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Abstract

This thesis contains three essays on inference in econometric models.

Chapter 1 considers the question of bootstrap inference for Propensity Score
Matching. Propensity Score Matching, where the propensity scores are esti-
mated in a first step, is widely used for estimating treatment effects. In this
context, the naive bootstrap is invalid (Abadie and Imbens, 2008). This chap-
ter proposes a novel bootstrap procedure for this context, and demonstrates
its consistency. Simulations and real data examples demonstrate the superior
performance of the proposed method relative to using the asymptotic distribu-
tion for inference, especially when the degree of overlap in propensity scores is
poor. General versions of the procedure can also be applied to other causal
effect estimators such as inverse probability weighting and propensity score sub-
classification, potentially leading to higher order refinements for inference in
such contexts.

Chapter 2 tackles the question of inference in incomplete econometric models. In
many economic and statistical applications, the observed data take the form of
sets rather than points. Examples include bracket data in survey analysis, tumor
growth and rock grain images in morphology analysis, and noisy measurements
on the support function of a convex set in medical imaging and robotic vision.
Additionally, nonparametric bounds on treatment effects under imperfect com-
pliance can be expressed by means of random sets. This chapter develops a
concept of nonparametric likelihood for random sets and its mean, known as the
Aumann expectation, and proposes general inference methods by adapting the
theory of empirical likelihood.

Chapter 3 considers inference on the cumulative distribution function (CDF) in
the classical measurement error model. It proposes both asymptotic and boot-
strap based uniform confidence bands for the estimator of the CDF under mea-
surement error. The proposed techniques can also be used to obtain confidence
bands for quantiles, and perform various CDF-based tests such as goodness-of-
fit tests for parametric models of densities, two sample homogeneity tests, and
tests for stochastic dominance; all for the first time under measurement error.
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Chapter 1

Bootstrap inference for Propensity

Score Matching

1.1 Introduction

Inference on average treatment effects in the presence of confounding is a primary goal of

many observational studies. Propensity Score Matching (PSM) is one of the most widely

used methods for estimating treatment effects in such a setting. The propensity score is

defined as the probability of obtaining treatment conditional on covariates. Under the

assumption of selection on observables (i.e the treatment is as good as randomly assigned

conditional on the covariates), Rosenbaum and Rubin (1983) show that matching on the

propensity score is sufficient to remove confounding. Using the propensity score for matching

reduces the dimensionality of the procedure by summarizing the information contained in

the covariates in a single variable. Additionally, PSM can be flexibly combined with other

strategies such as regression adjustment to further reduce the bias from the match (Abadie

and Imbens, 2011; Imbens and Rubin, 2015). Such favourable properties have led to PSM

becoming one of most commonly used methods for causal analysis of observational data.

See for example Deheija and Wahba (1999), Heckman, Ichimura, Smith and Todd (1998),

Lechner (2002) and Smith and Todd (2001) for some important applications and issues

arising from its use in economics.

In practice, the propensity scores are usually estimated through a parametric first stage
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based on a probit or logit model. Furthermore, to reduce the bias from the match, the

number of matches is usually held fixed at small values, for example one. This introduces

complications for inference since the matching function - defined as the number of times

each unit is used as a match - is a highly non-linear function of the data. Abadie and Imbens

(2016) show that the matching estimator under the estimated propensity score is consistent

and asymptotically normal. Thus inference for the treatment effect can proceed based

on a large sample approximation to the normal distribution, using the variance estimate

suggested by the authors. At the same time, Abadie and Imbens (2008) show that the

standard non-parametric bootstrap based on resampling fails to be consistent in this context.

This is because the usual bootstrap procedure fails to reproduce the distribution of the

matching function in the true sample.

In this chapter, I propose and demonstrate consistency of a bootstrap procedure for

matching on the estimated propensity score. Both matching with and without replacement

is considered. The proposed bootstrap is built around the concept of ‘potential errors’, in-

troduced in this chapter as a general tool for causal inference. Potential errors formalize the

idea that each observation can be associated with two possible error terms, corresponding

to each of the potential states - treated or control - only one of which is actually realized.

Thus, the variability of the estimator stems not only from the randomness of the potential

errors themselves, but also from the probabilistic nature of treatment assignment, which

randomly realizes one of the potential error terms. The proposed bootstrap takes both

sources of randomness into account by resampling the potential errors as a pair, while also

re-assigning new values for the treatments using the estimated propensity score. Imple-

menting the procedure requires the construction of estimates of the error terms under both

states. Since I only observe the errors under one of the potential states for any data point,

I provide ways to impute these quantities for the other state.

The notion of potential errors is very general, and can be applied to causal effect esti-

mators beyond propensity score matching. The exact form of the potential errors depends

on both the estimator and the quantity being estimated (ATE, ATET, etc.), but a unifying
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theme is that it is possible to obtain the ‘error representation’1

Estimator− Expected Value = Average(Realized errors).

Here, the terminology ‘realized errors’ refers to the observed values of the potential errors

given the treatment status. For many estimators, directly resampling the realized errors

suffices for valid inference, see e.g. Otsu and Rai (2017). However, such a strategy doesn’t

work for propensity score matching since the potential errors are functions of the estimated

propensity score, which is itself a random quantity (see, Section 1.3.4). Taking the estima-

tion of the propensity scores into account requires recreating the randomness of treatment

assignment closely, since this determines the variability of the propensity scores. Doing so

naturally leads to the proposed bootstrap statistic. Indeed, my bootstrap statistic is simply

the average of the new realized errors - obtained after resampling the potential errors and

reassigning treatments - and evaluated at propensity scores estimated from the bootstrap

sample.

The proposed bootstrap can be easily extended to other causal effect estimators satisfy-

ing the error representation, for example inverse probability weighting or propensity score

sub-classification (see, Section 1.6.3). Since it recreates all the sources of randomness more

faithfully, it generally provides more precise inference compared to asymptotic methods

or methods that only resample the realized errors. The gain in accuracy is especially pro-

nounced when there is poor overlap between the propensity scores of the treated and control

groups. Poor overlap usually occurs when there is heavy imbalance between the covariate

distributions for the treated and control groups. In such situations, some observations gain

disproportionate importance, for instance the few control units close to the treated units,

and vice versa. The resulting causal estimate is then highly sensitive to possible switches

to the treatment status of these observations. Failure to take this into account leads to

severe under-estimation of the actual variance, as shown in simulations. By contrast, the

proposed bootstrap is more accurate, and constitutes an attractive choice for inference when

the overlap is poor.
1For matching estimators, this is equivalent to the martingale representation of Abadie and Imbens

(2012).
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I demonstrate consistency of this bootstrap procedure using Le Cam’s framework of local

limit experiments, applied on the bootstrap data generating process. To this end, I extend

the techniques of local limit experiments previously employed by Abadie and Imbens (2016),

and Andreou and Werker (2011) to obtain limiting distributions of non-smooth statistics to

the setup of bootstrap inference. Thus, the techniques may be of independent theoretical

interest.

The finite sample performance of the bootstrap is assessed through a number of simula-

tions and real data examples. In almost all cases the bootstrap provides better size control

than inference based on the asymptotic distribution. The results also confirm that the

proposed bootstrap is particularly effective when the balance of covariates across treated

and control samples is poor. Arguably, poor covariate balance is pervasive in observational

studies.

The theoretical results in this chapter build on the properties of matching estimators

with finite number of matches, established in an important series of papers by Abadie and

Imbens (2006, 2008, 2011, 2012, 2016). When the number of matches is allowed to increase

with sample size, as in the kernel matching method of Heckman, Smith and Todd (1997),

the resulting estimator is asymptotically linear, and the usual non-parametric bootstrap

can be employed. In the context of a fixed number of matches, Otsu and Rai (2016)

propose a consistent bootstrap method for the version of nearest neighbor matching based

on a distance measure (Euclidean, Mahalanobis etc.) over the full vector of covariates.

The proposal of Otsu and Rai (2016) is equivalent to conditioning on both treatments and

covariates, and resampling the realized errors in the error representation. However, their

consistency result doesn’t extend to propensity score matching because conditioning on

both treatments and covariates precludes taking into account the effect of the estimation of

propensity scores. Alternatives to the bootstrap that do provide consistent inference in this

context include subsampling (Politis and Romano, 1994) and m-out-of-n bootstrap (Bickel,

Götze and van Zwet, 2012).
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1.2 Setup

The starting point of my analysis is the standard treatment effect model under selection

on observables. I follow the same setup as Abadie and Imbens (2016). The aim is to

estimate the effect of a binary treatment, denoted by W , on some outcome Y . A value of

W = 1 implies the subject is treated, while W = 0 implies the subject hasn’t received any

treatment. The causal effect of the treatment is represented in the terminology of potential

outcomes (Rubin, 1974). In particular, I introduce the random variables (Y (0), Y (1)), where

Y (0) denotes the potential outcome under no treatment, and Y (1) denotes the potential

outcome under treatment. I also have access to a set of covariates X, where dim(X) = k.

The goal is to estimate the average treatment effect

τ = E[Y (1)− Y (0)].

In general, estimation of τ suffers from a missing data problem since only one of the

potential outcomes is observable as the actual outcome variable, Y = Y (W ). To circumvent

this, practitioners commonly impose the following identifying assumptions for τ :

Assumption 1. (Y (1), Y (0)) is independent of W conditional on X almost surely, denoted

as (Y (1), Y (0)) ⊥⊥W |X.

Assumption 2. (Yi,Wi, Xi) are i.i.d draws from the distribution of (Y,W,X).

The first assumption is that of unconfoundedness, which implies that the treatment is

as good as randomly assigned conditional on the covariates X. The second assumption

implies that the potential outcome for individual i is independent of the treatment status

and covariates of the other individuals. This rules out peer effects, for instance.

Define the propensity score, p(X) = Pr(W = 1|X), as the probability of being treated

conditional on the covariates. Let µ̄(w,X) and µ(w, p(X)) denote the conditional means

E[Y |W = w,X] and E[Y |W = w, p(X)] respectively. Additionally, let σ̄2(w,X) = E[Y 2|W =

w,X] and σ2(w, p(X)) = E[Y 2|W = w, p(X)] denote the conditional variances of Y

given W = w and X ; and that of Y given W = w and p(X) respectively. In a sem-

inal paper, Rosenbaum and Rubin (1983) show that under Assumption 1, the potential
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outcomes are also independent of the treatment conditional on the propensity scores, i.e

(Y (1), Y (0)) ⊥⊥W |p(X). Thus, τ can be alternatively identified as

τ = E[µ(1, p(X))− µ(0, p(X))].

In the literature a number of propensity score matching techniques have been proposed that

exploit the above characterization of τ , see e.g. Rosenbaum (2009) for a detailed survey. In

this section, and for much of this chapter, I focus on matching with replacement, with a fixed

number of matches for each unit, denoted by M . This is arguably the most commonly used

matching procedure in economic applications. The case of matching without replacement

is discussed in Section 1.6.2.

Suppose that I have a sample of N observations. The propensity score matching esti-

mator for the average treatment effect, when matching with replacement, is defined as

τ̂ = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;p(X))

Yj

 ,
where M is the number of matches for each unit, and JM (i; p(X)) is the set of matches

for the individual i. In particular JM (i; p(X)) represents the set of M individuals from the

opposite treatment arm whose propensity scores are closest to i’s own, i.e,

JM (i; p(X)) = {j = 1, . . . , N : Wj = 1−Wi, and ∑
l:Wl=1−Wi

I[|p(Xi)−p(Xl)|≤|p(Xi)−p(Xj)|]

 ≤M
 .

Typically the value of M is taken to be quite small, for example M = 1, so as to reduce the

bias.

The propensity scores are generally not known but have to be estimated. In this chapter,

I consider parametric estimates for the propensity scores based on a generalized linear model

p(X) = F (X ′θ), where θ is a finite dimensional vector parameter, and F (.) is a (known)

link function, for instance a logistic or probit function. Let (W,X) denote the vector of

treatments and covariates (W1, . . . ,WN , X1, . . . , XN ). I denote the true value of θ by θ0.
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The latter is estimated through maximum likelihood as

θ̂ = argmax
θ
L(θ|W,X),

where

L(θ|W,X) =
N∑
i=1

{
Wi lnF (X ′iθ) + (1−Wi) ln(1− F (X ′iθ))

}
,

denotes the log-likelihood function evaluated at θ.

Let JM (i; θ) denote the set of M closest matches to observation i for the match based

on F (X ′θ) as if it were the true propensity score, i.e

JM (i; θ) = {j = 1, . . . , N : Wj = 1−Wi, and ∑
l:Wl=1−Wi

I[|F (X′iθ)−F (X′
l
θ)|≤|F (X′iθ)−F (X′jθ)|]

 ≤M
 .

The matching estimator, for the match based on F (X ′θ), is defined as

τ̂(θ) = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;θ)

Yj

 .
Let KM (i; θ) denote the number of times observation i is used as a match based on F (X ′θ),

i.e

KM (i; θ) =
N∑
j=1

Ii∈JM (j;θ).

Then an alternative way to represent τ̂(θ) is provided by the error representation

τ̂(θ)− τ −B(θ) = 1
N

N∑
i=1

εi(Wi; θ), (1.1)

where

B(θ) = 1
N

N∑
i=1

(2Wi − 1) ·

µ(1−Wi, F (X ′iθ))−
1
M

∑
i∈JM (i;θ)

µ(1−Wi, F (X ′iθ))


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denotes the bias from the match based on F (X ′θ), and

εi(Wi; θ) =
(
µ
(
1, F (X ′iθ)

)
− µ

(
0, F (X ′iθ)

)
− τ

)
+ (2Wi − 1)

(
1 + KM (i; θ)

M

) (
Yi − µ

(
Wi, F (X ′iθ)

))
(1.2)

denotes the effective error term for each observation. The variance is thus determined by

the right hand side of equation (1.1). Consequently, this expression is of primary interest

in approximating the distribution of τ̂(θ).

The matching estimator for τ based on the estimated propensity score is then given by

τ̂ ≡ τ̂(θ̂) = 1
N

N∑
i=1

(2Wi − 1)

Yi − 1
M

∑
j∈JM (i;θ̂)

Yj

 .
Abadie and Imbens (2016) derive the large sample properties of the above estimator. Under

some regularity conditions, they find that the bias term B(θ̂) converges in probability to

zero at a rate faster than
√
N , and that τ̂ has an asymptotic normal distribution

√
N(τ̂ − τ) d→ N

(
0, σ2 − c′I−1

θ0
c
)
,

where σ2 is the asymptotic variance for matching on the known propensity score,

c = E

[{cov[X,µ(1, X)|F (X ′θ0)]
F (X ′θ0) + cov[X,µ(0, X)|F (X ′θ0)]

1− F (X ′θ0)

}
f(X ′θ0)

]

with f(.) ≡ F ′(.); and for any value of θ, I(θ) denotes the information matrix evaluated at

θ

Iθ ≡ I(θ) = E

[
f2(X ′θ)

F (X ′θ)(1− F (X ′θ))XX
′
]
.

The above result illustrates the well known ‘Propensity Score Paradox’: Matching on the

estimated, as opposed to the true propensity scores, in fact reduces the asymptotic variance.
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1.3 Bootstrap procedure

In this section I propose a bootstrap procedure for inference on the propensity score

matching estimator. I fix the following notation: For each w = 0, 1, define µ(w, p; θ) =

E[Y (w)|F (X ′iθ) = p]. In what follows, I abuse notation a bit by dropping the index of

µ(., .; θ) with respect to θ when the context is clear. For w = 0, 1, denote2

e1i(θ) = µ(1, F (X ′iθ))− µ(0, F (X ′iθ))− τ ;

e2i(w; θ) = Yi − µ(w,F (X ′iθ)).

Note that the above are distinct in general from the ‘true’ errors which are defined similarly

but evaluated at θ0.

I present here an informal description of the bootstrap procedure, relegating many of

the formal details to the upcoming sub-sections. Given any value of θ, the pair of potential

error terms for each observation i are given by

εi(w; θ) ≡ e1i(θ) + (2w − 1)
(

1 + K̃M (i;w, θ)
M

)
e2i(w; θ); w = 0, 1,

where K̃M (i;w, θ) is a potential matching function, denoting the number of times observa-

tion i would have been used as a match depending on whether it is in the treated (w = 1) or

control group (w = 0); see Section (1.3.2) for the formal definition of K̃M (i;w, θ). Clearly,

only one of the quantities εi(w; θ) : w = 0, 1 is directly estimable; the other has to be

imputed. Let ε̂i(w; θ) denote the estimated or imputed values of εi(w; θ). I then sample a

set of N covariates denoted by X∗j for j = 1, . . . , N , along with the associated pair of (es-

timated) potential error terms
(
ε̂S∗j (0; θ), ε̂S∗j (1; θ)

)
, where S∗j denotes the bootstrap index

corresponding to the j-th observation in the draw. Subsequently, new bootstrap treatment

values are generated using the estimated propensity scores as

W ∗j ∼ Bernoulli(F (X∗′j θ̂)).
2I do not index τ with θ since the average treatment effect is independent of the propensity score.
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Through this procedure I have sampled a new set of realized error terms given by ε∗j (θ) ≡

ε̂S∗j (W ∗j ; θ) for j = 1, . . . , N . The bootstrap statistic, T ∗N
(
θ̂∗
)
, is the sample average of

these errors, after some appropriate recentering using the function Ξ∗
(
θ̂∗
)

3, i.e

T ∗N

(
θ̂∗
)
≡ 1√

N

N∑
j=1

{
ε∗j

(
θ̂∗
)
− Ξ∗

(
θ̂∗
)}

.

The errors above are being evaluated at θ̂∗- the bootstrap counterpart of θ̂ - obtained as

θ̂∗ = argmax
θ
L(θ|W∗,X∗).

Note that except for a negligible bias term B(θ̂), the construction of the bootstrap statistic

closely mirrors the error representation for τ̂(θ̂)− τ given by

τ̂(θ̂)− τ −B(θ̂) = 1
N

N∑
i=1

εi(Wi; θ̂).

To formalize the above, I require techniques for: (i) constructing estimates of the error

terms, e1i(θ), e2i(w; θ), for each observation under both treated and control states; and (ii)

constructing the potential matching function, K̃M (i;w, θ), for each observation, also under

both states. I now consider these in turn.

1.3.1 Constructing estimates of error terms

Denote by µ̂(w,F (X ′iθ)) the estimates of the conditional expectation function µ(w,F (X ′iθ))

evaluated at F (X ′iθ). These can be obtained through non-parametric methods, for example

series regression or smoothing splines. I then obtain the residuals

ê1i(θ) = µ̂(1, F (X ′iθ))− µ̂(0, F (X ′iθ))− τ̂(θ);

ê2i(Wi; θ) = Yi − µ̂(Wi, F (X ′iθ)).

These residuals serve as proxies for the unobserved terms e1i(θ), e2i(Wi; θ), approximating

the values of e2i(w; θ) when w = Wi. For the bootstrap procedure, I also need estimates of
3The prcise expression for the re-centering term Ξ∗ (.) is provided in Section 1.3.3.
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êi(w; θ) when w 6= Wi. I obtain these through a secondary matching: Define the secondary

matching function as

Jw(i) =


i if Wi = w

JNN(i) if Wi 6= w,

where JNN(.) denotes the closest match (or nearest neighbor) to observation i from the op-

posite treatment arm, with the closeness measured in terms of a distance metric (Euclidean,

Mahalanobis etc.) based on the full set of covariates. I then obtain:

ê2i(w; θ) = ê2Jw(i)(w; θ).

The definition of e2i(w; θ) proceeds in an analogous fashion.

Note that the secondary matching procedure matches on the full set of covariates, as

opposed to matching on the propensity scores. This is done to preserve the conditional

correlation between X and the error terms e1i, e2i, given the propensity scores. Indeed it

is this correlation that helps drive down the asymptotic variance when using the estimated

propensity score.

1.3.2 Constructing the matching function

As with the error terms, the bootstrap procedure requires values of the matching function

under both treatment and non-treatment, even as only one of them is actually observed. To

obtain the value of K̃M (i;w, θ) in the opposite treatment arm (i.e when w 6= Wi), I employ

another imputation procedure:

Let {π1, . . . , πqN−1} denote the sample qN -quantiles of F (X ′θ̂). I let qN →∞ asN →∞.

Set π0 = 0 and πqN = 1. Denote by Sw(l), the set of all observations with Wi = w in the

l-th block, i.e

Sw(l) = {i : πl−1 ≤ F (X ′i θ̂) < πl ∩Wi = w},

and let S(l) = S1(l) ∪ S0(l). The number of untreated, treated and combined observations

in the block l is given by

N0(l) = #S0(l); N1(l) = #S1(l); N(l) = N0(l) +N1(l),
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respectively, where for any set A, #A denotes its cardinality. Suppose now that observation

i falls in the block l. If w = Wi, I set K̃M (i;w, θ) = KM (i; θ). If however w 6= Wi, I set

K̃M (i;w, θ) to the value KM (j; θ), where j is drawn at random from the Sw(l). Formally,

denoting by l(i) the block in which observation i resides, I obtain

K̃M (i;w, θ) =


KM (i; θ) if w = Wi∑
j∈Sw(l(i)) {Mj(i)KM (j; θ)} if w 6= Wi,

where for each i, {Mj(i) : j ∈ Sw(l(i))} ≡ M(i) is a multinomial random vector with a

single draw on Nw(l(i)) equal probability cells. These multinomial random variables are

drawn independently for each observation i.

Based on these constructions I can define a combined error term excluding the effect of

heterogeneity (i.e excluding e1i(θ)) as

ν̂i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
ê2Jw(i)(w; θ).

Thus the estimated potential errors are obtained as

ε̂i(w; θ) = ê1i(θ) + (2w − 1)ν̂i(w; θ).

Remark 1. Unlike the error terms, the values of KM (i; θ) cannot be imputed through

nearest neighbor matching. Doing so renders the bootstrap inconsistent since KM (i; θ) and

KNN(i) are correlated (here, KNN(i) denotes the number of times observation i is used as a

match, when closeness is measured in terms of a distance metric on the full set of covariates).

Intuitively, a nearest neighbor based imputation over-selects observations that are already

matched often, and hence fails to recreate the actual distribution of the matching function.

A similar comment also applies to imputing the values through propensity score matching.

Remark 2. Let F (0)
K (.) and F (1)

K (.) denote the conditional distribution functions ofKM (i; θ)

for the control and treated groups, given the own-propensity score F (X ′iθ). Consider the es-

timator, F̂ (w)
K , of F (w)

K obtained by coarsening/blocking the propensity scores, and using the

empirical distribution of KM (i; θ) for w = 0, 1 within each block. The procedure described
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in this section is equivalent to drawing a value from the distribution F̂ (w)
K (F (X ′iθ)), indepen-

dently for each i, and using it to impute the value of K̃M (i;w, θ) when w 6= Wi. Coarsening

is motivated by the fact KM (i; θ) takes discrete values, which precludes smoothing. Clearly

F̂ (w)
K ≡ F (w)

K if the propensity scores are constant within the blocks. More generally, F̂ (w)
K

approaches F (w)
K as N →∞ since I let qN →∞. The optimal choice of qN would minimize

the variability in propensity scores within blocks while ensuring enough observations in

each, thereby estimating F (w)
K more accurately.

Sampling from F̂ (w)
K also ensures each KM (i; θ), for i = 1, . . . , N , is used almost exactly

once, on average, in the bootstrap: the term may drop out because W ∗i 6= Wi, but this

probability is balanced by the number of times it may be used for imputations (for details,

see Appendix A.2). Thus, the original set of matching functions is well reproduced in the

bootstrap.

Remark 3. The variables M ≡ {M(i) : 1 ≤ i ≤ N} do not enter the bootstrap distribution

as the particular realization of M is fixed throughout the bootstrap procedure. This is

equivalent to fixing an observation j that imputes for i in all the bootstrap draws. Thus the

bootstrap distribution should be understood as conditional on both M and the observed

data. This necessarily injects some randomness into the critical values obtained from the

bootstrap (though the critical values do converge to the true ones almost surely for each

sequence M). To address this, I suggest repeating the bootstrap procedure for a number of

different realizations of M, and then taking an average (wrt M) of the bootstrap distribution

functions; see below.

1.3.3 The bootstrap algorithm

The bootstrap algorithm proceeds as follows.

Step 0: First obtain a set of multinomial probabilities M based on independent draws for

each individual i as described in Section 1.3.2. Additionally calculate the nearest neighbor

matching function Jw(i) for each i as defined in Section 1.3.1. Both these values are kept

fixed throughout the bootstrap.

Step 1: Obtain new values of covariates X∗ = (X∗i , . . . , X∗N ) through a non-parametric

bootstrap draw. This involves drawing N independent categorical random variables S∗ =
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(S∗1 , . . . , S∗N ).

Step 2: Based on the estimated propensity score, derive new treatment values W∗ =

(W ∗1 , . . . ,W ∗N ) through the random draws

W ∗i ∼ Bernoulli(F (X∗′i θ̂)).

Step 3: Discard bootstrap samples for which N∗0 ≤ M + 1 or N∗1 ≤ M + 1, where N∗0

and N∗1 denote the number of control and treated observations in the bootstrap sample.

For all the other samples, estimate the bootstrap statistic θ̂∗ using the MLE procedure on

(W∗,X∗)

θ̂∗ = argmax
θ
L(θ|W∗,X∗).

Step 4: Based on θ̂∗, obtain the values of matching functionKM (i; θ̂∗) for each i using the

original sample of observations W,X. Additionally, derive the residuals
(
ê1i(θ̂∗), ê2i(Wi; θ̂∗)

)
,

evaluated at θ̂∗, for each i through series regression (or any other nonparametric method)

applied on the original sample of observations. From these, along with the values of M and

Jw(i) from Step 0, determine the values of K̃M (i;w, θ̂∗) and ν̂i(w; θ̂∗) for i = 1, . . . , N by

following the procedures laid down in Sections 1.3.1. and 1.3.2.

For the remaining steps, define the new ‘bootstrap’ realized errors ε∗i (θ) as

ε∗i (θ) ≡ ε̂S∗j (W ∗j ; θ)

= ê1S∗i (θ) +W ∗i ν̂S∗i (1; θ)− (1−W ∗i )ν̂S∗i (0; θ).

The bootstrap errors ε∗i (θ) need to be re-centered; the expression for this is given by

Ξ∗(θ) = 1
N

N∑
k=1

{
ê1k(θ) + F (X ′kθ)ν̂k (1; θ)−

(
1− F (X ′kθ)

)
ν̂k (0; θ)

}
.

Note that Ξ∗(θ) ≡ E∗θ [ε∗i (θ)], where E∗θ [.] denotes the expectation over the probability dis-

tribution implied by S∗,W∗ ∼ Bernoulli(F (X∗θ)), conditional on the original data (see also

Section 1.3.4 for a detailed explanation). Finally, for each value of θ, define the bootstrap
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statistic

T ∗N (θ) = 1√
N

N∑
i=1
{ε∗i (θ)− Ξ∗ (θ)} .

Step 5: Evaluate T ∗N (θ) at the parameter value θ̂∗ to obtain the bootstrap statistic

T ∗N

(
θ̂∗
)
. This step utilizes the values of K̃M (i;w, θ̂∗) and ν̂i(w; θ̂∗) obtained in Step 4.

Step 6: Estimate the critical value by c∗n,α = inf{t : F ∗n(t) ≥ 1− α}, where F ∗n(.) is the

empirical distribution of T ∗N
(
θ̂∗
)
. This can be obtained by repeating Steps 1-5 for a set of

B bootstrap repetitions.

Step 7: The critical value, c∗n,α, in Step 6 is based on a particular realization of M. To

reduce the dependence on the latter, repeat Steps 1-6 for L different values of M and average

the resulting empirical distribution functions F ∗n(.) to obtain F̄ ∗n(.). The final estimated

critical value is then given by c̄∗n,α = inf{t : F̄ ∗n(t) ≥ 1− α}.

1.3.4 Discussion

This section elaborates further on key aspects of the bootstrap procedure.

1.3.4.1 Asymptotic Linearity

Efron and Stein (1981) have shown that an estimator typically needs to be asymptotically

linear in the observations for the standard (nonparametric) bootstrap to be valid. However,

the matching estimator fails to satisfy asymptotic linearity under the regime of fixed number

of matches. Indeed, fixing the number of matches is qualitatively similar to choosing ‘small

bandwidth asymptotics’ for semiparametric estimators, wherein it is known that asymptotic

linearity fails (see, e.g Cattaneo, Jansson & Newey, 2016). The same reasoning also implies

the standard bootstrap is invalid for the kernel matching estimator of Heckman, Smith

and Todd (1997) under small bandwidth asymptotics. Nevertheless, while the matching

estimators are not generally asymptotically linear in the observations (X,W,Y), they are

linear in the potential errors, by construction. Thus, by changing the unit of resampling to

potential errors (rather than the observations), we can regain bootstrap consistency.
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1.3.4.2 Randomization of treatments

A distinctive feature of the bootstrap procedure is the randomization of the treatments,

W∗. For many causal effect estimators, such as nearest neighbor matching using the vector

of covariates, it suffices to resample the realized errors (see, e.g. Otsu and Rai, 2017). How-

ever, such a strategy doesn’t work for propensity score matching because the potential and

realized errors are functions of the random quantity F (X′θ̂). The variability of W condi-

tional on X has a first order effect on inference through the estimation of θ̂, necessitating the

re-drawing of W∗ in the bootstrap. The precise mechanism is as follows: Suppose that one

of the covariates is heavily imbalanced between the treatment and control groups. Then the

magnitude of θ̂ corresponding to the covariate increases, and the procedure places greater

emphasis on balancing that covariate. This reduces the conditional (on X,W) bias, eventu-

ally showing up as (unconditional) asymptotic variance reduction, see Section 3.2. But for

a fixed X, the level of imbalance depends on the assignment of W; hence the conditional

distribution of W given X has a large effect on the variability of the estimate.

1.3.4.3 Bootstrap Recentering

An interesting feature of the recentering term, Ξ∗(θ), is that it is based on taking the

bootstrap expectation over T ∗N (θ) as if W∗ ∼ Bernoulli(F (X∗θ)), even though in fact

W∗ ∼ Bernoulli(F (X∗θ̂)). If θ were an exogenous parameter, this would mean the bootstrap

expectation of T ∗N (θ) is exactly 0 only when θ = θ̂. However T ∗N () is evaluated at θ̂∗, itself a

function of the bootstrap random variables. In this case the precise form of the recentering

ensures T ∗N
(
θ̂∗
)
converges in distribution to a mean zero random variable. The reasoning is

broadly as follows (see proof of Theorem 1 for details): Suppose for the sake of argument that

W∗ ∼ Bernoulli(F (X∗θ)). Together with S∗, this parametrizes the bootstrap probability

distribution, denoted by P ∗θ . Under P ∗θ the test statistic T ∗N (θ) is exactly mean 0, and

therefore converges to a mean 0 random variable in distribution. However for values of θ

that are sufficiently close to θ̂, such as θ̂∗, the probability distributions P ∗θ and P ∗
θ̂
largely

coincide. Hence T ∗N (θ) also converges to a mean 0 random variable under P ∗
θ̂
- the actual

bootstrap distribution.
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1.3.4.4 Imputation

The imputation step, Step 0, is critical to the bootstrap. Here, prior to the bootstrap draws,

each observation is linked with two others from the opposite treatment arm: the first for

imputing the errors (cf Section 1.3.1), and the second for imputing the matching functions

(cf Section 1.3.2). In general these observations do not coincide. However conditional on the

propensity score, the variables KM (i; θ), e1i, e2i are independent of each other even in the

true DGP. Thus the approximation properties of the bootstrap are not adversely affected.

Alternatively, one may choose to sort the observations into blocks based on the full set of

covariates rather than the propensity scores as in Section 1.3.2. Then a single observation,

drawn at random from the block, can be used to impute both the errors and the matching

functions. However, even with a binary categorization of the covariates, the number of

blocks increases as 2k with the dimension k. Hence even for moderate k (e.g. k ≥ 5), it

is highly likely that many of the blocks only contain observations from a single treatment

arm.

1.4 Asymptotic properties

In this section, I derive the asymptotic properties of the bootstrap procedure outlined

in Section 3.1, and demonstrate its consistency. Let Pθ denote the joint distribution of

{Y,W,X} implied by W ∼ Bernoulli(F (X ′iθ)), the marginal distribution of X, and the

conditional distribution of Y givenW,X. The corresponding expectation over Pθ is denoted

by Eθ[.]. Also, denote by P̃θ the joint probability distribution over both {Y,W,X} and M;

with Ẽθ[.] as the corresponding expectation. For convenience, I set P0 ≡ Pθ0 E0[.] ≡ Eθ0 [.],

P̃0 ≡ P̃θ0 and Ẽ0[.] ≡ Ẽθ0 [.].

Because the matching function KM (i; θ) is highly non-linear in θ, it is not possible to

use linearization to derive the asymptotic distribution of T ∗N (θ̂∗). I therefore obtain the

limiting distribution by employing a version of Le Cam’s skeleton argument, analogous to

the proof technique of Abadie and Imbens (2016). Let N ≡ {θ : ‖θ − θ0‖ < ε} denote a

neighborhood of θ0 for some ε > 0 arbitrarily small. The following regularity conditions are

similar to Abadie and Imbens (2016):
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Assumption 3. (i) θ0 ∈ int(Θ) with Θ compact, X has bounded support and E[XX ′] is

non-singular; (ii) F (.) is twice continuously differentiable on R with derivatives f(.), f ′(.)

strictly bounded and f(.) strictly positive; (iii) for each θ ∈ N the random variable F (X ′θ)

is continuously distributed with interval support; and its pdf gθ(.) is such that the collection

{gθ : θ ∈ N} is uniformly Lipschitz continuous; (iv) at least one component of X is con-

tinuously distributed, has non-zero coefficient in θ0, and has a continuous density function

conditional on the rest of X; (v) for each θ ∈ N and w = 0, 1, the functions µ(w, p; θ),

Var[µ̄(w,X)|F (X ′θ) = p], Cov[X, µ̄(w,X)|F (X ′θ) = p] and E[σ̄2(w,X)|F (X ′θ) = p] are

Lipschitz continuous in p with the Lipschitz constants independent of θ; furthermore there

exists some δ > 0 such that E[Y 4+δ|W = w,X = x] is uniformly bounded.

Assumption 4. There exists some ε > 0 such that for all θ satisfying ‖θ − θ0‖ < ε, and for

any sequence θN → θ, EθN [r(Y,W,X)|W,F (X ′θN )] converges to Eθ[r(Y,W,X)|W,F (X ′θ)]

almost surely, for any Rk+2-to-R bounded and measurable function r(y, w, x) that is contin-

uous in x.

The above assumptions rule out the case where all the regressors are discrete. In this

case the matching estimator reduces to the propensity score sub-classification estimator,

inference for which is easily obtained using standard methods. Assumptions 3(i),(ii) ensure

that the propensity scores for all the observations are bounded away from zero and one.

Khan and Tamer (2010) show that under full support, the usual parametric rate is not

attainable, and the rate of convergence depends on the tail behavior of the regressors and

error terms. Hence inference in this context would necessarily be at a non-standard rate,

and is beyond the scope of this chapter.

Assumption 3 is taken almost directly from Abadie and Imbens (2016). The only sub-

stantive difference is in Assumptions 3(iii) and 3(v) which demand uniform extensions of

related assumptions in Abadie and Imbens (2016) - in the sense of holding uniformly in a

neighborhood N of θ0. Assumption 4 is similarly stronger than the corresponding one in

Abadie and Imbens (2016). However sufficient conditions for the latter (Theorem S.12 in

Abadie and Imbens, 2016) also imply the former.

I shall also require assumptions to ensure the residuals {ê1i(θ), ê2i(Wi; θ)} are ‘close’ to

the unobserved errors {e1i(θ), e2i(Wi; θ)}. I impose the following high level condition:
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Assumption 5. Uniformly over all θ ∈ N , it holds under P0,

1
N

N∑
i=1

(ê1i(θ)− e1i(θ))2 = op(N−ξ), and

1
N

N∑
i=1

(ê2i(Wi; θ)− e2i(Wi; θ))2 = op(N−ξ).

for some ξ > 0.

The assumption posits that the vector of residuals is close to the vector of true errors in

terms of the Euclidean metric. For many of the commonly used non-parametric methods

such as series or kernel regression, Assumption 5 can be verified under fairly weak con-

tinuity conditions, for instance when supθ∈N |∂µ(w, x; θ)/∂x| < ∞ under w = 0, 1. It is

usually straightforward to select the tuning parameters for estimation, such as the number

of series terms, either visually or through cross-validation. In simulations, low order poly-

nomial series, such as first or second order polynomials, appear to work reasonably well,

and constitute an attractive choice in practice.

The final assumption concerns the number of quantile partitions qN .

Assumption 6. The number of quantile partitions satisfies qN → ∞ and q2+η
N /N → 0 as

N →∞ for some η > 0.

Assumption 6 is fairly weak in that a wide range of choices for qN are allowed. Here,

the choice of qN determines how close the bootstrap variance estimate V̂ ∗ is to the true

variance (due to re-centering, the bootstrap mean is asymptotically 0). Higher values of

qN increase the balance in the propensity scores within the blocks (thus lowering the bias

of V̂ ∗), but reduce the number of observations in the treatment and control groups in each

block (thus increasing the variance of V̂ ∗), see Remark 2. In fact, this is the same trade-

off faced by sub-classification estimators for average treatment effects. In this case, there

exists extensive theoretical and empirical literature suggesting that small values of qN are

sufficient to reduce most of the bias due to the stratification of the propensity score (see e.g.

Rosenbaum and Rubin, 1984; Imbens and Rubin, 2015). Indeed, under some reasonable

conditions, Rosenbaum and Rubin (1984), drawing on previous work by Cochran (1968),

find that 4 blocks/sub-classes are sufficient to reduce the bias by over 85%, while having 5
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blocks reduces it by more than 90%. These values are independent of sample size since the

bias depends solely on qN . Consequently, following the recommendation of Rosenbaum and

Rubin (1984), I suggest a default choice of qN = 5.

Based on the above assumptions, I can derive the asymptotic properties of the bootstrap

estimator. Following the techniques of Abadie and Imbens (2016) and Andreou and Werker

(2012), I employ the Le Cam skeleton or discretization device for formalizing the theorem.

In particular, I discretize both the bootstrap and sample estimators , θ̂∗, θ̂ along a grid of

cubes of length d/
√
N . For instance, if the j-th component of θ̂∗, θ̂∗j , falls in the q-th cube

where q =
⌊√

Nθ̂j/d
⌋
with b.c being the nearest integer function, then the corresponding

component of the discretized estimator is given by θ̃∗j = dq/
√
N . Analogously, I also

discretize θ̂ as ¯̂
θ = d

⌊√
Nθ̂/d

⌋
/
√
N . The theoretical results are thus based on using ¯̂

θ

rather than θ̂ to construct the bootstrap samples. The discretization is only a theoretical

device for applying the skeleton arguments and not necessary in practice; indeed, the theory

doesn’t specify any minimum grid size d.

Let P ∗ denote the bootstrap probability distribution conditional on both the observa-

tions, (Y,W,X), and M. In other words, P ∗ represents joint probability distribution of

W ∗ ∼ Bernoulli(F (X∗′i
¯̂
θ)) and S∗ conditional on (Y,W,X,M). The asymptotic properties

of the bootstrap procedure are summarized in the following theorem:

Theorem 1. Suppose that Assumptions 1-6 hold. Then for d sufficiently small,

P ∗
(
T ∗N

(
θ̃∗
)
≤ z

)
p→ Pr(Z ≤ z) +O(d)

under P̃0, where Z is a normal random variable with mean 0 and variance V = σ2− c′I−1
θ0
c.

I refer to Appendix A.1 for the formal proof Theorem 1. The derivation parallels that

of Abadie and Imbens (2016) in using Le Cam’s skeleton argument to obtain the limiting

distribution. Let P ∗θ denote the joint distribution of W ∗ ∼ Bernoulli(F (X∗′i θ)) and S∗,

conditional on both the observed data and M. Note that P ∗ ≡ P ∗¯̂
θ
. I consider the bootstrap

distribution of the estimator under a local sequence of bootstrap probability distributions

P ∗θN , indexed by θN = θ̂+h/
√
N . Here θN can be thought of as local ‘shift’ of the estimated

propensity score parameter. More precisely, I aim to characterize the limiting distribution
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- under the bootstrap sequence of probabilities, P ∗θN - of the vector


T ∗N (θN )

√
N(θ̂∗N − θN )

Λ∗N
( ¯̂
θ|θN

)

 ,

where θ̂∗N is the bootstrap estimator of θ under P ∗θN , and Λ∗N (θ|θ′) ≡ log(dP ∗θ /dP ∗θ′) denotes

the difference in log-likelihood of the bootstrap probability distributions evaluated at θ and

θ′ . The limiting distribution of T ∗N (θ̂∗) under P ∗ can then be obtained by invoking Le

Cam’s third lemma (to switch from P ∗θN to the actual bootstrap probability P ∗), and using

the discretization device. A technical difficulty is that θ̂ is also random under P̃0. To this

end, I extend the proof techniques of Abadie and Imbens (2016).

Theorem 1 assures that the bootstrap statistic T ∗N (θ̂∗) has the same limiting distribution

as the true sample. A practical consequence of this theorem is c∗n,α
p→ cα under P̃0, where

cα is the critical value from the asymptotic distribution of
√
N
(
τ̂(θ̂)− τ(θ0)

)
. Thus, the

bootstrap procedure is consistent.

As noted earlier, a drawback of the above result is that in finite samples the value of

c∗n,α depends on the particular realization of M. To reduce this dependence, it is possible to

proceed as in Step 7 of the bootstrap procedure (cf Section 1.3.3) and average the bootstrap

empirical distribution over different values of M. The resulting bootstrap critical value is

denoted by c̄n,α (see Section 1.3.3). The following corollary, proved in Appendix A.1, assures

that c̄n,α is consistent with respect to P0 - the probability distribution of the original data.

Corollary 1. Suppose that Assumptions 1-6 hold. Then c̄n,α
p→ cα +O(d) under P0.

1.5 On higher order refinements

In this section I argue that the proposed bootstrap provides a closer approximation to the

true distribution of the propensity score matching estimator, as compared to the asymptotic

normal limit. I focus in particular on the role played by the randomization of the treatment

values and matching functions, and their effect on variance estimation. Previous remarks

have already emphasized the importance of redrawing W∗ for inference with propensity
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score matching. Here, I show by examples that the bootstrap can generate second order re-

finements even with other causal effect estimators, especially when the overlap in propensity

scores is poor.

As the first example, consider the estimation of the variance for the unadjusted treatment

effect estimator τ̂a = Ȳt − Ȳc, where Ȳt,Ȳc denote the sample averages of the outcomes for

the treated and control groups. The estimator is consistent when the data is obtained

from a Bernoulli trial RCT, for example. Neglecting the heterogeneity term E[Y (1)|X] −

E[Y (0)|X] − τ0 for simplicity, the potential errors in this example are given by e(1;X) =

Y (1) − E[Y (1)|X] and e(0;X) = E[Y (0)|X] − Y (0). Suppose that both the propensity

scores, p(Xi), and the potential errors, {e(1;Xi), e(0;Xi)}, are known. The asymptotic

variance estimate is

V̂ = 1
N

N∑
i=1

e2(Wi;Xi).

A straightforward extension of the bootstrap procedure can also be used to provide inference

for τ̂a. The resulting bootstrap variance estimate is

V̂boot = 1
N

N∑
i=1

{
p(Xi)e2(1;Xi) + (1− p(Xi))e2(0;Xi)

}
− Ξ2

a,

where Ξa is the re-centering term. Since Ξ2
a = O(N−1), I neglect this in further analysis.

Let ∆1 = V̂ − V , ∆2 = V̂boot − V , and ∆3 = V̂ − V̂boot, where V denotes the true

variance of the estimate. It is possible to decompose ∆1 = ∆2 + ∆3, where ∆2 and ∆3 are

asymptotically independent, since V̂boot ≈ E[V̂ |X]. This immediately implies V̂boot is a more

accurate estimator of V than V̂ . The extent of the gain in accuracy can be characterized

using anti-concentration inequalities: with high probability, ∆3 ≥ cN−1/2 for some c > 0.

Also, the superior performance of the bootstrap holds even if the potential errors have

to be estimated. Let Ṽboot denote the bootstrap estimator based on estimates, ê(w;Xi),

of the potential errors. If, for instance, X is univariate, and the conditional means of

Y (1) and Y (0) are linear in X, the values of {ê(1;Xi), ê(0;Xi)} can be obtained from linear

regressions, and it follows Ṽboot−V̂boot = Op(N−1). More generally, as long as the dimension

of X is not high (in particular k ≤ 5), it can be shown that Ṽboot − V̂boot = op(N−1/2) and

the bootstrap variance estimate is preferable.
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The above example demonstrates that for any given realization of the observations, the

bootstrap variance estimate is typically closer to the truth. This can translate to large gains

when the degree of overlap in propensity scores is poor. The following example is based

on propensity score matching for concreteness, but the intuition applies to causal effect

estimators more broadly (for example, simply replacing the matching function with inverse

propensity scores gives the Horvitz-Thomson estimator):

Consider a dataset where the range of propensity scores falls within an arbitrarily narrow

interval centered around a (known) value p0 that is close to 0. This implies the number of

treated observations is very low, but they have a disproportionately high influence, being

used as matches very often. Suppose now that the conditional variances (i.e σ(w;X) =

Var(Y (w)|X) ) are independent of w, and determined by a single binary covariate X1 with

σ(x1) ≡ σ(w;X) taking the values H (high) and L (low) when x1 = 0, 1 respectively. I

also suppose that X1 takes the values 0, 1 with equal probability. For simplicity I focus on

the within sample variance, by neglecting the first term (corresponding to e1i) in equation

(1.2). In this example, the Abadie-Imbens variance estimate is

V̂AI = 1
N

∑
Wi=1

(
1 + KM (i)

M

)2
σ2(X1i) + 1

N

∑
Wi=0

(
1 + KM (i)

M

)2
σ2(X1i), (1.3)

with σ(X1i) = L+X1i(H − L). The bootstrap (within-sample) variance estimate is4

V̂boot = 1
N

N∑
i=1

p0

(
1 + K̃M (i; 1)

M

)2

σ2(X1i) + 1
N

N∑
i=1

(1− p0)
(

1 + K̃M (i; 0)
M

)2

σ2(X1i).

(1.4)

The Abadie-Imbens variance estimator - particularly the first term in (1.3) - is highly

sensitive to the relative proportion of observations with X1i = 0 or 1 in the treated group.

Thus when the value of p0 is low and H � L, the estimator is highly variable, and therefore

inaccurate. On the other hand V̂boot is more stable. This is because of the re-randomization

of treatment values for all the observations, due to which V̂boot only depends on the observed

density of X1i for the entire sample - a much less variable quantity.
4This is based on neglecting the recentering term which is of the order N−1. Also I have modified the

bootstrap to take into account the known values of the variances and propensity scores. Even if these
modifications were not made, the error from approximating the resulting bootstrap variance estimator with
V̂boot can be made arbitrarily small compared to the effect of moving the value of p0 closer to 0.
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A second robustness property of the bootstrap stems from the random imputation of the

matching functions (c.f Section 1.3.2). In the previous example, a low value of p0 implies

greater variability in the matching functions for the treatments. Indeed, it can be shown

that

Var[KM (i)|Wi = 1] ≈ M

2

(1− p0
p0

)2
+M

1− p0
p0

.

Suppose that the variances σ(w;X) were not exactly known, then both V̂AI, V̂boot would

be modified by replacing σ2(X1i) with estimated (or imputed, in the case of bootstrap)

residuals ê2(w;Xi). Consequently V̂AI is heavily influenced by the error terms of those

treated observations that are used as a match most often. Since maxWi=1KM (i) → ∞

as p0 → 0, this again implies greater variability and slow rates of convergence for V̂AI.

By contrast, the bootstrap also imputes K̃M (i; 1) for all the control observations from the

conditional distribution of KM (i) given Wi = 1. Thus the high values of KM (i) are paired

with a greater range of the error terms from
{
ê2(1;Xi) : i = 1, . . . N

}
, reducing the influence

of a few particular observations.

The above arguments demonstrate as much the benefits of the imputation procedures

as those of the bootstrap. However there are other advantages specific to the bootstrap

as well. For instance, the bootstrap employs the exact values of the matching functions.

By contrast, in the setup of estimated propensity scores, the asymptotic distribution relies

on large sample approximations to the same. When the degree of overlap is poor, or

when p0 → 0 in the above example, the rate of convergence of the matching function to

its asymptotic approximation can be very slow, as evidenced by the large variances for

KM (i; θ). As a result the bootstrap would have better approximation properties.

1.6 Extensions

1.6.1 Average treatment effect on the treated

Thus far this chapter has focused on inference for the average treatment effect. An alter-

native quantity of interest could be the average treatment effect on the treated (ATET),

defined as

τt(θ) = E [Yi(1)− Yi(0)|Wi = 1] ,
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when the propensity score is given by F (X ′θ). The estimator is indexed with θ since it can

now be a function of the propensity score. The parameter of interest is the quantity τt(θ0).

In this section we show how the bootstrap procedure can be extended to provide inference

for τt(θ0).

The matching estimator for the ATET for a match based on F (X ′θ) is defined as

τ̂t(θ) = 1
N

N∑
i=1

Wi

Yi − 1
M

∑
j∈JM (i;θ)

Yj

 .
This has an error representation given by

τ̂t(θ)− τt(θ)−Bt(θ) = 1
N1

N∑
i=1

Wiet,1i(θ) + 1
N1

N∑
i=1

e2i(Wi; θ)

− 1
N1

N∑
i=1

(1−Wi)
(

1 + KM (i; θ)
M

)
e2i(Wi; θ)

where Bt(θ) denotes the bias term and

et,1i(θ) ≡ µ(1, F (X ′iθ))− µ(0, F (X ′iθ))− τt(θ).

The large sample properties of this estimator under the estimated propensity score have

been derived by Abadie and Imbens (2016). In particular they show that the bias is asymp-

totically negligible (i.e
√
NBt(θ̂)

p→ 0) and that

√
N
(
τ̂t(θ̂)− τt(θ0)

)
d→ N

(
0, σ2

t − c′tI−1
θ0
ct + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ

)
,

subject to discretization. We refer to Abadie and Imbens (2016) for the values of σt and ct.

As with the ATE, the error representation motivates our bootstrap procedure. For each

θ, denote

êt,1i(θ) ≡ µ̂(1, F (X ′iθ))− µ̂(0, F (X ′iθ))− τ̂t(θ).

Then our proposed bootstrap statistic for the ATET is

T ∗t,N

(
θ̂∗
)

=
√
N

N∗1

N∑
i=1

{
ε∗t,i

(
θ̂∗
)
− Ξ∗t

(
θ̂∗
)}

.
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where for each θ,

ε∗t,i (θ) = W ∗i

{
êt,1S∗i (θ) + ê2S∗i (1; θ)

}
+ (1−W ∗i )

{
ê2S∗i (0; θ)− ν̂S∗i (0; θ)

}

and Ξ∗t (θ) ≡ E∗θ [ε∗t,i (θ)] is the centering term for the bootstrap. In particular the latter can

be expanded as

Ξ∗t (θ) = 1
N

N∑
k=1

{
F (X ′kθ) (êt,1k(θ) + ê2k (1; θ)) +

(
1− F (X ′kθ)

)
(ê2k (0; θ)− ν̂k (0; θ))

}
.

The empirical distribution, F ∗t,n(.), of T ∗t,N
(
θ̂∗
)
can be obtained by a similar algorithm

as in Section 1.3.3. Using F ∗t,n(.), and a particular realization of M, the critical value

is obtained as c∗t,n,α = inf{u : F ∗t,n(u) ≥ 1 − α}. Alternatively, averaging the empirical

distribution F ∗t,n(.) over L different values of M gives F̄ ∗t,n(.). The resulting critical values

are given by c̄∗t,n,α = inf{u : F̄ ∗t,n(u) ≥ 1− α}.

Let ct,α denote the critical value from the asymptotic distribution of
√
N
(
τ̂t(θ̂)− τt(θ0)

)
.

The following theorem assures that the bootstrap procedure for the ATET is consistent. As

with Theorem 1, the formal statement relies on discretization.

Theorem 2. Suppose that Assumptions 1-6 hold. Then for d sufficiently small,

P ∗
(
T ∗t,N

(
θ̃∗
)
≤ z

)
p→ Pr(Zt ≤ z) +O(d)

under P̃0, where Zt is a normal random variable with mean 0 and variance Vt = σ2
t −

c′tI
−1
θ0
ct + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ . Furthermore, c̄t,n,α

p→ ct,α +O(d) under P0.

The proof of the theorem is similar to that of Theorem 1, and therefore omitted. Similar

results also hold for related estimators like the average treatment effect on the controls.

Remark 4. In empirical examples pertaining to the ATET, it is frequently the case that

N1 � N0. In such cases, the bootstrap resamples would be predominantly dominated by

observations from the control arm. However the error terms and matching functions are

imputed from the treated variables. Hence the information from the treated sample is still

incorporated in each bootstrap draw.
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1.6.2 Matching without replacement

In this section I consider matching without replacement as an alternative for estimating

the ATET. This has the advantage of having a lower variance, compared to matching with

replacement. At the same time, if the pool of controls is sufficiently large, the increase

in bias is not substantial. Here I focus on so called optimal-matching (Rosenbaum, 1989),

which is one procedure for matching without replacement. However, the proposed bootstrap

is applicable more generally, for instance to greedy or sequential matching.

Suppose that the propensity scores are given by F (X′θ). The matching indices, J opt
M (i; θ),

for optimal-matching are obtained as the ones that minimize the sum of matching discrep-

ancies, i.e

J opt
M (·; θ) ∈ argmin{J(i):i=1,...,N}

N∑
i=1

Wi

∑
j∈J(i)

∥∥∥F (X ′iθ)− F (X ′jθ)
∥∥∥ ,

where J(.) : {i : Wi = 1} 7→ {i : Wi = 0} is any one-one mapping from the indices of

the treated observations to that of the controls. The corresponding matching function is

denoted by

Kopt
M (i; θ) =

N∑
j=1

Ii∈J opt
M (j;θ).

By definition Kopt
M (i; θ) ∈ {0, 1} for every unit i in the treatment group. For matching based

on F (X ′θ), the optimal-matching estimator for the ATET is then

τ̂opt
t (θ) = 1

N

N∑
i=1

Wi

Yi − 1
M

∑
j∈J opt

M (i;θ)

Yj

 .

The estimators τ̂opt
t (θ) and τ̂t(θ) only differ in employing Kopt

M (i; θ) instead of KM (i; θ) as

the matching function. With the estimated propensity score, the quantity of interest is

τ̂opt
t (θ̂). To obtain its large sample properties, I impose the following condition, based on

Abadie and Imbens (2012): (Let N denote some neighborhood of θ0)
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Assumption 7. Uniformly over all θ ∈ N , it holds under P0 that as N1 →∞,

1√
N1

N∑
i=1

Wi

∑
j∈J opt(i;θ)

∥∥∥F (X ′iθ)− F (X ′jθ)
∥∥∥ p→ 0.

Assumption 7 is a high level condition ensuring the bias from the optimal matching

decays fast enough to 0. Suppose that g1,θ and g0,θ denote the conditional pdfs of F (X ′θ)

conditional on Wi = 1 and Wi = 0 respectively. Following the arguments of Abadie and

Imbens (2012, Proposition 1), sufficient conditions for Assumption 7 can be provided as:

(i) supθ∈N g1,θ, g0,θ ≤ C < ∞ and infθ∈N g0,θ ≥ c > 0; and (ii) N r
1 ≤ cN0 for some c > 0

and r > 1. Here, the requirement of N1 � N0 is crucial for driving down the bias. Using

Assumptions 1-7, it is possible to derive the limiting distribution of τ̂opt
t (θ̂),

√
N
(
τ̂opt
t (θ̂)− τt(θ0)

)
d→ N

(
0, σ2

w − c′wI−1
θ0
cw + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ

)
,

subject to discretization. The proof of the above, together with the expressions for σ2
w, cw,

can be obtained by adapting the arguments of Abadie and Imbens (2012, 2016). In general

σ2
w, cw are distinct from the corresponding quantities, σ2

t , ct, for matching with replacement.

Given the close analogy with τ̂t(θ), it is straightforward to modify the bootstrap pro-

cedure of Section 1.6.1 to obtain valid inference for τ̂opt
t (θ̂). The primary difference is that

the matching functions are obtained as Kopt
M (i; θ̂∗) rather than KM (i; θ̂∗) in Step 4. Also,

only the values of the potential matching function K̃opt
M (i;w, θ) for w = 0 need to be known,

since the optimal-matching function is defined solely for control variables. The proposed

bootstrap test statistic for τ̂opt
t (θ̂), denoted by T

(opt)∗
t,N

(
θ̂∗
)
, thus has the same form as

T ∗t,N

(
θ̂∗
)
, with the sole change being the matches are now given by Kopt

M (i; θ). Consistency

of the bootstrap procedure can be demonstrated by analogous arguments to Theorem 1,

using results from Abadie and Imbens (2012).

Theorem 3. Suppose that Assumptions 1-7 hold. Then for d sufficiently small,

P ∗
(
T

(opt)∗
t,N

(
θ̃∗
)
≤ z

)
p→ Pr(Z(opt)

t ≤ z) +O(d)

under P̃0, where Z(opt)
t is a normal random variable with mean 0 and variance V opt

t =
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σ2
w − c′wI−1

θ0
cw + ∂τ(θ0)

∂θ

′
I−1
θ0

∂τ(θ0)
∂θ .

1.6.3 Other causal effect estimators

The bootstrap procedure can easily be extended to other causal effect estimators. Indeed,

estimators of the ATE that are linear in the outcome variables, for instance propensity score

sub-classification or Horvitz-Thompson estimators, have a common structure in terms of an

error representation of the form

τ̂ (c) − E[τ̂ (c)] = 1
N

N∑
i=1

ε
(c)
i (Wi; θ),

where the potential errors are given by5

ε
(c)
i (w; θ) = e1i(θ) + (2w − 1)Λi(X′θ,W−i, w)e2i(w; θ).

Here, Λi(X′θ,W−i, w) may interpreted as quantifying the importance of each observation

in terms of estimating the ATE, depending on whether it is in the treated (w = 1), or

control group (w = 0). The estimators differ only in the choice of Λi(X′θ,W−i, w). The

propensity score matching estimator sets Λi(X′θ,W−i, w) = 1 + K̃M (i;w, θ), while setting

Λ−1
i (X′θ,W−i, w) = wF (X ′iθ) + (1− w)(1− F (X ′iθ))

gives the Horvitz-Thompson estimator. In a similar vein, the propensity score sub-classification

estimator sets

Λi(X′θ,W−i, w) = w
N1(bi(θ)) +N0(bi(θ))

N1(bi(θ))
+ (1− w)N1(bi(θ)) +N0(bi(θ))

N0(bi(θ))
,

where bi(θ) denotes the block in which observation i resides when the blocks are obtained

by partitioning F (X′θ); and N1(b), N0(b) denote the number of treated and control obser-

vations in block b. A common theme across all choices is that control (treated) units with

high (low) propensity scores gain greater importance, to compensate for them being fewer
5The term W−i denotes the vector of treatments W excluding Wi.
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in number.

The techniques in Section 1.3 provide a template for estimating and imputing the po-

tential error terms, ε(c)
i (w; θ). In particular, the values of e2i(w; θ) for w = 0, 1 can be

obtained through secondary matching as in Section 1.3.1. Additionally, the unobserved val-

ues of the importance function Λi(X′θ,W−i, w) can be imputed either through a blocking

scheme as in Section 1.3.2, or directly, if the functional form is known, as in the case of

Horvitz-Thompson and propensity score sub-classification estimators. Consequently, given

the potential errors, a bootstrap algorithm can be constructed by analogy with Section

1.3.3; indeed, the bootstrap drawing and re-centering schemes continue to apply.

The consistency of the bootstrap procedure for this more general class of estimators

follows by the same reasoning as in Theorem 1.

1.7 Simulation

In this section I investigate the finite sample performance of the bootstrap procedure out-

lined in Section 1.3.3 using simulation exercises. These confirm my theoretical results and

demonstrate the accuracy of the bootstrap procedure.

1.7.1 Simulation designs

I consider different four data generating processes. The first DGP (DGP1) is taken from

Abadie and Imbens (2016, Supplementary material). I generate a two dimensional vector

(X1, X2) of covariates by drawing both variables from a uniform [−1/2, 1/2] distribution

independently of each other. The potential outcomes are generated as Y (0) = 3X1−3X2+U0

and Y (1) = 5+5X1 +X2 +U1, where U1 and U0 are mutually independent standard normal

random variables. The propensity score is given by the logistic function

p(X) ≡ P (W = 1|X) = exp(X1 + 2X2)
1 + exp(X1 + 2X2) ,

and the treatments are generated as W ∼ Bernoulli(p(X)). Finally, the outcome variables

are generated as Y = WY (1) + (1−W )Y (0).

The second DGP (DGP2) is similar to the first except that the potential outcomes are
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generated as Y (0) = −3X1 + 3X2 + U0 and Y (1) = 5 + 7X1 + 12X2
2 + U1. In this DGP

the treatment effect varies more widely with X. Additionally, it also incorporates some

non-linearity through the quadratic term in Y (1).

The third DGP (DGP3) is also similar to the first except that the propensity scores are

given by

P (W = 1|X) = exp(X1 + 7X2)
1 + exp(X1 + 7X2) .

The effect of this is to greatly reduce to amount of overlap in the propensity scores between

the treated and control samples, as compared to DGP1. For instance, out of a set of 1000

observations, less than 5% of the first 200 observations as ordered by the propensity score

are from the treated sample .

The final DGP (DGP4) is adapted from Kang and Schafer (2007). This is chosen for its

resemblance with a real data study.6 For each observation I draw covariates X1, X2, X3, X4

independently of each other from a standard normal distribution. The potential outcomes

are given by Y (1) = 210 + 27.4X1 + 13.7X2 + 13.7X3 + 13.7X4 + U1 and Y (0) = U0 where

U1 and U0 are independent standard normal random variables. The propensity scores are

given by

P (W = 1|X) = exp(−X1 + 0.5X2 − 0.25X3 − 0.1X4)
1 + exp(−X1 + 0.5X2 − 0.25X3 − 0.1X4) .

In all DGPs I consider the case of a single match, i.e M = 1. I consider four different

sample sizes: N = 100, 200, 500, 1000. In all cases, the number bootstrap repetitions is

B = 399, and the number of Monte-Carlo repetitions is 2500. To ease the computational

burden, I only present results for the bootstrap procedure based on a single realization of

the multinomial random vector M (i.e I only follow steps 1-6 of the algorithm in Section

1.3.3).

1.7.2 Choice of tuning parameters

The procedure requires choosing the type of series regression and the number of quantile

partitions qN . Based on visual inspection, I used third order polynomials for the series

regression for all DGPs. In practice the number of series terms can also be chosen through
6The original simulation study of Kang and Schafer (2007) uses a version of this DGP to evaluate the

performance of different procedures under missing data. Here I adapt it to study average treatment effects.
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Sample size

N = 100 N = 200 N = 500 N = 1000

DGP1 Bootstrap 0.057 0.044 0.050 0.050
Asymptotic 0.070 0.059 0.054 0.049

DGP2 Bootstrap 0.058 0.052 0.054 0.058
Asymptotic 0.063 0.056 0.058 0.057

DGP3 Bootstrap 0.090 0.069 0.052 0.047
Asymptotic 0.141 0.100 0.092 0.069

DGP4 Bootstrap 0.079 0.066 0.057 0.058
Asymptotic 0.118 0.077 0.061 0.057

Table 1.1: Rejection probabilities under the null for various DGPs

cross-validation. I also experimented with different types of non-parametric estimators and

show the procedure is not sensitive to the particular choices employed. The choice of qN was

discussed in Section 1.4; there I recommended setting a value of qN = 5. Correspondingly,

for the baseline results I set qN = 5 throughout. In a separate table I also report results for

different choices of qN .

For the secondary matching (c.f Section 1.3.1), I employ nearest neighbor matching

based on the Euclidean metric. Since in all the DGPs the covariates are standard normal

and independent of each other, this is practically equivalent to matching on the Mahalanobis

metric.

1.7.3 Simulation results

Table 1.1 reports the performance of the bootstrap inferential procedure for all the DGPs,

along with inference based on the asymptotic distribution. The nominal coverage probability

is 0.95. The tuning parameters of the number of series terms and qN haven been deliberately

kept unchanged with sample size to emphasize that the values reported are not due to the

particular selection of these parameters. In all cases, the bootstrap critical values are very

close to nominal even for relatively small sample sizes, for example N = 100.

The bootstrap outperforms inference based on the asymptotic distribution in almost all

cases. The performance of the bootstrap is particularly advantageous when the sample size

is small, see e.g. the results for N = 100; and when the extent of imbalance in propensity
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Non-parametric estimators

Linear Poly-3 Poly-4 Spline

DGP1 0.056 0.050 0.055 0.051

DGP2 0.052 0.054 0.047 0.048

DGP3 0.030 0.052 0.048 0.049

DGP4 0.064 0.057 0.062 0.062

Table 1.2: Rejection probabilities under the null for different non-parametric estimators
when N = 500

scores is high, e.g. DGP3. At the same time, when there is sufficient overlap between the

propensity scores, and the effect of estimation of propensity scores is negligible, as in DGP2,

there is very little difference between the inferential procedures.

To assess the sensitivity of the bootstrap, I repeated the Monte-Carlo simulations for dif-

ferent choices of tuning parameters. In Table 1.2, I experiment with different non-parametric

specifications to estimate the residuals, namely: linear, third and fourth order polynomi-

als, and cubic smoothing splines (with smoothing parameter 0.99). The bootstrap is quite

insensitive to the choice of the specification. I found similar results for the other sample

sizes; for brevity I do not report these results.

In Table 1.3, I repeat the procedure for different values of qN under the sample sizes

N = 200 and N = 500 for all the DGPs. I find that the bootstrap procedure is largely

robust to the actual choice of qN , except for the value of qN = 1, which corresponds to

no partitioning. This is consistent with the observation, made in Section 1.4, that small

values of qN are sufficient to reduce most of the bias. At the same time, even for larger

sample sizes, the reduction in bias is marginal as qN increases beyond a certain amount.

For example, there is not much variability in the results between qN = 5 and qN = 8.

1.7.4 Robustness to Mis-specification

To check the robustness of the inference to mis-specification, I modify the DGPs by using

a Probit link function for the true propensity scores, even as the estimation and inferential

procedures themselves employ the Logistic regression. Table 1.4 reports the results of

the simulation under various DGPs when N = 200 and 500. While performance of both
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Number of quantile partitions

qN = 1 qN = 2 qN = 5 qN = 8

DGP1 N = 200 0.067 0.057 0.046 0.049
N = 500 0.057 0.054 0.050 0.050

DGP2 N = 200 0.072 0.058 0.060 0.048
N = 500 0.070 0.047 0.047 0.060

DGP3 N = 200 0.202 0.082 0.069 0.076
N = 500 0.190 0.078 0.052 0.045

DGP4 N = 200 0.103 0.079 0.066 0.064
N = 500 0.093 0.078 0.057 0.054

Table 1.3: Rejection probabilities under the null for different values of qN

DGP1 DGP2 DGP3 DGP4

N = 200 Bootstrap 0.050 0.046 0.107 0.087
Asymptotic 0.063 0.062 0.141 0.133

N = 500 Bootstrap 0.052 0.052 0.091 0.069
Asymptotic 0.052 0.062 0.142 0.101

Table 1.4: Rejection probabilities for the null under mis-specification

inferential procedure degrades somewhat, the bootstrap remains much more robust. A

reason for this could be that the residuals ê1(.), ê2(., .) - obtained under the mis-specified

propensity score - still approximate the actual errors under mis-specification.

1.8 Case study - The LaLonde datasets

The National Supported Work (NSW) demonstration was a randomized evaluation of a

job training program, first analyzed by LaLonde (1986), and later the focus of papers by

Heckman and Hotz (1989), Deheija and Wahba (1999), Smith and Todd (2005) among

others. The original dataset is based on a randomized study. LaLonde (1986) set aside

the experimental control group and replaced it with two other sets of observations from

the Panel Study of Income Dynamics (PSID) and the Current Population Survey (CPS). In

this section I simulate observations resembling the LaLonde experimental and observational

datasets, and use them as test cases for analyzing the relative performance of the bootstrap
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and asymptotic inferential procedures7.

1.8.1 Description of the data and the data generating process

The datasets comprise of the following pre-treatment variables: age (age), years of education

(edu), indicator for high school dropout (nodeg), indicator for married (mar), real earnings

(in thousands of dollars) in 1974 (re74), indicator for unemployed in 1974 (un74), real

earnings (in thousands of dollars) in 1975 (re75), indicator for unemployed in 1975 (un75),

and finally two indicators for race: (black) and (hispanic). The outcome variable is real

earnings in 1978 (Y ). For the results in this section I consider only the African American

subsample, which comprises the bulk (> 85%) of the original experimental data. This

selects N0 = 215 and N1 = 156 control and treated observations respectively from the

experimental dataset, for a total of N = 371 observations.

For the observational data, I follow LaLonde (1986) in replacing the experimental control

group with the subgroup of all men from PSID and CPS samples who were not working

when surveyed in the spring of 1976 (denoted as PSID-2 and CPS-2 respectively). I further

extract the African-American subsample from these datasets. This selects N0 = 99 and

N0 = 286 observations for the control groups based on the PSID and CPS samples, for

a total of N = 255 and N = 442 observations respectively (given the N1 = 156 treated

observations).

I simulate observations mimicking the experimental and observational datasets by broadly

following the algorithm described in Busso, DiNardo and McRary (2014). Denote by X̃ the

original set of covariates, and let Z denote the set of variables comprised of an intercept, X̃ ,

all the squared terms in X̃, and the following interaction terms: un75×un74, edu×re75, re74×re75.

For each simulation draw, I generate N observations using the following procedure: (1)

Draw new covariates X using the population model specified in the next paragraph; (2)

Estimate the propensity scores as p(X) = F (V ′θ0) where F (.) is the Logistic function, V

is a vector of covariates described below, and θ0 is the parameter vector obtained given by

running a Logistic regression on the original datasets; (3) construct Yi(0) = Z ′iδ0 + σ0εi,
7LaLonde (1986) replaced the experimental control group to analyze the accuracy of non-experimental

statistical methods. Here I abstract away from this issue by explicitly imposing selection on observables in
simulations.
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where δ0 is obtained by regressing the control observations of the original datasets with Z,

σ2
0 is the root mean squared error of the regression, and ε0i are iid standard normal errors;

(4) construct Yi(1) analogously using the treated observations from the original datasets;

(5) construct treatment values as W ∼ Bernoulli(p(X)); (6) construct outcome values as

Yi = WiYi(1) + (1−Wi)Yi(0).

Following Busso, DiNardo and McRary (2014), I draw the new covariates X in the fol-

lowing way: (1) draw the indicator variables mar, un74, un75 by sapling with replacement

from the original datasets; (2) fix the pair (mar, un74, un75) as a group and simulate the

other variables, i.e (age, edu, re74, re75), from a group-specific multivariate normal distri-

bution, where the distributional parameters are the group means and covariances estimated

from the original data; (3) round the values of age, edu to the nearest integer values.

For the experimental data I use a linear specification for the propensity scores with

V = (age, edu, nodeg, mar, re74, re75, un74, un75). For the observational designs I employ a

somewhat modified version of the propensity score specification used by Deheija and Wahba

(1999): V = (age, edu, mar, nodeg, re74, re75, age2, edu2, re742, re752, edu×re74).

The simulations are designed to replicate the broad features of both the experimental

and observational datasets. Of particular interest is the degree of overlap in the propensity

scores between the treated and control groups. Figure 1.1 presents a representative plot for

the simulated datasets. In the experimental design there is a high degree of overlap in the

propensity scores which are also bounded away from 0 and 1. On the other hand, the degree

of overlap is quite poor in the observational designs with many of the treated observations

concentrated around the propensity score value of 0. This has a significant impact on the

performance of inferential methods for matching.

1.8.2 Simulation results

I first describe the bootstrap procedure: For secondary matching (cf Section 1.3.1), I used

nearest neighbor matching based on the Mahalanobis metric, applied over the unique set

of covariates in the data, i.e overage, edu, mar, re74, re75.8 Additionally, based on a visual
8Indeed the other covariates are defined as functions of these with nodeg=1(edu < 12), un74=1(re74 = 0)

and un75=1(re75 = 0).
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Figure 1.1: Representative overlap plots based on kernel density estimates of propensity
scores for control (dotted line) and treated units (solid line)

inspection, I employed a linear specification for the series regression in all designs. For the

number of quantile partitions, I employed qN = 5 for the experimental and PSID designs,

and qN = 4 for the CPS design. The reason for the lower value of qN in the latter case is due

to the poor overlap in the propensity scores, which results in some cells having no treated

observations when qN is higher.9 Table 1.5 reports the performance of the bootstrap and

asymptotic inferential procedures for the matching estimator of the ATE. All values are

based on 5000 Monte-Carlo repetitions with B = 399. The results are provided after bias

correction, which in any case is an order of magnitude smaller than the standard deviation.

The first three rows of Table 1.5 present the simulation results with the same sample sizes

as in the original datasets. For the experimental design, both the bootstrap and asymptotic

methods provide very similar performance. This is an example in which estimation of the

propensity scores hardly affects variance. The asymptotic method appears to be slightly

preferable, even if the difference is not statistically significant. This is possibly due to the
9In the rather rare instance where one of the cells has no treated observations even with the lower value

of qN , I impute the matching function by drawing treated observations randomly from the neighboring cell.
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Rejection probability Confidence Interval length

Bootstrap Asymptotic Bootstrap Asymptotic True
Experimental 0.061 0.054 3.474 3.528 3.666(N = 371)

Observational (PSID) 0.079 0.214 7.426 5.621 8.335(N = 255)

Observational (CPS) 0.076 0.233 8.669 5.985 9.288(N = 422)

Experimental 0.075 0.075 5.270 5.312 5.756(N = 150)

Observational (PSID) 0.063 0.148 5.984 4.848 6.147(N = 500)

Observational (CPS) 0.062 0.169 7.242 5.363 7.194(N = 1000)

Table 1.5: Rejection probabilities and average length of confidence intervals (in thousands
of dollars) under experimental and observational designs

bias introduced by the nearest-neighbor-matching technique while imputing the error terms.

The performance of the inferential methods declines under both observational designs.

Nevertheless, the asymptotic procedure performs considerably worse than the bootstrap,

and underestimates the length of the confidence interval by close to 33% of the true length.

(I also found that in about 4-5% of the cases, the asymptotic procedure actually reported

a negative value for the variance!) By contrast, the bootstrap provides good size control,

despite the fact the propensity scores are not bounded away from 0 and 1.

Figure 1.2 plots the estimates of the finite sample distribution (after centering by the

true value) using bootstrap and asymptotic methods for representative simulation samples.

For the observational data, the estimate from the asymptotic method is highly biased and

heavily underestimates the true variance. The bootstrap distribution is much closer to the

actual one.

In fact, not only is the asymptotic variance estimate heavily biased for the observational

data, it is also highly variable. Figure 1.3 demonstrates this by plotting the finite sample

distributions using bootstrap and asymptotic methods for 20 different simulation samples

under experimental and PSID designs (the CPS dataset is omitted for brevity). For the
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Figure 1.2: Estimates of the finite sample distribution using bootstrap (solid blue) and
asymptotic methods (dashed red) for representative simulation samples. The bars represent
the actual finite sample distribution.

PSID data, the bootstrap estimate of the finite sample distribution is much more stable

over the different simulation samples. However both methods perform very similarly on

the experimental dataset, suggesting that most of the differences in the PSID design are

generated by poor overlap. This is consistent with the discussion in Section 1.5, where I

showed that the asymptotic variance estimate is much more sensitive to a few influential

observations, as compared to the bootstrap.

In the last three rows of Table 1.5, I redo the simulation with different sample sizes.

Here, I employ qN = 5 for all the designs. For the experimental design, both inferential

methods perform well even on a sample size that is about half the original one. However, for

the observational designs the bootstrap outperforms asymptotic inference by a considerable

margin even after doubling the number of observations.

1.9 Conclusion

In this chapter, I propose a bootstrap procedure for propensity score matching estimators

of the ATE and ATET, and demonstrate its consistency. The procedure can be easily
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Figure 1.3: Estimates of finite sample distributions using bootstrap (blue) and asymptotic
methods (red) for 20 different simulation samples. The bars represent the actual finite
sample distribution. Note the difference in scaling of the axes.

extended to other estimators, including, but not limited to, inverse probability weighting

(e.g. Horvitz-Thompson) and propensity score sub-classification. It is built around the

concepts of potential errors and the error representation, introduced in this chapter. Both

these concepts are also applicable very generally. Together, they constitute a powerful new

formalism for describing causal effect estimators.

Simulations and theoretical examples suggest the proposed bootstrap achieves greater

accuracy than asymptotic methods, particularly when the overlap in propensity scores is

poor. They also highlight the key role played by the (re-)randomization of treatment values

in obtaining more precise inference. While beyond the scope of this chapter, it would be

interesting to formally investigate the higher order properties of the bootstrap procedure.

This chapter focuses on treatment effects. However, the techniques and results in this

chapter may also be useful in other contexts, for instance where the outcome data is missing

at random (i.e the propensity for missingness is only a function of observed covariates).
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Chapter 2

Empirical Likelihood for random

sets

2.1 Introduction

In many statistical applications, the observed data take the form of sets rather than points.

For example, in survey analysis, we often observe bracket data instead of precise measure-

ments. In mathematical morphology, geostatistics, and particle statistics, the observations

often take the form of two or three dimensional sets reflecting models for tumor growth or

sand rock grains (e.g., Cressie and Hulting, 1992, and Stoyan, 1998, for a review). Also,

in the context of medical imaging and robotic vision, researchers sometimes need to infer a

convex set from noisy measurements of its support function (Fisher et al., 1997). Further-

more, in studies of treatment effects (e.g., Balke and Pearl, 1997, and Horowitz and Manski,

2000), researchers often wish to conduct statistical inference on nonparametric bounds for

the average treatment effects which can be expressed by means of random sets, as shown

in Beresteanu, Molchanov and Molinari (2012).

In this chapter, we develop a nonparametric likelihood concept for the Aumann expec-

tation of a random sample of convex sets - this is a generalization of the conventional math-

ematical expectation to random sets - and propose general inference methods by adapting

the theory of empirical likelihood (Owen, 2001). In particular, by relying upon the isomor-

phism between a convex set and its support function, we convert the testing problem on the
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random set to one on its support function which implies a continuum of moment constraints

indexed by the direction of the support function. Based on this conversion, we construct

two nonparametric likelihood statistics for testing the moment constraints which we term

the marked and sieve empirical likelihood statistics. We study the asymptotic properties

of these statistics and describe how to compute critical values for testing. Moreover, to

enhance the applicability of our methods, we also discuss testing directed hypotheses and

projections, along with situations where the random set of interest is not directly observ-

able due to nuisance parameters to be estimated and where inference is based on noisy

measurements of the support function.

We demonstrate the usefulness of the proposed methods by four numerical examples.

First, we consider the setup of best linear prediction with interval dependent variables. In

this case, the set of all possible coefficients for the best linear predictor is characterized by

an Aumann expectation involving the interval data. We illustrate our empirical likelihood

methods via inference on the parameters for the best linear predictor of interval wages

given years of education using the Current Population Survey (CPS) data. Second, we

consider a Boolean model for tumor growth studied by Cressie and Hulting (1992) and

numerically evaluate the marked and sieve empirical likelihood tests. Third, we employ

the empirical example in Balke and Pearl (1997) on the treatment effect of Vitamin A

supplementation under imperfect compliance to study the numerical performance of our

empirical likelihood based inference on the bounds of the average treatment effect. Finally,

based on Fisher et al. (1997), we study the problem of testing the shape of a convex set

based on noisy measurements of its support function; the results are provided in Appendix

B. Both parameter hypothesis and goodness-of-fit testing problems are investigated. In all

of the examples, the proposed empirical likelihood tests perform well in terms of size and

power.

After early developments in e.g., Kendall (1974) and Matheron (1975), the literature on

the probabilistic and statistical theory of random sets is steadily growing (see, Molchanov,

2005, for a modern and comprehensive treatment of random set theory). Most of the sta-

tistical literature on random sets focuses on inference via capacity functionals (e.g., Cressie

and Hulting, 1992) and support functions (e.g., Fisher et al., 1997) which provide equivalent
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characterizations of random sets. The population mean of random sets is typically charac-

terized by the so-called Aumann expectation. Beresteanu and Molinari (2008) developed a

Wald type test for the Aumann mean of random sets. This chapter introduces a nonpara-

metric likelihood-based approach for inference on the Aumann expectation by modifying

the empirical likelihood method. Thus, this chapter also contributes to the literature on

empirical likelihood (see Owen, 2001, for a review) by extending its scope to random sets

rather than points. To establish the asymptotic theory, we adapt the theoretical results

developed in Hjort, McKeague and van Keilegom (2009) to our context.

Recently, applications of random set methods have been discussed in the context of par-

tial identification and inference in econometrics; see Molchanov and Molinari (2014) for a re-

view of such applications, Tamer (2010) for a review of partial identification in econometrics,

and Manski (2003) for a thorough treatment of partial identification. Partial identification

concerns the situation wherein a parameter of interest is not point identified but identified

only as a set. This could be because of limitations in the data, e.g. interval or categorical

data, or because the theoretical models do not provide enough restrictions to identify a

unique value for the parameter, e.g. game theoretic models with multiple equilibria. In

this context, Balke and Pearl (1997) and Horowitz and Manski (2000) made fundamental

contributions to partial identification of treatment effects and probability distributions with

missing data, respectively. However, these papers did not connect the inference problems

on the identified sets to random set theory. Beresteanu and Molinari (2008) were the first

to employ random set methods to conduct estimation and inference for partially identified

models.

An important application of random set theory is in the context of inference for pa-

rameters characterized by moment inequalities. In this setup, the parameters are typically

partially identified, and thus the aim is to propose a confidence region that covers the

identified set. Examples of this strand of literature include Chernozhukov, Kocatulum and

Menzel (2015), Kaido (2012), and Kaido and Santos (2014) among others. See also An-

drews and Shi (2015) for an extension to conditional moment inequalities. On the other

hand, Canay (2010) developed an empirical likelihood-based inference method for moment

inequality models using “standard” probability theory. Our chapter is the first to to bring
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together random set theory and empirical likelihood. Although sharing applications with

the moment inequality setup, our approach, which is based on random sets as observations,

is fundamentally different. Indeed, there are situations where the moment inequality setup

is not directly applicable unlike ours (e.g., the Boolean model and image analysis via sup-

port function), and vice versa. In addition, the focus of our chapter is on testing, which

may have other uses over and above the construction of confidence regions (cf. the Boolean

model example). Closer to our setup, Beresteanu and Molinari (2008) were the first to

consider tests for expectations of general random sets. Bontemps, Magnac and Maurin

(2012) and Chandrasekhar et al. (2012) obtained related inferential results in the context

of best linear predictors for set identified functions under a variety of extensions but did

not consider other formulations of random sets.

This chapter is organized as follows. Section 2.2 introduces the basic setup and presents

two inference approaches, the marked and sieve empirical likelihood methods. Section

2.3 discusses various extensions of these approaches for wider applicability. In Section

2.4, numerical examples are provided. Assumptions and some definitions are presented in

Appendix B. The appendix also contains proofs and additional simulation results.

2.2 Methodology

Suppose we observe a set-valued random variable (SVRV) X : Ω 7→ Kd, where Kd is the

collection of all non-empty compact and convex subsets of the Euclidean space Rd. The

collection Kd is endowed with the Hausdorff norm defined as ‖A‖H = sup{‖a‖ : a ∈ A} for

every set A, where ‖·‖ is the Euclidean norm. Let µ denote some underlying probability

measure on Ω. The mean of the SVRV X is characterized by the Aumann expectation

E[X] =
{∫

Ω
xdµ : x ∈ {x(ω) ∈ X(ω) a.s. and

∫
Ω
‖x‖ dµ <∞}

}
,

(see, Molchanov, 2005, for details). We restrict our attention to compact and convex valued

SVRVs; however, similar results hold for general compact sets since E[X] = E[co(X)] for

compact valued X if µ is non-atomic, with co(X) denoting the convex hull operation on X

(Molchanov, 2005, p. 154). A fundamental statistical question is to test hypotheses on the
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Aumann expectation of the form:

H0 : E[X] = Θ0(ν) vs. H1 : E[X] 6= Θ0(ν), (2.1)

based on a random sample of SVRVs {X1, . . . , Xn}, where Θ0(ν) is a hypothetical set that

may depend on real-valued nuisance parameters ν ∈ Rr. In general, there is no restriction

on the relationship between the dimension d of X and r of ν.

To test the null hypothesis H0, we focus on the dual representation of convex sets by

their support functions. Let 〈·, ·〉 denote the inner product and Sd the unit sphere in Rd.

The support function of a set A ∈ Kd is defined as s(A, p) = supx∈A 〈p, x〉 for p ∈ Sd. If

X is integrably bounded, the testing problem in (2.1) is equivalent to (Molchanov, 2005, p.

157)

H0 : E[s(X, p)] = s(Θ0(ν), p) for all p ∈ Sd vs. H1 : E[s(X, p)] 6= s(Θ0(ν), p) for some p ∈ Sd,

(2.2)

where E[·] is the ordinary mathematical expectation with respect to µ. Therefore, inference

on the Aumann mean of the random set is equivalent to inference on the support function

(or continuum of moment restrictions over p ∈ Sd). Since this is a testing problem for

infinite dimensional parameters without any parametric distributional assumptions on the

population µ, it is of interest to develop a nonparametric likelihood inference method. In

particular, we adopt the empirical likelihood approach (Owen, 2001) to our testing problem.

2.2.1 Marked empirical likelihood

We now introduce the first empirical likelihood approach to test the hypothesis in (2.1) for

the Aumann expectation of random sets. We assume that a consistent estimator ν̂ for the

nuisance parameters ν is available. Typically ν is a smooth function of population moments

which can be estimated by the method of moments.

One method to construct a nonparametric likelihood function to test H0 in (2.1) is to

fix a direction p ∈ Sd for the support function defining the equivalent form of H0 in (2.2)

and employ the empirical likelihood approach. For given p, the marked empirical likelihood
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function under the restriction E[s(X, p)] = s(Θ0(ν), p) is given by

`n(p) = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(Xi, p) = s(Θ0(ν̂), p), wi ≥ 0,
n∑
i=1

wi = 1
}
. (2.3)

In practice, `n(p) can be computed from its dual form based on the Lagrange multiplier

method, that is

`n(p) =
n∏
i=1

1
1 + λ{s(Xi, p)− s(Θ0(ν̂), p)} , (2.4)

where λ solves the first-order condition
∑n
i=1

s(Xi,p)−s(Θ0(ν̂),p)
1+λ{s(Xi,p)−s(Θ0(ν̂),p)} = 0. Since the direction

p is given, the object `n(p) imposes only a single restriction implied from the null H0. In

order to guarantee consistency against any departure from H0, we need to assess the whole

process {`n(p) : p ∈ Sd} over the range of Sd. Taking the supremum over p leads to the

Kolmogorov-Smirnov type test statistic

Kn = sup
p∈Sd
{−2 log `n(p)}.

Suppose there exists a function G(p; ν) continuous in p ∈ Sd such that

sup
p∈Sd
|s(Θ0(ν̂), p)− s(Θ0(ν), p)−G(p; ν)′(ν̂ − ν)| = op(n−1/2). (2.5)

In Section 2.4.1, we provide an example of G(p; ν) for the case of the best linear prediction

with an interval valued dependent variable. The asymptotic properties of Kn are summa-

rized in the following theorem.

Theorem 4. Under Assumption M in Appendix B.1, it holds

Kn
d→ sup
p∈Sd

{Z(p)−G(p; ν)′Z1}2

Var(s(X, p)) , under H0, (2.6)

where (Z(p), Z ′1)′ ∼ N(0, V (p)) and V (p) is the limiting covariance matrix of

(n−1/2∑n
i=1{s(Xi, p)−E[s(X, p)]},

√
n(ν̂− ν)′)′. In addition, Kn diverges to infinity under

H1.
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By a slight modification of the proof, we can also show that under the local alternative

H1n : E[s(X, p)] = s(Θ0(ν), p) + n−1/2η(p) over p ∈ Sd,

for some continuous function η, the marked empirical likelihood statistic satisfies Kn
d→

supp∈Sd
{Z(p)−G(p;ν)′Z1+η(p)}2

Var(s(X,p)) . Therefore, the test statistic Kn has non-trivial local power

against a local alternative at the parametric rate.

One major advantage of the conventional empirical likelihood approach is that it yields

an asymptotically pivotal statistic even for nonparametric objects of interest under compli-

cated data structures. However, the proposed statistic Kn (or other statistics constructed

from the process {`n(p) : p ∈ Sd}) does not share such attractiveness, and its limiting

distribution contains several unknowns to be estimated. To deal with this problem, Sec-

tion 2.2.1.1 proposes a bootstrap procedure to approximate the null distribution of Kn. In

Section 2.2.2, we develop an alternative test statistic which is asymptotically pivotal (but

requires a choice of a tuning parameter). In the current setup, we are not aware of any test

statistic which is both asymptotically pivotal and free from tuning parameters.

We note that lack of pivotalness of process-based tests emerges commonly in the con-

text of goodness-of-fit testing (e.g., Stute, 1997). In the literature on empirical likelihood,

Chan et al. (2009) propose an integral version of the empirical likelihood statistic to test

hypotheses on Lévy processes via characteristic functions and derive a non-pivotal limiting

distribution; this is approximated by a bootstrap procedure due to its complicated form.

Li (2003) obtained similar results for an empirical likelihood test of survival data. Further-

more, Hjort, McKeague and van Keilegom (2009) provided various extensions of empirical

likelihood to the cases of (infinite-dimensional) nuisance parameters and growing numbers of

estimating equations. They argued that the empirical likelihood statistic is not necessarily

pivotal but can be approximated by bootstrap methods.

Since the marked empirical likelihood statistic is not asymptotically pivotal, one may

seek to employ alternative likelihood concepts. For instance, we can generate the likelihood
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process from the Euclidean likelihood (Owen, 2001, Section 3.15):

LEn (p) = max
{
−1

2

n∑
i=1

(nwi − 1)2
∣∣∣∣∣
n∑
i=1

wis(Xi, p) = s(Θ0(ν̂), p), wi ≥ 0,
n∑
i=1

wi = 1
}
,

whose dual form is explicitly given by

−2LEn (p) = (
∑n
i=1{s(Xi, p)− s(Θ0(ν̂), p)})2∑n
i=1{s(Xi, p)− s(Θ0(ν̂), p)}2 ,

for each p. Inspection of the proof of Theorem 4 shows that LEn (p) is asymptotically equiv-

alent to log `n(p) for each p and the test statistic KE
n = supp∈Sd{−2LEn (p)} obeys the same

limiting distribution as Kn. One practical advantage of the Euclidean likelihood-based

statistic KE
n over Kn is that KE

n does not require a numerical search for the Lagrange

multiplier λ as in (2.4).

2.2.1.1 Bootstrap calibration

The limiting null distribution of the process {`n(p) : p ∈ Sd} is generally difficult to approxi-

mate as it contains parameters to be estimated. Thus, we suggest approximating the distri-

bution of Kn by a bootstrap procedure. Let {X∗i }ni=1 denote the bootstrap draws of {Xi}ni=1

with replacement and ν̂∗ the bootstrap counterpart of ν̂.1 Denote s̄(p) = n−1∑n
i=1 s(Xi, p)

and V̂ (p) = n−1∑n
i=1{s(Xi, p) − s̄(p)}2. For the bootstrap counterpart of the empirical

likelihood function `n(p), we propose

`∗n(p) = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wi{s(X∗i , p)− s(Θ0(ν̂∗), p)} = {s̄(p)− s(Θ0(ν̂), p)}, wi ≥ 0,
n∑
i=1

wi = 1
}
.

(2.7)

Note that `∗n(p) does not directly mimic the original statistic but rather evaluates the likeli-

hood after recentering by s̄(p)− s(Θ0(ν̂), p). Such a recentering is necessary to account for

the effect of the estimated nuisance parameters.2 Indeed, by Giné and Zinn (1990), after
1If ν is a smooth function of means, then ν̂∗ is given by replacing the moments with the bootstrap

counterparts. If ν̂ is an M-estimator, we obtain ν̂∗ through properly recentered estimating equations as in
Shorack (1982) and Lahiri (1992).

2The idea of recentering estimating equations is developed in Shorack (1982) and Lahiri (1992). It is
interesting to see whether such recentering induces a desirable higher-order property in our setup as in Lahiri
(1992).

57



imposing bootstrap analogs of Assumption M (i)-(iii), a similar argument to the proof of

Theorem 4 implies that −2 log `∗n(p) is approximated by[
1√
n

∑n
i=1 {s(X∗i , p)− s̄(p)} − {s(Θ0(ν̂∗), p)− s(Θ0(ν̂), p)}

]2
/V̂ (p). However, in the absence

of recentering, the additional term s̄(p)−s(Θ0(ν̂), p) appears in the numerator which makes

the bootstrap invalid. This is reminiscent of Stute, Gonzalez-Manteiga and Quindimil (1998)

who showed inconsistency of the classical bootstrap in the context of model checks for re-

gression. Using the quadratic expansion above, standard arguments based on Giné and

Zinn (1990) enable us to prove the following consistency result for the proposed bootstrap

statistic.

Proposition 1. Under Assumptions M and M’, the process {`∗n(p) : p ∈ Sd} converges

in distribution to the Gaussian process {{Z(p) − G(p; ν)′Z1}2/Var(s(X, p)) : p ∈ Sd} in

P ∗-probability, where P ∗ denotes the probability computed under the bootstrap distribution

conditional on the data.

Therefore, the bootstrap critical values of Kn are given by the quantiles of K∗n =

supp∈Sd{−2 log `∗n(p)}.

2.2.1.2 Case of no nuisance parameter

If there is no nuisance parameter to be estimated (i.e., Θ0(ν) = Θ0), Assumption M is im-

plied by the sole requirement that E[‖X‖ξH ] <∞ for some ξ > 2,3 and the null distribution

of Kn becomes

Kn
d→ sup
p∈Sd

Z(p)2

E[Z(p)2] ,

where Z is a Gaussian process with zero mean and covariance kernel Cov(s(X, p), s(X, q)).

For comparison, let us consider the Wald type statistic of Beresteanu and Molinari

(2008) adapted to the case of no nuisance parameters. In this case the statistic is simply

Wn =
√
ndH

(
1
n ⊕

n
i=1 Xi,Θ0

)
, i.e., the contrast provided by the Hausdorff distance between

the Minkowski average 1
n ⊕

n
i=1 Xi and the null hypothetical set Θ0. For convex sets, the

Wald type statistic Wn may be alternatively characterized using the support functions
3This follows from the Lipschitz property of the support function, |s(X, p) − s(X, q)| ≤ ‖X‖H ‖p− q‖

a.s. for any p, q ∈ Sd, which ensures that {s(X, p) : p ∈ Sd} is µ-Donsker by a standard empirical process
argument (e.g., van der Vaart, 1998, Example 19.7).
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as Wn =
√
n supp∈Sd

∣∣∣ 1
n

∑n
i=1 s(Xi, p)− s(Θ0, p)

∣∣∣ (Beresteanu and Molinari, 2008, equation

(A.1)). Based on the proof of Theorem 4, we can then see that

K1/2
n =

√
n sup
p∈Sd

E[Z(p)2]−1/2
∣∣∣∣∣ 1n

n∑
i=1

s(Xi, p)− s(Θ0, p)
∣∣∣∣∣+ op(1),

under H0. Therefore, while the Wald type statistic Wn of Beresteanu and Molinari (2008)

evaluates the contrast 1
n

∑n
i=1 s(Xi, p)−s(Θ0, p) over p ∈ Sd, the empirical likelihood statis-

tic Kn evaluates the same contrast but normalized by its standard deviation. This normal-

ization ensures that our statisticKn is invariant to scale transformations (i.e., multiplication

of both {Xi}ni=1 and Θ0 by some non-singular matrix independent of i), unlike the Wald

type statistic Wn which is sensitive to such transforms.4 In Section 2.4.1, we illustrate that

the lack of invariance of the Wald type statistic can yield different size properties depending

on what scaling is used.

When there is no nuisance parameter, it is possible to invert Kn to obtain an approxi-

mate confidence region within which the Aumann expectation E[X] lies with some desired

probability. Indeed, using the quadratic approximation for the empirical likelihood process

(cf. proof of Theorem 4), it follows that with probability α, the support function for the set

E[X] asymptotically satisfies s(E[X], p) ≤ n−1∑n
i=1 s(Xi, p) +

√
ĉα
n V̂ (p)1/2 for all p ∈ Sd,

where ĉα is the bootstrap estimate of the α-th quantile of the limiting distribution of Kn.

Based on the right hand side of this inequality, we can thus recover the confidence region

that covers E[X] with the desired probability level α.

2.2.2 Sieve empirical likelihood

Another way to construct an empirical likelihood for testing H0 in (2.2) is to incorporate

the continuum of moment conditions E[s(X, p)] = s(Θ0(ν), p) for all p ∈ Sd into a vector of

moments with growing dimension. Let k = kn be a sequence of positive integers satisfying

k → ∞ as n → ∞, and choose points (or sieve) {p1, . . . , pk} from Sd so that in the limit
4For the identified set Θ0 = {θ : E[m(θ)] ≤ 0} defined by a finite number of moment inequalities,

Chernozhukov, Kocatulum and Menzel (2015) proposed a confidence region that is invariant to arbitrary
one-to-one mappings of the form τ : Θ0 → Ψ. However, their construction does not apply in general to
our setup which is concerned with testing E[Xi] = Θ0 implying the continuum of moment inequalities. In
contrast, invariance of Kn is restricted to particular transformations (i.e., multiplication of both {Xi}ni=1
and Θ0 by some non-singular matrix independent of i).
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they form a dense subset of Sd. By plugging in the nuisance parameter estimator ν̂, the

sieve empirical likelihood function under the restrictions E[s(X, pj)] = s(Θ0(ν), pj) for

j = 1, . . . , k is defined as

ln = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wis(Xi, pj) = s(Θ0(ν̂), pj) for j = 1, . . . , k, wi ≥ 0,
n∑
i=1

wi = 1
}
.

(2.8)

If there is no nuisance parameter (i.e., Θ0(ν) = Θ0), we can simplify the proof of Theorem

5 below to show that (−2 log ln − k)/
√

2k d→ N(0, 1) under the null H0 : E[X] = Θ0. When

there are nuisance parameters, the statistic ln containing ν̂ is not internally studentized

(i.e., (−2 log ln − k)/
√

2k does not converge to the standard normal) due to the variance of

ν̂. To recover internal studentization, we penalize the dual form of ln as

Ln = sup
λ∈Λn

2
n∑
i=1

log(1 + λ′mk(Xi))− nλ′(V̄k − V̂k)λ, (2.9)

where mk(Xi) = [s(Xi, p1) − s(Θ0(ν̂), p1), . . . , s(Xi, pk) − s(Θ0(ν̂), pk)]′ and Λn,V̄k, and V̂k

are defined in Appendix B.1. The limiting null distribution of the penalized statistic Ln is

obtained as follows.

Theorem 5. Under Assumption S in Appendix B.1, it holds that (Ln − k)/
√

2k d→ N(0, 1)

under H0. In addition, (Ln − k)/
√

2k diverges to infinity under H1.

By adapting the proof of Theorem 5, we can show that under the local alternative

H1n : E[s(X, p)] = s(Θ0(ν), p) + anη(p) over p ∈ Sd,

for some continuous function η, where an = k1/4/
√
nη′kV̇kηk and ηk = (η(p1), . . . , η(pk))′,

the sieve empirical likelihood statistic satisfies (Ln−k)/
√

2k d→ N(2−1/2, 1). Therefore, the

test statistic (Ln − k)/
√

2k has non-trivial local power against a local alternative at the

an-rate. Also, we note that similar to the marked empirical likelihood statistic Kn, both ln

and Ln are invariant to scale transformations (i.e., multiplication of both {Xi}ni=1 and Θ0

by some non-singular matrix independent of i).

Compared to the marked empirical likelihood statistic studied in Section 2.2.1, the sieve
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empirical likelihood statistic Ln is asymptotically pivotal but requires choosing the sieve

{p1, . . . , pk}. A natural choice for locations of the sieve {p1, . . . , pk} is a grid of equidistant

angle values in Sd. The main remaining problem for practical implementation is choosing

the tuning parameter k. In the literature on empirical likelihood, several statistics have

been proposed possessing the same feature (i.e., asymptotically pivotal but depending on

smoothing parameters), see for instance Fan, Zhang and Zhang (2001), Chen, Härdle and Li

(2003), and Fan and Zhang (2004). Following the insight of Fan, Zhang and Zhang (2001)

and Fan and Zhang (2004), one may choose k to be the maximizer argmaxk∈[nc,nc′ ](Ln −

k)/
√

2k for some constants c′ ≥ c > 0. This results in a multi-scale test whose critical value

can be obtained by bootstrap. For goodness-of-fit testing of parametric regression models,

Fan and Huang (2001) showed adaptive minimaxity of such a test. A thorough analysis of

mutli-scale testing in our setup is beyond the scope of this chapter.

2.3 Discussion and extensions

2.3.1 Test for directed hypotheses

It is possible to extend the methodology of marked empirical likelihood to test directed

hypotheses of the form5

H0 : Θ0(ν) ⊆ E[X] vs. H1 : Θ0(ν) * E[X]. (2.10)

Beresteanu and Molinari (2008) were the first to develop a Wald type test for this problem.

Here we propose empirical likelihood tests. By analogy with the testing problem in (2.1),

the above is equivalent to testing the continuum of moment inequalities

H0 : s(Θ0(ν), p) ≤ E[s(X, p)] for all p ∈ Sd vs. H1 : s(Θ0(ν), p) > E[s(X, p)] for some p ∈ Sd.
5The null for the opposite direction H0 : E[X] ⊆ Θ0(ν) can be treated analogously.
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For a given direction p and preliminary estimator ν̂, the moment inequality restriction can

be used to form the directed-marked empirical likelihood function

~̀
n(p) = max

{
n∏
i=1

nwi

∣∣∣∣∣ s(Θ0(ν̂), p) ≤
n∑
i=1

wis(Xi, p), wi ≥ 0,
n∑
i=1

wi = 1
}
,

which can be equivalently written in the dual form as (see, Canay, 2010)

~̀
n(p) = min

λ≤0

n∏
i=1

1
1 + λ{s(Xi, p)− s(Θ0(ν̂), p)} .

Therefore, the directed hypothesis in (2.10) can be tested by assessing the process {~̀n(p) :

p ∈ Sd}. In particular, we propose the directed Kolmogorov-Smirnov type statistic ~Kn =

supp∈Sd{−2 log ~̀n(p)}. By similar arguments as in the proof of Theorem 4 (in particular,

by modifying the proof of Hjort, McKeague and van Keilegom 2009, Theorem 2.1), we

can show that ~Kn
d→ supp∈Sd

min{Z(p)−G(p;ν)′Z1,0}2
Var(s(X,p)) under H0. The same also applies for

testing the hypothesis H0 : θ0 ∈ E[X] for a singleton θ0 ∈ Rd. In this case, we simply set

s(Θ0(ν), p) = s(Θ0(ν̂), p) = p′θ0.

It may be possible to extend the construction of the sieve empirical likelihood statistic to

test the directed hypotheses in (2.10) by replacing the equality constraints
∑n
i=1wis(Xi, pj) =

s(Θ0(ν̂), pj) in (2.8) with the inequalities
∑n
i=1wis(Xi, pj) ≥ s(Θ0(ν̂), pj) for j = 1, . . . , k. If

k is fixed, we can apply the results of Canay (2010) to investigate its asymptotic properties.

However, for the case of k → ∞, the asymptotic analysis of the statistic is very different

and is beyond the scope of this chapter.

2.3.2 Linear transform and projection

Our empirical likelihood approach can be easily modified to test hypotheses on a linear

transform RE[X] of the Aumann mean, where R is an l× d constant matrix with l < d and

full row rank. The first test for such hypotheses was proposed by Beresteanu and Molinari

(2008) who employed a Wald type statistic based on the Hausdorff metric. Here we provide

empirical likelihood based alternatives. Since the null hypothesis HR
0 : RE[X] = RΘ0(ν) is

equivalent to HR
0 : E[s(X,R′q)] = s(Θ0(ν), R′q) for all q ∈ Sl, this motivates the use of the

62



marked empirical likelihood function `n(R′q) for q ∈ Sl, and the Kolmogorov-Smirnov type

statistic KR
n = supq∈Sl{−2 log `n(R′q)} for testing the null. By the invariance property, the

latter is simply KR
n = supp∈∆{−2 log `n(p)}, where ∆ = {R′q/ ‖R′q‖ : q ∈ Sl} is a subset of

Sd. Thus, the test statistic KR
n for the linear transform is given by taking the supremum

over a particular subset ∆ ⊂ Sd rather than the whole set Sd as is the case with Kn. A

modification of Theorem 4 then implies KR
n

d→ supp∈∆
{Z(p)−G(p;ν)′Z1}2

Var(s(X,p)) under HR
0 . It is also

possible to extend the sieve empirical likelihood approach to test HR
0 by choosing a sieve on

∆.

Now let us discuss one of the most important examples: testing for the projection of

E[X] to one of its components. We argue that in this case the sieve empirical likelihood

(with profiling out for ν) is particularly attractive. Suppose we are interested in the first

component (i.e., R = [1, 0, . . . , 0]). In this case, the null hypothesis HR
0 : RE[X] = RΘ0(ν)

reduces to the two moment constraints HR
0 : E[s(X,R′q)] = s(Θ0(ν), R′q) for q = ±1. Let

ν be defined through the estimating equations E[m(zi, ν)] = 0 for observables zi.6 Then

the sieve empirical likelihood reduces to the conventional empirical likelihood:

ln(ν) = max


n∏
i=1

nwi

∣∣∣∣∣∣∣∣∣∣∣
n∑
i=1

wi


s(Xi, R

′)− s(Θ0(ν), R′)

s(Xi,−R′)− s(Θ0(ν),−R′)

m(zi, ν)

 = 0, wi ≥ 0,
n∑
i=1

wi = 1


.

By Qin and Lawless (1994), mild regularity conditions guarantee Wilks’ theorem, that is

−2 maxν{log ln(ν)} d→ χ2
2 under HR

0 . In this case, we recommend internalizing the nuisance

parameters ν and profiling them out because the statistic ln(ν̂) with a preliminary estimator

ν̂ is not asymptotically pivotal in general. See Section 2.3.3 below for further discussion.

2.3.3 Profile likelihood

In Section 2.2, we considered empirical likelihood statistics where the nuisance parameters

ν are replaced with a preliminary estimator ν̂. This approach is particularly practical when

the dimension of ν is high. On the other hand, as explained in the last subsection, there are

some situations where profiling out ν may be desirable to achieve asymptotic pivotalness.
6When ν is defined by a smooth function of means, it can be treated as in Owen (2001, Section 3.4).
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Here we discuss some such extensions for profiling out ν. Again, suppose throughout that

ν is defined by some estimating equations E[m(zi, ν)] = 0 for observables zi.

The marked profile empirical likelihood can be defined as `Pn (p) = maxν `n(p, ν), where

`n(p, ν) = max


n∏
i=1

nwi

∣∣∣∣∣∣∣
n∑
i=1

wi

 s(Xi, p)− s(Θ0(ν), p)

m(zi, ν)

 = 0, wi ≥ 0,
n∑
i=1

wi = 1

 .
There is a computational drawback of this approach: it requires optimization with re-

spect to ν for each p. Although the technical arguments would be more involved than

the plug-in case, by extending the argument in Qin and Lawless (1994, Corollary 5) we

can obtain the limiting distribution of the process `Pn (p). In particular, defining gi(p, ν) =

[s(Xi, p) − s(Θ0(ν), p),m(zi, ν)]′, we can show that supp∈Sd{−2 log `Pn (p)} will converge to

supp∈Sd{Z̃(p)′Z̃(p)}, where Z̃(p)′ = [Z(p), Z ′1]
(
I − S(p)

(
S(p)′Ω(p)−1S(p)

)−1
S(p)′

)
Ω(p)−1/2,

with Z1 denoting the limiting distribution of n−1/2∑n
i=1m(zi, ν0), S(p) =

 G(p; ν0)′

E[∂m(zi, ν0)/∂ν ′]


(here G(p; ν0)′ is as defined in (2.5) and the existence of E[∂m(zi, ν0)/∂ν ′] is assumed), and

Ω(p) = Var(gi(p, ν0)). We note the limiting distribution is still not pivotal, and the critical

value needs to be approximated by bootstrap.

Similarly, the sieve profile empirical likelihood can be defined as lPn = maxν ln(ν), where

ln(ν) = max


n∏
i=1

nwi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n∑
i=1

wi



s(Xi, p1)− s(Θ0(ν), p1)
...

s(Xi, pk)− s(Θ0(ν), pk)

m(zi, ν)


= 0, wi ≥ 0,

n∑
i=1

wi = 1


.

Compared to the marked profile empirical likelihood `Pn (p), the sieve statistic lPn is more

tractable because it requires optimization with respect to ν only once. Additionally, by

arguing as in Donald, Imbens and Newey (2003, Theorems 6.3-6.4), it can be shown that the

null distribution is standard normal, i.e. (lPn − k)/
√

2k d→ N(0, 1) under certain conditions.

Thus, the profile statistic lPn is asymptotically pivotal without the need for penalization as

in (2.9).
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2.3.4 Inference based on estimated random sets

In some applications, the random set of interest X is not directly observable because it

contains some parameters to be estimated. For example, in the context of treatment effect

analysis in experimental studies, Balke and Pearl (1997) proposed nonparametric bounds

on the average treatment effect when the treatment assignment is random but subject

compliance is imperfect. In a general form, Balke and Pearl’s (1997) bound on the average

treatment (ATE) can essentially be written as

max
1≤j≤JL

E[gjLi]
E[hjLi]

≤ ATE ≤ max
1≤j≤JU

E[gjUi]
E[hjUi]

, (2.11)

where gjLi (j = 1, . . . , JL) and gjUi (j = 1, . . . , JU ) are observable scalar random variables.

By applying the “smooth-max” approximation (Chernozhukov, Kocatulum and Menzel,

2015), these bounds can be approximated by
∑JL
j=1w

j
AE[gjAi]/E[hjAi] with

wjA = e%E[gjAi]/E[hjAi]/

 JA∑
j=1

e%E[gjAi]/E[hjAi]


for A = L and U . Indeed, the approximation error satisfies

∣∣∣∣∣∣
JA∑
j=1

wjAE[gjAi]/E[hjAi]− max
1≤j≤JA

E[gjAi]/E[hjAi]

∣∣∣∣∣∣ = O(%−1)

for A = L and U . Thus by choosing % large enough, the bounds on the ATE given above

are well approximated by the Aumann expectation E[Xi(γ)] of the SVRV

Xi(γ) =

 JL∑
j=1

wjLg
j
Li/E[hjLi],

JU∑
j=1

wjUg
j
Ui/E[hjUi]

 ,
where γ = (E[g1

Li], . . . , E[gJLLi ], E[h1
Li], . . . , E[hJLLi ], E[g1

Ui], . . . , E[gJUUi ], E[h1
Ui], . . . , E[hJUUi ])′.

In this case, the SVRV of interest Xi(γ) is not observable because it contains unknown

parameters γ.

In order to test null hypotheses of the form H0 : E[X(γ)] = Θ0(ν), the marked empir-

ical likelihood function `n(p) in (2.3) can be modified by replacing Xi with the estimated
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counterpart Xi(γ̂), where γ̂ is an estimator of γ. By imposing assumptions analogous to

Assumption M (i)-(iii) to deal with the estimation error of Xi(γ̂) − Xi(γ) along with the

assumption supp∈Sd E[|s(Xi(γm), p)− s(Xi(γ), p)|2]→ 0 for all γm → γ, we can show that

Kn
d→ sup
p∈Sd

{Z(p)−G(p; ν)′Z1 + Γ(p; γ)′Z2}2

Var(s(X(γ), p)) ,

where (Z(p), Z ′1, Z ′2)′ ∼ N(0, Ṽ (p)), Ṽ (p) is the limiting covariance matrix of

(n−1/2∑n
i=1{s(Xi, p)− E[s(X, p)]},

√
n(ν̂ − ν)′,

√
n(γ̂ − γ))′, and Γ(p; γ) is a function such

that

|E[s(X(γ̂), p)]− E[s(X(γ), p)]− Γ(p; γ)′(γ̂ − γ)| = op(n−1/2).

To obtain a critical value for testing, we can adapt the bootstrap procedure presented in

Proposition 1 (by replacing X∗i and s̄(p) in (2.7) with X∗i (γ̂∗) and n−1∑n
i=1 s(Xi(γ̂), p),

respectively). The asymptotic validity of this bootstrap procedure can be shown under the

additional condition: supp∈Sd |s̄(Xi(γ̂∗), p)− s̄(Xi(γ̂), p)−Γ(p; γ)′(γ̂∗− γ̂)| = op∗(n−1/2) with

probability approaching 1.

It is also possible to employ the sieve empirical likelihood statistic by replacing Xi in

(2.8) with the estimated set Xi(γ̂). Recall that in Section 2.2.2 we were able to incorporate

nuisance parameters into the sieve statistic by linearizing the term s(Θ0(ν̂), p)−s(Θ0(ν), p)

and incorporating the effect of the resulting additional terms via penalization (see Appendix

B.1 for more details). We can proceed similarly for the case of estimated sets if we impose

the following assumption enabling linearization of s̄(Xi(γ̂), p)− s̄(Xi(γ), p) as

sup
p∈Sd
|s̄(Xi(γ̂), p)− s̄(Xi(γ), p)− Γ̄(p; γ)′(γ̂ − γ)| = op(n−1/2),

where Γ̄(.; .) is the derivative of s̄(Xi(γ), p) with respect to γ satisfying some regularity

properties akin to Assumption S (iii) (i.e., (i) Γ̄(p; γ) converges uniformly in both p and

ν to a non-stochastic Γ(p; γ) satisfying supp∈Sd ‖Γ(., γ)‖ < ∞ and (ii) for all γ̃ in some

neighborhood of γ, supp∈Sd
∥∥∥Γ̄(p; γ̃)− Γ̄(p; γ)

∥∥∥ ≤M ‖γ̃ − γ‖α for some α ≥ 2/3 andM <∞

independent of γ̃). By a straightforward modification of the penalty term in (2.9), we can

obtain a corresponding result to Theorem 5 for the case of estimated random sets.
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Alternatively, it is possible to employ a profile likelihood approach as in section (2.3.3);

this is particularly attractive for tests on low dimensional projections of the set Θ0(ν).

2.3.5 Measurements on support function

In medical imaging and robotic vision, researchers sometimes directly observe measurements

of the support function of a convex set of interest (see, Fisher et al., 1997). When noiseless

measurements of {s(Xi, ·)}ni=1 are available, the marked empirical likelihood method can be

applied immediately to hypothesis testing. Another common statistical question in image

analysis of convex shaped data is to recover a set of interest from noisy measurements of its

support function. In this problem, we observe the pairs {si, pi}ni=1, where si = s(Θ, pi) + εi

with error εi and pi ∈ Sd. Fisher et al. (1997) developed an estimation method for Θ

by estimating the support function s(Θ, ·) nonparametrically. Our empirical likelihood

approach can be adapted to test the hypothesis that Θ takes a particular shape Θ0, such as

a circle or ellipse. The marked empirical likelihood function under the restriction E[si|pi =

p] = s(Θ0, p) may be constructed as

˜̀
n(p) = max

{
n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wiKb(pi − p){si − s(Θ0, p)} = 0, wi ≥ 0,
n∑
i=1

wi = 1
}
, (2.12)

where Kb(·) is a kernel function depending on the smoothing parameter b. For example, the

Cramér-von Mises type statistic, given by Tn =
∫
p∈Sd −2 log ˜̀

n(p)dp, can be shown to be

asymptotically normal under the null after certain normalizations as in Chen, Härdle and

Li (2003). Alternatively, following Härdle and Mammen (1993), a wild bootstrap method

(i.e., resampling s∗i = s(Θ0, pi)+v∗i ε̂i with ε̂i = si−s(Θ0, p) and v∗i ∼two-point distribution)

can be applied to obtain the critical value.

Simulation results, presented in Appendix B.5, demonstrate reasonable size and power

properties for our empirical likelihood test.
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2.4 Examples

2.4.1 Best linear prediction with interval valued dependent variable

We first consider the issue of best linear prediction with interval valued dependent variables.

In particular, we employ the setup of Beresteanu and Molinari (2008), follow their argument,

and use the characterization they provide. See also Bontemps, Magnac and Maurin (2012)

for an extension to instrumental variable regression.

In usual regression models, we are mostly interested in the best linear relationship

between a dependent variable y and independent variables x, which can be estimated by

the least squares method. On the other hand, if y is unobservable but we observe the interval

[yL, yU ] to which y belongs almost surely, it would be of interest to conduct inference on

the set of the least squares coefficients Υ = {arg minθ
∫
{y − (1, x′)θ}2dµ for some µ ∈M},

where M is the set of distributions of (y, x) compatible with y ∈ [yL, yU ] almost surely.

There are numerous examples of interval data, including data on wealth (e.g., the Health

and Retirement Study) and income (e.g., the Current Population Survey), top coding in

surveys, and ordered categorical measurements (e.g., age, expenditure, GPA, and so on). By

using the Aumann expectation for the random set W =

 [yL, yU ]

[xyL, xyU ]

 ⊂ Rdim(x)+1, the

set of least square coefficients may be written as Υ = Σ−1E[W ], where Σ = E

 1 x′

x xx′


(see, Beresteanu and Molinari, 2008, Proposition 4.1).7

We note that if there is no intercept in the regression and x is scalar (or there is only an

intercept), then the set of best linear predictors is the interval Υ = [E[xyL]/E[x2], E[xyU ]/E[x2]].

Thus, inference on Υ may be conducted by the conventional empirical likelihood for the

vector of parameters (E[xyL], E[xyU ], E[x2]) or via regressions of yL and yU on the scalar

x. However, if the regression model contains an intercept or x is a vector, then the set Υ is

multi-dimensional and neither the conventional empirical likelihood for (E[(1, x′)yL], E[(1, x′)yU ],Σ)

nor regressions of yL and yU on (1, x′) are sufficient for characterizing it completely. Intu-
7Chandrasekhar et al. (2012) extended this model further to allow for yL and yU to be nonparametrically

estimable functions. Although it is beyond the scope of this chapter, it would be interesting to extend our
empirical likelihood approach to such situations.
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itively this is because, as can be seen from the characterization of the support function of

Υ given below, we also need to consider situations where some observations of y take the

value yL while the others take yU .

For the following theoretical results we shall suppose that x is a continuous random vari-

able which ensures Υ is strictly convex. Regarding the support function, the null hypothesis

H0 : Υ = Υ0 for a strictly convex Υ0 can be written as H0 : E[s(W,p)] = s(ΣΥ0, p) for all

p ∈ Sd, where s(W,p) = [yL + (yU − yL)I{(1, x′)p ≥ 0}](1, x′)p and d = dim(x) + 1. This is

equivalent to the general setup of Section 2 if one defines Θ0(ν) = ΣΥ0, where the nuisance

parameter ν = vec(Σ) is estimated by its sample counterpart vec(Σ̂). Furthermore, since

s(ΣΥ0, p) = s(Υ0,Σp), the support function of the set ΣΥ0 can be computed from that

of Υ0. Let ∇s(Υ0, p)′ = [yL + (yU − yL)I{(1, x′)p ≥ 0}](1, x′) be the Fréchet derivative of

s(Υ0, p) with respect to p, and define G(p; ν) = p⊗∇s(Υ0,Σp), where ⊗ represents the Kro-

necker product. Note that G(p; ν)′ is the pointwise derivative of s(ΣΥ0, p) (s(Θ0(ν0)) in the

terminology of Section 2) with respect to ν = vec(Σ). In this setup, the null distributions

of the empirical likelihood statistics are obtained as follows.

Proposition 2. Consider the setup of this subsection. Assume that {yLi, yUi, xi}ni=1 is i.i.d.,

where the distribution of xi is absolutely continuous with respect to the Lebesgue measure

on Rd−1, and Σ is full rank.

(i) Suppose E[‖(yLi, yUi, x′iyLi, x′iyUi)‖
ξ] <∞ for some ξ > 2, E[‖xi‖4] <∞, and

Var(yLi|xi),Var(yUi|xi) ≥ σ2 a.s. for some σ2 > 0. Then Kn
d→ supp∈Sd

Z̃(p)2

Var(s(Wi,p)) un-

der H0, where Z̃(·) = Z(·) − G(·; ν)′Γ is the Gaussian process implied from (Z(p),Γ)′ ∼

N(0, Ṽ (p)) and Ṽ (p) is the covariance matrix of the vector (s(Wi, p), {zi − vec(Σ)}′).

(ii) Suppose E[‖(yLi, yUi, x′iyLi, x′iyUi)‖
ξ] <∞ for some ξ ≥ 4, E[‖xi‖4] <∞, and ∇s(Υ0, p)

is locally Hölder continuous of order α ≥ 2/3 over the domain Sd. Also assume k →∞ and

(k5φ̇−6
k )

ξ
ξ−2 /n→ 0, where φ̇k is defined in Appendix B.1. Then Ln−k√

2k
d→ N(0, 1) under H0.

The assumptions are similar to those of Beresteanu and Molinari (2008, Theorem 4.3).

These results are obtained by verifying the conditions in Theorems 4 and 5. The critical

values for the marked empirical likelihood test may be obtained by the bootstrap procedure

presented in Proposition 1.
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We now evaluate the finite sample performance of our test statistic by conducting in-

ference on the returns to education on (log) wages using data from the Current Population

Survey (CPS). We use data from the March 2009 wave of the CPS on white males aged be-

tween 20 and 50 who earn at least $1000/year. This gives 18017 observations on wages and

education. Analogous to the construction in Beresteanu and Molinari (2008), the wage data

(in thousands of dollars) is artificially bracketed and top-coded in terms of the following

brackets (the top coding value is $100 million):

[1, 5], [5, 7.5], [7.5, 10], [10, 12.5], [12.5, 15], [15, 20], [20, 25], [25, 30], [30, 35], [35, 40],

[40,50], [50, 60], [60, 75], [75, 100], [100, 150], [150, 100000]

Thus, the variables (yLi, yUi,xi) correspond to lower and upper bounds of log wages and

education, respectively. We draw 5000 samples of size n =100, 200, 500, 1000, and 2000

from the ‘true’ population (consisting of 18017 observations from the CPS) and conduct

inference for Υ, the set of intercept and slope coefficients consistent with the population

data. Table 2.1 reports the rejection frequencies of the marked empirical likelihood test un-

der the nominal 5% rejection level. This is compared with Wald-type test statistics based

on the Hausdorff distances ndH
(
Σ̂−1 1

n ⊕
n
i=1 Wi,Υ0

)2
and ndH

(
1
n ⊕

n
i=1 Wi, Σ̂Υ0

)2
(called

Wald 1 and 2, respectively). The first Wald-type test was proposed by Beresteanu and

Molinari (2008). For both the marked empirical likelihood and Wald tests, the critical

values are obtained by the bootstrap calibrations outlined in Section 2.2 with 399 repe-

titions. In Table 2.1 it is seen that the marked empirical likelihood test has good size

control and performs better than both Wald tests for smaller sample sizes. As explained

previously, the Wald statistic is not invariant to multiplication of the sets by a constant

matrix unlike the empirical likelihood tests; this drawback is evident in the different sizes

for the two Wald tests.8 The statistics vary considerably along p; for some directions

p = (cosϑ, sinϑ)′ with ϑ =
(
0, π3 ,

π
4 ,

2π
3 ,

π
2

)
, the critical values of Wald 1, marked EL,

and V̂ (Σ̂p) are (5.3 × 10−2, 2.0 × 10−5, 1.4 × 10−4, 2.5 × 10−4), (10, 6.8, 4.3, 2.0, 0.14), and

(7.5, 337.4, 610.0, 870.8, 1.1× 103), respectively.

We can also adapt the construction of the confidence set based on Kn, described in
8As expected, however, the marked empirical likelihood test is computationally more expensive than the

Wald test. In particular, for sample size n = 1000, the marked empirical likelihood test with 399 bootstrap
repetitions has an average run time of 5.7 seconds as compared to 0.6 seconds for the Wald test.
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Section 2.2, to the present context. We exploit the invariance property of Kn which ensures

that with probability α the inequalities s(Υ, p) ≤ n−1∑n
i=1 s(Σ̂−1Xi, p) +

√
ĉα
n V̂ (Σ̂−1p)1/2

hold asymptotically for all p ∈ Sd, where ĉα estimates the α-th quantile of the limiting

distribution of Kn. In particular, we can obtain ĉα by the bootstrap procedure presented in

Section 2.3.4. Figure 2.1 displays the 95% confidence region thus obtained for a sample size

of n = 1000, along with the ‘true’ population region and also the confidence region from

the Wald-type test proposed in Beresteanu and Molinari (2008). It can be seen that the

confidence region based on Kn covers an area that is much less (< 5%) than the one based

on the Wald test.

We can also employ our inferential procedures to obtain confidence intervals for the

best linear predictor of the (log) wage y given some education x. This is equivalent to

providing a confidence region for the projection RΥ0 where R = (1, x). To this end, we

can use the results from Section 2.3.4 on estimated random sets by exploiting the fact

E[s(Σ−1W,R′q)] = s(Υ, R′q), where setting q = 1 and −1 gives the upper and lower bounds

for the confidence interval. Table 2.2 reports the estimated prediction intervals for the

cases when x = 12 (corresponding to high school education) and x = 16 (corresponding to

undergraduate degree). For computational reasons we report the results for profile likelihood

using the Euclidean likelihood function (c.f. Section (2.2.1)). The profile likelihood is used

to obtain a joint confidence set for the upper and lower bounds of the interval, from which

we obtain a necessarily conservative confidence interval by taking the worst possible value

for each of the components. Nevertheless, the length of the confidence interval is comparable

to, or smaller, than those based on the Marked EL and Wald statistics.

In Appendix B.4, we report additional numerical results to compare the marked em-

pirical likelihood confidence region - displayed in Figure 2.1 - with the one based on the

method by Chernozhukov, Kocatulum and Menzel (2015).

2.4.2 Boolean model

In the context of mathematical morphology, geostatistics, and particle statistics, researchers

often observe a series of two or three dimensional random sets, such as tumors and sand or

rock grains (see, Stoyan, 1998, for a review). One of the most popular models to explain the
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n Size (Marked EL) Size (Wald 1) Size (Wald 2)
100 0.038 0.098 0.107
200 0.049 0.073 0.081
500 0.057 0.069 0.059
1000 0.053 0.057 0.059
2000 0.050 0.056 0.058

Table 2.1: Rejection frequencies of the marked empirical likelihood and Wald tests at the
nominal 5% level

Education True Region Profile Lik. Marked EL Wald
High school degree [3.549, 3.931] [3.454, 3.999] [3.456, 3.995] [3.465, 3.983]

Undergraduate degree [4.020, 4.915] [3.967, 5.051] [3.906, 5.003] [3.873, 4.976]

Table 2.2: 95% confidence intervals for the best linear predictor of (log) wage y given
education x using profile likelihood, marked Empirical Likelihood and Wald statistics
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Figure 2.1: The population identification region (solid line) and the corresponding 95%
confidence regions using the marked empirical likelihood statistic (dashed line) and the
Wald statistic (dotted line) for sample size n = 1000.
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growth pattern of these shapes is the Boolean model, where the random set is generated as

X = ∪j{Wj ⊕ {gj} : gj ∈ G} based on i.i.d. copies of random sets Wj ⊂ Rd (j = 1, 2, . . .),

and a point process G in Rd for the foci {gj : j ∈ N}. For example, Cressie and Hulting

(1992) developed a Boolean model to describe the growth of tumor shapes by specifying G

to be a Poisson process with constant intensity function λ over a unit circle support. For

simplicity, we shall assume that Wj = W is a non-random ball with unknown radius R. We

note that taking R to be non-stochastic is not too strong a requirement in this instance.

Indeed, as seen in Cressie and Hulting (1992), the variance of R is an order of magnitude

smaller than its mean. We thus consider γ = (R, λ) as parameters of the tumor growth

process which differ for normal and malignant tissues; consequently, we wish to conduct

inference on these joint parameters.

To estimate γ = (R, λ), Cressie and Hulting (1992) focused on the hitting probabil-

ity (or capacity functionals). Alternatively, we can conduct inference using the Aumann

expectation. More precisely, given the hypothesized parameter value γ0, we can numer-

ically evaluate the Aumann expectation Θ(γ0) = E[X(γ0)]. Then based on the sample

{X1, . . . , Xn} of tumor shapes of patients, the hypothesis H0 : γ = γ0 can be tested via

our methods for E[X] = Θ(γ0), specifically the marked (Section 2.1) and sieve empirical

likelihood (Section 2.2) statistics.

We note that X may not be convex in this example. However, as long as X is compact

valued, the Aumann expectation E[X] emerges as the almost sure limit of the Minkowski

average of the sample {X1, . . . , Xn}. Therefore, the Aumann expectation can be intuitively

interpreted as the ‘average’ shape of the observed sets. Furthermore, since the underlying

probability measure is non-atomic in this example, it holds that E[X] = E[co(X)] (see, the

discussion in Section 2.2). So, even though X is non-convex, our inferential procedures con-

tinue to hold after applying the convex hull operation (note: the support function remains

unchanged since s(X, p) = s(co(X), p) for any compact X).

We present some Monte Carlo simulation based on Cressie and Hulting (1992) to evaluate

the finite sample performance of our test statistics. In particular, we simulate the data

from the estimated parameter values for γ obtained in Cressie and Hulting (1992, Table 3)

with 5000 Monte Carlo replications for the sample sizes n =100, 200, and 500. Numerical
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evaluation of Θ(γ0) is achieved by averaging over 5000 draws of the process generated using

the parameter value γ0.

Table 2.3 reports the rejection frequencies of the marked empirical likelihood test under

the nominal 5% rejection level. The null hypothesis is H0 : γ0 = (1.342, 4.046). We consider

three types of alternatives Ha
1 : (1.342, 4.5), Hb

1 : (1.320, 4.046), and Hc
1 : (1.320, 4.5). The

critical values for this test are obtained by implementing the bootstrap procedure outlined

in Section 2.3.4 with 99 repetitions. With respect to CPU seconds, the average computing

time to obtain the bootstrap critical values is 4.85 for 399 repetitions and 1.84 for 99

repetitions. With additional parallel processing, we expect that these times may be further

reduced. The first column indicates the test statistic has good size control over the sample

sizes. The second and third columns show that the statistic is sensitive to slight changes in

R and, to a lesser extent, changes in λ. This is consistent with the standard deviations of

the estimates in Cressie and Hulting (1992, Table 3) which are large for λ compared to R.

The fourth column reports the power properties of the test when changing both R and λ.

In this case, these changes somewhat cancel each other out in the net effect (lower radius

vs. higher number of foci), which explains why the alternative Hc
1 is harder to reject.

Table 2.4 reports analogous results for the sieve empirical likelihood test. We construct

the sieve from a grid of equidistant angle values corresponding to directions of the support

function. We report outcomes for different values of sieve size k =3, 5, and 10. The critical

values for the test are based on a χ2
k calibration since, for the sample sizes and values of

k considered, the theoretical normal approximation is found to be too rough. We see that

the sieve empirical likelihood dominates the marked empirical likelihood in terms of power

for all values of k while having comparable size control for smaller values of k.

So far we have considered inference for the joint hypothesis involving both parameters R

and λ. By using our empirical likelihood tests with nuisance parameters, it is also possible

to test the single parameter hypothesis H0 : λ = λ0 by plugging-in an estimated value for

R (e.g. the one in Cressie and Hulting, 1992).
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n H0 Ha
1 Hb

1 Hc
1

100 0.059 0.259 0.389 0.074
200 0.063 0.461 0.679 0.099
500 0.071 0.856 0.973 0.173

Table 2.3: Rejection frequencies of the marked empirical likelihood test at the nominal 5%
level

n, k H0 Ha
1 Hb

1 Hc
1

100, 3 0.058 0.328 0.475 0.078
100, 5 0.074 0.383 0.584 0.088
100, 10 0.102 0.393 0.521 0.121
200, 3 0.059 0.569 0.789 0.095
200, 5 0.066 0.648 0.890 0.101
200,10 0.085 0.581 0.847 0.110
500, 3 0.070 0.944 0.993 0.176
500, 5 0.082 0.974 0.999 0.202
500, 10 0.090 0.940 0.999 0.174

Table 2.4: Rejection frequencies of the sieve empirical likelihood test at the nominal 5%
level

2.4.3 Treatment effect

We consider the problem of inference for nonparametric bounds on average treatment effects

in the presence of imperfect compliance. In particular, we conduct a simulation study based

on the Vitamin A supplementation example in Balke and Pearl (1997, Section 4.1). Briefly,

the study consisted of administering doses of Vitamin A in a randomized trial to check

for the effect on mortality. While the assignment to control and treatment groups was

random, there were a substantial number of subjects who did not consume the treatment

even when assigned to the treatment group. In the absence of any further assumptions

on the relationship between compliance and response, Balke and Pearl (1997) obtained the

sharpest possible bounds on the average treatment effect, which are of the form described in

(2.11). Using the marked empirical likelihood statistic with estimated random sets proposed

in Section 2.3.4, we can provide ways to conduct inference and construct confidence intervals

for such bounds.

We use data simulated from the estimated joint probability distributions obtained in

Balke and Pearl (1997, Tables 1 and 2) with 5000 Monte Carlo replications for each of the

sample sizes n =500, 1000, 2500, and 5000. Note that the numerical example in Balke
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n H0 Ha
1 Hb

1 Hc
1

500 0.053 0.193 0.122 0.197
1000 0.054 0.342 0.288 0.335
2500 0.051 0.891 0.967 0.940
5000 0.055 0.998 1.000 0.998

Table 2.5: Rejection frequencies of the marked empirical likelihood test at the nominal 5%
level

and Pearl (1997) is based on over 20000 observations. We look at the size and power

properties of the marked empirical likelihood test statistic under the null of the identified

set H0 : Θ0 = [−0.1946, 0.0054] and the alternative hypotheses obtained by expanding,

contracting, and shifting Θ0 to the left by a value of 0.025 (i.e., Ha
1 : [−0.2196, 0.0304],

Hb
1 : [−0.1696,−0.0196], and Hc

1 : [−0.2196,−0.0196], respectively). The critical value for

the test is obtained by implementing the bootstrap procedure outlined in Section 2.3.4 with

399 repetitions. The tuning parameter % for the ‘smooth-max’ approximation (cf. Section

2.3.4) employed in this test is chosen to be % = 1000.

Table 2.5 reports the rejection frequencies of the marked empirical likelihood test under

the nominal 5% rejection level. We can see that the our testing procedure has excellent size

properties across all sample sizes (which are much smaller than the numerical example in

Balke and Pearl, 1997). Also, our test has reasonable power properties against the three

types of alternatives when the sample size is large enough.

A comparison with the Wald statistic of Beresteanu and Molinari (2008) shows that

both statistics have similar size and power properties. The marked empirical likelihood test

appears on average to have higher power, but the difference is marginal; in particular, the

confidence regions are around 3.5% shorter. Because the results are so similar, we do not

report the additional simulations here.
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Chapter 3

Inference on distribution functions

under measurement error

3.1 Introduction

This chapter is concerned with inference on the cumulative distribution function (cdf) FX∗ in

the classical measurement error modelX = X∗+ε. Here, we observeX instead ofX∗ and ε is

a measurement error. There is a rich literature on using density deconvolution for estimating

the probability density function (pdf) fX∗ (see, Meister, 2009, for a review). By contrast, the

literature on estimation and inference for the cdf FX∗ is relatively thin. Fan (1991) proposed

a cdf estimator by integrating the deconvolution density estimator with some truncation.

This truncation for the integral is circumvented in Hall and Lahiri (2008) (for the case where

the pdf fε of ε is symmetric) and Dattner, Goldenshluger and Juditsky (2011) (for the case

where fε is possibly asymmetric). Hall and Lahiri (2008) studied the L2-risk properties of

the cdf estimator. Dattner, Goldenshluger and Juditsky (2011) considered minimax rate

optimal estimation of FX∗ . Both Hall and Lahiri (2008) and Dattner, Goldenshluger and

Juditsky (2011) focused on the risk properties of the estimator F̂X∗(t0) at a given t0 and

assumed ordinary smooth densities for fε. These papers demonstrate that in contrast to the

no measurement error case, the cdf estimator F̂X∗(t0) typically converges to FX∗(t0) at a

nonparametric rate. On the other hand, Söhl and Trabs (2012) established a uniform central

limit theorem for linear functionals of the deconvolution estimator that can be applied to
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derive a Donsker-type theorem, i.e., the weak convergence of
√
n{F̂X∗(·) − FX∗(·)} to a

Gaussian process. Söhl and Trabs (2012) considered the case of ordinary smooth fε, and

for the Donsker-type result obtained therein, it is demanded that the Fourier transform

f ft
ε satisfy |f ft

ε (·)| ≤ C| · |−β for some β < 1/2 and C > 0. The latter excludes the

Laplace distribution, for instance. It must be emphasized that (except for Fan, 1991, on

the truncated estimator) all these papers concentrate on the case of ordinary smooth and

known fε, so the cases of super smooth and unknown fε (with repeated measurements) are

not covered.

In this chapter, we investigate validity of asymptotic and bootstrap approximations

for the distribution of the maximal deviation Tn = supt∈T |F̂X∗(t) − FX∗(t)| in the sup-

norm over some set T between the deconvolution cdf estimator F̂X∗ of Hall and Lahiri

(2008), and FX∗ . Our analysis allows fε to be ordinary or super smooth, or to be unknown

and estimated by repeated measurements. We also characterize the convergence rate of

the bootstrap approximation error and find that it is of polynomial order under ordinary

smooth errors, and logarithmic order under super smooth errors. Our approximation results

on the distribution of Tn are applicable to various contexts, such as confidence bands for FX∗

and its quantiles, and for performing various cdf-based tests such as goodness-of-fit tests

for parametric models of densities, two sample homogeneity tests, and tests for stochastic

dominance. We emphasize that some inference problems, such as testing for stochastic

dominance, are cumbersome to be handled by density-based methods. Also, even in cases

where density-based methods are applicable (e.g., goodness-of-fit testing), the cdf-based

methods are expected to have desirable power properties.

In the context of density deconvolution, Bissantz, Dümbgen, Holzmann and Munk (2007)

extended Bickel and Rosenblatt’s (1973) construction of uniform confidence bands for den-

sities to the classical measurement error model with the ordinary smooth fε. A recent paper

by Kato and Sasaki (2016) considered confidence bands of the pdf fX∗ with unknown fε.

In contrast to the above papers, this chapter is concerned with inference on the cdf FX∗ .

Dattner, Reiß and Trabs (2016) proposed a quantile estimator of X∗ and obtained the uni-

form convergence rate. This chapter provides a confidence band for the quantile function

of X∗.
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This chapter is organized as follows. In Section 3.2, we focus on the case of known fε and

present the asymptotic and bootstrap approximations for Tn. Section 3.3 considers the case

where fε is unknown but repeated measurements on X∗ are available, and studies validity of

a bootstrap approximation for the distribution of Tn. Section 3.4 contains four applications

of the main results: a confidence band for quantiles (Section 3.4.1), goodness-of-fit test for

parametric models of FX∗ (Section 3.4.2), homogeneity test for two samples (Section 3.4.3),

and test for stochastic dominance (Section 3.4.4). Section 3.5 presents some simulation

evidences. In Section 3.6, we consider a real data example. In particular, we employ the

new test of stochastic dominance to study welfare changes of different population sub-

groups using potentially mis-measured income data from Korea. All proofs are contained

in Appendix C.

3.2 Case of known measurement error distribution

3.2.1 Setup

We first introduce our basic setup. Suppose we observe a random sample {Xi}ni=1 generated

from

X = X∗ + ε, (3.1)

where X∗ is an unobservable variable of interest and ε is its measurement error. Throughout

the chapter, ε is assumed to be independent of X∗ (i.e., ε is the classical measurement error).

Let i =
√
−1 and f ft be the Fourier transform of a function f . If the pdf fε of ε is known,

the pdf fX∗ of X∗ can be estimated by the so-called deconvolution kernel density estimator

(see, e.g., Stefanski and Carroll, 1990)

f̂X∗(t) = 1
nh

n∑
i=1

K
(
t−Xi

h

)
, where K(u) = 1

2π

∫ 1

−1
e−iωu K ft(ω)

f ft
ε (ω/h)dω, (3.2)

where h is a bandwidth and K is a kernel function with K ft supported on [−1, 1]. Further-

more, if fε is symmetric, integration of f̂X∗ yields the following estimator for the cdf FX∗
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of X∗ (see, Hall and Lahiri, 2008)

F̂X∗(t) = 1
2 + 1

n

n∑
i=1

L
(
t−Xi

h

)
, where L(u) = 1

2π

∫ 1

−1

sin(ωu)
ω

K ft(ω)
f ft
ε (ω/h)dω. (3.3)

For the general case of possibly asymmetric fε, an estimator for FX∗ is obtained by replac-

ing L(u) with La(u) = 1
π

∫ 1
0

1
ω Im

[
e−iωu Kft(ω)

f ft
ε (ω/h)

]
dω (Dattner, Goldenshluger and Juditsky,

2011), where Im[·] stands for the imaginary part. Although we hereafter focus on the cdf

estimator in (3.3), our results can be extended to the general asymmetric case.

This section is concerned with approximation for the distribution of the maximal devi-

ation

Tn = sup
t∈T
|F̂X∗(t)− FX∗(t)|, (3.4)

under the sup-norm, where T is a compact interval specified by the researcher. A direct

use of such approximation is construction of the confidence band for FX∗ over T . Several

other ways to use this approximation are presented in Section 3.4. In Section 3.2.2 below,

we consider a bootstrap approximation for the distribution of Tn. In Section 3.2.3, we

also present an asymptotic approximation based on the Gumbel distribution for ordinary

smooth measurement error densities.

3.2.2 Bootstrap approximation

Consider a nonparametric bootstrap resample {X#
i }ni=1 from {Xi}ni=1 with equal weights.

The bootstrap counterpart of Tn is given by T#
n = supt∈T |F̂

#
X∗(t) − F̂X∗(t)|, where F̂

#
X∗

is defined as in (3.3) using X#
i . To establish validity of the bootstrap approximation, we

impose the following assumptions.

Assumption C. (i) {Xi}ni=1 is an i.i.d. sample fromX = X∗+ε. X∗ and ε are independent.

(ii) The densities fX , fX∗ , and fε are bounded and continuous on R, and inft∈T δ fX(t) >

c for some c > 0 and δ-expansion T δ of T . Also, E|X∗| < ∞ and E|ε| < ∞. (iii)

supω∈R{(1 + |ω|)γ |f ft
X∗(ω)|} < C for some γ,C > 0. (iv) f ft

ε (ω) 6= 0 for all ω ∈ R, f ft
ε (ω) is

differentiable at all ω ∈ R, and fε is an even function.

Assumption C (i) is on the setup wherein we assume that ε is a classical measurement
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error.1 Assumption C (ii) is mild but excludes the Cauchy measurement error. This as-

sumption is required for characterizing the bias of the estimator (see, e.g., Hall and Lahiri,

2008). The Cauchy measurement error is also ruled out in van Es and Uh (2005) who show

pointwise asymptotic normality of the deconvolution density estimator. Assumption C (iii),

analogous to the so-called Sobolev condition, is used to characterize the rate for the bias

term (cf. Hall and Lahiri, 2008). Assumption C (iv) contains conditions on fε. The first

condition is common in the density deconvolution literature but may be relaxed by taking

a ridge approach as in Hall and Meister (2007). The last condition is used to derive the

cdf estimator in (3.3) as in Hall and Lahiri (2008). Also when we consider estimation of fε

using repeated measurements, symmetry of fε gives us a simple estimator (Delaigle, Hall

and Meister, 2008).

We now present two classes of assumptions on the tail behavior of fε. The first is the

class of ordinary smooth densities.

Assumption OS. (i) There exist β > 1/2 and c, C, ω0 > 0 such that

c|ω|−β ≤ |f ft
ε (ω)| ≤ C|ω|−β,

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1 − ωq)rI{|ω| ≤ 1} for some

q, r ≥ 2. There exist c1, C1 > 0 such that

n−1/4hβ−1/2
∫
|K(u)|du < C1n

−c1 , (3.5)

for all n large enough. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ft
ε (ω/h)I{|ω| ≥ hω0}dω, it holds

that

hβ−1/2
∫
|K(u)− K̄(u)|du = O(hs), (3.6)

for some s > 0. (iii) As n → ∞, it holds h → 0,
√
nhβ−1/2 → ∞, nνh → 0 for some

ν ∈ (0, 1/2), and n1+2ξh2(β+γ)−1 → 0 for some ξ > 0.

Assumption OS (i) is a standard condition to characterize ordinary smooth densities.
1The independence assumption between X∗ and ε is standard but, if necessary, can be relaxed to the

sub-independence assumption, see Schennach (2013).
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Note that we focus on the case of β > 1/2, where the cdf estimator F̂X∗ converges at a

nonparametric rate (Dattner, Goldenshluger and Juditsky, 2011). For the case of β < 1/2,

the estimator F̂X∗ typically converges at the
√
n-rate and a Donsker-type theorem applies

(Söhl and Trabs, 2012). Assumption OS (ii) contains conditions for the kernel function. The

first condition specifies a particular form for K that is commonly used in the literature (e.g.,

Delaigle and Hall, 2006). The second condition ensures that the deconvolution kernel K is

L1-integrable. The term n−1/4 in (3.5) is required to ensure that the bootstrap counterpart

T#
n convergences to a Gaussian process at a polynomial rate in n (see, Lemma 2). If f ft

ε is

twice differentiable, applying the integration by parts formula twice gives

K(u) = 1
u2

∫ 1

0
cos(ωu)

{
K ft(ω)
f ft
ε (ω/h)

}′′
dω,

and a sufficient condition for (3.5) is

n−1/4hβ−1/2 sup
|ω|≤1

∣∣∣∣∣
{
K ft(ω)
f ft
ε (ω/h)

}′′∣∣∣∣∣ = O(n−c1),

for some c1 > 0. The third condition assures that K is well approximated by its trimmed

version K̄. Since

∫
|K(u)− K̄(u)|du = 1

π

∫ ∣∣∣∣∣
∫ hω0

0
cos(ωu) K

ft(ω)
f ft
ε (ω/h)dω

∣∣∣∣∣ du,
applying the integration by parts formula twice again implies that a sufficient condition for

(3.6) is given by

hβ+1/2 sup
|ω|≤hω0

max
{∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(hs),

for some s > 0. Based on the above sufficient conditions, it is possible to show that As-

sumption OS (ii) is satisfied by a large class of ordinary smooth error distributions including

Laplace and its convolutions. Intuitively these conditions mean that f ft
ε should not oscillate

too wildly around its trend implied by the ordinary smooth density. Finally, Assumption

OS (iii) contains conditions for the bandwidth h.

82



The second class of measurement error densities, called the super smooth densities, is

presented as follows.

Assumption SS. (i) There exist µ, c, C, ω0, λ > 0 and λ0 ∈ R such that

c|ω|λ0 exp(−|ω|λ/µ) ≤ |f ft
ε (ω)| ≤ C|ω|λ0 exp(−|ω|λ/µ),

for all |ω| ≥ ω0. (ii) K is an even function with K ft(ω) = (1 − ωq)rI{|ω| ≤ 1} for some

q, r ≥ 2. There exist µ1 > 2µ and c1, C1 <∞ such that

1
ς(h)

∫
|K(u)|du < C1h

−c1 exp
( 1
µ1hλ

)
, (3.7)

for all n large enough, where

ς(h) = hϑ exp
( 1
µhλ

)
(3.8)

with ϑ = λ(r + 1/2) + λ0 + 1/2. Also, letting K̄(u) = 1
π

∫ 1
0 cos(ωu) Kft(ω)

f ft
ε (ω/h)I{|ω| ≥ hω0}dω,

it holds that
1
ς(h)

∫
|K(u)− K̄(u)|du = O(n−s), (3.9)

for some s > 0. (iii) h =
(µ

2 logn+ µϑ1 log logn
)−1/λ for some ϑ1 ∈ ((ϑ− γ)/λ+ 1, ϑ/λ).

Assumption SS (i) a standard condition to characterize super smooth densities. As-

sumption SS (ii) contains conditions for the kernel function, and similar comments apply

as the ordinary smooth case. The condition µ1 > 2µ is required to guarantee that the

bootstrap counterpart T#
n convergences to a Gaussian process at a polynomial rate in n

(see, Lemma 18 in Appendix C). If f ft
ε is twice differentiable, a sufficient condition for (3.7)

is
1
ς(h) sup

|ω|≤1

∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣ = O

(
h−a exp

( 1
µ1hλ

))
,

for some a > 0. Also, a sufficient condition for (3.9) is

exp
(
− 1
µhλ

)
sup
|ω|≤hω0

max
{∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′∣∣∣∣∣ ,
∣∣∣∣∣
(
K ft(ω)
f ft
ε (ω/h)

)′′∣∣∣∣∣
}

= O(n−a1),
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for some a1 > 0. For instance, these conditions are satisfied if

sup
|ω|≤1

max{|A′(ω/h)|, |A′′(ω/h)|} = O

(
h−a1 exp

( 1
µ1hλ

))
, (3.10)

for some a1 > 0, where A(ω) = exp(−|ω|λ/µ)
f ft
ε (ω) . Based on (3.10), we can see that Assumption

SS (ii) is satisfied by a large class of super smooth error distributions including Gaussian

and its convolutions. Since the function A(.) inherits the differentiability properties of f ft
ε ,

the condition (3.10) intuitively means that f ft
ε should not oscillate too wildly around its

trend implied by the super smooth density. Assumption SS (iii) is on the bandwidth h.

Note that this condition implicitly requires γ > λ.

Let ĉα denote the (1 − α)-th quantile of the bootstrap statistic T#
n . Under these as-

sumptions, validity of the bootstrap approximation is established as follows.2

Theorem 6. Suppose that Assumption C holds true. Then

P{Tn ≤ ĉα} ≥ 1− α− δn, (3.11)

for some positive sequence δn = O(n−c) (under Assumption OS) or δn = O((logn)−c)

(under Assumption SS) with c > 0.

Remark 5. Based on this theorem, we can construct an asymptotic confidence band for

FX∗ over T with level α as Cn(t) = [F̂X∗(t)± ĉα] for t ∈ T in the sense that

P{FX∗(t) ∈ Cn(t) for all t ∈ T } ≥ 1− α− δn,

for δn = O(n−c) (under Assumption OS) or δn = O((logn)−c) (under Assumption SS) with

some c > 0. Note that the approximation error δn is of polynomial order under Assumption

OS (the ordinary smooth case) and of logarithmic order under Assumption SS (the super

smooth case). We also note from the proof of the theorem that the slower approximation

rate for the super-smooth case is solely due to the bias; if bias correction were possible, the
2Here, we present bootstrap approximation results for the statistic Tn which decays to zero. Alternatively,

we could have normalized Tn without affecting any of the conclusions. This is analogous to whether we
present the bootstrap approximation for the non-normalized object θ̂ − θ or the normalized one

√
n(θ̂ − θ),

where θ is some parameter and θ̂ its estimator.
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bootstrap approximation error would be of polynomial order in both cases.

Remark 6. To implement the bootstrap approximation in Theorem 6, we need to choose

the bandwidth h. For estimation of the cdf FX∗(t0) at a given t0, Hall and Lahiri (2008)

suggested choosing h that minimizes the approximate integrated MSE based on the normal

reference distribution on X∗. For estimation of the quantile function of X∗, Dattner, Reiß

and Trabs (2016) developed an adaptive method to choose h based on Lepski (1990). In

Section 3.5, for the simulations, we suggest a bandwidth selection rule based on Bissantz,

Dümbgen, Holzmann and Munk (2007). The basic idea is to estimate the ideal bandwidth

that minimizes the maximal deviation between F̂X∗ and FX∗ under the sup-norm by utilizing

a series of estimates F̂X∗ based on different values of h.

3.2.3 Asymptotic Gumbel approximation for ordinary smooth case

For the ordinary smooth case, it is also possible to characterize the asymptotic distribution

of the standardized object

tn = sup
t∈T
|fX(t)−1/2{F̂X∗(t)− FX∗(t)}|, (3.12)

using the Gumbel distribution. Under additional assumptions, listed in Assumption G in

Appendix C.3, we can follow similar steps in Bickel and Rosenblatt (1973) and Bissantz,

Dümbgen, Holzmann and Munk (2007) to show the following result.

Theorem 7. Suppose that Assumptions C, OS, and G hold, and (nh)−1(logn)3 → 0 as

n→∞. Then

P
{

(−2 log h)1/2(B−1/2tn − bn) ≤ c
}
→ exp(−2 exp(−c)), (3.13)

for all c ∈ R, where the constant B and sequence bn are defined in Appendix C.3 (eq.

(C.25)).

See Appendix C.3 for a detailed statement and discussion of Assumption G, and for the

proof of this theorem.
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Remark 7. As shown in (3.13), the limiting behavior of tn is characterized by the Gumbel

distribution. Based on (3.13) and the conventional kernel density estimator f̂X for fX , we

can also obtain an asymptotically valid critical value to conduct inference. For example,

the asymptotic confidence band at level α for FX∗ is given by

CGn (t) = [F̂X∗(t)±B1/2f̂X(t)1/2{cGα (−2 log h)−1/2 + bn}],

for t ∈ T , where cGα solves exp(−2 exp(−cGα )) = α. However, as discussed in the next

remark, the asymptotic Gumbel approximation requires additional assumptions and tends

to be less accurate than the bootstrap approximation.

Remark 8. Compared to the bootstrap approximation, the asymptotic Gumbel approxima-

tion has two drawbacks. First, the Gumbel approximation requires additional assumptions

(Assumption G). Second, as indicated by Bissantz, Dümbgen, Holzmann and Munk (2007),

the approximation error (i.e., δn in (3.11) for the bootstrap approximation) by (3.13) is

typically a logarithmic rate even under Assumption OS, and therefore tends to be less ac-

curate than the bootstrap approximation in (3.11). This contrast between the asymptotic

Gumbel and bootstrap approximations was first clarified by Chernozhukov, Chetverikov

and Kato (2014) for construction of confidence bands on the density with no measurement

error. Kato and Sasaki (2016) extended their results for confidence bands on the pdf fX∗

with unknown fε. We obtain analogous results for confidence bands on the cdf FX∗ . We

also note that in contrast to Chernozhukov, Chetverikov and Kato (2014) and Kato and

Sasaki (2016) who employed Gaussian multiplier bootstrap methods, Theorem 6 shows va-

lidity of the conventional nonparametric bootstrap. Accordingly the techniques used in

the proof of Theorem 6 are quite different: in particular, we employ Komlós, Major and

Tusnády’s (1975) coupling along with anti-concentration inequalities for Gaussian processes

(Chernozhukov, Chetverikov and Kato, 2015) while the latter employ the Slepian-Stein type

coupling for suprema of empirical processes constructed in Chernozhukov, Chetverikov and

Kato (2014). Finally, we also obtain deterministic bounds on the approximation error of

the bootstrap; to the best of our knowledge this is new in the literature on deconvolution.

Remark 9. We note that the asymptotic Gumbel approximation in (3.13) is available only
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for the ordinary smooth case. It remains an open question whether we can establish such an

asymptotic approximation for the super smooth case. As discussed in Bissantz, Dümbgen,

Holzmann and Munk (2007, p. 486) for the density deconvolution, the main difficulty is that

the limiting form of the deconvolution kernel (eq. (C.24) in Appendix C.3) is not available

for the super smooth case. On the other hand, as shown in Theorem 6, we emphasize that

the bootstrap approximation is valid even for the super smooth case.

3.3 Case of unknown measurement error distribution

The assumption of known measurement error density fε is unrealistic in many applications.

In this section, we consider the situation where fε is unknown and needs to be estimated.

In general, fε cannot be identified by a single measurement. Identification of fε can be

restored however if we have two or more independent noisy measurements of the variable

X∗. More specifically, suppose that we observe

Xi,j = X∗i + εi,j for j = 1, . . . , Ni and i = 1, . . . , n,

where X∗i is the error-free variable and εi,j ’s are independently distributed measurement

errors from the density fε. We thus have Ni repeated measurements of each variableX∗i . We

shall assume that the number of repeated observations is bounded above (i.e., Ni ≤ C <∞

for all i). This assumption is not critical for our theory but allows us to simplify the proofs

considerably. Since in practice the number of repeated measurements is small anyway, we

do not pursue the generalization to growing C. Under the assumption that fε is symmetric

(Assumption C (iv)), its Fourier transform f ft
ε can be estimated by (Delaigle, Hall and

Meister, 2008)

f̂ ft
ε (ω) =

∣∣∣∣∣∣ 1
N

n∑
i=1

Ni∑
(j1,j2)∈Ji

cos{ω(Xi,j1 −Xi,j2)}

∣∣∣∣∣∣
1/2

, (3.14)

where N = 1
2
∑n
i=1Ni(Ni − 1) , Ji is the set of 1

2Ni(Ni − 1) distinct pairs (j1, j2) with

1 ≤ j1 < j2 ≤ N , and we ignore all the observations with Ni = 1. By plugging this
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estimator into (3.3), we can estimate the cdf FX∗ by

F̃X∗(t) = 1
2 + 1

N

n∑
i=1

Ni∑
j=1

L̃
(
t−Xi,j

h

)
, where L̃(u) = 1

2π

∫ 1

−1

sin(ωu)
ω

K ft(ω)
f̂ ft
ε (ω/h)

dω. (3.15)

In this section, we consider bootstrap approximation of the distribution of the maximal

deviation T̃n = supt∈T |F̃X∗(t)−FX∗(t)|. To construct the bootstrap counterpart of T̃n, we

suggest resampling from the set of observed variables {Xi,j} while keeping the estimated

measurement error density f̂ ft
ε the same. More precisely, the bootstrap version of F̃X∗ is

given by

F̃#
X∗(t) = 1

2 + 1
N

n∑
i=1

Ni∑
j=1

L̃

 t−X#
i,j

h

 ,
where X#

i,j is randomly drawn from the pooled observations {Xi,j}. The bootstrap coun-

terpart of T̃n is obtained as T̃#
n = supt∈T |F̃

#
X∗(t)− F̃X∗(t)|.

To establish validity of the bootstrap approximation by T̃#
n , we first show that the cdf

estimator F̃X∗ under repeated measurements converges fast enough under the sup-norm to

F̂X∗ so that the distributional properties of the latter would continue to hold. Previously,

for the case of density deconvolution, Delaigle, Hall and Meister (2008) showed that under

certain conditions, the deconvolution pdf estimator f̃X∗ using f̂ ft
ε enjoys the same first-order

asymptotic properties as the estimator f̂X∗ in (3.2) for the case of known fε. Also, this result

was obtained in terms of the uniform MSE metric, suptE|f̃X∗(t)− f̂X∗(t)|2. Since validity

of the confidence bands rests on controlling the sup-norm, we derive a corresponding result

for the cdf estimators under the sup-norm. To this end, we add the following conditions.

Assumption B. (i) There exist c ∈ (0, 1) and C > 0 such that P{|ε| ≥M} ≤ C(logM)−1/c

for all M > 0. (ii) As n→∞, it holds logn/(nh4β)→ 0 and nh4β+1 →∞.

Based on these conditions, we are able to prove the following theorem.

Theorem 8. Suppose that Assumptions C, OS, and B hold with γ > β+ 1. Then for some

c > 0,
√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = op(n−c).

Let c̃α be the (1 − α)-th quantile of the bootstrap statistic T̃#
n . Based on the above
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theorem, validity of the bootstrap approximation is established as follows.

Theorem 9. Suppose that Assumptions C, OS, and B hold with γ > β + 1. Then

P{T̃n ≤ c̃α} ≥ 1− α− op(1). (3.16)

Remark 10. Based on this theorem, we can construct an asymptotic confidence band

for FX∗ over T with level α as [F̃X∗(t) ± c̃α] for t ∈ T . The key additional requirement

γ > β+ 1 says that fX∗ is smoother than fε by up to a derivative. As shown in Theorem 8,

this ensures that the error from estimating f ft
ε is asymptotically negligible. Also, we note

that the conditions nh4β+1 → ∞ in Assumption B (ii) and n1+2ξh2(β+γ)−1 → 0 for some

ξ > 0 in Assumption OS (iii) hold simultaneously only if γ > β + 1.

Remark 11. Note that the above theorems are presented only for the ordinary smooth

case. A similar result can be derived for the super smooth case under the assumption that

fX∗ is smoother than fε, i.e. the former is also super smooth. Sufficient conditions for the

super smooth case are: in addition to Assumptions C, SS, and B (i), that ϑ1 < 2λ0/λ in

the expression for h in Assumption SS (iii), and

∫ ∣∣∣∣∣ωaf ft
X∗(ω)

f ft
ε (ω)

∣∣∣∣∣
2

dω <∞,

for some a > ϑ− λ0 + 1.

Thus far we have focused on the case where repeated measurements on X∗ are available

and f ft
ε can be estimated by (3.14) under the symmetry assumption on fε. If fε is not

necessarily symmetric, but repeated measurements are available, then we can employ the

estimator by Li and Vuong (1998) or Comte and Kappus (2015) based on Kotlarski’s identity.

In some applications, a separate independent experiment may give us observations from

fε (see, e.g., Efromovich, 1997, and Neumann, 1997). We refer to Meister (2009, Section

2.6) for an overview on estimation of fε in such cases. Suppose that we have m independent

observations (ε1, . . . , εm) of the error terms. Using these, the Fourier transform f ft
ε can be

estimated as

f̃ ft
ε (t) = 1

m

m∑
i=1

exp(itεi).
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We may use the above to obtain an estimator of the CDF by plugging-in the value of f̃ ft
ε (t)

in (3.3). A bootstrap confidence band can thus be constructed by simply replacing f̂ ft
ε

with f̃ ft
ε , and following the same procedure laid out earlier in this section. The asymptotic

validity of the procedure can be demonstrated by replacing Assumption B (ii) with the

following:

Assumption B1. As n → ∞, it holds m → ∞,
√

(n/m)hβ−1/2 log(1/h) → 0 and

logn/(mh4β)→ 0.

The formal proof that the resulting bootstrap is consistent follows by analogous argu-

ments as that used to prove Theorems 8 and 9, and is therefore omitted.

3.4 Applications

3.4.1 Confidence band for quantile function

In addition to the confidence band for FX∗ , the results in the previous sections can be

utilized to obtain the confidence band for the quantile function of X∗. Hall and Lahiri

(2008) proposed estimating the u-th quantile Q(u) = F−1
X∗ (u) by

Q̂(u) = sup{t : F̂m
X∗(t) ≤ u},

where F̂m
X∗(t) = supy≤t F̂X∗(y) is a monotone version of F̂X∗(t). To obtain the confidence

band for the quantile function Q(u) over some interval [u1, u2], we impose the following

assumptions.

Assumption Q. (i) F−1
X∗ (u) exists and is unique for all u ∈ [u1, u2] such that 0 < u1 <

u2 < 1. There exists an interval H satisfying F−1
X∗ [u1 − ε, u2 + ε] ⊂ H for some ε > 0,

infx∈H fX(x) > 0, and 0 < infx∈H fX∗(x) ≤ supx∈H fX∗(x) <∞. (ii) supx∈H |fX∗(x+ δ)−

fX∗(x)| ≤ M |δ|a for all δ sufficiently small, with a > 0 (under Assumption OS) and a = 1

(under Assumption SS).

Based on these assumptions, we can obtain the asymptotic confidence bands for the

quantile function as follows.
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Theorem 10. Suppose that Assumptions C, Q, and either OS or SS hold true. Then,

P

{
Q̂(u)− ĉα

f̂X∗(Q̂(u))
≤ Q(u) ≤ Q̂(u) + ĉα

f̂X∗(Q̂(u))
for all u ∈ [u1, u2]

}
≥ 1− α− o(1).

Remark 12. Dattner, Reiß and Trabs (2016) have obtained the uniform convergence rate

of their quantile estimator, say Q̄(u), based on the M-estimation method. In particular,

Dattner, Reiß and Trabs (2016, Proposition 2.6) obtained that under an MSE optimal choice

of the bandwidth,

sup
u∈[u1,u2]

|Q̄(u)−Q(u)| = Op

(( logn
n

) γ
2(β+γ)−1

)
.

Thus, Theorem 10 is complementary in that it provides a confidence band for Q(u) over

u ∈ [u1, u2]. Note that as with the case of the cdf, we require under-smoothing to obtain

the asymptotically valid confidence band, which excludes the MSE optimal bandwidth.

3.4.2 Goodness-of-fit testing

Another useful application of our results is goodness-of-fit testing on parametric models for

FX∗ . Consider a parametric model {GX∗(·, θ) : θ ∈ Θ} for the distribution of the error-

free variable X∗ of interest. For simplicity, suppose the measurement error density fε is

known as in Section 3.2. Our method can be adapted to the case of unknown fε. The

goodness-of-fit testing problem of our interest is

H0 : FX∗(t) = GX∗(t, θ) over t ∈ T for some θ ∈ Θ,

against negation of H0. Let θ̂ be some
√
n-consistent estimator of the true parameter θ0

under H0. A typical example of θ̂ is the maximum likelihood estimator using the density

function
∫
gX∗(t− a, θ)fε(a)da on the observable X, where gX∗ is the density of GX∗ .

To test H0, we can employ the Kolmogorov-type statistic

Kn = sup
t∈T
|F̂X∗(t)−GX∗(t, θ̂)|,
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and its bootstrap counterpart is given by

K#
n = sup

t∈T
|F̂#
X∗(t)−GX∗(t, θ̂

#)|,

where F̂#
X∗ and θ̂# are computed by the (parametric) bootstrap resample {X#

i }ni=1 from

X# = X#
∗ + ε# with X#

∗ ∼ GX∗(·, θ̂) and ε# ∼ fε. In contrast to the no measurement

error case, the cdf estimator F̂X∗ converges at a slower rate than
√
n. Therefore, if θ̂ is

√
n-consistent, then the estimation error of θ̂ is negligible under H0, and the validity of the

bootstrap critical value follows by a modification of the proof of Theorem 6. The result is

summarized in the following corollary. Let ĉKα be the (1− α)-th quantile of K#
n .

Corollary 2. Suppose that Assumption C holds true, the null H0 is satisfied at θ0,
√
n(θ̂−

θ0) = Op(1), and the density of GX∗(·, θ) is bounded for all θ in a neighborhood of θ0. Then

P{Kn > ĉKα } ≤ α+ δn,

for some positive sequence δn = O(n−c) (under Assumption OS) or δn = O((logn)−c)

(under Assumption SS) with c > 0.

Consistency of the test can be shown analogously. If fε is unknown but repeated mea-

surements on X∗ are available, a similar result holds true by replacing F̂X∗ and F̂#
X∗ with

F̃X∗ and F̃#
X∗ , respectively.

3.4.3 Homogeneity test

Our bootstrap and asymptotic approximation results can be extended to two sample prob-

lems. Let {Xi}ni=1 and {Yi}mi=1 be two independent samples of X and Y . X is generated as

in (3.1). Also Y is generated as

Y = Y ∗ + δ,

where Y ∗ is the unobservable error-free variable with the distribution function FY ∗ and δ

is its measurement error. We assume δ is independent of Y ∗. Suppose we wish to test the
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homogeneity hypothesis

H0 : FX∗(t) = FY ∗(t) for all t ∈ T ,

against the negation of H0. The Kolmogorov-type statistic presented in the last subsection

can be modified as follows

Sn,m = sup
t∈T
|F̂X∗(t)− F̂Y ∗(t)|,

where F̂Y ∗ is the estimator for FY ∗as in (3.3) using the sample {Yi}mi=1. In this case, the

bootstrap counterpart of Sn,m is given by

S#
n,m = sup

t∈T

∣∣∣F̂#
X∗(t)− F̂

#
Y ∗(t)− {F̂X∗(t)− F̂Y ∗(t)}

∣∣∣ ,
where F̂#

Y ∗ using the sample {Yi}mi=1 is defined in the same manner as F̂#
X∗ . The (1− α)-th

quantile ĉSα of S#
n,m provides an asymptotically valid critical value as follows.

Corollary 3. Suppose that Assumption C holds true for both X = X∗+ ε and Y = Y ∗+ δ,

and that n/(n+m)→ τ ∈ (0, 1) as n,m→∞. Then under H0

P{Sn,m > ĉSα} ≤ α+ δn,m,

for some positive sequence δn,m = O(n−c) (under Assumption OS for both ε and δ) or

δn,m = O((logn)−c) (under Assumption SS for both ε and δ) with c > 0.

An analogous result is available for the case of unknown fε by replacing F̂X∗ and F̂Y ∗

with their repeated measurements versions. Also, if we wish to test the homogeneity hy-

pothesis H0 but Y has no measurement error (i.e., Y = Y ∗), we can replace F̂Y ∗ with the

empirical distribution function of the sample {Yi}mi=1.
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3.4.4 Stochastic dominance test

Another intriguing application of our main results is testing the hypothesis of the (first-

order) stochastic dominance

H0 : FX∗(t) ≤ FY ∗(t) for all t ∈ T , (3.17)

against the negation of H0. By modifying the Kolmogorov-type test in Section 3.4.3, the

test statistic for (3.17) and its bootstrap counterpart are given by

Dn,m = sup
t∈T
{F̂X∗(t)− F̂Y ∗(t)},

D#
n,m = sup

t∈T

{
F̂#
X (t)− F̂#

Y (t)− {F̂X(t)− F̂Y (t)}
}
,

where F̂#
X and F̂#

Y are computed as in (3.3) using nonparametric bootstrap resamples

{X#
i }ni=1 and {Y #

i }mi=1 from {Xi}ni=1 and {Yi}mi=1, respectively.

Let ĉDα denote the (1 − α)-th quantile of the bootstrap statistic D#
n,m. The bootstrap

validity of our stochastic dominance test is established as follows.

Theorem 11. Suppose that Assumption C holds true for both X = X∗+ ε and Y = Y ∗+δ,

and that n/(n+m)→ τ ∈ (0, 1) as n,m→∞.

(i) Under H0,

P{Dn,m > ĉDα } ≤ α+ %n,m,

for some positive sequence %n,m = O(n−c) (under Assumption OS for both ε and δ)

or %n,m = O((logn)−c) (under Assumption SS for both ε and δ) with c > 0.

(ii) Let P0 be the set of probability measures of (X,Y ) satisfying H0 (but fδ and fε are
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fixed) and

0 < cX ≤ inf
t∈T

fX(t) ≤ sup
t∈T

fX(t) ≤ CX <∞,

0 < cY ≤ inf
t∈T

fY (t) ≤ sup
t∈T

fY (t) ≤ CY <∞,

sup
ω∈R
{(1 + |ω|)γX |f ft

X∗(ω)|} ≤MX <∞,

sup
ω∈R
{(1 + |ω|)γY |f ft

Y ∗(ω)|} ≤MY <∞,

for some cX , cY , γX , γY , CX , CY ,MX ,MY > 0 that are independent of (fX , fY ). Then

sup
P∈P0

P{Dn,m > ĉDα } ≤ α+ %n,m,

for some positive sequence %n,m = O(n−c) (under Assumption OS) or %n,m = O((logn)−c)

(under Assumption SS) with c > 0.

(iii) Under the alternative H1 (i.e., H0 is false) and Assumption OS or SS,

P{Dn,m > ĉDα } → 1.

Remark 13. Based on the proof of Theorem 11 (iii), we can characterize some local power

properties. Suppose that both measurement errors are ordinary smooth. For any sequence

Mn → ∞, Dn,m is consistent (i.e., P{Dn,m > ĉDα } → 1) against local alternatives of the

form

H1n : FY ∗(t) > FX∗(t) +Mnγn for some t ∈ T ,

where

γn = n−1/2 max
{
h

1/2−βX
X

√
log(1/hX), h1/2−βY

Y

√
log(1/hY )

}
,

and hX and hY are (possibly different) bandwidths for the estimators F̂X∗ and F̂Y ∗ , respec-

tively. A similar expression is available for γn in the super smooth case with hβX−1/2
X , h

βY −1/2
Y

replaced by ς−1
X (hX), ς−1

Y (hY ) respectively. Finally in the mixed error case, i.e when one of

the errors is ordinary smooth while the other is super-smooth, the value of γn is determined

by the super-smooth error (e.g γn = n−1/2ςX(hX)
√

log(1/hX) if ε is super-smooth).

95



3.5 Simulation

In this section, we investigate the finite sample performance of the bootstrap uniform con-

fidence band discussed in Theorem 6 using simulation experiments.

3.5.1 Simulation designs

We generate data from the model (3.1), where the unobserved variable of interest X∗ is

drawn from the normal distribution N(0, σ2
X∗) and the measurement error ε is drawn from

the Laplace distribution L(0, σ2
ε) or the normal distribution N(0, σ2

ε). We fix σX∗ = 1 and

choose σε so that ’signal-to-noise ratio (SNR)’ is given by σX∗/σε = 2, 3, 4. We use the

kernel function K defined by

K(ω) = 48 cosω
πω4

(
1− 15

ω2

)
− 144 sinω

πω5

(
2− 5

ω2

)
,

whose Fourier transformation is given by K ft(ω) = (1− ω2)3 · I{|ω| ≤ 1}. We consider four

different sample sizes n = 100, 250, 500, 1000 and three different confidence levels 1 − α =

0.80, 0.90, 0.95. The number of simulation and bootstrap repetitions are 2000 and 1000,

respectively. We compute the coverage probabilities of our confidence bands for FX∗ over

the interval [−2σX∗ , 2σX∗ ].

3.5.2 Bandwidth choice

We adapt the bandwidth selection method of Bissantz, Dümbgen, Holzmann and Munk

(2007, Section 5.2) to the cdf estimation. First we consider J different bandwidths: hj =

h0j/J for j = 1, 2, . . . , J , where h0 is a pilot bandwidth. A pilot bandwidth is an over-

smoothing bandwidth obtained by multiplying γ > 1 to the normal reference rule of Hall and

Lahiri (2008, Section 4.2). The normal reference rule was originally suggested by Delaigle

and Gijbels (2004) to estimate density functions and was modified by Hall and Lahiri (2008)

to the setting of estimating distribution functions. For j = 2, . . . , J , define the distances

L∞(F̂X∗ , FX∗) = ||F̂X∗ − FX∗ ||∞, d
(∞)
j−1,j = ||F̂X∗,j−1 − F̂X∗,j ||∞,
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where F̂X∗,j denotes the deconvolution estimator (3.3) with bandwidth h = hj and || · ||∞

denotes the supremum norm. For over-smoothing bandwidths, L∞(F̂X∗ , FX∗) changes

only moderately with increasing bandwidth, while with undersmoothing bandwidth the

distance suddenly increases with decreasing bandwidth. Based on this observation, Bissantz,

Dümbgen, Holzmann and Munk (2007) suggest choosing the bandwidth to be the largest

one at which d
(∞)
j−1,j is more than τ (for some τ > 1) times greater than d

(∞)
J−1,J . In our

simulations, we choose J = 20 (number of possible bandwidths), τ = 3 and γ = 1.5. We

find that the simulation results are insensitive to the precise choice of the parameters.

Figures 3.1 and 3.2 illustrate the distances over different bandwidths for three different

random samples with the measurement error drawn from the Laplace and normal distribu-

tions respectively. A comparison of two plots in the figures indicates that the bandwidth at

which d(∞)
j−1,j changes suddenly (marked by a circle, a square, or star) is a good indicator of

the bandwidth at which the true distance L∞ is about to stagnate.

3.5.3 Simulation results

Table 3.1 presents the empirical coverage probabilities of our bootstrap confidence bands.

The simulated probabilities are generally close to the nominal confidence levels. As we

expected, the coverage errors tend to be smaller when the sample size is larger or when the

signal-to-ratio is larger.

Figures 3.3 and 3.4 depict some typical examples for the true cdf (CDF, FX∗), deconvo-

lution cdf estimate (ECDF, F̂X∗), and uniform confidence bands (CB), when the latent true

distribution is standard normal and the measurement errors are drawn from Laplace and

normal distributions. The figures demonstrate that the uniform confidence bands perform

reasonably well even for small sample size n = 100 and the widths of the bands shrink

substantially as the sample size increases from n = 100 to n = 500.
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Figure 3.1: L∞ and d∞j−1,j distances under Laplace error
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Figure 3.2: L∞ and d∞j−1,j distances under Normal error

3.6 Real data example

3.6.1 Data description

In this section, we apply the stochastic dominance test to the Korea Household Income

and Expenditure Survey data to investigate welfare changes of different population sub-

groups between 2006 and 2012. We use the data because the OECD report (2008) shows

that, among OECD countries, Korea has the most significant variations in within-age group

inequality and, compared to the inequality within the working age group, the relative in-

equality within the retirement age group is the worst. The data fit into our framework

because it is well known that survey data are inherently affected by various sources of mea-

surement errors, see Deaton (1997) and Bound, Brown and Mathiowetz (2000) for potential
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Level n Laplace Error Normal Error
SNR=2 SNR=3 SNR=4 SNR=2 SNR=3 SNR=4

0.80 100 0.818 0.828 0.828 0.780 0.833 0.826
250 0.811 0.818 0.823 0.790 0.803 0.810
500 0.807 0.812 0.830 0.793 0.805 0.817
1000 0.811 0.824 0.836 0.763 0.789 0.812

0.90 100 0.911 0.919 0.924 0.882 0.920 0.924
250 0.897 0.913 0.916 0.888 0.899 0.903
500 0.902 0.915 0.921 0.880 0.892 0.911
1000 0.898 0.907 0.919 0.883 0.886 0.903

0.95 100 0.963 0.961 0.961 0.943 0.956 0.967
250 0.957 0.958 0.963 0.938 0.947 0.956
500 0.953 0.959 0.962 0.936 0.949 0.959
1000 0.951 0.955 0.958 0.932 0.945 0.955

Table 3.1: Simulated uniform coverage probabilities for FX∗ under Laplace and Normal
errors.
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Figure 3.3: Uniform confidence bands under Laplace (left) and Normal (right) errors with
n = 100
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Figure 3.4: Uniform confidence bands under Laplace (left) and Normal (right) errors with
n = 500
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Year Age Group Sample Size Mean S.D.
2006 25-45 12045 1,650 910

45-65 8512 1,575 1,034
60+ 4605 1,047 862
65+ 3250 968 823
70+ 2050 944 823

2012 25-45 8722 1,800 910
45-65 7653 1,814 1,106
60+ 5166 1,105 934
65+ 3700 974 879
70+ 2439 891 857

Table 3.2: Descriptive Statistics (Income unit: 1,000 won)

sources of measurement errors in household-based survey data. The survey reports incomes

from various sources and consumption of goods and services for each household. We first

compute the real household disposable income by adding all incomes, public pension, so-

cial benefits and transfers, minus tax, public pension premium and social security fees,

after adjusting for inflation using the 2010 consumer price index. We then obtain the indi-

vidualized data by adjusting the total household disposable income using the square-root

equivalization scale, which is a common practice to approximate individual welfare.

Table 3.2 shows the descriptive statistics for the data. It shows that average real in-

comes of individuals in all age groups except those over 70 have increased from 2006 to

2012. Standard deviations of all incomes have also increased slightly over the same period.

The results are consistent with the finding of OECD (2008). However, unless the income

distributions are normal, comparison of only the first two moments is not sufficient to draw

a conclusion on the uniform ordering of nonparametric income distributions that does not

depend on a specific social welfare function. This motivates us to consider a stochastic

dominance criterion (see, e.g., Levy (2016)).

3.6.2 Results

We consider two different null hypotheses for each age group: (i) The 2006 income distri-

bution first-order stochastically dominates that the 2012 income distribution (abbreviated

to 06 FSD 12) (ii) The 2012 income distribution first-order stochastically dominates the

2006 income distribution (abbreviated to 12 FSD 06). As a benchmark test, we consider
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Age Group Null Hypothesis BD Laplace Error Normal Error
SNR=2 SNR=3 SNR=4 SNR=2 SNR=3 SNR=4

25-45 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 0.998 1.000 1.000 1.000 1.000 1.000

45-65 06 FSD 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 FSD 06 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60+ 06 FSD 12 0.000 0.037 0.023 0.013 0.000 0.000 0.000
12 FSD 06 0.039 0.000 0.000 0.000 0.305 0.234 0.054

65+ 06 FSD 12 0.353 0.400 0.652 0.704 0.143 0.240 0.189
12 FSD 06 0.000 0.001 0.000 0.000 0.027 0.013 0.003

70+ 06 FSD 12 0.928 0.501 0.934 0.988 0.664 0.698 0.715
12 FSD 06 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Table 3.3: Bootstrap P-values from BD and our tests

Barrett and Donald (2003, BD)’s test based on the observed incomes, neglecting the pres-

ence of measurement errors. We choose the bandwidth as in our simulation experiments

and assume Laplace and normal measurement errors. The variance of measurement errors

is determined so that the signal-to-noise ratio (SNR) is 2,3, or 4.3

Table 3.3 reports the bootstrap p-values of the tests. The BD test implies that, for age

groups 25-45 and 45-65, the 2012 income significantly dominates the 2006 income and, for

age group 60+, there appears to be no dominance relationship (i.e. the two distributions

cross), while for age group 70+ the 2006 income dominates the 2012 income. Similar results

hold when we apply our test assuming Laplace measurement errors. However, when the

measurement errors are normal, our test shows that, for age group 60+, there is a significant

evidence that the 2012 income dominates the 2006 income. This implies that the ambiguous

result (crossing of two distribution functions) for the age-group 60+ might be due to the

presence of measurement errors in the observed data.

3In practice, as mentioned in Section 3.3, the error variance is generally not identified unless repeated
measurements or extraneous information is available. However, in the case of the CPS income survey data,
Bound and Krueger(1991) mentioned that “the error variance represents 27.6% of the total variance in CPS
earnings for men and 8.9% for women.” According to their remark, the signal-to-ratios are 1.9 for men and
3.35 for women, both of which lie in the range we considered.
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Appendix A

Supplementary material and proofs

for Chapter 1

A.1 Proofs of Main Results

Let Z = (Y,W,X) denote the observed data. Let P̃0 denote the joint probability distri-

bution of the observed data Z = (Y,W,X) together with M; and Ẽ0[.], the corresponding

expectation over P̃0. I shall reserve the notation p→ for convergence in probability with

respect to P̃0. I shall also use the notation a.s-P̃0 for ‘almost surely under P̃0’. As defined

in the man text, let P ∗θ denote the joint distribution of W∗,S∗ conditional on Z,M, when

W ∗ ∼ Bernoulli(F (X∗′i θ)). In other words, this is equivalent to the distribution of the

bootstrap sequence of observations (conditional on the data and M) when the treatments,

W∗, are constructed using θ instead of ¯̂
θ. I shall use P ∗ as a shorthand for P ∗¯̂

θ
.

In the proof I consider local sequences of the form θN = ¯̂
θ + h/

√
N for some vector

h. This in turn indexes a local sequence of bootstrap probability distributions P ∗θN , or

P ∗N for simplicity of notation. Let Z∗N = (W∗
N ,X∗) = f(W∗

N ,S∗) denote the bootstrap

observations obtained under P ∗N . I index the observations with N to reflect the fact that

the distribution of Z∗N as a function of the data depends on θN , which varies with N . I shall

denote by L(.) the (unconditional) probability law of some random variable, and by L∗N (.)

the probability law of a random variable under the bootstrap distribution P ∗N conditional

on the data and M. Let E∗N [.] be the expectation of a random variable with respect to P ∗N .
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Let Λ∗N (θ|θ′) ≡ log(dP ∗θ /dP ∗θ′) denote the difference in log-likelihood of the bootstrap

probability distributions evaluated at θ and θ′, i.e.

Λ∗N (θ|θ′) = L(θ|Z∗N )− L(θ′|Z∗N ).

The bootstrap estimator of θ under P ∗N is represented by θ̂∗N . Denote by ψ∗N,i(θN ), the

influence function for θ̂∗N under P ∗N , i.e.

ψ∗N,i(θN ) = X∗i
W ∗N,i − F (X∗′i θN )

F (X∗′i θN )(1− F (X∗′i θN ))f(X∗′i θN ),

and let S∗N (θN ) = N−1/2∑N
i=1 ψ

∗
N,i(θN ) denote the corresponding normalized score function.

Suppose that one had access to e1i(θ), e2i(Wi; θ) instead of ê1i(θ), ê2i(Wi; θ). Then de-

note

ε̃∗i (θ) = e1S∗i (θN ) +W ∗N,iνS∗i (1; θ)− (1−W ∗N,i)νS∗i (0; θ),

where

νi(w; θ) =
(

1 + K̃(i;w, θ)
M

)
e2Jw(i)(w; θ).

Additionally set

Ξ̃∗(θ) ≡ E∗θ [ε̃∗i (θ)]

= 1
N

N∑
k=1

{
e1k(θ) + F (X ′kθ)νi(1; θ)−

(
1− F (X ′kθ)

)
νi(1; θ)

}
.

Finally define the bootstrap estimator with the ‘true’ error terms e1i(θ), e2i(Wi; θ) as

T̃ ∗N (θ) = 1√
N

N∑
i=1

{
ε̃∗i

(
θ̂∗
)
− Ξ̃∗

(
θ̂∗
)}

. (A.1)
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A.1.1 Proof of Theorem 1

My proof of the bootstrap consistency builds on the method of proof of Abadie and Imbens

(2016, Theorem 1). I aim to show that

L∗N


T ∗N (θN )

√
N(θ̂∗N − θN )

Λ∗N
( ¯̂
θ|θN

)


p→ L(V); (A.2)

V ∼ N




0

0

−h′Iθ0h/2

 ,


σ2 c′I(θ0)−1 −c′h

I(θ0)−1c I(θ0)−1 −h

−h′c −h h′I(θ0)h



 .

Given (A.2), the claim follows by similar arguments in Abadie and Imbens (2016) involving

the use of Le Cam’s third lemma together with a Le Cam skeleton or discretization argument

as in Andreou and Werker (2011). Subsequently, I focus on proving (A.2).

To simplify notation I shall assume that ¯̂
θ → θ0 and θN → θ0 almost surely in P̃0. This

is without loss of generality as one can always convert convergence in probability (wrt P̃0)

to almost sure convergence (wrt P̃0) using a subsequence argument.1 Henceforth, in all of

the proofs it is implicitly assumed that I am working within such a subsequence.

Lemma 1 in Appendix A.2 implies that with probability approaching one under P̃0,

Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1);

√
N(θ̂∗N − θN ) = I(θ0)−1S∗N (θN ) + oP ∗N (1).

Consequently by the above it suffices for (A.2) to show

L∗N

 T ∗N (θN )

S∗N (θN )

 p→ L(V2); V2 ∼ N


 0

0

 ,
 σ2 c′

c I(θ0)


 . (A.3)

1That ¯̂
θ

p→ θ0 is simply a consequence of θ̂ p→ θ0, since the grid size d/
√
N also goes to 0 as N →∞.
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Now by Lemma 2 in Appendix A.2, it follows

∥∥∥∥ T ∗N (θN )− T̃ ∗N (θN )
∥∥∥∥ = oP ∗N (1),

with probability approaching one under P̃0. Hence to prove (A.3), it is enough to show

L∗N

 T̃ ∗N (θN )

S∗N (θN )

 p→ L(V2). (A.4)

Consider the linear combination CN = t1T̃
∗
N (θN ) + t′2S

∗
N (θN ). For any value of θ let

h(x; θ) ≡ E[Xi|F (X ′iθ) = x].

I can then write CN = N−1/2∑N
i=1 δ

∗
N,i, where δ∗N,i = t′2α

∗
N,i + t′2β

∗
N,i + t1γ

∗
N,i, with

α∗N,i = h(X∗′i θN ; θN )
W ∗N,i − F (X∗′i θN )

F (X∗′i θN ) (1− F (X∗′i θN ))f
(
X∗′i θN

)
,

β∗N.i =
{
X∗i − h(X∗′i θN ; θN )

} W ∗N,i − F (X∗′i θN )
F (X∗′i θN ) (1− F (X∗′i θN ))f

(
X∗′i θN

)
,

and

γ∗N,i = ε̃∗i (θN )− Ξ̃∗ (θN ) .

Observe that under the bootstrap DGP, E∗N [α∗N,i|X∗i ] = 0 and E∗N [β∗N,i|X∗i ] = 0 by the

construction of W ∗N,i; and E∗N [γ∗N,i] = 0 by the definition of Ξ̃∗ (θN ). Hence {δ∗N,i, i =

1 . . . N} are iid zero mean random variables under P ∗N , and by the Lindberg-Feller central

limit theorem for triangular arrays with iid sequences I obtain

L∗N (CN ) p→ L(v); v ∼ N(0, σ2
B),

with

σ2
B = plim E∗N [δ∗2N,i],

105



where the plim is taken over P̃0.

I characterize the variance by expanding δ∗2N,i =
(
t′2α
∗
N,i + t′2β

∗
N,i + t1γ

∗
N,i

)2
and consid-

ering the bootstrap expectation of each term in turn. Under the definition of h(.), it follows

by the usual algebra involving Assumptions 3 & 4 that

E∗N

[(
t′2α
∗
N,i + t′2β

∗
N,i

)2
]

p→ E

[
f2(X ′θ0)

F (X ′θ0)(1− F (X ′θ0))
(
t′2X

)2] = t′2I(θ0)t2.

Thus it only remains to obtain the probability limit under P̃0 of

V1(θN ) ≡ E∗N
[(
t1γ
∗
N,i

) (
t′2α
∗
N,i

)]
,

V2(θN ) ≡ E∗N
[
(t1γ∗N,i)2

]
, and

V3(θN ) ≡ E∗N
[
(t1γ∗N,i) · (t′2β∗N,i)

]
.

A difficulty with proving the above is that within the matching function, KM (i; θN ), the

treatments in the original sample are distributed as Wi ∼ Bernoulli(F (X ′iθ0)), whereas the

matches are evaluated in terms of the proximity with respect to F (X ′iθN ). Thus, to obtain

the probability limits, I make a second use of the skeleton argument of Le Cam. This

exploits the discretization ¯̂
θ of θ̂ defined previously, and involves replacing ¯̂

θ with the local

asymptotic sequence θ̆N = θ0 + h̆/
√
N , for some h̆ ∈ R. To this end, I employ the following

notation:

Parametrize the multinomial random variables M (Section 1.3.2) as M(θ) for the case

when the estimated propensity score is given by θ (rather than ¯̂
θ). Denote by U =

(U1, . . . , UN ) a vector of N independent uniform random variables corresponding to each

observation, and drawn independently of W,X,Y. Then it is possible to couple M(θ) =

H(U;F (X′θ)), where H(.;F (X′θ)) is some transformation indexed by the parameter θ.2 I

represent by P̄θ the probability law for W,X,Y,U with W ∼ Bernoulli(F (X′θ)), and let

Ēθ[.] denote the corresponding expectation over P̄θ. A convenient feature of P̄θ (as compared
2H(, ;F (X′θ)) can be interpreted as a function that transforms a uniformly distributed random variable

into a single-draw multinomial random variable. Note that knowledge of F (X′θ) uniquely pins down the
quantiles

{
π1(θ), . . . , πqN−1 (θ)

}
and the number of treated and untreated populations denoted by N1(l; θ),

N0(l; θ) in each partition. Thus the uniform random variable can be transformed into the multinomial
random variable, M(i; θ), for each observation i, by partitioning the unit interval into Nw(l; θ) equi-spaced
segments.
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to P̃θ) is that it doesn’t depend on the value of θ̆N ; indeed, this is the reason for employing

the coupling. Given θ̆N , I construct a local asymptotic sequence for the bootstrap indexed

by θ̄N = θ̆N + h/
√
N . Let P̄ ∗N ≡ P ∗θ̄N denote the bootstrap probability indexed by θ̄N , and

Ē∗N [.] the bootstrap expectation under P̄ ∗N . For convenience set P̄N ≡ P̄θ̄N and P̄0 ≡ P̄θ0 ,

with the corresponding expectation operators ĒN [.] ≡ Ēθ̄N [.] and Ē0[.] ≡ Ēθ0 [.]. Finally, I

also introduce the quantities

V1(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))(

t′2α
∗
i

(
θ + h√

N

))]
;

V2(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))2]

; and

V3(h, θ) ≡ E∗
θ+h/

√
N

[(
t1γ
∗
i

(
θ + h√

N
; θ
))(

t′2β
∗
i

(
θ + h√

N

))]
,

where, for any θ1, θ2,

α∗i (θ1) = h∗(X∗′i θ1; θ1) W ∗i − F (X∗′i θ1)
F (X∗′i θ1) (1− F (X∗′i θ1))f

(
X∗′i θ1

)
,

β∗i (θ1) =
{
X∗i − h∗(X∗′i θ1; θ1)

} W ∗i − F (X∗′i θ1)
F (X∗′i θ1) (1− F (X∗′i θ1))f

(
X∗′i θ1

)
; and

γ∗i (θ1; θ2) = ε̃∗i (θ1; θ2)− E∗θ1 [ε̃∗i (θ1; θ2)].

Here ε̃∗i (θ1; θ2) is defined analogously to ε̃∗i (θ1) but with ¯̂
θ replaced by θ2; in particular, this

involves replacing M in the definition of ε̃∗i (θ1) with M(θ2) = H(U;F (X′θ2)). It is useful

to observe that Vk(θN ) = Vk
(
h; ¯̂
θ
)
for k = 1, 2, 3.

In Lemmas 3 - 5 in Appendix A.2, I show that for any bounded h̆ within the definition
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of θ̆N ,3

V1(h, θ̆N ) = oP̄N (1);

V2(h, θ̆N ) = t21σ
2 + oP̄N (1); and (A.5)

V3(h, θ̆N ) = 2t1c′t2 + oP̄N (1).

Then, employing a version of Le Cam’s skeleton argument, I show that

V1
(
h,

¯̂
θ
)

= oP̄0
(1);

V2
(
h,

¯̂
θ
)

= t21σ
2 + oP̄0

(1); and

V3
(
h,

¯̂
θ
)

= 2t1c′t2 + oP̄0
(1).

I illustrate the reasoning for the case of V2
(
h,

¯̂
θ
)
; the others can be argued similarly. Note

that P̄N and P̄0 are mutually contiguous by the usual arguments involving Le Cam’s first

lemma. Thus by (A.5) and contiguity, I have V2(h, θ̆N ) = t21σ
2 + oP̄0

(1). Let v denote the

asymptotic normal limit of
√
N(θ̂ − θ0) under P̄0. Then for any j ∈ Zd,

LP̄0

 V2
(
h, θ0 + dj/

√
N
)
− t21σ2

√
N(θ̂ − θ0)− dj

→ L
 0

v− dj

 .

Additionally, the following events are equivalent for each j ∈ Zd :

{√
N
( ¯̂
θ − θ0

)
= dj

}
≡
{
−d2 i <

√
N(θ̂ − θ0)− dj ≤ −d2 i

}
,

where i denotes a vector of ones of dimension d. Combining the above gives that for each

j ∈ Zd, and any ε > 0,

P̄0
{∣∣∣V2

(
h, θ0 + dj/

√
N
)
− t21σ2

∣∣∣ > ε ∩
√
N
( ¯̂
θ − θ0

)
= dj

}
→ 0

3For equation (A.5), note that the matches are now evaluated in terms of proximity wrt F (X ′i θ̄N ), which
is also the propensity score characterizing the distribution of the treatments since Wi ∼ Bernoulli(F (X ′i θ̄N ))
under P̄N .
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as N →∞. Hence for each C <∞,

P̄0
{∣∣∣V2

(
h,

¯̂
θ
)
− t21σ2

∣∣∣ > ε ∩
∣∣∣√N ( ¯̂

θ − θ0
)∣∣∣ ≤ C}

=
∑

j∈Zd:d|j|≤C
P̄0
{∣∣∣V2

(
h, θ0 + dj/

√
N
)
− t21σ2

∣∣∣ > ε ∩
√
N
( ¯̂
θ − θ0

)
= dj

}
→ 0.

Since
√
N
( ¯̂
θ − θ0

)
is OP̄0

(1), letting C → ∞ above implies V2
(
h,

¯̂
θ
)

= t21σ
2 + oP̄0

(1), as

claimed.

By definition, the probability distribution of V2(θN ) under P̃0 is equivalent to that of

V2
(
h,

¯̂
θ
)
under P̄0; and similarly for the distribution of V1(θN ), V3(θN ) under P̃0. Combining

the above results, I have thus shown

σ2
B = t21σ

2 + 2t1c′t2 + t′2I(θ0)t2.

This proves (A.3), which completes the proof of the theorem.

A.1.2 Proof of Corollary 1

Let F (.) denote the cdf of v ∼ N
(
0, σ2 − c′I−1

θ0
c
)
. By taking L (cf Step 7 in Section 1.3.3)

sufficiently large, the claim follows if I show that

EM [F ∗n(t)|Z] p→ F (t) +O(d) (A.6)

uniformly over t ∈ R under P0 (here EM [.|Z] denotes the expectation over M conditional

on the data). But by the Glivenko-Cantelli theorem, pointwise convergence implies uniform

convergence, hence it suffices to show (A.6) holds for each t ∈ R under P0. So I fix some

arbitrary t ∈ R.

Recall the definitions of P̄0 and U from the proof of Theorem 1. By Theorem 1, F ∗n(t) p→

F (t)+O(d) under P̄0. By employing a subsequence argument, the convergence in probability

(wrt P̄0) can be converted to almost sure convergence (wrt P̄0). By this construction,

F ∗n(t)→ F (t) +O(d), a.s− P̄0. (A.7)
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Note that by independence (of Z,U), P̄0 is equivalent to the product measure, P0×PU , of the

respective marginal measures, P0, PU , of Z and U. Denote by Ω the set of all realizations,

z, of Z for which F ∗n(t)→ F (t) +O(d), a.s−PU . By the independence of Z and U, it must

be that P0(Ω) = 1 for (A.7) to hold. At the same time, the dominated convergence theorem

gives

EU [F ∗n(t)]→ F (t) +O(d) (A.8)

for each z ∈ Ω; hence (A.8) holds almost surely over P0. Since EM [F ∗n(t)|Z] ≡ EU [F ∗n(t)],

this immediately proves (A.6).

A.2 Lemmas

Hereafter, I shall use the notation wpa1-P̃0 as a shorthand for ‘with probability approaching

one under P̃0’.

I also introduce the following notation: For w = 0, 1 let

e3i(w; θ) = µ̄(w;Xi)− µ(w;F (X ′iθ)).

Also let

e4i(Wi; θ) = Yi − µ̄(Wi, Xi).

Note that it is possible to decompose e2i(Wi; θ) = e3i(Wi; θ) + e4i(Wi; θ).

In Lemmas 3-5, I work with the local asymptotic sequence θ̆N = θ0 + h̆/
√
N in place

of ¯̂
θ. To this end, I employ the notation introduced in Appendix A.1. Represent by{

π1(θ̆N ), . . . , πqN−1(θ̆N )
}
the sample qN -quantiles of F (X ′θ̆N ) with π0(θ̆N ) = 0 and πqN (θ̆N ) =

1. I introduce l(i) as the block index of observation i wrt F (X ′i θ̆N ), i.e l(i) = k if

πl−1(θ̆N ) ≤ F (X ′i θ̆N ) < πl(θ̆N ). Also, denote by Sw(l; θ) the set of all observations with

Wi = w whose propensity scores evaluated at θ - i.e F (X ′iθ) - lie in the l-th block (even as

the blocks themselves are obtained from quantiles of F (X ′θ̆N )):

Sw(l; θ) ≡
{
i : πl−1(θ̆N ) ≤ F (X ′iθ) < πl(θ̆N ) ∩ Wi = w

}
.
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Based on the above, I set S(l; θ) = S1(l; θ) ∪ S0(l; θ). Furthermore, I also denote

N0(l; θ) = #S0(l; θ); N1(l; θ) = #S1(l; θ); N(l; θ) = N0(l; θ) +N1(l; θ),

where #A denotes the cardinality of any set A.

For w = 0, 1, the average matching function, defined as the expectation of K̃M (i;w, θ)

over U given (X,W), is represented by

K̄M (i;w, θ) =


KM (i; θ) if w = Wi

1
Nw(l(i);θ̆N)

∑
j∈Sw(l(i);θ̆N)KM (j; θ) if w 6= Wi .

Slightly abusing notation, I suppress indexing the quantities K̃M (.), K̄M (.), ν(.), l(.) with

the additional label θ̆N . However it should be understood implicitly that these quantities

are now constructed by replacing ¯̂
θ with θ̆N . Finally, I also define (again suppressing the

index with respect to θ̆N ),

ν(3)i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
e3Jw(i)(w; θ); .

ν(4)i(w; θ) =
(

1 + K̃M (i;w, θ)
M

)
e4Jw(i)(w; θ).

Lemma 1. Suppose that ¯̂
θ → θ0 a.s-P̃0. Then under Assumptions 1-5, wpa1-P̃0,

Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1), (A.9)

and
√
N(θ̂∗N − θN ) = I(θ0)−1S∗N (θN ) + oP ∗N (1). (A.10)

Proof. Define

Î∗N (θ) = 1
N

d2L(θ|Z∗N )
dθdθ′

; Ĭ∗N (θ) = 1
N

N∑
i=1

ψ∗N,i(θN )ψ∗′N,i(θN ).

Under Assumptions 3(i)-(ii), I can show that supθ∈N E∗N
∥∥∥Î∗N (θ)− Ĭ∗N (θ)

∥∥∥2 p→ 0. The same
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assumptions also suffice to show supθ∈N
∥∥∥Î∗N (θ)− I∗(θN )

∥∥∥ p→ 0, where

I∗(θN ) ≡ E∗N
[
ψ∗N,i(θN )ψ∗′N,i(θN )

]
= 1
N

N∑
i=1

XiX
′
i

f2(X ′iθN )
F (X ′iθN )(1− F (X ′iθN )) .

The term inside the summation is non-negative and uniformly bounded for all N sufficiently

large (by Assumptions 3(i)-(ii)). Consequently, by Assumption 4 and standard arguments,

supθ∈N ‖I∗N (θ)− I(θ)‖ p→ 0. Combining the above proves that wpa1-P̃0,

sup
θ∈N

∥∥∥Î∗N (θ)− I(θ)
∥∥∥ = oP ∗N (1). (A.11)

Under Assumptions 3(i)-(ii), standard second order Taylor expansion arguments assure

that for any ε > 0,

sup
θ∈N

P ∗θ

(∣∣∣∣Λ∗N (θ + h/
√
N |θ

)
− h′S∗N (θ) + 1

2h
′Î∗N (θ)h

∣∣∣∣ > ε

)
p→ 0. (A.12)

The above implies

P ∗N

(∣∣∣∣Λ∗N ( ¯̂
θ|θN

)
+ h′S∗N (θN ) + 1

2h
′Î∗N (θN )h

∣∣∣∣ > ε

)
p→ 0. (A.13)

Combined with (A.11), I have thus shown the following: wpa1-P̃0,

Λ∗N
( ¯̂
θ|θN

)
= −h′S∗N (θN )− 1

2h
′I(θ0)h+ oP ∗N (1). (A.14)

This proves the first claim of the lemma.

The limiting distribution of S∗N (θN ) under P ∗N can be ascertained using the Lindberg-

Feller central limit theorem for triangular arrays. Indeed, ψ∗N,i(.) is mean zero and uniformly

bounded by Assumptions 3(i)-(ii), which implies the Lyapunov condition is trivially satis-

fied. The bootstrap variance of ψ∗N,i(.) is also simply I∗(θN ). Thus by the arguments leading

to (A.11), I obtain

L∗N (S∗N (θN )) p→ L(v2) (A.15)

with v2 ∼ N(0, I(θ0)). From (A.14) and (A.15), it follows by an application of Le Cam’s
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first lemma that P ∗N and P ∗ are mutually contiguous, wpa1-P̃0.

I shall now prove that wpa1-P̃0,

∥∥∥θ̂∗ − ¯̂
θ
∥∥∥ = oP ∗(1). (A.16)

I shall show P ∗
(∥∥∥θ̂∗ − θ0

∥∥∥ > ε
)

p→ 0 for any ε > 0. Since ¯̂
θ → θ0 a.s-P̃0, this proves (A.16).

To this end it suffices to verify the conditions for the consistency result of Newey and

McFadden (1994, Theorem 2.7). Note that each summand within L(θ|W∗,X∗) is uniformly

bounded wpa1-P̃0 (due to Assumptions 3(i)-(ii) and 5(ii)); hence standard arguments using

Markov’s inequality assure that wpa1-P̃0,

1
N
L(θ|W∗,X∗)− 1

N
E∗ [L(θ|W∗,X∗)] = oP ∗(1).

Now it is possible to expand

1
N
E∗ [L(θ|W∗,X∗)] = 1

N

N∑
i=1

A1N,i(θ),

where

A1N,i(θ) = F
(
X ′i

¯̂
θ
)

lnF
(
X ′iθ

)
+
(
1− F

(
X ′i

¯̂
θ
))

ln
(
1− F

(
X ′iθ

))
.

The uniform law of large numbers, together with the fact ¯̂
θ → θ0 a.s-P̃0, assures

1
N

N∑
i=1

A1N,i(θ)
p→ E0

[
F
(
X ′iθ0

)
lnF

(
X ′iθ

)
+
(
1− F

(
X ′iθ0

))
ln
(
1− F

(
X ′iθ

))]
≡M(θ).

I have thus shown that pointwise for each θ,

1
N
L(θ|W∗,X∗) = M(θ) + oP ∗(1),

wpa1-P̃0. Clearly M(θ) is concave. Furthermore, since E0[XiX
′
i] is positive definite, θ0 is

the unique maximiser of M(θ) (see Newey and McFadden, 1994, Example 2.1 in p.2125).

Combining the above, it can be noted that all the conditions for applying Theorem 2.7 of
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Newey and McFadden (1994) are verified. This proves (A.16).

I can now prove the second claim of the lemma. Using (A.16) and Assumption 3(ii)

(finite second derivatives for F (.)), the usual linearization arguments can be applied show

that wpa1-P̃0,
√
N
(
θ̂∗ − ¯̂

θ
)

= Î∗N

( ¯̂
θ
)−1

S∗N

( ¯̂
θ
)

+ oP ∗(1).

Contiguity, proven earlier, then gives

√
N
(
θ̂∗N − θN

)
= −h+ Î∗N

( ¯̂
θ
)−1

S∗N

( ¯̂
θ
)

+ oP ∗N (1), (A.17)

wpa1-P̃0. Using (A.12) and (A.11), together with Assumption 4 (which implies I(.) is

continuous on N ), I adapt the arguments of Bickel et al (1998, Proposition 2.1.2) to show

that wpa1-P̃0, ∥∥∥S∗N (θN )− S∗N
( ¯̂
θ
)
− Î∗N

( ¯̂
θ
)
h
∥∥∥ = oP ∗N (1).

Substituting the above in (A.17), and using (A.11) proves (A.10), the second claim of the

lemma.

Lemma 2. Under Assumptions 1-5 and θN → θ0 a.s-P̃0, it holds
∣∣∣T ∗N (θN )− T̃ ∗N (θN )

∣∣∣ =

oP ∗N (1), wpa1-P̃0.

Proof. Define %∗N,i(θN ) = ε∗i (θN )− ε̃∗i (θN ), and observe that

T ∗N (θN )− T̃ ∗N (θN ) = 1√
N

N∑
i=1

{
%∗N,i(θN )− E∗[%∗N,i(θN )]

}
.

Hence, I obtain

E∗
∣∣∣T ∗N (θN )− T̃ ∗N (θN )

∣∣∣2 ≤ E∗ ∣∣∣%∗N,i(θN )
∣∣∣2 ≡ AN .

I can further bound AN ≤ 2(A1N +A
(0)
2N +A

(1)
2N ), where, for w = 0, 1

A1N = E∗
∣∣∣ê1S∗i (θN )− e1S∗i (θN )

∣∣∣2 , and

A
(w)
2N = E∗

∣∣∣ν̂S∗i (w; θN )− νS∗i (w; θN )
∣∣∣2 .

By Assumption 5, standard arguments assure A1N
p→ 0 under P̃0. Consequently I focus
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on the term A
(1)
2N . By the definition of K̃M (i;w, θ), there exists some constant C < ∞ for

which

A
(1)
2N ≤ C

{
1 + sup

1≤i≤N
K2
M (i; θN )

}
× 1
N

N∑
i=1

{
e2J1(i)(1; θN )− ê2J1(i)(1; θN )

}2

≡ Γ1N × Γ2N .

By Lemma 6 in Appendix A.3, Γ1N = op(N ξ/2) under P̃0 for any ξ arbitrarily small. Next

consider the term Γ2N : The maximum number of times an observation i is used as a

secondary match is bounded by the matching function for the nearest neighbor matching,

given by KNN(i). Consequently,

Γ2N ≤
{

1 + sup
1≤i≤N

KNN(i)
}

sup
θ∈N

1
N

N∑
i=1
{ê2i(1; θ)− e2i(1; θ)}2 .

Now, by Abadie and Imbens (2006, Lemma 3), sup1≤i≤N KNN(i) = op(N ξ/2) under P̃0 for

any ξ arbitrarily small. Combined with Assumption 5, this assures Γ2N = Op(N−ξ/2) under

P̃0. Taken together, the above imply A(1)
2N

p→ 0. Analogous arguments for w = 0 similarly

imply A(0)
2N

p→ 0. This completes the proof of the lemma.

Lemma 3. Under Assumptions 1-5 and θ̄N → θ0, it holds V1(h, θ̆N ) = oP̄N (1).

Proof. I first note that

Ē∗N

[(
t1γ
∗
i (θ̄N ; θ̆N

) (
t′2α
∗
i (θN )

)]
= Ē∗N

[(
t1ε̃
∗
N,i(θ̄N ; θ̆N )

) (
t′2α
∗
i (θ̄N )

)]

since α∗i is mean zero under Ē∗N [.]. Decompose

ε̃∗N,i(θ̄N ; θ̆N ) = e1S∗i (θ̄N ) +W ∗i νS∗i (1; θ̄N )− (1−W ∗i )νS∗i (0; θ̄N ).

Now based on the bootstrap DGP it is straightforward to verify Ē∗N
[
e1S∗i (θ̄N )

(
t′2α
∗
i (θ̄N )

)]
=
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0. Hence the claim follows if I show that

Q
(1)
N (θ̄N ) ≡ Ē∗N

[(
W ∗i νS∗i (1; θ̄N )

) (
t′2α
∗
i (θ̄N )

)]
= oP̄N (1);

Q
(0)
N (θ̄N ) ≡ Ē∗N

[(
(1−W ∗i )νS∗i (0; θ̄N )

) (
t′2α
∗
i (θ̄N )

)]
= oP̄N (1).

I show Q
(1)
N (θ̄N ) p→ 0 under P̄N ; that Q(0)

N (θ̄N ) p→ 0 follows by similar reasoning. To this

end, first define the quantity

τ(X ′i θ̄N ) = t1t
′
2h
(
Xiθ̄N ; θ̄N

)
f
(
X ′i θ̄N

)
.

Due to Assumption 3(i), which implies X∗i is bounded, it follows h(.; θ̄N ) is uniformly

bounded over its domain for all θ̄N . Combined with Assumption 3(ii) (boundedness of

f(.)), this implies τ(X ′i θ̄N ) ≤ C <∞ uniformly in both i and N .

Taking the bootstrap expectations, I obtain after some algebra

Q
(1)
N (θ̄N ) = 1

N

N∑
i=1

τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e2J1(i)

(
1; θ̄N

)
.

I can decompose Q(1)
N (θ̄N ) further as

Q
(1)
N (θ̄N ) = 1

N

N∑
i=1

ϑ(3)N,i + 1
N

N∑
i=1

ϑ(4)N,i ≡ Q
(1)
3N (θ̄N ) +Q

(1)
4N (θ̄N ),

where

ϑ(3)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e3J1(i)

(
1; θ̄N

)
;

ϑ(4)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e4J1(i)

(
1; θ̄N

)
.

First consider the term Q
(1)
4N (θ̄N ): For each i, ĒN [ϑ(4)N,i|W,X,U] = 0 due to the def-

inition of e4i(.). Furthermore, I also have ĒN [ϑ(4)N,iϑ(4)N,,j |W,X,U] = 0 for all i, j for

which J1(i) 6= J1(j). Denoting Sk = {i ∈ {1, . . . , N} : J1(i) = k}, I note that the car-

dinality of Sk is bounded by KNN(k). Hence it follows that the number of pairs (i, j) for

which ĒN [ϑ(4)N,iϑ(4)N,,j |W,X,U] 6= 0 is bounded above by N sup1≤k≤N KNN(k). Now by
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Assumption 3(v) (which assures supxE0[Y 4|X = x] ≤ C <∞), it follows

sup1≤i≤N ĒN
[
|e4i(1; θ)|2 |W,X,U

]
≤ C < ∞ uniformly over θ ∈ N (note that U is inde-

pendent of Y1,Y0 by definition). Thus, by the Markov inequality and the boundedness of

τ(.), there exists some C1 <∞for which

ĒN

[{
Q

(1)
4N (θ̄N )

}2
|W,X,U

]
≤ C1N

−1
{

1 + sup
1≤i≤N

KNN(i)
}{

1 + sup
1≤i≤N

K̃2
M (i; 1, θ̄N )

}

= C1N
−1
{

1 + sup
1≤i≤N

KNN(i)
}{

1 + sup
1≤i≤N

K2
M (i; θ̄N )

}
.

Using the result of Abadie and Imbens (2006, Lemma 3), ĒN [sup1≤i≤N K
r
NN(i)] = O(N ξ)

for any finite r, and some ξ > 0 arbitrarily small. Taking a further expectation on both

sides of the above equation and employing Lemma 6, together with Holder’s inequality,

gives ĒN
[{
Q

(1)
4N (θ̄N )

}2
]

= O(N−(1−ξ)) for some ξ > 0 arbitrarily small. This proves

Q
(1)
4N (θ̄N ) = oP̄N (1).

Next consider the term Q
(1)
3N (θ̄N ). First I successively approximate this term by the

quantities Q(1)
31N (θ̄N ), Q(1)

32N (θ̄N ), where

Q
(1)
31N (θ̄N ) = 1

N

N∑
i=1

ϑ(31)N,i; ϑ(31)N,i = τ(X ′i θ̄N )
(

1 + K̃M (i; 1, θ̄N )
M

)
e3i
(
1; θ̄N

)
;

Q
(1)
32N (θ̄N ) = 1

N

N∑
i=1

ϑ(32)N,i; ϑ(31)N,i = τ(X ′i θ̄N )
(

1 + K̄M (i; 1, θ̄N )
M

)
e3i
(
1; θ̄N

)
;

In the first case, by Lemma 6,

∣∣∣Q(1)
3N (θ̄N )−Q(1)

31N (θ̄N )
∣∣∣ ≤ C {1 + sup

1≤i≤N
KM (i; θ̄N )

}
max

1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣

= OP̄N (N ξ) · max
1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣ .
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The last term can in turn be bounded as

max
1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣

≤ max
1≤i≤N

∣∣∣µ̄(1;XJ1(i))− µ̄(1;Xi)
∣∣∣+ max

1≤i≤N

∣∣∣µ (1;F (X ′J1(i)θ̄N ); θ̄N
)
− µ

(
1;F (X ′i θ̄N ); θ̄N

)∣∣∣
≤ max

1≤i≤N

∥∥∥XJ1(i) −Xi

∥∥∥ = OP̄N (N−1/k),

where the first inequality follows by Assumption 3(i)-(ii); the third by Assumption 3(v)

(which implies Lipschitz continuity of µ̄(1; .) and µ(1; .; θ̄N ) uniformly over θ̄N ∈ N );

and the final step follows by the results of Abadie and Imbens (2006, Lemma 2) on

the bias of nearest neighbor matching. This proves
∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ p→ 0 under

P̄N . I now argue
∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ p→ 0 under P̄N : Observe that Q(1)
32N (θ̄N ) =

ĒN [Q(1)
31N (θ̄N )|W,X] (the expectation being taken over U, conditional on W,X). But con-

ditional on W,X, the random variables {Ui : 1 ≤ i ≤ N} are all independent of each other.

Hence, by standard arguments involving the Markov inequality, together with Lemma 6

(i.e, ĒN
[
sup1≤i≤N K

2
M (i; θ̄N )

]
= o(N δ)) and Assumption 3, (which implies τ(X ′i θ̄N ) < ∞

and |e3i(1; θ̄N )| <∞ uniformly in i and N), it follows
∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ = oP̄N (1).

It now remains to obtain the probability limit wrt P̄N of Q(1)
32N (θ̄N ). Exploiting the

definition of K̄M (i; 1, θ̄N ) and reordering the variables in the summation gives

Q
(1)
32N (θ̄N ) = 1

N

∑
Wj=1

τ(X ′j θ̄N )
(

1 + KM (j; θ̄N )
M

)
e3j
(
1; θ̄N

)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

N1(l(j))


∑

i∈S0(l(j);θ̆N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

)
≡ A(1)

N (θ̄N ) +B
(1)
N (θ̄N ).

Conditional on W,X′θ̄N , the summands within A(1)
N (θ̄N ) are mean zero and uncorrelated.

Hence using Assumption 3 and Lemma 6, standard arguments assure A(1)
N (θ̄N ) = oP̄N (1).

Next, consider the term B
(1)
N (θ̄N ): Suppose for simplicity that N/qN is integer valued so

that N(l) = N/qN for all l. I shall successively approximate B(1)
N (θ̄N ) by B

(1)
1N (θ̄N ) and
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B
(1)
2N (θ̄N ),4 where

B
(1)
1N (θ̄N ) = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

qNN
∑

i∈S0(l(j);θ̆N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

) ;

and

B
(1)
2N (θ̄N ) = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

qNN
∑

i∈S0(l(j);θ̄N)
τ(X ′i θ̄N )e3i

(
1; θ̄N

) .
I first show that ∣∣∣B(1)

N (θ̄N )−B(1)
1N (θ̄N )

∣∣∣ p→ 0. (A.18)

Indeed a straightforward consequence of Lemma 9 and Assumption 3 (which implies F−1(.)

is Lipschitz continuous and Xi is uniformly bounded) is that

sup
1≤j≤N

∣∣∣∣ N(l(j))
N1(l(j)) − F

−1(X ′j θ̄N )
∣∣∣∣

≤ sup
1≤j≤N

∣∣∣∣ N(l(j))
N1(l(j)) − F

−1
(
X ′j θ̆N

)∣∣∣∣+ sup
1≤j≤N

∣∣∣F−1(X ′j θ̄N )− F−1
(
X ′j θ̆N

)∣∣∣ = oP̄N (1).

Combining the above result with Lemma 6, and the fact τ(X ′i θ̄N ), |e3i(1; θ̄N )| are uniformly

bounded, proves (A.18). Next, I show that

∣∣∣B(1)
1N (θ̄N )−B(1)

2N (θ̄N )
∣∣∣ = oP̄N (1). (A.19)

Let

∆(l; θ̄N ) ≡ S0(l; θ̆N )4 S0(l; θ̄N ),

where C 4 D denotes the symmetric difference between any two sets C,D. Lemma 10

assures

P̄N

(
max

1≤l≤qN
#∆(l; θ̄N ) ≥ N (1+δ)/2

)
≤ qN exp(−N δ)→ 0 (A.20)

for any δ > 0 arbitrarily small (where #C denotes the cardinality of a set C). Combined
4Note the difference in summation between the two terms.
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with the boundedness property of τ(X ′i θ̄N ) and |e3i(1; θ̄N )| , (A.20) implies

∣∣∣B(1)
1N (θ̄N )−B(1)

2N (θ̄N )
∣∣∣ = OP̄N

(
qN

N (1−δ)/2

)
× 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )

= OP̄N

(
qN

N (1−δ)/2

)
×OP̄N (1) = oP̄N (1),

where the first equality follows from Lemma 6 and Assumption 3; and the final equality

follows by Assumption 6. I have thus shown (A.19).

To complete the proof of the Lemma it remains to show

B
(1)
2N (θ̄N ) = oP̄N (1). (A.21)

Let ρN,i = τ(X ′i θ̄N )e3i(1; θ̄N ). For each l, the collection of random variables {ρN,i : i ∈

S0(l; θ̄N )} are mean zero and uncorrelated conditional on X′θ̄N . Furthermore, wpa1-P̄N ,

#S0(l(j); θ̄N ) ≤ N

qN
+ max

1≤l≤qN
#∆(l; θ̄N ) ≤ N

qN
+N (1+δ)/2.

Hence for each ε > 0, by the Markov inequality

P̄N

 max
1≤l≤qN

∣∣∣∣∣∣qNN
∑

i∈S0(l;θ̄N )

ρN,i

∣∣∣∣∣∣ ≥ ε
 ≤ qN∑

l=1
P̄N

∣∣∣∣∣∣qNN
∑

i∈S0(l;θ̄N )

ρN,i

∣∣∣∣∣∣ ≥ ε


= O

(
q2
N

N
+ q2

N

N (3−δ)/2

)
= o(1).

This, combined with the fact

1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)
1

F (X ′j θ̄N )
= OP̄N (1),

immediately proves (A.21).

Lemma 4. Under Assumptions 1-5 and θ̄N → θ0, it holds V2(h, θ̆N ) = t21σ
2 + oP̄N (1).

Proof. For the remainder of this proof I shall denote pi,N = F (X ′i θ̄N ). Additionally, for

a = 3, 4, I set

φ(a)i(w; θ) = (2w − 1)ν(a)i(w; θ).
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First, note that Ē∗N
[
ε̃∗i (θ̄N ; θ̆N )

]
= oP̄N (1). Indeed this follows by a similar argument as in

the proof of Lemma 3. Hence it suffices to show that Ē∗N
[
ε̃∗2i

(
θ̄N ; θ̆N

)]
= σ2 + oP̄N (1). To

this end, I decompose

ε̃∗i (θ̄N ; θ̆N ) = e1S∗i (θ̄N ) + φ(3)S∗i (W ∗i ; θ̄N ) + φ(4)S∗i (W ∗i ; θ̄N ), (A.22)

and determine the probability limits of all the squared and cross product terms in (A.22),

after taking the bootstrap expectation.

I begin with the probability limit of Ē∗N
[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
under P̄N . Note that

Ē∗N

[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
= 1
N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
4J1(i)

(
1; θ̄N

)

+ 1
N

N∑
i=1

(1− pi,N )
(

1 + K̃M (i; 0, θ̄N )
M

)2

e2
4J0(i)

(
0; θ̄N

)
≡ Γ(1)

N + Γ(0)
N ,

I shall characterize probability limit of Γ(1)
N . That for Γ(0)

N follows by a similar argument.

Recall the definition σ̄2(w,X) = E[Y 2|W = w,X]. I shall first successively approximate

Γ(1)
N by Γ(1)

1N , Γ(1)
2N , where

Γ(1)
1N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

σ̄2(1;XJw(i));

Γ(1)
2N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

σ̄2(1;Xi).

In the first instance, I can expand

Γ(1)
N − Γ(1)

1N = 1
N

N∑
i=1

ζN,i,

where

ζN,i = pi,N Ψ̄i(1, θ̄N )
{
e2

4Jw(i)(Wi, θ̄N )− σ̄2(1;XJw(i))
}
.

Clearly ĒN [ζN,i|W,X,U] = 0 and ĒN [ζN,iζN,j |W,X,U] = 0 for all i, j such that J1(i) 6=
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J1(j). Consequently by similar arguments5 as in the proof of Lemma 3, it follows
∣∣∣Γ(1)
N − Γ(1)

1N

∣∣∣ =

oP̄N (1). Additionally, I can also show
∣∣∣Γ(1)

1N − Γ(1)
2N

∣∣∣ = oP̄N (1) by similar arguments6 as that

used in the proof of Lemma 3 (note that by Assumption 3(v), σ̄2(1; .) is Lipschitz continuous

and uniformly bounded).

It now remains to obtain the probability limit wrt P̄N of Γ(1)
1N . By paralleling some of

the steps7 in the proof of Lemma 3, it follows

∣∣∣Γ(1)
2N − Γ(1)

3N

∣∣∣ = oP̄N (1),

where

Γ(1)
3N = 1

N

∑
Wj=1

pj,N

(
1 + KM (j; θ̄N )

M

)2

σ̄2(1;Xj)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1
pj,N

qNN ∑
i∈S0(l(j);θ̄N )

pi,N σ̄
2(1;Xi)

 .
Define

Γ(1)
4N = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2

m1
(
pj,N ; θ̄N

)
,

where

m1
(
p; θ̄N

)
= ĒN

[
σ̄2(1;X)|F (X ′i θ̄N ) = p

]
.

I now show ∣∣∣Γ(1)
3N − Γ(1)

4N

∣∣∣ = oP̄N (1). (A.23)

To this end, I define an intermediate variable:

Γ(1)
31N = 1

N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2

pj,N ·m1
(
pj,N ; θ̄N

)

+ 1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1− pj,N
pj,N

 1
N0
(
l(j); θ̄N

) ∑
i∈S0(l(j);θ̄N )

pi,N ·m1
(
pi,N ; θ̄N

) .
5Specifically, the ones used to prove Q(1)

4N (θ̄N ) p→ 0.
6Specifically, the ones used to prove

∣∣∣Q(1)
3N (θ̄N )−Q(1)

31N (θ̄N )
∣∣∣ = oP̄N (1).

7Precisely, the steps leading to
∣∣∣Q(1)

31N (θ̄N )−Q(1)
32N (θ̄N )

∣∣∣ = oP̄N (1), followed by reordering of the terms in

Q
(1)
32N (θ̄N ), and finally succesive approximations of B(1)

N (θ̄N ) with B(1)
1N (θ̄N ) and B(1)

2N (θ̄N ).
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By Lemmas 9 and 10, and Assumption 6, there exists some c > 0 for which it holds

min
1≤l≤qN

N0
(
l(j); θ̄N

)
≥ min

1≤l≤qN
N0(l)−N (1+δ)/2 ≥ cN/qN , (A.24)

with probability approaching one under P̄N . The same lemmas together with Assumptions

3,6 also assure

sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̄N

)
N

− (1− pj,N )

∣∣∣∣∣∣ ≤ sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̄N

)
N

−
(
1− F (X ′j θ̆)

)∣∣∣∣∣∣+ oP̄N (N−
1
2 )

≤ sup
1≤j≤N

∣∣∣∣∣∣
qNN0

(
l(j); θ̆N

)
N

−
(
1− F (X ′j θ̆)

)∣∣∣∣∣∣+ oP̄N

(
qN

N (1−δ)/2 +N−
1
2

)
= oP̄N (1).

Additionally, by the usual arguments based on the Markov inequality, and employing (A.24)

together with Assumption 6, it follows

P̄N

 max
1≤l≤qN

∣∣∣∣∣∣ 1
N0
(
l; θ̄N

) ∑
i∈S0(l;θ̄N )

pi,N σ̄
2(1;Xi)−

1
N0
(
l; θ̄N

) ∑
i∈S0(l;θ̄N )

pi,Nm1
(
pi,N ; θ̄N

)∣∣∣∣∣∣ ≥ ε
→ 0.

Combining the above results with the fact

1
N

∑
Wj=1

(
1 + KM (j; θ̄N )

M

)2 1
pj,N

= OP̄N (1),

proves that
∣∣∣Γ(1)

3N − Γ(1)
31N

∣∣∣ = oP̄N (1). Now, define w1
(
p; θ̄N

)
≡ p ·m1(p; θ̄N ). I can bound

∣∣∣Γ(1)
31N − Γ(1)

4N

∣∣∣
≤

 1
N

∑
Wj=1

1− pj,N
pj,N

(
1 + KM (j; θ̄N )

M

)2
 max

1≤l≤qN
max

i,j∈S0(l;θ̄N )

∣∣∣w1
(
pi,N ; θ̄N

)
− w1

(
pj,N ; θ̄N

)∣∣∣
= OP̄N (1) · max

1≤l≤qN
max

i,j∈S0(l;θ̄N )

∣∣∣w1
(
pi,N ; θ̄N

)
− w1

(
pj,N ; θ̄N

)∣∣∣
≤ OP̄N (1) · max

1≤l≤qN
max

i,j∈S0(l;θ̄N )
|pi,N − pj,N |

≤ OP̄N (1) · max
1≤l≤qN

∣∣∣πl−1(θ̆N )− πl(θ̆N )
∣∣∣ = oP̄N (1),

where the first equality follows by Assumption 3(i)-(iii) together with Lemma 6; the second
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inequality follows by the uniform Lipschitz continuity of m1
(
.; θ̄N

)
(Assumption 3(v));

the third inequality follows by the definition of S0(l; θ̄N ); and the final equality follows by

Lemma 8. I have thus shown (A.23).

Now, the probability limit of Γ(1)
4N under P̄N can be obtained by the techniques of Abadie

and Imbens (2016) (See also Lemmas (14)-(16) in Appendix A.4). The probability limit

of Γ(0)
4N under P̄N is obtained analogously. Combining the expressions gives the probability

limit of Ē∗N
[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
, which is equivalent to that obtained in Abadie and Imbens

(2016).

Next consider the term Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
. As before I can decompose

Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
= 1
N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
3J1(i)

(
1; θ̄N

)

+ 1
N

N∑
i=1

(1− pi,N )
(

1 + K̃M (i; 0, θ̄N )
M

)2

e2
3J0(i)

(
0; θ̄N

)
≡ ∆(1)

N + ∆(0)
N .

Consider the term ∆(1)
N : By similar arguments as in Lemma 3,

max
1≤i≤N

∣∣∣e3J1(i)(1; θ̄N )− e3i(1; θ̄N )
∣∣∣ = OP̄N (N−1/k).

Together with Lemma 6, the above assures
∣∣∣∆(1)

N −∆(1)
1N

∣∣∣ = oP̄N (1), where

∆(1)
1N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e2
3i

(
1; θ̄N

)
.

Now the probability limit of ∆(1)
1N can be analyzed the same arguments as that employed

for Γ(1)
1N . Doing so gives the probability limit for Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
under P̄N , which is

again equivalent to the corresponding expression in Abadie and Imbens (2016).

Finally, it is straightforward to obtain the probability limit of Ē∗N [e2
1S∗i

(θ̄N )] under P̄N

using standard methods. Taken together I can show

Ē∗N [e2
1S∗i

(θ̄N )] + Ē∗N

[
φ2

(4)S∗i

(
W ∗i ; θ̄N

)]
+ Ē∗N

[
φ2

(3)S∗i

(
W ∗i ; θ̄N

)]
= σ2 + oP̄N (1).
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It only remains to verify that the bootstrap expectation of the cross product terms in

(A.22) converge in probability to 0 under P̄N . Consider, for instance,

ΦN ≡ Ē∗N
[
φ(3)i(W ∗i ; θ̄N ) · φ(4)i(W ∗i ; θ̄N )

]
.

Taking the bootstrap expectations, I observe ΦN = Φ(1)
N + Φ(0)

N , where

Φ(1)
N = 1

N

N∑
i=1

pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e3J1(i)(1; θ̄N )e4J1(i)(1; θ̄N ),

and a similar expression holds for Φ(0)
N . Denoting

%N,i = pi,N

(
1 + K̃M (i; 1, θ̄N )

M

)2

e3J1(i)(1; θ̄N )e4J1(i)(1; θ̄N ),

I note that ĒN [%N,i|W,X,U] = 0 and ĒN [%N,i%N,j |W,X,U] = 0 for all i, j such that

J1(i) 6= J1(j). Consequently, by similar arguments as in the proof of Lemma 3, it follows

Φ(1)
N

p→ 0 under P̄N . By symmetry, I also have Φ(0)
N

p→ 0 under P̄N , implying ΦN = oP̄N (1).

Some more algebra on the usual lines shows that the remaining cross product terms also

converge in probability to 0 under P̄N . This completes the proof of the lemma.

Lemma 5. Under Assumptions 1-5 and θ̄N → θ0, it holds V3(h, θ̆N ) = 2t1c′t2 + oP̄N (1).

Proof. For the course of this proof set h(.; θ̄N ) as hN (.). Furthermore, to simplify the

algebra I again employ the notation (first introduced in the proof of Lemma 4)

φ(a)i(w; θ) = (2w − 1)ν(a)i(w; θ).

By the construction of the bootstrap DGP, it follows V3(h, θ̆N ) = Ē∗N

[(
t1ε
∗
i (θ̄N ; θ̆N )

) (
t′2β
∗
i (θ̄N )

)]
since Ē∗N [β∗i (θ̄N )] = 0. I then decompose the term ε∗i (θ̄N ; θ̆N ) as in equation (A.22) and

determine the probability limits of the bootstrap expectations of the resulting terms.

First, taking the bootstrap expectations it can be verified Ē∗N
[
e1S∗i (θ̄N ) · t′2β∗i (θ̄N )

]
= 0.

At the end of the proof I show that

Ē∗N

[
φ(4)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= oP̄N (1). (A.25)
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Hence it suffices for the claim to prove

Ē∗N

[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= t′2c+ oP̄N (1).

Taking the bootstrap expectations, I obtain

Ē∗N

[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= T

(1)
N + T

(0)
N ,

where for w = 0, 1,

T
(w)
N = 1

N

N∑
i=1

f
(
Xi
′θ̄N

)
t′2

{
Xi − hN

(
Xi
′θ̄N

)}(
1 + K̃M (i;w, θ)

M

)
e3Jw(i)(w; θ).

Let me now denote

T
(w)
1N = 1

N

N∑
i=1

f
(
X ′i θ̄N

)
t′2

{
Xi − hN

(
X ′i θ̄N

)}(
1 + K̃M (i;w, θ̄N )

M

)
e3i(w; θ̄N ).

Using the properties of nearest neighbor matching, I can employ similar arguments as in

the proof of Lemma (3) to show that for w = 0, 1,

∣∣∣T (w)
N − T (w)

1N

∣∣∣ = oP̄N (1).

Thus the probability limit under P̄N of Ē∗N
[
φ(3)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
is equivalent to that

of T (1)
1N + T

(0)
1N . The latter in turn can be obtained by following similar arguments as in the

proof of Lemma 4. Hence, after some algebra I obtain T (1)
1N + T

(0)
1N = t′2c+ oP̄N (1).

It only remains now to show (A.25). Taking the bootstrap expectation gives

Ē∗N

[
φ(4)i(W ∗i ; θ̄N ) · t′2β∗i (θ̄N )

]
= V

(1)
N + V

(0)
N ,

where for w = 0, 1,

V
(w)
N = 1

N

N∑
i=1

f
(
X ′i θ̄N

)
t′2

{
Xi − hN

(
X ′i θ̄N

)}
ν(4)i(w; θ̄N ) ≡ 1

N

N∑
i=1

σN,i.
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By law of iterated expectations ĒN [σN,i|W,X,U] = 0 and ĒN [σN,iσN,j |W,X,U] = 0

for all i, j such that Jw(i) 6= Jw(j). Consequently by similar arguments as in the proof of

Lemma 3, it follows V (w)
N = oP̄N (1) for w = 0, 1. This concludes the proof of the lemma.

A.3 Additional Lemmas

I use the same notation as in Appendices A.1 and A.2.

Lemma 6. Suppose that Assumptions 1-3 hold . Then for any q < ∞ and δ arbitrarily

small, it holds that uniformly in N ,

sup
θ∈N

Ēθ [|KM (i; θ)|q] <∞,

and

sup
θ∈N

Ēθ

[
sup

1≤i≤N
|KM (i; θ)|q

]
= o(N δ).

Proof. The first claim follows by similar arguments as in Abadie and Imbens (2016, Lemma

S.8), after employing Lemma 11 (in particular the second statement) and Lemma 12. The

second claim follows by paralleling the arguments of Abadie and Imbens (2006, Additional

proofs p.23).

Let N denote some neighborhood of θ0 such that Assumptions 1-5 hold for each θ ∈ N .

Additionally let Gw,θ(.) denote the CDF of the sample propensity score F (X ′θ) conditional

on W = w; and gw,θ(.) the corresponding density function (where it exists). At the same

time Gθ(.) denotes the unconditional CDF of the propensity score F (X ′θ), Qθ(.) ≡ G−1
θ (.)

its corresponding quantile function, and gθ(.) its density function. The empirical CDF of

F (X ′θ) is denoted as

Ĝθ(t) = 1
N

N∑
i=1

I{F (X ′iθ) ≤ t),

and the corresponding empirical quantile function as

Q̂θ(p) = inf{t :Ĝθ(t) ≥ p}.

Note that by construction Ĝθ(Q̂θ(p)) = p for any p ∈ (0, 1). To simplify notation I shall
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employ the convention Gw,N (.) ≡ Gw,θ̆N (.), GN (.) ≡ Gθ̆N (.), Gw(.) ≡ Gw,θ0(.) and G(.) ≡

Gθ0(.) The other terms gw,N (.), gw(.), gN (.), g(.) and ĜN (.), Q̂N (.) for w = 0, 1 are defined

analogously. As in Appendix A.2, in what follows I suppress indexing the quantities with

the additional label θ̆N . However it should be implicitly understood that I have replaced ¯̂
θ

with θ̆N .

Lemma 7. Suppose that Assumptions 3 hold. Then for any sequence θ̆N such that θ̆N → θ0,

sup
p∈(0,1)

∣∣∣Q̂N (p)−Q(p)
∣∣∣ = oP̄N (1).

Proof. I first show that

sup
t∈[0,1]

∣∣∣Ĝθ(t)−G(t)
∣∣∣ = oP̄N (1). (A.26)

Consider the class of functions G ≡ {x′θ; θ ∈ N} (here x denotes the functional argument).

Observe that G is finite dimensional, being a subset of the space of all linear combinations of

e1(x), . . . , ek(x): the (linear) functions corresponding to each axis in the Euclidean Rk space.

By the results of Pollard (2012), this implies that the class of all sets of the form {x :x′θ ≤ t}

for θ ∈ N and t ∈ R is a VC class; equivalently, so is the class of sets {x :F (x′θ) ≤ t} a VC

class for θ ∈ N and t ∈ R, since F (.) is strictly monotone. Hence, by the uniform law of

large numbers for VC class sets (see Pollard, 2012; also Vapnik and Chervonenkis, 1971), I

obtain

sup
θ∈N ; t∈[0,1]

∣∣∣Ĝθ(t)−Gθ(t)∣∣∣ = oP̄N (1).

By the fact θ̆N → θ0, together with Assumption 3(i)-(ii),

sup
t∈[0,1]

|GN (t)−G(t)| → 0.

Combining the above immediately proves (A.26).

Using (A.26), and recalling that ĜN
(
Q̂N (q)

)
= q, I have

sup
q∈(0,1)

∣∣∣q −G (Q̂N (q)
)∣∣∣ = sup

q∈(0,1)

∣∣∣ĜN (Q̂N (q)
)
−G

(
Q̂N (q)

)∣∣∣→ 0.

Now Q(.) ≡ G−1(.) is uniformly continuous on (0, 1) by virtue of the fact - implied by
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Assumption 3(iii) - that G(.) is strictly increasing and continuous on its interval valued

support. Hence it follows from the previous display equation that

sup
q∈(0,1)

∣∣∣Q(q)− Q̂N (q)
∣∣∣ = oP̄N (1),

as claimed in the Lemma.

Lemma 8. Suppose that Assumptions 3,7 hold. Then for any sequence θ̆N such that θ̆N →

θ0,

max
1≤l≤qN

∣∣∣πl−1(θ̆N )− πl(θ̆N )
∣∣∣ = oP̄N (1) .

Proof. Note that π1(θ̆N ), . . . , πqN (θ̆N ) are obtained by evaluating the quantile function

Q̂N (.) at the values {1/qN , 2/qN , . . . , qN − 1/qN}. The claim is thus a straightforward con-

sequence of the previous lemma together with uniform continuity of Q(.) and qN →∞.

Lemma 9. Suppose that Assumptions 3,6 hold. Then for any sequence θ̆N such that θ̆N →

θ0, there exists some universal constant c > 0 for which

P̄N

(
min

1≤l≤qN
Nw(l) ≥ c N

qN

)
≥ 1− o

(
q2
N

N

)

for w = 0, 1. Furthermore,

max
1≤j≤N

∣∣∣∣N1(l(j))
N(l(j)) − F (X ′j θ̄N )

∣∣∣∣ = oP̄N (1),

and

max
1≤j≤N

∣∣∣∣∣ N(l(j))
N1(l(j)) −

1
F (X ′j θ̄N )

∣∣∣∣∣ = oP̄N (1).

Proof. Assume for simplicity that N/qN is an integer. Then N(l) = N/qN for all l. Now,

P̄N

(
min

1≤l≤qN
Nw(l) ≥ c N

qN

)
= P̄N

(
Nw(l) ≥ c N

qN
for l = 1, . . . qN

)

=
qN∏
l=1

P̄N

(
Nw(l) ≥ c N

qN

)
=

qN∏
l=1

P̄N

qN
N

∑
i∈Sw(l)

Wi ≥ c


≥
(

1− η qN
N

)qN
= 1− o

(
q2
N

N

)
,
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where the second equality follows by the iid property of the observations; and the inequality

is based on an application of the Markov inequality after noting ĒN [Wi] = F (X ′i θ̄N ) with

min1≤i≤N F (X ′i θ̄N ) ≥ η for some η > 0 by Assumption 3(i). This proves the first claim of

the lemma.

For each l, let ṗl,N ≡ ĒN [qNN1(l)/N ]. Since both ṗl(j),N and F (X ′j θ̄N ) lie within[
πl−1(θ̆N )− πl(θ̆N )

]
for some l, by Lemma 8 it suffices for the second claim to show that

max
1≤l≤qN

∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ = oP̄N (1). (A.27)

Fix some ε > 0. By the Markov inequality, for each 1 ≤ l ≤ qN ,

P̄N

(∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ > ε

)
≤ qN
Nε

.

Hence, by Assumption 6 it follows

P̄N

(
max

1≤l≤qN

∣∣∣∣qNN1(l)
N

− ṗl,N
∣∣∣∣ > ε

)
≤ q2

N

Nε
→ 0.

This proves (A.27), which completes the proof of the second claim of the lemma. The third

claim follows immediately from the second, since by the previous arguments in this proof

the events

min
1≤l≤qN

N(l)
N1(l) ≥ c > 0; and min

1≤j≤N
F (X ′j θ̄N ) ≥ η > 0

occur with probability greater than or equal to 1− o
(
q2
N/N

)
under P̄N .

For w = 0, 1 let ∆w(l; θ̄N ) ≡ Sw(l; θ̆N )4 Sw(l; θ̄N ). Also for any set A, let #A denote

the cardinality of that set.

Lemma 10. Suppose that Assumptions 3,7 hold. Then for any sequence θ̆N such that

θ̆N → θ0, it holds, for w = 0, 1 and some δ > 0 arbitrarily small, that

P̄N

(
max

1≤l≤qN
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
≤ qN exp(−N δ).
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Proof. Without loss of generality I consider the case when w = 1. Define

δN = max
1≤i≤N

∣∣∣F (X ′i θ̄N )− F (X ′i θ̆N )
∣∣∣ .

By Assumption 3(i)-(iii), δN ≤ C/
√
N for some C <∞. Also, let Cl,N denote the set

Cl,N ≡
{
i : πl−1(θ̆N )− δN ≤ F (X ′i θ̆N ) ≤ πl−1(θ̆N ) + δN

∪ πl(θ̆N )− δN ≤ F (X ′i θ̆N ) ≤ πl(θ̆N ) + δN
}
.

Clearly #∆w(l; θ̄N ) ≤ #Cl,N . Represent by $i,l,N the random variable I{i ∈ Cl,N}. By the

bound on δN and the fact g1,N ≤ C2 <∞ uniformly in N (in turn due to Assumption 3(iii),

see Lemma 11), it follows ĒN [$i,l,N ] ≤ C3/
√
N for some C3 < ∞ independent of l, N .

Hence for each l, and some sequence MN � N δ independent of l, I obtain

P̄N
(
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
≤ P̄N

(
#Cl,N ≥ N (1+δ)/2

)
= P̄N

(
1
N

N∑
i=1

$i,l,N ≥
√
N δ−1

)

≤ P̄N

∣∣∣∣∣ 1
N

N∑
i=1

$i,l,N − ĒN [$i,l,N ]
∣∣∣∣∣ ≥

√
MN

N

 ≤ exp(−MN ),

where the final step follows by Hoeffding’s inequality. But

P̄N

(
max

1≤l≤qN
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
≤

qN∑
l=1

P̄N
(
#∆w(l; θ̄N ) ≥ N (1+δ)/2

)
;

hence the claim follows immediately through the above arguments.

A.4 Uniform statements of the results in Abadie and Imbens

(2016)

The lemmas in this appendix are based on Abadie and Imbens (2016), which are extended

to apply uniformly over all θ in a neighborhood of θ0. I thus modify the proofs of Abadie

and Imbens (2016) accordingly.
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I use the same notation as in Appendices A.1, A.2 and A.3. In addition, I employ

the following: Let pi(θ) denote p(X; θ) ≡ F (X ′θ) and pi,N = p(Xi; θ̄N ). Also let q0,θ =

E0[1 − F (X ′iθ)] and q1,θ = E0[F (X ′iθ)] denote the unconditional probabilities that Wi = 0

and Wi = 1 respectively when the propensity score is F (X ′θ). To simplify notation I shall

employ the convention qw,N (.) ≡ qw,θ̄N and qw ≡ qw,θ0 for w = 0, 1. Finally for w = 0, 1,

let Nw,θ =
{∑N

i=1 IWi=w; Wi ∼ Bernoulli(F (X ′iθ)
}
. Per convention, let Nw ≡ Nw,θ0 and

Nw,N ≡ Nw,θ̄N
.

Lemma 11. Suppose that Assumptions 3 hold. Then: (i) the support of gθ(.) and g(.) lies

within the interval [p, p̄] for some 0 < p < p̄ < 1; (ii) there exist universal constants c and

C̄ such that c < supθ∈N (g1,θ(p)/g0,θ(p)) < C̄ uniformly over all p such that gθ(p) 6= 0;

and (iii) there exist universal constants 1 > η̄ ≥ η > 0 such that qw,θ ∈ [η, η̄] uniformly in

θ ∈ N .

Proof. That the support of gθ(.) and g(.) is within some interval [p, p̄] follows from the

bounded support assumption for X (Assumption 3(i)), and the fact f(.) is strictly positive

and bounded (Assumption 3(ii)). Additionally, the support condition on X together with

Assumption 3(ii) also ensures existence of universal constants 1 > η̄ ≥ η > 0 such that

qw,θ ∈ [η, η̄] uniformly in θ ∈ N . By the Bayes theorem, g0,θ(p) = (1 − p)gθ(p)/q0,θ and

g1,θ(p) = pgθ(p)/q1,θ. This proves the existence of gw,θ(.) for w = 0, 1. Given the support

condition for gθ(.) proved already, the claim c < supθ∈N (g1,θ(p)/g0,θ(p)) < C̄ follows by

similar arguments as in the proof of Abadie and Imbens (2016, Lemma S.2).

Lemma 12. Suppose that for w = 0, 1, Nw,θ are truncated for values smaller than M and

greater than N−M where N > 2M . Then for any q <∞ and w = 0, 1 there exists Mq <∞

such that,

sup
θ∈N

Eθ

[∣∣∣∣∣ NNw,θ

∣∣∣∣∣
q]
≤Mq.

Proof. Observe that Nw,θ is a binomial variable with parameters (N, qw,θ) where qw,θ ∈ [η, η̄]

uniformly in θ ∈ N by Lemma 11. Hence the claim follows by similar arguments as in the

proof of Abadie and Imbens (2016, Lemma S.3).

Let ξ1:Nw , . . . , ξNw:Nw denote the order statistics for a set of Nw random variables drawn
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from the uniform distribution. Denote the interval support of F (X ′θ̄N ) by [aN , bN ].

Lemma 13. Suppose that Assumptions 1-4 hold. Then for any sequence {θ̄N} satisfying

θ̄N → θ0 it holds that under P̄N

max
i=1,...,N

∣∣∣G−1
w,N (ξi:Nw)−G−1

w,N (i/Nw)
∣∣∣ = op(1). (A.28)

Proof. I first prove (A.28). By the fact θ̄N → θ0 and Assumptions 3(i),(ii), it follows that

Gw,N (.) is compactly supported for all N sufficiently large. Furthermore, under the same

assumptions, it follows

sup
p∈R
|Gw,N (p)−Gw(p)| → 0. (A.29)

By Assumption 3(iii), G−1
w,N (.) exists for N sufficiently large (since gN (.) and consequently

gw,N (.) are strictly positive within an interval support for F (X ′θN ))8. Then

sup
q∈(0,1)

∣∣∣Gw (G−1
w,N (q)

)
− q

∣∣∣ = sup
q∈(0,1)

∣∣∣Gw (G−1
w,N (q)

)
−Gw,N

(
G−1
w,N (q)

)∣∣∣→ 0.

Now G−1
w (.) is uniformly continuous on [0, 1] by virtue of the fact Gw(.) is strictly increasing

and, therefore, continuous on a compact set. Hence, it follows from the above that

sup
q∈(0,1)

∣∣∣G−1
w,N (q)−G−1

w (q)
∣∣∣→ 0. (A.30)

I thus obtain

max
i=1,...,N

∣∣∣G−1
w,N (ξi:Nw)−G−1

w,N (i/Nw)
∣∣∣ = max

i=1,...,Nw

∣∣∣G−1
w (ξi:Nw)−G−1

w (i/Nw)
∣∣∣+ o(1) = oP̄N (1),

where the second equality follows by similar arguments as in Abadie and Imbens (2016,

Lemma S.4). This proves (A.28).

Let SN,k denote the probability that observation k (with Wi equal to w say) will be

used as a match for an arbitrary observation from the opposite treatment arm under the

propensity score F (X ′θ̄N ), conditional on both W and all the observations from its own
8For the end points I set G−1

w,N (0) = aN and G−1
w,N (1) = bN .
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treatment status, denoted by Xw.

Lemma 14. Suppose that Assumptions 1-4 hold. Further suppose that for all θ ∈ N , the

function lw(p; θ) ≤ C uniformly in both p ∈ R and θ ∈ N . Then under P̄N ,

1
N

N∑
i=1

lw
(
pi,N ; θ̄N

)
KM (i; θ̄N )− N1−w,N

N

N∑
i=1

lw
(
pi,N ; θ̄N

)
SN,i = op(1),

and

1
N

N∑
i=1

lw
(
pi,N ; θ̄N

)
K2
M (i; θ̄N )

− 1
N

N∑
i=1

lw
(
pi,N ; θ̄N

) (
N2

1−w,NS
2
N,i +N1−w,NSN,i(1− SN,i)

)
= op(1).

Proof. The proof of this result is a straightforward extension of Abadie and Imbens (2016,

Lemma S.10) and therefore omitted.

For the next Lemma, let pw,j:N denote j-th order statistic of {pi,N : WN,i = w}. I set

pw,j:N = aN if j < 1 and pw,j:N = bN if j > N , where [aN , bN ] denotes the interval support

of F (X ′θ̄N ). Also let Vi denote the rank of observation i, in terms of F (X ′i θ̄N ), within the

sample of observations that have the same treatment status as itself.

Additionally, define χ0,θ(p) = p
1−p

q0,N
q1,N

for p ∈ [aθ, bθ] and χ1,θ(.) = χ−1
0,θ(.), where [aθ, bθ]

denotes the interval support of F (X ′θ). I also set χ0,N ≡ χ0,θ̄N and χ1,N ≡ χ1,θ̄N . Note

that χw,N (p) = (g1−w,N/gw,N )(p) except on the set {p ∈ [aN , bN ] :gN (p) = 0}, which has

Lebesgue measure zero by Assumption 3(iii).

Lemma 15. Suppose that Assumptions 1-4 hold and that θ̄N → θ0. Further suppose that

for all θ ∈ N , the function lw(p; θ) is uniformly bounded in both p ∈ [aθ, bθ], and θ ∈ N .

Then for each w = 0, 1, under P̄N , (i)

N∑
i=1

lw
(
pi,N ; θ̄N

)
×
(
SN,i − χw,N (pi,N )

Gw,N (pw,Vi+M :Nw,N )−Gw,N (pw,Vi−M :Nw,N )
2

)
= op(1).
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and (ii)

N∑
i=1

lw
(
pi,N ; θ̄N

)
Nw,N

×

S2
N,i −

(
χw,N (pi,N )

Gw,N (pw,Vi+M :Nw,N )−Gw,N (pw,Vi−M :Nw,N )
2

)2
 = op(1).

Proof. In terms of the method for the proof, I adapt the arguments of Abadie and Imbens

(2016, Lemma S.7) to allow for triangular arrays. Without loss of generality I prove the

above for the case w = 0. Also to simplify notation, I set N0,N = N0 for the duration of

this proof.

I first show that for any fixed K <∞,

max
1≤i≤N0

|p0,Vi+K:N0 − p0,Vi:N0 | = oP̄N (1). (A.31)

By equation (A.30) in Lemma 13, and the fact G−1
0 (.) is uniformly continuous on [0, 1], it

follows that the sequence G−1
0,N (.) is uniformly equicontinuous. Hence for each ε > 0, there

exists δ > 0 such that

P̄N

(
max

1≤i≤N0
|p0,Vi+K:N0 − p0,Vi:N0 | > ε

)
≤ P̄N

(
max

1≤i≤N0
|G0,N (p0,Vi+K:N0)−G0,N (p0,Vi:N0)| > δ

)
≤ Pr

(
max

1≤i≤N0
|ξVi+K:N0 − ξVi:N0 | > δ

)
→ 0,

where the limit follows by standard properties of uniform spacings. This proves (A.31).

Define

ΩNi ≡
[
p0,Vi:N0 + p0,Vi+M :N0

2 ,
p0,Vi:N0 + p0,Vi−M :N0

2

]
.

Let

ZN,i = l0
(
pi,N ; θ̄N

)
N0

(
SN,i − h0,N (pi,N )G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0)

2

)
.
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As in the proof of Abadie and Imbens (2016, Lemma S.7), note that

SN,i =
∫ (p0,Vi:N0+p0,Vi+M :N0 )/2

aN

g1,N (p)dp I{Vi≤M} (A.32)

+
∫

ΩNi
g1,N (p)dp I{M<Vi≤N−M}

+
∫ bN

(p0,Vi:N0+p0,Vi−M :N0 )/2
g1,N (p)dp I{Vi>N−M}.

Then by the properties of uniform spacings I obtain

N0SN,i −N0

∫
ΩNi

g1,N (p)dp = oP̄N (1). (A.33)

Now by the proof of Lemma 11, for each p ∈ [aθ, bθ],

(
g1,N
g0,N

)
(p) = p

1− p
q0,N
q1,N

I {gN (p) 6= 0} ≡ χ0,N (p)I {gN (p) 6= 0} ,

where {χ0,N} is uniformly equicontinuous on p ∈ [aN , bN ] by Lemma 11. Since g1,N (p) =

g0,N (p) = 0 whenever gN (p) = 0, the mean value theorem for Lebesgue-Steltjes integrals

ensures

∫
ΩNi

g1,N (p)dp =
∫

ΩNi
χ0,N (p)g0,N (p)dp =

∫
ΩNi

χ0,N (p)dG0,N (p)

= χ0,N (p̄i,N,M )
(
G0,N

(
p0,Vi:N0 + p0,Vi+M :N0

2

)
−G0,N

(
p0,Vi:N0 + p0,Vi−M :N0

2

))
.

for some p̄i,N,M ∈ ΩNl. Substituting in (A.33), a second application of the mean value

theorem then implies

N0SN,i −N0χ0,N (p̄i,N,M ) g0,N (p̃i,N,M ) (p0,Vi+M :N0 − p0,Vi−M :N0) /2 = oP̄N (1),

for some p̃i,N,M ∈ ΩNi. Substituting the above in the expression for ZNi, and applying

the mean value theorem again on G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0), I obtain for some
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p̌i,N,M ∈ [p0,Vi+M :N0 , p0,Vi−M :N0 ],

ZN,i = oP̄N (1) + l0
(
pi,N ; θ̄N

)
N0 {χ0,N (p̄i,N,M ) g0,N (p̃i,N,M )− χ0,N (pi,N ) g0,N (p̌i,N,M )}

× (p0,Vi+M :N0 − p0,Vi−M :N0) /2.

Now using (A.31) together with the facts {χ0,N} and {g0,N} are uniformly equicontinuous

(the latter by Assumption 3-(iii)), it follows ZN,i = op(1) under P̄N for each i.

I now show that for any r <∞, there exists some constant Mr <∞ such that,

ĒN |ZN,i|r < Mr for all 1 ≤ i ≤ N, (A.34)

where the expectation here, and in the rest of the proof, is taken under P̄N . By standard

properties of uniform spacings,

ĒN |N0,N {G0,N (p0,Vi+M :N0)−G0,N (p0,Vi−M :N0)}|r

= ĒN |N0,N (ξVi+M :N0 − ξVi−M :N0)|r < M1r

for some constant M1r <∞. Hence, by part (ii) of Lemma 11, and the assumption l0(p; θ)

is uniformly bounded, it suffices for (A.34) to show ĒN |N0SN,i|r is uniformly bounded. Let

SNi,(a), SNi,(b) and SNi,(c) denote the three terms in that order from the expression for SN,i

in equation (A.32). By part (ii) of Lemma 11, and the properties of uniform spacings (see

Abadie and Imbens, Lemma S.5; or as applied in their Lemma S.7),

ĒN
∣∣∣N0SNi,(a)

∣∣∣r ≤ C̄rĒN |N0G0,N (p0,2M :N0)|r

≤ C̄rĒN |N0ξ2M :N0 |
r < Mr,(a)

for some Mr,(a) < ∞. A similar argument also shows that ĒN
∣∣∣N0SNi,(c)

∣∣∣r < Mr,(c) < ∞.
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Finally, consider

∣∣∣SNi,(b)∣∣∣r =
∣∣∣∣∫

ΩNi
χ0,N (p)g0,N (p)dp

∣∣∣∣r ≤ C̄r
∣∣∣∣∣
∫ Vi+M :N0

Vi−M :N0
g0,N (p)dp

∣∣∣∣∣
r

= C̄r |ξVi+M :N0 − ξVi−M :N0 |
r ,

where the inequality follows from supp |χ0,N (p)| < C̄ due to Lemma 11. Hence by the

properties of uniform spacings, ĒN
∣∣∣N0SNi,(b)

∣∣∣r < Mr,(b) < ∞. By the above I have thus

shown (A.34).

Equation (A.34), together with ZN,i = op(1) under P̄N , implies ĒN |ZNi| → 0. Since

the choice of i was arbitrary, the above holds true for all 1 ≤ i ≤ N0. Hence application of

the Markov inequality assures N−1∑N
i=1 ZN,i = op(1) under P̄N . This proves the first part

of the Lemma. Part (ii) follows by analogous arguments.

Lemma 16. Suppose that Assumptions 1-4 hold. Further suppose that for all θ ∈ N , the

function mw(.; θ) : [p, p̄]→ R is non-negative, uniformly equicontinuous in N i.e

lim
δ→0

sup
p∈R,θ∈N

|mw(p; θ)−mw(p+ δ; θ)| = 0,

and also satisfies mw(p; θ̇N ) → mw(p; θ0) point-wise in each p for any sequence θ̇N → θ0.

Then for any non-negative integer M , and sequence {θ̄N} satisfying θ̄N → θ0 a.s-P̄N , it

holds that under P̄N ,

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N ); θ̄N

) (
ξi+M :Nw,N − ξi−M :Nw,N

)

= 2M
Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N ); θ̄N

)
+ op(1),

and

Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N ); θ̄N

) (
ξi+M :Nw,N − ξi−M :Nw,N

)2

= 2M(2M + 1)
Nw,N

N∑
i=1

mw

(
G−1
w,N (ξi:Nw,N ); θ̄N

)
+ op(1).
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Proof. Using Lemma 6 and Lemma 13, the proof of this result is a straightforward extension

of Abadie and Imbens (2016, Lemma S.6), and therefore omitted.
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Appendix B

Supplementary material and proofs

for Chapter 2

Section B.1 presents the assumptions and some definitions for the statement of Theorems

4 & 5, and Proposition 1. Sections B.2 and B.3 present proofs for Theorems 4 and 5 from

Chapter 2, respectively. Section B.4 reports additional numerical results for Section 2.4.1.

Section B.5 provides additional simulation results to illustrate the empirical likelihood test

proposed in Section 2.3.5.

B.1 Assumptions and some definitions

Let Gnf(·) = n−1/2∑n
i=1(f(Xi) − E[f(X)]) be the empirical process. Hereafter “w.p.a.1”

means “with probability approaching one”. For Theorem 4 and Proposition 1, we impose

the following assumptions.

Assumption M.

(i) {Xi}ni=1 is an i.i.d. sequence of compact and convex SVRSs. The class {s(X, p) : p ∈ Sd}

is a µ-Donsker class with envelope F such that E[|F |ξ] < ∞ for some ξ > 2. Also,

infp∈Sd Var(s(X, p)) > 0.

(ii) ν̂
p→ ν, ‖Θ0(ν̂)‖H = Op(1), and there exists a function G(p; ν) continuous in p ∈ Sd

satisfying (2.5).
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(iii) For every finite collection of points {p1, . . . , pJ} ∈ Sd, the vector

(Gns(·, p1), . . . ,Gns(·, pJ),
√
n(ν̂−ν)) converges in distribution to a Gaussian random

vector.

Assumption M’. For the bootstrap probability P ∗ conditional on the data, it holds w.p.a.1,

sup
p∈Sd
|s(Θ0(ν̂∗), p)− s(Θ0(ν̂), p)−G(p; ν)′(ν̂∗ − ν̂)| = op∗(n−1/2).

For Theorem 5, we restrict attention to the situation where ν = f(E[z]) is a smooth

function of means of z ∈ Rdim(z). A consistent estimator of ν is given by ν̂ = f(z̄).

We introduce the following notation: Let mk(Xi), m̃k(Xi), ṁk(Xi), and m̂k(Xi) be k-

dimensional vectors whose j-th elements are given by

mk,j(Xi) = s(Xi, pj)− s(Θ0(ν̂), pj), m̃k,j(Xi) = s(Xi, pj)− s(Θ0(ν), pj),

ṁk,j(Xi) = s(Xi, pj)− s(Θ0(ν), pj)−G(pj ; ν)′∇f(E[z])′(zi − E[z]),

m̂k,j(Xi) = s(Xi, pj)− s(Θ0(ν̂), pj)−G(pj ; ν̂)′∇f(z̄)′(zi − z̄),

respectively. Define V̂k = n−1∑n
i=1mk(Xi)mk(Xi)′, Vk = Var(m̃k(Xi)), V̇k = Var(ṁk(Xi)),

V̄k = n−1∑n
i=1 m̂k(Xi)m̂k(Xi)′, φ̇k = λmin(V̇k), and φ̄k = λmin(V̄k). The test statistic

Ln in (2.9) is defined as the maximum over a shrinking neighborhood Λn = {γ ∈ Rk :

‖γ‖ ≤ Cφ̄
−3/2
k

√
k/n} for some positive constant C. In particular, C is chosen to satisfy

C > max{2C ′φ̄1/2
k , 1} where C ′ is the positive constant obtained from ‖m̄‖ ≤ C ′

√
k/n

w.p.a.1. The condition on C ensures that the local maximum γ̂ lies in the interior of Λn

w.p.a.1 even in the case when φ̇−1
k is bounded. If φ̇−1

k diverges to infinity, this additional

condition on C may be dispensed with. Note that the optimization in (2.9) is well defined

only in the region Sn = {γ ∈ Rk : γ′mk(Xi) > −1 for all i = 1, . . . , n}. However, since

our assumptions guarantee max1≤i≤n supγ∈Λn |γ
′mk(Xi)| = op(1), it holds that Λn ⊆ Sn

w.p.a.1. For Theorem 5, we impose the following assumptions.

Assumption S.

(i) Assumption M holds with the envelope function F in Assumption M (i) satisfying

E[|F |ξ] <∞ for some ξ ≥ 4.
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(ii) ∇f(·) is Hölder continuous of order α ≥ 2/3 in a neighborhood of E[z]. Furthermore,

E[‖z‖4] <∞.

(iii) For some neighborhood N of ν, there exists a function G(·; .) : Sd × N → Rdim(ν)

such that supp∈Sd ‖G(p; νm)−G(p; ν)‖ → 0 for all νm → ν, where G(p; ν) is defined

in Assumption M (ii). Furthermore, for all ν̃ ∈ N , supp∈Sd ‖G(p; ν̃)−G(p; ν)‖ ≤

M ‖ν̃ − ν‖α for some α ≥ 2/3 and M <∞ independent of ν̃.

(iv) k →∞ and (k5φ̇−6
k )

ξ
ξ−2 /n→ 0 as n→∞.

B.2 Proof of Theorem 4

We first derive the limiting distribution of Kn under H0. By Assumption M (ii),

n−1/2
n∑
i=1
{s(Xi, p)− s(Θ0(ν̂), p)} = Gns(·, p)−G(p; ν)′(ν̂ − ν) + op(n−1/2),

uniformly over p ∈ Sd. Assumptions M (i) and (iii) guarantee weak convergence of the

process {Gns(·, p),
√
n(ν̂ − ν) : p ∈ Sd} to {Z(p), Z1 : p ∈ Sd}. Thus, by continuity of

G(p; ν) (Assumption M(ii)), it follows that n−1/2∑n
i=1{s(Xi, p) − s(Θ0(ν̂), p)} converges

weakly to Z(p) − G(p; ν)′Z1. Using Assumptions M (i) and (ii) and standard arguments,

supp∈Sd |n−1∑n
i=1{s(Xi, p) − s(Θ0(ν̂), p)}2 − Var(s(X, p))| p→ 0. From the envelope condi-

tion in Assumption M (i) and a Borel-Cantelli lemma argument as in Owen (1988), it holds

max1≤i≤n supp∈Sd |s(Xi, p)| = o(n1/2) almost surely. This, along with ‖Θ0(ν̂)‖H = Op(1)

(Assumption M (ii)), implies max1≤i≤n supp∈Sd |s(Xi, p)− s(Θ0(ν̂), p)| = op(n1/2). Combin-

ing these results, the null distribution of Kn follows by a similar argument as in the proof

of Hjort, McKeague and van Keilegom (2009, Theorem 2.1).

We now prove the second assertion, Kn → ∞ under H1. Let gi(p, t) = s(Xi, p) −

s(Θ0(t), p) for t = ν or ν̂. Under H1, there exists p∗ ∈ Sd such that E[gi(p∗, ν)] 6= 0. We

prove the case of E[gi(p∗, ν)] > 0 only; the case of E[gi(p∗, ν)] < 0 can be shown in the
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same manner. Pick any δ ∈ (0, 1/2). Observe that

− log `n(p∗) = sup
λ∈R

n∑
i=1

log(1 + λgi(p∗, ν̂)) ≥
n∑
i=1

log(1 + n−(1/2+δ)gi(p∗, ν̂))

= n1/2−δ
{

1
n

n∑
i=1

gi(p∗, ν̂)
}

+ n−2δ
{

1
2n

n∑
i=1

gi(p∗, ν̂)2
}

+Op(n−2δ),

where the first equality follows from the convex duality and the second equality follows

from a Taylor expansion. Since the first term diverges to infinity and the other terms are

negligible under Assumptions M (i)-(iii), the conclusion is obtained.

B.3 Proof of Theorem 5

We first derive the limiting distribution of (Ln−k)/
√

2k under H0. Define ġi(p) = s(Xi, p)−

s(Θ0(ν))−G(p; ν)′∇f(E[z])′(zi−E[z]), m̄k = n−1∑n
i=1mk(Xi), and ¯̇mk = n−1∑n

i=1 ṁk(Xi).

Note that by the mean value theorem (applicable here by Assumption S (iii)), for each

p ∈ Sd there exists some ν̃p satisfying ‖ν̃p − ν‖ ≤ ‖ν̂ − ν‖ and s(Θ0(ν̂), p) − s(Θ0(ν), p) =

G(p; ν̃p)′(ν̂ − ν). Thus by Assumption S (ii) and the asymptotic expansion ν̂ − ν =

∇f(E[z])′n−1∑n
i=1(zi − E[z]) +Op(n−(1+α)/2), we have

∥∥m̄k − ¯̇mk

∥∥ ≤ √
k sup
p∈Sd

∥∥s(Θ0(ν̂), p)− s(Θ0(ν), p)−G(p; ν)′(ν̂ − ν)
∥∥+Op(

√
k/n1+α)

≤
√
k ‖ν̂ − ν‖ sup

p∈Sd
‖G(p; ν̃p)−G(p; ν)‖+Op(

√
k/n1+α) = Op(

√
k/n1+α).(B.1)

Also note that

¯̇mk = Op(
√
k/n), m̄k = Op(

√
k/n), (B.2)

where the first statement follows from the fact that the process {ġi(p); p ∈ Sd} is µ-Donsker

by Assumption S (i), and the second statement follows by (B.1). Next, observe that

∥∥∥V̂k − Vk∥∥∥ ≤ k sup
p,q∈Sd

∣∣∣∣∣ 1n
n∑
i=1
{ġi(p)ġi(q)− E[ġi(p)ġi(q)]}

∣∣∣∣∣+Op

√k

n

 = Op(k/
√
n) (B.3)

where the inequality follows from supp∈Sd |s(Θ(ν̂), p) − s(Θ(ν), p)| = Op(n−1/2) and the

equality follows from the fact that the process{ġi(p)ġi(q); p, q ∈ Sd} is µ-Donsker. Further-
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more, using Assumptions S (i) and (ii) combined with ‖z̄ − E[z]‖ = Op(n−1/2), straightfor-

ward algebra ensures that

‖ṁk(Xi)− m̂k(Xi)‖ = Op(
√
k/nα) ‖zi − E[z]‖+Op(

√
k/n).

We can now see that V̄k − n−1∑n
i=1 ṁk(Xi)ṁk(Xi)′ is bounded by 2n−1∑n

i=1{k1/2ġiδi +

δ2
i }, where δi = ‖ṁk(Xi)− m̂k(Xi)‖. Substituting the expression for the latter from

the previous equation and noting that our assumptions guarantee E[ġ2
i ] < ∞, we obtain∥∥∥V̄k − n−1∑n

i=1 ṁk(Xi)ṁk(Xi)′
∥∥∥ = Op(

√
k2/nα) using the law of large numbers. Moreover,∥∥∥n−1∑n

i=1 ṁk(Xi)ṁk(Xi)′ − V̇k
∥∥∥ = Op(k/

√
n) by analogous weak convergence arguments

as used to show (B.3). Combining these results proves

∥∥∥V̄k − V̇k∥∥∥ = Op(
√
k2/nα). (B.4)

We also make frequent use of the following fact implied by (B.4) and the rate condition

(k5φ̇−6
k )

ξ
ξ−2 /n→ 0:

|φ̄ck − φ̇ck| = op(φ̇ck) for each c ∈ R. (B.5)

For the conclusion of this theorem, it is sufficient to show the followings:

Ln(ν̂)− nm̄′kV̄
−1
k m̄k√

2k
p→ 0, (B.6)

nm̄′kV̄
−1
k m̄k − k√

2k
d→ N(0, 1). (B.7)

We first show (B.6). Let γ̂ ∈ arg maxγ∈Λn Gn(γ) and Dn = max1≤i≤n ‖mk(Xi)‖. Also

define G∗n(γ) = n(2γ′m̄k − γ′V̄kγ), which is maximized at γ∗ = V̄ −1
k m̄k. For (B.6), it is

sufficient to show that γ̂, γ∗ = Op(φ̇k
−1√

k/n), and supγ∈Ωn⊆Λn k
−1/2|Gn(γ)−G∗n(γ)| p→ 0

where Ωn = {γ ∈ Rk : ‖γ‖ ≤ cφ̇k
−1√

k/n} with c > 0 chosen to ensure Ωn contains both

γ̂ and γ∗ w.p.a.1 and Ωn ⊆ Λn (such a c exists by the definition of Λn). Indeed, these are

shown by an argument similar to the proof of Hjort, McKeague and van Keilegom (2009,
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Proposition 4.1) if the following requirements are satisfied under (k5φ̇−6
k )

ξ
ξ−2 /n→ 0:

(n−1/2k3/2φ̇−3
k )Dn = op(1), (B.8)

‖γ∗‖ = Op(φ̇−1
k

√
k/n), (B.9)

λmax(V̂k) = Op(k), (B.10)

γ̂ exists w.p.a.1 and ‖γ̂‖ = Op(φ̇−1
k

√
k/n). (B.11)

We first show (B.8). Using the envelope condition in Assumption S (i) which implies

supk∈NE[‖k−1/2m̃k(Xi)‖ξ] <∞, an argument similar to the proof of Hjort, McKeague and

van Keilegom (2009, Lemma 4.1) guarantees (n−1/2k3/2φ̇−3
k ) max1≤i≤n ‖m̃k(Xi)‖ = op(1)

under the rate condition (k5φ̇−6
k )

ξ
ξ−2 /n→ 0. Furthermore, max1≤i≤n ‖m̃k(Xi)−mk(Xi)‖ ≤

supp∈Sd |s(Θ(ν̂), p) − s(Θ(ν), p)| = Op(n−1/2), and (B.8) follows. Next, (B.9) follows from

(B.2) and (B.5). To show (B.10), observe that
∥∥∥V̂k − n−1∑n

i=1 m̃k(Xi)m̃k(Xi)′
∥∥∥ = Op(k/

√
n)

by Assumption S (ii) and∥∥n−1∑n
i=1 m̃k(Xi)m̃k(Xi)′

∥∥ = Op(k) by E[‖Xi‖2H ] < ∞. Hence, using λmax(V̂k) ≤
∥∥∥V̂k∥∥∥

and the triangle inequality, (B.10) is verified. Finally, for (B.11), we first note that γ̂

exists w.p.a.1 since Λn ⊆ Sn w.p.a.1 and Λn is a compact set. Thus, letting bn =

max1≤i≤n supγ∈Λn{1− (1 + γ′mk(Xi))−2}, an expansion around γ = 0 yields 0 ≤ Gn(γ̂) ≤

n{2γ̂′m̄k − γ̂′(V̄k − bnV̂k)γ̂}. Note that

bn = Op

(
max

1≤i≤n
sup
γ∈Λn

|γ′mk(Xi)|
)

= Op

(
Dn sup

γ∈Λn
‖γ‖

)
= op(φ̇3/2

k k−1),

where the last equality follows from (B.5), (B.8) and the definition of Λn. Consequently,

λmin(V̄k−bnV̂k) ≥ φ̄k−|bn|λmax(V̂k) = φ̇k(1+op(1)), where the equality also uses (B.10) and

(B.5). Thus γ̂′(V̄k+bnV̂k)γ̂ ≥ ‖γ̂‖2 φ̇k(1+op(1)), which implies ‖γ̂‖ ≤ 2φ̇−1
k ‖m̄k‖ (1+op(1)).

Therefore, by (B.2) it must be the case that γ̂ is an interior solution w.p.a.1. (by the choice

of C in the definition of Λn) and that ‖γ̂‖ = Op(φ̇−1
k

√
k/n). This proves (B.11). Combining

these results, the claim in (B.6) follows.
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We now show (B.7). We can decompose

nm̄′kV̄
−1
k m̄k − k√

2k
= nm̄′k(V̄

−1
k − V̇ −1

k )m̄k√
2k

+ n(m̄k − ¯̇mk)′V̇ −1
k m̄k√

2k

+n ¯̇m′kV̇
−1
k (m̄k − ¯̇mk)√

2k
+ n ¯̇m′kV̇

−1
k

¯̇mk − k√
2k

. (B.12)

By de Jong and Bierens (1994, Lemma 4a), the first term of (B.12) is bounded by

nk−1/2‖m̄k‖2φ̄−1
k φ̇−1

k

∥∥∥V̄k − V̇k∥∥∥ and is thus negligible using (B.2),(B.4) and (B.5). Next, by

(B.1),(B.2) and (B.5) the second term of (B.12) is bounded by nφ̇−1
k

∥∥m̄k − ¯̇mk

∥∥ ‖m̄k‖ /
√

2k =

Op(φ̇−1
k

√
k/nα) which is negligible for α ≥ 1/3. Negligibility of the third term of (B.12)

follows by a similar argument. Finally, note that E[ṁk(Xi)] = 0 and Var(ṁk(Xi)) = V̇k.

Therefore, arguing as in the proof of de Jong and Bierens (1994, Theorem 1), the last term

of (B.12) converges in distribution to N(0, 1) under the rate condition φ̇−4
k k2/n→ 0. Thus

the result in (B.7) follows.

We now prove the second assertion, (Ln − k)/
√

2k → ∞ under H1. Since in the limit

the points {p1, . . . , pk} form a dense subset of Sd and the support function is continuous,

under H1 there exists an integer N such that for all n ≥ N the set of points includes

a direction p∗ for which E[s(Xi, p
∗) − s(Θ0(ν), p∗)] 6= 0. Without loss of generality we

prove the case of E[s(Xi, p
∗)− s(Θ0(ν), p∗)] > 0. Define gi(p) = s(Xi, p)− s(Θ0(ν̂), p) and

ḡi(p) = s(Xi, p)− s(Θ0(ν̂), p)−G(p; ν̂)′∇f(z̄)′(zi − z̄). Pick any δ ∈ (0, 0.3) and observe

Ln ≥ 2
n∑
i=1

log(1 + n−(1/2+δ)gi(p∗)) + n−2δ
{ 1
n

n∑
i=1

gi(p∗)2 − 1
n

n∑
i=1

ḡi(p∗)2
}

= 2n1/2−δ
{

1
n

n∑
i=1

gi(p∗)
}
− n−2δ

{
1
n

n∑
i=1

ḡi(p∗)2
}

+Op(n−2δ),

for all n ≥ N , where the inequality follows by setting γ = n−(1/2+δ)e∗ ∈ Γn w.p.a.1, where

e∗ is the unit vector that selects the component of mk(Xi) containing p∗, and the equality

follows from a Taylor expansion. Now, n−1∑n
i=1 gi(p∗)

p→ E[s(Xi, p
∗)] − s(Θ0(ν), p∗) 6= 0

by a suitable law of large numbers and n−1∑n
i=1 ḡi(p∗)2 p→ E[ġi(p∗)2] < ∞ by a similar

argument used to show (B.4). Thus, Ln diverges to infinity at the rate n1/2−δ which implies

that (Ln − k)/
√

2k diverges.

146



B.4 Additional numerical results for Section 2.4.1

In this section we report additional numerical results to compare the marked empirical

likelihood confidence region obtained in Section 2.4.1 with the one based on the method

by Chernozhukov, Kocatulum and Menzel (2015) (hereafter CKM). As in Section 2.4.1, we

consider the relationship between the unobservable dependent variable y and regressors x,

where we observe the interval [yL, yU ] satisfying yL ≤ y ≤ yU almost surely.

Consider the set of coefficients characterized by the conditional moment inequalities

Ξ = {θ : E[yL|x] ≤ (1, x′)θ ≤ E[yU |x]}.

The set Ξ would be the identified region of interest if we assume E[y|x] = (1, x′)θ. It is

important to note that the set Ξ is a subset of

Υ = {arg min
θ

∫
{y − (1, x′)θ}2dµ for some µ ∈M},

which is the identified region of interest in Section 2.4.1. Indeed, this can be seen from the

fact that Υ is obtained as the set of parameters satisfying E[(1, x′){y − (1, x′)θ}] = 0.

If all the regressors x are discrete, then Ξ is characterized by a finite number of moment

inequalities (see, Andrews and Shi, 2015, for a general case). CKM suggest a general

approach to obtain confidence regions in this context by combining the moment inequalities

into a single one using the smooth-max approximation (see, Section 2.3.4). In our numerical

example with log wages and education, the education variable takes 13 values and thus

provides 26 moment inequalities. Since it is computationally difficult to work with a smooth-

max approximation with such a large number of moments, we simplify the problem by

partitioning the regressor values into four bins and utilizing the moment inequalities within

each bin (corresponding to a total of 8 moment inequalities). In particular, we partition

the education variable into the following broad categories: Less than 10th grade (x ≤ 10);

High school graduate (x ∈ [11, 12]); some college or associate degree including vocational

training (x ∈ [13, 14]); and Bachelor’s degree or higher (x ≥ 15).

Figure B.1 compares the 95% confidence region of CKM for Ξ with that from the marked
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Figure B.1: The population identification regions for regression with interval outcomes Ξ
(dash-dotted line) and for the best linear prediction Υ (solid line) as well as the correspond-
ing 95% confidence regions via CKM (dashed line) and the marked empirical likelihood
statistic (dotted line). The sample size is n = 1000.

empirical likelihood for Υ. The sample size is n = 1000. The tuning parameter % for the

‘smooth-max’ approximation is chosen to be % = 100. The critical values in both cases were

obtained using bootstrap with 999 repetitions. Unsurprisingly, the CKM confidence region

is smaller than that obtained by the marked empirical likelihood. This is due to the fact that

the region Ξ is considerably smaller than Υ as can be seen from Figure B.1. From Figure

B.1, we can thus infer the following: If it is possible to impose additional assumptions to

satisfy the conditional moment restriction E[y|x] = x′θ, then characterizing the set using

moment inequalities leads to a much smaller confidence region. At the same time, the best

linear predictor is more robust to possible misspecification and thus, is applicable more

generally, albeit at the expense of a larger confidence set.

B.5 Simulation results for Section 2.3.5

We consider the problem of testing the shape of a set based on noisy measurements of

the support function, as discussed in Section 2.3.5. We employ the simulation design of

Fisher et al. (1997), where the underlying set is an ellipse relative to the origin with the
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support function taking the form s(Θ, p) = (θ2
1 cos2 p + θ2

2 sin2 p)1/2 for p ∈ [−π, π]. Noisy

measurements {si, pi}ni=1 of the support function are generated using si = s(Θ, pi) + εi with

pi ∼ Uniform[−π, π] and εi ∼ N(0, 0.16).

We consider two types of testing problems here. First, we test whether the set Θ

takes a particular shape. In the first four columns of Table B.1, we report the rejection

frequencies of the marked empirical likelihood test based on eq. (2.12) of Chapter 2 for

the null hypotheses Ha
0 :‘Θ is a circle with (θ1, θ2) = (1, 1)’ and Hb

0 :‘Θ is an ellipse with

(θ1, θ2) = (1, 2)’. To compute the test statistic we follow Fisher et al. (1997) in employing

the von Mises density function Kb(z) = eb cos z/
∫ π
−π e

b cos zdz on the circle as the kernel and

set the smoothing parameter to be b = 8 (which corresponds to the inverse of the square

of the bandwidth for the conventional kernel density estimator). In the last two rows of

Table B.1 we present the results for different values of the bandwidth by setting b = 4 and

16 when n = 200. The critical value of the test is computed using the wild bootstrap based

on Härdle and Mammen (1993). We consider sample sizes of n =100, 200, and 500. The

number of Monte Carlo replications is 1000 for all cases. The first and third columns of

Table B.1 indicate that the marked empirical likelihood test based on eq. (2.12) of Chapter

2 has reasonable size properties for both null hypotheses and over all sample sizes. The

second and fourth columns evaluate power properties of the test against the alternatives

Ha
1 : (θ1, θ2) = (1.1, 1) and Hb

1 : (θ1, θ2) = (1.1, 2), respectively. In both cases, the power of

the empirical likelihood test increases with the sample size at a reasonably fast rate.

Second, we conduct a goodness-of-fit test for the null Hc
0 :‘Θ is a ellipse with s(Θ, p) =

(θ2
1 cos2 p+ θ2

2 sin2 p)1/2 for some (θ1, θ2)’. For this testing problem, (θ1, θ2) are nuisance pa-

rameters to be estimated. The marked empirical likelihood statistic is modified by replacing

{si − s(Θ0, p)} in eq. (2.12) of Chapter 2 with its estimated counterpart {si − (θ̂2
1 cos2 p+

θ̂2
2 sin2 p)1/2}, where (θ̂1, θ̂2) is the nonlinear least squares estimator. Under the null Hc

0,

the measurements on the support function are generated by (θ1, θ2) = (1, 2). Under the

alternative Hc
1, the data are generated by s(Θ, p) = (cos2 p + cos p sin p + 4 sin2 p)1/2. The

critical value is again computed using the wild bootstrap. The last two columns of Table

B.1 report the rejection frequencies of this test. Although the test is slightly undersized, it

shows good size and power performance.
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n, b Ha
0 :circle Ha

1 Hb
0 :ellipse Hb

1 Hc
0 Hc

1
100, 8 0.022 0.425 0.079 0.413 0.049 0.182
200, 8 0.026 0.851 0.029 0.608 0.020 0.409
500, 8 0.039 0.999 0.025 0.958 0.013 0.991
200, 4 0.036 0.854 0.025 0.557 0.016 0.332
200, 16 0.014 0.774 0.037 0.668 0.012 0.443

Table B.1: Rejection frequencies of the marked empirical likelihood test at the nominal 5%
level

Finally, the last two rows of Table B.1 show that the rejection frequencies are not

very sensitive to the choice of the smoothing parameter b under the null and alternative

hypotheses.
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Appendix C

Supplementary material and proofs

for Chapter 3

C.1 Proofs of Theorems

Hereafter, let P# and E# be the conditional probability and expectation under the boot-

strap distribution given {Xi}ni=1, respectively. Also, denote

L̄(u) = 1
π

∫ 1

0

sin(ωu)
ω

K ft(ω)
f ft
ε (ω/h)I{|ω| ≥ ω0}dω,

Gn(t) = r(h)
∫

L̄
(
t− a
h

)
fX(a)1/2dW (a),

pε(Gn) = sup
x
P

{∣∣∣∣∣sup
t∈T
Gn(t)− x

∣∣∣∣∣ ≤ ε
}
,

where W is a (two-sided) Wiener process on R, fX is the pdf of X, and

r(h) =

 hβ−
1
2 under Assumption OS

1/ς(h) in eq. (8) under Assumption SS
.

Note that analogous to K̄ (defined in Assumptions OS (ii) and SS (ii)), L̄ is considered as a

trimmed version of L. Due to the trimming, properties of the Fourier transform guarantee

L̄ ∈ L2(R) for each h under the assumption f ft
ε 6= 0, and this guarantees existence of the

stochastic integral in the definition of Gn.

151



Also, for any a ∈ (0, 1), let ca denote the constant such that
√
nhβ−

1
2 ca is the (1− a)-th

quantile of supt∈T |Gn(t)|.

C.1.1 Proof of Theorem 6

We only prove the statement under Assumption OS (i.e., the ordinary smooth case). The

statement under Assumption SS is shown by a similar argument using Lemmas 20-22 in

Appendix C.2.

First, we prove

P
{√

nhβ−
1
2 ĉα >

√
nhβ−

1
2 cα+δ1n − ε1n

}
≥ 1− δ2n, (C.1)

for some ε1n, δ1n, δ2n = O(n−c) with c > 0. Lemma 18 in Appendix C.2 implies that with

probability greater than 1− δ2n,

1− α = P#
{
√
nhβ−

1
2 sup
t∈T

∣∣∣F̂#
X∗(t)− F̂X∗(t)

∣∣∣ ≤ √nhβ− 1
2 ĉα

}

≤ P#
{

sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 ĉα + ε1n

}
+ δ1n,

for some ε1n, δ1n, δ2n = O(n−c) with c > 0, where G̃n has the same distribution as Gn under

P#. Since
√
nhβ−

1
2 ca is also the (1− a)-th quantile of supt∈T

∣∣∣G̃n(t)
∣∣∣ under P#, the above

inequality implies

P#
{

sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 cα+δ1n

}
≤ P#

{
sup
t∈T

∣∣∣G̃n(t)
∣∣∣ ≤ √nhβ− 1

2 ĉα + ε1n

}
,

with probability greater than 1− δ2n. Thus, we obtain (C.1).

The main result is thus obtained from the following sequence of inequalities
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P{Tn ≤ ĉα} ≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 ĉα − εn

}
− δn

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n − ε1n − εn

}
− δn − δ2n

≥ P

{
sup
t∈T
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n

= 1− α− δ1n − 2pε̄n(Gn)− δn − δ2n

≥ 1− α− δ1n −Mε̄n

√
log(1/h)− δn − δ2n,

where the first inequality follows from Lemma 17, the second inequality follows from (C.1),

the third inequality follows from the definitions of ε̄n = ε1n + εn and pε(Gn), along with

the fact Gn and −Gn have the same distribution (which ensures pε(|Gn|) ≤ 2pε(Gn)), the

equality follows from the definition that
√
nhβ−

1
2 cα+δ1n is the (1 − α − δ1n)-th quantile of

supt∈T |Gn(t)|, and the last inequality follows from Lemma 19. Therefore, letting δ3n =

δ1n +Mε̄n
√

log(1/h) + δn + δ2n, we have

P{Tn ≤ ĉα} ≥ 1− α− δ3n.

Since δn, δ1n, δ2n, ε̄n are all positive sequences of order O(n−a) with some a > 0 and√
log(1/h) is a log-rate, we obtain the conclusion.

C.1.2 Proof of Theorem 8

For simplicity, we restrict attention to the case of Ni = 2. For more general situations

where Ni is arbitrary but bounded above by C, the proof follows by similar arguments after

accounting for the dependence structure in f̂ ft
ε .

We first make the following preliminary observations. Note that F̃X∗(t) can be alterna-

tively written as

F̃X∗(t) = 1
2π

∫ 1/h

−1/h

Im{eiωtf̂ ft
X(ω)}

−ω
K ft(hω)
f̂ ft
ε (ω)

dω. (C.2)

where f̂ ft
X(ω) = N−1∑

i,j e
iωXi,j denotes the empirical characteristic function. A similar

expression holds for F̂X∗ . Let ξ = (f ft
ε )2 and ξ̂ = (f̂ ft

ε )2. We note the following properties
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for ξ̂

E

[∫ h−1

ω0
ω−a|ξ̂(ω)− ξ(ω)|2dω

]
=



n−1h−(1−a) if a < 1

n−1 if a > 1

n−1 log(1/h) if a = 1

(C.3)

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + op(1). (C.4)

The results in (C.3) can be shown by expanding the expectations. To show (C.4), we use

Yukich (1987, Theorem 6.3) which assures that under Assumption B (i), sup|ω|≤h−1 |ξ̂−ξ| =

Op(
√

logn/n) for h = O(n−c) with some c > 0. Combined with Assumption B (ii), this

implies {min|ω|≤h−1 |ξ̂|}−1 = Op(h−2β). Thus we obtain

sup
|ω|≤h−1

|ξ/ξ̂| ≤ 1 + sup
|ω|≤h−1

|(ξ̂ − ξ)/ξ̂| = 1 +Op

(( logn
nh4β

)1/2
)

= 1 + op(1),

thereby proving (C.4).

Pick any η ∈ (1/2, γ − β). Under Assumptions C (iii) and OS (i), it can be verified that

∫ 1/h

−1/h

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
2

dω = O(1). (C.5)

We shall also make frequent use of the following algebraic inequality:

|ξ̂1/2 − ξ1/2| ≤ ξ−1/2|ξ̂ − ξ|. (C.6)

We now proceed to the main part of the proof. By (C.2), we can expand

F̃X∗(t)− F̂X∗(t) = 1
π

∫ ω0

0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+ 1
π

∫ 1/h

ω0

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B1n(t) +B2n(t).
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For the term B1n(t), using (C.6), we have

|B1n(t)| ≤ 1
π

∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣
∣∣∣∣∣ξ(ω)
ξ̂(ω)

∣∣∣∣∣
1/2 |ξ̂(ω)− ξ(ω)|

ξ(ω)3/2 dω.

By the fact sup|ω|≤ω0 |ξ̂ − ξ| = Op(n−1/2) and (C.4), we obtain

sup
t∈T
|B1n(t)| = Op(n−1/2) sup

t∈T
I(t),

where

I(t) =
∫ ω0

0

∣∣∣∣∣ Im{e−iωtf̂ ft
X(ω)}

−ω

∣∣∣∣∣ dω
≤

∫ ω0

0

∣∣∣∣sin(ωt)
ω

Re{f̂ ft
X(ω)}

∣∣∣∣ dω +
∫ ω0

0

∣∣∣∣cos(ωt)
ω

Im{f̂ ft
X(ω)}

∣∣∣∣ dω
≤

∫ ω0

0

∣∣∣∣sin(ωt)
ω

∣∣∣∣ dω +
∫ ω0

0

∣∣∣∣∣ Im{f̂ ft
X(ω)}
ω

∣∣∣∣∣ dω
= I1(t) + I2.

Since T is a compact set, it holds supt∈T I1(t) < ∞. By the definition of f̂ ft
X , the random

variable I2 can be bounded as

I2 ≤
1
N

∑
i,j

∫ ω0

0

∣∣∣∣sin(ωXi,j)
ω

∣∣∣∣ dω ≡ 1
N

∑
i,j

Ti,j .

Since

E[Ti,j ] = E

∫ ω0|Xi,j |

0

∣∣∣∣sin(t)
t

∣∣∣∣ dt ≤ C1 + E[log |Xi,j |] <∞

for some C1 > 0, it holds I2 = Op(1). Combining these results, we obtain supt∈T |B1n(t)| =

Op(n−1/2).

For the term B2n(t), we further expand

B2n(t) = − 1
π

∫ 1/h

ω0

Im{e−iωtf ft
X(ω)}

−ωξ(ω) {ξ̂(ω)1/2 − ξ(ω)1/2}K ft(hω)ξ(ω)1/2

ξ̂(ω)1/2
dω

+ 1
π

∫ 1/h

ω0

Im
{
e−iωt{f̂ ft

X(ω)− f ft
X(ω)}

}
−ω

{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= B21n(t) +B22n(t).
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For the term B21n(t), we have

sup
t∈T
|B21n(t)| ≤ 1

π

∫ 1/h

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
∣∣∣∣∣ ξ̂(ω)− ξ(ω)
ω1+ηξ(ω)1/2

∣∣∣∣∣
∣∣∣∣∣ξ(ω)
ξ̂(ω)

∣∣∣∣∣
1/2

dω

≤ C2(1 + op(1))

∫ 1/h

ω0

∣∣∣∣∣ωηf ft
X∗(ω)

ξ(ω)1/2

∣∣∣∣∣
2

dω

1/2(∫ 1/h

ω0
ω2(β−η−1)|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O(n−1/2h(η−β+1/2)∧0),

for some C2 > 0, where the first inequality follows from the fact |Im{e−iωtf ft
X(ω)}| ≤

|f ft
X(ω)| = |f ft

X∗(ω)|ξ(ω)1/2 and (C.6), the second inequality follows from (C.4) and As-

sumption OS (i), and the equality follows from (C.3) and (C.5).

Now consider the term B22n(t). Applying (C.6) and Assumption OS (i), we can write

sup
t∈T
|B22n(t)| ≤ 1

π

∫ 1/h

ω0
|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2 1
ωξ(ω)3/2dω

≤ 1
c3π

∫ 1/h

ω0
|f̂ ft
X(ω)− f ft

X(ω)||ξ̂(ω)− ξ(ω)||ξ(ω)/ξ̂(ω)|1/2ω3β−1dω,

for some c > 0. As in (C.5), it can be shown after expanding the expectation that

E

[∫ 1/h

ω0
ω−a|f̂ ft

X(ω)− f ft
X(ω)|2dω

]
= O((nh1−a)−1),

for all a < 1. Thus, by (C.4) and (C.5), it follows

sup
t∈T
|B22n(t)| ≤ 1 + op(1)

π

∫ 1/h

ω0
ω3β−1|f̂ ft

X(ω)− f ft
X(ω)||ξ̂(ω)− ξ(ω)|dω

= 1 + op(1)
π

(∫ 1/h

ω0
ω3β−1|f̂ ft

X(ω)− f ft
X(ω)|2dω

)1/2(∫ 1/h

ω0
ω3β−1|ξ̂(ω)− ξ(ω)|2dω

)1/2

= O((nh3β)−1).

Combining these results, we obtain

√
nhβ−1/2 sup

t∈T
|F̃X∗(t)− F̂X∗(t)| = Op

(
hη∧(β−1/2) + 1√

nh2β+1/2

)
= op(1),

under Assumption B (ii) and the condition η > 1/2.
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C.1.3 Proof of Theorem 9

Define

D̂#
n (t) =

√
nhβ−1/2{F̂#

X∗(t)− F̂X∗(t)}, D̃#
n (t) =

√
nhβ−1/2{F̃#

X∗(t)− F̃X∗(t)}.

Also, let f̂ ft#
X (ω) = N−1∑

i,j e
iωX#

i,j be the bootstrap counterpart of the empirical charac-

teristic function f̂ ft
X(ω) = N−1∑

i,j e
iωXi,j .

We first show that there exist c, C > 0 such that

P#
{

sup
t∈T
|D̃#

n (t)− D̂#
n (t)| ≥ Cn−c

}
= op(1). (C.7)

By Theorem 8, it is enough for (C.7) to guarantee that there exist c, C > 0 satisfying

P#
{
√
nhβ−1/2 sup

t∈T
|F̃#
X∗(t)− F̂

#
X∗(t)| ≥ Cn

−c
}

= op(1).

To this end, note that

F̃#
X∗(t)− F̂

#
X∗(t) = 1

2π

∫ 1/h

−1/h

Im
{
e−iωt

{
f̂ ft#
X (ω)− f̂ ft

X(ω)
}}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

+ 1
2π

∫ 1/h

−1/h

Im{e−iωtf̂ ft
X(ω)}

−ω
{ξ̂(ω)−1/2 − ξ(ω)−1/2}K ft(hω)dω

= C1n(t) + C2n(t).

The second term C2n(t) equals to F̃X∗(t) − F̂X∗(t) whose bound is given in Theorem 8.

Thus, we only need to consider the first term C1n(t). By expanding the expectations, it can

be shown

E#
[∫ 1/h

ω0
ω−a|f̂ ft#

X (ω)− f̂ ft
X(ω)|2dω

]
= Op((nh1−a)−1),

for all a < 1, and analogous arguments as in the proof of Theorem 8 yield supt∈T |C1n(t)| =

Op#((nh3β)−1) with probability approaching one. Therefore, by paralleling the arguments

in the proof of Theorem 8, we obtain (C.7).

We now proceed by verifying the conditions in the proof of Theorem 6. Lemma 17 and
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Theorem 8 ensure existence of a sequence εn = O(n−c) with some c > 0 such that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̃X(t)− FX(t)} − Gn(t)
∣∣∣ > εn

}
= op(1). (C.8)

Furthermore by Lemma 18, combined with (C.7), we have that

P#
{

sup
t∈T

∣∣∣√nhβ−1/2{F̃#
X∗(t)− F̃X∗(t)} − G̃n(t)

∣∣∣ > εn

}
= op(1). (C.9)

Therefore, by (C.8) and (C.9), the conclusion follows by paralleling the arguments in the

proof of Theorem 6.

C.1.4 Proof of Theorem 10

We only prove the theorem under Assumption OS (i.e., the ordinary smooth case). The

proof under Assumption SS follows by a similar argument using Lemmas 20-22.

We make the following preliminary observations. First, by the techniques employed in

Lemmas 17-19, we can show1

sup
t∈H
|f̂X∗(t)− fX∗(t)| = Op(n−c). (C.10)

Next by Dattner, Reiß and Trabs (2016, Proposition 2.1),
∥∥∥f̂X∗∥∥∥1

<∞ and
∫∞
−∞ f̂X∗(t)dt =

1 under Assumption C. Thus, we have F̂X∗(t) =
∫ t
−∞ f̂X∗(v)dv or equivalently F̂ ′X∗(t) =

f̂X∗(t). The latter ensures F̂X∗ is continuous.

We now show that2

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| = op(n−c1), (C.11)

for some c1 > 0. By Hall and Lahiri (2008, Theorem 3.7), Q̂(u) converges to Q(u) for each

u ∈ [u1, u2]. Now Qn(u) is monotone at each n by construction while Q(u) is continuous by

Assumption Q (i). Hence we can modify the proof of the Glivenko-Cantelli theorem (see,
1An analogous result applies for the super smooth case by Lemmas 20-22 with the rate replaced by

Op((logn)−c) for some c > 1 under the assumption γ > λ and an MSE optimal bandwidth choice.
2For the super smooth case, we can employ similar arguments to show that supu∈[u1,u2] |Q̂(u)−Q(u)| =

op((logn)−c1 ) for some c1 > 1.
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Billingsley, 1995, p. 233), to strengthen the pointwise consistency to a uniform one, i.e.,

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| = op(1), (C.12)

(see also, Bassett and Koenker, 1986, Theorem 3.1). As F̂X∗ is continuous, it follows that

F̂X∗(Q̂(u)) = u for all 0 < u < 1. Consequently,

F̂X∗(Q̂(u)) = FX∗(Q(u)) = FX∗(Q̂(u)) + fX∗(Q̃(u))(Q̂(u)−Q(u)),

for some Q̃(u) such that |Q̃(u)−Q(u)| ≤ |Q̂(u)−Q(u)|, and we obtain

sup
u∈[u1,u2]

|Q̂(u)−Q(u)| ≤
(

inf
u∈[u1,u2]

|fX∗(Q̃(u))|
)−1

sup
u∈[u1,u2]

|F̂X∗(Q̂(u))− FX∗(Q̂(u))|

By (C.12) and Assumption Q (i) (infx∈H fX∗(x) > 0), we can verify infu∈[u1,u2] |fX∗(Q̃(u))| >

0 with probability approaching one. Furthermore, we have

sup
u∈[u1,u2]

|F̂X∗(Q̂(u))− FX∗(Q̂(u))| ≤ n−
1
2h−β+ 1

2 sup
t∈H
|Gn(t)|+ op(1) = Op

(( log(1/h)
nh2β−1

)1/2)
,

where the inequality follows from Lemma 17 after employing the fact {Q̂(u) : u ∈ [u1, u2]} ⊂

H with probability approaching one due to Assumption Q (i) and (C.12). The equality

follows from E[supt∈H |Gn(t)|] = O(
√

log(1/h)) (by the proof of Lemma 19). Combining

these results, we obtain (C.11) under Assumptions OS (iii) and B (ii).

We now proceed to the main part of the proof. Noting that

Q̂(u)−Q(u) = fX∗(Q̃(u))−1{F̂X∗(Q̂(u))− FX∗(Q̂(u))}, we have

P

{
Q̂(u)− ĉα

f̂X∗(Q̂(u))
≤ Q(u) ≤ Q̂(u) + ĉα

f̂X∗(Q̂(u))
for all u ∈ [u1, u2]

}

= P

{
sup

u∈[u1,u2]
|f̂X∗(Q̂(u)){Q̂(u)−Q(u)}| ≤ ĉα

}
≥ P

{
sup
t∈H
|F̂X∗(t)− FX∗(t)| ≤ ĉα(1−∆n)

}
− op(1),

where ∆n = supu∈[u1,u2]

∣∣∣∣ f̂X∗ (Q̂(u))−fX∗ (Q̃(u))
f̂X∗ (Q̂(u))

∣∣∣∣ and the inequality follows from the fact

P
{
{Q̂(u) : u ∈ [u1, u2]} ⊂ H

}
→ 1 by Assumption Q (i) and (C.11). Also note that ∆n =

Op(n−c) by Assumption Q (i)-(ii), (C.10), and (C.11). We now have the following sequence
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of inequalities

P

{
sup
t∈H
|F̂X∗(t)− FX∗(t)| ≤ ĉα(1−∆n)

}
≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 ĉα(1−∆n)− εn

}
− δn

≥ P

{
sup
t∈H
|Gn(t)| ≤

(√
nhβ−

1
2 cα+δ1n − ε1n

)
(1−∆n)− εn

}
− δn − δ2n

≥ P

{
sup
t∈H
|Gn(t)| ≤

√
nhβ−

1
2 cα+δ1n

}
− 2pε̄n(Gn)− δn − δ2n ≥ 1− α− δ1n − δn − δ2n − 2pε̄n(Gn),

where the first inequality follows from Lemma 17, the second inequality can be derived by

Lemma 18 and a similar argument in the proof of Theorem 6, the third inequality follows

from the definitions of ε̄n = εn + ε1n(1 − ∆n) +
√
nhβ−

1
2 cα+δ1n∆n and the concentration

function. Note that Lemma 19 implies pε̄n(Gn) ≤ Cε̄n
√

logn. Recalling that
√
nhβ−

1
2 cα+δ1n

is the (α+δ1n)-th quantile of supt∈H |Gn(t)|, by Chernozhukov, Chetverikov and Kato (2014,

Lemma B1),
√
nhβ−

1
2 cα+δ1n ≤ E

[
sup
t∈H
|Gn(t)|

]
+
√

2| log(α+ δ1n)|.

Since E[supt∈H |Gn(t)|] = O(
√

log(1/h)), this implies
√
nhβ−

1
2 cα+δ1n = O(

√
logn) under

Assumptions OS (iii) and B (ii). By the above and the rates of εn, ε1n, it follows pε̄n(Gn) =

Op(n−c2) for some c2 > 0. Furthermore, by Lemmas 17 and 18, δn, δ1n, and δ2n are also

O(n−c3) for some c3 > 0. Combining these results, the conclusion follows.

C.1.5 Proof of Theorem 11

We shall assume for simplicity that fε = fδ, and consequently that the bandwidth choices

for both estimators are the same. We only prove for the case of ordinary smooth error

density as the proof for super-smooth density follows by the same arguments. Assume that

that the smoothness parameter in the former case is β. Let

GDn,m(t) = hβ−1/2
{∫

L̄
(
t− a
h

)
fX(a)1/2dW1(a)−

√
n

m

∫
L̄
(
t− a
h

)
fY (a)1/2dW2(a)

}
,

where W1 and W2 are two independent (two-sided) Wiener processes on R (for fε 6= fδ or

unequal bandwidths, the L̄ functions in the above integrals would also be different). Also
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define

Ψn,m(t) = {F̂X∗(t)− FX∗(t)} − {F̂Y ∗(t)− FY ∗(t)},

Ψ#
n,m(t) = {F̂#

X∗(t)− F̂X∗(t)} − {F̂
#
Y ∗(t)− F̂Y ∗(t)}.

C.1.5.1 Proof of (i)

Since the samples {Xi}ni=1 and {Yi}mi=1 are independent of each other, by the arguments of

Lemmas (17)-(19), we can show the following: For some sequences εn, δn = O(n−c),

P

{
sup
t∈T

∣∣∣√nhβ−1/2Ψn,m(t)− GDn,m(t)
∣∣∣ > εn

}
< δn. (C.13)

Furthermore with probability greater than 1 − δ2n, δ2n = O(n−c), there exist sequences

ε1n, δ1n = O(n−c) such that

P#
{

sup
t∈T

∣∣∣√nhβ−1/2Ψ#
n,m(t)− G̃D#

n,m(t)
∣∣∣ > ε1n

}
< δ1n, (C.14)

where G̃D#
n,m is a tight Gaussian process with the same distribution as GDn,m under P#. Finally

it also holds that

pεn(GDn,m) ≤Mεn

√
log(1/h), (C.15)

for any sequence εn = O(n−c) and some M <∞. Now

P
{
Dn,m ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t)− sup
t
{FX∗(t)− FY ∗(t)} ≤ ĉDα

}
≥ P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα

}
,

where the last equality follows from supt{FX∗(t)− FY ∗(t)} ≤ 0 under H0. Using equations

(C.13)-(C.15), by paralleling the arguments in the proof of Theorem 6, we can show that

P

{
sup
t∈T

Ψn,m(t) ≤ ĉDα

}
≥ 1− α− %n,m.

Hence the claim follows immediately.
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C.1.5.2 Proof of (ii)

It is enough to show that ρn,m does not depend on P ∈ P0. To this end, it is enough

to show uniform validity of equations (C.13)-(C.15). Since these equations are essentially

two-sample counterparts of Lemmas (17)-(19), it suffices to check uniform validity of the

latter.

Note that for Lemma (17), uniformity of the bias term follows by the argument in Hall

and Lahiri (2008, Theorem 3.2) using the uniform version of the Sobolev condition (i.e. the

constantsMX andMY do not depend of (FX∗ , FY ∗)). For the stochastic term, the constants

appearing in the KMT coupling in the proof of Lemma (17) are universal, and constants

and sequences in other parts do not depend on P ∈ P0. Thus, δn in Lemma (17) does not

depend on P ∈ P0. Similarly, uniformity of Lemma (18) is also verified.

For Lemma (19), it is enough to guarantee that σn(t) is bounded away from zero and

above by universal constants that do not depend on P ∈ P0. This is guaranteed by the

assumption that fX and fY are bounded away from zero and above by universal constants

that do not depend on P ∈ P0.

C.1.5.3 Proof of (iii)

Let cDa be a constant such that
√
nhβ−1/2cDa is the (1 − a)-th quantile of supt∈T GDn,m(t).

Using equation (C.14) and mirroring the arguments in the proof of Theorem 6, we have

that

P
{√

nhβ−1/2ĉDα <
√
nhβ−1/2cDα−δ1n + ε1n

}
≥ 1− δ2n. (C.16)

Under H1, there exists t∗ ∈ T such that µ = FX∗(t∗)− FY ∗(t∗) > 0. Then we obtain

P{Dn.m > ĉDα } ≥ P
{√

nhβ−1/2Dn,m >
√
nhβ−1/2cDα−δ1n + ε1n

}
− δ2n

≥ P
{
GDn,m(t∗) >

√
nhβ−1/2cDα−δ1n −

√
nhβ−

1
2µ+ ε1n + εn

}
− δ2n − δn,

for some εn, δn = O(n−c′) with some c′ > 0, where the first inequality follows from (C.16)

and the second inequality follows from (C.13). By analogous arguments as in the proof of

Theorem 10, we can show
√
nhβ−1/2cDα−δ1n = O(

√
log(1/h)). However under Assumption
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OS (iii),
√
nhβ−1/2√log(1/h)µ→ +∞; hence the conclusion follows immediately.

C.2 Lemmas

Hereafter we use the following notation. By the Ito isometry, the variance function of the

Gaussian process Gn can be shown to be

σn(t) = hr2(h)
∫

L̄2 (a) fX(t− ha)da.

Let σ̄n = supt σn(t) and σn = inft σn(t). Assumption C (i) (inft∈T fX(t) > c > 0) guarantees

that σn > 0 for all n ∈ N.

Also, define the variance sub-metric dn(s, t) = V ar(Gn(s)− Gn(t)) on T .

C.2.1 Lemmas for Theorem 6 under Assumption OS

Lemma 17. Under Assumptions C and OS, there exist sequences εn, δn = O(n−c) for some

c > 0 such that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̂X∗(t)− FX∗(t)} − Gn(t)
∣∣∣ > εn

}
< δn.

Proof. By applying the argument in Hall and Lahiri (2008), the bias of the estimator F̂X∗

satisfies supt∈T |E[F̂X∗(t)]− FX∗(t)| = O(hγ). Thus, Assumption OS (iii) guarantees

√
nhβ−1/2 sup

t∈T
|E[F̂X∗(t)]− FX∗(t)| = o(n−ξ).

So, the bias term is negligible and it is enough to show that

P

{
sup
t∈T

∣∣∣√nhβ−1/2{F̂X∗(t)− E[F̂X∗(t)]} − Gn(t)
∣∣∣ > εn

}
< δn, (C.17)

for some εn, δn = O(n−c) with c > 0. Let FEDFX,n be the empirical distribution function by

{Xi}ni=1, αn(x) =
√
n{FEDFX,n (x)− FX(x)} be the empirical process, and

Dn(t) =
√
nhβ−1/2{F̂X∗(t)− E[F̂X∗(t)]} = hβ−1/2

∫
L
(
t− a
h

)
dαn(a).
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Then (C.17) is rewritten as

P

{
sup
t∈T
|Dn(t)− Gn(t)| > εn

}
< δn, (C.18)

for some εn, δn = O(n−c) with c > 0.

First, we approximate Dn(t) by

Dn,0(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dαn(a),

Note that both Dn(t) and Dn,0(t) are well defined as Lebesgue-Steltjes integrals.3 From

integration by parts,

Dn(t) = hβ−3/2
∫

K
(
t− a
h

)
αn(a)da

+hβ−1/2 lim
a→∞

{
L
(
t− a
h

)
αn(a)

}
− hβ−1/2 lim

a→−∞

{
L
(
t− a
h

)
αn(a)

}
= hβ−3/2

∫
K
(
t− a
h

)
αn(a)da, (C.19)

for all n ∈ N, where the second equality follows from the facts lima→±∞ αn(a) = 0 and

supu |L(u)| < ∞ for each h. Since a similar expression applies for Dn,0(t), there exists

C > 0 such that

Dn(t)−Dn,0(t) = hβ−1/2
∫
{K(u)− K̄(u)}αn(u− th)du ≤ Chs sup

u
|αn(u)|,

for all n large enough and t ∈ T , where the inequality follows from Assumption OS (ii).

Now by the strong approximation (Komlós, Major and Tusnády, 1975), there exists a tight

Brownian bridge B(t) = W (t)− tW (1) and universal constants C1, C2 > 0 such that

P

{
sup
u
|αn(u)| ≤ sup

u
|B(FX(u))|+ C1

logn√
n

}
≥ 1− C2

n
,

for all n ∈ N. Combining theses results and using the properties of supu |B(FX(u))| (in
3This is verified as follows: By the definition L(u) =

∫ u
0 K(v)dv and Assumption SS (ii), we have

supu |L(u)| < ∞. Also, by L̄(u) =
∫ u

0 K̄(v)dv (follows from Fubini’s theorem) and Assumption SS (ii),
we have supu |L̄(u)| < ∞. Therefore, bounded variation of the empirical process αn guarantees that both
Dn(t) and Dn,0(t) are well defined.
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particular, P{supu |B(FX(u))| ≥ x} ≤ 2 exp(−2x2) for x > 0), there exists C3 > 0 such

that

P

{
sup
t∈T
|Dn(t)−Dn,0(t)| > hs/2

}
≤ C3 exp(−2h−s) + C2

n
,

for all n large enough. Note that hs/2 = O(n−c1) for some c1 > 0 due to Assumption OS

(iii) (nνh→ 0). Thus, it is enough for (C.18) to show that

P

{
sup
t∈T
|Dn,0(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.

Second, we approximate Dn,0(t) by

Dn,1(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dB(FX(a)).

Since L̄ ∈ L2(R), this integral exists for all t ∈ R. Analogous to the integration by parts

formula in (C.19), a similar result applies for Dn,1(t) based on stochastic integration by

parts using the facts limu→±∞ L̄(u) = 0 and supa |B(FX(a))| <∞ almost surely. Thus, we

have

Dn,0(t)−Dn,1(t) = hβ−3/2
∫

K̄
(
t− a
h

)
{αn(a)−B(FX(a))}da

≤ hβ−1/2 sup
a
|αn(a)−B(FX(a))|

∫
|K̄(u)|du,

for all n ∈ N, almost surely. Now by Komlós, Major and Tusnády (1975), there exist

Brownian bridge B with continuous sample paths and universal constants C4, C5 > 0 such

that

P

{
sup
a∈R
|αn(a)−B(FX(a))| > C4

logn√
n

}
≤ C5

n
,

for all n ∈ N. Combining this with Assumption OS (ii), there exist c2, C6 > 0 such that

P

{
sup
t∈T
|Dn,0(t)−Dn,1(t)| > C6n

−c2

}
≤ C5

n
,
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for all n large enough. Thus, it is enough for (C.18) to show that

P

{
sup
t∈T
|Dn,1(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0.

Third, we approximate Dn,1(t) by

Dn,2(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dW (FX(a)).

By the definition B(t) = W (t)− tW (1), we have

|Dn,1(t)−Dn,2(t)| ≤ hβ−1/2|W (1)|
∣∣∣∣∫ L̄

(
t− a
h

)
fX(a)da

∣∣∣∣ , (C.20)

for all n ∈ N. Therefore, for the rate of supt∈T |Dn,1(t)−Dn,2(t)|, we need to characterize

the order of In1(t) =
∫
L̄
(
t−a
h

)
fX(a)da. By the definition of L̄ and

∫ ∞
−∞

sin(ω(t− a))fX(a)da = 1
2i{e

iωtf ft
X(−ω)− e−iωtf ft

X(ω)},

an application of Fubini’s theorem assures

|In1(t)| =
∣∣∣∣∣ 1
2iπ

∫ 1/h

ω0
{eiωtf ft

X(−ω)− e−iωtf ft
X(ω)}K

ft(hω)
ωf ft

ε (ω) dω
∣∣∣∣∣

≤ 1
π

∫ 1/h

ω0
ω−1dω = O(log(1/h)).

where the inequality follows from |f ft
X | = |f ft

X∗ ||f ft
ε | ≤ |f ft

ε | and f ft
ε (ω) = f ft

ε (−ω). Substitut-

ing this bound for In1(t) into (C.20), we obtain

P

{
sup
t∈T
|Dn,1(t)−Dn,2(t)| > Mnh

β−1/2 log(1/h)
}

= O(n−c3),

for some c3 > 0 and sequence Mn = logn. By Assumption OS (i) (β > 1/2), it holds

Mnh
β−1/2 log(1/h) = O(n−c4) for some c4 > 0. Therefore, it is enough for (C.18) to show
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that

P

{
sup
t∈T
|Dn,2(t)− Gn(t)| > εn

}
< δn,

for some εn, δn = O(n−c) with c > 0. But we can see that the process Dn,2(t) has the same

finite dimensional distributions as the process Gn(t). Therefore, this trivially holds true and

the conclusion is obtained.

Lemma 18. Under Assumptions C and OS, there exist sequences ε1n, δ1n, δ2n = O(n−c)

for some c > 0 such that with probability greater than 1− δ2n,

P#
{

sup
t∈T

∣∣∣√nhβ−1/2{F̂#
X∗(t)− F̂X∗(t)} − G̃n(t)

∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distribution as Gn under P#.

Proof. The proof is essentially a reformulation of that of Bissantz, Dümbgen, Holzmann

and Munk (2007, Theorem 2.1). Let α#
n (t) =

√
n{FEDF

X#,n − F
EDF
X,n (t)} denote the bootstrap

empirical process. As shown in the proof of Bissantz, Dümbgen, Holzmann and Munk

(2007, eq. (21)), based on Shorack (1982), there exists a Brownian bridge B#
n and universal

constants C,C1 > 0 such that for all n ∈ N,

P#
{

sup
t∈R
|α#
n (t)−B#

n (FEDFX,n (t))| > C
logn√
n

}
≤ C1

n
,

almost surely. Now it is known that the Brownian bridge is Hölder continuous for every

exponent b ∈ (0, 1/2) almost surely. Furthermore, by Komlós, Major and Tusnády’s (1975)

coupling, along with the fact P{supt |B(FX(t))| ≥ logn} ≤ 2 exp(−2(logn)2), there exist

universal constants C2, C3 > 0 such that

P

{
sup
t∈R
|FEDFX,n (t)− FX(t)| > C2

logn√
n

}
≤ C3

n
,

for all n ∈ N, which consequently implies

P

{
sup
t∈R
|B#

n (FEDFX,n (t))−B#
n (FX(t))| > C4

logn
nb/2

}
≤ C5

n
,
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for some universal constants C4, C5 > 0. Combining these results, there exist universal

constants C6, C7, C8 > 0 such that with probability greater than 1− C6/n, it holds

P#
{

sup
t∈R
|α#
n (t)−B#

n (FX(t))| > C7
logn
nb/2

}
≤ C8

n
,

for all n ∈ N. Based on this, the conclusion follows by similar arguments as in the proof of

Lemma 17.

Lemma 19. Suppose that Assumptions C and OS hold true. Then for any sequence εn =

O(n−c) with c > 0, there exists a constant M > 0 such that

pεn(Gn) ≤Mεn

√
log(1/h),

for all n large enough.

Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and

separability of Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)
}
,

for all n ∈ N. Thus, it is enough to show that

E

[
sup
t∈T
|Gn(t)|

]
= O(

√
log(1/h)).

Now,

d2
n(s, t) = h2β

∫ {
L̄
(
s

h
− a

)
− L̄

(
t

h
− a

)}2
fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly

bounded on R (because hβ supu |K̄(u)| ≤ C for some C > 0 by Assumption OS (i)). Thus,

it holds

dn(s, t) ≤ C1h
−3/2|s− t|, (C.21)

for some C1 > 0 that is independent of s and t.

Let D(ε, dn) be the ε-packing number for the set T under the sub-metric dn. By (C.21),
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it holds D(ε, dn) ≤ 2C1h
−3/2/ε. Pick any δ ∈ (0, 1). By van der Vaart and Wellner (1996,

Corollary 2.2.8), there exist universal constants C2, C3 > 0 such that

E

[
sup

dn(s,t)≤δ
|Gn(s)− Gn(t)|

]

≤ C2

∫ δ

0

√
logD(ε, dn)dε ≤ C2δ

√
log(2C1h−3/2) + C2

∫ δ

0

√
log(1/ε)dε ≤ C3

√
log(1/h),

for all n ∈ N. Thus, there exists a collection of Gaussian random variables {Gn(tj)}pni=1 with

pn =
⌈

1
h3/2δ

⌉
such that

E

[
sup
t∈T
|Gn(t)|

]
≤ E

[
max

1≤j≤pn
|Gn(tj)|

]
+ C3

√
log(1/h),

for all n ∈ N. Now the properties of the maximum of Gaussian random variables yields

E

[
max

1≤j≤pn
|Gn(tj)|

]
≤ 2σ̄n

√
1 + log pn.

Combining these results, the conclusion follows.

C.2.2 Lemmas for Theorem 6 under Assumption SS

Lemma 20. Under Assumptions C and SS, there exist sequences εn = O(logn)−c and

δn = O(n−c) with c > 0 such that

P

{
sup
t∈T

∣∣∣∣∣
√
n

ς(h){F̂X
∗(t)− FX∗(t)} − Gn(t)

∣∣∣∣∣ > εn

}
< δn.

Lemma 21. Under Assumptions C and OS, there exist sequences ε1n, δ1n, δ2n = O(n−c)

with c > 0 such that with probability greater than 1− δ2n,

P#
{

sup
t∈T

∣∣∣∣∣
√
n

ς(h){F̂
#
X (t)− F̂X(t)} − G̃n(t)

∣∣∣∣∣ > ε1n

}
< δ1n,

where G̃n is a tight Gaussian process with the same distributions as Gn under P#.

These lemmas can be shown in the same way as Lemmas 17 and 18. The log rate of εn

in Lemma 20 is due to the bias term. Recall that under Assumption C (ii), the bias of the
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estimator F̂X∗ is given by

sup
t∈T
|E[F̂X∗(t)]− FX∗(t)| = O(hγ).

Then due to Assumption SS (iii), it holds
√
nhγ/ς(h) = C(logn)−c for some c > 1.

Lemma 22. Suppose that Assumptions C and SS hold true. Then for any sequence εn =

O(n−c) with c > 0 and any r > 0, there exists M > 0 such that

pεn(Gn) ≤Mεn(logn)1+r,

for all n large enough.

Proof. Pick any ε > 0. By Chernozhukov, Chetverikov and Kato (2015, Theorem 3) and

separability of the Gaussian process Gn, there exists C > 0 such that

pε(Gn) ≤ Cε
{
σ−1
n E

[
sup
t∈T
|Gn(t)|

]
+
√

1 ∨ log(σn/ε)
}
,

for all n ∈ N. By Lemmas 23 and 24 shown below, the following hold true:

there exist c1 > 0 such that σn ≥ c1h
λ+ν for all ν > 0 and n large enough, (C.22)

there exist C1 > 0 such that σ̄n ≤ C1 for all n large enough. (C.23)

Observe that

d2
n(s, t) = h

ς2(h)

∫ {
L̄
(
s

h
− a

)
− L̄

(
t

h
− a

)}2
fX(ha)da

by the Ito isometry. Note that L̄ is Lipschitz continuous because its derivative K̄ is uniformly

bounded on R (because
√
hς−1(h) supu |K̄(u)| ≤ C2h

−c2 for some C2, c2 > 0 by Assumption

SS (i)). Thus, it holds dn(s, t) ≤ C3h
−c2−3/2|s − t| for some C3 > 0 that is independent

of s and t. Using (C.23), an analogous argument as in the proof of Lemma 19 shows that

E [supt∈T |Gn(t)|] = O(
√

log(1/h)). Combining this with (C.22) and Assumption SS (iii),

the conclusion follows.
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Lemma 23. Under Assumptions C and SS, there exists c > 0 such that σn ≥ chλ+ν for all

ν > 0 and n large enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick

any ε > 0. By Assumption C (i), we provide a lower bound for σn via

σn = inf
t∈T

h

ς2(h)

∫
L̄2(a)fX(t− ha)da ≥ c1h

ς2(h)

∫
|a|≤hε

L̄2(a)da,

for some c1 > 0. Let

Φε(ω) = f ft
ε (ω)−1I{|ω| ≥ ω0}.

Using the fact sin(x) = x + R(x) with |R(x)| ≤ c2|x|2 for some c2 > 0, it follows that for

all |a| ≤ hε,

|L̄(a)| ≥ 1
π

∣∣∣∣a ∫ 1

0
K ft(ω)Φε

(
ω

h

)
dω

∣∣∣∣− c2
π

∣∣∣∣a ∫ 1

0
|aω|K ft(ω)Φε

(
ω

h

)
dω

∣∣∣∣ ≥ C{1−O(hε)}|aIn|,

where In =
∫ 1

0 K
ft(ω)Φε

(
ω
h

)
dω and the last inequality follows from the fact sup{|aω| : |a| ≤

hε, ω ∈ [0, 1]} = hε.

We now provide a lower bound for In. Pick any δ > 0. Observe that

h
1−λ

2 ς(h)−
1
2 |In| = exp(−1/µhλ)

hλ(s+1)+λ0

∫ 1

hω0
K ft(ω)Φε

(
ω

h

)
dω

≥ c3
exp(−1/µhλ)

hλ(s+1)

∫ 1

hω0
K ft(ω)ω−λ0 exp

(
|ω|λ

hλµ

)
dω

≥ c3
exp(−1/µhλ)

hλ(s+1)

∫ 1

δ
K ft(ω) exp

(
|ω|λ

hλµ

)
dω

= c3

∫ (1−δ)h−λ

0

K ft(1− hλv)
(hλv)s vs exp

(
|1− hλv|λ − 1

hλµ

)
dv

→ c3r
s
∫
vs exp(−λv/µ)dv > 0,

for some c3 > 0, where the first inequality follows from the fact Φε(ω) ≥ c3|ω|−λ0 exp(|ω|λ/µ),

the second inequality holds since all the terms inside the integral are positive and ω−λ0I{hω0 ≤

ω ≤ 1} ≥ 1 for λ0 ≥ 0, the second equality follows from a change of variables, and the con-
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vergence follows from the dominated convergence theorem after noting

K ft(1− hλv)
(hλv)s vs exp

(
|1− hλv|λ − 1

hλµ

)
I{0 ≤ v ≤ (1− δ)h−λ}

≤


sup0≤t≤1{t−sK ft(1− t)}vs exp(−v/µ) if λ ≥ 1,

sup0≤t≤1{t−sK ft(1− t)}vs exp(−λv/µ) if 0 < λ < 1.

Thus, it holds h1/2ς(h)−1/2|In| > c3h
λ/2 for all n large enough.

Combining these results, there exists c > 0 such that

σn ≥ chλ
∫
|a|≤hε

|a|2da ≥ chλ+3ε,

for all n large enough, and the conclusion follows.

Lemma 24. Under Assumptions C and SS, there exists C > 0 such that σ̄n ≤ C for all n

large enough.

Proof. We only prove the case of λ0 ≥ 0. The proof for the case of λ0 < 0 is similar. Pick

any ε ∈ (0, 2−1/λ). Since fX is bounded (Assumption C (ii)), there exists C1, C2 > 0 such

that

σ̄n ≤ C1
exp(−2/µhλ)
hλ(2s+1)+2λ0

∫
L̄2(a)da = C2

exp(−2/µhλ)
hλ(2s+1)+2λ0

∫ 1

hω0

∣∣∣∣∣K ft(ω)
ω

Φε

(
ω

h

)∣∣∣∣∣
2

dω

≤ C2ω
−2
0

exp(−2/µhλ)
hλ(2s+1)+2(1+λ0)

∫ 1

hω0

∣∣∣∣K ft(ω)Φε

(
ω

h

)∣∣∣∣2 dω
≤ C2ω

−2
0

exp(−2/µhλ)
hλ(2s+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣∣K ft(ω)
(
ω

h

)−(1+λ0)
exp

(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

+C2ω
−2
0

exp(−2/µhλ)
hλ(2s+1)

∫
|ω|>ε

∣∣∣∣∣K ft(ω)ω−(1+λ0) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

= T1n + T2n,

for all n large enough, where the first equality follows from Plancherel’s isometry,4 and the

second inequality follows from Φε(ω) ≤ C|ω|−λ0 exp(|ω|λ/µ). For T1n, Assumption SS (iii)

4Note that L̄ is written as L̄(u) = 1
2π

∫ 1
−1

e−iωu

ω
Kft(ω)
f ft
ε (ω/h) I{|ω| ≥ ω0}dω. This integral exists due to the

truncation.
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and the restriction ε ∈ (0, 2−1/λ) guarantee

T1n ≤ C3ω
−(1+λ0)
0

exp(−2/µhλ)
hλ(2s+1)+2(1+λ0)

∫ ε

hω0

∣∣∣∣∣K ft(ω) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω

≤ C4
exp(−1/µhλ)
hλ(2s+1)+2(1+λ0) = O(n−c1),

for some C3, C4, c1 > 0. For T2n, note that

T2n ≤ C5ε
−(1+λ0) exp(−2/µhλ)

hλ(2s+1)

∫
|ω|>ε

∣∣∣∣∣K ft(ω) exp
(
|ω|λ

hλµ

)∣∣∣∣∣
2

dω,

for some C5 > 0. By an analogous dominated convergence argument used in the proof of

Lemma 23, we can show T2n converges to some finite constant. Combining these results,

the conclusion follows.

C.3 Assumptions and proofs for Theorem 7

In this appendix we prove Theorem 7, on the asymptotic distribution of tn. Basic steps of

our proof follow the recipe laid down by Bissantz, Dümbgen, Holzmann and Munk (2007).

Importantly, we impose tail conditions on f ft
ε of the form f ft

ε (ω)|ω|β → Cε as |ω| → ∞.

Based on this, we define

K(u) = 1
2πCε

∫ ∞
0

e−iωuωβK ft(ω)dω + 1
2πCε

∫ 0

−∞
e−iωu|ω|βK ft(ω)dω,

L(u) = 1
2πCε

∫ ∞
0

sin(ωu)ωβ−1K ft(ω)dω + 1
2πCε

∫ 0

−∞
sin(ωu)|ω|βω−1K ft(ω)dω.(C.24)

These are the pointwise limits of hβK(u) and hβL(u) as h→ 0 under some assumptions on

f ft
ε . In addition to Assumptions OS, we impose the following conditions.

Assumption G.

(i) f ft
ε (ω)|ω|β → Cε as |ω| → ∞ for some β > 1/2.

(ii) hβ
∫
|K(u)|du < M for someM > 0 independent of h.

∫
|u|3/2

√
log(log+ |u|)|K(u)|du <

∞. For some δ > 0,
∫
|hβK̄(u)−K(u)|du = O(h1/2+δ).
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(iii) limu→±∞ |L(u)
√
|u| log(log+ |u|)| = 0. For some δ1 ∈ (0, 1),

∫
|L(u)|2−δ1du < ∞. For

some δ > 0, supu |hβL̄(u/h)− L(u/h)| = O(h1/2+δ).

(iv) fX and its derivative f ′X are bounded and continuous on R such that

limx→±∞ |xfX(x) log(log+ |x|)| = 0. Also, supx |f ′X(x)fX(x)−1/2
√
|x| log(log+ |x|)| <

∞. Furthermore it holds∫
|f ′X(x)fX(x)−1/2

√
|x| log(log+ |x|)|dx <∞.

These conditions are generalizations and simplifications of the ones in Bissantz, Dümb-

gen, Holzmann and Munk (2007). Assumption G (i) is stronger than the usual assumption

f ft
ε (ω)|ω|β < Cε as |ω| → ∞ but is required for explicit derivation of the limiting distribu-

tion.

Assumption G (ii) contains conditions for the deconvolution kernel K. The first con-

dition ensures that K is L1-integrable. A sufficient condition for this is that 1/f ft
ε (ω) is

a polynomial function in ω. Indeed in this case it can be shown from the properties of

the Fourier transform that |K(u)| ∼ |u|−q as |u| → ∞ under some conditions on f ft
ε . For

instance, the choice r > 2 for K assures |K(u)| ∼ |u|−2 under the assumption

∫ ∣∣∣∣∣
{
K ft(ω)
f ft
ε (ω/h)

}′′∣∣∣∣∣ dω = O(h−β).

A similar condition is given in, for example, Bissantz, Dümbgen, Holzmann and Munk

(2007, eq. (13)). K in (C.24) is the limit of K̄ as h → ∞ obtained by Assumption G (i).

Recall that by Assumption OS (ii), hβ−
1
2
∫
|K(u)−K̄(u)|du = O(hs). Additionally, it can be

shown from the previous assumptions and properties of the Fourier transform of ωβK ft(ω)

that
∫
|hβK(u) − K(u)|du < ∞. To obtain the rate h1/2+δ for the latter, we need some

additional conditions on the decay of f ft
ε . Denote R(ω) = f ft

ε (ω)ωβ − Cε. Then a sufficient

condition for the third condition in Assumption G (ii) is that R(ω) ∼ ω−1/2−δ as |ω| → ∞.

Assumption G (iii) contains conditions on the integrated kernel function L. On the first

two conditions in Assumption G (iii), we can in fact show the stronger statement that for

all the commonly used kernel functions, L(u) ∼ |u|−β∧1 as u → ±∞. Regarding the third
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condition in Assumption G (iii), note that we can expand

hβL̄
(
u

h

)
−L

(
u

h

)
= hβ

πCε

∫ 1/h

ω1

sin(ωu)
ω

K ft(hω) R(ω)
ψft(ω)dω−

hβ

πCε

∫ ω1

0
sin(ωu)ωβ−1K ft(hω)dω.

Standard arguments show that this is of the order h1/2+δ under the assumption R(ω) ∼

ω−1/2−δ as |ω| → ∞.

Assumption G (iv) provides conditions on the decay rates of the pdf fX and its derivative

f ′X . Similar assumptions are adopted in the literature (e.g., Bickel and Rosenblatt, 1973).

Based on these conditions, we obtain Theorem 7 with

B =
∫
L(a)2da, bn = (−2 log h)1/2 + (−2 log h)−1/2 log

(∫
{L′(a)}2da

4πB

)
. (C.25)

Furthermore, if we consider the simple hypothesis

H0 : FX∗(t) = F0(t) for t ∈ T ,

for some F0, a test statistic for H0 is t0n = supt∈T |fX(t)−1/2{F̂X∗(t)−F0(t)}|. Consider the

sequence of local alternatives

H1n : FX∗(t) = F0(t) + γnη(t) for t ∈ T ,

where η(t) is a continuous function and γn =
√
nhβ−1/2(2 log(1/h))1/2. By an analogous

argument, we can obtain

P
{

(−2 log h)1/2(B−1/2t0n − bn) ≤ c
}
→ exp(−s(η) exp(−c)),

for all c ∈ R, where s(η) =
∫ 1

0 exp((BfX∗(a))−1/2η(a)) + exp(−(BfX∗(a))−1/2η(a))da.

C.3.1 Proof of Theorem 7

We show that

sup
t∈T
|fX(t)−1/2{F̂X∗(t)− FX∗(t)} − Yn(t)| = op((− log(h))−1/2), (C.26)
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where Yn = h−1/2 ∫ L ( t−ah ) dW (a) is a Gaussian process. Once we obtain (C.26), the

conclusion follows by applying the arguments of Bickel and Rosenblatt (1973, Theorem

A1). The rate op((− log(h))−1/2) is required because later we scale by (− log(h))1/2 to

obtain the limiting distribution as in Bickel and Rosenblatt (1973).

First, as in the proof of Lemma 17, the bias term in Qn(t) is negligible and we can

restrict attention to the mean zero process

Dn(t) = Qn(t)− E[Qn(t)] = hβ−1/2
∫

L
(
t− a
h

)
dαn(a),

where αn(a) =
√
n{FEDFX,n (a)−FX(a)} is the empirical process, and FEDFX,n is the empirical

distribution function by {Xi}ni=1. We approximate Dn(t) by

Dn,1(t) = hβ−1/2
∫

L̄
(
t− a
h

)
dW (FX(a)).

Indeed the arguments in the proof of Lemma 17 allow us to show

sup
t∈T
|Dn(t)−Dn,1(t)| = Op((nh)−1/2 logn)).

Also, Dn,1(t) has the same finite dimensional distribution as

Dn,2(t) = hβ−1/2
∫

L̄
(
t− a
h

)
fX(a)1/2dW (a).

Next, we approximate Dn,2(t) by

Dn,3(t) = h−3/2
∫
K
(
t− a
h

)
fX(a)1/2W (a)da.

To this end, note that for any h > 0,

lim
a→±∞

K
(
t− a
h

)
fX(a)1/2W (a) ≤ sup

u
|K(u)| lim

a→±∞
|afX(a) log(log+ |a|)|1/2 = 0,

where the inequality follows from the law of the iterated logarithm for the Wiener process

and the equality follows from the facts supu |K(u)| = O(h−β−1) and Assumption G (iv).
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Thus, using stochastic integration by parts, we can write

Dn,2(t) = hβ−1/2
∫ {

fX(t− hu)1/2K̄(u) + hf ′X(t− hu)fX(t− hu)−1/2L̄(u)
}
W (t− hu)du

and obtain

|Dn,2(t)−Dn,3(t)| ≤ h−1/2
∫
{hβK̄(u)−K(u)}fX(t− hu)1/2W (t− hu)du

+h1/2
∫
hβL̄(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

= Tn,4(t) + Tn,5(t).

Now by the law of the iterated logarithm and Assumption G (ii) and (iv), it follows

supt∈T |Tn,4(t)| = Op(hδ). For the term Tn,5(t),

|Tn,5(t)| ≤ h−1/2 sup
u
|hβL̄(u/h)− L(u/h)|

∫
|f ′X(t− z)fX(t− z)−1/2W (t− z)|dz

+h1/2
∣∣∣∣∫ L(u)f ′X(t− hu)fX(t− hu)−1/2W (t− hu)du

∣∣∣∣
= Tn,51(t) + Tn,52(t).

Using Assumption G (iii)-(iv), an application of the law of the iterated logarithm proves

supt∈T Tn,51(t) = O(hβ). Next, for the term Tn,52(t), Hölder’s inequality and the law of the

iterated logarithm imply

Tn,52(t) ≤ hδ1/(4−2δ1) ‖L(u)‖2−δ1

∥∥∥∥f ′X(u)fX(u)−1/2
√
|u| log(log+ |u|)

∥∥∥∥
2+δ1/(1−δ1)

.

By this expression and Assumption G (iii)-(iv), we are able to show supt∈T |Tn,52(t)| =

op((− log(h))−1/2). Combining these results, the claim supt∈T |Dn,2(t)−Dn,3(t)| = op((− log(h))−1/2)

follows.

Third, we approximate the process fX(t)−1/2Dn,3(t) with the process

Dn,4(t) = h−3/2
∫
K
(
t− a
h

)
W (a)da.
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Note that

fX(t)−1/2Dn,3(t)−Dn,4(t) = h−1/2
∫
{fX(t)−1/2fX(t− hu)1/2 − 1}K(u)W (t− hu)du.

By the law of the iterated logarithm and Assumption G (ii) and (iv), it follows

sup
t∈T
|fX(t)−1/2Dn,3(t)−Dn,4(t)| = Op(h1/2).

Fourth, let

Dn,5(t) = h−1/2
∫
L
(
t− a
h

)
dW (a).

By stochastic integration by parts formula and Assumption G (ii),

Dn,4(t)−Dn,5(t) =
{

lim
a→∞

L

(
t− a
h

)
W (a)

}
−
{

lim
a→−∞

L

(
t− a
h

)
W (a)

}
= 0,

for each h, which implies that Dn,4(t) = Dn,5(t) for all t ∈ T . Since Dn,5(t) has the same

finite dimensional distributions as the process Yn, the claim in (C.26) follows.
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