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Abstract
This thesis contains three essays in Microeconomic Theory.
Chapter 1 studies the incentives of a seller to voluntarily disclose or sell information

about a buyer to a third party. While there are obvious benefits to sharing information with
other sellers, there is also an incentive cost which is due to her learning about the buyer
through her own trade with him. To study this trade-off we analyse a model in which a
buyer interacts sequentially with two sellers, each of whom makes a take-it-or-leave-it offer.
The buyer learns his valuation for the good of each seller sequentially but these might be
correlated. We model information disclosure using Bayesian persuasion. Chapter 2 provides
various extensions of the model presented in Chapter 1.

Chapter 3 provides empirical evidences that demonstrate that the investors of a fund
update their opinion on the fund manager’s ability faster during bear markets. We build a
theoretical model to demonstrate a channel which would result on this empirical observation.
We consider a continuum of potential investors who allocate funds in two consecutive periods
between a manager and a market index. The manager’s alpha, defined as her ability to
generate idiosyncratic returns, is her private information and it is either high or low. In each
period, the manager receives a private signal on the potential performance of her alpha, and
she also obtains some public news on the market’s condition.

In Chapter 4 we demonstrate that the relative job security that CEOs enjoy can be partly
attributed to the high sophistication of the managerial labour market. To do this we build a
theoretical model in which a representative investor proposes a contract to a manager, which
also specifies the conditions of his termination. Production is a function of the manager’s
effort and ability, both of which are his private information. The former is a choice variable,
whereas the latter follows a Geometric Brownian motion. The manager’s post-termination
payoff is generated by an exogenous managerial labour market, and it is equal to his expected
ability. The market learns his ability with some given probability, which we interpret as its
sophistication. Otherwise, it forms its posterior based on his termination time.

Reading Instructions
Chapters 1, 3, and 4 each correspond to one of the three papers that I wrote during my

PhD. Those can be read individually. On the other hand, Chapter 2 contains a collection of
extensions of the model presented in Chapter 1, and was originally the online appendix of the
corresponding paper. Every effort has been made to make those extensions self-contained,
but reading Chapter 1 first is recommended. Unless highly interested on the covered topic
the reader may also choose to skip Chapter 2, since it is far more complex and speculative
from the rest of the material presented in this thesis.
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Chapter 1

A Mechanism Design Approach to the
Disclosure of Private Client Data

This chapter studies the incentives of a seller to voluntarily disclose or sell information about
a buyer to a third party. While there are obvious benefits to sharing information with other
sellers, there is also an incentive cost which is due to her learning about the buyer through her
own trade with him. To study this trade-off we analyse a model in which a buyer interacts
sequentially with two sellers, each of whom makes a take-it-or-leave-it offer. The buyer
learns his valuation for the good of each seller sequentially but these might be correlated.
In addition, we model information disclosure using Bayesian persuasion, that is we allow
the first seller to commit to a disclosure rule which depends on the information she acquires
in the first trade. In this setting we fully characterise the first seller’s costs and benefits of
information sharing. In particular, we show that voluntary information disclosure, or selling
of information, is optimal when the correlation between the buyer’s valuations for the two
goods is not too positively correlated. Also, when information exchange is optimal the buyer
benefits from it if his valuations are positively correlated, otherwise he is worse off.

1.1 Introduction
Information exchange between firms is rapidly increasing in both volume and importance.
The introduction of new technologies allows firms to cheaply store, analyse, and share data
on their clients. In particular, a firm just by interacting with its customers acquires private
information on their preferences. This information is valuable to other firms. To give an
example, an architect learns her client’s willingness to pay to renovate his house. This is
valuable information for an interior designer, since the client’s preferences for the two services
should be highly correlated. By sharing information with the designer the architect might be
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able to increase her profits. More generally, information exchange is significant in business
to business environments. Notably, data brokerage is already a big industry and has recently
attracted a lot of attention from both firms, that look to expand their customer base, and
regulator.

This chapter poses the following question: “Should a firm share private information
about its customers?” One direct way to benefit from disclosing data on its clientèle, such
as their purchase history, is to sell it. But even if selling information is not an option a firm
can still benefit from disclosure, but in an indirect way. This is because selectively sharing
data on its clients could persuade other firms to offer them discounts, the prospect of which
would allow the firm to increase its own prices. To see this, suppose that the client of the
aforementioned architect opted for a partial renovation only, which was the cheapest option.
Then he probably doesn’t value that much the interior designer’s services. Therefore, by
disclosing this information the architect can persuade the designer to offer a discount to her
client. In turn this allows the architect to sell to her client both the partial renovation and
the prospect of a discount as a bundle of products.

However, information disclosure is associated with an incentive cost. This is because a
firm infers its customers’ willingness to pay indirectly from their choice of product within
its catalogue. But if those are aware that this choice may affect the probability of their
getting a discount from a related seller, then this will skew their choices towards cheaper
products. In the example above, a client who anticipates a possible discount may skew his
choice towards the partial renovation. Therefore, information provision is interwoven with
an incentive cost for acquiring it.

To answer the question of optimal disclosure we use a mechanism design approach coupled
with Bayesian persuasion. We consider a two period model in which two sellers sequentially
interact with a single buyer. The first and second seller make take-it-or-leave-it offers to
the buyer in the first and second period, respectively. Each seller can offer one unit of an
indivisible good. The buyer’s valuation for each of the two goods is either high or low, and
evolves stochastically between the two trades. That is when trading with the first seller
the buyer does not know his valuation of the good of the second seller. Despite that, the
buyer’s valuations of the two goods are correlated, so his first period preferences are valuable
information to the second seller.

We model information disclosure by using a Bayesian persuasion framework. To be more
precise, we assume that the first seller can commit ex ante to a distribution of signals that
depends on the buyer’s report in her mechanism. The realisation of this signal is observed
by the second seller, who uses this information when determining her price.

At this point it is helpful to first consider the case of perfect positive correlation, which
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implies that the buyer always assigns the same value to the goods of the first and second
seller. Hence while trading at period 1, the buyer faces no uncertainty over his valuation of
the second good. We show that in this case non-disclosure is always optimal, a result that
has been previously stated by Calzolari and Pavan (2006). The reason for the optimality of
non-disclosure is twofold. The first is that a period 1 low type buyer assigns no value to the
potential second period discount, as his period 2 type will also be low. Hence he obtains zero
rents from this trade. The second reason is that the incentive cost of convincing the period 1
high type to be truthful is the highest possible. This is because he knows with certainty that
his second period valuation will be high, thus this is when he values the potential discount
the most. Consider now the implications of the above intuition for the case of imperfect
correlation. It hints that if we increase the probability of a period 1 low type to become
high, and decrease the probability of a period 1 high type to remain high, then information
disclosure might become optimal.

The main result of our paper is that indeed when the buyer is uncertain about his
future valuations information disclosure is optimal for a substantial set of environments. In
particular, this uncertainty is a result of imperfect correlation between the valuations of the
two sellers. In Propositions 1.2 and 1.3 we characterise all the correlation structures of the
buyer’s valuations for which information disclosure is optimal. In addition, we derive the
corresponding optimal disclosure policy.

We start our analysis with the first best problem of the first seller. In this case the
buyer’s period 1 valuation is observable by the first seller, but not by the second. This
analysis allows us to characterise the benefit of information disclosure abstracting away from
any incentive costs. Proposition 1.1 characterises the set of environments for which this
benefit is strictly positive. The optimal disclosure policy takes a simple form. When the
buyer’s types are positively correlated this signal randomises between revealing the high
type and pooling it together with the low type. The pooling outcome is the one that creates
a discount as discussed in the example above, which provides the benefit of information
disclosure. Diametrically, under negative correlation it is the low type that is some times
revealed (shown in Proposition 1.3, which focuses on negative correlation).

We next analyse the second best in which the first seller incurs incentive costs for eliciting
the buyer’s valuation for her good. Proposition 1.2 characterises the set of positive correlation
structures for which information disclosure is optimal and shows that this is a non-empty
convex subset of the corresponding set characterised in the first best (Proposition 1.1). As
we show below this set sometimes includes correlation structures that are arbitrarily close
to perfect positive correlation. Proposition 1.3 provides a similar analysis for the case of
negative correlation showing that disclosure is optimal whenever it is optimal under the first
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best. In addition, we show that the optimal disclosure policy, whenever disclosure is optimal,
is always the same as in the first best for both positive and negative correlation structures.

We also demonstrate that the buyer might both benefit or lose from information disclo-
sure. While the low types are always indifferent, it is the high types that are influenced by
disclosure. In the case of positive correlation, disclosure opens up the possibility of discounts,
which are beneficial for the high type buyer. On the other hand, in the negative correlation
case, when information disclosure is optimal the optimal mechanism involves lowering the
rents of the high type to increase profits.

On a more technical note our analysis proceeds on the following way. First, we derive
the buyer’s payoff from his second trade. This is positive only if (i) the buyer is a high
period 2 type and (ii) the posterior of the second seller is low enough for her to choose to
sell to both types. Hence while trading with the first seller the buyer’s expected payoff from
the second period is a function of (i) the distribution of signals which corresponds to the
reported type and (ii) the probability of being a high period 2 type. Thus, when the agent’s
types are positively correlated information provision will result in additional rents for the
high period 1 type, since the low type’s distribution will necessarily entail a more frequent
discount. We use insights from Gentzkow and Kamenica (2011) to reformulate the seller’s
information provision problem as a choice of distributions over posteriors. This allows us to
use a graphical solution that relies on the concave closure of our objective function. Finally,
we find two type depended signal distributions that implement the optimal unconditional
distribution of posteriors.

We extend the analysis in several ways. First, we consider the case when the first seller can
sell her information to the second seller. We show that the solution of this model is identical
to that of the baseline one. In an alternative extension we allow the two sellers to produce a
continuous quantity under an isoelastic cost function, which results in a solution comparable
to that of the baseline model. In the next section we further extend this model to multi-
period contracts, we show how those can incorporate moral hazard, and demonstrate the
interplay between information provision and endogenous termination times in this setting.
Finally, we provide some sufficient results for non-disclosure to be optimal under continuous
types.

My paper is closely related to Calzolari and Pavan (2006), the implications of which the
authors have further explored in Calzolari and Pavan (2008, 2009). They also consider a
setup where an agent sequentially contracts with two principals, the first of whom can commit
on a disclosure rule. However, they restrict their attention to the cases of perfect positive
and negative correlation. The implication of this is that at the point of trading with the first
seller the buyer knows both his valuations. Under perfect positive correlation, they obtain
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that privacy is always optimal. However, under perfect negative correlation, and when some
additional conditions are satisfied, they establish that the first seller’s optimal signal could
be informative. In addition, the authors show that an alternative way to make disclosure
optimal is to assume externalities. In this paper we examine a conceptually similar model
while using a Bayesian persuasion framework, which is a natural setting to consider the case
of imperfect correlation. We aim to demonstrate that information exchange can arise under
much more natural and economically interesting conditions. Our analysis relies neither on
externalities, nor on the extreme assumption of perfect negative correlation. Notably, we
show that even close to perfect positive correlation could be enough for some disclosure to
be optimal, which implies that the aforementioned result on the optimality of privacy is not
robust to stochastic preferences.

Another very relevant paper is that of Dworczak (2016a), where a seller auctions an
object and the winner’s payoff depends on both his type and a generic aftermarket. Crucially,
the aftermarket related payoff depends on the public posterior on the winner’s type. This
introduces an information design aspect to the auctioneer’s problem. The author identifies
a class of mechanisms, called cutoff mechanism, that are implementable regardless of the
aftermarket’s form. He subsequently identifies the optimal mechanism within this class,
which for the single agent model has no information disclosure. On an accompanying paper
Dworczak (2016b), provides sufficient condition for a cutoff mechanism to be optimal. Among
other results he shows that if the seller only acts as an information intermediary, that is she
buys information from the bidders and sells it to the aftermarket, then information provision
is never implementable.

Our paper presents an interplay of mechanism and information design. In some sense
it is related to the literature of dynamic mechanism design, since we allow for the buyer’s
preferences to evolve stochastically over time (for example see Pavan et al. (2014); Garrett
and Pavan (2012); Eső and Szentes (2017) and the references therein). In particular, the
dynamic extension of our model, which can be found in the next chapter, follows closely
Battaglini (2005). He considers a firm contracting with a consumer, whose private valuation
of the firm’s product is either high or low and evolves stochastically according to an exogenous
Markov matrix.

Nevertheless, in contrast to this literature in our model the first seller can only indirectly
affect the choices of the second period, that is of seller two. To be more precise, her only
tool is the disclosure policy she commits on. Hence the first seller engages in Bayesian per-
suasion with the second on the buyer’s reported type. In that sense our analysis is related
to the literature of information design (for example see Inostroza and Pavan (2017) and the
references therein). In particular, the solution method that we use is related to the work of
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Gentzkow and Kamenica (2011), who provide a framework for solving a vast class of infor-
mation design problems. In a more recent paper, Ely (2017) considers a dynamic information
design problem where the designer receives signals on the underline state overtime. Roesler
and Szentes (2017) revisit the canonical bilateral trade model. They assume that the buyer
is uncertain about her valuation of the product, but receives a signal on it. They derive the
buyer-optimal distribution of signals and show that this generates efficient trade.

The rest of the paper proceeds as follows. Section 1.2 provides an example that further
clarifies the potential benefits and costs of information provision, and how those depend on
the stochasticity of the buyer’s preferences. Section 1.3 formally defines our baseline model.
Section 1.4 provides the analysis and the corresponding results. Section 1.5 considers two
natural extensions of our model. The first allows for the seller to sell information, while the
second for the buyer to know both his types at the first period. Finally, section 1.6 discusses
the implications of the model and concludes.

1.2 Example
To fix ideas consider the following illustrative example. An architect makes a take-it-or-
leave-it offer to a buyer for the renovation of his house. Suppose the architect has zero cost
of production and that a high type buyer values the architect’s services at θH = 3, while a
low type at θL = 1. Assume throughout that the buyer’s type (call it renovation type) is his
private information, and that its two realisations are equiprobable. Standard argumentation
shows that the architect’s optimal pricing strategy is to only sell to the high type by setting
price p = 3.

Next we expand the space of interactions by assuming that the buyer can not only hire an
architect, but also an interior designer. The latter will also make a take-it-or-leave-it offer to
the buyer, but only after the architect has made hers, and has zero production cost. Despite
that, the buyer can opt to hire the interior designer without hiring the architect and visa
versa. Again, we set the buyer’s valuation of the designer’s services (call it design type) to
be either θH = 3 or θL = 1. The buyer’s valuations for the two services will not necessarily
be the same, and even he will only learn the latter when the interior designer presents her
product to him. Thus the buyer’s uncertainty over his preferences is resolved sequentially. In
particular, assume that a high renovation type remains a high design type with probability
ρH , whereas a low renovation type turns into a high design type with probability ρL. The
architect is able to connect the buyer with the interior designer. For simplicity, we assume
that in the absence of such a connection the designer’s posterior on the buyer’s design type
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is (ρH + ρL)/2, which equals the public prior.

1

3

1
2

1
2

renovation

1

3

designer

1−
ρH

ρ
L

ρH

1− ρL

Through her interaction with the buyer, the architect acquires valuable private infor-
mation on his preferences. This is because the buyer’s willingness to pay p = 3 for the
renovation reveals him as a high type. This information is valuable to the designer because
the buyer’s renovation and designer types are correlated. Hence the designer could use the
buyer’s purchase history to decide between offering the high and low price, that is p = 3 and
p = 1, respectively.

This begs the question “Is it possible for the architect to increase her expected revenue
by using her private information on the buyer’s preferences?”. It turns out that the answer
depends a lot on the degree of uncertainty that the buyer has on his own preferences, that
is ρL and ρH . To demonstrate this suppose

ρH + ρL
2

>
1

3

Since θL/θH = 1/3 we infer that the designer’s optimal pricing policy, in the absence of any
communication with the architect, is to set p = 3 and only sell to the high design type. Thus
there is some room for the architect to attempt to persuade the designer, in the Bayesian
sense, to offer a discount to the buyer. This could ultimately be beneficial for the architect,
as she could charge the buyer for this discount1.

To demonstrate this fix (ρH , ρL) = (1/2, 1/4) and suppose that the architect is able to
commit in advance to both the buyer and the interior designer that she will reveal a high
renovation type with probability gH = 1/2. Henceforth, whenever she sends a buyer to
the designer without revealing him as a high renovation type the latter’s posterior on the

1Note that the architect could not be benefitted by just establishing a connection and not providing any
information on the buyer’s preferences. In addition, this would be true even if the buyer could only hire
the interior designer through the architect. This is because the net benefit of this connection for the buyer
would be zero, since a low design type will not buy at p = 3 and even a high type will be indifferent between
buying or not.
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former’s design type to be high is

1− gH
1 + (1− gH)

· (ρH − ρL) + ρL =
1

3

Thus, not revealing the buyer as a high renovation type achieves a discount, since the de-
signer’s optimal price becomes p = 1. The benefit of this signal for the architect is that she
is able to charge the low house type for this discount with price

pL = ρL · (p− p) = ρL · (θH − θL)

whereas when she was not engaging in bayesian persuasion her interaction with the low
renovation type had zero value, since such a type would not buy from her at her previously
optimal price p = 3. It is worth mentioning that this benefit exists only under imperfect
correlation as otherwise ρL = 0.

However, this informative signal generates an incentive cost2, which will decrease the price
that the architect can charge to the high renovation type pH below θH . This is because the
high type is tempted to behave like a low type since in this case he gets the design discount
with probability 1, instead of 1 − gH = 1/2. Hence the maximum difference between pH

and pL has to be θH − ρH(θH − θL)/2, otherwise even the high type would opt to get the
guaranteed design discount instead of the uncertain one together with the renovation. As a
result, the usage of the signal will decrease the price charged to the high renovation type by

ρH
2
(θH − θL)− pL =

(ρH
2

− ρL

)
(θH − θL) ,

Interestingly, the benefit of information provision is associated to the architect’s trade
with the low renovation type, whereas the cost to her trade with the high type. Therefore
to find the net impact that the usage of the informative signal has on the architect’s revenue
multiply both the benefit and the cost by 1/2, which is the probability of facing each type,
and subtract the latter from the former

1

2
ρL(θH − θL)−

1

2

(ρH
2

− ρL

)
(θH − θL) =

(
ρL − ρH

4

)
(θH − θL)

But under the assumed transitioning probabilities ρL − ρH/4 = 1/16, which is positive. As
a result, the usage of the informative signal is beneficial for the architect.

The provided expression demonstrates the role of ρH and ρL, which effectively capture
2The discussion here ignores the incentive compatibility constrain of the low type, but it is easy to check

that it holds in all the cases that are considered.
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the relative importance that each renovation type assigns to the design discount. If ρH is too
high relatively to ρL, then the incentive cost outweighs the benefit of information provision.
In particular, consider the case of perfect positive correlation (ρH , ρL) = (1, 0). We can show
that the interior designer’s posterior when the architect does not reveal the buyer as a high
renovation type remains 1/3. Hence the discount is still achieved with probability 1/2 for
the high type, and 1 for the low type. Diametrically to the previous example the net impact
on the architect’s revenue is negative as ρL − ρH/4 = −1/4. Hence she is better off when
not using the informative signal. Indeed, we show that this holds for any disclosure policy,
that is for any distribution of signals.

The above discussion implicitly assumes that the buyer’s renovation and design types are
positively correlated, but what happens if ρL > ρH? Again information provision could be
beneficial, for example consider the case of perfect negative correlation (ρH , ρL) = (0, 1).
However, suppose that the architect instead of revealing the high renovation type with
probability gH = 1/2, reveals the low one with probability gL = 1/2. Hence when the
architect does not reveal the buyer as a low renovation type the designer’s posterior on
facing a high design type is 1/3. Thus the discount is achieved with probability 1 for the
high renovation type, and 1/2 for the low one. The high renovation type does not care at
all about the signal, since his valuation of the interior designer’s services is always low. On
the other hand, the low renovation type always has a high valuation for the designer’s work.
As a result, the possibility of obtaining the discount allows the architect to increase the
price charge to him by (θH − θL)/2. Therefore, the architect is better off when using the
informative signal.

To sum up the above three examples hint that information provision is decreasing in
correlation. Under perfect positive correlation the cost of incentive compatibility, of the
high renovation type that is, outweighs the potential benefit, which is selling the discount
to the low type. However, under imperfect positive correlation is was shown that the benefit
dominates and information provision becomes optimal. Finally, under perfect negative corre-
lation the incentive cost disappears and again information provision is optimal, however the
nature of the signal that achieves that changes. The subsequent analysis will demonstrate
that to some extent this intuition is relevant even when the architect is able to optimally
design a mechanism to transmit information to the interior designer.
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1.3 Model
Consider a two period model t ∈ {1, 2}, in which a buyer trades sequentially with sellers S1

and S2. Each seller supplies an indivisible good. In period 1 S1 makes a take-it-or-leave-it
offer to the buyer, while in period 2 it is S2 that makes an offer. The sellers and the buyer are
risk neutral, and all outside options are normalised to zero. Let pt denote the price charged
by St, and qt the corresponding probability of supplying the good. Then the buyer’s payoff
from trading in period t is

θt qt − pt

where θt ∈ {θL, θH}, θH > θL > 0, is the value the buyer assigns to each seller’s product, and
the public prior on θ1 is µ0 = Pr(θ1 = θH). We allow the buyer’s type θt to be imperfectly
correlated across sellers

ρH = Pr(θ2 = θH | θ1 = θH)

ρL = Pr(θ2 = θH | θ1 = θL )

Crucially, even the buyer himself will not know θ2 before contracting with the second seller.
Therefore, the model allows for some sequential resolution of uncertainty on the buyer’s
stochastic preferences, as in the literature of Dynamic Mechanism Design. To simplify the
exposition we will initially assume that ρH ≥ ρL, that is a period 1 high buyer type is
more likely to remain so in period 2, than a low type to become one. Nevertheless, the
diametrically opposite case is also considered in a separated subsection. For simplicity S2

is only allowed to make an offer to the buyer if he accepted S1’s offer, however the analysis
does not rely on this restriction.

The interaction between S1 and the buyer will be private. Hence his report in S1’s
mechanism and the outcome of the trade will not be directly observable by S2. Nevertheless,
S1 will be able to credible convey additional information to S2 by committing ex ante to a
signal s ∈ S with distribution g(s | θ̂1), which is conditioned on the buyer’s reported type θ̂1.
It is easy to argue that the revelation principle applies in this setting. Hence in period 1 S1

offers to the buyer a mechanism

{
p1(θ̂1), q1(θ̂1), g(s | θ̂1)

}
,

which specifies the price and probability of trade, and the signal’s conditional distribution,
respectively. Therefore the mechanism design problem of S1 includes an information design
aspect. To be more precise, S1 is engaging in Bayesian Persuasion with S2 about the agent’s
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report θ̂1. In period 2, and after having received signal s, S2 makes an offer

{
p2(θ̂2, s), q2(θ̂2, s)

}
,

which depends on the signal realisation s, because this affects S2’s posterior belief on θ1 and
as a result on θ2.

To sum up, the timing of the model is as follows. At the beginning of period 1, S1 publicly
commits to a distribution g(s | θ̂1), and offers a corresponding mechanism to the buyer. This
includes g(s | θ̂1), as well as a choice over quantities and prices. The buyer reports θ̂1 and
trades with S1. Then the public signal s is realised and observed by S2. At the beginning of
period 2, S2 makes a new offer to the buyer. Subsequently, the buyer reports θ̂2 and trades
with S2, at which point the game ends.

S1 sets g(s | θ̂1),
p1(θ̂1) and q1(θ̂1)

1 buyer
reports θ̂1

trade w.p.
q1(θ̂1) for p1(θ̂1)

S1 sends
s to S2

S2 sets
ps2(θ̂2) and qs2(θ̂2)

2 buyer
reports θ̂2

trade w.p.
qs2(θ̂2) for ps2(θ̂2)

1.4 Analysis
Section 1.4.1 solves S2’s payoff maximisation problem and derives the buyer’s payoff from
his second trade. Subsequently, those are used to describe S1’s information provision prob-
lem. To facilitate the exposition, and because it is an interesting question on its own right,
section 1.4.2 derives the solution of this problem under the assumption that the buyer’s
type is directly observable by S1. This is equivalent to the first best solution of S1’s payoff
maximisation problem. Section 1.4.3 reverts to the original setup, where the buyer’s type is
his private information, and compares its solution to the first best. Finally, 1.4.4 considers
the case of negative correlation.

1.4.1 The buyer’s post contractual payoff

We solve S2’s payoff maximisation problem, and derive the buyer’s expected payoff from his
trade with her. Let µs1 = Pr(θ1 = θH | s) denote S2’s posterior belief on the buyer’s initial
type after receiving s, and µs2 = Pr(θ2 = θH | s) the corresponding posterior on θ2. Those
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two are connected according to

µs2 = µs1 ρH + (1− µs1) ρL

S2’s problem is quite standard and a more detailed treatment can be found in the appendix.
Essentially, this can be reduced to a decision between setting a high price p = θH , or a low
price p = θL. In the first case only the high type buys her product, while in the second
both. When her posterior on θ2, µs2, is relatively high she opts for the high price, otherwise
for the low one. The cutoff in which she is indifferent between the two pricing policies is the
ratio θL/θH . It will be convenient to express this in terms of the realisations of the period 1
posterior µs1. Hence define

µ∗ =
θL/θH − ρL
ρH − ρL

and note that under positive correlation3 µ∗ ∈ [0, 1] if and only if ρL ≤ θL/θH ≤ ρH . The
following lemma characterises the buyer’s payoff, which is the only result needed to proceed
with S1’s payoff maximisation problem.

Lemma 1.1. The payoff of a low buyer type under S2 is equal to zero, while that of the high
one equals

Q(µs1) =

{
θH − θL , if µs1 ≤ µ∗

0 , if µs1 > µ∗ (1.1)

Proof. In Appendix A.1.

The payoff of a low buyer type in period 2 is always equal to zero, as he captures no rents.
Conversely, the high type’s payoff is positive, but only if the posterior µs1 is low enough for
S2 to opt to serve both types.

Hereafter, the buyer’s expected continuation payoff at the end of period 1 will be referred
to as his post contractual payoff. It follows from the above lemma that for a period 1 low
buyer type, that reported θ̂1 in S1’s mechanism, this is equal to ρLEg

[
Q(µs1) | θ̂1

]
, while for

a high type this is ρHEg
[
Q(µs1) | θ̂1

]
.

1.4.2 The first best contract of Seller 1

Next, we solve S1’s payoff maximisation problem under the assumption that if the buyer
opts to participate in S1’s contract, then his type is automatically reveal to her, but not
to S2. This is essentially S1’s first best contract. Hence the analysis of this subsection

3In the subsection where we consider negative correlation the corresponding statement is: µ∗ ∈ [0, 1] if
and only if ρH ≤ θL/θH ≤ ρL.
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considers the potential benefit of information provision, without the associated incentive
cost. Nonetheless, this is not only a theoretical exercise. For example, an insurance firm
could ask a potential client to undergo a health examination. Therefore, in this subsection
we will only consider the buyer’s individual rationality constrains. Hence S1 solves

max
pL,pH ,qL,qH ,g

µ0pH + (1− µ0) pL

s.t. (IRL ) θL qL − pL + ρL Eg [Q(µs1) | θL ] ≥ 0

(IRH) θHqH − pH + ρHEg [Q(µs1) | θH ] ≥ 0

(Pf )

where we write {p1(θL), p1(θH), q1(θL), q1(θH)} as {pL, pH , qL, qH}, in order to maintain a
compact notation. Both of the individual rationality constrains need to bind, as otherwise
S1 could increase pL or pH . Hence we can use the binding (IRL) and (IRH) to substitute the
prices in S1’s objective function and obtain the unconstrained problem

max
qL,qH ,g

{
µ0 θH qH + (1− µ0) θL qL

+µ0ρH Eg
[
Q(µs1) | θH

]
+ (1− µ0)ρLEg

[
Q(µs1) | θL

]} (P ′
f )

The first line of the above objective function is quite standard. It represents the surplus
generated from the trade of period 1. This is optimised by supplying both types with
probability one. The second line represents the additional surplus that S1 captures from the
buyer by controlling the flow of information to S2, as well as access to her.

On the rest of this subsection we focus on S1’s information provision problem in the first
best, of which the choice variable is the distribution g(s | θ1) and the objective function the
second line of (P ′

f ).

max
g

{
µ0ρH Eg

[
Q(µs1) | θH

]
+ (1− µ0)ρLEg

[
Q(µs1) | θL

]}
(Gf )

The solution approach follows closely Gentzkow and Kamenica (2011). First, we rewrite the
objective function of (Gf ) as an expectation that uses the unconditional distribution of signal
s. This is the ex ante probability of signal s to be realised and it is not conditioned on θ1.
Abusing notation we will denote this by

g(s) = µ0 g(s | θH) + (1− µ0) g(s | θL) .

Second, we argue that instead of using the conditional distribution over signal realisations
g(s | θ1) as choice variables, S1 can equivalently use the unconditional one over posteriors
g̃(µ) with the addition of one constrain. Third, a graphical argument based on the concave
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closure of the reformulated objective function is used to derive the optimal g̃(µ). Finally, we
identify a conditional distribution over signals that implements the optimal unconditional
one over posteriors.

Lemma 1.2. In the first best, S1’s information provision problem equivalently becomes

max
g

Eg[Jf (µs1)] (Gf )

where its point-wise value Jf (µs1) is

Jf (µ
s
1) = Q(µs1) · [µs1 · (ρH − ρL) + ρL ] (1.2)

Proof. In Appendix A.1.

GK show that any Bayes plausible distribution over posteriors g̃(µ) can be expressed as
a conditional distribution over signals g(s | θ1) and visa versa. A distribution over posteriors
g̃(µ) is called Bayes plausible if the expected value of the posterior µ is equal to the prior
µ0. Then S1’s information provision problem equivalently becomes

max
g̃

Eg̃
[
Jf (µ)

]
s.t. Eg̃ [µ ] = µ0 (G ′

f )

To solve this it is important to characterise the graph of Jf , which has three possible cases.
Figures (1.1a) and (1.1b) demonstrate two of them. In particular, Figure (1.1a) is relevant
when ρL ≤ θL/θH < ρH , which as argued in the previous section is the only case where
information provision can have an effect on prices.

To make this more clear consider the alternative shown in Figure (1.1b), for which
θL/θH < ρL ≤ ρH has been assumed. In this case even if the buyer is revealed as a low
period 1 type the probability of him to be a high type in the second period ρL is sufficiently
high for S2 to charge p = θH . As a result, the buyer’s post contractual payoff is zero, irre-
spectively of the realisation of µ. Diametrically, if ρL ≤ ρH ≤ θL/θH then even if the buyer
is revealed as a high period 1 type, S1 will still charge the low price. Hence again information
provision will have no impact on the optimal pricing strategy of S2. Therefore a sufficient
and necessary condition for information provision to have any impact is that

ρL ≤ θL
θH

< ρH (1.3)

But this is only a necessary condition for information provision to strictly dominate non-
disclosure. To fully solve (G ′

f ) an optimality argument based on the concave closure of J(µ)
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(a) ρL < θL/θH (b) ρL ≥ θL/θH

Figure 1.1: Two cases of the graph of Jf . The inequalities ρL < (≥) θL/θH are equivalent to
0 < (≥)µ∗.

will be used. This will be denoted by Jf (µ) and defined as

Jf (µ) = sup
{
z | (µ, z) ∈ co(Jf )

}
,

where co(Jf ) denotes the convex hull of the graph of Jf . Thus for a given µ ∈ [0, 1], Jf (µ) is
the highest value that can be achieved on the vertical line that passes through µ by using any
linear combination of points that are below the graph of Jf . This implies that Jf (µ) ≥ Jf (µ),
however the inequality could be strict. Figure (1.2) plots Jf as a dashed line whenever it is
strictly bigger than Jf .

Next we want to explain how Jf looks like and how it is derived. Assume throughout
this discussion that (1.3) holds, so that information provision can have an impact on prices.
First we argue that if µ ≤ µ∗, then there is not a linear combination of points of Jf that
achieve something above Jf (µ). Since Jf is stepwise linear it suffices to only consider two
posterior realisations µ− ≤ µ ≤ µ+. If µ∗ < µ+, then the linear combination of Jf (µ−)

and Jf (µ
+) will always be below Jf (µ). If instead µ+ ≤ µ∗, then the linear combination

will be equal to Jf (µ). Therefore it has to be that Jf (µ) = Jf (µ). Suppose instead that
µ > µ∗, then any choice of µ− and µ+ such that µ− ≤ µ∗ < µ < µ+ will provide a linear
combination higher than Jf (µ) = 0. But it is always optimal to increase both µ− and µ+ to
their maximum values, which are µ∗ and 1, respectively. Therefore

Jf (µ) =

{
Jf (µ) , if µ ≤ µ∗

Jf (µ
∗) · µ−µ∗

1−µ∗ , if µ ≥ µ∗
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(a) µ0 > µ∗ (b) µ0 < µ∗

Figure 1.2: Two cases of the graph of Jf for which information provision can have an impact
on price setting.

The optimality argument that we use to solve S1’s information provision problem is based
on the following observation: g̃(µ) solves (G ′

f ) if and only if Eg̃[Jf (µ)] = Jf (µ0). This follows
from noting that Jf (µ0) represents the maximum value that can be achieved on the vertical
axis passing through µ0 by taking linear combinations of Jf . But by its definition g̃(µ) is a
set of linear combinations of Jf , and the Bayes plausibility constrain requires that those will
give a value on the same vertical axis. Therefore, we can conclude that an informative signal
does strictly better than no information provision if and only if Jf (µ0) > Jf (µ0), which is
the case when µ0 > µ∗. For a graphical illustration of this also refer to Figure (1.2). Before
providing the main result of this subsection, we introduce the following definition.

Definition 1. An informative signal distribution g(s | θ1) strictly solves S1’s payoff maximi-
sation problem if it is part of one of its solutions (pL, pH , qL, qH , g), and there is no solution
that uses no information provision.

Our aim is to characterise the set of parameters which can support an informative signal
that strictly dominates no information provision. Using the above definition we can rule
out cases where even though information provision is optimal, it is also inconsequential. An
example of such a case would be when ρL > θL/θH , because even if S1 reveals the buyer as
a low period 1 type S2 will still offer the high price.

Proposition 1.1. In the first best, an informative signal strictly solves S1’s payoff maximi-
sation problem (Pf ) iff

ρL <
θL
θH

< ρHµ0 + ρL(1− µ0) (1.4)
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If this holds, then an optimal signal is s ∈ {s, s} with distribution

gf (s | θL) = 1 , and gf (s | θH) =
1− µ0

µ0

θL
θH

− ρL

ρH − θL
θH

(1.5)

In addition, it is optimal to supply both types with probability one.

Proof. In Appendix A.1.

In the appendix we combine the necessary and sufficient condition for information pro-
vision to have impact on S2’s pricing policy (1.3) together with µ0 > µ∗ to obtain (1.4).
Subsequently, we show that gf implements a randomisation between posteriors µ∗ and 1,
which we argued above that is the optimal distribution of posteriors when (1.4) holds.

When the optimal signal is informative it has a straightforward interpretation, which
is that with probability gf (s | θH) S1 reveals the high period 1 type, and otherwise says
nothing. Essentially, S1 is attempting to convince S2 to some times offer a discount to the
buyer and subsequently charges the buyer for the expected benefit of this discount. To do
this she creates two signals in one of which she pools some period 1 high types with the
corresponding low types. For such an informative signal to be beneficial two conditions are
required. First the probability of a low period 1 type to become high period 2 type has to
be low enough for S2 to be persuaded to some times offer this discount. Second, it has to
be that in the absence of persuasion S2 would charge the high price, as otherwise the buyer
would already be getting the best price possible and S1 would have no reason to interfere.

An interesting implication of the above analysis is that information provision can be
optimal even when the buyer’s type is perfectly correlated across the two sellers, that is
ρH = 1 − ρL = 1, which will be shown to not be true in S1’s second best contract. In the
next section we will demonstrate that the reason why this is possible only in the first best is
that the benefit of information provision can be obtained without the associated cost that
the incentive compatibility constrain of the high type creates.

1.4.3 The second best contract of Seller 1

Next we analyse the second best, where θ1 is the buyer’s private information. We will
demonstrate that S1’s information provision problem can be manipulated in a way that
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allows us to use the same solution method as in the first best. S1 solves

max
p1(θ̂1), q1(θ̂1), g(s | θ̂1)

{
µ0 p1(θ̂H) + (1− µ0) p1(θ̂L)

}
s.t. (IRL ) , (IRH) ,

(ICL ) θL q1(θ̂L) + ρL Eg
[
Q(µs1) | θ̂L

]
− p1(θ̂L )

≥ θL q1(θ̂H) + ρL Eg
[
Q(µs1) | θ̂H

]
− p1(θ̂H)

(ICH) θHq1(θ̂H) + ρHEg
[
Q(µs1) | θ̂H

]
− p1(θ̂H)

≥ θH q1(θ̂L) + ρHEg
[
Q(µs1) | θ̂L

]
− p1(θ̂L)

(P)

where the individual rationality constraints, (IRL) and (IRH), are as in the previous subsec-
tion. It is important to underline that the buyer’s report θ̂1 affects not only the probability
and price of trade in period 1, but also the distribution of the signal s. Therefore the two
events on which the expectations above are conditioned are θ̂1 = θ̂L and θ̂1 = θ̂H , which we
have shortened to the reported type. On the other hand, the probabilities of becoming a
period 2 high type, ρL and ρH , are only a function of the buyer’s period 1 type and remain
the same on both sides of the above inequalities.

To maintain a compact notation we will hereafter use θL and θH to also denote the reports
θ̂L and θ̂H , respectively, and write {pL, pH , qL, qH} instead of

{p1(θ̂L), p1(θ̂H), q1(θ̂L), q1(θ̂H)}.

Similarly to the first best, it is convenient to reduce the number of constrains by substituting
the transfers pL and pH .

Lemma 1.3. In the second best, S1’s payoff maximisation problem equivalently becomes

max
qL,qH ,g


µ0 θHqH + (θL − µ0θH) qL

+µ0ρH Eg
[
Q(µs1) | θH

]
+ (1− µ0)ρLEg

[
Q(µs1) | θL

]
−µ0(ρH − ρL)Eg

[
Q(µs1) | θL

]
 (P ′)

s.t. (θH − θL) (qH − qL) ≥ (ρH − ρL)
(
Eg
[
Q(µs1) | θL

]
− Eg

[
Q(µs1) | θH

])
(Pc)

Proof. In Appendix A.1.

The proof invokes the standard arguments used in mechanism design with binary type
space. First, we argue that (IRL) and (ICH) have to bind. Second, we use the two equations
to obtain transfers {pL, pH} as functions of polices {qL, qH , g}. Substituting those in S1’s
objective function and in (ICL) gives the objective function of (P ′) and its constrain (Pc),
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respectively.
S1’s objective function is quite similar with the first best, however its value is reduced

because of the rents captured by the period 1 high type. Those consists of two parts, the
first of which is generated from the trade of S1’s product. This appears on the first line of
the objective function of (P ′) reducing the marginal benefit from trading with the low type
qL. The second part of the buyer’s rents in period 1 are due to his post contractual payoff.
To be more specific, those are generated from the fact that when ρH > ρL the value that
each type assigns to the possibility of obtaining a discount from S2 is different, and part of
what S1 sells is this discount.

It follows from (P ′) that it is always optimal to supply the high type with probability
one, as increasing qH not only increases the objective function of (P ′) but also loosens (Pc).
The same is not true for the probability of supplying the low type qL. If (Pc) was ignored,
then the point-wise optimal qL would be

q̄L =

{
1 , if µ0 ≤ θL/θH

0 , if µ0 ≥ θL/θH
(1.6)

However, we will shortly demonstrate that the above will not always be implementable
together with an informative signal.

In the rest of the analysis we derive the point-wise optimal signal distribution g(s | θ1). In
other words we solve S1’s information provision problem while ignoring the constrain (Pc).
The proof of the proposition of this subsection, which can be found in the appendix, shows
that whenever (Pc) binds S1 prefers to decrease qL instead of altering the point-wise optimal
signal distribution g(s | θ1). Define the information provision problem of S1 as

max
g

 ρL · Eg
[
Q(µs1) | θL

]
−µ0ρH ·

(
Eg
[
Q(µs1) | θL

]
− Eg

[
Q(µs1) | θH

])
 (G)

the objective function of which follows from gathering terms on the last two lines of the
objective function of (P ′).

To better understand the incentives of S1 to provide information remember that in the
first best this is done in order to create a discount for the buyer. Suppose then that in the
absence of information provision S2 opts for the high price. Then the buyer’s rents from the
second period are zero, henceforth the objective function of (G) would be zero. Is it possible
for S1 to do better? The answer depends on the relative size of ρL and ρH . An informative
signal could achieve strictly positive Eg

[
Q(µs1) | θL

]
and Eg

[
Q(µs1) | θH

]
, but it is not obvious

what impact this would have on S1’s payoff.
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Remark 1. For any choice of g(s | θ1) :

Eg
[
Q(µs1) | θH

]
≤ Eg

[
Q(µs1) | θL

]
(1.7)

and the inequality is strict if g(s | θ1) generates an impact on S2’s price.

Proof. It is without loss of generality to consider a signal s1, ..., sn that induces progressively
higher posteriors µs11 < ... < µs21 . But this implies strict monotone likelihood ratio dominance

g(sn | θH)
g(sn | θL)

>
g(sn′ | θH)
g(sn′ | θL)

⇔ n > n′ ,

which in turn implies that the CDF conditioned on θH strictly first order stochastically
dominates the one conditioned on θL :

G(s | θH) < G(s | θL) for all s < sn

But Q(µs1) is non-increasing, which implies (1.7). To show that it holds with strict inequality
when the signal generates an impact on prices, note that in this caseG(s | θL) will have strictly
more mass than G(s | θH) on the posteriors below µ∗.

The above remark brings to the front the tension between the benefit of information
provision and its potential cost. Its benefit is that it some times persuades S2 to provide
a discount to the buyer. In the first best, S1 could capture all the expected benefit of this
discount. On the other hand, in the second best not only is she not able to capture the
expected benefit of the high period 1 type, but she actually has to leave some additional
rents to him in order to not pretend to be a low one. This is because any informative
signal will induce a better distribution for the low type, since S2 is persuaded to offer the
discount exactly when she assigns a higher probability of facing a buyer whose valuation of
her product is low. We can use the above discussion to derive the equivalent of Theorem 1
of Calzolari and Pavan (2006) within our framework.

Remark 2. Suppose that the buyer’s type is perfectly correlated across sellers, that is ρL = 0

and ρH = 1, then no information provision is optimal.

Proof. Follows trivially from noting that under perfect correlation (G) becomes

max
g

−µ0 ·
(
Eg [Q(µs1) | θL] − Eg [Q(µs1) | θH ]

)
the objective function of which is always non-positive, as argued in Remark 1. But no
information provision gives always at least zero, thus it is optimal.
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Similarly to CP we showed that under perfect positive correlation privacy is optimal.
As argued above when ρL = 0 the potential benefit of information provision becomes zero,
while the associated incentive cost is the highest possible. Hence when we restrict ourselves
to the region of positive correlation, some degree of stochasticity on the buyer’s preferences
is a necessary condition for information provision to be optimal.

We move on to deriving the solution of S1’s information provision problem (G) under any
imperfect positive correlation, that is under the restriction that ρL ≤ ρH . As in the first
best, to solve (G) we start by rewriting its objective function as an expectation that uses the
unconditional distribution g(s).

Lemma 1.4. In the second best, S1’s information provision problem equivalently becomes

max
g

Eg[J(µs1)] (G)

where its point-wise value J(µs1) is

J(µs1) =
ρH − ρL
1− µ0

·Q(µs1) ·
(
µs1 −

µ0ρH − ρL
ρH − ρL

)
(1.8)

Proof. In Appendix A.1.

S1’s point-wise post contractual payoff J has two components. The first represents the
surplus she apprehends from both types through managing their access to S2 and transmitting
information to her. The second represents the rents captured by the period 1 high type.
The latter results on Jf (µ

s
1) > J(µs1) on the region of posteriors which achieve a discount.

Crucially, for those posteriors J(µ) could even be negative. Under no information provision,
i.e. when Pr(µs1 = µ0) = 1, S1’s post contractual payoff is equal to ρL ·Q(µ0). In this case, S1

essentially charges both period 1 types the post contractual payoff of the low one. Therefore
this is her benefit from selling access to S2. However, as we argued in the previous subsection
whenever

µ0 ρH + (1− µ0) ρH >
θL
θH

holds, this implies Q(µ0) = 0 because S2 will charge p = θH for her good. Thus, the buyer
captures no surplus from the second period and the same is true for S1. As argued in the
initial example, depending on ρL and ρH it is possible for S1 to do better by some times
creating a discount, which is achieved by providing an informative signal to S2. Effectively,
S1 engages in Bayesian persuasion with S2, and the underline state variable is the buyer’s
period 1 reported type, which he is incentivised to truthfully report in S1’s mechanism.
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Similarly to before, we express S1’s information provision problem as a choice of distri-
butions over posteriors g̃(µ). Hence it equivalently becomes

max
g̃

Eg̃
[
J(µ)

]
s.t. Eg̃[µ ] = µ0 (G ′)

We solve this by invoking the optimality condition Eg̃
[
J(µ)

]
= J (µ0), where

J (µ) = sup
{
z | (µ, z) ∈ co(J)

}
denotes the concave closure of J . To obtain the functional form of J , the shape of J
needs to be characterised. Throughout the following analysis maintain the supposition that
ρL ≤ θL/θH < ρH , so that information provision has an impact on prices. Then the graph
of J has two possible cases depending on the relative size of µ0ρH and θL/θH . First assume
that µ0ρH < θL/θH , in which case J looks very similar to Jf . A representative graph is given
in Figure (1.3a). J is linear and increasing for posteriors in [0, µ∗], strictly positive at µ∗,
and equals zero for posterios in (µ∗, µ]. This means that the analysis of the first best extends
to this subcase of the second best. In particular, the concave closure of J is

J (µ) =

{
J(µ) , if µ ≤ µ∗

J(µ∗) · µ−µ∗
1−µ∗ , if µ ≥ µ∗

from which we infer that information provision is strictly optimal when

ρL <
θL
θH

< ρH µ0 + ρL (1− µ0)

On the other hand, if µ0ρH ≥ θL/θH then J reaches µ∗ while still being non-positive,
as shown in Figure (1.3b). Hence, it never becomes strictly positive. Simple algebra gives
that in this case µ0 ≥ µ∗, hence no information provision is optimal. Intuitively, S1 can
always achieve at least zero under non-disclosure, hence there is no benefit from creating an
informative signal.

The connection between the first and second best solution of S1’s information provision
problem is very similar to the corresponding ones of its optimal supply problem. In the first
best of the latter S1 supplies her product to both types with probability one, whereas in
its second best the low types gets the product only if its virtual type θL − µ0θH is positive.
Interestingly, in S1’s information provision problem a ’virtual type’ also appears. This is
because in (G), Eg[Q(µs1) | θL] is multiplied by ρL − µ0ρH , whereas in (Gf ) by (1 − µ0)ρL.
However, in this case information could be supplied even if this ’virtual type’ was negative.
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(a) µ0ρH < θL
θH

(b) µ0ρH ≥ θL
θH

Figure 1.3: A representative graph of J . The dashed line denotes its concave closure, when
this is above J . For the second graph we can show that µ0 ≥ µ∗ always holds.

This is because the decision to transmit information cannot be taken independently for each
type. Hence the additional incentive to increase µ0ρHEg[Q(µs1) | θH ] could skew S1’s decision
towards an informative signal.

Proposition 1.2. In the second best, an informative signal strictly solves S1’s payoff max-
imisation problem (P) iff

max{ρL, ρHµ0} <
θL
θH

< ρHµ0 + ρL(1− µ0) (1.9)

If this holds, then an optimal signal is s ∈ {s, s} with distribution

g∗ (s | θL) = 1 and g∗ (s | θH) =
1− µ0

µ0

θL
θH

− ρL

ρH − θL
θH

(1.10)

In addition, the high type is always supplied q∗H = 1. Under no information provision the low
type’s optimal supply schedule is the point-wise optimal (1.6). However, under information
provision it becomes

q∗L =

{
1− (ρH − ρL)[1− g∗(s | θH)] , if µ0 < θL/θH

0 , if µ0 ≥ θL/θH
(1.11)

Proof. In Appendix A.1.

There are a few interesting observations to make. First, the necessary and sufficient
condition for information provision to be strictly optimal in the second best (1.9) defines a
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(a) µ0 > θL/θH (b) µ0 < θL/θH

Figure 1.4: The light grey area is the set of points for which information provision is strictly
optimal in the second best. The dark grey is the area of negative correlation.

convex sets of transitioning probabilities ρL and ρH . Figures (1.4a) and (1.4b) demonstrate
its triangular shape. Its vertical side is the axis passing from θL/θH due to the restriction
that ρL < θL/θH . Its diagonal is representing the second inequality of (1.9), which can
equivalently be written as

ρH >
θL
θH

1

µ0

− ρL · 1− µ0

µ0

(1.12)

from which we can see that the bottom corner of this triangle will always by at ( θL
θH
, θL
θH

).
Second, we can note that (1.9) is obtained by imposing ρHµ0 < θL/θH on the correspond-

ing condition of the first best (1.4). In Figure (1.4a), which assumes that µ0 > θL/θH this is
represented by the top side of the triangle. In particular, the corresponding set of the first
best would also include all the area above it. On the other hand, if µ0 < θL/θH , then this
implies ρHµ0 < θL/θH and as a result the set defined by the first and second best conditions
is the same, as shown in Figure (1.4b). Therefore, in the second best information provision
is strictly optimal for a smaller set of transitioning probabilities, but only if µ0 > θL/θH .

Third, whenever information provision is strictly optimal in the second best the optimal
distribution over posteriors is the same with that of the first best. This is a randomisation
between the biggest reputation that still persuades S2 to offer the low price, which is µ∗, and
one. However, this does not mean that S1’s payoff is the same, since her second best payoff
will be strictly smaller.

Forth, we want to consider the welfare implications of our results. In particular, we would
like to see how information provision affects the buyer’s welfare. To do this we compare his
payoff to that of an alternative model where information provision would not be possible.
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We restrict our attention to when information provision is optimal for S1, in the original
model, as otherwise we know that the buyer’s payoff would be the same.

Corollary 1.1. Suppose that information provision is optimal for S1. Then the payoff of
a low period 1 type is the same regardless of if information provision is possible or not.
However, a high period 1 type is strictly better off when information provision is possible.

Proof. In Appendix A.1.

To further elaborate on this result note that introducing the possibility of information
exchange between S1 and S2 leaves the payoff of a low period 1 type buyer unchanged, as
his individual rationality constrain binds. However, the payoff a high type increases, since
he captures additional rents. This result relies on the fact that the buyer is perfectly aware
of when and how his purchase history from the first seller is shared with the second. This is
exactly what legislations such as the European General Data Protection Regulation aim to
achieve.

1.4.4 Negative correlation

Next we consider the case of negative correlation, that is we solve S1’s payoff maximisation
problem in the second best (P) under the assumption that ρL > ρH . In this case, the buyer’s
payoff from his second trade is

Q−(µs1) = 1{µs1 ≥ µ∗} · (θH − θL)

since in contrast to the case of positive correlation S2 is convinced to offer the low price when
her posterior on the period 1 type is relatively high.

Our main difficulty is that when an informative signal is provided it is not obvious which
period 1 type is really the ’high’ type. This is because it could be that a period 1 low type is
better off than a period 1 high type due to the former’s post contractual payoff being higher
than the latter’s. Despite that, we can show that the representation of Lemma 1.3 can be
extended to the case of negative correlation with the addition of one constrain.

Lemma 1.5. In the second best and under negative correlation, S1’s payoff maximisation
problem (P) equivalently becomes (P ′) subject to (Pc) and

(θH − θL) · qL ≥ (ρL − ρH) · Eg
[
Q−(µs1) | θL

]
(Ph)

Proof. In Appendix A.1.
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The proof shows that there are two sets of potential solutions for (P). In the first it is the
(IRL) and (ICH) that bind, whereas in the second it is the (IRH) and (ICL). Nevertheless,
when we restrict attention in the second set we obtain a maximum that is on the boundary
of the first set. Henceforth, it is without loss to assume that the (IRL) and (ICH) bind. This
is the premise on which the proof of Lemma 1.3 relies, which is why its result extends here.
However, in this setting it is not necessarily true that the individual rationality constrain of
the high type will be satisfied, hence we need to introduce the constrain (Ph).

Proposition 1.3. In the second best and under negative correlation, an informative signal
strictly solves S1’s payoff maximisation problem (P) iff

ρH <
θL
θH

< ρHµ0 + ρL(1− µ0) (1.13)

If this holds, then an optimal signal is s ∈ {s, s} with distribution

g− (s | θH) = 1 and g− (s | θL) =
µ0

1− µ0

θL
θH

− ρH

ρL − θL
θH

(1.14)

Moreover, the above signal also strictly solves S1’s first best payoff maximisation problem
(Pf ) under negative correlation.

In addition, the high type is always supplied q−H = 1. Under no information provision
the low type’s optimal supply schedule is the point-wise optimal (1.6). However, under
information provision it becomes

q−L =

{
1− (ρL − ρH)[1− g−(s | θL)] , if µ0 < θL/θH

(ρL − ρH)g
−(s | θL) , if µ0 ≥ θL/θH

Proof. In Appendix A.1.

First, note that under negative correlation the informative signal implements a randomi-
sation between posteriors 0 and µ∗. This is the opposite of that of positive correlation,
which was randomising between µ∗ and 1. The reason is that under negative correlation S2

is persuaded to offer the discount for high realisations of µs1 instead of the low ones, because
a high period 1 type is less likely to have a high valuation for her product.

Second, under negative correlation the same informative signal strictly solves both the
first and second best. This is because we showed in Lemma 1.5 that S1 still solves (P ′)
subject to (Pc). But we know from the previous subsection that a necessary and sufficient
condition for the incentive cost to be low enough for information provision to be beneficial
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(a) µ0 > θL/θH (b) µ0 < θL/θH

Figure 1.5: The light grey area is the set of points for which information provision is optimal.
Both positive and negative correlation are considered.

for S1 is that ρHµ0 < θL/θH . But this is implied by the necessary condition for information
provision to have an impact on prices, which is

ρH <
θL
θH

< ρL (1.15)

Figures (1.5a) and (1.5b) provide the full set of transitioning probabilities for which informa-
tion provision is optimal. These are obtained by extending the diagonals of the north-west
triangles, which continue to represent (1.12), and bounding the remain area from above with
the θL/θH horizontal axis, which represents the ρH < θL/θH restriction. As explain before,
the south-east triangles are the same for both the first and second best payoff maximisation
problems.

Notably, if the slope of the diagonal was negative enough, then the south-east corner
of the box would be included in the shared area. This point represents the case of perfect
negative correlation, which was also covered in Proposition 2 from Calzolari and Pavan
(2006). In the setup considered here, the equivalent of this result follows as a corollary of
Proposition 1.3.

Remark 3. Suppose that the buyer’s type is perfectly negatively correlated across sellers,
that is ρL = 1 and ρH = 0. Then an informative signal strictly solves S1’s payoff maximisation
problem (P) iff

θL
θH

< 1− µ0 (1.16)

Diametrically, to the case of perfect positive correlation, which was considered in Remark
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2, here we obtain that an informative signal could be optimal even if the buyer’s preferences
were non-stochastic. This is because under perfect negative correlation the period 1 high
type assigns zero value to the second trade, since his second period type will always be low.
As a result, S1 can create an informative signal while paying zero extra rents. Hence, S1’s
information provision problem in the second best is identical to that of the first best. But
in the first best an informative signal could be optimal even if the buyer’s preferences were
non-stochastic, which explains the above result.

Finally, we want to consider the effect of information provision on the buyer’s welfare
under negative correlation. As in the previous subsection, we compare the buyer’s welfare
in our model to an alternative one where information provision would not be possible.

Corollary 1.2. Suppose that information provision is optimal for S1. Then the payoff of a
low period 1 type is the same regardless of if information provision is possible or not. The
same is true for a high type if µ0 ≥ θL/θH . However if µ0 < θL/θH , then a high type is
strictly worse off when information provision is possible.

Proof. In Appendix A.1.

Similarly to the previous subsection, the payoff of the low period 1 type is always zero,
since his individual rationality constrain binds. The crucial difference, compared to the
case of positive correlation, is that the high type is worse off when information provision is
possible. This is because there is a disagreement between the two types on the relative value
they assign to the trade of the first and second period. The high period 1 type prioritises the
first period, whereas the low the second. Therefore, when using an informative signal S1 can
exploit this misalignment to reduce the rents captured by the high type. Despite that, S1

is only exploiting this benefit of information provision when an informative signal is already
optimal in the first best. That is reducing the high type’s rents is not the primary reason
she discloses information, but she still enjoys it as an indirect effect. Finally, we should
point out that S1 does not achieve her first best payoff, since the low type is not served with
probability one.

1.5 Extensions

1.5.1 Selling information

Throughout the previous section we assumed that S1 could only indirectly profit from pro-
viding information to S2. That is by charging the buyer for the discounts the informative
signal could generate. However, information disclosure also generates an expected benefit
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for S2, since she can use this to adjust her price and sell more frequently. Therefore, S1

could capture part of this benefit by charging S2 for the signal she provides. Let γ ∈ [0, 1]

denote the proportion that S1 captures from the expected benefit that information provision
creates for S2. Thus, setting γ = 0 would collapse the extended model to the baseline one,
which allocates all the bargaining power to S2. Diametrically, setting γ = 1 would give all
the bargaining power to S1, who would capture from S2 all the expected benefit of her signal.

Proposition 1.4. The solution of the extended model, where S1 can directly profit from
selling information to S2, is identical to that of the baseline one under both positive and
negative correlation and for all γ ∈ [0, 1].

Proof. In Appendix A.2.

The proof demonstrates that even though the existence of direct selling motives is ben-
eficial for S1, and it affects her incentives to provide information, this effect is not strong
enough to alter the distribution of her optimal signal. The approach that we use in the proof
is identical to that of the previous section. Henceforth, our characterisation of the subsets
of priors and transitioning probabilities for which an informative signal is strictly optimal,
and the distribution of this signal, is robust to direct selling motives.

Hence the welfare implications of our baseline model are still relevant. Interestingly, our
analysis hints that regulations aiming at restricting information exchange between sellers
should not focus on banning or reducing monetary transactions. This is because allowing the
first seller to directly benefit from selling information does not affect her optimal signal. More
importantly, we have already demonstrated that information exchange is not necessarily
adverse for the consumers.

1.5.2 Static imperfect correlation

The main analysis assumes that the buyer’s type evolves dynamically between the two offers.
Hence the buyer only learns his second period type when trading with S2. However, we
could imagine an alternative model where the buyer would knew both his types in the
first period. Hence in this case the buyer’s type would be static, but it would have two
imperfectly correlated components. This would effectively result on a four element type
space (θ1, θ2) ∈

{
(θL, θL), (θH , θL), (θL, θH), (θH , θH)

}
. We focus mainly on the case that we

deemed the most reasonable by assuming that

max

{
ρL ,

θL
θH

}
< ρH (1.17)
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which incorporates not only positive correlation, but also that if a buyer is revealed as a high
period 1 type, then this suffices for the second seller to charge the high price.

Proposition 1.5. Suppose that the buyer knows both his types when trading with the first
seller, and that (1.17) holds. Then no information provision is optimal. However, if (1.17)
does not hold then there are parameters for which information provision becomes strictly
optimal.

Proof. In Appendix A.2.

Our proof proceeds as follows. First, we argue in a way similar to Remark 1 that it is not
possible for the seller to transmit information on the buyer’s second type. To understand this
note that if this was the case the signal distribution of (θH , θL) would first order stochastically
dominate that of (θH , θH). Hence the latter’s second period payoff is higher under the
former’s distribution. In addition, the first period preferences of (θH , θH) are fully aligned
with those of (θH , θL), since their valuation of the first good is the same. Hence S1 does
not have a tool at her disposal to separate them when providing information on the second
period type. The same is true for (θL, θH) and (θL, θL)

Second, suppose that S1 tries to include all types in her contract. Then she cannot
charge (θL, θH) extra for the possibility of a discount, since he could pretend to be (θL, θL)

who assigns zero value to this. But similarly to the baseline model selling this discount to
the low type is the only potential benefit of information provision, hence non-disclosure is
optimal. There is an alternative way for S1 to potentially increase her payoff, which is to
exclude (θL, θL) from her contract. However, in that case it is only the high period 1 type
that may assign the low valuation to the second seller’s good. But because of (1.17) even
if the first seller reveals the high period 1 type, this will still not be enough to generate a
discount. Hence, we conclude that no information provision is optimal.

However, information provision may be optimal if (1.17) does not hold and the prior on
the period 1 type is high enough for the first seller to not want to supply it. This is because
in that case revealing a high type generates a discount, and the cost of excluding (θL, θL)

from the contract is zero.

1.5.3 Isoelastic cost and other extensions

In an alternative extension we allow for each seller to supply a continuous quantity of a good4

under an isoelastic cost function. We restrict attention to the case of positive correlation,
for which we obtain similar results to the baseline model. The analysis is similar to that of

4We can equivalently interpreted this as producing a single good and choosing its quality level.
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(a) J in the 2nd best (b) Area of information provision

Figure 1.6: The above plots consider the case where qt is produced under an isoelastic cost.
On the right plot, the light grey area is the set of points for which information provision is
optimal. Only positive correlation is considered.

the previous section, but due to its size it has been moved to Appendix A.3. Figure (1.6a)
gives the the graph of J in the second best, which is the equivalent of Figure (1.3a) from the
baseline model. In this cases the concave closure is built by finding the tangency point µ̂.
The set of transitioning probabilities for which information provision is optimal is as shown
in (1.6b), which closely resembles (1.4a).

In the next chapter we further extend the above model by allowing the interaction of the
first seller with the buyer to span over multiply periods. Since the buyer’s payoff evolves
stochastically during his contract under S1, this extension is similar to the model of Battaglini
(2005). However, the aforementioned paper does not include a second seller, and as a result
the corresponding information provision problem does not exist. We show that S1’s preferred
signal is informative for almost any choice of correlations across periods and sellers, with the
noteworthy exemption of perfect positive correlation.

In a different section of the next chapter we show that the above multi-period model
can also incorporated moral hazard. Therefore, it can be used to describe labour contracts.
In this case, the information exchange is between employers and on the inferred ability of
an employee. In a yet different section we provide some preliminary results on endogenous
termination times and how the incentives of the employer to terminate her contract with the
employee are affected by the fact that the second employer can use this termination time as
a signal. A similar setup has been considered in Garrett and Pavan (2012), but instead of
the employee being offered a new contract they assume a constant continuation value.

In the final section of the next chapter we allow for the buyer’s type to be continuous.
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We will not be able to derive the optimal signal for a generic distribution on the buyer’s
valuation and its evolution, however we will extend Calzolari and Pavan (2006) by providing
some sufficient conditions for no disclosure to be optimal even under stochastic preferences.

1.6 Conclusions
In this paper we considered the following question: ”Should a seller disclose private data
on her clients?” We argued that selectively disclosing some data has two benefits. First,
the seller can charge other firms for this information. Second, she can persuade those other
firms to offer discounts to her customers, which she can subsequently use to increase her own
prices. However, information disclosure entails an incentive cost, since it skews the choices
of the seller’s customers towards cheaper options. Our main contribution is to show that
in a natural economic setting in which the buyer is uncertain about his future valuations
information disclosure is optimal for a substantial set of environments.
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Chapter 2

Models of Mechanism Design with
Bayesian Persuasion

This chapter considers four distinct extensions of the model presented in Chapter 1. Each
is covered in a different section. To facilitate the reading we separate the analysis from the
proofs. In the first section we allow the buyer’s interaction with S1 to span over multiple
periods. At the termination of this contract S2 makes her take-it-or-leave it offer to the
buyer, which we continue to assume that it is for a single trade in one period. We show
that the latter’s preferred signal is informative for almost any choice of correlations across
periods and sellers, and we characterise this signal. A noteworthy exemption is when the
buyer’s type is static, in which case no disclosure is optimal.

The second section considers an alternative extension, which allows for the buyer’s type
to be continuous. We will not be able to derive the optimal signal for a generic distribution
on the buyer’s valuation and its evolution, however we will extend Calzolari and Pavan (2006)
by providing some sufficient conditions for no disclosure to be optimal in our setup.

The third section shows that our analysis is still valid when moral hazard is introduced.
Since this setting is mostly related to the labour market we will interpret the agent as an
employee and the two principals as two employers. Hence the communication between the
two employers has the natural interpretation of a reference letter.

The last section allows the termination time of the first contract to be specified by it,
and provides some preliminary results on the optimal termination time.

2.1 Multi-period contracts
In this section we allow for S1’s interaction with the buyer to span over multiply periods,
and explore the implications of this extension on her information provision problem. Assume
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that t ∈ {0, ..,∞} and S1’s contract with the buyer is exogenously1 terminated at the end
of each period with probability 1 − γ ∈ (0, 1). Let τ ∈ {0, ..,∞} denote this exogenous
termination time. Then the buyer’s type θt evolves under S1 according to

φH = Pr(θt+1 = θH | θt = θH , τ > t)

φL = Pr(θt+1 = θH | θt = θL , τ > t)

whereas the transitioning probabilities across sellers are as in the baseline setup

ρH = Pr(θt+1 = θH | θt = θH , τ = t)

ρL = Pr(θt+1 = θH | θt = θL , τ = t)

and we continue to denote by µ0 = Pr(θ0 = θH) the initial public prior.
For the sake of simplicity it will be assumed that S2 trades with the buyer only once

in period τ + 1, and then the game ends2. We will also assume that S1 controls access
to S2, in the sense that the latter will make an offer only if the former’s parternship with
the buyer was exogenously terminated. However, we have argued in Appendix A.3 that
our results go through even without this assumption. We maintain the restriction that
ρH ≥ max{ρL, θL/θH}, and add that φH ≥ φL. Both principals can fully commit to their
contracts. Conversely, the buyer will not be able to do so for any period in advance. As
a result, the contract proposed by S1 can essentially be interpreted as a series of history
dependent single-period offers.

Hence, the timing on the multi-period model is as follows. At the beginning of period
1, S1 publicly commits on a distribution gt(s | θ̂t), where θ̂t denotes the history of reported
types up to and including θ̂t, and offers to the buyer contract{

pt(θ̂
t), qt(θ̂

t), gt(s | θ̂t)
}∞

t=0

which also includes a series of one period history depended prices and quantities. Subse-
quently, and at the beginning of each of the following periods, the buyer decides between
either trading with S1, which entails reporting his type, or terminating their partnership.
Even if the buyer accept S1’s offer their contract may still end, after the quantity qt(θt) has
been traded, due to the exogenous termination probability 1 − γ. If the contract is termi-

1This assumption is imposed mainly in order to simplify the notation. Even if termination was allowed
to be endogenous, for any given choice of termination time S1’s information provision problem can be solved
using the approach introduces in this section.

2Equivalently, it could be assumed that the buyer’s type is static under S2. Dropping this restriction
would not significantly alter the results of the main analysis, but it allows some useful closed-form expressions
to be derived and it makes the connection between this and the two period model easier.
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nated at τ = t the s is realised and observed by S2. Finally at τ + 1, the period after its
termination, S2 offers to the buyer{

p(θ̂τ+1, s, τ), q(θ̂τ+1, s, τ)
}

which is a single period contract that utilises both the realised termination time τ and the
signal s, and subsequently the game ends.

0

S1 offers contract,
commits on g(s | θ̂t)

t

buyer reports θt
or terminates

If θt reported,
qt is traded for pt

continucation
w.p. γ

If τ = t, public
s is realised

τ + 1

S2 offers
contract

This section proceeds as follows. In subsection 2.1.1 we solve for S2’s optimal contract
and characterise the buyer’s post contractual payoff in this setting. In subsection 2.1.2 we
derive a representation of S1’s payoff that does not depend on transfers and provide a generic
sufficient condition for implementation. Next, in subsection 2.1.3 we show how the part of
S1’s payoff that is related to the buyer’s subsequent contract with S2 can be reformulated so
that her information design problem can be approached in a way similar to the literature of
Bayesian Persuasion, and we characterise its solution.

2.1.1 The buyer’s post-contractual payoff

S2’s payoff maximisation problem is solved, and the buyer’s expected payoff from trading
with her is derived. For realised termination τ = t, let µst = Pr(θt = θH | s) denote S2’s
posterior belief on the buyer’s type in period t, and βst = Pr(θt+1 = θH | s) the corresponding
posterior on θt+1. Those two are connected according to

βst = µst ρH +
(
1− µst

)
ρL

The problem itself is quite standard and its treatment can be found in the appendix. The
following lemma characterises the buyer’s payoff, which is the only result needed to proceed
with S1’s payoff maximisation problem.

Lemma 2.1.1. The payoff of a low buyer type under S2 is equal to zero, while that of the
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high one equals

B(βst ) =

{
b1+ϵ · (θH − θL) ·

(
θL−βst θH

1−βst

)ϵ
, if βst ≤ θL/θH

0 , if βst ≥ θL/θH
(2.1.1)

Also, on the subset of posteriors [0, θL
θH

) it is decreasing, and strictly concave (convex) for

βst < (>)
θL
θH

+
1− ϵ

2

(
1− θL

θH

)
.

Proof. In Appendix B.1.

The payoff of a low buyer type in period 2 is always equal to zero, as it captures no rents.
Conversely, the high type’s payoff is positive, but only if the posterior βst is low enough for
S2 to opt to serve both types. Indeed,we show in the proof that the rents he captures are
proportional to the quantity bought by the low type. As βst increases, a distortion on the
low type’s supplied quantity has smaller effect on S2’s expected payoff. Hence it becomes
cheaper for her to increase this distortion in order to tighten the incentive compatibility
constrain of the high type and decrease his rents. As a result, both the quantity supplied to
the low type, and the high type’s rents are decreasing in βst .

2.1.2 Payoff equivalence

S1’s payoff maximisation problem is

max
p,q,g

Eθ

[
∞∑
t=0

γtδt ·
(
pt(θ

t)− c
[
qt(θ

t)
])]

subject to IR(θt) and IC(θt)

(P)

where IR(θt) and IC(θt) refer to the individual rationality and incentive compatibility con-
strains of a θt buyer type. To make notation more compact three special cases of θt will
be defined. First, let θtL = {θt−1, θL} and θtH = {θt−1, θH} denote a history such that the
buyer’s type in period t is low and high, respectively. In addition, for given generic θt−1 and
t′ ≥ t let

Lt
′

t = {θt−1, θL, .., θL} , (2.1.2)

denote a history such that the buyer’s type has been low for all periods after, and including,
period t. Also, whenever t = 0 simply write Lt′ .

The proof of the subsequent proposition, which follows closely Battaglini (2005), demon-
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strates that the information rents captured by a period t high type θtH are closely related
to the histories {Lt′t }t′>t. In particular, when the implementation constrains, which will be
provided shortly, do not bind the information rents captured by a period t high type are
given by

UH
t (θt−1) ≡

∞∑
t′=t

[
γδ(ρH − ρL)

]t′−t ·{(θH − θL)qt(L
t′

t )

+ δ(1− γ)(ρH − ρL)Eg
[
B(βst′) |Lt

′

t

])}
where βst = (ρH − ρL) Pr(θt = θH | τ = t, s) + ρL. Then (P) simplifies to the following
problem, which only depends on policies (q, g) and not on transfers p.

Proposition 2.1.1. Suppose that a solution of

max
q,g

{
Eθ

[
∞∑
t=0

γtδt ·
(
θt qt(θ

t)− c
[
qt(θ

t)
]

+ δ(1− γ) Pr(θt+1 = θH | τ = t, θt)Eg
[
B(βst ) | θt

])]

− µ0

∞∑
t=0

γtδt(φH − φL)
t

[
(θH − θL)qt(L

t) + δ(1− γ)(ρH − ρL)Eg
[
B(βst ) |Lt

])] }
(P ′)

satisfies

(θH − θL)
[
qt(θ

t
H)− qt(θ

t
L)
]
+ (φH − φL)γδ

[
UH
t+1(θ

t
H)− UH

t+1(θ
t
L)

]
≥ (ρH − ρL)(1− γ)δ

[
Eg
[
B(βst ) | θtL

]
− Eg

[
B(βst ) | θtH

]]
(Pc)

Then those policies are also a solution to (P) and there exists a contract that implements
them.

Proof. In Appendix B.1.

The proof of the above proposition follows closely Battaglini (2005). (Pc) is obtain by
solving a relaxed version of (P) where its downward slopping constrains IC(θtL) are ignored,
and showing that for this relaxed problem the upward slopping ones IC(θtH) have to bind
on its maximum. This allows the derivation of an expression for the period 0 high type’s
expected payments that only depends on the policies (q, g). The same can be done for the
period 0 low type by using his individual rationality constrain. Substituting those expected
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payment in S1’s payoff gives (P ′). Henceforth, if the policies that solve the relaxed problem
(P ′) satisfy the ignored downward slopping constrains IC(θtL), then those also solve (P). To
check this, the derived expression for the expected payments is substituted in IC(θtL), which
gives (Pc).

The expectation over the first summation in (P ′) denotes the ex-ante total surplus of S1’s
partnership with the buyer, which includes the latter’s post contractual payoff. Moreover,
as shown in the proof of the proposition, the second summation denotes the rents captured
by a period 1 high type. Note that even though a period t low type has some probability
of becoming a high type, and as a result acquiring some rents in the future periods, S1 can
charge him in advance for those. Therefore, the buyer manages to capture positive rents only
while he has never been a low type in the past. Interestingly, those rents are only related
to the worst possible history Lt = {θL, .., θL}, which will create all the inefficiency of the
multi-period contract.

For the model provided it can be shown that if the buyer’s continuation value was not
type depended, i.e. ρH = ρL, then the solution of (P ′) would always be implementable.
However, this will not generically be true when ρH > ρL, since the high type has an additional
incentive to misreport when the signal is informative. This is because the low type’s signal
will generically result in lower posteriors, which is beneficial for the buyer.

Corollary 2.1.1 (Implementation). The point-wise optimal level of production is

q∗t (θ
t) =

{
(θt)

ϵ , θt ̸= Lt

(ξt)
ϵ , θt = Lt

, where ξt = max

{
0 , θL − µ0(θH − θL)

1− µ0

(
φH − φL
1− φL

)t}
(2.1.3)

and this is implementable for any choice of signal distribution g if(
θH
θL

)ϵ
≥ 1 + δ (ρH − ρL) b

1+ϵ (2.1.4)

Proof. In Appendix B.1.

The relaxed implementation condition (2.1.4) is identical to that of the two period model,
and will hereafter be assumed to hold.

2.1.3 Information provision

This section solves S1’s information provision problem. Her optimal signal distribution gt

will be derived for any realisation of τ ∈ {0, ..,∞} . Hence considering only the part of (P ′)
that is affected by the signal s on realised τ = t, and ignoring the discount factor δt+1 that
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multiplies it, gives

max
g

{∑
θt

[
Pr(θt, τ = t)

∑
s

Pr(θt+1 = θH | τ = t, θt)B(βst )gt(s | θt)
]

− µ0 Pr(τ = t)(φH − φL)
t(ρH − ρL)

∑
s

B(βst )gt(s |Lt)
}

(Gt)

The first line of (Gt) represents the expected rents from the buyer’s contract with S2, which
are captured by S1 through the individual rationality and incentive compatibility constrains
of her own contract. On the other hand, the second line corresponds to the rents captured by
the buyer in his first contract. Those are generated from the fact that whenever the signal s
is informative the high buyer types θtH have a stronger incentive to misreport, because their
continuation payoff B(β) is multiplied by ρH instead of ρL.

Next we transform (Gt) into an equivalent problem that will only depend on the posteriors
Pr(θt = θH | τ = t) and Pr(θt = Lt | τ = t). Introduce the following notation

µt = Pr(θt = θH | τ = t), µst = Pr(θt = θH | s, τ = t)

λt = Pr(θt = Lt | τ = t), λst = Pr(θt = Lt | s, τ = t)

The interim posterior beliefs on the first column only use the information provided by the
termination time τ , whereas the posteriors on the second column also depend on the signal s;
µst is the posterior on θt = θH , while λst on θt = Lt. Note that the first event only depends on
the contemporaneous θt, while the second on the whole history θt. Finally, abusing notation
let gt(s) denote the probability of sending signal s after a contract being terminated at time
τ = t, that is

gt(s) =
∑
θt

Pr(θt | τ = t) gt(s | θt)

To proceed we provide the following Lemma, which generalises Lemma A.3.6 of Section
A.3.2.

Lemma 2.1.2. S1’s information provision problem in period t equivalently becomes

max
g

Eg[Jt(µst , λst)] (Gt)

where its point-wise value Jt(µst , λst) is

Jt(µ
s
t , λ

s
t) = B(βst )

(
βst − λst ψt

)
, and ψt ≡ µ0

1− µ0

(
φH − φL
1− φL

)t
(ρH − ρL) (2.1.5)
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(a) Domain (b) Boundaries

Figure 2.1: The domain of Jt(µ, λ), for t > 1, and its value on the two boundaries.

Proof. In Appendix B.1.

Similarly to the previous section, the information provision problem of S1 is reformulated
by considering (µst , λ

s
t) as the underline random variables, instead of the signal s, with joint

distribution g̃t. Hence, S1 equivalently solves

max
g̃t

Eg̃t
[
Jt(µ, λ)

]
s.t. Eg̃t [µ] = µt , Eg̃t [λ] = λt ,

µ, λ ∈ [0, 1] , and µ+ λ ≤ 1.
(G ′

t)

The constrains ensure that the joint distribution g̃t(µ, λ) is Bayes plausible. Note that it
is not enough for µ and λ to be probabilities, that is to be in [0, 1], as they represent
mutually exclusive events. Hence, their sum has to be less than one. The inequality can
be strict as the history Lt does not necessarily cover all θt such that θt = θL. Therefore
Pr(θt ̸= θH ∩ θt ̸= Lt), which is the complement of Pr(θt = θH ∪ θt = Lt) = µst + λst , can be
strictly positive. Equivalently, it is possible that µst + λst < 1.

The domain of J(µ, λ) is a right-angled triangle, of which each of its legs has length one.
A representative graph of it on the sides where (µ+λ = 1) and (λ = 0) is given in Figure 2.1.
Those two sides are connected by straight lines, as J(µ, λ) is linear in λ. It will be convenient
to define Jt(µ, λ) as a function of of µ only on the two aforementioned boundaries. Hence,
for i ∈ {f, t} let

J̄i(µ) = ζiB(β)(β −Ψi) , where
{

ζf = 1 Ψf = 0

ζt = 1 + ψt
ρH−ρL

Ψt = ψtρH
ρH−ρL+ψt
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and note that β = µρH + (1 − µ)ρL as those two posteriors are always connecting through
this linear relationship. Lemma B.1.2, which due to its size has being moved, together with
the rest of the proofs, to Section B.1 shows that J̄f (µ) represents the (λ = 0) boundary,
whereas J̄t(µ) the (µ+ λ = 1) one. Interestingly, the latter’s functional form is very similar
to that of J(µ), derived in Section A.3.3, and that of the former is identical to Jf (µ), which
was derived in Section A.3.2. This is because in the multi-period setup Jf (µ) corresponds
to the representation of S1’s first best post contractual payoff.

To clarify the last claim suppose that S1 could commit on (p, q, g) before learning the
buyer’s type, as in (P), but his type was directly observed by her. Then instead of Jt(µ, λ),
S1 information provision problem would have J̄f (µ) as an objective function. This is because
the rents paid by S1 are multiplied by the probability of Lt to occur. Therefore λt = 0

corresponds to the case where no rents are paid, which is the same as ignoring the incentive
compatibility constrains in (P). In addition, for φH < 1 it is ease to show that J̄f (µ) is the
limit of Jt(µ, λ) as t goes to infinity, which shows that S1’s information provision problem
converges to its first-best solution after long contracting periods.

To solve S1’s information provision problem, first the concave closure of Jt(µ, λ) needs to
be characterised. This will be denoted by Jt(µ, λ) and defined as

Jt(µ, λ) = sup{z | (µ, λ, z) ∈ co(Jt)},

where co(Jt) denotes the convex hull of the graph of Jt(µ, λ) on D.
In addition, for i ∈ {f, t} let J̄i(µ) denote the value of Jt(µ, λ) on the subsets (λ = 0)

and (µ + λ = 1), respectively, which is also the concave closure of the corresponding J̄i(µ).
The following proposition characterises Jt(µ, λ). To facilitate its exposition, a new point
needs to be introduced. For i ∈ {f, t} and Ψi <

θL
θH

< ρH , let µ̂i be the unique solution of

J̄i(µ̂i) + J̄ ′
i(µ̂i)(1− µ̂i) = 0 , (2.1.6)

if this exists, and zero otherwise. The functional form of µ̂i can be found in the proof of the
following proposition in, but it is not copied here, due to its size.

Proposition 2.1.2. For any interior point Jt(µ, λ) > Jt(µ, λ).

• On the boundary (µ = 0): Jt(0, λ) = J̄t(0, λ).

• On the boundary (λ = 0), and when Ψt <
θL
θH

also on (µ+ λ = 1):

J̄i(µ) =

{
J̄i(µ) , for µ ≤ µ̂i

J̄i(µ̂i) + J̄ ′
i(µ̂i)(µ− µ̂i) , for µ ≥ µ̂i

(2.1.7)
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• On the boundary (µ+ λ = 1), if Ψt ≥ θL
θH

and ϵ ≥ 1, then Jt(µ) = J̄t(µ).

Finally, µ̂i is non-decreasing in Ψi, and strictly increasing when it is positive.

Proof. In Appendix B.1.

The case where Ψt ≥ θL/θH and ϵ < 1 can also easily be described, however it is
omitted to make the statement of the above proposition more compact. Whenever the interim
posteriors (µt, λt) are on one of the two boundaries, the optimal signal follows trivially from
the corresponding bullet point. In particular, for the boundaries (λ = 0) and (µ + λ = 1)

the analysis is almost identical to that of Sections A.3.2 and A.3.3, respectively, hence it is
omitted. On (µ = 0) any signal is optimal, informative or not, because Jt(0, λ) is linear on
λ.

In addition, the above characterisation can be used to derive the optimal signal under
static types

φH = 1− φL = ρH = 1− ρL = 1 ,

since in this case it has to be that µt + λt = 1 for all periods t ≥ 0. Non surprisingly the
corresponding result of Section A.3.3, on the optimality of no information provision under
static types, can be extended to the general model.

Corollary 2.1.2 (Privacy under Static Types). Suppose that the buyer’s type is static, then
no information provision is optimal on all periods t ≥ 0.

Proof. In Appendix B.1.

Unfortunately, it is not as ease to describe the optimal signal when (µt, λt) is an interior
point, as the functional form of Jt(µ, λ) on those point is harder to obtain. However, it is
possible to provide the following characterisation.

Proposition 2.1.3. For any interior point (µ, λ) the value of Jt(µ, λ) is a linear combination
between J̄f (µ′) = Jt(µ′, 0) and J̄t(µ′′) = Jt(µ′′, 1− µ′′), where

µ′ = µ− λ

x
, and µ′′ =

1− λ+ xµ

1 + x
. (2.1.8)

The values of Jt(µ, λ) and x are given by the solution of

Jt(µ, λ) = max
x

{
(1− µ− λ)

J̄f (µ′)

1− µ′ + λ
J̄t(µ′′)

1− µ′′

}
s.t x ∈

(
−∞ , −1− λ

µ

]
∪
[
λ

µ
, +∞

) (2.1.9)
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Proof. In Appendix B.1.

The proof relies on the fact that for any interior point (µ, λ) there exist two corresponding
boundary points (µ1, 0) and (µ2, 1 − µ2), along with an appropriate weight ω, such that
Jt(µ, λ) can be written as a linear combination of those two points, that is

Jt(µ, λ) = ωJt(µ1, 0) + (1− ω)Jt(µ2, 1− µ2) .

This makes it possible to write the concave closure Jt(µ, λ) as a linear combination of its
value on points of the boundaries (µ = 0) and (µ + λ = 1) exclusively. Therefore, Jt(µ, λ)
can be expressed as a linear combination of Jt(µ′, 0) and Jt(µ′′, 1− µ′′), the inputs of which
belong in one of those two subsets of D. Hence, to find Jt(µ, λ) it suffices to pick those two
points by maximising the value of their linear combination, or equivalently pick the slope
x of the line that connects the interior point (µ, λ) with the two boundaries. After some
algebra it can be shown that this problem is equivalent to (2.1.9).

An immediate implication of Proposition 2.1.3 is that the optimal signal may need to
use more than two, but no more than four possible realisations s ∈ {s′0, s′1, s′′0, s′′1}. This is
because each of the values J̄f (µ′) and J̄t(µ′′) may require an additional linear combination
on the corresponding boundary to be reached, similarly to the simple model of Section A.3.

Intuitively, S1 engages in two distinct randomisations. First, she randomises over the
boundary on which the posteriors will be, where J̄f denotes the first best, and J̄t the worst
possible second best. This only affects the posterior λst = Pr(θt = Lt). Subsequently, she
randomises over the posterior µst = Pr(θt = θH). It is noteworthy that S2 only cares about
µst , therefore the first randomisation has no effect on the buyer’s expected post contractual
payoff. In particular, in the first best S1 would only provide information on the buyer’s
last reported type θt, and not on the history Lt. Despite that, in the second best the first
randomisation over posteriors λst is used as a way to reduce the expected rents of a period
1 high type. Because those rents are mostly generated from the first periods, as t increases
Jt(µ, λ) converges to J̄f (µ) and the effect of λst on S1’s post contractual payoff becomes
negligible. Hence, her information provision problem converges to the first best, covered in
Section A.3.2.

A closed-form representation of Jt(µ, λ) is hard to obtain, since (2.1.9) may not have a
corresponding closed-form solution, however the subsequent corollary identifies a case where
this is possible.

Corollary 2.1.3. Suppose that µ̂t = 0, then

Jt(µ, λ) = (1− µ)J̄f (0)− λψt , for all (µ, λ) ∈ D . (2.1.10)
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Proof. As Ψt > 0 = Ψf , it follows from Proposition 2.1.2 that µ̂t = 0 implies µ̂f = 0. Hence
substituting in (2.1.7) gives that for all µ ∈ [0, 1]

J̄f (µ) = J̄f (µ)(1− µ) and J̄t(µ) = J̄t(µ)(1− µ) .

Then substituting the above in the objective function of (2.1.9) gives

Jt(µ, λ) = (1− µ− λ) J̄f (0) + λ J̄t(0)

Finally, to obtain (2.1.10) substitute that J̄t(0) = J̄f (0)− ψt.

Therefore, if Jt(µ, λ) is linear on its boundaries, the same property holds on its interior.
Because of this any randomisation between the two boundaries will define a corresponding
optimal signal.

2.1.4 Special cases

This section considers S1’s information in two special cases. The first assumes that φH = 1,
which implies that once the buyer becomes a high type he remains one. This specification is
of interest because it describes the dynamics of information provision for addictive products,
those that once the buyer develops a taste for them he becomes a loyal costumer. The second
considers the generic case φH < 1 for very large t, that is it looks at the optimal information
provision that follows the termination of contracts with very long duration.

Addictive products

To solve S1’s information provision problem under the restriction that φH = 1 note that for
an buyer that is terminated in period t there are only two possible events; either θt = θH ,
or θt = Lt. As a result it has to be that µ + λ = 1. Hence, Jt(µ, λ) = J̄t(µ). In addition,
simple algebra shows that φH = 1 implies J̄t(µ) = J̄0(µ) for all t ≥ 0. This is identical to
the objective function of S1’s information provision problem under single period contracts
(A.3.14). However, the Bayes plausibility restriction is different since the prior on the buyer’s
type is µt, instead of µ0, where for generic φL the former is given by

µt = µt−1(φH − φL) + φL ⇒ µt = µ0(φH − φL)
t + φL

1− (φH − φL)
t

1− (φH − φL)

As a result, under the restriction that φH = 1 the above becomes

µt = 1− (1− µ0)(1− φL)
t ,
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and S1 equivalently solves

max
g̃t

E
[
J̄0(µ)

]
s.t. E[µ] = µt , µ ∈ [0, 1]. (2.1.11)

As argued in the previous section the effect of µ0 on S1’s information provision problem
is not clear, because it affects both the buyer’s expected post contractual payoff and the
information rents that a high type captures. Nevertheless, an increase on the posterior µt
unambiguously bends S1’s optimal signal towards informativeness.

Proposition 2.1.4. An informative signal is strictly optimal if and only if

max
{
ρL, ρHµ0

}
<

θL
θH

and µt > µ̂0 , (2.1.12)

in which case S1’s optimal signal s ∈ {s, s} has distribution

g∗t (s | θL) = 1 , and g∗t (s | θH) =
1− µt
µt

µ̂0

1− µ̂0

. (2.1.13)

Also, if an informative signal is strictly optimal for some t, then it remains so for all t′ ≥ t.

Proof. For ρHµ0 < θL/θH the proof is identical to that of Proposition A.3.2. If ρHµ0 ≥
θL/θH , then as argued in Section A.3.3 J̄0(µ) is flat for µ ≥ µ∗ and negative below it. But
then φH = 1 implies µt ≥ µ0 ≥ µ∗, hence J0(µt) = J̄0(µt) for all t ≥ 0 and information
provision is never strictly optimal. The last statement follows trivially from noting that
µt+1 ≥ µt.

Intuitively, an increase in µt only affects S1’s post contractual payoff as it appears in
the first best. This is because the rents captured by the high type depend on his initial
reputation µ0, but not on µt. To understand this note that a period 1 high type reveals
all his private information in period 1, hence he captures no more rents in the subsequent
periods. In addition, those are all the rents that S1 pays, since if a period t high type had
been a low one before, then she would have charged him for his future expected rents at this
point.

Therefore, an increase in µt moves the buyer’s post contractual payoff towards its flat
part, which has the same effect on S1’s post contractual payoff, net of the rents paid to
the period 1 high type. Hence, when µt becomes big enough S1 may choose to randomise
between revealing the high type and not. Since φH = 1 implies µt+1 ≥ µt, the above can
also be restated in terms of the duration of the contract. That is the longer this duration is,
the more likely S1 becomes to provide an informative signal to S2.
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Long contracts

Next the restriction φH = 1 is dropped, but t→ ∞ is imposed instead. In particular, it will
be assumed that 0 < φL ≤ φH < 1. In this case S2’s posterior on an buyer whose contract
has not been terminated in period t is

lim
t⇒∞

µt = µ∞ =
φL

1− (φH − φL)
,

In addition, it is ease to show that

lim
t→∞

Jt(µ, λ) = J̄f (µ) , and lim
t→∞

Pr(θt = Lt) = 0,

Hence the objective function of S1’s information provision problem becomes identical to that
of single period contracts under the first best. However, the buyer’s interim reputation is
not his initial one µ0, but its limit µ∞.

Proposition 2.1.5. For contracts of long duration, t→ ∞, if µ∞ ≤ µ̂f , then no information
provision is optimal. In the opposite case, S1’s optimal signal s ∈ {s, s}, is informative and
has distribution

gf (s | θL) = 1 , and gf (s | θH) =
1− µ∞

µ∞

µ̂f
1− µ̂f

. (2.1.14)

Proof. Identical to that of Proposition A.3.1.

As a result, both S1’s information provision problem and its solution are identical with
that of the first best of the period t probem. The reason for that is that the amount of rents
that S1 pays for periods long in the future tends to zero. This is because, as argued before,
those rents are all captured by a perpetually high type. However, the probability of facing
such a type tends to zero as t goes to infinity. As a result, the expected amount of rents paid
in period t also tends to zero, and the corresponding information provision problem becomes
identical to the first best.

2.2 Continuous types
In this section we expand the model studied in Appendix A.3 to allow for continuous types.
Hence we consider again a two period model t ∈ {1, 2}, where in period 1 the buyer is
offered a contract by S1 and in period 2 by S2. Instead of the binary type space of the
previous sections, assume that θ1 is distributed according to the continuously differentiable
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cumulative distribution function (CDF) F1(θ1) supported on [θ1, θ1]. Let f1(θ1) > 0 denote
the corresponding density. The inverse hazard rate of F1(θ1) is denoted by

µ1(θ1) =
1− F1(θ1)

f1(θ1)
,

and similarly to most of the literature it is assumed that this is non-decreasing in θ1. For
the period 2 buyer type θ2 suppose that its continuously differentiable CDF is F2(θ2 | θ1),
with corresponding density f2(θ2 | θ1) > 0 and support [θ2, θ2]. In addition, to capture some
notion of positive correlation across periods assume that if θ̃1 > θ1, then F2(· | θ̃1) first order
stochastically dominates (FOSD) F2(· | θ1). Finally, to simplify the exposition the support
S of the signal s is restricted to be finite3.

Similarly to the binary type specification, S2’s payoff maximisation problem is solved for
any posterior F s

2 (θ2). Let the corresponding inverse hazard rate be denoted by

µs2(θ2) =
1− F s

2 (θ2)

f s2 (θ2)

Lemma 2.2.1. The payoff of a θ2 buyer type from his contract with S2 is

V s
2 (θ2) = b

∫ θ2

θ2

qs2(x) dx , (2.2.1)

where qs2(θ1) is the solution of S2’s payoff maximisation problem

max
q2

∫ θ2

θ2

{
b q2(θ2)

[
θ2 − µs2(θ2)

]
− c[q2(θ2)]

}
dF s

2 (θ2),

subject to q2(θ2) being non-decreasing.
(2.2.2)

Proof. In Appendix B.2.

Next, the focus is turned to S1’s payoff maximisation problem, part of which is the choice
of g(s | θ1). For a given signal realisation s, let the expected payoff a θ1 buyer type from his
contract under S2 be denoted by

V̄ s
2 (θ1) = Eθ1

[
V s
2 (θ2) | θ1, s

]
and note that this is not a function of the reported θ̂1. Nevertheless, this influences the

3This rules out perfect revelation of θ1, however the statements that will be made on the optimality of no
information provision would also hold if such a signal was allowed. More generically, the subsequent analysis
holds for any CDF G(s | θ1), with support [s, s], that induces integrable posteriors.
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buyer’s post contractual payoff Eg
[
V̄ s
2 (θ1) | θ̂1

]
, since the distribution of s potentially depends

on θ̂1. To connect this with the analysis of the binary type space, I first look at S1’s
information provision problem under the first best.

Proposition 2.2.1. Suppose that the buyer’s type is static and that there are some types
that are not supplied by S2 under no information provision, equivalently µ1(θ1) > θ1. Then
S1’s first best contract entails some information provision.

Proof. In Appendix B.2.

The proof follows from a simple observation, whenever some buyer types are not con-
tracted by S2 this is inefficient for S1. This is because they do not capture any rents from
S2’s contract. The reason why S2 would choose to exclude some buyer types from her con-
tract is because the asymmetry of information can potentially be significant enough so that
supplying them would be non-profitable. But then S1 can reduce this asymmetry by report-
ing whenever the buyer’s type belongs in this set of excluded types. This does not affect
the rents captured by the higher types, since the excluded types would not be part of their
contract to begin with. However, some of the revealed low types will be supplied a positive
quantity, since the asymmetry of information will be reduced.

Depending on the value of ϵ similar arguments can be used even if all buyer types were
contracted by S2, however in this case it would be the convexity of her supply schedule that
would be make randomisation between revealing information and not profitable for S1. Note
that even though the above argument is given for static types, its underline intuition is still
relevant under dynamic ones. However, in this case more structure needs to be imposed on
F2(θ2 | θ1), as for example is done later in this section when the second best is discussed.

Now, the focus of the analysis is switched back to the second best under S1. The payoff
of a period 1 buyer of type θ1 when reporting θ̂1 is

V̂1(θ̂1, θ1) = θ1q1(θ̂1)− p1(θ̂1) + Eg
[
V̄ s
2 (θ1) | θ̂1

]
.

Let the buyer’s payoff under truthful reporting be V1(θ1) = V̂1(θ1, θ1). Then S1’s revenue
maximisation problem is

max
p1,q1,g

∫ θ1

θ1

{
p1(θ1)− c[q1(θ1)]

}
dF1(θ1) ,

subject to V1(θ1) = max
θ̂1

V̂1(θ̂1, θ1)

(2.2.3)

Let F s
1 (x) ≡ Pr(θ1 ≤ x | s) denote the posterior CDF on θ1 after a signal realisation s ∈ S,
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with corresponding inverse hazard rate

µs1(θ1) =
1− F s

1 (θ0)

f s1 (θ1)

Lemma 2.2.2. S1’s information provision problem is

max
g

Eg

[∫ θ1

θ1

{
µs1(θ1)− µ1(θ1)

}dV̄ s
2 (θ1)

dθ1
dF s

1 (θ1)

]
(2.2.4)

A sufficient condition for g(s | θ1) to be implementable along with the point-wise optimal
choice of production q∗1(θ1) = max

{
0 , θ1 − µ1(θ1)

}ϵ is that

q1(θ̂1) + Eg
[
dV̄2(θ1)

dθ1

∣∣∣∣ θ̂1] (2.2.5)

is non-decreasing in θ̂1. This always holds under no information provision.

Proof. In Appendix B.2.

Next, the optimal deterministic signalling structure is derived. That is the optimal
among the ones where S1 does not randomise. On this subset of distributions g(s | θ1), she
is restricted to choosing a partition {Θs

1}s∈S of [θ1, θ1] and reporting to S2 the set of this
partition on which θ1 belongs. Hence the realised signal s satisfies θ1 ∈ Θs

1. Interestingly,
it is relatively ease to show that under such a signalling structure µs1(θ1) ≤ µ1(θ1), which
combined with (2.2.4) gives the following.

Proposition 2.2.2. Suppose that S1 is restricted to using deterministic signals, then no
information provision is optimal.

Proof. In Appendix B.2.

The value of this proposition is twofold. First, it is ease to imagine scenarios where
S1 will not be able to credible randomise, but she can still reveal some information on the
buyer’s types. Such cases can be modelled by restricting attention to deterministic signals.
In addition, the above result demonstrates that if S1 cannot credible randomise, then there
are no benefits from establishing some other more restrictive device of communication. The
second reason why the above result is important is related to the technical complexity of
calculating the optimal signal without this restriction.

In the remaining of this section, a case is presented for which S1’s optimal signal can be
derived. Hence drop the restriction of deterministic signals, and instead impose the following
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specification on F2(θ2 | θ1). For the type of period 2 assume that{
θ2 = θ1 , with probability ρ

θ2 ∼ F1(·) , with probability 1− ρ

This structure allows for both perfect correlation, which is equivalent to static types, and
full independence. Intuitively, somebody would expect that information provision is optimal
for interior values of ρ, as in the binary type specification, however the opposite is true.

Proposition 2.2.3. Suppose that the buyer’s type is redrawn with probability ρ, then no
information provision is optimal for all ρ ∈ [0, 1].

Proof. In Appendix B.2.

The above proposition demonstrates that just imperfect correlation is not enough for
information provision to be optimal. Its proof underlines a novel result, which builds on
previous work from Calzolari and Pavan (2006). This is that if in the absence of information
provision S2 opts for the same quantities that S1 would if she was integrated with her, then
no information provision is optimal. In some sense, disclosure has value only if it moves the
policy choices away from those that maximise the total surplus of both S1 and S2. As shown
in the appendix this is not true under the above specification of F2(θ2 | θ1).

2.3 Moral Hazard, Employment Contracts, and Refer-
ences

In this section we consider an alternative version of our mutli-period model, in which we allow
for both moral hazard and endogenous termination. Continue to assume that t ∈ {0, ...,∞}.
Also because this setting is more often associated with the labour market we will switch to
having two principals Pa and Pb (she) interacting with a single agent (he). All three of them
are risk neutral, and discount the future with δ ∈ (0, 1). At time zero Pa proposes a contract
to the agent. If accepted, it lasts up to a termination time τ . The next period, i.e. τ + 1,
Pa switches to her outside option and the agent receives a new offer from Pb. For simplicity
it is assumed that Pb approaches the agent only if he first entered a contract with Pa. All
outside options are normalised to zero. If an agent is in a contract with one of the principals
in period t, then the value of his production is

yat = θt et and ybt = b θt et
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for Pa and Pb, respectively. On the other hand, the agent’s period payoff is

w − c(et), where c(et) =
(et)

1+ 1
ϵ

1 + 1
ϵ

and et ≥ 0 is the effort level, which the agent chooses privately. The agent’s ability θt ∈
{θL, θH}, 0 < θL < θH is also his private information. The public prior in period 0 is
µ0 = Pr(θ0 = θH) ∈ (0, 1). During the agent’s employment under Pa his type θt evolves
stochastically according to

φH = Pr(θt+1 = θH | θt = θH , τ > t)

φL = Pr(θt+1 = θH | θt = θL , τ > t)

In contrast, θt will be assumed to be perfectly sticky4, that is Pr(θt+1 = θt | t > τ) = 1.
However, the agent’s type will be allowed to evolve between the two principals according to

ρH = Pr(θt+1 = θH | θt = θH , τ = t)

ρL = Pr(θt+1 = θH | θt = θL , τ = t)

Similarly to before we assume that φH ≥ φL and ρH ≥ ρL.
We allow for Pa’s partnership with the agent to be terminated in two possible ways. The

first possibility is that it is exogenously severed, which is assumed to occur with probability
1−γ at the end of each period. The second possibility is that it is terminated endogenously,
that is the contract offered by Pa specifies its termination after a certain set of histories.
Let τγ denote the exogenous termination time and τa the endogenous one. Then the realised
termination time is

τ = min{τγ, τa}

Two distinct cases will be considered for τa. The first will restrict Pa to offering a contract
that sets τa = ∞. This type of contract can only be terminated from the exogenous τγ, and
have two interesting subcases. For γ = 0 it becomes a fixed term contract, as it is always
terminated at the end of period 0. On the other hand, for γ > 0 it resembles a tenure
contract, because it is only halted due to exogenous circumstances. Finally, the second case
that will be considered will allow Pa to commit ex-ante on a history depended τa, which will
result on flexible contracts. Define the probability of endogenous continuation

ft(It) = Pr(τa > t | τa > t− 1 , It),

4This restriction is imposed mainly to facilitate the exposition. The main results would not be affected
if it was dropped.
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where It denotes the information set available to Pa at the end of period t. That is ft(It)
is the probability that the agent’s contract with Pa will continue on t + 1, endogenously at
least, given that it was active on t. Note that if the agent is paired with Pa In period t,
that implies that the contract was not terminated at the end of the previous period, which
is why the probability is conditioned on τa > t− 1. As a result the probably of continuation
is γft(It).

The interaction between Pa and the agent will be partly private. On the one hand, Pb will
learn the realised termination time τ and the contract offered by Pb. On the other, she will
observe neither the realised production {yat }τt=0, nor the agent’s reports to Pa’s mechanism5.
However, Pa will be assumed to be able to credible convey additional information to Pb by
committing ex ante on a signal s ∈ S with distribution gt(s | Iτ ).

Both principals can fully commit on their contracts, and the agent is not subject to
limited liability. To avoid unnecessary complexity it will be assumed that even though the
agent cannot commit on not leaving Pa’s contract on t < τ , if he chooses to do so the latter
can make sure that he will not receive an offer from Pb

6 . Let the history of realised types
up to t be denoted by θt = {θ0, .., θt}. It is ease to show that the revelation principle applies
in this setting, thus let θ̂t denote the history of the agent’s reported types. At time zero Pa

offers to the agent the following contract

{
wat (θ̂

t, yt), e
a
t (θ̂

t), ft(θ̂
t), gt(s | θ̂t)

}∞
t=0
,

which specifies his compensation, the recommended effort level, the contract’s termination
time, and the signal’s conditional distribution, respectively. After the agent’s employment
under Pa has being terminated, and only if he accepted her proposal, Pb offers contract

{wb(θ̂τ+1, τ, s, y
b
t ), e

b(θ̂τ+1, τ, s) }.

where θ̂τ+1 is the agent’s report on his valuation of Pb’s product. In this case, it is without
loss to consider a static contract, because θt does not fluctuate for t ≥ τ + 1. Moreover,
this depends on the termination time τ and the realised signal s because both affect Pb’s
posterior.

5Even if Pa’s mechanism was private, it would be without loss to focus on equilibria where she credible
reveals it to Pb.

6Alternatively, the contract would also have to specify the information provided on such an even, even
though it would never happen on path. Pa would find it optimal to always allocate some non-zero probability
of revealing a high type, which is the agent’s least preferred signal, so that she can punish early departures.
This would also increase the agent’s outside option, which would decreases Pa payoff by a fixed constant.
However, it would not alternate her optimal contract, as long as this was implementable.
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2.3.1 Payoff Equivalence and Implementation

In this subsection, first the agent’s payoff under Pb is derived. Second, a representation of
Pa’s payoff is obtained that does not depend on wages. Third, a generic sufficient condition
for implementation is provided. Forth, it is shown how the part of Pa’s payoff that is related
to the agent’s subsequent contract with Pb can be reformulated so that the information design
problem of Pa can be approach in a way similar to the literature on Bayesian Persuasion.

The agent’s post-contractual payoff

Pb is facing a simple static mechanism design problem with binary types. For realised
termination time t let βst = Pr(θt+1 = θH | τ = t , s) denote her posterior belief on θt+1, which
is connected to her posterior on θt according to

βst = ρH Pr(θt = θH | τ = t , s) + ρL Pr(θt = θL | τ = t , s).

Pb payoff maximisation problem is quite standard and its treatment can be found in the
appendix. The following lemma characterises the agent’s continuation payoff, which is the
only result relevant to Pb’s problem. To simplify its statement define the following two
parameters

κ =

(
θL
θH

)1+ 1
ϵ

and K =
1− κ

1− δ

(b · θL)1+ϵ

1 + 1
ϵ

.

Lemma 2.3.1. The total discounted payoff of a low agent type under Pb is always equal to
zero, while that of the high one is equal to

B(βst ) = K ·
(

1− βst
1− βst κ

)1+ϵ

(2.3.1)

which is a strictly decreasing function.

Proof. In Appendix B.3.

The continuation payoff of a low agent type is always equal to zero, as he captures no
rents. In contrast, the high type’s payoff is positive, but decreasing and for βst = 1 it actually
becomes zero. Intuitively, the more likely a high type becomes, the less a distortion on the
low type’s production affects Pb’s expected payoff. Hence it becomes cheaper for Pb to use
this distortion to incentivise the truthful reporting of θH .
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Payoff Equivalence

The revelation principle applies for Pa’s mechanism design problem. Moreover, using the
reported type, she can construct a perfect estimate of the agent’s choice of effort. Hence, any
misalignment between this estimate and the recommended effort can be punished strongly
enough for the agent to have to mask it. As a result, a history of reports θ̂t implies choice
of effort

êat (θ̂
t, θt) = eat (θ̂

t) · θ̂t
θt

Hereafter, yt will be dropped from the on path wage w(θ̂t, yt), because this will not depend
on it. Let the probability that the contract will endogenously continue up to t′, conditional
on not have being endogenously terminated at t− 1, and the history θt′ be denoted by

f t
′

t (θ
t′) =

{
1 , for t′ < t

Pr(τa > t′ | τa > t− 1 , θt
′
) , for t′ ≥ t

A special case of this is t′ = t, where it becomes the probability of endogenous continuation
ft(θ

t). Using the above notation Pa’s payoff maximisation problem becomes

max
w,e,f,g

Eθ

[
∞∑
t=0

f t−1
0 (θt−1)γtδt

(
θt e

a
t (θ

t)− wat (θ
t)
)]

subject to IR(θt) and IC(θt),

(P)

where IR(θt) and IC(θt) refer to the individual rationality and incentive compatibility con-
strains, respectively, of a θt agent type. Note that continuing up to period t only depends
on history θt+1, as the decision to not terminate the contract is taken at the end of each
period, with the last relevant devision being in period t.

To make notation more compact three special cases of θt will be defined. First, let
θtL = {θt−1, θL} and θtH = {θt−1, θH} denote a history such that the buyer’s type in period t

is low and high, respectively. In addition, for given generic θt−1 and t′ ≥ t let

Lt
′

t = {θt−1, θL, .., θL} , (2.3.2)

denote a history such that the buyer’s type has been low for all periods after, and including,
period t. Also, whenever t = 0 simply write Lt′ .

The proof of the subsequent proposition follows closely Battaglini (2005) and it is almost
identical to that of Proposition 2.1.1, demonstrates that the information rents captured by
a period t high type θtH are closely related to the histories {Lt′t }t′>t. In particular, when the
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implementation constrains, which will be provided shortly, do not bind the information rents
captured by a period t high type are given by

UH
t (θt−1) =

∞∑
t′=t

f t
′−1
t (Lt

′−1
t )[γδ(φH − φL)]

t′−t

{
eat (L

t′
t )

1+ 1
ϵ

1 + 1
ϵ

(1− κ)

+ [1− ft′(L
t′

t )γ](ρH − ρL)δEg
[
B(βst′) |Lt

′

t

])}

Then (P) simplifies to the following problem, which only depends on policies (eat , ft, gt) and
not on the price pat , paid by the agent to Pa.

Proposition 2.3.1. Suppose that a solution of

max
e,f,g

{
Eθ

[ ∞∑
t=0

f t−1
0 (θt−1)γtδt

(
θte

a
t (θ

t)− eat (θ
t)1+

1
ϵ

1 + 1
ϵ

+ [1− ft(θ
t)γ]δ Pr(θt+1 = θH | τ = t, θt)Eg

[
B(βst ) | θt

])]

−µ0

∞∑
t=0

f t−1
0 (Lt−1)γtδt(φH−φL)

t

[
eat (L

t)1+
1
ϵ

1 + 1
ϵ

(1− κ)+δ[1−ft(L
t)](ρH−ρL)Eg

[
B(βst ) |Lt

])] }
(P ′)

satisfies

eat (θ
t
H)

1+ 1
ϵ

1 + 1
ϵ

(
1

κ
− 1

)
−

eat (θ
t
L)

1+ 1
ϵ

1 + 1
ϵ

(1− κ) + (φH − φL)γδ

[
ft(θ

t
H)U

H
t+1(θ

t
H)− ft(θ

t
L)U

H
t+1(θ

t
L)

]
≥ (ρH − ρL)δ

[[
1− ft(θ

t
L)γ
]
Eg
[
B(βst ) | θtL

]
−
[
1− ft(θ

t
H)γ

]
Eg
[
B(βst ) | θtH

]]
(Pc)

Then those policies are also a solution to (P) and there exists a contract that implements
them.

Proof. In Appendix B.3.

The above representation is obtain by ignoring the downward slopping IC constrains,
i.e. IC(θt−1, θL), of (P) and showing that in this case the upward slopping ones, that is
IC(θt−1, θH), bind. This allow the derivation of an expression for the period 0 high type’s
wages that only depends on the policies (e, τ, g). The same can be done for the period 0 low
type by using its individual rationality constrains. Substituting those in Pa’s payoff gives
(P ′). As a result, whenever its solution satisfies the ignored constrains this is also a solution

66



to (P). In order to check that the IC(θt−1, θL) constrains are indeed satisfied the derived
expression for the wages is substituted, which allows me to obtain (Pc).

This approach is similar to that used in Battaglini (2005) and most of the literature of
Dynamic Mechanism Design with continuous types. If the agent’s post-contractual payoff
was a constant or zero, then the solution of (P ′) would always be implementable. However,
this will no generically be true here because the high type has an additional incentive to
pretend to be a low type, as the signal of the latter will generically result in lower posteriors,
which is beneficial to her.

Nevertheless, we will show that when the production technology of Pa is sufficiently
more efficient from that of Pb then the implementation constrains will be satisfied. However,
our sufficient condition for implementation will be relevant only for the following familly of
endogenous termination policies.

Definition 2. Call a termination policy non-decreasing if for every t ≥ 0 and realised paths
θt and θ̃t :

θt′ ≥ θ̃t′ for all t′ ≤ t ⇒ ft(θ
t) ≥ ft(θ̃

t) .

That is a termination policy is non-decreasing if whenever a history θt is weakly better
than an alternative one θ̃t, on each t′ ≤ t, the probability of continuation of the former is
higher than that of the latter on all periods up to t. This simple requires that an agent with
’better’ history of types is allocated by the contract a higher probability of continuation.

Corollary 2.3.1 (Point-wise optimal effort). The point-wise optimal level of effort is

e∗t (θ
t) =

{
(θt)

ϵ , if θt ̸= Lt

(θL)
ϵ/ξt , if θt = Lt

, where ξt = 1 +
µ0

1− µ0

(
φH − φL
1− φL

)t(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
(2.3.3)

In addition, if either (i) termination is only exogenous, or (ii) the endogenous termination
policy is non-decreasing, then a sufficient condition for the point-wise optimal level of effort
to be implementable under any information provision policy is that

θ1+ϵH

1 + 1
ϵ

(
θ
1+ 1

ϵ
H

θ
1+ 1

ϵ
L

− 1

)
− θ1+ϵL

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
≥ δ

1− δ
(ρH − ρL)(1− κ)

(b θL)
1+ϵ

1 + 1
ϵ

(2.3.4)

When ϵ = 1 the above condition simplifies to

1− κ

κ
≥ δ

1− δ
· (ρH − ρL) · b2θ2L (2.3.5)

which is always satisfied for b small enough.
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Proof. In Appendix B.3.

Most of the main results of this specification will be presented for the ϵ = 1 case, which
allows us to derive then in closed-form. As a result, the implementation condition that will
be used for the rest of the analysis will be (2.3.5).

Information Provision

This subsection provides some results on the information provision problem of Pa. It will
be shown that for the general case it is difficult to write its solution in some ease and
meaningful way, however a characterisation of the optimal signal will be provided. More
descriptive solution will be derived in the next subsections, where some interesting sub-cases
of the model are considered.

Pa’s optimal signal will be characterised for any given distribution of the termination
time τ , f = {ft}∞t=0, and on each of its possible realisation t ∈ {0, ..,∞}. Hence considering
only the part of (P ′) that is affected by the signal s on realised τ = t gives

max
gt

{∑
θt

[
Pr(θt) Pr(τ = t | θt)

∑
s

Pr(θt+1 = θH | τ = t, θt)B(βst )gt(s | θt)
]

− δt+1µ0 Pr(τ = t |Lt)(φH − φL)
t(ρH − ρL)

∑
s

B(βst )gt(s |Lt)
}

(G)

The first line of (G) represents the expected information rents from the agent’s contract with
Pb. Those are captured by Pa through the agent’s individual rationality constrains. On the
other hand, the second line corresponds to the rents captured by the agent in Pa’s contract.
Those are due to the fact that whenever the signal s is informative high types have an extra
incentive to pretend to be low types, as their continuation payoff B(β) is decreasing in their
reputation.

Next, (G) is transformed into an equivalent problem that will only take as inputs two
posterior beliefs on θt, for an agent whose contract was terminated on t. Introduce the
following notation

ηt = Pr(θt = θH | τ = t), ηst = Pr(θt = θH | s, τ = t)

λt = Pr(θt = Lt | τ = t), λst = Pr(θt = Lt | s, τ = t)

The interim posterior beliefs on the first column only use the information provided by the
termination time τ , and those will be the inputs of the equivalent transformation of (G).
In contrast, the posteriors on the second column also depend on the signal s; ηst is the
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posterior on θt = θH , while λst on θt = Lt. Note that the first event only depends on the
contemporaneous θt, while the second on the whole history θt. Moreover, Pb’s posterior on
θτ+1 and θτ are connected according to

βst = ρHη
s
t + ρL(1− ηst ).

In the subsequent analysis the underline choice variable will always be the distribution of
ηst , because this is the one influenced by the signal s, however to facilitate the exposition in
many case the results will be presented in terms of βst . Finally, abusing notation let gt(s)
denote the probability of sending signal s after a contract termination at time τ = t, that is

gt(s) =
∑
θt

Pr(θt | τ = t)gt(s | θt)

The rest of the analysis will be based on the following transformation.

Lemma 2.3.2. Pa’s information provision problem in period t equivalently becomes

max
gt

Egt [Jt(ηst , λst)] (G)

where its point-wise value Jt(ηst , λst) is

Jt(η
s
t , λ

s
t) = B(βst )

(
βst − ψtλ

s
t

)
, and ψt =

µ0

1− µ0

(
φH − φL
1− φL

)t
(ρH − ρL) . (2.3.6)

Proof. Identical to that of Lemma 2.1.2

Similarly to the previous sections, the information provision problem of Pa is reformulated
by considering (ηst , λ

s
t) as the underline random variables, instead of the signal s, with joint

distribution g̃t. Hence, Pa equivalently solves

max
g̃t

Eg̃t
[
Jt(η, λ)

]
s.t. Eg̃t [η] = ηt , Eg̃t [λ] = λt ,

η, λ ∈ [0, 1] , and η + λ ≤ 1.
(G ′

t)

The constrains ensure that the joint distribution g̃t(η, λ) is Bayes plausible.
The domain of Jt(η, λ) is a right-angled triangle, of which each of its legs has length one.

A representative graph of it on the sides where (η + λ = 1) and (λ = 0) is given in plot
(2.2b). Those two sides are connected by straight lines, as Jt(η, λ) is linear in λ. Note that
in plot (2.2b) the functional form of Jt on both sides is initially increasing and concave, and
subsequently changes to decreasing and convex. The next lemma will show that this is a
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(a) Domain (b) Corner values

Figure 2.2: The domain and the corner values of Jt(η, λ).

generic representation of those two sides, and will provide a characterisation of Jt(η, λ) on
the rest of its domain. Define functions

β∗(ψ) =
1

2κ

[
2 + ϵ(1− κ)−

√
1− κ

√
4(1 + ϵ) + ϵ2(1− κ)− ψ4κ(1 + ϵ)

]
β∗∗(ψ) = 1− ϵ(1− κ)(1− ψ)

2(1− κψ) + (1− κ)ϵ

for generic input ψ. It will be convenient to define Jt(η, λ) as a function of of η only on the
two aforementioned boundaries. Hence, for i ∈ {f, t} let

J̄i(η) = ζiB(β)(β −Ψi) , where
{

ζf = 1 Ψf = 0

ζt = 1 + ψt
ρH−ρL

Ψt = ψtρH
ρH−ρL+ψt

and note that β = ηρH + (1 − η)ρL as those two posteriors are always connecting through
this linear relationship. Lemma 2.3.3 shows that J̄f (η) represents the (λ = 0) boundary,
whereas J̄t(η) the (η + λ = 1).

Lemma 2.3.3. Jt(η, λ) is neither concave, nor convex on any of the interior points of its
domain.

• On the boundary (η = 0) it is linear and decreasing on λ

• On the boundary (λ = 0) it satisfies J̄f (η) = Jt(η, 0)

• On the boundary (η + λ = 1) it satisfies J̄t(η) = Jt(η, 1− η)
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Moreover, Ji(η) is increasing (concave) for

η ≤ β∗(Ψi)− ρL
ρH − ρL

(
η ≤ β∗∗(Ψi)− ρL

ρH − ρL

)
, (2.3.7)

and decreasing (convex) otherwise. Finally, 0 < β∗(Ψi) ≤ β∗∗(Ψi) < 1.

Proof. In Appendix B.3.

To solve Pa’s information provision problem, first the concave closure of Jt(η, λ) needs
to be characterised. This will be denoted by Jt(η, λ) and defined as

Jt(η, λ) = sup{z | (η, λ, z) ∈ co(Jt)},

where co(Jt) denotes the convex hull of the graph of Jt. In addition, for i ∈ {f, t} let J̄i(η)
denote the value of Jt(η, λ) on the boundaries (λ = 0) and (η+λ = 1), respectively, which is
also the concave closure of the corresponding J̄i(η). The following proposition characterises
Jt(η, λ). To facilitate its exposition, a new point needs to be introduced. For i ∈ {f, t} and
Ψi <

θL
θH

< ρH , let η̂i be the unique solution of

J̄i(η̂i) + J̄ ′
i(η̂i)(1− η̂i) = 0 , (2.3.8)

if this exists, and zero otherwise. The functional form of η̂i can be found in the proof of the
following proposition in, but it is not copied here, due to its size.

Proposition 2.3.2. For any interior point Jt(η, λ) > Jt(η, λ). On the boundary (η = 0):
Jt = Jt. On the boundaries (η + λ = 1) and (λ = 0):

• If ρH ≤ b∗∗(Ψi), then Ji = Ji

• Otherwise, there exists η̂i ∈ (0, 1) such that

J̄i(η) =

{
Ji(η) , for η ≤ η̂i

Ji(η̂i) + J ′
i(η̂i)(η − η̂i) , for η ≥ η̂i

. (2.3.9)

where η̂i = (β̂i − ρL)/(ρH − ρL) and β̂i ∈
(
β∗(Ψi), β

∗∗(Ψi)
)
. In addition, for ϵ = 1

β̂i = 1− (1− κ)2(ρH −Ψi)

2− (3ρH +Ψi)κ+ (ρH −Ψi + 2ρHΨi)κ2
. (2.3.10)
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Proof. The statement for the interior points follows from noting that Jt is never concave on
any of them. The one for the boundary (η = 0) follows because the function is linear with
respect to λ.

Finally, for the boundaries (λ = 0) and (η+λ = 1) note that if ρH ≤ β∗∗(Ψi), then Ji(η)
does not have a convex part. Otherwise, it is convex on η > β∗∗(Ψi)−ρL

ρH−ρL
. Hence, there is a

unique line that connects η = 1 with some η̂i between the maximum of Ji and the point on
which its concavity changes. This is defined as the solution of

Ji(1) = Ji(η̂i) + J ′
i(η̂i)(1− η̂i) . (2.3.11)

For ϵ = 1, η̂i can be given in closed form. To solve this let J̃i(β) = Ji[(β − ρL)/(ρH − ρL)],
that is define a function that has β as the underline variable instead of η. Then the graph
of J̃i(β) on [ρL, ρH ] is equal to that of Ji(η) on [0, 1]. Hence, solve

J̃i(ρH) = J̃i(β̂i) + J̃ ′
i(β̂i)(ρH − β̂i) , (2.3.12)

which can be solved to obtain (2.3.10).

Therefore, we are ready to state our first result.

Corollary 2.3.2. Suppose that (ηt, λt) are interior points, then there is always information
provision. On the boundary (η = 0) no information provision is optimal. On the boundaries
(λ = 0) and (η + λ = 1)

• If ρH ≤ b∗∗(Ψi), no information provision is optimal

• Otherwise if ηt > η̂i, then any optimal signal must randomise between η̂i and 1.

2.3.2 Exogenous Termination

This section considers two distinct specifications. The first one solves the information provi-
sion problem of Pa under the assumption that γ = 0 and finds a simple sufficient condition
for implementation. Imposing γ = 0 restricts the probability of the contract to continue
after period 0 to zero. This is equivalent to considering a situation where Pa is exogenously
restricted to offer contracts of fix time length, for example when the task to be completed
by the agent is not recurring.

The second specification that will be considered will assume that γ > 0, but will restrict
Pa to offering tenure contracts. That is in this case the contract will only be terminated
because of the exogenous τγ. For the sake of the exposition assume that ϵ = 1, for both of
the above specifications.

72



Fix term contracts

Here we solve (G ′
t) for the case where γ = 0. In particular, we only need to solve it for t = 0,

since the contract will always be terminated at the end of period 0. Thus, it has to be that
η + λ = 1, because θ0 = θH and θ0 = θL are the only two possible histories in period 0.
Hence

J0(η, λ) = J0(η, 1− η) = J̄0(η)

Hence hereafter we will simple write J0(η). In addition, some algebra gives that ψ0 = µ0ρH .
Hence, substituting in the expression of J̄0(η) gives that

J0(η) = B(β) · β − µ0ρH
1− µ0

As a result, (G ′
t) reduces to

max
g̃0

Eg̃0
[
J0(η)

]
s.t. Eg̃0 [η] = µ0 , η ∈ [0, 1]. (2.3.13)

In particular, the optimal signal needs to satisfy Eg̃0
[
J0(η)

]
= J0(µ0), where J0 is the concave

closure of J0. Hence the concave closure of J0(η) needs to be characterised, in order to solve
(2.3.13). However, this has already be done in Proposition 2.3.2. Let β∗∗

0 = β∗∗(µ0ρH) and
remember that we have shown that if ρH ≤ β∗∗

0 , then J0 = J0. Otherwise, there exists
η̂0 = (β̂0 − ρL)/(ρH − ρL) such that

J0(η) =

{
J0(η) , for η ≤ η̂0

J0(η̂i) + J ′
0(η̂0)(η − η̂0) , for η ≥ η̂0

, (2.3.14)

β̂0 = 1− (1− κ)2(1− µ0)ρH
2− (3 + µ0)ρHκ+ (1− µ0 + 2µ0ρH)ρHκ2

. (2.3.15)

Pb’s posterior on θ0 is not affected by the termination time, because this is not correlated
with the agent’s type. Hence, the optimal signal structure has to satisfy Eg̃0 [J0(η)] = J0(µ0),
which implies the following necessary and sufficient condition for information provision to
be optimal in (2.3.13)

ρH ≥ β∗∗
0 and µ0(ρH − ρL) + ρL ≥ β̂0 (2.3.16)

The first inequality ensures that the convex part of J0(η) exists, and the second that µ0 is
big enough for the prior on θ1 to be on this convex part.

Proposition 2.3.3 (Fixed Term Contracts). An informative signal strictly solves (2.3.13)
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Figure 2.3: J0(η)

if and only if

ρH > 1− (1− κ)(1− µ0ρH)

2(1− κµ0ρH) + (1− κ)
and

µ0(ρH − ρL) + ρL ≥ 1− (1− κ)2(1− µ0)ρH
2− (3 + µ0)ρHκ+ (1− µ0 + 2µ0ρH)ρHκ2

(2.3.17)

The higher ρH is the less binding the first line of (2.3.17) becomes. Also, suppose that the
first line is satisfied, then the higher either ρH , or ρL is, the less the second line of (2.3.17)
binds. When this is satisfied the optimal signal s ∈ {sL, sH} has distribution

g0(sL | θL) = 1 and g0(sL | θH) =
1− µ0

µ0

η̂0
1− η̂0

. (2.3.18)

Proof of Proposition 2.3.3. Condition (2.3.17) follows by substituting the functional
forms of β∗∗

0 and β̂0 in (2.3.16). Next, the statements on its dependence on ρL and ρH is
proven. For the first line re-write inequality as

ρH [2(1− κµ0ρH) + (1− κ)] ≥ 2(1− κµ0ρH) + (1− κ)− (1− κ)(1− µ0ρH).

Differentiate both sides with respect to ρH , and subtract the derivative of the right hand
side from that of the left one to obtain

2(1− κµ0ρH) + (1− κ)− 2κµ0ρH + 2κµ0 − µ0(1− κ) =

2(1− κµ0ρH) + (1− µ0)(1− κ) + 2κµ0(1− ρH) ≥ 0.
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As a result the more ρH increases the less binding this inequality becomes. To prove the
same for the second line calculate

∂β̂0
∂ρH

=
−(1− κ)2(1− µ0)2(1− µ0ρ

2
Hκ

2)

2− (3 + µ0)ρHκ+ (1− µ0 + 2µ0ρH)ρHκ2

which is negative for ρH > β∗∗
0 . This is because in this case β̂0 < β∗∗

0 < 1, which implies that
the denominator above have to be positive. Hence if ρH > β̂∗∗

0 , as ρH increases the left hand
side increasing and the right hand side decreases.

Finally, the optimal signal is obtained by the following argumentation. Suppose that
ρH ≤ β∗∗

0 , then J0(η) is concave for all η ∈ [0, 1], hence an uninformative signal is optimal.
Instead suppose that ρH > β∗∗

0 , then the convex hull of J in linear on [η̂0, 1] and strictly
concave everywhere else. Hence if µ0 ≤ η̂0, then no information provision is still optimal.
If µ0 > η̂0 then the optimal signal randomises between posteriors η̂0 and 1. Let sH be the
signal that fully reveals the high type. Then the probability of sending sL is obtained by
solving

η̂0 =
µ0g0(sL | θH)

µ0g0(sL|θH) + 1− µ0

. (2.3.19)

To understand this result note that B(β), which represents the agent’s information rents
from his contract with Pb, is convex7. This provides an incentive towards information pro-
vision for Pa, because she captures the agent’s continuation value through his individual
rationality constrain. However, she also has to pay information rents to the high type that
are proportional to his continuation value, which create an incentive towards the opposite di-
rection. For high µ0 the information rents that Pa pays are low enough for the first incentive
to dominate, while the opposite is true for low µ0.

The optimal signal, under information provision, has a realisation sH that reveals the
high type, and one sL that is always sent for the low type, but also some times for the high
type. However, the proposed optimal signal may not always be implementable, as under
the point-wise optimal level of effort the implementation constrain (B.3.4) needs to hold.
However, this is implied by (2.3.5), hence our solution is relevant for at least a subset of
parameters.

A case of special interest is the following one.

Example 2.3.1 (Privacy). Suppose that ρL = 0 and ρH = 1. Then no information provision
is optimal and implementable.

7Even though depending on the ϵ this may not always be true for all its domain, it is still a generic result
that B(b) is convex for high b, which suffices to obtain the kind of results provided above.
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Proof. For (ρL, ρH) = (0, 1) the second line of (2.3.17), which is a necessary condition for
information provision, is satisfied, while the first becomes

µ0 ≥ 1− (1− κ)2(1− µ0)

2− (3 + µ0)κ+ (1− µ0 + 2µ0)κ2
⇔ (1− κ)2

2− (3 + µ0)κ+ (1 + µ0)κ2
≥ 1

If the denominator is negative, then this cannot hold. If it is positive, then

(1− κ)2

2− (3 + µ0)κ+ (1 + µ0)κ2
<

(1− κ)2

2− (3 + µ0)κ+ (1 + µ0)κ
=

(1− κ)2

2(1− κ)
=

1− κ

2
< 1,

hence again the above inequality cannot hold.

Proposition 2.3.3 gives that the necessary and sufficient condition for information pro-
vision (2.3.17) binds less as ρH increases. Hence, if privacy is optimal for (ρL, ρH) = (0, 1),
then the same is true for any ρH < 1 and ρL = 0. Hence, in order to break the no information
provision result, as identified in Calzolari and Pavan (2006)8, it has to be that an initially
low type has at least some positive probability of being a high type under Pb.

Example 2.3.2 (Information Provision). Assume that ρL > 1/2 and κ ⇒ 0, then informa-
tion provision is optimal and implementable.

Proof. As in the proof of the previous example ρH = 1 gives that the second line of (2.3.17)
is satisfied, while the first becomes

ρL ≥ 1− (1− κ)2

2− (3 + µ0)κ+ (1 + µ0)κ2
,

the right hand side of which goes to 1/2 as κ ⇒ 0. Moreover, it has already being argued,
using (2.3.5), that for κ⇒ 0 information provision is implementable.

Tenure Contracts

Skill Accomulation
The first part of this subsection assumes that φH = 1, that is it assumes that the agent

can only become better as time passes. Define recursively the posterior belief of a type that
is employed In period t as

µt = µt−1(φH − φL) + φL ⇒ µt = µ0(φH − φL)
t + φL

1− (φH − φL)
t

1− (φH − φL)

8The reason why the result does not hold in this setting is because the agent’s type is not perfectly
correlated across employments. The cited paper identifies a few other reasons.
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and note that µt+1 > µt. As the termination time is not correlated with the agent’s type,
the posterior reputation of an agent that is terminated on t + 1 is ηt = µt. To solve Pa

information provision problem note that for an agent that is terminated on t + 1 there are
only two possible events, either θt = θH , or θt = Lt. As a result it has to be that η + λ = 1.
Hence, similarly to before

J0(η, λ) = J0(η, 1− η) = J̄0(η)

In addition, algebra identical to that of the previous section shows that φH = 1 implies
Ψt = µ0ρH . Hence, substituting in the expression of J̄t(η) gives that

Jt(η) = J0(η) = B(b) · b− µ0ρH
1− µ0

Hence, Pa information provision problem becomes

max
g̃t

Eg̃t
[
J0(η)

]
s.t. E[η] = µt , η ∈ [0, 1]. (2.3.20)

In particular, the optimal signal needs to satisfy Eg̃t
[
J0(η)

]
= J0(µt). This is identical to

Pa’s problem under fixed term contracts, however now instead of µ0, the restriction on the
distribution of posteriors is that Eg̃t [η] = µt. Hence, even if µ0 is such that no information
provision is optimal In period 0, it is still possible for this result to be reversed as time
progresses.

Proposition 2.3.4 (Skill Accomulation). An informative signal strictly solves (2.3.20) if
and only if

µt(ρH − ρL) + ρL ≥ 1− (1− κ)2(1− µ0)ρH
2− (3 + µ0)ρHκ+ (1− µ0 + 2µ0ρH)ρHκ2

and ρH > 1− ϵ(1− κ)(1− ψ)

2(1− κψ) + (1− κ)ϵ

(2.3.21)

The higher ρH is the less binding the second line of (2.3.21) becomes. Also, suppose that
the second line is satisfied, then the higher either ρH , ρL, or µt is, the less the first line of
(2.3.21) binds. When this is satisfied the optimal signal s ∈ {sL, sH} has distribution

gt(sL | θL) = 1 and gt(sL | θH) =
1− µt
µt

η̂0
1− η̂0

. (2.3.22)

Proof. The second line of (2.3.21) and the right hand side of its first line follows from the
functional form of J0, hence they are not affected by the evolution of beliefs over time. In
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contrast, the passage of time affects the left hand side of the first line, which represent the
prior belief of a type that is terminated on t + 1. Similarly, η̂0 is only a function of the
functional form of J0 so it is not affected by µt.

Long Contracts
Next drop the assumption that φH = 1. That is assume that 0 ≤ φL ≤ φH < 1, but only

consider the information provision problem of Pa as t → ∞. In this case Pb’s posterior on
an buyer whose contract has not been terminated in period t is

lim
t→∞

µt = µ∞ =
φL

1− (φH − φL)
,

To state the condition for information provision on the limit, note that Proposition 2.3.2 has
already defined η̂f =

β̂f−ρL
ρH−ρL

and

β̂f = 1− (1− κ)2ρH
2− 3ρHκ+ ρHκ2

.

Proposition 2.3.5 (Long Contracts). Information provision is strictly optimal on the steady
state of (G ′

t), under tenure contracts, if and only if

µ∞(ρH − ρL) + ρL ≥ 1− (1− κ)2ρH
2− 3ρHκ+ ρHκ2

and ρH >
2

3− κ

(2.3.23)

The higher ρH is the less binding the second line of (2.3.23) becomes. Also, suppose that
the second line is satisfied, then the higher either ρH , ρL, or µ∞ is, the less the first line of
(2.3.23) binds. When this is satisfied the optimal signal s ∈ {sL, sH} has distribution

g∞(sL | θL) = 1 and g∞(sL | θH) =
1− µ∞

µ∞

η̂∞
1− η̂∞

. (2.3.24)

Proof. As already stated J∞ is the limit of Jt for t → ∞. Hence, the relevant condition
for information provision can be obtained by substituting the points already derived in the
previous section. In particular, the necessary and sufficient condition for J∞ to have a convex
part is ρH > β∗∗(0), which gives the second line of (2.3.23). When this is satisfied for the
prior to be big enough to be on the linear part it has to be that µ∞(ρH − ρL) + ρL ≥ β̂f ,
where the functional form of β̂f is given in Proposition 2.3.2.

All of the statement regarding (2.3.23) and when it is more binding follow from simple
differentiation. The statement on the optimal signal under information provision follows
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noting that this has to randomise between η̂f and one, while the expected value of the
posterior needs to remain µ∞.

Finally, note that because γ > 0 is a non-decreasing termination policy it follows that
(2.3.5) is a sufficient condition for implementation. Moreover, this always holds for κ ⇒ 0,
which turns (2.3.23) into

µ∞(ρH − ρL) + ρL ≥ 1− ρH
2

and ρH >
2

3
(2.3.25)

Example 2.3.3 (Information Provision). Let κ→ 0, ρH → 1, then information provision is
optimal on the steady state, and any solution is implementable on all the path, if and only
if

µ∞(1− ρL) + ρL ≥ 1

2
,

which is satisfied for ρL ≥ 1/2, and not satisfied for ρL = φL → 0.

2.4 Endogenous termination
The model cosidered here is that introduced in Section 2.3. Here, we allow Pa to commit
in advance on some probability of terminating a contract after the realisation of a certain
history of reported types. To make the results more tractable assume throughout this section
that φH = 1, which as argued before in the beginning of the subsection on tenure contracts
implies that Jt(η, λ) = J0(η). Moreover, ξt = ξ0. To maintain the notation as light as
possible, let

uH =
θ1+ϵH

1 + ϵ
and ul =

θ1+ϵL

ξϵ0(1 + ϵ)
, (2.4.1)

represent the point-wise optimal flow payoffs of Pa from a high and low type, respectively.
Note that once a low type turns high it remains so, hence those two are the only relevant
possibilities in terms of flow payoffs. Moreover, let

ft = Pr(τa > t+ 1 | τa > t) and xt(θ
t) = Pr(τa > t+ 1 | τa > t, θt) (2.4.2)

As a result, once the point-wise optimal effort and signal have being substituted in (P ′), this
obtain the following recursive representation

Vt(µt) = max
x(θt)∈[0,1]

µtuH + (1− µt)ul + δγftVt+1(µt+1) + δ(1− γft)J0(ηt), (2.4.3)
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where note that the past history of a high type does not matter, while there is only one history
on which the agent is a low type in t, that is Lt. Hence, it is without loss to condition xt(θt)
only on the current type and time, hence write xHt and xlt and note that

ft = µtx
H
t + (1− µt)x

l
t , ηt =

µt(1− γxHt )

1− γft
, µt+1 =

µtx
H
t + (1− µt)x

l
tφL

ft
.

The treatment of the above problem is quite tedious and can be found in Section B.4 . To
reduce the number of case that need to be considered the following assumption is imposed.

Assumption 1. J0 is twice continuously differentiable and concave. Both uH and ul are
positive. Also,

uH > (1− δ)J0(1) and uH
1− δγ

+
δ(1− γ)

1− δγ
J0(1) > J0(0) + J ′

0(0). (2.4.4)

The main result which characterises the solution of Pa optimal stopping problem is given
below.

Proposition 2.4.1. Continuing a high type, with probability one, is always strictly optimal.
Stopping a low type, with probability one, for every µt ∈ [0, 1] is strictly suboptimal if

φL uH
1− δγ

+ (1− φL)ul −
1− δ

1− δγ

[
1− δγ(1− φL)

]
J0(1) +

[
1− δ(1− φL)

]
J ′

0(1) > 0 (2.4.5)

is satisfied. In contrast, if it holds in the reversed direction and

φL uH
1− δγ

+(1−φL)ul+δ
[
(1−γ)1− δγ(1− φL)

1− δγ
+γ(1−φL)

]
J0(1)−δ(1−φL)J ′

0(1) < J0(0)

(2.4.6)
is satisfied, then stopping a low type, with probability one, is optimal for all µt ∈ [0, 1].
Otherwise, there exists µ̃ such that stopping a low type, with probability one, is optimal if
and only if µt > µ̃.

Whenever the low type is not stopped, with probability one, the reputation of both a
terminated ηt and non-terminated µt+1 agent increases over time.

Example 2.4.1. Let ρL = µ0ρH and ρH = 1. Then for uL and φL small enough the optimal
contract has the low type to be fired with probability one, one for some interior µ̃.

Proof. Under the above choice of parameters J0(0) = J0(1) = 0 and J ′
0(1) < 0. As a result
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neither of the above two inequalities hold when

φL uH
1− δγ

+ (1− φL)ul < −J ′
0(1)[1− δ(1− φL)]

φL uH
1− δγ

+ (1− φL)ul > δ(1− φL)J ′
0(1)

The second inequality always hold. The first inequality holds if the left hand side is small
enough, which is true when φL and ul and small enough.
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Chapter 3

The Effect of Market Conditions and
Career Concerns in the Fund Industry

A continuum of potential investors allocate funds in two consecutive periods between a
manager and a market index. The manager’s alpha, defined as her ability to generate
idiosyncratic returns, is her private information and it is either high or low. In each period,
the manager receives a private signal on the potential performance of her alpha, and she also
obtains some public news on the market’s condition. The investors observe her decision to
either follow a market neutral strategy, or an index tracking one. It is shown that the latter
always results in a loss on reputation, which is also reflected on its fund flows. This loss is
smaller in bull markets, when investors expect more managers to use high beta strategies.
As a result, a manager’s performance in bull market is less informative about her ability than
in bear markets, because a high beta strategy does not rely on it. We empirically verify that
flows of funds that follow high beta strategies are less responsive to the fund’s performance
from those that follow market neutral strategies.

3.1 Introduction
In recent years, there has been a growing concern in the financial markets about the role
of various financial intermediaries such as mutual funds and hedge funds, as the proportion
of the institutional ownership of equities has sharply increased and the Global Assets under
Management are estimated to exceed $100 trillion by 20201. The managers of these funds
are competing with each other, but also with alternative investment vehicles such as market
index funds or ETFs, to attract new investors. One of the ways in which they differenti-

1This is according to a research by PWC.
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ate themselves is through their investment strategy. In particular, managers often signal
their confidence by choosing strategies that are highly idiosyncratic2, and importantly their
incentive to pick these strategies fluctuates with the general market conditions.

Our first contribution is to build a model in which a manager’s investment decision
provides an imperfect signal on her ability to generate idiosyncratic returns. To be more
precise, the manager will skew her investment choice towards a strategy with low exposure
to the market in order to signal her confidence. A highly skilled manager is more likely to
invest in her idiosyncratic project, since this will deliver on average superior returns. The
investors cannot observe directly the manager’s ability, but because of the above they will
associate an idiosyncratic strategy with a competent manager; in turn, this will endow such
a strategy with a reputational benefit. This asymmetry of information between the manager
and her potential investors is the main driving force behind the results of this paper.

Our second contribution is to demonstrate that the signalling value of investing in a low
beta strategy depends on the market conditions. Managers have a dual objective; they want
to maximize their contemporaneous returns but also their perceived reputation. The better
the market (bull) is, the more the managers face a trade-off between these two objectives,
and the less the investors penalize managers for choosing a high beta strategy. Consequently,
there is an interaction between managers’ career concerns and market conditions.

To analyse the above interactions we consider a two period model in which there is a
continuum of investors and a single fund manager. Each investor chooses between investing
his wealth through the manager, or directly in the market index, and this choice is affected
by an investor specific stochastic preference shock. The manager’s utility is a function of the
fees she collects, which are an exogenous proportion of her fund’s assets under management
(AUM) at the end of each period. After the investors have allocated their funds, the manager
publicly chooses between a high or low beta investment strategy. We model the manager’s
ability as the ex ante expected return of her idiosyncratic strategy, which is either high or
low. In each of the two periods, and before picking an investment strategy, the manager also
receives a private signal on the contemporaneous profitability of her idiosyncratic project.
Both her ability and this signal are her private information, and she uses them to form her
final estimate of the profitability of her contemporaneous idiosyncratic strategy. As a result,
a high type manager is more likely to form a high estimate, but this is not always the case.

To model market conditions, we assume that the manager also receives a signal on the
market’s contemporaneous return. This signal is eventually revealed to the investors, but
only after they have made their own investment choice. In some sense, we allow for them

2For example, a recent article in Financial Times explains how institutional investors are turning to
alternative investments in recent years.
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to eventually understand the market conditions under which the manager acted. However,
at this point it will be too late for them to use this information to trade on their own3.
In section 3.3.4, we extend our setting by allowing two managers to coexist in the market,
in order to study how the competition is affected by market conditions. We focus mainly
on the first period, since in the second the manager’s investment choice is not affected by
her reputational concerns. In fact, the second period is introduced in order to create those
concerns.

For our first result, we analyse a refinement of the perfect Bayesian Equilibrium, which
we call monotonic equilibrium and we prove that this always exists. The only additional
restriction that this refinement is imposing is that the manager’s reputation is non-decreasing
on her performance. In addition, under mild parametric restrictions we demonstrate that
the monotonic equilibrium is unique.

Our second result is to demonstrate that investing in an idiosyncratic strategy carries a
reputational benefit. This is because, the cut-off of the high manager type is smaller than
that of the low. In other words the high type is more receptive to the idea of adopting a low
beta strategy. Intuitively, the manager’s choice is affected by two incentives. On the one
hand, she wants to increase her reputation, which skews her preferences towards idiosyncratic
investments. On the other hand, she cares about the realised return of her strategy, since
her fees depend on it. Hence, for a relatively low private signal even a high type may opt to
forfeit the reputational benefit, because investing in the market will generate higher returns,
and as a result more fees. Therefore, the investment strategy is informative but it does not
fully reveal the manager’s ability, which is a realistic representation of the fund industry.

Our third and most important result is to show that the reputational benefit of investing
in the idiosyncratic project is decreasing in the market conditions. In particular, we prove
that the expected sensitivity of reputation to performance is higher in bear markets than in
bull markets. This is because investors understand the dual objective of managers and the
fact that a manager is more likely to invest in the market when the market conditions are
good, and thus update their beliefs less aggressively when this is the case; instead, in bad
times any change in fund’s performance is much more likely to be attributed to the ability
of the manager.

We use the above results to discuss the competition between funds, in terms of their
sizes, and its fluctuation depending on market conditions. We predict that the likelihood of
changes in the ranking of the funds, measured by assets under management, is hump shaped
on the market return, but is also higher during bear markets than during bull markets, due to
the higher informativeness of performance; we also find some empirical evidence supporting

3In other words, manager has a superior market-timing ability compared to an investor.
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this prediction. This is in line with the common perception that the industry only rearranges
its interaction with its investors during crises.

Finally, as an extension to our model, we study the case where investors cannot observe
the managers’ investment decision. In this scenario, we assume that the investors cannot
observe if the manager had invested on the market or their idiosyncratic portfolio, and
we conclude that, under this assumption, the conditions for the existence of a monotonic
equilibrium cannot be satisfied.

Academic research in financial intermediaries has so far mainly focused on establishing
various empirical results about their structure, returns, flows, managers’ skill and many other
characteristics; there have been far fewer theoretical papers. One of the seminal papers about
mutual funds is from Berk and Green (2004); they construct a benchmark rational model in
which the lack of persistence of outperformance, is not due to lack of superior skill by active
managers, but is explained by the competition between funds and reallocation of investors’
capital between them.

Our paper aims to contribute to various strands of literature that we outline below. First,
it is related to many papers that study how managers’ concerns about their reputation
affect their investment behaviour. Chen (2015) examines the risk taking behaviour of a
manager who privately knows his ability and shows that in this model investing in the risky
project always makes manager’s reputation higher, thus leading to overinvestment in such
risky projects. Dasgupta and Prat (2008) study the reputational concerns of managers, and
show how they may lead to herding and can explain some market anomalies; their focus
though is mainly on the asset pricing implications of this behaviour. Similarly, Guerrieri
and Kondor (2012) build a general equilibrium model of delegated portfolio management to
study the asset pricing implications of career concerns; they find that as investors update
their beliefs about managers, these concerns lead to a reputational premium, which can
change signs depending on the economic conditions. Moreover, Malliaris and Yan (2015)
show that career concerns induce a preference over the skewness of their strategy returns,
while Hu et al. (2011) present a model of fund industry in which managers alter their
risk-taking behaviour based on their past performance and show that this relationship is
U-shaped. Huang et al. (2012) on the other hand, build a theoretical framework to show
how investors are rationally learning about the managers’ skills, and test their predictions
about the fund flow-performance relationship empirically; however, they do not take into
account any strategic behaviour by the fund managers.

The paper most relevant to our work is that by Franzoni and Schmalz (2017). In their
work, they study the relationship between the fund to performance sensitivity and an aggre-
gate risk factor and they find that this is hump shaped. They also build a theoretical model

89



in which investors update their beliefs about the managers’ skills while they also learn about
the fund’s exposure to the market. The second inference in extreme markets is noisier for
two reasons. The first is idiosyncratic risk and the second is that investors who are uncertain
about risk loadings cannot perfectly adjust fund returns for the contribution of aggregate
risk realizations. As a result it becomes harder for investors to judge the managers and
update their beliefs, and this is what drives the documented result. The theory we propose
differs from that of Franzoni and Schmalz (2017) because their model describes the fund’s
loading on aggregate risk (β) as a preset fund specific exposure, whereas our model gives
the ability for managers to strategically choose their investment decision. Also we further
investigate how this investment decision will affect the managers’ decision if it is observable
by the investors or not. Moreover the data source considered for their paper is the CPRSP
Mutual Fund Database which is different from the Morningstar CISDM which we use for
the empirical part, making it difficult to compare our results. Although the implementa-
tion and the structure of their model is completely different to ours and does not imply the
same predictions we are making, we conclude that the aggregate risk realizations matter for
mutual fund investors and managers.

Another strand of literature in which we contribute to is the empirical research on the
fund flows and characteristics. It is well documented that mutual fund investors chase
past returns, Ippolito (1992) and Warther (1995) present empirical evidence supporting our
predictions. Sirri and Tufano (1998) show that the flow-performance relationship is convex,
and asymmetrically so on the positive side of returns. Furthermore, Chevalier and Ellison
(1997), show that managers engage in window dressing their portfolios. More recently, Wahal
and Wang (2011) study the competition between funds, by looking at the effect of the entry
of new mutual funds on fees, flows and equilibrium prices. Finally, Ma (2013) provides a
very comprehensive survey of empirical findings concerning the relation between mutual fund
flows and performance.

The rest of the paper is organized as follows. In section 3.2, we introduced our theoretical
framework and our equilibrium. Section 3.3 proves its existence, identifies a condition under
which this is unique, and presents our theoretical predictions. In particular, section 3.3.4
discusses the implications of adding a second manager. Subsequently, section 3.4 presents
our empirical results. Section 3.5 considers an alternatively model where the investment
decision is unobservable. Finally, section 3.6 concludes.
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3.2 The Model

3.2.1 Setup

This is a two period model t ∈ {1, 2}. There is one fund manager (she) and a continuum of
investors (he) of measure one, who collectively form the market. The manager discounts the
future with δ ∈ (0, 1].

At the beginning of period t, each investor decides how to invests a unit of wealth. At
the end of period t, he consumes all the wealth that this investment generated. The investor
is restricted to a binary decision. First, he can opt to allocate all his wealth in an index
tracking strategy. This has the same returns as the market portfolio, which is given by

mt ∼ N (µ , σ2
m) (3.1)

Second, he can choose to invest all his wealth in the manager’s fund4. For each unit of wealth
invested with the manager let Rt = exp(rt) denote its value at the end of this period, where

rt = (1− βt) · at + βt ·mt (3.2)

is the fund’s return. This has two components, one of which is the market return mt. The
second is given by

at ∼ N (α, σ2 ) (3.3)

which represents the market neutral component of the manager’s investment strategy5. Ad-
hering to the fund industry’s convention, the manager’s ability to create idiosyncratic profits
is called alpha, and is represented by α ∈ {L,H} where L < H. The manager’s ability is
her private information. The investors share the public prior π = P(α = H).

Finally, βt represents the fund’s exposure to the market. This is publicly chosen by
the manager after the investors have allocated their wealth. For simplicity we assume that
βt ∈ {0, 1}. Note that the model’s beta βt despite its relevance to the corresponding variable
of the CAPM model, is not the same variable. Rather the former represents a deterministic

4Our underlining intuition is that most of the market participants take a rule of thumb approach to their
investment through intermediaries. For example, they set apart 5% of their wealth and then they decide if
they should invest this amount to a fund.

5For example think of a long/short equity fund that invests (1 − βt) of its assets on a market neutral
portfolio and βt on the S&P 500 index. For the most part we refrain from giving a specific interpretation
of the components of the fund’s return rt, or which part of its investment strategy they represent. Our
framework relies on the simple intuition that some of the return generated by the manager stems from her
own ability and some from factor loading. In fact mt could represent any such factor, and for some funds
other choices would be more sensible. For example, a macro fund is more related to the risk-free interest
rate than to the equity markets.
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investment decision, whereas the latter its estimate.
In addition, before making her investment decision βt, but after the investors have allo-

cated their wealth, the manager receives two signals

st ∼ N (at , ν
2 ) and smt ∼ N (mt, ν

2
m). (3.4)

On the one hand, st is private and it is associated to the manager’s contemporaneous confi-
dence on her alpha6. On the other hand, smt is public but it only becomes available after the
investors have committed their capital to the manager’s fund. This market signal is consid-
ered to be the standard piece of information that most institutional participants receive on
the market’s condition.

For simplicity, we assume that the manager’s fees are exogenously set to a given percent-
age ft ∈ [0, 1] of her asset under management (AUM) at the end of t7. Even though we do
not allow for incentive fees, the plain managerial fees ft we consider suffice to create direct
incentives for the manager to perform in t, as her period income per dollar invested is ftRt.

Two more important assumptions have been made. First, that the manager’s investment
decision is binary. In particular, it allows for either investing all of the fund’s assets in the
manager’s idiosyncratic strategy at, or all in the market mt. Second, that this decision is
observable by the rest of the market participants. The former assumption is imposed mainly
to make the model more tractable. We speculate that altering it to allow for βt ∈ {b, b},
where b < b, would not affect our results qualitatively8. Regarding the latter assumption, it
appears to be reasonable for long investment horizons. This is because the fund’s exposure
to the market can be ex-ante approximately inferred, either by estimating a multi-factor
regression, or by looking at its past portfolio composition, which in many cases is public.

6This could reflect the fact that her idiosyncratic strategy has some seasonality that she is able to partly
predict. Another interpretation is that the strategy itself changes across periods, in which case α represents
the manager’s latent ability to come up with new ideas to beat the market.

7Endogenizing the choice of fees is left for future research. The complexity of allowing an endogenous
choice is that the fees would then serve as a signalling device for the managers’ ability, thus making the
equilibrium much harder to find.

8A possibility that we exclude and is worth mentioning is that of a manager that bets against the market.
In particular, in strong bear markets most funds would prefer to short the market portfolio, instead of
adopting a strategy that is neutral to it. This would have a significant impact on our analysis. Despite
that, it is ignored both to facilitate the exposition and because funds that systematically hold big negative
positions are not that common.
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3.2.2 Payoffs

Investors are risk-neutral, however each one’s decision is influenced by an exogenous prefer-
ence shock

zjt ∼ Exp(λ) , where j ∈
[
0, 1
]

(3.5)

stands for the shock on investor’s j preferences at period t. Hence, his payoff from investing
in i ∈ {1,m} is

v(i, zjt ) =

{
exp(zjt − z̄) · (1− ft) ·Rt , i = 1

exp(mt) , i = m
(3.6)

where z̄ > 0 is a constant that we introduce to ensure that under the lowest preference shock
zjt = 0 the investor would opt for the market instead.

There is a plethora of ways to interpret this shock, a valid one being that each investor
values specific fund characteristics, for example the fund’s classification with regards to its
investment strategy, its portfolio composition, leverage, etc. An alternative one would be
that he is influenced by interpersonal relationships, network effects, word of mouth, or other
forms of private information. Our analysis will be silent as to what generates this shock.

Furthermore, note that because Rt comes from a log-normal distribution, we could adopt
a CRRA utility function for the investor without altering his decision significantly. However,
we opt not to do so in order to maintain our expressions as compact as possible. On the other
hand, it will be assumed that the manager has log preferences. In particular, if At stands for
the AUM the fund in the beginning of t, then manager’s payoff at t is log

(
AtftRt

)
. Again

we speculate that most of our results would not be significantly different if a generic CRRA
was used instead of log, however it turns out that this is the most convenient functional form
to work with.

3.2.3 Timing

To sum up, the timing in our model is as follows. In each period t ∈ {1, 2}, first the
preference shock zjt , j ∈ [0, 1], is realised and then the investors decide how to allocate their
wealth. Second, the manager receives the private and public signals st and smt , respectively.
Third, the investment decision βt is made by the manager, Rt is realised, and both become
public. Forth, the fund’s AUM is divided between the manager and her investors, according
to the fee ft, and is consumed immediately. Finally, we assume that the investors that are
active in the second period observe the public variables of the first period before allocating
their wealth. Importantly, they know (R1, β1, s

m
1 ) and use them to update their beliefs on

the manager’s ability α.
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3.2.4 Monotonic equilibrium

We call an equilibrium of our model perfect Bayesian (PBE), if all market participants use
Bayes’ rule to update their beliefs on α, whenever possible, and choose their actions in order
to maximise their expected discounted payoff in each point they are taking an action. It is
easy to demonstrate that we have multiple equilibria, which is a common setback for this
type of models. For this reason we will further refine the set of equilibria using the following
definition.

Definition 3. Call a PBE a monotonic equilibrium if the manager’s reputation, for a given
choice of investment strategy, is non-decreasing on her performance.

Therefore, the only requirement that our refinement imposes is that the manager’s rep-
utation is not penalised by the fact that she delivers good returns for her investors. The
above definition implies that there exists φ0 and φ1 such that the public posterior on the
manager’s ability is given by

φ0 = P(α = H | r1, sm1 , β1), for β1 = 0

φ1 = P(α = H | r1, sm1 , β1), for β1 = 1
(3.7)

We separate the posteriors that follow each choice of β1 because those will turn out to have
different functional forms.

3.3 Analysis
We begin our analysis by first discussing the manager’s optimal investment strategy in the
second period and how this affects her career concerns in the first period. Second, we
characterise the monotonic equilibrium and prove its existence and uniqueness. Third, we
present our results on the baseline model with the single manager. Forth, we discuss the
implications of adding a second manager.

3.3.1 Investment and AUM in the second period

Here we provide a description of how we solve for the manager’s investment decision in the
second period and the corresponding AUM that this implies. The interested reader can find
a more detailed analysis in Appendix C.2.

In the second period the manager faces no career concerns. Hence, the objective of her
investment decision is to maximise the expected fees she collects at the end of this period.
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Because those fees are proportional to her fund’s AUM at the end of the second period, and
we have assumed log preferences, the manager’s payoff maximisation problem simplifies to

max
β2∈{0,1}

E
[
log(R2)

∣∣ β2, α, s2, sm2 ]
When opting for her idiosyncratic strategy β2 = 0 the above expectation uses the manager’s
ability α and private signal s2, whereas the index tracking strategy β2 = 1 depends only the
market signal sm2 . Since we have assumed that the returns and the corresponding signals
are log-normally distributed we can calculate the above expectation for each choice in closed
form. This gives that the manager’s optimal second period strategy is to invest in her
idiosyncratic project if and only if s2 ≥ c(α, sm2 ) where

c(α, sm2 ) =
ψm
ψ

· sm2 +
1− ψm
ψ

· µ− 1− ψ

ψ
· α (3.1)

The constants ψ and ψm are the weights that the Bayesian updating gives to the signals s2
and sm2 , respectively, and their functional form can be found in Appendix C.2. Given the
above cut-off strategy we can calculate the expected terminal value of one unit of wealth
that is invested by the manager. For a high and low type we will denote those by uH2 and uL2 ,
respectively. Therefore, for given posterior reputation φ, and while ignoring the preference
shock z, the expected payoff of an investor that opts for the manager is given by

[1− f2] · [φ · uH2 + (1− φ)uL2 ]

This together with the assumed preference shock allows us to calculate the assets of the
second period in closed-form. Those are given by

A2(φ) =
(
e−(µ+z̄+σ2

m/2) · [1− f2] · [φ · uH2 + (1− φ) · uL2 ]
)λ

(3.2)

which is an increasing function of the manager’s reputation φ. One thing we can note is
that as long as λ > 1, the assets under management are a convex function of the reputation
φ. This is a result that has been widely documented in the relevant empirical literature, in
slightly different forms.

3.3.2 Existence and uniqueness of the monotonic equilibrium

In this section we demonstrate that the monotonic equilibrium exists and under mild condi-
tions it is unique. First, we want to understand the manager’s incentives in the first period.
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Her expected discounted payoff at this point is

ER
[
log [R1f1A1(π)] + δ · log [R2f2A2(φβ)]

∣∣∣ sm, s, β , α ]
where A1(π) is the equilibrium allocation of AUM in the first period, which has a functional
form similar to that of A2(φβ).

Hereafter, the focus of the paper shifts to the interactions of the first period. As a result,
in order to make our formulas more compact, the time subscript t is dropped, whenever this
does not create an ambiguity. Using the properties of the natural logarithm we simplify the
manager’s payoff maximisation problem in period 1 to

max
β∈{0,1}

Er
[
r + δ · λ · [φβ(r, sm) · (uH − uL) + uL ]

∣∣∣ sm, s, β , α ] (3.3)

Therefore, the manager cares both about her returns in the first period r, but also on how
those affect her posterior reputation φβ(r, s

m). This reputation is important because it
affects the amount of AUM that the manager will manage to gather in the beginning of the
second period.

First, we want to offer a characterisation of the monotonic equilibrium.

Lemma 3.1. In any monotonic equilibrium the high and low type invest in their idiosyncratic
strategy if and only if

s ≥ h(sm) and s ≥ l(sm) , (3.4)

respectively, where
l(sm)− h(sm) =

1− ψ

ψ
· (H − L) (3.5)

Proof. In Appendix C.1.

Hence the more confident the manager becomes on her alpha, the more likely she is to use
her idiosyncratic strategy, instead of the index tracking one. In addition, the fact that the
high type’s cutoff is lower captures the fact that a competent manager uses her idiosyncratic
investment strategy relatively more often.

Second, we want to calculate the manager’s posterior reputation after each investment
decision as a fuction of her performance.

Lemma 3.2 (Posteriors). In any monotonic equilibrium the manager’s posterior reputation
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in the beginning of the second period, if she invested on her alpha β = 0 in the first, is

φ0(r, s
m) =

1 +
1− π

π
· ρ(r) ·

Φ
(
r−l(sm)(1+ψ)+Lψ

ν
√
1+ψ

)
Φ
(
r−h(sm)(1+ψ)+Hψ

ν
√
1+ψ

)
−1

, (3.6)

where
ρ(r) = exp

(
−2(H − L) r +H2 − L2

2ν2ψ(1 + ψ)

)
.

On the other hand, if she invested in the market β = 1 then this becomes

φ1(s
m) =

1 +
1− π

π
·
Φ
(
l(sm)−L)

ν

)
Φ
(
h(sm)−H

ν

)
−1

(3.7)

Proof. In Appendix C.1.

The investors form their posterior belief on the manager’s ability by observing her invest-
ment decision β and the realised return r. Note that when using her idiosyncratic investment
strategy the manager’s performance r is generated by her alpha. Hence, in this case the re-
alisation r carries additional information on the manager’s ability. On the other hand, when
using the index tracking strategy r is equal to the market’s return m, which carries no ad-
ditional information on the manager’s ability. This is why φ0 is a function of r, but φ1 is
not.

Using the above two lemmas, we prove the main result of this part.

Proposition 3.1. A monotonic equilibrium always exists. Moreover, a sufficient condition
for it to be unique is that

δ · λ · (H − L) ≤ ψ2 · ν2 (3.8)

Proof. In Appendix C.1.

We believe that (3.8) is satisfied for a wide range of parametric specifications that we
would consider natural given the economic setting we study. This translates into two re-
quirements. First, that the difference between the ability of the two types is not too big.
Second, that the precision of the signal s is neither so small that it becomes irrelevant, nor
so big that the manager’s ex-ante ability α becomes irrelevant instead.
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3.3.3 Results

Here, we present some important properties of the unique monotonic equilibrium. We assume
throughout that (3.8) holds. To maintain the notation as light as possible keep using φ0(r, s

m)

and φ1(s
m) to refer to the equilibrium reputations, which are obtained after substituting the

corresponding values for h(sm) and l(sm).

Proposition 3.2 (Point-wise dominance). There is a strict reputational benefit for the
manager from investing in her alpha, that is

φ0(r, s
m) > φ1(s

m), for all r, sm ∈ R. (3.9)

Proof. In Appendix C.1.

We already know that in every monotonic equilibrium φ0(r, s
m) is increasing in r, in other

words high performance is beneficial for the manager’s reputation. The proof demonstrates
the result by taking the limit of the left hand side to minus infinity and showing that even
there the inequality holds. Hence the equilibrium difference between the cutoffs used by the
high and low type is such that the investors’ inference on the manager’s type relies relatively
more on her choice of strategy than on the subsequent performance of her fund.

This may seem counterintuitive at first, but it has a very simple explanation. In the ap-
pendix we show that for a monotonic equilibrium to also be rational the difference between
the equilibrium cutoffs l(sm) and h(sm) cannot be too large. If that was the case, then a low
type would have to be so confident in order to invest in her alpha that a very bad perfor-
mance, under the low beta strategy, would be associated with a high type. An immediate
consequence of which would be that the manager’s reputation would be non-monotonic on
her performance. But those are exactly the type of equilibria that appear to be the less
realistic.

The above claim is the most challenging one to verify in the data. This is because for each
fund we never observe the counter-factual, that is how the fund’s flow would look like if it
had chosen a lower, or higher beta strategy. Moreover, the simplifying assumption β ∈ {0, 1}
makes this result stronger than what an alternative model, where the two betas are closer to
each other, would give. Despite that, we can verify empirically that up to a certain extend
a low beta strategy creates enough signalling value to counter the effect of a low subsequent
performance.

As a direct consequence of point-wise dominance, we can now get the following interesting
proposition, which characterises the effect of the manager’s career concerns on her investment
behaviour.
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Proposition 3.3 (Investment Behaviour). The equilibrium cutoffs h(sm) and l(sm) are
decreasing in the discount factor δ. Moreover, there is overinvestment in the manager’s
idiosyncratic project, that is

h(sm) ≤ c(H, sm) and l(sm) ≤ c(L, sm). (3.10)

Proof. In Appendix C.1.

The proof is a simple application of the implicit function theorem on equation (C.1.17),
the solution of which is shown in the proof of Proposition 3.1 to be h(sm). The corresponding
result for l(sm) is obtained by invoking the fact that in every monotonic equilibrium those
two cutoffs are connected through a linear relationship, which was again demonstrated in
the above proof.

We use the term “over-investment” to describe the fact that the managers invests in her
idiosyncratic strategy more often than in the absence of career concerns. In other words, over-
investment exists when the managers “lower her standards” with regards to her private signal,
i.e. she lowers the confidence level required for her to choose the idiosyncratic investment.
Note that the manager’s optimal cutoff, in the absence of career concerns, corresponds to
that already derived from for the second period in (3.1). This is because it is generated by
the inefficiency in the investment decision that the manager’s career concerns create, which
is connected to the underlying parameter δ.

The above proposition demonstrates that there is a bias towards active management in
the financial intermediation industry, which is due to its inherent informational asymmetries.
To be more precise, we expect managers to get on average less exposure to the market than
what would maximise the fund’s expected return. Moreover, this action is associated with
competence and it is rewarded with an increase in the funds AUM. Hence, our model provides
a theoretical justification for this well documented fact.

Next, we want to see how this bias depends on the unobserved, to the econometricians,
market signal sm and the manager’s prior reputation π.

Proposition 3.4. The cutoffs h(sm) and l(sm) are increasing in the market signal sm. In
addition, there exist lower bounds s̄m and π̄ such that for every (sm, π) such that sm ≥ s̄m

and π ≥ π̄ both cutoffs h(sm) and l(sm) are increasing functions of the manager’s prior
reputation π.

Proof. The proof of the first statement is similar to that of Proposition 3.3. The proof of
the second follows from Lemma C.1.4, which found in Appendix C.1.
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The first statement is a very intuitive result. The better the manager expects the market
portfolio to perform, the more eager she becomes to invest in it, which translates into higher
equilibrium cutoffs.

The crucial implication of the proposition’s second statement is that the bias created from
the signalling value, of investing in the idiosyncratic strategy, is decreasing in the manager’s
prior reputation. This is because the equilibrium cutoffs are bounded above by the expected
return maximising cutoff c(α, sm), hence the more π increases the closer they get to it.

A caveat of this result is that it only holds for a manager that is already relatively
recognized in the market, in particular it is shown in the appendix that we need at least
π > 1/2. Intuitively, the closer the prior is to either zero or one, the less it is affected by the
actions of the manager. To make this more concrete, think of the extreme case where π → 1,
in which case it is very difficult for the investors to change their opinion about her ability, as
they already know it with almost total certainty. Hence, there is a corresponding result that
can be stated for managers of very low reputation. Even though in our model we allow for
funds of small size to stay active, in reality most of them would either shut down, or would
not even be reported in most datasets, hence we focus just on funds with reputation greater
than a 1/2. 9.

Another interesting feature of the presented specification is that it provides a better
understanding on how the sensitivity of the fund’s asset flows to its performance depend on
the market conditions. Let φ(r, sm, β) stand for the manager’s reputation in either of the
two cases and call dφ/dr its sensitivity with respect to her performance.

Proposition 3.5. The conditional probability that the manager has invested in the market
portfolio P(β = 1 |m) is increasing in its contemporaneous performance m.

In addition, for a sufficiently reputable manager the conditional expected sensitivity of
the manager’s reputation with respect to her performance, i.e. Esm [dφ/dr |m], is decreasing
in m.

Proof. In Appendix C.1.

When markets are expected to perform well, the manager’s direct incentives outweigh
those of career concerns. Hence we know from Proposition 3.4 that she is more likely to give
up the reputational benefit of following a low beta strategy. But high beta strategies carry no
information with respect to the manager’s ability, Hence, even though as noted in Proposition
3.2 investing in low beta always has a reputational benefit, this benefit is less pronounced in
good markets. Therefore investors are expected to be based more on manager’s performance

9Despite that we hope to test empirically if we can obtain a corresponding result for the flows of small
fund.
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to update their belief about the ability of the manager, when markets are bear than when
markets are bull. This result is also supported by the empirical evidence we provide in
section 3.4.

3.3.4 Discussion on the competition between funds

It follows from the previous discussion that managers will be judged much more strictly on
their performance in bear markets than in bull markets. This in turn has some implications
for the relative ranking of the various funds with respect to their reputation, or equivalently
their AUM.

To study this we extend our model by allowing a second manager to operate in the market.
We formally define the investor’s preference shock in this case and derive the corresponding
AUMs of the two funds in Appendix C.2. In fact, the whole analysis of this paper and
all our results remain unchanged with the addition of a second manager. The reason is
that manager’s utility is such that it is only a function φβ(r, s

m) · (uH − uL) + uL and is
independent of the number of managers that exist in the model10.

Our main aim is to study the likelihood of a change in the rank of managers, in terms
of investors’ beliefs about their ability and relate that to the market conditions. In what
follows, we explain why this effect is not monotonic in mt

11.
In the Appendix it is shown that:

P(φ1 > φ2 | sm) = P(φ1
0 > φ2

1 | sm)P(0, 1 | sm) + P(φ1
0 > φ2

0 | sm)P(0, 0 | sm), (3.11)

What this equation suggests is that the ranks of managers can change through two
possible scenarios. In the first scenario, with probability P(0, 1 | sm), one of the two managers
invests in his idiosyncratic portfolio and the other follows the market; this probability goes
to zero for both very large and very small sm, as then both managers invest in the market
or both invest in their own project.In turn, this makes the first term of equation (25) to
be hump-shaped in sm. Under this scenario, manager 1 has a reputational benefit from
choosing β = 0 (see Proposition 2) which then makes it possible for his ex-post reputation
to be higher than that of manager 2 (despite his initial disadvantage, in terms of the priors
π1, π2); clearly the smaller is the distance between their prior reputations, π2−π1, the larger
will be this likelihood.

In the second scenario, with probability P(0, 0 | sm) both managers invest in their own
10In particular, equation (39) and thus the determination of the cutoffs l and h will remain the same.
11Note, we always condition on sm as we know that all investors observe this market signal.
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project and manager one receives a much higher return than the other, thus overcoming the
effect of the initial prior reputations; in other words, since π1 < π2, in order for the posterior
reputations to have the opposite order, what needs to happen is that the realized return of
manager 1 is much higher than that of 2. This is clearly not possible if they both invest in
the market. However, when they both invest in their idiosyncratic project this can happen
either because one is luckier than the other, or simply because manager one has high skill
and manager two has low skill. This scenario is less likely to occur as the market conditions
get better since P(0, 0 | sm) is decreasing in sm, as we can see from Proposition 5. Moreover,
we can get the following remark:

Remark 4. The likelihood of a change in the ranks of managers is higher in a very bad
market, than in a very good market. That is:

lim
sm→−∞

P(φ1 > φ2 | sm) > lim
sm→+∞

P(φ1 > φ2 | sm) (3.12)

The proof of this remark is quite simple. As the market becomes really good, the proba-
bility of a manager investing in his own project goes to zero, and hence from (25) we see that
the probability of a rank change will tend to zero. In contrast, for a very negative market
signal, this probability is strictly negative, since P(0, 0|sm) = 1 and P(φ1

0 > φ2
0 | sm) > 012;

From the above analysis, it is clear that the overall effect does not have to be monotonic
in sm. Hence we use simulations to illustrate the properties of the probability of interest
as a function of the market signal, confirming also the observation in the aforementioned
remark13.

12This probability is always strictly positive, since we know that φ1
0(r

1, sm) → 1 as r1 → +∞ and
sm → −∞, or intuitively the return of manager 1 may be much larger than that of manager 2 when they
invest in their own projects (either because one has high skill and the other has low or because one is just
luckier than the other) and hence this can always lead in a change of ranks.

13For this simulation we set the parameters as: π1 = 0.6,π2 = 0.601, αH = 0.16, αL = 0.1,σ = ν = 0.35,
f1 = f2 = 0.01, σmνm = 0.25, λ1 = λ2 = 0.8 and δ = 0.5.
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On the y-axis we have the probability of change in rank, and on the x-axis the corre-
sponding market signal. As it can been seen from the graph the total effect is hump-shaped
in sm, it is decreasing as the market signal becomes relatively large and also it is smaller
when market conditions are good compared to when they are bad.

In the next section, we find empirical evidence supporting our results. This is done
by constructing divisions in which each fund is allocated in accordance with their AUM.
Subsequently, we calculate the proportion of funds that changed division from the beginning
of each period to its end. Approximately, this measures the probability to which the above
proposition refers.

3.4 Empirics

3.4.1 Data

The data used in this study comes from Morningstar CISDM database. The time span of our
sample is from January 1994 to December 2015. To mitigate survivorship bias we include
defunct funds in the sample. We have created a larger group of strategies to accumulate
the Morningstar’s categories. All fund returns have been converted to USD (U.S dollars)
using the exchange rates of each period separately. Observations of performance or assets
under management, with more than 30 missing values, have been deleted. All observations
are monthly. Our main variable of interest is flows, which gives the proportional in and out
flows of the fund with respect to its assets under management. For the market return we
consider the S&P 500 and as fund excess returns, the difference of the funds return with
the market. In particular, we use the corresponding Fama-French market factor obtained
from the WRDS (or from Keneth French’s website at Darmouth). We also examine the
relationship of alpha and beta of a fund as well as their relationship to the flows.

3.4.2 Empirical Evidence

The purpose of this section is to empirically test some of the assumptions as well as the results
of our model and show that our model can be empirically supported by data. Throughout
this section we will use for simplicity the CAPM alpha and beta, calculated using a 32
months period (which we will define in this section as one period)14. Moreover we will to
the log of the assets of a fund lagged by one period, simply as the fund’s assets. First of all,
our model assumes that investors get a signal about the market (sm) before everyone else

14We have also performed robustness checked using the 4-factor alphas and betas.
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does. This would imply some form of market-timing 15. We first run the following panel
regression, with fixed effects:

Betat = λ0 + λ1rm,t + λ2Assetst−1 + λ3Aget + di + εt

where rm,t is the period market return (described above) and di corresponds to the fixed
effects dummy (although the subscript i for the fund has been suppressed in the rest of the
variables). The results are shown below:

Table 3.1: Estimation results : Beta on Market Return.

The baseline model we run is summarized by beta ∼ rm + assets + controls.
Variable Coefficient (Std. Err.)
rm 0.03256∗ (0.01372)
assets 0.01467∗∗ (0.00508)
age 0.00502∗∗ (0.00144)
Intercept 0.02430 (0.08400)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The positive and significant coefficient in front of the market return supports our model
assumption (as well as with the prediction of Proposition 3.3 about over-investment), in the
sense that it indicates that when markets are bull, it is more likely that managers choose to
get higher exposure to the market. This is consistent with what we would observe if indeed
managers had market-timing abilities.

Another result of our model is that in equilibrium l > h. Given the definition of the
cutoff equilibrium strategies described in (5), this leads to: P (β = 1|L) > P (β = 1|H). If
this is the case, we would expect to see in data that funds with higher alpha, have on average
lower betas, i.e they choose to invest on their idiosyncratic project since they benefit both
from potential higher returns thanks to their superior alpha as well as from signalling their
skill. Indeed this is the case. We are using the following cross-sectional baseline model, for
the last date in our data, December 201516:

Alphat = λ0 + λ1Betat + λ2Assetst−1 + Λ3Controls + εt,

where controls include the age and the strategy of the fund. As shown in Table 2 the
coefficient of interest is negative, suggesting that more skilled managers pick a high beta less
often.

Even more importantly, we want to test the second implication of Proposition 3.5. That
15In the empirical literature there have been studies both in favour as well as against this finding.
16We only include funds that report US dollars as their base currency.
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Table 3.2: Cross-sectional Regression of Alphas on Betas and controls, t = 12/2015.The
baseline model we run is summarized by alpha ∼ beta + assets + controls.

Variable Coefficient (Std. Err.)
beta -0.00958∗∗ (0.00085)
assets 0.00006 (0.00016)
age 0.00001 (0.00005)
strategy 0.00003 (0.00009)
Intercept 0.00130 (0.00284)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

is, we want to test whether the data suggest that the sensitivity of flows to performance is
higher when beta is 0, or consequently is higher when markets are bear than when they are
bull. We will measure the fund flows, as in Sirri and Tufano (1998):

Flowst =
TNAt − (1 +Rt)TNAt−1

TNAt−1

where TNA is the total net assets and R is the return of the fund. We will use the simple
return of the fund, ri, as the measure of performance, as in Clifford et al. (2013). We
think that this is the most appropriate measure of performance to test the predictions of our
model. The following two tables17 verify the above finding, and support our predictions18.
First regression is a cross-sectional one for December 2015.

AvFlowst = λ1ri,t · Bigbetat + λ2Assetst−1 + Λ3Controls + εt

where AvFlows is the average flows of the previous period, Bigbeta = 1{β≥0.3}, ri,t is the
fund’s period return and controls include the age, the strategy and the bigbeta dummy of
the fund (the intercept λ0 is just suppressed in the above equation).

The second table we are presenting is a panel regression with fixed effects, where we
regress flows on the interaction of annual fund’s performance and market return, including
the usual controls. That is, our baseline model is:

AvFlowst = λ1ri,t · rm,t + λ2Assetst−1 + Λ3Controls + di + εt

where controls include the fund’s beta and the period return of the market and of the fund
itself.

17Since in our model, the funds only select between β = {0, 1}, thus making the implicit assumption that
there is no short-selling of the market, we will exclude all observation with negative β, which are anyway
less than 15% of our sample.

18This result was only recently documented empirically in a paper by Franzoni and Schmalz (2013).
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Table 3.3: Flows on Performance and Beta, t = 12/2015

Variable Coefficient (Std. Err.)
ri·Bigbeta -0.12510∗∗ (0.03433)
Bigbeta 0.01204 (0.01522)
assets -0.01437∗∗ (0.00389)
strategy 0.00352 (0.00231)
age -0.00133 (0.00120)
Intercept 0.25846∗∗ (0.06906)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Table 3.4: Flows on the interaction of Fund Performance and Market Return

Variable Coefficient (Std. Err.)
ri · rm -0.15297∗∗ (0.03697)
beta 0.00423 (0.00648)
ri 0.07538∗∗ (0.02036)
rm 0.02828∗∗ (0.00955)
assets -0.02718∗∗ (0.00224)
Intercept 0.47264∗∗ (0.03964)
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

In both cases we can see that the coefficient of interest is significantly negative. The
interpretation of these two regressions is the following: the first one shows that funds with
higher beta are not judged so much on their performance; that is the higher the beta, the
less important is the flow performance relationship. The second table, on the other hand
supports the statement that the sensitivity of fund flows to performance depends on the
state of the market and more specifically it is decreasing on the market return. Under the
predictions of our model, these two results are almost equivalent, and we indeed get that the
coefficient in both cases is negative and significant, thus supporting one of our main results
as well.

Finally, we want to provide some empirical evidence relevant to the discussion in on
the competition of funds. Namely, we find support for Remark 1, by demonstrating that
the probability of changes in the ranking of funds, with respect to their AUM, is higher
under adverse market conditions. To achieve this a new variable is constructed. First, the
sample is separated in periods of eight months, so that we have thirty periods in total. For
each one, seventy divisions (clusters of funds) are created. Funds are allocated in those
divisions according to the size of their AUM at the end of each period19. Then we define

19Out methodology follows closely previous work done by Marathe and Shawky (1999) and Nguyen-Thi-
Thanh (2010).
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divjumpassetUSDt as the percentage of funds that changed division from the beginning to
the end of period t. We are careful to only compare funds that were active during all the
duration of each period. Also, we only consider the US universe of funds to avoid introducing
noise created from fluctuations in the exchange rates.

On the y-axis we have our constructed measure of changes between divisions divjumpas-
setUSDt, and on the x-axis the corresponding total return of the market portfolio during the
same period. As it can been seen from the graph there appears to be a negative relationship
between the two, which is also statistically significant. Note that this is just an indication
of the relationship between the rank of funds and the market conditions, under a simple
linear regression, and thus it does not capture any second order effects (or a hump-shaped
relationship). Hence, this is only weak evidence supporting our prediction in Remark 1, but
we believe that there is much more to explore in the future in this direction.

3.5 Extension: Unobservable Investment Decision
In this section, we want to extend our model, and investigate the equilibrium where the
investment decision of the fund managers cannot be observed by the investors. In this case,
investors use the return of the fund managers’ to both update their beliefs about managers’
skill but also to understand whether or not they invested in their own project. In reality,
it is indeed the case that investors do not know exactly the exposure of a fund manager to
the systematic risk. They use instead a history of data of the fund return’s comovement
with the market return to infer the fund’s statistical beta. Since the model we are examining
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here is static, the assumption in this section is that this inference is only made based on the
proximity of the market return to fund’s return.

The model considers only one period and it remains same as before, apart from a few
changes outlined below. Firstly, an additional error ϵ has been introduced in order to make
the manager’s choice of investment unobservable by the investors- note, that without this
tracking error, investors could perfectly observe the decision of managers based on whether
or not r = m. Hence our model becomes:

r = (1− β) a+ β (m+ ϵ)

a ∼ N (α, σ2 )

m ∼ N (µ , σ2
m)

ϵ ∼ N (0 , σ2
ϵ )

(3.1)

The manager’s performance r is a weight average of the return of her idiosyncratic strat-
egy a and that of the market m, and as before we study only the simple binary case where
β ∈ 0, 1. The rest of the notation and ideas remain unchanged.

The posterior distribution of r, conditional on (β, s, sm) is given by

r |α, β, s, sm ∼ N
(
r̄(α, β, s, sm), σ̄2(β)

)
r̄(α, β, s, sm) ≡ (1− β)[(1− ψ)α + ψs]

+ β[(1− ψm)µ+ ψms
m]

σ̄2(β) ≡ (1− β)2ψν2 + β2(ψmν
2
m + σ2

ϵ )

(3.2)

Our goal is to study whether a monotonic cutoff equilibrium (introduced in the previous
sections) exists under this alternative assumption. We believe that only such an equilibrium
would be interesting and realistic to serve for further study. We move on to find a closed-form
expression for the ex-post reputation φ, which is given by the following lemma.

Lemma 3.1. The manager’s posterior reputation is given by

φ(r,m, sm) =

(
1 +

1− π

π

ρ
(
r, L, l(sm)

)
ρ
(
r,H, h(sm)

))−1

, (3.3)

where
l(sm)− h(sm) =

1− ψ

ψ
(H − L), (3.4)
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and

ρ(r, α, c) = Φ

(
r − c(1 + ψ) + αψ

ν
√
1 + ψ

)
×

ϕ

(
r−α

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

+ Φ

(
c− α

ν

) ϕ
(
r−m
σϵ

)
σϵ

, (3.5)

Proof. In Appendix C.3.

Using the above lemma, we can now eventually see whether this model can provide us
with an equilibrium where the reputation φ(r,m, sm) is increasing in r. In fact, we get the
following proposition:

Proposition 3.1. A monotonic equilibrium under unobservable beta does not exist.

Proof. In Appendix C.3.

What this proposition shows is that the reputation φ(r,m, sm) cannot always be increas-
ing in r under the assumption that investors do not observe the investment choices. That is
to say that the assumption of unobservable investment choice under a static setting can lead
us to counterintuitive equilibrium properties. We believe that in future research it could be
interesting to study this realistic case under a dynamic setting where the inference of beta
will be indeed based on the comovement of the market return with the fund’s return.

3.6 Conclusions
The role of financial intermediaries and their characteristics have been greatly explored
in the recent empirical literature. In this article, we have developed a theoretical model
that describes how the strategic investment decisions of fund managers is influenced by
their career concerns. In sum our argument is that those will tend to over-invest in market
neutral strategies as a way to signal their ability. Moreover, we have described how managers’
reputation depends on the market conditions; in particular, we find that the sensitivity of
flows to performance is higher in bear markets than in bull markets and we discuss the
competition between funds, measured by the changes in their rankings, as a function of
the market conditions. Our model entails predictions about some directly observable fund
characteristics such as their size and fees, as well as some indirectly observable quantities
such as their reputation or their investment behavior depending on their signals. In our
empirical section, we have managed to find support for many of the assumptions as well as
predictions of our model. Moreover, we have extended our model to include the case when
the manager’s investment decision is not observable from the investors.
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Finally, there are many ways forward with this research. The results of this model do
not depend on the specific factor which funds use when they are tracking an index; one,
may try to apply the same logic in funds that use factors other than the market return and
test the corresponding empirical predictions. Also, using a slightly different interpretation
of the investor’s decision between allocating funds to a manager or to the market, one could
think of an investor choosing between an active and a passive fund and use the closed form
solution for fund’s size, to see how the relative (total) size of the passive and active funds,
depends on the market conditions.
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Chapter 4

Contracting on the Managerial
Aftermarket: Market Sophistication
and Termination

Our goal is to demonstrate that the relative job security that CEOs enjoy can be partly
attributed to the high sophistication of the managerial labour market. To do this we build a
theoretical model in which a representative investor proposes a contract to a manager, which
also specifies the conditions of his termination. Production is a function of the manager’s
effort and ability, both of which are his private information. The former is a choice variable,
whereas the latter follows a Geometric Brownian motion. The manager’s post-termination
payoff is generated by an exogenous managerial labour market, and it is equal to his expected
ability. The market learns his ability with some given probability, which we interpret as its
sophistication. Otherwise, it forms its posterior based on his termination time. Our main
result is that the more sophisticated the market is, the more lenient the manager’s contract
becomes, which results in a longer tenure. To prove this we demonstrate that the investor’s
revenue maximisation problem encompasses a stopping problem. Its solution is to fire the
manager when he reports that his ability is below a cutoff. We present a contract that
implements the optimal stopping time, this uses a golden parachute to induce the manager
to admit his incompetence.

4.1 Introduction
Should the relative job security of even under-performing CEOs be interpreted as a sign of
management entrenchment? We definitely acknowledge that this is a significant contributing
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factor. Nevertheless, some of the instruments that protect an incompetent CEO, such as
his severance package (golden parachute), are often negotiated before the beginning of his
employment. Here we present the sophistication of the managerial labour market as another
factor that should be considered. We define this sophistication to be the degree to which the
managerial labour market can independently figure out the CEO’s ability. We demonstrate
that a highly sophisticated market will push a firm to offer a lenient contract to a CEO, even
when it has all the bargaining power. This will protect an under-performing manager, and
will lead to a longer expected tenure.

Our argument is the following. The post-termination career of a manager (he), whose
ability is his private information, is also important for the representative investor (she)
that employs him. This is because the more reputation the manager retains after being
terminated, the higher his post-termination payoff. Hence, it is cheaper for the investor to
initially attract him. However, the manager’s post-termination payoff is not only a function
of his reputation, since a sophisticated market will also be able to make some independent
inference on his ability. But then the more sophisticated the market is, the less the investor
knows about the manager’s value in it. This is because the manager’s ability is his private
information, while his reputation is not. Therefore, an increase in the market’s sophistication
makes it harder for the investor to utilise the manager’s post-termination career in order to
reduce his current compensation. This decreases the value of terminating the manager for
the investor, which results in the retainment of even a relatively under-performing manager.

It follows then that these lenient termination rules will result on only highly incompe-
tent managers being fired and longer tenures. Interestingly, our intuition implies that the
adoption of better corporate governance practises and an improvement on the ability of
boards to screen their potential hires might have an adverse effect on the quality of available
experienced managers.

More generally, our analysis investigates the effect of a CEO’s termination on his reputa-
tion. The latter is interwoven with the value of his company, since it affects the behaviour of
consumers and investors alike1 . Henceforth, the conditions under which a CEO is fired and
their effect on his reputation are an important consideration when negotiating his contract2

In particular, our analysis focuses on deriving the reputational loss that a fired CEO incurs
and showing how this depends on the length of his tenure.

To achieve the above we consider a model in which a representative investor makes a take-
it-or-leave-it contractual offer to a manager. The manager’s ability is his private information.

1For example see the following report from www.webershandwick.com.
2There have even been legal cases in which former CEOs have requested to be compensated for a loss

in reputation. A nice article that covers both this and golden parachutes is that Howard Levitt’s in the
Financial Post.
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Its initial value is generated by some fixed distribution and subsequently it evolves according
to a geometric Brownian motion. The offered contract also specifies a cutoff on the reported
ability, below which it is terminated. When fired the manager joins a managerial labour
market, in which his payoff equals his expected ability. This market can independently
figure out the manager’s ability with some given probability, which we interpret as its degree
of sophistication. However, when his ability remains private the market has to update its
prior on his expected ability based on the realised termination time. We interpret this
posterior expectation as the manager’s reputation. Hence, the manager’s post-termination
expected payoff is a linear combination between his ability and reputation.

To derive our main results we calculate the revenue maximising cutoff in closed-form.
We show that this is decreasing on the market’s degree of sophistication3. Hence, a more
sophisticated market will push the investor towards offering a more lenient contract to the
manager. In addition, because the manager is fired on a lower ability level, this will result on
a decrease on his competency when entering the labour market. Finally, we use the revenue
maximising cutoff to demonstrate that an increase on the market’s sophistication will also
lead to a longer expected tenure for the manager.

Note that even though all three of the above results are phrased as a comparative static for
the same market, they can also be interpreted as a comparison between different markets. In
particular, as we explained above our aim is to make the argument that a highly sophisticated
labour market, such as the managerial one, will tend to be dominated by more lenient
contracts. Nevertheless, we are aware that this market also differs in many other aspects,
however here we focus only on the affect of the market’s sophistication on job security.

Another aspect of our analysis that is novel within this context is the informational
value that termination times acquire. This is because the market updates its belief on the
manager’s ability based on the decision to fire him. It is unavoidable then that terminating
a manager has a negative impact on his reputation. This also has an adverse effect on the
investor’s profits, since she captures part of the manager’s post-termination payoff. On the
other hand, continuing the employment of an incompetent manager is also inefficient. Hence
the revenue maximising termination time has to balance those effects. We demonstrate that

3A more technical explanation of our main result is the following. The manager’s post-termination payoff
can be interpreted as an output of his partnership with the representative investor. Hence it is subject to
the same inefficiencies that information asymmetry creates on production. What’s more those inefficiencies
are increasing in the dependency of the post-termination payoff on the manager’s type, because this is his
private information. Therefore, the higher the relative importance of the manager’s actual ability, versus his
reputation, the less valuable termination becomes for the investor. For example, if this payoff was purely
based on the manager’s reputation, then there would be no information asymmetry between the two with
regards to the manager’s post-termination payoff, and this would be the case where the value of termination
would be the highest for the investor.

117



the optimal termination policy is a cutoff rule, that is the manager is fired when his ability
falls below a certain cutoff, which we provide in closed-form.

A final contribution of our analysis is to demonstrate that Golden Parachutes fulfil an
essential part of implementing the optimal termination time, which is to incentivise the
manager to admit his incompetence. This is because the manager has superior knowledge
on his ability to deliver profits, whereas the investor can only indirectly monitor how this
ability evolves. Therefore, for the former to give up the possibility of future wages and take
the associated penalty on his reputation it has to be that he is compensated by some other
financial reward.

Our work is related to the vast literature of career concerns, due to the agent’s post-
termination payoff. What separates our analysis from this literature is that it mainly ex-
amines situations in which the agent does not have private information at the beginning of
his employment. For example, the seminal contribution of Holmström (1999) assumes that
the agent’s ability is unknown by both him and the principal, and that the former attempts
to influence the principal’s learning process with his private action. A paper more relevant
to our discussion is that of Gibbons and Murphy (1992). They consider a setup similar to
Holmström’s, however they allow the principal to write one-period incentive contracts. Their
main result is that the closer to the end of his career the agent is, the more performance based
his compensation becomes. This is because the agent’s career concerns decrease, therefore
the principal has to rely on direct incentives to induce performance. More recently, Prat
and Jovanovic (2014) considered a similar setup but they allowed for long-term contracts.
In contrast to the above two papers they find that effort is lower at the beginning of the
agent’s employment, because the initial uncertainty over his ability leaves a lot of room for
him to manipulate the principal’s beliefs.

A branch of this literature that is directly related to our paper allows for contract termi-
nation. Guriev and Kvasov (2005) consider an environment without information asymmetry,
in which they demonstrate that efficient investment in the surplus of a contractual relation-
ship can be achieved even with incomplete contracts. Milbourn (2003) considers a CEO who
is replaced when the shareholder’s posterior belief on her ability is below some exogenously
set threshold. He shows that the higher the CEO’s prior reputation is, the more performance
based the optimal linear contract becomes. Another related paper is that of Demarzo and
Sannikov (2016) in which they characterise the optimal stopping time of a principal-agent
relationship in which both counter-parties gradually learn about the future profitability of
their project. Finally, Madsen (2016) considers a model in which the agent possesses superior
private information on when a project, which is always initially profitable, should be aban-
doned. He shows that the firm’s optimal contract entails a deadline and a time depended
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golden parachute for the agent.
Due to its topic our paper is related to the vast literature that examines CEO compen-

sation (for example see Edmans et al. (2012) and He et al. (2017)) and especially to those
papers that focus on managerial turnover (Eisfeldt and Kuhnen (2013), Gayle et al. (2015),
Hakenes and Katolnik (2017), Vasama (2016), Jenter and Lewellen (2017), Taylor (2010)).

Our work is also related to the literature of Dynamic Mechanism Design. This commonly
considers an agent who has ex ante private information on his type, which evolves stochas-
tically over time. The interested reader can find an excellent review of this literature on
Pavan et al. (2014), which also unifies and solves a significant part of the earliest attempts.
They provide methods to identify the contract that solves the above problem and results in
the type of contracts that can be implemented. Eső and Szentes (2017) do the same but for
a setting which includes both adverse selection and moral hazard. Bergemann and Strack
(2015) analyse a continuous time specification of the former paper. Williams (2009, 2011)
also considers a continuous time principal-agent model with both hidden actions and hidden
states, but focuses on a less general model.

Our analysis is especially related to the branch of the aforementioned literature that
also allows for stopping times. The most closely related paper is that of Garrett and Pavan
(2012). Similar to us they consider a principal-agent relationship where only the agent
observers his evolving ability, however they assume that both the principal’s and the agent’s
post-termination payoffs are constants. They show that the principal’s optimal contract
entails cutoffs on the reported ability, below which the agent is fired. In addition, under
common assumptions those cutoffs will be non-increasing in the history of reported abilities,
and non-increasing over time. In other words, higher past ability or longer tenure result into
more lenient current termination policies. This is because the inefficiency that information
asymmetry creates in production is decreasing in both the agent’s past history and his tenure.
Another relevant paper is that of Kruse and Strack (2015). They also consider a model in
which the agent’s employment can be terminated and demonstrate how such a stopping rule
can be implemented.

The rest of the paper is organized as follows. Section 4.2 introduces our model. The main
analysis is undertaken in section 4.3. Finally, section 4.4 discusses two interesting extensions,
the analysis of which can be found in the appendix, and section 4.5 concludes.

4.2 Model
This is a continuous time model t ∈ [0,∞). A representative investor, also referred to as
the principal (she), makes a take-it-or-leave-it contractual offer to a manager, to whom we

119



will refer to as the agent (he). The offered contract also specifies the conditions under which
it will be terminated. At the point of its termination the principals switches to her outside
option, which generates lump sum payoff ωp ≥ 0. The agent also receives a lump sum payoff
from a labour market (it), but only if he accepted the principal’s offer4. Otherwise, the agent
gets his outside option which gives lump sum payoff ωa ≥ 0. Both the principal and the
agent are risk neutral and discount the future with rate r > 0.

While being employed by the principal the agent produces for her flow payoff

yt =
√
a · θt · et

where et ∈ [ 0,
√
κ θt ] is the flow level of effort chosen privately by the agent with flow cost

(et)
2/2. We assume κ > 1, so that the surplus maximising level of effort is feasible. The

agent’s ability θt is also his private information and it evolves according to the Geometric
Brownian motion

dθt = θt · µ dt+ θt · σ dBt

where µ < r and Bt denotes the standard Brownian motion. The initial type θ0 is drawn
from the interval [ θ, θ ] and θ > 0. In addition, it is distributed according to smooth CDF
F (θ0) with density f(θ0) > 0. Following most of the literature, we assume that the inverse
hazard rate [1− F (θ0)]/f(θ0) is non-increasing in θ0.

To introduce career concerns suppose that the agent’s payoff from this market equals
some parameter Λ > 0 plus the market’s inference on his current ability, that is his ability at
the point of his termination. In particular, the market learns the agent’s current ability with
probability λ ∈ [0, 1]. We interpret λ as a measure of the labour market’s sophistication.
The only other information that the market acquires is the termination time of the agent’s
contract and the menu that was offered by the principal5. Hence it observers neither the
agent’s reports in this menu, nor the agent’s production and wages.

What makes the model interesting is that even when the market does not learn the
agent’s current ability directly, it still updates its prior based on the time of termination.
To be more specific, let ht denote the principal’s private history up to and including t, and
ct(h

t) ∈ {0, 1} her decision to continue her partnership with the agent, with ct(h
t) = 1

standing for continuation. This decision is a deterministic mapping of the stochastic history
4This is mainly for simplicity. As long as the firm is sufficiently productive most of our analysis holds

even if the agent was able to join the labour market immediately.
5We could equivalently assume that the principal can disclose this mechanism. In addition, we could even

allow her to disclose information on the agent’s reports, however this would not alter our results, because
the agent’s payoff will turn out to be a linear function of the market’s posterior on his ability.
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ht, which results in the following stochastic termination time.

τ(c) = inf
{
t ≥ 0 : ct(h

t) = 0
}

where c = {ct(·)}t≥0

For simplicity we assume that the agent has no limited liability. However, it will become
obvious that for a wide set of parameters this will not be a binding constrain. The principal
can fully commit to the contract she is offering, however the agent will not be able to commit
in advance to staying in this contract.

The revelation principle holds, hence it is without loss to focus on direct and incentive
compatible mechanisms. Let θ̂t denote the agent’s report at t and θ̂t the whole reported path
up to t. Therefore, the principal offers to the agent contract{

wt(θ̂
t), Wt(θ̂

t), et(θ̂
t), ct(θ̂

t)
}
t≥0

which for each point t specifies the flow and lump sum wages, the recommended level of
effort, and the termination policy as a function of the reported path θ̂t.

To sum up the timing of our model is as follows. At the beginning of time the principal
makes a take-it-or-leave-it offer to the agent. If the offer is rejected, then they both switch to
their outside options. If it is accepted, then the agent starts reporting the path of his ability
θt, which the contract translates into a corresponding level of production. Whenever the
reported path implies a termination, that is ct(θ̂t) = 0, the agent’s post-termination payoff
is generated from the market, whereas the principal’s continues to be equal to her outside
option.

4.3 Analysis
Our analysis proceeds in the following way. In section 4.3.1 we derive an expression for
the agent’s post-termination payoff and solve the principal’s first best problem. In section
4.3.2 we derive a representation of the principal’s expected discounted revenue that does not
depend on wages wt(·) and Wt(·). We achieve this by imposing a restriction on the agent’s
action space, which makes our model equivalent to one where only his initial type is his
private information. In section 4.3.3 we use this representation to characterise the optimal
termination time of the agent’s employment. This will also give us the principal’s revenue
under the imposed restriction. Section 4.3.4 presents wages that will implement the derived
termination time and revenue, even without using the aforementioned restriction.
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4.3.1 First Best

In the first best the principal can directly observe the agent’s type, but for the model to
be intersting we will continue to assume that the market only observes it with probability
λ. Hence, with probability 1 − λ it updates based only on the realised termination time.
For the latter case let the market’s posterior expectation on the ability of an agent that was
terminated at time t be mt(c) = Eθt

[
θt
∣∣ τ(c) = t

]
, which we interpret as his reputation.

Hereafter we will suppress the dependence of τ(c) and mt(c) on c in order to maintain a
compact notation. It follows then that the agent’s post-termination payoff can be written as

M(mt , θt) = Λ + (1− λ) ·mt + λ · θt (4.1)

Hence the more sophisticated the market is, the less the agent’s post-termination payoff
depends on his reputation6.

To state the principal’s revenue maximisation problem in the first best note that we have
endowed her with all the bargaining power. Hence in the first best she captures all the
expected value of the agent’s production. Moreover, the principal also captures the agent’s
post-termination payoff, because he only gets access to the managerial market through her.
Therefore, she solves

max
e,c,θ∗

∫ θ

θ∗
Eθ
[ ∫ τ

0

e−rt ·
(√

a θt · et(θt)−
et(θ

t)2

2

)
dt+ e−rτ ·

(
ωp +M(mτ , θτ )

) ∣∣∣∣ θ0] dF (θ0)
− [1− F (θ∗)] · ωa + F (θ∗) · ωp (Pf )

where θ∗ is the lowest initial type with which the principal contracts. This will be ignored
in the following analysis since it is not of particular interest.

Note that the above expression first integrates over the initial type with measure F (θ0),
and then takes a conditional expectation over its evolution. It will become apparent in the
next section that it is very useful to separate those two components of the agent’s ability.
Hence to achieve this let zt = θt/θ0 denote the proportional change of the agent’s type from
time zero to t. Therefore, zt also follows a geometric Brownian motion, however its initial
value is normalised to one.

The point-wise maximisation of production gives that the optimal level of effort is
eft (θt) =

√
a θt. Substitute this into (Pf ), and ignore the choice of θ∗ to obtain that the

6An implicit assumption we have made is that the agent’s reputation is only based on his termination
time. An alternative model could also allow for some noise signal of the agent’s performance while employed
to be available to the market.
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principal solves

max
c

∫ θ

θ∗
Ez
[
a θ0
2

·
∫ τ

0

e−rt zt dt+ e−rτ ·
(
ωp + Λ+ (1− λ)mτ + λ zτ θ0

)]
dF (θ0) (Tf )

If it wasn’t for mτ , the value of which is affected by the choice of the whole correspondence
of the stopping rule c(·), this would be a canonical stopping problem. Nevertheless, the
following lemma demonstrates this (Tf ) can be reformulated as such a stopping problem.

Lemma 4.1. (Tf ) is equivalent to

max
τ

∫ θ

θ∗
Ez
[
a θ0
2

·
∫ τ

0

e−rt zt dt+ e−rτ ·
(
ωp + Λ+ zτ · θ0

)]
dF (θ0) (T ′

f )

Proof. In Appendix D.1.

Interestingly, this is not a function of the market’s sophistication, a property which will
also pass to the solution of this stopping problem. Let

c =

(
µ

σ2
− 1

2

)
+

√(
µ

σ2
− 1

2

)2

+ 2
r

σ2
(4.2)

where c > 0 is only a function of parameters.

Proposition 4.1 (First Best). The optimal termination time is

τ f (θ0) = inf
{
t ≥ 0 : zt ≤ qf (θ0)

}
(4.3)

where
qf (θ0) =

c

1 + c
· ωp + Λ
a/2
r−µ − 1

· 1

θ0
(4.4)

if a > 2(r − µ). Otherwise, τ f (θ0) = 0. In addition, qf (θ0) is decreasing in θ0 and it is not
a function of λ.

Proof. In Appendix D.1.

The most important observation that we can make is that in the absence of informa-
tion asymmetry, between the principal and the agent, the market’s sophistication does not
affect the termination decision. As we explained in the introduction, this is because this
dependency is due to the inefficiencies that the information asymmetry creates during the
contracting process.
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A second interesting observation is that if the production process is sufficiently produc-
tive, i.e. a > 2(r − µ), then all initial types θ0 are terminated on the same ability level. To
see this let Qf (θ0) = θ0 · qf (θ0) be the terminal ability of initial type θ0, that is his ability
on τ f (θ0). Then (4.4) gives that

Qf (θ0) =
c

1 + c
· ωp + Λ
a/2
r−µ − 1

which is not a function of θ0. This is another property that will not hold in the second
best, because the principal will use termination as a tool to decrease the agent’s information
rents. This is similar to the effect that information assymtery commonly has on the revenue
maximising level of effort.

4.3.2 Revenue equivalence

For the analysis of this section it suffices that M(mt, θt) is a twice continuously differentiable
function, increasing in both the agent’s ability and reputation at the point of his termination.
For technical reasons we will also require that its partial derivative with respect to its second
input is bounded above by some positive constant. In section 4.3.3 we will switch back to
the linear version of M(mt, θt) in order to derive our main results.

We start our analysis by showing that the principal’s revenue can be written as a function
of only production and termination relevant policies. Those are the recommended level of
effort et(·) and the continuation decision ct(·).

First, we impose a restriction on the agent’s action space. Second, we use this restriction
to derive a necessary representation of the agent’s payoff that will only be a function of
policies et(·) and ct(·). Third, we equate this representation with one that is a function of
wages. Fourth, we use this equality to calculate wt(·) and Wt(·) on the principal’s revenue.

The aforementioned restriction is that the agent can only use consistent deviations.

Definition. We call a deviation consistent if the agent is able to only misreport his initial
type θ0 and in addition is restricted to

• truthfully report the proportional change of his ability zt = θt/θ0

• and to mask any such misreport θ̂0 ∈ [ θ, θ ] by exerting flow effort

êt(θ̂0, θ
t) = et(θ̂

t) ·
√
θ̂0/θ0

We say that the effort êt(θ̂0, θt) “masks” the corresponding consistent deviation because
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it makes the agent’s flow output
√
aθ0 · êt(θ̂0, θt) equal to that of an agent whose initial types

was indeed θ̂0 and had the same path realisation of zt. An equivalent interpretation of the
above restriction is that the proportional change zt is directly observable by the principal,
whereas θ0 is the agent’s private information. This is similar to the two period example we
used to introduce our model.

Let τ̂ denote the termination time that is implied by ct(θ̂t) under a consistent deviation.
Similarly, we will write zτ̂ to denote the implied proportional change on which the contract
is terminated. When the termination time is implied by truthful reporting we will instead
use τ and zτ , respectively. In this section, we will assume that the agent can commit on
leaving the contract only in accordance with τ̂ . The next section will demonstrate that this
restriction is also not important for our results. Hence under a consistent deviation the
agent’s type when exiting the contract and entering the market is given by θ0 zτ̂ .

Then the expected discounted payoff of an agent that reported θ̂0, while his true initial
type was θ0 is given by

V̂ (θ̂0, θ0) = Ez
[ ∫ τ̂

0

e−rt ·
(
wt(θ̂

t)− et(θ̂
t)2

2
· θ̂0
θ0

)
dt + e−rτ̂ ·M(mτ̂ , θ0 zτ̂ )

]
(4.5)

Hence the agent’s payoff has two parts. The first is a flow payoff up to the stochastic
termination time τ̂ . The second is his post-termination payoff, which is generated by the
market. It is useful to point out that the true initial type θ0 appears only on the ratio that
multiplies the cost of effort and in the market payoff. In particular, the actual polices and
wages depend only on the reported type θ̂0.

Next, we want to argue that there is a unique cutoff θ∗ ∈ [ θ , θ ] above which all initial
types accept the principal’s offer. To see why this has to be true consider θ̃0 > θ0 and
suppose that θ0 accepts the principal’s offer. Then θ̃0 can also accept the offer and deviate
to reporting θ0 as his initial type. Then he will obtain exactly the same expected wages as
type θ0, but with smaller cost of effort and higher market payoff. Hence he will also accept
the offer. Then we conclude that the principal is restricted to contracting with initial types
above a certain enodgenous cutoff θ∗.

Hence, the principal’s revenue maximisation problem under consistent deviations, is

max
w,e,c,θ∗

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt ·
(√

a θ0 zt ·et(θt)−wt(θt)
)
dt + e−r τ ·ωp

]
dθ0 + [1−F (θ∗)] ·ωp (P)

subject to
θ0 = argmax

θ̂0

V̂ (θ̂0, θ0) , ∀ θ0 ∈ [ θ, θ ] (IC)
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We want the derive a representation of the objective function of (P) without the payments
wt(·). To achieve this let V (θ0) = V̂ (θ0, θ0) denote the agent’s payoff on path. Also, let
M2(·) denote its partial derivative with respect to its second input. Then (IC) together with
a generalised version of the envelop theorem implies the following.

Lemma 4.2 (Envelop Theorem). The agent’s on path payoff is absolutely continuous and
has the weak derivative

V ′(θ0) = Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2 θ0
dt + e−rτ · zτ ·M2(mτ , θτ )

]
(4.6)

Proof. In Appendix D.1.

Therefore, we are able to write V (θ0) in two possible ways. On the one hand, we can
use (4.6), which provides an expression that does not depend on wages wt(·). On the other
hand, (IC) implies that we can take an expression of V (θ0) by substituting θ̂0 = θ0 directly
in (4.5). Hence contrary to the first representation, the second will be a function of wt(·).
Equating those two gives

V̂ (θ0, θ0) = V (θ∗) +

∫ θ0

θ∗
V ′(x) dx (4.7)

which we can further simplify by setting the payoff of the lowest participating type to his
outside option ωa. Next, we use (4.7) to solve for the discounted value of the expected wages
of each type θ0. Then we substitute this in the principal’s revenue (P) and use Fubini’s
Theorem to obtain the following representation.

Proposition 4.2 (Revenue Equivalence). The principal’s revenue maximisation problem
(P) can equivalently be written as

max
e,c

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt ·
(√

a θ0 zt · et(θt)−
[
1 + η(θ0)/θ0

]
· et(θ

t)2

2

)
dt

+ e−rτ ·
(
ωp +M(mτ , θτ )− η(θ0) zτ M2(mτ , θτ )

)]
dF (θ0) − [1− F (θ∗)] · ωa + F (θ∗) · ωp

(P ′)

where η(θ0) = [1− F (θ0)]/f(θ0) denotes the inverse hazard rate of F (·).

Proof. In Appendix D.1.

The first line of the above representation corresponds to the revenue that is generated
during the agent’s employment by the principal. The latter cannot capture all the surplus of
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this production because of the agent’s rents, which are due to the asymmetry of information.
Those rents appear in the constant η(θ0)/θ0 which increases the cost of production.

But note that the agent’s type also affects his post-termination value, which is on the
second line of the above representation. This dependence also results in information rents,
but this time those are generated by the market payoff. Therefore, even in this case the
principal will not manage to capture the full benefit that this market creates for the agent.
The only case in which she will extract all this post-termination value is when M2(·) = 0,
that is when the market is purely based on reputation and ignores actual ability.

4.3.3 Optimal production and termination

In this section we turn our attention to deriving the optimal production and termination
policy τ . The point-wise optimal level of effort is

e∗t (θ
t) =

√
a θ0

1 + η(θ0)/θ0
·
√
zt (4.8)

Substitute the point-wise optimal level of effort (4.8) in the necessary representation (P ′).
This gives that the principal’s flow payoff from employing an agent (θ0, zt) is

k(θ0) · zt where k(θ0) =
a θ0/2

[1 + η(θ0)/θ0]2
(4.9)

We have assumed that η(θ0) is non-increasing, hence k(θ0) is increasing in θ0. An interesting
implication of (4.9) is that a higher initial type agent will be more valuable later in the
contract than a lower initial type, even if they both have the same contemporaneous ability
θt. This is because the inefficiencies that information asymmetry creates in production result
on the lower initial types getting low incentive contracts.

For the rest of the analysis we switch back to the linear form of the agent’s post-
termination payoff M(mt , θt), as given in (4.1). Substitute this form of M(mt , θt) and
the derived optimal effort in (P ′) to obtain that the principal solves

max
τ

∫ θ

θ∗
Ez
[
k(θ0) ·

∫ τ

0

e−rt zt dt+e
−rτ ·

(
ωp+Λ+(1−λ)mτ +λ zτ [θ0−η(θ0)]

)]
dF (θ0) (T )

where the choice over the cutoff θ∗ has momentarily being ignored. (T ) is not a regular
stopping problem, because the value of mt is endogenous. Despite that, it can still be
rephrased as one.
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Lemma 4.3. (T ) is equivalent to

max
τ

∫ θ

θ∗
Ez
[
k(θ0) ·

∫ τ

0

e−rt zt dt+ e−rτ ·
(
ωp + Λ+ zτ · [θ0 − λ η(θ0)]

)]
dF (θ0) (T ′)

Proof. In Appendix D.1.

The important difference between (T ) and (T ′) is that the former depends on the pos-
terior reputation mτ , whereas the latter only on the stopping values zτ . Therefore, in the
second representation for each given θ0 the principal faces a classic optimal stopping prob-
lem. As we mentioned in the introduction the value of stopping is decreasing in λ. This is
because the agent’s post-termination rents that are generated from the market are increasing
in the market’s sophistication.

This will affect the solution of this stopping problem. In particular, we demonstrate in
Appendix D.2 that for each initial type θ0 the principal solves

max
τ

Ez
[
e−rτ ·

(
K(θ0)− zτ

)]
(T ′

θ0
)

where K(θ0) = ωp / [
k(θ0)
r−µ + λ η(θ0)− θ0]. There we also argue that if K(θ0) is negative, then

stopping immediately is optimal. On the other hand, if K(θ) is positive, the principal solves
a stopping problem that is similar to the optimal exercise time of the perpetual American
put option. Our analysis in the appendix implies the following proposition.

Proposition 4.3 (Optimal Termination). The solution of (T ′
θ0

) is

τ ∗(θ0) = inf
{
t ≥ 0 : zt ≤ q(θ0)

}
(4.10)

where
q∗(θ0) =

c

1 + c
· (ωp + Λ) ·

[
k(θ0)

r − µ
+ λ η(θ0)− θ0

]−1

(4.11)

if the expression in the brackets is positive. Otherwise, τ ∗(θ0) = 0.

Proof. In Appendix D.1.

Therefore, the solution of (T ′
θ0

) is to terminate the employment of an agent whose initial
type is θ0 when his ability θt falls bellow the barrier Q∗(θ0) = θ0 · q∗(θ0). This barrier is also
the terminal ability of initial type θ0, that is his ability on τ ∗(θ0). Interestingly, Q∗(θ0) is not
necessarily monotonic. This is because a higher initial type θ0 is not only more productive
while employed by the principal, but also generates a higher post-termination payoff for her.
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Hence as θ0 increases it is not obvious which effect will dominate. Despite that, we are still
able to state the following results.

Corollary 4.1 (Terminal Abilities). Let Q∗(θ0) = θ0 · q∗(θ0) denote the level of ability on
which the initial type θ0 will be terminated. Then whenever 0 < Q∗(θ0) < θ0 (equivalently
τ ∗(θ0) > 0):

• a sufficient condition for Q∗(θ0) to be decreasing in θ0 is that the firm is relatively
productive:

a ≥ λ · (r − µ) ·
[
1 + η(θ)/θ

]3 (A)

• Q∗(θ0) is decreasing on the degree of the market’s sophistication λ, for every θ0 ∈ [θ, θ]

The same results holds for the cutoff q∗(θ0).

Proof. In Appendix D.1.

Our first comparative static is with respect to θ0. Under condition (A) this states that
the higher the agent’s initial ability θ0 is, the lower his terminal one θτ becomes. This
is because under this condition current production is relatively more important compared
to the manager’s post-termination payoff. We believe that such a restriction is especially
relevant for big and productive firms, that is our model describes well the situation that a
super-star CEO is facing.

The second statement of the corollary gives our main comparative static. This says that
in a sophisticated labour market, where the agent’s ability is an important factor of his
post-termination payoff, his terminal ability will be relatively lower. As we explained before
the higher the λ is, the higher the information asymmetry between the principal and the
agent with respect to his post-termination payoff. This increases the agent’s rents generated
from his termination, which results in a decrease on the value that termination has for the
principal.

The above comparative statics are on the agent’s terminal ability. Next, we use (4.11)
to derive the corresponding ones on the agent’s tenure. A peculiarity of hitting times such
as (4.10) is that their expected value is infinite. Hence, we cannot use the expected tenure
E[τ ∗(θ0)] for our comparative statics. Instead, we rank the distributions of those stopping
times using first order stochastic dominance. Let G(· | θ0, λ) denote the CDF of τ ∗(θ0) for
given initial ability θ0 and market sophistication λ.

Corollary 4.2 (Tenures). Consider θ′0 > θ0 and λ′ > λ. Then:

• If (A) is satisfied, G(· | θ′0, λ) first order stochastically dominates G(· | θ0, λ).
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• G(· | θ0, λ′) first order stochastically dominates G(· | θ0, λ).

Proof. In Appendix D.1.

The proof is a simple application of the results we already have on the cutoff q∗(θ0).
This represents the relative change on the agent’s ability below which he will be fired. Non-
surprisingly, the probability to have been terminated before t is decreasing on the value of
the cutoff. Hence, the above is an equivalent way to state Corollary 4.1.

We interpret the cutoff q∗(θ0) as a measure of how strict the firing rule of θ0 is. That
is the smaller q∗(θ0) the more lenient its contract. Naturally, the properties of q∗(θ0) pass
on to the implied distribution of the agent’s tenure. Hence, under condition (A) a higher
initial type gets a more lenient contract. In addition, the more sophisticated the market is,
the more lenient the agent’s contract.

Finally, because it is not very relevant to our discussion we have not provided a solution
for the θ∗ the level of initial ability above which the manager is hired. This is obtained
by equating the point-wise value (the value for each given θ0) that (T ′) takes under the
optimal termination time (4.10) with the sum of the outside options ωp + ωa. However,
for Λ sufficiently high the principal would contract with all manager types, even if she was
planning to fire them immediately after. In this case, her role would be closer to that of an
agency that connects that agent with the managerial labour market.

The results of this section where derived under the assumption that the agent can only
use consistent deviations. However, in the next one we will show that as long as (A) holds
we will be able to find a contract that implements them.

4.3.4 Implementation

In this section we demonstrate that under (A) there exists a contract that implements both
the policies and the payoffs that we identified in the previous section. This contract will not
rely on the restrictions that we imposed on the agent’s strategic space. In other words, the
agent can use any deviation he wants.

Here we provide a contract that generates the policies and payoffs that we identified in
the previous section. This will require from the agent to make a choice from a menu only at
time zero. An equivalent interpretation is that the agent will only need to report his initial
type. The menu that the principal offers to the agent is{

w(θ̂0, yt), [Wt(θ̂0)]t>0, W0(θ̂0)
}

(W)

In addition, the principal allows the agent to decide on his own when it is the optimal time
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to leave. The first component of this payoff is the linear flow wage

wt(θ̂0, yt) = w(θ̂0) · yt where w(θ̂0) =

√
a

1 + η(θ̂0)/θ̂0
(4.12)

To write the second component let

u(θ̂0) =
a θ̂0/2

[1 + η(θ̂0)/θ̂0]2

which we will shortly show that it is a constant that multiplies the manager’s flow payoff
under wt(θ̂0, yt). Then the contract’s second instrument is the golden parachutes

Wt(θ̂0) = W (θ̂0)− (1− λ) ·mt where W (θ̂0) = ωp ·
u(θ̂0)
r−µ − λ θ̂0

k(θ̂0)
r−µ + λ η(θ̂0)− θ̂0

(4.13)

This is paid to the agent at any point t > 0 that he reports that his employment should be
terminated. Therefore, in the context of our analysis this golden parachute is a tool that the
principal uses to incentivise the agent to admit his inadequacy.

The third and final component of the menu that the principal offers to the agent is the
signing bonus W0(θ̂0), then functional form of which is given by

W0(θ̂0) = ωa +

∫ θ

θ∗
Û2(x, x) dx− Û(θ0, θ0) (4.14)

where Û(θ̂0, θ0) denotes the continuation payoff (excluding the signing bonus of time zero)
of a manager whose initial ability is θ0, but his choice from the above menu was that corre-
sponding to θ̂0. The functional form of this function is given below.

The rest of this section proves our implementation result. It shows that if (A) holds,
then the menu of contracts (W) implements the optimal effort and termination time derived
in the previous section. As we mentioned before, this part of the analysis will not impose
any restrictions on the agent’s action space. This will prove that those optimal policies are
indeed the revenue maximising ones for the principal.

To begin the proof, for each t > 0 consider an agent that reported θ̂0 while his initial
ability was θ0. His optimal level of effort is given by

max
et

w(θ̂0) ·
√
θ0 zt · et − (et)

2

2

the solution of which is ê∗(θ̂0, θ0, zt) = w(θ̂0) ·
√
θ0 zt. Hence it follows from the functional
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form of w(θ̂0) that if the initial ability has been truthfully reported, then the implemented
level of effort is the revenue maximising one, as given in (4.8).

Next we demonstrate that if the initial ability θ0 was truthfully reported, then the golden
parachute Wt(θ̂0) implements the revenue maximising stopping time, as given in (4.10). The
contract delegates to the agent the termination decision. Hence he also solves an optimal
stopping problem. The agent’s flow payoff while the contract continues is

û(θ̂0, θ0) · zt where û(θ̂0, θ0) =
a θ0/2

[1 + η(θ̂0)/θ̂0]2

Also, let u(θ0) = û(θ0, θ0) denote the corresponding constant that multiplies zt under truthful
reporting. Therefore, it follows from the functional form of Wt(θ0) that the agent’s optimal
stopping problem is

max
τ

Ez
[
u(θ̂0, θ0) ·

∫ τ

0

e−rt zt dt+ e−rτ ·
(
λ zτ θ0 +W (θ̂0)

)]
(Ta)

To solve this we use again our generic analysis in Appendix D.1.

Lemma 4.4 (Golden Parachutes). The solution of (Ta) is

τa = inf
{
t ≥ 0 : zt ≤ q̂(θ̂0, θ0)

}
(4.15)

where

q̂(θ̂0, θ0) =
c ·W (θ̂0)

1 + c
·

[
u(θ̂0, θ0)

r − µ
− λ θ0

]−1

(4.16)

In addition, q̂(θ0, θ0) = q(θ0) and q̂(θ̂0, θ0) = q(θ̂0) · θ̂0θ0 .

Proof. The stopping time τa and the associated barrier q̂(θ̂0, θ0) follow immediately from
the solution of the optimal stopping problem of Appendix D.1. In addition, we obtain that
q̂(θ0, θ0) = q(θ0) by substituting W (θ0) in the left hand side of this inequality, which can also
be used to obtain that q̂(θ̂0, θ0) = q̂(θ̂0, θ̂0) · θ̂0/θ0.

Hence we have shown that if the initial type was truthfully reported, then the given flow
wage and golden parachute implement the revenue maximising stopping time.

It remains to implement the truthful reporting of the initial type θ0, which is achieved
with the signing bonus W0(θ̂0). Our analysis in Appendix D.1 gives that the agent’s payoff
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at time zero, net of W0(θ̂0), is given by

Û(θ̂0, θ0) =

{
u(θ̂0,θ0)
r−µ +

(
u(θ̂0,θ0)
r−µ − λ θ0

)
· q̂(θ̂0,θ0)

1+c

c
, if q̂(θ̂0, θ0) ≤ 1

λ · θ0 + W (θ̂0) , if q̂(θ̂0, θ0) > 1
(4.17)

From which the following result follows.

Lemma 4.5. The signing bonus W0(θ̂0) implements the truthful reporting of θ0. In addition,

Û(θ0, θ0) + W0(θ0) = ωa +

∫ θ0

θ∗
V ′(x) dx (4.18)

where V ′(x) is as given in (4.6), but calculated under the optimal effort and termination
policies.

Proof. In Appendix D.1.

Therefore, the proposed contract implements the revenue maximising effort level and
termination time. In addition, (4.18) gives that the agent’s payoff is the same with that
we calculated in the previous section. Therefore, the principal’s revenue has to also be the
same, which completes the proof of Proposition 4.4.

Proposition 4.4 (Implementation). Suppose that (A) holds. Then the menu of contracts
(W) implements the optimal policies e∗(θt) and τ ∗(θ0) as identified in (4.8) and (4.10),
respectively. In addition, the implied payoff for the principal and the agent are also the same
with those of the previous section.

Proof. Follows from the above discussion.

4.4 Discussion
In order to obtain closed-form solutions, our analysis has imposed an important simplifying
restriction on the way the market learns the agent’s ability. This is that either it directly
observes it, or it learns nothing. Hence, the agent’s post-termination payoff becomes a linear
combination between his reputation and actual ability. Nevertheless, we believe that the
underlining intuition of our result, which is that the less the principal knows about the
agent’s post-termination value the smaller the value of termination becomes, is more general
than our setting. In particular, it should hold even if the market obtains a private signal on
the agent’s ability.
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Moreover, in an alternative model we could also assume that the agent’s post-termination
payoff was generated by a new contractual offer from a second principal. Generically, this
would imply that this payoff is a function of the whole posterior CDF of the agent’s ability,
instead of only the corresponding expected value. This is because his continuation payoff
would be generated by the rents he captures from the second contract, which commonly
depend on the whole functional form of this posterior CDF.

In such a setting, it might even be that the first principal would find it optimal to disclose
some of the agent’s reports on his ability. This is a topic that has been studied much more
extensively in Chapter 1. We believe that extending the results of the aforementioned chapter
in the setting we discuss here is very interesting future research.

In Appendix D.3 we offer some results in a model that allows for the post-termination
payoff to be generated by the contractual offer of a second principal, however we assume
that the interaction between the first principal and the agent is public. Hence in this setting
information provision is irrelevant, since the second principal acquires exogenously all the
information that the first principal has.

We demonstrate that the first principal faces an optimal stopping problem that is very
similar to that of our main analysis. Its solution is again a cutoff on the reported ability that
only depends on the agent’s initial type. In addition, if the production process of the first
principal is sufficiently more productive than that of the second, then this cutoff is decreasing
on the agent’s initial ability. Therefore, we obtain again that agents with higher initial ability
get more lenient contracts, and the intuition is the same as in our main analysis. Finally,
the contract that implements this cutoff also uses a golden parachute in order to incentivise
the agent to admit his incompetence.

4.5 Conclusions
We have considered the problem of a representative investor that hires a manager who can
potentially be fired. After his termination the manager’s payoff is generated by an exogenous
labour market that learns his ability with some positive probability. In the state of the world
where this ability remains hidden the market updates its prior on the manager’s expected
ability only based on the time of his firing. We interpreted this expectation as the manager’s
reputation and showed that in our assumed specification his post-termination payoff is a lin-
ear combination between his reputation and actual ability. Next, we demonstrated that the
investor’s revenue maximisation problem encompasses an optimal stopping problem. The
solution of the latter is a cutoff on the manager’s reported ability, below which his employ-
ment is terminated. We have shown that if the production process is sufficiently efficient,
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this cutoff is decreasing on the manager’s initial ability. Therefore, the more qualified the
manger is when negotiating his contract, the more lenient this contract will be. In addition,
this cutoff is always decreasing on the probability by which the market learns the agent’s
ability, that is on the relative importance of the manager’s ability versus his reputation. As a
result, the more sophisticated the labour market is, the less competent the manager is when
entering this market, and the longer the expected duration of his employment. Finally we
presented a contract that implements the above stopping time. This uses a golden parachute
to induce the manager to truthfully report his incompetence.
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Appendix A

Appendixes of Chapter 1

A.1 Proofs of section 1.4
Proof of Lemma 1.1. The revelation principle applies, hence it is without loss to focus
on direct and incentive compatible mechanisms. To make the notation more compact, write
the reported type as a subscript. S2’s revenue maximisation problem is the following one

max
pL,pH ,qL,qH

mus2 pH + (1− µs2) pL

s.t. (IRL ) θL qL − pL ≥ 0

(IRH) θHqH − pH ≥ 0

(ICL ) θL qL − pL ≥ θL qH − pH

(ICH) θHqH − pH ≥ θHqL − pL

Assuming that (IRL) does not bind leads to a contradiction. Subsequently, this can be used to
show that (ICH) has to bind. Hence the above simplifies to the unconstrained maximisation
problem

max
qL,qH

µs2 θH qH + (θL − µs2θH) qL

As a result the unique solution is to set q∗H = 1, while the optimal probability of supplying
the low type is

q∗L =

{
1 , if µs2 ≤ θL/θH

0 , if µs2 ≥ θL/θH
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This is implementable, because substituting the above solutions in (ICL) gives

θLqL − pL ≥ θLqH − pH ⇔ 0 ≥ θLqH − pH

⇔ θH(qH − qL) + θLqL ≥ θLqH ⇔ qH ≥ qL,

which is satisfied. Because the (IRL) binds the low type’s payoff is zero. The high type’s
payoff can be obtained using the (IRL) and (ICH) constraints, which give that

θHqH − pH
ICH= θHqL − pL

IRL= (θH − θL)qL

Proof of Lemma 1.2. For any countable S, and s ∈ S let the ex ante probability of s to
be realised be denoted by

g(s) = µ0 g(s | θH) + (1− µ0) g(s | θL) .

Then for all s ∈ S such that g(s) ̸= 0 it follows that

g(s | θH) =
µs1
µ0

g(s) and g(s | θL) =
1− µs1
1− µ0

g(s)

µ0ρH Es [Q(µs1) | θH ] + (1− µ0)ρL Es [Q(µs1) | θL]

=
∑
s∈S

Q(µs1)
{
µ0ρHg(s | θH) + (1− µ0)ρLg(s | θL)

}
=
∑
s∈S

Q(µs1)
{
ρHµ

s
1 + ρL(1− µs1)

}
g(s) = Eg

[
Jf (µ

s
1)
]
.

Proof of Proposition 1.1. It follows from the discussion on the main part of the paper
that information provision has an impact iff ρL ≤ θL/θH < ρH , in which case the concave
closure of Jf (µ) is given by

Jf (µ) =

{
Jf (µ) , for µ ≤ µ∗

Jf (µ
∗)µ−µ

∗

1−µ∗ , for µ ≥ µ∗ where µ∗ =
θL/θH − ρL
ρH − ρL

If µ0 ≤ µ∗, then Jf (µ0) = Jf (µ0) and as a result setting Pr(µ = µ0) = 1 is optimal,
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which is achieved when no information is provided to S2. If µ0 > µ∗, then the optimal
g̃(µ) randomises between posteriors µ∗ and 1. This is the solution of (G ′

f ), where the choice
variable is a distribution over posteriors g̃(µ). Hence a distribution over signals g(s | θ1)
solves (Gf ) if and only if it results in a randomisation between posteriors µ∗ and 1.

It is without loss to focus on a binary signal s ∈ {s, s}. Let s be the signal realisation
that gives µs1 = 1. Then it has to be that gf (s | θL) = 0. Therefore, gf (s | θL) = 1. Finally,
to find gf (s | θH) note that this has to satisfy

µ∗ =
µ0 gf (s | θH)

µ0 gf (s | θH) + 1− µ0

This signal is a solution of (Gf ), hence it is also part of the solution of (Pf ).
In addition, µ0 > µ∗ equivalently implies that ρHµ0 + (1 − µ0)ρL > θL/θH . But since

ρH ≥ ρL this last inequality implies ρH > θL/θH . Hence ρH > θL/θH can be ignored, as it is
implied by (1.4). Finally, if ρL = µ0 then the informative signal collapses to no information
provision, which is way the left hand side of (1.4) has a strict inequality.

Proof of Lemma 1.3. To achieve more compact expressions we adopt the notation

qL = q1(θL )

qH = q1(θH)
and EL = Eg [Q(µs1) | θL ]

EH = Eg [Q(µs1) | θH ]

For convenience we copy below (P) and all four of its constrains, using the shorter notation.

max
pL,pH ,qL,qH ,g

µ0pH + (1− µ0) pL

s.t. (IRL ) θL qL + ρL EL − pL ≥ 0

(IRH) θHqH + ρHEH − pH ≥ 0

(ICL ) θL qL + ρL EL − pL ≥ θLqH + ρLEH − pH

(ICH) θHqH + ρHEH − pH ≥ θHqL + ρHEL − pL

(P)

Using the (ICH) we infer that whenever the (IRL) is satisfied the same is true for the (IRH),
since we have assumed for now that ρH ≥ ρL. Suppose that (IRL) was not binding on the
maximum of (P). Then S1 could increase both pL and pH by the same constant ε > 0. This
would increase her payoff and for ε small enough still satisfy all the constrains, which leads
to a contradiction. Thus (IRL) has to bind on the maximum of (P), which gives

pL = θL qL + ρL EL
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Next, suppose that (ICH) was not binding on the maximum of (P). Then S1 could increase
pH by a small enough constant ε > 0, which would increase her payoff and still satisfy all
the constrains. Hence we obtain again a contradiction and (ICH) has to bind, which gives

pH = θH(qH − qL) + ρH(EH − EL) + pL

Substitute pH and pL in the objective function of (P) to obtain

µ0pH + (1− µ0) pL = µ0

[
θH(qH − qL) + ρH(EH − EL)

]
+ pL

= µ0 θHqH + (θL − µ0θH) qL

+ µ0ρH EH + (1− µ0)ρLEL − µ0(ρH − ρL)EL

which is the objective function given on the statement of this Lemma. So far we have ignored
the (ICL). This can be rewritten as

pH − pL ≥ θL(qH − qL) + ρL(EH − EL)

⇔ θH(qH − qL) + ρH(EH − EL) ≥ θL(qH − qL) + ρL(EH − EL)

⇔ (θH − θL)(qH − qL) ≥ (ρH − ρL)(EL − EH)

which gives the (Pc) constrain.

Proof of Lemma 1.4. For any countable S, it has already been shown in Lemma 1.2 that

µ0ρH Eg
[
Q(µs1) | θH

]
+ (1− µ0)ρLEg

[
Q(µs1) | θL

]
=
∑
s∈S

Q(µs1)
{
ρHµ

s
1 + ρL(1− µs1)

}
g(s)

In addition, deleting irrelevant signals from S, i.e. those that occur with zero probability on
path, and substituting g(s | θL) = 1−µs1

1−µ0 g(s) gives

µ0(ρH − ρL)Eg [Q(µs1) | θL] =
∑
s∈S

Q(µs1)µ0 (ρH − ρL) g(s | θL)

=
∑
s∈S

Q(µs1)µ0 (ρH − ρL)
1− µs1
1− µ0

g(s)
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Thus, subtracting the second part above from the first gives

∑
s∈S

Q(µs1)

{
ρHµ

s
1 + ρL(1− µs1)− µ0 (ρH − ρL)

1− µs1
1− µ0

}
g(s)

=
∑
s∈S

Q(µs1)

1− µ0

{
(ρH − ρL)µ

s
1(1− µ0) + ρL(1− µ0)− µ0 (ρH − ρL) (1− µs1)

}
g(s)

=
∑
s∈S

Q(µs1)

1− µ0

{
(ρH − ρL)(µ

s
1 − µ0) + ρL(1− µ0)

}
g(s)

=
ρH − ρL
1− µ0

∑
s∈S

Q(µs1)

{
µs1 − µ0 +

ρL(1− µ0)

ρH − ρL

}
g(s)

=
ρH − ρL
1− µ0

∑
s∈S

Q(µs1)

{
µs1 −

µ0ρH − ρL
ρH − ρL

}
g(s)

Proof of Proposition 1.2. Proving that the proposed signal solves (G ′) follows exactly
the same argumentation as in the first best, hence it is omitted. To show that it also solves
(P ′) it remains to consider how it interacts with the constrain (Pc), which can equivalently
be written as

qH − qL ≥ (ρH − ρL)
(
Eg [1 {µs1 ≤ µ∗} | θL]− Eg [1 {µs1 ≤ µ∗} | θH ]

)
(P ′

c)

It is always optimal to set q∗H = 1. First suppose that θL/θH ≤ µ0, which implies that the
point-wise optimal supply for the low type is qL = 0. But in this case (P ′

c) trivially holds,
since its left hand side equals one, while its right hand side is always less than one. This
proves that in this case the point-wise optimal signal also solves (P ′).

Hereafter, the proof only considers the diametrically opposite case θL/θH > µ0. Rewrite
the right hand side of (P ′

c) as follows

(ρH − ρL)
(
Eg [1 {µs1 ≤ µ∗} | θL]− Eg [1 {µs1 ≤ µ∗} | θH ]

)
=

ρH − ρL
θH − θL

∑
s

Q(µs1)
(
g(s | θL)− g(s | θH)

)
=

ρH − ρL
θH − θL

∑
s

Q(µs1)

(
1− µs1
1− µ0

− µs1
µ0

)
g(s)

=
ρH − ρL
θH − θL

∑
s

Q(µs1)
µ0 − µs1

(1− µ0)µ0

g(s)

144



Figure A.1: The point-wise post contractual payoff of S1 J(µ), and the point-wise value of
the right hand side of (P ′′

c ).

As a result, the constrain becomes

qH − qL ≥ Eg̃
[
C(µ)

]
where C(µ) =

ρH − ρL
θH − θL

Q(µ)
µ0 − µ

(1− µ0)µ0

(P ′′
c )

Under no information provision the right hand side is equal to C(µ0) = 0, therefore if no
information provision solves (G ′), then it also solves (P ′).

Instead suppose that information provision solves (G ′). Similarly to the first best, this
implies that µ0 > µ∗. Therefore the point-wise optimal supply, when θL/θH > µ0, is qH =

qL = 1, while under the point-wise optimal signal

Eg̃
[
C(µ)

]
= g̃(µ∗)C(µ∗) > 0

Hence under the point-wise optimal solutions the left hand side of (P ′′
c ) would be zero,

whereas the right hand side would be positive.
Note that both J(µ) and C(µ) are piecewise linear below and above µ∗. Hence it is

without loss to consider a distribution that induces only two posteriors µ− ≤ µ∗ < µ+. For
this part of the proof it will potentially be useful to refer to Figure (A.1). Suppose that
µ− < µ∗, which implies

J(µ−) < J(µ∗) and C(µ−) > C(µ∗).

Since the expectations Eg̃[J(µ)] and Eg̃[C(µ)] are linear combinations of the value of each
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function at µ− and zero, it follows that switching to µ− = µ∗ is strictly better. This is
because it increases Eg̃[J(µ)] and it decreases Eg̃[C(µ)]. Then S1 is always better off by
leaving the supply of the high type and the low realisation of the buyer’s posterior on their
point-wise optimal values. Hence (P ′) can be written as

max
qL,g̃−

(θL − µ0θH) qL + g̃− J1(µ
∗)

s.t. 1− qL ≥ g̃−C(µ∗)

where g̃− = g̃(µ∗). When µ− = µ∗, g̃− is a bijection of µ+, hence it will be convenient to use
the former as a choice variable. The objective function and the constrain are linear in both
choice variables. Hence S1 prefers to decrease qL instead of g̃− when

θL − µ0θH ≤ J1(µ
∗)

C(µ∗)
⇔ θL − µ0θH ≤

ρH−ρL
1−µ0 Q(µ

∗)
(
µ∗ − µ0ρH−ρL

ρH−ρL

)
ρH−ρL
θH−θL

Q(µ∗)
(1−µ0)µ0

(
µ0 − µ∗

)
⇔

θL
θH

− µ0

1− θL
θH

(
1− µ∗

µ0

)
≤ µ∗ − µ0ρH − ρL

ρH − ρL

⇔ θL
θH

− µ0 ≤
[(

θL
θH

1

µ0

− 1

)
+

(
1− θL

θH

)]
µ∗ − µ0ρH − ρL

ρH − ρL

(
1− θL

θH

)
⇔ θL

θH
− µ0 ≤ θL

θH

1− µ0

µ0

µ∗ − µ0ρH − ρL
ρH − ρL

(
1− θL

θH

)
⇔ 1− µ0 ≤ θL

θH

1− µ0

µ0

µ∗ +
ρH(1− µ0)

ρH − ρL

(
1− θL

θH

)
But remember that µ∗ = θL/θH−ρL

ρH−ρL
. Hence the above equivalently becomes

1 ≤ θL
θH

1

µ0

θL/θH − ρL
ρH − ρL

+
ρH

ρH − ρL

(
1− θL

θH

)
In addition, the above trade off is only relevant if θL

θH

1
µ0
> 1. Hence it suffices that

ρH − ρL ≤ θL
θH

− ρL + ρH − ρH
θL
θH

⇔ 0 ≤ θL
θH

(1− ρH)

which holds. As a result the point-wise optimal signal solves (P ′), while the probability of
supplying the good to the low type becomes

q∗L =

{
1− (ρH − ρL)[1− g∗(s | θH)] , if µ0 < θL/θH

0 , if µ0 ≥ θL/θH
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Finally, any solution of (P ′) is also a solution of (P), which completes the proof.

Proof of Corollary 1.1. The payoff a low type is always zero, since the (IRL) binds. For
the high type, when information provision is possible we can use the binding (ICH) and
(IRL) to obtain that his payoff is

(θH − θL) · q∗L + (ρH − ρL) · Eg∗ [Q(µs1) | θL] (A.1)

where q∗L and g∗ are as given in Proposition 1.2. First, suppose that µ0 ≥ θL/θH . If
information provision was not possible, then the high type’s payoff would be zero. However,
when it is possible q∗L = 0 and (A.1) becomes

(ρH − ρL) · Eg[Q(µs1) | θL] > 0

hence he is strictly better off. Second, suppose that µ0 < θL/θH . If information provision
was not possible, then the high type’s payoff would be θH − θL. However, when it is possible

q∗L = 1− (ρH − ρL) · [1− g∗(s | θH)]

Hence (A.1) becomes

(θH − θL) ·
[
1− (ρH − ρL)[1− g∗(s | θH)] + (ρH − ρL) · g∗(s | θL)

]
= (θH − θL) ·

[
1 + (ρH − ρL) · g∗(s | θH)

]
which is bigger than θH − θL, hence again he is better off.

Proof of Lemma 1.5. For the convenience of the reader (P) together with all four of its
constrains is copied below

max
pL,pH ,qL,qH ,g

µ0pH + (1− µ0) pL

s.t. (IRL ) θL qL + ρL EL − pL ≥ 0

(IRH) θHqH + ρHEH − pH ≥ 0

(ICL ) θL qL + ρL EL − pL ≥ θLqH + ρLEH − pH

(ICH) θHqH + ρHEH − pH ≥ θHqL + ρHEL − pL

(P)

where the compact notation introduced in the proof of Lemma 1.3 is used. First, we want
to demonstrate that under negative correlation (P) has two possible families of solutions.
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First, suppose that
(θH − θL)qL ≥ (ρL − ρH)EL (A.2)

which equivalently implies

θH qL + ρHEL − pL ≥ θL qL + ρLEL − pL ,

This together with the (ICH) give

θH qH + ρHEH − pH ≥ θL qL + ρLEL − pL

Next it is shown that a necessary implication of (A.2) is that (IRL) and (ICH) need to
bind. Suppose (IRL) does not bind, then prices p̃L = pL + ε and p̃H = pH + ε, for ε > 0

small enough, increase S1’s payoff and satisfy all of the above constrains, which leads to a
contradiction. Suppose (ICH) does not bind, then p̃H = pH+ε, again for ε > 0 small enough,
increases S1’s payoff and satisfies all of the above constrains, which leads to a contradiction.
Hence rewriting the binding (ICH) and the (ICL) gives

θH(qH − qL) + ρH(EH − EL) = pH − pL ≥ θL(qH − qL) + ρL(EH − EL)

and combining those two together gives

(θH − θL)(qH − qL) ≥ (ρL − ρH)(EH − EL) (A.3)

which is an equivalent expression of (Pc). Finally, adding up the initial assumption (A.2)
and (A.3) gives

(θH − θL)qH ≥ (ρL − ρH)EH (A.4)

which will be used at the end of the proof.
Next the diametrically opposite case of solutions is considered, but it will be more con-

venient to start by assuming that it is (A.4) that holds with the opposite direction. That is
suppose that the solution of (P) satisfies

(θH − θL)qH ≤ (ρL − ρH)EH (A.5)

which equivalently implies

θLqH + ρLEH − pH ≥ θHqH + ρHEH − pH
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This together with the (ICL) give

θLqL + ρLEL − pL ≥ θHqH + ρHEH − pH

Then following an argumentation similar to that of the previous case we can show that (IRH)
and (ICL) need to bind. Hence rewriting the binding (ICL) and the (ICH) gives

θH(qH − qL) + ρH(EH − EL) ≥ pH − pL = θL(qH − qL) + ρL(EH − EL)

and combining those two together gives (A.3) again. Combining the supposition (A.5) with
(A.3) gives

(θH − θL)qL ≤ (ρL − ρH)EL ,

which is the opposite of the first supposition considered (A.2). But this implies that the
solution of (P) satisfies

(θH − θL)qL ≥ (ρL − ρH)EL ⇔ (θH − θL)qH ≥ (ρL − ρH)EH

Hence, there are only two possible families of solutions for (P). Either (A.2) holds, in which
case (IRL) and (ICH) bind, or it holds with the reverse direction in which case (IRH) and
(ICL) bind.

Next we want to show that (A.2) will always hold on the maximum. The proof is by
contradiction. Suppose that (A.2) does not hold, then it has to be that it holds with the
opposite direction. Therefore, the (IRL) and (ICH) bind. Those two give pL and pH , which
can be substituted in the objective function of (P) and (ICL) to obtain

max
qL,qH ,g

{
[θH − (1− µ0)θL]qH + (1− µ0)θL qL

+ [ρH − (1− µ0)ρL]EH + (1− µ0)ρLEL

}
(P ′

L)

s.t. (θH − θL) (qH − qL) ≥ (ρL − ρH)(EH − EL) (A.3)
(θH − θL)qH ≤ (ρL − ρH)EH (A.5)

where (A.5) is used instead of the inverse of (A.2), since those two are equivalent.
First, note that setting qH = ρL−ρH

θH−θL
EH is always optimal. This is because increasing qH

relaxes (A.5) and increases the objective function of (P ′
L). Hence (A.5) has to bind. Second,

note that increasing qL increases the objective function of (PL). Hence (Pc) has to bind.
But this implies that (A.2) also binds.

However, this means that the maximum under (A.5) is also available under the initial
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supposition that (A.2) holds. Therefore, it is without loss to assume that it is the (IRL)
and (ICH) that bind. But in this case the representation of Lemma 1.3 is still relevant.
However, it is not necessarily true that (IRH) will be satisfied, hence this has to be added
to the contains. But using the binding (IRL) and (ICH) we can see that (IRH) equivalently
becomes (A.2).

Proof of Proposition 1.3. First, we find the point-wise optimal signal under negative
correlation. S1’s information provision problem is still the same as in (G), however its
reformulated version will be different. Following exactly the same approach as in the previous
subsection we can show that (G) equivalently becomes

max
g̃

Eg̃
[
J−(µ)

]
s.t. Eg̃[µ ] = µ0 (G−)

where
J−(µ) =

ρH − ρL
1− µ0

Q−(µ)
(
µ− µ0ρH − ρL

ρH − ρL

)
This is almost identical to the functional form of J(µ) under positive correlation, however
Q(µ) = 1{µ ≤ µ∗}(θH − θL) has to be replaced with

Q−(µ) = 1{µ ≥ µ∗}(θH − θL)

The reason for this alteration is that when the correlation is negative S2 offers the discount
for high realisations of µs1, instead of low ones. Therefore the graph of J−(µ) under negative
correlation can be obtained by flipping that of J(µ) around a vertical axis passing from µ∗.
Hence J−(µ) is flat at zero for µ < µ∗, then jumps to J−(µ∗) and is subsequently decreasing.
Thus a necessary condition for information provision to be strictly optimal is that

J−(µ∗) > 0 ⇔ θL
θH

> µ0ρH

Moreover, following the same argumentation as in the case of positive correlation we get
than information provision is strictly point-wise optimal if and only if

max{ρH , µ0ρH} <
θL
θH

< µ0ρH + (1− µ0)ρL

But this is implied by
ρH <

θL
θH

< µ0ρH + (1− µ0)ρL

which is also a necessary and sufficient condition for information provision to be optimal in
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the first best under negative correlation. Hence under negative correlation the point-wise
optimal signal in the first and second best is the same. The second inequality ensures that the
discount is not achieved in the absence of information provision, while the first that a signal
that achieves this discount can be constructed. This is a randomisation between posterior 0
and µ∗, and it is easy to check that the signal distribution provided in the statement of the
proposition achieves that.

However, note that same way as in the case of positive correlation the constrain (Pc) will
bind under the point-wise optimal solutions when µ0 < θL/θH . Despite that, the argumen-
tation used in the proof of Proposition 1.2 is still relevant and it shows that S1 would always
be better off by decreasing the probability of supplying the low type, instead of alternating
the point-wise optimal signal.

On the other hand, when µ0 > θL/θH and the point-wise optimal signal entails informa-
tion provision, it is the (Ph) that binds. Hence we have that

(θH − θL)qL = (ρL − ρH)EL

where we use the compact notation introduced in the proof of Lemma 1.3. In this case, it
is always optimal to set qH = 1 and (Pc) holds. Hence substitute the above equality in the
objective function of (P ′) to obtain the unconstrained information provision problem

max
g

{
(θL − µ0θH) ·

ρL − ρH
θH − θL

EL + Eg
[
J−(µs1)

]}
(G̃)

where the second term is the standard part of the information provision problem of S1, while
the first is the one introduced by the binding (Ph). We can further simplify this by noting
that

EL = Eg
[
Q−(µs1) ·

1− µs1
1− µ0

]
Hence same way as before we can reformulate the above as a choice over unconditional
posterior distributions g̃(µ).

max
g̃

Eg̃
[
J̃−(µ)

]
s.t. Eg̃[µ ] = µ0 (G̃ ′)
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where

J̃−(µ) = Q−(µ) · (θL − µ0θH) ·
ρL − ρH
θH − θL

· 1− µ

1− µ0

+ J−(µ)

= Q−(µ) · ρL − ρH
1− µ0

·
{
ρL − µ0ρH
ρL − ρH

− µ+
µ0θH − θL
θH − θL

·
(
µ− 1

)}
= Q−(µ) · ρL − ρH

1− µ0

·
{
ρL − µ0ρH
ρL − ρH

− µ0θH − θL
θH − θL

− µ · (1− µ0) · θH
θH − θL

}
Hence, J̃−(µ) is equal to zero in [0, µ∗) and decreasing in [µ∗, 1]. In addition, we can show
that J̃−(µ∗) > 0. It suffices to prove this for µ∗ = 1, in which case the inequality becomes

ρL − µ0ρH
ρL − ρH

>
µ0θH − θL
θH − θL

+ 1 · (1− µ0) · θH
θH − θL

= 1

which holds as µ0 ∈ (0, 1) and ρL > ρH . Therefore, J̃− has the same shape with J−, as
a result they share the same optimal unconditional distribution over posteriors. Finally, in
this case qL is found be using the binding (Ph) instead of (Pc).

Proof of Corollary 1.2. The payoff a low type is always zero, since his individual ratio-
nality constrain binds. For the high type, first suppose that µ0 ≥ θL/θH . Thus if information
provision was not possible, then his payoff would be zero. But even when information provi-
sion is possible we have argued in the proof of Proposition 1.3 that his individual rationality
constrains binds, hence his payoff is again zero. Finally, suppose that µ0 < θL/θH . If infor-
mation provision was not possible, then the high type’s payoff would be θH − θL. However,
when it is possible we can use the binding (ICH) and (IRL) to obtain that his payoff is

(θH − θL) · q−L + (ρH − ρL) · Eg− [Q(µs1) | θL] (A.6)

where q−L and g− are as given in Proposition 1.2. In particular,

q−L = 1− (ρL − ρH) · [1− g−(s | θL)]

Hence (A.6) becomes

(θH − θL) ·
[
1− (ρL − ρH) · [1− g−(s | θL)] + (ρH − ρL) · g−(s | θL)

]
= (θH − θL) ·

[
1− (ρL − ρH)

]
which is smaller than θH − θL. Hence in this case the high type buyer is worse off under
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information provision.

A.2 Proofs of Section 1.5

A.2.1 Selling information

Our aim in this subsection is to prove Proposition 1.4. Therefore, in the subsequent analysis
we allow S1 to profit directly from selling information to S2. Following Calzolari and Pavan
(2006) we model this with an exogenous parameter γ ∈ [0, 1] that denotes the part of the
ex ante benefit of information provision that S1 captures from S2. To be more specific, S2’s
payoff for given posterior µs2 is

U s
2 = µs2 θH +max{0 , θL − µs2θH}

In addition, let UND
2 denote S2’s payoff under no disclosure. Then S1 captures

γ ·
(
Eg[U s]− UND

)
= γ · Eg

[
1

(
µs2 ≤

θL
θH

)
(θL − µs2θH)

]
− γ ·max

{
0 , θL −

[
µ0θH + (1− µ0)θL

]
θH

}
We impose no restrictions on the sign of the correlation, hence to facilitate the exposition

let ρ = min{ρL, ρH} and ρ = max{ρL, ρH}. Furthermore, we adopt the compact notation
introduced in the proof of Lemma 1.3, and define 12(µ

s
2) = 1

(
µs2 ≤ θL

θH

)
. Therefore, S1

solves

max
pL,pH ,qL,qH ,g

µ0pH + (1− µ0) pL + γ · Eg
[
12(µ

s
2)(θL − µs2θH)

]
s.t. (IRL ) θL qL + ρL EL − pL ≥ 0

(IRH) θHqH + ρHEH − pH ≥ 0

(ICL ) θL qL + ρL EL − pL ≥ θLqH + ρLEH − pH

(ICH) θHqH + ρHEH − pH ≥ θHqL + ρHEL − pL

(Γ)

where the constant part of γ ·
(
Eg[U s]− UND

)
is suppressed.
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Lemma A.2.1. (Γ) equivalently becomes

max
qL,qH ,g

{
µ0 θHqH + (θL − µ0θH) qL

+µ0ρH
(
EH − EL

)
+ ρL EL + γ · Eg

[
12(µ

s
2)(θL − µs2θH)

]} (Γ′)

s.t. (θH − θL) (qH − qL) ≥ (ρH − ρL)
(
EL − EH

)
(Γc)

The proof is identical to that of Lemma 1.5, so it is omitted. The only difference between
(Γ′) and the corresponding (P ′) is the addition of γ · Eg

[
12(µ

s
2)(θL − µs2θH)

]
on its second

line. As in the main text, we start by ignoring the constrain (Γ′) and focus on finding the
point-wise optimal signal, which solves

max
g

{
µ0ρH

(
EH − EL

)
+ ρL EL + γ · Eg

[
12(µ

s
2)(θL − µs2θH)

}
(Gγ)

Lemma A.2.2. S1’s information provision problem equivalently becomes

max
g

Eg[Jγ(µs2)] (Gγ)

where its point-wise value Jγ(µs2) is

Jγ(µ
s
2) = 12(µ

s
2) ·
{
µs2θH ·

(
1− θL/θH
1− µ0

− γ

)
− θL ·

(
1− θL/θH
1− µ0

· µ0ρH
θL/θH

− γ

)}
(A.2.1)

Proof. We have already shown in the proof of Lemma 1.4 that

µ0ρH ·
(
EH − EL

)
+ ρL EL =

ρH − ρL
1− µ0

· (θH − θL) · Eg
[
12(µ

s
2) ·
(
µs1 −

µ0ρH − ρL
ρH − ρL

)]
the right hand side of which can be further manipulated to obtain

µ0ρH ·
(
EH − EL

)
+ ρL EL =

θH − θL
1− µ0

· Eg
[
12(µ

s
2) · (mus2 − µ0ρH)

]
Therefore, adding on the above the payoff obtained from selling information gives

Eg
[
12(µ

s
2) ·
{
θH − θL
1− µ0

·
(
µs2 − µ0ρH

)
+ γ ·

(
θL − µs2θH

)}]
=

Eg
[
12(µ

s
2) ·
{
µs2θH ·

(
1− θL/θH
1− µ0

− γ

)
− θL ·

(
1− θL/θH
1− µ0

· µ0ρH
θL/θH

− γ

)}]
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Notice that we conditioned the point-wise payoff Jγ on S2’s posterior on θ2 (µs2) instead
of that on θ1 (µs1). This will make the expressions shorter and valid for both positive and
negative correlation. Next, we express (Gγ) as a choice over posteriors g̃(µ) on θ2:

max
g̃

Eg̃
[
Jγ(µ)

]
s.t.

{
Eg̃[µ ] = µ0ρH + (1− µ0)ρL

µ ∈
[
ρ , ρ

] (G ′
γ)

where note that the posterior µ is bounded by the transitioning probabilities ρL and ρH ,
as it is on θ1 instead of θ2. For the same reason its expected value has to be equal to
µ0ρH + (1 − µ0)ρL, instead of µ0. To solve this we invoke the optimality condition that
Eg̃
[
Jγ(µ)

]
= Jγ

(
µ0ρH + (1− µ0)ρL

)
, where

Jγ = sup
{
z | (µ, z) ∈ co(Jγ)

}
,

denotes the concave closure of Jγ.
Next, we want to understand how the graph of Jγ looks like. It will be convenient to

consider different cases on the underline parameters, each one on a corresponding lemma.
Throughout, we maintain the assumption that

ρ ≤ θL
θH

< ρ (A.2.2)

so that information provision can have an impact on prices.

Lemma A.2.3. Suppose that ρHµ0 ≥ θL
θH

, then J2(µ) ≤ 0 for all µ ∈
[
ρ , ρ

]
.

Therefore, information provision can never be strictly optimal under the above paramet-
ric restriction, since no information provision gives at least zero. This is identical to our
conclusion in the baseline model.

Proof. First note that ρHµ0 ≥ θL
θH

implies ρH > θL
θH

, which together with (A.2.2) gives that
ρL ≤ θL

θH
. Therefore, we only need to consider the case of positive correlation. As in the

baseline model
Jγ(µ) = 0 , for all µ ∈

(
θL
θH

, ρH

]
Hence, it remain to prove that Jγ(µ) ≤ 0 for all µ ∈

[
ρL,

θL
θH

]
. As Jγ is linear on this subset

it will suffice to show that Jγ
(
θL
θH

)
and Jγ(ρL) are non-positive.

Jγ

(
θL
θH

)
=

θH − θL
1− µ0

·
(
θL
θH

− µ0ρH

)
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As a result,
Jγ

(
θL
θH

)
> 0 ⇔ θL

θH
> ρHµ0 (A.2.3)

Therefore, Jγ
(
θL
θH

)
≤ 0. Finally,

Jγ(ρL) =
θH − θL
1− µ0

·
(
ρL − µ0ρH

)
+ γ ·

(
θL − ρLθH

)
≤ 0

⇔ γ ≤ 1− θL/θH
1− µ0

· µ0ρH − ρL
θL/θH − ρL

But ρHµ0 ≥ θL
θH

implies µ0 ≥ θL
θH

, as a result the right hand side of the above inequality is
always greater or equal than one, from which it follows that it holds for any γ ∈ [0, 1].

Next we want to consider the case where ρHµ0 <
θL
θH

, which we will further break down
to two subcases.

Lemma A.2.4. Suppose that ρHµ0 <
θL
θH

and γ < 1−θL/θH
1−µ0 , then

• Jγ is linear and increasing in
[
ρ , θL

θH

]
and equals zero in

(
θL
θH
, ρ
]

• becomes strictly positive on θL
θH

, that is Jγ
(
θL
θH

)
> 0

Proof. The second bullet point follows immediately from (A.2.3). To prove the first bullet
point note that (A.2.1) gives

Jγ(µ) =

 µ · θH ·
(

1−θL/θH
1−µ0 − γ

)
− θL ·

(
1−θL/θH
1−µ0 · µ0ρH

θL/θH
− γ
)

, if µ ∈
[
ρ , θL

θH

]
0 , if µ ∈

(
θL
θH
, ρ
]
(A.2.4)

It will convenient to discuss the implications of the above lemma, after providing the one
that characterises Jγ in the remaining parametric restriction.

Lemma A.2.5. Suppose that ρHµ0 <
θL
θH

and γ ≥ 1−θL/θH
1−µ0 , then

• Jγ is linear, non-increasing, and strictly positive in
[
ρ , θL

θH

]
, and equals zero in

(
θL
θH
, ρ
]

• Extending the line that is Jγ in
[
ρ , θL

θH

]
to ρ would give a positive value, in other words

Jγ

(
θL
θH

)
+ J ′

γ

(
θL
θH

)
·
(
ρ− θL

θH

)
≥ 0
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Proof. The first bullet point follows from (A.2.3) and (A.2.4). For the second bullet point,
note that the positive part of Jγ calculated at ρ becomes

θH − θL
1− µ0

·
(
ρ− µ0ρH

)
+ γ ·

(
θL − ρ θH

)
≥ 0

⇔ 1− θL/θH
ρ− θL/θH

· ρ− µ0ρH
1− µ0

≥ γ ⇔
ρ− ρ · θL

θH

ρ− θL
θH

·
1− µ0 · ρHρ
1− µ0

≥ γ

where both of the two fractions on the left hand side of the last inequality are greater than
one, hence it has to hold.

Therefore, in the case covered in Lemma A.2.4 the shape of Jγ is similar to that obtained
for J in the baseline model. As a result, its concave closure will be

Jγ(µ) =

 Jγ(µ) , if µ ≤ θL
θH

Jγ(µ
∗) ·

µ− θL
θH

ρ− θL
θH

, if µ ≥ θL
θH

Interestingly, the above concave closure will also be relevant under the parametric restriction
of Lemma A.2.5, which follows from its second bullet point.

Therefore, arguing in the same way as in the main text we get that information provision
is strictly optimal if and only if

max
{
ρ , ρHµ0

}
<

θL
θH

< ρHµ0 + ρL(1− µ0)

in which case the optimal g̃ randomises between θL
θH

and ρ.
The above discussion ignores the (Γc) constrain, however this is equivalent to that of the

baseline case (Pc). In addition, the incentives to maintain the point-wise optimal signal are
even stronger for γ > 0. Therefore, S1 will again opt to decrease the probability of providing
the good to the low type, when necessary, instead of altering the point-wise optimal signal.
Hence, the solution of this extension is identical to that of the baseline model.

A.2.2 Static Type

Our aim in this subsection is to prove Proposition 1.5. Hence we assume that the buyer knows
both his types when interacting with the first seller, which effectively implies a four element
space (θ1, θ2) ∈

{
(θL, θL), (θH , θL), (θL, θH), (θH , θH)

}
. As in the main text, to maintain a
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compact notation we will write {pLL, pHL, qLH , qHH} instead of

{
p1(θ̂L, θ̂L), p1(θ̂H , θ̂L), q1(θ̂L, θ̂H), q1(θ̂H , θ̂H)

}
Also, when it is not causing confusion we will use the non-hated types even when referring
to the reports.

A trivial case in which information provision can be optimal when (1.17) does not hold is
that of perfect negative correlation, as we have shown in Remark 3. Hence in the remaining
of this subsection we will assume that (1.17) holds and prove that in this case no information
provision is always optimal.

Lemma A.2.6. Let 12(µ
s
2) = 1

(
µs2 ≤ θL

θH

)
, then for any choice of g(s | θ1, θ2) :

Eg
[
12(µ

s
2) | θ1, θH

]
≤ Eg

[
12(µ

s
2) | θ1, θL

]
for θ1 ∈ {θL, θH} (A.2.5)

and the inequality is strict if g(s | θ1, θ2) generates an impact on S2’s price.

Proof. Using the towering property we can equivalently rewrite (A.2.5) as

Eg
[
Eg
[
12(µ

s
2) | θ2 = θH

]
− Eg

[
12(µ

s
2) | θ2 = θL

] ∣∣∣ θ1] ≤ 0 for θ1 ∈ {θL, θH}

Hence it suffices to prove the statement of the lemma for the expression within the first
expectation. This follows from a proof identical with that of Remark 1.

Next, we want to consider the implication of the above lemma on the information struc-
tures that S1 can use.

Lemma A.2.7. It is without loss to focus on information structures that transmit transmits
information about θ1, but not about θ2.

Proof. The revelation principle holds. Hence it has to be that a (θH , θL) buyer prefers to
truthfully report his type instead of (θH , θH) and visa versa

qHL θH − pHL ≥ qHH θH − pHH (A.2.6)
qHH θH + Eg [Q(µs1) | θH , θH ]− pHH ≥ qHL θH + Eg [Q(µs1) | θH , θL]− pHL (A.2.7)

Adding those two up we get Eg [Q(µs1) | θH , θH ] ≥ Eg [Q(µs1) | θH , θL]. But whenever an in-
formation structure creates an impact on prices we get that the above contradicts Lemma
A.2.6. The same contradictions can be obtained for (θL, θL) and (θL, θH).

158



Therefore, any informative signal that transmits information on the second period type,
in a way that impacts prices, cannot be implemented. Henceforth, it is without loss to ignore
such information structures.

Thus we further simplify our notation by writing EL and EH to denote Eg [Q(µs1) | θ1 = θL]

and Eg [Q(µs1) | θ1 = θH ], respectively.
We start by solving S1’s problem under the assumption that she creates a contract in

which all four types will participate. To facilitate the exposition we provide here the four
individual rationality constrains.

(IRLL ) qLLθL − pLL ≥ 0

(IRLH ) qLHθL + EH − pLH ≥ 0

(IRHL ) qHLθH − pHL ≥ 0

(IRHH) qHHθH + EH − pHH ≥ 0

To maintain a compact notation will denote the incentive compatibility constrain that en-
sures that (θH , θL) does not want to report (θL, θH) as IC(HL,LH). We will use the same
notation to refer to the rest of the IC constrains.

Note that Lemma A.2.7 together with inequalities (A.2.6) and (A.2.7) give (A.2.8) below,
while (A.2.9) follows from the corresponding incentive compatibility constrains of the period
1 low types.

qHL θH − pHL = qHH θH − pHH (A.2.8)
qLL θL − pLL = qLH θL − pLH (A.2.9)

Lemma A.2.8. Suppose that S1 offers an contract in which all four types participate. Then
her payoff maximisation problem equivalently becomes

max
p,g

{
µ0ρHpHH + µ0(1− ρH)pHL + (1− µ0)ρLpLH + (1− µ0)(1− ρL)pLL

}
s.t pLL = qLLθL , pLH = qLHθL ,

pHL = (qHL − qHH)θH + pHH

(qHH − qLL )θH + qLLθL − (EL − EH ) ≥ pHH ≥ qHHθH

(qHH − qLH)θH + qLHθL − (EL − EH) ≥ pHH ≥ qHHθH

(P4)

Proof. We first want to show that the payoff of (θL, θL) is the lowest of the four types,
which will imply that (i) IRLL has to bind and (ii) we can ignore the other three individual
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rationality constrains. This follows from the derivations below

(A.2.9) qLH θL + EL − pLH ≥ qLL θL − pLL

IC(HH,LL) qHH θH + EH − pHH ≥ qLL θH + EL − pLL

⇒ qHH θH + EH − pHH ≥ qLL θL − pLL

IC(HL,LL) qHL θH − pHL ≥ qLL θH − pLL

⇒ qHL θH − pHL ≥ qLL θL − pLL

Hence the binding IRLL gives pLL. To obtain pLH substitute qLLθL − pLL = 0 on the left
hand side of (A.2.9).

We next want to further simplify the problem by eliminating redundant IC constrains.
First, note that (A.2.8) ensures that (θH , θH) will not deviate to (θH , θL) and visa versa.
Equation (A.2.9) implies the same for (θL, θH) and (θL, θL).

Next consider the incentives of the two period 1 high types (θH , θL) and (θH , θH) to
deviate to either of the two period 1 low types (θL, θL) and (θL, θH). The derivations below
show that if (θH , θH) prefers not to do any of those two potential deviations, then the same
is true for (θH , θL).

IC(HH,LL) qHHθH + EH − pHH ≥ qLLθH + EL − pLL

ρH≥ρL====⇒ qHHθH − pHH ≥ qLLθH − pLL
(A.2.8)
===⇒ qHLθH − pHL ≥ qLLθH − pLL

IC(HH,LH) qHHθH + EH − pHH ≥ qLHθH + EL − pLH

ρH≥ρL====⇒ qHHθH − pHH ≥ qLHθH − pLH
(A.2.8)
===⇒ qHLθH − pHL ≥ qLHθH − pLH

Hence IC(HH,LL) and IC(HH,LH) imply IC(HL,LL) and IC(HL,LH), respectively. The
first part of the first inequality given in the statement of the Lemma follows immediately
from IC(HH,LL), while the first pat of the second inequality follows after substituting in
IC(HH,LH) the price pLH using (A.2.9).

Finally consider the incentives of the two period 1 low types (θL, θL) and (θL, θH) to
deviate to either of the two period 1 low types (θH , θL) and (θH , θH). The derivations below
show that if (θL, θL) prefers not to do any of those two potential deviations, then the same
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is true for (θL, θH).

IC(LL,HL) qLLθL − pLL ≥ qHLθL − pHL
(A.2.9)
===⇒ qLHθL − pLH ≥ qHLθL − pHL

ρH≥ρL====⇒ qLHθL + EL − pLH ≥ qHLθL + EH − pHL

IC(LL,HH) qLLθL − pLL ≥ qHHθL − pHH
(A.2.9)
===⇒ qLHθL − pLH ≥ qHHθL − pHH

ρH≥ρL====⇒ qLHθL + EL − pLH ≥ qHHθL + EH − pHH

Substituting zero, which is the payoff of (θL, θL) on the left hand side of IC(LL,HH) gives
that pHH ≥ qHHθH , whereas the same substitution on IC(LL,HL) gives

pHL ≥ qHLθH
(A.2.8)
===⇒ pHH ≥ qHHθH

which completes the proof.

But note that the only effect of sending an informative signal in (P4) is that it decreases
the upper bound of pHH and as a result of pHL. Hence an informative signal is never strictly
optimal. This result is due to the inclusion of (θL, θL), which makes it impossible for S1 to
charge (θL, θH) for the possibility of obtaining a discount.

We continue by considering the possibility of excluding (θL, θL) from S1’s contract.

Lemma A.2.9. Suppose that S1 uses a contract that excludes (θL, θL). Then S2 charges
price p = θH irrespectively of the choice of g(s | θ1).

Proof. When (θL, θL) is excluded the lowest possible posterior on θ2, with a signal that only
depends on θ1, is achieved when S1 reveals the buyer as period 1 high type. In this case

µs2 = ρH ≥ θL
θH

from which the statement of the lemma follows.

Therefore, again in this case no information provision is optimal, and since excluding
(θL, θL) achieves nothing S1 is no better off compared to the four type contract.

Another possibility that is potentially incentive compatible is to exclude both (θL, θL)

and (θH , θL), but in this case it is trivial to argue that again S2 will charge price p = θH

irrespectively of the choice of g(s | θ1).
Hence we have considered all cases and we have shown that no information provision will

always be optimal.
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A.3 Isoelastic Cost
In this section we expand the baseline model by allowing qt to take any positive value, but
we introduce an isoelastic cost function. Hence the payoff of each seller is

πt = pt − c(qt) , where c(q) =
q1+

1
ϵ

1 + 1
ϵ

for ϵ > 0 ,

and we interpret pt as the total price charged by St for all of the traded quantity qt. The
buyer’s payoff from each trade is

θ1 q1 − p1 and b θ2 q2 − p2 ,

when served by S1 and S2, respectively. The constant b > 0 is introduced to allow for the
possibility that the buyer’s valuation of each trade can vary in some deterministic way. To
maintain the analysis as close to the baseline model as possible we assume that

max

{
ρL ,

θL
θH

}
≤ ρH (A.3.1)

which ensures (i) that the agent’s type is positively correlated across sellers, and (ii) that if
S1 reveals the buyer as a high period 1 type, then S2 will only supply a positive quantity to
the period 2 high type. Finally, to demonstrate that controlling the flow of information can
be payoff equivalent for S1 to controlling access to S2, we assume instead that S1 simple gets
to interact always first with the buyer and can commit on a single distribution even in the
absence of a contract. Hence even if the buyer opts not to trade with her.

The analysis follows closely that of the baseline model. We first solve S2’s payoff max-
imisation problem and derive the buyer’s information rents from his second contract. Sub-
sequently, this is used to build and solve S1’s information provision problem in the first and
second best, in subsections A.3.2 and A.3.3, respectively.

A.3.1 The buyer’s post contractual payoff and outside option

We start by solving S2’s payoff maximisation problem for any given realisation of her posterior
on the period 1 type µs1, and period 2 type µs2. As before, those two satisfy

µs2 = µs1 ρH + (1− µs1) ρL
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S2’s problem is similar to that of the baseline model and its treatment can be found in the
appendix. In the following lemma we provide the buyer’s payoff, which is the only result
needed to proceed with S1’s problem.

Lemma A.3.1. The payoff of a low buyer type under S2 is equal to zero, while that of the
high one equals

Q(µs1) =

{
b1+ϵ · (θH − θL) ·

(
θL−µs2θH

1−µs2

)ϵ
, if µs1 ≤ µ∗

0 , if µs1 ≥ µ∗
(A.3.2)

Also, on the subset of posteriors [0, µ∗) it is decreasing, and strictly concave (convex) for

µs1 < (>) µ∗ +
1− ϵ

2 · (ρH − ρL)
·
(
1− θL

θH

)
Proof. Follows from the corresponding lemma of the section of multi-period contracts in
Chapter 2 once you substitute Q(µs1) with B(µs2).

Therefore, only a high period 2 type obtains a positive payoff under S2, as in the baseline
model. But contrary to it, his payoff is a continuous function of S2’s posterior. Interestingly,
for ϵ→ 0 the isoelastic model converges to the baseline one.

Next, we want to demonstrate how S1 can enforce the buyer’s participation in her contract
by using the event {∅}. This denotes a rejection of S1’s offer from the buyer, and we will
show that it will not occur on the equilibrium path. We have assumed that S1 can commit
on the signal distribution g even if the buyer does not participate in her contract1 . Hence,
let g(s | ∅) be the corresponding conditional distribution. Therefore, the outside options of
a period 1 high and low type are

ρHEg [Q(µs1) | ∅] and ρLEg [Q(µs1) | ∅]

respectively. Thus, S1’s objective is to reduce Eg [Q(µs1) | ∅] as much as possible. This can be
made zero by introducing signal realisation s∅ ∈ S such that

g(s∅ | ∅ ) = 1

g(s∅ | θL ) = 0

g(s∅ | θH) = ε

 ⇒ Pr(θ1 = θH | s∅) =
µ0 ε

µ0 ε+ Pr(∅)

1The discussion here demonstrates how S1 can reduce the buyer’s outside option to zero. In the baseline
model, even if S1 was not able to commit without a contract on g, the solution of her information provision
problem would be the same. To see this note that the argumentation on Section 1.2 does not rely on the
architect controlling access to the designer.
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Suppose S1 was using a mechanism such that Pr(∅)=0, that is the buyer was always par-
ticipating on path. Then Pr(θ1 = θH | s∅) = 1 and this would be true even if ε was an
infinitesimal positive real number. Effectively, the buyer’s outside option under such a
mechanism would be zero as

Eg [Q(µs1) | ∅] = Q(1) = 0

In addition, by setting ε → 0 the cost of including s∅ on the set of possible realisations S
tends to zero, because the same is true for the probability of using it on path.

Hence there exists a mechanism that achieves the smallest possible outside option for the
buyer, and the cost of doing so is zero since the effect of s∅ on S1’s information provision
problem is infinitesimal. Moreover, the signal s∅ can be used in both the first and second
best. Interestingly, this make the model equivalent to one in which S1 controls not only
the information provided to S2, but also the buyer’s access to her. Hence to save in space,
and because s∅ does not occur on path, we will hereafter ignore it on both the proofs and
statements of our results, and we will set the buyer’s outside option immediately to zero.

A.3.2 The first best contract of Seller 1

We solve S1’s revenue maximisation problem under the assumption that if the buyer opts
to participate in her mechanism, then his type is automatically reveal to her, but not to S2.
Hence she solves

max
p1,q1,g

µ0

(
p1(θH)− c

[
q1(θH)

])
+ (1− µ0)

(
p1(θL)− c

[
q1(θL)

])
s.t. (IRL ) θL q1(θL) − p1(θL) + ρL Eg [Q(µs1) | θL ] ≥ 0

(IRH) θHq1(θH)− p1(θH) + ρHEg [Q(µs1) | θH ] ≥ 0

(Pf )

Both of the individual rationality constraints need to bind. Hence solve for the prices, and
substitute those in S1’s objective function to obtain the unconstrained problem

max
q1,g

µ0 ·
(
θHq1(θH)− c

[
q1(θH)

])
+ (1− µ0) ·

(
θLq1(θL)− c

[
q1(θL)

])
+µ0ρH Eg [Q(µs1) | θH ] + (1− µ0)ρLEg [Q(µs1) | θL]

 (P ′
f )

The first line represents the surplus generated from the trade of period 1, while the
second the buyer’s ex ante post contractual payoff, which S1 captures through the individual
rationality constrains. We can use first order conditions to obtain that the optimal supply
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schedule in the first best is
qf (θ1) = (θ1)

ϵ

In the remaining of this subsection we focus on S1’s information provision problem

max
g

{
µ0ρH Eg [Q(µs1) | θH ] + (1− µ0)ρLEg [Q(µs1) | θL]

}
(Gf )

Lemma A.3.2. In the first best, S1’s information provision problem equivalently becomes

max
g

Eg[Jf (µs1)] (Gf )

where its point-wise value Jf (µs1) is

Jf (µ
s
1) = Q(µs1) · [µs1 · (ρH − ρL) + ρL ] (A.3.3)

Proof. Identical to that of Lemma 1.2.

Then following the same argumentation as in the main text we get that S1’s information
provision problem becomes

max
g̃

Eg̃
[
Jf (µ)

]
s.t. Eg̃[µ ] = µ0 (G ′

f )

To solve this it is important to characterise the graph of Jf (µ). Given our existing assumption
(A.3.1), the only case in which information provision can have an impact on the mechanism
used by S2 is when

ρL <
θL
θH

< ρH (A.3.4)

in which case µ∗ ∈ (0, 1). Also, define

µ∗∗
f = max

{
0 ,

β∗∗
f − ρL

ρH − ρL

}
where β∗∗

f =
2 θL/θH

2 + (ϵ− 1)
(
1− θL

θH

)
Lemma A.3.3. Suppose that (A.3.4) holds. Then Jf (µ) is positive on [0, µ∗) and equals
zero on [µ∗, 1]. Moreover,

• It changes monotonicity at most once

• If ϵ ≤ 1, then it is strictly concave on [0, µ∗].

• If ϵ > 1, then it is strictly concave in [0, µ∗∗
f ], and strictly convex in [µ∗∗

f , µ
∗].
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(a) small ρL (b) big ρL

Figure A.2: A representative graph of Jf . The dashed line denotes its concave closure, when
this is above Jf .

Proof. Follows as a subcase of Lemma B.1.2 of Chapter 2. In particular, the functional
form of Jf (µ) is the same with that of Jt(µ, λ) on the (λ = 0) boundary.

Plots (A.2a) and (A.2b) demonstrate the two possible cases of Jf under (A.3.4). In the
former plot it is initially increasing and subsequently decreasing, whereas in the latter it is
only decreasing. An intuitive way to understand the shape of Jf is to consider its value on
the prior µ0, where the underline trade off between Q(µ0) and µ0ρH + (1 − µ0)ρL becomes
apparent. That is between the rents captured by a period 2 high type and the probability
of the buyer to be one. The higher the µ0 is, the smaller the Q(µ0), which has a negative
impact on S1’s post contractual payoff. However, only a period 2 high type captures positive
rents, which creates an effect opposite from the above.

As in the baseline model, we solve S1’s information provision problem (G ′
f ) by invoking

the optimality condition Eg̃[Jf (µ)] = Jf (µ0), where

Jf (µ) = sup
{
z | (µ, z) ∈ co(Jf )

}
,

denotes the concave closure of Jf . In Figure (A.2) whenever Jf (µ) > Jf (µ) this is represented
by the dashed line. If µ < µ̂f , then there is not a linear combination of points of Jf that
achieves something above Jf (µ). Henceforth, on this set of points Jf (µ) = Jf (µ) and there
is no benefit from information provision. On the other hand, for µ > µ̂f finding such a linear
combination is possible. In fact, in this case Jf (µ) is the line that connects Jf (1) to the
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tangency point µ̂f , which is the unique solution of

Jf (µ̂f ) + J ′
f (µ̂f )(1− µ̂f ) = 0 (A.3.5)

Interestingly, the tangency point is not necessarily in [0, 1], as demonstrated in Plot (A.2b),
in which case we instead use the corner solution µ̂f = 0.

Proposition A.3.1. In the first best, an informative signal strictly solves S1’s payoff max-
imisation problem (Pf ) iff (A.3.4) holds and µ0 > µ̂f . If those two conditions hold, then an
optimal signal is s ∈ {s, s} with distribution

gf (s | θL) = 1 , and gf (s | θH) =
1− µ0

µ0

µ̂f
1− µ̂f

. (A.3.6)

In addition, the optimal supply schedule is qf (θ1) = (θ1)
ϵ.

Proof. The above discussion implies that the concave closure of Jf (µ) is given by

Jf (µ) =

{
Jf (µ) , for µ ≤ µ̂f

Jf (µ̂f ) + J ′
f (µ̂f )(µ− µ̂f ) , for µ ≥ µ̂f

(A.3.7)

The functional form of µ̂f follows as a subcase of Proposition 2.1.2 when ψi = 0. This is

µ̂f = max

{
0 ,

β̂f − ρL
ρH − ρL

}
where β̂i =

ω1 −
√

(ω1)2 − 4ω0ω2

2ω2

and

ω0 =
θL
θH

, ω1 = 1 +
θL
θH

+ ϵ ·
(
1− θL

θH

)
ω2 = 1 +

ϵ

ρH
·
(
1− θL

θH

)
(A.3.8)

If µ0 ≤ µ̂f , then Jf (µ0) = Jf (µ0) and as a result setting Pr(µ = µ0) = 1 is optimal, which
is achieved when no information is provided to S2. If µ0 > µ̂f , then the optimal signal
randomises between posteriors µ̂f and 1. This is the solution of (G ′

f ). Hence if s ∈ {s, s}
solves (Gf ), then it has to be that gf (s | θL) = 0, so that the posterior that s implies is one.
Therefore, gf (s | θL) = 1. Finally, to find gf (s | θH) note that this has to satisfy

µ̂f =
µ0 gf (s | θH)

µ0 gf (s | θH) + 1− µ0

(A.3.9)

But if this signal solves (Gf ), then it also solves (P ′
f ), and as a result (Pf ).
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A.3.3 The second best contract of Seller 1

Next we analyse the second best, where θ1 is the buyer’s private information. S1 solves

max
p1(θ̂1), q1(θ̂1), g(s | θ̂1)

{
µ0

(
p1(θ̂H)− c

[
q1(θ̂H)

])
+ (1− µ0)

(
p1(θ̂L)− c

[
q1(θ̂L)

])}
s.t. (IRL ) , (IRH) ,

(ICL ) θL q1(θ̂L) + ρL Eg
[
Q(µs1) | θ̂L

]
− p1(θ̂L )

≥ θL q1(θ̂H) + ρL Eg
[
Q(µs1) | θ̂H

]
− p1(θ̂H)

(ICH) θHq1(θ̂H) + ρHEg
[
Q(µs1) | θ̂H

]
− p1(θ̂H)

≥ θH q1(θ̂L) + ρHEg
[
Q(µs1) | θ̂L

]
− p1(θ̂L)

(P)

where the individual rationality constraints, (IRL) and (IRH), are as in the previous sub-
section. Hereafter, we will use {pL, pH , qL, qH} instead of {p1(θ̂L), p1(θ̂H), q1(θ̂L), q1(θ̂H)}, in
order to maintain a compact notation. Similarly to the first best, it is convenient to reduce
the number of constrains by substituting the transfers pL and pH .

Lemma A.3.4. In the second best, S1’s payoff maximisation problem equivalently becomes

max
q1,g

{
µ0 ·

(
θHqH − c(qH)

)
+ (1− µ0) ·

(
θL − µ0θH
1− µ0

· qL − c(qL)

)
+ µ0ρH Eg [Q(µs1) | θH ] + (1− µ0)ρLEg [Q(µs1) | θL]− µ0(ρH − ρL)Eg [Q(µs1) | θL]

}
(P ′)

s.t (θH − θL) (qH − qL) ≥ (ρH − ρL)
(
Eg
[
Q(µs1) | θL

]
− Eg

[
Q(µs1) | θH

] )
(Pc)

Proof. Identical to that of Lemma 1.3.

The first line represents the surplus of the first period trade that S1 is able to capture.
Similarly, the second line is the part of the buyer’s ex ante payoff that S1 captures. Both
lines are smaller than the corresponding ones of (P ′

f ), because of the period 1 high type’s
rents. The point-wise optimal production level is

q∗1(θ1) =

{
(θH)

ϵ , if θ1 = θH

(ξ)ϵ , if θ1 = θL
, where ξ = max

{
0 , θL − (θH − θL) ·

µ0

1− µ0

}
(A.3.10)

However, because of (Pc) we will not always be able to find a contract that implements this
supply schedule. We will say that a signal is impactful if Eg

[
Q(βs0) | θL

]
> Eg

[
Q(βs0) | θH

]
.
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As we have argued in Remark 1 whenever a signal influences S2’s contract, this inequality
has to hold.

Lemma A.3.5 (Implementation). For ρH > ρL:

• For any q1(θ1) combined with an impactful signal, there exists a constant b high enough
for those to not be implementable.

• Conversely, the point-wise optimal q∗1(θ1) combined with an uninformative signal is
implementable.

• A sufficient condition for q∗1(θ1) combined with any signal to be implementable is that(
θH
θL

)ϵ
≥ 1 + (ρH − ρL) · b1+ϵ (A.3.11)

Proof. To obtain the first statement note that (Pc) can equivalently be re-written as

q1(θH)− q1(θL) ≥ (ρH − ρL) b
1+ϵ

×
(
Eg
[(

θL − θHµ
s
2

1− µs2

)ϵ ∣∣∣∣ θL]− Eg
[(

θL − θHµ
s
2

1− µs2

)ϵ ∣∣∣∣ θH])
Hence as long as the right hand side is positive, it can be made infinitely large by increasing
b. The second statement follows trivially from the above expression, as in the case of an
uninformative signal the two expectations on the second line of its right hand side are equal
to each other. Thus this becomes zero. For the third statement note that the left hand side
of the above expression is bigger than (θH)

ϵ − (θL)
ϵ. Also, the second line of its right hand

side is smaller than Es
[
Q(βs0) | θL

]
≤ Q(0) = (θL)

ϵ. Therefore (Pc) is implied by

(θH)
ϵ − (θL)

ϵ ≥ b1+ϵ (ρH − ρL) (θL)
ϵ ,

which after rearranging gives (A.3.11).

The lemma sheds light on the limitation of point-wise maximisation, for both production
and information provision, in this setup. To be more precise, when the buyer’s report has
post contractual value, in the sense that an informative signal is optimal, S1 may not always
be able to provide the right incentives for the buyer to share this information. In particular,
the first statement above shows that when the interaction of period 2 is much more important
than that of period 1, that is b is relatively big or equivalently θL and θH are relatively small,
S1 may have to significantly constrain the amount of information she shares with S2. In fact
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if b → ∞, then on this limiting case S1 cannot provide any information at all. Dworczak
(2016a,b) has demonstrated the same limitation by showing in a setting closer to an action
that the only type of mechanism that is always implementable, under an aftermarket for the
bidder that acquires the object, is one that does not share information on his reported type.
On the other hand, when no information provision is optimal, as in Calzolari and Pavan
(2006), this is always implementable.

The rest of the analysis will focus on deriving the point-wise optimal signal. First, because
for the right choice of b, or θH/θL, condition (A.3.11) will always be satisfied. Second, because
for this case the graphical approach used in the previous subsection still applies, which
makes the solution of S1’s information provision problem much more tractable and ease to
demonstrate2. S1’s information provision problem, ignoring the implementation constrain
(A.3.11), becomes

max
g

{
µ0ρH Eg [Q(µs1) | θH ] + (1− µ0)ρLEg [Q(µs1) | θL] − µ0(ρH − ρL)Eg [Q(µs1) | θL]

}
(G)

Lemma A.3.6. In the second best, S1’s information provision problem equivalently becomes

max
g

Eg[J(µs1)] (G)

where its point-wise value J(µs1) is

J(µs1) =
ρH − ρL
1− µ0

·Q(µs1) ·
(
µs1 −

µ0ρH − ρL
ρH − ρL

)
(A.3.12)

Proof. Identical to that of Lemma 1.4.

Similarly to the baseline model (G) is transformed to a choice of distributions over pos-
teriors g̃(µ), that is it equivalently becomes

max
g̃

Eg̃
[
J(µ)

]
s.t. Eg̃[µ ] = µ0 (G ′)

This is solved by invoking the optimality condition Eg̃
[
J(µ)

]
= J (µ0), where

J (µ) = sup
{
z | (µ, z) ∈ co(J0)

}
denotes the concave closure of J . To find J the shape of J needs to be characterised, which

2Despite that, the implications of a binding implementability constrain pose a very interesting question,
worthy of further research.
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(a) µ0ρH < θL
θH

(b) µ0ρH ≥ θL
θH

Figure A.3: A representative graph of J . The dashed line denotes its concave closure, when
this is above J .

is undertaken in the following Lemma. To shorten its statement define

µ∗∗ = max

{
0 ,

β∗∗ − ρL
ρH − ρL

}
, and β∗∗ ≡ θL

θH

2
(
1− µ0ρH

)
+ (ϵ− 1)

(
1− θL

θH

)
µ0ρH
θL/θH

2(1− µ0ρH) + (ϵ− 1)
(
1− θL

θH

) .

As in the first best, we only need to consider the shape of J when (A.3.4) holds, since
otherwise information provision has no impact on S2’s contract.

Lemma A.3.7. Assume throughout that (A.3.4) holds. Suppose µ0ρH < θL
θH

, then J(µ):

• changes monotonicity at most once, and if µ∗ > 0 it falls to it from above.

• If ϵ ≤ 1, then it is strictly concave on [0, µ∗].

• If ϵ > 1, then it is strictly concave in [0, µ∗∗], and strictly convex in [µ∗∗, µ∗].

If instead µ0ρH ≥ θL
θH

, then J(µ) is non-positive.

Proof. Follows as a subcase of Lemma B.1.2 in Chapter 2.

Figure (A.3) shows the two possible cases of J(µ). That first one, shown in Plot (A.3a), is
qualitatively similar to the graph of Jf from the previous subsection. The second, presented
in Plot (A.3b), is substantially different, and in particular in non-positive. This is because
if µ0ρH is relatively high, then convincing the period 1 high type to report truthfully, under
an informative signal, becomes too expensive. Similarly, to the baseline model.
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Hence if ρHµ0 < θL/θH , then the analysis is identical to that of the first best, that is
the dashed line on Plot (A.3a) represents J (µ) for µ > µ̂, and µ̂ is found by solving the
tangency condition

J(µ̂) + J ′(µ̂)(1− µ̂) = 0 (A.3.13)

On the other hand, if ρHµ0 ≥ θL/θH , then no information provision has to be optimal since
it always achieves at least zero.

Proposition A.3.2. Suppose throughout that the implementation condition (A.3.11) holds.
Then the point-wise optimal supply schedule, as given in (A.3.10), solves S1’s payoff max-
imisation problem (P). In addition, an informative signal strictly solves (P) iff

max{ρL, ρHµ0} <
θL
θH

< ρH , and µ0 > µ̂ (A.3.14)

If those two conditions hold, then an optimal signal is s ∈ {s, s} with distribution

g∗ (s | θL) = 1 , and g∗ (s | θH) =
1− µ0

µ0

µ̂

1− µ̂
(A.3.15)

Proof. Whenever (A.3.11) holds, the point-wise optimal supply schedule is implementable
under any signal. Hence the solution of (G) will also solve (P ′), and as a result (P).

Then we can focus on finding the g̃ that solves (G ′). It follows from the above discussion
that whenever µ0ρH ≥ θL/θH no information provision is optimal. If instead µ0ρH < θL/θH ,
but (A.3.4) does not hold, then information provision has no impact on S2’s contract, in
which case no information provision is again optimal.

Hence it remains to consider µ0ρH < θL/θH when (A.3.4) holds. As we argued before in
this case the concave closure of J is

J (µ) =

{
J(µ) , for µ ≤ µ̂

J(µ̂) + J ′(µ̂)(µ− µ̂) , for µ ≥ µ̂
(A.3.16)

where the functional form of the tangency point µ̂ follows as a subcase of Proposition 2.1.2
in Chapter 2 when ψi = µ0ρH .

µ̂ = max

{
0 ,

β̂ − ρL
ρH − ρL

}
where β̂ =

ω1 −
√

(ω1)2 − 4ω0ω2

2ω2

(A.3.17)

and

ω0 =
θL
θH

+
µ0ρHk

1− µ0

, ω1 = 1 +
θL
θH

+ k
1 + µ0

1− µ0

, ω2 = 1 +
k

ρH(1− µ0)
, (A.3.18)
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and k = ϵ
(
1− θL

θH

)
is introduced to maintain a compact notation. Note that if the tangency

point is negative, then we use the corner solution instead, which is zero. Hence we can
conclude that information provision is strictly optimal iff µ0 > µ̂, in which case the solution
of (G ′) randomises between µ̂ and one. Let s be the signal that results in µ = 1. Then it has
to be that g∗ (s | θL) = 0. Therefore, the binary signal s ∈ {s, s} solves (G) if g∗ (s | θL) = 1

and g∗ (s | θH) satisfies

µ̂ =
µ0 g

∗ (s | θH)
µ0 g∗ (s | θH) + 1− µ0

(A.3.19)

Compared to the baseline model, it is harder to infer the shape of the subset of tran-
sitioning probabilities for which information provision is strictly optimal. This is because
instead of the linear constrain (1.12) that used to define the diagonal of the triangle that
was this set for the baseline model, we now have the non-linear constrain µ ≥ µ̂. Despite
that, we can still make the following claim. Define

(ρ̂L, ρ̂H) =

{
(ρ̃L, 1) , if µ0 < θL/θH(
0, θL/θH

µ0

)
, if µ0 ≥ θL/θH

where ρ̃L is the ρL that solves µ0 + (1− µ0)ρL = β̂ when ρH = 1 and µ0 < θL/θH .

Corollary A.1. The set of points for which (A.3.14) is satisfied is a convex subset of{
(ρL, ρH) : ρL ∈

[
ρ̂L ,

θL
θH

]
and ρH ∈

[
θL
θH

, ρ̂H

]}
(A.3.20)

In addition, if for given point (ρL, ρH) information provision is strictly optimal in the second
best, then the same is true for the first best.

For a graphical illustration of the above result also check Plot (1.6b). The comparison
between the first and second best is of special interest. As shown the set of transitioning
probabilities ρL and ρH for which information provision is optimal is larger in the former
setup. This is due to the information rents captured by the period 1 high type, which create
an additional cost that S1 has to incur if she opts for an informative signal.

Proof . The functional form of µ̂ has being given in (A.3.17) and (A.3.18). It follows from
the proof of Proposition 2.1.2 in Chapter 2 that β̂ is the smaller of the two solutions of

ω2β
2 − ω1β + ω0 = 0 (A.3.21)
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with respect to β. Hence the left hand side of the above is zero when calculated on β̂. If we
calculate it on β = ρH we get

ω2ρ
2
H − ω1ρH + ω0 = ρ2H − ρH

(
θL
θH

+ 1

)
θL
θH

= (1− ρH)

(
θL
θH

− ρH

)
≤ 0

Therefore, the left hand side of (A.3.21) is non-positive for β ∈ [β̂, ρH ].

µ0 ≥ β̂ − ρL
ρH − ρL

⇔ µ0ρH + (1− µ0)ρL︸ ︷︷ ︸
=β0

≥ β̂

But the biggest possible value of β0 is ρH , hence we infer that

µ0 ≥ β̂ − ρL
ρH − ρL

⇔ Q(ρH , ρL) ≤ 0 , where Q(ρH , ρL) = ω2β
2
0 − ω1β0 + ω0

Next, we want to demonstrate that Q(ρH , ρL) is convex in (ρH , ρL). Calculate

∂ Q

∂ρH
= µ0 · (2ω2β0 − ω1)−

(
β0
ρH

)2
k

1− µ0

+
k µ0

1− µ0

⇒

∂2Q

∂ρ2H
= 2ω2µ

2
0 − 2

k µ0

1− µ0

β0
ρ2H

+ 2
kβ0ρL
ρ3H

Substitute β0 and ω2 above to obtain

∂2Q

∂ρ2H
= 2ω2µ

2
0 − 2

k µ2
0

1− µ0

1

ρH
+ 2k(1− µ0)

ρ2L
ρ3H

= 2µ2
0 + 2k(1− µ0)

ρ2L
ρ3H

.

Similarly, calculate the partial derivative with respect to ρL and subsequently substitute ω2

to obtain

∂ Q

∂ρL
= (1− µ0)(2ω2β0 − ω1) = −(1− µ0)ω1 + 2(1− µ0)β0 + 2k

(
µ0 + (1− µ0)

ρL
ρH

)
.

Differentiate the first expression above with respect to ρL, which appears only in β0, to
obtain the second order partial derivative below. Also, to obtain the cross-derivative below
differentiate the second equivalent expression above with respect to ρH .

∂2Q

∂ρ2L
= (1− µ0)

22ω2 , and ∂2Q

∂ρL∂ρH
= 2(1− µ0)

(
µ0 −

kρL
ρ2H

)
.

As a result, both of the second order partial derivatives are positive. Hence for Q(ρH , ρL) to
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be convex it suffices that

∂2Q

∂ρ2H

∂2Q

∂ρ2L
≥
(

∂2Q

∂ρL∂ρH

)2

⇔

4(1− µ0)
2ω2

(
µ2
0 + k(1− µ0)

ρ2L
ρ3H

)
≥ 4(1− µ2

0)
2

(
µ2
0 − 2µ0

kρL
ρ2H

+
k2ρ2L
ρ4H

)
Cancel out the 4(1− µ0)

2 terms and substitute ω2 to equivalently obtain

µ2
0 + k(1− µ0)

ρ2L
ρ3H

+
kµ2

0

1− µ0

1

ρH
+
k2ρ2L
ρ4H

≥ µ2
0 − 2µ0

kρL
ρ2H

+ k2
ρ2L
ρ4H

⇔

(1− µ0)
ρ2L
ρ2H

+
µ2
0

1− µ0

+ 2µ0
ρL
ρH

≥ 0 ,

which holds. Hence we have demonstrated that Q(ρH , ρL) is convex, for all (ρH , ρL) such
that ρL < θL/θH < ρH , which implies that the set of (ρH , ρL) for which Q(ρH , ρL) < 0 is
convex. Therefore, the set of (ρH , ρL) for which µ0 >

β̂−ρL
ρH−ρL

is convex.
Next, consider the linear constrain ρL < θL/θH . In particular, note that

ρL =
θL
θH

⇒ β0 ≥ θL
θH

But the tangency point µ̂ is always in [0, µ∗], which implies that β̂ ≤ θL/θH . Then β0 ≥ β̂,
which in turn implies that

Q
(
ρH ,

θL
θH

)
≤ 0

As a result, Q(ρH , θL/θH) ≤ 0 for all ρH ≤ ρ̂H = min
{
1 , θL/θH

µ0

}
, which is our second linear

constrain. This describes the boundary of the set on the vertical axis that keeps ρL constant.
Next, suppose that µ0 ≥ θL/θH , then

µ0ρ̂H + (1− µ0)ρL ≥ µ0ρ̂H
θL
θH

≥ β̂0 ,

as a result Q(ρ̂H , ρL) ≤ 0 for all ρL ≤ θL/θH . Suppose instead that µ0 < θL/θH , and let ρ̃L
denote the unique solution of ρL for Q(1, ρL) = 0. Then again Q(1, ρ̃L) = 0. To gather the
above result let ρ̂L = 0 in the first case, and ρ̂L = ρ̃L in the second, so that

(ρ̂L, ρ̂H) =

{
(ρ̃L, 1) , if µ0 < θL/θH(
0, θL/θH

µ0

)
, if µ0 > θL/θH

Then the horizontal line that connects (ρ̂L, ρ̂H) with (θL/θH , ρ̂H) is the northern boundary
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of the points for which information provision is optimal, and the vertical line that connects
(θL/θH , θL/θH) with (θL/θH , 1) is the eastward. Finally, the set is convex as Q(ρH , ρL) is
convex, and its bounded on the left by ρ̂L and below by θL/θH .

To result on the comparison between the first and second best follows from noting that
Proposition 2.1.2, in Chapter 2, implies that β̂i is increasing in ψi, the relevant value of which
for the first best in zero and for the second best µ0ρH .

As in the baseline model, a case of special interest is when the buyer’s type is the same
under both sellers.

Corollary A.2. Suppose that the buyer’s type is perfectly correlated across sellers, that is
ρL = 0 and ρH = 1, then no information provision is optimal.

Proof. First, suppose that ρHµ0 ≥ θL/θH , which for ρH = 1 becomes µ0 ≥ θL/θH . Then
we have already argued that no information provision is optimal. Suppose instead that
ρHµ0 < θL/θH , which for ρH = 1 becomes µ0 < θL/θH . Then J(µ0) = 0 has at most two
solutions since it changes monotonicity at most once. One of the solutions is µ∗, and it is
ease to see that the other is µ0. But then it has to be that µ0 < µ∗, since J always falls
to the point (µ∗, 0) from above. Hence, µ0 is below the maximum of J , which implies that
µ0 < µ̂. Thus, J(µ0) = J (µ0), which implies that no information provision is optimal.
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Appendix B

Appendixes of Chapter 2

B.1 Proofs for multi-period contracts
Proof of Lemma 2.1.1. The dependence on t and s is dropped. The revelation principle
applies. To make the notation more compact, write the reported type as a subscript. S2’s
revenue maximisation problem is the following one

max
p,q

β ·
(
pH − c(qH)

)
+ (1− β) ·

(
pL − c(qL)

)
s.t. (IRL ) b θL qL − pL ≥ 0

(IRH) b θHqH − pH ≥ 0

(ICL ) b θL qL − pL ≥ b θL qH − pH

(ICH) b θHqH − pH ≥ b θHqL − pL

where both the constrains and the objective function are written in terms of per period
payoffs. Assuming that (IRL) does not bind leads to a contradiction. Subsequently, this can
be used to show that (ICH) has to bind. Hence the above simplifies to the unconstrained
maximisation problem

max
q

β ·
(
b θH qH − c(qH)

)
+ (1− β) ·

(
b
θL − βθH
1− β

qL − c(qL)

)
For β < θL/θH the objective function is concave, hence the unique solution is given by the
first order conditions

c′(qH) = b · θH and c′(qL) = b · θL − βθH
1− β

177



This is implementable, because substituting the above solutions in (ICL) gives

b θLqL − pL ≥ b θLqH − pH ⇔ 0 ≥ b θLqH − pH

⇔ b θH(qH − qL) + b θLqL ≥ b θLqH ⇔ qH ≥ qL,

which is satisfied. Because the (IRL) binds the low type’s period payoff is zero. The high
type’s period payoff can be obtained using the (IRL) and (ICH) constrains, which give that

b θHqH − pH = b θHqL − pL = b (θH − θL)qL = b (θH − θL)

(
b
θL − βθH
1− β

)ϵ
Hence a constant stream of the above payoff up to infinity gives B(β). To obtain the results
on its derivatives note that θL−βθH

1−β = θH − θH−θL
1−β . Hence, on its non-flat part

B′(β) = −b1+ϵ (θH − θL)

(
θL − βθH
1− β

)ϵ−1

ϵ
θH − θL
(1− β)2

Then the first expression below is obtained by gathering terms, while the second from dif-
ferentiating again.

B′(β) = −B(β)

1− β
ϵ
θH − θL
θL − βθH

and B′′(β) =
B′(β)

1− β

(
2 + (1− ϵ)

θH − θL
θL − βθH

)
, (B.1.1)

Thus, the statements on the monotonicity and concavity of B(β) on its non-flat part follow
immediately from the above.

Lemma B.1.1. It is without loss of generality to only consider one-shot deviations. In
those a θt buyer type reports truthfully θt−1, potentially misreports θt as θ̂t, and subsequently
switches back to truthful reporting.

Proof of Lemma B.1.1. Necessity is trivial. For sufficiency suppose that type θt has
a profitable deviation to report {θ̂t, .., θ̂t′} up to t′ and then switch to truthfulness. But
on t′ a realised type {.., θ̂t, .., θ̂t′−1, θt′} that was truthful faces the same payoff on t′ as a
misreported one that ends with type θt′ . Hence, the one-shot deviation constrains implies
that {θ̂t, .., θ̂t′−1, θt′}, that is a deviation that misreports only up to t′−1 is better. Applying
the same argument shows that any deviation with finite horizon t′ is no better than truth-
telling. Infinitely long deviations can be arbitrarily well approximated by finite ones, hence as
long as the one-shot constrains bind up to a constant difference ε > 0 the same contradiction
is obtained. To maintain notation light this ε is ignored on the main text.
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Proof of Proposition 2.1.1. Lemma B.1.1 shows that it is without loss to only consider
one shot deviations. Hence hereafter IC(θt) will refer exclusivity to the incentive compati-
bility constrains obtained under one-shot deviations. To maintain a compact notation, let
θ̂t = {θt−1, θ̂t} denote a history of truthful reports up to t− 1 followed by a potential misre-
port θ̂t. In addition, denote a generic history θt−1 followed by θt = θH as θtH , and similarly
define θtL. Then the payoff of a θt buyer type under a one shot deviation is

Ût(θ̂t, θt, θ
t−1) = θtqt(θ̂

t)− pt(θ̂
t) + γδ Eθ

[
Ût+1(θt+1, θt+1, θ̂

t) | θt
]

+ (1− γ) δ Pr(θt+1 = θH | τ = t, θt)Eg
[
B(βst ) | θ̂t

]
In period t the buyer obtains the quantity and price corresponding to type θ̂t, however his
actual valuation corresponds to the realised type θt. The distribution of the signal s is
conditioned on the reported type θ̂t, but the probability of the buyer to be a high type in
S2’s contract is only a function of the actual type θt. Let the on path payoff of a θt buyer
type be given by Ut(θt) = Ût(θt, θt, θ

t−1), then the corresponding individual rationality and
incentive compatibility constrains become

IR(θt) Ut(θ
t) ≥ 0

IC(θt) Ut(θ
t) ≥ Ût(θ̂t, θt, θ

t−1)
(B.1.2)

where the buyer’s outside option is set to zero, since we have assumed that if the buyer
rejects S1’s offer, then S2 does not trade with him. Next, consider the following problem

(PH) max
q,g

Eθ

[
∞∑
t=0

δt
(
pt(θ

t)− c
[
qt(θ

t)
])]

subject to IR(θt) and IC(θt),

(B.1.3)

which is similar to (P), but it ignores the individual rationality constrains of all high types
IR(θtH) and the incentive compatibility constrains of all low types IC(θtL). Ignoring the
former set of constrains is without loss of generality as Ut(θtH) ≥ Ut(θ

t
L), however this is not

true for the IC(θtL) constrains. Despite that, if the solution of (PH) happens to also satisfy
this set of constrains, then it is a solution of (P).

The rest of the proof shows that in (PH), for every (p, q, g) there exists a p′ such that the
objective function under (p′, q, g) is no less than under (p, q, g), and that both the IR(θtL) and
IC(θtH) constrains bind. Solving for p′ from the constrains and substituting in the objective
function will give (P ′). Hence if (q, g) is a solution of (P ′), then there exists p′ such that
(p′, q, g) is also a solution of (PH). Finally, p′ will be substituted in the previously ignored
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IC(θtL) so that a sufficient condition is obtained for (p′, q, g) to be a solution of (P), which
only depends on policies (q, g).

The argument is recursive. Suppose that IR(θtL) and IC(θtH) bind for all periods up to
and including t′, but not for t′ + 1. For simplicity, denote pt(θt

′
H) by pH , pt(θt

′
L) by pL, and

similarly use {pLL, pHL, pLH , pHH} for the possible combinations up to t′ + 1. Moreover,
adopt the same notational change for the IR and IC constrains. Suppose that IRHL does
not bind, then let

(
p̃H , p̃HH , p̃HL

)
=
(
pH − δε, pHH + ε, pHL + ε

)
and increase ε until it does. Under this transformation IRL and ICH continue to bind and S1

is indifferent between the two contracts. The same argument works if IRLL does not bind.
Suppose instead that ICLH does not bind, then let

(
p̃L, p̃H , p̃LH

)
=
(
pL − δφLε, pH + δ(φH − φL)ε, pLH + ε

)
,

and increase ε until it does. Under this transformation IRL and ICH continue to bind and
S1 is actually better off. Finally, suppose that ICHH does not bind, then let

(
p̃H , p̃HH

)
=
(
pH − δφHε, pHH + ε

)
,

and increase ε until it does. Under this transformation IRL and ICH continue to bind and
S1 is indifferent between the two contracts. Hence, if both IR(θtL) and IC(θtH) bind for all
periods up to and including t′, and IC(θtL) is ignored, then there exists an alternative contract
that implements the same policies, is not worse for S1, and has all constrains binding up to
t′+1. In addition, the regular one period argumentation shows that IR(θ0L) and IC(θ0H) have
to bind, from which the recursive argument follows.

Hence, it is without loss to assume that IR(θtL) and IC(θtH) bind. The former gives

pt(θ
t
L) = θLqt(θ

t
L) + γδφLÛt+1(θH , θH , θ

t
L) + (1− γ)δρLEg[B(βst )|θ̂t] ,

and the latter

Ut(θ
t
H) = θHqt(θ

t
L)− pt(θ

t
L) + γδφHÛt+1(θH , θH , θ

t
L)

+ [1− γ]δρHEg[B(βst )|θ̂t] .

In both equations above it has been used that Ût+1(θL, θL, θ
t
L) = Ut+1({θL, θtL}), which in turn
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is equal to zero because the IR({θL, θtL}) constrain binds. Substitute the derived expression
for pt(θtL) in that for Ut(θtH) to obtain

Ut(θ
t
H) = (θH − θL)qt(θ

t
L) + γδ(φH − φL)Ût+1(θH , θH , θ

t
L)

+ (1− γ)δ(ρH − ρL)Eg[B(βst )|θtL] . (B.1.4)

In addition, because IC({θtL, θH}) binds, I get that Ût+1(θH , θH , θ
t
L) = Ut+1({θtL, θH}), the

expression of which follows the same pattern with the above equation. Using the same argu-
ment repeatedly and substituting forward gives the functional form provided for UH

t (θt−1)

in the main text. In particular, for a period 1 high types that becomes

U0(θH) =
∞∑
t=0

γtδt(φH − φL)
t

[
(θH − θL)qt(L

t)

+ δ(1− γ)(ρH − ρL)Eg
[
B(βst ) |Lt

])]
. (B.1.5)

It follows by the definition of U0(θ0) that the on path expected discounted payments on
period 1 satisfies

Eθ

[
∞∑
t=0

γtδtθtqt(θ
t)

∣∣∣∣∣ θ0
]
− U0(θ0) = Eθ

[
∞∑
t=0

γtδtpt(θ
t)

∣∣∣∣∣ θ0
]

It has been shown that IR(θ0) binds, hence for a low type substitute U0(θL) = 0, whereas for
a high type the expression derived in (B.1.5). Finally, substitute the expected discounted
transfers on the objective function of (P) to obtain (P ′).

To complete the proof note that by definition the transfers offered to a high type make
him indifferent between deviating and not, after every history θt−1. Hence for the derived
solution to be implementable it suffices that IC(θtL) is satisfied. This is

Ut(θ
t
L) ≥ θLqt(θ

t
H)− pt(θ

t
H) + γ δ φLÛt+1(θH , θH , θ

t
H)

+ δ (1− γ) ρLEg
[
B(βst ) | θtH

]
,

where Ût+1(θL, θL, θ
t
H) = Ut+1({θtH , θL}) = 0 has already been used on the continuation

value on the right hand side. Substitute Ut(θtL) = 0 on the left hand side, Ût+1(θH , θH , θ
t
H) =
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Ut+1({θtH , θH}) on the right one, rearrange and add the rest of the parts of Ut(θtH) to obtain

(θH − θL)qt(θ
t
H) + γ δ (φH − φL)Ut+1({θtH , θH})

+ δ (1− γ) (ρH − ρL)Eg
[
B(βst ) | θtH

]
≥ Ut(θ

t
H)

Finally, substitute the recursive expression of Ut(θtH) as it appears on (B.1.4), and note that
by definition Ut+1({θtH , θH}) = UH

t+1(θ
t
H) and Ut+1({θtL, θH}) = UH

t+1(θ
t
L) to obtain (Pc).

Proof of Corollary 2.1.1. The third line of (P ′) represents the information rents, which
only affect the production of the Lt histories. Hence, point-wise maximisation on any other
history simple optimises its first line, which represents the surplus from production, and
gives the first-best level of effort. In contrast, for every t the production relevant payoff that
corresponds to the Lt history is

Pr(Lt)γtδt
{
θLqt(L

t)− qt(L
t)1+

1
ϵ

1 + 1
ϵ

− µ0(φH − φL)
t

Pr(Lt)
(θH − θL)qt(L

t)

}
= Pr(Lt)γtδt

{
ξt qt(L

t)− qt(L
t)1+

1
ϵ

1 + 1
ϵ

}
,

the point-wise maximisation of which gives (ξt)
ϵ. Substitute the derived point-wise optimal

quantities in (Pc) to obtain

(θH − θL)

[
(θH)

ϵ − (ξt)
ϵ +

∞∑
t′=t+1

[
(φH − φL)γδ

]t′−t(
(θL)

ϵ − (ξt)
ϵ
)]

≥ δ(ρH − ρL)

×
∞∑
t′=t

[
(φH − φL)δ

]t′−t
Pr(τ = t′ | τ > t− 1)

{
Eg
[
B(βst′) | θtLLt

′

t+1

]
− Eg

[
B(βst′) | θtHLt

′

t+1

]}
,

(B.1.6)

for all Lt histories, and for the remaining ones substitute ξt with θL. Note that (θL)ϵ ≥ (ξt)
ϵ.

Hence the left hand side above is bigger than (θH − θL)[(θH)
ϵ− (θL)

ϵ]. In addition, the right
hand side of (B.1.6) is smaller than

δ(ρH − ρL)
∞∑
t′=t

[
(φH − φL)δ

]t′−t
Pr(τ = t′ | τ > t− 1)Eg

[
B(βst′) | θtLLt

′

t+1

]
≤ δ(ρH − ρL)

∞∑
t′=t

[
(φH − φL)δ

]t′−t
Pr(τ = t′ | τ > t− 1)B(0)

≤ δ(ρH − ρL)B(0) = δ(ρH − ρL)b
1+ϵ(θH − θL) (θL)

ϵ,
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where the first inequality follows from noting that B(·) is decreasing, and the second because
getting B(0) in period t+1 for sure is better than any other realisation of τ . Hence combining
the two equations together gives (2.1.4).

Proof of Lemma 2.1.2. For brevity denote the event (τ = t) as (t) in the probabilities
below. In (Gt) change the order of the summations and multiply the probabilities to obtain

∑
s

B(βst )

{∑
θt

[
Pr(s, t | θt) Pr(θt) Pr(θt = θH | θt)

]
− µ0(φH − φL)

t(ρH − ρL) Pr(s, t |Lt)
}
. (B.1.7)

Moreover, note that

∑
θt

Pr(s, t | θt) Pr(θt) Pr(θt = θH |θt)

= φH
∑
θtH

Pr(s, t | θtH) Pr(θtH) + φL
∑
θtL

Pr(s, t | θtL) Pr(θtL)

To transform the above equation note that for the period t high types

Pr(θt = θH | s, t) =

∑
θtH

Pr(s, t | θtH) Pr(θtH)
Pr(s, t)

⇔ µst Pr(s, t) =
∑
θtH

Pr(s, t | θtH) Pr(θtH)

Similarly, for the period t low types

(1− µst) Pr(s, t) =
∑
θtL

Pr(s, t | θtL) Pr(θtL)

Finally, for the history Lt

Pr(s, t |Lt) =
Pr(s, t, Lt)

Pr(Lt)
= λst

Pr(s, t)

Pr(Lt)
=

λst
(1− φL)t

Pr(s, t)

1− µ0
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Hence, substitute the above in (B.1.7) to obtain

∑
s

B(βst )

{
ρHµ

s
t Pr(s, t) + ρL(1− µst) Pr(s, t)− ψtλ

s
t Pr(s, t)

}
=
∑
s

B(βst )

{
ρHµ

s
t + ρL(1− µst)− ψtλ

s
t

}
Pr(s, t) =

∑
s

B(βst )
(
βst − ψtλ

s
t

)
gt(s) Pr(t) .

(B.1.8)

To shorten the statement of the subsequent lemma, let D denote the domain of Jt(µ, λ),
and define its following subsets

D ≡
{
(µ, λ) ∈ D : µ = 0, or λ = 0, or µ+ λ = 1

}
,

D0 ≡
{
(µ, λ) ∈ D : µ ≥ µ∗} and DI ≡ D

c ∩Do .

Thus D denotes the boundary of the domain, D0 the subset of posteriors for which Jt(µ, λ)

is flat, i.e. equal to zero, and DI that of interior points on which Jt(µ, λ) is not flat.

Lemma B.1.2. Jt(µ, λ) is flat for all µ ∈ D0. Also, it is neither concave, nor convex for
all (µ, λ) ∈ DI , and for an immediate termination DI = {∅}.

• On the boundary (µ = 0): it is linear and decreasing on λ.

• On the boundary (λ = 0), and when Ψt <
θL
θH

also on (µ+ λ = 1):

– It changes monotonicity at most once, and if µ∗ > 0 it falls to µ∗ from above.

– If ϵ ≤ 1, then it is strictly concave on [0, µ∗].

– If ϵ > 1, then it is strictly concave on [0, µ∗∗
i ], and strictly convex on [µ∗∗

i , µ
∗],

where

µ∗∗
i = max

{
0 ,

β∗∗
i − ρL
ρH − ρL

}
and β∗∗

i ≡ θL
θH

2
(
1−Ψi

)
+ (ϵ− 1)

(
1− θL

θH

)
Ψi

θL/θH

2(1−Ψi) + (ϵ− 1)
(
1− θL

θH

) .

• On the boundary (µ+ λ = 1), when Ψt ≥ θL
θH

: It is negative and strictly increasing for
all µ < µ∗ Otherwise, it is equal to zero. In addition,

– If ϵ ≥ 1, then it is strictly concave on [0, µ∗].

– If ϵ < 1 and (1− ϵ)(1− θL
θH

) ≥ 2(1−Ψt), then its strictly convex on [0, µ∗].
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– If ϵ < 1 and (1 − ϵ)(1 − θL
θH

) < 2(1 − Ψt) it is strictly concave on [0, µ∗∗
i ], and

strictly convex on [µ∗∗
i , µ

∗].

Proof of Lemma B.1.2. The time subscripts are suppressed. It is copied here from
(B.1.1) that for every β ≤ θL/θH :

B′(β) = −B(β)

1− β
ϵ
θH − θL
θL − βθH

and B′′(β) =
B′(β)

1− β

(
2 + (1− ϵ)

θH − θL
θL − βθH

)
,

Hence, for µ ≤ µ∗ differentiating and re-arranging gives that

∂J(µ, λ)/∂ µ

ρH − ρL
= B′(β)(β −ψ λ) +B(β) ⇒ ∂2J(µ, λ)/∂ µ2

(ρH − ρL)2
= B′′(β)(β −ψ λ) + 2B′(β)

=
B′(β)

1− β

[
2(1− ψλ) + (1− ϵ)(b− ψλ)

θH − θL
θL − β θH

]
.

Likewise,

∂J(µ, λ)

∂ λ
= −ψB(β),

∂2J(µ, λ)

∂λ ∂µ
= −ψ(ρH − ρL)B

′(β), and ∂2J(µ, λ)

∂λ2
= 0 .

To prove that J(µ, λ) is neither concave nor convex on any of its interior points, that is not
on the flat side of its domain, it suffices to show that its Hessian matrix is indefinite. This
is given by

D2J(µ, λ) =

(
∂2J
∂µ2

∂2J
∂µ∂λ

· ∂2J
∂λ2

)

Hence, its determinant is |D2J | = −
(
∂2J
∂µ∂λ

)2
< 0, from which it follows that it is indefinite.

To prove the statements for the boundaries (µ+λ = 1) and (λ = 0), define the following
linear combination of (µ′, λ′) and (µ′′, λ′′), for w ∈ [0, 1] and µ′′ ̸= µ′,(

µ̄

λ̄

)
= (1− w)

(
µ′

λ′

)
+ w

(
µ′′

λ′′

)
.

This implies that

w =
µ̄− µ′

µ′′ − µ′ ⇒ λ̄ =
λ′′ − λ′

µ′′ − µ′ (µ̄− µ′) + λ′ =
λ′′ − λ′

µ′′ − µ′

(
b̄− ρL
ρH − ρL

− µ′
)
+ λ′

⇒ (b̄− ψ λ̄) = b̄

(
1− ψ

ρH − ρL

λ′′ − λ′

µ′′ − µ′

)
︸ ︷︷ ︸

≡ζ

−ψ
[
λ′ − λ′′ − λ′

µ′′ − µ′

(
ρL

ρH − ρL
+ µ′

)]
︸ ︷︷ ︸

≡ζ′
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Let Ψ ≡ ζ ′/ζ and note that for the subsets (λ = 0) and (µ+ λ = 1)(
µ′ µ′′

λ′ λ′′

)
=

(
0 1

0 0

)
,

(
0 1

1 0

)
(

ζ

ζ ′

)
=

(
1

0

)
,

(
1 + ψ

ρH−ρL
1 + ρL

ρH−ρL

)

Ψ = 0 ,
ψρH

ρH − ρL + ψ
,

respectively. In addition, substituting ψ = µ0
1−µ0

(
φH−φL
1−φL

)t
(ρH − ρL) I get that

ψρH
ρH − ρL + ψ

=
µ0ρH

(1− µ0)
(
φH−φL
1−φL

)−t
+ µ0

≤ µ0ρH < 1.

Now the characterisation of J(µ, λ) on its boundaries can be obtained. Note that by moving
w ∈ [0, 1] I essentially move J(µ, λ) on the two specified sides. Moreover, because µ is a
linear transformation of w its monotonicity and concavity changes at the same values of µ,
and as a result of β. Hence, define

J̄(w) ≡ J
[
µ̄(w), λ̄(w)

]
= ζ B(β̄)(β̄ −Ψ) , where β̄ = µ̄(ρH − ρL) + ρL

and µ̄ = w(µ′′ − µ′) + µ′ .

Then algebra similar to that used to simplify the partial derivatives of J(µ, λ) implies that

J̄ ′′(w) = (ρH − ρL)
2(µ′′ − µ′)2ζ

B′(β̄)

1− β̄

[
2(1−Ψ) + (1− ϵ)(β̄ −Ψ)

θH − θL
θL − β̄ θH

]
.

Hence, to find the set of β̄’s for which J̄(w) is convex solve

J̄ ′′(w) ≥ 0 ⇔ 2(1−Ψ) + (1− ϵ)(β̄ −Ψ)
θH − θL
θL − β̄ θH

≤ 0

⇔ β

[
2(1−Ψ)− (1− ϵ)

(
1− θL

θH

)]
≥ 2(1−Ψ)

θL
θH

− (1− ϵ)

(
1− θL

θH

)
Ψ.

(B.1.9)

Next, four cases are considered. First suppose that ϵ ≤ 1 and θL/θH ≥ Ψ, which implies

θL
θH

≥ Ψ ⇒

 (1−Ψ) ≥
(
1− θL

θH

)
⇒ (1−Ψ)− (1− ϵ)

(
1− θL

θH

)
≥ 0

(1−Ψ) θL
θH

≥
(
1− θL

θH

)
Ψ ⇒ (1−Ψ) θL

θH
− (1− ϵ)

(
1− θL

θH

)
Ψ ≥ 0
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Hence, (B.1.9) becomes

β ≥ θL
θH

2(1−Ψ)− (1− ϵ)
(
1− θL

θH

)
Ψ

θL/θH

2(1−Ψ)− (1− ϵ)
(
1− θL

θH

) ≥ θL
θH
,

which is never satisfied on [0, θL/θH). Second, suppose that ϵ > 1 and θL/θH ≥ Ψ, then
(B.1.9) becomes

β ≥ θL
θH

2(1−Ψ) + (ϵ− 1)
(
1− θL

θH

)
Ψ

θL/θH

2(1−Ψ) + (ϵ− 1)
(
1− θL

θH

)
where the right hand side is equal to θL/θH for θL/θH = Ψ and strictly less than it and
positive for θL/θH > Ψ. Hence, in the former subcase it is always concave in [0, θL/θH ],
while in the latter there is a point in this interval above which it becomes strictly convex.
Third, suppose that ϵ ≥ 1 and θL/θH < Ψ. Then the second line of (B.1.9) becomes

β ≥ θL
θH

2(1−Ψ) + (ϵ− 1)
(
1− θL

θH

)
Ψ

θL/θH

2(1−Ψ) + (ϵ− 1)
(
1− θL

θH

) ≥ θL
θH
,

Hence, similar to the first case J̄(w) is always concave on its non-flat part. Forth, suppose
that ϵ < 1 and θL/θH < Ψ. Consider the subcase where 2(1−Ψ) ≤ (1− ϵ)

(
1− θL

θH

)
, which

implies that 2(1 − Ψ) θL
θH

≤ (1 − ϵ)
(
1− θL

θH

)
Ψ. If the first inequality holds with equality,

then (B.1.9) is trivially satisfied. Otherwise, it becomes

β ≤ θL
θH

(1− ϵ)
(
1− θL

θH

)
Ψ

θL/θH
− 2(1−Ψ)

(1− ϵ)
(
1− θL

θH

)
− 2(1−Ψ)

,

the right hand side of which is strictly bigger than θL/θH . Hence, in this subcase the
function is always convex in [0, θL/θH ]. Finally, consider the subcase where 2(1 − Ψ) >

(1− ϵ)
(
1− θL

θH

)
, for which (B.1.9) becomes

β ≥ θL
θH

2(1−Ψ)− (1− ϵ)
(
1− θL

θH

)
Ψ

θL/θH

2(1−Ψ)− (1− ϵ)
(
1− θL

θH

) ,

the right hand side of which is strictly smaller than θL/θH . Hence, in this subcase there exists
a point in [0, θL/θH) above which J̄(w) is strictly convex and below strictly concave.
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Proof of Proposition 2.1.2. The statement for the interior of the domain of Jt(µ, λ), for
the first, and for third bullet point follow immediately from Lemma B.1.2. To obtain the
second let

J̄i(µ) ≡ J̃i

(
µ(ρH − ρL) + ρL

)
, where J̃i(β) = ζiB(β)(β −Ψi)

and instead of (2.1.6) solve

J̃i(µ̂i) + J̃ ′
i(β̂i)(ρH − β̂i) = 0 , (B.1.10)

in [Ψi, θL/θH ]. It is ease to so that

µ̂i ≡ max

{
β̂i − ρL
ρH − ρL

, 0

}
.

To solve (B.1.10) note that

J̃i(β) = ζiB(β)(β −Ψi) ⇒ J̃i(β) = ζiB(β) + ζiB
′(β)(β −Ψi)

= ζi
B(β)

1− β

[
1− β − ϵ(θH − θL)

β −Ψi

θL − βθH

]
Hence, (B.1.10) equivalently becomes

(β̂i −Ψi)(1− β̂i) +

[
1− β̂i − ϵ(θH − θL)

β̂i −Ψi

θL − β̂iθH

]
(ρH − β̂i) = 0

⇔ (1− β̂i)(ρH −Ψi) = ϵ

(
1− θL

θH

)
β̂i −Ψi

θL
θH

− β̂i
(ρH − β̂i)

⇔ θL
θH

− β̂i

(
1 +

θL
θH

)
+ β̂2

i =
ϵ
(
1− θL

θH

)
ρH −Ψi

[
β̂i(ρH +Ψi)− β̂2

i −ΨiρH

]
(B.1.11)

which after cancelling out terms and rearranging becomes

ω2β̂
2
i − ω1β̂i + ω0 = 0 , where ω0 ≡ θL

θH
+ΨiρH

ϵ
(
1− θL

θH

)
ρH −Ψi

,

ω1 ≡ 1 +
θL
θH

+ ϵ

(
1− θL

θH

)
ρH +Ψi

ρH −Ψi

, and ω2 ≡ 1 +
ϵ
(
1− θL

θH

)
ρH −Ψi

.

(B.1.12)

In addition, it has already been shown that in the relevant parametric case J̄(β) changes
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its monotonicity and concavity at most once for β < θL/θH . Hence, because the function
is initially concave, it is the smaller root that is the relevant one, while the bigger exists
because of the shape that B(β) would have for β > θL/θH if it wasn’t becoming flat there.
Hence, the solution is given by

β̂i ≡
ω1 −

√
(ω1)2 − 4ω0ω2

2ω2

(B.1.13)

To prove the statement on its monotonicity with respect to Ψi equivalently rewrite the second
line of (B.1.11) as

β̂i − 1 + ϵ

(
1− θL

θH

)
β̂i −Ψi

ρH −Ψi

ρH − β̂i
θL
θH

− β̂i
= 0 , (B.1.14)

where it follows from the above discussion that for the relevant solution given in (B.1.13)
it has to be that Ψi < β̂i <

θL
θH

≤ ρH . Hence the partial derivative of the left hand side of
(B.1.14) with respect to β̂i is

∂LHS(B.1.14)
∂β̂i

= 1 + ϵ

(
1− θL

θH

)[
1

ρH −Ψi

ρH − β̂i
θL
θH

− β̂i
+

β̂i −Ψ

ρH −Ψi

ρH − θL
θH

( θL
θH

− β̂i)2

]
> 0 ,

whereas that with respect to Ψi is

∂LHS(B.1.14)
∂Ψi

= ϵ

(
1− θL

θH

)
ρH − β̂i
θL
θH

− β̂i

β̂i − ρH
(ρH −Ψi)2

< 0 .

Then the implicit function theorem gives that ∂β̂i/∂Ψi > 0 .

Proof of Corollary 2.1.2 . The restriction φH = 1−φL = 1 implies that µst +λst = 1, as
a history where a high type changes to a low one never occurs. Hence it follows from Lemma
B.1.2 that

Jt(µ, λ) = J̄t(µ) =

(
1 +

ψt
ρH − ρL

)
B(β) (β −Ψt) ,

where to make notation more compact the shorthand β = (ρH−ρL)µ+ρL is used. Substitute
φH = 1−φL = 1 to get that Ψt =

µ0
1−µ0 and ψt = µ0, and ρH = 1− ρL = 1, which gives that

β = µ, to obtain
J̄t(µ) = J̄0(µ) =

1

1− µ0

B(µ)(µ− µ0)

Note that µt = µ0. Then an argumentation identical to that used in the proof of Corollary
A.2 shows that no information provision is optimal.
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Proof of Proposition 2.1.3. First, it is shown that for all (µ, λ) ∈ D there exist points
(µ′, 0) ∈ (λ = 0) and (µ′′, 1− µ′′) ∈ (µ+ λ = 1) such that

Jt(µ, λ) =
µ− µ′′

µ′ − µ′′ J̄f (µ
′) +

µ′ − µ

µ′ − µ′′ J̄t(µ
′′) . (B.1.15)

To prove this first take point (µi, λi) ∈ D and let weight ω̄i be the one that gives this as
a linear combination of (µi, 0) and (µi, 1− µi). Then this solves

ω̄i(1− µi) + (1− ω̄i)0 = λi

where ω̄i ∈ [0, 1] since µi + λi ≤ 1. Therefore,

ω̄iJt(µi, 1− µi) + (1− ω̄i)Jt(µi, 0)

= B(βi)βi − [ω̄i(1− µi) + (1− ω̄i)0]ψt = Jt(µi, λi) ,

which implies that Jt(µi, λi) can always be obtained as a linear combination of the value of
Jt on two corresponding points on the boundaries (λ = 0) and (µ+ λ = 1).

Next, note that the concave closure Jt(µ, λ) on every (µ, λ) ∈ D is a linear combination
of Jt over a subset of D, call it D(µ, λ). Take any point (µi, λi) ∈ D(µ, λ) that is also
interior, and substitute Jt(µi, λi) with an additional linear combination between (µi, 0) and
(µi, 1−µi), while keeping the weight that multiplies Jt(µi, λi) constant. This leaves the value
of Jt(µ, λ) unchanged, as its follows from the above discussion that

Jt(µ, λ) =
∑

(µj ,λj)∈D(µ,λ)

ωj Jt(µj, λj) = ...+ ωiJt(µi, λi)

= ...+ ωiω̄iJt(µi, 1− µi) + ωi(1− ω̄i)Jt(µi, 0) .

Repeating the same process for all interior points of D(µ, λ) gives that Jt(µ, λ) can be written
as a linear combination of Jt over points belonging to (λ = 0) and (µ+ λ = 1) exclusively.

To prove (B.1.15) suppose that it does not hold for a point (µ, λ) ∈ D. Then by maintain-
ing the same probabilities of the posteriors to be on each of the two boundaries, Pr(λst = 0)

and Pr(µst + λst = 1), and changing the conditional probabilities so that the two correspond-
ing conditional expectations are equal to the concave closures J̄f (µ) and J̄t(µ), respectively,
the whole expectation increases, which leads to a contradiction.

Therefore, Jt(µ, λ) can always be expressed as a linear combination of its value on the two
boundaries. To find the correct weight for each set of points (µ, λ), (µ′, 0), and (µ′′, 1− µ′′)
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solve (
µ

λ

)
= ω

(
µ′

0

)
+ (1− ω)

(
µ′′

1− µ′′

)
⇒ ω =

µ− µ′′

µ′ − µ′′ .

Hence to fully characterise Jt(µ, λ) it remains to pin down µ′ and µ′′. To do this let x be
the slope of the line that connects (µ′, 0), (µ, λ), and (µ′′, 1 − µ′′). Then for µ ̸= µ′, which
also implies µ′′ ̸= µ′, this is equal to:

x =
λ− 0

µ− µ′ =
1− µ′′ − 0

µ′′ − µ′ ⇒

{
λ = x(µ− µ′)

1− µ′′ = x(µ′′ − µ′)
⇒

{
µ′ = µ− λ

x
1−µ′
1−µ′′ = 1 + 1

x

.

This in turn implies

µ′ − µ

µ′ − µ′′ =
λ

1− µ′′ and

µ− µ′′

µ′ − µ′′ = 1− µ′ − µ

µ′ − µ′′ = 1− λ

1− µ′
1− µ′

1− µ′′ = 1− λ

1− µ′

(
1 +

1

x

)
,

which gives that
(1− µ′)

µ− µ′′

µ′ − µ′′ = 1− µ′ − λ

(
1 +

1

x

)
= 1− µ+

λ

x
− λ

(
1 +

1

x

)
= 1− µ− λ .

Then define

Ĵt(x;µ, λ) ≡ µ− µ′′

µ′ − µ′′ J̄f (µ
′) +

µ′ − µ

µ′ − µ′′ J̄t(µ
′′)

= (1− µ′)
µ− µ′′

µ′ − µ′′
J̄f (µ′)

1− µ′ + (1− µ′′)
µ′ − µ

µ′ − µ′′
J̄t(µ′′)

1− µ′′

= (1− µ− λ)
J̄f (µ′)

1− µ′ + λ
J̄t(µ′′)

1− µ′′ ,

and note that it follows from the above argumentation that

Jt(µ, λ) = max
x

Ĵt(x;µ, λ) s.t µ′, µ′′ ∈ [0, 1] (B.1.16)

To write the constrain in terms of x solve for µ′′, which is given by

x =
1− µ′′ − λ

µ′′ − µ
⇔ µ′′ =

1− λ+ xµ

1 + x
.
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As a result, for µ′ and µ′′ to be in the interval [0, 1] it has to be that

0 ≤ µ− λ

x
≤ 1 ⇒ x ∈

(
−∞ , − λ

1− µ

]
∪
[
λ

µ
, +∞

)
0 ≤ 1− λ+ xµ

1 + x
≤ 1 ⇒ x ∈

(
−∞ , −1− λ

µ

]
∪
[
− λ

1− µ
, +∞

)
,

respectively. Then using that 1 > µ+ λ gives that the intersection of the above two sets is

x ∈
(
−∞ , −1− λ

µ

]
∪
[
λ

µ
, +∞

)
,

which is the desired form for the constrain of (B.1.16).

B.2 Proofs for continuous types
To avoid repetition, the subsequent lemma provides a sufficient and necessary condition for
implementation that will be applied to the contracts offered by both S1 and S2 .

Lemma B.2.1 (Implementation). For given price p : [θ, θ] → R suppose that the payoff of
a θ type buyer, when reporting θ̂, is

V̂ (θ̂, θ) ≡ v(θ̂, θ)− p(θ̂) (B.2.1)

where v : [θ, θ]× [θ, θ] → R is absolute continuous in the second variable with weak derivative
v2 : [θ, θ]× [θ, θ] → R+. Then truthful reporting is implementable only if v2 is increasing in
the first variable. In addition, if this holds then the price

p(θ) = v(θ, θ)−
∫ θ

θ

v2(x, x) dx (B.2.2)

ensures that truthful reporting in optimal.

Proof of Lemma D.1.1. First, necessity is proven. Suppose that truthful reporting is
optimal and let V (θ) = V̂ (θ, θ), then for any θ1, θ2 ∈ [θ, θ] such that θ1 < θ2:

V (θ2) ≥ V̂ (θ1, θ2) = V (θ1) +

∫ θ2

θ1

V̂2(θ1, θ) dθ

V (θ1) ≥ V̂ (θ2, θ1) = V (θ2)−
∫ θ2

θ1

V̂2(θ2, θ)dθ
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where the subscript 2 indicates the partial derivative with respect to the second entry. Re-
arranging the two inequalities and combining them gives∫ θ2

θ1

V̂2(θ2, θ) dθ ≥
∫ θ2

θ1

V̂ s
2 (θ1, θ) dθ.

As this has to hold for any choice of θ1 and θ2, as defined above, it follows that v2(θ̂, θ) =
V̂2(θ̂, θ) has to be non-decreasing on θ̂. Second, sufficiency is proven. Suppose θ̂ < θ, then

v(θ̂, θ)− p(θ̂) = v(θ̂, θ)− v(θ̂, θ̂) +

∫ θ̂

θ

v2(x, x) dx

=

∫ θ

θ̂

v2(θ̂, x) dx+

∫ θ̂

θ

v2(x, x) dx

=

∫ θ

θ̂

{
v2(θ̂, x)− v2(x, x)

}
dx+

∫ θ

θ

v2(x, x) dx ≤
∫ θ

θ

v2(x, x) dx = v(θ, θ)− p(θ)

As a result reporting θ̂ = θ is no worse than any θ̂ < θ. The proof for θ̂ > θ is similar hence
it is omitted.

Proof of Lemma 2.2.1. S2’s revenue for given choice of policies p2(θ2) and q2(θ2) is

∫ θ2

θ2

{
p2(θ2)− c[q2(θ2)]

}
dF s

2 (θ2), (B.2.3)

The buyer’s payoff, when reporting θ̂2 instead of his actual type θ2, is

V̂ s
2 (θ̂2, θ2) = b θ2q2(θ̂2)− p2(θ̂2) .

It is ease to argue that Theorem 2 of Milgrom and Segal (2002) applies in this setting. Hence
their envelop theorem gives that

dV s
2 (θ2)

dθ2
= b q2(θ2) .

As a result, integrating and equating with V s
2 (θ2) = V̂ s

2 (θ2, θ2) gives

b

∫ θ2

θ2

q2(x) dx+ V s
2 (θ2) = b θ2q2(θ2)− p2(θ̂2) .

Then the objective function of (2.2.2) follows from substituting in (B.2.3) the price p2(θ2),
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as given from the above equality, applying Fubini’s Theorem, and setting V s
2 (θ2) = 0.

Finally, note that it follows from Lemma D.1.1 that a sufficient and necessary condition
for the choice of q2(θ2) to be implementable is that it is non-decreasing.

Proof of Proposition 2.2.1. Under static types V̄ s
2 (θ1) = V s

2 (θ1). Hence S1’s ex ante
payoff from the buyer’s contract with S2 can equivalently be rewritten as follows

∫ θ1

θ1

Eg
[
V̄ s
2 (θ1) | θ1

]
dF1(θ1) =

∫ θ1

θ1

∑
s

{
V̄ s
2 (θ1)g(s | θ1)

}
dF1(θ1)

=
∑
s

∫ θ1

θ1

V̄ s
2 (θ1)f

s
1 (θ1)dθ1 g(s) =

∑
s

∫ θ1

θ1

[1− F s
1 (θ1)]

dV̄ s
2 (θ1)

dθ1
dθ1 g(s)

=

∫ θ1

θ1

∑
s

µs1(θ1)
dV̄ s

2 (θ1)

dθ1
g(s | θ1) dF1(θ1) = b

∫ θ0

θ0

∑
s

{
µs1(θ1)q

s
1(θ1)g(s | θ1)

}
dF1(θ1)

where the last equality is due to the fact that θ1 = θ2 under static types. It follows from
(B.2.3) that under no information provision the quantity implemented by S2 is

bϵmax
{
0 , θ1 − µ1(θ1)

}ϵ
,

but since µ1(θ1) is non-increasing by assumption, then whenever µ1(θ1) > θ1 there exists a
set [θ1, θ

+
1 ] of positive measure for which the supplied quantity is zero. Consider a binary

signal s ∈ {s−, s+} such that

g(s− | θ1) = 1 , if θ1 ≤ θ+

g(s+ | θ1) = 1 , if θ1 > θ+

which essentially reveals the corresponding set in which the buyer’s type belongs. It is ease
to show that the corresponding inverse hazard rates are

µ−
1 (θ1) =

{
F1(θ+)−F1(θ1)

f1(θ1)
, if θ1 ≤ θ+

not defined , if θ1 > θ+
and µ+

1 (θ1) =

{
not defined , if θ1 ≤ θ+

µ1(θ1) , if θ1 > θ+

Note that both of them are non-increasing in θ1, hence after the realisation of each of them S2

implements the corresponding point-wise optimal quantity. As a result, S1’s ex ante revenue
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under this binary signal becomes

b1+ϵ
∫ θ+

θ1

µ−
1 (θ1)max

{
0 , θ1 − µ−

1 (θ1)
}ϵ

dF1(θ1)

+ b1+ϵ
∫ θ1

θ+
µ1(θ1)max

{
0 , θ1 − µ1(θ1)

}ϵ
dF1(θ1)

The second line is identical to S1’s ex ante payoff under no information provision, but the
first would be zero instead. On the other hand, under the constructed binary signal there
will be at least a few types in [θ1, θ

+] that will be supplied a positive quantity, as µ−
1 (θ

+) = 0.
Hence, for a subset of types close to θ+ the supplied quantity will be strictly positive.

Proof of Lemma 2.2.2. It is ease to argue that Theorem 2 of Milgrom and Segal (2002)
applies in this setting. Hence their envelop theorem gives that

dV1(θ1)

dθ1
= q1(θ1) + Eg

[
dV̄ s

2 (θ1)

dθ1

∣∣∣∣ θ1] .
As a result, integrating and equating with V1(θ1) = V̂1(θ1, θ1) gives∫ θ1

θ1

dV1(x)

dx
dx = θ1q1(θ1)− p1(θ1) + Eg

[
V̄ s
2 (θ1) | θ1

]
.

Hence substitute in the objective function of (2.2.3) the price p1(θ1), as given from the above
equality, apply Fubini’s Theorem, and set V1(θ1) = 0 to obtain

∫ θ1

θ1

{
q1(θ1)

[
θ1 − µ1(θ1)

]
− c[q1(θ1)]

+ Eg

[
V̄ s
2 (θ1)−

1− F1(θ1)

f1(θ1)

dV̄ s
2 (θ1)

dθ1

∣∣∣∣∣ θ1
]}

dF1(θ1) (B.2.4)

Then the functional form of the point-wise optimal production follows from the first order
condition of the above. Lemma D.1.1 implies that for the pair (q∗1, g) to be implementable
it has to be that

∂ V̂1(θ̂1, θ1)

∂ θ1
= q∗1(θ̂1) + Eg

[
dV̄1(θ1)

dθ1

∣∣∣∣ θ̂1]
is non-decreasing in θ̂1, from which condition (2.2.5) is derived. Note that q∗1(θ̂1) is increasing
in θ̂1, while under no information provision the above expectation is constant with respect
to it. Hence no information provision is implementable.
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Finally, to derive the objective function of (2.2.4) rewrite the second line of (B.2.4) as
follows

∫ θ1

θ1

Eg
[
V̄ s
2 (θ1)−

1− F1(θ1)

f1(θ1)

dV̄ s
2 (θ1)

dθ1

∣∣∣∣ θ1]}dF1(θ1)

=

∫ θ1

θ1

∑
s

{
V̄ s
2 (θ1)−

1− F1(θ1)

f1(θ1)

dV̄ s
2 (θ1)

dθ1

}
g(s|θ1)f1(θ1) dθ1

=
∑
s

∫ θ1

θ1

{
V̄ s
2 (θ1)−

1− F1(θ1)

f1(θ1)

dV̄ s
2 (θ1)

dθ1

}
f s1 (θ1) dθ1 g(s)

=
∑
s

∫ θ1

θ1

{
1− F s

1 (θ1)

f s1 (θ1)
− 1− F1(θ1)

f1(θ1)

}
dV̄ s

2 (θ1)

dθ1
f s1 (θ1)dθ1g(s) .

Proof of Proposition 2.2.2. First, it is shown that dV̄ s2 (θ1)

dθ1
≥ 0. This function has been

defined as
V̄ s
2 (θ1) = Eθ2

[
V s
2 (θ2) | θ1, s

]
,

where it follows from (2.2.1) that V s
2 (θ2) is non-decreasing, because dV s2 (θ2)

dθ2
= b qs2(θ2) ≥ 0.

But then since higher values of θ1 induce a conditional CDF F2(· | θ1) that FOSD lower
values, it follows that V̄ s

2 (θ1) is non-decreasing in θ1.
Next, it is shown that under any deterministic signal it has to be that µs1(θ1) ≤ µ1(θ1).

To do this fix a partition {Θs
1}s∈S of [θ1, θ1] and note that the probability of each signal s to

be realised is
g(s) =

∫
θ1∈Θs1

f1(θ1) dθ1 .

As a result, the posterior density and CDF are

f s1 (θ1) =

{
f1(θ1)/g(s) , if θ1 ∈ Θs

1

0 , if θ1 ̸∈ Θs
1

and F s
1 (θ1) =

∫
x≤θ1 ∩x∈Θs1

f1(x) dx
1

g(s)
.

respectively. Hence whenever µs1(θ1) is defined, that is for θ1 ∈ Θs
1, this is given by

µs1(θ1) =
1− F s

1 (θ1)

f s1 (θ1)
=

∫
x>θ1 ∩x∈Θs1

f1(x) dx
1

f1(θ1)

≤
∫
x>θ1

f1(x) dx
1

f1(θ1)
= µ1(θ1)

To finish the proof note that the objective function of (2.2.4) under the deterministic signal
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that uses the partition {Θs
1}s∈S becomes

∑
s

∫
θ1∈Θs1

{
µs1(θ1)− µ1(θ1)

}dV̄ s
2 (θ1)

dθ1
dF1(θ1) ≤ 0

But under no information provision the same objective function is equal to zero, and this is
implementable, hence this signalling structure is optimal among deterministic signals.

Proof of Proposition 2.2.3. The proof is an extension of the treatment of continuous
types undertaken by Calzolari and Pavan (2006), which can be found in the Appendix of
their paper. A discussion similar to theirs can demonstrated that the incentives to provide
information to S2 are the strongest when S1 captures all the expected benefit from this
information provision. Moreover, in this case S1’s payoff is equivalent, up to a constant
transformation, to as if she was integrated with S2. Hence, if it can be shown that no
information provision is optimal in this case, then the same is true when S1 captures none
of this expected benefit from information provision.

To do this set φ = 1 and suppose momentarily that S1 and S2 were integrated and solve
the corresponding dynamic mechanism design problem. Denote the realised history {θ1, θ2}
by θ2, and let θ1 = θ1. Then S1 solves:

Eθt
[
max
pt,qt

2∑
t=1

{
pt(θ

t)− c
[
qt(θ

t)
]}]

, (B.2.5)

subject to the individual rationality constrains of period 1, and the incentive compatibility
constrains of period 1 and period 2. First, the above problem is solved under the following
restriction on the set of deviations used by the buyer.

• In period 1: he freely chooses the report θ̂1

• In period 2: he is restricted to truthfully report if his type was redrawn, or not.

Let Û2(θ̂2, θ2; θ̂1) denote the payoff of an buyer that reported θ̂1 in period 1, his type was
redrawn, and he subsequently reported θ̂2, while his actual type was θ2.

Û2(θ̂2, θ2; θ̂1) = b θ2 q2(θ̂1, θ̂2)− p2(θ̂1, θ̂2)

In addition, let U2(θ2; θ̂1) ≡ Û2(θ̂2, θ2; θ̂1) be the corresponding value under truthful reporting
of θ2. Note that the actual value of θ1 is irrelevant in terms of his incentives to report θ̂2.
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Hence, incentive compatibility implies that

U2(θ2; θ̂1) = max
θ̂2∈[0,1]

Û2(θ̂2, θ2; θ̂1) , for all θ̂1 ∈ [0, 1]

In all of the subsequent discussion Theorem 2 of Milgrom and Segal (2002) applies. Hereafter,
it will simple be invoked as envelop theorem. Then the envelop theorem gives that

dU2(θ2; θ̂1)

dθ2
= b q2(θ̂1, θ2)

Set U2(0 ; θ̂1) = 0 and note that

U2(θ2; θ̂1) =

∫ θ2

0

dU2(x; θ̂1)

dx
dx ⇔

b θ2 q2(θ̂1, θ2)− p2(θ̂1, θ2) =

∫ θ2

0

b q2(θ̂1, θ2) dx

Since this hold for any θ̂1, it also holds for θ̂1 = θ1. Hence the part of (B.2.5) that follows a
redraw of θ2, after a realisation of θ1, can be rewritten as

Eθ2
[
p2(θ1, θ2)− c

[
q2(θ1, θ2)

]]
=

∫ 1

0

{
b θ2 q2(θ1, θ2)− c

[
q2(θ1, θ2)

]
−
∫ θ2

0

b q2(θ1, θ2) dx

}
f1(θ2) dθ2

=

∫ 1

0

{
b
[
θ2 − µ1(θ2)

]
q2(θ1, θ2)− c

[
q2(θ1, θ2)

]}
f1(θ2) dθ2 (B.2.6)

Next, denote the expected payoff of the buyer in period 1 under such a deviation by

Û1(θ̂1, θ1) = θ1q1(θ̂1)− p1(θ̂1) + ρ
(
b θ1q2(θ̂1, θ̂1)− p2(θ̂1, θ̂1)

)
+ (1− ρ)Eθ2

[
Û2(θ̂2, θ2; θ̂1)

]
,

and let U1(θ1) = Û1(θ1, θ1). Then under truthful reporting the envelop theorem implies that

dU1(θ1)

dθ1
= q1(θ1) + ρb q2(θ1, θ1)

As a result, using the same manipulations as above I obtain that the part of the (B.2.5) that
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corresponds to the realisation of θ1 and of it not being redrawn can be written as

[
θ1 − µ1(θ1)

]
q1(θ1)− c

[
q1(θ1)

]
+ ρ
{
b
[
θ1 − µ1(θ1)

]
q2(θ1, θ1)− c

[
q2(θ1, θ1)

]}
(B.2.7)

Then point-wise maximisation of (B.2.6) and (B.2.7) gives that

q∗t (θt) = max
{
0 , bt

[
θt − µ1(θt)

]}ϵ
(B.2.8)

This solves the optimisation of (B.2.5) under a restriction on the buyer’s action space. But it
is ease to show using Lemma D.1.1 that this supply schedule is also implementable without
the imposed restriction. This in turn gives that S1 can achieve the same payoff in the problem
where the buyer has access to his full action space, as in the restricted one. Hence, the supply
schedule (B.2.8) is a solution to her optimisation problem (B.2.5).

Switching back to the non-integrated S1 and S2 case, note that (B.2.8) is what the latter
would chose under no information provision. Hence, it follows from the discussion in the
beginning of this proof that no information provision is optimal for her.

B.3 Proofs for Moral Hazard
Proof of Lemma 2.3.1. The dependence on (τ, s) is dropped. The revelation principle
applies and since the agent’s type is static, it is without loss to focus on contracts that pay
period wage wb(θ, yt) in t ∈ {τ, ..,∞}. Moreover, observe that using the reported type, a
perfect estimate of the effort can be deducted by Pb. Hence, any misalignment between this
estimate and the recommended effort can be punished strongly enough for the agent to mask
it. As a result a report θ̂ implies choice of effort

êb(θ̂, θ) = eb(θ̂) · θ̂
θ
.

For simplicity drop the dependence on yt, as this will occur only off path and write the
reported type as a subscript for wb(θ) and eb(θ). Pb’s payoff maximisation problem is essen-
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tially a static one.

max
e,w

β
(
b θHe

b
H − wbH

)
+ (1− β)

(
b θLe

b
L − wbL

)
s.t. (IRL) wbL − (ebL)

1+ 1
ϵ

1 + 1
ϵ

≥ 0

(IRH) wbH − (ebH)
1+ 1

ϵ

1 + 1
ϵ

≥ 0

(ICL) wbL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

≥ wbH − (ebH)
1+ 1

ϵ

1 + 1
ϵ

(
θH
θL

)1+ 1
ϵ

(ICH) wbH − (ebH)
1+ 1

ϵ

1 + 1
ϵ

≥ wbL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

(
θL
θH

)1+ 1
ϵ

,

where both the constrains and the objective function are written in per period payoff. As-
suming that (IRL) does not bind leads to a contradiction. Subsequently, this can be used to
show that (ICH) has to also bind. Hence the above simplifies to the unconstrained maximi-
sation problem

max
e

β

(
b θH e

b
H − (ebH)

1+ 1
ϵ

1 + 1
ϵ

)
+ (1− β)

b θL ebL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

1− β
(
θL
θH

)1+ 1
ϵ

1− β


The objective function is concave, hence the first order conditions give that

eb(θH) = (b θH)
ϵ and eb(θL) = bϵ ·

 (1− β) θL

1− β
(
θL
θH

)1+ 1
ϵ

ϵ

.

This is implementable as (ICL) equivalently becomes

wbL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

≥ wbH − (ebH)
1+ 1

ϵ

1 + 1
ϵ

− (ebH)
1+ 1

ϵ

1 + 1
ϵ

[(θH
θL

)1+ 1
ϵ − 1

]
⇔

wbL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

≥ wbL − (ebL)
2

2

( θL
θH

)1+ 1
ϵ − (ebH)

1+ 1
ϵ

1 + 1
ϵ

[(θH
θL

)1+ 1
ϵ − 1

]
⇔

θHe
b
H ≥ θLe

b
L

which is satisfied for the derived effort choices. Because the IRL binds the low type’s period
payoff is zero. The high type’s period payoff can be obtained using the (IRL) and (ICH)

200



constrains, which give that

wbH − (ebH)
1+ 1

ϵ

1 + 1
ϵ

= wbL − (ebL)
1+ 1

ϵ

1 + 1
ϵ

( θL
θH

)1+ 1
ϵ
=

(ebL)
1+ 1

ϵ

1 + 1
ϵ

[
1−

( θL
θH

)1+ 1
ϵ

]

=
(b θL)

1+ϵ

1 + 1
ϵ

[
1−

( θL
θH

)1+ 1
ϵ

] 1− β

1− β ·
(
θL
θH

)1+ 1
ϵ

1+ϵ

.

Hence a constant stream of the above payoff up to infinity gives B(β). Moreover,

B′(β) = −(1 + ϵ)K

(
1− β

1− βκ

)ϵ
1− κ

(1− βκ)2
= −B(β)

(1 + ϵ)(1− κ)

(1− β)(1− βκ)
< 0

for all β ∈ [0, 1). In addition,

B′′(β) = −(1 + ϵ)K(1− κ)
−ϵ(1− β)ϵ−1(1− βκ)ϵ+2 + κ(ϵ+ 2)(1− β)ϵ(1− βκ)ϵ+1

(1− βκ)2(ϵ+2)

= B′(β)

(
κ(ϵ+ 2)

1− βκ
− ϵ

1− β

)
> 0 ⇔ κ(ϵ+ 2)

1− βκ
<

ϵ

1− β
⇔ β > 1− ϵ

1− k

k
.

Proof of Proposition 2.3.1. Lemma B.1.1 applies in this setting. Hence it is without
loss to only consider one-shot deviations. In those a θt agent type reports truthfully θt−1,
potentially misreports θt as θ̂t, and subsequently switches back to truthful reporting. Here-
after, IC(θt) will refer exclusivity to the incentive compatibility constrains obtained under
one-shot deviations. To maintain a compact notation, let θ̂t = {θt−1, θ̂t} denote a history
of truthful reports up to t − 1 followed by a potential misreport θ̂t. In addition, denote a
generic history θt−1 followed by θt = θH as θtH , and similarly define θ̂tL. Then the payoff of a
θt agent type under a one shot deviation is

Ût(θ̂t, θt, θ
t−1) = wat (θ̂

t)− eat (θ̂
t)1+

1
ϵ

1 + 1
ϵ

(
θ̂t
θt

)1+ 1
ϵ

+ ft(θ̂
t)γδ Eθ

[
Ût+1(θt+1, θt+1, θ̂

t) | θt
]

+ [1− ft(θ̂
t)γ] δ Pr(θt+1 = θH | τ = t, θt)Eg

[
B(βst ) | θ̂t

]
In period t the agent obtains the wage of the reported type θ̂t, but since his type is θt he
actually has to mask this deviation which is why there is this adjustment on the cost of
effort. The probability of continuation γft(θ̂

t) is only a function of θ̂t, however under one
shot deviations the agent’s type is truthfully reported in Ût+1 and the expectation over it
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depends on the actual type θt. Similarly, the probability of the agent to be a high type in
Pb’s contract, Pr(θt+1 = θH | τ = t, θt), is only a function of the realised type θt. In contrast,
the distribution of the signal s, provided by Pa to Pb, is contingent on the reported type θ̂t.

Let the on path payoff of a θt type agent be given by Ut(θ
t) = Ût(θt, θt, θ

t−1), then the
corresponding individual rationality and incentive compatibility constrains become

IR(θt) Ut(θ
t) ≥ 0

IC(θt) Ut(θ
t) ≥ Ût(θ̂t, θt, θ

t−1)
(B.3.1)

where the agent’s outside option is zero because if he decides to terminate the contract in
t < τ , then Pa can ensure that Pb will not approach the agent. Doing so is always beneficial
for Pa, because it lowers the agent’s outside option. Next, consider the following problem

(PH) max
w,e,f,g

Eθ

[
∞∑
t=0

f t−1
0 (θt−1)γtδt

(
θt e

a
t (θ

t)− wat (θ
t)
)]

subject to IR(θt) and IC(θt),

(B.3.2)

which is similar to (P), but it ignores the individual rationality constrains of all high types
IR(θtH) and the incentive compatibility constrains of all low types IC(θtL). Ignoring the
former set of constrains is without loss of generality as Ut(θtH) ≥ Ut(θ

t
L), however this is not

true for the IC(θtL) constrains. Despite that, if the solution of (PH) happens to also satisfy
this set of constrains, then it is a solution of (P).

The rest of the proof shows that in (PH), for every (w, e, f, g) there exists a w′ such that
the objective function under (w′, e, f, g) is no less than under (w, e, f, g), and that both the
IR(θtL) and IC(θtH) constrains bind. Solving for w′ from the constrains and substituting in the
objective function will give (P ′). As a result, I will have shown that if (e, f, g) is a solution
of (P ′), then there exists w′ such that (w′, e, f, g) is also a solution of (PH). Finally, w′ will
be substituted in the previously ignored IC(θtL) so that a sufficient condition is obtained for
(w′, e, f, g) be a solution of (P), which is only in terms of policies (e, f, g).

The argument is recursive. Suppose that IR(θtL) and IC(θtH) bind for all periods up to
and including t′, but not for t′ +1. For simplicity, denote wat (θt

′
H) by wH , wat (θt

′
L) by wL, and

similarly use {wLL, wHL, wLH , wHH} for the possible combinations up to t′ + 1. Moreover,
adopt the same notational change for the IR and IC constrains. Suppose that IRHL does
not bind, then let

(
w̃H , w̃HH , w̃HL

)
=
(
wH + δε, wHH − ε, wHL − ε

)
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and increase ε until it does. Under this transformation IRL and ICH continue to bind and Pa

is indifferent between the two contracts. The same argument works if IRLL does not bind.
Suppose instead that ICLH does not bind, then let

(
w̃L, w̃H , w̃LH

)
=
(
wL + δφLε, wH − δ(φH − φL)ε, wLH − ε

)
,

and increase ε until it does. Under this transformation IRL and ICH continue to bind and
Pa is actually better off. Finally, suppose that ICHH does not bind, then let

(
w̃H , w̃HH

)
=
(
wH + δφHε, wHH − ε

)
,

and increase ε until it does. Under this transformation IRL and ICH continue to bind and
Pa is indifferent between the two contracts. Hence, if both IR(θtL) and IC(θtH) bind for all
periods up to and including t′, and IC(θtL) is ignored, then there exists an alternative contract
that implements the same policies, is not worse for Pa, and has all constrains binding up
to t′ + 1. In addition, the regular one period argumentation shows that IR(θ0L) and IC(θ0H)

have to bind, from which the recursive argument follows.
Hence, it is without loss to assume that IR(θtL) and IC(θtH) bind, which gives

−wat (θtL) = −e
a
t (θ

t
L)

1+ 1
ϵ

1 + 1
ϵ

+ ft(θ
t
L)γδφLÛt+1(θH , θH , θ

t
L) + [1− ft(θ

t
L)γ]δρLEg[B(βst )|θ̂t]

and

Ut(θ
t
H) = wat (θ

t
L)−

eat (θ
t
L)

1+ 1
ϵ

1 + 1
ϵ

θ
1+ 1

ϵ
L

θ
1+ 1

ϵ
H

+ ft(θ
t
L)γδφHÛt+1(θH , θH , θ

t
L) + [1− ft(θ

t
L)γ]δρHEg[B(βst )|θ̂t],

respectively. Note that in both equations above it has been used that Ût+1(θL, θL, θ
t
L) =

Ut+1({θL, θtL}) = 0, where the first equality follows from the ignored IC({θL, θtL}) and the
second from the fact that IR({θL, θtL}) binds. Substitute the first line in the second to obtain
that

Ut(θ
t
H) =

eat (θ
t
L)

1+ 1
ϵ

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
+ ft(θ

t
L)γδ(φH − φL)Ût+1(θH , θH , θ

t
L) + [1− ft(θ

t
L)γ]δ(ρH − ρL)Eg[B(βst )|θ̂t].

But because the IC({θtL, θH}) holds, I get that Ut+1({θtL, θH}) = Ût+1(θH , θH , θ
t
L) and the
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same argument can be used repeatedly for any t′ > t + 1. Hence, substitute forward to
obtain the functional form given for UH

t (θt−1). In particular, for period 0 that becomes

U0(θH) =
∞∑
t=0

f t−1
0 (Lt−1)γtδt(φH − φL)

t

×

[
eat (L

t)1+
1
ϵ

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
+ δ[1− ft(L

t)](ρH − ρL)Eg
[
B(βst ) |Lt

])]
. (B.3.3)

It follows by the definition of U0(θ0) that the on path expected discounted payments In
period 0 satisfies

U0(θ0) + Eθ

[
∞∑
t=0

f t−1
0 (θt−1)γtδt

eat (θ
t)1+

1
ϵ

1 + 1
ϵ

∣∣∣∣∣ θ0
]

= Eθ

[
∞∑
t=0

f t−1
0 (θt−1)γtδtwat (θ

t)

∣∣∣∣∣ θ0
]

It has being shown that IR(θ0) binds, hence for a low type substitute above U0(θL) = 0,
while for a high type substitute the expression obtained in (B.1.5). Finally, substituting the
expected discounted payments on the objective function gives (P ′).

To complete the proof note that by definition the wages given to a high type makes him
indifferent between deviating or not, after every history θt−1. For a low type the IC(θtL)

becomes

Ut(θ
t
L) ≥ wat (θ

t
H)−

eat (θ
t
H)

1+ 1
ϵ

1 + 1
ϵ

(
θH
θL

)1+ 1
ϵ

+ ft(θ
t
H)γ δ φLUt+1({θtH , θH})

+ δ [1− ft(θ
t
H)γ]φLEg

[
B(βst ) | θtH

]
,

which after substituting Ut(θtL) = 0 equivalently becomes

Ut(θ
t
H) ≤ eat (θ

t
H)

1+ 1
ϵ

1 + 1
ϵ

(
θ
1+ 1

ϵ
H

θ
1+ 1

ϵ
L

− 1

)
+ δ Pr(τ > t+ 1 | τ > t, θtH) (φH − φL)Ut+1(θ

t
H , θH)

+ δ Pr(τ = t+ 1 | τ > t, θtH)(ρH − ρL)Eg
[
B(βst ) | θtH

]
.

Finally, substituting the provided expression for UH
t (θt−1), and re-arranging gives (Pc).

Proof of Corollary 2.3.1. The third line of (P ′) represents the information rents, which
only affect the production of the Lt histories. Hence, point-wise maximisation on any other
history simple optimises its first line, which represents the surplus from production, and
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gives the first-best level of effort. In contrast, for every t the production relevant payoff that
corresponds to the Lt history is

Pr(Lt)f t−1
0 (Lt−1)γtδt

{
θLe

a
t (L

t)− eat (L
t)1+

1
ϵ

1 + 1
ϵ

− µ0(φH − φL)
t

Pr(Lt)

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
eat (L

t)1+
1
ϵ

1 + 1
ϵ

}
=

Pr(Lt)f t−1
0 (Lt−1)γtδt

{
θLe

a
t (L

t)− ξt
eat (L

t)1+
1
ϵ

1 + 1
ϵ

}
the point-wise maximisation of which gives θL/ξt. Hence substitute the derived effort in the
value functions of (Pc) to obtain

(θH)
1+ϵ

1 + 1
ϵ

(
θ
1+ 1

ϵ
H

θ
1+ 1

ϵ
L

− 1

)
− e∗t (θ

t
L)

1+ 1
ϵ

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
+

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)

×
∞∑

t′=t+1

[
(φH − φL)γδ

]t′−t(
f t

′−1
t (θtHL

t′−1
t+1 )

(θL)
1+ϵ

1 + 1
ϵ

− f t
′−1
t (θtLL

t′−1
t+1 )

e∗t′(θ
t
LL

t′
t+1)

1+ 1
ϵ

1 + 1
ϵ

)

≥ δ(ρH − ρL)
∞∑
t′=t

[
(φH − φL)δ

]t′−t{
Pr(τa = t′ | τa > t− 1, θtLL

t′

t+1)Eg
[
B(βst′) | θtLLt

′

t+1

]
− Pr(τa = t′ | τa > t− 1, θtHL

t′

t+1)Eg
[
B(βst′) | θtHLt

′

t+1

]}
(B.3.4)

Note that (θL)
ϵ ≥ e∗t (θ

t
L), hence the second line of (B.3.4) is non-negative under a non-

decreasing termination policy. Hence, its left hand side is bigger than

(θH)
1+ϵ

1 + 1
ϵ

(
θ
1+ 1

ϵ
H

θ
1+ 1

ϵ
L

− 1

)
− e∗t (θ

t
L)

1+ 1
ϵ

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
≥ θ1+ϵH

1 + 1
ϵ

(
θ
1+ 1

ϵ
H

θ
1+ 1

ϵ
L

− 1

)
− θ1+ϵL

1 + 1
ϵ

(
1− θ

1+ 1
ϵ

L

θ
1+ 1

ϵ
H

)
.

In addition, the right hand side of (B.3.4) is smaller than

δ(ρH − ρL)
∞∑
t′=t

[
(φH − φL)δ

]t′−t
Pr(τa = t′ | τa > t− 1, θtLL

t′

t+1)Eg
[
B(βst′) | θtLLt

′

t+1

]
≥ δ(ρH − ρL)

∞∑
t′=t

[
(φH − φL)δ

]t′−t
Pr(τa = t′ | τa > t− 1, θtLL

t′

t+1)B(0)

≥ δ(ρH − ρL)B(0) = δ(ρH − ρL)
1− κ

1− δ

(bθL)
1+ϵ

1 + 1
ϵ

,

where the first inequality follows from noting that B(·) is decreasing, and the second because
getting B(0) in period t+1 for sure is better than any other distribution for τ . Hence
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combining the two equations together gives the first sufficient condition. For ϵ = 1, this
becomes

(θ2H − θ2L)
2

θ2Hθ
2
L

≥ δ bs

1− δ
(ρH − ρL)(θ

2
H − θ2L)

θ2L
θ2H
,

which after substituting κ = θ2L/θ
2
H gives the derived sufficient condition.

Proof of Lemma 2.3.3. The time subscripts are suppressed. Differentiating and rear-
ranging gives that

B′(β) = K(1 + ϵ)

(
1− β

1− βκ

)ϵ −(1− βκ) + κ(1− β)

(1− βκ)2

= −K(1 + ϵ)(1− κ)
(1− β)ϵ

(1− βκ)ϵ+2
= −B(β)

(1 + ϵ)(1− κ)

(1− β)(1− βκ)
< 0.

Also,

B′′(β) = K(1 + ϵ)(1− κ)
(1− β)ϵ−1

(1− βκ)ϵ+3

(
ϵ(1− βκ)− (ϵ+ 2)κ(1− β)

)
= −B′(β)

ϵ(1− βκ)− (ϵ+ 2)κ(1− β)

(1− β)(1− βκ)
.

As a result,

∂Jt(η, λ)/∂η

ρH − ρL
= B′(β)(β − ψ λ) +B(β) = B(β)

[
1− (β − ψ λ)

(1 + ϵ)(1− κ)

(1− β)(1− βκ)

]
,

and

∂2Jt(η, λ)/∂η
2

(ρH − ρL)2
= B′′(β)(β − ψ λ) + 2B′(β)

= −B′(β)

[
ϵ(1− βκ)− (ϵ+ 2)κ(1− β)

(1− β)(1− βκ)
(β − ψ λ)− 2

]
.

Finally,

∂Jt(η, λ)

∂λ
= −ψB(β),

∂2Jt(η, λ)

∂λ∂η
= −ψ(ρH − ρL)B

′(β),
∂2Jt(η, λ)

∂λ2
= 0.

To prove that Jt(η, λ) is neither concave nor convex on any of its interior points it suffices
to show that its Hessian matrix is indefinite. This is given by

D2Jt(η, λ) =

(
∂2J
∂η2

∂2J
∂η∂λ

· ∂2J
∂λ2

)
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Hence, its determinant is |D2J | = −
(
∂2J
∂η∂λ

)2
< 0, from which it follows that it is indefinite.

To prove the statements for the boundaries (η+ λ = 1) and (λ = 0), define the following
linear combination of (η′, λ′) and (η′′, λ′′), for w ∈ [0, 1] and η′′ ̸= η′,(

η̄

λ̄

)
= (1− w)

(
η′

λ′

)
+ w

(
η′′

λ′′

)
.

This implies that

w =
η̄ − η′

η′′ − η′
⇒ λ̄ =

λ′′ − λ′

η′′ − η′
(η̄ − η′) + λ′ =

λ′′ − λ′

η′′ − η′

(
b̄− ρL
ρH − ρL

− η′
)
+ λ′

⇒ (β̄ − ψ λ̄) = β̄

(
1− ψ

ρH − ρL

λ′′ − λ′

η′′ − η′

)
︸ ︷︷ ︸

=ζ

−ψ
[
λ′ − λ′′ − λ′

η′′ − η′

(
ρL

ρH − ρL
+ η′

)]
︸ ︷︷ ︸

=ζ′

Let Ψ = ζ ′/ζ and note that for the subsets (λ = 0) and (η + λ = 1)(
η′ η′′

λ′ λ′′

)
=

(
0 1

0 0

)
,

(
0 1

1 0

)
(
ζ0

ζ1

)
=

(
1

0

)
,

(
1 + ψ

ρH−ρL
1 + ρL

ρH−ρL

)

Ψ = 0 ,
ψρH

ρH − ρL + ψ
,

respectively. In addition, substituting ψ = µ0
1−µ0

(
φH−φL
1−φL

)t
(ρH − ρL) I get that

ψρH
ρH − ρL + ψ

=
µ0ρH

(1− µ0)
(
φH−φL
1−φL

)−t
+ µ0

≤ µ0ρH < 1.

Now the characterisation of Jt(η, λ) on its boundaries can be obtained. Note that by moving
w ∈ [0, 1] I essentially move Jt(η, λ) on the two specified sides. Moreover, because η is a
linear transformation of w its monotonicity and concavity changes at the same values of η,
and as a result of β.

J̄(w) = J
[
η̄(w), λ̄(w)

]
= ζ0B(β̄)(β̄ −Ψ) , where β̄ = η̄(ρH − ρL) + ρL

and η̄ = w(η′′ − η′) + η′ .
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Then algebra similar to that used to simplify the partial derivatives of Jt(η, λ) implies that

J̄ ′(w) = (ρH − ρL)(η
′′ − η′)ζ0B(β̄)

(
1− (β̄ −Ψ)

1 + ϵ

(1− β̄)(1− β̄κ)

)
J̄ ′′(w) = (ρH − ρL)

2(η′′ − η′)2ζ0[−B′(β̄)]

×
(
ϵ(1− β̄κ)− (ϵ+ 2)κ(1− β̄))

(1− β̄)(1− β̄κ)
(β̄ −Ψ)− 2

)
First, note that J̄ ′(w) ≥ 0 if and only if

(1− β̄)(1− β̄κ) ≥ (β̄−Ψ)(1+ϵ)(1−κ) ⇔
[
1+Ψ(1+ϵ)(1+κ)

]
−
[
2+ϵ(1−κ)

]
β̄+κβ̄2 ≥ 0,

solving for the roots of the left hand side gives

2 + ϵ(1− κ)±
√

[2 + ϵ(1− κ)]2 − 4κ− 4κ(1− κ)(1 + ϵ)Ψ

2κ
.

The roots are not necessarily real numbers, but when they are the (+) one is always greater
than one as 2+ϵ(1−κ)

2κ
> 1

κ
≥ 1. Also, it is ease to show that the (−) one is positive. Simplifying

we get that

J̄ ′(w) ≥ 0 ⇔

{
∀ β̄ ∈ [0, 1] , if Ψ ≥ 1

κ
+ ϵ2(1−κ)

4(1+ϵ)κ

β̄ ≤ β∗(Ψ) , if Ψ ≤ 1
κ
+ ϵ2(1−κ)

4(1+ϵ)κ

.

However for Ψ ∈ [0, 1), which is the case here, only the second line is relevant. Similarly, I
get that J̄ ′(w) ≥ 0 if and only if

2(1− β̄)(1− β̄κ) ≤
{
[ϵ(1− κ)− 2κ] + 2κβ̄

}
(β̄ −Ψ) ⇔

2− 2(1 + κ)β̄ + 2κβ̄2 ≤ [ϵ(1− κ)− 2κ](β̄ −Ψ) + 2κβ̄2 − 2κΨβ̄ ⇔

2(1−Ψκ) + (1− κ)Ψϵ ≤ β̄
[
2(1−Ψκ) + (1− κ)ϵ

]
where the expression in the brackets of the right hand side is positive for Ψ ∈ [0, 1), hence
this equivalently becomes

β̄ ≥ 2(1−Ψκ) + (1− κ)Ψϵ

2(1−Ψκ) + (1− κ)ϵ
,

where again for Ψ ∈ [0, 1) the right hand side is positive and smaller than one. In addition,
note that the because J̄(w) is initially increasing it has a maximum on β∗(Ψ), but this
implies that the function is concave there, hence β∗(Ψ) ≤ β∗∗(Ψ) < 1.
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B.4 Proofs for Endogenous Termination
The main variables are

ft = µtx
H
t + (1− µt)x

l
t , ηt =

µt(1− γxHt )

1− γft
, µt+1 =

µtx
H
t + (1− µt)x

l
tφL

ft
.

The following derivatives will be repeatedly used in the subsequent analysis. Derivatives of
ft:

∂ft
∂µt

= xHt − xlt ,
∂ft
∂xlt

= 1− µt ,
∂ft
∂xHt

= µt .

Derivatives of ηt:

∂ηt
∂µt

=
η2t
µ2
t

1− γxlt
1− γxHt

=
ηt(1− ηt)

µt(1− µt)
,

∂ηt
∂xlt

=
γ(1− µt)

1− γft
ηt ,

∂ηt
∂xHt

= − γµt
1− γft

(1− ηt) .

Derivatives of µt+1:

∂µt+1

∂µt
= (1−φL)

xHt x
l
t

f 2
t

,
∂µt+1

∂xlt
= −(1−φL)

(1− µt)µt
f 2
t

xHt ,
∂µt+1

∂xHt
=

µt
ft
(1−µt+1) .

As argued in the main text, Pa’s problem has the following recursive representation

Vt(µt) = max
xHt ,x

l
t

{
µtuH + (1− µt)ul + δγftVt+1(µt+1) + δ(1− γft)J0(ηt)

+ h1t (1− xHt ) + h0tx
H
t + l1t (1− xlt) + l0tx

l
t

}
, (B.4.1)

where h1t and h0t are the Lagrange multipliers for 0 ≤ xHt ≤ 1, and l1t , l0t are the corresponding
multipliers for 0 ≤ xlt ≤ 1. Let vt(xHt , xlt, µt) denote the first line of the above objective
function, that is the expression in the parenthesis, but without the constrains. The problem
is solved under the following generic assumption.

Assumption. J0 is twice continuously differentiable and concave. Both uH and ul are
positive. Also,

uH > (1− δ)J0(1) and uH
1− δγ

+
δ(1− γ)

1− δγ
J0(1) > J0(0) + J ′

0(0). (B.4.2)

The proof proceeds as follows. First, it is shown that xHt = 1 is optimal under the sup-
position that Vt+1 is twice continuously differentiable and concave. Second, it is shown that
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in this case Vt is also twice continuously differentiable and concave. Third, the contraction
mapping theorem is used to show that Vt = Vt+1 = V , and that V is indeed concave and
twice continuously differentiable. Forth, some sufficient conditions are provided for each of
the three possible solutions for xtt (interior, xlt = 0, and xlt = 1) to be relevant.

There is actually one value on which the functional form of Vt and Vt+1 can easily be
derived, which is when the agent’s current reputation is one.

Lemma B.4.1. For µt = 1 it is strictly optimal to continue, xHt (1) = 1. Moreover,

V (1) =
uH

1− δγ
+
δ(1− γ)

1− δγ
J0(1) . (B.4.3)

Proof. For µt = 1 the principal’s dynamic problem simplifies to

V (1) = max
xHt

uH + δγxHt V (1) + δ(1− γxHt )J0(1).

The payoff from always continuing xHt = 1 is

uH
1− δγ

+
δ(1− γ)

1− δγ
J0(1).

On the other hand, that of stopping xHt = 0 is J0(1). Hence, no-stopping is proffered to
stopping when

uH
1− δγ

+
δ(1− γ)

1− δγ
J0(1) > J0(1) ⇔ uH > (1− δ)J0(1),

which has been assumed to hold.

This allows the derivation of the following result.

Lemma B.4.2. Suppose that Vt+1(µt+1) is twice continuously differentiable and concave,
then always continuing a high type, xHt (µt) = 1, is strictly optimal for every µt ∈ (0, 1].

Proof. Differentiating gives

∂vt
∂xHt

= δγµtVt+1(µt+1) + δγµt(1− µt+1)V
′
t+1(µt+1)− δγµtJ0(ηt)− δγµt(1− ηt)J ′

0(ηt)

= δγµt

[
Vt+1(µt+1) + (1− µt+1)V

′
t+1(µt+1)− J0(ηt)− (1− ηt)J ′

0(ηt)
]
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But note that

∂

∂µt+1

[
Vt+1(µt+1) + (1− µt+1)V

′
t+1(µt+1)

]
= (1− µt+1)V

′′
t+1(µt+1) ≤ 0

⇒ Vt+1(µt+1) + (1− µt+1)V
′
t+1(µt+1) ≥ Vt+1(1)

Moreover,

∂

∂ηt

[
− J0(ηt)− (1− ηt)J ′

0(ηt)
]

= −(1− ηt)J ′′
0 (ηt) ≥ 0

⇒ −J0(ηt)− (1− ηt)J ′
0(ηt) ≥ −J0(0)− J ′

0(0).

As a result,
∂vt
∂xHt

≥ δγµt

(
Vt+1(1)− J0(0)− J ′

0(0)
)
> 0,

because Vt+1(1) = V (1), as identified in the previous lemma, which implies that the derivative
∂vt/∂x

H
t has to be strictly positive. This in turn implies that it is always strictly optimal to

set xHt = 1.

As a result (B.4.1) simplifies to

Vt(µt) = max
xlt

{
µtuH + (1− µt)ul + δγftVt+1(µt+1) + δ(1− γft)J0(ηt)

+ l1t (1− xlt) + l0tx
l
t

}
(B.4.4)

where

ft = µt + (1− µt)x
l
t , ηt =

µt(1− γ)

1− γft
, µt+1 =

µt + (1− µt)x
l
tφL

ft
. (B.4.5)

Differentiating with respect to xlt gives

∂vt
∂xlt

= δγ(1− µt)

(
Vt+1(µt+1)− (1− φL)

µt
ft
V ′
t+1(µt+1)− J0(ηt) + ηtJ ′

0(ηt)

)
= l1t − l0t ,

∂2vt
∂(xlt)

2
= δγ(1− µt)

(
(1− φL)

2µ
2
t (1− µt)

f 2
t

V ′′
t+1(µt+1) +

γ(1− µt)

1− γft
η2tJ ′′

0 (ηt)

)
≤ 0 .

(B.4.6)
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Moreover, it follows from the Envelop Theorem that

V ′
t (µt) = uH − ul + δγ(1− xlt)Vt+1(µt+1) + δγ(1− φL)

xlt
ft
V ′
t+1(µt+1)

− δγ(1− xlt)J0(ηt) + δ(1− γxlt)
ηt
µt
J ′

0(ηt) . (B.4.7)

Substitute the first order condition from (B.4.6) in (B.4.7) to obtain

V ′
t (µt)µt − Vt(µt) = −ul − δγxltVt+1(µt+1)− δ(1− xltγ)J0(ηt)

+ δγ(1− φL)
µtx

l
t

ft
V ′
t+1(µt+1) + δ(1− γxlt)ηtJ ′

0(ηt) ⇒

V ′
t (µt)µt − Vt(µt) = −ul + xlt

l0t − l1t
1− µt

− δJ0(ηt) + δηtJ ′
0(ηt) .

(B.4.8)

Lemma B.4.3. Suppose that Vt+1(µt+1) is twice continuously differentiable and concave,
then the same is true for Vt(µt). Moreover,

dµt+1

dµt
≥ 0 and dηt

dµt
≥ 0.

Proof. The first statement of the lemma follows trivially. The rest of the proof focuses on
proving concavity and the two derivatives. First, suppose that the non-negative constrain
binds so that

l0t > 0 ⇒

{
xlt = 0

l1t = 0
,

then total differentiation, with respect to µt, on the last line of (B.4.8) gives

V ′′
t (µt)µt = −(uH − ul) + δJ ′′

0 (ηt)ηt
dηt
dµt

≤ 0. (B.4.9)

This is because for xlt = 0,

ηt =
µt(1− γ)

1− γµt
⇒ dηt

dµt
= (1− γ)

1 + γµt
(1− γµt)2

> 0.

Second, suppose that xlt ∈ (0, 1). Total differentiation on (B.4.8) gives (B.4.9) again, but
now xlt(µt) is not known so the derivative of ηt(µt) cannot be calculated. Instead use total
differentiation, with respect to µt, on the foc of xlt on (B.4.6), which for an interior solution
gives

(1− φL)
µt
ft
V ′′
t+1(µt+1)

dµt+1

dµt
= J ′′

0 (ηt)ηt
dηt
dµt

, (B.4.10)
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hence for this case it suffices to show that dµt+1/dµt ≥ 0. This will imply that the left hand
side of (B.4.10) is negative, which in turn will give the same for the right hand side, from
which it will also follow that dηt/dµt ≥ 0. Simple differentiation on the function form of
µt+1 gives

µt+1 =
µt + (1− µt)x

l
tφL

µt + (1− µt)xlt
⇒ dµt+1

dµt
=

1− φL
f 2
t

(
xlt − µt(1− µt)

dxlt
dµt

)
.

For an interior solution, the derivative dxlt/dµt can also be derived by using the implicit
function theorem on the foc of (B.4.6). It follows immediately from this that if V ′′

t+1(µt+1) =

0, then dxlt/dµt ≤ 0, which in turn implies dµt+1/dµt ≥ 0. Instead suppose that V ′′
t+1(µt+1) <

0, then the implicit function theorem gives that

− dxlt
dµt

=

[
−(1− φL)

2µtx
l
t

f 3
t

+
η2t (1− ηt)

µt(1− µt)

J ′′
0 (ηt)

δV ′′
t+1(µt+1)

]
/[

(1− φL)
2µ

2
t (1− µt)

f 3
t

+
γ(1− µt)η

2
t

1− γft

J ′′
0 (ηt)

δV ′′
t+1(µt+1)

]
.

If −dxlt/dµt ≥ 0, then dµt+1/dµt ≥ 0 follows immediately. Instead suppose that it is
negative, in which case the following lower bound can be derived

−dxlt
dµt

< 0 ⇒ −dxlt
dµt

≥ −(1− φL)
2µtx

l
t/f

3
t

(1− φL)2µ2
t (1− µt)/f 3

t

= − xlt
µt(1− µt)

.

Hence, for V ′′
t+1(µt+1) < 0 and −dxlt/dµt < 0 I have that

dµt+1

dµt
≥ 1− φL

f 2
t

(
xlt − µt(1− µt)

xlt
µt(1− µt)

)
= 0 ,

which proves the concavity of Vt+1(µt) for interior solutions and also gives that dηt/dµt ≥ 0.
Third, suppose that the constrain of the upper bound binds, then

l1t > 0 ⇒

{
xlt = 1

l0t = 0
⇒

{
µt+1 = µt + (1− µt)φL

ηt = µt
.

Substituting the above in V ′
t (µt), as it is given in (B.4.7), gives

V ′
t (µt) = uH − ul + δγ(1− φL)V

′
t+1(µt+1) + δ(1− γ)J ′

0(µt)

⇒ V ′′(µt) = δγ(1− φL)
2V ′′

t+1(µt+1) + δ(1− γ)J ′′
0 (µt) ≤ 0,
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which proves that Vt(µt) is concave in all three possible solutions.

Proposition B.4.1. The recursive representation V (µt) exists and it is unique. Moreover,
V (µt) is twice continuously differentiable and concave. Finally,

dµt+1

dµt
≥ 0 and dηt

dµt
≥ 0.

Proof. Let V
(
[0, 1]

)
denote the set of bounded, twice continuously differentiable, and concave

functions such that V : [0, 1] → R, and consider the operator T : V
(
[0, 1]

)
→ V

(
[0, 1]

)
, given

by

T (V ) =
{
µuH + (1− µ)ul + δγfV (µ∗) + δ(1− γf ∗)J0(η

∗)
}

where f ∗ = µ+ (1− µ)x∗ , η∗ =
µ(1− γ)

1− γf ∗ , µ∗ =
µ+ (1− µ)x∗φL

f ∗

where x∗ is the same as the solution for xlt derived above when the continuation value
was Vt+1(·). Then both of Blackwell’s sufficient conditions are satisfied. Hence T (V ) is a
contraction, which implies that it has a unique solution in V

(
[0, 1]

)
, which is a solution to

Pa problem. Finally, because the solution is in V
(
[0, 1]

)
all the previous results derived for

concave Vt+1(·) hold.

Next, some results are provided for the optimal xlt. As a shorthand let V ′(1) = lim
µt⇒1

V ′(µt).

Lemma B.4.4.

V (1)− (1− φL)V
′(1) =

1

1− δγ(1− φL)xlt(1)

(
φL uH
1− δγ

+ (1− φL)ul

+ δ

[
(1− γ)

1− δγ(1− φL)

1− δγ
+ γ(1− φL)(1− xl(1))

]
J0(1)− δ(1− φL)[1− γxlt(1)]J ′

0(1)

)
(B.4.11)

Proof. Note that xl(µt) has to be continuous, as the objective function is twice differentiable
in its domain. Then substituting in (B.4.7) gives

V ′(1) = uH − ul + δγ(1− xl(1))V (1) + δγ(1− φL)x
l(1)V ′(1)

− δγ(1− xl(1))J0(1) + δ(1− γxl(1))J ′
0(1) ,
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which can be rearranged to get

V ′(1) =
1

1− δγ(1− φL)xl(1)

(
uH − ul + δγ(1− xl(1))V (1)

− δγ(1− xl(1))J0(1) + δ(1− γxl(1))J ′
0(1)

)
.

Hence substitute the above expression of V ′(1) in the right hand side of (B.4.11) to obtain

V (1)− (1− φL)V
′(1) =

−(1− φL)

1− δγ(1− φL)xl(1)

×
(
uH − ul − δγ(1− xl(1))J0(1) + δ(1− γxl(1))J ′

0(1)

)
+

1− δγ(1− φL)

1− δγ(1− φL)xl(1)
V (1) .

Finally substitute the functional form of V (1), provided in (B.4.3), and gather terms to
obtain (B.4.11).

Lemma B.4.5. Continuing a low type is strictly optimal for µt → 1, if

φL uH
1− δγ

+(1−φL)ul−
1− δ

1− δγ

[
1− δγ(1−φL)

]
J0(1)+

[
1− δ(1−φL)

]
J ′

0(1) ≥ 0, . (B.4.12)

If the above inequality is reversed, then stopping is optimal. Finally, if it holds with equality
then any xl ∈ [0, 1] is a solution.

Proof. It follows from (B.4.6) that

lim
µt⇒1

∂v

∂xlt

1/(δγ)

1− µt
= V (1)− (1− φL)V

′(1)− J0(1) + J ′
0(1)

Hence, substituting the result of the previous lemma gives that

lim
µt⇒1

∂v

∂xlt

1/(δγ)

1− µt
=

1

1− δγ(1− φL)xl(1)

×
(
φL uH
1− δγ

+ (1− φL)ul −
1− δ

1− δγ

[
1− δγ(1− φL)

]
J0(1) +

[
1− δ(1− φL)

]
J ′

0(1)

)
.

The statement follows from noting that the above is the marginal benefit from increasing xl

when µt → 1, the sign of which does not depend on xl itself.

Proposition B.4.2. Having xl(µt) = 0 for all µt ∈ [0, 1] is suboptimal iff (B.4.12) holds.
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In contrast, if it holds in the reversed direction and

φL uH
1− δγ

+(1−φL)ul+δ
[
(1−γ)1− δγ(1− φL)

1− δγ
+γ(1−φL)

]
J0(1)−δ(1−φL)J ′

0(1) ≤ J0(0) ,

(B.4.13)
then xlt(µt) = 0 is optimal for all µt ∈ [0, 1]. Otherwise, there exists µ̃ such that xlt(µt) = 0

is optimal iff µt > µ̃.

Proof. Suppose the lower bound binds, that is the low type is stopped, then

l0t > 0 ⇒

{
xlt = 0

l1t = 0
,

hence the foc of (B.4.6) becomes

−l0t
δγ(1− µt)

= V (1)− (1− φL)V
′(1)− J0(η) + ηJ ′

0(η), for η =
µt(1− γ)

1− γµt
.

For this to be a solution it has to be that l0t ≥ 0, which holds if and only if

V (1)− (1− φL)V
′(1) ≤ J0(η)− ηJ ′

0(η). (B.4.14)

Total differentiation on the right hand side of this inequality gives −ηJ ′′
0 (η)

dη
dµt

, which is
positive. Hence if this inequality is satisfied for any µt ∈ [0, 1], then this is for a convex set
[µ̃, 1]. Finally, note that for µt = 1, the above η becomes one, and (B.4.14) turns into the
opposite of (B.4.12). Hence, if the former is satisfied, then the latter can never hold, which
implies that stopping the low type with probability one is never optimal.

In contrast, if (B.4.14) holds for µt = 0

V (1)− (1− φL)V
′(1) ≤ J0(0),

then stopping the low type with probability one is optimal for any µt ∈ [0, 1]. The left hand
side of the above condition, given in (B.4.11), depends on xl(1). Despite that, Lemma B.4.5
gives that whenever (B.4.12) is not satisfied, then xl(1) = 0 from which the last statement
follows.
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Appendix C

Appendixes of Chapter 3

C.1 Omitted Proofs
Proof of Lemma 3.1. Using (3.3) it is ease to argue that both idiosyncratic and index
tracking strategies have to be played with positive probability. This is because the effect of
the reputation φβ(·) on the manager’s payoff is bounded, whereas that of current return r

is not. But this implies that φ0(·) is calculated using Bayesian updating, and as a result
it cannot be a function of r, since in this case r provides no information on the manager’s
ability α.

Fix sm, then the manager’s expected payoff while investing in an index tracking strategy
β = 1 is not a function of s. On the other hand, her payoff under the idiosyncratic strategy
is a function of r. In particular, it follows from the definition of monotonic equilibria that
this is increasing in s, which proves that the manager’s equilibrium strategy is a cut-off one,
as presented in (3.4).

In addition, the indifference condition that defines h(sm) is

Er
[
a + δ · λ · [φ0(r, s

m) · (uH − uL) + uL ]
∣∣∣ s = h(sm), α = H

]
= Er

[
m + δ · λ · [φ0(s

m) · (uH − uL) + uL ]
∣∣∣ sm ]

while the one that defines l(sm) is

Er
[
a + δ · λ · [φ0(r, s

m) · (uH − uL) + uL ]
∣∣∣ s = l(sm), α = L

]
= Er

[
m + δ · λ · [φ0(s

m) · (uH − uL) + uL ]
∣∣∣ sm ]

But the right hand sides of the above two equations are the same, hence the two expressions
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on the right hand sides are equal. Therefore, the two conditional normals that are used in
the two right hand sides have to be the same, which implies that

(1− ψ) ·H + ψ · h(sm) = (1− ψ) · L + ψ · l(sm)

from which (3.5) follows.

Proof of Lemma 3.2. The time subscripts is suppressed, when no ambiguity is created.
The same is true for the signal sm in the cutoffs h(sm) and l(sm). To find the posterior φ0(r)

calculate
P
(
r, β = 0

∣∣ sm, H) = P
(
r
∣∣ β = 0, sm, H

)
× P

(
β = 0

∣∣ sm, H) ,
where

P
(
β = 0

∣∣ sm, H) = P(s ≥ h | sm, H) = Φ

(
−h−H

ν

)
, (C.1.1)

and

P (r | β = 0, sm, H) =

∫ ∞

h

ϕ

(
r − (1− ψ)H − ψs√

ψ ν

)
× 1√

ψ ν
ϕ

(
s−H

ν

)
1/ν

Φ
(
−h−H

ν

) ds
Hence, substituting gives that

P (r, β = 0 | sm, H) =

∫ ∞

h

ϕ

(
r − (1− ψ)H − ψsi√

ψ ν

)
ϕ
(
s−H
ν

)
√
ψ ν2

ds. (C.1.2)

Let s̃ = (s−H)/ν, then the above becomes∫ ∞

h−H
ν

ϕ

(
r −H√
ψ ν

−
√
ψ s̃

)
ϕ(s̃)√
ψ ν

ds̃

=

ϕ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

∫ ∞

h−H
ν

ϕ

(
s̃− r−H

ν(1+ψ)

1/
√
1 + ψ

)√
1 + ψ ds̃

=

ϕ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

Φ

(
r − h(1 + ψ) +Hψ

ν
√
1 + ψ

)
.

(C.1.3)

Repeat the same process to find P (r | β = 0, sm, L) and observe that it follows from Bayes’
rule that

φ0(r) =

(
1 +

1− π

π

P (r, β = 0 | sm, L)
P (r, β = 0 | sm, H)

)−1

, (C.1.4)
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from which the provided formula follows. To derive φ1 use Bayes’ rule to get that

φ1 =

(
1 +

1− π

π

P (β = 1 | sm, L)
P (β = 1 | sm, H)

)−1

, (C.1.5)

where P (β = 1 | sm, α) = 1− P (β = 0 | sm, α), which has been derived above.

To prove our existence theorem we need to following three lemmas.

Lemma C.1.1. If M(·) is the normal hazard function, then for a ≥ b we have,

M(a)−M(b) ≤ a− b (C.1.6)

Proof. Since the hazard function is a continuous function, we can use the Mean Value
Theorem, which says that for any a > b there exists a ξ ∈ (a, b) such that M(a) −M(b) =

M ′(ξ)(a − b). Therefore, it is sufficient to prove that M ′(ξ) < 1 for any ξ. To prove that,
note that M(·) is convex, and hence M ′(·) is increasing, so it would be sufficient to prove
that limx→∞M ′(x) = 1. Now we use the following inequality for the normal hazard function.
We know that for x > 0,

x < M(x) < x+
1

x
(C.1.7)

But this easily implies that M(x) has x as its asymptote as x→ ∞ (that is limx→∞M(x)−
x = 0). Finally this implies that limx→∞M ′(x) = 1 and this completes the proof (note
the limit exists because M ′(·) is increasing and bounded, as M ′(x) = M(x)(M(x) − x) <

1 + 1
x2
< 2).

Lemma C.1.2. The time subscripted is suppressed. A sufficient condition for φ0(r, s
m) to

be increasing in the manager’s performance r is that

(H − L) · 1− ψ

ψ
≥ l(sm1 )− h(sm1 ). (C.1.8)

Proof. Suppress inputs (r, sm), and super/sub-scripts. Differentiating gives

dφ

dr
= −φ(1− φ)

ν
√
1 + ψ

[
− H − L

νψ
√
1 + ψ

+M

(
−r − l(1 + ψ) + Lψ

ν
√
1 + ψ

)
−M

(
−r − h(1 + ψ) +Hψ

ν
√
1 + ψ

)]
(C.1.9)

Let

δL = l(1 + ψ)− Lψ

δH = h(1 + ψ)−Hψ,
(C.1.10)
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then the above is positive if and only if

H − L

νψ
√
1 + ψ

≥M

(
δL − r

ν
√
1 + ψ

)
−M

(
δH − r

ν
√
1 + ψ

)
(C.1.11)

But using Lemma C.1.1 we see that the right hand side is bounded above by

δL − δH

ν
√
1 + ψ

=
(l − h)(1 + ψ) + (H − L)ψ

ν
√
1 + ψ

. (C.1.12)

Hence, a sufficient condition for the inequality to hold is that

H − L

ψ
≥ (l − h)(1 + ψ) + (H − L)ψ ⇔ (H − L)

1− ψ

ψ
≥ l − h. (C.1.13)

Lemma C.1.3. For c > 0, let

µ(x) =

(
1 + c

Φ(a0 + b x)

Φ(a1 + b x)

)−1

. (C.1.14)

Suppose b > 0, then µ′(x) > 0 ⇔ a1 < a0, whereas b < 0 implies that µ′(x) > 0 ⇔ a1 > a0.

Proof. Differentiating gives

µ′(x) = −bµ(x)[1− µ(x)]× [M(−a0 − b x)−M(−a1 − b x)] .

Then the statement follows simple from the fact that M(·) is increasing .

Proof of Proposition 3.1. Suppress time subscript t. Also suppress the signal sm in the
cutoffs h(sm) and l(sm), and in the reputations φ0(·) and φ1(·).

We start by proving existence. As we have argued in Lemma 3.1, in any monotonic
equilibrium the optimal strategy of a high and low type manager is to pick β = 0 whenever her
signal s is above the cutoffs h and l, respectively. In addition, another necessary implication
is that h and l satisfy (3.5).

But then Lemma C.1.2 together with (3.5) give that φ0(r) is indeed increasing in r.
Hence, the manager’s best response to the functional forms of φ0(·) and φ1 as given Lemma
3.2 is to indeed use the cutoff strategies that Lemma 3.1 describes.

All that remains to prove existence is to shown that those cutoffs always exists. To do
this note that the manager’s payoff maximisation problem when picking the first period’s
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beta is as given in (3.3). Let her expected payoff when picking β = 0 be denoted by

v0(s, α) = (1− ψ) · α + ψ · s + δ · λ · Er
[
log
(
φ0(r)(u

H − uL) + uL
) ∣∣ s, α] ,

whereas for β = 1 this becomes

v1 = (1− ψm) · µ + ψm · sm + δ · λ · log
(
φ1(u

H − uL) + uL
)
.

But then v1 is bounded, while v(s, α) goes from minus to plus infinity. Hence the manager
uses both the low and high beta strategy depending on s. Next, we provide the equation
that defines those cutoffs. Rewrite l as a function of h according to

l(h)− L = h−H +
H − L

ψ
,

and substitute this equality in φ0(r) and φ1 to obtain the following two functions, in which
only h appears out of the two equilibrium cutoffs. Substituting in φ0(r) gives

φ̃0(r, h) =

(
1 +

1− π

π
· ρ(r) ·

Φ
(
r−h·(1+ψ)+Hψ−(H−L)/ψ

ν
√
1+ψ

)
Φ
(
r−h·(1+ψ)+Hψ

ν
√
1+ψ

) )−1

, (C.1.15)

where h is introduced as an input of the function. Similarly, substituting in φ1 gives

φ̃1(h) =

1 +
1− π

π
·
Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

)
−1

(C.1.16)

Then the cutoff h is given by the high types indifference condition v0(h,H) = v1, which
using the above notation becomes

δ · λ ·
∫

log
[
φ̃0(r, h)(u

H − uL) + uL
]
· ϕ
(
r − (1− ψ)H − ψh√

ψν

)
1√
ψν

dr

= δ · λ · log
[
φ̃1(h)(u

H − uL) + uL
]
+ (1− ψm) · µ+ ψm · sm − (1− ψ) ·H − ψ · h

(C.1.17)

where ϕ(·) is the density of the standard normal distribution. To prove existence we demon-
strate that (C.1.17) equation has at least one solution. Let LHS(h) denote the left hand side
of (C.1.17), RHS(h) its right hand side, and ∆(h) = LHS(h) − RHS(h) their difference.
Observe that all the parts of the above equation apart from the last line are bounded. As a
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result,

lim
h→−∞

∆(h) = −∞

lim
h→+∞

∆(h) = +∞.
(C.1.18)

Then it follows from the continuity of this function that there exists at least one point where
∆(h) = 0. Hence we have proven existence.

Next we show that (3.8) is indeed a sufficient condition for uniqueness. In particular,
we will argue that (3.8) implies that ∆(h) is increasing in h. First, note that LHS(h) is
increasing in h, because φ̃0(r, h) is increasing in both r and h. We have already argued why
this is true for r. For h the claim is a direct implication of Lemma C.1.3.

Hence it suffices to identify a condition for RHS(h) to be decreasing. Lemma C.1.3
implies that φ̃1(h) is increasing in h. This is the opposite monotonicity, however we can use
the fact that the following expression has a relatively simple upper bound

d

dh
log
[
φ̃1(h)(u

H−uL)+uL
]
=
φ̃1(h)[1− φ̃1(h)]/ν

φ̃1(h) +
uL

uH−uL
×
[
M

(
−h−H

ν

)
−M

(
− l(h)− L

ν

)]
≤ 1

ν

[
M

(
−h−H

ν

)
−M

(
− l(h)− L

ν

)]
=

1

v

∫ H

L−(1−ψ)H
ψ

M ′
(
x− h

ν

)
dx ≤ H − L

ψν2

(C.1.19)

Hence, a sufficient condition for the right hand side to be decreasing, which will imply
uniqueness, is that

δλi
H − L

ψν2
≤ ψ ,

which equivalently gives (3.8).

Proof of Proposition 3.2. We know that φ0(r, s
m) is increasing in r. Hence, it suffices

to prove the conjectured result for r → −∞. The dependence on sm is suppressed. Let
k = −h(1 + ψ) +Hψ. To find the limit lim

r→−∞
φ0(r) we first need to calculate.

lim
r→−∞

Φ
(
r+k−(H−L)/ψ

ν
√
1+ψ

)
Φ
(

r+k
ν
√
1+ψ

)
exp

(
2(H−L)r−(H2−L2)

2ν2ψ(1+ψ)

) . (C.1.20)

Because both the numerator and the denominator go to zero as r goes to minus infinity this
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limit becomes
e

H2−L2

2ν2ψ(1+ψ) lim
r→−∞

ϕ
(
r+k−(H−L)/ψ

ν
√
1+ψ

)
ν
√
1+ψ

e
(H−L)r

ν2ψ(1+ψ) ×
[
Φ
(

r+k
ν
√
1+ψ

)
H−L

ν2ψ(1+ψ)
+

ϕ
(

r+k
ν
√
1+ψ

)
ν
√
1+ψ

] .
In addition, algebra implies the following simplification

ϕ
(
r+k−(H−L)/ψ

ν
√
1+ψ

)
ϕ
(

r+k
ν
√
1+ψ

) = exp

(
2(r + k)− H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
. (C.1.21)

This in turn gives

e
− (H−L)r

ν2ψ(1+ψ)

ϕ
(
r+k−(H−L)/ψ

ν
√
1+ψ

)
ϕ
(

r+k
ν
√
1+ψ

) = exp

(
2k − H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
.

Hence the limit becomes

exp

(
2k +H + L− H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
× lim

r→−∞

Φ
(

r+k
ν
√
1+ψ

)
ϕ
(

r+k
ν
√
1+ψ

) H − L

νψ
√
1 + ψ

+ 1

−1

,

where

lim
r→−∞

Φ
(

r+k
ν
√
1+ψ

)
ϕ
(

r+k
ν
√
1+ψ

) = lim
x→∞

1− Φ(x)

ϕ(x)
= 0 (C.1.22)

Hence, substituting k we obtain that

lim
r→−∞

φ0(r) =

(
1 +

1− π

π
exp

[(
H − H − L

2ψ
− h

)
H − L

ψν2

])−1

.

Next, we want to show that the above is greater than φ1(r) for every h. This holds if
and only if

exp

[(
H − H − L

2ψ
− h

)
H − L

ψν2

]
<

Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

) (C.1.23)

which can equivalently be rewritten as

(
H − H − L

2ψ
− h

)
H − L

ψν2
< log

Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

) . (C.1.24)
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Differentiating the left hand side minus the right hand side we get

− H − L

ψν2
+

1

ν
M

(
H − h

ν

)
− 1

ν
M

(
H − h

ν
− H − L

νψ

)
≤ −H − L

ψν2
+
H − L

ψν2
= 0 (C.1.25)

Hence it suffices to check that

lim
h→−∞

Φ
(
h−H
ν

)
exp

(
(H−L)h
ψν2

)
Φ
(
h−H+(H−L)/ψ

ν

) ≤ exp

[(
H − L

2ψ
−H

)
H − L

ψν2

]
.

Similar argumentation with above gives that the limit on the left hand side becomes

lim
h→−∞

ϕ
(
h−H
ν

)
exp

(
(H−L)h
ψν2

)
ϕ
(
h−H+(H−L)/ψ

ν

)
= lim

h→−∞
exp

(
2(h−H) + H−L

ψ

2ν2
H − L

ψ
− (H − L)h

ψν2

)

= exp

[(
H − L

2ψ
−H

)
H − L

ν2ψ

]
. (C.1.26)

Hence, the above inequality holds.

Proof of Proposition 3.3. The Input sm is suppressed. First, note that h is the solution
of (C.1.17), that is the solution of ∆(h) = 0, where ∆(h) is defined under the equation as
the difference of its left hand side from its right hand side. Second, the optimal cutoff under
no career concerns for the high type c(H) is the one that corresponds to the solution of this
equation for δ = 0, as this corresponds to the case when the next period is irrelevant. Let
h(δ) denote the solution of (C.1.17) as a function of δ. Then it follows from the implicit
function theorem that

dh(δ)

dδ
= −∂∆(h)/∂δ

∂∆(h)/∂h

∣∣∣∣
h=h(δ)

. (C.1.27)

But it follows from the limits calculated in (C.1.18) that the unique monotonic equilibrium
needs to have ∂∆(h)/∂h > 0. Moreover, calculating the derivative on the numerator for
some generic h gives

∂∆(h)

∂ δ
= λEr

[
log
[
φ̃0(r, h)(u

H − uL) + uL
]
− log

[
φ̃1(h)(u

H − uL) + uL
] ∣∣∣∣ s = h,H

]
,

but it follows from Proposition 3.2 that this is positive, because the difference inside the
expectation is positive for every h. As a result, for every δ ≥ 0 we get that dh(δ)/dδ < 0,
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which through (3.5) implies the same for the cutoff used by the low type.
Finally, note that λ and δ enter (C.1.17) in exactly the same way, hence the same result

can be stated for λ.

Lemma C.1.4. In the unique monotonic equilibrium, for every prior reputation π > 1/2

there exists a lower bound s̄m(π), defined as the solution of φ1(s
m) = 1/2, such that for every

sm > s̄m we have φ1(s
m) > 1/2, and s̄m(πi) is increasing in π.

In addition, for every sm ≥ s̄m(π) the cutoffs h(sm) and l(sm) are increasing in π, and
the same is true for the posterior reputations φ(

0r, s
m) and φ1(s

m) .

Proof. In the proof of Proposition 3.1 is has been shown that in the unique monotonic
equilibrium there exists φ̃1 such that φ1(s

m) = φ̃1[h(s
m)], and its functional form is given in

(C.1.16). Moreover, it is an immediate implication of Lemma C.1.3 that this is increasing in
h, and it is ease to verify that

lim
h→+∞

φ̃1(h) = π. (C.1.28)

In addition, it follows from (C.1.17), which defines h(sm), that

(1 + ψ)H + ψh(sm) + δλ log

(
uH

uL

)
≥ (1− ψm)µ+ ψms

m.

This provides a lower bound for h(sm), which is in an increasing function of sm, and shows
that

lim
sm→+∞

h(sm) = +∞, (C.1.29)

from which the existence of the cutoffs follows. It monotonicity follows from using the
implicit function theorem on the equation that defines it

φ̃1

[
π, h

(
s̄(π)

)]
= 1/2, (C.1.30)

where note that φ̃1 is increasing in both π and h, and it has been argued in Proposition 3.4
that h(·) is also an increasing function.

For the second statement, it follows from (3.5) that is suffices to prove it for h(sm). Using
the implicit function theorem on (C.1.17) we get that

dh

dπ
= −∂∆/∂π

∂∆/∂h
, (C.1.31)
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where direct differentiation gives ∂∆/∂h = ψ > 0 and that

∂∆

∂π
=

δ λ

π(1− π)
Er
[
φ̃0(1− φ̃0)

φ̃0 +
uL

uH−uL
− φ̃1(1− φ̃1)

φ̃1 +
uL

uH−uL

∣∣∣∣ s = h,H

]
, (C.1.32)

where the inputs r and sm have been suppressed. Some basic calculus shows that for every
φ̃ ∈ [1/2, 1] the ratio

φ̃(1− φ̃)

φ̃+ uL

uH−uL
(C.1.33)

is decreasing in φ̃. Moreover, we have from Proposition 3.2 that φ̃0(r, h) > φ̃1(h) for every
r ∈ R. But we already showed that φ̃1(h) > 1/2 for every sm ≥ s̄m(π). Hence, we get that
∂∆/∂π < 0, which implies the second statement.

Finally, the third statement follows trivially from noting that the direct derivative of
both the posteriors with respect to π is positive, and the fact that both are increasing in
h(sm), implied by Lemma C.1.3, for which it has already being argued that it is increasing
in π.

Proof of Proposition 3.5. First, consider the investment decision of a high type man-
ager, for which the probability of choosing the low beta strategy, conditional on the market
signal sm, is

P
(
β = 0

∣∣ sm) = P
(
s ≥ h(sm)

∣∣ sm) = P
(
h−1(s) ≥ sm

∣∣ sm), (C.1.34)

since it was shown in Proposition 3.4 that h(·) is increasing. Moreover, for given sm the
distribution of m is normal and is given by

m | sm ∼ N
(
(1− ψm)µ+ ψms

m , ψmν
2
m

)
. (C.1.35)

Let m̃ = [m− (1− ψm)µ]/ψ
m. Then

m̃ | sm ∼ N
(
sm , ν2m/ψm

)
, (C.1.36)

while the ex-ante distribution of sm is

sm ∼ N
(
µ , σ2

m + ν2m
)
, (C.1.37)

As a result using again the properties of Bayesian updating with normal distributions we
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get that

sm | m̃ ∼ N

(
ψ̃µ+ (1− ψ̃)m̃ ,

ψ̃ν2m
ψm

)
, (C.1.38)

where ψ̃m = (σ2
m + ν2m)/(σ

2
m + ν2m + v2m/ψm). Hence for for every m̂, m such that m̂ > m,

the distribution of corresponding normal that generates sm conditional on m̂ first order
stochastically dominates the one of m. This immediately implies that

P
(
β = 0

∣∣ m̂) < P
(
β = 0

∣∣m). (C.1.39)

Hence under better observed market conditions the manager is less likely to have chosen to
invest in her idiosyncratic strategy. The second statement of the proposition follows from
noting that

dφ0(r, s
m)

dr
≥ 0 =

dφ1(s
m)

dr
, (C.1.40)

To calculate the left derivative it is more convenient to use the equivalent φ̃0 function from
the proof of proposition 3.1. The derivative of this can be calculated in a manner similar to
that used in the proof of Lemma C.1.2 to be

dφ̃0(r, h)

dr
=

φ̃0(1− φ̃0)

ν
√
1 + ψ

[
H − L

νψ
√
1 + ψ

−
∫ x

x

M ′
(
x+ h

√
1 + ψ/ν

)
dx

]
,

where M(·) is the hazard rate of the standard normal distribution,

x = − r +Hψ

ν
√
1 + ψ

and x = x+
(H − L)/ψ

ν
√
1 + ψ

. (C.1.41)

Next we want to show that this derivative is decreasing in sm. This appears in φ̃0 only
indirectly through the cutoff h(sm), which it has already being shown to be an increasing
function. Hence calculate

d2φ̃0(r, h)

drdh
=

1− 2φ̃0

φ̃0(1− φ̃0)

(
dφ̃0(r, h)

dr

)2

− φ̃0(1− φ̃0)

ν2

∫ x

x

M ′′
(
x+ h

√
1 + ψ/ν

)
dx ,

the second line of which is always negative, as M(·) is a convex function. The first line
is negative as long as φ̃0(r, h) > 1/2. But we have already argued in Proposition 3.2 that
φ̃0(r, h) > φ̃1(h), and in Lemma C.1.4 that there exists lower bound s̄m(π) such that for all
sm ≥ s̄m(π) it has to be that φ̃1(h) > 1/2. Moreover, the same Lemma gives that s̄m(π) is
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an increasing function and it is ease to verify that for bounded m

lim
π→1

P(ϕ1(s
m) < 1/2 |m) = 0. (C.1.42)

Hence, indeed dφ0(r, s
m)

dr
is decreasing in sm, from which the second statement of the propo-

sition also follows.

Proof of equation 3.11. We have:

P(φ1 > φ2 | sm) = P(φ1
1 > φ2

1 | sm)P(1, 1 | sm)

+ P(φ1
1 > φ2

0 | sm)P(1, 0 | sm) + P(φ1
0 > φ2

1 | sm)P(0, 1 | sm)

+ P(φ1
0 > φ2

0 | sm)P(0, 0 | sm), (C.1.43)

It follows immediately from Lemma C.1.4 that φ2
1 > φ1

1. Moreover, Proposition 3.2 gives
that φ2

0 > φ2
1, hence we also have that φ2

0 > φ1
1. As a result the above becomes

P(φ1 > φ2 | sm) = P(φ1
0 > φ2

1 | sm)P(0, 1 | sm) + P(φ1
0 > φ2

0 | sm)P(0, 0 | sm), (C.1.44)

we can only be certain about the monotonicity of the probability of both managers invest
in their idiosyncratic portfolio which is deceasing given large sm. The rest of the terms can
not be monotonic as we have observed through simulations.

C.2 Investment and AUM in the Second Period
Here, first we derive the optimal investment decision of a manager in the second period.
Second, we use this to calculate her AUM as a function of her posterior reputation, which
we later use in order to derive her continuation payoff from period 2. To avoid repetition we
consider the extended model in which there are two fund managers. In this the investor’s
preferences are given by

v(i, zijt ) =

{
exp(zi1t − z̄) · (1− f it ) ·Ri

t , i = 1, 2

exp(mt) , i = m

Hence, in this case there are two independent preference shocks , one for each fund. The
results of the baseline more can be obtained by setting the fees of the second manager equal
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to one, which will ensure that no investor will invest in her fund.
We solve the second period backwards by first considering the manager’s investment

decision when the funds have already been allocated. The manager’s expected payoff is

E
[
log
(
Ai2f

i
2R

i
2

)
| si2, sm2 , βi2, α

]
= log

(
Ai2f

i
2

)
+ E

[
ri2 | si2, sm2 , βi2, α

]
As a result the manager’s objective when choosing her investment strategy βi2 in the second
period is to simply maximise the expected return ri2. Thus, she invests in her alpha only if

E
[
ri2 | si2, sm2 , βi2 = 0, α

]
≥ E

[
ri2 | si2, sm2 , βi2 = 1, α

]
(C.2.1)

It is known that the posterior distributions of ai2 and m2, after conditioning on si2 and
sm2 , are also normal distributions with known expected values. Let ψ = σ2/(σ2 + ν2) and
ψm = σ2

m/(σ
2
m + ν2m). Then (C.2.1) becomes

(1− ψ) · α + ψ · si2 ≥ (1− ψm) · µ + ψm · sm2 ,

which allows us to derive the manager’s optimal investment strategy in the second period.
This is a cutoff rule such that she invests in her alpha only if si2 ≥ c(α, sm2 ), where

c(α, sm2 ) =
ψm
ψ

· sm2 +
1− ψm
ψ

· µ − 1− ψ

ψ
· α (C.2.2)

Thus, for the same market conditions a high type manager invests relatively more fre-
quently on her alpha in the second period, as c(H, sm2 ) < c(L, sm2 ) implies

P[si2 ≥ c(H, sm2 )] > P[si2 ≥ c(L, sm2 )] ⇒ P(βi2 = 0 |m2, α = H) > P(βi2 = 1 |m2, α = L),

where the second line required to infer sm2 from the realised m2. We will frequently need to
condition expectations with respect to mt instead of smt , because we do not have in our data
some measure of the latter in our data.

An important point that needs to be made is that the cutoffs c(α, sm2 ) are not the optimal
ones for the investors. This is because those are risk-neutral, while the managers are risk-
averse. Following the same argumentation as above we can show that the optimal cutoff for
the investors is

c∗(α, sm2 ) = c(α, sm2 ) +
ψmσ

2
m − ψσ2

2ψ
. (C.2.3)

Thus the investor’s optimal cutoff is adjusted by a “risk-loving” factor. For example, suppose
that ψmσ2

m > ψσ2, that is investing in the market is relatively more risky conditional on
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the information that the manager has at her disposal when making the decision. Then an
investor would require a higher level of confidence on her alpha si2 in order to also agree that
relying on it is preferable to ’gambling’ with rm2 .

Let uα2 denote the equilibrium payoff of an investor in the second period, conditional on
investing with a manager of type α, but net of his preference shock zijt and fees f i2. Then
this is given by

uα2 = P[si2 ≥ cα(s
m
2 )]E[Ri

2 | si2 ≥ cα(s
m
2 )] + P[si2 ≤ cα(s

m
2 )]E[Ri

2 | si2 ≤ cα(s
m
2 )], (C.2.4)

which has a closed form representation that can be derived using the formulas of the moment
generating function of the truncated normal distribution. We avoid providing this here as
it does not facilitate the understanding of the model in any meaningful way. However, it is
important to point out that when the market’s posterior variance ψmσ2

m is much bigger than
that of the alpha-based strategy ψσ2 then the misalignment between the manager’s and the
investors’ preferences could be so substantial that a low type manager would be preferable
simply because she is more reluctant to use her alpha. We exclude that by assuming that
uH2 > uL2 , because if the parameters of the model were such that investing in an index
tracking strategy was so attractive, then there would be little need for professional investors.

Let φi denote the public posterior belief on manager i’s ability αi at the beginning of
period two. Then the investor’s expected payoff, net of fees and the preferences shock, from
opting for fund i is

ui2 = φi(uH2 − uL2 ) + uL2 ,

and the corresponding actual payoff is ezijt (1 − f it )u
i
2. In addition, each investor has an

outside option, which is to ignore the financial intermediaries and instead invest directly on
m2, which gives expected payoff

um = E[exp(mt)] = eµ+σ
2
m/2.

To avoid repetition note that in a manner similar to the one above we can define

ui1 = πi(uH1 − uL1 ) + uL1 ,

as the expected net payoff of an investor active in the first period. However, in this case the
functional form of uα1 will be completely different, as the cutoffs used by the managers in the
first period will be influenced by their career concerns. We will derive those under a market
equilibrium in the next subsection.

To ensure that when the lowest preference shocks are realised the investor would rather
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invest directly in the market we will assume that

(1− f i2) · uH2 < um · ez̄ (C.2.5)

We are now ready to derive the AUM of fund i in the beginning of period t, as only a function
of net expected payoffs and announced fees.

Lemma C.2.1. In any market equilibrium the AUM of fund i, competing against fund k, in
period t is (

(1− f it )u
i
t

um

)λi (
1− λi

λi + λk

(
(1− fkt )u

k
t

um

)λk)
. (C.2.6)

Proof. To simplify the algebra drop the investor superscript and time subscripts. Also let
ξi = log(1 − f i)ui, i = 1, 2 and ξm = log um + z̄. For an investor to prefer fund 1 to both
directly investing in the market and to fund 2, it has to be that

exp(z1 − z̄) · (1− f 1) · u1 ≥ um ⇔ z1 ≥ ξm − ξ1

and
exp(z1)(1− f 1)u1 ≥ exp(z2)(1− f 2)u2 ⇔ z1 + ξ1 − ξ2 ≥ z2,

respectively. Hence the proportion of the market that fund 1 captures is

P
(
z1 ≥ ξm − ξ1 ∩ z1 + ξ1 − ξ2 ≥ z2

)
=

∫ ∞

ξm−ξ1
P
(
z1 + ξ1 − ξ2 ≥ z2

∣∣ z1) dP(z1)
=

∫ ∞

ξm−ξ1

(
1− e−λ

2(z1+ξ1−ξ2)
)
λ1e−λ

1z1dz1

= e−λ1(ξ
m−ξ1) − e−λ

2(ξ1−ξ2) λ1

λ1 + λ2
e−(λ1+λ2)(ξm−ξ1)

=

(
(1− f 1)u1

um · ez̄

)λ1
·

(
1− λ1

λ1 + λ2

(
(1− f 2)u2

um · ez̄

)λ2)

The proof for fund 2 is equivalent.

The proof calculates (C.2.6) as the probability of the intersection of two events. The first
is that investor j prefers fund i to fund k. The second is that fund i is preferred to direct
investment in the market.
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To obtain the assets for the case where there is only one manager set f 2 = 1 to get:

(
(1− f it ) · uit
um · ez̄

)λi
(C.2.7)

C.3 Unobservable Investment Decision
Lemma C.3.1. For generic a and b:

ϕ(a− bx)ϕ(x) = ϕ

(
x
√
1 + b2 − a b√

1 + b2

)
ϕ

(
a√

1 + b2

)
. (C.3.1)

In addition, for generic x:∫ ∞

x

ϕ(a− bx)ϕ(x) dx = Φ

(
a b√
1 + b2

− x
√
1 + b2

)
ϕ

(
a√

1 + b2

)
1√

1 + b2
. (C.3.2)

Proof. The first equation follow from

ϕ(a− bx)ϕ(x)2π = exp

(
−a

2 − 2abx+ b2x

2
− x2

2

)
= exp

(
−
(1 + b2)x2 − 2abx+ a2b2

1+b2

2
−
a2 − a2b2

1+b2

2

)

= exp

(
−1

2

(√
1 + b2 x− a b√

1 + b2

)2

− 1

2

a2

1 + b2

)
.

(C.3.3)

The second equation follows trivially from the first.

To make notation more compact write r̄H(s) and r̄L(s) instead of r̄(α, β = 0, s, sm) and
r̄1 instead of r̄(α, β = 1, s, sm). Similarly, write σ̄2

β instead of σ̄2(β). Also, let

ξ2 ≡ σ2
ϵ

β2
0

(1− β0)2
. (C.3.4)

Define the following function

ρ(r, α, c) = Φ

(
(r̃ − α)ψν

ξ
√
ξ2 + ψ2ν2

−

√
1 +

ψ2ν2

ξ2
c− α

ν

)

×
ϕ

(
r̃−α√
ξ2+ψ2ν2

)
√
ξ2 + ψ2ν2

+ Φ

(
c− α

ν

) ϕ
(
r−m
σϵ

)
σϵ

, (C.3.5)
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which under the restriction that β0 = 0 simplifies to

ρ(r, α, c) = Φ

(
r − c(1 + ψ) + αψ

ν
√
1 + ψ

)
×
ϕ

(
r−α

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

+ Φ

(
c− α

ν

) ϕ
(
r−m
σϵ

)
σϵ

, (C.3.6)

Proof of Lemma 3.1. Drop dependence on sm both in the cutoffs and on the expecta-
tions. First, calculate the probability of r and β to be realised under the cutoff h. For β = β0

define the new random variable

r̃ ≡ r − β0m

1− β0
= a+

β0
1− β0

ϵ, (C.3.7)

for which we have
r̃ | s,m ∼ N

(
(1− ψ)H + ψs, ξ2

)
ξ2 ≡ σ2

ϵ

β2
0

(1− β0)2

(C.3.8)

as a result

Pr
(
r̃, β0 |H

)
=

∫ ∞

h

ϕ

(
r̃ − (1− ψ)H − ψs

ξ

)
1

ξ
ϕ

(
s−H

ν

)
1

ν
ds (C.3.9)

Below we switch the variable of integration to s̃ = (s−H)/ν and use the above lemma

Pr
(
r̃, β0 |H

)
=

∫ ∞

h−H
ν

ϕ

(
r̃ −H

ξ
− ψν

ξ
s̃

)
ϕ(s̃)

1

ξ
ds̃

= Φ

(
r̃ −H

ξ

ψν/ξ√
1 + ψ2ν2/ξ2

−

√
1 +

ψ2ν2

ξ2
h−H

ν

)
×ϕ

(
(r̃ −H)/ξ√
1 + ψ2ν2/ξ2

)
1/ξ√

1 + ψ2ν2/ξ2
,

(C.3.10)

which after some algebra gives that

Pr
(
r̃, β0 |H

)
= Φ

(
(r̃ −H)ψν

ξ
√
ξ2 + ψ2ν2

−

√
1 +

ψ2ν2

ξ2
h−H

ν

)
×ϕ

(
r̃ −H√
ξ2 + ψ2ν2

)
1√

ξ2 + ψ2ν2

(C.3.11)

For β = 1, we have that r = m+ ϵ, hence

Pr
(
r, β1 |H

)
= ϕ

(
r −m

σϵ

)
1

σϵ
Φ

(
h−H

ν

)
(C.3.12)
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Hence, we have an expression for

Pr(r |H) = Pr

(
r̃ =

r − β0m

1− β0
, β0

∣∣∣∣H)+ Pr
(
r, β1 |H

)
(C.3.13)

Pr

(
r̃ =

r − β0m

1− β0
, β0

∣∣∣∣H) = Pr (r, β = 0 |H) =

ϕ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

Φ

(
r − h(1 + ψ) +Hψ

ν
√
1 + ψ

)
.

(C.3.14)

The expressions for the low type are identical, hence form this we can derive the posterior
reputation of the manager.

Proof of Proposition 3.1. We want to investigate if ϕ(r,m, sm) can be always increasing
in r. From Lemma 3 (19), sufficient b see if ρ can always be decreasing:

ρ =
ρL
ρH

(C.3.15)

ρ =
Φ
(
r−l(1+ψ)+Lψ

ν
√
1+ψ

) ϕ

(
r−L

ν
√
ψ(1+ψ)

)
ν
√
ψ(1+ψ)

+ Φ
(
l−L
ν

) ϕ( r−µσε )
σε

Φ
(
r−h(1+ψ)+Hψ

ν
√
1+ψ

) ϕ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1+ψ)

+ Φ
(
h−H
ν

) ϕ( r−µσε )
σε

(C.3.16)

Set ν
√
ψ(1 + ψ) = σε else it is non going to be decreasing

After substitution

ρ =
εA1r−C1Φ

(
r−b1
ν
√
1+ψ

)
+ d1

εA2r−C2Φ
(

r−b2
ν
√
1+ψ

)
+ d2

(C.3.17)

With

A1 =
L−m

σ2
ε

, C1 =
L2 −m2

2σ2
ε

, C1 =
L2 −m2

2σ2
ε

, b1 = l(1 + ψ)− Lψ, d1 = Φ

(
l − L

ν

)
(C.3.18)

Note A1 < A2.
Then we take the derivative with respect to r, which is proportional to:
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ρ′ ∝ eA1r−C1eA2r−C2Φ

(
r − b1

ν
√
1 + ψ

)
(A1 − A2)

+eA1r−C1eA2r−C2Φ

(
r − b1

ν
√
1 + ψ

)
Φ

(
r − b2

ν
√
1 + ψ

)
1

ν
√
1 + ψ

(
M

(
b1 − r

ν
√
1 + ψ

)
M

(
b2 − r

ν
√
1 + ψ

))
+d2

[
εA1r−C1A1Φ

(
r − b1

ν
√
1 + ψ

)
+ εA1r−C1

1

ν
√
1 + ψ

ϕ

(
r − b1

ν
√
1 + ψ

)]
−d1[ϵA2r−C2A2Φ

(
r − b2

ν
√
1 + ψ

)
+ ϵA2r−C2

1

ν
√
1 + ψ

ϕ

(
r − b2

ν
√
1 + ψ

)
] (C.3.19)

We want the derivative of ρ to be negative for every r,m, which is proportional with:

ρ′

ϵA1r−C1ϵA2r−C2
∝ d2

[
A1Φ

(
r − b1

ν
√
1 + ψ

)
+

1

ν
√
1 + ψ

ϕ

(
r − b1

ν
√
1 + ψ

)]
+d1

[
A2Φ

(
r − b2

ν
√
1 + ψ

)
1

ν
√
1 + ψ

ϕ

(
r − b2

ν
√
1 + ψ

)]

+d2

A1

Φ
(

r−b1
ν
√
1+ψ

)
eA2r−C2

+
1

ν
√
1 + ψ

ϕ
(

r−b1
ν
√
1+ψ

)
eA2r−C2


−d1

A2

Φ
(

r−b2
ν
√
1+ψ

)
eA1−C1

1

ν
√
1 + ψ

ϕ
(

r−b2
ν
√
1+ψ

)
eA1−C1


We take any m such that A1, A2 < 0. Then d2[A1Φ

(
r−b1
ν
√
1+ψ

)
+ 1

ν
√
1+ψ

ϕ
(

r−b1
ν
√
1+ψ

)
] +

d1[A2]Φ
(

r−b2
ν
√
1+ψ

)
1

ν
√
1+ψ

ϕ
(

r−b2
ν
√
1+ψ

)
] is finite because Φ(.) ∈ [0, 1] and M(a) −M(b) ≤ a − b

for a > b (Lemma 3).
We will investigate as r → ∞. Also ϕ(.)

eA2r−C → 0 as r → +∞
In addition we already know:

d2A1Φ
(

r−b1
ν
√
1+ψ

)
eA2r−C2

−
d1A2Φ

(
r−b2
ν
√
1+ψ

)
eA1r−C1

(C.3.20)

as r → +∞

d2d1e
C2er(A1−A2) − d1A2e

C1

erA1
(C.3.21)

we know that A1 − A2 < 0 so er(A1−A2)→+∞ so
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0− d1A2e
C1

erA1

(C.3.22)

also we know that A1 < 0 so erA1 → 0

and therefore −d1A2ec1
0

=⇒ +∞ as A2 < 0.
So we finally we conclude that ρ′ cannot always be negative.
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Appendix D

Appendixes of Chapter 4

D.1 Omitted proofs
Proof of Lemma 4.1. We want to transform the part of (Tf ) that depends on the repu-
tation mτ . Apply the following transformation

Eθ0
[
Eτ
[
e−rτ ·mτ

∣∣ θ0 ] ] = Eτ
[
e−rτ · Eθ0

[
mτ

∣∣ τ ] ]
but mτ is not a function of θ0, hence Eθ0 [mτ |τ ] = mτ . Therefore,

Eθ0
[
Eτ
[
e−rτ ·mτ

∣∣ θ0 ] ] = Eτ
[
e−rτ ·mτ

∣∣ τ ]
= Eτ

[
e−rτ · Ez,θ0

[
θ0 · zτ

∣∣ τ ] ]
= Eθ0

[
Ez
[
e−rτ · θ0 · zτ

∣∣ θ0 ] ]
where the last line follows from noting that the realisation of the path z together with θ0

implies both τ and zτ . Finally, substitute the above back in (Tf ) to obtain (T ′
f ).

Proof of Proposition 4.1. Follows as a subcase of the general stopping problem solved
at Appendix D.2.

Proof of Lemma 4.2. (IC) implies that

V (θ0) = max
θ̂0

V̂ (θ̂0, θ0) (D.1.1)

In (4.5) θ0 appears only on the ratio θ̂0/θ0 that multiplies the effort and in the market payoff.
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Hence taking the partial derivative of V̂ (θ̂0, θ0) with respect to θ0 gives

∂V̂ (θ̂0, θ0)

∂ θ0
= Ez

[ ∫ τ̂

0

e−rt · et(θ̂
t)2

2

θ̂0
(θ0)2

dt + e−rτ̂ · zτ̂ ·M2(mτ̂ , θτ̂ )

]
(D.1.2)

Suppose momentarily that we could use the Envelop Theorem. Then this would give

V ′(θ0) =
∂ V̂ (θ̂0, θ0)

∂ θ0

∣∣∣∣
θ̂0=θ0

= Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2 θ0
dt + e−r τ · zτ ·M2(mτ , θτ )

]
However, our solutions are not necessarily given by first order conditions. Therefore, we
have to rely on one of its generalisations given by Milgrom and Segal (2002), and to be more
precise on Theorem 2 of their paper.

To use this theorem it suffices to demonstrate that the partial derivative given in (D.1.2)
is bounded above by a function that is integrable with respect to θ0 for all θ̂0 ∈ [ θ, θ]. First,
note that we have assumed that et ≤

√
κ θt. In addition, it is a known result that

E[zt] = eµ t ⇒ E[ e−r t · zt ] = e−(r−µ) t ≤ 1

Hence e−rt ·zt is a super-martingale. Let M2 > 0 denote the constant which we have assumed
that bounds M2(·) from above. Then

E[ e−r τ̂ · zτ̂ ·M2(mτ̂ , θτ̂ ) ] ≤ E[ e−r τ̂ · zτ̂ ] ·M2 ≤ M2

where the second inequality follows from Doob’s optional sampling theorem. Applying the
above in (D.1.2) gives that

∂V̂ (θ̂0, θ0)

∂ θ0
≤ Ez

[ ∫ τ̂

0

e−rt · zt ·
κ · (θ̂0)2

2 · (θ0)2
dt

]
+ M2

≤ Ez
[ ∫ ∞

0

e−rt · zt ·
κ · (θ̂0)2

2 · (θ0)2
dt

]
+ M2 =

1

r − µ

κ · (θ̂0)2

2 · (θ0)2
+M2

which is integrable with respect to θ0 for all θ̂0 ∈ [ θ, θ]. Thus, (4.6) follows from the
aforementioned thoerem.

Proof of Proposition 4.2. We want to obtain (P ′). Substituting truthful reporting θ̂0 =
θ0 in (4.5) gives that

V̂ (θ0, θ0) = Ez
[ ∫ τ

0

e−rt ·
(
wt(θ

t)− et(θ
t)2

2

)
dt + e−rτ ·M(mτ , θτ )

]
(D.1.3)
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Hence we can equivalently write (4.7) as

Ez
[ ∫ τ

0

e−rt · wt(θt) dt
]

=

Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2
dt − e−rτ ·M(mτ , θτ )

]
+

∫ θ0

θ∗
V ′(x) dx + ωa

Therefore, integrating both sides with measure f(θ0) gives

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt·wt(θt) dt
]
dF (θ0) =

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt·et(θ
t)2

2
dt− e−rτ ·M(mτ , θτ )

]
dF (θ0)

+

∫ θ

θ∗

∫ θ0

θ∗
V ′(x) dx dF (θ0) + [1− F (θ∗)] · ωa

Then we use Fubini’s Theorem to obtain that∫ θ

θ∗

∫ θ0

θ∗
V ′(x) dx dF (θ0) =

∫ θ

θ∗

1− F (θ0)

f(θ0)
· V ′(θ0) dF (θ0)

Hence substituting V ′(θ0), as given in (4.6), gives that

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt · wt(θt) dt
]
dF (θ0) =

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt ·
[
1 + η(θ0)/θ0

]et(θt)2
2

dt

− e−rτ ·
(
M(mτ , θτ )− η(θ0) zτ M2(mτ , θτ )

)]
dF (θ0) + [1− F (θ∗)] · ωa

Finally, we substitute the left hand side of the above in (P) to obtain (P ′).

Proof of Lemma 4.3. Identical to that of Lemma 4.1.

Proof of Proposition 4.3. Follows as a subcase of the general stopping problem solved
at Appendix D.2.

Proof of Corollary 4.1. Substituting the functional form of q(θ0) we obtain that

Q(θ0) ∝
[
a/[2(r − µ)]

[1 + η(θ0)/θ0]2
+ λ · η(θ0)

θ0
− 1

]−1

where we have ignored the positive constants that multiply it. Hence, differentiating we
obtain that

Q′(θ0) ∝ −∂ [η(θ0)/θ0]
∂ θ0

·
[
a/[2(r − µ)]

[1 + η(θ0)/θ0]2
+ λ · η(θ0)

θ0
− 1

]−2

·
[
− a/(r − µ)

[1 + η(θ0)/θ0]3
+ λ

]
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But η(θ0) is non-increasing by assumption. Hence the above derivative is negative if and
only if

a ≥ λ · (r − µ) ·
[
1 + η(θ0)/θ0

]3
which is implied by condition (A).

Proof of Corollary 4.2. Let Z0 = 1 and

dZt = Zt · µ dt+ Zt · σ dBt

where Bt denotes the standard Brownian motion. Also, for given q ∈ (0, 1) define the hitting
time

τ(q) = inf
{
t ≥ 0 : Zt ≤ q

}
It is trivial to argue that Pr(τ(q) ≤ t | q) is decreasing in q. Hence we can prove the two
statements using the corresponding results we have on the cutoff q(θ0).

We copy below the a generic lemma on static implementation. It will be convenient to
state it using an also generic notation, and then simple use its implications on the subsequent
proof.

Lemma D.1.1 (Implementation). For given payment w : [θ, θ] → R suppose that the payoff
of a θ type agent, when reporting θ̂, is

Û(θ̂, θ) = w(θ̂) + u(θ̂, θ) (D.1.4)

where u : [θ, θ]× [θ, θ] → R is absolute continuous in the second variable with weak derivative
u2 : [θ, θ]× [θ, θ] → R+. Then truthful reporting is implementable only if u2 is increasing in
the first variable. In addition, if this holds then the transfer

w(θ) =

∫ θ

θ

u2(x, x) dx− u(θ, θ) (D.1.5)

ensures that truthful reporting in optimal.

Proof of Lemma D.1.1. First, necessity is proven. Suppose that truthful reporting is
optimal and let U(θ) = Û(θ, θ), then for any θ1, θ2 ∈ [θ, θ] such that θ1 < θ2:

U(θ2) ≥ Û(θ1, θ2) = U(θ1) +

∫ θ2

θ1

Û2(θ1, θ) dθ

U(θ1) ≥ Û(θ2, θ1) = U(θ2)−
∫ θ2

θ1

Û2(θ2, θ)dθ
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where the subscript 2 indicates the partial derivative with respect to the second entry. Re-
arranging the two inequalities and combining them gives∫ θ2

θ1

Û2(θ2, θ) dθ ≥
∫ θ2

θ1

Û s
2 (θ1, θ) dθ.

As this has to hold for any choice of θ1 and θ2, as defined above, it follows that u2(θ̂, θ) =
Û2(θ̂, θ) has to be non-decreasing on θ̂. Second, sufficiency is proven. Suppose θ̂ < θ, then

w(θ̂) + u(θ̂, θ) = u(θ̂, θ)− u(θ̂, θ̂) +

∫ θ̂

θ

u2(x, x) dx

=

∫ θ

θ̂

u2(θ̂, x) dx+

∫ θ̂

θ

u2(x, x) dx

=

∫ θ

θ̂

{
u2(θ̂, x)− u2(x, x)

}
dx+

∫ θ

θ

u2(x, x) dx ≤
∫ θ

θ

u2(x, x) dx = w(θ) + u(θ, θ)

As a result reporting θ̂ = θ is no worse than any θ̂ < θ. The proof for θ̂ > θ is similar hence
it is omitted.

Proof of Lemma 4.5. The agent’s total payoff at time zero is

W0(θ̂0) + Û(θ̂0, θ0)

Û(θ̂0, θ0) has two functional forms depending on if q̂(θ̂0, θ0) ≤ 1 or not. However, the function
is absolute continuous on θ0. In particular, if q̂(θ̂0, θ0) > 1, then

Û(θ̂0, θ0) = λ · θ0 + W (θ̂0) ⇒ Û2(θ̂0, θ0) = λ (D.1.6)

which is constant, and as a result non-decreasing in θ̂0. Next, we demonstrate the same
result for the case where q̂(θ̂0, θ0) ≤ 1. Substituting q̂(θ̂0, θ0) = q(θ̂0) θ̂0/θ0 and cancelling
out some terms gives

Û(θ̂0, θ0) =
a θ0/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
+

(θ0)
−c

c
·

(
a/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
− λ

)
· (θ̂0)1+c · q(θ̂0)1+c
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Therefore, differentiating the above with respect to θ0 we obtain that

Û2(θ̂0, θ0) =
a/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
−

(
a/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
− λ

)
·

[
θ̂0
θ0

· q(θ̂0)

]1+c

=
a/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
−

(
a/[2(r − µ)]

[1 + η(θ̂0)/θ̂0]2
− λ

)
· q̂(θ̂0, θ0)1+c

(D.1.7)

The fact that the above is increasing in θ̂0 follows from two observations. First, we are
currently focusing on the case where q̂(θ̂0, θ0) ≤ 1. Second, (A) together with Corollary 4.1
imply that θ̂0q(θ̂0) is decreasing in θ̂0.

In addition, we have already shown that q̂(θ̂0, θ0) = q(θ̂0)θ̂0/θ0, where again we get from
Corollary 4.1 that the denominator is decreasing in θ̂0. Therefore, q̂(θ̂0, θ0) is decreasing in
θ̂0. This implies that as θ̂0 increases Û2(θ̂0, θ0) switches from (D.1.6) to (D.1.7). Moreover,
on this unique switch it has to be that q̂(θ̂0, θ0) = 1. Hence, Û2(θ̂0, θ0) is continuous with
respect to θ̂0. Thus Û2(θ̂0, θ0) is increasing for all θ̂0 and θ0.

Therefore, it follows immediately from Lemma D.1.1 that the proposed contract imple-
ments the revenue maximising effort level and termination time. In addition, it follows from
(4.14) that the agent’s payoff at period zero is

Û(θ0, θ0) + W0(θ0) = ωa +

∫ θ

θ∗
Û2(x, x) dx

where

Û2(θ0, θ0) =

{
a/[2(r−µ)]

[1+η(θ0)/θ0]2
−
(

a/[2(r−µ)]
[1+η(θ0)/θ0]2

− λ
)
· q(θ0)1+c , if q(θ0) ≤ 1

λ , if q(θ0) ≥ 1
(D.1.8)

But remember that the agent’s payoff in Section 3.3 has been given from Lemma 4.2 to be

V ′(θ0) = Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2 θ0
dt + e−rτ · zτ ·M2(mτ , θτ )

]
= Ez

[
a/2

[1 + η(θ0)/θ0]2
·
∫ τ

0

e−rt zt dt + λ · e−rτ zτ
]

where the second line follows from substituting the optimal effort of (4.8) and the linear
function form of M(·). Hence for q(θ0) > 1 we get that Û2(θ0, θ0) = V ′(θ0).

It remains to prove the same for the case where q(θ0) < 1. Since the optimal stopping
time is a hitting time on a linear barrier we can use the results of Appendix D.2.2 to further
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simplify the above to the following expression.

V ′(θ0) =
a/2

[1 + η(θ0)/θ0]2
· 1− q(θ0)

1+c

r − µ
+ λ · q(θ0)1+c

=
a/[2(r − µ)]

[1 + η(θ0)/θ0]2
−
(

a/[2(r − µ)]

[1 + η(θ0)/θ0]2
− λ

)
· q(θ)1+c

(D.1.9)

where again comparing expressions we get that Û2(θ0, θ0) = V ′(θ0). This proves (4.18).

D.2 Optimal stopping problems

D.2.1 The problem and its solution

We present here a more detailed treatment of the optimal stopping problems we encounter
in the paper. Those have the following form. Consider probability space (Ω,F , {Ft}, P )
with an one dimensional Ft-Brownian motion Bt. The process of interest will be described
by the stochastic differential equation

dZt = µ · Zt dt + σ · Zt dBt (D.2.1)

where Z0 = 1. Our aim is to maximise the functional

J [τ ] = EP
[∫ τ

0

e−r t a · Zt dt + e−r τ ·
(
B · Zτ + C

)]
(D.2.2)

where a,B,C, r, σ > 0 and r > µ.
First, assume that a ≤ (r − µ)B. Let b = (r − µ)B and c̄ = (r − µ)C. Then

EP
[
e−r τ · (B · Zτ + C)

]
= EP

[∫ ∞

τ

e−r t · (b · Zt + c̄) dt

]
Hence J [τ ] equivalently becomes

J [τ ] = EP
[∫ τ

0

e−r t a · Zt dt +
∫ ∞

τ

e−r t · (b · Zt + c̄) dt

]
But then τ = 0 is optimal since bZt + c̄ > aZt for any positive Zt.
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Hereafter we consider the opposite case a > B · (r − µ). To do this note that

EP
[∫ ∞

τ

e−r t a · Zt dt
]

= EP
[
a · EP

[∫ ∞

τ

e−r tZt dt

∣∣∣∣Zτ]] = EP
[
a · e

−rτZτ
r − µ

]
Therefore, add and subtract EP [a e−rτZτ/(r − µ)] in the left hand side below to obtain that

EP
[∫ τ

0

e−r t a · Zt dt
]

= EP
[∫ ∞

0

e−r t a · Zt dt
]
− EP

[
a · e

−rτZτ
r − µ

]
= a · EP

[∫ ∞

0

e−r t · e
(
µ−σ2

2

)
t+σBt dt

]
− EP

[
a · e

−rτZτ
r − µ

]
= a ·

∫ ∞

0

e−(r−µ)tdt− EP
[
a · e

−rτZτ
r − µ

]
=

a

r − µ
− EP

[
a · e

−rτZτ
r − µ

]
Therefore J [τ ] equivalently becomes

J [τ ] =
a

r − µ
+ EP

[
e−r τ ·

{
C −

(
a

r − µ
−B

)
· Zτ

}]
=

a

r − µ
+

(
a

r − µ
−B

)
· EP

[
e−r τ ·

(
C

a
r−µ −B

− Zτ

)] (D.2.3)

Hence, we can focus on selecting the stopping time that maximises the expectation on the
second line above. This is a problem that has already being considered in McDonald and
Siegel (1986). In the aforementioned paper it is demonstrated that the optimal stopping
time takes the following form.

τ ∗ =
{
t ≥ 0 : Zt ≤ q

}
where q =

c

1 + c
· C

a
r−µ −B

(D.2.4)

where c is as define in (4.2). Hence if q > 1, then again τ = 0 and

J [τ ∗] = B + C

Otherwise, if q ≤ 1 they demonstrate that the value of J [τ ] on its optimum is

J [τ ∗] =
a

r − µ
+

(
a

r − µ
−B

)
· q

1+c

c

And those two functional forms are continuous on parameters, since q = 1 implies that the

244



two given functional forms are also equal.

D.2.2 Expected discounted payoffs

In this subsection we demonstrate how standard results in hitting times with linear barriers
can be used in our setting to derive the expected discounted value of a process before and
after its stopping.

Consider the following Brownian motion with drift

dXt = µ · dt + σ · dBt (D.2.5)

with initial condition X0 = 0 and an associate barrier a > 0, which implies the following
hitting time

τa = inf
{
t ≥ 0 : Xt = a

}
(D.2.6)

We state without proving the following result.

Lemma D.2.1. For every r > 0

E
[
e−rτa

]
= exp

[
a ·

(
µ

σ2
−
√

2 r

σ2
+
µ2

σ4

)]
(D.2.7)

Next, consider the Geometric Brownian Motion

dZt = Zt · µ dt+ Zt · σ dBt

with initial condition Z0 = 1. We state without proving that

Zt = e

(
µ−σ2

2

)
t+σBt

Let q ∈ (0, 1) be a constant barrier and τq the associated hitting time of Zt, that is

τq = inf
{
t ≥ 0 : Zt = q

}
To related τq to τa we solve

Zt = q ⇔
(
µ− σ2

2

)
t+ σBt = − log

1

q

−
(
µ− σ2

2

)
t+ σ(−Bt) = log

1

q
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But Bt and −Bt have exactly the same distribution and log 1
q
> 0. Hence, we substitute

(D.2.7) to obtain

E
[
e−rτq

]
= exp

[
log

1

q
·

[
−
(
µ

σ2
− 1

2

)
−
√

2 r +
(µ
σ
− σ

2

)2]]
= qc (D.2.8)

where c is as defined in (4.2). In addition, note that

EZ
[∫ ∞

0

e−rtZt dt

]
= EZ

[∫ ∞

0

e−rtZt dt

∣∣∣∣ τ ≤ t

]
+ EZ

[∫ ∞

0

e−rtZt dt

∣∣∣∣ τ ≥ t

]
(D.2.9)

But
Ez
[∫ ∞

0

e−rtZt dt

]
=

∫ ∞

0

e−rtEZ [Zt] dt =

∫ ∞

0

e−rteµt dt =
1

r − µ

and
EZ
[∫ ∞

0

e−rtZt dt

∣∣∣∣ τ ≥ t

]
= EZ

[
e−rτ · q

r − µ

]
=

q1+c

r − µ
(D.2.10)

where the first equality follows from noticing that on each realisation of τ the value of Zt will
be equal to q. Hence the expected value of the continuation value after each τ is q/(r − µ).
Thus, we can substitute back in (D.2.9) to obtain that

EZ
[∫ ∞

0

e−rtZt dt

∣∣∣∣ τ ≤ t

]
=

1− q1+c

r − µ
(D.2.11)

D.3 Model with two principals
Our main analysis assumes an exogenous functional form for the managerial labour market.
In this section, we want to demonstrate that our results can partially be extended to a model
in which the agent’s post-termination payoff is generated by a new employment offer from a
second principal.

In particular, suppose that at the point of his termination the agent is offered a tenure
contract from a second principal, that is the agent’s employment is up to infinity. Production
under the second principal is given by

yt =
√
b · θt · et

In addition, in order to simplify our analysis we will assume that the second principal
can observe directly the agent’s reports to the first. In some sense, we require that the
communication between the first principal and the agent is public. This assumption, together
with the introduction of the second principal, creates an even more sophisticated version of
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the managerial labour market than the one we considered in the previous section.
Finally, we will restrict the first principal to only use direct and incentive compatibly

contracts1. This will result on the agent receiving no rents from his employment from the
second principal, since his reports on his ability will be public. Nevertheless, we will endow
the agent with some market power by assuming that he captures 1 − λ of the expected
surplus that his employment under the second principal creates. For simplicity, we set the
outside options of the agent and the second principal to zero.

Our analysis will proceed as follows. In Section D.3.1 we will derive the optimal termi-
nation time of this model under consistent deviations. Subsequently, in Section D.3.2 we
will present a contract that implements this termination times even when the agent’s action
space is unrestricted.

D.3.1 Optimal effort and termination

We start by first considering the interaction between the second principal and the agent.
Since there is no information asymmetry between the two it follows that the implemented
level of effort is the first best one

ebt(θt) =
√
b · θt (D.3.1)

Therefore, the flow surplus of his employment under the second principal is b ·θt/2. Hence, it
follows from the properties of the Geometric Brownian motion that the expected discounted
surplus at the beginning of this employment is b · θτ/[2(r − µ)].

Now consider the post-termination payoff of an agent that uses the natural extension of
consistent deviations in the current setup. In particular, the agent is restricted to continue
to hide his misreport at time zero even under the second principal. Let V̂ b(θ̂0, θ0) denote the
agent’s payoff under such a deviation, and V b(θ0) = V̂ b(θ0, θ0) the associated on path payoff.

1This is with loss of generality because the information that the first principal receives also becomes
available to the second. For example, it could be profitable for the first principal to receives less information,
which would decrease the efficiency of his production, in order to force the second one to leave some rents
for the agent.

247



Then

V̂ b(θ̂0, θ0) = Eθ

[∫ ∞

τ

e−r(t−τ) ·

(
wbt (θ̂

t)− ebt(θ̂
t)2

2
· θ̂0
θ0

)
dt

∣∣∣∣∣ θτ
]

= V b(θ̂0) + Eθ

[∫ ∞

τ

e−r(t−τ) · e
b
t(θ̂

t)2

2
·

(
1− θ̂0

θ0

)
dt

∣∣∣∣∣ θτ
]

= (1− λ) · b · zτ̂ · θ̂0
2 (r − µ)

+
b · zτ̂ · θ̂0
2 (r − µ)

·

(
1− θ̂0

θ0

)

where as in the main analysis zτ̂ denotes the proportional change of the manager’s initial
ability at the point of his termination, under the misreport θ̂0.

Lemma D.3.1 (Envelop Theorem). The agent’s on path payoff is absolutely continuous and
has the weak derivative

V ′(θ0) = Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2 θ0
dt + e−rτ · V̂ b

2 (θ0, θ0)

]
(D.3.2)

Proof. Identical with that of of Lemma 4.2.

But then repeating the analysis of our main section we obtain the following representation
of the first principal’s revenue

max
e,c

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt ·
(√

a θ0 zt · et(θt)−
[
1 + η(θ0)/θ0

]
· et(θ

t)2

2

)
dt

+ e−rτ ·
(
ωp + V̂ b(θ0, θ0)− η(θ0) V̂

b
2 (θ0, θ0)

)]
dF (θ0) + F (θ∗) · ωp (Pa)

which after substituting the expression of V̂ b(θ̂0) and its derivative becomes

max
e,c

∫ θ

θ∗
Ez
[ ∫ τ

0

e−rt ·
(√

a θ0 zt · et(θt)−
[
1 + η(θ0)/θ0

]
· et(θ

t)2

2

)
dt

+ e−rτ ·
(
ωp +

b · zτ
2 (r − µ)

· [(1− λ) · θ0 − η(θ0)]

)]
dF (θ0) + F (θ∗) · ωp (P ′

a)

Therefore, maximising the first line of the above gives the point-wise optimal level of effort,
which is the same as that of our main analysis.

e∗t (θ
t) =

√
a θ0

1 + η(θ0)/θ0
·
√
zt (D.3.3)
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Hence, for each θ0 the first principal is facing the following stopping problem

max
τ

∫ θ

θ

Ez
[
k(θ0) ·

∫ τ

0

e−rt zt dt+ e−rτ ·
(
ωp + zτ · b ·

(1− λ) · θ0 − η(θ0)

2 (r − µ)

)]
dF (θ0) (Ta)

Then the following proposition is implied by our analysis in Abbendix B.

Proposition D.3.1. The solution of (Ta) is

τ ∗(θ0) = inf
{
t ≥ 0 : zt ≤ q(θ0)

}
(D.3.4)

where
q(θ0) =

c · ωp
1 + c

·
[
k(θ0)

r − µ
− b · (1− λ) · θ0 − η(θ0)

2 (r − µ)

]−1

(D.3.5)

if the expression in the brackets is positive. Otherwise, τθ0 = 0.

Similarly to our analysis in the main part we are interested on how the cutoff q(θ0)

depends on θ0 and other paparements.

Corollary D.1 (Terminal Abilities). Let Q(θ0) = θ0 · q(θ0) denote the level of ability on
which the initial type θ0 will be terminated. Then

• a sufficient condition for Q(θ0) to be decreasing in θ0 is that the firm is relatively
productive:

a

b
≥ 1

2
·
[
1 + η(θ)/θ

]3 (A′)

• When Q(θ0) < θ0, this is increasing in the productive of the first principal, a, for all
θ0 ∈ [θ, θ], and decreasing in that of the second if and only if

1− λ ≥ η(θ0)

θ0
(D.3.6)

Proof of Corollary D.1. Substituting the functional form of q(θ0) we obtain that

Q(θ0) ∝
[
a/[2(r − µ)]

[1 + η(θ0)/θ0]2
− b · 1− λ− η(θ0)/θ0

2 (r − µ)

]−1

where we have ignored the positive constants that multiply it. Hence, differentiating we
obtain that

Q′(θ0) ∝ −∂ [η(θ0)/θ0]
∂ θ0

·
[
a/[2(r − µ)]

[1 + η(θ0)/θ0]2
− b · 1− λ− η(θ0)/θ0

2 (r − µ)

]−2

·
b− 2·a

[1+η(θ0)/θ0]3

2 (r − µ)
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But η(θ0) is non-increasing by assumption. Hence the above derivative is negative if and
only if

a

b
≥ 1

2
·
[
1 + η(θ0)/θ0

]3
which is implied by condition (A′).

D.3.2 Implementation

Here we provide a contract that generates the policies and payoffs that we identified in the
previous section. Because there are two principals we will have to even specify the contract
of the second.

To maintain the analysis as short as possible we will simply assume that the second
principal sells her firm to the agent for prince

p(θ̂0) = λ · b ·Q(θ̂0)
2 (r − µ)

(D.3.7)

which on path leaves to the agent the correct surplus of production.
Next, we focus on the contract of the first principal. As in our main analysis, this will

require from the agent to make a choice from a menu only at time zero.{
w(θ̂0, yt), [Wt(θ̂0)]t>0, W0(θ̂0)

}
(W)

In addition, the principal allows the agent to decide on his own when it is the optimal time
to leave. The first component of this payoff is the linear flow wage

wt(θ̂0, yt) = w(θ̂0) · yt where w(θ̂0) =

√
a

1 + η(θ̂0)/θ̂0
(D.3.8)

which is identical to that of the main analysis. However, because the agent’s post-termination
payoff and the optimal stopping time are different the associated golden parachute will also
differ.

Wt(θ̂0) = W (θ̂0) + p(θ̂0) where W (θ̂0) =
ωp · θ̂0 ·

(
a

[1+η(θ̂0)/θ̂0]2
− b
)

(1− λ) · θ̂0 − η(θ̂0)
(D.3.9)

where u(θ0), and u(θ̂0, θ0) which we will use later, is as in the main body. This is paid to
the agent at any point t > 0 that he reports that his employment should be terminated.

The third and final component of the menu that the principal offers to the agent is the
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signing bonus W0(θ̂0), then functional form of which is given by

W0(θ̂0) = ωa +

∫ θ

θ∗
Û2(x, x) dx− Û(θ0, θ0) (D.3.10)

where Û(θ̂0, θ0) denotes the continuation payoff (excluding the signing bonus of time zero)
of a manager whose initial ability is θ0, but his choice from the above menu was that corre-
sponding to θ̂0. The functional form of this function is given below.

As we mentioned before, our implementation result establishes that the analysis of the
previous section is valid even when we do not impose any restrictions on the agent’s action
space.

Proposition D.3.2 (Implementation). Suppose that (A′) holds. Then the menu of contracts
(W) implements the optimal policies e∗(θt) and τ ∗(θ0) as identified in (D.3.3) and (D.3.4),
respectively. In addition, the implied payoff for the principal and the agent are also the same
with those of the previous section.

The rest of this section proves the above proposition. We have already shown in the
main analysis that the given flow wage implements the correct level of effort in the initial
ability has been truthfully reported. In addition, it implies that the agent’s optimal stopping
problem is

max
τ

Ez
[
u(θ̂0, θ0) ·

∫ τ

0

e−rt zt dt+ e−rτ ·
(
zτ ·

b · θ0
2 (r − µ)

+W (θ̂0)

)]
(Ta)

To solve this we use again our generic analysis in Appendix D.1.

Lemma D.3.2 (Golden Parachutes). The solution of (Ta) is

τa = inf
{
t ≥ 0 : zt ≤ q̂(θ̂0, θ0)

}
(D.3.11)

where

q̂(θ̂0, θ0) =
c ·W (θ̂0)

1 + c
·

[(
a

[1 + η(θ̂0)/θ̂0]2
− b

)
· θ0
2 (r − µ)

]−1

(D.3.12)

In addition, q̂(θ0, θ0) = q(θ0) and q̂(θ̂0, θ0) = q(θ̂0) · θ̂0θ0 .

Proof. The stopping time τa and the associated barrier q̂(θ̂0, θ0) follow immediately from
the solution of the optimal stopping problem of Appendix D.1. In addition, we obtain that
q̂(θ0, θ0) = q(θ0) by substituting W (θ0) in the left hand side of this inequality, which can also
be used to obtain that q̂(θ̂0, θ0) = q̂(θ̂0, θ̂0) · θ̂0/θ0.
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Hence we have shown that if the initial type was truthfully reported, then the given flow
wage and golden parachute implement the revenue maximising stopping time.

It remains to implement the truthful reporting of the initial type θ0, which is achieved
with the signing bonus W0(θ̂0). Our analysis in Appendix D.1 gives that the agent’s payoff
at time zero, net of W0(θ̂0), is given by

Û(θ̂0, θ0) =

 a

[1+η(θ̂0)/θ̂0]2
θ0

2(r−µ +
(

a

[1+η(θ̂0)/θ̂0]2
− b
)
· θ0
2(r−µ) ·

q̂(θ̂0,θ0)1+c

c
, if q̂(θ̂0, θ0) ≤ 1

b·θ0
2 (r−µ) +W (θ̂0) , if q̂(θ̂0, θ0) > 1

(D.3.13)
From which the following result follows.

Lemma D.3.3. The signing bonus W0(θ̂0) implements the truthful reporting of θ0. In
addition,

Û(θ0, θ0) + W0(θ0) = ωa +

∫ θ0

θ∗
V ′(x) dx (D.3.14)

where V ′(x) is as given in (D.3.2), but calculated under the optimal effort and termination
policies.

Proof. The agent’s total payoff at time zero is

W0(θ̂0) + Û(θ̂0, θ0)

Û(θ̂0, θ0) has two functional forms depending on if q̂(θ̂0, θ0) ≤ 1 or not. However, the function
is absolute continuous on θ0. In particular, if q̂(θ̂0, θ0) > 1, then

Û(θ̂0, θ0) =
b · θ0

2 (r − µ)
+W (θ̂0) ⇒ Û2(θ̂0, θ0) =

b

2 (r − µ)
(D.3.15)

which is constant, and as a result non-decreasing in θ̂0. Next, we demonstrate the same
result for the case where q̂(θ̂0, θ0) ≤ 1. Substituting q̂(θ̂0, θ0) = q(θ̂0) θ̂0/θ0 and cancelling
out some terms gives

Û(θ̂0, θ0) =
1

2 (r − µ)

[
a · θ0

[1 + η(θ̂0)/θ̂0]2
+

(
a

[1 + η(θ̂0)/θ̂0]2
− b

)
· (θ0)−c ·

[q̂(θ̂0) · θ̂0]1+c

c

]
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Therefore, differentiating the above with respect to θ0 we obtain that

Û2(θ̂0, θ0) =
1

2 (r − µ)

 a

[1 + η(θ̂0)/θ̂0]2
−

(
a

[1 + η(θ̂0)/θ̂0]2
− b

)
·

[
θ̂0
θ0

· q̂(θ̂0)

]1+c
=

1

2 (r − µ)

[
a

[1 + η(θ̂0)/θ̂0]2
−

(
a

[1 + η(θ̂0)/θ̂0]2
− b

)
· q̂(θ̂0, θ0)1+c

]
(D.3.16)

The fact that the above is increasing in θ̂0 follows from two observations. First, we are
currently focusing on the case where q̂(θ̂0, θ0) ≤ 1. Second, (A′) together with Corollary D.1
imply that θ̂0q(θ̂0) is decreasing in θ̂0. But we have already shown that q̂(θ̂0, θ0) = q(θ̂0)θ̂0/θ0,
where again we get from Corollary D.1 that the denominator is decreasing in θ̂0. Therefore,
q̂(θ̂0, θ0) is decreasing in θ̂0. This implies that as θ̂0 increases Û2(θ̂0, θ0) switches from (D.3.15)
to (D.3.16). Moreover, on this unique switch it has to be that q̂(θ̂0, θ0) = 1. Hence, Û2(θ̂0, θ0)

is continuous with respect to θ̂0. Thus Û2(θ̂0, θ0) is increasing for all θ̂0 and θ0.
Therefore, it follows immediately from Lemma D.1.1 that the proposed contract imple-

ments the revenue maximising effort level and termination time. In addition, it follows from
(D.3.10) that the agent’s payoff at period zero is

Û(θ0, θ0) + W0(θ0) = ωa +

∫ θ

θ∗
Û2(x, x) dx

where

Û2(θ0, θ0) =

 1
2 (r−µ)

[
a

[1+η(θ0)/θ0]2
−
(

a
[1+η(θ0)/θ0]2

− b
)
· q(θ0)1+c

]
, if q(θ0) ≤ 1

b
2 (r−µ) , if q(θ0) ≥ 1

(D.3.17)
But remember that the agent’s payoff in Section 3.3 has been given from Lemma 4.2 to be

V ′(θ0) = Ez
[ ∫ τ

0

e−rt · et(θ
t)2

2 θ0
dt + e−rτ · V̂ b

2 (θ0, θ0)

]
= Ez

[
a/2

[1 + η(θ0)/θ0]2
·
∫ τ

0

e−rt zt dt + e−rτ · b · zτ
2 (r − µ)

]
where the second line follows from substituting the optimal effort of (D.3.3) and the func-
tional form of V b

2 (·). Hence for q(θ0) > 1 we get that Û2(θ0, θ0) = V ′(θ0).
It remains to prove the same for the case where q(θ0) < 1. Since the optimal stopping

time is a hitting time on a linear barrier we can use the results of Appendix D.2.2 to further
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simplify the above to the following expression.

V ′(θ0) =
a/2

[1 + η(θ0)/θ0]2
· 1− q(θ0)

1+c

r − µ
+
b · q(θ0)1+c

2 (r − µ)

=
1

2 (r − µ)

[
a

[1 + η(θ0)/θ0]2
−
(

a

[1 + η(θ0)/θ0]2
− b

)
· q(θ0)1+c

] (D.3.18)

where again comparing expressions we get that Û2(θ0, θ0) = V ′(θ0). This proves (D.3.14).

Therefore, the proposed contract implements the revenue maximising effort level and
termination time. In addition, (D.3.14) gives that the agent’s payoff is the same with that
we calculated in the previous section. Therefore, the principal’s revenue has to also be the
same, which completes the proof of Proposition D.3.2.
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