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Abstract

This thesis explores topics in Agricultural Economics and is composed of five papers. In the

first paper (Chapter 2), a latent-class stochastic frontier model is used to estimate efficiency

scores of farmers in Ethiopia. Compared to conventional models, which assume a unique

frontier, much lower inefficiencies are found, suggesting that part of the inefficiencies uncovered

in the literature could be an artefact of the methods used. The second paper (Chapter 3)

revisits the link between cereal diversity and productivity using a panel dataset in Ethiopia.

The results suggest that the positive effect between cereal diversity and productivity becomes

much smaller when households who produce teff (a low-productivity and high-value crop)

are excluded from the sample, hinting at the possibility that results could be driven by yield

differentials between cereals, rather than diversity. The third paper (Chapter 4) estimates

the labour impacts of the adoption of Soil and Water Conservation technologies (SWC) in

Ethiopia. The results suggest that adopting SWC technologies leads to an increase in adult

and child labour. Understanding the labour impacts is important in itself, but it also raises

concerns about using impact evaluation methods that require no change in inputs as an

identifying assumption of impacts. Paper 4 (Chapter 5), assesses the pertinence of a drought

index that has recently been proposed in the literature by Yu and Babcock (2010) and argues

that it defines drought too narrowly. An extension to this index is proposed and we show,

using a dataset of Indian districts, that the original index is likely to underestimate the

impacts of drought. In Paper 5 (Chapter 6), we identify data-driven ranges of rainfall for

which the marginal effects of a rainfall-temperature index (RTI) are different and then we

discuss how the impacts of drought have changed over the 1966-2009 period in India. Finally,

Chapter 7 concludes.
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Chapter 1

Introduction

An agricultural sector that is resource-efficient, climate-smart and that enables smallholder

farmers to escape poverty will be key to achieving the goals of the international community,

enshrined in the Sustainable Development Goals (SDGs). However, anticipated demographic

changes and the looming threat of climate change mean that achieving these goals will be

very challenging. High-quality, policy-relevant research will be important to inform policy-

makers about concrete actions that may deliver positive results. In order for research to be

policy-relevant, it is important that it:

� Uses methods and definitions that are fit-for-purpose

� Takes into account the local context

� Analyses impacts of policies on a wide-range of metrics

Failing to do the above could lead, among other things, to estimation biases, misguided

policies and unanticipated consequences of policies.

This dissertation unfolds in seven chapters, which focus on Ethiopia (Chapters 2-4) and India

(Chapters 5-6). All the chapters look at one or more of the three aspects highlighted above.

In Chapter 2, I focus on the issue of production inefficiencies in Africa and argue that they

are partly an artefact of the methodologies commonly used to compute efficiency scores.

Conventional econometric methods to compute efficiency scores tend to assume that all the

12



units of observation can be compared to a single production frontier, irrespective of the agro-

ecological zone and the technology used. In this chapter, I relax this assumption slightly

by allowing more than one frontier. Doing this decreases the potential gains from tackling

inefficiencies by more than half.

In Chapter 3, my co-author and I re-examine the link between cereal diversity and agricultural

productivity. Similar to previous literature, we find a positive relationship between the two

variables. However, upon further exploration, we find that the positive effects are drastically

reduced when households who cultivate a low-productivity, high-value crop (teff) are excluded.

In our setting, it thus seems that the positive cereal-diversity relationship is partly driven by

yield differentials between crops rather than complementarity or a facilitation effect. This

also suggest that in situ conservation has potential for development, but only for certain crop

mixes.

Chapter 4 examines the impact of adopting Soil and Water Conservation (SWC) technologies

on labour outcomes in Ethiopia. I find that adopting SWC technologies leads to an increase

in adult and child labour. This is important for two reasons. First, being aware of these

impacts is important for policy-makers when deciding what policies to pursue. Second, for

researchers focusing on the estimation of the productive impacts of SWC technologies, this

paper suggests that using econometric methods that assume no changes in inputs as a result

of adoption may be problematic.

In chapter 5, my co-authors and I revisit a drought index that has recently been proposed in

the literature by Yu and Babcock (2010). This index is appealing in that it simultaneously

incorporates rainfall and temperature in a simple way. However, we argue that it is inadequate

in terms of its coverage of dry events, as it excludes all dry (below-normal rainfall) events that

occur in cold (below-average temperature) years (“cold droughts”). We therefore propose an

alternative index that has all the benefits of the previous index and extends the coverage of

events. We then show that ignoring the class of events not included in the original index can

lead to a severe underestimation of drought impacts on yields.

In chapter 6, using the index proposed in chapter 5, my co-authors and I focus on two

questions. The first question is concerned with the non-linear impacts of extreme rainfall

events (droughts and floods) and we use a method (fixed effects threshold model) that allows

13



us to establish data-driven ranges of precipitation where the marginal impacts of our rainfall-

temperature index are different. The second question assesses whether, overall, India has

become more resilient to drought over time. Concerning the first question, overall, we find that

negative impacts exist at low negative deviations from “normal rainfall (above the threshold

previously used by the Indian Government to define a drought). We also find that the results

differ sharply by agro-ecological zone and crop. Areas that are more arid tend to witness lower

impacts at low negative deviations from normal rainfall. However, at negative deviations

exceeding a certain threshold, impacts tend to be very large compared to more humid areas.

Similarly, crops that are more drought-resilient (millet, sorghum and maize) also tend to have

lower impacts at small negative deviations from normal rainfall, but exhibit very large impacts

at medium-large negative deviations from normal rainfall. With regards to the results over

time, we find that impacts of droughts decreased over time until the 1990s, but this trend has

been reversed since the beginning of the millennium. This pattern is broadly consistent across

crops (although less strong for rice) and agro-ecological zones. We argue that one possible

explanation for the increase in drought impacts since the millennium could be due to a change

in rainfall patterns. Specifically, we find that drought-affected districts have seen a decrease

in the rainfall received in the year preceding a dry year.

Chapter 7 summarizes the main findings and discusses the policy-implications of this disser-

tation as well as potential avenues for future research.
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Chapter 2

“Blatent” Heterogeneity:

Implications for Efficiency

Measurement and Policy. A case

study of Ethiopia.
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Abstract

African Agriculture is often seen as trailing behind the rest of the world and production

“inefficiencies”, widely documented in the literature, are often seen as a culprit of this under-

development. However, most studies assume a common technology across households, thereby

ignoring differences in the chosen technology. As a result, it is possible that: 1) Heterogeneity

may be mislabelled as inefficiency, with households being compared to a potentially inappro-

priate frontier; and 2) Different technologies may exhibit very distinct production elasticities.

Using data from the Ethiopian Rural Household Survey we use a two-class latent class stochas-

tic frontier model and compare this to conventional stochastic frontier models. We find that:

1) The overall efficiency scores increase from 0.61-0.62 in models that assume a common tech-

nology to about 0.79 in the latent class model. This means that the estimated potential gains

in cereal production decrease from 61%-64% to about 22%. The results suggest that poten-

tial gains from tackling “inefficiencies” in production are lower than previously estimated,

questioning the absolute importance of tackling inefficiencies as a policy priority. 2) Large

differences in the estimates of the input elasticities of production emerge across latent classes

supporting the idea that agricultural policies should account for technological differences.

JEL classification: Q10, Q12, Q18, Q50
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2.1 Introduction

Sub-Saharan Africa is often perceived to be lagging behind the rest of the world in terms of

its agricultural productivity and the trends in cereal yields in recent decades are often used

to highlight this point (Figure 2.1). Production inefficiencies are often seen as a culprit of

this underdevelopment and this paper seeks to understand whether part of this belief is an

artefact of the methodology used to measure inefficiencies. In particular, it seeks to explore

what are the implications of relaxing the underlying assumption of a common technology in

terms of the estimated efficiency scores and elasticities.

Figure 2.1: Cereal Yields (kg/ha) by region 1960-2013

Data source: World Bank - World Development Indicators

This seems particularly important given the importance of agriculture in Africa for its devel-

opment. Collier and Dercon (2014), for example, uphold that, if Africa is ever to experience

sustained levels of economic development, the productivity of its agricultural sector will have

to change “beyond recognition”; a difficult task, especially in an era marked by unprecedented

demographic pressure and increasing environmental concerns.

In such a context, doing more with less would seem like a priority. Thus, addressing the

seemingly large production inefficiencies of smallholder farmers in Africa, widely documented

17



in the literature, appears as an obvious policy choice. A meta-analysis of 442 studies of

efficiency in African agriculture reveals an average efficiency estimate of 0.68, with this number

being lower for cereal crops (Ogundari, 2014). The implications of this are far-reaching, and

would imply that, simply by using all inputs “efficiently”, an increase in agricultural output

in excess of 30 percentage points (or 47%) could be achieved, and this number is even higher

for cereal crops, which are often the cornerstone of government agricultural policy.

While studies reviewed in Ogundari (2014) differ widely in terms of both the output analysed

and the geographical region of the study, the overwhelming majority tend to assume a common

underlying production technology for every unit in the sample or sub-samples of interest. This

assumption is, in fact, typical of most models in Stochastic Frontier Analysis (Kumbhakar

and Orea, 2004). A case in point are the studies performed at the national level in a number

of African countries including Malawi (Tchale, 2009) and Ethiopia (Bachewe et al., 2011,

Mekonnen et al., 2013 and Bachewe et al., 2015), where at least one specification assumes a

common of the production function across the entire country1. This paper argues that doing

so has two practical implications of policy relevance.

First, different farming technologies have wildly different agricultural potentials and may re-

quire different management practices and inputs. However, most studies still assume a com-

mon technology, thus potentially providing a misleading representation of the true potential

of a certain technology in a given environment.

Secondly, assuming a common production function across farming systems and regions pro-

vides unique average estimates of the output elasticities of inputs. However, being able to

account for the heterogeneity in output elasticities of inputs is essential for a successful target-

ing of agricultural policy. For instance, Pender and Gebremedhin (2008) argue that irrigation

is an important complement to successful use of fertilizer. Therefore, moisture strained areas

may have a very different (generally lower) output elasticity of fertilizer than those which

have abundant irrigation.

The consequences of this are twofold. First, heterogeneity may be mislabelled as inefficiency

1In the case of Bachewe et al. 2011, however, in addition to the full sample estimates, the authors also
estimate stochastic frontiers for different sub-samples, including fertilizer users and estimates by agro-ecological
zones. However, these sub-samples still assume a common production frontier either across fertilizer users across
the country or a common production function in a given agro-ecological zone.
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(Kumbhakar and Orea, 2004) as households are compared to a frontier that may not be

the most appropriate for them. As a result the actual gains from tackling “inefficiencies”

in African agriculture may be misstated, and most likely, overstated. Secondly, disregarding

heterogeneity in production may, ironically, be an inefficient way of spurring efficiency. The

needs of farm households are likely to be diverse, given their natural environment and their

farming systems. However, the differentiated needs of farmers contrast sharply with the

unique set of elasticities often assumed in the literature.

This paper seeks to illustrate the effects of relaxing the assumption of a common produc-

tion function on efficiency measurement and elasticities. An application to Ethiopia will be

used and it seems pertinent for a number of reasons. First, Ethiopia has a high degree of

heterogeneity in both agro-ecological zones and production systems. Second, the Ethiopian

Government has identified agriculture as a pillar (Alemu et al., 2009) of its national devel-

opment strategy, implying this is a topic of great policy relevance. Finally, a wide range of

studies exist on Ethiopia and indicate a wide range of efficiency scores (0.37-0.86). Studies at

the regional scale tend to indicate substantially higher efficiency scores (0.65-0.86) compared

to studies performed at the national level (0.37-0.76). These results are material since more

localized studies in Ethiopia indicate a potential efficiency gains in output in the 16%-53%

range, as opposed to the 33%-270% (66%-117% in papers using the same dataset) range sug-

gested in the national studies. This discrepancy hints at the possibility that, in a number of

studies, heterogeneity may have been mislabelled as inefficiency.

The aim of this paper is to illustrate how relaxing the assumption of a unique technology may

alter both the efficiency and elasticity estimates obtained. In order to illustrate this point we

will use a translog production function and estimate a Latent Class Stochastic Frontier model

(Kumbhakar and Orea, 2004). A two-class model is estimated and the results obtained differ

substantially from the more conventional approaches both in terms of estimated elasticities

and computed efficiency scores.

There are three main findings which emerge from this paper. First, the estimate of the full

sample efficiency score increases by 27%-29% (17-18 p.p.) from 0.61-0.62 to 0.79. From a

policy-perspective this suggests that heterogeneity may have been mislabelled as inefficiency.

As a consequence, while inefficiencies remain sizeable and tackling inefficiencies may still be
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important, this, alone, is unlikely to lead to the dramatic changes in productivity required to

change the African agricultural sector “beyond recognition”.

Secondly, we also notice very different elasticities of inputs across classes, with this being

particularly stark in the cases of oxen, fertilizer and labour. This is telling of the heterogeneity

in farming in Ethiopia, with different technologies having very different potentials. In terms

of policy, at the micro level, the results suggest that there is a need for differentiated policies

which take into account the production technology.

Finally, upon inspecting the geographical class subdivision, we note that there is a stark sub-

division at peasant-association level, with the vast majority of households in a given peasant

association falling into one class. At the regional level, the distinction is not as clear but one

class seems to be composed mainly of households from the Highlands (in Tigray and Amhara),

whereas the second class mainly consists of households from Oromia and SSNP (Southern

Nations, Nationalities and Peoples) regions. As such, this method provides a data-driven way

to incorporate heterogeneity, without the need of atomizing studies to the village/peasant

association level or assuming blunt technological, regional or ecological divisions.

The remainder of the paper is structured as follows. Sections 2 and 3 provide a succinct

overview of the data, the approach and the methodologies. Section 4 presents the results.

Finally, section 5 concludes.

2.2 Agriculture in Ethiopia, farm efficiency and the case for a

Latent Class model

2.2.1 Agriculture in Ethiopia

The past and current importance of the agricultural sector in Ethiopia cannot be overstated,

with some of the darkest moments of Ethiopia’s recent history being closely associated with

the performance of the agricultural sector, as epitomized by recurrent famines in the 1970s

and 1980s, and more recently in 1999-2000 (Devereux, 2009, Headey et al., 2014). However, it

is also the sector that holds the key to spurring economic development and reducing poverty,
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accounting for 73% of total national employment (World Bank WDI, 2016). Moreover, ap-

proximately 90% of the poor rely on agriculture as a source of livelihood (Yu et al., 2011).

Cereals, in particular, are especially important crops, as highlighted by 2007 CSA (Central

Statistics Authority) estimates, which placed 70% of all area under agricultural production

under cereal production (Yu et al., 2011).

A major challenge will be to achieve increases in agricultural production and productivity

in era characterized by fast population growth, often perceived as being responsible for land

degradation (Taddese, 2001), and long-term declines in available per-capita agricultural area

(Jayne et al., 2003), which may limit the potential expansion of the smallholder agricultural

sector. The conjugation of both factors effectively implies not only that tackling the efficiency

in the production of cereals is crucial, but also that it will become increasingly important in

the foreseeable future.

2.2.2 Efficiency Analysis in Africa and Ethiopia: Motivating the use of a

Latent Class Model

Thus, unsurprisingly, the analysis of efficiency in Ethiopia has attracted the attention of a

number of authors. As will be explained below, the majority of the studies typically assume

a unique technology for the whole sample. When this is not the case, authors tend to either

divide the sample into blunt technological or regional divides.

However, in a country such as Ethiopia, which is characterized by widespread natural and

technological heterogeneity, an estimation which fails to account for heterogeneity may be

problematic and may lead to: 1) mislabelling heterogeneity as inefficiency, with households

being compared to a potentially inappropriate aggregate frontier; and 2) a single set of in-

put elasticity estimates, which may fail to portray the very diverse needs of farmers. As a

consequence, policies based on analyses which disregard heterogeneity may, ironically, be an

inefficient way to spur efficiency.

Intuitively, a stochastic frontier model assesses the efficiency, based on observable factors,

by computing a ratio of the position (the observed output) of a decision-making unit (a

household) relative to its computed production possibility frontier (the maximum achievable
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output for a given set of inputs). Simply put, a unique class implies that, conditional on the

quantity of inputs used, every household is compared to the same frontier. As a result, if there

are two (or more) different production “classes” with different input elasticities, they would

still be compared to a unique production frontier. Their position relative to the frontier would

be captured as inefficiency. In reality, however, the estimated inefficiency would be capturing

a mix of inefficiency as well as differences (heterogeneity) in the actual potential of both

groups. As a result, a certain household may be compared to an “inappropriate” frontier

and, thus, the computed inefficiency could be hiding heterogeneity. At the aggregate level,

the implications of this may have the effect of misrepresenting the feasible efficiency gains.

Secondly, as highlighted previously, a common production function may fail to represent the

underlying diversity of production technologies. Taken to the extreme, it would be hard to

argue against the fact that a household using a low quantity of inputs in drought-prone Tigray

would require very different policies from a household engaging in higher-input agriculture in

the more fertile areas of Oromia or Amhara. Not least because, agronomically, as pointed

out by both Pender and Gebremedhin (2008) and Gebregziabher et al. (2012), fertilizer

tends to perform more poorly in moisture-stressed environments in the absence of irrigation.

However, in an attempt to obtain important information that is relevant for policy-making

at the national level, it is not unusual in the technical efficiency literature in Sub-Saharan

Africa to assume a common production function across wide geographical areas where the

technologies may, or may not, be common. This type of analysis has been done in a number

of countries including Malawi (Tchale, 2009) and Ethiopia (Bachewe et al., 2011, Mekonnen

et al., 2013, Bachewe et al., 2015). Interestingly, these studies all tend to find relatively low

efficiency levels, in the 0.37-0.6 range.

Figure 2.2 shows the distribution of average technical efficiency scores found in twenty-nine

studies that estimated technical efficiency scores in Ethiopia and included cereals in their

analysis2, according to a number of characteristics of the study3. While the number of studies

2The list of studies is available in the Appendix of the thesis (Table 2A.1). I used the list of papers in
Ogundari (2014) as a starting point. Specifically, I focused on the papers focusing on cereals and Ethiopia.
Then, an additional search was made to expand the list of papers. A conscious effort was made to find papers
that used the ERHS, as the calculated efficiency scores are more likely to be comparable to the results presented
in this paper

3Figure 2.2 shows that 32 technical efficiency scores were used, despite there only being 29 studies. This
occurs because certain studies use more than one different methodology to compute the efficiency scores.
Consequently, in certain cases, more than one efficiency score was used per study.
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analised is too small to claim that a pattern emerges, in general, studies using a large sample

and performed at the national level tend to find lower efficiency scores than studies performed

at the sub-national4 level. Intuitively, an explanation for this could be that, in more confined

geographical areas, it is more likely that the same (or a similar) production function actually

holds for a given technology. This would also imply that it is more unlikely that heterogeneity

is captured as inefficiency.

Figure 2.2: Boxplots of estimated technical efficiency scores in Ethiopia

Source: Author’s calculations

Authors have recognized the importance of incorporating either the natural or the technolog-

ical heterogeneity. The difficulty lies in deciding how, how much, and what type of hetero-

geneity to incorporate in the analysis. In order to fully capture heterogeneity in an accurate

way, it would be tempting to atomize the study at the village or peasant association level.

Doing so would imply that one could assume with relative safety that the assumption of a

common production function holds (at least for a large portion of households). However, this

may also not be desirable. Such studies would likely suffer from methodological issues such

as sample size. And even when accurate measurements could be performed, each individual

study would bear little policy relevance. Moreover, the frontier of a given peasant associ-

ation may also not represent the actual maximum potential for households in this peasant

4Sub-national was defined as a study focusing on two or less regions of Ethiopia. However, in all but two
cases, sub-national studies focus only on one region.
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association. Perhaps there are indeed large inefficiencies and in such cases the frontier from

households in comparable villages using similar technologies may be more appropriate.

However, the other extreme of amalgamating the majority of the producers under one technol-

ogy, is likely to be policy-relevant in its geographical coverage, but perhaps less accurate and

less representative of the diverse groups in the sample. The key is then to find a trade-off be-

tween incorporating heterogeneity in such a way that that the results are still of relevance for

nationwide policy-making. The challenge is therefore to find groups of comparable households

which plausibly may share a similar frontier. Previous authors have addressed different types

of heterogeneity and, in general, they have used sample stratification to address this. Alemu et

al., 2009 and Bachewe et al., 2011, for instance, divide the sample by agro-ecological zones in

order to understand whether efficiency scores vary substantially across agro-ecological zones.

Other authors have also incorporated blunt technological heterogeneity in the form of users

vs. non-users of fertilizer (Bachewe et al., 2011) or irrigated vs. non-irrigated (Gebregziabher

et al., 2012) plots. However, such sub-divisions are also not devoid of criticisms.

One criticism is that sharp technological divides are unlikely to be an accurate description of

a technology as they define a technology uni-dimensionally. Different production technologies

tend to be characterized by the intensity of a number of different inputs including, but not

limited to, irrigation and fertilizer. Moreover, different farming technologies also tend to

require and/or allow for different management strategies by farmers. As such, it is important

to divide households into groups that share similar technologies in a way that recognizes that

technologies are multidimensional.

A second potential criticism relates to a sharp division by regions. Splitting a sample by

region has the advantage that, often, regional policies may be more similar within a region.

However, an issue with this is that natural potential is not perfectly proxied by regional

division. In our case, there are cases in which, although peasant associations are in the same

region, they do not belong to the same agro-ecological zone. As such, it is also important to

group households in a way that does not a priori impose sharp regional divides.

In order to capture the full picture, we would need to have sub-samples which are broadly

comparable in terms of their technology. Therefore, latent classes may present a more suitable

alternative to modelling heterogeneity. Latent class models are widely regarded as a more
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parsimonious way of representing heterogeneity than, for example, random-effects and fixed-

effects models (Brown et al., 2014). In practice, as explained in Brown et al., 2014, latent

classes split the population into a number of sub-samples, for which the same statistical

model applies, but for which parameters may differ. Intuitively, latent class models allocate

households who have different coefficients into different classes. This allows us to circumvent

the issue of the sharp, uni-dimensional technological division as well as sharp geographical and

ecological divides. This method therefore allows us to find a data-driven method to constitute

classes that are broadly comparable. We can then account for the different potentials by agro-

ecological zones by adding agro-ecological-year dummies.

However, it being a statistical method, the latent class model does not guarantee that the

households pooled together in one class are grouped together in a way that makes sense. As

such, after estimating the latent class model we will observe the spatial distribution of the

classes so as to assess whether the subdivision that it implies makes sense. We would expect

there to be a stark pattern at the peasant association level, where technologies are likely to be

similar. As a result, for most cases, we would not expect to see households of the same village

evenly split across classes. Instead, we would expect households in a given peasant association

to be allocated majoritarily to the same class. In addition to this, since agro-ecological zones

and regions capture, to some degree, natural potential and broad trends in agricultural policy,

we would also expect to see a pattern emerging by agro-ecological zone and regions.

There are a number of papers which apply latent class models in order to divide samples

into comparable groups. Alvarez and del Corral (2010) and Alvarez and Arias (2015) focus

on cattle farming and divide the sample into intensive and extensive cattle farming. The

authors use the average stocking rates and the average concentrate per cow as separating

variables. Barath and Fertho (2015) also use a latent class model to crop producing farms in

Hungary. Specifically, the authors use land size as the only explanatory variable determining

class allocation. Finally, Sauer and Paul (2013) also use a latent class model and focus on the

dairy sector in the EU. The authors focus on technical change and elasticities and use four

separating variables, namely labour, fodder, milk as a fraction of output and organic output

as a percentage of total revenue.

The approach used in this paper shares some similarities with these papers. For instance, in
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terms of the class allocation equation, the approach is quite similar to Sauer and Paul (2013),

as it considers a number of different functions. In terms of the estimation procedure, the

approach used in this paper is most similar to the approach used in Barath and Fertho (2015)

and in Alvarez and del Corral (2010).

However, the approach chosen here also differs from the approaches used in other papers in a

number of ways. First, by using a number of separating variables (such as in Sauer and Paul,

2013), this paper partly addresses the multidimensional aspect of agricultural technologies,

which is missing in Barath and Fertho (2015). Second, other papers have typically used

the Aigner model as a benchmark. However, they did not assess the latent class model

against another benchmark model which modelled unobserved heterogeneity. Third, most of

the literature using latent class models has focused on European agriculture, which is often

seen as relatively efficient. For instance, Barath and Fertho (2015) find an average technical

efficiency of 0.74 using the Aigner model, which is a higher efficiency score than the majority of

studies focusing on African agriculture. As such, it is likely that the overestimate of potential

gains is higher in the Ethiopian context.

In this paper we use five separating variables to account for different technologies. Specifically,

we use the average land size and the average intensity of three inputs (Fertilizer, Labour and

Draft power)5 as well as the average proportion of area under cereals over the sample period.

We believe that land size, together with the intensity with which inputs are used is a plausible

way to capture the production technology used6. Proportion of area under cereal production

is used in order to capture the degree of specialization or the importance given to cereals by

a given household. Averages, rather than levels are used to keep class membership fixed over

time (Brown et al., 2014).

Given the separating variables we use, there are a number of different possible class allocations.

It could result in an intensive vs. extensive dichotomy or it could result in classes which use

intensively different kind of inputs.

5Input intensity is constructed as the quantity of a given input divided by area under cereal production.
6Some systems are inherently more intensive in certain inputs.
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2.3 Data, Methodology and Empirical Specification

2.3.1 Data

All the data used in this study comes directly from the Ethiopian Rural Household Survey7

(ERHS, 2011) and all the waves from 19948. Only farmers that cultivate over 0.01 hectares

of cereals in every period were kept for the analysis. The 1989 wave was excluded as it is not

comparable to subsequent waves in terms of its geographical coverage (Dercon and Hoddinott,

2004).

The 1994 wave is composed of 1,470 households from 18 different peasant associations (15

different villages9), spread over 4 regions. As mentioned by Dercon and Hoddinnot (2004),

this sample is not nationally representative, or even fully representative of rural Ethiopia.

The sample can be viewed as broadly representative of households in non-pastoralist farming

systems as of 1994 (Dercon and Hoddinnot, 2004). Thus, when aggregated efficiency scores

are presented by region, these refer solely to the units used in the sample and is not necessarily

representative of Ethiopia. We use a slightly modified version of the agro-ecological division

used by Bachewe et al. (2011), summarized in Table 2.1. The only modification is that we

put together the Hararghe and the Arussi/Bale agro-ecological zones under “Other”. As a

result, we are left with four agro-ecological zones, namely the Northern Highlands, Central

Highlands, Enset producing areas and Other.

7These data have been made available by the Economics Department, Addis Ababa University, the Centre
for the Study of African Economies, University of Oxford and the International Food Policy Research Institute.
Funding for data collection was provided by the Economic and Social Research Council (ESRC), the Swedish
International Development Agency (SIDA) and the United States Agency for International Development (US-
AID); the preparation of the public release version of these data was supported, in part, by the World Bank.
AAU, CSAE, IFPRI, ESRC, SIDA, USAID and the World Bank are not responsible for any errors in these
data or for their use or interpretation.

8We use 6 waves, namely 1994, 1995, 1997, 1999, 2004 and 2009.
9As mentioned in Dercon and Hoddinott (2004), the largest village (Debre Berhan) is divided into four

parts.
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Table 2.1: List of Peasant Associations by AEZ

Agro-Ecological Zone Peasant Association

Northern Highlands Haresaw

Geblen

Shumsheha

Central Highlands Dinki

Debre Berhan Milki

Debre Berhan Kormargefia

Debre Berhan Karafino

Debre Berhan Bokafia

Yetmen

Turufe Ketchema

Enset Imdibir

Aze-Deboa

Adado

Gara-Godo

Do’oma

Other Sirbana Godeti

Korodegaga

Adele Keke

Source: Adapted and changed from Bachewe et al., 2011

The panel is unbalanced but we will use only the balanced sample for the remainder of this

paper. In order to highlight the differences in input-use across Ethiopia we provide summary

statistics for the full sample as well as by agro-ecological zone in Table 2.2. As shown in the

first two columns, the average farmer cultivates 1.18 hectares of cereals, allocate about 70%
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of the total area to cereals and has a yield of approximately 838 kgs/ha. The mean level of

fertilizer use on cereals is 52 kg.

However, there are stark differences across agro-ecological zones. As made clear by Table 2.2,

yields are substantially higher in the parts of Amhara and Oromia which are part of the

Central Highlands and Other agro-ecological zones. In addition, in these two agro-ecological

zones, households tend to use larger quantities of fertilizer and cultivate larger plots. On

the other hand, the Northern Highlands, which typically have lower amounts of rainfall have

lower yields and use virtually no fertilizer. As mentioned by Gebrehiwot et al. (2011), most

drought crises occurred in the Northern Highlands (which include all the peasant associations

in Tigray and one peasant association in Amhara). Finally, in the Enset agro-ecological zone,

smaller areas are devoted to cereals. Yields in this agro-ecological zone are higher than in the

Northern Highlands but lower than in the Central Highlands and “Other” areas.

Table 2.2: Summary statistics (by agro-ecological zone)

Full Sample N. Highlands C. Highlands Other Enset

Variables Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Cereal production (kg) 815.99 1001.73 364.31 442.05 1108.00 944.98 1381.11 1394.15 224.06 270.74
Cereal yield (kg/ha) 838.39 765.56 549.67 536.05 972.37 786.22 952.97 778.75 781.93 821.23
Cereal area (ha) 1.18 1.12 0.88 0.99 1.43 1.03 1.82 1.31 0.43 0.56
Cereal area (proportion) 0.70 0.26 0.86 0.20 0.71 0.22 0.78 0.19 0.46 0.28
Fertilizer used (kg) 52.88 82.31 3.51 12.20 80.87 87.43 88.16 109.41 19.88 28.58
Number of oxen 0.91 1.11 0.71 0.85 1.21 1.13 1.12 1.33 0.39 0.81
Household size 6.16 2.70 5.45 2.46 6.00 2.65 6.40 2.55 6.86 2.94
Tigray 0.12 0.33 0.59 0.49 0.00 0.00 0.00 0.00 0.00 0.00
Amhara 0.35 0.48 0.41 0.49 0.72 0.45 0.00 0.00 0.00 0.00
Oromya 0.31 0.46 0.00 0.00 0.28 0.45 1.00 0.00 0.00 0.00
SSNP 0.22 0.41 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

N 5034 1050 1830 1050 1104
N Households 839 175 305 175 184

N. Highlands refers to Northern Highlands. C. Highlands refers to central Highlands.

2.3.2 Methodology

Stochastic frontier model - Technical Efficiency, the Aigner et al. 1977 model and

Fixed Effects

The measurement of technical efficiency defines a ratio between the observed value against

the maximum potential (unobserved) value which can possibly be achieved by the unit of

observation, given its level of inputs (Fried et al., 2008). Thus, measuring efficiency inevitably

implies creating a frontier characterising the (unobserved) maximum quantity of output for
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a given level of inputs10.

In the Stochastic Frontier Model approach, first proposed independently and simultaneously

by Aigner et al. (1977) and Meeusen and van den Broeck (1977), the cannonical stochastic

frontier model can be algebraically represented by equation 2.1:

yit = exp{f(xit;β)} ∗ exp{εit}; εit = vit − ui (2.1)

This essentially means that the output of a given household at time t is a function of a

deterministic component f(xit;β) (determined by the input coefficients) which, in our case,

will be defined using a Cobb-Douglas functional form, and an error term εit. The error term

εit is itself composed of a noise term vit (normally distributed) - which accounts for factors

such as shocks due to variations in the performance of inputs or weather —and an inefficiency

term, ui —which is non-negative (following a half-normal distribution) (Coelli et al., 2005).

The degree of technical efficiency (TE) of a given unit can then be computed as the ratio

given in equation 2.2.

TE =
yit

exp{f(xit;β + vit)}
=
exp{f(xit;β) + vit − ui}
exp{f(xit;β) + vit}

= exp{−ui} (2.2)

Equation 2.2 states that the level of technical efficiency of household i is determined by the

ratio of its output to the output of a predicted output of a fully-efficient household using the

same input vector (Coelli et al., 2005).

In terms of estimation, an additional important methodological point is raised by Battese

(1997). In our sample, a large proportion of households have a zero quantity of two inputs

(fertilizer and oxen). Some authors circumvent this issue by adding a small number or omitting

the households with zero values altogether in order to obtain the elasticities. However, adding

a small number may bias the elasticities of the inputs. As such, for fertilizer and oxen (which

have a large number of zeros) we follow the method proposed by Battese (1997) to deal with

zero input values. The method consists of creating a dummy variable indicating whether the

household use the input or not and then replace zero-values by one before taking the logs. In

10Or, in the case of the input-oriented specification, a minimum level of inputs for a certain level of output.
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this way we can obtain consistent estimates. In addition to this, in order to capture common

changes in the dependent variable across time, we include year dummy variables. We opt

for year dummy variables over time trends since they do not impose a specific shape in the

relationship for the dependent variable over time. In addition, we interact the time dummy

variables with the agro-ecological zones in order to allow changes over time to be common to

a given agro-ecological zone, rather than the full sample.

Finally, in terms of the functional form, we opted for a translog specification. This specifi-

cation will be used throughout the rest of the paper and it can be algebraically denoted by

equation 2.3:

lnyit = α+
h=2∑
h=1

βdjd
∗
jit+

j=n∑
j=1

βjlnx
∗
jit+

1

2

j=n∑
j=1

k=n∑
k=1

βjklnx
∗
jit ∗ lnx∗kit+

t=6∑
t=1

a=4∑
a=1

βtadt ∗da+vit−uit

(2.3)

In Equation 2.3 we model the natural logarithm of total production (yit) as a function of

a constant (α). We use a translog as it is more flexible and we do not need to impose a

priori restrictions on the estimated technologies (Alvarez and Arias, 2015). One noticeable

difference between the function we estimate and the typical translog function is our treatment

of explanatory variables that have zero values (h). We follow the method proposed by Battese,

1997 and for those variable that have zero values (fertilizer and number of oxen), we add a

dummy variable (equal to one when the quantity of the input is zero, and zero otherwise).

For these variables x∗ is defined as x∗ = max(d∗jit, xjit). For the other variables (land size and

household size) there is no transformation of the variable and no dummy variable (i.e.x∗jit =

xjit). We also add a set of agro-ecological-zone dummies (da) interacted with time dummies

(dt), which allow non-parametric time-trends to vary across agro-ecological zones. The error

term of the equation is composed of a statistical noise parameter vit (i.i.d.) and inefficiency

ui, which follows a half-normal distribution. This model, also known as Pooled Stochastic

Frontier model, will be one of the “baseline” models against which the Latent Class model will

later be compared. Given that we are using a Translog specification, elasticities are estimated

using the following formula:
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Eij = βj + βjjlnxij +
n∑
k 6=j

βjklnxik (2.4)

This model will be one of our baseline specifications. In addition to this, we use a second

baseline specification which includes fixed effects and allows for time-invariant heterogeneity

across households (Fixed Effects) but not technological differences. The main idea behind the

True Fixed Effects model is that a part of the inefficiency is, in fact, capturing time-invariant

heterogeneity (Kumbhakar et al., 2015). A big weakness of this model, however, is that it is

hard to distinguish between time-invariant heterogeneity and inefficiency. As such, this model

is not fully consensual since a mix of inefficiency and heterogeneity may be captured and it

is not always clear which prevails, as it often depends on context. In our case, we use this

model to include a benchmark which incorporates heterogeneity in order to compare with the

latent class estimates. Equation 2.5 denotes the fixed effects specification used.

lnyit = αi+

h=2∑
h=1

βdjd
∗
jit+

j=n∑
j=1

βjlnx
∗
jit+

1

2

j=n∑
j=1

k=n∑
k=1

βjklnx
∗
jit∗ lnx∗kit+

t=6∑
t=1

a=4∑
a=1

βtadt∗da+vit−uit

(2.5)

Where the addition of the term αi, included in equation 2.5, represents time-invariant het-

erogeneity of household i.

Latent Class Model

In this class of models, the underlying assumption is that there are a number of groups for

which the same statistical model applies, but who may have different coefficients (Brown et

al. 2014). Following Orea and Kumbhakar (2004), we can represent the underlying model by

equation 2.6 :

yit = exp{f(xit;βc)} ∗ exp{vit|c} ∗ exp{−uit|c} (2.6)

Where the main difference between equations 2.6 and 2.1 is the fact that all the parameters
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are conditional on the class c to which a given household belongs. This can be represented

by equation 2.7:

lnyit = αc+
h=2∑
h=1

βcdjd
∗
jit+

j=n∑
j=1

βcjlnx
∗
jit+

1

2

j=n∑
j=1

k=n∑
k=1

βcjklnx
∗
jit∗lnx∗kit+

t=6∑
t=1

a=4∑
a=1

βctadt∗da+vit|c−uit|c

(2.7)

Equation 2.7 essentially states that the outcome of household i and time t also depends on

the class, c, to which the household belongs. This is the case because the vector of estimated

parameters for the time dummies and inputs are contingent on class, as are the noise and

inefficiency terms. We opt for AEZ-year dummy variables since we do not want to assume a

common evolution of the frontier over time for the full sample. Instead, we prefer to assume

a common evolution within an agro-ecological zone. The benefit of doing this is that the

agro-ecological zones are more likely to capture the potential of the technology in a given

environmental setting. The disadvantage of doing this, however, is that while we are not

imposing a strict ecological divide, we are imposing that there are at least enough households

in each class from all the agro-ecological zones so that the agro-ecological-zone-year dummies

can be estimated11.

As mentioned in Alvarez and Arias (2015), when using a latent-class model we need to consider

three likelihood functions. First, is the likelihood of a given household i at time t belonging

to class c. This can be denoted as:

LFict = g(yit, xit, θc) (2.8)

Where θc represents the sets of parameters for class c and g represents the likelihood function

of a production frontier.

Second, we need to consider the likelihood for houshold i conditional on class c. This can be

obtained as the product of the likelihood functions for each period:

11In the appendix (Tables 2A.3-2A.5) we show the results obtained when only time dummies are included
for each class.

33



LFic =
t=T∏
t=1

LFict (2.9)

Finally, there is the unconditional likelihood of household i which weighs the conditional

likelihood by class (equation 2.9) by the prior probabilities:

LFi =
c=C∑
c=1

LFic ∗ Pic (2.10)

where the prior probabilities (Pic) can be interpreted as the probabilities attached to the

membership in class c. These conditional probabilities which determine the class allocation

are then parametrized by a multinomial logit model (Khumbakar and Orea, 2004) where the

prior probability of individual i belonging to class c is given by:

Pic =
exp(γ + δcqi)

c=C∑
c=1

exp(γ + δcqi)

(2.11)

Where δc is a vector of estimated coefficients and qi a set of time-invariant coefficients (in our

case this refers to the average intensity of a given input over the sample period). The reason

why generally time-invariant variables are preferred over time-varying ones is because class

membership tends to be viewed as being fixed. Posterior probabilities can then be calculated

as follows:

Pric =
LFic ∗ Pic

c=C∑
c=1

Pic ∗ LFic
(2.12)

As previously stated, Pic denotes the prior class probability, P (i, t|c) denotes the probabilities

of observation i conditional on class c in a given period, t. Following this, the most likely

class c∗ is estimated and the inefficiencies ui|c are estimated. Mean efficiencies are estimated

in the form of Jondrow et al. (1982) (Besstremyannaya, 2011).
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2.4 Results

2.4.1 Full Sample

Each of the stochastic frontier models described in section 3 was then estimated and the

results are presented in Table 2.3. The first column shows the results for the Aigner et al.

(1977) model, the second column shows the results for the “True” fixed effects model (Greene,

2005) and the remaining columns show the results for the two-class Latent Class Model. In

the case of the latent class model, the maximum number of classes that could be disentangled

by the software was two (with the three-class model failing to converge in NLOGIT 5.0) .

As can be seen from the results from the first two columns of Table 2.3 (Pooled OLS and

Fixed effects) the estimates obtained from using either model are very similar. As can be seen

in Table 2.4, the Pooled OLS model and the Fixed Effects models both suggest elasticities

for Cereal Area, Oxen, Labour and Fertilizer are of approximately 0.50, 0.20, 0.17 and 0.03,

respectively, thus implying slightly decreasing returns to scale. In terms of the estimated

full-sample elasticities, as shown in table 2.5, we find average efficiency scores in the 0.61-

0.62 range. This number is consistent with previous studies (e.g. Mekonnen et al., 2013 )

focusing on Ethiopia, performed at the national level using the same dataset and using similar

dependent variables. The Pooled OLS and Fixed effects results are similar in terms of the

estimated coefficients and efficiency scores. However, the results emerging from the latent

class model differ substantially.
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Table 2.3: Results - Stochastic frontier model
Pooled OLS, Fixed effects and 2-class LCM

Pooled OLS F.E. Latent Class

Class 1 Class 2

Constant 5.810*** 6.685*** 5.262***

(0.116) (0.149) (0.185)

Area 0.476*** 0.500*** 0.295*** 0.729***

(0.040) (0.026) (0.058) (0.056)

Oxen 0.553*** 0.517*** 0.069 0.780***

(0.132) (0.095) (0.170) (0.182)

Household size -0.102 -0.174*** -0.066 0.039

(0.082) (0.049) (0.099) (0.116)

Fertilizer -0.306*** -0.393*** -0.200*** -0.261***

(0.042) (0.262) (0.051) (0.067)

Area sq -0.074*** -0.069*** -0.113*** -0.017

(0.014) (0.009) (0.021) (0.020)

Oxen sq 0.115 0.140 0.293* -0.158

(0.130) (0.093) (0.166) (0.173)

Household size sq 0.158*** -0.195*** 0.209*** -0.013

(0.053) (0.033) (0.059) (0.078)

Fertilizer sq 0.141*** 0.169*** 0.099*** 0.099***

(0.012) (0.008) (0.014) (0.020)

Area * oxen 0.052 0.0485* -0.027 0.126***

(0.037) (0.027) (0.055) (0.048)

Area * Household size 0.021 0.019 0.092*** -0.046

(0.021) (0.014) (0.026) (0.030)

Area * Fertilizer -0.022*** -0.030*** -0.001 -0.024**

(0.006) (0.004) (0.008) (0.011)

Oxen * Household size -0.084 -0.068 0.055 -0.189**

(0.065) (0.046) (0.074) (0.096)

Oxen * Fertilizer -0.092*** -0.095*** -0.068*** -0.048**

(0.014) (0.011) (0.019) (0.020)

Household size * Fertilizer 0.011 0.014* -0.023* 0.048***

(0.011) (0.007) (0.013) (0.017)

Dummy fertilizer -0.377*** -0.483*** -0.389*** -0.232*

(0.068) (0.041) (0.076) (0.119)

Dummy oxen -0.014 -0.017 -0.092*** -0.064

(0.027) (0.019) (0.031) (0.039)

Year-AEZ FE Yes Yes Yes Yes

Selection equation

Constant 1.605**

(0.782)

Av. Proportion cereal -2.549***

(0.800)

Av. Area -0.490***

(0.188)

Av. Labour intensity -0.029**

(0.012)

Av. Fertilizer intensity 0.022***

(0.003)

Av. Oxen intensity -0.403***

(0.117)

Prior Probabilities 0.539 0.461

Variance parameters

Lambda 1.171*** 1.013** 2.003*** 0.802***

(0.042) (0.033) (0.185) (0.216)

Sigma 0.859*** 0.888*** 0.781*** 0.716***

(0.000) (0.009) (0.023) (0.041)

AIC/N 2.086 2.175 1.888

Log Likelihood -5207.616 -4593.615 -4662.897

All the variables are in natural logarithms with the exception of the dummy variables. Number in

parentheses denote standard errors. *, **, *** denote statistical significance at the 10%, 5% and

1% level, respectively.
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Table 2.4: Input elasticities Translog

Input OLS FE Class 1 Class 2

Variables Mean S. D. Mean S. D. Mean S. D. Mean S. D.

Land 0.50 0.10 0.50 0.11 0.50 0.13 0.64 0.06

Oxen 0.20 0.19 0.19 0.19 0.04 0.15 0.31 0.17

Labour 0.17 0.09 0.17 0.11 0.20 0.15 0.07 0.10

Fertilizer 0.03 0.29 0.02 0.34 0.04 0.19 -0.01 0.20

S. D. refers to Standard deviations

Table 2.5: Summary statistics - Efficiency scores by agro-ecological zone

All

Mean S.D. Min. Max.

Pooled OLS 0.61 0.13 0.15 0.90

Fixed Effects 0.62 0.09 0.21 0.87

LCM (2 classes) 0.79 0.10 0.20 0.96

Northern Highlands (N=175)

Mean S.D. Min. Max.

Pooled OLS 0.60 0.13 0.23 0.88

Fixed Effects 0.62 0.10 0.27 0.83

LCM (2 classes) 0.81 0.08 0.39 0.94

Central Highlands (N=305)

Mean S.D. Min. Max.

Pooled OLS 0.61 0.12 0.15 0.86

Fixed Effects 0.63 0.08 0.23 0.81

LCM (2 classes) 0.80 0.10 0.20 0.94

Others (N=175)

Mean S.D. Min. Max.

Pooled OLS 0.61 0.12 0.18 0.90

Fixed Effects 0.62 0.09 0.26 0.87

LCM (2 classes) 0.79 0.10 0.28 0.96

Enset (N=184)

Mean S.D. Min. Max.

Pooled OLS 0.61 0.13 0.15 0.87

Fixed Effects 0.62 0.10 0.21 0.84

LCM (2 classes) 0.77 0.12 0.29 0.96

S. D. refers to standard deviations. Min. refers to the

minimum value. Max. refers to the maximum value
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Table 2.6 provides summary statistics for a number of variables by class membership. One

noticeable factor is that input intensities differ significantly across classes. For instance,

households in class one tend to use fertilizer a lot more intensively, cultivate less land (1 ha,

on average) and use labour slightly more intensively. The intensity of use of oxen, however,

is very similar in both classes. In this paper we thus interpret households in class one as the

households using more intensive agriculture (especially in fertilizer) and those in class two as

households engaged in more extensive (or lower-input) agriculture12.

Table 2.6: Summary statistics by latent class (2 class translog)

Full sample Class 1 Class 2

Variables Mean S. D. Mean S. D. Mean S. D.

Cereal production (kg) 815.99 1001.73 940.31 970.88 701.62 1016.12

Cereal yield (kg/ha) 838.39 765.56 1074.61 848.42 621.09 603.91

Cereal area (ha) 1.18 1.12 1.00 0.91 1.34 1.27

Cereal area (proportion) 0.70 0.26 0.63 0.27 0.77 0.25

Fertilizer used (kg) 52.88 82.31 69.74 95.08 37.37 64.73

Number of oxen 0.91 1.11 0.83 1.09 0.98 1.12

Household size 6.16 2.70 6.40 2.86 5.93 2.53

Labour intensity (people/ha) 17.01 42.54 18.27 30.01 15.86 51.41

Fertilizer intensity (kg/ha) 57.72 112.83 91.46 148.68 26.69 45.85

Oxen intensity (oxen/ha) 1.20 2.88 1.19 2.46 1.22 3.23

Tigray 0.12 0.33 0.00 0.05 0.24 0.42

Amhara 0.35 0.48 0.27 0.44 0.42 0.49

Oromya 0.31 0.46 0.43 0.50 0.20 0.40

SSNP 0.22 0.41 0.30 0.46 0.14 0.35

Northern Highlands 0.21 0.41 0.12 0.33 0.29 0.45

Central Highlands 0.36 0.48 0.35 0.48 0.38 0.48

Other 0.21 0.41 0.23 0.42 0.19 0.39

Enset 0.22 0.41 0.30 0.46 0.14 0.35

N 839 402 437

Proportion 100.00 47.91 52.09

S. D. refers to Standard deviations. N refers to the number of households.

12Class two incorporates both extensive farms as well as low input households in the Northern Highlands.
As such it includes both extensive agriculture and low-input agriculture.
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The elasticities also appear to differ substantially across classes with households in the in-

tensive class (class one) displaying higher elasticities of fertilizer and labour, whereas the

extensive households (class two) display higher elasticities of land and oxen. With respect to

the estimated efficiency scores, the two-class stochastic frontier model also highlights a very

different pattern. As shown in table 2.5, while the efficiency scores estimated using our base-

line specifications are in the 0.61-0.62 range, the average efficiency score estimated using the

two-class LCM is 0.79. As such, while the first two methods would suggest that using inputs

efficiently could potentially lead to increases in production approximately in the 61%-64%

range, the two-class LCM estimates a much more modest potential increase of about 27%.

As highlighted by table 2.5, this pattern is quite similar across agro-ecological zones with the

baseline estimates all in the 0.60-0.63 range and the two-class LCM efficiency estimates in the

0.77-0.81 range.

In order to assess whether the class subdivision is plausible, apart from the differences in sum-

mary statistics, we provide a summary of the geographical location of households according

to their class. Table 2.7 summarizes the number and proportion of households from a given

village (peasant association) in a given class. The most salient feature of the table is that in

all but one case (Shumsheha) 80% or more of the households in a village are allocated to the

same class13. Intuitively, we would expect the majority of households in a given village to

use similar technologies. As such, a stark subdivision at the village level is to be expected.

Moreover, as shown by Table 2.6, there is also a relatively stark pattern emerging at the

regional level, with the first class being predominantly (73%) composed of households from

Oromia and the SSNP regions. In contrast, class two is predominantly (66%) composed of

households of households from Tigray and Amhara. The subdivision by agro-ecological zone,

however, is a lot less stark. This can be explained by the inclusion of year-agro-ecological

zone dummy variables which forces households from each agro-ecological zone to be included

in each class14. However, we believe that assuming a common trend for all households in

a class without taking into account agro-ecological setting is not defensible, especially when

cropping patterns and environmental conditions differ so widely by region.

13The four peasant associations in Debre Berhan are in the same village (Hoddinot and Dercon, 2004). In
10 out of 15 cases this percentage exceeds 90%.

14In the Appendix (Tables 2A.2 -2A.5) we present the results of a model which does not include AEZ-year
dummy variables and the division by agro-ecological zone is a lot starker. In terms of the estimated efficiency
scores do not change substantially, with average efficiency scores increasing from 0.55-0.57 (baseline) to 0.76
(LCM) for the full sample (Table 2A.4)
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Table 2.7: Class allocation by peasant association (2 class lcm translog)

Full sample Class 1 Class 2

Peasant Association N N Proportion N Proportion

Haresaw 51 0 0.00 51 100.00

Geblen 53 1 1.89 52 98.11

Dinki 46 1 2.17 45 97.83

Yetmen 36 32 88.89 4 11.11

Shumsheha 71 49 69.01 22 30.99

Sirbana Godeti 60 56 93.33 4 6.67

Adele Keke 36 34 94.44 2 5.56

Korodegaga 79 1 1.27 78 98.73

Trirufe Ketchema 84 82 97.62 2 2.38

Aze Deboa 51 47 92.16 4 7.84

Adado 28 0 0.00 28 100.00

Gara Godo 73 69 94.52 4 5.48

Doma 32 5 15.63 27 84.37

Debre Berhan Milki 45 8 17.78 37 82.22

Debre Berhan Kormargefia 47 7 14.89 40 85.11

Debre Berhan Karafino 27 5 18.52 22 81.48

Debre Berhan Bokafia 20 5 25.00 15 75.00

Total 839 402 47.91 437 52.09

N refers to the total number of households. The numbers in the proportion column were com-

puted by dividing the number of households from a given peasant association in a given class

by the total number of households from that peasant association in our sample. All proportions

are rounded to two decimal places.

2.5 Conclusion

Currently, there is somewhat of an incoherence in the policy discourse which often tends to

discourage a “one-size-fits-all” approach and the way in which the Stochastic Frontier tends

to be applied. While the policy discourse recognizes substantial heterogeneity across African

smallholders, the way in which stochastic frontiers are often estimated tends to assume a

common technology among all the units in the sample or sub-sample of interest.
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This paper, through disaggregating technology by latent classes and computing separate pro-

duction functions, provides evidence suggesting that a large proportion of the “inefficiency”

found in the efficiency literature focusing on African countries may be partially capturing a

large degree of heterogeneity in both the natural endowments, production technologies and

their respective interactions. It then showed that slightly relaxing the common production

technology assumption by allowing two groups, tended to produce groups of households which

differed substantially in their input choice. In addition to this, the computed efficiency scores

also increased substantially.

In particular, unweighted average efficiency scores in Ethiopia increase from around 0.61-0.62

to 0.79 in our preferred set of results15. In practice, it implies that the potential gains from

tackling inefficiencies are reduced from about 61%-64% in the baseline scenario to approxi-

mately 27% in the two-class latent class specification. In addition to this, the analysis also

highlighted the fact that elasticity estimates differ considerably across different classes.

The implications of this are far-reaching. First, from a policy perspective, the efficiency gains

achievable from tackling the inefficiencies in input use may have been substantially overstated.

As a consequence, this may imply that simply tackling inefficiencies in production is unlikely

to change African Agriculture “beyond recognition”. Second, it suggests that technological

heterogeneity should be mirrored in agricultural policy, since elasticities differ substantially

depending on the technology used. Households engaged in more intensive agriculture typically

have larger elasticities of fertilizer and labour whereas households engaged in more extensive

(lower-input) agriculture tend to have higher elasticities of land and oxen.

Moreover, this is unlikely to be an issue confined to Ethiopia and, hence, this could have far-

reaching implications for agricultural policy in Africa. Therefore this provides two potential

avenues for future research. The first would be to investigate whether the pattern found in

this paper seems to be found in other African countries. Secondly, given the narrow focus

of this paper, one limitation is that it ignores a number of important institutional factors

such as human capital and institutions. It would be interesting to understand whether these

affect class allocation and whether they have different effects on production, depending on

the technology used.

15Increases from 0.55-0.57 to 0.76 in our alternative specifications in the appendix
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Chapter 3
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Abstract

Recently, a number of studies suggest that, at the micro level, cereal diversity positively affects

mean yields and decreases the variability of yield. However, most analyses: 1) focus on very

specific sub-regions, 2) use cross-sectional data; and 3) do not focus on the mechanism driving

the effect. In this paper we revisit the link between cereal diversity and production using data

from the Ethiopian Rural Household Survey. To this end, we use a mix of parametric and

semi-parametric regression techniques.

For the full sample, we find a positive and significant effect of greater cereal diversity on

cereal production. However, this positive effect seems to be driven by specific agro-ecological

zones and by households who cultivate one crop in particular (teff), with these results being

consistent using both parametric and semi-parametric methods. Overall, these findings indi-

cate that 1) the scope for cereal diversity to drive increases in output may be limited, and 2)

differences in potential yields from cereals in the crop mix seem to be part of the explanation.

As a result, alternative conservation solutions may be needed.

JEL classification: Q16, Q57
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3.1 Introduction

The effect of crop diversity on agricultural production remains somewhat of a conundrum

in the Agricultural Economics literature, with recent micro-evidence at odds with historical

trends in agricultural development. However, the importance of understanding this link re-

mains important, as it speaks directly to the productivity of agricultural systems and their

resilience to climate and weather. This implies that crop diversity may have an important

role to play in terms of food security. However, whether increases in crop diversity represent

a viable development strategy capable of delivering sustained productivity gains remains an

open question.

Recently, a number of microeconomic studies seem to suggest a “win-win-win” situation in the

form of increased productivity, reduced volatility of output and greater in situ conservation

(Di Falco and Perrings 2003, Di Falco and Chavas 2006 and Di Falco et al. 2007). These

findings, however, contrast sharply with historical trends in agricultural development, which

appear to be driven by increasingly mechanized, specialized and input-intensive agriculture.

This trend has been epitomized, at different periods in history, by cases such as the United

States, Europe, and more recently, by China and India (Borlaug 2000, Evenson and Gollin

2003).

As such, a “micro-macro” paradox seems to have emerged. Studies at the farmer level seem

to suggest that crop diversity positively affects agricultural productivity. At the macro level,

however, increases in productivity in the most recent success stories seem to have been driven

by less diverse systems. This current state of affairs is likely to be puzzling for policy-

makers and is particularly important in the African context. According to Collier and Dercon

(2014), the current African experience is unlikely to lead to the radical transformation of the

agricultural sector, which could spur broad-based economic development. This implies that

alternatives to the current model have to be sought.

Consequently, this paper looks at cereal diversity and seeks to understand whether an increase

in cereal diversity represents a viable alternative leading to sustained productivity gains.

Specifically, we focus on two questions. First, we test whether increases in crop diversity lead

to productivity increases. Second, whether these effects can be explained by regional patterns
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and/or by a specific crop, indicating a composition effect.

In order to address these questions, we use data from the Ethiopian Rural Household Survey

(ERHS) and use a mix of parametric and semi-parametric methods. Addressing this question

in the context of Ethiopia using panel data is relevant since 1) agriculture has been selected to

be an engine of socio-economic transformation (World Bank, 2007a); 2) much of the previous

literature on crop diversity has focused on Ethiopia (Di Falco and Chavas, 2009; Di Falco et

al., 2007; Di Falco et al., 2010; and Di Falco and Chavas, 2012a); and 3) the use of panel data

is likely to mitigate concerns surrounding results from previous work.

Overall, two main findings emerge from this paper. First, consistent with previous literature,

we find a sizeable average positive effect of crop diversity using both parametric and non-

parametric methods. However, we also find this positive effect is found in a restricted set of

agro-ecological zones. Second, we test whether this relationship could be driven by differences

in the potential yield of the cereals in the crop mix. One of the cereals, teff, is notoriously a

low-productivity crop (Vandercasteelen et al., 2013) and it could be driving the crop diversity

results. Our results show that, when teff producers are excluded, the effects of crop diversity

on production become noticeably smaller and insignificant in all parametric results. A similar

conclusion is drawn from the semi-parametric results.

Overall, these results suggest that the positive diversity-productivity link could be weaker than

suggested previously. Consequently, the scope for production gains from higher levels of crop

diversity may be lower than previously thought. Furthermore, our results also suggest that a

compositional effect, rather than the traditional complementarity and facilitation effects found

in the ecological literature, could partly explain the positive relationship found in previous

studies. Taken together, this questions the potential of increasing cereal diversity as a means

to increase cereal productivity.

The rest of this paper is structured as follows. The next section provides a brief overview of

the literature on farm biodiversity. Section three discusses the channels through which crop

diversity may impact agricultural productivity. Section four discusses our measurement of

crop diversity. Section five describes the data and the methodology used. Section six presents

the results and section seven concludes.
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3.2 Agriculture in Africa and Ethiopia

The current African experience promoting smallholder agriculture has not yet led to the

productivity increases that will change African agriculture beyond recognition (Collier and

Dercon, 2014). According to the authors, a radical transformation of the agricultural sector is

deemed crucial for successful economic development. However, this transformation will have

to occur in a very challenging environment defined by rapid demographic pressures as well as

the looming threat of climate change. According to the UN world population prospects 2015,

over half of the global population increase will occur in Africa. This, allied to potentially

large losses arising from climate change (Schlenker and Lobbel, 2010), will make for a very

challenging setting in which increases in productivity will need to happen.

In Ethiopia, the importance of the agricultural sector for its economic development is well

recognized. As explained by Dercon and Zetlin (2009), since the early 1990s, the Ethiopian

Governments growth strategy made the agricultural sector a pillar of its national develop-

ment strategy, under the agricultural development-led industrialization (ADLI). This policy

focused primarily on smallholders and, according to Rahmato (2008), sought to increase crop

production through the provision and distribution of a number of modern inputs (including

seeds and fertilizer) and training.

As a result, our sample period (1994-2009) was characterized by a rapid expansion in cereal

area cultivated (World Bank 2015) and a strong growth in terms of agricultural output.

However, the growth in cereal yields was more modest (World Bank 2007a and World Bank

2007b) and this was partly attributable to both land degradation and weather variability,

which were found to have non-negligible effects. Since 2008, however, national-level data

shows a significant increase in cereal yields from 1.45 tonnes/ha in 2008 to 2.33 tonnes/ha in

2014.

Currently, the agricultural sector remains vital. In 2013, Agriculture still accounted for about

three quarters of total employment (73%) and 41% of GDP (World Bank, 2015). Looking

forward, one key debate relates to whether production systems should be geared towards the

traditional pattern of input-intensification or whether systems that are more diverse should

be promoted (higher agro-intensification). This debate hinges directly on the link between
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increased crop diversity and production.

3.3 Crop diversity and productivity

In recent years there has been an increase in the number of studies that have looked at the link

between various forms of biodiversity, including cereal diversity, and agricultural outcomes.

In general, crop diversity may be beneficial for agriculture and development for a number of

reasons.

From an ecological perspective, higher levels of on-farm crop diversity potentially represent

an effective way of preserving plant genetic resources (Di Falco 2012). However, there are

also a number of channels through which it may directly affect crop production directly.

The first such channel is through a sampling effect. In essence, a sampling effect implies

that the higher the species richness (i.e. higher number of species), the larger the probability

that the key species with the highest effects on the performance are present in the ecosystem

(Tilman et al., 2005; Di Falco, 2012).

A second channel, as explained in Hooper et al. (2005) relates to a potential complementarity

between crops. Different species use different resources at different times. Therefore, com-

bining species which have different resource patterns may allow for such a complementarity

effect, which is likely to result in a more efficient use of resources over time. As a result, in

cases where resources are a limiting factor to growth and productivity, increasing the richness

of the ecosystem could lead to greater productivity.

A third channel relates to a facilitation effect. This effect refers to positive interactions

between species. An example of this effect can be found if, for example, one species is capable

of providing a critical resource for other species or alleviate harsh environmental conditions

(Hooper et al., 2005; Di Falco, 2012). According to Hooper et al. (2005) the complementarity

and facilitation effects are two of the main reasons leading to overyielding (i.e. yields from a

mixture of crops exceeding those of monoculture).

From an economic perspective, there are also a number of reasons why higher levels of agro-

biodiversity may be desirable. As argued by Baumgärtner (2007), biodiversity has the poten-
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tial to act as a natural insurance for risk-averse farmers, thus potentially being a substitute

for financial insurance (Baumgärtner, 2007; Baumgärtner and Quaas, 2008; and Quaas and

Baumgärtner, 2008). Moreover, as argued by Di Falco (2012), it allows farmers to produce

and market their crops multiple times a year. This has the potential to hedge farmers against

crop price volatility, as well as provide a smoother inflow of income.

Empirically, the majority of the evidence supporting increased crop diversity as a key source

of productivity comes from studies in ecology performed in an experimental setting. Con-

sequently, the experimental results need not translate to non-experimental settings where

conditions are likely to differ substantially. This has led to the productive importance of

biodiversity in agriculture being increasingly studied in non-experimental settings. The over-

arching results of this literature, however, seem to broadly corroborate the overall findings

from the agroecology literature. The vast majority of studies focusing at the household level

tend to find non-negligible economic gains from more diverse systems, both in the form of

increased mean yields and reduced output volatility.

Evidence from Asia (Smale et al., 1998; Smale, 2008) as well as Europe (Di Falco and Chavas,

2006; Di Falco and Perrings, 2003; Di Falco and Perrings, 2005) all seem to suggest that

higher levels of crop diversity are generally correlated with higher yields and lower variance in

yields and/or reduced probability of crop failure. An additional study by Omer et al. (2007),

which uses a stochastic frontier model approach, finds that higher levels of biodiversity are

associated with a higher frontier and reduced inefficiency in the case of the UK.

In Africa, Ethiopia has probably been the most studied country and most of the research has

focused on the Highlands of Ethiopia. In Tigray, Di Falco and Chavas (2009), Di Falco et

al. (2007) and Di Falco and Chavas (2012a) all find that, on average, higher levels of crop

diversity have a net positive effect on productivity. However, Di Falco and Chavas (2012a)

highlight that there may be different sources of value for diversity. In particular, they find a

positive complementarity effect (positive synergies between crops) and a negative convexity

effect (scale effect). The latter provides an incentive to specialize. Overall, the authors still

find a positive value of crop diversity. In the Amhara region, Di Falco et al. (2010), Di

Falco and Chavas (2012b) and BangwayoSkeete et al. (2012) all find a positive effect of crop

diversity on mean yield. In addition to this, Di Falco et al. (2010) also finds that this effect
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tends to be stronger when rainfall is lower.

In sum, most studies seem to suggest a positive effect of greater crop diversity on produc-

tion, productivity and reduced variability. Moreover, the estimated effects also tend to be

large, with Di Falco and Chavas (2012b), for example, finding an estimated effect of crop

diversification amounting to approximately 17% of revenue for an average farm.

However, despite recent empirical evidence, a number of gaps remain in this literature. First,

the majority of the literature focusing on Ethiopia has focused on the Ethiopian Highlands.

As a result, findings may not be transposable to other areas of Ethiopia. Since the Ethiopian

Highlands tend to be quite moisture-strained, it may be the case that this reduces the ef-

fectiveness of other inputs1, thus favouring increasing crop diversity as an alternative. As

a result, whether crop diversity yields similar gains across agro-ecological settings is still an

open question. Secondly, previous research studying the cereal diversity-productivity link

in Agricultural Economics does not convincingly answer why a positive relationship exists.

Beyond the marginal effects, few studies have tried to disentangle the underlying mechanism

driving this link. This is not a trivial question since policy implications will differ depending

on whether the result is driven by one specific crop (a “sampling” effect) or whether it is

driven by interactions between cereals (“complementarity” and “facilitation effects”). Previ-

ous typically does not test for the possibility that results could be driven by the inclusion of

particular high- or low- performing crop/subspecies of a crop. We believe that our empirical

specification, explained in section five, partly addresses some of these concerns.

3.4 Defining cereal diversity

Quantifying diversity is complicated and, so far, no universal definition has been agreed upon.

A number of different definitions have been proposed (Baumgärtner, 2006) but different defi-

nitions are used in different contexts, not least because different professions value biodiversity

for different reasons (see Baumgärtner (2006) for a review of the debate). For our purpose,

the most common indices used include a simple count measure (used in Di Falco et al., 2010),

1Gebregziabher et al. (2012) find that, in the Tigray region, the yield response to chemical fertilizer is
poor under rain-fed conditions since it is a moisture-strained environment.
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the Simpson index and the Shannon Index (used by Di Falco and Chavas, 2008). In this

paper, we opt for the use of the Shannon Index of cereal diversity for three reasons.

First, as argued by Di Falco and Chavas (2008), it is possible that a simple index of species

richness, which fails to control for evenness, will lead to a “sampling effect”. As a result, the

diversity index may capture the performance of a single species (crops in our case) rather

than the effect of diversity. However, since the Shannon index controls for both richness and

evenness this problem becomes less severe.

Secondly, the Shannon index is likely to be more suitable than the Simpson index in this

context, as it has been found in the literature that the Simpson index could be biased towards

the dominant species (Magurran, 1988; Di Falco and Chavas, 2008).

Thirdly, data for constructing alternative indices of cereal diversity were not available to

build the index proposed by Weitzman (1992), which would be suitable. The index proposed

by Weitzman (1992) is a measure of genetic distance. However, the data required for the

construction of such an index is simply not available in this dataset.

There are three limitations of the Shannon index in this application. First, while we observe

different cereals, we do not observe different sub-species of the same crop2. This was shown

to be important in a number of studies, including Di Falco and Chavas (2008), Di Falco et al.

(2007) and Di Falco and Chavas (2006). This is an issue we are not able to address given our

data. We only focus on crop diversity (across different crops), as was done in Di Falco et al.

(2010), Bangwayo-Skeete et al. (2012) and Perrings and Di Falco (2003). A second limitation

is that our Shannon index is built at the household level. As a result, it is possible that,

in some cases, a non-negative Shannon index captures two monocultures in separate plots3.

Finally, a third limitation is that we look at the Shannon index for cereals only. Cereals

has been the most common focus of this literature, whether exploring crop-specific diversity,

cereal-specific diversity or through count indices where cereals account for the majority of the

crops cultivated. However, measuring other types of crop diversity could potentially lead to

different effects on crop production.

2With the exception of teff, where we observe both white and black teff.
3However, in our data we do not have information about the location of different plots. As such, while it

could be that the two monocultures are in plots very far away from each other, it could also be that they are
located in plots adjacent to each other. As such, it is not clear whether building the Shannon index at the plot
level would be preferable.
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As in Di Falco and Chavas 2008, we calculate the cereal Shannon index as follows:

SI = −
∑
i

pi ∗ log(pi) (3.1)

Where pi represents the proportion (of cereal area) allocated to cereal crop i. Given that we

include six cereals in the analysis, the Shannon index has a theoretical range between 0-1.84.

3.5 Data and methodology

3.5.1 Data

The dataset used is the Ethiopian Rural Household Survey (ERHS 2011)5 and all waves since

1994 are used. The 1994 wave is composed of 1,470 households from 18 different peasant

associations (15 different villages), spread over four regions. The location, characteristics and

the agro-ecological zone breakdown of these peasant associations can be found in figures A1

and A2 and Table A1, respectively (Appendix A)6. However, it is important to mention that

this sample is not nationally representative (Dercon and Hoddinott, 2004).

As mentioned in Dercon and Hoddinnot (2004), attrition between 1994-2004 is estimated at

13%. In addition, only observations that cultivate cereals in at least two consecutive periods

were used in our sample. This choice was driven by the needs of the semi-parametric model.

As a result, the sample in this paper consists of 1280 individuals (5804 observations), for

which a table of summary statistics (Table 3.1) is presented below.

4A household cultivating two cereals in equal proportions will have a Shannon index of 0.69. If three cereals
are cultivated in equal proportions, the Shannon index will take a value of approximately 1.1.

5These data have been made available by the Economics Department, Addis Ababa University, the Centre
for the Study of African Economies, University of Oxford and the International Food Policy Research Institute.
Funding for data collection was provided by the Economic and Social Research Council (ESRC), the Swedish
International Development Agency (SIDA) and the United States Agency for International Development (US-
AID); the preparation of the public release version of these data was supported, in part, by the World Bank.
AAU, CSAE, IFPRI, ESRC, SIDA, USAID and the World Bank are not responsible for any errors in these
data or for their use or interpretation.

6The agro-ecological zone breakdown was adapted from Hoddinott et al. 2011. Dercon and Hoddinott
2004 is the source for the map and site characteristics.
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Table 3.1: Summary Statistics

All N. Highlands C. Highlands Other Enset

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Cereal Production (kgs) 810.12 988.32 343.69 414.28 1073.79 946.29 1260.72 1300.63 256.18 385.94

Cereal Yield (kg/ha) 806.22 753.13 518.14 518.58 922.89 766.19 972.23 799.23 714.35 795.18

Cereal Area (ha) 1.20 1.09 0.87 0.95 1.43 1.01 1.64 1.25 0.53 0.65

Shannon index 0.49 0.41 0.45 0.43 0.50 0.34 0.77 0.37 0.13 0.26

Number of oxen 0.87 1.10 0.64 0.83 1.20 1.13 0.95 1.28 0.41 0.84

Household Size 6.02 2.72 5.21 2.39 5.84 2.65 6.30 2.58 7.04 3.04

Quantity Ferilizer (kgs) 51.38 85.51 3.03 11.28 77.65 85.19 80.45 117.92 21.13 29.15

Number of ploughs (units) 1.78 2.98 1.76 3.05 2.31 3.32 1.66 2.99 0.94 1.69

Number of hoes (units) 1.12 1.59 0.82 1.40 1.41 1.80 1.07 1.56 1.00 1.30

Tigray 0.13 0.33 0.56 0.50 0.00 0.00 0.00 0.00 0.00 0.00

Amhara 0.37 0.48 0.44 0.50 0.78 0.42 0.00 0.00 0.00 0.00

Oromia 0.33 0.47 0.00 0.00 0.22 0.42 1.00 0.00 0.00 0.00

SSN 0.18 0.38 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Northern Highlands 0.23 0.42 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Central Highlands 0.34 0.48 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Other 0.25 0.43 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Enset 0.18 0.38 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Number of observations 5804 1323 2002 1456 1023

Table 3.1 highlights stark differences in terms of the use of inputs across different agro-

ecological zones. Overall, farmers in the Central Highlands and in the Arusi/Bale (“Other”)

agro-ecological zones allocate higher proportions of land to cereals, use more fertilizer, have

higher average levels of cereal diversity and display the highest yields compared to the average

household in the Northern Highlands or in the Enset agro-ecological zones.

In terms of the variables used in this paper, the dependent variable in this study is the

total production of cereals, which sums the production (in kilograms) of each cultivated

cereal. The explanatory variables included consist of cereal area (measured in ha), number

of oxen, household size (to proxy for labour), the quantity of fertilizer7, the number of hoes

and ploughs. In addition to this, the crop diversity variable, the cereal Shannon Index, will

be included. A detailed explanation of how these variables were constructed is available in

Appendix B.

7In the case of fertilizer, whenever there was data on the application of fertilizer directly on cereal, this
data was used. When only the total amount of fertilizer was available, the total amount was apportioned to
cereal area (i.e. we assumed the households used fertilizer evenly in their land).
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3.5.2 Methodology

Fixed Effects model

Our analysis of the productive effects of crop diversity is concerned with agricultural produc-

tivity and the role of crop diversity.

Concerning the functional form, we opt for a translog functional form, which includes the

natural logarithm of land, labour, fertilizer, oxen, hoes, crop diversity (Shannon index) their

squares and their interactions. In order to capture local level trends in output as well as

aspects such as weather shocks which are common to households in a given peasant association,

we also include a dummy variable for each peasant association-year8. We prefer to include

peasant-association-year dummy variables rather than a time trend since we do not want to

impose a specific time trend at the peasant association level.

We estimate a fixed effects model as it accounts for unobserved heterogeneity at the household

level. The estimated regression can be algebraically expressed as follows:

ln yit = αi +

n=N∑
n=1

βnln(xnit) + 0.5

n=N∑
n=1

m=N∑
m=1

βnm lnxnit ∗ lnxmit +

t=T∑
t=1

p=P∑
p=1

dt ∗ dp + eit (3.2)

Equation 3.2 can be interpreted in four parts. First, αi captures household-specific, time-

invariant features. The second part refers to the inclusion of the natural logarithms of all the

explanatory variables, their squares and their interactions. The third part of this equation

refers to the year-peasant association dummy variables (dt∗dp), which absorb common shocks

at the peasant association level for different years9. Finally, the last component is the error

term, eit. We note that a number of our variables (oxen, fertilizer) have a large proportion

of 0 values. This has been shown to potentially lead to biased estimates of the marginal

effects if not dealt with properly (Battese, 1997). In our case, however, there is often little

within variation in input-use10 which could make this approach slightly problematic when

8i.e. for each peasant association we include a dummy for each year.
9This is likely to include aspects such as rainfall, temperature, as well as peasant-association specific trends

in production over time.
10i.e. many farmers either use or do not use a given input in most periods, although the quantities do
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using fixed-effects. Nevertheless, we show (in Appendix A, Tables 3A.11-3A.16) that using

the correction proposed by Battese (1997) does not alter the main conclusions of the paper,

though the magnitudes become quite different. We also briefly explain the correction proposed

by Battese (1997), its rationale and how it is implemented in practice in Appendix B.

3.5.3 Semiparametric regression estimator

In addition to the parametric results, since there is little theoretical guidance on the likely

shape of the relationship between cereal diversity and production, we also conduct a series

of semi-parametric regressions. This specification allows for greater flexibility in the relation-

ship, since it makes it easier to investigate a possible non-linear effect of crop diversity on

production. The basic cross section model proposed by Robinson (1988) can be summarized

using the following equation:

ln yit = βxXit + f(shit) + eit (3.3)

Where X is a set of explanatory variables which includes all inputs except the Shannon index.

For the parametric component of the model, we use the two sets of variables detailed in the

previous section, but exclude the Shannon index. The latter is captured in the component

f(shit), which represents the non-parametric smooth function of the Shannon index, which

we believe may be non-linear.

This model has subsequently been extended to include fixed effects in a panel data setting

(Baltagi and Li, 2002). The Baltagi and Li (2002) model differs from the original model by

taking the first differences of equation 3.3. We implement this procedure using the xtsemipar

command in STATA 14 (Libois and Verardi, 2012). For all sets of results, we use a kernel

regression with the rule-of-thumb bandwidth. In all cases, we use a degree 4 local weighted

polynomial fit using the Epanechnikov kernel11.

change
11We also test the sensitivity of our results to a degree one local polynomial fit.

58



3.5.4 Limitations of the empirical approach

The first and most important limitation of our approach, as with other papers in this litera-

ture, relates to the issue of endogeneity. Given that the choice of the level of cereal diversity

is likely to be endogenous and that we were unable to find a suitable instrument, we are

not able to claim the estimation of a causal relationship between cereal diversity and pro-

duction. However, our empirical specification is more stringent than the norm in similar

studies, thereby potentially attenuating concerns related to endogeneity. Specifically, we take

two steps that make for a more convincing approach to the estimation of this relationship

than what has traditionally been the case in the literature. First, we use panel data and,

as a result, this allows us to control for household fixed effects, which are likely to control

for household-specific, time-invariant characteristics. Secondly, all of our specifications use

peasant association-year fixed effects, which are likely to control for common, time-varying

unobservable heterogeneity at the peasant-association level.

A second limitation relates to the narrow focus of our question as we focus solely on the

effect of cereal diversity on cereal production. This has been the most common approach in

agricultural economics. However, it is possible that other types of diversity (such as mixing

a cereal with a legume, for instance) may have a very different effect on production.

Finally, we focus only on the productive implications of the diversity of systems of cereal

production. We do not discuss the relationship between crop diversity and other production or

environmental variables, such as volatility or erosion, which may be important and pertinent.

3.6 Results

3.6.1 Parametric results

As can be seen from Table 3.2, the estimated coefficients associated with the Shannon index

differ substantially from one agro-ecological zone to another. Concerning the overall produc-

tive effect of cereal diversity on production, as has been the norm in the literature, we find

a positive and statistically significant effect between cereal diversity and cereal production

for the full sample (column 1, Table 3.2). However, running the regressions separately by
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agro-ecological zone reveals very stark differences. Although we find a positive elasticity in

every agro-ecological zone (columns 2-5, Table 3.2), this elasticity is only large and statisti-

cally significant in the ”Other agro-ecological zones (Arusi/Bale). An interesting aspect from

these results is that the ordering of the magnitude mirrors closely the proportion of house-

holds who cultivate teff, which is known to be a lower productivity crop. In other words, the

agro-ecological zone displaying the highest coefficients is also the agro-ecological zone where

teff is most prevalent.
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Table 3.2: Main results : Parametric translog

(1) (2) (3) (4) (5)

All N. Highlands C. Highlands Other Enset

Shannon index 0.046 0.026 0.030 0.122 0.032

(0.029) (0.054) (0.047) (0.075) (0.068)

Shannon index (square) 0.003 0.003 0.002 0.007 0.001

(0.002) (0.004) (0.003) (0.005) (0.004)

Area*Shannon index -0.006** -0.009 -0.006 0.008 -0.017**

(0.003) (0.005) (0.004) (0.008) (0.007)

Household size*Shannon index 0.003 0.008 0.000 -0.006 -0.007

(0.004) (0.007) (0.006) (0.011) (0.011)

Oxen*Shannon index 0.000 0.000 0.000 -0.001 0.000

(0.000) (0.001) (0.000) (0.001) (0.001)

(0.000) (0.001) (0.000) (0.000) (0.001)

Fertilizer*Shannon index 0.000 0.000 0.000 0.000 -0.001**

(0.000) (0.001) (0.000) (0.001) (0.001)

Hoes*Shannon index 0.000 0.001*** 0.000 0.000 -0.002**

(0.000) (0.000) (0.000) (0.001) (0.001)

Ploughs*Shannon index 0.000 -0.001* 0.000 -0.001 0.002***

(0.000) (0.001) (0.001) (0.001) (0.001)

Constant 6.339*** 4.919*** 6.450*** 5.943*** 5.440***

(0.110) (0.353) (0.171) (0.234) (0.411)

Elasticity of Shannon index 0.044* 0.035 0.025 0.115* 0.031

p-value 0.061 0.401 0.529 0.084 0.432

Fixed effects X X X X X

Village-year fixed effects X X X X X

Linear variables X X X X X

Squares X X X X X

Interactions X X X X X

Number of households 1280 289 428 299 264

Number of observations 5804 1323 2002 1456 1023

Average obs. per household 4.534 4.578 4.678 4.87 3.875

R-squared a 0.547 0.659 0.557 0.509 0.454

R-squared w 0.556 0.672 0.571 0.526 0.481

Notes: N. Highlands refers to Northern Highlands. C. Highlands refers to Central highlands. Numbers in parentheses represent

clustered standard errors at the household level. The specification in the regression is a translog specification and the full list

of coefficients can be seen in Table 3A.2 in the Appendix. As explained in the methodology section, this specification does not

include the adjustment proposed by Battese (1997) since there is little within-household variation of input-use. Instead 0 values

are assigned the value of 0.000001.
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We thus test whether the effect we capture could be attributed to the cultivation of teff and

break the sample into households that cultivate teff and those who do not. These results can

be seen in Tables 3.3-3.4. Overall, the results in Table 3.3, which only include households

who cultivate teff, seem to suggest a positive significant elasticity of cereal diversity in two

out of four agro-ecological zones. However, once households that cultivate teff are removed,

none of the elasticities are statistically significant, though in one case the coefficient increases.

These results do not prove beyond doubt that the full effect is attributable to a compositional

effect. For one, sample sizes decrease substantially in a number of agro-ecological zones,

which makes it harder to ascertain statistical significance. Nevertheless, these results are

indicative that a compositional effect could partly explain the relationship. Perhaps what is

being captured in these results is that, as cereal diversity increases, the relative contribution

of the low productivity cereal gradually fades, thereby leading to higher levels of production

and productivity.

62



Table 3.3: Main results : Parametric translog (teff only)

(1) (2) (3) (4) (5)

All N. Highlands C. Highlands Other Enset

Shannon index 0.177*** 0.129 0.065 0.299*** 0.190

(0.047) (0.086) (0.066) (0.076) (0.133)

Shannon index (square) 0.011*** 0.015** 0.003 0.018*** 0.006

(0.003) (0.006) (0.004) (0.005) (0.009)

Area*Shannon index -0.019*** -0.035*** -0.017** -0.009 -0.022**

(0.005) (0.012) (0.009) (0.016) (0.009)

Household size*Shannon index 0.000 0.028 -0.006 -0.015 -0.040***

(0.006) (0.018) (0.011) (0.015) (0.015)

Oxen*Shannon index 0.000 -0.001 0.000 0.001 0.001

(0.000) (0.002) (0.001) (0.001) (0.001)

Fertilizer*Shannon index 0.000 -0.002 0.000 0.000 -0.001

(0.000) (0.002) (0.001) (0.001) (0.001)

Hoes*Shannon index 0.001 0.002 0.002** 0.002* -0.002*

(0.000) (0.001) (0.001) (0.001) (0.001)

Ploughs*Shannon index 0.001** -0.002 0.001 -0.003** 0.003***

(0.001) (0.002) (0.001) (0.001) (0.001)

Constant 6.345*** 5.469*** 6.846*** 5.786*** 5.771***

(0.146) (0.553) (0.340) (0.232) (0.563)

Elasticity of Shannon index 0.153*** 0.186** 0.036 0.252*** 0.096

p-value 0.000 0.019 0.536 0.000 0.254

Fixed effects X X X X X

Village-year fixed effects X X X X X

Linear variables X X X X X

Squares X X X X X

Interactions X X X X X

Number of households 782 152 217 211 202

Number of observations 2799 544 679 960 616

Average obs. per household 3.579 3.579 3.129 4.55 3.05

R-squared a 0.511 0.358 0.557 0.597 0.535

R-squared w 0.526 0.412 0.59 0.616 0.573

Notes: N. Highlands refers to Northern Highlands. C. Highlands refers to Central highlands. Numbers in parentheses represent

clustered standard errors at the household level. The specification in the regression is a translog specification and the full list

of coefficients can be seen in Table 3A.3 in the Appendix. As explained in the methodology section, this specification does not

include the adjustment proposed by Battese (1997) since there is little within-household variation of input-use. Instead 0 values

are assigned the value of 0.000001.
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Table 3.4: Main results : Parametric translog (no teff)

(1) (2) (3) (4) (5)

All N. Highlands C. Highlands Other Enset

Shannon index -0.004 -0.094 0.095 -0.069 0.011

(0.050) (0.072) (0.081) (0.136) (0.131)

Shannon index (square) -0.001 -0.007 0.006 -0.009 -0.002

(0.003) (0.005) (0.006) (0.009) (0.008)

Area*Shannon index -0.002 0.004 -0.002 0.012 -0.017

(0.004) (0.009) (0.005) (0.011) (0.026)

Household size*Shannon index 0.000 0.005 -0.004 -0.029* -0.016

(0.005) (0.008) (0.007) (0.016) (0.035)

Oxen*Shannon index 0.000 0.000 0.000 -0.001 0.000

(0.000) (0.001) (0.001) (0.001) (0.002)

Fertilizer*Shannon index 0.000 0.000 0.000 0.001 0.000

(0.000) (0.001) (0.000) (0.001) (0.002)

Hoes*Shannon index 0.000 0.001 -0.001 0.000 0.001

(0.000) (0.001) (0.001) (0.001) (0.002)

Ploughs*Shannon index 0.000 0.000 0.000 0.000 0.003

(0.000) (0.001) (0.001) (0.001) (0.003)

Constant 6.305*** 4.852*** 6.347*** 6.115*** 5.745***

(0.175) (0.537) (0.222) (0.728) (1.268)

Elasticity of Shannon index 0.000 -0.058 0.076 -0.105 -0.016

p-value 0.997 0.219 0.272 0.382 0.838

Fixed effects X X X X X

Village-year fixed effects X X X X X

Linear variables X X X X X

Squares X X X X X

Interactions X X X X X

Number of households 893 211 344 128 210

Number of observations 3005 779 1323 496 407

Average obs. per household 3.365 3.692 3.846 3.875 1.938

R-squared a 0.547 0.659 0.557 0.509 0.454

R-squared w 0.556 0.672 0.571 0.526 0.481

Notes: N. Highlands refers to Northern Highlands. C. Highlands refers to Central highlands. Numbers in parentheses represent

clustered standard errors at the household level. The specification in the regression is a translog specification and the full list

of coefficients can be seen in Table 3A.4 in the Appendix. As explained in the methodology section, this specification does not

include the adjustment proposed by Battese (1997) since there is little within-household variation of input-use. Instead 0 values

are assigned the value of 0.000001.

Whether, if it exists, this compositional effect can still be reconciled with the traditional
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channels through which crop diversity can lead to over-yielding is difficult to answer. On the

one hand, the existence of such a compositional effect would probably be at odds with the

“complementarity” and the “facilitation” effects since cereals are likely to be quite similar

and may not differ a lot in the timing of resources. However, it could be argued that it could

represent a conscious “sampling” effect since the household may well select the crop that

performs the best (most productive), given the environment. However, if the composition

of cereals is driving the result, this questions the extent to which promoting cereal diversity

could lead to improved agricultural production. The reason being that, if a compositional

effect is driving the result, this implies that increases in diversity only lead to increases in

productivity when farmers add a high(er) productivity crop to their crop mix. Increases

in diversity in the other direction would not yield increases in productivity. From a policy

perspective, therefore, if this effect is the main driver of productivity increases, the policy

implication is that systems should promote more productive crops.

We also carry out three sets of robustness checks, which are available in Appendix A. Tables

3A.11-3A.16 summarize the results when the regression is estimated by OLS and the Battese

(1997) correction is applied. Tables 3A.18-3A.23 show the results when we only consider

households for which there is no imputed data for fertilizer, ploughs and hoes. Finally,

Tables 3A.31-3A.36 summarize the results when only the households for which we have six

observations are considered (i.e. a balanced panel)12. Though magnitudes certainly differ,

the overarching conclusions remain the same in all three robustness checks.

3.6.2 Semi-parametric results

Given that there is no proven underlying theory informing the expected shape and magnitude

of the production-diversity relationship, the statistically insignificant results displayed in the

previous section may be masking existing non-linearities. In other words, it is possible that

the insignificant result in parametric models are a result of not taking into account non-

linearities appropriately. Alternatively, it is possible that a positive effect of crop diversity

12Balanced subsample refers to the sub-sample of households for which we have observations for each period.
However, the teff only and no teff regression are not necessarily balanced since some households switch in and
out of teff during the sample period. Also, as can be seen in Tables 3A.31-3A.33, using the balanced sample
leads to a sharp decrease in sample size. This is very severe in the Enset area for the no-teff subsample, where
there are very few observations with a Shannon index above 0. As a result, for this subsample, we do not have
a high degree of confidence in the results presented.
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exists, but that this effect is confined to a subset of the Shannon index values. Additionally,

it is also possible that a relationship exists but that statistical significance is hampered by

the small sample size of some of these subsamples. It is for these reasons that we also run

a set of semi-parametric regressions, which allow for a more flexible characterization of the

relationship between crop diversity and production and tend to be less sensitive to sample

size.

The parametric part of the results is summarized in Tables 3A.5-3A.9 and the smooth func-

tions of the crop diversity result on the partialled-out residuals are available in Figures 3.1-

3.513. The same local polynomial including the scatter plots are also available in the Appendix

(figures 3A.3-3A.7). For each figure corresponding to a given geographical region, three sub-

figures are presented. Subfigure (a) summarizes the results when all the households in a given

region are included, subfigure (b) summarizes the results when teff producers are excluded

and subfigure (c) shows the results when only teff producers are included.

Figure 3.1: Effect of Shannon index Semi parametric Full sample

(a) Full sample

(b) Non teff-producing households (c) Teff-producing households

13Figures which include the scatter plots are available in the Appendix Tables 3A.3-3A.7. Both sets of
figures (3.1-3.5 and 3A.3-3A.7) use a degree 4 polynomial (the default) and the rule-of-thumb bandwidth. The
rule-of-thumb bandwidth is summarized in the Appendix in Table 3A.10.
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Figure 3.2: Effect of Shannon index Semi parametric Northern Highlands

(a) Full sample

(b) Non teff-producing households (c) Teff-producing households

Figure 3.3: Effect of Shannon index Semi parametric Central Highlands

(a) Full sample

(b) Non teff-producing households (c) Teff-producing households
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Figure 3.4: Effect of Shannon index Semi parametric Arussi/Bale

(a) Full sample

(b) Non teff-producing households (c) Teff-producing households

Figure 3.5: Effect of Shannon index Semi parametric Enset

(a) Full sample

(b) Non teff-producing households (c) Teff-producing households
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The semi-parametric results, to a certain extent, confirm the findings of the parametric results.

We find a clear positive correlation between the Shannon index for panel (a) of the full sample

(Figure 3.1) and in the Arusi/Bale/Hararghe agro-ecological zones (Figure 3.4), with the

Northern Highlands (Figure 3.2) also displaying a positive, but somewhat noisy relationship.

Also similar to our findings from the parametric models, these results appear to be largely

driven by the inclusion of teff producers, with none of the panels (b) displaying a large, clear

and positive relationship, though panel (b) of Figure 3.4 seems to suggest a somewhat positive

relationship14. Conversely, most panels (c), with the exception of panel (c) in Figure 3.3,

suggest a positive relationship, indicating that the inclusion of teff producers seems to partly

drive our results. This provides some support for the existence of a potential compositional

effect.

However, the semiparametric results also shed some light on additional aspects of this relation-

ship. First, when we find a clear positive relationship, we tend to also find a large, statistically

significant negative intercept. For the Arusi/Bale/Hararghe “Other”) agro-ecological zones,

this can be explained by the fact that the vast majority of farmers who cultivate one crop cul-

tivate teff. As a result, an increase in the crop diversity index could indicate a shift away from

a low productivity cereal. A similar mechanism may be at play in the Northern Highlands for

the case of barley, which is the second lowest productivity crop in our sample. Second, the

semi-parametric results also highlight aspects related to the shape of the relationship. Partly

as a result of the negative intercept, in some cases (Figures 3.2, 3.3 and 3.5), the strongest

positive relationship occurs between low to medium values of the Shannon index. We also

find a sharp (but very noisy) decrease in the relationship at large levels of cereal diversity

in three out of four agro-ecological zones (Figure 3.2 being the exception). Taken together,

these results suggest rather limited benefits of pursuing very diverse systems in terms of cereal

production.

14Panel (b) in Figure 3.5 is not particularly informative as there are very few observations of non-teff
producer with a non-0 Shannon index (less than 5% of the values). This is made more clear in Figure 3A.7.
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3.7 Conclusion

This paper revisited the link between cereal diversity and cereal production using a panel

representative of a larger geographical area in Ethiopia than what has typically been the

case in the literature. Doing this allows us to understand whether in situ conservation may

yet deliver a promising solution in terms of conservation of plant genetic material alongside

sustained productivity gains.

In some cases, our results corroborate a number of previous results in the literature. For

instance, we find large positive gains of cereal diversity on cereal production for the full

sample. However, we also find that these effects are very heterogeneous across agro-ecological

zones. Specifically, certain agro-ecological zones (Arusi/Bale/Hararghe) and one crop (teff)

seem to be driving these results in both parametric and semi-parametric specifications. This

suggests that, at least in our case, the “biodiversity” effect seems to be capturing a decreasing

share of a low productivity crop in the crop-mix.

Whether this can be reconciled with the typical channels used to explain the crop diversity

(“biodiversity”)-productivity link is arguable. The fact that this result seems to be driven

by teff suggests that this result is at odds with the “complementarity” and the “facilitation”

effect. However, in a way this could be considered a deliberate “sampling” effect.

These results highlight the importance for practitioners in the literature to attempt to un-

derstand what is driving the results between diversity and productivity. It is important to at

least consider the possibility that this effect could partly reflect different potential yields for

cereals in the crop mix. As a result, increases in the diversity index could be capturing a move

away or towards a particularly high- or low-performing cereal. In our case, given that we do

not have data on subspecies, the results seem to be partly driven by one crop (teff). However,

a similar mechanism could be at play with particular high- or low-performing subspecies of a

given crop.

From a policy perspective, however, the results highlight two main points. Firstly, while di-

versity, in itself, may be desirable for a number of reasons, its positive productive implications

are not clear once farmers who cultivate low-yield crops are removed from the sample. As a

result, it seems that increases in diversity only seem to have a positive effect in one direction
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(from high proportion of low-yield crop to diverse mix of low- and high-yield crops). Secondly,

the shape revealed in the semi-parametric method suggests that these effects are not linear

and that, beyond a certain point, the associated gains of increased diversity seem tenuous, at

best.

Taken together, these results suggest that cereal diversity is unlikely to be a panacea for cereal

productivity. Lack of clear production gains from increasing cereal diversity allied to the

development of alternative sources of insurance and the modernization of agriculture, which

tends to lead to a reduction of cereal diversity, highlights the need to focus on alternative

means of conserving crop genetic diversity.

In addition to this, our paper highlights a number of possible directions for future research.

First, this paper focuses on a very narrow type of crop diversity (cereal diversity) and these

results are not necessarily transposable to other types of crop diversity, for which the relation-

ship may be very different. Second, while we believe our empirical specification improves on

previous literature focusing on this question, endogeneity remains a concern. Consequently,

our results do not settle this debate and we cannot and do not claim a causal relationship.

Further research regarding potential instruments or alternative research designs (e.g. field

experiments) would be useful. A third aspect that was absent from this analysis relates to

the relationship between land degradation and crop diversity. As argued by Taddese (2001),

land degradation is a serious issue in Ethiopia and crop diversity may well have an important

effect on land quality, which we do not capture or investigate in this paper. Finally, our anal-

ysis leaves aside the links between cereal diversity and income, nutrition as well as production

and income volatility, all of which could be valid reasons to pursue a diversification strategy,

despite limited gains in output. In our specific case, while teff typically displays lower yields,

it has a very high market value compared to other cereals. As a result, it could still make

economic sense to cultivate teff, despite its productive implications.
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Chapter 4

SWC Technology adoption and

labour allocation: Implications for

impact evaluation and policy. A

case study of Ethiopia
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Abstract

Soil and Water conservation (SWC) technologies have long been viewed as part of a solution

to increase the resilience of agriculture to climate change. Recent research has also shown that

they can also have a positive impact on agricultural yields. In this paper, I focus on the labour

impacts of adopting SWC technologies (mostly bunds and artificial waterways) in Ethiopia. I

use an endogenous Switching Regression Model (ESRM) and find that such technologies lead

to large increases in plot-level adult and child labour, with estimated impacts ranging from

25% to 36%.

These findings are important for a number of reasons. First, it is important for policy-makers

to understand the potential labour impacts of the widespread adoption of SWC technologies

as these can affect other policy-priority areas (e.g. education). Second, large and significant

labour impacts question the appropriateness of using econometric methods that assume no

changes in inputs as a consequence of adoption (e.g. PSM or ESRM). Finally, these labour

impact estimates also provide a plausible explanation to the puzzling result in Di Falco et

al. (2011). Using the same dataset, the authors find that non-adopters have higher predicted

gains from adoption. I find that non-adopters already work substantially more days than

adopters and, as a result, may be less willing to adopt a labour-intensive technology.

JEL classification: J22, Q10, Q12, Q16, Q56
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4.1 Introduction

Achieving economic development in Africa cannot be disentangled from the performance of

the agricultural sector (Collier and Dercon, 2014; Diao et al., 2010). Consequently, achieving

protracted productivity growth in the agricultural sector in an environmentally sustainable

manner is key. As such, development actors have promoted agricultural technologies believed

to hold the potential to increase agricultural production in a more environmentally sustainable

way.

Soil and Water Conservation (SWC) technologies constitute an example of a set of tech-

nologies/practices which could ostensibly yield such a win-win situation. Consequently, in

an attempt to gauge their success, a substantial amount of literature has been devoted to

analysing the impacts of adopting such technologies. So far, most impact evaluation stud-

ies have focused on production and productivity metrics (Di Falco, 2011; Kato et al., 2011;

Gorst et al., 2015). However, the productivity impact estimates typically rely on methods

that implicitly assume that adopting the technology does not change the inputs used. In this

paper, I focus on the potential impacts of SWC adoption on labour, where this assumption

is unlikely to hold.

The three most adopted SWC structures in our dataset (soil bunds, stone bunds and artificial

waterways1) can theoretically increase productivity. Bunds can potentially reduce erosion

through reducing the velocity of run-on and waterways can drain excess water (Haile et al.,

2006). However, the installation and maintenance of bunds and waterways has been found

to be labour-intensive (Haile et al., 2006; Shiferaw and Holden, 1999; Pretty, 1999; Bekele

and Drake, 2003). As a result, I empirically estimate the impact of the adoption of SWC

technologies on the levels of both child and adult family labour. Understanding the existence

and potential magnitude of the labour impact is likely to be important for a number of reasons.

First, from a methodological perspective, most studies estimating the productive impact of

the adoption of SWC technologies use methods that rely on the assumption that the inputs

do not change as result of adoption of a certain technology. As a result, if it is found that

significant changes in inputs occur following the adoption of a technology, this may call into

1These three structures account for more than 85% of the installed structures in our dataset.
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question the accuracy of impact estimates obtained.

Second, it is important for policy-makers to understand the full range of impacts of the

widespread adoption of SWC technologies. For instance, an impact on the levels of child

labour used may ultimately affect educational outcomes. As a result, it is important for policy-

makers to understand the potential cross-sectoral implications of the widespread adoption of

agricultural technologies, so as to devise policies to mitigate them.

Finally, the predicted impacts of adoption on input use may be a key determinant/deterrent

of adoption of an agricultural technology. Better understanding the impacts of technology

adoption on non-productivity metrics may also provide a plausible channel to explain some

puzzling findings in the literature. Specifically, previous research (Di Falco et al., 2011) using

the same dataset has found that non-adopters of a technology have highest predicted gains

from adoption. This finding is puzzling, runs against economic rationality and is largely left

unexplained in Di Falco et al. (2011). In this paper, I argue that estimated impacts on inputs

may provide a plausible explanation for this finding and use labour as an illustration.

In order to theoretically motivate my question, I borrow and extend very slightly the model

proposed by Fernandez-Cornejo et al. (2005). This model, based on the Agricultural House-

hold model, captures the idea that the decision to adopt a new technology depends both on

the expected benefits (gains in productivity) as well as on a range of other factors, such as

monetary (additional inputs) and non-monetary (e.g. increased labour requirements) costs as

well as household preferences. The model highlights the importance of studying the impacts

on non-productivity metrics. Additionally, the model conceptually highlights how, despite

higher predicted productivity gains, households may not adopt.

Empirically, I use a plot-level dataset of households in the Nile Basin of Ethiopia (Ringler

and Sun 2010) and I use an Endogenous Switching Regression Model to estimate the impacts

of adoption on the levels of adult and child labour. Robustness checks are performed using

both an IV regression and an IV probit regression.

Overall, I find evidence that soil and water conservation technologies are associated with

significant and large (31.4%) increases in adult labour. This result is robust across all the

different specifications used and estimated impacts range from 25% to 36%, depending on
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the specification. In terms of child labour, I find no evidence of an increase in probability of

using child labour. However, we find evidence of a large and significant impact (about 29%)

in the levels of child labour. The magnitude of the coefficients is similar in the IV setting with

estimates ranging from 30% to 34%, although the results are no longer statistically significant.

The results also reveal different patterns of labour impacts between adopters and non-

adopters. Non-adopters display higher impacts on child labour while adopters display a higher

impact on adult labour. This result can be explained by the fact that adults in non-adopting

households already work longer hours. As a result, children are likely to have to bear a higher

share of the additional labour requirements induced by the adoption of a labour-intensive

technology. These findings also provide a plausible channel to explain why, despite higher

predicted gains in productivity, non-adopters do not adopt the technology, as found in Di

Falco et al. (2011). Given that adults in households that have plots where the technology was

not adopted already work more days, they may be less willing to engage in a labour-intensive

technology.

The rest of the paper is structured as follows. Section 2 reviews the literature on the

Agriculture-Development nexus and the impact evaluation of SWC technologies. Section

3 discusses the theoretical model used to derive some of our theoretical predictions. Section 4

discusses the empirical methodologies used. Section 5 discusses the data. Section 6 presents

the results. Finally, section 7 concludes.

4.2 Agriculture and Economic Development

The importance of agriculture in the economic development process is beyond dispute and

it has been repeatedly linked to a number of socio-economic outcomes ranging from the in-

comes of a large portion of the world’s population (Schultz, 1980), to various health outcomes

(Hawkes and Ruel, 2006). The many ramifications of agricultural performance implied that it

has occupied a central role in economic development theory, at least since Lewis 1954, when

agriculture was viewed as an indispensable support for the engine of growth (industry) of a

country (Lele and Mellor, 1981).

Since, economic thought appears to be adjusting to a new paradigm and the reigning per-
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ception among the various actors of development is that Agriculture constitutes something

akin to a magic bullet, it being directly linked to poverty, food security, gender equality,

education and environmental sustainability (Byerlee et al., 2009). This is epitomized by the

preponderance of rural poverty, recurring national and international food crises (culminating

in the most notable example in 2008), its importance as the main source of female employ-

ment and its environmental importance (responsible for 85%, 40% and 30% of the developing

world’s freshwater use, land use and greenhouse gas emissions, respectively). In addition to

this, studies have repeatedly shown that child employment in agriculture is a strong negative

determinant of both participation in education and educational achievement (Beegle et al.,

2009; Heady, 2000).

However, few would argue that the future is without challenges. First, projected future

demographic changes (close to 10 billion people by 2050; UN, 2015) pose a significant threat

to agriculture, through its effects on food demand. As argued by Godfray et al. (2010), this

increase in food demand is likely to increase the competition for natural resources, which in

turn, will affect our ability to produce food. Secondly, the impacts of climate change are

largely predicted to be negative (Mendelson, 2008). This is particularly important in the case

of Africa, which is expected to witness the highest population growth (UN, 2015) and where

crop-specific losses are predicted to be between -8% and -22% (Schlenker and Lobbel, 2010).

Together, these factors suggest that the model that has been responsible for sustained growth

in agricultural output since the middle of the 20th century may not be sustainable. This has

led to calls for a radical change in how food is produced (Godfray et al., 2010). Specifically,

a more sustainable model of agriculture, capable of meeting global food needs in a more

environmentally sustainable way, is an imperative condition to a more prosperous future.

Given this context, the promotion of more environmentally responsible agricultural practices,

such as the promotion of SWCT (Soil and Water Conservation Technologies), appear a step

in the right direction. In theory, adoption of SWCT may lead to lower levels of environmental

degradation, while maintaining or even increasing agricultural productivity.
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4.2.1 SWC technologies in Ethiopia

Description of the main SWC technologies in the sample

Soil degradation is widely considered an important issue in Ethiopia and erosion (especially

wind and water erosion) is seen as the major cause of soil degradation. While both types of

erosion (wind and water) occur as a natural geological process (Haile et al., 2006), anthro-

pogenic factors are believed to accelerate the rate of erosion. Chief among these factors are

the over-utilization of land for agriculture, overgrazing and deforestation (Haile et al., 2006),

all of which tend to lead to reduced vegetative cover, thus increasing the risk of erosion.

As explained in Haile et al. (2006), soil erosion is likely to have productive implications since

both water and wind erosion tend to lead to a less favourable distribution of soil. Typically,

topsoil (richer in minerals and organic matter) is removed. As a result, even a minor loss

in topsoil can substantially reduce the productivity of the soil. Results from experimental

studies in Canada highlight the importance of topsoil. Specifically, Larney et al. (2000) found

that removing 20 cm of topsoil reduced productivity by as much as 53%. In the Ethiopian

Highlands, Tadesse (2001) estimates annual losses of topsoil to amount to 1.5 billion tons,

costing Ethiopia an estimated 1-1.5 million tons of grain annually.

However, large losses due to erosion can be mitigated, at least partly, by using certain farming

practices and/or installing certain structures capable of reducing the rate of erosion. This

is not new in the Ethiopian context and, at least since 1973/74, there have been efforts to

promote such structures (Osman and Sauerborn, 2001). Soil erosion was largely perceived

to have compounded the effects of the 1973/74 drought that led to a famine (Osman and

Sauerborn, 2001). This prompted the Ethiopian Government to promote the adoption of

SWC practices and the construction of structures to mitigate the negative impacts of erosion.

In the early stages, these efforts led to large increases in the area covered by conservation

practices from an initial 7,000 ha in 1973 to about 163,000 ha in 1983 (Osman and Sauerborn,

2001).

A large number of agronomic practices and physical structures fall under the definition of

SWC technologies/practices and these differ widely from one another in the inputs required,

their productive potential and their applicability to specific settings. However, Haile et al.
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(2006) argue that SWC practices can be broadly subdivided into three broad types. These

include agronomic measures (e.g. tillage, contour planting), vegetative measures (e.g. grass

strips) and structural measures (e.g. bunds and waterways). In our sample, the majority

(over 85%) of plots have adopted structural measures (mostly bunds and waterways) and

very few adopt vegetative measures such as grass strips and trees. As a result, we will focus

mostly on bunds and waterways and will only briefly describe one vegetative cover measure

(Grass strips).

The main purpose of soil and stone bunds (illustrated in figure 4.1) is to retain water on

the cropping area (runon) while draining excess water as necessary. Panel (a) of figure 4.1

illustrates how these structures reduce the velocity of the runoff and reduce slope length,

allowing for greater infiltration (Haile et al. 2006). As a result, bunds can reduce the risk

of erosion and increase soil quality and soil moisture (Haile et al., 2006; Kato et al., 2011).

However, different types of bunds exist and a distinction needs to be drawn between soil and

stone bunds. Stone bunds are more permeable, thus allowing for better drainage of excess

water (Haile et al., 2006). Conversely, soil bunds are able to retain more water, but tend to

be more prone to both wind and water erosion and require more regular maintenance (Haile

et al., 2006). As a result, soil bunds tend to be preferred in areas with low moisture (e.g. arid

areas) and/or in areas with limited supply of stones. Conversely, stone bunds are likely to be

preferred in areas where excess water is likely to be a concern (sub-humid and humid areas).

Overall, Haile et al. (2006) highlights that bunds (especially soil bunds) tend to characterized

by low durability and large maintenance requirements. Kato et al. (2011) add that they tend

to be costly and hard to build2.

2According to Kato et al. (2011), in our sample, when these structures are too costly and/or materials are
unavailable, vegetative measures are adopted instead.
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Figure 4.1: Graphical illustration of bunds

(a)SWC system in a semi-arid area

Source: Haile et al. (2006)

(b)Bunds and terraces

Source: Haile et al. (2006)

Vegetative measures increase soil cover, which helps to control erosion, as illustrated in figure

4.2. According to Haile et al. (2006), vegetative measures provide fairly good erosion control

(though not as good as bunds) but require low amounts of additional labour3. However, grass

strips are prone to weed infestation and the harbouring of rodents (Haile et al., 2006).

Figure 4.2: Graphical illustration of Grass strips

Source: Haile et al. (2006)

3According to Kato et al. (2011), the risk of erosion is reduced as grass strips reduce runoff velocity, which
allows for better infiltration.
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Regarding artificial waterways, their main purpose differs from that of either grass strips or

bunds. As illustrated in figure 4.3, the main aim of artificial waterways is to safely conduct

runoff (excess) water safely along specified pathways in the fields (Kato et al., 2011), often

downhill into a river or stream (Haile et al., 2006).

Figure 4.3: Graphical illustration of artificial waterways

Source: Haile et al. (2006)

Given their different purposes, bunds and waterways are likely to suit different needs. Bunds

(soil or stone) are likely to be preferred in areas where moisture deficiency is an issue, whereas

waterways are likely to be preferred in areas subject to excess or extreme rainfall. This pattern

is present in our dataset. Kato et al. (2011) show that bunds are adopted in 37% of plots

in low rainfall areas (60% in Tigray) compared to 31% in high rainfall areas. The reverse

pattern holds for waterways, where waterways are adopted in 41% of the plots in high-rainfall

areas against 15% in low-rainfall areas.

Regarding labour requirements, a number of authors have highlighted that both waterways

and bunds tend to be very labour intensive. For instance, Shiferaw and Holden (1999) use

a modelling assumption of 100 person-days per hectare to install the soil conservation struc-

tures and an additional 20 person-days per year for maintenance. Bekele and Drake (2003)

recommend between 70 to 150 person-days per hectare for different types of soil bunds in the

Eastern Highlands of Ethiopia. In addition to this, a number of other studies also highlight

85



the high labour requirements during installation and maintenance for a number of Soil and

Water Conservation technologies (McCarthy, 2011; Bekele and Drake, 2003; Bewket, 2007;

Pretty, 1999; Tesfaye et al., 2016), including bunds and waterways4, though they do not pro-

vide estimates of the number of days. Finally, as mentioned by Haile et al. (2006), vegetative

measures are likely to require lower amounts of labour compared to bunds and waterways.

Impacts of SWC technology adoption in Ethiopia: a brief review of the literature

To date, there have been a substantial number of studies assessing the impacts of SWC

technologies in Ethiopia. However, most studies in Agricultural Economics have focused on

the productive implications of SWC technologies, leaving aside potential impacts on input-use.

Kato et al. (2011) measure the impact of adoption of SWC technologies on mean yields and

variance. The authors find that soil bunds have a positive yield effects in low rainfall areas,

whereas planting trees and waterways have positive yield effects in high rainfall areas. Re-

garding the impacts on yield variance, the authors find that only soil bunds have a significant

negative impact on the mean yield variance in low rainfall areas. A similar pattern is found

in Kassie et al. (2008), who find that the adoption of soil bunds leads to a large increase in

yield (about 25% of the mean value) in low rainfall areas, specifically in the Tigray region.

The results by Kato et al. (2011) and Kassie et al. (2008) highlight that impacts are likely to

differ depending on the amount of rainfall available in the area. However, both studies suffer

from two weaknesses. Firstly, both assume a unique production function (one equation). This

implies that, implicitly, the authors are assuming that both adopters and non-adopters have

the same elasticities of inputs. This is questionable, since it is highly likely that the retention

of moisture may enable better use of complementary inputs such as fertilizer. Secondly, as

with the majority of other studies reviewed in this section, these results fail to shed light on

the effect of the adoption of such structures on input-use, which is likely to be a key factor

behind the decision to adopt of SWC technologies.

Deressa et al. (2009) investigate the determinants of adoption of SWCT at the household

4McCarthy (2011) mentions that soil and water conservation technologies entail large upfront costs, and
in the cases of stone bunds, for example, both the initial construction and annual maintenance entails heavy
labour requirements. In Bewket (2007), who looks at Ethiopia, 92% of the farmers surveyed argued that the
introduced SWC structures (which included bunds, waterways and fanya juu) required too much labour to
implement. Pretty (1999) argues that artificial waterways and dams are also labour-intensive
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level using the same dataset and a multinomial logit specification. The authors find that the

level of education, the gender and the age of the head of the household all positively affect

the probability of adoption of some technologies. In addition to this, non-farm income, farm

income as well as the agroecology were significant determinants of adoption. An interesting

result in this paper is the effect of climate change information, whose sign depended on the

technology5.

Di Falco et al. (2011) use the same plot-level dataset and estimate the impact of adopt-

ing SWCT on yields using an Endogenous Switching Regression model. The authors use

information sources as instruments6 and estimate large positive effects of adoption on yield,

averaging 181 kg/ha for adopters and almost 300 kg/ha for non-adopters. The authors find

that non-adopters stand to gain more from adoption. However, the authors do not explicitly

propose a channel to explain this finding, though they highlight the importance of increasing

climate awareness and access to credit.

Two studies that have looked at the effects on input-use are Zeng et al. (2013) and Kassie et

al. (2015). Zeng et al. (2013) look at the impacts of adopting improved varieties on yields and

costs in Ethiopia. The authors find that improved varieties were associated with both higher

yields and higher costs. As a result, poorer farmers tended to benefit least from the adoption

of these varieties, given their small land sizes. Kassie et al. (2015) who use data from Malawi,

show that a number of technologies7 are often associated with statistically significant changes

in input application (fertilizer and pesticide application in their case), thereby implying an

increase in costs.

As such, so far there appears to be positive returns in terms of agricultural production.

However, the fact that the gains for non-adopters are so high, often higher than non-adopters

is puzzling. More so, since this finding is not limited to Ethiopia and/or the adoption of SWC

technologies. Using data from Pakistan Gorst et al. (2015) find that non-adopters consistently

have higher gains from adoption than adopters over all the crops that the authors analyse.

Khonje et al. (2014) show that in Zambia, non-adopters would have the highest impact

5For some technologies climate information was associated with a higher probability of adoption whereas,
in other cases, it was associated with a lower probability of adoption.

6Including farmer-to-farmer extension, government extension, climate information, neighbourhood infor-
mation and radio information.

7The authors focus on IAPs (Improved agronomic practices).
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of adoption of improved maize varieties on food security. However, while this pattern is not

uncommon, few studies have attempted to answer this and/or have analysed channels through

which this may happen.

One of the first studies that can possibly provide a plausible explanation is that of Zeng et al.

(2013). The authors find that, while improved varieties were associated with higher levels of

yields, they were also associated with an increase in costs. As a result, poorer farmers tended

to benefit least from the adoption of these varieties, given their small land sizes. Another

potential explanation could be the potential changes in input choice found in Kassie et al.

(2015), which shows that a number of technologies are often associated with a positive change

in inputs, thereby implying an increase in costs.

However, so far, to my knowledge, the labour channel has not been analyzed. Agriculture is

generally considered to be an arduous activity and some of these technologies tend to be quite

labour-intensive, especially at the early stages of adoption. By way of example, Shiferaw and

Holden (1999) use a modelling assumption of 100 person-days per hectare to install the soil

conservation structures and an additional 20 per year for maintenance. Bekele and Drake

(2003) recommend between 70 to 150 person-days per hectare for different types of soil bunds

in the Eastern Highlands of Ethiopia. However, a number of other studies also highlight the

high labour requirements during installation and maintenance for a number of Soil and Water

Conservation technologies (McCarthy, 2011; Bekele and Drake, 2003; Bewket, 2007; Pretty,

1999; Tesfaye et al., 2016).

As a result, given the likely installation and maintenance labour requirements, it seems per-

haps far-fetched to assume that there will be no labour re-adjustment emanating from the

adoption of such technologies. As such, farmers, either through their knowledge of their land

or through observing other farmers, tend to be aware (or at least have an idea) of the likely

impacts of adopting a new technology on labour requirements. These labour requirements can

then have effects on aspects such as adult labour, child labour and time availability for off-farm

activities. As such, it seems possible that farmers may self-select according to the anticipated

(child and adult) labour requirements. In fact, this is perhaps echoed in a qualitative study by

Bewket (2007) who survey farmers in a watershed in the north-western highlands of Ethiopia.

Labour shortages and unavailability of labour were viewed as key aspects discouraging the
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adoption of SWC technologies.

In this paper I argue that understanding and quantifying the labour impact, however, is

not trivial. If there is a positive effect on total farm labour, this may shift the decision to

employ children and/or increase the time children spend in agricultural activities. As such,

this is a policy-relevant question, since the amount of child labour may have cross-sectoral

implications in areas such as education (Abafita and Kim, 2014). Moreover, Colmer (2013)

finds that climate change affects the hours spent by children on farming and labour activities.

The author argues that the increase in child labour is a way of mitigating future anticipated

climate shocks. However, no channel is proposed regarding the mechanism through which

this occurs. We argue that technology adoption may be a plausible channel.

The next section introduces an agricultural household model which tries to disentangle the

relationship between child labour, off-farm work, farm-work and technology adoption in the

same framework. It also serves to motivate further the use of empirical methods capable of

incorporating self-selection based on unobservables.

4.3 Theoretical Model

In order to further motivate the research question, we will look at the adoption decision

using a slightly modified version of the model presented by Fernandez-Cornejo et al. (2005),

which integrates the adoption decision into the Agricultural Household model. The main

difference is that we consider a two-member household where the household has to make

a choice regarding the labour and education trade-off of children. Specifically, the model

highlights two features. First, it highlights the importance of non-productivity metrics when

considering the impacts of adoption of SWC technologies. Secondly, it highlights how the

adoption process may depend on a number of factors not observed by the researcher, which

motivates the use of our empirical methodology explained in Section 4. In this section, we

present the main equations from the model. The full model, the set of assumptions and

first-order conditions are available in Appendix A.

In this model a household is composed of two members (or groups of members), one adult

and one child. The household seeks to maximize its utility subject to a number of constraints,
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namely an income constraint, a technology constraint and two individual time constraints. For

simplicity, only one non-labour input is assumed and I restrict the availability of education

to children and the availability of off-market opportunities to adults (i.e. adults can work

off-farm but cannot go to school, whereas the opposite holds for children).

Algebraically, the constraints can be denoted as follows:

MaxU = U(Y1, Y2, L1, L2, E2) (4.1)

subject to:

py(Y1 + Y2) + peE2 = pqQ− wxX + wmM1 (4.2)

Q = Q[X(τ), F1(τ), F2(τ), τ ], τ ≥ 0 (4.3)

T1 = F1(τ) +M1 + L1, M1 ≥ 0 (4.4)

T2 = F2(τ) + E2 + L2, E2 ≥ 0 (4.5)

Intuitively, equation 4.1 states that the household utility depends on the choices of labour,

leisure, education and consumption of the household. The household is composed of two

members, an adult (subscript 1) and a child (subscript 2). Specifically, I assume that the

utility function depends positively on the amount of leisure and consumption of both members

(L1, L2, Y1 and Y2). Furthermore, the utility function also depends on the amount of time

the child spends on education (E2).

Equation 4.2represents the income constraint and states that the total household expendi-

ture on consumption goods (py(Y1 + Y2)8) and education (pe ∗ E2
9) cannot exceed the total

8where py denotes the market price of good Y. Y1 and Y2 denote the quantities of good Y consumed by
the adult and the child, respectively.

9where pe denotes the market price of education and E2 denotes the time spent in education by the child
in the household.
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household income, which is composed of farm profits (pq ∗Q−wx ∗X10) and off-farm income

(wm ∗M1
11).

Equation 4.3 is the main novelty proposed by Fernandez-Cornejo et al. (2005).It represents

the technological constraint (a concave, continuous, twice differentiable production function).

Key to the technological constraint is the parameter τ , which can be interpreted as a measure

of intensity of adoption of SWC technologies. Specifically, τ = 0 represents a non-adopter and

τ > 0 suggests that a SWC technology has been adopted, with higher values of indicating

a more intensive adoption of these technologies. In our model, the choice of technology

affects production through two channels. First, there is pure productivity shift that occurs

irrespective of the inputs. Secondly, the technology also affects input-use since different

technologies will have different elasticities of production.

The final two constraints, equations 4.4 and 4.5 represent the time constraints for both mem-

bers of the household. Adults allocate their total time endowment between leisure (L1),

off-farm work (M1) and farm work (F1) activities. The total time endowment of children is

allocated between leisure (L2), education (E2) and farm-work (F2).

Substituting equation 4.3 into equation 4.2, a technology-constrained version of the cash

constraint of the outcome can be obtained and is given by the following equation:

py(Y1 + Y2) + peE2 = pqQ[X(τ), F1(τ), F2(τ), τ ]− wxX(τ) + wmM1 (4.6)

Given these equations, the Lagrangean is given by the following equation:

L = U(Y1, Y2, L1, L2,M1, E2) + λ[pqQ[X(τ), F1(τ), F2(τ), τ ]− wxX(τ) + wmM1

−py(Y1 + Y2)− peE2] + µ[T1 − L1 − F1(τ)−M1] + φ[T2 − L2 − F2(τ)− E2]
(4.7)

The full set of first-order conditions and assumptions is available in Appendix A. In this

10pq and wx represent the market prices of agricultural outputs and non-labour agricultural inputs, respec-
tively. Q and X represent the total agricultural production and the total quantity of non-labour inputs used
in the production process.

11wm represents the wage rate for off-farm labour and M1 represents the total time spent on off-farm labour.
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section, I assume that the model is separable and focus on the first-order condition related to

the adoption decision, summarized in equation 4.8, below:

∂L
∂τ

= λ

[
pq

[ ∂Q
∂X

∂X

∂τ
+
∂Q

∂F1

∂F1

∂τ
+
∂Q

∂F2

∂F2

∂τ
+
∂Q

∂τ

]
− wx

∂X

∂τ

]
−µ∂F1

∂τ
− φ∂F2

∂τ
≤ 0; τ ≥ 0; τ

(∂L
∂τ

)
= 0

(4.8)

Using equation 4.8, the following adoption decision can be derived:

pq
dQ

dτ
= wx(

∂X

∂τ
) +

µ

λ
(
∂F1

∂τ
) +

φ

λ
(
∂F2

∂τ
) (4.9)

The left-hand side of equation 4.9 represents the gains from adoption (increased revenues

from productivity gains) while the right-hand side represents the costs (or savings, if partial

derivatives are negative) associated with the adoption of the technology. More importantly,

equation 4.9 highlights three important aspects.

First, equation 4.9 highlights clearly the main hypothesis of this paper. We are essentially

testing whether
∂F1

∂τ
= 0 and

∂F2

∂τ
= 0. This is important because most impact evaluation

methodologies used in cross-sectional data assume that the adoption decision has no impact

on input use (i.e. they assume that
∂X

∂τ
= 0 ,

∂F1

∂τ
= 0 and

∂F2

∂τ
= 0).

Second, the equation highlights the importance of studying non-productivity metrics of tech-

nology adoption. Specifically, it provides a plausible channel to explain why households may

not adopt a given technology, even when associated gains are large. As shown in equation 4.9,

even if a given technology is associated with large production gains (
dQ

dτ
> 0 and large), it will

only be adopted if the gains compensate the changes in costs, both monetary (increase in in-

puts) and non-monetary (time spent on-farm) [i.e. if pq(
dQ

dτ
) > wx(

∂X

∂τ
)+

µ

λ
(
∂F1

∂τ
)+

φ

λ
(
∂F2

∂τ
)].

Finally, equation 4.9 also motivates our preference for empirical methods taking into account

unobservable heterogeneity. Specifically, technology adoption is likely to depend on a number

of factors such as households expectations regarding input use (
∂X

∂τ
,
∂F1

∂τ
and

∂F2

∂τ
) as well

as a household’s valuation of their time (
µ

λ
and

φ

λ
). These factors are known (or predicted) to
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the household adopting the technology. However, the researcher does not observe them. This

drives the choice the methodology, explained in the next section.

4.4 Empirical Methodology

4.4.1 The impact evaluation problem and selection biases

In impact evaluation, the main objective is to understand what is the effect (or impact) of a

certain treatment (D) on a certain outcome of interest (Y). The main challenge to estimating

the impact is that researchers are unable to simultaneously observe the outcome for individual

i under adoption (Yi1) and non-adoption (Yi0). Formally, we can represent this by the equation

below:

Yi = Yi1 ∗Di + Yi0 ∗ (1−Di) (4.10)

Consequently, we need to find a suitable counterfactual. Specifically, we have to look for

the best possible estimate of the outcome of interest for the status for which individual i is

not observed. Supposing that such counterfactual exists and is correctly estimated, different

measures of impact can then be obtained. The most common measures are 1) the ATT

(Average Treatment on the Treated), which measures the average treatment effect for those

who have adopted, 2) the ATU (Average Treatment on the Untreated), which measures the

Average Treatment Effect for the untreated, and 3) the ATE (Average Treatment Effect)

which measures the average treatment effect for the full sample. The latter measure is a

weighted average of the ATT and the ATU. Formally, these can be written as:

ATE = E[Yi1 − Yi0] (4.11)

ATT = E[Yi1 − Yi0|Di = 1] (4.12)

ATU = E[Yi1 − Yi0|Di = 0] (4.13)
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The issue in non-experimental studies is related to self-selection. In other words, individuals

may be observed in the treatment status that is most favourable for them. This implies

that the outcome is no longer independent of the treatment status, as individuals choose the

treatment status based on their expected outcome, as shown in the equation below:

y0, y1 6⊥⊥ D (4.14)

If randomization is used and does not fail, the treatment status is independent of the outcome

because, probabilistically speaking, individuals in both groups are balanced in both their

observables and unobservable covariates.

In non-experimental settings, however, practitioners have to revert to alternative methods

that, under certain assumptions, circumvent the selection bias and provide reliable estimates.

Two key assumptions that are widely used in methods such as Propensity Score Matching

(PSM), are that of conditional independence and common support. The basic idea behind

propensity score matching is that, based on observable variables alone, the matching process

makes the selection into treatment as good as random, as shown in the equations below:

(y1, y0)|X ⊥⊥ D (4.15)

0 < Pr(D = 1|X) < 1 (4.16)

However, as argued by Heckman and Vytlacil (2007), this is a very strong assumption. It

requires that the researcher possesses and uses all the relevant information available and used

by the individual when selecting into the treatment. As highlighted in the theoretical model,

we do not believe this holds in this case12. As a result, I opt for a model that allows for

unobserved heterogeneity, namely an Endogenous Switching Regression Model (ESRM).

12I argue that aspects such as time valuation and predicted changes in inputs are likely to be determinant
factors. These are aspects I do not observe.
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4.4.2 Endogenous Switching Regression Model

The Endogenous Switching Regression model consists of two stages. In the first stage, a farmer

will adopt a technology based on his expected benefits (expected outcome) from adoption.

These benefits depend on both observable characteristics (Wi) and unobservable characteris-

tics (udi ). Formally:

D∗i = βWi + udi (4.17)

D∗i =


1 if D∗i > 0

0 otherwise

(4.18)

As a result, a farmer will only adopt a certain technology if there are net benefits of adoption.

Based on the adoption decision, a different equation is estimated for each state:

Yi =


Yi1 = β1Xi + εi1 if D == 1

Yi0 = β0Xi + εi0 if D == 0

(4.19)

This equation summarizes one of the main strengths of this empirical approach. By estimating

two separate equations, the method allows for the outcome variable (in our case labour) to

react differently to the explanatory variables, depending on the adoption status. In the case

of a labour-intensive technology (such as bunds), we would expect the coefficient on plot size

to be higher when the technology is adopted. In other words, we would expect households to

spend more days per hectare cultivating a plot where bunds have been adopted. In order to

help with identification, we also include one variable in the adoption equation that omitted

from the labour equation. We will discuss our choice of instrument in the next section.

Another feature of the Endogenous Switching Regression model is that it assumes a non-

zero correlation between the error term of the adoption equation and the error terms of the

outcome equations. This is shown in the matrix below, which provides the variance-covariance

matrix for the endogenous switching regression model:
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Σ =


σ2
u σuε1 σuε0

σuε1 σ2
1 0

σuε0 0 σ2
0



Where σ2
u represents the variance of the error term in the selection equation, σ2

1 and σ2
0 rep-

resent the variance of the outcome equations under adoption and non-adoption, respectively.

The terms σuε1 and σuε0 represent the covariance between the selection equation and outcome

regimes under adoption and non-adoption, respectively. The errors follow a trivariate normal

distribution with mean 0 and the variance-covariance matrix Σ.

In practice, this implies that the outcome equations need to be adjusted for the sample

selection in the following way:

E[εi1|D = 1] = σw1
φ(βWi)

Φ(βWi)
(4.20)

E[εi0|D = 0] = σw0
φ(βWi)

1− Φ(βWi)
(4.21)

Where the terms
φ(βWi)

Φ(βWi)
and

φ(βWi)

1− Φ(βWi)
are also known as the inverse Mills ratios. In order

to test for the presence of selection bias, two coefficients (ρ1 and ρ0) are calculated. If they

are statistically significant, this suggests the presence of selection bias. These coefficients are

calculated using the following expression:

ρ1 =
σ2
u1

σuσ1
(4.22)

ρ0 =
σ2
u0

σuσ0
(4.23)

Given the equations above, we can then define the conditional outcomes for adopters and

non-adopters as follows:

E(Yi1|D = 1) = β1Xi1 + σu1
φ(βWi)

Φ(βWi)
(4.24)
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E(Yi0|D = 0) = β0Xi0 + σu0
φ(βWi)

1− Φ(βWi)
(4.25)

using this framework, the counterfactual outcomes are given by:

E(Yi1|D = 0) = β1Xi1 + σu1
φ(βWi)

1− Φ(βWi)
(4.26)

E(Yi0|D = 1) = β0Xi0 + σu0
φ(βWi)

Φ(βWi)
(4.27)

And then we obtain the ATT by simply taking the difference between equations 4.24 and

4.27 and the ATU is obtained by taking the difference between equations 4.26 and 4.25. The

corresponding equations are:

ATT = E(Yi1|D = 1)− E(Yi0|D = 1) = X(β1 − β0) + (σu1 − σu0)
φ(βWi)

Φ(βWi)
(4.28)

ATU = E(Yi1|D = 0)− E(Yi0|D = 0) = X(β1 − β0) + (σu1 − σu0)
φ(βWi)

1− Φ(βWi)
(4.29)

4.5 Data and Choice of Instrument

4.5.1 Data

In this paper, I use the Ethiopia Nile Basin Climate Change dataset (Ringler and Sun 2010).

The dataset is publicly available from the International Food Policy Research Institute web-

site13. The data relies on survey data collected from 1,000 farm households, over 20 woredas

spread over different agro-ecological zones14 in the Nile Basin in Ethiopia in 2005.

This dataset has three main strengths. First, data is collected at the plot level. Second, the

dataset contains detailed information on the adoption of various soil and water conservation

practices. Finally, a large number of plots are sampled (more than 3,000 plots). The main

13The survey was conducted by the Ethiopian Development Research Institute (EDRI), in collaboration with
the International Food Policy Research Institute (IFPRI). Funding for the survey was provided by the Federal
Ministry for Economic Cooperation and Development (Germany). The project forms part of the Consultative
Group on International Agricultural Research (CGIAR)’s Challenge Program on Water and Food (CPWF).

14Dega, Woina Dega, Kolla and Berh
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weakness of this dataset is that it is a cross-section. As a result, I am not able to control for

factors such as household fixed-effects. However, throughout the paper, I will show that, for

a sub-sample of partial adopters (i.e. those that adopt in some plots but not in others), for

which we can use household fixed-effects, our results are robust to the inclusion of fixed-effects.

For the purposes of this study, I am mainly interested in SWC technologies. In particular, it is

noteworthy that waterways and/or bunds were adopted in over 85% of the plots where SWC

technologies were adopted. The analysis is limited to plots that cultivate legumes (Beans,

Chickpeas, Cowpeas, Field Peas and Lentils) and/or cereals (Barley, Maize, Millet, Oats, Teff,

Wheat, Sorghum and Finger Millet/Dagusa) and data for both the Meher and Belg season is

used, though most of the data is from the Meher season. As a result, 3,633 are used in the

analysis. The steps involved in the data preparation are described Appendix B.

In terms of labour, I focus on family labour which, in the African and Ethiopian accounts for

the vast majority of on-farm labour. Previous research by Dillon and Barret (2017) shows

that in the five analysed Living Standards Measurement Study (LSMS) surveys (covering

five countries, namely Ethiopia, Malawi, Niger, Tanzania and Uganda) the proportion of

work carried out by hired labour never exceeds 20% of total labour. A similar conclusion is

reached by Palacio-Lopez et al. (2017). The results suggest that in all the analysed countries

(Nigeria, Niger, Ethiopia, Malawi, Tanzania and Uganda) hired labour accounts for a small

proportion of total labour. Specifically, in all countries at least 90% of the labour is provided

by adult household members. In the Ethiopian context, Bachewe et al. (2016) find that in

high-potential areas of Ethiopia, agricultural wage income accounted for about 7% of rural

income and hired labour represented 7% of total labour15. These numbers are in line with

the labour composition in our sample. In our sample, approximately 85% of the labour is

provided by adult household members, 10% is provided by children16 and only 5% is provided

by hired labour. The average plot uses approximately 2 days of hired labour against 27 days

of family labour (i.e. adult plus child labour).

Table 4.1 shows the summary statistics for the observations used in the sample. Table 4.1

shows that SWC technologies have been adopted in the majority of the sampled plots (2771

out of 3633). The summary statistics also suggest that adopters and non-adopters appear to

15The authors also find that only 1% of the farms relied solely on hired labour.
16Defined as a household member below 15 years old.
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be very similar in terms of their demographic characteristics, both displaying an average of

approximately three adults and three children per household. In terms of other household

characteristics, adopters tend to be closer to the market and, with the exception of droughts,

have had less exposure to natural disasters. TV ownership, however, tends to be higher

among non-adopters. In terms of plot level characteristics, adopters differ from non-adopters.

Adopters tend to have fewer but larger plots and display higher yields of both cereals and

legumes. However, a larger proportion of plots where SWC technologies were not adopted are

believed to be fertile.
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Table 4.1: Descriptive Statistics by Adoption Status

All Non-Adopters Adopters

Variables N Mean S.D. N Mean S.D. N Mean S.D.

Demographic Variables

Number of Adults in the Household 3633 3.27 1.46 862 3.21 1.32 2771 3.29 1.50

Number of children in the Household 3633 3.30 1.74 862 3.31 1.89 2771 3.30 1.69

Household has a child under 6 3633 0.37 0.48 862 0.37 0.48 2771 0.36 0.48

Number of children under 6 in the Household 3633 1.03 0.96 862 1.03 0.97 2771 1.03 0.96

Household has a child between 6 and 11 3633 0.28 0.45 862 0.30 0.46 2771 0.27 0.45

Number of children between 6 and 11 in the Household 3633 1.22 0.99 862 1.27 1.13 2771 1.21 0.95

Household has a child between 11 and 15 3633 0.32 0.47 862 0.36 0.48 2771 0.30 0.46

Number of children between 11 and 15 in the Household 3633 1.05 0.89 862 1.00 0.92 2771 1.06 0.87

Household Characteristics

Is head of household literate (1 Yes) 3633 0.50 0.50 862 0.48 0.50 2771 0.51 0.50

Distance to market where output is sold 3633 5.61 3.95 862 5.94 3.49 2771 5.51 4.08

Has experienced at least one hail storm since 1994 3633 0.21 0.40 862 0.15 0.35 2771 0.22 0.42

Household owns a TV 3633 0.43 0.49 862 0.49 0.50 2771 0.41 0.49

Has experienced at least one flood since 1994 3633 0.16 0.37 862 0.08 0.28 2771 0.18 0.39

Has experienced at least one drought since 1994 3633 0.40 0.49 862 0.25 0.44 2771 0.45 0.50

Plot-level Information (Non-Labour)

Area of plot (ha) 3631 0.55 10.38 861 0.39 0.32 2770 0.60 11.88

Yield (all crops) 3525 988.17 896.39 831 915.87 901.24 2694 1010.48 893.87

Yield (kg/ha) cereals only 2910 1015.00 914.68 667 955.14 939.77 2243 1032.81 906.53

Yield (kg/ha) legumes only 615 875.64 843.07 164 756.13 703.83 451 919.10 885.03

Number of plots used in the analysis owned by the household 3633 4.85 2.03 862 4.97 2.02 2771 4.81 2.03

Plot is highly fertile 3633 0.27 0.44 862 0.32 0.47 2771 0.25 0.44

Plot is steep 3633 0.05 0.22 862 0.02 0.14 2771 0.06 0.24

Plot is flat 3633 0.59 0.49 862 0.68 0.47 2771 0.56 0.50

Plot has medium depth 3632 0.47 0.50 862 0.37 0.48 2770 0.51 0.50

Adopt Soil and Water Conservation Practices 3633 0.76 0.43 862 0.00 0.00 2771 1.00 0.00

Labour

Total Child Labour in all activities 3633 3.14 6.54 862 1.83 4.36 2771 3.55 7.03

Total adult family labour (days per plot) 3633 24.23 18.92 862 24.99 19.28 2771 23.99 18.80

Total Family labour used by the Household (days per household) 3633 112.23 74.47 862 123.66 86.45 2771 108.67 69.96

Average family labour per adult in the household 3633 37.52 25.61 862 41.50 29.27 2771 36.29 24.23

Total child labour used in all plots (days) 3633 14.42 26.21 862 9.30 18.30 2771 16.01 28.03

Average days of child labour per child (days per household) 3447 4.80 8.90 812 3.34 7.27 2635 5.25 9.30

Total hired adult Labour days all activities 3633 1.95 9.50 862 3.60 17.26 2771 1.44 4.96

Share of adult labour 3633 0.87 0.14 862 0.89 0.14 2771 0.86 0.14

Share of family labour 3633 0.96 0.09 862 0.95 0.10 2771 0.96 0.08

Share of hired labour 3633 0.04 0.09 862 0.05 0.10 2771 0.04 0.08

Share of child labour 3633 0.09 0.13 862 0.06 0.10 2771 0.10 0.13

Regional Distribution of Plots

Tigray 3633 0.15 0.35 862 0.05 0.21 2771 0.18 0.38

Amhara 3633 0.41 0.49 862 0.31 0.46 2771 0.44 0.50

Oromiya 3633 0.28 0.45 862 0.36 0.48 2771 0.26 0.44

Benishangul Gumuz 3633 0.10 0.30 862 0.07 0.26 2771 0.11 0.32

SNNP 3633 0.06 0.24 862 0.22 0.41 2771 0.01 0.10

N refers to the total number of observations, S. D. refers to the Standard deviation.
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Adopters and non-adopters also differ substantially in terms of labour, both in terms of total

days worked on the plots as well as in the distribution of labour between adults and children.

Specifically, plots that have adopted SWC technologies tend to use more child labour, but use

less adult family labour. Households who did not adopt SWC technologies in their plots also

report working, on average, about 15 more days (approximately 14% more). With regards

to child labour, plots where SWC technologies were adopted use about twice the amount of

child labour and households that adopt report using approximately 6.5 additional days of

child labour (about 77% more).

Another pattern highlighted in Table 4.1 is the geographical adoption patterns. In Tigray,

for instance, SWC practices are used in the vast majority (over 85%) of the surveyed plots.

The opposite pattern holds in the SNNP (Southern Nations, Nationalities and Peoples) re-

gion, where SWC technologies are used in very few plots. This pronounced geographical

pattern suggests that regional differences in agricultural suitability and farming practices are

an important factor underlying the adoption decision. As such, throughout the paper, I will

attempt to incorporate these differences in the estimation procedure, namely through the

inclusion of village fixed-effects.

4.5.2 Choice of Instrument

As mentioned in section 4.4, the identification of the equations in the ESRM relies on the

choice of a variable included in the adoption equation and excluded from the outcome equa-

tion. Specifically, it requires an instrument that is both highly correlated with the adoption

decision and does not affect the variables of interest (adult and child labour) directly.

In this paper, I use the perceptions of erosion as an instrument. In theory, this variable should

be highly correlated with the adoption of Soil and Water conservation technologies. Specifi-

cally, a negative correlation17 is expected since, soil and water conservation technologies are

more likely to be adopted in plots where erosion is perceived to be a problem. However, con-

ceptually, it is also possible that erosion perceptions influence the amount of labour directly.

17The variable is labelled as follows. 1 means that the household does not perceive erosion as being a
problem for that particular plot. 0 means that the household perceives erosion to be a problem. As a result,
we would expect households to adopt SWC technologies in plots where they believe erosion is a problem (when
the variable takes a value of 0).
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It is possible that the level of effort exerted by households depends on the level of perceived

erosion in a plot, although the direction is ambiguous. Specifically, households may work

more in a plot where erosion is a problem in order to compensate for the negative effects of

erosion, in which case it would lead to an increase in labour. Alternatively, they may decide to

exert more effort in other less-eroded plots or simply increasingly shift away from agriculture,

in which case a negative direct effect of labour would be expected. The existence of a direct

effect may be particularly problematic in this paper since only one instrument is used, which

implies that I cannot test for the exogeneity of the instrument.

Therefore, in order to substantiate the admissibility of the instrument used, I proceed to the

same falsification test proposed in Di Falco et al. (2011). The test consists of running a

probit regression to show that the instrument is highly correlated with the adoption decision,

then run an OLS regression on the dependent variables for non-adopters. If the instrument

has a statistically significant effect on adoption and a statistically insignificant effect on the

levels of child and adult labour of non-adopters, this suggests that this instrument may be

acceptable.

The results of the falsification test are presented in Table 4.2. The results show a strong

negative relationship between the instrument and the adoption equation. The associated t-

statistics (in italic) for the instrument are approximately 12 for adult labour and above 818 for

the sub-sample of plots that use child labour. As such, this instrument qualifies as a strong

predictor of the adoption decision. Regarding the coefficient of the instrument in the labour

equations for the non-adopters, its statistical significance is comfortably rejected at the usual

significance levels. As such, this instrument satisfies the conditions laid by Di Falco et al.

(2011). In Appendix C I discuss further why I did not use alternative instruments. Typically,

other instruments proposed in the literature either 1) failed the falsification test; 2) were not

strong predictors of the adoption decision; 3) displayed different signs across different sub-

samples; and/or 4) were incompatible with either Kebele or Household fixed effects as data

was collected either at the Kebele or household level.

18It could be argued that a t-statistic of 8 is not powerful enough for a strong instrument. As such, a weak
instrument p-value was computed in all of our child labour IV results.
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Table 4.2: Falsification tests

Adult labour Child labour

(1) (2) (3) (4) (5) (6)

Variables Adoption OLS OLS Adoption OLS OLS

Distance to market (km) 0.004 0.028*** -0.034 -0.001 0.007 -0.003
(0.015) (0.011) (0.082) (0.018) (0.017) (0.027)

Hailstorm since 1994 -0.012 0.167 -1.032** -0.31 0.092 -0.932**
(0.159) (0.121) (0.399) (0.209) (0.285) (0.358)

Has TV (1 if yes, 0 if no) -0.204 0.13 0.88 -0.471* 0.138 -0.198
(0.171) (0.139) (0.570) (0.242) (0.216) (0.458)

Is head of household literate (1 Yes) -0.067 0.128* 1.532*** 0.242 -0.174 0.832
(0.117) (0.072) (0.338) (0.168) (0.173) (1.109)

At least one flood since 1994 0.013 -0.022 -1.292*** -0.262 -0.193 -0.207
(0.171) (0.115) (0.373) (0.201) (0.241) (0.430)

At least on drought since 1994 0.027 -0.003 -1.449 -0.182 0.143 0.545
(0.145) (0.164) (1.530) (0.180) (0.237) (0.351)

Plot is highly fertile 0.233** 0.004 -0.138 0.288* -0.144 -0.411*
(0.101) (0.072) (0.122) (0.155) (0.129) (0.238)

Plot is steep 0.520** -0.111 0.864 0.716** 0.051 -0.041
(0.227) (0.251) (0.537) (0.340) (0.351) (0.313)

Ln Area plot (ha) 0.07 0.209*** 0.141* -0.04 0.041 0.106
(0.058) (0.047) (0.084) (0.078) (0.090) (0.120)

Plot is flat 0.132 -0.036 0.297 -0.242 0.113 -0.041
(0.109) (0.077) (0.180) (0.162) (0.152) (0.313)

Plot has medium depth 0.336*** 0.04 -0.043 0.310** 0.083 -0.372
(0.096) (0.070) (0.272) (0.155) (0.145) (0.427)

Household has child under 6 -0.236* -0.035 -0.161 -0.306* -0.619*** -0.57
(0.132) (0.089) (0.841) (0.170) (0.178) (0.345)

ln Number of children under 6 0.089 -0.02 -0.06 0.151 -0.746*** -0.522***
(0.168) (0.113) (0.431) (0.237) (0.267) (0.183)

Household has child aged 6-11 -0.124 0.002 -0.889** -0.108 0.077 -0.63
(0.134) (0.085) (0.399) (0.200) (0.192) (0.545)

ln Number of children aged 6-11 -0.065 -0.045 -0.525 0.028 0.092 0.526
(0.146) (0.084) (0.458) (0.217) (0.170) (0.350)

Household has child aged 11-15 0.04 -0.067 -2.262*** 0.237 -0.058 -0.618
(0.131) (0.086) (0.216) (0.232) (0.205) (0.404)

ln Number of children aged 11-15 -0.178 -0.047 -1.924** 0.041 0.343 0.059
(0.159) (0.113) (0.908) (0.217) (0.207) (0.588)

ln Number of plots 0.08 -0.056 -2.181 0.023 0.09 -1.453*
(0.135) (0.091) (1.429) (0.224) (0.205) (0.830)

ln Number of adults 0.031 0.203** 2.103*** 0.437** 0.007 2.017***
(0.134) (0.100) (0.580) (0.195) (0.270) (0.374)

No perceived erosion on plot (1-yes, 0 no) -1.370*** -0.096 -0.265 -1.447*** 0.153 -0.414
(0.113) (0.105) (0.212) (0.176) (0.186) (0.427)
-12.11 -0.913 -1.249 -8.241 0.825 -0.969

Constant -0.518 2.874*** 6.125*** -1.330* 0.271 3.797**
(0.468) (0.297) (1.449) (0.780) (0.574) (1.734)

Kebele FE X X X X
Household FE X X
Number of observations 3447 861 269 1512 306 132

Number in parentheses denote standard errors. In the case of our instrument, the numbers in italic denote t-values. *, **, ***
denote statistical significance at the 10%, 5% and 1% level, respectively.
Note: Columns (2), (3), (5) and (6) only use the sub-sample of non-adopters, whereas Columns (1) and (4) use the full sample.
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4.6 Results

Table 4.3 shows the output of the endogenous switching regression models for both child

labour and adult labour1920.

The child labour results in table 4.3 suggest that plot depth and fertility are significant

drivers of Soil and Water Conservation technology adoption. Demographic characteristics

also seem to play a role in the adoption of SWC technologies. Specifically, households with

a larger number of adults are more likely to adopt. A similar positive (though statistically

insignificant) coefficient is associated with the number of children aged 11-15. However, a

higher number of children under 6 is associated with a lower probability of adoption. This

suggests that adoption is correlated with the amount of labour availability, as older children

and teenagers may be more able to work compared to young children.

Previous exposure to natural disasters is also negatively correlated with adoption. However,

this is only significant in the case of a hail storm. Households who own a TV are less likely to

adopt. Finally, we also find that households in more remote areas are less likely to adopt SWC

technologies than those closer to the market, although this is not statistically significant. As

expected, our identifying variable (erosion perceptions) is strongly (t-stat=10.72) negatively

correlated with adoption.

However, the estimated rhos are both statistically insignificant. As a result there is no strong

evidence supporting the existence of self-selection in the child labour regressions. Nevertheless,

the sign of the rhos indicates that plots where SWC technologies are used tend to use more

child labour than a random plot.

The results displayed in Table 4.3 also highlight the difference in terms of some of the coef-

ficients the determinants of the level of child labour use. Households with large numbers of

19The results for child labour refer to the sub-sample of plots where child labour is used for villages which
have enough variation of adoption.

20In both cases, I only kept Kebeles with at least 5 observations in each adoption status. This means
that a number of observations are not used, especially in the child labour specification. In total, in the child
labour specification, 4 Kebeles are not used (196 observations). However, in the robustness checks using an
Instrumental variable approach, I test the sensitivity to the inclusion/exclusion of these Kebeles. The main
reason driving this choice in the ESRM specification is that I believe that the inclusion of village fixed effects
is key to capture important features driving the outcome, including weather, labour market arrangements and
agro-ecological suitability.
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Table 4.3: Endogenous Switching Regression Model Results

Child Labour Adult Labour

(1) (2) (3) (4) (5) (6)

Variables Non-Adopters Adopters Selection Non-Adopters Adopters Selection

Distance to market (km) -0.003 0.003 -0.008 0.028*** -0.001 0.002
(0.014) (0.006) (0.013) (0.008) (0.003) (0.010)

Hailstorm since 1994 0.042 0.016 -0.322** 0.171** 0.083** -0.024
(0.185) (0.072) (0.142) (0.087) (0.032) (0.095)

Has TV (1 if yes, 0 if no) 0.091 0.006 -0.461*** 0.139* 0.146*** -0.200**
(0.170) (0.083) (0.162) (0.078) (0.035) (0.097)

Is head of household literate (1 Yes) -0.176 -0.171*** 0.240** 0.130*** -0.032 -0.046
(0.115) (0.063) (0.116) (0.047) (0.025) (0.067)

At least one flood since 1994 -0.18 0.021 -0.236 -0.024 -0.063* 0.019
(0.153) (0.072) (0.144) (0.094) (0.033) (0.100)

At least on drought since 1994 0.101 -0.246*** -0.235* -0.004 0.101*** 0.013
(0.183) (0.066) (0.136) (0.090) (0.028) (0.088)

Plot is highly fertile -0.072 -0.104 0.267** -0.012 0.032 0.266***
(0.109) (0.068) (0.116) (0.050) (0.027) (0.071)

Plot is steep 0.087 -0.18* 0.707* -0.141 0.013 0.555***
(0.461) (0.105) (0.375) (0.155) (0.049) (0.196)

Ln Area plot (ha) 0.071 0.138*** -0.011 0.209*** 0.228*** 0.065
(0.074) (0.039) (0.080) (0.035) (0.018) (0.050)

Plot is flat 0.116 0.029 -0.213 -0.046 0.016 0.116
(0.140) (0.072) (0.144) (0.058) (0.027) (0.083)

Plot has medium depth 0.099 0.113* 0.329*** 0.021 0.108*** 0.342***
(0.121) (0.061) (0.121) (0.053) (0.025) (0.069)

Household has child under 6 -0.532*** -0.083 -0.316** -0.025 -0.003 -0.237***
(0.138) (0.070) (0.127) (0.061) (0.029) (0.079)

ln Number of children under 6 -0.639*** -0.059 0.124 -0.023 -0.021 0.086
(0.179) (0.086) (0.174) (0.070) (0.035) (0.098)

Household has child aged 6-11 0.076 -0.127* -0.129 0.005 -0.047 -0.1
(0.136) (0.076) (0.140) (0.059) (0.030) (0.081)

ln Number of children aged 6-11 0.082 0.12 0.024 -0.046 -0.038 -0.057
(0.124) (0.078) (0.140) (0.057) (0.033) (0.088)

Household has child aged 11-15 0.013 -0.210** 0.209 -0.071 -0.055* 0.043
(0.142) (0.082) (0.152) (0.056) (0.029) (0.078)

ln Number of children aged 11-15 0.338** 0.327*** 0.038 -0.036 -0.007 -0.190**
(0.142) (0.075) (0.141) (0.068) (0.036) (0.096)

ln Number of plots 0.087 -0.145* 0.037 -0.06 -0.111*** 0.051
(0.155) (0.082) (0.154) (0.062) (0.034) (0.088)

ln Number of adults 0.139 0.155** 0.408*** 0.198*** 0.278*** 0.064
(0.177) (0.076) (0.146) (0.064) (0.031) (0.082)

No perceived erosion on plot (1-yes, 0 no) -1.432*** -1.362***
(0.134) (0.080)

Constant 2.139*** 2.817*** 0.491 2.932*** 3.471*** 1.093***
(0.386) (0.281) (0.420) (0.184) (0.097) (0.233)

Kebele Fixed Effects X X X X X X

Ancillary Parameters

ln -0.339*** -0.102*** -0.497*** -0.586***
(0.042) (0.025) (0.026) (0.015)

Rho 0.037 -0.35 -0.164 -0.153
(0.170) (0.221) (0.115) (0.100)

p-value LR test 0.329 0.108

Number of observations 289 1169 1458 857 2456 3313

Number in parentheses denote standard errors. In the case of our instrument, the numbers in italic denote t-values. *, **, *** denote
statistical significance at the 10%, 5% and 1% level, respectively.
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children under the age of 6 tend to use less child labour, whereas those with a larger numbers

of children between the ages of 11 and 15 tend to use larger amounts of child labour. This

suggests that older children are likely to be preferred to carry out farm labour.

Impact estimates in Table 4.4 shows the ATE estimates for child labour. The results suggest

that adopting a SWC technology leads to an increase of approximately 29% per plot. In levels,

this corresponds to approximately 1.26 extra days per plot. However, the ATT estimate is

much lower than the ATU. The ATT estimate suggests a 14% increase in child labour for

adopters (0.46 additional days per plot), whereas the ATU estimate suggests an increase in

child labour of 117% (4.5 additional days per plot)21.

Table 4.4: Treatment Effects

ATE ATT ATU

Variable N Mean S.E. t-value N Mean S.E. t-value N Mean S.E. t-value

Child Labour (logs) 1458 0.258*** 0.019 13.459 1169 0.13*** 0.020883 6.236 289 0.774*** 0.032647 23.724
Child Levels (levels) 1458 1.256*** 0.10748 11.684 1169 0.457*** 0.105263 4.346 289 4.484*** 0.260529 17.212
Adult Labour (logs) 3313 0.273*** 0.004726 57.885 2456 0.3*** 0.005509 54.455 857 0.197*** 0.008676 22.755
Adult Labour (levels) 3313 4.845*** 0.108 44.872 2456 5.175*** 0.1256 41.201 857 3.900*** 0.208 18.737

*, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. N refers to the total number of observations. S.E. refers to the standard error.

These results suggest that adoption of SWC technologies leads to an increase in the amount

of child labour used. In addition to this, estimated impacts are higher for non-adopters than

for adopters. One possible explanation for this is that, on average, adults already work more

days in households that do not use SWC technologies in some of their plots. As a result,

children may be expected to take on more of the additional labour generated by the adoption

of the new technology.

We then test the robustness of the result using a set of standard IV regressions using four

different specifications. First, I use the full sample including the villages excluded for the

purposes of the ESRM. In the second specification, I use the same sample used in the ESRM

specification. In the third specification, I use a sample of partial adopters (those who adopted

SWC technologies in some, but not all, plots). Finally, in the final specification, I use the sub-

sample of partial adopters and control for household fixed-effects. In the last specification,

however, owing to the inclusion of fixed effects, I only use plot-level variables22 . The results

21Note that the (log) results in Table 4.4 refers to the log difference. As a result, to obtain the percentage
change, we need to use the following formula (eiestimate−1)∗100, where iestimate refers to the impact estimate.

22Given that the dataset is a cross-section, household level variables are, by definition, invariant at the
household level and thus cannot be included alongside fixed effects.
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are summarized in table 4.5 and the estimated magnitude of the estimated impacts is very

similar to the impacts estimated in the ESRM regression and range from 30% to 34%. In

terms of significance, however, the impacts are no longer significant at the conventional levels

of statistical significance.

Table 4.5: Robustness Checks: IV regressions Child Labour

All Exclude Keb 1, 8 and 10 FE sample FE

(1) (2) (3) (4) (5) (6) (7) (8)

Variables C. labour Adoption C. labour Adoption C. labour Adoption C. labour Adoption

Adopted SWC practices 0.294 0.263 0.275 0.287
(0.264) (0.256) (0.236) (0.204)

Distance to market (km) 0.005 0.000 0.002 -0.001 0.005 -0.005
(0.007) (0.002) (0.007) (0.002) (0.029) (0.005)

Hailstorm since 1994 0.004 -0.053 0.014 -0.056 -0.140 -0.168***
(0.117) (0.033) (0.127) (0.036) (0.394) (0.051)

Has TV (1 if yes, 0 if no) -0.018 -0.057 0.014 -0.072* -0.158 -0.081
(0.114) (0.037) (0.116) (0.039) (0.292) (0.091)

Is head of household literate (1 Yes) -0.102 0.034 -0.180** 0.035 0.003 -0.063
(0.091) (0.027) (0.088) (0.031) (0.221) (0.050)

At least one flood since 1994 0.017 -0.040 0.017 -0.045 0.167 -0.029
(0.109) (0.033) (0.112) (0.034) (0.241) (0.044)

At least on drought since 1994 -0.157 -0.026 -0.236** -0.037 -0.050 -0.225***
(0.106) (0.026) (0.110) (0.029) (0.269) (0.056)

Plot is highly fertile -0.111 0.049* -0.116 0.050 -0.172 -0.040 -0.007 -0.066
(0.081) (0.029) (0.076) (0.031) (0.129) (0.075) (0.072) (0.111)

Plot is steep -0.131 0.062** -0.120 0.048 0.170 -0.001 -0.101 -0.132
(0.128) (0.030) (0.133) (0.031) (0.225) (0.083) (0.205) (0.089)

Ln Area plot (ha) 0.115*** -0.004 0.130*** -0.004 0.134** 0.007 0.181** -0.022
(0.041) (0.012) (0.043) (0.012) (0.066) (0.032) (0.074) (0.043)

Plot is flat -0.028 -0.034* -0.010 -0.041* 0.107 -0.110 0.003 -0.089
(0.073) (0.020) (0.076) (0.023) (0.170) (0.071) (0.125) (0.088)

Plot has medium depth 0.134* 0.031 0.119 0.040 0.105 0.030 -0.126 -0.057
(0.073) (0.022) (0.079) (0.025) (0.156) (0.058) (0.134) (0.094)

Household has child under 6 -0.172* -0.048 -0.201** -0.063* -0.648*** -0.124***
(0.096) (0.030) (0.102) (0.033) (0.217) (0.044)

ln Number of children under 6 -0.191 0.012 -0.166 0.000 0.299 0.015
(0.128) (0.038) (0.131) (0.040) (0.339) (0.068)

Household has child aged 6-11 -0.128 -0.019 -0.111 -0.018 0.036 0.000
(0.102) (0.033) (0.105) (0.036) (0.278) (0.074)

ln Number of children aged 6-11 0.082 0.003 0.113 0.002 -0.296 0.020
(0.116) (0.036) (0.113) (0.039) (0.313) (0.072)

Household has child aged 11-15 -0.151 0.045 -0.115 0.054 -0.518 0.014
(0.110) (0.039) (0.116) (0.042) (0.317) (0.075)

ln Number of children aged 11-15 0.316*** 0.012 0.372*** 0.013 0.103 -0.136**
(0.113) (0.035) (0.116) (0.038) (0.299) (0.052)

ln Number of plots -0.198 -0.008 -0.139 -0.008 -0.511 0.148**
(0.121) (0.034) (0.117) (0.038) (0.316) (0.073)

ln Number of adults 0.287** 0.074** 0.195* 0.091*** 0.454 -0.056
(0.116) (0.031) (0.115) (0.035) (0.336) (0.065)

No perceived erosion on plot (1-yes, 0 no) -0.261*** -0.284*** -0.552*** -0.569***
(0.031) (0.033) (0.075) (0.082)

Constant 0.996** 0.219* 1.000** 0.752*** 3.232*** 1.030*** 2.218*** 1.124***
(0.318) (0.087) (0.308) (0.094) (0.650) (0.205) (0.221) (0.125)

Kebele FE X X X
Household FE X
Number of plots 1654 1654 1472 1472 312 312 312 362
Number of Households 502 439 78 78
R-squared 0.237 0.415 0.229 0.415 0.407 0.486 0.758 0.48
Weak iv p-value 0.264 0.304 0.241 0.186

Number in parentheses denote standard errors. *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. C. labour refers to the total days of
child labour in the household.

In addition to the results in Tables 4.3 and 4.5, I also test whether the adoption of Soil

and Water Conservation technologies has an impact on the probability of using child labour.

The results, summarized in Table 4.6, are similar to the other results using IV and suggest
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a positive but insignificant coefficient. As such, I find no strong evidence that adoption of

Soil and Water Conservation technologies positively affects the probability of using of child

labour.

The output of the ESRM regressions for family labour are summarized in table 4.3. With

regards to the adoption equation (column 6), the results are qualitatively similar to that of the

child labour selection equation. Certain plot characteristics, such as depth, inclination and

fertility remain highly significant, whereas the presence of children under 6 and the ownership

of a TV are negatively correlated with the adoption decision. The identifying variable is,

once again, negatively related to the adoption decision and highly significant (t-statistic of

approximately 17). In the case of family labour, the estimated rho is almost significant at the

10% level.

The regression results indicates that, for non-adopters, distance to market is positively and

significantly related to the use of family labour. Similarly, literate household heads tend to

use more adult family labour. Finally, as would be expected, the area of the plot as well as

the total number of adults in the household positively affects the amount of labour used.

Table 4.4 shows the estimated impacts for family labour. Overall, there is strong evidence

suggesting that the adoption of SWC technologies leads to a large increase in adult family

labour at the plot-level. The overall predicted increase in household adult labour is of around

31% per plot, with the ATT (35%) being larger than the ATU(21%). This result is, to

some extent, surprising as we would expect those with the lower cost of adoption (i.e. lower

increases in labour) to adopt. However, in our context, the result makes sense. The differences

between the ATT and the ATU could be explained by the fact that adults in households that

have plots where they have adopted SWC technologies work fewer hours.

As a result, adults are able to increase the number of days worked as a result of adopting SWC

technologies. Non-adopters, on the other hand, already work more days. As a result, they

may be less inclined to adopt labour-intensive technologies, even if they have lower labour

costs of adoption. In addition to this, these results also highlight that the assumption of no

changes in inputs as a result of the adoption process, at least in this case, does not seem to

be plausible.
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Table 4.6: IV results: Probability to use Child Labour

(1) (2)

Variables Child Labour Adoption

Adopted SWC practices 0.111
(0.312)

Distance to market (km) 0.021* 0.001
(0.011) (0.002)

Hailstorm since 1994 -0.175 -0.002
(0.138) (0.029)

Has TV (1 if yes, 0 if no) -0.219 -0.017
(0.138) (0.031)

Is head of household literate (1 Yes) -0.046 -0.009
(0.095) (0.021)

At least one flood since 1994 0.334** 0.002
(0.145) (0.029)

At least on drought since 1994 -0.165 0.011
(0.111) (0.023)

Plot is highly fertile 0.049 0.051**
(0.089) (0.020)

Plot is steep 0.182 0.073**
(0.151) (0.029)

Ln Area plot (ha) 0.02 0.011
(0.045) (0.01)

Plot is flat -0.003 0.008
(0.08) (0.017)

Plot has medium depth 0.065 0.055***
(0.079) (0.017)

Household has child under 6 -0.052 -0.035
(0.112) (0.025)

ln Number of children under 6 -0.296** 0.015
(0.135) (0.030)

Household has child aged 6-11 -0.327*** -0.019
(0.116) (0.026)

ln Number of children aged 6-11 0.085 -0.008
(0.123) (0.027)

Household has child aged 11-15 -0.789*** 0.005
(0.107) (0.025)

ln Number of children aged 11-15 0.306** -0.034
(0.139) (0.030)

ln Number of plots 0.044 0.01
(0.117) (0.026)

ln Number of adults 0.235** 0.01
(0.114) (0.026)

No perceived erosion on plot (1-yes, 0 no) -0.261***
(0.022)

Constant 0.273***
(0.086)

Kebele FE X X
Number of observations 3651

Number in parentheses denote standard errors. *, **, *** denote statistical significance
at the 10%, 5% and 1% level, respectively.
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I perform the same robustness checks using an set of IV regressions and these are presented

in Table 4.7. Unlike in the case of child labour, the results remain large (and similar to the

ESRM estimates) and statistically significant at least at the 5% level. Across specifications,

the estimated average impacts range from approximately 25% to 36%).

Table 4.7: Robustness Checks: IV regressions Adult Labour

(1) (2) (3) (4) (5) (6) (7) (8)

All Exclude Keb 1 and 10 FE sample FE

Variables A. Labour Adoption A. Labour Adoption A. Labour Adoption A. Labour Adoption

Adopted SWC practices 0.254** 0.269** 0.309*** 0.223***
(0.116) (0.114) (0.095) (0.075)

Distance to market (km) 0.003 0.001 0.004 0.001 0.010 -0.005
(0.004) (0.002) (0.004) (0.002) (0.007) (0.004)

Hailstorm since 1994 0.070 -0.002 0.095* -0.002 0.184 -0.009
(0.047) (0.029) (0.049) (0.031) (0.153) (0.061)

Has TV (1 if yes, 0 if no) 0.158*** -0.016 0.160*** -0.028 0.348*** -0.146**
(0.050) (0.031) (0.052) (0.033) (0.118) (0.058)

Is head of household literate (1 Yes) 0.010 -0.009 0.005 -0.011 0.087 -0.057
(0.031) (0.021) (0.033) (0.023) (0.068) (0.046)

At least one flood since 1994 -0.064 0.002 -0.067 0.002 -0.214 0.012
(0.049) (0.029) (0.050) (0.030) (0.141) (0.058)

At least on drought since 1994 0.106*** 0.010 0.102** 0.008 0.142 -0.078
(0.039) (0.023) (0.043) (0.026) (0.093) (0.056)

Plot is highly fertile 0.020 0.053** 0.019 0.062*** 0.006 -0.053 0.038 -0.091
(0.031) (0.021) (0.032) (0.021) (0.061) (0.049) (0.047) (0.065)

Plot is steep -0.034 0.071** -0.025 0.063** 0.097 -0.081 0.094 -0.147
(0.064) (0.029) (0.061) (0.030) (0.126) (0.081) (0.133) (0.105)

Ln Area plot (ha) 0.219*** 0.010 0.225*** 0.007 0.275*** 0.009 0.260*** 0.009
(0.022) (0.010) (0.024) (0.011) (0.044) (0.024) (0.046) (0.031)

Plot is flat 0.007 0.009 -0.003 0.006 0.021 -0.011 0.104** -0.02
(0.030) (0.018) (0.031) (0.018) (0.060) (0.047) (0.050) (0.070)

Plot has medium depth 0.067** 0.056*** 0.086*** 0.062*** 0.121* 0.073* -0.089 0.008
(0.031) (0.017) (0.033) (0.019) (0.064) (0.042) (0.059) (0.065)

Household has child under 6 0.005 -0.036 0.002 -0.042 -0.054 -0.081
(0.038) (0.025) (0.040) (0.027) (0.100) (0.057)

ln Number of children under 6 -0.010 0.015 -0.021 0.010 -0.274** 0.011
(0.047) (0.030) (0.050) (0.033) (0.116) (0.060)

Household has child aged 6-11 -0.030 -0.019 -0.026 -0.019 -0.056 0.043
(0.039) (0.026) (0.042) (0.028) (0.083) (0.059)

ln Number of children aged 6-11 -0.037 -0.007 -0.042 -0.008 -0.044 -0.001
(0.042) (0.027) (0.045) (0.029) (0.124) (0.062)

Household has child aged 11-15 -0.051 0.005 -0.056 0.009 -0.064 -0.004
(0.038) (0.025) (0.040) (0.027) (0.098) (0.064)

ln Number of children aged 11-15 -0.014 -0.033 -0.005 -0.034 -0.098 -0.021
(0.050) (0.030) (0.053) (0.032) (0.134) (0.060)

ln Number of plots -0.070* 0.009 -0.086* 0.004 -0.083 0.126*
(0.041) (0.026) (0.044) (0.029) (0.109) (0.068)

ln Number of adults 0.253*** 0.010 0.259*** 0.017 0.267*** -0.030
(0.049) (0.026) (0.053) (0.029) (0.086) (0.056)

No perceived erosion on plot (1-yes, 0 no) -0.261*** -0.281*** -0.543*** -0.657***
(0.022) (0.024) (0.055) (0.063)

Constant 2.961*** 0.772*** 2.985*** 0.785*** 2.594*** 0.917*** 2.402*** 0.972***
(0.139) (0.079) (0.145) (0.082) (0.394) (0.195) (0.116) (0.101)

Kebele FE X X X
Household FE X
Number of observations 3630 3630 3313 3313 685 685 685 685
Number of Households 969 874 151 151
R-squared 0.286 0.441 0.289 0.434 0.337 0.3625 0.672 0.456

Number in parentheses denote standard errors. *, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. A. labour refers to the total number of
days worked on-farm by adults in the household.
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4.7 Conclusion

Overall, the results clearly suggest an increase in adult family labour. In the case of child

labour, all estimates suggest a positive and large coefficient, although this is only significant

in the case of the endogenous switching regression model.

These results are meaningful for both policy-makers and research for a number of reasons.

First, the large impacts on labour suggest that, at least in our case, using methods such

as PSM or ESRM, which assume no changes in inputs as a consequence of adoption, may

be problematic. Therefore, not taking into account the impacts of technology adoption on

input-use may have large effects in the impact estimates on output. However, I am unable to

speculate on how often these occur, how important this omission might be. Moreover, I do

not propose an alternative way to deal with this issue.

Secondly, the results on labour also suggest that, at least in this case, widespread adoption

of SWC technologies could potentially have unintended spill-over effects in terms of child

labour. If these effects are well understood, policy-makers may also be able to devise schemes

and policies in such a way as to mitigate any undesirable negative spill-overs. Finally, while

remaining speculative, the results presented suggest a potential channel to explain the puzzling

result in Di Falco et al. (2011), who found that non-adopters had the highest predicted gains

from adoption. I find that adults in households that have plots where SWC technologies have

not been adopted already work more days. As a result, non-adopters display higher impacts

on child labour, as children may be expected to take on more of the additional labour caused

by the adoption of a SWC technology. Consequently, non-adopters may be more reluctant

to adopt because 1) they already work longer hours; or 2) because it would require a large

increase in child labour. These two channels would provide a plausible explanation to why,

despite higher gains, non-adopters decided not to adopt.
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Abstract

Drought events have critical impacts on agricultural production, yet there is little consensus

on how these should be measured and defined. This has implications for research and policy,

as drought is often defined purely based on rainfall. Recently, Babcock and Yu (2010) have

developed an index that incorporates temperature. However, the authors focus uniquely on

’hot’ droughts when temperature is included. We develop a flexible, rainfall-temperature

drought index that captures all dry events, including a previously overlooked class of drought

events: cold droughts. Our index is applied to a panel dataset of Indian districts over the

period 1966-2009. Results suggest a statistically significant relationship between the index

and agricultural production. Cold droughts are found to have consistent, negative marginal

impacts that are comparable to those of hot droughts. Estimates of average yield losses due to

hot drought are reduced by as much as 33% when cold droughts are omitted. The associated

economic costs are even more severely underestimated, by up to 107%.

Keywords: Agriculture, Cereals, Climate, Drought, India, Rainfall, Temperature

JEL classification: Q10, Q19, Q54, Q56
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5.1 Introduction

Extended periods of low rainfall and high temperature that reduce the availability of moisture

relative to normal climate conditions broadly constitute drought events (Mishra and Singh,

2010). A number of low- and middle-income countries in the world, including those located in

Sub-Saharan Africa and the Indian sub-continent, are particularly vulnerable to the impacts

of such events. The human and economic costs of drought can be considerable. In India, the

setting for our paper, Gadgil and Gadgil (2006) estimate that severe drought lowered annual

GDP by around two to five percent between 1951 and 2003, while Pandey et al. (2007)

show that drought was accompanied by a 12 to 33% increase in the poverty headcount ratio

and a 25 to 60% decline in household income. The onset of drought in India has also been

empirically linked to conflict, rural wages and human capital accumulation (Jayachandran,

2006; Sarson, 2015; Shah and Steinberg, forthcoming).

Against a backdrop of rising temperatures and drier conditions, drought is projected to be-

come more common with critical implications for agricultural production (IPCC, 2012). How

drought is defined plays a central role in policy-makers responses, not only in the agricultural

sector but also in the water sector and in early-warning systems. Yet, in the academic and

policy literatures there is little consensus on how drought might be measured and, hence,

defined. Indeed, there is no universal definition of the conditions constituting a drought

(Wilhite, 2000). A range of indices attempt to quantify the severity of a drought, rang-

ing from simple rainfall measures to complex indices that account for rainfall, temperature

and estimates of potential evapotranspiration (Mishra and Singh, 2010). Different criteria of

what constitutes a drought therefore imply that a drought in one index may not constitute a

drought in another. Thus, depending on the index used, there are classes of dry events which

may simply be overlooked both in empirical analysis and by policymakers.

In this paper, we develop a simple rainfall-temperature index that allows for a flexible char-

acterisation of drought events. It accounts for every dry event, in which cumulative (growing

season) precipitation is below average, long-term cumulative (growing season) precipitation1,

while accounting for temperature. The novelty of our index is to include both the type of

1In our main specification, cumulative growing season precipitation is defined as the total rainfall between
June-September. Long-term cumulative precipitation is defined as the average cumulative growing season
precipitation between 1956-2009.
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dry events captured by the Babcock and Yu (2010) index, i.e. characterised by above-average

temperatures (’hot’ drought), as well as ones characterised by below-average temperatures,

which we term cold drought. Our index is applied to a panel dataset of Indian districts over

the period 1966-2009 in order to estimate the marginal and total effects of drought on ce-

real productivity. These estimates are then used to simulate changes in yield and associated

economic impacts. In a country where over two-thirds of total land area is vulnerable to

drought (Ministry of Agriculture, 2009), and rain-fed agriculture covers approximately 60%

of cropped area (Sharma, 2011), our analysis contributes to an important body of research

on the impacts of drought on Indian agriculture (e.g. Pandey et al., 2007; Sarkar, 2011).

After motivating our analysis in the context of the relevant literature in Section 2, we present

Indian weather data underlying hot and cold drought in Section 3. In Section 4, we propose an

extension to an index originally developed by Yu and Babcock (2010). This extension allows

for a more flexible characterization of drought events while retaining a key strength of their

index, namely the inclusion of temperature. Applied to our panel dataset of Indian districts

in Section 5, we find a statistically significant relationship between the index and agricultural

production. We also find that cold droughts consistently display large negative marginal and

total effects, comparable to those of hot droughts, and that omitting cold droughts leads to

a large underestimation of total drought impact. Yield and economic losses are shown in

Section 6 to be underestimated by up to 33% and 107%, respectively. Section 7 concludes.

5.2 Defining drought

Simple drought indices often rely solely on precipitation measures and are typically preferred

by policy-makers including the Indian Meteorological Department (IMD) over more complex

indices. The IMD recorded a drought event when seasonal rainfall was below 75% of its long-

term average value (between 1950 and 2000), and a severe drought when rainfall was below

50% of this value. Simple metrics of precipitation deficiency, which have the advantage of

being easily interpretable, are also used to evaluate drought impacts on agricultural produc-

tion. For example, to estimate drought impact in the rice-growing regions of Asia, Pandey et

al. (2007) define drought as moderate if rainfall is 70-80 percent of normal levels, and severe

if rainfall is 70 percent below normal. Auffhammer et al. (2012) use a similar definition to
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study the effect of monsoon rainfall on rice yields in Indian states. The strength of these

indices lies in their simplicity.

However, simple definitions of drought are problematic for our understanding of drought

impacts for two reasons. First, they impose arbitrary thresholds in order to define drought,

evaluating drought impacts only after a given level of precipitation, when the agronomic or

empirical basis of such thresholds is unclear (Wilhite and Glantz, 1985). Second, variables

in addition to precipitation, in particular temperature, help determine the physical severity

of a drought2. Given temperature increases driven by climate change (Hatfield et al., 2011)

a growing literature suggests critical turning points at which higher temperatures cease to

have positive impacts on agricultural yield. Schlenker and Roberts (2009) find that higher

temperatures in the US reduce county-level yields for corn (above 29◦C), soy-beans (30◦C),

and cotton (32◦C). Guiteras (2009) and Burgess et al. (2014) both show that, on average,

daily temperatures above 34◦C in India reduce agricultural productivity at the district scale.

Lobell et al. (2012) identify the same threshold as harmful for Indian wheat yields.

High temperatures have particularly acute effects on crop growth during periods of low pre-

cipitation since the rate of evapotranspiration, i.e. the combined process of water evaporated

from land surfaces and plants, increases as temperatures rise (Prasad et al., 2008; Lobell and

Gourdji, 2012). In general, this increases a plant’s demand for water at a time when water

availability is already low due to deficient precipitation. Recent research has documented that

droughts in a range of settings have increased in severity as mean temperatures have risen.

Higher temperatures, rather than the increased intensity of low rainfall events, have been held

responsible for these drying trends (Vicente-Serrano et al., 2014; Diffenbaugh et al., 2015).

As such, not considering the effect of temperature on the severity of a drought event could

underestimate drought impact, in turn giving misleading information about the likelihood of

future production losses driven by climate change.

More complex indices tend to rely on data that are not readily available in most economic

datasets, e.g. for soil moisture levels and estimates of potential evapotranspiration, which

can depend on factors such as wind, radiation and humidity, thus limiting their applicability

in empirical analysis of drought impacts. In an attempt to bridge the gap between simple

2Such variables include, for example, the access to irrigation.
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and complex indices, Yu and Babcock (2010) propose a drought index that neatly captures

the interaction between temperature and precipitation. Applied to the study of resilience of

soybean and corn yields in the US, it takes a non-zero value only for years of below-average

precipitation and above-average values of heat temperature (cooling degree-days). The authors

find that soybeans and corn have become increasingly drought-tolerant over time.

This index has since been applied in a number of other settings, for example, to the assessment

of drought impact on soybean in Missouri (Purcell and Caine, 2013). Of particular relevance

is research by Birthal et al. (2015), who use the index to study the resilience of rice yields to

drought in India. Their results indicate that rice yields have become more resilient to drought

over time. While this approach has the advantage of being a relatively simple way to account

for both temperature and precipitation, the index restricts the definition of drought to events

characterised by low rainfall accompanied by higher-than-average temperatures. It does not

consider events characterised by below-mean rainfall as well as below-mean temperature. Such

cold droughts are common to many settings, although their impacts on agricultural production

remain unknown, due to either being omitted altogether (as in Birthal et al. 2015) or joined

with hot droughts in arbitrarily-defined rainfall indices. This is an important gap in the

literature that our paper aims to fill.

We argue that cold droughts should not be omitted a priori for two reasons. First, a large

number of potentially destructive droughts are not considered, which can lead to a serious

underestimation of the total impact of drought. Second, the classification of these events

as non-droughts could lead to biased estimates of drought impact. Thus, if cold droughts

have a significant negative impact on productivity, Yu and Babcock’s (2010) index is likely

to underestimate drought impacts because events that we might define as cold drought are

included in their control group.

5.3 Drought in India

According to the definition used by the IMD (at least until 2016), 13 All-India drought years

have been recorded since the beginning of the Green Revolution in 1966 (Birthal et al., 2015).

Four of these occurred between 2000 and 2012. A drought year was recorded when the total
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area affected by a moderate or severe drought covered 20-40% of the total land area of the

country and seasonal rainfall deficiency during the monsoon season exceeded 10%. When

more than 40% of the total land area was affected by drought, this was known as an “All

India Severe Drought Year”.

Weather data on daily rainfall and daily average temperatures at the district level are sourced

from the IMD to create Figures 5.1 and 5.23. Panel (a) of Figure 5.1 shows the proportion of

districts in every given year limited to events characterized by both below-average rainfall and

above-average temperature, i.e. the events considered by Birthal et al. (2015) using Yu and

Babcocks (2010) index. The vertical blue lines indicate the years defined by Indias government

as ’All-India’ droughts. Panel (b) of Figure 5.1 shows the proportion of districts in years

characterised by below-average rainfall and below-average temperature; a large proportion of

districts are clearly affected by this type of drought event. Figure 5.2 shows why the omission

of these events is problematic. For each year, we estimate the number of districts affected by

hot droughts net of the number of those affected by cold droughts, with a positive number

(in red) denoting a year in which the former exceeds the latter. A negative number (in blue)

indicates a year in which the latter exceeds the former. Overall, hot droughts are slightly

more prevalent than cold droughts (roughly a split of 55% hot and 45% cold drought). In the

1990s, most of the drought-affected districts were affected by hot droughts. Since 1999, the

number of cold droughts has increased, with the number of districts affected by cold droughts

outnumbering districts affected by hot droughts in seven out of 11 years4.

3The rainfall data are available in gridded format at a resolution of 0.25◦x 0.25◦ (Pai et al., 2014). Gridded
temperature data are at a resolution of 1◦x1◦ (Srivastava et al., 2009). District-level weather data are then
obtained by taking a weighted average of gridded weather observations from grid cells that fall within a district’s
boundary based on the proportion of the grid cell that falls in each district.

4This pattern, however, is slightly less pronounced if we look at an alternative growing season (May-
December) (Figures 5A.1 and 5A.2 in the Appendix).
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Figure 5.1: Proportion of drought-affected districts (by type) (June-September only)

(a)Type 1 events (“hot droughts”)

(below-average rain & above-average

temperature)

(b)Type 2 events (“cold droughts”)

(below-average rain & below-average

temperature)

Notes: Type 1 events denote events where rainfall was below-average and temperature was above-average. Con-

versely, Type 2 events refer to events where both rainfall and temperature were below-average. The rainfall

average variable is calculated as the district mean cumulative rainfall from June-September from 1956-2009. The

average temperature variable is calculated as the average degree days above the mean season temperature from

June-September. The solid vertical lines represent the years considered by the Indian Government as All-India

drought years. Source: Authors’ own calculations

Figure 5.2: Type 1 droughts in excess of Type 2 droughts (June-September only)

Notes: The scatter points highlight the total number of droughts (by type) in a given year. In the case of Type 1

droughts (red scatter points) these can be interpreted directly (i.e. 200 means that 200 districts were affects by a

Type 1 drought). However, in the case of the Type 2 droughts, these should be interpreted as the negative of the

number (i.e. if the observed value is -100, this means there were 100 districts affected by Type 2 droughts). Bar

graphs show the number of affected districts affected by Type 1 droughts in excess of the number affected by Type 2

droughts. As a result, a value of 50 would mean that there were 50 more districts affected by a Type 1 drought than

affected by a Type 2 drought in a given year. The converse applies to a negative number, which highlights a higher

number of districts affected by cold droughts in a given year. The solid vertical lines represent the years considered

by the Indian Government as All-India drought years. Source: Authors own calculations
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5.4 Introducing a new drought index

In this section, we build on Yu and Babcocks (2010) drought index, incorporating both rainfall

and temperature. Their index is based on the following:

DIi,t = [−max(0, CLDDstand
i,t )] ∗ [min(0, TPCP standi,t )] (5.1)

where: DI denotes the drought index, for a given unit of observation, i, in year t ; CLDDstand
i,t is

standardized Cooling Degree Days (above 65◦F, or 18.33◦C); and,TPCP standi,t is standardized

total monthly precipitation between the months of June and August.

This index gives a value of zero to drought whenever either the temperature is below average

or the rainfall is above average. As such, a drought occurs in a year when temperature is

uncommonly high and precipitation is low, relative to the long-term average of these variables.

The strength of this index lies in its capacity to capture the potential of high temperatures

to exacerbate the effects of low rainfall on crop production, in a simple way.

One weakness of the index described in 5.1 is that it defines as a drought only those years

when an area suffers both low rainfall and high temperatures. Omitted are years when rainfall

is low but temperatures are not particularly high. Defining drought events by low rainfall

and high temperature restricts the measure of drought to the lower-right quadrant (which

we denote as quadrant 1) of Figure 5.3 . Events in the lower-left quadrant (which we denote

as quadrant 2), where both the precipitation and temperatures are below-average, are not

considered droughts.
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Figure 5.3: Rainfall-temperature quadrants

Notes: Long-term average rainfall is calculated as the average cumulative rainfall for the June-

September period for the 1956-2009 period. Average temperature is defined as the number of

degree-days above the mean daily June-September temperature for the 1956-2009 period.

We consider a wider set of drought events by defining six variables. First, using weather data

from the IMD, we calculate district-specific average long-term cumulative rainfall, LTARi, for

the growing season (June-September) over the period 1956-20095. This variable is standard-

ized by estimating ZTRit =
TRit − LTARi

sdTRi
, where TRit is total cumulative rainfall over the

growing season for a given year and sdTRi is the standard deviation of TRit. Analogously,

we calculate the district-specific average cumulative growing season temperature, LTAHDDi,

for the growing season (June-September) as the average cumulative number of daily degree

days above the mean daily growing season temperature over the period 1956-20096. Similar to

5There are two main reasons driving our choice of growing season. First, the majority of India’s cereal
production is cultivated in the kharif season, between June and September. Second, according to Jain and
Kumar (2012), the majority of total yearly rainfall (approximately 80%) occurs between June and September.
Authors such as Prasana (2014) also highlight that, while there is a strong and positive response to kharif
production and June-September rainfall, the same is not necessarily true for rabi production and post-monsoon
rainfall (October-December). This partly relates to the fact that rabi crops rely on available moisture from the
June-September rains. The sensitivity of our results is tested for two alternative growing seasons in Section 5,
namely using cumulative rainfall for the May-December period and using cumulative annual rainfall.

6The growing season daily degree days are calculated as follows. First, we obtain the average growing
season temperature. Second, for each day we subtract the average temperature from the observed temperature
and obtain the number of degrees above the average temperature for each day. Finally, we sum all the positive

126



rainfall, this variable is standardized by estimating ZHDDit =
HDDit − LTAHDDi

sdHDDi
, where

HDDit is total cumulative daily degree days over the growing season for a given year and

sdHDDi is the standard deviation of HDDit.

Let MTRit = −TRit, i.e. the negative of total cumulative rainfall. We then obtain the

normalized version of this variable, NTRit, by estimating NTRit =
MTRit −MTRmini

MTRmaxi −MTRmini

,

where MTRmini denotes the minimum observed value for district i (i.e. the maximum rainfall

observed), and MTRmaxi denotes its maximum observed value (i.e. lowest rainfall). Nor-

malizing the negative of rainfall, rather than rainfall directly, allows us to generate a variable

bounded between 0 and 1, with higher values signalling a more severe precipitation deficiency.

Similarly, for normalizing degree days we estimate NHDDit =
HDDit −HDDmin

i

HDDmax
i −HDDmin

i

, where

HDDmin
i denotes the minimum observed value for district i (i.e. the minimum number of

degree-days observed), and HDDmax
i denotes its maximum observed value (i.e. highest num-

ber of degree days observed).

A multiplicative relationship is generated between the two normalized variables, which we

use to define three different drought indices. First, hot droughts can be classified as D1it,

corresponding to the classification of Yu and Babcock (2010), where rainfall is below normal

and temperature above normal. Second, D2it corresponds to low rainfall in the absence

of abnormally high temperatures. Third, we combine D1it and D2it to get D12it, thus

accounting for both hot and cold droughts. Formally, we have:

Drought =


D1it = NTRit ∗NHDDit if ZTRit < 0 and ZHDDit > 0; 0 otherwise

D2it = NTRit ∗NHDDit if ZTRit < 0 and ZHDDit < 0; 0 otherwise

D12it = NTRit ∗NHDDit if ZTRit < 0; 0 otherwise

(5.2)

As such, D1it can be interpreted as a normalized version of Yu and Babcock’s (2010) index.

It captures all events in the lower right quadrant (quadrant 1) of Figure 5.3, taking a strictly

positive value for all events characterized by below-average precipitation and above-average

temperatures. The second index, D2it, only takes non-zero values for events with below-

temperature deviations for each day of the growing season and obtain the cumulative daily-degree days.
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average rainfall and below-average temperature, the category Yu and Babcock (2010) omit.

Constructing these two indices separately allows us to test their respective statistical signif-

icance in the yield regressions in Section 5. Finally, a third index, D12it, simply combines

D1it and D2it and hence, captures all the events in the lower half of Figure 5.3. More detail

on how the indices are constructed is presented in Appendix B.

Our indices are increasing in temperature but decreasing in precipitation since both higher

temperatures and lower precipitation are expected to contribute to drought severity. A maxi-

mum value of 1 is obtained when drought is most severe, and is only possible for the restricted

set of drought events considered by Yu and Babcock. The similarity of their index to our

own is illustrated in Table 5.1, which shows the correlation coefficients and the spearman

correlation coefficient7. As expected, our index for quadrant 1, D1, is highly correlated with

Yu-Babcock, displaying a correlation coefficient of 0.776 and a spearman correlation coef-

ficient in excess of 0.99. Our second index, on the other hand, has a negative correlation

coefficient. Since Yu-Babcock is invariant with a value of zero for these events, this result is

also as anticipated.

Table 5.1: Correlation coefficients and Spearman correlation coefficients

Correlation coefficients

Babcock-Yu DI (q1) DI (q2) DI (q1 and q2)

Babcock-Yu 1.000
DI (q1) 0.776 1.000
DI (q2) -0.181 -0.303 1.000
DI (q12) 0.736 0.919 0.097 1.000

Spearman correlation coefficients

Babcock-Yu DI (q1) DI (q2) DI (q1 and q2)

Babcock-Yu 1.000
DI (q1) 0.992 1.000
DI (q2) -0.359 -0.359 1.000
DI (q12) 0.821 0.830 0.217 1.000

Figure 5.4 shows how our indices change over time, for all districts (panels (a) and (b)) and

for drought-affected districts only (panels (c) and (d)). Hot (D1) and cold (D2) droughts

7Note that, instead of cooling days, we use hot degree days based on the mean temperature of the district
for the months between June and September over the 1956-2009 period.

128



are denoted Types 1 and 2, respectively. There are clear spikes in the values of the index

for a number of years considered All-India drought years. In recent years, 2002 and 2009

are associated with the largest deviations in rainfall; spikes correspond to these two years.

Similarly, 1972, 1979, 1987 are also considered years with particularly high deviations and

our index rises in these years. Throughout the 1990s, however, it is striking that, despite

relatively modest deviations of rainfall from trend, our index still records high values. On

average, the negative deviations from long-term average rainfall were smaller throughout the

1990s. A possible explanation for this could be the fact that, as highlighted by Pai et al.

(2012), overall, land surface air temperatures have increased over time. This pattern was

particularly pronounced in the 1990s and 2000s.

Figure 5.4: Average drought index value

(a)Average index value, by type (b)Average index value, all

(c)Average index value, by type (affected only) (d)Average index value, all (affected only)
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5.5 Impact of drought on cereal productivity

5.5.1 Data and Methodology

To investigate drought impacts on aggregate cereal productivity at the district level, we

obtain agricultural data from the ICRISAT Meso-level Database8. For the period 1966-2009,

the dataset contains detailed agricultural and socioeconomic information (ICRISAT, 2012).

For most if not all districts, data are available for annual crop production and area under crop

production for a range of crops. We create a balanced panel, which implies that, out of the

311 districts available in the dataset, only 275 districts are used in our empirical analysis due

to missing weather and/or production data. Six cereals are considered, namely rice, wheat,

maize, barley, sorghum, and millet9. Yields for each are estimated along with a simple cereal

yield variable, obtained by dividing total cereal production by total cereal area. Table 5.2

summarises the variables used in our empirical analysis.

8Since 1966, a number of districts have split into smaller districts. To maintain spatial consistency over
time district, splits are dealt with by returning split districts to their parent districts as of 1966.

9For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity of
millet.
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Table 5.2: Summary Statistics of observations in the sample

Variables N Mean S.D Min Max

Cereal yield (t/ha) 12100 1.463 0.787 0.006 4.775

Cereal Area (1,000,000 ha) 12100 0.332 0.195 0.001 1.334

Barley yield (t/ha) 5842 1.383 0.688 0.048 5.400

Cereal area under barley production (%) 12031 0.015 0.036 0.000 0.320

Maize yield (t/ha) 10621 1.431 0.929 0.003 9.739

Cereal area under maize production (%) 12099 0.065 0.113 0.000 0.838

Millet yield (t/ha) 9852 0.798 0.439 0.000 4.000

Cereal area under millet production (%) 12100 0.131 0.220 0.000 1.000

Rice yield (t/ha) 11398 1.492 0.853 0.009 5.542

Cereal area under rice production (%) 12100 0.401 0.357 0.000 1.000

Sorghum yield (t/ha) 9694 0.774 0.434 0.001 9.836

Cereal area under sorghum production (%) 12066 0.148 0.225 0.000 0.929

Wheat yield (t/ha) 10275 1.643 0.878 0.046 6.324

Cereal area under wheat production (%) 12093 0.240 0.246 0.000 0.972

Proportion of net irrigated area (%) 12095 0.355 0.270 0.000 1.467

Rural population density (by gross cereal area) 11787 3.566 2.142 0.428 17.907

Fertiliser (t/1,000 ha) 11889 60.571 61.406 0.000 614.493

Cumulative rainfall (mm) (June-September) 12100 863.837 529.348 13.125 5313.428

Hot Degree-Days (HDD, June-September) 12100 94.422 47.204 2.697 278.413

Babcock-Yu index, June-September 12100 0.270 0.752 0.000 7.998

Drought index (quadrant 1) 12100 0.146 0.245 0.000 1.000

Drought index (quadrant 2) 12100 0.049 0.097 0.000 0.544

Drought index (quadrants 1 and 2) 12100 0.196 0.237 0.000 1.000

Notes: Rural population density is calculated by dividing total rural population by gross cropped area. Our hot degree-

days measure is calculated based on average daily district temperature in the months of June-September for the period

1956-2009.

To model the relationship between yield and our drought index, we estimate the following

fixed-effects model:

ln(yitc) = αi + γt + δi1 ∗ t+ δi2 ∗ t2 + βqDIitq + εit (5.3)

where for district i in year t : ln(yitc) denotes the natural logarithm of cereal yield (or crop

c); αi and γt represent the district and year fixed effects, respectively; δi1 and δi2 are the
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coefficients on the district-specific quadratic trend. The coefficient associated with a type q

(i.e. Type 1 - hot or Type 2 - cold or Type 12 - both types) drought index, which captures

the marginal impact of a type q drought, is denoted βq. Finally, εit represents the error term.

Consistent with Yu and Babcock (2010), we do not include controls in our main specifications.

This is also the norm in the broader weather and climate literature. Nevertheless, we test the

sensitivity of our results to the inclusion of controls (see next section and Appendix tables).

5.5.2 Regression results

We run a regression of the natural logarithm of yield on a set of district-specific quadratic

trends and the drought indices. Specifically, for each specification we estimate three different

regressions10. First, we include only Type 1 drought events. Second, we estimate separate

coefficients for Type 1 and Type 2 drought events. Finally, we run a regression where we only

include the drought index that combines Type 1 and Type 2 events. The results for the full

sample can be seen in Table 5.3. The results by crop are in Tables 5.4-5.5 (without dummies)

and 5.6-5.7 (with dummies).

Table 5.3 highlights three main points. First, both types of drought have significant and

negative effects when considered separately, as shown in columns 2 and 5. In practice, this

means that Type 2 events, i.e. those omitted by Yu and Babcock (2010) and Birthal et al.

(2015), have large and statistically significant, negative impacts on yield.

10For each model (main and robustness) we run the regression for both the full sample and by crop. For
both the full sample and for each crop we then run three regressions.
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Table 5.3: Full sample results

No dummies Dummies

Variables 1 2 3 4 5 6

Dummy (Type 1) 0.041** 0.019

(0.018) (0.018)

Drought index (Type 1) -0.192*** -0.238*** -0.267*** -0.271***

(0.019) (0.021) (0.041) (0.042)

Dummy (Type 2) 0.022**

(0.011)

Drought index (Type 2) -0.391*** -0.471***

(0.036) (0.052)

Dummy (2 types) -0.011

(0.009)

Drought index (2 types) -0.255*** -0.232***

(0.021) (0.028)

Constant -0.361*** -0.326*** -0.313*** -0.359*** -0.323*** -0.316***

(0.022) (0.022) (0.022) (0.022) (0.022) (0.023)

Time trends X X X X X X

District fixed effects X X X X X X

Year fixed effects X X X X X X

Controls

Number of observations 12100 12100 12100 12100 12100 12100

Number of districts 275 275 275 275 275 275

R-squared a 0.705 0.712 0.711 0.705 0.713 0.711

R-squared w 0.719 0.726 0.725 0.72 0.727 0.725

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical

significance at the 10%, 5% and 1% level, respectively. District trends denote a quadratic district-specific trend.

Second, by comparing the specifications where we omit Type 2 events (columns 1 and 4) with

those where this type of event is included (columns 2 and 5), we note that the estimated

marginal coefficient of Type 1 droughts is smaller in the former. When we include a dummy

variable, the difference in magnitude is negligible. But when all dummy variables are excluded,

the coefficient of Type 1 events is substantially smaller - and outside the 95% confidence

interval of the estimated coefficient - when Type 2 events are also included (for a graphical

representation, see Figure 5A.3 in the Appendix). Thus, a failure to account for Type 2 events
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can lead to an underestimation of the marginal impacts of drought, with this underestimation

being more severe when a dummy is not included.

Third, we find that cold droughts have a larger marginal, but lower total, effect on agricul-

tural production. Although both excess heat and reduced moisture have negative impacts on

production, reduced precipitation carries greater weight in the cold drought index than in the

hot drought index since values of temperature are, by definition, higher in the latter than in

the former. As a result, yields are likely to respond (more) negatively to changes in the cold

drought index than in the hot drought index. A value of 0.5 in our cold drought index repre-

sents approximately the same precipitation deficiency as a value of 1 in our hot drought index,

which could help explain larger marginal impacts. This last result (larger marginal effects in

the case of cold droughts), however, is not robust in a number of alternative specifications.

The results by crop (Tables 5.4-5.7) corroborate the patterns found across the whole sample

using the cereal index. The estimated coefficients for Type 2 events are consistently large,

negative and significant for all crops except for maize (when dummies are excluded). This

provides further evidence that such events have a large negative impact on production and,

hence, should not be excluded from analyses of drought impact when considering any of the

most important cereal crops grown in India. Similar to our findings for the whole sample, in

most cases (maize again being the exception) when a dummy is not included to account for

the intercept shift, the omission of Type 2 events leads to a smaller, estimated coefficient of

Type 1 droughts. This effect is especially large in the case of rice, the crop analysed by Birthal

et al. (2015), thus implying that they may have underestimated the impact of drought on

rice. We estimate the potential scale of underestimation, in terms of yield and its economic

value, below.
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Table 5.4: Results by crop - rice, wheat and maize (no dummies)

Rice Wheat Maize

Variables 1 2 3 4 5 6 7 8 9

Drought index (Type 1) -0.249*** -0.303*** -0.128*** -0.161*** -0.138*** -0.118***

(0.020) (0.023) (0.016) (0.017) (0.026) (0.029)

Drought index (Type 2) -0.469*** -0.263*** 0.156***

(0.041) (0.032) (0.056)

Drought index (2 types) -0.323*** -0.174*** -0.084***

(0.024) (0.017) (0.029)

Constant -0.234*** -0.197*** -0.180*** -0.339*** -0.311*** -0.299*** -0.201*** -0.218*** -0.247***

(0.034) (0.034) (0.034) (0.027) (0.028) (0.029) (0.050) (0.050) (0.050)

Time trends X X X X X X X X X

District fixed effects X X X X X X X X X

Year fixed effects X X X X X X X X X

Controls

Number of observations N 10560 10560 10560 8756 8756 8756 7656 7656 7656

Number of districts 240 240 240 199 199 199 174 174 174

R-squared a 0.532 0.542 0.541 0.713 0.716 0.716 0.398 0.398 0.396

R-squared w 0.555 0.565 0.563 0.727 0.731 0.73 0.428 0.429 0.426

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1%

level, respectively. District trends denote a quadratic district-specific trend.

Table 5.5: Results by crop - millet, sorghum and barley (no dummies)

Millet Sorghum Barley

Variables 1 2 3 4 5 6 7 8 9

Drought index (Type 1) -0.240*** -0.287*** -0.159*** -0.188*** -0.013 -0.032

(0.039) (0.044) (0.031) (0.035) (0.027) (0.029)

Drought index (Type 2) -0.381*** -0.239*** -0.152***

(0.078) (0.066) (0.045)

Drought index (2 types) -0.297*** -0.195*** -0.051*

(0.045) (0.036) (0.027)

Constant -0.724*** -0.692*** -0.684*** -0.728*** -0.710*** -0.703*** -0.349*** -0.328*** -0.315***

(0.041) (0.041) (0.041) (0.051) (0.050) (0.048) (0.040) (0.040) (0.039)

Time trends X X X X X X X X X

District fixed effects X X X X X X X X X

Year fixed effects X X X X X X X X X

Controls

Number of observations 7172 7172 7172 6908 6908 6908 3432 3432 3432

Number of districts 163 163 163 157 157 157 78 78 78

R-squared a 0.429 0.434 0.434 0.335 0.337 0.337 0.767 0.768 0.767

R-squared w 0.459 0.463 0.463 0.369 0.371 0.371 0.78 0.781 0.78

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1%

level, respectively. District trends denote a quadratic district-specific trend.
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Table 5.6: Results by crop - rice, wheat and maize (with dummies)

Rice Wheat Maize

Variables 1 2 3 4 5 6 7 8 9

Dummy (Type 1) 0.047 0.014 0.01 -0.006 0.157*** 0.185***

(0.033) (0.033) (0.017) (0.017) (0.032) (0.031)

Drought index (Type 1) -0.336*** -0.330*** -0.145*** -0.150*** -0.424*** -0.443***

(0.062) (0.061) (0.039) (0.039) (0.068) (0.068)

Dummy (Type 2) -0.023* 0.01 0.169***

(0.013) (0.011) (0.027)

Drought index (Type 2) -0.380*** -0.300*** -0.439***

(0.072) (0.057) (0.107)

Dummy (2 types) -0.033*** -0.016** 0.169***

(0.010) (0.008) (0.018)

Drought index (2 types) -0.257*** -0.143*** -0.417***

(0.029) (0.024) (0.046)

Constant -0.232*** -0.199*** -0.191*** -0.339*** -0.309*** -0.305*** -0.198*** -0.187*** -0.184***

(0.034) (0.035) (0.035) (0.027) (0.028) (0.029) (0.050) (0.051) (0.051)

Time trends X X X X X X X X X

District fixed effects X X X X X X X X X

Year fixed effects X X X X X X X X X

Controls

Number of observations 10560 10560 10560 8756 8756 8756 7656 7656 7656

Number of districts 240 240 240 199 199 199 174 174 174

R-squared a 0.532 0.542 0.541 0.713 0.716 0.716 0.4 0.406 0.406

R-squared w 0.556 0.565 0.564 0.727 0.731 0.73 0.431 0.436 0.436

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1%

level, respectively. District trends denote a quadratic district-specific trend.
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Table 5.7: Results by crop - millet, sorghum and barley (with dummies)

Millet Sorghum Barley

Variables 1 2 3 4 5 6 7 8 9

Dummy (Type 1) 0.075** 0.062* 0.099** 0.093** -0.005 -0.017

(0.031) (0.031) (0.043) (0.045) (0.024) (0.024)

Drought index (Type 1) -0.378*** -0.392*** -0.340*** -0.351*** -0.003 0

(0.078) (0.079) (0.088) (0.088) (0.058) (0.058)

Dummy (Type 2) 0.087*** 0.097*** 0.004

(0.020) (0.021) (0.018)

Drought index (Type 2) -0.699*** -0.571*** -0.174**

(0.117) (0.096) (0.087)

Dummy (2 types) 0.038** 0.059*** -0.022

(0.017) (0.022) (0.014)

Drought index (2 types) -0.371*** -0.310*** -0.004

(0.058) (0.050) (0.046)

Constant -0.727*** -0.690*** -0.677*** -0.726*** -0.692*** -0.679*** -0.350*** -0.327*** -0.324***

(0.041) (0.040) (0.041) (0.052) (0.050) (0.051) (0.040) (0.041) (0.040)

Time trends X X X X X X X X X

District fixed effects X X X X X X X X X

Year fixed effects X X X X X X X X X

Controls

Number of observations 7172 7172 7172 6908 6908 6908 3432 3432 3432

Number of districts 163 163 163 157 157 157 78 78 78

R-squared a 0.43 0.435 0.434 0.336 0.339 0.338 0.767 0.767 0.767

R-squared w 0.459 0.465 0.463 0.37 0.373 0.372 0.78 0.781 0.781

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical significance at the 10%, 5% and 1%

level, respectively. District trends denote a quadratic district-specific trend.

We perform a number of sensitivity checks on our results, including: (i) standard errors clus-

tered at the state level; (ii) two alternative growing seasons (May-December and annual)11;

(iii) an alternative specification for hot degree-days (30 degrees rather than the long-term

district average temperature over the growing season)12; (iv) controls13; (v) alternative func-

11We use the May-December growing season in order to allow for the fact that, in some states, there may
be substantial amounts of rain outside of the June-September period. The yearly growing season is used as
the rainfall in the later months of the year may also be useful in explaining the rabi production. However,
according to authors such as Prasana (2014), the dependence of Rabi production on post-monsoon rainfall is
not as strong, which is one of the reasons why we opt for the June-September period as the growing season.

12We test for a different specification on temperature for two main reasons. According to research on the
effects of temperature on crop yield in India, crop yields seem to start decreasing at different levels, but usually
after 30 degrees Celsius. In our paper, however, we use mean temperature, which in some cases is likely to
be under 30. As a result, it could be argued that an increase in temperature should not necessarily result
in a decrease in production. However, there are two reasons why this is not the main choice in our paper.
First, using 30 as a cut-off period means that the drought index will have a value of 0 in many drought events
(when rainfall is very low) as we are using an absolute cut-off level, which makes our index less comprehensive.
Secondly, districts with low temperature may also have adopted crops whose negative impacts start at lower
levels of temperature and, as such, it is possible that, in some cases, we may observe negative impacts of
temperature at levels below 30 degrees.

13This robustness check is carried out to ensure that our results are robust, even after including variables
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tional forms of the index (including the square of the index)14 ; and, (vi) an additive index

instead of a multiplicative index15. For the full sample, the coefficients from each of these

specifications are summarized in Tables 5A.1-5A.2. While different specifications unsurpris-

ingly generate different coefficients, our overarching conclusions are quite robust, especially

in the case of aggregate cereal production. In Figure 5A.3, we present a graphical summary

of the coefficient values and their confidence intervals for each specification using the full

sample. Tables 5A.3- 5A.14 summarize all the robustness checks by crop. Our results are

robust, especially to alternative index specifications (Tables 5A.4, 5A.6, 5A.8, 5A.10, 5A.12,

5A.14).

5.6 Estimating yield and economic losses

In a back-of-the-envelope attempt to gauge first how important both types of droughts are in

the Indian context and, second, how serious the omission of Type 2 droughts is for estimating

Type 1 drought impacts, we run simple simulations using our estimated regressions. This

allows us to generate predictions of yields with and without droughts, more specifically, to

estimate the: (i) average yield loss for an affected district over the sample period; (ii) average

total production loss for an affected district over the sample period; (iii) average total value

of production for an affected district; (iv) average unweighted yearly total production loss in

our sample of Indian districts; and, (v) the average yearly total cost across sampled districts.

A summary of estimates is presented in Tables 5.8 and 5.9, including crop-specific results16.

Details of how we generated these estimates can be found in Appendix C.

From tables 5.8 and 5.9, we note the following. Despite a higher estimated coefficient, total

yield and economic losses from cold droughts are smaller than those from hot droughts. This

is due to the index values for cold droughts being substantially lower (approximately half)

for affected districts. For our aggregate cereal measure, we estimate the average yield loss per

which are also likely to affect production, such as irrigation and use of modern inputs.
14The impacts of drought may not be linear. As a result, we include a squared term to account for this.
15While Babcock and Yu (2011) advocate for a multiplicative relationship, an additive relationship may also

be plausible. Moreover, the additive relationship is likely to be preferable in a number of extreme cases. For
example, suppose that there is a year where rainfall is close to 0 (undoubtedly a bad year) but the temperatures
have also been low. Our index would have a low value. However, in such a case, the multiplicative index is not
capturing the fact that this has been a bad year, whereas the additive index is. However, the main rationale
for using the multiplicative index is that we are capturing the interaction between rainfall and temperature.

16For the crop-specific results, these were obtained using the crop-specific regressions.
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Table 5.8: Cost estimates - No dummies

Main

Type 1 (only) Type 1 (sep) Type 2 (sep) 2 types (sep) 2 types (Together)

Full sample

Av. yield loss (district) (t/ha) 0.12 0.16 0.11 0.14 0.12
Av. production loss (district) (1,000t) 40.49 50.95 39.11 45.57 41.28
Av. production cost (district) (mil usd) 9.78 12.30 9.44 11.00 9.97
Av. yearly total production loss (1,000 t) 3,332.87 4,229.59 2,689.97 6,919.56 6,270.95
Av. yearly total cost (mil usd) 804.79 1,021.32 649.55 1,670.87 1,514.25

Rice

Av. yield loss (district) (t/ha) 0.16 0.20 0.14 0.17 0.16
Av. production loss (district) (1,000t) 24.56 30.55 21.41 26.38 24.11
Av. production cost (district) (mil usd) 7.36 9.15 6.41 7.90 7.22
Av. yearly total production loss (1,000 t) 1,745.70 2,177.00 1,283.33 3,460.33 3,185.97
Av. yearly total cost (mil usd) 522.79 651.95 384.32 1,036.28 954.11

Wheat

Av. yield loss (district) (t/ha) 0.10 0.13 0.09 0.11 0.10
Av. production loss (district) (1,000t) 10.99 14.04 11.32 12.77 11.56
Av. production cost (district) (mil usd) 2.46 3.14 2.53 2.86 2.58
Av. yearly total production loss (1,000 t) 655.71 822.57 580.93 1,403.51 1,272.08
Av. yearly total cost (mil usd) 146.62 183.93 129.90 313.83 284.45

Sorg

Av. yield loss (district) (t/ha) 0.06 0.07 0.04 0.06 0.06
Av. production loss (district) (1,000t) 5.30 6.34 3.47 5.08 4.91
Av. production cost (district) (mil usd) 1.00 1.20 0.66 0.96 0.93
Av. yearly total production loss (1,000 t) 262.99 311.16 134.30 445.46 430.35
Av. yearly total cost (mil usd) 49.65 58.75 25.36 84.10 81.25

Millet

Av. yield loss (district) (t/ha) 0.09 0.11 0.06 0.09 0.08
Av. production loss (district) (1,000t) 5.96 7.23 4.40 5.92 5.61
Av. production cost (district) (mil usd) 1.04 1.27 0.77 1.04 0.98
Av. yearly total production loss (1,000 t) 289.48 351.53 185.12 536.65 508.72
Av. yearly total cost (mil usd) 50.74 61.61 32.45 94.06 89.16

Barley

Av. yield loss (district) (t/ha) 0.01 0.02 0.05 0.04 0.03
Av. production loss (district) (1,000t) 0.12 0.28 0.57 0.42 0.32
Av. production cost (district) (mil usd) 0.02 0.05 0.11 0.08 0.06
Av. yearly total production loss (1,000 t) 2.57 6.09 12.00 18.08 13.78
Av. yearly total cost (mil usd) 0.49 1.16 2.29 3.45 2.63

Maize

Av. yield loss (district) (t/ha) 0.08 0.07 - 0.04 0.02 0.04
Av. production loss (district) (1,000t) 2.13 1.81 - 1.02 0.52 0.95
Av. production cost (district) (mil usd) 0.34 0.29 - 0.16 0.08 0.15
Av. yearly total production loss (1,000 t) 111.05 94.82 - 44.45 50.36 91.88
Av. yearly total cost (mil usd) 17.91 15.29 - 7.17 8.12 14.82

Notes:Individual cereal prices used represent the 2008 weighted cereal prices converted into USD using the average monthly exchange rate over this year.
Aggregate cereal prices also use the 2008 cereal-specific prices. All numbers were rounded to two decimal places.
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Table 5.9: Cost estimates - Dummies

Main

Type 1 (only) Type 1 (sep) Type 2 (sep) 2 types (sep) 2 types (Together)

Full sample

Av. yield loss (district) (t/ha) 0.12 0.15 0.10 0.13 0.13
Av. production loss (district) (1,000t) 39.02 49.85 35.90 43.51 42.99
Av. production cost (district) (mil usd) 9.42 12.04 8.67 10.51 10.38
Av. yearly total production loss (1,000 t) 3,212.20 4,136.44 2,468.96 6,605.39 6,530.82
Av. yearly total cost (mil usd) 775.65 998.83 596.18 1,595.00 1,577.00

Rice

Av. yield loss (district) (t/ha) 0.16 0.20 0.15 0.17 0.17
Av. production loss (district) (1,000t) 23.79 30.38 22.52 26.79 26.34
Av. production cost (district) (mil usd) 7.12 9.10 6.74 8.02 7.89
Av. yearly total production loss (1,000 t) 1,691.33 2,165.23 1,351.88 3,517.11 3,480.88
Av. yearly total cost (mil usd) 506.51 648.43 404.85 1,053.28 1,042.43

Wheat

Av. yield loss (district) (t/ha) 0.10 0.13 0.09 0.11 0.11
Av. production loss (district) (1,000t) 10.87 14.08 10.88 12.59 12.51
Av. production cost (district) (mil usd) 2.43 3.15 2.43 2.81 2.80
Av. yearly total production loss (1,000 t) 637.44 824.96 557.78 1,382.74 1,377.14
Av. yearly total cost (mil usd) 142.54 184.47 124.72 309.19 307.94

Sorg

Av. yield loss (district) (t/ha) 0.05 0.06 0.02 0.04 0.04
Av. production loss (district) (1,000t) 5.06 5.83 1.85 4.07 3.96
Av. production cost (district) (mil usd) 0.95 1.10 0.35 0.77 0.75
Av. yearly total production loss (1,000 t) 247.75 286.11 71.40 357.51 347.50
Av. yearly total cost (mil usd) 46.78 54.02 13.48 67.50 65.61

Millet

Av. yield loss (district) (t/ha) 0.08 0.10 0.04 0.07 0.07
Av. production loss (district) (1,000t) 5.37 6.52 2.62 4.71 4.80
Av. production cost (district) (mil usd) 0.94 1.14 0.46 0.82 0.84
Av. yearly total production loss (1,000 t) 260.74 316.69 110.08 426.78 435.03
Av. yearly total cost (mil usd) 45.70 55.51 19.29 74.80 76.25

Barley

Av. yield loss (district) (t/ha) 0.01 0.03 0.05 0.04 0.04
Av. production loss (district) (1,000t) 0.12 0.30 0.56 0.43 0.42
Av. production cost (district) (mil usd) 0.02 0.06 0.11 0.08 0.08
Av. yearly total production loss (1,000 t) 2.46 6.39 11.96 18.35 18.06
Av. yearly total cost (mil usd) 0.47 1.22 2.28 3.50 3.45

Maize

Av. yield loss (district) (t/ha) 0.07 0.05 - 0.10 - 0.02 - 0.02
Av. production loss (district) (1,000t) 1.65 1.09 - 2.53 - 0.56 - 0.56
Av. production cost (district) (mil usd) 0.27 0.18 - 0.41 - 0.09 - 0.09
Av. yearly total production loss (1,000 t) 86.38 57.36 - 111.07 - 53.71 - 53.72
Av. yearly total cost (mil usd) 13.93 9.25 - 17.91 - 8.66 - 8.66

Notes:Individual cereal prices used represent the 2008 weighted cereal prices converted into USD using the average monthly exchange rate over this year.
Aggregate cereal prices also use the 2008 cereal-specific prices. All numbers were rounded to two decimal places.
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district at 160 kg/ha and 110 kg/ha for hot and cold droughts, respectively. These smaller

impacts on yields translate into lower total economic costs. Whereas we estimate that, in a

given year, the total economic cost of a hot drought is, on average, approximately USD 1.02

billion (using 2008 crop prices; column 2 in Table 5.8)17, this falls to USD 650 million for a

cold drought (column 3 in 5.8).

To our knowledge, there is only one study in the literature that attempts to estimate drought

costs for the whole of the country. Using data for all Indian districts, Sarkar (2011) estimates

cereal losses of 27.6 million tonnes due to drought in 200219. In our sample of 275 districts (out

of 311 apportioned districts), we estimate total production losses of about 16.3-16.9 million

tonnes in 2002, which we value at 103 billion rupees using nominal prices. In addition to

covering fewer districts, the differences in estimates are also likely to stem from methodological

differences as well as the fact that we do not take into account a potential reduction in

cultivated area during a drought year20.

Omitting cold droughts can lead to a lower estimate of hot drought impact, especially when

the dummy variables are excluded. Including dummy variables allows for a convergence in

the marginal effect. However, if the change in intercept is taken into account when estimating

costs, the divergences in the costs persist despite the inclusion of dummy variables. These

effects are quantifiably large as we illustrate by comparing the first two columns of Tables

5.8 and 5.9 for the full sample. When dummies are excluded (Table 5.8), this effect is large.

Average yield losses are estimated to be 33% higher (from 120kg/ha to 160 kg/ha) when cold

droughts are included. These estimates have a substantial effect on the estimated average

annual cost. This is USD 805 million (Table 5.8, column 1) when cold droughts are omitted

compared to USD 1.02 billion (Table 5.8, column 2) when they are included, which represents

a 27% increase. Thus, if estimating the economic cost of hot droughts without accounting for

17Crop prices in Indian rupees are converted into USD using the average monthly exchange rate obtained
from x-rates.com18. More details on how prices are computed are available in Appendix C.

19The author values these losses at around 1.3 trillion rupees. An error in their calculations, however,
suggests a loss closer to 130 billion rupees.

20A more detailed explanation is given in Appendix C. There are two further studies that attempt to
estimate drought costs in India, which are less relevant for the purpose of comparison with our estimates.
Pandey et al. (2007) estimate costs from yield losses for three states in Eastern India and the EM-DAT
database bases its national-level cost estimates on the basis of losses in housing, agriculture and livestock.
Within range of our estimates, the former estimate a cost of USD 900 million for the 2002 drought. However,
a large number of droughts do not have associated costs. Specifically, for our sample period, only 12 drought
events were recorded for India in the EM-DAT database and, out of these 12 events, only five have had their
associated costs estimated.
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cold droughts, the average yearly total costs of drought would approximate USD 805 million.

Including cold droughts raises the cost by 107% to USD 1.67 billion (column 4 in Table 5.8).

The difference can be broken down as follows: USD 216 million can be attributed to the lower

coefficient of hot droughts, and USD 649 million to the inclusion of cold droughts. A similar

difference exists when dummy variables are included, in Table 5.921.

The impacts derived using the separate crop-specific specifications generate patterns of yields

and costs similar to those that emerge from our aggregate cereal specification. Also, the

patterns that emerge in the full sample specification are present in the crop-specific regressions.

Cold droughts have a particularly large impact on rice, leading to substantive physical and

economic losses. Indeed, about half of the total average economic cost from cold droughts

can be explained by losses in rice yields. In the absence of dummies, we estimate rice yield

losses of around 160kg/ha (column 5 under Rice in Table 5.9). Excluding Type 2 drought,

i.e. comparing column 1 and 2 under Rice in Table 5.9, suggests underestimates in the region

of about 33%. Thus, it is highly likely that Birthal et al. (2015) underestimated the impacts

of droughts on rice yields in their analysis22.

5.7 Conclusion

Overall, there are three main findings that emerge from our analysis. First, after proposing

an index which extends Yu and Babcock’s (2010) index, we show that both hot and cold

droughts have significant impacts on agricultural productivity in India. Thus, it is important

to include the latter category of droughts, especially in a setting where there has been a clear

increase in the number of such events in recent years. Moreover, if an assessment of economic

impacts is performed solely based on hot droughts alone, approximately half of all potential

dry events would be overlooked. Our results strongly suggest that these events have had quite

a severe impact on cereal yields.

Second, the omission of cold droughts leads to a smaller estimated coefficient of hot droughts,

21However, in the case of Table 5.9, this difference arises from accounting for the intercept change, rather
than the underestimation of the marginal impact.

22Birthal et al. (2015) estimate rice yield losses due to drought ranging from 187 to 200 kg/ha. Differences in
estimated impact are likely to stem from the fact that they use a different sub-sample of districts and estimate
a specification that differs from the one used in our analysis, e.g. we adopt a district-specific quadratic trend
whereas they adopt a linear trend, as well as including interaction terms and irrigation as a control variable.
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especially when a dummy variable is not included to account for a potential intercept shift.

Effectively, this implies that, if cold droughts have a large negative effect on productivity,

estimating the coefficient for hot droughts without accounting for cold droughts could lead to

underestimates of the marginal effect of hot drought thus further downward biasing the overall

impact of drought in empirical analyses. This result does not challenge the central findings

of Yu and Babcock (2010) and Birthal et al. (2015) that impacts of drought have decreased

over time. Yet, it does question the size of the marginal impacts estimated in both of these

studies, and implies that a focus on hot droughts alone does not tell the whole drought story.

Third, the quantitative implications of our results are likely to be large, particularly given the

fact that our cost estimates are based purely on yield losses. Since we do not take any potential

changes in the cultivated area into account, we are likely to underestimate true production

losses. The economic value of production loss attributable to cold droughts is illustrated to

be approximately 60% of the total economic value of production losses attributable to hot

droughts in our main specification. Also, omitting cold droughts and a dummy variable can

lead to an underestimation of the economic value of production losses due to hot droughts,

which in our simulations amounted to a difference of about 27%. While we acknowledge that

our back-of-the envelope estimates are based on a number of assumptions regarding prices and

so forth, they do suggest that we have found sufficient empirical evidence and an economic

rationale to justify the inclusion of cold drought in analyses of drought impact.

Our results have clear implications for public policy. Since cold droughts have measurable

impacts on agricultural production that are severe yet not as severe as those resulting from hot

droughts, policymakers should seek to distinguish between the two types of drought defined

in this paper. Simple metrics of precipitation deficiency will obviously capture both types

but since temperature plays a critical role in determining the extent of dry conditions at the

local scale, it still needs to be explicitly accounted for. Detecting cold drought and tracking

their impacts over time can serve as an early-warning response for periods when temperatures

are expected to be above the average of long-term trends. With global warming expected to

continue to contribute to rising temperatures as well as potentially influencing patterns of

extreme rainfall events, our index can thus help to shape the appropriate policy response to

drought, particularly with respect to climate adaptation and agricultural production in more

climate vulnerable locations.
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Chapter 6

Threshold effects of extreme rainfall

events and the evolution of drought

impacts on Indian agriculture
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Abstract

Climate change is predicted to be associated with a rise in the intensity and frequency of

extreme rainfall events. Such patterns are already observed in India, which is highly depen-

dent on rain-fed and irrigated agriculture. This paper examines the hypothesis that large

deviations, either positive or negative, from long-term average rainfall have significant and

large impacts on crop production in India and then investigates the evolution of impacts over

time. A precipitation-temperature index and a threshold regression approach are applied to

meteorological and agricultural data to test for the existence of thresholds in the relationship

between rainfall and agricultural production, over the period 1966-2009. For India, signifi-

cant marginal negative impacts of rainfall deficiency are found above the threshold previously

used by the Government to denote a drought. Impacts become much larger at deviations

of about 25%, and even more dramatic at deviations in excess of 50%. Thresholds in arid

and semi-arid areas occur at larger negative deviations from normal rainfall. At low negative

deviations from normal rainfall we find smaller impacts in more arid areas compared to humid

areas. However, at large deviations, impacts are higher in more arid areas. Sorghum, millet

and maize have lower thresholds than rice, wheat and barley. Over time, we find reductions

in drought impacts until the late nineties, though the trend seems to have reversed since

the beginning of the millennium. This pattern is consistent across agro-ecological zones and

crops. One possible explanation is the decrease in lagged precipitation in drought affected

districts.

Keywords: Agriculture, India, Rainfall, Thresholds, Cereals

JEL classification: Q10, Q54, Q56, O13
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6.1 Introduction

A warming climate is predicted to be associated with a rise in the frequency and intensity of

extreme weather and climate events, with profound implications for both human society and

the natural environment (Easterling et al., 2000; IPCC, 2012). While the impacts of extreme

events have the potential to be non-linear, the policy response to such events, especially

drought, has often been determined by arbitrarily defined thresholds (Willhite and Glantz,

1985). This is especially true of India, where, until recently its government defined moderate

and severe meteorological droughts as years where the rainfall deficiency vis-à-vis the annual

monsoon rain was between 26%-50% and above 50%, respectively. Since these thresholds are

not intrinsically tied to tangible outcomes, they fail to characterize the level of deviations from

average rainfall levels beyond which additional deviations directly translate into an impact

that could be considered significant.

In India, where the summer monsoon contributes up to 85% of the country’s rainfall, recent

research by Singh et al. (2014) indicates that levels of monsoon rainfall have decreased since

1951. They also find that periods of heavy rainfall have become more intense while ‘dry spells’

(drought) have become less intense yet more frequent1. This study, along with other studies

of observed Indian rainfall extremes (e.g. Goswami et al., 2006; Pai et al., 2011; Ghosh et

al., 2012; Turner and Annamalai, 2012; Kumar et al., 2013), all suggest critical implications

for Indian agriculture. Given that the amount of rainfall is a key driver of agricultural

productivity2, we go a step further and examine the hypothesis that large deviations, either

positive or negative, from long-term average rainfall have significant and large impacts on crop

production. We do so by using meteorological and agricultural data, collected in India between

1966 and 2009, to test for the existence of thresholds in the relationship between rainfall

and agricultural production, before estimating the magnitude of impact on productivity and

frequency of extreme rainfall events over time.

Extreme rainfall has the potential to lead to substantial welfare costs for producers and con-

sumers, through, respectively, lost income and higher food prices. India, with an agricultural

1They define dry and wet spells as “events of at least 3 consecutive days with precipitation anomalies
consistently exceeding one standard deviation of daily precipitation”.

2The production of crops in many areas during the wetter summer (Kharif) season relies directly on rainfall
as their main source of water. Crops grown in the subsequent drier (Rabi) season also rely on rainfall from
the previous season for soil moisture and water stored in sources such as tanks and canals.
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sector contributing about 20% of gross domestic product (GDP) and employing half of the

working population, is particularly vulnerable to large changes in precipitation. Two-thirds

of the country is susceptible to drought (Birthal et al., 2015), and rain-fed agriculture cov-

ers approximately 60% of its cropped area (Sharma, 2011). About 40 million hectares are

considered flood-prone (De, Dube and Rao, 2005). Previous research on impacts of extreme

rainfall events on Indias economy and agricultural sector has mostly focused on dry spells.

Between 1951 and 2003, severe droughts were estimated to have lowered the countrys GDP

around 2 to 5 percent (Gadgil and Gadgil, 2006). Closest to our study is Singh et al. (2011)

who find that, in some cases, excess rainfall had a negative impact on aggregate agricultural

production, although the main impacts were from deficient, rather than excessive, rainfall.

However, they define extreme rainfall events and estimate their impacts arbitrarily and they

do not take into account temperature when analysing deficient rainfall events.

In this paper, we seek to address two questions. First, using a simple and flexible precipitation-

temperature index, which interacts rainfall with temperature, we estimate the thresholds of

rainfall and their impacts on cereal production for different ranges of rainfall. Second, focusing

solely on deficient rainfall, we investigate how impacts of drought have changed over time. For

the first question, a threshold regression approach (Hansen 1999, 2000) is applied to our panel

of district-level agricultural data. Together, the index and the threshold approach allows us

to identify data-driven ranges along which impacts of extreme rainfall events have significant

impacts on agricultural production, while simultaneously accounting for the potential effect

of temperature on these impacts.

Conceptually, we argue that our approach addresses the main weakness of definitions of

extreme rainfall events adopted in previous work, namely that they are based on arbitrary

thresholds of excess rainfall or rainfall deficiency. The main benefit is that it ties deviations

in rainfall from the long-term average to its effects on agricultural productivity. It is also

sufficiently flexible in that it allows us to incorporate the effects of temperature, which have

been shown to reduce yields of major crops in various settings (Schlenker and Roberts, 2009;

Lobell et al., 2012; Deryng et al., 2014). Additionally, the method has the potential to capture

impacts of both excessive and deficient precipitation on agricultural yield.

With regards to the second question, we first use a rolling-regression approach to analyse the
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evolution of drought impacts without any prior assumptions. Then, we use a standard fixed-

effects panel data model to estimate how impacts of drought evolve over time. Our approach

with regards to the evolution of impacts over time also addresses some of the weaknesses of

previous papers in this literature which typically impose linearity of impacts over time and

have generally concluded that impacts have become smaller over time (Birthal et al. 2015).

The paper proceeds in four parts. First, we identify thresholds for India as a whole. Second, we

examine the data for any evidence of homogenous thresholds across different agro-ecological

zones and crops. Disaggregating thresholds at a reduced geographical scale allows us to

consider the heterogeneity in bio-physical conditions across India. For example, the strong

possibility that arid areas may react to large changes in rainfall very differently in comparison

to humid areas. Similarly, different crops may have very different sensitivities to deviations

in rainfall. Previous studies focusing on temperature (e.g. Schlenker and Roberts, 2009) have

shown different thresholds depending on the crop analysed and a similar pattern is expected

to emerge for rainfall in our analysis, the first to our knowledge, to identify thresholds for

precipitation. Third, we turn to the question of how the impacts have evolved over time

and we estimate a number of rolling regressions at a reduced geographical scale and by crop.

This allows us to assess whether the evolution of the impacts of drought over time has been

different across agro-ecological zones and crops. Finally, after testing for the most appropriate

parametric specification, we estimate a parametric fit of the impacts of drought over time.

A number of findings emerge from our analysis. The first is that the vast majority of thresholds

are thresholds of rainfall deficiency. For India as a whole, we find significant small marginal

negative impacts of rainfall deficiency up until a negative deviation of approximately 25%

from long-term average rainfall (LTAR). Beyond a 25% deviation from long-term average

impacts become larger and become even more dramatic at rainfall deviations in excess of

50%. Across agro-ecological zones there is spatial heterogeneity in impacts. Thresholds in

arid and semi-arid areas tend to occur at larger negative deviations and impacts at small

deviations tend to be smaller than in sub-humid areas. However, at large negative deviations,

we find very large impacts for arid areas. Our analysis by crop finds that sorghum, millet

and maize (to a lesser extent) tend to have lower thresholds, whereas rice and wheat have

higher thresholds. This implies that crop choice is likely to be an important component of

resilience to climate change. However, the fact that the majority of thresholds are thresholds
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for deficiency does not mean that excessive rainfall cannot have negative impacts. However,

these were confined to restricted agro-ecological zones and crops and, in most cases, negative

impacts only occurred at extreme amounts of rainfall and impacts were quantitatively small.

Finally, in terms of the results over time, we find that, overall, impacts of drought over

time in India have been highly non-linear and, while impacts did become smaller until the

late nineties, they seem to have become more severe since the beginning of the millennium.

However, the results by crop are highly heterogeneous, with rice witnessing a high and steady

decrease in impacts over time, whereas impacts on maize and sorghum have been more non-

linear over time. We argue that the differential pattern by crop is likely to be driven by factors

such as the adoption of irrigation and improved varieties. One possible explanation to the

worsening of impacts since the beginning of the millennium one possible explanation is what

seems to be a change in rainfall patterns. In our data, we observe that the rainfall received in

the year prior to the drought was particularly low since the early 2000s. As a result, the lack

of availability of moisture from the previous year could explain why we observe this increase

in impacts.

Where reliance on agricultural income is high, extreme rainfall events may have devastating

effects on human welfare and pose a significant challenge to policy-makers who manage the

response to these events. Future projections of climate change-induced changes in rainfall

patterns across India suggest increasingly erratic rainfall. Our results therefore contribute to

a better understanding of the vulnerability of agriculture to extreme rainfall events given the

critical need for food security in the face of the growing threat of climate change. The rest

of the paper is structured as follows. Section 2 provides background on India and discusses

measurement issues. Section 3 discusses the data and methodology used in this paper. Section

4 presents and discusses the results. Finally, section 5 concludes.

6.2 Agriculture in India and measuring extreme rainfall events

Deviations in rainfall from its long-term average play an integral role in Indian agriculture

and its occurrence has large implications for the economy as a whole. The impacts of extreme

rainfall events in India are conditioned by a number of factors that vary across the country.
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Given the large size of India, it is debatable whether we are able to properly characterise

drought impacts based on a country-wide average. The rest of this section first reviews

sources of heterogeneity that may affect the impacts of rainfall deviations before examining

how extreme rainfall events have been measured in previous research.

6.2.1 Agro-climatic differences

Climatic conditions vary substantially across growing regions. This is illustrated in Figure

6.1. Panel (a) shows average levels of annual rainfall in each district across the country.

Areas in the north-west of the country are characterised by extremely low average rainfall,

in contrast to areas in the east and coastal-west that have much higher levels of rainfall on

average. These differences in mean rainfall are primary determinants of a permanent feature

of regions: aridity.

Estimating extreme rainfall impacts separately for these different zones is important for a

number of reasons. First, identifying areas of drought vulnerability based on climatic differ-

ences is important for informing policy about future vulnerability. If regions already frequently

exposed to dry conditions are most affected by drought, it is likely that future warming could

exacerbate those already challenging growing conditions. Second, understanding the differ-

ence in sensitivity to rainfall deviations can help policy-makers identify when a drought is

likely to start harming agricultural productivity. Given that, for instance, arid areas expe-

rience generally low levels of absolute rainfall, it may be simplistic to assume that a given

proportional deviation below average would have effects on agricultural productivity compa-

rable to an area with very high absolute levels of rainfall. For instance, a 20% deviation in

rainfall from the long term average would amount to 30mm in arid areas, while the same

proportional deviation would be around 200mm in humid areas. This may have substantially

different effects on crop growth in these areas.

Physical exposure to drought may vary substantially across the country. Thus, we divide India

into distinct regions based on their average agro-climatic characteristics. Panel (b) in Figure

6.1 shows a characterisation of Indian districts based on similar agro-climatic factors. Prior

research suggests that India can be split into twenty agro-climatic regions based on a number

of climatic variables, such as rainfall and temperature, and soil characteristics (Gajbhiye and
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Figure 6.1: India rainfall by AEZ

155



Mandal, 2010). We use this classification of agro-ecological zones to group districts into a

broader classification depending on whether districts fall into arid, semi-arid, sub-humid, or

humid zones. This allows us to maintain a relatively large number of districts in most zones

to aid the empirical analysis. It can be seen by comparing panels (a) and (b) that this

classification of zones corresponds very clearly with patterns of average rainfall, indicating

that average rainfall is one of the main driving factors behind the variation in agro-climatic

conditions across the country.

6.2.2 Crop choice

Another aspect that may determine the impacts of extreme rainfall events is crop type. Given

the variation in average climatic conditions shown in Figure 6.1, crop choice in a district is

likely to reflect these conditions. For instance, water-intensive crops are more likely to be

grown in less arid areas. Figure 6.2 shows the spatial distribution of the proportion of area

planted with each of the six crops examined in this study. Rice is planted most intensively

in areas with high rainfall in the south and east of the country, where conditions are semi-

humid or humid. In contrast, wheat is grown mainly in the more arid northern part of the

country, which reflects a lower dependence on rainfall. The crops most suited to growth in dry

environments, sorghum and millet, are both grown across arid and semi-arid regions. Similar

to research that has shown how different crops react differently to heat stress (Schlenker and

Roberts, 2009), different crops may also differ in terms of their resilience to water stress

(FAO, 2012). The differences in levels of rainfall deviations for which changes in rainfall have

a negative significant impact on productivity is considered in our empirical analysis.

156



Figure 6.2: Area Planted by crop
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In addition to the natural differences between crops, we also note that, over time, the growth

of cultivated area of certain crops as well as technology adoption (e.g. irrigation, fertilizer

and high-yielding varieties) has been very heterogeneous. This is highlighted in Figure 6.3

which show that for districts in our sample there has been a shift away from sorghum, barley

and millet towards rice, wheat and, to a certain extent, maize [figure 6.3 panels (a) and (b)].

With respect to technology adoption, crops such as wheat have benefited from the highest

increase in irrigation [figure 6.3 panel (d)] and, while adoption of improved varieties increased

across all crops, rice and wheat were the two crops with the highest area under high-yielding

variety cultivation [figure 6.3 panel (c)]. These factors are likely to have an effect both on the

location (and impacts) at a given threshold, but also affect how the impacts evolve over time.

Figure 6.3: Area cultivated, adoption of high-yielding varieties and irrigation (by crop)

(a) Crop area (% of total)
(b) Total crop area (indexed)

(c) HYV crop area (% crop area)
(d) Irrigated crop area (% crop area)

Notes: panels (a), (c) and (d) are local polynomials (bandwidth= 1). Panel (b) refers to the relative total

cultivated area for a given cereal, where, for the reference year (1966), all the series take a value of 100. For

the HYV (high-yielding varieties) data, there were a number of occurrences where, for some districts, area

under HYV cultivation exceeded the total area under cultivation. In these cases, these values were simply

replaced by a missing value. This was an issue for about 10% of the observations. Given how noisy the

HYV data are, we will use them for the rest of the analysis. However, they illustrate the rapid adoption

of HYVs in India during the 1966-2009 period.
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6.2.3 Measuring the severity of extreme rainfall events

There is no universal definition of the conditions that constitute a flood or a drought. In

the case of drought, it is generally referred to as an extreme natural event associated with

water deficiency over an extended period of time (Mishra and Singh, 2010). The severity of

a drought and its impacts, however, are determined by a number of other factors, natural

and man-made, which may differ substantially across space and time. Thus, a wide range

of indices have been developed and used in research and policy. These range from simple

precipitation indices, which are highly favoured among policy-makers, to very data-intensive

multidimensional measures. In the case of floods, most of the indices used in the empirical

literature tend to rely solely on rainfall indices vis-à-vis long-term average rainfall (Singh et

al., 2011, Aufhammer et al., 2012).

A number of studies have estimated impacts of rainfall deficiency on agricultural production

using simple metrics of precipitation deficiency. These measures have the advantage of being

easily interpretable and capture the most obvious characteristic of drought, rainfall deficiency.

For instance, a commonly used method is similar to that of Pandey et al. (2007) who define

drought and severe drought as rainfall between 70-80% and below 70% of LTAR, respectively.

They use this definition to estimate drought impact in areas that grow rice in Asia, at the

aggregate and household level. In Eastern India, the authors find that drought is associated

with a 36% loss of production value in Eastern India. A similar definition is also used by

Auffhammer et al. (2012) to study the effect of monsoon rainfall on rice yields for states in

India. They define drought if monsoon rainfall is 15% below normal and find that drought

was associated with a 12% fall in rice yield. Singh et al. (2011) define drought as an event

where the rainfall deficiency was more than one standard deviation below the mean and find

significant negative impacts on cereal production.

In the case of excess rainfall, empirical research tends to be more limited. Aufhammer et al.

(2012) define extreme rainfall as the summed June-September rainfall that occurred on days

with rainfall that equalled or exceeded a states 95th percentile daily threshold. The authors

find that while yield decreased by 0.2% for a 1% decrease in the cumulative June-September

rainfall, the negative effect of an increase in 1% of extreme rainfall was only 0.022%. Similarly,

Singh et al. (2011), who define wet years as those where monsoon rainfall exceed the long-
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term average by more than a standard deviation, only find negative impacts in two out of

nine wet years.

Studies that use simple definitions of extreme rainfall events are problematic for our under-

standing of their impacts since they impose arbitrary thresholds in order to define a drought

or flood, and evaluate their impacts only after a given level of precipitation. For drought, it is

not clear whether such thresholds have an agronomic or empirical basis (Wilhite and Glantz,

1985). Also, there may be other variables that may have important effects when determining

the physical severity of a drought, in particular temperature. High temperatures have acute

effects on crop growth during periods of low precipitation since the rate of evapotranspira-

tion, the combined process of water evaporated from land surfaces and plants, increases as

temperatures rise (Prasad et al., 2008; Lobell and Gourdji, 2012). In general, this increases a

plant’s demand for water at a time when water availability is already reduced due to deficient

precipitation.

The role of temperature in determining the physical severity of drought is also critical given

temperature increases driven by climate change (Hatfield et al., 2011). Recent research has

documented that droughts over a range of settings have increased in severity as mean tem-

peratures have risen. Higher temperatures, rather than the increased intensity of low rainfall

events, have been responsible for these drying trends (Vicente-Serrano et al., 2014; Diffen-

baugh et al., 2015). Empirically, high temperatures have been shown to have detrimental

effects on crop yields. Schlenker and Roberts (2009) find that temperatures reduce county-

level yields for corn, soy-beans, and cotton in the U.S. In India, Guiteras (2009) and Burgess

et al. (2014) both show that, on average, daily temperatures above 34◦C tend to reduce agri-

cultural productivity of a district. Lobell et al. (2012) identify the same threshold as harmful

for wheat yields in India. A failure to consider the effect of temperature on the severity of

a drought event could lead to a serious underestimation of its severity and give misleading

information about the likelihood of future production losses driven by climate change.

6.2.4 Measuring impacts of drought over time in India

In an attempt to assess whether droughts have become more severe over time, Birthal et al.

(2015) apply the methodology proposed by Babcock and Yu (2010) to the same dataset we
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use. They focus exclusively on rice and find, in India, a pattern similar to the one found

in Babcock and Yu (2010), namely a reduction in impacts over time. The authors attribute

a large part of this reduction in impacts to improvements in irrigation that have occurred

during the Green Revolution. The finding that the impacts of drought have declined over

time is of high importance in the context of India. However, we argue there are three issues

with the authors analysis.

The first is a conceptual issue which comes from their use of a slightly modified version of the

Babcock and Yu (2010) index, which we will discuss in the next section. The implication is

that the authors definition of drought is limited to events characterized by both below-average

rainfall and above-average temperature. We argue that this is an incomplete characterization

of drought, given that below-average rainfall can still have largely negative impacts, despite

below-average temperature.

The second issue relates to the focus of the authors on rice. Their focus is understandable

since rice remains one of the most important crops in India. However, the narrow focus on

rice may be problematic for two reasons. First, focusing on rice is particularly relevant for

sub-humid and humid areas (and some semi-arid areas). As shown clearly by figure 6.2, rice is

primarily cultivated in Southern and Eastern India. However, in Western and Northern India,

wheat, maize and sorghum are important crops. Second, as shown in the previous section,

rice and wheat are the two crops that have benefited the most from adoptions of high-yielding

varieties and irrigation. As a result, it is possible that the results that the authors found for

rice do not extrapolate to other crops, some of which still represent a large proportion of land

under cultivation.

Finally, the third issue is a methodological one. The authors impose linearity in the evolution

of impacts over time, which may condition the results. There are reasons to believe that

impacts of drought in India may be highly non-linear over time. Shah and Kishore (2009),

for instance, mention that the 2002-2003 drought was particularly bad since it was preceded

by two years of deficient precipitation, which implied that the surface reservoirs were nearly

empty and the depleted groundwater reservoirs had no chance to recover. Whether imposing

a linearity over time is defendable or not really depends on the question at hand. If we are

concerned about very long-term trends, arguably it is defendable, although it should be tested.
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However, in our case we believe that it is important to attempt to capture some of these recent

changes in the impacts of drought. High impacts in the early of 2000s would highlight that

despite large increases in irrigation and potential reduction of drought impacts over time, the

Indian agricultural sector is still not drought-proof and immune to large negative shocks.

As such, we will approach the evaluation of impacts over time slightly differently. First, we

will propose a new index which has the same benefits of the Babcok and Yu (2010) index

while addressing what we perceive to be its main weakness, which is the topic of the next

section. Second, we will not impose linearity a priori, opting for a more flexible rolling

regression approach to inform our choice of parametric trend, an approach we discuss in the

methodology section.

6.3 Data and Methodology

6.3.1 Data

Our agricultural data are taken from the ICRISAT Meso-level Database, which contains

information on a range of agricultural and socioeconomic variables at the district-level

(ICRISAT,2012)3. We use data for the years 1966-2009. Out of the 311 available districts in

the database, 275 districts are used to create a balanced panel for the main analysis4.

Data are available on annual crop production and area, which are used to construct crop

yield variables for rice, wheat, maize, barley, sorghum, and millet5. We investigate extreme

rainfall impacts on an aggregate cereal productivity index as well as separately for each crop.

The aggregate cereal productivity index is constructed by summing total cereal production

and dividing this by total cereal area. Data on area irrigated and fertiliser consumed in a

district are also used. These variables are available as district-level aggregates and are not

crop-specific. In addition, socioeconomic census data are available at the district level.

3Since 1966 a number of districts have split into smaller districts. To maintain spatial consistency over
time, district splits are dealt with by returning split districts to their parent districts in 1966.

4We test a number of different specifications. For India as a whole the number of districts ranges from 212
to 275, depending on the specification. All the specifications used require a balanced panel.

5For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity of
millet.
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To construct the precipitation-temperature index (discussed further in the next subsection),

we use weather data for daily rainfall and daily average temperatures collected by the Indian

Meteorological Department. The rainfall data are available in gridded format at a resolution

of 0.25◦ × 0.25◦ (Pai et al., 2014). Gridded temperature data are available at a resolution of

1◦ × 1◦ (Srivastava et al., 2009). District-level weather data are then obtained by taking a

weighted average of gridded weather observations from grid cells that fall within a district’s

boundary based on the proportion of the grid cell that falls in each district. Table 6.1 provides

summary statistics of some of key variables.

Table 6.1: Summary statistics

Variable N Mean S. D. Min. Max.

Yield

Cereal yield (t/ha) 12100 1.463 0.787 0.006 4.775
Barley yield (t/ha) 5842 1.383 0.688 0.048 5.400
Maize yield (t/ha) 10621 1.431 0.929 0.003 9.739
Millet yield (t/ha) 9852 0.798 0.439 0.000 4.000
Rice yield (t/ha) 11398 1.492 0.853 0.009 5.542
Sorghum yield (t/ha) 9694 0.774 0.434 0.001 9.836
Wheat yield (t/ha) 10275 1.643 0.878 0.046 6.324

Area

Cereal Area (1,000,000 ha) 12100 0.332 0.195 0.001 1.334
Barley (% of total district cereal area) 12031 0.015 0.036 0.000 0.320
Maize (% of total district cereal area) 12099 0.065 0.113 0.000 0.838
Millet (% of total district cereal area) 12100 0.131 0.220 0.000 1.000
Rice (% of total district cereal area) 12100 0.401 0.357 0.000 1.000
Sorghum (% of total district cereal area) 12066 0.148 0.225 0.000 0.929
Wheat (% of total district cereal area) 12093 0.240 0.246 0.000 0.972

Inputs and weather

Irrigation (% of total district area) 12095 0.355 0.270 0.000 1.467
Rural population density 11787 3.566 2.142 0.428 17.907
Fertiliser intensity (t/ha) 11889 60.571 61.406 0.000 614.493
Cumulative rainfall (mm) (June-September) 12100 863.837 529.348 13.125 5313.428
Degree Days (cumulative heat, June-September) 12100 94.422 47.204 2.697 278.413
NRTI (rainfall-temperature index) 12100 0.260 0.202 0.000 1.000

Notes: N refers to the total number of observations. S. D. refers to the standard deviation. Min. and Max. refer to the
minimum and maximum values. Rural population density is calculated as the total rural population divided by the gross
cropped area. Fertilizer intensity is obtained by dividing total fertilizer used by gross cropped area. The cumulative
rainfall variable is obtained by summing the cumulative precipitation in the months of June through to September.
The degree-days variable refers to the total number of degree-days above the long-term average temperature during
the growing season (defined as June-September). The NRTI variable is derived by multiplying the normalized negative
rainfall by the normalized degree-days variable. More details are available in the data preparation appendix in the paper.
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6.3.2 Rainfall-temperature index (RTI)

In this section, we develop a precipitation-temperature index. This expands the approach of

Yu and Babcock (2010), who limit their definition of drought to years when both tempera-

tures are uncommonly high and precipitation low relative to the long term average of these

variables6. Since we remain agnostic about the response function of yield to our index, we

simply interact our measure of precipitation with temperature. Specifically, we normalize

the negative of our precipitation variable, such that the highest precipitation deficiencies take

higher values, with a range of 0 to 1. Similarly, we normalize the degree-days of heat exposure

between 0 and 1 such that hotter years have higher values. Then, we simply interact the two

normalized values so that our precipitation-temperature interaction index ranges between 0

and 1, with values close to 1 signifying hot and dry years and values close to 0 signifying cold

and wet years.

For values of rainfall above average rainfall for a given year, we expect a positive coefficient

of our index on productivity (as rainfall approaches long-term average rainfall). However, for

values of rainfall below a certain point of rainfall deficiency we expect a negative relationship

(as rainfall deficiency increases)7.

6.3.3 Methodology

Threshold regression with fixed effects

To estimate the impact of extreme rainfall events on Indian agriculture, we employ a threshold

regression estimation strategy with fixed effects (Hansen, 1999)8. This model augments the

standard linear fixed effects model by estimating how the effect of extreme rainfall on crop

yield differs between thresholds of precipitation relative to its long-term average.

6We limit our analysis to considering drought as a prolonged absence of rainfall over the period from
June-September. As such, we do not analyse, for instance, shorter or longer periods of drought. For instance,
Fishman (2016) studies the intra-annual distribution of rainfall in India and concludes that this has important
effects on productivity. To analyse the impacts of rare, multi-year droughts we would require a drought measure
with ‘memory’ that takes into account soil moisture conditions. Since drought in India is mainly driven by
variation in the annual monsoon, we argue that this measure is most relevant in this context.

7Conceptually, it is possible for us to have negative impacts of the index even for regions of rainfall above
1 since it could also signify high temperatures and/or that the average amount of rainfall may not be in the
optimal region for the crop in question.

8To estimate the fixed effects threshold model we utilise Stata code which is described in Wang (2015)
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Equation 6.1 illustrates the model in the case of a single threshold of precipitation (qit),

RTit, the precipitation-temperature index (hereafter index) variable and ln(yit), is the de-

trended (quadratic district-specific trend) natural logarithm of crop yield9. De-trended crop

yield is used since the threshold regression approach precludes the use of trended data and

integrated processes. De-trending in this way removes trends in yields that are associated

with technological progress over time10. To check if the yield variable is stationary after

the de-trending procedure we apply a number of panel unit root tests11. In a number of

specifications we also include a set of control variables Xit. Finally the error term is given by

eit.

ln(yit) = αi +RTit(qit < γ)β1 +RTit(qit > γ)β2 +Xitδ + eit (6.1)

which can be written as:

ln(yit) = αi +RTit(qit, γ)β +Xitδ + eit (6.2)

where:

ln(yit) =


αi +RTitβ1 +Xitδ + eit if qit < γ

αi +RTitβ2 +Xitδ + eit if qit > γ

(6.3)

Rather than the effect of changes in our index being constant across all values of the threshold

variable (ranges of rainfall, qit), the threshold model estimates the value of one or more

thresholds qit = γ, for which the marginal effect of changes in our index has a different effect

on cereal productivity. In other words, the estimated marginal effect of our index is different

on either side of the estimated threshold. This method allows us to test whether such a

9The log transformation of yield is used because we are interested in the relative impact of an extreme
event. This specification allows for a better comparison of impacts of extreme weather events across areas
where absolute differences may be large.

10De-trending ensures that our results are not driven by these endogenous trends. If we do not de-trend,
de-mean or take the first difference, the threshold may be driven by the unit root process followed by our
series.

11We show the results of unit root tests in Tables 6A.1 and 6A.2. We also check the sensitivity of our
results to alternative, stationary dependent variables, namely the de-meaned version of the natural logarithm
of yields.
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threshold exists and, if so, enables us to estimate threshold values and allows us to compute

impacts for different ranges of precipitation.

The threshold value is estimated by least squares and involves picking the value that minimises

the residual sum of squares of the model (Hansen, 2000). As argued by Hansen (1999), prior

to searching for a threshold we need to eliminate the largest and smallest n% of the threshold

variable (trimming). The remaining values of the threshold variable constitute the searchable

values of a threshold. Another important feature of the model is that, even if a threshold

is estimated, it may not be statistically significant. Accordingly, a likelihood ratio test of

whether H0 : β1 = β2 is implemented. A bootstrap procedure ran over 300 iterations is used

to construct the p-values for this test. If we fail to reject H0, the model is equivalent to

the linear fixed effects model, where the effect of the regressors included in the model are

not significantly different across values of rainfall. The method also allows us to compute a

maximum of three threshold values.

A benefit of using panel data to measure extreme rainfall impacts is that it allows us to control

for the influence of time-invariant factors that may differ among districts. The district fixed

effect term, αi, is included to control for time-invariant, district-specific effects, such as soil

types or differences in altitude. Similarly, this could capture institutional differences that have

persisted over the sample period. Such differences could help explain variability in extreme

rainfall impacts on productivity across the country. In sum, identification of the impact of

extreme rainfall events relies on within-district variation in de-trended yields, which exploits

variability in the severity of impacts over time.

To test the robustness of our results, we also estimate our results with and without a set of

time-varying control variables Xit. We include rural population per hectare of cereal area,

total cereal area, fertilizer used and proportion of land under irrigation. Finally, we check

whether the results of our threshold model are in line of the results we obtain when we

estimate deviations of rainfall from the long-term average using dummy variables.
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6.3.4 Rolling regressions and fixed effects model

To address the question of how impacts have evolved over time, we prefer to remain agnostic

towards the potential shape of this relationship over time since, for the reasons highlighted

previously, it has the potential of being highly non-linear. In order to explore the evolution of

the coefficient over time, we first estimate our fixed effects model with fixed rolling windows.

The main aim behind this method is to inspect how a given parameter varies over time by

defining a window of a given width and then estimate the model rolling forward one period

at a time. In our case, where the data runs from 1966 to 2009, we choose a 9-year window12.

The estimates obtained from the rolling regressions is that they are likely to display a trend

as well as some noise. As such, if the coefficients are constant over time, we should expect

the coefficients to display random noise. However, if the coefficients are trending, we would

expect this method to pick the true coefficient plus some noise. In our case, we use these

estimates in order to potentially motivate the use of higher order time polynomials, rather

than just interacting the drought coefficient with time linearly. In order to see if a consistent

pattern emerges, we use different window widths13.

Following the estimation of the rolling regression, we estimate models where drought is inter-

acted with time trend. However, we allow the drought coefficient to be interacted with higher

order polynomials of time. We estimate models up to an interaction of the drought index

with a cubic interaction of time. In terms of a regression, we estimate, at most, the following

regression14:

ln(yit) = αi+ δi1 ∗ t+ δi2 ∗ t2 + θDit+β0DIit+β1DIit ∗ t+β2DIit ∗ t2 +β3DIit ∗ t3 + eit (6.4)

12This means that first, we would estimate the model for 1966-1975 (included), then for 1967-1976, and so
forth until 2000-2009. Then we can attempt to better understand the potential shape of the coefficient over
time. In our case, for each window T from t to t+9, included, we estimate a fixed-effects model and we retrieve
the drought coefficient.

13We run the rolling regressions using window widths of 3, 6 and 9 years. For the 3-year case, no trends were
added to the rolling regression specifications. For all the remaining windows, we added quadratic, district-
specific trends to the rolling regressions.

14Note: In the regression tables 6A.15-6A.20 the index is called NRTIq12 because it is equal to the NRTI
when the values of rainfall are below the LTAR.
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We then use an F-test to determine which is the most appropriate parametric specification

(i.e. whether there is support for a trend and, if so, of what order).

6.4 Results and Discussion

6.4.1 Threshold results, discussion and robustness checks

Full Sample

We begin by investigating precipitation thresholds for India as a whole (see Table 6.2 for full

results; a summary of all our results and marginal effects can be seen in Table 6.3). Units

of precipitation refer to the proportion of annual rainfall relative to a districts long-term

average rainfall (LTAR). Our results suggest a small negative coefficient of our index for

levels of rainfall above 74% of LTAR. Below 74% of LTAR, however, we find significant and

sizeable negative impacts, with an increase in the index leading to an additional estimated

-0.266% deviation of yields from trend; these negative impacts become even more pronounced

(-0.454%) below 49% of LTAR. For the full sample, these results show significant negative

impacts on the agricultural sector for cereals, well before reaching national-level threshold

values used for defining a drought event by India’s Government.
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Table 6.2: Main results - Full sample and AEZs

Full Sample Arid Semi-arid Sub-humid Humid

Threshold test

P-value

Single 0 0.023 0 0 0.145

Double 0 0.129 0 0 0.64

Triple 0.602 0.631 0.51 0.622 0.698

Threshold Location

γ1 0.492 0.791 0.587 0.763

[0.481,0.512] [0.771,0.793] [0.580,0.596] [0.756,0.767]

γ2 0.743 0.891 0.939

[0.740,0.752] [0.883,0.893] [0.933,0.941]

γ3

β - Rainfall-Temperature Index

Rain< γ1 -0.606*** -0.599*** -0.521*** -0.224*** -0.194***

(0.074) (0.170) (0.060) (0.029) (0.064)

γ1 < Rain < γ2 -0.309*** 0.206 -0.136*** -0.060**

(0.025) (0.196) (0.034) (0.026)

γ2 < Rain < γ3 -0.048** 0.101** 0.084***

(0.023) (0.044) (0.029)

Rain > γ3

Constant 0.052*** -0.13 0.048** 0.069*** 0.065

(0.019) (0.098) (0.024) (0.021) (0.045)

District fixed effects X X X X X

Year fixed effects X X X X X

District-specific trends

Controls

Grid 300 300 300 300

Observations 12100 1012 5412 4884 792

N districts 275 23 123 111 18

R-squared 0.131 0.27 0.174 0.201 0.108

*, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. Numbers in parentheses represent

clustered standard errors at the district level. All numbers in the table were rounded to 3 decimal places. This specifica-

tions uses a Balanced sample, which is a requirement for the threshold regression. The dependent variable is de-trended

cereal yield where a district-specific quadratic trend was used to de-trend the variable.
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Table 6.3: Summary of coefficients (all specifications)

Sample β T1 β T2 β T3 β

Full sample -0.606*** 0.492 -0.309*** 0.743 -0.048**

%∆ y for 0.01 ↑ in RTI 1 -0.454 -0.266 -0.047

Agro-ecological zones

Arid -0.599*** 0.791 0.206

%∆ y for 0.01 ↑ in RTI -0.451 0.229

Semi-arid -0.521*** 0.587 -0.136*** 0.891 0.101**

%∆ y for 0.01 ↑ in RTI -0.406 -0.127 0.106

Sub-humid -0.224*** 0.763 -0.060** 0.939 0.084***

%∆ y for 0.01 ↑ in RTI -0.201 -0.058 0.088

Humid -0.194*** N.A.

%∆ y for 0.01 ↑ in RTI -0.176

Crops

Barley -0.136*** N.A.

%∆ y for 0.01 ↑ in RTI -0.127

Maize -0.359*** 0.576 0.088** 0.874 0.269***

%∆ y for 0.01 ↑ in RTI -0.302 0.092 0.309

Millet -0.929*** 0.482 -0.430*** 0.62 0.01

%∆ y for 0.01 ↑ in RTI -0.605 -0.349 0.010

Rice -0.614*** 0.588 -0.291*** 0.882 0.008

%∆ y for 0.01 ↑ in RTI -0.459 -0.252 0.008

Sorghum -0.514*** 0.587 0.009 0.819 0.303***

%∆ y for 0.01 ↑ in RTI -0.402 0.009 0.354

Wheat -0.247*** 0.798 -0.112*** 0.955 0.018

%∆ y for 0.01 ↑ in RTI -0.219 -0.106 0.018

*, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. Numbers in bold denote

the estimated threshold values of proportion of rain against LTAR. T1, T2 and T3 denote threshold 1, 2 and 3,

respectively. Numbers in italics represent the predicted effect of a 0.01 increase in the RTI. Since the y variable

is de-trended, the coefficients represent impacts in terms of deviations from trend. For example, for a coefficient

of 0.136 means that, for a given event in a semi-arid area where the proportion of rain was between 58.7-89.1%

of LTAR, a 0.01 increase in the index leads to a negative deviation of yield from trend of 0.127 percent.

1 marginal effects were calculated using the formula 100 ∗ (ebeta − 1) which gives us the marginal effect for a one

unit increase the RTI. However, since a one unit increase in the RTI does not make much sense (it is the maximum

value), we divide the result from the formula by 100.
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Agro-ecological zone

Results by agro-ecological zone can also be seen in Table 6.2. We note that thresholds and

impacts vary substantially. In arid areas, for values of rainfall above 79% of LTAR, an

increase in our index (i.e. less water and/or higher temperature) leads to a statistically

insignificant increase in cereal productivity, suggesting that moderate, rather than extreme

excessive rainfall is preferable. Below 79% of LTAR, however, increases in our index lead

to large losses in productivity, with a 0.01 increase in the index associated with a negative

deviation from trend of -0.599%. We note that negative significant impacts of increases in

the index (i.e. decreases in rainfall/increases in temperature) appear to start at around 79%

of LTAR. The coefficient of the index is larger than in the full sample and the associated

impacts are larger in magnitude. A potential reason for a lower threshold than that found in

the full sample may be the possibility of adaptation, notably through crop choice.

In semi-arid areas, for levels of rainfall above 89% of the LTAR, an increase in the index is

found to have a positive marginal impact (+0.106% from trend for a 0.01 increase in index),

which suggests higher yields at more moderate levels of rainfall (closer to the LTAR). The

threshold, at which impacts become negative, is higher than in arid areas (below 89% of

LTAR) but between 89%-59% of LTAR, impacts are high (0.127%), though smaller than

for arid areas for comparable levels of rainfall deficiency. Below 59% of LTAR, the marginal

effects of decreased rainfall/increased temperature are likely to have extremely severe impacts

on agricultural productivity (-0.406% from trend).

In sub-humid, our identified thresholds tend to be higher. The threshold in the former is

estimated at a similar level to semi-arid areas (94% of LTAR). We find a positive coefficient

for the index for levels above 94% of LTAR. This suggests higher yields at normal rainfall

compared to extreme positive rainfall, although no flood threshold is identified. Negative

impacts from the increase in our index start below 94% of LTAR and remain moderate

(-0.06% from trend for a 0.01 increase in the index) until rainfall below 76% of LTAR (-

0.224%). We note that the impacts tend to be substantially worse than for similar levels of

rainfall deficiencies in more arid areas.

Finally, in humid areas, the existence of a threshold is not supported at the conventional
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statistical levels. As a result, the coefficient shown refers to a standard fixed effects regression.

The coefficient implies that the marginal effects tend to be quite small (-0.176% from trend for

a 0.01 increase in the index) for large negative deviations in rainfall compared with other agro-

ecological zones, although at low deviations from LTAR impacts are high. One explanation

could be the fact that these areas are less likely to be irrigated and tend to cultivate more

water-intensive crops. As a result, small deviations in rainfall may have a negative impact

on their productivity. Nevertheless, as these areas typically have abundant rainfall, this also

means that crop water stress is unlikely to be as severe as in more arid areas.

Crops

Different crops are known for different water requirements and resistance to water stress. The

results by crop are presented in Table 6.4.
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Table 6.4: Main results - Crops

Barley Maize Millet Rice Sorghum Wheat

Threshold test - P-value

Single 0.837 0 0 0 0 0

Double 0.348 0 0 0 0 0.001

Triple 0.719 0.545 0.575 0.448 0.59 0.434

Threshold Location

γ1 0.576 0.482 0.588 0.587 0.798

[0.566,0.583] [0.466,0.502] [0.577,0.618] [0.580,0.598] [0.787,0.800]

γ2 0.874 0.62 0.882 0.819 0.955

[0.855,0.876] [0.616,0.625] [0.877,0.884] [0.814,0.821] [0.951,0.958]

γ3

β - Rainfall-Temperature Index

Rain< γ1 -0.136*** -0.359*** -0.929*** -0.614*** -0.514*** -0.247***

(0.041) (0.070) (0.130) (0.066) (0.076) (0.029)

γ1 < Rain < γ2 0.088** -0.430*** -0.291*** 0.009 -0.112***

(0.041) (0.070) (0.025) (0.044) (0.033)

γ2 < Rain < γ3 0.269*** 0.01 0.008 0.303*** 0.018

(0.053) (0.038) (0.032) (0.056) (0.040)

Rain > γ3

Constant 0.034 -0.167*** -0.024 0.150*** -0.045 0.186***

(0.032) (0.039) (0.034) (0.020) (0.047) (0.019)

District fixed effects X X X X X X

Year fixed effects X X X X X X

District-specific trends

Controls

Grid 300 300 300 300 300

Observations 3432 7656 7172 10560 6908 8756

N districts 78 175 163 240 157 199

R-squared 0.16 0.106 0.144 0.165 0.106 0.088

*, **, *** denote statistical significance at the 10%, 5% and 1% level, respectively. Numbers in parentheses represent clustered standard

errors at the district level. All numbers in the table were rounded to 3 decimal places. This specifications uses a Balanced sample,

which is a requirement for the threshold regression. The dependent variable is de-trended yield for each individual cereal, where a

district-specific quadratic trend was used to de-trend the variable.

Our results suggest that rice is the most sensitive crop to negative rainfall deviations. Our

model supports the existence of two thresholds (both below the LTAR), and suggests an in-

significant positive coefficient for our index for levels of rainfall above 88% of LTAR (+0.008%
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from trend for a 0.01 increase in the index). However, even at small deviations from LTAR

(below 88% of LTAR), the index exhibits a large negative coefficient (-0.252% from trend).

This coefficient becomes substantially more negative at levels of rainfall below 59% of LTAR,

where impacts become very large (-0.459% from trend).

For wheat, the estimated thresholds are similar to those of rice (95% and 80% of LTAR).

Impacts on wheat are a lot smaller for similar rainfall deficiencies with estimated impacts

at levels of rainfall below 95% and 80% LTAR estimated at -0.106% and -0.219% for a 0.01

increase in the index, respectively. There are two potential explanations for this. Looking

at Figures 1 and 2, we can see that rice tends to be grown mostly in humid and sub-humid

areas, whereas wheat tends to be more concentrated in semi-arid areas. Such areas have

very different agro-ecological conditions. Also, the proportion of area irrigated differs, which

corroborates with Singh et al. (2011), who document that a much higher proportion of wheat

is cultivated under irrigation in comparison to rice.

In the case of barley, the identified thresholds are not statistically significant and thus we

estimate the regression using a standard fixed effects model. The estimated coefficient suggests

an impact of moderate magnitude (-0.127% from trend for a 0.01 increase in the index).

The remaining crops (maize, sorghum and millet) are often considered to be more drought-

resistant than rice, wheat and barley and this is corroborated by our results. For maize, we

estimate two thresholds, both below the LTAR. These suggest that negative impacts are felt at

very large negative deviations from the LTAR (below 58% of LTAR). The estimated impacts

are very large (a deviation from trend of -0.302% is estimated for a 0.01 increase in the index).

For both sorghum and millet, we also find two thresholds, all below the LTAR. The results for

millet suggest that for levels of rainfall below 62% of LTAR, there are large negative impacts

(-0.349% for a 0.01 increase in the index), which become extremely large for levels of rainfall

below 48% of LTAR (-0.605% for a 0.01 increase in the index). Finally, for sorghum we find

a positive coefficient above 82% of LTAR and insignificant impacts between 82% and 59% of

LTAR. However, below 59% we find very large impacts (-0.402%). It is perhaps surprising

that two of the crops widely considered as being the most drought-resistant exhibit the largest

impacts of decreases in rainfall at low levels of rainfall. A possible explanation is that, while

these crops are more drought-resistant and therefore have a lower threshold, they are mainly
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grown under rain-fed conditions and hence, may be more vulnerable to increasingly erratic

patterns of rainfall.

Further Results: Why so few excess rain thresholds?

The vast majority of our estimated thresholds are for levels of rainfall below average. There

are at least three potential explanations for why this could be the case, even if there are

large, significant impacts of excessive rainfall. First, protracted periods of low rainfall may

have a more pernicious effect on agricultural productivity. Singh et al. (2011), for instance,

find that only two out of eight “flood” years (defined as mean + one standard deviation) led

to an aggregate loss in grain production in India. Secondly, Collier and Webb (2012) argue

that floods tend to be more localized in space and time and as such we may be unable to

capture these because the data are collected at the district level, and rainfall is aggregated

over a whole year. Finally, our method requires us to trim some portions of the data at each

extremity of the threshold variable (proportion of rainfall). Aufhammer et al. (2012) find

negative impacts for rainfall in excess of the 95th percentile. Perhaps, excess rainfall only has

very negative effects for very extreme rainfall deviations. If this deviation is very close to the

last percentiles, our method may not capture this since the threshold may only be present in

the trimmed portion.

As a robustness check, we run a regression of yield with dummies highlighting different per-

centiles of rainfall15. This approach is complementary to the one used in the previous sub-

section as it shows at which points impacts are likely to become significant rather than at

what proportion of rainfall the marginal effects are likely to change. We create dummies for

every second percentile of rainfall against the LTAR, where dummy is compared to the base-

line category, set at LTAR +/-5%. The main results from this approach are summarized in

Figures 6.4-6.6 (by agro-ecological zone) and 6.7-6.9 (by crop). For the full sample [figure 6.4,

panel (a)], we find no effect of consistent negative significant effects of excessive rainfall on

cereal productivity. However, for semi-arid areas [Figure 6.5, panel (b)] and, to some extent,

for semi-humid areas [Figure 6.6, panel (a)] we find significant, but relatively modest negative

15One of the reasons we do not adopt this method as the main method is that it is extremely difficult
to incorporate both temperature and rainfall non-parametrically in this way, due to the huge number of
interactions required. While there also seems to be no clear theory regarding how excess rainfall interacts with
temperature, this is a useful method for the purpose of understanding the impacts from excess rainfall.
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effects of excess rainfall but only for very extreme events. These effects occur beyond the

89th percentile in semi-arid areas, becoming large above the 99th percentile16. For sub-humid

areas, the negative effects are only found to be significant for years where rainfall exceeds the

93rd and the 99th percentile of rainfall17. We find consistent positive impacts for high levels

of rainfall in arid areas, which suggests that optimal rainfall ranges may be above the LTAR.

In humid areas, the estimation is noisier and it is hard to discern any pattern. This could be

due to sample size.

Estimates by crop also highlight negative effects of excessive rainfall for maize, sorghum and,

to a lesser extent, millet. The effects on maize are very large (comparable or even higher than

for drought) and start beyond the 81st percentile (123% of LTAR). For sorghum negative

impacts from excessive rainfall also begin around the 81st percentile and become significantly

larger beyond the 95th percentile. Finally, in the case of millet, impacts are smaller and start

later, around the 95th percentile.

Figure 6.4: Non-Parametric results (rainfall dummies) full sample

(a) Full sample

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the

maximum proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the

x-axis p denotes the percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a

proportion of the LTAR) between the fifth and the seventh percentile.

16In semi-arid areas the 89th percentile corresponds roughly to 139% of LTAR.
17This (93rd percentile) corresponds to rainfall in excess of 142% of LTAR.
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Figure 6.5: Non-Parametric results (rainfall dummies) by agro-ecological zone - Arid areas

(a) Arid areas

(b) Semi-arid areas

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the maximum

proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the x-axis p denotes the

percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a proportion of the LTAR) between

the fifth and the seventh percentile. 177



Figure 6.6: Non-Parametric results (rainfall dummies) by agro-ecological zone - humid areas

(a) Sub-humid areas

(b) Humid areas

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the maximum

proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the x-axis p denotes the

percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a proportion of the LTAR) between

the fifth and the seventh percentile. 178



Figure 6.7: Non-Parametric results (rainfall dummies) by crop - barley and maize

(a) Barley

(b) Maize

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the maximum

proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the x-axis p denotes the

percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a proportion of the LTAR) between

the fifth and the seventh percentile. 179



Figure 6.8: Non-Parametric results (rainfall dummies) by crop - millet and rice

(a) Millet

(b) Rice

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the maximum

proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the x-axis p denotes the

percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a proportion of the LTAR) between

the fifth and the seventh percentile. 180



Figure 6.9: Non-Parametric results (rainfall dummies) by crop - sorghum and wheat

(a) Sorghum

(b) Wheat

Confidence bands indicate 95% confidence intervals. The numbers above the scatter points indicate the maximum

proportion of rain (vs. the LTAR) included in the estimated dummy variable. Finally, in the x-axis p denotes the

percentiles of rainfall. As a result, p5-p7 should be interpreted as rainfall (as a proportion of the LTAR) between

the fifth and the seventh percentile. 181



In sum, our results suggest that there are significant negative effects of excess rainfall on

crop productivity but that these are not picked up by the threshold model. We argue that

this is likely due to the trimming. Most impacts occur at very extreme positive deviations

in rainfall and, as such, this threshold is either 1) likely not even to be considered, 2) the

estimation is likely to be noisy given the small sample size on the positive side (excess rain)

of the threshold. In some cases (e.g. maize) the threshold above the LTAR is identified, but

it is not statistically significant.

In addition to this, this estimation also allows us to confer whether our threshold estimation

results are plausible. For the full sample and the agro-ecological zones, the thresholds seem

very plausible and consistent with the non-parametric analysis and the same applies to the

crop estimates for rice, wheat and maize. However, in the case of millet and sorghum we

notice that there are negative impacts before the thresholds we estimated. In addition to

this, it is important to remember that the threshold regression estimates the points at which

there are likely to be changes in the coefficients and the identified thresholds for both millet

and sorghum often occur at the points where we notice an abrupt increase in impacts. In

addition, the threshold regression identified a third threshold for millet (at 79% of LTAR)

and for sorghum (at 72% of LTAR). However, these were not statistically significant.

Robustness checks

We analysed the sensitivity of our results to a number of assumptions and a number of speci-

fications. Our preferred specification is a reduced-form function where controls are excluded.

This is arguably the most common type of specification in the climate literature. However,

given that our method requires a balanced panel, we also lose a number of districts. In the

case of the full sample, we lose approximately 73 (out of 275) districts by including only 4

controls. To ensure that our results are not affected by the omission of control variables,

we include controls in Tables 6A.3 and 6A.4 (see Appendix). In addition to this, we also

tested the robustness of our results to: 1) an alternative dependent variable (de-meaned,

rather than de-trended yield) and results can be found in tables 6A.5 and 6A.6; 2) alternative

growing seasons (Annual and May-December, Tables 6A.7-6A.10); and 3) alternative index

(additive relationship) (tables 6A.11 and 6A.12). In most cases, the robustness checks provide
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qualitative results that are similar to those of the main results.

6.4.2 Impacts of drought over time

Shape of the impacts over time

We begin by estimating the rolling regression for the full sample (Figure 6.10) and the coeffi-

cient plot for the 9-year window reveals what appears to be a non-linear pattern. According to

the rolling regression estimates, impacts of drought became smaller between the late seventies

and the late nineties, following which there seems to be a reversal in the trend. The non-linear

pattern is confirmed when we estimate our preferred parametric model (as suggested by the

F-test in Table 6A.13) and a cubic trend is preferred using the test of joint significance and

the shape reproduced by the parametric model is not very different from that of the rolling

regression.

Figure 6.10: Time results - Full sample

(a) Full sample - rolling regression

(9-year window)

(b) Full sample - parametric fit

(cubic interaction)

Rollling regressions with different windows are shown in Appendix A. In order to choose the para-

metric fit we ran three regressions (linear, quadratic and cubic interaction between the RTI and

the time trend). The parametric fit chosen was the specification for which the joint significance

test had the lowest p-value. The F- and p-values can be seen in Table 6A.13 in Appendix A. In

some occasions, the difference in p-values was very small between specifications. In these cases we

report the preferred specification and include the figures of the other specifications in the Appendix.

Finally, in other cases, none of the F-tests was significant. In these cases, we only report the rolling

regressions and the coefficient tables can be found in the Appendix.
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A similar non-linear pattern is also found for semi-arid and sub-humid areas (Figures 6.11

and 6.12) and for both a cubic trend is preferred. For humid areas and arid areas, however,

either there is no support for a trend (arid) or a linear trend is preferred (humid), though it

is unclear whether this is due to the small sample sizes of these sub-samples. Most strikingly,

we observe a sharp decline in drought impacts starting from the eighties and then a sharp

increase in the impacts starting from the late nineties/early 2000s.

Figure 6.11: Time results - arid and semi-arid areas

(a) Arid areas - rolling regression

(9-year window)

(b) Semi-arid areas - rolling regression

(9-year window)

(c) Semi-arid areas - parametric fit

(cubic interaction)

Rollling regressions with different windows are shown in Appendix A. In order to choose the parametric fit

we ran three regressions (linear, quadratic and cubic interaction between the RTI and the time trend). The

parametric fit chosen was the specification for which the joint significance test had the lowest p-value. The

F- and p-values can be seen in Table 6A.13 in Appendix A. In some occasions, the difference in p-values

was very small between specifications. In these cases we report the preferred specification and include

the figures of the other specifications in the Appendix. Finally, in other cases, none of the F-tests was

significant. In these cases, we only report the rolling regressions and the coefficient tables can be found in

the Appendix. This is why the parametric fit for arid areas is not reported.
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Figure 6.12: Time results - sub-humid and humid areas

(a) Sub-humid areas - rolling regression

(9-year window)

(b) Sub-humid areas - parametric fit

(cubic interaction)

(c) Humid areas - rolling regression

(9-year window)

(c) Semi-arid areas - parametric fit

(linear interaction)

Rollling regressions with different windows are shown in Appendix A. In order to choose the para-

metric fit we ran three regressions (linear, quadratic and cubic interaction between the RTI and

the time trend). The parametric fit chosen was the specification for which the joint significance

test had the lowest p-value. The F- and p-values can be seen in Table 6A.13 in Appendix A. In

some occasions, the difference in p-values was very small between specifications. In these cases we

report the preferred specification and include the figures of the other specifications in the Appendix.

Finally, in other cases, none of the F-tests was significant. In these cases, we only report the rolling

regressions and the coefficient tables can be found in the Appendix.

Finally, the results by crop (Figures 6.13 and 6.14) also suggest, for the most part, a non-linear

pattern and the sharp drop after the 2000s is noticeable in most crops, though slightly less

pronounced for rice and wheat. However, we also notice sharp differences across the shapes of

the impacts over time. For instance, drought impacts of rice and wheat tend to decrease in a

smoother way over time. Conversely, in the case of maize, millet and sorghum, the coefficient
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plots of the rolling-regression coefficients suggest a much more volatile pattern.

Figure 6.13: Time results - barley, rice and wheat

(a) Barley - rolling regression

(9-year window)

(b) Barley - parametric fit

(quadratic interaction)

(c) Rice - rolling regression

(9-year window)

(d) Rice - parametric fit

(linear interaction)

(e) Wheat - rolling regression

(9-year window)

(f) Wheat - parametric fit

(cubic interaction)

Rollling regressions with different windows are shown in Appendix A. In order to choose the parametric fit we ran

three regressions (linear, quadratic and cubic interaction between the RTI and the time trend). The parametric

fit chosen was the specification for which the joint significance test had the lowest p-value. The F- and p-values

can be seen in Table 6A.14 in Appendix A. In some occasions, the difference in p-values was very small between

specifications. In these cases we report the preferred specification and include the figures of the other specifications

in the Appendix. Finally, in other cases, none of the F-tests was significant. In these cases, we only report the

rolling regressions and the coefficient tables can be found in the Appendix.
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Figure 6.14: Time results - maize, millet and sorghum

(a) Millet - rolling regression

(9-year window)

(b) Maize - rolling regression

(9-year window)

(c) Maize - parametric fit

(Linear interaction)

(e) Sorghum - rolling regression

(9-year window)

(f) Sorghum - parametric fit

(cubic interaction)

Rollling regressions with different windows are shown in Appendix A. In order to choose the parametric fit we ran

three regressions (linear, quadratic and cubic interaction between the RTI and the time trend). The parametric

fit chosen was the specification for which the joint significance test had the lowest p-value. The F- and p-values

can be seen in Table 6A.14 in Appendix A. In some occasions, the difference in p-values was very small between

specifications. In these cases we report the preferred specification and include the figures of the other specifications

in the Appendix. Finally, in other cases, none of the F-tests was significant. In these cases, we only report the

rolling regressions and the coefficient tables can be found in the Appendix.
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Discussion of the shape of the drought impacts over time

Three results emerge from our analysis of the impacts over time. First, the shape is non-linear

in the majority of cases. Second, in most cases, we witness a decrease in the impacts until

the late nineties and a reversal of the trend since. Finally, there are differences in terms of

the geographical pattern and crops.

It is plausible that the decreases in impacts until the late nineties may have come as a result

of the expansion of irrigated area, diffusion of improved varieties and increased use of inputs,

as shown earlier (figure 6.3). However, the increase in impacts starting from the early 2000s

is more puzzling. A plausible explanation for this could be attributed, at least partly, to a

change in the pattern of rainfall. For instance, Shah et al. 2009 explain that in 2002/3 one of

the reasons why the impacts of the drought were so high was the fact that both the 2000/1

and 2001/2 seasons had been characterized by slightly deficient rainfall. As a result, in 2002/3

when there was the drought, the aquifers had not had time to replenish, leading to dramatic

impacts. This pattern, however, seems to have become more common. We run a local

polynomial regression on the percentage of rainfall and the lagged precipitation received by

drought-affected districts18 and we notice that, starting from the late nineties there seems to

be a drop in the lagged rainfall received by drought affected districts compared with previous

periods. As shown in figure 6.15, for much of the seventies and nineties, the proportion of

rainfall in the year preceding a drought was above normal and this trend seems to have been

reversed in the early 2000s. We also note that this pattern is most stark in semi-arid (figure

6.16, compared to sub-humid areas (figure 6.17), which could help explain why we notice a

sharper increase in the impacts in semi-arid areas.

18i.e. the proportion of precipitation against the LTAR received the year before the drought by drought-
affected districts is smaller.
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Figure 6.15: Rainfall and lagged rainfall for drought affected districts

(a) Full sample - bw=1 (b) Full sample - bw=2

Figure 6.16: Rainfall and lagged rainfall for drought affected districts in semi-arid areas

(a) Semi-arid - bw=1 (b) Semi-arid - bw=2
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Figure 6.17: Rainfall and lagged rainfall for drought affected districts in sub-humid areas

(a) Sub-humid - bw=1 (b) Sub-humi - bw=2

In terms of the impacts by crop, in addition to the pattern in lagged rainfall differences in

impacts could be partially explained by the differential in terms of technology adoption. We

notice that, in the case of rice and wheat, where increases in irrigation and in the adoption of

improved varieties from the 1960s to the 1990s were highest, the decrease in drought impacts

was more pronounced in this period, compared to crops which are less often grown under

irrigated conditions (sorghum, millet and maize). Since the beginning of the millennium, one

plausible explanation as to why the drought coefficient for rice was less severely affected could

lie in the fact that the decrease in lagged rainfall seems to have been less severe in sub-humid

areas, where most of the rice-producing districts lie.

6.5 Conclusion

We argue that rainfall thresholds, used to define extreme rainfall events, should be intrinsi-

cally tied to tangible outcomes such as agricultural productivity. This is necessary in order

to characterize the level of deviations from average rainfall levels beyond which additional

deviations directly translate into significant impacts. Thus, we identified thresholds beyond

which excess rainfall or rainfall deficiency begin to have negative impacts on cereal produc-

tivity. We then estimated the evolution of impacts over time across agro-ecological zones and

crops.
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Overall, we find five results of interest. First, for India as a whole, we find that rainfall

deficiency starts having negative impacts on cereal productivity above the level used by the

government for triggering its response to a drought event.

Second, there is very large heterogeneity in the levels of rainfall at which we identify these

thresholds by agro-ecological zone. Broadly, on average, impacts become negative at smaller

deviations from LTAR in humid and sub-humid areas, although impacts tend to be smaller

in magnitude. In more arid areas, on the other hand, thresholds occur later (potentially due

to adaptation), but impacts are more severe.

Third, we corroborate the prevailing consensus regarding the belief that crops such as millet,

sorghum and maize tend to be more tolerant to rainfall deviations. However, we also find

that at very large levels of rainfall deficiency they exhibit very large impacts compared to,

for instance, wheat. We argue that this is likely to be due to the fact that such crops are

almost entirely rainfed and as such, beyond a certain point their impacts are large, despite

their tolerance for water stress.

Fourth, our method overwhelmingly finds thresholds below the LTAR, although this does

not mean that extreme excess rainfall events are unimportant. Using an alternative method,

which does not account for temperature, we find such events do indeed have negative impacts

in semi-arid and sub-humid areas at very extreme levels of excess rainfall, generally beyond the

95th percentile, although impacts are typically smaller. A similar pattern applies for the crop

analysis, where we also find significant negative impacts for sorghum and maize for excessive

rainfall, although these occur earlier than for the agro-ecological estimates. However, since

these events, for the most part, occur at very extreme values of the threshold regression, they

are unlikely to be detected by the threshold approach.

Finally, we also analyse the evolution of impacts over time. Overall, we find that, while

impacts decreased up until the late nineties, there seems to have been a reversal of the

pattern since the beginning of the millennium. This result seems quite consistent across crops

and agro-ecological zones, although crops such as rice have a smaller increase in impacts since

the beginning of the millennium. The decrease in impacts until the late nineties is likely to be

attributable to factors such as the increase in irrigation and adoption of improved varieties.

The reversal could be explained by a noticeable change in weather patterns, whereby we
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notice that drought affected districts tend to have lower precipitation in the year preceding

the drought and this pattern is particularly stark since the beginning of the millennium.

Our results highlight two aspects. First, they indicate that for a spatial unit the size of India,

a unique threshold of rainfall deficiency and/or excess does not find any support in the data

in terms of its impacts on agricultural productivity. These patterns of agro-ecological vulner-

ability together with changing patterns of precipitation and temperature at the regional scale

are likely to be important for researchers examining the potential distributional impacts of

climate change scenarios. Since we find that different crops have radically different tolerances

to different thresholds, crop choice may have important implications in terms of adaptation to

climate change. Our results suggest that the impacts of rainfall deficiency and excess rainfall

are very asymmetric. With the exception of arid areas, our results support optimal ranges of

rainfall close to the LTAR. They also suggest that while relatively small negative deviations

may have large effects on productivity, only very large positive deviations in rainfall deviations

have significant and large impacts on crop productivity. Second, they also indicate that while

impacts of drought on yields have become smaller, their evolution has been highly non-linear.

This research has important implications with respect to climate change projections. We

show that different spatial distribution of rainfall will have very different effects. Marginal

impacts are largest for arid and semi-arid areas, when there are very low levels of rainfall. As

such, if climate change drives rainfall patterns such that a large number of such events occur

in arid areas, effects will be large. However, if effects are mainly felt in humid areas, overall,

the effects are likely to be a lot smaller.
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Chapter 7

Conclusion - Summary of findings,

implications and avenues for future

research

Chapter 2 used a different methodology to compute the efficiency scores of farmers in Ethiopia.

In doing so, it showed that relaxing the assumption of a single frontier leads to higher efficiency

scores. As a result, this suggests that part of the high inefficiencies typically found in the

literature may be a result of the methods used to compute them. This is not innocuous, since

it implies that simply tackling agricultural inefficiencies is unlikely to be enough to deliver

the desired increases in cereal production. Moreover, given the different elasticities estimated

for different groups, using this method also allows recognizes the diverse needs of different

farmers.

However, although the latent-class model allows for different groups of farmers to be compared

to different frontiers, it is not devoid of problems. Chief among these, it introduces the

issue of understanding what factors define a class of farmers. In the paper, the aim was

to divide classes based on inputs to production. However, while I argue that this improves

on conventional approaches which assume a unique frontier, the variables I propose for the

latent-class allocation are not the only possible choice. Similarly, the estimation in Chapter

2, in line with the literature, imposes fixed classes over time. This implies that households

cannot transition from one class to another during the sample period. In a long panel such
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as the one used in chapter 2, it could be argued that allowing households to switch classes is

plausible.

As a result, there are at least two fruitful avenues for research that stem from Chapter 2. The

first is to assess whether the result found in this paper is confined to this dataset, or whether

it emerges in other settings. Second, further research is needed with regards to additional

variables that would improve the class allocation of farmers.

Chapter 3 revisited the link between cereal diversity and production. In line with previous

literature on the topic, we initially find a positive correlation between cereal diversity and

cereal production. However, this relation becomes a lot weaker when households cultivating a

low-productivity crop (teff) are removed from the sample. This suggests that, in our sample,

yield differentials across cereals could partly explain the positive relationship found between

production and diversity. This finding has far-reaching policy implications. A large effect

of cereal diversity on cereal production would suggest that more diverse cereal production

systems could potentially lead to large increases in food production. Our results, however,

highlight that this may not be the case.

Nevertheless, our analysis suffers from two important limitations, which imply that we are

not able to convincingly rule out whether a positive correlation exists or not. First, while

we attempt to limit the concerns surrounding endogeneity (by using household fixed effects

and village-year fixed effects), without a convincing instrument, we cannot rule out the issue

of endogeneity. Secondly, our finding is plausible in our dataset since we focus on different

cereals. However, some studies within the crop diversity literature have shown a similar effect

to exist, even in the case of intra-cereal diversity (for different varieties of the same cereal).

Unfortunately, we do not know enough about the context or the different types of a given

cereal (typically wheat) in those samples to infer whether the channel we suggest plausibly

explains those results as well. It is possible that difference in yields for different subspecies of

a crop could explain that relationship.

Two potential paths emerge for future research. First, it would be a big step forward within

the crop-diversity literature if a plausible instrument was found for crop diversity, since the

issue of endogeneity would be resolved. Second, the literature has tended to have a strong

focus on quantifying the effect of crop diversity. There has been less research on attempting
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to disentangle where the effect comes from (sampling, complementarity, facilitation or yield

differential). Understanding the drivers of the impacts is important as different sources of the

impact could have very different policy implications.

Chapter 4 estimates the impact of adopting SWC technologies on adult and child labour and

finds that there is a consistently large and significant impact of adoption on adult labour. A

similar impact is found for child labour, although it is only statistically significant in some

specifications?.

There are three implications that stem from these results. First, at the macro-level, these

estimates of labour impacts can be useful for CGE modellers who focus on the general equi-

librium effects of the adoption of SWC technologies. After all, agriculture still accounts for

approximately 75% of the labour force in Ethiopia. As a result, widespread promotion of

labour-intensive technologies can have non-negligible general equilibrium effects. Secondly,

the suggested increases in child labour is also something that policy-makers can anticipate and

take into consideration when promoting such technologies. Governments could, for example,

promote these technologies while, at the same time, increasing the incentives for alternative

uses of childrens time (e.g. Conditional Cash Transfers where school attendance is a condi-

tion). Third, these results should serve as a warning for practitioners estimating impacts on

production using cross-sectional data and methods that assume no change in inputs resulting

from adoption.

There are two main implications for future research. First, this paper highlights the need to

move towards panel data and to methods that allow researchers to control for these changes

in inputs (e.g. the Semi-Parametric DID proposed by Abadie) when estimating impacts on

production. Second, it highlights the need for analysing impacts of technology adoption on

outcomes other than production and productivity.

Chapter 5 first reviews the suitability of the drought index proposed by Babcock and Yu

(2010). We argue that the index these authors propose is too narrow in its coverage of dry

events. Babcock and Yu (2010) define droughts as events with below-average precipitation

and above-average temperature (“hot droughts). We extend and modify their index to account

for events with below-average precipitation and below-average temperature (“cold droughts).

Our opinion is that these events should not be dismissed a priori and their importance should
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be tested. We find that cold droughts have a large and statistically significant impact on

production and that their exclusion leads to an underestimation of drought impacts.

One implication that emerges from this paper is that it is important to use a drought index

that encompasses all potential dry events. In principle, indices that ignore cold droughts

should be avoided without prior testing. However, if for some reason only “hot droughts are

of interest in a given setting, a dummy variable should be included to derive more accurate

marginal effects. We also argue that indices that use arbitrary precipitation thresholds are

likely to be inaccurate (this is further explored in chapter 6) as they do not incorporate

temperature and may not capture negative impacts prior to that threshold.

Chapter 6 focuses on the impact of extreme rainfall events attempts to answer two questions.

First, it identifies thresholds of rainfall parametrically. Then, we complement the threshold

results by estimating impacts non-parametrically, using rainfall dummies for different per-

centiles. Second, focusing on events of rainfall deficiency, it looks at how the impacts of

drought have evolved over time in India.

A number of results emerge from this analysis. First, we identify empirically determined

ranges of rainfall for which the marginal impacts of drought are different. We notice that

these thresholds differ substantially by agro-ecological zone and crop. Typically, we find

that, in more arid areas and for more drought-resistant crops (millet, sorghum and maize),

thresholds occur at lower levels of rainfall, but that beyond these thresholds the impacts

of drought are very large. This means that impacts are small at low negative deviations

from normal rainfall. However, they become very large beyond certain thresholds of rainfall.

Second, using the non-parametric analysis, we find that there are also cases where excessive

positive rainfall also has a negative impact on productivity, though typically the impacts are

smaller and occur only at very extreme levels of rainfall (generally beyond the 90th percentile

of rainfall). Finally, with respect to the evolution of drought impacts over time, we find a

decrease in drought impacts until the late 1990s and a reversal of this trend thereafter. We

postulate that this may be due to a change in the patterns of rainfall in drought-affected

districts since the late 1990s.

This paper also suffers from a number of limitations. First, the threshold model is useful

to detect where the marginal impacts of the RTI change. However, this may not necessarily
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coincide with the levels of rainfall at which impacts become negative. Second, the threshold

model used in this paper is unlikely to identify thresholds that are very close to the end of

the distribution of rainfall as the estimated coefficients are likely to be noisy. As a result,

we use a complementary method that models the impacts of precipitation using a series of

dummy variables. The latter, however, does not incorporate temperature in the estimation.

A third weakness of the threshold model is that it is not able to estimate the evolution of

the threshold over time though it is not clear if this would be desirable. It is plausible that,

as a result of technological change, negative thresholds now occur later. However, we would

be unable to pinpoint the source of the change in the threshold, whether it is a result of

technological change or whether it stems from a change in the relative importance of rainfall

and temperature over time. In the time results, rolling regressions can be criticized on the

grounds that they capture a mixture of the true coefficient and noise.

There are four policy implications that emerge from this paper. First, the paper highlights

the dangers of using arbitrarily defined thresholds. We often find significant negative im-

pacts above those thresholds. Second, the paper highlights the danger of treating India as

a homogeneous unit. India is a very diverse country and results for the full sample cannot

necessarily be extrapolated for every area and/or every crop. Third, and most importantly,

the threshold and non-parametric estimates could allow policy-makers to dose their responses

according to the severity of the rainfall deficiency rather than allowing an arbitrary threshold

to trigger a binary response system. Fourth, our paper shows that India is not drought-proof

and, although there is some evidence that impacts have decreased over time, this positive

trend has been reversed of late.

These results point to at least three areas for future research. First, deriving a methodology

that would allow researchers to analyse the evolution of thresholds over time, while accounting

for composition effects of the drought index, would be interesting. Second, it would also be

interesting to understand whether the reversal in the trends seen in the rolling regressions has

continued since 2009 or whether it has reversed once again. The latter is more plausible as it

is likely that the increase in impacts after the millennium is driven by the years 1999-2006.

Finally, it would be interesting to better investigate the causes leading to the increases in

drought impacts since the beginning of the millennium, as we are not able to prove beyond

dispute that the change in rainfall patterns for drought-affected districts is the cause of this.
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