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Abstract

This work presented in this thesis aims to provide a better understanding of how

agents respond to policy incentives to encourage energy efficiency improvements.

First of all, the way agents respond to policy incentives crucially depends on

heterogeneity in characteristics determining their responsiveness to taxes and

subsidies. Second, agents’ heterogeneous responses to policy can undermine the

cost-effectiveness of subsidies. Third, under conditions where the policy targeting is

poor or agents are not very responsive to the traditional market-based instruments

other policy instruments based on information provision or nudges may be more

effective.

I propose a theoretical model on optimal tax and subsidy combinations to correct

externalities from energy consumption and underinvestment in energy efficient

technologies. I show that when agents misperceive their true energy efficiency, the

targeting efficiency of policies based on subsidies is poor and consumers selection

into adoption is adverse. Adverse selection arises because those more likely to

adopt consume less energy and overvalue the benefit from adoption. In the second

chapter, I present a discussion on energy policies in the United Kingdom and

analyse the energy consumption and energy efficiency measures adoption patterns

using data for households in England and Wales. This sets the stage for Chapter

3, where I present an empirical study to test whether selection into adoption is

adverse or not. I find that early technology adopters consume more energy before

adoption and experience higher energy consumption drops upon adoption. Thus,

supporting the idea that consumers’ heterogeneity plays a major role to explain

the observed adoption patterns. The results suggest that adoption decisions are

driven by heterogeneity in preferences rather than heterogeneity in beliefs. Hence,

overall selection is not adverse and this suggests the role of misperceptions is

dominated by the effect of preferences heterogeneity. This does not preclude,

however, that biased beliefs may have a role at determining the adoption patterns

and responses to policy interventions.
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Introduction

In the last decades, general interest in energy policy has grown dramatically.

Energy policy has been placed at the center of the policy debate as a result of the

increasing concerns about reducing global carbon dioxide and other greenhouse

gas emissions directly related with Climate Change. In addition, governments

are concerned about guaranteeing energy supply, reducing the degree of energy

dependence on energy imports and addressing the impact of pollution emissions

associated with energy consumption and production at a local level.

In this thesis, I focus on policies that promote investments in energy-efficiency

improvements and efficient energy use in the residential sector. Using a behavioral

economics approach, I provide a model to think about how households’ hetero-

geneity affects the technology diffusion process and its relevance for policy design.

Then, using residential energy consumption data I test the empirical predictions

of the model.

Residential energy consumption is at least as important as transport energy

efficiency policy or industrial sector energy efficiency policy. Energy consumption

in residential buildings accounts for around 20% of the total energy consumption

in the United States (Walls, 2014) and 29% in the United Kingdom (Energy con-

sumption in the UK 2016 report). In addition, the residential sector is of particular

interest to the research presented here, since the impact of psychological biases

and the role of behavioral economics models might be of paramount importance

to rethink how to design incentive schemes in a cost-effective manner.

Aside from changes in energy consumption behavior, reductions in energy

consumption result mostly from the diffusion of enhanced energy efficiency tech-
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nologies among firms and consumers. However, empirical evidence suggests agents

often fail to make profitable technology investments. For instance, according to

data reported by the Energy Saving Trust, loft insulation installation has a cost

ranging from £285 to £395 and would pay out at £135-£240 in energy bill savings

per year1. However, the data shows low adoption rates every year and a very

slow gradual technology diffusion rate among households. UK National Energy

Efficiency Data shows loft insulation yearly adoption rates are around 2%. At the

same time, loft insulation would imply an associated reduction in CO2 emissions

of 1000 kgCO2/year reduction, contributing in turn to reduce the impact on the

environment. In the context of energy efficiency technology adoption market

failures associated with suboptimal technology adoption rates interact with the

energy consumption negative externality, leading to what is known as the energy

efficiency gap.

Other areas of research, like development economics, have directed effort

to understand why agents fail to adopt technologies for which the returns are

expected to be high. Finding evidence that psychological biases lead agents to

underinvest, see Mullainathan (2007) for a review. The development economics

literature has placed a lot of attention on the technology adoption and input choice

decisions by farmers. For instance, Duflo et al. (2008) and Suri (2011) provide

experimental evidence that technology adoption is too low even when the returns

are high. Bryan et al. (2014) provide a rationale and empirically find support for

underinvestment in profitable technologies when experimenting is costly.

First references pointing at the energy efficiency gap go back to Hausman

(1979), followed by a strand of literature supporting the idea that individuals

behave as if they had a huge discount factor on future savings when making

purchase decisions of durable goods. There are, however, many other possible

explanations for the observed slow diffusion of energy efficiency improvements.

Among them, consumers’ preferences heterogeneity is of particular relevance for

1See Appendix A.2 for additional information on energy efficiency measures installation costs
and expected returns
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the work presented here. Hausman and Joskow (1982) argue that heterogeneous

consumers might place different value on the benefits and costs of technology

adoption and, as a consequence, this would generate an adoption pattern where

initially only those who value more the new technology would adopt, followed

by a gradual technology diffusion process. Hasset and Metcalf (1995) analyse

the impact of tax credits on residential energy conservation investments, finding

that accounting for unobserved heterogeneity plays an important role in energy

conservation decisions and responses to policy.

More recently, the application of psychology insights to economics (behavioral

economics) has led to the development of new rationales for the observed empirical

facts. Models based on time-inconsistent preferences, reference-dependent prefer-

ences, limited attention decision making, non standard beliefs among others could

lead to an undervaluation of the technology adoption benefits and, therefore, are

able to provide an explanation for the energy efficiency gap. There is supporting

evidence to the fact that agents might hold systematically biased beliefs. For

example, DellaVigna and Malmendier (2006) provides evidence of overconfidence

on future attendance to the gym, Spinnewijn (2015) on the fact that unemployed

tend to be too optimistic about their prospects of finding a job. Specific to the

energy policy context, Attari et al (2010) show evidence that consumers underes-

timate the energy use required to satisfy their energy services demand (heating,

cooling, lighting).

In the public economics field, behavioral public economics has provided new

insights on many areas relevant for public policy design. According to Chetty

(2015), it provides a conceptual framework to think about new policy tools. For

instance, defaults and automatic enrollment to pension schemes can be used to

address the fact that agents save to little for retirement. Introducing behavioral

aspects in the models allows to better match the empirical facts observed in the

data.

Broadly speaking, the scope of energy efficiency policies spans from market-

based policy instruments, mostly based on taxes and subsidies (price instruments),
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or regulations fixing quotas (quantity instruments), to purely informative policies

or nudges aimed at raising awareness among agents of the potential benefits from

investing in energy efficiency improvements.

Traditionally policies to encourage energy efficiency have been based on the

use of taxes on energy consumption and subsidies on energy efficiency investments.

Taxes have been widely used to correct the externalities of energy consumption

following the idea of corrective taxation (Pigouvian taxes) introduced by Pigou

(1920). Other work on corrective taxation has provided useful insights on optimal

taxation under heterogeneity (Diamond, 1973), or on how to integrate corrective

taxation within the second best optimal taxation system (Sandmo,1975). In a

context where the only reason for agents to undervalue the benefit of adoption is the

energy consumption externality, a corrective tax equal to the marginal externality

would implement the efficient outcome. However, very often environmental policies

for energy efficiency rely on subsidies helping agents face the technology adoption

upfront cost.

The use of subsidies is justified on the basis that private agents underesti-

mate the value of adoption and as a consequence underinvest in energy efficiency

measures, as discussed earlier. One of the main policy design challenges when

providing subsidies for adoption of technology is the cost-effectiveness of the

subsidy. Key to this is how well the policy is targeted. When the government

offers a subsidy, it is possible that agents who benefit from the subsidy would have

invested in the technology improvement also in its absence (Stern, 1985). In this

context, information provision policies might be superior from a cost-effectiveness

perspective. Moreover, combining taxes and subsidies with information provision

may improve the targeting efficiency of subsidies and the consumers responsive-

ness to taxes. Allcott (2011) provides evidence using a randomized experiment

that consumers respond substantially to policy interventions based on providing

information about social norms.

Therefore, whether the optimal policies should rely on market based instru-

ments or on nudge policies addressing consumers’ misperceptions is at the heart of
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the debate on energy efficiency policy. And understanding the forces driving the

technology diffusion mechanism and the role of agents’ heterogeneity is, therefore,

of huge relevance for policy design.

I focus the attention on government provided incentives to encourage invest-

ments adoption of energy-efficient technologies in a context in which agents are

heterogeneous in their current energy efficiency level. Under these conditions,

the policy design process poses different challenges. First of all, heterogeneity in

characteristics determines whether agents are going to take up a subsidy or not,

or how responsive they are to a tax. Second, agents responsiveness to the policy

instruments might undermine the policy cost-effectiveness when agents responding

to policy incentives are those who would have adopted in the absence of the policy

intervention. Third, under conditions where the policy targeting is poor or agents

are not very responsive to the traditional market-based instruments it could be

worth considering other types of policy instruments based on information provision

or nudges.

I aim to shed some light on how policies that subsidize energy efficiency

investments and impose taxes to correct externalities can become ineffective under

some circumstances. In particular, first, I propose a conceptual framework where

heterogeneity is driven by consumers’ misperceptions on energy efficiency. Second,

I provide empirical evidence on the role of consumers’ heterogeneity in the selection

into adoption mechanism.

Chapter 1 analyzes optimal energy policies to encourage purchases of energy-

efficient durable goods in the presence of externalities and internalities. The

focus of the chapter is on policies based on an energy consumption tax combined

with a subsidy contingent on the adoption of energy efficiency improvements. I

consider two extreme cases. One in which heterogeneity is the result of true energy

efficiency differences among agents. In this case, the optimal policy is based on a

corrective Pigouvian tax equal to the marginal externality and implements the

first best level of adoption. More importantly, I consider the case in which the only

source of heterogeneity is the result of biased beliefs about a common true energy
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efficiency level. I consider internalities arising from consumers’ misperceptions

about energy efficiency and analyze how heterogeneity driven by biased beliefs

affects the optimal policy design. I find the optimal policy consists of a tax above

the marginal externality level and a subsidy. The rationale for imposing a tax

larger than the marginal externality is to address the internality effect resulting

in energy overconsumption among non-adopters. Hence, the optimal tax exceeds

the marginal externality by the average internality effect among non-adopters.

The subsidy level, in turn, is targeted to the marginal adopter and offsets by

how much the marginal adopter undervalues technology adoption. In addition, I

identify two main reasons why energy taxes and subsidies are very ineffective when

heterogeneity is driven by misperceptions. First, the model predicts a negative

correlation between energy consumption and willingness to pay for the energy-

efficient technology, thus, leading to an adoption pattern where heavy energy

overconsumers are unlikely to adopt energy efficiency improvements. Second, the

marginal adopter responsiveness to taxes and subsidies is low for agents with

beliefs such that they overconsume energy. Thus, resulting in having to impose

huge policy distortions on the inframarginal adopters to induce these types to

adopt the energy efficiency measures.

Moreover, the theoretical analysis in Chapter 1 leads to concrete empirical

predictions that allow to test for whether selection into adoption is driven by

preferences heterogeneity or beliefs heterogeneity with a very simple correlation

test that is closely related to the positive correlation test proposed in Chiappori

and Salanié (2000) in the context of the insurance markets literature. In other

words, the test allows to contrast whether selection into adoption is adverse or

advantageous which is crucial to determine the policy cost-effectiveness.

Chapter 2 provides empirical evidence on the effectiveness of energy efficiency

measures looking at energy consumption data from the UK. Moreover, it presents a

discussion of the main energy efficiency policy interventions recently implemented

in the UK and its potential as a source of identification of the impact of incentives

on adoption and energy consumption patterns. For this purpose I use a data set
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(National Energy Efficiency Data, NEED) covering a large sample of households

in England and Wales. For approximately 4 million households, the data set keeps

track of energy consumption and energy efficiency measures installation over the

period 2005-2012.

Chapter 3 provides an empirical analysis based on the empirical predictions of

the model presented in Chapter 1. The objective of the analysis is to test for the

presence of adverse selection in the adoption of energy efficiency improvements

among households under government provided incentive schemes. Following the

insights of the model in Chapter 1, when heterogeneity is driven by misperceptions

selection into adoption is adverse. In particular, early adopters exhibit lower levels

of pre-adoption energy consumption and experience lower consumption drops upon

adoption. On the contrary, if heterogeneity is driven by preferences, the opposite

correlations are expected. To test which of the two sources of heterogeneity

dominates I perform the following empirical analysis. First, I look at the levels

of energy consumption prior to adoption and compare them across technology

adoption year cohorts. Second, I look at the energy consumption drop upon

adoption over time to see if those who adopt earlier experience lower energy

consumption drops upon adoption. In both tests, I find evidence supporting

that heterogeneity in preferences (in true energy-efficiency) might be the force

driving selection into adoption. However, this evidence does not rule out that

misperceptions play a role in the technology diffusion mechanism. Furthermore,

I use policy variation from the Boiler Scrappage Scheme to analyse the role

of incentives in the selection into adoption mechanism. My findings are that

households adopting the technology under the incentive scheme exhibit lower pre-

adoption levels of energy consumption and experience higher energy consumption

drops between two years before and the year after technology adoption.

I contribute to the public economics literature on policy design with hetero-

geneous agents by providing a theoretical framework to think about optimal

policy design under heterogeneity in perceptions about the energy efficiency of the

in-house energy services production process and provides a rationale for the use of
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subsidies. The work presented in this thesis is closely related to Allcott et al (2014)

where they analyze optimal energy policy with externalities and internalities, and

Tsvetanov and Segerson (2013) where they present a welfare analysis of energy

policies based on a model of temptation and self-control. In the last case, however,

they focus on policies based on regulation of energy efficiency standards.

The suggested empirical test for adverse versus advantageous selection into

technology adoption is related to the positive correlation test for asymmetric

information Chiappori and Salanié (2000). It relates to work by Cohen and

Einav (2007), Finkelstein and McGarry (2006) and Chiappori et al (2006) on

preference heterogeneity. And also to more recent work by Spinnewijn (2013) on

the role of misperceptions in the insurance markets. I apply these ideas to the

context of technology adoption and use pre-adoption consumption comparisons,

as post-adoption consumption is affected by technology adoption2.

I also contribute to the literature on diffusion of energy efficient technologies

[Hausman and Joskow (1982), Hasset and Metcalf (1995), Jaffe et al (2005)] and

the energy efficiency gap [Allcott and Greenstone (2012), Jaffe (1994), Gillingham

and Palmer (2014) ]. I provide an heterogeneity based mechanism that is consis-

tent with the gradual diffusion patterns observed in the data. In addition, the

proposed model provides empirical implications that are in stark contrast with

the predictions of a standard model where agents heterogeneity is driven solely by

preference heterogeneity.

2This idea is analogous to using panel data in the insurance market context to discern whether
the positive correlation between risk and insurance is driven by adverse selection or moral hazard
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Chapter 1

Energy efficiency policy and energy

cost misperceptions

1.1 Introduction

Reducing residential energy use is one of the pillars of the strategy that most

developed countries have adopted to address environmental issues, however how

to design optimal policies to encourage households to reduce their energy demand

remains an open question which is at the center of the policy debate. Residential

energy demand is determined by decisions on technology (purchases of energy

using durable goods) and energy use intensity. In both cases households’ private

decisions would lead to an inefficient outcome in the presence of negative energy

consumption externalities. Moreover, there is potentially a second source of

inefficiency in both consumption and investment decisions which is the presence

of psychological biases leading households to make suboptimal decisions.

It is widely recognized that households’ tend to underadopt available energy

efficiency improved durable goods and underinvest in technologies that would

reduce their energy bill and the environmental impact of their energy consumption.

The idea that economic agents fail to invest in technology improvements that

would result in a positive return goes back to Hausman (1979). Building up

on previous work on durable purchasing decisions by Hausman and Wise (1978)

and McFadden (1978), Hausman (1979) develops a model of consumer behavior

on purchasing decisions and use of energy-using durable goods. The paper also
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provides estimates of a 20% implied discount factor of individuals’ purchasing

decisions.

This idea is also related to the double market failure discussed in Jaffe et al

(2005). In the context of energy efficiency technology adoption the market failures

associated with the energy consumption negative externality interact with market

failures related with the slow rate of technology diffusion. The slow diffusion

of energy efficiency technologies leads to the energy efficiency gap. Not only do

agents fail to undertake efficient technology adoption decisions, but by doing so

they fail to contribute to the reduction of the externality generated by energy

consumption resulting from the increased energy efficiency. Hence, correcting this

failure leads to a win-win situation. One in which the agent reduces expenditure

in energy consumption and at the same time the externality damage associated

with energy consumption is reduced. Following Gillingham and Palmer (2014),

the main reasons that explain the gap can be divided in market failures and

behavioral failures. Among the first it has been argued that imperfect information,

principal-agent issues, credit and liquidity constraints and regulatory failures

could explain why agents fail to adopt improved energy-efficiency technologies. On

the other hand, non-standard preferences, non-standard beliefs or non-standard

decision making can also contribute to explain the gap.

In addition, recent empirical evidence suggests large energy consumption

responses to low-cost information provision interventions. Allcott (2011) finds

that providing information about similar households energy consumption in the

utility bill induced large energy consumption responses among households with pre-

treatment energy consumption above average. This suggests that many households

are poorly informed about changes in behavior they could adopt at a relatively

low cost to reduce their energy consumption.

I propose a model to think about optimal policies to encourage the adoption

of more efficient energy-using durable goods in the presence of externalities

and internalities. The aim of the chapter is, first, analyse how the presence of

internalities distorting the intensive (consumption) and extensive (investment
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in durable goods) margin choices affects optimal policies based on energy taxes

and technology adoption subsidies. Second, analyse how the presence of such an

internality affects the effectiveness of policy interventions via prices.

In the model presented here, consumers take two decisions, they choose their

demand for energy services and decide on investments on energy efficiency im-

provements. Energy consumption is determined by the household technology

which is characterized by its level of energy efficiency. Internalities result from

misperceptions about the current energy-efficiency level and have two important

effects on consumers’ behavior. First, energy consumption choices based on their

biased beliefs would result in over or underconsumption of energy relative to the

efficient energy demand. Second, the bias in the energy consumption plan induces

biased perceptions of the benefit from investing in energy efficiency improvements.

The gap between the true energy efficiency and the beliefs can be thought as

summarizing inattention to energy costs or bad habits in the use of energy-using

durable goods that make the consumer deviate from his energy consumption plan.

As a result of the discrepancy between true energy efficiency and the beliefs, the

household actually consumes an amount of energy to satisfy its energy services de-

mand that differs from the planned energy consumption. In particular, optimistic

agents will overconsume energy relative to their targeted energy consumption

level, whereas pessimistic agents will underconsume energy. Regarding investment

decisions on energy efficiency improvements, optimistic agents will be less likely to

invest as they underestimate the adoption benefits. Whereas, pessimistic agents

will overinvest as the perceived adoption benefit overshoots the actual adoption

benefit. This has important implications for the design of the optimal policy as

the agents’ response to policy instruments changes dramatically as a consequence

of the internality. In a standard technology adoption framework with preference

heterogeneity, one should expect agents who consume more energy to be the first

to adopt the new technology as their potential benefit from adoption is larger.

On the contrary, the model presented here predicts that one should observe the

opposite, agents who consume more energy (optimistic agents) are less likely to
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adopt. The energy consumption externality together with the internality generate

a discrepancy between private and social value of adoption.

The policy maker chooses a uniform tax and a uniform subsidy to correct the

inefficiencies. In the absence of the internality, a Pigouvian corrective tax equal to

the marginal externality would totally correct the choice inefficiencies both at the

consumption and adoption margins. However, in the presence of the internality

the optimal policy combines a tax above the marginal externality to address the

effect of the internality and a positive subsidy. In general, the rate of adoption

will be below the first best level of adoption, unless the policy maker has access

to lump sum taxes to finance a sufficiently large subsidy. The optimal policy

involves a positive subsidy, since it allows the policy maker to provide incentives

for adoption without distorting too much the energy consumption choices. If

the policy maker used only the energy tax, implementing the same proportion

of adopters would require such a large tax that the efficiency cost imposed on

unbiased adopters would be too high.

The main results of the optimal policy characterization are the following.

With no misperceptions the optimal policy instrument is a corrective tax equal

to the marginal externality (Pigouvian tax). This tax would correct both the

intensive margin decisions and as a consequence also the technology adoption

decisions. Similarly, if energy efficiency misperceptions were observable to the

policy maker, then the first best allocation can be achieved by imposing a tax that

can be decomposed into a Pigouvian tax addressing the externality correction

plus an additional term that corrects the internality due to energy efficiency

misperceptions. When the internality is uniform, the optimal policy combines a

tax above the marginal externality level and a subsidy. The subsidy can be set at

level such that the technology adoption decision is first-best efficient. Finally, in

the presence of heterogeneous internalities the first best level of adoption can only

be implemented if the government has access to large lump sum transfers. In that

case, the optimal tax is set at the marginal externality level and the subsidy is

set at a level such that the agents with the most extreme beliefs against adoption
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would be indifferent between adopting or not. On the contrary, if no lump sum

transfers are available, the optimal budget balanced tax-subsidy combinations

would not achieve the first best level of technology adoption. The resulting tax

would be above the marginal externality level and the subsidy would be below the

subsidy level that guarantees the first best level of adoption.

Beyond the optimal policy characterization, I provide important insights on

the effectiveness of taxes and subsidies as policy instruments. First of all, in the

presence of heterogeneous internalities, inducing the more optimistic agents to

adopt the new technology requires a large subsidy. In addition, the subsidy is

poorly targeted because the policy maker cannot prevent pessimistic consumers

from taking the subsidy up. In particular, among the inframarginal adopters, the

pessimistic agents would have adopted the energy efficient technology even if the

subsidy was zero and the tax equal to the marginal externality.

Second, when agents exhibit biased beliefs, the correlation between the will-

ingness to pay for the energy efficient technology and the social value of adoption

is negative for optimistic agents and, therefore, energy taxes and subsidies induce

a response to the policy instruments where severe overconsumers remain in the

non-adoption state. At the same time, this implies that the correlation between

the past history of energy consumption and investment in energy efficiency tech-

nologies should be negative. This feature distinguishes this model from a model

where agents are heterogeneous in preferences and provides an interesting empir-

ical implication of the model that could be tested using panel data containing

information on individual energy consumption and decisions about purchases of

energy efficient durable goods. This test can be linked to the standard positive

correlation test of adverse selection proposed in Chiappori and Salanié (2000).

The positive correlation test would prescribe that one should test for a positive

correlation between the amount of insurance coverage and the probability of an

accident in the insurance context. In this context, one could think of the positive

correlation test when framing the test in terms of the correlation between the

beliefs on energy efficiency and the social value of adoption, or the correlation
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between pre-adoption energy consumption and the social value of adoption which

is directly related to the potential energy consumption drop the household would

experience upon adoption of an energy efficiency measure. This is the idea behind

the empirical study presented in Chapters 2 and 3.

The work presented in this chapter is related to the literature analysing the

design of optimal policy interventions with behavioral agents. Chetty (2015) pro-

vides a review based on evidence for the relevance of psychological considerations

when thinking about policy design3. For instance, O’Donoghue and Rabin (2006),

Bernheim and Rangel (2004), Lockwood and Taubinsky (2017) analyse optimal

taxation when some consumers overconsume a “sin good” because of time incon-

sistent behavior or addiction. Finkelstein (2009), Chetty et al (2009), Rees-Jones

and Taubinsky (2016) study the implications of limited attention to taxes and

its impact on behavioral responses to taxation. In the context of unemployment

insurance, Spinnewijn (2015) analyses the policy implications of agents biased

beliefs for the optimal design of unemployment insurance. Spinnewijn (2013, 2016)

analyses the role of heterogeneous risk perceptions in insurance markets.

In the area of energy policy4, recently, some papers have proposed theoretical

models to think about optimal policy design with externalities and internalities

that are closely related to the model developed in this chapter. Heutel (2011)

develops a theoretical model with consumers who exhibit present bias and time

inconsistency. Showing that in this context Pigouvian taxes are a suboptimal

solution, and characterizes an optimal policy solution involving a tax above the

marginal externality damage and a subsidy for energy efficient products.

Tsvetanov and Segerson (2013) , propose a model in which agents are subject to

temptation and self-control and study under which circumstances policies based on

minimum energy efficiency standards may be superior. They find that Pigouvian

taxes do not lead to a first best outcome, and suggest that a policy combining

3Mullainathan et al (2012) provide also an excellent review on behavioral public finance.
4Other work on behavioral responses to policy and the role of psychological biases in energy

policy include Allcott (2011), Allcott (2013), Allcott and Wozny (2013), Ito (2013), Ito (2015),
Sallee (2012).
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energy efficiency standards and Pigouvian taxes achieves a higher level of social

welfare.

Allcott et al. (2014), probably the one closer to the model I present here,

propose a model of energy-using durable goods where consumers undervalue

energy costs. They show that in the presence of energy cost misperception,

policies combining a tax targeting the energy consumption externality and product

subsidies targeting the present bias.

However, none of these papers has analysed the implications of beliefs hetero-

geneity on optimal policy design in the presence of externalities and internalities

affecting simultaneously the consumers’ energy consumption choices and the in-

vestment decisions. The model I present aims to capture the idea that some

agents overvalue the impact of their energy consumption decisions, leading them

to energy saving behavior and to be prone to adopt energy efficiency measures.

While others undervalue the impact of those decisions, leading them to exhibit a

’reckless’ behavior. Based on this idea, I present a model of investment in energy

efficiency measures where consumers exhibit a behavioral bias regarding energy

costs. The main novelty of this model is that the behavioral bias is summarized in

a single parameter that measures the perceived efficiency of the in-house energy

services production technology. This parameter alone captures the implications of

behavioral biases on the interaction between intensive margin decisions (energy

use) and extensive margin decisions (energy efficiency measures adoption). First,

the model allows me to show that policies based on an energy tax and a subsidy

for energy efficiency measures investment would not achieve a first best outcome

in a budget balanced way. Second, the model leads to clear empirical predictions

that are in sharp contrast with those of technology adoption models where agents

are heterogeneous in preferences, that can be indirectly tested using technology

adoption and energy consumption data.

The research work presented in this thesis, also relates to the literature on

policy design under adverse selection. In the context considered in this chapter,

the idea of adverse selection is that agents for whom the social value of technology
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adoption is lower tend to be more responsive to policy interventions, whereas

those for whom the social value of adoption is high are less prone to participate.

Hence, those who adopt energy efficiency measures under subsidy schemes and

benefit from the subsidy, are those who would probably have adopted anyway.

This pattern reduces therefore the cost-effectiveness of the subsidies provided by

the government (Stern, 1985).

The chapter is organized as follows. Section 2 introduces the model set up

and discusses the policy-maker objective and the consumers’ behavior for a given

policy. Section 3 characterizes the optimal policy. Section 4 discusses alternative

scenarios based on different assumption on learning. Section 5 compares the

consumers’ responses to taxes and subsidies in the two different scenarios (true

energy efficiency heterogeneity versus biased beliefs/misperceptions) and briefly

discusses the different policy implications of different heterogeneity sources. Section

6 discusses how the empirical implications of the model presented in this chapter

could be tested. Section 7 concludes.

1.2 Model

I present a simple model aimed to better understand what are the implications of

misperceptions on energy efficiency for the design of optimal policies to encourage

the adoption of energy efficiency improvements among households. The main

novelty of this model is that misperceptions enter the model affecting directly

the intensive (energy consumption decision) margin and the internality induces a

distortion on the extensive margin decision (technology adoption).

1.2.1 Consumers

Consumers make two decisions. They choose either to invest or not in a more

energy-efficient durable good and they choose their demand for energy services

taking the policy instruments as given. This section characterizes the consumption

and adoption behavior of consumers for a given tax on energy consumption and
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a given subsidy on purchases of energy-efficient durable goods, denoted respec-

tively by τ and σ. First, I provide the conditions that characterize the optimal

consumption behavior for a given technology choice, and second, I characterize

the optimal private adoption decision.

Energy consumption choice Consumers derive utility from a consumption

good c and consumption of energy services s, according to the following quasi-linear

utility function:

u(c, s) = c+ g(s) (1)

where g(s) satisfies g′(s) > 0 and g′′(s) < 0.

Consumers’ endowment consists of a technology and an exogenous income y.

The technology is characterized by the energy efficiency η. A consumer with energy

efficiency η needs to use e(s, η) units of energy to produce s units of energy services.

I assume that the production function e(s, η) satisfies es > 0, eη < 0, ess > 0 and

esη < 0. Hence, η is also closely related to the marginal cost of increasing the

energy services demand measured in terms of the associated increase in energy

consumption. The higher is η, the lower the amount of energy the household needs

to purchase to produce an additional unit of energy services s. It is important

that consumers do not derive utility directly from energy consumption, they only

derive utility when they enjoy the energy services produced after consuming a

particular amount of energy that is determined by their energy efficiency level.

Consumers also hold beliefs about their energy efficiency that are denoted by

η̂ ∈ [η, η]. The distribution of beliefs is characterized by the cumulative density

function H, satisfying that E(η̂) = η. Consumers’ private decisions on energy

services demand and technology adoption come as the result of the consumers’

optimal behavior given their beliefs about how efficient they are at converting

energy into energy services. In other words, consumers’ decisions are based on

decision utility. However, the utility truly experienced by consumers holding

biased beliefs about energy efficiency differs in general from the decision utility.

Throughout this chapter, I refer to consumers with η̂ = η as standard agents (or
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unbiased) and to consumers with η̂ 6= η as behavioral (or biased) agents.

The price of the consumption good is normalized to 1. The unit price of energy

is denoted by p, and consumers pay a tax τ per unit of energy consumed. Therefore,

the consumers’ budget constraint and energy services production function are

given by:

c+ (p+ τ)e 6 y (2)

e = e(s, η) (3)

For given beliefs η̂, the consumer energy services demand is the solution to

the utility maximization problem subject to 2 and 3. Hence, the energy services

demand ŝ(τ, η̂) is defined by the following optimality condition:

g′[ŝ(τ, η̂)] = (p+ τ)es(ŝ(τ, η̂), η̂) (4)

I assume that the energy services demand elasticity with respect to the energy

efficiency (εs,η) is low enough to ensure that there is no energy consumption

“rebound effect” when the energy efficiency increases. In particular, the condition

0 6 εs,η < − eηη

ess
guarantees that energy consumption is decreasing in the energy

efficiency level5. This condition implies that when energy efficiency increases, the

demand for energy services increases less than proportionally and, hence, the

corresponding energy consumption decreases. This assumption is crucial for the

results in this chapter and for the empirical implications of the results presented

here. If this assumption fails, then it is not necessarily true that energy efficiency

increases lead to a decrease in energy consumption expenditure and therefore

agents with quasi-linear utility might not benefit from technology adoption if the

negative income effect more than offsets the substitution effect. In Chapter 2 I will

provide empirical evidence based on the energy consumption profiles showing that

5In the particular case where the production function is e(s, η) = s
η , this condition becomes

0 6 εs,η < 1, and the values of the elasticity are consistent with empirical estimates (see
Gillingham et al. (2009) (Gillingham, Newell, and Palmer 2009)).
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the rebound effect is not observed empirically, and hence the empirical evidence

suggests that the assumption holds.

The decision utility of a consumer with η̂ beliefs is given by:

v̂(τ, η̂) = y − (p+ τ)e(ŝ(τ, η̂), η̂) + g(ŝ(τ, η̂)) (5)

The assumption underlying consumers’ behavior is that a consumer chooses

the optimal energy services demand given his beliefs, and he sticks to the planned

energy services demand. As a consequence, a consumer who holds beliefs η̂ > η

consumes an amount of energy above the amount of energy he planned to consume

to satisfy his demand for energy services. Similarly, a consumer who holds beliefs

η̂ < η would actually consume less energy than the amount he planned to satisfy

his energy services demand (Figure 1). Therefore, for given beliefs about energy

efficiency, there is a gap between decision utility given by (5) and experienced

utility given by (6):

v(τ, η̂, η) = y − (p+ τ)e(ŝ(τ, η̂), η) + g(ŝ(τ, η̂)) (6)

Technology adoption decision Consider an improved energy-efficiency tech-

nology denoted by η̃, such that η̃ > η. In addition, the new technology is assumed

to provide an energy efficiency level such that the net social value of adoption is

positive for some consumers.

At the technology adoption decision stage the consumer chooses either to adopt

or not a more energy efficient technology (A) at a cost k. If the consumer decides

to invest, then the energy efficiency improves to η̃ > η. Moreover, I assume that

in the adoption state the consumer beliefs are unbiased. On the contrary, if he

chooses not to invest (N), he keeps the original technology endowment and beliefs.

This assumption implies that through the adoption process the consumer also

learns about the true energy efficiency of the new technology. The underlying idea

is that when a consumer engages in the purchase of an energy efficient durable
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Figure 1: Consumer choice with externalities and internalities

Note: The figure illustrates the consumer choice in the presence of externalities and internalities

for an agent with beliefs η̂ > η. Given her beliefs the agents demands s(η̂) units of energy

efficiency services and expects to consume cplan(η̂) units of the composite consumption good.

As a result of her biased beliefs the agent consumes more energy than planned to satisfy the

energy services demand and consumes cexp(η̂) < cplan(η̂) units of the consumption good.
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good, the characteristics of the good and in particular its energy efficiency become

fully salient to the consumer. When thinking about the overall energy efficiency of

the in-house energy services production technology, this assumption might be less

plausible. However, the assumption is made with simplifying purposes and should

be taken as an assumption that sets an upper bound on the value of adoption of the

energy efficiency measure. In addition, it does not affect the intuition behind the

theoretical results presented later in this chapter. Nonetheless, I further discuss

the implications of alternative learning hypotheses in Section 4 of this chapter.

Let vA(τ, η̃) and v̂N (τ, η̂) denote respectively the continuation value of adoption

and the perceived continuation value of non-adoption. Then, a consumer optimal

decision is to adopt if and only if

vA(τ, η̃)− (k − σ) ≥ v̂N(τ, η̂) (7)

In the remainder of the chapter, I will refer to agents with beliefs η̂ > η

(η̂ < η) as η-optimistic (η-pessimistic) consumers. Since energy services demand

is increasing in the level of energy efficiency, η-optimistic (η-pessimistic) agents

consume an amount of energy above (below) the one they would have consumed if

they knew the true efficiency level. Regarding the adoption decision, η-optimistic

(η-pessimistic) agents undervalue (overvalue) the benefit from adoption of the new

technology.

Lemma 1. There exists a cut-off value of energy efficiency η̂a such that if η̂ 6 η̂a,

then the consumer private decision is to purchase the energy-efficient durable good.

Proof. Consider the willingness to pay function v(η̂). Consider η̂a such that if

η̂ 6 η̂a, thenvA(τ, η̃) − (k − σ) ≥ v̂N(τ, η̂) and vA(τ, η̃) − (k − σ) < v̂N(τ, η̂)

otherwise. Consider η̂′ > η̂asuch that vA(τ, η̃)− (k − σ) ≥ v̂N (τ, η̂′). By Lemma 4

(see Appendix A.1), the willingness to pay function is monotonically decreasing in

η. Hence, this leads to a contradiction.
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Policy-maker The optimal policy analysis in this chapter is focused on policies

based on two instruments, a per unit tax on energy consumption τ and a subsidy

contingent on purchasing a high energy efficiency technology σ. The attention is

restricted to uniform policies, in other words, the policy instruments cannot be

made contingent on the consumers’ type, so all consumers face the same tax per

unit of energy consumption, and receive the same subsidy if they invest in energy

efficiency improvements.

The policy-maker chooses the policy to maximize welfare subject to the govern-

ment budget constraint. The social welfare function takes into account a negative

externality from energy consumption that households do not take into account

when making their choices on energy consumption and technology adoption. I

assume the marginal externality damage to be constant and equal to θ, and there-

fore the externality imposed by energy consumption e is given by −θe. In addition,

there is an internality because consumers have potentially biased beliefs about

their current level of energy-efficiency, and consequently their energy consumption

choices and the induced effect on the adoption decision impose an additional

distortion that contributes to under-adoption of the high energy-efficiency technol-

ogy. The true social welfare function is based on the true energy efficiency level

and one of the aims of the policy-maker is to correct the consumption choices of

biased consumers. Hence this is a paternalistic approach in the sense of Bernheim

and Rangel (2009) where the government aims to maximize welfare based on

experienced utility. The welfare contribution of a consumer with true energy

efficiency η and beliefs η̂ is given by:

w(τ, η̂, η) = y − (p+ τ)e(ŝ(τ, η̂), η) + g(ŝ(τ, η̂))− θe(ŝ(τ, η̂), η) (8)

Hence, the optimal social adoption rule is that a consumer must adopt the

energy efficient technology if the welfare contribution of the consumer upon

adopting the energy efficient technology is greater or equal than that resulting

from not adopting. This condition results in the following condition characterizing
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the optimal social adoption rule.

vA(τ, η̃)− θe(τ, η̃)− (k − σ) ≥ vN(τ, η)− θe(τ, η) (9)

This condition differs from the private adoption rule in two aspects. First, it

includes the externality reduction benefit. And, second it is based on experienced

utility instead of decision utility. This is it also includes the internality effect of

consumers’ biased perceptions on current energy efficiency.

The welfare function is the sum of consumers’ experienced utility and net gov-

ernment revenues, minus the externality damage of energy consumption. Consider

a population of size 1, with η̂ distributed according to a cdf H(η̂) with support

[η, η]. Given the adoption behavior described in the previous section, there exists

a marginal adopter denoted by η̂a ∈ [η, η] such that a consumer invests in the

energy-efficient technology if he has beliefs η̂ ≤ η̂a and keeps the current energy

efficiency otherwise. The cutoff is implicitly determined by the private adoption

rule and is a function of the policy instruments.

The government chooses (τ, σ) to maximize total welfare subject to the gov-

ernment budget constraint and to the consumers’ adoption decision rule. Note

that the private adoption rule (Rationality Constraint) implicitly pins down the

marginal adopter identity as a function of the policy instruments, η̂a(τ, σ). Hence,

in general, when the policy-maker chooses a tax τ and a subsidy σ, the objective
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function can be expressed as follows:

W (τ, σ) =

η̂a∫
η

[vA(τ, η̃)− (k − σ)] dH(η̂) +

η∫
η̂a

vN(τ, η, η̂)dH(η̂)

︸ ︷︷ ︸
−

Sum of agents utility

−
η̂a∫
η

θe(τ, η̃)dH(η̂)−
η∫

η̂a

θe(τ, η, η̂)dH(η̂)

︸ ︷︷ ︸
+

Externality damage

+

η̂a∫
η

[τe(τ, η̃)− σ]dH(η̂) +

η∫
η̂a

τe(τ, η, η̂)dH(η̂)

︸ ︷︷ ︸
(10)

Net tax revenues

From the point of view of the policy maker, increasing the adoption of the

new technology has a positive effect on welfare because of the externality benefit

of energy consumption reduction. In addition, since upon adoption consumers

perceive accurately the energy efficiency, it also corrects inefficiencies due to the

internality. On the other hand, providing incentives has an efficiency cost as long

as it implies charging an energy tax above the marginal externality for unbiased

consumers.

1.3 Optimal policy

This section analyzes the optimal tax and subsidies in different scenarios. I

consider two main cases, one where heterogeneity comes from consumers having

initially different technologies, and the other where the source of heterogeneity is

the heterogeneous biased beliefs that consumers may have about the same true

technology.

To keep notation simpler, hereafter I denote adopters energy consumption by

eA, non-adopters energy consumption plan and actual energy consumption by êN
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and eN respectively. A superscript a identifies the marginal adopter. Whereas,

a superscript ∗ identifies the first best marginal adopter and policy instruments.

Also, the arguments of the energy consumption function (τ and η) are omitted to

keep notation more compact.

1.3.1 Optimal policy with unbiased agents

First of all, I consider the case where consumers have unbiased beliefs about their

current energy efficiency and there is heterogeneity in the true level of energy

efficiency across consumers, hence for any consumer η̂ = η, and η is distributed

according to cdf F (η).

Proposition 1. When there are no misperceptions, the optimal policy is τ ∗ = θ

and σ∗ = 0. This policy achieves achieves the first best level of welfare.

Proof. The proposition follows from the welfare maximisation problem. For a

given policy (τ, σ), consider the problem where the government chooses the optimal

cutoff η∗ such that it is optimal to adopt when η 6 η∗ and it is optimal not to

adopt otherwise. The first order condition with respect to η∗ is given by:

vA(τ, η̃)− vN(τ, η∗) + [(θ − τ)(e(τ, η∗)− e(τ, η̃))− σ] = 0 (11)

The government welfare maximization problem is

max
(τ,σ)

W (τ, σ)

s.t. vA(τ, η̃)− (k − σ) > vN(τ, η) (12)

The first order conditions with respect to τ and σ are (using the envelope

39



conditions from consumer utility maximisation):

dη∗

dτ
f(η∗)[(θ − τ)(e(τ, η∗)− e(τ, η̃))− σ] =

η∗∫
η

(θ − τ)
de(τ, η̃)

dτ
dF (η)+

+

η∫
η∗

(θ − τ)
de(τ, η)

dτ
dF (η) (13)

dη∗

dσ
f(η∗)[(θ − τ)(e(τ, η∗)− e(τ, η̃))− σ] = 0 (14)

Since de(τ,η)
dτ

< 0 in general, the first order conditions necessarily imply that

the optimal policy is τ ∗ = θ and σ∗ = 0.

Note that the private adoption decision rule evaluated at (τ ∗, σ∗) becomes

exactly equivalent to the socially optimal adoption rule that takes into account

the externality damage reduction benefit from adoption:

vA(τ ∗, η̃)− k − vN(τ ∗, η∗) = 0 (15)

Hence, setting the policy instruments to τ ∗ = θ and σ∗ = 0 achieves the first

best level of welfare. When the marginal externality is constant, imposing the

Pigouvian tax will not only correct the energy consumption externality, but will

also correct the extensive margin adoption decision. On the one hand, under this

policy consumers’ adoption response exactly coincides with the socially optimal

adoption rule. Furthermore, the energy consumption externality is fully corrected

by setting a tax equal to the marginal externality. When agents face such a tax

they totally internalize the energy consumption externality and, as a consequence,

they evaluate the technology adoption benefits as if they were taking into account

the externality reduction benefit. Hence, this policy achieves as a decentralized

equilibrium the same adoption rate that a welfare maximising social planner

would have prescribed. Moreover, when consumption choice inefficiencies due to

the externality have been corrected, efficiency at the adoption decision stage is
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recovered as the gap between the social value of adoption and the private value of

adoption disappears.

Since consumers are initially heterogeneous in terms of their true energy

efficiency, the optimal adoption rule does not necessarily imply that all the

consumers should adopt the new technology. Indeed, adoption is optimal only for

those consumers who are initially at low levels of energy efficiency and to whom

the energy consumption savings plus the energy consumption externality reduction

exceeds the adoption cost. Hence, the predicted adoption pattern involves that

non-adopters are already at relatively high levels of energy efficiency and low levels

of energy consumption. This fact is related to the positive correlation between

the willingness to pay to adopt the energy efficient technology and the social

value of adoption. As long as both of them are positively correlated, providing

incentives through policy instruments like uniform taxes and subsidies induces an

adoption pattern where consumers with poor initial energy efficiency adopt and

those who are already efficient do not adopt. This adoption pattern implies that

the correlation between energy consumption and willingness to pay is positive, as

high energy consumption corresponds to low levels of energy efficiency initially

and, hence, potentially high benefits from adoption of the high energy efficiency

technology (Figure 2).

1.3.2 Optimal policy with biased agents

When the agents are biased about their energy efficiency, energy consumption

decisions are distorted both by the effect of the externality and the internality.

This generates a gap between the private benefit from adoption and the social

benefit from adoption, that cannot be corrected imposing a Pigouvian tax equal to

the marginal externality. In this case, correcting both consumption and adoption

decisions requires the use of a richer set of policy instruments. However, if beliefs

were observable, there would always exist a non-linear corrective tax schedule

such that the efficient allocation is implemented. This tax schedule would have

to components, a first term equal to the marginal externality that addresses the
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Figure 2: Social value of adoption and willingness to pay with unbiased agents

Note: The figure shows the social value of adoption and the private willingness to pay for the

energy-efficiency technology with heterogeneous agents preferences. The gap between both is

given by the externality effect on the adoption value. For a given investment cost k, ηa is the

marginal adopter satisfying the optimal private investment decision rule. The figure shows how

imposing a tax τ = θ (equal to the marginal externality) implements the first best adoption

level, the marginal adopter type from ηa to η∗.

42



externality and a second one addressing the internality.

Proposition 2. If consumers’ beliefs are observable to the policy maker, the

optimal policy is given by a zero subsidy and the tax schedule τ ∗(η̂) = θ+ es−ês
ês

(p+θ).

Moreover, this policy achieves the first best level of welfare.

Proof. Consider an agent with energy efficiency beliefs η̂ facing a tax τ . The first

order condition for utility maximisation is g′(s(τ, η̂)) = (p+ τ)es(ŝ(τ, η̂), η̂). Now

consider the decision of an agent with the correct beliefs η facing the optimal

Pigouvian tax equal to the marginal externality θ, the first order condition for

utility maximisation is g′(s(θ, η)) = (p+ θ)es(s(θ, η), η). By monotonicity of g′(.),

it follows a tax schedule replicating the first best energy services demand choices

must satisfy the condition g′(s(τ, η̂)) = g′(s(θ, η)). Hence, (p+ τ)es(ŝ(τ, η̂), η̂) =

g′(s(τ, η̂)) = g′(s(θ, η)) = (p+ θ)es(s(θ, η), η). And the result in the proposition

follows solving for τ and defining es = es(s(θ, η), η) and ês = es(ŝ(τ, η̂), η̂).

The idea is that for each value of the perceived energy efficiency level it is

possible to find a tax such that the behavior of agents in response to that tax

level is exactly the same as the one of an unbiased agent facing a tax equal to the

marginal externality damage imposed by energy consumption. The optimal tax

schedule is characterised by the condition g′(s(τ, η̂)) = g′(s(θ, η)). From the first

order condition for agent’s utility maximisation, g′(s(τ, η̂)) = (p+ τ)es(ŝ(τ, η̂), η̂)

and g′(s(θ, η)) = (p+ θ)es(s(θ, η), η).

The optimal tax schedule is the sum of the marginal externality plus a term

capturing the internality due to the agents’ misperceptions about their energy

efficiency. Under this policy, optimistic agents (η̂ > η) would face a tax higher than

the Pigouvian tax because the tax needs to address also the energy consumption

internality. The consumption internality originates in the fact that optimistic

agents plan to consume too much energy services relative to the amount they

would demand if they correctly perceived their true energy efficiency η. On the

other hand, pessimistic agents (η̂ < η) face a tax lower than θ. This policy would

achieve the first best adoption rate as under this tax schedule every agent will
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internalize both the externality and the internality when making the adoption

decision.

However, in what follows I focus the analysis on policies composed of a

constant tax and a constant subsidy. In the remainder of the chapter, I discuss

the characterization of optimal policies based on these two instruments, and how

the presence of the internality affects the way consumers behave in response to

the policy.

Heterogeneous internality In this section I consider the case where consumers

are heterogeneous in their beliefs about their energy efficiency, η̂ ∈ [η, η], but they

all have a common true energy efficiency, η0. It is assumed that for an unbiased

consumer with energy efficiency η0, the social value of adoption is positive and,

hence, it is desirable to implement full adoption of the new technology with

energy efficiency η̃. First, this allows to analyse the effect of the presence of a

heterogeneous internality on the optimal policy. Second, it provides predictions

about the consumers’ adoption behavior that are in stark contrast with the ones

provided by a model where there is true heterogeneity in energy efficiency across

consumers.

The key feature that differentiates this case from the ones analysed above is

the fact that the correlation between the willingness to pay for energy efficiency

improvements and the social value of adoption is negative for consumers who

overconsume energy. From the policy maker point of view, the consumers for which

the social benefit from adoption is larger are those ones who in the non-adoption

state would overconsume energy, relative to what they would have consumed if

they had known precisely their true energy efficiency. However, at the same time,

for consumers who are optimistic about their energy efficiency it is more costly to

induce them to adopt using policies based on taxes and subsidies.

In this case the perceived private value of adoption is decreasing in the perceived

energy efficiency. This implies that agents who hold optimistic beliefs perceive the

benefits from adoption to be low and are unlikely to invest in energy efficiency

44



improvements. At the same time, these agents exhibit energy overconsumption

and, from the policy-maker perspective are the ones for whom the social value of

adoption is larger.

This negative relationship between the consumers’ willingness to pay and the

social value of adoption provides a rationale for the fact that many households

energy efficiency is far below its potential. First, agents who believe themselves

to be more efficient than they actually are, tend to overconsume energy relative

to the energy consumption level they would need to satisfy their energy services

demand if they had known their true energy efficiency. Second, agents who over-

consume energy are relatively unlikely to invest in energy efficiency improvements.

Even when these agents face policies that provide incentives to adopt based on

uniform taxes and subsidies, the same adoption pattern remains, and these policies

are proven extremely ineffective to encourage agents to adopt energy-efficiency

enhanced technologies. (Figure 3)

The analysis presented here focuses on the case where agents become fully

informed upon adoption, and therefore, the social value of adoption is larger as

adoption provides both a better technology and corrects the choice inefficiencies

due to biased beliefs. Nonetheless, I show AppendixA.1 that under some conditions,

the model still satisfies the negative correlation between willingness to pay and

social value of adoption property when misperceptions remain upon adoption.

First, I consider the case where the policy maker balances the budget with a

lump-sum transfer. In which case, the government budget constraint is given by:

H(η̂a) [τeA − σ] + (1−H(η̂a))E [τeN | η̂ ≥ η̂a] = T (16)

Proposition 3. In the presence of heterogeneous internalities, full adoption of

the energy-efficient technology is implemented by a policy consisting of a tax equal

to the marginal externality damage and a subsidy σ = (p+ θ)(ea − êa). The lump

sum transfer that balances the budget is given by T = −(p+θ)(ea− êa)+θẽ. When

misperceptions are large enough, the full adoption implementation involves large
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Figure 3: Social value of adoption (wA) and willingness to pay with biased agents

Note: The figure shows the social value of adoption and the private willingness to pay for the

energy-efficiency technology when heterogeneous agents in biased beliefs. For a given investment

cost k, η̂a is the marginal adopter. The figure shows how imposing a tax τ > θ (above the

marginal externality) increases the marginal adopter type from η̂a(θ) to η̂a(τ). More importantly

note that for η̂ > η̂a(θ), the gap between social value of adoption and the agent’s WTP is

positive and increasing.
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lump-sum transfers to balance the budget.

Proof. Consider the welfare maximisation problem subject to the incentive com-

patibility constraint and the government budget constraint where the government

has access to lump sum transfers T :

max
q=(τ,σ)

H(η̂a(q)) [vA(τ, η̃)− (k(η̃)− σ)− θe(s(τ, η̃), η̃)]

+

∫ η

η̂a(q)

[vN(τ, η̂)− θe(s(τ, η̂), η)]h(η̂)dη̂ (17)

s.t. H(η̂a(q)) [τe(s(τ, η̃), η̃)− σ]+

+

∫ η

η̂a(q)

τe(s(τ, η̂), η)h(η̂)dη̂ ≥ T (Lagrange multiplier: λ) (18)

T ≥ 0 (Lagrange multiplier: µ) (19)

The first order conditions with respect to τ and σ are given by:

η̂aτh(η̂a) [(p+ τ)(ea − êa)− (τ − θ)(ea − ẽ)− σ] +

+(τ − θ)E [eτ |η̂a]− (p+ τ)

∫ η

η̂a(q)

(eτ − êτ )h(η̂)dη̂ =

= µ [η̂aτh(η̂a) (τ(ea − ẽ) + σ)− E [e+ τeτ |η̂a]]

η̂aσh(η̂a) [(p+ τ)(ea − êa)− (τ − θ)(ea − ẽ)− σ] =

= µ[H(η̂a) + η̂aσh(η̂a)(τ(ea − ẽ) + σ)] (20)
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When the government has access to lump sum transfers the Lagrange multiplier

µ = 0 and the following conditions together with the government budget constraint

and the incentive compatibility constraint characterize the optimal policy:

τ =
1

1− Γ(η̂a)
θ +

Γ(η̂a)

1− Γ(η̂a)
p (21)

σ = (p+ θ)

[
(ea − êa)− Γ(η̂a)

1− Γ(η̂a)
(êa − ẽ)

]
(22)

Γ(η̂a) = (1−H(η̂a))
E [(eτ − êτ )|η̂ ≥ η̂a]

E [eτ |η̂a]
(23)

Therefore, the first best is implemented setting τ = θ, σ = (p+ θ) [(ea − êa)]

and Γ(η̂a) = 0. The budget constraint is satisfied then setting T = −(p+ θ)(ea −

êa) + θẽ < 0.

The intuition behind Proposition 3 is that when the adoption of the energy

efficient technology is desirable from a social planner point of view, the socially

optimal adoption rule would prescribe full adoption. Moreover, in the full adoption

scenario, consumers become fully informed about their energy efficiency and the

unique source of inefficiency is the energy consumption externality. Therefore,

setting a large enough subsidy guarantees that even the most optimistic consumers

invest in the new technology and become fully informed. And, hence, a tax equal

to the marginal externality corrects the intensive margin energy consumption

decisions. The main problem of using such a policy to implement full adoption

is that it is very expensive. First of all, a potentially large subsidy is required

to encourage the more optimistic consumers to adopt. And, second, once the

subsidy is offered, there is no way to prevent the infra-marginal consumers from

taking the subsidy up. For instance, consumers who are pessimistic about their

energy efficiency before adoption would have invested in the new technology in

the absence of the subsidy, however with the policy in place they all will adopt

the new technology and get the subsidy.
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The bottom line of this proposition, is that the policy-maker could always

implement any level of adoption of his choice if he has access to lump sum transfers.

In particular, among all the implementable levels of adoption, the one presented

in Proposition 3 implements the first best.

Particular case: Uniform internality Here, I consider the case where agents

are truly heterogeneous in their energy efficiency and there is a homogeneous bias

in their beliefs. In particular, I focus the attention on a population composed of

heterogeneous agents in η (true energy efficiency) and a uniform bias in energy

efficiency beliefs b. Hence, the consumers’ perceived energy efficiency is given by

η̂ = η + b. This case captures a situation in which, for instance, all consumers

are optimistic about their energy efficiency and, hence, they tend to overconsume

energy and undervalue the benefit from adoption.

Let define Γ(η̂a) = (1−H(η̂a)) E[(eτN−êτN )|η̂≥η̂a]
E[eτ |η̂a]

. For a given marginal adopter

η̂a, Γ(η̂a) ∈ [0, 1] is a measure of the average internality among non-adopters.

Corollary 1. Let η∗ denote the energy efficiency level such that for η ≤ η∗

adopting the new technology is socially optimal. The optimal policy consisting of

1. τ = θ + (p+ θ) Γ(η∗+b)
1−Γ(η∗+b)

> θ.

2. σ = (p+ θ)
[
(eaN − êa)−

Γ(η∗+b)
1−Γ(η∗+b)

(êaN − eA)
]

.

implements the socially optimal adoption rule. Moreover, the marginal adopter

η̂a = η̂∗ = η∗ + b satisfies (p+ θ)[eN(η̂∗)− eA] + g(sA)− g(sN(η̂∗)) = k.

Proof. The corollary follows from evaluating the optimal policy result in Proposi-

tion3 when η̂ = η + b. With heterogeneous agents in true energy efficiency η and

a uniform internality b, such that the energy efficiency misperception η̂ − η = b is

constant, the only source of heterogeneity is the true efficiency level. However,

the variable determining the optimal policy is η̂. Note that in this case, since

the optimal adoption rule is determined by a cut-off rule on η, the equilibrium

adoption pattern is that only consumers for whom η̂∗ = η∗ + b ≥ η̂a adopt the

technology. And therefore, in equilibrium Γ(η̂a) ∈ (0, 1). This results in a tax

above the Pigouvian corrective tax level θ.

49



The optimal policy when consumers have a homogeneous bias consists of a

combination of a tax and a subsidy. The tax is set above the marginal externality

to discourage energy overconsumption among non-adopters. Indeed, the expression

for the optimal tax is equal to the sum of the marginal externality plus the average

internality effect conditional on consumers with η ≤ η∗adopting the new technology.

The subsidy is set to the level such that the marginal adopter is η̂∗ = η∗ + b.

Note that in this case, non-adopters are consumers located originally at the

top of the energy efficiency distribution. Hence, in spite of the presence of the

homogeneous internality, this case shares common features with the unbiased het-

erogeneous agents case. As long as the internality is homogeneous, the willingness

to pay is positively correlated with the social value of adoption and, hence, the

pattern of technology adoption still satisfies that non-adopters do not represent

an important problem in terms of energy overconsumption.

Optimal policy when no access to lump sum transfers In the next propo-

sition, I focus my attention on the case where the policy-maker has no access to

lump-sum transfers. Now, the policy-maker has to satisfy the budget constraint,

i.e. the subsidy is financed only with the revenues raised by the tax on energy

consumption.

Proposition 4. When the policy-maker has no access to lump-sum transfers, the

optimal policy must satisfy the following conditions:

1. τ = θ+ (p+ θ) Γ(η̂a)
1−Γ(η̂a)

. The optimal tax is strictly greater than the marginal

externality.

2. The subsidy is given by the government budget constraint,

σ = τeA + τ
(1−H(η̂a))

H(η̂a)
E [eN | η̂ ≥ η̂a] (24)

with σ < (p+ θ)(ea − êa)− (τ − θ)(ea − ẽ) .

3. Rate of adoption below full adoption, η̂a < η.

Proof. Consider the welfare maximisation problem subject to the incentive com-
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patibility constraint and the government budget constraint where the government

has no access to lump sum transfers T 6:

max
q=(τ,σ)

H(η̂a(q)) [vA(τ, η̃)− (k(η̃)− σ)− θe(s(τ, η̃), η̃)]

+

∫ η

η̂a(q)

[vN(τ, η̂)− θe(s(τ, η̂), η)]h(η̂)dη̂ (25)

s.t. H(η̂a(q)) [τe(s(τ, η̃), η̃)− σ]+

+

∫ η

η̂a(q)

τe(s(τ, η̂), η)h(η̂)dη̂ ≥ 0 (Lagrange multiplier: λ) (26)

The first order conditions with respect to τ and σ are given by:

η̂aτh(η̂a) [(p+ τ)(ea − êa)− (τ − θ)(ea − ẽ)− σ] +

+ (τ − θ)E [eτ |η̂a]− (p+ τ)

∫ η

η̂a(q)

(eτ − êτ )h(η̂)dη̂ = 0 (27)

η̂aσh(η̂a) [(p+ τ)(ea − êa)− (τ − θ)(ea − ẽ)− σ] = 0 (28)

The government budget constraint is given by:

H(η̂a) [τeA − σ] + (1−H(η̂a))E [τeN | η̂ ≥ η̂a] = 0 (29)

Combining the first order conditions and the government budget constraint it

follows that the following condition must hold:

6Note that this can be seen as a particular case of the proof of proposition 4 where the
constraint T ≥ 0 is binding
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[
η̂aτ + η̂aσ

dσ(τ)

dτ

]
h(η̂a) {(p+ τ)(ea − êa)− (τ − θ)(ea − eA)− σ}

= (p+ τ) [1−H(η̂a)]E [(eτN − êτN) | η̂ ≥ η̂a]− (τ − θ)E [eτ | η̂a] (30)

And from the implicit differentiation of the budget constraint:

dσ(τ)

dτ
=
η̂aτh(η̂a) [τ(ea − eA) + σ]− E [e+ τeτ | η̂a]

H(η̂a) + η̂aσh(η̂a) [τ(ea − eA) + σ]
(31)

The optimal tax expression in the proposition follows from the first order

condition with respect to τ . The expression for the subsidy then follows from the

government budget constraint. The Lagrange multiplier λ is positive if and only

if the condition σ < (p + τ)(ea − êa) − (τ − θ)(ea − eA) is satisfied. Hence, by

comparison to Proposition 3, the subsidy is below the subsidy level that would

implement full adoption.

Given these, equation 9 is satisfied when η̂aτ + η̂aσ
dσ(τ)
dτ

= 0. From the implicit

differentiation of the consumers’ participation constraint, it follows that the change

in the marginal adopter identity in response to the policy instruments must satisfy

the following expressions:

η̂aτ = − êa − eA
(p+ τ)êaη̂

> 0 (32)

η̂aσ = − 1

(p+ τ)êaη̂
> 0 (33)

Hence it must be that dσ(τ)
dτ

< 0 in equilibrium.

When lump sum transfers are not available, the policy-maker can only consider

revenue neutral changes in the tax and subsidy, and this introduces additional

restrictions on the incentives that can be provided to induce optimistic consumers

to purchase the energy-efficient technology. Furthermore, the welfare maximisation

optimality conditions require that σ < (p+ τ)(ea − êa)− (τ − θ)(ea − eA).7

7For the Lagrange multiplier on the government budget constraint to be positive this condition
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To induce optimistic consumers to purchase the energy efficient technology, the

policy-maker offers a subsidy that must be financed by the tax on energy consump-

tion. However, the tax increase required to finance a larger subsidy, generates an

increased efficiency cost due to taxing consumers who adopt the new technology

above the marginal externality. At the same time, having a tax above the marginal

externality has a positive welfare effect, as it discourages overconsumption among

non-adopters. The idea behind the optimal policy proposed in Proposition 4, is

that the tax must exceed the marginal externality by (p+ θ) Γ(η̂a)
1−Γ(η̂a)

. This second

term in the optimal tax expression depends on the average internality among

non-adopters. Given that the marginal adopter is always optimistic about the

energy efficiency level, this second term is always positive.

As the tax and subsidy increase need to increase in a balanced way to satisfy

the government budget constraint, the proportion of adopters increases initially,

as long as η̂aτ + η̂aσ
dσ(τ)
dτ

> 0. To keep on increasing the number of adopters, larger

tax revenues are required to finance a larger subsidy. However, the average energy

consumption decreases for two reasons. First, more consumers adopt the energy

efficient technology, leading to a reduction in energy consumption. Second, at

the same time consumers cut energy consumption in response to the tax increase.

Therefore, for large enough taxes the tax revenue is decreasing, and the subsidy

has to decrease accordingly. This argument rules out the possibility of increasing

the tax and the subsidy in a balanced budget way in order to achieve a full

adoption implementation. Furthermore, the policy-maker will increase the tax

until it reaches the level such that η̂aτ + η̂aσ
dσ(τ)
dτ

= 0. Since both η̂aτ and η̂aσ are

positive, it must be that at the optimum dσ(τ)
dτ

< 0. The policy-maker increases

the tax and subsidy keeping the budget balanced as long as this has a positive

effect on the marginal adopter. This implies setting a tax equal to the marginal

externality plus the average internality among the non-adopters, and a subsidy

that is strictly smaller that the one that would implement full adoption in the

case discussed in Proposition 3 where lump sum transfers were available.

must be satisfied.
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Therefore, the key trade off when choosing the policy instruments is between

inducing energy consumption efficiency and adoption decisions efficiency. The first

important consideration is that increasing the tax and/or the subsidy increases

the adoption rate. In addition, the subsidy does not impose any distortion on

energy consumption choices, however, to offer larger subsidies the policy maker

needs to increase the tax in order to raise enough revenues to finance the cost of

the subsidy. On the other hand, providing incentives taxing energy consumption

requires increasing the tax above the marginal externality. Hence, imposing an

excessively large tax on consumers who purchase the new technology, as this leads

them to choose an inefficiently low energy consumption level.

Overconsumption and responsiveness to policy For optimistic agents (en-

ergy overconsumers), as the optimistic bias increases, the marginal adopter respon-

siveness to taxes decreases as consumers with large η̂ are less “attentive” to the

energy cost. Due to their biased beliefs, they underestimate the marginal amount

of energy required to produce an additional unit of energy services. For a fixed

tax, the marginal adopter responsiveness to increases in the subsidy is increasing

in η̂, since the private value of adoption curve becomes flatter as the bias increases.

This is consistent with the optimal policy results in the previous section. In the

case where the policy maker has access to lump sum transfer, the optimal policy

involves a sufficiently large subsidy and the tax is kept at the level that corrects

the externality and the average marginal internality among the non-adopters.

When the subsidy needs to be financed by the energy tax revenues, then

there is an additional constraint on the feasible policies. Hence, it becomes of

paramount importance for the optimal policy analysis how the marginal adopter

responsiveness to the policy instruments changes when tax and subsidy change in

a budget balanced way. From the last section, the marginal adopter responsiveness

to the subsidy (η̂aσ) is decreasing in the energy tax. When the energy tax increases,

the private value of adoption curve shifts outwards and at the same time becomes

steeper. The rotation comes from the lower responsiveness of optimistic agents to
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the energy tax. Consequently, an increase in the subsidy has a smaller effect on

the marginal adopter when combined with a large tax. This provides an argument

in favor of keeping the tax low, however, to finance an increasing subsidy, the

policy maker needs to increase the tax and this in turn reduces the effectiveness

of the subsidy.

A second consideration, comes from the intensive margin energy consumption

responses. As discussed before, the low responsiveness of optimistic agents’ energy

consumption plans to taxes arises because optimistic consumers undervalue the

marginal energy consumption effect of increasing their demand for energy services,

and therefore they perceive the impact of the tax on their budget to be very small.

However, small responses to the energy tax in terms of planned energy consumption

induce potentially large changes in the experienced energy consumption. This

effect is due to the wedge between the responsiveness of experienced and planned

energy consumption responses to the tax (eτ0 − êτ0). This provides, therefore, an

additional argument to set the energy tax above the marginal externality.

1.4 Learning alternative scenarios

I discuss in this section alternative assumptions on learning about the true energy

efficiency parameter. I consider these alternative assumptions in the context

of the model discussed previously. In particular, a model where the source of

heterogeneity across agents is that they hold heterogeneously biased beliefs about

their energy efficiency. The working assumption of the model discussed so far

was that agents would eventually correct their biased beliefs upon adoption of

the energy efficient technology. In the rest of this section I discuss how relaxing

this assumption would affect the results of the model. I consider three alternative

scenarios, one in there is an unconditional learning process (regardless of the

technology adoption decision), one in which there is partial learning towards the

true energy efficiency parameter upon adoption of the energy efficient technology,

and a third one where there is no learning at all.
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1.4.1 Unconditional aggregate learning

Suppose that regardless of the technology adoption decision, there is an underlying

learning process that leads agents beliefs to converge towards the true energy

efficiency parameter. Then, in future periods this would result in a lower internality

effect. The energy consumption decisions of agents would be closer to the efficient

level of energy consumption for a given level of energy efficiency. This would

be the result of a smaller gap between the energy consumption plan and the

experienced level of energy consumption. Therefore, the gap between the social

value of technology adoption and the private value of technology adoption would

be smaller.

Since the rational for the subsidy in the model is addressing the internality

effect that leads agents to take suboptimal investment decisions, smaller behavioral

biases would lead to an optimal policy involving a smaller subsidy.

The tax which is targeted to the average internality effect. In the presence of

unconditional learning, regardless of adoption decisions, the average internality

effect would be reduced and, therefore, the tax would be closer to the marginal

externality (Pigouvian tax).

However, unless misperceptions are fully corrected, the model would still feature

that those who invest in the energy efficient technology are those who would have

invested in the absence of the subsidy. And those with biased beliefs such that

they overconsume energy relative to the efficient level of energy consumption

would be less likely to adopt the new technology.

1.4.2 Partial learning upon adoption

Suppose that there is partial learning towards the true energy efficiency parameter

upon adoption of the new technology. Hence, non-adopters beliefs are preserved.

Adopters, however, throughout the technology adoption process partially correct

their misperceptions about their true energy efficiency.

According to the model, non-adopters are those who initially hold biased beliefs
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leading to energy overconsumption and undervaluation of technology adoption

benefits, and adopters are those who initially hold beliefs such that they undercon-

sume energy and overvalue the adoption benefits. As a consequence of this, after

the adoption stage the distribution of beliefs would concentrate towards the true

energy efficiency parameters for adopters and remain unchanged for non-adopters.

Even though both groups would still contribute to the average internality, the

non-adopters group who is dominated by energy overconsumers would dominate

the internality effect. As a result of this, in general the optimal policy should consist

of a tax above marginal externality to address the overconsumption internality.

With regards to the subsidy, the social value of adoption is reduced compared

to the case where adopters fully correct their misperceptions. Hence, the optimal

policy subsidy should be smaller in the partial learning scenario. The subsidy

should still be targeted at the marginal adopter internality. The rational for the

subsidy is to encourage technology adoption, but also compensates adopters for

the excessively high tax level that is imposed to address the average internality

leading to energy overconsumption.

In this case, the negative correlation between the social value of adoption

and the private value of adoption would be preserved under some conditions. In

the next subsection I describe the limiting case in which there is no learning

upon adoption. I provide in the Appendix a sufficient condition under which this

negative correlation prevails in the no learning case. And, hence, that is also

a sufficient condition for the negative correlation between the private value of

adoption and the social value of adoption in the partial learning scenario.

1.4.3 No learning upon adoption

This can be considered an extreme particular case of the scenario just discussed. It

is an interesting scenario as it sets a lower bound for the social value of technology

adoption.

Suppose that there is no learning at all. Both adopters and non-adopters

biased beliefs are preserved. As a consequence, new technology adopters will take
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inefficient utilisation decisions based on their biased beliefs.

Since the adoption decision is based on current beliefs, the model would still

result on those who underconsume energy relative to efficient energy consumption

to select themselves into technology adoption. This is a consequence of their over-

valuation of the benefits of investing in the energy efficient technology. However,

when operating the new technology, they will keep on taking decisions leading to

inefficiently low levels of energy consumption. On the other hand, non-adopters

who tend to be energy overconsumers will also keep making decisions leading to

energy overconsumption in the second stage.

First of all, the fact that there is no learning induced by the adoption decision

reduces the social value of adoption. Hence, the benefit of providing a subsidy

from the policy maker point of view decreases. Selection into adoption is still

adverse from a policy cost-benefit perspective. In addition, the potential welfare

gain is reduced by the fact that adoption of technology does not correct energy

cost misperceptions among adopters.

On the other hand, the effect on the tax will depend on the relative proportion

of energy overconsumers and underconsumers. The tax should be equal to the

marginal energy consumption externality plus an additional term targeting the

average internality. Now, the internality effect is the result of behavioral biases

among adopters and non-adopters. Under the model assumption, that energy over-

consumers are less responsive to taxes (and subsidies), one could expect that the

tax would still be above the marginal externality level as energy overconsumption

deviations from the efficient level of consumption are likely to dominate. However,

in general, whether the tax should be above of below the Pigouvian tax level

would depend on the initial distribution of beliefs.

Furthermore, another force towards setting the tax above the Pigouvian tax

level has to do with the revenue raising role of the tax to finance the subsidy. As

discussed in the previous section, when the tax and subsidy policy is required to

be budget balanced the policy maker wants to increase the tax to finance a larger

subsidy and induce more agents to adopt the technology.
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1.5 Policy (in)effectiveness: Preference heterogeneity vs

Misperceptions about energy efficiency

The results from the optimal policy analysis presented above suggest key differential

policy implications of the different sources of heterogeneity. First of all, a policy

maker who ignores the presence of misperceptions among consumers would set a

policy that does not provide enough incentives for the adoption of energy efficient

technologies. If the policy maker sets a tax equal to the marginal externality,

optimistic consumers will keep on undervaluing the benefits from adoption and

overconsuming energy relative to what they would have consumed if their beliefs

were accurate. Second, if the internality is taken into account the optimal policy

will result in consumers underadopting the new technology. The reason behind

this is that taxes and subsidies are very ineffective at encouraging adoption of

energy-efficient technologies by optimistic agents.

In the presence of the internality, the marginal adopter responsiveness to both

the subsidy and the tax is lower when optimistic biases are large. The more

optimistic is the marginal adopter, the more one needs to increase the tax and/or

the subsidy to increase the adoption rate. At the same time, the marginal adopter

responsiveness to both additional tax and subsidy increases is decreasing in the

energy tax. The idea is that as the tax increases the private benefit of adoption

(willingness to pay) curve becomes steeper, making consumers less responsive

to the subsidy. Similarly, when the tax is higher, the marginal adopter is more

η-optimistic and, therefore, less responsive to tax increases as well. Although,

increasing the tax and the subsidy provides more incentives to adoption, the policy

maker has to keep in mind the negative effects. Increasing the tax above the

marginal externality imposes an excessive tax on adopters generating an efficiency

cost. In addition, if the tax grows too large, the tax revenues start decreasing

and this limits how large the subsidy can be when the government has to keep

a balanced budget. Finally, the inability to prevent inframarginal consumers

from taking the subsidy up makes inducing severe overconsumers into adoption of
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energy-efficient technologies extremely costly.

Another way in which tax and subsidy policies are ineffective comes from the

previously discussed negative correlation between adoption decisions and energy

consumption. When agents are unbiased the willingness to pay and the social

value of adoption are aligned. However, with misperceptions energy overconsumers

do not adopt the energy-efficient technology and keep on overconsuming energy.

If the policy could be better targeted to optimistic agents, the subsidy cost will

be reduced dramatically. At the same time, the tax could be kept at lower level

reducing the tax efficiency cost on adopters. Note that pessimistic agents would

adopt the energy efficient technology even in the absence of the subsidy, and

then the policy could be only focused on providing strong effective incentives to

optimistic consumers.

1.6 Empirical test

One of the main insights of the previous analysis is that when agents are biased,

providing incentives for technology adoption via taxes and subsidies is very

expensive for the government. Moreover, the agents for whom the social value of

adoption is higher are the ones who are less responsive to these policy instruments.

On the other hand, the analysis above shows that when the marginal adopter

is η-optimistic, the correlation between consumers’ willingness to pay and the

social value of adoption is negative and the wedge between them increases as

the agents become more optimistic. Hence, in the presence of misperceptions

about energy efficiency, the model predicts that heavy energy overconsumers are

unlikely to adopt. This fact is in stark contrast with the implications of true

technology heterogeneity and unbiased beliefs. In which case, non-adopters are

those ones who find investing in the new technology not sufficiently profitable

because their energy efficiency is already high or their energy use intensity is low.

Hence, non-adopters are consumers that come from the lower end of the energy

consumption distribution.
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In this chapter I present two extreme cases, one in which there is only hetero-

geneity in the true energy efficiency, and another in which heterogeneity is driven

only by heterogeneous misperceptions on energy efficiency. As discussed in the

previous paragraph the two configurations have diametrically opposed predictions

on the correlation between energy efficiency and energy consumption levels and

changes in energy consumption upon adoption. With only preference heterogeneity

the prediction is that the correlation is positive, whereas with only heterogeneous

misperceptions the correlation is negative. The ideal empirical test I propose is

based on analysing the correlations between energy consumption levels and energy

consumption changes, and the energy efficiency type. Note, that this empirical test

is not perfect, and a positive empirical correlation does not exclude the possibility

that there is a role of misperceptions at explaining selection into adoption, however

it would suggest that selection is dominated by heterogeneity in true preferences.

A first concern is that the preferences and beliefs on energy efficiency are

not observable. This requires finding another source of variation that captures

the potential sources of heterogeneity. For that purpose, I look at the timing

of the adoption decisions as a reflection of consumers’ heterogeneity. A second

concern is that adoption decisions are endogenous. They are correlated with

unobservable heterogeneity, that in turn is correlated with energy consumption

decisions. However, the main advantage of this test is that it does not require any

source of exogenous variation to overcome this endogeneity problem. Following

this empirical predictions, in Chapter 3, I perform an empirical analysis using an

event-study approach to conduct the test presented above. I estimate correlations

between pre-adoption energy consumption levels and energy consumption changes

upon adoption, and the timing of adoption decisions. The implicit assumption is

that heterogeneity, in preferences or in beliefs, determines the timing of adoption

decisions.

The test ideally requires using individual-level data on energy consumption and

adoption of energy efficiency improvements. Ideally, one should be able to observe

for each individual the past history of energy consumption before the individual
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purchases decides to invest in energy efficient durable goods. I believe it is crucial

to control for individuals’ socioeconomic characteristics, property characteristics,

and geographic location, as many of this variables are likely to be correlated with

energy consumption, but also might have an impact on the adoption decision.

The analysis presented in the rest of this thesis is based on the UK National

Energy Efficiency Data. This data set will be described in detail in the next

Chapter.

Another option I considered is the Residential Energy Consumption Survey

(RECS). The RECS is conducted in the US every four years and contains infor-

mation about households’ characteristics, energy consumption and information

about the type of energy-using durable goods purchased by each household. The

main limitation imposed by this survey data is that it provides only aggregate

information about energy consumption in the last four year-period for each house-

hold. However, when a household adopts an energy efficient technology, its energy

consumption is expected to decrease. The information in this data set provides

only the overall energy consumption in the same period where the adoption of

the new technology took place, and this is likely to induce a negative correlation

between energy consumption and adoption decisions which could have nothing

to do with the implications of the model presented in this chapter. Even though,

for the empirical application presented here, it is very important to observe en-

ergy consumption before adoption, since consumption after adoption is already

affected by technology adoption. Nonetheless, the RECS survey data contains

information about other interventions like energy audits and other smaller scale

energy efficiency measures interventions that have potential to be used in further

research.

1.7 Conclusion

This chapter proposes a theoretical model to think about energy policy in the

presence of externalities and internalities. The main novelty of the chapter is that
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internalities affect directly the energy consumption decisions and induce a wedge

between perceived and true benefits from adoption of energy-efficient technologies.

The theoretical analysis is based on the fact that consumers’ perceptions about

their energy efficiency are biased and discusses the implications of the presence of

this internality in the design of policies to encourage the adoption of energy-efficient

technologies.

I find that when consumers’ heterogeneity is driven by biased beliefs, the

optimal policy is a combination of a tax greater than the Pigouvian corrective

tax to discourage energy overconsumption among non-adopters, and a subsidy

targeted at the marginal adopter internality.

I also show that whether heterogeneity is driven by misperceptions or by true

heterogeneity in energy-efficiency makes a crucial difference for policy design.

First, ignoring misperceptions and targeting the policy as if consumers where

heterogeneous preferences (in the true energy efficiency) would lead to a level

of adoption of the new technology far below what is socially desirable. Second,

whilst energy taxes can fully correct inefficiencies due to the externality, this

is no longer feasible when heterogeneity is driven by misperceptions. Moreover,

the responsiveness of optimistic consumers to the proposed policy instruments is

limited and decreases as the bias becomes more severe. Third, the model predicts

a negative correlation between the new technology adoption likelihood and the

current level of energy consumption. This implies that energy overconsumers are

unlikely to adopt the energy-efficient technology under policies based on taxes

and subsidies.

The findings in this chapter suggest that energy policy should perhaps combine

taxes and subsidies with information policies like information campaigns, energy

audits, use of devices like smart meters that make the energy costs more salient to

households. This suggests also a rationale for the use of policies based on minimum

energy-efficiency standards. Minimum standards would force households who

undervalue the benefits from adoption to increase their level of energy efficiency

when purchasing new durable goods because the current one broke down for
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instance. Hence, this would introduce some degree of random enforcement. An

interesting question for future research is how to set optimal minimum energy

efficiency standards in combination with other policy instruments.
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Chapter 2

Energy consumption and energy

policy in the UK

2.1 Introduction

This chapter discusses the energy consumption patterns and energy efficiency

measures adoption in the UK. First of all, in Section 2, In Section 2, I review the

evolution of how policy makers think about energy efficiency policy design in the

light of the new theoretical developments and empirical evidence. In addition, I

provide a review of energy efficiency policy in other developed countries to place

energy efficiency policy in the UK in an international context.

The aims of this chapter are: first, identify energy efficiency policy interventions

in the UK that could provide policy variation to identify the impact of incentives on

technology adoption and selection into technology adoption, and second, analyse

the energy consumption trends over time and the impact of technology adoption

decisions. All in all, the analysis presented in this chapter sets the stage for the

empirical analysis exposed in Chapter 3.

For this purpose I use a data set (National Energy Efficiency Data, NEED)

covering a large sample of households in England and Wales. For approximately 4

million households, the data set keeps track of energy consumption and energy

efficiency measures installation over the period 2005-2012. The data set is described

in detail in Section 3 of this chapter, followed by a descriptive analysis of energy

efficiency policies in the UK. Throughout the discussion in Section 4, I aim to
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emphasize the policy variation introduced by the government schemes in place.

Data limitations, however, make difficult to use this policy variation to identify the

behavioral responses of households to public incentive schemes using the National

Energy Efficiency Data.

In the following sections I provide a detailed analysis of energy efficiency

measures adoption and energy consumption patterns over time. More specifically,

in Section 5 I focus on adoption patterns looking at adoption determinants and

also at the timing of technology adoption. In Section 6, I turn the attention to

the energy consumption profiles over time. Section 7 provides a discussion on the

rebound effect based on the graphical analysis of the energy consumption profiles

around the time of energy efficiency measures adoption.

With the aim of analysing the potential of households’ heterogeneity at ex-

plaining the impact of energy efficiency measures adoption, in Section 8, I present

a similar analysis grouping households according to different households’ char-

acteristics included in the dataset. In the absence of data on income and other

socioeconomic characteristics of households, I focus the grouping analysis on the

Index of Multiple Deprivation and the Fuel Poverty Index as variables that could

proxy income heterogeneity. I also analyse the impact of the property type, main

heating fuel and regional heterogeneity.

Section 9 analyses the role of information provision comparing groups of

households that subject to information provision interventions to others who do

not. In Section 10, I present the results of a household level fixed effects model

estimating the aggregate impact of energy efficiency measures adoption. And

Section 11 concludes.

2.2 Literature Review and International Context

From the early theoretical development of Pigouvian taxes as a way to correct

externalities to the way policy makers think about energy efficiency policy there

have been many contributions that have reshaped how policy makers think about

66



optimal policy design.

The idea of Pigouvian corrective taxes as an instrument to correct market

failures associated with the presence of externalities goes back to Pigou (1920).

Following this idea it is argued that optimal Pigouvian taxes and/or subsidies

would make agents fully internalize the externality and therefore achieve the first

best outcome. Moreover, if the only reason why agents fail to invest in energy

efficiency measures is the externality, Pigouvian taxes would suffice to restore the

first best outcome on both the extensive margin (technology adoption) decision

and the intensive margin (energy consumption) decision. Despite the theoretical

appeal of Pigouvian taxes as a policy instrument, the information requirements

necessary to find the optimal tax level and the political cost of implementing those

taxes make them difficult to implement in reality. However, Pigou’s idea provides

the main rationale for the use of Pigouvian taxes to correct energy consumption

externalities.

Instead, in the context of energy efficiency policy, we observe nowadays that

policy makers are using a richer combination of policy instruments to try to

correct externalities and close the energy efficiency gap. Hence, the policy design

challenge is finding cost-benefit effective instruments that achieve the reduction in

energy consumption targets. Key to the policy design process is understanding the

mechanism underlying why agents tend to underinvest in energy efficiency measures

relative to the socially optimal level of investment. However, as discussed in Allcott

and Greenstone (2012) and Gillingham et al (2009) the empirical evidence on the

size of the energy efficiency gap is situation specific and many times inconclusive.

In this context, the recommendation is that the policy instruments should address

the market or behavioral failures causing the energy efficiency gap as directly as

possible. This is perhaps the main reason why energy efficiency policy relies on a

combination of a number of instruments aimed to target the different sources of

market and behavioral failures.

Following empirical evidence on large implicit discount factors when households

make energy efficiency investment decisions (Hausman (1979)), early policies were
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mostly based on combinations of taxes and subsidies or regulation approaches

based on efficiency standards. The idea behind this policy instruments being

that subsidies should be effective when agents undervalue the benefit of energy

efficiency measures adoption. Alternatively, one could regulate the level of energy

efficiency of energy consuming appliances in the market and increase the overall

energy efficiency.

In recent years, however, both policy makers and academic research have

turned their attention to behavioral failures to better understand the energy

efficiency gap and inform the policy making process. This newly developed area is

obviously consistent with the earlier empirical findings of large implicit discount

rates, and should be taken as an attempt to better understand the underlying

behavioral process leading to an inefficiently low level of investment in energy

efficiency.

Although direct evidence of behavioral biases or biased beliefs is not very

extensive in the context of energy efficiency policy. There are many pieces of

evidence that provide consistent suggestive evidence that behavioral biases may

play an important role at explaining the energy efficiency gap. De Groote and

Verboven (2016) analyse the effect of subsidies on the adoption of renewable

energy technologies and find that households significantly undervalue the benefits

of technology adoption. Allcott and Wozny (2013) find evidence that consumers

slightly undervalue the future fuel operating costs of motor vehicles. Gallagher

and Muehlegger (2011) analyse the effect of sales tax waivers, income tax credits

and non-tax incentives on purchases of hybrid vehicles, finding an implicit discount

rate of 14.6%.

Others have focused on evaluating the effectiveness of information provision

policy interventions. Allcott (2011) provide experimental evidence that a program

sending letters to households informing about the energy consumption social norm

has a large impact on energy consumption at a very low policy intervention cost.

Davis and Metcalf (2016) find that better information provision leads consumers

to better energy efficiency investment decisions. Attari et al (2010) use an online
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survey to estimate that survey participants underestimate on average by a factor

of 2.8 energy use and potential energy savings from energy consumption utilisation

changes and investments on energy efficiency measures.

On the other hand, there is also empirical evidence that subsidies might prove

an expensive way to provide incentives. Joskow and Marron show that households

induced to adopt energy efficiency measures as a consequence of a subsidy would

have invested also in the absence of the subsidy. They refer to this as a free

riding problem, also called the additionality problem. Despite this, they argue

that subsidies be effective at increasing the rate of diffusion of the new technology

via information spillovers from early adopters. Boomhower and Davis (2014) use

a regression discontinuity approach to study participation in a large scale energy

efficiency program. They find that participation increases with large subsidies.

However, most participants are non-additional, they would have participated with

a lower subsidy or no subsidy at all. Ito (2015) analyses the effect of a large scale

electricity rebate program, finding empirical evidence consistent with the fact that

many program participants are non-additional. Concludes that this is a central

problem when evaluating the cost effectiveness of incentive schemes. Davis et

al (2014) analyse the impact of a large subsidy program in Mexico for appliance

replacement and find that, although the program is effective, it is a very expensive

way to achieve energy consumption savings.

To sum up, all this evidence, although not conclusive and context-dependent

to a certain extent, has been taken into account by policy makers. In recent years,

energy efficiency policy has been swinging towards policy instruments aimed at

providing better information. Information provision, when effective, is extremely

attractive from a policy design point of view as usually can achieve a potentially

high impact at a lower cost than giving subsidies. In the light of the previously

discussed evidence, subsidies may prove an expensive way to provide incentives

for energy efficiency adoption.

As a result of this, the last decades have seen how energy efficiency policy has

evolved towards a more extensive use of policies based on information provision.
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And despite there are still many incentive programs providing subsidies to promote

energy efficiency investment, governments are putting resources and effort in

evaluating the potential of information provision interventions to address the

energy efficiency gap. In the UK, the Department of Energy and Climate Change

in collaboration with the Behavioral Insights Team has been running small scale

experiments to gain insight on behavioral aspects crucial for energy efficiency

policy design. For instance, a randomised control trial to test how the way energy

efficiency information is presented affects the perception of cost savings related to

the use of energy-efficient appliances. Other studies have included smart meters

roll-out trials to evaluate the potential of smart metering to overcome housholds’

lack of precise information on their current energy use. At the same time, other

developed countries are also putting emphasis on the relevance of behavioral

insights for better policy design. In Italy the regulatory authority has also been

running experiments to test how individuals respond to different types of feedback

on their energy use. A large experiment involving 10 EU countries has tested

using an online experiment how provision of online information on appliances’

energy efficiency affects consumers’ decisions.

2.2.1 International Context

The empirical analysis presented in this thesis refers to energy efficiency measures

adoption in the UK, in particular in England and Wales. However, the conceptual

framework and the empirical results presented could be taken as a piece of

evidence that could guide energy efficiency policy design in a broader context, this

is for developed countries which are pursuing similar energy efficiency objectives.

Other developed countries face similar challenges in the design of effective energy

efficiency policies.

European Union directives prompt member states to implement policy measures

to achieve carbon emission targets and reduce energy consumption. Among other

measures, this includes providing incentives for a reduction in energy consumption

in the residential sector, since it represents an important share of the total energy
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demand. Although changes in utilisation behavior can have a significant impact

on energy demand, it is argued that the major energy savings potential resides in

technological change. At the residential level, this involves basically adoption of

energy efficiency measures like the ones considered here, i.e. insulation measures,

purchase of higher energy efficiency boilers, heaters, etc. For these reasons, in the

EU context, there is a large number of energy efficiency government policies similar

to the ones implemented in the UK. In the UK, the Green Deal scheme, starting in

2013, introduces incentive programs and other measures to encourage investments

in energy efficiency and energy consumption reductions in the residential sector.

In the case of the UK, the Green Deal scheme follows other similar schemes

that were in place in the previous years, and that I discuss in more detail later.

Starting in 2003, the Flanders region in Belgium implemented a Rational Use

of Energy scheme. A scheme that obligates electricity distributors to implement

measures and encourage energy savings in the residential sector to achieve targets

in energy consumption reduction. Starting in 2005, Italy introduced the “Titoli

d’Efficienza Energetica” (Energy efficiency certificate) enforcing final consumption

obligations on gas and electricity distributors. Also France and Denmark, starting

in 2006, implemented similar programs shifting on energy suppliers and distributors

the responsibility of achieving target reductions in energy consumption in the

residential sector. Although this is not an exhaustive list, this are specific examples

of how the EU Energy Efficiency Directive requirements has translated in the

implementation of programs aimed to reduce energy consumption in the residential

sector in most member states.

In the United States, under the Energy Independence and Security Act, one

can also note policy interventions along the same lines. Among others, policies

to encourage energy efficiency in the residential sector like standards in the form

of building codes, or providing incentives for heating and cooling energy efficient

technologies.

Other specific examples of policy interventions, also implemented both in most

countries in Europe and in the US are information provision policies like the
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provision of information on appliances energy efficiency in labels. In Europe, the

Energy Labeling Directive, or in the US, the Energy Star program introduced labels

providing information about the carbon emissions and the energy efficiency rating

of appliances with the aim of promoting the use of energy efficient appliances.

All in all, with its limitations, the analysis presented in this thesis should be

taken as a relevant piece of evidence that could help guide energy efficiency policy

design in a broader context than the UK.

2.3 National Energy Efficiency Data

In this section I provide a detailed description of the data set on which the

empirical analysis presented in Chapters 2 and 3 is based. The data set is the

National Energy Efficiency Data (NEED)8, a publicly available data set produced

by the UK Department of Energy and Climate Change (DECC) containing

information on energy efficiency measures adoption, energy consumption and

property characteristics.

The NEED version on which the analysis presented here is based is the End

User Licence File covering a sample of more than 4 million households in England

and Wales. NEED is an anonymised household level data set containing 25

variables for each household. These variables can be grouped in four categories:

general variables, energy consumption variables containing historical gas and

electricity consumption (2005-2012), property characteristics and energy efficiency

measures installed.

The general variables include a unique household identifier, a region categorical

variable indicating to which of the 8 former Government Office Regions each

household belongs to, a categorical variable that takes discrete values from 1 to 5

indicating the Index of Multiple Deprivation quintile of the Lower Layer Super

Output Area (LSOA) the household is located in 9, a categorical variable taking

8Department of Energy and Climate Change. (2014). National Energy Efficiency Data-
Framework, 2014. [data collection]. UK Data Service. SN: 7518, http://doi.org/10.5255/UKDA-
SN-7518-1

9Since household income or other socioeconomic characteristics is not available in the data
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values from 1 to 5 identifying the quintile in the proportion of households in fuel

poverty in the LSOA the household is located in and a categorical variable providing

information on whether the household was subject to an Energy Performance

Certificate inspection before 2010 or in 2010 or later10.

The energy consumption variables contain information on annual gas and

electricity consumption for years between 2005 and 2012 measured in physical

units (kWh). The data set also includes an indicator variable indicating household

records with valid gas and electricity consumption11.

The data set contains information on the energy efficiency measures installed

by households included the sample. The energy efficiency measures considered

are cavity wall insulation, loft insulation and boiler installation. For each of

these energy efficiency measures the data set contains a variable indicating if the

household installed the measure through a government scheme and the year of

installation. It is important to highlight at this stage that the sample included in

the NEED dataset does only include households who adopted energy efficiency

measures as participants of a government incentive scheme. Therefore, any

estimates of the impact of the installation of energy efficiency measures presented

in Chapters 2 and 3 should be interpreted as the impact of participating in a

government scheme providing incentives to install the energy efficiency measures

and, indeed, installing them. As opposed to installing the energy efficiency

measure. This is an important caveat as this may introduce a selection bias, as

households who select themselves into the incentives program participation might

have different underlying characteristics affecting both their energy consumption

choices and energy efficiency measures adoption decisions. In particular, it could be

that those selecting themselves into the program are intrinsically more motivated

set, I include the Index of Multiple Deprivation variable in the regression analysis presented later
to control for the level of income. The dataset includes two different variables for England and
Wales. The IMD England variable is constructed based on the 2010 IMD for England, whereas
the IMD Wales variable is based on the Welsh IMD in 2011.

10However, the data set does not contain information on the specific year when the inspection
was conducted.

11The analysis presented in Chapters 2 and 3 is restricted to a subsample including only on
households with valid consumption records
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towards energy conservation behavior. Or, on the contrary, it could be that

households adopting energy efficiency measures under the incentive scheme are

less motivated, and chose to invest because of the financial incentives provided by

the government program.

Based on this information I construct a variable containing time relative to

adoption for each of the energy efficiency measures (time relative to event year)

and on which I base the event study analysis presented here. This variables allow

also me to control in a simple way for whether the household has adopted other

energy efficiency measures and the timing of adoption.

Finally, the data set contains several variables providing information on prop-

erty characteristics. These contain both characteristics of the building and energy

consumption related features of the property. More specifically, the data set

contains the following variables:

• A dummy variable identifying households with Economy 7 electricity meters.

• A variable identifying households’ main heating fuel.

• Property age. A categorical variable grouping households in six bands based

on the year of construction of the property.

• Property type. A categorical variable grouping households based on the

property type.

• Floor Area variable that allocates each household to a floor area band. The

data set does not contain information regarding the specific floor area of

each household.

• Energy Efficiency band. Also a categorical variable that allows grouping

households by different categories of energy efficiency.

• Depth of loft insulation. This variable identifies whether the property has

150mm or more, or less than 150mm.

• Wall construction. Identifies whether the property has a cavity wall or not.
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The data set does not contain, however, information on households’ demographic

or economic characteristics. Being able to match the NEED information to

demographic and socioeconomic household characteristics like income or household

composition would definitely allow for a richer analysis of the questions I am

addressing in these chapters, however because of confidentiality matters matching

this data set to other data sets containing these sources of information or having

access to more detailed geographic location of the households included in the

NEED data set has not been possible.

2.4 Energy efficiency policy in the UK

Energy efficiency policy in the United Kingdom relies on the application of different

policy instruments to different sectors and activities. The key components of

the overall energy consumption are transport, domestic consumption, industrial

consumption and the services sector (including public sector and commercial

services) consumption. I focus on domestic energy consumption, which represents

around 20% of total energy consumption, and on policies oriented to encourage

energy savings and investment in energy efficient technologies. In the following

paragraphs I discuss different policies that have been introduced in the UK during

the period observed in the NEED sample.

In the following paragraphs I discuss different types of policies. On the one

hand, policies that are based on providing subsidies to help households cover the

investment cost. This is the case for the boiler scrappage scheme and the warm

front scheme. On the other hand, policies based on information provision like the

energy performance certificate. The Green Deal scheme provides financial aid and

also advice to households on how to save energy. Another important distinction

between policy interventions is whether they are targeted or universal. The Warm

Front Scheme for instance targets households with low income level, the boiler

scrappage scheme, on the contrary, offers a subsidy not targeted at any particular

income level.
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The Energy Performance Certificates were introduced in England and Wales

on 2007. The energy performance certificate is required whenever a property is

built, sold or rented, and consists of an evaluation of the property energy efficiency.

The certificate awards each property an energy efficiency rating. The EPC was

phased in between August and December 2007 for marketed sale of dwellings. For

non-marketed sales or rental of dwellings it was implemented in October 2008.

And the EPC on construction of dwellings on April 2008. The Energy Performance

Certificate was initially introduced as part of the Home Information Pack. In 2010,

the Home Information Pack was abolished and the EPC requirement continued.

The Community Energy Savings Programme (CESP) was announced in Septem-

ber 2008 and consisted of a package of measures to encourage investment on energy

saving technologies among households. Part of the programme aid was targeted to

low income households. However, every household was eligible for a 50% discount

on cavity wall and loft insulation installation. The programme ran from January

2009 to December 2012.

The Green Deal scheme started at the end of the CESP. It provides loans

for installation of energy efficiency improvements. The scheme was launched

in October 2012, and is designed to facilitate consumers’ investments in energy

efficiency measures. The scheme loans are repaid through the energy bills.

The Warm Front Scheme was launched on June 2000 and closing in 2012/13.

This program is targeted at reducing fuel poverty. It provides benefits to households

installing energy efficiency improvements. Eligibility is based on income level as

the program was set in place to address fuel poverty issues.

The Boiler Scrappage Scheme started on January 2010 and provided help to

up to 125000 households to install fuel efficient boilers. Eligibility was based on

having a G-rated boiler and substituting it for an A rated boiler or a renewable

heating system. Successful applicants received a 400GBP voucher.

The policy variation introduced by these incentive schemes provide interesting

further research opportunities to identify the impact of subsidies and information

provision on the technology adoption patterns and energy consumption. However,
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the NEED data set is not rich enough to precisely identify which households are

eligible and which ones actually benefited from them.

The Energy Performance Certificate introduction is an interesting source of

variation to analyse the effect of information provision policies. The policy variation

introduced by the phase in schedule is interesting as it introduces gradually an

information provision policy that gives owners recommendations on how to reduce

energy consumption and also makes them aware of potential energy efficiency

improvements. The NEED data set contains information only on whether a

household went through the certification process before 2010 or in 2010 or after,

making it difficult to use the data to identify the effect of information provision

on the adoption decisions and the intensive margin energy consumption decisions.

The major difficulty for using the Warm Front Scheme as a source of policy

variation to identify the impact of incentives on energy efficiency adoption is

that one needs to observe the households characteristics that determine program

eligibility and take-up. The NEED data set contains only information on prop-

erty characteristics and does not provide enough information to identify eligible

households.

Regarding the Boiler Scrappage Scheme, in the NEED data set there is no

information about program participation or any information that would allow

to identify potentially eligible households which would be crucial to more pre-

cisely exploit this policy change empirically to identify how the introduction of a

subsidy affects selection into adoption and the energy consumption change upon

adoption. However, in the last section of Chapter 3, I use this policy change to

obtain estimates for the intention to treat effect of the policy changes on energy

consumption outcomes comparing those who install a boiler before 2010 to those

who install it in or after 2010 under the Boiler Scrappage Scheme.

Incorporating households socioeconomic characteristics and more detailed

household geographic location data would definitely be an important next step

towards using this sources of policy variation to identify consumers responses to

subsidies and information programs.
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The NEED data set provides valuable information to study the adoption

patterns, however connecting the observed adoption empirical patterns to the

energy efficiency policy variation is not feasible with the available data. In contrast,

in Chapter 3 I perform the correlation test proposed in Chapter 1 for which no

policy variation is required.

2.5 Trends in adoption patterns

In this section, I present a discussion on the adoption patterns over time of cavity

wall insulation, loft insulation and energy efficient boilers. The graphs presented

in Figure 4 show the evolution of the adoption hazard rate over time. The hazard

rates are calculated as the proportion between the number of adopters in year

t over the number of households which have not adopted the energy efficiency

measure before year t. The hazard rate for 2004 should be taken as the baseline

hazard rate representing the proportion of adopters at the beginning of the sample

period. For all three energy efficiency measures, the hazard rate has on overall

increasing time trend showing that the proportion of households adopting the

energy efficiency improvements increases.

When comparing the adoption patterns for the different energy efficiency

measures, one finds that cavity wall insulation has a significantly higher baseline

adoption hazard rate (slightly above 6%). Whereas for loft insulation and boiler

the baseline hazard rates are at a significantly lower level, slightly above 2% and

1% respectively. This is likely to be related to the fact that during the sample

period the adoption hazard rates increase significantly more for loft insulation and

boiler than they do for the cavity wall insulation adoption hazard rate. The loft

insulation adoption hazard rate remains at levels around 2% until 2010, to start

then increasing sharply to peak in 2012 at a level close to 6% probably as the

result of the 50% discount on insulation measures introduced by the CESP scheme.

The boiler adoption hazard rates start increasing steadily from the beginning of

the sample period (with the exception of 2008 when the adoption hazard rate falls
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by around 1.2%) to reach a level close to 5% by the end of the sample period.

In contrast, the cavity wall insulation adoption hazard rate remains relatively

stable around 2% for the whole sample period to show only a slight increase from

2010. A plausible explanation for this differential patterns is that the number

of potential adopters for cavity wall insulation is much lower than it is for loft

insulation and boiler adoption.

Before analysing the relationship between the timing of adoption decisions and

the energy consumption levels and changes in energy consumption upon adoption,

I study the impact of property characteristics on technology adoption decisions.

For each of the energy efficiency measures included in the data set (boiler, cavity

wall insulation and loft insulation) I run the following regression specification:

Aitl = X
′

itω + γl + εitl (34)

where Ait is a dummy variable taking a value of 1 in adoption years (and 0

otherwise), and Xit is a vector containing the property characteristics for household

i and the year relative to year of adoption for the other two energy efficiency

measures. The term γl includes region specific fixed effects. I provide regression

estimates for a Probit model in Appendix A.3(Table 10). The results presented

in Table 10 show that with very few exceptions the coefficients on all property

characteristics are highly significant. More importantly, the coefficients on other

energy efficiency measures time of adoption is always highly significant. This

suggests that the adoption of the different energy efficiency measures is highly

correlated. Therefore, in the event study regressions presented in the rest of this

chapter and in Chapter 3 I always include controls for the timing of adoption of

other energy efficiency measures observed in the data set.

2.6 Energy consumption

First of all, I discuss the energy consumption time series. In Figure 5 I present

time series for total, gas and electricity consumption over time. Consumption is
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Figure 4: Adoption of energy efficiency measures (Hazard rates and cumulative rates

of adoption)

Note: Graphs on the left show the adoption hazard rate for cavity wall insulation, loft insulation

and boiler replacement throughout the sample period. The hazard rates have been computed

using the sample information as number of adopters in year t over number of non-adopters at

the beginning of period t. Graphs on the right show the cumulative proportion of adopters

relative to the the sample size
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presented in physical units (kWh). The time profiles of energy consumption exhibit

a clearly decreasing trend overtime. The decreasing trend in energy consumption

is still present after decomposing energy consumption in gas consumption and

electricity consumption. Therefore, one can discard the possibility that gas or

electricity consumption are decreasing because households are substituting across

different energy sources at an aggregate level. As discussed in the previous

section, during the sample period 2005-2012 a number of households have been

implementing energy efficiency measures, however the patterns in this graphs are

not sufficient to claim that energy efficiency measures adoption led to a decrease

in energy consumption. There are many confounding factors that could be having

an impact on energy consumption at the same time. For instance, economic-cycle

related factors or aggregated shocks affecting the capacity of households to produce

energy services using raw energy inputs.

In the following sections, I present an event study approach to evaluate the

impact of technology adoption on energy consumption. The main concern when

analysing the impact of technology adoption on energy consumption is that

decisions on installation of energy efficiency measures are endogenous. Both

households technology adoption decisions and energy consumption are correlated

with unobservable heterogeneity. Ideally one would want to randomize energy

efficiency measures adoption to study the impact of technology adoption on

consumption. Since this is not possible, I adopt an event analysis approach based

on exploiting the sharp drops in energy consumption around the year of technology

adoption12.

At the same time, to control for other factors affecting the energy consumption

profiles, I control for year fixed effects, region fixed effects and property character-

istics. In the following analysis, therefore, I present graphs showing the residual

variation in the energy consumption profiles over time relative to the adoption

12This approach has been used in similar environments. For instance Kleven et al (2016)
study the effect of having children on labor market outcomes using an event-study approach.
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Figure 5: Energy consumption time series

Note: The graphs show the total, gas and electricity consumption profiles over time. The graphs

are obtained using the raw NEED data and each data point represents the average energy

consumption in each year with the corresponding 95% confidence interval.
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year after controlling for these variables. This gives a more accurate idea of what

is the variation in energy consumption around the year of adoption that could

be attributed to the adoption of energy efficiency measures. I present the energy

consumption profile around the year of adoption of each of the different energy

efficiency measures included in the data set (cavity wall insulation, loft insulation

and installation of an energy efficient boiler). I analyse separately the adoption of

each of the energy efficiency measures for which the data set contains adoption

information. For each household in the data set I denote by s=0 the year in

which the technology has been adopted and represent energy consumption profiles

over time relative to the adoption event time (s=0). Time relative to adoption

runs from s=-7 (seven years before technology adoption) to s=7 (seven years

after technology adoption). It should be noted that the panel is not balanced as

the number of households observed at each time relative to adoption varies. For

instance, at s=7 I observe only those households who adopt in 2005 (the first year

in the data set). Hence the number of households observed is significantly larger

for times around 0 (adoption time) and smaller for times relative to adoption

far away from event time. Following this same approach, in chapter 3 I use the

sharp changes in energy consumption at adoption time to estimate the impact of

heterogeneity on the energy consumption drop upon technology adoption.

The graphs presented in the following subsections correspond to average energy

consumption over event time. This is the βs coefficients in the following regression

specification and the corresponding 95% confidence interval.

cistr =
∑
j

βj1[j = s] +
∑
y

γy1[y = t] +
∑
k

δk1[k = r] +X
′

itω + εitl (35)

The first term includes event time dummy variables and, therefore, the co-

efficients βs capture the average energy consumption for each time relative to

event time. The following terms include calendar year fixed effects, region fixed

effects and the property characteristics control variables. Hence the coefficients of
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interest capture differences in average energy consumption across time relative

to event time after controlling for everything else. The control variables include

also for each observation the time relative to adoption for the other two energy

efficiency measures to control for variation that might be driven by the interaction

between the adoption of different technologies.

2.6.1 Cavity wall insulation

Figure 6 presents the residualised total energy, gas and electricity consumption. On

the horizontal axis time is measured in years relative to the cavity wall insulation

adoption year.

The graph for total consumption shows a sharp decrease in energy consumption

around the cavity wall insulation adoption year. In years prior to adoption total

energy consumption is exhibiting a decreasing trend. The consumption drop

around adoption is concentrated in the adoption year and the year after adoption.

From then onward, total consumption exhibits a slightly increasing trend. When

one looks separately at gas consumption and electricity consumption, the first

thing to note is that gas consumption shows a pattern very similar to total energy

consumption. On the contrary, electricity consumption increases steadily until the

year before adoption to then experience a sharp drop on the adoption year and

keeps on decreasing until the third year after adoption. From then on electricity

consumption starts trending up again.

2.6.2 Loft Insulation

The consumption patterns observed around the loft insulation adoption year

(Figure 7) are similar to the ones for cavity wall insulation adoption. More

specifically, total consumption presents a sharp decrease in energy consumption

around the loft insulation adoption year. In years prior to adoption total energy

consumption is exhibiting a decreasing trend. The consumption drop around

adoption is concentrated also in the adoption year and the year after adoption.

From then onward, total consumption exhibits an increasing trend. Compared to
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Figure 6: Consumption profiles over time relative to cavity wall insulation adoption

year

Note: The graphs show the total, gas and electricity consumption profiles over time relative to adoption of cavity

wall insulation. The data points represented in the graph should be interpreted as average energy consumption

for households at time relative to event time s. The values are obtained from a regression including all the

observations in the sample. The dependent variable is consumption and the independent variables include

event time dummy variables, year fixed effects, region fixed effects and property characteristics controls. 95 %

confidence intervals obtained using robust standard errors.
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the case for cavity wall insulation, the post adoption trend in energy consumption

slope is significantly larger. When one looks separately at gas consumption and

electricity consumption, gas consumption shows a pattern very similar to total

energy consumption. In this case, however, gas consumption decreases more

gradually until the adoption year, exhibits a small sharp drop on the first year

after adoption and then shows an increasing trend. The electricity consumption

pattern instead increases steadily until the year before adoption to then experience

a sharp drop on the adoption year and keeps on decreasing until the third year

after adoption. From then on electricity consumption starts trending up again.

When comparing the consumption patterns for the two cases presented above,

although they share many general features, one can also see from the graphs

some differential features. The common features are that total consumption drops

around the adoption year. This drop is both driven by a drop in gas consumption

and a drop in electricity consumption. The drop in electricity consumption in

both cases is very concentrated in the adoption year, whereas for gas consumption

the graphs show a gradual pre-adoption decrease in gas consumption. In what

the consumption patterns around adoption differ for cavity wall insulation and

loft insulation is the intensity of these effects. In the loft insulation case, gas

consumption starts dropping earlier before adoption and at a higher rate, whilst for

cavity wall insulation the gas consumption drop is more concentrated around the

adoption year. The slope of the post-adoption gas consumption trend is positive

in both cases, however it is steeper in the loft insulation case. When considering

electricity consumption, the upward pre-adoption trend is slightly steeper for loft

insulation, and also the consumption drop upon adoption is larger in this case.

Even though the observed patterns are similar, this significant differences in

the intensity of the effects prompt the necessity of analysing each of the two energy

efficiency measures separately in the analysis to follow in this chapter and in the

analysis presented in Chapter 3.
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Figure 7: Consumption profiles over time relative to loft insulation adoption year

Note: The graphs show the total, gas and electricity consumption profiles over time relative to adoption of

loft insulation. The data points represented in the graph should be interpreted as average energy consumption

for households at time relative to event time s. The values are obtained from a regression including all the

observations in the sample. The dependent variable is consumption and the independent variables include

event time dummy variables, year fixed effects, region fixed effects and property characteristics controls. 95 %

confidence intervals obtained using robust standard errors.
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2.6.3 Boiler

Figure 8 shows the consumption profiles observed around the boiler adoption

year. Total energy consumption shows a much less pronounced drop in the boiler

adoption year. However, the decrease in the energy consumption level occurs

very gradually starting as far as five years before adoption, in contrast with the

insulation measures discussed in the previous sections. In years prior to adoption

total energy consumption is exhibiting a significantly decreasing pattern. When

decomposing consumption in gas and electricity consumption, one finds that gas

consumption follows an almost identical pattern as total energy consumption.

For electricity consumption, there is no sharp drop around the adoption year

either. Electricity consumption is also decreasing gradually starting from five years

prior to the adoption year. And electricity consumption starts then significantly

increasing starting on the adoption year.

The energy consumption patterns observed around the boiler adoption year

suggest that in many cases the installation of a new energy efficient boiler has an

impact on the overall technology used by the household. The technology change

results in higher electricity consumption probably as a result of substitution effects.

However, another plausible explanation is that households implementing an energy

efficient boiler might need to implement also at the same time other measures

that lead to an increase in electricity consumption.

To sum up, the differential impacts of the adoption of the different energy

efficiency measures suggest that each of them should be analysed separately. One

reason being the completely different nature of the intervention, i.e. installing a

new boiler has a completely different nature as installing wall or loft insulation.

Second, among the insulation measures it has been also shown that the energy

consumption patterns around the adoption year are sufficiently different, and

therefore it makes more sense to also analyse them separately in the next chapter.
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Figure 8: Consumption profiles over time relative to boiler adoption year

Note: The graphs show the total, gas and electricity consumption profiles over time relative to boiler replacement.

The data points represented in the graph should be interpreted as average energy consumption for households

at time relative to event time s. The values are obtained from a regression including all the observations in

the sample. The dependent variable is consumption and the independent variables include event time dummy

variables, year fixed effects, region fixed effects and property characteristics controls. 95 % confidence intervals

obtained using robust standard errors.
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2.7 Rebound effect

Another important aspect related to technology adoption in the context of energy

consumption is whether there is a rebound effect. The rebound effect would imply

that agents consume more energy after adopting a more efficient technology. From

a theoretical point of view this is rationalized by the fact that when agents become

more efficient at energy consumption they increase the consumption intensity.

There are two opposing forces driving the change in energy consumption when

the technology efficiency increases. On the one hand, they need to consume less

energy to satisfy the same energy services demand. This has a negative impact on

energy consumption. On the other hand, energy consumption becomes relatively

cheaper and the substitution effect would lead them to consume more energy

services and therefore demand more energy. If the second effect dominates, the

net effect of technology adoption would be an increase in energy consumption.

The analysis presented so far in this chapter shows that, even though energy

consumption stays at a lower level after adoption, there is a significant change in

the energy consumption trend that could be seen as a weak version of the rebound

effect. When comparing the pre-adoption trend and the post-adoption trend in

Figures 6,7 and 8, in all cases the trend switches from a downward trend to an

increasing trend of energy consumption around the technology adoption time.

This evidence suggests there is a behavioral change upon adoption. The fact that

energy consumption is lower in the post-adoption period, with the exception of

energy consumption after boiler adoption, suggests that the “no rebound effect”

assumption stated in the theoretical model in Chapter 1 holds. However, one can

conclude that the substitution effect plays a role and households consume more

energy when they become more energy efficient. Hence, there is no rebound effect

in the levels, however there is a rebound effect in the trends.

The observed pre-adoption and post-adoption trends could be the result of

households trying to cut energy consumption before adoption as they become

aware their energy efficiency is relatively low. After adoption, households might
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stop restraining their energy consumption recognizing that they are now more

energy efficient.

Developing a conceptual framework that rationalizes this behavioral change

and explains the changes in the trends upon adoption is an interesting research

question that I leave for future research.

2.8 Households’ heterogeneity

Households’ heterogeneity could explain different energy consumption patterns

and different behavior across households. In this section, I exploit households’

heterogeneity to analyse whether different household groups exhibit significantly

different behavior, and discuss the potential policy implications. Throughout this

section, I present and discuss the results of the regression analysis accounting

explicitly for heterogeneity in household characteristics. The graphs presented

in the following subsections present the energy consumption profiles over time

relative to the adoption year for each group of households.

One surely relevant characteristic that may affect differences in energy con-

sumption and energy efficiency measures adoption decisions is the income level.

As previously discussed, the dataset does not include information on households’

income. However, it includes the Index of Multiple Deprivation quintile and the

Fuel Poverty Index quintile for the Lower Layer Superoutput Area in which the

household is located.

Furthermore, I also consider a similar analysis grouping households according

to geographical heterogeneity (region groups), property type and whether they

use gas or another energy source as the main heating fuel.

For each grouping variable, I present the results of the regression model in

equation (36). Where citlg is energy consumption for household i in year t that

is located in region l and belongs to group g. The first term on the right hand

side includes the interaction between a dummy variable Sit that takes a value

of 1 when the observation corresponds to household i in year relative to energy
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efficiency measure adoption s and zero otherwise, and Rit takes a value of 1 when

household i belongs to group r. The model includes also controls for property

characteristics, adoption of other energy efficiency measures, calendar year fixed

effects and region fixed effects.

citlg =
∑
s

∑
r

βsrRisSit +X
′

itω + αt + γl + εitlg (36)

In the following subsections I present the results for each grouping criterion

and further discuss the details specific to each case. Since the relevant findings

are very similar for each of the three energy efficiency measures, I illustrate the

argument presenting the figures for cavity wall insulation installation. The rest of

the figures, that are omitted in the body of the chapter, are presented in Appendix

4.

2.8.1 Index of Multiple Deprivation

In an attempt to study the effect of income heterogeneity on energy consumption

profiles, I consider the Index of Multiple Deprivation (IMD) as a proxy for income.

Added to the fact that income is not directly observable in the dataset, there is

one additional limitation of using the IMD as a measure of income. First of all,

the IMD variable included in the dataset is just an IMD band classification based

on the IMD for the Lower Layer Super Output Area in which the household is

located. Therefore, it is not a direct measure of the household income, but just an

aggregate measure of the index of multiple deprivation for the LLSOA. Despite

this is potentially introducing a measurement error, this is the best proxy for

income heterogeneity available in the dataset.

The results presented in Figures 9, 25 and 26 illustrate the energy consump-

tion patterns over time relative to adoption of energy efficiency measures. The

results show that pre-adoption energy consumption levels are significantly different

across IMD groups. There is a clear monotonic ranking ranging from low energy

consumption for households belonging to LLSOA in the first quintile of the IMD
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ranking, to higher energy consumption level for those in the 5th quintile. When

looking separately at gas and electricity pre-adoption consumption levels, gas

consumption exhibits the same pattern as total energy consumption. Electricity

consumption, however, is not significantly different across groups and exhibits

a smooth decreasing pattern in pre-adoption years. This is consistent to some

extent with substitution from electricity consumption to gas consumption.

In the adoption year, the energy consumption drop is slightly higher for

households in the higher quintiles of the IMD ranking. Showing, perhaps, that

households with higher pre-adoption energy consumption levels have the potential

to decrease energy consumption to a larger extent and still satisfy their energy

services needs. This could be consequence of differences in quality of the same

energy efficiency measure installed. In addition, it could also be a consequence of

richer households cutting superfluous energy consumption due to the simultaneous

implementation of other behavioral changes aimed at reducing energy consumption.

In post-adoption years, the energy consumption profiles tend to converge.

As a consequence of the adoption of energy efficiency measures, the technology

becomes more homogeneous. But the results also suggest there must be other

behavioral changes that makes households energy consumption converge. The

latter could probably be explained as a consequence of a learning process that

makes households aware of the energy saving potential, not only of adopting

energy efficiency measures, but also about better practices in the utilisation of

energy services producing technologies.

It is also remarkable that electricity consumption profiles exhibit larger dis-

persion in the post-adoption years. In particular, the empirical results show that

households in the the first quintiles of the IMD ranking become those ones for

whom the level of electricity consumption is larger. At the same time they exhibit

a non significant electricity consumption drop upon adoption. The reason for this

may be that these households do not have a lot of margin to adjust their energy

consumption downwards and experience an energy consumption drop close to the

mechanical effect of the technological change.
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Figure 9: IMD groups (Cavity wall insulation adoption)

2.8.2 Fuel Poverty Index

The results presented here correspond to the comparison of different Fuel Poverty

Index groups. The purpose of this analysis is to show how Fuel Poverty, understood

here as a proxy for income heterogeneity might explain differences across household

groups. As in the previous section, the Fuel Poverty Index variable included in the

dataset is a categorical variable that identifies each household with the quintile in

the Fuel Poverty ranking of the LLSOA in which the household is located.

The results presented in Figures 10, 27 and 28 illustrate the energy consumption

patterns over time relative to adoption of energy efficiency measures for households

grouped according to their Fuel Poverty band.

In general the empirical findings are similar to those obtained when grouping

households according to their Index of Multiple Deprivation. In pre-adoption

years, I observe that households in the first quintile of the Fuel Poverty Index

ranking show levels of total energy and gas consumption significantly lower than
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the higher quintiles. Also, they consume on average larger amounts of electricity.

The energy consumption reduction in the adoption year is not significantly

different across groups. One can see from the graphs that the total energy and

gas consumption profiles, although they might differ in the levels, exhibit parallel

behavior at the year of adoption of the energy efficiency measures.

In post-adoption years, in particular after adoption of insulation measures, the

consumption profiles show a remarkably different behavior. It is worth noting

that those in the first and second quintiles experience larger energy consumption

growth in total and gas consumption. Again, the consumption patterns show that

energy consumption levels tend to converge after adoption of the energy efficiency

measures. In addition, in the case of insulation measures, the consumption profiles

for the first and second quintile groups show that they experience a relatively large

rebound effect compared to the other groups. Not only their energy consumption

levels converge, but they end up exhibiting higher total and gas consumption than

the third and forth quintiles groups. However, in many cases the post-adoption

period differences across groups are not significantly different from zero at a 5%

significance level.

In the case of electricity consumption, the consumption profiles show a smooth

diminishing trend when considering insulation measures with no significant drop

around the adoption year. For boiler replacement, the trends are slightly increasing.

However given the precision of the estimates it is difficult to conclude the differences

are significantly different from zero.

2.8.3 Geographical Heterogeneity

In this section I analyse the role of geographical heterogeneity. The results

presented in Figures 11, 29 and 30 illustrate the energy consumption patterns over

time relative to adoption of energy efficiency measures. The empirical results show

that there is significant difference in energy consumption levels across regions.

However, the total, gas and electricity consumption profiles evolve following a

very similar pattern before, after and around the adoption year. These results
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Figure 10: Fuel Poverty groups (Cavity wall insulation adoption)

suggest that after controlling for other sources of household heterogeneity, regional

heterogeneity could explain variation in energy consumption levels, however, it

does not seem to affect significantly the impact of energy efficiency measures

adoption on energy consumption.

Despite the similar patterns in the energy consumption profiles, one remarkable

deviation from the common pattern is the London region. When compared to the

rest of the regions, London households’ energy consumption exhibit a significantly

different behavior. First of all, in pre-adoption years energy consumption increases

at a higher rate. Second, significantly smaller energy consumption drops at

the energy efficiency measures adoption year. Third, after adoption energy

consumption tends to increase at a significantly higher rate than in the rest of the

regions.
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Figure 11: Region groups (Cavity wall insulation adoption)

2.8.4 Property Type

In this section I present the energy consumption profiles for different property

type groups. The property types include Detached house, Semidetached house,

End terrace house, Mid terrace house, Bungalow and Flat. The results presented

in Figures 12, 31 and 32 illustrate the energy consumption patterns over time

relative to adoption of energy efficiency measures.

The empirical results show that there is significant difference in energy con-

sumption levels across different property types. Despite the differences in levels of

energy consumption, the energy consumption evolution around the year of adop-

tion of energy efficiency measures is similar. The two extreme cases are detached

houses that exhibit the largest energy consumption level and significantly larger

energy consumption drops around the adoption year, and flats that have the lowest

level of energy consumption and consumption drops close that are not significantly

different from zero. This shows that larger properties have a larger potential for
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Figure 12: Property Type groups (Cavity wall insulation adoption)

energy consumption especially from insulation measures. When considering the

installation of energy efficient boilers, the impact on energy consumption of the

energy efficiency measures is very similar in absolute terms. This implies, however,

larger energy savings for property types with low energy consumption levels.

2.8.5 Main heating fuel

In this section I compare households who use gas as the main heating fuel to

households who use other main heating fuels. The results presented in Figures

13, 33 and 14 illustrate the energy consumption patterns over time relative to

adoption of energy efficiency measures. First of all, it is important to note that

households who use other main heating fuels present much lower levels of energy

consumption in the pre-adoption years. Second, the number of observations in

the other main heating fuels group is small leading to less precise estimates.

First I consider the profiles around the year of installation of insulation mea-
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sures. In both cases, cavity wall insulation and loft insulation, I find significant

drops in total and gas consumption at the adoption year for households using gas

as the main heating fuel. However, the energy consumption drop at the adoption

year for households using other heating fuels is not statistically significant at a

5% significance level. For electricity consumption I find that there is no change

around the adoption of insulation measures for households using gas as the main

heating fuel.

This empirical evidence suggests that the energy consumption drop around

the adoption year is related to the mechanical effect of the insulation measure

installation and potentially other behavioral changes mostly related with how

households use the heating technology. If adoption of energy efficiency measures

triggered a behavioral change affecting the overall household energy efficiency,

one would expect to observe the impact of this changes in behavior also in the

electricity consumption profile. On the contrary, the electricity consumption

profile is flat for households using gas as the main heating fuel.

The consumption profiles over time relative to boiler replacement exhibit sig-

nificant differences with the insulation measures case. For the group of households

using gas as the main heating fuel, the consumption profiles are similar. However,

for the group of households using other heating fuels I find, first, that total energy

consumption post-adoption levels are higher than in the pre-adoption period. The

pattern is driven by an increase in gas consumption in the adoption year and first

year after boiler replacement. At the same time electricity consumption decreases

upon boiler replacement. I interpret this patterns as the result of a technological

substitution process resulting in those households relying more in gas consumption

to satisfy their energy services demand after installing the boiler. This seems

consistent also with the rebound effect idea. The fact that upon adoption there

is an increase in total energy consumption might be the effect of an increased

energy demand in response to a decrease in the effective cost of energy services

production as the result of the technological change.
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Figure 13: Main Heating Fuel groups (Cavity wall insulation adoption)
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Figure 14: Main Heating Fuel groups (Boiler adoption)

100



2.9 Information Provision

In this section I analyse the effect of information provision on energy consumption.

As discussed earlier, recently energy efficiency policy has evolved towards the use

of policy instruments based on providing consumers better information about

the potential benefits of installing energy efficiency measures and aiming to raise

awareness of other behavioral changes towards a more efficiency utilisation of

energy consuming technologies.

For each household, the NEED dataset provides information on whether

households had an Energy Performance Certificate inspection before 2010 or on

2010 or later. In this section, I use that information to provide evidence of the effect

of information provision. I present the results of two different approaches. First,

I consider households receiving the Energy Performance Certificate in the same

period (2010 or later), and compare the group of households installing an energy

efficiency measure in the EPC inspection period to those ones who installed the

same measure before the EPC inspection. Second, I consider households installing

an energy efficiency measure in the same period (2005-2009), and compare those

who receive the EPC inspection in the same period to those who received it only

in 2010 or later.

In the first case, therefore, I compare the energy consumption profiles of

households who receive information in the adoption period to those who would

only receive information later. The results of this empirical analysis, presented

in Figures 15, 34 and 35, suggest that for households implementing an energy

efficiency measure before the EPC inspection total and gas energy consumption

drops around the adoption year are significantly larger.

One possible confounder in this empirical design is that each group is composed

of households who adopt in different time periods. More, specifically the before

EPC group is a group of households who adopt the energy efficiency measures in

the period 2005-2009, whereas the group that adopts in the EPC inspection period

(“After EPC” in the graph) contains households who install the measure in the

101



-5
00

0
50

0
10

00
15

00
20

00
To

ta
l c

on
su

m
pt

io
n,

 k
W

h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

Before EPC After EPC

Adoption year

base level = 20886.48
Total consumption

-5
00

0
50

0
10

00
15

00
20

00
G

as
 c

on
su

m
pt

io
n,

 k
W

h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

Before EPC After EPC

Adoption year

base level = 17386.29
Gas consumption

-2
00

-1
00

0
10

0
20

0
E

le
ct

ric
ity

 c
on

su
m

pt
io

n,
 k

W
h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

Before EPC After EPC

Adoption year

base level = 3500.20
Electricity consumption

Figure 15: Adoption groups: Before EPC vs EPC period (Cavity wall insulation

adoption)

period 2010-2012. Therefore, the comparison is between a group of “uninformed”

early adopters and a group of “informed” late adopters. As a consequence, the

observed differences might be the result of households differences in unobservable

characteristics that determine their selection into early adoption versus late

adoption. For instance, it could be that early adopters, despite having not been

subject to the EPC inspection at the time of adoption, are intrinsically more

motivated towards the potential benefits of the installation of energy efficiency

measures. In an attempt to overcome this limitation, next I present a similar

analysis comparing two groups of early adopters, one that receives the EPC

inspection in the adoption period, the other receives it later.

Second, as previously discussed, I consider a subsample of households who

implement an energy efficiency measure in the period 2005-2009 and receive the

Energy Performance Certificate in that same period as a treatment group. As a

control group, I consider the subsample of households who adopt the same energy
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efficiency measure but receive the Energy Performance Certificate only on 2010 or

later.

In Figures 16, 36 and 37, I present the corresponding empirical results. For all

the energy efficiency measures considered and for all types of energy consumption,

the results show a very consistent pattern that I discuss in the following paragraphs.

First of all, the level of total, gas and electricity consumption before installation

of the energy efficiency measure is higher for the group of households that adopts

before the EPC inspection. Those who adopt before the EPC inspection exhibit on

average slightly larger energy consumption levels. In the graph one can appreciate

that the energy consumption levels are very similar three years before adoption.

The gap between both increases in pre-adoption years perhaps as a result of the

impact of information provision associated with the EPC inspection. This evidence

would suggest that information provision has an impact on energy consumption

and households respond to that implementing measures that result in energy

consumption reductions.

Second, the energy consumption drop considering only the adoption year does

not significantly differ across treatment and control group. Considering the years

between one year prior to adoption and one year after adoption the consumption

patterns are parallel. This shows that the effect of the energy efficiency measures

installation has a similar impact on households who adopt in the same period,

regardless on whether they receive the EPC inspection during the adoption period

or later.

Third, in post-adoption years the treatment group, i.e. the group of households

that does not receive the EPC inspection, exhibits an increasing trend in energy

consumption. On the contrary, the group that receives the EPC inspection after

adoption of the energy efficiency measure exhibits a flat or slightly decreasing

energy consumption trend. One possible interpretation for this empirical fact is

that households receiving the EPC inspection after adoption may be implementing

changes in behavior in response to the information received that minimize the

possible rebound effect associated with the increase in energy efficiency. On the
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Figure 16: Early adopters (2005-2009): EPC vs Before EPC (Cavity wall insulation

adoption)

other hand, households not receiving the EPC inspection after adoption exhibit a

significant rebound effect in energy consumption. This suggests, on the one hand,

that households do respond to information provision or that they install other

energy efficiency measures as a result of the EPC inspection. On the other hand,

the observed consumption patterns suggest that the effect of the EPC inspection

on energy consumption behavior may not be persistent.

2.10 Aggregate impact of energy efficiency measures

In this section I present estimates of the impact of the installation of cavity wall

insulation, loft insulation and boiler replacement at the aggregate level. Due to

data limitations, it is not possible to directly control for household characteristics

that are surely relevant for the adoption and energy consumption decisions of

households. In this section, however, in an attempt to pin down the causal effect
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Energy consumption (Fixed effects regression)

Gas Electricity Total

Measure Coeff 95% CI Coeff 95% CI Coeff 95% CI

Cavity wall insulation -3320.1 -3339.3 -3301.1 -248.97 -255.47 -242.47 -3569.2 -3590.3 -3548.0

Loft insulation -2501.7 -2518.0 -2485.5 -192.62 -198.08 -187.16 -2694.3 -2712.2 -2676.5

Boiler replacement -3502.6 -3516.7 -3488.5 -292.96 -298.03 -287.88 -3795.5 -3810.8 -3780.3

Constant 16583 16579 16586 3735.9 3734.7 3737.0 20319 20315 20322

Table 1: Impact of energy efficiency measures on energy consumption

Note: The table contains the coefficient on the interaction of the adoption year dummy variable and the event

time group dummy variable for event time s = -1. The coefficients should be interpreted as the average energy

consumption for each adoption cohort in the year before adoption of the corresponding energy efficiency measure.

The table presents also the 95% confidence interval for the reported coefficient estimates.

of the energy efficiency measures, I present the estimates of the impact of energy

efficiency measures on energy consumption resulting from a fixed effects model

regression analysis. The regression equation I propose includes household level

fixed effects and year fixed effects. Note, however, that since all the covariates

included in the dataset do not present any variation at the household level, they

need to be dropped out in this regression specification.

cist =
∑
s

βs1[t ≥ s] + γi + δt + εist (37)

Therefore the regressors include adoption dummy variable that take a value of

1 if calendar year is greater or equal than the year of adoption of efficiency measure

s. γi are household level fixed effects and δt are calendar year fixed effects.

Based on the model presented in equation (37), I obtain estimates for the βs

coefficients from three regressions where the outcome variable is gas, electricity

and total energy consumption respectively. The results are presented in table 1.

The coefficients should be interpreted as the average energy consumption drop

as a consequence of the adoption of each of the energy efficiency measures. All

coefficients are negative and significant, implying that energy efficiency measures

adoption proves effective at reducing energy consumption.

Furthermore, the size of the effect involves a total energy consumption drop
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relative to pre-adoption levels of 18% for cavity wall insulation, 13% for loft

insulation and 19% for boiler replacement. When considering separately gas and

electricity consumption, it should be noted that the energy consumption reduction

comes mostly from changes in gas consumption. On average, households installing

cavity wall insulation experience a gas consumption drop of 20%. The figure is

15% and 21% reduction in gas consumption upon installation of loft insulation and

boiler replacement respectively. In contrast, electricity consumption reductions

are smaller (7%, 5% and 8% for cavity wall insulation, loft insulation and boiler

replacement respectively).

2.11 Conclusion

In this chapter I presented a discussion of the energy consumption and energy

efficiency measures adoption patterns in the light of the information provided by the

National Energy Efficiency Data. Besides that I also discuss the main residential

level energy efficiency policy interventions in the UK to identify potential sources

of policy variation to identify the role of incentives in the selection into technology

adoption mechanism in the context of energy efficiency policy.

First of all, I find that overall the energy consumption profiles exhibit a

decreasing time trend. From 2005 to 2012, I observe that total, gas and electricity

consumption have been declining significantly.

When looking at the energy consumption data from an event study approach

controlling for calendar year and region fixed effects, I find that energy consumption

shows a drop around the technology adoption event time. The energy consumption

drop is sharp for electricity consumption, whereas I find that gas and total energy

consumption drops are much less sharp. The graphical evidence suggests that

prior to technology adoption, there is a behavioral change among consumers that

leads to a gradual reduction in energy consumption. A possible explanation for

this could be that consumers’ awareness about potential savings raises as the

result of increased salience of energy consumption cost. Among other possible
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explanations, this might be the result of increased awareness of the energy costs

when consumers start considering energy efficiency investments, or information

spillovers from other consumers energy efficiency investment decisions.

From the NEED data analysis I can also conclude that there is no rebound

effect after technology adoption when looking at the energy consumption levels.

However, I find that the energy consumption trend is reversed upon adoption

of energy efficiency measures. While energy consumption trends down in years

before adoption, it starts slightly trending up after adoption of energy efficiency

measures. I interpret this trend reversion as evidence of a weak version of the

rebound effect.

Exploiting the variation in households’ characteristics, I find that households’

heterogeneity explains mostly differences in energy consumption levels, but has

very little impact on the shape of energy consumption profiles over time relative

to the adoption year. The empirical analysis shows similar energy consumption

changes around the year of adoption for different groups of households. However,

the energy consumption profiles provide suggestive evidence that is consistent

with the idea that households implement other changes in energy consumption

related behavior that could be explained by an underlying process of learning or

correction of biased beliefs. In addition, the comparison of energy profiles between

groups that implement energy efficiency measures before and after the Energy

Performance Certificate inspection shows some differential patterns. Providing,

therefore, evidence supporting the idea that households are responsive to infor-

mation provision. Moreover, this response goes beyond the mechanical impact of

energy efficiency measures installation.

The policy interventions to encourage energy efficiency measures adoption

among households in the UK are an interesting source of policy variation to

identify how incentives affect the selection into adoption mechanism when agents

are heterogeneous. Although the information in the NEED data set turns out

to be not rich enough to precisely exploit this policy variation, in Chapter 3 I

analyse how incentives affect selection into adoption using the policy variation
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introduced by the boiler scrappage scheme.

The analysis presented in this chapter sets the ground for the empirical analysis

presented in Chapter 3 where I propose an implementation to test the empirical

implications of the model presented in the first chapter.
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Chapter 3

Energy efficiency policy:

Selection and Incentives

3.1 Introduction

The role for government provided energy efficiency incentive schemes is justified

for two main reasons. First, there is evidence that agents tend to underinvest

in profitable technologies. Second, the presence of energy consumption negative

externalities reinforces the idea that agents do not fully internalize the benefit

from investing in energy efficient technologies. In addition, when agents decisions

are subject to mistakes, there is a third reason for the government to intervene

based on paternalistic arguments.

One of the most commonly used policy instruments is subsidizing the adoption

cost of energy efficiency measures. A subsidy should encourage households to

install costly energy efficiency measures making up for how much agents undervalue

the benefit of technology adoption. In Chapter 2, I show empirical evidence that

technology adoption is effective at reducing energy consumption for different

energy efficiency measures. However, the cost-benefit effectiveness of the policy

relies heavily on the policy targeting efficiency. In other words, depends crucially

on which types of consumers are cashing-in the subsidy and implementing the

improvements. Therefore, it is important to understand what types of households

select themselves into adoption under government incentive schemes and how

large is the energy consumption drop upon adoption across different types of
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households.

In this chapter I provide an empirical test of the empirical predictions presented

in Chapter 1. These analysis provides a piece of important information to shape

the design of energy efficiency policies with heterogeneous agents. In addition,

ideally, exploiting exogenous policy variation should allow to identify the impact

of incentives on selection into adoption and on the energy consumption changes

induced by adoption of energy efficiency measures. In the final part of this chapter

I present estimates of the impact of incentives on energy demand outcomes

comparing boiler adopters under the Boiler Scrappage Scheme to earlier adopters.

Using data on energy consumption and adoption of energy efficiency measures I

aim to shed light on how to better understand the role of consumers’ heterogeneity

in the design of energy efficiency policies. Following Chapter 1 theoretical insights,

I test whether selection into adoption is consistent with heterogeneity driven by

biased beliefs on energy efficiency.

Based on the NEED data, I provide an indirect empirical test of the empirical

implications of the model presented in Chapter 1. Using data on the history

of energy consumption and the timing of energy efficiency measures adoption, I

present an empirical test for the presence of adverse selection in the adoption of

energy efficiency improvements among households under government provided

incentive schemes. To tackle this question I consider, following the insights

from the theoretical model presented in Chapter 1, two forms in which adverse

selection could show up. The test relates to the positive correlation test for

asymmetric information proposed in Chiappori and Salanié (2000). By analogy to

the asymmetric information in insurance markets literature, I consider adopters

and non adopters like insured and non-insured. The main concern is that adoption

of energy efficiency measures affects energy consumption, it affects it mechanically

because of the energy efficiency improvement and, in addition, it can potentially

generate changes in energy consumption behavior among consumers. I address this

taking advantage of the panel data structure of the data set. Observing households’

energy consumption over time allows me to compare households pre-adoption
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energy consumption, and also compare early and late adopters to check if they

experience heterogeneous effects of technology adoption. First, I look at the

levels of energy consumption prior to adoption and compare them across adoption

cohorts. Second, I look at the energy consumption drop upon adoption over time

to test whether those who adopt earlier experience lower energy consumption

drops upon adoption.

Exploiting the panel data nature of the data set, I find that pre-adoption

energy consumption is decreasing in the year of adoption. Early adopters on

average consume more energy than late adopters before adoption. Those who

adopt a year later consume on average around 500 kWh less than adopters in the

previous year. This difference is mostly driven by the change in gas consumption

as it represents a huge share of the total energy consumption. When comparing

energy consumption changes in the adoption year, I find that those who postpone

adoption one calendar year experience a smaller consumption drop. The energy

consumption drop experienced by those who adopt the technology a year later is

on average about 200 kWh smaller. All in all, these results can be interpreted, in

the light of the positive correlation test for asymmetric information, as evidence

that selection into adoption is driven by preferences heterogeneity. However, this

test does not preclude the possibility that heterogeneity in misperceptions does

actually play a role in the selection mechanism that would point in the adverse

selection hypothesis direction.

Using the policy variation introduced by the Boiler Scrappage Scheme I

estimate the impact of cash incentives on selection into adoption. I find, first, that

households replacing a boiler under the incentive scheme show lower pre-adoption

levels of consumption. Second, the energy consumption drops experienced by

those adopting under the scheme are not significantly different in the year of

adoption. However, when considering the drop between a longer period of time

around the adoption decision, they exhibit larger consumption drops.

The study presented in this chapter is related to the literature on selection

into technology adoption. The key to understanding the selection mechanism is
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to understand how consumer heterogeneity is related to consumers’ decisions on

technology adoption. This is of particular relevance as it will determine the cost-

effectiveness of an upfront subsidy offered by the government to those investing

in energy efficiency measures. Consumer heterogeneity determines whether the

subsidy paid by the government is cashed in by agents who would have invested

also in the absence of the subsidy or it will be taken up by agents who would not

have adopted the technology improvement (Stern, 1985).

The chapter is organized as follows. Section 2 presents the empirical analysis

to estimate the impact of heterogeneity on selection into adoption analysing levels

of energy consumption and energy consumption changes. In Section 3 I discuss

how the estimated energy consumption profiles could be interpreted as evidence

of learning consistent with the presence of initially biased beliefs. In Section

4 evaluate the effect of policy changes on the link between heterogeneity and

selection into adoption using the Boiler Scrappage scheme as a source of policy

variation. Section 4 concludes.

3.2 The role of heterogeneity: preferences vs mispercep-

tions

In this section I present an empirical analysis to better understand the role

of agents’ heterogeneity in the technology diffusion process of energy efficiency

measures. The specific goal is to provide empirical evidence on whether selection

into adoption is adverse, driven by misperceptions in the cost of production of

energy services, or advantageous, driven by true heterogeneity in energy efficiency,

following the predictions of the model presented in Chapter 1.

The empirical analysis builds up on the National Energy Efficiency Data13

presented in Chapter 2, an anonymised data set containing historical gas and

electricity consumption (2005-2012), property characteristics and energy efficiency

13Department of Energy and Climate Change. (2014). National Energy Efficiency Data-
Framework, 2014. [data collection]. UK Data Service. SN: 7518, http://doi.org/10.5255/UKDA-
SN-7518-1
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measures installed for a sample of 4 million households in the England and Wales.

The analysis is divided in two main parts. First, I focus the analysis on energy

consumption levels and, later I look at the energy consumption changes focusing

the attention on the energy consumption drop in the year of installation of the

energy efficiency measures. Comparison of pre-adoption energy consumption levels

across groups defined by the year of adoption of each technology allows one to test

whether the timing of adoption is correlated with the energy consumption level.

If the correlation is positive that provides evidence that selection is adverse and

consistent with a model where selection is driven by heterogeneous misperceptions.

A negative correlation would suggest that selection into adoption is dominated by

preference heterogeneity (or heterogeneous true energy efficiency). When looking

at the energy consumption first differences, I focus my attention on the first

difference corresponding to the year of adoption of energy efficiency measures.

This provides the energy consumption change upon adoption. If selection into

adoption is adverse and driven by misperceptions, then the correlation between

the energy consumption drop and the year of adoption should be positive, showing

that early adopters experience smaller energy consumption drops upon adoption14.

3.2.1 Levels analysis: Pre-adoption energy consumption

In this section I present the energy consumption levels empirical analysis. This

analysis builds on the results discussed in the theoretical model presented in

Chapter 1. The model predicts that when consumers hold heterogeneous beliefs on

the energy efficiency of in-house energy service production, then those consumers

who overestimate their energy efficiency are less likely to adopt and at the same

time exhibit larger consumption levels before adoption. In this context households

adopting energy efficiency measures and taking advantage of the government

subsidies are those ones for whom the social benefit of adoption is lower. This is

14The empirical analysis presented here regarding the energy consumption drop upon adoption
cannot be directly linked to the role of incentives. A potential avenue for future research is to
see whether adoption under government provided incentives leads to smaller energy consumption
drops. I provide an attempt to quantify that effect in the next section of this chapter using
policy variation to identify the effect of incentives.
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those underestimating their energy efficiency are more likely to adopt, however

the potential benefit from adoption for them is lower. In this case there is adverse

selection into adoption, and consequently in the type of agents who benefit from

the public resources devoted to provide incentive for adoption of energy efficiency

measures. As discussed in Chapter 1, this results in a negative correlation between

the social value of adoption and the willingness to pay for energy efficiency

measures (private value). In this conceptual framework this results in a negative

correlation between energy consumption levels before adoption and adoption of

energy efficiency measures.

To address this question, I perform an adoption cohort event study by adoption

cohorts to analyse the role of agents heterogeneity at explaining the technology

adoption patterns.

First of all, I look at the energy consumption profiles by adoption cohort (year

of adoption). Figure 17 shows total energy consumption profiles over time relative

to the adoption year. Each of the profiles corresponds to a group of adopters

defined according to the year of adoption. The profiles in the figure correspond

to the residual variation in energy consumption after controlling for property

characteristics, time fixed effects and region fixed effects. I present the profiles of

total energy consumption over time relative to adoption year by adoption year for

all three energy efficiency measures. For each of the energy efficiency measures

I obtain the average energy consumption as the beta coefficients (βsr) resulting

from the following regression specification:

citl =
∑
s

∑
r

βsrRitSit +X
′

itω + αt + γl + εitl (38)

The first term includes the interaction of time relative to adoption year dummies

and calendar adoption year. Sit is a dummy variable taking a value of 1 when the

observation corresponds to s years away from the adoption year and 0 otherwise.

Whereas Rit is a dummy variable taking a value of 1 when the observation belongs

to a household who adopted in calendar year r. Xit includes all the property
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characteristics controls and the time relative to the adoption of the other two

energy efficiency measures included in the data, αt are time fixed effects and

γl region-specific fixed effects. Hence, the coefficients of interest are βsr as they

provide the average difference in total consumption for each adoption calendar

year and adoption event time combination relative to the base year 2005. Note

that ideally one would want to identify separately all adoption year cohort and

time relative to adoption βsr coefficients and the year fixed effects. However, this

is not possible as any of the three variables (time fixed effects, time relative to

adoption and adoption cohort year) is a linear combination of the other two. I

identify year fixed effects and choose 2005 adoption cohort energy consumption as

the base energy consumption profile. The justification for this choice is that raw

energy consumption exhibits a strong time trend. Among the other regressors

included there is no time variation, as they are property characteristics that do not

change over time. However, I believe it is crucial to control for year specific fixed

effects to get control for the variation in energy consumption that is related to time

varying economic conditions, changes in policies and weather conditions across

years. For the same reason, I believe it is crucial to control for region-specific fixed

effects. As different regions have different weather conditions and differences in

policies implemented at a local level that affect residential energy demand.

The coefficients corresponding to the year before adoption (s = −1) for each

adoption cohort are presented in Table 2. The values of the coefficients suggest

that in the year before adoption total energy consumption is decreasing in the

year of adoption. Excluding the value for 2006, which is likely to be affected

by the technology adoption decision, the coefficient estimates show a monotonic

decreasing relation between pre-adoption energy consumption and the calendar

year of adoption. This supports the hypothesis that selection into adoption is

driven by preference heterogeneity. The graphs show that energy consumption

levels before adoption are higher for early adopters, i.e. 2008 and 2009 adopters

consume more energy in pre-adoption years than those who adopt in 2010 or

later. In addition, from the graphs can be seen there is consistently a pre-adoption
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Figure 17: Total energy consumption by adoption cohort

Note: The graphs show total energy consumption profiles over event time (year relative to energy efficiency measures adoption).

Each of the lines in the graphs represents the energy consumption profile for an adoption cohort (calendar year of adoption).

Each value in the graph represents the average energy consumption for a particular adoption cohort (calendar year) and event

time (year relative to adoption) combination. I also present in the graph the 95% confidence interval for each of them. The values

are obtained as the coefficients on the adoption year dummy variable and the event time group dummy variable interaction in a

regression of energy consumption that also includes year-fixed effects, region fixed effects and property characteristics as control

variables. 116



Total consumption by adoption group pre-adoption year (s = −1)
Adoption Cavity Wall Insulation Loft Insulation Boiler

year Coeff 95% CI Coeff 95% CI Coeff 95% CI

2005 base year base year base year

2006 1154.37 1045.19 1263.55 424.61 309.53 539.70 718.38 631.59 805.17

2007 2376.74 2261.80 2491.69 1070.83 952.48 1189.19 1199.57 1117.39 1281.76

2008 2135.94 2031.64 2240.25 852.64 746.42 958.86 1247.42 1158.26 1336.59

2009 2040.42 1939.05 2141.79 699.35 594.89 803.81 954.00 875.90 1032.11

2010 1618.33 1520.31 1716.34 634.16 536.12 732.19 384.06 312.33 455.78

2011 1437.98 1345.83 1530.12 692.13 600.95 783.31 61.85 -8.644 132.34

2012 1114.63 1029.36 1199.91 488.51 403.04 573.98 -48.49 -117.31 20.32

Table 2: Total consumption in pre-adoption year by adoption cohort

Note: The table contains the coefficient on the interaction of the adoption year dummy variable and the event

time group dummy variable for event time s = -1. The coefficients should be interpreted as the average energy

consumption for each adoption cohort in the year before adoption of the corresponding energy efficiency measure.

The table presents also the 95% confidence interval for the reported coefficient estimates.

energy consumption pattern showing and a sharp drop in energy consumption

concentrated around the adoption year.

Second, I compare pre-adoption (2005) and post-adoption (2012) energy con-

sumption levels across different groups of adopters (adoption calendar years) to

check for differences in energy consumption behavior before and after adoption.

More specifically, I compare energy consumption levels in the first sample year

(2005) and in the last sample year (2012). I implement this in a regression specifi-

cation where I regress the energy consumption level of interest on year of adoption

dummy variables, region specific fixed effects and property characteristics control

variables. Figure 18 shows the regression coefficients corresponding to each of the

adoption year dummy variables in the linear regression in the following expression

for τ = 2005 and Figure 19 for τ = 2012.

cτirl =
∑
j

βj1[j = r] +
∑
k

δk1[k = l] +X
′

itω + εirl ∀τ ∈ {2005, 2012} (39)

cτirl is the energy consumption in year τ for household i who belongs to
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adoption cohort r and region l. The first term includes the dummy variables for

each adoption cohort. Hence, the graphs present the estimates for each of the

βr coefficients and their 95% confidence intervals. Xit includes all the property

characteristics controls and the time relative to the adoption of the other two

energy efficiency measures included in the data. The regression includes also

region specific fixed effects.

Figure 18 shows that initial (2005) consumption, excluding the 2005 and 2006

coefficient values 15, is monotonically decreasing in the adoption calendar year

in the cavity wall insulation and boiler adoption cases. This confirms that early

adopters consume on average more energy before adoption than late adopters. The

pattern observed in the case of loft insulation adoption is different. In this case,

2005 consumption is lower for 2008 loft insulation adopters and then increases.

However, the 95% confidence interval shows that one cannot conclude that the

consumption levels are significantly different with the exception of 2008 adopters.

A plausible justification for this observation is that in 2008 the government

introduced a policy consisting of a 50% discount on loft insulation. The fact

that 2008 loft insulation adopters have lower energy consumption in 2005 can be

interpreted as the impact of the subsidy on the adoption decision. In this case, the

effect would go in the direction of pushing into technology adoption households

who are less intensive in energy use and, therefore, find loft insulation adoption

less profitable in the absence of the subsidy.

When looking at 2012 consumption, the energy consumption profile follows

the same pattern. Figure 19 shows early adopters also tend to consume more on

average in 2012 than late adopters. However, the gap between them is smaller.

This indicates that adoption of the energy efficiency measures contributes to

homogenize the energy consumption behavior of different ex-ante consumer types.

There are many different potential explanations for this. One possibility is that

during the adoption process consumers learn about the production process and

152005 and 2006 consumption includes the effect of technology adoption on 2005 consumption
and therefore cannot be taken as a measure of pre-adoption consumption.
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Figure 18: Pre-adoption 2005 consumption versus adoption year

Note: The values presented in the graph are obtained as the coefficients on year of adoption

dummies in a regression of 2005 total energy consumption as the dependent variable on the year

of adoption dummy variables, region fixed effects and property characteristics control variables.

The dashed red lines represent the 95% confidence interval for those coefficients.
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converge towards a more efficient use of the technology no matter the point in time

where they adopt the improvements. Another possibility is that the change in

the technology has a homogenization effect for mechanical reasons inherent to the

implementation of the energy efficiency measures. Note that the last point in the

graph corresponds to those who do not adopt the energy efficiency measure during

the sample period. For those energy consumption in 2012 is substantially higher

confirming the effectiveness of installing energy efficiency measures at reducing

energy consumption. Note that non-adopters energy consumption in 2005 is lower

than that for 2012 adopters, in 2012, however, their energy consumption level is

significantly higher than any other group of adopters. This shows further evidence

of the effectiveness of energy efficiency measures adoption at reducing energy

demand.

To perform the correlation test, I compare the average total energy consumption

in years before adoption. The main challenge to identify the effect of heterogeneity

on selection into adoption is that technology adoption affects energy consumption.

Therefore, to provide a compelling estimate of the correlation between energy

consumption and technology adoption I compare energy consumption in years

before the installation of energy efficiency measures across different adoption

cohorts.

I implement this in a linear regression model where the left hand side variable is

constructed as the average energy consumption before adoption for each household

in the sample, c̄ilr,before. Note the sample is restricted to technology adopters in

the period 2005-2012, excluding adopters in 2005 as energy consumption before

adoption is not observed for the 2005 adoption group. In addition, I keep one

observation for each household containing the average energy consumption before

adoption at the time of adoption. Therefore, I estimate the linear correlation

between the year of adoption of each of the measures and the average energy

consumption in the pre-adoption years as the estimate for β in the following

regression. The regressor of interest is the adoption year cohort R. The regression

also includes year of adoption and region fixed effects, all property characteristics
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Figure 19: Post-adoption 2012 consumption versus adoption year

Note: The values presented in the graph are obtained as the coefficients on year of adoption

dummies in a regression of 2012 total energy consumption as the dependent variable on the year

of adoption dummy variables, region fixed effects and property characteristics control variables.

The dashed red lines represent the 95% confidence interval for those coefficients.
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Average energy consumption before adoption

Cavity wall insulation Loft insulation Boiler

Adoption year

Total -565.6*** -554.2*** -504.0***

consumption (9.605) (8.156) (7.335)

R2 = 0.340 R2 = 0.317 R2 = 0.350

Gas -570.9*** -547.8*** -462.2***

consumption (8.660) (7.416) (6.654)

R2 = 0.330 R2 = 0.309 R2 = 0.329

Electricity 5.313* -6.399*** -41.85***

consumption (2.818) (2.383) (2.232)

R2 = 0.150 R2 = 0.143 R2 = 0.156

Sample size 336,940 488,595 676,907

Property characteristics X X X

Year FE X X X

Region FE X X X

Table 3: Average total energy consumption before adoption

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are average

total energy consumption, gas consumption and electricity consumption before technology

adoption, measured in kWh. The table presents in each column the coefficient estimates on

the calendar year of adoption in a linear regression model where the independent variables are

calendar year of adoption, control variables including property characteristics, year fixed effects

and region fixed effects. Robust standard errors are presented in parentheses.

and variables to control for whether the household has previously adopted any of

the other two energy efficiency measures in the past. The results are presented in

Table 3.

c̄ilr,before = α + βRi +X
′

iω + αr + γl + εilr (40)

The coefficients on the calendar adoption year show that the correlation is

negative for total and gas consumption, the interpretation is that households who

adopt measures later have lower average levels of energy consumption prior to

adoption. For electricity consumption the correlation coefficient is positive when

considering adoption of cavity wall insulation measures. The interpretation of the

coefficients presented in Table 3 is those who adopt a year later have on average

a pre-adoption total energy consumption level of approximately 500kWh lower
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than those who chose to adopt the same energy efficiency measure the year before.

In all cases except one, the coefficient is significant at a 1% significance level.

Thus supporting the hypothesis that heterogeneity in preferences (technology) is

driving the selection mechanism. However, this does not preclude the possibility

that heterogeneous misperceptions play a role in the selection into adoption

mechanism. In the case of cavity wall insulation adoption, the coefficient on

electricity consumption is positive and significant at a 10% significance level. This

would suggest that early adopters consume on average less electricity than late

adopters in the pre-adoption stage. This coefficient would be in line with the

adoption pattern presented in chapter 1 when agents heterogeneous misperceptions

dominate selection into adoption. However, the coefficient is small and of low

economic significance.

The limitations of this approach are that year fixed effects and the coefficient

on the time of adoption cannot be separately fully identified. The results should

be interpreted as the timing of adoption variable is capturing the linear correlation

between calendar year and average energy consumption before adoption. However,

it is possible that part of this correlation is capturing just a time trend in energy

consumption that is not necessarily related to heterogeneity across adoption

cohorts.

To tackle this limitations, I provide further evidence exploiting the full variation

in the data to identify separately year fixed effects and adoption cohort specific

effects. For this purpose, I consider the following regression specification:

citrl =
∑
j

βj1[s < 0]1[j = r] + γ1[s < 0] +
∑
j

µj1[j = r]+

+
∑
k

δk1[k = l] +
∑
y

ηy1[y = t] +X
′

itω + εitrl (41)

The outcome variable citrl is energy consumption for household i at time t

who belongs to year of adoption cohort r in region l. s represents time relative
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to adoption. Hence, the first term contains the interaction of a before adoption

indicator variable (that takes a value of 1 if s < 0, and zero otherwise) and the

adoption year indicator variables. The regression includes also the before adoption

indicator, adoption year fixed effects, year fixed effects, region fixed effects and

control variables (including property characteristics and controls for time relative

to adoption for the other two energy efficiency measures observed in the data). I

compare the estimates for βr to show differences in average pre-adoption energy

consumption among different adoption cohorts. The coefficient estimates and 95%

confidence intervals are presented in Figure 20 (Total consumption) and Figure 21

(Gas and electricity consumption). Tables 11, 12 and 13 present the numerical

values of the regression results in Appendix A.5.

The results presented in Figure 20 show the change in average energy con-

sumption before adoption is decreasing in the year of adoption. In the case of

cavity wall insulation adoption, it decreases from 2007 to 2010. To then slightly

increase in 2011 and 2012. For loft insulation the trend is also declining, however

from 2009 one cannot say the differences are statistically significant at a 5%

significance level. The pattern observed when considering boiler replacement is

very similar to the one for cavity wall insulation. In this case, excluding adoption

years 2006 and 2007, the trend is declining until 2011. Note that those who adopt

at the beginning of the sample period, in particular 2006, show lower average

pre-adoption consumption. I believe the reason is that their energy consumption

is already declining before actually installing the energy efficiency measure and

there is only one or two pre-adoption observations.

Figure 21 presents the coefficient estimates in the case where the outcome

variables are gas and electricity consumption respectively. The results in the case

of gas consumption are very similar to those for total consumption. The electricity

consumption case shows significant differences. Average energy consumption before

cavity wall and loft insulation adoption is increasing in the year of installation

of insulation measures. Hence, in this case the correlation is positive. This

could be interpreted as evidence suggesting that selection into adoption is driven
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by misperceptions and that early adopters are actually those who consume less

before adoption. However, electricity is only a small fraction of the total energy

consumption. Together with the negative correlation between year of adoption and

gas and total consumption, I interpret this as the effect of households substituting

across different inputs, probably induced by the in-house technological change

associated with the adoption of energy efficiency measures.

3.2.2 Energy consumption changes

Following the insights of Chapter 1, in this section I focus the analysis on energy

consumption changes over time. The prediction of the model presented there

was that agents who overestimate their energy efficiency perceive a lower private

return on investments in energy efficiency measures. However, their true potential

benefits (social value of adoption) is relatively high, as they overconsume energy

and should be expected to experience large energy consumption drops upon

adoption of energy efficiency measures when the adoption process leads them

to also acquire information making them also more efficient at operating the

technology. Hence, regarding consumption changes upon adoption, the testable

empirical prediction is that one should expect a positive correlation between the

energy consumption drop upon adoption and time of adoption. In consequence, in

the presence of adverse selection driven by energy efficiency misperceptions, one

should expect early adopters of energy efficiency measures to experience smaller

drops in energy consumption upon adoption. On the contrary, when adoption is

driven by heterogeneous preferences the correlation should exhibit the opposite

sign.

In what follows in this chapter, energy consumption changes are drops in

energy consumption, i.e. positive (negative) numbers should be interpreted as

decreases (increases) in energy consumption in the adoption year.
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Figure 20: Pre-adoption total consumption by adoption year

Note: The graphs show the coefficient estimates and 95 % confidence intervals for the before

adoption cohort specific effect obtained by regressing energy consumption on the interaction of

a year of adoption indicator and the before adoption indicator. The regression model includes

year fixed effects, region fixed effects and property characteristics.
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Figure 21: Pre-adoption gas (Left) and electricity (Right) consumption by adoption
year

Note: The graphs show the coefficient estimates and 95 % confidence intervals for the before

adoption cohort specific effect obtained by regressing energy consumption on the interaction of

a year of adoption indicator and the before adoption indicator. The regression model includes

year fixed effects, region fixed effects and property characteristics.
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To estimate the impact of the adoption year on the energy consumption drop,

I estimate the β parameter in the following regression. I run separate regressions

for each measure of energy consumption and for each energy efficiency measure

installed.

∆cilt = α + βTi +X
′

itω + αt + γl + εilt (42)

The outcome variable is the energy consumption drop in the adoption year for

household i in region l who adopts in calendar year t, calculated as consumption

in the year before adoption minus consumption in adoption year. Therefore, β

captures the correlation between the year of adoption and the energy consumption

drop upon adoption. Xit includes all the property characteristics controls and the

time relative to the adoption of the other two energy efficiency measures included

in the data.

The parameter of interest provides an estimate of the correlation between

adoption year and the energy consumption drop. Hence, it can be interpreted

as the additional consumption drop upon adoption experienced when delaying

adoption by one year. Table 4 (left panel) presents the coefficient estimates for β in

each regression. The estimation results show a negative and significant correlation

for all the energy efficiency measures considered and, therefore, provide evidence

in favor of early adopters experiencing larger energy consumption drops in the

adoption year.

From the graphical analysis presented above, in particular from Figure 17,

the consumption drop around adoption seems to span over a larger period of

time than just the year of adoption. This can be a consequence of other changes

in energy consumption behavior that could potentially be correlated with the

adoption of energy efficiency measures. For instance, considering the decision to

invest on energy efficiency measures might be the result of an increased attention

of a household to energy expenditures or an increased awareness of environmental
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related issues associated with energy consumption. Although the installation of

energy efficiency measures might only materialise after some time, the household

might start implementing other changes in behavior to cut energy consumption

that are not observed in the data. In addition, observing only the year of adoption

is a quite noisy measure of the timing of adoption. For instance, households

adopting an energy efficiency measure at the end of the year will only experience

the energy consumption drop the following calendar year, it will have, however, a

very small impact on the adoption year energy consumption as reported in the

data.

To address this I run the regression of energy consumption drops on adoption

year considering the drop between two years before adoption and the year after

adoption. The results are presented in Table 4 (right panel).

The results confirm the sign of the results presented in the Table 4. The

size of the coefficients is significantly larger showing that in addition to the

effect of adoption on the household technology, there is also an effect on energy

consumption behavior associated with the adoption decisions. This empirical

evidence is consistent with the idea that the technology diffusion process has

associated knowledge spillovers and that decisions to invest in energy conservation

are closely related to other changes in energy consumption habits, probably as

the result of a process of information diffusion and acquisition by households on

better practices regarding their energy consumption behavior.

Finally, I present results for the same type of regression looking not only at the

energy consumption drops in the adoption year, but also at the first differences

for any time relative to adoption from six years before adoption to six years after

adoption to test whether belonging to different adoption cohorts has an impact

on consumption changes at any other point in time. To perform this analysis, I

run the same regression specification by year relative to adoption and I present

the beta coefficients on calendar year in Figure 22.

∆csilt = α + βsTi +X
′

itω + αt + γl + εsilt ∀s ∈ [−6, ..., 0, ..., 6] (43)
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Figure 22 shows the coefficient on calendar year for each of the regressions

specified above for cavity wall insulation (on the left) and boiler replacement

(on the right). The graphs for loft insulation are very similar to the cavity wall

insulation case and are presented in Appendix A.5. The interpretation of the

coefficient estimates is the effect on year s (year relative to adoption time) energy

consumption drop of postponing adoption by one year. In years around adoption

time, the coefficient on calendar year is negative and significant, implying that

adoption in late years leads to a smaller energy consumption drop confirming

the results discussed earlier. Likewise, it can be noted that in years following

adoption the coefficient is also negative and significant at a 5% significance level.

On the contrary, in years before adoption the coefficients are, in general, positive

with some exceptions and always significant. I conclude from this that preference

heterogeneity seems to dominate selection into adoption and agents’ heterogeneity

has an effect not only on how effective technology adoption is, but also has

persistent differential effects on their energy consumption patterns. In a scenario

where, in contrast, selection into adoption is driven mostly by heterogeneous

misperceptions, assuming that agents learn about the true energy efficiency as a

result of the technology adoption process, then one should observe that the effect

of the adoption timing vanishes in the post-adoption stage.

Similar to the previous section, the interpretation of these correlations as

evidence of the impact of the year of adoption on energy consumption outcomes is

subject to some limitations. As the sample is restricted to just the adoption year

observation for each household adopting the energy efficiency measures, it is not

possible to guarantee that the coefficient on the adoption timing variable capture

only the year of adoption on the energy consumption drops. The reason again is

that I cannot separately identify year fixed effects from the adoption cohort effect.

As in the previous section, to address the limitations, I provide further evidence

exploiting the full variation in the data to identify separately year fixed effects

and adoption cohort specific effects. For this purpose, I consider the following
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Figure 22: Adoption cohort effect on energy consumption change

Note: The graphs present the values of the coefficient estimates and 95% confidence intervals

for calendar year in a linear regression model. The coefficient corresponding to year s is the

result of a regression considering all observations for which year relative to event time is s. In

each of the regressions, the outcome variable is the consumption change in first differences and

the regressors include property characteristics control variables, year fixed effects, region fixed

effects. The confidence interval is constructed based on robust standard errors.
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regression specification:

4citrl =
∑
j

βj1[s = 0]1[j = r] +
∑
j

µj1[j = r]+

+
∑
k

δk1[k = l] +
∑
y

ηy1[y = t] +X
′

itω + εitrl (44)

The outcome variable 4citrl = ct−1 − ct is the energy consumption drop for

household i at time t who belongs to year of adoption cohort r in region l. s

represents time relative to adoption. Hence, the first term contains the interaction

of an adoption indicator variable (that takes a value of 1 if s = 0, and zero

otherwise) and the adoption year cohort indicator variables. The regression

includes also the adoption year cohort fixed effects, year fixed effects, region fixed

effects and control variables (including property characteristics and controls for

time relative to adoption for the other two energy efficiency measures observed in

the data). I compare the estimates for βr to show differences in energy consumption

drops in the year of adoption across different adoption cohorts. The same analysis

is also done for a long difference in energy consumption (between two years before

adoption and one year after adoption), 4citrl = ct−2 − ct+1.

The coefficient estimates and 95% confidence intervals are presented in Figure

23 for total consumption drops. Figures 38 and 39 show the results for gas

consumption and electricity consumption changes in Appendix A.5. Coefficient

estimates and standard errors are included in Appendix A.5 in Tables 14, 15 and

16.

In Figure 23 (left column) I present the average energy consumption drops on

the adoption year for each adoption cohort (adoption year groups). The figure

shows that late adopters experience smaller consumption drops upon adoption

of energy efficiency measures. This is true for drops on the adoption year until

2010 when considering cavity wall and loft insulation adoption, and until 2011

in the case of boiler adoption. Thus, supporting the hypothesis of a negative
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correlation between timing of adoption and energy consumption drops at the time

of technology adoption. This would be consistent with selection being dominated

by preferences heterogeneity. However, by the end of the sample period, the graphs

show that this trend is reversed and adopters in 2011 and 2012 experience larger

consumption drops in the adoption year. This coincides with the introduction

of the Boiler Scrappage Scheme and at the end of the sample period the Green

Deal scheme was introduced. Connecting this change in the pattern to policy

changes provides an opportunity to identify the impact of incentives on selection

into technology adoption and the cost effectiveness of incentive schemes. In the

last section of this chapter I provide an attempt to shed some light on that using

the introduction of the Boiler Scrappage scheme as a source of policy variation.

The right column of Figure 23 presents the same results for the long differences

in energy consumption. As discussed previously, the long difference aims to capture

additional change in behavior that are associated with adoption decisions and

have an effect on energy consumption. In this case, the graphs show that the drop

in energy consumption around adoption is larger and decreasing in the year of

adoption. From 2010 a reversal in the trend is observed, however in this case it is

smaller. This suggests that when considering a broader impact of adoption on

energy consumption, early adopters seem to experience larger energy consumption

drops. I attribute the drop in the adoption year to a mechanical response of energy

consumption to the technological change, whilst the drop considering additional

years could include also other behavioral responses, like changes in the energy

consumption habits. This results suggest that for early adopters the behavioral

responses are higher relative to the mechanical effect of adoption. This would be

consistent with the idea that early adopters are more attentive to energy costs,

have larger concerns about the impact of energy consumption on the environment

and, in general, energy efficiency issues are more salient to them. As a consequence,

they probably implement changes in energy consumption behavior and further

energy efficiency intervention, at the same time they decide to invest in the

observed energy efficiency measures.
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The patterns observed in gas and electricity consumption drops are very similar

and are presented in Appendix A.5.

3.3 Evidence of Learning

In the light of the empirical evidence presented in both Chapter 2 and Chapter

3, one can argue that the observed consumption patterns around the installation

of energy efficiency measures suggests that the consumption changes are not

only the consequence of the technological change, but also a consequence of other

changes in energy consumption behavior that could be linked to learning. Learning

understood in a broad sense could include that households learn more precisely

about their true energy efficiency, or that, for instance, they may be learning

about the energy consumption social norm. In either case, one can interpret those

patterns in energy consumption as a correction in the beliefs about the true cost

of production of energy services. In the following paragraphs, I further discuss

the link between the features observed in the data and the learning process that

could be underlying them.

The data analysis presented previously shows consistently that in pre-adoption

years there is an inverted U-shaped pattern in the energy consumption profiles.

This can be interpreted as evidence of an underlying learning process. The U-

shaped pattern could be the result of the reversion of an upward trend in energy

consumption that is reverted as households learn about their true energy efficiency,

i.e. they become aware of the energy savings potential of energy consumption

behavioral changes in the utilisation of the current technology. That effect shows

up in the energy profiles as a reversion in the energy consumption trend and

decline of energy consumption that begins in the years prior to adoption of energy

efficiency measures. Although it is not possible to disentangle the mechanism

that is causing this, it is consistent with a learning process by which households

misperceptions about the cost of production of energy services production is
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Figure 23: Total consumption change upon adoption

Note: The graphs show the coefficient estimates and 95 % confidence intervals for the year of

adoption specific effect obtained by regressing changes in energy consumption upon adoption on

the interaction of a year of adoption indicator and the time of adoption indicator. The regression

model includes year fixed effects, region fixed effects and property characteristics.

136



gradually corrected. The source of information leading to the exhibited behavior

could be varied, ranging from information provision to knowledge spillovers across

households.

Another feature observed in the empirical analysis is the convergence of energy

consumption profiles in post-adoption years. The differences in energy consumption

levels between household groups is significantly larger in pre-adoption years than it

is in the post-adoption period. Again, this could be reflecting that throughout the

adoption process, households learn about their true cost of production of energy

services. As a consequence of that, the distribution of energy consumption across

groups is more homogeneous. It should also be noted that the installation of energy

efficiency measures might also lead to this convergence in energy consumption

across groups of households as a consequence of a pure mechanical effect of the

technological change. After installing the energy efficiency measures, there is also

more homogeneity in the true energy efficiency of households.

3.4 Role of incentives: Using policy variation from the

Boiler scrappage scheme

In this section I perform an empirical analysis to address the role of government

provided incentives on selection into adoption. Considering the policy variation

introduced by the “Boiler Scrappage Scheme” I provide estimates of the impact of

the policy change on pre-adoption energy consumption and energy consumption

changes upon adoption. To determine the relevance for policy design of consumers’

heterogeneity, it is important to understand the effect of incentive provision on

selection into adoption. With heterogeneous agents this determines the energy

consumption savings upon adoption of energy efficiency measures.

The Boiler Scrappage scheme introduced starting from 2010 a subsidy for

households replacing an old low efficiency boiler with an energy efficient boiler.

The scheme offered up to 125000 subsidies of 400GBP to those replacing a G-rated

boiler with an A-rated boiler. To analyse the effect of the Boiler Scrappage
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Scheme I group households in five groups. The groups are defined as: Pre-adopters

(adopted the measure before 2005), Early I (adopted in the 2005-2007 period),

Early II (adopted in the period 2008-2009), Late (adopted in the 2010-2012 period

when the Boiler Scrappage Scheme was in place) and Never (those who do not

adopt the measure during the sample period 2005-2012).

Figure 24 represents the energy consumption profiles over time relative to

boiler adoption for each of the groups. The graphs show energy consumption

drops around boiler replacement for all groups of adopters. It is interesting to

observe that groups Early I and II show a very similar energy consumption profile

but earlier adopters have a lower energy consumption level after adoption. Late

adopters exhibit lower pre-adoption energy consumption levels and experience

a significant drop around boiler replacement. To further analyse this, in the

following subsections I present a regression analysis to quantify the difference in

pre-adoption energy consumption levels and energy consumption drops between

those who adopt in the Boiler Scrappage scheme period and those who adopt

before.

Note that the data does not identify which households received the subsidy.

The results, therefore, should be interpreted as an intention to treat effect.

3.4.1 Pre-adoption levels of consumption

In this section I propose a Difference in Difference approach to obtain estimates

for the effect of the Boiler Scrappage Scheme on selection into adoption studying

changes in pre-adoption average energy consumption levels. The estimates are

obtained using observations in Early I (boiler replacement in period 2005-2007),

Early II (boiler replacement in period 2008-2009) and Late (boiler replacement in

period 2010-2012) adoption groups. Early I and Early II adoption groups replace

the boiler before the Boiler Scrappage scheme and I compare them to control for

the pre-policy trend in pre-adoption energy consumption.

The identifying assumption underlying the Difference in Difference estimate is

that absent the policy change, Late adopters pre-adoption consumption would
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Figure 24: Energy consumption by boiler adoption groups

Note: The graphs present the values of the coefficient estimates and 95% confidence intervals for

the interaction of the adoption group dummy variable and the year relative to boiler adoption

in a linear regression model. The outcome variables are total, gas and electricity consumption

and the regressors control variables: property characteristics, year fixed effects and region fixed

effects. The confidence interval is constructed based on robust standard errors.
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have followed the pre-policy trend.

For the mentioned adopters groups I use all the information on energy con-

sumption included on the data set, to separately identify time fixed effects and

adoption-group specific effects.

I estimate the following regression model:

citgl =
∑
j

βj1[s < 0]1[j = g] + γ1[s < 0] +
∑
j

µj1[j = g]+

+
∑
k

δk1[k = l] +
∑
y

ηy1[y = t] +X
′

itω + εitrl (45)

The outcome variable citgl is energy consumption for household i at time

t who belongs to adoption group g in region l. s represents time relative to

adoption. Hence, the first term contains the interaction of a before adoption

indicator variable (that takes a value of 1 if s < 0, and zero otherwise) and

the adoption group indicator variables. The regression includes also the before

adoption indicator, adoption group fixed effects, year fixed effects, region fixed

effects and control variables (including property characteristics and controls for

time relative to adoption for the other two energy efficiency measures observed in

the data). I compare the estimates for βg +µg across groups to show differences in

average pre-adoption energy consumption among different adoption groups. The

coefficient estimates are presented in Table 5.

I use the coefficient estimates to construct a Difference-in-Difference estimate

as [(βLATE+µLATE)−(βEARLY 2 +µEARLY 2)]− [(βEARLY 2 +µEARLY 2)−(βEARLY 1 +

µEARLY 1)]. These coefficients are presented in bold in the Table 5. The difference

between the Late group and Early 2 group shows that late adopters consume on

average 353 kWh less in the pre-adoption period. The Difference-in-Difference

estimate aims to control for the pre-policy trend. The identifying assumption is

that in the absence of the policy change the difference between Late and Early

2 adopters would have been the same as for Early 2 and Early 1 adopters. This

provides a Difference in Difference estimate of the policy impact on pre-adoption
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consumption of -438.8 kWh. This would suggest that as a consequence of cash

incentive provision, households who consume less before adoption decide to invest

in energy efficiency measures as a consequence of the subsidy. On the one hand,

this can be interpreted as the result of households with low energy intensity

use who found replacing the boiler not profitable enough, decide to invest in

energy efficiency measures. Alternatively, it could be also interpreted as leading

households who consume less to adopt and cash the subsidy in, when they would

have adopted any way.

Note that these results are in line with the results of the previous section, this

is late adopters consume less energy before adoption than early adopters. However,

the Difference in Difference estimate should be taken carefully, as it may be that

the pre-trend is not properly captured as a consequence of the short pre-adoption

time series for early adopters. In particular, I find that the difference between

Early 2 and Early 1 adopters is positive, meaning that Early 2 adopters consume

more on average before boiler replacement. However, this is very likely to be as a

result of the Early I group pre-adoption consumption being already affected by

the technology adoption decision. As a consequence, it is difficult to interpret this

estimate as an unbiased estimate of the policy effect. This could be addressed

with a longer time series of energy consumption before adoption to potentially

guarantee that pre-adoption consumption is unaffected by the technology adoption

decision.

3.4.2 Energy consumption changes

In this section, I present a similar analysis using as outcome variables the energy

consumption drop on the boiler adoption year and the drop in consumption

between 2 years before and 1 year after boiler adoption. The graphs for energy

consumption presented in Figure 24 suggest that the energy consumption drop

around the boiler replacement year is not fully concentrated in the adoption year.

For that reason, I also consider the consumption drop between two years before

and one year after adoption.
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Pre-adoption consumption

Boiler replacement Total Gas Electricity

Group*Pre-Adoption

Early I group
1005*** 906.3*** 98.31***

(19.91) (17.95) (6.22)

Early II group
1063*** 1025*** 37.95***

(15.67) (14.01) (4.83)

Late group
1051*** 1014*** 36.23***

(12.38) (10.83) (3.92)

Group (Early I base)

Early II
27.19*** 54.52*** -27.33***

(10.25) (8.93) (3.27)

Late
-313.3*** -249.4*** -63.93***

(11.19) (9.71) (3.59)

Constant
18922*** 15964*** 2958***

(38.50) (34.31) (11.81)

Late - Early2 Diff -353.0*** -314.7*** -38.32***

(12.50) (11.33) (3.81)

Early2 - Early1 Diff 85.81*** 173.5*** -87.70***

(19.94) (18.08) (6.23)

Diff-in-Diff -438.8*** -488.2*** 49.38***

(27.69) (25.13) (8.55)

Sample size 5415255

R2 0.379 0.368 0.135

Property characteristics X X X

Year FE X X X

Region FE X X X

Table 5: Pre-adoption consumption by boiler adoption group

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcome variables are total

energy consumption, gas consumption and electricity consumption, measured in kWh. The

table presents in each column the coefficient estimates for the before adoption group specific

effect, and the adoption group specific effect. Regressors include also year fixed effects, region

fixed effects and control variables including property characteristics and controls for adoption of

cavity wall and loft insulation measures . Robust standard errors are presented in parentheses.
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I propose the following regression specification using all the time variation for

all three groups of adopters over time.

4citgl =
∑
j

βj1[s = 0]1[j = g] +
∑
j

µj1[j = g]+

+
∑
k

δk1[k = l] +
∑
y

ηy1[y = t] +X
′

itω + εitrl (46)

The differences in coefficient estimates βg, are interpreted as the differences in

energy consumption drops experienced by different adoption groups upon boiler

replacement. The coefficient estimates are presented in Table 6. I compare the

estimates for βg + µg across groups to show differences in the energy consumption

drops among different adoption groups.

The coefficient estimates are used to construct a Difference-in-Difference es-

timate as [(βLATE + µLATE)− (βEARLY 2 + µEARLY 2)]− [(βEARLY 2 + µEARLY 2)−

(βEARLY 1 + µEARLY 1)]. These coefficients are presented in bold in the Table 6.

The difference between the Late group and Early 2 group shows that late adopters

experience consumption drops on average 187 kWh smaller in the adoption year,

and 498.9 kWh larger when considering the long difference between two years

before and one year after adoption.

When controlling for the pre-policy trend in energy consumption drops, the

resulting difference in difference estimate is not significantly different from zero

when considering consumption drops at the boiler replacement year. However,

when considering the longer period the difference in difference estimate is 1280

kWh. The interpretation is that those who replace a boiler under the Boiler

Scrappage scheme experience significantly larger energy consumption drops than

those who replace a boiler earlier.

Note that the average energy consumption drops when considering a larger

period around adoption time are significantly larger than those considering only

the drop on boiler replacement year. This evidence suggests that there are other

behavioral changes associated with technology adoption decisions affecting the
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energy consumption patterns other than the installation of energy efficiency mea-

sures itself. The result suggest that a large proportion of the energy consumption

drop experienced between two years before adoption and one year after adoption

is not concentrated in the year of boiler replacement, but are related to other

energy consumption behavioral changes. With the information available in the

data set it is not possible to identify them separately. First of all, the data does

not provide detailed information about financial aid received by each household to

implement the energy efficiency measures. Second, it does not provide information

about which households actually benefited from the Boiler Scrappage scheme.

However, the results suggest that those who adopt under the incentive scheme

tend to experience higher energy consumption savings.

A possible explanation for this large effect could be that under the policy

scheme, more adopters replace a low energy efficiency boiler for a high efficiency

one as this is the main eligibility requirement. If this is the case, however, one

would expect the change in energy consumption to be more concentrated at the

installation year.

Another potential confounder comes from the fact that it is not possible to

observe whether a household installed the new boiler at the beginning or at the end

of the year, as this would make a huge difference on which year energy consumption

reflects the impact of the technology improvement in the data. Higher frequency

data would help to better identify the impact of the technology adoption on energy

consumption.

An alternative explanation is that households who adopt under the scheme

are at the same time exposed to other incentives at the same time. This could

include policies based on providing information on how to improve the household

energy efficiency and as consequence of that are substantially changing energy

consumption behavior in the years around boiler replacement.

Again, the Difference in Difference estimate should be taken with care as it is

difficult to guarantee that the trend in energy consumption drops changes only

as a consequence of the policy. Also, since the number of years observed in the
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pre-policy period is small, it is not possible to check in a compelling manner

that the pre-trend changes at the time of the policy intervention. This could be

improved with a longer time series before the policy intervention, as that would

allow to provide clearer evidence to support the identifying assumption.

3.5 Conclusion

This chapter presents an empirical analysis to test whether adoption of energy

efficiency measures is adversely selected. When selection into adoption is adverse,

the pattern one should observe in the data is that the correlation between energy

consumption before adoption and the year of adoption is positive. In contrast if

the correlation is negative, that would show evidence supporting that those who

consume more energy adopt energy efficiency measures earlier. Second, I also look

at the change in energy consumption at the time of adoption of energy efficiency

measures as it represents a measure of the energy consumption reduction related

to the adoption decision. In this case, the adverse selection hypothesis implies

that early adopters should experience smaller energy consumption drops upon

adoption.

For this purpose I use the NEED data set containing information on adoption

of energy efficiency measures, energy consumption and property characteristics

for households in England and Wales between 2005 and 2012. In contrast with

Chapter 2, in this chapter I split the data in groups based on the year of adoption of

energy efficiency measures in order to compare the patterns of energy consumption

around the adoption year for each of the adoption cohorts. I present coefficient

estimates from linear regressions, controlling for property characteristics and year

fixed effects, for the correlation between energy consumption before adoption and

the adoption year, and also for the energy consumption drop upon adoption and

the adoption year.

I find evidence that, with the exception of the case of electricity consumption

around cavity wall insulation, the correlation between the year of adoption and
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the average energy consumption before adoption is negative. The results also

provide evidence of a negative correlation between the year of adoption and the

energy consumption drop upon adoption. Implying, therefore, that late adopters

experience smaller drops in energy consumption upon adoption.

However, the correlation test performed in this analysis is not a perfect test.

Hence, this results do not rule out the fact that misperceptions may still play an

important in the selection into adoption mechanism.

Furthermore, I provide evidence on the impact of the calendar year on the

energy consumption drop by adoption cohorts. I find that the consumption changes

experienced by different adoption cohorts in years other than the adoption year

differ significantly. This provides further evidence of heterogeneity across adoption

cohorts.

In addition, using policy variation from the introduction of the Boiler Scrappage

Scheme, I attempt to estimate the effect of incentives provision on selection into

adoption. The results show that consumers replacing the boiler before the incentive

scheme exhibit larger energy consumption before technology adoption. When

looking at the energy consumption drop upon adoption, I find that adopters under

the policy scheme experience larger energy consumption drops around the year

of adoption. In the year of adoption, however, the estimate is not significantly

different from zero. The Difference in Difference estimates, however, rely on a

strong identifying assumption, namely that pre-policy trends in pre-adoption

consumption and energy consumption drops upon adoption would have remained

the same in the absence of the policy intervention. It is plausible that the

assumption is not satisfied, and the trends are changing for other reasons. Having

further data on pre-policy years would help to provide evidence to validate the

identifying assumption.

Estimating precisely the impact of incentives on selection is a very relevant

question for policy design, and I leave for further research finding compelling

strategies and data sources to quantify this effect.
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Conclusion

I present in this thesis research work on the impact of agents heterogeneity

on energy efficient technology adoption and design of incentives for investment

in energy efficient technologies at the residential level. The thesis presents a

theoretical model to analyse the role of heterogeneity driven by psychological

biases on the energy efficiency perceptions. Followed by a critical discussion on

energy policy, energy consumption and technology adoption patterns in the United

Kingdom based on the National Energy Efficiency Dataset. Finally, in the third

chapter I present the results of an empirical study using the NEED data providing

evidence on the correlation between energy consumption profiles and the timing

of adoption decisions and the role of incentives in the selection into adoption

mechanism.

More specifically, the work presented in this thesis provides a conceptual

framework to think about the optimal design of incentive schemes to encourage

investment in energy efficiency technologies. The model presented in Chapter

1 presents a behavioral public economics approach showing that when agents

misperceive their true energy efficiency policies based on taxes and subsidies only

achieve constrained efficient outcomes at a very large cost for the government.

The results of the model show that agents who tend to overconsume energy are at

the same time very unresponsive to this type of policies. This results, together

with recent empirical evidence showing that residential consumers seem to be

quite responsive to information based policies, suggest that providing information

is a more compelling way to encourage adoption rather than providing financial

incentives via subsidies to reduce the upfront cost consumers face when considering

investments in energy efficient technologies.

The main novelty of the model presented here is that, in contrast to similar

models, the heterogeneous psychological bias driving agents’ perceived potential

benefits of technology adoption is introduced in a way such that it also affects

the intensive margin consumption decisions on energy consumption. Resulting,
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therefore, in a negative correlation between energy consumption levels and the

likelihood of technology adoption. This is what in my work I refer to as adverse

selection.

In the empirical study presented in the third chapter, I provide different pieces

of empirical evidence to address the question on whether selection into adoption

is adverse or not. The results show that there is a strong negative correlation

between pre-adoption consumption levels and the time of adoption. This suggests

that households with higher energy consumption levels are likely to adopt first,

perhaps responding purely to the higher potential financial savings they experience

as a consequence of the adoption of energy efficiency measures. Second, I find

that energy consumption drops upon adoption are larger for early adopters.

The empirical results I find, suggest that selection into energy efficiency

measures adoption is dominated by heterogeneity in preferences. This correlation

test, however, does not preclude that heterogeneity in energy efficiency beliefs play

an important role in the technology diffusion process and on how consumers respond

to incentive schemes. An interesting empirical challenge for further research is to

try to separately identify the role of the different sources of heterogeneity, as this

is of extreme relevance for the design of energy efficiency policy.

In Chapter 3, in addition, I provide estimates for the effect of incentives on

selection into adoption studying the impact of a policy change on adopters pre-

adoption consumption and energy consumption drops. I find results suggesting

that households who adopt under the policy scheme do not experience significantly

larger drops in energy consumption in the year of technology adoption. However,

when considering the drop between 2 years before and the year after adoption, I find

that those who adopt under the policy incentives experience larger consumption

savings. As previously discussed this estimates should be taken with care, as they

rely on a very strong identifying assumption. Providing more accurate estimates

of the impact of incentives on selection into adoption is an interesting avenue for

further empirical research in the field of energy efficiency policy.
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A Appendix

A.1 Appendix 1

A.1.1 Properties of s(τ, η), e(τ, η) and v(τ, η).

Lemma 2. s(τ, η) is increasing in η and decreasing in τ .

Proof. Implicit differentiation of the first order condition of the consumer utility

maximisation problem implies, ∂s(τ,η)
∂η

=
(p+τ)

∂e(τ,η)
∂η∂s

g′′[s(τ,η)]
> 0, since by assumption

esη = ∂e(τ,η)
∂η∂s

< 0 and g′′(s) > 0.

Likewise, by implicit differentiation again, ∂s(τ,η)
∂τ

=
∂e(τ,η)
∂η∂s

g′′[s(τ,η)]−(p+τ)
∂2e(τ,η)

∂s2

< 0,

since esη = ∂e(τ,η)
∂η∂s

< 0 by assumption. The assumptions on g(s) and e(s, η) imply

the denominator is negative, and hence, it follows that ∂s(τ,η)
∂τ

< 0

Let εs,η = ∂s(p,τ,η)
∂η

η
s(p,τ,η)

denote the energy efficiency elasticity of energy services

demand.

Lemma 3. e(τ, η) is decreasing in η if 0 6 εs,η < − eηη

ess
, and increasing when

εs,η > − eηη

ess
.

Proof. Differentiation of the production function with respect to η implies ∂e(τ,η)
∂η

=

∂e(τ,η)
∂s

∂s(τ,η)
∂η

+ ∂e(τ,η)
∂η

. Hence, ∂e(τ,η)
∂η

< 0 if and only if ∂e(τ,η)
∂s

∂s(τ,η)
∂η

< −∂e(τ,η)
∂η

.

Multiplying both sides of the inequality by η
s

and rearranging the condition using

the elasticity definition gives the condition above.

Lemma 4. v(τ, η) is increasing in η.

Proof. By the envelope theorem, ∂v(τ,η)
∂η

= −(p + τ)∂e(τ,η)
∂η

. Hence, by Lemma 3

∂e(τ,η)
∂η

< 0, and it follows that ∂v(τ,η)
∂η

> 0.

A.1.2 Relaxing unbiased adopters assumption

Consider fixed new and old technology: η0 and ηA, and suppose misperceptions

remain upon adoption. Then the gap between the social value of adoption (w)

and the willingness to pay (v) is given by:
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w − v = (p+ θ) [ê0 − êA]− (p+ τ) [e0 − eA] (47)

At τ = θ:

w − v = (p+ θ) {[e0 − ê0]− [eA − êA]} (48)

The social value of adoption is above the willingness to pay for optimistic

agents as long as the gap between actual energy consumption and planned energy

consumption is larger at low levels of energy efficiency. Hence the condition

[e0 − ê0]− [eA − êA] > 0 must be satisfied.

Moreover, the willingness to pay remains decreasing in η̂ if the following

condition is satisfied:

∂v

∂η̂
= (p+ τ)

[
∂êA
∂η̂
− ∂ê0

∂η̂

]
+ g′(ŝA)

∂ŝA
∂η̂
− g′(ŝ0)

∂ŝ0

∂η̂
< 0 (49)

Given that ê is decreasing and convex in η̂, this implies that ∂êA
∂η̂
− ∂ê0

∂η̂
< 0.

And g′(ŝA)∂ŝA
∂η̂
− g′(ŝ0)

∂ŝ0
∂η̂

< 0 since g(·) is concave and ŝ(τ, η̂) is increasing and

concave in η̂. Hence, these conditions together imply that ∂v
∂η̂
< 0.

Consider now the social value of adoption. The derivative of the social value

of adoption with respect to η̂ is:

∂w

∂η̂
= (p+ θ)

[
∂eA
∂η̂
− ∂e0

∂η̂

]
− (p+ τ)

[
∂êA
∂η̂
− ∂ê0

∂η̂

]
(50)

Hence, evaluated at τ = θ it gives the following expression:

∂w

∂η̂
= (p+ θ)

{[
∂e0

∂η̂
− ∂ê0

∂η̂

]
−
[
∂eA
∂η̂
− ∂êA

∂η̂

]}
(51)

Therefore, ∂w
∂η̂
|τ=θ> 0 for optimistic agents if

[
∂e0

∂η̂
− ∂ê0

∂η̂

]
−
[
∂eA
∂η̂
− ∂êA

∂η̂

]
> 0 (52)

Hence, the negative correlation between the willingness to pay and the social
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value of adoption for optimistic agents still holds even if consumers remain biased

upon adoption under some conditions. It is sufficient to assume that the difference

between experienced and planned energy consumption is larger and steeper when

the true energy efficiency is low. In other words, it must be that the effect of the

internality is more severe, the lower the true energy efficiency.
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A.2 Appendix 2

Cavity Wall
Detached

Semi Mid
Bungalow Flat

Insulation detached terrace

Fuel bill savings (£/year) £275 £155 £105 £110 £90

Typical installation cost £720 £475 £370 £430 £330

Payback time 4 years of fewer

CO2 savings (kgCO2/year) 1200 660 440 450 370

Source: Energy saving trust

Table 7: Cavity wall insulation investment cost and savings

Note: The table presents estimated fuel bill savings, installation cost, payback time and carbon

dioxide savings resulting from the installation of cavity wall insulation for different types of

properties. The values presented correspond to England, Scotland and Wales and the figures

are based on March 2016 fuel prices.

Loft insulation
Detached

Semi Mid
Bungalow

(0 to 270mm) detached terrace

Fuel bill savings (£/year) £240 £140 £135 £195

Typical installation cost £395 £300 £285 £375

Carbon dioxide savings (kgCO2/year) 1000 590 560 820

Loft insulation top up
Detached

Semi Mid
Bungalow

(120 to 270mm) detached terrace

Fuel bill savings (£/year) £25 £15 £15 £20

Typical installation cost £290 £240 £230 £280

Carbon dioxide savings (kgCO2/year) 95 55 55 80

Source: Energy saving trust

Table 8: Loft insulation investment cost and savings

Note: The table presents estimated fuel bill savings, installation cost, payback time and carbon

dioxide savings resulting from the installation of loft wall insulation for different types of

properties. The table first part of the table presents the values for the installation of loft

insulation in a totally uninsulated loft. The second part corresponds to topping up insulation

from 120mm to 270mm. The values presented correspond to England, Scotland and Wales and

the figures are based on March 2016 fuel prices.
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Old boiler
Detached

Semi Mid
Bungalow Flat

rating detached terrace

G ( < 70%) £350 £215 £175 £180 £95

F (70–74%) £240 £145 £120 £125 £65

E (74–78%) £190 £115 £95 £95 £50

D (78–82%) £140 £85 £70 £70 £35

Source: Energy saving trust

Table 9: Boiler replacement savings

Note: Estimated savings are based on installation of a new A-rated boiler. The typical installation

cost is £2300. The values presented correspond to England, Scotland and Wales and the figures

are based on March 2016 fuel prices.
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A.3 Appendix 3

Cavity wall insulation Loft insulation Boiler replacement

Year relative to cwi
0.173*** 0.0892***

(0.00026) (0.000212)

Year relative to li
0.224*** 0.154***

(0.00034) (0.000256)

Year relative to boiler
0.102*** 0.130***

(0.00031) (0.00025)

Index of Multiple deprivation
-0.0091*** 0.00016 0.0265***

(0.00066) (0.00055) (0.000446)

Energy 7 meter
0.0072** 0.0321*** 0.0434***

(0.00306) (0.0025) (0.00191)

Fuel poverty
0.0050*** 0.0187*** 0.0147***

(0.00079) (0.00069) (0.000496)

EPC inspection date
0.0178*** -0.0151*** -0.132***

(0.0021) (0.0017) (0.00135)

Main heating fuel
0.154*** 0.0217*** -0.0221***

(0.0077) (0.0060) (0.00526)

Property age
-0.0638*** -0.0144*** -0.0179***

(0.00081) (0.00070) (0.00053)

Property type
-0.0009 0.0420*** -0.0234***

(0.00063) 0.00054 (0.000438)

Floor area band
0.0218*** 0.0284*** 0.0354***

(0.0016) (0.0013) (0.00103)

Energy efficiency band
-0.179*** -0.0074*** -0.254***

(0.0012) (0.00099) (0.000816)

Loft depth
0.0040*** 0.00305***

(0.000029) (0.0000153)

Wall construction
-0.287*** 0.307*** 0.262***

(0.0044) (0.0020) (0.00156)

Constant
7.862*** -4.294*** 3.901***

(0.154) (0.132) (0.0988)

Number of observations 2946680 4134864 5844936

Region FE X X X

Table 10: Adoption determinants

Note: Coefficient estimates are obtained from probit model. In the regression the outcome

variable is an adoption dummy that takes a value of 1 in adoption years and 0 otherwise.

Regressors include all property characteristics and region-specific fixed effects. Robust standard

errors are presented in parentheses.
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A.4 Appendix 4
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Figure 25: IMD groups (Loft insulation adoption)
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Figure 26: IMD groups (Boiler adoption)
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Figure 27: Fuel Poverty groups (Loft insulation adoption)
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Figure 28: Fuel Poverty groups (Boiler adoption)
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Figure 29: Region groups (Loft insulation adoption)

169



-4
00

0
-2

00
0

0
20

00
To

ta
l c

on
su

m
pt

io
n,

 k
W

h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

North East North West Yorkshire East ML West ML

East of Eng London South East South West Wales

Region

base level = 19780.87
Total consumption

-4
00

0
-3

00
0

-2
00

0
-1

00
0

0
10

00
G

as
 c

on
su

m
pt

io
n,

 k
W

h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

North East North West Yorkshire East ML West ML

East of Eng London South East South West Wales

Region

base level = 17031.52
Gas consumption

-1
00

0
-5

00
0

50
0

10
00

E
le

ct
ric

ity
 c

on
su

m
pt

io
n,

 k
W

h

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
s, years

North East North West Yorkshire East ML West ML

East of Eng London South East South West Wales

Region

base level = 2749.35
Electricity consumption

Figure 30: Region groups (Boiler adoption)
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Figure 31: Property Type groups (Loft insulation adoption)
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Figure 32: Property Type groups (Boiler adoption)
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Figure 33: Main Heating Fuel groups (Loft insulation adoption)
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Figure 34: Adoption groups: Before EPC vs EPC period (Loft insulation adoption)
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Figure 35: Adoption groups: Before EPC vs EPC period (Boiler adoption)
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Figure 36: Early adopters (2005-2009): EPC vs Before EPC (Loft insulation adoption)
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Figure 37: Early adopters (2005-2009): EPC vs Before EPC (Boiler adoption)
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A.5 Appendix 5

Pre-adoption consumption

Cavity wall insulation year Total Gas Electricity

2006
1577*** 1565*** 12.40

(41.91) (37.59) (12.87)

2007
1832*** 1803*** 28.78***

(36.97) (33.22) (11.00)

2008
1687*** 1703*** -15.87*

(28.14) (25.22) (8.40)

2009
1377*** 1371*** 6.469

(25.84) (22.92) (8.01)

2010
1174*** 1126*** 47.54***

(26.88) (23.72) (8.40)

2011
1386*** 1329*** 57.56***

(26.21) (22.94) (8.39)

2012
1302*** 1161*** 141.6***

(28.48) (24.86) (9.14)

Constant
20321*** 16959*** 3363***

(58.99) (52.48) (17.86)

Sample size 2695520

R2 0.374 0.372 0.125

Property characteristics X X X

Year FE X X X

Region FE X X X

Table 11: Pre-adoption consumption by adoption year (Cavity wall insulation)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are total

energy consumption, gas consumption and electricity consumption, measured in kWh. The

table presents in each column the coefficient estimates on the before adoption calendar year of

adoption specific effect in a linear regression model where the independent variables are calendar

year of adoption, before adoption indicator, control variables including property characteristics,

year fixed effects and region fixed effects. Robust standard errors are presented in parentheses.
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Pre-adoption consumption

Loft insulation year Total Gas Electricity

2006
737.4*** 800.4*** 62.97***

(40.48) (36.78) (12.11)

2007
1048*** 1061*** -13.30

(34.74) (31.56) (10.15)

2008
956.3*** 999.4*** -43.04***

(24.43) (22.07) (7.10)

2009
592.7*** 640.1*** -47.42***

(23.55) (21.11) (7.02)

2010
636.3*** 616.1*** 20.24***

(23.30) (20.74) (7.14)

2011
646.6*** 564.1*** 82.53***

(21.98) (19.46) (6.80)

2012
674.7*** 481.4*** 193.3***

(22.57) (19.90) (7.05)

Constant
19518*** 16330*** 3188***

(48.26) (43.08) (14.47)

Sample size 3908756

R2 0.337 0.335 0.111

Property characteristics X X X

Year FE X X X

Region FE X X X

Table 12: Pre-adoption consumption by adoption year (Loft insulation)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are total

energy consumption, gas consumption and electricity consumption, measured in kWh. The

table presents in each column the coefficient estimates on the before adoption calendar year of

adoption specific effect in a linear regression model where the independent variables are calendar

year of adoption, before adoption indicator, control variables including property characteristics,

year fixed effects and region fixed effects. Robust standard errors are presented in parentheses.
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Pre-adoption consumption

Boiler replacement Total Gas Electricity

2006
893.6*** 732.1*** 161.5***

(31.47) (28.32) (10.26)

2007
1097*** 1008*** 88.09***

(22.35) (20.23) (6.89)

2008
1168*** 1120*** 47.82***

(21.26) (19.24) (6.47)

2009
1090*** 1080*** 10.03**

(15.31) (13.82) (4.66)

2010
830.0*** 843.8*** -13.80***

(13.01) (11.67) (4.00)

2011
744.9*** 762.6*** -17.73***

(11.65) (10.38) (3.61)

2012
749.8*** 758.3*** -8.55***

(10.44) (9.27) (3.23)

Constant
18929*** 15982*** 2947***

(38.52) (34.33) (11.81)

Sample size 5415255

R2 0.379 0.368 0.135

Property characteristics X X X

Year FE X X X

Region FE X X X

Table 13: Pre-adoption consumption by adoption year (Boiler)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are total

energy consumption, gas consumption and electricity consumption, measured in kWh. The

table presents in each column the coefficient estimates on the before adoption calendar year of

adoption specific effect in a linear regression model where the independent variables are calendar

year of adoption, before adoption indicator, control variables including property characteristics,

year fixed effects and region fixed effects. Robust standard errors are presented in parentheses.
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Consumption drop on adoption

At adoption year s = −2 and s = +1

Cavity wall insulation year Total Gas Electricity Total Gas Electricity

2006
1359*** 1292*** 67.49***

(26.63) (24.14) (9.91)

2007
1288*** 1201*** 86.88***

(31.38) (28.85) (10.67)

2008
1086*** 1001*** 85.23*** 2362*** 2290*** 71.22***

(25.81) (23.65) (8.78) (46.55) (42.34) (15.23)

2009
949.1*** 947.9*** 1.236 896.4*** 848.4*** 47.97***

(26.20) (23.61) (9.30) (39.18) (35.59) (12.53)

2010
652.2*** 699.1*** -46.88*** 470.0*** 504.6*** -34.61***

(29.54) (26.24) (10.86) (39.68) (35.77) (13.10)

2011
946.9*** 988.7*** -41.85*** 565.8*** 537.6*** 28.25**

(27.36) (24.20) (9.88) (44.06) (39.44) (14.28)

2012
1146*** 1136*** 9.539

(22.59) (19.88) (8.28)

Constant
877.2*** 797.8*** 79.41*** 2618*** 2386*** 231.4***

(41.88) (37.48) (6.55) (84.80) (77.03) (27.28)

Sample size 2358580 1,089,285

R2 0.020 0.024 0.002 0.036 0.041 0.008

Property characteristics X X X X X X

Year FE X X X X X X

Region FE X X X X X X

Table 14: Impact of adoption year on consumption drop (Cavity wall insulation)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are energy

consumption drops in total energy consumption, gas consumption and electricity consumption,

measured in kWh. The table presents in each column the coefficient estimates on the calendar

year of adoption specific effect at the time of adoption in a linear regression model where

the independent variables are calendar year of adoption, control variables including property

characteristics, year fixed effects and region fixed effects. Robust standard errors are presented

in parentheses.
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Consumption drop on adoption

At adoption year s = −2 and s = +1

Loft insulation year Total Gas Electricity Total Gas Electricity

2006
752.1*** 697.1*** 54.99***

(26.46) (24.15) (9.56)

2007
729.3*** 650.0*** 79.33***

(30.33) (27.97) (10.18)

2008
591.0*** 530.4*** 60.67*** 1095*** 1047*** 48.46***

(22.55) (20.68) (7.67) (40.40) (37.16) (12.95)

2009
404.8*** 389.7*** 15.07* 558.1*** 581.8*** -23.59**

(24.36) (22.06) (8.41) (30.54) (27.86) (9.60)

2010
196.0*** 254.5*** -58.53*** 197.8*** 250.7*** -52.93***

(25.68) (22.81) (9.25) (32.92) (29.90) (10.49)

2011
275.6*** 328.4*** -52.78*** 415.3*** 362.5*** 52.81***

(22.96) (20.42) (8.07) (34.78) (31.29) (10.92)

2012
507.1*** 496.5*** 10.59*

(17.73) (15.66) (6.37)

Constant
873.4*** 794.0*** 79.38*** 2551*** 2349*** 201.5***

(33.65) (30.25) (12.32) (68.00) (62.17) (22.04)

Sample size 3420161 1480071

R2 0.013 0.015 0.002 0.023 0.026 0.009

Property characteristics X X X X X X

Year FE X X X X X X

Region FE X X X X X X

Table 15: Impact of adoption year on consumption drop (Loft insulation)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are energy

consumption drops in total energy consumption, gas consumption and electricity consumption,

measured in kWh. The table presents in each column the coefficient estimates on the calendar

year of adoption specific effect at the time of adoption in a linear regression model where

the independent variables are calendar year of adoption, control variables including property

characteristics, year fixed effects and region fixed effects. Robust standard errors are presented

in parentheses.
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Consumption drop on adoption

At adoption year s = −2 and s = +1

Boiler year Total Gas Electricity Total Gas Electricity

2006
1061*** 867.6*** 193.8***

(22.53) (20.34) (9.13)

2007
819.7*** 746.4*** 73.31***

(22.04) (20.21) (8.12)

2008
741.5*** 673.0*** 68.53*** 1911*** 1756*** 154.5***

(25.59) (23.31) (9.54) (30.61) (28.20) (10.52)

2009
632.5*** 576.6*** 55.93*** 706.4*** 694.8*** 11.59

(21.39) (19.37) (7.91) (35.50) (32.54) (11.90)

2010
461.9*** 480.2*** -18.27** 390.7*** 398.0*** -7.247

(21.07) (18.79) (7.97) (30.12) (27.51) (10.06)

2011
371.5*** 431.3*** -59.80*** 571.0*** 550.1*** 20.83**

(21.44) (19.02) (7.89) (29.73) (26.95) (9.90)

2012
653.7*** 701.6*** -47.94***

(19.94) (17.54) (7.44)

Constant
779.1*** 746.6*** 32.44*** 1935*** 1891*** 44.23**

(28.42) (25.52) (10.49) (55.02) (50.05) (18.19)

Sample size 4738347 2352625

R2 0.013 0.016 0.002 0.025 0.029 0.010

Property characteristics X X X X X X

Year FE X X X X X X

Region FE X X X X X X

Table 16: Impact of adoption year on consumption drop (Boiler)

Notes: *** denotes significance at 0.01, ** at 0.05, and * at 0.1. Outcomes variables are energy

consumption drops in total energy consumption, gas consumption and electricity consumption,

measured in kWh. The table presents in each column the coefficient estimates on the calendar

year of adoption specific effect at the time of adoption in a linear regression model where

the independent variables are calendar year of adoption, control variables including property

characteristics, year fixed effects and region fixed effects. Robust standard errors are presented

in parentheses.
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Drop on adoption year Drop between s = −2 and s = +1
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Figure 38: Gas consumption change upon adoption

Note: The graphs show the coefficient estimates and 95 % confidence intervals for the year of

adoption specific effect obtained by regressing changes in energy consumption upon adoption on

the interaction of a year of adoption indicator and the time of adoption indicator. The regression

model includes year fixed effects, region fixed effects and property characteristics.
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Figure 39: Electricity consumption change upon adoption

Note: The graphs show the coefficient estimates and 95 % confidence intervals for the year of

adoption specific effect obtained by regressing changes in energy consumption upon adoption on

the interaction of a year of adoption indicator and the time of adoption indicator. The regression

model includes year fixed effects, region fixed effects and property characteristics.
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Figure 40: Impact of timing of loft insulation adoption on energy consumption change
Note: The graphs present the values of the coefficient estimates and 95% confidence intervals for calendar year

in a linear regression model. The coefficient corresponding to year s is the result of a regression considering all

observations for which the year relative to event time is s. In each of the regressions, the outcome variable is

the consumption change in first differences and the regressors include property characteristics control variables,

year dummies and region fixed effects. The confidence interval is constructed based on robust standard errors.
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