
The London School of Economics and Political

Science

Essays in Financial Economics

Olga A. Obizhaeva

Thesis submitted to the Department of Finance of the London

School of Economics and Political Science for the degree of

Doctor of Philosophy

September 2017



1

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the

London School of Economics and Political Science is solely my own work other than

where I have clearly indicated that it is the work of others (in which case the extent

of any work carried out jointly by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is permitted,

provided that full acknowledgement is made. This thesis may not be reproduced

without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the

rights of any third party.

Statement of conjoint work

I confirm that chapter 2 is jointly co-authored with Albert S. Kyle and Anna A.

Obizhaeva. Albert S. Kyle has worked as a consultant for various companies, ex-

changes, and government agencies. He is a non-executive director of a U.S.-based

asset management company. I contributed 33% of the work for chapter 2.

I declare that my thesis consists of 45,943 words.



2

Acknowledgement

I would like to thank my supervisors Dong Lou and Igor Makarov for their guid-

ance and support. I am grateful to Amil Dasgupta and Ulf Axelson for supervision

in my early years at LSE. I benefited from discussions with the faculty of Finance

department at LSE. I would also like to acknowledge the financial support from the

London School of Economics and the Systemic Risk Centre. I would not be where

I am now without support of Pete Kyle, Mark Kritzman, and Anna Obizhaeva who

have been inspiring examples of researchers.

The five years at LSE were very special thanks to my cohort: Jesus Gorrin, Michael

Punz, Una Savic, and Seyed Seyedan. We outstay the hurrying flight of years, bear-

ing with each other through laughter and through tears. I have been lucky to be

surrounded by my fellow PhD students: Lorenzo Bretscher, Svetlana Bryzgalova,

Fabrizio Core, Sergei Glebkin, Inna Grinis, James Guo, Andrea Englezu, Lukas Kre-

mens, John Kuong, Dimitris Papadimitriou, Paola Pederzoli, Bernardo Ricca, Gosia

Ryduchowska, Petar Sabtchevsky, Su Wang, Yue Yuan, Zizi Zeng.

I am indebted to my parents, Galina and Alexander, my sister Anya, my brother

Nikola, and my grandmother Alexandra. You have been there for me, always. My

time in London would not be so memorable without all my friends, especially Jacque-

line Li.



3

Abstract

This thesis consists of three essays in financial economics.

The first chapter analyses the fundraising process in the hedge fund industry

and the role financial intermediaries play in this process. Using the SEC form D

filings, I document that broker-sold funds underperform directly-sold funds by 2%

(1.6%) per year on a risk-adjusted basis before (after) fees. Also directly-sold funds,

on average, have larger average investor’s size, larger minimum investment size, and

charge higher performance fees comparing to broker-sold ones. Empirical results

are consistent with a stylized model of fundraising. I estimate the model implied

average broker’s compensation to be $1.5 million per year.

The second chapter (co-authored with Albert S. Kyle and Anna A. Obizhaeva)

introduces a new structural model of stock returns generating process. The model

assumes that stock prices change in response to buy and sell bets arriving to the

market place as predicted by market microstructure invariance. These bets are

shredded by traders into sequences of transactions according to some bet-shredding

algorithms. Arbitrageurs take advantage of any noticeable returns predictability,

and market makers clear the market. This structural model is calibrated to match

empirical time-series and cross-sectional patterns of higher moments of returns. We

calibrate hard-to-observe parameters of bet-shredding using the method of simulated

moments, analyse its properties, and show how much shredding has increased over

time.

The third chapter studies cross-sectional and time series variation in the size of

repurchase programs. I find that this variation is explained by the variables mo-

tivated by market microstructure invariance theory. My results suggest that when

determining the size of repurchase programs, managers may target percentage im-

pact costs of these programs or target inventory levels sufficient to allocate their

future bets about their companies.
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Chapter 1

Fundraising in the Hedge Fund

Industry

High search and due diligence costs due to the opacity of the hedge fund industry

make the fundraising process challenging even for hedge funds with a good reputa-

tion and a strong track record. Financial intermediaries, such as brokers, consul-

tants, and placement agents, help funds and investors to find one another and to

overcome barriers to transact. This paper studies, empirically and theoretically, the

role of intermediaries in the fundraising process of hedge funds.

There is yet no consensus about the role and social value of intermediaries. Some

people think that intermediation is socially useful. This view is usually justified with

several arguments. First, intermediaries may help counterparties find one another

and transact, by exploiting their positional advantage and industry knowledge, as

per Rubinstein and Wolinsky (1987). Second, intermediaries may help alleviate

adverse selection problems, as per Booth and Smith (1986) and Garella (1989).

Third, intermediaries may add value by decreasing the costs of making decisions

and executions, as per Spulber (2001).

Others think that intermediaries impose unnecessary costs on society. Judge

(2014) argues that intermediaries often promote institutional arrangements to max-

imize their economic rents, and illustrates her point using examples of real estate

agents, stock brokers, mutual funds, and exchanges. Warren Buffett opposed and

9
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publicly criticized intermediaries on numerous occasions. For example, in 1996 class

B shares of Berkshire Hathaway were issued as a response to unit trusts that sold

fractional units of Berkshire’s shares to small investors.

To analyze empirically the role that financial intermediaries play in the fundrais-

ing process of hedge funds, I download and process the entire collection of form

D filings that hedge funds report to the U.S. Securities and Exchange Commission

(“the SEC”) under Regulation D. These filings have information on all third parties

involved in the fundraising process. It allows one to identify the hedge funds offered

to investors directly and those sold to investors through intermediary brokers.

I match this dataset with the Morningstar hedge funds database using a fuzzy

match algorithm. My final dataset combines information on fundraising process,

contract characteristics, and performance of hedge funds.

First, I find that, on average, broker-sold funds underperform the directly-sold

funds by a substantial margin. Following Fung and Hsieh (2004), I find that broker-

sold funds again consistently underperform directly-sold funds by 1.6% on a risk-

adjusted basis after accounting for fees. As suggested by Berk and van Binsbergen

(2013), the measure of the dollar value added of broker-sold funds is, on average,

$210,000 per month lower than that of directly-sold funds.

Second, I construct gross returns series using the modified methodology de-

veloped by Brooks, Clare and Motson (2007), Hodder, Jackwerth and Kolokolova

(2012), and Kolokolova (2010), and document that broker-sold funds underperform

directly-sold funds by 2% per year before fees as well. The pre-fee dollar value

added by broker-sold funds is, on average, $190,000 per month lower than that of

directly-sold funds. Since pre-fee risk-adjusted performance is a likely indication of

skill, this evidence contradicts the view that intermediaries help to identify skillful

funds.

Third, I find that, on average, funds sold by brokers charge lower incentive fees

compared to funds sold directly, whereas there is no significant difference in terms

of management fees.

Fourth, I find that funds sold directly have a larger minimum and average in-
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vestment size than funds sold by brokers. Regulators define investors who qualify

for the accredited investor status based on their income or net worth, suggesting

that size is correlated with sophistication of investor. Therefore, this evidence im-

plies that broker-sold funds and directly-sold funds may target different clienteles;

directly-sold funds attract, on average, more sophisticated investors than broker-sold

funds.

Finally, I analyze heterogeneity of brokers, classifying brokers into in-house and

outside brokers based on the similarity of names of a fund and a broker. I find

that funds sold by in-house brokers underperform directly-sold funds by 2.1% per

year on a risk-adjusted basis after accounting for fees, while funds sold by outside

brokers underperform directly-sold funds by 1.4% per year. Funds sold by in-house

and outside brokers underperform directly-sold funds by 2% per year on a risk-

adjusted basis before accounting for fees. Moreover, funds sold by outside brokers

have lower incentive fees than funds sold directly, while the incentive fees of funds

sold by in-house brokers do not differ from those of funds sold directly. Funds that

are sold through outside brokers have a lower minimum investment sizes than that

of directly-sold funds, while the minimum investment sizes of funds sold through

in-house brokers do not differ from that of directly-sold funds.

The choice of fundraising channels is an equilibrium outcome; therefore these

empirical findings have no causal interpretation, but rather provide an empirical

description of an equilibrium. I present a stylized theoretical model of fundraising

in the hedge fund industry and show that the implications of the model are consistent

with documented empirical findings. The model builds on the work of Nanda,

Narayanan and Warther (2000) and Stoughton, Wu and Zechner (2011).

There are two funds that differ in skill: a good fund and a bad fund. Hedge

funds do not have their own capital and have to raise funds from outside investors.

Since the hedge fund industry is opaque, the process of finding and vetting a suitable

fund is costly. To assist with fundraising, a hedge fund may hire an intermediary

broker, who will certify the type of the fund and persuade investors to allocate

their capital into the fund. Investors differ in their search and due diligence costs.
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Sophisticated investors have low search and due diligence costs, others have no

industry connections and face high search and due diligence costs. I solve for a

separating equilibrium, in which funds endogenously choose portfolio management

fees and capital-raising channels, whereas investors decide to invest into hedge funds

on their own or based on recommendation of an intermediary.

This equilibrium has a simple intuition. The existence of both types of funds is

socially optimal, since both funds generate positive returns, which are greater than

the outside option. Some investors, however, are not able to invest in the hedge

fund industry without financial advice. Only sophisticated investors can find the

good fund, while other investors with high due-diligence costs are not able to do so.

The broker steps in to resolve this inefficiency. The broker is able to lower the costs

of investors by internalizing the due-diligence process and this allows the high-cost

investors to allocate their endowments into the hedge fund industry. In return, the

broker requires compensation. The bargaining power of the broker and the relative

outperformance of the good fund over the bad fund are crucial for the existence

of a separating equilibrium. The good fund separates from the bad fund when it

generates a sufficiently high return that is enough to compensate for investors’ search

and due diligence costs. Investors in the good directly-sold fund get higher after-fee

returns compared to the after-fee returns of the investors in the bad broker-sold

fund, regardless of the fee that the bad broker-sold fund charges.

I calibrate the model and estimate the implied average compensation that brokers

receive for their capital introduction services. I assume that the compensation of

a broker is proportional to the total dollar fees that a hedge fund collects from its

investors. I estimate the total dollar fees using data on the assets under management,

the performance, and the compensation structure of the hedge fund. Assuming

that the bargaining power of the broker equals to 1/3, which corresponds to the

equilateral division of the surplus among the fund, the investors, and the broker,

I find the average annual compensation of the broker to be equal to $1.5 millions.

This is roughly consistent with the annualized estimated difference between the

dollar value added by broker-sold funds and directly-sold funds in the data.
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The paper is related to several strands of literature. It contributes to the liter-

ature on capital formation. Duffie (2010) discusses the problem of slow movement

of investment capital to trading opportunities and its implications for asset price

dynamics. Berk and Green (2004), Garleanu and Pedersen (2016), Vayanos (2004),

Pastor and Stambaugh (2012), and Vayanos and Woolley (2013) model the asset

management industry theoretically. There is also an extensive empirical literature

that studies capital formation in the asset management industry. Chevalier and

Ellison (1997) and Sirri and Tufano (1998) find that investors allocate their capital

into mutual funds with a positive past performance and flee from mutual funds with

negative past returns. The hedge fund literature also finds that the performance of

funds is an important factor that affects capital flows. For example, Goetzmann,

Ingersoll and Ross (2003) and Fung et al. (2008) find that alpha generating hedge

funds experience larger capital inflows than funds that do not have alpha. Horst

and Salganik-Shoshan (2014) find that capital flows to the highest performing strate-

gies and to the better performing funds within the strategy. Baquero and Verbeek

(2015) document that funds with a longer positive track record get more capital. Lu,

Musto and Ray (2013) study the indirect advertising of hedge funds and find that it

helps to attract capital. Baquero and Verbeek (2009) use a regime-switching model,

while Jorion and Schwarz (2015) use form D filings to separate fund inflows and

outflows and analyze flows to performance relationship. Getmansky (2002) studies

the life-cycles of hedge funds at the individual and strategy level and finds that age,

assets under management and the standard deviation of returns negatively affects

fund flows. Joenväärä, Kosowski and Tolonen (2013), Getmansky et al. (2015), and

Aiken, Clifford and Ellis (2015) analyze the effect of liquidity restrictions on capital

flows. My paper contributes to this literature by analyzing capital formation in the

hedge fund industry and the role that intermediaries play in this process.

This paper is also related to studies on distribution channels and marketing in

the asset management industry. Investors pay substantial amounts of money in

the form of sales loads and broker commissions. This raises the questions of why

they pay such high fees to intermediaries and what benefits these investors get in re-
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turn. Bergstresser, Chalmers and Tufano (2009) and Del Guercio and Reuter (2014)

find that mutual funds sold by brokers significantly underperform funds sold directly

(both before and after fees). Possible explanations include the substantial intangible

benefits that brokers provide and the partition of mutual fund clientele into sophis-

ticated and disadvantaged investors. As opposed to mutual fund retail investors,

hedge funds investors are usually sophisticated financial institutions and individuals

qualified for accredited investor status. It may be understandable to find evidence

of underperformance in broker-sold mutual funds, but it is more surprising to find

the same result in a hedge funds setting. The authors also document that directly-

sold mutual funds charge lower fees than mutual funds sold through brokers. I find

the opposite result for the incentive fees of hedge funds, while I find no difference

in hedge funds’ management fees across different fundraising channels. Further-

more, Christoffersen, Evans and Musto (2013) establish that underperformance of

broker-sold funds mostly arises in mutual funds that are sold through outside bro-

kers rather than in-house brokers. The authors also document that in-house brokers

receive a higher front load comparing to outside brokers. In contrast, I find that

hedge funds offered through in-house brokers underperform both directly sold funds

and funds sold through outside brokers. Also, hedge funds sold through in-house

brokers charge higher incentive fees than funds sold through outside brokers.

The empirical analysis of this paper is closely related to that of Agarwal, Nanda

and Ray (2013). The authors find that hedge funds that are selected by institu-

tions investing directly outperform hedge funds that are selected by institutions

that use advisory services. They analyze raw and style-adjusted after-fee perfor-

mance of hedge fund investments aggregated at the level of hedge fund family, while

granularity of data in my study allows to perform analysis at the individual fund

level.

The theoretical part of the paper is related to the work of Stoughton, Wu and

Zechner (2011), who model the interaction of active portfolio manager, financial

adviser, and investors under various settings. Similar to their model, investors’

choice of performing due diligence on their own or delegating it to the broker depends
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on their due diligence costs, but I emphasize the endogeneity of the choice of capital

raising channels by hedge funds.

The rest of the paper is organized as follows. Section I describes the data and

outlines the key economic variables that are used in the analysis. Section II doc-

uments the empirical findings on the fundraising process of hedge funds. Section

III presents a simple model of fundraising that reconciles the empirical findings and

estimates the model-implied compensation that intermediaries receive for capital

introduction services. Finally, section IV concludes the discussion.

1.1 Data

I use a combination of two databases. The first database is constructed from form

D filings. The second is a Morningstar hedge funds database. Additional data is

downloaded from Thomson Reuters and the David A. Hsieh Data Library.

1.1.1 Form D filings

Although hedge funds qualify for exemptions to formal registration of fundraising

offerings, the Securities Act of 1933 requires all funds that raise capital from investors

(with at least one U.S. investor) to notify regulators about the fundraising process

by filing a form D with the SEC. A fund is required to file a notice no later than 15

calendar days after the date of the first sale of the fund’s offering. As long as the

fund remains open, it is required to update filings on an annual basis as well as in

the case of detected mistakes in the previous filings.1

Table 1.1 summarizes all the data fields in the form D. Fund reports admin-

istrative information and information about its fundraising process: its name, the

address of its principal place of business, the names and addresses of the executive

officers, the amount of capital raised, the number and types of investors, and each

1See detailed information about offering exemptions in Rules 504, 505, and 506 of Regulation
D. Source: Sections 230.501 through 230.506 appear at 47 FR 11262, Mar. 16, 1982. Note that
amendment to form D filing is denoted as D/A. Hereto, I refer to both initial form D notice and
its amendments as form D filings. Compliance guide about filing and amending a Form D notice
may be found at https://www.sec.gov/info/smallbus/secg/formdguide.htm.
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person who is paid directly or indirectly in connection with the fundraising process.

The information that funds disclose in Form D filings must be free of biases, since

misreporting and failure to comply with the SEC requirements imposes significant

reputational and legal risks and may result in criminal penalties.

Form D filings are publicly available. I download and process all the electronic

form D filings from the SEC’s Electronic Data Gathering, Analysis, and Retrieval

system (EDGAR).2 I start in January 2010, when all hedge funds were required

to submit forms electronically. Thus, the downloaded sample covers period from

January 2010 to December 2016.

Each fund in the EDGAR system is uniquely identified by its Central Index Key

or CIK number. Thus, by knowing the name of the fund or its CIK number, one

gets access to information about its fundraising. For example, a search for Citadel

Global Equities fund will produce ten form D filings over the period from July 2009

to September 2016. From the filings, we learn that the fund was originated with

Citadel Advisors in July 2009. The fund raised $100 millions from one investor at

the origination date. Then, it raised $153 millions from seven investors by August

2010 and $446 millions from fifty-nine investors by September 2016.

In imposing strict standards on the marketing of hedge funds, the SEC requires

funds to disclose in their form D filings information about any entity which is directly

or indirectly compensated for advertising and offering a fund to investors. This in-

formation allows one to differentiate between the funds sold to investors by brokers

and the funds offered to investors directly.3 The disclosed information consists of

brokers’ biographical information, their Central Registration Depository (“CRD”)

number within the Financial Industry Regulatory Authority (“FINRA”) system and

the list of states in which they advertise offerings. For example, I classify Citadel

Global Equities Fund as a directly-sold fund, since it does not employ any interme-

diary in the fundraising process, while Renaissance Institutional Equities Fund is an

example of a broker-sold fund, since it is sold to clients by Renaissance Institutional

2The EDGAR depository is accessible at https://www.sec.gov/edgar/searchedgar/webusers.htm.
3Hedge funds report information about intermediary brokers that are involved in fundraising

process in Item 12 of form D filings, Sales Compensation
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Management LLC.

Table 1.2 displays the largest open directly-sold and broker-sold funds in 2015.

For example, Medallion fund of Renaissance Technologies raised $6.5 billions by

2015, while D.E. Shaw Oculus International fund of D.E. Shaw & Co that raised

$13 billions with the help of broker.

I classify intermediary brokers into in-house brokers and outside brokers based on

the similarity of the names of the fund and the broker. For example, Fortress Convex

Asia fund LP uses the capital introduction services of Fortress Capital Formation

LLC. In this case, I classify Fortress Capital Formation LLC as an in-house broker.

ING Clarion Market Neutral LP is sold by Citigroup Global Markets and Merrill

Lynch, Pierce, Fenner and Smith Inc. In this case, I classify both brokers as outside

brokers. Funds are classified as being sold by in-house brokers when they employ

only in-house brokers. If a fund is sold by outside brokers, I refer to such fund as

outside broker-sold fund. Thus, Fortress Convex Asia fund LP is classified as an

in-house broker-sold fund and ING Clarion Market Neutral LP is classified as an

outside broker-sold fund.

Table 1.3 displays ten broker firms in the capital introduction business which

market the largest number of hedge funds. The list of the top brokers in this business

comprises top investment banks such as Goldman Sachs, Morgan Stanley, and J.P.

Morgan. For example, over the considered period, Goldman Sachs intermediates

as many as 377 hedge funds. The average (median) amount of capital raised by

funds that are intermediated by Goldman Sachs is $350 millions ($98 millions). The

average (median) number of investors in funds that are intermediated by Goldman

Sachs is 149 (30) investors. According to anecdotal evidence, big broker firms often

offer their wealthy clients opportunities to invest in hedge funds through online

platforms without having to go to the funds themselves.

Figure 1.3 shows the fundraising dynamics over the period from January 2010 to

December 2015 comparing hedge fund industry with other alternative investments.

I analyze four main alternative investment business types: hedge funds, private

equity, venture capital and other investment funds, which includes fund of funds,
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commodity trading advisors(“CTAs”) and commodity trading operators (“CTOs”).

Figure 1.3 is split into four panels. Panels A, B, C and D display hedge funds,

other investment funds, private equity funds, and venture capital funds, respectively.

Focusing on the difference between the fundraising channels, the figure visualizes the

amount of capital that was raised by directly-sold and broker-sold funds over the

considered period.

To estimate the amount of capital inflows, I use reported information on the

Total Amount Sold that the fund reports in form D filings. I consider two cases:

capital inflows at the fund’s inception and capital inflows during the life of the fund.

In the first case, the amount of capital raised at inception is directly reported in

the Total Amount Sold variable. In the second case, it may be estimated as an

increment of the Total Amount Sold variable between two consecutive fund’s filings.

I outline the methodology on capital inflows estimation in Appendix.

The hedge fund industry enjoyed capital inflows which steadily grew from 2010 to

2015, spiking above the average level in 2014 and recovering to the previous trend of

inflows at $300 billions per year. The spike in capital inflows in 2014 coincides with

the lifting of the SEC’s advertisement ban, which was implemented in September

2013, following the JOBS Act directive.

1.1.2 Morningstar database and risk-adjusted returns

I use the Morningstar CISDM hedge fund database available from Wharton Re-

search Data Service (“WRDS”). The database contains fund-level information on

live and liquidated hedge funds. It keeps the most recent snapshot of fund’s adminis-

trative information, such as name, address, inception date, compensation structure,

minimum investment size, and liquidity restrictions. It also records the fundâĂŹs

after-fee performance and assets under management at a monthly frequency.

I use Morningstar data to estimate the performance and skill of the hedge fund.

Hedge funds usually employ various risky trading strategies. Thus, to make a sensi-

ble comparison of hedge funds, I control for their exposure to systematic risk factors
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and calculate their alphas. I estimate the tradable alpha regressing the annualized

monthly excess return, Re
it, on seven tradable risk factors, as suggested by Fung and

Hsieh (2004):

Re
it = αi + βMkt · SNP MRFt + βSmB · SMBt + βT 10y · BD10RETt+

βCr.Spr. · BAAMTSYt + βpBD · P TFSBDt + βpF X · P TFSFXt+

βpCOM · P TFSCOMt + ǫ̃it.

(1.1)

To account for market exposure, I use annualized returns on the S&P500 index,

SNP MRFt. Adjusting for exposure to the size factor, I use an annualized return

spread between the Russell 2000 and the S&P500 index, SMBt, obtaining a time

series for the Russell 2000 and the S&P500 indexes from Thomson Reuters Datas-

tream.

To control for yield curve exposure, I follow the literature and use the annualized

excess returns of the U.S. 10-year Treasury constant maturity bond, BD10RETt. A

tradable yield curve level factor that is used in this paper is Bank of America Merrill

Lynch’s U.S. 10-year Treasury constant maturity bond returns, which I download

from Thomson Reuters Datastream. As a robustness check I used 10-year discount

factors from the Federal Reserve Bank of St.Louis’ Treasury yield curve estimates.4

The correlation between the two time series is 0.96.

Accounting for credit spread exposure, I use an annualized return spread between

Moody’s Baa-rated corporate bond, BAAMTSYt, and the U.S. 10-year Treasury

constant maturity bond. To proxy Moody’s Baa-rated corporate bond, I use the

tradable Barclays Long Baa U.S. Corporate index, which can be downloaded from

Thomson Reuters Datastream.

Finally, adjusting for the dynamic nature of the hedge funds’ strategies, I fol-

low Fung and Hsieh (2004) and use a trend-following bond factor, P TFSBDt, a

trend-following currency factor, P TFSFXt, and a trend-following commodity fac-

4FED’s yield curve can be downloaded from Federal Reserve Economic Data (FRED):
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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tor, P TFSCOMt, which are constructed from look-back options and can be down-

loaded from David A. Hsieh’s Data Library.5

For every fund i in month t, I estimate its annualized monthly alpha, α̂it, with a

two-year rolling-window regression (1.1). The final sample consists of 29,051 fund-

month observations.

Although, investors care about after-fee returns on their hedge fund investment,

skills of funds are reflected in pre-fee returns. Hedge fund databases usually take the

perspective of investors and report fund performance and net asset values (“NAV”)

after accounting for fees. To reconstruct pre-fee returns, I apply the modification of

methodology that was used in Brooks, Clare and Motson (2007), Hodder, Jackwerth

and Kolokolova (2012), and Kolokolova (2010)

I make several assumptions that reflect the general practice on the calculation of

hedge funds’ fees. [1] Pro-rata management fees are paid at the end of the month on

pre-fee net asset value at the end of the month. [2] Incentive fees are accrued on a

monthly basis, but are only paid at the end of the calendar year; reported after-fee

net asset value and performance account for accrued incentive fees. [3] Hedge funds

use the high-watermark provision and incentive fees are paid in case pre-fee net

asset value adjusted for management fees are above the current high water mark.

[4] The high-water mark is reset to a pre-fee net asset value if it exceeds the current

high water mark; otherwise the high-water-mark stays as in the previous month. [5]

Management and incentive fees remain constant over time.6 [6] The equalisation

credit/contingent redemption scheme is used to calculate net asset value to ensure

that the fund managers are compensated correctly for positive performance, while

investors, who might invest in funds at different time are treated fairly and equally.7

For each fund I estimate the pre-fee net asset value, NAV ∗(t), and the pre-

fee return, R∗(t), using available data on after-fee net asset value, NAV (t), after-

fee return, R(t), management fee (in percentage terms), fM , and incentive fee (in

5David A. Hsieh’s Data Library is accessible at https://faculty.fuqua.duke.edu/ dah7/HFRFData.htm.
6In reality hedge funds may update their compensation structure as documented by Deuskar

et al. (2011), Agarwal and Ray (2012) and Schwarz (2007).
7âĂŸEqualisation Credit/Contingent RedemptionâĂŹ accounting procedure is described and

discussed in McDonnell (2003).
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percentage terms), fI .

The hedge fund database reports after-fee net asset value, which is calculated

as a pre-fee net asset value adjusted for management fees (in dollars), FM (t), and

accrued incentive fees (in dollars), FI(t):

NAV (t) = NAV ∗(t) − FM(t) − FI(t). (1.2)

Dollar management fees are calculated based on the net assets of the fund at the

end of the month, as per assumption [1]:

FM(t) = NAV ∗(t) · fM/12. (1.3)

Incentive fees accrue if the net asset value after management fees and net capital

flows are above the high water mark, following assumptions [2], [3], and [4]:

FI(t) = max(0; NAV ∗(t) − FM(t) − Netflows(t) − HWM(t)) · fI . (1.4)

Solving the system of equations (1.2), (1.3), and (1.4), I express the pre-fee net asset

value, dollar management fees, and the dollar incentive fees



















































NAV ∗(t) = NAV (t) + FM(t) + FI(t) (1.5)

FM(t) = [NAV (t) + FI(t)] · fM/12
1 − fM/12

(1.6)

FI(t) = [NAV (t) − Netflows(t) − HWM(t)] · fI

1 − fI
·

I [NAV (t) − Netflows(t) > HWM(t)]
(1.7)

Dollar incentive fees (1.7) are accumulated only if the assets of the fund are above

the high water mark, NAV (t) − Netflows(t) > HWM(t); otherwise, the fund does

not get any incentive fees.

Finally, I estimate the pre-fee return, R∗(t), as a growth rate between the pre-

fee assets under management at the beginning of the month and the pre-fee assets
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under management at the end of the month, adjusted for dollar netflows during the

period:

1 + R∗(t) =
NAV ∗(t) − Netflows(t)

NAV ∗(t − 1) − FM (t − 1)
. (1.8)

At the beginning of the investment period, assets under management are equal to

pre-fee net assets at the end of the previous period adjusted for management fees.

Also, the pre-fee net asset value has to be adjusted for netflows, which I estimate as

in the literature on fund flows ( Sirri and Tufano (1998), Agarwal, Daniel and Naik

(2004)).

Netflows(t) = NAV (t) − NAV (t − 1) · (1 + R(t)). (1.9)

Finally, Substituting (1.2) and (1.9) into (1.8), I estimate the pre-fee return R∗(t).

1.1.3 Matching form D filings and Morningstar database

I match the form D filings with Morningstar database by the name of the fund using

a fuzzy matching method.

First, I estimate the pairwise generalization of Levenshtein (1966) edit distance,

a measure of dissimilarity, between the funds in Form D and Morningstar databases.

I eliminate the pairs that have a dissimilarity score above 200. Second, I eliminate

pairs of matched form D and Morningstar funds that report inception dates of more

than six months apart from each other. Finally, I manually verify the results of the

matching procedure.

The matched sample consists of 1,728 individual funds that in total submitted

7,824 form D filings. It represents 15% of Reg D funds and 8% of funds that are listed

in the Morningstar database. Among the matched funds 92% of funds are identified

as hedge funds and 8% of funds are identified as other investment funds. A low

match rate is explained by the fact that the universe of Reg D funds consists only of

funds that are open for investment and have at least one US investor. Additionally,

not all form D funds may choose to be listed in Morningstar database.
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Jorion and Schwarz (2015) are able to match in total 3,816 form D funds with

14,581 form D filings, using the Hedge Fund Research (HFR) and Lipper TASS

databases. The match rate between the form D funds and Morningstar funds is

consistent with the match rates of form D funds with hedge funds that report to

TASS (1,896 funds).

In the matched sample there are 1,103 of directly-sold funds and 625 of broker-

sold funds.

Focusing on the heterogeneity of brokers, I further differentiate the broker-sold

funds into funds that are offered to investors through in-house brokers and funds

that are sold to by outside brokers. In the matched sample of broker-sold funds I

identify in total 537 funds that are sold by outside brokers, 56 fund that are sold by

in-house brokers and 32 funds that are sold through both.

The matched database inherits all the biases that are usually associated with

Morningstar database.

First, the information that hedge funds report to Morningstar database is not

verifiable. Fund managers usually list their funds in hedge fund databases to market

their funds and attract potential investors. Agarwal, Mullally and Naik (2015) and

Getmansky, Lee and Lo (2015) provide a comprehensive review of the limitations

and potential biases in hedge fund data.

Often funds backfill returns prior to the date when they starts reporting to the

data vendor. Thus, a fund manager has an incentive to list his hedge fund in a

database after a period of good performance. As discussed in Edwards and Park

(1996), this potentially leads to misleadingly good track records and may result in

upward bias in expected returns due to this instant history or backfill bias.

Joenväärä, Kosowski and Tolonen (2014) estimate a backfill bias of around

twenty months by analyzing snapshots of databases that have been taken on differ-

ent dates. Following the literature practice, I exclude the first twenty-four months

of returns observations since the inception of the funds to mitigate this bias.

Second, there is also survivorship bias. Funds have an incentive to stop reporting



CHAPTER 1. FUNDRAISING IN THE HEDGE FUND INDUSTRY 24

their performance after a period of bad performance. Therefore, underperforming

funds may be under-represented, again biasing upwards the estimates of expected

returns. To mitigate this bias, I consider both live and defunct funds moved to

hedge fund graveyard files.

Third, Morningstar hedge fund data, unfortunately, contains significant numbers

of missing assets under management. Following Joenväärä, Kosowski and Tolonen

(2014), I fill in any missing observations with the most recent observations of the

past.

Table 1.4 presents summary statistics on annual capital inflows, the number

of investors, and the number of new investors across funds that are directly sold

to investors and funds that are offered to investors through brokers from form D

filings. Panel A presents the summary statistics for the whole sample of form D

funds. Panel B presents summary statistics for the matched sample in order to

examine any potential biases introduced by the matching procedure.

Annual capital inflows into hedge funds do not differ significantly across distri-

bution channels. On average, directly-sold funds and broker-sold funds raise $49

millions per year. The median amount of capital raised by directly-sold funds is $3

millions and $5 millions for broker-sold funds. There are on average 12 investors

in directly-sold funds and 33 investors in broker-sold funds. The average size of

investment in a broker-sold fund is 2.75 less than that of a directly-sold fund.

I do not find significant differences between the matched sample and the total

form D sample of funds, comparing a sample that consists of matched funds and

sample of all form D funds on their observable characteristics.

1.2 Empirical evidence

This section provides an empirical description of the fundraising process of the hedge

funds, focusing on the differences between “direct” and “brokered” distributions.
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1.2.1 After-fee performance across distribution channels

To compare the performance of funds between fundraising channels, I construct two

portfolios of funds. The first one consists of directly-sold funds, representing the

anti-intermediation view. The second one comprises hedge funds that are offered

to investors through brokers, representing the pro-intermediation view. The port-

folios of funds are rebalanced monthly, so that newly originated funds are included

and liquidated funds are excluded appropriately. Assuming an initial investment of

$100, I track the portfolios of the funds’ after-fee performance from January 2010

to December 2015.

Figure 1.4 plots the after-fee performance dynamics for the portfolios of funds.

Panel A shows the performance of the portfolio of funds where the constituent

funds are equally-weighted. Panel B displays the performance of portfolios of funds

where the constituent funds are value-weighted. Portfolio of directly sold funds

outperforms portfolio of broker sold funds over considered five year period. For the

equally-weighted scheme, the portfolio of directly-sold funds increases from $100

to $130, with an annualized return of 5.38% per year over five years, while the

portfolio of broker-sold funds rises from $100 to $125, with an annualized return of

4.56% per year. The difference is more pronounced when the value-weighted scheme

is considered. Portfolio of directly sold funds increases from $100 to $136 with

annualized return of 6.34% per year, while portfolio of broker sold funds increases

from $100 to $126 with annualized return of 4.73% per year. The results also hold

when I consider the full sample of hedge fund returns without adjusting for backfill

bias. I present the results in Figure 1.7 in the Appendix.

Investors, however, should care about risk-adjusted returns. I estimate two-

year rolling alpha of the portfolios of funds, adjusting performance for systemic

risk exposure using equation (1.1). Figures 1.5 presents the time-series dynamics

of the after-fee alphas of the portfolio of directly-sold funds and the portfolio of

broker-sold funds. The figure is split into two sub-figures, which correspond to the

equally-weighted scheme in Panel A and the value-weighted scheme in Panel B. The
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after-fee alpha of directly-sold hedge funds is persistently higher than the after-fee

alpha of the broker-sold hedge funds regardless of portfolio-weighting scheme. For

the equally-weighted scheme, the after-fee alpha of the directly-sold hedge funds is

equal on average to 4.42% per year versus 3.37% per year for the broker-sold hedge

funds. For the value-weighted scheme, the average alpha of the portfolio of directly-

sold funds is equal to 4.43% as opposed to 3.55% for the portfolio of broker-sold

funds.

I implement another robustness check and perform panel data analysis. For each

hedge fund i in month t, I estimate its annualized monthly alpha, α̂it, with a two

year rolling-window regression (1.1). Then I estimate the difference between the

alphas of the directly-sold funds and the broker-sold funds with a panel regression

α̂it = β0 + βB · Bit + βX · Xit−1 + βt + ǫ̃it, (1.10)

where Bit is a dummy variable that is equal to one if fund i is sold through brokers

and it is equal to zero if the fund raises capital directly. I use a set of controls, Xit−1,

which includes the assets under management of hedge fund in a previous month, the

age of the fund, and its vintage. I also control for aggregate demand shocks with

time fixed effects, βt. The coefficient of interest that measures the difference in the

alphas of directly-sold and broker sold-funds is βB.

Panel A of Table 1.7 presents the results of the estimation of regression (1.10).

I find that the after-fee alpha of the broker-sold funds is, on average, 1.6% per year

lower than that of directly-sold funds. The results are economically significant and

robust for inclusion of the fund’s size, age, vintage year controls and time fixed

effects. I also find consistent results (reported in Appendix Table 1.16) for the

sample of funds without correction for backfill bias.

I also compare the dollar value added measure of Berk and van Binsbergen (2013)

for directly-sold funds and that of broker-sold funds. I find monthly dollar value

added to investors, Ŝit, as a product of the after-fee alpha of the hedge fund and

its assets under management in a given month. I perform panel data analysis and
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report results in Panel A of Table 1.8. I find that investors in the broker-sold fund

receive, on average, $210,000 per month less than investors in directly-sold funds.

The results are robust when controlling for the age of the fund, its vintage and time

fixed effects.

Exploiting heterogeneity across brokers, I analyze the difference in performance

between funds that are sold by in-house brokers and funds that are offered by outside

brokers. I perform a formal analysis with the following panel regression:

Yit = β0 + βI · BI
it + βO · BO

it + βX · Xit + βt + ǫ̃it, (1.11)

where Yit = α̂it denotes the fund’s annualized risk-adjusted performance. BI
it is a

dummy variable that is equal to one when the fund is offered to investors by an

in-house broker and is equal to zero otherwise. BO
it is a dummy variable that is

equal to one when the fund is sold to investors through an outside broker and is

equal to zero otherwise.

Table 1.9 displays the results of the estimation of regression (1.11). I find that

the result of the under-performance of broker-sold funds is mostly driven by funds

that are sold through in-house brokers. The average after-fee alpha of funds that

are sold through in-house brokers is 2% lower than that of directly-sold funds, while

average after-fee alphas of funds that are offered through outside brokers is 1.4%

lower than that of directly sold funds. Performing a formal F-test and comparing the

difference between in-house broker-sold and outside broker-sold funds, I find that

the alpha of funds that are sold by in-house brokers is statistically different from

the alpha of funds that are sold by outside brokers. The results are robust when the

fund’s size, vintage, and year-month controls. Furthermore, I perform additional

robustness checks by estimating the regression (1.11) on the sample that does not

correct for backfill bias, which is displayed in Table 1.18 in the Appendix.

The above findings on the underperformance of broker-sold hedge funds relative

to directly-sold funds are consistent with the findings in the mutual funds literature.

Bergstresser, Chalmers and Tufano (2009) were the first to establish that broker-
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sold mutual funds, with an average after-fee alpha of -2.28% per year, underperform

directly-sold mutual funds, with an average after-fee alpha of -1.07% per year, by

1.21% per year. Del Guercio and Reuter (2014) and Reuter (2015) find similar results

when considering different weighting schemes. Authors document the difference in

equally-weighted after-fee alphas between the two groups of funds of 1.15% and that

of the value-weighted after-fee alphas 0.64% per year. Christoffersen, Evans and

Musto (2013) find that a 1% increase in the excess load paid to broker decreases

mutual fund after-fee future performance by 0.24% over the next year. In contrast to

my results, the authors find that the underperformance is mostly driven by mutual

funds that are sold through outside brokers rather than in-house brokers.8

1.2.2 Pre-fee performance across distribution channels

Addressing the question of whether brokers help to identify skillfull hedge funds, I

analyze the pre-fee risk-adjusted performance of funds across distribution channels.

I estimate the two-year rolling pre-fee alpha of portfolios of funds, adjusting their

pre-fee returns for systemic risk exposure using equation (1.1). Figures 1.6 presents

the time-series dynamics of the pre-fee alphas of the portfolio of directly-sold funds

and the portfolio of broker-sold funds. The figure is split into two sub-figures,

which correspond to the equally-weighted scheme in Panel A and the value-weighted

scheme in Panel B.

The pre-fee alpha of the portfolio of directly-sold hedge funds is persistently

higher than the pre-fee alpha of the portfolio of broker-sold hedge funds regardless

of the portfolio-weighting scheme. I find that for the equally-weighted scheme, the

alpha of the portfolio of directly-sold hedge funds is equal, on average, to 5.78%

versus 4.48% per year for the portfolio of broker-sold funds. For the value-weighted

scheme, the average alpha of directly-sold funds is equal to 5.53% versus 4.95% for

the broker-sold funds.

I implement another robustness check and compare the skill of the funds across

8Christoffersen, Evans and Musto (2013) refer to outside brokers as non-affiliated brokers and
in-house brokers as captive brokers.
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distribution channels with a panel regression (1.10). Panel B of Table 1.7 presents

the estimation results of the panel regression. I find that the funds that are sold to

investors through brokers underperform funds that are offered to investors directly

by 2% per year before accounting for fees. The results are robust for the inclusion

of fund-level controls and time fixed effects. I perform a robustness check, using

sample without adjusting for backfill bias and find consistent results reported in

Panel B of Table 1.16 in the Appendix.

I also compare the dollar value added by directly-sold hedge funds and broker-

sold hedge funds. I find the monthly dollar value added of the hedge fund as a

product of the pre-fee alpha of the hedge fund and its assets under management in a

given month. The dollar value added measure estimates the amount of money that

the hedge fund extracts from the financial markets. I perform a panel data analysis

and report the results in Panel B of Table 1.8. I estimate that the value added by

a broker-sold fund is, on average, $190,000 per month lower than the value added

by a directly-sold hedge fund. The result is robust in controlling for the age of the

fund, its vintage and the time fixed effects.

Next, analyzing heterogeneity across brokers, I study the difference in skill be-

tween funds that are sold by in-house brokers and funds that are offered by outside

brokers. Table 1.10 displays the estimation of the regression (1.11). I find that

hedge funds that are offered by in-house brokers, on average, have the same pre-fee

alpha as hedge funds that are sold through non-affiliated brokers and underperform

directly-sold hedge funds by 2% per year. The results are robust for the inclusion

of the size of the fund and its vintage year and controlling for time-variant demand

shocks. Furthermore, I perform an additional robustness checks by the estimating

regression (1.11) on the sample that does not correct for backfill bias and find similar

results, which I report in Table 1.19 in the Appendix.
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1.2.3 Fees across distribution channels

Next, I assess whether intermediaries help investors to find funds that charge lower

fees. To answer this question, I use information about management fees and in-

centive fees that hedge funds report in Morningstar database. Since only the most

recent contract characteristics are kept in the database, I perform a formal compar-

ison using the following cross-sectional regression:

Yi = β0 + βB · Bi + λt + ǫ̃i, (1.12)

where Bi is a dummy variable that is equal to one when fund is broker-sold and

is equal to zero otherwise. The regression includes a control for the fund’s vintage

year, λt.

Table 1.11 compares the fees of hedge funds across the distribution channels.

Columns (1) and (2) estimates the difference in the management fees of broker-sold

and directly-sold hedge funds. On average, hedge funds charge their investors 1.4%

management fees, but I do not find any significant difference between funds with

different distribution channels. I also do not find any significant difference between

the management fees that funds sold through in-house brokers and funds offered

through outside brokers charge their investors. These results are not surprising

since hedge funds uses management fees to cover their operational expenses.

Next, I estimate the difference in incentive fees that directly-sold funds and

broker-sold funds charge their investors and present the results in columns (3) and

(4). I find that directly-sold funds, on average, charge a incentive fee of 18.35%,

which is 1.4% higher than the incentive fee of broker-sold funds. Analyzing the

heterogeneity of broker-sold funds, I establish that funds that are sold by outside

brokers charge incentive fees that are, on average, 1.5% lower than fees that directly-

sold funds charge, while funds that are sold by in-house brokers charge the same

incentive fees as directly sold funds. Performing an F-test, I find that the incentive

fee that funds sold by in-house brokers charge are significantly different from the

incentive fees that funds sold by outside brokers charge.
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The above results differ from the findings of the mutual fund literature. Bergstresser,

Chalmers and Tufano (2009) establish that the non-distributional expenses of mu-

tual funds that are sold through intermediaries are 23 basis points higher than those

of mutual funds that are sold to investors directly, concluding that brokers do not

help investors to identify mutual funds with lower non-distribution fees.

1.2.4 Clientele across distribution channels

I complete the empirical analysis by analyzing whether investors of broker-sold hedge

funds differ from investors of directly-sold hedge funds. Since hedge funds are very

secretive and do not disclose information about their investors, I use a minimum

investment size and an average investment size as empirical proxies of the size of

the hedge fund’s marginal investor and average investor. To estimate the difference

in the hedge funds’ clientele across the distribution channels, I estimate a regression

(1.12).

Columns (1) and (2) of Table 1.12 estimate the difference in the minimum invest-

ment size of broker-sold and directly-sold hedge funds. The minimum investment

size of directly-sold funds is, on average, $1 million, which is $0.27 millions more

than that of directly-sold funds. Further, analyzing the heterogeneity of brokers, I

find that the minimum investment size of funds sold through in-house brokers does

not differ from that of directly-sold funds, while the minimum investment size of

funds sold through outside brokers is $0.21 millions lower than that of directly-sold

funds. Performing an F-test, I find that the minimum investment size of in-house

broker-sold funds is statistically different from the minimum investment size of out-

side broker-sold funds.

Columns (3) and (4) of Table 1.12 estimate the difference in the average in-

vestment size of broker-sold and directly-sold hedge funds. Comparing the average

investment size, I find that broker-sold funds have a $12 millions lower average

investment size than directly-sold funds.

These findings suggest that funds may target a different clientele.
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1.3 Theoretical motivation

I presents a simple model of fundraising in the hedge fund industry. I then reconcile

empirical findings with the model implications and estimate the compensation that

brokers receive for capital introduction services.

1.3.1 Model of fundraising

Suppose there are three types of agents: hedge funds, investors, and brokers, who

intermediate between hedge funds and investors. There are two risk-neutral funds

that differ in their portfolio management skills: a good fund and a bad fund. Let

θ denote a type of fund, where θ ∈ {G, B} corresponds to the good fund and the

bad fund, respectively. The good and the bad funds deliver positive pre-fee risk-

adjusted returns, αG and αB, respectively, with αG > αB > 0. I assume that alphas

are known to the funds themselves, but unobservable to investors and the broker.

The fund does not have capital and has to raise it from investors. It can either

directly raise capital from investors or use capital introduction services offered by the

broker. For its portfolio management services, the fund charges performance-based

fees, which are calculated as the fraction of generated profits. The fund chooses a

fee and capital raising channel to maximize the total dollar fees that it collects from

its investors.

There is also a continuum of risk-neutral investors. Each investor is endowed

with a unit of capital, which he may either invested in one of the hedge funds or in

an outside option (return of the outside option is normalized to zero). All investors

qualify for the status of accredited investor and may invest in hedge funds. To

capture heterogeneity among clientele, I assume that investors differ in their search

and due diligence costs. There are professional investors with low search and due

diligence costs and mainstream accredited investors who have high search and due

diligence costs. I assume that the search and due diligence costs of investors, c, are

uniformly distributed at interval from 0 to C̄, c ∼ U [0; C̄].

The investor has the following options. He may search for a fund himself and
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invest on his own after paying due diligence costs. Or, he may hire the intermediary

broker and invest his money into a fund recommended by the broker. In the latter

case, the broker performs due diligence and certifies the quality of the fund.

Due diligence is important since the hedge fund industry is opaque and there are

fraudulent funds that investors should be aware of. Analyzing form ADV disclosures

of registered hedge funds, Brown et al. (2008) find that approximately 16% of hedge

funds have committed a felony or have financial-related charges or convictions. As

pointed out by Garleanu and Pedersen (2016), hedge fund prospective investors

usually undertake extensive analysis by studying the track record and evaluating

the investment process and the risk management of funds. Fraudulent, negative

alpha funds exist on the off-equilibrium path. Therefore, investors who do not

perform due-diligence may loose money investing in these funds.

The broker performs due diligence and a certification of the fund at cost, cI > 0.

For the capital introduction service, the broker charges the fund some fraction of the

fund’s fees. The broker and the fund bargain with each other and split the collected

dollar fees. I assume that the bargaining power of the broker is an exogenous

parameter, G ∈ (0; 1). Although I do not solve for an optimal contract for the

broker, the performance-related compensation ensures that the broker acts in the

interest of investors and allows for avoiding a moral hazard problem between the

broker and the investors.

The fundraising game has a simple sequential structure, which is illustrated in

Figure 1.1. At time 1, the good fund and the bad fund simultaneously announce

fees that they charge for portfolio management services and their choices of capital

raising channels. At time 2, the investors decide whether to invest into the hedge

fund industry on their own or hire an intermediary broker.

Strategies.

Let fθ be a fee that a type-θ fund charges its investors. Let Xθ be the fund’s choice of

capital raising channel. If the type-θ fund is sold to investors directly then Xθ = 0.

If the type-θ fund is sold to investors by the broker, then Xθ = 1. The strategy of

type-θ is a vector, sθ = (fθ, Xθ), such that sθ ∈ R+ × {0, 1}. The good fund and the



CHAPTER 1. FUNDRAISING IN THE HEDGE FUND INDUSTRY 34

Figure 1.1: Time line of the fundraising game

bad fund have strategies sG and sB, respectively.

The investor decides either to perform a costly due diligence of the hedge fund

industry at cost c and invest into one of the funds on his own or to approach the

intermediary broker and follow his investment advice. In both cases, the investor

pays a portfolio management fee, fθ, upon investing into the type-θ hedge fund.

The decision of the investor depends on his search and due diligence costs c and the

strategies of the funds sG and sB.

Payoffs of players.

Let’s denote the profit of type-θ hedge fund Πθ

(

sθ; s−θ;C(sθ, s−θ)
)

. It depends on

the strategy of the type-θ fund sθ, the strategies of the other fund s−θ, and a pro-

portion of investors, who decide to invest in the fund, denoted as C(sθ, s−θ) ⊂ [0; C̄].

Given strategy sθ = (fθ, Xθ), the profit of the type-θ fund is determined as

Πθ

(

sθ; s−θ;C(sθ, s−θ)
)

= Πθ

(

(fθ, Xθ); s−θ;C(sθ, s−θ)
)

= (1.13)



















fθ ·
∫

C(sθ,s
−θ)

dc, if Xθ = 0 (1.13a)

(1 − G) · fθ ·
∫

C(sθ,s
−θ)

dc, if Xθ = 1. (1.13b)

If the type-θ fund decides to be sold to investors directly (Xθ = 0), then its profits

are equal to the total dollar fees raised from the investors, as in (1.13a). If the type-θ

fund decides to be sold to investors through the broker (Xθ = 1), then the fund and

the broker split the total dollar fees and the fund gets a fraction 1 − G, which is
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determined by its bargaining power, as in (1.13b).

Let’s denote Uθc the utility of the investor with due diligence cost c, who allocates

his endowment into the type-θ fund. It is equal to

Uθc = αθ − fθ − c · I{Xθ = 0}. (1.14)

If the investor invests on his own, then his utility equals to the after-fee return of the

type-θ fund adjusted for due-diligence costs. If the investor follows financial advice,

then his utility equals to the after-fee return on the type-θ fund.

Let’s denote the profit that the broker gets ΠI

(

sθ; s−θ;C(sθ, s−θ)
)

. It is equal to

the compensation that the broker gets for the capital introduction service adjusted

for due diligence cost cI . The profit of the broker may be expressed in terms of the

profit that the fund receives as follows:

ΠI

(

sθ; s−θ;C(sθ, s−θ)
)

=
( G

1 − G
· Πθ

(

sθ; s−θ;C(sθ, s−θ)
)

− cI

)

· I{Xθ = 1}. (1.15)

The broker makes a profit when the fund is broker-sold (Xθ = 1) and he gets no

profit when the fund is directly-sold to investors (Xθ = 0).

Definition of “cut-off” equilibrium.

I define the Nash equilibrium of the fundraising game as follows:

(i) The good fund chooses strategy sG to maximize its profits

ΠG

(

sG; sB;C(sG, sB)
)

≥ ΠG

(

s′
G; sB;C(s′

G, sB)
)

for any

s′
G ∈ R+ × {0, 1}/{s′

G 6= sG}.

(ii) The bad fund chooses strategy sB to maximize its profits

ΠB

(

sB; sG;C(sB, sG)
)

≥ ΠB

(

s′
B; sG;C(s′

B, sG)
)

for any

s′
B ∈ R

+ × {0, 1}/{s′
B 6= sB}.

(iii) There is a cut-off marginal investor with due diligence cost ĉ(sθ, s−θ) who is

indifferent about investing on his own or using the advice of a broker (or investing

in an outside option). Investors with costs that are lower than the cost of the
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marginal investor, i.e. C(sG, sB) =
[

0; min{ĉ(sG, sB), C̄}
]

will invest on their own.

Investors with costs that are greater than the cost of the marginal investor, i.e

C(sB, sG) =
(

min{ĉ(sB, sG), C̄}; C̄
]

will approach the broker for investment advice.

(iv) The profit of the broker covers his due diligence cost, ci.

Note that I restrict a space of the investor’s strategies to “cut-off” strategy, which is

determined by the marginal investor with a search and due diligence cost, ĉ(sθ, s−θ).

Since the investors base of the fund C(sθ, s−θ) may be fully described by a thresh-

old search and due-diligence cost ĉ(sθ, s−θ) of the marginal investor, it allows me

to simplify the notation for the profit of the type-θ fund in the following way,

Πθ

(

sθ; s−θ; ĉ(sθ, s−θ)
)

.

PROPOSITION. There exists a separating pure strategies “cut-off” equilibrium in

the fundraising game. A good fund is directly-sold to investors and charges fee f ∗
G =

αG

2
. A bad fund raises capital through a broker and charges fees f ∗

B = αB.

s∗
G =

(αG

2
, 0
)

, (1.16)

s∗
B =

(

αB, 1
)

. (1.17)

A marginal investor with due diligence cost ĉ∗ gets zero utility and is indifferent

between investing into the hedge fund industry on his own or using the investment

advice of a broker:

ĉ∗ =
αG

2
, (1.18)

UGc∗ = UBc∗ = 0. (1.19)

Investors with costs c < ĉ∗ invest by themselves and those with c > ĉ∗ follow the

recommendation of broker.
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The necessary conditions for the existence of separating equilibrium are as follows:

max
{

1 − αG

4 · C̄
;

cI

αB · (C̄ − αG

2
)

}

6 G < 1 (1.20)

αB < ĉ∗ =
αG

2
< C̄. (1.21)

This separating “cut-off” equilibrium of the fundraising game is illustrated in Figure

1.2.

Figure 1.2: Separating equilibria of the fundraising game

Solution.

I verify the existence of the separating “cut-off” equilibrium by confirming the op-

timality of strategies of the players’ strategies.

Good fund.

The good fund chooses optimally its fee and capital raising channel to maximize

its profits (1.13). Since the capital raising choice of the fund is binary, the profit

maximization over a two-dimensional vector-strategy sG = (fG, XG) simplifies to

two one-dimensional maximization problems. The first optimization corresponds
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to the choice by the good fund of engaging in direct capital raising. The second

optimization corresponds to a choice by the good fund of raising capital through the

broker.

First, let’s calculate the profits that the good fund gets if it chooses to be directly-

sold (Xθ = 0). Its investor base includes either all the investors with due dili-

gence costs that are smaller than threshold ĉ or the entire population of investors,

C(sG, sB) =
[

0; min{ĉ(sG, sB), C̄}
]

. The good fund chooses fee fG to maximize its

profits subject to the feasibility condition on fees and the participation constraint

of the marginal investor.

ΠG

(

(fG, 0); sB; ĉ(sG, sB)
)

= max
fG

fG ·
∫ min

{

ĉ((fG,0);sB),C̄

}

0
dc (1.22)

subject to

0 6 fG 6 αG (1.22a)

αG − fG − ĉ((fG, 0); sB) = 0. (1.22b)

The fee feasibility constraint (1.22a) states that the fund can not charge a fee fG

that is bigger than the return αG that it generates. The participation constraint

(1.22b) says that the marginal investor has to be indifferent about receiving utility

αG − fG − ĉ upon investment into the fund and the utility of zero upon investment

in an outside option.

Solving the maximization (1.22), I am interested in the interior case. There is

also a less interesting corner case when even the highest cost investor decides to

invest into the hedge fund on his own (ĉ > C̄). In this case, all investors, after

performing their due-diligence, invest in the good fund only. I consider a more

realistic case when ĉ < C̄. Then the optimization problem (1.22) is equivalent to

the following quadratic optimization:
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max
fG

fG · (αG − fG) (1.23)

subject to

0 6 fG 6 αG. (1.23a)

The hedge fund’s choice of fee affects its profits directly through fee fG and indirectly

through the size of its investors base αG −fG. The good fund exercises its monopoly

power and sets a fee optimally at, fG = αG

2
. Thus, the strategy of the good fund

that chooses to be sold to investors directly is sG = (αG

2
, 0) and its profits are:

ΠG

(

(
αG

2
, 0); sB; ĉ(sG, sB)

)

=
α2

G

4
. (1.24)

The threshold search and due diligence costs are equal to

ĉ =
αG

2
. (1.25)

To ensure the interior case occurs, which makes it suboptimal for high-cost investors

to invest on their own, the following condition has to be satisfied:

ĉ < C̄. (1.26)

Substituting (1.25) into (1.26), I get the second condition in (1.21).

Second, let’s calculate the profits that the good fund gets if it chooses to be sold

through broker (XG = 1). In this case, both funds are offered to investors through

a broker. However, the broker will only market the good fund, since in this case, he

will receive higher compensation. Thus, all investors will be channelled to the good

fund and C(sG, sB) = [0; C̄]. The good fund that is sold through the broker will

choose fee fG to maximize its profits subject to the feasibility condition on the fee

and the participation constraint of the broker.
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ΠG

(

(fG, 1); sB; ĉ(sG, sB)
)

= max
fG

(1 − G) · fG ·
∫ C̄

0
dc (1.27)

subject to

0 6 fG 6 αG (1.27a)

G · fG ·
∫ C̄

0
dc > cI . (1.27b)

The fee feasibility constraint (1.27a) is similar to (1.22a). The broker helps to attract

all investors to the good fund and gets a fraction G of the total dollar fees. The

participation constraint of the broker (1.27b) ensures that the compensation that

he receives is enough to cover his due diligence cost cI .

Since the good fund gets all the investors regardless of the fees that it charges, it

optimally sets a fee to extract all profits, leaving investors indifferent about investing

into the fund or investing into the outside option. Thus, the good fund that chooses

to be sold to investors through the broker sets fee fG = αG. Its optimal strategy is

sG = (αG, 1) and its profits are equal to the (1−G) fraction of the generated surplus

αG · C̄.

ΠG

(

(αG, 1); sB; ĉ(sG, sB)
)

= (1 − G) · αG · C̄. (1.28)

The profits of the broker equals the fraction G of the generated surplus after ac-

counting for the due diligence costs of the broker.

ΠI

(

(αG, 1); sB; ĉ(sG, sB)
)

= G · αG · C̄ − cI . (1.29)

Finally, the good fund optimally chooses the capital-raising channel by comparing

profits (1.24) that it gets if it is directly-sold to investors with the profits (1.28)

that it gets if it is sold to investors through a broker. For the good fund to become

directly-sold, the following incentive compatibility condition must be met:
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ΠG

(

(
αG

2
, 0); sB; ĉ(sG, sB)

)

> ΠG

(

(αG, 1); sB; ĉ(sG, sB)
)

. (1.30)

Substituting (1.24) and (1.28) into condition (1.30) gives the first constraint on the

bargaining power (1.20) of the broker:

G ≥ 1 − αG

4 · C̄
. (1.31)

Bad fund.

The bad fund optimally chooses a fee and capital raising channel which maximizes

its profits (1.13). Similar to the analysis for the good fund, I consider two separate

cases, which correspond to the choice of fundraising of the bad fund.

First, let’s calculate the profits that the bad fund gets if it chooses to be sold

to investors through broker (XB = 1). Investors with search and due diligence

costs c > ĉ approach the broker and invest their capital in the fund that the broker

recommends. Its investor base is C(sB, sG) = (ĉ(sB, sG); C̄] for the interior case

when ĉ < C̄. The bad fund chooses fee fB to maximize its profit subject to the

feasibility condition on the fee and the participation constraint of the broker.

ΠB

(

(fB, 1); sG; ĉ(sB, sG)
)

= max
fB

(1 − G) · fB ·
∫ C̄

ĉ(sB ,sG)
dc (1.32)

subject to

0 6 fB 6 αB (1.32a)

G · fB ·
∫ C̄

ĉ(sB ,sG)
dc > cI . (1.32b)

The fee feasibility constraint (1.32a) states that the fund cannot charge a fee fB

bigger than the return αB that it generates. The broker brings investors C(sB, sG) =

(ĉ(sB, sG); C̄] to the bad fund and receives a fraction G of the total dollar fees that

the fund charges. The participation constraint of the broker (1.32b) ensures that
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the compensation that he receives is enough to cover his due diligence cost cI .

The choice of fees of the bad fund has only a direct effect on its profit, since its

investors’ base comes from the broker. Thus, it maximizes its profits by extracting

all profits through fees and making its investors indifferent about investing into the

fund or investing in an outside option. Thus, the bad fund that chooses to be sold

to investors through the broker sets the fee fB = αB. Its strategy is sB = (αB, 1)

and its profits are equal to the (1 − G) fraction of the generated surplus αB · [C̄ − α
2
]

ΠB

(

sG; (αB, 1); ĉ(sB, sG)
)

= (1 − G) · αB · [C̄ − αG

2
]. (1.33)

The profits that the broker gets is a fraction G of the generated surplus after ac-

counting for the due diligence costs of the broker.

ΠI

(

sG; (αB, 1); ĉ(sB, sG)
)

= G · αB · [C̄ − αG

2
] − cI > 0. (1.34)

Condition (1.34) yields the second constraint (1.20) on the bargaining power of the

broker.

G >
cI

αB · (C̄ − αG

2
)

(1.35)

Second, consider the case when the bad fund chooses to be directly sold (XB = 0)

and its strategy is described as sB = (fB, 0). When the bad fund decides to be

directly sold, we have to insure that it will not attract any investors regardless of

the fee that it sets. To attract more investors, the bad fund may set zero fees fB = 0.

In this case, its strategy is sB = (0, 0).

I need to ensure that the marginal investor ĉ still prefers to invest into the good

fund that is sold directly rather than into the bad fund that is sold directly and

charges no fees. The marginal investor invests into the good directly-sold fund if

αB − fB − ĉ < αG − fG − ĉ. (1.36)

Since fB = 0 and fG = αG

2
, I get
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αB <
αG

2
. (1.37)

The combination of conditions (1.26), (1.31), (1.35), and (1.37) determine the nec-

essary conditions for the existence of a pure strategy separating the “cut-off” equi-

librium in Proposition 1.

Discussion of equilibrium. I consider several cases in relation to the parameters of

the model to illustrate equilibrium. When the bargaining power of the broker is

high G → 1, the broker extracts all generated surplus. In this case, condition (1.20)

is always satisfied and the good fund never wants to use the capital introduction

services of the broker.

In the case of competition among the brokers, the broker should make enough

profit to cover his due diligence cost cI . If the fund hires a competitive broker, then

the profit of the fund equals the generated surplus adjusted by the due diligence

cost of the broker.
α2

G

4
> αG · C̄ − cI . (1.38)

If the due diligence cost is high, then the good fund and the bad fund separate:

cI > αG · [C̄ − αG

4
]. (1.39)

If the due diligence cost is low and condition (1.39) is violated, then only the good

fund survives.

1.3.2 Model implications

Next, I discuss the implications of the the fundraising model and reconcile the model

predictions with the empirical results from Section II.

First, the model has implications for the after-fee return that investors receive

on their hedge fund investments, αθ − fθ. The equilibrium strategy of the good

fund (1.16) implies that the after-fee returns of investors in the directly-sold fund
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are determined by the reservation value for the marginal investor and are equal to

αG

2
. The equilibrium strategy of the bad fund (1.17) implies that broker-sold fund

extracts all generated surplus through fees, making its investors indifferent about

investing in the fund and the outside option. Therefore, the after-fee return of the

broker-sold fund investor is equal to 0. Thus, the after-fee returns of directly-sold

funds are higher than the after-fee returns of broker-sold funds αG

2
> 0.

The empirical patterns that are documented in Figure 1.4, Figure 1.5 and Panel

A of Table 1.7 support the prediction about the after-fee performance of directly-sold

and broker-sold funds.

Second, the model also makes predictions about the pre-fee return of directly-

sold and broker-sold funds. The equilibrium strategies of the good fund (1.16) and

that of the bad fund (1.17) imply that the good fund raises capital directly, while the

bad fund raises funds through the broker. Together with condition (1.37), it implies

that broker-sold funds underperform directly-sold funds, even before accounting for

portfolio management fees αG > αB.

The empirical findings of Figure 1.6 and Panel B of Table 1.7 support the model

prediction about the pre-fee performance of directly-sold and broker-sold funds.

Third, the model makes a prediction about portfolio management fees that funds

charge. The equilibrium strategy of the good fund (1.16) implies that the directly-

sold fund charges fee, fG = αG

2
. The equilibrium strategy of the bad fund (1.17)

states that the broker-sold fund charges fee, fB = αB. Condition (1.37) from Propo-

sition 1 implies that the fees that directly-sold funds charge their investors are higher

than the fees that broker-sold funds charge their investors fG = αG

2
> αB = fB.

Table 1.11 presents the results of testing the above prediction. I find that

directly-sold funds charge higher incentive fees than broker-sold funds. I do not

find, however, any significant difference between the management fees of directly-

sold and broker-sold funds.

Fourth, the model makes predictions about clientele of the funds. In equilibrium,

investors with costs smaller than the costs of the marginal investor invest in the

directly-sold fund C(sG, sB) = [0; ĉ], while investors with costs higher than cost of
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the marginal investor invest in the broker-sold fund C(sB, sG) = [ĉ; C̄]. Thus, the

model predicts that the marginal and average investor of the directly-sold fund has

lower costs than the marginal and average investor of the broker-sold fund. If the

sizes of the investors is negatively correlated with their due diligence and search

costs, then the model implies that the marginal investor of the directly-sold fund

with cost ĉ is bigger than the marginal investor of the broker-sold fund with cost

C̄. Also, the average investor of the directly-sold fund with cost ĉ
2

is bigger than

average investor of the broker-sold fund with cost ĉ+C̄
2

.

Using minimum investment size as an empirical proxy of the size of the marginal

investor and the average investment size as a proxy of the size of average investor,

I test the model predictions of the clientele of hedge funds. Table 1.12 displays the

tests of the above prediction.

1.3.3 Compensation for the broker

I estimate the economic magnitude of compensation that broker receives for capital

introduction services. In the fundraising model, the broker and the fund split the

dollar profits. Compensation for the broker is proportional to the total dollar fees

that hedge fund collects from its investors, with the proportionality constant being

equal to the bargaining power of the broker, as in (1.15).

I use information about the fund’s assets under management, performance, and

compensation structure to estimate the total dollar fees. Using methodology for the

reconstruction of the pre-fee returns that is described in detail in the section Data, I

estimate the dollar management fees using equations (1.3) and dollar incentive fees

using equation (1.4). I find the total dollar fees collected as a sum of the annual

dollar management fees and the dollar incentive fees. I consider the bargaining power

of the broker to be in the range of 5% to 95%. The lower bound corresponds to the

low bargaining power and the upper bound to the high bargaining power. Knowing

the total annual dollar fees and the bargaining power of the broker, I estimate the

fees that the broker gets for a capital introduction service using equation (1.15).
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For every broker-sold fund in the matched sample, I estimate the annual compen-

sation that broker receives. I report the average annual compensation in Table 1.13.

Depending on the bargaining power, the estimates of the annual compensation of

the broker vary from $241,000 to $4.58 million. For a bargaining power of 1\3, which

corresponds to the equilateral division of surplus among the fund, its investors, and

the broker, I estimate the average compensation that the broker receives to be $1.45

million per year.

1.4 Conclusion

This paper analyzes empirically and theoretically the fundraising process in the

hedge fund industry. I analyze form D filings that hedge funds report to the SEC

with regard to their fundraising process. Information that the funds report in their

filings allows me to differentiate between the funds that raise capital directly from in-

vestors and those that use the capital introduction services of intermediary brokers.

I find that funds that are sold to investors through intermediaries underperform

funds that are offered to investors directly on a risk-adjusted basis, both before and

after accounting for fees. I also find that hedge funds that are sold to investors

directly on average have a larger average investorâĂŹs size, a larger minimum in-

vestment size and charge higher incentive fees compared to funds offered to investors

by brokers. These findings provide empirical description of the equilibrium.

I also present a stylized model that has a simple intuition and reconciles the

above empirical findings. In equilibrium, sophisticated investors who are better at

due diligence will sort themselves into better funds, which avoid having to internal-

ize the high cost of hiring a broker, while bad funds hire a broker, which mitigates

capital-raising inefficiency, but requires compensation for capital introduction ser-

vices. Brokers’ bargaining power and the relative outperformance of the good fund

over the bad fund are essential for the existence of separating equilibria. The cal-

ibrate model implies that average broker compensation is $1.5 million per year,

which is consistent with the empirically estimate, value-added difference between
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the broker-sold funds and the directly-sold funds.
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1.5 Tables and figures
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Table 1.1: Outline of form D filings

Item Description

1. Issuer’s identity Name and type of entity that initiates fundraising.
2. Principal place of business and contact information Administrative information about the fundraising entity.
3. Related persons Information about all executive officers, directors, and promoters associated with the fundraisning

offer.
4. Industry group Information on the entity’s industry group that most accurately reflects the use of capital raised.

Banking and financial services includes pooled investment funds, which comprises hedge funds, private

equity funds, venture capital funds, and other investment funds.
5. Issuer size Information of revenue range or aggregate net asset value of fundraising entity. Hedge funds and

other investment funds may decline to response to this question.
6. Federal exemptions and exclusions claimed Provision(s) that are claimed to exempt the capital raising from formal offering registration.
7. Type of filing Information on whether the entity is filing a new notice or an amendment to a notice.
8. Duration of offering Information on duration of fundraising offering.
9. Type(s) of securities offered Information on the type of security offered, which includes equity, debt, options, and pooled

investment fund interests.
10. Business combination transactions Information on whether the fundraising offering is made in connection with business combination

transactions, such as merger or acquisition.
11. Minimum investment size Minimum dollar amount of investment that will be accepted from any outside investor.
12. Sales compensation Information about each person that has been or will be paid directly or indirectly any commission

in connection with fundraising.
13. Offering and sales amounts Dollar amount of capital raised up to date.
14. Investors Total number of investors who already have invested in the offering and number of non-accredited

investors.
15. Sales commissions and finders’ fees expenses Information on estimate of sales commissions and finders’ fee expenses.
16. Use of proceeds Estimation of commissions that are paid to related persons.

Table 1.1 describes information about their fundraising process that hedge funds disclose in form D filings. Column Item
outlines main categories of the form D. Column Description provides key information that fundraising entity reports in
item.
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Table 1.2: Largest funds by distribution channel

Fund Fund family Capital raised

PANEL A: Directly sold funds

VERDE ALPHA FUND LTD Verde Asset Management 20,221
GLOBAL ASCENT LTD Global Ascent 16,524
OZ OVERSEAS FUND II LTD OZ Management 15,290
CANYON VALUE REALIZATION FUND LTD Canyon Capital Advisors 14,745
ADAGE CAPITAL PARTNERS LP Adage Capital Management 14,049
CONVEXITY CAPITAL OFFSHORE LP Convexity Capital GP 11,155
ABERDEEN FIXED INCOME FUNDS POOLED TRUST Aberdeen Asset Management 10,783
DYMON ASIA MACRO FUND Dymon Asia Capital 10,733
TUDOR BVI GLOBAL FUND LTD Tudor Investment Corp 10,587
LONE CASCADE LP Lone Pine Capital 10,347
ANCHORAGE CAPITAL PARTNERS OFFSHORE LTD Anchorage Capital Group 10,063
GLENVIEW CAPITAL PARTNERS CAYMAN LTD Glenview Capital Management 9,495
KING STREET CAPITAL LP King Street Capital 9,473
BROOKSIDE CAPITAL PARTNERS FUND LP Brookside Capital Management 8,905
BAUPOST VALUE PARTNERS LP IV The Baupost Group 8,603

PANEL B: Broker sold funds

D.E. SHAW COMPOSITE INTERNATIONAL FUND D.E. Shaw & Co 18,235
RENAISSANCE INSTITUTIONAL EQUITIES FUND LLC Renaissance Technologies LLC 16,192
MESIROW ABSOLUTE RETURN FUND LTD Mesirow Advanced Strategies Inc 15,096
D.E. SHAW OCULUS INTERNATIONAL FUND D.E. Shaw & Co 13,390
RENAISSANCE INSTITUTIONAL DIVERSIFIED ALPHA Renaissance Technologies LLC 10,232
GRAHAM GLOBAL INVESTMENT FUND II SPC LTD Graham Capital Management 10,199
GRAHAM GLOBAL INVESTMENT FUND I SPC LTD Graham Capital Management 9,227
BREVAN HOWARD FUND LTD Brevan Howard Capital Management LP 8,412
MESIROW ABSOLUTE RETURN FUND (INSTITUTIONAL) Mesirow Advanced Strategies Inc 8,196
D.E. SHAW COMPOSITE FUND LLC D.E. Shaw & Co 7,779
DRAWBRIDGE SPECIAL OPPORTUNITIES FUND LP Fortress Investment Group LLC 7,056
MILLENNIUM USA LP Millennium Management LLC 6,868
PERMAL FIXED INCOME HOLDINGS NV Permal Asset Management Inc 6,847
WEATHERLOW FUND I LP Evanston Capital Management LLC 6,804
PAULSON ADVANTAGE PLUS LP Paulson & Co 6,419

Table 1.2 presents fifteen directly sold hedge funds (Panel A) and broker sold hedge funds (Panel B) that were open
for investment and raised maximum amount of capital by 2015. Table reports fund’s name, name of management company
and total amount of capital raised (in millions of dollars).
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Table 1.3: Top players in fundraising industry

Name # Funds Capital raised # Investors

1. GOLDMAN SACHS & CO 377 350 149
[98] [30]

2. WELLS FARGO ADVISORS, LLC 364 176 271
[25] [16]

3. MORGAN STANLEY & CO 359 428 436
[77] [99]

4. J.P. MORGAN SECURITIES LLC 295 765 248
[256] [69]

5. MERRILL LYNCH 275 319 469
[118] [158]

6. CITIGROUP GLOBAL MARKETS INC 242 403 453
[87] [81]

7. CREDIT SUISSE SECURITIES LLC 210 367 433
[97] [57]

8. UBS FINANCIAL SERVICES INC 191 443 347
[193] [128]

9. DEUTSCHE BANK SECURITIES INC 170 385 76
[23] [6]

10. BARCLAYS CAPITAL INC. 114 395 144
[156] [75]

Table 1.3 provides information on the top broker firms that intermediate fundraising process. Top broker firms are
defined as those companies that intermediate the largest number of funds. Table reports broker’s name, average [median]
amount of capital raised by funds that are intermediated by the same broker firm ( in millions of dollars) and average
[median] number of investors in funds with the same broker. Statistics are calculated using sample of Form D filings
from January 2009 to December 2015 for hedge funds and other investment companies. For each broker statistics are
calculated on sample of funds that are intermediated by this broker, using information that is available in the latest
available form D filings where the broker is reported.
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Figure 1.3: Fundraising in alternative investment industry

Panel A: Hedge funds Panel B: Other investment funds

Panel C: Private equity funds Panel D: Venture capital funds

Figure 1.3 displays fundraising dynamics in alternative investment industry

from 2010 to 2015, using information that funds report in form D filings.

Panel A, B, C and D displays evolution of hedge funds, other investment

funds, private equity and venture capital industries, respectively. Bars

indicate amount of capital ( in billions of dollars, left y-axis) that funds

have raised from investors during a given year. Grey solid bars indicate

capital that was raised by existing directly-sold funds. Grey hatched bars

display capital that was raised by newly opened directly-sold funds. Black

solid bars indicate capital inflows into existing broker-sold funds. Black

hatched bars show capital that was raised by newly opened broker-sold

funds. Black solid line (right y-axis) indicates total amount of capital

raised in a given year. Red dashed line displays total number of funds that

raise capital from investors in a given year ( in thousands, right y-axis).

Appendix describes methodology that is used to estimate capital inflows.

Red dotted line indicates total number existing funds (in thousands, right

y-axis).
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Table 1.4: Summary statistics

Direct Brokered Diff. P-value

PANEL A: form D filings

Average Inflows 47.80 48.50 0.70 (0.92)
Median Inflows 2.66 5.00 2.34
Average [ Inflows >0 ] 66.80 63.30 -3.50 (0.74)
Median [ Inflows >0 ] 9.63 12.00 2.37
Average # Investors 48 142 94*** (0.00)
Median # Investors 15 42 27
Average # New Investors 12 33 21*** (0.00)
Median # New Investors 5 7 2

# Filings 31,031 9,283
# Funds 9,650 1,925

PANEL B: form D filings and Morningstar

Average Inflows 45.50 47.31 1.81 (0.71)
Median Inflows 3.43 4.23 0.80
Average [ Inflows >0 ] 60.30 59.91 -0.39 (0.95)
Median [ Inflows >0 ] 9.04 8.50 -0.54
Average # Investors 75 118 43*** (0.00)
Median # Investors 42 74 32
Average # New Investors 14 27 13*** (0.00)
Median # New investors 6 7 1

# Filings 2,872 1,129
# Funds 1,103 625

Table 1.4 describes information that funds report in form D filings for di-

rectly sold funds and broker sold funds over the period from January 2009

to December 2015. Panel A focuses on the sample of all hedge funds that

file forms D. Panel B presents results for the sample of funds that file

forms D and list their funds at Morningstar database. Table presents in-

formation about the average and median annual capital inflows( in millions

of dollars), average and median annual positive capital inflows (in millions

of dollars), average and median number of investors and average positive

minimum investment size (in thousands of dollars). Methodology that is

used to estimate annual capital inflows is outlined in Appendix. Column

Diff. reports difference between the values for directly sold and bro-

ker sold funds. Column P-value reports p-value (in parenthesis) of T-test

for means across directly sold and broker sold funds groups. Statistical

significance at the 1%, 5% and 10% levels is denoted by *, **, and *** re-

spectively.
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Figure 1.4: Performance of directly sold and broker sold hedge funds

Panel A: Equal-weighting

Panel B: Value-weighting

Figure 1.4 displays after-fee performance of fund of directly sold hedge

funds ( grey solid line) relative to performance of fund of broker sold

hedge funds ( black solid line) over the period from January 2010 to De-

cember 2015, assuming initial investment of $100. The sample of funds con-

sists of funds that are listed in Morningstar database and file form D

filings. Panel A displays after-fee performance of funds of funds where

constituent hedge funds are equally-weighted. Panel B displays after-fee

performance of funds of funds where constituent hedge funds are value-

weighted. Returns of funds are adjusted for backfill bias.
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Table 1.5: After-fee systematic risk exposure of hedge funds

R̄ α̂ β̂Mkt β̂SmB β̂T 10y β̂Cr.Spr. β̂pBD β̂pF X β̂pCOM R2

PANEL A: Equal-Weighting

Direct 4.79%** 4.42%** 0.12* 0.38*** 0.10 0.25*** -0.02* 0.01 -0.01 68%
(0.02) (0.02) (0.06) (0.04) (0.07) (0.09) (0.01) (0.01) (0.01)

Brokered 3.97%* 3.37%* 0.12** 0.32*** 0.07 0.18** -0.07* 0.01 -0.01* 68%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

PANEL B: Value-Weighting

Direct 5.39% 4.433%** 0.13*** 0.31*** 0.07 0.16** -0.02* 0.01 -0.01 66%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

Brokered 4.16% 3.552%** 0.12*** 0.25*** 0.05 0.15** -0.01* 0.01 -0.01 62%
(0.02) (0.01) (0.04) (0.03) (0.05) (0.06) (0.01) (0.01) (0.01)

Table 1.5 presents estimation of Fung and Hsieh (2004) seven-factor model for fund of directly

sold (row “Direct”) and broker sold funds (row “Brokered”). Panel A displays results for funds

of funds where constituent funds are equally-weighted. Panel B reports results for funds of

funds where constituent funds are value-weighted. The sample of funds is restricted to funds

that are listed in Morningstar database and file form D filings. The seven-factor model (1.1)

is estimated using after-fee monthly returns between January 2010 and December 2015, where

the first 24-months of fund’s performance are excluded to adjust for backfill bias. Table

displays estimated annualized excess after-fee return of fund of fund, R̄, estimated annualized

alpha, α̂, estimated exposures to market factor, β̂Mkt, estimated exposure to size spread factor,

β̂SmB, estimated exposure to yield curve level factor, β̂T 10y, estimated exposure to credit spread

factor, β̂Cr.Spr., and estimated exposures to bond, commodity and forex trend-following factors,

β̂pBD, β̂pF X and β̂pCOM , as well as the adjusted R2. Figures in parentheses are the Newey and

West (1987) heteroscedasticity and autocorrelation consistent standard errors. Statistical

significance at the 1%, 5% and 10% levels is denoted by *, **, and *** respectively.
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Table 1.6: Pre-fee systematic risk exposure of hedge funds

R̄ α̂ β̂Mkt β̂SmB β̂T 10y β̂Cr.Spr. β̂pBD β̂pF X β̂pCOM R2

PANEL A: Equally-weighted

Direct 6.17%*** 5.78%*** 0.12* 0.39*** 0.11 0.25*** -0.02* 0.01 -0.01 69%
(0.02) (0.02) (0.06) (0.04) (0.07) (0.09) (0.01) (0.01) (0.01)

Brokered 5.12%*** 4.48%** 0.17** 0.33*** 0.07 0.18** -0.01* 0.01 -0.01* 69%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

PANEL B: Value-weighted

Direct 6.62%*** 5.53%*** 0.14*** 0.32*** 0.07 0.16** -0.02* 0.01 -0.01 65%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

Brokered 5.50%*** 4.95%*** 0.11*** 0.26*** 0.05 0.15** -0.01 0.01 -0.01 61%
(0.02) (0.01) (0.04) (0.03) (0.05) (0.06) (0.01) (0.01) (0.01)

Table 1.6 presents estimation of Fung and Hsieh (2004) seven-factor model for fund of directly

sold (row “Direct”) and broker sold funds (row “Brokered”). Panel A displays results for funds

of funds where constituent funds are equally-weighted. Panel B reports results for funds of

funds where constituent funds are value-weighted. The sample of funds is restricted to funds

that are listed in Morningstar database and file form D filings. The seven-factor model (1.1)

is estimated using pre-fee monthly returns between January 2010 and December 2015, where

the first 24-months of fund’s performance are excluded to adjust for backfill bias. Table

displays estimated annualized excess pre-fee return of fund of fund, R̄, estimated annualized

alpha, α̂, estimated exposures to market factor, β̂Mkt, estimated exposure to size spread factor,

β̂SmB, estimated exposure to yield curve level factor, β̂T 10y, estimated exposure to credit spread

factor, β̂Cr.Spr., and estimated exposures to bond, commodity and forex trend-following factors,

β̂pBD, β̂pF X and β̂pCOM , as well as the adjusted R2. Figures in parentheses are the Newey and

West (1987) heteroscedasticity and autocorrelation consistent standard errors. Statistical

significance at the 1%, 5% and 10% levels is denoted by *, **, and *** respectively.



CHAPTER 1. FUNDRAISING IN THE HEDGE FUND INDUSTRY 57

Figure 1.5: After-fee alphas of directly sold and broker sold hedge funds

Panel A: Equal-weighting

Panel B: Value-weighting

Figure 1.5 displays a time varying risk-adjusted performance (alpha) for

the equally-weighted and value-weighted funds of hedge funds that are

displayed in Panel A and Panel B, accordingly. Alphas of funds of funds

are estimated with the rolling-window Fung and Hsieh (2004) seven-factor

model (1.1). The rolling-window regressions (with 24 months window) are

estimated for each portfolio using monthly after-fee returns between Jan-

uary 2010 and December 2015 (adjusted for backfill bias). Rolling after-

fee alpha of fund of directly sold funds is displayed with grey solid line

and that of fund of broker sold funds is displayed with black solid line.
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Figure 1.6: Pre-fee alphas of directly sold and broker sold hedge funds

Panel A: Equal-Weighting

Panel B: Value-Weighting

Figure 1.6 displays a time varying risk-adjusted performance (alpha) for

the equally-weighted and value-weighted funds of hedge funds that are

displayed in Panel A and Panel B, accordingly. Alphas of funds of funds

are estimated with the rolling-window Fung and Hsieh (2004) seven-factor

model (1.1). The rolling-window regressions (with 24 months window) are

estimated for each fund of funds using monthly pre-fee returns between

January 2010 and December 2015 (adjusted for backfill bias). Rolling pre-

fee alpha of fund of directly sold funds is displayed with grey solid line

and that of fund of broker sold funds is displayed with black solid line.
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Table 1.7: Alphas of directly and broker sold hedge funds

Alpha
(1) (2) (3)

PANEL A: After-fee

Bit -0.013*** -0.016*** -0.016***
(0.002) (0.002) (0.002)

ln(Assetit−1) — 0.007*** 0.007***
— (0.001) (0.001)

Ageit — -0.0001 -0.0005**
— (0.0002) (0.0002)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 29,051 29,051 29,051
R2 0.02% 4% 7%

PANEL B: Pre-fee

Bit -0.016*** -0.021*** -0.021***
(0.002) (0.001) (0.001)

ln(Assetit−1) — 0.008*** 0.008***
— (0.001) (0.001)

Ageit — -0.0001 0.0007***
— (0.0002) (0.0002)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 28,493 28,493 28,493
R2 0.3% 4% 7%

Table 1.7 presents estimates of difference in risk-adjusted performance

between directly sold and broker sold hedge funds with panel regression

α̂it = β0+βB ·Bit+βs·Xit−1+βt+ǫ̃it. Fund level controls Xit−1 include logarithm

of assets under management in the previous period, age, and vintage year

and time fixed effects βt. Panel A displays results for after-fee alphas of

hedge funds. Panel B displays results for pre-fee alphas of hedge funds.

The sample covers hedge funds that are listed in Morningstar database

and file form D filings over period from January 2010 to December 2015.

Figures in parentheses are the Newey and West (1987) heteroscedasticity

and autocorrelation consistent standard errors clustered by month. Sta-

tistical significance at the 1%, 5% and 10% levels is denoted by *, **, and

*** respectively.
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Table 1.8: Value added by directly and broker sold hedge funds

Dollar value added
(1) (2) (3)

PANEL A: After-fee

Bit -0.214*** -0.209*** -0.211***
(0.051) (0.048) (0.048)

Ageit — -0.0004 -0.017**
— (0.003) (0.004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 29,051 29,051 29,051
R2 1% 4% 5%

PANEL B: Pre-fee

Bit -0.198*** -0.182*** -0.189***
(0.058) (0.056) (0.056)

Ageit — -0.001 0.014***
— (0.004) (0.004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 28,493 28,493 28,493
R2 0.06% 3% 4%

Table 1.8 presents estimates of difference in dollar value added (in mil-

lions of dollars) by directly sold and broker sold hedge funds with panel

regression Ŝit = β0 + βB · Bit + βs · Xit + βt + ǫ̃it. Fund level controls Xit in-

clude fund’s age, vintage year and time fixed effects βt. Panel A displays

results for after-fee dollar value added by hedge funds. Panel B displays

results for pre-fee dollar value added of hedge funds. The sample covers

hedge funds that are listed in Morningstar database and file form D fil-

ings over period from January 2010 to December 2015 with an adjustment

for backfill bias. Figures in parentheses are the Newey and West (1987)

heteroscedasticity and autocorrelation consistent standard errors clus-

tered by month. Statistical significance at the 1%, 5% and 10% levels is

denoted by *, **, and *** respectively.
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Table 1.9: Heterogeneity of brokers

After-fee alpha
(1) (2) (3)

BI
it -0.020*** -0.020*** - 0.021***

(0.003) (0.003) (0.003)
BO

it -0.014*** -0.014*** -0.014***
(0.002) (0.002) (0.002)

ln(Assetit−1) 0.006*** 0.007*** 0.007***
(0.001) (0.001) (0.001)

Ageit 0.0000 -0.0001 -0.0008
(0.0000) (0.0002) (0.0005)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 28,854 28,854 28,854
R2 1% 3% 4%

Ho: In-house = Outside
F-test 3.73* 4.36** 4.74**
p-value 0.06 0.04 0.03

Table 1.9 estimates difference in after-fee risk adjusted performance be-

tween directly sold hedge funds and funds that are sold through in-house

broker or outside broker with panel regression: α̂it = β0 +βin ·BI
it +βout ·BO

it +
βx ·Xit +βt + ǫ̃it. BI

it is a dummy variable that is equal to one when the fund is

sold through in-house broker and is equal to zero otherwise. BO
it is a dummy

variable that is equal to one when the fund is sold through outside broker

and is equal to zero otherwise. Regression includes fund level controls,

Xit, such as fund’s age, vintage year and time fixed effects, βt. The sample

of funds is restricted to funds that are listed in Morningstar database and

file form D filings over period from January 2010 to December 2015, using

backfill corrected sample of hedge fund returns observations. Figures in

parentheses are the Newey and West (1987) heteroscedasticity and auto-

correlation consistent standard errors clustered by month. Statistical

significance at the 1%, 5% and 10% levels is denoted by *, **, and *** re-

spectively. Table presents results of F-test for hypothesis that alphas of

funds that are sold through in-house brokers is equal to alphas of funds

that are sold through outside brokers.
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Table 1.10: Heterogeneity of brokers

Pre-fee alpha
(1) (2) (3)

BI
it -0.020*** -0.018*** -0.020***

(0.003) (0.003) (0.003)
BO

it -0.019*** -0.020*** -0.020***
(0.002) (0.002) (0.002)

ln(Assetit−1) 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001)

Ageit 0.0000 -0.0001 -0.0006
(0.0000) (0.0002) (0.0004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 28,304 28,304 28,304
R2 1% 4% 5%

Ho: In-house = Outside
F-test 0.02 -0.26 0.11
p-value 0.89 0.61 0.74

Table 1.10 estimates difference in pre-fee risk-adjusted performance be-

tween directly sold hedge funds and funds that are sold through in-house

broker or outside broker with panel regression: α̂it = β0 +βin ·BI
it +βout ·BO

it +
βx ·Xit +βt + ǫ̃it. BI

it is a dummy variable that is equal to one when the fund is

sold through in-house broker and is equal to zero otherwise. BO
it is a dummy

variable that is equal to one when the fund is sold through outside broker

and is equal to zero otherwise. Regression includes fund level controls,

Xit, such as fund’s age, vintage year and time fixed effects, βt. The sample

of funds is restricted to funds that are listed in Morningstar database and

file form D filings over period from January 2010 to December 2015, using

backfill corrected sample of hedge fund returns observations. Figures in

parentheses are the Newey and West (1987) heteroscedasticity and auto-

correlation consistent standard errors clustered by month. Statistical

significance at the 1%, 5% and 10% levels is denoted by *, **, and *** re-

spectively. Table presents results of F-test for hypothesis that alphas of

funds that are sold through in-house brokers is equal to alphas of funds

that are sold through outside brokers.
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Table 1.11: Fees of directly sold and broker sold funds

Management fee Incentive fee
(1) (2) (3) (4)

Bi 0.000 — -0.014*** —
(0.000) — (0.004) —

BI
it — -0.000 — 0.006

— (0.000) — (0.006)
BO

it — 0.000 — -0.015***
— (0.000) — 0.004

Vintage Yes Yes Yes Yes

R2 5% 5% 4% 5%
#Obs. 1,376 1,370 1,289 1,283

Ho: In-house = Outside
F-test — 0.95 — 5.95**
p-value — 0.33 — 0.01

Table 1.11 presents estimation of cross-sectional regressions (1.12) and

(1.11), comparing fee structure of directly sold and broker sold hedge

funds. Columns (1) and (2) present results for management fees. Columns

(3) and (4) present results for incentive fees. Figures in parentheses are

the Newey and West (1987) heteroscedasticity and autocorrelation con-

sistent standard errors. Statistical significance at the 1%, 5% and 10%

levels is denoted by *, **, and *** respectively.
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Table 1.12: Clientele of directly sold and broker sold funds

Min. investment size Aver. investment size
(1) (2) (3) (4)

Bi -0.272*** — -12.033*** —
(0.086) — (3.608) —

BI
it — -0.472*** — -15.566***

— (0.217) — (4.623)
BO

it — -0.282** — -5.716*
— (0.091) — (3.293)

Vintage Yes Yes Yes Yes

R2 3% 3% 3% 3%
#Obs. 1,365 1,338 1,577 1,570

Ho: In-house = Outside
F-test — 0.69 — 4.76**
p-value — 0.40 — 0.03

Table 1.12 presents estimation of cross-sectional regressions (1.12) and

(1.11), comparing clientele of directly sold and broker sold hedge funds.

Columns (1) and (2) present results for minimum investment size ( in mil-

lions of $). Columns (3) and (4) present results for average investment size

( in millions of $). Figures in parentheses are the Newey and West (1987)

heteroscedasticity and autocorrelation consistent standard errors. Sta-

tistical significance at the 1%, 5% and 10% levels is denoted by *, **, and

*** respectively.
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Table 1.13: Average broker fee: bargaining power

Bargaining Power 5% 10% 20% 30% 50% 60% 70% 80% 90% 95%
Dollar Fee $0.241 $0.482 $0.964 $1.446 $2.410 $2.893 $3.375 $3.857 $4.339 $4.580

Table 1.13. This table presents estimates of average annual fee ( in millions $) that fund pays to broker, who intermediates
fund’s capital raising process. Fee is estimated for a given broker’s bargaining power. The sample of funds is restricted
to funds that are listed in Morningstar database and may be classified as broker-sold funds according to information
in form D filings. Annual dollar broker fees are estimated under considered fee specification, using the methodology
that is described in Appendix. For a given bargaining power table displays average annual dollar fee across broker-sold
funds.
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1.6 Capital inflows estimation

To estimate capital inflows into industry, I use the following methodology. Among

various information that fund reports in its form D filings, is up-to-date information

on total amount of capital raised from investors, which is reported in the field Total

Amount Sold.9 To estimate the amount of capital raised by the fund, we should

consider two cases: capital inflows at fund’s inception and capital inflows during the

life of the fund. In the first case, amount of capital raised at inception is directly

reported in Total Amount Sold variable. In the second case, it may be estimated as

an increment of Total Amount Sold variable between two consecutive fund’s filings.

For example, Citadel Global Equities Fund10, that was opened in July, 2009, reports

capital inflow of $100 millions in its first filing. The fund reports $ 153 millions as

total amount sold to investors in its next filing in August, 2010. Thus, total capital

inflows into the fund between July, 2009 and August, 2010 build up to $53 millions.

As funds sometimes file amendment to their form D filings more than once a year,

I estimate an amount of capital raised, using information from the latest filing in a

given year.

Due to self-reporting nature of form D filings, there are some funds in the sam-

ple that mistakenly report their yearly inflows instead of up-to-date total amount

of money raised from investors, which is required by Regulation D. I identify those

funds when inflow that are estimated using the introduced methodology are nega-

tive.11 Funds that misreport information about total amount of capital raised are

excluded from analysis.

Unfortunately, form D filings do not allow to recover an exact timing of capital

inflows, but rather estimate capital inflows during the period between the filings.

Therefore, additional assumptions are required to determine the year of capital in-

flows into the fund. As above, I consider two scenarios separately. The first case

corresponds to capital raising at fund’s inception. In this case, I assume that capital

9Total Amount Sold is reported in field (b) of form D Item 13 (Offering and Sales Amounts).
10Citadel Global Equities Fund LLC is identified by Central Index Key (CIK) 1468448.
11By construction capital inflows is non-negative variable.
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inflows happened in the year of the first fund’s form D filing. The second scenario

corresponds to the situation when fund is already in operation, meaning that fund

has filed several form D filings. Specifically, the earlier filing of the fund is registered

in month, m1, of year, y1, while the next consecutive filing occurs in month, m2, of

year, y2. In this scenario, I assume that capital inflows occurred in year y1(y2) if

the period between the two filings mostly belongs to year y1(y2). Using the example

of Citadel fund, I estimate that capital inflows of $100 millions happened in 2009

(corresponds to the first case) and $53 millions were raised in 2010 (corresponds to

the second case).
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1.7 Robustness checks

Figure 1.7: Performance of hedge fund portfolios: after fee + no bias correction

Panel A: Equally-Weighted Portfolios

Panel B: Value-Weighted Portfolios

Figure 1.7 displays after-fee performance of fund of directly sold hedge

funds ( grey solid line) relative to performance of fund of broker sold

hedge funds ( black solid line) over the period from January 2010 to De-

cember 2015, assuming initial investment of $100. The sample of funds con-

sists of funds that are listed in Morningstar database and file form D

filings. Panel A displays after-fee performance of funds of funds where

constituent hedge funds are equally-weighted. Panel B displays after-fee

performance of funds of funds where constituent hedge funds are value-

weighted. Returns of funds are adjusted for backfill bias.
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Table 1.14: Performance of Hedge Fund Portfolios: After Fee + Bias

R̄ α̂ β̂Mkt β̂SmB β̂T 10y β̂Cr.Spr. β̂pBD β̂pF X β̂pCOM R2

PANEL A: Equally-Weighted Portfolio

Direct 4.793%** 4.421%** 0.12* 0.38*** 0.10 0.25*** -0.02* 0.01 -0.01 68%
(0.02) (0.02) (0.06) (0.04) (0.07) (0.09) (0.01) (0.01) (0.01)

Brokered 3.968%* 3.366%* 0.12** 0.32*** 0.07 0.18** -0.07* 0.01 -0.01* 68%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

PANEL B: Value-Weighted Portfolio

Direct 5.391% 4.433%** 0.13*** 0.31*** 0.07 0.16** -0.02* 0.01 -0.01 66%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

Brokered 4.157% 3.552%** 0.12*** 0.25*** 0.05 0.15** -0.01* 0.01 -0.01 62%
(0.02) (0.01) (0.04) (0.03) (0.05) (0.06) (0.01) (0.01) (0.01)

Table 1.14. Results of Fung and Hsieh (2004) seven-factor models estimation for portfolio of

directly sold and broker sold funds are presented in Table 1.14. Panel A displays results for

the equally-weighted portfolio of funds, while Panel B reports results for the value-weighted

portfolio of funds. Portfolios of directly sold and broker sold funds ( that is constructed

using a sub-sample of funds that report to Morningstar and file forms D) are reported in row

Direct and row Brokered, respectively. The seven-factor model (1.1) is estimated using after-

fee monthly returns between January 2010 and December 2015, where the first 24-months

of fund’s performance are excluded to adjust for back-fill bias. Table displays estimated

annualized expected annualized excess return of portfolio,R̄, estimated annualized alpha, α̂,

the estimated exposures to the market, β̂Mkt, the estimated exposure to size spread factor,

β̂SmB, the estimated exposure to yield curve level factor, β̂T 10y, the estimated exposure to

credit spread factor, β̂Cr.Spr., and the estimated exposures to bond, commodity and forex trend-

following factors, β̂pBD, β̂pF X and β̂pCOM , as well as the adjusted R2. Figures in parentheses

are the Newey and West (1987) heteroscedasticity and autocorrelation consistent standard

errors. Statistical significance at the 1%, 5% and 10% levels is denoted by *, **, and ***

respectively.
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Table 1.15: Performance of hedge fund portfolios: pre fee + bias

R̄ α̂ β̂Mkt β̂SmB β̂T 10y β̂Cr.Spr. β̂pBD β̂pF X β̂pCOM R2

PANEL A: Equally-Weighted Portfolio

Direct 6.167%*** 5.781%*** 0.12* 0.39*** 0.11 0.25*** -0.02* 0.01 -0.01 69%
(0.02) (0.02) (0.06) (0.04) (0.07) (0.09) (0.01) (0.01) (0.01)

Brokered 5.120%*** 4.481%** 0.17** 0.33*** 0.07 0.18** -0.01* 0.01 -0.01* 69%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

PANEL B: Value-Weighted Portfolio

Direct 6.620%*** 5.532%*** 0.14*** 0.32*** 0.07 0.16** -0.02* 0.01 -0.01 65%
(0.02) (0.02) (0.05) (0.03) (0.06) (0.07) (0.01) (0.01) (0.01)

Brokered 5.504%*** 4.948%*** 0.11*** 0.26*** 0.05 0.15** -0.01 0.01 -0.01 61%
(0.02) (0.01) (0.04) (0.03) (0.05) (0.06) (0.01) (0.01) (0.01)

Table 1.15. Results of Fung and Hsieh (2004) seven-factor models estimation for portfolio of

directly sold and broker sold funds are presented in Table 1.15. Panel A displays results for

the equally-weighted portfolio of funds, while Panel B reports results for the value-weighted

portfolio of funds. Portfolios of directly sold and broker sold funds ( that is constructed using

a sub-sample of funds that report to Morningstar and file forms D) are reported in row Direct

and row Brokered, respectively. The seven-factor model (1.1) is estimated using pre-fee monthly

returns between January 2010 and December 2015. Table displays estimated annualized expected

annualized excess return of portfolio,R̄, estimated annualized alpha, α̂, the estimated exposures

to the market, β̂Mkt, the estimated exposure to size spread factor, β̂SmB, the estimated exposure

to yield curve level factor, β̂T 10y, the estimated exposure to credit spread factor, β̂Cr.Spr., and

the estimated exposures to bond, commodity and forex trend-following factors, β̂pBD, β̂pF X

and β̂pCOM , as well as the adjusted R2. Figures in parentheses are the Newey and West (1987)

heteroscedasticity and autocorrelation consistent standard errors. Statistical significance at

the 1%, 5% and 10% levels is denoted by *, **, and *** respectively.
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Table 1.16: Alphas of directly and broker sold hedge funds

Alpha
(1) (2) (3)

PANEL A: After-fee

Bit -0.012*** -0.013*** -0.013***
(0.002) (0.002) (0.002)

ln(Assetit−1) — 0.007*** 0.007***
— (0.001) (0.001)

Ageit — -0.0002 -0.001**
— (0.0002) (0.0004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 26,572 26,572 26,572
R2 0.1% 4% 6%

PANEL B: Pre-fee

Bit -0.015*** -0.018*** -0.019***
(0.002) (0.002) (0.002)

ln(Assetit−1) — 0.009*** 0.009***
— (0.001) (0.001)

Ageit — -0.0002 0.0007
— (0.0002) (0.0004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 25,712 25,712 25,712
R2 0.2% 4% 6%

Table 1.16 presents estimates of difference in risk-adjusted performance

between directly sold and broker sold hedge funds with panel regression

α̂it = β0+βB ·Bit+βs·Xit−1+βt+ǫ̃it. Fund level controls Xit−1 include logarithm

of assets under management in the previous period, age, and vintage year

and time fixed effects βt. Panel A displays results for after-fee alphas of

hedge funds. Panel B displays results for pre-fee alphas of hedge funds.

The sample covers hedge funds that are listed in Morningstar database

and file form D filings over period from January 2010 to December 2015.

Figures in parentheses are the Newey and West (1987) heteroscedasticity

and autocorrelation consistent standard errors clustered by month. Sta-

tistical significance at the 1%, 5% and 10% levels is denoted by *, **, and

*** respectively.
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Table 1.17: Value added by directly and broker sold hedge funds

Dollar value added
(1) (2) (3)

PANEL A: After-fee

Bit -0.135*** -0.160*** -0.169***
(0.060) (0.054) (0.055)

Ageit — 0.002 -0.031***
— (0.003) (0.009)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 26,472 26,472 26,472
R2 0.02% 3% 4%

PANEL B: Pre-fee

Bit -0.101*** -0.127*** -0.141***
(0.068) (0.065) (0.066)

Ageit — 0.001 -0.026**
— (0.004) (0.009)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 25,712 25,712 25,712
R2 0.01% 4% 4%

Table 1.17 presents estimates of difference in dollar value added (in mil-

lions of dollars) by directly sold and broker sold hedge funds with panel

regression Ŝit = β0 + βB · Bit + βs · Xit + βt + ǫ̃it. Fund level controls Xit in-

clude fund’s age, vintage year and time fixed effects βt. Panel A displays

results for after-fee dollar value added by hedge funds. Panel B displays

results for pre-fee dollar value added of hedge funds. The sample covers

hedge funds that are listed in Morningstar database and file form D fil-

ings over period from January 2010 to December 2015 with an adjustment

for backfill bias. Figures in parentheses are the Newey and West (1987)

heteroscedasticity and autocorrelation consistent standard errors clus-

tered by month. Statistical significance at the 1%, 5% and 10% levels is

denoted by *, **, and *** respectively.
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Table 1.18: Heterogeneity of brokers

After-fee alpha
(1) (2) (3)

BI
it -0.023*** -0.022*** -0.022***

(0.003) (0.002) (0.002)
BO

it -0.015*** -0.014*** -0.014***
(0.002) (0.002) (0.002)

ln(Assetit−1) 0.006*** 0.006*** 0.006***
(0.001) (0.001) (0.001)

Ageit -0.0001*** -0.0002 -0.0010**
(0.0000) (0.0002) (0.0004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 32,026 32,026 32,026
R2 0.7% 3% 4%

Ho: In-house = Outside
F-test 3.73* 4.36** 4.74**
p-value 0.06 0.04 0.03

Table 1.18 estimates difference in after-fee risk-adjusted performance be-

tween directly sold hedge funds and funds that are sold through in-house

broker or outside broker with panel regression: α̂it = β0 + βI · BI
it + βO · BO

it +
βx ·Xit +βt + ǫ̃it. BI

it is a dummy variable that is equal to one when the fund is

sold through in-house broker and is equal to zero otherwise. BO
it is a dummy

variable that is equal to one when the fund is sold through outside broker

and is equal to zero otherwise. Regression includes fund level controls

Xit, such as fund’s age, vintage year and time fixed effects βt. The sample

of funds is restricted to funds that are listed in Morningstar database

and file form D filings over period from January 2010 to December 2015,

using full sample of hedge fund returns observations. Figures in parenthe-

ses are the Newey and West (1987) heteroscedasticity and autocorrelation

consistent standard errors clustered by month. Statistical significance at

the 1%, 5% and 10% levels is denoted by *, **, and *** respectively. Table

presents results of F-test for hypothesis that alphas of funds that are

sold through in-house brokers is equal to alphas of funds that are sold

through outside brokers.
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Table 1.19: Heterogeneity of brokers

Pre-fee alpha
(1) (2) (3)

BI
it -0.022*** -0.019*** -0.020***

(0.003) (0.002) (0.002)
BO

it -0.021*** -0.020*** -0.020***
(0.001) (0.001) (0.001)

ln(Assetit−1) 0.008*** 0.009*** 0.009***
(0.001) (0.001) (0.001)

Ageit -0.0000* -0.0002 -0.0008
(0.0000) (0.0002) (0.0004)

Vintage No Yes Yes
Time FE No No Yes
# Obs. 30,929 30,929 30,929
R2 1% 4% 5%

Ho: In-house = Outside
F-test 0.04 0.18 0.38
p-value 0.83 0.67 0.53

Table 1.19 estimates difference in pre-fee risk-adjusted performance be-

tween directly sold hedge funds and funds that are sold through in-house

broker or outside broker with panel regression: α̂it = β0 + βI · BI
it + βO · BO

it +
βx ·Xit +βt + ǫ̃it. BI

it is a dummy variable that is equal to one when the fund is

sold through in-house broker and is equal to zero otherwise. BO
it is a dummy

variable that is equal to one when the fund is sold through outside broker

and is equal to zero otherwise. Regression includes fund level controls

Xit, such as fund’s age, vintage year and time fixed effects βt. The sample

of funds is restricted to funds that are listed in Morningstar database

and file form D filings over period from January 2010 to December 2015,

using full sample of hedge fund returns observations. Figures in parenthe-

ses are the Newey and West (1987) heteroscedasticity and autocorrelation

consistent standard errors clustered by month. Statistical significance at

the 1%, 5% and 10% levels is denoted by *, **, and *** respectively. Table

presents results of F-test for hypothesis that alphas of funds that are

sold through in-house brokers is equal to alphas of funds that are sold

through outside brokers.



Chapter 2

Order Shredding, Invariance, and

Stock Returns

2.1 Introduction

There is a long-standing debate on what is a good way to model security price

dynamics. It is crucial for our understanding of financial markets. Progress has

been made in this important area, but there is still no fully satisfactory answer as to

the mechanism of how returns process is generated. We propose a novel structural

model for price dynamics within the paradigm of market microstructure invariance,

developed recently by Kyle and Obizhaeva (2016) and found to be successful in

explaining a number of empirical regularities in the data.

It is known that empirical price processes depart from the Brownian motion, and

price changes are not distributed as normal random variables. Several alternative

models have been proposed in the literature. Mandelbrot (1963) suggests that price

changes may be better described by a stable Pareto distribution with fat tails.

Mandelbrot and Taylor (1967) and Clark (1973) propose that price processes seem

to be closely related to the Brownian motions that evolves not in calendar time

but rather in some business time, which is linked to either arrival of transactions or

trading volume, respectively. Jones, Kaul and Lipson (1994), Hasbrouck (1999), Ané

and Geman (2000), Andersen et al. (2015) study what business clock best fits the

75
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data. In comparison to these approaches, our structural model of returns dynamics

comes from explicit modelling of how traders trade in real financial markets.

The backbone of our model is the arrival process of investment ideas, or bets,

placed by fundamental traders into the market. This process has been earlier cali-

brated within the microstructure invariance paradigm by Kyle and Obizhaeva (2016)

who suggested that bets arrive according to a stochastic process with an expected

arrival rate per day approximately proportional to the 2/3 exponent of trading vol-

ume and volatility, and the distribution of bet sizes closely resemble log-normal

random variables with log-variance of 2.53. This large log-variance implies frequent

arrivals of very large bets. We assume that traders execute bets by splitting them

into sequences of transactions according to some bet-shredding algorithm in order

to reduce price impact; we model price impact in response to each transaction as

suggested by invariance-based market impact model. We also introduce arbitrageurs

who implement order anticipation algorithms based on predictive models to detect

execution of large bets and trade ahead of them with hope to make some money.

Market makers clear the market.

The core idea of market microstructure invariance is that business time runs

faster in liquid markets and slower in illiquid markets, whereas a trading game itself

that traders play remains invariant. Our structural model ultimately differs across

stocks and time periods, because it is based on different arrival processes of bets.

We also calibrate bet shredding parameters using the method of simulated moments

in order to match the cross-sectional and time-series variation in empirical moments

of stock returns.

We update the evidence on cross-sectional and time-series properties of moments

of daily U.S. stock returns using the Center for Research in Security Prices (CRSP)

database. We find that idiosyncratic excess kurtoses tend to be positive and decrease

with trading activity of stocks; the ratio of idiosyncratic kurtosis for the median least

active stocks to that of the most active stocks is almost always greater than one,

but this difference becomes less pronounced over time. The total kurtosis without

any adjustment for market returns is also larger for the less active stocks; these
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patterns reverse over during market crashes, when kurtosis of liquid stocks becomes

bigger relative to kurtosis of illiquid stocks, possibly due to staleness of prices. The

idiosyncratic skewness does not exhibit any distinctive cross-sectional patterns and

fluctuates over time around a small positive value, often dropping to negative values

during market crashes.

Our calibration allows us to discuss the properties of implied bet shredding

parameters. Under the assumption that traders target a fixed proportion of overall

expected trading volume, we find that traders target a bigger proportion when

executing bets in less liquid securities. We also find that bet-shredding has intensified

over time, and now traders choose to execute bets over two or three times longer

horizons than in 1950s. The prevalence of shredding in modern markets have been

also documented empirically in Kyle, Obizhaeva and Tuzun (2016), Angel, Harris

and Spatt (2015), and Garvey, Huang and Wu (2017). Bet shredding is also optimal

for traders who seek to minimize transaction costs, as shown theoretically by Kyle,

Obizhaeva and Wang (2017). Our structural model can be used as a vehicle to gain

insight into hard-to-observe parameters of trading.

There are two different approaches to modelling securities returns. The first

approach, usually preferred by economists, relies on calibration of structural equi-

librium models in order to make sure that models are internally consistent with

market clearing and strategic optimizing behavior of traders; the example is a struc-

tural framework of Campbell and Kyle (1993) that helps to model permanent and

temporary shocks to prices. The second approach, usually preferred by statisticians

and econophysicists, relies on agency-based models that simulate actions and inter-

actions of traders to study their effects on the system as a whole, but often assume

mechanic—rather than driven by economic incentives—order placement strategies

and price formation process; examples include Cont and Bouchaud (2000), Farmer,

Patelli and Zovko (2005), Cont, Stoikov and Talreja (2010), and Ladley (2012),

among others.

Our model is a combination of these two approaches, taking the best of both of

them. On the one hand, we pay careful attention to the modelling of how people
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trade as in agency-based models. Indeed, our groups of market participants closely

resemble the classification of Kirilenko et al. (2017), who provide a micro-level em-

pirical description of the structure of trading in the market of the E-mini S&P 500

futures during the Flash crash on May 6, 2010. On the other hand, each part of our

model is guided by the insights of existing theories of financial economics. Bets arrive

according to general invariance predictions, which one can derive within a number

of equilibrium models such as the dynamics model of Kyle and Obizhaeva (2017c)

and the one-period model of Kyle, Obizhaeva and Wang (2017). Bet-shredding al-

gorithms are similar to optimal trading strategies suggested by the literature on

optimal execution, such as Bertsimas and Lo (1998), Almgren and Chriss (2000),

and Obizhaeva and Wang (2013) among others. Arbitrageurs insure that prices

follow a martingale and markets are efficient. Market makers insure that markets

clear.

This paper is organized as follows. Section I presents empirical analysis of time-

series and cross-sectional properties of moments for returns of the U.S. stock mar-

ket. Section II describes a structural model of returns dynamics based on market

microstructure invariance with bet shredding and arbitrage trading. Section III

discuss its calibration and properties of implied parameters. Section IV concludes.

2.2 Moments of daily returns: empirical analysis

2.2.1 Data

We examine cross-sectional and time-series properties of moments of daily U.S. stock

returns using the Center for Research in Security Prices (CRSP) database. Only

common stocks (CRSP share codes of 10 and 11) listed on the New York Stock

Exchange (NYSE), the American Stock Exchange (Amex), NASDAQ, and NYSE

Arca in the period of January 1926 through December 2016 are included in the

sample. ADRs, REITS, and closed-end funds are excluded.

Estimates of higher moments are very sensitive to large price changes, outliers,
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and errors in the data. We do not windsorize of the data, because we do not want

to eliminate most important large but rare observations. Instead, we carefully clean

the data by trying to filter out outliers and errors, while keeping large observations

caused by execution of large bets, market crashes, or other events.

First, we adjust for stale prices. For each security, the CRSP mixes two time

series. For days with transactions, the database reports last transaction prices at the

close. For days with no transactions, the database reports averages of bid and ask

prices, marking these averages with a negative sign; these observations are often not

representative of true prices, at which traders could actually transact during that

day. The mixture two price series often leads to large temporary deviations in the

composite series. For example, for the six days from May 17, 2010 to May 24, 2010,

one finds the following prices in the CRSP for the stock of the firm Ikonics: $7.1,

$6.52, -$7.225, -$12.76, -$7.07, and $6.81; the three negative prices mean that there

were no transactions at these three days and the average bid-ask prices are reported

instead of actual transaction prices. If one would simply change their negative signs

into positives sign and calculate time-series of returns, then he will get -8, 11, 77,

-45, and -4 percents with large positive price change followed by large negative price

changes in the middle of the sample. At the same time, Yahoo Finance reports

$7.1, $6.52, $6.52, $6.52, $6.52, and $6.81 for the same days implying returns of

-8, 0, 0, 0, and 4 percents. The two time series will have very different estimates

of moments, especially for higher moments such as kurtosis. To circumvent this

problem, we use only transaction prices when available, accumulate returns from

the very last transaction price reported, and assign returns of zero to all days with

no transactions.

Second, there remain many large zigzag price changes in the sample. It is usu-

ally unclear whether these are actual prices that we need to keep or errors that we

need to eliminate. As describe in Fischer (1963), the process of creating the CRSP

database required a lot of effort and involved a lot of data cleaning. Some errors

though may still exist due to mistakes in original data collected by exchanges, incor-

rect conversion of the data from paper books into electronic databases, inconsistent
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adjustment for splits and dividends, confusion with tickers, inaccurate treatment of

trades in error accounts that are often cancelled within a few days, and many other

reasons. We checked manually whether large zigzag price deviations in the CRSP

coincide with price patterns in other datasets or whether they can be attributed to

some events. Since unexplained temporary price swings occur especially often in

the earlier pre-war part of the sample, we choose to focus on the data from January

1950 to December 2016.

Third, we eliminate daily observations with fewer than 100 shares traded, be-

cause transaction prices on these days may also be not representative of true prices.

Small trades may be used as vehicles for side payments between traders, soft commis-

sions, or transactions by market makers who are required to maintain some minimal

trading activity in illiquid stocks.

Finally, we exclude stocks with more than fifteen no-trade days in a month and

daily volatility of less than one percent. We also exclude stocks with the median

of prices being less than $5, because estimates of their returns moments are very

unstable, as errors are especially critical for these stocks.

We excluded about 45% of observations from the original sample. The final

sample includes 1,576,834 observations for 1,089 months and 19,922 stocks. The

number of stocks vary significantly throughout the sample. Initially, there were

only NYSE stocks. The number of stocks rose steadily from 500 stocks in 1926 to

1,100 by 1962, then jumped to about 2000 in July 1962 and 5000 in November 1982,

when the Amex and NASDAQ stocks were included into the sample, respectively.

The number of stocks slightly declined after the market crash of October 1987 and

increased during the dot-com bubble 1995 though 2000, peaking at 7300 in 1997.

Afterwards, the number of stocks dropped, and it is equal to about 4000 at the end

of the sample.
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2.2.2 Estimation of moments

The estimate moments of log-returns are known to be sensitive to outliers. We next

obtain these estimates using robust estimation methods.

We modify the sample estimates of higher moments that usually use the sample

estimates of means and standard deviations and that are prone to several biases.

First, the sample means introduce forward-looking biases by making returns look

less volatile than they are in reality. In our estimation of higher moments, we instead

assume that daily stock returns have zero mean.

Second, the sample standard deviation tends to be overestimated during volatile

periods, and these biased estimates of volatility in turn make the sample estimates

of kurtosis underestimated. We assume means of zero instead sample means and

pre-estimate volatility over the previous three-month period, using one of the robust

iterative estimation methods; we also consider only three-month periods with more

than fifteen non-zero observations of returns and average price above $5. We first

estimate volatility over the entire three-month sample, then exclude observations

with absolute values bigger than two sigma, estimate volatility again and repeat

this procedure until either the difference in subsequent volatility estimates becomes

less than one basis point or the number of excluded outliers exceeds five percent of

the original sample. These are conservative measure of volatility robust to outliers.

For robustness, we also consider volatility estimated using Inter Quantile Range

methods (IQR-α methods), as proposed by Aucremanne(2004) and Kimber(1990),

respectively, as well as Median Absolute Deviation methods (MAD-β methods),

as proposed by Iglewicz and Hoaglin (1993) and Hampel(1974); all results (not

reported) are qualitatively and quantitatively similar to our main reported findings.1

For each month and each stock, we then calculate the estimates of skewness and

kurtosis using the formulas for sample moments but replacing sample means and

sample standard deviations with our robust estimates. We apply this procedure

1In IQR-α method, volatility is estimated on reduced sample [P25 − α · [P75 − P50], P75 + α ·
[P50 − P25]], where Px denote the percentile x, with most outliers excluded (α = 3 and α = 1.5).
In MAD-β method, volatility is estimated on entire sample excluding observations with |Mi|> β,
where Mi = 0.6745 · (xi − med(X))/MAD and MAD = med(|xi − med(X)|) (β = 3 and β = 2).
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for both the sample of returns and the sample of idiosyncratic returns, obtained by

subtracting the contemporaneous values of index returns under the assumption that

all stocks’ betas are equal to one.

2.2.3 Time-series and cross-section of empirical moments

To examine empirically cross-sectional patterns, we split all stocks in ten groups

based on daily trading activity, an important characteristic of securities reflecting

the speed with which markets operate and levels of liquidity. Trading activity is

defined as the product of dollar volume and volatility and represent the total amount

of risk transferred per day. For each stock and each month, we calculate trading

activity as the product of the average daily dollar volume and volatility over the

previous three months. We then sort all stocks each month into ten groups based

on trading activity. The breakpoints are chosen to be 30th, 50th, 60th, 70th, 75th,

80th, 85th, 90th, 95th of the NYSE traded stocks. Group 1 consists of least actively

traded stocks. Group 10 consists of most actively traded stocks.

Table 2.1 presents a detailed time-series and cross-sectional summary statistics

for high moments of idiosyncratic daily returns. The medians of sample moments

(volatility, skewness, and kurtosis) are shown for seven decades between 1950 and

2016 and for trading activity groups 1, 3, 5, 8, and 10.

Figure 2.1 shows the monthly time series of the 12-month moving averages of

the sample medians of sample kurtosis of idiosyncratic daily stock returns for the

same trading activity groups. The estimates are averaged over a twelve month

period to smooth out unstable estimates. Figure 2.3 shows similar moving averages

of monthly kurtosis estimates for daily stock returns without any adjustment for

market movements. We can draw several conclusions from table 2.1 and figure 2.1.

First, idiosyncratic kurtoses tend to decrease with trading activity. The daily

kurtoses of the least liquid stocks are stable, ranging between 6.60 and 8.47 across

decades and thus implying fat tails. The daily kurtoses of the most liquid stocks

slightly increase over time from 2.66 in decade 1950-1960 to 4.23 in 2010-2016;
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their values remain being close to 3, suggesting that distributions of their daily

idiosyncratic returns closely resemble the log-normal. Figure 2.2 reveals similar

patterns. The figure shows that, depicted by the solid horizontal line, the ratio of

idiosyncratic kurtoses of stocks in group 1 to kurtoses of stocks in group 10 is bigger

than one for each month throughout the sample, except for the month of September

2008 when uncertainty reached its peak during the financial crisis. The difference in

kurtoses of least and most active stocks becomes less pronounced over time. Similar

patterns are observed for kurtoses of total daily returns in figure 2.4. Ratios of

kurtoses of stocks in group 1 to kurtoses of stocks in group 10 drop below one only

during a few episodes in 1956, 1962-1963, 1987-1988, and 1993-1994; these breaks

might be attributed to Kennedy slide in 1962, market crash in October 1987, and

mini-crash in October 1989, respectively.

Second, the monthly time series of the 12-month moving averages of the sample

kurtosis medians in figures 2.1 and 2.3 are relatively stable over time, but exhibit

several significant spikes in May 1962, October 1987, August 1998, September 2008,

and August 2011. Even though the events that triggered large price changes are

relatively short lived, these spikes continue for twelve months due to our calculations

of moving averages using the twelve lags. These spikes correspond to volatile times

mentioned above as well as to the LTCM collapse in 1998. During these periods, the

idiosyncratic kurtoses continue to be larger for less liquid stocks, but the patterns

for kurtosis sometimes flip, and kurtosis of liquid stocks becomes bigger relative to

kurtosis of illiquid stocks, possibly due to staleness of their price.

Figure 2.5 shows the time series of idiosyncratic skewness for the trading activity

groups. Idiosyncratic skewness is usually slightly positive, fluctuating between 0.06

to 0.36 across decades and decreasing over time, on average, from 0.26 in decade

1950-1960 to 0.10 in 2010-2016, as shown in table 2.1. During market dislocations,

skewness tends to drop. Skewness does not exhibit any distinctive cross-sectional

patterns. It remains to be close to zero, thus suggesting that the distribution of

returns is close to a log-normal.

Figure 2.6 shows monthly time series of 12-month moving average of median
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sample volatility of idiosyncratic daily for the five trading activity groups with two

pronounced spikes during the dot-com bubble in 2000-2001 and financial crisis of

2008-2009.

In what follows, we will propose a structural model of price dynamics and cali-

brate it to match the cross-sectional and time-series patterns of higher moments in

table 2.1.

2.3 Invariance-implied structural model of price

dynamics

In this section, we describe a structural model of stock returns dynamics in financial

markets. There are three market participants: traders, intermediaries, and arbi-

tragers. Traders are institutional asset managers and retail investors who arrive to

the market with some trading ideas, or bets, and execute these bets by shredding

them over time based on bet shredding algorithms. We assume that these bets are

generated according to the implications of market microstructure invariance. Inter-

mediaries such as traditional market makers and high-frequency traders clear the

market by taking the other side of these transactions. Meanwhile arbitrageurs try

to detect large bets of traders in the order flow and profit by trading ahead of them.

2.3.1 Bets of traders

We start by describing trading strategies of institutional asset managers and retail

investors. These traders submit bets based on either some investment ideas or their

needs to rebalance portfolios. Bets move prices and induce volatility. Small bets

lead to small price changes, large bets trigger large price changes. Invariance implies

a specific structure of order flow, i.e. the number of bets and distribution of their

size for different markets.

Consider a stock i at day t with returns volatility σit, share volume Vit, dollar
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price Pit, and trading activity

Wjt = σjt · Pjt · Vjt. (2.1)

Let γit denote the number of bets placed at day t in the market of stock i. Suppose

that a sequence of bets executed at day t is Qit1, Qit2,..Qitγit
; each kth bet Qitk is

measured in shares, bets are positive for buys and negative for sells, both arriving

with equal probabilities of 1/2. Let Q̃it denote a random variable whose probability

distribution represents the signed size of bets and let γ̃it denote a random variable

whose probability distribution represents the expected arrival rate.

Kyle and Obizhaeva (2016) calibrate these distributions using the sample of

portfolio transitions executed over the period 2001 through 2005 in the U.S. stock

market as the main benchmark sample. As the first-order approximation, they find

that |Q̃it| is well described by a log-normal distribution with log-variance σ2
Q = 2.53

and γ̃it is a Poisson variable with the mean γ̄it; the means of both of these random

variables vary across days t and stocks i,

γ̄it = 85 ·
[ Wit

(0.02)(40)(106)

]2/3
. (2.2)

ln
[ |Q̃it|

Vjt

]

≈ −5.71 − 2
3

· ln
[ Wit

(0.02)(40)(106)

]

+
√

2.53 · Z̃, Z̃ ∼ N(0, 1). (2.3)

The 2/3 exponents in these formulas are implications of invariance; the constants

85, −5.71, and 2.53 are calibrated from the data. For the benchmark stock with

daily volatility σ = 0.02, volume V = 106, and price P = 40, for example, there

are on average 85 bets per day, their median dollar size is exp(−5.71) · V · P or

$132,000, and their average dollar size is exp(−5.71 + 0.5σ2
Q) · V · P or $470,000.

Both the number of bets γ̃it and their size |Q̃it| increase with dollar volume and

returns volatility.

Intermediaries take the other side of these bets by setting market clearing prices.2

2Under the assumption that the volume multiplier ζ = 2, as consistent with our assumption
that intermediaries take the other side of these bets, and the portfolio transition size multiplier
δ = 1.
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Kyle and Obizhaeva (2016) analyse by how much each bet on average moves prices

and calibrate several price impact models. The first model is the linear price impact

model. According to its log-linear version, buying or selling Q shares of a stock with

a current stock price P moves the price on average by ∆P (Q) such that

ln
(

1 +
∆P (Q)

P

)

=
σit

0.02

( κ̄

104
·
[

Wit

(0.02)(40)(106)

]−1/3

+

2 · λ̄

104
·
[

Wit

(0.02)(40)(106)

]1/3
Q

(0.01)Vit

)

,

(2.4)

where κ̄ = 8.21 and λ̄ = 2.50 are calibrated from the data and exponents −1/3 and

1/3 are implications of invariance. The first model is the square root price impact

model. According to its log-linear version, buying or selling Q shares of a stock with

a current stock price P moves the price on average by ∆P (Q) such that

ln
(

1 +
∆P (Q)

P

)

=
σit

0.02

( κ̄

104
·
[

Wit

(0.02)(40)(106)

]−1/3

+2· λ̄

104
·
[ Q

(0.01)Vit

]1/2)

, (2.5)

where κ̄ = 2.08 and λ̄ = 12.08 are calibrated from the data and exponents −1/3

and 1/2 are implications of invariance.

Equations (2.2) and (2.3) describe the order-flow process for traders. Equa-

tions (2.4) and (2.5) describe how intermediaries update prices in response to each

bet. Combining price impact of all bets executed during the day, one can calcu-

late implied daily price changes. The set of these equations thus describe a basic

structural model for daily returns, as implied by invariance.

2.3.2 Price changes upon execution of one bet

We next examine moments of price changes induced by one bet. Since buys and sells

arrive with equal probabilities, the distribution of signed bet sizes Q̃it is symmetric,

and all of its odd moments are equal to zero. For example, E
[

Q̃it

]

= 0 and E
[

Q̃3
it

]

=

0.

Since the distribution (2.3) of unsigned bet size |Q̃it|= exp(µQ + σQ · Z̃) is a
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log-normal with a log-mean of µQ and a log-variance of σ2
Q = 2.53, its moments can

be calculated as,

E
[

|Q̃it|p
]

=
∫

qp · 1
q

· 1
√

2πσ2
Q

exp
(

−(ln(q) − µQ)2

2σ2
Q

)

dq = ep2σ2
Q

/2+pµQ . (2.6)

This implies the kurtosis of price changes upon execution of a bet. For the linear

price impact model, it is equal to kurtosis of a bet size itself,

kurt
[

∆P (Q̃it)
]

= kurt
[

|Q̃it|
]

=
E

[

|Q̃it|4
]

E

[

|Q̃it|2
]2 = e4σ2

Q = 22, 000. (2.7)

For the square root price impact model, it is equal to

kurt
[

∆P (Q̃it)
]

= kurt
[

|Q̃it|1/2
]

=
E

[

|Q̃it|2
]

E

[

|Q̃it|
]2 = eσ2

Q = 12. (2.8)

These values are much larger than kurtosis of 3 for a normal distribution, especially

for the linear model.

2.3.3 Price changes upon execution of bet sequences with

no bet shredding

We next examine moments of price changes induced by one bet. Since buys and sells

arrive with equal probabilities, the distribution of signed bet sizes Q̃it is symmetric,

and all of its odd moments are equal to zero. For example, E
[

Q̃it

]

= 0 and E
[

Q̃3
it

]

=

0.

Since the distribution (2.3) of unsigned bet size |Q̃it|= exp(µQ + σQ · Z̃) is a

log-normal with a log-mean of µQ and a log-variance of σ2
Q = 2.53, its moments can

be calculated as,

E
[

|Q̃it|p
]

=
∫

qp · 1
q

· 1
√

2πσ2
Q

exp
(

−(ln(q) − µQ)2

2σ2
Q

)

dq = ep2σ2
Q

/2+pµQ . (2.9)

This implies the kurtosis of price changes upon execution of a bet. For the linear
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price impact model, it is equal to kurtosis of a bet size itself,

kurt
[

∆P (Q̃it)
]

= kurt
[

|Q̃it|
]

=
E

[

|Q̃it|4
]

E

[

|Q̃it|2
]2 = e4σ2

Q = 22, 000. (2.10)

For the square root price impact model, it is equal to

kurt
[

∆P (Q̃it)
]

= kurt
[

|Q̃it|1/2
]

=
E

[

|Q̃it|2
]

E

[

|Q̃it|
]2 = eσ2

Q = 12. (2.11)

These values are much larger than kurtosis of 3 for a normal distribution, especially

for the linear model.

2.3.4 Price changes upon execution of bet sequences with

no bet shredding

Daily price change ∆P is equal to the sum of all price changes in response to exe-

cution of independent and identically distributed bets. If there are γ bets executed

in day t and stock i, then kurtosis of daily returns is

kurt [∆P |γ̃it = γ] = kurt
[ γ
∑

k=1

∆P (Qkit)
]

=
kurt

[

∆P (Q̃it)
]

γ
, (2.12)

where kurt
[

∆P (Q̃it)
]

is defined in equations (2.10) and (2.11).

To find unconditional kurtosis, we should integrate out γ in equation (2.12),

because the number of bets executed per day is a random variable. If no bet arrives,

then we should not update our estimates of kurtosis. The kurtosis of the random

sum of random variables with expected Poisson arrival rate γ̄it is given by

kurt [∆P ] = Eγ (kurt [∆P |γ̃it = γ]) =
+∞
∑

j=1





kurt
[

∆P (Q̃it)
]

j
· γ̄j

it

j!
· e−γ̄it



 . (2.13)

The infinite sum
∑+∞

j=1 [γj/j! ] is a converging series, a series {1/j} is a bounded

from above, monotone sequence, and kurt
[

∆P (Q̃it)
]

is a constant. Applying Abel’s
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convergence test, we find that the infinite sum (2.13) converges, though it does not

have a close form solution.

It is possible to derive the lower bound for the unconditional kurtosis using

Jensen’s inequality. Indeed,

kurt [∆P ] = Eγ





kurt
[

∆P (Q̃it)
]

γ̃it



 ≥
kurt

[

∆P (Q̃it)
]

Eγ (γ̃it)
=

kurt
[

∆P (Q̃it)
]

γ̄it

. (2.14)

The lower bound is equal to the kurtosis of daily returns (2.12) conditional of the

assumption that the number of bets γ̃it coincides with the average arrival rate γ̄it.

Our simulation analysis shows that this lower bound provides a good approxi-

mation for the daily kurtosis of most stocks, as implied by a structural model. The

differences created by uncertainty in the Poisson arrival rates and non-linearities of

log-returns are insignificant. For a stock with median dollar volume and returns

variance in each of the ten trading activity groups, we run 1000 Monte-Carlo simu-

lations and calculate the average theoretical kurtosis with its standard errors. The

simulations are done based on a structural model of price process with bet arrival

rate in equation (2.2), distribution of bet sizes in equation (2.3), and price impact

model (2.4). We also calculate the lower bound using equation (2.14). Table 2.2

shows that the lower bound tracks closely the average kurtosis for all groups, ex-

cept the group of least actively traded stocks. The percentage differences in the

series of two estimates are 29%, 3%, 2%, 1%, and 0% for groups 1, 3, 5, 8, and 10,

respectively. A large difference for the first group may reflect an upward bias in

theoretical estimates of kurtosis. The bet arrival rates for other groups range from

23 to 232, and this effect is less pronounced. As long as the arrival rate of bets is

not too low, the lower bound is a reasonable proxy for kurtosis of daily returns. We

get the following approximation,

kurt [∆P ] ≈
kurt

[

∆P (Q̃it)
]

γ̄it

. (2.15)

Using equations (2.10) and (2.11), the lower bound for daily kurtosis is equal to
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22, 000/γ̄it and 12/γ̄it for the linear and square root models, respectively. Kurtosis

of price changes per each bet is the same across stocks, but the number of bets

per day is larger for more liquid stocks. Therefore daily returns of more liquid

stocks have lower kurtosis. The number of bets γ̄it per day increases with trading

activity at a rate of 2/3 in equation (2.2). Equation (2.15) then implies that kurtosis

decreases with the trading activity approximately at the same rate, i.e., with 2/3

power of the trading activity. In table 2.2, for example, the ratio of kurtosis of

most inactively traded stock to kurtosis of most actively traded stock is about 77

(= 7214/95); it is similar to the ratio of their trading activities in 2/3 power equal

to 59 (= (3600/8)2/3).

Similar intuition suggests that kurtosis decrease with tenor of returns for a given

security. For example, kurtosis of weekly returns is expected to be lower than

kurtosis of daily returns, which in turn is expected to be lower than kurtosis of

one-minute returns.

Our basic structural model implies the values of kurtosis that are too high relative

to empirical estimates. The average theoretical kurtosis in table 2.2 ranges between

95 and 7,214, whereas empirical estimates in table 2.1 do not exceed 8.47, the level

of average kurtoses for stocks in group 1 for decade 1960-1970.

2.3.5 Price changes upon execution of bet sequences with

bet shredding

So far we have assumed each bet is executed instantaneously. In reality, traders

shred orders and execute them over time in sequences of transactions to reduce

transaction costs. Bet shredding smooths out spikes in price dynamics and tends to

make returns kurtoses smaller. We next consider several modifications of our basic

model that incorporate order shredding and arbitrage trading. These models are

more realistic and more flexible in their ability to match empirical estimates.

Traders decide on “target” inventories and bets based on either their private

information or inventories shocks. Then, they gradually adjust actual inventories
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towards their targets. Let S∗
it denote the cumulative target order imbalances for

stock i at the end of day t, calculated as the signed sum of all bets placed into the

market place by that time,

S∗
it =

∑

m≤t

Qimk. (2.16)

Suppose next that each bet Qimk is shredded into a sequence of transactions ximk(s),

where s is a day count in execution package.

Let Sit denote cumulative realized order imbalance for stock i at the end of day

t, calculated as the signed sum of all transactions placed into the market by that

time.

Sit =
∑

m≤t,s≤t

ximk(s). (2.17)

The structural model of trading (2.16) and (2.17) is consistent with the equilib-

rium strategies in a continuous-time model of smooth trading of Kyle, Obizhaeva,

Wang (2016). In that model, symmetric, relatively overconfident, oligopolistic in-

formed traders calculate target inventories based on how their own estimates of the

long-term dividend growth rate differ from the estimates of other traders. Since the

market offers no instantaneous liquidity for block trades, each trader only partially

adjusts his inventory in the direction of a target inventory; the rate of adjustment

is determined by the deep parameters of the model, it is larger when private infor-

mation decays faster and when there is more disagreement between traders.

The difference between the time series of S∗
it and Sit depends on the specifics of

bet shredding algorithms. Bet shredding algorithms are not directly observable. We

assume that each algorithm is characterized by two main decisions. For each bet,

traders first choose execution horizon and then parameters of shredding method.

We consider several alternative specifications.

First, traders determine an appropriate execution horizon Titk for each bet Qitk.

For example, traders may target a fixed time horizon t, say one day,

Method-T (t): Titk = t. (2.18)
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We refer to this algorithm as “Method-T (t)”; for example, “Method-T (1)” or “Method-

T (5)” correspond to cases when all trades are executed their bets over one day or

one week.

Traders may also target a small fraction η, say equal to 5%, of expected contem-

poraneous volume Titk · Vit or Titk · γ̄it · E
[

|Q̃it|
]

,

|Qitk|= η · Titk · γ̄it · E
[

|Q̃it|
]

. (2.19)

This implies the execution horizon that is linearly proportional to bet size,

Method-V (η): Tkit =
|Qkit|

η · γ̄it · E
[

|Q̃it|
] . (2.20)

We refer to this algorithm as “Method-V (η)”; for example, “Method-V (0.05)”

or “Method-V (0.10)” for execution algorithms targeting 5 percent and 10 percent

of daily volume, respectively.

Traders may also target to induce a small fraction η, say equal to 5%, of expected

returns variance Tkit · σ2
it under the assumption that each transaction is expected to

move price by λ · |Qkit|,

(λ · |Qkit|)2 = η · Tkit · γit · λ2 · E
[

|Q̃it|2
]

. (2.21)

This implies that the execution horizon is proportional to the square of bet size,

Method-σ2(η): Tkit =
|Qkit|2

η · γit · E
[

|Q̃it|2
] . (2.22)

We refer to this algorithm as “Method-σ2(η)”; for example, “Method-σ2(0.05)” or

“Method-σ2(0.10)” for execution algorithms targeting 5 percent and 10 percent of

daily volatility, respectively.

In all cases, larger bets are executed over longer period of time. In the third

case (2.20) larger bets are spread over longer periods of time than in the second

case (2.22) and returns distribution is expected to exhibit smaller kurtosis. For the
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square root impact model, targeting a given fraction of returns variance is equivalent

to targeting a given fraction of volume, so we do not consider this case separately.

Next, traders have to choose an appropriate shredding method. We consider

two bet shredding methods. Each bet Qkit can be shredded at a uniform rate and

executed in equally-sized transactions xkit(s),

xitk(s) =
|Qitk|
Titk

, s = 1, ..Titk. (2.23)

Bertsimas and Lo (2001) find that this simple execution is optimal when a risk-

neutral trader needs to execute an order.

Alternatively, each bet Qitk can be shredded at a monotonically decreasing rate,

where sinh and cosh are the hyperbolic sine and cosine functions. Each day

a trader executes some fraction of the remaining part of the bet, determined by

parameter ρ. This parameter is related to the speed of information decay, risk

aversion, and riskiness of securities. The larger is parameter ρ, the faster the bet

is executed. Almgren and Chriss (2000) finds that execution is optimal when a

risk-averse trader executes a bet. Similar solution can be also found in Grinold and

Kahn (1999).

We choose to focus on simple execution strategies. In reality, execution strategies

are more complicated. Execution algorithms are often price dependent, as discussed

in Obizhaeva (2012). Other order shredding algorithms are for example discussed

in Gatheral and Schied (2013), Schied and Schoeneborn (2009), and Obizhaeva and

Wang (2013). If necessary, sophisticated execution strategies may be built into our

structural model as well.

The structural model for bet arrival (2.2) and (2.3) augmented with specific

order shredding algorithm represent the structural model describing the order-flow

process. Together with price impact model, they allow to construct implied time-

series of prices. In what follows, we consider linear price impact rule.
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2.3.6 Price dynamics with shredding and arbitrageurs

Bet shredding introduces positive autocorrelation in stock return process and makes

future price changes predictable. For example, execution of a large buy bet is

expected to inject a positive trend into the price dynamics, while execution of a

large sell bet induces a downward price dynamics. Arbitrageurs notice that prices

are not martingales and construct order anticipation algorithms to detect execution

of orders.

We next describe how to model trading by arbitrageurs. If intermediaries ob-

served target bet imbalances, they would set prices according to their market clearing

rule,

P ∗
it = λit · S∗

it, (2.24)

and price changes would be unpredictable. In reality, intermediaries may at best

identify only actual signed order imbalances Sit and set prices as,

P̂it = λit · Sit. (2.25)

To the extent that unexecuted order imbalance S∗
it − Sit are predictable based on

past information, these price process is not a martingale.

Arbitrageurs build a model to forecast S∗
it − Sit and trade Et{S∗

it − Sit} at day t.

When target order imbalances are higher than actual order imbalances, arbitrageurs

buy ahead of other traders. When target inventories are lower than actual inven-

tories, arbitrageurs sell ahead of other traders. Market makers set clearing prices

based on the aggregate order flow of both traders and arbitrageurs,

Pit = Et{P ∗
it} = λit · Sit + λit · Et{S∗

it − Sit} = λit · Et{S∗
it}. (2.26)

Trading by arbitrageurs restore martingale properties of stock prices and makes price

process Pit = E{P ∗
it} a martingale based on arbitrageurs’ filtration. Essentially, the

price is set based on the market’s forecasts of current target imbalances.

Our structural model is flexible to be consistent with various predictive models of
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arbitrageurs. We suppose that arbitrageurs know daily volatility and daily volume

of an asset. They are also familiar with all invariance formulas and bet shredding

algorithms that traders use. Arbitrageurs thus can simulate hypothetical bet arrival

process and how bets are shredded into sequences of transactions. Then, they can

perform a large estimation on the simulated sample to build a model for forecasting

unexecuted order imbalances.

This procedure can be summarized as follows,

1. Simulate N paths of bet histories for an asset with volume Vit and volatility

σit based on formulas (2.2) and (2.3);

2. Using the conjectured parameters of bet shredding algorithm, aggregate bets

and transactions, calculating histories of target imbalances and actual imbal-

ances, S∗
it,n and Sit,n for each of simulated paths n = 1, ..N ;

3. Run a rolling-window predictive regression for unexecuted imbalances with k

lags of linear and quadratic terms of realized past imbalances,

Et{S∗
it,n−Sit,n} = α+

k
∑

j=1

β1j ·Si,t−j,n+
k
∑

j=1

β2j·S2
i,t−j,n+ǫtn, t = 1, ..T, n = 1, ..N,

(2.27)

to estimate coefficients β̂1j and β̂2j, j = 1, ..k. For example, we use k = 5 as our

benchmark model, i.e. an arbitrageur using information on actual inventories

over the previous week.

Equipped with estimated model β̂1j and β̂2j , j = 1, ..k, arbitrageurs construct fore-

casts based on current information about past order imbalances Si,t−j , j = 1, ..k,

as

Et{S∗
it − Sit} = α +

k
∑

j=1

β̂1j · Si,t−j + β̂2j · S2
i,t−j. (2.28)

This is a model for forecasting an unexecuted order imbalances.

In what follows, we mostly apply bet shredding method that targets a given
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fraction of daily volume, split all bets into equally-sized transactions, and assume a

linear price impact function.

2.3.7 Properties of simulated returns

We first illustrate our structural model using the example of a hypothetical bench-

mark stock with price P of $40 per share, daily volume V of one million shares, and

daily volatility σ of 2% per day. This benchmark stock would belong to the bottom

tercile of S&P 500.

We simulate 1,000 paths of 90-day bet arrival histories for the benchmark stock

using formulas (2.2) and (2.3). We then apply several bet shredding algorithms

by first selecting the execution horizon depending on the fraction of daily volume

targeted and second by shredding each bet into a sequence of equally-sized trans-

actions. The execution of some packages extends beyond the boundary of a 90-day

sample. We cut tails of these unfinished packages at the end of each sample path,

multiply remaining sequences by 1 or −1 with equal probabilities to model buy and

sell orders, and insert them into the beginning of the same sample path. This mimics

a typical situations when some of large bets arrived in the past are continuing to

get executed at the beginning of selected sample paths.

We then estimate forecasting model (2.27) of arbitrageurs, who seek to predict

unexecuted bet imbalances at each point of time using the last five realized bet

imbalances and their squares. This estimation is done on the entire simulated sample

on a rolling-window basis.

Table 2.3 reports the results for the three bet shredding algorithms with η =

1%, η = 5%, and η = 10%. The lower is fraction η of volume targeted in the

execution, the more execution is extended over time, the more past imbalances are

autocorrelated with current unexecuted imbalances, and the larger are estimated

coefficients. For example, when η = 1%, the coefficients are 1.98, 0.97, 1.02, 1.25,

and 5.32. When η = 10%, the coefficients are only 0.17, 0.16, 0.19, 0.30, and 0.89.

Using these estimates, we construct predictive model (2.28) and price paths using
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equation 2.4.

Figure 2.7 shows the averages, medians, and standard error bounds for returns

autocorrelation coefficients at different lags, ranging from one day to forty days for

the simulated sample under the assumption that there are no arbitrageurs. The four

panels show the results for the cases of η = 1%, η = 5%, η = 10%, and the case with

no shredding, i.e. η = ∞. As expected, when there is no shredding, autocorrelations

are equal to zero at all lags. In the other panels, autocorrelations are high at fist

lags, decaying with time. The lower is the fraction η of bet shredding algorithm and

the longer are execution horizons of large bets, the bigger autocorrelations at first

lags are and the slower they decay.

Figure 2.8 show the same statistics but under the assumption that there are

arbitrageurs. Most of the autocorrelation coefficients are now close to zero, since

arbitrageurs eliminate most of returns predictability. Based on the linear terms and

squared terms, their forecasting model works reasonably well, except for reducing

autocorrelations at the boundaries of their forecasting window, which is assumed to

have the length of five days in our example.

Table 2.4 presents the autocorrelations and their standard errors. As before, in

panel A when the model has no arbitrageurs, many of the coefficients are statisti-

cally bigger than zeros, especially when η is small. In panel B when we introduce

arbitrageurs, most coefficients become insignificant. For example, when η = 1%,

the first-order autocorrelation is equal to 0.696 with standard errors of 0.092 with

no arbitrageurs and 0.033 with standard errors of 0.119 with arbitrageurs.

Figures 2.9 and 2.10 present distributions of the four moments of simulated

returns for the cases without and with arbitrageurs, respectively. There are distri-

butions of the four moments in the four columns. Each of the four rows corresponds

to different bet-shredding methods with η = 1%, η = 5%, η = 10% as well as the

case with no shredding. Table 2.5 reports the summary statistics for these distribu-

tions. On both figures, the means and the skewness are centered around zero, since

the base model is symmetric for buy and sell orders. The volatility is much lower

than initially assumed daily volatility of σ = 2% when there are no arbitrageurs,
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especially when η is low. Intuitively, bet-shredding converts returns volatility into

the price drift. Trading by arbitrageurs “restores” martingale properties of prices

and brings volatility back to the assumed levels. For example, when η = 1%, the

daily volatility of simulated returns is equal to 0.005 with no arbitrageurs and 0.022

with arbitrageurs.

2.4 Properties of implied shredding parameter

The properties of daily returns depend on the assumptions about parameters of

the bet-shredding algorithm. We next use the method of simulated moments and

calibrate these parameters to match empirical moments of daily returns.

As before, we assume that traders generate bets according to invariance, design

execution to target a given fraction η of expected daily volume, and split bets into

equally-sized transactions. Meanwhile, arbitrageurs apply the forecasting model

described in section 2.3.6 and market makers clear the market. We generate N =

*** paths of daily returns. The bet-shredding parameter η is then estimated by

matching the kurtoses of simulated returns kurt(∆P |η, n) to the empirical estimates

of kurtoses kurt(∆P |Data),

η∗ = argminη

(

∑N
n=1 kurt(∆P |η, n)

N
− kurt(∆P |Data)

)

. (2.29)

The empirical estimates are taken from table 2.1 for different trading activity groups

and time periods.

Table 2.6 reports the estimates of implied parameter η for median stocks in the

five out of ten trading activity groups and for the seven decades from 1950 to 2017.

The table also presents information about trading activity used for simulation of

daily returns; its values coincide with statistics reported in table 2.1. There are two

patterns.

First, the implied parameter η decreases over time. For the stocks in group

1, parameter η decreased from 8.875 during 1950–1960 to 5.04 during 2010–2017.
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For the stocks in group 10, parameter η decreased from 3.225 during 1950–1960 to

1.39 during 2010–2017. This implies that, conditional of bet size, bet shredding

increased over time. Similarly, ? document a significant change in trading patterns

in the Trades and Quotes (TAQ) dataset, as the decimalization and use of electronic

interfaces has recently led to a significant increase in order shredding; the market for

block trades seems almost to have disappeared, and most trading is now dominated

by transactions of 100 shares, the minimum lot size. The feature of increased bet

shredding implied by our structural model suggests that it has reasonable properties.

Second, the implied parameter η decreases with trading activity W . For example,

for the time period 1990 through 2000, η is equal to 8.36, 4.22, 3.46, 2.52, and 1.66

for groups 1, 3, 5, 8, and 10, respectively. For the time period 2010 through 2017, η is

equal to 5.04, 2.69, 2.32, 1.80, and 1.39, respectively. This implies that, conditional

on bet size, execution of bets is spread over longer periods for more actively traded

stocks.

Table 2.7 shows implied execution horizons for the two periods before and after

decimalization. Panel A shows results for 1990-2000. Panel B shows results for

2010-2017. We calculate bet sizes using equation (2.3) and then calculate implied

execution horizons using equation (2.20) and calibrated bet-shredding parameters

η̂ from table 2.6. For the median stock in group 1, it takes 2.69, 13.22, 64.86,

and 318.23 minutes to execute 4-std, 5-std, 6-std, and 7-std bets during 1990–2000,

respectively, and 0.79, 3.86, 18.93, and 92.87 minutes for similar bets during 2010–

2017. For the median stock in group 10, it takes 0.17, 0.85, 4.16, and 20.39 minutes

to execute 4-std, 5-std, 6-std, and 7-std bets during 1990–2000, respectively, and

0.05, 0.26, 1.29, and 6.32 minutes for similar bets during 2010–2017. The speed of

execution increased by a factor of 3.

The inspection of estimates in table 2.7 reveals that differences in bet-shredding

parameters are similar to differences in trading activity in −1/3 power. For example,

the ratio in parameters ηi and ηj for stock i and j are related to the ratio of their
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trading activities Wi and Wj as approximately,

ηi

ηj

≈
(Wi

Wj

)−1/3
. (2.30)

We can also extrapolate these estimates to the overall market with daily trading

volume of $292 billion (futures and stocks combined) and daily volatility of 2 percent,

as noted in Kyle and Obizhaeva (2017b). Using parameters for the median stock

in group 10 during 2010–2017 as the benchmark, equation (2.30) implies that bet-

shredding parameter for the entire U.S. market ηmkt ≈ 1.39 · ( Wi

7,141,896
)−1/3 ≈ 0.20,

i.e. traders are targeting about 20 percent of expected contemporaneous volume

when executing bets in the U.S. market. This is broadly consistent with information

in Staffs of the CFTC and SEC (2010b) that the large trader whose trading caused

the Flash crash on May 6, 2010, has been targeting 9 percents of contemporaneous

volume when executing a bet in the E-mini S&P500 futures market.

2.5 Conclusions

We propose a new structural model of stock returns dynamics, which is inspired by

the recently developed ideas of market microstructure invariance. Traders generate

investment ideas, or bets, and execute them by shredding large orders over time to

minimize transaction costs, arbitrageurs trade to profit on any detectable trends in

prices, and market makers clear the market. Bets are assumed to arrive according to

the processes calibrated by Kyle and Obizhaeva (2016); parameters of bet-shredding

algorithms are chosen to match empirical moments of stock returns.

Our structural model captures realistically the economics of trading. It is the

model of stochastic volatility, because arrival of bets and their sizes are stochastic,

and large bets lead to bursts in volume, volatility, and intermediation. The model

is flexible in terms of modelling trading behavior of arbitrageurs and bet-shredding

algorithms, while precise and grounded in theory in terms of using a specific structure

of bet flow from traders and intermediaries. It can be calibrated either to fit the data
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or to infer the implied parameters of trading, for example, such as hard-to-observe

bet-shredding parameters.

We focus mostly on the price dynamics, but the framework also generates quanti-

tative predictions about overall trading volume and order flow generated by different

groups of traders. As an extension, it is possible to calibrate the model to match

cross-sectional and time-series properties of both stock returns and trading volume,

or even some empirical findings about trading by different groups of traders, for

example, such as defined in Kirilenko et al. (2010).



CHAPTER 2. ORDER SHREDDING, INVARIANCE, AND STOCK RETURNS102

2.6 Tables and figures
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Figure 2.1: Idiosyncratic kurtosis of daily stock returns for 1950 through 2016.

Figure shows
five monthly time series of 12-month moving averages of median sample kurtosis for idiosyncratic daily stock returns

for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains the

least (most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 2.2: Ratio of idiosyncratic kurtosis (Group 1 to Group 10) for 1950 through 2016.

Figure shows the time series of ratio of median sample kurtosis of idiosyncratic daily stock returns for stocks in Group

1 (least actively traded stocks) to the one of Group 10 (most actively traded stocks). The horizontal line marks the

value of one. The sample ranges from January 1950 to December 2016.
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Figure 2.3: Kurtosis of daily stock returns for 1950 through 2016.

Figure shows five monthly time series of 12-month moving average of median sample kurtosis of daily stock returns for

each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains the least

(most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 2.4: Ratio of kurtosis (Group 1 to Group 10) for 1950 through 2016.

Figure shows the time series of ratio of median sample kurtosis of daily stock returns for stocks in Group 1 (least

actively traded stocks) to the one of Group 10 (most actively traded stocks). The horizontal line marks the value of

one. The sample ranges from January 1950 to December 2016.
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Figure 2.5: Idiosyncratic skewness of daily stock returns for 1950 through 2016.

Figure shows five monthly time series of 12-month moving average of median sample skewness of idiosyncratic daily stock

returns for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10) contains

the least (most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Figure 2.6: Idiosyncratic volatility of daily stock returns for 1950 through 2016.

Figure shows five monthly time series of 12-month moving average of median sample volatility of idiosyncratic daily

stock returns for each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of ten groups). Group 1 (10)

contains the least (most) actively traded stocks. The period ranges from January 1950 to December 2016.
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Table 2.1: Kurtosis and skewness for trading activity groups across decades

Group 1 Group 3 Group 5 Group 8 Group 10 Total

Decade 1950-1960

Activity 101 517 967 1,926 5,925 440
Kurtosis 7.174 4.253 4.387 3.205 2.656 4.825
Skewness 0.199 0.243 0.305 0.317 0.357 0.262
# Stocks 676 766 623 511 328

Decade 1960-1970

Activity 277 1,650 3,375 6,999 26,727 1,197
Kurtosis 8.472 5.419 5.188 4.141 2.972 6.002
Skewness 0.303 0.306 0.303 0.302 0.338 0.310
# Stocks 2,126 1,839 1,378 1,056 557

Decade 1970-1980

Activity 210 2,249 5,103 11,519 39,913 1,284
Kurtosis 6.605 5.511 4.928 4.327 3.289 5.627
Skewness 0.182 0.210 0.178 0.159 0.076 0.179
# Stocks 3,697 1,894 1,435 1,028 583

Decade 1980-1990

Activity 1,176 12,893 29,588 70,470 271,798 4,935
Kurtosis 7.133 5.734 4.939 4.321 2.851 5.938
Skewness 0.144 0.201 0.192 0.205 0.157 0.173
# Stocks 5,642 3,084 1,852 1,236 677

Decade 1990-2000

Activity 2,895 38,104 88,975 245,021 1,232,159 14,012
Kurtosis 8.102 6.450 6.174 5.226 4.220 6.884
Skewness 0.098 0.184 0.202 0.197 0.192 0.143
# Stocks 7,721 5,082 3,265 2,237 1,089

Decade 2000-2010

Activity 8,640 190,720 468,578 1,364,880 6,704,911 62,135
Kurtosis 7.583 5.963 5.491 4.699 4.002 6.542
Skewness 0.059 0.098 0.087 0.106 0.096 0.076
# Stocks 5,894 3,545 2,398 1,736 820

Decade 2010-2017

Activity 18,363 411,722 940,703 2,216,188 7,141,896 83,929
Kurtosis 6.808 6.315 6.085 4.918 4.232 6.396
Skewness 0.107 0.074 0.075 0.077 0.098 0.096
# Stocks 3,364 1,659 1,018 766 441

Table presents the sample medians of trading activity, idiosyncratic skew-
ness, and idiosyncratic kurtosis as well as the number of stocks for the ten
groups of U.S. stocks, based on their trading activity. The sample ranges
from January 1950 to December 2016 and split into decades. Group 1 (10)
consists of stocks with lowest (highest) trading activity in the previous
three months.
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Table 2.2: Simulated theoretical kurtosis and low bounds.

Group 1 Group 3 Group 5 Group 8 Group 10
Trading Activity 8,000 210,000 460,000 1,000,000 3,600,000
Number of Bets 4 35 59 99 232

Avg Kurtosis 7,214 651 381 225 95
Stand. Error (4.81) (0.12) (0.06) (0.02) (0.01)

Low Bound 5,576 631 374 259 95
%∆ 29% 3% 2% 1% 0%

Table reports trading activity σ · V · P , bet arrival rate per day γ, the
average daily returns kurtosis and its standard errors of the means from
Monte-carlo simulations, low bound for kurtosis, and percentage differ-
ence between the average kurtosis and the low bound for the median stock
in each of the five trading activity groups (groups 1, 3, 5, 8, and 10 out of
ten groups). Group 1 (10) contains the least (most) actively traded stocks.
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Table 2.3: Imbalance forecasting model of arbitrageurs.

Shredding const Si,t−1 S2
i,t−1 Si,t−2 S2

i,t−2 Si,t−3 S2
i,t−3 Si,t−4 S2

i,t−4 Si,t−5 S2
i,t−5 R2

η = 1% 39,719 1.98 0.00 0.97 0.00 1.02 0.00 1.25 0.00 5.32 0.00 12%
η = 5% 32,925 0.37 0.00 0.29 0.00 0.34 0.00 0.48 0.00 1.49 0.00 13%
η = 10% 12,190 0.17 -0.00 0.16 -0.00 0.19 -0.00 0.30 0.00 0.89 -0.00 13%

Table reports estimates β̂1j and β̂2j, j = 1, .5 of arbitrageurs’ model for forecasting unexecuted imbalances

S∗
it,n − Sit,n = α +

5
∑

j=1

β1j · Si,t−j,n +
5
∑

j=1

β2j · S2
i,t−j,n + ǫtn, t = 1, ..T, n = 1, ..N,

estimated based on the simulated sample for a benchmark stock with daily volatility 2 percent, price $40, and daily
volume 1 million shares. The simulated sample consist of 1,000 of 90-day paths. The three bet-shredding algorithms are
used: “Method-V (1%)”, “Method-V (5%)”, and “Method-V (10%)”.
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Figure 2.7: Returns autocorrelations without arbitrager.

Panel A: η = 1% Panel B: η = 5%

Panel C: η = 10% Panel D: No Shredding

Figure shows autocorrelation coefficients of daily returns at different

lags for different models of bet shredding without arbitragers: “Method-

V (1%)”, “Method-V (5%)”, “Method-V (10%)”, and no bet shredding. The sim-

ulation consists of 1,000 of 90-day paths. There are averages, medians, and

standard errors of autocorrelation coefficients in dark solid, dashed, and

light solid lines, respectively.



CHAPTER 2. ORDER SHREDDING, INVARIANCE, AND STOCK RETURNS113

Figure 2.8: Returns autocorrelations with arbitrager.

Panel A: η = 1% Panel B: η = 5%

Panel C: η = 10% Panel D: No Shredding

Figure shows average autocorrelation coefficients of daily returns at

different lags for different models of bet shredding with arbitragers:

“Method-V (1%)”, “Method-V (5%)”, “Method-V (10%)”, and no bet shredding.

The simulation consists of 1,000 of 90-day paths. There are averages, me-

dians, and standard errors of autocorrelation coefficients in dark solid,

dashed, and light solid lines, respectively.
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Table 2.4: Returns autocorrelations.

Order of autocorrelation
lag 1 lag 2 lag 3 lag 5 lag 10 lag 20

Panel A: Model without arbitragers

η = 1% 0.696 0.523 0.417 0.294 0.157 0.068
(0.092) (0.128) (0.152) (0.172) (0.194) (0.211)

η = 5% 0.437 0.249 0.167 0.094 0.038 0.009
(0.101) (0.119) (0.127) (0.137) (0.133) (0.138)

η = 10% 0.331 0.125 0.096 0.051 0.025 -0.001
(0.106) (0.114) (0.119) (0.121) (0.118) (0.127)

No Shredding -0.001 -0.002 0.001 0.000 0.000 0.000
(0.093) (0.091) (0.099) (0.099) (0.099) (0.10)

Panel B: Model with arbitragers

η = 1% 0.033 0.047 0.098 -0.16 -0.052 -0.005
(0.119) (0.140) (0.106) (0.103) (0.122) (0.130)

η = 5% 0.085 0.093 0.157 0.41 -0.04 0.002
(0.131) (0.150) (0.111) (0.114) (0.133) (0.141)

η = 10% 0.123 0.094 0.14 0.413 -0.022 0.000
(0.132) (0.150) (0.115) (0.120) (0.132) (0.140)

No Shredding -0.001 -0.002 0.001 0.000 0.000 0.000
(0.093) (0.091) (0.099) (0.099) (0.099) (0.10)

Table reports average autocorrelation coefficients of daily returns at

different lags for different models of bet shredding: “Method-V (1%)”,

“Method-V (5%)”, “Method-V (10%)”, and no bet shredding. Panel A presents

results for the model without arbitragers. Panel B presents results for

the model with arbitragers. The simulation consists of 1,000 of 90-day

paths.
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Figure 2.9: Distributions of simulated moments without arbitrageurs

Mean Volatility Skewness Kurtosis

η = 1%

η = 5%

η = 10%

No Shredding

Figure shows distributions of simulated moments of order flow for a benchmark stock. There are 1,000 simulations of 90-

day paths of returns. The case with no bet shredding and the three bet-shredding algorithms are used: “Method-V (1%)”,

“Method-V (5%)”, and “Method-V (10%)”.
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Figure 2.10: Distributions of simulated moments with arbitrageurs

Mean Volatility Skewness Kurtosis

η = 1%

η = 5%

η = 10%

No Shredding

Figure shows distributions of simulated moments of order flow for a benchmark stock with arbitrageurs. There are

*** simulations of 90-day paths of returns. The case with no bet shredding and the three bet-shredding algorithms are

used: “Method-V (1%)”, “Method-V (5%)”, and “Method-V (10%)”.
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Table 2.5: Summary statistics for daily returns.

η = 1% η = 5% η = 10% No Shredding

Panel A: Model without arbitrager

Mean 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

St.dev 0.005 0.010 0.012 0.021
(0.001) (0.001) (0.001) (0.005)

Skewness 0.252 0.722 0.451 8.564
(140) (74) (61) (178)

Kurtosis 0.927 0.338 0.281 7.331
(1.745) (0.632) (0.556) (10.421)

Panel B: Model with arbitrager

Mean 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002)

St.dev 0.022 0.017 0.017 0.021
(0.002) (0.002) (0.002) (0.005)

Skewness -1.152 -0.497 -0.457 8.564
(46) (48) (49) (178)

Kurtosis 0.517 0.229 0.171 7.331
(0.943) (0.553) (0.556) (10.421)

Table reports statistics for simulated daily returns such as mean, standard
deviation, skewness, and kurtosis for different models of bet shredding:
“Method-V (1%)”, “Method-V (5%)”, “Method-V (10%)”, and no bet shredding.
Panel A presents results for the model without arbitragers. Panel B
presents results for the model with arbitragers. The simulation consists
of *** 90-day paths.
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Table 2.6: Calibrated bet-shredding parameters.

Group 1 Group 3 Group 5 Group 8 Group 10

Decade 1950-1960

W 101 517 967 1,926 5,925
η̂ 8.875 6.288 6.500 3.675 3.225

Decade 1960-1970

W 277 1,650 3,375 6,999 26,727
η̂ 9.400 6.888 5.200 4.013 2.588

Decade 1970-1980

W 210 2,249 5,103 11,519 39,913
η̂ 9.40 6.89 5.20 4.01 2.59

Decade 1980-1990

W 1,176 12,893 29,588 70,470 271,798
η̂ 9.17 4.84 3.71 2.79 1.59

Decade 1990-2000

W 2,895 38,104 88,975 245,021 1,232,159
η̂ 8.36 4.22 3.46 2.52 1.66

Decade 2000-2010

W 8,640 190,720 468,578 1,364,880 6,704,911
η̂ 6.34 2.94 2.41 1.79 1.37

Decade 2010-2017

W 18,363 411,722 940,703 2,216,188 7,141,896
η̂ 5.04 2.69 2.32 1.80 1.39

Table presents calibrated parameter η and trading activity W for the me-
dian stocks in the five trading activity groups and for each decade for the
period 1950 through 2017.
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Table 2.7: Implied execution horizons.

Group 1 Group 3 Group 5 Group 8 Group 10

Panel A: Decade 1990-2000

W 2,895 38,104 88,975 245,021 1,232,159
η̂ 8.36 4.22 3.46 2.52 1.66
std-1 0.02 0.01 0.01 0.00 0.00
std-2 0.11 0.04 0.02 0.02 0.01
std-3 0.55 0.18 0.12 0.08 0.04
std-4 2.69 0.91 0.60 0.39 0.17
std-5 13.22 4.44 2.93 1.92 0.85
std-6 64.86 21.80 14.36 9.42 4.16
std-7 318.23 106.96 70.46 46.22 20.39

Panel B: Decade 2010-2017

W 18,363 411,722 940,703 2,216,188 7,141,896
η̂ 5.04 2.69 2.32 1.80 1.39
std-1 0.01 0.00 0.00 0.00 0.00
std-2 0.03 0.01 0.01 0.00 0.00
std-3 0.16 0.04 0.03 0.02 0.01
std-4 0.79 0.19 0.12 0.09 0.05
std-5 3.86 0.91 0.61 0.44 0.26
std-6 18.93 4.46 2.98 2.17 1.29
std-7 92.87 21.88 14.63 10.65 6.32

Table presents implied execution horizons for bets of different sizes for
different trading activity groups and time periods. There are calibrated
parameter η, trading activity W , and execution horizons (in minutes) for 1
through 7 standard deviation bets.



Chapter 3

Size of Share Repurchases and

Market Microstructure

3.1 Introduction

Share repurchases are among the most important corporate decisions. This study

concerns what determines the size of repurchase programs and interprets these pro-

grams in the context of the market microstructure, as bets on the valuation of

companies that managers place in the marketplace. Inspired by market microstruc-

ture invariance of Kyle and Obizhaeva (2016), the study documents quantitative

empirical relationships between the size of share repurchase programs and trading

activity of company stocks, volatility, and the duration of repurchase programs.

According to invariance theory, stock trading can be described as a trading game,

in which market participants place bets on asseta. The number of bets and distri-

bution of their sizes differs across assets with different levels of trading volume and

volatility in a particular manner. If share repurchases are simply a special type

of buy bets, then the insights of invariance theory have to be applicable to these

corporate decisions as well. This interpretation of share repurchases allows us to

formulate several hypotheses about their sizes.

The first hypothesis of target size is based on the intuition that the size of a re-

purchase program is simply proportional to the size of bet, typical for the underlying

120
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stock market; it predicts that size of repurchase programs as a fraction of expected

trading volume is proportional to trading activity to the power of -2/3, where trading

activity is defined as the product of dollar volume and return volatility.

The second hypothesis of target imbalance says that the size of repurchase pro-

grams is proportional to some percentile of the expected sum of all buy bets that

company managers expect to generate over the duration of the repurchase program;

it predicts that size of repurchase programs as a fraction of expected trading volume

is proportional to trading activity to the power of -1/3 and also depends on the

duration of the repurchase program.

The third hypothesis of target cost says that the size of repurchase program is

determined by the execution costs of repurchases; it predicts that size of repurchase

programs as a fraction of expected trading volume is proportional to trading activity

to the power of -1/3 and also depends on the volatility of the underlying security.

I test the hypotheses using the sample of U.S. share repurchase programs over

the period from March 1985 to January 2014. I find that trading activity does

indeed have high explanatory power for the authorised and realised size of share

repurchase programs; the regression r-square is equal to 41 percent for authorised

sizes and 26 percent for realised sizes. The estimated coefficient on trading activity

is -0.33, which conforms to predictions of target imbalance and target (linear) cost

hypotheses. The formal statistical tests, however, reject these hypotheses.

I implement a formal model selection procedure with a Bayesian information

criterion. Target imbalances and target (linear) costs hypotheses fit repurchase

data best. Furthermore, the target imbalance hypothesis is selected on the open

market repurchase programs, which are the most popular type of such programs.

This paper relates to literature on corporate payout policies and share repur-

chases. Dittmar (2000) argues that companies repurchase shares for various reasons.

Firstly, there is market undervaluation theory. Vermaelen (1981), Brav et al. (2005),

Buffa and Nicodano (2008) argue that companies initiate share repurchases to signal

disagreement with current market valuations of their stocks. Ikenberry, Lakonishok

and Vermaelen (1995), Mitchell and Stafford (2000) document positive abnormal
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returns several years after repurchase announcements. Secondly, there is a free

cashflow theory of share repurchases. Jensen (1986), Jensen and Meckling (1976),

and Stephens and Weisbach (1998) argue that firms should distribute all available

cash to the shareholders through dividends or share repurchase to avoid agency costs

arising due to a conflict of interests between management and shareholders. Thirdly,

there is optimal corporate structure theory. Modigliani and Miller (1958), Bagwell

and Shoven (1988), and Opler and Titman (1996) argue that companies repurchase

shares to adjust their capital structures.

These theories identify several factors that influence share repurchase activity,

such as past performance of underlying stock, volatility of stock, free cashflows,

and market capitalization of the company. I assess the explanatory power of these

theories relative to the hypotheses motivated by invariance theory. I find that the

R2 of regression specification that includes only trading activity equals 41 percent.

Adding control motivated by theories of share repurchases increases the R2 by 12

percent. It implies that trading activity of the stock is an important determinant of

the size of a share repurchase program.

This paper also contributes to growing literature on market microstructure in-

variance. Kyle and Obizhaeva (2016) introduce market microstructure invariance

principles that explain a substantial fraction of the cross-sectional and time-series

variation in bet size and transaction costs across stocks. Kyle and Obizhaeva (2017c)

derive invariance relationships in the infinite-horizon model of informed trading,

noise trading, market making, and endogenous production of information. Kyle and

Obizhaeva (2017a) establish invariance principles through dimensional analysis ar-

guments. Andersen et al. (2014) document robust empirical patterns of intra-day

trading in E-mini futures S&P 500 futures market. Kyle et al. (2011) apply invari-

ance intuition to explain cross-sectional and time-series variation in news arrival

rates. Bae et al. (2014) uncover invariant patterns in Korean stock market data.

Kyle and Obizhaeva (2017b) apply invariance motivated market impact costs to ex-

plain market crashes. Kyle, Obizhaeva and Tuzun (2016) apply invariance principles

to explain the number of trades and the distribution of trade sizes in the Trades and
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Quotes database.

The rest of the paper is organized as follows. Section I provides a brief description

of key principles of the market microstructure invariance framework and formulates

three hypotheses about distribution of the size of repurchase program. Section II

describes the data used in empirical tests. Section III empirically tests the hypothe-

ses, selects the model that best fits the data, and compares alternative determinants

of size of share repurchase programs. Section IV concludes the discussion.

3.2 Share repurchases and invariance

This section reviews market microstructure invariance and suggests several ways of

how one can think about sizes of share repurchase programs in the context of this

paradigm.

3.2.1 Review of market microstructure invariance

Market participants such as institutional and retail investors trade for various rea-

sons. They trade to profit on their information or to meet their hedging needs.

Invariance theory implies that the order flow of stocks is determined by risky bets.

Bets arrive into market place according to the Poisson process with expected num-

ber of bets per day γ. The size of the bet Q is measured in shares. It is positive

for buy and negative for sell bets. The order flow of stocks differs according to how

many bets arrive and to the distribution of bet size.

Kyle and Obizhaeva (2017c) express bet size Q̃, expected number of bets γ, and

execution cost of bet of size Q, C(Q), in terms of observable trading activity of the

stock W .

W = P · V · σ, (3.1)

where σ is the volatility of the stock, V is trading volume of the stock, and P is its

price level.
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The distribution of bet size Q̃ as a fraction of expected daily trading volume

V adjusted for trading activity of stock as Q̃
V

· W 2/3 has invariant distribution. It

implies that
Q̃

V
∼ W −2/3 · Ĩ , (3.2)

where Ĩ is a random variable with an invariant probability distribution. Kyle and

Obizhaeva (2016) use the sample of portfolio transition trades in the U.S. stock

market over the period from 2001 to 2005 and calibrate the distribution of bet size.

They find that Ĩ is close to a log-normal distribution with log-variance σ2
Q = 2.53.

The expected number of bets γ is predicted to be proportional to W 2/3,

γ ∼ W 2/3. (3.3)

The execution cost of a bet of size Q, C(Q), is predicted to be

C(Q) = σ · W −1/3 · ı2 · C̄B · f

(

W 2/3

ı
· Q

V

)

, (3.4)

where f(·) is the invariant average cost function and ı := (E[ ˜|I|])−1/3 and C̄B are

some constants. Invariance is consistent with any functional form of f(·), but most

often assume linear or square root cost functions.

For the benchmark stock with daily returns volatility σ∗ = 2%, trading volume

V ∗ = 106 shares, price P ∗ = $40, and trading activity W ∗ = 800, 000 there are on

average γ∗ = 85 bets per day, the average size of bet is equal to 33, 000 shares, and

the execution cost of an average sized bet for a linear cost model is equal to 14 basis

points.

3.2.2 Share repurchases hypotheses

Under the assumption that company management actively participates in the trad-

ing process of company’s stock, I formulate three hypotheses about the size of share

repurchase programs.
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Hypothesis 1: target size hypothesis. The first hypothesis says that a share

repurchase program represents a buy bet that the company executes in the market.

Thus, the invariance predictions have to apply to the size of repurchase program.

Let X denote the size of repurchase program. Equation (3.2) implies the following

relation between the size of the repurchase and trading activity of the underlying

stock.

X

V
∼ W −2/3 · Ĩ. (3.5)

The size of repurchase program as a fraction of expected daily volume adjusted for

trading activity of stock has invariant distribution.

This hypothesis can be tested with the following log-linear regression using the

panel of share repurchase programs.

ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ǫ̃it, (3.6)

where Xit denotes the size of share repurchase program i initiated at time t. At time

t the stock i has expected daily trading volume Vit, expected price level Pit, expected

daily return volatility σit, expected trading activity Wit, and trading activity of the

benchmark stock W ∗ = 800, 000. Target size hypothesis predicts that αW = −2/3

in regression model (3.6).

Hypothesis 2: target imbalance hypothesis. The second hypothesis says that

the size of repurchase program is related to total size of buy bet-ideas that the

company is expected to generate over the duration of a repurchase program.

Let T denote duration of repurchase program. It is most likely that a manager

will come up with several bets on the company over the length of a repurchase

program. For example, over a three year repurchase program the company generates

the following bets. In the first year the company decides to buy back 1 million

shares since it believes that its stock is undervalued. In the second year the firm

repurchases 400,000 shares to adjust its capital structure. In the third year the
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company repurchases 600,000 shares to pay back cash to its shareholders. In this

case T = 3 and the size of repurchase program is equal to X = 1, 000, 000+400, 000+

600, 000 = 2, 000, 000 shares.

Target imbalance hypothesis asserts that at the announcement of a repurchase

program, the size of program may reflect forward looking estimates of the total size

of buy bets that the company expects to generate over the duration of the program.

Let γf denote the expected number of bets that management of a company is

expected to generate every day. The actual number of bets that a company generates

γ̃f is a random variable that has a Poisson distribution with expected number of

bets γf . I assume that the expected number of bets that a company generates γf is

proportional to expected number of bets in the underlying stock market γ.

γf = zf · γ, (3.7)

where zf denotes some proportionality constant.

Suppose that on day t the manager of the company generates γ̃ft = γft bets

Q̃1t = Q1t, Q̃2t = Q2t, ..., Q̃γftt = Qγftt. Since the number of bets and their sizes are

random variables, the bet imbalance at time t Ψ̃t - a sum of all bets that company

generates at time t - is a random variable as well.

Ψ̃t =
γ̃ft
∑

i=1

Q̃it. (3.8)

Suppose the size of repurchase program represents some upper percentile estimate

of the distribution Ψ̃t, such as the 95th percentile of total bet imbalance. Therefore,

the manager should estimate the standard deviation of bet imbalance Ψ̃t. I apply the

law of total variance to equation (3.8) to estimate variance of daily bet imbalance.

Var
[

Ψ̃t

]

= E



Var





γ̃ft
∑

i=1

Q̃it







+ Var



E





γ̃ft
∑

i=1

Q̃it







 . (3.9)

The second term in equation (3.9) is equal to zero, since the average size of each bet

Q̃it is equal to zero E

[

Q̃it

]

= 0 and E

[

∑γ̃ft

i=1 Q̃it

]

= 0.
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Since the number of bets has a Poisson distribution with expected number of

bets γf , I apply equation (3.11) and compute the first term of equation (3.9) as

E



Var





γ̃ft
∑

i=1

Q̃it







 =
∞
∑

k=1

Var





γ̃ft
∑

i=1

Q̃it

∣

∣

∣

∣

γ̃ft = k



 · γk
f

k!
· e−γf = (3.10)

= Var
[

Q̃it

]

·
∞
∑

k=1

k · γk
f

k!
· e−γf = γf · Var

[

Q̃it

]

.

Since bets are independent, the variance of bet imbalance conditional on the number

of bets equals

Var





γ̃ft
∑

i=1

Qit

∣

∣

∣

∣

γ̃ft = k



 = k · Var[Q̃it]. (3.11)

Since the share repurchase program lasts for T days, I calculate standard deviation

of bet imbalance generated by the company over the T days of the program Ψ̃(T ).

Substituting (3.7) and (3.10) into (3.9), gives the following standard deviation of

bet imbalance.

std
[

Ψ̃(T )
]

=
√

T · γf · Var
[

Q̃it

]

. (3.12)

If the size of repurchase program is proportional to the standard deviation of bet

imbalance that the company is expected to generate over the T days of share repur-

chase program, then

X̄ ∼
√

T · γf · Var
[

Q̃it

]

. (3.13)

For example, the proportionality constant may be equal to 1.96 if the manager wants

to target the 95th percentile.

Finally, I express the authorised size X of share repurchase program as a fraction

of daily volume V . I substitute equations (3.2), (3.3), and (3.7) into equation (3.13).

X̄

V
∼

√

√

√

√

T · γ ·
Var

[

Q̃it

]

V 2
∼

√
T · W −1/3. (3.14)

This hypothesis can be tested with the following log-linear regression using the panel
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of share repurchase programs

ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ατ · ln(Tit) + ǫ̃it. (3.15)

Target imbalance hypothesis predicts that αW = −1/3 and ατ = 1/2 in the regres-

sion model (3.15).

Hypothesis 3: target cost hypothesis. The execution cost of share repurchase

program is an important factor. The third hypothesis asserts that managers choose

the size of repurchase program to target the percentage execution cost of share

repurchase program, zc. For example, the company may want to repurchase 1 million

shares and target execution cost of 50 basis points. In this case, X = 1, 000, 000

shares and zc = 50 basis points. I apply invariance percentage cost formula (3.4) to

formalise this hypothesis. Inverting equation (3.4), I express the size of repurchase

program X as a fraction of expected daily volume V as

X

V
= ı · W −2/3 · f−1

(

zc · σ−1 · W 1/3 · 1
ı2 · C̄B

)

. (3.16)

Next, I assume that execution cost function f(x) has a power functional form,

f(x) = λ · xβ. (3.17)

The literature typically considers linear and square root market impact functions,

as in Kyle (1985) and Gabaix et al. (2006), respectively. The linear execution cost

function corresponds to the case of β = 1. The square root execution cost function

corresponds to the case of β = 1/2. The inverse of the power function (3.17) is

f−1(x) =
(

x
λ

) 1
β .

Substituting equation (3.17) into equation (3.16), yields the size of repurchase

program as a fraction of trading volume,

X

V
∼ σ− 1

β · W
1−2·β

3·β . (3.18)
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For the linear execution costs function β = 1 and expression (3.18) simplifies to

X

V
∼ σ−1 · W −1/3. (3.19)

For the square root execution costs β = 1/2 and expression (3.18) simplifies to

X

V
∼ σ−2. (3.20)

This hypothesis can be tested with the following log-linear regression using the panel

of share repurchase programs

ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ασ · ln(σit) + ǫ̃it. (3.21)

Target cost hypothesis makes the following predictions for the cases of linear and

square root execution cost functions. For the case of linear cost function αW = −1/3

and ασ = −1 in the regression model (3.21). For the case of square root cost function

αW = 0 and ασ = −2 in the regression model (3.21).

3.2.3 Nested models

All hypotheses make different predictions about the relationship between size of

repurchase program and trading activity of the underlying stock. The target size

hypothesis (3.6), target imbalance hypothesis (3.15), and both target cost hypothe-

ses (3.21) may be described by the nested regression model

ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ατ · ln(Tit) + ασ · ln(σit) + ǫ̃it. (3.22)

The target size hypothesis predicts that the only factor determining the size of re-

purchase program is trading activity of the stock, while the duration of a repurchase

program and volatility of the stock should not matter. It predicts that αW = −2/3,

while ατ = 0 and ασ = 0.
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The target imbalance hypothesis predicts that trading activity of the stock and

duration of repurchase program determine the size of the repurchase program, while

volatility of the stock should not matter. It predicts that αW = −1/3, while ατ =

1/2 and ασ = 0.

The target linear impact cost hypothesis predicts that trading activity of the

stock and volatility of the stock determine size of the repurchase program, while

duration of the program should not matter. It predicts that αW = −1/3, ατ = 1/2,

while ασ = 0.

Target square root impact cost hypothesis predicts that only volatility of the

stock should determine the size of the repurchase program, while trading activity

of the stock and duration of the repurchase program should not matter. It predicts

that αW = 0 and ατ = 0, while ασ = −2.

Table 3.1 summarizes hypotheses predictions for the nested regression (3.22).

Table 3.1: Hypotheses predictions

Hypothesis αW ατ ασ

1. Target size hypothesis -2/3 0 0

2. Target imbalance hypothesis -1/3 1/2 0

3. Target cost hypothesis:

Case 1: Linear cost -1/3 0 -1

Case 2: Square root cost 0 0 -2

In the next section I test these hypotheses empirically.

3.3 Data

I use data from the Securities Data Company Platinum (SDC) database on the U.S.

share repurchase programs covering period from March 1985 to January 2014. It

contains information about the date when a repurchase program was authorised by
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the board of directors, the end date of a repurchase program, the authorised size of

share repurchase program, the realised size of the program, methods of repurchase,

and reasons for share repurchase.

I merge the repurchase database with information on trading activity of the

underlying stock from the Center for Research in Securities Prices (CRSP) database

using 8-digit historical CUSIP numbers. Only US ordinary common shares (with

share codes 10 or 11) that are listed on NYSE, AMEX, Nasdaq, and NYSE Arca

are considered. At the initial merge stage I cannot match 3,477 observations and

exclude 2 observations due to obvious typographical errors. Furthermore, I exclude

2,069 observations because because information required for construction of the

explanatory variables is absent from the CRSP database. The resulting sample

contains 14,369 repurchase programs.

I estimate trading activity of stocks using CRSP data. For each share repurchase

program i, i = 1, ..., 14369, I estimate expected daily trading volume Vi of corre-

sponding stock as a sample average daily volume in a calendar month prior to the

authorisation date of the share repurchase program. I estimate expected volatility

of stock returns σi as a sample standard deviation of daily log-returns in a calendar

month before the initiation of the repurchase program. To account for possible stock

splits, I estimate expected dollar volume of the stock Pi ·Vi as an average daily dollar

trading volume in a calendar month before the share repurchase authorisation. I

estimate expected trading activity of the stock Wi as a product of expected dollar

volume and expected return volatility Wi = Pi · Vi · σi.

Trading activity of the stock may be affected by the initiation of a repurchase

program. For example, it may substantially increase the trading volume because

of amplified public attention. As a robustness check I also consider an alternative

estimate of expected trading activity and expected volume using data in the calendar

month prior to the completion of the share repurchase program. The results that

use alternative estimates are qualitatively and quantitatively similar to the base case

results. These results are available upon request.

I do analysis on the sample of U.S. repurchase programs and on three sub-
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periods. The first period is from March 1985 to December 2000. The second period

is from January 2001 to December 2007. The third period is from January 2008 to

September 2014.

The first period starts shortly after implementation of the safe-harbor Rule 10b-

18 by the Security and Exchange Commission in November 1982. Grullon and

Michaely (2002) argue that the new legislation stimulated repurchase activity in the

United States. The aggregate amount of cash spent on share repurchases tripled

a year after the adoption of this rule and the number of companies that initiated

share repurchases increased from 14 percent during the 1970s to 30 percent during

the 1990s.

The second period corresponds to the period of low dividend taxes introduced

by George W. Bush in 2001, also known as “Bush tax cuts”. Chetty and Saez (2006)

finds that the tax reduction from 35 percent to 15 percent resulted in a sharp increase

in the size of repurchase programs. Authors also established no substitution effect

between dividends and share repurchases.

The third period corresponds to the post 2008 financial crisis period. Adverse

economic conditions affect the payout policy of companies. As illustrated in Figure

3.1 the number of share repurchase programs that were initiated during the financial

crisis in the United States dropped from 700 to 500. The dollar size of repurchase

programs experienced a sharp decline from $8 billions in 2008 to $3 billions in 2009.

Share repurchase activity recovered to the pre-crises levels in 2010.

Table 3.2 reports characteristics of the considered sample of share repurchase

programs over the period from 1985 to 2000 as well as for the three sub-periods.

Panel A of Table 3.2 reports characteristics such as the authorised size of repur-

chase programs, the realised size of repurchase programs, and the duration of the

programs. Over the considered period the median authorised size of repurchase pro-

gram is 1.76 million shares. It increased from 1 million shares in the first period to

4 million shares in the third period. The Authorised size of repurchase program as

a fraction of trading volume, however, decreases from 31 in the first period to 12 in

the third period, because the trading volume of the stocks increases faster than size
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of repurchase program.

Usually companies do not repurchase all the shares that they are authorised to

repurchase. The median realised size of repurchase program is 1 million shares. It

increased from 0.69 million shares in the first period to 2 millions shares in the third

period.

I also estimate the duration of the repurchase program as the number of days

between the authorisation date and end date of the repurchase program. The median

duration of the program is 317 days. It decreased from 334 days in the first period to

248 days in the third period, which implies that companies are buying back shares

faster.

Panel B of Table 3.2 characterises trading activity of the stocks in the SDC

repurchases sample. Median daily dollar volume is $1.27 million. It increased from

$0.5 million in the first period to $8.6 million in the third period. Median daily

volatility of log returns is stable at 2%. Median trading activity of stocks is 30, 000.

Stocks become more actively traded over time, as trading activity increased from

12, 000 in the first period to 195, 000 in the third period.

Companies may use different methods to buy back their stocks. There are six dif-

ferent methods that companies usually use: open market, negotiated, Dutch auction

tender offers, accelerated, first price tender offers, and odd lot repurchases. Some-

times companies employ several methods to repurchase shares within one repurchase

program.

Table 3.3 provides summary statistics of share repurchase programs across differ-

ent repurchase methods. The most popular is open market repurchases. According

to Stephens and Weisbach (1998) open market share repurchase programs repre-

sent approximately 90 percent of the dollar value of all announced share repurchase

programs. Open market repurchases usually last around one year, which gives a

company flexibility on the timing and quantity of actual shares repurchased. The

median authorised size of share repurchases is 1.58 million shares and the num-

ber of actual shares repurchased by companies is 1 million shares. Consistent with

Stephens and Weisbach (1998), this study finds a completion rate of approximately
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64 percent of repurchase programs.

Dutch auction, accelerated and first price repurchases require commitment by

the company to repurchase shares. To achieve effective signaling, these repurchase

programs are larger and of shorter duration - usually around 2 months - than open

market share repurchase programs. The median authorised size is equal to 3.55

million shares for Dutch auction, 6.15 million shares for accelerated repurchases,

and 3.49 million shares for first price repurchases. The median total number of

shares repurchased is 2.29 million, 6.54 million, and 1.85 million shares for Dutch

auction, accelerated, and first price repurchases, respectively.

Another method is negotiated repurchases. Pursuing this method, a company

negotiates the deal privately and repurchases stock from one or a few large share-

holders. Dittmar (2000) suggests that this method is usually used to prevent a

takeover threat. On average negotiated repurchases last for approximately a year.

The median authorised size is 2.00 million shares and the median total number of

shares repurchased is 1.19 million shares.

Finally, some companies engage in odd-lot share repurchases to eliminate odd-lot

shareholders. Vermaelen (2000) argues that companies use this method to reduce

shareholder servicing costs. Odd-lot programs usually last about two months. Their

median authorised size is 1.6 million shares and the median total number of shares

repurchased is 1.00 million shares.

3.4 Results

This section tests the hypotheses concerning the size of repurchase programs and

discusses which model conforms best to the data.

3.4.1 Hypothesis testing

Figure 3.2 shows the relationship between the size of a share repurchase program

and the trading activity of the underlying stock. Panel A of Figure 3.2 displays

the logarithm of authorised sizes of repurchase programs on the x-axis versus the
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logarithm of trading activity of the stocks on the y-axis. Apart from the four out-

liers that correspond to small odd-lot repurchase programs, all observations cluster

tightly around the line with the slope of -1/3. This implies that trading activity

of stock has a high explanatory power for the authorised size of a share repurchase

program, which is consistent with implications of invariance theory.

Table 3.5 presents the estimates of regression (3.6) on the whole sample of repur-

chase programs over the period from 1985 to 2014 and the sub-periods from 1985

to 2000, from 2001 to 2007, and from 2008 to 2014. Panel A of Table 3.5 displays

results for the authorised size of repurchase program. On the whole sample of re-

purchase programs the estimated α̂W = −0.33 with a standard error of 0.005. Stock

trading activity explains 40 percent of variation in the authorised size of repurchase

programs. The estimated coefficient estimate α̂W is -0.30, -0.33, and -0.33 with stan-

dard errors of 0.01, 0.01, and 0.02 for the considered sub-periods. Trading activity

explains 28 percent, 45 percent, and 46 percent of total variation of the authorized

size of repurchase program over the considered sub-periods. The estimates are eco-

nomically close to -1/3. This is consistent with the predictions of target imbalance

and target costs hypotheses, but not with the target size hypothesis.

Table 3.5 presents the estimates of regression (3.6), controlling for time and

industry fixed effects, on the whole sample of repurchase programs over the period

from 1985 to 2014 and the sub-periods from 1985 to 2000, from 2001 to 2007, and

from 2008 to 2014. Panel A of Table 3.5 displays results for the authorised size of

repurchase programs. On the whole sample of repurchase programs the estimated

α̂W = −0.34 with a standard error of 0.007. The estimated coefficient α̂W is -0.32,

-0.33, and -0.36 with standard errors of 0.01, 0.01, and 0.01 respectively for the

considered sub-periods. The results are robust, controlling for time and industry

variation.

Figure 3.3 reports the estimates of regression (3.6) every year from 1994 to 2014.

I exclude 121 share repurchase programs that were initiated before 1994 to avoid

the problem of small sample bias. I find that estimate α̂W is outside 95 percent

confidence intervals of -1/3 in only 5 out of 20 years. Year by year estimates of α̂W
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are between -0.381 and -0.275.

The trading activity of stock appears to explain well the cross-sectional variation

in the authorised size of repurchase programs. The estimated α̂W is economically

close to -1/3. A formal F-test rejects the targeted size hypothesis that predicts that

αW = −2/3 on the whole sample of repurchase programs and over the considered

sub-periods. However, the above empirical findings are consistent with the target

imbalance and target execution costs hypotheses that predict αW = −1/3.

I also analyze relationship between trading activity of stock and the realised size

of repurchase programs. Panel B of Figure 3.2 displays the relationship between

the logarithm of the total number of shares repurchased on the y-axis versus the

logarithm of trading activity of the underlying stocks on the x-axis. Trading activity

does not explain well the total number of repurchased shares. Limited explanatory

power may be attributed to the endogous termination of share repurchase programs

that may be affected by various economic factors.

Panel B of Table 3.5 presents estimates of regression (3.6) for the realised number

of shares repurchased. On the whole sample of repurchase programs α̂W = −0.31

with a standard error of 0.007. The trading activity of the underlying stocks explains

26 percent of variation in the realised size of repurchase programs. The estimated

α̂W is -0.31, -0.27, and -0.29 with the standard errors of 0.01, 0.01, and 0.01 for the

considered sub-periods. Results, controlling for time and industry fixed effects, are

found to be robust.

I estimate the nested regression model (3.22) to test the predictions of the target

imbalance hypothesis and two specifications of the target costs hypothesis. Table

3.6 reports regression estimates for the total sample of repurchase programs and the

considered sub-periods. The estimate α̂W is economically close to -1/3. I find that

α̂τ = 0.22 with a standard error of 0.01 and α̂σ = −0.21 with standard error of

0.09. Estimates of α̂τ and α̂σ outside the 95 percent confidence interval predicted

by the target imbalance hypothesis are ατ = 0.5 and ασ = 0. The target imbalance

hypothesis is rejected with the joined F test. The estimates α̂τ and α̂σ are outside

the 95 percent confidence interval predicted by the target linear execution costs
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hypothesis, at ατ = 0 and ασ = −1. The target linear costs hypothesis is also

rejected with the joined F test. The estimate α̂W is outside the 95 percent confidence

interval predicted by the target square root execution costs hypothesis, at αW = 0.

The targeted square root costs hypothesis is rejected with the joined F test as well.

Table 3.7 reports estimates of nested regression (3.22) across different repurchase

methods: open market, negotiated, Dutch auction, accelerated, first price and odd

lot repurchases programs. For the sample of open market share repurchases, I find

α̂W = −0.328, α̂τ = 0.403, and α̂σ = −0.216 with clustered by year standard errors

of 0.006, 0.021, and 0.027, respectively. The estimates are economically close to

predicted αW = −1/3, ατ = 1/2, and ασ = 0. However, a formal joint F test rejects

the target imbalance hypothesis with F statistics of 41. The target imbalance and

both specifications of the target costs hypothesis are also rejected with the F test.

I find no evidence that supports the considered hypotheses for negotiated, Dutch

auction, accelerated, first price and odd lot repurchase programs. Although formal

statistical tests reject the considered hypotheses, open market repurchase programs

conform to the target imbalance hypothesis.

3.4.2 Model selection

Next I implement model selection with Bayesian information criterion to identify

which model best conforms with the data. I estimate the Bayesian information cri-

terion on the total sample of repurchase programs and sub-samples that correspond

to different repurchase methods. BIC = −2 ln L̂+k · ln(n), where L̂ is the likelihood

of the corresponding regression model, k is the number of parameters in the model,

and n is the number of observations. For the target size hypothesis, k is equal to

1. For the target imbalance and both target costs hypotheses, k is equal to 2. The

model that has the lowest estimate of BIC describes data the best.

Table 3.8 reports the results of model selection. The Bayesian information crite-

ria selects the target imbalance hypothesis on the total sample of share repurchase

programs and sub-samples of open market, first price, Dutch auction, and odd lot
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repurchase programs. The target size hypothesis is selected only for the case of

accelerated share repurchases. The Target cost hypothesis (linear case) is selected

for negotiated and accelerated share repurchases.

3.4.3 Alternative hypotheses

Previous sections established that trading activity of the stock is an important factor

determining the size of a share repurchase program. In this section I consider other

factors motivated by alternative theories and assess their explanatory power relative

to the considered hypotheses inspired by invariance theory.

The literature on share repurchases identifies several factors that influence share

repurchase activity of companies. Firstly, signalling and market undervaluation

theories imply that a company repurchases its shares after a period of underperfor-

mance when the stock is undervalued. It predicts a negative relation between past

performance of the stock and the size of repurchase program. This study uses past

log-return of stock over three months R3m
it to assess signalling theory.

Secondly, free cashflow theory implies that a company repurchases its shares

when it has excess cash to avoid an agency problem. It predicts that cash of the

company should be positively related to the size of its share repurchase program.

Consistent with Stephens and Weisbach (1998), I use the cash of the company in

the quarter before the repurchase announcement Cit−1 reported in Compustat as a

proxy for free cashflows of the company to assess the free cashflow theory.

Thirdly, targeted corporate structure theory predicts that a company repurchases

its shares to alter its debt-to-equity ratio. It implies that the size of repurchase

program relates negatively to the leverage of the company and the volatility of its

stock σit. I use the volatility of the stock σit to assess targeted corporate structure

theory.

Fourthly, the study examines the economy of scale argument, implying that a

company may repurchase more shares when it has a larger market capitalisation

Mit. I use the market capitalization of the company Mit to assess the economy of
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scale argument.

Finally, I consider the target size, the target imbalance, and both target costs

hypotheses. These hypotheses state that trading activity of the underlying stock Wit,

volatility of the stock σit, and duration of a repurchase program τit determine the

size of repurchase program. I use these variables to assess the invariance motivated

hypotheses.

To assess explanatory power of different theories, I estimate the nested regression

model

ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ατ · ln [Tit] + ασ · ln
[

σit

σ∗

]

+

+α3m · R3m
it + α$ · Cit−1 + αM · Mit + ǫ̃it.

(3.23)

I assess the explanatory power of the alternative theories relative to the baseline

cases of regression (3.23) that corresponds to target imbalance and target costs

(linear case) hypotheses. The baseline specification corresponds to regression (3.23)

with imposed constraints on regression coefficients αW = −1/3, ατ = 0, ασ = 0,

α3m = 0, α$ = 0, and αM = 0. To assess the explanatory power of alternative

theories, I compare how much the R2 increases relative to the R2 in the base case

specification.

Table 3.9 reports estimates of regression (3.23) for specifications that correspond

to the considered theories. Column (3) of Table 3.9 assesses signalling and market

undervaluation theory. Consistent with the prediction of the theory, I find that

the size of repurchase program is negatively related to past performance of the

underlying stock. However, after controlling for trading activity W of the stock,

the estimated coefficient α̂3m = −0.2 is not statistically significantly different from

zero. Regression specification that controls for past performance increases R2 by 3

percent relative to the baseline specification that has R2 = 41 percent.

Column (4) of Table 3.9 assesses free cashflow theory. Consistent with the pre-

diction of the theory, I find that the size of repurchase program is positively related
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to the cash of the company. However, after controlling for trading activity W of

the stock, the estimated coefficient α̂$ = 0.4 is not statistically significantly different

from zero. The regression specification that controls for the cash of the company

increases R2 by 4 percent relative to the baseline specification that has R2 = 41

percent.

Column (1) of Table 3.9 assesses targeted corporate structure theory. Consis-

tent with the prediction of the theory, I find that the size of repurchase program is

negatively related to volatility of the underlying stock. After controlling for trading

activity W of the stock, estimated coefficient α̂σ = −0.32. The regression specifi-

cation that controls for volatility of the company’s stock increases R2 by 5 percent

relative to the baseline specification that has R2 = 40 percent.

Column (5) of Table 3.9 assesses the economy of scale argument. Consistent with

this argument, I find that the size of repurchase program is positively related to the

market capitalization of the company. After controlling for trading activity W of

the stock, the estimated coefficient α̂M = 0.02. The regression specification that

controls for cash of the company increases R2 by 6 percent relative to the baseline

specification that has R2 = 40 percent.

The regression specification that includes the five considered control variables has

R2 = 53 percent, which is 12 percent higher than the baseline regression specification

that controls only for trading activity of the underlying stock. Applying Occam’s

razor principle, the trading activity of the underlying stock is the key factor that

explains variation in the size of share repurchase programs.

3.5 Conclusion

This paper proposes an innovative way to think about company share repurchases.

Using the insights of market microstructure invariance of Kyle and Obizhaeva (2016),

I interpret companies’ share repurchases as buy bets placed by the company manage-

ment and formulate three hypotheses about the size of repurchase programs: target

size, target imbalance, and target cost hypotheses. I find that trading activity of
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the stock is an important determinant of the size of a share repurchase program.

Formal tests establish that target imbalances and target (linear) costs hypotheses fit

repurchase data the best. Furthermore, the target imbalance hypothesis is selected

on the open market repurchases – the most popular type of repurchase programs.

In future research would be interesting to analyse other corporate decisions,

such as secondary share issuances and dividend payouts, from the perspective of

market microstructure invariance. For example, share issuances may represent sell

bets placed by the company management. Similar to the analysis of this paper, I

conjecture that the sizes of secondary issuance programs depend on trading activities

of the stocks.
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3.6 Tables and figures

Figure 3.1: Historical share repurchase activity.

Figure 3.1 displays historical yearly share repurchase activity of US com-

panies over period from 1994 to 2014. Panel A displays average size of

repurchase program ( in billions of dollars). Panel B displays number of

repurchase programs initiated.
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Table 3.2: Descriptive statistics.

ALL 1985-2000 2001-2007 2008-2014

Panel A: Repurchase program characteristics

X̄ 1.76 1.00 2.20 3.93
X̄/V 21.97 30.82 16.53 12.10
X 1.02 0.69 1.50 2.10
X/V 14.36 21.69 11.55 6.66
Duration 317 334 334 248

Panel B: Stock characteristics

V · P 1.27 0.48 3.83 8.59
σ 0.022 0.024 0.019 0.023
W 30.5 11.8 80.7 194.9

#Obs. 14,182 5,751 5,616 2,815

Table 3.2. Table describes the SDC Platinum sample of share repurchase

programs over the period from January 1985 to January 2014 and three

sub-periods from 1985 to 2000, from 2001 to 2007, and from 2008 to 2014.

Panel A reports characteristics of share repurchase programs, such as the

median authorised size of share repurchase program X̄ (in millions of shares

and as a fraction of daily volume), the median realised size of share repur-

chase program X (in millions of shares and as a fraction of daily volume),

and the median duration of repurchase program (in days).Panel B reports

characteristics of the repurchased stock, such as the median average daily

dollar volume (in millions of dollars), the median daily volatility, and the

median expected trading activity (in thousands of dollars).
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Table 3.3: Descriptive statistics by repurchase method.

X̄ X Duration #Obs.
Open Market 1.58 1.00 351 12,965
Negotiated 2.00 1.19 327 6,730
Dutch Auction 3.55 2.29 34 342
Accelerated 6.15 6.54 66 162
First Price 3.49 1.85 37 164
Odd Lot 1.59 1.00 41 272

Table 3.3. Table presents characteristics of the SDC Platinum share re-

purchase programs over the period from January 1985 to January 2014 for

different share repurchase methods. The median authorised size of share

repurchase program X̄ ( in millions of shares), the median realised size of

share repurchase program X̄ ( in millions of shares), and the median dura-

tion of repurchase program ( in days) are reported for different types of

share repurchases.
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Figure 3.2: Sizes of share repurchase programs versus trading activity of stocks

Figure 3.2 visualizes relationship between the logarithm of the size of

share repurchase program and trading activity of stocks. Panel A displays

relation between the logarithm of authorised size of share repurchase pro-

gram ln(X̄) on the y-axis and logarithm of trading activity of the stock

ln(W ). Panel B displays relation between the logarithm of the realised size

of share repurchase program ln(X) on the y-axis and logarithm of trading

activity of the stock ln(W ).
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Table 3.4: Size of repurchase program and trading activity.

All 1985-2000 2001-2007 2008-2014

PANEL A: Authorised size

α̂0 2.014*** 2.22*** 1.95*** 1.883***
(0.037) (0.044) (0.017) (0.05)

α̂W -0.329*** -0.303*** -0.327*** -0.332***
(0.005) (0.008) (0.007) (0.017)

R2 40% 28% 45% 45%
# Obs. 14,200 6,703 4,677 2,820

PANEL B: Realised size

α̂0 1.595*** 1.768*** 1.624*** 1.314***
(0.052) (0.064) (0.061) (0.074)

α̂W -0.311*** -0.306*** -0.273*** -0.289***
(0.007) (0.010) (0.011) (0.010)

R2 26% 20% 23% 24%
# Obs. 11,884 6,018 3,949 1,917

Table 3.4 presents estimation of regression: ln
[

Xit

Vit

]

= α0 +αW · ln
[

Wit

W ∗

]

+ ǫ̃it on

total sample of share repurchase programs and sub-samples corresponding

to periods 1985-2000, 2001-2007, and 2008-2014. Panel A reports estimation

for the authorised size of share repurchase program. Panel B reports

estimation for the realised size of share repurchase program. Stock has

expected daily volume Vit, expected price level Pit, expected daily return

volatility σit, expected trading activity, Wit. The benchmark stock has

expected trading activity W ∗. I report estimates α̂0 and α̂W along with

standard errors that are clustered at industry group, regression R2 and

number of observations. Statistical significance at the 1%, 5% and 10%

levels is denoted by *, **, and *** respectively.
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Table 3.5: Size of repurchase program and trading activity.

All 1985-2000 2001-2007 2008-2014

PANEL A: Authorised size

α̂0 2.273*** 3.033*** 0.686*** 2.643***
(0.067) (0.09) (0.000) (0.320)

α̂W -0.335*** -0.321*** -0.333*** -0.358***
(0.007) (0.010) (0.008) (0.014)

FE Yes Yes Yes Yes

R2 44% 33% 48% 49%
# Obs. 14,200 6,703 3,949 1,917

PANEL B: Realised size

α̂0 1.478*** 4.33*** 1.007*** 2.037***
(0.121) (0.323) (0.075) (0.160)

α̂W -0.293*** -0.302*** -0.269*** -0.306***
(0.007) (0.013) (0.011) (0.011)

FE Yes Yes Yes Yes

R2 30% 25% 28% 29%
# Obs. 11,884 6,018 3,949 1,917

Table 3.5 presents estimation of regression: ln
[

Xit

Vit

]

= α0+αW ·ln
[

Wit

W ∗

]

+Zit+ ǫ̃it

on total SDC share repurchase sample and sub-samples that correspond

to periods from 1985 to 2000, from 2001 to 2007 and from 2008 to 2014.

Panel A reports estimation for the authorised size of share repurchase

program. Panel B reports estimation for the realised size of share re-

purchase program. Stock has expected daily volume Vit, expected price

level Pit, expected daily return volatility σit, expected trading activity,

Wit. The benchmark stock has expected daily volume of 1 million shares,

expected price level $40, expected daily return volatility of 2%, and ex-

pected trading activity W ∗. Regression includes time and industry fixed

effects Zit. I report estimates α̂0 and α̂W and standard errors that are

clustered by industry group, regression R2 and number of observations.

Statistical significance at the 1%, 5% and 10% levels is denoted by *, **,

and *** respectively.
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Figure 3.3: Size of repurchase program and trading activity (yearly).

Figure 3.3 presents year by year estimation of regression: ln
[

Xit

Vit

]

=

α0 + αW · ln
[

Wit

W ∗

]

+ Zit + ǫ̃it on total SDC share repurchase sample over the

period from 1994 to 2014. Where Xit is an authorised size of a repurchase

program and Vit, Pit, σit, and Wit are expected daily trading volume, ex-

pected price level, expected daily return volatility, and expected trading

activity of the stock, respectively. The benchmark stock has expected

daily volume of 1 million shares, expected price level $40, expected daily

return volatility of 2%, and expected trading activity W ∗. Panel A

displays year by year variation of estimates α̂W (green circles) with a

95% confidence interval. Red dashed line displays the -1/3 level. Panel B

displays year by year estimates α̂0 (green circles) with a 95% confidence

interval.
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Table 3.6: Nested regression.

All 1985-2000 2001-2007 2008-2014

PANEL A: Authorised size

α̂0 0.888*** 0.844*** 0.971*** 1.176***
(0.082) (0.172) (0.084) (0.092)

α̂W -0.333*** -0.316*** -0.326*** -0.348***
(0.013) (0.015) (0.012) (0.012)

α̂τ 0.217*** 0.254*** 0.193*** 0.147***
(0.013) (0.026) (0.010) (0.021)

α̂σ -0.210** -0.287*** -0.186** -0.144
(0.094) (0.094) (0.105) (0.087)

R2 47% 37% 50% 49%
# Obs. 12,351 5,367 5,010 1,974

PANEL B: Realised size

α̂0 0.328*** 0.434*** 0.382*** 0.579***
(0.082) (0.169) (0.114) (0.149)

α̂W -0.318*** -0.313*** -0.283*** -0.303***
(0.007) (0.013) (0.011) (0.018)

α̂τ 0.239*** 0.259*** 0.231*** 0.145***
(0.011) (0.024) (0.016) (0.026)

α̂σ -0.492*** -0.573*** -0.497*** -0.399***
(0.107) (0.110) (0.129) (0.084)

R2 33% 29% 33% 28%
# Obs. 11,884 5,187 4,780 1,917

Table 3.6 presents estimation of regression model presents estimation of re-

gression: ln
[

Xit

Vit

]

= α0+αW ·ln
[

Wit

W ∗

]

+ατ ·ln(Tit)+ασ ·ln(σit)+Zit + ǫ̃it on total SDC

share repurchase sample and sub-samples that correspond to periods from

1985 to 2000, from 2001 to 2007 and from 2008 to 2014. Panel A presents es-

timation for authorised size of share repurchase program. Panel B presents

results for total number of shares repurchased in the program. Stock has

expected daily volume Vit, expected price level Pit, expected daily return

volatility σit, and expected trading activity, Wit. The benchmark stock

has expected daily volume of 1 million shares, expected price level $40,

expected daily return volatility of 2%, and expected trading activity W ∗.

Regression includes time and industry fixed effects Zit. I report estimates

α̂0, α̂W , α̂τ and α̂σ, standard errors that are clustered by industry group,

regression R2 and number of observations. Statistical significance at the

1%, 5% and 10% levels is denoted by *, **, and *** respectively.
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Table 3.7: Nested regression across repurchase types.

Open Negotiated Dutch Accelerated First Odd

market auction price Lot

PANEL A: Authorised size

α̂0 -1.105*** 0.347 1.731*** 0.807 2.919*** 3.991***
(0.180) (0.123) (0.502) (0.531) (0.445) (0.761)

α̂W -0.328*** -0.358*** -0.419*** -0.396*** -0.412*** -0.374***
(0.006) (0.008) (0.024) (0.048) (0.031) (0.039)

α̂τ 0.403*** 0.177*** 0.062 0.010 0.152 -0.096
(0.021) (0.018) (0.058) (0.026) (0.094) (0.118)

α̂σ -0.216*** -0.182*** -0.123 -0.218 0.238 0.420***
(0.027) (0.029) (0.090) (0.125) (0.121) (0.188)

R2 54% 50% 63% 28% 62% 26%
# Obs. 10,719 5,614 307 113 137 203

PANEL B: Realised size

α̂0 -1.613*** 0.592*** 1.939*** 1.621*** 1.995*** 1.754***
(0.191) (0.080) (0.314) (0.252) (0.433) (0.554)

α̂W -0.309*** -0.342*** -0.428*** -0.279*** -0.418*** -0.437***
(0.011) (0.009) (0.024) (0.160) (0.048) (0.050)

α̂τ 0.557*** 0.179*** 0.022 0.029 0.092 -0.126
(0.037) (0.014) (0.080) (0.058) (0.109) (0.151)

α̂σ -0.523*** -0.438*** -0.150 -0.404 0.103 0.134
(0.077) (0.101) (0.112) (0.236) (0.225) (0.218)

R2 43% 34% 43% 15% 44% 22%
# Obs. 10,719 5,431 306 107 125 197

Table 3.7 presents estimation of regression model presents estimation of

regression ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ ατ · ln(Tit) + ασ · ln(σit) + Zit + ǫ̃it for dif-

ferent types of share repurchases, such as open market, negotiated, dutch

auction, first price, and odd lot repurchases in SDC Platinum database

over the period from 1985 to 2014. Panel A presents estimation for au-

thorised size of share repurchase program. Panel B presents results for

total number of shares repurchased in the program. Stock has expected

daily volume Vit, expected price level Pit, expected daily return volatility

σit, and expected trading activity, Wit. The benchmark stock has expected

daily volume of 1 million shares, expected price level $40, expected daily

return volatility of 2%, and expected trading activity W ∗. Regression in-

cludes time and industry fixed effects Zit. I report estimates α̂0, α̂W , α̂τ

and α̂σ, standard errors that are clustered by industry group, regression

R2, and number of observations. Statistical significance at the 1%, 5% and

10% levels is denoted by *, **, and *** respectively.
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Table 3.8: Model selection.

Target size Target imbalance Target cost

Linear Square root

All 44,299 38,433 39,588 41,282
Open Market 40,031 30,819 35,328 41,282
Negotiated 19,691 17,927 17,866 20,918
Dutch Auction 941 852 914 1,107
Accelerated 313 408 319 374
First Price 466 421 473 556
Odd Lot 877 859 877 942

Table 3.8 reports the results of model selection according to bayesian

information criteria for different types of repurchase programs, such

as open market, negotiated, dutch auction, accelerated, first price, and

odd lot repurchase programs. Considered models are bet hypothesis, tar-

geted imbalance hypothesis, and two versions of targeted cost hypothesis.

Bayesian information criteria BIC = −2 ln L̂ + k · ln(n), where L̂ is likelihood,

k is number of parameters in a model and n is number of observations. Best

fitted model is highlighted in bold.
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Table 3.9: Alternative hypotheses.

(1) (2) (3) (4) (5) (6)

Panel A: Unrestricted specification

α̂0 2.200*** 5.011*** 2.906*** 3.248*** 2.341*** 1.003***
(0.075) (0.115) (0.067) (0.092) (0.095) (0.195)

α̂W -0.364*** -0.349*** -0.337*** -0.331*** -0.334*** -0.373***
(0.008) (0.010) (0.009) (0.012) (0.008) (0.010)

α̂σ -0.317*** — — — — -0.19
(0.095) (0.115)

α̂τ — 0.208*** — — — 0.216***
(0.012) (0.012)

α̂3m — — -0.196 — — -0.128
(0.105) (0.104)

α̂$ — — — 0.392 — 0.018
(0.390) (0.309)

α̂M — — — — 0.015*** 0.011***
(0.002) (0.002)

FE Yes Yes Yes Yes Yes Yes
R2 45% 49% 44% 45% 46% 53%

#Obs. 14,200 12,351 13,844 8,561 14,200 7,227

Panel B: Restricted specification

FE No No No No No No
R2 40% 40% 41% 41% 40% 41%

Table 3.9 presents estimation of regression that is motivated by alterna-

tive hypotheses on share repurchase ln
[

Xit

Vit

]

= α0 + αW · ln
[

Wit

W ∗

]

+ α3m · R3m
it +

α$ · Cit−1 + αM · Mit + ατ · ln [τit] + ασ · ln
[σit

σ∗

]

+ ǫ̃it on a sample of share repurchase

programs from SDC Platinum that covers period from 1985 to 2014. Xit is

an authorised size of the share repurchase program with the stock that

has expected daily trading volume Vit, expected price level Pit, expected

daily return volatility σit, and expected trading activity, Wit. R3m
it is log-

return during 3 months prior to the repurchase announcement. Cit−1 is

cash of the company for the quarter before the repurchase announcement

from Compustat. Mit is market capitalization of the company. Tit is du-

ration of the repurchase program (number of days between announcement

date and end of repurchase program date). The benchmark stock has ex-

pected daily volume of 1 million shares, expected price level $40, expected

daily return volatility of 2%, and expected trading activity W ∗. Panel

A reports estimates of the regression with standard errors clustered by

industry, regression R2 and number of observations. Panel B reports R2 of

regression with imposed constraint of αW = −1/3 and zero coefficients on

corresponding control variables.
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