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Abstract

This thesis contains two theoretical essays on reciprocity and one that analyzes the effects of
perception biases on learning and decision-making.

In the first chapter, I propose a new theory of intention-based reciprocity that addresses the
question of when a mutually beneficial action is kind. When both benefit from the action, a
player’s motive is unclear: he may be perceived as kind for improving the other player’s payoff,
or as self-interested and not-kind for improving his own. I use trust as an intuitive mechanism
to solve this ambiguity. Whenever a player puts himself in a vulnerable position by taking such
an action, he can be perceived as kind. In contrast, if this action makes him better off than his
alternative actions do, even if it is met by the most selfish response, he cannot be kind. My
model explains why papers in the literature fail to find (much) positive reciprocity when players
can reward and punish.

The second chapter extends my theory of reciprocity to incomplete information. I outline how
reciprocity can give rise to pay-what-you-want pricing schemes. In the classic bilateral trade
setting, I show that sequential interactions can be more efficient than normal form mechanisms
when some people are motivated by reciprocity. Reciprocity creates incentives for information
sharing.

The last chapter is co-authored with Manuel Staab. We study the effects of perception biases
and incorrect priors on learning behavior, and the welfare ranking of information experiments.
We find that both types of biases by themselves reduce expected utility in a model where payoff
relevant actions also generate informative signals, i.e. when actions constitute information exper-
iments. However, experiments can be affected to different degrees by these biases. We provide
necessary and sufficient conditions for when any binary ranking of action profiles can be reversed.
Building on these findings, we show that an agent can be better off suffering from both biases
rather than just one.
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Chapter 1

A Theory of Reciprocity with Trust

1.1 Introduction

People are willing to sacrifice their own material wellbeing to reward those who are kind (positive

reciprocity), and to punish those who are unkind (negative reciprocity). This deviation from pure

selfishness has important economic consequences. After a pleasant dinner with great service, we

leave a generous tip for the waiter even when we don’t expect to return again. We are more likely

to donate to charity when solicitation letters include gifts (Falk (2007)), i.e. we respond to gifts

with counter-gifts. Akerlof (1982) argues that this idea of gift exchange may explain involuntary

unemployment in the labor market: when workers respond to generous wage offers by working

harder, firms are incentivized to raise wages above the market clearing wage. Fehr et al. (1993)

and Fehr and Falk (1999) demonstrate this experimentally. Bewley (1995) provides field evidence

for this view in the form of a large interview study. Employers cite worries about lower morale

(and thus lower effort) as the reason for not cutting wages in recessions. Reciprocity may also give

rise to acts of sabotage when workers punish unfair or unkind behavior. For example, Giacalone

and Greenberg (1997) report a rise in employees’ theft rates after wage cuts. Krueger and Mas

(2004) find that tires produced at the Bridgestone-Firestone plant were ten times more likely to

be defective as a result of a three-year labor dispute.

All these raise the fundamental question as to what constitutes kind and unkind behavior.

Studies highlight that the perception of what is kind (or fair) is not only determined by distri-

butional concerns, e.g. inequity-aversion (Fehr and Schmidt (1999)), but also by how this payoff

distribution comes about. For example, a one-sided offer is perceived as less unkind if the only

alternative is even more one-sided (Falk and Fischbacher (2006)) and is thus rejected less often
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(Falk et al. (2003)). This underlines that people consider the intentions and motives behind other

people’s actions and not just the respective outcomes that these actions induce.

In his seminal paper, Rabin (1993) (henceforth Rabin) formalizes intention-based reciprocity

for normal form games and suggests a definition of kindness. Dufwenberg and Kirchsteiger (2004)

(henceforth DK04) extend intention-based reciprocity to sequential games. In these models,

players form beliefs about the intentions behind the other players’ actions. For instance, upon

receiving a gift, the receiver forms beliefs about whether the giver expects a gift in return or

not. He then evaluates the giver’s kindness based on these beliefs. An action is perceived as

kind (unkind) if it yields an intended payoff that is larger (smaller) than a reference point. The

reference point and thus kindness perceptions differ slightly between the two papers, however.1

In Rabin, an action is only kind if it comes at a personal cost, whereas in DK04, a mutually

beneficial action, i.e. an action that improves both players’ payoffs, can be kind. As a result, a

gift that also benefits the gift-giver, for example due to an expected counter-gift, is only kind in

DK04.

In this paper, I revisit the central issue of when a mutually beneficial action is kind and provide

a new definition of kindness. When an action is perceived to be mutually beneficial, a player’s

motive is unclear: He may be perceived as kind for improving the other player’s payoff, or as

selfish for improving his own. The concept of trust offers a psychologically intuitive mechanism to

solve this ambiguity: Whenever the player puts himself in a vulnerable position by taking such an

action, he is perceived as kind. In contrast, if his action makes him better off than the alternative,

even if it is met by the most selfish response, he cannot be kind. Since players are only willing

to reward kind actions, this distinction helps to explain why some papers in the literature do not

find much positive reciprocity. It also offers new insights into the interaction of rewarding and

punishing actions.

Figure 1.1 lists all studies that cover both the simultaneous and sequential prisoner’s dilemma.2

The data highlights that cooperation in a prisoner’s dilemma is not unconditional and hence

cannot be explained by a simple model of altruism: in the sequential prisoner’s dilemma hardly

any player 2 cooperates after defection. The sequential prisoner’s dilemma, see also game 1.1 on

page 12, is an example of a social dilemma, in which the first player’s (he) action may improve

both his own and the second player’s payoff if the second player (she) positively reciprocates. In

four out of six studies, it is empirically payoff-maximizing for player 1 to cooperate. The data,
1See also Netzer and Schmutzler (2014), who apply Rabin’s notion of kindness to a sequential gift-exchange.
2All studies are one-shot interactions, incentivized, and feature a participant for each role. I did not include

studies that use deception, i.e. do not have an actual player 1, or that are not incentivized.
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Study cooperation rate N player 1 player 2 after C player 2 after D N Strategy Method

Khadjavi and Lange, 2013 (students) 37.0% 36 63.0% 62.1% 0.0% 46 no

Khadjavi and Lange, 2013 (prisoners) 55.6% 46 46.3% 60.0% 3.4% 54 no

Ahn et al., 2007 32.5% 80 30.0% 35.0% 5.0% 80 yes

Bolle and Ockenfels, 1990 18.6% 59 17.3% 19.7% 4.9% 122 yes

Hayashi et al., 1999 36.0% 50 56.3% 61.1% 0.0% 63 no

Watabe et al, 1996 55.6% 27 82.6% 75.0% 12.0% 68 no

Cho and Choi, 2000 47.5% 59 52.4% 72.7% 0.0% 42 no

Average 40.4% 49.7% 55.1% 3.6%

Simultaneous choice Sequential choice

Figure 1.1: Choice data from prisoner’s dilemmas

hence, suggests that player 2 views player 1’s cooperative choice as kind even if it is in player

1’s best interest. Malmendier and Schmidt (2017) observe a similar behavior in response to gifts.

In their experiment, most participants are aware that the gift was intended to influence their

behavior; yet they still positively reciprocate. Malmendier and Schmidt argue that players feel

obligated to reciprocate. Finally, figure 1.1 also indicates that there is more cooperation in the

sequential prisoner’s dilemma than in the simultaneous one.3

In my model, player 2 perceives cooperation as kind even if she believes that player 1 expects

her to cooperate in response (second order belief). Tempted to defect, player 2 wonders ‘what

if I take advantage of him?’ If she defects, player 1 would be better off had he defected himself,

and therefore exposed vulnerability by cooperating. Player 2 perceives his choice as trusting,

concludes that player 1’s action is kind, which in turn motivates her to cooperate. To determine

whether a mutually beneficial action is kind, player 2 asks the simple question ‘is it trusting?’

DK04, instead, suggest that a mutually beneficial action is kind as long as there exists a

strategy for player 2 for which player 1 is better off by taking the alternative choice.4 It follows

that only a mutually beneficial action that is also player 1’s (payoff) dominant action cannot be

considered kind. While DK04 predict the same behavior in the prisoner’s dilemma as I do, this is

not true in general: In my model, actions tend to be perceived as less kind than in DK04, giving

rise to less positive reciprocity. Not only does this explain why some papers in the literature do

not find much positive reciprocity, it also provides new insights into the interaction of punishing
3While this can be a result of player 2’s knowledge of 1’s action (in contrast to expecting cooperation from player

1, player 2 observes his action), it provides further evidence that player 2 is willing to reward the mutually beneficial
actions: In the simultaneous game, cooperation is, if anything, kinder. By cooperating in the simultaneous game,
player 1 improves player 2’s payoff more than in the sequential game, and does so at his own expense. Despite
these two forces, the sequential games features more cooperation. Note that in a simultaneous version of game 1.1,
player 1 increases 2’s payoff by 2 units when he cooperates, regardless of 2’s choice. Given that player 2 defects
after defection, he only increases 2’s payoff by 2 when she defects after C. When she cooperates after C, he only
increases her payoff by 1.

4In the prisoner’s dilemma, this is satisfied for the strategies ‘always cooperate’, ‘always defect’, and ‘defect
after cooperation and cooperate after defection’.
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and rewarding actions.

This is best illustrated by Orhun (2018). She is interested in how player 2 responds to

cooperation in a prisoner’s dilemma when player 2’s available choices after defection vary. In

particular, she compares behavior in the usual prisoner’s dilemma (game 1.1) to behavior in a

prisoner’s dilemma with punishment (game 1.2). In the latter, player 2 has the option to punish

player 1 after he defects. Orhun finds that the availability of the option to punish significantly

alters the players’ perception of the game. On average, player 1 believes that in 41% of the time

player 2 punishes after D, and player 2 holds a second order belief that he thinks she punishes

in 54% of all cases. For these beliefs, cooperation maximizes player 1’s payoff even if player 2

defects after C.5 Relatively to the sequential prisoner’s dilemma, player 2’s cooperation rate after

C drops by 22 percentage points in the one with punishment.

1

2

(1, 1)

c

(−1, 2)

d

C

2

(2,−1)

c

(0, 0)

d

D

Game 1.1: Sequential prisoner’s dilemma

1

2

(1, 1)

c

(−1, 2)

d

C

2

(−2,−1)

p

(0,0)

d

D

Game 1.2: Prisoner’s dilemma with punishment

My model, as far as I am aware, is the only model that predicts full conditional cooperation

in the prisoner’s dilemma, and defection (after C) and punishment (after D) in the prisoner’s

dilemma with punishment. Similar to the ultimatum game, player 2 punishes in response to

the unkind action D, which leads player 1 to cooperate. While cooperation improves 2’s payoff,

it is not trusting: player 1 is better off even if player 2 defects in response. As a result, she

perceives C as not kind and defects. In DK04, C is always seen as kind, since there is a strategy

(always defect) for which D is optimal for player 1. If anything, their model predicts more, not

less positive reciprocity in the prisoner’s dilemma with punishment as players tend to punish,

lowering their own alternative payoff.

This example highlights how kindness perceptions are not simply affected by the set of avail-

able choices for player 1, but also by how player 2 responds to these alternative. My model explains

why some papers fail to find much positive reciprocity, i.e. Offerman (2002), Al-Ubaydli and Lee

(2009) and Orhun (2018). Since the standard intention-based reciprocity model of Dufwenberg

and Kirchsteiger (2004) predicts positive reciprocity in such games, Offerman’s (2002) paper was
5The actual payoffs in Orhun’s experiment differ slightly from those in the figures.
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often used (in combination with other papers) to argue that negative reciprocity is stronger than

positive reciprocity. My model highlights that this need not be true. It shows how negative reci-

procity can instead crowd out positive reciprocity. An action can be perceived very differently

when the alternative action is followed by punishment rather than by a selfish response.

By allowing for complex interactions between punishment and rewards, my model provides a

theoretical framework to analyze institutional design and incentive structures when people are

motivated by reciprocity. It explains, for example, the lower demand for rewards in Andreoni

et al. (2003) when players can punish, and how employees reduce their efforts when employers

impose fines for shirking, Fehr and Gächter (2001).

The rest of this chapter is organized as follows: In the next section, I discuss the related

literature. In section 1.3, I present my model and show that an equilibrium exists. Sections 1.4

and 1.5 characterize the differences of my model to competing theories of Rabin and DK04. The

key difference to Rabin is the addition of trust. When an action is perceived as kinder in my

model than in Rabin, the action is trusting. This allows players to reciprocate mutually beneficial

actions. In contrast to fundamental preferences for trust, a trusting action can be unkind. In

such cases, trust is predicted to be betrayed. The comparison with DK04 highlights how negative

reciprocity can crowd out positive reciprocity. It also suggests yet-to-be-explored games, in which

DK04’s prediction of positive reciprocity appears implausible. In section 1.6, I revisit a variety

of experimental papers and show how my model describes behavior in games, where players can

reward and punish, better. Equilibrium predictions across all models are summarized in section

1.7. The paper ends with concluding remarks, section 1.8. Proofs, as well as the mathematical

detail for most examples can be found in Appendix A.

1.2 Literature Review

Intention-based reciprocity models are built on the general framework of psychological games,

Geanakoplos et al. (1989). Psychological games allow for beliefs to directly affect utility, and

not just indirectly through expectation formation. In Rabin (1993), a player uses her belief

about the other’s action, as well her second order beliefs about her own, to asses whether that

person intends to help or hurt her, whether he is kind or not. This directly affects her preferences.

Dufwenberg and Kirchsteiger (2004) extend intention based-reciprocity to sequential games. Their

key observation is that a player needs to update her beliefs about how kind the other player is as

the game progresses. As discussed in the introduction, a second, possibly more crucial, difference
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to Rabin is their definition of the reference point. In comparison to Rabin’s original model, or

more recent versions that apply his reference point to sequential games (allowing for updating of

beliefs, Netzer and Schmutzler (2014) and Le Quement and Patel (2017)), actions are perceived

as kinder in DK04. The kinder an action, the more a player is willing to sacrifice own material

gains to help him. As a consequence, DK04 predicts more positive reciprocity than models in the

spirit of Rabin.6

Reciprocity models have been very successful in explaining non-selfish behavior in the labo-

ratory. Participants generally reward trust, Berg et al. (1995), choose high levels of costly effort

in response to above market wage offers, Fehr et al. (1993), and reject low offers in the ultima-

tum game, Güth et al. (1982). Studies also highlight the importance of intentions in motivating

non-selfish actions. For example, Blount (1995) compares rejection rates in a normal ultima-

tum game, to one where the offer is made by a random number generator. In stark contrast to

an offer made by a human subject, almost all zero-offers are accepted when they are chosen at

random. Similarly, Falk et al. (2003) show that in an ultimatum game rejection rates for the

same offer differ systematically with the availability of alternative offers. For instance, a split

of (8, 2) is rejected more frequently when player 1 could have chosen (5, 5), than when his only

other alternative is (10, 0). Falk and Fischbacher (2006) report subjective kindness perceptions

of such divisions. Player 2 perceives (8, 2) as very unkind if (5, 5) and (2, 8) are alternatives,

but much less unkind if the only other alternatives are (9, 1) and (10, 0). McCabe et al. (2003)

vary player 1’s choice set in a binary trust game. 65% of responders repay trust if player 1 has

a choice between trusting and not trusting, while only 33% return money if the alternative ‘not

to trust’ is eliminated. These studies highlight that people consider the intentions and motives

behind other people’s actions; they are not motivated by preferences over relative payoffs alone

(Fehr and Schmidt (1999)). A zero-offer is not unkind if it is chosen at random; perceptions of a

seemingly selfish or generous actions depend the set of alternative actions.

Theorists have developed a variety of other reciprocity models. Instead of modelling kindness

in terms of absolute payoffs, it can also be modelled through relative payoffs between agents.

This is done by Falk and Fischbacher (2006). A recent paper in the literature is Celen et al.

(2017), who propose a novel definition of kindness based on the notion of blame. Here a player

puts himself in the other’s position and wonders if she would take an action that is worse or nicer,

and blames him if the latter is true. Examples of models that do not rely on psychological games

are Cox et al. (2007), Cox et al. (2008), Charness and Rabin (2002), Levine (1998), and Gul and
6A formal description of each reference point can be found in section 1.4 and 1.5.
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Pesendorfer (2016), among others. For a good summary see Sobel (2005). These models, like

mine, focus on the internal preferences for reciprocity. As such, they fail to account for social

pressure or social image concerns, and, for example, cannot explain why people avoid, at a cost,

situations in which they are asked to share (Dana et al. (2006), Dana et al. (2007)). Malmendier

et al. (2014) discuss how these issues apply to reciprocity.

By introducing the idea of trust to reciprocity, my model is related to the trust literature,

Berg et al. (1995), Cox (2004), etc. I will show how it relates to Cox et al. (2016), who define

trust for general two-stage games. While trust and kindness often coincide in games, they are

different concepts since they primarily focus on different peoples’ payoffs. As a result, an action

can be trusting but also unkind.

1.3 The Model

Basic idea of reciprocity. Reciprocity models allow for utility to depend on one’s own as well

on another player’s payoff. In a two player game, player 2’s utility takes the simple form of

U2(·) = π2 (·)︸ ︷︷ ︸
own payoff

+ κ1 (·)× π1 (·)︸ ︷︷ ︸
utility from reciprocity

In contrast to models of altruism, κ1 > 0, or spite, κ1 < 0, κ1 varies with player 2’s perception

of how kind 1 is towards her. Player 1’s kindness, as perceived by player 2, is defined as an

expression that compares 2’s perceived payoff against a reference point πr2. When the payoff is

larger than the reference point, we say player 1 is kind (κ1 > 0), when it is lower, we say he is

unkind (κ1 < 0).

Game 1.3 captures a simple scenario in which player 1 can improve player 2’s payoff at his

own cost. Suppose that 2’s reference point is her lowest payoff in the game, πr2 = 1. In this case,

player 2 will perceive action C as kind since it makes her strictly better off than the reference

point. Apart from answering the simple question ‘is 1 kind?’ when 2 observes C, she may also

wonder ‘how kind is he’. Since her payoff is either 4 or 5, she needs some criterion to decide

between the two. In intention-based reciprocity models, she uses her beliefs about what player 1

think she would do after C. These beliefs are called second order beliefs and capture the intended

consequences after player 1’s action. For example if she believes 1 thinks she cooperates, she

perceives the kindness of action C as κ1 = 4 − 1 = 3; kindness is simply the difference between

the payoff and the reference point. If instead she believes that 1 believes she defects, she would
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perceive him to be more kind, κ1 = 5 − 1 = 4. Since she prefers to cooperate for the lowest

kindness perception, U2(c) = 4 + (3) · 3 ≥ 5 + (3) · 1 = U2(d), she will positively reciprocate either

way.

1

2

(3, 4)

c

(1, 5)

d

C

(5, 1)

D

Game 1.3: A simple example of kindness

I now proceed to introducing the formal notation and kindness definitions.7 In contrast to

the previous example, the reference point represents a statistic on a subset of payoffs, and not

necessarily all payoffs in the game.

Game. Let the game be a 2-player, finite, multi-stage game, with perfect information

and finite actions. Hence, choices occur sequentially and are fully observed.8

Players, actions, and strategies. Let N = {1, 2} be the set of players, and H be the

set of all non-terminal histories. Terminal histories are denoted by Z. Ai,h describes the (pos-

sibly empty) set of actions for player i ∈ N at node h ∈ H. A history of length l is a sequence

h = (a1, a2, . . . , al), where at = (at1, a
t
2) is a profile of actions chosen at time t (1 ≤ t ≤ l). Player

i’s behavior strategy is denoted by σi ∈ ×h∈H∆ (Ai,h) =: ∆H
i . It assigns at each node h ∈ H a

probability distribution σi(·|h) over the set of pure actions. Define ∆H =
∏
i∈N ∆H

i 3 σ.

Player i’s material payoff is defined as πi : Z → R. It represents the ‘selfish’ payoff, which

is independent of any feelings of reciprocity, obligation, or behavioral concerns. Since behavior

strategies induce a probability distribution over terminal notes, material payoffs can be redefined

as πi : ∆H → R.

In this paper, I employ the notational convention that i and j always refer to different people.

In all examples, player 1 is male and player 2 is female.
7I opt for a notation that is closer to DK04 than the more recent, general framework of Battigalli and Dufwenberg

(2009), who extend psychological games to allow for updated higher-order beliefs, beliefs of others, and plans of
actions to directly affect utility. This has the advantage that differences between models are more explicit, and
that a more familiar equilibrium notion is used.

8While the theory can be applied one-to-one to games with simultaneous choice in stage games, the usual
updating process assumed in the literature leads to some unappealing behavior. Footnote 16 discusses this point
further after all concepts are introduced.
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Beliefs and updating. Players form beliefs about their opponent’s strategies (first or-

der belief) and what they think their opponent thinks of their own strategies (second order

belief). Denote player i’s first order belief about j’s behavior strategy σj by αj ∈ ∆H
j , and her

second order belief by βi ∈ ∆H
i . A key observation in Dufwenberg and Kirchsteiger (2004) is

that psychological games require updating of beliefs for each history:

Definition 1: For any αj ∈ ∆H
j and h ∈ H, let αj |h ∈ ∆H

j be the updated first-order belief (about

strategies) which assigns probability 1 to all actions of player j in (the sequence) h. Beliefs for

any other history h′ 6= h are left unchanged. βi is updated in the same fashion.

After observing some action aj (or more generally history h), each player updates their first and

second order belief to match this past actions. For instance, suppose player 2 holds the initial

belief that player 1 cooperates in a prisoner’s dilemma, α1(C) = 1. After observing defection,

she updates her belief to α1(C)|D = 0.9 As a result, actions are always seen as intentional, not

as mistakes. Notice that such updating behavior implies that players give up on non-degenerate

probabilistic beliefs (about the past) after observing the other player’s action. Randomized choice

is interpreted not as conscious randomization, but rather as choice frequencies at the population

level.10 True randomization can be introduced by public randomization-devices; for detail see

Sebald (2010).

Define the set ∆H
j |h as the set of j’s strategies that lead to history h with probability 1

(assuming i also plays the respective actions in h with certainty). It follows that αj |h ∈ ∆H
j |h.

Whenever a term features multiple updated beliefs, or also conditions on history h, I simply

condition once at the end, i.e. πi(βi, αj |h) :=πi(βi|h, αj |h | h).

Perceived kindness. Player i forms beliefs about j’s kindness by comparing the payoff

she thinks she obtains, πi(αj , βi), against a reference point πri (βi). The reference point is a

combination of the highest and lowest payoff that player j can induce by using a subset of

strategies Ej ⊆ ∆H
j . Besides second order beliefs, the subset Ej is the essential ingredient

in reciprocity models with intentions. Its definition critically affects all kindness perceptions,

preferences and behavior.
9While these beliefs are non-strategic, they affect kindness perceptions and hence require some form of updating

if unexpected events occurs. The simplest example of this is a sequential prisoners dilemma. Without updating
(C, cc) is an equilibrium. Player 2 cooperates no matter what given her (correct) belief that player 1 is kind due to
C. However, if the first player were to defect, this belief would not be sustainable. By updating the initial beliefs
when defection occurs, the (equilibrium) strategy for player 2 becomes conditional cooperation.

10Battigalli and Dufwenberg (2009) interpret randomized choices of player i as a common first-order belief of i’s
opponents about i’s strategy. This results in an “equilibrium in beliefs” as in Aumann and Brandenburger (1995).
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Given that the definition of E1 is central to this paper, let’s look at a simple choice problem in

order to understand why the literature defines the reference point on a subset of payoffs. Suppose

player 1 can either play a1, which leads to payoffs (π1, π2) = (10, 10), or a suboptimal alternative

a′1, which results in (−100, 0); A1 = {a1, a
′
1}. Assume the reference point is the simple average of

player 2’s highest and lowest payoff resulting from actions in E1. If E1 = A1 then πr2 = (10+0)/2

which would imply that player 2 perceives action a1 as kind.11 Although a1 makes player 2 better

off, it is also player 1’s dominant choice. As a result, it is unclear whether player 2 perceives such

selfish action as kind. ‘The fact that my neighbor doesn’t throw stones at my window doesn’t

make him kind.’12 Indeed, if such actions were to have an effect, any level of kindness could be

generated by simply adding dominated payoffs to the game. If instead E1 is defined over the set

of Pareto efficient actions, that is E1 = {a1}, then a1 is neither kind nor unkind as it yields the

same payoff as the reference point, πr2 = 10. Here, the notion of Pareto efficiency reduces the set

A1 to what player 2 considers the ‘sensible set’ E1.

In this paper, I introduce the idea of trust-efficiency to define E1. Trust-efficiency uses a

notion of Pareto efficiency that is generally based on i’s second order belief regarding her own

response, but which is adjusted for her hypothetical thought process of ‘what if I act selfishly?’

Definition 2: A behavior strategy σj ∈ ∆H
j is Pareto efficient given σi ∈ ∆H

i if there is no

other strategy σ′j ∈ ∆H
j that gives at least one player strictly more, without making the other

worse-off, that is πk(σ′j , σi|h) ≥ πk(σj , σi|h) for all h ∈ H, k ∈ {1, 2} with strict inequality for at

least one player.

Define player i’s material best-response as the behavior strategy σmBRi (αj) that maximizes i’s

payoff for all possible histories taking i’s first order belief about j’s strategy αj as given; that is

for all h ∈ H

σmBRi (αj) ∈ arg max
σi∈∆H

i

πi(σi, αj |h).

In case σmBRi (αj) is not unique, abusing notation, let it refer to a pure strategy that also max-

imizes j’s payoff at every h ∈ H (among σmBRi (αj)). Denote the optimal choice at each h that

make up this pure strategy by amBRi,h (αj), that is σmBRi (amBRi,h (αj)|h) = 1. Finally let σi\xh

refer to the behavior strategy that replaces the local choice at h in σi by xh ∈ ∆(Ai,h).13 With

these terms, I can define deviations from the material best response. An action is called generous
11While Ej is technically defined as a subset of behavioral strategies, for all examples, I will indicate which

(pure) actions are part of it.
12The payoffs implicitly assume that the neighbor is not a rebellious teenager, who enjoys breaking windows.
13When xh is (pure) action, xh ∈ Ai,h it is implicitly understood that it refers to σi(xh|h) = 1 and σi(ah|h) = 0

for all other actions.

18



(punishing) if it gives the other player more (less) than what he would get as a result of the

material best-response.

Definition 3: Player i’s action ai ∈ Ai,h at h is generous if πj(σmBRi (αj)\ai, αj |h) >

πj(σ
mBR
i (αj), αj |h). Action ai ∈ Ai,h is punishing if πj(σ

mBR
i (αj)\ai, αj |h) <

πj(σ
mBR
i (αj), αj |h).

Denote player i’s set of generous actions at h by AGi,h(αj) and the respective set of punishing

actions by APi,h(αj).

This brings us to the central definition of Ej , which is called TEj(βi) in my model:

Definition 4 (Trust Efficiency): A behavior strategy σj ∈ ∆H
j is trust-efficient if it is Pareto

efficient given βTEi ∈ ∆H
i , with βTEi defined as

βi(ai|h)TE :=


0 if ai ∈ AGi,h(αj)∑
x∈AGi,h(αj) ∪ amBRi,h (αj)

βi(x|h) if ai = amBRi,h (αj)

βi(ai|h) if ai ∈ APi,h(αj)

for all h ∈ H, ai ∈ Ai,h. The set of trust-efficient strategies is denoted by TEj(βi).

To illustrate this definition, take a simple game where player 1 moves first and player 2 responds.

Player 1’s trust-efficient actions are his Pareto efficient actions given player 2’s adjusted second

order-belief, which uses her material best-response instead of any generous action that she thinks

player 1 thinks she takes. For instance, if player 2’s second order belief in the Prisoner’s dilemma

with punishment, game 1.2, is β2(c|C) = 1 and β2(d|D) = 1, then she evaluates the Pareto

efficiency of C and D using β2(c|C)TE = 0 and β2(d|D)TE = 1 instead. While D is not Pareto

efficient given β2, it is given βTE2 . If player 2 defected after C, player 1 would be better off by

defecting himself. Action C makes player 1 vulnerable to being exploited. As a result, player

2 considers both actions to be trust-efficient. This will enable C to be perceived as kind as the

reference point is determined by trust-efficient actions. The trust-efficient set for player 2, in

contrast, is rather trivial, as she faces a simple decision problem at h, which doesn’t depend on

any future player.

βTEi treats generous and punishing actions rather differently; it adjusts beliefs in the first,

but leaves beliefs in the latter unchanged. Suppose, for instance, that player 2 holds the belief

β2(c|C) = 1 and β2(p|D) = 1 in game 1.2. In this case β2(c|C)TE = 0 while β2(p|D)TE = 1;

only C is trust-efficient. The asymmetric treatment of generous and punishing actions captures
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the idea player 2’s perception of player 1’s cooperative action depends on whether she thinks he

avoids punishment or exposes vulnerability.

In a more general environment, i.e. when players move more than once, the material-best

response doesn’t just focus on realized play but also takes the opponent’s overall strategy into

account, i.e. is forward looking. The idea remains the same, in the sense that βTEi transfers any

belief in generous actions to material best-replies for any given node in the game.14

The reference point is a simple convex combination of the highest and lowest material payoff,

with payoffs restricted to the trust-efficient actions.

Definition 5: Let player i’s reference point be

πri (βi|h) := λ · max
σj∈TEj(βi|h)

πi(βi|h, σj) + (1 – λ) · min
σj∈TEj(βi|h)

πi(βi|h, σj)

for some λ ∈ [0, 1].

As a punishing action of player i can make a strategy of player j inefficient, the reference point

may be discontinuous in βi. If this is the case, let πri refer to the smoothed out, continuous

version of the reference point in all subsequent expressions.15

Player i forms beliefs over the kindness of j’s strategy; She compares her perceived payoff

πi(αj , βi) against the reference point πri (βi).

Definition 6: Player i perceives j’s kindness from strategy αj at h according to the function

κj : ∆H
j ×∆H

i → R with

κj (αj , βi | h) := k (πi(αj , βi), π
r
i (βi) | h)

with ∂k(·)
∂πi
≥ 0, ∂k(·)

∂πri
≤ 0, k(πi = πri , ·) = 0, and a continuous k(·).

Example: If k(·) is linear, the function reduces to the usual κj(αj , βi|h) = πi(αj , βi|h)−πri (βi|h).

This function will be used in all examples.

In general, k(·) can describe more general functional forms such as bounding kindness (to 1),

or allowing for dimishing effects as payoffs scale up.
14For simplicity, I opted to not explicitly indicate that βTEi is a function of αj . I hope that this helps making

expressions more easily understood instead of having the opposite effect.
15In contrast to generous actions, I am unaware of a game that actually requires mixed strategies in punishing

actions. In general, when a player prefers to take a punishing action ai and holds beliefs that βi(ai|h) ∈ [0, 1)
then she will also want to punish for βi(ai|h) = 1; the simple, non-continuous reference point is usually enough.
For details on how to smooth out the reference point, see Appendix A in Rabin (1993); in this regard, see also the
discussion of conditional-efficiency in section 1.4.
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Utility and Equilibrium.

Definition 7: The utility of player i at h ∈ H is a function Ui : ∆H
i ×∆H

j ×∆H
i → R defined by

Ui (σi, αj , βi|h) = πi(σi, αj |h) + γi · κj (αj , βi|h) · πj(σi, αj |h) (1.1)

where γi is a non-negative parameter capturing i’s concern for reciprocity.

The equilibrium is defined using the multi-selves approach. An agent (i, h) maximizes i’s condi-

tional utility at h by choosing the local action, taking ‘her’ strategy at all other nodes as given.

This approach is necessary as the agent’s preferences may change over time.

Definition 8: (σ∗, α∗, β∗) is a reciprocity with trust equilibrium (RTE) if for all i ∈ N , for each

h ∈ H, and for any a∗i ∈ Ai,h it holds that

• if σ∗i (a∗i |h) > 0 then a∗i ∈ arg max
ai∈Ai,h

Ui
(
σ∗i \ai, α∗j , β∗i |h

)
• α∗i = σ∗i

• β∗i = σ∗i

The equilibrium has the usual feature that players make optimal decisions at every h taking

behavior and beliefs in other unreached histories as given. Moreover, first and second order beliefs

are correct and are updated as the game progresses. The updating process views unexpected

actions as intentional, not as mistakes.16

Proposition 1: An equilibrium exists if κi(·) is continuous for all i ∈ N .

The proof follows the strategy of DK04. The key observation is that behavior at unreached

nodes (or rather second order beliefs about it) has direct effects on preferences due to kindness

perceptions. As a result, the usual backward induction argument fails. Instead, the existence

proof requires that all histories are analysed simultaneously.
16At this point, I should comment on why the model is only defined over games with strictly sequential choices.

The game matching pennies illustrates an interesting issue that occurs when there are simultaneous choices in
sequential games.

L R
T 1,0 0,1
B 0,1 1,0

Suppose both people were to belief that the other player is perfectly randomizing. Ex-ante,

this leads to zero-kindness. Ex-post one player wins, the other loses. The updating process in my model - and
Dufwenberg and Kirchsteiger (2004) or Battigalli and Dufwenberg (2009) - places probability 1 on the observed
actions. Hence, ex-post, the winner considers the loser as kind, and the loser views the winner as unkind. If they
had the opportunity to reward or punish in a subsequent period - they would choose to do so. While they may
want to do so for status concerns, it seems counterintuitive that this is a result of reciprocity when they agreed
ex-ante that kindness is zero.
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Example. Sequential prisoner’s dilemma, game 1.1. Suppose for simplicity that player 1

is selfish,γ1 = 0, and that the reference point is the minimum efficient payoff, λ = 0.17 For any

β2, player 1’s efficient set of actions is TE1(β2) = {C,D}. To understand this, start with player

2’s second order belief that she conditionally cooperates. For such belief C Pareto-dominates

D so that C could not be perceived as kind. However, the efficiency notion, instead, uses 2’s

material best-response after C. Given such response, both actions are Pareto efficient. Player

1 makes himself vulnerable by playing C as subsequent defection would lower his payoff below

what he could have obtained by playing D. This leads player 2 to perceived the mutually

beneficial action C as kind.

At C her choices yield utilities of

U2(c, β2|C) = 1 + γ2 [β2(c|C) + 2(1− β2(c|C))− (−β2(c|D))] · 1, and

U2(d, β2|C) = 2 + γ2 [β2(c|C) + 2(1− β2(c|C))− (−β2(c|D))] · (−1).

These two expressions clarify how the second order belief about behavior at unreached nodes

affects 2’s perception of 1’s kindness. The more 2 believes 1 believes she cooperates at D, the

kinder she perceives him to be.

Since D minimizes 2’s payoff it can never be kind, however. Player 2 defects after D,

σ2(c|D) = β2(c|D) = 0. She cooperates at C if and only if 2γ2 (β2(c|C) + 2(1− β2(c|C))) ≥ 1.

Thus for γ2 ≥ 1
2 she cooperates. For γ2 < 1

4 , she defects, and for intermediate values she

randomizes with σ2(c|C) = β2(c|C) = 2 − 1
2γ2

. Player 1 cooperates if and only if γ2 ≥ 3
8 . The

intermediate case highlights that an equilibrium in pure strategies may not exist when players

are not purely motivated by material-payoffs, unlike in Zermelo (1913). Player 2 only views 1 as

sufficiently kind (to motivate her to cooperate) when she thinks he thinks she defects, but not

when she thinks he thinks she cooperates.

1.4 Trust and Conditional Efficiency

In this section, I compare my model to the reciprocity models of Rabin (1993) and Netzer and

Schmutzler (2014). By also comparing it to a model of trust, i.e. Cox et al. (2016), I will explain
17Clearly, using the more familiar λ = 1/2 doesn’t add any additional insight to this particular example, but

gives rise to a more complicated looking reference point. Whenever there is no punishment, using λ = 0 is often
better.
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why it is called reciprocity with trust, and how it differs from pure trust.

For the remainder of this paper, the games of interest are two-stage games where player 1

moves first and 2 responds. The focus will be on player 2’s equilibrium response as player 1’s

preference is identical across all models.

In this setting, I will use TE1(β2) to refer to player 1’s trust-efficient actions (instead of

behavior strategies). Moreover, for a1, a
′
1 ∈ A1, a1 Pareto-dominates a′1 given β2 ∈ ∆H

2 , in short

a1 PD(β2) a′1, if πk(a1, β2) ≥ πk(a′1, β2) for all k ∈ {1, 2}, with strict inequality for at least one

player. Similarly if a1 dominates a′1 given βTE2 ∈ ∆H
2 I use a1 PD(βTE2 ) a′1.

Conditional-efficiency. Rabin (1993) models efficiency conditional on player 2’s response (or

rather the second-order belief thereof) when defining reciprocity for normal-form games. For a

two-stage game, it translates to:

Definition 9 (Conditional Efficiency, Rabin ’93): An action a1 ∈ A1 is conditionally efficient

if it is Pareto efficient given β2 ∈ ∆H
2 . Denote the set of conditional efficient actions by CE1(β2).

The fundamental difference between Rabin’s original model and mine is his definition of efficiency.

He simply uses second order beliefs to determine whether an action is efficient, which will be

consistent with actual choices in equilibrium. In my model, I start with second order beliefs to

determine efficiency, but use material-best replies instead of any beliefs in generous actions.

Since Rabin focused on normal form games, his model featured no belief updating, however.

Netzer and Schmutzler (2014) and Le Quement and Patel (2017) apply the notion of conditional-

efficiency to sequential games, allowing for such updating. For this paper, I define a conditional

Reciprocity Equilibrium (conRE) as an equilibrium that takes all ingredients from section 1.3,

but replaces trust-efficiency with conditional efficiency.

The difference between the two efficiency notions is best illustrated by revisiting the prisoner’s

dilemma. From earlier, we know that player 2 defects after defection, β2(c|D) = 0. The second

order belief about how player 2 responds after cooperation is crucial, however. If 2 thinks that

1 believes she defects, β2(c|C) = 0, then both C and D are efficient: C is better for 2, while

D is better for 1. If she thinks he believes she cooperates, β2(c|C) = 1, C is the only efficient

action as it is mutually beneficial. In general, C is the only efficient action if it also maximizes

player 1’s payoff, i.e. β2(c|C) ≥ 1/2. As the reference point is based on the efficient actions only, it

follows that when both actions are Pareto efficient, β2(c|C) < 1/2, she perceives action C as kind,

κ1(C, β2(c|C)) = 2−β2(c|C)−0. For β2(c|C) ≥ 1/2 only action C is efficient and so the reference
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point is identical to her (perceived) payoff, κ1(C, β2) = 2 − β2(c|C) − (2 − β2(c|C)) = 0. While

player 2 benefits from C, she attaches zero kindness to 1’s action. A reciprocity model based on

the conditional-efficiency notion adopts the cynical perspective that an action can only be kind

when it occurs at 1’s expense. This places a strict limit of how much player 2 can cooperate in

equilibrium. Even when she is sufficiently motivated by reciprocity, γ2 ≥ 1/3, it must be that she

cooperates with slightly less than 1/2 probability. For γ2 < 1/3, both RTE and conRE coincide.18

The prisoner’s dilemma example suggests that (a) trust-efficiency features a more generous

reference point, and that (b) the difference between trust-efficiency and conditional-efficiency is

trust. I will now explore each idea and show how they relate to each other.

Proposition 2: Let β2 be an equilibrium belief for either RTE or conRE (or both). Then

min
a1∈TE1(β2)

π2(a1, β2) ≤ min
a1∈CE1(β2)

π2(a1, β2).

This proposition confirms the notion that actions are perceived as kinder in my model. When

positive reciprocal responses make actions inefficient, they remain efficient under trust-efficiency.

Since a lower minimum efficient payoff translates into a lower reference point, actions are

perceived as kinder.19 I will now show under which conditions the reference points differ. To

do so, I introduce a notion of trust and illustrate how it relates to the notion of trust- and

conditional-efficiency.

Trust. Cox et al. (2016) define trust for two-stage games as follows: For any a1, a
′
1 ∈ A1, a1 is

more trusting than a′1 if and only if

π1(a1, σ
mBR
2 ) < π1(a′1, σ

mBR
2 ) and max

a2∈A2,a1

π1(a1, a2) > π1(a′1, σ
mBR
2 ).

The first condition captures vulnerability. Given 2’s selfish responses, player 1 is worse off by

playing a1 than a′1. The second condition requires that there is a response to a1 that makes

player 1 better off than the selfish outcome after a′1. For the purpose of this paper, I use a slight

variation of their definitions, namely:
18Netzer and Schmutzler (2014) make a similar observation in a gift-exchange game, where a firm is known to

be selfish. They highlight that a high wage offered by a firm (that moves first) isn’t kind if the firm expects the
worker to reciprocate by exerting high effort. If a ‘low wage’ leads to ‘low effort’ and ‘high wage’ to ‘high effort’,
and the payoff set from the second dominates the first, the efficient set collapses to a singleton. This makes any
high-wage offer not kind. Their goal is to highlight the limits of reciprocity when one player is known to be selfish.
In contrast, this paper is motivated by trying to understand when cooperation is possible if both are (known to
be) reciprocal - whenever selfishness of player 1 is assumed in this paper, it is mainly done to simply derivations.

19All results in this paper are based on equilibrium beliefs. For an example that highlights what can happen
when only rationalizability is required, see Appendix 1.10.1, game 1.11. The example underlines that RTE is best
used as an equilibrium model.
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Definition 10: Let a1, a
′
1 ∈ A1. a1 is more trusting than a′1 if and only if

π1(a1, σ
mBR
2 ) < π1(a′1, σ

mBR
2 ) and max

a2∈A2,a1

π1(a1, a2) > π1(a′1, β2).

This definition keeps the critical first condition that focuses on the relative material best-response

payoffs, while relaxing the second condition to only require a1 to potentially do better than

a′1 given β2.20 Cox et al. (2016) remark that some definitions of trust allow for the possibility

that the second player can be better off, but chose not to include it as it would reflect gifts or

generosity, not trust. I will argue later, that player 2’s payoff is rather relevant to predict when

trust is reciprocated or betrayed.21

Proposition 3: Let (σ∗, α∗, β∗) be an RTE and let player 1 only have two actions, A1 = {a1, a
′
1}.

If TE1(β∗2) = {a1, a
′
1} and CE1(β∗2) = {a1} then a1 is more trusting than a′1.

The proposition can be read as ‘RTE is conditional efficiency plus trust’. While a1 Pareto

dominates a′1 given β∗2 player 2 is tempted by her selfish option (after a1) and understands that

if she took it, player 1 would have been better-off under the alternative. This makes a1 trusting.

From a mechanical standpoint, note that it is not the trusting action that becomes efficient, but

the alternative action that was less trusting. Consequently the trusting action appears kind,

which allows for the possibility of it being rewarded.

When generalizing this result to |A1| ≥ 2, it is useful to introduce notation for the efficient

action that minimizes 2’s payoff. Denote this action for the respective efficiency notions, TE and

CE, by

M
TE1(β2)
1 = arg min

a1∈TE1(β2)

π2(a1, β2) and M
CE1(β2)
1 = arg min

a1∈CE1(β2)

π2(a1, β2).

Since the maximum payoff is always efficient and thus is identical across models, the reference

point differs if and only if these two actions are different.22

Proposition 4: Let (σ∗, α∗, β∗) be an RTE. If MTE1(β∗2 )
1 6= M

CE1(β∗2 )
1 then any action a1 ∈ A1

that Pareto-dominates MTE1(β∗2 )
1 given β∗2 is more trusting than MTE1(β∗2 )

1 .

By proposition 2, we know that MTE1
1 induces a weakly lower payoff than MCE1

1 . Hence, when
20This definition is not meant to capture the best-definition of trust (which may want to hold constant expected

behavior off-path), but rather, to be a useful language for describing selfish payoffs. For most games in the
experimental literature, this definition implies Cox et al. (2016)’s definition.

21They also define 2’s action as trustworthy after a1 if it gives 1 (weakly) more than the payoff he would get if
2 acted selfishly when 1 chooses the least-trusting action relative to a1.

22In general it does not need to be true that CE1(β2) ⊆ TE1(β2). Game 1.12 in Appendix 1.10.2 illustrates a
case where action a1 ∈ CE1(β2) but is not in TE1(β2). It also makes clear why such cases aren’t problematic.
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the minimum efficient payoff is strictly lower under trust-efficiency, the proposition states that it

is due to trust. This reiterates that RTE can be interpreted as conditional efficiency plus trust.

Since the proposition only describes when preferences are different, it is not clear whether the

equilibrium itself must be different. This is tackled next.

Proposition 5: Let (σ∗, α∗, β∗) be an RTE. If MTE1(β∗2 )
1 6= M

CE1(β∗2 )
1 then (σ∗, α∗, β∗) cannot

be a conditional Reciprocity Equilibrium.

Whenever trust plays a role, an RTE cannot be an equilibrium in the Rabin model. To understand

this proposition, recall that when player 2 conditionally cooperates in the prisoner’s dilemma,

cooperation is the only efficient choice for player 1 given the notion of conditional-efficiency. In

this case, it cannot be perceived as kind and so player 2 cannot cooperate in response. The

proposition generalizes this observation. Whenever there is an equilibrium where trust-efficiency

yields a different minimum payoff than conditional-efficiency (for the same second order belief),

the respective action that induces 2’s minimum payoff for trust-efficiency is followed by a positive

reciprocal response. But such response isn’t feasible in a conditional Reciprocity equilibrium as

this action is not perceived as kind.

If the minimum payoff is the same, on the other hand, preferences are identical across both

models so that the equilibrium is also a conditional RE.

1.4.1 Trust Does Not Imply Efficiency

Cox et al. (2016) intentionally define trust using only player 1’s payoffs. As a result, it is a very

different notion than efficiency and kindness. It turns out that a choice can be trusting, but also

unkind and Pareto dominated. When players are motivated by reciprocity, such trust is likely to

be betrayed. Game 1.4 illustrates this idea.

In this example action A makes player 2 strictly worse off. Since π1(A, σmBR2 ) = 0 < 1 =

π1(B, σmBR2 ) and maxa2∈A2,A
π1(A, a2) = 2 > 1 = π1(B, σmBR2 ) action A is more trusting than

B. As 2’s second order belief must assign probability one to r, B Pareto dominates A for any

second order belief of how she responds after B. It follows that the only efficient action is B

despite the fact that A is more trusting than B. As a result, player 2 always takes her selfish

action rn. She betrays player 1’s trust after A and does not reward the mutually beneficial action

B.
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1

2

(2, 0)

l

(0, 1)

r

A

2

(3, 2)

m

(1, 3)

n

B

Game 1.4: Trust doesn’t imply efficiency

1.5 Dufwenberg and Kirchsteiger ’04

In this section, I compare the reciprocity with trust model to Dufwenberg and Kirchsteiger (2004)

- which is the standard intention-based reciprocity model for sequential games. I will argue that

their model classifies ‘too many’ actions as efficient, giving rise to a reference point that is often

too low, and thus predicting too much positive reciprocity. Once again, the games of interest will

be two-stage games.

Definition 11 (Unconditional-efficiency, Dufwenberg and Kirchsteiger ’04): An action a1 ∈ A1 is

unconditionally-efficient, if it is Pareto-efficient for at least one strategy of player 2, σ2 ∈ ∆H
2 .

Denote the set of unconditional efficient actions by UE1.

Efficiency no longer takes (the second order belief about) 2’s strategy as given, but instead requires

that it isn’t Pareto-dominated by some a′1 ∈ A1 for all possible strategies of player 2. We can

think about this from an ex-ante perspective: Without knowing how player 2 might respond,

any action that is dominated for all possible responses is eliminated. Define a unconditional

Reciprocity Equilibrium (unRE) as an equilibrium that takes all ingredients from section 1.3, but

replaces trust-efficiency with unconditional efficiency.

Returning once again to the prisoner’s dilemma, it should be clear that both actions are

unconditionally efficient, UE1 = {C,D}. If player 2 always defects, C is better for 2, while D

is better for 1. Consequently, the equilibrium predictions of RTE and unRE are identical. In

general, unconditional efficiency is less restrictive than trust-efficiency. While trust-efficiency is

based on a particular strategy, βTE2 , unconditional efficiency only requires the existence of any

strategy for which player 1’s action is not Pareto-dominated.

Proposition 6: For any β2 it holds that TE1(β2) ⊆ UE1 and thus

min
a1∈UE1

π2(a1, β2) ≤ min
a1∈TE1(β2)

π2(a1, β2).
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Compared to trust-efficiency, actions tend to be perceived as kinder when unconditional efficiency

is used. As a result unRE predicts more (less) positive (negative) reciprocity than RTE.

We now turn to game 1.5 and 1.6. In game 1.5, A Pareto-dominates B regardless of player

2’s action; A is not kind. In game 1.6, A is no longer the only unconditionally-efficient action. B

is efficient because it yields the largest payoff for player 1 if, for example, player 2 were to play

strategy ln. Consequently A is kind, which makes player 2 want to reciprocate by using strategy

rm in equilibrium. Notice, however, that B gives player 2 strictly less than A. As a result, it

cannot be kind and so player 2 will always choose m after B.

1

2

(1, 2.5)

l

(2, 2)

r

A

2

(0, 0)

m

B

Game 1.5

1

2

(1, 2.5)

l

(2, 2)

r

A

2

(0, 0)

m

(3,−20)

n

B

Game 1.6

This example highlights the fundamental problem of the unconditional-efficiency notion: Since

unconditional-efficiency is independent of what players actually do (or want to do), it opens up

for the possibility of adding various unused choices to create kindness. Note that this example

doesn’t require equilibrium beliefs. Since player 2 never plays n, player 1 cannot believe that

she does, and so player 2 must hold the second order belief that she plays m (after B): n is not

rationalizable, yet affects kindness perceptions.23 While she may view action B as greedy, it is

unlikely that n’s existence motivates player 2 to play l. This suggests that DK04’s approach of

modelling efficiency without any link to second order beliefs leads to a model that predicts too

much positive reciprocity. In the next subsection, I will explore how this example generalizes.

1.5.1 General Comparison

I now proceed to describe in which cases the reference point in the RTE differs from DK04. There

are two main classes of payoffs, one that generalizes the previous example and one that is linked

to games where player 2 punishes in some nodes of the game. The latter case sheds light on why

some experimental papers don’t observe much positive reciprocity.
23An action a2 ∈ A2(h) cannot be rationalizable if there exists no second order belief β2 under which she wants

to take such action. For a full definition of rationalizability in psychological games, see Battigalli and Dufwenberg
(2009).
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The easiest way to compare RTE to DK04 is by looking at games where player 1 has only two

actions, |A1| = 2. Moreover, I make the following equilibrium selection assumption:

Assumption 1: Player 2 doesn’t punish after a1 ∈ A1 if there is an alternative action a′1 ∈ A1

with π2(a1, σ
mBR
2 ) > π1(a′1, σ

mBR
2 ).

The assumption eliminates very pessimistic beliefs that could theoretically lead to punishing

behavior after an action a1 that makes player 2 better off than under alternative a′1 if she takes

her material best-response after each.24 25 Note that since player 1 only has two actions, only one

of the two can be seen an unkind and punished. The assumption does not eliminate punishment

in general. It can be shown that an equilibrium still exists even when the above is assumed.26

Proposition 7: Let player 1 have two actions, A1 = {a1, a
′
1}, and let (σ∗, α∗, β∗) be an RTE. If

assumption 1 holds, UE1 = {a1, a
′
1} and TE1(β∗2) = {a1} then one of the following holds:

1. π1(a1, σ
mBR
2 ) > π1(a′1, σ

mBR
2 ) and π2(a1, σ

mBR
2 ) > π2(a′1, σ

mBR
2 ), or

2. π1(a1, σ
mBR
2 ) < π1(a′1, σ

mBR
2 ) and π2(a1, σ

mBR
2 ) > π2(a′1, σ

mBR
2 ).

The first case is the most extreme. When player 2 uses her material best-response after both ac-

tions, a1 Pareto dominates a′1. Both players are better off. Here, it appears difficult to rationalise

why a1 is perceived as kind. One example of this was game 1.6. There are various other ways in

which additional actions lead to the same result.27

The second case is slightly more interesting. Under material best-replies, both action are

indeed efficient: Player 1 would prefer a′1 over a1. As player 2 considers a′1 unkind, however, she

punishes him in response to a′1, making it Pareto-dominated. Moreover, she understands that

by choosing a1, player 1 avoids punishment. While he improves her payoffs, she views player

1’s action as selfish because it is not trusting. This example highlights the interaction between

rewards and punishment and is explored in more detail in the next section.

The proposition generalizes to |A1| > 2, yet requires a more involved assumptions given the larger

set of actions. It is discussed in Appendix B.
24 Take a game with A1 = {a1, a′1}. a1 induces payoffs for player 2 of 1 or −1 (depending on 2’s response),

while a′1 leads to payoff 0. Let λ = 1/2. Suppose 1’s payoffs are such that both actions are (always) efficient.
Let β̃ be the second order belief that she takes the action that leads to a payoff of 1. In this case κ1(a1, β̃) =
(β̃ − (1 − β̃) − (β̃ − (1 − β̃) + 0)/2) = β̃ − 1/2. If 2 believes 1 thinks she punishes after a1, then she may want
to punish if it lowers 1’s payoff sufficiently. While β̃ = 1 represents ‘normal’ beliefs, β̃ = 0 takes an extremely
negative view player 1 aims to hurts player 2. For most normal interactions such belief appears unlikely.

25While the assumption is written in terms of behavior, it could have also been written in terms of the equivalent
beliefs, which implies such behavior.

26See Appendix A, Lemma 10 for detail.
27For instance a′1 may be become efficient if there exists generous action after a1 that results in a lower payoff

for player 2 than her selfish payoff after a′1. Alternatively, it may be due to a punishment action after a1, which
once again leads to a lower payoff for 2 than her selfish payoff after a′1.
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1.6 Applications

This section revisits games in the literature where player 2 can reward and punish. Game 1.7 is

taken from Offerman (2002) and represents a perfect example for part 2 of proposition 7. The

second player has the option, at a cost of 1 unit, to reward (r) or to punish (p) player 1 by 4

units. Player 1 can be helpful (H) or selfish (S). In a SPNE with selfish players, γ1 = γ2 = 0,

player 1 plays S and player 2 always acts cool, cc.

1

2

(12, 13)

r

(8, 14)

c

(4, 13)

p

H

2

(15, 5)

r

(11, 6)

c

(7, 5)

p

S

Game 1.7: Offerman (2002)

The key observation for this game is that when player 2 punishes after S, H Pareto dominates

S for both β2 = rp and β2 = cp. As a result, only H is trust-efficient and therefore not kind.

Player 2’s optimal response to H is c.

In one treatment, Offerman (2002) allows player 1 to make a choice himself, while in the other,

player 1’s choice is made for him by a computer He finds clear evidence of negative reciprocity

but limited, not statistically significant, evidence of positive reciprocity: 83.3% of the second

movers punish the selfish choice (vs. 16.7% in the ‘random treatment’), whereas 75% of second

players reciprocate helpful choices (vs 50% in the ‘random treatment’). Offerman concludes

that negative intentionality matters more than positive intentionality and explains this with

self-serving attribution.28 Al-Ubaydli and Lee (2009) repeat Offerman’s experiment employing

a structural approach, in which the reciprocity model by Falk and Fischbacher (2006) is used

to account for asymmetries due to inequity aversion. They also find that negative intentions

are more likely to be followed by punishment than positive ones, and subscribe to Offerman’s

conclusion of self-serving attribution. My analysis emphasizes that this conclusion does not need

to be correct, since it neglects to account for the interaction between punishment and rewards. It

is because player 2 punishes in response to the selfish choice, that the helpful action is no longer
28Intentional harm hurts player 2’s self-esteem and therefore induces punishment. However, she attributes being

treated well by players or nature to being ‘a good person deserves help’. As a result, there is no need to reciprocate.
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perceived as kind.29

The Offerman result was surprising because both actions are efficient in DK04, and thus

C is perceived as kind. Moreover, DK04’s model predicts that either player 2 rewards H and

punishes S, or always acts neutral. This is due to the fact that the game is fully symmetric,

and that their reference point put equal weights on the maximum and minimum efficient payoff.

Simply relaxing the parametric specification of equal weights, i.e. for example to λ > 1/2, is not

the solution as we will see next. In a recent experimental paper, Orhun (2018) observes similar

behavior as in Offerman. Instead of replacing player 1’s choice with a computer, she varies the

set of choices in the game. In particular she varies player 2’s choice in a sequential prisoner’s

dilemma after defection, see game 1.8 and 1.9. In the game 1.8, player 2 has the usual option to

cooperate, whereas in game 1.9 she can punish player 1 instead.

1

2

(5.5, 1.5)

c

(3, 2)

d

C

2

(6.5, 0.5)

c

(4, 1)

d

D

Game 1.8: Sequential prisoner’s dilemma

1

2

(5.5, 1.5)

c

(3, 2)

d

C

2

(1.5, 0.5)

p

(4,1)

d

D

Game 1.9: Prisoner’s dilemma with punishment

The option to punish significantly alters the players’ perception of the game. On average, player

1 believes that in 41% of the times player 2 punishes after D, and player 2 holds a second order

belief that he thinks she punishes in 54% of all cases. Under these beliefs, cooperation is player

1’s payoff maximizing choice. Orhun finds that cooperation rates (after C) fall significantly from

57% in game 1.8 to 35% in game 1.9.30

Orhun remarks that DK04 cannot predict the drop in cooperative behavior. Indeed, it cannot

be explained for any possible weighting assigned to the minimum and maximum payoff in the

reference point. If anything, the option to punish increases the kindness perception of C by

lowering the minimum efficient payoff. In contrast, RTE predicts this exact change in behavior.

Given that player 2 punishes C PD(βTE) D, so that C is not perceived as kind. With reciprocal

players RTE predicts (C, cd) in the usual prisoner’s dilemma and (C, dp) in the prisoner’s dilemma

with punishment. I am unware of any other model that makes the same prediction.31

29In the random treatment, neither outcome is kind or unkind, and player 2 always plays c.
30Unfortunately, she doesn’t compare this to what player 2 would have done in a dictator game.
31I should point out that a conditional Reciprocity model can explain the drop in cooperation rates, but cannot

explain that cooperating is optimal for player 1 in the basic prisoner’s dilemma.
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For example, it is unclear how type-based models, i.e. Levine (1998) or Gul and Pesendorfer

(2016), could explain player 2’s response. Whenever it is optimal for player 1 to cooperate

in both games, player 2’s belief about 1’s type must be the same. As a result, she must also

cooperate in the prisoner’s dilemma with punishment.32

I conclude this section with a game in the spirit of Andreoni et al. (2003). We will see

that in game 1.10, each reciprocity equilibrium, RTE, conRE, unRE, makes a different

equilibrium prediction.

Andreoni et al. are interested in the incentive effects of voluntary rewards and punishments,

and how this can be used to shape economic institutions. In their experiment, player 1 decides

how much of his endowment to give to player 2. The choice set of player 2 varies by treatment.

She either has no choice (dictator game), can reward, punish, or reward or punish the sender.

They find that offers are lowest in the dictator game, second lowest in treatment that only allows

for punishment, second highest in the treatment that only allows for rewards, and highest in the

treatment that allows for both rewards and punishment. In general, punishment eliminates very

selfish offers, while rewards incentivise high offers. Like all papers in this section, they observe

that the option to punish lowers the demand for rewards. This pattern remains significant even

for the most generous offers. The authors find this behavior puzzling and conjecture that an

explanation may require a definition of kindness that changes with the treatment.

From our discussion in the previous paragraphs, it should be clear by now that this is exactly

the behavior RTE predicts. When the most selfish offers are met with punishment, they become

inefficient, giving rise to an increase in the reference point. As a result, more generous offers

appear less kind and the demand for rewards is lower relative to a game in which player 2 cannot

punish.

Instead of varying the choice sets as in the previous section, I will solely use game Game

1.10, which is a simplified, nonlinear version of the continuous game in Andreoni et al. (2003), to

highlight the different predictions of RTE, conRE, and unRE. For simplicity, player 2’s choices

are very limited, favoring relevance of actions over symmetry.33

For a selfish player 1 and a reciprocal player 2, with γ2 = 1, the RTE is (K, rnp), the unRE is
32This argument takes as given that the result is not driven by very spiteful types who prefer to (D,dp) over

(C,dp).
33The equilibrium predictions remain the same in the fully symmetric game that features mediocre (r) and strong

rewards (r+) as well as punishment (p) after each action. The equilibrium prediction for a dictator treatment
would be the most selfish offer S. In the reward-only treatment both RTE and unRE predict the highest offer K
with is fully rewarded (r+). In the punish-only treatment, all reciprocity models predict that player 1 offers N to
avoid punishment after S.
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Game 1.10

(K, r+rp) and the conRE is σ1(N) = 1 and σ2(r|K) = 1/2− ε, σ2(n|K) = 1/2 + ε, σ2(n|N) = 1,

σ2(p|S) = 1, with a small, positive ε.

All predictions feature punishment in response to the selfish offer S. In both the conditional

Reciprocity Equilibrium and RTE player 2 responds to action N with a neutral response due

the fact that N Pareto dominates S, while unRE allows for some positive reciprocity.34 After

action K unRe predicts the largest reward. In RTE K is perceived as relatively less kind since

the efficient minimum is π2(N,n) = 2 and not 0. As a result, player 2 rewards less. Even at the

top, punishment crowds out rewards. Player 2 is the most cynical in conRE. She rewards with

less than 1/2 probability after K, as otherwise K would be in player 1’s material interest - in

which case it wouldn’t be kind. As a result, player 1 plays N , compared to K in RTE and unRE.

My theory can also be used to explain how incentive structures affects the responder’s be-

havior. Fehr and Gächter (2001) show that sanctions set by employers undermine voluntary

cooperation in gift-exchange games. The mechanism is similar: sanctions affect the minimum

efficient wage offer as they enforce higher levels of effort, altering the reference point. This lowers

kindness perceptions and positive reciprocity.35

34At closer inspection, this example highlights one negative feature of the conRE and RTE model. Punishment
after S not only lowers K’s kindness but also makes the neutral action N unkind. The same is true, for example
in an ultimatum game, where equal splits will be perceived as unkind when low offers are punished. This feature
isn’t very appealing. More generally, punishing very unkind actions can make other unkind action even more
unkind, resulting in an increased demand for punishment. This feature can be avoided by using an efficient set
that is based on the material best-replies for unkind actions and trust-efficiency to determine how kind a seemingly
kind action really is. For all games of interest, kindness for the later notion is below that of the first. Lastly, set
kindness to 0 when trust-efficient kindness is negative, while it is positive under material-efficiency.

35Fehr and Gäechter have two treatments. In the first, they run a simple gift-exchange where firms set wages
(and suggest a desired work level) and workers respond by choosing effort levels ∈ [1, 10]. They find that effort
is increasing in the generosity of the wage. In a second treatment, they allow firms to set a costly sanction that
has to be paid when workers shirk. It is exogenously verified with probability 1/3 if the employee shirks. This
essentially allows firms to (rationally) enforce an effort level of 4, larger than the minimum effort level of 1 without
sanctions. Firms make use of such sanctions. However, it reduces voluntary cooperation - even below the rational
level. To understand how my model works in this setting, start with a second order belief that she responds with
the minimum rational effort. In this case, the minimum efficient wage offer in treatment 1 is wminT1 = 1, while
in the incentive treatment it is wminT2 = 4. For these second order beliefs, an actual offer of w = 4 is potentially
kind in treatment 1, while it is unkind in the second treatment. Since the reference point is higher in the second
treatment, wage offers are perceived as relatively less kind. This can induce the worker to actually lower his effort
below the rational effort for low enough wage offers. Quantitatively, it is unclear, however, why effort levels remain
so extremely flat for all wage offers, see Figure 3 in Fehr and Gächter (2000).
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1.7 Summary of Equilibria

After comparing the Reciprocity Equilibrium with Trust to the conditional and unconditional

Reciprocity Equilibrium, I now summarize the general equilibrium prediction across all models.

Proposition 8: If (σ∗, α∗, β∗) is a conditional and unconditional Reciprocity Equilibrium, then

it is also an RTE.

I have argued that kindness perceptions in RTE are less cynical than in conditional RE, but

lower than in unconditional RE. When the equilibrium coincides for the two extreme kindness

perceptions, it must hence also be an equilibrium in my model.

Figure 1.2 provides a graphical summary of how equilibrium predictions differ across all thee

models. Intersection 1 is the visual equivalent of proposition 8. The equilibrium can coincide for

three reasons. First, player 1’s action is unambiguously kind. His action improves 2’s payoff at his

own expense. In this case, kindness perceptions are identical for each model. Second, player 2 is

simply not motivated (enough) by concerns for reciprocity, γ2 ≈ 0, in which case different kindness

perceptions become irrelevant. The selfish SPNE is nested in each model. Third, perceptions

may differ but player 2 may simply not have relevant choices to respond differentially; her action

set could be rather limited, or positive and negative reciprocal actions could be too costly.

Equilibria in intersection 2 feature actions that are mutually beneficial, yet are perceived as

kind due to trust. RTE coincides with unconditional RE, whereas it cannot be an equilibrium for

conditional RE, area 3. A simple example of this is the trust game or the sequential prisoner’s

dilemma.

Intersection 4 captures equilibria where actions are perceived as less kind in a RTE than in

a unRE, area 5. This can be the result of either unused actions (at any history), or punishing

actions.

While it is useful to have a single model that can explain and predict strictly positive reciprocal

responses, as well as purely selfish payoff-maximizing choices (intersections 2, 4), area 6 highlights

that RTE also makes unique predictions in more complex games. Game 1.10 is an example of

this.

1.8 Discussion

The starting point behind this paper was the idea that if two reciprocal player achieve full

cooperation in the simultaneous version of social dilemma, then they should also be able to
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Figure 1.2: Equilibrium predictions overview

achieve this in the sequential version. This is consistent with experiments on the prisoner’s

dilemma, see figure 1.1. To that end, I have proposed a new way of modelling reciprocity with

intentions. By adding the idea of trust to reciprocity models, kindness perceptions become less

cynical than in Rabin (1993). This allows player 2 to fully reciprocate actions that improved both

her own and player 1’s payoff.

Netzer and Schmutzler (2014) argued, using the conditional Reciprocity Equilibrium, that

when a firm is known to be selfish, a worker does not respond to a high wage with high effort as

in this case a high wage would be in the firm’s best interest.36 When the second player knows

that player 1 is surely self-interested, it becomes easy for her to decide whether player 1 took an

action for his own benefit, or also with her in mind. To capture this, the model can be extended

in a way that trust-concerns are no longer relevant when a player is sufficiently confident that her

opponent is selfish. It would represent a similar mechanism to the one put forward by Rotemberg

(2008) for altruism. In this regard, the extension would adopt ideas from the literature of type-

based reciprocity, Levine (1998), Ellingsen and Johannesson (2008) and Gul and Pesendorfer

(2016). While these models can often be simpler to solve, it is unclear how they could explain the

behavior in Orhun (2018). As a result, I view type-based and intention-based reciprocity models

as complements.

We have also observed that actions tend to be perceived as less kind in my model than in
36While all examples in this paper featured a ‘selfish player’ player 1, this was simply done for analytical

convenience.
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Dufwenberg and Kirchsteiger (2004).37 Linking efficiency (more closely) to actual behavior has

the advantage that the reference point is affected less by unchosen actions. In terms of directions

for future research, it would be interesting to test games like 1.5 and 1.6 in the lab.

My model also provides new insights into the interaction of rewards and punishment, and

how the latter can crowd out the former. It helps to explain why some papers fail to find much

positive reciprocity, i.e. Offerman (2002) and Al-Ubaydli and Lee (2009), and provides a potential

solution to the positive reciprocity puzzle, Orhun (2018). Intention-based reciprocity models are

often criticised for being complex and having little predictive power due to multiple equilibria.

This may not necessarily be a drawback, however, since reciprocity is complex by nature. Rather,

its complexity makes it ideal for analyzing institutional design and incentive structures.

37Game 1.6 actually originated from my work on incomplete information. It turns out that due to the uncon-
ditional efficient set, kindness perceptions in DK04 can become independent of the prior belief over types. This
gives rise to implausible behavior. For more detail, see Chapter 2.
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1.9 Appendix A: Proofs

1.9.1 Model

Proof of proposition 1. Define the local best response correspondence ri,h : ∆H → ∆(Ai,h) by

ri,h(σ) = arg max
xi,h∈∆(Ai,h)

Ui (σi\xi,h, σj , σi|h)

and best response correspondence r(σ) : ∆H →
∏

(i,h)∈N×H ∆(Ai,h) by

r(σ) =
∏

(i,h)∈N×H

ri,h(σ)

As
∏

(i,h)∈N×H ∆(Ai,h) and ∆H are topologically equivalent, we can define an equivalent function

r̃ : ∆H → ∆H and look for a fixed point. A fixed points under r̃ satisfy the RTE conditions since

player (i,h) maximizes her utility, and first and second order beliefs are correct (and are updated

along the path given h).

Kakutani’s fixed point theorem applies in this setup. To see this, notice the local choice set

∆(Ai,h) is compact, convex and non-empty. Next, ri,h is non-empty as Ui is continuous in (i, h)’s

own choice (xi,h), the set is compact and hence attains a maximum. ri,h is convex as Ui is

indeed linear in (i, h)’s own choice. Upper hemi-continuity of ri,h follows from the fact that Ui is

continuous (πi, πj , and κi are continuous).

Since these properties extend from ri,h to r̃i,h and r̃, all conditions of Kakutani’s fixed point

theorem are satisfied. It follows that an RTE exists.

1.9.2 Trust

conRE - prisoner’s dilemma.

For β2(c|C) = 0 player 2 wants to cooperate if U2(c, β2|C) = 1+γ2(2−0)·1 > 2+γ2(2−0)·(−1) =

U2(d, β2|C) - which is exactly the same inequality as in the RTE model. In contrast, she wants to

defects when β2(c|C) ≥ 1/2, U2(c, β2|C) = 1 < U2(d, β2|C) = 2. It follows that for γ2 < 1/3 the

equilibrium is identical to my model as σ2(c|C) < 1/2. Yet for a player 2 with γ2 ≥ 1/3 it must

be that she cooperates with slightly less 1/2 probability. To find the exact probability, a small

technical adjustment needs to be introduced to ensure continuity at β2(c|C) = 1/2. In particular,
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we take a very small ε > 0, such the kindness of C is

κ1(C, β2) =


2− β2(c|C) if β2(c|C) ≤ 1/2− ε(

3
2 + ε

) 1/2−β2(c|C)
ε if 1/2− ε < β2(c|C) < 1/2

0 if β2(c|C) ≥ 1/2

Derivation for interior part: Let f(b) at b, f(1/2) = 0. To connect the two for x ∈ [b, 1/2] take

f c(x) = f(b)− (x− b)f(b)/(1/2− b). And plug in.

The exact equilibrium probability depends on how we close the discontinuity in the kindness

function. In equilibrium
(

3
2 + ε

) 1/2−β2(c|C)
ε 2 = 1 or β2(c|C) = 1

2 −
ε

3+2ε which goes to 1/2 as

ε→ 0.

essential lemmas and properties of PD(·)

Before proceeding to the proofs of this section, it is useful to establish some properties of the

PD(·) operator and the respective efficient sets CE1 and TE1.

Lemmas for conditional efficiency, CE1(β2).

Lemma 1: PD(β2) is transitive.

Proof of lemma 1. If a1 PD(β2) a′1 and a′1 PD(β2) a′′1 then πk(a1, β2) ≥ πk(a′1, β2) and

πk(a′1, β2) ≥ πk(a′′1 , β2) for all k with strict inequalities for some. Consequently πk(a1, β2) ≥

πk(a′′1 , β2) for all k with strict inequalities for some.

Lemma 2: The conditionally efficient action M
CE1(β2)
1 that minimizes 2’s payoffs,

M
CE1(β2)
1 ∈ arg mina1∈CE1(β2) π2(a1, β2), also maximizes 1’s payoffs, M

CE1(β2)
1 ∈

arg maxa1∈CE1(β2) π2(a1, β2).

Proof of lemma 2. Suppose it doesn’t, that is there is some a1 ∈ A1 that is better for player 1,

while not being worse for player 2. This would imply that a1 PD(β2) M
CE1(β2)
1 , leading to the

contradiction that MCE1(β2)
1 is not conditionally efficient, MCE1(β2)

1 /∈ CE1(β2).

Lemma 3: If a1 /∈ CE1(β2), then there ∃a′1 ∈ CE1(β2) that a′1 PD(β2) a1.
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Proof of lemma 3. By definition of being dominated, there must exist a′1 ∈ A1 that a′1 PD(β2) a1.

If a′1 itself is not efficient, a′1 /∈ CE1(β2), then there must be an action a′′1 ∈ A1 that a′′1 PD(β2) a′1.

Since PD(β2) is a transitive operator a′′1 PD(β2) a1. If a′′1 is also not efficient, repeat the

argument. As there are a finite amount of actions, and thus only a finite amount of in-efficient

actions, it must be that there exist some a′′′1 ∈ CE1(β2) that a′′′1 PD(β2) a1.

Lemmas for trust-efficiency, TE1(β2).

Lemma 4: PD(βTE2 ) is transitive.

Proof of lemma 4. Suppose a′1, a′′1 , a′′′1 ∈ A1, a′1 PD(βTE2 ) a′′1 and a′′1 PD(βTE2 ) a′′′1 . If no action

is followed by generous responses, the operator is identical to PD(β2), which is transitive. If any

of the actions is followed by generous responses, the material best response is used. Denote the

payoffs vector by π = (π1, π2) and let Ia1 be the indicator function that takes value of 1 if a1 ∈ A1

is followed by a generous response. Write a′1 PD(βTE2 ) a′′1 as Ia′1π(a′1, σ
mBR
2 )+(1−Ia′1)π(a′1, β2) ≥

Ia′′1 π(a′′1 , σ
mBR
2 )+(1−Ia′′1 )π(a′′1 , β2) and a′′1 PD(βTE2 ) a′′′1 as Ia′′1 π(a′′1 , σ

mBR
2 )+(1−Ia′′1 )π(a′′1 , β2) ≥

Ia′′′1 π(a′′′1 , σ
mBR
2 ) + (1− Ia′′′1 )π(a′′′1 , β2) which shows that a′1 PD(βTE2 ) a′′′1 (clearly, any respective

strict inequality remains strict).

Lemma 5: If a1 /∈ TE1(β2), then there ∃a′1 ∈ TE1(β2) that a′1 PD(βTE2 ) a1.

Proof of lemma 5. Repeat proof of lemma 3 together fact that PD(βTE2 ) is transitive by lemma

4.

Proofs for trust-section

Lemma 6: Let M1 := arg mina1∈E1⊆A1
π2(a1, β

∗
2). In any reciprocity equilibrium based on E1,

β∗2 cannot attach a positive probability to any generous action after a1 ∈ A1 if π2(a1, β
∗
2) ≤

π2(M1, β
∗
2).

The lemma applies for RTE, conRE, and DK04. In equilibrium, any action that induces a payoff

that is (weakly) lower than the lowest efficient payoff cannot be kind, and hence player 2 must

respond either by a material best-response or a punishing action.

Proof of Lemma 6. Suppose β∗2 attaches positive probability to the generous action ã2 after a1,

β∗2(ã2|a1) > 0. Since a1 yields less than the minimum efficient payoff, π2(a1, β
∗
2) ≤ π2(M1, β

∗
2),
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it must be that κ1(a1, β
∗
2) ≤ κ1(M1, β

∗
2) ≤ 0. As a result player 2 prefers the material best-

response over ã2: U2(ã2, β
∗
2 |h = a1) = π2(a1, ã2) + γ2κ1(a1, β

∗
2)π1(a1, ã2) < π2(a1, a

mBR
2,a1 ) +

γ2κ1(a1, β
∗
2)π1(a1, ã2) ≤ π2(a1, a

mBR
2,a1 ) + γ2κ1(a1, β

∗
2)π1(a1, a

mBR
2,a1 ) = U2(amBR2,a1 , β∗2 |h = a1).

Lemma 7: Let β2 be an RTE-belief. If a1 ∈ TE1(β2) and a1 PD(βTE2 ) a′1 with π2(a′1, β2) ≤

minx1∈TE1(β2) π2(x1, β2) then a1 PD(β2) a′1.

Proof of lemma 7. By lemma 6, 2 cannot respond with a generous action after a′1. If 2 re-

sponds to a1 either selfishly or with a punishing action, the statement is vacuously true - the

payoff for each action is the same given β2 and βTE2 . If 2 responds with a generous action,

a1 PD(βTE2 ) a′1 implies that π1(a1, β2) > π1(a1, σ
mBR
2 ) ≥ π1(a′1, β2). Combine lemma 6,

π2(a1, β2) > minx1∈TE1(β2) π2(x1, β2), as otherwise player 2 wouldn’t want to take a generous

action, together with the assumption minx1∈TE1(β2) π2(x1, β2) ≥ π2(a′1, β2) to get the result.

Corollary 8: Let β2 be an RTE belief. Then mina1∈TE1(β2) π2(a1, β2) ≤ mina1∈CE1(β2) π2(a1, β2).

Proof of corollary 8. By lemma 7 any action a′1 /∈ TE1(β2) that gives player 2 less than

her minimum efficient payoff mina1∈TE1(β2) π2(a1, β2) cannot be in CE1(β2). But then

mina1∈CE1(β2) π2(a1, β2) must be weakly larger.

Lemma 9: Let β2 be an conditional Reciprocity equilibrium belief. Then

mina1∈TE1(β2) π2(a1, β2) ≤ mina1∈CE1(β2) π2(a1, β2).

Proof of lemma 9. Suppose MCE1(β2)
1 induces a lower payoff than MTE1(β2)

1 . By lemma 5, there

exists an action a1 ∈ TE1(β2) that a1 PD(βTE2 ) M
CE1(β2)
1 . Moreover a1 must be followed by

a generous response as otherwise a1 PD(β2) M
CE1(β2)
1 , which would imply that MCE1(β2)

1 /∈

CE1(β2) (note that lemma 6 requires that 2 cannot be generous after M
CE1(β2)
1 ). Using

both observations together, a1 must satisfy π1(a1, β2) > π1(a1, σ
mBR
2 ) > π1(M

CE1(β2)
1 , β2) and

π2(a1, σ
mBR
2 ) > π2(M

CE1(β2)
1 , β2) > π2(a1, β2). But since π2(M

TE1(β2)
1 , β2) > π2(M

CE1(β2)
1 , β2)

it cannot be that MTE1(β2)
1 induces the minimum payoff given TE1(β2).

Proof of proposition 2. Follows directly from corollary 8 and lemma 9.
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Proof of proposition 3. Since a1 PD(β∗2) a′1 a
′
1 must induce the minimum payoff. By lemma 6, it

must be that player 2 (i) takes the material best-response after a′1, in which case π1(a1, σ
mBR
2 ) <

π1(a′1, β2) = π1(a′1, σ
mBR
2 ), or (ii) punishes (possibly mixing over punishment and material best-

responses), which yields π1(a1, σ
mBR
2 ) < π1(a′1, β2) < π1(a′1, σ

mBR
2 ). Lastly, by dominance of a1,

it is clearly true that there exist some payoff π1(a1, a2) > π1(a′1, β2).

Proof of proposition 4. Identical to the proof of |A1| = 2. By lemma 6, it must be that player

2 either (i) takes the material best-response after MTE1(β2)
1 , in which case π1(a1, σ

mBR
2 ) <

π1(M
TE1(β2)
1 , β2) = π1(M

TE1(β2)
1 , σmBR2 ), or (ii) punishes (possibly mixing over punishment and

material best-responses), which yields π1(a1, σ
mBR
2 ) < π1(M

TE1(β2)
1 , β2) < π1(M

TE1(β2)
1 , σmBR2 ).

Since it a1 Pareto dominates MTE1(β2)
1 given β the second condition is also satisfied.

Proof of proposition 5. First, I show that MCE1(β∗2 )
1 PD(β∗2) M

TE1(β∗2 )
1 .

If |A1| = 2 and thus |CE1(β∗2)| = 1, clearly MCE1(β∗2 )
1 PD(β∗2) M

TE1(β∗2 )
1 as it is the only condi-

tionally efficient action, and thus, by definition, must Pareto-dominate all other actions.

If |CE1(β∗2)| ≥ 2, suppose it is not true thatMCE1(β∗2 )
1 PD(β∗2) M

TE1(β∗2 )
1 . In this case there must

exist (at least) another action a1 ∈ CE1(β∗2) (lemma 3) that satisfies a1 PD(β∗2) M
TE1(β∗2 )
1 . Since

M
CE1(β∗2 )
1 induces player 2’s minimum payoff in CE1(β∗2), it must be that π2(M

CE1(β∗2 )
1 , β∗2) <

π2(a1, β
∗
2) as well as π1(M

CE1(β∗2 )
1 , β∗2) > π1(a1, β

∗
2) (lemma 2). But since π1(a1, β

∗
2) >

π1(M
TE1(β∗2 )
1 , β∗2) and π2(M

CE1(β∗2 )
1 , β∗2) > π2(M

TE1(β∗2 )
1 , β∗2) (proposition 2), it follows that

M
CE1(β∗2 )
1 PD(β∗2) M

TE1(β∗2 )
1 .

Finally for MTE1(β∗2 )
1 ∈ TE1(β∗2), β∗2 must assign positive probability to a generous action

after MCE1(β∗2 )
1 as otherwise MCE1(β∗2 )

1 PD(βTE2 ) M
TE1(β∗2 )
1 . By lemma 6, this cannot occur in a

conditional Reciprocity Equilibrium.

1.9.3 Dufwenberg and Kirchsteiger ’04

Proof of proposition 6. Since unconditional efficiency doesn’t just require an action to be Pareto-

dominated for some response (β2), but for all responses, it must be that TE1(β) ⊆ UE1. Next

observe that mina1∈X π2(a1, β2) is (weakly) lower the larger the set X.

Lemma 10: When player 1 has only 2 actions, A1 = {a1, a
′
1}, and assumption 1 holds, an RTE

exists.
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Proof of lemma 10. Suppose π2(a1, σ
mBR
2 ) > π2(a′1, σ

mBR
2 ). Eliminate all punishing actions from

player 2’s set of actions after a1, that is Anew2,a1 = A2,a1 \ AP2,a1 . By proposition 1, an equilibrium

still exists for this restricted set of actions. Moreover, in any RTE, player 2 cannot take a

generous action after a′1 (or be considered kind). To see this, suppose she does. Since only

one of the two actions can be kind, this would imply that player 2 takes her material best-

response action after a1 for sure. But since any generous action a2 ∈ AG2,a′1
leads to a payoff

of π2(a′1, a2) < π2(a′1, σ
mBR
2 ) < π2(a1, σ

mBR
2 ), it must be that a′1 is perceived as unkind. As a

result, she must either punish or take her material best-response after a′1. Note further that,

in equilibrium, a1 is either kind or is at least not unkind. This equilibrium is also an RTE for

the unrestricted set of actions. Since a1 is not unkind, player 2 prefers to take a generous or

material best-response over a punishing action. The existence of punishing has no impact on the

equilibrium responses.

Proof of proposition 7. By lemma 6, player 2 cannot respond generously after a′1, hence

πk(a′1, β
∗
2) ≤ πk(a′1, σ

mBR
2 ) for all k. Since a1 is the only efficient action, it must be that

πk(a1, β
∗
2) = πk(a1, σ

mBR
2 ) for all k. Case (1) thus follows immediately if player 2 doesn’t punish

after a′1, as in this case a1 PD(β∗2) a′1. If player 2 punishes after a′1 then by assumption 1 it must

be that π2(a′1, σ
mBR
2 ) < π2(a1, σ

mBR
2 ). If π1(a′1, σ

mBR
2 ) < π1(a1, σ

mBR
2 ) then we are still in case

(1); if instead π2(a′1, σ
mBR
2 ) > π2(a1, σ

mBR
2 ) we are in case (2).

1.9.4 Applications

For this section assume λ = 1/2.

Game 1.7.

RTE: If β2 = cp then 2 punishes after S if U2(c, β2 = cp|S) = 6 + γ2(5 − 14)11 ≤

5 + γ2(5 − 14)5 = U2(p, β2 = cp|S) or γ2 ≥ 1/54. It is cheap to punish and S is rather

unkind. Notice that believing that 2 punishes, makes S appear less kind, and punish-

ment easier to sustain. If we start with selfish beliefs, β2 = cc, punishment requires

U2(c, β2 = cc|S) = 6 + γ2(6 − (14 + 6)/2)11 ≤ 5 + γ2 · (−4) · 5 = U2(p, β2 = cp|S) or γ2 ≥ 1/24.

Thus for any γ2 > 1/24, punishment is the unique equilibrium belief, and there are multiple

equilibria for γ2 ∈ [1/54, 1/24]. If player 2 punishes her optimal choice after H is c.
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DK04: player 2 rewards H and punishes S, or always acts neutral.

Suppose β2 = cc, then 2 reciprocates after H in DK04 if U2(r, β2 = cc|H) =

13 + γ2(14 − (14 + 6)/2)12 ≤ 14 + γ2(4)8 = U2(c, β2 = cc|H) or γ2(4)4 ≥ 1, and punishes

after S if U2(p, β2 = cc|S) = 5 + γ2(6 − (14 + 6)/2)7 ≤ 6 + γ2(−4)11 = U2(c, β2 = cc|S)

and hence again γ2(4)4 ≥ 1. Clearly, the same holds true if β2 = rp, where

κ1(H,β2 = rp) = 13 − (13 + 5)/2 = 4 = −κ1(S, β2 = rp) = −(5 − (13 + 5)/2) = 4.

The symmetry in responses clearly only holds when λ = 1/2 - which is assumed in all papers I

am aware off.

Game 1.10.

Suppose γ2 = 1. Notice that even for the kindest beliefs (lowest max, highest min), β2 = r+rn, 2

wants to punish after S, U2(p, β2|S) = γ2(1− (2 + 1)/2) · 1 = −γ2/2 > U2(n, β2|S) = 1 + γ2(1−

(2 + 1)/2)4 = 1− 2γ2 (This true for γ > 0.4).

When 2 punishes after S, N PD(· · p) S and so conRE and RTE opt for the selfish response

after N . For unRE, 2 reciprocates after N as U2(r, r+rp|N) = 1.5 + γ2(1.5 − (2 + 0)/2)5 >

U2(n, r+rp|N) = 2 + γ2(1.5− (2 + 0)/2)3 or γ2 ≥ 1/2.

Finally after K, 2 reciprocates strongly for unREL: U2(r+, r+rp|K) = 2+γ2(2−(2+0)/2)5 =

2+5γ2, U2(r, r+rp|K) = 2.5+4γ2, and U2(n, r+rp|K) = 3+2γ2, that is she prefers r+ for γ2 ≥ 1/2,

r for 1/2 > γ2 ≥ 1/4.

For RTE U2(r+, rnp|K) = 2 + γ2(2.5 − (2.5 + 2)/2)5 = 2 + γ25/4, U2(r, rnp|K) = 2.5 + γ2,

and U2(n, rnp|K) = 3 + γ2/2 and so she prefers r+ only for γ2 ≥ 2 (recall γ2 = 1 was assumed),

and prefers for r for 2 > γ2 ≥ 1. Note that indifference is always broken in favor of the more

extreme as any randomization increases perceived kindness of K.

The Equilibrium behavior for conRE follows the solution from the sequential prisoners’s

dilemma. The key ingredient, again, is to smooth out the discontinuity.

1.9.5 Summary of Equilibria

Proof of proposition 8. By proposition 6 we know that that mina1∈UE1 π2(a1, β
∗
2) ≤

mina1∈TE1(β∗2 ) π2(a1, β
∗
2). Moreover by lemma 9, it must also be that mina1∈TE1(β∗2 ) π2(a1, β

∗
2) ≤

mina1∈CE1(β∗2 ) π2(a1, β
∗
2).

If mina1∈CE1(β∗2 ) π2(a1, β
∗
2) = mina1∈UE1 π2(a1, β

∗
2), together with the observation that

43



mina1∈TE1(β∗2 ) π2(a1, β
∗
2) is sandwiched in between the two, the minimizing action must be iden-

tical in all three. In that case, preferences in all three models are identical, and (σ∗, α∗, β∗) is

an RTE. Note that there is no need to look at player 1. Player 2’s efficient set E2(h) at h ∈ H

represent a simple decision problems and thus all three efficiency notions coincide, leading to the

same preferences for player 1 given 2’s identical response across models.

If instead, mina1∈CE1(β∗2 ) π2(a1, β
∗
2) < mina1∈UE1 π2(a1, β

∗
2), yet player 2 prefers the same

actions, then she must also prefer the same action given a reference point in between. If this

isn’t immediately obvious, simply take the utility difference of any a2, a
′
2 ∈ A2(h), which can be

written as κ1(a1, β
∗
2)(π1(a2)−π1(a′2)) ≥ π2(a′2)−π2(a2). If this inequality holds for two different

kindness levels, it must also hold for some convex combination of the two.

1.10 Appendix B: Further Detail

1.10.1 RTE is an Equilibrium Concept

Game 1.11 highlights why imposing equilibrium is often necessary for models with second order

beliefs. If player 2 is sufficiently reciprocal, she wants to play c if β2 = d. In contrast, when

β2 = c, then she clearly wants to play d. But this indicates that both combinations of action and

belief are rationalizable. Player 1 can think she plays c for sure since he thinks she thinks β2 = d,

and vice versa. Most importantly, this example shows that player 1 can hold a belief that player

2 reciprocates, minimizing her payoff in the process.

Clearly, this can never be an equilibrium belief and isn’t very sensible. But without imposing

a more restrictive utility function, such beliefs are indeed rationalizable. This suggests that

imposing equilibrium is often needed - which I have done throughout the paper. It should be

clear that when there are more than two choices, even more behavior can be rationalizable.

1

2

(2, 0)

c

(0, 2)

d

C

(1, 1)

D

Game 1.11
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1.10.2 Relationship Between Efficient Sets

Game 1.12 highlights that it does not need to be true that CE1(β2) ⊆ TE1(β2), even if β2 is a

RTE-belief. Clearly β2 = lm is an equilibrium (M is always efficient, the minimum payoff −10).

CE1(lm) = {J,K,M}. However, given the selfish responses, βTE2 = rn, J PD(rn) K, so that

TE1(lm) = {J,M}.

1

2

(2, 1/2)

l

(1, 1)

r

J

2

(3, 0)

m

(1/2, 1/2)

n

K

(10,−10)

M

Game 1.12

1.10.3 Dufwenberg and Kirchsteiger ’04, |A1| ≥ 2

If player 1’s action set is finite, |A1| ≥ 2, it is helpful to split up the proposition into two ideas.

Proposition 9: Let (σ∗, α∗, β∗) be an RTE. If M
TE1(β∗2 )
1 6= MUE1

1 then

M
TE1(β∗2 )
1 PD(β∗2) MUE1

1 .

This result highlights that whenever the reference point in DK04 differs from my model, the

action that induces the minimum payoff under trust-efficiency Pareto-dominates the respective

action that induces the minimum payoff in theirs.

The intuition for this proposition is as follows: MTE1
1 can be part of the reference point for

two reason: (1) It minimizes 2’s payoff while maximizing 1’s payoff. When MUE1
1 leads to even

lower payoffs for 2, the only way to not be dominated is by being even better for player 1 than

MTE1
1 . (2) If MTE1

1 doesn’t maximize 1’s payoff, it is actually dominated by some other action,

but remains efficient due to trust. As MUE1
1 leads to lower payoffs for player 2, it would also be

efficient due to trust if it were to make player 1 better off than MTE1
1 . But since none of the two

cases are true, it must be Pareto-dominated by MTE1
1 .

Proof of proposition 9. When the efficient set is a singleton, that is TE1(β∗2) = {MTE1(β∗2 )
1 },

player 2 must respond with her material-best response to MTE1(β∗2 )
1 , that is πk(M

TE1(β∗2 )
1 , β∗2) =

πk(M
TE1(β∗2 )
1 , σmBR2 ) for all k, and cannot act generously to any other action (lemma 6). In

this case, conditional-efficiency and trust-efficiency coincide. By lemma 3, it follows that any
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non-conditionally efficient action must be Pareto-dominated by MTE1(β∗2 )
1 given β∗2 .

If |TE1(β∗2)| ≥ 2 then M
TE1(β∗2 )
1 is either conditionally efficient (β∗2) or trust-efficient

(βTE2 ).

In the first case, MTE1(β∗2 )
1 ∈ CE1(β∗2), by lemma 2, MTE1(β∗2 )

1 must be the action that yields

player 1 his highest payoffs. Given that MUE1
1 induces an even lower payoffs for player 2, the

only way for MUE1
1 to not be Pareto-dominated is when π1(MUE1

1 , β∗2) > π1(M
TE1(β∗2 )
1 , β∗2), in

which case MUE1
1 ∈ CE1(β∗2), a violation.

In the second case, let a1 be the action that a1 PD(β∗2) M
TE1(β∗2 )
1 (but not using βTE2 ). a1

has the property that

π1(a1, β
∗
2) > π1(M

TE1(β∗2 )
1 , β∗2) > π1(a1, σ

mBR
2 ) and π2(a1, σ

mBR
2 ) > π2(a1, β

∗
2) >

π2(M
TE1(β∗2 )
1 , β∗2). Hence if MUE1

1 isn’t Pareto-dominated by MTE1(β∗2 )
1 given β∗2 then it is not

βTE2 -dominated by a1 either as π1(MUE1
1 , β∗2) > π1(M

TE1(β∗2 )
1 , β∗2).

Moreover, there does not exists another action a′1 that a′1 PD(βTE2 ) MUE1
1 . Suppose there is,

then by lemma 5, a′1 ∈ TE1(β∗2).

Suppose first that a′1 is not followed by any generous action, so that the beliefs for 2’s action

after a′1, βTE2 (·|a′1) and β2(·|a′1) coincide. Moreover, since MUE1
1 induces a lower payoff for player

2 than M
TE1(β∗2 )
1 and M

TE1(β∗2 )
1 represents player 2’s minimum efficient payoff, βTE2 changes

nothing (relative to β∗2) after these actions either. a′1 then satisfies πk(a′1, β
∗
2) > πk(MUE1

1 , β∗2)

for all k and therefore

π1(a′1, β
∗
2) > π1(MUE1

1 , β∗2) > π1(M
TE1(β∗2 )
1 , β∗2). If π2(a′1, β

∗
2) > π2(M

TE1(β∗2 )
1 , β∗2) then

a′1 PD(βTE2 ) M
TE1(β∗2 )
1 . If instead π2(a′1, β

∗
2) < π2(M

TE1(β∗2 )
1 , β∗2) then M

TE1(β∗2 )
1 doesn’t in-

duce the minimum efficient payoff. Both are contradictions.

Next, suppose a′1 is followed by a generous action. a′1 now satisfies πk(a′1, σ
mBR
2 ) >

πk(MUE1
1 , β∗2) for all k and thus π1(a′1, β

∗
2) > π1(a′1, σ

mBR
2 ) > π1(MUE1

1 , β∗2) > π1(M
TE1(β∗2 )
1 , β∗2).

If π2(a′1, β
∗
2) > π2(a′1,M

TE1(β∗2 )
1 ) then a′1 PD(βTE2 ) M

TE1(β∗2 )
1 as π2(a′1, σ

mBR
2 ) > π2(a′1, β

∗
2).

If instead π2(a′1, β
∗
2) < π2(a′1,M

TE1(β∗2 )
1 ) then M

TE1(β∗2 )
1 doesn’t induce the minimum pay-

off. It follows that a′1 cannot exist, but then MUE1
1 ∈ TE1(β∗2), a violation. It follows that

M
TE1(β∗2 )
1 PD(β∗2) MUE1

1 .

As in the |A1| = 2 case, I need to make some assumptions with regards to punishment. When

there are more than 2 actions, the multiple equilibrium problem becomes even more involved:

Player 2 may react very differently to different unkind actions depending on whether she thinks
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he thinks she punishes.

Assumption 2: Take any a1, a
′
1 ∈ A1. If player 2 has a punishing action p ∈ A2,a1 after a1 then

she also has the same punishing action available to her after a′1. That is there exists a p′ ∈ A2,a′1

with π1(a′1, p
′) − π1(a′1, σ

mBR
2 ) = π1(a1, p) − π1(a1, σ

mBR
2 ) < 0 and π2(a1, p) − π2(a1, σ

mBR
2 ) =

π2(a′1, p
′)− π2(a′1, σ

mBR
2 ) < 0.

This first assumption simply ensures that player 2 always has the same punishment actions

available to her.38

Assumption 3: Suppose assumption 2 holds. If π2(a1, σ
mBR
2 ) ≥ π2(a′1, σ

mBR
2 ) for any a1, a

′
1 ∈

A1 then player 2 punishes player 1 less after a1 than a′1; That is if she takes p′ ∈ A2,a′1
after a′1

then she doesn’t take an action p ∈ A2,a1 that π1(a1, p)−π1(a1, σ
mBR
2 ) < π1(a′1, p

′)−π1(a′1, σ
mBR
2 ).

While this assumption is written in terms of what player 2 does, it could equivalently be written

in terms of what player 1, and thus what player 2 believes she does. The respective assumed

behavior would follow.

Proposition 10: Let (σ∗, α∗, β∗) be an RTE. If M
TE1(β∗2 )
2 6= MUE1

2 then

M
TE1(β∗2 )
2 PD(β∗2) MUE1

2 . Moreover if assumption 2 and 3 holds, then one of the follow-

ing holds:

1. π1(M
TE1(β∗2 )
1 , σmBR2 ) > π1(MUE1

1 , σmBR2 ) and π2(M
TE1(β∗2 )
1 , σmBR2 ) > π2(MUE1

1 , σmBR2 ),

or

2. π1(M
TE1(β∗2 )
1 , σmBR2 ) < π1(MUE1

1 , σmBR2 ) and π2(M
TE1(β∗2 )
1 , σmBR2 ) > π2(MUE1

1 , σmBR2 ).

The proposition mirrors the binary case. The key difference between the two settings is that after

M
TE1(β∗)
2 , player 2 may actually punish now. This is the reason why we need a more complete

assumptions on punishment choices and behavior than in the simple binary-case - where player

2 doesn’t punish after the only efficient choice.

Proof of proposition 10. When the efficient set is a singleton, that is TE1(β∗2) = {MTE1(β∗2 )
1 }, the

proof is identical to the binary case, |A1| = 2, except with references to assumptions 2 and 3.

If |TE1(β∗2)| ≥ 2, then player 2 may punish after MTE1(β∗2 )
1 . If she doesn’t, repeat the argu-

ment of the binary case, |A1| = 2. If she does then πk(M
TE1(β∗2 )
1 , σmBR2 ) > πk(M

TE1(β∗2 )
1 , β∗2) >

πk(MUE1
1 , β∗2) for all k.As player 2 doesn’t punish more when her selfish payoff is larger,

assumption 3, together with the availability of punishment choices assumed in 2, leads to
38Clearly, this is the strongest possible assumption and could be relaxed.
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π2(M
TE1(β∗2 )
1 , σmBR2 ) > π2(MUE1

1 , σmBR2 ) - otherwise she would have needed to punish MUE1
1

more at a larger cost to herself as she would never use ‘inefficient’ punishment. As before, the

level of player 1’s payoffs determines the case.
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Chapter 2

A Theory of Reciprocity with Trust,

Incomplete Information

2.1 Introduction

In many social interactions, people do not have full information about other people’s social

motivations or their material payoffs. A person, who is motivated by reciprocity, may worry that

his counterpart is not reciprocal or altruistic, but instead selfish or potentially spiteful. Upon

observing company-wide wage cuts during a recession, workers don’t necessarily know whether

their company is taking advantage of its bargaining position, or whether such cuts are necessary

for the company’s survival. In case of the former, a reciprocal worker would feel obliged to punish

the firm, whereas in the latter, he may keep on working normally. To incorporate such concerns,

this chapter extends the theory of reciprocity with trust, which was developed in chapter 1, to

incomplete information.

While intention-based reciprocity is frequently used to analyze games of complete information,

it is rarely applied to incomplete information environments. Bierbrauer and Netzer (2016) intro-

duce intention-based reciprocity to mechanism design by adapting Rabin (1993) to normal form

games with incomplete information. Related work focuses on ex-post implementation (Netzer

and Volk (2014)) and mechanisms that are robust to social-preferences (Bierbrauer et al. (2017),

Bartling and Netzer (2016)). Von Siemens (2013) analyzes a simple two-stage game where a

principal chooses how much to control a worker and introduces incomplete information about the

worker’s type. Le Quement and Patel (2017) examine how reciprocity can improve information
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transmission in cheap talk.

In contrast to type-based models, intention-based reciprocity such as Rabin (1993) and

Dufwenberg and Kirchsteiger (2004) requires more care when moving from complete to incomplete

information. Type-based models assume heterogeneity in people’s level of altruism and model

reciprocity by assuming that people care more about those who are more altruistic (Levine (1998),

Gul and Pesendorfer (2016)).1 In this type of models, generous actions are rewarded because they

signal a high level of altruism. Adding private information about material payoffs simply adds

another dimension to such signalling games.2 Intention-based models, instead, rely on an en-

dogenous reference point to model kindness. The key challenge when moving from complete to

incomplete information is defining an appropriate reference point for this new environment.

In this chapter, I adopt the perspective that players with different information are different

individuals. Consequently, I define the reference point for each type of player separately, incorpo-

rating the idea of trust that was developed in Chapter 1. This paper contributes to the literature

by providing the first general model of intention-based reciprocity for sequential games with in-

complete information. After defining the model, I apply it to a pricing game with incomplete

information about the buyer’s valuation. When the buyer is sufficiently reciprocal, the seller,

who makes a take-it-or-leave-it offer, suggests a price below the price ps that would be profit

maximizing if the buyer acted selfishly. High-valuation buyers reciprocate by voluntarily paying

more than the suggested price, although less than ps. By suggesting a low price, the seller can

sell to more low-valuation customers, without suffering the full revenue loss from high-valuation

customers. This application highlights how reciprocity can give rise to pay-what-you-want pricing

schemes, where the seller allows the buyer to choose the price she wants to pay (Kim et al. (2009),

Gneezy et al. (2012)).

For the next application, I revisit the classic bilateral trade problem. With discrete types, I

show how simple sequential interactions can achieve full efficiency in cases where normal form

mechanisms that satisfy incentive compatibility, individual rationality and budget balance, can-

not. The sequential interaction takes the following simple form: the (selfish) seller informs the

(reciprocal) buyer about his cost and the buyer responds by deciding whether to trade or not,

and if she does, at what cost. In this setting, reciprocity creates incentives for information shar-

ing. When the seller reveals that he has low costs, high-valuation buyers reward his kindness by
1Alternatively, people may simply care how they are perceived (as in self- or social image concerns, Bénabou

and Tirole (2006)) or how they are perceived by people they care for (Ellingsen and Johannesson (2008)).
2See, for example, Bassi et al. (2014), who examine a work-place screening problem. Sally (2002) revisits

Akerlof’s (1970) lemon problem in his framework of sympathy.
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sharing the surplus. The resulting free-flow of information improves efficiency by also enabling

low-valuation buyers, who would not trade if everyone were to use their selfish strategies, to

trade. More generally, this type of reciprocal information sharing can explain how cheap talk

improves efficiency in bargaining (Valley et al. (2002)) without having to rely on honest types

(Saran (2011), Saran (2012)) or lying aversion (Abeler et al. (2016)). Le Quement and Patel

(2017) make a similar observation in the one-sided incomplete information environment of cheap

talk (Crawford and Sobel (1982), Cai and Wang (2006)).

In the final section, I discuss how my model relates to alternative models of intention-based

reciprocity in general and comment on different approaches to modelling kindness from an interim

perspective.

The rest of this chapter is organized as follows. Section 2.2 begins by introducing two simple

decision problems highlighting what additional aspects a theory of reciprocity needs to address in

incomplete information environments. The model is formally developed in section 2.2.2. Section

2.3 features the applications on pricing with incomplete information about the buyer’s valuation

(2.3.1) and bilateral trade (2.3.2). Differences to the literature are discussed in section 2.4. Section

2.5 concludes.

2.2 The Model

2.2.1 Kindness and Incomplete Information

I begin this section by introducing two examples to outline the new features that incomplete in-

formation adds to kindness considerations. The examples come in the form of a decision problem,

in which an uninformed player 1 chooses between two actions.3 The payoffs for player 1 and for

a passive player 2 depend on the state of nature. In contrast to player 1, player 2 is aware of

nature’s state. In view of reciprocity models for complete information, I will suggest how player

2 may perceive player 1 and will discuss several modelling approaches.

Game 2.1 can be interpreted as the reduced-form game, in which player 1 makes player 2 a

take-it-or-leave-it offer. Player 2’s valuation for the good is either high (θ̄) or low (
¯
θ) and she

buys whenever her valuation is equal to or greater than the price.
3If player 1 also had private information, his kindness towards player 2 is conditional on his information, i.e. I

adopt an interim perspective to kindness.
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Nature

(1, 0)

L

(0, 0)

H

¯
θ

(1, 1)

L

(2, 0)

H

θ̄

1

Game 2.1

Nature

(1, 1)

L

(0, 0)

R

¯
θ

(1, 0)

L

(0, 1)

R

θ̄

1

Game 2.2

When players have private information, I adopt the perspective that players with different

information are different individuals.4 A high-valuation player 2 may thus perceive player 1 as

kind (towards her type) when he selects the low price L. This is subject to one caveat, however:

in simple choice problems with complete information, all intention-based reciprocity models posit

that a person who chooses an allocation that maximizes the other person’s payoffs isn’t kind when

it also maximizes his own payoffs, i.e. he chooses (π1, π2) = (1, 1) over the only other alternative

(0, 0). Translating the same idea to incomplete information means that if action L maximizes

player 1’s expected payoff, it cannot be kind. That is, for Pr(θ2 = θ̄) ≤ 1/2, the high-valuation

player 2 doesn’t consider player 1 kind. A low-valuation player 2 considers player 1 neither kind

nor unkind as her payoffs are independent of his actions.

While kindness towards each type is computed separately, any particular player 2 may ap-

preciate the fact that player 1’s behavior could also have benefited a different type of player 2

(either as a hypothetical case or due to player 1 repeatedly matching with short-lived player 2s).

For example, suppose that player 1 had a third choice, vL, which lowered prices even further. In

this case, not only would the high-valuation type θ̄ be even better off, she would also understand

that player 1 is kind towards
¯
θ. Although I won’t model this type of overall kindness in the main

section, I will comment on it when discussing the applications (section 2.3). For now, the focus

is on the kindness towards each type.

Game 2.1 has the feature that player 1’s action affects player 2’s payoff in similar ways: If an

action a1 improves θ2’s payoff relative to a′1, it also (weakly) improves a player 2’s payoff whose
4While the literature on social preferences has investigated settings of more than 2 players (Güth and van

Damme (1998), Zizzo and Oswald (2001), Charness and Rabin (2002), Engelmann and Strobel (2004), Bolton and
Ockenfels (2006), among others) there is very general data with regards to what people perceive as kind or unkind
in these settings, apart from a few specific settings. Charness and Rabin (2002) feature two 3-player games where
a third player strongly punishes the greed of the first player. Fehr and Fischbacher (2004) show the predominance
of third-party punishment both in the dictator game and the prisoner’s dilemma. Engel and Zhurakhovska (2014)
show that when cooperation in a prisoner’s dilemma inflicts harm on a passive outsider, people cooperate less.
Although experimental subjects cooperate more when they expect others to cooperate more, they find that the
greater the cost to outsider, the weaker this effect becomes. In Malmendier and Schmidt (2017), gifts induce
reciprocity at the detriment to a third party.
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type is θ′2 6= θ2. Clearly, this does not need to be true in general. In game 2.2, for instance, action

L improves
¯
θ’s payoff relatively to R, and vice versa for θ̄. Player 1’s payoffs are independent of

θ. Notice how this example nests two very different decision problems of complete information,

Pr(θ2 = θ̄) ∈ {0, 1}. When Pr(θ2 = θ̄) = 0, R is unkind and L is neither kind nor unkind. In

contrast, when Pr(θ2 = θ̄) = 1, R is kind and L is unkind.5

There are three possibilities to define the ‘efficient set’ in this context: defining the efficient

set (1) based on player 1’s and player 2’s expected material payoffs, (2) jointly for all types of

player 2 that have a non-zero probability, and (3) separately for each type of player 2.

The first approach is employed in Netzer and Volk’s (2014) (and the online appendix of

Bierbrauer and Netzer (2016)) interim kindness definition. It can be useful when player 2 cares

about player 1’s kindness towards all types of player 2. As this paper aims to describe kindness

towards each type first (and only then potentially averages across types), it appears natural to

also build the reference point at the type level.6 In section 2.4.2, I will revisit the differences

between theirs and my approach.

Approach (2) closely resembles the idea of Pareto-efficiency. An action is part of E1 as long

as it is not dominated by another action, for at least one type. This would imply that for all

Pr(θ2 = θ̄) ∈ (0, 1), a type
¯
θ would perceive L as kind - even as the likelihood of θ̄ becomes

vanishingly small. Not only is the discontinuity at 0 not a great technical feature, it also doesn’t

appear very plausible.7

The third approach adopts the viewpoint that when determining the immediate kindness of

player 1 towards a θ2-type player, only such type’s payoffs are relevant, and not the payoffs of

other types. This means that the presence of θ̄ does not affect the kindness perceptions of a
¯
θ-type.

It also avoids extreme discontinuities around zero-probability beliefs.8 A possible disadvantage of

this approach is that R is judged more harshly by a
¯
θ type as the reference point is only based on

the efficient action L, even when action R appears to be a sensible strategy, i.e. especially when

θ̄ is rather likely. As mentioned previously, it should be highlighted in this regard that player
5Specifically, the efficient set in the former is E1 = {L} since L Pareto dominates R, and E1 = {L,R} in the

latter case since both actions are Pareto-efficient.
6Using both approaches at the same time appears less sensible. For instance, in game 2.2 only L is efficient in

approach (1) when Pr(θ2 = θ̄) < 1/2. In this case, the inefficient action R is perceived as unkind by type
¯
θ (0 <

1) but kind by type θ̄ (1 > 0).
7This version is closely related to DK04’s efficient set definition for more than 2 players. It would be interesting

to empirically explore kindness in three player games further. For example, what happens to the classic 2 player
example, where a action a1, that induces payoffs of (π1, π2) = (1, 1), isn’t seen as kind if the only alternative
action a′1 induces (0, 0), when a third player is introduced. It would appear that if a1 induces payoffs of (1, 1, 0)
vs. (0, 0, 1/2) (for a′1), player 2 would still not perceive player 1 as kind when he chooses a1.

8Such discontinuities could also be used to blow up kindness perceptions, i.e. by introducing actions that are
dominated for player 1 and almost all types of player 2, with arbitrarily low payoffs for most types. This is
reminiscent of the original argument for restricting the set of payoffs in complete information settings, in order to
avoid the influence of irrelevant, Pareto-dominated actions.
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1’s kindness towards other types can still be incorporated by averaging his kindness towards all

player 2 types. In this paper, I will pursue this approach when modelling kindness.9

2.2.2 The Formal Model

Game. Let the game be a 2-player, finite, multi-stage game, with perfect but incomplete

information and finite actions.

Players, information sets, and strategies. Let N = {1, 2} be the set of players.

Each player has a realized type θi ∈ Θi which captures their private knowledge about payoff

relevant aspects of the game. It may include information about player i’s ‘selfish’ utility

over an outcome or about her (own) concern for reciprocity.10 Let Θi be a finite set and let

θ = (θ1, θ2) ∈ Θ = Θ1 × Θ2 be distributed according to F (·). For simplicity, I assume that

players do not get further information about the state of nature θ.

Denote player i’s information sets by Hi, with a typical information set being called h ∈

Hi. The set of decision nodes are X and the set of terminal nodes are Z. Ai,h describes the

(possibly empty) set of actions for player i ∈ N at h ∈ Hi. A history of length l is a sequence

h = (a1, a2, . . . , al), where at = (at1, a
t
2) is a profile of actions chosen at time t (1 ≤ t ≤ l). At

times, it is useful to explicitly refer to the information set h ∈ Hi by using both history and type,

(θi, h) = h ∈ Hi.

A system of beliefs µ specifies the beliefs (about decision nodes) at each information set h.11

Instead of writing beliefs in terms of abstract decision nodes, it is more useful to express them as

conditional probabilities about the other person’s type. That is, let µi(θj |h) describe player i’s

belief that j has type θj at information set h instead of µ(x) when x = ((θi, θj), h) ∈ h. Let the

set of all possible belief systems be M.

Player i’s behavior strategy is denoted by σi ∈ ×h∈Hi∆ (Ai,h) =: ∆H
i . It assigns each in-

formation set h ∈ Hi a probability distribution σi(·|h) over the set of pure actions. Define

∆H :=
∏
i∈N ∆H

i 3 σ. Given σ let Pσ(x), Pσ(z), and Pσ(h) denote the respective probabil-

ities that node x, z, and information set h is reached.12 Define the conditional probabilities
9Fehr and Schmidt (2006) aptly point out that for n-player games (n>2) it is often not immediately clear what

the correct reference group is, highlighting a lack of theoretical and empirical work with regards to this issue.
Recently, Mcdonald et al. (2012) suggest that the reference group may vary, resulting in non-monotonic behavior
in ultimatum games when a third party with fixed endowment is present. Clearly, more empirical research is
needed with regards to this fundamental question.

10It may also describe concerns for alternative other-regarding preferences such as altruism, spitefulness, etc.
11Formally, µ : X → [0, 1] and satisfies

∑
x∈h µ(x) = 1 for each h ∈ H.

12As usual, I omit the prior belief for these terms.
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Pσ(x|h′, µ), Pσ(z|h′, µ), and Pσ(h|h′, µ) in the same fashion.

Player i’s material payoff is defined as πi : Z → R. It represents the ‘selfish’ payoff, which is

independent of any feelings of reciprocity, obligation, or behavioral concerns. Finally, define the

expected utilities as usual: πi(σ|µi,h) refers to player i’s expected utility at information set h

given belief µi, while πi(σ|µi, θi) refers to i’s initial expected utility knowing θi.13

In this paper, I employ the notational convention that i and j always refer to different people.

In all examples, player 1 is male and player 2 is female.

Beliefs and updating. In addition to the player’s beliefs about her opponent’s type,

she also forms a belief about her opponent’s strategy (first order belief) and what she thinks her

opponent thinks of her strategy (second order belief). Denote player i’s first order belief about

j’s behavior strategy σj by αj ∈ ∆H
j , and her second order belief by βi ∈ ∆H

i . Player i also

forms beliefs about her opponent’s system of belief µj ∈Mj , which is called µ̃ij ∈Mj .14

As in the complete information setting, the updating of beliefs about strategies is required.

Beliefs are updated to match the observed actions for all types that a player considers likely. A

history h = (a1, . . . , al) is said to be an immediate predecessor to h′, h �1 h′, if and only if

h′ = (a1, . . . , al, al+1).15

Definition 1: For any αj ∈ ∆H
j and h = (θi, h) ∈ Hi, let αj |h ∈ ∆H

j be the updated first-order

belief about strategies. It updates αj as follows: First, take history h and its immediate predecessor

h′, h′ �1 h = (a1, . . . , al), and set αj(alj | (θj , h′)) = 1 (and respectively to 0 for all other actions)

for any θj with µi(θj |(θi, h)) > 0. Do the same for h′ and its immediate predecessor h′′, etc. βi

is updated in the same fashion, using the respective belief system µ̃ij.

Just like in the complete information setting, a player adjusts her beliefs about the other person’s

strategy to match realized play. The only addition is that they only do so for types they consider

likely.

To illustrate this idea, suppose that in a sequential prisoner’s dilemma, player 1 is either

altruistic (θ1 = a) or spiteful (θ1 = s) and that player 2 initially believes that both types

cooperate, α1(C|θ1) = 1 for all θ1 ∈ {a, s}. Upon observing defection, if she believes that he is
13πi(σ|µi,h) =

∑
z∈Z P

σ(z|µi,h)πi(z).
14As in the complete information setting, I opt not to use belief hierarchies as seen in Battigalli and Dufwenberg

(2009). One reason for this is to keep models consistent across chapters. A much more relevant reason is that both
my theory of reciprocity with trust for complete information and this extension to incomplete information are
equilibrium models. As a result, epistemological questions that require belief hierarchies are simply not a concern.
Overall, the benefits of a more complicated, cumbersome model along the line of Battigalli and Dufwenberg (2009)
appear to outweigh the cost.

15Alternatively, define it via the predecessor relationship of nodes. For x = (θ, h), x′ = (θ, h′) ∈ X, h �1 h′ if
x �1 x′.
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the spiteful type, µ2(θ1 = s|D) = 1, she updates her belief about his actions, leaving her beliefs

about the altruist’s action unchanged.

This type of updating, once again, implies that players must give up on probabilistic beliefs.

If player 2, for instance, were to think that both types randomize and therefore considers each

type possible after a1, µ2(θ1|a1) > 0 for all θ1 ∈ {a, s}, she will update her beliefs about strategies

for each to match observed play.

Whenever a term features multiple updated beliefs, or also conditions on h, I simply condition

once at the very end i.e. πi(βi, αj |µi,h) :=πi(βi|h, αj |h | µi,h).16

Perceived Kindness. As in the complete information setting, player i forms beliefs

about j’s kindness by comparing the payoff she thinks she will obtain against a reference

point. The reference point is a convex combination of her minimal and maximal payoff in the

trust-efficient set. Since this model computes kindness at the type level, that is between a type

θj towards a type θi, each of the following terms will be defined for such a pair of types.

The trust-efficient set relies on the classification of actions into material best-responses, gen-

erous actions, and punishing actions. Define player i’s material best-response as the behavior

strategy that maximizes her payoff at every information set, that is

σmBRi (αj , µi) ∈ arg max
σi∈∆H

i

πi(σi, αj |µi,h) ∀ h ∈ Hi.

In case σmBRi (αj , µi) is not unique, abusing notation, let it refer to a pure strategy that also

maximizes j’s payoff at every h ∈ Hi (among σmBRi (αj , µi)). To simplify notation, I will omit µi

from this term whenever it is sensible. Denote the optimal choice at each h that makes up this

pure strategy by amBRi,h (αj , µi), that is σmBRi (amBRi,h (αj , µi)|h) = 1. Finally let σi\xh refer to the

behavior strategy that replaces the local choice at h in σi by xh ∈ ∆(Ai,h).17

Deviations from the material best response are defined next. An action is called generous

(punishing) towards j with type θj if it gives such type more (less) than what he would get as a

result of the material best-response.

Definition 2: Player i’s action ai ∈ Ai,h at h ∈ Hi is generous towards θj if

πj(σ
mBR
i (αj , µi)\ai, αj |θj ,h) > πj(σ

mBR
i (αj , µi), αj |θj ,h).

Action ai ∈ Ai,h is punishing towards θj if πj(σ
mBR
i (αj , µi)\ai, αj |θj ,h) <

16Whenever h is not at the very end, i.e. if h(βi|h, σj), it solely refers to the updating of the respective term.
17When xh ∈ Ai,h represents a pure action, it is implicitly understood that it refers to σi(xh|h) = 1 and

σi(ah|h) = 0 for all other actions.
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πj(σ
mBR
i (αj , µi), αj |θj ,h). Denote player i’s set of generous actions towards θj at h by

A
G,θj
i,h (αj , µi) and the respective set of punishing actions by AP,θji,h (αj , µi).

Consequently, define the trust-adjusted second order belief towards θj as follows:

βi(ai|h)TE(θj) :=



0 if ai ∈ A
G,θj
i,h (αj , µi)∑

x∈A
G,θj
i,h (αj ,µi) ∪ amBRi,h (αj ,µi)

βi(x|h) if ai = amBRi,h (αj , µi)

βi(ai|h) if ai ∈ A
P,θj
i,h (αj , µi)

for all h ∈ Hi, ai ∈ Ai,h.

β
TE(θj)
i adjusts i’s second order belief to the hypothetical belief that i takes her material

best-response instead of a generous action.18 While an action is usually (weakly) generous

towards all types, this does not need to be true in general. Defining the idea of trust towards

θj thus captures the most extreme case where i never takes the action that is generous towards

θj .19 Player j’s trust-efficient strategies for the pair (θi, θj) are his Pareto-efficient strategies

given βTE(θj)
i .

Definition 3 (Trust Efficiency): A behavior strategy σj ∈ ∆H
j is trust-efficient towards θi for θj

if there doesn’t exist a σ′j ∈ ∆H
j that

πj(σ
′
j , β

TE(θj)
i |µ̃ij , θj) ≥ πj(σj , β

TE(θj)
i |µ̃ij , θj) and πi(σ′j , β

TE(θj)
i |θi, θj) ≥ πi(σj , β

TE(θj)
i |θi, θj)

with a strict inequality for at least one player. The set of trust-efficient strategies for the pair

θ = (θi, θj) is denoted by TEθj (βi, αj , µi, µ̃ij).

Notice that in definition 3, player j’s payoffs are expected payoffs, evaluated by i via µ̃ij , while

i’s payoffs are conditional on the pair of types. It implies that any action that is dominated in

expectation for player j, which is also worse for θi, is not efficient. For example, in game 2.1, this

means that L is the only efficient action if Pr(θ2 = θ̄) ≤ 1/2, in which case L cannot be kind. By

conditioning i’s payoff on (θi, θj), R is never efficient for θ2 =
¯
θ in game 2.2, while for θ2 = θ̄,

both actions are efficient.
18I opt for the simpler specification that relies on µi, interpreting βTEi as simply reflecting i’s thought process

of ‘what would happen if she took her material best response’. One could also define it using the more involved
second order belief about types, i.e. i’s belief about µ̃ji, µ̃iji, instead of µi.

19In general, generosity depends on the other person’s response. In the ultimatum game, for instance, an offer
of 30% is generous to someone who accepts all offers but punishing to another person who is known to only accept
offers of at least 50%.
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The reference point is a simple convex combination of the highest and lowest material payoff,

with payoffs based only on the trust-efficient actions.

Definition 4: Let player i’s reference point for a given pair θ = (θi, θj) at h = (θi, h) ∈ Hi be

πri (βi|h, αj , µi, µ̃ij , θ) := λ · max
σj∈TEθj (βi|h,αj ,µi,µ̃ij)

πi(βi|h, σj |θ) + (1 – λ) · min
σj∈TEθj (βi|h,αj ,µi,µ̃ij)

πi(βi|h, σj |θ)

for some λ ∈ [0, 1].

As a punishing action of player i can make a strategy of player j inefficient, the reference point

may be discontinuous in βi. If this is the case, let πri refer to the smoothed out, continuous version

of the reference point in all subsequent expressions.20 Combining all terms yields i’s perception

of j’s kindness:

Definition 5: Player i with θi perceives the kindness of a θj-player from strategy σj at history

h = (θi, h) ∈ Hi, with θ = (θi, θj), according to

κj(αj , βi, µi, µ̃ij | θ,h) := k (πi(αj , βi|θ,h), πri (βi|h, αj , µi, µ̃ij , θ))

with ∂k(·)
∂πi
≥ 0, ∂k(·)

∂πri
≤ 0, k(πi = πri , ·) = 0, and a continuous k(·).

Example: If k(·) is linear, j’s kindness perceptions reduces to the usual κj(·| θ,h) = πj(·)−πrj (·)

for the pair θ. This function will be used in all examples.

Definition 6: The utility of player i at h = (θi, h) is

Ui (σi, αj , βi, µ̃ij | µi,h) = πi(σi, αj |µi,h)

+ γi
∑
θj∈Θj

µi(θj |h) · κj(αj , βi, µi, µ̃ij |(θi, θj),h) · πj(σi, αj |θj ,h)

where γi is a non-negative parameter capturing i’s concern for reciprocity.

Player i’s expected utility combines her usual expected material payoff with her expected utility

from reciprocity. A type θj ’s payoff is weighted by how kind i perceives him to be. The total

expected utility from reciprocity averages across all possible θj types. This averaging treats types
20In contrast to generous actions, I am unaware of a game that actually requires mixed strategies in punishing

actions. In general, when a player prefers to take a punishing action ai and holds beliefs that βi(ai|h) ∈ [0, 1)
then she will also want to punish for βi(ai|h) = 1; the simple, non-continuous reference point is usually enough.
For details on how to smooth out the reference point, see Appendix A in Rabin (1993).
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as separate players and ensures that i wants to be kind to the ‘right’ person, namely the type

that is kind towards her.21

Equilibrium. The equilibrium uses the familiar concept of sequential equilibrium and further

requires the following to be correct: first and second order beliefs about strategies, beliefs about

types, and beliefs about the other person’s beliefs about types.

Definition 7: An assessment (σ, α, β, µ̃, µ, ) is sequentially rational if for all i ∈ N , for each

h ∈ Hi, and for any ai ∈ Ai,h it holds that

if σi(ai|h) > 0 then ai ∈ arg max
a′i∈Ai,h

Ui (σi\a′i, αj , βi, µ̃ij |µi,h) .

Let ∆H,0 denote the set of all completely mixed behavioral profiles. If σ ∈ ∆H,0, then any decision

node x ∈ X is reached with strictly positive probability, so that beliefs over x ∈ h can be defined

in the usual way: µi(x) = Prσ(x)/Prσ(h).

Definition 8: An assessment (σ, α, β, µ̃, µ, ) is consistent if µ = limn→∞ µn = Prσ
n

(x)/Prσ
n

(h),

σ = limn→∞ σn for σn ∈ ∆H,0, and σi = αi = βi, µi = µ̃ji for all i ∈ N .

Definition 9: An assessment (σ, α, β, µ̃, µ, ) is a sequential Reciprocity with Trust Equilibrium

(sRTE) if it is sequentially rational and consistent.

Sequential rationality requires that at each information set h ∈ Hi player i maximizes her utility,

taking her future behavior as given. Consistency ensures that she holds correct beliefs.

Proposition 1: An equilibrium exists if κi(·) is continuous for all i ∈ N .

The proof proceeds according to the usual logic: First it is shown that a perfect equilibrium with

reciprocity preferences exists (Selten (1975)). This in turn implies the existence of a sequential

Reciprocity with Trust Equilibrium.

21If player i, instead, forms expectation about j’s kindness and expectations about j’s payoffs, and then mul-
tiplicatively connects both, it can lead to questionable interactions across types of players. To see this, suppose
that j is either selfish or reciprocal, and that player i moves first in a sequential prisoner’s dilemma. Given that
the selfish-type’s payoff is large when i cooperates, even a relatively small average kindness due to the reciprocal-
player may induce player i to cooperate. After all, the overall utility from reciprocity is relatively large. This
goes against the idea that people want to be kind to those who are kind to them, and possibly punish those they
consider unkind.
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2.3 Applications

2.3.1 Pricing and Incomplete Information

For the first application, I analyze a simple pricing game with incomplete information about the

buyer’s valuation. In addition to accepting or rejecting the seller’s offer, the buyer can reward

the seller with a tip. We will see that if the buyer is sufficiently reciprocal, the seller effectively

allows the buyer to set her own price.

Let there be a selfish seller and a reciprocal buyer, whose reference point is her minimum

efficient payoff, i.e. λ = 0. The seller makes a take-it-or-leave-it offer for a single, indivisible good

at a price p ≥ 0. His cost of producing the unit is c = 0. The buyer has private information

about how much she values the object. Her valuation is either high or low, v ∈ {vl, vh}, with

Pr(v = vh) = q and vh > vl. In addition to rejecting or accepting the offer (a ∈ {0, 1}), she can

also tip the seller, t ∈ [0, t̄] with t̄ > vh. Her material payoff is πB(a, t, p|v) = a · (v − p)− t.

If both buyer and seller were purely motivated by material payoffs, then the buyer will never

tip and will accept the offer if and only if p ≤ v. The seller sets the price at the high valuation,

p = vh, if q ≥ vl
vh

=: q̄ and at the low valuation, p = vl, otherwise.

The very same selfish behavior by the buyer is clearly also a trust-efficient response. It follows

that when q < q̄, a low price is never kind since it is in the seller’s material interest. In this case,

the seller sets p = vl, which is accepted by any buyer, with tips being zero for any γB > 0.22

For the remainder of this section, assume that there are sufficiently many high types, that

is q ≥ q̄. Clearly, the seller never sets the price above vh and the high valuation buyer accepts

if and only if p ∈ [0, vh]. This is commonly understood by both players.23 Denote the second

order belief about tips by t′′(p) ∈ [0, t̄]. The utility of a high-valuation buyer from tipping t after

observing a price p ∈ [0, vh] is

UB(t, t′′(p)|p, vh) = vh − p− t+ γB · κS(t′′(p) | p, vh) · (p+ t− c)

with κS(t′′(p) | p, vh) = vh−p− t′′(p)−0.24 Since UB(t, p|vh) is linear in t (and tips being weakly

positive), it must be that in equilibrium γB · (vh− p− t′′(p)) ≤ 1. This results in two cases: first,
22The example highlights the potentially strong informational requirement that the equilibrium model places on

the buyer. It requires the buyer to fully understand the incomplete information environment the seller is facing in
order to infer the seller’s reasonable, efficient actions. When the seller takes an inefficient action, the buyer does
not revise her beliefs about the seller’s view on the environment, but treats the action as inefficient.

23I disregard the potential alternative equilibrium, where a high-price is inefficient due to being punished, i.e.
rejected, which in turn can motivate the buyer to reject it.

24Notice that the reference point, which is the minimum efficient payoff, is 0 and arises from p = vh. It takes as
given that the buyer doesn’t tip in response.
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if the seller’s kindness from p is too low even when t′′(p) = 0, vh− p ≤ 1/γB , the buyer will never

tip. If instead vh − p > 1/γB , the optimal tip t′′(p) will make the buyer indifferent between any

tip.25 In equilibrium, the tip is

t(p) = max{0, vh − p− 1/γB}.

When the seller sets a sufficiently low price and the buyer’s concern for reciprocity (γB) is large

enough, she rewards him with a tip. The tip is decreasing in the price. The seller’s total revenue

from a high-valuation buyer is Rev(p|vh) = p+t(p) = max{p, vh−1/γB} if p ≤ vh and 0 otherwise.

If the seller sets the price too high, the buyer will accept the offer but won’t consider him kind.

If the price is low enough, any decrease in price is matched one-for-one with an increase in tip.

In this case, the seller gets a constant total payment which is below the price p = vh that is profit

maximizing when everyone acts selfishly. The total payment from a high type must necessarily

be below vh for otherwise the seller isn’t kind. However, he may be able to improve his expected

revenue as we will see next.

Proposition 2: The expected revenue is maximized at p = vl if vh−1/γB > vl and (1−q)·vl ≥

q/γB.

The first condition is a necessary condition. It requires that the high-valuation buyer is sufficiently

reciprocal to tip the seller at a price of p = vl. The second condition ensures that the expected

gain from selling to the low-valuation buyer, (1 − q)vl, exceeds the expected loss, q/γB , from

selling the good to the high-valuation buyer at vl instead of vh.26 Reciprocity concerns among

high-valuation buyers allow the seller to profitably sell to more buyers. By lowering the price,

the seller sells to more types of customers without having to bear the full loss of revenues from

‘existing’ high-value clients, who voluntarily pay more.27

This simple game captures three observations that are consistent with the empirical literature

on pay-what-you-want pricing. First, most people pay more than the minimum required price,

which is usually set at 0. Second, most people tend to pay less than the previously used fixed

price. Third, companies tend to serve more customers (Kim et al. (2009), Regner and Barria

(2009), Gneezy et al. (2010), Gneezy et al. (2012)). Consistent with proposition 2, a pay-what-

you-want strategy also appears to be both profitable and sustainable over longer periods in some
25To see why, suppose t′′(p) = 0. In this case, she wants to give the maximal tip t̄. But then consistency requires

t′′(p) = t̄ > vh, in which case she doesn’t want to tip at all.
26Clearly the necessary condition is also sufficient at q = q̄. At this prior, the seller is indifferent between selling

at vl or vh even without any tips. With reciprocal types, he makes an additional tip on the high-value type.
27Notice that in the limit, γB →∞, the seller extracts all surplus.
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environments.28

Before concluding this simple application, I would like to quickly explore an extension of

the kindness function. The payment data in the empirical studies on pay-what-you-want pricing

actually reveals that a small fraction of customers pay more than the original price when they

get to choose their own price; for instance, see Kim et al. (2009). While this can be due to many

reasons beyond reciprocity, it can be captured by allowing consumers to care not only about the

seller’s kindness towards them, but also about his kindness towards other types of customers who

are possibly less well-off.29

This type of reciprocity preferences would incentivize the seller to lower the price even further,

enabling poorer customers to participate at a per-unit price below his marginal cost.30 To explore

these ideas in more detail, a continuous type distribution would be useful. Clearly, the above

analysis extends to this setting as well, yielding a very similar equilibrium condition for tips.

Having buyers who also care about other buyers will push the seller’s price further towards ‘zero’.

Similar to my simple, discrete setting, the continuous setup is unlikely to yield an actual price

of zero. This, however, shouldn’t be too surprising. The real reason behind pricing an item

at p = 0 instead of a small but positive price is likely due to a discontinuity in kindness and

trust perceptions at 0. Moreover, pay-what-you-want pricing schemes also tend to have some

restrictions in practise: restaurants require drinks to be paid separately (Kim et al. (2009)) and

music labels require consumers to pay for the cost of shipping the CD (Regner and Barria (2009)).

2.3.2 Bilateral Trade

After looking at a game with one-sided incomplete information, I now turn to two-sided incomplete

information in the classic bilateral trade problem. I focus on a particular binary-type example

that is taken from Bierbrauer and Netzer (2016) (henceforth BN16).

There is one indivisible object. The seller’s cost is
¯
c = 0 or c̄ = 80, the buyer’s valuation is

28The longest evidence comes from Gneezy et al. (2012) in form of a two-year time series on payments, customers,
and revenue of an Austrian restaurant following the introduction of a pay-what-you-want pricing scheme. While
average payments decrease, customers and revenue increases over time. Hence, behavior doesn’t seem to be driven
by a novelty effect - which was likely an important factor in the famous example of the band Radiohead, who
initially allowed fans to download their 2007 album In Rainbows and pay as much as they want. It is noteworthy
that they did require fans to cover the credit-card fee of 45p, recovering their marginal download costs from selfish
types.

The profitability of these schemes tends to vary across settings. In Kim et al. (2009), total revenues increased
for a lunch-buffet at a restaurant, but fell for a movie theatre as well as for beverages in the cafe of a delicatessen
shop. Gneezy et al. (2010) reports lower profits for souvenir pictures in an amusement park. When 50% of the
pay-what-you-want price was given to charity, however, it dwarfed profits of the regular fixed price (with and
without payments to charity). Lastly, also in Gneezy et al. (2012), profits from souvenir pictures on a tour boat
are the same for posted prices and the pay-what-you-want scheme.

29See, for example, reporting for The Guardian by Carroll (2018).
30For instance, the high-value type could weight the seller’s payoff with the new kindness function

κS(t′′(p) | p, vh)new :=κS(t′′(p) | p, vh) + δκS(a′′, t′′(p) | p, vl) for some constant δ ∈ (0, 1).
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¯
v = 20 or v̄ = 100. Types are independent and equally likely. If players are fully selfish, then

it can be shown that Myerson and Satterthwaite’s famous impossibility result holds - there is no

social choice function f which is materially Pareto-efficient, satisfies incentive compatibility (IC)

and the participation constraint (PC), and is budged balanced (BB).

BN16 show that when both player are strictly reciprocal, i.e. no one is selfish, there are

simultaneous mechanisms that satisfy IC, PC, and BB, and trade occurs whenever it is materially

efficient. In addition to sending a message about their type, each player is given a button that, if

pressed, allows one to profit at the expense of the other. This button generates kindness whenever

it is not used. For reciprocal players, not pressing the button becomes mutually reinforcing and

furthermore can incentivise them to maximize joint payoffs, i.e. to honestly reveal their types.31

Clearly, a selfish player would always use such button in a simultaneous game. As a result,

BN16’s mechanism is limited to environments where the fraction of selfish types is small. When

firms and consumers interact, this requirement is likely violated. In this section, I will explore

whether sequential interactions may improve efficiency relatively to simultaneous moves, without

relying on artificial buttons.

Suppose the buyer and the seller interact in the simplest sequential form. First, the seller

makes a claim about his cost, mS ∈ {̄c, c̄}. After observing his message, the buyer decides whether

to trade or not and if so at what predetermined price. To do so, she announces her valuation,

mB ∈ {
¯
v, v̄}, and trade occurs if and only if mB ≥ mS . Let the probability of trade and the

resulting price (prob of trade, price) be as shown in Figure 2.1.

S

B

(1, 14)

mB =
¯
v

(1, 74)

mB = v̄

mS =
¯
c

B

(0, 0)

mB =
¯
v

(1, 84)

mB = v̄

mS = c̄

Figure 2.1: Probability of trade and prices

If players were selfish, both types of buyers respond to a low-cost message by trading at the

lowest possible price, i.e. mB(v | mS =
¯
c) =

¯
v for all v. After a high-cost message, only high-

valuation buyers trade, mB(v̄ | mS = c̄) = v̄ and mB(
¯
v |c̄) =

¯
v. In equilibrium, all types of

31Observe that the revelation principle no longer holds in this setting.
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sellers pool by claiming to have high-costs.32 Due to the lack of trade among the pair (
¯
c,

¯
v), this

particular sequential interaction is inefficient.

The buyer’s material best-response can be used to determine the trust-efficient actions. In

this setting all actions are efficient: given the buyer’s material best-response, each seller prefers

mS = c̄ while each buyer is better off when mS =
¯
c.33

For simplicity, assume that the seller is selfish and the buyer is reciprocal with obligation

preferences, i.e. λ = 0.34

Proposition 3: For γB ∈ [1/10, 1/6], truth-telling is a sequential Reciprocity with Trust Equilib-

rium.

For the high-cost seller, announcing his type is a dominant strategy, mS(c̄) = c̄, since any price

after the alternative mS =
¯
c is less than his cost and trade always takes place. Given that a high

cost message minimizes the buyer’s payoffs, it is never kind. Consequently, any type of buyer

will respond with her material best-response, i.e. she will announce her type: mB(v̄ | c̄) = v̄ and

mB(
¯
v | c̄) =

¯
v. In contrast, a low-cost message is indeed perceived as kind as it maximizes the

buyer’s payoff. A sufficiently reciprocal high-valuation buyer, γ ≥ 1/10, is therefore willing to

reveal her type, mB(v̄ |
¯
c) = v̄. The low-value buyer sends an honest message, mB(

¯
v |

¯
c) =

¯
v, if

her concern for reciprocity is not too large, ie. γB < 1/6. If γB is too large, a low-valuation buyer

wants to exaggerate her type in order to reward the seller.35 Whenever the buyer honestly reveals

her type, it is also in the low-cost seller’s best interest to be honest ((14 + 74)/2 ≥ 84/2). It

follows that truth-telling is a sequential Reciprocity with Trust Equilibrium for γB ∈ [1/10, 1/6].

The buyer’s concern for reciprocity gives rise to full efficiency.36

While this is a game of incomplete information, the overall mechanism is, not surprisingly,

identical to the one in games of complete information - see the sequential prisoner’s dilemma in

Chapter 1 for instance. By revealing his low costs, the low-cost seller improves the buyer’s payoff

irrespective of her type. Given the buyer’s equilibrium response, it is also in his own material

best interest to be honest, which makes his action mutually beneficial. The buyer perceives him

to be kind since his action exposes vulnerability: if the high-value buyer were to take her material
32The expected profit of a low-cost seller is (84− 0)/2 > 14− 0.
33Notice that even for a high-cost seller, a low cost message is Pareto-efficient as it makes the buyer better off.

One way to avoid such classifications would be to require that any player’s payoff is at least equal to their outside
option.

34As usual, this aims to capture a setting where many sellers (buyers) are selfish (reciprocal).
35Notice that such behavior would quickly lower the seller’s kindness towards her.
36Indeed, this is true for any γB ≥ 1/10. As in the extension for the previous pricing game, a high-value

type may also appreciate the fact that the low-cost seller enables the low-valuation buyer to trade, increasing her
kindness perception from mS =

¯
c even further. Such preferences would make it even easier to motivate the buyer

to reveal the truth.
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best-response, the seller would be better off claiming to have a high cost instead. Consequently,

she is happy to share some of the surplus with him. The sequential interaction exploits the

asymmetry between the selfish seller and the reciprocal buyer by requiring the selfish seller to

act first, which provides him with the opportunity to signal kindness and trust. Reciprocity once

again ensures that the buyer doesn’t exploit the seller’s trust.

This example highlights how reciprocity creates incentives for information sharing. More gen-

erally, this type of reciprocal information sharing can explain how cheap talk improves efficiency

in bargaining (Valley et al. (2002)) without having to rely on honest types (Saran (2011), Saran

(2012)) or lying aversion (Abeler et al. (2016)). Le Quement and Patel (2017) make a similar

observation in the one-sided incomplete information environment of cheap talk (Crawford and

Sobel (1982), Cai and Wang (2006)).

There is one critical dimension in which reciprocity in settings of information sharing differs

from reciprocity in games of complete information: in many games of complete information,

negative reciprocity can be a tremendous force to ensure compliance by punishing selfish actions.

Punishment becomes more difficult to justify if it is unknown whether someone’s claim is truthful

or not. After all, punishment may inflict harm not only on someone who lies for selfish gains but

also on an honest person.37 As people tend to give others the benefit of the doubt (Mitzkewitz

and Nagel (1993), Rapoport et al. (1996), Güth and Huck (1997)) it is doubtful that punishment

can be a driving force for creating efficiency - unless lies are likely to be discovered.

2.4 Discussion

In this section, I first discuss how my model relates to alternative models of intention-based

reciprocity. Afterwards, I comment on some of the finer details of modelling kindness from the

ex-ante and interim perspective.

2.4.1 Alternative Intention-Based Reciprocity Models

The first chapter featured an extensive comparison of the different intention-based reciprocity

models. The essential difference to Rabin’s (1993) conditional-efficiency model, extended to

incomplete information, remains to be the fact that a person i does not consider another person

j to be kind if j’s action also benefits himself.38

37Indeed, to dissuade people from lying, one must be willing to punish honesty of others.
38For an example, see Le Quement and Patel (2017). One way to extend Rabin’s model to sequential games of

incomplete information is simply by using the actual belief βi instead of βTEi in the definition of a trust-efficient
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For the remainder of this subsection, I will explore why extending Dufwenberg and Kirch-

steiger’s (2004) model to incomplete information leads to arguably implausible behavior. This is

ultimately due to the fact that a dominated action by player 2 may make an action by player 1

efficient. We will see that this can give rise to kindness perceptions that are independent of the

prior belief over types.

Take a simple pricing game between a buyer and a seller. There are two types of buyers with

valuation v ∈ {vl, vh}, with Pr(v = vh) = q. A selfish seller makes a take-it-or-leave-it offer for a

single unit at p ∈ {vl, vh} and has zero cost, c = 0. Upon observing the offer, the buyer decides

whether to accept or not.

Suppose the buyer acts in her best material interest. A buyer with high valuation always

buys; a buyer with low valuation buys if and only if p = vl. As a result, the seller sets a price

p = vh if q > vl/vh and p = vl otherwise. Given that the buyer can only accept or reject the offer,

it seems natural that a high-valuation buyer would only view the seller as kind when he sets a

low price p = vl and acts against his own interest, i.e. when q > vl/vh. Indeed, this is exactly

what my model predicts (for more details, see the pricing game section in 2.3.1).

When the seller’s efficient actions are modelled via the unconditional efficient set, this is no

longer true, however. To see this, recall that a price p is unconditionally-efficient if it is Pareto

efficient for at least one strategy of player 2, σ2 ∈ ∆H
2 . According to this definition, both prices

are efficient. p = vh is Pareto efficient due to the strategy where all types of buyers accept a

price of p = vh (and all accept p = vl). Notice that since a high-price is never kind, no low-

valuation buyer would use such a strategy. Just like in game 1.6 (Chapter 1) this strategy is

non-rationalizable, yet it affects the efficient set. Since p = vh is efficient for any q ∈ [0, 1], a

high-valuation buyer always views the seller as kind when he charges a low price: kindness no

longer depends on the prior belief. This is particularly implausible when q is close to 0.

An efficiency notion based on material best-replies, actual choices (or second order beliefs

thereof), or trust, avoids this problem and is thus more useful for incomplete information settings.

2.4.2 Modelling Choices for Kindness Perceptions

For their application of intentions to mechanism design, Bierbrauer and Netzer (2016) define

kindness for normal-form games from an ex-ante perspective. A player’s kindness is the difference

between the ex-ante expected payoff and the ex-ante reference point. Efficiency is similarly defined

from the ex-ante perspective, in the spirit of Rabin (1993). Netzer and Volk (2014) model kindness

behavior strategy.
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(still for normal-form games) at the interim stage.39 The kindness of player j with θj towards

player i describes the difference between the expected payoff he gives to player i and her reference

point. Both the reference point and the efficient set are defined in terms of i’s expected payoff

(conditional on θj). Player i perceives j’s kindness towards her by taking expectation over j’s

types.

The key difference between their notion of interim-kindness and mine (apart from the obvious

difference that their model is defined for normal form games and in terms of conditional efficiency)

is how a particular type θi perceives j’s kindness. In their model, kindness perceptions are

independent of i’s realized type, whereas in mine, j’s action is only judged in terms of how it

affects θi’s (perceived) payoff. This difference leads to the testable implication of whether a type

θi rewards or doesn’t reward an action that is only kind to her hypothetical alternative selves.A

more minor difference between the two models arises from the fact that their efficient set is defined

in terms of interim expected payoffs, and not in terms of the pair (θi, θj). In many cases, there

won’t be any difference between both approaches. A notable exception is game 2.2, section 2.2.1,

which describes a game where player 1’s actions affect the payoffs for the two types of player 2

in opposite directions.40

For many applications, the private information encoded in θi will capture not only material

payoffs but also social preferences. By treating different types as different players, a selfish

player and a reciprocal player are treated as separate beings. As a result, player i’s utility

correctly weights her action’s consequences on the selfish and the reciprocal player’s payoffs by

their respective kindness towards her and each type’s likelihood. This captures the original idea

of reciprocity that a person wants to help (hurt) the person she considers kind (unkind). This is

not the case if i perceives j’s kindness as the average of his behaviors across types and then uses

this kindness term to weight j’s expected payoff.41

39The interim-stage approach can also be found in the online appendix B.1 of Bierbrauer and Netzer (2016).
40Le Quement and Patel’s (2017) model on cheap-talk only features one-sided information at the side of the

sender. The sender’s kindness is modelled conditional on his type. Their model is similar to mine in the sense that
it is sequential and the receiver updates her beliefs about the state of the world based on the sender’s message.
She then computes the expected kindness given her updated belief, which they call ex-post perceived kindness.
They also define an ex-ante kindness that is independent of the message by averaging across the states and the
expected messages.

41To see this, suppose that player i moves first in a sequential prisoner’s dilemma. Given that the selfish-type’s
payoff is large when i cooperates, even a relatively small average kindness due to the reciprocal player may induce
player i to cooperate as her overall utility from reciprocity is relatively large.
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2.5 Conclusion

This chapter extends the theory of reciprocity with trust, which was developed in chapter 1, to

incomplete information. It captures the realistic feature that in many cases one does not have

full knowledge about others’ material payoffs or their social motivations. In two applications of

this model, I showed how reciprocity can give rise to pay-what-you-want pricing schemes and how

it can foster information sharing in bilateral trade.

Incomplete information about material payoffs gives rise to a particularly interesting question:

If player j is genuinely trying to help player i, does i consider j kind even when j’s help has

no positive effect on her, or more extremely, his help actually hurts her? This paper adopted

a ‘selfish’ approach to kindness perceptions: player i only considers player j’s impact on her

particular payoffs when she evaluates his kindness, neglecting any impact that he could have had

on other hypothetical types of her. My approach is similar to the consequentialism of intention-

based reciprocity models in complete information, in which one is judged by his actual actions.

How a person actually reacts to such actions, and thus how reciprocity should be modelled in

incomplete information, remains an empirical question.There has been very little research on what

people consider kind in these games. I hope that my model inspires future empirical research on

this fundamental topic.
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2.6 Appendix: Proofs

Proof of proposition 1. The proof follows the usual logic of first showing that there exist an

ε-constrained (reciprocity) equilibrium, that requires totally mixing strategies (with minimum

probabilities of ε). Taking limits (ε → 0) results in the perfect equilibrium (with reciprocity

preferences). From there, I use the usual argument to construct a sequential (Reciprocity with

Trust Equilibrium) equilibrium.

Define the minimum trembles at h ∈ Hi for player i for the local strategy by εi,h. An

ε-constrained reciprocity equilibrium is the totally mixed strategy profile σε that is sequentially

rational, with correct beliefs, but requires that at each h, each action (ai,h ∈ Ai,h) is played

at least with probability εi,h, that is σi (ai,h|h) ≥ εi,h. Denote the restricted strategy space by

∆H,ε.

A (trembling hand) perfect reciprocity equilibrium is any limit of an ε-constrained reciprocity

equilibrium σε as ε→ 0. (Fudenberg and Tirole, 1991, ch. 8, def 8.5A)

1. I first argue that a ε-constrained reciprocity equilibrium σε exists:

Define the local best response correspondence ri,h : ∆H,ε → ∆(Ai,h)ε by

ri,h(σε) = arg max
xi,h∈∆(Ai,h)ε

Ui
(
σεi\xi,h, σεj , σεi , µj |µi,h

)
and best response correspondence r(σ) : ∆H,ε →

∏
(i,h)∈N×H ∆(Ai,h)ε by

r(σε) =
∏

(i,h)∈N×H

ri,h(σε).

Along the sequence of totally mixed strategies, µ is uniquely pinned down; it is without loss to

drop it from the definition of r(·).

As
∏

(i,h)∈N×H and ∆H,ε are topologically equivalent, I can simply define an equivalent

function r̃ : ∆H,ε → ∆H,ε and look for a fixed point. A fixed point under r̃ satisfy the conditions

of the ε-constrained reciprocity equilibrium as it maximizes each player’s expected utility of

player at h, and first and second order beliefs about strategies are correct (the same holds true

for µi, µij).

Kakutani’s fixed point theorem applies in this setup. To see this, notice that at any

information set h the local choice set ∆(Ai,h)ε is a subset of a simplex. As a simplex is compact,
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convex and non-empty, so is the ε-restricted subset (for ε sufficiently small). ri,h is non-empty as

Ui is continuous in her own local choice, the set is compact and hence attains a maximum. ri,h

is convex as Ui is indeed linear in i’s own choice. Upper hemi-continuity of ri,h follows from the

fact that Ui is continuous. Since these properties extend from ri,h to r̃i,h, and r̃, all conditions

of Kakutani’s fixed point theorem are satisfied, which completes the first step of the proof that

r̃(σε) has a fixed point.

2. A (trembling hand) perfect reciprocity equilibrium exists:

By compactness of the strategy space, it it follows by the Bolzano-Weierstrass theorem that the

sequence {σε}ε has a convergent subsequence as ε → 0, which proves the existence of a perfect

reciprocity equilibrium.

3. A perfect reciprocity equilibrium implies a sequential Reciprocity with Trust Equilib-

rium.

This follows immediately from the usual argument. In a sRTE σ must be sequentially rational

given the set of beliefs (α, β, µ̃, µ), and the assessment (σ, α, β, µ̃, µ) must be consistent. All that

is left to do is to construct a sequence of beliefs µn → µ. Along the convergent subsequence of

totally mixed strategies σn, beliefs µn are uniquely defined by Bayes’ rule. µ simply refers to

the limit of the respective convergent subsequence from earlier. By construction, (σ, α, β, µ̃, µ) is

consistent. As each player is taking her best response at each information set along the sequence,

together with the fact that Ui is continuous, (σ, α, β, µ̃, µ) is sequentially rational.

Proof of proposition 2. To improve upon the expected revenue of p = vh, ERev(p = vh) = q · vh,

it is necessary that both types buy since the total payment p + t(p) from the high type is lower

than vh. As a result, any pice p ∈ (vl, vh) cannot be optimal.

Since q · vh > vl, it is necessary that the total payment from the high-type exceeds the low

valuation, that is vh − 1/γB > vl. (This condition directly implies that for any p ≤ vl, the

high-value buyer will tip the seller.)

Selling below p < vl cannot be optimal as the seller loses revenue from the low-valuation buyer

(the transfer from the low valuation seller is t(p) = max{0, vl − p − 1/γB}) relatively to p = vl

without affecting the revenue from the high-valuation buyer.

Lastly, expected revenue from vl exceeds vh if ERev(p = vl) = q·(vh−1/γB)+(1−q)·vl ≥ q·vh,

70



which can be rewritten as (1− q) · vl ≥ q/γB .

Proof of proposition 3. Kindness of a low-cost seller: Suppose the buyer holds the second order

belief that she honestly reveals her type at each node. Denote this belief by βhonestB . Moreover,

she holds the correct belief that µB(
¯
c|mS =

¯
c) = 1. Since all messages are trust-efficient for the

seller, and the buyer is assumed to have obligation preferences, her reference point is equal to her

minimum payoff, which is induced by the high cost message. In particular πrB(βhonestB |(
¯
c,

¯
v)) = 0

and πrB(βhonestB |(
¯
c, v̄)) = 100− 84 = 16. Hence each kindness term is

κS(βhonestB |mS =
¯
c, (

¯
c,

¯
v)) = 20− 14− 0 = 6

κS(βhonestB |mS =
¯
c, (

¯
c, v̄)) = 100− 74− 16 = 10.

The buyer’s utility from each message is

UB(mB = v̄, βhonestB |mS =
¯
c, v) = v − 74 + γB · κS(βhonestB |mS =

¯
c, (

¯
c, v)) · (74− 0)

UB(mB =
¯
v, βhonestB |mS =

¯
c, v) = v − 14 + γB · κS(βhonestB |mS =

¯
c, (

¯
c, v)) · (14− 0).

She prefers mB = v̄ over mB =
¯
v if γB · κS(βhonestB |mS =

¯
c, (

¯
c, v)) ≥ 1. It follows that

truth-telling is an equilibrium if γB ∈ [1/10, 1/6].
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Chapter 3

The Benefits of Being Misinformed1

3.1 Introduction

We commonly observe situations in which people take actions in line with hypotheses that seem

to be contradicted by empirical evidence. Furthermore, these actions often produce additional

information that should highlight the initial mistake. For example, a significant number of people

refuse even essential vaccinations despite the very strong evidence of their benefit and despite the

measurable increase in outbreaks of the related disease as a consequence of this refusal.2

For this purpose, we revisit the comparison of experiments as in Blackwell (1951) under the

assumption that information processing is not always flawless and might be impeded by systematic

mistakes. We do this in a setup that captures the fundamentals of Bayesian updating and its

consequences on utility: First an agent takes an action that directly affects his payoff but also

provides information about the payoff relevant state of the world. The agent then takes another

action before payoffs are realized. Motivated by the psychological and experimental literature

on beliefs and perceptions, the information processing can be ‘imperfect’ in two ways: an agent

might initially hold an incorrect prior affecting the type of signals he receives and the agent might

misinterpret the signals.3 We find that both types of biases by themselves are welfare decreasing.

The potential welfare loss can be ordered according to the magnitude of the bias. Next, we

provide necessary and sufficient conditions under which a given binary ranking of action profiles

can be reversed by a perception bias. Building on these findings, we can show that it is not
1This chapter is joint work with Manuel Staab.
2See, for instance, Wallace (2009).
3For example: Bruner and Potter (1964), Darley and Gross (1983), Fischoff et al. (1977) and Lichtenstein et al.

(1982).
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always true that adding another type of bias to a pre-existing one makes an agent even worse-off.

In particular, if the agent tends to misperceive signals, then pushing the agent’s prior further

away from the truth can beneficial if it causes the agent to prefer an action whose signal is less

ambiguous and thereby less likely misinterpreted. Our setting thus provides a novel channel for

the long known observation by Hirshleifer (1971) that information may not always be welfare

improving.

On the other hand, when the agent’s prior is incorrect and signals are useful in the sense

that they inform decision-making, the agent will always be worse off from misperception. Only

in the extreme case, where it’s optimal for an agent to always take a fixed action irrespective of

any signal, increasing the agent’s degree of misperception can be beneficial. It follows that no

straight-forward welfare ordering can be established if both types of misperception are present.

We further explore the implications of an agents awareness over the bias. We provide conditions

under which sophistication regarding the misperception of signals can help or harm the agent’s

welfare.

To provide an illustration, let’s look at a student who decides whether to become an en-

trepreneur. The literature highlights that entrepreneurship is ex-ante not very profitable. Landier

and Thesmar (2009) show that entrepreneurs tend to be overly optimistic with respect to their

company’s future growth prospects. Moreover, their optimism is positively correlated with higher-

education, and more optimistic entrepreneurs tend to choose more short-term debt. Suppose the

payoffs from being an entrepreneur depend on the student’s ability. The student can either quit

university immediately in order to start his business, or wait and finish his degree first. While

graduating is inherently useful, it also provides him with a signal about his abilities. Finally,

when he starts his business, the student also has to decide how much to borrow.

A student who is very overconfident in his abilities will find it optimal to start his business

immediately, yet may not be overconfident enough to borrow much. In contrast, a slightly less

overconfident agent will pursue the more ‘sensible’ path of completing his studies. When the

student also suffers from biases in perception, he may (a) misinterpret the signal as confirming

his superior ability or (b) over-interpret the signal strength. As a result, the student may come

out of university feeling even more confident in his ability, which can persuade him to start a

business as well as taking on larger risks, i.e. a bigger amount of debt. While both businesses

fail with equal probability, the initially less over-confident agent may end up being worse off in

expectation. The more over-confident agent managed to avoid the signal and thereby was not in

a position to misinterpret it.
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The chapter is organized as follows. In section 3.2, we summarize the relevant literature.

This is followed by a basic description of our model in section 3.3 and the characterization of

the unbiased choice problem in section 3.4. Section 3.5 introduces biased perception and biased

priors into the model and relates our setting to Blackwell (1951). This is followed by our main

results in section 3.6. We conclude with a short investment example in section 3.7 and a final

discussion in part 3.8.

3.2 Literature

Blackwell (1951) formalizes when an information experiment is more informative than another.

Marschak and Miyasawa (1968) transfer these statistical ideas to the realm of economics. The

key conclusion is that no rational decision maker would choose to ‘garble’ his information, i.e.

voluntarily introduce noise into his experiments.

Having more information, however, may not always be better in an economic settings. Hirsh-

leifer (1971) highlights that public information may destroy mutually beneficial insurance possi-

bilities. The recent behavioral literature takes this idea further: Papers on overconfidence have

shed light on how holding incorrect beliefs can be useful. These benefits arise from strategic in-

teraction between agents. Ludwig et al. (2011) show that overconfidence can improve the agents

relative and absolute performance in contests by inducing higher efforts. De La Rosa (2011) stud-

ies the effect of overconfidence on incentive contract in a moral hazard problem. When agents

overestimate the probability of success as well as their marginal contribution to success, it be-

comes easier for the principal to induce effort. It turns out that the efficiency gains from slight

levels of overconfidence can improve the agent’s welfare.

Carrillo and Mariotti (2000) show that Blackwell garbling of information may increase the

current self’s payoff when individuals are time-inconsistent. Benabou and Tirole (2002) develop

this idea further. In their model, a time-inconsistent agent can take on a project with deferred

and uncertain benefits but immediate losses. Due to time-inconsistency a time-0 self prefers that

the project is undertaken in the next period, but anticipates a lack of motivation by her next

period’s incarnation. Having the opportunity to either perfectly learn the true success rate or to

stay uninformed, she may prefer to stay uninformed if her prior motivates the time-1 agent to

work. While these two papers are phrased as a decision problem, an agent with time-inconsistency

plays a game among his different selves, which is the fundamental driver of these results.

Other papers analyze how various behavioral shortcomings can be improved upon by overcon-
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fidence. These papers aim to provide a motivation why overconfidence exists in the first place.

In Compte and Postlewaite (2004), failing to recall past failures can improve welfare as it coun-

teracts the fear of failure. Brunnermeier and Parker (2005) highlight that agents prefer to hold

incorrect, too optimistic beliefs about the future, when they derive immediate benefits from these

expectations.

Our paper is also related to the enormous literature on mistakes in updating expectations.

Given our focus on how basic biases in information processing interact, we shall keep references to

specific biases short. In our model, agents have the tendency to misperceive information, which

represents a generalisation of the confirmatory bias in Rabin and Schrag (1999). In their paper,

they show how confirmatory bias, the tendency to misinterpret new information as supportive

evidence for one’s currently held hypothesis, can not only lead to overconfidence in the incorrect

hypothesis, but even cause someone to become fully convinced of it.

There have been many studies that suggest people hold incorrect beliefs. On average, people

tend to have unrealistically positive views of their traits and prospects. To mention a few, see

Weinstein (1980) for health and salaries, Guthrie et al. (2001) for rates of overturned decisions

on appeal by judges, and Fischoff et al. (1977) as well as Lichtenstein et al. (1982) for estimates

of ones’ own likelihood to answer correctly. Recent papers include Landier and Thesmar (2009),

for entrepreneurs, as well as Malmendier and Tate (2005) linking CEO overconfidence to a higher

likelihood of pursuing risky actions, for instance acquisitions. Benoit and Dubra (2011) argue

that a lot of the empirical evidence is also consistent with Bayesian updating under correct priors

and thus may not demonstrate overconfidence. In response, laboratory experiments robust to

this criticism were carried out by Burks et al. (2013), Charness et al. (2014), and Benoit and

Moore (2015), again documenting overconfidence.

3.3 The Setting

We consider a two period model with two states of the world Ω = {A,B}. The agent has a finite

set of actions X = X1 ×X2. In the first period, he chooses an action from X1 and subsequently

receives a signal about the state. The quality of the signal depends on the action he chooses.

He then decides on a second action from X2 and receive a payoff determined by the action

profile as well as the state of the world. The probability that a particular state materializes is

Pr(ω = A) = p ∈ (0, 1) and Pr(ω = B) = 1 − p respectively. Denote the agent’s prior belief

that the state is A by µ. This belief may or may not coincide with the correct p. Let u(x1, x2|ω)
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denote the payoff if x1 is taken at t = 1, x2 at t = 2 and the state is ω, with u(x1, x2|ω) ∈ R.

We make the following assumptions on payoffs which guarantee that in each state there is a

unique best action profile:

Assumption 1: There exist action profiles:

1. (xA1 , x
A
2 ) ∈ X such that u(xA1 , x

A
2 |A) ≥ u(x1, x2|A) for any (x1, x2) ∈ X.

2. (xB1 , x
B
2 ) ∈ X such that u(xB1 , x

B
2 |B) ≥ u(x1, x2|B) for any (x1, x2) ∈ X.

To avoid trivial scenarios, we exclude cases in which those two profiles have any common com-

ponent. It will also be implicitly assumed that X only contains actions that are not completely

payoff equivalent and ties are broken deterministically. Additionally, payoffs are assumed to be

bounded:

Assumption 2: There exists a K ∈ R such that K > max{u(xA1 , x
A
2 |A), u(xB1 , x

B
2 |B)}.

After period one, an agent receives a private signal s ∈ S. For each action x1 ∈ X1, there

is a binary set of potential signals S(x1) = {a(x1), b(x1)} ⊂ S. The probability distribution

over those signals is conditional on the action as well as the state of the world meaning that x1

defines a probability measure on S × Ω. Let π(x1, ω) ≡ Pr(s = a(x1)|ω, x1) and consequently

1 − π(x1, ω) ≡ Pr(s = b(x1)|ω, x1). Let the signal structure be symmetric between states, i.e.

π(x1, A) = 1 − π(x1, B), and let signals be weakly informative in the sense that a-signals are

more likely than b-signals in state A. We call (x1, {xa, xb}) an action profile where xa, xb ∈ X2

represent the actions taken after an a(x1) or b(x1) signal. Such an action profile is said to be

signal-sensitive if xa 6= xb. A simple action profile is such that xa = xb meaning the second-period

choice is not conditional on the signal. It is for brevity denoted by (x1, x2).

We can think of the first action as an experiment that delivers information about the realized

state. The agent can react accordingly and adjust his action in the second period. Notice,

however, that an experiment is only useful if it is not too costly. For instance, it could perfectly

reveal the state but reduce the attainable utility to an extent that it would be better to choose

a noisier experiment.

3.4 Unbiased Choice Problem

We reverse-engineer the agent’s decision problem step by step which serves to clarify the later

results. First we look at optimal actions in the second period and then focus on the optimal
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choice of experiments in the first period. The discussion is rather technical and the descriptions

necessarily somewhat dry. But it allows for more constructive proofs later. Readers impatient

for key results may skip ahead and return to this section as needed for later understanding.

3.4.1 Period 2 Cutoff-Strategy

The expected utility of an action x2 ∈ X2 from the second period’s perspective depends on the

posterior after receiving the signal. Furthermore, it can also depend directly on the action in

the previous period. Let µ(s) be the posterior after receiving a type-s signal. An agent chooses

action x2 at t = 2 given a posterior µ(s) and an action x1 at t = 1 if

E [u(x1, x2)|µ(s)] ≥ E [u(x1, x)|µ(s)] ∀x ∈ X2

The expected payoff from any given action in period 2 is monotonic in beliefs. Starting from some

0 < µ < 1, an increase in µ strictly increases the expected payoff from (xA1 , x
A
2 ) and decreases the

one from (xB1 , x
B
2 ). In fact, for any (x1, x2) ∈ X with u(x1, x2|A) 6= u(xj , xk|B), the expected

payoff is either strictly in- or decreasing in µ. We can order actions at t = 2 according to expected

payoffs based on µ(s). This gives rise to a cutoff-type decision rule.

To illustrate this, consider the period 2 expected payoff of xA2 given the action xB1 in period

1 and some posterior µ(s):

µ(s)u(xB1 , x
A
2 |A) + (1− µ(s))u(xB1 , x

A
2 |B).

Similarly, the expected payoff from xB2 is

µ(s)u(xB1 , x
B
2 |A) + (1− µ(s))u(xB1 , x

B
2 |B).

If u(xB1 , x
A
2 |A) > u(xB1 , x

B
2 |A), there exist some µ∗(s) ∈ (0, 1) such that for all µ(s) > µ∗(s),

the expected payoff from choosing xA2 is larger than from xB2 . Equally, for all µ(s) < µ∗(s), the

expected payoff from xB2 exceeds the expected payoff from xA2 as u(xB1 , x
A
2 |B) < u(xB1 , x

B
2 |B). An

equivalent argument shows that the same is true for any other x2 ∈ X2 such that u(xB1 , x2|A) >

u(xB1 , x
B
2 |A). For µ large enough, the expected payoff from x2 exceeds the one from xB2 and vice

versa for µ small enough. Iterating this argument over all available actions at t = 2 and each t = 1

action allows us to conclude that the region in which a given x2 is chosen must be connected.
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Result 12 in Appendix C shows this formally.

We can now derive the conditions under which a given action is chosen in period 2 for at least

some beliefs. For any x1 ∈ X1 there is a xa ∈ X2 such that u(x1, xa|A) ≥ u(x1, xk|A) for all

xk ∈ X2. xa is optimal for µ(s) = 1 and will be chosen if µ(s) is high enough. The equivalent

is true for some action in state B. If the actions are identical across states then this is the best

possible action for all µ(s). Otherwise, there might be different optimal actions for intermediate

beliefs.

Consider the threshold belief µa,j for which the expected payoff from (x1, xa) is exactly equal

the one from (x1, xj):

µa,ju(x1, xa|A) + (1− µa,j)u(x1, xa|B) = µa,ju(x1, xj |A) + (1− µa,j)u(x1, xj |B)

We can rearrange the equation to

µa,j
(1− µa,j)

=
u(x1, xj |B)− u(x1, xa|B)

u(x1, xa|A)− u(x1, xj |A)
.

Since by definition u(x1, xa|A) is the highest utility in state A for x1, the equation highlights

that u(x1, xj |B) > u(x1, xa|B) is a necessary and sufficient condition for this threshold to exist.

We can then simply order actions according to payoffs in both states and ignore actions that are

dominated in both states. Starting from µa = 1, for which xa is the best action, we can compare

the potential cutoffs for all actions xi ∈ X2 that are not strictly dominated. The action with the

highest µa,i will be the one chosen for some range of beliefs. We then continue to iterate this

process from this action until there is no more action that has a higher payoff in state B.

Result 1: For every x1 ∈ X1, there exists a partition Px1 of [0, 1] such that for every two

consecutive elements pi and pi+1 of the partition, there is an action x2 ∈ X2 such that

E[u(x1, x2)|µ] ≥ E[u(x1, x)|µ] for all x ∈ X2 and pi < µ < pi+1.

Result 1 follows directly from the previous argument and Result 12. It highlights how the choice

in period 2 depends on the posterior, which in turn is determined by the signal. Differences in the

posterior are only welfare relevant if they fall in different elements of the partition. For binary

signals, there are at most 2 different choices in period 2 and thus potentially 4 different utility

outcomes. Since those are pinned down for every x ∈ X1 by Px, we can collapse the problem to

a comparison of experiments in period 1, fixing the corresponding optimal period 2 choices.
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3.4.2 Choice in Period 1

In the first period, the decision maker simply maximizes his expected utility:

max
x1∈X1

E
[
u
(
x1, {x∗a(x1), x

∗
b(x1)}

)
|µ
]

where {x∗a(x1), x
∗
b(x1)} are the optimal period 2 actions following x1 ∈ X1. The period 1 choice

balances the information value of an experiment as well as the immediate utility derived from it.

A very informative action leads to very different posteriors and, keeping in mind the partition,

to different actions in period 2. When the experiment is uninformative, the posterior µ(s) equals

the prior µ and falls into the same bracket of the partition.

Taking x1 as given, let µ(s) be the posterior after receiving a type-s signal and x∗s be the

corresponding optimal action. We can write the expected utility as

[µ(a)u(x1, x
∗
a|A) + (1− µ(a))u(x1, x

∗
a|B)]Pr(s = a|x1, µ)

+ [µ(b)u(x1, x
∗
b |A) + (1− µ(b))u(x1, x

∗
b |B)]Pr(s = b|x1, µ).

Recall that the probability of receiving an a(x1) signal in state A is π(x1, A) ≥ 1
2 which is also

equal the probability of receiving the signal b(x1) in state B. Using Bayes’ rule, we can rewrite

the expected utility expression as:

µ [π(x1, A)u(x1, x
∗
a|A) + (1− π(x1, A))u(x1, x

∗
b |A)]

+(1− µ) [π(x1, B)u(x1, x
∗
a|B) + (1− π(x1, B))u(x1, x

∗
b |B)]

(3.1)

This is the objective function for the utility maximization problem at µ. It is a weighted average

of receiving the "correct" signal and thus choosing the correct action and the probability of

receiving the "incorrect" signal and thus choosing the action that yields the lower utility in the

realized state. A higher informativeness in the sense of π(x1,A)
1−π(x1,A) reduces the likelihood of such

a mistake. An agent might then be confident enough in the signals that he chooses actions that

have a higher variation between states.

We finish this section with a key property of the unbiased agent’s problem. Some of the later

results arise from a violation of this.

Result 2: The maximum expected utility at t = 1 as a function of µ is convex in µ.

The previous discussion is best illustrated with a simple example:
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Example 1: In each period, there are three actions {xA, xI , xB} = X1 = X2. The ac-

tions xA, xB yield uninformative signals with π(xA, A) = π(xB , A) = 0.5. Action xI provides

an informative signal with π(xI , A) = 0.75. Utilities are symmetric in states such that

u(xA, xA|A) = 5 = u(xB , xB |B), u(xI , xA|A) = u(xI , xB |B) = 4 while all other combinations

yield 0 utility. xI represents a pure information experiment that is only useful because it

indicates the true state and thus the appropriate action at t = 2.

In this setting, the agent never chooses a combination of xA and xB . If the agent takes the

information experiment in period 1 then he will choose between xA and xB in period 2 depending

on whether his posterior is greater or smaller than 1
2 .

�
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�

Figure 3.1: Utility frontier

Figure 3.1 illustrates the expected utility outcomes. Actions xA (orange) and xB (red) are

optimal for extreme enough beliefs. For intermediate beliefs, the informativeness of xI (blue) is

more valuable. The posterior can fall into both partition elements such that xA or xB is chosen

at t = 2 conditional on the signal. His maximum expected utility, indicated by the bold line, is

clearly convex in µ.

3.5 Biased Perception

We now turn to our main area of investigation: scenarios in which the agent might misinterpret

parts of his environment. In particular, he might not always perceive information accurately

or might commit systematic mistakes when observing signals. We call this a perception bias.

Furthermore, the agent could have a prior that is deviating from the true probability distribution
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over states. We call this somewhat loosely a bias in prior.

The perception bias adds noise to the signal; a form of Blackwell garbling. It weakens the

correlation between the signal and the state and thus reduces the information value of experiments

in period 1. The agent arrives at incorrect posteriors following the initial signal and may choose

suboptimal actions in the second period. The bias in prior might lead to a suboptimal choice of

experiment in period 1 with potential consequences for the subsequent choices.

The perception bias could be due to an agent’s unwillingness to change their preferred hypoth-

esis or a systematic mistake in interpreting information. Initially, we take no stand regarding the

source and exact form of the bias. Unless stated otherwise, we make the crucial assumption that

the agent is naive in the sense that he is unaware of this perception problem. He computes his

posterior and chooses his actions as if he was receiving signals according to the true underlying

structure. In a later section, we discuss how this is related to a setting where agents have no

perception bias but simply a distorted view about the accuracy of signals. We argue that they

overlap but are not identical. We also explore the implication of a sophisticated agent, who is

aware of his perception problem.4

To illustrate the setting, imagine the following thought experiment. A doctor orders a medical

test. The outcome can be either negative or positive. On top of any inaccuracies of the test itself,

suppose there is a certain chance the lab technician enters the incorrect result in the patient’s

file. The attending doctor never misperceives information if the technician does his job perfectly.

However, there will be an information loss if, for instance, the technician mistakenly enters a

positive result if the test actually came back negative. It is as if the doctor misperceives the

signal. The distortion does not have to be balanced but is independent of the state of the world:

the lab technician does not have any knowledge about the truth other than through the test

result he observes. If the doctor is unaware of his technician’s potential mistake, we refer to him

as naive; if he takes his mistakes into account, we call him sophisticated. As mentioned before,

we mostly maintain the assumption of a naive doctor. An incorrect prior regarding the condition

of the patient might simply lead to an unnecessary test (or failure to conduct a necessary one).

Let st be the signal observed by the technician conducting the experiment x1, and s the signal

received by the doctor. Then

Assumption 3: Pr(s, st|ω, x1) = Pr(st|ω, x1) · Pr(s|st, x1) ∀ω ∈ {A,B}.

Define the signal probability distortion function d as a function that converts the true signal
4Note that a distinction between a sophisticated and naive agent would be meaningless for a bias in prior.
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probabilities into (potentially different) probabilities that capture the likelihood with which the

agent actually perceives the signals. In particular, d ((π, 1− π), S(x1), µ) gives the vector of prob-

abilities for a and b signals for a belief µ, signal structure S(x1), and the undistorted probability

structure (π, 1− π). We can break this down into two functions, da and db, one for each type of

signal. Let the probability of correctly transmitting an a signal when performing the experiment

x1 be ka(x1, µ), and let kb(x1, µ) be the corresponding probability for a b signal. Notice that the

likelihood of mistakes may depend on the prior of the agent as well as the type of signal. We can

then write the signal probability distortion function as:

d ((π, 1− π), S(x1), µ) =

 da(π, x1, µ)

db(1− π, x1, µ)

 =

ka(x1, µ)π + (1− kb(x1, µ))(1− π)

kb(x1, µ)(1− π) + (1− ka(x1, µ))π

 (3.2)

for any π ∈ [0, 1] with the obvious restriction that da(π, x1, µ) + db(1− π, x1, µ) = 1. An increase

in the magnitude of the bias means a reduction of ka(x1, µ), or kb(x1, µ), or both.

Result 3: The signal probability distortion function d takes the form of equation (3.2). It is state

independent in the sense that ka(x1, µ) and kb(x1, µ) are state independent.5

For convenience, we can represent the actual experiment as well the distorted one by a Markov

matrix. In this notation, an experiment is characterized by a 2 × 2 Markov matrix K, where

element Kij refers to the probability of receiving a signal s = j in state ωi. Denote the unbiased,

information experiment arising from x1 by Px1
with the structure:

Px1
=

 π 1− π

1− π π


The agent’s perception bias is represented by a Markov matrix MPx1

:

MPx1
=

 ka(x1, µ) 1− ka(x1, µ)

1− kb(x1, µ) kb(x1, µ)


The resulting probability structure of the experiment Px1

MPx1
captures exactly the idea behind

5Notice that the true probability of receiving a certain signal is obviously still conditional on the state. If we
want to think of this distortion as confirmation bias along the lines of Rabin and Schrag (1999), with an agent
being biased towards hypothesis B and thus misinterpreting a signals as b signals with probability δ, but never
the other way around, we set: ka(x1, µ) = 1− δ, kb(x1, µ) = 1.
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the signal probability distortion function:

Px1
MPx1

=

 da(π, x1, µ) db(1− π, x1, µ)

da(1− π, x1, µ) db(π, x1, µ)


3.5.1 Blackwell ’51

We now take a small detour to Blackwell’s seminal research on the comparisons of experiments

(Blackwell (1951), Blackwell and Girshick (1954)).6 This digression is useful as it highlights

the general principles behind information experiments. We will also see how Blackwell’s general

results translate to settings where agents are biased - both naive, or sophisticated with respect

to their perception mistakes.7

In Blackwell’s comparison of experiments, an agent compares statistical information exper-

iments. Our setting is slightly more general in the sense is that experiments not only yield

information but may also have direct payoff consequences. Upon receiving a signal from an in-

formation experiment, the agent maximizes his utility. Denote the value function of experiment

P by V (P ).

Definition 1: Let P and Q be two experiments. We say that experiment P is more informative

than Q, denoted by P ⊃ Q, if there is a 2× 2 Markov matrix M with PM = Q.

This definition highlights how the information experiment P is garbled into Q by the matrix M ;

it is as if noise was added to P to create a less informative experiment Q. From this statistical

notion, Blackwell derives his famous result:

Result B1: Let P and Q be two experiments. V (P ) ≥ V (Q) if and only if there is a 2×2 Markov

matrix M such that PM = Q.

Simply put, a more informative experiment implies a higher utility. Surprisingly, the converse

is also true: If one experiment yields a higher expected utility than another, it must be more

informative.

In Blackwell’s setup the agent is rational. He fully understands the signal generating structure

of the two experiments and correctly perceives each signal. The garbling matrix doesn’t represent

the agent’s misperception but is a tool to order the experiments by informativeness.
6Both are phrased very much in the language of a statistician. For an economist’s take on this see Marschak

and Miyasawa (1968) who translated the setup into a utility-framework.
7For further details about the general setting of Blackwell, please see the Appendix B. All statements generalise

to n-signals and n-states. These can also be found in the Appendix.
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In order to talk about a Blackwell setting when agents misperceive information, we need

a new function representing the agents’ expected utility from the experiments. Suppose the

unbiased, true information experiment is P but the agent misperceives some signals according

to matrix M . As a result, the agent faces an information experiment PM . We denote the

expected utility of a naive agent, who is unaware of his perception bias, by Vn(P,M). The first

argument always indicates the original signal generating process and the second argument the

agent’s misperception. This agent believes the information experiment is P and thus chooses his

action as if he was rational facing P . If the agent is sophisticated, that is he is cognisant of his

misperception M , we write his utility as: Vs(P,M).

At this point, all tools and notation are developed, the stage is set for agents who are unbiased,

sophisticated or naive with respect to their signal processing.

3.6 Biases and Their Implications

We start with the statement that the agent is always worse off with a perception bias than

without. This observation follows from the original Blackwell result on the ordering of information

experiments.

Result B2: Take two experiments O and P , with O ⊃ P , and let M be a Markov matrix with

OM = P . Then V (O) ≥ V (OM) = Vs(O,M) ≥ Vn(O,M).

The first inequality shows the welfare effect for sophisticated agents, which follows immediately

from the Blackwell result. In the Blackwell setting, the agent has a choice between the original

and the garbled experiment. Since it is impossible to reverse one’s bias, a biased agent does

not actually have this choice and so will always be worse off. The second inequality says that a

naive agent is (weakly) worse off than a sophisticated given the same bias. This arises from two

observations. One, both the sophisticated and the naive receive the same signals with the same

likelihoods. Two, for each signal, the sophisticated is aware of its lower information value, which

allows him to make better decisions. It follows that:

Proposition 1: Take any information experiment P . A sophisticated agent’s utility from P is

(weakly) larger than the naive agent’s utility, but weakly worse than an agent that doesn’t suffer

from any misperception.

For our specific choice problem, a stronger statement is possible. We say that the magnitude of

the bias increases if ka, kb, or both, decrease, i.e. when the off-diagonal of the garbling matrix M
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increases.

Result 4: Any signal distortion function where da(π(x1, ω), x1, µ) 6= π(x1, ω) for some ω ∈ Ω

(weakly) reduces the expected utility if x1 ∈ X1 is chosen at µ = p. It strictly reduces the expected

utility if the action profile is signal sensitive. The welfare loss is increasing in the magnitude of

the bias.

Any perception bias is bad news for an agent who conditions his choices on signals. It leads

to more "mistakes" in period 2 choices. As the misperception increases, i.e. da moves further

away from π, the mistakes increase and the expected utility falls. The welfare consequences of a

perception bias can thus be ordered for a given direction of bias.

Looking at this from the perspective of the distortion function d, the following Result 5 shows

that we can interpret an increase in the magnitude of the bias as a reduction in the differences

of the signal probabilities across states. As the bias increases, the likelihood of receiving a given

signal converges across states. Given the previous result, this leads to a welfare loss.

Result 5: An increase in the magnitude of the bias for some x1 ∈ X1 and µ leads to decrease in

da(π(x1, ω), x1, µ)− da(1− π(x1, ω), x1, µ).

Using the earlier example, we can illustrate the welfare consequences of a bias for a signal

sensitive action profile:

Example 2: Take the setting from Example 1 and suppose that the agent has a confir-

mation bias towards B. This implies that he perceives b(xI) too often, i.e. ka(S(xI), µ) = 1− δ,

but never misperceives a(xI), i.e. kb(S(xI), µ) = 1. The following graph plots the utility frontier

for δ = 0.2 which increases the likelihood of receiving a b signal in state B from 1− π(xI , B) to

1− π(xI , B) + 0.2π(xI , B) and in state A accordingly.

The utility frontier, as seen in Figure 3.2, is strictly lower for any interval in which xI is actually

chosen and identical otherwise. It does not affect the expected utility for more extreme priors,

even if xI was chosen as the posterior will always remain in the same partition regardless of the

signal realization. In contrast, the effect is strictly negative for the interval in which the agent

conditions the choice on the signal.
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Figure 3.2: Utility frontier with confirmation bias

3.6.1 Biased Prior

We now introduce an alternative source of suboptimal choice: the agent holds an incorrect prior,

namely µ 6= p. The prior may be wrong as a consequence of a variety of behavioral and or

updating mistakes in the past. If µ = p the agent will take optimal choices. If, however, µ 6= p,

then the true expected utility does not necessarily match the one evaluated by µ.

Equation (3.1) illustrates how a different µ can lead to different choices. An inaccurate µ puts

too much weight on one of the states and thus favours actions appropriate for that state. As it

realizes with a different probability p, the choice might be suboptimal. It follows:

Result 6: For any µ ≥ p, expected utility is (weakly) decreasing in µ. Equivalently, for µ ≤ p

expected utility is increasing in µ.

3.6.2 Interaction of Biases

So far, we have learned that, in isolation, both biases have a negative effect on outcomes. Addi-

tionally, an increase in the magnitude of the biases exacerbates the problem. One might expect

that the interaction of both reduces expected utility even further, a ‘double whammy’. However,

it turns out that this is not the case. To the contrary, an agent with both, a biased perception

and a biased prior, can be better off than an agent who only suffers from one of the two. The

fundamental reason behind this is that the perception bias shuffles the otherwise straight-forward

ranking of experiments at different priors to a different degree. We analyse both directions,

i.e. fixing one bias and increasing the other - and determine when a welfare ordering can be

established.
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Adding a Biased Priors to a Biased Perception

In this section, we assume that the agent’s perception is biased ‘from the start’. This can either

be specific to the experiment - i.e. some experiments generate signals that are more likely to be

misperceived than others - or the same across all experiments. We investigate how a bias in prior

interacts with the misperception. Breaking the established pattern, we first present an example

and then generalize this insight.

Example 3: Reconsider the setting of Example 2 with an agent exhibiting confirmation

bias. If the agent is unaware of the bias, the utility frontier is not convex in µ. This arises due

to the merely perceived indifference between action xB and xI - given optimal period 2 actions -

at µ = 0.4. Both achieve an expected utility of 3. The "true" expected utility from xI is only

2.88 because the agent perceives b(xI) too frequently and thus takes the period 2 action xB more

often in state A than he would without the bias. The agent should strictly prefer action profile

(xB , xB). The equivalent situation applies to (xA, xA) and µ close to 0.6.
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Figure 3.3: Non-convex utility frontier

Now consider the following: if the true p is just below 0.6, then the actually attainable

expected utility of an agent with any µ > 0.6 is strictly higher compared to his expected

expected utility with µ = p. The choice (xA, xA) which would be suboptimal for a fully rational

agent, actually yields a strictly better outcome than the "rational choice" xI . The agent with a

biased prior and perception bias fares better than an agent with only perception bias because his

suboptimal choice has a signal structure that is less (or not at all) affected by the perception bias.

To understand the conditions under which such a situation can arise, we introduce the

87



following relation between action profiles:

Definition 2 (Worst-case dominance): An action profile (y1, {ya, yb}) worst-case dominates

(x1, {xa, xb}) at µ ∈ (0, 1) if

min
s∈{a,b}

µu(x1, xs)|A) + (1− µ)u(x1, xs|B) < E[u(y)|µ].

In words, worst-case dominance compares an action profile y to the scenario where the agent

gets the ‘worst’ signal realisation for the profile x; meaning the signal that leads him to make

the worst choice in his contingent plan {xa, xb} evaluated by the expected utility. Clearly, this

worst signal depends on the prior. If the prior is sufficiently close to 1, the worst signal is b and

for a prior close to 0, the worst signal is a. Notice that y may or may not be preferred to x when

worst-case dominance holds.

The usefulness of this definition lies in the fact that the concept is independent of the state of

the world and enables us to identify which action profiles can be made worse relative to another

profile.

Result 7: For any signal sensitive action profile y that worst-case dominates x at µ ∈ [0, 1],

there exists a distortion d with associated distortion matrices Mx, My such that

Ed[u(x)|µ] < Ed[u(y)|µ].

If an action profile is worst-case dominated, it is possible to create a distortion that would rank

another profile strictly higher in terms of expected utility. Nevertheless, the result is quite weak

since it might require a distortion that targets a specific type of signal: the signals S(x1) generated

by experiment x1. Depending on the scenario, this is hard to justify in practice in a literal way.

But we can think of it as a particular experiment yielding harder-to-interpret results while another

experiment has very straight-forward outcomes. In this context, worst-case dominance tells us

something about how the ranking of alternatives can change when one experiment generates very

ambiguous signals. We can now state the result that tells us the precise condition when adding

a bias in prior can make an already perception-biased agent better off.

Proposition 2: For any signal sensitive action profile x that is chosen at µ and any action profile

y 6= x that is chosen at µ′ 6= µ, there exists a distortion d with associated distortion matrices

Mx,My such that Ed[u(y)] > Ed[u(x)] when p = µ 6= µ′ if and only if y worst-case dominates x

at µ.
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At least for a relatively unrestricted class of distortions d, we can always find one that makes

an agent with an incorrect belief µ′ 6= p better-off than an agent with a correct belief as long

as there is sufficient potential variation in payoffs. The next corollary shows that this does not

hinge on distorting only one experiment. With a notion very similar to worst-case dominance, we

can extended the result to a setting where all signals are distorted equivalently. In the context

of our example of a lab technician that might enter incorrect results, the tendency to make such

a mistake is now equalized across tests rather than one test being more prone to transcription

errors than another.

Definition 3 (Simple dominance): An action profile (y1, {ya, yb}) simply dominates (x1, {xa, xb})

at µ ∈ (0, 1) if

µu(x1, xa)|A) + (1− µ)u(x1, xa|B) < µu(y1, ya)|A) + (1− µ)u(y1, ya|B), or

µu(x1, xb)|A) + (1− µ)u(x1, xb|B) < µu(y1, yb)|A) + (1− µ)u(y1, yb|B), or both.

This definition breaks each action profile down into the simple profiles that can be derived from

it and compares their expected utility. While simple dominance is not directly comparable to

worst-case dominance, the idea is similar. Simple dominance compares the expected utility at

µ of each of the two simple profiles derived from the action profiles that are being contrasted.

Worst-case dominance compares the expected utility of an action profile with the expected utility

of the worst simple profile generated from the action profile it is contrasted against.

Returning to our example, simple dominance compares two treatment methods fixing a par-

ticular test result without taking into account the information value. If one method is inferior

in at least one of those cases, we can find a type of mistake the lab technician could commit

equally across those tests such that the treatment optimal in the absence of mistakes is inferior if

the mistake is present. In contrast, worst-case dominance compares a test under ideal conditions

with one where the lab technician commits the worst possible type of mistake from an ex-ante

perspective.

Corollary 8: For any signal sensitive action profile x that is chosen at µ and any action profile

y 6= x that is chosen at µ′ 6= µ, there exists a distortion d with associated matrices Mx = My

such that Ed[u(y)] > Ed[u(x)] when p = µ 6= µ′ if and only if y simply dominates x at µ.

Proposition 2 and Corollary 8 provide a tight characterisation for utility reversals, accounting for

first period action’s direct utility effect. The reason behind these results is that the naive agent
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has an incorrect view about the information value from x1 relatively to some alternative y1. This

is captured in the following result:

Result B3: Take two experiments O and P , with perception biases MO, MP . For the naive

agent, neither the ordering (according to informativeness) of O and P nor the ordering of OMO

and PMP determines, or is determined by the agents expected utility ranking of the experiments,

Vn(O,MO) and Vn(P,MP ).

To understand this statement, recall that with rational agents, Blackwell’s result B1 says that if

O is more informative than P , then the agent is better off from O. For naive, the fundamental

underlying experiment O can be more informative than P , yet may yield lower utility as he

ultimately faces a different experiment due to his perception bias. However, even if we take into

account what the naive’s effective experiments are, OMO and PMP , it is still possible that the

more informative experiment OMO can have lower utility. This is due to the fact that the agent

does not recognize the true information value of the experiments. It follows that Blackwell’s main

result on the comparison of experiments does not holds for biased agents.

Given the fact that there is no first period action in Blackwell, this result highlights when the

worst-case dominance definition is trivially satisfied, and how first period actions’ instrumental-

and direct utility value can be separated. First, suppose that the information experiment from x1

is more informative than from y1, Px1 ⊃ Py1 . If the direct utility from x1 is lower than from y1 at

p, then worst-case dominance will always be satisfied by Result B3. However, if the utility from

x1 is higher at p, then we need to check whether worst-case-dominance is satisfied. Similarly,

when x1 is less informative, Px1 ⊂ Py1 , but it is precisely chosen for it’s direct utility, we again

need to check worst-case dominance.

To understand the role of naivety, we present the Blackwell result for sophisticated agents:

Result B4: Take two experiments O and P , with perception biases MO, MP . OMO ⊃ PMP if

and only if Vs(O,MO) ≥ Vs(P,MP ).

The result follows from the observation that the sophisticated but biased agent’s utility of O is

equal to the rational agent’s utility, who faces OMO: Vs(O,MO) = Vs(OMO, I) = V (OMO).

Clearly, this statement has no implication for the ordering of O and P itself. Observing an agent

who takes an ‘objectively’ less informative experiments does therefore not imply that he is making

an incorrect choice.8 But this also implies that any sophisticated agent cannot be better off from
8To see this take a fully informative n × n vector P and some informative O of equal dimension. Let MP =

[1/n]n×n i.e. the matrix filled only with 1/n which will turn P completely uninformative and keep the information
value of O by setting MO = I, so that O ⊂ P but OMO ⊃ PMP .
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an incorrect prior. The incorrect prior may cause him to choose an alternative action y1 with

a different underlying experiment. Since he correctly accounted for the lower-information value

arising from his perception bias for any information experiment, this simply makes him choose

worse first period actions.

Adding a Biased Perception to a Biased Priors

We now turn the previous analysis around. Taking the agent’s biased prior as given, we show

under which conditions adding or increasing a perception bias can make him better off. This

result turns out to be more clear-cut. Adding any type of perception bias makes an agent worse-

off if his chosen action profile is not ‘too suboptimal’ given the true p. Otherwise, there exists

some type of perception bias that can improve the agent’s welfare.

Proposition 3: Let x = (x1, {xa, xb}) be a signal-sensitive action profile chosen at µ 6= p.

1. If E[u(x)|p] > max{E[u(x1, xa)|p], E[u(x1, xb)|p]} then increasing the degree of perception

bias strictly decreases expected utility for any type of perception bias.

2. If E[u(x)|p] < max{E[u(x1, xa)|p], E[u(x1, xb)|p]}, then increasing the degree of perception

bias strictly increases expected utility for some type of bias.

Statement (1) says that the signal-sensitive x is preferred by an agent with the correct prior p

over choosing the simple profile where the agent always chooses xa or xb in the second period.

Adding noise to the signals is equivalent to putting more weight on a simple profile and strictly

lowers µ’s payoffs. This is exactly what any distortion function does.

Statement (2) states that one of the simple action profiles is preferred to the contingent one

by the agent with belief p. In that case, the agent is strictly better off the more often he receives

the respective signal realization that makes him choose such a profile.

We can also interpret Proposition 3 in terms of how severe the bias in prior is. To see this,

recall that the action profile is signal sensitive at µ for exactly the reason that the posteriors

following the signal fall into different parts of the partition that prescribes optimal second-period

behavior. If we push up the prior, then after any signal action xa is relatively more appealing

compared to xb than before. Pushed far enough the agent only wants to take xa regardless of

the signal realization; xa is, after all, strictly better in state A. At this point, a perception bias

can help the agent. If the prior is too close to p he is always worse off due to losing information.

Finally, it should also be clear form this discussion that for every signal sensitive profile, there

always exists a region for either case.
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3.6.3 Martingale Bias

In the previous sections, the bias could generate a drift in beliefs whenever the perception bias

was unbalanced between signals. A rational observer aware of the bias would form an ex-ante

expectation over the posterior that is different from the prior. We now restrict the perception

bias to what we call a ‘martingale bias’: a bias such that the agent as well as the observer form

the same expectation over posteriors. The martingale bias represents a simple random error in

perception, that occurs indiscriminately of the signal type.9 This section will help to qualify our

previous Propositions. In contrast to Proposition 3, we show that under such a mistake, the agent

with a biased prior can never be better off when a martingale perception bias is added. Changing

the prior for an agent with such a perception bias can still be beneficial, however.

Consider a naive agent that thinks the signal strength is the true undistorted π(x1, ω). Let

ka(x1, µ) = kb(x1, µ) ≡ κ ∈ [ 1
2π(x1,A) , 1]. We can write the agent’s expected utility as

µ [κπ(x1, A)u(x1, xa|A) + (1− κπ(x1, A))u(x1, xb|A)]

+(1− µ) [(1− κ(1− π(x1, B)))u(x1, xa|B) + κ(1− π(x1, B))u(x1, xb|B)]

(3.3)

From state independence, we know that κ ≤ 1. Since the martingale bias represents a pure

random error, in the extreme the signal should be pure noise and thus κ ≥ 1
2π(x1,A) .

As can be seen from Equation (3.3), if the true probability of receiving an a signal in state A

is κπ(x1, A), but the agent believes this to be π(x1, A), there is too much weight on u(x1, xa|A)

and u(x1, xb|B). The agent expects to achieve the high outcomes too often which overstates his

perceived expected utility of the action profile. It follows that as the perception bias becomes

worse, i.e. κ decreases, the agent is worse off. Moreover, this is true for any true p and any prior

belief µ, so that there is no way that adding a martingale perception bias to a bias in prior is

welfare improving:

Corollary 9: For any κ ∈ [ 1
2π(x1,A) , 1] and any signal sensitive action profile {x1, {xa, xb}}

chosen at µ, a decrease in κ decreases the expected utility for any µ and p ∈ (0, 1).

Hence the restriction to a martingale bias yields a stronger result than Proposition 3. The

martingale bias adds noise and thus reduces the signal strength equally for all signal types.

Independent of the true state, this leads to strictly worse period 2 choices. However, it is still

possible that under such random error perception bias, the agent can benefit from an incorrect

9i.e. the garbling matrix is symmetric M =

[
m 1−m

1−m m

]
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prior:

Corollary 10: For any signal sensitive action profile x that is chosen at µ, and any action profile

y 6= x that is chosen at µ′ 6= µ, there exists a κ such that E[u(y)] > Ed[u(x)] when p = µ 6= µ′ if

and only if

µ

2
[u(x1, xa)|A) + u(x1, xb)|A)] +

1− µ
2

[u(x1, xa)|B) + u(x1, xb)|B)] < E[u(y)|p]. (3.4)

Like Proposition 1 this assumes that the bias applies only to the chosen profile x. We can also

apply the bias symmetrically as long as we respect the condition that we can at most generate

pure noise (rather than achieve a negative correlation). This means the experiment with the less

precise signals determines the limit up to which we can garble symmetrically. We then get the

following result:

Corollary 11: For any signal sensitive action profile x that is chosen at µ, and any signal-

sensitive action profile y 6= x that is chosen at µ′ 6= µ and for κmin ≡ max{ 1
2π(x1,A) ,

1
2π(y1,A)},

there exists a κmax with 1 > κmax > κmin such that Ed[u(y)] > Ed[u(x)] when p = µ 6= µ′ for

all κ ∈ [κmin, κmax) if and only if

E[u(x)|p, κmin] < E[u(y)|p, κmin].

In other words, if we want to check whether an agent with prior µ′ could be better off than one

at the true p, we have to compare y to x at the extreme point where one of the two information

experiments yields just noise. If at this point y is indeed preferred, such a reversal in the ordering

of x and y is possible. But of course, this could already happen at a less extreme distortion.

In this section, and indeed in all previous ones, the agent is overconfident in the signal as

he fails to discount the perception bias. The martingale property makes this quite similiar to

a related major updating mistake found in the literature: in inference problems agents tend to

sometimes over- and sometimes under-infer from a given sample of signals. For instance in the

classical paper by Griffin and Tversky (1992) agents over-infer from small sample sizes but under-

infer from large ones.10 Indeed one can find a corresponding martingale bias setup for someone

who over-infers: The two agents perceive the signal to be of the same strength and will receive

the same signal with the same likelihood. However, the key difference between the two mistakes is

that over- / under-inference takes the true signal process as given and only changes the perception
10For a current, extensive summary of the experimental evidence on this topic, see Appendix B of Benjamin

et al. (2013).
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of signal strengths, whereas the distorted transmissions fixes the perception of signal quality but

alters the actual probabilities with which signals are perceived. By changing the perceived signal

strength, anything can happen in terms of welfare consequences. This lack of structure leads us

to relegate the discussion to a footnote.11

3.6.4 Sophisticated vs Naive Agents

When the prior is correct, we have seen that a sophisticated agent is always weakly better off

than a naive agent. We finish this section with a short example that highlights that this no

longer needs to be true when µ differs from p. A sophisticated agent is aware of the reduced

information value of each experiment and thus may want to take a different choice than a naive

agent. If the true ordering of experiments under µ is different than under p, such behavioral

adjustments can be suboptimal.

Example 4: Example 1 serves again as the basis. Suppose that the agent suffers from a

martingale bias and tends to misperceive both a and b signals with probability 1 − κ = 0.7.

Suppose further that µ = 0.57. Compared to the naive agent, the sophisticated is aware of

the lower information value of xI and opts for the simple profile (xA, xA). If µ = p he clearly

does better than the naive who still chooses the information experiment in the first period. The

naive agent, however, can do better than the sophisticated when the actual p is lower, take for

example p = 0.4. His naivety causes him to pick the information experiment and subsequently

to take xB whenever he receives an b signal. For a low enough p this is always better than the

sophisticated’s choice of (xA, xA).
11With over- or under-reaction to information, the agent can almost trivially achieve a higher utility regardless

of which bias is adjusted:
First, suppose the sets of actions are X1 = {x1} and X2 = {xa, xb}. First, take the wrong prior as given: (1)
Let the signal sensitive action profile x be optimal at p whereas the agent with prior µ 6= p prefers the simple
profile (x1, xa). Then the agent is better off by exaggerating the signal quality so that his second period profile
becomes signal sensitive. (2) Similarly, suppose the simple action profile (x1, xa) is optimal at p. Then an agent
with µ 6= p, who prefers the signal sensitive profile, can be better off by inferring too little if he prefers (x1, xa)
over (x1, xb) in the absence of any signal.
Next take information processing bias as given: (3) Suppose that due to over-inference the agent prefers the
conditional profile when it is optimal to choose (x1, xa). Changing the correct prior to some µ > p where the
agent prefers (x1, xa) improves his utility.
The only non-trivial case (4) is under-inference and changing the correct prior. Suppose x is optimal at p but
due to under-inference the agent with the correct prior prefers z. Let y be the agent’s preferred choice at some
µ 6= p. If the actual signal strength of S(y1) is sufficiently larger than of S(z1), then shifting the prior from p to
µ helps the agent. To see why, notice due to under-inference his response to the signal is attenuated. However,
the likelihood of receiving the correct signal under y1 is higher (than he thinks) which will ‘too often’ select the
‘correct’ action from his conditional profile.
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3.7 Example: Investment with Information Acquisition

We finish this paper with a simple investment problem that captures the fundamentals of the

entrepreneur example outlined in the introduction.

An agent can invest his income w in either a risk-free or a risky asset, both having a unit

price. There are two states of the world Ω = {A,B}. The risk-free asset’s return in any state of

the world is normalised to zero. The risky asset yields a positive return of rh in state A but a

negative return of rl in state B. The agent has a prior µ0 = Pr(ω = A) and is risk averse with

U(c) = ln(c). Before investing, the agent has the opportunity to purchase a signal s ∈ {a, b}

at a cost c > 0 that fully reveals ω. He then decides on the fraction of income that he invests

in the risky asset, denoted by x. Finally, let the agent’s information perception bias be of the

following structure: Whenever he receives a b signal - a signal that tells him not to invest - he

might misinterpret it as an a signal with a probability δ. On the contrary, a signals are always

perceived correctly.

We now show how holding an incorrect prior can help mitigate the bias in information per-

ception through avoiding information. First, we solve for x as a function of the posterior µ:

x(µ, rh, rl) =


0 if µrh + (1− µ)rl ≤ 0

1 if µ ≥ −rl(rh + 1)/(rh − rl)

µrh+(1−µ)rl
−rlrh otherwise

Let Pr(ω = A) = p = 0.55. Let the risky asset’s return be rh = 60% in state A and rl = −95%

in state B. The agent’s wealth is w = 1.2. The cost of acquiring information is c = 0.25.

Furthermore, the agent’s information bias is δ = 0.4.

Notice that the expected return of the asset is 0.55 · 0.6 − 0.45 · 0.95 = −0.0975 < 0. When

µ = p, an agent, who does not acquire information, would never invest in the risky asset. If the

agent acquires the fully informative signal, he will invest everything into the risky asset when he

observes an a signal, and nothing at all following a b signal.

An unbiased agent (with the true prior) will acquire information since the information is

cheap enough, EU(acquire info) = p ln((1 + rh)(w − c)) + (1 − p) ln(w − c) = 0.21 > ln(1.2) =

EU(not acquire).

A naive agent with misperception bias makes the same choices as an unbiased one. When his

prior is correct, his true utility from acquiring information is only EUtrue(acquire info|µ = 0.55) =
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−0.33 since he sometimes invests his whole income when the state is B.12 If he instead holds a

rather incorrect prior, i.e. µ = 0.9, the information becomes of little value.13 He consequently

chooses not to acquire it and actually does better than if he had the correct prior.14 While holding

an initially more extreme belief, his posterior belief is lower than the naive agent who observed

a (possibly wrong) a signal. This makes him invest only 78% of his total income, which is useful

when the negative returns of an asset are large. On top of that, he benefits from saving on the

information cost.

If we interpret the cost of acquiring information either as the direct cost of going to univer-

sity or the opportunity cost of not working, this investment problem become analogous to the

entrepreneur example that was outlined at the beginning. If the would-be entrepreneur holds a

very inflated view about his abilities, he starts his business immediately (invests without infor-

mation). If not, he goes to university. Suffering from a perception bias, he might then become

even more convinced about himself, leading him to gamble even more on his endeavour. In ex-

pectation, the possibly useful information hurts him if the probability of misinterpreting it is too

high.

3.8 Discussion

We have analyzed the interaction of two fundamental mistakes in information processing. We

have seen how and when one bias can alleviate the problems caused by the other. The recent

worrying rise of the anti-vaccination movement, with their tendency to disregard surmounting

scientific evidence in favour of circumstantial observations that autism happens after (one of

many) childhood infections, is just one example for the potential importance of these biases.

The idea that a mistake on one dimension may counteract some failure on another is clearly not

new (Compte and Postlewaite (2004), De La Rosa (2011), etc.), yet to our knowledge it has never

been explored in this basic updating setting. In contrast, the recent literature on confirmatory

bias (Clements (2013), Roland G. Fryer et al. (2016)) as well as biases in information processing

(Andreoni and Mylovanov (2012), Kartik et al. (2016)) focuses solely on beliefs, how beliefs may

converge or diverge in group, or whether information can be aggregated in social settings. It

does not focus on the dynamic aspect of payoff-relevant decisions as information experiments and
12This is true for any µ ∈ [0.47, 0.89]
13The results hold for any extreme prior in the interval [0.89, 0.925]. An even higher prior causes too much

investment, lowering utility.
14His perceived expected utilities are: EUperceived(acquire info|µ = 0.9) = −.39 < −0.37 = EU(not acquire|µ =

0.9) while is actual utility (evaluated at the true prior) is EUtrue(not acquire|µ = 0.9) = −0.22.
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their consequences on future payoffs. In that sense, we think of this paper as an extension of

Blackwell (1951) to behavioral mistakes in information processing, for which we provide a full

characterisation.
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3.9 Appendix A: Proofs

Proof of Result 2. Convexity follows directly from the fact that maximum expected utility is

convex in µ. This result extends to two period model with intermediate signals.

Let ~µ be row vector of belief about the different states Ω, ~µ = (Pr(ω = A),Pr(ω = B)). Define

~u(x) as the state contingent vector adjusted by signal probability and signal response:15

~u(x) =

π(x1, A)u(x1, xa|A) + (1− π(x1, A))u(x1, xb|A)

π(x1, B)u(x1, xa|B) + (1− π(x1, B))u(x1, xb|B)


Define maximum expected utility as a function of ~µ as g(~µ) = maxx∈X ~µ · ~u(x) and notice how

this expression coincides with the rewritten expected utility formulation of equation 3.1.

To show g(µ) is convex, let x′ (x′′) optimal choice given the belief ~µ′ (~µ′), and x̂ the optimal

choice for the convex combination ~̂µ = λ~µ′ + (1− λ)~µ′′ with λ ∈ (0, 1). Then

g(λ~µ′ + (1− λ)~µ′′) = (λ~µ′ + (1− λ)~µ′′) · u(x̂)

≤ λ~µ′ · u(u′) + (1− λ)~µ′′ · u(x′′)

= λg(~µ′) + (1− λ)g(~µ′′)

proving convexity.

Proof of Result B2. By Blackwell’s Result B1 it must be that V (O) ≥ V (OM). A rational (non-

biased) agent would never choose the distorted over the undistorted experiment. A sophisticated

agent is not able to choose the undistorted experiment, however. All he can do is to adjust his

second period action profile anticipating the lower information value. His utility from O given M

is equivalent to a rational agent facing the experiment OM . As a result the following inequalities

hold: Vs(O,M) = Vs(OM, I) = V (OM). This establishes the first inequality.

The naive agent acts as if he was fully rational, i.e. he applies the rationally optimal decision

rule for P to OM . Consequently, he holds an incorrect posterior after observing the signal -

which is equivalent to having wrong beliefs about the likelihood with which he receives a and b

signals. He makes (weakly) worse decisions than a sophisticated agent; if not, the sophisticated

agent could always imitate him.

15compare this to the simple 1 period convexity proof, where ~u(x) is defined as the state contingent utility vector
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Proof of Result 4. Let the (unbiased) information experiment following action x1 be of the form

P =

 π 1− π

1− π π


with π = π(x1, A). Let experiment P ′ be the experiment arising from the distortion function

with the same action x1, namely

P ′ =

 da(π, x1, µ) db(1− π, x1, µ)

da(1− π, x1, µ) db(π, x1, µ)


If follows that P ⊃ P ′ , as we can find an M such that PM = P

′
. The corresponding M is:

M =

 ka(x1, µ) 1− ka(x1, µ)

1− kb(x1, µ) kb(x1, µ)


where da(π, x1, µ) = ka(x1, µ)π + (1− kb(x1, µ))(1− π) etc.

According to Result B1, a rational (non-biased) agent would never choose the distorted over

the undistorted experiment. The utility arising from the distorted experiment is (weakly) lower.

To show the effect of an increase in the magnitude of the bias, we write the expected utility

from x1 as

p [(ka(x1, µ)π + (1− kb(x1, µ))(1− π))u(x1, xa|A) + (kb(xi, µ)(1− π) + (1− ka(xi, µ))π)u(x1, xb|A)]

+(1− p) [(ka(x1, µ)(1− π) + (1− kb(x1, µ))π)u(x1, xa|B) + (kb(xi, µ)π + (1− ka(xi, µ))(1− π))u(x1, xb|B)]

Suppose that initially kb decreased. If we decrease it further to k′b < kb, the linearity property

of the expected utility in probabilities implies that the expected utility must also decrease.

The same argument holds for any further decrease in the alternative parameter ka.

Since there are no cross-interactions between changes of ka and kb, the same holds true for

any joint change.

Proof of Result 5. Note that we can write the matrix of the signal probabilities as a garbling of

the matrix containing the true signal probabilities:

 da(π, x1, µ) db(1− π, x1, µ)

da(1− π, x1, µ) db(π, x1, µ)

 =

 π 1− π

1− π π


 ka 1− ka

1− kb kb
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where the matrix on the right is the garbling matrix. Since the garbling matrix needs to be a

Markov matrix, we know that ka, kb ∈ [0, 1].

Now suppose we increase the magnitude of the bias resulting in a distortion function d′ and,

contrary to the statement in the result, we have d′a(π, x1, µ) − d′a(1 − π, x1, µ) ≥ da(π, x1, µ) −

da(1− π, x1, µ). This implies that:

πk′a + (1− π)(1− k′b)− (1− π)k′a − π(1− k′b) ≥ πka + (1− π)(1− kb)− (1− π)ka − π(1− kb)

where k′a, k′b are the elements in the modified garbling matrix reflecting the increase in the mag-

nitude of the bias. This can be rearranged to:

(2π − 1)(k′a − (1− k′b)) ≥ (2π − 1)(ka − (1− kb))

But this requires that since π > 1/2, either k′a > ka, or k′b > kb, or both which contradicts the

increase in the magnitude of the bias.

Proof of Result 6. Take the action profile (x1, {xa, xb}). It’s actual expected utility is

p [π(x1, A)u(x1, xa|A) + (1− π(x1, A))u(x1, xb|A)]

+(1− p) [π(x1, B)u(x1, xa|B) + (1− π(x1, B))u(x1, xb|B)]

If we evaluate this with some µ > p, then the weight on the outcome in state A increases. This

has two potential effects. Firstly, according to Result 12, a different action might be chosen in

period 2 as the potential posteriors are now different. Furthermore, as follows from Result 1, a

different x1 might become optimal. Denote the potentially altered choice by (y1, {ya, yb}). Any

such alternative choice has the property that:

π(y1, A)u(y1, ya|A) + (1− π(y1, A))u(y1, yb|A)

> π(x1, A)u(x1, xa|A) + (1− π(x1, A))u(x1, xb|A)

and

π(y1, B)u(y1, ya|B) + (1− π(y1, B))u(y1, yb|B)

< π(x1, B)u(x1, xa|B) + (1− π(x1, B))u(x1, xb|B)
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As otherwise either the choice (y1, {ya, yb}) would not be optimal as it yields lower expected

utility when evaluated by µ or the choice under p would not be optimal since it results in lower

utility in both states. It then immediately follows that if any choice of action is different when

comparing optimal choices under µ and p, such a µ leads to a utility loss because of suboptimal

choices. Furthermore, fixing some µ > p and iterating this argument for µ′ > µ yields the result.

The equivalent argument applies to µ < p.

Proof of Result 7. If the agent prefers y over x, i.e. E[u(x)] < E[u(y)], the statement is trivially

true. If it does not hold, we show that there is such a d that makes

Ed[u(x)|µ] < Ed[u(y)|µ]

According to definition 2, we have that µu(x1, xs|A) + (1 − µ)u(x1, xs|B) < E[u(y)|µ] for some

s ∈ {a(x1), b(x1)}. Suppose wlog that s = a(x1). This implies that small enough ε > 0, we have

(1− ε) [µu(x1, xa|A) + (1− µ)u(x1, xa|B)] + ε [µu(x1, xb|A) + (1− µ)u(x1, xb|B)]

= µ [(1− ε)u(x1, xa|A) + εu(x1, xb|A)] + (1− µ) [(1− ε)u(x1, xa|B) + εu(x1, xb|B)] < E[u(y)|µ]

(3.5)

which quite resembles the maximum expected utility representation (3.1).

Now set ka(x1, µ) = 1 and kb(x1, µ) = ε
π(x1,A) . This causes the agent to receive the worst-case

signal a in state B with probability da(π(x1|B), S(x1), µ) = 1 − ε. Clearly, this also makes him

receive the (correct) worst-case signal a in state A with probability da(π(x1|A), S(x1), µ) > 1− ε.

Consequently, the actual expected utility following this distortion is slightly larger than the left-

hand side of Equation 3.5 above, but as ε becomes sufficiently small, Ed[u(x)|µ] < E[u(y)|µ].

Finally let there be no distortion for the signals S(y1), i.e. da(π, S(y1), µ) = π for all π ∈ (0, 1).

The result follows.

Proof of Proposition 2. Sufficiency is an almost immediate consequence of Result 7. We know

there exists d, such that Ed[u(y)|µ] > Ed[u(x)|µ] by worst-case dominance at µ and that an agent

with belief µ′ chooses y compared to x. Finally simply set µ = p.

In the other direction, suppose such an improvement is possible. Since any distortion gar-

bles the information, E[u(y)|p] ≥ Ed[u(y)|p]. But if worst-case dominance does not hold there
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is no marginal distribution over S(x1) such that Ed[u(x)|p] < E[u(y)|p] since Ed[u(x)|p] ≥

mins∈S(x1)E[u(x1, xs)] > E[u(y)|p]. A contradiction.

Proof of Corollary 8. Sufficiency : Similar to Proposition 2, consider the extreme distortion d

that only sends the signal

sx = arg min
s

µu(x1, xs)|A) + (1− µ)u(x1, xs|B)

sx = arg max
s

µu(x1, xs)|A) + (1− µ)u(x1, xs|B)

If simple dominance holds, at least one of those signals must yield lower expected utility under

x than under y.

Necessity : Suppose such a distortion exists. Then

E[u(y)|p] < E[u(x)|p]

while

Ed[u(y)|p] > Ed[u(x)|p].

We can write the actual expected utility explicitly as a linear combination between the a and the

b signal.

p π(x1, A)u(x1, xa|A) + (1− p)π(x1, B)u(x1, xa|B)

+p (1− π(x1, A))u(x1, xb|A) + (1− p)(1− π(x1, B))u(x1, xb|B)

and similarly for y. Any distortion can either lower terms or shift weight from one to the other.

If the distortion is such that weight is added in the sense that both π(x1, A) and π(x1, B) are

increased or decreased then if Ed[u(y)|p] > Ed[u(x)|p] it must be that either

pu(x1, xa|A) + (1− p)u(x1, xa|B) < pu(y1, ya|A) + (1− p)u(y1, ya|B)

or

pu(x1, xb|A) + (1− p)u(x1, xb|B) < pu(y1, yb|A) + (1− p)u(y1, yb|B)

or both which guarantees simple. If the distortion lowers both terms i.e. by garbling both type
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of signals equally, then π(x1, B) and (1−π(x1, A)) increase. If this increase leads to a reversal in

the expected utility ranking of x and y in the sense that Ed[u(y)|p] > Ed[u(x)|p], then because of

linearity this must also be true for the most extreme case with da(π(x1, A)) = db(π(x1, B)) = 1
2 .

But then

p

2
u(x1, xa|A) +

(1− p)
2

u(x1, xa|B) <
p

2
u(y1, ya|A) +

(1− p)
2

u(y1, ya|B)

or
p

2
u(x1, xb|A) +

(1− p)
2

u(x1, xb|B) <
p

2
u(y1, yb|A) +

(1− p)
2

u(y1, yb|B)

or both which means at least one of them is also true for da(π(x1, A)) = da(π(x1, B)) = 1 or

db(1− π(x1, B)) = db(1− π(x1, A)) = 1 which again guarantees simple dominance.

Proof of Result B3. To see take two separate experiments O and P , with O ⊃ P . First, let MO

be such that OMO = P and let P be undistorted, i.e. MP = I. It follows that the naive agent is

better off from P than O as Vn(P, I) = V (P ) > Vn(O,M1) (the inequality is strict if the agent

is signal sensitive). But by continuity this also implies that there exist some MO, MP such that

OMO ⊃ PMP yet Vn(P,MP ) > Vn(O,MO). As a result, the naive’s expected utility can neither

be ordered by the perceived information experiments, nor the actual ones. In the other direction,

we know that for Vn(P,MP ) > Vn(O,MO) it is possible that OMO ⊃ PMP , as well as O ⊃ P .

Proof of Proposition 3. Statement (1) says that the signal-sensitve x is preferred by an agent

with the correct prior p over choosing the simple profile where the agent chooses either always xa

or always xb in the second period. Adding noise weakens the correlation with the state and the

dominated outcomes occur more frequently.Hence the agent with prior µ can never be better off.

Statement (2) highlights that one of the simple action profiles is preferred to the contingent

one by the agent with belief p. Assume wlog that the preferred action profile is (x1, xa). Any

distortion function that increases the likelihood of an a signal will make the agent better off as

he will take action xa as a result, i.e. set ka(x1, µ) = 1 and kb(x1, µ) ∈ (0, 1). Clearly, the agent’s

expected utility is increasing as kb(x1, µ) decreases to 0. The extreme kb(x1, µ) = 0 represents

a perception bias where all b signals are interpreted as a signals and the agent always takes the

(second) best simple action profile.
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Proof of Corollary 9. A decrease in κ leads to a less informative signal.

µ [κπ(x1, A)u(x1, xa|A) + (1− κπ(x1, A))u(x1, xb|A)]

+(1− µ) [(1− κ(1− π(x1, B)))u(x1, xa|B) + κ(1− π(x1, B))u(x1, xb|B)]

Trivially, the expected utility at µ as written above decreases as there is more weight on

u(x1, xb|A) and u(x1, xa|B). The agent is unaware of this and his choice in unaffected by κ.

For any κ, he evaluates the profile as follows:

µ [π(x1, A)u(x1, xa|A) + (1− π(x1, A))u(x1, xb|A)]

+(1− µ) [(1− π(x1, B))u(x1, xa|B) + (1− π(x1, B))u(x1, xb|B)]

The true p could be different from µ, so we just need to show that for any p, a decrease in κ has

a negative welfare effect. The actual expected utility is:

p [κπ(x1, A)u(x1, xa|A) + (1− κπ(x1, A))u(x1, xb|A)]

+(1− p) [(1− κ(1− π(x1, B)))u(x1, xa|B) + κ(1− π(x1, B))u(x1, xb|B)]

Simply notice since u(x1, xb|A) < (x1, xa|A), as well as u(x1, xa|B) < u(x1, xb|B), the random

noise indeed lowers expected utility for any p.

Proof of Corollary 10. If: Suppose the inequality in Equation 3.4 holds. Then a distortion of

κ = 1
2π(x,A) turns the signals into complete noise. If this applies to the profile x only, y yields

higher expected utility at p even though without any distortion E[x|p] > E[y|p].

Only if: Suppose the property does not hold. The for any distortion κ ∈ [ 1
2π(x,A) , 1], the

expected utility from x at p exceeds the one from y as for any such κ,

Ed[x|p] ≥
µ

2
[u(x1, xa)|A) + u(x1, xb)|A)] +

1− µ
2

[u(x1, xa)|B) + u(x1, xb)|B)]

Proof of Corollary 11. If: Follows directly as it is the case for κ = κmin and continuity guarantees

that for small enough ε > 0 such that it is also the case for κ = κmin + ε

104



Only If: Note that for x to be chosen at p, we need that E[x|p] > E[y|p] as the agent is

unaware of the perception bias. The effect of a decrease in κ is

−∂Ed[u(x)|p]
∂κ

= −pπ(x1, A)[u(x1, xa|A)− u(x1, xb|A)]

−(1− p)π(x1, A)[u(x1, xb|B)− u(x1, xa|B)]

This does not depend on κ itself. Therefore, if

[
∂Ed[u(x)|p]

∂κ

]
κ=1

>

[
∂Ed[u(y)|p]

∂κ

]
κ=1

then the inequality also holds for all allowable κ. Take the κe ∈ (κmin, κmax) such that

Ed[x|p, κe] = Ed[y|p, κe]. If this does not exist, then y is never the best choice which yields

the result. If it does exist, then it must mean that

[
∂Ed[u(x)|p]

∂κ

]
κ=1

>

[
∂Ed[u(y)|p]

∂κ

]
κ=1

But then for all κ ∈ [κmin, κe), the inequality also holds and therefore

E[u(x)|p, κmin] < E[u(y)|p, κmin]

as desired.

3.10 Appendix B: Blackwell ’51

This section provides a general introduction to Blackwell, going beyond the 2-stage, 2-signal case,

and providing clear definitions of value functions. In Blackwell’s comparison of experiments, an

agent compares two statistical information experiments, P and Q, which generate a signal about

the states of the world Ω = {ω1, ..., ωn}. As before, an information experiment is defined by a

n× nK Markov matrix K, where element Kij refers to the probability of receiving a signal s = j

in state ωi. We denote the set of possible signals from K by SK = {1, 2, . . . , NK}.

The agent is endowed with utility function u(x, θi), defined over A × Ω. After receiving a

signal sK , he chooses an action x from his finite action set X. His prior is denoted by the

vector µ0 = {µ(1), ..., µ(n)}, whereas his posterior after receiving signal s from experiment K is

denoted by µ(sK). The agent maximizes expected utility: maxx∈X
∑
i µ(i|sK)u(x|ωi). Denote
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the solution to this problem by x∗(µ(sK)) and the corresponding value function V (µ(sK)).

The agent’s probability of receiving an sP signal is π(sP ) =
∑
i∈n PisP µ0(i). and expected

utility from observing experiment P is V (P ) =
∑
sP∈SP π(sP )V (µ(SP )).

Definition 4: Let P and Q be two experiments. We say that experiment P is more informative

than Q, denoted by P ⊃ Q, if there is a nP × nQ Markov matrix M with PM = Q.

This definition highlights how the information experiment P is garbled into Q by the matrix

M ; as if noise was added to create a less informative experiment. From this statistical notion,

Blackwell derives his famous result:

Result B5: Let P and Q be two n×nP and n×nQ Markov matrices. V (P ) ≥ V (Q) if and only

if there is a nP × nQ Markov matrix M such that PM = Q.

Simply put, a more informative experiment implies a higher utility. Surprisingly, the converse is

also true: If one experiment yields more expected utility than another, it must be that it is more

informative.

In Blackwell’s setup the agent is rational. He fully understands the signal generating structure

of the two experiments and correctly perceives each signal. The garbling matrix doesn’t represent

the agent’s misperception but is a tool to order the experiments by informativeness. Moreover,

the agent does not take any first period choice. All that occurs is a welfare comparisons of the

two experiments. Needless to say, if the rational agent had to make a choice in Blackwell, he

would prefer the more informative experiment.

In order to talk about a Blackwell setting when agents misperceive information, we need a new

function representing the agents’ expected utility from the experiments. Suppose the unbiased,

true information experiment is P but the agent misperceives some signals according to matrixM .

As a result, the agent faces an information experiment PM . We denote the expected utility of a

naive agent unaware of his perception bias by Vn(P,M), where the first argument always indicates

the original signal generating process and the second argument the agent’s misperception. This

agent believes the information experiment is P and thus chooses his action as if he was rational

facing P . If the agent is sophisticated, that is he is cognisant of his misperception M , we write

his utility as: Vs(P,M) =
∑
sP∈SPM π(sPM )V (µ(SPM )).
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3.11 Appendix C: Decision Problem Appendix

Result 12: For any action x1 ∈ X1 and any x2 ∈ X2 such that for some µ(s) ∈ (0, 1) we have

E[u(x1, x2)|µ(s)] ≥ E[u(x1, y)|µ(s)] ∀y ∈ X2, there exists an interval I ⊂ [0, 1] with the property

that x2 is chosen if and only if µ(s) ∈ I.

Proof of Result 12. If for some (x1, x2) ∈ X we have

E[u(x1, x2)|µ(s)] ≥ E[u(x1, y2)|µ(s)] ∀y2 ∈ X2

then continuity in µ(s) implies that this is also true for at least some [µ(s), µ) or (µ, µ(s)]. If this

interval is [0, 1], the proof is complete. If not, there is some µj for which xj ∈ X2 is the optimal

choice. Then either u(x1, xj |A) > u(x1, x2|A) or u(x1, xj |B) > u(x1, x2|B). This shows us that

for either µ > µj or µ < µj , xj achieves a higher expected payoff than x2. This completes the

proof.
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