent+with+Father's/Husband's+Name:____________________________________+
+
Age+of+the+respondent:+ [+++][+++]+
+
National+Identification+Number+(NIC)+of+the+respondent+__________________________________+
+
Cell+Number+of+the+respondent+(optional)+___________________________________________+
+
Relationship+of+the+Respondent+with+the+Head+of+Household:+ [+++]+
+
Relation+with+head+of+the+household:+
+
+ 1.+Self;+ + + + + + 6.+Mother/Father;++
+ 2.+Wife/husband;+ + + + + 7.+Brother/sister;+
+ 3.+Son/daughter;+ + + + + 8.+Other+relatives;+
+ 4.+Soncinclaw/daughtercinclaw;+ + + 9.+Other+noncrelatives+
+ 5.+Grand+son/grand+daughter;+
+
Date+of+interview:+
+
1st+visit+++++/+++/+++++ + + + +
+
Interviewer's+name+ :+ __________________________________________________________+
+
Supervisor's+name++ :+ ++++++++++++++++++__________________________________________________+
+
Checked+by++ + :+ _____________________________________________.____+
(Checker's+Name+&+Signature)+
+
Edited+by+++ + :+ ______________________________________.___________+
(Editor's+Name+&+Signature)+
+
+
+
+
+
+
+

Relevant!Codes:!!
!
NA:!Not!Applicable!
DK:!Don’t!Know!
Zero:!O!
P:!Protest!
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SECTION+A:++HOUSEHOLD+CHARACTERISTICS+
+
A1.$Basic$structure$and$livelihood$source$
+
A11.+ How+many+persons+usually+live+in+this+household?+(Exclude+guests+and+those+currently+residing+elsewhere+even+for+2c3+months+of+the+year)+ [+++][+++]+
+
Table+A12:+Family+structure,+and+livelihood+source++

Person+Code+
+

Relation+with+head+
of+family+

*1+
+

Gender+
1.Male+
2.Female+

Age+
(years)+

Education+status+
*2+

Principal+Means+of+
livelihood+*3+

Secondary+means+of+
livelihood+*3+

State+if+primary+
occupation+is:++

1.+Outside+village+
2.+In+urban+area+

Marital+Status+
*4+

A121+ + A121a+ + A121b+ + A121c+ + A121d+ + A121e+ + A121f+ + A121g+ + A121h+ +

A122+ + A122a+ + A122b+ + A122c+ + A122d+ + A122e+ + A122f+ + A122g+ + A122h+ +

A123+ + A123a+ + A123b+ + A123c+ + A123d+ + A123e+ + A123f+ + A123g+ + A123h+ +
A124+ + A124a+ + A124b+ + A124c+ + A124d+ + A124e+ + A124f+ + A124g+ + A124h+ +

A125+ + A125a+ + A125b+ + A125c+ + A125d+ + A125e+ + A125f+ + A125g+ + A125h+ +

A126+ + A126a+ + A126b+ + A126c+ + A126d+ + A126e+ + A126f+ + A126g+ + A126h+ +

A127+ + A127a+ + A127b+ + A127c+ + A127d+ + A127e+ + A127f+ + A127g+ + A127h+ +

A128+ + A128a+ + A128b+ + A128c+ + A128d+ + A128e+ + A128f+ + A128g+ + A128h+ +
A129+ + A129a+ + A129b+ + A129c+ + A129d+ + A129e+ + A129f+ + A129g+ + A129h+ +

A1210+ + A1210a+ + A1210b+ + A1210c+ + A1210d+ + A1210e+ + A1210f+ + A1210g+ + A1210h+ +
A1211+ + A1211a+ + A1211b+ + A1211c+ + A1211d+ + A1211e+ + A1211f+ + A1211g+ + A1211h+ +
*1+Self+[1];+Wife/husband+[2];+son/daughter+[3];+son/daughter+in+law+[4];+Grandson/daughter+[5];+Mother/father+[6];+Brother/sister+[7];+other+relatives+[8];+other+noncrelatives+[9]+
*2+Read+&+write+[1];+primary+[2];+middle+[3];+Matriculation+[4];+intermediate+[5];+graduate+[6];+masters+[7];+illiterate+[8]+
*3+Farming+[1];+private+employee+(e.g.+small+business/+shop)+[2];+Government+employee+(e.g.+teacher,+peon)+[3];+(daily)+wage+earner+[4];+Fishing+[5];+Other+_________+[6]++
*4+Married+[1];+Single+[2];+Divorced+[3];+Widow/er+[4]++
+
+
+
+
+
+
+
+
+
+
+
+
+
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Table$A13:$Tenure$Arrangements:$$[seasons:$Kharif$(May$@$September);$Rabi$(Oct$@$April)]$$
Se
pa

ra
te
$la
nd

$ Size$of$
the$total$
parcel$
(acres)$

Distance$
from$field$
to$home$
(1@way$
km)$

Rate$
quality$
of$soil$of$
this$
parcel?*
1$

Se
as
on

$

Cultivated$
crop$(incl.$
fallow$
land)$in$
2012?$*2$

Total$areas$
under$
cultivation
?$$
(acres)$

Tenure$
Arrangement$
*3$

How$many$
years$have$
you$
continuousl
y$used$this$
plot?$

Shared$cropping$ Rent$
paid/$
received$
if$plot$is$
leased?$
(PKR/yr)$

Duration$
of$
tenancy$
contract$
(years)?$$

Tenancy$
changed$
in$past$5$
years?$
*4$

Distance$
of$plot$to$
landlord?$
(tenants$
only)$
(Km)$

Frequency$
of$
landlord’s$
visit?$$
(tenant/$$
landlord)$

What$is$the$
sharing$
arrangeme
nt?$(In$%)$

Other$
payment$
e.g.$inputs$
(PKR/$yr)$$

Pa
rc
el
$1
$

A
13
1$ $

A
13
1a
$

$

$ $

Ra
bi
$

A1311b$ $ A1311d$ $ A1311f$ $ A1311h$ $ A1311j$ $ A1311l$ $ A1311n$ $ A1311p$ $ A1311r$ $ A1311t$ $ A1311v$ $

A1312b$ $ A1312d$ $ A1312f$ $ A1312h$ $ A1312j$ $ A1312l$ $ A1312n$ $ A1312p$ $ A1312r$ $ A1312t$ $ A1312v$ $

A1313b$ $ A1313d$ $ A1313f$ $ A1313h$ $ A1313j$ $ A1313l$ $ A1313n$ $ A1313p$ $ A1313r$ $ A1313t$ $ A1313v$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

Ka
ri
f$

A1311c$ $ A1311e$ $ A1311g$ $ A1311i$ $ A1311k$ $ A1311m$ $ A1311o$ $ A1311q$ $ A1311s$ $ A1311u$ $ A1311w$ $

A1312c$ $ A1312e$ $ A1312g$ $ A1312i$ $ A1312k$ $ A1312m$ $ A1312o$ $ A1312q$ $ A1312s$ $ A1312u$ $ A1312w$ $

A1313c$ $ A1313e$ $ A1313g$ $ A1313i$ $ A1313k$ $ A1313m$ $ A1313o$ $ A1313q$ $ A1313s$ $ A1313u$ $ A1313w$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

Pa
rc
el
$2
$

A
13
2$ $

A
13
2a
$

$

$ $

Ra
bi
$

A1321b$ $ A1321d$ $ A1321f$ $ A1321h$ $ A1321j$ $ A1321l$ $ A1321n$ $ A1321p$ $ A1321r$ $ A1321t$ $ A1321v$ $

A1322b$ $ A1322d$ $ A1322f$ $ A1322h$ $ A1322j$ $ A1322l$ $ A1322n$ $ A1322p$ $ A1322r$ $ A1322t$ $ A1322v$ $

A1323b$ $ A1323d$ $ A1323f$ $ A1323h$ $ A1323j$ $ A1323l$ $ A1323n$ $ A1323p$ $ A1323r$ $ A1323t$ $ A1323v$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

Ka
ri
f$

A1321c$ $ A1321e$ $ A1321g$ $ A1321i$ $ A1321k$ $ A1321m$ $ A1321o$ $ A1321q$ $ A1321s$ $ A1321u$ $ A1321w$ $

A1322c$ $ A1322e$ $ A1322g$ $ A1322i$ $ A1322k$ $ A1322m$ $ A1322o$ $ A1322q$ $ A1322s$ $ A1322u$ $ A1322w$ $

A1323c$ $ A1323e$ $ A1323g$ $ A1323i$ $ A1323k$ $ A1323m$ $ A1323o$ $ A1323q$ $ A1323s$ $ A1323u$ $ A1323w$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

Pa
rc
el
$3
$

A
31
3$ $

A
13
3a
$

$

$ $

Ra
bi
$

A1331b$ $ A1331d$ $ A1331f$ $ A1331h$ $ A1331j$ $ A1331l$ $ A1331n$ $ A1331p$ $ A1331r$ $ A1331t$ $ A1331v$ $

A1332b$ $ A1332d$ $ A1332f$ $ A1332h$ $ A1332j$ $ A1332l$ $ A1332n$ $ A1332p$ $ A1332r$ $ A1332t$ $ A1332v$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

A1333b$ $ A1333d$ $ A1333f$ $ A1333h$ $ A1333j$ $ A1333l$ $ A1333n$ $ A1333p$ $ A1333r$ $ A1333t$ $ A1333v$ $

Ka
ri
f$

A1331c$ $ A1331e$ $ A1331g$ $ A1331i$ $ A1331k$ $ A1331m$ $ A1331o$ $ A1331q$ $ A1331s$ $ A1331u$ $ A1331w$ $

A1332c$ $ A1332e$ $ A1332g$ $ A1332i$ $ A1332k$ $ A1332m$ $ A1332o$ $ A1332q$ $ A1332s$ $ A1332u$ $ A1332w$ $

A1333c$ $ A1333e$ $ A1333g$ $ A1333i$ $ A1333k$ $ A1333m$ $ A1333o$ $ A1333q$ $ A1333s$ $ A1333u$ $ A1333w$ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
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*1.+(1)+Low;+(2)+Medium;+(3)+High+
*2:+(1)+Fallow;+(2)+Fodder;+Wheat+c+Sahar+(1);+wheat+c+Shafaq+(2);+wheat+c+Faisalabad+10+(3);+wheat+c+Punjab+90+(4);+wheat+–+Lasani+(5);+wheat+–+Bhakkar+(6);+Kapas(cotton)+c++Neelum+121+(7);+Kapas(cotton)+c+
Neelum+3700+(8);+Kapas(cotton)+c+CIMc142+(9);+Kapas(cotton)+c++CIMc886+(10);+Kapas(cotton)+c+AAc703+(11);+Kapas(cotton)+c+AAc802;++Chawal+(Paddy+Rice)+c+IRRIc6;+Chawal+(Paddy+Rice)c++Basmati+382,+Chawal+
(Paddy+ Rice)+ c+ Bastmati+ 386;+ Chawal+ (Paddy+ Rice)+ –+Kernal+ + (3)Kado+ Loki+ (Bottle+ Gourd);(4)Tuori+ (Ribbed+ Guord);(5)Bengan+ (Egg+ plant);(6)Bhendi+ (Lady+ Finger);(7)+ Hari+Mirch+ (Green+ Chilies);(8)Tematar+
(Tomatoes);(9)Khira+ (Cucumber);(10)Kerela+ (Bitter+ Guord);(11)Gidra+ (Musk+Melon);(12)Pan+ (Piper+ Bettle);(13)Kela+ (Pan);(14);+ Narial+ (Coconut);(15)Cheekoo+ (Mud+ Apple);(17)Ganna+ (Sugar+ Cane);(18)Aam+
(Mango);(20)Aloo+(Potato);(21)Other+(Specify+here_______________)++
*3:+Own+land+and+cultivated+(1);+own+land+and+rent+to+others+(2);+share+cropped+land+(3);+Land+rented+in+(pay+fixed+rate+to+landlord)+(4);+Use+of+fructuary+right+(5);+Other+(specify)______+(6)+
*4:+Rented+extra+land+out+(1);+rented+extra+land+in+(2);+Gone+from+sharecrop+to+fixed+rent+(3);+Fixed+rent+to+share+crop+(4)+purchase+land.+
+
+
A14:+If+you+were+able+to+buy+all+of+your+owned/+cultivated+land+today+(2012),+what+is+the+maximum+you+would+pay+for+it?+++Specify+total+acres+_________________+and+A14+a:+Specify+PKR+per+acre+___________++
+
+
A15:+How+often+are+the+terms+of+tenancy+reviewed?+__________________________++++
Every+year+(1);+every+2+years+(2);+every+4+years+(3);+at+discretion+of+the+landlord+(4)+
+
+
A16:++Are+rights+to+farm+the+land+you’re+using?+____________________________________+
Inherited+(1);+Purchased+(2);+Designated+by+national+government;+(3)+Designated+by+local+government+(4)+
+
+
A17:+Since+you+have+been+a+farmer,+have+you+been+evicted+from+any+previous+land?+Yes/No+
+
+
A18:+Have+you+experienced+other+farmers+in+your+village+being+evicted+from+their+land?+Often/Occasionally/Never+
+
+
A19:++Crop+Choice+
Who+decides+crop+choice?+ Circle++as+appropriate+ If+selected+FARMER+in+the+previous+question,+what+are+the+primary+reasons+

for+the+crop+choices+you+make?+
Rate+3+options+

+
A191+ Farmer+ 1+ Highest+profit,+high+risk+ 1+ 1cMost+Important+ A191a+ +
A192+ Landlord+ 2+ Lower+profit,+lower+risk+ 2+ 2cMost+Important+ A192a+ +
A193+ Middleman+ 3+ Past+experience+with+these+crops+ 3+ 3cMost+Important+ A193a+ +
A194+ Credit+supplier+ 4+ Recommended+by+the+landlord+ 4+ +
A195+ Other+(specify)+ 5+ Recommended+by+the+middleman+ 5+

+ Preferred+for+home+consumption+ 6+
Low+water+use+ 7+
Other+(specify++___________________)++ 8+

+
+
+
+
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+
+

B1.+Agricultural+products:+outputs,+and+prices+++

Se
pa

ra
te
$

la
nd

+

Se
as
on

+ Crop+code+
as+above+

Planting+
Date+

Harvesting+
date+

Production+in+
2012+

(Maunds)+

Average+
Production+in+
2011+(Maunds)+

Home+
Consumption+
(Maund)+

Quantity+
consumed+by+
Livestock++
(Maund)+

Quantity+
stored+
(Maund)+

Post+c+Harvest+
losses+++

(Maund)+

Quantity+
Sold+

(Maund)+

Farmer+
Price+
(PKR/+
Maund)+

Market+
Price+
(PKR/+
Maund)+

Govt.+
price+
(PKR/+
Maund)+

Pa
rc
el
+1
+ Ra

bi
+

B111b+ + B111d+ + B111f+ + B111h+ + B111j+ + B111l+ + B111n+ + B111p+ + B111r+ + B111t+ + B111v+ + B111x+ + B111z+ +

B112b+ + B112d+ + B112f+ + B112h+ + B112j+ + B112l+ + B112n+ + B112p+ + B112r+ + B112t+ + B112v+ + B112x+ + B112z+ +
B113b+ + B113d+ + B113f+ + B113h+ + B113j+ + B113l+ + B113n+ + B113p+ + B113r+ + B113t+ + B113v+ + B113x+ + B113z+ +

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Ka
rif
+ B111c+ + B111e+ + B111g+ + B111i+ + B111k+ + B111m+ + B111o+ + B111q+ + B111s+ + B111u+ + B111w+ + B111y+ + B111a+ +

B112c+ + B112e+ + B112g+ + B112i+ + B112k+ + B112m+ + B112o+ + B112q+ + B112s+ + B112u+ + B11w+ + B112y+ + B112a+ +

B113c+ + B113e+ + B113g+ + B113i+ + B113k+ + B113m+ + B113o+ + B113q+ + B113s+ + B113u+ + B113w+ + B113y+ + B113a+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

Pa
rc
el
+2
+ Ra

bi
+ B121b+ + B121d+ + B121f+ + B121h+ + B121j+ + B121l+ + B121n+ + B121p+ + B121r+ + B121t+ + B121v+ + B121x+ + B121z+ +

B122b+ + B122d+ + B122f+ + B122h+ + B122j+ + B122l+ + B122n+ + B122p+ + B122r+ + B122t+ + B122v+ + B122x+ + B122z+ +
B123b+ + B123d+ + B123f+ + B123h+ + B123j+ + B123l+ + B123n+ + B123p+ + B123r+ + B123t+ + B123v+ + B123x+ + B123z+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

Ka
rif
+ B121c+ + B121e+ + B121g+ + B121i+ + B121k+ + B121m+ + B121o+ + B121q+ + B121s+ + B121u+ + B121w+ + B121y+ + B121a+ +

B122c+ + B122e+ + B122g+ + B122i+ + B122k+ + B122m+ + B122o+ + B122q+ + B122s+ + B122u+ + B122w+ + B122y+ + B122a+ +
B123c+ + B123e+ + B123g+ + B123i+ + B123k+ + B123m+ + B123o+ + B123q+ + B123s+ + B123u+ + B123w+ + B123y+ + B123a+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

Pa
rc
el
+3
+ Ra

bi
+ B131b+ + B131d+ + B131f+ + B131h+ + B131j+ + B131+ + B131n+ + B131p+ + B131r+ + B131t+ + B131v+ + B131x+ + B131z+ +

B132b+ + B132d+ + B132f+ + B132h+ + B132j+ + B132l+ + B132n+ + B132p+ + B132r+ + B132t+ + B132v+ + B132x+ + B132z+ +
B133b+ + B133d+ + B133f+ + B133h+ + B133j+ + B133l+ + B133n+ + B133p+ + B133r+ + B133t+ + B133v+ + B133x+ + B133z+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

Ka
rif
+ B131c+ + B131e+ + B131g+ + B131i+ + B131k+ + B131m+ + B131o+ + B131q+ + B131s+ + B131u+ + B131w+ + B131y+ + B131a+ +

B132c+ + B132e+ + B132g+ + B132i+ + B132k+ + B132m+ + B132o+ + B132q+ + B132s+ + B132u+ + B132w+ + B132y+ + B132a+ +
B133c+ + B133e+ + B133g+ + B133i+ + B133k+ + B133m+ + B133o+ + B133q+ + B133s+ + B133u+ + B133w+ + B133y+ + B133a+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +

+
+
B12.+For+total+production+(column+d),+what+is+the+%+upward+or+downward+revision?+______________+(%)+(Consider+average+of+past+5+years+(2007c2011))+
+
B13.+For+farmer+price+(column+j),+what+is+the+%+upward+or+downward+revision?+______________+(%)+(Consider+average+past+5+years+(2007c2011))+
+
B14.+For+market+price+(column+k),+what+is+the+%+upward+or+downward+revision?+______________+(%)+(Consider+average+past+5+years+(2007c2011))+
+
+

Section+B.+Agricultural+products:+Inputs,+outputs,+and+prices+



7!
!

B2:+Agricultural+Inputs+++
+
B21.+How+far+is+it+to+the+market+where+you+purchase+your+inputs?+One+way+distance+_______+(km)++
+
B22.+What+kind+of+transport+do+you+mostly+use+to+bring+input+from+the+market?+____++++(walk,+local+bus,+personal+vehicle,+rented+vehicle,+donkey/+camel+cart);++
B22a.+One+way+cost+for+a+visit+_______(PKR)+(Not+to+be+filled+if+farmer+receives+delivery+of+inputs+by+a+middleman+etc.+Only+relevant+if+farmer+actually+goes+to+the+market+to+pick+up+goods)+
$
B23:$Fertilizers$and$Weedicides/$Pesticides$$

Se
pa

ra
te
$la
nd

+

Se
as
on

+

En
te
r+P

lo
t+c
od

e+
as
+a
bo

ve
+

Weedicides/+Pesticides+++ UREA+ D.A.P/+S.O.P+ Manure+

Quantit
y+
(Kgs)+

Total+
Cost+
(PKR)+

Source*+ %+of+cost+
paid+by+
the+
farmer?++

Quantit
y+
(Kgs)+

Total+
Cost+
(PKR)+

Source*+ %+of+
cost+
paid+by+
the+
farmer?+

Quantit
y+
(Kgs)+

Total+
Cost+
(PKR)+

Source*+ %+of+
cost+
paid+by+
the+
farmer?+

Quantity+
(Kgs)+

Total+
Cost+
(PKR)+

Source*+ %+of+
cost+
paid+by+
the+
farmer?+

Pa
rc
el
+1
+

Ra
bi
+

B231
1b+

+ B231
1d+

+ B231
1f+

+ B231
1h+

+ B231
1j+

+ B23
11l+

+ B231
1n+

+ B231
1p+

+ B231
1r+

+ B231
1t+

+ B2311
v+

+ B231
1x+

+ B231
1z+

+ B2311
bb+

+ B2311
dd+

+ B2311
ff+

+ + +

B231
2b+

+ B231
2d+

+ B231
2f+

+ B231
2h+

+ B231
2j+

+ B23
12l+

+ B231
2n+

+ B231
2p+

+ B231
2r+

+ B231
2t+

+ B2312
v+

+ B231
2x+

+ B231
2z+

+ B2311
bb+

+ B2312
dd+

+ B2312
ff+

+ + +

B231
3b+

+ B231
3d+

+ B231
3f+

+ B231
3h+

+ B231
3j+

+ B23
13l+

+ B231
3n+

+ B231
3p+

+ B231
3r+

+ B231
3t+

+ B2313
v+

+ B231
3x+

+ B231
3z+

+ B2313
bb+

+ B2313
dd+

+ B2313
ff+

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+

B231
1c+

+ B231
1e+

+ B231
1g+

+ B231
1i+

+ B231
1k+

+ B23
11m+

+ B231
1o+

+ B231
1q+

+ B231
1s+

+ B231
1u+

+ B2311
w+

+ B231
1y+

+ B231
1a+

+ B2311
cc+

+ B2311
ee+

+ B2311
gg+

+ + +

B231
2c+

+ B231
2e+

+ B231
2g+

+ B231
2i+

+ B231
2k+

+ B23
12m+

+ B231
2o+

+ B231
2q+

+ B231
2s+

+ B231
2u+

+ B2312
w+

+ B231
2y+

+ B231
2a+

+ B2312
cc+

+ B2312
ee+

+ B2312
gg+

+ + +

B231
3c+

+ B231
3e+

+ B231
3g+

+ B231
3i+

+ B231
3k+

+ B23
13m+

+ B231
3o+

+ B231
3q+

+ B231
3s+

+ B231
3u+

+ B2313
w+

+ B231
3y+

+ B231
3a+

+ B2313
cc+

+ B2313
ee+

+ B2313
gg+

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Pa
rc
el
+2
+

Ra
bi
+

B232
1b+

+ B232
1d+

+ B232
1f+

+ B232
1h+

+ B232
1j+

+ B23
21l+

+ B232
1n+

+ B232
1p+

+ B232
1r+

+ B232
1t+

+ B2321
v+

+ B232
1x+

+ B232
1z+

+ B2321
bb+

+ B2321
dd+

+ B2321
ff+

+ + +

B232
2b+

+ B232
2d+

+ B232
2f+

+ B232
2h+

+ B232
2j+

+ B23
22l+

+ B232
2n+

+ B232
2p+

+ B232
2r+

+ B232
2t+

+ B2322
v+

+ B232
2x+

+ B232
2z+

+ B2322
bb+

+ B2322
dd+

+ B2322
ff+

+ + +

B232
3b+

+ B232
3d+

+ B232
3f+

+ B232
3h+

+ B232
3j+

+ B23
23l+

+ B232
3n+

+ B232
3p+

+ B232
3r+

+ B232
3t+

+ B2323
v+

+ B232
3x+

+ B232
3z+

+ B2323
bb+

+ B2323
dd+

+ B2323
ff+

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+

B232
1c+

+ B232
1e+

+ B232
1g+

+ B232
1i+

+ B232
1k+

+ B23
21m+

+ B232
1o+

+ B232
1q+

+ B232
1s+

+ B232
1u+

+ B2321
w+

+ B232
1y+

+ B232
1a+

+ B2321
cc+

+ B2321
ee+

+ B2321
gg+

+ + +

B232
2c+

+ B232
2e+

+ B232
2g+

+ B232
2i+

+ B232
2k+

+ B23
22m+

+ B232
2o+

+ B232
2q+

+ B232
2s+

+ B232
2u+

+ B2322
w+

+ B232
2y+

+ B232
2a+

+ B2322
cc+

+ B2322
ee+

+ B2322
gg+

+ + +

B232
3c+

+ B232
3e+

+ B232
3g+

+ B232
3i+

+ B232
3k+

+ B23
23m+

+ B232
3o+

+ B232
3q+

+ B232
3s+

+ B232
3u+

+ B2323
w+

+ B232
3y+

+ B232
3a+

+ B2323
cc+

+ B2323
ee+

+ B2323
gg+

+ + +
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+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Pa
rc
el
+3
+

Ra
bi
+

B233
1b+

+ B233
1d+

+ B233
1f+

+ B233
1h+

+ B233
1j+

+ B23
31l+

+ B233
1n+

+ B233
1p+

+ B233
1r+

+ B233
1t+

+ B2331
v+

+ B233
1x+

+ B233
1z+

+ B2331
bb+

+ B2331
dd+

+ B2331
ff+

+ + +

B233
2b+

+ B233
2d+

+ B233
2f+

+ B233
2h+

+ B233
2j+

+ B23
32l+

+ B233
2n+

+ B233
2p+

+ B233
2r+

+ B233
2t+

+ B2332
v+

+ B233
2x+

+ B233
2z+

+ B2332
bb+

+ B2332
dd+

+ B2332
ff+

+ + +

B233
3b+

+ B233
3d+

+ B233
3f+

+ B233
3h+

+ B233
3j+

+ B23
33l+

+ B233
3n+

+ B233
3p+

+ B233
3r+

+ B233
3t+

+ B2333
v+

+ B233
3x+

+ B233
3z+

+ B2333
bb+

+ B2333
dd+

+ B2333
ff+

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+

B233
1c+

+ B233
1e+

+ B233
1g+

+ B233
1i+

+ B233
1k+

+ B23
31m+

+ B233
1o+

+ B233
1q+

+ B233
1s+

+ B233
1u+

+ B2331
w+

+ B233
1y+

+ B233
1a+

+ B2331
cc+

+ B2331
ee+

+ B2331
gg+

+ + +

B233
2c+

+ B233
2e+

+ B233
2g+

+ B233
2i+

+ B233
2k+

+ B23
32m+

+ B233
2o+

+ B233
2q+

+ B233
2s+

+ B233
2u+

+ B2332
w+

+ B233
2y+

+ B233
2a+

+ B2332
cc+

+ B2332
ee+

+ B2332
gg+

+ + +

B233
3c+

+ B233
3e+

+ B233
3g+

+ B233
3i+

+ B233
3k+

+ B23
33m+

+ B233
3o+

+ B233
3q+

+ B233
3s+

+ B233
3u+

+ B2333
w+

+ B233
3y+

+ B233
3a+

+ B2333
cc+

+ B2333
ee+

+ B2333
gg+

+ + +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

*1:+On+cash+payment+from+market/+local+dealer+(1);+on+credit+from+market/+local+dealer+(2);+on+cash+from+Middleman+(3);+On+credit+from+Middleman+(4);+free+from+middleman+(5);+free+from+Landlord+(6);+
on+credit+from+land+owner+(7);+Government+(8);+NGO/agricultural+extension+(9);+other,+pls.+specify+_______+(10)++
+
+
B24:+Seed++
Farm+
land+ Season+ Enter+Plot+code+as+above+

Seed+
Quantity+(Kg)+ Total+Cost+(PKR)+ Source*+ %+of+cost+paid+by+the+farmer?+

Pa
rc
el
+1
+ Ra

bi
+

B2311b+ + B2311bb+ + B2311dd+ + B2311ff+ + + +
B2312b+ + B2311bb+ + B2312dd+ + B2312ff+ + + +
B2313b+ + B2313bb+ + B2313dd+ + B2313ff+ + + +
+ + + + + + + + + +

Kh
ar
if+

B2311c+ + B2311cc+ + B2311ee+ + B2311gg+ + + +
B2312c+ + B2312cc+ + B2312ee+ + B2312gg+ + + +
B2313c+ + B2313cc+ + B2313ee+ + B2313gg+ + + +
+ + + + + + + + + +

Pa
rc
el
+2
+ Ra

bi
+

B2321b+ + B2321bb+ + B2321dd+ + B2321ff+ + + +
B2322b+ + B2322bb+ + B2322dd+ + B2322ff+ + + +
B2323b+ + B2323bb+ + B2323dd+ + B2323ff+ + + +
+ + + + + + + + + +

Kh
ar
if+

B2321c+ + B2321cc+ + B2321ee+ + B2321gg+ + + +
B2322c+ + B2322cc+ + B2322ee+ + B2322gg+ + + +
B2323c+ + B2323cc+ + B2323ee+ + B2323gg+ + + +
+ + + + + + + + + +

P a r c e l+ 3+R a b i+ B2331b+ + B2331bb+ + B2331dd+ + B2331ff+ + + +
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B2332b+ + B2332bb+ + B2332dd+ + B2332ff+ + + +
B2333b+ + B2333bb+ + B2333dd+ + B2333ff+ + + +
+ + + + + + + + + +

Kh
ar
if+

B2331c+ + B2331cc+ + B2331ee+ + B2331gg+ + + +
B2332c+ + B2332cc+ + B2332ee+ + B2332gg+ + + +
B2333c+ + B2333cc+ + B2333ee+ + B2333gg+ + + +
+ + + + + + + + + +

*1:+On+cash+payment+from+market/+local+dealer+(1);+on+credit+from+market/+local+dealer+(2);+on+cash+from+Middleman+(3);+On+credit+from+Middleman+(4);+free+from+middleman+(5);+free+from+Landlord+(6);+
on+credit+from+land+owner+(7);+Government+(8);+NGO/agricultural+extension+(9);+other,+pls.+specify+_______+(10)++
+
25:+Usage+of+Water+

Fa
rm

la
nd

+

Se
as
on

+

Cr
op

+c
od

e+
as
+a
bo

ve
+ What+is+your+

source+of+
water?*1+

Total+No+of+
water+
application+per+
cropping+cycle?+

How+many+canal+water+
applications?+

How+many+tubewell+
applications?+

If+you+use+
tubewell,+
who+owns+it?+
*1+

If+selected+2,+3+or+4,+
what+was+the+rent+of+
the+tubewell+per+
application?+(PKR)++

What+is+fuel+
expense+for+the+
tubewell+per+
application+for+this+
crop?+(PKR)+

Which+
method+do+
you+use+to+
water+your+
farm?+

No+of+
applications+

Hours+per+
application+

No+of+
applications+

Hours+per+
application+

Pa
rc
el
+1
+ Ra

bi
+ B2611b+ + B2611d+ + + + B2611f+ + B2611h+ + B2611j+ + B2611l+ + B2611n+ + B2611p+ + + + + +

B2612b+ + B2612d+ + + + B2612f+ + B2612h+ + B2612j+ + B2612l+ + B2612n+ + B2612p+ + + + + +
B2613b+ + B2613d+ + + + B2613f+ + B2613h+ + B2613j+ + B2613l+ + B2613n+ + B2613p+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+ B2611c+ + B2611e+ + + + B2611g+ + B2611i+ + B2611k+ + B2611m+ + B2611o+ + B2611q+ + + + + +

B2612c+ + B2612e+ + + + B2612g+ + B2612i+ + B2612k+ + B2612m+ + B2612o+ + B2612q+ + + + + +
B2613c+ + B2613e+ + + + B2613g+ + B2613i+ + B2613k+ + B2613m+ + B2613o+ + B2613q+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + +

Pa
rc
el
+2
+ Ra

bi
+ B2621b+ + B2621d+ + + + B2621f+ + B2621h+ + B2621j+ + B2621l+ + B2621n+ + B2621p+ + + + + +

B2622b+ + B2622d+ + + + B2622f+ + B2622h+ + B2622j+ + B2622l+ + B2622n+ + B2622p+ + + + + +
B2623b+ + B2623d+ + + + B2623f+ + B2623h+ + B2623j+ + B2623l+ + B2623n+ + B2623p+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+ B2621c+ + B2621e+ + + + B2621g+ + B2621i+ + B2621k+ + B2621m+ + B2621o+ + B2621q+ + + + + +

B2622c+ + B2622e+ + + + B2622g+ + B2622i+ + B2622k+ + B2622m+ + B2622o+ + B2622q+ + + + + +
B2623c+ + B2623e+ + + + B2623g+ + B2623i+ + B2623k+ + B2623m+ + B2623o+ + B2623q+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + +

Pa
rc
el
+3
+ Ra

bi
+ B2631b+ + B2631d+ + + + B2631f+ + B2631h+ + B2631j+ + B2631l+ + B2631n+ + B2631p+ + + + + +

B2632b+ + B2632d+ + + + B2632f+ + B2632h+ + B2632j+ + B2632l+ + B2632n+ + B2632p+ + + + + +
B2633b+ + B2633d+ + + + B2633f+ + B2633h+ + B2633j+ + B2633l+ + B2633n+ + B2633p+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + +

Kh
ar
if+

B2631c+ + B2631e+ + + + B2631g+ + B2631i+ + B2631k+ + B2631m+ + B2631o+ + B2631q+ + + + + +

B2632c+ + B2632e+ + + + B2632g+ + B2632i+ + B2632k+ + B2632m+ + B2632o+ + B2632q+ + + + + +
B2633c+ + B2633e+ + + + B2633g+ + B2633i+ + B2633k+ + B2633m+ + B2633o+ + B2633q+ + + + + +

+ + + + + + + + + + + + + + + + + + + + + +
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*1.+Canal+Irrigation+(1);+Rain+fed+(2);+Tubewell+(3);+Other+(specify_____________)+(6)+
*2.+Personal+(1);+rented+from+neighbor+(2);+rented+commercially+(3);+free/+subsidized+rate+from+landlord+(4)+
*3.+Drip+Irrigation+(1);+Flood+irrigation+(2);+Sprinkler+irrigation+(3);+Furrow+irrigation+(4);+other+(specify+_____________)+(4)+
+
B28:++During+which+month+(s)+did+you+face+water+scarcity+in+the+past+12+months?+________________++
+
+
B7:+Machinery+Expense+–+Parcel+1+
Light+Equipment+
(Tick+
appropriate+
one)+

Use+of+equipment/machinery+(Enter+crop+code+as+above)+ Who+owns+the+
equipment/+
animal?+*1+

If+equipment+is+
shared,+what+%+of+
costs+does+farmer+

pay?++

Who+are+
these+costs+
shared+
with*2?+

Year+of+
Purchase+

Value+at+
year+of+
Purchase+
(PKR)+

Parcel+1+
Rabi+ Kharif+

Crop+1+++ Crop+2+ Crop+3+ Crop+4+ Crop+1+ Crop+2+ Crop+3+ Crop+4++
Hand+Hoe+ B71a+ + B71b+ + B71c+ + B71d+ + B71e+ + B71f+ + B71g+ + B71h+ + B71i+ + B71j+ + B71k+ + + + + +
Axe+ B72a+ + B72b+ + B72c+ + B72d+ + B72e+ + B72f+ + B72g+ + B72h+ + B72i+ + B72j+ + B72k+ + + + + +
Scythe+(Drati)+ B73a+ + B73b+ + B73c+ + B73d+ + B73e+ + B73f+ + B73g+ + B73h+ + B73i+ + B73j+ + B73k+ + + + + +
Rake+(kilna)+ B74a+ + B74b+ + B74c+ + B74d+ + B74e+ + B74f+ + B74g+ + B74h+ + B74i+ + B74j+ + B74k+ + + + + +
Other++ B75+ + B75b+ + B75c+ + B75d+ + B75e+ + B75f+ + B75g+ + B75h+ + B75i+ + B75j+ + B75k+ + + + + +

Heavy+Machinery+(Enter+rental+cost+in+PKR)++ + + + + +
Draft+animal+
power+

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Rotor+weigh+ B76a+ + B76b+ + B76c+ + B76d+ + B76e+ + B76f+ + B76g+ + B76h+ + B76i+ + B76j+ + B76k+ + + + + +
Plough+(Gobal)+ B77a+ + B77b+ + B77c+ + B77d+ + B77e+ + B77f+ + B77g+ + B77h+ + B77i+ + B77j+ + B77k+ + + + + +
Leveler+(Dhallai)++ B78a+ + B78b+ + B78c+ + B78d+ + B78e+ + B78f+ + B78g+ + B78h+ + B78i+ + B78j+ + B78k+ + + + + +
Khiria++ B79a+ + B79b+ + B79c+ + B79d+ + B79e+ + B79f+ + B79g+ + B79h+ + B79i+ + B79j+ + B79k+ + + + + +
Loader+ B710a+ + B710b+ + B710c+ + B710d+ + B710e+ + B710f+ + B710g+ + B710h+ + B710i+ + B710j+ + B710k+ + + + + +
Cultivator+ B711a+ + B711b+ + B711c+ + B711d+ + B711e+ + B711f+ + B711g+ + B711h+ + B711i+ + B711j+ + B711k+ + + + + +
Reaper+ B712a+ + B712b+ + B712c+ + B712d+ + B712e+ + B712f+ + B712g+ + B712h+ + B712i+ + B712j+ + B712k+ + + + + +
Thresher+ B713a+ + B713b+ + B713c+ + B713d+ + B713e+ + B713f+ + B713g+ + B713h+ + B713i+ + B713j+ + B713k+ + + + + +
Tractor+ B714a+ + B714b+ + B714c+ + B714d+ + B714e+ + B714f+ + B714g+ + B714h+ + B714i+ + B714j+ + B714k+ + + + + +
Generator++ B715a+ + B715b+ + B715c+ + B715d+ + B715e+ + B715f+ + B715g+ + B715h+ + B715i+ + B715j+ + B715k+ + + + + +
Tubewell+ B716a+ + B716b+ + B716c+ + B716d+ + B716e+ + B716f+ + B716g+ + B716h+ + B716i+ + B716j+ + B716k+ + + + + +
*1+&+2:+Personal+(1);+landlord+(free)+(2),+land+lord+rented+(3),+middleman/trader+free+(4),+middleman+rented+(5)+Rented+from+market+(6)+
+
$
$
$
$
$
$
$
$
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B7:+Machinery+Expense+–+Parcel+2+
Light+Equipment+
(Tick+
appropriate+
one)+

Use+of+equipment/machinery+(Enter+crop+code+as+above)+ Who+owns+the+
equipment/+
animal?+*1+

If+equipment+is+
shared,+what+%+of+
costs+does+farmer+

pay?++

Who+are+
these+costs+
shared+
with*2?+

Year+of+
Purchase+

Value+at+
year+of+
Purchase+
(PKR)+

Parcel+2+
Rabi+ Kharif+

Crop+1+++ Crop+2+ Crop+3+ Crop+4+ Crop+1+ Crop+2+ Crop+3+ Crop+4++
Hand+Hoe+ B71a+ + B71b+ + B71c+ + B71d+ + B71e+ + B71f+ + B71g+ + B71h+ + B71i+ + B71j+ + B71k+ + + + + +
Axe+ B72a+ + B72b+ + B72c+ + B72d+ + B72e+ + B72f+ + B72g+ + B72h+ + B72i+ + B72j+ + B72k+ + + + + +
Scythe+(Drati)+ B73a+ + B73b+ + B73c+ + B73d+ + B73e+ + B73f+ + B73g+ + B73h+ + B73i+ + B73j+ + B73k+ + + + + +
Rake+(kilna)+ B74a+ + B74b+ + B74c+ + B74d+ + B74e+ + B74f+ + B74g+ + B74h+ + B74i+ + B74j+ + B74k+ + + + + +
Other++ B75+ + B75b+ + B75c+ + B75d+ + B75e+ + B75f+ + B75g+ + B75h+ + B75i+ + B75j+ + B75k+ + + + + +

Heavy+Machinery+(Enter+rental+cost+in+PKR)++ + + + + +
Draft+animal+
power+

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Rotor+weigh+ B76a+ + B76b+ + B76c+ + B76d+ + B76e+ + B76f+ + B76g+ + B76h+ + B76i+ + B76j+ + B76k+ + + + + +
Plough+(Gobal)+ B77a+ + B77b+ + B77c+ + B77d+ + B77e+ + B77f+ + B77g+ + B77h+ + B77i+ + B77j+ + B77k+ + + + + +
Leveler+(Dhallai)++ B78a+ + B78b+ + B78c+ + B78d+ + B78e+ + B78f+ + B78g+ + B78h+ + B78i+ + B78j+ + B78k+ + + + + +
Khiria++ B79a+ + B79b+ + B79c+ + B79d+ + B79e+ + B79f+ + B79g+ + B79h+ + B79i+ + B79j+ + B79k+ + + + + +
Loader+ B710a+ + B710b+ + B710c+ + B710d+ + B710e+ + B710f+ + B710g+ + B710h+ + B710i+ + B710j+ + B710k+ + + + + +
Cultivator+ B711a+ + B711b+ + B711c+ + B711d+ + B711e+ + B711f+ + B711g+ + B711h+ + B711i+ + B711j+ + B711k+ + + + + +
Reaper+ B712a+ + B712b+ + B712c+ + B712d+ + B712e+ + B712f+ + B712g+ + B712h+ + B712i+ + B712j+ + B712k+ + + + + +
Thresher+ B713a+ + B713b+ + B713c+ + B713d+ + B713e+ + B713f+ + B713g+ + B713h+ + B713i+ + B713j+ + B713k+ + + + + +
Tractor+ B714a+ + B714b+ + B714c+ + B714d+ + B714e+ + B714f+ + B714g+ + B714h+ + B714i+ + B714j+ + B714k+ + + + + +
Generator++ B715a+ + B715b+ + B715c+ + B715d+ + B715e+ + B715f+ + B715g+ + B715h+ + B715i+ + B715j+ + B715k+ + + + + +
Tubewell+ B716a+ + B716b+ + B716c+ + B716d+ + B716e+ + B716f+ + B716g+ + B716h+ + B716i+ + B716j+ + B716k+ + + + + +
*1+&+2:+Personal+(1);+landlord+(free)+(2),+land+lord+rented+(3),+middleman/trader+free+(4),+middleman+rented+(5)+Rented+from+market+(6)+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
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B7:+Machinery+Expense+–+Parcel+3+
Light+Equipment+
(Tick+
appropriate+
one)+

Use+of+equipment/machinery+(Enter+crop+code+as+above)+ Who+owns+the+
equipment/+
animal?+*1+

If+equipment+is+
shared,+what+%+of+
costs+does+farmer+

pay?++

Who+are+
these+costs+
shared+
with*2?+

Year+of+
Purchase+

Value+at+
year+of+
Purchase+
(PKR)+

Parcel+3+
Rabi+ Kharif+

Crop+1+++ Crop+2+ Crop+3+ Crop+4+ Crop+1+ Crop+2+ Crop+3+ Crop+4++
Hand+Hoe+ B71a+ + B71b+ + B71c+ + B71d+ + B71e+ + B71f+ + B71g+ + B71h+ + B71i+ + B71j+ + B71k+ + + + + +
Axe+ B72a+ + B72b+ + B72c+ + B72d+ + B72e+ + B72f+ + B72g+ + B72h+ + B72i+ + B72j+ + B72k+ + + + + +
Scythe+(Drati)+ B73a+ + B73b+ + B73c+ + B73d+ + B73e+ + B73f+ + B73g+ + B73h+ + B73i+ + B73j+ + B73k+ + + + + +
Rake+(kilna)+ B74a+ + B74b+ + B74c+ + B74d+ + B74e+ + B74f+ + B74g+ + B74h+ + B74i+ + B74j+ + B74k+ + + + + +
Other++ B75+ + B75b+ + B75c+ + B75d+ + B75e+ + B75f+ + B75g+ + B75h+ + B75i+ + B75j+ + B75k+ + + + + +

Heavy+Machinery+(Enter+rental+cost+in+PKR)++ + + + + +
Draft+animal+
power+

+ + + + + + + + + + + + + + + + + + + + + + + + + +

Rotor+weigh+ B76a+ + B76b+ + B76c+ + B76d+ + B76e+ + B76f+ + B76g+ + B76h+ + B76i+ + B76j+ + B76k+ + + + + +
Plough+(Gobal)+ B77a+ + B77b+ + B77c+ + B77d+ + B77e+ + B77f+ + B77g+ + B77h+ + B77i+ + B77j+ + B77k+ + + + + +
Leveler+(Dhallai)++ B78a+ + B78b+ + B78c+ + B78d+ + B78e+ + B78f+ + B78g+ + B78h+ + B78i+ + B78j+ + B78k+ + + + + +
Khiria++ B79a+ + B79b+ + B79c+ + B79d+ + B79e+ + B79f+ + B79g+ + B79h+ + B79i+ + B79j+ + B79k+ + + + + +
Loader+ B710a+ + B710b+ + B710c+ + B710d+ + B710e+ + B710f+ + B710g+ + B710h+ + B710i+ + B710j+ + B710k+ + + + + +
Cultivator+ B711a+ + B711b+ + B711c+ + B711d+ + B711e+ + B711f+ + B711g+ + B711h+ + B711i+ + B711j+ + B711k+ + + + + +
Reaper+ B712a+ + B712b+ + B712c+ + B712d+ + B712e+ + B712f+ + B712g+ + B712h+ + B712i+ + B712j+ + B712k+ + + + + +
Thresher+ B713a+ + B713b+ + B713c+ + B713d+ + B713e+ + B713f+ + B713g+ + B713h+ + B713i+ + B713j+ + B713k+ + + + + +
Tractor+ B714a+ + B714b+ + B714c+ + B714d+ + B714e+ + B714f+ + B714g+ + B714h+ + B714i+ + B714j+ + B714k+ + + + + +
Generator++ B715a+ + B715b+ + B715c+ + B715d+ + B715e+ + B715f+ + B715g+ + B715h+ + B715i+ + B715j+ + B715k+ + + + + +
Tubewell+ B716a+ + B716b+ + B716c+ + B716d+ + B716e+ + B716f+ + B716g+ + B716h+ + B716i+ + B716j+ + B716k+ + + + + +
*1+&+2:+Personal+(1);+landlord+(free)+(2),+land+lord+rented+(3),+middleman/trader+free+(4),+middleman+rented+(5)+Rented+from+market+(6)+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
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C1:+Labor+Composition+–+Parcel+1+
Se
as
on

+

Enter+
Crop++
Code++ Activities+

Household+labor+(please+enter+person+code+in+no+column)+
1+day=+6c8+hours+of+work+completed+by+1+individual+

Hired+Labor++
1+day=+6c8+hours+of+work+completed+by+1+individual.+

Male+ Female+ Child+(<16)+ Male+ Female+ Child+(<16)+
No+ days+ No+ Days+ No+ Days+ Days+ Days+ Daily+wage++

rate++
No+ Days+ Daily+wage+

rate+
No+ Days+

Ra
bi
+

Cr
op

+1
+

Land+Preparation+++ c11a+ + c11b+ + c11c+ + c11d+ + c11e+ + c11f+ + c11g+ + c11h+ + c11i+ + c11j+ + c11k+ + c11l+ +
+

+ + + +

Planting+ c12a+ + c12b+ + c12c+ + c12d+ + c12e+ + c12f+ + c12g+ + c12h+ + c12i+ + c12j+ + c12k+ + c12l+ + + + + +
Watering+ c13a+ + c13b+ + c13c+ + c13d+ + c13e+ + c13f+ + c13g+ + c13h+ + c13i+ + c13j+ + c13k+ + c13l+ + + + + +
Weeding/+
pesticides+

c14a+ + c14b+ + c14c+ + c14d+ + c14e+ + c14f+ + c14g+ + c14h+ + c14i+ + c14j+ + c14k+ + c14l+ + + + + +

Harvesting++ c15a+ + c15b+ + c15c+ + c15d+ + c15e+ + c15f+ + c15g+ + c15h+ + c15i+ + c15j+ + c15k+ + c15l+ + + + + +
Post+harvesting+ c16a+ + c16b+ + c16c+ + c16d+ + c16e+ + c16f+ + c16g+ + c16h+ + c16i+ + c16j+ + c16k+ + c16l+ + + + + +

Cr
op

+2
+

Land+Preparation++ c17a+ + c17b+ + c17c+ + c17d+ + c17e+ + c17f+ + c17g+ + c17h+ + c17i+ + c17j+ + c17k+ + c17l+ + + + + +
Planting+ c18a+ + c18b+ + c18c+ + c18d+ + c18e+ + c18f+ + c18g+ + c18h+ + c18i+ + c18j+ + c18k+ + c18l+ + + + + +
Watering+ c19a+ + c19b+ + c19c+ + c19d+ + c19e+ + c19f+ + c19g+ + c19h+ + c19i+ + c19j+ + c19k+ + c19l+ + + + + +
Weeding/+
pesticides+

c110a+ + c110b+ + c110c+ + c110d+ + c110e+ + c110f+ + c110g+ + c110h+ + c110i+ + c110j+ + c110k+ + c110l+ + + + + +

Harvesting++ c111a+ + c111b+ + c111c+ + c111d+ + c111e+ + c111f+ + c111g+ + c111h+ + c111i+ + c111j+ + c111k+ + c111l+ + + + + +
Post+harvesting+ c112a+ + c112b+ + c112c+ + c112d+ + c112e+ + c112f+ + c112g+ + c112h+ + c112i+ + c112j+ + c112k+ + c112l+ + + + + +

Cr
op

+3
+

Land+Preparation++ c113a+ + c113b+ + c113c+ + c113d+ + c113e+ + c113f+ + c113g+ + c113h+ + c113i+ + c113j+ + c113k+ + c113l+ + + + + +
Planting+ c114a+ + c114b+ + c114c+ + c114d+ + c114e+ + c114f+ + c114g+ + c114h+ + c114i+ + c114j+ + c114k+ + c114l+ + + + + +
Watering+ c115a+ + c115b+ + c115c+ + c115d+ + c115e+ + c115f+ + c115g+ + c115h+ + c115i+ + c115j+ + c115k+ + c115l+ + + + + +
Weeding/+
pesticides+

c116a+ + c116b+ + c116c+ + c116d+ + c116e+ + c116f+ + c116g+ + c116h+ + c116i+ + c116j+ + c116k+ + c116l+ + + + + +

Harvesting++ c117a+ + c117b+ + c117c+ + c117d+ + c117e+ + c117f+ + c117g+ + c117h+ + c117i+ + c117j+ + c117k+ + c117l+ + + + + +
Post+harvesting+ c118a+ + c118b+ + c118c+ + c118d+ + c118e+ + c118f+ + c118g+ + c118h+ + c118i+ + c118j+ + c118k+ + c118l+ + + + + +

Cr
op

++4
+

Land+Preparation++ c119a+ + c119b+ + c119c+ + c119d+ + c119e+ + c119f+ + c119g+ + c119h+ + c119i+ + c119j+ + c119k+ + c119l+ + + + + +
Planting+ c120a+ + c120b+ + c120c+ + c120d+ + c120e+ + c120f+ + c120g+ + c120h+ + c120i+ + c120j+ + c120k+ + c120l+ + + + + +
watering+ c121a+ + c121b+ + c121c+ + c121d+ + c121e+ + c121f+ + c121g+ + c121h+ + c121i+ + c121j+ + c121k+ + c121l+ + + + + +
Weeding/+
pesticides+

c122a+ + c122b+ + c122c+ + c122d+ + c122e+ + c122f+ + c122g+ + c122h+ + c122i+ + c122j+ + c122k+ + c122l+ + + + + +

Harvesting++ c123a+ + c123b+ + c123c+ + c123d+ + c123e+ + c123f+ + c123g+ + c123h+ + c123i+ + c123j+ + + + c123k+ + c123l+ + + +
Post+harvesting+ c124a+ + c124b+ + c124c+ + c124d+ + c124e+ + c124f+ + c124g+ + c124h+ + c124i+ + c124j+ + + + c124k+ + c124l+ + + +

Kh
ar
if+

Cr
op

+1
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +
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+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+2
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+3
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

++4
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +
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C1:+Labor+Composition+–+Parcel+2+
Se
as
on

+

Enter+
Crop++
Code++ Activities+

Household+labor+(please+enter+person+code+in+no+column)+
1+day=+6c8+hours+of+work+completed+by+1+individual+

Hired+Labor++
1+day=+6c8+hours+of+work+completed+by+1+individual.+

Male+ Female+ Child+(<16)+ Male+ Female+ Child+(<16)+
No+ days+ No+ Days+ No+ Days+ Days+ Days+ Daily+wage++

rate++
No+ Days+ Daily+wage+

rate+
No+ Days+

Ra
bi
+

Cr
op

+1
+

Land+Preparation+++ c11a+ + c11b+ + c11c+ + c11d+ + c11e+ + c11f+ + c11g+ + c11h+ + c11i+ + c11j+ + c11k+ + c11l+ +
+

+ + + +

Planting+ c12a+ + c12b+ + c12c+ + c12d+ + c12e+ + c12f+ + c12g+ + c12h+ + c12i+ + c12j+ + c12k+ + c12l+ + + + + +
Watering+ c13a+ + c13b+ + c13c+ + c13d+ + c13e+ + c13f+ + c13g+ + c13h+ + c13i+ + c13j+ + c13k+ + c13l+ + + + + +
Weeding/+
pesticides+

c14a+ + c14b+ + c14c+ + c14d+ + c14e+ + c14f+ + c14g+ + c14h+ + c14i+ + c14j+ + c14k+ + c14l+ + + + + +

Harvesting++ c15a+ + c15b+ + c15c+ + c15d+ + c15e+ + c15f+ + c15g+ + c15h+ + c15i+ + c15j+ + c15k+ + c15l+ + + + + +
Post+harvesting+ c16a+ + c16b+ + c16c+ + c16d+ + c16e+ + c16f+ + c16g+ + c16h+ + c16i+ + c16j+ + c16k+ + c16l+ + + + + +

Cr
op

+2
+

Land+Preparation++ c17a+ + c17b+ + c17c+ + c17d+ + c17e+ + c17f+ + c17g+ + c17h+ + c17i+ + c17j+ + c17k+ + c17l+ + + + + +
Planting+ c18a+ + c18b+ + c18c+ + c18d+ + c18e+ + c18f+ + c18g+ + c18h+ + c18i+ + c18j+ + c18k+ + c18l+ + + + + +
Watering+ c19a+ + c19b+ + c19c+ + c19d+ + c19e+ + c19f+ + c19g+ + c19h+ + c19i+ + c19j+ + c19k+ + c19l+ + + + + +
Weeding/+
pesticides+

c110a+ + c110b+ + c110c+ + c110d+ + c110e+ + c110f+ + c110g+ + c110h+ + c110i+ + c110j+ + c110k+ + c110l+ + + + + +

Harvesting++ c111a+ + c111b+ + c111c+ + c111d+ + c111e+ + c111f+ + c111g+ + c111h+ + c111i+ + c111j+ + c111k+ + c111l+ + + + + +
Post+harvesting+ c112a+ + c112b+ + c112c+ + c112d+ + c112e+ + c112f+ + c112g+ + c112h+ + c112i+ + c112j+ + c112k+ + c112l+ + + + + +

Cr
op

+3
+

Land+Preparation++ c113a+ + c113b+ + c113c+ + c113d+ + c113e+ + c113f+ + c113g+ + c113h+ + c113i+ + c113j+ + c113k+ + c113l+ + + + + +
Planting+ c114a+ + c114b+ + c114c+ + c114d+ + c114e+ + c114f+ + c114g+ + c114h+ + c114i+ + c114j+ + c114k+ + c114l+ + + + + +
Watering+ c115a+ + c115b+ + c115c+ + c115d+ + c115e+ + c115f+ + c115g+ + c115h+ + c115i+ + c115j+ + c115k+ + c115l+ + + + + +
Weeding/+
pesticides+

c116a+ + c116b+ + c116c+ + c116d+ + c116e+ + c116f+ + c116g+ + c116h+ + c116i+ + c116j+ + c116k+ + c116l+ + + + + +

Harvesting++ c117a+ + c117b+ + c117c+ + c117d+ + c117e+ + c117f+ + c117g+ + c117h+ + c117i+ + c117j+ + c117k+ + c117l+ + + + + +
Post+harvesting+ c118a+ + c118b+ + c118c+ + c118d+ + c118e+ + c118f+ + c118g+ + c118h+ + c118i+ + c118j+ + c118k+ + c118l+ + + + + +

Cr
op

++4
+

Land+Preparation++ c119a+ + c119b+ + c119c+ + c119d+ + c119e+ + c119f+ + c119g+ + c119h+ + c119i+ + c119j+ + c119k+ + c119l+ + + + + +
Planting+ c120a+ + c120b+ + c120c+ + c120d+ + c120e+ + c120f+ + c120g+ + c120h+ + c120i+ + c120j+ + c120k+ + c120l+ + + + + +
watering+ c121a+ + c121b+ + c121c+ + c121d+ + c121e+ + c121f+ + c121g+ + c121h+ + c121i+ + c121j+ + c121k+ + c121l+ + + + + +
Weeding/+
pesticides+

c122a+ + c122b+ + c122c+ + c122d+ + c122e+ + c122f+ + c122g+ + c122h+ + c122i+ + c122j+ + c122k+ + c122l+ + + + + +

Harvesting++ c123a+ + c123b+ + c123c+ + c123d+ + c123e+ + c123f+ + c123g+ + c123h+ + c123i+ + c123j+ + + + c123k+ + c123l+ + + +
Post+harvesting+ c124a+ + c124b+ + c124c+ + c124d+ + c124e+ + c124f+ + c124g+ + c124h+ + c124i+ + c124j+ + + + c124k+ + c124l+ + + +

Kh
ar
if+

Cr
op

+1
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +
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+
+
C1:+Labor+Composition+–+Parcel+3+

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+2
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+3
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

++4
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Se
as
on

+

Enter+
Crop++
Code++ Activities+

Household+labor+(please+enter+person+code+in+no+column)+
1+day=+6c8+hours+of+work+completed+by+1+individual+

Hired+Labor++
1+day=+6c8+hours+of+work+completed+by+1+individual.+

Male+ Female+ Child+(<16)+ Male+ Female+ Child+(<16)+
No+ days+ No+ Days+ No+ Days+ Days+ Days+ Daily+wage++

rate++
No+ Days+ Daily+wage+

rate+
No+ Days+

Ra
bi
+

Cr
op

+1
+

Land+Preparation+++ c11a+ + c11b+ + c11c+ + c11d+ + c11e+ + c11f+ + c11g+ + c11h+ + c11i+ + c11j+ + c11k+ + c11l+ +
+

+ + + +

Planting+ c12a+ + c12b+ + c12c+ + c12d+ + c12e+ + c12f+ + c12g+ + c12h+ + c12i+ + c12j+ + c12k+ + c12l+ + + + + +
Watering+ c13a+ + c13b+ + c13c+ + c13d+ + c13e+ + c13f+ + c13g+ + c13h+ + c13i+ + c13j+ + c13k+ + c13l+ + + + + +
Weeding/+
pesticides+

c14a+ + c14b+ + c14c+ + c14d+ + c14e+ + c14f+ + c14g+ + c14h+ + c14i+ + c14j+ + c14k+ + c14l+ + + + + +

Harvesting++ c15a+ + c15b+ + c15c+ + c15d+ + c15e+ + c15f+ + c15g+ + c15h+ + c15i+ + c15j+ + c15k+ + c15l+ + + + + +
Post+harvesting+ c16a+ + c16b+ + c16c+ + c16d+ + c16e+ + c16f+ + c16g+ + c16h+ + c16i+ + c16j+ + c16k+ + c16l+ + + + + +

C r o p + 2+Land+Preparation++ c17a+ + c17b+ + c17c+ + c17d+ + c17e+ + c17f+ + c17g+ + c17h+ + c17i+ + c17j+ + c17k+ + c17l+ + + + + +
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Planting+ c18a+ + c18b+ + c18c+ + c18d+ + c18e+ + c18f+ + c18g+ + c18h+ + c18i+ + c18j+ + c18k+ + c18l+ + + + + +
Watering+ c19a+ + c19b+ + c19c+ + c19d+ + c19e+ + c19f+ + c19g+ + c19h+ + c19i+ + c19j+ + c19k+ + c19l+ + + + + +
Weeding/+
pesticides+

c110a+ + c110b+ + c110c+ + c110d+ + c110e+ + c110f+ + c110g+ + c110h+ + c110i+ + c110j+ + c110k+ + c110l+ + + + + +

Harvesting++ c111a+ + c111b+ + c111c+ + c111d+ + c111e+ + c111f+ + c111g+ + c111h+ + c111i+ + c111j+ + c111k+ + c111l+ + + + + +
Post+harvesting+ c112a+ + c112b+ + c112c+ + c112d+ + c112e+ + c112f+ + c112g+ + c112h+ + c112i+ + c112j+ + c112k+ + c112l+ + + + + +

Cr
op

+3
+

Land+Preparation++ c113a+ + c113b+ + c113c+ + c113d+ + c113e+ + c113f+ + c113g+ + c113h+ + c113i+ + c113j+ + c113k+ + c113l+ + + + + +
Planting+ c114a+ + c114b+ + c114c+ + c114d+ + c114e+ + c114f+ + c114g+ + c114h+ + c114i+ + c114j+ + c114k+ + c114l+ + + + + +
Watering+ c115a+ + c115b+ + c115c+ + c115d+ + c115e+ + c115f+ + c115g+ + c115h+ + c115i+ + c115j+ + c115k+ + c115l+ + + + + +
Weeding/+
pesticides+

c116a+ + c116b+ + c116c+ + c116d+ + c116e+ + c116f+ + c116g+ + c116h+ + c116i+ + c116j+ + c116k+ + c116l+ + + + + +

Harvesting++ c117a+ + c117b+ + c117c+ + c117d+ + c117e+ + c117f+ + c117g+ + c117h+ + c117i+ + c117j+ + c117k+ + c117l+ + + + + +
Post+harvesting+ c118a+ + c118b+ + c118c+ + c118d+ + c118e+ + c118f+ + c118g+ + c118h+ + c118i+ + c118j+ + c118k+ + c118l+ + + + + +

Cr
op

++4
+

Land+Preparation++ c119a+ + c119b+ + c119c+ + c119d+ + c119e+ + c119f+ + c119g+ + c119h+ + c119i+ + c119j+ + c119k+ + c119l+ + + + + +
Planting+ c120a+ + c120b+ + c120c+ + c120d+ + c120e+ + c120f+ + c120g+ + c120h+ + c120i+ + c120j+ + c120k+ + c120l+ + + + + +
watering+ c121a+ + c121b+ + c121c+ + c121d+ + c121e+ + c121f+ + c121g+ + c121h+ + c121i+ + c121j+ + c121k+ + c121l+ + + + + +
Weeding/+
pesticides+

c122a+ + c122b+ + c122c+ + c122d+ + c122e+ + c122f+ + c122g+ + c122h+ + c122i+ + c122j+ + c122k+ + c122l+ + + + + +

Harvesting++ c123a+ + c123b+ + c123c+ + c123d+ + c123e+ + c123f+ + c123g+ + c123h+ + c123i+ + c123j+ + + + c123k+ + c123l+ + + +
Post+harvesting+ c124a+ + c124b+ + c124c+ + c124d+ + c124e+ + c124f+ + c124g+ + c124h+ + c124i+ + c124j+ + + + c124k+ + c124l+ + + +

Kh
ar
if+

Cr
op

+1
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+2
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

+3
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +
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+
+
+
+
+
+
C3:+Offcfarm+employment+for+members+of+household+

Person+Code+ No.+of+days+(6c8+hours)+worked+offcfarm+ Daily+wage+paid+(in+PKR)+

C31a+ + C31b+ + C31c+ +
C32a+ + C32b+ + C32c+ +
C33a+ + C33b+ + C33c+ +
C34a+ + C34b+ + C34c+ +

C35a+ + C35b+ + C35c+ +
C36a+ + C36b+ + C36c+ +
C37a+ + C37b+ + C37c+ +
C38a+ + C38b+ + C38c+ +
+
+
C4:+Marketing+and+Transport+Channel:++
Where+do+
you+sell+
your+
produce+*+

What+is+
middleman’s+
commission?+In+%+

Is+there+a+metaled+
road+to+the+market+
(Yes/No)+

Cost+for+transport+(In+PKR)+(Rent+++
fuel)+(Conditional+on+farmer+marketing+
own+produce)+

Cost+of+packaging+(PKR)+
(Conditional+on+farmer+
marketing+own+produce)+

How+long+have+you+sold+
produce+through+this+marketing+
channel+(years)?+

How+far+is+it+to+the+market+
where+you+sell+your+
harvest?+(km)+
+

C41a+ + C41b+ + C41c+ + C41d+ + C41e+ + C41f+ + C41g+ +
*Local+Market+(1);+Urban+Market+(2);+Middle+man+(3);+Govt.+Agents+(4);+Landlord+(5)+
++
+
+
+
+

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +

Cr
op

++4
+

Land+Preparation++ c125a+ + c125b+ + c125c+ + c125d+ + c125e+ + c125f+ + c125g+ + c125h+ + c125i+ + c125j+ + + + c125k+ + c125l+ + + +
Planting+ c126a+ + c126b+ + c126c+ + c126d+ + c126e+ + c126f+ + c126g+ + c126h+ + c126i+ + c126j+ + + + c126k+ + c126l+ + + +
Watering+ c127a+ + C127b+ + c127c+ + c127d+ + c127e+ + c127f+ + c127g+ + c127h+ + c127i+ + c127j+ + + + c127k+ + c127l+ + + +
Weeding/+
pesticides+

c128a+ + c128b+ + c128c+ + c128d+ + c128e+ + c128f+ + c128g+ + c128h+ + c128i+ + c128j+ + + + c128k+ + c128l+ + + +

Harvesting++ c129a+ + c129b+ + c129c+ + c129d+ + c129e+ + c129f+ + c129g+ + c129h+ + c129i+ + c129j+ + + + c129k+ + c129l+ + + +
Post+harvesting+ c130a+ + c130b+ + c130c+ + c130d+ + c130e+ + c130f+ + c130g+ + c130h+ + c130i+ + c130j+ + + + c130k+ + c130l+ + + +
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Table+B15.+Livestock+production,+consumption,+prices+etc.+(2012)+
Type+ of+
Animal++
*1+

No.+ of+
Animals++
+

No+of+
animals+
born+or+
bought+in+
2012+

Ownership+ Home+
consumption+
[Nos./Yr]++*2+

No.+of+animal+sold++[2012]+ Who+ did+
you+ sell+
it+to?+*3+

Monthly+
earning+
from+
animal+
produce+
(PKR)+*4+

Total+
feeding+
and+
veterinary+
cost+(PKR/+
yr)+

Grazing+
cost+
(PKR/+yr)+

Own+Labour+
(Hours/+yr)+

+ No+of+
cultivable+
land+from+
parcels+that+
is+instead+
used+as+
enclosure+
for+animals+

Nos.+
Sold+

Farmer’s+
Price+
(PKR)+

Market+
Price+
(PKR)+

Own+ Shared++ Hired+
Labour++
(PKR/+yr)+

B151+ + B151a+ + B151b+ + B151c+ + B151d+ + B151e+ + B151f+ + B151g+ + B151h+ + B151i+ + + + + + + + + + + + + +

B152+ + B152a+ + B152b+ + B152c+ + B152d+ + B152e+ + B152f+ + B152g+ + B152h+ + B152i+ + + + + + + + + + + + + +

B153+ + B153a+ + B153b+ + B153c+ + B153d+ + B153e+ + B153f+ + B153g+ + B153h+ + B153i+ + + + + + + + + + + + + +

B154+ + B154a+ + B154b+ + B154c+ + B154d+ + B154e+ + B154f+ + B154g+ + B154h+ + B154i+ + + + + + + + + + + + + +

B155+ + B155a+ + B155b+ + B155c+ + B155d+ + B155e+ + B155f+ + B155g+ + B155h+ + B155i+ + + + + + + + + + + + + +

B156+
+

+ B156a+
+

+ B156b+
+

+ B156c+
+

+ B156d+
+

+ B156e+
+

+ B156f+
+

+ B156g+
+

+ B156h+
+

+ B156i+
+

+ + + + + + + + + + + + +

B157+
+

+ B157a+
+

+ B157b+
+

+ B157c+
+

+ B157d+
+

+ B157e+
+

+ B157f+
+

+ B157g+
+

+ B157h+
+

+ B157i+
+

+ + + + + + + + + + + + +

*1+(1)+Cows+(2)+Buffalo+(3)+Goats+(4)+Sheep+(5)+Camels+(6)+Horses+(7)+Asses+(8)+Mules+(9)+Others+
*2+including+for+sacrifice,+gifting,+marriages,+religious+and+other+festivals+++++++++++++++++++++++++++++++++++++++++++++++
*3+neighbor,+local+market,+urban+market,+middleman,+other+______+
*4+Includes+milk,+butter,+and+leftovers+sold+for+preparation+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
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Section+D:+Institutional+Arrangements+
+
D1:+Type+and+source+of+household+credit+
Credit+Source++ Loan+in+past+year++

(In+PKR)+
+Interest+
rate/+year+

What+is+the+
repayment+time?+(In+
months)+

Any+collateral+
for+the+loan?+*1+

Where+did+you+
primarily+spend+this+
loan?*2+

How+long+have+you+
dealt+with+this+loan+
provider+(in+years)+

If+applied+but+not+received+the+
loan,+what+are+the+reasons+for+
your+ineligibility?+*3+

D11+ Bank++ D11a+ + D11b+ + D11c+ + D11d+ + D11e+ + D11f+ + D11g+ +
D12+ Micro+finance+institutes+ D12a+ + D12b+ + D12c+ + D12d+ + D12e+ + D12f+ + D12g+ +
D13+ Farmer+associations++ D13a+ + D13b+ + D13c+ + D13d+ + D13e+ + D13f+ + D13g+ +
D14+ Land+lord++ D14a+ + D14b+ + D14c+ + D14d+ + D14e+ + D14f+ + D14g+ +
D15+ Relative+or+Friend+ D15a+ + D15b+ + D15c+ + D15d+ + D15e+ + D15f+ + D15g+ +
D16+ Local+Lender++ D16a+ + D16b+ + D16c+ + D16d+ + D16e+ + D16f+ + D16g+ +
D17+ Middleman+ D17a+ + D17b+ + D17c+ + D17d+ + D17e+ + D17f+ + D17g+ +
*1+Land+(1);+share+of+output+(2);+use+of+farmers+labour+(3);+other+(specify)+(4)+
*2+Buy+inputs+(seeds,+fertilizer,+machinery)+(1);+invest+in+irrigation+(2);+buy+food/clothing/medical+care+(3);+education/training+(4)+
*3+incomplete+identification+documents+(1),+lack+of+collateral+(2),+insufficient+income/+employment+for+repayment+(3),+default+on+previous+loans+(4).+++++
+
D2:+Have+you+received+any+other+loans+in+the+past+5+years?+________________________+in+PKR+
+
D3:+Village+characteristics+
How+any+people+live+in+your+village?+ How+far+are+you+from+the+centre+of+the+village?+ No.+of+relatives+in+village+
D3a+ + D3b+ + D3c+ +
+
+
D4:+Village+Profile+++
Facilities++ Tick+as+appropriate+
D41+ School+ +
D42+ Dispensary/+hospital+ +
D43+ Shop/market+ +
D44+ Public+Transport+ +
D45+ Telephone+network+ +
D46+ Internet+access+ +
D47+ Electricity+supply+ +
D49+ Farmer+association+ +
D410+ Agricultural+extension+office+ +
D411+ Agricultural+NGO/+CBO+ +

+
+
+
+
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Next+3+questions+only+to+be+answered+by+those+farmers+who+trade+through+a+middleman+
D5:+When+did+you+agree+to+trade+through+a+
middleman?+++

Tick+as+
appropriate++

:+Would+it+be+a+problem+for+you+to+switch+to+a+different+middleman+if+you+felt+
the+terms+of+your+contract+were+not+satisfactory?+(Yes/No)+

Have+you+switched+middleman+before?++
(Yes/no)+
+

D51+ Just+before+harvest+ + D6+ + D7+ +
D52+ Just+after+harvest+ +
D53+ During+crop+preparation+ +
+
+
D8:+Have+you+received+any+of+the+following+types+of+subsidies+during+last+12+months+(give+amount+(PKR)+per+year)+
Source+ Seed+Subsidy+ Fertilizer+Subsidy+ Other+
D81+ Government+ D81a+ + D81b+ + D81c+ +
D82+ NGO+ D82a+ + D82b+ + D82c+ +
D84+ Private+sector+sources+ D84a+ + D84b+ + D84c+ +
D85+ Other+(Pls.+specify)+ D85a+ + D85b+ + D85c+ +
+
+
D9:+Do+you+get+information+or+advice+from+agricultural+extension+workers+or+other+sources+on+crop+production+technology?++
Source++ How+many+visit+

each+season+
How+much+do+you+pay+
annually+for+this+service?++

Did+you+implement+any+of+the+advice+
received+on+production+techniques/+
equipment?+(Yes/+No)+

If+yes,+was+
it+useful?+
(Yes/+No)+

If+not,+what+was+the+reason+for+not+
implementing+their+advice*+

D51+ Govt.+agricultural+extension+services++ D51a+ + D51b+ + D51c+ + D51d+ + D51e+
D52+ Local+farmer+associations+ D52a+ + D52b+ + D52c+ + D52d+ + D52e+

D53+ NGOs/+CBOs+ D53a+ + D53b+ + D53c+ + D53d+ + D53e+
D54+ Research+institute+ D54a+ + D54b+ + D54c+ + D54d+ + D54e+
D55+ Neighbor+or+Relative+ D55a+ + D55b+ + D55c+ + D55d+ + D55e+
D56+ print+Media+ D56a+ + D56b+ + D56c+ + D56d+ + D56e+
+ Radio/+TV+ + + + + + + + + +
D57+ Landlord+ D57a+ + D57b+ + D57c+ + D57d+ + D57e+
D58+ Middleman+ D58a+ + D58b+ + D58c+ + D58d+ + D58e+
*Too+expensive+(1);+want+to+stick+with+known+methods+(2);+unsure+about+how+to+use+new+technologies+(3);+Unable+to+use+new+technologies+without+landlords+permission+(4);+lack+of+infrastructure+to+
support+new+technologies+(e.g.+inadequate+irrigation)+(5);+Other+(6)+
+
+
+
+
+
+
+
+
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Section+E:+ADAPTATION+
+
E1:+How+long+have+you+been+a+farmer?+_______+(in+number+of+years)+
+
E2:+Changes+in+Rainfall+and+Temperature:+
Change+in+Rainfall++ Have+you+noticed+any+change+over+the+last+15+

years?+Tick+as+appropriate+
Change+in+Temperature+ Have+you+noticed+any+change+over+the+

last+15+years?++Tick+as+appropriate+

E21+ No+change+in+the+rain+ E21a+ + E21b+ No+change+in+temperature+ E21c+ +
E22+ Less+rain++ E22a+ + E22b+ More+Hot+days+ E22c+ +
E23+ More+rain++ E23a+ + E23b+ less+Hot+days+ E23c+ +
E24+ Change+in+the+onset+rainy+seasons++ E24a+ + E24b+ Change+in+night+time+temperature+ E24c+ +
+ E25b+ Increase+in+cold+spells+ E25c+ +

+ Change+in+onset+of+hot+season+ + +
+
E4+Extreme+Events++

Events+

Have+you+experienced+any+of+the+following+
events+in+the+past+15+years?+Yes/+No+

How+would+you+rate+the+frequency+of+this+
event+over+the+last+15+years?*1+

How+would+you+rate+the+severity+
of+the+of+this+event+over+the+past+
20+years?*1+

Loss+of+asset,+property,+income,+
food+shortage,+decline+in+
consumption?+(Y/N)+

E41+ Floods/+flash+floods+ E41a+ + E41b+ + E41c+ + E41d+ +
E42+ Wind/+Dust+storm+ E42a+ + E42b+ + E42c+ + E42d+ +
E43+ Drought+ E43a+ + E43b+ + E43c+ + E43d+ +
E45+ Hail+storm+ E45a+ + E45b+ + E45c+ + E45d+ +
*+1:+Increasing+(1);+Same+(2);+Decreasing+(3)+
+
E3:+Rainfall++
Which+month+did+the+rainy+season+
begin+in+the+past+15+years?+

In+which+month+did+the+rainy+
season+begin+this+year?+

How+would+you+characterize+the+amount+of+rain+relative+to+past+
15+years?+*1+

In+which+month+in+this+year’s+rainy+season+did+you+get+
the+most+rain?+

E31+ + E31a+ + E31b+ + E31c+ +
*1+more+(1);+same+(2);+less(3)+
+
+
E5:+Past+Flood+Experience+
Were+you+affected+by+flooding+in+any+of+the+following+years?++
Yes=1,+No=2+

Did+this+affect+your+harvest?+
Yes=1,+No=2+

What+%+of+harvest+across+all+
crops+was+lost?+

Any+other+loss?+*1+ How+did+you+cope+with+losses?*2+
+

E51+ 2012+ + E51a+ + E51b+ + E51c+ + E51d+ +
E52+ 2011+ + E52a+ + E52b+ + E52c+ + E52d+ +
E53+ 2010+ + E53a+ + E53b+ + E53c+ + E53d+ +
*1+Loss+of+livestock+(1),+loss+of+housing/+storage/+animal+shed+(2),+loss+of+family+member+(3),+loss+of+any+other+asset+(machinery,+vehicle,+etc)+(4)++
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*2+Took+out+a+loan+to+cover+expenses+(1);+Sold+off+farm+assets+(machinery,+livestock)+(2);+Relied+on+savings+(3);+Worked+as+a+labourer/other+work+away+own+farm+(4);+Financial+support+from+relatives/local+
villagers+(5);+Government/NGO+assistance+(6);+Other+(specify)+(7)+
+
+
E6:+Adaptation+actually+undertaken+
Adaptation+Measures+ How+has+your+household+adapted+to+cope+with+climatic+changes?+ Go+to+Question:+
E61+ Altering+the+timing+of+“cropping+activity”+(e.g.+harvest+date)+ E61a+ + E7+
E62+ Shift+in+cropping+pattern+(e.g.+crop+portfolio)+ E62a+ + E8+
E63+ Altering+agricultural+input++ E63a+ + E9+
E64+ Investment+in+soil+conservation+ E64a+ + E10+
E65+ Investment+in+water+conservation++ E65a+ + E11+
E66+ Diversification+of+Income+ E66a+ + E12+
E67+ Public/+Household+infrastructure+incl.++water+defenses+ + + E13+
E68+ No+Adaptation+ E67a+ + c+
+ Other,+specify________________________+ E68a+ + c+
+
+
E7:+Altering+the+timing+of+cropping+activity:++
Which+activities+have+you+
shifted+

Which+
plot/crop?+

Previous+time+of+the+activity+
(month)+

Current+time+of+the+activity+
(Month)+

If+you+do+not+plan+to+continues+this?++Please+explain+your+reason+for+
discontinuation?+*1+

E71+ Delayed+Sowing+ E71a+ + E71b+ + E71c+ + E71d+ +

E72+ Early+Harvesting++ E72a+ + E72b+ + E72c+ + E72d+ +

E73+ Late+Harvesting+ E73a+ + E73b+ + E73c+ + E73d+ +
*++1+lack+of+money+(1),+lack+of+information+(2);+shortage+of+labor+(3);+Has+little/no+effect+on+crop+outputs+(4)+Lower+returns+(5)+Other+(specify)+(6)+…++
+
+
E8:+Shift+in+cropping+patterns++

What+crop+did+you+swap?+
+

When+did+you+
start+to+change+
(Year)+

What+is+the+change+
in+the+income?+

+Did+you+incur+any+
additional+cost+of+
change?+In+PKR+

If+you+do+not+plan+to+continues+this?++
Please+explain+your+reason+for+
discontinuation+*1+Previous+ New+

+ + E81+ + E81a+ + E81b+ +E81c+ + E81d+ +

*++1+lack+of+money+(1),+lack+of+information+(2);+shortage+of+labor+(3);+Has+little/no+effect+on+crop+outputs+(4)+Lower+returns+(5)+Other+(specify)+(6)+…++
+
+
+
+
+
+
+
+
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E9:+Change+in+Agricultural+Input+due+to+climate+change:++
Which+agricultural+input+did+you+
change?++
+

When+did+you+start+to+change+
(Year)?+

How+did+you+
change?*1+

Did+you+incur+cost+of+change?+
(In+Rs.)++

If+you+do+not+plan+to+continues+this?++Please+explain+your+reason+for+
discontinuation+*1+

E91+ Fertilizers+ E91a+ + E91b+ + E91c+ + E91d+ +
E92+ Seed++ E92a+ + E92b+ + E92c+ + E92d+ +
E93+ Pesticides+ E93a+ + E93b+ + E93c+ + E93d+ +
E94+ Labor+ E94a+ + E94b+ + E94c+ + E94d+ +
E95+ Water+ E95a+ + E95b+ + E95c+ + E95d+ +
*1.+Increase+(1);+Reduce+(3);+Different+variety+of+input+(seed,+fertilizer+etc.)+
2.+lack+of+money+(1),+lack+of+information+(2);+shortage+of+labor+(3);+Has+little/no+effect+on+crop+outputs+(4)+Lower+returns+(5)+Other+(specify)+(6)++
+
+
E10+Soil+Conservation+Management+
Have+you+used+crop+residue+(Mulching),+green+manure,+or+cover+
crop+before+this+season+to+provide+organic+matter+to+the+soil?+Y/+N+

Did+you+use+zero+tillage,+and+direct+
sowing+for+soil+preparation?+Y/+N+

Have+you+implemented+contour+
planting+to+reduce+soil+erosion?+Y/+N+

Have+you+used+shelter+belts+for+improved+soil–
water+retention+and+to+reduce+erosion?+Y/+N+

E101+ + E101a+ + E101b+ + E101c+ +
+
+
E11:+Water+Management/+conservation:+
Alteration+of+irrigation+use,+
including+amount,+timing+to+
conserve+water?+Y/+N+

Adoption+of+supplementary+water+
sources+such+as+rainwater+harvesting?+
Y/+N+

Construction+of+flood+
defense+infrastructure?++
Y/+N+

Construction+of+bunds+around+fields,+or+land+
leveling+to+preserve+water+and+maximize+water+
uptake+of+the+crops?+Y/+N+

Adoption+of+watercefficient+methods+to+
conserve+soil+moisture+(e.g.+Furrow+
irrigation)?+Y/+N+
+

E111+ + E111a+ + E111b+ + E111c+ + + +

+
+
E12:+Diversification+of+Income+of+household+members:++
Shift+source+of+Income+ Change+in+Income+ How+many+household+members+shifted+

to+this+livelihood+
+

E121+ Livestock,+fishing,+etc+ E121a+ + E121b+ + E121c+ +

E122+ Off+farm+job+ E122a+ + E122b+ + E122c+ +

E123+ Private+business+(store)+ E123a+ + E123b+ + E123c+ +
E124+ Share+Crop/+Lease+your+land+ E124a+ + E124b+ + E124c+ +

E125+ Move+to+urban+area+ E125a+ + E125b+ + E125c+ +

E126+ Other+(specify)+ E126a+ + E126b+ + E126c+ +

+
+
+
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E30:+Recent+infrastructure+developments+in+past+15+years+
Has+your+village+witnessed+public+infrastructure+construction+with+bearing+to+agriculture?+++(Y/N)+ What+infrastructure+was+built?+*1+
E281+ + E281a+ +
*1:+Dam/+Canal+(1);+Electricity+lines+(3);+Roads+(4);+Tubewell+(5);+Rain+water+harvest+tanks/+ponds+(6);+Flood+defense+infrastructure+(7);+other,+specify_____________________+
+
$
E6:+Adaptation+actually+undertaken+
Adaptation+Measures+ Kindly+list+3+most+important+reasons+other+than+climate+change+for+applying+these+measures+
E61+ Altering+the+timing+of+“cropping+activity”+(e.g.+harvest+date)+ E61a+ +
E62+ Shift+in+cropping+pattern+(e.g.+crop+portfolio)+ E62a+ +
E63+ Altering+agricultural+input++ E63a+ +
E64+ Investment+in+soil+conservation+ E64a+ +
E65+ Investment+in+water+conservation++ E65a+ +
E66+ Diversification+of+Income+ E66a+ +
E67+ Public/+Household+infrastructure+incl.++water+defenses+ + +
E68+ No+Adaptation+ E67a+ +
+ Other,+specify________________________+ E68a+ +
*1.+Change+in+price+or+availability+of+input+such+as+seed,+fertilizer,+water+(1);+Household+factors:+food+and+fodder+selfcsufficiency+(2);+Market+Price+of++output/+higher+expected+return+(3);+Change+in+
agricultural+contract/+terms+(4);+Other________+(5)+
$
$
$
F3:$Household$$assets$owned:$quantity$and$value$(2012)$$

Type+of+assets+ Quantity+ Approx.+Value+(Rs.)+

Electronic+Appliance+ TV+ F31a+ + F31b+ +

Radio+ F32a+ + F32b+ +

Other:+______+ F33a+ + F33b+ +

Communication+

+

Telephone+ F34a+ + F34b+ +

Internet+ F35a+ + F35b+ +

Mobile+Phone+ F36a+ + F36b+ +

Motorized+Transportation:+(Truck,+car,+etc.)+ F37a+ + F37b+ +

Generator+ F38a+ + F38b+ +

+
$
$
$
$
$
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Section$F.$ HOUSEHOLD$INCOME:$
F1+ Kindly+provide+information+on+all+kinds+of+income+to+this+households+during+the+last+one+year+(in+Rs.)+
+ Annual+Income+++++++++
+
+ F1a.+ Wages+(kind,+yearly)+approximate+value+in+Rs.+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1b.+ Farm+income+
++++++++ F1c.++++++++++++From+business+(shops,+factory+etc.)+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1d.+ From+handicrafts+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1e.+ Remittances+from+other+household+members+&+relatives+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1f.+ Sale+of+property/+other+asset+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1g.+ Land+rental+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1h.+ Livestock+ [+++][+++][+++][+++][+++][+++][+++]+
+ F1i.+ Other+sources+(gift,+zakat,+charity+etc.)+ [+++][+++][+++][+++][+++][+++][+++]+ + +
+ F1j+TOTAL+YEARLY+INCOME:+(in+Rs.)+ [+++][+++][+++][+++][+++][+++][+++][+++][+++][+++]+
+
F2.+ Kindly+provide+information+on+monthly+expenditure+(in+Rs.)+of+this+household+
+ F2a.+ on+food+items+bought+/+consumed+ [+++][+++][+++][+++][+++][+++]+

Wheat++ + [+++][+++][+++][+++][+++][+++]+
Fodder+ + +[+++][+++][+++][+++][+++][+++]+
Vegetable+ + [+++][+++][+++][+++][+++][+++]+
Rice+ + [+++][+++][+++][+++][+++][+++]+
Pulses+ + [+++][+++][+++][+++][+++][+++]+
Meat+ + [+++][+++][+++][+++][+++][+++]+
Other+nutritional+items+_______++ [+++][+++][+++][+++][+++][+++]+

+
+ F2b.+ on+purchase+of+clothing+and+other+items+ [+++][+++][+++][+++][+++][+++]+
+ F2c.+ on+health+care+(doctors/provider's+fees+and+purchase+of+medicines)+ [+++][+++][+++][+++][+++][+++]+
+ F2d.+ Miscellaneous+ [+++][+++][+++][+++][+++][+++]+
+
F2e+ TOTAL+MONTHLY+EXPENDITURE:+(in+Rs.)+ + + + + + + [+++][+++][+++][+++][+++][+++][+++]+
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