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Abstract

Parisian excursion of a Lévy process is defined as the excursion of the process below or

above a pre-defined barrier continuously exceeding a certain time length. In this thesis, we

study classical and Parisian type of ruin problems, as well as Parisian excursions of collective

risk processes generalized on the classical Cramér-Lundberg risk model.

We consider that claim sizes follow mixed exponential distributions and that the main

focus is claim arrival process converging to an inverse Gaussian process. By this conver-

gence, there are infinitely many and arbitrarily small claim sizes over any finite time interval.

The results are obtained through Gerber-Shiu penalty function employed in an infinitesimal

generator and inverting corresponding Laplace transform applied to the generator.

In Chapter 3, the classical collective risk process under the Cramér-Lundberg risk model

framework is introduced, and probabilities of ruin with claim sizes following exponential

distribution and a combination of exponential distributions are also studied.

In Chapter 4, we focus on a surplus process with the total claim process converging to an

inverse Gaussian process. The classical probability of ruin and the joint distribution of ruin

time, overshoot and initial capital are given. This joint distribution could provide us with

probabilities of ruin given different initial capitals in any finite time horizon.

In Chapter 5, the classical ruin problem is extended to Parisian type of ruin, which

requires that the length of excursions of the surplus process continuously below zero reach

a predetermined time length. The joint law of the first excursion above zero and the first

excursion under zero is studied. Based on the result, the Laplace transform of Parisian ruin

time and formulae of probability of Parisian type of ruin with different initial capitals are

obtained. Considering the asymptotic properties of claim arrival process, we also propose an
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approximation of the probability of Parisian type of ruin when the initial capital converges

to infinity.

In Chapter 6, we generalize the surplus process to two cases with total claim process still

following an inverse Gaussian process. The first generalization is the case of variable premium

income, in which the insurance company invests previous surplus and collects interest. The

probability of survival and numerical results are given. The second generalization is the case

in which capital inflow is also modelled by a stochastic process, i.e. a compound Poisson

process. The explicit formula of the probability of ruin is provided.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

In recent years, risk models have attracted much attention in insurance businesses. One

of the main reasons for this is the increasing importance of risk management and the gen-

erated stochastic modelling of financial solvency (for instance, see Frittelli & Scandolo [33],

Kaufmann, Gadmer & Klett [49] and Woll [81]). There is one important type of such models

that concern ruin theory for insurance companies. The fundamental modern ruin theory goes

back to the works of Lundberg and Cramér. In 1903, Lundberg (see Lundberg [57]) first

proposed that the Poisson process can be considered as a simple process in solving the first

passage time problem and can also be exploited as a model for the claim number process.

Lundberg dealt with the modelling of claims that arrive in an insurance company, and also

gave advice on how much premium the insurance company needs to charge in order to avoid

default. Then in 1930, Cramér [11] extended Lundberg’s work to model the ruin for insurance

companies as a first passage time problem. Cramér [11] developed collective risk theory using

the total claim amount process generated by a Poisson process. The basic risk model is thus

called the Cramér-Lundberg risk model or classical risk model.

Over the past century a significant body of literature on ruin theory has been developed.

Gerber [37] (see also Gerber [38]) introduced martingale methods in risk theory, which has

been a standard technique. There have been a few papers, such as Dassios and Embrechts

[20], Dassios and Wu [21] and [23], and Schmidli [69], where the martingale methods have
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been used to study complicated risk problems. Later, another development of ruin theory

appeared, which is Gerber-Shiu expected discounted penalty functions that are used to study

the joint distribution of the ruin time, the surplus just before ruin and the overshoot at ruin

(see Gerber and Shiu [44], [45] and [46]).

We start from the classical Cramér-Lundberg ruin theory framework (Cramér [11], Lund-

berg [57]), which is one of the most popular and widely used models in non-life insurance

mathematics. This framework considers the risk process in a way in which there is an ini-

tial capital for an insurance company, with constant premium rate and total claim amount

process following a compound Poisson process. Despite its simplicity, it captures some of

the essential features of the total claims amount process and studies how ruin behaves for

an insurance company. With relation to possible bankruptcy and reserve capital, the main

interest from an insurance company’s point of view is the arrival of claim and claim size,

which affects the surplus of the insurance company.

Dassios and Embrechts [20] have shown that many important risk processes can be nat-

urally handled within the framework of piecewise deterministic (PD) Markov processes. As

also pointed out in Cai et al. [9], the classical Cramér-Lundberg risk process and the com-

pound Poisson process are special cases of PD Markov processes. The class of PD Markov

process was first introduced by Davis [24], and it is a general class of time-homogeneous

Markov processes that contains deterministic motion and random jumps but no diffusion.

When PD Markov processes were introduced, it was soon found that the framework and the

developed techniques were important for risk theory. Dassios and Embrechts [20] also showed

how to use the framework to solve insurance risk problems. One example they considered is

that they allowed the insurance company to borrow money when its surplus is below some

barrier level, which it is called the ”absolute ruin model”. Researchers that followed were

Embrechts [30], Davis [26], Embrechts and Schmidli [31], Davis and Vellekoop [25].

In the traditional ruin theory, research on the risk process has been intensively studied,

assuming that ruin will immediately occur if the surplus decreases to below zero. In other

words, the company is ruined if its surplus becomes negative and falls below a critical thresh-

old level. We refer to Asmussen [1], Bühlmann [8], and Rolski [66] for an intensive study

of ruin probability. However, as discussed in Egidio dos Reis [32], the ruin probability is
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normally very small in practice, and the portfolio that leads to ruin is just one of many

existing in the company. The insurance company can have enough funds available to provide

support for negative surplus. Therefore, even if ruin occurs the insurance firm can still con-

tinue the business with a hope of fast recovery and can survive for some time. That is why

new ruin models have been proposed in recent years. Some insurance risk models consider

the application of a certain implementation delay when recognizing an insurance company’s

capital insufficiency, which was inspired by Parisian options (see Chesney et al. [13]). Some

comments can be found in Gerber [43], and Egidio dos Reis [32]. There is increased interest

in generalized insurance risk models with a redefined event of ruin, which allows the company

to stay with a negative surplus with no need to declare ruin and let the company continue

their business. Dassios and Embrechts’s research [20] is one of the examples of early re-

search, which considered ”absolute ruin”. They defined that absolute ruin occurs if the drift

of process drops below zero. As long as the process drift is above zero, the company could

borrow money to continue their business. Gerber and Yang [42], Cai [9], and Cheung [10]

also discussed ”absolute ruin”.

In this thesis, we concentrate on the event of Parisian type of ruin, which was introduced

by Dassios and Wu [21], where they consider applying a delay when examining an insurance

company’s capital inefficiency. In other words, they study Parisian ruin through Parisian

excursions of the surplus process. Parisian excursion is defined as the excursion of the surplus

process continuously below or under a pre-determined barrier, reaching a pre-defined time

length. More precisely, in Dassios and Wu [21], they assume that ruin occurs when the

excursion below a pre-defined level continuously exceeds a prescribed length of time d > 0.

There is another paper by Dassios and Wu [23], where they consider that there is a Parisian

delay between a decision to pay a dividend and its implementation. They use a classical

surplus process with the claim size being exponentially distributed. When the surplus reaches

the pre-determined barrier level d > 0, the decision to pay dividends is taken. However the

payment is implemented only when the surplus continuously stays above the barrier longer

than the pre-determined barrier level d > 0, and a dividend is paid at the end of this

period. They also obtain an optimal barrier that can maximize the expected present value

of dividends.

It is noticeable that Parisian ruin is closely linked with Parisian barrier options. A Parisian

3



barrier option is closed to a standard barrier option, which is defined as an option that is

knocked in or out if the underlying asset price process continuously stays above or under

a pre-defined barrier for longer than a determined time period d > 0 within the lifetime of

the option. This means that the option owner does not lose the option if the value of the

underlying asset reaches the barrier level but only if it stays long enough above or under the

barrier level. The first paper on the Parisian barrier option is from Chesney et al. [13], which

studied the practical difference between standard barrier options and the Parisian option.

Chesney et al. [13] studied Parisian options of European type options given by the Black

and Scholes formula (see Black and Scholes [5]), and they derived a formula of the Laplace

transform of the option price with respect to maturity time T by using Brownian excursion

theory. The option price needs to be numerically inverted from Laplace transforms.

In Dassios and Wu [21], they study the probability of Parisian type of ruin by consider-

ing that the surplus process is under the framework of the classical Cramér-Lundberg risk

model. They obtain the explicit formulae of Laplace transform of Parisian ruin time with

different initial capital level when claim size has an exponential distribution, and they also

study the probability of Parisian type of ruin for small claim sizes and provide a diffusion

approximation as well. They also show that when claims are distributed with light tails, an

asymptotic formula of the Cramér-Lundberg type is also true. More recently, their results

were generalized to general spectrally negative Lévy process in insurance risk (see Czarna

and Palmowski [18], Landriault et al. [53] and [54], and Loeffen et al. [56]). In Landriault

et al. [53] and [54], they considered the Laplace transform of the ruin time of the Parisian

type for a Lévy risk model with bounded variation. They assumed that the excursion is

replaced with a stochastic time period with a pre-specified distribution. Explicit results were

obtained considering the excursion is exponentially distributed. Czarna and Palmowski [18]

and Czarna [19] studied ruin when the surplus process continuously stays below zero for a

time length of d or drops below a pre-determined level a > 0.

This thesis focuses on the excursions of the Parisian type and the probability of Parisian

type of ruin. We extend the study of Dassios and Wu [21] in the context that total claims

amount process follows an inverse Gaussian process. The inverse Gaussian process generalizes

classical compound Poisson process, and it’s a limit of compound Poisson process as claim

size follows an inverse Gaussian distribution with one parameter converging to zero. Under
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the setting of inverse Gaussian process, we consider that there could be infinitely many

arbitrarily small claims with any time period. Our approach is based on Dassios and Wu’s

(see [21]) idea which studies the excursions away from zero of the underlying surplus process.

Our main contribution is an explicit formula of the Laplace transform of Parisian ruin time

and probability of Parisian type of ruin. We also give an approximation of Parisian ruin

probability of Cramér-Lundberg type.

The study of the probability of ruin for classical collective risk process with constant

premium rate has been the centre of interest in a number of papers focusing on actuarial

risk theory. Most of these articles treat the ruin probability of surplus involving constant

premiums. The classical model assumes that the surplus does not receive interest over time.

Explicit results have been obtained for certain claim size distributions. However, there is a

large part of the surplus of an insurance company that comes from investment income. In

the meantime, risk theory with interest income should be studied carefully. In recent years,

there have been a few papers in the literature considering premiums whose value depends on

current surplus. Some papers argue that considering variable premium income as a function

of current surplus is more realistic, taking into account an investment income produced by

an insurance company’s surplus. Additional to the premium income, the insurance company

also receives interest on its surplus. Taylor [78] considered the case where the premium rate

continuously changes as a function of the current surplus. Michaud [62] approximated the

probability of ultimate ruin by simulating the jumps and the inter arrival times for jumps.

Petersen [64] also obtained the ultimate probability of ruin by a simple numerical method.

Under an analogue of the Cramér condition, Sundt and Teugels [76] and [77] discussed

the probability of ruin when surplus process has a constant premium rate, constant interest

rate and exponential claim sizes in a continuous time within infinite time horizon. They

considered the equation of probability of ruin and upper and lower bound. Paulsen and

Gjessing [65] studied a classical model perturbed by a diffusion. They obtained a Lundberg

type inequality by assuming that there is a stochastic investment income. Klüppelberg and

Stadtmüller [51] applied sophisticated analytical analysis to derive an asymptotic formula for

the ruin probability. They considered a surplus process with claims following a distribution

with a regularly varying tail. Asmussen refined their result in [1], applying the reflected

random walk theory to obtain asymptotic formulae for the ruin probability when considering
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claim sizes follow sub-exponential distribution.

There are other generalizations of the classical risk model. One of the generalizations is

that the premium income in risk models is also a stochastic process to keep track of premiums,

but independent of the total claim amount process. This idea was first advised by Boucherie

[6]. Later on, the model was intensively studied by others. Boikov [7] obtained integral

equations and exponential bounds, which are similar to the classical Cramér-Lundberg model.

The author also discussed the probability of ruin. Temnov [79] gave a representation for the

probability of ruin for surplus process with random premium process. Melnikov [58] removed

the deterministic premium rate component, and obtained Laplace transform for the difference

between random premium income and total claim amount process and an integro-differential

equation for the probability of ruin. Karnaukh [52] obtained a formula for the discounted

defective joint probability density function of surplus and deficit at ruin, assuming that the

premium sizes have exponential distribution with rate depending on a certain threshold level.

1.2 Organization and Outline of the Thesis

This work is organized as follows.

In chapter 2, we introduce the nomenclature for Laplace transform, inverse of Laplace

transform, stochastic processes, random times, and miscellaneous items.

In chapter 3, the classical Cramér-Lundberg risk model is introduced, and the problem of

ruin corresponding to infinitesimal generator and Gerber-Shiu expected discounted penalty

function are provided as well. The Cramér-Lundberg approximation of probability of ruin

is also introduced to give a comprehensive understanding of the asymptotic value of ruin

probability. We also show that by inverting corresponding Laplace transforms applied to

an infinitesimal generator, explicit formulae of probability of ruin with claim sizes being

distributed as exponential distribution and two mixed exponential distributions are obtained.

The Laplace transform of the ruin time is also provided under the case of mixed exponentials.

The purpose of this chapter is to introduce the reader to some of the mathematical tools that

will be useful for original results in subsequent chapters.
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Chapter 4 concerns ruin problems with the total claims amount being an inverse Gaussian

process, in which there could be infinitely many and arbitrarily small claims within any time

interval. We begin with the discussion of Laplace transforms of ruin time and overshoot

respectively. Then we study the probability of ruin for non-zero initial capital, as well as

the joint distribution of the time of ruin and the overshoot at ruin with zero initial capital.

The joint distribution of the ruin time, overshoot and non-zero initial capital is also studied.

These results are all derived by using the methods introduced in the previous chapter and by

inverting corresponding Laplace transforms.

Chapter 5 extends classical ruin problem to Parisian type of ruin problem. It requires the

length of the excursion of a surplus process continuously below zero, reaching a time length

predefined. We discuss the joint Laplace transform of the first excursion above zero and the

first excursion below zero. Based on the joint Laplace transform, we use a two-state semi-

Markov process to obtain the Laplace transforms of Parisian ruin time for zero initial capital

and non-zero initial capital. The formulae of the probability of Parisian type of ruin with

different initial capitals are also provided. Through considering the asymptotic properties of

the total claims arrival process, we also propose an approximation for the probability of the

Parisian type of ruin with the initial capital converging to infinity.

In chapter 6, we generalize the risk model to two cases. One considers a variable premium

income, which the insurance company invests previous surplus and receives interest. The

probability of survival for this risk model is discussed. Another generalization studies a

surplus process with stochastic premium income. We are still particularly focusing on total

claims following an inverse Gaussian process. The explicit formula of ruin probability is

given. For both of these two generalizations, the numerical results of ruin probability and

the asymptotic property of approximation for ruin probability when initial capital converges

to infinity are also discussed.

Chapter 7 concludes this thesis.
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Chapter 2

Nomenclature

We fix a probability space (Ω, F , P) for any stochastic Lévy process {Xt}t≥0.

For a function f(x), it is assumed that its Laplace transform f̂(ξ) exists, i.e.

f̂(ξ) = Lξ{f(x)} :=

∫ ∞
0

e−ξxf(x) dx. (2.1)

Then the inverse Laplace transform of f̂(ξ), denoted by L−1
ξ {f̂(ξ)} is a function of f , i.e.

L−1
ξ {f̂(ξ)} = f(x) ⇐⇒ Lξ{f(x)} = f̂(ξ). (2.2)

We consider the inverse Laplace transform with respect to ξ, which is evaluated at the point

x.

Similarly for a function f(x, y), we can define the double Laplace transform f̂(ξ, β)

f̂(ξ, β) = LβLξ{f(x, y)} :=

∫ ∞
y=0

∫ ∞
x=0

e−ξxe−βyf(x, y) dx dy. (2.3)

Therefore, the inverse double Laplace transform is

L−1
β L

−1
ξ {f̂(ξ, β)} = f(x, y), (2.4)

which is evaluated at the points (x, y).
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2.1 Stochastic Processes and Random Times

Xt = x+ ct−
∑Nt

i=1 Yi – classical surplus process of an insurance com-

pany up to time t

x initial capital of the insurance company, x ≥ 0

c constant premium rate, c > 0

Nt number of claims up to time t, Nt ∼ Poisson
(
λ
ε

)
Yi the ith claim, Yi > 0 and Yi ∼ IG(ε, µ)

IG(ε, µ) inverse Gaussian distribution with parameters ε > 0 and µ > 0

g(y) = ε√
2πy3

e
− (ε−µy)2

2y – probability distribution function of IG(ε, µ)

G(y) =
∫ y

0 g(u)du – cumulative distribution function of IG(ε, µ)

Xt = x+ ct− Zt – surplus process with constant premium rate c > 0

and inverse Gaussian process Zt up to time t

τ = inf{t ≥ 0 | Xt < 0} – the time when ruin occurs

−Xτ deficit at ruin

Xτ− surplus prior to ruin

Wt standard Brownian motion

W
(ν)
t = σWt + νt – Brownian motion with drift ν ≥ 0 and scaling factor

σ > 0

Tα = inf{t > 0 | W (ν)
t = α} – first passage time when W

(ν)
t reaches

the barrier level α > 0

τ1 = τ = inf{t ≥ 0 | Xt < 0} – the time when ruin occurs

to be continued
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τ2 = inf{t− τ1 | t > τ1, Xt ≥ 0, Xτ1 < 0} – time elapsed when Xt first

goes back above zero after τ1

gXt = sup{s ≤ t | sign(Xs) 6= sign(Xt)} – last crossing time of 0 before

time t

dXt = inf{s ≥ t | sign(Xs) 6= sign(Xt)} – first crossing time of 0 before

time t

τXtd = inf{t > 0 | (t− gXt )1{Xt<0} ≥ d} – ruin time of Parisian type of

ruin

UXt = t− gXt – time spent in current state

TXi,k = UX
dXt

= dXt −gXt – time spent in state i when Xt reaches the state

i for the kth time, i = 1,−1, and k = 1, 2, ...

τ∗0 stopping time at the end of current excursion above 0

−X∗0 overshoot when previous ruin occurs before time τ∗

τ∗ = inf t > 0 | Xt ≥ 0, X∗0 = −z, z > 0 – elapsed time when Xt goes

back to 0 after previous ruin

{X̃t}t≥0 surplus process starting from 0

ψd(x) = P(τXtd <∞) | X0 = x – probability of Parisian type of ruin

Xδ
t = x+Ct −Zt – surplus process with variable premium income Ct

and inverse Gaussian process Zt up to time t

Ct = c+ δXδ
t – variable premium income up to time t with constant

c ≥ 0 and interest rate δ > 0

2.2 Miscellaneous
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1{x∈A} =


1 if x ∈ A,

0 otherwise.

– indicator function

ψ(x) = P
(

inft≥0Xt < 0 | X0 = x
)

– probability of ruin

w(Xτ−,−Xτ ) penalty function, which is bounded and continuous

Φ(x, q) = E
[
e−qτw(Xτ− ,−Xτ )1{τ<∞}

]
– expected discounted penalty

function

Φ(x) =
∫ x
−∞

1√
2π
e−

y2

2 dy – cumulative distribution function of standard

normal distribution

A infinitesimal generator

BvN(h, k; ρ) = 1

2π
√

1−ρ2
∫ k
−∞

∫ h
−∞ exp

{
−x2−2ρxy+y2

2(1−ρ2)

}
dxdy – cumulative distri-

bution function of bivariate normal distribution with correlation

coefficient ρ > 0

{SXt }t≥0 =


1 if Xt > 0,

−1 if Xt < 0.

– two-state semi-Markov process

Hn = {SX0 , t0;SX1 , t1; ...;SXn , tn} – history of process SXt up to time tn,

n = 0, 1, 2, ...

pi,j transition density of SXt

Pi,j(t) = P(TXi,k < t) =
∫ t

0 pi,j(s)ds – ruin probability in state i

P̄i,j(t) = P(TXi,k ≥ t) – survival probability in state i

P̂i,j(β) =
∫∞

0 e−βtpi,j(t)dt – Laplace transform of pi,j(t)

P̃i,j(β) =
∫ d

0 e
−βtpi,j(t)dt

to be continued

11



Ak the event that τXtd is achieved in the kth excursion in state −1

Hm(x) = (−1)me
x2

2
dm

dxm

(
e−

x2

2

)
– Hermite polynomial
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Chapter 3

Model Definition and Some

Preliminaries

Ruin occurs when the surplus process of an insurance company drops below zero at some

time point. Deriving the probability of ruin has been a central topic in risk theory literature

since the last century. Starting from the classical collective compound Poisson risk model

introduced by Cramér and Lundberg (see Cramér [11] and Lundberg [57]), there has been

a range of research concentrating on ruin probability and relative ruin problems. Gerber et

al. [39] first discussed the probability and severity of ruin for the classical risk model under

continuous time. Given a certain initial capital, they derived explicit formula when individual

claim amount follows a certain distribution. Subsequently, this work was generalized by

Gerber and Dufresne [40], in which they obtained an explicit solution of ruin probability

of ruin given certain initial capital when individual claim amount follows a combination of

exponential distributions. Asmussen and Albrecher [2] obtained infinite time probability of

ruin for the compound Poisson risk model with exponential claims, and several special cases

with heavy tails distributions.

In this chapter, we introduce the risk process based on the Cramér-Lundberg risk model,

which we use for the thesis. Some important mathematical tools such as infinitesimal gen-

erator and Gerber-Shiu expected discounted penalty function (Gerber and Shiu [45]) are

introduced as well for subsequent studies. We show how the infinitesimal generator and

Gerber-Shiu expected discounted penalty function are used in deriving the probability of
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ruin. Examples of the results of ruin probability with claim size following exponential distri-

bution and a mixture of two exponential distributions are provided respectively.

3.1 Model Introduction

A basic risk surplus process, Xt, t ≥ 0, of an insurance company is a model for the time

evolution of the surplus of the company. Xt is defined as

Xt = x+ ct− Lt, (3.1)

where x ≥ 0 is the initial capital, c ≥ 0 is the constant premium rate, Lt is the accumulated

sum of claims up to time t.

Our main focus of the thesis is the study of probability of ruin. The probability of ruin

ψ(x) with initial capital x is the probability that the surplus ever drops below zero, i.e.

ψ(x) = P
(

inf
t≥0

Xt < 0
)

= P
(

inf
t≥0

Xt < 0 | X0 = x
)
. (3.2)

The probability of ruin before time T is

ψ(x, T ) = P
(

inf
0≤t≤T

Xt < 0
)
. (3.3)

We also refer to ψ(x) and ψ(x, T ) as ruin probability with infinite time horizon and finite

time horizon respectively. We focus on the study of ruin probability with infinite time horizon

throughout the thesis. We shall assume the net profit condition (ct > E[Lt], ∀t > 0) for every

fixed x > 0 to ensure that {Xt : t ≥ 0} has a positive drift, otherwise the insurance company

faces ruin almost surely. From this condition, we can know that insurance companies should

choose the premium ct in such a way that the condition holds. This is the way to avoid ruin

occurring with probability 1.

This thesis particularly starts from considering the classical collective risk model to evalu-

ate the wealth or surplus of an insurance company, which is modelled by the Cramér-Lundberg
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Figure 3.1: A sample path of surplus process Xt.

risk process (see Cramér [11], Lundberg [57], Asmussen [1], and Schmidli [68] for example)

Xt = x+ ct−
Nt∑
i=1

Yi. (3.4)

In this classical risk process defined in (3.4), x ≥ 0 is the initial capital, c ≥ 0 is the constant

premium rate, Zt =
∑Nt

i=1 Yi is a compound Poisson process, Yi, i = 1, 2, ..., are strictly

positive and independent and identically distributed claim sizes with common distribution

function G(y). Nt is the number of claims up to time t, which is a homogeneous Poisson

process with intensity λ (i.e. Nt ∼ Poisson(λt)) and is also independent of the claim Yi.

Claims occur at the arrival times 0 ≤ t1 ≤ t2 ≤ ... of the homogeneous Poisson process.

Assume that µ = E[Y1]. Since Nt and Yi, i = 1, 2, ..., are independent, we can calculate

the expectation of Zt =
∑Nt

i=1 Yi as E[
∑Nt

i=1 Yi] = λtµ. Define the safety loading coefficient

θ > 0 as (e.g. see Asmussen [1])

θ =
ct

E[
∑Nt

i=1 Yi]
− 1 =

c− λµ
λµ

, (3.5)
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which infers that c = (1 + θ)λµ. Positive safety loading coefficient θ > 0 yields that c > λµ.

In this case, there is a trend that Xt → +∞, so we say that there is a net profit condition.

The quantity Xt is actually the insurance company’s capital balance at a given time t,

and the process {Xt : t ≥ 0} describes the evolvement of cash-flow in the portfolio over time.

The premium income ct describes the inflow of capital into the insurance company up to

time t. The total claim amount
∑Nt

i=1 Yi is the outflow of capital for the company, which is

due to payments for claims occurred in the time period [0, t]. If Xt is positive, the insurance

company has gained capital. Otherwise, the insurer has lost capital.

In the Cramér-Lundberg model, one of the main goals is to analyze the probability of

ruin. The ruin is said to occur if the insurer’s surplus ever drops below zero. Therefore, the

probability of ruin with initial capital x ≥ 0 can be defined as

ψ(x) = P
(

inf
t≥0

Xt < 0 | X0 = x
)
. (3.6)

We also assume (the net profit condition) c > λE[Y1] for every fixed x ≥ 0 to ensure that

{Xt : t ≥ 0} has a positive drift. If c > λE[Y1], we may also hope that ψ(x) is different from

1.

Define the stopping time

τ0 = inf{t ≥ 0 : Xt < 0}, (3.7)

which denotes the first time when the process falls under the barrier level 0 (τ0 = ∞ if the

set is empty). Thus the probability of ruin in infinite time horizon case is

ψ(x) = P(τ0 <∞ | X0 = x), (3.8)

whereas in the finite time horizon is (i.e. ruin occurs before time t)

ψ(x) = P(τ0 < t | X0 = x). (3.9)

For simplification, we denote τ the ruin time if there is no illustration of a non-zero pre-defined

barrier level.
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In order to calculate the probability of ruin, we introduce the Gerber and Shiu expected

discounted penalty function (see Gerber and Shiu [44], [45] and [46]), which has been a

standard approach to study ruin problem for the classical risk model. Let w(Xτ− ,−Xτ ) be a

bounded continuous function for 0 ≤ Xτ− <∞ and 0 ≤ −Xτ <∞. The expected discounted

penalty function with q ≥ 0 and initial capital x ≥ 0 is defined by

Φ(x, q) = E[e−qτw(Xτ− ,−Xτ )1{τ<∞}]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−qtw(y, z)f(t, y, z | x)dtdydz,
(3.10)

where 1A denotes the indicator function, i.e. 1A = 1 if A is true and 1A = 0 if A is false.

q could be interpreted as a force of interest and w(y, z) as some kind of penalty when ruin

happens, thus Φ(x, q) is the expected discounted penalty. f(t, y, z | x) is the joint density

of the time of ruin τ , the surplus before ruin Xτ− , and the deficit at ruin −Xτ given initial

capital x.

Furthermore, if w(y, z) = 1, we can study the distribution of ruin time by inverting

the function E[e−qτ1τ<∞]. If we set q = 0 as well, then the expected penalty is just the

probability of ruin with starting capital x > 0 in infinite time horizon, i.e.

E[1{τ<∞}] = P(τ <∞ | X0 = x) = ψ(x). (3.11)

Dassios and Embrechts [20] have shown that many important risk processes can be natu-

rally handled within the framework of piecewise deterministic (PD) Markov processes. The

class of PD Markov process was first introduced by Davis [24], which is a general class of

time-homogeneous Markov processes considering deterministic motion and random jumps

but no diffusion.

In Dassios and Embrechts [20], a PD process follows a deterministic path and it is deter-

mined by a first order differential operator X , until there is a jump, based on an intensity

function λ(x) or when the process reaches the boundary ∂Γ of Γ, and a jump measure Q(x,B),

x ∈ Γ, B ∈ B(Γ). The operator X can be seen as the generator between jumps. λ(x)dt is the

probability that there is a jump in the time interval (t, t + dt] when Xt = x. Q(x,B) is the

probability that a point in B is led by a jump. For all functions f defined in the domain of
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A, the generator A is given by (see Dassios and Embrechts [20], pp. 185)

Af(x) = Xf(x) + λ(x)

∫
Γ
[f(y)− f(x)]Q(x, dy), (3.12)

where X =
∑n

k=1 ck(x) ∂
∂xk

. If jumps occurs due to the hitting of the boundary ∂Γ, f must

satisfy the condition

f(x) =

∫
Γ
[f(y)− f(x)]Q(x, dy), ∀ x ∈ ∂Γ, (3.13)

in order to belong to the domain of A. Therefore, by Dynkin’s theorem, if f belongs to the

domain of A and Af = 0, f(x) is a martingale. For more details on generators of piecewise

deterministic Markov processes, we refer to Davis [24], Dassios and Embrechts [20], Davis

[26] and Rolski et al. [66].

In the thesis, we assume that there is time t as an explicit component of the PD process,

in which case that A can be decomposed as ∂
∂t +At, and At is given in (3.12). We start from

the Cramér-Lundberg risk process {Xt : t ≥ 0} defined in (3.4) as our PD process. Consider

the function f(x, t)

f(x, t) = E[e−βτe−κ(Xτ−)−ν(−Xτ )
1{τ<∞} | Xt = x], (3.14)

where β ≥ 0, κ ≥ 0, and ν ≥ 0. Therefore the infinitesimal generator A acting on f(x, t) for

the surplus process {Xt : t ≥ 0} becomes

Af(x, t) =
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x

+ λ

(∫ x

0
f(x− y, t)dG(y) + e−βt

∫ ∞
x

e−κx−ν(y−x)dG(y)− f(x, t)

)
.

(3.15)

The continuous bounded function f : R2 → R is a measurable function, which is defined

on the state space of a piecewise-deterministic process. The infinitesimal generator A is the

operator that makes the function f belong to its domain, thus

f(Xt, t)−
∫ t

0
Af(Xs, s)ds, (3.16)

18



is a martingale. Therefore, solving Af = 0 gives us the martingale f(Xt, t).

Consider the function f(x)

f(x) = E[e−βτe−κ(Xτ−)−ν(−Xτ )
1{τ<∞} | X0 = x]. (3.17)

It is clear to see that when β = 0, κ = 0 and ν = 0, f(x) becomes the probability of ruin

given initial capital x ≥ 0, i.e.

f(x) = E[1{τ<∞} |X0 = x ] = P(τ <∞|X0 = x). (3.18)

To find the formula of f(x), we can apply Laplace transform of a function f(x) on the

positive real line defined by

L{f(x)} = f̂(ξ) =

∫ ∞
0

e−ξxf(x)dx, (3.19)

to Af(x, t) ≡ 0 in order to obtain the Laplace transform f̂(ξ). Notice that G(y) =
∫∞

0 g(y)dy

and by applying change of variable x− y = r, the Laplace transform of
∫ x

0 f(x− y, t)dG(y) is

∫ ∞
0

e−ξx
∫ x

0
f(x− y, t) dG(y)dx

=

∫ ∞
0

∫ x

0
e−ξxf(x− y, t)g(y) dydx

=

∫ ∞
0

g(y)

(∫ ∞
0

f(r)e−ξ(y+r) dr

)
dy

=

∫ ∞
0

e−ξrf(r)dr

∫ ∞
0

e−ξyg(y)dy

= f̂(ξ)ĝ(ξ).

(3.20)
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Meanwhile, the Laplace transform of
∫∞
x e−κx−ν(y−x)dG(y) is

∫ ∞
0

e−ξx
∫ ∞
x

e−κx−ν(y−x) dG(y)dx

=

∫ ∞
0

e−(ξ+κ−ν)x

∫ ∞
x

e−νyg(y)dy

= − 1

ξ + κ− ν
e−(ξ+κ−ν)x

∫ ∞
x

e−νyg(y)dy
∣∣∣∞
0

+
1

ξ + κ− ν

∫ ∞
0

e−(ξ+κ−ν)xd

(∫ ∞
x

e−νyg(y)dy

)
=

1

ξ + κ− ν

∫ ∞
0

e−νyg(y)dy − 1

ξ + κ− ν

∫ ∞
0

e−(ξ+κ−ν)xe−νxg(x)dx

=
ĝ(ν)− ĝ(ξ + κ)

ξ + κ− ν
.

(3.21)

Therefore, given the generator in (3.15) and f(x, t) = e−βtf(x) with β ≥ 0, applying Laplace

transform to Af(x, t) ≡ 0 gives us

−βf̂(ξ) + cξf̂(ξ)− cf(0) + λf̂(ξ)ĝ(ξ) + λ
ĝ(ν)− ĝ(ξ + κ)

ξ + κ− ν
− λf̂(ξ) = 0, (3.22)

which infers that

f̂(ξ) =
cf(0)− λ ĝ(ν)−ĝ(ξ+κ)

ξ+κ−ν
cξ − β − λ(1− ĝ(ξ))

. (3.23)

Thus f(x) can be solved by inverting f̂(ξ) with respect to ξ. Explicit formula of f (x ) can be

derived for the cases of claim sizes following certain distributions.

We can see that the probability of ruin will converges to zero as the future surplus increases

to infinity. Also by the final value theorem we have that limx→∞ f(x) = limξ→0 ξf̂(ξ) = 0.

Therefore, in order to ensure the later limitation exists, we let both the denominator and the

numerator of f̂(ξ) go to zero, which enable us to find the probability of ruin.

There is also a famous result, Cramér-Lundberg approximation, for the estimation for the

probability of ruin (see Asmussen [1] and Minkova [63]). It states that

ψ(x) ∼ Ce−γx, x→∞, (3.24)

where C = θµ/(M
′
Y (γ) − µ(1 + θ)), µ is the expectation of claim size distribution, θ is the

safety loading coefficient. Recall that c = (1 + θ)λµ. MY (γ) is the moment generating
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function of claim size distribution G(y), and the constant γ > 0 is the positive solution of

the Lundberg equation

MY (γ)− 1 = γµ(1 + θ). (3.25)

The constant γ is called the Lundberg exponent or adjustment coefficient. Notice that when

a(x) ∼ b(x) as x→∞, this means limx→∞ a(x)/b(x) = 1. Therefore,

lim
x→∞

eγxψ(x) = C =
θµ

M
′
Y (γ)− µ(1 + θ)

. (3.26)

The asymptotic formula (3.24) for probability of ruin provides us with an exponential

asymptotic estimate for the probability of ruin as x→∞. It is clear that the rate at which

the ruin probabilities reduce depends on the Lundberg coefficient γ.

3.2 Ruin Probabilities with Exponentially Distributed Claim

In this subsection, we study the problem of ruin when the claim sizes follow an expo-

nential distribution and a mixture of two exponential distributions through the infinitesimal

generator and Gerber-Shiu expected discounted penalty function.

3.2.1 Exponential Claims

Theorem 3.2.1. Given the classical risk process defined in (3.4), assume that the claims

have an exponential distribution Yi ∼ Exp(α) with rate α > 0 and finite moments, i.e.

g(y) = αe−αy, (3.27)

then the joint Laplace transform of the ruin time τ and the overshoot −Xτ with initial capital

x is given by

E[e−βτ−ν(−Xτ )
1{τ<∞} | X0 = x] =

λα

c(α+ ν)(α+ r+
β )
er
−
β x, (3.28)
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where r+
β > 0, r−β < 0, and

r±β =
β + λ− cα±

√
(cα− β − λ)2 + 4cαβ

2c
. (3.29)

Proof. We first set κ = 0 in f(x) defined in (3.17), i.e. f(x) = E[e−βτ−ν(−Xτ )
1{τ<∞} |

X0 = x]. Then applying Laplace transform to Af(x, t) = 0 in order to obtain the Laplace

transform of f(x). Thus, we have

f̂(ξ) =
cf(0)− λ ĝ(ν)−ĝ(ξ)

ξ−ν
cξ − β − λ(1− ĝ(ξ))

. (3.30)

Consider the equation in terms of ξ,

λĝ(ξ) = −cξ + β + λ, (3.31)

with ĝ(ξ) = α
α+ξ . It is obvious to see that the equation has a positive r+

β and a negative root

r−β since the discriminant is positive.

Second, find f(0). To do this, plug the positive root r+
β in the numerator, we have

f(0) =
λα

c(α+ ν)(α+ r+
β )
, (3.32)

which is just the double Laplace transform of the ruin time τ and the overshoot −Xτ with

initial capital X0 = 0.

Third, we substitute f(0) to the Laplace transform f̂(ξ) and rewrite f̂(ξ) as

f̂(ξ) =
λα

c(α+ ν)(α+ r+
β )

1

ξ − r−β
=

f(0)

ξ − r−β
. (3.33)

Then, inverting f̂(ξ) with respect to ξ gives us the joint distribution of the ruin time τ and

the overshoot −Xτ with initial capital x. �
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Corollary 3.2.2. The Laplace transform of ruin time τ with initial capital x is given by

E[e−βτ1{τ<∞} | X0 = x] =
λ

c(α+ r+
β )
er
−
β x. (3.34)

Corollary 3.2.3. If we set β = 0 and ν = 0 in (3.28), we get the probability of ruin for

initial capital x > 0

ψ(x) = ψ(0)e−Rx, (3.35)

where ψ(0) = λ
cα is the ruin probability with zero initial capital, R = α − λ

c is the positive

solution of the Lundberg equation.

Corollary 3.2.3 gives us the probability of ruin when the claim size follows an exponential

distribution as we know from Gerber & Shiu ([45]), which shows that the ruin probability

decays exponentially fast as the initial capital x→∞.

3.2.2 A Mixture of Two Exponentials Case

We study the problem of ruin when the claim sizes follow a mixture of two exponential

distributions, and give the formula of probability of ruin. It is shown that the formula of the

ruin probability is similar to the previous exponential case.

Theorem 3.2.4. Consider the risk process defined in (3.4), assume that the claim size follows

mixed two exponential distributions with rates α1 > 0 and α2 > 0, and with weights 0 < p < 1

and 0 < 1− p < 1 respectively, i.e.

g(y) = pα1e
−α1y + (1− p)α2e

−α2y. (3.36)

The joint Laplace transform of the ruin time τ and the overshoot −Xτ with initial capital

x > 0 is given by

E[e−βτ−ν(−Xτ )Iτ<∞ | X0 = x] = Aer
−
β x +Ber

−−
β x, (3.37)
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where

A =
λ

c(r−β − r
−−
β )

{
p

α1(α2 + r−β )

(α1 + ν)(α1 + r+
β )

+ (1− p)
α2(α1 + r−β )

(α2 + ν)(α2 + r+
β )

}
, (3.38)

B =
λ

c(r−−β − r−β )

{
p

α1(α2 + r−−β )

(α1 + ν)(α1 + r+
β )

+ (1− p)
α2(α1 + r−−β )

(α2 + ν)(α2 + r+
β )

}
, (3.39)

r+
β > 0, r−β < 0, and r−−β < 0 are the three roots of the following Lundberg’s fundamental

equation in terms of ξ

λĝ(ξ) = −cξ + β + λ, (3.40)

and

ĝ(ξ) = p
α1

(α1 + ξ)
+ (1− p) α2

(α2 + ξ)
. (3.41)

Proof. We follow the steps in Theorem 3.2.1. Note that given ĝ(ξ) in (3.41), it leads the

Lundberg equation (3.40) to be a cubic equation with three roots r+
β > 0, r−β < 0 and

r−−β < 0 with −r+
β < 0 < −r−β < α1 < −r−−β < α2. To see this, we assume −α2 < −α1 and

h(ξ) = cξ − β − λ+ λp
α1

(α1 + ξ)
+ λ(1− p) α2

(α2 + ξ)
. (3.42)

Note that h(ξ) → −∞ as ξ → −α−1 , and h(ξ) → +∞ when ξ → −α+
2 , which yield there

exists a negative root r−−β in the interval (−α2,−α1). Meanwhile, h(ξ)→ +∞ as ξ → −α+
1

and h(0) = −β < 0 infer that a negative root r−β exists in the interval (−α1, 0). Also note

that h(0) = −β < 0 and h(ξ)→ +∞ as ξ → +∞ lead that there is a positive root r+
β > 0.

In order to find f(0), plug the positive root r+
β in the numerator, i.e.

f(0) =
λ

c

(
p

α1

(α1 + ν)(α1 + r+
β )

+ (1− p) α2

(α2 + ν)(α2 + r+
β )

)
. (3.43)

Substitute f(0) in the Laplace transform f̂(ξ), we have

f̂(ξ) =
A

ξ − r−β
− B

ξ − r−−β
, (3.44)
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so inverting f̂(ξ) with respect to ξ provides us with joint Laplace transform. �

We could also obtain the corresponding probability of ruin.

Corollary 3.2.5. By setting β = 0 and ν = 0 in (3.37), it provides us with the probability

of ruin with initial capital X0 = x, x > 0, i.e.

ψ(x) =
λµ

c(r+ − r−)

{
(1− q)α1 + qα2− r−

}
e−r

−x +
λµ

c(r+ − r−)

{
r+− (1− q)α1− qα2

}
e−r

+x,

(3.45)

where

µ = E[Y1] =
p

α1
+

1− p
α2

, (3.46)

r± =
ρ+ (α1 + α2)θ ±

√
(ρ+ (α1 + α2)θ)2 − 4α1α2θ(1 + θ)

2(1 + θ)
, (3.47)

q =
pα2

pα2 + (1− p)α1
, ρ =

(1− p)α2
1 + pα2

2

pα2 + (1− p)α1
, (3.48)

and θ > 0 is the safety loading coefficient with c > λµ.

It is clear that the ruin probability also decays exponentially as the initial capital x→∞.

Notice that we assume the jump size Yi is exponentially distributed with rate α > 0, it is

well-known that the overshoots also have exponential distribution with the same parameter α.

At the moment, we suppose the claim size has an identical mixed exponentials distribution

defined in (3.36) with two positive intensities α1 and α2. Assume that the history of the

process up to time t is denoted by Ft, ruin occurs at the time τ and the value of capital

X(τ − 0) just before ruin is equal to a. Suppose the ruining claim, of size Y , is given to be
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larger than a. Therefore, for each F , a, τ and y, we have

P(−Xτ > y | Fτ )

= P(Y > y + a | Y > a)

=
pα1e

−α1(y+a) + (1− p)α2e
−α2(y+a)

pα1e−α1a + (1− p)α2e−α2a

=
p

pα1 + (1− p)α2e−(α2−α1)a
α1e
−α1y +

(1− p)
pα1e−(α1−α2)a + (1− p)α2

α2e
−α2y.

(3.49)

It is obvious that the deficit at ruin−Xτ also has a distribution of a mixture of two exponential

distributions with parameters α1 and α2 .

When the claim size is exponentially distributed, a solution for the distribution of the

ruin time τ has been known for many years. See corollary 3.2.2 and Asmussen [1] as well

as Drekic & Willmot [28] for example. We now consider the case of claim size following the

mixture of two exponentials.

Corollary 3.2.6. Assume the claims have an identical mixed exponential distributions defined

in (3.36). The Laplace transform of the ruin time τ is

E[e−βτ1{τ<∞} | X0 = x > 0] =
er
−
β x

Ee−r−x + Fe−r+x
, (3.50)

where r−β is the negative root of the following equation as formulated in theorem (3.2.4),

λ

(
p

α1

(α1 + ξ)
+ (1− p) α2

(α2 + ξ)

)
= −cξ + β + λ, (3.51)

r± =
ρ+ (α1 + α2)θ ±

√
(ρ+ (α1 + α2)θ)2 − 4α1α2θ(1 + θ)

2(1 + θ)
, (3.52)

E =
λ

c(r+ − r−)

{
p
α2 + r−

α1 + r−β
+ (1− p)α1 + r−

α2 + r−β

}
, (3.53)

and

F =
λ

c(r− − r+)

{
p
α2 + r+

α1 + r−β
+ (1− p)α1 + r+

α2 + r−β

}
. (3.54)
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Proof. It has been shown in Gerber [43] that e−βt+r
−
β Xt is a martingale. So by using the

optional sampling theorem to this martingale stopped at τ , we have

E[e−βτ+r−β Xτ1{τ<∞} | X0 = x] = er
−
β x. (3.55)

Since the distribution of the overshoot −Xτ is still an exponential distribution with same

parameters, and it is independent of the ruin time τ , hence

E[e−βτ1{τ<∞} | X0 = x] =
er
−
β x

E[er
−
β Xτ Iτ<∞ | X0 = x]

. (3.56)

We need to find the denominator, which is just the Laplace transform of −Xτ w.r.t. r−β .

To do this, we just need to let β = 0 and ν = r−β in Theorem (3.2.4), i.e.

E[e−r
−
β (−Xτ )

1{τ<∞} | X0 = x] = Ee−r
−x + Fe−r

+x, (3.57)

which finishes the proof. �

Remark. When β = 0, (3.56) becomes the probability of ruin with initial capital x > 0, which

satisfies

ψ(x) =
er
−
β x

E[er
−
β Xτ Iτ<∞ | X0 = x]

, (3.58)

which also illustrates that the probability of ruin decays exponentially.
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Chapter 4

Classical Ruin Problem with

Inverse Gaussian Process

In the insurance literature, a lot of attention has been concentrated on the classical

risk model in which the total claim amount process follows a compound Poisson process.

Ruin probabilities and many other ruin problems such as marginal distribution and the joint

distributions of the ruin time, the surplus just before ruin and the deficit at ruin have been

intensively studied. A standard method to study together these fundamental ruin problems

for the classical risk model is to use an expected discounted penalty function, which was

introduced in chapter 3 and by Gerber and Shiu [45] as well. We refer to Lin and Willmot

[55] and the references therein for a detailed study of these ruin problems.

Most risk models concentrate on the compound Poisson processes to model the total

claim amount process. The interpretation is straightforward, i.e. jump times are the arrival

of claims and jump sizes are the sizes of claims. However, a general Lévy process considering

infinitely many and arbitrarily small jump sizes in any finite time interval is more complicated

to study. Several pieces of research have incorporated general Lévy processes into insurance

modelling. One example is that the risk process is perturbed by a diffusion, i.e. a diffusion

part is added to the classical risk process. This model was first introduced by Gerber [36]

and then generalized by many authors in recent years, e.g. Gerber and Landry [41] and Tsai

and Willmot [80]. However, little research has studied the total claim amount process as a

limit of the compound Poisson process, without adding any diffusion.
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From this chapter, we extend the classical surplus process Xt defined in (3.4), i.e.

Xt = x+ ct−
Nt∑
i=1

Yi, (4.1)

to the case of the aggregate claim process
∑Nt

i=1 Yi actually converging to an inverse Gaussian

process Zt. We first concentrate on the claim sizes Yi following an inverse Gaussian distribu-

tion (abbreviated as IG(ε, µ)) with parameters ε > 0 and µ > 0. IG(ε, µ) has the following

probability density function g(y),

g(y) =
ε√

2πy3
e
− (ε−µy)2

2y , (4.2)

for y ∈ (0,∞), and its corresponding cumulative distribution function is G(y). It is then

assumed that Nt ∼ Poisson
(
λ
ε

)
. The surplus process Xt thus becomes

Xt = x+ ct− Zt. (4.3)

Dufresne, Gerber and Shiu ([29]) have shown that Zt is the limit of compound Poisson

process
∑Nt

i=1 Yi. We will review their method of constructing an inverse Gaussian process

by the limit of compound Poisson process in the next subsection.

This chapter studies the Laplace transforms of the ruin time and the overshoot respec-

tively, classical probability of ruin, and the joint distribution of the ruin time, the overshoot

and initial capital. Next we introduce inverse Gaussian process.

4.1 Inverse Gaussian Process

We shall first introduce IG distribution. Generally, an IG distribution IG(y; µ̃, λ) is

described by two parameters µ̃ > 0 and λ > 0, and it has support on positive axis with y > 0,

i.e.

g(y) =

√
λ√

2πy3
e
−λ(y−µ̃)

2

2µ̃2y . (4.4)

It tends to be a Gaussian distribution as λ → ∞. Figure 4.1 shows some IG probability

densities with different values of parameters.
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(a) IG(1, λ) (b) IG(µ, 1)

Figure 4.1: Inverse Gaussian densities with different parameter values.

IG distribution IG(αν ,
α2

σ2 ) is also the probability density function of

Tα = inf{t > 0 |W (ν)
t = νt+ σWt, W

(ν)
t = α}, (4.5)

where Wt is the standard Brownian motion, ν > 0, σ > 0, and Ta is the first hitting time

when W
(ν)
t reaches the barrier α > 0.

Inverse Gaussian distribution has been extensively studied by Chhikara & Folks [14],

[15] and [16], Chaubey, Garrido & Trudeau [12], Seshadri [72] & [73]. Particular use of IG

distribution as a life time model can be found in Gunes, etc. [47] and Singpurwalla [74].

Meanwhile, the hazard rate function of IG is uni-modal, which means it increases from zero

to its maximum level and then decreases to a asymptotic constant level. IG distribution

can also deal with significantly skewed data following an unclear distribution. Based on

these, Chaubey, etc. [12] explains that IG distribution can provide us with a goodness fit of

aggregate claims for a wide range of choices of claim distributions. Therefore, IG distribution

is believed to be a strong candidate to claim size distribution, which is often used in reliability

and survival analysis.

We then introduce inverse Gaussian process. Consider the IG distribution IG(y; ε, µ)
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defined as

g(y) =


ε√

2πy3
e
− (ε−µy)2

2y if y > 0,

0 otherwise,

(4.6)

which is actually the probability density function of (see Applebaum [3] and Kyprianou [50])

Zε = inf{t > 0 : W
(µ)
t = µt+Wt ≥ ε}. (4.7)

That is, Zε is a stopping time, and it denotes the first time when a Brownian motion with

linear drift µ > 0 hits the barrier level ε > 0. Recall Zε is a stopping time with respect to

the filtration {Ft : t ≥ 0}, where Ft is generated by {Wε : ε ≤ t}.

We also note that Brownian motion has continuous paths and BZε + µZε = ε almost

surely. In the meantime, by the strong Markov property of Brownian motion, we also know

that {WZε+t + µ(Zε + t)− ε : t ≥ 0} and W have same law, therefore ∀ 0 ≤ ε < t, we have

Zt = Zε + Z̃t−ε, (4.8)

where Z̃t−ε is an independent copy of Zt−ε. This implies that the process {Zt : t ≥ 0}

has independent and stationary increments. That is, for each pair of disjoint time intervals

(t1, t2) and (t3, t4) with t1 < t2 < t3 < t4, the random variables Zt2 − Zt1 and Zt4 − Zt3 are

independent. Each increment Zt+ε − Zt has an inverse Gaussian distribution IG(ε, µ). We

also note that Z0 = 0 with probability one.

Meanwhile, it is clear to see that Zt has right continuous paths due to the continuity of

paths of {Wt + µt : t > 0}. Also note that almost all paths of Zt are strictly increasing with

jumps, since all the sample paths of {Wt + µt : t > 0} are continuous and have intervals

where paths are decreasing. In other words, t1 < t2 ⇒ Zt1 < Zt1 almost surely. According

to its definition as a sequence of first passage time, Zt is also the right inverse of the path of

process {Wt + µt : t > 0} from the definition of Zε. From this, we call Zt inverse Gaussian

process. Figure 4.2 shows a sample path of inverse Gaussian process.

It is also important to see that the random variable Zε is infinitely divisible for each fixed
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Figure 4.2: A sample path of inverse Gaussian process.

ε > 0 according to the following Lévy-Khintchine formula (see for example Kyprianou [50]).

The characteristic exponent of Zε is of the form

Ψ(θ) := − logE[eiθY ] = ε(
√
µ2 − 2iθ − µ), ∀ θ ∈ R, (4.9)

and the corresponding triple (a, σ,Π) is a = −2εµ−1
∫ µ

0 (2π)−1/2e−y
2/2dy, σ = 0, and the

Lévy measure Π corresponding to the IG process Zt is given by

Π(dx) =
ε√

2πx3
e−

µ2x
2 dx, x > 0, (4.10)

where x ∈ (0,∞). Thus the law of Zε can be explicitly calculated as

µε(dx) =
ε√

2πx3
e−

(ε−µx)2
2x dx, ∀x > 0, (4.11)

which is just the probability density function of IG(ε, µ).
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Cont & Tankov [17] also show that

∫ ∞
0

Π(dx) =∞. (4.12)

Equation (4.12) yields that IG process has an infinite number of jumps along any small time

interval, which contributes to the infinite activity of IG process. It also infers the strictly

increasing property of sample paths of Zt.

Moreover, Dufresne, Gerber and Shiu ([29]) constructed inverse Gaussian process Zt as

the limit of compound Poisson process
∑Nt

i=1 Yi. IG process is not a compound Poisson process

itself, since the expected number of claims is infinite for each unit time with probability one.

However, Zt is finite in any time interval, because the majority of the claims are very small.

Dufresne, Gerber and Shiu ([29]) started the construction with defining a function Q to

construct a general total claims process Zt with independent, stationary and positive jumps.

The function Q is defined as a non-negative and non-increasing function, i.e.

Q(x) =

∫ ∞
x

q(s)ds, x > 0. (4.13)

Furthermore, it is assumed that q(x) = −Q′(x), they specify Q as follows

∫ ∞
0

xq(x)dx <∞. (4.14)

The process Zt can be defined from its corresponding Laplace transform

Lξ{Zt} = E[e−ξZt ] = etΨ(ξ), (4.15)

where the exponent Ψ is recognised as the Laplace exponent of a Lévy process whose paths

are of finite variation (see Bertoin [4] and Sato [67]). Ψ is given by

Ψ(ξ) =

∫ ∞
0

(
e−ξx − 1

)
(−dQ(x)), ξ > 0. (4.16)

q(dx) = −dQ(x) is the Lévy measure of Zt, then Q(x) is the tail of the process. If Q(0) <∞,

Zt is just a compound Poisson process. Otherwise (Q(0) = ∞), Zt is a process with an
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infinite number of small claims.

When Q(0) = ∞, Zt can be viewed as the limit of a compound Poisson process. From

(4.14) we know that the process Zt is of finite variation. Also from (4.15), Zt is a Lévy

process with Lévy measure −dQ(x). Dufresne, Gerber and Shiu ([29]) discussed that Zt can

be embedded in a large family of process defined by

q(dx) = −dQ(x) = ax−
3
2 e−

x
2 dx, x > 0, (4.17)

which leads to an IG process. The IG process is such that its individual distribution has an

inverse Gaussian distribution.

In this thesis, we consider asymptotic results of ruin problem when ε → 0. Under this

setting, the intensity of the Poisson process Nt converges to infinity leading to infinite variance

of Poisson process, which refers to the infinite activity of the inverse Gaussian process Zt.

Through the method of generating IG random numbers illustrated by Michael, Schucany

& Haas [61], we generate a sample trajectory path of IG process in Figure 4.2, which is

approximated by a compound Poisson process with Nt ∼ (λε ) and ε → 0. Therefore, by the

approximation from compound Poisson process, the following convergence holds in probability

P(Xs = x+ cs−
Ns∑
i=1

Yi > 0) → P(x+ cs− Zs > 0), ∀ s ∈ [0, t], (4.18)

as ε→ 0.

Thus, if the claim size Yi ∼ IG(ε, µ) where IG(ε, µ) defined as in (4.6), the Laplace

transform of Yi w.r.t. ξ is given by

ĝ(ξ) = E[e−ξYi ] =

∫ ∞
0

e−ξy
ε√

2πy3
e
− (ε−µy)2

2y dy

= e−ε(
√
µ2+2ξ−µ).

(4.19)

From the Lévy measure Π(dx) of the inverse Gaussian process Zt, which is calculated in
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(4.10), we also have the Laplace transform of Zt,

E[e−ξZt ] = e
−λt
ε

∫∞
0 (1−e−ξy) ε√

2πy3
e−

µ2y
2 dy

= e−λt(
√
µ2+2ξ−µ). (4.20)

4.2 Probability of Ruin

Given the initial capital X0 = x, x > 0, this section studies the Laplace transforms of the

ruin time τ and the overshoot −Xτ respectively, and it also provides the explicit formula of

the probability of ruin with different values of initial capital.

We first simplify the generator defined in (3.15). The generator actually becomes

Af(x, t)

=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x

+
λ

ε

(∫ x

0
f(x− y, t)dG(y) + e−βt

∫ ∞
x

e−κx−ν(y−x)dG(y)− f(x, t)

)
=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x
+
λ

ε

[∫ x

0

(
f(x, t)−

∫ y

0
f ′(x− v, t) dv

)
dG(y)− f(x, t)

]
+
λ

ε
e−βt

∫ ∞
x

e−κx−ν(y−x)dG(y)

=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x
− λ

ε
f(x, t)Ḡ(x)− λ

ε

∫ x

0
f ′(x− v, t)(Ḡ(v)− Ḡ(x)) dv

+
λ

ε
e−βt

∫ ∞
x

e−κx−ν(y−x)dG(y)

=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x
− λ

ε
f(0, t)Ḡ(x)− λ

ε

∫ x

0
f ′(x− v, t)Ḡ(v) dv

+
λ

ε
e−βt

∫ ∞
x

e−κx−ν(y−x)dG(y).

(4.21)

Substitute the probability density function g(y), thus as ε→ 0, Af(x, t) becomes

Af(x, t)

=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x

− λf(0, t)

∫ ∞
x

1√
2πy3

e−
µ2

2
y dy − λ

∫ x

0
f ′(x− v, t)

∫ ∞
v

1√
2πy3

e−
µ2

2
y dydv

+ λe−βt
∫ ∞
x

e−κx−ν(y−x) 1√
2πy3

e−
µ2

2
y dy.

(4.22)
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We will use the generator in (4.22) to find the Laplace transforms of the ruin time and the

overshoot respectively, the probability of ruin and the joint law of ruin time, overshoot and

initial capital.

4.2.1 Laplace Transform of Ruin Time τ

Proposition 4.2.1. The Laplace transform of the ruin time τ with c = 1, X0 = x, x > 0

and β > 0 is given by

E[e−βτ | X0 = x]

=
4λ(√

(µ− λ)2 + 2β + λ+ µ
){ µΦ (µ

√
x)− µ√

(µ− λ)2 + 2β − (µ+ λ)

+ Φ
(√

x
(
λ−

√
(µ− λ)2 + 2β

))
e
−x
(
λ
(√

(µ−λ)2+2β+µ−λ
)
−β
) √

(µ− λ)2 + 2β − λ√
(µ− λ)2 + 2β − (µ+ λ)

}
.

(4.23)

Proof. First set κ = 0, and ν = 0 in f(x) defined in (3.17), i.e. f(x) = E[e−βτ1{τ<∞} |

X0 = x]. Next setting f(x, t) = e−βtf(x) with β > 0 and applying Laplace transform to

Af(x, t) = 0 provide us with

f̂(ξ) =
cf(0)− λ

√
µ2+2ξ−µ

ξ

cξ − β − λ(
√
µ2 + 2ξ − µ)

=
cf(0)− λ 2√

µ2+2ξ+µ

cξ − β − λ(
√
µ2 + 2ξ − µ)

.

(4.24)

If we use change of variable
√
µ2 + 2ξ − µ = η, f̂(ξ) becomes

f̂(ξ) =
cf(0)− 2λ

η+2µ

−β + cη
2

2 + (cµ− λ)η
. (4.25)

Then, we need to find f(0). Consider the equation

−β + c
η2

2
+ (cµ− λ)η = 0, (4.26)

36



which has two roots

η±β =
λ− cµ±

√
(cµ− λ)2 + 2cβ

c
. (4.27)

Plugging the positive root η+
β in the numerator in f̂(ξ), we have

f(0) =
2λ

λ+ cµ+
√

(cµ− λ)2 + 2cβ
. (4.28)

Note that by the net profit condition we have cµ > λ. This can be deduced from (4.25) by

setting β = 0, resulting in f(0) = λ
cµ and 0 < f(0) < 1.

Set c = 1 for simplicity. Plugging f(0) in f̂(ξ) gives us

f̂(ξ)

=
4λ

(
√

(µ− λ)2 + 2β + λ+ µ)

1

η + 2µ

1√
(µ− λ)2 + 2β + η + µ− λ

=
4λ

(
√

(µ− λ)2 + 2β + λ+ µ)

∫ ∞
0

∫ ∞
0

e−(η+2µ)ve−(
√

(µ−λ)2+2β+η+µ−λ)w dvdw

=
4λ

(
√

(µ− λ)2 + 2β + λ+ µ)∫ ∞
0

∫ ∞
0

∫ ∞
0

e−ξx
v + w√

2πx3
e−

(v+w−µx)2
2x dx e−2µv−(

√
(µ−λ)2+2β+µ−λ)w dvdw,

(4.29)

inverting f̂(ξ) w.r.t ξ gives us

f(x)

=
4λ

(
√

(µ− λ)2 + 2β + λ+ µ)∫ ∞
0

∫ ∞
0

v + w√
2πx3

e−
(v+w−µx)2

2x e−2µv−(
√

(µ−λ)2+2β+µ−λ)w dvdw

= E[e−βτ | X0 = x].

(4.30)
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By solving the double integral in (4.30), we have that

∫ ∞
0

∫ ∞
0

v + w√
2πx3

e−
(v+w−µx)2

2x e−2µv−(
√

(µ−λ)2+2β+µ−λ)w dvdw

=
µΦ (µ

√
x)− µ√

(µ− λ)2 + 2β − (µ+ λ)

+ Φ
(√

x
(
λ−

√
(µ− λ)2 + 2β

))
e
−x
(
λ
(√

(µ−λ)2+2β+µ−λ
)
−β
) √

(µ− λ)2 + 2β − λ√
(µ− λ)2 + 2β − (µ+ λ)

.

(4.31)

�

4.2.2 Laplace Transform of Overshoot −Xτ

In this subsection, we present an explicit formula of the Laplace transform of the overshoot

−Xτ with initial capital x > 0.

Proposition 4.2.2. The Laplace transform of the overshoot −Xτ for initial capital x > 0 in

infinite time horizon is given by

E[e−ν(−Xτ )Iτ<∞ | X0 = x] =
4λ

c

1√
µ2 + 2ν + µ

1√
µ2 + 2ν − µ+ 2λ

c

·
{
eνx
√
µ2 + 2νΦ̄

(√
x(µ2 + 2ν)

)
− e

2λ
c (λc−µ)x

(
µ− 2λ

c

)
Φ̄

((
µ− 2λ

c

)√
x

)}
.

(4.32)

Proof. First let β = 0, κ = 0, and ν > 0 in f(x) defined in (3.17). Next set f(x, t) = e−βtf(x)

with β > 0 and apply Laplace transform to Af(x, t) = 0. Notice that ĝ(ξ) = e−ε(
√
µ2+2ξ−µ),

we then have

f̂(ξ) =
cf(0)− λ

√
µ2+2ξ−

√
µ2+2ν

ξ−ν

cξ − λ(
√
µ2 + 2ξ − µ)

. (4.33)

By using final value theorem limx→∞ f(x) = limξ→0 ξf̂(ξ) = 0, we get

f(0) =
2λ

c(
√
µ2 + 2ν + µ)

. (4.34)
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Plug f(0) in f̂(ξ), we have

f̂(ξ) =
2λ

ξ

1√
µ2+2ν+µ

− 1√
µ2+2ξ+

√
µ2+2ν

c− 2λ√
µ2+2ξ+µ

=
4λ

c

1√
µ2 + 2ν + µ

{
1√

µ2 + 2ξ + µ− 2λ
c

1√
µ2 + 2ξ +

√
µ2 + 2ν

}

=
4λ

c

1√
µ2 + 2ν + µ

1√
µ2 + 2ν − µ+ 2λ

c{
1√

µ2 + 2ξ − µ+ 2µ− 2λ
c

− 1√
µ2 + 2ξ − µ+

√
µ2 + 2ν + µ

}

=
4λ

c

1√
µ2 + 2ν + µ

1√
µ2 + 2ν − µ+ 2λ

c

{
ĥ1(ξ)− ĥ2(ξ)

}
.

(4.35)

where the last equality is due to the linearity of Laplace transform.

Then invert ĥ1(ξ) and ĥ2(ξ) w.r.t. ξ respectively. Note that

ĥ1(ξ) =
1√

µ2 + 2ξ − µ+ 2µ− 2λ
c

=

∫ ∞
0

e−(
√
µ2+2ξ−µ)u−(2µ− 2λ

c
)udu

=

∫ ∞
0

∫ ∞
0

e−ξx
u√

2πx3
e−

(u−µx)2
2x dxe−(2µ− 2λ

c
)udu,

(4.36)

thus

h1(x) =

∫ ∞
0

u√
2πx3

e−
(u−µx)2

2x e−(2µ− 2λ
c

)udu

=
1√
2πx

e−
µ2x
2 − e

2λ
c (λc−µ)x

(
µ− 2λ

c

)
Φ̄

((
µ− 2λ

c

)√
x

)
.

(4.37)

Inverting ĥ2(ξ) is similar to the procedure above.

h2(x) =

∫ ∞
0

u√
2πx3

e−
(u−µx)2

2x e−(
√
µ2+2ν+µ)udu

=
1√
2πx

e−
µ2

2
x − eνx

√
µ2 + 2νΦ̄

(√
x(µ2 + 2ν)

)
.

(4.38)

Finally, we have the Laplace transform of the overshoot −Xτ w.r.t. ν for initial capital
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x > 0, i.e.

E[e−ν(−Xτ )Iτ<∞ | X0 = x]

=
4λ

c

1√
µ2 + 2ν + µ

1√
µ2 + 2ν − µ+ 2λ

c

·
{
eνx
√
µ2 + 2νΦ̄

(√
x(µ2 + 2ν)

)
− e

2λ
c (λc−µ)x

(
µ− 2λ

c

)
Φ̄

((
µ− 2λ

c

)√
x

)}
.

(4.39)

�

Corollary 4.2.3. The probability density function of −Xτ with 0 initial capital is given by

f−Xτ |X0=0(z) =
2λ

c

1√
2πz

e−
µ2

2
z − 2λµ

c
Φ̄(µ
√
z). (4.40)

Proof. The density function of −Xτ with X0 = 0 can be calculated from inverting its Laplace

transform, i.e.

f(0) = E[e−ν(−Xτ ) | X0 = 0] =
2λ

c(
√
µ2 + 2ν + µ)

. (4.41)

Rewrite the Laplace transform as

E[e−ν(−Xτ ) | X0 = 0] =
2λ

c

∫ ∞
0

e−(
√
µ2+2ν+µ)udu

=
2λ

c

∫ ∞
0

∫ ∞
0

e−νz
u√

2πz3
e−

(u−µz)2
2z dze−2µudu,

(4.42)

and then invert it we have

f−Xτ |X0=0(z) =
2λ

c

∫ ∞
0

u√
2πz3

e−
(u−µz)2

2z e−2µudu

=
2λ

c

1√
2πz

e−
µ2

2
z − 2λµ

c
Φ̄(µ
√
z).

(4.43)

�
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4.2.3 Probability of Ruin

Theorem 4.2.4. Given the total claim amount process following an inverse Gaussian process,

the probability of ruin with initial capital x > 0 in infinite time horizon is given by

ψ(x) = Φ̄(µ
√
x)− e

2λ
c (λc−µ)x

(
1− 2λ

cµ

)
Φ̄

((
µ− 2λ

c

)√
x

)
, (4.44)

where Φ(x) is the cumulative distribution function for the standard normal distribution,

Φ̄(x) = 1− Φ(x).

Proof. Set β = 0 and apply Laplace transform to Af(x, t) ≡ 0, we have

f̂(ξ) =
cf(0)− λ

√
µ2+2(ξ+κ)−

√
µ2+2ν

ξ+κ−ν

cξ − λ
(√

µ2 + 2ξ − µ
) . (4.45)

And set κ = 0 and ν = 0, then we have

f̂(ξ) =
cf(0)− 2λ√

µ2+2ξ+µ

ξ

(
c− 2λ√

µ2+2ξ+µ

) . (4.46)

Notice that when we set β = 0, κ = 0 and ν = 0 in (3.17), i.e.

f(x) = E[1{τ<∞} | X0 = x] = P(τ <∞ | X0 = x) = ψ(x), (4.47)

which shows that the function f(x) just becomes the probability of ruin ψ(x). We use f(x)

for the sake of simplicity.

Equating the denominator to zero, i.e

ξ

(
c− 2λ√

µ2 + 2ξ + µ

)
= 0, (4.48)

which has one zero root and one negative root w.r.t. ξ. Then plug the zero root in the

numerator of f̂(ξ), we have the probability of ruin with zero capital f(0) = λ
cµ . f(0) can be

obtained from the final value theorem limx→∞ f(x) = limξ→0 ξf̂(ξ) = 0 as well. Due to the
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net profit condition, it is easy to check that 0 < f(0) < 1, which means that if an insurance

company starts with zero capital it would not ruin with probability one immediately. Hence,

we have cµ > λ.

Substituting f(0) = λ
cµ in f̂(ξ), we have

f̂(ξ) =

λ
µ −

2λ√
µ2+2ξ+µ

ξ

(
c− 2λ√

µ2+2ξ+µ

)
=

1

µ

(
1√

µ2 + 2ξ + µ− 2λ
c

− 1√
µ2 + 2ξ + µ

)
.

(4.49)

Due to the linearity of Laplace transform, f̂(ξ) can be inverted through two parts, i.e.

ĝ(ξ) =
1√

µ2 + 2ξ + µ− 2λ
c

=

∫ ∞
0

∫ ∞
0

e−ξx
u√

2πx3
e−

(u−µx)2
2x dxe−2(µ−λ

c
)udu

=

∫ ∞
0

e−ξx
(∫ ∞

0

u√
2πx3

e−
(u−µx)2

2x e−2(µ−λ
c

)udu

)
dx,

(4.50)

then inverting ĝ(ξ) yields that

g(x)

=

(∫ ∞
0

u√
2πx3

e−
(u−µx)2

2x e−2(µ−λc )udu

)
= exp

{
2λ2x− 2µλxc

c2

}{
1√
x

exp

(
−

(µ− 2λ
c )

2
x

2

)
+

(
µ− 2λ

c

)(
1− Φ

(√
x(µ− 2λ

c
)

))}

=
1√
2πx

e−
µ2x
2 − e

2λ
c (λc−µ)x

(
µ− 2λ

c

)
Φ̄

((
µ− 2λ

c

)√
x

)
.

(4.51)
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Similarly, we can calculate the second part of the inverse of Laplace transform in terms of ξ,

h(x) = L−1

{
1√

µ2 + 2ξ + µ

}

=

∫ ∞
0

u√
2πx3

e−
(u−µx)2

2x e−2µudu

=
1√
2πx

e−
µ2x
2 − µ

(
1− Φ(µ

√
x)
)
,

(4.52)

which finishes the proof. �

We carry out the asymptotic numerical evaluation of the probability of ruin with varying

initial capital x > 0 derived in (4.44) in infinite time horizon. The numerical results are

shown in Table 4.1. Parameters are set as λ = 1.5, µ = 1. Different values for the premium

rate c > 0 are shown.

c = 1.65 c = 1.95 c = 2.25 c = 2.4

x ψ(x) ψ(x) ψ(x) ψ(x)

0.1 0.86045 0.67089 0.54872 0.50271

5 0.35866 0.09349 0.04056 0.02975

10 0.15670 0.01556 0.00413 0.00259

20 0.03000 0.00044 4.67162e-05 2.22824e-05

50 0.00021 1.05144e-08 7.45373e-11 1.66941e-11

Table 4.1: Infinite time ruin probabilities.

As we can see from Table 4.1, the probability of ruin in infinite time horizon decreases

when the initial capital grows with same safety loading coefficient, and reduces when the safety

loading coefficient increases with same initial capital. Intuitively, the insurance company is

less likely to ruin with larger initial capital and higher values of safety loading coefficient.

Remark. The ruin probability ψ(0) can be obtained by plugging 0 in ψ(x), which gives us

ψ(0) = λ
cµ .
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4.3 Joint Distributions of Ruin Time, Overshoot and Initial

Capital

In this subsection, we discuss the joint distribution of ruin time τ and overshoot −Xτ

given zero initial capital, and the joint distribution of the ruin time, the overshoot and the

non-zero initial capital.

4.3.1 Case X0 = 0

Theorem 4.3.1. Consider the risk process defined in (4.3), the joint probability density

function of the ruin time τ and the overshoot at ruin −Xτ with zero initial capital is given

by

f(t, y) =
λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2 . (4.53)

Proof. Applying Laplace transform to the generator Af(x, t) defined in (4.22) and setting

Af(x, t) ≡ 0 infer that,

f̂(ξ) =
cf(0)− λ

√
µ2+2(ξ+κ)−

√
µ2+2ν

ξ+κ−ν

cξ − β − λ
(√

µ2 + 2ξ − µ
) . (4.54)

By the final value theorem and setting ξ → 0 yield that

f(0) =
2λ

c

1√
µ2 + 2ξ +

√
µ2 + 2ν

. (4.55)

Furthermore, by κ = 0 and X0 = 0 from (3.17), we have

f(0) = E[e−βτe−ν(−Xτ )Iτ<∞ |X0 = 0], (4.56)

which is just the double Laplace transform of τ and −Xτ given zero initial capital. In order

to calculate their joint probability density function, we thus invert f(0) in (4.55) w.r.t. ξ and
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ν simultaneously, i.e.

f(0) =
2λ

c

∫ ∞
0

e−2µue
−
(√

µ2+2ξ−µ
)
u
e
−
(√

µ2+2ν−µ
)
u
du

=
2λ

c

∫ ∞
0

e−2µu

(∫ ∞
0

e−ξt
u√
2πt3

e−
(u−µt)2

2t dt

)
(∫ ∞

0
e−νy

u√
2πy3

e
− (u−µy)2

2y dy

)
du

=
2λ

c

∫ ∞
0

∫ ∞
0

e−ξte−νy

(∫ ∞
0

e−2µu u√
2πt3

e−
(u−µt)2

2t
u√
2πy3

e
− (u−µy)2

2y du

)
dtdy

= LξLν{f(t, y)},

(4.57)

Note that t > 0 and y > 0 denote the ruin time τ and the overshoot at ruin −Xτ

respectively, therefore (4.57) is also the double Laplace transform w.r.t. τ and −Xτ . Invert

it we obtain their joint density function

f(t, y) =

∫ ∞
0

2λ

c
e−2µu u√

2πt3
e−

(u−µt)2
2t

u√
2πy3

e
− (u−µy)2

2y du

=
2λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2

∫ ∞
0

1√
2π
z2e−

z2

2 dz

=
λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2 .

(4.58)

�

Corollary 4.3.2. Due to the symmetry of τ and −Xτ from their joint density function above,

τ and −Xτ have the identical density formula given by

fτ |X0=0(t) =
2λ

c

1√
2πt

e−
µ2

2
t − 2λµ

c
Φ̄
(
µ
√
t
)
. (4.59)

4.3.2 Case X0 > 0

Next, we discuss the joint distribution of the ruin time τ , the overshoot at ruin −Xτ and

any non-zero initial capital x0 > 0.
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Theorem 4.3.3. The joint probability density function of the ruin time τ , the overshoot at

ruin −Xτ and the initial capital X0 = x0, x0 > 0 is given by

f(t, z, x0)

= 2λt
1√

2πt3
1√

2πx3
0

1√
2πz3

e−
(µ−λ)2

2
te−

µ2

2
x0e−

µ2

2
z

√(
tz

t+ z

)3

·
{
eA2(H1(t, z, x0) +H2(t, z, x0))− eA1(H3(t, z, x0) +H4(t, z, x0))

}
,

(4.60)

where

A1 = exp

{
x0(t(λ− µ)− 2zµ)2

2(t+ z)(x0 + t+ z)
+
tz(µ+ λ)2

2(t+ z)

}
, (4.61)

A2 = exp

{
x0(t(λ− µ) + 2zλ)2

2(t+ z)(x0 + t+ z)
+
tz(µ+ λ)2

2(t+ z)

}
. (4.62)

Define

a =
tz

t+ z
, c =

x0(t+ z)

t+ x0 + z
, (4.63)

d1 =
x0(tλ− tµ− 2zµ)

t+ x0 + z
, d2 =

x0(tλ− tµ+ 2zλ)

t+ x0 + z
, (4.64)

then the functions Hi, i = 1, ..., 4 can be formulated as

H1(t, z, x0) =− 1

t

√
ac

(ac+ t2)3

(
t3(µ+ λ) + acd2 + 2d2t

2
)

√
2πΦ̄

(
(ac+ t2)(µ+ λ)

t
√
c

− t2(µ+ λ) + td2√
c(ac+ t2)

)
exp

{
−
at2(µ+ λ+ d2

t )2

2(ac+ t2)

}

+ ce−
d22
2c

√
2πΦ̄

(√
a(µ+ λ)

)(d2

t
+ µ+ λ

)
,

(4.65)

H2(t, z, x0) =

(
√
cd2(µ+ λ) +

√
c3 +

√
cd2

2

t

)
2π{Φ

(
− t
√
a(µ+ λ) +

√
ad2√

ac+ t2

)
−BvN

(
h1 = − t

√
a(µ+ λ) +

√
ad2√

ac+ t2
, k1 =

√
a(µ+ λ); ρ = − t√

ac+ t2

)
− Φ

(
− d2√

c

)
Φ̄(
√
a(µ+ λ))} − c2√a

ac+ t2
exp

{
−(µ+ λ)2a

2
− d2

2(t2 + 1)

2c(ac+ t2)

}
,

(4.66)
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H3(t, z, x0) =− 1

t

√
ac3

(ac+ t2)3

(
t3(µ+ λ) + acd1 + 2d1t

2
)

√
2πΦ

(
(ac+ t2)(µ+ λ)

t
√
c

− t2(µ+ λ)− td1√
c(ac+ t2)

)
exp

{
−
at2(µ+ λ− d1

t )2

2(ac+ t2)

}

+ ce−
d21
2c

√
2πΦ̄

(√
a(µ+ λ)

)(d1

t
+ µ+ λ

)
,

(4.67)

H4(t, z, x0) =

(
√
cd1(µ+ λ)−

√
c3 −

√
cd2

1

t

)
2π

{BvN
(
h2 = − t

√
a(µ+ λ)−

√
ad1√

ac+ t2
, k2 =

√
a(µ+ λ); ρ = − t√

ac+ t2

)
+ Φ

(
− d1√

c

)
Φ̄(
√
a(µ+ λ))} − c2√a

ac+ t2
exp

{
−(µ+ λ)2a

2
− d2

1(t2 + 1)

2c(ac+ t2)

}
,

(4.68)

where BvN stands for Bivariate Normal cumulative distribution function, i.e.

BvN(h, k; ρ) =
1

2π
√

1− ρ2

∫ k

−∞

∫ h

−∞
exp

{
−x

2 − 2ρxy + y2

2(1− ρ2)

}
dxdy, (4.69)

with −∞ < h, k <∞, and correlation coefficient −1 < ρ < 1.

Proof. Step 1: Setting κ = 0,
√
µ2 + 2ξ − µ = η,

√
µ2 + 2ν − µ = γ, and applying Laplace

transform to the generator in (4.22) infer that

f̂(ξ) =
cf(0)− 2λ

η+γ+2µ

−β + cη
2

2 + (cµ− λ)η
; (4.70)

Step 2: Find f(0) by letting the denominator to be 0, plug in the positive root η+
β , where

η+
β =

λ− µ+
√

(µ− λ)2 + 2cβ

c
; (4.71)

so we have

f(0) =
2λ

λ− cµ+
√

(cµ− λ)2 + 2cβ + cγ + 2cµ
; (4.72)

Note that to ensure 0 < f(0) < 1, we need cµ > λ. This can be deduced from (4.70) that

f(0) = λ
cµ by setting β = 0 and ν = 0.
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Step 3: c = 1, the Laplace transform of f(x) is

f̂(ξ)

=
4λ

(
√

(µ− λ)2 + 2β + λ+ γ + µ)(η + γ + 2µ)(
√

(µ− λ)2 + 2β + η + µ− λ)

= 4λ

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(
√

(µ−λ)2+2β+λ+γ+µ)ue−(η+γ+2µ)ve−(
√

(µ−λ)2+2β+η+µ−λ)w dudvdw

= 4λ

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(
√

(µ−λ)2+2β)(u+w)e−η(v+w)e−γ(u+v)e−µ(u+2v+w)e−λ(u−w)dudvdw;

(4.73)

Step 4: Rewrite the Laplace transform f̂(ξ) as

f̂(ξ) = 4λ

∫ ∞
0

∫ ∞
0

∫ ∞
0

(∫ ∞
0

e−(β+
(µ−λ)2

2
)t u+ w√

2πt3
e−

(u+w)2

2t dt

)
(∫ ∞

0
e−(ξ+µ2

2
)x0 v + w√

2πx3
0

e
− (v+w)2

2x0 dx0

)
(∫ ∞

0
e−(ν+µ2

2
)z u+ v√

2πz3
e−

(u+v)2

2z dz

)
e−µ(u+2v+w)e−λ(u−w)dudvdw;

(4.74)

Invert f̂(ξ) w.r.t β, ξ, and γ, we then obtain the joint density f(t, z, x0),

f(t, z, x0) = 4λ
1√

2πt3
1√

2πx3
0

1√
2πz3

e−
(µ−λ)2

2
te−

µ2

2
x0e−

µ2

2
z

∫ ∞
0

∫ ∞
0

∫ ∞
0

(u+ w)e−
(u+w)2

2t (v + w)e
− (v+w)2

2x0 (u+ v)e−
(u+v)2

2z

e−(µ+λ)u−2µv−(µ−λ)wdudvdw.

(4.75)

�

Remark. This joint probability density function of the triplet can also be viewed as the

joint density function of the ruin time τ , the overshoot at ruin −Xτ given X0 = x0, i.e.

fτ,−Xτ |X0=x0(t, z).

Given the value of initial capital x0, we plot the joint probability density function f(t, z, x0)

against the ruin time τ and the overshoot −Xτ calculated by Matlab. First we set the lower

bound q1 and the upper bound q2 for τ and −Xτ respectively. Also denote M the number
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Figure 4.3: Joint density function f(τ,−Xτ , x0) with different initial capitals x0. (Parameters
µ = 1.2, λ = 1, and c = 1.)
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of time steps and hq1 the step size with hq1 = (q2 − q1)/M . Then, given a value of x0, we

compute f(t, z, x0) at each step till M steps. It is notable that in the formula of f(t, z, x0)

in Theorem 4.3.3, a Bivariate Normal cumulative distribution function BvN(h, k; ρ) is used.

This makes the calculation of f(t, z, x0) and the probability of ruin easy since there is no need

to do numerical integration. To obtain BvN(h, k; ρ), a Matlab function ”integral2” may need

to use in the calculation. Finally, we record all of the values of f(t, z, x0) at each step of τ

and −Xτ , and plot f(t, z, x0) by using the Matlab function ”mesh”. Parameters µ = 1.2,

λ = 1, c = 1, initial capital x0 = 1. Other parameters q1 = 0.02, q2 = 1.5, M = 100.

Figure 4.3 shows the plot of f(t, z, x0) against τ and −Xτ . The x axis and y axis denote

the values of τ and −Xτ respectively. The z axis denotes the value of f(t, z, x0). From

Figure 4.3, it is clear to see that f(t, z, x0) decreases as the value of initial capital grows.

Intuitively, an insurance company is less likely to get ruined when it possesses initial capital

at a higher level. Moreover, when the value of ruin time or the overshoot reduces, f(t, z, x0)

increases as well when the value of x0 is fixed.

x ψ(x; 1) ψ(x; 2) ψ(x; 5) ψ(x; 10)

0.1 0.14011 0.09639 0.04703 0.01745

0.5 0.04355 0.02568 0.01363 0.00773

1 0.01417 0.00998 0.00541 0.00322

5 0.00011 9.0153e-05 6.41341e-05 4.49629e-05

10 1.16715e-06 1.0208e-06 7.98487e-07 5.02671e-07

Table 4.2: Finite time ruin probabilities.

Table 4.2 shows the numerical results of the finite time ruin probabilities when λ = 1,

µ = 1.2, and c = 1. We use the notation ψ(x; t) to denote the probability of ruin before

time t given initial surplus x when the joint density function is given by (4.60). These results

are evaluated by integrating the joint density function over z with different values of initial

capital x0 and ruin times t. We can see from this table that for the fixed ruin time t, the

ruin probability is decreasing as the value of initial capital x grows. When x is fixed, ruin is

less likely to occur within longer time horizon.
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4.4 Appendix to Chapter 4

4.4.1 Detailed Derivation of Theorem 4.3.3

To calculate the triple integral in (4.75), we use change of variables, Jacobian matrix and

the corresponding determinant. First set

Q =

∫ ∞
0

∫ ∞
0

∫ ∞
0

(u+ w)e−
(u+w)2

2t (v + w)e
− (v+w)2

2x0 (u+ v)e−
(u+v)2

2z

e−(µ+λ)u−2µv−(µ−λ)wdudvdw.

(4.76)

Then let 
u+ w = r

v + w = q

u+ v = m,

(4.77)

which provides us with the corresponding Jacobian matrix

J =

(
∂(u, v, w)

∂(r, q,m)

)
=



1
2 −1

2
1
2

−1
2

1
2

1
2

1
2

1
2 −1

2


, (4.78)

and thus the determinant is

|J| = −1

2
. (4.79)
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Because of |q −m| ≤ r ≤ q +m, we have

Q =
1

2

∫ ∞
0

∫ ∞
0

∫ q+m

|q−m|
(re−

r2

2t )(me−
m2

2z
−(µ+λ)m)(qe

− q2

2x0
+(λ−µ)q

)drdmdq

=
1

2

∫ ∞
0

∫ ∞
0

(−t)(e−
(q+m)2

2t − e−
(q−m)2

2t )(me−
m2

2z
−(µ+λ)m)(qe

− q2

2x0
+(λ−µ)q

)dmdq

=
t

2

∫ ∞
0

(∫ ∞
0

e−
(q−m)2

2t me−
m2

2z
−(µ+λ)mdm

)
qe
− q2

2x0
+(λ−µ)q

dq

− t

2

∫ ∞
0

(∫ ∞
0

e−
(q+m)2

2t me−
m2

2z
−(µ+λ)mdm

)
qe
− q2

2x0
+(λ−µ)q

dq

=
t

2
(Q1 −Q2).

(4.80)

Then solve Q1 and Q2 respectively.

(i) Solve Q1 first.

By letting A =
∫∞

0 e−
(q−m)2

2t me−
m2

2z
−(µ+λ)mdm, thus Q1 = A · qe−

q2

2x0
+(λ−µ)q

dq. Then the

change of variables a = tz
t+z , b = tz(µ+λ)−zq

t+z , and m+b√
a

= x gives us

A =

∫ ∞
0

(
√
ax− b)e−

x2

2
√
adxe

b2

2a e
q2

2t

=

[
a− b

√
2πaΦ̄

(
b√
a

)
e
b2

2a

]
e−

q2

2t ,

(4.81)

thus

Q1 =

∫ ∞
0

[
a− b

√
2πaΦ̄

(
b√
a

)
e
b2

2a

]
qe
− q2

2x0
+(λ−µ)q− q

2

2t dq

=a

∫ ∞
0

qe
− (t+x0)q

2−2x0(λ−µ)q
2x0t dq

−
√
a

∫ ∞
0

(
tz(µ+ λ)

t+ z
q − z

t+ z
q2

)
e
− q2

2x0
+(λ−µ)q− q

2

2t

(∫ ∞
b√
a

e−
x2

2 dx

)
e
b2

2adq

=C1 −D1.

(4.82)

Next, let D1 = E1 − F1, so we have

E1 =
√
a
tz(µ+ λ)

t+ z

∫ ∞
0

qe
− q2

2x0
+(λ−µ)q− q

2

2t e
b2

2a

(∫ ∞
b√
a

e−
x2

2 dx

)
dq, (4.83)
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and

F1 =
√
a

z

t+ z

∫ ∞
0

q2e
− q2

2x0
+(λ−µ)q− q

2

2t e
b2

2a

(∫ ∞
b√
a

e−
x2

2 dx

)
dq. (4.84)

Substituting change of variables c = x0(t+z)
t+z+x0

and d = x0(tλ−tµ−2zµ)
t+z+x0

into E1,

E1 = eA1
√
a
tz(µ+ λ)

t+ z

∫ ∞
0

qe−
(q−d)2

2c

∫ ∞
b√
a

e−
x2

2 dxdq, (4.85)

where

A1 =
d2

2c
+

(µ+ λ)2

2
a, (4.86)

gives us

E1 = eA1
√
a3(µ+ λ)

[∫ ∞
√
a(µ+λ)

e−
x2

2

∫ ∞
0

qe−
(q−d)2

2c dqdx

+

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−

√
a(µ+λ)√
a
t

qe−
(q−d)2

2c dqdx

]
.

(4.87)

In the meantime,

E2 =

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ ∞
0

qe−
(q−d)2

2c dqdx

=

∫ ∞
√
a(µ+λ)

e−
x2

2 dx

∫ ∞
0

qe−
(q−d)2

2c dq

=
√

2πΦ̄(
√
a(µ+ λ))

(
ce−

d2

2c +
√
cd
√

2πΦ̄

(
− d√

c

))
.

(4.88)

Also

E3 =

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−

√
a(µ+λ)√
a
t

qe−
(q−d)2

2c dqdx

=

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

(y
√
c+ d)e−

y2

2
√
cdydx

=

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

y
√
ce−

y2

2
√
cdydx+

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

de−
y2

2
√
cdydx

=G1 +H1.

(4.89)
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where

L1 =
√
a(µ+ λ)− d

√
a

t
, M1 =

√
ac

t
. (4.90)

We have

G1 = c

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

ye−
y2

2 dydx

= ce
− L2

1
2(1+M2

1 )

∫ √a(µ+λ)

−∞
exp

−(x− L1

a+M2
1

)2

2
M2

1

1+M2
1

 dx

= c
√

2π
M1√

1 +M2
1

Φ

√a(µ+ λ)− L1

1+M2
1

M1√
1+M2

1

 e
− L2

1
2(1+M2

1 ) ,

(4.91)

and

H1 =
√
cd

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

e−
y2

2 dydx

=
√
cd

∫ √a(µ+λ)

−∞
e−

x2

2

∫ x−L1
M1

−∞
e−

y2

2 dydx

= 2π
√
cd

∫ √a(µ+λ)

−∞
Φ
′
(x)Φ

(
x

M1
− L1

M1

)
dx

= 2π
√
cd · BvN

(
− L1√

1 +M2
1

,
√
a(µ+ λ); ρ = − 1√

1 +M2
1

)
,

(4.92)

where BvN(h, k; ρ) is the joint probability distribution function of random variable’s X and

Y with correlation ρ.

BvN(h, k; ρ) =
1

2π
√

1− ρ2

∫ k

−∞

∫ h

−∞
exp

{
−x

2 − 2ρxy + y2

2(1− ρ2)

}
dxdy. (4.93)

Therefore, we have

E1 = eA1
√
a3(µ+ λ)

[
√

2πΦ̄(
√
a(µ+ λ))

(
ce−

d2

2c +
√
cd
√

2πΦ̄

(
− d√

c

))

+
√

2πc
M1√

1 +M2
1

Φ

(√
1 +M2

1

√
a(µ+ λ)

M1
− L1

M1

√
1 +M2

1

)
e
− L2

1
2(1+M2

1 )

+ 2π
√
cd · BvN

(
− L1√

1 +M2
1

,
√
a(µ+ λ); ρ = − 1√

1 +M2
1

)]
.

(4.94)
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Now we solve F1,

F1 =eA1

√
a3

t

∫ ∞
0

q2e−
(q−d)2

2c

∫ ∞
b√
a

e−
x2

2 dxdq

=eA1

√
a3

t

[∫ ∞
√
a(µ+λ)

e−
x2

2

∫ ∞
0

q2e−
(q−d)2

2c dqdx+

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−

√
a(µ+λ)√
a
t

q2e−
(q−d)2

2c dqdx

]

=eA1

√
a3

t
(F2 + F3) .

(4.95)

By using change of variable q−d√
c

= y, we have

F2 =

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ ∞
0

q2e−
(q−d)2

2c dqdx

=
√

2πΦ̄(
√
a(µ+ λ))

∫ ∞
− d√

c

(cy2 + 2d
√
cy + d2)

√
ce−

y2

2 dy

=
√

2πΦ̄(
√
a(µ+ λ))

[√
2πΦ̄

(
− d√

c

)
(
√
c3 +

√
cd2) + cde−

d2

2c

]
,

(4.96)

F3 =

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

(cy2 + 2d
√
cy + d2)

√
ce−

y2

2 dydx

=−
√
c3

∫ √a(µ+λ)

−∞
e−

x2

2

(
x− L1

M1

)
e
− (x−L1)

2

2M2
1 dx

+ (
√
c3 +

√
cd2)

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

e−
y2

2 dydx+ 2cd

∫ √a(µ+λ)

−∞
e−

x2

2

∫ ∞
−x−L1

M1

ye−
y2

2 dydx.

(4.97)

Since we have

−
√
c3

∫ √a(µ+λ)

−∞
e−

x2

2

(
x− L1

M1

)
e
− (x−L1)

2

2M2
1 dx

=−
√
c3

M1

∫ √a(µ+λ)

−∞
xe
−x

2

2
− (x−L1)

2

2M2
1 dx+

√
c3
L1

M1

∫ √a(µ+λ)

−∞
e
−x

2

2
− (x−L1)

2

2M2
1 dx

=

√
c3M1

1 +M2
1

exp

{
− [(1 +M2

1 )
√
a(µ+ λ)− L1]2

2M2
1 (1 +M2

1 )
− L2

1

2(1 +M2
1 )

}
+
√
c3
L1

M1

G1

c
,

(4.98)
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which gives us

F3 =

√
c3M1

1 +M2
1

exp

{
− [(1 +M2

1 )
√
a(µ+ λ)− L1]2

2M2
1 (1 +M2

1 )
− L2

1

2(1 +M2
1 )

}
−
√

2π
√
c3

L1√
(1 +M2

1 )3
e
− L2

1
2(1+M2

1 ) Φ

(√
1 +M2

1

√
a(µ+ λ)

M1
− L1

M1

√
1 +M2

1

)

+

(
L1
√
c

M1
+ 2d

)
·G1 +

( c
d

+ d
)
·H1.

(4.99)

Therefore,

F1 = eA1

√
a3

t
(F2 + F3) , (4.100)

and

D1 = E1 − F1

= eA1
√
a3 ·

{
√

2π
cM1√
1 +M2

1

Φ

(√
1 +M2

1

√
a(µ+ λ)

M1
− L1

M1

√
1 +M2

1

)
e
− L2

1
2(1+M2

1 )

·
(
−
√
cL1M1

t(1 +M2
1 )

+ µ+ λ− 2
d

t

)
+
√

2πce−
d2

2c Φ̄(
√
a(µ+ λ))

(
µ+ λ− d

t

)
+

(
√
cd(µ+ λ)−

√
c3

t
−
√
cd2

t

)

·

[
2π
√
cd · BvN

(
− L1√

1 +M2
1

,
√
a(µ+ λ); ρ = − 1√

1 +M2
1

)
+ 2πΦ̄

(
− d√

c

)
Φ̄
(√
a(µ+ λ)

)]

−
√
c3M1

t(1 +M2
1 )

exp

{
− [(1 +M2

1 )
√
a(µ+ λ)− L1]2

2M2
1 (1 +M2

1 )
− L2

1

2(1 +M2
1 )

}}
.

(4.101)

(ii) Then solve Q2. Let

Q2 =

∫ ∞
0

(∫ ∞
0

e−
(q+m)2

2t me−
m2

2z
−(µ+λ)mdm

)
qe
− q2

2x0
+(λ−µ)q

dq

= a

∫ ∞
0

qe
− (t+x0)q

2−2x0(λ−µ)q
2x0t dq

−
√
a

∫ ∞
0

(
a(µ+ λ)q − a

t
q2
)
e
− q2

2x0
+(λ−µ)q− q

2

2t e
b̃2

2a

(∫ ∞
b̃√
a

e−
x2

2 dx

)
dq

=C1 −D2,

(4.102)
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where a = tz
t+z , b̃ = tz(µ+λ)+zq

t+z . In the meantime, let D2 = E2 + F2, where

E2 =
√
a3(µ+ λ)

∫ ∞
0

qe
− q2

2x0
+(λ−µ)q− q

2

2t e
b̃2

2a

(∫ ∞
b̃√
a

e−
x2

2 dx

)
dq, (4.103)

and

F2 =

√
a3

t

∫ ∞
0

q2e
− q2

2x0
+(λ−µ)q− q

2

2t e
b̃2

2a

(∫ ∞
b̃√
a

e−
x2

2 dx

)
dq. (4.104)

Substituting the change of variables c = x0(t+z)
t+z+x0

and d̃ = x0(tλ−tµ+2zλ)
t+z+x0

into E2,

E2 = eA2
√
a3(µ+ λ)

∫ ∞
0

qe−
(q−d̃)2

2c

∫ ∞
b̃√
a

e−
x2

2 dxdq, (4.105)

where A2 = d̃2

2c + (µ+λ)2

2 a. This gives us

E2 = eA2
√
a3(µ+ λ)

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ tx√
a
−t(µ+λ)

0
qe−

(q−d̃)2
2c dqdx

= eA2
√
a3(µ+ λ)

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

yce−
y2

2 dydx

+ eA2
√
a3(µ+ λ)

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

e−
y2

2
√
cd̃dydx

= eA2
√
a3(µ+ λ) (G2 +H2) ,

(4.106)

where

L2 =
√
a(µ+ λ) +

d̃
√
a

t
, M2 = M1 =

√
ac

t
. (4.107)

So we have

G2 =

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

yce−
y2

2 dydx

=− c
∫ ∞
√
a(µ+λ)

e−
x2

2 e
− (x−L2)

2

2M2
2 dx+ c

∫ ∞
√
a(µ+λ)

e−
x2

2 e−
d̃2

2c dx

=
√

2πce−
d̃2

2c Φ̄(
√
a(µ+ λ))−

√
2πc

M2√
1 +M2

2

Φ̄

√a(µ+ λ)− L2

1+M2
2

M2√
1+M2

2

 e
− L2

2
2(1+M2

2 ) ,

(4.108)
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and

H2 = d̃
√
c

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

e−
y2

2 dydx

= d̃
√
c

∫ ∞
√
a(µ+λ)

e−
x2

2

(∫ x−L2
M2

−∞
e−

y2

2 dy −
∫ − d̃√

c

−∞
e−

y2

2 dy

)
dx

= d̃
√
c

[∫ ∞
−∞

e−
x2

2

∫ x−L2
M2

−∞
e−

y2

2 dydx−
∫ √a(µ+λ)

−∞
e−

x2

2

∫ x−L2
M2

−∞
e−

y2

2 dydx

−
∫ ∞
√
a(µ+λ)

e−
x2

2

∫ − d̃√
c

−∞
e−

y2

2 dydx

]

= d̃
√
c

[
2πΦ

(
− L2√

1 +M2
2

)
− 2πBvN

(
− L2√

1 +M2
2

,
√
a(µ+ λ); ρ = − 1√

1 +M2
2

)

− 2πΦ

(
− d̃√

c

)
Φ̄(
√
a(µ+ λ))

]
.

(4.109)

Now we solve F2.

F2 =

√
a3

t

∫ ∞
0

q2e
− q2

2x0
+(λ−µ)q− q

2

2t e
b̃2

2a

(∫ ∞
b̃√
a

e−
x2

2 dx

)
dq

=eA2

√
a3

t

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

(cy2 + 2
√
cd̃y + d̃2)

√
ce−

y2

2 dydx

=eA2

√
a3

t

[
√
c3

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

y2e−
y2

2 dydx

+ 2cd̃

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

ye−
y2

2 dydx+
√
cd̃2

∫ ∞
√
a(µ+λ)

e−
x2

2

∫ x−L2
M2

− d̃√
c

e−
y2

2 dydx

]

=eA2

√
a3

t

[
−
√
c3

∫ ∞
√
a(µ+λ)

e−
x2

2

(
x− L2

M2

)
e
− (x−L2)

2

2M2
2 dx− cd̃e−

d̃2

2c

√
2πΦ̄(

√
a(µ+ λ))

+ 2cd̃
G2

c
+
√
cd̃2 H2√

cd̃

]

=eA2

√
a3

t

[
F3 − cd̃e−

d̃2

2c

√
2πΦ̄(

√
a(µ+ λ)) + 2d̃G2 + d̃H2

]
,

(4.110)
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and

F3 =−
√
c3

M2

∫ ∞
√
a(µ+λ)

xe−
x2

2 e
− (x−L2)

2

2M2
2 dx+

√
c3
L2

M2

∫ ∞
√
a(µ+λ)

e−
x2

2 e
− (x−L2)

2

2M2
2 dx

=−
√
c3

M2

[
1 +

M2
2

1 +M2
1

exp

{
− [(1 +M2

2 )
√
a(µ+ λ)− L2]2

2M2
2 (1 +M2

2 )
− L2

2

2(1 +M2
2 )

}

−
√

2π
L2M2√

(1 +M2
2 )3

e
− L2

2
2(1+M2

2 ) Φ

(√
1 +M2

2

√
a(µ+ λ)

M2
− L2

M2

√
1 +M2

2

)]

+
√
c3

L2√
1 +M2

2

√
2πe

− L2
2

2(1+M2
2 ) Φ̄

(√
1 +M2

2

√
a(µ+ λ)

M2
− L2

M2

√
1 +M2

2

)

=−
√
c3

M2

1 +M2
1

exp

{
− [(1 +M2

2 )
√
a(µ+ λ)− L2]2

2M2
2 (1 +M2

2 )
− L2

2

2(1 +M2
2 )

}
+
√
c3
√

2π
L2M

2
2√

(1 +M2
2 )3

e
− L2

2
2(1+M2

2 ) Φ̄

(√
1 +M2

2

√
a(µ+ λ)

M2
− L2

M2

√
1 +M2

2

)
,

(4.111)

provide us with

F2 = eA2

√
a3

t

[
−
√
c3

M2

1 +M2
1

exp

{
− [(1 +M2

2 )
√
a(µ+ λ)− L2]2

2M2
2 (1 +M2

2 )
− L2

2

2(1 +M2
2 )

}

+
√
c3
√

2π
L2M

2
2√

(1 +M2
2 )3

e
− L2

2
2(1+M2

2 ) Φ̄

(√
1 +M2

2

√
a(µ+ λ)

M2
− L2

M2

√
1 +M2

2

)

− cd̃e−
d̃2

2c

√
2πΦ̄(

√
a(µ+ λ)) +

(
c

d̃
+
√
cd̃2

)
H2 + 2d̃G2

]
.

(4.112)
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Chapter 5

Parisian Excursions with Inverse

Gaussian Processes

Traditional risk theory defines that ruin occurs when the surplus process of an insurance

company ever drops below zero, so the company is declared as ruined. This definition has

been recently generalized to the case of Parisian type of ruin. According to Egidio dos Reis

[32] the probability of ruin is usually very small in practice and the insurance company

could continue its business if there are enough funds available to support a negative surplus.

Therefore, Parisian type of ruin occurs when the surplus stays above or under a pre-defined

barrier long enough in a row. From our point of view, the probability of Parisian type of

ruin could be a more appropriate measure of risk in practice, providing the possibility for an

insurance company to get solvency. Dassios and Wu [21] obtained the solution of Parisian type

ruin probability of a classical risk model with exponential claims and for Brownian motion

with drift. Dassios and Wu [22] also discussed the Cramér-type asymptotics of Parisian ruin

probabilities for the classical risk process.

In this chapter, we consider the surplus process with the total claim amount being an

inverse Gaussian process. We begin with the study of the first excursion above zero and

the first excursion under zero respectively. By using a two-state semi-Markov process, the

Laplace transforms of Parisian ruin time for zero initial capital and non-zero initial capital

are derived. Explicit formulae of the probability of Parisian type of ruin with different initial

capitals are also provided. By considering the asymptotic properties for the total claims
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arrival process, we also propose an approximation for the probability of the Parisian type of

ruin.

5.1 Joint Laplace transform of τ1 and τ2

We study the surplus process defined as in chapter 4, i.e.

Xt = x+ ct− Zt, (5.1)

where Zt is an IG process. Define τ1 as same as the ruin time

τ1 = inf{t ≥ 0 | Xt < 0}. (5.2)

We also define τ2 as the first time length after which the surplus process goes back to zero

after τ1, i.e.

τ2 = inf{t− τ1 | t > τ1, Xt ≥ 0, Xτ1 < 0}. (5.3)

Recall that the generator simplified in (4.22) is given by

Af(x, t)

=
∂f(x, t)

∂t
+ c

∂f(x, t)

∂x

− λf(0, t)

∫ ∞
x

1√
2πy3

e−
µ2

2
y dy − λ

∫ x

0
f ′(x− v, t)

∫ ∞
v

1√
2πy3

e−
µ2

2
y dy

+ λe−βt
∫ ∞
x

e−κx−ν(y−x) 1√
2πy3

e−
µ2

2
y dy.

(5.4)

Let f(x, t) = e−βtf(x) and apply Laplace transform to Af(x, t) = 0, we have f̂(ξ)

f̂(ξ) =
cf(0)− λ

√
µ2+2(ξ+κ)−

√
µ2+2ν

ξ+κ−ν

cξ − β − λ(
√
µ2 + 2ξ − µ)

. (5.5)

We consider the equation

cξ − β − λ(
√
µ2 + 2ξ − µ) = 0, (5.6)
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which has two roots

r±β =
−cλµ+ cβ + λ2 ± λ

√
(cµ− λ)2 + 2cβ

c2
. (5.7)

We first study the joint Laplace transform of τ1 and τ2 with different values of initial

capital.

5.1.1 For Xt with X0 = 0

Theorem 5.1.1. The joint Laplace transform of τ1 and τ2 with initial capital X0 = 0 is

given by

E[e−β1τ1−β2τ2 | X0 = 0] =
2λ

c

1√
µ2 + 2β1 +

√
µ2 + 2r+

β2

, (5.8)

where β1 > 0, β2 > 0 and

r+
β2

=
−cλµ+ cβ2 + λ2 + λ

√
(cµ− λ)2 + 2cβ2

c2
. (5.9)

Proof. According to Gerber [43], e−βt+r
−
β Xt is a martingale. Applying the optional stopping

theorem to this martingale stopped at τ1, we have

E[e
−β1τ1+r−β1

Xτ1 Iτ1<∞ | X0 = 0] = 1. (5.10)

Thus if the surplus process recovers from τ1 and stops at the time τ1+τ2, by using the Markov

property of (t,Xt),

E[e−β2τ2 | Fτ1 ] = E[e−β2τ2 | Xτ1 ] = e
r+β2

Xτ1 . (5.11)

Then, from the Tower property of expectations,

E[e−β1τ1−β2τ2 ] = E[E[e−β1τ1−β2τ2 | Xτ1 ]] = E[E[e−β2τ2 | Xτ1 ]e−β1τ1 ] = E[e
r+β2

Xτ1e−β1τ1 ].

(5.12)

The last expectation in (5.12) is actually the joint Laplace transform of τ1 and −Xτ1 with

X0 = 0. According to Theorem (4.3.1), we have the joint probability density function of the
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ruin time τ and the overshoot at ruin −Xτ ,

f(t, y) =
λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2 . (5.13)

Thus the joint Laplace transform of τ1 and τ2 from (5.12) is calculated as

E[e−β1τ1−β2τ2 ] = E[e
−r+β2 (−Xτ1 )

e−β1τ1 ]

=

∫ ∞
0

∫ ∞
0

e
−r+β2ye−β1t

λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2 dtdy.
(5.14)

For simplicity, we let β1 = a and r+
β2

= b, thus equation (5.14) can be calculated as follows:

∫ ∞
0

∫ ∞
0

e
−r+β2ye−β1t

λ

c

1√
2π(t+ y)3

e−
µ2(t+y)

2 dtdy

=
λ

c

∫ ∞
0

e−(µ
2

2
+b)y

∫ ∞
0

1√
2π(t+ y)3

e−(µ
2

2
+a)tdtdy.

(5.15)

Let z = t+ y and we have

A =

∫ ∞
0

1√
2π(t+ y)3

e−(µ
2

2
+a)tdt

= e(µ
2

2
+a)y

∫ ∞
y

1√
2πz3

e−(µ
2

2
+z)tdz,

(5.16)

and let B = µ2

2 + a, so (5.15) becomes

λ

c

1√
2π

∫ ∞
0

e−by+ay

[
2
√
y
e−By − 4

√
BπΦ̄(

√
2By)

]
dy

=
λ

c

1√
2π

[∫ ∞
0

2
√
y
e−(µ

2

2
+b)y − 4

√
Bπ

∫ ∞
0

Φ̄(
√

2By)e(a−b)ydy

]
=

2λ

c

1√
µ2 + 2a+

√
µ2 + 2b

.

(5.17)

Therefore the joint Laplace transform of τ1 and τ2 is,

E[e−β1τ1−β2τ2 | X0 = 0] =
2λ

c

1√
µ2 + 2β1 +

√
µ2 + 2r+

β2

. (5.18)
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Corollary 5.1.2. The probability density function of τ2 conditional on X0 = 0 is given by

fτ2|X0=0(t) =
2λ(cµ− 3λ)

c
exp

{
−(cµ− λ)2 + (cµ− 3λ)2

2c
t

}
Φ

(
cµ− 3λ√

c

√
t

)
+

2λ√
2πc

1√
t
e−

(cµ−λ)2
2c

t.

(5.19)

Proof. From Theorem 5.1.1, by setting β1 = 0, we obtain the Laplace transform of τ2 condi-

tional on X0 = 0, i.e.

E[e−β2τ2 | X0 = 0] =
2λ

c

1√
µ2 + 2r+

β2
+ µ

. (5.20)

Inverting this Laplace transform can give us the probability density function of τ2 conditional

on X0 = 0. �

Corollary 5.1.3. The joint probability density function of τ1 and τ2 with X0 = 0 is given by

fτ1,τ2|X0=0(t1, t2)

=
λ

π

√
c3

t31t
3
2

exp

{
−(cµ− λ)2t2 + cµ2t1

2c

}
1

a5/2

[
2
√

2π(a+ λ2)e
λ2

2a Φ

(
−λ√
a

)
− λ
√
a

]
,

(5.21)

where

a =
ct1 + c2t2
t1t2

. (5.22)

Proof. Given

r+
β2

=
−cλµ+ cβ2 + λ2 + λ

√
(cµ− λ)2 + 2cβ2

c2
, (5.23)
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rewrite the joint Laplace transform of τ1 and τ2 as,

E[e−β1τ1−β2τ2 | X0 = 0]

= 2λ
1√

(cµ− λ)2 + 2cβ2 + λ+ c
√
µ2 + 2β1

= 2λ

∫ ∞
0

exp

{
−
√
cu

√
(
√
cµ− λ√

c
)2 + 2β2

}
e−cu(

√
µ2+2β1−µ)e−(cµ+λ)udu

= 2λ

∫ ∞
0

∫ ∞
0

e−β2t2
√
cu√

2πt32
exp

−
(√

cu− cµ−λ√
c
t2

)2

2t2

 dt2

∫ ∞
0

e−β1t1
cu√
2πt31

exp

{
−(cu− µt1)2

2t1

}
dt1e

−2cµudu.

(5.24)

Thus, the joint probability density function of τ1 and τ2 is

fτ1,τ2(t1, t2)

=

∫ ∞
0

√
cu√

2πt32
exp

−
(√

cu− cµ−λ√
c
t2

)2

2t2

 cu√
2πt31

exp

{
−(cu− µt1)2

2t1

}
e−2cµudu

=
λ

π

√
c3

t31t
3
2

exp

{
−(cµ− λ)2t2 + cµ2t1

2c

}∫ ∞
0

u2 exp

{
−(c2t1 + c3t2)u2 − 2u(−cλt1t2)

2ct1t2

}
du.

(5.25)

Let a = ct1+c2t2
t1t2

, and b = −λ, so we have

∫ ∞
0

u2 exp

{
−(c2t1 + c3t2)u2 − 2u(−cλt1t2)

2ct1t2

}
du

=

∫ ∞
0

x2 exp

{
−ax

2 − 2bx

2

}
dx

=

e−
ax2

2

(√
2
√
π
√
a
(
b2 + a

)
e
a2x2+b2

2a erf
(
ax−b√

2
√
a

)
− 2a (ax+ b) ebx

)
2a3

=
1

a5/2

[
2
√

2π(a+ λ2)e
λ2

2a Φ

(
−λ√
a

)
− λ
√
a

]
.

(5.26)
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Corollary 5.1.4. The probability density function of τ2 conditional on −Xτ1 = z with z > 0

and X0 = 0 is given by

fτ2|−Xτ1=z(t2) =
λz√

2π(t2c− z)3
e
− [t2λ−µ(t2c−z)]

2

2(t2c−z) . (5.27)

Proof. The distribution of τ2 only depends on the value of Xτ1 . Moreover, it has been shown

in Gerber [43] that, the Laplace transform of τ2 conditional on −Xτ1 = z is

E[e−β2τ2 | −Xτ1 = z] = e
−r+β2z. (5.28)

So the probability density function of τ2 conditional on −Xτ1 = z with z > 0 can be calculated

from inverting the Laplace transform of τ2 in (5.28), i.e.

E[e−β2τ2 | −Xτ1 = z]

= exp

{
−cλµ+ cβ2 + λ2 + λ

√
(cµ− λ)2 + 2cβ2

c2
(−z)

}

= exp

− λz√
c3

√(cµ− λ√
c

)2

+ 2β2 −
cµ− λ√

c

 e−
z
c
β2

= e−ε̃(
√
µ̃2+2β2−µ̃)e−

z
c
β2

= e−
z
c
β2 f̂τ2|−Xτ1 (β2),

(5.29)

where

ε̃ =
λz√
c3
, µ̃ =

cµ− λ√
c

. (5.30)

Above Laplace transform indicates that fτ2,−Xτ1 (t2) has a scaled distribution, following

an Inverse Gaussian distribution with parameters ε̃ and µ̃. Thus, inverting above Laplace

transform w.r.t. β2, we have the probability density function of τ2 conditional on −Xτ1 = z
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given by

fτ2|−Xτ1=z(t2) = f
(
t2 −

z

c

)
=

λz√
c3√

2π(t2 − z
c )

3
exp

−
(
λz√
c3
− (cµ−λ)(t2− zc )√

c

)2

2(t2 − z
c )


=

λz√
2π(t2c− z)3

e
− [t2λ−µ(t2c−z)]

2

2(t2c−z) .

(5.31)

�

5.1.2 For Xt with X0 > 0

Theorem 5.1.5. Let c = 1 for the sake of simplicity, the joint Laplace transform of τ1 and

τ2 with initial capital X0 = x, x > 0, is given by

E[e−β1τ1−β2τ2 | X0 = x]

=
b− µ
A− 2µ

e−
b2

2
x−Aµx+Abx

[
eBD (Φ(D)−B) + e

B2

2 Φ̄(D −B)

]
+ e−

2Aµx−A2x
2 Φ(

√
x(µ−A)),

(5.32)

where

b =
√
µ2 + 2r+

β2
+ µ, A =

√
(µ− λ)2 + 2β1 + µ− λ, (5.33)

and

D =
√
x
√
µ2 + 2r+

β2
, B = −

√
x(A− 2µ). (5.34)

Proof. We follow the proof method from Theorem 5.1.1, so we have

E[e−β1τ1−β2τ2 | X0 = x] = E[E[e−β1τ1−β2τ2 | Xτ1 ]] = E[e
−r+β2 (−Xτ1 )

e−β1τ1 | X0 = x], (5.35)

where E[e
−r+β2 (−Xτ1 )

e−β1τ1 | X0 = x] is just the joint Laplace transform of τ1 and −Xτ1 w.r.t.

β1 and −r+
β2

, which can be solved from E[e−βτ−ν(−Xτ ) | X0 = x] with β = β1 and ν = r+
β2

.

Set κ = 0 in (3.17), so we have f(x) = E[e−βτe−ν(−Xτ )
1{τ<∞} | X0 = x]. We can obtain
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f(x) by inverting f̂(ξ) w.r.t. ξ from applying Laplace transform toAf(x) = 0. From Theorem

4.3.3 and the change of variables
√
µ2 + 2ξ − µ = η,

√
µ2 + 2ν − µ = γ, we have

f̂(ξ)

=
4λ√

(µ− λ)2 + 2β +
√
µ2 + 2ν + λ

[
1√

µ2 + 2ξ +
√
µ2 + 2ν

· 1√
(µ− λ)2 + 2β − λ+

√
µ2 + 2ξ

]

= A

∫ ∞
0

e
−
(√

µ2+2ξ+
√
µ2+2ν

)
u
du

∫ ∞
0

e
−
(√

(µ−λ)2+2β−λ+
√
µ2+2ξ

)
v
dv

= A

∫ ∞
0

∫ ∞
0

e
−(u+v)

(√
µ2+2ξ−µ

)
e
−u
(√

µ2+2ν+µ
)
e
−v
(√

(µ−λ)2+2β+µ−λ
)
dudv

= A

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−ξx
u+ v√
2πx3

e−
(u+v−µx)2

2x dx e
−u
(√

µ2+2ν+µ
)
e
−v
(√

(µ−λ)2+2β+µ−λ
)
dudv,

(5.36)

where A = 4λ√
(µ−λ)2+2β+

√
µ2+2ν+λ

. Therefore, we have f(x) as follows

f(x) = A

∫ ∞
0

∫ ∞
0

u+ v√
2πx3

e−
(u+v−µx)2

2x e
−u
(√

µ2+2ν+µ
)
e
−v
(√

(µ−λ)2+2β+µ−λ
)
dudv. (5.37)

Solving this double integral gives us f(x) = E[e−βτe−ν(−Xτ )
1{τ<∞} | X0 = x]. �

We can derive the joint probability density function of τ1 and τ2 given X0 = x by si-

multaneously inverting E[e−β1τ1−β2τ2 | X0 = x] w.r.t. β1 and β2. The calculation could be

complicated because of the non-symmetric property of τ1 and τ2, so the following method is

provided.

Proposition 5.1.6. The joint probability density function of τ1 and τ2 with initial capital

X0 = x0 > 0 is given by

fτ1,τ2|X0=x0(t1, t2) =

∫ ∞
0

f(t, z)
λz√

2π(t2c− z)3
e
− [t2λ−µ(t2c−z)]

2

2(t2c−z) dz, (5.38)

where f(t, z) is just the joint probability density function of the first ruin time τ1, overshoot
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−Xτ1 and initial capital x0 in Theorem 4.3.3, i.e.

f(t, z) = f(t, z, x0)

= 2λt
1√

2πt3
1√

2πx3
0

1√
2πz3

e−
(µ−λ)2

2
te−

µ2

2
x0e−

µ2

2
z

√(
tz

t+ z

)3

·
{
eA2(H1(t, z, x0) +H2(t, z, x0))− eA1(H3(t, z, x0) +H4(t, z, x0))

}
,

(5.39)

where

A1 = exp

{
x0(t(λ− µ)− 2zµ)2

2(t+ z)(x0 + t+ z)
+
tz(µ+ λ)2

2(t+ z)

}
, (5.40)

A2 = exp

{
x0(t(λ− µ) + 2zλ)2

2(t+ z)(x0 + t+ z)
+
tz(µ+ λ)2

2(t+ z)

}
. (5.41)

Define

a =
tz

t+ z
, c =

x0(t+ z)

t+ x0 + z
, (5.42)

d1 =
x0(tλ− tµ− 2zµ)

t+ x0 + z
, d2 =

x0(tλ− tµ+ 2zλ)

t+ x0 + z
, (5.43)

then the functions Hi, i = 1, ..., 4 can be formulated as

H1(t, z, x0) =− 1

t

√
ac

(ac+ t2)3

(
t3(µ+ λ) + acd2 + 2d2t

2
)

√
2πΦ̄

(
(ac+ t2)(µ+ λ)

t
√
c

− t2(µ+ λ) + td2√
c(ac+ t2)

)
exp

{
−
at2(µ+ λ+ d2

t )2

2(ac+ t2)

}

+ ce−
d22
2c

√
2πΦ̄

(√
a(µ+ λ)

)(d2

t
+ µ+ λ

)
,

(5.44)

H2(t, z, x0) =

(
√
cd2(µ+ λ) +

√
c3 +

√
cd2

2

t

)
2π{Φ

(
− t
√
a(µ+ λ) +

√
ad2√

ac+ t2

)
−BvN

(
h1 = − t

√
a(µ+ λ) +

√
ad2√

ac+ t2
, k1 =

√
a(µ+ λ); ρ = − t√

ac+ t2

)
− Φ

(
− d2√

c

)
Φ̄(
√
a(µ+ λ))} − c2√a

ac+ t2
exp

{
−(µ+ λ)2a

2
− d2

2(t2 + 1)

2c(ac+ t2)

}
,

(5.45)
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H3(t, z, x0) =− 1

t

√
ac3

(ac+ t2)3

(
t3(µ+ λ) + acd1 + 2d1t

2
)

√
2πΦ

(
(ac+ t2)(µ+ λ)

t
√
c

− t2(µ+ λ)− td1√
c(ac+ t2)

)
exp

{
−
at2(µ+ λ− d1

t )2

2(ac+ t2)

}

+ ce−
d21
2c

√
2πΦ̄

(√
a(µ+ λ)

)(d1

t
+ µ+ λ

)
,

(5.46)

H4(t, z, x0) =

(
√
cd1(µ+ λ)−

√
c3 −

√
cd2

1

t

)
2π

{BvN
(
h2 = − t

√
a(µ+ λ)−

√
ad1√

ac+ t2
, k2 =

√
a(µ+ λ); ρ = − t√

ac+ t2

)
+ Φ

(
− d1√

c

)
Φ̄(
√
a(µ+ λ))} − c2√a

ac+ t2
exp

{
−(µ+ λ)2a

2
− d2

1(t2 + 1)

2c(ac+ t2)

}
,

(5.47)

where BvN stands for Bivariate Normal cumulative distribution function, i.e.

BvN(h, k; ρ) =
1

2π
√

1− ρ2

∫ k

−∞

∫ h

−∞
exp

{
−x

2 − 2ρxy + y2

2(1− ρ2)

}
dxdy, (5.48)

with −∞ < h, k <∞, and correlation coefficient −1 < ρ < 1.

Proof. By the law of total probability, the joint probability density function of τ1 and τ2 can

be written as

fτ1,τ2(t1, t2 | X0 = x0) = P(τ1 ∈ dt1, τ2 ∈ dt2)

=

∫ ∞
0

P(τ1 ∈ dt1, τ2 ∈ dt2,−Xτ1 ∈ dz)

=

∫ ∞
0

P(τ1 ∈ dt1,−Xτ1 ∈ dz)P(τ2 ∈ dt2 | −Xτ1 = z)

=

∫ ∞
0

f(t, z | X0 = x0)P(τ2 ∈ dt2 | −Xτ1 = z)

=

∫ ∞
0

f(t, z, x0)P(τ2 ∈ dt2 | −Xτ1 = z),

(5.49)

where f(t, z, x0) is the joint probability density function of first ruin time τ1, overshoot −Xτ1

and initial capital x0 from Theorem 4.3.3. Meanwhile, P(τ2 ∈ dt2 | −Xτ1 = z) is just the

probability density function of τ2 conditional on −Xτ1 = z > 0 which has been derived from

Corollary 5.1.4.
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Remark. Note that in previous chapters we specify the net profit condition, c > λ
µ (i.e.

positive safety loading θ > 0), to ensure that the probability of ruin is less than 1. That

is ψ(x) < 1 for all x ≥ 0 and ψ(x) → 0 as x → ∞. This net profit condition results that

the surplus process Xt might not go back to 0 after the first ruin time τ1. However τ2 exists

based on the condition that ψ(x) = 1 for all x ≥ 0 and that Xt is able to go back above 0

after τ1, which is true only if c < λ
µ holds, i.e. negative safety loading θ < 0. When θ < 0,

the premium rate c is reduced in order to make the insurance company continue its business.

Figures 5.1 to 5.9 show the simulation results of distribution of the τ1 and τ2 respectively

with different settings of initial capital X0 and inverse Gaussian parameter µ in infinite

time horizon. We assume that surplus process Xt is defined as in (4.3), and that the claim

size Yi, i = 1, 2, ..., follows IG(ε, µ) defined in (4.2). The total claim amount process is an

inverse Gaussian process Zt with ε → 0. This is to consider infinitely many and arbitrarily

small claims over any finite time interval, which is also by the infinite divisibility property

of IG process. We choose ε = 0.001. Other parameters are set at c = 1, and λ = 3 under

the condition c < λ
µ . The number of simulation N = 100, 000. For the simulation, we

simultaneously record the time length when the surplus process Xt first goes cross zero both

from above to below and from below to above, which is τ1 and τ2 respectively. Then, repeat

above procedure for N times to obtain their histograms.

It is noticeable that the claim size depends on the value of µ, so the choices of µ describe

the average size of claim, resulting in different behaviours of τ1 and τ2. We can easily see

from these figures that both τ1 and τ2 are skewed to the right with extremely long tails.

A distinguishing characteristic is that due to the long tail, extremely large outcomes could

occur even when almost all outcome are very small. When X0 = 0, the most values of τ1 and

τ2 concentrate on the values that are closed to zero. This is because ruin is more likely to

occurs within shorter time period. When X0 increases, ruin is less likely to occur so τ1 and τ2

increase accordingly. On the other hand, when considering X0 is fixed, τ1 and τ2 increases as

µ increases. This can be easily seen from figure 5.7 and figure 5.8. τ1 and τ2 have fatter tails

when µ increases. Since the mean of claim size E[Yi] = 1/µ, claim size decreases averagely
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when µ increases. This leads to that ruin is less likely to occur, so it takes longer time to

ruin, and τ1 and τ2 increase at the same time.

Figures 5.10 to 5.13 show the simulated results of the joint distribution of τ1 and τ2 when

c = 1, λ = 3, and different settings of initial capital X0 and µ in infinite time horizon.

The number of simulation N = 100, 000. As we can see from the figures that τ1 and τ2 are

correlated. As X0 increases, the correlation between τ1 and τ2 strengthens. With the value

of µ growing, the correlation between τ1 and τ2 also strengthens.
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Figure 5.1: Histograms of τ1 and τ2, X0 = 0, c = 1, λ = 3, µ = 0.8
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Figure 5.2: Histograms of τ1 and τ2, X0 = 0, c = 1, λ = 3, µ = 1.0

(a) τ1

0 5 10 15 20 25 30 35 40

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

fr
eq

ue
nc

y

×104 τ
2

(b) τ2

Figure 5.3: Histograms of τ1 and τ2, X0 = 0, c = 1, λ = 3, µ = 1.5
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Figure 5.4: Histograms of τ1 and τ2, X0 = 1, c = 1, λ = 3, µ = 0.8
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Figure 5.5: Histograms of τ1 and τ2, X0 = 1, c = 1, λ = 3, µ = 1.5
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Figure 5.6: Histograms of τ1 and τ2, X0 = 1, c = 1, λ = 3, µ = 2.0
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Figure 5.7: Histograms of τ1 and τ2, X0 = 5, c = 1, λ = 3, µ = 0.8
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Figure 5.8: Histograms of τ1 and τ2, X0 = 5, c = 1, λ = 3, µ = 1.0
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Figure 5.9: Histograms of τ1 and τ2, X0 = 5, c = 1, λ = 3, µ = 1.3
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(a) X0 = 0, c = 1, λ = 3, µ = 0.8 (b) X0 = 0, c = 1, λ = 3, µ = 1.5

Figure 5.10: Joint distributions of τ1 and τ2 with µ = 0.8 and µ = 1.5 respectively

(a) X0 = 1, c = 1, λ = 3, µ = 0.8 (b) X0 = 1, c = 1, λ = 3, µ = 1.0

Figure 5.11: Joint distributions of τ1 and τ2 with µ = 0.8 and µ = 1.0 respectively
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(a) X0 = 1, c = 1, λ = 3, µ = 1.5 (b) X0 = 5, c = 1, λ = 3, µ = 0.8

Figure 5.12: Joint distribution of τ1 and τ2

(a) X0 = 5, c = 1, λ = 3, µ = 1.0 (b) X0 = 5, c = 1, λ = 3, µ = 1.3

Figure 5.13: Joint distribution of τ1 and τ2
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5.2 Laplace Transform of Parisian Excursions

5.2.1 Introduction

Recall the risk process defined as

Xt = x+ ct− Zt, (5.50)

where Zt is an Inverse Gaussian process. Also recall that the classical probability of ruin in

the infinite time horizon is defined as

ψ(x) = P(τ <∞), (5.51)

where τ is the ruin time defined as

τ = inf{t ≥ 0 | Xt ≤ 0}. (5.52)

In this section, we consider Parisian ruin time, and we aim to find the Laplace transform

of Parisian ruin time and the probability of Parisian type of ruin. Parisian type of ruin occurs

if the surplus process drops under zero and continuously stays under zero for a pre-defined

length d > 0.

We use the notations by Dassios & Wu (See [21] for example) to define excursions. For

fixed t > 0, denote gXt the last crossing time of 0 before time t and dXt the first crossing time

of 0 after time t respectively, i.e.

gXt = sup{s ≤ t | sign(Xs) 6= sign(Xt)}, (5.53)

and

dXt = inf{s ≥ t | sign(Xs) 6= sign(Xt)}, (5.54)
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Figure 5.14: Illustration of Parisian ruin time.

where

sign(x) =



1, if x > 0

−1, if x < 0

0, if x = 0.

(5.55)

We also assume that sup{∅} = 0 and inf{∅} =∞.

Therefore, the path between gXt and dXt is the excursion of the surplus process Xt below

or above 0. The time interval (gXt , d
X
t ) is the excursion time interval straddling time t. We

assume d > 0, now we define the first time when the duration time of excursion of Xt under

0 reaches the length d, i.e.

τXtd = inf{t > 0 | (t− gXt )1{Xt<0} ≥ d}. (5.56)

Next, we define the probability of the Parisian type of ruin in the infinite time horizon as

P(τXtd <∞), (5.57)
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which is the probability that we are interested in.

5.2.2 Definitions

In this subsection, we introduce a two-state semi-Markov model for this risk process with

Inverse Gaussian process, which consists of two states and was proposed by Dassios and Wu

[21]. Define the following process SXt based on Xt by

SXt =


1, if Xt > 0

−1, if Xt < 0.

(5.58)

Clearly the definitions (5.53), (5.54) and (5.56) are true similarly for the process SXt . We can

then define

UXt = t− gXt , (5.59)

as the time straddled in the current state. (SXt , UXt ) becomes a Markov process. As a result,

SXt is a two state semi-Markov process consisting of the state space {1,−1}, with 1 denoting

the state when Xt is above zero and −1 denoting the state when Xt is below zero.

Furthermore, set TXi,k, i = 1,−1, and k = 1, 2, ... to be the inter-arrival time that elapses

in state i when the process Xt reaches the state i for the k-th time. Hence we have

TXi,k = UX
dXt

= dXt − gXt . (5.60)

So, TX1,k denotes the length of excursion above 0 and TX−1,k denotes the length of excursion

below 0.

Due to the strong Markov property of Xt, we note that TX−1,k depends on the value of the

previous overshoot, and the value of the overshoot depends on the initial capital X0 and the

previous ruin time. In addition, TX1,k, k = 1, 2, ..., are independent and identically distributed,

and TX−1,k, k = 1, 2, ..., are also independent and identically distributed. It turns out from

the joint Laplace transform of τ1 and τ2 in Theorem 5.1.1 that each pair of (TX1,k, T
X
−1,k) are

independent and identically distributed for k = 1, 2, ... as well.
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Then we define the history of process SXt up to time tn, n = 0, 1, 2, ...

Hn = {SX0 , t0;SX1 , t1; ...;SXn , tn}, (5.61)

and due to the Markov property of SXt , i.e.

P(SXn = j, t < TXi,n < t+ ∆t | Hn−1) = P(SXn = j, t < TXi,n < t+ ∆t | SXn−1), (5.62)

the transition densities pi,j(t) for SXt can be defined as

pi,j(t) = lim
∆t→0

P(SXn = i, t < TXi,n < t+ ∆t | SXn−1 = j)

∆t
, (5.63)

and

Pi,j(t) = P(TXi,k < t) =

∫ t

0
pi,j(s)ds, (5.64)

P̄i,j(t) = P(TXi,k ≥ t). (5.65)

We also define the following P̂i,j(β) and P̃i,j(β) to simplify our notations,

P̂i,j(β) =

∫ ∞
0

e−βtpi,j(t)dt, (5.66)

P̃i,j(β) =

∫ d

0
e−βtpi,j(t)dt. (5.67)

Pi,j(t) gives the probability that the time length for which surplus process Xt stays in state i

is not longer than t. It is also noticeable that we set TXi,k =∞ if the surplus process stays in

state i for infinite time period. The net profit condition c > λ
µ yields that P(TX1,k = ∞) > 0

for k = 1, 2, ....

Next, we aim to find transition probabilities pi,j(t) by considering excursions above 0 and

excursions under 0 respectively.

(i) For the excursions above 0. We use τ∗0 to define the stopping time at the end of current

excursion above 0,

τ∗0 = inf{t ≥ 0 | Xt ≤ 0, X∗0 = 0}, (5.68)
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where X∗0 is the value at the beginning of current excursion above 0. Thus we have

P̂1,−1(β) = E
[
e−βT

X
1,k

]
= E

[
e−βτ

∗
0 | X∗0 = 0

]
=

∫ ∞
0

e−βxfτ |X0=0(x) dx

=

∫ ∞
0

e−βxf−Xτ |X0=0(x) dx

= E[e−β(−Xτ ) | X0 = 0]

=
2λ

c
(√

µ2 + 2β + µ
) .

(5.69)

The third equality is due to the symmetry from the joint probability density of classical ruin

time τ and overshoot −Xτ in Theorem 4.3.1. Inverting P̂1,−1(β) w.r.t. β gives us

p1,−1(t) =
2λ

c

[
1√
2πt

e−
µ2t
2 − µ Φ̄

(
µ
√
t
)]
. (5.70)

(ii) For the excursions below 0. We define τ∗ as the elapsed time when the process Xt

goes back to zero after previous ruin, i.e.

τ∗ = inf{t > 0 | Xt ≥ 0, X∗0 = −z, z > 0}, (5.71)

where −X∗0 is the overshoot when the previous ruin occurs before τ∗. In the meantime,

according to Gerber [43], it has shown that

E[e−βτ
∗ | −X∗0 = z] = e−r

+
β z. (5.72)

We also note that every excursion below 0 can be seen as starting from an overshoot below

0 with the length |z|, and τ∗ only depends on the value of −X∗0 . Meanwhile, from Corollary

4.2.3, the probability density function of the overshoot −Xτ with 0 initial capital is given by

f−Xτ |X0=0(z) =
2λ

c

1√
2πz

e−
µ2

2
z − 2λµ

c
Φ̄(µ
√
z). (5.73)
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Therefore, we have

P̂−1,1(β) = E
[
e−βT

X
−1,k

]
=

∫ ∞
0

E
[
e−βτ

∗ | −X∗0 = z
]
f−X∗0 |X0=0(z) dz

=

∫ ∞
0

e−r
+
β zf−X∗0 |X0=0(z) dz

= E
[
e−r

+
β (−X∗0 ) | X0 = 0

]
=

2λ√
(cµ− λ)2 + 2cβ + λ+ cµ

.

(5.74)

Inverting P̂−1,1(β) w.r.t. β provides us with

p−1,1(t) =
2λ(cµ− 3λ)

c
exp

{
−(cµ− λ)2 + (cµ− 3λ)2

2c
t

}
Φ

(
cµ− 3λ√

c

√
t

)
+

2λ√
2πc

1√
t
e−

(cµ−λ)2
2c

t.

(5.75)

5.2.3 Laplace Transform of τXtd

This section gives the Laplace transform of τXtd for the case with X0 = 0 and the one

with X0 = x, x > 0.

Theorem 5.2.1. The Laplace transform of τXtd with X0 = 0 is given by

E
[
e−βτ

Xt
d

]
= e−βd

c

c− 2λ

(√
µ2 + 2β +

√
µ2 + 2r+

β

)
P̂1,−1(β) P̄−1,1(d), (5.76)

where P̄−1,1(d) = 1− P−1,1(d),

P−1,1(d) =
2λ

cµ− 3λ

1

q

{
1

2
√

2q + 1
[2 Φ(p

√
2q + 1)− 1]− Φ(p) e−qp

2
+

1

2

}
+

2λ

cµ− λ

[
2 Φ

(
(cµ− λ)2

c
d

)
− 1

]
,

(5.77)

p =
cd2

(cµ− 3λ)2
, q =

1

2
+

(cµ− λ)2

2(cµ− 3λ)2
, (5.78)
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and

P̂1,−1(β) =
2λ

c
(√

µ2 + 2β + µ
) . (5.79)

Proof. To find the Laplace transform, we first use Ak to denote the event that τXtd is achieved

during the kth excursion under state SXt = −1. Thus, by the Law of total expectation we

have

E
[
e−βτ

Xt
d

]
=

∞∑
k=1

E
[
e−βτ

Xt
d | Ak

]
P(Ak). (5.80)

We also note that conditional on Ak, the Parisian ruin time τXtd consists of k excursions

above 0, k − 1 excursions under 0, and the last excursion under 0. All of the excursions,

including k excursions above 0 and k − 1 excursions below 0, have time length less than d.

The last excursion has length of d. Conditional on Ak, we have

τXtd | Ak =
k−1∑
j=1

(
TX1,j + TX−1,j

)
+ TX1,k + d | TX−1,1 < d, ... , TX−1,k−1 < d, TX−1,k > d. (5.81)

By the definition of Pi,j , T
X
1,j ’s are distributed as P1,−1, TX−1,j ’s are distributed as P−1,1.

It is also important to note that the pairs of (TX1,j , T
X
−1,j), j = 1, 2, ..., k, are independent

and distributed as in Theorem 5.1.1 given X0 = 0. Pi,j has probability density function pi,j .

Therefore,

E
[
e−βτ

Xt
d | Ak

]
= E

[
e−β(

∑k−1
j=1 (TX1,j+TX−1,j)+TX1,k+d) | TX−1,1 < d, ... , TX−1,k−1 < d, TX−1,k > d

]
= E

[
e−β(T

X
1,1+TX−1,1) · · · e−β(T

X
1,k−1+TX−1,k−1)e−β(T

X
1,k+d) | TX−1,1 < d, ... , TX−1,k−1 < d, TX−1,k > d

]
= e−βd

{
E
[
e−β(T

X
1,j+T

X
−1,j)

]}k−1 E
[
e−βT

X
1,j | TX−1,1 < d, ... , TX−1,k−1 < d, TX−1,k > d

]
[P−1,1(d)]k−1

= e−βd

2λ

c

1√
µ2 + 2β +

√
µ2 + 2r+

β

k−1 ∫∞
0 e−βtp1,−1(t) dt

[P−1,1(d)]k−1
,

(5.82)
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where

r+
β =

−cλµ+ cβ + λ2 + λ
√

(cµ− λ)2 + 2cβ

c2
. (5.83)

The last equality comes from the joint Laplace transform in (5.8).

We have also noted that based on the independence of TX−1,j ’s and they follow distribution

of P−1,1,

P(Ak) = [P−1,1(d)]k−1 (1− P−1,1(d)). (5.84)

Combining all above, the Laplace transform τXtd of can be calculated as

E
[
e−βτ

Xt
d

]
=

∞∑
k=1

E
[
e−βτ

Xt
d | Ak

]
P(Ak)

= e−βd
∞∑
k=1

2λ

c

1√
µ2 + 2β +

√
µ2 + 2r+

β

k−1 ∫∞
0 e−βtp1,−1(t) dt

[P−1,1(d)]k−1
[P−1,1(d)]k−1 (1− P−1,1(d))

= e−βd
∞∑
k=1

2λ

c

1√
µ2 + 2β +

√
µ2 + 2r+

β

k−1

P̂1,−1(β) P̄−1,1(d)

= e−βd
c

c− 2λ

(√
µ2 + 2β +

√
µ2 + 2r+

β

)
P̂1,−1(β) P̄−1,1(d).

(5.85)

Furthermore, according to the formula of p−1,1(t) in (5.75), we have that

P−1,1(d) = P(TX−1,k < d) =

∫ d

0
p−1,1(t) dt

=

∫ d

0

2λ(cµ− 3λ)

c
exp

{
−(cµ− λ)2 + (cµ− 3λ)2

2c
t

}
Φ

(
cµ− 3λ√

c

√
t

)
dt

+

∫ d

0

2λ√
2πc

1√
t
e−

(cµ−λ)2
2c

t dt

=
2λ

cµ− 3λ

1

q

{
1

2
√

2q + 1
[2Φ(p

√
2q + 1)− 1]− Φ(p)e−qp

2
+

1

2

}
+

2λ

cµ− λ

[
2Φ

(
(cµ− λ)2

c
d

)
− 1

]
,

(5.86)
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where

p =
cd2

(cµ− 3λ)2
, q =

1

2
+

(cµ− λ)2

2(cµ− 3λ)2
. (5.87)

�

Next we consider the case when X0 = x, x > 0. Set c = 1 for simplification.

Theorem 5.2.2. The Laplace transform of τXtd with X0 = x, x > 0 and c = 1 is given by

E
[
e−βτ

Xt
d

]
= e−βd E

[
e−βT

X
1,1

]
P̄−1,1(d) + E

[
e−β(T

X
1,1+TX−1,1)

]
P−1,1(d) E

[
e−βτ

X̃t
d

]
, (5.88)

where P−1,1(d) is the same as in Theorem 5.2.1, E[e−βT
X
1,1 ] = E[e−βτ ] which is derived from

Proposition 4.2.1, i.e.

E[e−βT
X
1,1 ]

=
4λ(√

(µ− λ)2 + 2β + λ+ µ
){ µΦ (µ

√
x)− µ√

(µ− λ)2 + 2β − (µ+ λ)
+

Φ
(√

x
(
λ−

√
(µ− λ)2 + 2β

))
e
−x
(
λ
(√

(µ−λ)2+2β+µ−λ
)
−β
) √

(µ− λ)2 + 2β − λ√
(µ− λ)2 + 2β − (µ+ λ)

}
,

(5.89)

E
[
e−βτ

X̃t
d

]
= E

[
e−βτ

Xt
d

]
obtained in Theorem 5.2.1, and we have that E

[
e−β(T

X
1,1+TX−1,1)

]
=

E
[
e−βτ1−βτ2 | X0 = x

]
derived from Theorem 5.1.5, i.e.

E
[
e−β(T

X
1,1+TX−1,1)

]
=

b− µ
A− 2µ

e−
b2

2
x−Aµx+Abx

[
eBD (Φ(D)−B) + e

B2

2 Φ̄(D −B)

]
+ e−

2Aµx−A2x
2 Φ(

√
x(µ−A)),

(5.90)

with b =
√
µ2 + 2r+

β + µ, A =
√

(µ− λ)2 + 2β + µ − λ, D =
√
x
√
µ2 + 2r+

β , and B =

−
√
x(A− 2µ).

Proof. It is important to note that given X0 = x and x > 0, the distribution of the first

length of excursion above 0, TX1,1, differs from the distribution of TX1,k, k = 2, 3, ... since these
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TX1,k’s start from 0.

We have obtained the Laplace transforms of TX1,1 (i.e. τ defined as classical ruin time)

from Proposition 4.2.1 and −XTX1,1
(i.e. the overshoot −Xτ ) given X0 = x, x > 0 from

Proposition 4.2.2 respectively. Thus we have

E
[
e−βτ

Xt
d

]
= E

[
e−βτ

Xt
d 1{TX−1,1}≥d

]
+ E

[
e−βτ

Xt
d 1{TX−1,1}<d

]
= e−βd E

[
e−βT

X
1,11{TX−1,1}≥d

]
+ E

[
e−β(T

X
1,1+TX−1,1)1{TX−1,1}<d

]
E
[
e−βτ

X̃t
d

]
,

(5.91)

where X̃t starts from 0 and it’s just the subsequent path of Xt after time TX1,1 + TX−1,1, so

E
[
e−βτ

X̃t
d

]
= E

[
e−βτ

Xt
d

]
, the later one is obtained from Theorem 5.2.1. Notice that TX1,1 and

TX−1,1 are not independent, and we refer their joint Laplace transform with X0 = x, x > 0, in

Theorem 5.1.5. As a result, we have

E
[
e−βτ

Xt
d

]
= e−βd E

[
e−βT

X
1,1

] ∫ ∞
d

p−1,1(t)dt+ E
[
e−β(T

X
1,1+TX−1,1)

] ∫ d

0
p−1,1(t)dt E

[
e−βτ

X̃t
d

]
= e−βd E

[
e−βT

X
1,1

]
P̄−1,1(d) + E

[
e−β(T

X
1,1+TX−1,1)

]
P−1,1(d)E

[
e−βτ

X̃t
d

]
.

(5.92)

Meanwhile, given X0 = x, x > 0, E
[
e−βT

X
1,1

]
= E

[
e−βτ | X0 = x

]
, which is calculated in

Proposition 4.2.1. �

Figures 5.15 to 5.18 show the simulation results of the distribution of Parisian ruin time

τXtd when d = 1. Parameters are set at c = 1, λ = 3, and different sets of initial capital

X0 and inverse Gaussian parameter µ. The number of simulations N = 100, 000. We still

assume that the surplus process Xt is defined as in (4.3), and claim size Yi, i = 1, 2, ..., follows

IG(ε, µ) defined in (4.2). The total claim amount process is an inverse Gaussian process Zt

with ε→ 0. We choose ε = 0.001. For each simulation, we record each time when the surplus

process Xt ever goes cross zero. Assume that the subscript 1 denotes Xt crosses 0 from above

to below, the subscript 2 denotes Xt crosses 0 from below to above, and i denotes the i-th

cross. By recording all the time intervals τ1,i and τ2,i, find the first i that makes τ2,i > d,
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then τXtd is the sum of all of the τ1,i and τ2,i till τ2,i > d occurs.

From these figures, we can see that the distribution of Parisian ruin time τXtd shows similar

characteristic to τ1 and τ2. τXtd is skewed to the right with long tail. When µ is fixed, as the

initial capital X0 increases, τXtd are increasing since ruin is less likely to occur. When X0 is

fixed, τXtd increases and the distribution of τXtd has fatter tail as µ increases. Since the mean

of claim size E[Yi] = 1/µ, claim size decreases averagely when µ increases. This leads to that

ruin is less likely to occur, so τXtd increases.
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(a) X0 = 0, c = 1, λ = 3, µ = 0.8
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(b) X0 = 0, c = 1, λ = 3, µ = 1.0

Figure 5.15: Simulation result of τXtd
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(a) X0 = 0, c = 1, λ = 3, µ = 1.5
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(b) X0 = 1, c = 1, λ = 3, µ = 0.8

Figure 5.16: Simulation result of τXtd
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(a) X0 = 1, c = 1, λ = 3, µ = 1
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(b) X0 = 1, c = 1, λ = 3, µ = 1.5

Figure 5.17: Simulation result of τXtd
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(b) X0 = 5, c = 1, λ = 3, µ = 1

Figure 5.18: Simulation result of τXtd
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5.3 Parisian Type Ruin Probabilities

In this section, we consider the probabilities of Parisian type of ruin with two cases of

initial capital, i.e. X0 = 0 and X0 = x with x > 0.

5.3.1 Probability of Ruin with X0 = 0

If there is no initial reserve, i.e. X0 = 0, the surplus process becomes

Xt = ct− Zt. (5.93)

We denote the probability of Parisian type of ruin to be

ψd(x) = P(τXtd <∞ | X0 = x). (5.94)

It is obvious to see that ψd(x) < ψ(x) since τXtd > τ1.

Theorem 5.3.1. If X0 = 0, we have that

ψd(0) =
λ

cµ− λK(d)
(1−K(d)), (5.95)

where K(d) = P−1,1(d) calculated as in (5.86), i.e.

K(d) =
2λ

cµ− 3λ

1

q

{
1

2
√

2q + 1
[2Φ(p

√
2q + 1)− 1]− Φ(p)e−qp

2
+

1

2

}
+

2λ

cµ− λ

[
2Φ

(
(cµ− λ)2

c
d

)
− 1

]
,

(5.96)

with

p =
cd2

(cµ− 3λ)2
, q =

1

2
+

(cµ− λ)2

2(cµ− 3λ)2
, (5.97)

and

r±β =
−cλµ+ cβ + λ2 ± λ

√
(cµ− λ)2 + 2cβ

c2
. (5.98)

Proof. When X0 = 0, we have ψ(0) = λ
cµ by applying the final value theorem limx→∞ f(x) =

limξ→0 ξf̂(ξ) = 0. Also from Corollary 4.2.3, the density of overshoot −Xτ with 0 initial
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capital is given by

f−Xτ |X0=0(z) =
2λ

c

1√
2πz

e−
µ2

2
z − 2λµ

c
Φ̄(µ
√
z). (5.99)

Furthermore, we use τ∗ defined in (5.71) and by the property in Gerber [43] pp. 116, we have

E[e−βτ
∗ | −X∗0 = z] = e−r

+
β z. (5.100)

Denote k(t) the density of the first excursion below 0. Then the Laplace transform of k(t)

can be calculated as

k̂(β) =

∫ ∞
0

e−βtk(t)dt

=

∫ ∞
0

E[e−βτ
∗ | −X∗0 = z]f−Xτ |X0=0(z)dz

=

∫ ∞
0

e−r
+
β zf−Xτ |X0=0(z)dz

= E
[
e−r

+
β (−Xτ ) | X0 = 0

]
=

2λ

c
(√

µ2 + 2r+
β + µ

) .

(5.101)

Then define the cumulative distribution function of τ∗ as

K(d) = P(τ∗ < d) =

∫ d

0
k(t)dt, (5.102)

therefore

K(d) =

∫ d

0
L−1
β

{
k̂(β)

}
dt

=

∫ d

0
L−1
β

{
2λ√

(cµ− λ)2 + 2cβ + λ+ cµ

}
dt

=

∫ d

0

2λ(cµ− 3λ)

c
exp

{
−(cµ− λ)2 + (cµ− 3λ)2

2c
t

}
Φ

(
cµ− 3λ√

c

√
t

)
dt

+

∫ d

0

2λ√
2πc

1√
t
e−

(cµ−λ)2
2c

t dt

=
2λ

cµ− 3λ

1

q

{
1

2
√

2q + 1
[2Φ(p

√
2q + 1)− 1]− Φ(p)e−qp

2
+

1

2

}
+

2λ

cµ− λ

[
2Φ

(
(cµ− λ)2

c
d

)
− 1

]
,

(5.103)
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where

p =
cd2

(cµ− 3λ)2
, q =

1

2
+

(cµ− λ)2

2(cµ− 3λ)2
. (5.104)

Notice that K(d) is just P−1,1(d) obtained in (5.86).

We next find the distribution of the number of excursions N below 0, which actually

follows a geometric distribution, i.e.

P(N = k) = (1− ψ(0)) (ψ(0))k =

(
1− λ

cµ

)(
λ

cµ

)k
, (5.105)

for k = 0, 1, 2, ...,.

Let D be the largest excursion blow 0, we have that

P(D ≤ d) =

∞∑
k=0

(K(d))k
(

1− λ

cµ

)(
λ

cµ

)k
=

1− λ
cµ

1− λ
cµK(d)

.

(5.106)

Therefore, the probability of Parisian type of ruin is

ψd(0) = 1− P(D ≤ d) =

λ
µK̄(d)

c− λ
µK(d)

= λ
1−K(d)

cµ− λK(d)
. (5.107)

�

Remark. It is clear to verify that ψ(0) = λ
cµ by taking d → 0 in (5.95). Also we have

ψ(0) > ψd(0) since cµ > λ.

5.3.2 Ruin Probability and Asymptotic Ruin Probability with X0 > 0

In this subsection, we study the probability of Parisian type of ruin and asymptotic result

of the Parisian ruin probability when X0 = x, x > 0.

Theorem 5.3.2. For the surplus process Xt with X0 = x and x > 0, the probability of ruin

93



of Parisian type is

ψd(x) = ψ(x)− cµ− λ
cµ− λK(d)

∫ ∞
0

∫ d

0
fτ1,τ2|X0=x(t1, t2)dt2dt1, (5.108)

where K(d) = P−1,1(d) calculated as in (5.86), i.e.

K(d) =
2λ

cµ− 3λ

1

q

{
1

2
√

2q + 1
[2Φ(p

√
2q + 1)− 1]− Φ(p)e−qp

2
+

1

2

}
+

2λ

cµ− λ

[
2Φ

(
(cµ− λ)2

c
d

)
− 1

]
,

(5.109)

and ψ(x) is the classical probability of ruin we discuss in Theorem 4.2.4, i.e.

ψ(x) = Φ̄(µ
√
x)− e

2λ
c (λc−µ)x

(
1− 2λ

cµ

)
Φ̄

((
µ− 2λ

c

)√
x

)
. (5.110)

Proof. The Parisian ruin probability with x initial capital can be written as

ψd(x)

= P(τXtd <∞ | X0 = x)

= P(τXtd <∞, τ <∞, τ∗ < d | X0 = x) + P(τXtd <∞, τ <∞, τ∗ ≥ d | X0 = x)

= P(τ <∞, τ∗ < d | X0 = x) P(τXtd <∞ | X0 = 0) + P(τ <∞, τ∗ ≥ d | X0 = x).

(5.111)

Note that the last equation results from the strong Markov property of Xt. Meanwhile,

P(τXtd < ∞ | X0 = 0) is just the Parisian ruin probability with 0 initial capital, which has

been obtained from Theorem 5.3.1. Furthermore, we have

P(τ <∞, τ∗ ≥ d | X0 = x) = ψ(x)− P(τ <∞, τ∗ < d | X0 = x), (5.112)

which provides us with

ψd(x) = P(τ <∞, τ∗ < d | X0 = x) P(τXtd <∞ | X0 = 0)

+ ψ(x)− P(τ <∞, τ∗ < d | X0 = x)

= ψ(x)− [1− P(τXtd <∞ | X0 = 0)] P(τ <∞, τ∗ < d | X0 = x).

(5.113)
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We also have that

P(τ <∞, τ∗ < d | X0 = x) =

∫ ∞
0

∫ d

0
fτ1,τ2|X0=x(t1, t2)dt2dt1, (5.114)

where fτ1,τ2|X0=x(t1, t2) is the joint probability density function of τ1 and τ2 with X0 = x.

fτ1,τ2|X0=x(t1, t2) can be obtained from jointly inverting E[e−β1τ1−β2τ2 | X0 = x] w.r.t. β1 and

β2 in Theorem 5.1.5. Therefore we have proved (5.108). �

It is also interesting to consider the asymptotic probability of ruin when the initial capital

x→∞.

Theorem 5.3.3. Consider the surplus process Xt with X0 = x and x > 0, if x → ∞, we

have the following asymptotic Parisian ruin probability

ψd(x) ∼ Cd e
−γx, (5.115)

where

γ =
2λ(cµ− λ)

c2
, (5.116)

Cd = C

{
cµ− λK(d)− µγQ(d)

cµ− λK(d)

}
, (5.117)

C =
cµ− λ

2λµ− cµ
√
µ2 − 2γ

√
µ2 − 2γ, (5.118)

and

Q(d)

=
c3

2λ2

(
1− e−

2λ2t
c

){
Φ

(
(cµ− λ)t− 2λ√

ct

)
+ e

4λ(cµ−λ)
c Φ

(
(cµ− λ)t+ 2λ√

ct

)}
.

(5.119)

Proof. First, by applying the strong Markov property of Xt, we rewrite the Parisian ruin
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probability as

ψd(x) = P(τ <∞, τ∗ < d | X0 = x) P(τXtd <∞ | X0 = 0)

+ P(τ <∞, τ∗ ≥ d | X0 = x).
(5.120)

Define that

h(d) = eγx P(τ <∞, τ∗ < d | X0 = x). (5.121)

γ is the adjustment coefficient which is the unique positive root of the following Lundberg

equation

cγ + λ
(√

µ2 − 2γ − µ
)

= 0, (5.122)

therefore the positive root is

γ =
2λ(cµ− λ)

c2
. (5.123)

Consider the limit of Laplace transform of h(d) when x→∞, i.e.

lim
x→∞

ĥ(β)

= lim
x→∞

∫ ∞
0

e−βdeγx P(τ <∞, τ∗ < d | X0 = x) dd

= lim
x→∞

eγxE
[
e−βτ

∗

β
1{τ<∞} | X0 = x

]
= lim

x→∞

∫ ∞
0

eγx E
[
e−βτ

∗

β
| −Xτ = z

]
P(τ <∞,−Xτ ∈ dz | X0 = x)

= lim
x→∞

∫ ∞
0

eγx E
[
e−βτ

∗

β
| −Xτ = z

]
P(−Xτ ∈ dz | τ <∞, X0 = x) P(τ <∞ | X0 = x).

(5.124)

From Gerber [43] p. 116, we know that e−βt−r
+
β Xt is a martingale,

E[e−βτ
∗ | −Xτ = z] = e−r

+
β z. (5.125)

In the meantime, based on the result of Theorem 2 on p.234 – 235 in Schmidli [70], we can
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show that

lim
x→∞

P(−Xτ ∈ dz | τ <∞, X0 = x)

=
λµ

cµ− λ
γ

∫ ∞
0

eγxḠ(x+ z)dx

=
λµ

cµ− λ
e−γz

∫ ∞
z

Ḡ(y)deγy

=
λµ

cµ− λ
e−γz

(
−Ḡ(z)eγz +

∫ ∞
z

eγyg(y)dy

)
.

(5.126)

We refer to p.4 in Schmidli [71] about the Cramér-Lundberg approximation,

lim
x→∞

eγxP(τ <∞ | X0 = x) = C, (5.127)

where

C =
θ E[Y1]

M
′
Y (γ)− (1 + θ) E[Y1]

, (5.128)

with θ being the safety loading coefficient and c = (1+θ)λE[Y1]. As Yi ∼ IG(ε, µ) and ε→ 0,

we have

C =
cµ− λ

2λµ− cµ
√
µ2 − 2γ

√
µ2 − 2γ. (5.129)

Then limx→∞ ĥ(β) becomes

lim
x→∞

∫ ∞
0

e−r
+
β z

β
P(−Xτ ∈ dz | τ <∞, X0 = x) eγx P(τ <∞ | X0 = x)

=

∫ ∞
0

e−r
+
β z

β
lim
x→∞

P(−Xτ ∈ dz | τ <∞, X0 = x) lim
x→∞

eγx P(τ <∞ | X0 = x)

=
C

β

λµ

cµ− λ

∫ ∞
0

e−r
+
β z
∫ ∞

0
γeγxḠ(x+ z) dxdz

=
C

β

λµ

cµ− λ

(
ĝ(−γ)− ĝ(r+

β )

γ + r+
β

−
1− ĝ(r+

β )

r+
β

)

=
Cµγ

cµ− λ
1

r+
β (r+

β + γ)

=
Cµγ

cµ− λ
c3

β
(

2λ2 + cβ + 2λ
√

(cµ− λ)2 + 2cβ
) ,

(5.130)
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which provides us with

lim
x→∞

eγx P(τ <∞, τ∗ < d | X0 = x)

=
Cµγ

cµ− λ
Q(d),

(5.131)

where

Q(d) = L−1
β

 c3

β
(

2λ2 + cβ + 2λ
√

(cµ− λ)2 + 2cβ
)


= c3

∫ t

0
L−1
β

{
1

2λ2 + cβ + 2λ
√

(cµ− λ)2 + 2cβ

}

= c3

∫ t

0
L−1
β

{
1

c

∫ ∞
0

∫ ∞
0

e−βxe−βx e−
2λ2

c
x ε̃√

2πy3
e
− (ε̃−µ̃y)2

2y dxdy

}

= c2

∫ t

0
L−1
β {Lβ {Lβ{f(x, y)}}}

= c2

∫ t

0
e−

2λ2

c
x ε̃√

2πy3
e
− (ε̃−µ̃y)2

2y dxdy

=
c3

2λ2

(
1− e−

2λ2t
c

){
Φ

(
(cµ− λ)t− 2λ√

ct

)
+ e

4λ(cµ−λ)
c Φ

(
(cµ− λ)t+ 2λ√

ct

)}
,

(5.132)

with

ε̃ =
2λ√
c
, µ̃ =

cµ− λ√
c

. (5.133)

Therefore,

P(τ <∞, τ∗ < d | X0 = x) ∼ e−γx
Cµγ

cµ− λ
Q(d). (5.134)

It is also noticeable that

P(τ <∞, τ∗ ≥ d | X0 = x) = ψ(x)− P(τ <∞, τ∗ < d | X0 = x), (5.135)

which yields

P(τ <∞, τ∗ ≥ d | X0 = x) ∼ Ce−γx
(

1− µγ

cµ− λ
Q(d)

)
. (5.136)
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Combining with (5.120) and the result of P(τXtd < ∞ | X0 = 0) from Theorem 5.3.1 we

have

ψd(x) = P(τ <∞, τ∗ < d | X0 = x) P(τXtd <∞ | X0 = 0)

+ P(τ <∞, τ∗ ≥ d | X0 = x)

∼ e−γx
Cµγ

cµ− λ
Q(d)

λ(1−K(d))

cµ− λK(d)
+ Ce−γx

(
1− µγ

cµ− λ
Q(d)

)
= e−γxC

{
cµ− λK(d)− µγQ(d)

cµ− λK(d)

}
.

(5.137)

�

Remark. It is obvious to check that Cd < C under the net profit condition c > λ
µ , which

infers that ψd(x) < ψ(x).
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Chapter 6

Surplus Processes with Variable

Premium Income and Stochastic

Premium Income

This chapter first studies the probability of survival for an insurance company, of which

surplus process consists of variable premium income. In other words, an insurance company

reinvests its current surplus and collects interest. The formula of survival probability and the

numerical results of probability of ruin are provided.

Then the second part of this chapter considers the case that premium income rate is

no longer a linear function of time, but a stochastic process independent of the total claim

amount process. The explicit formula and the numerical results of probability of ruin are

given as well.

6.1 Surplus Process with Variable Premium Income

In this subsection, we study the problem of ruin with more general type of premium. Let

Xδ
t denote the value of the surplus at time t, which is defined as

Xδ
t = x+ Ct − Zt, (6.1)
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where x ≥ 0 is the initial capital, {Ct, t ≥ 0} is the generalized premium up to time t,

{Zt, t ≥ 0} is the inverse Gaussian process that we discussed in previous chapter. Assume

that the premium income depends on the current surplus, earning interest at a constant force

δ > 0, i.e.

C(Xδ
t ) = c+ δXδ

t , (6.2)

where c ≥ 0 is the constant premium rate defined as in precious chapters. This means that

the insurance company receives premium at a constant rate δ, and the premium income at

time t is a linear function of the surplus Xδ
t . We assume that c(0) > 0, and c(x) > 0 for

x > 0. Another example of variable premium income is that premiums are charged by the

level of the current surplus. We refer Michaud [62] for the detailed discussion of this example.

In the case defined in (6.2), the surplus process Xδ
t satisfies the equation (see Sundt and

Teugels, [76] and [77])

Xδ
t = xeδt + c

∫ t

0
eδydy −

∫ t

0
eδ(t−y)dZy, (6.3)

with Xδ
0 = x and

∫ t

0
eδydy =


t, if δ = 0

1
δ

(
eδt−1

)
, if δ > 0.

(6.4)

When δ = 0, this is the case that considers the classical surplus process, which has been

intensively discussed in a vast literature. We focus on the case that δ > 0. Define the infinite

time probability of ruin of the insurance company at some time beginning with initial capital

x as

ψδ(x) = P
(

inf
t≥0

Xδ
t < 0 | Xδ

0 = x

)
. (6.5)

It is obvious to see that if Xδ
v ≥ 0 for all v ≤ t, then Xδ

v ≥ Xv for all v ≤ t. Xv is

the classical surplus process with constant premium rate at time v ≥ 0. This implies that

ψδ(x) ≤ ψ(x). On other words, the ψ(x) in the classical case δ = 0 provides with an upper

bound for the probability of ruin in the general case δ > 0.

101



Figure 6.1: A sample path of surplus process with variable premium income.

When δ = 0, we have Xδ
t = Xt = x + ct − Zt. It has been shown that (See e.g. Sundt

[75]) Xt → ∞ as t → ∞ under the net profit condition c > λ
µ , while Xt → −∞ as t → ∞

if c < λ
µ . This follows that ψ(x) = 1 for all x if c < λ

µ . It is noticeable that ψ(x) = 1 when

c = λ
µ . When δ > 0, Sundt and Teugels [76] showed that ψδ(x) is no longer obviously equal

to 1 if c < λ
µ . However it is clear that ψδ(x) = 1 if c ≤ −δx. That is, the interest received

from investing previous surplus would not be sufficient to cover the negative premium, thus

the surplus would become negative sooner or later.

Theorem 6.1.1. If ut = xt + c
δ , the probability of survival with initial value u > 0 for an

insurance company is given by

f(u) = K(2µ)me−2µa +K

(
1√
u

)m
Hm−1

(
a+ µu√

u

)
ϕ

(
a+ µu√

u

)
+ (−1)m+1K

(
1√
u

)m
bme−2µaΦ(

a− µu√
u

)

+ (−1)m+1K

(
1√
u

)m
ϕ(
a+ µu√

u
)

m−1∑
k=0

(−1)kHk

(
a+ µu√

u

)
bm−1−k,

(6.6)
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where K = (2µ)−
2λµ
δ e

4λµ
δ , a = 2λ

δ , b = −2µ
√
u, m = [2λµ

δ ] is the integer part of 2λµ
δ , Φ(x) is

the probability distribution function for standard normal distribution, and Φ′(x) = ϕ(x).

Proof. The infinitesimal generator A applied to f(x) becomes

Af(x) = (c+ δx)
∂f(x)

∂x
+
λ

ε

{∫ x+ c
δ

0
f(x− y)dG(y)− f(x)

}
, (6.7)

with lim
x→∞

f(x) = 1. In this case, f(x) is the probability of survival given initial surplus x ≥ 0.

Let u = x+ c
δ , so the generator is

Af(u) = δu
∂f(u)

∂u
+
λ

ε

{∫ u

0
f(u− y)dG(y)− f(u)

}
. (6.8)

Simplifying this generator as

Af(u) = δu
∂f(u)

∂u
− λf(0)

∫ ∞
u

1√
2πy3

e−
µ2

2
y dy

− λ
∫ u

0
f ′(x− v)

∫ ∞
v

1√
2πy3

e−
µ2

2
y dydv.

(6.9)

Applying Laplace transform to Af(u) = 0, we have the following equation in terms of

f̂(ξ),

−δd(ξf̂(ξ))

dξ
− λf̂(ξ)

(√
µ2 + 2ξ − µ

)
= 0, (6.10)

which can be seen as an ordinary differential equation in terms of ξf̂(ξ). Solving this equation

and using the theorem of final value lim
u→∞

f(u) = limξ→0 ξf̂(ξ) = 1 give us

f̂(ξ) = (2µ)−
2λµ
δ e

2λµ
δ

(
√
µ2 + 2ξ + µ)

2λµ
δ

ξ
e−

2λ
δ

√
µ2+2ξ. (6.11)

Therefore, we have the Laplace transform for the probability of survival f(u), which can be

obtained by inverting f̂(ξ).

Notice that when the power 2λµ
δ could be relatively large due to possible small values of

interest rate δ > 0, the decimal part does not affect f̂(ξ) too much, for which we only need
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to focus on corresponding integer part m = [2λµ
δ ]. Thus f̂(ξ) can be rewritten as

f̂(ξ) = K
1

ξ
(
√
µ2 + 2ξ + µ)me−a(

√
µ2+2ξ+µ), (6.12)

where K = (2µ)−
2λµ
δ e2 2λµ

δ , a = 2λ
δ . Therefore,

f̂(ξ) = K
1

ξ
(−1)m

dm

dam

(
e−a(
√
µ2+2ξ+µ)

)
= K

1

ξ
(−1)m

dm

dam

(∫ ∞
0

e−ξt
a√
2πt3

e−
(a+µt)2

2t dt

)
= K

1

ξ
(−1)m

∫ ∞
0

e−ξt
dm

dam

(
a√
2πt3

e−
(a+µt)2

2t

)
dt

=
1

ξ

∫ ∞
0

e−ξt
[
K(−1)m

dm

dam

(
a√
2πt3

e−
(a+µt)2

2t

)]
dt

=
1

ξ
ĥ(ξ),

(6.13)

where ĥ(ξ) is the Laplace transform of h(t) and

h(t) = K(−1)m
dm

dam

(
a√
2πt3

e−
(a+µt)2

2t

)
. (6.14)

Note that for a given probability density function g(y) with g(y) = G′(y)

1

ξ
ĝ(ξ) =

∫ ∞
0

e−ξyG(y)dy =

∫ ∞
0

e−ξy
(∫ y

0
g(t)dt

)
dy = Ĝ(ξ). (6.15)

Thus, for f̂(ξ), we have

f̂(ξ) =
1

ξ
ĥ(ξ) =

∫ ∞
0

e−ξuH(u)du =

∫ ∞
0

e−ξu
(∫ u

0
h(t)dt

)
du, (6.16)

which gives us the probability of survival

f(u) =

∫ u

0
h(t)dt

=

∫ u

0
K(−1)m

dm

dam

(
a√
2πt3

e−
(a+µt)2

2t

)
dt

= K(−1)m
∫ u

0

dm

dam

(
a√
2πt3

e−
(a+µt)2

2t

)
dt

= K(−1)m
dm

dam

(∫ u

0

a√
2πt3

e−
(a+µt)2

2t dt

)
.

(6.17)
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The integrand in equation (6.17) is the just the probability density function of

τa = inf{t > 0 |W (−µ)
t = Wt − µt = a}, (6.18)

where Wt is Brownian motion, τa is the first hitting time when the drifted Brownian motion

W
(−µ)
t touches the barrier a > 0. As a result, the probability of survival f(u) in equation

(6.17) becomes

f(u) = K(−1)m
dm

dam
(P(τa < u))

= K(−1)m
dm

dam

(
P( max

0≤s≤u
(Wt − µt) ≥ a)

)
= K(−1)m

dm

dam

(
1− Φ(

a+ µu√
u

) + e−2µa − e−2µaΦ(
a− µu√

u
)

)
= K(−1)m(−2µ)me−2µa+

K(−1)m+1 dm

dam

(
Φ(
a+ µu√

u
)

)
+K(−1)m+1 dm

dam

(
e−2µaΦ(

a− µu√
u

)

)
,

(6.19)

where Φ(x) is the probability distribution function for standard normal distribution, and

Φ′(x) = ϕ(x). Also we have

dm

dam

(
Φ(
a+ µu√

u
)

)
= (−1)m−1

(
1√
u

)m
Hm−1

(
a+ µu√

u

)
ϕ

(
a+ µu√

u

)
, (6.20)

and

dm

dam

(
e−2µaΦ(

a− µu√
u

)

)
=

(
1√
u

)m{
bme−2µaΦ(

a− µu√
u

) + ϕ(
a+ µu√

u
)
[
bm−1 + (−1)1H1

(
a+ µu√

u

)
bm−2

+ (−1)2H2

(
a+ µu√

u

)
bm−3+, . . . ,+(−1)m−1Hm−1

(
a+ µu√

u

)]}
,

(6.21)

where b = −2µ
√
u, and Hm(x) is the Hermite polynomial defined as

Hm(x) = (−1)me
x2

2
dm

dxm

(
e−

x2

2

)
. (6.22)
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δ = 0.03 δ = 0.05 δ = 0.1

x ψδ(x) ψδ(x) ψδ(x)

0 0.95646 0.89221 0.78798

1 0.94342 0.85876 0.71555

3 0.90991 0.77864 0.56421

5 0.86611 0.68581 0.42395

7 0.81248 0.58741 0.30750

9 0.75048 0.49029 0.21757

10 0.71701 0.44398 0.18178

20 0.36796 0.12861 0.02717

30 0.13714 0.02858 0.00405

40 0.04119 0.00572 0.00065

50 0.01083 0.00111 0.00011

Table 6.1: Infinite time ruin probabilities. λ = 1, c = 1.5 and µ = 0.5.

Therefore, the probability of survival f(u) is calculated as

f(u) = K(−1)m(−2µ)me−2µa +K

(
1√
u

)m
Hm−1

(
a+ µu√

u

)
ϕ

(
a+ µu√

u

)
= K(2µ)me−2µa +K

(
1√
u

)m
Hm−1

(
a+ µu√

u

)
ϕ

(
a+ µu√

u

)
+ (−1)m+1K

(
1√
u

)m
bme−2µaΦ(

a− µu√
u

)

+ (−1)m+1K

(
1√
u

)m
ϕ(
a+ µu√

u
)

m−1∑
k=0

(−1)kHk

(
a+ µu√

u

)
bm−1−k,

(6.23)

where K = (2µ)−
2λµ
δ e

4λµ
δ , a = 2λ

δ , b = −2µ
√
u, and m = [2λµ

δ ]. �

Table 6.1 illustrates the probabilities of ruin with different values of initial capital x and

different interest rates δ of surplus. Parameters are set at λ = 1, c = 1.5 and µ = 0.5. The

table shows that the ruin probability decreases as either initial capital grows or interest rate

grows. It can be seen that if the initial capital is sufficiently large, the ruin probability becomes

very small. Intuitively, an insurance company is less likely to default when it possesses the

corresponding initial capital or receives interest rate at a higher level.
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It is interesting to compare the ruin probability ψδ(x) = 1− f(x) (which can be derived

from (6.23)) with the case of claim size following an exponential distribution with mean µ̃.

Sundt and Teugels [76] discussed the probability of ruin for the exponential case, in which

the ruin probability is exponentially bounded. The explicit formula is given by

ψδ(x) =
Γ
(
λ
δ ,

c
δµ̃ + x

µ̃

)
Γ
(
λ
δ ,

c
δµ̃

)
+ c

λ

(
c
δµ̃

)λ
µ̃
e
− c
δµ̃

, (6.24)

where Γ(a, b) is the incomplete gamma function defined as

Γ(a, b) =

∫ ∞
b

xa−1e−x dx. (6.25)

Michaud [62] obtained an estimate result of probability of ruin for the exponential case by

considering the duality between the surplus process and the single-server queue. The results

show that with initial capital increasing from 0 to 10, the ruin probability decays more quickly

than our inverse Gaussian case. The decreasing behaviour results from the exponential decay

of the claim size distribution.

Figures 6.2 and 6.3 show the plots of probability of ruin ψδ(x) (i.e. 1−f(x), f(x) is derived

from Theorem 6.1.1) and − logψδ(x) respectively according to the different values of initial

capital x. We can see from figures 6.2 (a) and 6.3 (a) that with the initial capital x increasing,

the probability of ruin decays exponentially. This can be seen from the formula of survival

probability in (6.6). According to the Cramér-Lundberg approximation of ruin probability in

(3.24), when x→∞, ψ(x) ∼ Ce−γx where γ is the positive root of a corresponding Lundberg

equation. So we plot − logψδ(x) to check the linearity of − logψδ(x) with different values of

x. It is interesting to see that − logψδ(x) slightly deviates from the corresponding straight

line when the values of x are relatively small (see figures 6.2 (b) and 6.3 (b)). As x increases

to large values, − logψδ(x) tends to show linearity.
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Figure 6.2: Plots of probability of ruin ψδ(x) and − log(ψδ(x)) against x, δ = 0.05.
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Figure 6.3: Plots of probability of ruin ψδ(x) and − log(ψδ(x)) against x, δ = 0.1.
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6.2 Surplus Process with Stochastic Premium Income

This section studies the probability of ruin of an insurance company when we consider

a generalized risk model. The premium income is no longer just a simple linear function of

time but a stochastic premium income modelled by a compound Poisson process.

Define the surplus process as

Xt = x+

Mt∑
i=1

Hi − Zt. (6.26)

x ≥ 0 is the initial capital.
∑Mt

i=1Hi is a compound Poisson process representing the fluctua-

tions in the risk premium, Hi, i=1,2,..., are strictly positive and independent and identically

distributed with common exponential distribution, i.e. Hi ∼ exp(α) with α > 0. Mt is the

number of jumps Hi up to time t which is a homogeneous Poisson process with intensity ρ

and is also independent of the total claim process Zt. Zt is the same inverse Gaussian process

that we introduced in previous chapter. Assume that the
∑Mt

i=1Hi and Zt are independent.

We should also specify the net profit condition, E[
∑Mt

i=1Hi]− E[Zt] > 0, i.e. ρ
α −

λ
µ > 0.

The surplus process defined in (6.26) is a special case of the model described in Huzak

et al. [48]. It incorporates the risk models discussed in Furrer [34], Yang and Zhang [82],

Morales [59] and Garrido and Morales [35]. It is also a special case of the studies of Morales

and Schoutens [60] and Doney and Kyprianou [27].

Given a surplus process Xt defined in (6.26), the simplified generator becomes

Af(x, t) =
∂f(x, t)

∂t
+ ρ

(∫ ∞
0

f(x+ y, t)αe−αydy − f(x, t)

)
− λf(0, t)

∫ ∞
x

1√
2πy3

e−
µ2

2
y dy − λ

∫ x

0
f ′x(x− v, t)

∫ ∞
v

1√
2πy3

e−
µ2

2
y dydv

+ λe−βt
∫ ∞
x

e−κx−ν(y−x) 1√
2πy3

e−
µ2

2
y dy.

(6.27)

Theorem 6.2.1. Consider the surplus process defined in (6.26), Hi ∼ exp(α), Mt ∼ Poisson(ρ),
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Figure 6.4: A sample path of surplus process with stochastic premium income.

the total claim process Zt is the inverse Gaussian process that we have discussed in previous

chapters. When X0 = x and x > 0, the probability of ruin with initial capital x is given by

f(x) =
2C1

2µ+ η+

{
(µ+ η+) e

(η+)2+2µη+

2
x Φ((µ+ η+)

√
x) + µ Φ̄(µ

√
x)

}
+

2C2

2µ+ η−

{
(µ+ η−) e

(η−)2+2µη−
2

x Φ((µ+ η−)
√
x) + µ Φ̄(µ

√
x)

}
,

(6.28)

where

η± =
−
(
2µ+ ρ

λ

)
±
√(

2µ− ρ
λ

)2
+ 8α

2
, (6.29)

and

C1 =
η+ + 2µ+ α

µ

η+ − η−
, C2 =

η− + 2µ+ α
µ

η− − η+
. (6.30)

Proof. It is also remarkable that ruin will immediately occur with X0 = 0, i.e. f(0) = 1,

due to the arbitrarily small jump from the claim. Suppose at time T1, the premium process∑Mt
i=1Hi is waiting for a jump HT1 , but the claim process

∑Nt
i=1 Yi has jumped to YT1 without

waiting. Therefore, ruin occurs with probability 1 if X0 = 0.
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Set f(x, t) = e−βxf(x), then let β = 0, the generator becomes

Af(x) = ρ

(∫ ∞
0

f(x+ y)αe−αydy − f(x)

)
− λ

∫ ∞
x

1√
2πy3

e−
µ2

2
y dy − λ

∫ x

0
f ′(x− v)

∫ ∞
v

1√
2πy3

e−
µ2

2
y dydv

+ λ

∫ ∞
x

e−κx−ν(y−x) 1√
2πy3

e−
µ2

2
y dy.

(6.31)

In the meantime, setting κ = 0, ν = 0 and applying Laplace transform to Af(x) = 0 gives us

f̂(ξ) =
ρ α
α−ξ f̂(α)− 2λ√

µ2+2ξ+µ

ρα
α−ξ − ρ− λ(

√
µ2 + 2ξ − µ)

. (6.32)

When ξ → 0, we have ρf̂(α) = λ
µ . Thus by the change of variable

√
µ2 + 2ξ−µ = η, we have

f̂(ξ) =

λ
µ

α
α−ξ −

2λ√
µ2+2ξ+µ

ρ ξ
α−ξ − λ(

√
µ2 + 2ξ − µ)

=
2

λ

1

η

λα
µ −

2λ
η+2µ

(
α− 1

2η
2 − µη

)
η2 +

(
2µ+ ρ

λ

)
η + 2

λ(µρ− λα)

= 2
1

η + 2µ

η + (2µ+ α
µ )

η2 +
(
2µ+ ρ

λ

)
η + 2

λ(µρ− λα)
,

(6.33)

Consider the equation

η2 +
(

2µ+
ρ

λ

)
η +

2

λ
(µρ− λα) = 0, (6.34)

which has two roots

η± =
−
(
2µ+ ρ

λ

)
±
√(

2µ− ρ
λ

)2
+ 8α

2
. (6.35)

Therefore, f̂(ξ) can be calculated as

f̂(ξ) = 2
1

η + 2µ

(
C1

η − η+
+

C2

η − η−

)
= 2

1

η + 2µ

C1

η − η+
+ 2

1

η + 2µ

C2

η − η−
,

(6.36)
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where

C1 =
η+ + 2µ+ α

µ

η+ − η−
, C2 =

η− + 2µ+ α
µ

η− − η+
. (6.37)

Since κ = 0, ν = 0, f̂(ξ) is just the Laplace transform of the probability of ruin. Invert

f̂(ξ) w.r.t. ξ, we can obtain the ruin probability for non-zero initial capital. Substitute√
µ2 + 2ξ − µ = η and rewrite f̂(ξ) (6.36) as

f̂(ξ)

= 2
1√

µ2 + 2ξ + µ

C1√
µ2 + 2ξ − µ− η+

+ 2
1√

µ2 + 2ξ + µ

C2√
µ2 + 2ξ − µ− η−

= 2ĥ1(ξ) + 2ĥ2(ξ).

(6.38)

Thus, f(x) can be obtained from inverting ĥ1(ξ) and ĥ2(ξ) respectively, which is due to the

linearity of Laplace transform.

We show the steps of inverting ĥ1(ξ). Rewrite ĥ1(ξ) as

ĥ1(ξ) =
1√

µ2 + 2ξ + µ

C1√
µ2 + 2ξ − µ− η+

=
C1

2µ+ η+

(
1√

µ2 + 2ξ − µ− η+
− 1√

µ2 + 2ξ + µ

)
.

(6.39)

First invert 1√
µ2+2ξ−µ−η+

as

L−1
ξ

{
1√

µ2 + 2ξ − µ− η+

}

=L−1
ξ

{∫ ∞
0

e
−
(√

µ2+2ξ−µ−η+
)
u
du

}
=L−1

ξ

{∫ ∞
0

e−ξx
∫ ∞

0

u√
2πx3

e−
(u−µx)2

2x eη
+ududx

}
=

∫ ∞
0

u√
2πx3

e−
(u−µx)2

2x eη
+udu

=
1√
2πx

e−
µ2

2
x + (µ+ η+) e

(η+)2+2µη+

2
x Φ((µ+ η+)

√
x).

(6.40)
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Then invert 1√
µ2+2ξ+µ

as

L−1
ξ

{
1√

µ2 + 2ξ + µ

}
=

1√
2πx

e−
µ2

2
x − µΦ̄(µ

√
x). (6.41)

Therefore, ĥ1(ξ) can be inverted as

h1(x) =
C1

2µ+ η+

(
(µ+ η+) e

(η+)2+2µη+

2
x Φ((µ+ η+)

√
x) + µΦ̄(µ

√
x)

)
. (6.42)

ĥ2(ξ) can be inverted similarly.

�

Remark. By the probability of ruin f(x) in theorem 6.2.1, it is easy to check that when x→ 0,

f(x)→ 1.That is, ruin will immediately occur if X0 = 0.

Table 6.2 shows the numerical results of the probability of ruin with different premium

sizes and different claim sizes respectively. For premium income, we consider large premium

sizes (i.e. Hi ∼ Exp(α), α = 0.5, i = 1, 2, ...) and small premium sizes (i.e. α = 3)

respectively. For claim amount, we consider small claim sizes (i.e. E[Yi] = 1/µ, µ = 1,

i = 1, 2, ...) and large premium sizes (i.e. µ = 1/3) respectively. It is first obvious that

the insurance company is more likely to ruin with initial capital x increasing. Under the

case of large premium sizes (i.e. α = 0.5), the probability of ruin grows when the claim

sizes increases. The cases of small premium sizes behaviour similarly. In the meantime, if

we consider large claim sizes (i.e. µ = 1/3), the probability of ruin grows as well when the

premium sizes decreases.

Figures 6.5 and 6.6 show the plots of probability of ruin ψ(x) (i.e. f(x) derived from

Theorem 6.2.1) and − logψ(x) respectively according to the change of the parameter µ when

x = 15. Other parameter are set as ρ = 5, λ = 0.5. We consider the evolutions of ψ(x) and

− logψ(x) when the claim size parameter µ changes under the net profit condition. We can

see from figures 6.5 (a) and 6.6 (a) that with µ increasing, the probability of ruin decays ex-

ponentially. This can be seen from the formula of ruin probability in (6.42). According to the

Cramér-Lundberg approximation of ruin probability in (3.24), when x → ∞, ψ(x) ∼ Ce−γx
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α = 0.5 α = 3

µ = 1 µ = 1/3 µ = 1 µ = 1/3

x ψ(x) ψ(x) ψ(x) ψ(x)

0 1 1 1 1

0.1 0.2082 0.3215 0.3740 0.9139

0.3 0.1014 0.2274 0.2433 0.8936

0.5 0.0656 0.1913 0.1835 0.8820

0.7 0.0467 0.1695 0.1453 0.8731

0.9 0.0349 0.1541 0.1181 0.8654

1 0.0306 0.1478 0.1071 0.8619

3 0.0043 0.0869 0.0219 0.8099

5 9.2474e-04 0.0616 0.0057 0.7704

7 2.3388e-04 0.0463 0.0016 0.7359

9 6.4158e-05 0.0360 4.9106e-04 0.7046

10 3.4295e-05 0.0320 2.7250e-04 0.6899

Table 6.2: Infinite time ruin probabilities ψ(x).
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Figure 6.5: Plots of probability of ruin ψ(x) and − logψ(x) w.r.t µ, α = 0.5
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Figure 6.6: Plots of probability of ruin ψ(x) and − logψ(x) w.r.t µ, α = 3
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where γ is the positive root of a corresponding Lundberg equation. So we plot − logψ(x)

to check the linearity of − logψ(x) with different values of µ. It is interesting to see that

− logψ(x) slightly deviates from the corresponding straight line (see figures 6.5 (b) and 6.6

(b)). We can see from the formula of probability of ruin in (6.28), the logarithm of f(x) is

nearly linear with respect to µ, and the term e
(η+)2+2µη+

2
x dominates logarithm of f(x) with

µ increases.

Figures 6.7 to 6.9 show the 3-D plots of probability of ruin ψ(x) with respect to µ and

α with different values of initial capital x. Other parameter are set as ρ = 5 and λ = 0.5.

We study the evolutions of ψ(x) when the claim size parameter µ and premium parameter α

change simultaneously. It is clear to see that the insurance company ruins with probability 1

given zero initial capital x = 0. With x increasing, the probability of ruin decreases. When

µ and α are fixed, the insurance company is less likely to ruin with larger initial capital x.

When x is fixed, ruin is less likely to occur with smaller claim size (i.e. larger µ) or larger

premium size (i.e. smaller α).

116



0.9999999999999

2.4

0.99999999999995

2.2 1.2

1

ψ
(x

)

1.00000000000005

1.1

α

2

µ

1.0000000000001

1
1.8 0.9

1.6 0.8

(a) x = 0

0.05
2.4

0.1

2.2 1.2

0.15

ψ
(x

)

1.1

0.2

α

2

µ

0.25

1
1.8 0.9

1.6 0.8

(b) x = 0.5

Figure 6.7: Plots of probability of ruin ψ(x) w.r.t µ and α, x = 0 and x = 0.5

0
2.4

0.05

2.2 1.2

ψ
(x

) 0.1

1.1

α

2

µ

0.15

1
1.8 0.9

1.6 0.8

(a) x = 1

0
2.4

0.005

2.2 1.2

0.01

ψ
(x

)

1.1

0.015

α

2

µ

0.02

1
1.8 0.9

1.6 0.8

(b) x = 5

Figure 6.8: Plots of probability of ruin ψ(x) w.r.t µ and α, x = 1 and x = 5

0
2.4

0.5

1

2.2 1.2

×10-3

ψ
(x

) 1.5

1.1

α

2

2

µ

2.5

1
1.8 0.9

1.6 0.8

(a) x = 10

0
2.4

1

2.2 1.2

2

×10-4

ψ
(x

)

1.1

3

α

2

µ

4

1
1.8 0.9

1.6 0.8

(b) x = 15

Figure 6.9: Plots of probability of ruin ψ(x) w.r.t µ and α, x = 10 and x = 15

117



Chapter 7

Conclusion

This thesis investigates classical ruin and Parisian type of ruin problems in insurance risk

management. The focus is on inverse Gaussian process and Parisian excursion theory.

There are several main results in this thesis. First, classical ruin problems are studied.

We begin by studying ruin probabilities of a classical collective risk process, in which claim

sizes are driven by an exponential distribution and a mixture of two exponential distributions

respectively. Then, we extend the total claim amount process to the case that it follows an

inverse Gaussian process, which considers that there could be infinitely many and arbitrarily

small claims over any finite time interval. The Laplace transforms of the ruin time and the

overshoot given different initial capitals are derived respectively. These Laplace transforms

provide the essentially primary calculations for the study of Parisian type of ruin.

Furthermore, the joint distribution of the ruin time, the overshoot and non-zero initial

capital has also been studied. We present a closed-form of the probability of ruin for non-

zero initial capital. Our results mainly rely on a piecewise deterministic Markov model and

Gerber-Shiu expected discounted penalty function.

Then we study Parisian type of ruin through Parisian excursions, which are the excur-

sions that continuously exceed a certain length. Parisian type of ruin is a generalization

of the classical ruin, with the advantage of being highly adaptable to insurance companies’

beliefs in practice. The Laplace transforms of the first excursion below zero and the first ex-

cursion above zero are obtained respectively. We also discuss their dependence via their joint

Laplace transform and joint probability density function. By using a piecewise deterministic
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semi-Markov process, we present the Laplace transform of the Parisian ruin time for zero

initial capital and for non-zero initial capital respectively. Then the explicit formulae of the

probabilities of Parisian type of ruin are derived. We also obtain an asymptotic Parisian ruin

probability when initial capital converges to infinity. This asymptotic result is similar to the

Cramér-Lundberg approximation, in which ruin probability decays at an exponential rate.

Furthermore, we extend our work to two cases. One is that we consider variable premium

income, which studies the probability of survival when the insurance company invests its

surplus and collects interest. Another is that we discuss a surplus process with stochastic

premium income (i.e. a compound Poisson process) but no linear income. The probability

of ruin with non-zero initial capital for the latter case is presented.

The study of Parisian ruin time can be used to pricing Parisian options whose underlying

asset stays continuously above or under a certain barrier level and reach a pre-defined length.

Further research can be done to find the price of one-sided Parisian barrier options, with

the underlying asset price process being written on the surplus. Dassios and Wu [21] had

obtained the Laplace transform of Parisian down-and-in call option price w.r.t. the maturity

of the option, where they considered the claim size follows an exponential distribution. Their

result could be generalized to the case that the total claim amount process is an inverse

Gaussian process.

Another direction of further research might be to explore further into stopping times

including both the length, the height and the number of excursions, as these could provide

the number of claims and corresponding severity for an insurance company. It would also be

great to further apply some of these results to mathematical finance such as option pricing.

Regarding the ruin probability of an insurance company with stochastic premium income,

one can also include a negative linear premium. Assume that the intensity rate of premium

jumps is as same as the constant rate of the linear premium. When the rate converges

to infinity, the stochastic premium income subtracted by the linear premium converges to

Brownian motion. Therefore, ruin could occur either due to a large jump from claim or due

to the negative movement from Brownian motion. In other words, ruin occurs by creeping.

That is to say when a spectrally negative Lévy process started from positive enters negative
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for the first time, this may do so either by a jump or continuously. It would also be interesting

to look into exploring the classical probability of ruin as well as Parisian type ruin probability

for this case. The corresponding pricing problems of Parisian option could also be interesting

to study.
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