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Abstract

This thesis consists of three papers on asset pricing.

In the first paper, I analyse the effects of volatility management (a trading strat-

egy in which risky asset exposure is inversely proportional to the level of volatility) in

a general equilibrium heterogeneous agent model. Two distinct types of agents popu-

late the model economy, an unconstrained investor endowed with logarithmic utility

over instantaneous consumption and a volatility-managed portfolio. My model goes

a long way towards the rationalization of the behaviour of investment vehicles that

follow investment management strategies that are isomorphic to the ones implied

by the principles of volatility management. Whereas my theoretical approach offers

a high degree of tractability, it is subject to some important caveats. Specifically,

the model implies unrealistically high leverage for the unconstrained investor.

In the second paper, I propose a general equilibrium intermediary asset pricing

model featuring a heterogeneous intermediary sector. Two distinct types of interme-

diaries populate the financial intermediary sector: equity-constrained intermediaries

and shadow financial intermediaries. The main theoretical contribution of this pa-

per is threefold. First, I show that over the region of the state space where the

intermediation constraint binds, the risk premium on the intermediated risky asset

is decreasing in the degree of intermediary sector heterogeneity. Second, intermedi-

ary sector heterogeneity allows for rich leverage dynamics within the intermediary

sector and at the level of the aggregate intermediary sector. Third, the constrained

region shrinks relative to the benchmark model in which the intermediary sector is

homogeneous.

The third paper (co-authored with Philippe Mueller, Andrea Vedolin, and Paul

Whelan), studies variance risk premia (VRP). We document a number of novel

stylized facts related to the equity and the Treasury VRP (EVRP and TVRP) and

show that (1) the short maturity TVRP predict excess returns on short maturity

bonds; (2) long maturity TVRP and the EVRP predict excess returns on long
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maturity bonds; and (3) whereas the EVRP predicts equity returns for horizons

of up to 6 months, the long maturity TVRP contain robust information for equity

returns at longer horizons. Finally, we present evidence that expected inflation is

a powerful determinant of the dynamics of the EVRP, the TVRP, and their co-

movement.
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1.1. Introduction

The volatility-managed trading strategy requires that the size of the risky asset

position is inversely proportional to the level of volatility. Traders that follow

volatility-managed trading strategies decrease their risky asset exposure in high-

volatility states and increase risky asset exposure in low-volatility states. Given

that volatility tends to be high in adverse states of the world, investors following a

volatility-managed trading strategy would decrease their exposure at times of severe

market dislocations and re-enter the market at times when market conditions are

more favorable.

Volatility management constitutes a profitable trading strategy so long as asset

volatility and the risk premium do not move in lockstep; that is, an increase in

volatility is not immediately followed by a corresponding increase in the risk pre-

mium. If that is the case, an increase in asset volatility leads to a drop in the Sharpe

ratio that renders the risky asset less attractive1 and justifies portfolio rebalancing

towards the risk-free asset.

The sign of the correlation between expected returns and conditional variance is

the subject of a heated debate. Conventional wisdom suggests that it is prudent to

increase risk taking, or at the very least keep it constant, during economic downturns

when volatility tends to be high. Investors failing to follow this advice are warned

that they risk missing out on a once-in-a-generation buying opportunity at their

own peril. This type of advice is put forward not only by leading practitioners,

such as Warren Buffet, CEO of Berkshire Hathaway, but also by leading financial

economists such as John Cochrane of the University of Chicago. Cochrane goes so

far as to argue that

If you’re less leveraged, less affected by recessions, and have a longer

horizon than the average, it makes sense to buy. If you’re more leveraged,

more affected by recession or have a shorter horizon, it might be the time

1As is seen from the vantage point of an unconstrained, but myopic investor.
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to sell, even though you might be cashing out at the bottom. If you’re

about the same as everyone else, do nothing and relax. If you’re wrong,

at least you will have excellent company.

In a widely cited paper, Fama and French (1989) show, in line with the con-

ventional view, that expected returns are high during recessions. On the theoret-

ical front, the trading recommendation is broadly the same. Prominent off-the-

shelf, single-agent equilibrium models, Bansal and Yaron (2004) and Campbell and

Cochrane (1999), among others, imply a positive sign for the correlation between

conditional volatility and expected returns. Clearly, the conventional view advocates

for a portfolio trading strategy that is in many respects the opposite of a portfolio

strategy devised in the spirit of volatility management.

In a recent paper, Moreira and Muir (2017) challenge this conventional view.

They empirically show that conditional variance is only weakly related to future

expected returns and the increase in expected returns is nowhere big enough to

compensate investors for the increase in volatility. They also show that volatility-

managed portfolios, scaled by the inverse of previous month’s realized variance, earn

large risk-adjusted alphas across a wide range of asset pricing factors, hinting at the

possibility that the expected return conditional volatility trade-off weakens in high-

volatility states of the world. In a companion paper, Moreira and Muir (2016) show

that volatility timing is optimal for a very wide range of investors, both short-term

and long-term investors, and volatility timing leads to substantial utility gains on the

order of 35% of lifetime utility. These results are, however, subject to some impor-

tant caveats. First, the results are sensitive to the volatility measurement horizon.

The authors use a relatively short horizon of one month. Second, the authors use

realized volatility as opposed to forward-looking implied volatility. As a result of

this, they do not take into account the variance risk premium, the compensation

that investors are willing to pay in order to hedge their exposure to volatility. In

a recent paper, Martin (2017) uses implied—as opposed to realized—variance and

shows that expected returns over the next year are high when implied volatility is
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high.

The recommendation for volatility timing implied by Moreira and Muir (2016)

and Moreira and Muir (2017) poses a formidable puzzle, because it is not only at odds

with the conventional view described above but it is also somewhat problematic from

the perspective of standard general equilibrium asset pricing models. This is because

standard equilibrium models imply countercyclical risk aversion, countercyclical risk

premia, and countercyclical volatility.

The main objective of this chapter is to rationalize the volatility-managed trad-

ing strategy and, by doing so, reconcile the puzzle posed by Moreira and Muir (2016)

and Moreira and Muir (2017). To this end, I develop a heterogeneous agent model

cast in continuous time and study the model-implied pure exchange economy with

heterogeneous agents. Unconstrained agents endowed with logarithmic utility over

instantaneous consumption and investors following a volatility-managed investment

strategy are the two different types of agents that populate the model economy.

While the unconstrained investors admit the interpretation of sophisticated finan-

cial market participants, the volatility timers map well to fund managers with an

investment mandate to time and manage volatility.

It is instructive to note that the modeling approach I take is very different from

the modeling approach in Moreira and Muir (2017). In Moreira and Muir (2017), the

authors take a partial equilibrium perspective, and I propose a general equilibrium

model featuring heterogeneous agents. Whereas in the partial equilibrium setups of

Moreira and Muir (2017) and Moreira and Muir (2016) volatility timers are price

takers, the model I propose allows me to study the general equilibrium implications

of volatility timing and also take into account equilibrium feedback effects. Mor-

eira and Muir (2016) exogenously postulate the price and volatility dynamics. In

my model, they are determined in equilibrium. I am particularly interested in ana-

lyzing how the volatility-managed portfolios affect the unconstrained investors, the

centerpiece of my model. Additionally, the model allows me to study how results

change when the relative size of the industry engaged in volatility timing changes.
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The main theoretical contribution of this chapter is threefold. First, my model

goes a long way towards the rationalization of the volatility-managed trading strat-

egy (i.e., the risky asset position inversely proportional to the level of volatility).

Namely, I show that the volatility-managed trading strategy constitutes a profitable

trading strategy in my model economy, so long as some mild parameter restrictions

are satisfied. This is because, in my model economy, the model-implied volatility

and the risk premium are negatively correlated over the entire state space, and the

risk-return trade-off, as measured by the Sharpe ratio, deteriorates in high-volatility

states. Thus, an investor leaving the market in high-volatility states does not sacri-

fice the opportunity of earning a high risk premium. On the other hand, an investor

that loads on the market in low-volatility states earns very high expected returns in

risk-adjusted terms.

Second, I argue that the parametric restriction that delivers the above results is

likely to hold in reality. For volatility timing to be profitable in my model economy,

the fund management fee charged by volatility-managed portfolios should be lower

than the subjective discount factor of the unconstrained investors. This is likely

to hold in reality for the following reason. Volatility-managed portfolios effectively

follow a passive investment strategy that is easy and cheap to implement. Fund

managers following passive investment strategies are only able to charge very low

fund management fees, and their fees are usually on the order of a few dozen basis

points (i.e., very close to zero). Given that the subjective discount factor (i.e., the

consumption-to-wealth ratio) of the unconstrained investor is a positive number, the

above parameter restriction is likely to hold.

Third, I show that my model allows for rich equilibrium dynamics. A param-

eter constellation—although not an entirely realistic one—allows me to generate

positively correlated conditional volatility and expected return dynamics. In this

special case, the risk-return trade-off, as measured by the Sharpe ratio, improves

in high-volatility states. This particular equilibrium outcome is consistent with the

predictions of standard consumption-based homogeneous agent general equilibrium
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models that imply countercyclical risk premia.

Additionally, volatility timers exert positive externalities on the unconstrained

agents, the centerpiece of my model. Being insensitive to the risk-return trade-

off, volatility timers only use conditional volatility as an input to their portfolio

construction process. This trading behavior, on the part of the volatility timers,

creates distortions that the unconstrained investors can exploit to their advantage.

Finally, the model allows me to study how the volatility timers affect equilibrium

quantities of interest for different relative sizes of the asset management industry

explicitly engaged in volatility timing.

The theoretical results that I report are subject to some caveats. That is to say,

the model-implied leverage of the unconstrained investor is counterfactually high

over the entire state space.

Related Literature

This paper closely relates to three different strands of the literature. First, it is re-

lated to the literature on portfolio management and volatility management. Second,

it is related to the literature studying the effects of portfolio insurance in general

equilibrium. Third and finally, it also relates to the literature on equilibrium models

with heterogeneous agents.

In a classic paper, Merton (1971) solves an intertemporal portfolio choice problem

in continuous time. In his model, both the drift and diffusion coefficients of the risky

asset are constant. Campbell and Viceira (1999) study optimal portfolio choice

when returns are time varying. Notwithstanding that the literature that studies

time variation in expected returns is well developed, the effect of time variation in

second moments on equilibrium portfolio choice has to a large extent resisted formal

theoretical treatment. In one of the very few academic studies on the topic, Chacko

and Viceira (2005) show that the effect of time variation in volatility on hedging

demand, and hence on equilibrium portfolio choice, can be sizeable.
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In a series of recent papers, Moreira and Muir (2017) and Moreira and Muir

(2016) empirically show that trading strategies devised in the spirit of volatility

management deliver high Sharpe ratios and high risk-adjusted alphas. They further

show that conditional volatility and expected returns are only weakly correlated,

and the correlation weakens in high-volatility states. In a follow-up paper, Moreira

and Muir (2016), the authors show that volatility management is optimal for a wide

range of investors, both short term and long term.

Conceptually, the volatility-managed portfolios are the modern-day reincarna-

tion of portfolio insurance, a dynamic hedging strategy developed by Hayne Leland,

John O’Brien, and Mark Rubinstein in the 1970s. Portfolio insurance gained popu-

larity in the 1980s as a way to protect investment portfolios against market down-

turns. Two prominent papers, Grossman and Zhou (1996) and Basak (1995), use

martingale techniques to study portfolio insurance in a general equilibrium context.

In their classic paper, Grossman and Zhou (1996) show that portfolio insurance in-

creases price volatility, induces mean reversion in asset returns, and increases the

Sharpe ratio and volatility in bad states of the world. There are similarities between

these two papers on portfolio insurance and my paper. In the papers on portfolio

insurance, portfolio insurers exit the market when the market drops. In my paper,

volatility-managed portfolios exit the market when volatility rises. To the extent

that market declines and volatility increases are perfectly correlated, portfolio in-

surance is similar to volatility timing.

My paper is also closely related to the literature on general equilibrium asset

pricing models. In their paper, Danielsson, Shin, and Zigrand (2010) study endoge-

nous risk in a general equilibrium model with heterogeneous agents. They show that

risk-neutral investors who are subject to a value-at-risk (VaR) constraint effectively

behave as if they are risk averse. This insight is instrumental in the construction

of the volatility timers that populate my model economy. In contrast to my pa-

per, the model economy in Danielsson, Shin, and Zigrand (2010) does not feature

unconstrained investors. Instead, a group of passive investors faces a downward-
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sloping demand curve. Rytchkov (2014) studies the equilibrium effects of dynamic

margin constraints in a dynamic heterogeneous agent economy cast in continuous

time. In his paper, Rytchkov (2014) shows that a dynamic margin constraint, where

the tightness of the constraint is proportional to the volatility of the total return

process, results in a portfolio choice that is consistent with the principles of volatil-

ity management. The main difference between my paper and that of Rytchkov

(2014) is that the volatility limit in my model binds over the entire state space.

More importantly, the model proposed in Rytchkov (2014) is much less tractable

compared to my model. Whereas Rytchkov (2014) resorts to numerical solution

techniques, I derive all equilibrium quantities of interest in closed form. My paper

is also related to Basak and Pavlova (2013), who study the effects of institutional

investors on asset prices in equilibrium. Retail and institutional investors are the

two types of agents that populate the model economy in Basak and Pavlova (2013).

Whereas retail investors are endowed with logarithmic utility over terminal wealth,

the marginal utility of institutional investors is increasing in the level of the stock

market index. Interestingly, the optimal portfolio policy function of the institutional

investors in Basak and Pavlova (2013) features a component that very much resem-

bles a volatility-managed portfolio. This component is, however, small in magnitude,

a fact that renders the model proposed by Basak and Pavlova (2013) impractical for

the study of volatility management in equilibrium.

The remainder of the chapter is organized as follows. Section 1.2 discusses the

economic setup. In particular, I describe the agents of the model, describe the assets

available for trading, and solve for the optimal portfolio policies of the agents. I

conclude the section by elaborating on the equilibrium conditions and previewing

the model solution approach. In Section 1.3, I analytically solve the heterogeneous

agent model. After solving the model, I discuss some of the main results and provide

economic intuition. In Section 1.4, I analyze the equilibrium outcome. In Section 1.5,

I report the equilibrium outcome for the counterfactual case in which my baseline

parametric restriction is not satisfied. In Section 1.6, I put my results in a broader
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perspective and discuss how they relate to some prominent papers on volatility

management. Section 1.7 concludes. Finally, in the mathematical Appendix, I

provide detailed derivations of all results from the main body of the chapter.

1.2. Model

I consider an infinite-horizon heterogeneous agent pure exchange economy cast in

continuous time. The economy is populated by two distinct types of agents, dy-

namic volatility timers and unconstrained investors optimizing over instantaneous

consumption.

The dynamic volatility timers follow a volatility-managed trading strategy. Namely,

they increase their risky asset exposure in low-volatility states and decrease their

risky asset exposure in high-volatility states. As I show below, volatility timing

constitutes an optimal portfolio strategy from the vantage point of a risk-neutral in-

vestor subject to a risk limit (volatility budget) that is reminiscent of a value-at-risk

(VaR) constraint. Given that they are risk neutral, the volatility timers populating

the model economy admit the interpretation of trading desks at a large financial

intermediary operating under a value-at-risk (VaR) constraint. It is also possible to

map the volatility timers of the model to investment management funds with an in-

vestment mandate stipulating the maintenance of a certain volatility level (volatility

budgeting) or even outright volatility timing. Risk parity funds, for example, Bridge-

water All Weather, AQR Risk Parity Fund, and Invesco Balanced Risk Allocation

Fund, are prominent examples of the former, and volatility-managed portfolios, for

example, Goldman Sachs Global Markets Navigator Fund, and AllianceBernstein

Dynamic Asset Allocation Portfolio, are examples of the latter.

The unconstrained investors, the centerpiece of my model, are the second group

of agents populating the model economy. In the model, the unconstrained investors

are endowed with logarithmic utility over instantaneous consumption and are un-

constrained in their portfolio choice. It is instructive to note that one can map

the unconstrained investors to the group of sophisticated and unconstrained finan-
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cial market participants with relatively long investment horizons or to asset/wealth

managers with long-term discretionary investment mandates. It is one of the main

objectives of this chapter to study how the volatility-managed portfolios affect un-

constrained investors.

I solve the model in terms of the wealth share of the unconstrained investor,

which is the state variable of the model. My model is unusually tractable for a

model that belongs to the class of heterogeneous agent models. That all equilibrium

quantities of interest are available in closed form allows me to present the theoretical

results of the chapter in a very accessible and straightforward manner.

1.2.1. Assets

Here, I describe the financial assets on offer to the agents of the model. There is

a risk-free asset with an instantaneous rate of return equal to r(·). The risk-free

asset is in zero-net supply, and I solve for the endogenous risk-free interest rate.

Below, I show that r(·) is a function of the state variable of the model, which is the

wealth share of the unconstrained investor. There is also a single risky asset that is

a claim to the dividend stream, {Dt}. The risky asset admits the interpretation of

a dividend-paying common stock. Following convention in the literature, I assume

that the risky asset is in a positive net supply of one unit. The stochastic differential

equation

dDt

Dt

= µDdt+ σDdBt (1.1)

governs the dividend growth process, {Dt}. The drift, µD ∈ R++, and the diffu-

sion, σD ∈ R++, coefficients are positive and exogenous constants. The diffusion

coefficient, σD, measures the amount of fundamental risk in the economy. Clearly,

dividend growth is i.i.d. as implied by the above stochastic differential equation.

{Bt} is a standard one-dimensional Wiener process.2

2The Wiener process, {Bt}, is defined on the filtered probability space (Ω,F ,F,P). I denote
by F the augmented filtration generated by the Wiener process. The filtered probability space
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Let St be the time-t price of the risky asset. Then, the total return process,

{Rt}, follows the drift-diffusion process

dRt =
Dtdt+ dSt

St
,

where Dt/Stdt admits the interpretation of income gain (dividend-income) per unit

of time-dt, and dSt/St is capital gain. In the following sections, I derive an expression

for the endogenous price-dividend ratio, St/Dt, of the risky asset and show that it

is a function of the state variable of the model.

In the model, the Brownian shocks driving the dividend growth process are the

only source of randomness. Consequently, as I am going to show in the sequel, the

dividend process, {Dt}, and the risky asset price process, {St}, are driven by the

same Brownian motion. I conjecture, and will later on verify the conjecture, that

the total return process follows a drift-diffusion,

dRt = µR(·)dt+ σR(·)dBt,

where µR(·) and σR(·) are the equilibrium drift and diffusion coefficients, respec-

tively. I allow all agents of the model to trade both the risk-free and the risky

assets.

1.2.2. Volatility-Managed Portfolios

Here, I introduce volatility-managed portfolios that are isomorphic to the ones im-

plied by the principles of volatility timing.

One possible way to generate a managed volatility portfolio is to solve a dynamic

constrained portfolio optimization problem from the vantage point of a short-horizon

myopic risk-neutral investor subject to a risk limit (volatility budget). I denote the

time-t wealth of the risk-neutral investor by W̃t, her instantaneous consumption by

satisfies the usual conditions; that is, the filtration is complete and right-continuous. A process in
this chapter is by definition a stochastic process that is progressively measurable with respect to
{Ft}.
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C̃t, and I assume that the agent consumes a constant fraction, ρv, of her wealth,

C̃t = ρvW̃t.

It is sensible to assume that the instantaneous consumption of the fund manager

equals a constant fraction of wealth under management, where the latter admits the

interpretation of a fund-management fee levied on assets under management (ex-

ogenous compensation contract). Let θ̃t be the portfolio policy of the fund manager

expressed as a fraction of time-t wealth. Then, the stochastic differential equation

dW̃t =(rtW̃t − C̃t)dt+ θ̃tW̃t(dRt − rtdt)

fully characterizes the intertemporal wealth evolution of the volatility timer. The

first term on right-hand side, rtW̃tdt, is the instantaneous risk-free return of the

investor, and θ̃tW̃t is the dollar size of her risky asset position. Using the fact that

the consumption rate is constant, the stochastic differential equation simplifies to

dW̃t =(rt − ρv)W̃tdt+ (µR(·)− rt)θ̃tW̃tdt+ σR(·)θ̃tW̃tdBt,

where µR(·) and σR(·) are the conjectured drift and diffusion coefficients of the total

return process, {Rt}. Clearly, the portfolio policy, θ̃t, is the only choice variable of

the volatility timer. The myopic volatility timer maximizes next-period consump-

tion, C̃t+dt, subject to a volatility budget, and to a dynamic budget constraint,

max
{θ̃t}

Et
(
C̃t+dt

)
,

s.t. θ̃t ≥ 0,

β

√
Vart(dW̃t)

dt
≤ W̃t,

dW̃t = (rtW̃t − C̃t)dt+ θ̃tW̃t(dRt − rtdt),
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where the risk limit (volatility budget) is the second constraint, and the dynamic

budget constraint is the third one. The long-only restriction, θ̃t ≥ 0, squares well

with the stylized fact that volatility-managed portfolios tend to be structured as

long-only investment vehicles.

The risk limit (volatility budget) very much resembles a value-at-risk (VaR)

constraint. Namely, β-times the risk of the portfolio, as measured by the forward-

looking standard deviation of portfolio returns, admits the interpretation of value-

at-risk. Parameter β ∈ R++ is an exogenous parameter controlling the tightness of

the constraint. Clearly, the tightness of the constraint is increasing in parameter

β. The exogeneity of this parameter is without loss of generality. It is usually

imposed on financial intermediaries by regulatory bodies. In the context of asset

management, the investment mandate of the investment vehicle establishes what

values β should take. The identity

Vart(dW̃t) = d〈W̃ , W̃ 〉t

allows me to calculate the instantaneous variance of wealth from the quadratic

variation of {Wt}. Following convention, I use the notation 〈·, ·〉 to denote the

square-bracket process (quadratic variation). Given the facts that W̃t depends on

past portfolio choices, C̃t = ρvW̃t, and ρv is a constant, C̃t is pre-determined as of

time-t. Consequently,

argmax(Et(C̃t+dt)) = argmax(Et(dC̃t)) = argmax(Et(dW̃t)).

Therefore, it is enough for an agent with the objective of maximizing next-period

consumption to maximize the increase in the value of assets under management,

dWt. As I disallow for fund flows in the model, capital appreciation is the only way

towards the realization of this objective. These considerations allow me to rewrite

the portfolio choice problem in a form reminiscent of the model specification in
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Danielsson, Shin, and Zigrand (2010),

max
{θ̃t}

Et

(
dW̃t

dt

)
,

s.t. θ̃t ≥ 0,

β

√
Vart(dW̃t)

dt
≤ W̃t,

dW̃t = (rtW̃t − C̃t)dt+ θ̃tW̃t(dRt − rtdt).

The constraints are the same as above. The only difference between the two opti-

mization problems is in the objective function. Here, I maximize expected wealth

growth as opposed to next-period consumption.

Absent the risk limit (volatility budget) and under the assumption that the

expected total return on the risky asset is positive, the risk-neutral investor sets

θ̃t = ∞ and, by doing so, prices the unconstrained investor out of the market. In

the presence of a risk limit (volatility budget), however, this strategy is no longer

feasible, and the agent behaves as if she is risk averse. Namely, the volatility timer

sets the size of her risky asset position in such a way so as not to violate her volatility

budget. Additionally, the tightness of the constraint is inversely proportional to the

endogenous wealth level, W̃t, of the agent. Negative shocks to wealth (assets under

management), W̃t, erode the capital position of the agent and inhibit her ability to

take large risky asset positions.

Expected wealth growth and its conditional variance immediately follow from

the stochastic differential equation governing the intertemporal wealth evolution of

the wealth of the volatility timer,

Et(dW̃t) =(rt − ρv)W̃tdt+ (µR(·)− rt)θ̃tW̃tdt,

Vart(dW̃t) =(σR(·)θ̃tW̃t)
2dt.

Below, I show that in the model the risk premium on the risky asset is positive
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over the entire state space and the risky asset earns a positive risk premium. This

fact immediately implies that the constrained portfolio optimization problem of the

risk-neutral investor admits the solution:

θ̃t =
1

β

1

σR(·)
.

This is because θ̃t only takes non-negative values, and the constraint associated with

the risk limit(volatility budget),

β

√
Vart(dW̃t)

dt
≤ W̃t,

binds with equality. It is convenient to define σ̄ = 1/β. The newly defined param-

eter, σ̄, admits the interpretation of a risk limit. Clearly, the tightness of the risk

limit is decreasing in σ̄. For high values of σ̄, the agent can take high leverage.

Using the newly defined parameter, I can rewrite θ̃t,

θ̃t =
σ̄

σR(·)
.

I assume that the principal of the constrained risk-neutral investor sets the exoge-

nous risk limit in such a way so as to satisfy the inequality σ̄ < σD. This parameter

restriction inhibits the ability of the volatility timer to maintain a high leverage

ratio. It is, however, without loss of generality and broadly in line with prevailing

practice in the fund management industry. Funds with investment mandates to time

volatility tend to maintain low leverage ratios, usually below one.

It is important to keep in mind that θ̃t expresses the portfolio choice of the agent

as a fraction of total wealth. Consequently, the dollar size of the risky asset position

of the agent is

σ̄

σR(·)
W̃t.
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The portfolio choice of the risk-neutral agent facing a risk limit (volatility budget)

is a valid volatility-managed portfolio. This is because the size of the risky asset

position is inversely proportional to the level of volatility of the risky asset. More

importantly, the expected return on the risky asset, µR(·), appears nowhere in this

expression. This is the defining characteristic of the volatility-managed portfolio. At

the same time, it is also the main point of difference between a myopic mean-variance

portfolio and a volatility-managed portfolio. Additionally, the size of the risky

asset position is inversely proportional to the tightness of the constraint. Finally,

the volatility-managed portfolio depends on the wealth level, W̃t, of the agent. In

this respect, the volatility-managed portfolio resembles the optimal portfolio of an

investor endowed with logarithmic utility, or the portfolio of a constant relative risk

aversion (CRRA) investor, if we were to abstract from the hedging demand term.

The agent is nominally risk neutral, but behaves as if risk averse, because of the

constraint. The effective risk aversion is inversely proportional to the wealth level.

1.2.3. Unconstrained Investors

Here, I introduce the group of unconstrained logarithmic utility investors. They

admit the interpretation of sophisticated financial players or asset managers with

flexible (discretionary) long-term investment mandates. The unconstrained investors

are the centerpiece of my model. One of my main objectives is to study how the

unconstrained and fully rational investors are affected by the volatility-managed

portfolios that they co-exist with in the model economy. In equilibrium, prices

have to adjust so that the unconstrained investors are happy to take the other side

of the trade. The unconstrained investors are identical and form a continuum of

measure one. The representative unconstrained investor solves the intertemporal

consumption-portfolio choice problem,

max
{Ct,θt}

E
(∫ ∞

0

e−ρtu(Ct)dt

)
ρ > 0,
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subject to the dynamic constraint

dWt = rtWtdt− Ctdt+ θtWt(dRt − rtdt), (1.2)

where the stochastic differential equation governs the intertemporal wealth evolution

(between time t and time t+ dt) of the representative unconstrained agent and

u(Ct) = ln(Ct), Ct > 0.

The first term on the right-hand side of (1.2) is the instantaneous return on the

investment in the risk-free asset. The second and the third terms are instantaneous

consumption and risky asset excess return, respectively. Additionally, ρ ∈ R++ is

the subjective discount factor of the agent, Wt is wealth, and dRt− rtdt is the total

excess return on the risky asset. Finally, θt is the portfolio choice expressed as a

fraction of total wealth, Wt, and θtWt is the dollar size of the risky asset position.

In the main version of the model, I assume that ρ > ρv. Below, I am going to

argue that this inequality is likely to hold in reality. While ρ is the consumption-

to-wealth ratio of the unconstrained investor, ρv admits the interpretation of the

fund management fee that the volatility-managed portfolios charge. Given that in

its simplicity the volatility-managed strategy resembles a passive trading strategy,

it is not unrealistic to assume that volatility-managed portfolios are only able to

charge very low fund management fees on the order of a few dozen basis points. So

long as volatility management portfolios charge a low fund management fee, ρv will

be positive but will be very close to zero, and ρ > ρv is likely to hold.

The unconstrained investor chooses her portfolio at time t and rebalances it at

time t + dt should there be a need to do so. For convenience purposes, instead of

directly solving for the optimal portfolio policy, θt, of the unconstrained investor I

derive it from the market clearing condition. The optimal portfolio choice admits
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the representation

θt =
1

xt
− σ̄

σR(·)
1− xt
xt

,

where

xt
.
=
Wt

St

is the state variable of the model, which is the wealth share of the unconstrained

investor. Clearly, in a pure exchange economy xt ∈ [0, 1]. In the following sections,

I explicitly solve for σR(·) and show that it is a function of the state variable, xt.

1.2.4. Equilibrium Conditions

In this subsection, I formally define the equilibrium concept used to solve the model.

After enlisting all equilibrium conditions, I outline the model solution strategy that

I follow in the following sections.

Definition 1. An equilibrium is a set of price processes and investment policies

{θ(·), θ̃(·)} such that the investment policies solve the dynamic portfolio optimization

problems of the volatility timer and of the unconstrained investor, respectively.

1. Given the price process, the unconstrained investor and the volatility timer

solve their respective portfolio optimization problems.

2. The unconstrained investor is unconstrained in its portfolio choice and the

risk-neutral volatility timer faces a risk limit (volatility budget).

3. The goods market clears,

Ct + C̃t = Dt.
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4. The market for the risky asset clears,

θtWt + θ̃tW̃t = St.

5. The market for the risk-free asset clears by Walras’ law.

Given that I model a pure exchange Lucas (1978) economy, it should be the case

that in equilibrium total wealth equals the price of the risky asset,

Wt + W̃t = St.

Equipped with the above equilibrium conditions, I solve for the equilibrium outcome

in terms of the state variable of the model, xt ∈ [0, 1], which is the wealth share

of the unconstrained investor. It is instructive to note that the model I propose

delivers more tractability than what is typical for the class of equilibrium models

with heterogeneous agents.

1.3. Characterization of Equilibrium

In this section, I solve for the main version of the model. The logarithmic utility

solution is very tractable and allows me to present some of the main results of

the chapter in a very accessible way. After fully characterizing the equilibrium, I

thoroughly analyze the equilibrium outcome and provide economic intuition.

1.3.1. Main Results

Given that the unconstrained investor is endowed with logarithmic utility over in-

stantaneous consumption, it is optimal for her to consume a constant fraction, ρ, of

her wealth. Therefore,

Ct = ρWt.
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In the logarithmic utility case, the consumption-to-wealth ratio, ρ, is also equal to

the subjective discount factor of the agent.

The interplay between the diffusion coefficient of the total return process, σR(·),

and the equilibrium risk premium sways the performance of any trading strategy

devised in the spirit of volatility timing. Consequently, the analysis concerned with

the study of volatility timing in the context of general equilibrium necessitates the

derivation of these two equilibrium quantities. The following proposition provides

an equilibrium expression for the diffusion coefficient.

Proposition 1. (Model-Implied Total Return Process Volatility)

The volatility of the total return process, σR(·), is given by

σR(xt) =
1

1− A
(σD − σ̄A) +

A

1− A
(σ̄ − σD)xt, (1.3)

where xt is the state variable of the model, σD and σ̄ are exogenous constants, and

A
.
= 1− ρ

ρv
.

Please refer to the mathematical Appendix for a detailed proof of the proposition.

The total return process volatility depends on the quantity of fundamental risk in

the economy, σD, on the risk limit imposed on the risk-neutral investor, σ̄, on the

ratio of the consumption-to-wealth ratios, ρv/ρ, through A, and on the state variable

of the model, which is the wealth share of the unconstrained investor, xt = Wt/St.

In the following proposition, I summarize some of the main properties of the

volatility of the total return process.

Proposition 2. (Properties of Total Return Process Volatility)

• The volatility of the total return process, σR(xt), is increasing in the wealth

share of the unconstrained investor.

• The sensitivity of σR(xt) to xt is increasing in the wedge between σ̄ and σD.
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Please refer to the mathematical Appendix for a detailed proof of the proposition.

The expression for volatility admits a very intuitive decomposition: a term that

only depends on exogenous parameters and a second term that is a function of the

state variable of the model, xt. Given that σ̄ − σD is negative by construction,

the sign of the loading on xt depends on the sign of A, which in turn depends on

ρ and ρv, the consumption-to-wealth ratios of the unconstrained investor, and the

volatility-managed portfolio, respectively. For ρ > ρv (the case I consider in this

section), the volatility of the risky asset is increasing in the wealth share of the

unconstrained investor. In other words, low-volatility states are states in which

the unconstrained investor is undercapitalized, and the agent who is engaged in

volatility timing owns most of the wealth in the economy. On the other hand, states

in which the unconstrained investor owns most of the wealth in the economy are

characterized by high levels of volatility and admit the interpretation of adverse

states of the world. The economic intuition is as follows. When ρ > ρv, an increase

in xt leads to an increase in the share of impatient agents in the economy, and this

increases volatility.

Interestingly, the volatility of the total return process, σR(·), is linear in the state

variable of the model, which is the wealth share of the unconstrained investor. More

importantly, the sensitivity of σR(·) with respect to the state variable depends on

the wedge between fundamental risk in the economy, σD, and the risk limit imposed

on the volatility timer, σ̄. The bigger the wedge, the higher the sensitivity. When

the discrepancy between the two is large, the volatility-managed portfolios can take

large positions in the risky asset. Consequently, even small changes in the wealth

share lead to large portfolio rebalancing, and this heightens volatility.

The unconstrained investor does not face any portfolio constraints and is always

marginal in the market for the risky asset. This allows me to directly derive the risk

premium on the risky asset from the Euler equation of the unconstrained investor,

−ρdt− Et
(
dCt
Ct

)
+ Vart

(
dCt
Ct

)
+ Et(dRt) = Covt

(
dCt
Ct

, dRt

)
.
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The Euler equation holds for any tradable asset. Consequently, the corresponding

Euler equation for the risk-free asset admits the following representation:

rtdt = ρdt+ Et
(
dCt
Ct

)
− Vart

(
dCt
Ct

)
.

Subtracting the expression for rtdt from the expression for E(dRt), I obtain an

expression for the risk premium on the risky asset. It is a very fundamental result

that under logarithmic utility consumption growth equals wealth growth, dCt/Ct =

dWt/Wt. Consequently, the risk premium on the risky asset takes the simple form

Et(dRt)− rtdt =Covt

(
dWt

Wt

, dRt

)
,

Et(dRt)− rtdt =θtVart(dRt),

where Vart(dRt) = σ2
R(xt)dt, and the equilibrium expression for σR(xt) follows from

(1.3) above. The following proposition reports the risk premium on the risky asset.

Proposition 3. (Risk Premium on the Risky Asset)

The risk premium on the risky asset is given by

Et(dRt)− rtdt =

(
1

xt
− σ̄

σR(xt)

1− xt
xt

)
σ2
R(xt)dt.

Under the parameter restriction σ̄ < σD, the risk premium takes positive values over

the entire state space. The risk premium is decreasing in xt to the left of x̂ and

increasing in xt to the right of x̂, where

x̂
.
=

√
σ̄A− σD

A(σ̄ − AσD)
.

Please see the mathematical Appendix for a detailed proof of the proposition.

The risk premium on the risky asset takes positive values over the entire state space

and exhibits non-linear behavior with respect to the volatility of the total return

process, σR(xt). The shape of the risk premium depends on the tightness of the risk
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limit, σ̄. For very low values of σ̄ (very tight volatility budget), the second term in

brackets goes to zero and the risk premium is proportional to the variance of the

risky asset. So long as the increase in the denominator of the coefficient 1/xt is

not big enough to offset the increase in variance, the risk premium is increasing in

variance.

The analysis of the joint dynamics of the model-implied volatility of the total

return process and the risk premium is one of the main objectives of this paper.

This analysis necessitates the derivation of the quadratic co-variation between the

risk premium and the diffusion coefficient of the total return process. The following

proposition reports the quadratic co-variation implied by the model.

Proposition 4. (Quadratic Co-variation)

The quadratic co-variation between the risk premium on the risky asset and its con-

ditional volatility is given by

d〈RP(x), σR(x)〉t =

(
Ã1(xt)

A

1− A
1

x2
t

+ Ã2(xt)
1

xt

)
d〈x, x〉t,

where the coefficients Ã1(xt), Ã2(xt), and the quadratic variation, d〈x, x〉t, are given

by

Ã1(xt)
.
=σR(xt)(σ̄ − σD)(σ̄ − σR(xt)),

Ã2(xt)
.
=(2σR(xt)− σ̄(1− xt))

(
(σ̄ − σD)A

1− A

)2

,

d〈x, x〉t =((θt − 1)σR(xt)xt)
2dt.

Please refer to the mathematical Appendix for a detailed proof of the proposi-

tion. Intuitively, the quadratic co-variation between volatility and the risk premium

admits the interpretation of instantaneous covariance. Thus, the sign thereof is

of particular interest for the analysis of volatility timing. A positive sign for the

quadratic co-variation violates the most fundamental assumption put forward by

the proponents of volatility timing and renders their arguments, related to the prof-
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itability of volatility timing as a trading strategy, untenable. Below, I check the sign

of the quadratic co-variation over the entire state space.

Proposition 5. (Properties of Quadratic Co-variation)

The sign of the quadratic co-variation depends on the sign of

sgn(d〈RP(x), σR(x)〉t) = sgn

(
Ã1(xt)

A

1− A
1

x2
t

+ Ã2(xt)
1

xt

)
.

• The sign of the quadratic co-variation is negative to the left of x̂ and positive

to the right of x̂, where

x̂
.
=

√
σ̄A− σD

A(σ̄ − σDA)
.

• Under the parameter restriction,

(
1− ρ

ρv

)2

≤ 1,

x̂ ≥ 1 and the quadratic co-variation is negative over the entire state space.

Please refer to the mathematical Appendix for a detailed proof of the proposition.

Given that x̂ is always positive, there are two distinct regions of the state space.

For x ∈ [0, x̂], the quadratic co-variation is negative. For x ∈ (x̂, 1], conditional

volatility and the risk premium are positively correlated. The case in which x̂ ≥ 1

and the quadratic co-variation is negative over the entire state space is of particular

interest. This inequality is satisfied when A2 ≤ 1, that is, when ρ is not too far

away from ρv.

The sensitivities that I report in the proposition below are useful in analyzing

the equilibrium.

Proposition 6. (Portfolio Sensitivities)

The sensitivities of the portfolio of the volatility timer with respect to the state vari-

able, xt, and with respect to σR(xt) are as follows:
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• Delta with respect to xt

∆x
.
=
∂θ̃t
∂xt

= − σ̄

σ2
R(xt)

A

(1− A)
(σ̄ − σD).

• Gamma with respect to xt

Γx
.
=
∂2θ̃t
∂x2

t

=
2σ̄(A(σ̄ − σD))2

σ3
R(xt)(1− A)2

.

• Vega with respect to σR(xt)

V .
=

∂θ̃t
∂σR(xt)

= − σ̄

σ2
R(xt)

.

• Volga (Volatility Gamma) with respect to σR(xt)

V2 .
=

∂2θ̃t
∂σ2

R(xt)
=

2σ̄

σ3
R(xt)

.

By construction, the risky asset position of the volatility timer, θ̃t, is inversely

proportional to the level of volatility. This implies a negative vega (calculated with

respect to σR(xt)) over the entire state space. More importantly, the absolute value

of the vega is inversely proportional to the instantaneous conditional variance of the

risky asset. On the other hand, the volga of θ̃t (calculated with respect to σR(xt))

is always positive and decreasing in the volatility of the total return process. The

sign of delta (calculated with respect to xt) is negative. This is because volatility is

increasing in xt over the entire state space.

1.4. Analysis of Equilibrium (Main Case, ρ > ρv)

In the model, the volatility on the total rerun process is increasing in the wealth share

of the unconstrained investor, xt, over the entire state space. States in which the

volatility-managed portfolios own a small fraction of the total wealth in the economy
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are high-volatility states. On the other hand, the dynamics of the risk premium are

much more nuanced. Going back to the expression for the risk premium,

Et(dRt)− rtdt =
1

xt

(
1− σ̄

σR(xt)
(1− xt)

)
σ2
R(xt)dt,

it is immediate to see that 1/xt is decreasing in xt, and the remaining terms are

increasing in xt. In the vicinity of the lower boundary of the state space, 1/xt dom-

inates, and the risk premium is decreasing in the wealth share of the unconstrained

investor. In the region of the state space, where the unconstrained investor owns

most of the wealth in the economy, the sign of the derivative of the risk premium with

respect to xt very much depends on the sensitivity of σR(xt) to xt. In Proposition

3, I show that the risk premium is decreasing in xt to the left of the cutoff

x̂ =

√
σ̄A− σD

A(σ̄ − AσD)

and is increasing in xt to the right of x̂. In the calibration of the model that I

will consider below, the quadratic co-variation between conditional volatility and

expected returns is negative over the entire state space. This implies that the risk

premium is decreasing in xt over the entire state space.

[
Insert Figure 1.1

]
[

Insert Figure 1.2
]

Figures 1.1 and 1.2 offer a convenient graphical representation of my results.

Whereas Figure 1.2 plots the equilibrium quantities of interest over the entire state

space, Figure 1.1 excludes the region that is in the immediate vicinity of the lower

boundary of the state space. Therefore, Figure 1.1 is a zoomed-in version of Figure

1.2. Notwithstanding that all equilibrium quantities are well defined over the entire

state space, they take very extreme values in the vicinity of the lower boundary of

the state space, where xt → 0. For this reason, Figure 1.1 is particularly useful in
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analyzing my results. It plots the volatility of the risky asset, σR(·), (top-left panel

of the figure), the risk premium, (Et(dRt)− rtdt)/dt, (top-right panel), the portfolio

choice of the unconstrained investor, θt, (bottom-left panel), and the portfolio choice

of the volatility timer, θ̃t, (bottom-right panel) as functions of the state variable of

the model, which is the wealth share of the unconstrained investor. The vertical blue

line in the top-right panel of the figure passes through the value of xt that minimizes

the risk premium. Given that in my calibration the risk premium is decreasing in

xt over the entire state space, the blue vertical line passes through xt = 1.

In the figures, the volatility is increasing in xt over the entire state space (top-

left panels). Whereas states in which the unconstrained investor owns most of

the wealth in the economy are high-volatility states, those in which the volatility

timer owns most of the wealth in the economy are low-volatility states. This result

is intuitive. In states in which the volatility timer owns most of the wealth in

the economy, volatility should be low in order to induce her to take a large risky

asset position and the market for the risky asset to clear. Given that the volatility

timer maintains a leverage ratio below one over the entire state space (bottom-right

panel), the unconstrained investor is indispensable for market clearing. For the

undercapitalized unconstrained investor to be willing to invest in the risky asset

and for the market to clear, the risk premium has to be very high in the vicinity

of the lower boundary of the state space (top-right panel). In the other extreme,

where xt is close to the upper boundary of the state space, the unconstrained investor

occupies the driving seat and the effect of the volatility timer in the price formation

process is very limited. This is because for high values of xt, the wealth of the

volatility timer is small, and this limits the size of the risky asset position she can

take. The effective risk aversion of the unconstrained investor decreases as her wealth

increases. Consequently, in this region of the state space, the agent is content with

holding the risky asset even if the risk premium is relatively low.

One of the main objectives of the chapter is to study the joint dynamics of

conditional volatility and the risk premium. To this end, in Figure 1.5, I plot the
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quadratic covariation between volatility and the risk premium.[
Insert Figure 1.5

]
In this particular calibration of the model, the parameter restriction A2 ≤ 1 is

satisfied and the quadratic co-variation takes negative values over the entire state

space (please see the top-left and bottom-left panels of the figure). In other words,

conditional volatility and expected returns move in the opposite direction. When

volatility rises, the risk premium decreases and vice versa. Consequently, any trad-

ing strategy that is consistent with the principles of volatility timing constitutes

a profitable trading strategy. This is because increases in volatility are not fol-

lowed by corresponding increases in the risk premium and the risk-return trade-off,

as measured by the Sharpe ratio (top-right panel of Figure 1.5), deteriorates in

high-volatility states. This is particularly true, when the share of the industry that

follows a volatility-managed strategy, W̃t/St, is large relative to the total size of the

economy, St.

As discussed above, xt admits the interpretation of the size of the asset man-

agement industry with an investment mandate that stipulates volatility timing. In

the model, xt is endogenous. One can, however, conduct a thought experiment. By

assigning different values to xt, one can analyze how the equilibrium changes as a

function of the relative size of the sector explicitly engaged in volatility management.

In the limit case, where 1−xt = 0, the wealth share of the volatility-managed indus-

try is equal to zero, and the heterogeneous agent economy reduces to a homogeneous

agent economy solely populated by the unconstrained logarithmic utility investors.

By setting 1−xt close to one, one can analyze the equilibrium outcome for the case

in which passive investment in general, and volatility timing in particular, domi-

nate the market. It is instructive to note that the volatility timers exert positive

externalities on the unconstrained investors. This is because the Sharpe ratio on

the risky asset is increasing in the wealth share of the volatility timers. In states

in which the volatility-managed industry is large, the few surviving unconstrained

investors have the opportunity to earn very high Sharpe ratios.
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1.4.1. Comparative Statics

Here, I conduct a comparative statics exercise. In particular, I examine how the

equilibrium quantities of interest react to changes in the exogenous parameters of

the model.

[
Insert Figure 1.10

]
[

Insert Figure 1.11
]

Figure 1.11 and the zoomed-in version of that figure in Figure 1.10 plot the

sensitivities of conditional volatility, the risk premium, and the portfolio choice to

the tightness of the risk limit, σ̄. A decrease in σ̄ tightens the volatility budget of

the volatility-managed portfolio. As a result of this, both the conditional volatility

and the leverage ratio of the volatility-managed portfolio decrease over the entire

state space. Given that for low values of σ̄ the volatility timer can take smaller

risky asset positions (compared to the case in which σ̄ is high), volatility should

decrease more in the region of the state space, where the unconstrained investor

is undercapitalized, so that the volatility timer can take a large enough risky asset

position and the market for the risky asset to clear.

The curvature of the risk premium increases in the tightness of the risk limit (top-

right panel). The volatility timer maintains a leverage ratio that takes values below

one over the entire state space (for all values of σ̄). Consequently, the unconstrained

investor has to take a long position in order for the market for the risky asset to clear.

The more constrained the volatility timers are, the larger position the unconstrained

investor has to take. The unconstrained investor invests in the risky asset only if the

risk premium is sufficiently high. For this reason, the curvature of the risk premium

is increasing in the tightness of the volatility limit of the volatility-managed portfolio.
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1.5. Analysis of Equilibrium for ρ < ρv

The model that I develop here allows for rich equilibrium dynamics. For the case in

which the consumption-to-wealth ratio of the unconstrained investor is lower than

the fund management fee that the volatility-managed portfolio charges, ρ < ρv,

the model delivers equilibrium dynamics that are consistent with the predictions

of standard heterogeneous agent models. Namely, under this parameter restriction,

the conditional volatility implied by my model is positively correlated with expected

returns over the entire state space.

The consumption-to-wealth ratio is a good proxy for the degree of patience. An

agent with a high consumption-to-wealth ratio admits the interpretation of an im-

patient agent. On the other hand, an agent with a low consumption-to-wealth ratio

admits the interpretation of a patient agent. Using this terminology, the parametric

restriction ρ < ρv is likely to hold in a market environment, where the unconstrained

investors are more patient than are the volatility-managed portfolios.

It is instructive to compare the equilibrium implied by my heterogeneous agent

model featuring volatility timers to the equilibrium implied by a heterogeneous agent

economy devoid of agents engaged in volatility timing. Below, I refer to the latter

economy as the baseline economy (model). This comparison is useful, because the

baseline economy very much resembles the economic setup in Longstaff and Wang

(2012), a widely cited and standard heterogeneous agent model.

To fill the void resulting from the removal of the volatility timers, I augment

the baseline model by adding a new type of agent. In the interest of simplicity, I

implicitly characterize the new agent through her portfolio choice, θCM,t,

θCM,t =
1

γCM

µR(xt)− rt
σ2
R(xt)

,

where the abbreviation in the subscript, CM, stands for model of comparison and

γCM is the constant risk aversion coefficient of the new agent. I set θCM,t so that it
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is as comparable as possible to the volatility-managed portfolio,

θ̃t =
1

λ̃t

µR(xt)− rt
σ2
R(xt)

=
σ̄

σR(xt)
,

where λ̃t
.
= λt/σ̄

2, and λt is the Lagrange multiplier associated with the volatility

budget. Please see the mathematical Appendix for a closed form expression for λt.

Whereas the volatility-managed portfolio, θ̃t, is insensitive to the risk premium, the

newly defined portfolio, θCM,t, is a function thereof. In other words, the agent that

augments the baseline model internalizes the risk-return trade-off at the portfolio

construction stage. This is the main point of difference between the new agent and

the volatility timer. Notably, θCM,t resembles a mean-variance portfolio. I opt for

this particular parametrization in order to enhance the comparability between the

volatility-managed portfolio and θCM,t. In the proposition that follows, I summarize

the main equilibrium quantities of interest that the baseline model implies. Please

refer to the mathematical Appendix for a detailed proof of the proposition.

Proposition 7. (Equilibrium, Baseline Model)

The portfolio choice of the unconstrained investor, the volatility of the risky asset, the

risk premium, and the quadratic co-variation between the risk premium and volatility

in the baseline model are given by

• Portfolio choice of the unconstrained investor

θt =
γCM

1 + xt(γCM − 1)
,

• Volatility of the total return process

σR(xt) = σD(1− xtĂ)
1 + xt(γCM − 1)

1 + xt(γCM − 1)− xtγCM Ă
,

where

Ă = 1− ρ

ρCM
.
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• Risk premium

Et(dRt − rtdt) =
γCM

1 + xt(γCM − 1)
σ2
R(xt)dt,

• Quadratic co-variation between the volatility of the risky asset and the risk

premium

d〈RP(x), σR(x)〉t = Ψ1(xt)Ψ2(xt)d〈x, x〉t,

where

Ψ1(xt)
.
=− γCM(γCM − 1)

(1 + xt(γCM − 1))2
σ2
R(xt) +

2σR(xt)γCM
1 + xt(γCM − 1)

Ψ2(xt),

Ψ2(xt)
.
=− σDĂB̃ +

γCM ĂÃ

(1 + xt(γCM − 1)− xtγCM Ă)2
,

Ã
.
=σD(1− xtĂ),

B̃
.
=

1 + xt(γCM − 1)

1 + xt(γCM − 1)− xtγCM Ă
,

d〈x, x〉t =((θt − 1)σR(xt)xt)
2dt.

In Figure 1.3, I plot the risk premium, volatility, and portfolio policies as func-

tions of the state variable, xt. The shape of the risk premium resembles the shape of

the risk premium for the case in which ρ > ρv. The dynamics of volatility are, how-

ever, markedly different. For ρ < ρv, the volatility of the risky asset is decreasing in

the wealth share of the unconstrained investor. In other words, high-volatility states

are those in which the unconstrained investor is undercapitalized and the agent en-

gaged in volatility timing owns most of the wealth in the economy. On the other

hand, states in which the unconstrained investor owns most of the wealth in the

economy are characterized by low levels of volatility and admit the interpretation

of expansion states. The economic intuition behind this result is fairly simple. An

increase in xt increases the wealth share of the patient investor, and this dampens
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volatility.

[
Insert Figure 1.3

]
[

Insert Figure 1.4
]

In all panels, the equilibrium quantities implied by the heterogeneous agent

model featuring volatility timers are in red. The equilibrium quantities implied

by the baseline model described in Proposition 7 are in black. For ease of interpre-

tation, in Figure 1.3, I plot the results for x ∈ [0.15, 1]. In Figure 1.4, I plot the

results over the entire state space.

It is instructive to compare the equilibrium quantities implied by the model fea-

turing volatility timers to the equilibrium quantities implied by the baseline model.

The baseline model implies a hump-shaped volatility. When xt is close to the lower

and upper boundaries of the state space one type of agent dominates, the leverage

in economy is low, and volatility is subdued. In the baseline model, the portfolio

policies of the agents of the model are positively correlated, and the logarithmic in-

vestor takes lower leverage in the vicinity of the lower boundary of the state space,

compared to the model featuring volatility timers. Finally, the risk premium im-

plied by the baseline model is not very sensitive to the state variable of the model.

This is because the two types of agents that populate the baseline economy are very

similar. Given that the newly added agent in the baseline economy is slightly more

risk averse than the unconstrained investor, the risk premium in the baseline model

increases for low values of xt.

A brief description of the underlying economic intuition (for the heterogeneous

agent model featuring volatility-managed portfolios) is in order. In the vicinity of the

lower boundary of the state space, the asset demand of the unconstrained investor

is very elastic with respect to her wealth, Wt. Consequently, for low values of xt,

even marginal changes in Wt result in large adjustments in the size of the risky asset

position of the unconstrained investor. This trading behavior inevitably elevates

volatility. On the other hand, for high values of xt the unconstrained investor owns
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most of the wealth in the economy. Her risky asset demand becomes less sensitive

to changes in wealth, and this dampens volatility. Similarly, the risk premium is

high for low values of xt in order to induce the unconstrained investor to increase

her leverage and for the market for the risky asset to clear. For ρ < ρv, high-

volatility states are also high risk premium states. An investor willing to support

market prices in high-volatility states of the world has the opportunity to earn a

high risk premium. The sign of the quadratic co-variation (see Figure 1.6) supports

this result.

[
Insert Figure 1.6

]

1.6. Broader Perspective and Discussion

In this section, I revisit some of the most important theoretical results from the

previous sections and put them in a broader context. In particular, I will argue

that, in some special cases, some of my theoretical results are broadly consistent

with what standard homogeneous agent general equilibrium models predict. I then

compare my results against the main implications of Moreira and Muir (2017) and

Moreira and Muir (2016).

1.6.1. Implications of Homogeneous Agent General Equilibrium Models

A wide range of consumption-based general equilibrium asset pricing models, such

as the homogeneous agent economies in Campbell and Cochrane (1999) and Bansal

and Yaron (2004) and the intermediary asset pricing framework of He and Krish-

namurthy (2013) featuring heterogeneous agents, imply a positive relation between

asset volatility and risk premia. For example, in Campbell and Cochrane (1999) and

He and Krishnamurthy (2013), negative shocks to consumption increase the volatil-

ity of consumption, leading to an endogenous increase in the conditional volatility of

the risky asset. Consequently, in all these standard off-the-shelf models, risky asset

volatility endogenously goes up at times when the market price of risk is high. As
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a result of this, in the above class of models, volatility timing does not constitute a

sensible approximation to the optimal trading strategy. In the counter-factual case,

where I set ρ < ρv, the above results carry over to my heterogeneous agent economy.

1.6.2. Relation to Moreira and Muir (2017)

In a recent paper, Moreira and Muir (2017) empirically show that trading strategies

that scale standard asset pricing factors, which are widely used in the empirical

cross-sectional asset pricing literature, by realized variance over a one-month horizon

deliver high alphas. The authors further claim that in their particular dataset the

correlation between future expected returns and conditional volatility is very week.

In other words, increases in volatility do not lead to increases in expected returns,

or if expected returns go up, the increase is marginal relative to the increase in

volatility.

The authors use these results to argue that volatility management delivers high

returns in risk-adjusted terms. In a companion paper, the authors argue that volatil-

ity timing is optimal for a very wide range of different types of investors, both

short-term and long-term investors (Moreira and Muir (2016)). The optimality of

volatility timing for long-term investors is particularly puzzling, especially if returns

are mean reverting and/or volatility shocks are transitory as opposed to persistent.

The approach of Moreira and Muir (2016) and Moreira and Muir (2017) is very

different from my approach along several dimensions. First, in the theory sections

of the above two papers, the authors resort to partial equilibrium analysis, and I

develop a general equilibrium model featuring heterogeneous agents. The general

equilibrium framework allows me to take into account equilibrium feedback effects.

More importantly, in the above two papers, the authors exogenously postulate the

dynamics that drive the price process and its volatility. In my paper, I endogenously

solve for the equilibrium price and volatility dynamics. Second, in their framework,

the investors engaged in volatility management are price takers and do not affect

prices. In my model, I show that volatility timers are instrumental in the price
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formation process and have a big effect on the Sharpe ratio of the risky asset.

As a result of this, the unconstrained investors, the centerpiece of my model, are

materially affected by the volatility-managed portfolios.

The implications of my model for the realistic case in which ρ > ρv are consistent

with the stylized empirical facts reported by Moreira and Muir (2016).

1.6.3. Relation to Martin (2017)

In a recent paper, Martin (2017) derives a lower bound on the equity premium in

terms of SVIX, an implied volatility index calculated from the prices of index options.

He shows that the SVIX forecast is positively correlated with subsequent returns.

He further shows that a contrarian market timing strategy, using SVIX as a signal,

delivers a Sharpe ratio considerably higher than the Sharpe ratio of the market. In

essence, the trading strategy in Martin (2017) is the opposite of volatility timing

as defined here. A trader following the trading strategy in Martin (2017) would

increase his risky asset exposure when implied volatility is high and decrease risky

asset exposure when volatility is low. It is important to note, however, that the

results in Martin (2017) and Moreira and Muir (2017) are not directly comparable.

This is because the two papers use different measures of volatility. Whereas Martin

(2017) uses forward-looking implied volatility, which is extracted from option prices,

Moreira and Muir (2017) use past realized volatility.

Furthermore, Martin (2017) shows that the equity risk premium perceived by an

unconstrained rational investor with logarithmic utility who is fully invested in the

market is proportional to the risk-neutral variance. The risk-premium implied by

my model is

Et(dRt)− rtdt = θtVart(dRt).

Given that there are no jumps, realized variance equals implied variance, Vart(dRt) =
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VarQt (dRt). For the case in which θt = 1,

Et(dRt)− rtdt = VarQt (dRt).

In Figures 1.8 and 1.9, I plot the risk premium (black line) and the variance of the

total return process (red line) over the state space.

[
Insert Figure 1.8

]
[

Insert Figure 1.9
]

In the limit, where the unconstrained investor owns all the wealth in the economy,

xt = 1, θt = 1, and the risk premium is equal to the variance. Over the remaining

region of the state space, xt < 1, the variance of the risky asset is a lower bound on

the risk premium.

1.7. Conclusion

In this chapter, I have studied the effects of volatility timing in a general equilibrium

heterogeneous agent model. Two distinct types of agents populate the model econ-

omy, an unconstrained investor endowed with logarithmic utility over instantaneous

consumption and a risk-neutral agent subject to a volatility budget. My model goes

a long way towards the rationalization of the behavior of investment vehicles that

follow investment management strategies that are isomorphic to the ones implied

by the principles of volatility management. Whereas my theoretical approach offers

a high degree of tractability, it is subject to some important caveats. Specifically,

the model implies unrealistically high leverage for the unconstrained investor.



CHAPTER 1. VOLATILITY-MANAGED PORTFOLIOS IN GENERAL
EQUILIBRIUM 50

1.8. Mathematical Appendix

1.8.1. Portfolio Choice of the Risk-neutral Investor

In this section, I derive the optimal portfolio choice of the volatility-managed port-

folio. Here, the main objective is to derive a closed form expression for the Lagrange

multiplier, associated with the volatility budget, and express the portfolio choice of

the volatility-managed portfolio as a function thereof.

The risk-neutral volatility timer solves the constrained portfolio optimization

problem

max
{θ̃t}

Et

(
dW̃t

dt

)
,

s.t. θ̃t ≥ 0,

β

√
Vart(dW̃t)

dt
≤ W̃t,

dW̃t = (rtW̃t − C̃t)dt+ θ̃tW̃t(dRt − rtdt).

Given that C̃t = ρvW̃t, the SDE for the dynamic budget constraint of the agent

takes the form

dW̃t =(rt − ρv)W̃tdt+ θ̃tW̃t(µR(·)− rt)dt+ θ̃tW̃tσR(·)dBt.

It is then immediate to see that

Et(dW̃t) =(rt − ρv)W̃tdt+ θ̃tW̃t(µR(·)− rt)dt,

d〈W̃ , W̃ 〉t =(θ̃tW̃tσR(·))2dt.

Consequently, Var(dWt) = (θ̃tW̃tσR(·))2dt. The corresponding Lagrangian is

L = (rt − ρv)W̃t + (µR(·)− rt)θ̃tW̃t + λt(W̃t − β
√

(θ̃tW̃tσR(·))2),
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where λt is the Lagrangian multiplier associated with the risk limit (volatility bud-

get). The first order condition with respect to θ̃t gives

θ̃t =
µR(·)W̃t − rW̃t

λtβ(θ̃tW̃tσR(·))−1
(W̃tσR(·))−2.

In Proposition 3, I prove that the risk premium on the risky asset is positive over the

entire state space. Consequently, it is optimal for the risk-neutral agent to increase

the size of her risky asset position up to the volatility limit. Therefore, the dynamic

constraint holds with equality, i.e.,

β

√
Vart(dW̃t)

dt
= W̃t.

This allows me to derive an expression for W̃t,

W̃t = β
µR(·)W̃t − rtW̃t

λtβ(θ̃tW̃tσR(·))−1
(σR(·)W̃t)

−1.

Additionally, it is useful to note that

(θ̃tW̃tσR(·))−1 =
β

W̃t

.

The next step is to solve for the Lagrange multiplier,

λt =
µR(·)− rt
βσR(·)

.

I substitute the expression for the Lagrange multiplier into the first order condition,

with respect to θ̃t, and after a straightforward simplification I obtain the optimal

portfolio policy,

θ̃t =
1

βσR(·)
=

σ̄

σR(·)
.

�



CHAPTER 1. VOLATILITY-MANAGED PORTFOLIOS IN GENERAL
EQUILIBRIUM 52

1.8.2. Portfolio Choice of the Unconstrained Investor

In this sub-section of the mathematical Appendix, I derive the optimal portfolio

policy of the unconstrained investor, θt, who is endowed with logarithmic utility

over instantaneous consumption. I start from the market clearing condition,

θt
Wt

St
+ θ̃t

W̃t

St
= 1,

where the constant on the right-hand side is the total supply of the risky asset.

Given that I model a pure exchange economy, W̃t = St −Wt. Consequently,

θt
Wt

St
+ θ̃t

St −Wt

St
=1,

θtxt + θ̃t(1− xt) =1.

The last step is to solve the above expression for θt. The optimal portfolio policy of

the unconstrained investor,

θt =
1

xt
− 1− xt

xt
θ̃t =

1

xt
− 1− xt

xt

σ̄

σR(·)
,

follows immediately.

�

1.8.3. Price-Dividend Ratio

In this sub-section of the mathematical Appendix, I derive an expression for the

price-dividend ratio on the risky asset. I impose market clearing in the consumption

goods market,

Ct + C̃t = Dt,
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and note that Ct = ρWt, and C̃t = ρvW̃t. Using the fact that W̃t = St−Wt, I obtain

ρWt + ρv(St −Wt) = Dt.

I then solve the above expression for St and obtain

St =
1

ρv
Dt +

(
1− ρ

ρv

)
Wt.

To obtain an expression for the price-dividend ratio divide both sides by Dt,

St
Dt

=
1

ρv
+

(
1− ρ

ρv

)
Wt

Dt

St
St

=
1

ρv
+

(
1− ρ

ρv

)
St
Dt

xt.

Solving for St/Dt, I obtain an expression for the price-dividend ratio,

St
Dt

=
1

ρv − xt(ρv − ρ)
.

This completes the derivation of the price-dividend ratio on the risky asset.

�

1.8.4. Proof of Proposition 1 (Model-Implied Total Return Process Volatility)

I start from the definition of the total return process,

dRt =
Dtdt+ dSt

St
.

It is then immediate to see that

µR(·)dt+ σR(·)dBt =
Dtdt

St
+
dSt
St
.

Clearly, in order to compute the diffusion coefficient of the total return process,

σR(·), it is enough to find the diffusion coefficient of dSt/St. To this end, I derive a
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stochastic differential equation for {St}. I note that ρv and ρ are constants and do

Itô on

St =
1

ρv
Dt +

(
1− ρ

ρv

)
Wt.

The stochastic differential equation

dSt =
1

ρv
dDt +

(
1− ρ

ρv

)
dWt

follows immediately. I then use the facts that the exogenous dividend process follows

a geometric Brownian motion and the stochastic differential equation

dWt = −Ctdt+ rtWtdt+ θtWt(dRt − rtdt)

governs the intertemporal wealth evolution of the unconstrained investor. The above

SDE simplifies to

dSt =
1

ρv
(µDDtdt+ σDDtdBt) +

(
1− ρ

ρv

)
(rWtdt− Ctdt+ θtWt(dRt − rtdt))

=(·)dt+

(
1

ρv
σDDt +

(
1− ρ

ρv

)
σR(·)θtWt

)
dBt.

I then match the coefficients and obtain

σR(·) =
1

St

(
1

ρv
Dt

)
σD +

(
1− ρ

ρv

)
θtσR(·)Wt

St
.

Using the fact that

St =
1

ρv
Dt +

(
1− ρ

ρv

)
Wt,

I obtain

1

ρv
Dt = St −

(
1− ρ

ρv

)
Wt.
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I then substitute the latter in the expression for σR(·), set xt = Wt/St, and obtain

σR(·) = σD − σD
(

1− ρ

ρv

)
xt +

(
1− ρ

ρv

)
θtσR(·)xt.

To simplify the notation, I define

A
.
= 1− ρ

ρv
.

Using this newly introduced notation, the expression for σR(·) simplifies to

σR(·) = σD − σDAxt + AθtσR(·)xt.

I then substitute the expression for the equilibrium portfolio weight,

θt =
1

xt
− 1− xt

xt
θ̃t =

1

xt
− 1− xt

xt

σ̄

σR(·)
,

into the expression for σR(xt) and, after a straightforward simplification, I obtain

σR(xt)(1− A) =σD − xtσDA− (1− xt)σ̄A,

σR(xt) =
1

1− A
(σD − σ̄A) +

A

1− A
(σ̄ − σD)xt.

This completes the proof of the proposition.

�

1.8.5. Proof of Proposition 2 (Properties of Total Return Process Volatility)

In the main version of the model, ρ > ρv. Under this parametric restriction, A < 0.

Additionally, throughout the paper I assume that σ̄ < σD . Therefore, the loading

on xt is positive,

A

(1− A)
(σ̄ − σD) > 0.



CHAPTER 1. VOLATILITY-MANAGED PORTFOLIOS IN GENERAL
EQUILIBRIUM 56

Consequently, the total return process volatility,

σR(xt) =
1

1− A
(σD − σ̄A) +

A

1− A
(σ̄ − σD)xt,

is increasing in the wealth share of the unconstrained investor, xt. It attains a

minimum at xt = 0. For xt = 0, σR(xt) > 0 as σD and σ̄ are positive constants.

Consequently, the model-implied volatility is positive over the entire state space.

The claim that the sensitivity of σR(xt) with respect to xt is increasing in the wedge

between σ̄ and σD follows immediately. This competes the proof of the proposition.

�

In Section 1.5 of the paper, I analyze the equilibrium outcome for the case in which

ρ < ρv. Below, I show that under this parametric restriction the total return process

volatility is decreasing in xt. Given that ρ < ρv, A ∈ (0, 1). Throughout the paper,

I assume that σD > σ̄. Consequently, the loading on xt is negative,

A

1− A
(σ̄ − σD) < 0,

and the total return process volatility is decreasing in xt over the entire state space.

Volatility is linear in xt and attains a minimum at xt = 1. Consequently, if σR(1) ≥

0, then the volatility is positive over the entire state space. For xt = 1, volatility is

equal to

σR(1) =
1

1− A
(σD − σ̄A) +

A

1− A
(σ̄ − σD) = σD > 0.

�

1.8.6. Proof of Proposition 3 (Risk Premium)

In the logarithmic utility case, the SDF is proportional to marginal utility,

Λt ∝ e−ρt
∂u(Ct)

∂Ct
.
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I use the fact that dΛtRt follows a martingale under the physical measure and note

that

dΛt

Λt

= −ρdt+
e−ρt

Λt

∂2u(Ct)

∂C2
t

dCt +
1

2

e−ρt

Λt

∂3u(Ct)

∂C3
t

d〈C,C〉t.

The Euler equation of the unconstrained investor,

−ρdt− Et
(
dCt
Ct

)
+ Vart

(
dCt
Ct

)
+ Et(dRt) = Covt

(
dCt
Ct

, dRt

)
,

follows immediately. This equation holds for any tradable asset. By setting dRt =

rtdt, and noting that

Covt

(
dCt
Ct

, rtdt

)
= 0,

I obtain an expression for the risk-free interest rate, rt. Finally, the risk premium,

Et(dRt − rtdt), is given by

Et(dRt − rtdt) = Covt

(
dCt
Ct

, dRt

)
.

In the model, the wealth and consumption of the unconstrained investor grow at

the same rate, dCt/Ct = dWt/Wt, and the risk premium simplifies to

Et(dRt)− rtdt =Covt

(
dWt

Wt

, dRt

)
,

Et(dRt)− rtdt =θtVart(dRt),

where Vart(dRt) = σ2
R(·)dt. Using the fact that

θt =
1

xt
− 1− xt

xt

σ̄

σR(·)
,
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I obtain the expression for the risk premium on the risky asset

Et(dRt)− rtdt =

(
1

xt
− σ̄

σR(xt)

1− xt
xt

)
σ2
R(xt)dt.

The next step is to prove the claim that the risk premium is positive over the entire

state space. Given that σR(xt) ≥ 0,∀xt,

sgn(Et(dRt − rtdt)) = sgn(θt).

A straightforward simplification of the equilibrium expression for θt yields

θt =
1

xt
− θ̃t

(
1− xt
xt

)
=

1

xt

(
1− θ̃t (1− xt)

)
∝
(

1− θ̃t (1− xt)
)
.

Consequently,

sgn(θt) = sgn
(

1− θ̃t (1− xt)
)

= sgn (σR(xt)− σ̄(1− xt)) .

I substitute out the expression for σR(xt) and simplify,

sgn(θt) = sgn (σD − σ̄ + (σ̄ − AσD)xt) .

In the main version of the model, ρ > ρv. This implies that A < 0 and Et(dRt −

rtdt) > 0, over the entire state space. The last step is to show that the risk premium

is decreasing in xt to the left of x̂ and increasing in xt to the right of x̂, where

x̂
.
=

√
σ̄A− σD

A(σ̄ − σDA)
.

Please see the proof of Proposition 5 for a derivation of x̂. In Proposition 5, I prove

that the quadratic co-variation between the risk premium and volatility is negative

to the left of x̂ and positive to the right of x̂. Given that volatility is increasing in

xt over the entire state space, the risk premium is decreasing in xt to the left of x̂
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and increasing in xt to the right of x̂. This completes the proof of the proposition.

�

In Section 1.5 of the paper, I analyze the equilibrium outcome for the case in which

ρ < ρv. In this case, the risk premium on the risky asset is positive over the entire

state space. To show that, I note that when ρ < ρv, A ∈ (0, 1). As above, the sign

of the risk premium depends on the sign of θt which in terms depends on

sgn(θt) = sgn (σD − σ̄ + (σ̄ − AσD)xt) .

There are two possible cases:

• For σ̄ − AσD ≥ 0, Et(dRt − rtdt) > 0,∀x ∈ [0, 1].

• For σ̄ − AσD < 0, σD − σ̄ + (σ̄ − AσD)xt is decreasing in xt. For x = 1,

σD − σ̄ + (σ̄ − AσD) > 0. Therefore, Et(dRt − rtdt) > 0, ∀x ∈ [0, 1].

1.8.7. Proof of Proposition 4 (Quadratic Co-variation)

I complete the proof of the proposition in steps. The first step is to derive the

stochastic differential equation for the volatility of the total return process. To this

end, I do Itô on

σR(xt) =
1

1− A
(σD − σ̄A) +

A

1− A
(σ̄ − σD)xt.

Consequently, {σR(xt)} follows

dσR(xt) =
A

1− A
(σ̄ − σD)dxt.

Similarly, I do Itô on the risk premium,

RP(xt) =θtσ
2
R(xt),

RP(xt) =σ2
R(xt)

1

xt
− σ̄

(
1− xt
xt

)
σR(xt),
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and obtain

d(RP(xt)) =− 1

x2
t

σ2
R(xt)dx+

1

xt
dσ2

R(xt) + (·)dt

−
(
σ̄
∂

∂xt

(
1− xt
xt

)
σR(xt)dx+ σ̄

(
1− xt
xt

)
dσR(xt) + (·)dt

)
=

(
− 1

x2
t

σ2
R(xt) +

σ̄

x2
t

σR(xt)

)
dxt + (·)dt

+

(
2

(
1

xt

)
σR(xt)− σ̄

(
1− xt
xt

))
dσR(xt).

The last step is to calculate the quadratic co-variation, d〈RP(x), σR(x)〉t,

d〈RP(x), σR(x)〉t =
1

x2
t

σR(xt)(σ̄ − σR(xt))d〈x, σR(x)〉t

+
1

xt
(2σR(xt)− σ̄(1− xt))d〈σR(x), σR(x)〉t.

In order to further simplify this expression, it is useful to note that

dσR(xt) =
A

1− A
(σ̄ − σD)dxt,

d〈σR(x), σR(x)〉t =

(
A

1− A
(σ̄ − σD)

)2

d〈x, x〉t,

d〈σR(x), x〉t =
A

1− A
(σ̄ − σD)d〈x, x〉t.

Consequently,

d〈RP(x), σR(x)〉t =

(
σR(xt)(σ̄ − σD)(σ̄ − σR(xt))

A

1− A
1

x2
t

)
d〈x, x〉t

+ (2σR(xt)− σ̄(1− xt))
(

(σ̄ − σD)A

1− A

)2
1

xt
d〈x, x〉t.

In order to further simplify the expression for the quadratic co-variation, I define

Ã1(xt)
.
=σR(xt)(σ̄ − σD)(σ̄ − σR(xt)),

Ã2(xt)
.
=(2σR(xt)− σ̄(1− xt))

(
(σ̄ − σD)A

1− A

)2

.
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The expression for the quadratic co-variation takes the form

d〈RP(x), σR(x)〉t =

(
Ã1(xt)

A

1− A
1

x2
t

+ Ã2(xt)
1

xt

)
d〈x, x〉t.

The last step in the proof of the proposition is to derive an expression for the

quadratic variation of the state variable.

dxt =d

(
Wt

St

)
=

1

St
dWt +Wtd

(
1

St

)
+ (·)dt

=
1

St
θtWtσR(xt)dBt −

Wt

St

dSt
St

+ (·)dt

=xtσR(xt)(θt − 1)dBt + (·)dt.

Therefore,

d〈x, x〉t = (xtσR(xt)(θt − 1))2dt.

This completes the proof of the proposition.

�

1.8.8. Proof of Proposition 5 (Properties of Quadratic Co-variation)

Given that d〈x, x〉t is non-negative, the sign of the quadratic co-variation,

d〈RP(x), σR(x)〉t =

(
Ã1(xt)

A

1− A
1

x2
t

+ Ã2(xt)
1

xt

)
d〈x, x〉t,

depends on the sign of

Ã1(xt)
A

1− A
1

x2
t

+ Ã2(xt)
1

xt
.

I substitute out the expressions for Ã1(xt) and Ã2(xt) and simplify to obtain

1

xt

A

1− A
(σ̄ − σD)

(
1

xt
σR(xt)(σ̄ − σR(xt)) + (2σR(xt)− σ̄(1− xt))

A

1− A
(σ̄ − σD)

)
.
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Given that σ̄ < σD and A < 0,

1

xt

A

1− A
(σ̄ − σD) > 0.

Consequently, the sign of d〈RP(x), σR(x)〉t depends on the sign of Ψ(xt), where I

define

Ψ(xt)
.
=

1

xt
σR(xt)(σ̄ − σR(xt)) + (2σR(xt)− σ̄(1− xt))

A

1− A
(σ̄ − σD).

I then substitute σR(xt) out and simplify. After a straightforward simplification, I

obtain

Ψ(xt) = A(σ̄ − σD)(σ̄ − σDA)x2
t + (σD − σ̄A)(σ̄ − σD).

The two roots of Ψ(xt) are

x1 = −

√
σ̄A− σD

A(σ̄ − σDA)
, x̂ =

√
σ̄A− σD

A(σ̄ − σDA)
.

While x1 < 0, x̂ > 0. There are two possible cases. When x̂ < 1, the quadratic

covariation is negative to the left of x̂ and positive to the right of x̂. When x̂ ≥ 1, the

quadratic co-variation is negative over the entire state space. The latter inequality

holds when

σ̄A− σD
A(σ̄ − σDA)

≥ 1,

or

(
1− ρ

ρv

)2

= A2 ≤ 1.

This completes the proof of the proposition.

�
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In Section 1.5 of the paper, I analyze the equilibrium outcome for the case in which

ρ < ρv. In this case, the sign of the quadratic co-variation is positive over the entire

state space. This is because A > 0, Ã1(xt) > 0, and Ã2(xt) > 0 over the entire state

space.

1.8.9. Proof of Proposition 6 (Portfolio Sensitivities)

Substitute the expression for volatility into the portfolio policy function of the

volatility timer to obtain

θ̃t =
σ̄(1− A)

(σD − σ̄A) + Axt(σ̄ − σD)
.

The results follow immediately.

�

1.8.10. Proof of Proposition 7 (Equilibrium, Baseline Model)

I start from the market clearing condition,

θt =
1

xt
− 1− xt

xt
θCM,t.

I then substitute

θCM,t =
µR(·)− rt
γCMσ2

R(xt)

into the above expression and after a straightforward simplification I obtain

θt =
γCM

1 + xt(γCM − 1)
.

To solve for the volatility on the total return process, I substitute θt into

σR(·) = σD − xtσDĂ+ xtσR(xt)θtĂ.
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and obtain

σR(xt) = σD(1− xtĂ)
1 + xt(γCM − 1)

1 + xt(γCM − 1)− xtγCM Ă
.

The risk premium on the risky asset follows immediately. In order to derive an

expression for the quadratic co-variation between return volatility and the risk pre-

mium, I first do Itô on the volatility of the total return process,

σR(xt) = σD(1− xtĂ)
1 + xt(γCM − 1)

1 + xt(γCM − 1)− xtγCM Ă

and obtain

dσR(xt) =

(
−σDĂB̃ +

γCM ĂÃ

(1 + xt(γCM − 1)− xtγCM Ă)2

)
dxt + (·)dt,

where

Ã
.
=σD(1− xtĂ),

B̃
.
=

1 + xt(γCM − 1)

1 + xt(γCM − 1)− xtγCM Ă
.

I then do Itô on the risk premium and after a straightforward simplification obtain

d(RP(xt)) = − γCM(γCM − 1)

(1 + xt(γCM − 1))2
σ2
R(xt)dxt + 2σR(xt)

γCM
1 + xt(γCM − 1)

dσR(xt) + (·)dt.

The last step is to calculate the product of d(RP(xt)) and dσR(xt),

d〈RP(x), σR(x)〉t = Ψ1(xt)Ψ2(xt)d〈x, x〉t,

where I define

Ψ1(xt)
.
=− γCM(γCM − 1)

(1 + xt(γCM − 1))2
σ2
R(xt) +

2σR(xt)γCM
1 + xt(γCM − 1)

Ψ2(xt),
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Ψ2(xt)
.
=− σDĂB̃ +

γCM ĂÃ

(1 + xt(γCM − 1)− xtγCM Ă)2
.

The expression for d〈x, x〉t is identical to the one derived in the previous proposition.

This completes the proof of the proposition.

�

1.8.11. Derivation of the Equilibrium Risk-free Interest Rate

The market clearing condition in the goods market implies

ρdWt + ρvdW̃t =dDt,

Et(ρdWt) + Et(ρvdW̃t) =Et(dDt).

I then note that

dWt =rtWtdt− Ctdt+ θtWt(dRt − rtdt),

dW̃t =rtW̃tdt− C̃tdt+ θ̃tW̃t(dRt − rtdt).

Consequently,

Etρ[rtWt − Ct + θtWt(µR(xt)− rt)]dt+

Etρv[rtW̃t − C̃t + θ̃tW̃t(µR(xt)− rt]dt = Et(dDt).

I then use the fact that µR(xt)dt− rtdt = RPdt = θtσ
2
R(xt)dt and match the coeffi-

cients. The expression for the risk-free interest rate simplifies to

rt =µD +
1

ρxt + ρv(1− xt)

(
ρ2xt + ρ2

v(1− xt)− θ2
t σ

2
R(xt)ρxt − θtσ2

R(xt)ρv
σ̄

σR(xt)
(1− xt)

)
=µD +

1

ρxt + ρv(1− xt)
(
ρ2xt + ρ2

v(1− xt)− θ2
t σ

2
R(xt)ρxt − θtσR(xt)ρvσ̄(1− xt)

)
.

�
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Figure 1.1: Model Solution, Case ρ > ρv
This figure plots equilibrium quantities of interest for the case in which ρ > ρv. In all
sub-plots, the x-axis is the state variable of the model, xt, which is the wealth share of
the unconstrained investor. By construction, the wealth share takes values between
zero and one. In this figure, however, I plot the volatility and the risk premium for
values of xt that are not in the immediate vicinity of the lower boundary of the state
space. Please see the figure on the next page for the case in which x ∈ (0, 1]. The
top-left panel depicts the volatility of the total return process, σR(·). The top-right
panel depicts the risk premium on the risky asset, Et(dRt−rtdt)/dt. The bottom-left
panel plots the portfolio policy of the unconstrained investor. Finally, the bottom-
right panel plots the portfolio policy of the risk-neutral investor (volatility timer).
The vertical blue line in the top-right panel passes through the value of xt for which
the risk premium attains a minimum. I plot the figure for σ̄ = 0.15, σD = 0.20,
ρv = 0.01, and ρ = 0.02.



CHAPTER 1. VOLATILITY-MANAGED PORTFOLIOS IN GENERAL
EQUILIBRIUM 68

0 0.2 0.4 0.6 0.8 1

0.175

0.18

0.185

0.19

0.195

0.2

σ
R
(x)

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Risk Premium(x)

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

140

θ
LOG

(x)

0 0.2 0.4 0.6 0.8 1
0.74

0.76

0.78

0.8

0.82

0.84

0.86
θ

VMP
(x)

Figure 1.2: Model Solution, Case ρ > ρv
This figure plots equilibrium quantities of interest for the case in which ρ > ρv. In
all sub-plots, the x-axis is the state variable of the model, xt, which is the wealth
share of the unconstrained investor. By construction, the wealth share takes values
between zero and one. The top-left panel depicts the volatility of the total return
process, σR(·). The top-right panel depicts the risk premium on the risky asset,
Et(dRt − rtdt)/dt. The bottom-left panel plots the portfolio policy of the uncon-
strained investor. Finally, the bottom-right panel plots the portfolio policy of the
risk-neutral investor (volatility timer). The vertical blue line in the top-right panel
passes through the value of xt for which the risk premium attains a minimum. I
plot the figure for σ̄ = 0.15, σD = 0.20, ρv = 0.01, and ρ = 0.02.
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Figure 1.3: Model Solution, Case ρ < ρv
This figure plots equilibrium quantities of interest for the case in which the uncon-
strained investor is endowed with logarithmic utility over intertemporal consumption
and ρ < ρv. In all sub-plots, the x-axis is the wealth share of the unconstrained in-
vestor, xt. By construction, the wealth share takes values between zero and one. In
the figures, however, I plot the volatility and the risk premium for values of xt that
are not in the immediate vicinity of the lower boundary of the state space. Please
see the figure on the next page for the case in which xt ∈ (0, 1]. The top-left panel
depicts the volatility of the total return process, σR(·). The top-right panel depicts
the risk premium on the risky asset, Et(dRt− rtdt)/dt. The bottom-left panel plots
the portfolio policy of the unconstrained investor. Finally, the bottom-right panel
plots the portfolio policies of the risk-neutral investor (volatility timer) and of the
second investor in the benchmark model. In all sub-plots, the equilibrium quanti-
ties implied by the heterogeneous agent model featuring volatility timers are in red.
The equilibrium quantities implied by the benchmark model are in black. I plot the
figure for σ̄ = 0.1, σD = 0.2, γCM = 3, ρv = 0.1, and ρ = 0.03.
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Figure 1.4: Model Solution, Case ρ < ρv
This figure plots equilibrium quantities of interest for the case in which the uncon-
strained investor is endowed with logarithmic utility over intertemporal consumption
and ρ < ρv. In all sub-plots, the x-axis is the wealth share of the unconstrained in-
vestor, xt. By construction, the wealth share takes values between zero and one. The
top-left panel depicts the volatility of the total return process, σR(·). The top-right
panel depicts the risk premium on the risky asset, Et(dRt−rtdt)/dt. The bottom-left
panel plots the portfolio policy of the unconstrained investor. Finally, the bottom-
right panel plots the portfolio policies of the risk-neutral investor (volatility timer)
and of the second investor in the benchmark model. In all sub-plots, the equilibrium
quantities implied by the heterogeneous agent model featuring volatility timers are
in red. The equilibrium quantities implied by the benchmark model are in black. I
plot the figure for σ̄ = 0.1, σD = 0.2, γCM = 3, ρv = 0.1, and ρ = 0.03.
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Figure 1.5: Quadratic Co-variation and Sharpe Ratios, Case ρ > ρv
In all sub-plots, the x-axis is the wealth share of the unconstrained investor, xt.
The top-left panel of the figure plots the quadratic co-variation between the risk
premium, Et(dRt−rtdt)/dt, on the risky asset and its instantaneous volatility, σR(·).
The top-left panel excludes the region of the state space that is in the immediate
vicinity of the lower boundary of the state space. In the bottom-left panel of the
figure, I plot the quadratic co-variation over the entire state space. Similarly, the
top-right and bottom-right panels plot the Sharpe ratio over different regions of the
state space. I plot the figure for σ̄ = 0.15, σD = 0.20, ρv = 0.01, and ρ = 0.02.
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Figure 1.6: Quadratic Co-variation and Sharpe Ratios, Case ρ < ρv
In all sub-plots, the x-axis is the wealth share of the unconstrained investor, xt.
The top-left panel of the figure plots the quadratic co-variation between the risk
premium, Et(dRt−rtdt)/dt, on the risky asset and its instantaneous volatility, σR(·).
The top-left panel excludes the region of the state space that is in the immediate
vicinity of the lower boundary of the state space. In the bottom-left panel of the
figure, I plot the quadratic co-variation over the entire state space. Similarly, the
top-right and bottom-right panels plot the Sharpe ratio over different regions of the
state space. I plot the figure for σ̄ = 0.1, σD = 0.2, ρv = 0.1, and ρ = 0.03.
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Figure 1.7: Price-Dividend Ratio
The figure plots the price-dividend ratio, St/Dt, of the risky asset. The x-axis is
the wealth share of the unconstrained investor, xt. By construction, the wealth
share takes values between zero and one. I plot the figure for ρv = 0.1 and ρ ∈
{0.03, 0.06, 0.09, 0.10, 0.12, 0.15, 0.18}.
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Figure 1.8: Relation to Martin (2017)
The top-left panel plots the risk premium, Et(dRt − rtdt)/dt, on the risky asset
(black line) and the variance of the risky asset, σ2

R(xt), (red line) for the case in
which ρ < ρv. The bottom-left panel plots the portfolio choice of the unconstrained
investor for the case in which ρ < ρv. The blue horizontal line passes through
θt = 1. The top-right panel plots the risk premium, Et(dRt − rtdt)/dt, on the
risky asset (black line) and the variance of the risky asset, σ2

R(xt), (red line) for
the case in which ρ > ρv. The bottom-right panel plots the portfolio choice of the
unconstrained investor for the case in which ρ > ρv. The blue horizontal line passes
through θt = 1. In all sub-plots, the x-axis is the wealth share of the unconstrained
investor, xt. By construction, the wealth share takes values between zero and one.
In the figures, however, I plot the equilibrium quantities for values of xt that are
not in the immediate vicinity of the lower boundary of the state space. Please see
the figure on the next page for the case in which x ∈ (0, 1].
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Figure 1.9: Relation to Martin (2017)
The top-left panel plots the risk premium, Et(dRt − rtdt)/dt, on the risky asset
(black line) and the variance of the risky asset, σ2

R(xt), (red line) for the case in
which ρ < ρv. The bottom-left panel plots the portfolio choice of the unconstrained
investor for the case in which ρ < ρv. The blue horizontal line passes through
θt = 1. The top-right panel plots the risk premium, Et(dRt − rtdt)/dt, on the risky
asset (black line) and the variance of the risky asset, σ2

R(xt) (red line) for the case in
which ρ > ρv. The bottom-right panel plots the portfolio choice of the unconstrained
investor for the case in which ρ > ρv. The blue horizontal line passes through θt = 1.
In all sub-plots, the x-axis is the wealth share of the unconstrained investor, xt. By
construction, the wealth share takes values between zero and one.
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Figure 1.10: Comparative Statics
This figure plots equilibrium quantities of interest for the case in which ρ > ρv. In all
sub-plots, the x-axis is the state variable of the model, xt, which is the wealth share of
the unconstrained investor. By construction, the wealth share takes values between
zero and one. In this figure, however, I plot the volatility and the risk premium for
values of xt that are not in the immediate vicinity of the lower boundary of the state
space. Please see the figure on the next page for the case in which x ∈ (0, 1]. The top-
left panel depicts the volatility of the total return process, σR(·). The top-right panel
depicts the risk premium on the risky asset, Et(dRt−rtdt)/dt. The bottom-left panel
plots the portfolio policy of the unconstrained investor. Finally, the bottom-right
panel plots the portfolio policy of the risk-neutral investor (volatility timer). I plot
the figure for σD = 0.20, ρv = 0.01, ρ = 0.05, and σ̄ = {0.19, 0.18, 0.15, 0.12, 0.10}.
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Figure 1.11: Comparative Statics
This figure plots equilibrium quantities of interest for the case in which ρ > ρv. In
all sub-plots, the x-axis is the state variable of the model, xt, which is the wealth
share of the unconstrained investor. By construction, the wealth share takes values
between zero and one. The top-left panel depicts the volatility of the total return
process, σR(·). The top-right panel depicts the risk premium on the risky asset,
Et(dRt − rtdt)/dt. The bottom-left panel plots the portfolio policy of the uncon-
strained investor. Finally, the bottom-right panel plots the portfolio policy of the
risk-neutral investor (volatility timer). I plot the figure for σD = 0.20, ρv = 0.05,
ρ = 0.01, and σ̄ = {0.19, 0.18, 0.15, 0.12, 0.10}.
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2.1. Introduction

The stochastic discount factor (SDF) takes a central place in asset pricing theory.

The stochastic discount factor implied by standard equilibrium asset pricing models

is proportional to the marginal value of wealth. Consequently, adverse states of the

world, states in which the marginal value of wealth is high, are characterized by high

values of the SDF, and good states of the world, states in which the marginal value

of wealth is low, are characterized by low values of the SDF. Assets with payoffs

that positively covary with the SDF are valuable hedges and are characterized by

low expected returns. On the other hand, assets with payoffs that negatively covary

with the SDF are very risky, carry a positive risk premium, and are characterized

by high expected returns.

The standard consumption-based asset pricing literature focuses on the house-

hold sector of the economy and assumes that the aggregate household, a theoretical

construct, is the marginal market participant in financial markets. Under this as-

sumption, the SDF of the representative household prices all assets in the economy.

Given that the SDF of the representative household is proportional to the marginal

value of aggregate household wealth, asset returns depend on their covariance with

aggregate household wealth. Notable extensions of the consumption-based liter-

ature, such as the habit formation model of Campbell and Cochrane (1999), the

long-run risk model, Bansal and Yaron (2004), the multi-tree Lucas orchard model,

Martin (2013a), and the heterogeneous agent framework in Chabakauri (2013), go

a long way towards capturing some salient futures of financial markets. In all these

models, however, the household sector occupies the driving seat, and the intermedi-

ary sector does not play any role in the price formation process.

Today, the direct ownership of financial assets on the part of the household sector

is at historically low levels, and the very assumption that the representative house-

hold is the marginal player in financial markets is somewhat problematic. Even mar-

kets for plain-vanilla instruments are heavily dominated by institutional investors
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(financial intermediaries). For example, Koijen and Yogo (2015) report that, as of

2014, institutional investors hold 63% of the stock market. The assumption that

the representative household is marginal in financial markets for complex financial

instruments is even more problematic. This is because the share of institutional

investors in highly specialized markets is even larger.

The standard literature on intermediary asset pricing, exemplified by He and Kr-

ishnamurthy (2013) and Brunnermeier and Sannikov (2014), shifts the focus of the

attention from the household sector towards the intermediary sector and elevates fi-

nancial intermediaries to the central stage of asset pricing. In particular, this strand

of the literature assumes that sophisticated and resourceful financial intermediaries

are better placed to trade in complex financial securities and posits that they are

the marginal players in the market. Consequently, the SDF of the financial interme-

diaries, as opposed to the SDF of the aggregate household sector, constitutes a valid

stochastic discount factor that prices all assets in the economy. The intermediary

SDF is proportional to the level of financial intermediary capital. Upon the arrival

of an adverse shock, the capital of the intermediary takes a hit and its capital po-

sition deteriorates. This leads to an increase in the marginal value of intermediary

capital (wealth) and to a corresponding increase in the SDF. Consequently, assets

with payoffs that negatively covary with negative shocks to intermediary capital are

very risky, carry a positive risk premium, and offer high expected returns.

A casual observation of the composition of the financial services industry in its

current form suffices to conclude that the financial sector exhibits a high degree of

heterogeneity. Namely, a very broad variety of different types of financial institutions

face different constraints and operate under very different objectives. While a narrow

definition of the intermediary sector would only include commercial banks and large

broker-dealers, a broader definition would encompass shadow banks, hedge funds,

and some more traditional parts of the asset management industry. As a result,

the notion of a representative financial intermediary is a very elusive concept. Early

papers on intermediary asset pricing tend to focus on a particular type of financial



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 81

intermediaries and largely ignore financial sector heterogeneity. For example, He

and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014) focus on equity-

constrained financial intermediaries. This particular type of intermediaries can only

issue a limited amount of outside equity, but can, in principle, borrow unlimited

amounts of debt in fixed income markets. Models featuring equity-constrained inter-

mediaries imply pro-cyclical intermediary capital dynamics (countercyclical leverage

dynamics, because leverage is inversely proportional to capital). In contrast, models

featuring debt-constrained intermediaries, for example Brunnermeier and Pedersen

(2009), imply countercyclical intermediary capital dynamics and pro-cyclical lever-

age dynamics. In the latter class of models, the intermediary is unconstrained in

the amount of equity capital it can issue (in Brunnermeier and Pedersen (2009) they

can only issue capital with a lag, but the lag disappears in continuous time). It can,

however, only issue a limited amount of debt.

Notwithstanding that these path-breaking papers offer many valuable insights

and illuminate the links between intermediary capital and asset prices, they over-

simplify the intermediary sector in a very extreme fashion. This is because each

of these models focuses on a particular subset of the intermediary sector and im-

plicitly assumes that the intermediaries in focus are the marginal intermediaries in

the market. If the intermediary sector was homogeneous, or if, at the very least,

it perfectly comprises vertically integrated intermediaries with operational internal

capital markets, this approach would have been without loss of generality. There is,

however, ample evidence to the contrary. In particular, He, Khang, and Krishna-

murthy (2010) and Ang, Gorovyy, and Van Inwegen (2011), among others, report

that different types of financial institutions exhibit very different behaviors and the

intermediary sector is anything but homogeneous. They further show that financial

institutions with comparatively stable funding bases, such as commercial banks, be-

have in a countercyclical way, and institutions dependent on repo and short-term

financing, such as hedge funds, shadow banks, and broker-dealers, behave in a pro-

cyclical way. Namely, upon the arrival of an adverse shock, the latter group faces
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binding funding constraints and finds itself forced to partially offload its risky asset

exposure to the former group of intermediaries at fire-sale prices. This implies that

different types of financial institutions are marginal in different states of the world

(at different times). Consequently, any model featuring a homogeneous intermedi-

ary sector, populated by a single type of financial intermediary, would inevitably

lead to a misspecification of the stochastic discount factor (SDF).

Additionally, models featuring a homogeneous intermediary sector are very un-

realistic in the sense that there are not any countervailing mechanisms that can

attenuate the effect of a hit to the capital position of the intermediary. Contrar-

ian investors willing to support prices in adverse states of the world are completely

absent from this type of models. In both He and Krishnamurthy (2013) and Brun-

nermeier and Sannikov (2014), shocks to capital lead to fire sales and to severe and

prolonged recessions. The only path towards recovery is for intermediaries to very

slowly beef up their capital bases. This mechanism is very counterfactual. In reality,

different groups of intermediaries are hit at different times and complex financial as-

sets never leave the aggregate balance sheet of the financial system. The bankruptcy

of Lehman Brothers in September 2008 is an important case in point. In the after-

math of the bankruptcy, most of the assets previously held on the balance sheet of

Lehman Brothers were sold off to stronger financial institutions, and the assets in

question never left the balance sheet of the financial system.

Here, I propose an intermediary asset pricing model featuring a heterogeneous

intermediary sector populated by equity-constrained and shadow financial interme-

diaries. I nest the heterogeneous intermediary sector in an otherwise standard dy-

namic general equilibrium Lucas (1978) economy with constrained market partic-

ipation. The shadow intermediaries of the model map well to financial institu-

tions with pro-cyclical leverage, such as broker-dealers, hedge funds, and shadow

banks, Ang, Gorovyy, and Van Inwegen (2011). In general, these institutions rely

on short-term repo and wholesale capital market funding. On the other hand, the

equity-constrained intermediaries map to the group of financial institutions that are
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characterized by countercyclical leverage dynamics. These institutions tend to rely

on more stable sources of funding, such as demand (term) deposits and accom-

modative central bank backdrops. Commercial banks constitute a good example

of equity-constrained intermediaries. Whereas the equity-constrained financial inter-

mediary is constrained in the amount of outside equity it can issue (intermediation

constraint), the shadow financial intermediary operates under a leverage constraint.

In the following sections, I describe the leverage constraint and the intermediation

constraint in greater detail.

The explicit modeling of intermediary sector heterogeneity allows me to address

some of the deficiencies inherent to the first generation of intermediary asset pricing

models exemplified by Brunnermeier and Pedersen (2009), He and Krishnamurthy

(2013), and Brunnermeier and Sannikov (2014) and featuring a homogeneous inter-

mediary sector. In particular, I devote particular attention to the interplay between

shadow and equity-constrained intermediaries in the price formation process. The

main theoretical contribution of this chapter is threefold.

First, I show that when the leverage constraint of the shadow financial inter-

mediary binds, intermediary sector heterogeneity reduces the risk premium on the

intermediated risky asset in the constrained region. The reduction is relative to

the case in which the intermediary sector is close to homogeneous. Even through

the risk premium on the risky asset is decreasing in the wealth share of the equity-

constrained intermediary (and to a lesser extent in the wealth share of the shadow

financial intermediary) over most of the state space, the decrease is particularly large

in the constrained region, where the intermediation constraint binds. The economic

intuition behind the decrease in the risk premium is as follows. As I show in the

chapter, the equity-constrained intermediary follows a contrarian (with respect to its

wealth share) trading strategy. Namely, the intermediary increases leverage in states

in which its wealth share is low and decreases leverage when its wealth share is high.

In contrast, so long as the leverage constraint binds, the shadow financial interme-

diary follows a pro-cyclical trading strategy. It increases leverage in low-volatility
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states and decreases leverage in high-volatility states. Over the constrained region of

the state space, volatility is decreasing in the wealth share of the equity-constrained

intermediary. In other words, volatility is countercyclical with respect to its wealth

share. Adverse states, where the wealth share of the equity-constrained financial

intermediary is low and the intermediation constraint is tight are high-volatility

states. When the wealth share of the equity-constrained intermediary is low, the

risk premium should increase in order to induce the equity-constrained intermediary

to increase its leverage and the risky asset market to clear. At the same time, the

shadow financial intermediary reduces its leverage (because the state in which the

wealth share of the equity-constrained intermediary is low is a high-volatility state),

but does not entirely exit the market. Consequently, the risk premium should in-

crease by less compared to the case in which the equity-constrained intermediary

is the captive buyer of the risky asset. On the other hand, states in which the

wealth share of the equity-constrained intermediary is high are low-volatility states.

In these states, the contrarian equity-constrained intermediary decreases its leverage,

and the shadow financial intermediary increases its risky asset position in accordance

with the pro-cyclical trading strategy it follows. Therefore, when the wealth share

of the equity-constrained intermediary is high, the equity-constrained intermediary

partially offloads its risky asset holdings onto the shadow financial intermediary.

This dampens the risk premium relative to the case in which the shadow financial

intermediary, the agent who plays a price-supporting role in low-volatility states,

is absent. In summary, the interplay between equity-constrained and shadow finan-

cial intermediaries is key to understanding the dynamics of the risk premium over

different regions of the state space.

Second, I show that my model, featuring a heterogeneous intermediary sector,

implies a pro-cyclical capital dynamics for the aggregate financial sector, where the

aggregate financial sector combines equity-constrained and shadow financial interme-

diaries. This feature of my model is consistent with He and Krishnamurthy (2013)

and He, Kelly, and Manela (2017) and is also on track with reality as the market cap-
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italization of the aggregate financial sector is pro-cyclical. Even through the model

implies countercyclical leverage for the aggregate financial sector, equity-constrained

and shadow financial intermediaries exhibit very distinct and rich leverage dynamics.

Whereas, over the constrained region of the state space, the model-implied leverage

of the equity-constrained intermediary is countercyclical, the model-implied leverage

of the shadow financial intermediary is pro-cyclical (when the leverage constraint

binds). The latter result is consistent with Adrian, Etula, and Muir (2014). My

model resolves the apparent contradiction between Adrian, Etula, and Muir (2014)

and He, Kelly, and Manela (2017); the former paper claims that the market price

of risk of equity capital is negative, and the latter paper claims that it is positive. I

show that Brunnermeier and Pedersen (2009), the theoretical precursor of Adrian,

Etula, and Muir (2014), applies within the financial sector and He and Krishna-

murthy (2013), the theoretical precursor of He, Kelly, and Manela (2017), applies

at the level of the aggregate intermediary sector.

Finally, I prove that the constrained region shrinks relative to the benchmark

model in which the intermediary sector is homogeneous. This results is consequen-

tial. It now takes a bigger adverse shock, relative to the benchmark model, for the

economy to enter the constrained region, the region over which the intermediation

constraint of the equity-constrained financial intermediaries binds. As I explain in

detail below, this is mainly due to the shock absorption role (price supporting role)

of the shadow financial intermediary.

This chapter relates to two different strands of the literature. The first studies

intermediary asset pricing models. In a pioneering paper, He and Krishnamurthy

(2011) proposed a dynamic general equilibrium intermediary asset pricing model. In

their paper, optimal contracting considerations endogenously give rise to intermedi-

ation. In a closely related paper, He and Krishnamurthy (2013), the authors model

risk premium dynamics in times of crises. Brunnermeier and Sannikov (2014) study

the full equilibrium dynamics of an economy with financial frictions and show that

their economy is prone to instability and occasionally enters volatile crisis episodes.
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Endogenous risk, driven by asset illiquidity, plays a central role in their paper. In

all these models, the net worth of the financial intermediary is a major determinant

of asset prices. All these models, however, fail to take into account intermediary

sector heterogeneity.

This chapter also relates to the literature on general equilibrium asset pricing in

continuous time. In particular, it is related to models with segmented markets and

limited market participation, Basak and Cuoco (1998) and Alvarez, Atkeson, and

Kehoe (2002). My model is also related to the literature studying the equilibrium

effects of constraints. Detemple and Murthy (1997), Basak and Croitoru (2000), and

Kogan, Makarov, and Uppal (2007), among others, study the equilibrium effects of

constraints.

The remainder of this chapter is organized as follows. Section 2.2 discusses the

economic setup and elaborates on the equilibrium conditions. In Section 2.3, I out-

line the model solution approach and analytically solve the model. In particular, I

solve for the boundary separating the constrained region from the unconstrained re-

gion, fully characterize the equilibrium, and derive equilibrium quantities of interest.

All equilibrium quantities depend on the state variables of the model, the wealth

share of the equity-constrained financial intermediary, and the wealth share of the

shadow financial intermediary. I conclude the section with a discussion of the results

and offer economic intuition. Finally, Section 2.4 concludes. In the mathematical

Appendix, I prove all propositions from the main body of the paper and provide

detailed derivations.

2.2. Model

The top panel of Figure 2.1 summarizes the main facets of my model. The model

that I propose features a heterogeneous intermediary sector that is populated by two

distinct types of financial intermediaries, an equity-constrained intermediary and a

shadow financial intermediary. Whereas the equity-constrained intermediary is con-

strained in the amount of outside equity it can issue, it can freely borrow in the
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market for the risk-free asset. It is instructive to compare the augmented model

(top panel of the figure) to the baseline model, He and Krishnamurthy (2013), that

features a homogeneous intermediary sector. In the latter model, in the bottom

panel of Figure 2.1, the intermediary sector of the economy solely comprises equity-

constrained financial intermediaries,1 and they are the only party allowed to trade

the intermediated risky asset. To obtain my model, I augment He and Krishna-

murthy (2013) by adding a second type of financial intermediaries, shadow financial

intermediaries. In the augmented model, both types of intermediaries have access

to the risky asset. [
Insert Figure 2.1

]
There is a single (complex) risky asset and a risk-free bond. Below, I refer to the

complex risky asset as a risky asset, or an intermediated risky asset. The risky asset

is complex in the sense that trading this asset requires a certain degree of sophisti-

cation above the level of sophistication typical for the representative retail investor

(household). Proprietary hedge fund strategies, structured equity products, and

broad market indexes, all of which track difficult to trade and/or illiquid securities,

constitute good examples of complex risky assets that are not directly investable by

the general public.

In the model, I only allow financial intermediaries, which are representative of

sophisticated investors, to trade in the risky asset. This assumption is without

loss of generality. Today, the direct ownership of financial assets is at historically

low levels. For example, as of 2014, institutional investors (intermediaries) hold

63% of the stock market, Koijen and Yogo (2015). In more specialized markets for

complex financial instruments, the share of institutional investors is even higher.

For example, Edwards, Harris, and Piwowar (2007) argue that only 2% of corporate

bond trades are initiated by retail investors, and Siriwardane (2016) reports that

the credit default swap (CDS) market in the United States is dominated by five big

institutional players.

1specialists, or intermediaries in the language of He and Krishnamurthy (2013).
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2.2.1. Assets

I model an infinite-horizon pure exchange Lucas (1978) economy cast in continuous

time. A single perishable consumption good serves as a numeraire. Following con-

vention, I normalize the total supply of the risky asset to one unit. The risk-free

asset is in zero net supply. The holder of the risky asset is entitled to the dividend

stream, {Dt}. The dividend process, {Dt}, follows the drift-diffusion

dDt

Dt

= gdt+ σdBt,

where g ∈ R++ and σ ∈ R++ are exogenous constants. The diffusion coefficient, σ,

admits the interpretation of fundamental risk in the economy. {Bt} is a standard

one-dimensional Wiener process.2 The total return process, {Rt}, follows

dRt =
Dtdt+ dPt

Pt
,

where Pt is the price of the risky asset. As I will show below, {Rt} follows a drift-

diffusion process, and its diffusion coefficient is a function of fundamental risk, σ,

and of the endogenously generated risk. The equilibrium risk-free interest rate, rt,

and the process thereof, {rt}, are determined in equilibrium.

For the reasons that I outline above, the household sector of the economy can

only invest in the risk-free asset and in the equity of the equity-constrained financial

intermediary. Equity-constrained and the shadow financial intermediaries can invest

in both the risky and the risk-free assets. For simplicity, the shadow financial inter-

mediary cannot issue outside equity and is not allowed to invest in the equity of the

equity-constrained financial intermediary.

2I define the one-dimensional Wiener process, {Bt}, on the filtered probability space (Ω,F ,F,P).
I denote by F the augmented filtration generated by the Wiener process. The filtered probability
space satisfies the usual conditions, i.e., the filtration is complete and right-continuous. Here, a
process in this paper is by definition a stochastic process; that is progressively measurable with
respect to {Ft}.
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2.2.2. Equity-Constrained Financial Intermediary

Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013) exemplify

the class of intermediary models featuring equity constraints (capital constraints).

The defining characteristic of this class of models is that they impose restrictions on

the maximum amount of outside equity that agents can rise. There are, however,

no any restrictions on borrowing in the risk-free asset. The representative equity-

constrained financial intermediary maximizes its expected utility from instantaneous

consumption,

E
(∫ ∞

0

e−ρtu(Ct)dt

)
ρ > 0,

where Ct is instantaneous consumption and ρ is the subjective discount factor of the

intermediary. I consider a logarithmic utility function,

u(Ct) = ln(Ct).

The total capital of the intermediary is the sum of its inside (own) equity, Wt, and

the capital that the representative household decides to allocate to the intermediary,

Ht. In the sequel, I follow the terminology of Brunnermeier and Sannikov (2014) and

call Ht outside equity. The intermediary invests its total capital and is unconstrained

in its portfolio choice. Let αIt be the risky asset position of the equity-constrained

intermediary expressed as a fraction of total capital. Then, the return on total

intermediary capital, R̃t, follows the process

dR̃t = rtdt+ αIt (dRt − rtdt),

where Rt is the total return on the risky asset defined above. It is instructive to note

that there is no limit on net borrowing. The intermediary can finance a leveraged

position, αIt > 1, in the risky asset by shorting (αIt − 1)(Wt + Ht) worth of the

risk-free asset.
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Following the extant literature on equity constraints, I assume a capital con-

straint of the form

Ht ≤ mWt,

where m ∈ R++ is a positive constant parameterizing the intermediation constraint.

The constraint admits a very intuitive interpretation. Namely, the representative

household is unwilling to invest more than a fraction of what the equity-constrained

intermediary invests, mWt. Whereas Wt is endogenously determined in equilibrium,

I can exogenously control the tightness of the capital constraint, for any given value

of Wt, by varying m.

The intermediation constraint is tight for low values of m and it loosens for high

values of m. For a given m, the supply of intermediation, Ht, is increasing in the

wealth of the intermediary, Wt. Consequently, in adverse states, characterized by

low levels of equity-constrained intermediary capital, the ability of the household

to indirectly participate in the risky asset market through its outside equity stake

in the intermediary is severely impaired. Below, I show that the tightness of the

intermediation constraint has profound implications for the risk premium on the

risky asset.

As He and Krishnamurthy (2013) elucidate, capital constraints of the form Ht ≤

mWt link net worth and external financing and are widely used in the financial

frictions literature pioneered by the classical work of Holmstrom and Tirole (1997)

and Kiyotaki and Moore (1997), among others. Agency and informational frictions

open a possible avenue to the micro-foundation of the intermediation constraint.

They also admit the interpretation of a skin-in-the-game requirement, one that is

instrumental in the alignment of the incentives of households, on the one hand, and

financial intermediaries, on the other hand.

The representative equity-constrained financial intermediary solves the consump-

tion and portfolio choice problem
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max
{Ct,αI

t }
E
(∫ ∞

0

e−ρtu(Ct)dt

)
ρ > 0,

subject to the dynamic constraint

dWt = −Ctdt+ rtWtdt+ αItWt(dRt − rtdt), (2.1)

where the first term on the right-hand side is instantaneous consumption and the

second term is the risk-free return. αItWt is the dollar size of the risky asset position

and dRt − rtdt is the excess return on the risky asset. It is instructive to note that

it is up to the representative household to decide whether and how much to invest

in the outside equity of the equity-constrained intermediary. The intermediary pas-

sively accepts the outside equity supplied by the household and adds it to its inside

equity. Therefore, the amount of outside equity capital that the equity-constrained

financial intermediary raises is outside of its control. The equity capital raised from

the household also admits the interpretation of a separately managed (wealth man-

agement) account; that is, the intermediary manages the account on behalf of the

household in return for a management fee. Given that there are no any agency

frictions between the intermediary and the representative household and the return

on inside equity is equal to the return on outside equity, I can normalize the man-

agement fee to zero without loss of generality. The return on total intermediary

capital, Wt +Ht, follows the diffusion process

d(Wt +Ht) =− Ctdt+ rt(Wt +Ht)dt+ αIt (Wt +Ht)(dRt − rtdt).

It is immediate to see that the evolution of total wealth admits the unique decom-

position

dWt =− Ctdt+ rtWtdt+ αItWt(dRt − rtdt),
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dHt =rtHtdt+ αItHt(dRt − rtdt),

where the processes {Wt} and {Ht} govern the evolution of inside and outside in-

termediary equity, respectively. The amount of outside equity is pivotal for asset

prices as risky asset demand (in terms of number of shares) is increasing in Ht. This

claim directly follows from the fact that

α̃It = αIt
Wt +Ht

St
,

where α̃It is the risky asset demand of the equity-constrained financial intermediary

in terms of number of shares.

2.2.3. Households

In the interest of tractability, I model the household sector as overlapping generations

(OLG) of agents. A measure one of identical households optimize over

ρh ln(CH
t )dt+ (1− ρhdt)Et(lnWH

t+dt),

where ρh is the subjective discount factor of the household, CH
t is household con-

sumption, and WH
t is household wealth. Given that utility is logarithmic, it is op-

timal for the agent to consume a constant fraction, ρh, of its wealth, CH
t = ρhW

H
t .

In this chapter, I assume that ρh > ρ; that is, households are less patient than the

equity-constrained intermediary.

I divide the household sector into two distinct sub-sectors. A measure λ ∈ [0, 1]

of households can invest in the risk-free asset only. This modeling assumption cre-

ates baseline demand for the risk-free asset and ensures that the aggregate financial

sector is leveraged at all times. I allow the complementary fraction, 1 − λ, of

households to invest in the risky equity of the equity-constrained intermediary. For

expositional simplicity, I aggregate the latter group of households into a representa-

tive household. The OLG structure of the household sector gives rise to a myopic
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portfolio optimization problem. Namely, the representative household maximizes

the mean-variance objective

max
αH
t

αHt Et(dR̃t − rtdt)−
1

2
(αHt )2Vart(dR̃t − rtdt),

where the size of the position in the outside equity of the equity-constrained interme-

diary, αHt , is the only choice variable. The optimization problem of the representative

household is subject to a dynamic constraint:

αHt (1− λ)WH
t ≤ mWt.

The household earns an instantaneous return of R̃t on its risky holdings. This

is because the household invests in the equity of the equity-constrained financial

intermediary and not in the risky asset directly. A brief clarification of the dynamic

constraint is in order. WH
t is total household wealth and 1 − λ is the measure

of households allowed to invest in the risky intermediary equity. Consequently,

(1 − λ)WH
t is the maximum amount of capital that the representative household

can invest in the equity of the intermediary, absent any portfolio constraints. The

imposition of the capital constraint, however, caps the dollar amount of the risky

intermediary equity position of the representative household at mWt. The stochastic

differential equation

dWH
t = (lDt − ρhWH

t )dt+ rtW
H
t dt+ αHt (1− λ)WH

t (dR̃− rtdt)

governs the intergenerational evolution of household wealth. The first term in the

drift coefficient is the labor income of the household. It flows at the rate of lDt

per unit of time, dt. The labor income ameliorates the risk that the household

sector vanishes, e.g., Dumas (1989), thus rendering the general equilibrium analysis

uninteresting. The second component of the drift coefficient, ρhWt, is the optimal

consumption of the household. Finally, αHt (1− λ)WH
t is the dollar size of its risky
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position, and dR̃t − rtdt is the excess return that the household earns on its risky

investment.

2.2.4. Shadow Financial Intermediary

The shadow financial intermediary solves the consumption and portfolio choice prob-

lem

max
{CD

t ,α
D
t }

E
(∫ ∞

0

e−ρdtu(CD
t )dt

)
ρd > 0,

subject to the dynamic budget constraint

dWD
t = −CD

t dt+ rtW
D
t dt+ αDt W

D
t (dRt − rtdt),

and to the leverage constraint

αDt ≤
σ̄

σR(·)
.

I denote the instantaneous consumption of the shadow financial intermediary by CD
t

and its subjective discount factor by ρd, where ρ > ρd. The shadow financial inter-

mediary is endowed with a logarithmic utility function, u(CD
t ) = ln(CD

t ). αDt W
D
t

is the dollar size of its risky asset position and dRt − rtdt is the excess return on

the risky asset. It is instructive to note that I express αDt as a fraction of total

wealth and αDt admits the interpretation of leverage. The leverage constraint caps

the amount of leverage that the shadow financial intermediary can take. Over the

region of the state space where the leverage constraint binds,

αDt =
σ̄

σR(·)
.

Please note that I solve for the region where the leverage constraint binds and derive

an expression for the endogenous volatility, σR(·), in the following sections. σ̄ ∈ R++
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admits the interpretation of a risk limit. Clearly, over the region where the leverage

constraint binds, the agent trades in a pro-cyclical fashion. It scales up its risky

asset exposure in states in which volatility is low and exits the market at times of

high volatility.

Notwithstanding that the shadow financial intermediary of my model is not sub-

ject to a debt constraint, it shares many similarities with the intermediaries implied

by intermediary asset pricing models featuring a debt constraint, for example Brun-

nermeier and Pedersen (2009). Consequently, the shadow financial intermediary of

my model admits the interpretation, albeit with a slight abuse of terminology, of

what the literature calls debt-constrained intermediaries.

2.2.5. Equilibrium Conditions

In this subsection, I formally define the equilibrium concept used to solve the model.

After enlisting all equilibrium conditions, I outline the model solution strategy that

I follow in the following sections.

Definition 2. An equilibrium is a set of price processes and investment policies

{αI(·), αD(·), αH(·)} such that the investment policies solve the dynamic portfolio

optimization problems of the household, of the equity constrained intermediary, and

of the shadow financial intermediary.

1. Given the price process, the household, the equity-constrained intermediary,

and the shadow financial intermediary solve their respective portfolio optimiza-

tion problems.

2. Portfolio decisions are constrained by the intermediation constraint, Ht ≤

mWt.

3. The equity-constrained intermediary is unconstrained in its portfolio choice.
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4. The goods market clears

Ct + CH
t + CD

t = Dt(1 + l).

5. The market for the risky asset clears

αIt (Wt + αHt (1− λ)WH
t ) + αDt W

D
t = Pt.

6. The market for the risk-free asset clears by Walras’ law.

Given that I model a pure exchange Lucas (1978) economy, it should be the case

that in equilibrium total wealth equals the price of the risky asset,

Wt +WH
t +WD

t = Pt.

A further elaboration on the market clearing condition,

αIt (Wt + αHt (1− λ)WH
t ) + αDt W

D
t = Pt,

is in order. The aggregate household wealth is WH
t , and only a measure 1 − λ

of households can invest in the intermediary equity. Therefore, (1 − λ)WH
t is the

total capital of the group of households that can invest in the equity of the equity-

constrained intermediary. Consequently, αHt (1 − λ)WH
t is the outside equity of the

equity-constrained intermediary that households supply and Wt + αHt (1 − λ)WH
t is

its total capital (inside and outside equity). Finally, αIt (Wt + αHt (1− λ)WH
t ) is the

dollar size of the risky asset position of the equity-constrained intermediary.

Equipped with the above equilibrium conditions, I solve for the equilibrium out-

come in terms of the state variables of the model, xt ∈ [0, 1] and βt ∈ [0, 1]. The

former is the wealth share of the equity-constrained financial intermediary, and the

latter is the wealth share of the shadow financial intermediary.
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2.2.6. Stochastic Discount Factor (SDF)

Whereas the household sector and the shadow financial intermediary face portfo-

lio constraints, the equity-constrained financial intermediary is unconstrained in

its portfolio choice. Consequently, the equity-constrained intermediary is always

marginal in the market for the intermediated risky asset and its stochastic discount

factor (SDF) prices all assets in the economy. The risk premium on the risky asset,

Et(dRt)− rtdt = Covt

(
dCt
Ct

, dRt

)
,

directly follows from the Euler equation of the equity-constrained intermediary that

is endowed logarithmic utility over instantaneous consumption,

−ρdt− Et
(
dCt
Ct

)
+ Vart

(
dCt
Ct

)
+ Et(dRt) = Covt

(
dCt
Ct

, dRt

)
.

Please refer to the mathematical Appendix for detailed derivations of the Euler

equation and of the risk premium on the intermediated risky asset.

2.3. Model Solution

I solve the model in terms of the two state variables,

xt =
Wt

Pt
, βt =

WD
t

Pt
.

Whereas xt is the wealth share of the equity-constrained financial intermediary, βt is

the wealth share of the shadow financial intermediary. The model is tractable. All

equilibrium quantities of interest admit closed-form representations.

Here, I define some terminology for further reference. By constrain region I re-

fer to the region of the state space over which the intermediation constraint binds.

By unconstrained region I refer to the region of the state space over which the in-

termediation constraint does not bind. The dynamics of all equilibrium quantities
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in the constrained region are markedly different from their counterparts in the un-

constrained region. For this reason, I first derive the boundary separating the two

regions and then solve for the variables of interest by region.

2.3.1. Separating Boundary

The boundary separating the constrained region from the unconstrained region, xc,

solves

αI,constrained
t =αI,unconstrained

t ,

1− αDt βt
xt(1 +m)

=
1− αDt βt

xt + (1− λ)(1− xt − βt)
.

The second equality comes from the expressions for αI,constrained
t and αI,unconstrained

t

that I derive in the mathematical Appendix. Solving the above expression for xt, I

obtain the cutoff, xc,

xc =
(1− λ)(1− βt)

1 +m− λ
.

For any given βt, the intermediation constraint binds for xt ∈ [0, xc), and it is

slack for xt ∈ [xc, 1−βt]. Some economic intuition is in order. For any given βt, the

wealth share of the household sector, 1− xt − βt, is inversely related to the wealth

share of the equity-constrained intermediary, xt. When xt is high (to the right of

xc), 1−xt−βt is low and the household sector has only a limited amount of capital

to invest. As a result, the intermediation constraint is slack.

Clearly, for any given βt, the absolute value of the cutoff, xc, is increasing in

the tightness of the intermediation constraint, m. In other words, an increase in

m (loosening of the constraint) pushes xc to the left, and the constrained region of

the state space shrinks. This is because for high values of m, households can invest

in the equity of the equity-constrained intermediary even in states in which their

inside equity is low. The absolute value of xc is decreasing in the wealth share of the
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shadow financial intermediary, βt. This is because for high values of βt the sum of

the wealth shares of the household sector and of the equity-constrained intermediary

is low. The risk-taking capacity of the households is severely impaired, and the

constraint is unlikely to bind. Finally, the cutoff xc is increasing in the measure of

households allowed to invest in the risky asset, 1−λ. For the extreme case in which

households are not allowed to invest in the risky intermediary equity, λ = 1, the

economy is unconstrained over the entire state space. As the measure of households

allowed to invest in the risky asset increases, hitting the constraint becomes easier,

and the boundary separating the two regions moves to the right (xc increases).

It is instructive to compare the separating boundary implied by my model, fea-

turing a heterogeneous intermediary sector, to its counterpart, xHc , implied by He

and Krishnamurthy (2013), a model with homogeneous intermediary sector

xHc =
1− λ

1 +m− λ
.

In the following proposition, I summarize some of the most important differences

between the two results.

Proposition 8. (Separating Boundary)

- Intermediary sector heterogeneity loosens the intermediation constraint. For

any given value of βt, the separating boundary, xc, moves to the left (towards

the lower boundary of the state space), and the intermediation constraint does

not bind for lower levels of equity-constrained financial intermediary equity

capital.

- The magnitude of the shift in xc depends on βt, the wealth share of the shadow

financial intermediary.

A brief note is in order. For βt = 0, the model reduces to a model with homogeneous

intermediary sector populated by equity-constrained intermediaries. For βt = 1,
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the model reduces to a model with homogeneous intermediary sector populated by

shadow financial intermediaries.

2.3.2. Risk Premium

Given that the equity-constrained financial intermediary is endowed with logarithmic

utility over instantaneous consumption, it is optimal for it to consume a constant

fraction, ρ, of its wealth between time t and time t + dt. As a result, consumption

growth equals wealth growth,

dCt
Ct

=
dWt

Wt

.

Consequently, in the logarithmic utility case, the risk premium on the intermediated

risky asset simplifies to

Et(dRt)− rtdt =Covt

(
dWt

Wt

, dRt

)
, (2.2)

Et(dRt)− rtdt =αItVart(dRt), (2.3)

where the last equation follows from the dynamic budget constraint of the equity-

constrained financial intermediary. The portfolio choice of the equity-constrained

financial intermediary is key to understanding the risk premium. In the constrained

region, αIt is given by

αIt =
1

xt(1 +m)︸ ︷︷ ︸
He and Krishnamurthy (2013)
Homogeneous Intermediaries

− βtα
D
t

xt(1 +m)
.︸ ︷︷ ︸

Heterogeneous Intermediaries

Please see the mathematical Appendix for a derivation. The expression for αIt admits

a very intuitive decomposition. Namely, it decomposes into the portfolio weight,

1/(xt(1+m)), implied by the standard model with homogeneous intermediary sector,

He and Krishnamurthy (2013), and a second term, −βtαDt /(xt(1 +m)), which takes

into account intermediary sector heterogeneity. Importantly, both αIt from the above
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decomposition and the risk premium on the risky asset depend on the portfolio choice

of the shadow financial intermediary. High risky asset demand on the part of the

shadow financial intermediary has to be compensated by low risky asset demand on

the part of the equity-constrained financial intermediary in order for the market for

the risky asset to clear.

2.3.3. Characterization of Equilibrium

First, I consider the region of the state space over which both the intermediation

constraint and the leverage constraint bind, i.e., the economy is in the constrained

region of the state space, and the leverage constraint binds. In this region,

αDt = min

(
αIt ,

σ̄

σR(·)

)
=

σ̄

σR(·)
.

Namely, the shadow financial intermediary follows a trading strategy that is inversely

proportional to the level of volatility. I then derive an expression for the volatility,

σR(·), of the total return process, {Rt}, and show that it is a function of the state

variables xt and βt. The following proposition reports the equilibrium outcome.

Proposition 9. (Equilibrium, Both Constraints Bind)

Over the region of the state space in which both the intermediation constraint and

the leverage constraint bind, the equilibrium volatility, the portfolio policy functions,

and the risk premium are given by

σR(xt, βt) =

(
1− A

1 +m

)−1(
σ(1− Axt −Bβt) +Bσ̄βt −

Aσ̄βt
1 +m

)
,

αIt =
1− αDt βt
(1 +m)xt

=
1− σ̄

σR(xt,βt)
βt

(1 +m)xt
,

αHt =
mxt

(1− λ)(1− xt − βt)
,

αDt =
σ̄

σR(xt, βt)
,

RPt =αItσ
2
R(xt, βt),



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 102

where

A
.
= 1− ρ

ρh
, B

.
= 1− ρd

ρh
.

Please see the mathematical Appendix for a detailed proof of the proposition.

For any given βt > 0, the intermediary sector is close to homogeneous for xt → 0,

and it is heterogeneous for xt > 0. This is because for xt → 0, the intermediary

sector solely comprises the shadow financial intermediaries, and for xt > 0 both

equity-constrained and shadow financial intermediaries populate the intermediary

sector. Clearly, for the case in which both the intermediation constraint and the

leverage constraint bind, the volatility of the total return process is linear in the

wealth shares xt and βt, the state variables of the model. In the Appendix, I show

that, for any given value of βt, the boundary, x̂c, that separates the constrained

region over which the leverage constraint binds from the constrained region over

which it does not bind is given by

x̂c =
βtσ̄(1−B)− σ(1−Bβt)
A(σ̄ − σ)− σ̄(1 +m)

.

Next, I consider the region of the state space over which the intermediation

constraint binds, but the leverage constraint does not bind, i.e., the economy is in

the constrained region of the state space, and the leverage constraint does not bind.

The following proposition summarizes the equilibrium outcome.

Proposition 10. (Equilibrium, Only the Intermediation Constraint Binds)

Over the region of the state space in which only the intermediation constraint binds,

the equilibrium volatility, the portfolio policy functions, and the risk premium are

given by

σR(xt, βt) =

(
1− Axt +Bβt

(1 +m)xt + βt

)−1

σ(1− Axt −Bβt),

αIt =
1

(1 +m)xt + βt
,
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αHt =
mxt

(1− λ)(1− xt − βt)
,

αDt =αIt ,

RPt =αItσ
2
R(xt, βt).

Please see the mathematical Appendix of the paper for a detailed proof of the

proposition. Next, I consider the region of the state space over which the intermedi-

ation constraint does not bind, but the leverage constraint binds, i.e., the economy

is in the unconstrained region of the state space, and the leverage constraint binds.

The following proposition summarizes the equilibrium outcome.

Proposition 11. (Equilibrium, Only the Leverage Constraint Binds)

Over the region of the state space in which only the leverage constraint binds, the

equilibrium volatility, the portfolio policy functions, and the risk premium are given

by

σR(xt, βt) =

(
1− Axt

xtλ+ (1− λ)(1− βt)

)−1

×
(
σ(1− Axt −Bβt) +Bσ̄βt −

Aσ̄βtxt
λxt + (1− λ)(1− βt)

)
,

αIt =
1− αDt βt

xtλ+ (1− λ)(1− βt)
=

1− σ̄
σR(xt,βt)

βt

xtλ+ (1− λ)(1− βt)
,

αHt =1,

αDt =
σ̄

σR(xt, βt)
,

RPt =αItσ
2
R(xt, βt).

In the Appendix, I show that for any given value of βt, the boundary, x̂u, that

separates the unconstrained region over which the leverage constraint binds from

the unconstrained region over which it does not bind is given by

x̂u =
σ̄(βt(λ−B) + 1− λ)− σ(1−Bβt)

A(σ̄ − σ)− σ̄λ
.
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Finally, I consider the region of the state space over which neither the intermediation

constraint nor the leverage constraint binds, i.e., the economy is in the unconstrained

region of the state space, and the leverage constraint does not bind. The following

proposition summarizes the equilibrium outcome.

Proposition 12. (Equilibrium, Neither Constraint Binds)

Over the region of the state space in which neither the intermediation constraint nor

the leverage constraint binds, the equilibrium volatility, the portfolio policy functions,

and the risk premium are given by

σR(xt, βt) =

(
1− Axt +Bβt

xtλ+ βtλ+ 1− λ

)−1

σ(1− Axt −Bβt),

αIt =
1

xtλ+ βtλ+ 1− λ
,

αHt =1,

αDt =αIt ,

RPt =αItσ
2
R(xt, βt).

For realistic values of the risk limit, σ̄, the leverage constraint is likely to bind

over the constrained region of the state space (the region in which the intermediation

constraint binds). As a result, the case in which the economy is in the constrained

region and the leverage constraint binds is of particular interest. For this reason,

below I devote more attention to the study of the equilibrium outcome in the afore-

mentioned case. In the following proposition, I study the properties of the total

return process volatility, the portfolio policy functions, and the risk premium on the

intermediated risky asset. The analysis of the properties of the diffusion coefficient

is important, because it is the main driver of most of the equilibrium quantities of

interest, such as the risk premium on the risky asset and the leverage dynamics.

Proposition 13. Equilibrium Quantities, Properties

Consider the region of the state space in which both the intermediation constraint

and the leverage constraint bind. For σ̄ < σ + Aσ/(B(1 +m)− A),
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• The total return process volatility, σR(xt, βt), is decreasing in the wealth share

of the equity-constrained financial intermediary, xt, and in the wealth share of

the shadow financial intermediary, βt,

∂σR(xt, βt)

∂xt
< 0,

∂σR(xt, βt)

∂βt
< 0.

• The portfolio choice of the shadow financial intermediary is pro-cyclical with

respect to the wealth shares of the intermediaries, xt and βt,

∂αDt
∂xt

> 0,
∂αDt
∂βt

> 0.

• The portfolio choice of the equity-constrained financial intermediary is coun-

tercyclical with respect to xt and βt,

∂αIt
∂xt

< 0,
∂αIt
∂βt

< 0.

• The risk premium on the intermediated risky asset is decreasing in the degree

of intermediary sector heterogeneity.

So long as the risk limit is not too loose, σ̄ < σ+Aσ/(B(1+m)−A), the volatil-

ity of the total return process exhibits countercyclical dynamics with respect to xt

and βt over the constrained region of the state space. As a result of this, the lever-

age of the shadow financial intermediary exhibits pro-cyclical dynamics, and the

leverage of the equity-constrained intermediary exhibits countercyclical dynamics.

More importantly, the risk premium on the intermediated risky asset is decreasing

in the degree of intermediary sector heterogeneity. For any given value of βt (xt),

the intermediary sector is close to homogeneous for xt → 0 (βt → 0) and heteroge-

neous for xt > 0 (βt > 0). As the wealth share of the equity-constrained (shadow

financial) intermediary moves away from its lower boundary, the degree of financial

sector heterogeneity increases and the risk premium on the risky asset decreases.
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Consequently, the risk premium is decreasing in the degree of intermediary sector

heterogeneity. Intuitively, as xt increases the intermediation constraint loosens and

households can invest more in the outside equity of the intermediary. This leads

to an increase in the risky asset demand on the part of the equity-constrained in-

termediary and to a corresponding decrease in the risk premium. In the knife-edge

case, where βt → 0, the model reduces to a model with homogeneous intermedi-

ary sector populated by equity-constrained intermediaries, and I recover the He and

Krishnamurthy (2013) results.

2.3.4. Price-Dividend Ratio

I impose market clearing in the goods market and obtain an expression for the price

of the risky asset as a function of exogenous dividends, Dt, the endogenous wealth

of the equity-constrained financial intermediary, Wt, and the endogenous wealth of

the shadow financial intermediary, WD
t ,

Pt =
1 + l

ρh
Dt +

(
1− ρ

ρh

)
Wt +

(
1− ρd

ρh

)
WD
t .

Please see the mathematical Appendix for a detailed derivation. The first term on

the right-hand side admits the interpretation of liquidation value of the risky asset.

When Wt, the wealth of the equity-constrained financial intermediary, and WD
t ,

the wealth of the shadow financial intermediary, approach zero, (near-complete dis-

intermediation of the intermediary sector) the price of the risky asset approaches

the liquidation value from above.

The price of the risky asset is increasing in the labor income of the household

sector, l. This is because wealthier households invest more in the outside equity

of the equity-constrained financial intermediary. This leads to higher risky asset

demand on the part of the equity-constrained financial intermediary as its risky

asset demand is increasing, in dollar terms, in total capital. Under the parametric

restriction ρh > ρ; that is, households are impatient relative to the equity-constrained
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intermediary, 1 − ρ/ρh > 0, and the price of the risky asset is increasing in equity-

constrained intermediary wealth, Wt. The larger the differential between the two, ρ

and ρh, the stronger the effect.

Whereas the price of the risky asset is a function of Dt, Wt, and WD
t , the price-

dividend ratio only depends on the state variables of the model (and on exogenous

parameters), which are the wealth share of the equity-constrained financial inter-

mediary xt, and the wealth share of the shadow financial intermediary βt. The

price-dividend ratio is given by

Pt
Dt

=
1 + l

ρh − (ρh − ρd)βt − (ρh − ρ)xt
.

The price-dividend ratio exhibits pro-cyclical dynamics, with respect to xt, in the

sense that it goes up in good states (when the wealth share of the equity-constrained

financial intermediary is high) and down in bad states. This is because the tightness

of the intermediation constraint is decreasing in xt.

2.3.5. Model-Implied Leverage Dynamics

Models featuring debt constraints, for example, Brunnermeier and Pedersen (2009),

imply pro-cyclical leverage dynamics (countercyclical capital dynamics). In other

words, the price of risk of intermediary capital is negative. On the other hand,

models featuring equity constraints, for example, Brunnermeier and Sannikov (2014)

and He and Krishnamurthy (2013), imply counter-cyclical leverage dynamics (pro-

cyclical capital dynamics). In these models, the price of risk of intermediary capital

is positive.

In a recent paper, He, Kelly, and Manela (2017) empirically show that interme-

diary capital is strongly priced in a broad cross-section of assets and the price of risk

of intermediary capital is positive. This implies a negative price of risk for leverage.

On the other hand, Adrian, Etula, and Muir (2014) report a negative price of risk

for intermediary capital (positive price of risk of leverage). Thus, the results related
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to the sign of the market price of risk in Adrian, Etula, and Muir (2014) are in direct

contradiction to the results that He, Kelly, and Manela (2017) report.

He, Kelly, and Manela (2017) devote an entire chapter of their paper to the

reconciliation of their results with Adrian, Etula, and Muir (2014). Even though

they offer numerous different explanations, the authors conclude that the results

are most likely different because the two papers analyse different types of financial

institutions. Whereas Adrian, Etula, and Muir (2014) define intermediaries as stand-

alone U.S. broker-dealers and broker-dealer subsidiaries of conglomerates, He, Kelly,

and Manela (2017) calculate equity capital using holding company-level data.

Below, I study the leverage dynamics implied by my model. I first derive the

leverage dynamics at the level of the aggregate financial sector. Let W F
t be the cap-

ital (wealth) of the aggregate financial sector and let αFt be the risky asset position

thereof. Given that only financial intermediaries are allowed to hold the risky asset

directly, market clearing implies

αFt W
F
t = Pt.

The wealth of the aggregate financial sector is

W F
t = Wt + αHt (1− λ)WH

t +WD
t .

The first term on the right-hand side of the expression is the inside equity of the

equity-constrained financial intermediary. The outside equity that households supply

to the equity-constrained financial intermediary is αHt (1− λ)WH
t , where (1− λ)WH

t

is the total wealth of the group of households that are allowed to invest in the

risky asset. Finally, WD
t is the capital of the shadow financial intermediary. I then

solve for the risky asset position of the aggregate intermediary sector. It admits the

representation

αFt =
Pt
W F
t

=
1

(xt + βt)λ+ 1− λ



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 109

in the unconstrained region of the state space (the region in which the intermedia-

tion constraint does not bind). Similarly, the risky asset position of the aggregate

financial sector is

αFt =
Pt
W F
t

=
1

xt(1 +m) + βt

in the constrained region. Please see the mathematical Appendix for a detailed

derivation.

Proposition 14. The leverage of the aggregate intermediary sector (combining

equity-constrained and shadow financial intermediaries) is countercyclical.

In Proposition 13, I show that when both the leverage constraint and the in-

termediation constraint bind, the leverage of the shadow financial intermediary is

pro-cyclical with respect to xt and βt (the state variables), and the leverage of the

equity-constrained intermediary is countercyclical with respect to xt and βt.

Consequently, He and Krishnamurthy (2013) applies at the level of the aggregate

financial sector, because it implies counter-cyclical leverage dynamics. In contrast,

Brunnermeier and Pedersen (2009) implies pro-cyclical leverage and it only describes

the leverage dynamics of a particular type of a financial intermediary, that of the

shadow financial intermediary. In other words, Brunnermeier and Pedersen (2009)

applies within the financial sector. My model, featuring a heterogeneous interme-

diary sector, generates rich leverage dynamics, and, as I show below, allows me to

study flows between different types of intermediaries within the intermediary sector.

2.3.6. Discussion of Results and Economic Intuition

In this section, I calibrate the model and plot the equilibrium quantities of interests

as functions of the state variables xt and βt. Notwithstanding that in the logarithmic-

utility case all equilibrium quantities of interest admit closed-form expressions, the

graphical representation of the results enables me to convey the underlying economic

intuition in a more concise and accessible way. For expositional simplicity, I focus



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 110

on a model calibration in which the leverage constraint binds over the entire state

space.

[
Insert Figure 2.2

]
In Figure 2.2, I plot the boundary separating the constrained region from the

unconstrained region for the different values of xt and βt. The wealth share of the

equity-constrained intermediary, the wealth share of the shadow financial intermedi-

ary, and the wealth share of the household sector sum to one, by construction. For

this reason, the region in dark blue is not attainable. The line separating the yellow

region from the green region is the separating boundary. The economy is constrained

in the yellow region (both the intermediation constraint and the leverage constraint

bind) and unconstrained in the green region (the intermediation constraint does

not bind, but the leverage constraint binds). For βt = 0, the intermediary sector

solely comprises the equity-constrained intermediary, and the model reduces to the

benchmark model in He and Krishnamurthy (2013). On the other extreme, the case

in which βt = 1, the intermediary sector is again homogeneous, but this time it is

solely populated by the shadow financial intermediary. The main region of interest

is the region where βt ∈ (0, 1) and xt ∈ (0, 1), and the intermediary sector is hetero-

geneous. As the wealth share of the shadow financial intermediary, βt, goes up the

constrained region shrinks relative to the size of the unconstrained region. This is

because the relative importance of the equity-constrained intermediary is decreasing

in the wealth share of the shadow financial intermediary.

[
Insert Figure 2.3

]
[

Insert Figure 2.4
]

Figures 2.3 and 2.4 depict the risk premium on the risky asset. Whereas Figure

2.3 plots the risk premium over the entire state space, Figure 2.4 excludes the

region that is in the immediate vicinity of the lower boundaries of the state space.

Therefore, Figure 2.4 is a zoomed-in version of Figure 2.3. Notwithstanding that
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all equilibrium quantities are well defined over the entire state space, they take very

extreme values in the vicinity of the lower boundaries of the state space, where

xt → 0, or βt → 0, or xt → 0 and βt → 0. For this reason, Figure 2.4 is particularly

useful in analyzing my results.

The risk premium is decreasing in xt, the wealth share of the equity-constrained

financial intermediary, and in βt, the wealth share of the shadow financial inter-

mediary. In the constrained region, a decrease in the wealth share of the equity-

constrained intermediary, xt, leads to a sharp increase in the risk premium. As

the equity-constrained intermediary follows a countercyclical (countercyclical with

respect to xt) or contrarian trading strategy, it increases leverage as xt falls. The

lower the wealth share, the more aggressively the intermediary trades. Even though

the equity-constrained intermediary follows an admissible trading strategy and not

a doubling down strategy, its trading strategy is reminiscent of a doubling down

strategy. As time goes by, the aggressive contrarian trading strategy starts bearing

fruits. The equity-constrained intermediary earns a very high risk premium on a

massively leveraged position. Its wealth recovers, and its wealth share rises. This

mechanism pushes xt towards the separating boundary (away from the boundaries

of the state space).

As it is clear from the figure, the risk premium is decreasing in both xt and βt.

It is instructive to note, however, that the risk premium is more sensitive to xt.

The amplification mechanism that is at play is key to understanding the sensitiv-

ity of the risk premium with respect to xt. Consider a drop in the wealth of the

equity-constrained intermediary, Wt. Any drop in Wt tightens the intermediation

constraint, Ht ≤ mWt. In other words, it potentially reduces the maximum amount

of outside equity that households can contribute in the constrained region. If the

intermediation constraint is binding, a one-unit decrease in Wt leads to a reduction

of outside equity by m∆Wt = m units. Consequently, the total capital of the equity-

constrained intermediary decreases by 1 +m units. Keeping αIt constant, the dollar

amount of the risky asset position of the equity-constrained intermediary decreases
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by (1 + m)αIt units. As is evident from the top panel of Figure 2.7, however, the

equity-constrained intermediary effectively follows a contrarian investment strategy;

that is, αIt goes up as xt falls. Consequently, the trading strategy of the intermediary

acts as a countervailing force to the above amplification mechanism and partially

attenuates its effect. On balance, the risk premium should be high for low values of

xt in order to induce the intermediary to invest and the market for the risky asset

to clear.

[
Insert Figure 2.5

]
[

Insert Figure 2.6
]

When xt is low, volatility is high (please refer to Figures 2.5 and 2.6) and the

shadow financial intermediary sells the risky asset. The risk premium should increase

in order to induce the contrarian equity-constrained intermediary to increase its

leverage and clear the market. For low values of xt, the shadow financial intermediary

reduces its risky asset position, but does not entirely exit the market. As a result, the

risk premium should increase by less, compared to the case in which the intermediary

sector is homogeneous and the equity-constrained intermediary is the only party that

is allowed to trade in the risky asset market. In the unconstrained region, volatility

is low and xt + βt is high. As the shadow financial intermediary follows a pro-

cyclical (with respect to xt and βt) trading strategy, it increases its leverage and αDt

goes up. At the same time, the contrarian equity-constrained intermediary reduces

its leverage. The equity-constrained intermediary sells, and the shadow financial

intermediary buys, and by doing so, it supports prices and lowers the risk premium.

The incremental demand on the part of the shadow financial intermediary dampens

the risk premium, compared to the case in which the equity-constrained intermediary

is the only buyer. In summary, it is not the case that a particular investor type

determines the risk premium over the entire state space. On the contrary, the

risk premium is governed by the interplay between equity-constrained and shadow

financial intermediaries.



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 113

When xt → 0, the equity-constrained intermediary becomes fully dis-intermediated,

and the heterogeneous intermediary sector reduces to a homogeneous intermediary

sector populated by shadow financial intermediaries. On the other hand, when

βt → 0, the shadow financial intermediary becomes fully dis-intermediated, and the

heterogeneous intermediary sector reduces to a homogeneous intermediary sector

populated by equity-constrained financial intermediaries. Importantly, over the con-

strained region of the state space, the risk premium on the risky asset is decreasing

in intermediary sector heterogeneity. This is because for any given value of βt, the

risk premium is decreasing in xt, and for any given value of xt it is decreasing in βt.

The risk premium attains a maximum in the vicinity of the state in which xt → 0

and βt → 0. This is the state in which the household sector owns most of the wealth

in the economy.

[
Insert Figure 2.7

]
The top panel of Figure 2.7 depicts the risky asset position of the equity-constrained

intermediary, αIt , over the entire state space, and the bottom panel of the figure plots

αDt , the portfolio policy function of the shadow financial intermediary.

Consistent with the theoretical results from the previous section, αIt exhibits

countercyclical behavior with respect to xt and βt over the constrained region of the

state space. In other words, when the wealth share of the equity-constrained inter-

mediary is low and the intermediation constraint is binding, the equity-constrained

intermediary increases its leverage. The shadow financial intermediary follows a pro-

cyclical (with respect to xt and βt) trading strategy (bottom panel of Figure 2.7). As

volatility is decreasing in xt (Figures 2.5 and 2.6), the trading strategy of the shadow

financial intermediary also admits the interpretation of a volatility timing strategy.

It increases the size of the risky asset position in times of low volatility (high xt

states) and reduces exposure in high-volatility states (low xt states). Importantly,

the effect of the introduction of the shadow financial intermediary is not limited to a

shift in the boundary that separates the constrained region from the unconstrained
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region. The introduction of the shadow financial intermediary profoundly affects the

trading behavior of the equity-constrained intermediary over the entire state space.

2.4. Conclusion

I propose a general equilibrium intermediary asset pricing model featuring a het-

erogeneous financial sector comprising equity-constrained and shadow financial in-

termediaries.

I show that, in the constrained region, the risk premium on the risky asset is de-

creasing in the degree of intermediary sector heterogeneity. This is because shadow

financial intermediaries trade in a pro-cyclical fashion and equity-constrained inter-

mediaries follow a contrarian trading strategy. At times of high volatility, the shadow

financial intermediary offloads its risky asset holdings onto the equity-constrained

intermediary. Thus, in high-volatility states, the trading behavior of the equity-

constrained intermediary ameliorates the pricing pressure and reduces the risk pre-

mium. The opposite holds true in low-volatility regimes. Being a contrarian, the

equity-constrained intermediary wants to sell. At the same time, the shadow financial

intermediary wants to buy as it effectively follows a volatility timing trading strat-

egy. Thus, in low-volatility states, the shadow financial intermediary ameliorates

the pricing pressure on the risky asset and dampens the risk premium.

Additionally, intermediary sector heterogeneity allows for a very rich leverage

dynamics within the intermediary sector.
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2.5. Mathematical Appendix

2.5.1. Euler Equation of the Equity-Constrained Financial Intermediary

The equity-constrained financial intermediary is unconstrained in its portfolio choice

and is always marginal in the market. Consequently, the stochastic discount factor

of the equity-constrained intermediary constitutes a valid stochastic discount factor.

The SDF, Λ(·), is proportional to the marginal utility of consumption of the equity-

constrained financial intermediary,

Λt ∝ e−ρt
∂u(Ct)

∂Ct
.

I then do Itô on Λt and note that

dΛt

Λt

= −ρdt+
e−ρt

Λt

∂2u(Ct)

∂C2
t

dCt +
1

2

e−ρt

Λt

∂3u(Ct)

∂C3
t

d〈C,C〉t.

The last step is to impose a drift restriction on dΛtRt and use the fact that

u(Ct) = ln(Ct).

After a straightforward simplification I obtain the Euler equation,

−ρdt− Et
(
dCt
Ct

)
+ Vart

(
dCt
Ct

)
+ Et(dRt) = Covt

(
dCt
Ct

, dRt

)
,

of the equity-constrained financial intermediary.

�

2.5.2. Portfolio Choice

In this subsection, I derive expressions for the optimal portfolio policy functions of

the representative household, of the equity-constrained financial intermediary, and

of the shadow financial intermediary. I do the derivations for the constrained and
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unconstrained regions of the state space separately.

• Constrained Region

Note that in the constrained region αHt (1 − λ)WH
t = mWt. This is because

in the constrained region the intermediation constraint, Ht ≤ mWt, binds and

the household sector invests the maximum permissible amount, mWt, in the

outside equity of the equity-constrained intermediary. Solving for αHt , I obtain

the portfolio policy function of the household,

αHt =
mxt

(1− λ)(1− xt − βt)
.

The portfolio policy function of the shadow financial intermediary, αDt , takes

the form

αDt = min

(
αIt ,

σ̄

σR(·)

)
.

When the leverage constraint does not bind, the portfolio choice of the shadow

financial intermediary is the same as the portfolio choice of the equity-constrained

financial intermediary. This is because both intermediaries maximize logarith-

mic utility over instantaneous consumption. I derive the portfolio policy func-

tion of the equity-constrained financial intermediary from the market clearing

condition,

αIt (Wt +mWt) + αDt W
D
t = Pt.

Consequently,

αIt =
1− αDt βt
xt(1 +m)

.

There are two cases to consider. For the case in which the leverage constraint
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binds,

αDt =
σ̄

σR(·)
, αIt =

1

xt(1 +m)
− βt
xt(1 +m)

σ̄

σR(·)
.

For the case in which the leverage constraint does not bind,

αDt = αIt , αIt =
1

(1 +m)xt + βt
.

Below, I summarize the portfolio policy functions of all agents of the model in

the constrained region.

- Region in which the leverage constraint binds

αIt =
1− αDt βt
(1 +m)xt

=
1− σ̄

σR(·)βt

(1 +m)xt
,

αHt =
mxt

(1− λ)(1− xt − βt)
,

αDt =
σ̄

σR(·)
.

- Region in which the leverage constraint does not bind

αIt =
1

(1 +m)xt + βt
,

αHt =
mxt

(1− λ)(1− xt − βt)
,

αDt =αIt .

• Unconstrained Region

In the unconstrained region αHt = 1. Below, I formally prove this claim. House-

holds that are allowed to invest in the risky equity-constrained intermediary

equity optimize over

max
αH
t

αHt Et(dR̃t − rtdt)−
1

2
(αHt )2Vart(dR̃t − rtdt)
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subject to their dynamic budget constraint. In the unconstrained region, the

intermediation constraint is slack by construction. I obtain

αHt =
Et(dR̃t)− rtdt

Var(dR̃t)

from the FOC. Using the facts that dR̃t−rtdt = αIt (dRt−rtdt), and (Et(dRt−

rtdt))/dt = αItσ
2
R(·) (please see the main body of the paper for a proof of the

latter claim), I obtain

αHt =
αIt (Et(dRt)− rtdt)

(αIt )
2Var(dRt)

=
(αIt )

2

(αIt )
2

= 1.

The portfolio policy function of the shadow financial intermediary, αDt , takes

the form

αDt = min

(
αIt ,

σ̄

σR(·)

)
.

When the leverage constraint does not bind, the portfolio choice of the shadow

financial intermediary is the same as the portfolio choice of the equity-constrained

financial intermediary. This is because both intermediaries maximize logarith-

mic utility over instantaneous consumption. I derive the portfolio policy func-

tion of the equity-constrained financial intermediary from the market clearing

condition,

αIt (Wt + αHt (1− λ)WH
t ) + αDt W

D
t = Pt.

Consequently,

αIt =
1− αDt βt

xt + (1− λ)(1− xt − βt)
=

1− αDt βt
xtλ+ (1− λ)(1− βt)

.

There are two cases to consider. For the case in which the leverage constraint



CHAPTER 2. INTERMEDIARY ASSET PRICING WITH HETEROGENEOUS
FINANCIAL INTERMEDIARIES 119

binds,

αDt =
σ̄

σR(·)
, αIt =

1− αDt βt
xtλ+ (1− λ)(1− βt)

=
1− σ̄

σR(·)βt

xtλ+ (1− λ)(1− βt)
.

For the case in which the leverage constraint does not bind,

αDt = αIt , αIt =
1

xtλ+ βtλ+ 1− λ
.

Below, I summarize the portfolio policy functions of all agents of the model in

the unconstrained region.

- Region in which the leverage constraint binds

αIt =
1− σ̄

σR(·)βt

xtλ+ (1− λ)(1− βt)
,

αHt =1,

αDt =
σ̄

σR(·)
.

- Region in which the leverage constraint does not bind

αIt =
1

xtλ+ βtλ+ 1− λ
,

αHt =1,

αDt =αIt .

�

2.5.3. Price-Dividend Ratio

The household, the equity-constrained financial intermediary, and the shadow finan-

cial intermediary are endowed with logarithmic utility over instantaneous consump-

tion. Consequently, it is optimal for them to consume constant fractions of their
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wealth,

CH
t =ρhW

H
t ,

CD
t =ρdW

D
t ,

Ct =ρWt.

Using the fact that Wt+W
D
t +WH

t = Pt, and imposing market clearing in the goods

market,

Ct + CH
t + CD

t =Dt(1 + l),

ρWt + ρhW
H
t + ρdW

D
t =Dt(1 + l).

After a straightforward simplification, I obtain

Pt =
1 + l

ρh
Dt +

(
1− ρd

ρh

)
WD
t +

(
1− ρ

ρh

)
Wt.

To obtain an expression for the equilibrium price-dividend ratio, I divide both sides

of the above equation by Dt and solve for Pt/Dt. The price-dividend ratio is given

by

Pt
Dt

=
1 + l

ρh − (ρh − ρd)βt − (ρh − ρ)xt
.

�

2.5.4. Volatility of the Total Return Process

I start from the expression for the total return on the intermediated risky asset

dRt =
dPt
Pt

+
Dt

Pt
dt = µR(·)dt+ σR(·)dBt.
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I then do Itô on Pt,

Pt =
1 + l

ρh
Dt +

(
1− ρd

ρh

)
WD
t +

(
1− ρ

ρh

)
Wt,

and obtain

dPt =
1 + l

ρh
dDt +

(
1− ρ

ρh

)
dWt +

(
1− ρd

ρh

)
dWD

t .

The next step is to note that Wt, W
D
t , and Dt evolve according to

dWt =− Ctdt+ rtWtdt+ αItWt(dRt − rtdt),

dWD
t =− CD

t dt+ rtW
D
t dt+ αDt W

D
t (dRt − rtdt),

dDt =gDtdt+ σDtdBt.

Consequently, the SDE for Pt takes the form

dPt =
1 + l

ρh
dDt +

(
1− ρ

ρh

)
dWt +

(
1− ρd

ρh

)
dWD

t ,

dPt
Pt

=(·)dt+
1 + l

ρh

1

Pt
σDtdBt +

(
1− ρ

ρh

)
1

Pt
αItWtσR(·)dBt

+

(
1− ρd

ρh

)
1

Pt
αDt W

D
t σR(·)dBt.

It is useful to note that

Dt(1 + l)

ρh
= Pt −

(
1− ρ

ρh

)
Wt −

(
1− ρd

ρh

)
WD
t .

I then match the diffusion coefficients to obtain

σR(·) =σ
1

Pt

(
Pt −

(
1− ρ

ρh

)
Wt −

(
1− ρd

ρh

)
WD
t

)
+

(
1− ρ

ρh

)
αItxtσR(·) +

(
1− ρd

ρh

)
αDt βtσR(·).
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After a straightforward simplification, σR(·) simplifies to

σR(·) =σ − σ
(

1− ρ

ρh

)
xt −

(
1− ρd

ρh

)
σβt +

(
1− ρ

ρh

)
αItxtσR(·)

+

(
1− ρd

ρh

)
αDt βtσR(·),

=σ(1− Axt −Bβt) + AαItxtσR(·) +BαDt βtσR(·),

where I define

A
.
= 1− ρ

ρh
,

B
.
= 1− ρd

ρh
,

in order to simplify notation. Below, I derive expressions for volatility region by

region.

2.5.5. Leverage Dynamics

The wealth of the aggregate financial sector is given by

W F
t = Wt + αHt (1− λ)WH

t +WD
t .

Market clearing in the market for the intermediated risky asset implies αFt W
F
t = Pt.

Consequently,

αFt =
Pt
W F
t

=
Pt

Wt + αHt (1− λ)WH
t +WD

t

,

=
1

xt + αHt (1− λ)(1− xt − βt) + βt
.

Given that αHt = 1 in the unconstrained region (please see above for a proof), αFt is

given by

αFt =
Pt
W F
t

=
1

xtλ+ βtλ+ 1− λ
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in the unconstrained region of the state space and by

αFt =
Pt
W F
t

=
1

xt(1 +m) + βt

in the constrained region of the state space. Clearly, in both regions αFt is counter-

cyclical with respect to xt and βt.

�

2.5.6. Proof of Proposition 8 (Separating Boundary)

The boundary that separates the constrained region from the unconstrained region of

the state space is decreasing in βt. The claim of the proposition follows immediately.

�

2.5.7. Proof of Proposition 9 (Equilibrium, Both Constraints Bind)

Please refer to section 2.5.2 of the mathematical Appendix for the derivation of αIt ,

αDt , and αHt . I start from the expression for σR(·),

σR(·) =σ(1− Axt −Bβt) + AαItxtσR(·) +BαDt βtσR(·),

that I derived above, and substitute out the expressions for αIt and αDt . After a

straightforward simplification, I obtain

σR(·) =σ(1− Axt −Bβt) + AαItxtσR(·) +BαDt βtσR(·),

σR(·) =

(
1− A

1 +m

)−1(
σ(1− Axt −Bβt) +Bσ̄βt −

Aσ̄βt
1 +m

)
.

By substituting the expressions for σR(·) and αIt into RPt = αItσ
2
R(·), I obtain the

equilibrium risk premium over the region in which both the intermediation constraint

and the leverage constraint bind.

�
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2.5.8. Proof of Proposition 10 (Equilibrium, Only the Intermediation Constraint

Binds)

Analogous to the proof of Proposition 9 (Equilibrium, Both Constraints Bind).

�

2.5.9. Proof of Proposition 11 (Equilibrium, Only the Leverage Constraint Binds)

Analogous to the proof of Proposition 9 (Equilibrium, Both Constraints Bind).

�

2.5.10. Proof of Proposition 12 (Equilibrium, Neither Constraint Binds)

Analogous to the proof of Proposition 9 (Equilibrium, Both Constraints Bind).

�

2.5.11. Proof of Proposition 13 (Equilibrium Quantities, Properties)

Over the region of the state space in which both the intermediation constraint and

the leverage constraint bind, the volatility of the total return process is given by

σR(xt, βt) =

(
1− A

1 +m

)−1(
σ(1− Axt −Bβt) +Bσ̄βt −

Aσ̄βt
1 +m

)
.

Please refer to Proposition 9 for a proof of this claim. It is immediate to see that

∂σR(xt, βt)

∂xt
= −σA

(
1− A

1 +m

)−1

.

By assumption, ρh > ρ. Therefore, A ∈ (0, 1). Consequently, the total return

process volatility is decreasing in xt. Similarly,

∂σR(xt, βt)

∂βt
=

(
1− A

1 +m

)−1(
−Bσ +Bσ̄ − Aσ̄

1 +m

)
.
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Under the parameter restriction,

σ̄ < σ +
Aσ

B(1 +m)− A
,

the total return process volatility is decreasing in βt. Therefore,

∂σR(xt, βt)

∂xt
< 0,

∂σR(xt, βt)

∂βt
< 0.

The portfolio policy function of the shadow financial intermediary is given by

αDt =
σ̄

σR(xt, βt)
.

Given that volatility is decreasing in xt and βt, α
D
t is increasing in xt and βt. I

then prove the claim related to the leverage dynamics of the equity-constrained

intermediary. The expression for the leverage of the equity-constrained intermediary

is given by

αIt =
1− αDt βt
(1 +m)xt

=
1− σ̄

σR(·)βt

(1 +m)xt
.

The result follow immediately from the fact that volatility is decreasing in xt and

βt. Finally, the risk premium on the intermediated risky asset is given by

RPt =αItσ
2
R(xt, βt).

Given that both αIt and σ2
R(xt, βt) are decreasing in xt and βt, the risk premium is

decreasing in the state variables. This completes the proof of the proposition.

�

2.5.12. Separating Boundary (Leverage Constraint)

In this sub-section, I derive the separating boundary that separates the region over

which the leverage constraint binds from the region over which it does not bind. I do
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the derivations separately for the constrained and unconstrained regions of the state

space (The constrained region is the region over which the intermediation constraint

binds).

• Constrained region

The portfolio policy function of the shadow financial intermediary is given by

αDt = min

(
αIt ,

σ̄

σR(·)

)
.

At the boundary,

αIt =
σ̄

σR(·)
,

where

αIt =
1

(1 +m)xt + βt
,

σR(·) =σ(1− Axt −Bβt) + AαItxtσR(·) +BαDt βtσR(·)

=σ(1− Axt −Bβt) + AxtσR(·) σ̄

σR(·)
+BβtσR(·) σ̄

σR(·)

=σ(1− Axt −Bβt) + Axtσ̄ +Bβtσ̄.

Consequently,

αIt =
σ̄

σR(·)
,

1

(1 +m)xt + βt
=

σ̄

σ(1− Axt −Bβt) + Axtσ̄ +Bβtσ̄
.

I then solve for xt to determine the boundary,

x̂c =
βtσ̄(1−B)− σ(1−Bβt)
A(σ̄ − σ)− σ̄(1 +m)

.

• Unconstrained region
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At the boundary,

αIt =
σ̄

σR(·)
,

where

αIt =
1

xtλ+ βtλ+ 1− λ
,

σR(·) =σ(1− Axt −Bβt) + Axtσ̄ +Bβtσ̄.

Consequently,

αIt =
σ̄

σR(·)
,

1

xtλ+ βtλ+ 1− λ
=

σ̄

σ(1− Axt −Bβt) + Axtσ̄ +Bβtσ̄
.

I then solve for xt to determine the boundary,

x̂u =
σ̄(βt(λ−B) + 1− λ)− σ(1−Bβt)

A(σ̄ − σ)− σ̄λ
.

�
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2.6. Appendix (Figures)
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Figure 2.1: Model Diagram
This diagram summarizes the main facets of my model (top panel), which fea-
tures a heterogeneous intermediary sector, and compares it to the baseline model
(bottom panel) with a homogeneous intermediary sector, He and Krishnamurthy
(2013). The top panel shows the three different types of agents (blue rectangles):
an equity-constrained intermediary, a shadow financial intermediary, and an aggre-
gate household. The risk-free asset (green circle) and the risky asset (orange circle)
are the only financial assets in the economy. Green arrows refer to trading in the
risk-free asset. All three agents of the model can trade the risk-free asset. The black
arrow refers to trading in the outside equity of the equity constrained intermediary.
Only households can invest in the outside equity of the equity-constrained financial
intermediary. Red arrows refer to trading in the intermediated risky asset. Both
the equity-constrained intermediary and the shadow financial intermediary can trade
the intermediated risky asset. Households cannot directly trade the intermediated
risky asset, but can get exposure to it by investing in the outside equity of the
equity-constrained intermediary. In the baseline model, in the bottom panel, the
intermediary sector solely comprises equity-constrained intermediaries.
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Figure 2.2: Separating Boundary
This figure depicts the boundary separating the constrained region (the region of the
state space over which the intermediation constraint binds) from the unconstrained
region. On the x-axis, I have the wealth share of the equity-constrained intermediary,
xt. On the y-axis, I have the wealth share of the shadow financial intermediary, βt.
The wealth share of the equity-constrained intermediary, the wealth share of the
shadow financial intermediary, and the wealth share of the household sum to one.
Consequently, the region in dark blue is not attainable. The line separating the
yellow region from the green region is the separating boundary. The model economy
is unconstrained in the green region and, is constrained in the yellow region. Please
see the table in the Appendix for parameter values.
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Figure 2.3: Risk Premium
This figure depicts the risk premium on the risky asset. On the x-axis, I have the
wealth share of the equity-constrained intermediary, xt. On the y-axis, I have the
wealth share of the shadow financial intermediary, βt. The wealth share of the equity-
constrained intermediary, the wealth share of the shadow financial intermediary, and
the wealth share of the household sum to one. I plot the risk premium on the risky
asset over the entire state space. Please see the table in the Appendix for parameter
values.
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Figure 2.4: Risk Premium (zoomed-in version)
This figure depicts the risk premium on the risky asset. On the x-axis, I have the
wealth share of the equity-constrained intermediary, xt. On the y-axis, I have the
wealth share of the shadow financial intermediary, βt. The wealth share of the equity-
constrained intermediary, the wealth share of the shadow financial intermediary, and
the wealth share of the household sum to one. I plot the risk premium for values
of βt and xt that are not in the immediate vicinity of the boundaries of the state
space. Please see the table in the Appendix for parameter values.
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Figure 2.5: Total Return Process Volatility
This figure depicts the volatility of the total return process, σR(·). On the x-axis,
I have the wealth share of the equity-constrained intermediary, xt. On the y-axis,
I have the wealth share of the shadow financial intermediary, βt. The wealth share
of the equity-constrained intermediary, the wealth share of the shadow financial in-
termediary, and the wealth share of the household sum to one. Here, I plot the
volatility over the entire state space. Please see the table in the Appendix for pa-
rameter values.
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Figure 2.6: Total Return Process Volatility (zoomed-in version)
This figure depicts the volatility of the total return process, σR(·). On the x-axis,
I have the wealth share of the equity-constrained intermediary, xt. On the y-axis, I
have the wealth share of the shadow financial intermediary, βt. The wealth share of
the equity-constrained intermediary, the wealth share of the shadow financial inter-
mediary, and the wealth share of the household sum to one. I plot the volatility for
values of βt and xt that are not in the immediate vicinity of the boundaries of the
state space. Please see the table in the Appendix for parameter values.
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Figure 2.7: Portfolio Policy Functions
This figure depicts the portfolio choice of the equity-constrained intermediary, αIt ,
(top panel of the figure) and the portfolio choice of the shadow financial intermediary,
αDt , (bottom panel of the figure). On the x-axis, I have the wealth share of the equity-
constrained intermediary, xt. On the y-axis, I have the wealth share of the shadow
financial intermediary, βt. The wealth share of the equity-constrained intermediary,
the wealth share of the shadow financial intermediary, and the wealth share of the
household sum to one. I plot the portfolio policy functions over the entire state
space. Please see the table in the Appendix for parameter values.
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2.7. Appendix (Tables)
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Table 2.1: Parameter Values
This table summarizes the parameter values that I use in the calibration of the
model.

Parameter Parameter Value
Subjective discount factor of the repre-
sentative household

ρh 0.05

Subjective discount factor of the
shadow financial intermediary

ρd 0.01

Subjective discount factor of the equity-
constrained intermediary

ρ 0.03

Tightness of the intermediation con-
straint

m 0.6

Fraction of households that are not al-
lowed to invest in the outside equity of
the equity-constrained intermediary

λ 0.4

Risk limit of the shadow financial inter-
mediary

σ̄ 0.2

Volatility of the dividend growth pro-
cess

σ 0.2

Labor income of the household sector l 0.1
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3.1. Introduction

Recent episodes in both the United States and Europe allow us to underscore an

important link between expected interest rates, volatility, and bond risk premia. For

example, between mid-2014 and 2015, we observe a 60% increase in option-implied

bond market volatility. During this period, implied volatility increased in antici-

pation of monetary tightening on the part of the Federal Reserve and fueled fears

of liquidity squeezes in the bond market. Similarly, in the summer of 2015, Mario

Draghi, President of the European Central Bank, commented that “we should get

used to periods of higher volatility” in an era of low interest rates. Market par-

ticipants tend to associate heightened volatility with bad economic states, and a

plethora of research documents the negative impact of volatility shocks onto the

real economy. It is common to measure the compensation for volatility shocks as

the difference between physical expected variance and risk-neutral expected vari-

ance. The literature refers to this differential as the variance risk premium (VRP).

Surprisingly, the extant literature that studies variance risk premia almost exclu-

sively focuses on the equity market and largely ignores the Treasury market. Here,

we seek to fill this gap in the literature.

Here, we document a set of novel facts that relate to the Treasury variance

risk premia (TVRP), the co-movement between Treasury and equity variance risk

premia, and the link between the EVRP and the TVRP and expected stock and

bond returns. First, the premium that investors are willing to pay to hedge against

changes in variance in the bond market is smaller in absolute terms than the equity

variance risk premium. However, accounting for variance risk premium volatility, we

document that the TVRP are economically comparable to the EVRP. Second, the

sign of the conditional correlation between stock returns and bond yields switches

more often than the sign of the conditional correlation between equity and Treasury

variance risk premia. Third, both the equity and the Treasury variance risk premia

predict equity and bond excess returns. We document predictability at both short
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(3 months) and long (12 months) horizons. In particular, short maturity TVRP

predict excess returns on short maturity bonds. Long maturity TVRP and the

EVRP predict excess returns on long maturity bonds. Interestingly, whereas the

EVRP predicts equity returns for horizons of up to 6 months, the 30-year TVRP is

a formidable predictor at longer horizons. Finally, we present evidence that expected

inflation is a powerful common denominator of the findings we document. Below,

we further elaborate on these points.

The first contribution of this chapter pertains to the quantification of the ex-ante

variance risk premia for 5-, 10-, and 30-year Treasuries, as well as the equity variance

risk premium for the S&P 500 index. The ex-ante variance risk premium admits the

definition of the spread between expected physical and expected risk-neutral vari-

ance. Although it is possible to calculate the latter quantity from the cross section

of option prices, in model-free fashion, the calculation of the objective expectation

requires some mild auxiliary modeling assumptions. A priori, it is not immediately

clear what the best proxy for the objective expectation should be. For example,

Andersen, Bollerslev, and Diebold (2007) show that simple autoregressive models,

which are directly estimated from realized returns, tend to outperform parametric

approaches geared towards forecasting integrated volatility. Thus, in the calculation

of our benchmark bond variance risk premia, we use an extension of the HAR-TCJ

model for realized variance that Corsi, Pirino, and Renò (2010) propose. In partic-

ular, we augment the original Corsi, Pirino, and Renò (2010) model by including

lagged implied variances as additional regressors.1

Using data covering the period from 1991 to 2014, we obtain the following results.

First, in absolute terms the size of the Treasury variance risk premium is orders of

magnitude smaller than the size of its equity market counterpart. More specifically,

whereas the average equity VRP is -13.48 (monthly and expressed as a squared

1In a recent paper, Bollerslev, Sizova, and Tauchen (2012) use a simple heterogeneous autore-
gressive RV model to construct a proxy for the equity variance risk premium. In a closely related
paper, Busch, Christensen, and Nielsen (2011) estimate the augmented HAR-RV model featuring
lagged IVs with the objective of forecasting realized volatility. Bekaert and Hoerova (2014) evaluate
a series of different models to obtain the “best” estimate of the ex-ante equity risk premium.
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percentage), the bond market counterparts are -3.24, -1.59, and -0.54 for the 30-

, 10-, and 5-year Treasury futures, respectively. However, standardizing by their

volatility to study their relative economic magnitude, we find that TVRP(5) <

TVRP(30) < TVRP(10) ∼ EVRP.2

Second, bond market variance risk premia are particularly large during periods

of distress that are unique to the bond market and exhibit less extreme variation

in times of distress attributable to the equity market. To better understand the

difference between variance risk premia in the bond and the equity markets, we study

their conditional correlation. The study of the conditional correlation is important,

because conditional correlations are a key input into any asset allocation decision.

We first consider the correlations between Treasury variance risk premia of different

maturities. On average, the correlations between Treasury variance risk premia are

very high. We further document that correlations decrease at the onset of recessions,

when market participants expect the Federal Reserve to loosen monetary policy. On

the other hand, correlations increase during recoveries, when the Federal Reserve

tends to take a less accommodative stance on monetary policy. The greater the

wedge between maturities, the more pronounced the correlations pattern. Next,

motivated by the broad empirical literature that studies the correlation between

returns on the S&P 500 index and long-term Treasury yields and establishes that

the correlation between equity returns and bond yields has changed signs multiple

times in the past three decades, we study the co-movement between the EVRP and

the TVRP at different maturities. We find that the conditional correlation between

bond and equity variance risk premia is more stable over time. Unconditionally,

the correlation is positive, but low. Economically, this implies that relative hedging

demands against shocks to bond and equity variance are driven by distinct factors.

Namely, the price attached to equity variance risk can be high (low) at times when

the price attached to bond variance risk is low (high). Moreover, we find that the

conditional correlation between bond and equity variance risk premia is more volatile

2TVRP(τ) denotes the 1-month Treasury variance risk premium on a τ -year bond.
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than the correlation between equity returns and bond yields.

Third, we study the predictive power of bond and equity variance risk premia

for Treasury and equity futures excess returns. In a set of univariate predictability

regressions, we find that Treasury variance risk premia significantly predict Trea-

sury and equity futures returns for a wide range of horizons of up to 12 months. In

addition to being highly statistically significant, our point estimates are also econom-

ically relevant. For example, at the 3-month horizon, TVRP(5) and the TVRP(10)

forecast 5- and 10-year futures excess returns with factor loadings significant at the

1% level and point estimates that imply a 0.2 standard deviation change in expected

excess returns for a 1-standard-deviation shock to the TVRP.

We further document that the predictive power of the TVRP(5) and the TVRP(10)

is particularly strong for shorter maturity futures and shorter horizons. At the same

time, 30-year futures excess returns are only marginally predictable by the TVRP(5)

and appear unrelated to other variance risk premia. We confirm the well-documented

short-run (holding periods of up to 6 months) predictive power of the equity VRP

for equity excess returns and note that the predictive power of TVRP for equity ex-

cess returns is much more nuanced. Surprisingly, TVRP(5) and TVRP(10) are only

weakly related to equity excess returns. On the other hand, the TVRP(30) contains

substantial information about expected equity returns for horizons in excess of 6

months. For instance, at the 12-month horizon we obtain a factor loading of −0.35,

a t-statistic of −4.36, and a R2 of 12%.

Finally, considering a representative set of multivariate regressions, we find that

the predictive power of the TVRP(5) and the TVRP(10) for 5- and 10-year futures

excess returns remains essentially unchanged when we add the equity VRP as a sec-

ond predictor variable. More interestingly, when including both the TVRP(30) and

the EVRP when predicting equity excess returns, we find that the EVRP remains

highly significant up to a 6 month forecasting horizon, after which time the forecast-

ing power is driven by the TVRP(30). We argue that this is an important finding

for the literature given the attention devoted thus far to studying short-run EVRP
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predictability of equity returns. We also study the predictive power of the equity

and the bond variance risk premia in multivariate regressions with standard control

variables. For equity returns, we find the predictive power of the EVRP and the

TVRP to be virtually unchanged when we add standard predictors to the regression.

On the other hand, we find that for bond returns the predictive power of the TVRP

is subsumed by well-established predictors, such as the slope of the term structure

and the Cochrane and Piazzesi (2005) factor. In other words, the compensation for

variance risk is a spanned determinant of term structure dynamics.

Exploiting real versus nominal Treasury dynamics, we present reduced-form ev-

idence that expected inflation is a powerful common determinant of variance risk

premia and their co-movement. In particular, we show that short maturity break-

even inflation rates (a proxy for expected inflation) explain between 36% and 53%

of the variation in variance risk premia across stock and bonds. At the same time,

break-even rates are important determinants of stock bond correlation and of the

correlation between variance risk premia. The economic and statistical magnitudes

of these findings are large. We claim that these results are consistent with the sig-

naling role of inflation in deflationary economies. Namely, negative inflation shocks

serve as a strong signal about future growth, a signal which raises the price agents

are willing to pay to insure against volatility shocks. At the same time, negative

inflation shocks drive stock returns and bond yields in opposite directions. This is

because stock returns are low through the expected cash flow channel, and bonds

serve as deflation hedges. Finally, we focus on the link between break-even inflation

and the correlation between variance risk premia. The loading on break-even infla-

tion is negative, large in magnitude, and highly statistically significant. Intuitively,

deflationary shocks drive a positive hedging demand against future return volatility

in states in which agents are willing to pay more to insure against variance shocks.

Related Literature
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This chapter relates to two different strands of the literature. The first studies

variance risk premia in reduced form. Carr and Wu (2009) use option portfolios

to approximate variance swaps on individual stocks. Martin (2013b) studies sim-

ple variance swaps that are robust to jumps in the price process of the underlying

instrument and that can be perfectly replicated. Bondarenko (2014) empirically

documents that the S&P 500 carries a large and negative variance risk premium.

While the above papers focus on variance risk in the equity space only, a different

strand of literature looks at compensation for volatility risk in the fixed income mar-

ket. For example, Trolle (2009) reports that shorting variance swaps in the Treasury

futures market generates Sharpe ratios that are about two to three times larger than

the Sharpe ratios of the underlying Treasury futures. Choi, Mueller, and Vedolin

(2017) empirically document economically large and negative variance risk premia

and argue that there are significant returns to variance trading in Treasury markets

that are comparable to those earned in the equity variance market. However, none

of these papers studies the joint dynamics of bond and equity variance risk premia.

In a recent paper, Dew-Becker, Giglio, Le, and Rodriguez (2017) explore the term

structure of equity variance risk premia. They find that it is difficult to reconcile the

data-implied time-series dynamics of the variance risk premium with what is implied

by standard consumption based asset pricing models and offer market segmentations

as a possible explanation. In a similar vein, Barras and Malkhozov (2016) estimate

the equity variance risk premia implied by option prices and stock returns. They find

that although the same economic factors drive both variance risk premia, the two

are significantly different. The authors interpret their findings as evidence of market

frictions between equity and equity option markets. In line with these results, we

confirm that the equity and the bond VRP are likely driven by similar economic

determinants.

This chapter also relates to Adrian, Crump, and Vogt (2016), who study the

predictive power of equity volatility for stock and bond returns. More specifically,

Adrian, Crump, and Vogt (2016) investigate the non-linear relationship between
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risk and returns. They show that specifications that allow for non-linearities are

superior to standard predictive regressions that use either the VIX index or realized

volatility. Using the VIX as a proxy, Adrian, Crump, and Vogt (2016) find strong

predictive power for both stock and bond portfolios at different horizons. Ghysels,

Guérin, and Marcellino (2014) estimate a regime-switching model and report similar

results.

We are not the first to study the effects of macroeconomic variables on the

correlation between stocks and bonds. For example, Li (2002) documents that un-

certainty about future inflation and, to a lesser extent, the real interest rate are the

main drivers of time variation in the stock-bond correlation. Baele, Bekaert, and

Inghelbrecht (2010) estimate a structural regime-switching model and find that un-

certainty about future inflation, the equity variance risk premium, and stock market

liquidity are important determinants of the stock-bond correlation. The results of

Asgharian, Christiansen, and Hou (2016) point in the same direction. We are the

first to show that macroeconomic variables drive the correlation between variance

risk premia in equity and bond markets.

3.2. Estimation of Expected Variance

In this section, we describe the methods we use to estimate the expected physical

variance, EP
t

(∫ t+τ
t

σ2
udu
)

, the expected risk neutral variance, EQ
t

(∫ t+τ
t

σ2
udu
)

, and

the variance risk premium. Please note that σu stands for the conditional standard

deviation of returns. We define the variance risk premium as the difference between

expected physical variance and expected risk-neutral variance,

VRP = EP
t

(∫ t+τ

t

σ2
udu

)
− EQ

t

(∫ t+τ

t

σ2
udu

)
. (3.1)

We calculate the expected risk-neutral and expected physical variance in real

time, that is, over a forecasting horizon of 1-month (τ = 1 month), and use these

quantities to construct proxies for the equity and Treasury variance risk premia.
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For Treasuries, we start in 1991 and compute a monthly TVRP measure sampled

daily. In the process, we use options and futures on 5-, 10-, and 30-year Treasury

notes and bonds. Following convention in the empirical literature on variance risk

premia, in the equity space we use the squared VIX index as a proxy for expected

variance under the risk-neutral measure. For the realized leg of the EVRP, we use

high-frequency data on the S&P 500 index.3

3.2.1. Data

In the calculation of our proxies for implied and realized variance, we use futures

and options data from the Chicago Mercantile Exchange (CME). In particular, we

use high-frequency intra-day price data for 5-, 10-, and 30-year Treasury notes and

bond futures, as well as high-frequency S&P 500 index data. Additionally, we use

end-of-day option prices, where the options are written on the underlying indexes.

The sample period starts in 1990 and runs until 2014.

At present, Treasury futures are only electronically traded on GLOBEX. How-

ever, historically, they were also traded by open outcry, and electronic trade data

only became available in August 2000. To maximize our time span, we use data

both from electronic and pit trading sessions. We only consider trades that occur

during regular trading hours, that is, 7:20 am–2:00 pm Central Time (CT), when

the products are traded side-by-side in both markets.4 The contract months for the

Treasury futures are the first five consecutive contracts in the March, June, Septem-

ber, and December quarterly cycle. Consequently, at any given point in time, we

observe up to five contracts on the same underlying instrument. To obtain a single

3We can alternatively use high-frequency S&P 500 index futures data to calculate the realized
variance and options written on index futures to calculate the implied variance. The difference
between the implied variance extracted from options on index futures and the implied variance
calculated from the VIX index is negligible. No matter what measure of implied variance we use,
all results remain qualitatively the same. Nevertheless, to be consistent with the literature on
equity variance risk premia, we use the VIX index for our benchmark results. As we will explain
later, the approach that we follow in the estimation of the equity variance risk premium is slightly
different from the approach that we follow in the estimation of the Treasury variance risk premia.

4Liquidity in the after-hours electronic market is significantly lower than the liquidity during
regular trading hours.
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time series, we roll over the futures on the 28th day of the month preceding the

month when the futures contract expires.

In the equity market, it is trivial to construct an investable time series of re-

turns (and of excess returns). For example, one can use the S&P 500 index or an

alternative stock market index, see, e.g., Goyal and Welch (2008). On the other

hand, in fixed income markets the construction of an investable index constitutes

a herculean task, because we construct hypothetical bond excess returns series by

interpolating zero coupon yields, see, e.g., Cochrane and Piazzesi (2005). An al-

ternative approach to constructing excess bond return series would be to use daily

changes in the smoothed zero-coupon yield curve. In the interest of consistency, we

opt for a different approach. Namely, we use the returns on a fully collateralized

futures position. These returns are investable because both Treasury and S&P 500

index futures are very liquid and easy to trade. This approach not only allows us

to be consistent across fixed income and equity but it has the added advantage of

using the same series we use in the calculation of the Treasury variance risk premia.[
Insert Table 3.1

]
Table 3.1 reports summary statistics for the 1-month excess returns on Treasury

and equity futures, as well as on the S&P 500 cash index. It is instructive to note

that the summary statistics for the spot S&P 500 index are very similar to the

summary statistics for the S&P 500 index futures. In particular, the correlation

between equity cash index returns and futures returns is close to 99%. This is

indicative of the fact that trading in the futures is a viable alternative to trading in

the spot stock market index. Importantly, Treasury futures returns and volatilities

are increasing in the tenor of the underlying. The same holds true for the maximum

and for the minimum (in absolute terms) monthly excess returns. Not surprisingly,

Treasury futures returns are less negatively skewed than are equity returns and are

characterized by a slightly lower kurtosis.

The contract months for the options are the first 3 consecutive months (two

serial expirations and one quarterly expiration) plus 4 months in the March, June,
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September, and December quarterly cycle. Whereas serials exercise into the first

nearby quarterly futures contract, quarterlies exercise into futures contracts of the

same delivery period. The procedure we apply to the rollover of the options is

consistent with the procedure we apply to the rollover of the futures.5

3.2.2. Variance Trading and Variance Risk Premia

An abundance of over-the-counter and exchange-traded instruments deliver expo-

sure to (or allow for the hedging of) variance shocks. The variance swap contract

constitutes a good example. In a plain-vanilla variance swap, the buyer pays the

variance swap strike price (or the expected variance under the risk-neutral measure),

and the seller pays the realized variance at expiry, Allen, Einchcomb, and Granger

(2006). For variance swaps on the S&P 500 index, it is standard practice to use the

VIX squared as a measure of expected variance under the martingale measure. For

the realized leg, it is common to use squared daily log returns.

The VIX squared is equal to the fair strike of a variance swap only under some

very restrictive assumptions, such as the absence of jumps in the price process of the

underlying instrument. In a recent paper, Martin (2013b) proposes simple variance

swaps that are robust to jumps. Given that in the presence of jumps one can no

longer use the VIX as a fair strike price for the swap contract, Martin (2013b)

defines a new index, the SVIX, and shows that the squared SVIX is the fair strike

of the simple variance swap. Whereas the VIX squared depends on all cumulants of

log returns, the SVIX squared delivers clean exposure to the risk-neutral variance

of simple returns. In summary, Martin (2013b) proposes a powerful approach that

allows for the perfect replication of variance swap contracts.

Bondarenko (2014) takes a different approach in an attempt to ameliorate the

difficulties related to the perfect replication of the standard variance contract. In

particular, in addition to changing the pay-off function, he proposes a novel specifi-

5Please refer to the CME website (www.cmegroup.com) for detailed information about contract
specifications for Treasury futures and options.

www.cmegroup.com
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cation for realized variance,

R̃V t,D = 2
N∑
i=1

(xt,i − ln(1 + xt,i)) , (3.2)

where xt,i = Pi/Pi−1−1 denotes the simple return over [ti−1, ti], and N is the number

of observed intra-day returns. For comparison, the standard contract uses the sum

of squared logarithmic returns, and Martin (2013b) uses the sum of squared simple

returns. Bondarenko (2014) proceeds to show that any partition of the resultant

payoff can be perfectly replicated even for the case in which the price of the under-

lying asset follows a jump-diffusion process. Consequently, the definition of realized

variance that Bondarenko (2014) puts forward is particularly suitable for real-world

applications, where it is infeasible to rebalance the replicating portfolio on a con-

tinuous basis and daily data form the basis for the calculation of the variance swap

payoff.

Empirically, Bondarenko (2014) finds that variance risk is strongly priced in the

equity market. Additionally, the variance risk premium is large in magnitude and

is negative. Choi, Mueller, and Vedolin (2017) use the specification in Bondarenko

(2014) and introduce a variance swap contract for Treasury volatility. In their paper,

Choi, Mueller, and Vedolin (2017) allow for stochastic interest rates and show how

to perfectly replicate the Treasury variance swap contract. The authors find that

variance risk premia in the bond market are negative and economically significant.

3.2.3. Physical Variance

The variance risk premium, as we define it in equation (3.1), is a purely theoretical

construct. This is because we do not observe integrated variance,
∫ t+τ
t

σ2
udu. The

insights from Bondarenko (2014) and Choi, Mueller, and Vedolin (2017) nudge us

towards forecasting a measure of realized variance that is relevant from a practical

point of view and that admits perfect replication under realistic assumptions. Given

that the specification in equation (3.2) ticks both boxes, in our implementation we
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forecast R̃V as defined in equation (3.2).

Before we discuss the model, we define some useful notation for further reference.

The daily realized variance (implied by the squared logarithmic returns), RVt,D, is

given by

RVt,D =
N∑
i=1

r2
t,i, (3.3)

where rt,i = lnPi − lnPi−1. Clearly, rt,i admits the interpretation of an intra-day

logarithmic return over [ti−1, ti] and Pi is the futures price at time ti. On each

trading day, we sample rt,i during CME pit trading hours, which is between 7:20 am

and 2:00 pm Central Time.6 Following Andersen, Bollerslev, and Diebold (2007), we

calculate the daily realized variance, RVt,D, using prices at the 5-minute frequency.

Below, we also make use of the weakly, RVt,W , as well as of the monthly, RVt,M ,

realized variances. The daily realized variance serves as an input to the calculation

of these quantities. More formally,

RVt,W =
1

5
×

4∑
j=0

RVt−j,D, and RVt,M =
1

21
×

21−1∑
j=0

RVt−j,D.

One possible way to obtain an estimate for the expected physical variance be-

tween time t and time t+τ is to use empirical projections of realized variance on some

variables in the information set. Important insights that we draw from the large

empirical literature that studies the salient properties of realized variance justify this

approach. First, the literature documents that realized variance is very persistent.

Consequently, the most recent variance estimates are high in informational content,

Corsi (2009). Second, the informational content implicit in the jump component

of realized variance is different from that implicit in the continuous component of

realized variance, Andersen, Bollerslev, and Diebold (2007) and Corsi, Pirino, and

Renò (2010). Moreover, Corsi, Pirino, and Renò (2010) show that jumps can have

a highly significant impact on the estimation of future variance.

6For the S&P 500 index, we sample the returns during NYSE opening hours, which fall between
9:30 am and 4:00 pm Eastern Time.
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In the estimation of variance, we account for jumps and follow the approach in

Corsi, Pirino, and Renò (2010). The HAR-TCJ model, suitable for forecasting daily

realized variance, admits the representation

RVt+1,D = α + βDT̂Ct,D + βW T̂Ct,W + βM T̂Ct,M + βJ T̂ J t,D + εt+1, (3.4)

where T̂ J t,D and T̂Ct,D are the jump and continuous components of daily realized

variance, respectively, and T̂Ct,D = RVt,D − T̂ J t,D. Please see Corsi, Pirino, and

Renò (2010) for a detailed procedure related to the estimation of the jump com-

ponent, T̂ J t,D. Similarly, T̂Ct,W stands for the continuous component of weakly

realized variance, and T̂Ct,M is the continuous component of monthly realized vari-

ance.

It is easy to extend the HAR-TCJ model by adding, for example, extra covari-

ates that contain predictive power. In our benchmark specification, we augment

the original HAR-TCJ model by adding current and lagged implied variances as

additional predictor variables. More importantly, we resort to an expanding data

sample of daily observations (expanding window regression) in the implementation

of the forecasting regression. The expanding window regression suits well our objec-

tive of predicting 1-month realized variance in real time. We require at least 1 year

(or 252 days) of data to make the first true out-of-sample prediction. Given data

availability, the first variance forecast that we obtain is for July 1991. To ameliorate

the risk of forecasting negative variances, we further modify the regression and run

it in logs instead of levels. At each forecasting step, we add one-half of the mean

squared error to the log prediction before taking the exponent.

Finally, since we follow Bondarenko (2014) and Choi, Mueller, and Vedolin (2017)

in using the empirically relevant realized variance that is sampled at the daily fre-

quency, as opposed to the unobservable integrated variance, we make a final ad-

justment to the regression specification in equation (3.4). Namely, we replace the

1-day-ahead daily realized variance calculated using high-frequency data, which is



CHAPTER 3. VARIANCE RISK PREMIA ON STOCKS AND BONDS 152

on the left-hand side of the regression equation, with R̃V t+21,M =
∑21

j=1 R̃V t+i,D, the

1-month-ahead monthly realized variance that we calculate using daily data, R̃V t,D,

as implied by equation (3.2). The resultant model specification

ln R̃V t+21,M = α + βC,D ln T̂Ct,D + βJ,D ln(1 + T̂ J t,D) + βC,W ln T̂Ct,W

+ βC,M ln T̂Ct,M + βIV,0 ln IVt + βIV,1 ln IVt−1 (3.5)

allows us to forecast quantities that matter empirically. Please note that ln IVt

stands for log implied variance. It is instructive to keep in mind that while we run

the regression using daily data the forecasting horizon is 1 month.

[
Insert Table 3.2

]
In Panel A of Table 3.2, we present summary statistics for our monthly realized

variance predictions. For ease of interpretation, we report the results in terms of

annualized volatilities. To calculate the volatilities, we take the square root of the

variance forecasts and multiply by the square root of 252. In line with earlier

research, we find that the average realized volatility for the stock market is around

16% with a standard deviation of 7%. Realized volatilities of bonds are between

4% (for the 5-year Treasuries) and 9.3% (for the 30-year Treasuries). We note that

all four realized volatility measures are highly persistent as indicated by the AR(1)

coefficients, which are close to 0.85.

3.2.4. Implied Variance

We use the cross section of options on Treasury futures to calculate the expected

Treasury risk-neutral variance. In particular, we follow Choi, Mueller, and Vedolin

(2017), who show how to calculate the fair strike price of a Treasury variance swap.

Their approach is robust to jumps and allows for stochastic interest rates. For the

S&P 500 index, we follow the extant literature and use the squared VIX.7

7As we already have explained, in the interest of consistency we apply the same procedure we
use for Treasury futures and options to S&P 500 index futures and options. The option-implied
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In Panel B of Table 3.2, we present summary statistics for the annualized implied

volatilities (to obtain the volatility, we take the square root of variance). Over the

sample period, the average of implied volatility is 20% for the stock market. Implied

Treasury volatilities are, on average, much lower. They fall in the range of 4.7% (5-

year Treasuries) and 11% (30-year Treasuries). Similar to the realized volatility

measures, implied volatilities are highly persistent with autocorrelation coefficients

as high as 0.86. The averages in Panel B are very similar to the averages we report

in Panel A. However, the averages in Panel B are higher across all instruments. As

a result of this, we expect the variance risk premia to be negative on average.

[
Insert Figure 3.1

]
Figure 3.1 plots the time series of the expected physical and risk-neutral volatil-

ities for 30-year Treasuries (top panel) and equities (bottom panel), respectively.

Consistent with the extant literature, the magnitude of the spikes in equity volatil-

ity is much bigger. For example, during the LTCM crisis of 1998, the annualized

realized volatility spiked considerably, whereas the spike in fixed income markets

is much more subdued and around half the size of the spike observed in equity

markets. The same holds true at the time of the Lehman default on 15 September

2008, when the implied volatility of the equity index spiked at around 60%, whereas

fixed-income implied volatility was close to 24%.

3.3. Descriptive Analysis

We use the proxies for the expected physical variance and risk-neutral variance that

we introduced in Section 3.2 to calculate the ex-ante variance risk premia for stocks

and bonds.

estimates of implied variance are close to perfectly correlated with the squared VIX series that we
use in the analysis.
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3.3.1. Basic Properties

Panel C of Table 3.2 reports summary statistics for the equity and Treasury variance

risk premia in percentage points. For conciseness, we will refer to the equity and the

Treasury variance risk premia by EVRP and by TVRP, respectively. Unsurprisingly,

variance risk premia are negative on average for both the equity index and the

Treasuries. For the S&P 500 index, the average variance risk premium is −13.5.

Treasury variance risk premia are increasing, in absolute terms, in the tenor of the

underlying instrument. The variance risk premia increase, in absolute terms, from

−0.54 for the 5-year Treasury bond futures to −3.24 for the 30-year Treasury bond

futures. The volatility risk premium is, on average, −4.3% p.a. for the S&P 500

index and −0.7%, −1.3%, and −1.8% p.a. for the 5-, 10-, and 30-year Treasuries,

respectively.

Table 3.2 also shows a substantial cross-sectional difference in the volatility of the

variance risk premia. For Treasury futures, volatility is increasing in the maturity of

the underlying. Given that equity admits the interpretation of a very long duration

asset, it is not surprising that the volatility of the equity variance risk premium is

higher than the volatility of the Treasury variance risk premia. To make the variance

risk premia comparable in an economically meaningful way across different assets,

we normalize the levels by volatility.[
Insert Figure 3.3

]
Figure 3.3 plots the resultant statistics alongside standard error bounds that we

compute using a bootstrap procedure. The relative economic ordering is as follows:

TVRP(5) < TVRP(30) < TVRP(10) ∼ EVRP.

3.3.2. Time-Series Evidence [
Insert Figure 3.2

]
It is instructive to compare the time-series dynamics of variance risk premia

across stock and bonds. Figure 3.2 plots the 1-month variance risk premia sampled
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monthly. In the top panel of the figure, we plot the time series of bond variance risk

premia, and, in the bottom panel of the figure, we plot the time series of the 30-year

TVRP and the EVRP. Several important observations follow from the figure.

First, TVRP are increasing in the maturity of the underlying Treasury bonds.

They are also increasing in magnitude over time. Additionally, bond variance risk

premia exhibit counter-cyclical time-series dynamics. In other words, whereas the

variance risk premia are large (in absolute value) in adverse states of the world, such

as during the mortgage refinancing boom from 2002 to 2003 and the recent global

financial crisis from 2008 to 2009, they are small in magnitude in normal times.8

It is also important to note that the EVRP is much bigger than the TVRP over

most of the sample period. The LTCM crisis constitutes a particularly extreme ex-

ample. During the LTCM debacle and the recent financial crisis, the equity variance

risk reached −60 (in squared percentage), and the 30-year bond variance risk pre-

mium peaked at around −20 in August 2013 during the “Taper Tantrum.” Second,

whereas the equity variance risk premium and the 30-year TVRP are always nega-

tive, the 5- and the 10-year TVRP exhibit some positive realizations. Based on data

sampled at the monthly frequency, whereas the 5-year TVRP is positive around 9%

of the time, the 10-year TVRP is positive less than 1% of the time. Third, stock and

bond variance risk premia display distinct dynamics around noteworthy episodes.

The following discussion highlights this point.

• Case Study 1: A Tale of Equity

The failure of Long Term Capital Management (LTCM) nearly caused a melt-

down in the financial markets and almost triggered a catastrophe for the global

economy. Testifying to this, Alan Greenspan, then the Chairman of the Fed-

eral Reserve, stated that “Had the failure of LTCM triggered the seizing up of

markets, . . . , and could have potentially impaired the economies of many na-

tions, including our own.” Comparing the dynamics of equity to bond variance

8We formally estimate the correlation between variance risk premia and observable macro-
economic variables in one of the following sections.
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risk premia, we document a surprising result. While the spike in the ex-ante

equity variance risk premium is huge, a corresponding spike in Treasury vari-

ance risk is largely absent. The reason this is surprising is two-fold. First, the

Federal Reserve facilitated negotiations between LTCM and primary dealers to

take over the balance sheet of LTCM after the hedge fund was unable to meet

its margin calls. As a result of this, broker-dealers absorbed a large amount of

risk in the aftermath of LTCM failure. Second, LTCM failed largely because

of fixed income statistical arbitrage trading. Indeed, after Russia announced

restructuring of its Sovereign bond payments on 17 August 1998, and effec-

tively defaulted on its debt, LTCM lost over USD 500 million in less than a

week.

[
Insert Figure 3.6

]
• Case Study 2: A Tale of Fixed Income

Around the LTCM episode shocks to variance risk premia were largely con-

centrated in the equity market, so the Taper Tantrum provides an informative

counterexample. In the summer of 2013, the Taper Tantrum was largely pre-

cipitated by a string of comments on the part of Ben Bernanke, Chairman of

the Federal Reserve at the time. In his testimony before the Congress in May

and June 2013, Bernanke hinted that the Fed would likely start tapering the

pace of its bond purchases later in the year, conditional on continuing robust

economic data. The ensuing market reaction was dramatic. Long-term U.S.

bond yields and dollar foreign exchange rates spiked substantially, as did real-

ized stock and bond variance. What is much more interesting, however, is the

dynamics of risk-neutral versus physical variance across stock and bonds. Fig-

ure 3.6 plots the EVRP and the 30-year TVRP in the aftermath of the Taper

Tantrum. Between June and December 2013, the 30-year Treasury variance

risk premium increased three-fold as wrong-footed market participants were

desperate to hedge their volatility exposure in the Treasury market and were
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willing to pay a high premium to do so. It is important to note that during this

period spikes in variance risk premia are contained in the fixed income market.

Indeed, while equity volatility spikes following Ben Bernanke’s statement, the

equity variance risk premium does not change much.

3.3.3. Co-movement

The above case studies motivate us to examine the co-movement between stock and

bond variance risk premia in greater detail. To study the time-varying correlations

between equity and Treasury variance risk premia, we estimate a dynamic condi-

tional correlation (DCC) model. We proceed with the estimation in steps. First,

we estimate a vector autoregression (VAR) jointly on all Treasury and Equity VRP

levels at the daily frequency.9 Second, we use the four residual time series from the

VAR in the maximum likelihood estimation of the DCC(2,2) model.

In estimating the time-varying correlations of stock and bond returns, we use

daily log changes in futures prices.[
Insert Figure 3.4

]
[

Insert Figure 3.5
]

Figure 3.4 plots the return correlation series, and Figure 3.5 displays the dy-

namic correlation between variance risk premia. The top panels in both figures plot

correlations between Treasury returns and Treasury VRP, respectively. The bottom

panels plot the conditional correlations between equity returns or equity VRP, on

the one hand, and Treasury returns or Treasury VRP, on the other hand.

The two figures exhibit distinctly different patterns. First, Treasury futures

returns are highly correlated over the entire sample period. On average, correlations

9We opt for a specification with 120 lags. Given that there are 250 trading days per year,
120 days are approximately 6 months. The lags allow us to capture the autocorrelations and
cross-autocorrelations that are implicit in daily data. It is instructive to note, however, that our
specification is robust to the number of lags. That is to say, the results are not materially different
in the case in which we use a smaller number of lags. In the step that precedes the estimation
of the DCC model, we pre-filter the variance under the risk-neutral measure by taking monthly
rolling averages. This exercise is useful in removing some of the noise that is implicit in the implied
variance time series.
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are as high as 90% for all three contracts. Second, the correlations between equity

and fixed income returns are time varying with large swings from around +40% in

the mid-1990s to −50% in the early and late 2000s. This pattern is largely in line

with the results that Campbell, Sunderam, and Viceira (2013) report.

The patterns that emerge in the variance risk premia domain are very different.

While correlations between TVRP are still positive over the entire sample period,

they are considerably lower compared to the correlations of returns. We can see

that TVRP correlations rarely exceed 80% (top panel of Figure 3.5). At the same

time, correlations between TVRP and EVRP are also largely positive, but are lower

on average. They hover around 20% and exhibit distinct spikes in both directions.

Interestingly, the sign of the correlations occasionally turns negative. In the after-

math of the financial crisis, the EVRP/TVRP correlation reaches a maximum of

60% and a minimum of 0%. The swings are particularly large in the run-up to the

Taper Tantrum episode and in its aftermath.

3.4. Predictive Regressions

In this section, we investigate the extent to which our measures of ex-ante variance

risk premia contain predictive power for bond and stock excess returns. In particular,

we study the in-sample predictive power of bond and equity variance risk premia

for fixed income and equity excess returns. While the predictability regressions we

run are in-sample, our proxies for the variance risk premia are constructed without

any forward-looking bias. More importantly, the predictors we use are observable

in real time.

First, we study predictability by running univariate regressions of excess returns

on the variance risk premia. As we explained in the previous section, we use returns

on a fully collateralized futures position in either Treasury or S&P 500 index futures

in our predictive regressions. This ensures that both return series are not only

investable but are also directly comparable. Second, we add commonly used control

variables to our univariate regressions and conduct robustness checks.
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3.4.1. Univariate Regressions

We run univariate predictability regressions for Treasury futures with underlying

maturities between 5 and 30 years and for the S&P 500 index futures. The forecast

horizons range between 1 and 12 months. We estimate the model:

xrt
(i)
t+h = αi,h + βi,hV RP

(i)
t + ε

(i)
t+h,

where xrtt+h denotes the h-period excess return, and i stands for the VRP (either

5-, 10-, or 30-year Treasuries or the S&P500 index futures).

All reported regression results are standardized; that is, we normalize all regres-

sors and regressands to have a mean of zero and a standard deviation of one. As a

result, constants appear nowhere in our tables. The normalization not only allows

us to compare coefficients across different specifications but it also aids our inter-

pretation of economic significance. We report t-statistics that are calculated using

Newey and West (1987) standard errors with twelve lags. Table 3.3 summarizes the

univariate regression results. Panels A through D contain the predictability regres-

sion results for the three Treasury variance risk premia and the equity variance risk

premium, respectively.

[
Insert Table 3.3

]
Panel A of the table reports the regression results for the case in which we use

S&P 500 excess returns as a regressand. In line with the extant literature exem-

plified by Bekaert and Hoerova (2014) and Bollerslev, Tauchen, and Zhou (2009),

we find that the equity VRP has significant predictive power for equity returns at

intermediate horizons. For example, at the 1-month horizon, a 1-standard-deviation

(negative) shock to the VRP predicts a 0.13-standard-deviation increase in S&P 500

returns. As we increase the horizon, the slope coefficient doubles to 0.25 and 0.24

for the 3- and 6-month horizon, respectively. For the 1-year horizon, the coefficient

decreases to 0.17.
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Considering the impact of Treasury VRP on equity returns, we find that neither

the 5-year nor the 10-year variance risk premia has any predictive power for the S&P

500 at any horizon. However, the 30-year VRP is a strong predictor of S&P 500

excess returns. The point estimate is not only highly statistically significant but it is

also economically non-trivial in magnitude. For example, we find that while at the

1-month horizon there is no predictive power, for the 6- and 12-month horizon the

t-statistics are −4.15 and −4.36, respectively. Comparing the economic impact of

equity to 30-year VRP at the 6-month horizon, we find that a 1-standard-deviation

(negative) shock to the 30-year bond variance risk premium raises equity returns by

0.3 standard deviations, which is in fact larger than the impact of the equity VRP.

It is instructive to also check whether there is predictability for horizons that are

longer than 1 year.

[
Insert Figure 3.7

]
[

Insert Figure 3.8
]

Figures 3.7 and 3.8 report R2 and t-statistics, respectively, for horizons of up

to 2 years. The R2 for the Treasury VRP is hump shaped. This is consistent with

what we find in the literature. When we use the 30-year bond VRP to forecast

excess returns on equity, the R2 is increasing in the length of the holding period.

Predictability arising from variance risk premia on very long-term bonds more closely

resembles price-dividend (long-run) predictability than equity variance risk premium

(short-run) predictability. Below, we will further elaborate on this finding.

Panel B of Table 3.3 presents predictive regression results for the 5-year bond

returns. We find that the equity variance risk premium has no predictive power for

the 5-year bond returns at any horizon. However, we find that both the 5- and 10-

year bond variance risk premia have strong predictive power for 5-year bond returns,

and we observe a pattern similar to the one in Panel A. While there is no predictive

power for the shortest horizon, estimated coefficients are highly significant starting

at a horizon of 3 months. The estimated coefficients increase (in the horizon) for
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both the 5- and the 10-year variance risk premia. For the 30-year variance risk

premium, we find no predictive power, except for the 1-year horizon, which has a

t-statistic of −2.19.

The results that we report in Panel C of Table 3.3 mirror our findings for the

5-year bond returns (Panel B). In particular, we find that both the 5- and the

10-year bond variance risk premia have strong predictive power that is increasing

in the horizon. At the same time, the 30-year bond variance risk premium is not

statistically significant. Finally, in Panel D of Table 3.3, we report predictability

results for the 30-year bond excess returns. We find that while the 5-year variance

risk premium has significant predictive power for bond returns between 3 and 12

months, the TVRP(10) contains some power only at 12 months.

[
Insert Figure 3.7

]
[

Insert Figure 3.8
]

We present longer horizon t-statistics and R2 for the bond returns in Figures

3.7 and 3.8. We note that both the 5- and 10-year bond VRP have the strongest

predictive power at the 1-year horizon as we observe a U-shaped pattern for the

t-statistics.

3.4.2. Multivariate Regressions

The multivariate regressions that we run in this section are a natural extension of

the analysis from the previous section. The multivariate regressions allow us to

study whether equity and bond variance risk premia can jointly predict equity and

bond excess returns. Given that variance risk premia are highly correlated across

different tenors, we only include one bond variance risk premium at a time.

[
Insert Table 3.4

]
Panel A of Table 3.4 reports the results. We find that the equity variance risk

premium remains a highly statistically significant predictor even after adding the
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bond variance risk premia. As is the case in the univariate results, neither the 5-year

nor the 10-year bond variance risk premia has predictive power for equity returns.

However, the 30-year bond variance risk premium is highly statistically significant

for 6- and 12-month horizons. Interestingly, we find that the 30-year bond variance

risk premium drives out the predictive power of the equity variance risk premium

at the 1-year horizon. This result is important, because it suggests that long-term

bond variance risk premia and the equity variance risk premium capture different

dimensions of the compensation for variance risk.

In Panels B to D, we focus on a set of bivariate regressions, where we add the

equity variance risk premium as a second predictor variable to the 5-, 10-, or 30-year

bond variance risk premia. The regression model that we estimate takes the form of

xrt
(i)
t+h = αi,h + βi,hTV RP

(i)
t + βEV RP,hEV RPt + ε

(i)
t+h,

where EV RPt stands for the equity variance risk premium, and TV RP (i) stands for

the respective bond variance risk premium.

The results from the univariate regressions mostly carry over to the corresponding

bivariate cases. While the 5- and the 10-year TVRP have strong predictive power for

horizons above 1 month, neither the 30-year nor the equity variance risk premium

is significant. In summary, the TVRP retain their predictive power when we pair

them in a horse race with the equity variance risk premium. At the same time, the

30-year TVRP drives out the equity variance risk premium as a predictor of stock

excess returns.

3.4.3. Controls

In this subsection, we study the extent to which the predictive ability of the vari-

ance risk premia is related to alternative forecasting factors commonly used in the

literature. In the context of equity predictability, we consider the log dividend yield,

DY, the log earnings to price ratio, EP, and the net equity expansion, NTIS, Goyal
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and Welch (2008). In the context of bond return predictability, we consider the

slope, Slope, as proposed by Fama and Bliss (1987); the forward rate factor, CP, of

Cochrane and Piazzesi (2005); and two macro factors that we extract from a large

panel of variables related to macroeconomic growth, Ludvigson and Ng (2009).

[
Insert Table 3.5

]
[

Insert Table 3.6
]

Table 3.5 reports the regression results for equity, and Table 3.6 reports the

regression results for bonds. In both tables, the top panels report our findings for

holding periods of 6 months, and the bottom panels report our findings for holding

periods of 12 months.

In the section in which we discussed the results related to Table 3.4, we noted

that TVRP(30) predictability captures a dimension of risk that is different from the

one implicit in the equity VRP. In terms of long-horizon R2 patterns, the TVRP(30)

predictability very much resembles DY predictability. Indeed, comparing the equity

predictability columns of Table 3.4 with column 4 of Table 3.5, we see that the

price-dividend ratio drives out the TVRP(30). This result admits a very intuitive

interpretation. Namely, part of the variability in the price-dividend ratio comes

from compensation for volatility risk. At the same time, compensation for volatility

risk that shows up in long-term bonds is largely orthogonal to the equity variance

risk premium itself. Finally, we note that the TVRP(30) predictability is robust to

the EP and NTIS factors.

For the case of 10-year Treasury futures returns, we find that TVRP(10) pre-

dictability is not related to the conditional first moments of the macro variables

LN1 and LN2. We find, however, that TVRP(10) predictability is correlated with

Slope and CP predictability. In fact, Slope and CP drive out TVRP predictability.

Consequently, we can infer that part of the variability in the Slope and CP factors

that is related to volatility risk is due to volatility risk compensation. This result is

interesting in the context of the seminal findings of Duffee (2002), who shows that
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Slope does not proxy for volatility. The results in Duffee (2002) spawned a vast

literature developing term structure models with flexible price of risk specifications.

Our findings show that while the Slope does not proxy for volatility itself, it

does proxy for volatility risk compensation. This finding is, in fact, very intuitive.

The underlying state variables that drive the variance risk premia are also common

to date-t yields. The final rows of Table 3.6, where we run two-stage regressions,

further clarify this point. In the first stage, we project TVRP(10) onto the Slope

and CP factors

TV RPt(10) = α + (−0.49)︸ ︷︷ ︸
−4.48

Slopet + error
Slope
t , R2 = 24%, (3.6)

TV RPt(10) = α + (−0.31)︸ ︷︷ ︸
−3.19

CPt + errorCP
t , R2 = 10%. (3.7)

From the first stage, we obtain the fitted value, which is the component spanned by

Slope/CP, and the residual, which is the component uncorrelated with Slope/CP.

The second-stage regression results, which we report in the table, suggest that Trea-

sury variance risk premia, the forecasters of expected excess bond returns, reside in

the date-t information set that is common to bond yields.

3.5. Real Nominal Risks

The correlation between stock and bond returns has substantially varied over time.

Between the early 1980s and the mid-1990s, the stock-bond correlation was positive,

and bonds were considered risky. Figure 3.4 shows that around the LTCM crisis the

sign of the stock-bond correlation changed from positive to negative. The post-dot-

com bubble was a period of a near-zero stock-bond correlation that then turned very

negative during the financial crisis and remains so since. Therefore, in the present

regime bonds command a negative risk premium and are considered hedges.

Motivated by the empirical literature on inflation non-neutrality, a stream of

the literature has tried to understand this phenomenon in terms of shocks to infla-
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tion being correlated with shocks to the real economy. For example, Piazzesi and

Schneider (2007) assume that investors dislike shocks to inflation for two reasons.

First, they lower the payoff on nominal bonds. Second, they are bad news for future

consumption growth. The second effect can be large when investors have recursive

utility with preference for early resolution of uncertainty à la Bansal and Yaron

(2004). Hasseltoft (2009) considers the impact of this setting for dividend growth

and studies the joint properties of the “Fed model” and the stock-bond covariance.10

Campbell, Sunderam, and Viceira (2013) study real-nominal covariance in the con-

text of a latent factor quadratic term structure model. In the context of the new

Keynesian framework, Campbell, Pflueger, and Viceira (2014) argue that mone-

tary policy shifts in reaction to supply shocks alter the relationship between stocks

and bonds in a way that can rationalize the change of the sign of the stock-bond

correlation.

At the same time, a large but separate literature has devoted its attention to

studying variance risk premia. In reduced form, Carr and Wu (2009) and Bon-

darenko (2014) use different approaches to reach the common conclusion that eq-

uity variance risk premia are large, negative, and display substantial time variation,

especially in periods of distress (financial and economic uncertainty). A smaller

but growing literature studies Treasury variance risk premia. Trolle (2009) reports

that shorting variance swaps in the Treasury futures market generate Sharpe ra-

tios that are three times larger than the Sharpe ratios of the underlying Treasury

futures. Choi, Mueller, and Vedolin (2017) empirically document large and nega-

tive Treasury variance risk premia and argue that there are significant returns to

variance trading in Treasury markets that are comparable to the equity variance

market. In the context of equity variance risk premia, Bollerslev, Tauchen, and

Zhou (2009), Zhou and Zhu (2009), and Bollerslev, Sizova, and Tauchen (2012)

study economies with long-run risks and recursive preferences. When preferences

are time-non-separable, volatility risk is priced and gives rise to a natural structural

10The “Fed model” is a term that is commonly used to describe the positive relation between
U.S. dividend yields and nominal interest rates.
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understanding of variance risk premia.

Surprisingly, few attempts have been made to link these literatures. This sec-

tion argues the existence of a common factor determining stock-bond correlation,

variance risk premia, and the correlation between variance risk premia.

[
Insert Table 3.7

]
Table 3.7 reports contemporaneous OLS regression results. We regress variance

risk premia (VRPs), the stock-bond correlation (SB Corr), and the correlation be-

tween variance risk premia (VRP Corr) on the first two principle components of the

nominal term structure and on expected inflation. We use the four-quarter-ahead

consensus forecasts for consumer price inflation from BlueChip Financial forecasts

as a proxy for expected inflation. To keep the results manageable, we drop the 5-

year Treasury variance risk premium. The results for this tenor are qualitatively the

same as those for the 10-year tenor. In the calculation of the principle components,

we use bonds with maturities ranging from 2 to 10 years. Additionally, we rotate the

slope so that a positive shock to this factor raises long-term yields and lowers short-

term yields. We report t-statistics in parentheses. The standard errors are Newey

and West (1987) standard errors with 12 lags. Left- and right-hand side variables

are standardized. The sample period is from 1992.1 to 2013.1 for all regressions.

Considering Treasury variance risk premia, the R2 is decreasing in maturity (from

31% for TVRP(10) to 25% for TVRP(30)), but remains high. This implies that a

significant amount of the variation in compensation for variance risk is spanned by

the term structure. For the long-term bond VRP, the level of the term structure has a

positive and highly significant loading. Given that the TVRP is negative on average,

this implies that negative shocks to short-term interest rates, such as rate cuts by

the Federal Reserve, raise (in absolute terms) the compensation required for holding

volatility risk related to long-term bonds. The slope of the term structure loads with

high significance on both the TVRP(10) and the TVRP(30) with a negative loading.

This is interesting since a steep yield curve is often interpreted as a signal of increased



CHAPTER 3. VARIANCE RISK PREMIA ON STOCKS AND BONDS 167

risk through a term premium component. Considering the EVRP, while the term

structure factors are virtually uncorrelated with the EVRP, expected inflation is

a highly significant determinant, with a positive loading and a t-statistics of 4.56.

In economic terms, the factor loading implies that a 1-standard-deviation negative

shock to expected inflation raises the EVRP by 0.56 standard deviations. Below,

we will offer some more intuition related to this result.

Next, considering the stock-bond correlation we obtain a very large, in both eco-

nomic and statistical terms, implied relationship to the level of the term structure.

Moreover, conditional on the level, expected inflation is also positive and significant

at the 1% level. This finding is somewhat stronger, but consistent with the empir-

ical evidence presented by Hasseltoft (2009) and David and Veronesi (2015). The

theoretical interpretation of these papers is that the level of yields and expected

inflation play a negative signalling role for future economic growth in inflationary

environments (pre-2000) and a positive signalling role in deflationary environments

(post-2000). The net result is a positive link between stock-bond correlation and

these factors.

[
Insert Table 3.8

]
[

Insert Table 3.9
]

The literature documents that the correlation between real and nominal vari-

ables flipped signs in the late 1990s and early 2000s, see, for example, Campbell,

Sunderam, and Viceira (2013). This structural shift in the economy is important for

learning about real nominal risks in the context of the questions we ask. Motivated

by the extant literature, we consider the post-2000 subsample, which contains two

deflationary recessions (2001–2002, 2007–2008), the financial crisis, and the subse-

quent policy response by the Federal Reserve. An advantage of considering this

period in isolation is that the U.S. Treasury Department began issuing inflation-

protected securities (TIPS) in 1999. Using them allows us to consider a simple



CHAPTER 3. VARIANCE RISK PREMIA ON STOCKS AND BONDS 168

combination of real and nominal yields that spans real nominal risks with date-t

tradable securities that allows for a (semi-)structural interpretation.

Table 3.8 considers the left-hand-side variables from above projected on the first

two principle components of the real term structure and 2-year break-even inflation.

The break-even inflation is equal to the difference between 2-year nominal yields and

2-year real yields.11 The sample period is from 2000.1 to 2013.1. Table 3.9 repeats

the exercise replacing real-term structure PCs with nominal term structure PCs.

In Tables 3.8 and 3.9, consistent with Table 3.7, we find a positive and significant

relationship between TVRP(30) and the level of yields. At the same time, TVRP(10)

and the slope of the term structure are negatively related. In terms of VRPs, we

find a remarkable relationship between break-even inflation and VRPs on stock and

bonds. In Table 3.8, we obtain factor loadings ranging from 0.62 to 0.70, with p-

values well below the 1% level. The explanatory power is also large, ranging from

36% on EVRP to 53% on TVRP(30). Estimates in Table 3.9 are quantitatively the

same. We interpret this finding as follows.

Standard textbook algebra tells us that 2-year break-even inflation is equal to

expected inflation plus the 2-year inflation risk premium. In a low-inflation envi-

ronment, such as the post-2000 experience, break-even inflation is likely dominated

by expected inflation. This suggests an interpretation consistent with the positive

loading obtained for the full sample: expected inflation plays a positive signalling

role about the real economy. This channel is often dubbed the “inflation proxy hy-

pothesis.”12 Consider the financial crisis of 2007–2008 and the subsequent recession,

during which time the U.S. economy experienced a deflationary episode. Consistent

with the inflation proxy hypothesis, investors interpreted series of negative inflation

shocks as bad news about future growth. These shocks raised the price agents were

11In the calculation of the principle components, we use bonds with maturities ranging from 2
to 10 years. Additionally, we rotate the slope in such a way so that a positive shock to this factor
raises long-term yields and lowers short-term yields. We report t-statistics in parentheses. The
standard errors are Newey and West (1987) standard errors with 12 lags. Left- and right-hand
side variables are standardized.

12 Fama (1981) was the first to propose the inflation proxy hypothesis. In his seminal paper,
Fama (1981) investigates the empirical link between stock returns and inflation.
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willing to pay to insure against future risk (volatility), thus increasing variance risk

premia across stock and bonds. A subsequent series of positive shocks was inter-

preted as good news compressing variance risk premia. Next, we consider the link

between break-even inflation, on the one hand, and the correlation between variance

risk premia, on the other hand. The point estimate for break-even inflation is large,

negative, and highly statistically significant. Please see Tables 3.8 and 3.9. Intu-

itively, this implies that deflationary shocks drive a positive correlation for volatility

hedging across stocks and bonds at a time when agents are willing to pay more for

this insurance.

3.6. Conclusion

We document a set of novel facts related to variance risk premia on stocks and

bonds.

First, the premium that investors are willing to pay to hedge against changes in

expected bond variance is smaller in absolute terms than is the equity variance risk

premium. However, accounting for variance risk premium volatility, we document

that bond variance risk premia are comparable in magnitude to the equity variance

risk premium.

Second, the correlation between stock and bond variance risk premia is uncon-

ditionally positive (∼ 20%), but conditionally displays high-frequency variation (in

the range of 0% to 60%) and has been especially volatile since the financial crisis.

These dynamics are distinct from the well-studied pattern of stock-bond return cor-

relation and provide a novel channel through which to learn about the pricing of

volatility risk.

Third, both the equity and bond variance risk premia predict equity and bond

excess returns at both short horizons (3 months) and long horizons (12 months). In

particular, short maturity TVRP predict excess returns on short maturity bonds.

Long maturity TVRP and the EVRP predict excess returns on long maturity bonds.

Finally, whereas the EVRP predicts equity returns for horizons of up to 6 months,
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the long maturity TVRP is a formidable predictor at longer horizons.

An investigation of the common economic determinants of variance risk pre-

mia, the stock-bond correlation, and the co-movement between variance risk premia

concludes the paper. Using regression-based evidence on nominal Treasuries, real

Treasuries, and survey data, we present reduced-form evidence that expected infla-

tion is a powerful determinant of each of these quantities. We leave the structural

interpretation of these findings to future research.
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3.7. Appendix (Figures)
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Figure 3.1: Expected Physical and Risk Neutral Volatility
Panel A plots the time series of the ex-ante physical and risk neutral 30-year Treasury
volatility. Panel B plots the same time series for equity. For the Treasury volatilities,
we use options on Treasury futures, as well as the high-frequency price data for the
underlying security. For the ex-ante risk-neutral equity volatility, we use the VIX
index, and to calculate the ex-ante physical volatility we use data on the S&P
500 index. Please refer to the main body of the paper for details. All series are
annualized and expressed in percent. The data is monthly and runs from 1991 to
2014.
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Figure 3.2: Equity and Treasury Variance Risk Premia
This figure plots the time series of the Treasury and the equity variance risk premia.
Panel A compares Treasury variance risk premia on 5-, 10-, and 30-year Treasury
futures. Panel B compares the variance risk premium on 30-year Treasury bond
futures to the equity variance risk premium. We calculate the variance risk premium
as the difference between the ex-ante physical and risk neutral variances. The time
series are monthly and expressed in squared percent. The data is monthly and runs
from 1991 to 2014.
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Figure 3.3: Standardized Variance Risk Premia

In this figure, we normalize each variance risk premium by its volatility. In the
calculation of the standard errors (black lines), we resort to a bootstrap procedure
with 1000 repetitions. The data runs from 1991 to 2014.
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Figure 3.4: Conditional Correlations between Equity and Treasury Returns
Panel A plots the conditional correlations between daily Treasury futures returns
(5-, 10-, and 30-year). Panel B plots the conditional correlations between daily
Treasury futures returns (5-, 10-, and 30-year) and returns on the S&P 500 futures.
We estimate a DCC model on daily data in order to calculate the conditional cor-
relations. We sample the data at the monthly frequency. The data runs from 1991
to 2014.
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Figure 3.5: Conditional Correlations between Treasury and Equity Vari-
ance Risk Premia
Panel A plots the conditional correlations between daily Treasury variance risk pre-
mia (5-, 10-, and 30-year). Panel B plots the conditional correlations between daily
Treasury variance risk premia (5-, 10-, and 30-year) and the variance risk premium
on the S&P 500 index. We estimate a DCC model in order to calculate the condi-
tional correlations. We sample the data at the monthly frequency. The data runs
from 1991 to 2014.
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Figure 3.6: Variance Risk Premia around LTCM and Tamper Tantrum
Panel A plots the 30-year Treasury variance risk premium and the equity variance
risk premium between January 1997 and December 1999. Panel B plots the 30-
year Treasury variance risk premium and the equity variance risk premium between
January 2013 and December 2013. We use daily data and smooth the time series
by taking 5-day rolling averages.
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Figure 3.7: Futures Excess Returns Long Horizon Predictability
This figure plots R2 obtained from h-period univariate predictability regressions of
the form xrtjt+h = αi,h + βi,hV RP

(i)
t + ε

(i)
t+h, where i and j are 5-, 10-, 30-year, and

SPX, respectively. For all regressions, the sample period is 1991 to 2014. Left and
right hand side variables are standardized.
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Figure 3.8: Futures Excess Returns Long Horizon Predictability
This figure plots t-statistics obtained from h-period univariate predictability regres-
sions of the form xrtjt+h = αi,h+βi,hV RP

(i)
t +ε

(i)
t+h, where i and j are 5-, 10-, 30-year,

and SPX, respectively. For all regressions, the sample period is 1991 to 2014. Left
and right hand side variables are standardized.
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3.8. Appendix (Tables)

Table 3.1: Summary Statistics: Futures Excess Returns
The table reports summary statistics for 1-month returns in excess of the 1-month
Treasury Bill rate for the 5-, 10-, and 30-year Treasury bond futures and the S&P
500 index futures. For comparison, we also report the 1-month excess returns on
the S&P 500 index. Means and standard deviations are annualized and expressed
in percent. The data is monthly and runs from 1991 to 2014.

30y
Bonds

10y
Bonds

5y
Bonds

S&P 500
Futures

S&P 500
Index

Mean 1.52 1.51 0.09 3.90 3.91

Std Dev 9.47 6.17 4.15 14.86 14.90

Min -10.62 -6.05 -3.42 -19.07 -18.64

Max 12.78 8.29 5.13 10.57 10.23

Skew -0.01 0.11 0.09 -0.82 -0.80

Kurt 5.29 4.43 3.93 4.86 4.71

AR(1) 0.04 0.10 0.15 0.08 0.06
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Table 3.2: Summary Statistics: Implied Volatilities and Variance Risk
Premia
Panel A reports summary statistics for the 1-month physical volatilities. The underlying
instruments are 5-, 10-, and 30-year Treasury notes and bond futures and the S&P 500
index. Panel B reports the risk-neutral volatilities. Panel C reports summary statistics for
the variance risk premia, where the variance risk premium is equal to the difference between
realized variance and risk-neutral variance. Volatilities are annualized and expressed in
percent. Variance risk premia are monthly and expressed in squared percent. All series
are sampled at the monthly frequency and the data runs from 1991 to 2014.

30y Bond 10y Bond 5y Bond S&P 500
Index

Panel A: Physical Volatility

Mean 9.28 5.95 4.01 15.84

Std Dev 2.04 1.25 0.93 7.30

Min 5.70 3.17 1.59 6.96

Max 18.69 10.62 7.68 59.64

Skew 1.59 0.96 0.32 2.10

Kurt 6.85 5.09 3.95 10.25

AR(1) 0.86 0.84 0.84 0.85

Panel B: Risk Neutral Volatility

Mean 11.04 7.29 4.66 20.11

Std Dev 2.69 1.70 1.29 7.85

Min 6.60 3.97 1.79 10.42

Max 24.15 14.33 9.69 59.89

Skew 1.72 0.80 0.25 1.65

Kurt 7.55 4.48 3.39 7.05

AR(1) 0.85 0.84 0.83 0.86

Panel C: Variance Risk Premia

Mean -3.24 -1.59 -0.54 -13.48

Std Dev 2.80 1.08 0.53 9.58

Min -19.50 -7.70 -2.90 -76.87

Max -0.14 0.46 0.81 -1.92

Skew -2.97 -1.60 -1.20 -2.31

Kurt 15.27 7.95 5.29 11.89

AR(1) 0.68 0.65 0.53 0.65
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Table 3.3: Return Predictability Regressions (Univariate)
This table reports the univariate return predictability regression results. The regression model admits the represen-
tation

xrt
(i)
t+h = αi,h + βi,hV RP

(i)
t + ε

(i)
t+h,

where h = 1, 3, 6, and 12 months. We report the t-statistics in parentheses. The standard errors are Newey and
West (1987) standard errors with 12 lags. The sample period is 1991 to 2014 for all regressions. Left and right hand
variables are standardized.

h 1m 3m 6m 12m 1m 3m 6m 12m

Panel A: S&P 500

S&P 500 VRP 5y VRP

β -0.13 -0.25 -0.24 -0.17 0.08 0.06 0.10 -0.01

t-stat (-1.81) (-4.11) (-3.45) (-1.90) (0.73) (0.53) (0.84) (-0.06)

R2 1.66 6.12 5.79 2.76 0.71 0.33 1.08 0.00

10y VRP 30y VRP

β 0.10 0.06 0.03 -0.03 -0.04 -0.17 -0.31 -0.35

t-stat (1.02) (0.55) (0.28) (-0.27) (-0.46) (-1.52) (-4.15) (-4.36)

R2 0.91 0.31 0.06 0.08 0.16 2.85 9.53 12.12

Panel B: 5yr bond

S&P 500 VRP 5y VRP

β 0.01 0.05 0.08 -0.03 -0.02 -0.16 -0.19 -0.21

t-stat (0.10) (0.57) (0.71) (-0.17) (-0.35) (-2.32) (-2.76) (-2.77)

R2 0.00 0.23 0.65 0.09 0.03 2.56 3.50 4.38

10y VRP 30y VRP

β -0.05 -0.16 -0.22 -0.31 -0.05 -0.06 -0.07 -0.19

t-stat (-1.00) (-2.63) (-3.22) (-3.85) (-1.27) (-1.18) (-0.98) (-2.19)

R2 0.26 2.42 4.68 9.83 0.28 0.36 0.53 3.66

Panel C: 10yr bond

S&P 500 VRP 5y VRP

β 0.04 0.07 0.11 0.01 0.05 -0.14 -0.16 -0.20

t-stat (0.65) (0.87) (1.08) (0.05) (0.62) (-2.35) (-2.57) (-2.73)

R2 0.20 0.45 1.30 0.01 0.21 2.00 2.58 3.88

10y VRP 30y VRP

β -0.02 -0.14 -0.18 -0.29 -0.03 -0.02 -0.02 -0.15

t-stat (-0.48) (-2.49) (-2.43) (-3.24) (-0.77) (-0.44) (-0.27) (-1.63)

R2 0.05 1.98 3.34 8.64 0.10 0.05 0.04 2.20

Panel D: 30yr bond

S&P 500 VRP 5y VRP

β 0.11 0.08 0.16 0.09 0.07 -0.12 -0.14 -0.20

t-stat (1.30) (1.06) (1.79) (0.61) (0.74) (-1.94) (-2.12) (-2.27)

R2 1.21 0.69 2.72 0.74 0.56 1.54 1.89 4.02

10y VRP 30y VRP

β 0.01 -0.08 -0.11 -0.25 0.01 0.06 0.05 -0.13

t-stat (0.25) (-1.26) (-1.04) (-1.92) (0.27) (0.94) (0.52) (-0.93)

R2 0.02 0.71 1.18 6.33 0.01 0.35 0.28 1.61
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Table 3.4: Return Predictability Regressions (Multivariate)
This table reports the multivariate return predictability regression results. We regress S&P 500 and bond futures
excess returns on the equity and Treasury variance risk premia. The t-statistics are in parentheses. The standard
errors are Newey and West (1987) standard errors with h-lags. The sample period is 1991 to 2014 for all regressions.
Left and right hand variables are standardized.

3m 6m 12m 3m 6m 12m 3m 6m 12m

Panel A: S&P 500

V RPSPX -0.27 -0.27 -0.17 -0.28 -0.26 -0.17 -0.22 -0.17 -0.08

(-4.42) (-3.24) (-1.92) (-4.38) (-3.45) (-2.12) (-3.34) (-2.35) (-0.91)

V RP 5y 0.10 0.15 0.02

(0.82) (1.06) (0.21)

V RP 10y 0.12 0.09 0.01

(0.95) (0.85) (0.14)

V RP 30y -0.11 -0.26 -0.33

(-0.87) (-3.29) (-3.65)

R
2

6.83 7.64 2.45 7.16 6.17 2.41 6.89 11.85 12.35

Panel B: 5yr bond

V RPSPX 0.08 0.12 0.01 0.09 0.14 0.05 0.07 0.11 0.02

(0.95) (1.09) (0.05) (1.09) (1.37) (0.32) (0.84) (0.97) (0.15)

V RP 5y -0.17 -0.21 -0.21

(-2.32) (-2.67) (-2.49)

V RP 10y -0.18 -0.25 -0.32

(-2.65) (-3.42) (-3.57)

V RP 30y -0.08 -0.10 -0.20

(-1.59) (-1.33) (-1.85)

R
2

2.80 4.48 4.03 2.82 6.18 9.71 0.43 1.26 3.35

Panel C: 10yr bond

V RPSPX 0.09 0.15 0.04 0.11 0.17 0.08 0.08 0.13 0.05

(1.21) (1.46) (0.27) (1.32) (1.71) (0.56) (1.00) (1.20) (0.31)

V RP 5y -0.16 -0.19 -0.20

(-2.33) (-2.55) (-2.53)

V RP 10y -0.17 -0.22 -0.31

(-2.50) (-2.81) (-3.25)

V RP 30y -0.04 -0.06 -0.16

(-0.85) (-0.73) (-1.49)

R
2

2.51 4.30 3.71 2.69 5.62 8.94 0.25 1.22 2.09

Panel D: 30yr bond

V RPSPX 0.11 0.19 0.12 0.11 0.20 0.15 0.07 0.16 0.13

(1.25) (2.10) (0.94) (1.29) (2.27) (1.24) (0.92) (1.73) (0.95)

V RP 5y -0.14 -0.17 -0.22

(-1.98) (-2.41) (-2.65)

V RP 10y -0.11 -0.16 -0.29

(-1.62) (-1.62) (-2.39)

V RP 30y 0.04 0.01 -0.16

(0.65) (0.09) (-1.24)

R
2

2.31 5.22 5.18 1.48 4.68 8.24 0.47 2.36 2.82
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Table 3.5: Equity Return Predictability Regressions (Controls)
This table reports the return predictability regression results. We regress equity
futures excess returns on the 30-year Treasury variance risk premium, the equity
variance risk premium, the log dividend yield (DY), the log earnings to price ratio
(EP), and the net equity expansion (NTIS) from Goyal and Welch (2008). We report
the t-statistics in parentheses. The standard errors are Newey and West (1987)
standard errors with h-lags. The sample period is 1991 to 2014 for all regressions.
Left and right hand variables are standardized.

1 2 3 4 5 6

Panel A: Holding Period: 6m

V RP 30y -0.08 -0.24 -0.31

(-0.96) (-2.75) (-4.06)

V RPSPX -0.30 -0.27 -0.20

(-4.30) (-4.22) (-2.65)

DY 0.28 0.30

(2.42) (2.88)

EP 0.02 0.19

(0.10) (0.97)

NTIS 0.31 0.39

(1.61) (2.08)

R
2

7.58 0.04 9.47 18.10 14.07 25.63

Panel B: Holding Period: 12m

V RP 30y -0.11 -0.32 -0.40

(-1.29) (-3.02) (-4.72)

V RPSPX -0.24 -0.18 -0.10

(-3.26) (-3.17) (-1.18)

DY 0.40 0.40

(3.05) (3.50)

EP 0.05 0.21

(0.23) (1.22)

NTIS 0.36 0.46

(1.62) (2.56)

R
2

15.75 0.25 13.07 23.87 14.69 31.22
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Table 3.6: 10y Treasury Futures Return Predictability Regressions (Con-
trols)
This table reports the return predictability regression results. We regress 10-year bond futures excess returns on the
10-year Treasury variance risk premium, the equity variance risk premium, Slope (annualized GSW slope, 10-year-
1-year), the Cochrane and Piazzesi (2005) factor (the CP factor), and the first two Ludvigson and Ng (2009) macro
factors, LN1 and LN2. E[V RP 10y |Slope] and E[V RP 10y |CP] are the fitted components of the 10-year Treasury

variance risk premium on the Slope and Cochrane Piazzesi factors, respectively. errorSlope and errorCP are the
residuals from the first stage regressions. We report the t-statistics in parentheses. Standard errors are Newey and
West (1987) standard errors with h-lags. The sample period is 1991 to 2014 for all regressions. Left and right hand
variables are standardized.

1 2 3 4 5 6 7 8

Panel A: Holding Period: 6m

V RP 30y -0.03 -0.09 -0.17

(-0.42) (-1.12) (-1.96)

V RPSPX 0.13 0.12 0.20

(1.59) (1.50) (2.17)

Slope 0.38 0.37

(3.54) (2.99)

CP 0.42 0.39

(4.29) (4.16)

LN1 -0.17 -0.16

(-1.85) (-1.93)

LN2 0.12 0.13

(2.69) (3.03)

E
[
V RP 10y

∣∣∣Slope
]

-0.38

(-3.54)

errorSlope 0.00

(0.05)

E
[
V RP 10y

∣∣∣CP
]

-0.42

(-4.27)

errorCP -0.05

(-0.65)

R
2

14.58 17.74 4.04 15.51 18.75 8.67 14.26 17.71

Panel B: Holding Period: 12m

V RP 30y -0.10 -0.14 -0.26

(-0.94) (-1.64) (-3.00)

V RPSPX 0.04 0.02 0.12

(0.32) (0.19) (0.87)

Slope 0.46 0.41

(3.29) (2.51)

CP 0.54 0.49

(5.04) (4.79)

LN1 -0.25 -0.18

(-2.52) (-1.92)

LN2 0.13 0.14

(3.39) (3.79)

E
[
V RP 10y

∣∣∣Slope
]

-0.46

(-3.29)

errorSlope -0.08

(-0.82)

E
[
V RP 10y

∣∣∣CP
]

-0.54

(-4.93)

errorCP -0.13

(-1.51)

R
2

21.28 28.68 7.53 21.49 29.94 12.96 21.63 30.15
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Table 3.7: Real versus Nominal Risks: Full Sample
The table reports contemporaneous OLS regression results. We regress the variance risk premia (VRPs), the stock-bond correlation
(SB Corr), and the correlation between variance risk premia (VRP Corr) on the first two principle components of the nominal term
structure computed using 2- to 10-year maturities. The first principle component is the Level and the second principle component is
the Slope. We rotate the Slope such that a positive shock to this factor raises long term yields and lowers short term yields. Expected
inflation is the 4-quarter ahead consensus forecasts for consumer price inflation from BlueChip Financial forecasts. t-statistics are
reported in parentheses and computed using Newey and West (1987) standard errors with 12 lags. The sample period is 1992.1 to
2013.1. Left and right hand variables are standardized.

VRPs SB Corr VRP Corr

10y 30y SP 10y 30y 10y 30y

Nominal Level −0.00 0.37 −0.23 0.61 0.64 −0.07 −0.22

(−0.02) (3.53) (−1.64) (7.31) (9.17) (−0.36) (−0.97)

Nominal Slope −0.56 −0.31 −0.07 −0.03 −0.02 −0.06 −0.01

(−6.41) (−3.34) (−0.51) (−0.31) (−0.25) (−0.51) (−0.05)

Exp. Inflation 0.20 0.04 0.56 0.25 0.25 −0.45 −0.09

(1.43) (0.39) (4.56) (2.52) (2.79) (−3.26) (−0.53)

R
2

31% 25% 15% 66% 71% 25% 8%
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Table 3.8: Real versus Nominal Risks: Post 2000 Sample TIPS regressions
The table reports contemporaneous OLS regression results. We regress the variance risk premia (VRPs), the stock-bond correlation
(SB Corr), and the correlation between variance risk premia (VRP Corr) on the first two principle components of the real term
structure computed using 2- to 10-year maturities. The first principle component is the Level and the second principle component
is the Slope. We rotate the Slope such that a positive shock to this factor raises long term yields and lowers short term yields.
Break-even inflation (Break-Even) is the difference between 2-year nominal yields and 2-year real yields. t-statistics are reported in
parentheses and computed using Newey and West (1987) standard errors with 12 lags. The sample period is 2000.1 to 2013.1. Left
and right hand variables are standardized.

VRPs SB Corr VRP Corr

10y 30y SP 10y 30y 10y 30y

Real Level −0.10 0.25 0.06 0.45 0.55 0.01 −0.10

(−1.46) (3.56) (0.63) (5.44) (6.48) (0.06) (−0.57)

Real Slope −0.39 −0.01 −0.17 −0.18 −0.14 −0.28 −0.24

(−3.97) (−0.07) (−2.16) (−1.52) (−1.21) (−2.29) (−1.77)

Break-Even 0.64 0.70 0.62 0.47 0.48 −0.36 −0.39

(7.68) (5.90) (5.19) (3.29) (3.68) (−3.93) (−3.74)

R
2

48% 53% 36% 40% 50% 22% 23%
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Table 3.9: Real versus Nominal Risks: Post 2000 Sample Nominal regressions
The table reports contemporaneous OLS regression results. We regress the variance risk premia (VRPs), the stock-bond correlation
(SB Corr), and the correlation between variance risk premia (VRP Corr) on the first two principle components of the nominal term
structure computed using 2- to 10-year maturities. The first principle component is the Level and the second principle component
is the Slope. We rotate the Slope such that a positive shock to this factor raises long term yields and lowers short term yields.
Break-even inflation (Break-Even) is the difference between 2-year nominal yields and 2-year real yields. t-statistics are reported in
parentheses and computed using Newey and West (1987) standard errors with 12 lags. The sample period is 2000.1 to 2013.1. Left
and right hand variables are standardized.

VRPs SB Corr VRP Corr

10y 30y SP 10y 30y 10y 30y

Nominal Level −0.03 0.28 0.11 0.52 0.62 0.06 −0.07

(−0.46) (3.71) (0.86) (5.75) (7.21) (0.36) (−0.37)

Nominal Slope −0.44 −0.04 −0.08 −0.09 −0.06 −0.26 −0.20

(−3.37) (−0.33) (−0.81) (−0.65) (−0.44) (−1.90) (−1.28)

Break-Even 0.42 0.57 0.51 0.19 0.18 −0.53 −0.47

(3.81) (3.57) (3.06) (1.05) (1.09) (−7.55) (−6.26)

R
2

50% 53% 34% 39% 50% 20% 20%
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