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ABSTRACT 

This thesis investigates the economic implications of climate change uncertainties. It 
seeks to contribute to the existing literature by exploring various aspects of how uncertainty can 
and should be integrated in economic assessments of climate impacts and what this entails for 
policy-making.  

For several reasons, including analytical tractability and the difficulties of accommodating 
uncertainty in individual and social decision-making, the full scale of climate change uncertainties 
is often artificially reduced in economic assessments of climate change, e.g. through the use of 
best estimates, averages or mid-point scenarios. However, the impacts of future climate change 
on humankind are highly uncertain and require full investigation. The approach taken in this 
thesis has therefore been to ask new questions related to the economic implications of climate 
change uncertainties and to address each problem using innovative methods, which allow a more 
accurate characterization of the uncertainties at stake and of their potential interactions. 

This thesis comprises four standalone chapters (Chapter 2 to 5). The first chapter 
(Chapter 2) investigates how uncertainty about the benefits of climate mitigation, about future 
economic growth and about the relationship between these uncertainties affects the rate at which 
we should discount the benefits of reducing greenhouse gas emissions today. The second chapter 
(Chapter 3) examines the impact of including the permafrost carbon feedback in the DICE 
Integrated Assessment Model on the social cost of carbon and on the optimal global mitigation 
policy.  Whereas the first two chapters rely on the use of an Integrated Assessment Model, the 
final two chapters are based on econometric methods applied to weather and climate variables. 
The third chapter (Chapter 4) explores the impacts of droughts on regional economic growth in 
the United States. The last chapter (Chapter 5) examines the implications of temperature on 
inflation and central banks’ policy interest rates.  
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Chapter 1: Uncertainty in climate change economics 

 

“We need not only a new generation of models, but also a broader and 
wiser set of perspectives on how to use the models that we have, and that 
we may have, to examine, discuss and propose policies.” 

 Pr. Nicholas Stern (Stern, 2013) 
 

“Seek simplicity but distrust it.”  

  Alfred North Whitehead et al. (Whitehead, Griffin, & Sherburne, 1929) 

 

1. Introduction 

The emergence of the field of climate change economics can be linked to the fact that, as 
soon as the scientific community reached a consensus on the anthropogenic origin of climate 
change, economists have wanted to know two things about climate change: 1) how big will the 
impacts be? 2) What is their value and how much should we be willing to pay to avoid them? 
Thanks to the complexity of the task, this research field has flourished: indeed, any attempt at 
providing a well-informed answer to this question very quickly brings up the following hard fact: 
that the nature and the scale of the uncertainties pervading every aspect of climate change 
forestall the possibility of a clear and simple answer.  

Just like pulling a thread, delving into the uncertainty about the future impacts of climate 
change only leads to the unravelling of more uncertainties: how then can these questions be 
addressed? The learning journey that constitutes my PhD has included the following stages: first, 
getting a clear understanding of the nature, magnitude and scope of climate change uncertainties, 
distinguishing between the uncertainty about the drivers of climate change and the uncertainty 
about the impacts, and between uncertainties pertaining to the climate system, and those 
affecting future socioeconomic factors. Second, getting to grips with the tools and methods that 
economists have designed to estimate the future damage from climate change and how these 
incorporate and account for these uncertainties. Finally, discerning how these assessments of the 
future economic impacts of climate change can and should be integrated into decision-making 
processes and translated into policy recommendations.  
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This learning process led me to the overarching question of this PhD: “What are the 
economic implications of climate change uncertainties?” But given the immensity of the task, the 
four papers that comprise this PhD are merely small pieces of a big puzzle. The approach I have 
taken in this thesis has been to find original research questions related to the implications of 
climate change uncertainties for assessments of the future impacts of climate change, to use 
innovative ways to address each problem, and to discuss their implications for policy-making.  

I have also strived to ensure that these papers reflect the findings of my four-year journey 
in the deeper recesses of climate change uncertainties. The first one is that the exploration of the 
implications of climate change uncertainties cannot be done without fully engaging with the 
multidisciplinarity of the topic. For that reason, I tried to make sure that each of these four papers 
would put in practice a multidisciplinary approach, which is why I made incursions into the fields 
of climate models, weather models, biophysics, geology, statistics, and micro- and macro-
economics. Rather than a dispersion, I see it as a reflection of the multifacetedness of the issue.  

The second one is that, more than the impact of specific uncertainties, what matters 
ultimately seems to be the impact of combinations of uncertainties. In each paper I have tried to 
consider multiple uncertainties together and to understand the extent to which the interactions 
between multiple uncertainties drive outcomes. For instance, Chapter 2 explores the mechanisms 
through which the interplay of economic and climatic uncertainties drives our results on the 
“climate beta”.     

The third one has been that we need not only to improve the tools that already exist to 
represent and assess these uncertainties, but also to consider them with fresh eyes and new 
perspectives – this has been formulated better by Stern (Stern, 2013). Moreover, I have tried to 
characterize and represent climate uncertainties in ways which make them more tractable, 
without being unduly restrictive – this has been one of the major concerns for Chapter 3, in which 
I tried to add a highly uncertain feedback to an existing Integrated Assessment Model. Also, I am 
well aware of the fact that, given our current level of knowledge, improvements in our 
understanding of climate processes are likely to increase the range of uncertainties rather than 
reduce it.  

This thesis is structured as follows. This chapter provides an overview of the overall topic 
of this PhD, locates my research within the broader field of climate change economics and outlines 
the relationship between the different research questions I have chosen to address. It starts with 
an outline of the different types of uncertainties pertaining to climate change, distinguishing 
between uncertainties on the drivers and on the impacts of climate change, and between physical 
and socio-economic uncertainties. Then, it presents the methods that have been used to derive 
economic assessments of climate change impacts and the role of Integrated Assessment Models 
as tools for policy analysis. The final section of this chapter briefly traces the intellectual journey 
that has led to my four research questions. The remainder of the thesis comprises four essays and 
a brief concluding chapter which summarizes my findings and provides recommendations for 
researchers and policymakers.  
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2. A survey of uncertainties about the drivers of climate change 

i. Uncertainties pertaining to socioeconomic drivers of climate change 

The wide uncertainty about the level and timing of future anthropogenic greenhouse gas 
(GHG) emissions pertains to the fact that these are the product of complex dynamic systems and 
require projections of demographic development, economic activity, lifestyle, energy use, land 
use patterns, technology and climate policy (IPCC, 2013; Nakicenovic et al., 2000).  

Given the considerable range of factors that influence future emissions paths, a schematic 
approach based on the Kaya identity (Field & Raupach, 2004) is often used (Nakicenovic et al., 
2000): indeed, in this equation, the global carbon dioxide (CO2) emissions flux from fossil fuel 
combustion is decomposed into four driving forces:   

Equation 1.1 

𝐹 = 𝑃 ∗ ൬
𝐺

𝑃
൰ ∗ ൬

𝐸

𝐺
൰ ∗ ൬

𝐹

𝐸
൰ 

Where:  

 F is the global CO2 emissions flux from fossil fuel combustion; 

 P is global population; 

 G is world gross domestic product (GDP); 

 E is global primary energy consumption.  

Hence CO2e emissions can be expressed as the product of global population, world per-
capita GDP, world energy intensity and the carbon intensity of energy. Thus, the uncertainty 
about the level of future GHG emissions can be decomposed into the uncertainty about each of 
these four components.   

The uncertainty about world population, which is the first component of the Kaya identity, 
is non-negligible: according to the United Nations, the upward trend in population size is expected 
to continue, and the 95% confidence interval of the world’s population by 2100 currently stands 
at 9.6 to 13.2 billion (United Nations, 2017). The uncertainty about future population growth at 
the global level stems from the uncertainty about the future levels of fertility and mortality. 

The uncertainty about the second component of the Kaya identity, i.e. the world’s GDP per 
capita, refers to projections of future economic growth. There are four main types of production 
functions in the theoretical and empirical literature: the Cobb-Douglas and the Constant Elasticity 
of Substitution production functions, production functions with variable elasticity of substitution 
and Leontief production functions. Estimates of future economic growth often rely on the use of 
a Cobb-Douglas production function with constant elasticity of output to factor inputs, featuring 
physical capital, human capital and labour as production factors, and technological progress. The 
uncertainty about the growth of the world’s economy over the coming decades/centuries hinges 
on the uncertainty about the future growth of total factor productivity (TFP): indeed, two main 
scenarios can be found in the literature (Cette, Lecat, & Ly-Marin, 2017): the first one is referred 
to as “secular stagnation” (Eichengreen, 2015) and refers to the possibility that most of the 
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economy has already benefited from the Internet and web revolution (Gordon, 2015). The second 
one assumes that the digital revolution will lead to a third technology shock, which will provide 
similar TFP gains to those that were provided by electricity during the second industrial 
revolution. According to Cette et al. (2017), the secular stagnation scenario would mean that the 
yearly rate of TFP growth in the United States over the period 2015-2100 would be around 0.6%, 
whereas in the technology shock scenario, TFP growth could reach 1.4% per year. These 
scenarios are useful in that they provide us with an order of magnitude on plausible paths of 
future TFP growth but should not hide the fact that the long-run average of TFP growth belongs 
to the realm of deep uncertainties.      

The uncertainty about world energy intensity, which is the third component of the Kaya 
identity, refers to the future levels of energy consumption per dollar of GDP. The scale of the 
decoupling between energy consumption and economic growth is likely to be driven by two 
factors. The first one concerns structural changes such as the growing share of the service sector, 
the replacement of energy-intensive by energy-extensive industries and the dematerialization of 
the economy. The second one relates to the level of energy-saving technical progress that is 
achieved. The uncertainty about these factors is further amplified by the fact that they will be 
highly dependent on regulatory frameworks, research and development policies and societal 
changes.  

Finally, the uncertainty about the carbon intensity of energy, which is the fourth 
component of the Kaya identity, will depend on the fuel mix of the world economy, which is likely 
to be driven by two major factors. The first one is technological progress, which could make 
renewable energy cost-competitive with fossil fuels. This could have considerable implications 
for CO2 emissions from the power and transportation sectors. The second important one relates 
to the energy and climate policies which will be put in place over the coming decades. For 
instance, mitigation policies range from a business-as-usual scenario, which assumes that no 
major changes in policies will take place, to more aggressive mitigation scenarios, such as those 
consistent with the 1.5°C target, and which imply achieving net negative CO2 emissions after 2050 
(Rogelj et al., 2015).  

The uncertainty about the socioeconomic drivers of climate change has been condensed 
into four scenarios of human activity called the Representative Concentration Pathways (RCPs) 
(R. H. Moss et al., 2010), which describe four different 21st century pathways of GHG emissions 
and atmospheric concentrations, air pollutant emissions, land use changes and climate policy. 
They include one stringent mitigation scenario (RCP2.6), two stabilization scenarios (RCP4.5 and 
RCP6.0) and one scenario with very high greenhouse gas emissions (RCP8.5). The uncertainty 
about the level of future GHG emissions appears clearly in the very wide range of cumulative CO2 
emissions for the 2012 to 2100 period in each of the four RCP scenarios: these range from 140 to 
410 GtC for RCP2.6, 595 to 1,005 GtC to RCP4.5, 840 to 1,250 GtC for RCP6.0 and 1,415 to 1,910 
GtC for RCP8.5 (IPCC, 2013). 

ii. Uncertainties pertaining to the climate system 

We consider in this section the uncertainty about the physical processes that will drive 
the change in the Earth’s climate from anthropogenic GHG emissions. As a matter of fact, we know 
very little about the complex components of the Earth’s climate system and their interactions. 
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Since Arrhenius (1896), we have known the basic physics underlying the greenhouse effect, 
through which greenhouse gases like carbon dioxide (CO2), methane (CH4) and nitrous oxide 
(NO2) trap solar radiation into the atmosphere, thus making the Earth warmer. What we do not 
know are the complex processes of the Earth’s climate, which will determine the timing and the 
scale of the response of the planet to anthropogenic emissions, which is why our projections of 
future climate change are so imprecise. The uncertainty about the physical drivers of climate 
change can be segmented into four components: the carbon cycle, the equilibrium climate 
sensitivity, feedbacks, and potential nonlinearities including tipping points and threshold effects.  

The first major uncertainty regarding the physical drivers of climate change is the carbon 
cycle, i.e. what happens to carbon once it is emitted into the atmosphere. Indeed, the greenhouse 
effect is based on the concentration of greenhouse gases into the atmosphere, and since these 
GHGs come from emissions, we need to know how these GHG emissions accumulate in the 
atmosphere. Oceans play a vital role in the carbon cycle through their uptake of CO2 from the 
atmosphere and understanding these ocean processes is thus crucial. According to the IPCC, the 
oceans have de facto absorbed about 30% of the emitted anthropogenic CO2, but there are huge 
uncertainties about the ocean’s absorptive capacity and whether we should expect it to decrease 
as oceans undergo acidification and warming (IPCC, 2013). Similarly, carbon residence time is 
recognized as an important source of model uncertainty (Friend et al., 2014; Yizhao et al., 2015). 

The second major uncertainty lies in the relationship between the stock of GHGs in the 
atmosphere and the expected change in global mean temperature, which has been embodied in 
the concept of equilibrium climate sensitivity (ECS), defined as the change in global mean surface 
temperature at equilibrium that is caused by a doubling of the atmospheric CO2 concentration. 
The ECS is the result of a combination of various positive feedbacks, including the water 
vapour/lapse rate and the albedo and cloud feedbacks and is generally estimated from 
Atmosphere-Ocean General Circulation Models. The increasing complexity of our representations 
of these feedbacks as well as the use of enlarged model ensembles explain why the equilibrium 
climate sensitivity is one of the components of the climate system for which uncertainty widens 
as knowledge increases: indeed, whereas the IPCC’s Fourth Assessment Report mentioned that 
the ECS was likely in the range of 2.0°C to 4.5°C with a best estimate of 3°C (IPCC, 2007), the IPCC’s 
Fifth Assessment Report  stated that the ECS was likely in the range 1.5°C to 4.5°C (IPCC, 2013). 
Given the reliance of humans and ecosystems on stable temperatures, the discussion on whether 
or not there is a non-negligible probability that the ECS is around 4.5°C or higher has long 
expanded outside the field of climate science and has spurred numerous discussions on the 
implications of “fat tails”1 for decision-making (Calel, Stainforth, & Dietz, 2015; Pindyck, 2013; 
Weitzman, 2011). These “fat tails” are a direct consequence of the high uncertainty about the 
feedbacks underlying the ECS and explain why this parameter may well be one of those “known 
unknowables”.  

In many respects, feedback processes are a fundamental component of the uncertainty 
about future climate change. First, as we have seen above, short-scale feedback processes such as 
the cloud, albedo and aerosol feedbacks are crucial components of the ECS, i.e., the response of 
the climate system to an increase in atmospheric CO2 concentration. Moreover, climate change 
will induce changes in the water, carbon and other biogeochemical cycles, which might trigger, 

                                                             
1 “Fat tails” have been used to refer to the difference in upper tail behaviour between the fat-tailed Pareto distribution 
and the thin-tailed Normal distribution. 
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reinforce, or overturn feedbacks. These feedbacks can be positive (when they accelerate climate 
change), or negative (when they dampen climate change). One example of a positive feedback 
triggered by climate change relates to ocean warming; not only have oceans absorbed a 
significant share of the CO2 emitted into the atmosphere historically, they have also absorbed part 
of the radiative imbalance of the climate system, and as a result, have become warmer2. 
Unfortunately, the solubility of CO2 in seawater decreases as oceans become warmer, which 
means that as oceans warm, they are less able to remove CO2 from the atmosphere. In this case, 
climate change triggers a new positive feedback. Other examples of positive feedbacks triggered 
by climate change include heat-induced releases of sequestered carbon, e.g. from permafrost or 
offshore methane clathrates. Another reason why feedbacks are a major cause of uncertainty 
pertains to the fact that positive feedbacks compound each other, meaning that the total effect of 
two positive feedbacks is larger than the sum of the effects of the individual feedbacks (Roe & 
Baker, 2007). There is also considerable uncertainty on potential negative feedbacks, such as a 
cooling effect from CO2-induced increases in vegetation density (Jiang et al., 2012). Finally, it 
should be emphasized that, despite the advances in our understanding of the climate system, we 
have an idea of the biophysical processes underlying some feedback loops, but we know close to 
nothing as to their potential compound strength and the ways in which they might interact with 
each other – it is also very possible that there are other feedbacks that could be triggered by 
climate change that we know nothing about. This explains why the IPCC has made clear in its 
latest report that the Earth system sensitivity over millennial time scales would include long-term 
feedbacks and would therefore likely be significantly higher than the ECS (IPCC, 2013). 

Feedbacks introduce nonlinearities in the response of the climate system, which can then 
lead to ‘tipping points’, i.e. switches to qualitatively different states (Lenton, 2011). For example, 
the continued warming of the oceans could lead to a weakening of the Atlantic Meridional 
Overturning Circulation (AMOC) to a point where it collapses suddenly. The possibility of a 
collapse of the AMOC happening by 2100 has been estimated as very unlikely by the IPCC but has 
not been excluded for longer time horizons (IPCC, 2013). Other examples of potential tipping 
points which could be triggered by human-induced climate change include the irreversible 
melting of the Greenland and West Antarctic ice sheets, disruptions of the West African monsoon 
and diebacks of the Amazon and boreal forests (Huntingford et al., 2008; IPCC, 2013).   

Due to the deep uncertainty3 that characterizes them, feedbacks and tipping points have 
so far received little attention in assessments of climate change impacts. We know that these 
processes could be triggered by climate change, but we have no idea of their potential strength or 
the time horizon over which they could happen – for that reason, they have been mostly (though 
not entirely) ignored by climate change economists. We will see further the ways in which these 
deep uncertainties have been treated in the economics literature, but I argue that this deep 
uncertainty should be fully acknowledged, brought to the fore, and made an integral part of the 
policy-making process. Finally, these uncertainties about the physical drivers of climate change 
contribute to the significant uncertainty regarding the link between temperature targets (e.g. 2°C) 
and the corresponding carbon budget (IPCC, 2013).   

                                                             
2 According to the IPCC, ocean warming dominates the increase in energy stored in the climate system, accounting for 
more than 90% of the energy accumulated between 1971 and 2010 (IPCC, 2013) 
3 Deep uncertainty has been defined by Hallegatte et al. (2012) as “a situation in which analysts do not know or cannot 
agree on (1) models that relate key forces that shape the future, (2) probability distributions of key variables and 
parameters in these models, and/or (3) the value of alternative outcomes”. 
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3. A survey of uncertainties about the impacts of climate change 

The previous section concentrated on the uncertainties pertaining to the socioeconomic 
drivers of climate change, as well as to the features of the climate system which will determine 
Earth’s response to the increase in forcing from human activities. This section will concentrate 
instead on the impacts on ecosystems and human societies. 

iii. Uncertainties pertaining to the physical effects of climate change 

The question of the future increase in global mean temperature, which has been used as 
the metric summarizing the state of the global climate, has dominated much of the discussion on 
climate change. The reasons for this are threefold: first, due to the greenhouse effect, we know 
that the increase in radiative forcing will lead to an increase in global mean temperature. Even if 
we do not know how much warming, we understand the basic physics behind it. The second 
reason pertains to the fact that paleoclimate analyses suggest that the changes that we are 
currently undergoing are unprecedented: not only is global temperature warmer now than it has 
been in the past 1,000 years, but the rate of warming is also unparalleled over the past 11,000 
years (Marcott, Shakun, Clark, & Mix, 2013). The third reason pertains to the fact that most 
components of the climate system are extremely sensitive to temperature and that several 
regions display amplified responses to climate variability (Seddon, Macias-Fauria, Long, Benz, & 
Willis, 2016). 

The increase in global mean temperature so far is estimated at 0.85°C for the period from 
1880 to 2012 (IPCC, 2013). As we have discussed previously, the combination of uncertainties 
about the equilibrium climate sensitivity, the carbon cycle and the future level of anthropogenic 
GHG emissions explains why the uncertainty about future increases in global mean temperature 
is so wide: according to the latest Assessment Report from the IPCC, baseline scenarios (without 
additional mitigation) indicate that global mean surface temperature increases in 2100 could 
range from 3.7 to 4.8°C above the average for 1850-1900 for a median climate response; this 
range increases to 2.5-7.8°C when climate uncertainty is included (5th to 95th percentile range) 
(IPCC, 2013)4.  

Crucial components of the Earth system, notably the cryosphere and oceans, are highly 
sensitive to global mean temperature. Indeed, the warming of recent decades has already caused 
ice sheets to recede globally: the Greenland and Antarctic ice sheets have lost mass, glaciers have 
continued to shrink almost worldwide, Arctic sea ice and the Northern Hemisphere spring snow 
have continued to decrease in extent and permafrost temperatures have increased in most 
regions since the early 1980s (IPCC, 2013). These effects are expected to intensify as warming 
continues, but projections of their magnitude bear significant uncertainty: by the end of the 21st 
century, the global glacier volume, excluding glaciers on the periphery of Antarctica, is projected 
to decrease by 15% to 55% for RCP2.6, and by 35% to 85% for RCP8.5 (IPCC, 2013). 

Both the increase in global mean surface temperature and the degradation of ice sheets 
around the globe will in turn have direct impacts on oceans. So far, oceans seem to have absorbed 
most of the increase in the energy stored in the climate system, as well as a non-negligible share 

                                                             
4 Scenarios without additional efforts to constrain emissions (‘baseline scenarios’) lead to pathways ranging between 
RCP6.0 and RCP8.5 (IPCC, 2013). 
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of the emitted anthropogenic CO2, which has led to ocean warming5 and acidification6 (IPCC, 
2013). The global ocean is expected to continue to warm, which will likely trigger and amplify 
biophysical processes: the penetration of heat to the deep ocean is expected to affect ocean 
circulation; ocean thermal expansion and glacier loss will cause sea level rise; and ocean warming 
will affect sea ice dynamics. Under all RCP scenarios, global mean sea level is expected to rise 
during the 21st century at rates above those observed between 1971 and 2010, precisely because 
of ocean warming and increased loss of glacier and ice sheets volume (IPCC, 2013). 

Finally, even though the increase in global mean temperature has been used as a metric 
to summarize the state of Earth’s climate, it says nothing about future local and regional changes 
in weather. Changes in global mean temperature will have differentiated impacts on temperature, 
precipitation and wind patterns across the different regions of the world. According to the IPCC, 
it is virtually certain that most places will experience more hot and fewer cold temperature 
extremes as global temperatures increase, with the Arctic region expected to warm most (IPCC, 
2013). Projections of future precipitation patterns are more hazy: according to current 
projections, some regions will experience increase and others will experience decreases, while 
the contrast between wet and dry regions and between wet and dry seasons will increase, 
although the uncertainties in precipitation projections are larger than for temperature (IPCC, 
2013).   

There is a general consensus that climate change will increase both the intensity and the 
frequency of extreme weather events (Herring, Hoerling, Kossin, Peterson, & Stott, 2015; IPCC, 
2012). In many land regions, current 1-in-20 year maximum temperature events are expected to 
become annual or 1-in-2 year events by the end of the 21st century under high-emissions 
scenarios. Heatwaves are expected to occur with a higher frequency and longer duration (IPCC, 
2013). Similarly, extreme precipitation events over wet tropical regions are likely to become 
more intense and more frequent by the end of the century (IPCC, 2013). There is no clear 
consensus on the influence of future climate change on tropical cyclones (IPCC, 2013). These co-
occurring changes in frequency and intensity could have significant implications for humans and 
ecosystems: the possibility that changes in the interplay and succession of weather events could 
cause significant impacts has led to the definition of “compound events”, which have been defined 
as “extreme impact [events] that depends on multiple statistically dependent variables or events” 
(Leonard et al., 2014); for instance, these would cover sequences of repeated droughts, periods 
of very low precipitation co-occurring with high temperatures, or conjoined occurrences of high 
precipitation events and storm surges.  

We mentioned earlier that some components of the climate system could potentially 
exhibit threshold behaviour (e.g. the collapse of the Atlantic Meridional Overturning Circulation, 
or the Greenland or West Antarctic ice sheets), which would have potentially severe impacts on 
human and natural systems. According to the mainstream scientific literature, a 4°C or more 
increase in global mean temperature compared to pre-industrial times could bring catastrophic 
climate change, which would manifest itself through tsunamis, extreme sea level rise, 
desertification of the Sahel region, monsoon disruptions, dieback of the Amazon rainforest, large-
scale wildfires in boreal regions and regions disappearing under water (Schellnhuber et al., 
2013). There is little information or consensus among scientists on the likelihood of such events 

                                                             
5 The upper 75m of the ocean warmed by 0.11°C per decade over the period 1971 to 2010 (IPCC, 2013). 
6 The pH of ocean surface water has decreased by 0.1 since the beginning of the industrial era (IPCC, 2013). 
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over the 21st century, but most assessments emphasize that the risk of abrupt or irreversible 
changes increases as the magnitude of the warming increases (IPCC, 2014).  

iv.  Uncertainties pertaining to the socioeconomic impacts of climate change 

Climate change is expected to impact humans and societies through many channels, 
including agriculture/food, water, health, flooding, natural ecosystems, and even conflict and 
migration (IPCC, 2014). Both gradual changes and changes in the frequency and severity of 
extreme weather events will have an impact.   

The monetary value of the projected global aggregate impacts of climate change remain 
highly uncertain: the IPCC estimated that these should remain moderate for a 1 or 2°C warming 
but are likely to accelerate with increasing temperature, due to the increased risk of regime shifts 
and biodiversity loss7 accompanying warming of 3°C or more (IPCC, 2014). Unfortunately the 
majority of the studies of the global aggregate impacts of climate change that can be found in the 
literature (see Tol, 2009, 2014 for a review) only consider moderate warming, and only 7 studies 
estimate welfare impacts for warming of 3°C or more (IPCC, 2014). Losses seem to increase 
sharply with temperature but the uncertainty around these is very high: the most recent 
estimates project greater impacts than the previous ones and also significantly widened the 
uncertainty range (IPCC, 2014). We will provide in Section 4 below a more detailed account of the 
tools and methods that have been devised by economists to estimate these impacts.  

These aggregate estimates say nothing about how climate change will impact different 
countries and populations. However, it is very likely that the impacts of climate change will be felt 
more strongly by developing countries, both in terms of human and economic impacts.  

So far, the human impacts of climate change have been borne predominantly by 
developing countries: according to the World Health Organization, approximately 60 000 deaths 
occurred worldwide as a result of weather-related disasters in the 1990s, some 95% of which 
were in developing countries (World Health Organization, 2017). This is due to a combination of 
factors including greater exposure, the lack of early warning systems and the absence of available 
funds for emergency relief and recovery. Unfortunately the situation is likely to get worse in the 
future: not only will developing countries be the hardest hit by drought-induced food and 
freshwater shortages, but adverse health impacts, including heat stroke, malaria, dengue and 
diarrhoea, are also expected to be felt predominantly by low-income countries (UNFCCC, 2010).   

Similarly, the economic impacts of extreme weather in the recent past have been incurred 
predominantly by developing countries: according to a report from the United Nations, the 
greatest economic losses caused by all weather-related disasters that occurred during the period 
1995-2015 were incurred in low-income countries and represented around 5% of GDP (United 
Nations, 2016). In the round, developing countries are expected to be most vulnerable to future 
climate change (IPCC, 2014). There are several reasons for this. First, developing countries tend 
to be geographically located in tropical zones close to the equator, where the effects of climate 
change will be more negative (IPCC, 2014). For instance, the reduction in the availability of 
renewable surface water and groundwater is projected to be more acute for dry subtropical 

                                                             
7 According to the Fourth Assessment Report of the IPCC, more than 2 or 3°C warming above preindustrial levels would 
cause extinction risks to 20 or 30% of present-day species (IPCC, 2007). 
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regions (IPCC, 2014). Second, developing countries are generally more reliant on climate-
sensitive sectors (e.g. agriculture and fisheries) than developed countries. Finally, they often have 
a lower adaptive capacity due to low levels of human capital and technology, limited financial and 
material resources and unstable or weak institutions (IPCC, 2001a; Lemos et al., 2013). For these 
reasons climate change could be extremely detrimental to populations at risk in low-income 
countries, and is expected to prolong existing and create new poverty traps (IPCC, 2014). 

But the discrepancy is not only between rich and poor countries: according to the IPCC 
(2014), the risks related to climate change are expected to be greater for disadvantaged people 
and communities in countries at all levels of development. Indeed, low-income households 
usually have a lower adaptive capacity, limited access to insurance and fewer possibilities to 
relocate to safer accommodation (IPCC, 2014).  

The arguments and evidence presented above seem to support the hypothesis that the 
poor are likely to suffer disproportionate damage from climate change, which, in economic terms, 
means that the income elasticity of climate change-related damage8 is between 0 and 1. This could 
have significant implications for the stringency of mitigation at the global level: Dennig et al. 
(2015) have shown that the optimal level of mitigation is considerably higher when future 
damage falls especially hard on the poor than when damage is proportional to income. This would 
also mean that development might be the best defence against climate change impacts (Anthoff 
& Tol, 2012). 

4. What are the methods that have been used by economists to estimate the impacts 
of climate change? 

We will see in this section the different approaches and methods that have been used by 
economists to estimate and quantify the impacts of climate change. In his review of the estimates 
of the welfare effects of climate change, Tol (2009) identified two main approaches: the 
enumerative method and the (traditional) statistical approach. We will add to these the methods 
that have been developed since, which include Computable General Equilibrium models, the 
subjective wellbeing approach and the “New Climate-Economy Literature” (Dell, Jones, & Olken, 
2014). Integrated Assessment Models (IAMs), such as DICE (Nordhaus, 1992; Nordhaus & Sztorc, 
2013), PAGE (Hope, 2011; Hope, Anderson, & Wenman, 1993), MERGE (Manne, Mendelsohn, & 
Richels, 1995) and FUND (Tol, 1997), have been used to estimate the impacts of climate change, 
but can also be considered as policy tools, and will be the topic of the next section.   

The enumerative method 

These are studies based on the following methodology: projections of the physical 
impacts of climate change are first obtained from either climate or impact models; these physical 
impacts are then given a monetary value, and finally added up (enumerated). Despite its apparent 
simplicity and ease of interpretation, this method suffers from several shortcomings: first, as 
noted by Fankhauser (2013), this method is based on a partial equilibrium approach, in which 
the sum of the total damage is the sum of the damage in individual sectors, and does not account 
for higher-order effects. Then, because it relies on precise sector- and location-specific 

                                                             
8 Defined as the change in damage from the addition of a small amount of income (Anthoff & Tol, 2012) 
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projections and real market prices, it does not lend itself easily to extrapolation. Finally, because 
it relies on prices, it is not easily applicable to non-market types of impacts, such as health and 
biodiversity (Tol, 2009). 

The traditional statistical approach   

The second group of studies relies on cross-sectional variation in prices and expenditure 
and how that is associated with cross-sectional variation in climate. This method has been used 
notably to measure how climate in different places affects the value of farmland (Mendelsohn, 
Nordhaus, & Shaw, 1994) or per-capita rural income (Mendelsohn, Basist, Kurukulasuriya, & 
Dinar, 2007). Contrary to the enumerative approach, the statistical approach is based on real-
world differences between climate and economic variables and thus it implicitly accounts for 
adaptation (Tol, 2009). However, cross-sectional studies are at high risk of omitted variable bias, 
which occurs when the control variables do not account for variables correlated with both the 
dependent variable and one or more independent variables. This potential bias is a serious 
challenge for cross-sectional studies as it significantly undermines the ability to make causal 
inferences, and cannot be easily fixed, as adding control variables can lead to an “over-
controlling” problem (Dell et al., 2014).  

Computable General Equilibrium models 

A third approach to estimating the economic impacts of climate change has made use of 
Computable General Equilibrium (CGE) models. There were two main reasons that motivated the 
application of this type of model to climate impacts: the first one is that CGE modelling has 
enabled economists to address one of the main shortcomings of the enumerative approach, which 
is the lack of higher-order effects. A few studies have made use of static CGE models to analyse 
the impacts of climate change on multiple markets (Bosello, Roson, & Tol, 2007; Darwin & Tol, 
2001) and most have found that the second-order effects increased the impacts of climate change 
on welfare (Bowen, Cochrane, & Fankhauser, 2012). In any case, the second-order effects are 
almost always significant. The second reason, which prompted the use of dynamic CGE models, 
was the realization of the reverse causation of climate change, i.e. the fact that climate change will 
be driven by the level of anthropogenic emissions but, at the same time, climate change will affect 
the economy and thus the level of future GHG emissions; an application of a dynamic CGE model 
to climate change can be found in Eboli et al. (2010). The limitations of CGE models are twofold: 
first, since they rely on key parameters which are often arbitrary, they have been criticized for 
not being sufficiently validated (IPCC, 2001b). Moreover, CGE models can only compare different 
states of equilibrium and therefore do not provide insight into adjustment processes (IPCC, 
2001b). 

The subjective wellbeing approach 

A fourth approach to eliciting the monetary value of climate change has made use of the 
environmental valuation method based on happiness data. This approach relies on the idea that 
stated subjective well-being can serve as an empirical proxy for people's experienced utility, and 
can therefore, under the presumption of utility maximising behaviour, be used to calculate the 
trade-off people would be willing to make between income and environmental conditions 
(Welsch, 2009). The implied marginal rate of substitution between income and climate can then 
be used to derive the monetary value of climate (Cuñado & de Gracia, 2013; Welsch, 2009). The 
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use of happiness data to study economic issues is relatively recent and its application to weather 
and climate has so far been limited (Carroll, Frijters, & Shields, 2009; Luechinger & Raschky, 
2009; Rehdanz & Maddison, 2005). Some methodological issues pertaining to the use of 
happiness data for environmental valuation have been raised by Welsch and Kuhling (2009) but 
there are two other factors that limit its applicability to climate change specifically: first, the issue 
of the spatial and temporal matching of life satisfaction and weather data, which might become 
problematic in the context of climate change; and second, the substantial challenge posed by the 
cultural and language components of findings obtained through subjective wellbeing methods, 
which might significantly impede their external validity.   

“The New Climate_Economy Literature” (Dell et al., 2014) 

A fifth approach to the estimation of damages from climate change has focused on 
applying panel data methods to examine how weather variables (mainly temperature, 
precipitation and windstorms) influence socio-economic outcomes, including agricultural output 
(Auffhammer & Schlenker, 2014; Deschenes & Greenstone, 2007; Schlenker & Roberts, 2009), 
production (Hsiang, 2010) and productivity (Burke, Hsiang, & Miguel, 2015). Thorough reviews 
of this literature can be found in Dell et al. (2014) and Hsiang (2016). 

Panel models are generally of the form: 

Equation 1.2 

𝑦௧ =  𝛽𝑪௧ + 𝛾𝒁௧ + 𝜇 + 𝜃௧ +  𝜀௧  

Where: 

 yit  is the outcome variable of interest; 

 Cit is a vector of climate variables; 

 Zit is a vector of other time-varying observables;  

 μi are fixed effects for the spatial areas; 

 θrt are time fixed effects, which can enter separately by subgroups of the spatial areas to 
allow for different trends in subsamples of the data (Dell et al., 2014). 

The advantages of using panel models are manifold: first, contrary to cross-sectional 
studies, which may incorporate very long-run mechanisms (e.g. the date of adoption of 
agriculture), panel data regression models emphasize the current impacts of weather. Most 
importantly, panel data models include both location- and time- fixed effects, which facilitate the 
identification of causal effects by presumably picking up most variation in unobserved 
explanatory variables. Indeed, fixed effects for the different spatial areas absorb spatial 
characteristics, thus preventing potential bias from omitted variables that do not change over 
time. Moreover, time fixed effects neutralize trends which are common to the different locations 
and therefore improve the credibility of the identification, as they help ensure that the observed 
effect is due to weather variations in the local area (Dell et al., 2014). Finally, the fact that climatic 
and weather variables are exogenous on all but long (i.e. centennial and longer) time-scales 
makes them especially suited to panel data analyses, as their exogeneity removes any concerns 
about reverse causation effects.  
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The main limitations of panel models have to do with how their result can and should be 
interpreted. The first limitation of panel models is that the inclusion of time fixed effects removes 
any global effect of weather variations. For instance, panel models such as the one described in 
the above equation can only provide information on the impact of local, idiosyncratic variations 
in weather on local outcomes. Spatial spillover effects of a weather shock in a specific region will 
not be captured by the regression results. One solution to this can be found by dropping the time 
fixed effects, but this raises the concern that results might be biased by time-varying omitted 
variables (Dell et al., 2014).  

The second limitation of panel models is the question of their external validity in the 
context of climate change. One of the motivations that spurred this stream of research has been 
to use these findings on the effect of changes in weather on economic activity, to infer the effects 
of changes in climate (which can be defined as the average of weather over long time scales) on 
economic activity. Even supposing that we had access to reliable regional projections of future 
changes in weather patterns, there are serious limitations to the extrapolation of the findings 
from these panel models to states of the climate in which Earth’s temperature will be 
considerably warmer: these restrictions come from the possibility of nonlinearities, potential 
intensification effects, the eventuality of adaptation, and general equilibrium effects (Dell et al., 
2014). For these reasons, the estimates derived from these panel models cannot necessarily be 
applied to future climate damages: for instance, if adaptation policies are implemented on a large 
scale, then the effects of current weather shocks might be stronger than the future effects of 
climate; conversely, if the intensification of weather shocks leads to steep increases in impacts, 
then estimates derived from current weather shocks could be underestimating the future 
damages from climate change (Dell et al., 2014). Despite these shortcomings, the emergence of 
this literature has brought valuable insight.  

5. The role of Integrated Assessment Models as policy tools 

There are two factors that explain the development of Integrated Assessment Models 
(IAMs) as tools for conducting the assessment of different policy options in the context of climate 
change: first, the release of the First Assessment Report by the IPCC in 1990, the launch of the 
United Nations Framework Convention on Climate Change and the achievement of a consensus 
on the anthropogenic origin of climate change; second, the realisation that the methods that have 
been used to quantify the future impacts of climate change do not provide guidance for action. 
This has led to the emergence of IAMs, which are based on the coupling of sub-models of the 
climate and economic systems and which have been used to serve two purposes: first, to derive 
estimates of the social cost of carbon (SCC), defined as the net present value of the future climate 
damages caused by the emission of one additional ton of CO2 and which should be the basis for a 
tax on carbon emissions; second, to balance the future costs and benefits of climate change 
mitigation to determine the optimal mitigation policy. Numerous IAMs have been developed over 
the past two decades; these include DICE (Nordhaus, 1992; Nordhaus & Sztorc, 2013), PAGE 
(Hope, 2011; Hope et al., 1993), MERGE (Manne et al., 1995), FUND (Tol, 1997), ENTICE-BR 
(Popp, 2006) and MIND (Edenhofer, Bauer, & Kriegler, 2005). Since two of the chapters in this 
thesis are based on the DICE-2013R model (Nordhaus & Sztorc, 2013), the following section will 
focus on this specific IAM.  



20 
 

i. Two crucial features of IAMs: the damage function and the discount rate 

Because so much information on the Earth’s climate, the global economy and the links 
between them is condensed in an extremely simple model, IAMs are fraught with structural and 
parameter uncertainty. This affects many relationships and parameters in IAMs but three 
components have come under particular scrutiny: the equilibrium climate sensitivity, the damage 
function and the discount rate (Farmer, Hepburn, Mealy, & Teytelboym, 2015; Stern, 2013). We 
have mentioned in Section 2 the uncertainty surrounding the equilibrium climate sensitivity as 
well as the notion of “fat tails”, so we will focus here on the two key economic components of 
IAMs, the damage function and the discount rate. 

The damage function 

The first key economic component of IAMs is the damage function, which is a measure of 
the relative impact on welfare (expressed in terms of GDP) of an increase in global mean 
temperature, as an index of a wider set of climatic changes. Since climate change is an 
unprecedented phenomenon in the history of mankind, there are no historical observations 
available, which could inform the “shape” of this relationship; damage functions thus belong to 
the realm of the structural uncertainties and result from largely arbitrary choices.  

The damage function in the DICE Integrated Assessment Model is quadratic in global 
mean temperature change. Previously, this damage function was calibrated based on the 
enumerative approach, involving detailed regional and sectoral estimates (Nordhaus & Boyer, 
2000), but in DICE-2013R (Nordhaus & Sztorc, 2013), a most recent version of the model, the 
calibration of the damage function is based on the estimates of monetized damages from the Tol 
survey (Tol, 2009, 2014), to which a judgemental 25% adjustment is added to reflect non-
monetized impacts, such as biodiversity losses, health impacts and changes in ocean circulation.  

Equation 1.3 

𝛺ூா൫𝑇𝐴𝑇𝑀(𝑡)൯ =  
1

1 + 𝛼ଵ ∗ 𝑇𝐴𝑇𝑀(𝑡) + 𝛼ଶ ∗ (𝑇𝐴𝑇𝑀(𝑡))ଶ
 

Where: 

 TATM is the increase in global mean temperature since pre-industrial times (in °C); 

 α1 = 0; 

 α2 = 0.002664. 

There are two important issues with this damage function. The first issue regards the 
choice of a quadratic specification, which is essentially arbitrary: as noted by Dietz and Asheim 
(2012, p. 328), “there has never been any stronger justification for the assumption of quadratic 
damages than the general supposition of a non-linear relationship, added to the fact that 
quadratic functions are of a familiar form to economists, with a tractable first derivative”9. The 
second issue concerns the calibration of this damage function: not only is it designed so that 
damages cannot reach 100% of output, but its calibration is only valid for temperature increases 

                                                             
9 It is worth noting here that, in contrast to most IAMs, the impact function in PAGE09 has a flexible exponent that can 
be as high as 3. 
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in the range of 0 to 3°C. Indeed, the damage function used in DICE means that a 6°C increase in 
global mean temperature warming would result in a loss of utility equivalent to just 4.7% of 
output, while it would take an 18°C increase in global mean temperature to reach a loss of utility 
equivalent to 50% of output (Ackerman, Stanton, & Bueno, 2010; Dietz & Asheim, 2012). Hence 
several economists have expressed their concerns about the choice of a quadratic damage 
function that might significantly understate the economic impacts associated with very large 
increases in global mean temperature (Ackerman et al., 2010; Pindyck, 2013; Stern, 2013; 
Weitzman, 2011). The third issue pertains to the fact that the damage function used in DICE-
2013R does not include thresholds, and therefore does not account for the possibility of tipping 
points, regime shifts, or the possibility of catastrophic climate change (Lemoine & Traeger, 2014).  

The structural uncertainty about the specification of the damage function has been dealt 
with in three ways: the first one has been to keep the base relationship and to introduce a higher-
order term into the damage function to capture greater non-linearity (Weitzman, 2011). To that 
effect, Dietz and Asheim (2012) transformed this structural uncertainty into a parametric 
uncertainty by proposing the use of a damage function which is such that, for different parameter 
values, the damage function can be equivalent either to the quadratic form of Nordhaus (2014), 
or that of Weitzman (2012). They interpret the parametric uncertainty as being subjective or 
epistemic in nature, rather than objective or aleatory.  

The second approach has been to question the assumption that damages do not enter the 
utility function directly, which supposes that there is a strong substitutability between 
consumption and the costs of temperature change. Instead, Weitzman (2009a, 2011) has 
suggested to make the disutility of temperature change additively separable from the utility of 
consumption, which would reflect the fact that climate change might have impacts (e.g. on 
biodiversity, ecosystems and human health) which are not readily substitutable with material 
wealth.  

The third approach has been to replace the damage function in which economic impacts 
of climate change hit current year GDP losses by a damage function which better reflects the scale 
and long-lasting effects of climate damage. To this effect, Stern (2013) has suggested alternative 
damage functions, where climate damage could be modelled as 1) damage to social, 
organizational or environmental capital; 2) damage to stocks of capital or land; 3) damage to 
overall factor productivity; 4) damage to learning and endogenous growth. Some of these 
recommendations have since been implemented: Moyer et al. (2014) integrated in the DICE 
model the possibility that climate change may directly affect productivity. Similarly, Moore and 
Diaz (2015) adapted DICE so that temperature could affect GDP through two pathways: total 
factor productivity growth and capital depreciation. Finally, Dietz and Stern (2015) incorporate 
in DICE two models of endogenous growth, in which the damage from climate change affect the 
drivers of long-run growth.  

The discount rate 

The second key economic component of IAMs is the social discount rate; indeed, any 
assessment of costs or benefits that are incurred at different time scales implies the use of a 
discount rate. In our previous discussion on the drivers and effects of climate change, we have 
emphasized that the uncertainty is as much about the nature as it is about the scale and the timing 
of future climate change. Despite the fact that the time lag between an emission of CO2 and the 
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maximum warming response is a decade on average (Ricke & Caldeira, 2014; Zickfeld & 
Herrington, 2015), CO2 emissions are long-lived: on average 40% of a CO2 pulse is still in the 
atmosphere after 100 years (Ciais et al., 2013). This means that an emission today produces a 
stream of impacts for centuries, and that the net present value of the total impact is heavily 
influenced by the choice of the discount rate. Consequently, the costs of an abatement policy 
would be incurred as of now, but that most of the benefits would occur at uncertain horizons and 
in the long distant future. Given the timescales involved, the choice of a discount rate can 
therefore make an immense difference in the net present value of future costs and benefits.  

In the discounted utilitarian framework, which is the one used in DICE, social welfare is 
represented by the sum of the utility of a representative agent: 

Equation 1.4 

𝑈൫𝑐(𝑡)൯ =  න 𝑢[𝑐(𝑡)] exp(−𝜌𝑡) 𝑑𝑡
ஶ



 

where the instantaneous utility function u[c(t)] is time invariant and has positive but diminishing 
marginal utility of consumptions (i.e. u’(.) > 0 and u’’(.) ≤ 0).  

Assuming that we are in a risk-free setting, that the utility function is iso-elastic and that 
we are in an economy where capital yields output, which can be devoted to consumption or 
investment, the maximisation10 of the above equation leads to the Ramsey rule (Ramsey, 1928): 

Equation 1.5 

𝑟௧ = 𝜌 + 𝜃𝑔௧ 

Where: 

 r is the social marginal productivity of capital; 

 ρ is the utility discount rate or the pure rate of time preference; 

 θ is the coefficient of risk aversion or the elasticity of marginal utility; 

 𝑔 =  
̇(௧)

(௧)
  is defined as the growth rate of consumption. 

The uncertainty about what would be the “appropriate” discount rate in the context of 
climate change stems from at least two factors: first, whether the components of the discount rate 
(namely the rate of pure time preference and the consumption elasticity of marginal utility) 
should be taken from a normative or a positive perspective. For instance, Ramsey (1928, p. 543) 
argued that putting different weights upon the utility of different generations is “ethically 
indefensible” while Stern (2007) defends the use of a pure rate of time preference of 0.1 to 
account for the small risk of extinction of the human race, but otherwise rules out impatience as 
a legitimate motivation for pure-time discounting. Nordhaus (2007) has taken the opposite view 
and has argued that discount rates should be derived from actual behaviour, which means that 
the ρ parameter should be inferred from empirical estimates of market rates of return.  

The second factor concerns the uncertainty about future consumption growth. Assuming 
that that there is uncertainty about consumption growth and that the growth rate of consumption 

                                                             
10 See Groom et al. (2005) for details. 
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is independently and identically normally distributed with mean μ and variance σ2, a third term, 
called the precautionary effect, is added to Equation 1.5, which becomes the extended Ramsey 
rule (Equation 1.6).   

Equation 1.6 

𝑟௧ = 𝜌 + 𝜃𝜇 − 0.5𝜃ଶ𝜎ଶ 

In the Ramsey framework, the presence of uncertainty about the future rate of growth in 
per capita consumption justifies a declining discount rate (Gollier, 2002), if we make the 
assumption that the utility function is isoelastic and that shocks in consumption are positively 
correlated (Cropper, Freeman, Groom, & Pizer, 2014). 

It is worth emphasizing that at the core of the discounted utilitarian framework lies the 
assumption that the utility of future generations should be given less weight than the utility of 
the present generation, which becomes crucial when it comes to evaluating climate policies  
(Dietz & Asheim, 2012). Although they are not explored in this thesis, alternative approaches to 
the discounted utilitarian framework have been proposed in the literature; these include for 
instance sustainable discounted utilitarianism (Asheim & Mitra, 2010) and the rank-discounted 
utilitarian approach (Zuber & Asheim, 2012). 

ii. Limitations of Integrated Assessment Models 

Three issues with the representation of uncertainty in IAMs have been raised in the 
literature: IAMs have difficulty in accounting for the possibility of catastrophic climate change, 
they generally cannot provide detailed projections of regional impacts, and they present an 
illusion of certainty which can be misleading to some.  

The first concern regarding the reliability of IAM-derived projections lies in the fact that 
these do not seem to reflect the findings of climate scientists regarding the range of future states 
of the climate, mainly due to the absence of positive feedbacks and tipping points (Kaufman, 2012; 
Lenton & Ciscar, 2013; Warren, Mastrandrea, Hope, & Hof, 2010). This claim has been 
substantiated by the work of Ackerman et al. (2010), who examined the conditions under which 
DICE could project forecasts of disastrous climate outcomes and found that it required a 
conjunction of a fat-tailed distribution for the equilibrium climate sensitivity parameter and the 
specification of the damage function. One of the responses to this concern has been to integrate 
the possibility of a climate catastrophe in IAMs through tipping points (Lemoine & Traeger, 2016; 
Lenton & Ciscar, 2013; Lontzek, Cai, Judd, & Lenton, 2015). A different standpoint was taken by 
Weitzman (2009b), who laid out the Dismal Theorem which argues that the large structural 
uncertainty surrounding the possibility of a climate catastrophe renders obsolete the use of 
standard cost-benefit analysis.  

The second critique of IAMs that can be found in the literature is that most of them operate 
on a global scale, and therefore say nothing on the local impacts of climate change on lives and 
livelihoods. Some regional IAMs have been developed11 but these suffer from two drawbacks: 
first, reliable projections of regional climatic changes do not in general exist, except perhaps for 
warming; second, these impacts will also depend very strongly on local socio-economic factors 

                                                             
11 E.g. RICE (Nordhaus & Yang, 1996). 
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which are extremely hard to project, such as the implementation of adaptation policies and 
changes in vulnerability and resilience. The fact that most IAMs rely on the assumption of a 
representative agent (Farmer et al., 2015) also forecloses the possibility of including 
heterogeneous agents (Beinhocker, Farmer, & Hepburn, 2013).  

The final objection that has been made is that IAMs can, if not used with care, give an 
illusion of knowledge to policy-makers who use their output. It is true that IA modellers have 
considerable freedom in choosing functional forms and parameter values, which can lead to very 
different estimates of the social cost of carbon and the optimal policy; this highlights the fragility 
of these models to the underlying specifications but is not a major issue in itself. What is wrong 
and dangerous is to consider the results from these models as certain, without acknowledging the 
wide uncertainties underlying them and the numerous assumptions that these results depends 
on. In the words of Pindyck (2017, p. 102) : “the use of IAMs to estimate the SCC or evaluate the 
alternative policies is problematic because it creates a veneer of scientific legitimacy that is 
misleading”.  

What then should be the purpose of IAMs? Integrated Assessment Models should be used 
as analytical devices, designed to bring a better understanding of the dynamic interactions 
between climate change and the economy and to compare different mitigation scenarios in 
relative terms. IA modellers should resist the demands of policy-makers for scientific-looking 
probability distributions of future climate impacts, and instead acknowledge the depth of our 
ignorance, and precisely use these models to explore the full range of climate and economic 
uncertainties, and the ways in which these combine and compound. 

All in all, what matters ultimately in the context of climate change is the probability of 
catastrophic climate change and the scale and nature of regional impacts, for which IAMs are of 
limited use anyway. Alternative methods have thus been developed to address more precisely 
these issues.  

iii. Alternative approaches to IAMs 

Four approaches have been used in the field of climate change to deal with the 
weaknesses and shortcomings of Integrated Assessment Models: expert elicitation, aimed at 
facilitating the characterization of deep uncertainty; closed-form analytical solutions, meant to 
replicate IAMs’ outputs with simple and transparent formulae; dynamic stochastic general 
equilibrium model, which allow for stochastic elements in the path to the steady state; and agent-
based models, which answer the need to take into account the heterogeneity of agents.  

Expert elicitation 

The first approach, expert elicitation, has been used to tackle deep uncertainty by 
estimating likelihoods on the basis of expert judgments. This method has two advantages: first, it 
has been argued that the human brain is capable of handling more complexity than integrated 
assessment models, which can never hope to include all relevant factors (Morgan, 2014). Second, 
the elicitation of individual expert judgments may provide a better reflection of the underlying 
uncertainties than consensus reviews (Zickfeld et al., 2007). Most of the applications of this 
method in the field of climate change have concerned the threat of catastrophes; these include 
the collapse of the Atlantic Meridional Overturning Circulation (Zickfeld et al., 2007), future sea 
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level rise from ice sheets (Bamber & Aspinall, 2013), the likelihood of tipping points (Lenton et 
al., 2008) and the strength of the permafrost carbon feedback (Schuur et al., 2013). Pindyck 
(2016) suggests that instead of relying on IAMs to project future economic impacts of climate 
change, we should rely on expert opinion to elucidate the likelihood of a catastrophe (which is, in 
the end, the major determinant of the economic value of mitigation). There are several limitations 
to this method: the first one lies in the fact that the potential pool of experts for these types of 
survey is extremely small; second, the likelihood assessments provided by these experts might 
be constructed in very different ways, from heuristic methods to model simulations; third, though 
representative of the range of beliefs about the likelihoods of catastrophic climate change, the 
aggregated results of the survey cannot be treated as a consensus probability distribution (Arnell, 
Tompkins, & Adger, 2005). Finally, the human brain has been shown to be prone to heuristics 
which can significantly influence judgments (Tversky & Kahneman, 1975).    

Closed-form analytical solutions 

A second approach has tried to provide similar, policy-relevant results to the ones 
provided by IAMs (e.g. the optimal level of mitigation or the social cost of carbon), but using 
closed-form analytical formulae. IAMs are often criticised for their lack of transparency and the 
fact that they operate as “black boxes”. There are two prominent examples in the recent literature. 
Golosov et al. (2014) found that, under a certain set of assumptions, the calculations leading to 
the optimal carbon tax in a dynamic stochastic general equilibrium model could be synthetized 
into a closed-form analytical formula. The main advantage of this solution lies in the fact that it 
only depends on a few basic parameters, namely, assumptions on discounting, a measure of 
expected damages and how fast emitted carbon leaves the atmosphere. Moreover, it should be 
palatable to policy-makers, as its simplicity makes it easy to understand and its outcome does not 
rely on calculations happening behind the scenes. A similar approach was used by van den 
Bijgaart et al. (2016), who derived a closed-form analytical solution for the social cost of carbon. 
The authors compared the performance of their formula against the DICE IAM and found that 
their formula predicts the outcome from DICE without quantitatively significant systematic bias.  
    

Dynamic stochastic general equilibrium models 

A third approach has tried to improve the treatment of uncertainty by combining IAMs 
with Dynamic Stochastic General Equilibrium (DSGE) methods. For instance, Traeger (2014) 
transformed DICE into a recursive dynamic programming model, so as to be able to incorporate 
stochastic shocks, persistent uncertainty and Bayesian learning. The main advantage of DSGE 
models is that they enable a more thorough integration of uncertainty but they are usually 
computationally intensive and rely on the assumption of forward-looking fully-informed 
maximising agents (Farmer et al., 2015). 

Agent-based models  

The final approach has aimed at going beyond the “representative household” 
assumptions underlying IAMs, by enabling a more flexible and realistic characterization of socio-
economic systems through the inclusion of interactions between a large number of 
heterogeneous agents  (Farmer et al., 2015). Other advantages of agent-based models (ABMs) are 
that they allow a broader perspective on policy effectiveness and efficiency, the analysis of 
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additional instruments (e.g. diffusion of information and lifestyles), and addressing 
Schumpeterian competition (through innovation, rather than price competition). It has been 
argued that the use of ABM would be especially salient in the context of climate change, as 
population groups are expected to be impacted differently by the opportunities and threats posed 
by mitigation policies (S. Moss, Pahl-Wostl, & Downing, 2001). However, the use of ABMs comes 
at the cost of considerable computational needs and they usually require the empirical estimation 
of a significant number of parameters.  

6. Dissertation outline 

The second chapter of my PhD, titled “The climate beta”, and co-written with Pr. Simon 
Dietz and Pr. Christian Gollier, investigates the discount rate that should be applied to mitigation 
projects through the prism of the climate beta, i.e. the correlation between the returns of a 
mitigation project and future consumption growth. We start by exploring analytical properties of 
the climate beta, before estimating it numerically using the Integrated Assessment Model DICE. 
The fact that I had to code DICE from scratch in Matlab gave me a sound understanding of the 
calculations going on in the “black box” and made me aware of the considerable structural and 
parameter uncertainties which underlie these models. Given that our analysis examines the 
impact of uncertainty about the climate beta, I also had to find sensible probability distribution 
functions for ten key uncertainties, including the rate of CO2 uptake by the ocean, the notion of 
equilibrium climate sensitivity and the curvature of the damage function, which provided me with 
both a wide and a precise knowledge of climate change uncertainties. 

Delving into the notion of equilibrium climate sensitivity made me reflect on the crucial 
role played by feedbacks in the response of the Earth’s climate to an increase in radiative forcing, 
which led me to the third chapter of my PhD: “Estimating the economic impact of the permafrost 
carbon feedback”. In this chapter, I explore the impact of integrating the permafrost carbon 
feedback in the Integrated Assessment Model DICE.  The complexity came from finding a simple 
and yet informative representation of this biogeophysical feedback, which could be incorporated 
in DICE so as to assess its potential impact on the social cost of carbon and the optimal climate 
policy.  

I found that incorporating the PCF in DICE had a non-negligible impact on the social cost 
of carbon but I also came to the cruel realization that, although irreversible, the PCF would not 
matter much to policy-makers now because most of the impacts will be felt globally and in the 
long distant future. I also came across the literature on the “New Climate Economy” (Dell et al., 
2014) and noticed that changes in weather patterns were most often analysed independently 
from each other. For that reason, I decided to focus instead on near-term economic impacts, to 
switch tools from climate models to econometrics based on historical weather data, and to change 
scope from the global to the local and from the very long-term to the current period. Chapter 4, 
titled “What are the impacts of droughts on economic growth? Evidence from U.S. states” thus 
applied panel data methods to historical weather data to estimate the economic impact of changes 
in the duration and intensity of droughts on U.S. states’ economic growth. I also tried to apply the 
compound events framework, which I had come across in a statistics paper, to this econometric 
setting.  
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 It was then only a small step to go from assessing the economic impacts of climate change 
to the policy impacts of climate change. The fifth chapter of my PhD, co-written with Pr. Simon 
Dietz and Dr. Alex Bowen, and titled “Climate shocks, inflation and monetary policy: The global 
experience since 1950” is indeed the only one which analyses how climate change influences 
human behaviour through policy-making. It employs similar econometric methods to those in 
Chapter 4 and makes use of panel data analysis to investigate how changes in temperature and 
precipitation patterns impact inflation rates, and, in turn, influence central banks’ decisions to 
increase or decrease policy interest rates. In a sense, this paper is not only closing my PhD but is 
also closing the loop between the climate system, the economy and policy.
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Chapter 2: The climate beta 

Abstract 

How does climate-change mitigation affect the aggregate consumption risk borne by 
future generations? In other words, what is the ‘climate beta’? In this paper we argue using a 
combination of theory and integrated assessment modelling that the climate beta is positive and 
close to unity for maturities of up to about one hundred years. This is because the positive effect 
on the climate beta of uncertainty about exogenous, emissions-neutral technological progress 
overwhelms the negative effect on the climate beta of uncertainty about the carbon-climate-
response, particularly the climate sensitivity, and the damage intensity of warming. Mitigating 
climate change therefore has no insurance value to hedge the aggregate consumption risk borne 
by future generations. On the contrary, it increases that risk, which justifies a relatively high 
discount rate on the expected benefits of emissions reductions. However, the stream of 
undiscounted expected benefits is also increasing in the climate beta, and this dominates the 
discounting effect so that overall the net present value of carbon emissions abatement is 
increasing in the climate beta. 

1. Introduction 

Because most of the benefits of mitigating climate change arise in the distant future, the 
choice of the rate at which these benefits should be discounted is a crucial determinant of our 
collective willingness to reduce emissions of greenhouse gases. The discount rate controversy 
that has emerged in economics over the last two decades shows that there is still substantial 
disagreement about the choice of this parameter for cost-benefit analysis. One source of 
controversy comes from the intrinsically uncertain nature of these benefits. It is a tradition in 
economic theory and finance to adapt the discount rate to the risk profile of the flow of net 
benefits generated by the policy under scrutiny. The underlying intuition is simple. If a policy 
tends to raise the collective risk borne by the community of risk-averse stakeholders, this policy 
should be penalised by increasing the discount rate by a risk premium specific to the policy. On 
the contrary, if a policy tends to hedge collective risk, this insurance benefit should be 
acknowledged by reducing the rate at which expected net benefits are discounted, i.e. by adding 
a negative risk premium to the discount rate. 

This simple idea can easily be implemented through the Consumption-based Capital Asset 
Pricing Model (CCAPM) of Lucas (1978). An investment raises intertemporal social welfare if and 
only if its Net Present Value (NPV) is positive, where the NPV is obtained by discounting the 
expected cash flow of the investment at a risk-adjusted rate. This investment-specific discount 
rate is written as 

𝑟 = 𝑟 +  𝛽𝜋 
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Where rf is the risk-free rate, π is the systematic risk premium and β is the CCAPM beta of the 
specific investment under scrutiny. It is defined as the elasticity of the net benefit of the 
investment with respect to a change in aggregate consumption. This means that a marginal 
project, whose net benefit is risky but uncorrelated with aggregate consumption, should be 
discounted at rf, because implementing such a project has no effect at the margin on the risk borne 
by the risk-averse representative agent. A project with a positive β raises collective risk and 
should be penalised by discounting its flow of net benefits at a higher rate, and vice versa for a 
project with a negative β. 

The objective of this paper is not to offer a new contribution to the debate about the choice 
of the risk-free rate, or of the systematic risk premium: there have been many of these in the 
recent past (see Kolstad et al. (2014) for a recent summary). Rather, the aim of this paper is to 
discuss the CCAPM β that should be used to value climate-mitigation projects. This ‘climate β’ 
should play an important role in the determination of the social cost of carbon (i.e. the present 
social value of damages from incremental carbon emissions), just as an asset β is known to be the 
main determinant of the asset price. Indeed, in the United States over the last 150 years, financial 
markets have exhibited a real risk-free rate of around 1.6% and a systematic risk premium of 
around 4.8 percentage points. Thus, assets whose CCAPM betas are respectively 0 and 2 should 
be discounted at very different rates of 1.6% and 11.2% respectively12. 

Howarth (2003) was one of the first to examine this question. He pointed out that the net 
benefits of climate-mitigation projects should be discounted at rf, provided those net benefits are 
certainty equivalents (thereby containing a risk premium). He went on to suggest that the climate 
β is negative, but did not offer detailed analysis to back up the suggestion13. Weitzman's Review 
of the Stern Review (2007a) also emphasised that the appropriate discount rate for climate-
mitigation projects depends on the correlation between mitigation benefits and consumption, 
although he did not offer detailed analysis of this correlation either. He was contributing to a 
debate about discounting in the wake of the Stern Review (Stern, 2007), in which some scholars’ 
views of what is an appropriate rate at which to discount mitigation benefits were in effect 
anchored against rf, while others were anchored against r for standard investments, such as a 
diversified portfolio of equities. As Weitzman pointed out, there is no guarantee the features of 
climate mitigation match either of these cases. 

Sandsmark and Vennemo (2007) provided the first explicit investigation of the climate β. 
They constructed a simplified climate-economy model, in which the only stochastic parameter 
represents the intensity of damages – the loss of GDP – associated with a particular increase in 
global mean temperature. Given this set-up, large damages are simultaneously associated with 
low aggregate consumption and a large benefit from mitigating climate change. Hence this model 
yields a negative climate β. Weitzman (2013) extended the idea that emissions abatement is a 
hedging strategy against macro-economic risk, invoking potential catastrophic climate change 
and its avoidance, while Daniel et al. (2016) also find a negative climate β in the more general 

                                                             
12 See Shiller's dataset: http://www.econ.yale.edu/_shiller/data.htm. 
13 Aalbers (2009) situated the climate β within a broader set of theoretical conditions, according to which climate-
mitigation investments might be discounted at a lower rate than other investments. 
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context of Epstein-Zin preferences, since their estimation of the social cost of carbon is increasing 
in the degree of risk aversion of the representative agent14. 

On the other hand, an alternative channel driving the climate β may exist. Nordhaus 
(2011) concludes from simulations with the RICE-2011 integrated assessment model (IAM) that 
“those states in which the global temperature increase is particularly high are also ones in which 
we are on average richer in the future.” This conclusion implicitly signs the climate β and is 
compatible with the following scenario. Suppose that the only source of uncertainty is exogenous, 
emissions-neutral technological progress, which determines economic growth. In this context, as 
long as growth is in some measure carbon-intensive, rapid technological progress yields at the 
same time more consumption, more emissions, more warming and, under most circumstances, a 
larger marginal benefit from reducing emissions. This would yield a positive correlation between 
consumption and the benefits of mitigation, i.e. a positive climate β. This channel is present in 
neither Sandsmark and Vennemo (2007) nor Daniel et al. (2016), because they assume a sure 
growth rate of pre-climate-damage production and consumption. 

In this paper, we provide an overarching analysis of the sign and size of the climate β, 
which encompasses the aforementioned two stories, as well as other drivers. Our analysis is in 
two complementary parts. First, we explore analytical properties of the climate β in a simplified 
model. As well as serving to develop intuition, the model allows us to explore the role of the 
structure of climate damages, in particular whether they are multiplicative, as standardly 
assumed, or additive. We then estimate the climate β numerically using a dynamic IAM with 
investment effects on future consumption. We perform Monte Carlo simulations of the DICE 
model, introducing ten key sources of uncertainty about the benefits of climate mitigation and 
future consumption. We use these simulations to estimate the climate β for different maturities 
of our immediate efforts to reduce emissions. We find that in our version of DICE the positive 
effect on β of uncertain technological progress dominates the negative effect on β of uncertain 
climate sensitivity and damages. Put another way, emissions reductions actually increase the 
aggregate consumption risk borne by future generations. This is in line with Nordhaus (2011), 
but our analysis advances the literature by quantifying the climate β explicitly. We also extend 
Nordhaus’ analysis in several ways: we treat TFP growth as a first-order autoregressive process, 
consistent with historical data; we treat the income elasticity of damages as uncertain, so 
damages are not necessarily multiplicative; and we include the possibility of catastrophic 
damages. 

In the next section we review β in the context of Lucas’ CCAPM and clarify how it relates 
to the NPV of a project. Section 3 describes our analytical model and its results. Section 4 
describes how we set up and run the DICE model in order to estimate the climate β. Section 5 sets 
out the results from our DICE simulations. The subsequent sections provide a discussion and 
some concluding comments. 

  

                                                             
14 Our paper sits within a large literature on uncertainty and climate policy (see Heal and Millner (2014), for a 
review). Recent papers relevant to our analysis include Bansal et al. (2016) and Lemoine (2015). 
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2. The CCAPM beta 

In this section, we derive the standard CCAPM valuation principles as in Lucas (Lucas, 1978) and 
obtain an important result, which means that the relationship between the climate β and the NPV 
of climate mitigation is very likely to be positive, the opposite of what one might have expected. 
Consider a Lucas-tree economy with a von Neumann-Morgenstern representative agent, whose 
utility function u is increasing and concave and whose rate of pure preference for the present is 
δ. Her intertemporal welfare at date 0 is: 

Equation 2.1 

𝑊 =  𝑒ିఋ௧

ஶ

௧ୀ

𝔼[𝑢(𝑐௧)] 

 
 
where ct measures her consumption at date t. Because ct is uncertain from date 0, it is a random 
variable. We contemplate an action at date 0, which has the consequence of changing the flow of 
future consumption to ct + Bt, t = 0, 1, …, where Bt is potentially random and potentially 
statistically related to ct. For small , the change in intertemporal welfare generated by this action 
is equivalent to an immediate increase in consumption by NPV, where NPV can be measured as 
follows:  

Equation 2.2 

𝑁𝑃𝑉 =   𝑒ିఋ௧𝔼𝐵௧

𝑢ᇱ(𝑐௧)

𝑢ᇱ(𝑐)
=  𝑒ି௧𝔼

ஶ

௧ୀ

𝐵௧

ஶ

௧ୀ

 

 
 
 
with 

Equation 2.3 

𝑟௧ =  𝛿 −
1

𝑡
ln

𝔼𝐵௧𝑢′(𝑐௧)

𝑢ᇱ(𝑐)𝔼𝐵௧
  

 
The right-hand side of Eq. 2.2 can be interpreted as the NPV of the action, where, for each maturity 
t, the expected net benefit 𝔼Bt is discounted at a risk-adjusted rate rt, which is in turn defined by 
Eq. 2.3. In order to simplify Eq. 2.3, we make three additional assumptions, which are in line with 
the classical calibration of the CCAPM model: 
 

1. For all states of nature, the elasticity of the net conditional benefit at date t with respect 
to a change in consumption at t is constant, so that there exists βt ∈ ℝ such that 𝔼[Bt|ct]= 
ct βt 

 
2. Consumption follows a geometric brownian motion with drift μ and volatility σ, so that xt 

= ln ct/c0 ∼ N(μt ,σ2t).  
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3. The representative agent has constant relative risk aversion γ, so that u’(ct)=ct-γ. 
 
This allows us to rewrite Eq. 2.3 as follows: 

Equation 2.4 

𝑟௧ =  𝛿 −
1

𝑡
ln

𝔼ൣ𝑒(ఉିఊ)௫൧

𝔼[𝑒ఉ௫]
 

 
We now use the well-known property that if x ∼ N(a ,b2), then for all k ∈ ℝ. [exp(kx)] = exp(ka + 

0.5k2b2). Applying this result twice in the above equation implies that  

Equation 2.5 

𝑟௧ =  𝛿 + (𝛽௧𝜇 + 0.5𝛽௧
ଶ𝜎ଶ) − [(𝛽௧ − 𝛾)𝜇 + 0.5(𝛽௧ − 𝛾)ଶ𝜎ଶ] = 𝑟 + 𝛽௧𝜋 

 
where the risk-free rate rf equals 

Equation 2.6 

𝑟 =  𝛿 + 𝛾𝜇 − 0.5𝛾ଶ𝜎ଶ 

 
and the systematic risk premium equals 

Equation 2.7 

𝜋 =  𝛾𝜎ଶ 
 
Observe that both the risk-free rate rf and the systematic risk premium π have a flat term 
structure in this framework. However, the risk-adjusted discount rate rt may have a non-constant 
term structure, which is homothetic in the term structure of βt. Therefore later in the paper we 
shall be interested in estimating the term structure (β1, β2, …) of the climate β. This can be done 
by observing that if [Bt|ct] = ct βt, then βt is nothing other than the regressor of ln Bt with respect 
to ln ct: 

Equation 2.8 

ln 𝐵௧ = 𝛽௧ ln 𝑐௧ + 𝜉௧  
 
where 𝑐௧  and ξt are independent random variables. We take 50,000 draws from a Monte-Carlo 
simulation of the DICE model to generate, for each maturity t, a series (ln Bit, ln cit, ), i = 1, 2, …, 50 
000, from which the OLS estimate of ln Bt on ln ct gives us the climate β associated with that 
maturity. 
 

Before turning to the modelling proper, we show an important result. Although a larger β 
implies a higher discount rate on project benefits, a larger β also raises the expected benefit 𝔼Bt 

to be discounted. Given the assumptions just set out, 

Equation 2.9 

𝔼𝐵௧ = 𝑐
ఉ𝔼𝑒ఉ௫ = 𝑐

ఉ𝑒(ఉఓା.ହఉ
మఙమ) 
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With constant β, 𝔼Bt is exponentially increasing in t when trend growth μ is positive. Moreover, 
the larger is βt, the larger is the growth rate of the expected benefit. The intuition is as follows. 
The elasticity of benefits with respect to changes in consumption has two reinforcing effects on 

𝔼Bt. First, if trend growth is rapid, highly elastic investments will benefit more from economic 
growth. Second, the benefit is a convex function of the growth rate xt of consumption. By Jensen's 
inequality, the uncertainty affecting economic growth raises the expected benefit. Because this 
convexity is increasing in the elasticity βt, this effect is increasing in βt. The combination of these 
two effects may dominate the discounting effect. Indeed, combining Eqs. 2.5 and 2.9 implies that 

𝑁𝑃𝑉 =   𝑐
ఉ𝑒𝑥𝑝ൣ൫−𝑟 + 𝛽௧(𝜇 − 𝛾𝜎ଶ) + 0.5𝛽௧

ଶ𝜎ଶ൯𝑡൧

ஶ

௧ୀ

 

 
This is increasing in βt if βt is larger than γ  (μ/σ2). This result is summarised in the following 
proposition: 
 

Proposition 1. Consider an asset with maturity-specific constant betas, i.e., an asset whose future 
benefit Bt|t≥0 is related to future aggregate consumption ct|t≥0 in such a way that for all t there exists 
βt ∈ ℝ such that [Bt|ct] = ct βt. Under the standard assumptions of the CCAPM, the value of this asset 
is locally increasing in βt if it is larger than the difference between relative risk aversion and the 
ratio of the mean by the variance of the growth rate of consumption. 

 
In the United States over the last century, we observed μ ≈ 2% and σ ≈ 4%  (Kocherlakota, 1996; 
Mehra, 2012). If we take γ = 2, this implies that γ  (μ/σ2) ≈  10.5. Alternatively, to acknowledge 
the equity premium puzzle, we might take γ = 10, so that we obtain γ  (μ/σ2) ≈  2.5. Because 
most actions yield βt larger than either of these two numbers, we conclude that the NPV of most 
investment projects is increasing in their CCAPM β. The intuition is that the mean growth rate of 
consumption has been so much larger than its volatility in the past that the effect of a larger β on 
the expected benefit is much larger than its effect on the discount rate, thereby generating a 
positive effect on NPV. 

3. A simple analytical model of the climate beta 

In this section we derive the climate β from a simple analytical model. As well as helping 
to formalize notions of what determines the climate β, we also use the model to make an 
important point about the role of the structure of climate damages, specifically what difference it 
makes to the climate β that damages are multiplicative in most models such as standard DICE, as 
opposed to additive.  

Let us consider any specific future date t, and let Y represent global economic output within 
the period [0, t] in the absence of climate damages. Over time scales from a decade to centuries, 
important recent papers in climate science have shown that (a) the increase in the global mean 
temperature T is approximately linearly proportional to cumulative carbon dioxide emissions 
(Allen et al., 2009; Goodwin, Williams, & Ridgwell, 2015; H. D. Matthews, Gillett, Stott, & Zickfeld, 
2009; Zickfeld, Eby, Matthews, & Weaver, 2009) and (b) the warming response to an emission of 
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carbon dioxide is virtually instantaneous, and then constant as a function of time (Eby et al., 2009; 
Held et al., 2010; H. D. Matthews & Caldeira, 2008; Ricke & Caldeira, 2014; Shine, Fuglestvedt, 
Hailemariam, & Stuber, 2005; Solomon, Plattner, Knutti, & Friedlingstein, 2009). This enables us 
to write: 

Equation 2.10 

𝑇 =  𝜔ଵ𝐸 
 

where E stands for cumulative industrial CO2 emissions from 0 to t and ω1 is a parameter called 
the carbon-climate response (CCR)15, combining the response of the carbon cycle to emissions 
and the temperature response to atmospheric carbon. More complex models like DICE deal with 
these components separately. Emissions of CO2 are themselves proportional to pre-damage 
production, so that: 

Equation 2.11 

𝐸 =  𝜔ଶ𝑌 − 𝐼 
 
where ω2 parameterises the carbon intensity of production, and I0 is an investment to reduce 
emissions at the margin.  
 

We assume the damage index D is proportional to increased temperature T at some power 
k: 

Equation 2.12 

𝐷 =  𝛼𝑇  
 
where α calibrates the damage function. Parameter k turns out to play an important role in the 
determination of the climate β in this model. It is widely believed that there is a convex 
relationship between climate damages and warming, i.e. k > 1. 
  

At this stage, let us remain quite general about the way to model the interaction between 
the damage index D and the index of economic development Y: 

Equation 2.13 

𝑄 = 𝑞(𝑌, 𝐷) 
 

where Q is post-damage aggregate output and q is a bivariate function, which is increasing in Y 
and decreasing in D, with Q(Y,0) = Y for all Y. If c ∈ (0, 1] is the propensity to consume output in 
period t, then the model yields the following reduced form: 

Equation 2.14 

𝐶(𝐼) = 𝑐𝑞ൣ𝑌, 𝛼𝜔ଵ
(𝜔ଶ𝑌 − 𝐼)൧ 

 

                                                             
15 The Intergovernmental Panel on Climate Change has also called it the Transient Climate Response to Cumulative 
Carbon Emissions or TCRE (Collins et al., 2013). 
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We consider the β of a marginal emissions reduction project. The benefit or cash flow of the 
project is: 

Equation 2.15 

𝐵 ≡  
𝜕𝐶

𝜕𝐼
|ூబୀ =  −𝑐𝜔ଶ

ିଵℎ𝑌ିଵ𝑞(𝑌, ℎ𝑌) 

 
with h = αω1kω2k. To sum up, our model characterises the statistical relationship between future 
consumption C = C(0) and future benefits B as a function of a set of uncertain parameters, such as 
Y and ω1. This system is given by the following two equations: 
 

Equations 2.16 

ln 𝐵 = ln (𝑐𝜔ℎ) + (𝑘 − 1) ln 𝑌 + ln[−𝑞(𝑌, ℎ𝑌)] 
 
 

ln 𝐶 = ln 𝑐 + ln 𝑞(𝑌, ℎ𝑌) 
 
How does β respond to the various uncertainties in this model? We proceed one by one through 
each of the key sources of uncertainty16.  
 
The climate β when the main source of uncertainty is related to exogenous economic growth 
 
Suppose the only source of uncertainty is exogenous, emissions-neutral technological progress, 
captured in this simplified model by pre-damage production Y. Then a local estimation of β can 
be obtained by differentiating the system 2.16 with respect to Y: 

Equation 2.17 

𝛽 =
𝑑 ln 𝐵 /𝑑𝑌

𝑑 ln 𝐶 /𝑑𝑌 
≈

𝑞

𝑞

(𝑘 − 1)𝑞 + 𝑌𝑞 + 𝐷𝑞

𝑌𝑞 + 𝑘𝐷𝑞
 

 
where q and its partial derivatives appearing in this equation are evaluated at (Y, hYk). This 
approximation, which is based on the Taylor expansion, is exact when the uncertainty affecting Y 
is small.  
 

We calibrate this equation by considering two alternative damage models. In IAMs like 
standard DICE, damages are assumed to be multiplicative – proportional to Y – which implies that 
for instance doubling income also doubles absolute climate damages, all else being equal. We can 
represent this class of model with the function: 
                                                             
16 It can be seen that, in fact, the CCAPM climate β is not constant in this model. In other words, log climate damages 
are not linear in log consumption, plus white noise (Eq. 2.8). Therefore the risk-adjusted discount rate r = rf + βπ holds 
only as an approximation. In reality, the true climate β is stochastic and correlated with economic growth. Recent 
developments in the finance literature initiated by Jagannathan and Wang (1996) have focused on the impact of 
stochastic betas on equilibrium asset prices, however the literature is yet to reach the stage where such an extension 
could be implemented here. In our numerical modelling with DICE, we allow the climate β to be sensitive to maturity, 
and we are also able to show that at a given date t the relationship between log benefits and log consumption in DICE 
is linear. 
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𝑞(𝑌, 𝐷) = 𝑌(1 − 𝐷) 

 
where D is expressed in percentage points of aggregate income. In this context, Eq 2.17 simplifies 
to: 

Equation 2.18 

𝛽 ≈
𝑘(1 − 𝐷)

1 − (𝑘 + 1)𝐷
 

 

Table 2.1: Calibration of the climate β using Eq. 2.18 when the source of uncertainty is exogenous emissions-neutral 
technological progress.  

 k = 0.5 k = 1 k= 2 k = 3 
D = 1% 0.50 1.01 2.04 3.09 
D = 3% 0.51 1.03 2.13 3.31 
D = 5% 0.51 1.06 2.24 3.56 
D = 10% 0.53 1.13 2.57 4.50 
D = 20% 0.57 1.33 4.00 12.00 

Notes: If instead Eq. 2.20 is used, subtract one from all cells. 

In Table 2.1, we compute the climate β derived from this formula for reasonable values of 
k and D. It is uniformly positive. Moreover, observe that for damage of less than 5% of GDP17, the 
climate β can be approximated by k. In other words, when the main source of uncertainty is 
emissions-neutral technological progress, the climate β is approximately equal to the elasticity of 
climate damage with respect to the increase in global mean temperature. The consensus in the 
damages literature is that k > 1, which implies that the climate β > 1, based on this source of 
uncertainty. What is the intuition behind this result? It is simply that faster technological progress 
serves as a positive shock to output and consumption, which in turn leads to higher emissions 
(assuming ω2 > 0, i.e. provided production is not carbon-free), higher total damages from climate 
change and higher marginal damages, thus higher benefits from emissions abatement. Future 
climate benefits of mitigation and future consumption are positively correlated.  

Obviously, the fact that damages are assumed to be proportional to pre-damage aggregate 
income Y plays an important role in this calibration. It is a built-in mechanism towards a positive 
β. Let us therefore consider an alternative, additive damage structure with 

𝑞(𝑌, 𝐷) = 𝑌 − 𝐷 

where D measures the absolute level of damages expressed in consumption units18. In other 
words, for given warming, doubling pre-damage income has no effect on absolute climate 
damage. However, the above intuition still applies: increasing income/production results in an 
increase in emissions as long as ω2 > 0, which in turn increases temperature and marginal climate 
damages, if the damage function (Eq. 2.12) is convex. So the benefit of mitigation is increased 

                                                             
17 The literature on the total economic cost of climate change indicates that it might be at most 5% of GDP when T = 
3°C (IPCC, 2014; Tol, 2009). 
18 The damage function (Eq 2.12) parameter α would need to be recalibrated in order to yield the same absolute 
damages as in the multiplicative case, for given warming. 
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accordingly. What difference then does the additive structure make? When the only source of 
uncertainty is Y, 

Equation 2.19 

𝛽 ≈
(𝑘 − 1)(𝑌 − 𝐷)

𝑌 − 𝑘𝐷
 

It is interesting to compare Eqs. 2.18 and 2.19, i.e. our estimates of β under multiplicative and 
additive damages respectively. These two equations are not immediately comparable in fact, 
because D is expressed in percentage points in the former and in consumption units in the latter. 
If we express the damage in Eq. 2.19 in percentage points, D% = D/Y, it can be rewritten as 

Equation 2.20 

𝛽 ≈
(𝑘 − 1)(1 − 𝐷%)

1 − 𝑘𝐷%
 

Eq. 2.20 is now directly comparable with Eq. 2.18 and it is clear that the difference lies in replacing 
k in 2.18 with k  1 in 2.20. Thus, the numbers in Table 2.1 also apply in the additive case, except 
that all betas appearing in this table should be reduced by 1. This means that β < 0 when k = 0.5. 
We summarise these results in the following proposition:  

Proposition 2. Suppose that the main source of uncertainty is emissions-neutral technological 
progress, and that climate damages are small (D ≤ 5%). Then in (a) the multiplicative case, the 
climate β can be approximated by k, the elasticity of climate damages with respect to warming. In 
(b) the additive model, the climate β can be approximated by k − 1.  

Conversely when climate damages are large, there is no short-cut to using Eqs. (2.18) and (2.20) 
in the multiplicative and additive cases respectively to estimate the climate β. Either way, our 
analysis shows the classical multiplicative model of climate damages has a built-in mechanism 
towards producing a positive climate β, which is dampened in the additive model. In fact, our 
analysis shows that there are two independent channels that generate a positive β in the 
multiplicative case:  

 convexity effect: An increase in Y results in higher cumulative emissions E. This in turn 
increases marginal climate damage – thus the marginal benefit of mitigation – if the 
damage function (Eq 2.12) is convex, i.e. if k > 1;  

 proportionality effect: An increase in Y raises damages directly if damages are 
proportional to Y. 

We believe that these two explanations for a positive β in this context have their own merit. The 
bottom line is that the climate β is positive in this context.  

The climate β when the main source of uncertainty is related to the carbon-climate-response 
and/or the damage intensity of warming  

By contrast, let us now suppose that the only source(s) of uncertainty are the CCR parameter ω1 
and/or the damage intensity of warming α. Differentiating the system (2.16) with respect to ω1 
we obtain 
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Equation 2.21 

𝛽 ≈
𝑑 ln 𝐵 𝑑𝜔ଵ⁄

𝑑 ln 𝐶 𝑑𝜔ଵ⁄
=

𝑑 ln 𝐵 𝑑𝛼⁄

𝑑 ln 𝐶 𝑑𝛼⁄
=

𝑞

𝑞

𝑞 + 𝐷𝑞

𝐷𝑞
 

where q and its partial derivatives appearing in this equation are again evaluated at (Y, hYk). The 
approximation is exact when the uncertainty affecting ω1 is small. Exactly the same expression 
for β is obtained when assuming that α rather than ω1 is uncertain, as examined by Sandsmark 
and Vennemo (2007) and Daniel et al. (2016). Therefore Eq. 2.21 shows how uncertainty about 
the CCR and the damage intensity of warming affect the climate β. Observe that in both the 
multiplicative and additive models, qDD = 0, so that this equation simplifies to: 

Equation 2.22 

𝛽 ≈
𝑞

𝐷𝑞
 

which is unambiguously negative. The intuition for this result is that a higher CCR results in more 
warming for given cumulative carbon emissions, which in turn yields at the same time higher 
marginal damage and lower aggregate consumption. Therefore, the uncertainty affecting the CCR 
results in a negative correlation between B and C, and a negative climate β. Similarly, a higher 
damage intensity of warming results in greater damages for given emissions, and so on.  

Proposition 3.  The climate β is unambiguously negative when the main sources of uncertainty 
are the carbon-climate response and/or the damage intensity of warming.  

This result is independent of whether climate damages are additive or multiplicative in relation 
to aggregate consumption. For example, in the multiplicative case q = Y(1  D) , the climate β is 
approximately equal to −(1 − D)/D. The same approximation holds in the additive case19. If we 
expect climate damage of around 5% of GDP, we should use a climate β of around 19. There is 
also an explanation for why the climate β is so large in absolute value in this context. Take the 
limiting case ω1= 0 as a benchmark and examine the impact of a marginal increase in its value. 
This will have a marginal (negative) effect on log consumption, but an unbounded effect on the 
marginal log benefit, since the initial benefit is zero. In other words, fluctuations in ω1 yield 
limited relative fluctuations in consumption, but wild relative fluctuations in marginal benefits. 
This yields a large β in absolute value.  

Overall, this analysis illustrates that uncertainty about technological progress on the one 
hand and about the carbon-climate response and damage intensity of warming on the other hand 
most likely have contrasting effects on the climate β, the former positive, the latter two negative. 
This explains the contradictory conclusions that can be found in the literature. Sandsmark and 
Vennemo (2007) and Daniel et al. (2016) propose models, in which there is no macro-economic 
uncertainty independent of climate change. Sandsmark and Vennemo (2007) concluded that 
fighting climate change has a negative CCAPM β. Daniel et al. (2016) corroborate the result of 
Sandsmark and Vennemo (2007), by showing that the social cost of carbon is increasing in risk 
aversion in their model. But Nordhaus (2011) contradicts these conclusions by modelling 
benefits of mitigation that are positively correlated with aggregate consumption. We propose that 

                                                             
19 Indeed, assuming q = Y  D, Eq. 2.21 yields β ≈ − (Y − D)/D. This is equal to − (1 – D%)/ D%, where D% = D/Y is the 
damage expressed as a fraction of Y. 
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this contradiction rests in the fact that the Monte-Carlo simulations in Nordhaus (2011) include 
a source of uncertainty about emissions-neutral technological progress, and it can also be 
attributed in part to the fact that DICE/RICE deploys a multiplicative damage structure.  

4. Estimating beta with DICE  

We now develop estimates of the β of CO2 emissions abatement using a modified version 
of William Nordhaus’ well-known DICE model. The advantages of using an IAM include: we can 
obtain more empirically grounded estimates of the climate β, albeit the empirical basis of IAMs 
has been criticised (e.g. Stern (2013); Pindyck (2013)); we can obtain estimates of the term 
structure of β; and DICE can incorporate a broader range of uncertainties than our analytical 
model. Another advantage is that DICE is a dynamic model, in which future consumption depends 
in part on current output through current savings and investment. This introduces a new set of 
effects on the β, which we describe below. We can also generalise the form of the damage function, 
so that we can consider the pure multiplicative and additive cases, as well as cases between and 
beyond these. Naturally the disadvantage of using an IAM is that the workings of the model are 
less transparent. 

Table 2.2: Uncertain parameters of modified DICE-2013R 

Parameter Functional 
form 

Mean Standard 
deviation 

Source Effect on β 
(likely) 

Initial trend growth rate of TFP 
(per year) g0A 

Normal 0.016 0.009 Maddison project 
and other sources 

(see text) 

+ 

TFP shock (per five years)  Normal 0 0.06 Maddison project 
and other sources 

(see text) 

+ 

Asymptotic global population 
(millions) 

Normal 10 854 1 368 United Nations 
(2013) 

- 

Initial rate of decarbonisation 
(per year) 

Normal -000102 0.0064 IEA (2013) (+) 

Price of back-stop technology 
in 2050 US$/tCO2 (2010 
prices) 

Log-normal 260 51 Edenhofer et al. 
(2010) 

+ 

Uptake of atmospheric carbon 
by the upper ocean and 
biosphere (per five years) 

Normal* 0.06835 0.0202 Ciais et al. (2013) (-) 

Climate sensitivity °C per 
doubling of atmospheric CO2 

Log-
logistic** 

2.9 1.4 IPCC (2013) (-) 

Damage function coefficient α2 
(% GDP) 

Normal 0.0025 0.0006 Tol (2009)*** (-) 

Damage function coefficient α3 
(% GDP) 

Normal 0.082 0.028 Dietz and Asheim 
(2012) 

(-) 

Income elasticity of damages ξ Normal 1 0.33 Anthoff and Tol 
(2012) 

(+) 

Notes: * Truncated from above at 0.1419. **Truncated from below at 0.75. ***Including corrigenda published in 2014. 

DICE couples a neo classical growth model to a simple climate model. Output of a 
composite good is produced using aggregate capital and labour inputs, given exogenous total 
factor productivity (TFP). However, production also leads to CO2 emissions, which are an input 
to the climate model, resulting in an increase in the atmospheric concentration of CO2, radiative 
forcing of the atmosphere and an increase in global mean temperature. The climate model is 
coupled back to the economy via a damage function, which is a reduced-form polynomial equation 
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associating an increase in temperature with a loss in utility, expressed in terms of equivalent 
output.  

Our analysis is based on the 2013 version of the model (Nordhaus & Sztorc, 2013). We 
randomise ten parameters to estimate the climate β (details in Table 2.2). These parameters 
represent key uncertainties at all stages in the (circular) chain of cause and effect that links 
baseline economic and population growth with CO2 emissions, the climate response to emissions, 
damages and the costs of emissions abatement. Our parameter selection is informed by, but 
extends, past studies with DICE, which provide evidence on the most important uncertainties 
(Anderson, Borgonovo, Galeotti, & Roson, 2014; Dietz & Asheim, 2012; Nordhaus, 2008). 

We implement a CO2 emissions reduction project by removing one unit of industrial 
emissions in 201520. For reasons of computational tractability, we assume that the marginal 
propensity to save is exogenous and we use Nordhaus'(2013) time series of values, whereby the 
savings rate is always c. 0.23 − 0.24. Previous research (Golosov, Hassler, Krusell, & Tsyvinski, 
2014; Jensen & Traeger, 2014), as well as our results below, indicate that endogenous savings 
decisions would not have a major effect on the results. We take a large Latin Hypercube Sample 
of the parameter space, which has the advantage of sampling evenly from the domain of each 
probability distribution, with 50,000 draws. The parameter distributions are assumed 
independent. 

Most of the technical details of the parameter scheme are relegated to the Supplementary 
Material. However, we make two changes to the structure of standard DICE that are worth 
detailing here. 

TFP growth 

 As a neo classical growth model, DICE allocates to TFP the portion of output that cannot 
be explained by capital and labour inputs at their assumed elasticities (0.3 and 0.7 respectively). 
It follows that TFP growth plays a very significant role in determining GDP growth and therefore 
future consumption and CO2 emissions (Kelly & Kolstad, 2001). As discussed in the climate beta, 
the effect on β of variation in TFP growth should be positive.  

In DICE, the equation of motion for TFP is 

𝐴௧ = 𝐴௧(1 + 𝑔௧
) 

where A is TFP and gA is the growth rate of TFP.  

We depart from standard DICE, however, in how we specify the evolution of gtA so that we 
can distinguish two sources of TFP uncertainty. In particular, we assume that gtA evolves 
according to a transformed first-order autoregressive process with an uncertain trend: 

Equation 2.23 

𝑔௧
 =  [(1 − )𝑔

 + 𝑔௧ିଵ
 + ௧](1 + 𝛿)ି௧ 

                                                             
20 This amounts to one gigatonne of CO2 (Gt CO2). Since the atmospheric concentration of CO2 in 2015 is estimated by 
DICE to be c. 31.67GtCO2, it may indeed be regarded as a marginal reduction, consistent with the definition of β given 
above. 
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Where g0A is the uncertain trend growth rate, ε is an independent and identically distributed 
(i.i.d.) normal shock and ψ is the coefficient of persistence of shocks, which is assumed 
certain/fixed. This AR(1) process is multiplied by the factor (1 + δA)-t , which is a feature of 
standard DICE. The parameter δA is an assumed rate of decline of TFP growth. It is several times 

smaller than the expected value of g0A   21.  

We estimate g0A,  and  using data on historical TFP growth. Since we are forecasting 
more than two centuries into the future, we want a very long-run series of historical TFP growth, 
so we use data from the US and UK over the period 1820–2010, compiled from multiple sources22. 
The coefficient of persistence in this time series is ψ = 0.42. The estimates of g0A and ε can be 
found in Table 2.223. 

Damage function  

Damages are one of the most contestable elements of IAMs. By virtue of its accessibility 
and simplicity in this regard, DICE has become the common means to give expression to 
competing views. Much of the debate stems from the inability to constrain a reduced-form 
damage function at warming of more than 3°C, due to the lack of underlying studies. Antipodes in 
the literature are given by the traditional quadratic form of Nordhaus (2008, 2013) and the 
damage function proposed by Weitzman (2012), in which damages are much more convex with 
respect to warming. However, the curvature of the damage function is not the only issue. As the 
previous section showed, the climate β also depends on the income elasticity of damages. 

Our damage function takes the following flexible form: 

𝐷௧ = 𝑌௧ ቈ1 −
1

1 + 𝛼ଵ𝑇௧ + 𝛼ଶ𝑇௧
ଶ + (𝛼ଷ𝑇௧)

 ൬
𝑌௧

𝑌
൰

కିଵ

 

where D is damages as a percentage of GDP, Y is pre-damage output, αi, i ∈ (1, 2, 3), are coefficients 
and ξ is the income elasticity of damages (following the specification in van den Bijgaart et al. 
(2016). If ξ = 1 then the damage function is multiplicative like standard DICE, whereas if ξ = 0 it 
is additive. 

We specify both α2 and α3 as random parameters (α1 = 0 as usual). The former coefficient 
enables us to capture uncertainty about damages that is represented by the spread of existing 
estimates at warming of 2-3°C (summarised in Tol (2009)24. The coefficient α3 may be calibrated 
so as to capture the difference in subjective beliefs of modellers about how substantial damages 
may be at higher temperatures (given there are virtually no existing estimates). We follow Dietz 
and Asheim (2012) in specifying a normal distribution for α3 that spans existing suggestions: at 

                                                             
21 Standard DICE simply assumes that gtA = g0A (1 + δA)-t. Nordhaus (2008) and Dietz and Asheim (2012) randomised 
g0A in this structure, meaning that all the uncertainty about future TFP stems from the initial trend and that this 
uncertainty is very large. 
22 Bolt and Van Zanden (2013); US Census Bureau; US Bureau of Economic Analysis; Feinstein and Pollard (1988); R. 
C. O. Matthews, Feinstein, and Odling-Smee (1982).We would like to acknowledge the help of Tom Mc Dermott and 
Antony Millner in collecting these data, although the resulting estimates are our responsibility. 
23 In terms of whether the historical time series conforms with an AR(1) process, we fail to reject the null hypothesis 
that there is no serial correlation in εt, using both Durbin's alternative test and the Breusch-Godfrey test. Based on the 
Ljung-Box portmanteau test, we reject the null hypothesis that εt is white noise, however further inspection of the time-
series of εt indicates that the heteroskedasticity is caused by noisy data around World War II, rather than a secular 
trend. 
24 α2 is also equivalent to the stochastic parameter in the model proposed by Sandsmark and Vennemo (2007). 
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three standard deviations above the mean total damages approximate Weitzman (2012), while 
at three standard deviations below the mean they approximately reduce to standard quadratic 
damages. 

Empirical evidence to directly inform ξ is limited to a study by Anthoff and Tol (2012), 
which used the FUND IAM to estimate ξ disaggregated by region and impact type. Other IAMs like 
standard DICE cannot be used to estimate ξ, because of course they assume a multiplicative 
structure. The estimates in Anthoff and Tol (2012) suggest that ξ is normally distributed and 
centred around the multiplicative case (ξ = 1). 

Since α2 and α3 determine the damage intensity of warming, the main effect of an increase 
in one or both will be a decrease in β, for a given path of output (cf. Proposition 3). However, 
unlike the simple model of the previous section, the path of output is not given in a dynamic 
economy like that of DICE. Instead, when higher damages at time t reduce output at t, there is a 
knock-on, negative effect on investment at t, which reduces pre-damage output at future times25. 
All else being equal, this negative effect on future pre-damage output will reduce future 
emissions, damages and the benefits of mitigation. Therefore the direction of the overall main 
effect of an increase in α2 and α3 on β cannot be determined a priori. Nonetheless, we might 
suppose the direct negative effect on β dominates. In addition to the main effect of α2 and α3 on β, 
they likely interact with other uncertainties. In particular, the previous section showed that the 
effect of uncertainty about emissions-neutral technological progress on β is more positive, the 
higher is the curvature of the damage function. 

The main effect on β of variation in ξ is similar. For a given output path, an increase in ξ 
results in an increase in damages, hence a decrease in consumption and an increase in the benefits 
of mitigation. This decreases β, but again the output path is not given. The previous section 
showed that ξ has an important interaction effect too: we would expect the positive effect of TFP 
uncertainty on β to be larger, the higher is ξ. 

Effect on β of remaining uncertainties  

In addition to our treatment of TFP growth and damages, here is a brief summary of how 
each of the other uncertain parameters in Table 2.2 is expected to affect the climate β. 

 Since DICE has a neoclassical (Cobb-Douglas) production function, an increase in 
population growth reduces capital intensity and hence pre-damage output per capita. But 
although β depends on consumption and benefits measured on a per-capita basis (see The 
CCAPM beta), the effect of population growth on the aggregate scale of the economy also 
matters. A faster-growing population means a bigger economy on aggregate, higher 
emissions and higher total and marginal damages. This reduces post- damage 
consumption per capita and raises the benefits of mitigation. Therefore, population 
growth should have a negative effect on β. 

 While growth in CO2 emissions is proportional to growth in GDP in IAMs like DICE, the 
proportion is usually assumed to decrease over time due to structural change away from 
carbon-intensive production sectors and decreases in emissions intensity in a given 
sector. These are baseline trends, i.e. achieved without the imposition by a planner of a 

                                                             
25 We can be sure of this, since the marginal propensity to save is exogenous. 
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price/quantity constraint on emissions. A priori, variation in the rate of decarbonisation 
has an ambiguous effect on β. For a given path of output, an increase in the rate of 
decarbonisation reduces the benefits of mitigation, because it lowers emissions and hence 
total and marginal climate damages. But lower damages increase current income and 
hence they increase capital investment, future consumption, emissions and damages. So 
while there is no doubt that an increase in the rate of decarbonisation increases 
consumption, what happens to the benefits of mitigation depends in principle on the 
balance between the negative effect on marginal damages of a reduction in emissions 
intensity and the positive effect on marginal damages of an expansion in production. 

 While β is a measure of the correlation of the marginal benefits of emissions abatement 
with consumption, and therefore abatement costs do not play a direct role in its 
calculation, they nonetheless play an indirect role, since the emissions scenario on which 
the mitigation project is undertaken may involve abatement. Variation in abatement costs 
increases β: an increase in abatement costs, for a given quantity of abatement, decreases 
income/consumption, but by decreasing income it also decreases industrial emissions in 
the long run, through the investment channel. This reduces the benefits of mitigation. 

 There are numerous uncertainties, many of them large, about the behaviour of the climate 
system in response to carbon emissions (IPCC, 2013). In the structure of DICE's simple 
climate model, these can be grouped into two types. The first type is uncertainties about 
the carbon cycle, which render estimates of the atmospheric stock of CO2 for a given 
emissions scenario imprecise. We focus on variation in the uptake of atmospheric carbon 
by the upper ocean and biosphere, which also has an ambiguous a priori effect on β. 
Consider a decrease in this uptake, which means that more CO2 emissions remain in the 
atmosphere. Under these circumstances, if the path of pre-damage output is taken as 
given, then more atmospheric CO2 means increased total damages, hence consumption is 
reduced, and the marginal benefits of mitigation are increased. This reduces β. However, 
to reiterate, the investment effect means that the path of pre-damage output is not given; 
reduced income at a particular date due to greater damages results in lower investment, 
which depresses future output. This reduces future consumption too, but because it 
reduces future CO2 emissions there is a countervailing, negative effect on the benefits of 
mitigation. Again, we might expect the direct effect to dominate, so variation in the uptake 
of atmospheric carbon should reduce β. 

 The second type of uncertainty about the climate system is about the relationship 
between the stock of atmospheric CO2 and global mean temperature26. Studies that deploy 
stochastic versions of DICE have overwhelmingly fixed on the climate sensitivity 
parameter as a means of rendering uncertain the temperature response to atmospheric 
CO2. Climate sensitivity is the increase in global mean temperature, in equilibrium, that 
results from a doubling in the atmospheric stock of CO2 from the pre-industrial level. In 
simple climate models, it is indeed critical in determining how fast and how far the planet 
is forecast to warm in response to emissions. Variation in climate sensitivity has an 
ambiguous – but likely negative – effect on β, with the causal mechanisms being very 
similar to those at play in the carbon cycle. Higher climate sensitivity means higher 
damages, lower consumption and higher benefits of mitigation for given output, but with 

                                                             
26 Note that together these two types of uncertainty make up the carbon-climate response in the previous section. 
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lower income comes lower investment, lower future output and therefore a counter-
balancing negative effect on future emissions that tends to reduce the benefits of 
mitigation. 

7. Results and discussion 

Using the 50,000 draws of the Monte Carlo simulation as the source of variation, we can 
calculate the instantaneous consumption β of CO2 emissions abatement. As a function of time, we 
can then plot its term structure. 

Define the benefits of emissions abatement as its avoided damages, in particular as the difference 
in consumption per capita with and without removing 1GtCO2. The benefits of abatement B are 
then given by: 

𝐵௧ = 𝑐௧ − 𝑐௧
ோாி  

𝐵௧ = (1 − 𝑠௧)(1 − 𝐷௧)𝑦௧ − (1 − 𝑠௧)(1 − 𝐷௧
ோாி)𝑦௧

ோாி  

where c is consumption per capita, y is pre-damage output per capita, REF denotes reference 
outcomes before 1GtCO2 is removed and s is the savings rate. Note that output here is net of 
abatement costs. 

βt is then the covariance between ln ctREF and ln Bt , divided by the variance of ln ctREF: 

𝛽 =  
𝑐𝑜𝑣[ln 𝑐௧

ோாி , ln 𝐵௧]

𝑣𝑎𝑟[ln 𝑐௧
ோா ]

 

The discussion above gives us reason to suppose that, in a dynamic model, the β of CO2 emissions 
abatement might depend on the path of growth and emissions. Many of the parameter choices we 
have already described will impact on this, for instance the various determinants of TFP growth, 
and the initial rate of decarbonisation. But one set of exogenous variables that we must still 
choose is the emissions reductions imposed by the planner. Therefore, in Figure 2.1 we plot the 
term structure of β for two different emissions control scenarios. The first scenario corresponds 
to the baseline in DICE-2013R, which is a representation of ‘business as usual’. According to this 
scenario, emissions reductions rise gradually from 4% of uncontrolled industrial emissions in 
2015 to 14% in 2100 and 54% in 2200. Hence emissions abatement is non-trivial even in the 
baseline27. The second scenario is an example of a path in which emissions reductions are deep: 
it is the so-called ‘Lim2T’ scenario from DICE-2013R, in which the planner seeks to limit global 
warming to no more than 2°C. In Lim2T, emissions reductions are already 33% in 2015 and they 
hit the maximum 100% in 206028.  

                                                             
27 Which illustrates why abatement costs might affect β even in the baseline scenario. 
28 While the changes we have made to DICE-2013R in this study mean that Lim2T is no longer guaranteed to deliver 
warming equal to 2°C, for the purpose of estimating β it is a perfectly good example of a stringent mitigation scenario. 
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Figure 2.1: The term structure of βt for two contrasting emissions scenarios. 

 

 

The headline result is that on both emissions scenarios β is positive. Overall, given the 
various uncertainties we specify, there is a positive correlation between consumption and the 
benefits of emissions abatement. Indeed, over the remainder of this century, the magnitude of β 
is quite similar on what are two very different emissions paths; it is between 0.9 and 1. However, 
the term structure of β on the two emissions paths is different and this difference starts to matter 
after 2100. In the baseline scenario, β falls monotonically to 0.48 in 2230. In the Lim2T scenario, 
β remains between 0.9 and 1 throughout. 
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What is behind these results? To answer this question, we perform repeated Monte Carlo 
simulations of the baseline scenario with subsets of the uncertain parameters and re-estimate the 
term structure of β. The results can be found in Table 2.3 for selected years. Where a parameter 
is treated as certain, it is fixed at its mean value. First, we treat all the model parameters as certain, 
except for the TFP shocks εt. Then we run through the remaining uncertain parameters, one at a 
time, and combine each with the TFP shocks. 

Table 2.3: Estimates of βt on the baseline scenario in selected years, for different subsets of uncertain parameters 

Uncertain parameters 2025 2065 2115 2165 2215 
TFP shocks 1.02 1.06 1.06 1.05 1.05 
TFP shocks + initial trend growth 
rate of TFP 

1.02 1.06 1.06 1.05 1.05 

TFP shocks + asymptotic global 
population 

1.02 1.06 1.06 1.05 1.05 

TFP shocks + initial rate of 
decarbonisation 

1.02 1.06 1.06 1.05 1.05 

TFP shocks + price of back-stop 
technology in 2050 

1.02 1.06 1.06 1.05 1.05 

TFP shocks + uptake of atmospheric 
carbon by the upper ocean and 
biosphere (per five years) 

1.02 1.05 1.05 1.04 1.04 

TFP shocks + climate sensitivity 1.00 1.01 0.93 0.85 0.78 
TFP shocks + damage coefficient α2 0.95 1.04 1.04 1.03 1.03 
TFP shocks + damage coefficient α3 1.02 1.06 1.09 1.10 1.10 
TFP shocks + income elasticity of 
damages 

1.01 1.05 1.03 0.01 1.00 

TFP shocks + climate sensitivity + α2 
+ α3 + income elasticity of damage ξ 

0.95 0.98 0.86 0.67 0.55 

All 0.95 0.97 0.85 0.63 0.49 
 

What emerges clearly from Table 2.3 is that the driver of positive β is uncertainty about 
TFP growth. Moreover, it is specifically the transitory shocks to TFP, allied with their moderate 
persistence, that do it, rather than uncertainty about trend TFP growth. If we run the model just 
with TFP shocks, β = 1.02 in 2025, 1.06 in 2115 and 1.05 in 2215. Most of the remaining 
uncertainties make no discernible difference to β when combined individually with TFP shocks: 
trend TFP growth; population growth; the rate of decarbonisation; abatement costs; and uptake 
of atmospheric CO2. Including uncertainty about the damage function coefficient α2 or the income 
elasticity of damages reduces β very slightly, while including uncertainty about the damage 
function coefficient α3 increases it very slightly29. 

The one source of uncertainty that does have a significant effect on the β obtained with 
TFP shocks alone is the climate sensitivity. The effect is negative. However, this negative effect is 
not enough to pull β much below unity this century, so the effect of TFP shocks dominates. When 
the model is run with TFP shocks and uncertain climate sensitivity, β = 0.93 in 2115 and 0.78 in 
2215. 

At the foot of the table we reproduce the simulation in which all parameters are uncertain. 
In this simulation, β does fall to 0.63 in 2165 and eventually 0.49 in 2215. The penultimate 
simulation in the table shows that this is mostly accounted for by combining just five 
uncertainties: TFP shocks; climate sensitivity; α2; α3; and the income elasticity of damages. These 

                                                             
29 This implies that when the only sources of uncertainty are TFP shocks and α3, the positive interaction between α3 
and the TFP shocks dominates the main, negative effect of α3 on β. 
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analyses also help us explain why β has a different term structure on the Lim2T emissions 
scenario than it has on the baseline. On Lim2T the atmospheric concentration of CO2 is much 
lower than on the baseline, so the negative effects on β of the climate sensitivity and damage 
parameters are lower. Consequently, β does not decline after the beginning of the next century. 

Discussion of results 

In this paper we have studied the sign and size of the climate β, using both a simple 
analytical model and an empirically grounded Monte Carlo simulation of the DICE model. Using 
the DICE model also enabled us to take into account the effects on the climate β of investment, as 
well as generalising the form of the damage function. Our results strongly suggest that the climate 
β is positive. In particular, our numerical modelling with DICE suggests it is positive and close to 
unity for maturities of up to about one hundred years. Beyond that, the climate β depends more 
strongly on the emissions path. On business as usual it falls to about 0.5 for maturities of two 
hundred years or more, while it remains close to unity on a path of deep emissions cuts that aims 
to limit warming to 2°C. One might think that reality will turn out to be somewhere between these 
two extreme cases (e.g. UNEP (2015)), hence the climate β for very long maturities is somewhere 
between 0.5 and 1.  

The overwhelming driver of these results is uncertainty about exogenous, emissions-
neutral technological progress in the shape of transitory but moderately persistent shocks to TFP. 
Positive TFP shocks are simultaneously associated with higher marginal benefits of emissions 
reductions and higher consumption. Uncertainty about climate sensitivity and the damage 
intensity of warming provide a countervailing effect that tends to reduce β, but it is outweighed 
by the effect of TFP shocks. It is important to remember that we allow for fat-tailed climate 
sensitivity and large convexity of the damage function, two of the principal sources of risk of 
catastrophic climate damages, which have been claimed to give rise to a negative β.  

Naturally the validity of our numerical estimates is affected by the well-known 
weaknesses shared by all IAMs (e.g. Pindyck (2013) and Stern (2013)). In addition, we face the 
particular issue of whether and to what extent damages are proportional to output. The basic 
assumption embodied in a multiplicative damage structure is that damages are a constant 
fraction of output, for given warming and damage intensity. By contrast, in an additive structure 
the share of damages in output decreases as output increases, and vice versa. Therefore it is 
related to the so-called ‘Schelling conjecture’ that developing countries “best defence against 
climate change may be their own continued development” (Schelling, 1992, p. 6). A simple 
analytical model of the climate beta made clear that if climate damages are better represented by 
an additive structure, then the conditions required for a positive climate β are stricter. However, 
the empirical evidence we used to calibrate the income elasticity of damages in DICE does not 
support this (Anthoff & Tol, 2012). Rather, it suggests that the income elasticity of damages in 
most regions at most times is greater than zero and often greater than one, without strong 
support for a central value other than one. The worry is that the empirical evidence is currently 
very thin, and more research is clearly required on this issue.  

Understanding the implications of our findings for climate mitigation requires 
understanding the dual role played by β in determining the NPV of mitigation. It is most 
straightforward to observe that positive β implies the future benefits of emissions abatement 
should be discounted at a relatively higher rate. How much higher? 
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Two approaches can be followed to answer this question, with radically different 
conclusions. Both approaches use the CCAPM rule r = rf + βπ. The first approach consists in using 
the systematic risk premium π that has been observed in markets, for instance in the United 
States over the last century, where it has been around 5% (see Gollier (2013, Chapter 12)). For a 
project with a unit β, this means the efficient discount rate for that project should be five 
percentage points higher than the risk-free rate. The second approach is model-based rather than 
market-based; one uses the CCAPM formula π = γσ2 to estimate the risk premium, where σ2 is the 
volatility of consumption growth estimated in DICE. According to our simulations, σ2 = 0.1% with 
respect to average growth over the period 2015-2230, so we obtain a risk premium of only 0.2 
percentage points if we accept a coefficient of relative risk aversion γ = 2, which much of the 
existing literature would suggest (Kolstad et al., 2014). This leads to a much smaller impact of the 
positive climate β on the risk-adjusted climate discount rate. 

The large discrepancy between these two recommendations may be seen as a 
manifestation of the well-known “equity premium puzzle”. Three decades of research on this 
financial puzzle suggest that the model-based CCAPM approach fails to capture many dimensions 
of the real world, in particular the existence of structural uncertainties and fat tails (Weitzman, 
2007b). Although including these dimensions in our model is beyond the reach of this paper – a 
new concept of β will need to be developed to accommodate these features – we are inclined to 
accept this position. We then conclude that a large positive climate β is important for discounting 
the future benefits of mitigating climate change. 

But this is not the end of the story. The CCAPM beta showed that the NPV of climate 
mitigation is increasing in β if β is larger than γ − (μ/σ2), which is at most of the order of 2.5. 
Since our estimates are clearly larger than that, it can be concluded that the NPV of climate 
mitigation is indeed increasing in β. More broadly, this shows that the implications of our work 
do not just concern the discount rate. It would be wrong to discount the future benefits of 
emissions abatement at a risk-adjusted rate with unit β, unless the undiscounted future benefits 
have been calculated in a way that properly factors in, implicitly or explicitly, how they scale with 
economic growth. 

8. Conclusion and policy implications 

Because a large fraction of the climate damages generated by greenhouse gases emitted 
today will not materialise until the distant future, the choice of the rate at which these future 
damages should be discounted plays a critical role in the determination of the social cost of 
carbon. Most of the recent literature on climate discounting implicitly assumes that these 
damages are uncorrelated with aggregate consumption, so that they should be discounted at the 
risk-free rate. This justifies using either the Ramsey rule or the observed interest rate to estimate 
the climate discount rate. However, we show in this paper that the climate β, i.e. the elasticity of 
climate damages with respect to a change in aggregate consumption, is close to one, at least for 
maturities of up to one hundred years. This is mainly due to the role of exogenous, emissions-
neutral technological progress in raising consumption, emissions, atmospheric carbon and 
marginal damages. This implies that mitigating climate change raises the risk borne by future 
generations, which justifies using a climate discount rate that is larger than the risk-free rate. How 
much larger depends on our evaluation of the equity premium puzzle in finance. That the climate 
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β is relatively large should induce climate economists to change the focus of long-term 
discounting from safe to risky claims.  

A large climate β not only implies a large climate discount rate. Indeed, the climate β 
measures the sensitivity of monetized climate damages to a change in consumption of other goods 
and services in the economy. In a growing economy, a large climate β also implies large expected 
damage in the long run. As we have shown, under the standard assumptions of the CCAPM, the 
value of an asset whose future benefit Bt|t≥0 is related to future aggregate consumption ct|t≥0 in 
such a way that for all t there exists βt ∈ ℝ such that [Bt|ct] = ct βt is locally increasing in βt if it is 
larger than the difference between relative risk aversion and the ratio of the mean by the variance 
of the growth rate of consumption. Because most actions yield a βt which is larger than this 
number, this means that an increase in the climate β increases expected damages more than it 
reduces the discount factor, so that in fact the social cost of carbon is increasing in the climate β. 
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APPENDICES  

Appendix 2.1: Further details of random parameters in DICE-2013R 

Asymptotic global population. In DICE population grows according to the following equation of 
motion: 

𝐿௧ାଵ = 𝐿௧ ൬
𝐿ஶ

𝐿௧
൰

ಿ

 

where L is the population, which converges to the asymptotic global population L∞ according to 
the growth rate gN. We use the global population projections of the United Nations (2013) to 
calibrate a probability distribution over L∞. According to these projections, the world population 
will be at an approximate steady state of 10.85 billion in 2100 on the medium (fertility) variant, 
within a range of 6.75 billion on the low variant to 16.64 billion on the high variant. This is a non-
probabilistic range, which can be set against an emerging – though not uncontested (Lutz, Butz, 
Samir, Sanderson, & Scherbov, 2014) – field of probabilistic population forecasting based on 
Bayesian methods (Raftery, Li, Ševčíková, Gerland, & Heilig, 2012). According to these forecasts, 
the UN's low and high variants are very unlikely to eventuate (i.e. they are suggested to be well 
outside the 95% confidence interval: Gerland et al. (2014)), because they assume fertility is 
systematically different to the medium scenario in all countries. Taking this perspective into 
account, we fit a normal distribution to the UN population projections, such that the low variant 
is three standard deviations away from the mean, with the result that the high variant is even 
further from the mean.  

Initial rate of decarbonisation. In DICE, autonomous decarbonisation is achieved by virtue of a 
variable representing the ratio of emissions/output, which decreases over time as a function of a 
rate-of-decarbonisation parameter:  

𝐸௧
ூே = 𝜎௧(1 − 𝜇௧)𝑌௧ 

where EIND represents industrial CO2 emissions, μ is the control rate of emissions set by the 
planner, Y is pre-damage output and s is the ratio of uncontrolled emissions to output, given by 

𝜎௧ାଵ = 𝜎௧(1 + 𝑔௧
ఙ) 

where gσ < 0 is the rate of decline of emissions to output, given by 

𝑔௧
ఙ = 𝑔

ఙ(1 + 𝛿ఙ)௧ 

 with the initial rate of decline of emissions to output being g0σ, subject itself to a rate of decline 
of δσ < 0. Similar to TFP, δσ is around an order of magnitude smaller than g0σ, so the latter is key 
in driving long-run uncertainty about declining emissions intensity.  

To calibrate a distribution over g0σ we use data from the International Energy Agency (IEA, 2013), 
which provides the ratio of global CO2 emissions from fossil fuels to real global GDP for the period 
1971-2011, a period in which planned emissions reductions (i.e. through μ) were trivially small 
at the global level. We partly smooth annual fluctuations by taking a five-year rolling average. The 
resulting data are fit best by a normal distribution with mean and standard deviation as reported 
in Table 2.2.  
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Price of the backstop technology. In DICE the total cost of abatement as a percentage of annual 
GDP, Λ, is determined by 

𝛬௧ = 𝜃ଵ,௧𝜇௧
ఏమ  

where θ1 and θ2 are coefficients. The time-path of θ1 is set so that the marginal cost of abatement 
at μt = 1 t is equal to the backstop price at t. Hence randomising the backstop price is a way to 
introduce uncertainty into abatement costs. We use the findings of an inter-model comparison 
study by Edenhofer et al. (2010) to update and characterise uncertainty over the backstop price. 
Edenhofer et al. (2010) assess the cost of limiting warming to below 2°C in five global energy 
models. A scenario that stabilises the atmospheric stock of CO2 at 400 ppm requires zero 
emissions by around 2050, so we can use the models’ estimates of marginal abatement costs in 
2050 as a measure of the backstop price at that time. Marginal costs range from $150/tCO2 to 
$500, with an average of $260, all at today's prices. Since the distribution of cost estimates is 
asymmetric, we use a log-normal distribution. We set the mean to $260 and posit that the 
probability of the lowest and highest estimates is 1/1000. We use a comparable emissions 
scenario in DICE to retrieve, for each value of the backstop price in 2050, the value of the backstop 
price in 2010, the initial period.  

Uptake of atmospheric carbon by the upper ocean and biosphere. The atmospheric stock of 
carbon in DICE is driven by the sum of industrial emissions from Eq. 2.25 and exogenous 
emissions from land-use. A system of three equations represents the cycling of carbon between 
three reservoirs, the atmosphere MAT, a quickly mixing reservoir comprising the upper ocean and 
parts of the biosphere MUP, and the lower ocean MLO:  

𝑀௧ାଵ
் = 𝐸௧ାଵ + 𝜑ଵଵ𝑀௧

் + 𝜑ଶଵ𝑀௧
  

𝑀௧ାଵ
 = 𝜑ଵଶ𝑀௧

் + 𝜑ଶଶ𝑀௧
 + 𝜑ଷଶ𝑀௧

ை  

𝑀௧ାଵ
ை = 𝜑ଶଷ𝑀௧

 + 𝜑ଷଷ𝑀௧
ை  

where total emissions of CO2 to the atmosphere are E, and the cycling of CO2 between the 
reservoirs is determined by a set of coefficients φjk that govern the rate of transport from 
reservoir j to k per unit of time. We follow Nordhaus (2008) uncertainty analysis by randomising 
φ12, the coefficient for the transfer of carbon from MAT to MUP. However, we make use of the latest 
scientific findings from the IPCC's Fifth Assessment Report (Ciais et al., 2013) to calibrate φ12. In 
particular, φ12 may be calibrated by inspecting evidence on the percentage of a pulse of CO2 
emissions that remains in the atmosphere after 100 years. According to the standard 
parameterisation of DICE-2013R, this would be c.36%, but the evidence from multiple climate 
models collected by Ciais et al. (2013) suggests a mean of 41%, with 54% at +2 standard 
deviations and 28% at 2 standard deviations. We calibrate φ12 accordingly, however to ensure 
the DICE carbon cycle maintains physically consistent behaviour at all values of φ12, we must set 
the lower bound at 31% removed. Table 2.2 provides details.  
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Climate sensitivity.  The equation of motion of temperature in DICE is given by: 

𝑇௧ାଵ = 𝑇௧ + 𝜅ଵ 𝐹௧ାଵ −
𝐹ଶ௫ మ

𝑆
(𝑇௧) − 𝜅ଶ(𝑇௧ − 𝑇௧

ை)൨ 

where Ft+1 is radiative forcing, which depends on the atmospheric stock of CO2, F2xCO2 is the 
radiative forcing resulting from a doubling in the atmospheric stock of CO2 from the pre-industrial 
level, S is climate sensitivity, TLO is the temperature of the lower ocean, κ1 is a parameter 
determining speed of adjustment and κ2 is the coefficient of heat loss from the atmosphere to the 
oceans. Calel et al. (2015) contains a detailed explanation of the physics behind this equation. 

The latest IPCC report (IPCC, 2013) provides a subjective probability distribution for the 
climate sensitivity, which is the consensus of the panel's many experts. According to this 
distribution, S is ‘likely’ to be between 1.5 and 4.5°C, where likely corresponds to a subjective 
probability of anywhere between 0.66 and 1. It is ‘extremely unlikely’ to be less than 1°C, where 
extremely unlikely indicates a probability of ≤0.05, while it is ‘very unlikely’ to exceed 6°C, where 
this denotes a probability of ≤0.1. Dietz and Stern (2015) find that a log-logistic function has the 
appropriate tail shape to fit these data30 (taking the midpoints of the IPCC ranges), and set the 
scale and shape parameters of the distribution such that the mean S is 2.9°C, and the standard 
deviation is 1.4°C. In addition, we truncate the distribution from below at 0.75°C in order to again 
ensure that the DICE climate model exhibits physically consistent behaviour. 

 

 

 

                                                             
30 That is, the log-logistic function has the lowest root-mean-square error of any distribution fitted. 
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Chapter 3: Estimating the economic impact of the permafrost carbon 
feedback 

Abstract 

The permafrost carbon feedback is not currently taken into account in economic 
assessments of climate change, yet it could have important implications for the social cost of 
carbon and the associated choice of the optimal greenhouse gas emissions pathway. Although this 
feedback is still imperfectly known, there are enough estimates of its potential strength to now 
include it in our assessments. In this paper, I present a model of the permafrost carbon feedback 
and integrate this feedback in the DICE Integrated Assessment Model to examine its 
consequences. I find that doing so increases the social cost of carbon by 10-20% in the baseline 
scenario, but that this impact is much more significant in the case of a damage function which is 
more reactive to very high temperature changes and can reach up to 220%. It follows that setting 
industrial emissions targets without taking into account this feedback would lead to excessive 
atmospheric carbon: I find that it increases the optimal emissions control rate by circa 5 
percentage points on average over the period 2015-2110 and that this difference becomes much 
more significant when the constraint of limiting the increase in global mean temperature to +2°C 
or +1.5°C is added to the model. 

1. Introduction 

Integrated assessment models (IAMs) are meant to be simple, tractable models which can 
be readily used to evaluate the costs and benefits of different climate policies. However, the 
absence of key factors and crucial feedback loops in these models has been highlighted (Stern, 
2013), to the point where some have argued IAMs are “close to useless as tools for policy analysis” 
(Pindyck, 2013). Indeed, IAMs are used for evaluations of policies over several centuries, despite 
the fact that the main carbon-climate feedbacks included in IAMs are those which enter through 
the climate sensitivity parameter, and which correspond primarily to the “fast” feedbacks: 
namely, water vapour, temperature lapse rate, surface albedo and clouds. Many other feedback 
processes, such as, for instance, the thawing of permafrost carbon, changes in ocean circulation 
and the shift of the terrestrial biosphere from a sink to a source of carbon, are not expected to 
become significant by the end of the 21st century. Still, these could have non-negligible impacts 
on global mean temperature and climate damages over the next 200 or 300 years and should be 
taken into account when assessing the long-term economic implications of climate change. 

Research in this area has developed along several dimensions. The first dimension 
corresponds to studies aimed at assessing the significance of the climate and carbon components 
of IAMs for climate and economic outcomes (Marten, 2011; van Vuuren et al., 2011; Warren, 
Mastrandrea, Hope, & Hof, 2010). These have shown that the modelling of climate dynamics could 
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have significant impacts, especially for longer-term horizons, and that the failure to capture 
climate dynamics correctly could lead to underestimating the benefits of mitigation policies (Hof 
et al., 2012). 

The second line of research has aimed at investigating the economic impact of low-
probability, high-damage feedbacks, such as a sudden and significant release of methane into the 
atmosphere. Ceronsky et al. (2011) considered the impact of three methane release scenarios on 
the level of climate damages and on the social cost of carbon (SCC); Whiteman et al. (2013) 
superposed a pulse of 50 Gt of methane on two standard emissions scenarios in order to assess 
the risks associated with the potential thawing of methane hydrates from the East Siberian Arctic 
shelf; finally, Lemoine and Traeger (2014) considered a framework in which multiple tipping 
points interact and represented the possibility that large methane stores locked in permafrost 
and in ocean shallow clathrates are mobilized by warming by increasing the equilibrium climate 
sensitivity parameter from 3°C to 5°C. 

The third line of research has focused on exploring economic and physical uncertainties 
in IAMs through the use of Monte Carlo methods: Ackerman et al. (2010) explored the 
implications of varying simultaneously the climate sensitivity parameter and the damage function 
exponent using the DICE model; Pycroft et al. (2011) conducted a similar exercise using PAGE09; 
Calel et al. (2013) demonstrated that the uncertainty about the effective heat capacity of the 
upper ocean mattered significantly for economic evaluations. Finally, there have been some 
attempts at improving carbon cycles representation in IAMs. For instance, Glotter et al. (2014) 
have proposed a modification of the carbon cycle in DICE to reflect the nonlinear CO2 uptake of 
the ocean. 

Finally, the realisation that the permafrost carbon feedback is potentially the most 
important positive feedback on policy-relevant time scales that is currently not included in Earth 
System Models (Prentice, Williams, & Friedlingstein, 2015) and that it will very likely act as an 
amplifier of human-induced climate change, and, as such, it could represent significant costs to 
society, has led to an increase in the attention that this topic is receiving. Indeed, several articles 
have been published recently that testify to the growing interest for this topic both from a 
physical and an economic perspective. Schuur et al. (2015) provided an overview of the existing 
research on the permafrost carbon feedback with the aim of refining our understanding of its 
sensitivity to climate. Koven et al. (2015) presented a simplified approach for estimating the 
strength of the permafrost carbon feedback, based on a data-constrained approach, to measure 
the global sensitivity of frozen soil carbon to climate change on a 100 year time scale. Hope and 
Schaefer (2016) linked the PAGE09 economic model with the SiBCASA land surface model to 
examine the economic impact of carbon emissions from thawing permafrost under the A1B 
scenario from the IPCC Special Report on Emission Scenarios (Nakicenovic et al., 2000) and 
estimated that carbon emissions from permafrost increases the mean net present value of the 
impacts of climate change by about 13%. 

Here I propose to complement this growing literature and to provide an estimate of the 
economic impact of the permafrost carbon feedback in the framework of the most widely used 
IAM, DICE, and to explore its potential impact in terms of additional warming, damages and 
optimal paths. Our approach is substantially different from the one used by Hope and Schaefer 
(2016): rather than linking an integrated assessment model to an existing biophysical land-
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surface model, we represent the permafrost carbon feedback by explicit functional forms, which 
not only enable us to simulate different emission scenarios and to solve the model for optimality, 
but which can also be used by other researchers.     

This paper aims at answering the following questions: given what we know (and what we 
don't know) about the potential strength and timing of the permafrost carbon feedback, how does 
it change the scale of climate-induced risks that we face? And how does it impact our estimates of 
the social cost of carbon? If the permafrost carbon feedback is expected to make climate change 
happen faster than we project on the basis of human activities alone, then it is essential to 
integrate it into the tools used to design and evaluate climate change mitigation policies.  

This chapter is organized as follows: in Section 2, I will first briefly describe what is 
referred to as the “permafrost carbon feedback" and provide estimates of its projected strength. 
In section 3, I will introduce the methodology I used to integrate it into DICE-2013R. In Section 4, 
I will present some results, in terms of the impact of the permafrost carbon feedback both on the 
social cost of carbon and on the optimal abatement path, under different assumptions and 
conditions. Section 5 concludes. 

2. What is the permafrost carbon feedback? 

Permafrost is defined as perennially frozen ground remaining at or below 0°C for at least 
two consecutive years (Brown, Ferrians Jr, Heginbottom, & Melnikov, 1997). It is composed of 
bedrock, gravel, silt and organic material that was buried and frozen during or since the last ice 
age (Schaefer, Lantuit, Romanovsky, Schuur, & Witt, 2014) and it occurs in about 24% of the 
exposed land surface in the Northern Hemisphere (Schaefer, Lantuit, Romanovsky, & Schuur, 
2012). Because organic matter does not decay once the soil is frozen, it is only when temperatures 
rise, thus causing permafrost to thaw, that the organic matter starts to decay, releasing carbon 
dioxide (CO2) and methane (CH4) into the atmosphere, which amplifies the warming due to 
greenhouse gas emissions. The permafrost carbon feedback (PCF) is the amplification of 
anthropogenic warming due to carbon emissions from thawing permafrost, and it is irreversible 
on human time scales.  

One of the characteristics of the PCF is the significant time lag between the trigger (global 
temperature increase) and the response (CO2 release into the atmosphere). This means that even 
if the amount of permafrost carbon that is expected to be released by 2100 is limited, the impact 
that the permafrost carbon feedback will have in the 22nd and 23rd centuries will be partly 
determined by the level of warming during the 21st century, and therefore, by the mitigation 
policies implemented in the present century. As emphasized by Schneider von Deimling et al. 
(2012), “even more pronounced than many other components of the Earth system, the 
permafrost feedback highlights the lagged and slow response to human perturbations” (p. 659).  

Another attribute of the PCF is that it is very likely to be a positive feedback (i.e. it will 
amplify climate change): indeed, although it might trigger some negative feedbacks (e.g. 
enhanced plant growth) that will dampen global warming, the uncertainty on the PCF is said to 
be “one-sided” in the sense that it will increase future climate impacts (Schneider von Deimling 
et al., 2012). The PCF will therefore add to other existing positive carbon-climate feedbacks (e.g. 
water vapour, temperature lapse rate, surface albedo, etc.) and as a result, the total effect of these 
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feedbacks will be larger than the sum of the individual impacts. This “compounding effect” of 
positive feedbacks has been demonstrated by Roe (2009), who showed that the amplitude of the 
additional radiative perturbation that one positive feedback produces is amplified by the 
enhanced system response (i.e., the increased warming) the other has created, thus making the 
total system response even larger. 

There are many different aspects in which the inclusion of positive long-term feedbacks 
such as the PCF is indispensable for the economic assessment of mitigation policies. Firstly, in the 
context of the classical approach of marginal costs and benefits analysis, adding the PCF in a 
climate-economy model is likely to have an impact on estimates of the social cost of carbon, which 
is defined as the net present value of the marginal benefit of mitigation. Secondly, climate policies 
are often expressed in terms of CO2 concentration targets, thereby rendering the inclusion of the 
PCF even more relevant, as accounting for its effects will almost certainly increase the emissions 
reductions required to reach these targets (Schuur et al., 2013). Finally, if the PCF is projected to 
make climate change happen faster than expected on the basis on anthropogenic emissions alone, 
then it will also have significant implications for the timing of adaptation strategies. 

3. Methodology 

i. How are climate feedbacks usually characterized? 

The global temperature response to an increase in atmospheric CO2 is usually quantified 
using the equilibrium climate sensitivity (ECS) parameter, which is defined as the change in global 
mean surface temperature at equilibrium that is caused by a doubling of the atmospheric CO2 
concentration (Matthews, Gillett, Stott, & Zickfeld, 2009). However, the ECS only comprises 
biogeophysical feedbacks (e.g. the water vapour/lapse rate, albedo and cloud feedbacks) and 
does not account for biogeochemical feedbacks such as the permafrost carbon feedback. There 
have been a few attempts to incorporate both types of feedback into a combined metric (Frölicher 
& Paynter, 2015; J. M. Gregory, Jones, Cadule, & Friedlingstein, 2009; Matthews et al., 2009) but 
to the extent of our knowledge, all of these are based on Earth System Models which do not 
account for the permafrost carbon feedback.  

One of the ways which has been used to quantify individual climate feedbacks has been 
to express them in GtC.K-1 (Friedlingstein et al., 2006). However due to the considerable time lag 
between the thawing of permafrost and its actual release, the flux of permafrost that is released 
into the atmosphere at time (t) does not depend on the surface temperature at time (t) but on the 
temperature path over the previous decades/centuries. Schneider von Deimling et al. (2012) 
precisely point out the limitations of the “carbon pool sensitivity” indicator in the case of the PCF, 
as cumulative carbon releases per degree of warming are not a scenario- or time-independent 
characteristic: “carbon fluxes by 2300 are not only a consequence of permafrost thaw in the 23rd 
century but are also affected by emissions from soil thawed earlier in the 21st and 22nd century” 
(p.657). 

For their assessment of the impact of climate feedbacks on the optimal carbon tax, 
Lemoine and Traeger (2014) made the choice of a tipping point framework. This does not seem 
like the most relevant modelling framework for the purpose of this paper as current research 
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(Schuur et al., 2015) supports the idea of a gradual and prolonged release of permafrost carbon 
emissions in a warming climate, which would mean that carbon dioxide release from permafrost 
carbon pools is more likely to act as an accelerator of climate change rather than a tipping point 
mechanism.  

ii. Proposed approach – A two-phase model 

We use the DICE model as the framework for our analysis of the impacts of the PCF, as it 
is one of the most well-known IAMs, and one which has often been used to provide estimates of 
the social cost of carbon. A full description of the equations and parameters of the 2013R version 
is available in Nordhaus and Sztorc (2013). Here we restrict our model description to the new 
module we introduce that mimics the PCF. 

What we need is a characterisation of permafrost carbon release which is based on an 
accurate representation of the processes involved, but which is also suitable for inclusion in DICE-
2013R, and tractable enough to explore different types of uncertainties. The majority of the 
published articles that aim to quantify permafrost carbon release use a two-phase approach; 
permafrost degradation (or thaw), followed by decomposition of thawed (or vulnerable) 
permafrost and release into the atmosphere as CO2 or CH4 (Burke, Jones, & Koven, 2013; 
Schneider von Deimling et al., 2015). It is worth noting that only the first phase (permafrost thaw) 
is directly dependent on global mean temperature: as surface temperature rises, the active layer 
thickness increases and the soil carbon which is no longer permanently frozen becomes 
vulnerable to decomposition. The second phase (decomposition of carbon and release as CO2 or 
CH4) is principally a function of the type of permafrost soil that is vulnerable to decomposition. 
The proposed modelling approach described below follows this two-phase approach. 

iii. Phase 1 – Permafrost thaw 

Proposed model 

Permafrost thaw occurs when surface temperature is above 0°C for part of the year. Its 
physical representation is based on the modelling of active layer thickening, which indicates the 
increasing depth of the seasonal freeze thaw cycle. As near-surface soil temperatures increase 
with global warming, some of the permafrost soil changes phase from ice to water, thus increasing 
the layer of soil at the surface that thaws seasonally. Any thorough representation of active-layer 
thickening via heat transfers would therefore need to take into account the variety of landscapes 
that compose permafrost soils, highly localized hydrological processes and fine-grid projections 
of climate variables such as surface temperature (including the impact of polar amplification, 
which is not uniform over all permafrost areas) and precipitation patterns. 

Because we are de facto constrained by the limitations of DICE, which is a simple and 
globally aggregated model, we use a model based on existing estimates of future permafrost thaw, 
rather than a process-based approach31. Based on the work by Gregory et al. (Jonathan M Gregory 

                                                             
31 The major constraints we face in the choice of a suitable representation of permafrost thaw processes are those 
which arise from the fact that the proposed modelling will be incorporated in DICE, a simple and globally aggregated 
model. These constraints are manifold: there is no possibility to introduce spatial heterogeneity; the model operates in 
five-year time steps; and the only climatic variables are global mean surface temperature and atmospheric CO2 
concentration. These constraints therefore eliminate de facto any modelling of thawing processes that relies on a 
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et al., 2002), who showed that the Northern Hemisphere ice cover decline was proportional to 
the global temperature change in the HadCM3 atmosphere-ocean general circulation model 
developed by the Hadley Centre, we take a similar approach to the one used by Winton et al. 
(2011) to determine the sensitivity of the Northern Hemisphere sea ice cover to global 
temperature change and which is based on an Ordinary Least Squares (OLS) regression of ∆I (the 
change in sea ice cover) on ∆T (the change in global mean temperature). We therefore assume 
that the intensity of near-surface permafrost degradation is a linear function of the rise in global 
mean temperature above an equilibrium temperature TATM(t0).  

Equation 3.1 

𝑃𝐹(𝑡) = 𝑃𝐹(𝑡) ∗ (max(0, 1 − 𝛽 ∗ [𝑇𝐴𝑇𝑀(𝑡) − 𝑇𝐴𝑇𝑀(𝑡)])) 

 
The relative extent of the near-surface permafrost area at time (t), PFextent(t), can therefore be 
expressed as follows:  
 
Equation 3.2 

𝑃𝐹௫௧௧(𝑡) =  
𝑃𝐹(௧)

𝑃𝐹(௧బ)
 

 
 
Equation 3.3 

𝑃𝐹௫௧௧(𝑡) = (1 − 𝛽 ∗ [𝑇𝐴𝑇𝑀(𝑡) − 𝑇𝐴𝑇𝑀(𝑡)]) 
 
 
 
Where: 

 PFextent(t) is the relative size of the permafrost area remaining at time t (in %); 

 PFarea(t) is the size of the permafrost area at time t (in millions of square kilometres); 

 TATM(t) is global mean surface temperature at time t (in degrees Celsius); 

 t0 corresponds to the year 2000, which is the reference point for most projections of 
permafrost degradation; 

 Equation 3.1 is not only valid if (1 − 𝛽 ∗ [𝑇𝐴𝑇𝑀(𝑡) − 𝑇𝐴𝑇𝑀(𝑡)]) is non-negative, which 
is why we take the maximum of 0 and (1 − 𝛽 ∗ [𝑇𝐴𝑇𝑀(𝑡) − 𝑇𝐴𝑇𝑀(𝑡)]) in the equation. 

We then make the assumption that the near-surface northern circumpolar permafrost 
area is homogenous in terms of carbon content, which means that the amount of carbon made 
vulnerable by thawing at every period depends only on the total amount of carbon contained in 
the entire near-surface northern circumpolar permafrost area and in the retreat of permafrost 
from one period to the other. The quantity of carbon in newly thawed permafrost at every period 
can therefore be calculated as follows: 

                                                             
zonation of the permafrost zone, or on climatic variables other than global mean surface temperature. Models such as 
the one proposed by Anisimov et al. (1997) to make projections of changes in active-layer thickness over the Northern 
Hemisphere for different climate change scenarios by 2050 are therefore inapplicable for the purpose of this paper. 
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Equation 3.4 

𝐶௧௪ௗி(𝑡) = 𝐶ி ∗ [𝑃𝐹௫௧௧(𝑡) −  𝑃𝐹௫௧௧(𝑡 − 1)] 

Where: 

 CthawedPF(t) is the amount of carbon in newly thawed permafrost at time t (in GtC); 

 CPF is the amount of carbon contained in the entire near-surface northern circumpolar 
permafrost region (in GtC); 

 PFextent (t) is the relative size of the permafrost area remaining at time at time t (in %). 

Parameter estimates 

β coefficient 

Physical validity 

The model specification we choose for permafrost degradation relies on the following 
physical assumptions: 

 As long as TATM(t) = TATM(t0), the extent of the permafrost area does not change. The 
underlying assumption is that TATM(t0) corresponds to an equilibrium state, in which 
the extent of permafrost is stable.   

 Similarly, we assume that the intensity of permafrost degradation is a linear function of 
the rise in global mean temperature above the equilibrium temperature TATM(t0). The 
linearity claim seems to be supported by the current knowledge of permafrost dynamics 
(Schuur et al., 2015). 

Statistical validity  

We estimate the β coefficient in Equation 3.3 through pooled OLS on existing projections 
of future permafrost thaw. These projections come from studies (detailed in Table A3.1 in 
Appendix 3.1) which estimate future permafrost degradation for different emissions scenarios, 
corresponding to the four Representative Concentration Pathways (RCP)32. Most of these studies 
represent permafrost degradation paths starting in the year 2000, up to the year 2100, 2200, or 
in certain cases, 2300. Aggregating these time series of permafrost degradation gives us 796 
observations on which we perform our regression analysis. We use pooled OLS with a two-level 
cluster procedure (by RCP and by author) for standard errors, which makes them robust to 
correlation between error terms and to heteroscedasticity over time. This is done through the 
command vce() in Stata. We find a highly significant estimate of β of 0.172 with a two-way 
clustered robust standard error of 0.026 (Table A3.2). 

Size of the permafrost carbon pool 

In order to derive projections of the amount of carbon that is made vulnerable to 
decomposition by the thawing of permafrost, we need to make assumptions about the amount of 
carbon contained in the near-surface (0-3m) northern circumpolar permafrost region. Given the 

                                                             
32 RCPs refer to the four possible climate outcomes which have been defined by the IPCC based on a review of the 
literature. They each correspond to a possible greenhouse gas emissions scenario and are defined by their total 
radiative forcing pathway and level by 2100. 
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closeness of the estimates (Table A3.3) from Tarnocai et al. (2009) and Hugelius et al. (2014), we 
use the latest one, of 1035 GtC with a 95% uncertainty range of ± 150 GtC.  

iv. Phase 2: Carbon decomposition and release as CO2 or CH4 

Proposed model 

As mentioned previously, on a global basis, the dominant pathway of carbon return from 
terrestrial ecosystems to the atmosphere is microbial decomposition (Schuur et al., 2008). The 
obvious challenge to modelling these processes lies in permafrost soils across the Northern 
Hemisphere being highly heterogeneous in their mineral and organic content and, as such, 
decomposition rates are likely to vary widely. What we need to estimate future emissions of 
permafrost carbon is to understand the rate at which permafrost carbon will be released into the 
atmosphere, as well as the form that it will take (CO2 or CH4). Many models of permafrost carbon 
decomposition are based on a partitioning of vulnerable (thawed) permafrost soils into different 
carbon pools based on their decomposition profiles (Burke, Hartley, & Jones, 2012; Dutta, Schuur, 
Neff, & Zimov, 2006; Elberling et al., 2013; Schädel et al., 2014; Schaefer, Zhang, Bruhwiler, & 
Barrett, 2011). The simplified model that we propose here follows this approach and is based on 
the following assumptions: 

 The vulnerable (thawed) carbon can be divided into a passive pool slow, a fast and a 
passive pool; 

 Based on findings from the literature, we assume that the passive pool is assumed to be 
very stable, meaning that no carbon will be released from it over the time scale of this 
study (Burke et al., 2013); 

 We aggregate the slow and the fast pool and assume that the decomposition and release 
of thawed permafrost carbon can be modelled by an exponential decomposition 
function (Schaefer et al., 2011). We characterize this decomposition function by the e-
folding time parameter τ which refers to the timescale for a quantity to decrease to 1/e 
of its initial value;  

 The amount of methane release represents a fixed proportion of permafrost carbon 
emissions (Schneider von Deimling et al., 2015; Schuur et al., 2013).  

Based on the above, the amount of permafrost carbon that is released into the atmosphere 
at time (t) can therefore be calculated as the sum of the lagged carbon fluxes from each time-
indexed “pool” of newly thawed carbon CthawedPF(s), for s = [t0, t]. These time-indexed pools all 
follow the same exponential decomposition function based on the parameter τ, but the amount 
of carbon coming from each pool at period t depends on the time elapsed since thawing, i.e. (t – 
s).  We then multiply by the (fixed) proportion of methane emissions to calculate emissions of 
carbon dioxide and methane from permafrost at each period of the model. 
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Equation 3.5 

𝑪𝑶𝟐𝒆𝒎. (𝒕) = 𝑪𝑶𝟐𝒄𝒐𝒏𝒗. ∗ (𝟏 − 𝒑𝒓𝒐𝒑𝑪𝑯𝟒) ∗ [  𝑪𝒕𝒉𝒂𝒘𝒆𝒅𝑷𝑭(𝒔)

𝒕

𝒔ୀ𝒕𝟎

∗  (𝟏 − 𝒑𝒓𝒐𝒑𝑷𝒂𝒔𝒔𝒊𝒗𝒆) ∗ ൬𝟏 − 𝒆𝒙𝒑ି
𝒕ି𝒔

𝝉 ൰] 

Equation 3.6 

𝐶𝐻ସ𝑒𝑚. (𝑡) = 𝐶𝐻4௩ .∗ (𝑝𝑟𝑜𝑝𝐶𝐻ସ) ∗ [  𝐶௧௪ௗி(𝑠)

௧

௦ୀ௧బ

∗ (1 − 𝑝𝑟𝑜𝑝𝑃𝑎𝑠𝑠𝑖𝑣𝑒)  ∗ ൬1 − 𝑒𝑥𝑝ି
௧ି௦

ఛ ൰] 

Where: 

 CO2em.(t) is the amount of carbon dioxide from permafrost emitted into the atmosphere 
at time t (in GtCO2); 

 CH4em.(t) is the amount of methane from permafrost emitted into the atmosphere at 
time t (in TgCH4); 

 CO2conv. is the conversion factor from GtC to GtCO2; 

 CH4conv. is the conversion factor from GtC to TgCH4; 

 propCH4 is the (constant) share of methane emissions (in %);  

 CthawedPF(s) is the amount of newly thawed permafrost at time s (in GtC); 

 propPassive is the proportion of thawed permafrost in the passive pool (in %); 

 τ is the e-folding time of permafrost decomposition in the active and slow pools (i.e. not 
in the passive pool) 

Parameter estimates 

Size of the passive pool  

The existing estimates of the size of the passive pool, presented in Table A3.4 present 
significant uncertainty ranges, which means that the passive pool could represent between 15% 
and 70% of the thawed carbon. For our baseline scenario, we therefore take a mid-point estimate 
of the size of the passive pool at 40%.  

E-folding time of permafrost carbon decomposition  

The decomposition time of the thawed carbon that is not in the passive pool is considered 
to be in the range of 0-200 years (Burke et al., 2013). We derive an estimate of the e-folding time 
of permafrost carbon decomposition, which is represented by the parameter τ, through existing 
estimates of permafrost decomposition rates, which are collected in Table A3.5. Based on these 
estimates, we assume a mean value for τ of 70 years. 

Share of methane emissions  

The only two studies we are aware of which provide an explicit estimate of the percentage 
of permafrost carbon which will be emitted into the atmosphere as methane are the one by 
Schuur et al. (2013), which indicates that this proportion will be around 2.3% and the one by 
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Schneider von Deimling et al. (2015), which indicates that this proportion will be in the range 
1.5% - 3.5% (Table A3.6). We therefore assume a mean value for the proportion of methane 
emissions of 2.3%. 

v. Integrating our PCF module in DICE-2013R 

The following diagram (Fig. 3.1) presents a simplified overview of the DICE-2013R model 
and of our proposed permafrost carbon feedback module (in red). Grey boxes and arrows 
represent the economic components of the model while blue boxes and arrows represent the 
climate components of the model. As we described above, the permafrost carbon feedback 
introduces a loop in the model which amplifies anthropogenic warning: first, the increase in 
global mean temperature feeds into the PCF module; then, CO2 emissions from permafrost are 
added to the industrial and land-use change CO2 emissions while CH4 emissions from permafrost 
go through a simplified methane cycle and add to the forcing variable in the model.  

 
Figure 3.1: Simplified representation of the DICE-2013R model and of the proposed permafrost carbon feedback module 

 
 
 

In DICE-2013R, the only greenhouse gas (GHG) that is subject to controls is industrial CO2, 
and other GHGs are included as exogenous trends in radiative forcing. Because part of the 
permafrost carbon is released in the atmosphere in the form of methane, we had to add a methane 
cycle to the model. According to DICE-2013R’s User Manual (Nordhaus & Sztorc, 2013), aggregate 
estimates of non-CO2 forcings in the model are based on the RCP 6.0 W/m2 representative 
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scenario. Therefore, we use the disaggregated estimates for methane (CH4), nitrous oxide (N2O), 
halocarbons and other GHGs from RCP6.033 as well as the formulae used to calculate the radiative 
forcings from CH4 and N2O taken from Myrhe et al. (1998) and listed in the Supplementary 
Material to Chapter 8 of the IPCC’s Fifth Assessment Report (IPCC, 2013) (see Table A3.7) to 
include specific equations for the non-CO2 GHGs in the model, which we link to methane emissions 
from permafrost.   

4. Results and discussion 

In this section, we calculate the projected impact of the PCF on different physical and 
economic variables, we estimate the absolute and relative impact of the PCF on the social cost of 
carbon for different discounting parameters, we solve the model for the optimal abatement paths 
and we compare results with and without the PCF. Unless otherwise specified, we make the 
assumption that damages follow the base (quadratic) damage function in DICE-2013R, 
represented by the following equation. 

Equation 3.7 

 

𝛺ூா൫𝑇𝐴𝑇𝑀(𝑡)൯ =  
1

1 + 𝛼ଵ ∗ 𝑇𝐴𝑇𝑀(𝑡) + 𝛼ଶ ∗ (𝑇𝐴𝑇𝑀(𝑡))ଶ
 

 

 
 

Where: 

 α1 = 0; 

 α2 = 0.002664. 

The charts and results below are based on the baseline emissions scenario of DICE-2013R 
and on the mean values of the five main parameters of the PCF module (i.e. the size of the near-
surface permafrost carbon pool, the β coefficient, the proportion of the passive pool, the e-folding 
time of permafrost carbon decomposition τ and the proportion of methane emissions).  

                                                             
33 Available at https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome 
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Figure 3.2: Impact of the PCF on physical and economic outcomes of the DICE-2013R model 

 

i. Physical impacts of the permafrost carbon feedback 

When we add our PCF module (described above) to DICE-2013R and we run it in the base 
case scenario mode, we find that the near-surface permafrost area is completely thawed by 2175 
(Fig. 3.2.a) and that the amount of permafrost carbon released into the atmosphere reaches 137 
GtC by 2100, and 582 GtC by 2300 (Fig. 3.2.b). These estimates include both methane and carbon 
dioxide emissions. The estimate for 2100 is slightly higher than the mean estimate published in 
the meta-analysis from Schaefer et al. (2014), which predicts 120 ± 85 Gt of carbon emissions 
from thawing permafrost by 2100. However, only two studies (MacDougall, Avis, & Weaver, 2012; 
Schneider von Deimling et al., 2012) in the meta-analysis consider closed-loop estimates (i.e., 
include the impact of permafrost carbon released into the atmosphere on future thaw), which 
could explain why our estimate is slightly larger.  
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When we compare climate outcomes in the base case scenario of DICE-2013R with and 
without the PCF module, we can see (Fig. 3.2.c) that the PCF has an amplification effect on total 
CO2 emissions, which starts to become significant towards the end of the 21st century and reaches 
its peak around 2150. We can also see from the chart that although industrial emissions start 
falling after 2130 to finally reach zero in 2235 (this corresponds to the base case scenario for the 
emissions control rate in DICE-2013R), CO2 emissions from permafrost made vulnerable by 
thawing continue to be released in the atmosphere. These CO2 emissions translate into an impact 
on atmospheric CO2 concentration of roughly 97 ppmv by 2300 (Fig. 3.2.d). This is consistent with 
the closed-loop estimates from MacDougall et al. (2012), according to which the additional CO2 
concentration due to permafrost carbon could be in the range of 53-213 ppmv (with a best 
estimate of 101 ppmv) for DEP8.534. 

We also find that the PCF will add 0.64°C to the atmospheric temperature by 2300 (Fig. 
3.2.e). This is in line with estimates provided by MacDougall et al. (2012), according to which the 
impact of the permafrost carbon feedback on atmospheric temperature could be in the range of 
0.13-1.69°C by 2300. It is higher than the impact projected by Schneider von Deimling et al. 
(2015) who forecast that long-term warming through the PCF could add 0.4 °C to global mean 
temperature. However, the authors recognize that their estimates can be considered conservative 
and that the impact of the PCF is likely to be stronger. 

ii. Economic impacts of the permafrost carbon feedback 

Impact on future climate damages 

In our baseline scenario (DICE-2013R) we find that the mean annual value of the extra 
damages due to the PCF is about $3.6 trillion in 2100 and increases until it reaches $57.3 trillion 
by 2300 (Fig. 3.2.f). To our knowledge there has been only one other attempt at estimating the 
economic cost of the PCF through the use of an IAM, and this is the recent paper by Hope and 
Schaefer (2016), according to which the mean annual value of all extra impacts represents $2.8 
trillion in 2100 and peaks at $30 trillion in 2200. Our estimates are significantly larger, but there 
are two factors which can explain this discrepancy: first, the scenario they consider is the A1B 
scenario from the Fourth Assessment Report of the IPCC (2007) which means that all their results 
are based on the assumption that there are zero anthropogenic emissions after 2100, whereas in 
our model, we use the baseline emissions path from DICE in which emissions only reach zero in 
2235; secondly, their model only runs to 2200, whereas our model considers all impacts to 2300. 

Impact on the social cost of carbon 

The social cost of carbon is a measure of the long-term damage done by a ton of CO2 
emissions in a given year. In order to estimate it, we take the net present value of the difference 
between the business-as-usual consumption path to 2300, and the consumption path to 2300 
which results from adding 1 ton of CO2 to emissions in 2015. Based on this definition, the social 
cost of carbon for the current period (2015), calculated using DICE-2013R35 without the PCF 

                                                             
34 The Diagnosed Emissions Pathways (DEPs) used by MacDougall et al. (2012) are first derived from simulations of 
their earth system model (the UVic ESCM) driven by specific RCPs. These DEPs are then used to force the UVic ESCM, 
and to estimate the full impact of the PCF on the Earth's atmosphere. 
35 We assume a pure rate time of time preference ρ = 0.015 and an elasticity of marginal utility η = 1.45, as in the 
default settings of DICE-2013R. 
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module is $20.9 per ton of CO2. We find that accounting for the PCF raises the social cost of carbon 
to $24.8 per ton of CO2. More generally, as can be seen in the sensitivity analysis presented in 
Table A3.8, adding the PCF to the model raises the social cost of carbon by 10-20% depending on 
the choice of the discounting parameters. 

We now repeat this analysis under the assumption of the Weitzman damage function 
(Weitzman, 2012), which is more reactive in very high temperature changes than the quadratic 
damage function used in DICE-2013R.  

Equation 3.8 

𝛺ௐாூ்ெே൫𝑇𝐴𝑇𝑀(𝑡)൯ =  
1

1 + 𝛼ଵ ∗ 𝑇𝐴𝑇𝑀(𝑡) + (𝛼ଶ ∗ ൫𝑇𝐴𝑇𝑀(𝑡)൯
ଶ

+  (𝛼ଷ ∗ ൫𝑇𝐴𝑇𝑀(𝑡)൯
ఊ 

Where:  

 α1 = 0; 

 α2 = 1/20.46; 

 α3 = 1/6.081; 

 γ = 6.754. 

 

Under this new assumption for the damage function specification, the base social cost of 
carbon without the PCF is $87.2 per ton of CO2, but increases to $135.4 when the PCF is included 
in the model. The relative impact of the PCF, which was 19% under the assumption of quadratic 
damages, now reaches 55% for Weitzman damages. Moreover, the sensitivity analysis based on 
the choice of discounting parameters (Table A3.9) shows that the range of the potential impact of 
the PCF on the social cost of carbon is significantly wider under Weitzman damages (18%-220%) 
than under quadratic damages (10-20%). Whereas our previous results emphasized the 
importance of the lagged impacts of the PCF, the results above demonstrate that the relative 
impact of the PCF on the social cost of carbon is extremely sensitive to the specification of the 
damage function used in the model.  

All our previous analyses were based on the mean values of the parameters of our PCF 
module. We now examine the impact of parameter uncertainty about the PCF on the social cost 
of carbon. In order to do so, we assign distributions to the five main uncertain parameters of our 
PCF module: 

 β coefficient: based on the estimation described in Section 3, we assume that the β 
coefficient follows a normal distribution with a mean of 0.172 and a standard deviation 
of 0.026 (Table A3.2). 

 Size of the permafrost carbon pool: we calibrate a normal distribution based on the 95% 
confidence interval provided by Hugelius et al. (2014) (Table A3.3).  

 Proportion of the passive carbon pool: based on the estimates from Table A3.4 we make 
the assumption that the proportion of the passive pool follows a normal distribution 
with a mean of 40% and a two-standard deviation interval of 11%. 
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 E-folding time of permafrost carbon decomposition: Given the wide range of the 
estimates in Table A3.5 we assume that the e-folding time of permafrost carbon 
decomposition (in the active and slow pools, i.e. not considering the passive pool) 
follows a normal distribution with a mean of 70 and a standard deviation of 30. 

 Share of methane emissions: based on the few estimates we have of the share of methane 
emissions, we consider for this parameter a normal distribution with a mean of 2.3% 
and a standard deviation of 0.6% (Table A3.6). 

We take a large Latin Hypercube Sample of the parameter space, which has the advantage 
of sampling evenly from the domain of each probability distribution, with 10 000 draws, and we 
run the model for both the quadratic and the Weitzman damage functions. The resulting two 
normalized histograms for the social cost of carbon are displayed on Figure 3.3. As we can see in 
the chart below, accounting for the uncertainty on the PCF increases significantly the range of the 
social cost of carbon under Weitzman damages compared to quadratic damages. This is a direct 
implication of the higher reactivity of the Weitzman damage function, which amplifies the impacts 
of the uncertainty pertaining to the PCF on social welfare. 

It should be emphasized here that this uncertainty analysis only examines the impacts of 
parameter uncertainty and assumes that these are revealed at the beginning of the modelling 
period and do not change over time. We do not here delve into the consequences of potential 
regime shifts, which could be explored through the use of a multiple tipping points framework 
such as the one developed by Lemoine and Traeger (2014).  

Figure 3.3: Comparing the impact of PCF uncertainty on the social cost of carbon histogram for the quadratic and the 
Weitzman damage functions 
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One of the most significant inputs in the DICE model is the emissions control rate, which 
represents the stringency of the mitigation policies in place. In all our previous analyses, we used 
the emissions control rate from DICE-2013R’s base case, which corresponds roughly to a 
business-as-usual scenario.  

In this section, we derive the optimal abatement path in the case with and without the 
PCF. In order to do so, we solve our model for the emissions control rate which maximizes a social 
welfare function W, which corresponds to the discounted sum of the population-weighted utility 
of per capita consumption: 

Equation 3.9 

𝑊 =   𝑈[𝑐(𝑡), 𝐿(𝑡)]𝑅(𝑡)

்ೌೣ

௧ୀଵ

 

Where:  

 𝑈[𝑐(𝑡), 𝐿(𝑡)] = 𝐿(𝑡) ∗
(௧)భషആ

ଵିఎ
 

 𝑅(𝑡) = (1 + 𝜌)ି௧ 

For this exercise we consider that the discounting parameters are fixed with ρ = 0.015 
and η = 1.45, which correspond to the default settings in DICE-2013R.  

Once we have derived the optimal emissions control rate, we can use assumptions on the 
cost of the backstop technology to derive an estimate of the corresponding optimal carbon price. 
The equations for these can be found in Nordhaus and Sztorc (2013). 

As we can see in Figure 3.4 below, the difference in the optimal emissions control rate 
between the case with the PCF and the case without the PCF is on average 5 percentage points 
over the period from 2015 to 2110, before the emissions control rate reaches 1, i.e. before 
industrial CO2 emissions fall to zero (Fig. 3.4.a). This translates into a c. 17% difference between 
the average optimal carbon price in the case with the PCF and without the PCF over the same 
period (Fig. 3.4.b).  

When we run the model with the additional constraint that the increase in atmospheric 
temperature should not exceed 2°C 36, we find that the difference in the optimal emissions control 
rate between the case with the PCF and the case without the PCF is on average 21 percentage 
points over the period 2015-2055 (Fig. 3.4.c). This translates into a c. 92% difference between 
the average optimal carbon price in the case with the PCF and in the case without the PCF over 
the same period (Fig. 3.4.d). 

The recent Paris Agreement reinstated the long-term goal of keeping the increase in 
global mean temperature to below 2°C but also added the target of limiting this increase to 1.5°C. 
When we solve the model for optimality with the +1.5°C constraint on the increase in global mean 
temperature, we find that difference in the optimal emissions control rate between the case with 

                                                             
36 Limiting atmospheric temperature increase to 2°C above pre-industrial levels has long been presented by scientists 
(Rijsberman & Swart, 1990) as the condition to avoid the worst impacts of climate change, and has become, since the 
Copenhagen Accord in 2009, the internationally accepted target for climate policy.  
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the PCF and the case without the PCF is on average 16 percentage points over the period 2015-
2025 (Fig. 3.4.e). This translates into a c. 42% difference between the average optimal carbon 
price in the case with the PCF and in the case without the PCF over the same period (Fig. 3.4.f). 
The reason why this impact seems to be less than for the +2°C constraint is that the optimal 
emission control rate reaches 1 as early as 2030 even when the PCF is not taken into account. 
What these results show is that the optimal path compatible with the +1.5°C target and taking 
into account the PCF would require us to end all industrial CO2 emissions very shortly.    

Figure 3.4: Comparing the impact of the PCF on the optimal emissions control rate and carbon price when there is no 
constraint on the increase on global mean temperature, when the increase on global mean temperature is limited to +2°C, 
and when the increase in global mean temperature is limited to +1.5°C (using the quadratic damage function) 

 
The two charts in the first row represent the impact of the PCF on the optimal emissions 

control rate and carbon price. The graphs in the middle row and bottom rows correspond to the 
case when the +2°C (respectively, +1.5°C) constraint on atmospheric temperature increase is 
added to the model. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2010 2060 2110 2160 2210 2260

Years

a) Emissions control rate - optimal

excl. the PCF

incl. the PCF

0

50

100

150

200

250

300

350

2010 2060 2110 2160 2210 2260

U
S

$
 p

e
r 

tC
O

2

Years

b) Carbon price - optimal

excl. the PCF

incl. the PCF

0

50

100

150

200

250

300

350

2010 2060 2110 2160 2210 2260

U
S

$
 p

e
r 

tC
O

2

Years

d) Carbon price - optimal, 2°C

excl. the PCF

incl. the PCF

0

50

100

150

200

250

300

350

2010 2060 2110 2160 2210 2260

U
S

$
 p

e
r 

tC
O

2

Years

f) Carbon price - optimal, 1.5°C

excl. the PCF

incl. the PCF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2010 2060 2110 2160 2210 2260

Years

c) Emissions control rate - optimal, 2°C

excl. the PCF

incl. the PCF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2010 2060 2110 2160 2210 2260

Years

e) Emissions control rate - optimal, 1.5°C

excl. the PCF

incl. the PCF



78 
 

5. Conclusion and policy implications 

As emphasized by Prentice et al. (2015), the PCF is, on the basis of current knowledge, 
potentially the most important positive feedback on policy-relevant timescales that is currently 
not included in Earth System Models. This omission should be a concern for policy makers as it 
could lead to a dangerous overestimation of the level of emissions that is compatible with a given 
CO2 concentration target.  

A variety of ad hoc methods combining data and model results have produced a large 
range of estimates of the potential physical magnitude of this feedback, but its economic impact 
has not yet been fully investigated. Despite the complexity of the processes involved, we used 
these projections to build a simplified model, which we integrated in DICE-2013R and which 
represents the main uncertainties at stake. To our knowledge, we are the first to provide an 
estimate of the impact of the PCF on the social cost of carbon, and to compare optimal paths with 
and without the PCF. 

We have shown in this paper that including a rough model of the permafrost carbon 
feedback adds on average between 10 and 20% to the current estimates of the social cost of 
carbon calculated in the baseline scenario. We have also examined the implications of the choice 
of a damage function on the projected impacts of the PCF., and the results presented here 
demonstrate that the relative impact of the PCF on the social cost of carbon is extremely sensitive 
to the specification of the damage function used in the model. Indeed, the sensitivity analysis 
based on the choice of discounting parameters shows that the range of the potential impact of the 
PCF on the social cost of carbon is significantly wider under Weitzman damages (18%-220%) 
than under quadratic damages (10-20%).  

Moreover, by amplifying the economic impacts, it increases drastically the uncertainty on 
the projected effect on the social cost of carbon. We also showed in our sensitivity analyses that 
our results were highly dependent on the choice of discounting parameters. This is yet another 
illustration of the crucial role that discounting and damage functions play in assessments of 
climate change based on integrated assessment models. 

There are numerous potential improvements which could help us to better assess the 
economic impacts of this imperfectly known feedback: these include a more extensive knowledge 
of the permafrost zone as well as a better understanding of the processes which lead to 
permafrost thaw and carbon decomposition. Markedly, the rates of permafrost thawing and 
decomposition, as well as the relative proportions of methane and carbon dioxide emissions will 
be of considerable significance. 

Finally, there are two features of the PCF that underpin our model, but which do not 
appear explicitly in our numerical results: its long-term path dependency, which stems from the 
significant time lag between the trigger (global temperature increase) and the response (CO2 
release into the atmosphere), and its irreversibility, at least on human-relevant timescales. More 
than the figures of the projected impacts of the PCF on the social cost of carbon, what policy 
makers should have in mind is that the level of industrial emissions that we allow for over the 
next decades will have critical implications for the amount of permafrost carbon that is released 
in the atmosphere over the next centuries, and for the extent of future climate change. 
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These findings, as well as the width of uncertainties pertaining to this feedback, call not 
only for further research in this field, but also for an explicit consideration in the climate policy 
debate. 

 

  



80 
 

REFERENCES 

Ackerman, F., Stanton, E. A., & Bueno, R. (2010). Fat tails, exponents, extreme uncertainty: 
Simulating catastrophe in DICE. Ecological Economics, 69(8), 1657-1665.  

Anisimov, O. A., Shiklomanov, N. I., & Nelson, F. E. (1997). Global warming and active-layer 
thickness: results from transient general circulation models. Global and Planetary 
Change, 15(3), 61-77.  

Brown, J., Ferrians Jr, O. J., Heginbottom, J. A., & Melnikov, E. S. (1997). Circum-Arctic map of 
permafrost and ground-ice conditions (45). Retrieved from  

Burke, E. J., Hartley, I. P., & Jones, C. D. (2012). Uncertainties in the global temperature change 
caused by carbon release from permafrost thawing. Cryosphere, 6(5), 1063-1076.  

Burke, E. J., Jones, C. D., & Koven, C. D. (2013). Estimating the Permafrost-Carbon Climate 
Response in the CMIP5 Climate Models Using a Simplified Approach. Journal of Climate, 
26(14), 4897-4909.  

Calel, R., Stainforth, D. A., & Dietz, S. (2013). Tall tales and fat tails: the science and economics of 
extreme warming. Climatic Change, 1-15.  

Ceronsky, M., Anthoff, D., Hepburn, C., & Tol, R. S. (2011). Checking the price tag on catastrophe: 
the social cost of carbon under non-linear climate response. Retrieved from  

Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., . . . Friedlingstein, P. 
(2015). Impact of model developments on present and future simulations of permafrost 
in a global land-surface model. The Cryosphere, 9(4), 1505-1521.  

Dutta, K., Schuur, E., Neff, J., & Zimov, S. (2006). Potential carbon release from permafrost soils 
of Northeastern Siberia. Global Change Biology, 12(12), 2336-2351.  

Elberling, B., Michelsen, A., Schadel, C., Schuur, E. A. G., Christiansen, H. H., Berg, L., . . . Sigsgaard, 
C. (2013). Long-term CO2 production following permafrost thaw. Nature Clim. Change, 
3(10), 890-894.  

Falloon, P., Smith, P., Coleman, K., & Marshall, S. (1998). Estimating the size of the inert organic 
matter pool from total soil organic carbon content for use in the Rothamsted carbon 
model. Soil Biology and Biochemistry, 30(8), 1207-1211.  

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., . . . Zeng, N. (2006). 
Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model 
intercomparison. Journal of Climate, 19(14), 3337-3353.  

Frölicher, T. L., & Paynter, D. J. (2015). Extending the relationship between global warming and 
cumulative carbon emissions to multi-millennial timescales. Environmental Research 
Letters, 10(7), 075002.  

Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J., & Moyer, E. J. (2014). A simple 
carbon cycle representation for economic and policy analyses. Climatic Change, 126(3-
4), 319-335.  

Gregory, J. M., Jones, C. D., Cadule, P., & Friedlingstein, P. (2009). Quantifying Carbon Cycle 
Feedbacks. Journal of Climate, 22(19), 5232-5250.  

Gregory, J. M., Stott, P., Cresswell, D., Rayner, N., Gordon, C., & Sexton, D. (2002). Recent and 
future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophysical Research 
Letters, 29(24).  

Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., David McGuire, A., Camill, P., . . . O'Donnell, J. A. 
(2012). Field information links permafrost carbon to physical vulnerabilities of thawing. 
Geophysical Research Letters, 39(15).  

Hof, A. F., Hope, C. W., Lowe, J., Mastrandrea, M. D., Meinshausen, M., & van Vuuren, D. P. (2012). 
The benefits of climate change mitigation in integrated assessment models: the role of 
the carbon cycle and climate component. Climatic Change, 113(3-4), 897-917.  

Hope, C., & Schaefer, K. (2016). Economic impacts of carbon dioxide and methane released from 
thawing permafrost. Nature Climate Change, 6(1), 56-59.  



81 
 

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C.-L., . . . Koven, C. D. (2014). 
Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges 
and identified data gaps. Biogeosciences, 11(23), 6573-6593.  

IPCC. (2007). Climate change 2007: The Physical Science Basis: Working Group I contribution to 
the Fourth Assessment Report of the IPCC (0521705967). Retrieved from  

IPCC. (2013). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to 
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved 
from  

Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., & Pfeiffer, E.-M. (2013). Predicting long-term 
carbon mineralization and trace gas production from thawing permafrost of Northeast 
Siberia. Global Change Biology, 19(4), 1160-1172.  

Koven, C. D., Riley, W. J., & Stern, A. (2013). Analysis of Permafrost Thermal Dynamics and 
Response to Climate Change in the CMIP5 Earth System Models. Journal of Climate, 
26(6), 1877-1900.  

Koven, C. D., Schuur, E., Schädel, C., Bohn, T., Burke, E., Chen, G., . . . Harden, J. W. (2015). A 
simplified, data-constrained approach to estimate the permafrost carbon–climate 
feedback. Phil. Trans. R. Soc. A, 373(2054), 20140423.  

Lawrence, D. M., Slater, A. G., & Swenson, S. C. (2012). Simulation of present-day and future 
permafrost and seasonally frozen ground conditions in CCSM4. Journal of Climate, 25(7), 
2207-2225.  

Lemoine, D., & Traeger, C. (2014). Tipping the Climate Dominoes.  
MacDougall, A. H., Avis, C. A., & Weaver, A. J. (2012). Significant contribution to climate warming 

from the permafrost carbon feedback. Nature Geoscience, 5(10), 719-721.  
Marten, A. L. (2011). Transient Temperature Response Modeling in IAMs: The Effects of Over 

Simplification on the SCC. Economics-the Open Access Open-Assessment E-Journal, 5.  
Matthews, H. D., Gillett, N. P., Stott, P. A., & Zickfeld, K. (2009). The proportionality of global 

warming to cumulative carbon emissions. Nature, 459(7248), 829-832.  
Mokhov, I. I., & Eliseev, A. V. (2012). Modeling of global climate variations in the 20th–23rd 

centuries with new RCP scenarios of anthropogenic forcing. Doklady Earth Sciences, 
443(2), 532-536.  

Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing 
due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715-2718.  

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., . . . Mendoza, B. (2013). 
Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. 
Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate 
Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change (Vol. 423, pp. 658-
740). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 

Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H.-H., & Victor, N. (2000). 
Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the 
Intergovernmental Panel on Climate Change: Cambridge University Press. 

Nordhaus, W., & Sztorc, P. (2013). DICE 2013R: Introduction and user’s manual. In.  
Pindyck, R. S. (2013). Climate change policy: What do the models tell us? Journal of Economic 

Literature, 51(3), 860-872.  
Prentice, I. C., Williams, S., & Friedlingstein, P. (2015). Biosphere feedbacks and climate change.  
Pycroft, J., Vergano, L., Hope, C., Paci, D., & Ciscar, J. C. (2011). A tale of tails: Uncertainty and the 

social cost of carbon dioxide. Economics: The Open-Access, Open-Assessment E-Journal, 5.  
Rijsberman, F. R., & Swart, R. J. (1990). Targets and indicators of climatic change (Vol. 1666): 

Stockholm Environment Institute Stockholm. 
Roe, G. (2009). Feedbacks, Timescales, and Seeing Red. Annual Review of Earth and Planetary 

Sciences, 37, 93-115.  
Schädel, C., Schuur, E. A. G., Bracho, R., Elberling, B., Knoblauch, C., Lee, H., . . . Turetsky, M. R. 

(2014). Circumpolar assessment of permafrost C quality and its vulnerability over time 
using long-term incubation data. Global Change Biology, 20(2), 641-652.  



82 
 

Schaefer, K., Lantuit, H., Romanovsky, V. E., & Schuur, E. A. G. (2012). Policy implications of 
warming permafrost (9280733087). Retrieved from  

Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., & Witt, R. (2014). The impact of the 
permafrost carbon feedback on global climate. Environmental Research Letters, 9(8), 9.  

Schaefer, K., Zhang, T. J., Bruhwiler, L., & Barrett, A. P. (2011). Amount and timing of permafrost 
carbon release in response to climate warming. Tellus Series B-Chemical and Physical 
Meteorology, 63(2), 165-180.  

Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, 
S., . . . Boike, J. (2015). Observation-based modelling of permafrost carbon fluxes with 
accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11), 
3469-3488.  

Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. 
M., & Brovkin, V. (2012). Estimating the near-surface permafrost-carbon feedback on 
global warming. Biogeosciences, 9(2), 649-665.  

Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P., Canadell, J. G., . . . Zimov, S. A. 
(2013). Expert assessment of vulnerability of permafrost carbon to climate change. 
Climatic Change, 119(2), 359-374.  

Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., . . . 
Zimov, S. A. (2008). Vulnerability of permafrost carbon to climate change: Implications 
for the global carbon cycle. Bioscience, 58(8), 701-714.  

Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J., . . . Vonk, J. E. 
(2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171-
179.  

Slater, A. G., & Lawrence, D. M. (2013). Diagnosing Present and Future Permafrost from Climate 
Models. Journal of Climate, 26(15), 5608-5623.  

Stern, N. (2013). The structure of economic modeling of the potential impacts of climate change: 
grafting gross underestimation of risk onto already narrow science models. Journal of 
Economic Literature, 51(3), 838-859.  

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil 
organic carbon pools in the northern circumpolar permafrost region. Global 
Biogeochemical Cycles, 23, 11.  

van Vuuren, D., Lowe, J., Stehfest, E., Gohar, L., Hof, A., Hope, C., . . . Plattner, G.-K. (2011). How 
well do integrated assessment models simulate climate change? Climatic Change, 104(2), 
255-285.  

Warren, R., Mastrandrea, M. D., Hope, C., & Hof, A. F. (2010). Variation in the climatic response to 
SRES emissions scenarios in integrated assessment models. Climatic Change, 102(3-4), 
671-685.  

Weitzman, M. L. (2012). GHG targets as insurance against catastrophic climate damages. Journal 
of Public Economic Theory, 14(2), 221-244.  

Whiteman, G., Hope, C., & Wadhams, P. (2013). Vast costs of Arctic change. Nature, 499(7459), 
401-403.  

Winton, M. (2011). Do climate models underestimate the sensitivity of northern hemisphere sea 
ice cover? Journal of Climate, 24(15), 3924-3934.  

 

 



83 
 

APPENDICES 

Appendix 3.1: Estimates of permafrost degradation 

Table A3.1: Estimates of permafrost degradation 

Study Permafrost area degradation 
2100 2200 2300 

RCP2.6 
Burke et al. (2012) 16% n/a n/a 
Lawrence et al. (2012) 30% n/a n/a 
Mokhov and Eliseev (2012) 38% 33% 22% 
Koven et al. (2013) 23% n/a n/a 
Schuur et al. (2013) 15% n/a 25% 
Slater and Lawrence (2013) 37% n/a n/a 
DEP2.6    
MacDougall et al. (2012) 38% 38% 36% 
Schneider von Deimling et al. (2012) * 15% 15% 14% 
Schneider von Deimling et al. (2015) * 17% n/a n/a 
RCP4.5    
Burke et al. (2012) 24% n/a n/a 
Harden et al. (2012)* 23% n/a n/a 
Lawrence et al. (2012) 49% n/a n/a 
Mokhov and Eliseev (2012) 48% 59% 59% 
Koven et al. (2013) 46% n/a n/a 
Schuur et al. (2013) 24% n/a 39% 
Slater and Lawrence (2013) 52% n/a n/a 
DEP4.5    
MacDougall et al. (2012) 46% 53% 57% 
Schneider von Deimling et al. (2012) * 26% 35% 38% 
Schneider von Deimling et al. (2015) * n/a n/a n/a 
RCP6.0    
Burke et al. (2012) 27% n/a n/a 
Lawrence et al. (2012) 56% n/a n/a 
Mokhov and Eliseev (2012) 60% 81% 83% 
Koven et al. (2013) n/a n/a n/a 
Schuur et al. (2013) 42% n/a 56% 
Slater and Lawrence (2013) 63% n/a n/a 
DEP6.0    
MacDougall et al. (2012) 49% 58% 63% 
Schneider von Deimling et al. (2012) * 33% 55% 62% 
Schneider von Deimling et al. (2015) * n/a n/a n/a 
RCP8.5    
Burke et al. (2012) 35% n/a n/a 
Harden et al. (2012)* 41% n/a n/a 
Lawrence et al. (2012) 76% n/a n/a 
Mokhov and Eliseev (2012) 84% 93% 93% 
Koven et al. (2013) 76% n/a n/a 
Schuur et al. (2013) 57% n/a 74% 
Slater and Lawrence (2013) 87% n/a n/a 
Chadburn et al. (2015)* 50% n/a n/a 
DEP8.5    
MacDougall et al. (2012) 52% 63% 69% 
Schneider von Deimling et al. (2012) * 57% 100% 100% 
Schneider von Deimling et al. (2015) * 37% n/a 58% 

Notes: The estimates marked with an asterisk (*) were not used in the regression, usually because of a lack of 
continuous data. 
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Appendix 3.2: Permafrost thaw: regression results 

Table A3.2: Regression results 

 (1) PFthawed 
ΔTATM 0.172*** 
 (0.0261) 
Adj. R-squared 0.812 
Number of observations 796 
Notes: Standard errors in parentheses  
* p<0.05, ** p<0.01, *** p<0.001  
Statistics robust to heteroskedasticity and clustering on RCP and author 
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Appendix 3.3: Estimates of the carbon content of the near-surface northern circumpolar 
permafrost region 

Table A3.3: Published estimates of the carbon content of the near-surface (0-3m) northern circumpolar permafrost region 

Study Estimate (GtC) Confidence Interval 
Tarnocai et al. (2009) 1,024 n/a 
Hugelius et al. (2014), Schuur 
et al. (2015) 

1,035±150 95% 
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Appendix 3.4: Estimates of the size of the passive pool 

Table A3.4: Published estimates of the relative size of the passive pool 

Study Best estimate Uncertainty range 
Falloon et al. (1998) n/a 15%-60% 
Dutta et al. (2006) 18% n/a 
Burke et al. (2012) n/a 18%-60% 
Burke et al. (2013) n/a 15%-60% 
Schneider von Deimling et al. (2015)  52.5% 40%-70% 
Schädel et al. (2014) n/a 69-93% 

 
We take a mid-point estimate of the size of the passive pool at 40%.  
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Appendix 3.5: Estimates of the size of the e-folding time of permafrost carbon 
decomposition 

The decomposition time of the thawed carbon that is not in the passive pool is considered 
to be in the range of 0-200 years (Burke et al., 2013). We derive an estimate of the parameter τ 
through existing estimates of permafrost decomposition rates, which are collected in Table A3.5. 

Table A3.5: Published estimates of the e-folding time of permafrost carbon decomposition 

Study e-folding 
time (years) 

Comments 

Dutta et al. (2006) 20 Estimate based on the projection that a 10% thaw of the yedoma 
stock (46 GtC) would lead to a total of 40 GtC being transferred 
directly or indirectly to the atmosphere four decades later under a 
uniform temperature of 5°C. 

Schaefer et al. (2011) 70 Estimate defined as the characteristic e-folding time of permafrost 
carbon decay. 

Elberling et al. (2013) 34-361 Estimate based on a three-pool dynamic model that projects a 
potential C loss between 13 and 77% for 50 years of incubation at 
5°C. 

Knoblauch et al. (2013) 167 Estimate calculated from turnover times of 170.3 years for the stable 
pool and 0.26 years for the labile pool. 

Schädel et al. (2014) 22-224 Estimate based on projections that between 20 and 90% of the 
organic C will potentially be mineralized to CO2 within 50 incubation 
years at a constant temperature of 5°C. 

Schneider von Deimling et 
al. (2015) 

25 (10-40) Estimate that corresponds to the turnover time of an aerobic slow 
pool at 5°C. 

 

Based on these estimates, we assume a mean value for the parameter τ of 70 years, which, 
combined with the assumption that the size of the passive pool stands at c. 40%, means that 31% 
of thawed permafrost carbon will have decomposed after 50 years. This estimate is slightly below 
the mean estimates from Elberling (2013) and Schädel (2014) of the percentage of total thawed 
carbon which has decomposed after 50 years (45% and 55%, respectively). However, their 
results rely on the assumption that the thawed permafrost is exposed to a constant temperature 
of 5°C, which is why we adjust our estimate downwards. 
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Appendix 3.6: Share of methane emissions 

Table A3.6: Published estimates of the share of methane emissions 

Study Share of methane 
emissions 

Comments 

Schuur et al. (2013) 2.3% Up to 2300. 
Schneider von Deimling et 
al.  (2015) 

1.5-3.5% Up to 2300. 

 

 



89 
 

Appendix 3.7: Formulae to calculate the radiative forcings from methane (CH4) and 
nitrous oxide (N2O) 

The table below is taken from the Supplementary Material to Chapter 8 of the IPCC’s Fifth 
Assessment Report (Myhre et al., 2013). 

Table A3.7: Formulae for radiative forcing of methane and nitrous oxide 

Gas Radiative forcing (in W m-2) Constant α 
CH4 ∆𝐹 =  𝛼൫√𝑀 − ඥ𝑀൯ − (𝑓(𝑀, 𝑁) − 𝑓൫𝑀,𝑁൯) 0.036 

N2O ∆𝐹 =  𝛼൫√𝑁 − ඥ𝑁൯ − (𝑓(𝑀, 𝑁) − 𝑓൫𝑀,𝑁൯) 0.12 

 

Notes: 

 𝑓(𝑀, 𝑁) = 0.47ln (1 + 2.01 ∗ 10ିହ(𝑀𝑁)0.75 + 5.31 ∗ 10ିଵହ𝑀(𝑀𝑁)ଵ.ହଶ); 
 M is CH4 in ppb; 
 N is N2O in ppb; 

The subscript 0 denotes the unperturbed molar fraction for the species being evaluated. However, 
note that, for the CH4 forcing, N0 should refer to present-day N2O, and for the N2O forcing, M0 
should refer to present-day CH4.  
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Appendix 3.8: Sensitivity analysis for the social cost of carbon under quadratic damages 

Table A3.8: Sensitivity analysis of the social cost of carbon – assuming a quadratic damage function 

Social cost of carbon – without the PCF, quadratic damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 $204.6 $83.3 $75.9 $32.6 $16.1 $9.0 $5.6 $3.8 
0.010 $60.0 $30.3 $28.3 $15.0 $8.8 $5.6 $3.8 $2.7 
0.015 $38.0 $20.9 $19.6 $11.2 $6.9 $4.6 $3.2 $2.4 

 
 

Social cost of carbon – with the PCF, quadratic damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 $239.9 $99.7 $91.0 $39.2 $19.2 $10.6 $6.4 $4.2 
0.010 $72.3 $36.4 $33.9 $17.7 $10.2 $6.3 $4.2 $3.0 
0.015 $45.6 $24.8 $23.2 $13.0 $7.9 $5.2 $3.6 $2.6 

 
 

Relative impact of the PCF on the social cost of carbon, quadratic damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 17.2% 19.7% 19.9% 20.4% 19.0% 16.7% 14.4% 12.3% 
0.010 20.5% 19.9% 19.8% 17.9% 15.7% 13.6% 11.7% 10.2% 
0.015 20.0% 18.6% 18.4% 16.3% 14.2% 12.3% 10.8% 9.5% 
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Appendix 3.9: Sensitivity analysis for the social cost of carbon under Weitzman damages 

We recalculate previous results using an alternative damage function, which was 
proposed by Weitzman (2012).  

𝛺ௐாூ்ெே(𝑇𝐴𝑇𝑀(𝑡)) =  
1

1 + ൫𝛼ଵ ∗ 𝑇𝐴𝑇𝑀(𝑡)൯
ଶ

+ (𝛼ଶ ∗ 𝑇𝐴𝑇𝑀(𝑡))ఊ
 

 
Where parameter values are the following: 
 α1 = 1/20.46 
 α2 = 1/6.081 
 γ = 6.754 
 
 
Table A3.9: Sensitivity analysis of the social cost of carbon – assuming the Weitzman damage function 

Social cost of carbon – without the PCF, Weitzman damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 $1,676.5 $777.6 $714.6 $310.0 $137.2 $62.2 $29.1 $14.2 
0.010 $338.5 $165.4 $153.0 $70.9 $33.9 $17.0 $9.0 $5.1 
0.015 $173.3 $87.2 $80.9 $39.0 $19.6 $10.4 $5.9 $3.6 

 
 
 

Social cost of carbon – without the PCF, Weitzman damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 $1,974.5 $1,088.2 $1,019.2 $533.3 $282.8 $152.1 $82.9 $45.9 
0.010 $459.1 $252.7 $236.6 $124.0 $66.1 $36.0 $20.1 $11.5 
0.015 $245.5 $135.4 $126.9 $66.9 $36.0 $19.9 $11.4 $6.7 

 
 

Relative impact of the PCF on the social cost of carbon with Weitzman damages 
  Elasticity of marginal utility η 
  1.0 1.45 1.5 2.0 2.5 3.0 3.5 4.0 

PRTP ρ 
0.000 17.8% 39.9% 42.6% 72.0% 106.1% 144.4% 184.7% 222.8% 
0.010 35.6% 52.7% 54.7% 74.8% 94.8% 112.2% 124.0% 127.3% 
0.015 41.6% 55.4% 56.9% 71.6% 84.0% 92.1% 94.1% 89.3% 
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Chapter 4: What are the impacts of droughts on economic growth? 
Evidence from U.S. states 

Abstract 

In recent years, a literature has established itself on the macroeconomic impacts of 
variations in temperature and precipitation, but the impacts of droughts per se (which can be 
defined roughly as periods of abnormally dry weather conditions) have been the focus of much 
less attention, apart from extreme drought events that are classified as natural disasters. There 
are several factors that could explain why droughts have been studied less extensively than other 
types of weather events, from the difficulty of their characterization to the insidiousness of their 
impacts, but there are also several compelling reasons to undertake a thorough study of their 
macroeconomic impacts, especially in the context of a changing climate, where rainfall patterns 
are expected to shift, along with warming trends. I choose the setting of the United States to 
examine the following questions: Do droughts have an impact on states’ economic growth? Are 
these effects lagged and/or persistent? Are the impacts of droughts made worse when they co-
occur with high temperature conditions? I outline here a framework for researching these effects, 
as well as some preliminary results and a discussion of the extent to which these can be relevant 
for societal decision-making processes. 

1. Introduction 

It is now generally agreed that climate change will modify the intensity and frequency of 
weather and climate events (Herring, Hoerling, Kossin, Peterson, & Stott, 2015; IPCC, 2012). Over 
the past few years, this realization has spawned two different (and seemingly unrelated) streams 
of research: the first has been described as the “new climate-economy literature” (Dell, Jones, & 
Olken, 2014) and relies on the application of advanced econometric methods to examine the 
socio-economic impacts of weather events; the second, which is less well-known, proposes the 
use of a “compound events framework” to examine how combinations of variables produce 
extreme impact events (Leonard et al., 2014). 

The first stream of research, which applies panel data methods to examine how climate 
and weather (mainly temperature, precipitation and windstorms) influence socio-economic 
outcomes, has been growing rapidly over the past few years. Much of this body of literature has 
focused on quantifying the impact of year-to-year fluctuations in temperature and precipitation 
on various socio-economic outcomes, including: agricultural output (Auffhammer & Schlenker, 
2014; Deschenes & Greenstone, 2007; Schlenker & Roberts, 2009); aggregate output (Burke, 
Hsiang, & Miguel, 2015; Dell, Jones, & Olken, 2012; Hsiang, 2010); labour productivity (Heal & 
Park, 2016; Park, 2016); labour market dynamics (Bastos, Busso, & Miller, 2013); democratic 
institutions (Brückner & Ciccone, 2011); migration (Bohra-Mishra, Oppenheimer, & Hsiang, 
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2014; Deschenes & Moretti, 2009); conflict (Hsiang, Burke, & Miguel, 2013; Maystadt & Ecker, 
2014); mortality (Deschênes & Greenstone, 2011); and birth rates (Barreca, Deschenes, & Guldi, 
2015). Thorough reviews of this literature have been provided by Dell et al. (2014), Hsiang 
(Hsiang, 2016) and Carleton and Hsiang (Carleton & Hsiang, 2016). 

Some of these studies have focused explicitly on the impact of variations in weather 
conditions on economic growth. Dell et al. (Dell et al., 2012) found that higher temperatures 
reduce economic growth in poor countries, but that changes in temperature do not have a 
discernible effect on growth in rich countries. This finding has been challenged by Burke, Hsiang 
and Miguel (2015), who showed that the growth rate of output per capita is non-linear in 
temperature for both rich and poor countries, with economic growth peaking at an annual 
average temperature of 13°C and declining strongly at higher temperatures. A more recent article 
by Colacito et al. (2014) provides empirical evidence that temperature affects economic growth 
in the United States (U.S.) by focusing on the role of seasonal temperatures. Similarly, Hsiang and 
Jina (2014) established that tropical cyclones have long-term negative effects on economic 
growth in those countries affected. There is more limited evidence for precipitation: Dell et al. 
(2012) found that changes in precipitation have relatively mild effects on national growth in both 
rich and poor countries, with an extra 100mm of annual precipitation being associated with a 
0.08 percentage point lower growth rate in rich countries and a statistically insignificant 0.07 
percentage point higher growth rate in poor countries. Tebaldi and Beaudin (2016) found 
significant impacts of low and high precipitation levels on regional economic growth in Brazil but 
their results could come from seasonal effects which are not fully controlled for in their model. 

 The macro-economic consequences of droughts (which can be defined roughly as periods 
of abnormally dry weather) have been much less intensively explored. Naturally, the initial 
interest has been in studying the economic damage caused by specific drought events in the 
agricultural sector (Anderson, Welch, & Robinson, 2012; Leister, Paarlberg, & Lee, 2015). 
Agriculture should be among the most sensitive sectors of the economy to droughts. A few studies 
have concentrated on evaluating the impacts of droughts severe enough to be classified as natural 
disasters (Loayza, Olaberria, Rigolini, & Christiaensen, 2012; Raddatz, 2009). These latter studies 
usually take their drought data from the Emergency Disasters Database (EM-DAT37), and 
therefore only explore the impacts of the most extreme drought events.  

The macro-economic impacts of droughts of all degrees of severity have been the subject 
of even less attention; I am only aware of a working paper by Berlemann and Wenzel (2015), 
which looks at how droughts affect medium and long-term growth. This gap in the literature can 
be linked to the fact that, unlike one-dimensional climate variables such as the level of 
temperature or precipitation, droughts are difficult to characterize and suppose the choice of a 
baseline and time frame. Also, droughts usually have an unclear onset and ending, as well as 
unclear spatial coverage. Unlike other types of natural hazard such as hurricanes, droughts often 
lack visible and structural impacts, which can sometimes make them relatively inconspicuous.  

Nevertheless, there are many reasons why the socio-economic outcomes of periods of dry 
weather deserve to be assessed in a more thorough manner than they have been in the past. As 
                                                             
37 The EM-DAT database, managed by the Centre for Research on the Epidemiology of Disasters at the Catholic 
University of Louvain, accounts for events that meet at least one of the following conditions: there are 10 or more 
people reported killed; there are 100 or more people reported affected; a state of emergency is declared; or there is a 
call for international assistance. 
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we will see in the next section, there are numerous channels through which local drought events 
could have ripple effects on all sectors of the economy, and there are reasons to believe that these 
effects could be nonlinear, lagged and/or persistent. Moreover, droughts are likely to become one 
of the most apparent manifestations of future climate change in many areas, including southern 
Europe and the Mediterranean region, central Europe, central North America and Mexico, 
northeast Brazil and southern Africa (IPCC, 2012). Assessing the macroeconomic impacts of dry 
weather should therefore help to improve our understanding of the near- and long-term threats 
posed by climate change. 

However, given their complex nature, the study of the macroeconomic impacts of 
droughts raises further questions. For instance, it seems reasonable to consider the possibility 
that repeated droughts could have cumulative (negative) effects on growth, which would require 
us to look at intensification effects. Moreover, research has shown that the impact of droughts is 
often made worse by interactions with other types of weather events, such as heat waves, 
windstorms or floods. For these reasons, I believe that the assessment of the macroeconomic 
impacts of droughts should make use of the recently formalized compound events framework.  

The emergence of the notion of compound events in the field of statistics can be linked to 
the recent focus on extreme weather events and to the willingness to better understand how 
climate variables combine to produce extreme impacts. Indeed, as emphasized by Sedlmeier et 
al. (2016, p. 1): “the potential impact of extreme events such as heat waves or droughts does not 
only depend on their number of occurrence but also on “how the extremes occur”, i.e. the 
interplay and succession of the events”. The IPCC’s Special Report on Managing the Risk of 
Extreme Events and Disasters (SREX) (2012, p. 118) has proposed a flexible definition of 
compound events: “(1) two or more extreme events occurring simultaneously or successively, (2) 
combinations of extreme events with underlying conditions that amplify the impact of the events, 
or (3) combinations of events that are not themselves extremes but lead to an extreme event or 
impact when combined. The contributing events can be of similar (clustered multiple events) or 
different type(s)”. A simpler and more straightforward definition of compound events has been 
given by Leonard et al. (2014, p. 115): “A compound event is an extreme impact that depends on 
multiple statistically dependent variables or events”. This loose definition of compound events 
can therefore be used to encompass both repeated and co-occurring weather and climate events.  

So far, the literature on compound events seems to have focused exclusively on exploring 
the statistical dependence between weather variables and assessing whether or not some types 
of compound events have – or will – become more frequent (AghaKouchak, Cheng, Mazdiyasni, & 
Farahmand, 2014; Wahl, Jain, Bender, Meyers, & Luther, 2015). To my knowledge, the other 
research avenue, namely the use of the compound events framework to analyse the risks and the 
impacts of weather and climate events, has not yet received any attention.  

I am therefore proposing to contribute to the “new climate-economy literature” by 
thoroughly assessing the macroeconomic impacts of drought events, but also to use the 
compound events framework to examine intensification effects and to assess the impact of 
combinations of droughts and other weather variables, which to my knowledge has not yet been 
addressed.  

The rest of the chapter is structured as follows. Section 2 will present a review of the 
literature. Section 3 will detail the contribution of this paper and set out research objectives. 
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Section 4 will present the methodology used, including the setting, data sources and the 
econometric model. Results will be presented in Section 5. Section 6 concludes.    

2. Literature review 

As our analysis will focus on the impacts of droughts on regional economic growth in the United 
States, the focus of the literature review below is mainly on developed countries. This literature 
review is organised in three parts: first, it presents the channels through which droughts can 
affect the economy; second, it provides an overview of the quantitative assessments that have 
been made of the economic impacts of droughts; finally, it introduces how the compound events 
framework can be used in the context of drought events. 

i. On the channels through which droughts affect the economy 

Despite the shortage of literature on the macroeconomic impacts of droughts, particularly 
droughts insufficiently extreme to be classed as natural disasters, there are compelling reasons 
to consider the impact of abnormally dry weather on the economy as a whole, given that there 
are many channels through which even local droughts could have repercussions on all sectors of 
the economy. Indeed, even if crop failures and agricultural losses are generally the most 
immediate and obvious impacts of droughts, these often translate into supply shocks on the 
markets for agricultural products, which in turn can lead to increases in the price of feed grain, 
food and timber. For instance, the FAO estimated that the 2012 drought would increase retail 
food prices by between 3 and 4% in the following year38. These price increases then affect 
consumer expenditure and it has even been suggested that they can cause stock market frenzies 
(Terazono, 2014). Droughts can also significantly lower agricultural capital, for instance through 
impacts on livestock; these can be strong enough to jeopardize pastoralism as a viable livelihood 
strategy, and thus reduce agricultural growth, particularly in low-income countries and regions 
(Loayza et al., 2012). 

Prolonged dry conditions can also have severe consequences for other water-dependent 
industries, such as hydropower generation, fluvial navigation and tourism. For instance, the 2015 
drought in California reduced the share of hydroelectricity production in the state’s overall 
electricity generation to 7%, down from an average of 18% (Gleick, 2015). Because the 
alternatives to hydropower (natural gas, wind, solar, out-of-state sources) have higher marginal 
variable costs, these translate into an increase in direct electricity costs to ratepayers. According 
to Gleick, the reduction in hydroelectricity generation during the 2012-2015 California drought 
increased state-wide electricity costs by c. $2.0 billion in total. Another study by Barnett and 
Pierce (2008) estimated that the flow of the Colorado river is likely to decline 10-30% over the 
next 30-50 years; this would significantly reduce live storage and the system’s hydropower 
production. 

These sectoral effects can also lead to increased unemployment and reduced tax 
revenues. According to Howitt et al. (2015), the 2015 drought in California was responsible for 
the loss of 21,000 jobs, including 10,100 seasonal jobs in the agricultural sector.  

                                                             
38 Source: http://www.fao.org/docrep/017/aq191e/aq191e.pdf 
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It also seems reasonable to envisage that droughts could have lagged and/or persistent 
impacts. As regards space-lagged impacts, as highlighted by Mishra and Singh (2010), droughts 
can have economic impacts in areas not directly affected by anomalously dry conditions, whether 
through changes in prices (e.g. food and electricity prices, insurance premiums), monetary 
transfers from regional or federal authorities, international trade shocks or population migration. 
As an illustration, the 2012 drought episode (which affected 80% of US agricultural land in the 
summer of 2012) led to U.S. export prices for corn soaring 128% above the 20-year historical 
average. As regards time-lagged impacts, research has found that the main effects of droughts are 
found in the years following the actual drought (Leister et al., 2015). 

As regards the persistent effects of droughts, there are two opposing hypotheses: the first 
hypothesis is that severe droughts are likely to have persistent impacts, especially when they lead 
to large-scale land degradation and permanent migration (Hornbeck, 2012). The second 
hypothesis is supported by results from Loayza et al. (2012), which suggest that there is some 
reversion, in the sense that while contemporaneous droughts cause a decline in total and 
agricultural growth, previous droughts produce the opposite effect. One of the explanations for 
this beneficial delayed impact could be that droughts lead governments and institutions to 
undertake recovery actions and programs, which have lagged positive effects. This issue of the 
persistence of drought impacts raises further questions pertaining to the resilience of the 
economy and to potential threshold effects. For instance, the impact of a drought can be mitigated 
in the short-term by the use of groundwater resources, but repeated droughts could lead to the 
depletion of aquifers, and any subsequent droughts would have far more severe consequences.  

ii. On the economic impacts of droughts 

The literature on the economic impacts of droughts can be segmented into three different 
streams.  

The first stream of this literature has focused on the impact of droughts on crop yields, 
agricultural production and farm income. Westcott and Jewison (2013) found that dry weather 
in summer had a negative impact on corn and soybean yields. Lambert (2014) quantified the 
weather effects on output and income for a panel of Kansas farmers and found that precipitation 
had asymmetric effects on crop production throughout the growing year. Craft et al. (2013) 
examined the impact of six severe drought episodes on corn in Kentucky and found a 47% 
reduction in revenue from corn during episodes of severe drought in Kentucky. Leister et al. 
(2015) and Countryman et al. (2016) both used dynamic partial equilibrium models to assess the 
long-term economic impact of U.S. drought conditions on crop and live cattle prices; both found 
that, in the long run, market adjustments cause a significant decrease in consumer surplus. 
Finally, Lott and Ross (2015) have estimated that reduced crop yields across the United States 
due to droughts and heat waves have resulted in losses equivalent to $145bn over the past three 
decades. 

The second stream of this literature has focused on the economic impacts of extreme 
droughts. Some of these studies have focused on specific drought events. For instance, Ziolkowska 
(2016) used an input-output model to estimate the economic losses from the 2011 drought in 
Texas and found that it had caused $16.9 billion of losses to the entire Texas economy and 
increased unemployment by 166,895 people. Howitt et al. (2015) calculated that the economic 
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cost of the 2015 California drought was around $2.74 billion, including direct agricultural costs 
of $1.84 billion, and 21,000 jobs.  

Other studies, most of them based on the EM-DAT database39, have used panel data 
analysis methods to examine the impacts of major droughts on macroeconomic growth, in both 
the agricultural and non-agricultural sectors. By applying panel data methods to an indicator of 
drought incidence, Raddatz (2009) found that, among climatic disasters, droughts had the largest 
average impact, with cumulative losses of 1 percent of gross domestic product (GDP) per capita. 
Similarly, Loayza et al. (2012) used a cross-country panel dataset to compare the effects of 
different types of disasters on economic growth and found that, overall, droughts, measured as a 
function of the number of people affected relative to the country’s population, had a significant 
and negative impact on agricultural growth and a negative and insignificant impact on total GDP 
growth. Fomby et al. (2013) examined the impact of natural disasters on GDP growth using an 
intensity indicator based on the number of fatalities and the total number of people affected 
relative to a country’s population, and found that, in advanced countries, droughts had a 
significant negative contemporaneous effect, but that it only applied to agricultural growth, and 
did not persist over time.  

A slightly different approach was taken by Jenkins and Warren (2015a), who quantified 
the economic cost of droughts by linking the Standard Precipitation Index40 and the reported 
economic cost of 34 historic drought events in the EM-DAT database; they then applied these 
country-damage functions to projections of drought magnitude under future scenarios of climate 
change and found that severe and extreme drought events were projected to cause estimated 
additional losses ranging between 0.04 and 9 percent of national GDP in Australia, the U.S. and 
Spain/Portugal. 

The third stream of this literature has looked at the impact of precipitation levels (rather 
than drought per se) on economic growth. As mentioned in the Introduction, Dell et al. (2012) 
showed that an extra 100mm of annual precipitation was associated with lower growth rate of 
0.08 percentage points in rich countries and a statistically insignificant higher growth rate of 0.07 
percentage points in poor countries. Burke, Hsiang and Miguel (2015) did not find any significant 
effects of precipitation on country-level economic production41.  

In summary, the macroeconomic impacts of “disaster droughts” have already been the 
focus of some studies, as have the impacts of precipitation variations on economic growth.  
However, the effects of droughts of any degree of severity on economic growth do not seem to 
have been researched extensively. As far as I am aware, this fourth stream only comprises a study 
by Berlemann and Wenzel (2015), who performed panel data analysis on 135 countries over the 
period of 1960-2002 to examine the long-term effects of droughts (defined by a drought indicator 
                                                             
39 The EM-DAT database only accounts for events that meet at least one of the following conditions: there are 10 or 
more people reported killed; there are 100 or more people reported affected; a state of emergency is declared; or there 
is a call for international assistance. 
40 The Standard Precipitation Index is a commonly used tool to define and monitor droughts – see Section 4 for a 
detailed description.  
41 There is also a paper by Carroll et al. (2009)  which considers the impact of droughts not on economic growth, but 
on the economy as a whole: they estimated the cost of droughts by matching rainfall data with individual life 
satisfaction in Australia over the period 2001 to 2004 and found that spring drought has a detrimental effect on life 
satisfaction equivalent to an annual reduction in income of A$18,000 for individuals living in rural areas. Based on 
these estimates, the predicted doubling of the frequency of spring droughts would lead to the equivalent loss in life 
satisfaction of around 1% of GDP annually. 
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based on the Standard Precipitation Index (SPI)) on per capita GDP and found significantly 
negative long-term growth effects of droughts in both highly and less developed countries. 
However, their study appears to suffer from several methodological shortcomings. Their drought 
indicator corresponds to the yearly average drought magnitude over past years (i.e. the absolute 
value of the sum of all negative 12-month-SPI-values over the current and the [k] preceding 
years), which does not correspond to the definition of drought events as proposed by McKee et 
al. (1993) (see the section below on data) and does not account for differences between years and 
seasons. Moreover, their aggregate drought indicator does not allow them to make a distinction 
between the duration and the intensity of drought events.  

iii. On the compound impacts of droughts and high temperature events 

The current context of a changing climate compels us to examine whether the effects of 
droughts are compounded by high temperatures. Indeed, high temperatures cause more 
evaporation from the ground, which, in the absence of precipitation, dries out the soil, leading to 
a further increase in air temperature. As Romm (2011) pointed out, this explains why the hottest 
summer ever recorded for a U.S. state took place in drought-stricken Texas in 2011. Therefore, 
assessing the impacts of dry periods without taking into account co-occurring high temperatures 
could lead to a significant underestimation of future impacts. However, the only research I have 
seen on the impact of co-occurring warm and dry conditions seems to be confined to agriculture 
and forestry. For instance, Urban et al. (2015) investigated the combined effects of moisture and 
heat on maize yields in Iowa, Indiana and Illinois and found that this interaction led to larger 
mean yield losses. Similarly, Allen et al. (2010) showed that climate change and especially the 
combination of drought and heat stress have already caused an increase in tree mortality, which 
poses significant risks to ecosystem services, including the loss of sequestered forest carbon, but 
also shrinking water reservoirs and insect infestation. Wildfires are also a result of the co-
occurrence of warm and dry conditions, and are expected to increase in frequency and intensity 
as climates become warmer and drier, not only in the United States (Westerling, Hidalgo, Cayan, 
& Swetnam, 2006) but in many regions of the world (Liu, Stanturf, & Goodrick, 2010). An aerial 
survey conducted in 2015 by the U.S. Forest Service (2015) found that the four-year drought had 
killed more than 12.5 million trees, which significantly increased the risk of wildfires. These can 
have catastrophic consequences, not just in terms of physical damage but also in terms of human 
losses. Another channel through which high temperatures and lack of precipitation could have 
compound negative effects would be through changes in hydrological cycles: Barnett et al. (2008) 
showed that recent shifts in mountain precipitation and earlier snow melt in the Western United 
States have led to significant changes in river flows, which have exacerbated the drying induced 
by warmer conditions. 

To my knowledge, the potential compound effects of droughts and periods of high 
temperature on economic growth have not been the topic of a thorough assessment. However, 
this approach of considering the co-occurrence of low precipitation and temperature conditions 
has been used by Fontes et al. (2017) in a recent paper, in which they develop a rainfall-
temperature index that they apply to a panel dataset of Indian districts over the period 1966-
2009 in order to estimate the marginal and total effects of drought on cereal productivity.  

 



100 
 

3. Contribution of this paper 

We can draw two main insights from this review of the existing literature: (1) numerous 
studies have found that droughts have a short-term negative impact on agricultural crop yields, 
which translates into medium- and long-term price increases; and (2) there is some evidence that 
extreme droughts qualifying as natural disasters have a negative impact on macroeconomic 
growth, at least in the short-run.  

From these, several gaps in the literature can be identified: first, the impacts of droughts 
per se (as opposed to precipitation) on economic growth do not seem to have been explored 
thoroughly. Second, the multi-faceted nature of droughts does not seem to have been the subject 
of many studies and I have not seen a discussion of which characteristics of drought events 
(intensity, duration, frequency, etc.) matter the most in terms of economic impact; nor does there 
appear to have been a thorough investigation of time- and space-lagged effects, or of persistent 
effects. Furthermore, extreme droughts seem to have been analysed only through indicators 
derived from the EM-DAT database, which are not truly exogenous (because they are measured 
in terms of the severity of their impact, for example the number of deaths). In any case, these 
typically binary indicators of drought (there is a drought disaster or there is not) are a coarse 
representation of the underlying drought data. Finally, as I have discussed above, there is some 
evidence to support the hypothesis that the economic impacts of dry weather could be 
compounded by co-occurring high temperatures; these potential compounding effects do not 
seem to have been examined at all.    

The objective here is to use the recent advances in panel data analysis of weather 
variables to examine the impacts of meteorological droughts on economic growth. Since 
meteorological droughts can be considered as exogenous variations in weather (i.e. periods of 
abnormally low precipitation), they provide an ideal setting for causal inference tying weather 
events to socio-economic outcomes (Dell et al., 2014). Given that droughts are multi-dimensional 
events, I also propose to look at which features of drought events (e.g. duration, magnitude and 
peak intensity) cause the most damage to the economy and to examine whether successive 
drought events and the interplay with other weather variables has an effect on their 
macroeconomic impact. 

This paper addresses these gaps in the literature by examining the following research 
questions: 

1) Do droughts, defined here as periods of abnormally dry weather, have an impact on 
U.S. states’ economic growth? 

2) What are the characteristics of drought events that matter in terms of impact? 
3) Are these impacts lagged and/or persistent?  
4) Are these impacts compounded by co-occurring periods of high temperature? 

4. Methodology 

i. Setting 
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There are several reasons why the United States provides an interesting location for the 
study of the impact of drought events on economic growth.  

First, the U.S. territory is very often prone to droughts: according to the Environmental 
Protection Agency (EPA), over the period from 2000 to 2015, roughly 20 to 70% percent of the 
U.S. land area experienced abnormally dry conditions at any given time (EPA, 2016). As an 
illustration, the following figure (Fig. 4.1) shows two maps of drought conditions in the U.S.: the 
one on the left corresponds to the week during which the share of the U.S. territory under drought 
conditions (80.75%) was the largest over the period 2000-2017; the one on the right corresponds 
to the week during which the share of the U.S. territory under drought conditions (21.35%) was 
the lowest over the same period (The National Drought Mitigation Center, 2017).  

Figure 4.1: Drought conditions over the United States during the weeks when the largest (and the smallest) share of the 
territory was affected by drought over the period 2000-2017 

 

Source: United States Drought Monitor (The National Drought Mitigation Center, 2017)42 

Second, the US territory seems to provide an adequate setting for the examination of the 
impacts of compound dry and warm conditions. We developed earlier the argument that high 
temperatures are likely to make dry weather conditions worse and recent drought events in the 
United States seem to provide evidence to support this claim. For instance, Diffenbaugh et al. 
(2015) showed that the increasing co-occurrence of dry years with warm years has significantly 
raised the risk of extreme droughts in California. Williams et al. (2015) performed a similar 
analysis and found that precipitation remains the main driver of drought variability, but that 
warmth has intensified the effects of recent precipitation shortfalls by enhancing potential 
evapotranspiration; according to their estimates, anthropogenic warming accounted for 8-27% 
of the observed drought anomaly in 2012-2014 and 5-18% in 2014. As regards wildfires, a recent 
study has shown that increasing trends in the number of large fires in the western U.S. over the 
period 1984-2011 are a reflection of long-term, global fire trends that will likely occur with 

                                                             
42 The U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center at the University of 
Nebraska-Lincoln, the United States Department of Agriculture, and the National Oceanic and Atmospheric 
Administration. Map courtesy of NDMC-UNL. 
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increased temperature and drought severity in the coming decades (Dennison, Brewer, Arnold, & 
Moritz, 2014).  

Third, the United States is likely to be affected by an increase in the frequency and the 
severity of droughts over this century. According to Cook et al. (2015), the Southwest and Central 
Plains of Western North America are likely to experience significantly drier conditions in the 
second half of the 21st century compared to the 20th century and earlier paleoclimatic intervals. 
Strzepek et al. (2010) applied drought indices to the IPCC’s 22 General Circulation Models for 
three greenhouse gas emissions scenarios and found that the frequency of meteorological 
drought (based on precipitation alone) is projected to increase in the southwestern states, while 
the frequency of hydrological drought (based on precipitation and temperature) is projected to 
increase across most of the country. Their results also exhibit a strong worsening trend along 
higher emissions scenarios. Several studies also project that future weather conditions will be 
more conducive to wildfires in the mountainous regions of the western United States (Barbero, 
Abatzoglou, Larkin, Kolden, & Stocks, 2015; Luo, Tang, Zhong, Bian, & Heilman, 2013). 

Fourth, droughts are also among the costliest natural disasters in the United States 
(Riebsame, Changnon Jr, & Karl, 1991). The Federal Emergency Management Agency estimated 
in 1995 that droughts in the United States caused an average annual economic loss of $6-8bn 
(Federal Emergency Management Agency, 1995). According to NOAA43 (NOAA National Centers 
for Environmental Information (NCEI)), billion-dollar drought events totalled $220.3bn of CPI-
adjusted losses between 1980 and 2016, which makes them second only to tropical cyclones on 
the list of billion-dollar disaster events. This indicates the potential for an impact of droughts on 
economic growth.  

Finally, from a more pragmatic standpoint, our analysis requires time series of economic 
and drought data on compatible spatial scales. Droughts are usually highly localized events and 
as such should be examined on fine spatial scales, ideally at the weather station- or county-level. 
Because droughts are derived from precipitation anomalies, aggregating them over larger spatial 
scales leads to an averaging of weather conditions, which does not reflect the fact that some areas 
are experiencing abnormally dry weather. On the other hand, most economic data is generally 
only available at state or national level. There is good data availability for both the Standard 
Precipitation Index (SPI) and GDP at the state level in the U.S., which is why we choose the 48 
contiguous U.S. states as the framework for our analysis.  

ii. Data 

Drought indicators 

One of the main challenges with studying droughts is that they cannot be inferred directly 
from weather variables. Indeed, meteorological drought is defined as a period of abnormally low 
precipitation, which supposes both a reference baseline and a reference time-scale. To that effect, 
several indicators of meteorological drought have been developed, the two most commonly used 
being the Palmer Drought Severity Index (Palmer, 1965) and the Standard Precipitation Index 
(McKee et al., 1993), both of which aim to address the intensity and the duration of droughts. For 
reference, other less commonly used drought indices include the Standard Runoff Index (Shukla 

                                                             
43 https://www.ncdc.noaa.gov/billions/ 
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& Wood, 2008), which is aimed at the characterisation of hydrological droughts, and the 
Standardized Precipitation-Evapotranspiration Index (Vicente-Serrano, Beguería, & López-
Moreno, 2010) and the Supply-Demand Drought Index (Rind, Goldberg, Hansen, Rosenzweig, & 
Ruedy, 1990), which both rely on measures of evapotranspiration. The reasons which justify the 
choice of the Standard Precipitation Index for the purpose of this paper are detailed next page. 

The Palmer Drought Severity Index (PDSI) is based on a simple two-layer soil moisture 
model which captures the basic effect of warming on drought through changes in potential 
evapotranspiration. In essence, it is a water balance model based on the difference between the 
amount of precipitation required to retain a normal water balance level and the amount of actual 
precipitation. Its main weakness lies in the fact that it relies on empirical constants, which limits 
its usefulness for spatial comparison. 

The Standard Precipitation Index (SPI) is calculated from the cumulative probability of a 
given rainfall event occurring at a location, which is then transformed into an index, where the 
SPI values are given in units of standard deviation from the standardised mean, with negative 
values corresponding to drier periods than normal, and positive values corresponding to wetter 
periods than normal. The SPI is calculated on a monthly basis for a moving window of [k] months, 
where k indicates the rainfall accumulation period, which is typically 1, 3, 6, 12, 24, or 36 months. 
The National Drought Mitigation Center at the University of Nebraska (National Drought 
Mitigation Center) provides guidelines for interpreting these different SPI indicators: 

 SPI-1, based on very short rainfall accumulation periods, reflects short-term conditions 
and can be misleading depending on the location’s climatology, as very small departures 
from the mean can result in large negative or positive SPI values; 

 SPI-3, provides seasonal estimates of precipitation levels but can hide precipitation 
anomalies which take place over a longer time scale; 

 SPI-6 shows precipitation anomalies over distinct seasons and can provide indications 
of anomalous streamflows and reservoir levels; 

 SPI-12 is a comparison of precipitation for 12 consecutive months during all the 
previous years of available data and can reflect the impacts of rainfall (or lack thereof) 
on streamflows, reservoir levels and groundwater levels. The 12-month SPI for the end 
of December thus compares the precipitation totals for the January-December period 
with similar periods at the same location.  

Table 4.1 below presents the 8 different bins of the SPI indicator, which range from 
extremely dry weather conditions (SPI ≤ -2) to extremely moist conditions (SPI ≥ 2). 
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Table 4.1: SPI categories (McKee et al., 1993) 

SPI values Category 
≤ -2.00 Extremely dry 

-1.50 to -1.99 Severely dry 
-1.00 to -1.49 Moderately dry 

0 to -0.99 Mildly dry 
0 to 0.99 Mildly moist 

1.00 to 1.49 Moderately moist 
1.50 to 1.99 Severely moist 

≥ 2.00 Extremely moist 
 

The reasons which motivated the choice of the SPI as the drought indicator for this paper 
are manifold: first, the SPI can be easily used to describe the multiple dimensions of drought 
events, including intensity (peak and average), duration and spatial extent (e.g. by summing 
drought-affected grid cells). Second, as opposed to the Palmer Drought Severity Index and 
drought indicators derived from the EM-DAT database (usually a combination of fatalities and 
the number of people affected), drought indicators based on the SPI are solely calculated from 
precipitation data, which we assume to be unaffected by economic and population growth, and 
therefore these can be considered as purely exogenous44. Third, the use of the SPI to characterize 
meteorological droughts has been recommended by the Lincoln Declaration on Drought Indices45 
(Hayes, Svoboda, Wall, & Widhalm, 2011) and because of its ability to address drought at multiple 
time steps for a variety of climatic regions, it has been used extensively in hydrological studies 
(Dutra, Di Giuseppe, Wetterhall, & Pappenberger, 2013; Edossa, Babel, & Gupta, 2010; A. Mishra 
& Singh, 2009; Roudier & Mahe, 2010; Stricevic, Djurovic, & Djurovic, 2011). Finally, because the 
SPI represents local variations in drought conditions, it is especially well-suited to panel methods 
as it provides enough within-state variation to allow identification. 

Based on the above discussion on the respective merits of each of the SPI indicators, as 
well as what has been done in the literature (Jenkins & Warren, 2015b), the 12-month SPI (SPI-
12) is used as our reference drought indicator. It was downloaded for the the 48 contiguous U.S. 
states (i.e. excluding Alaska and Hawaii) from the NOAA's National Centers for Environmental 
Information (NCEI)46. 

Drought variables 

To specify the dependent drought variable, we use the characterization of drought events 
proposed by McKee et al. (1993), according to which a drought event is defined as a period during 
which monthly SPI reaches a value of 1 or less. The drought start date is defined as the first 
month in which the SPI becomes negative and the drought ends before the SPI becomes positive 
again – in short, droughts are defined as periods of consecutive negative monthly SPI values, with 

                                                             
44 The water balance equation underlying the PDSI requires estimates of evapotranspiration, sold recharge, runoff and 
moisture loss from the surface layer, which may be affected by factors such as land use change, overgrazing, 
deforestation, mining, poor irrigation processes and pollution.   
45 This Declaration was released at the end of an Inter-Regional Workshop on Indices and Early Warning Systems for 
Droughts which was held at the University of Nebraska in 2009 and whose sponsors included the World Meteorological 
Organisation, the U.S. NOAA, the U.S. Department of Agriculture and the United Nations Convention to Combat 
Desertification. Its recommendations included the use of the SPI to characterize meteorological droughts. 
46 ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/ 



105 
 

at least one monthly SPI value less than or equal to 1. We also follow McKee et al. (1993) as 
regards the definition of drought events’ characteristics:  

 the duration of a drought event corresponds to the number of months between the 
drought’s beginning and its end;  

 the magnitude (or intensity) of a drought event is calculated as the positive sum of the 
absolute SPI values for all the months within a drought event47;  

 the peak intensity of a drought event corresponds to the absolute value of the lowest 
monthly SPI over the period. 

We use the above definition to identify drought events in each of the 48 contiguous states, 
distinguishing between moderate to extreme droughts (“moderate+”), which are defined as 
periods of consecutive negative SPI values, with at least one SPI value less than or equal to 1, 
and severe to extreme droughts (“severe+”), which are periods of consecutive negative SPI values, 
with at least one SPI value less than or equal to 1.5. The minimum duration of a drought event 
is 1 month and the maximum duration is 12 months: indeed, due to the constraints of using annual 
economic variables, we do not consider droughts that last more than 12 months. This is one of 
the limitations of our analyses which we address by also looking at time-lagged effects.  

Tables 4.2 and 4.3 below presents summary statistics for drought events in each of the 48 
contiguous states of the U.S. over the period 1988-2016. The first table corresponds to droughts 
categorized as “moderate+”, while the second table only includes the droughts categorized as 
“severe+”. The states are categorized in four regions (West, Midwest, South and Northeast) based 
on the U.S. Census Bureau regions48. 

                                                             
47 By definition, drought duration and magnitude are thus highly correlated. 
48 Available at https://www2.census.gov/geo/docs/maps-data/maps/reg_div.txt 
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Table 4.2: Drought event statistics for moderate to extreme droughts  

 

Notes: The above table only includes moderate to extreme drought events which occurred in the 48 contiguous continental states 
during the period 1988-2016.    

State name
State 
code

Region
Nb. of years 

with drought 
events

Average St. dev. Min. Max. Average St. dev. Min. Max. Average St. dev. Min. Max.
Alabama AL South 10 9.0 4.4 1 12 10.8 7.6 1.0 22.4 1.89 0.66 1.03 2.95
Arkansas AR South 9 6.4 4.2 2 12 7.5 5.7 1.8 17.5 1.67 0.41 1.05 2.23
Arizona AZ West 11 11.1 1.6 8 12 12.9 6.3 7.6 27.8 2.11 0.63 1.05 3.09
California CA West 13 11.8 0.4 11 12 11.9 4.3 7.8 23.0 1.74 0.69 1.09 3.09
Colorado CO West 10 9.9 1.9 7 12 10.3 7.0 3.6 25.4 1.79 0.76 1.01 3.09
Connecticut CT Northeast 11 8.1 3.4 3 12 7.7 5.2 3.1 18.5 1.44 0.40 1.00 2.31
Delaware DE South 10 8.9 3.1 4 12 7.8 3.7 2.2 13.6 1.52 0.57 1.00 2.81
Florida FL South 11 9.1 3.7 3 12 11.0 6.0 2.4 21.5 1.77 0.42 1.15 2.35
Georgia GA South 15 9.0 3.7 3 12 10.7 6.5 1.2 21.7 1.63 0.36 1.01 2.12
Iowa IA Midwest 10 8.8 3.6 4 12 8.4 5.7 2.1 20.5 1.57 0.48 1.02 2.49
Idaho ID West 12 10.8 1.6 7 12 10.9 5.4 3.8 22.9 1.66 0.41 1.10 2.43
Illinois IL Midwest 9 9.4 2.6 4 12 7.4 2.6 2.8 11.0 1.41 0.29 1.05 1.86
Indiana IN Midwest 6 7.7 2.6 4 12 6.9 3.5 3.4 12.4 1.38 0.25 1.05 1.71
Kansas KS Midwest 9 9.1 2.1 5 12 8.2 2.6 3.3 10.6 1.50 0.31 1.10 2.02
Kentucky KY South 9 8.3 3.3 3 12 7.2 4.1 2.3 13.3 1.35 0.27 1.03 1.80
Louisiana LA South 9 8.2 4.1 3 12 9.2 8.0 2.8 22.5 1.61 0.47 1.00 2.25
Massachusetts MA Northeast 5 8.4 3.2 5 12 7.4 3.8 3.4 11.4 1.39 0.33 1.01 1.76
Maryland MD South 9 8.9 2.6 4 12 9.0 4.4 4.6 19.1 1.70 0.51 1.13 2.79
Maine ME Northeast 7 9.7 3.0 4 12 10.4 5.2 3.6 18.3 1.78 0.68 1.04 2.89
Michigan MI Midwest 5 8.2 3.9 3 12 6.1 3.1 2.7 10.2 1.23 0.12 1.03 1.35
Minnesota MN Midwest 5 8.0 3.7 4 12 7.6 4.9 2.7 15.5 1.39 0.49 1.05 2.23
Missouri MO Midwest 8 9.6 3.5 4 12 7.6 3.4 2.7 12.6 1.36 0.26 1.05 1.76
Mississippi MS South 7 10.1 3.5 3 12 11.2 6.2 2.8 22.2 1.81 0.34 1.45 2.49
Montana MT West 14 8.6 2.9 5 12 8.2 4.7 3.3 17.9 1.44 0.44 1.03 2.48
North Carolina NC South 10 9.4 3.1 5 12 11.3 6.6 2.5 20.4 1.85 0.70 1.02 2.93
North Dakota ND Midwest 11 8.3 3.3 4 12 8.3 5.1 3.4 19.0 1.47 0.46 1.01 2.60
Nebraska NE Midwest 9 10.0 1.6 8 12 11.4 4.1 6.1 16.8 1.92 0.57 1.27 2.97
New Hampshire NH Northeast 3 9.0 1.0 8 10 9.0 1.6 8.1 10.9 2.02 0.11 1.91 2.12
New Jersey NJ Northeast 7 9.1 3.0 4 12 10.0 5.7 3.5 20.0 1.80 0.65 1.17 3.01
New Mexico NM West 11 9.5 2.1 7 12 10.3 5.1 4.7 17.7 1.83 0.48 1.04 2.52
Nevada NV West 14 10.9 2.3 4 12 10.5 4.7 3.1 18.8 1.65 0.46 1.14 2.39
New York NY Northeast 8 7.9 2.7 4 12 7.7 3.1 2.5 12.8 1.65 0.47 1.00 2.53
Ohio OH Midwest 8 8.0 2.9 4 12 8.1 5.4 2.9 19.6 1.53 0.41 1.10 2.33
Oklahoma OK South 6 9.3 3.2 5 12 9.0 5.7 2.8 16.3 1.60 0.44 1.15 2.31
Oregon OR West 13 10.7 2.5 3 12 10.1 5.8 3.2 26.0 1.62 0.46 1.16 2.70
Pennsylvania PA Northeast 8 9.8 3.1 5 12 10.1 3.5 5.6 15.0 1.87 0.30 1.42 2.21
Rhode Island RI Northeast 6 8.2 4.0 3 12 6.1 3.2 2.2 10.7 1.27 0.24 1.08 1.65
South Carolina SC South 13 9.8 3.2 2 12 10.9 6.0 1.0 21.7 1.76 0.60 1.02 2.86
South Dakota SD Midwest 10 8.1 3.2 3 12 8.2 4.0 2.1 13.3 1.48 0.36 1.00 2.25
Tennessee TN South 7 10.1 3.8 2 12 11.1 6.1 1.5 20.3 1.61 0.54 1.06 2.55
Texas TX South 7 10.6 1.9 8 12 11.7 5.1 6.3 22.3 1.76 0.73 1.22 3.09
Utah UT West 12 9.7 2.8 4 12 9.5 5.4 3.0 21.5 1.55 0.50 1.04 2.83
Virginia VA South 12 8.0 3.5 3 12 8.1 4.8 2.7 18.2 1.55 0.44 1.01 2.47
Vermont VT Northeast 6 5.7 1.9 4 8 5.5 2.4 2.3 9.1 1.62 0.41 1.09 2.18
Washington WA West 12 8.6 4.2 2 12 8.6 6.1 1.3 22.2 1.35 0.40 1.01 2.24
Wisconsin WI Midwest 8 8.3 2.6 5 12 7.6 3.9 3.7 14.2 1.47 0.32 1.04 1.88
West Virginia WV South 11 9.6 2.5 5 12 8.5 4.7 4.2 20.5 1.41 0.36 1.10 2.00
Wyoming WY West 12 10.4 2.0 7 12 12.3 4.0 7.5 19.7 1.72 0.39 1.10 2.43
South 155 9.0 3.4 1 12 9.7 5.7 1.0 22.5 1.65 0.50 1.00 3.09
West 134 10.2 2.5 2 12 10.5 5.3 1.3 27.8 1.67 0.53 1.01 3.09
Midwest 98 8.7 2.9 3 12 8.1 4.1 2.1 20.5 1.49 0.40 1.00 2.97
Northeast 61 8.4 3.1 3 12 8.2 4.3 2.2 20.0 1.63 0.47 1.00 3.01
All states 448 9.2 3.1 1 12 9.4 5.2 1.0 27.8 1.62 0.49 1.00 3.09

Drought event duration 
(months)

Drought event magnitude
Drought event peak 

magnitude

Moderate to extreme droughts
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Table 4.3: Drought event statistics for severe to extreme droughts 

 

Notes: The above table only includes severe to extreme drought events which occurred in the 48 contiguous continental states 
during the period 1988-2016.    

 

 

 

 

State name
State 
code

Region
Nb. of years 

with drought 
events

Average St. dev. Min. Max. Average St. dev. Min. Max. Average St. dev. Min. Max.
Alabama AL South 7 10.7 2.4 6.0 12.0 14.3 6.1 5.5 22.4 2.21 0.5 1.6 3.0
Arkansas AR South 6 8.2 4.1 3.0 12.0 10.0 5.5 3.2 17.5 1.90 0.3 1.6 2.2
Arizona AZ West 9 10.9 1.7 8.0 12.0 13.6 6.9 7.6 27.8 2.33 0.5 1.5 3.1
California CA West 6 12.0 0.0 12.0 12.0 15.0 4.3 10.8 23.0 2.32 0.6 1.7 3.1
Colorado CO West 4 11.3 1.5 9.0 12.0 17.1 6.0 11.4 25.4 2.64 0.3 2.3 3.1
Connecticut CT Northeast 4 11.3 1.0 10.0 12.0 12.8 5.2 6.4 18.5 1.85 0.3 1.6 2.3
Delaware DE South 4 10.0 1.6 8.0 12.0 11.3 2.1 8.6 13.6 2.06 0.5 1.6 2.8
Florida FL South 8 10.1 2.8 5.0 12.0 13.0 5.4 5.9 21.5 1.98 0.3 1.6 2.4
Georgia GA South 10 10.4 2.5 6.0 12.0 13.6 5.1 5.7 21.7 1.85 0.2 1.5 2.1
Iowa IA Midwest 5 10.2 3.0 5.0 12.0 12.0 6.1 4.7 20.5 1.93 0.4 1.5 2.5
Idaho ID West 6 10.5 2.0 7.0 12.0 13.8 6.4 3.8 22.9 2.01 0.3 1.8 2.4
Illinois IL Midwest 4 9.3 1.9 8.0 12.0 9.0 1.2 8.0 10.6 1.69 0.1 1.5 1.9
Indiana IN Midwest 2 10.0 2.8 8.0 12.0 10.9 2.2 9.4 12.4 1.65 0.1 1.6 1.7
Kansas KS Midwest 5 9.6 1.8 8.0 12.0 9.5 1.2 7.8 10.6 1.72 0.2 1.5 2.0
Kentucky KY South 3 10.7 2.3 8.0 12.0 10.3 3.5 6.4 13.3 1.66 0.1 1.6 1.8
Louisiana LA South 5 9.0 4.2 3.0 12.0 13.2 9.0 3.7 22.5 1.95 0.3 1.7 2.3
Massachusetts MA Northeast 2 10.0 0.0 10.0 10.0 9.5 2.7 7.5 11.4 1.71 0.1 1.7 1.8
Maryland MD South 5 9.0 3.0 4.0 12.0 11.0 5.2 4.6 19.1 2.01 0.5 1.7 2.8
Maine ME Northeast 3 12.0 0.0 12.0 12.0 15.1 3.8 10.9 18.3 2.35 0.7 1.6 2.9
Michigan MI Midwest 0 NA NA NA NA NA NA NA 0.0 NA NA NA NA
Minnesota MN Midwest 1 12.0 NA 12.0 12.0 15.5 NA 15.5 15.5 2.23 NA 2.2 2.2
Missouri MO Midwest 2 10.0 2.8 8.0 12.0 10.3 3.2 8.1 12.6 1.71 0.1 1.7 1.8
Mississippi MS South 6 11.3 1.6 8.0 12.0 12.6 5.5 6.7 22.2 1.88 0.3 1.6 2.5
Montana MT West 4 10.5 3.0 6.0 12.0 13.5 5.1 7.4 17.9 2.01 0.4 1.6 2.5
North Carolina NC South 6 10.0 3.2 5.0 12.0 14.6 6.1 4.6 20.4 2.30 0.5 1.7 2.9
North Dakota ND Midwest 3 12.0 0.0 12.0 12.0 15.7 3.3 12.5 19.0 2.07 0.5 1.7 2.6
Nebraska NE Midwest 7 10.1 1.8 8.0 12.0 12.9 3.4 8.3 16.8 2.09 0.5 1.5 3.0
New Hampshire NH Northeast 3 9.0 1.0 8.0 10.0 9.0 1.6 8.1 10.9 2.02 0.1 1.9 2.1
New Jersey NJ Northeast 4 9.5 2.4 6.0 11.0 12.0 6.3 6.2 20.0 2.21 0.6 1.8 3.0
New Mexico NM West 9 10.0 2.1 7.0 12.0 11.5 4.8 4.9 17.7 2.01 0.3 1.7 2.5
Nevada NV West 8 11.5 1.1 9.0 12.0 12.4 4.9 6.3 18.8 1.94 0.4 1.5 2.4
New York NY Northeast 6 8.8 2.3 5.0 12.0 8.8 2.3 5.6 12.8 1.83 0.4 1.5 2.5
Ohio OH Midwest 4 8.3 3.3 4.0 12.0 10.8 6.8 2.9 19.6 1.84 0.3 1.6 2.3
Oklahoma OK South 3 11.0 1.7 9.0 12.0 13.3 4.3 8.4 16.3 1.96 0.3 1.8 2.3
Oregon OR West 6 10.2 3.5 3.0 12.0 12.5 7.9 3.2 26.0 2.02 0.4 1.7 2.7
Pennsylvania PA Northeast 6 10.2 2.7 5.0 12.0 10.9 3.5 5.9 15.0 2.02 0.2 1.8 2.2
Rhode Island RI Northeast 1 11.0 NA 11.0 11.0 10.7 NA 10.7 10.7 1.65 NA 1.7 1.7
South Carolina SC South 7 10.9 2.3 6.0 12.0 14.7 5.0 5.8 21.7 2.22 0.4 1.6 2.9
South Dakota SD Midwest 3 8.0 1.0 7.0 9.0 10.0 2.2 8.5 12.5 1.89 0.3 1.6 2.3
Tennessee TN South 4 12.0 0.0 12.0 12.0 14.8 4.3 9.8 20.3 1.96 0.4 1.6 2.6
Texas TX South 2 10.0 2.8 8.0 12.0 16.2 8.6 10.1 22.3 2.79 0.4 2.5 3.1
Utah UT West 5 11.4 1.3 9.0 12.0 14.7 4.2 10.8 21.5 2.00 0.5 1.6 2.8
Virginia VA South 7 9.3 3.6 4.0 12.0 10.6 4.7 4.8 18.2 1.84 0.3 1.6 2.5
Vermont VT Northeast 4 6.3 2.1 4.0 8.0 6.5 2.2 3.8 9.1 1.85 0.3 1.5 2.2
Washington WA West 4 11.3 1.0 10.0 12.0 14.9 4.9 12.1 22.2 1.83 0.3 1.6 2.2
Wisconsin WI Midwest 4 9.3 3.2 6.0 12.0 9.9 4.4 5.8 14.2 1.74 0.2 1.6 1.9
West Virginia WV South 4 8.8 3.3 5.0 12.0 11.5 7.0 4.2 20.5 1.83 0.2 1.6 2.0
Wyoming WY West 7 11.0 1.7 8.0 12.0 14.8 3.3 9.4 19.7 1.98 0.3 1.6 2.4
South 87 10.1 2.8 3.0 12.0 12.8 5.4 3.2 22.5 2.00 0.39 1.54 3.09
West 68 10.9 1.9 3.0 12.0 13.7 5.3 3.2 27.8 2.09 0.42 1.50 3.09
Midwest 40 9.7 2.3 4.0 12.0 11.3 4.0 2.9 20.5 1.87 0.35 1.50 2.97
Northeast 33 9.6 2.4 4.0 12.0 10.5 4.1 3.8 20.0 1.97 0.38 1.50 3.01
All states 228 10.2 2.4 3.0 12.0 12.5 5.1 2.9 27.8 2.0 0.4 1.50 3.09

Drought event duration 
(months)

Drought event magnitude
Drought event peak 

magnitude

Severe to extreme droughts
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Temperature data 

We use two sets of temperature data. The first set of temperature data is used as control 
variables and corresponds to the yearly average temperature for each state, which we 
downloaded from the NOAA’s National Centers for Environmental Information website49.  

The second set of temperature data is used in the part on compound drought and high 
temperature events. Due to the lack of standard definitions of heat waves, these are often 
characterized in the literature using percentile thresholds (Perkins & Alexander, 2013). However, 
daily temperature data at state level is not readily available, so we use cooling degree-days as an 
indicator of high temperature events at the state level in a given year. Cooling degree-days are a 
measure of the departure above a defined base temperature level during one day and correspond 
to every degree that the mean temperature is above 65 degrees Fahrenheit during a day: each 
day, the difference between the average temperature on that day and 65 degrees is computed and 
the sum of each day for a month gives the monthly number of cooling degree-days50. We 
downloaded monthly cooling degree-days for the period 1988-2016 from the NOAA’s National 
Centers for Environmental Information’s website51 and summed these up over each year to obtain 
the annual number of cooling degree-days for each state. Since the number of cooling degree-days 
in a year does not distinguish between consecutive and non-consecutive hot days, it is an 
imperfect indicator of heatwaves; however, they provide an indication of the number of hot days 
(≥ 65°F) in a given year as well as of the severity of the heat during these days.  

Table 4.4 includes summary statistics for the temperature data. 

                                                             
49 Available at ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv 
50 The name “cooling degree-days” refers to the fact that the base temperature is the temperature above which 
buildings are considered to need cooling. 
51 Available at ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/climdiv-cddcst-v1.0.0-20170804 
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Table 4.4: Temperature data statistics – Average temperature and cooling degree-days 

 

Notes: The above temperature and cooling degree-days statistics only include the period 1988-2016. 

 

State name
State 
code

Region

Average St. dev. Min. Max. Average St. dev. Min. Max.
Alabama AL South 63.4 1.0 62.0 65.3 1910 201 1534 2295
Arkansas AR South 60.9 1.25 58.7 63.6 1761 226 1347 2234
Arizona AZ West 60.9 0.86 59.3 62.3 2987 171 2585 3212
California CA West 58.8 0.98 56.7 61.5 893 131 699 1175
Colorado CO West 46.0 0.95 43.8 48.3 316 90 141 499
Connecticut CT Northeast 49.7 1.30 47.7 52.5 583 116 322 786
Delaware DE South 55.9 1.24 53.9 58.5 1105 169 744 1490
Florida FL South 71.2 0.90 69.2 73.4 3519 208 3184 4156
Georgia GA South 64.0 0.99 62.4 65.9 1703 188 1363 2107
Iowa IA Midwest 48.3 1.71 45.2 52.1 807 156 475 1156
Idaho ID West 43.8 1.10 40.9 46.4 474 108 163 646
Illinois IL Midwest 52.5 1.53 49.5 55.8 883 178 519 1161
Indiana IN Midwest 52.2 1.46 49.4 55.1 896 170 552 1172
Kansas KS Midwest 55.0 1.38 51.9 58.2 1448 207 1005 1825
Kentucky KY South 56.1 1.23 54.3 58.4 1198 181 846 1553
Louisiana LA South 66.9 0.99 65.1 68.7 2641 204 2279 3046
Massachusetts MA Northeast 48.5 1.30 46.4 51.4 495 103 261 686
Maryland MD South 55.1 1.21 53.2 57.5 1107 167 750 1455
Maine ME Northeast 41.6 1.42 39.3 44.6 230 56 107 336
Michigan MI Midwest 45.1 1.71 41.9 48.4 561 144 239 777
Minnesota MN Midwest 41.7 1.98 37.6 45.2 461 115 195 740
Missouri MO Midwest 55.1 1.47 52.9 58.6 1248 190 864 1608
Mississippi MS South 63.9 1.05 62.3 66.0 2142 199 1781 2530
Montana MT West 42.6 1.45 39.2 44.9 203 68 42 329
North Carolina NC South 59.3 1.04 57.3 61.1 1430 173 1146 1828
North Dakota ND Midwest 41.1 1.94 36.5 44.4 452 118 201 758
Nebraska NE Midwest 49.4 1.49 46.0 52.7 987 170 591 1306
New Hampshire NH Northeast 43.9 1.36 41.7 46.6 288 72 123 403
New Jersey NJ Northeast 53.3 1.32 51.2 55.9 831 152 501 1145
New Mexico NM West 54.2 0.90 52.5 56.0 955 137 673 1210
Nevada NV West 50.9 1.02 48.6 53.0 2123 176 1757 2400
New York NY Northeast 45.9 1.43 43.8 48.8 594 124 323 824
Ohio OH Midwest 51.4 1.37 49.2 54.1 765 158 453 1045
Oklahoma OK South 60.1 1.27 58.1 63.2 1904 252 1433 2482
Oregon OR West 47.8 0.99 45.5 50.4 221 63 109 371
Pennsylvania PA Northeast 49.3 1.30 47.4 51.8 677 135 398 904
Rhode Island RI Northeast 50.4 1.23 48.4 52.9 542 102 295 721
South Carolina SC South 63.1 1.02 61.2 65.0 1903 194 1571 2301
South Dakota SD Midwest 45.8 1.83 41.6 49.3 691 155 341 999
Tennessee TN South 58.2 1.18 56.6 60.3 1385 193 1021 1779
Texas TX South 65.6 1.02 63.9 67.8 2763 230 2379 3367
Utah UT West 49.0 1.05 46.8 50.9 511 100 233 674
Virginia VA South 55.7 1.10 53.9 57.6 1096 156 783 1477
Vermont VT Northeast 42.9 1.47 40.6 45.9 222 64 73 367
Washington WA West 47.3 1.05 45.5 50.0 177 54 97 311
Wisconsin WI Midwest 43.8 1.88 40.2 47.4 511 135 227 770
West Virginia WV South 52.4 1.13 50.7 54.3 779 137 541 1052
Wyoming WY West 42.2 1.21 38.9 44.8 275 89 79 444
South 60.7 5.0 50.7 73.4 1772 730 541 4156
West 49.4 6.1 38.9 62.3 830 879 42 3212
Midwest 48.4 5.0 36.5 58.6 809 337 195 1825
Northeast 47.3 3.9 39.3 55.9 496 225 73 1145
All states 52.5 7.7 36.5 73.4 1076 805 42 4156

Annual average temperature                             
(in Fahrenheit)

Annual number of cooling degree days
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Economic data 

Annual data on real Gross State Product (GSP) per capita was downloaded from the 
Bureau of Economic Analysis (BEA) of the U.S. Department of Commerce (Bureau of Economic 
Analysis, 2017); it is available for each of the 48 contiguous states for the period 1988-2016. 

Table 4.5: Economic data statistics – Annual rate of change of GSP per capita  

State name 
State 
code Region Annual rate of change of GSP per capita (in pp.) 

      Average St. dev. Min. Max. 

Alabama AL South 1.31 1.87 -4.30 5.30 
Arkansas AR South 1.57 1.93 -3.20 4.50 
Arizona AZ West 1.16 3.26 -8.50 6.60 
California CA West 1.60 2.62 -5.00 5.90 
Colorado CO West 1.61 2.43 -3.70 7.20 
Connecticut CT Northeast 1.27 2.85 -4.70 6.30 
Delaware DE South 1.00 3.38 -5.70 8.20 
Florida FL South 0.89 2.39 -6.20 4.00 
Georgia GA South 1.10 2.39 -4.90 4.60 
Iowa IA Midwest 2.28 2.59 -2.60 7.80 
Idaho ID West 1.95 3.19 -5.50 9.20 
Illinois IL Midwest 1.48 1.94 -3.00 5.60 
Indiana IN Midwest 1.66 2.67 -6.80 6.00 
Kansas KS Midwest 1.43 1.92 -5.00 4.60 
Kentucky KY South 1.46 2.39 -4.40 6.80 
Louisiana LA South 0.91 3.47 -7.30 7.60 
Massachusetts MA Northeast 1.74 2.47 -3.10 7.40 
Maryland MD South 1.34 1.71 -3.20 4.80 
Maine ME Northeast 1.05 2.00 -3.30 5.80 
Michigan MI Midwest 1.05 3.28 -8.00 8.20 
Minnesota MN Midwest 1.62 2.31 -4.60 5.20 
Missouri MO Midwest 1.12 1.93 -2.60 6.00 
Mississippi MS South 1.33 2.00 -4.40 5.40 
Montana MT West 1.51 1.72 -2.60 4.40 
North Carolina NC South 1.23 2.25 -5.30 5.20 
North Dakota ND Midwest 3.40 5.34 -7.20 19.30 
Nebraska NE Midwest 2.13 1.96 -1.40 7.20 
New Hampshire NH Northeast 1.68 2.45 -4.30 6.10 
New Jersey NJ Northeast 1.08 1.92 -4.70 6.80 
New Mexico NM West 1.93 3.18 -1.70 9.10 
Nevada NV West 0.32 3.30 -9.20 6.20 
New York NY Northeast 1.41 2.10 -3.60 5.30 
Ohio OH Midwest 1.53 2.20 -4.50 5.50 
Oklahoma OK South 1.79 2.18 -3.50 6.20 
Oregon OR West 2.73 3.49 -3.60 11.90 
Pennsylvania PA Northeast 1.71 1.44 -3.30 4.60 
Rhode Island RI Northeast 1.33 2.32 -4.00 6.20 
South Carolina SC South 1.10 1.93 -5.10 4.40 
South Dakota SD Midwest 2.66 2.51 -2.10 10.30 
Tennessee TN South 1.39 2.10 -4.50 6.00 
Texas TX South 1.88 2.03 -2.60 5.80 
Utah UT West 1.83 2.51 -4.20 7.00 
Virginia VA South 1.19 1.71 -1.70 3.90 
Vermont VT Northeast 1.74 2.22 -3.40 6.80 
Washington WA West 1.39 2.44 -4.90 6.00 
Wisconsin WI Midwest 1.64 1.76 -3.20 5.10 
West Virginia WV South 1.73 2.05 -1.60 9.00 
Wyoming WY West 1.72 3.44 -5.00 10.00 

South   1.33 2.27 -7.30 9.00 
West   1.61 2.93 -9.20 11.90 
Midwest   1.83 2.74 -8.00 19.30 
Northeast     1.45 2.21 -4.70 7.40 

All states     1.54 2.54 -9.20 19.30 
Notes: The above statistics are only for the period 1988-2016. 
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In a second stage, we repeat the analyses conducted on states’ GSP growth using states’ 
agricultural sector growth as the dependent variable instead: we use the same data source as for 
states’ total economic growth and download real GDP by state for the agriculture, forestry, fishing 
and hunting industries from the Bureau of Economic Analysis at the U.S. Department of 
Commerce (Bureau of Economic Analysis, 2017). 

Scatter plots 

Figure 4.2: Scatter plots: U.S. states’ annual GSP per capita growth vs. the duration, magnitude and peak intensity of 
drought events 

 

Notes: All above graphs consider all 48 contiguous states and all drought events over the period 1988-2016. The column on the left 
includes moderate, severe and extreme droughts, i.e. all drought events for which at least one monthly SPI value is equal to less or 
less than 1. The column on the right includes only severe and extreme droughts, i.e. all drought events for which at least one monthly 
SPI value is equal to less or less than 1.5. As per the standard definition of drought events (McKee et al., 1993), drought magnitude 
and peak intensity are defined as the absolute value of the monthly SPIs.  
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A quick visual analysis of the above graphs does not provide immediate insight into the 
impacts of drought events on the economic growth of U.S. states – perhaps a very slight 
downward trend is noticeable for the duration and peak intensity of severe to extreme droughts.  

iii. Scale of the analysis 

Spatial scale 

As explained above, the analyses presented in this chapter are based on state level data. 
This is due to constraints in terms of data availability: indeed, time series of SPI data are available 
at the county- or station-level in the United States, but panel datasets of economic production or 
economic growth variables only exist at the federal or the state-level. The (constrained) choice of 
the state level is likely to create aggregation biases and to impact results. For instance, Fezzi and 
Bateman (2015) have shown that non-linear interaction effects between temperature and 
precipitation at the farm level disappear when data are aggregated across countries or large 
regions. According to their results, which are derived from farm data in the United Kingdom, 
estimates of climate change impacts are far less optimistic in farm-level models than in 
aggregated, county level analyses. There is therefore a possibility that the use of state-level data 
in our analyses induces substantial aggregation biases, notably regarding the interaction effects 
of temperature and precipitation.  

Timing 

Due to data availability constraints pertaining to the economic variables, the analyses 
presented in this chapter are based on annual data. The drought variables considered are the 
duration, magnitude and peak magnitude of drought events occurring over a 12-month period, 
and do not consider the specific seasons or months which are covered by the drought event, even 
though these are likely to influence the scale of the impacts, especially when looking at the 
impacts of droughts on the agricultural sector. Indeed, droughts during the planting or growing 
phase are more likely to be detrimental than droughts which occur after harvesting. However, 
again, the lack of sufficient time series of economic data on a quarterly or monthly basis prevents 
us from including variables in our model which are on lower time scales than a year. Tebaldi and 
Beaudin (2016) examined the impacts of seasonal rainfall variations on the GDP growth rates of 
seasonal states but their analysis only includes annual fixed effects, and not seasonal fixed effects, 
which means that their results might be significantly biased by seasonal effects which are 
uncontrolled for. Here as well, the fact that the dependent variable is on an annual scale precludes 
the use of seasonal fixed effects and prevents us from including variables such as the month 
corresponding to the onset (or the peak) of the drought event.  
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iv. Econometric approach 

Based on the approaches developed in the literature and which are described above, we 
propose to examine the impact of drought events using a panel data analysis based on the 
following estimation strategy: 

Equation 4.1 

𝑦,௧ =   𝛽



ୀ

𝐷,௧ି +  𝛾



ୀ

𝑍,௧ି + 𝜇 + 𝜃௧ + 𝜀,௧ 

Where: 

 yi,t is economic growth in state i in year t;  
 Di,t are drought variables; 
 Zi,t are time-varying control variables; 
 μi are state fixed effects; 
 θrt are region-specific time fixed effects. 

As regards the control variables Zit, we follow the recommendations in the literature on 
panel data analysis in the context of weather studies and include (lags of) yearly average 
temperature as a control variable. Indeed, as underlined by Auffhammer et al. (2013), the fact 
that precipitation and temperatures are historically correlated renders necessary the inclusion 
of both variables in regression equations used to estimate weather impacts, in order to limit the 
risk of omitted variable bias.  

The inclusion of state fixed effects μi controls for all time-invariant state characteristics, 
both observed and unobserved. Following the literature (Dell et al., 2012, 2014), we also include 
time fixed effects interacted with region dummies (θrt), which might absorb some of the variation 
in weather but also control for time-varying factors and these time-varying factors are 
furthermore allowed to differ across regions.  

Standard errors are bootstrapped and are adjusted for clustering at the state level (i.e. they 
allow for correlation within the observations for each state)52.  

5. Results and discussion 

Moderate to extreme droughts 

We first consider all drought events from moderate to severe and examine the effect of 
three drought characteristics on states’ GSP per capita growth: drought duration (in log; Table 
4.6), drought magnitude (in log; Table 4.7) and drought peak intensity (Table 4.8). In each table, 
the first column considers all 48 contiguous states, while columns 2 to 5 consider each region 
independently. All regressions include the 0-lag of annual average temperature (removed from 
output tables for clarity purposes) as a control variable. Due to the strong collinearity between 

                                                             
52 This is done using the bootstrap idcluster() group(): xtreg command in Stata 
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lags 0 and 1 of annual average temperature, the bootstrap procedure cannot be performed if we 
also include the first lag of annual average temperature in the regression. 

 
 

Table 4.6: Moderate to extreme droughts – Drought duration 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

duration -0.11 -0.12 -0.39*** 0.13 0.07 

 (0.09) (0.11) (0.13) (0.11) (0.14) 
L.duration 0.08 -0.01 0.07 0.20 0.19 

 (0.06) (0.10) (0.13) (0.15) (0.20) 
N 1392 464 319 348 261 
R-sq 0.47 0.47 0.45 0.43 0.68 
Drought variable duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ moderate+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered moderate to extreme. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 
 

Table 4.7: Moderate to extreme droughts – Drought magnitude  

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

magnitude -0.14 -0.12 -0.41*** 0.10 0.05 

 (0.09) (0.10) (0.15) (0.10) (0.16) 
L.magnitude 0.07 -0.05 0.08 0.24 0.22 

 (0.08) (0.11) (0.12) (0.16) (0.20) 
N 1392 464 319 348 261 
R-sq 0.47 0.47 0.45 0.43 0.68 
Drought variable magnitude magnitude magnitude magnitude magnitude 
Drought type moderate+ moderate+ moderate+ moderate+ moderate+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered moderate to extreme. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table 4.8: Moderate to extreme droughts – Drought peak intensity 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

peak intensity -0.19* -0.08 -0.67*** 0.10 0.05 

 (0.11) (0.11) (0.21) (0.17) (0.25) 
L.peak intensity 0.09 -0.05 0.02 0.41* 0.36 

 (0.09) (0.16) (0.13) (0.21) (0.23) 
N 1392 464 319 348 261 
R-sq 0.48 0.47 0.46 0.43 0.68 
Drought variable peak int. peak int. peak int. peak int. peak int. 
Drought type moderate+ moderate+ moderate+ moderate+ moderate+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered moderate to extreme. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level 
  ** Significant at the 5 percent level 
    * Significant at the 10 percent level 
 
 

As we can see from the tables above, the magnitude and peak intensity of current-year 
droughts have on average a negative effect on states’ economic growth but only at the 10% 
significance level. However, results from individual regions show reveal that these aggregate 
effects seem to be coming from the West region, where the duration, magnitude and peak 
intensity of current-year droughts have a negative and highly significant effect on states’ 
economic growth (and despite the relative small number of observations in this region). We also 
find negative effects of current-year droughts on Southern states’ economic growth, but these 
effects are insignificant. Since the predictor variables duration and magnitude are log-
transformed, the results in Table 4.6 above mean that for a 30% increase in drought duration, the 
difference in the expected economic growth would be ─0.10 percentage points in Western states. 
The interpretation for peak intensity is more straightforward: according to the results presented 
in Table 4.8, an increase in drought peak intensity of 0.5 (which corresponds to the width of 
drought categories) would reduce economic growth by 0.34 percentage points in Western states.   

Severe to extreme droughts 

Whereas in the previous section we considered all drought events, from moderate to 
extreme, we now consider only severe to extreme drought events. As before, drought duration 
(Table 4.9), magnitude (Table 4.10) and peak intensity (Table 4.11) are examined independently 
and all regressions include the 0-lag of annual average temperature (removed from output tables 
for clarity purposes) as a control variable. 
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Table 4.9: Severe to extreme droughts – Drought duration 

Dep. var. is states' GSP per capita 
growth (1) (2) (3) (4) (5) 

 All South West Midwest Northeast 
duration -0.18** -0.09 -0.46*** -0.07 0.14 

 (0.09) (0.10) (0.14) (0.19) (0.13) 
L.duration 0.03 -0.08 0.02 0.30 0.04 

 (0.07) (0.12) (0.12) (0.22) (0.19) 
N 1392 464 319 348 261 
R-sq 0.48 0.47 0.46 0.42 0.68 
Drought variable duration duration duration duration duration 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered moderate to extreme. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 
 
 
 

Table 4.10:  Severe to extreme droughts – Drought magnitude 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

magnitude -0.17** -0.09 -0.42*** -0.12 0.11 

 (0.09) (0.08) (0.13) (0.29) (0.11) 
L.magnitude 0.03 -0.09 0.03 0.31 0.07 

 (0.09) (0.12) (0.10) (0.27) (0.19) 
N 1392 464 319 348 261 
R-sq 0.48 0.47 0.45 0.43 0.68 
Drought variable intensity intensity intensity intensity intensity 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered moderate to extreme. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level 
  ** Significant at the 5 percent level 
    * Significant at the 10 percent level 
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Table 4.11: Severe to extreme droughts – Drought peak intensity 

Dep. var. is states' GSP per capita 
growth 

(1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

peak intensity -0.22** -0.07 -0.56*** -0.20 0.13 
 (0.11) (0.08) (0.15) (0.35) (0.14) 

L.peak intensity 0.04 -0.11 0.02 0.43 0.15 
 (0.11) (0.20) (0.14) (0.34) (0.19) 

N 1392 464 319 348 261 
R-sq 0.48 0.47 0.46 0.43 0.68 
Drought variable peak int. peak int. peak int. peak int. peak int. 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes 

Notes: Above regressions include all drought events that are considered severe to extreme. All regressions include the 0-lag of of 
yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level 
  ** Significant at the 5 percent level 
    * Significant at the 10 percent level 
 

 According to the findings presented in the three tables above, our results for severe to 
extreme droughts are highly consistent with the results we had found for moderate to extreme 
droughts, and if anything, they are somewhat stronger. We find that current-year severe and 
extreme droughts have a significant and negative impact on U.S. states’ economic growth overall 
(now at the 5% significance level, including for duration), and that this effect seems to be coming 
predominantly from Western States. The results in Table 4.9 above mean that for a 30% increase 
in drought duration, the difference in the expected economic growth would be ─0.12 in Western 
states. As regards peak intensity, the results in Table 4.11 above indicate that an increase in peak 
intensity of 0.5 (which corresponds to the width of drought categories) would reduce economic 
growth by 0.28 percentage points in Western states.  

Time-lagged effects 

The results for time-lagged effects of droughts on states’ economic growth are presented 
in Appendix 4.1. In each table, the bottom row presents the cumulated effect of droughts53 and its 
(calculated) standard error. We find that, when considering all states, droughts have a cumulated 
effect that is negative and highly significant, but also larger than their contemporaneous effects, 
which seems to indicate that droughts have time-lagged effects (Tables A4.15, A4.16 and A4.17). 
Again, we find that these effects seem to be coming from the Western region (Tables A4.18, A4.19 
and A4.20), whereas the South and Midwest regions do not display any consistent and significant 
effects.  Interestingly, whereas droughts do not seem to have a contemporaneous effect on 

                                                             
53 For any horizon h, the cumulated lag effect is defined as β0 + β1 + β2 + .. + βh, which is interpreted as the change in 
the expected outcome h periods after a permanent, one-unit increase in the drought variable under consideration. 
The point estimates and standard deviations of all combinations (incl. nonlinear) of parameter estimates provided in 
this chapter have been estimated using the nlcom command in Stata which uses the delta method to compute 
standard errors.       
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Northeastern states’ economic growth, the 10-year cumulated lag effect is negative and highly 
significant.  

Compounding effects 

In this part of the analysis, we only consider severe to extreme droughts (i.e. with at least 
one month for which the absolute value of the SPI is equal to or lower than 1.5). We use the 
following estimation strategy to identify compound effects:  

Equation 4.2 

𝑦,௧ =   𝛽



ୀ

𝐷,௧ି +   𝛾



ୀ

𝐶,௧ି +  𝜔൫𝐷,௧ି ∗ 𝐶,௧ି൯



ୀ

+ 𝜇 + 𝜃௧ + 𝜀,௧ 

Where: 

 yi,t is economic growth in state i in year t;  
 Di,t are drought variables; 
 Ci,t are the variables indicating high temperatures (here, cooling degree-days); 
 μi are state fixed effects; 
 θrt are region-specific time fixed effects 
 The 𝜔k coefficients on the interaction terms represent compound effects, i.e. the conjoint 

effect of droughts and high temperatures.  

The following three tables show the effect of the interaction between the annual number 
of cooling degree-days and drought duration (Table 4.12); drought magnitude (Table 4.13); and 
drought peak intensity (Table 4.14).  
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Table 4.12: Severe to extreme droughts – Drought duration x cooling degree-days 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

duration -0.21 -0.25 -0.44** 0.56 0.19 

 (0.17) (0.32) (0.22) (0.50) (0.24) 
L.duration 0.20 0.07 0.17 -0.13 0.45 

 (0.12) (0.26) (0.16) (0.75) (0.44) 
cdd 0.50 1.01 1.06 -0.48 0.24 

 (0.60) (0.73) (1.66) (2.65) (1.40) 
L.cdd 0.00 0.08 -0.07 -0.65 -0.07 
  (0.08) (0.16) (0.20) (0.69) (0.40) 
duration*cdd 0.00 0.08 -0.07 -0.65 -0.07 

 (0.08) (0.16) (0.20) (0.69) (0.40) 
L.duration*L.cdd -0.15 -0.11 -0.18 0.45 -0.87 

 (0.10) (0.19) (0.15) (0.89) (0.83) 
N 1392 464 319 348 261 
R-sq 0.47 0.47 0.46 0.41 0.68 
Drought variable duration duration duration duration duration 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Drought duration in log. Above regressions include all drought events that are considered severe to extreme. The variable “cdd” 
corresponds to the annual number of cooling degree-days, divided by 1000. Robust, bootstrapped standard errors are in parentheses, 
adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 
 
 

Table 4.13: Severe to extreme droughts – Drought magnitude x cooling degree-days 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

magnitude -0.21 -0.20 -0.39** 0.51 0.13 

 (0.15) (0.30) (0.18) (0.41) (0.29) 
L.magnitude 0.18 0.01 0.15 -0.13 0.47 

 (0.12) (0.25) (0.19) (0.64) (0.41) 
cdd 0.36 0.18 1.01 0.16 0.51 

 (0.80) (1.40) (1.49) (1.70) (2.00) 
L.cdd 0.48 1.02 0.91 -0.40 0.32 
  (0.66) (0.65) (1.15) (2.64) (1.59) 
magnitude*cdd 0.00 0.06 -0.07 -0.66 -0.01 

 (0.08) (0.16) (0.17) (0.45) (0.46) 
L.magnitude*L.cdd -0.13 -0.07 -0.14 0.45 -0.82 

 (0.08) (0.18) (0.12) (0.66) (0.79) 
N 1392 464 319 348 261 
R-sq 0.47 0.47 0.46 0.41 0.68 
Drought variable magnitude magnitude magnitude magnitude magnitude 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered severe to extreme. The variable 
“cdd” corresponds to the annual number of cooling degree-days, divided by 1000. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table 4.14: Severe to extreme droughts – Drought peak intensity x cooling degree-days 

Dep. var. is states' GSP per capita growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

peak intensity -0.37** -0.37 -0.61** 0.53 0.08 

 (0.17) (0.35) (0.27) (0.63) (0.41) 
L.peak intensity 0.22 0.04 0.12 -0.10 0.60 

 (0.17) (0.27) (0.20) (0.97) (0.51) 
cdd 0.35 0.16 0.87 0.21 0.44 

 (0.89) (1.46) (1.87) (1.34) (1.76) 
L.cdd 0.49 1.09 0.89 -0.39 0.37 
  (0.75) (0.87) (1.56) (2.93) (1.24) 
peak intensity*cdd 0.07 0.16 0.01 -0.79 0.09 

 (0.10) (0.16) (0.35) (0.62) (0.44) 
L.peak intensity*L.cdd -0.15 -0.11 -0.12 0.55 -0.97 

 (0.13) (0.20) (0.19) (0.86) (0.91) 
N 1392 464 319 348 261 
R-sq 0.47 0.47 0.46 0.41 0.68 
Drought variable peak int. peak int. peak int. peak int. peak int. 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Above regressions include all drought events that are considered severe to extreme. The variable “cdd” corresponds to the 
annual number of cooling degree-days, divided by 1000. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

We find that the contemporaneous effects of the duration, magnitude and peak intensity 
of droughts on states economic growth remain for the Western region, even when adding the 
interaction term between cooling degree-days and drought characteristics. Regarding compound 
effects, we find no significant effects of the first lag of the interaction between drought 
duration/magnitude and cooling degree-days on states’ economic growth.  

Discussion of results 

According to our findings, the duration, magnitude and peak intensity of droughts have 
negative and significant contemporaneous effects on U.S. states’ economic growth on average, 
and these effects seem to be coming from the West region. Given that one of the most direct 
impacts of droughts is on the agricultural sector, we repeat the above analyses using U.S. states’ 
agricultural sector growth as the dependent variable: we use the same data source as for states’ 
total economic growth and download real GDP by state for the agriculture, forestry, and fishing 
industries from the Bureau of Economic Analysis at the U.S. Department of Commerce (Bureau of 
Economic Analysis, 2017). 

The results of this analysis, presented in Appendix 4.2, show the following picture: when 
considering all states regardless of the region, the lags 0 and 1 for all drought characteristics 
(duration, magnitude and peak intensity) are similar in magnitude but of opposite signs, which 
could signal an increase in agricultural prices following hits to crop production due to droughts 
(Tables A4.30 to A4.32). However, these aggregate effects hide significant disparities at the region 
level: in the West region, the contemporaneous effects of droughts on agricultural GDP growth 
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are significant and negative (Tables A4.33 to A4.35). In the South region, the contemporaneous 
effects of droughts are also negative but, for moderate to extreme droughts, the first lag of 
drought duration, magnitude and peak intensity has a positive and significant effect;(Tables 
A4.36 to A4.38). In the Midwest region, only “severe+” droughts have significant (negative) 
contemporaneous effects, whereas the first lag of droughts has a large and highly significant effect 
for both “moderate+” and “severe+” droughts (Tables A4.39 to A4.41). Finally, we find no 
significant effects of droughts on the agricultural sector’s growth in the Northeast region (Tables 
A4.42 to A4.44).  

As regards the channels responsible for compound effects, Tables A4.45 to A4.47 in 
Appendix 3 present similar regression models to the ones presented in Tables A4.12 to A4.14 
above, but with agricultural GSP growth as the dependent variable. We find that the negative and 
highly significant effect of droughts on the agricultural sector’s growth remains for all states and 
for the West region, despite the inclusion of the interaction term between droughts and cooling-
degree-days, and that the first lag of the interaction term also has a negative and significant effect 
in these regions.  

How can we interpret these findings? The comparison of our results on states’ total GSP 
growth and agricultural GSP growth leads to the following considerations: it is likely that the 
negative effects of droughts on Western states’ economic growth is linked to the negative impacts 
of drought on the agricultural sector. However, this does not explain why the economies of the 
states in the West region are sensitive to drought conditions whereas Southern states (where the 
agricultural sector is just as badly hit by droughts) appear to have more resilient economies54. An 
exploration of channels other than the agricultural sector through which droughts could affect 
the economy would be needed for Northeastern states, as the agricultural channel does not seem 
to explain either the negative and significant cumulated lag effect of droughts in Northeastern 
states.  

The analyses presented above suffer from a few limitations, which may result in an 
underestimation of the effects: first, they are based on a relatively short time series of 29 years; 
as we mentioned previously, the heat measure that we use, and which is based on cooling degree-
days, is an imperfect indicator of the frequency and intensity of heat spells in a given year. Second, 
our analysis does not consider local drought impacts and the use of state-level data is likely to be 
a source of aggregation biases, notably as regard the interaction effects between temperature and 
precipitation. Third, as mentioned previously, our dataset does not allow the examination of the 
impact of the timing of drought events, which is expected to be very substantial for the 
agricultural sector. Finally, our model does not account for financial transfers from the federal 
government to drought-stricken regions. 

Several aspects of the preliminary findings presented in this paper warrant further 
exploration. For instance, the above analysis on compound effects could be redone based on a 
more accurate indicator of heat waves, e.g. based on the number of periods with consecutive days 
for which temperature is above a certain percentile threshold. Also, given the relative scarcity of 
the literature on the economic impacts of droughts, much remains to be done in terms of 
analysing the impacts of droughts: seasonal effects could be explored through the use of quarterly 

                                                             
54 The share of the agricultural sector in states’ GSP is on average 0.6% in the Northeast, 1.2% in the South, 1.9% in 
the West and 3.0% in the Midwest region.  
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data, while spatially-lagged or remote effects could be examined through the use of different 
model specifications (Hsiang, 2016). Finally, the relevance of these findings could be enhanced 
by a deeper exploration into the socio-economic features that make states sensitive or resilient 
to drought conditions.   

6. Conclusion and policy implications 

We have presented above a number of findings, which tend to indicate that droughts have 
significant and negative impacts on states’ economic growth. How can these results be useful in 
the context of climate change? Given the pressures from policymakers to provide precise 
quantified estimates of future damage from weather events, the temptation has been strong for 
economics researchers to apply their results to the relationship between weather and socio-
economic outcomes to future projections of climate change (Deschênes & Greenstone, 2011; 
Hsiang & Jina, 2014; Jenkins & Warren, 2015a; Urban et al., 2015). However, there are a few 
concerns surrounding the extrapolation of the effects of current weather to future climate.  

First, finding projections of future weather to apply these findings to, is, in itself 
problematic. Despite recent advances in the field of climate science regarding our understanding 
of how global changes in climate will drive local changes in weather, there are intrinsic and 
significant limits to the quantification of local climate change (Chapman, Stainforth, & Watkins, 
2015). Indeed, Global Circulation Models do not provide distributions of future weather events: 
several methods and techniques including dynamical and statistical downscaling methods have 
been proposed to translate GCM outputs into future distributions of local weather variables, but, 
as emphasized by Stainforth (2010), there are several practical and philosophical challenges to 
attempting to produce robust and relevant predictions on regional scales. 

Then, even supposing that we had access to reliable regional projections of future changes 
in weather patterns, there are serious limitations to the extrapolation of the findings from these 
panel models to states of the climate in which Earth’s temperature will be considerably warmer: 
these restrictions come from the possibility of nonlinearities, potential intensification effects, the 
eventuality of adaptation, and general equilibrium effects (Dell et al., 2014). For these reasons, 
the estimates derived from these panel models cannot be said conclusively to serve even as lower 
or upper bounds on future climate damage: for instance, if adaptation policies are implemented 
on a large scale, then the effects of current weather shocks might be stronger than the future 
effects of climate; conversely, if the intensification of weather shocks leads to steep increases in 
impacts, then estimates derived from current weather shocks could be underestimating the 
future damages from climate change (Dell et al., 2014). 

Notwithstanding these stark limitations, there are two ways in which results such as those 
presented in this paper can be useful to inform and guide the policy debate. First, these findings 
can be useful to quantify current and near-term risks. Notably, estimating the socio-economic 
impacts of weather events will help us to more accurately assess the near-term risks posed by 
climate change, and to design appropriate adaptation and recovery policies.  

Second, they enable us to gain a better understanding of the long-term uncertainties 
pertaining to future climate change. For instance, we found the co-occurrence of severe and 
extreme droughts and high temperature conditions had a negative and highly significant effect 
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on the growth of the agricultural sector. Several insights can be gained from such findings on 
compound effects: first, in a world where both dry conditions and heat spells are expected to 
become more intense and more frequent, evidence of negative compound effects of dry and warm 
conditions could mean that, for a given global temperature increase, damage from climate change 
is greater than currently expected. Not only would this add another layer of complexity to the 
debate on the damage function (Nordhaus, 2008; Pindyck, 2013; Stern, 2013; Tol, 2014; 
Weitzman, 2012), but examining combinations of weather and climate events instead of each type 
of event separately should also fatten the tails of the distribution of potential impacts. However, 
far from being a step backward, the knowledge that the uncertainty we are facing is actually 
greater than previously expected is extremely valuable information and should be explicitly taken 
into account by policymakers when deciding the level of stringency of our mitigation efforts.   
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APPENDICES 

Appendix 4.1: Lagged effects of droughts on states’ GSP per capita growth 

All states 

 

Table A4.15: All states – Lagged effects of drought duration on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.11 -0.11 -0.12 -0.13 -0.17** -0.18** -0.19** -0.21*** 

 (0.09) (0.09) (0.08) (0.08) (0.09) (0.08) (0.09) (0.07) 
L.duration  0.08 0.07 0.08  0.03 0.05 0.05 

 
 (0.07) (0.04) (0.07)  (0.07) (0.08) (0.08) 

L2.duration   -0.05 -0.04   -0.14** -0.13* 

 
  (0.09) (0.09)   (0.05) (0.07) 

L3.duration   -0.14*** -0.15**   -0.01 -0.01 

 
  (0.05) (0.07)   (0.06) (0.07) 

N 1392 1392 1392 1392 1392 1392 1392 1392 
R-sq 0.47 0.47 0.48 0.49 0.48 0.48 0.48 0.48 
Drought 
variable 

duration duration duration duration duration duration duration duration 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-0.11 -0.04 -0.30* -0.70** -0.17** -0.15* -0.31* -0.64** 
(0.09) (0.13) (0.18) (0.28) (0.09) (0.09) (0.18) (0.32) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

Table A4.16: All states – Lagged effects of drought magnitude on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -0.13 -0.14** -0.15* -0.16** -0.17*** -0.17* -0.19** -0.20*** 

 (0.09) (0.07) (0.08) (0.08) (0.06) (0.09) (0.08) (0.07) 
L.magnitude 

 
0.07 0.07 0.08 

 
0.03 0.05 0.05 

 
 

(0.07) (0.08) (0.08) 
 

(0.08) (0.08) (0.09) 
L2.magnitude 

  
-0.07 -0.06 

  
-0.14* -0.14*** 

 
  

(0.09) (0.07) 
  

(0.08) (0.06) 
L3.magnitude 

  
-0.12** -0.13** 

  
-0.01 -0.01 
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(0.06) (0.06) 
  

(0.06) (0.07) 
N 1392 1392 1392 1392 1392 1392 1392 1392 
R-sq 0.47 0.47 0.48 0.49 0.48 0.48 0.48 0.48 
Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-0.13 -0.07 -0.32 -0.75*** -0.17*** -0.15* -0.32 -0.61*** 
(0.09) (0.10) (0.23) (0.22) (0.06) (0.09) (0.20) (0.20) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 
 
 

Table A4.17: All states – Lagged effects of drought peak intensity on GSP per capita growth 

Dep. var. is states' 
GSP per capita 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -0.18* -0.19* -0.21** -0.21** -0.22** -0.22** -0.25*** -0.26*** 

 (0.11) (0.10) (0.09) (0.10) (0.10) (0.10) (0.09) (0.09) 
L.peak intensity  0.09 0.09 0.11  0.04 0.06 0.07 

 
 (0.10) (0.10) (0.10)  (0.09) (0.10) (0.11) 

L2.peak intensity   -0.09 -0.07   -0.16* -0.16* 

 
  (0.10) (0.09)   (0.09) (0.09) 

L3.peak intensity   -0.15* -0.16**   -0.02 -0.02 

 
  (0.08) (0.08)   (0.07) (0.06) 

N 1392 1392 1392 1392 1392 1392 1392 1392 
R-sq 0.47 0.48 0.48 0.49 0.48 0.48 0.48 0.48 
Drought variable peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-0.18* -0.10 -0.45** -1.04*** -0.22** -0.19* -0.46* -0.85*** 

(0.11) (0.15) (0.21) (0.25) (0.10) (0.11) (0.25) (0.28) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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West region 

 
 

Table A4.18: Western states – Lagged effects of drought duration on GSP per capita growth 

Dep. var. is 
states' GSP 
per capita 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.38** -0.39** -0.36** -0.35* -0.46*** -0.46*** -0.47*** -0.47*** 

 (0.18) (0.16) (0.17) (0.21) (0.14) (0.16) (0.17) (0.15) 
L.duration  0.07 0.06 0.08  0.02 0.04 0.10 

 
 (0.14) (0.11) (0.15)  (0.11) (0.13) (0.14) 

L2.duration   0.01 0.01   -0.19 -0.20 

 
  (0.18) (0.21)   (0.12) (0.12) 

L3.duration   0.00 0.00   0.08 0.10 

 
  (0.18) (0.14)   (0.12) (0.12) 

N 319 319 319 319 319 319 319 319 
R-sq 0.45 0.45 0.45 0.47 0.46 0.46 0.46 0.47 
Drought 
variable 

duration duration duration duration duration duration duration duration 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West West West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x 
Year FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. 
controls Yes Yes Yes Yes Yes Yes Yes Yes 

Sum of all 
lagged 
coefficients 
on drought 
variables 

-0.38** -0.32 -0.22 -0.88 -0.46*** -0.45** -0.59 -0.95** 

(0.18) (0.24) (0.52) (0.66) (0.14) (0.18) (0.39) (0.46) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 
 

Table A4.19: Western states – Lagged effects of drought magnitude on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -0.40*** -0.41*** -0.39** -0.37 -0.42*** -0.42*** -0.43*** -0.43*** 

 (0.15) (0.14) (0.20) (0.24) (0.14) (0.15) (0.15) (0.15) 
L.magnitude  0.08 0.06 0.10  0.03 0.05 0.10 

 
 (0.12) (0.14) (0.12)  (0.12) (0.10) (0.12) 

L2.magnitude   -0.04 -0.02   -0.19** -0.20 

 
  (0.18) (0.18)   (0.09) (0.12) 

L3.magnitude   -0.02 0.00   0.06 0.08 

 
  (0.14) (0.15)   (0.15) (0.13) 
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N 319 319 319 319 319 319 319 319 
R-sq 0.45 0.45 0.46 0.47 0.45 0.45 0.46 0.47 
Drought variable magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West West West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

-0.40*** -0.33 -0.34 -0.86 -0.42*** -0.39** -0.55 -0.84** 

(0.15) (0.22) (0.51) (0.53) (0.14) (0.19) (0.40) (0.40) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

Table A4.20: Western states – Lagged effects of drought peak intensity on GSP per capita growth 

Dep. var. is states' GSP 
per capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -0.67*** -0.67*** -0.66*** -0.62*** -0.55*** -0.56*** -0.57*** -0.57*** 

 (0.21) (0.22) (0.24) (0.20) (0.17) (0.18) (0.17) (0.16) 
L.peak intensity  0.02 0.01 0.08  0.02 0.04 0.10 

 
 (0.17) (0.13) (0.12)  (0.16) (0.13) (0.14) 

L2.peak intensity   -0.06 -0.03   -0.20* (0.20) 

 
  (0.23) (0.25)   (0.11) (0.13) 

L3.peak intensity   -0.02 -0.01   0.08 0.09 

 
  (0.21) (0.22)   (0.20) (0.13) 

N 319 319 319 319 319 319 319 319 
R-sq 0.46 0.46 0.46 0.47 0.46 0.46 0.46 0.47 

Drought variable peak int. peak int. peak int. peak int. 
peak 

int. 
peak 

int. 
peak 

int. 
peak 

int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West West West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on drought 
variables 

-0.67*** -0.65** -0.82 -1.47** -0.55*** -0.54*** -0.79** -1.17** 

(0.21) (0.27) (0.63) (0.63) (0.17) (0.21) (0.38) (0.49) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the second row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.     
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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South region 

 
 

Table A4.21: Southern states – Lagged effects of drought duration on GSP per capita growth 

Dep. var. is states' 
GSP per capita 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.12 -0.12 -0.13 -0.14 -0.10 -0.09 -0.10 -0.10 

 (0.10) (0.12) (0.09) (0.11) (0.09) (0.08) (0.10) (0.10) 
L.duration  -0.01 0.00 0.00  -0.08 -0.07 -0.06 

 
 (0.11) (0.10) (0.10)  (0.13) (0.13) (0.11) 

L2.duration   -0.05 -0.04   -0.08 -0.06 

 
  (0.12) (0.12)   (0.10) (0.11) 

L3.duration   -0.17*** -0.19***   -0.01 -0.02 

 
  (0.04) (0.04)   (0.07) (0.06) 

N 464 464 464 464 464 464 464 464 
R-sq 0.47 0.47 0.48 0.48 0.47 0.47 0.47 0.48 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-0.12 -0.13 -0.53*** -0.41* -0.10 -0.18 -0.10 0.06 

(0.10) (0.21) (0.19) (0.24) (0.09) (0.16) (0.30) (0.35) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 
 

Table A4.22 Southern states – Lagged effects of drought magnitude on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -0.13 -0.12 -0.13* -0.14 -0.10 -0.09 -0.10 -0.09 

 (0.11) (0.10) (0.07) (0.13) (0.09) (0.07) (0.07) (0.08) 
L.magnitude  -0.05 -0.04 -0.03  -0.09 -0.07 -0.07 

 
 (0.12) (0.09) (0.10)  (0.12) (0.12) (0.10) 

L2.magnitude   -0.09 -0.09   -0.09 -0.07 

 
  (0.14) (0.15)   (0.09) (0.11) 

L3.magnitude   -0.14*** -0.14***   0.00 -0.01 

 
  (0.05) (0.05)   (0.06) (0.04) 

N 464 464 464 464 464 464 464 464 
R-sq 0.47 0.47 0.47 0.48 0.47 0.47 0.47 0.48 
Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
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Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-0.13 -0.17 -0.48** -0.39 -0.10 -0.18 -0.11 0.04 

(0.11) (0.19) (0.20) (0.30) (0.09) (0.15) (0.27) (0.30) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

Table A4.23: Southern states – Lagged effects of drought peak intensity on GSP per capita growth 

Dep. var. is states' GSP 
per capita growth (1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -0.09 -0.08 -0.09 -0.09 -0.09 -0.07 -0.08 -0.08 

 (0.11) (0.11) (0.10) (0.10) (0.09) (0.09) (0.09) (0.09) 
L.peak intensity  -0.05 -0.04 -0.03  -0.11 -0.09 -0.09 

 
 (0.14) (0.13) (0.14)  (0.16) (0.17) (0.15) 

L2.peak intensity   -0.10 -0.10   -0.10 -0.08 

 
  (0.16) (0.19)   (0.11) (0.12) 

L3.peak intensity   -0.13** -0.13**   -0.01 -0.03 

 
  (0.05) (0.06)   (0.08) (0.09) 

N 464 464 464 464 464 464 464 464 
R-sq 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 

Drought variable peak int. peak int. peak int. peak int. 
peak 

int. 
peak 

int. 
peak 

int. 
peak 

int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on drought 
variables 

-0.09 -0.13 -0.45* -0.43* -0.09 -0.18 -0.15 -0.05 

(0.11) (0.18) (0.25) (0.24) (0.09) (0.16) (0.32) (0.38) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Midwest region 

 
 

Table A4.24: Midwestern states – Lagged effects of drought duration on GSP per capita growth 

Dep. var. is states' 
GSP per capita 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration 0.15 0.13 0.10 0.12 -0.01 -0.07 -0.10 -0.13 

 (0.14) (0.11) (0.11) (0.13) (0.20) (0.27) (0.26) (0.25) 
L.duration  0.20 0.20 0.17  0.30 0.33 0.26 

 
 (0.17) (0.13) (0.18)  (0.29) (0.25) (0.24) 

L2.duration   -0.12* -0.13   -0.18 -0.22* 

 
  (0.07) (0.08)   (0.15) (0.13) 

L3.duration   -0.20 -0.13   -0.06 -0.06 

 
  (0.16) (0.15)   (0.14) (0.11) 

N 348 348 348 348 348 348 348 348 
R-sq 0.42 0.43 0.43 0.47 0.42 0.42 0.43 0.44 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

0.15 0.33 -0.11 -0.85** -0.01 0.22 -0.19 -0.74 

(0.14) (0.24) (0.23) (0.41) (0.20) (0.22) (0.30) (0.59) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 
 

Table A4.25: Midwestern states – Lagged effects of drought magnitude on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude 0.13 0.10 0.07 0.08 -0.05 -0.12 -0.15 -0.17 

 (0.13) (0.10) (0.11) (0.12) (0.22) (0.24) (0.24) (0.25) 
L.magnitude  0.24 0.23 0.18  0.31 0.34 0.27 

 
 (0.16) (0.17) (0.16)  (0.22) (0.22) (0.20) 

L2.magnitude   -0.07 -0.08   -0.18 -0.22 

 
  (0.13) (0.09)   (0.13) (0.15) 

L3.magnitude   -0.21 -0.14   -0.06 -0.06 

 
  (0.16) (0.15)   (0.11) (0.12) 

N 348 348 348 348 348 348 348 348 
R-sq 0.42 0.43 0.43 0.47 0.42 0.43 0.43 0.44 
Drought variable magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
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Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

0.13 0.34 -0.05 -0.99* -0.05 0.19 -0.23 -0.81 

(0.13) (0.22) (0.38) (0.55) (0.22) (0.15) (0.20) (0.71) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

Table A4.26: Midwestern states – Lagged effects of drought peak intensity on GSP per capita growth# 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity 0.16 0.10 0.05 0.06 -0.10 -0.20 -0.24 -0.24 

 (0.17) (0.22) (0.22) (0.17) (0.26) (0.38) (0.43) (0.29) 
L.peak intensity  0.41 0.41* 0.34*  0.43 0.46 0.37 

 
 (0.29) (0.25) (0.20)  (0.34) (0.31) (0.26) 

L2.peak intensity   -0.12 -0.16   -0.19 -0.25* 

 
  (0.17) (0.12)   (0.23) (0.13) 

L3.peak intensity   -0.38 -0.29   -0.12 -0.13 

 
  (0.24) (0.20)   (0.13) (0.14) 

N 348 348 348 348 348 348 348 348 
R-sq 0.42 0.43 0.44 0.48 0.42 0.43 0.43 0.45 
Drought variable peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

0.16 0.51 -0.12 -1.25* -0.10 0.23 -0.35 -1.00 

(0.17) (0.39) (0.56) (0.74) (0.26) (0.20) (0.22) (0.68) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.   
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Northeast region 

 
 

Table A4.27: Northeastern states – Lagged effects of drought duration on GSP per capita growth 

Dep. var. is states' 
GSP per capita 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration 0.11 0.07 0.09 0.15 0.15 0.14 0.11 0.08 

 (0.22) (0.15) (0.16) (0.11) (0.12) (0.13) (0.13) (0.11) 
L.duration  0.19 0.18 0.20  0.04 0.04 -0.01 

 
 (0.17) (0.19) (0.14)  (0.20) (0.18) (0.17) 

L2.duration   0.00 -0.06   0.05 -0.02 

 
  (0.15) (0.15)   (0.18) (0.20) 

L3.duration   -0.35 -0.41   -0.31* -0.35** 

 
  (0.28) (0.29)   (0.17) (0.15) 

N 261 261 261 261 261 261 261 261 
R-sq 0.68 0.68 0.69 0.70 0.68 0.68 0.69 0.70 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

0.11 0.25 -0.46 -1.65*** 0.15 0.18 -0.63 -1.35** 

(0.22) (0.29) (0.36) (0.45) (0.12) (0.21) (0.50) (0.55) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 

Table A4.28: Northeastern states – Lagged effects of drought magnitude on GSP per capita growth 

Dep. var. is 
states' GSP per 
capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude 0.10 0.05 0.08 0.15 0.13 0.11 0.07 0.05 

 (0.14) (0.14) (0.14) (0.14) (0.09) (0.15) (0.12) (0.14) 
L.magnitude  0.22 0.21 0.22  0.07 0.07 0.03 

 
 (0.17) (0.20) (0.15)  (0.20) (0.18) (0.18) 

L2.magnitude   -0.03 -0.10   0.00 -0.08 

 
  (0.17) (0.16)   (0.25) (0.22) 

L3.magnitude   -0.43 -0.51*   -0.32 -0.36** 

 
  (0.32) (0.26)   (0.22) (0.17) 

N 261 261 261 261 261 261 261 261 
R-sq 0.68 0.68 0.70 0.71 0.68 0.68 0.69 0.70 
Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
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States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

0.10 0.28 -0.67* -2.03*** 0.13 0.18 0.72 -1.41*** 

(0.14) (0.26) (0.40) (0.48) (0.09) (0.24) (0.45) (0.47) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 

Table A4.29: Northeastern states – Lagged effects of drought peak intensity 

Dep. var. is states' GSP 
per capita growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity 0.15 0.05 0.08 0.15 0.16 0.13 0.07 0.03 

 (0.23) (0.23) (0.17) (0.23) (0.15) (0.13) (0.16) (0.17) 
L.peak intensity  0.36 0.33** 0.33  0.15 0.16 0.11 

 
 (0.24) (0.17) (0.22)  (0.26) (0.21) (0.25) 

L2.peak intensity   -0.05 -0.11   -0.03 -0.09 

 
  (0.19) (0.23)   (0.25) (0.22) 

L3.peak intensity   -0.53* -0.62   -0.39 -0.41** 

 
  (0.31) (0.45)   (0.26) (0.17) 

N 261 261 261 261 261 261 261 261 
R-sq 0.68 0.68 0.71 0.72 0.68 0.68 0.71 0.72 
Drought variable peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on drought 
variables 

0.15 0.40 -0.69* -2.22*** 0.16 0.27 -0.83* -1.60*** 

(0.23) (0.38) (0.36) (0.63) (0.15) (0.25) (0.49) (0.47) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.      
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Appendix 4.2: Lagged effects of droughts on states’ agricultural GSP growth 

All states 

 
 
 

Table A4.30: All states – Lagged effects of drought duration on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.86 -1.11* -1.18** -1.23*** -2.00*** -2.34*** -2.41*** -2.47*** 

 (0.55) (0.59) (0.48) (0.47) (0.46) (0.48) (0.43) (0.58) 
L.duration  2.10*** 2.15*** 2.26***  2.24*** 2.22*** 2.24*** 

 
 (0.40) (0.47) (0.44)  (0.47) (0.59) (0.62) 

L2.duration   -0.87** -0.94***   -0.28 -0.24 

 
  (0.36) (0.33)   (0.46) (0.60) 

L3.duration   -0.52 -0.37   -0.78* -0.78 

 
  (0.50) (0.46)   (0.42) (0.53) 

N 1389 1389 1389 1389 1389 1389 1389 1389 
R-sq 0.48 0.49 0.49 0.50 0.48 0.49 0.49 0.49 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

-0.86 1.00* -1.21* 0.21 -2.00*** -0.10 -1.67*** -0.85 

(0.55) (0.58) (0.70) (0.76) (0.46) (0.53) (0.59) (0.84) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 
 
Table A4.31: All states – Lagged effects of drought magnitude on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -1.28*** -1.61*** -1.71*** -1.74*** -2.05*** -2.39*** -2.46*** -2.54*** 

 (0.44) (0.52) (0.54) (0.45) (0.44) (0.47) (0.54) (0.44) 
L.magnitude  2.40*** 2.44*** 2.50***  2.21*** 2.20*** 2.22*** 

 
 (0.46) (0.48) (0.53)  (0.47) (0.53) (0.50) 

L2.magnitude   -0.83** -0.85**   -0.35 -0.31 

 
  (0.39) (0.40)   (0.50) (0.47) 

L3.magnitude   -0.56 -0.45   -0.68 -0.68* 

 
  (0.55) (0.48)   (0.47) (0.41) 

N 1389 1389 1389 1389 1389 1389 1389 1389 
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R-sq 0.48 0.49 0.49 0.50 0.48 0.49 0.49 0.50 
Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-1.28*** 0.79 -1.37** 0.03 -2.05*** -0.18 -1.71** -0.94 

(0.44) (0.56) (0.65) (0.82) (0.44) (0.47) (0.69) (0.69) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.   
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 
 

Table A4.32: All states – Lagged effects of drought peak intensity on Agr. GSP growth 

Dep. var. is states' 
AgrGSP growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States All All All All All All All All 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -2.05*** -2.50*** -2.64*** -2.72*** -2.66*** -3.08*** -3.17*** -3.26*** 

 (0.50) (0.58) (0.73) (0.65) (0.53) (0.58) (0.57) (0.46) 
L.peak intensity  2.98*** 3.02*** 3.08***  2.65*** 2.64*** 2.65*** 

 
 (0.59) (0.62) (0.49)  (0.67) (0.74) (0.66) 

L2.peak intensity   -0.81* -0.79   -0.38 -0.33 

 
  (0.47) (0.55)   (0.59) (0.59) 

L3.peak intensity   -0.78 -0.68   -0.82* -0.82 

 
  (0.52) (0.66)   (0.45) (0.59) 

N 1389 1389 1389 1389 1389 1389 1389 1389 
R-sq 0.48 0.49 0.49 0.50 0.49 0.49 0.50 0.50 
Drought variable peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States All All All All All All All All 
Cluster obs. 48 48 48 48 48 48 48 48 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-2.05*** 0.48 -2.38*** -0.66 -2.66*** -0.42 -2.35*** -1.63* 

(0.50) (0.67) (0.84) (0.85) (0.53) (0.54) (0.69) (0.84) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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West region 

 
 

Table A4.33: Western states – Lagged effects of drought duration on Agr. GSP growth 

Dep. var. is states' 
AgrGSP growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.77 -0.89 -1.09 -1.18 -1.68** -1.93** -2.08*** -2.17** 

 (0.67) (0.84) (0.74) (0.81) (0.73) (0.84) (0.59) (0.97) 
L.duration  1.10* 1.13* 1.14  1.56* 1.57* 1.38 

 
 (0.65) (0.63) (0.84)  (0.89) (0.83) (0.92) 

L2.duration   -0.51 -0.48   -0.11 -0.03 

 
  (0.60) (0.81)   (0.96) (1.12) 

L3.duration   -0.47 -0.39   -1.30** -1.28 

 
  (0.75) (0.70)   (0.63) (0.78) 

N 319 319 319 319 319 319 319 319 
R-sq 0.34 0.35 0.35 0.36 0.35 0.36 0.37 0.38 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West West West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-0.77 0.21 -0.97 -0.83 -1.68** -0.37 -2.32*** -1.42 

(0.67) (1.08) (1.44) (1.46) (0.73) (0.67) (0.61) (1.08) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 
 
 

Table A4.34: Western states – Lagged effects of drought magnitude on Agr. GSP growth 

Dep. var. is states' 
AgrGSP growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -1.32* -1.51** -1.72** -1.93** -1.89*** -2.14*** -2.27*** -2.38*** 

 (0.68) (0.59) (0.76) (0.79) (0.69) (0.70) (0.70) (0.77) 
L.magnitude  1.49** 1.51** 1.60**  1.65** 1.63 1.51* 

 
 (0.74) (0.73) (0.70)  (0.82) (1.02) (0.77) 

L2.magnitude   -0.38 -0.41   -0.03 0.01 

 
  (0.67) (0.63)   (0.94) (0.95) 

L3.magnitude   -0.71 -0.63   -1.25* -1.23* 

 
  (0.60) (0.68)   (0.74) (0.70) 

N 319 319 319 319 319 319 319 319 
R-sq 0.35 0.36 0.36 0.37 0.36 0.37 0.38 0.38 
Drought variable magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West South West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 



142 
 

State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-1.32* -0.02 -1.44 -1.38 1.89*** -0.48 -2.42*** -1.64 

(0.68) (1.00) (1.48) (1.41) (0.69) (0.63) (0.91) (1.21) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 
 
 
 

Table A4.35: Western states – Lagged effects of drought peak intensity on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States West West West West West West West West 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -2.40*** -2.62*** -2.92*** -3.19*** -2.54*** -2.82*** -2.98*** -3.05*** 

 (0.87) (0.86) (1.08) (0.75) (0.78) (0.65) (0.70) (0.93) 
L.peak 
intensity 

 1.76** 1.76** 1.88**  2.02** 2.00 1.78 

 
 (0.70) (0.81) (0.77)  (0.95) (1.23) (1.55) 

L2.peak 
intensity 

  -0.23 -0.18   -0.14 -0.03 

 
  (0.81) (0.84)   (1.12) (1.42) 

L3.peak 
intensity 

  -0.99 -0.92   -1.35* -1.36 

 
  (1.09) (1.02)   (0.80) (0.88) 

N 319 319 319 319 319 319 319 319 
R-sq 0.35 0.36 0.37 0.37 0.36 0.37 0.38 0.38 
Drought 
variable 

peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States West West West West West West West West 
Cluster obs. 11 11 11 11 11 11 11 11 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-2.40*** -0.86 -2.94 -2.56* -2.54*** -0.81 -3.02*** -2.16* 

(0.87) (0.88) (1.83) (1.35) (0.78) (0.65) (0.84) (1.24) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.   
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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South region 

 
 

Table A4.36: Southern states – Lagged effects of drought duration on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -2.15*** -2.33*** -2.35*** -2.50*** -2.40*** -2.56*** -2.60*** -2.69*** 

 (0.62) (0.58) (0.64) (0.65) (0.67) (0.58) (0.74) (0.70) 
L.duration  1.59*** 1.76*** 2.11***  1.38* 1.37 1.31 

 
 (0.45) (0.49) (0.47)  (0.77) (0.95) (0.91) 

L2.duration   -1.15** -1.23***   -0.36 -0.25 

 
  (0.46) (0.47)   (0.73) (0.87) 

L3.duration   0.52 0.53   -0.43 -0.44 

 
  (0.85) (0.79)   (0.93) (0.93) 

N 463 463 463 463 463 463 463 463 
R-sq 0.49 0.49 0.50 0.51 0.49 0.49 0.49 0.50 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

-2.15*** -0.74 -2.34*** -0.76 -2.40*** -1.18 -2.11* -0.90 

(0.62) (0.57) (0.82) (1.66) (0.67) (0.76) (1.11) (1.16) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.  
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 

Table A4.37: Southern states – Lagged effects of drought magnitude on Agr. GSP growth 

Dep. var. is states' 
AgrGSP growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -2.29*** -2.54*** -2.65*** -2.80*** -2.30*** -2.48*** -2.56*** -2.65*** 

 (0.62) (0.61) (0.73) (0.73) (0.53) (0.62) (0.68) (0.57) 
L.magnitude  1.78*** 2.02*** 2.30***  1.39** 1.41* 1.37* 

 
 (0.39) (0.44) (0.57)  (0.65) (0.76) (0.78) 

L2.magnitude   -1.33* -1.28**   -0.50 -0.40 

 
  (0.70) (0.51)   (0.71) (0.67) 

L3.magnitude   0.50 0.46   -0.34 -0.34 

 
  (0.81) (0.70)   (0.66) (0.81) 

N 463 463 463 463 463 463 463 463 
R-sq 0.49 0.49 0.50 0.51 0.49 0.49 0.49 0.50 
Drought variable magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
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Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

-2.29*** -0.76 -2.39** -0.47 -2.30*** -1.10* -2.10** -0.72 

(0.62) (0.50) (1.02) (1.26) (0.53) (0.65) (0.96) (1.04) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 
 
Table A4.38: Southern states – Lagged effects of drought peak intensity on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States South South South South South South South South 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity -2.96*** -3.31*** -3.45*** -3.69*** -2.73*** -3.01*** -3.09*** -3.17*** 

 (0.71) (0.83) (0.78) (0.68) (0.70) (0.74) (0.87) (0.57) 
L.peak 
intensity 

 2.15*** 2.37*** 2.61***  1.77** 1.76** 1.69** 

 
 (0.55) (0.51) (0.59)  (0.72) (0.86) (0.73) 

L2.peak 
intensity 

  -1.18* -1.01*   -0.49 -0.35 

 
  (0.68) (0.57)   (0.78) (0.84) 

L3.peak 
intensity 

  0.61 0.54   -0.46 -0.45 

 
  (0.99) (0.81)   (0.97) (1.01) 

N 463 463 463 463 463 463 463 463 
R-sq 0.49 0.50 0.50 0.51 0.49 0.49 0.49 0.50 
Drought 
variable 

peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States South South South South South South South South 
Cluster obs. 16 16 16 16 16 16 16 16 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-2.96*** -1.16* -3.07*** -0.70 -2.73*** -1.24* -2.66** -1.50 

(0.71) (0.62) (1.17) (1.72) (0.70) (0.71) (1.10) (1.78) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Midwest region 

 

Table A4.39: Midwestern states – Lagged effects of drought duration on Agr. GSP growth 

Dep. var. is states' 
AgrGSP growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration 1.33 0.87 0.56 0.46 -2.26 -3.48* -3.70** -3.59** 

 (1.26) (1.52) (1.78) (1.61) (1.89) (1.91) (1.80) (1.55) 
L.duration  4.37*** 4.05** 4.39***  5.63*** 5.73*** 5.65*** 

 
 (1.27) (1.75) (1.26)  (1.40) (1.48) (1.38) 

L2.duration   -0.70 -1.07   -1.03 -1.10 

 
  (1.48) (1.26)   (1.61) (1.48) 

L3.duration   -2.21* -1.97   -0.57 -0.44 

 
  (1.20) (1.23)   (1.46) (1.19) 

N 347 347 347 347 347 347 347 347 
R-sq 0.53 0.55 0.56 0.58 0.53 0.55 0.55 0.56 
Drought variable duration duration duration duration duration duration duration duration 
Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought variables 

1.33 5.24*** 0.98 2.67 -2.26 2.15 -0.17 0.68 

(1.26) (1.69) (2.49) (2.71) (1.89) (1.59) (2.36) (2.58) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the second row of the table, 
but, for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of 
all drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 

Table A4.40: Midwestern states – Lagged effects of drought magnitude on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude 0.73 0.06 -0.28 -0.32 -2.36 -3.57* -3.78** -3.67* 

 (1.47) (1.65) (1.78) (1.96) (1.50) (1.84) (1.75) (2.01) 
L.magnitude  5.03*** 4.69*** 4.93***  5.55*** 5.72*** 5.65*** 

 
 (1.27) (1.39) (1.82)  (1.30) (1.51) (1.81) 

L2.magnitude   -0.66 -0.95   -1.25 -1.33 

 
  (1.27) (1.67)   (1.57) (1.69) 

L3.magnitude   -2.29* -2.12   -0.32 -0.19 

 
  (1.22) (1.53)   (1.14) (1.29) 

N 347 347 347 347 347 347 347 347 
R-sq 0.53 0.55 0.56 0.57 0.53 0.55 0.55 0.56 
Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
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Region x Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

0.73 5.09*** 0.92 2.38 -2.36 1.97 -0.16 0.82 

(1.47) (1.59) (2.96) (3.57) (1.50) (1.42) (2.52) (2.98) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the second row of the table, 
but, for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of 
all drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

   

 

Table A4.41: Midwestern states – Lagged effects of drought peak intensity on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak intensity 0.47 -0.48 -0.99 -1.19 -3.36 -4.74** -4.98** -4.78* 

 (2.10) (2.30) (2.31) (2.47) (2.28) (2.08) (2.35) (2.70) 
L.peak intensity  6.62*** 6.32*** 6.60***  6.68*** 6.76*** 6.70*** 

 
 (1.94) (1.70) (1.84)  (1.84) (2.07) (2.07) 

L2.peak intensity   -0.74 -1.20   -1.02 -1.23 

 
  (1.51) (1.63)   (2.18) (1.85) 

L3.peak intensity   -3.89** -3.54**   -1.12 -0.92 

 
  (1.68) (1.55)   (1.27) (1.41) 

N 347 347 347 347 347 347 347 347 
R-sq 0.53 0.55 0.56 0.57 0.53 0.55 0.55 0.56 
Drought variable peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 

Drought type 
moderate

+ 
moderate

+ 
moderate

+ 
moderate

+ severe+ severe+ severe+ severe+ 

States Midwest Midwest Midwest Midwest Midwest Midwest Midwest Midwest 
Cluster obs. 12 12 12 12 12 12 12 12 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all lagged 
coefficients on 
drought 
variables 

0.47 6.14*** -0.19 2.15 -3.36 1.94 -1.35 0.50 

(2.10) (2.32) (2.43) (3.62) (2.28) (1.54) (3.61) (2.90) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level. 
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Northeast region 

Table A4.42: Northeastern states – Lagged effects of drought duration on Agr. GSP growth 

Dep. var. is 
states' 
AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
duration -0.29 -0.52 -0.48 -0.63 -0.41 -0.58 -0.66 -0.74 

 (1.08) (0.79) (1.05) (1.16) (1.32) (1.31) (1.57) (1.48) 
L.duration  0.99 1.10 0.86  0.82 0.91 0.46 

 
 (1.08) (1.42) (1.32)  (0.80) (1.00) (1.29) 

L2.duration   -1.28 -1.28   -0.71 -0.45 

 
  (0.93) (0.89)   (1.12) (1.15) 

L3.duration   0.20 0.10   -0.04 0.37 

 
  (0.73) (0.89)   (1.14) (1.48) 

N 260 260 260 260 260 260 260 260 
R-sq 0.47 0.47 0.47 0.48 0.47 0.47 0.47 0.50 
Drought 
variable 

duration duration duration duration duration duration duration duration 

Drought 
type 

moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. 
controls 

Yes Yes Yes Yes Yes Yes Yes Yes 

Sum of all 
lagged 
coefficients 
on drought 
variables 

-0.29 0.47 -1.65 -0.66 -0.41 0.23 -1.43 -0.14 

(1.08) (0.57) (1.44) (2.93) (1.32) (1.17) (1.31) (4.37) 

Notes: Drought duration in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.   
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

 
 

Table A4.43: Northeastern states – Lagged effects of drought magnitude on Agr. GSP growth 

Dep. var. is 
states' AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
magnitude -0.20 -0.42 -0.42 -0.57 -0.17 -0.27 -0.34 -0.32 

 (0.60) (0.73) (0.82) (1.07) (1.23) (1.38) (1.21) (1.36) 
L.magnitude  0.97 1.05 0.87  0.49 0.58 0.09 

 
 (1.07) (1.33) (1.21)  (0.86) (0.87) (0.72) 

L2.magnitude   -1.30 -1.39   -0.74 -0.53 

 
  (1.04) (1.23)   (0.80) (1.38) 

L3.magnitude   0.35 0.23   -0.03 0.21 

 
  (1.08) (1.28)   (1.04) (0.69) 

N 260 260 260 260 260 260 260 260 
R-sq 0.47 0.47 0.47 0.48 0.47 0.47 0.47 0.49 



148 
 

Drought 
variable 

magnitude magnitude magnitude magnitude magnitude magnitude magnitude magnitude 

Drought type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 
States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x Year 
FE Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. controls Yes Yes Yes Yes Yes Yes Yes Yes 
Sum of all 
lagged 
coefficients on 
drought 
variables 

-0.20 0.54 -1.72 -1.51 -0.17 0.22 -1.60 -0.67 

(0.60) (0.75) (1.39) (3.33) (1.23) (1.17) (1.42) (3.32) 

Notes: Drought magnitude in log. Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe 
to extreme drought events. The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, 
for clarity purposes, only lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all 
drought coefficients. All regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.   
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

 

 

Table A4.44: Northeastern states – Lagged effects of drought peak intensity on Agr. GSP growth 

Dep. var. is 
states' 
AgrGSP 
growth 

(1) (2) (3) (4) (5) (6) (7) (8) 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Droughts Moderate+ Moderate+ Moderate+ Moderate+ Severe+ Severe+ Severe+ Severe+ 
Lags 0 lag 1 lag 5 lags 10 lags 0 lag 1 lag 5 lags 10 lags 
peak 
intensity 

-0.66 -1.07 -1.30 -1.28 -0.57 -0.73 -0.86 -0.71 

 (0.88) (1.00) (1.12) (1.05) (1.30) (1.34) (1.21) (1.45) 
L.peak 
intensity 

 1.48 1.98 1.65  0.80 1.00 0.71 

 
 (1.14) (1.75) (1.20)  (0.87) (1.00) (1.20) 

L2.peak 
intensity 

  -2.55** -2.74   -1.32 -1.20 

 
  (1.29) (1.71)   (1.29) (1.45) 

L3.peak 
intensity 

  1.35 1.35   0.33 0.54 

 
  (2.05) (1.51)   (1.37) (1.00) 

N 260 260 260 260 260 260 260 260 
R-sq 0.47 0.47 0.48 0.49 0.47 0.47 0.47 0.49 
Drought 
variable 

peak int. peak int. peak int. peak int. peak int. peak int. peak int. peak int. 

Drought 
type moderate+ moderate+ moderate+ moderate+ severe+ severe+ severe+ severe+ 

States Northeast Northeast Northeast Northeast Northeast Northeast Northeast Northeast 
Cluster obs. 9 9 9 9 9 9 9 9 
State FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region x 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Temp. 
controls 

Yes Yes Yes Yes Yes Yes Yes Yes 

Sum of all 
lagged 
coefficients 
on drought 
variables 

-0.66 0.40 -2.70 -2.50 -0.57 0.07 -2.34 -1.47 

(0.88) (1.09) (1.73) (4.69) (1.30) (1.33) (1.78) (4.28) 

Notes: Columns 1-4 include all moderate to extreme drought events while columns 5-8 include only severe to extreme drought events. 
The lags of drought characteristics included in each model are indicated in the fourth row of the table, but, for clarity purposes, only 
lags 0-3 are included in the output table. The last row shows the sum (and calculated standard error) of all drought coefficients. All 
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regressions include the 0-lag of yearly average temperature. Robust, bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.      
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Appendix 4.3: Compound effects of weather on states’ agricultural GSP growth 

 

Table A4.45: Compound effects of weather on Agr. GSP growth – Drought duration x cooling degree-days 

Dep. var. is states' AgrGSP growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

duration -2.21** -0.71 -2.84** -3.71 2.14 

 (0.96) (1.78) (1.22) (4.11) (4.66) 
L.duration 3.36*** 1.46 3.20** 6.66*** -0.69 

 (0.80) (1.90) (1.39) (2.56) (2.09) 
cdd 15.61*** 20.40*** 13.08*** 8.74 -9.35 

 (3.40) (4.98) (4.49) (10.89) (12.60) 
L.cdd 0.10 -0.63 0.50 0.66 -4.32 
  (0.54) (1.02) (1.28) (3.89) (6.49) 
duration*cdd 0.10 -0.63 0.50 0.66 -4.32 

 (0.54) (1.02) (1.28) (3.89) (6.49) 
L.duration*L.cdd -1.21*** -0.28 -1.83 -1.42 2.66 

 (0.44) (0.90) (1.31) (3.00) (3.08) 
N 1389 463 319 347 260 
R-sq 0.50 0.51 0.37 0.56 0.47 
Drought variable duration duration duration duration duration 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Drought magnitude in log. Above regressions include all drought events that are considered severe to extreme. The variable 
“cdd” corresponds to the annual number of cooling degree-days, divided by 1000. Robust, bootstrapped standard errors are in 
parentheses, adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 
 
 

Table 4.46: Compound effects of weather on agricultural GSP growth – Drought magnitude x cooling degree-days 

Dep. var. is states' AgrGSP growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

magnitude -2.32*** -1.22 -2.86*** -3.63 1.60 

 (0.87) (2.42) (1.09) (5.30) (4.60) 
L.magnitude 3.28*** 1.82 3.09** 5.98* -0.53 

 (0.95) (2.09) (1.27) (3.10) (2.33) 
cdd -23.23*** -25.55*** -12.03** -32.24** -15.82 

 (4.68) (5.75) (5.81) (14.24) (17.42) 
L.cdd 15.42*** 20.13*** 12.70** 9.27 -8.43 
  (3.63) (4.34) (5.57) (10.87) (13.71) 
magnitude*cdd 0.15 -0.32 0.38 0.46 -2.85 

 (0.50) (1.56) (0.65) (5.22) (6.68) 
L.magnitude*L.cdd -1.15** -0.48 -1.62* -0.70 1.74 

 (0.49) (1.07) (0.91) (3.73) (3.42) 
N 1389 463 319 347 260 
R-sq 0.51 0.51 0.38 0.56 0.47 
Drought variable magnitude magnitude magnitude magnitude magnitude 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Drought duration in log. Above regressions include all drought events that are considered severe to extreme. The variable “cdd” 
corresponds to the annual number of cooling degree-days, divided by 1000. Robust, bootstrapped standard errors are in parentheses, 
adjusted for clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table 4.47: Compound effects of weather on agricultural GSP growth – Drought peak intensity x cooling degree-days 

Dep. var. is states' AgrGSP growth (1) (2) (3) (4) (5) 
 All South West Midwest Northeast 

peak intensity -3.19*** -1.57 -3.89*** -5.23 0.36 

 (1.18) (2.76) (1.49) (5.89) (3.74) 
L.peak intensity 4.08*** 2.59 3.85** 6.92* -0.12 

 (1.08) (2.26) (1.83) (3.76) (2.21) 
cdd -22.97*** -25.34*** -11.84 -32.42** -15.77 

 (4.35) (6.51) (7.40) (13.39) (14.04) 
L.cdd 15.32*** 20.00*** 12.39*** 9.42 -7.16 
  (3.78) (5.27) (4.58) (11.60) (14.39) 
peak intensity*cdd 0.35 -0.33 0.59 1.08 -1.49 

 (0.72) (1.78) (1.77) (5.17) (6.06) 
L.peak intensity*L.cdd -1.44** -0.76 -1.89 -0.42 1.62 

 (0.65) (1.20) (2.21) (3.67) (3.63) 
N 1389 463 319 347 260 
R-sq 0.51 0.51 0.38 0.56 0.47 
Drought variable peak int. peak int. peak int. peak int. peak int. 
Drought type severe+ severe+ severe+ severe+ severe+ 
States All South West Midwest Northeast 
Cluster obs. 48 16 11 12 9 
State FE Yes Yes Yes Yes Yes 
Region x Year FE Yes Yes Yes Yes Yes 

Notes: Above regressions include all drought events that are considered severe to extreme. The variable “cdd” corresponds to the 
annual number of cooling degree-days, divided by 1000. Robust bootstrapped standard errors are in parentheses, adjusted for 
clustering at state level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Chapter 5: Climate shocks, inflation and monetary policy: the global 
experience since 1950 

Abstract 

The uncertainty surrounding future climate change damages has led some economists to 
assess empirically the socio-economic impacts of changes in observed temperature and 
precipitation in the recent past. We apply panel data methods to a global data set of 
climate/weather fluctuations, inflation and policy interest rates for the last half century or more. 
We find that past increases in annual average temperature led to increases in inflation, 
predominantly in low-income countries. We find that the cumulative effect of temperature on 
inflation increases as we add lagged annual average temperatures, indicating these inflationary 
effects were persistent. At the global level, we find a statistically significant, U-shaped relationship 
between temperature and inflation, which appears to be the inverse of the relationship found 
between temperature and growth by Burke et al. (2015), using similar methods. We find a 
negative effect of temperature on the annual policy interest rate in low-income countries only, 
and we find that precipitation had a negative effect on interest rates more widely. There is again 
evidence from employing lagged climate variables that these effects were persistent, particularly 
in relation to precipitation. Our findings that climate/weather fluctuations had differential effects 
according to the level of development of a country is in line with previous studies and we show 
that it is robust to controlling for countries’ long-run average climatic conditions, for example the 
effect of temperature on inflation in poor countries persists having controlled for whether they 
are hot. 

1. Introduction 

A rapidly growing body of evidence suggests that weather and climate fluctuations in the 
past, present and future have had, are having and will have a variety of impacts on the economy 
(IPCC, 2014). This evidence comes from several different lines, traditionally including integrated 
assessment models and computable general equilibrium models, as well as cross-sectional 
regressions of economic variables on prevailing climatic conditions (see Tol, 2009 and 2014 for 
a review of the results from these studies). There is also a large body of case studies of the impacts 
of weather disasters, such as droughts, floods and windstorms (see Bowen et al. (2012) and 
Cavallo and Noy (2011) for reviews). 

More recently, panel data methods have been applied to cross-sectional time-series of 
data on economic outcomes and climate/weather fluctuations55, giving rise to the so-called “New 

                                                             
55 Climate is standardly defined as the distribution of weather conditions, estimated over a long period of time, often 
thirty years. Whether ‘climate’ or ‘weather’ fluctuations are a more appropriate description of the variations measured 
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Climate-Economy” literature (Dell et al., 2014; hereafter NCE literature). The major advantage of 
panel methods is that genuine randomness in the climate system means that variation in 
climate/weather is plausibly exogenous on timescales ranging from hours and days to a few 
decades (Hawkins & Sutton, 2009; Smith, 2007). Therefore, cause and effect can be identified 
relatively convincingly, for climate/weather variation over time within a given spatial unit.  

Application of the resulting estimates to simulation of future climate change is not 
straightforward, however. Doing so would require extrapolating beyond the conditions that the 
system was in during the estimation period (e.g. the concentration of greenhouse gases in the 
atmosphere, but also national development levels). Depending on the particular estimates being 
used, it might also require using short-term elasticities of economic variables with respect to 
climate variables as estimates of longer-term elasticities. Lastly, the effects of idiosyncratic local 
climate/weather variation are not necessarily informative on the effects of climate/weather 
variation on larger scales. Nevertheless, most would agree that these panel studies significantly 
enhance the empirical basis of our understanding of climate impacts on the economy. 

Within the NCE literature, the very well-known study by Dell et al. (2012) found that 
positive temperature shocks reduce income per capita growth in poor countries, while they do 
not have a statistically significant effect on growth elsewhere56. Furthermore, the effect persists 
once lagged temperature effects are included, which is consistent with the idea that temperature 
shocks depress the growth rate rather than just the level of income per capita. A more recent 
study by Burke et al. (2015) confirms what Dell et al. (2012) found for poor countries, but 
suggests that the finding of no effect in higher-income countries may stem from the inappropriate 
specification of a linear relationship between temperature and growth. Estimating a nonlinear 
(specifically quadratic) relationship, Burke et al. (2015) find that temperature shocks 
significantly affect the growth rate of income per capita in rich and poor countries alike, and that 
the global relationship is inverse U-shaped (consistent with earlier cross-sectional work by 
Mendelsohn et al., e.g. 2006), such that cold countries benefit from positive temperature shocks, 
while hot countries see their growth rate reduced, and there exists an optimum temperature for 
growth, close to where some of the large, mid-latitude industrialised countries are located. The 
slope of the inverse-U function is found to be steeper for poor countries, indicating they are more 
sensitive to temperature fluctuations. 

The NCE literature has also addressed a number of other economic outcomes, as well as 
social outcomes including conflict, migration and violence. Dell et al. (2014) and Carleton and 
Hsiang (2016) review the evidence. Of particular interest to us is the effect of climate/weather 
fluctuations on the output (and therefore indirectly on the prices) of commodities that are likely 
to feature importantly in the typical basket of goods. Several studies have shown that 
temperature fluctuations reduce agricultural output, both in developing countries (e.g. Schlenker 
and Lobell, 2010) and developed countries (Fisher, Hanemann, Roberts, & Schlenker, 2012), 
particularly beyond a threshold temperature (Lobell, Schlenker, & Costa-Roberts, 2011; 
Schlenker & Roberts, 2009), while other studies have shown that low precipitation reduces 
agricultural output in developing countries (see Dell et al., 2014, for a review of these). 
                                                             
in a particular NCE study therefore depends on the unit of time that is used.  The shorter that unit, the more likely it is 
that weather variation is what is being measured. 
56 This was established controlling for precipitation, which was not found to have a statistically significant effect on 
income per capita in their global sample. Barrios et al. (2010) found that low precipitation reduced growth in sub-
Saharan African countries in the second half of the 20th century, however. 
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Temperature and precipitation affect energy supply, because some generation technologies are 
sensitive to temperature and water availability, for example hydroelectric and nuclear power 
(Carleton and Hsiang, 2016, summarise the evidence). Various studies also confirm that energy 
demand is responsive to temperature and that the relationship is U-shaped in developed 
countries at least, so that temperature fluctuations reduce energy demand in cold places (reduced 
space-heating), but conversely increase them in hot places (increased air conditioning) 
(Aroonruengsawat & Auffhammer, 2011; Deschênes & Greenstone, 2011). Jones and Olken 
(2010) use a global panel of trade data to establish that temperature fluctuations lead to a 
reduction in the output of a range of manufactured goods, including various kinds of consumer 
good (also see Somanathan et al., 2015)57. 

Somewhat distinct from the NCE literature, panel data methods have also been applied to 
study the economic impacts of the class of weather fluctuations large enough in impact to be 
classed as natural disasters. Noy (2009), Raddatz (2009), Loayza et al. (2012) and Fomby et al. 
(2013) perform panel regressions using disaster data derived from the EM-DAT database. These 
studies provide some at times contradictory evidence, which may partly derive from the fact that 
the impacts of disasters on economic growth and related variables could conceptually be negative 
or positive in the medium to long run58, but common findings include that weather disasters are 
more likely to have a negative impact on economic growth in developing countries (also see the 
meta-analysis by Klomp and Valckx, 2014), and that impacts vary with disaster type, with 
droughts appearing to have a negative effect, but floods having perhaps a positive effect. 

Despite the proliferation of empirical studies into the consequences of climate/weather 
fluctuations, a pair of economic variables that have been very little studied so far are inflation and 
interest rates. Yet the evidence just set out suggests plausible effects of climate/weather 
fluctuations on inflation, either through aggregate supply and demand, or through the supply of 
and demand for individual commodities. These inflationary (or deflationary) effects, together 
with wider effects of climate/weather on output, could in turn stimulate a monetary-policy 
response.  

Inflation is a monetary phenomenon defined as a continuous and persistent rise in the 
general price levels, and there is a general agreement amongst economists that economic inflation 
can be caused by either an increase in the money supply or a decrease in the quantities of goods 
supplied (Lim & Sek, 2015), while the standard basic workhorse model used for macroeconomics 
and monetary policy is the Clarida-Gali-Gertler “New Keynesian” model (Clarida, Galı, & Gertler, 
2002) in which countries face a trade-off between using interest rates as a stimulus of economic 
activity and using them to curb inflation. As indicated above in the discussion of supply-side 
inflation, this trade-off also depends on the monetary policy regime in place: there are inflation-
targeting regimes, such as the UK’s, regimes targeting an absolute price level, and regimes 
targeting both inflation and full employment, such as the US Federal Reserve. Moreover, the 
independence of the central bank and the credibility of the monetary policy framework put in 
place by the central bank are also expected to play a role: according to Batten et al., “central banks 

                                                             
57 The explanation for this effect may in turn lie with studies that have estimated a negative effect of temperature 
fluctuations on labour productivity. 
58 There is on the one hand a ‘creative destruction’ hypothesis, whereby it is argued that replacement of damaged 
capital increases medium- and long-run productivity. On the other hand, some studies such as Hornbeck (2012) have 
pointed to a negative long-run effect on output through mechanisms like out-migration and long-term disruption to 
capital markets. 
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in those countries with a credible monetary policy framework and well-anchored inflation 
expectations are less likely to face the need to react to sectoral price shocks, although such 
volatility could complicate the communication of the monetary policy strategy at times.” (Batten, 
Sowerbutts, & Tanaka, 2016, p. 26).  

Because climate/weather fluctuations can translate into both supply and demand shocks, 
the overall effect of climate/weather fluctuations on inflation is ambiguous, as is the effect on 
interest rates in turn.  

Studies of industrial and aggregate economic output imply that temperature fluctuations, 
and in some instances fluctuations in precipitation, act as a supply-side shock, reducing output59. 
This could result in supply-side inflation, if other prices in the economy, such as wages, are slow 
to adjust to the shock. The inflationary effect may be particularly severe in the case of extreme 
weather events (also including windstorms), where outright shortages of goods are conceivable. 
If a particular country is disproportionately affected by climate/weather fluctuations, an 
inflationary effect may also occur via a falling exchange rate and higher import prices. 

In these circumstances, the monetary-policy authority, if it targets inflation, will want to 
raise the expected real rate of interest (and a fortiori the nominal rate) for a period, in order to 
bring inflation back to target. Alternatively, if the monetary authority is not solely an inflation 
targeter, the increase in prices may be followed by an expansionary monetary-policy response – 
an increase in the money supply – if the monetary policy authority is concerned to manage the 
shock to the level of employment and output60. This would result in an increase in aggregate 
demand and a further rise in inflation.  The problem would be exacerbated if inflation 
expectations in the country concerned were not well anchored. 

It is worth noting that due to the uncertainty faced by central banks regarding current 
levels of prices and output (aggregate statistics such as industrial production and GDP take 
months to be compiled and published), central banks can be brought to make decisions based on 
projections of future shortages and price increases which may affect the economy. This could be 
case for weather events that qualify as natural disasters: and in these circumstances, the change 
in the policy interest rate would precede and/or limit the impact of the weather event on the 
inflation rate.   

On the other hand, it is conceivable that climate/weather fluctuations lead to demand-
side deflationary pressure, particularly in the case of extreme weather events. Financial systems 
may be disrupted, impairing lending and hence spending. Consumers may also save more to 
compensate for losses of wealth. Some of them may not be able to maintain consumption in the 
face of adverse shocks to their income, even if the shocks are expected to be temporary, because 
of liquidity and borrowing constraints. If these effects dominate the supply-side effects, there will 
be downward pressure on the aggregate price level and hence on inflation in the short run, 
tending to encourage the monetary authority to lower interest rates temporarily. During the 
reconstruction phase after a natural disaster, rising prices might be witnessed. 

                                                             
59 The opposite supply-side effect is clearly possible where climate/weather fluctuations increase output. 
60 The monetary policy authority may also increase the money supply if an extreme weather event increases 
government indebtedness via for instance reconstruction costs. 
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We are only aware of two papers, which investigate the impact of climate/weather on 
inflation using panel data methods61. Both these papers focus on extreme weather events, as a 
subset of natural disasters, rather than broader climate/weather fluctuations. Heinen et al. 
(2016) regress monthly inflation, measured by the increase in the consumer price index or CPI, 
on hurricane and flood destruction indices for a sample of 15 Caribbean islands and find that 
these extreme weather events have a large, contemporaneous inflationary impact. This appears 
to mainly come through higher food prices, although the strongest hurricanes appear to also 
affect housing and utilities prices. Parker (2016) regresses quarterly CPI inflation on a disaster 
intensity index, which is constructed from data in EM-DAT, for a sample of 223 countries or 
territories between 1980 and 2012. Parker’s disaster intensity index is a function of the number 
of fatalities and the total number of affected people, as recorded in EM-DAT. Similar to Heinen et 
al. (2016), he finds that natural disasters have a statistically significant and positive 
contemporaneous effect on headline inflation (i.e. in the same quarter in which they occur, and to 
some extent in the following quarter). Again, these inflationary effects appear to come through 
food prices. There is a statistically significant, negative effect on housing prices with a lag of 2-4 
quarters, and no effect on energy prices. Parker (2016) also finds that the headline effects are 
strongest for droughts and floods, and in developing as opposed to developed countries. 

The purpose of this paper is to advance our understanding of the possible effects of 
climate/weather fluctuations on inflation and interest rates, using panel data methods to ensure 
a strong empirical basis. We regress annual inflation rates and annual policy interest rates on 
fluctuations in annual temperature and precipitation for an unbalanced panel of 176 countries 
over the period 1950-2015. 

Thus, we extend the existing literature by firstly considering interest rates, not just 
inflation, and secondly considering general fluctuations in annual climatic conditions, rather than 
just weather events extreme enough to quality as natural disasters. The NCE literature strongly 
suggests extending the frame of reference in this way. As well as simply adding to the knowledge 
base on the economic impacts of climate/weather variations, our analysis is intended to be 
helpful to monetary and macro-economic policy makers looking for guidance on the likely path 
of prices under weather variation and possibly climate change. 

This chapter is organized as follows: section 2 will provide an overview of the 
methodology, including data sources, scatter plots and the estimation strategy. Results for both 
the inflation rate and the policy interest rate are presented and discussed in Section 3. Section 4 
concludes.   

2. Methodology 

i. Data 

Country classification 

                                                             
61 There is also some case study evidence. For example, Laframboise and Loko (2012) found that the 2010 Pakistan 
floods increased headline inflation by 2 per cent, while Kamber et al. (2013) found that droughts in New Zealand 
increased food and electricity price inflation, but that there was no increase in headline inflation due to falling prices 
in other sectors. 
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For some of our analyses, we divide countries into different subgroups based on their 
level of income. To do so, we use the World Bank’s classification by income, which is based on 
Gross National Income (GNI) per capita and distinguishes between four categories: low income, 
lower-middle income, upper-middle income and high income (World Bank, 2017). In order to 
assign each country to an income group for the period considered, we counted every time each 
country was classified as being low/lower-middle/upper-middle or high income, and assigned to 
each the class which came out most frequently. The list of countries in each of the income groups 
is available in Appendix 5.162. In the rest of the analysis, we designate countries in the low and 
lower-middle income groups as “poor”, while we call “rich” those countries in the upper-middle 
and high-income groups. 

Inflation 

We use the dataset on countries’ annual inflation rates provided by the World Bank63 and 
which is based on the CPI. It is available for the period 1960-2016, but there are no data for some 
countries and the panel is highly unbalanced. All in all, there are 174 countries, for which we have 
both weather and inflation data: 51 of these countries are in the low-income group, 52 are in the 
lower-middle-income group, 36 are in the upper-middle-income group and 35 are in the high-
income group (see Appendix 5.2). 

A key feature of the inflation dataset is that it contains major outliers (e.g. an annual 
inflation rate of 24,411% in Zimbabwe in 2007). In order to explore the effect of these outliers on 
our results, we impose five cut-off inflation rates (i.e. beyond which data points are omitted): no 
cut-off rate (i.e. the original dataset), 100% per annum, 75%, 50% and 25%. It is possible that the 
effects of climate fluctuations on a country’s inflation rate could be “masked” by other 
idiosyncratic shocks, which are unrelated to weather (e.g. wars and other political events, or non-
climatic natural disasters, such as earthquakes and tsunamis). Applying cut-off rates to the 
inflation rate is equivalent to removing the years for which we have very large inflation rates, 
which might remove these shocks from the data and enable us to better discern the potential 
effects of climate/weather.   

Table 5.1 shows summary statistics for the inflation data.64 The effect of a small number 
of outliers is clear to see. For the full dataset, the mean inflation rate is 34%, but removing just 
165 observations with an inflation rate of more than 100% (out of 7,247 observations in grand 
total) reduces the mean inflation rate to just 9% per annum. The effect is particularly marked 
outside high-income countries. In low-income countries, excluding 43 observations with an 
inflation rate of more than 100% reduces mean inflation from almost 46% to just 11%. In lower-
middle income countries the mean falls from 51% to 10%, and even in upper-middle income 
countries it falls from 28% to 11%. Occasional bouts of hyperinflation are evidently a 
phenomenon largely confined to low and middle-income countries. 

Notice that further reductions in the cut-off inflation rate below 100% have a smaller 
effect on mean inflation. Notice also that all countries observed inflation rates of less than 25% at 
some point between 1960 and 2016. The far right-hand column shows Pearson’s kurtosis 

                                                             
62 This list only includes the 176 countries which are part of the analysis (i.e. for which we have weather data and 
either inflation rate or policy interest rate data. 
63 Available at https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG 
64 These statistics only include the 174 countries for which we have both weather and inflation data. 
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statistic65, which is a measure of the presence of outliers (Westfall, 2014), for the different sub-
samples.  As these numbers show, the coefficients of kurtosis of the samples with no cut-off rate 
and of the sample with a 100% cut-off rate are very large, which could be problematic for 
statistical inference. 

Table 5.1: Summary statistics for annual inflation rate data 

Inflation rate variable Unit Mean Std. Dev. Min. Max. Obs. Nb. of countries Kurtosis 
Inflation rate - no cut-off rate   

   
  

   

 All countries % 34.2 485.2 -35.8 24411.0 7,247 174 1,761.48 

 Low income countries % 45.9 784.6 -35.8 24411.0 1,935 51 
 

 Lower middle income countries % 50.8 473.3 -23.8 11749.6 2,113 52 
 

 Upper middle income countries % 28.3 165.2 -11.7 3079.8 1,455 36 
 

 High income countries % 5.8 14.4 -4.9 373.8 1,744 35 
 

 
 

  
   

  
   

Inflation rate -100% cut-off rate   
   

  
   

 All countries % 9.1 12.5 -35.8 99.9 7,082 174 13.71 

 Low income countries % 11.2 13.5 -35.8 97.6 1,892 51 
 

 Lower middle income countries % 9.7 12.0 -23.8 98.8 2,048 52 
 

 Upper middle income countries % 10.5 15.7 -11.7 99.9 1,404 36 
 

 High income countries % 5.1 6.6 -4.9 84.2 1,738 35 
 

            
Inflation rate -75% cut-off rate   

   
  

   

 All countries % 8.6 10.6 -35.8 73.7 7,030 174 9.02 

 Low income countries % 10.7 12.2 -35.8 73.1 1,880 51 
 

 Lower middle income countries % 9.1 10.1 -23.8 73.5 2,033 52 
 

 Upper middle income countries % 9.2 12.3 -11.7 73.7 1,381 36 
 

 High income countries % 5.1 6.1 -4.9 58.5 1,736 35 
 

            
Inflation rate -50% cut-off rate   

   
  

   

 All countries % 7.8 8.5 -35.8 49.7 6,923 174 4.61 

 Low income countries % 9.6 9.9 -35.8 49.4 1,838 51 
 

 Lower middle income countries % 8.5 8.4 -23.8 49.7 2,007 52 
 

 Upper middle income countries % 7.9 9.0 -11.7 49.2 1,346 36 
 

 High income countries % 4.9 5.7 -4.9 49.4 1,732 35 
 

            
Inflation rate -25% cut-off rate   

   
  

   

 All countries % 6.3 5.8 -23.8 25.0 6,550 174 0.98 

 Low income countries % 7.4 6.4 -18.1 25.0 1,679 51 
 

 Lower middle income countries % 7.1 5.9 -23.8 25.0 1,903 52 
 

 Upper middle income countries % 6.0 5.7 -11.7 25.0 1,258 36 
 

  High income countries % 4.6 4.6 -4.9 24.9 1,710 35   

 

Policy interest rates 

We obtained data on countries’ annual policy interest rates from Bloomberg, which is in 
turn sourced from countries’ monetary policy updates. For some countries (e.g. the United 
Kingdom), we have data since 1950, but for some other countries, the time series available is very 
short and there are no data at all for some countries. Some countries are de facto excluded from 
the analysis, as their central banks do not set policy interest rates (e.g. the UAE, Saudi Arabia, 
Qatar, Bahrain and Oman, which all have a fixed peg to the U.S. dollar). Finally, because we are 
looking at the impact of local climate fluctuations on local changes in policy rates, we exclude 
countries that belong to currency unions and have therefore given up their monetary policy to a 
supra-national central bank, which has to accommodate the interests of the other countries in the 
currency union. There are four currency unions in the world today: the Eurozone, the Central 
Africa Economic and Monetary Community (CEMAC), the West African Economic and Monetary 
                                                             
65 Where a kurtosis of 0 indicates a normal distribution; a kurtosis greater than 10 is considered problematic (Acock, 
2008). 
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Union (WAEMU) and the Eastern Caribbean Currency Union (ECCU). Unfortunately, records of 
countries’ policy interest rates before they joined a currency union do not seem to be readily 
available on Bloomberg.  

All in all, there are 75 countries for which we have both weather data and data on policy 
interest rates: 14 of these countries are in the low-income group, 29 are in the lower-middle-
income group, 13 are in the upper-middle-income group and 19 are in the high-income group 
(see Appendix 2 for details). 

The range of countries’ annual policy interest rates (-0.3% to 105%) is not as large as the 
range of inflation rates (Table 5.2), consequently applying the same cut-off rates results in far 
fewer observations being removed. The column on the far right provides the kurtosis statistic for 
each of the sub-samples corresponding to different cut-off rates. As these show, there are large 
numbers of outliers in the samples with no cut-off rate, and 100% and 75% cut-off rates.  

Table 5.2: Summary statistics for annual policy interest rate data 

Policy interest rate variable Unit Mean Std. Dev. Min. Max. Obs. Nb. of countries Kurtosis 
Pol. interest rate - no cut-off rate   

   
  

   

 All countries % 7.8 7.7 -0.3 105.8 1,441 75 38.04 

 Low income countries % 11.2 8.4 2.2 55.0 280 14 
 

 Lower middle income countries % 8.9 7.9 0.2 105.8 471 29 
 

 Upper middle income countries % 7.2 10.7 0.0 92.0 180 13 
 

 High income countries % 5.0 3.7 -0.3 17.2 510 19 
 

 
 

  
   

  
   

Pol. interest rate -100% cut-off rate 
   

  
   

 All countries % 7.7 7.2 -0.3 92.0 1,440 75 25.67 

 Low income countries % 11.2 8.4 2.2 55.0 280 14 
 

 Lower middle income countries % 8.7 6.6 0.2 57.5 470 29 
 

 Upper middle income countries % 7.2 10.7 0.0 92.0 180 13 
 

 High income countries % 5.0 3.7 -0.3 17.2 510 19 
 

            
Pol. interest rate -75% cut-off rate   

   
  

   

 All countries % 7.6 6.9 -0.3 69.8 1,439 75 16.32 

 Low income countries % 11.2 8.4 2.2 55.0 280 14 
 

 Lower middle income countries % 8.7 6.6 0.2 57.5 470 29 
 

 Upper middle income countries % 6.7 8.7 0.0 69.8 179 13 
 

 High income countries % 5.0 3.7 -0.3 17.2 510 19 
 

            
Pol. interest rate -50% cut-off rate   

   
  

   

 All countries % 7.5 6.2 -0.3 49.5 1,434 75 9.25 

 Low income countries % 10.9 7.6 2.2 45.3 278 14 
 

 Lower middle income countries % 8.6 6.2 0.2 46.3 469 29 
 

 Upper middle income countries % 6.0 6.2 0.0 49.5 177 13 
 

 High income countries % 5.0 3.7 -0.3 17.2 510 19 
 

            
Pol. interest rate -25% cut-off rate   

   
  

   

 All countries % 6.8 4.6 -0.3 25.0 1,400 75 1.13 

 Low income countries % 9.3 4.6 2.2 24.9 260 14 
 

 Lower middle income countries % 7.9 4.5 0.2 25.0 455 29 
 

 Upper middle income countries % 5.6 4.8 0.0 23.1 175 13 
 

  High income countries % 5.0 3.7 -0.3 17.2 510 19   

 

Tables summarising the inflation and policy interest rate data we have collected for each 
country can be found in Appendix 5.2. 
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Climate fluctuations 

We collected monthly temperature and precipitation data for the period 1950-2015 from 
the World Bank’s Climate Change Knowledge Portal66, which we then transformed into annual 
data.  This dataset was originally produced by the Climatic Research Unit (CRU) of the University 
of East Anglia and reformatted by the International Water Management Institute (IWMI). The 
original CRU dataset is a gridded time-series dataset which covers all land areas (except 
Antarctica) at a 0.5x0.5 degrees resolution (see Harris et al., 2014, for details). The advantages of 
using gridded datasets such as the CRU one is that they provide balanced panels of temperature 
and precipitation data for every point on a grid. The downside is that these rely on interpolation 
techniques, which can put into question the reliability of the estimates, especially for 
precipitation, which has a higher spatial variability than temperature and for which ground 
station data can be sparse in some countries. The weather data we use are unweighted by 
population size, but these estimates have been found to be broadly similar to population-
weighted ones (Dell et al., 2012). Despite these issues, gridded datasets produced by the CRU are 
commonly used in economic studies of weather impacts.  

Table 5.3 below shows summary statistics for the temperature and precipitation 
variables67. 

Table 5.3: Summary statistics for temperature and precipitation data 

Weather variable Unit Mean Std. Dev. Std. Dev.* Min. Max. Obs. Nb. of countries 
Average annual temperature   

    
  

  

 All countries °Celsius 19.0 8.2 3.9 -8.9 29.7 11,616 176 

 Low income countries °Celsius 22.3 6.7 
 

-1.9 29.7 3,366 51 

 Lower middle income countries °Celsius 20.0 7.4 
 

-7.8 28.9 3,432 52 

 Upper middle income countries °Celsius 18.5 7.7 
 

3.3 27.7 2,376 36 

 High income countries °Celsius 13.7 8.9 
 

-8.9 29.0 2,442 37 

 
 

  
    

  
  

Total annual rainfall   
    

  
  

 All countries mm. 1196.5 835.0 456.8 9.7 4370.8 11,616 176 

 Low income countries mm. 1175.4 704.0 
 

49.3 3798.2 3,366 51 

 Lower middle income countries mm. 1325.1 945.5 
 

18.6 4234.2 3,432 52 

 Upper middle income countries mm. 1292.0 921.7 
 

23.9 4251.3 2,376 36 

  High income countries mm. 951.6 676.9   9.7 4370.8 2,442 37 
Notes: * indicates standard deviation after removal of country- and region*year fixed effects.  

ii. Scatter plots 

Scatter plots: annual inflation vs. temperature and precipitation 

Figure 5.1 simply plots observations of annual inflation vs. annual average temperature 
(left-hand side) and annual inflation vs. total annual rainfall (right-hand side) for all countries 
and years. Inflation rates above 50% have been removed to improve the visual resolution on the 
majority of the observations. A slight positive relationship may be visible between annual 

                                                             
66 Available at: http://sdwebx.worldbank.org/climateportal/. This dataset was originally produced by the Climatic 
Research Unit of the University of East Anglia and reformatted by the IWMI. 
67 These statistics only include the 176 countries for which we have either data either on the inflation rate or on the 
policy interest rate. 
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inflation and annual average temperature, but there is no relationship with precipitation visible 
to the naked eye. 

Figure 5.1: Annual inflation rate vs. annual temperature and precipitation, all countries 

 

Figure 5.2 shows scatter plots of annual inflation vs. annual average temperature, this 
time for each of the four country-income groups (again applying the 50% cut-off rate).  From 
visual analysis of the four plots, there does not seem to be any discernible relationship between 
average temperature and annual inflation in high- and upper-middle-income countries, but it 
seems that high inflation might be associated with high average temperatures in low- and lower-
middle-income countries.  

Figure 5.2: Annual inflation rate vs. annual temperature – Countries by income group 

 

 Figure 5.3 shows scatter plots of the annual inflation rate vs. annual precipitation for each 
of the four country-income groups. To the naked eye, there are no clear relationships between a 
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country’s inflation rate in a given year and the total amount of rainfall it receives in that same 
year. 

Figure 5.3: Annual inflation rate vs. annual precipitation– Countries by income group 

 

Scatter plots: annual policy interest rates vs. temperature and precipitation 

Figure 5.4 shows scatter plots of the annual policy interest rate vs. annual temperature 
(left) and precipitation (right). For visual clarity, we apply a 25% cut-off rate to the policy interest 
rate data showed in these scatter plots. There is no obvious relationship between interest rates 
and temperature, but there could be a slight negative correlation between precipitation and 
policy interest rates.  

Figure 5.4: Annual policy interest rate vs. annual temperature and precipitation, all countries 

 

Figure 5.5 shows scatter plots of the annual policy interest rate vs. annual average 
temperature for each of the four country-income groups.  From visual inspection, there does not 
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seem to be any discernible relationship between average temperature and interest rates, except 
for lower-middle-income countries, where higher temperatures seem to be associated with 
relatively lower policy rates.  

Figure 5.5: Annual policy interest rate vs. annual temperature – Countries by income group 

 

 Finally, Figure 5.6 below shows scatter plots of the annual policy interest rate vs. annual 
precipitation for each of the four country-income groups. There does again seem to be a slight 
correlation between high levels of precipitation and low policy interest rates. 
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Figure 5.6: Annual policy interest rate vs. annual precipitation – Countries by income group 

 

 
iii. Econometric approach 

We propose to examine the impact of annual temperature and precipitation fluctuations 
on annual inflation and interest rates using the following estimation strategy: 

Equation 5.1 

𝑦,௧ =   𝛽



ୀ

𝑪,௧ି +  𝜇 + 𝜃௧ + 𝜀,௧ 

Where: 

 yi,t represents the rate of inflation or the policy interest rate in country i in year t;  
 Ci,t is a vector of annual average temperature and precipitation with up to p lags 

included; 
 μi are country fixed effects; 
 θrt are region-specific time fixed effects. 

The inclusion of country fixed effects μi constitutes a relatively powerful control for time-
invariant country characteristics, both observed and unobserved. Following the literature (Dell 
et al., 2012, 2014), we also include time fixed effects interacted with region dummies (θrt), which 
serve the important purpose of controlling for time-varying factors that may have different 
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impacts across geographical regions.68 This does come at the cost of absorbing some of the 
variation in weather, however. The inclusion of μi and θrt, together with the fact that variation in 
temperature and precipitation on an annual basis is undoubtedly random and exogenous, has 
strong identification properties. Hence, we follow the literature by not including further, explicit 
control variables, so as to avoid the problem of ‘over-controlling’, whereby the controls are 
potentially endogenous to the weather variation (Dell et al., 2014). Standard errors are calculated 
allowing for correlation within the observations of each country.69   

The first part of our analysis considers the annual inflation rate as the dependent variable. 
Following Dell et al. (2012), we begin by estimating Equation 5.1 with no lags, focusing on the null 
hypothesis that temperature and precipitation do not affect the contemporaneous annual rate of 
inflation. If we can reject this null hypothesis, we will consider more flexible models with up to 
10 lags of temperature and precipitation, as well as non-linear models, which include squared 
terms of the climate variables (Burke et al., 2015). The second part of our analysis will consider 
the annual policy interest rate as the dependent variable and will follow the same sequence.   

3. Results and discussion 

i. The effects of temperature and precipitation on annual inflation 

Annual inflation – Linear models without lags 

In the following three tables (Tables 5.4 to 5.6), we examine the contemporaneous effects 
of temperature and precipitation on annual inflation in: all countries (Table 5.4); poor vs. rich 
countries (Table 5.5); and countries by income groups (Table 5.6). We explore differences in 
country class using interaction effects. In each table, we also examine the influence of outliers by 
applying different cut-off rates of inflation (in Columns 1 and 2, no cut-off rate is applied; in 
Columns 3 and 4 a 100% cut-off rate is applied; in Columns 5 and 6 a 75% cut-off rate is applied; 
in Columns 7 and 8 a 50% cut-off rate is applied and in Columns 9 and 10 a 25% cut-off rate is 
applied).  

  

                                                             
68 These region dummies correspond to the following six geographical regions: Middle-East and North Africa; Sub-
Saharan Africa; Latin America and the Caribbean; Western Europe and Offshoots; Eastern Europe and Central Asia; 
and South-East Asia and Pacific Islands. 
69 Using the vce(cluster id) command in Stata. 
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Table 5.4: Effects of temperature and precipitation on annual inflation – linear model without lags, all countries 

Dep. Var. is 
the annual 
inflation rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp. -7.37 -8.36 -0.02 -0.04 0.10 0.09 0.41 0.40 0.36* 0.35* 
  (10.72) (10.90) (0.40) (0.41) (0.34) (0.34) (0.28) (0.29) (0.20) (0.20) 
Prec.   -30.98   -0.58   -0.43   -0.37   -0.33 
    (26.42)   (0.54)   (0.48)   (0.43)   (0.29) 
N 7247 7247 7082 7082 7030 7030 6923 6923 6550 6550 
R-sq 0.043 0.043 0.265 0.265 0.288 0.288 0.325 0.325 0.374 0.374 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Infl. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. 
variables 

No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature is in °Celsius and precipitation in meters. Columns 1-2 include all inflation rate data. Columns 3-4 apply a 100% 
cut-off to the annual inflation rate. Columns 5-6 apply a 75% cut-off to the annual inflation rate. Columns 7-8 apply a 50% cut-off to 
the annual inflation rate. Columns 9-10 apply a 25% cut-off to the annual inflation rate. Columns 1, 3, 5, 7, 8 and 9 do not control for 
precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard errors are 
in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

Table 5.5: Effects of temperature and precipitation on the annual inflation rate – linear model without lags, Poor vs Rich 
countries 

Dep. Var. is 
the annual 
inflation rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp.*Poor -14.54 -17.11 0.87 0.84 1.04* 1.03* 1.39*** 1.37*** 1.13*** 1.11***  
(15.20) (15.67) (0.62) (0.63) (0.55) (0.56) (0.48) (0.49) (0.30) (0.30) 

Temp.*Rich -1.84 -2.30 -0.66 -0.67 -0.57 -0.58 -0.29 -0.29 -0.17 -0.17 
  (9.17) (9.26) (0.46) (0.46) (0.41) (0.41) (0.34) (0.34) (0.25) (0.25) 
Prec.*Poor   -50.67   -0.52   -0.17   -0.41   -0.34   

(39.68)   (0.73)   (0.66)   (0.58) 
 

(0.43) 
Prec.*Rich 

 
-2.05   -0.40   -0.55   -0.01 

 
-0.09 

    (11.34)   (0.63)   (0.58)   (0.49)   (0.33) 
N 7247 7247 7082 7082 7030 7030 6923 6923 6550 6550 
R-sq 0.043 0.044 0.266 0.267 0.289 0.289 0.327 0.327 0.377 0.377 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Infl. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. 
variables 

No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature is in °Celsius and precipitation in meters. Columns 1-2 include all inflation rate data. Columns 3-4 apply a 100% 
cut-off to the annual inflation rate. Columns 5-6 apply a 75% cut-off to the annual inflation rate. Columns 7-8 apply a 50% cut-off to 
the annual inflation rate. Columns 9-10 apply a 25% cut-off to the annual inflation rate. Columns 1, 3, 5, 7, 8 and 9 do not control for 
precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard errors are 
in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table 5.6: Effects of temperature and precipitation on the annual inflation rate – linear model without lags, countries by 
income groups 

Dep. var. is the annual 
inflation rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 
Temp.*Low inc. -6.62 -10.81 1.13 1.01 1.01 0.92 1.46** 1.39** 1.49*** 1.43***  

(14.46) (14.73) (0.72) (0.73) (0.74) (0.75) (0.68) (0.68) (0.43) (0.43) 
Temp.*Lower mid. inc. -23.73 -25.54 0.40 0.39 0.85 0.86 1.22* 1.22* 0.78** 0.78*  

(23.37) (24.04) (0.93) (0.94) (0.79) (0.80) (0.66) (0.66) (0.39) (0.40) 
Temp.*Upper mid. inc. -9.99 -10.70 -1.59* -1.60* -1.30 -1.31 -0.69 -0.69 -0.31 -0.31  

(20.08) (20.32) (0.93) (0.93) (0.86) (0.86) (0.64) (0.64) (0.42) (0.43) 
Temp.*High inc. 0.94 0.84 -0.24 -0.24 -0.20 -0.20 -0.10 -0.10 -0.17 -0.17 
  (5.42) (5.45) (0.51) (0.51) (0.44) (0.44) (0.41) (0.41) (0.31) (0.31) 
Prec.*Low inc.   -70.52   -1.99   -1.52   -1.27*   -1.11*   

(76.30)   (1.42)   (1.06)   (0.76) 
 

(0.57) 
Prec.*Lower mid. inc. 

 
-41.92   0.09   0.38   -0.05 

 
-0.01   

(48.44)   (0.82)   (0.78)   (0.74) 
 

(0.56) 
Prec.*Upper mid. inc. 

 
3.2   -0.34   -0.43   0.15 

 
-0.05   

(16.69)   (0.86)   (0.71)   (0.65) 
 

(0.39) 
Prec.*High inc. 

 
-9.47   -0.47   -0.70   -0.24 

 
-0.09 

    (9.29)   (0.82)   (0.90)   (0.75)   (0.56) 
N 7247 7247 7082 7082 7030 7030 6923 6923 6550 6550 
R-sq 0.043 0.044 0.267 0.267 0.29 0.29 0.328 0.328 0.377 0.378 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Infl. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. variables No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature is in °Celsius and precipitation in meters. Columns 1-2 include all inflation rate data. Columns 3-4 apply a 100% 
cut-off to the annual inflation rate. Columns 5-6 apply a 75% cut-off to the annual inflation rate. Columns 7-8 apply a 50% cut-off to 
the annual inflation rate. Columns 9-10 apply a 25% cut-off to the annual inflation rate. Columns 1, 3, 5, 7, 8 and 9 do not control for 
precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard errors are 
in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

When all countries are pooled (Table 5.4), we find a positive but only weakly significant 
effect of temperature on the annual inflation rate (at the 10% significance level), and only when 
we apply a 25% cut-off rate of inflation. However, the positive effect of temperature on inflation 
is stronger in some types of country. In particular, we find a positive and significant effect of 
temperature on annual inflation in poor countries (i.e. low income and lower-middle income), 
when we omit inflation rates in excess of 75%. For a 25-50% cut-off rate, the effect is significant 
at the 1% level. Table 5.6 shows that this effect on poor countries comes predominantly from low-
income countries: omitting inflation rates in excess of 50%, the net effect of a 1°C rise in 
temperature is to increase the inflation rate in low-income countries by 1.39 percentage points 
(Column 8). Since the standard deviation of annual temperature once country- and region-year 
fixed effects are removed is 3.9 degrees (see Table 5.3), the estimates in Table 5.6 imply that a 
one standard deviation increase in annual temperature is associated with an increase in inflation 
of about 5.4 percentage points in low-income countries. We do not find that precipitation has a 
significant effect on annual inflation when all countries are pooled, or in poor/rich countries, but 
we find a negative and weakly significant (at the 10% level) effect of precipitation on inflation in 
low-income countries (Table 5.6).  

Annual inflation– Linear models with lags 

The above results, based on the simple model with no lags, lead us to reject the null 
hypothesis that temperature has no effect on inflation in poor countries (i.e. low- and lower-



168 
 

middle-income countries). There is also some weak evidence that precipitation fluctuations affect 
inflation in low-income countries (excluding outliers). This section considers more flexible 
models with up to 10 annual lags of the level of average temperature and the level of precipitation, 
to better understand the dynamics of these weather effects. Table 5.7 presents results from 
estimating Equation 5.1 with no lag, one lag, five lags, or ten lags of the climate variables. In 
columns 1-4, temperature and its lags are the only climate variables included. Columns 5-8 
present results including precipitation and its lags. In Table 5.7, all temperature and precipitation 
variables are interacted with income subgroup dummies; results for all countries and for poor vs. 
rich countries can be found in Appendix 5.3. The rows at the bottom of the table present the 
cumulated effects of temperature and precipitation for countries in each of the income 
subgroups70. Due to space constraints, only the coefficients for lags 0-2 are reported. Based on 
the results we obtained above, we omit outlying inflation rates of more than 50%.  

  

                                                             
70 The point estimates and standard deviations of all combinations (incl. nonlinear) of parameter estimates provided 
in this chapter have been estimated using the nlcom command in Stata which uses the delta method to compute 
standard errors. 
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Table 5.7: Effects of temperature and precipitation on the annual inflation rate – linear model with lags, Countries by 
income group 

Dep. var. is the annual 
inflation rate – 50% cut-off 
rate 

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 

Temp. * Low inc. 1.46** 1.34** 1.17* 1.09* 1.39** 1.25** 1.12* 1.05* 
 (0.68) (0.62) (0.60) (0.62) (0.68) (0.62) (0.60) (0.63) 
L.Temp. * Low inc.  0.42 -0.01 -0.13  0.42 -0.04 -0.17 
  (0.52) (0.47) (0.48)  (0.52) (0.46) (0.47) 
L2.Temp. * Low inc.   0.32 0.24   0.24 0.15 
      (0.52) (0.52)     (0.52) (0.51) 
Temp. * Lower mid. inc. 1.22* 0.86 0.73 0.72 1.22* 0.87 0.75 0.72 
 (0.66) (0.52) (0.46) (0.46) (0.66) (0.53) (0.47) (0.46) 
L.Temp. * Lower mid. inc.  1.03* 0.88** 0.90**  1.06* 0.90** 0.90** 
 

 (0.55) (0.43) (0.42)  (0.55) (0.42) (0.42) 
L2.Temp. * Lower mid. inc.   -0.01 -0.05   -0.06 -0.14 
      (0.48) (0.49)     (0.48) (0.48) 
Temp. * Upper mid. inc. -0.69 -0.78 -0.78* -0.51 -0.69 -0.77 -0.77 -0.49 
 (0.64) (0.55) (0.47) (0.53) (0.64) (0.56) (0.48) (0.56) 
L.Temp. * Upper mid. inc.  0.44 0.51 0.46  0.44 0.50 0.42 
 

 (0.53) (0.47) (0.52)  (0.53) (0.48) (0.54) 
L2.Temp. * Upper mid. inc.   -0.70* -0.55   -0.75* -0.61 
      (0.41) (0.40)     (0.41) (0.42) 
Temp. * High inc. -0.10 -0.14 -0.10 -0.17 -0.10 -0.12 -0.08 -0.16 
 (0.41) (0.31) (0.24) (0.23) (0.41) (0.31) (0.24) (0.24) 
L.Temp. * High inc.  0.29 0.30 0.25  0.29 0.32 0.27 
 

 (0.32) (0.22) (0.21)  (0.32) (0.22) (0.22) 
L2.Temp. * High inc.   0.00 -0.04   0.00 -0.05 
      (0.21) (0.20)     (0.21) (0.21) 
Prec. * Low inc.      -1.27* -1.24 -0.64 -0.73 
 

     (0.76) (0.75) (0.70) (0.71) 
L.Prec. * Low inc.       -0.61 -0.09 -0.17 
       (0.95) (1.01) (1.04) 
L2.Prec. * Low inc.       

 -0.49 -0.63 
              (0.99) (0.97) 
Prec. * Lower mid. inc.      -0.05 -0.19 -0.24 -0.35 
 

     (0.74) (0.73) (0.77) (0.79) 
L.Prec. * Lower mid. inc.       0.69 0.62 0.55 
       (0.56) (0.50) (0.53) 
L2.Prec. * Lower mid. inc.        0.08 -0.06 
              (0.93) (0.90) 
Prec. * Upper mid. inc.         0.15 0.09 0.06 0.20 
 

     (0.65) (0.62) (0.61) (0.63) 
L.Prec. * Upper mid. inc.       0.38 0.49 0.60 
 

      (0.91) (0.90) (0.88) 
L2.Prec. * Upper mid. inc.        -0.36 -0.27 
              (0.60) (0.71) 
Prec. * High inc.         -0.24 -0.20 -0.22 -0.23 
      (0.75) (0.73) (0.72) (0.76) 
L.Prec. * High inc.       -0.61 -0.53 -0.52 
       (0.57) (0.61) (0.61) 
L2.Prec. * High inc.        -0.88 -0.92* 
              (0.55) (0.55) 
R-sq 0.328 0.328 0.330 0.334 0.328 0.329 0.333 0.338 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Infl. rate cut 50% 50% 50% 50% 50% 50% 50% 50% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. in Low 
inc. countries 

1.46** 1.76** 3.01*** 4.27*** 1.39** 1.67** 2.63** 3.97** 
(0.68) (0.85) (1.15) (1.65) (0.68) (0.85) (1.12) (1.64) 

Sum of all temp. coeff. in 
Lower mid. inc. countries 

1.22* 1.89** 2.66* 3.08* 1.22* 1.93** 2.61* 2.90* 
(0.66) (0.92) (1.39) (1.69) (0.66) (0.93) (1.36) (1.65) 

Sum of all temp. coeff. in 
Upper mid. inc. countries 

-0.69 -0.34 0.45 0.60 -0.69 -0.33 0.39 0.47 
(0.64) (0.82) (1.24) (1.52) (0.64) (0.82) (1.23) (1.47) 

Sum of all temp. coeff. in High 
inc. countries 

-0.69 -0.34 0.45 0.60 -0.69 -0.33 0.39 0.47 
(0.64) (0.82) (1.24) (1.52) (0.64) (0.82) (1.23) (1.47) 

Sum of all prec. coeff. in Low 
inc. countries 

        -1.27* -1.84 -5.94** -5.37 
     (0.76) (1.18) (2.44) (4.37) 

Sum of all prec. coeff. in Lower 
mid. inc. countries 

     -0.05 0.50 -1.04 -4.31 
     (0.74) (0.93) (2.37) (4.19) 

Sum of all prec. coeff. in Upper 
mid. inc. countries 

     0.15 0.47 -0.45 -1.45 
     (0.65) (1.22) (3.36) (5.41) 

Sum of all prec. coeff. in High 
inc. countries 

     0.15 0.47 -0.45 -1.45 
        (0.65) (1.22) (3.36) (5.41) 
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Notes: Temperature is in °Celsius and precipitation in meters. In all columns, a 50% cut=off is applied to the inflation rate. Columns 
1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust standard 
errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

Table 5.7 shows that the cumulative effect of temperature in low- and lower-middle 
income countries remains substantially positive and increases as we add more lags, which 
indicates that the effects of above-average temperature appear to persist in the medium run. With 
no lags (columns 1 and 5), a one-off, 1°C temperature increase in a low-income country increases 
inflation by 1.39-1.46 percentage points. With five lags included (columns 3 and 7), the 
cumulative effect of a 1°C temperature increase in low-income countries is an increase in the rate 
of inflation of 2.63-3.01 percentage points.  

The cumulative effect of precipitation is significant (and negative) only for low-income 
countries. With no lags (Table 5.6, column 8 and Table 5.7, column 5), a one standard deviation 
increase in annual rainfall is associated with a reduction in inflation of about 0.58 percentage 
points in low-income countries. With five lags included (Table 5.7, column 7), the cumulative 
effect in low-income countries is a decrease in inflation of 2.71 percentage points. The cumulated 
lag effect is negative but insignificant for lags 5 and 10. 

Annual inflation rate – Nonlinear models 

We now consider whether temperature or precipitation have a nonlinear effect on the 
annual inflation rate, by adding the squared term of temperature and precipitation to the vector 
of climate variables in Equation 5.1. Burke et al. (2015) showed that the finding of no statistically 
significant effect of temperature on growth in rich countries, delivered by Dell et al. (2012), could 
be simply due to fitting a linear model on a set of observations that are in fact well fit by a 
parabola. We estimate the non-linear model on the pooled set of all countries’ data. 

From the results presented in Table 5.8, we now find that the linear effect of temperature 
on inflation is negative and significant, while the effect of the square of temperature on inflation 
is positive and significant, albeit this result is strongest when the inflation cut-off rate is between 
75% and 100%, suggesting outliers play a role in its determination.  When a 50% cut-off rate is 
applied to the inflation rate data, an increase in annual average temperature from 19°C (which 
corresponds to the mean in the pooled sample) to 20°C would increase inflation by 0.70 
percentage points (with a standard error of 0.36) in all countries. Figure 5.7, which plots the 
results for a 75% cut-off rate (Column 5), shows that our results seem to indicate inflation is low 
for an annual average temperature of around 13°C, but increases at lower and higher 
temperatures. This result appears to be the inverse of what Burke et al. (2015) found was the 
relationship between temperature and the growth rate of output per capita. 
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Table 5.8: Effects of temperature and precipitation on the annual inflation rate – linear model without lags, all countries 

Dep. var.is the annual 
inflation rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp. -14.48 -14.32 -
1.58** 

-1.58** -1.01* -1.00* -0.50 -0.50 -0.11 -0.11 

  (9.06) (9.07) (0.76) (0.76) (0.57) (0.57) (0.42) (0.42) (0.29) (0.29) 
Temp.^2 0.24 0.21 0.05** 0.05** 0.04** 0.04** 0.03** 0.03** 0.02* 0.02 
  (0.49) (0.49) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) 
Prec.   -28.92   -1.09   -2.35   -1.64   -1.24 

 
 (47.34)   (1.76)   (1.46)  (1.10)  (0.85) 

Prec.^2   -0.38   0.15   0.48   0.32   0.22 
    (11.23)   (0.35)   (0.31)   (0.24)   (0.20) 
Constant 192.41 240.05 10.24 11.55 5.85 8.22 -1.45 0.24 -2.68 -1.32 
  (174.43) (189.78) (8.46) (8.93) (6.91) (7.33) (5.49) (5.62) (3.91) (4.02) 
N 7247 7247 7082 7082 7030 7030 6923 6923 6550 6550 
R-sq 0.043 0.044 0.267 0.267 0.289 0.289 0.326 0.326 0.374 0.375 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Infl. rate cut None None 100% 100% 75% 75% 75% 75% 25% 25% 
Prec. variables No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature is in °Celsius and precipitation in meters. Columns 1-2 include all inflation rate data. Columns 3-4 apply a 100% 
cut-off to the annual inflation rate. Columns 5-6 apply a 75% cut-off to the annual inflation rate. Columns 7-8 apply a 50% cut-off to 
the annual inflation rate. Columns 9-10 apply a 25% cut-off to the annual inflation rate. Columns 1, 3, 5, 7, 8 and 9 do not control for 
precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard errors are 
in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

Figure 5.7: Nonlinear relationship between average temperature and the annual inflation rate, for a 75% cut-off rate 

  

ii. The effects of temperature and precipitation on the annual policy interest rate 

Annual policy interest rate – Linear models, no lags 

In the following three tables (Tables 5.9 to 5.11), we examine the contemporaneous 
effects of temperature and precipitation on the annual policy interest rate in: all countries (Table 
5.9); poor vs. rich countries (Table 5.10); and countries by income groups (Table 5.11). As 
explained above, outliers are a less pressing issue in the interest rate data, so, with a view to 
brevity, the results presented below exclude policy interest rates in excess of 50%, but sensitivity 
analyses for different cut-off rates can nonetheless be found in Appendix 5.4.   
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Table 5.9: Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, all 
countries 

Dep. var. is the annual policy interest rate 
– 50% cut-off rate (1) (2) 

Temp. -0.42 -0.46 
  (0.36) (0.36) 
Prec.   -1.20*** 
    (0.38) 
N 1434 1434 
R-sq 0.518 0.519 
Country FE Yes Yes 
Region*Year FE Yes Yes 
Pol. int. rate cut 50% 50% 
Prec. variables No Yes 

Notes: Temperature in °Celsius and precipitation in meters. A 50% cut-off is applied to the annual policy interest rate. Column 1 does 
not control for precipitation, whereas the regression presented in column 2 includes precipitation variables. Robust standard errors 
are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 
Table 5.10: Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, Poor 
vs Rich countries 

Dep. var. is the annual policy interest rate 
- 50% cut-off 

(1) (2) 

Temp. * Poor -0.39 -0.48  
(0.47) (0.47) 

Temp. * Rich -0.44 -0.43 
  (0.54) (0.54) 
Prec.* Poor   -1.59***  

  (0.52) 
Prec.* Rich   -0.63 
    (0.53) 
N 1434 1434 
R-sq 0.518 0.52 
Country FE Yes Yes 
Region*Year FE Yes Yes 
Pol. int. rate cut 50% 50% 
Prec. variables No Yes 

Notes: Temperature in °Celsius and precipitation in meters. A 50% cut-off is applied to the annual policy interest rate. Column 1 does 
not control for precipitation, whereas the regression presented in column 2 includes precipitation variables. Robust standard errors 
are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table 5.11: Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, 
countries by income groups 

Dep. var. is the annual policy interest rate  
- 50% cut-off (1) (2) 

Temp. * Low income -1.69** -1.81**  
(0.68) (0.72) 

Temp. * Lower middle income 0.25 0.16  
(0.62) (0.60) 

Temp. * Upper middle income -1.68 -1.62  
(1.39) (1.44) 

Temp. * High income -0.08 -0.10 
  (0.53) (0.52) 
Prec. * Low income   -2.51  

  (1.57) 
Prec. * Lower middle income   -1.20**  

  (0.46) 
Prec. * Upper middle income   0.11  

  (1.21) 
Prec. * High income   -1.03** 
    (0.50) 
N 1434 1434 
R-sq 0.522 0.524 
Country FE Yes Yes 
Region*Year FE Yes Yes 
Pol. int. rate cut 50% 50% 
Prec. variables No Yes 

Notes: Temperature in °Celsius and precipitation in meters. A 50% cut-off is applied to the annual policy interest rate. Column 1 does 
not control for precipitation, whereas the regression presented in column 2 includes precipitation variables. Robust standard errors 
are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

In the pooled sample of all countries, we find no significant effect of temperature on the 
annual policy interest rate, but we find a negative and highly significant (at the 1% level) effect of 
precipitation on the annual policy interest rate (Table 5.9): a 1m increase in annual rainfall is 
associated with a reduction in the annual policy interest rate of 1.20 percentage points; put 
another way, since the standard deviation of annual precipitation once country- and region-year 
fixed effects are removed is 0.46 meters (see Table 5.3), the estimates in Table 5.9 imply that a 
one standard deviation increase in annual precipitation is associated with a reduction in the 
policy interest rate of 0.55 percentage points. 

When considering poor vs. rich countries, we find no significant effect of temperature on 
the annual policy interest rate in either class of country, but precipitation does have a negative 
and highly significant effect on interest rates in poor countries (Table 5.10). In particular, a 1m 
increase in annual rainfall in poor countries is associated with a reduction of the annual policy 
interest rate of 1.59 percentage points; this is equivalent to saying that the effect of a one standard 
deviation increase in annual precipitation is a reduction in the policy interest rate of 0.73 
percentage points. When dividing our sample into income groups, we find a negative and 
significant effect of temperature on the annual policy interest rate, but only for low-income 
countries (Table 5.11), while the negative effect of precipitation on interest rates appears to be 
concentrated in lower-middle and high-income countries. These are the country-income 
subgroups with the most data on interest rates (29 countries in the lower-middle-income class 
and 19 countries in the high-income class, compared to 14 and 13 countries in the low- and upper-
middle-income groups respectively). Therefore, the fact that we find negative but insignificant 
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effects for the low-income group could be due to the small sample size. We also find that results 
are consistent across cut-off rates (see Appendix 5.4 for details). 

Annual policy interest rate – Linear models, with lags 

Given the above results, based on the simple model with no lags, we can reject the null 
hypothesis that temperature has no effect on the policy interest rate in low-income countries and 
that precipitation has no effect in lower-middle and high-income countries. This section considers 
more flexible models with up to 10 lags of temperature and precipitation to better understand 
the dynamics of these weather effects. Table 5.12 presents results from estimating Equation 5.1 
with no lag, one lag, five lags, or ten lags of the climate variables. In column 1, temperature and 
its lags are the only climate variables included. Column 2 presents results where precipitation 
and its lags are also included. All temperature and precipitation variables are interacted with 
income subgroup dummies, but results for all countries and for poor vs. rich countries are 
relegated to Appendix 5. The rows at the bottom of the table present the cumulated effects of 
temperature and precipitation for countries in each of the income subgroups. Due to space 
constraints, only the coefficients for lags 0-2 are reported. Based on the results we obtained 
above, policy interest rates above 50% have been omitted.   
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Table 5.12: Effects of temperature and precipitation on the annual policy interest rate – linear model with lags, countries 
by income group 

Dependent variable is the 
annual policy interest rate – 
50% cut-off 

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 

Temp. * Low inc. -1.69** -1.52** -1.57*** -1.69** -1.81** -1.59** -1.62*** -1.68*** 
 (0.68) (0.61) (0.57) (0.73) (0.72) (0.64) (0.57) (0.60) 
L.Temp. * Low inc.  -0.71* -0.58* -0.88**  -0.75* -0.47 -0.73** 
  (0.42) (0.33) (0.41)  (0.39) (0.37) (0.35) 
L2.Temp. * Low inc.   (0.28) (0.49)   (0.32) (0.49) 
      (0.46) (0.55)     (0.48) (0.54) 
Temp. * Lower mid. inc. 0.25 0.25 0.27 0.50 0.16 0.13 0.09 0.32 
 (0.62) (0.59) (0.53) (0.57) (0.60) (0.57) (0.49) (0.59) 
L.Temp. * Lower mid. inc.  0.52 0.42 0.45  0.48 0.32 0.21 
 

 (0.46) (0.39) (0.41)  (0.45) (0.34) (0.39) 
L2.Temp. * Lower mid. inc.   0.94* 0.81*   0.89* 0.52 
      (0.47) (0.48)     (0.46) (0.49) 
Temp. * Upper mid. inc. -1.68 -1.67 -1.60 -2.02 -1.62 -1.61 -1.57 -2.20 
 (1.39) (1.35) (1.22) (1.41) (1.44) (1.39) (1.29) (1.45) 
L.Temp. * Upper mid. inc.  0.20 0.09 1.07  0.19 0.07 1.02* 
 

 (0.79) (0.78) (0.67)  (0.78) (0.76) (0.60) 
L2.Temp. * Upper mid. inc.   1.01 1.74**   1.00 1.87** 
      (0.94) (0.74)     (0.98) (0.81) 
Temp. * High inc. -0.08 -0.04 0.06 0.14 -0.10 -0.05 0.03 0.09 
 (0.53) (0.43) (0.30) (0.25) (0.52) (0.43) (0.29) (0.27) 
L.Temp. * High inc.  -0.15 -0.05 -0.01  -0.15 -0.03 0.02 
 

 (0.48) (0.34) (0.29)  (0.47) (0.33) (0.28) 
L2.Temp. * High inc.   0.10 0.11   0.07 0.09 
      (0.27) (0.22)     (0.27) (0.23) 
Prec. * Low inc.      -2.51 -2.11 -2.62** -3.77** 
 

     (1.57) (1.49) (1.24) (1.71) 
L.Prec. * Low inc.       -2.07 -2.44 -2.91 
       (1.78) (2.18) (2.72) 
L2.Prec. * Low inc.       

 -3.55 -4.51* 
              (2.45) (2.60) 
Prec. * Lower mid. inc.      -1.20** -1.21** -1.16** -2.08*** 
 

     (0.46) (0.46) (0.56) (0.64) 
L.Prec. * Lower mid. inc.       -0.77 -0.74 -1.53* 
       (0.84) (0.79) (0.87) 
L2.Prec. * Lower mid. inc.        -0.45 -1.37* 
              (0.81) (0.69) 
Prec. * Upper mid. inc.         0.11 0.05 0.22 -1.16 
 

     (1.21) (1.15) (0.90) (1.70) 
L.Prec. * Upper mid. inc.       -0.02 -0.32 -2.51 
 

      (0.97) (1.06) (1.96) 
L2.Prec. * Upper mid. inc.        -0.55 0.16 
              (1.16) (1.07) 
Prec. * High inc.         -1.03** -1.00** -1.29** -1.46** 
      (0.50) (0.49) (0.62) (0.62) 
L.Prec. * High inc.       -1.25** -1.30* -1.37* 
       (0.53) (0.67) (0.69) 
L2.Prec. * High inc.        -0.83 -0.73 
              (0.77) (0.85) 
R-sq 0.522 0.522 0.531 0.547 0.524 0.526 0.551 0.582 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. Int. rate cut 50% 50% 50% 50% 50% 50% 50% 50% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. in Low 
inc. countries 

-1.69** -2.23** -3.30* -1.07 -1.81** -2.35** -3.79* -3.61 
(0.68) (0.92) (1.90) (2.21) (0.72) (0.96) (2.10) (2.92) 

Sum of all temp. coeff. in 
Lower mid. inc. countries 

0.25 0.77 4.50** 6.43** 0.16 0.62 3.93** 3.91 
(0.62) (0.98) (2.04) (2.81) (0.60) (0.93) (2.01) (2.91) 

Sum of all temp. coeff. in 
Upper mid. inc. countries 

-1.68 -1.47 1.24 0.86 -1.62 -1.41 1.22 -3.76 
(1.39) (1.97) (4.74) (6.86) (1.44) (1.98) (4.77) (6.89) 

Sum of all temp. coeff. in High 
inc. countries 

-0.08 -0.19 0.23 0.54 -0.10 -0.21 0.23 0.20 
(0.53) (0.90) (1.52) (2.07) (0.52) (0.88) (1.49) (2.05) 

Sum of all prec. coeff. in Low 
inc. countries 

        -2.51 -4.18* -26.63*** -45.86** 
     (1.57) (2.50) (10.31) (19.18) 

Sum of all prec. coeff. in Lower 
mid. inc. countries 

     -1.20*** -1.98* -4.78 -17.99*** 
     (0.46) (1.06) (3.33) (5.15) 

Sum of all prec. coeff. in Upper 
mid. inc. countries 

     0.11 0.02 -2.87 -17.05 
     (1.21) (1.64) (3.02) (15.72) 

Sum of all prec. coeff. in High 
inc. countries 

     -1.03** -2.26** -5.88* -9.23* 
        (0.50) (0.90) (3.54) (4.94) 
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Notes: Temperature in °Celsius and precipitation in meters. In all columns, a 100% cut-off is applied to the policy interest rate. 
Columns 1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust 
standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

The results show that the cumulative effects of temperature in low-income countries 
remain substantially negative and increase as we add more lags, but become insignificant at the 
10th lag. With no lags (columns 1 and 5), a 1°C increase in annual temperature is associated with 
a reduction in the policy interest rate of 1.69-1.81 percentage points in low-income countries. 
When we include one lag, we find that a 1°C increase in temperature produces a 2.23-2.35 
percentage point reduction in the policy interest rate. The cumulated effect becomes less 
significant (only at the 10% level) when we include the first five lags and insignificant when ten 
lags are included. They are opposite in sign to the effects we had found for inflation (Table 5.7), 
but they seem to increase at roughly the same rate, at least until the 5th lag.  The cumulated lag 
effects of temperature are insignificant for the three other income subgroups.  

In lower-middle income countries, we find significant and positive lagged effects of 
temperature on the annual policy interest rate, which only become significant at the 5th and 10th 
lag. When we include 5 lags, a 1°C temperature increase produces a 3.93 percentage point 
increase in the policy interest rate. We had found similar results for inflation, but the first lags 
were also significant (Table 5.7). This seems consistent with the hypothesis that there are delays 
between changes in the inflation rate and the corresponding monetary policy response.  

As regards precipitation, we find significant and negative cumulated lag effects for the 
low-income group, which is similar to what we had found for inflation (Table 5.7). When one lag 
is included (column 6), the effect of a one standard deviation increase in precipitation is a 
reduction of the policy interest rate by 1.91 percentage points. When five lags are included 
(column 7), a one standard deviation increase in annual rainfall produces a reduction in the policy 
rate of 12.16 percentage points. We also find significant and negative cumulated lag effects of 
precipitation in the lower-middle and high-income groups, whereas we had found no significant 
effects for inflation (Table 5.7). We find that, with five lags included (column 7), the cumulative 
effect of a one standard deviation increase in annual rainfall produces a reduction of the policy 
interest rate of 2.69 percentage points in high-income countries. With ten lags of precipitation 
included (column 8), the effect of a one standard deviation increase in annual precipitation is a 
reduction of 4.22 percentage points.   

Annual policy interest rate – Nonlinear models 

We now consider the nonlinear effects of temperature and precipitation on the annual 
inflation rate by adding the squared term of temperature and precipitation to the model 
presented in Equation 5.1. Table 5.13 shows that we find no significant effects of squared 
temperature or precipitation on interest rates. 
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Table 5.13: Effects of temperature and precipitation on the annual inflation rate – linear model without lags, all countries 

Dep. Var. is the annual policy interest rate 
- 50% cut-off (1) (2) 

Temp. 0.05 0.06 
  (0.47) (0.47) 
Temp.^2 (0.02) -0.03* 
  (0.02) (0.02) 
Prec.   -2.97*** 

   (1.05) 
Prec.^2   0.41 
    (0.25) 
Constant 18.62*** 22.80*** 
  (6.22) (6.57) 
N 1434 1434 
R-sq 0.519 0.521 
Country FE Yes Yes 
Region*Year FE Yes Yes 
Pol. int. rate cut 50% 50% 
Prec. variables No Yes 

Notes: Temperature in °Celsius and precipitation in meters. A 50% cut-off is applied to the annual policy interest rate. Column 1 does 
not control for precipitation, whereas the regression presented in column 2 includes precipitation variables. Robust standard errors 
are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 

iii. Robustness checks 

Since poorer countries tend to be hotter and drier, we examine whether the effects of 
temperature on inflation in poor countries come from being hot. In Table 5.14 below, we compare 
models which include proxies for countries being hot and/or dry. We define “hot” as countries 
that had above-median average temperature in the period 1950-1959. Similarly, we define dry as 
countries that had below-median precipitation in the same period. We use a slightly different but 
equivalent specification to the models presented in Table 5.5: since we regress the inflation rate 
on Temperature and Temperature*Poor, the overall effect of temperature on poor countries 
corresponds to the sum of the coefficients: the overall effect of temperature on poor countries 
can be read in the penultimate row of the table71.  As we can see from columns 3 and 4, adding 
the interaction between temperature and “hot” does not affect the coefficient on “poor”. Similarly, 
adding the interaction between temperature and “dry” leaves the coefficient on “poor” unchanged 
(columns 3 and 5). These results signal that the positive effects of temperature on inflation are 
attached to the “poor” characteristic.   

  

                                                             
71 Standard errors are computed with the nlcom command in Stata.  
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Table 5.14: Effects of temperature and precipitation on inflation in poor countries – controlling for “hot” and “dry” 
characteristics 

Dep. var. is the annual inflation rate - 50% cut-off (1) (2) (3) (4) (5) 
Temperature 0.41 -0.29 -0.29 -0.33 -0.24   

(0.28) (0.34) (0.34) (0.36) (0.55) 
Temperature interacted with… 

     
 

Poor country dummy 
 

1.68*** 1.66*** 1.63*** 1.64***    
(0.57) (0.58) (0.59) (0.58)  

Hot country dummy 
   

0.18 
 

     
(0.66) 

 
 

Dry country dummy 
    

-0.09 
            (0.54) 
Precipitation 

  
-0.01 -0.57 0.22     

(0.49) (0.93) (0.52) 
Precipitation interacted with… 

  
    

Poor country dummy 
  

-0.39 -0.55 -0.54     
(0.73) (0.75) (0.73)  

Hot country dummy 
   

0.83 
 

     
(1.06) 

 
 

Dry country dummy 
    

-1.39       
(1.35) 

N   6923 6923 6923 6923 6923 
R-sq 0.325 0.327 0.327 0.327 0.328 
Country FE Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes 
Infl. rate cut 50% 50% 50% 50% 50% 
Prec. variables No No Yes Yes Yes 
Temp. effect in poor countries   1.39*** 1.37*** 1.30** 1.40** 
      (0.48) (0.49) (0.55) (0.60) 
Prec. effect in poor countries     -0.41 -1.12 -0.32 
        (0.58) (1.10) (0.59) 

Notes: Temperature in °Celsius and precipitation in meters. A 50% cut-off is applied to the annual policy interest rate. Columns 1 and 
2 do not control for precipitation, whereas columns 3 to 5 include precipitation variables. Robust standard errors are in parentheses, 
adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

We repeat the above analysis with the policy interest rate as the dependent variable. The 
model in column 3 is equivalent to the one we used in Table 5.10 (column 2) to assess the linear 
effects of temperature and precipitation in poor countries72. According to the results in columns 
3, 4 and 5 below, the negative effects of precipitation on the policy interest rate appear through 
being poor. 

  

                                                             
72 The only difference in that in this table (Table 5.15), the effects of temperature and precipitation on poor countries 
should be read in the last rows of the table.  
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Table 5.15: Effects of temperature and precipitation on the policy interest rate in poor countries – controlling for “hot” 
and “dry” characteristics 

Dep. var. is the annual policy interest rate - 50% 
cut-off (1) (2) (3) (4) (5) 

Temperature -0.42 -0.44 -0.43 -0.41 0.79   
(0.36) (0.54) (0.54) (0.55) (0.76) 

Temperature interacted with… 
     

 
Poor country dummy 

 
0.05 -0.05 -0.04 -0.02    

(0.77) (0.75) (0.75) (0.76)  
Hot country dummy 

   
-0.23 

 
     

(0.89) 
 

 
Dry country dummy 

    
-1.93** 

            (0.95) 
Precipitation 

  
-0.63 -1.30 -0.19     

(0.53) (0.90) (0.59) 
Precipitation interacted with… 

  
    

Poor country dummy 
  

-0.96 -1.13 -1.21     
(0.73) (0.75) (0.80)  

Hot country dummy 
   

0.95 
 

     
(0.99) 

 
 

Dry country dummy 
    

-1.24       
(1.23) 

N   1434 1434 1434 1434 1434 
R-sq 0.518 0.518 0.52 0.52 0.526 
Country FE Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes 
Pol. rate cut 50% 50% 50% 50% 50% 
Prec. variables No No Yes Yes Yes 
Temp. effect in poor countries   -0.39 -0.48 -0.45 0.77 
      (0.47) (0.47) (0.52) (0.69) 
Prec. effect in poor countries     -1.59*** -2.42** -1.40*** 
        (0.52) (0.99) (0.47) 

 

Given the fact that we find in some cases opposite signs for the effects of weather on 
inflation and on the policy interest rate, we verify that there is a relationship between the inflation 
rate and the policy interest rate. There seems to be a positive effect of the inflation rate on the 
policy interest rate for all income groups and the cumulated lag effects increase as lags are added 
to the regression. However, we are well aware of the reverse causality problem at stake here and 
of the limitations that it sets on any quantitative interpretation of the coefficients. 
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Table 5.16: Inflation rate vs. policy interest rate – linear model with lags, countries by income group 

Dependent variable is the annual policy interest rate 
(1) (2) (3) (4) 

No lags 1 lag 5 lags 10 lags 
Inf. * Low inc. 0.37*** 0.25*** 0.27*** 0.29*** 

 (0.06) (0.04) (0.05) (0.07) 
L.Infl * Low inc.  0.33*** 0.25*** 0.25*** 

 
 (0.05) (0.05) (0.05) 

L2.Infl. * Low inc.   -0.03 -0.03 

 
  (0.05) (0.06) 

L3.Infl. * Low inc.   -0.03 -0.04 
      (0.03) (0.03) 
Infl. * Lower mid. inc. 0.28** 0.08 0.14* 0.25*** 

 (0.12) (0.07) (0.08) (0.05) 
L.Infl. * Lower mid. inc.  0.23*** 0.17*** 0.22*** 

 
 (0.07) (0.05) (0.05) 

L2.Infl. * Lower mid. inc.   -0.01 0.08*** 

 
  (0.04) (0.03) 

L3.Infl. * Lower mid. inc.   0.03 0.03 
      (0.03) (0.03) 
Infl. * Upper mid. inc. 0.79*** 0.24* 0.35*** 0.23*** 

 (0.20) (0.13) (0.09) (0.07) 
L.Infl. * Upper mid. inc.  0.44*** 0.12** 0.13* 

 
 (0.13) (0.05) (0.07) 

L2.Infl. * Upper mid. inc.   0.00 -0.02 

 
  (0.09) (0.07) 

L3.Infl. * Upper mid. inc.   -0.03 0.00 
      (0.06) (0.05) 
Infl. * High inc. 0.39** 0.21 0.26** 0.23* 

 (0.16) (0.14) (0.11) (0.12) 
L.Infl. * High inc.  0.25*** 0.14*** 0.13*** 

 
 (0.07) (0.04) (0.04) 

L2.Infl. * High inc.   0.06 0.08* 

 
  (0.05) (0.04) 

L3.Infl. * High inc.   0.11*** 0.08** 
      (0.03) (0.03) 
N 1316 1296 1214 1069 
R-sq 0.689 0.727 0.718 0.735 
Country FE Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes 
Pol. int. rate cut 50% 50% 50% 50% 
Temp. variables No No No No 
Prec. variables No No No No 
Sum of all infl. coeff. in Low inc. countries 0.37*** 0.58*** 0.49*** 0.46** 

(0.06) (0.06) (0.11) (0.21) 
Sum of all infl. coeff. in Lower mid. inc. countries 0.28** 0.31*** 0.40*** 0.68*** 

(0.12) (0.11) (0.15) (0.12) 
Sum of all infl. coeff. in Upper mid. inc. countries 0.79*** 0.68*** 0.50** 0.29* 

(0.20) (0.15) (0.20) (0.17) 
Sum of all infl. coeff. in High inc. countries 0.39** 0.46** 0.75*** 0.88*** 

(0.16) (0.19) (0.12) (0.12) 

 

iv. Discussion of results 

Inflation 

We find that higher-than-average temperatures increase inflation, but only in low-income 
countries (Table 5.6). We find no effects of precipitation on inflation, apart from weakly 
significant negative effects in low-income countries (Table 5.6). Our reduced-form econometric 
approach does not allow us to explore the precise channels through which temperature affects 
the price level, but the comparison of our results with previous findings from the NCE literature 
provides us with some insight. 
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In particular, there is an obvious symmetry between our results and the findings of 
empirical studies into the relationship between climate/weather fluctuations and economic 
growth that has prevailed in recent decades. These studies have shown that temperature 
fluctuations have a negative, linear effect on growth in poor countries (Dell et al., 2012) and that 
this is in line with an inverse-U-shaped relationship between temperature and growth at the 
global level, holding for countries of all income levels (Burke et al., 2015). In comparison, we find 
that temperature fluctuations increased inflation in poor countries and that this was happening 
in the context of a U-shaped relationship between temperature and inflation for countries of all 
income levels. In addition, Dell et al. (2012) found that the negative effects of temperature on 
output have been persistent, i.e. they work on the growth rate rather than the level of output. We 
also find persistent effects of temperature on inflation. Therefore, the comparison between our 
findings and these previous studies strongly supports the idea that temperature effects on 
inflation come from a supply-side shock to aggregate output. The fact that the inflationary effects 
are stronger in poor countries is consistent with the finding that the effects of temperature on 
aggregate output are stronger in poor countries. This may in itself be partly attributable to the 
effect of temperature on agricultural output (Dell et al., 2012; Feng et al., 2012; Guiteras, 2009; 
Schlenker and Lobell, 2010), which is typically a larger share of aggregate output in poor 
countries. But effects of temperature on agricultural output can also affect inflation more in poor 
countries, because the basket of goods has a higher weighting on agricultural products. 

Policy interest rate 

We find that precipitation has a negative and significant effect on the policy interest rate 
in all countries, with heterogeneous effects in countries in different income classes (Table 5.11). 
We do not find a corresponding effect on inflation in the pooled sample, but we do find that 
precipitation has a significant and negative effect on inflation in low-income countries. One 
explanation for this could be that high precipitation increases agricultural output in developing 
countries (Levine & Yang, 2006): this would likely cause a decrease in prices, which may in turn 
lead central banks in low-income countries to decrease the policy interest rate. The fact that 
precipitation does not have a significant effect on interest rates in low-income countries could 
simply be due to the small number of low-income countries with interest rate data. 

As regards the other income subgroups, the effect of precipitation on the policy rate is not 
matched by a corresponding effect on the inflation rate. One explanation for this could come from 
high precipitation events causing the destruction of physical capital and/or labour (e.g. stronger 
than average monsoons, intense hurricane seasons), which would prompt central banks to take 
rapid action by decreasing the policy interest rate to spur the economy, even before the effects of 
output contraction could be reflected in prices. Indeed, precipitation has the advantage of being 
much more visible than temperature, and high precipitation events can thus induce rapid 
reaction. For instance, at the time of Hurricane Katrina in 2005, there was a widespread 
perception that the economic devastation of the storm would lead the Federal Reserve to prevent 
rate hikes or even to cut rates (E. S. Harris, 2008). This would also be consistent with the findings 
of Dell et al. (2012), whose results suggest that the negative effects of precipitation on growth in 
rich countries were driven by very large outlier events, such as floods. Another explanation for 
this negative correlation between precipitation and policy interest rates could be that low 
precipitation (e.g. droughts) leads to higher inflation, and in turn to policy interest rate increases; 
there would therefore be a negative correlation between precipitation and inflation, and a 
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negative relationship between precipitation and the policy interest rate. It is also possible that 
these effects are at play in different groups of countries. An obvious extension would be to 
distinguish between floods and droughts (as in Parker, 2016) and examine how each affects the 
policy interest rate.  

We also find a significant and negative effect of temperature on the policy interest rate, 
but only for low-income countries (Table 5.11). This may seem counter-intuitive, as we find that 
temperature has a significant and positive effect on inflation in these countries, which would 
justify an increase, rather than a decrease, in the policy interest rate. However, it is possible that 
despite the inflationary effect of a supply-side shock due to temperature, monetary policy-makers 
reduce the policy interest rate in order to manage the effects of the output contraction on 
employment. Another effect of reducing the policy interest rate is that it causes a fall in the value 
of the currency and therefore makes exports more competitive. In countries which are highly 
reliant on international markets for their products (e.g. agricultural commodities), reducing the 
policy interest rate may thus counterbalance the effects of temperature on the price of these 
products. Again, these are only hypotheses and would need to be tested empirically. 

4. Conclusion and policy recommendations 

The aim of the research presented in this chapter has been to bring two innovations to 
the field of weather and climate economics: first, to extend the question of the drivers of inflation 
beyond natural disasters by assessing whether non-catastrophic weather fluctuations have also 
had noticeable effects; second, to examine the effects of temperature and precipitation on central 
banks’ monetary policy decisions; to our knowledge, this is the first foray into the links between 
weather/climate and monetary policy. 

Our exploration of the effects of temperature and precipitation on inflation and the policy 
interest rate complements previous findings from the NCE and from the literature on the 
macroeconomic impacts of disasters: we find that annual weather fluctuations have non- 
negligible impacts on overall inflation and central bank’s monetary policies, at least for some 
groups of countries.  

We have already discussed in Chapters 1 and 4 the opportunities and limitations provided 
by the “weather economics” approach, insofar as that is an appropriate term, as well as the 
usefulness of these results. It is true that the extrapolation of these results to long time horizons 
is problematic; nevertheless, there are several reasons why this research area can be expected to 
expand. First, we are in a unique position where we have already started to experience warming 
and there is good data availability for various weather and socio-economic variables. Second, 
these results can be extremely useful to estimate near- and medium-term impacts of changes in 
climate and weather patterns, and to assess our adaptive capacity. Finally, by providing flexibility 
in the choice of econometric model, they enable us to explore non-linear and cumulated lag 
impacts, which can be used to inform the choice of functional forms in climate impact models.  

Our results do not translate readily into general policy recommendations but they 
warrant further study: obvious extensions to our work would be to consider sub-indices of the 
consumer price index as dependent variables and test if temperature fluctuations have 
differentiated impacts on overall inflation, food prices, housing prices and wages; another line of 
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research would be to explore the effects of weather fluctuations on the labour market and 
consider unemployment and wages as our dependent variables. Such research questions will help 
us get a better understanding of how we are affected by our environment, and what this implies 
for future climate change.  

Finally, given our results, and the intricate links between the inflation rate and the interest 
rate, which are especially salient in the context of weather events, further research could also 
consider the use of a panel VAR model to estimate both rates simultaneously, and to assess the 
extent to which these two variables are dependent on one another.   
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APPENDICES 

Appendix 5.1: List of countries by income groups 

Table A5.1: Countries by income group 

Low income countries (N = 51) Afghanistan, Azerbaijan, Bangladesh, Benin, Bhutan, 
Burkina Faso, Burundi, Cambodia, Central African 
Republic, Chad, Comoros, Democratic Republic of 
Congo, Cote d’Ivoire, Equatorial Guinea, Ethiopia, the 
Gambia, Ghana, Guinea, Guinea-Bissau, Haiti, India, 
Kenya, Kyrgyz Republic, Lao PDR, Lesotho, Liberia, 
Madagascar, Malawi, Mali, Mauritania, Mongolia, 
Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, 
Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, 
Solomon Islands, Sudan, Tajikistan, Tanzania, Togo, 
Uganda, Vietnam, Republic of Yemen, Zambia, 
Zimbabwe 

Lower middle income countries (N=52) Albania, Algeria, Angola, Armenia, Belarus, Belize, 
Bolivia, Bulgaria, Cabo Verde, Cameroon, China, 
Colombia, Republic of Congo, Djibouti, Dominican 
Republic, Ecuador, Arab Republic of Egypt, El Salvador, 
Fiji, Georgia, Guatemala, Guyana, Honduras, Indonesia, 
Islamic Rep. of Iran, Iraq, Jamaica, Jordan, Kazakhstan, 
Macedonia, Maldives, Moldova, Morocco, Namibia, 
Nicaragua, Papua New Guinea, Paraguay, Peru, 
Philippines, Romania, Russian Federation, Samoa, Sri 
Lanka, St. Vincent and the Grenadines, Suriname, 
Swaziland, Syrian Arab Republic, Thailand, Timor-
Leste, Tonga, Tunisia, Ukraine, Vanuatu 

Upper middle income countries (N = 36) Antigua and Barbuda, Argentina, Barbados, Botswana, 
Brazil, Chile, Costa Rica, Croatia, Czech Republic, 
Dominica, Estonia, Gabon, Grenada, Hungary, Latvia, 
Lebanon, Libya, Lithuania, Malaysia, Mauritius, Mexico, 
Montenegro, Oman, Panama, Poland, Saudi Arabia, 
Serbia, Seychelles, Slovak Republic, South Africa, St. 
Kitts and Nevis, St. Lucia, Trinidad and Tobago, Turkey, 
Uruguay, Venezuela 

High income countries ( N = 37) Aruba, Australia, Austria, Bahrain, Belgium, Brunei 
Darussalam, Canada, Cyprus, Denmark, Finland, France, 
Germany, Greece, Hong Kong, Iceland, Ireland, Israel, 
Italy, Japan, Republic of Korea, Kuwait, Luxembourg, 
Macao SAR, Malta, the Netherlands, New Zealand, 
Norway, Portugal, Qatar, Singapore, Slovenia, Spain, 
Sweden, Switzerland, United Arab Emirates, United 
Kingdom, United States  

Total 176 countries. 
Notes: only includes country for which we have temperature and precipitation and either inflation data or policy interest rate data. 
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Appendix 5.2: Data summary 

Table A5.2.1:  Data summary – Low income countries 

Country name 
Geographical 

region 
Income 
group 

Poor/R
ich 

Temperatur
e data 

Precipitation 
data 

Inflation rate 
data 

Policy interest 
rate data 

Afghanistan EECA L Poor 1950-2015 1950-2015 2005 - 2016 n/a 
Azerbaijan EECA L Poor 1950-2015 1950-2015 1992 - 2016 2006 - 2016 
Bangladesh SEAS L Poor 1950-2015 1950-2015 1987 - 2016 2009 - 2016 
Benin SSAF L Poor 1950-2015 1950-2015 1993 - 2016 n/a 
Bhutan SEAS L Poor 1950-2015 1950-2015 1981 - 2016 n/a 
Burkina Faso SSAF L Poor 1950-2015 1950-2015 1960 - 2015 n/a 
Burundi SSAF L Poor 1950-2015 1950-2015 1966 - 2016 n/a 
Cambodia SEAS L Poor 1950-2015 1950-2015 1995 - 2016 n/a 
Central African 
Republic SSAF L Poor 1950-2015 1950-2015 1981 - 2015 n/a 
Chad SSAF L Poor 1950-2015 1950-2015 1984 - 2015 n/a 
Comoros SSAF L Poor 1950-2015 1950-2015 2001 - 2015 n/a 
Congo, Dem. Rep. SSAF L Poor 1950-2015 1950-2015 1964 - 2013 n/a 
Côte d'Ivoire SSAF L Poor 1950-2015 1950-2015 1961 - 2016 n/a 
Equatorial 
Guinea SSAF L Poor 1950-2015 1950-2015 1986 - 2015 n/a 
Ethiopia SSAF L Poor 1950-2015 1950-2015 1966 - 2016 n/a 
Ghana SSAF L Poor 1950-2015 1950-2015 1965 - 2016 1964 - 2016 
Guinea SSAF L Poor 1950-2015 1950-2015 2005 - 2016 n/a 
Guinea-Bissau SSAF L Poor 1950-2015 1950-2015 1988 - 2016 n/a 
Haiti LAC L Poor 1950-2015 1950-2015 1960 - 2016 n/a 
India SEAS L Poor 1950-2015 1950-2015 1960 - 2016 2001 - 2016 
Kenya SSAF L Poor 1950-2015 1950-2015 1960 - 2016 2011 - 2016 
Kyrgyz Republic EECA L Poor 1950-2015 1950-2015 1996 - 2016 2000 - 2016 
Lao PDR SEAS L Poor 1950-2015 1950-2015 1989 - 2016 n/a 
Lesotho SSAF L Poor 1950-2015 1950-2015 1974 - 1996 n/a 
Liberia SSAF L Poor 1950-2015 1950-2015 2002 - 2015 n/a 
Madagascar SSAF L Poor 1950-2015 1950-2015 1965 - 2015 n/a 
Malawi SSAF L Poor 1950-2015 1950-2015 1981 - 2015 n/a 
Mali SSAF L Poor 1950-2015 1950-2015 1989 - 2015 1964 - 2016 
Mauritania SSAF L Poor 1950-2015 1950-2015 1986 - 2015 n/a 
Mongolia SEAS L Poor 1950-2015 1950-2015 1993 - 2016 2007 - 2016 
Mozambique SSAF L Poor 1950-2015 1950-2015 1988 - 2016 n/a 
Myanmar SEAS L Poor 1950-2015 1950-2015 1960 - 2015 2012 - 2016 
Nepal SEAS L Poor 1950-2015 1950-2015 1965 - 2015 1976 - 2016 
Niger SSAF L Poor 1950-2015 1950-2015 1964 - 2015 n/a 
Nigeria SSAF L Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Pakistan SEAS L Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Rwanda SSAF L Poor 1950-2015 1950-2015 1967 - 1993 n/a 
São Tomé and 
Principe SSAF L Poor 1950-2015 1950-2015 1997 - 2016 n/a 
Senegal SSAF L Poor 1950-2015 1950-2015 1968 - 2016 n/a 
Sierra Leone SSAF L Poor 1950-2015 1950-2015 1960 - 2015 1965 - 1992 
Solomon Islands SEAS L Poor 1950-2015 1950-2015 1972 - 2015 n/a 
Sudan SSAF L Poor 1950-2015 1950-2015 1960 - 2015 n/a 
Tajikistan EECA L Poor 1950-2015 1950-2015 2001 - 2016 n/a 
Tanzania SSAF L Poor 1950-2015 1950-2015 1966 - 2015 n/a 
Gambia, The SSAF L Poor 1950-2015 1950-2015 1962 - 2015 2004 - 2016 
Togo SSAF L Poor 1950-2015 1950-2015 1967 - 2016 n/a 
Uganda SSAF L Poor 1950-2015 1950-2015 1981 - 2015 2011 - 2016 
Vietnam SEAS L Poor 1950-2015 1950-2015 1996 - 2015 1996 - 2016 
Yemen, Rep. MENA L Poor 1950-2015 1950-2015 1991 - 2014 n/a 
Zambia SSAF L Poor 1950-2015 1950-2015 1986 - 2015 n/a 
Zimbabwe SSAF L Poor 1950-2015 1950-2015 1965 - 2007 n/a 
Total 51         51 14 

Notes: Region: LAC refers to Latin America and the Caribbean; MENA refers to Middle-East and North Africa; SSAF refers to Sub-
Saharan Africa; WEOFF refers to Western Europe and Offshoots; EECA refers to Eastern Europe and Central Asia; SEAS refers to 
South-East Asia and Pacific Islands. 
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Table A5.2.2: Data summary – Lower middle income countries 

Country name 
Geographical 

region 
Income 
group 

Poor/
Rich 

Temperatur
e data 

Precipitatio
n data 

Inflation 
rate data 

Policy interest 
rate data 

Albania EECA LM Poor 1950-2015 1950-2015 1992 - 2016 1992 - 2016 
Algeria MENA LM Poor 1950-2015 1950-2015 1970 - 2015 n/a 
Angola SSAF LM Poor 1950-2015 1950-2015 1991 - 2016 2011 - 2016 
Armenia EECA LM Poor 1950-2015 1950-2015 1994 - 2016 2000 - 2016 
Belarus EECA LM Poor 1950-2015 1950-2015 1993 - 2016 2000 - 2016 
Belize LAC LM Poor 1950-2015 1950-2015 1981 - 2015 1977 - 2016 
Bolivia LAC LM Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Bulgaria EECA LM Poor 1950-2015 1950-2015 1986 - 2016 n/a 
Cameroon SSAF LM Poor 1950-2015 1950-2015 1969 - 2015 n/a 
Cabo Verde SSAF LM Poor 1950-2015 1950-2015 1984 - 2015 n/a 
China SEAS LM Poor 1950-2015 1950-2015 1987 - 2016 1988 - 1988 
Colombia LAC LM Poor 1950-2015 1950-2015 1960 - 2016 1998 - 2016 
Congo, Rep. SSAF LM Poor 1950-2015 1950-2015 1986 - 1996 n/a 
Djibouti MENA LM Poor 1950-2015 1950-2015 1980 - 1987 n/a 
Dominican Republic LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2004 - 2016 
Ecuador LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2008 - 2016 
Egypt, Arab Rep. MENA LM Poor 1950-2015 1950-2015 1960 - 2016 2006 - 2016 
El Salvador LAC LM Poor 1950-2015 1950-2015 1960 - 2013 n/a 
Fiji SEAS LM Poor 1950-2015 1950-2015 1970 - 2016 n/a 
Georgia EECA LM Poor 1950-2015 1950-2015 1995 - 2016 2008 - 2016 
Guatemala LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2005 - 2016 
Guyana LAC LM Poor 1950-2015 1950-2015 1995 - 2015 1966 - 2016 
Honduras LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2005 - 2016 
Indonesia SEAS LM Poor 1950-2015 1950-2015 1960 - 2016 2005 - 2016 
Iran, Islamic Rep. MENA LM Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Iraq MENA LM Poor 1950-2015 1950-2015 1960 - 1978 2004 - 2016 
Jamaica LAC LM Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Jordan MENA LM Poor 1950-2015 1950-2015 1970 - 2016 2001 - 2016 
Kazakhstan EECA LM Poor 1950-2015 1950-2015 1994 - 2015 2005 - 2016 
Macedonia, FYR EECA LM Poor 1950-2015 1950-2015 1994 - 2016 n/a 
Maldives SEAS LM Poor 1950-2015 1950-2015 1978 - 1982 n/a 
Moldova EECA LM Poor 1950-2015 1950-2015 1995 - 2015 2000 - 2016 
Morocco MENA LM Poor 1950-2015 1950-2015 1960 - 2016 n/a 
Namibia SSAF LM Poor 1950-2015 1950-2015 2003 - 2015 2012 - 2016 
Nicaragua LAC LM Poor 1950-2015 1950-2015 1973 - 2016 n/a 
Papua New Guinea SEAS LM Poor 1950-2015 1950-2015 1972 - 2015 2001 - 2016 
Paraguay LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2010 - 2016 
Peru LAC LM Poor 1950-2015 1950-2015 1960 - 2016 2001 - 2016 
Philippines SEAS LM Poor 1950-2015 1950-2015 1960 - 2016 2001 - 2016 
Russian Federation EECA LM Poor 1950-2015 1950-2015 1993 - 2016 2011 - 2016 
Samoa SEAS LM Poor 1950-2015 1950-2015 1962 - 2016 n/a 
Sri Lanka SEAS LM Poor 1950-2015 1950-2015 1960 - 2016 2001 - 2016 
St. Vincent and the 
Grenadines LAC LM Poor 1950-2015 1950-2015 1975 - 2015 n/a 
Suriname LAC LM Poor 1950-2015 1950-2015 1960 - 2016 1957 - 2016 
Swaziland SSAF LM Poor 1950-2015 1950-2015 1966 - 2016 n/a 
Syrian Arab Republic MENA LM Poor 1950-2015 1950-2015 1960 - 2012 n/a 
Thailand SEAS LM Poor 1950-2015 1950-2015 1960 - 2016 2000 - 2016 
Timor-Leste SEAS LM Poor 1950-2015 1950-2015 2003 - 2016 n/a 
Tonga SEAS LM Poor 1950-2015 1950-2015 1976 - 2015 n/a 
Tunisia MENA LM Poor 1950-2015 1950-2015 1984 - 2016 2000 - 2016 
Ukraine EECA LM Poor 1950-2015 1950-2015 1993 - 2016 n/a 
Vanuatu SEAS LM Poor 1950-2015 1950-2015 1977 - 2015 n/a 
Total 52         52 29 

Notes: Region: LAC refers to Latin America and the Caribbean; MENA refers to Middle-East and North Africa; SSAF refers to Sub-
Saharan Africa; WEOFF refers to Western Europe and Offshoots; EECA refers to Eastern Europe and Central Asia; SEAS refers to 
South-East Asia and Pacific Islands. 
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Table A5.2.3: Data summary – Upper middle income countries 

Country name 
Geographical 

region 
Income 
group 

Poor/R
ich 

Temperature 
data 

Precipitation 
data 

Inflation rate 
data 

Policy interest 
rate data 

Antigua and 
Barbuda LAC UM Rich 1950-2015 1950-2015 1999 - 2015 n/a 
Argentina LAC UM Rich 1950-2015 1950-2015 1960 - 2013 n/a 
Barbados LAC UM Rich 1950-2015 1950-2015 1967 - 2015 n/a 
Botswana SSAF UM Rich 1950-2015 1950-2015 1975 - 2016 n/a 
Brazil LAC UM Rich 1950-2015 1950-2015 1981 - 2016 1999 - 2016 
Chile LAC UM Rich 1950-2015 1950-2015 1960 - 2016 1995 - 2016 
Costa Rica LAC UM Rich 1950-2015 1950-2015 1960 - 2016 2006 - 2016 
Croatia EECA UM Rich 1950-2015 1950-2015 1993 - 2016 1998 - 2016 
Czech Republic EECA UM Rich 1950-2015 1950-2015 1994 - 2016 2004 - 2016 
Dominica LAC UM Rich 1950-2015 1950-2015 1967 - 1978 n/a 
Estonia EECA UM Rich 1950-2015 1950-2015 1993 - 2016 n/a 
Gabon SSAF UM Rich 1950-2015 1950-2015 1963 - 2015 n/a 
Grenada LAC UM Rich 1950-2015 1950-2015 1977 - 2015 n/a 
Hungary EECA UM Rich 1950-2015 1950-2015 1973 - 2016 n/a 
Latvia EECA UM Rich 1950-2015 1950-2015 1992 - 2016 2006 - 2013 
Lebanon MENA UM Rich 1950-2015 1950-2015 2009 - 2010 n/a 
Libya MENA UM Rich 1950-2015 1950-2015 1965 - 2013 n/a 
Lithuania EECA UM Rich 1950-2015 1950-2015 1993 - 2016 n/a 
Malaysia SEAS UM Rich 1950-2015 1950-2015 1960 - 2016 2004 - 2016 
Mauritius SSAF UM Rich 1950-2015 1950-2015 1964 - 2016 n/a 
Mexico LAC UM Rich 1950-2015 1950-2015 1960 - 2016 2008 - 2016 
Montenegro EECA UM Rich 1950-2015 1950-2015 2006 - 2015 n/a 
Oman MENA UM Rich 1950-2015 1950-2015 2001 - 2015 2007 - 2016 
Panama LAC UM Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Poland EECA UM Rich 1950-2015 1950-2015 1971 - 2016 n/a 
Saudi Arabia MENA UM Rich 1950-2015 1950-2015 1964 - 2016 1992 - 2016 
Serbia EECA UM Rich 1950-2015 1950-2015 1995 - 2016 2006 - 2016 
Seychelles SEAS UM Rich 1950-2015 1950-2015 1971 - 2016 n/a 
Slovak 
Republic EECA UM Rich 1950-2015 1950-2015 1994 - 2016 n/a 
South Africa SSAF UM Rich 1950-2015 1950-2015 1960 - 2016 n/a 
St. Kitts and 
Nevis LAC UM Rich 1950-2015 1950-2015 1980 - 2015 n/a 
St. Lucia LAC  UM Rich 1950-2015 1950-2015 1966 - 2015 n/a 
Trinidad and 
Tobago LAC UM Rich 1950-2015 1950-2015 1960 - 2015 2002 - 2016 
Turkey MENA UM Rich 1950-2015 1950-2015 1960 - 2016 1999 - 2016 
Uruguay LAC UM Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Venezuela, RB LAC UM Rich 1950-2015 1950-2015 1960 - 2015 n/a 

Total 36         36 13 
Notes: Region: LAC refers to Latin America and the Caribbean; MENA refers to Middle-East and North Africa; SSAF refers to Sub-
Saharan Africa; WEOFF refers to Western Europe and Offshoots; EECA refers to Eastern Europe and Central Asia; SEAS refers to 
South-East Asia and Pacific Islands. 
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Table A5.2.4: Data summary – High income countries 

Country name 
Geographical 

region 
Income 
group 

Poor/R
ich 

Temperature 
data 

Precipitation 
data 

Inflation rate 
data 

Policy interest 
rate data 

Aruba LAC H Rich 1950-2015 1950-2015 1985 - 2016 1986 - 2013 
Australia WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1969 - 2016 
Austria WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Bahrain MENA H Rich 1950-2015 1950-2015 1966 - 2015 2007 - 2016 
Belgium WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Brunei 
Darussalam SEAS H Rich 1950-2015 1950-2015 1981 - 2016 n/a 
Canada WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1992 - 2016 
Cyprus EECA H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Denmark WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1992 - 2016 
Finland WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
France WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Germany WEOFF H Rich 1950-2015 1950-2015 1992 - 2016 n/a 
Greece WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Iceland WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1998 - 2016 
Ireland WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Israel MENA H Rich 1950-2015 1950-2015 1960 - 2016 1994 - 2016 
Italy WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Japan SEAS H Rich 1950-2015 1950-2015 1960 - 2016 2008 - 2016 
Kuwait MENA H Rich 1950-2015 1950-2015 1973 - 2016 n/a 
Luxembourg WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Macao SAR, 
China SEAS H Rich 1950-2015 1950-2015 1989 - 2016 n/a 
Malta WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Netherlands WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
New Zealand WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1999 - 2016 
Norway WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 2002 - 2016 
Portugal WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Qatar MENA H Rich 1950-2015 1950-2015 1980 - 2016 2002 - 2016 
Singapore SEAS H Rich 1950-2015 1950-2015 1961 - 2016 1987 - 2016 
Slovenia EECA H Rich 1950-2015 1950-2015 1993 - 2016 n/a 
Korea, Rep. SEAS H Rich 1950-2015 1950-2015 1967 - 2016 1999 - 2016 
Spain WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 n/a 
Sweden WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1994 - 2016 
Switzerland WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1964 - 2016 
Bahamas, The LAC H Rich 1950-2015 1950-2015 n/a 1970 - 2016 
United Arab 
Emirates MENA H Rich 1950-2015 1950-2015 n/a 2008 - 2016 
United 
Kingdom WEOFF H Rich 1950-2015 1950-2015 1989 - 2016 1950 - 2016 
United States WEOFF H Rich 1950-2015 1950-2015 1960 - 2016 1971 - 2016 

Total 37         35 19 
Notes: Region: LAC refers to Latin America and the Caribbean; MENA refers to Middle-East and North Africa; SSAF refers to Sub-
Saharan Africa; WEOFF refers to Western Europe and Offshoots; EECA refers to Eastern Europe and Central Asia; SEAS refers to 
South-East Asia and Pacific Islands. 
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Appendix 5.3: Lagged effects of weather on the inflation rate 

Table A5.3.1: Effects of temperature and precipitation on the annual inflation rate – linear model with lags, all countries 

Dep. var. is the annual 
inflation rate (1) (2) (3) (4) (5) (6) (7) (8) 

  No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 
Temp. 0.41 0.28 0.23 0.21 0.40 0.26 0.20 0.19 

 (0.28) (0.24) (0.23) (0.23) (0.29) (0.25) (0.23) (0.24) 
L.Temp.  0.49* 0.39* 0.33  0.50* 0.38* 0.33 

 
 (0.26) (0.22) (0.22)  (0.26) (0.22) (0.22) 

L2.Temp.   -0.06 -0.08   -0.08 -0.11 

 
  (0.20) (0.20)   (0.20) (0.20) 

L3.Temp.   0.31 0.28   0.31 0.26 
      (0.21) (0.21)     (0.21) (0.21) 
Prec.         -0.37 -0.40 -0.40 -0.47 

 
     (0.43) (0.42) (0.41) (0.41) 

L.Prec.       0.06 0.13 0.13 

 
      (0.42) (0.38) (0.38) 

L2.Prec.        -0.42 -0.46 

 
       (0.48) (0.47) 

L3.Prec.        -0.22 -0.20 
              (0.36) (0.37) 
N 6923 6923 6923 6923 6923 6923 6923 6923 
R-sq 0.325 0.325 0.326 0.327 0.325 0.325 0.327 0.329 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Infl. rate cut 50% 50% 50% 50% 50% 50% 50% 50% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coefficients 0.41 0.77* 1.55** 2.13** 0.40 0.77* 1.46** 2.04** 

(0.28) (0.43) (0.74) (1.01) (0.29) (0.43) (0.73) (0.99) 
Sum of all prec. coefficients       -0.37 -0.34 -2.67* -4.61** 

        (0.43) (0.63) (1.39) (2.29) 
Notes: Temperature is in °Celsius and precipitation in meters. In all columns, a 50% cut=off is applied to the inflation rate. Columns 
1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust standard 
errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table A5.3.2: Effects of temperature and precipitation on the annual inflation rate – linear model with lags, Poor vs Rich 
countries 

Dep. var. is the annual 
inflation rate 

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 
Temp. * Poor 1.39*** 1.12*** 0.94** 0.90** 1.37*** 1.10** 0.90** 0.87** 

 (0.48) (0.42) (0.40) (0.40) (0.49) (0.42) (0.40) (0.41) 
L.Temp. * Poor  0.76* 0.49 0.40  0.79* 0.48 0.38 

 
 (0.40) (0.36) (0.36)  (0.40) (0.35) (0.36) 

L2.Temp. * Poor   0.14 0.07   0.11 0.00 

 
  (0.36) (0.36)   (0.36) (0.36) 

L3.Temp. * Poor   0.12 0.01   0.11 -0.02 
      (0.37) (0.38)     (0.36) (0.37) 
Temp. * Rich -0.29 -0.33 -0.28 -0.23 -0.29 -0.33 -0.29 -0.23 

 (0.34) (0.27) (0.23) (0.23) (0.34) (0.28) (0.23) (0.24) 
L.Temp. * Rich  0.29 0.31 0.27  0.29 0.30 0.25 

 
 (0.28) (0.22) (0.22)  (0.28) (0.22) (0.22) 

L2.Temp. * Rich   -0.20 -0.20   -0.22 -0.21 

 
  (0.20) (0.19)   (0.20) (0.20) 

L3.Temp. * Rich   0.38* 0.39*   0.39* 0.40* 
      (0.21) (0.21)     (0.21) (0.21) 
Prec. * Poor         -0.41 -0.48 -0.51 -0.54 

 
     (0.58) (0.58) (0.57) (0.58) 

L.Prec. * Poor       0.30 0.31 0.23 

 
      (0.49) (0.43) (0.45) 

L2.Prec. * Poor        -0.19 -0.25 

 
       (0.72) (0.70) 

L3.Prec. * Poor        -0.08 0.01 
              (0.47) (0.49) 
Prec. * Rich      -0.01 -0.02 0.01 0.04 

 
     (0.49) (0.47) (0.47) (0.49) 

L.Prec. * Rich       -0.02 0.06 0.08 

 
      (0.61) (0.60) (0.59) 

L2.Prec. * Rich        -0.51 -0.50 

 
       (0.43) (0.45) 

L3.Prec. * Rich        -0.14 -0.20 
              (0.58) (0.58) 
N 6923 6923 6923 6923 6923 6923 6923 6923 
R-sq 0.327 0.328 0.329 0.331 0.327 0.328 0.331 0.334 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Infl. rate cut 50% 50% 50% 50% 50% 50% 50% 50% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. in Poor 
countries 

1.39*** 1.89*** 2.83*** 3.67*** 1.37*** 1.89*** 2.66*** 3.43*** 
(0.48) (0.66) (0.97) (1.32) (0.49) (0.67) (0.95) (1.31) 

Sum of all temp. coeff. in Rich 
countries 

-0.29 -0.04 0.45 1.60 -0.29 -0.04 0.40 0.82 
(0.34) (0.50) (0.86) (1.42) (0.34) (0.50) (0.85) (1.02) 

Sum of all prec. coeff. in Poor 
countries 

        -0.41 -0.18 -3.03* -5.16* 
     (0.58) (0.76) (1.61) (2.85) 

Sum of all prec. coeff. in Rich 
countries 

     -0.01 -0.04 -0.58 -0.66 
        (0.49) (0.89) (2.32) (3.73) 

Notes: Temperature is in °Celsius and precipitation in meters. In all columns, a 50% cut-off is applied to the inflation rate. Columns 1-
4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust standard 
errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Appendix 5.4: Effects of the weather on the policy interest rate for different cut-off rates 

Table A5.4.1: Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, all 
countries 

Dep. var. is the annual 
policy interest rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 
Temp. -0.12 -0.15 -0.22 -0.26 -0.37 -0.41 -0.42 -0.46 -0.17 -0.21 
  (0.31) (0.31) (0.31) (0.31) (0.34) (0.34) (0.36) (0.36) (0.30) (0.30) 

Prec.   -0.87*   -1.08***   -1.17***   -1.20***   
-

1.14*** 
    (0.46)   (0.39)   (0.41)   (0.38)   (0.32) 
N 1441 1441 1440 1440 1439 1439 1434 1434 1400 1400 
R-sq 0.47 0.47 0.478 0.478 0.511 0.512 0.518 0.519 0.512 0.515 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. variables No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature in °Celsius and precipitation in meters. Columns 1-2 include all annual policy interest rate data. Columns 3-4 
apply a 100% cut-off to the annual policy interest rate. Columns 5-6 apply a 75% cut-off to the annual policy interest rate. Columns 7-
8 apply a 50% cut-off to the annual policy interest rate. Columns 9-10 apply a 25% cut-off to the policy interest rate. Columns 1, 3, 5, 
7, 8 and 9 do not control for precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. 
Robust standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
 
 
Table A5.4.2 Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, Poor 
vs Rich countries 

Dep. var. is the 
annual policy 
interest rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp. * Poor -0.11 -0.18 -0.42 -0.51 -0.38 -0.47 -0.39 -0.48 -0.17 -0.27  
(0.48) (0.49) (0.46) (0.45) (0.46) (0.45) (0.47) (0.47) (0.46) (0.45) 

Temp. * Rich -0.12 -0.12 -0.10 -0.10 -0.36 -0.36 -0.44 -0.43 -0.17 -0.17 
  (0.46) (0.45) (0.46) (0.45) (0.52) (0.52) (0.54) (0.54) (0.44) (0.43) 
Prec.* Poor   -1.15*   -1.45***   -1.45***   -1.59***   -1.35***   

(0.62)   (0.55)   (0.54)   (0.52) 
 

(0.37) 
Prec.* Rich 

 
-0.47   -0.63   -0.77   -0.63 

 
-0.85 

    (0.61)   (0.53)   (0.60)   (0.53)   (0.54) 
N 1441 1441 1440 1440 1439 1439 1434 1434 1400 1400 
R-sq 0.47 0.47 0.478 0.479 0.511 0.512 0.518 0.52 0.512 0.515 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year 
FE 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Pol. int. rate 
cut 

None None 100% 100% 75% 75% 50% 50% 25% 25% 

Prec. variables No Yes No Yes No Yes No Yes No Yes 
Notes: Temperature in °Celsius and precipitation in meters. Columns 1-2 include all annual policy interest rate data. Columns 3-4, 5-
6, 7-8 and 9-10 apply a 100%, 75%, 50% and 25% cut-off to the annual policy interest, respectively. Columns 1, 3, 5, 7, 8 and 9 do not 
control for precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard 
errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table A5.4.3: Effects of temperature and precipitation on the annual policy interest rate – linear model without lags, 
countries by income groups 

Dep. var. is the 
annual policy 
interest rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp. * Low inc. -1.49*** -1.59*** -1.44*** -1.55*** -1.43*** -1.53*** -1.69** -1.81** -1.79*** -1.86***  
(0.46) (0.51) (0.47) (0.51) (0.46) (0.51) (0.68) (0.72) (0.53) (0.57) 

Temp. * Low. mid. 
inc. 

0.63 0.58 0.12 0.04 0.10 0.02 0.25 0.16 0.71 0.59 
 

(0.63) (0.63) (0.65) (0.63) (0.66) (0.64) (0.62) (0.60) (0.55) (0.54) 
Temp. * Up. mid. 
inc. 

-0.44 -0.39 -0.29 -0.24 -1.70 -1.70 -1.68 -1.62 -0.40 -0.36 
 

(0.82) (0.81) (0.75) (0.77) (1.49) (1.56) (1.39) (1.44) (0.60) (0.63) 
Temp. * High inc. 0.05 0.03 0.01 0.00 0.00 -0.01 -0.08 -0.10 -0.01 -0.02 
  (0.51) (0.51) (0.53) (0.52) (0.53) (0.52) (0.53) (0.52) (0.48) (0.48) 
Prec. * Low inc.   -2.30   -2.38   -2.35   -2.51   -1.05   

(1.74)   (1.75)   (1.75)   (1.57) 
 

(0.74) 
Prec. * Low. mid. 
inc. 

 
-0.71   -1.10**   -1.10**   -1.20** 

 
-1.29*** 

  
(0.62)   (0.48)   (0.47)   (0.46) 

 
(0.43) 

Prec. * Up. mid. inc. 
 

0.39   -0.04   -0.73   0.11 
 

-0.07   
(1.48)   (1.26)   (1.86)   (1.21) 

 
(0.99) 

Prec. * High inc. 
 

-0.85   -0.89*   -0.87*   -1.03** 
 

-1.27** 
    (0.51)   (0.52)   (0.52)   (0.50)   (0.54) 
N 1441 1441 1440 1440 1439 1439 1434 1434 1400 1400 
R-sq 0.471 0.472 0.479 0.48 0.514 0.515 0.522 0.524 0.519 0.523 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. variables No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature in °Celsius and precipitation in meters. Columns 1-2 include all annual policy interest rate data. Columns 3-4, 5-
6, 7-8 and 9-10 apply a 100%, 75%, 50% and 25% cut-off to the annual policy interest, respectively. Columns 1, 3, 5, 7, 8 and 9 do not 
control for precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. Robust standard 
errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 

 

  



195 
 

Appendix 5.5: Lagged effects of the weather on the policy interest rate 

Table A5.5.1: Effects of temperature and precipitation on the annual policy interest rate – linear model with lags, all 
countries 

Dep. var. is the annual policy 
interest rate – 100% cut-off 

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 
Temp. -0.22 -0.22 -0.26 -0.21 -0.26 -0.26 -0.31 -0.22 

 (0.31) (0.29) (0.27) (0.26) (0.31) (0.30) (0.28) (0.28) 
L.Temp.  -0.01 -0.06 -0.11  -0.03 -0.12 -0.15 

 
 (0.28) (0.25) (0.22)  (0.29) (0.26) (0.24) 

L2.Temp.   0.34 0.32   0.30 0.22 

 
  (0.27) (0.25)   (0.27) (0.26) 

L3.Temp.   0.31 0.29   0.30 0.21 
      (0.24) (0.23)     (0.24) (0.25) 
Prec.         -1.08*** -1.00** -1.16** -1.91*** 

 
     (0.39) (0.38) (0.44) (0.53) 

L.Prec.       -1.44** -1.66** -1.90*** 

 
      (0.67) (0.69) (0.67) 

L2.Prec.        -1.36* -1.70** 

 
       (0.71) (0.72) 

L3.Prec.        -1.78** -2.07** 
              (0.76) (0.80) 
N 1440 1439 1435 1427 1440 1439 1435 1427 
R-sq 0.478 0.477 0.477 0.478 0.478 0.480 0.487 0.503 
Countries All All All All All All All All 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut 100% 100% 100% 100% 100% 100% 100% 100% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. -0.22 -0.23 0.27 0.51 -0.26 -0.30 -0.03 -0.40 

(0.31) (0.53) (1.23) (1.97) (0.31) (0.54) (1.29) (2.05) 
Sum of all prec. coeff.       -1.08*** -2.43*** -9.52*** -22.15*** 

        (0.39) (0.92) (3.58) (5.74) 
Notes: Temperature is in °Celsius and precipitation in meters. In all columns, a 100% cut-off is applied to the policy interest rate. 
Columns 1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust 
standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table A5.5.2: Effects of temperature and precipitation on the annual inflation rate – linear model with lags, Poor vs Rich 
countries 

Dependent variable is the 
annual policy interest rate 

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 
Temp. * Poor -0.42 -0.49 -0.47 -0.41 -0.51 -0.61 -0.64* -0.57 

 (0.46) (0.42) (0.41) (0.41) (0.45) (0.41) (0.38) (0.39) 
L.Temp. * Poor  0.33 0.28 -0.06  0.28 0.14 -0.29 

 
 (0.45) (0.42) (0.40)  (0.45) (0.42) (0.35) 

L2.Temp. * Poor   0.29 0.13   0.23 -0.19 

 
  (0.43) (0.44)   (0.41) (0.42) 

L3.Temp. * Poor   0.40 0.34   0.29 0.06 
      (0.47) (0.51)     (0.47) (0.51) 
Temp. * Rich -0.10 -0.05 -0.09 0.11 -0.10 -0.04 -0.11 0.07 

 (0.46) (0.39) (0.33) (0.31) (0.45) (0.38) (0.32) (0.33) 
L.Temp. * Rich  -0.23 -0.26 0.05  -0.24 -0.27 0.08 

 
 (0.45) (0.36) (0.30)  (0.44) (0.36) (0.31) 

L2.Temp. * Rich   0.40 0.59   0.40 0.59 

 
  (0.34) (0.38)   (0.34) (0.39) 

L3.Temp. * Rich   0.24 0.39   0.26 0.36 
      (0.29) (0.28)     (0.29) (0.30) 
Prec. * Poor         -1.45*** -1.37** -1.55** -3.01*** 

 
     (0.55) (0.52) (0.60) (0.79) 

L.Prec. * Poor       -1.68* -1.85* -2.74*** 

 
      (0.97) (0.97) (0.94) 

L2.Prec. * Poor        -1.65* -2.68*** 

 
       (0.97) (0.95) 

L3.Prec. * Poor        -2.24** -2.70** 
              (1.02) (1.03) 
Prec. * Rich      -0.63 -0.49 -0.49 -0.75 

 
     (0.53) (0.52) (0.64) (0.64) 

L.Prec. * Rich       -1.08* -1.13* -0.95 

 
      (0.60) (0.67) (0.64) 

L2.Prec. * Rich        -0.66 -0.43 

 
       (0.76) (0.81) 

L3.Prec. * Rich        -0.83 -0.93 
              (0.80) (0.82) 
N 1440 1439 1435 1427 1440 1439 1435 1427 
R-sq 0.478 0.478 0.478 0.489 0.479 0.480 0.489 0.517 
Countries Poor/Rich Poor/Rich Poor/Rich Poor/Rich Poor/Rich Poor/Rich Poor/Rich Poor/Rich 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut 100% 100% 100% 100% 100% 100% 100% 100% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. in 
Poor inc. countries 

-0.42 -0.16 0.87 3.33 -0.51 -0.33 0.07 0.66 
(0.46) (0.72) (1.90) (3.39) (0.45) (0.71) (1.94) (3.48) 

Sum of all temp. coeff. in 
Rich inc. countries 

-0.10 -0.29 -0.01 3.67 -0.10 -0.27 -0.03 -0.66 
(0.46) (0.81) (1.65) (3.08) (0.45) (0.80) (1.60) (2.28) 

Sum of all prec. coeff. in 
Poor inc. countries 

        -1.45*** -3.05** -11.99** -28.75*** 
     (0.55) (1.30) (5.05) (7.15) 

Sum of all prec. coeff. in 
Rich inc. countries 

     -0.63 -1.56 -4.36 -10.77* 
        (0.53) (1.01) (3.30) (5.96) 

Notes: Temperature is in °Celsius and precipitation in meters. In all columns, a 100% cut-off is applied to the policy interest rate. 
Columns 1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust 
standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Table A5.5.3: Effects of temperature and precipitation on the annual policy interest rate – linear model with lags, Countries 
by income group 

Dependent variable is the 
annual policy interest rate – 
100% cut-off  

(1) (2) (3) (4) (5) (6) (7) (8) 

No lags 1 lag 5 lags 10 lags No lags 1 lag 5 lags 10 lags 

Temp. * Low inc. -1.44*** -1.23*** -1.33*** -1.34** -1.55*** -1.27*** -1.39*** -1.36*** 

 (0.47) (0.43) (0.38) (0.62) (0.51) (0.47) (0.35) (0.46) 
L.Temp. * Low inc.  -0.89 -0.57 -1.04*  -1.00* -0.48 -0.96** 

 
 (0.57) (0.44) (0.60)  (0.55) (0.51) (0.47) 

L2.Temp. * Low inc.   (0.69) (1.04)   (0.60) (0.87) 
      (0.64) (0.79)     (0.58) (0.70) 
Temp. * Lower mid. inc. 0.12 0.06 0.11 0.23 0.04 -0.01 -0.03 -0.01 

 (0.65) (0.64) (0.58) (0.57) (0.63) (0.61) (0.53) (0.57) 
L.Temp. * Lower mid. inc.  1.02* 1.05* 0.79*  1.00* 0.94* 0.47 

 
 (0.53) (0.53) (0.44)  (0.53) (0.52) (0.42) 

L2.Temp. * Lower mid. inc.   1.09* 1.00*   1.05* 0.69 
      (0.57) (0.53)     (0.58) (0.55) 
Temp. * Upper mid. inc. -0.29 -0.17 -0.20 1.92 -0.24 -0.05 -0.11 1.70 

 (0.75) (0.71) (0.68) (1.46) (0.77) (0.70) (0.68) (1.52) 
L.Temp. * Upper mid. inc.  -0.83 -1.04 1.77  -0.86 -1.09 1.85 

 
 (1.22) (1.35) (1.27)  (1.22) (1.35) (1.23) 

L2.Temp. * Upper mid. inc.   1.18 2.68***   1.22 3.19*** 
      (0.91) (0.80)     (0.94) (1.03) 
Prec. * Low inc.         -2.38 -1.39 -2.03 -3.97** 

 
     (1.75) (1.48) (1.39) (1.71) 

L.Prec. * Low inc.       -5.54** -5.34** -5.48** 

 
      (2.45) (2.14) (2.39) 

L2.Prec. * Low inc.       
 -5.22* -6.13** 

              (2.64) (2.42) 
Prec. * Lower mid. inc.         -1.10** -1.17** -1.01* -2.23*** 

 
     (0.48) (0.47) (0.56) (0.67) 

L.Prec. * Lower mid. inc.       -0.63 -0.56 -1.62* 

 
      (0.83) (0.80) (0.86) 

L2.Prec. * Lower mid. inc.        -0.63 -1.79** 
              (0.81) (0.79) 
Prec. * Upper mid. inc.         -0.04 0.25 0.24 -5.33 

 
     (1.26) (1.07) (1.13) (4.39) 

L.Prec. * Upper mid. inc.       -0.95 -1.60 -2.26 

 
      (1.55) (1.48) (2.58) 

L2.Prec. * Upper mid. inc.        -0.62 1.06 
              (1.24) (1.87) 
Prec. * High inc.         -0.89* -0.88* -1.18* -1.43** 

 
     (0.52) (0.49) (0.63) (0.64) 

L.Prec. * High inc.       -1.09** -1.14* -1.31* 

 
      (0.54) (0.67) (0.70) 

L2.Prec. * High inc.        -0.74 -0.91 
              (0.82) (0.88) 
N 1440 1439 1435 1427 1440 1439 1435 1427 
R-sq 0.479 0.481 0.488 0.524 0.480 0.485 0.513 0.569 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut 100% 100% 100% 100% 100% 100% 100% 100% 
Prec. variables No No No No Yes Yes Yes Yes 
Sum of all temp. coeff. in Low 
inc. countries 

-1.44*** -2.12*** -4.27** -2.23 -1.55*** -2.26*** -4.47** -4.89 
(0.47) (0.82) (2.16) (2.46) (0.51) (0.87) (2.17) (3.26) 

Sum of all temp. coeff. in 
Lower mid. inc. countries 

0.12 1.08 4.35** 6.29** 0.04 0.99 3.86* 3.48 
(0.65) (0.96) (2.07) (3.07) (0.63) (0.91) (2.02) (3.20) 

Sum of all temp. coeff. in 
Upper mid. inc. countries 

-0.29 -1.00 -1.64 -8.66 -2.44 -0.91 -1.56 -9.68 
(0.75) (1.73) (7.18) (14.13) (0.77) (1.75) (7.21) (14.01) 

Sum of all temp. coeff. in High 
inc. countries 

0.01 0.02 0.54 0.60 0.00 0.02 0.58 0.32 
(0.53) (0.89) (1.54) (2.10) (0.52) (0.88) (1.52) (2.05) 

Sum of all prec. coeff. in Low 
inc. countries 

        -2.38 -6.93* -37.12*** -67.71*** 
     (1.75) (3.58) (11.86) (19.21) 

Sum of all prec. coeff. in Lower 
mid. inc. countries 

     -1.10** -1.80* -4.49 -20.03*** 
     (0.48) (1.05) (3.35) (5.67) 

Sum of all prec. coeff. in Upper 
mid. inc. countries 

     -0.04 -0.70 -3.42 -46.08 
     (1.24) (2.33) (3.52) (32.70) 
     -0.89* -1.98** -5.57 -10.40** 
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Sum of all prec. coeff. in High 
inc. countries         (0.52) (0.92) (3.59) (5.25) 

Notes: Temperature in °Celsius and precipitation in meters. In all columns, a 100% cut-off is applied to the policy interest rate. 
Columns 1-4 do not control for precipitation, whereas regressions presented in columns 5-8 include precipitation variables. Robust 
standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Appendix 5.6: Nonlinear effects of the weather on the policy interest rate 

Table A5.6.1: Effects of temperature and precipitation on the annual inflation rate – linear model without lags, all 
countries 

Dep. Var. is the 
annual policy 
interest rate 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

No cut No cut 100% 100% 75% 75% 50% 50% 25% 25% 

Temp. 0.21 0.23 0.06 0.07 -0.10 -0.09 0.05 0.06 0.19 0.21 
  (0.41) (0.41) (0.41) (0.41) (0.48) (0.48) (0.47) (0.47) (0.40) (0.40) 
Temp.^2 (0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.02) -0.03* (0.02) -0.02* 
  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 
Prec.   -0.85   -1.95*   -2.41**   -2.97***   -2.47** 

 
 (1.58)   (1.04)   (1.17)   (1.05)  (0.94) 

Prec.^2   -0.02   0.19   0.29   0.41   0.30 
    (0.35)   (0.26)   (0.28)   (0.25)   (0.22) 
Constant 12.73** 14.47** 14.49** 17.51*** 17.12*** 20.68*** 18.62*** 22.80*** 11.48** 15.25*** 
  (5.53) (5.97) (5.67) (5.73) (5.91) (6.23) (6.22) (6.57) (5.25) (5.24) 
N 1441 1441 1440 1440 1439 1439 1434 1434 1400 1400 
R-sq 0.47 0.47 0.478 0.479 0.511 0.513 0.519 0.521 0.513 0.517 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Region*Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Pol. int. rate cut None None 100% 100% 75% 75% 50% 50% 25% 25% 
Prec. variables No Yes No Yes No Yes No Yes No Yes 

Notes: Temperature is in °Celsius and precipitation in meters. Columns 1-2 include all policy interest rate data. Columns 3-4 apply a 
100% cut-off to the annual policy interest rate. Columns 5-6 apply a 75% cut-off to the annual policy interest rate. Columns 7-8 apply 
a 50% cut-off to the annual policy interest rate. Columns 9-10 apply a 25% cut-off to the annual policy interest rate. Columns 1, 3, 5, 
7, 8 and 9 do not control for precipitation, whereas regressions presented in columns 2, 4, 6, 8 and 10 include precipitation variables. 
Robust standard errors are in parentheses, adjusted for clustering at country level.    
*** Significant at the 1 percent level. 
  ** Significant at the 5 percent level. 
    * Significant at the 10 percent level. 
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Chapter 6: Concluding thoughts 

The focus of this thesis has been to examine the economic implications of climate 
uncertainties through the prism of four individual research questions. What exactly do these 
results tell us and how can these be used to inform the climate policy debate? In this chapter we 
provide a brief overview of the insights that can be gathered from our results and a discussion of 
how findings, such as those presented in this thesis, and which have to accommodate deep 
uncertainty, can be used to inform policy making. 

1. Insights from previous chapters 

In Chapter 2 (“The climate beta”) we showed, based on an analytical model and IAM-based 
simulations, that the elasticity of climate damages with respect to a change in aggregate 
consumption was positive and close to unity, which implies that mitigation projects should be 
discounted at a higher rate than the risk-free rate. But we also found that a large climate beta 
increased the net present value of emissions abatement and hence as the social cost of carbon. 

The results presented in Chapter 3 (“Estimating the economic impact of the permafrost 
carbon feedback”) showed that the inclusion of a highly uncertain yet potentially large carbon-
climate feedback in DICE – melting of permafrost – significantly raises the social cost of carbon 
and the stringency of the optimal mitigation policy, even under conservative assumptions. The 
sensitivity analyses conducted in this chapter also underscored that our findings were highly 
dependent on the choice of structural forms and parameter values.  

The final two chapters used panels of historical data to examine the macroeconomic 
impacts of climate/weather fluctuations. In Chapter 4 (“What are the impacts of droughts on 
economic growth? Evidence from U.S. states”), we found that droughts had significant and 
negative impacts on economic growth in Western U.S. states. In Chapter 5 (“Chapter 5: Climate 
shocks, inflation and monetary policy: the global experience since 1950”), we found that 
temperature fluctuations increased inflation in poor countries and that precipitation affected the 
policy interest rate in most countries.  

This thesis thus contributes to the growing literature on the implications of climate 
uncertainties for the economic costs of climate change, which we discussed in the Introduction. 
Chapters 2 and 3 can be thought of as exercises in quantifying the uncertainties and estimating 
their economic implications. Chapters 4 and 5 can be thought of rather as efforts to improve our 
understanding of the economic impacts of climate change. Some of the results in this thesis could 
be used directly by policy-makers: e.g. in terms of the risk premium which should be applied to 
mitigation projects, or regarding the social cost of carbon that we should use to tax CO2 emissions. 
However, as we have discussed already, these findings rely on numerous assumptions, some of 
which are subject to deep uncertainty, and whether they increase or reduce our uncertainty about 
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future climate change is a different matter: learning can be both positive and negative in that 
sense. Given that the red thread of the research undertaken for this PhD was the exploration of 
climate change uncertainties, I will use this chapter to discuss in a more general manner the 
implications of these climate change uncertainties for the translation of research findings into 
policy. 

2. How can these findings be used to inform policy-making? 

From a policy perspective, these climate change uncertainties put us in a paradoxical 
situation: on the one hand, the research shows that the full range of uncertainties should be 
explicitly taken into account when assessing future climate damage; on the other hand, the sheer 
scale of climate change uncertainties partly explains why effective mitigation policies have not 
been implemented yet. Indeed, the uncertainty surrounding climate change has been used as an 
excuse for inaction: policy-makers are reluctant to take decisive steps to reduce anthropogenic 
emissions without clear-cut forecasts of the future states of the climate and precise estimates of 
the social cost of carbon, which climate models and IAMs are unable to provide with the required 
confidence level. This “wait and see approach” leads to delaying action, which in turn causes a 
further widening of uncertainties. Therefore, the only solution seems to be to change how climate 
change uncertainties are integrated in decision-making processes. The section below presents 
the suggestions and recommendations which can be found in the literature. 

Embracing uncertainty in a multi-disciplinary framework 

So far, it seems that often, and with some notable exceptions, climate scientists and 
economists have taken for granted that they need to provide point estimates to policy-makers, 
and have devoted their efforts towards reducing the uncertainty about their results. This belief 
that the systematic reduction of uncertainty in climate projections is required in order  for the 
projections to be used by decision makers has been termed the “uncertainty fallacy” by Lemos 
and Rood (2010). On the contrary, researchers should take up this uncertainty73. This would 
entail several things: fully acknowledging the scale of uncertainties that we are facing, integrating 
processes which are imperfectly known, and assessing the wildest possible range of potential 
impacts including those with low probability but large consequences (Stern, 2013), as well as 
making use of the full range of plausible climate variation projected by climate models (Burke et 
al., 2015). Researchers should also own up to the fact that improvements in our understanding of 
the climate system, and of its links with the economy, will expand the universe of potential 
unknowns before reducing uncertainty (Knutti & Sedlacek, 2013). 

As well as being forthright about climate change uncertainties, climate scientists and 
economists should also make sure that policy-makers do not misuse their results. Special efforts 
should be made to improve disclosure of the limitations of these models and to increase the 
transparency of the assumptions underlying the results. It should be emphasized that, given the 
uncertainties we are facing, results are at most illustrative, and should be considered in terms of 
orders of magnitude or relative effects. Above all, researchers should avoid “central” scenarios or 

                                                             
73 A recent survey (Burke, Dykema, Lobell, Miguel, & Satyanath, 2015) of the existing literature on quantitative 
assessments of future climate impacts found that very few studies explore the full ensemble of the twenty or so climate 
models which have been validated by the scientific community.  
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best-guess estimates (Burke et al., 2015), and be very cautious when assigning probabilities or 
likelihoods to forecasts or projections, in order to avoid the “fallacy of misplaced concreteness” 
(Whitehead, Griffin, & Sherburne, 1929), which refers to the tendency of decision makers to look 
on any probability distribution as a true indicator of the likelihood of a future set of events.  

Adapting the tools to analyse and communicate deep uncertainty  

Furthering our exploration of the deep uncertainties of climate change will only be useful 
if the insights that they generate can be characterized in a systematic way and effectively 
communicated to policy makers. The question of how to characterize and represent deep 
uncertainty raises complex epistemological issues. One of the core tasks of the IPCC is precisely 
to assess the state of knowledge on climate change and to characterize uncertainties in a clear 
and coherent manner. Two metrics have been used in the latest Assessment Report to 
characterize the degree of uncertainty in key findings: a qualitative assessment of the confidence 
in the validity of a finding74, and a quantified (probabilistic) measure of the uncertainty in a 
finding75 (Mastrandrea et al., 2010). However, this approach has come under criticism for 
suffering from a lack of precision and for not addressing the risk-uncertainty dichotomy (Aven & 
Renn, 2015). 

Several alternative approaches for characterizing uncertainty have been proposed in the 
literature. For instance, Kandlikar et al. (2005) proposed a method to represent deep uncertainty, 
which allows for the expression of qualitative evaluations of uncertainty in situations in which 
quantitative evaluations are not possible. This method relies on a series of steps, which each 
correspond to an additional degree of ignorance: the first step asks whether the variable or the 
outcome can be described by a probability distribution function; then, whether bounds can be 
specified; whether an order of magnitude can be provided; and whether qualitative estimates of 
its sign or trend can be made. The lowest level of precision corresponds to “effective ignorance” 
when not enough is known about a quantity. The authors argue that such qualitative statements 
would be more useful and less misleading from a policy perspective than low-confidence 
likelihoods or falsely precise results. Aven and Renn (Aven & Renn, 2015) also suggested 
improvements to the treatment of uncertainty by the IPCC; these include expressing clearly the 
strength of knowledge on which uncertainties are based; making explicit the possibility of 
surprises relative to the knowledge (“black swans”) and making a clear distinction between the 
uncertainty surrounding the models/parameters and the uncertainty surrounding the outputs.   

Effectively communicating deep uncertainty to decision-makers in a concise yet accurate 
way is likely to be a challenge. Busch et al. (2015) proposed a strategy for the communication of 
the likelihood and consequences of different outcomes which relies on the following principles: 
the characterization of the changing physical hazards; the identification of the species, 
ecosystems and societies exposed to those changes; and the description of their vulnerabilities 
and sensitivities, including their adaptation capacity. Van Pelt et al. (2015) explored the potential 
role of simulation games whereas Berkhout et al. (2014) advocated the use of scenarios that 
match the frames of the stakeholders who are situated in specific decision making contexts. As 
regards potential ways to improve public perceptions of these uncertainties, Maslin and Austin 

                                                             
74 The level of confidence is expressed using five qualifiers: “very low”, “low”, “medium”, “high” and “very high”. 
75 Quantified measures of uncertainty are: virtually certain (>99%), very likely (>90%), likely (>66%); about as likely 
as not (33% to 66%); unlikely (<33%); very unlikely (<10%); extremely unlikely (<1%). 
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(2012) recommended using a ‘when’ not ‘if’ approach, which is tantamount to placing the 
uncertainty on the date by which things will happen, rather than onto whether they will happen 
at all76.  

Devising uncertainty-robust policy recommendations 

Acknowledging the full range of uncertainties in assessments of climate change impacts 
means that decision makers will not be able to base their decisions on a precise forecast but rather 
on a large range of outcomes, which include very uncertain and highly consequential events. 
These considerable uncertainties significantly complicate the task of decision makers and it has 
even been argued that the presence of deep uncertainty prevents the use of the expected-utility 
framework to inform decision-making in the context of climate policy (Heal & Millner, 2014). 
Several other frameworks have been developed and can be found in the literature on decision-
making under uncertainty (see Heal and Millner, 2014 for a review) but an alternative view has 
been to focus on robust, rather than optimal strategies. Indeed, research has found that, when the 
uncertainty is sufficiently deep77, and the set of alternative options is sufficiently large, robust 
strategies may be preferable to optimal strategies (Lempert & Collins, 2007).   

A few approaches for identifying uncertainty-robust strategies, i.e. which perform well 
compared with alternative strategies over a wide range of assumptions about the future (Dessai 
& Wilby, 2011), have been proposed in the literature. However, the challenges of identifying and 
implementing robust policies are actually very different at the local and at the global level. 

At the individual country level, the main challenge comes from the identification of 
uncertainty-robust strategies. Indeed, due to several factors, including the greater influence of 
natural variability on uncertainty at local scales (IPCC, 2013), the lack of reliable projections of 
future changes in local weather patterns, and the difficulty of predicting a countries’ future socio-
economic developments, policy-makers face arcane mitigation and adaptation choices. This 
uncertainty is further increased when we add the uncertainty about other countries’ behaviour 
(e.g. trade considerations, spillover effects, etc.). Nevertheless, recommendations have been 
made that overcome these difficulties. For instance, Lempert et al. (2004) recommended that 
policy-makers identify the sources of vulnerabilities to lives and livelihoods and implement the 
technical and political actions that will reduce these vulnerabilities. Other methods have focused 
on retaining the flexibility to change course when new insights are uncovered  (Haasnoot et al., 
2013) . In practice, there is an increased focus at the national and sub-national levels on 
mitigation plans which integrate co-benefits, which gives these policies greater political 
feasibility and durability (IPCC, 2014).  

At the global level, the question is of what would be a robust mitigation policy is a less 
tricky one. Indeed, despite the situation of deep uncertainty that we are facing, there are things 
that we know with certainty about the future state of the climate, and about future impacts. For 
instance, due to the inertia in the Earth’s climate system, we know that the changes which we will 
experience over the 21st century will surpass those observed over the past century (IPCC, 2013, 

                                                             
76 This has been the approach used by Joshi et al. (2011) who stated that “the 2°C limit will be reached between 2040 
and 2100, depending on our emission pathway and the model used”. 
77 The authors define “sufficiently deep” as the “condition where decision-makers do not know or cannot agree upon 
the system model relating actions to consequences or the prior probabilities on key parameters of the system model” 
(Lempert & Collins, 2007). 
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2014). As regards the future impacts of climate change, we lack precise quantitative assessments 
of the risk of catastrophe, but we know that the risks associated with crossing critical thresholds 
increase with rising temperatures (IPCC, 2014; Lenton et al., 2008). For instance, we do not know 
the precise temperature threshold that will trigger these effects; however, we know that in a 
business-as-usual scenario, further warming will, at some point over the 200 years, cause 
irreversible dry-season rainfall reductions in several regions, inexorable sea level rise (Solomon, 
Plattner, Knutti, & Friedlingstein, 2009) and will accelerate Earth’s sixth mass extinction of 
species (Barnosky et al., 2011; Tilman et al., 2017). As regards the estimation of the future 
economic impacts of climate change, the uncertainty is not on the sign but on the scale of the 
damage: indeed, all the estimates of global aggregate impacts provided in the latest IPCC 
Assessment Report (IPCC, 2014) project negative effects for a warming larger than 1°C, which we 
have already passed.  

We also know a few things about the benefits of mitigation. Because the likelihood of 
triggering tipping points and accelerating feedbacks increases with global mean temperature, the 
implementation of mitigation policies would reduce the risk of triggering these effects (Yohe, 
Schelsinger, & Andronova, 2006; Zickfeld & Bruckner, 2008), and of more “unknown unknowns” 
becoming known. A direct consequence of this is that mitigation would reduce both expected 
damages and the variance of output (Lontzek, Cai, Judd, & Lenton, 2015). Moreover, we know that 
the cost of remaining under the 2°C target increases as action is delayed, due to lock-in effects 
and the reduction of options for climate-resilient pathways (IPCC, 2014; Stern, 2007). Finally, 
accounting for our aversion to ambiguity aversion gives a higher value to emissions abatement 
(Millner, Dietz, & Heal, 2013). 

For the reasons exposed above, the deep uncertainties that we are facing should be 
enough to make stringent mitigation at the global scale a robust policy78. Unfortunately, the lack 
of strong global governance significantly jeopardizes the implementation of adequate mitigation 
policies. Ironically, the answer to the question that motivated this PhD (“What are the economic 
implications of climate change uncertainties?”) seems to ultimately point to political economy 
considerations. Indeed, the implications of climate change uncertainties are as much political as 
economic: they increase the uncertainty and the severity of projected global welfare impacts and 
warrant the implementation of effective multi-level governance.  

 

  

                                                             
78 Other criteria for robust policies at the global level can be found in the literature. For instance Rockström et al. 
(2009) proposed the use of planetary boundaries to represent the safe limits within which the Earth system can 
continue to function in a stable manner. According to the authors three of these nine planetary boundaries have 
already been overstepped.  
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