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Abstract

This thesis consists of three papers that are related to transportation economics,

housing economics, and the economics of discrimination.

The �rst paper examines how much people are willing to pay (WTP), on aver-

age, to avoid road tra�c near their residence using the housing market. The notion

is that tra�c confers substantial negative externalities such as congestion delays,

air and noise pollution, and tra�c accidents. Estimating these hedonic functions

are, however, extremely challenging with omitted variable bias and sorting of house-

holds. Hence, to circumvent these challenges, I rely on the sharp variation in tra�c

conditions induced by the London Congestion Charge to recover the capitalization

of road tra�c on housing values.

The second paper examines whether installing speed cameras reduces tra�c acci-

dents and saves lives. Speeding is one of the major reasons why accidents occur, and

the velocity of the vehicles a�ects the gravity of collisions. This paper sheds insights

on how the government could intervene and nudge drivers from risky behaviours

that could have serious consequences.

The third paper investigates whether facial attractiveness a�ects sentencing out-

comes in courtrooms. I rely on a novel facial recognition system that locates various

features from inmate mugshots to compute facial symmetry as a measure of at-

tractiveness. This study is motivated by the burgeoning literature indicating that

judges allow extraneous factors, such as race and gender of defendants, emotions

and media attention, to in�uence their decisions, and the widespread discrimination

of appearance in multiple contexts.
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Chapter 1

Preface

This thesis consists of three essays related to transportation economics, housing

economics, and the economics of discrimination. Each essay addresses a topic that

is surprisingly neglected by the existing literature despite its importance. This is

largely due to the lack of quality data, the di�culty to measure the variable of

interest, and the presence of endogeneity issues that impede causal inferences.

Bearing these challenges in mind, in my �rst paper, I am interested in:

"What is the average willingness to pay for less tra�c near ones'

residence ?"

Tra�c congestion is an ubiquitous problem that many major cities face. Road

tra�c confers substantial negative externalities, including time delays being stuck

in the tra�c, air and noise pollution, tra�c accidents etc. Thus, homeowners are

likely to pay to avoid tra�c near their residence. In this paper, I estimate the

hedonic house price function relying on micro data on housing transactions and

road tra�c across Central London to measure the willing to pay (WTP) to avoid

tra�c. The idea is that tra�c conditions (e.g. tra�c �ow or noise) vary across

space and are capitalized into home prices. If one is able to control for the other

di�erences between these property sales, the remaining variation in prices should

re�ect the WTP to avoid tra�c. In reality, recovering these estimates is extremely

challenging with omitted variable bias and the sorting of households across space.

To circumvent these challenges, this paper exploits the London Congestion Charge

(CC) as an instrumental variable (IV) for changes in local tra�c conditions to re-

cover the WTP to avoid tra�c. This charge forces drivers to internalize the negative

tra�c externalities imposed on others by taxing them when they drive into the zone

during charge operating hours. Put di�erently, I am comparing the changes in tra�c

volume and house prices before and after the CC is implemented. I observe that

the CC substantially improves tra�c conditions and home prices after it is intro-

duced. On average, tra�c is around 8.5% lower in the charge zone after the CC is

implemented and home buyers pay approximately 3.6% more. Putting these esti-

mates together, the IV estimates suggest that the direct elasticity between tra�c

and house prices is around -0.43. These estimates are considerably larger compared
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to early OLS estimates, suggesting that previous studies have underestimated the

cost of tra�c. These results remain stable and robust even when I limit the analysis

to sales around 500 metres from the charge perimeter, illustrating that the e�ects

are not driven by unobserved neighbourhood di�erences across the boundary.

Additional analyses reveal that the charge attributes to a displacement of tra�c

across the charge boundary as drivers detour the zone to avoid the CC. Substantial

capitalization gains imply that the CC has created a windfall for homeowners in the

zone at the expense of poorer households living outside the zone, suggesting that the

CC is regressive. Hence, to ensure that the policy is equitable, policy makers could

consider removing the 90% discount for residents in the charge zone, taxing these

capitalization gains for home-owners in the zone, and redistribute these revenues on

enhancing and subsidizing the public transport system. Increasing the reliability

and quality of the public transit could further improve the e�cacy of the charge.

The next question I am interested in:

"Can speed cameras reduce accidents and save lives?"

Every year, based on estimates by the World Health Organization, approximately

50 million individuals are involved in tra�c accidents, with 1.2 million eventually

succumbing to these injuries around the world. To improve road safety, various

laws and instruments have been introduced to ensure that drivers do not drive

recklessly. These measures include texting bans, speed limits, drinking and seat

belt laws with patrolling tra�c police enforcing these regulations. Since the 1990s,

the U.K government have been installing �xed speed cameras to penalize speeding.

Chosen sites are often accident "black" spots - roads that have a high number of

tra�c collisions, injuries and deaths, and a sizeable percentage of drivers exceeding

speed limits. These cameras measure commuting speed and penalize drivers when

they exceed the stipulated limit. Over the next two decades, more than 3,000

cameras are introduced on the road network.

There are many other reasons why the e�cacy of speed cameras is of policy

interest. First, speed cameras are under the scrutiny of the public because of the

huge amount of �nes they managed to rake. Many oppose vehemently to these

instruments, �rmly believing that speed cameras are installed to generate revenues

and that alternative instruments (such as speed limit signs) have the same desired

impact. Second, there are concerns whether these devices cause more accidents as

drivers unaware of the location of cameras could become a road hazard by abruptly

dropping speed to avoid punishment. Finally, several areas in UK are forced to

switch o� their cameras due to budget cuts. It will be paramount to understand

whether switching these devices o� actually makes roads unsafe.
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Conducting the analysis on a sample of speed cameras across England, Scotland

and Wales, I document that speed cameras reduce both the number and severity of

collisions. After a speed camera is installed, the number of accidents and minor in-

juries are 20% and 19% lower than pre-installation levels, corresponding to 1.13 fewer

accidents and 1.33 fewer injuries per kilometre. As for seriousness of the crashes, the

number of fatalities and serious injuries are 58% and 31% lower, which amount to

0.20 and 0.33 per kilometre. Further analyses suggest that the e�ects speed cameras

are greater along roads with higher speed limits and are highly localised to within

500 metres from the camera. Putting these estimates into perspective, installing

another 1,000 speed cameras reduce 1130 collisions, mitigate 330 serious injuries,

and save 190 lives annually, generating net bene�ts of around ¿59 million. These

welfare estimates are computed after considering a wide array of bene�ts and costs

associated these devices.

In my �nal paper, I ask whether:

"Do judges discriminate against unattractive felons?"

The preferential treatment towards the attractive has been documented widely

in multiple contexts that include labor markets, politics and �nancial markets.

Research has shown that "beautiful" people have better labour market outcomes

(Hamermesh & Biddle, 1994; Biddle & Hamermesh, 1998), attractive politicians are

more likely to win more votes (Berggren et al., 2010), and good-looking borrowers

can secure loans more easily (Duarte et al., 2012). At the same time, there is a

burgeoning literature that has shown that judges allow extraneous factors to in�u-

ence their decision making. Unimportant factors, such as outcome of football games

(Eren & Mocan, 2016), duration from food breaks (Danziger et al., 2011), media

attention(Lim et al., 2015), defendant's gender (Mustard, 2001) and race (Abrams

et al., 2012; Alesina & La Ferrara, 2014; Park, 2017), have been documented to sway

judicial rulings. Hence, it would not be surprising to observe if judges indeed "judge

the book by its cover".

Yet, the literature has been remarkably limited on the impact of physiognomy

on judicial outcomes due to empirical challenges. Firstly, given that "Beauty is

in the eyes of the beholder", di�erent people might have di�erent ideas on what is

attractive. Thus, it is challenging to objectively de�ne what is beautiful. Previous

studies rely on multiple respondents to rate the same subjects to obtain an impartial

measure of attractiveness. This resource-intensive research set up, however, meant

that previous studies are limited to small sample sizes, questioning the external

validity of these studies. Secondly, unobserved factors could correlate with facial

attractiveness and in�uence sentencing outcomes. For instance, drug abuse could
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a�ect physiognomy and could push drug abusers to recidivate or commit more crimes

that result in tougher punishments, biasing the e�ects between attractiveness and

sentencing outcomes.

Bearing these challenges in mind, I apply facial recognition algorithms on more

than 200,000 mugshots of convicted felons in Florida from 1998 to 2015 to locate

various facial features (e.g eyes, nose, face-line, forehead etc.). Using these land-

marks, I am able to compute facial symmetry as a measure of attractiveness. I

further rely on the unusually rich set of information on inmates characteristics and

case-related facts to mitigate the risk of omitted variables from biasing my results.

The main �nding is that judges hand out preferential sentences to felons with more

symmetrical facial features. The disparity in punishment between criminals with

more symmetric faces, at the 25th percentile, and criminals with less symmetric

faces, at the 75th percentile, is around 1.0% to 1.9% of the mean sentence length,

which amounts to between 17 and 32 days. Additional analyses reveal that this bias

against felons with less proportional faces could vary across race, gender and type

of crimes.

Concluding remarks

Although each of the essay is addressing a very di�erent question, the unifying

aim of the thesis is to perform rigorous empirical analysis on important questions

using quality data to inform policy-making. This is challenging because researchers

are required to not only obtain causal e�ects of the policy, but must also consider

a wide spectrum of outcomes that the policy potentially a�ects to inform on social

welfare.

To ensure that my estimates are causal, I emphasize on how to construct coun-

terfactuals to ensure that they are similar to those that being treated. This requires

a good understanding on how subjects are selected into treatment. I also pay close

attention to potential spillovers across treatment and control groups that could bias

the estimated e�ects of policy.

To inform whether policies improve welfare, I further consider a wide array of

e�ects associated with the policy. An insight from these analyses is that policies often

have unintended consequences, bene�ting certain groups at the expense of others,

or achieving policy objectives by incurring some costs. For instance, the Congestion

Charge reduces tra�c in the charge zone by displacing tra�c to neighbourhoods

outside while speed cameras improve road safety by reducing commuting speed and

increasing travel time. Failure to account for these unintended e�ects could overstate

welfare estimates. This is an area this thesis aims to improve on to better inform

policy making.



Chapter 2

The Cost of Tra�c: Evidence from

the London Congestion Charge

2.1 Introduction

Tra�c congestion is an urban disamenity from the agglomeration of economic

activities. Attracted by productivity gains and amenities in cities, �rms and indi-

viduals congregate in urban areas and compete for space, attributing to outward

expansion of cities. With the proliferation of auto-mobiles, individuals are encour-

aged to drive and this surge in auto-mobiles on roads inevitably leads to tra�c

congestion, an ubiquitous problem many cities around the world faces. These traf-

�c delays a�ected London as well. Average on-road commuting speed in the 1990s

was slower than that at the beginning of twentieth century before car travel became

prevalent (Newbery, 1990). By 2002, travel speed for motor vehicles during morning

peak hours fell by almost 30% compared to that in 1974, from 14.2 to 10.0 miles

per hour, and drivers spent, on average, 27.6% of their on-road time stationary

(Department of Environment & the Regions, 1998).

Tra�c is also a major source of air pollution. According to �gures from Environ-

mental Protection Agency, auto-mobiles contribute to more than 50% of the nitrogen

oxide, 30% of the volatile organic compounds and 20% of the PM10 in US1. These

emissions have detrimental e�ects on health outcomes, increasing infant mortality,

reducing birth weight and inducing premature births (Currie &Walker, 2011; Knittel

et al., 2016). Heavier tra�c can also increase tra�c accidents and fatalities (Li et al.,

2012; Green et al., 2016). Bottlenecks can also a�ect economic growth (Boarnet,

1997; Fernald, 1999; Graham, 2007), increase unemployment (Hymel, 2009) and re-

duce wages (De Borger, 2009). It is evident that tra�c is undesirable and can a�ect

the attractiveness of neighbourhoods, in�uencing household location decisions.

This paper measures the average marginal willingness to pay (MWTP) to avoid

negative tra�c externalities (e.g noise pollution, tra�c exhaust, elevated tra�c ac-

cident risk and congestion delays) in and around the location of residence using the

1For more information, refer to https://www.epa.gov/air-pollution-
transportation/smog-soot-and-local-air-pollution

https://www.epa.gov/air-pollution-transportation/smog-soot-and-local-air-pollution
https://www.epa.gov/air-pollution-transportation/smog-soot-and-local-air-pollution
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housing market2. Because an explicit market for tra�c does not exist, the hedonic

price method is broadly adopted in the literature to value non-market amenities3.

The idea is that tra�c varies across space and, holding all other factors constant,

di�erences in home values should re�ect the price paid to avoid tra�c. While the

concept is simple, attempts to estimate the casual e�ect of tra�c on home prices have

been fraught with di�culties. First, tra�c is not randomly distributed across space

and the heaviest tra�c is usually around the city center where economic activities

are congregated. Unobserved neighbourhood di�erences between these properties

across space are likely to confound the estimates. Further, more a�uent households

who incur costlier time delays have incentives to sort themselves into the city center

to reduce the need to commute. The concern is whether the WTP to avoid tra�c

could be confounded with the WTP for better neighbourhoods.

Bearing these challenges in mind, this paper exploits the substantial but localised

changes in tra�c conditions induced by the London Congestion Charge4 (CC) to

recover the cost of tra�c. The charge boundary is drawn around the city centre

to alleviate congestion from the most gridlocked roads in London. A �at fee of

¿5 is imposed for driving into the cordoned area during weekdays from 7:00am

to 6:30pm, excluding public holidays. This Pigouvian tax equates the marginal

private and social cost of transport to ensure that drivers incorporate congestion

externalities into their private cost of travel (Pigou, 1924; Vickrey, 1963). The

e�ects were immediate. Six months into implementation, the volume of cars into

Central London fell by 27% and average travel speed was 20% higher than before

(TfL, 2003a).

Estimation is based on a quasi-experimental instrumental variable (IV) approach.

I exploit the introduction of the Congestion Charge as an instrumental variable for

changes in local tra�c conditions in hedonic house price regressions. Put di�erently,

I am utilizing the sharp variation in tra�c conditions in and around the charge

zone and comparing the changes in tra�c volume and house prices before and after

the CC is implemented to recover the WTP to avoid tra�c. To obtain consistent

estimates for the MWTP to avoid tra�c, several conditions must be satis�ed. Other

than the fact that the charge must signi�cantly a�ect tra�c �ow, it is imperative

that the mean di�erences in unobservables (e.g neighbourhood amenities, housing

2For convenience, this will be referred as the willingness to pay for less tra�c or the
cost of tra�c across this paper.

3The hedonic approach has been used extensively in the literature to value non-market
amenities since it is formalized by Rosen (1974). Some examples include school quality
(Black, 1999; Bayer et al., 2007; Gibbons et al., 2013), air quality (Chay et al., 2005),
health hazards (Gayer et al., 2000; Davis, 2004; Currie et al., 2015), crime (Thaler, 1978;
Gibbons, 2004) and transportation accessibility (Gibbons & Machin, 2005).

4Other cities that managed to introduce the CC include Singapore, Dubai, Milan,
Stockholm, Gothenburg and Durham.



2.1. Introduction 11

characteristics) between transactions across the CC boundary are not correlated

with the implementation of the charge and the charge in�uences house prices only

via tra�c (also known as exclusionary restriction).

To attenuate unobservable di�erences between property sales, I partial out any

time-invariant housing and neighbourhood characteristics by including postcode

�xed e�ects. This is equivalent to comparing changes in sale prices and tra�c con-

ditions before and after the charge is implemented within a postcode. A postcode

represents a building usually and there are approximately 17 sales in a postcode.

In addition, I control for an extensive set of property and location characteristics

surrounding each sale to reduce the risk of observable di�erences from confound-

ing my estimates. Furthermore, I progressively limit the analysis to transactions

that close to the charge zone (up to 500 metres in and out of the cordoned area)

to mitigate unobserved neighbourhood di�erences across the CC boundary. This is

only possible because Central London is densely built with many residential sales

over the sample period and the CC generates sharp changes in tra�c conditions

across the CC boundary. By doing so, I am comparing properties sharing common

amenities (e.g school quality, parks, crime rate) and neighbourhood demographics

(e.g unemployment rate), but enjoying contrasting tra�c conditions due to the CC.

I further identify several possibilities that the exclusionary restriction could be

violated. First, home purchasers could be paying more to re-locate into the cordoned

area because residents in the zone enjoy a 90% discount to the CC. Exploiting a

sub-sample of sales outside the charge zone but are entitled to the CC discount, I

show that this discount to the charge has a negligible e�ect on home prices. Second,

a�uent neighbours, who incur higher cost of being caught in the tra�c, could sort

themselves into the charge area. Relying on micro level census data in and around

the charge zone, I demonstrate that there are no evidences of sorting of "better"

neighbours into the CCZ/WEZ that could confound the WTP to avoid tra�c.

The headline �nding is that homeowners moving into the cordoned charge zone

pay more to enjoy better tra�c conditions. After the CCZ is implemented, I ob-

serve that tra�c volume declined by about 8.5% (1,779 fewer vehicles every day)

relative to neighbourhoods outside the cordoned area, illustrating the e�cacy of the

CC in reducing tra�c. Corresponding to this improvement in tra�c conditions,

home prices are approximately 3.6% (¿40,968) higher in the zone. Putting these

results together, the instrumental variable (IV) estimates suggest that the elasticity

of housing values with respect to tra�c volume is around -0.43. These estimates of

the average MWTP to avoid tra�c are robust across a range of sensitivity analyses

and when I constrain the analysis to sales just in and out of the CCZ/WEZ. I also

observe that the MWTP to avoid tra�c are much higher for residents moving into

the WEZ. This could be because they incur higher cost of delay, are more likely to
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drive, and live further away from their workplace. Additional analyses reveal that

this WTP for less tra�c could stem from better air quality and reduction in tra�c

collisions in the charge zone after the CC is enforced.

These estimates imply that the implementation of the CC that has generated

substantial windfall for homeowners relative to neighbours outside the zone. Multi-

plying the capitalization gains with the number of dwellings in the cordoned area,

the aggregate increase in housing values in the zone CCZ and WEZ amount to

¿3.11billion and ¿11.91 billion respectively. These substantial gains measure the

present value of the local bene�ts associated with the CC and is approximately 14%

of the cost of implementing the charge. This is tenable considering the myriad of

bene�ts with the CC that are not quanti�ed in this study. These results, however,

also suggest that the CC is regressive as it bene�ts richer homeowners inside the

zone at the expense of poorer households living outside. Hence, to ensure that the

CC is more equitable, policy makers could consider creaming o� this windfall via

taxes and remove the charge discounts given to residents in the zone. Revenues

can be redistributed via public transport subsidies and investment on improving on

public transport system. Finally, the elasticity of housing values with respect to

tra�c obtained from this study could be useful in estimating the potential welfare

gains or losses associated with transportation infrastructures (e.g roads, congestion

charges, public transit) before embarking on these projects given how cost intensive

some of them are.

The remainder of this paper is structured as follows. Section 2 provides an

overview on the Congestion Charge in London. Section 3 describes the existing

literature on this subject. Section 4 outlines the data and Section 5 illustrates

the identi�cation strategy. Findings are then discussed in Section 6 and Section 7

concludes.

2.2 Road Pricing in London

The initial Congestion Charge Zone (CCZ5) covered a total of 21 square kilo-

metres (slightly more than 1% of the Greater London Area) and encompassed the

�nancial centre (Bank), parliament and government o�ces (Palace of Westminster),

major shopping belts (Oxford Circus) and tourist attractions (Trafalgar Square,

Westminster Abbey, Big Ben, St Paul Cathedral etc). Figure 2.1 shows the CCZ,

the area shaded in green. The boundary was drawn to isolate the most congested

areas in Central London and does not appear to be constrained by any physical fea-

tures (rail lines, green spaces and rivers etc). It was bordered by major Inner Ring

5The initial Congestion Charge Zone will be abbreviated as the CCZ while the Western
Extension Zone will be abbreviated as WEZ from this point onwards
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Roads such as Edgeware, Vauxhall Bridge, Pentonville, Park Lane, Marylebone,

Tower Bridge and Victoria to divert tra�c displaced by the charge. Commuters

travelling on these roads are not required to pay unless they turn into the zone. To

protect residents and businesses outside the zone, o�-street parking enforcement is

improved to deter anyone from parking outside and walking into the charge zone

to avoid paying the charge. The CCZ crosses the River Thames to the South and

covers parts of the Lambeth and Southwark boroughs. Although this is an area not

typically considered as Central London, it was incorporated for the ease of imple-

mentation and operation (Richards, 2006).

On the 17th of February 2003, a �at fee6 of ¿5.00 was levied on commuters

driving into the zone between 7:00am to 6:30pm from Monday to Friday, excluding

public holidays. Residents living in the zone and some living outside but in discount

zones are entitled to a 90% waiver7 to the CC for their �rst registered vehicle. These

discount zones are shaded in purple as shown in Figure 2.1. Residents residing in

these areas are entitled to the discount because they are required to enter the CCZ

or WEZ when driving home8. This policy was an outcome of extensive consultations

with various stakeholders. Other than to reduce congestion, the CC is implemented

to generate revenues to increase the frequencies and routes of buses and tube to

enhance the public transit. Reduced travel time and enhanced reliability could

encourage commuters to switch from private to public transport when commuting

into the zone.

The tax levied was substantially increased to ¿8.00 on the 4th July 2005 to

further reduce tra�c and raise revenues. On the 19th of February 2007, charging was

extended to Central West London (known as the Western Extension Zone - WEZ)

because of congestion in that area. Operating hours of the CC were reduced by half

an hour from 7:00am to 6:00pm. The westward extension is circumvented by Harrow

Road, Scrubs Lane, West Cross Route, the Earls Court One-Way system, Chelsea

Embankment and the River Thames 9 to the South. Refer to the area shaded in pink

6The rationale for levying a �at fee, other than the di�culty in imposing time varying
fees to reduce congestion during peak hours, is that vehicular volume on roads seem fairly
uniform across the day.

7Other groups excluded from the charge include public transport(taxis and buses),
motorcycles, bicycles, environmentally friendly vehicles (battery powered or hybrid cars),
vehicles driven by disabled individuals (blue badge holders), vehicles with 9 seaters or more
and emergency service vehicles.

8This is a concern as home purchasers moving into the CCZ or WEZ could be paying
more for homes for the CC discounts, violating exclusionary restriction. I will show in
results later in Table 2.1 that home buyers are not paying more for these CC discounts by
exploiting a unique part of the CC policy that permits home owners living outside by near
to the CCZ/WEZ a 90% waiver of the charge.

9Unlike the Original CCZ, the WEZ is bounded by physical features. There is a concern
whether the the neighbourhoods South of River Thames are di�erent from those in the
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Figure 2.1: Map of the Original Congestion Charge Zone (CCZ) & Western Exten-
sion Zone (WEZ)

in Figure 2.1. However, under tremendous pressure from residents and businesses

in West London, on the 24th of December 2010, the WEZ was scrapped. Between

2011 to 2015, the charge in the original CCZ underwent another two hikes. The

CC was raised from ¿8 to ¿10 on the 4th January 2011 and from ¿10 to ¿11.50 on

16th June 2014. Overall, the CC experienced an average 10.83% growth per annum

since introduction and this might have a compelling e�ect on commuters relying on

private transport.

Initial impact assessment by Transport for London (TfL) showed signi�cant im-

provement in tra�c conditions after the charge is enforced in 2003. These results

are very consistent with those reported in this study. All day travel speeds were

almost 20% higher (from 14.3km to 16.7km per hour) and minutes of delay fell by

30% compared to uncongested tra�c conditions (TfL, 2003a). This was largely due

to a 27% overall drop in the number of private auto-mobiles into Central London.

A change in composition of inbound tra�c into the zone was observed: the volume

of bicycles, buses and taxis went up by 28%, 21% and 22% respectively. Surveys

conducted echoed similar �ndings with the majority of the drivers switching to pub-

North such that it might not be a suitable control group. Hence, I exclude transactions
south of River Thames in my robustness test (refer to Table2.8). This has an immaterial
e�ect on my estimates.
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lic transport and others travelling during o�-charging hours (TfL, 2005). Though

the number of commuters using rail did not increase, the number of bus passengers

during morning peak periods were 38% higher(TfL, 2004). There was no apparent

displacement of tra�c into neighbouring uncharged roads and weekends as tra�c

conditions were fairly similar compared to those during pre-charged periods. As for

air quality, the CC led to a 12% reduction in both NO and PM10 in the cordoned

area (TfL, 2004). Overall, evidences suggest that residents living in the charged

zone are bene�ting from the charge.

2.3 Literature Review

To estimate the marginal willingness to pay (MWTP) to avoid tra�c, the hedonic

property value approach is widely adopted in the existing literature. An association

between tra�c externalities, measured by tra�c volume (Hughes & Sirmans, 1992)

or noise (Palmquist, 1992; Andersson et al., 2010), and housing prices are established

using regression adjusted for di�erences in observable housing and neighbourhood

characteristics. A review of the previous literature indicates that the doubling road

tra�c volume could reduce home values by 0.5%-3.0%, while every decibel increase

in tra�c noise corresponds to a 0.3%-0.6% reduction in transacted home prices.

Estimates, however, appear to vary across studies that adopt di�erent speci�cations

and perverse relationships are sometimes reported. These results suggest that cross-

sectional estimates could be biased due to unobserved di�erences in neighbourhood

and housing quality between sales that are correlated with tra�c conditions.

Several studies address the issue of omitted confounders by focusing on "natural

experiments" that produces a shock to the amenity of interest10. Chay et al. (2005)

rely on the implementation of the Clean Air Act in the 1970s to identify exogenous

variation in air quality and examine its impact on housing prices. Davis (2004) take

advantage of a sharp rise in paediatric leukaemia cases from a secluded county in

Nevada to measure the health risk using home values. Gibbons & Machin (2005)

appraises the price for better public transport accessibility by examining the impact

of a new metro line on the housing market. Black (1999) and Gibbons et al. (2013)

quantify the value of good schools by comparing sale prices of homes proximate to

one another but on di�erent school districts. In similar fashion, this study relies

on the implementation of the CC that induces sharp variation in tra�c conditions

across the CC boundary to recover the MWTP to pay to avoid tra�c.

Previous literature shows that the Congestion Charge reduce tra�c jams and

improve air quality. Beevers & Carslaw (2005) show that air quality inside the

10For the advantages associated with quasi-experimental approaches of hedonic methods
for environmental valuation refer to Kumino� et al. (2010).
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charge zone improved after the CC is implemented. The levels of CO2, NO and

PM10 fell by 19.5%, 12% and 11.9% respectively. Similar results are echoed by

Green et al. (2018) although they show that the concentration of NO2 has increased

after the CC is enforced. They propose that this could stem from the substitution

of diesel-based vehicles, such as buses and taxis, in the zone as they are waived from

the charge. This combustion of diesel contributes to more nitrogen oxides than the

combustion of petrol.

Roads in the zone are also reported to be much safer after the CC is implemented.

Li et al. (2012) reveal that car casualties fell by 5.2% although there are more

fatalities associated with motorcycles (1.8%) and bicycles (13.5%). This could be

driven by the switch to two wheelers that are not subjected to the charge. Larger

e�ects are observed by Green et al. (2016). The CC coincides with a 32%-36% fall in

accidents and 25%-35% decline in serious injuries and fatalities and no displacement

of collisions to neighbouring areas outside the cordoned area are documented.

There have been several previous attempts to quantify the bene�ts associated

with the charge using the housing market. Most of these studies have surprisingly

documented insigni�cant or negative e�ects. The closest to this study is unpublished

research conducted by Zhang & Shing (2006). They examine the e�ect of the CCZ

in 2003 on a sample of residential sales in London from 2000 Q1 to 2006 Q1 and show

that home prices are 8.5% lower in the zone after the charge is implemented. Percoco

(2014) investigate the e�ect of the Milan EcoPass on housing prices. Examining

average property values across 192 Micro-zones between 2006 and 2009, he reports

that prices fell by 1.2% to 1.8% after the tax is introduced. Given that the CC

improves local tra�c conditions, it is surprising to observe that house prices are

lower within the charge perimeter after the CC is implemented. The contradictory

relationship documented in these studies could stem from omitted confounders due

to the lack of controls, the incorporating of transactions fairly far from the charge

boundary and the adoption of coarse spatial �xed e�ects11. Agarwal et al. (2015)

improve the estimation by removing time-invariant neighbourhood unobservables

with postcode �xed e�ects. They examine the e�ects of an increase in the Singapore

Electronic Road Pricing (approximately ¿0.50) on retail, o�ce and residential prices.

While retail property values are adversely a�ected by the hike, residential property

values remain unchanged. This is anticipated considering that an immaterial hike in

the charge is unlikely to signi�cantly improve tra�c conditions to in�uence housing

values12.

11In unreported parsimonious speci�cations without micro-level �xed e�ects, I observe
results that are fairly similar to these studies. Results are available upon request.

12This point is reinforced by my results in Table 2.10 summarized in Data Appendix.
Most of the CC increments do not have perceptible e�ects on tra�c and housing values.
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In contrast, this research improves on the existing literature on several fronts.

This is the �rst paper that links the e�ects of the CC on house prices via tra�c

using an instrumental variable framework. This is an important "�rst stage" that

explains the mechanism for house price changes associated with the CC that is miss-

ing in the existing literature due to the absence of quality tra�c �ow data. Second,

by relying on the CC as a natural experiment to tackle the issue of omitted con-

founders, this research is a signi�cant improvement to the existing literature that

rely on cross-sectional hedonic regressions. Third, this study draws inferences from

a representative sample of more than 80,000 property sales from almost 10,000 post-

codes in the vicinity of the CCZ/WEZ. This further allows the restriction of property

sales physically close to the charge boundary to mitigate unobserved neighbourhood

di�erences between properties in and out the charge zone.

2.4 Data

Average annual daily tra�c �ow (AADF)13 collected at each count point (CP)

from 2000 to 2014 is retrieved from Department of Transport (DfT). These count

points are located along roads and tra�c is manually counted at these locations to

provide junction-to-junction tra�c �ow. There are a total of 2,774 CPs in London,

most of them clustered around Central London as shown in Figure 2.2. To accurately

measure the local tra�c conditions for each transacted property, I �rst match the

count points and roads based on location and road names . Subsequently, I draw 100

meter bu�ers14 from this sample of matched-roads. The tra�c conditions for each

property will be determined by the tra�c �ow from the nearest road. Properties

outside this 100 meters bu�er will be omitted from the analysis as I could not reliably

measure tra�c conditions. For an illustration, refer to Figure 3.2.

Housing transactions from the 1st quarter of 2000 to the 4th quarter of 2015

are collected from Land Registry database. Property characteristics include sale

price, property type (detached, semi-detached, terraced, �at or maisonette), tenure

(leasehold or freehold) and whether the property is new or second-hand. Land

Registry covers all the transactions made in United Kingdom. Given that terrace

and �at housing constitute bulk of the transactions in Central London (close to 95%),

13Each site is counted by a trained enumerator on a neutral day in that year for a twelve
hour period. A neutral day is a weekday between March and October, excluding all public
holidays and school holidays. The idea is that tra�c on these days are re�ective of an
"average" day across the year. There are a total of 10,000 manual count points across UK.

14Concerned that 100 meters bu�er might be too big to accurately measure local tra�c
conditions, I reduce this bu�er to 50 meters. I further re-weight my estimates, giving
heavier weights to transactions that are closer to the roads with tra�c data. None of these
speci�cations appear to materially in�uence the results and are summarized in Table 2.8.
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Figure 2.2: Illustration of count points 5km from the CCZ

Figure 2.3: Illustration on how tra�c conditions are measured for each property.

other property types are removed from the analysis to reduce heterogeneity in the

sample that could raise endogeneity concerns. All the transactions are geo-coded

using the address postcode. For a subset of transactions, more property information,

such as �oor area, number of bathrooms and bedrooms and age, are merged from

Nationwide transaction database for balancing tests.

Information on the boundaries of the CCZ and WEZ and the areas entitled to

90% resident discount are from the shape-�les provided by Transport of London

(TfL). Using Geographic Information Systems (GIS) mapping, together with the of-

�cial dates of implementation/announcement of the CC from TfL, I assign postcodes
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into treatment and control groups and compute nearest euclidean distance from the

CC boundary. Further information on the locations of tube stations and bus stops

are retrieved from TfL Open data source. I measure public transport accessibility

based on the distance of each postcode from the nearest public transport node using

GIS.

Census Data at Output Area15 (OA) level are collected from 2001 and 2011 to

measure the quality of neighbourhoods. This include the percentage of (1) minority

residents and (2) uneducated residents, (3) unemployment rate and the percentage of

(4) lone parent households. I assign the data from Census 2001 for any transactions

before 2006 and data from Census 2011 for transactions made after 2006.

Shape �les detailing the location of heritage buildings and parks are provided

by MAGIC 16. Using GIS, I measure the distance of each postcode from the nearest

Grade 1 park - with international and historical signi�cance. I further draw a 200

meter bu�er around each postcode and compute the number of Grade 1 heritage

buildings within these bu�ers. Designation is done by Historic England and is

determined by the age, historical and architecture signi�cance of the building. Only

the top 2.5% of the buildings are classi�ed as Grade 1. Maps for Thames River is

obtained from Digimap. A bu�er of 200 meters is drawn from Thames River and

postcodes inside this area are assumed to have a river view.

2.5 Identi�cation Strategy

2.5.1 Research Methodology

Traditionally, hedonic regressions estimating the e�ects of tra�c on house prices

adopt the following speci�cation:

Yijt = βOLSTijt +X ′ijφ+ V ′jtω + τt + εijt, εijt = αi + θijt (2.1)

where Yijt is the logarithm of price for property i in neighbourhood j sold at time t

and Tit is the logarithm of local tra�c conditions measured by local tra�c volume

near property i at time t. The key variable of interest, βOLS, denotes the percentage

change in home prices from 1% change in local tra�c �ow. This exercise exploits the

variation of tra�c conditions and home prices across space and over time. To min-

imise salient di�erences between housing transactions, researchers usually control for

observable property speci�c X ′i (e.g number of bedrooms, property size, garage) and

15The smallest geographical area if which Census data is collected. There are a total of
175,434 OAs across England and Wales (25,053 OAs in London) with around 110 to 140
households per OA.

16For more information, refer to http://magic.defra.gov.uk/.

http://magic.defra.gov.uk/.
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neighbourhood characteristics V ′jt (e.g crime, unemployment rates). For consistent

estimation, the least square estimator of βOLS requires E[εijt, Tijt] = 0.

In reality, however, this assumption is likely to be violated if there are omitted

time invariant (αi) or time-variant unobservable (θijt) that could covary with traf-

�c conditions and in�uence home prices. The heaviest tra�c are usually found in

neighbourhoods around the Central Business District and they are quite di�erent

from areas further out. Properties near to the city center are usually better con-

nected to transportation nodes and are closer to major shopping belts and business

districts. If these di�erences are unaccounted for and enter into the speci�cation, it

is likely to underestimate the WTP to avoid tra�c. The straightforward solution

widely used in the literature is to include property �xed e�ects (αi) to partial out

these time-invariant unobservables. Put di�erently, I am now comparing changes in

home prices with changes in tra�c conditions over time.

There are major issues employing this strategy. First, it requires repeated trans-

actions of the same property that is unlikely given the illiquid nature of real estate

due to high transaction costs. Second, it is improbable to observe much variation

of tra�c in a particular location over time unless these areas experience major new

developments that generate economic activities and attract more road tra�c. The

concern is whether these shocks also make neighbourhoods more attractive and in-

�uence local home prices. As a result, tra�c conditions are likely to covary with

unobserved time-variant shocks to house prices (θijt) such that E[θijt, Tijt] 6= 0.

Hence, to overcome these challenges, I instrument local tra�c conditions (Tit)

using the London Congestion Charge (LCC). In other words, I am now exploiting

the sharp variation in tra�c conditions induced by the LCC to measure the cost of

tra�c. The system of equations to be estimated includes:

Tijkt = λk + γCCit +X ′jtρ+ V ′jtκ+ ψt + νijkt, (2.2)

Yijkt = πk + ζCCit +X ′jtδ + V ′jtη + υt + εijkt, (2.3)

Yijkt = αIVk + βIVT̂ijkt +X ′jtφ
IV + V ′jtω

IV + τ IVt + εijkt, (2.4)

where CCit is an indicator variable that takes the value of 1 when property i is

located in the charge zone and sold after the LCC is implemented. I utilize both

the implementation of the Congestion Charge Zone in 2003 (CCZ) and the Western

Extension Zone (WEZ) in 2007 as instruments in separate regressions. I constrain

the analysis to a sample of transactions two years before and after the charge is im-

plemented to ensure that the various charge events do not overlap with one another.

Refer to the time-line in Figure 2.4 for more information. I further examine the
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e�ects of the various charge increments in 2005, 2011 and 2014, and the removal of

the WEZ in 2011 on tra�c and house prices. Due to space constraints, I relegate

these �ndings to the appendix. In short, these events do not a�ect tra�c conditions

and home prices. For more details, refer to Table 2.10 in Data Appendix. Given

the lack of repeated sales17 of the same unit over the sample period, postcode �xed

e�ects (αk;λk; πk) are included instead. There are, on average, 17 units sharing

one postcode across United Kingdom and they are usually properties in the same

building.

Figure 2.4: Sample window for the di�erent CC events (T=1 denotes Treatment
Period)

Equation 2.2 is the �rst stage regression that estimates the e�ectiveness of the

CCZ/WEZ in reducing local tra�c �ow surrounding each property. The dependent

variable, Tijkt, is the natural logarithm of the average daily road tra�c �ow from

vehicles with four or more wheels. The e�cacy of the charge is captured by γ

that measures the percentage change in the tra�c �ow in the charge zone after

the CCZ/WEZ is implemented. Equation 2.3 is the reduced form regression that

measures the impact of the CCZ/WEZ on home prices. ζ captures the percentage

change in house prices in the charge zone after the CCZ/WEZ is introduced. If the

implementation of the CC reduces tra�c �ow within the charge perimeter, and that

new home buyers moving into the zone value this improvement in tra�c conditions,

I expect γ to be <0 and ζ to be >0.

These regressions combine to form the instrumental variable regression in equa-

tion 2.4 that identi�es the causal e�ect of tra�c on home prices. The main results

of this paper come from the estimation of βIV , which measures the direct elasticity

17Including address �xed e�ects signi�cantly reduces the sample by more than 70% as
there are limited repeated sales of the same property.
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of tra�c and house prices. T̂ijkt denotes the tra�c conditions instrumented with

CCit. Since βIV , is exactly identi�ed, it is simply the ratio of the two reduced form

parameters such that βIV = ζ
γ
. For the instrumental variable estimator to provide

a consistent estimator of the hedonic price schedule gradient, the conditions are

that conditional on property and neighbourhood characteristics, and postcode �xed

e�ects:

� CCit a�ects local tra�c conditions [γ 6= 0] (Relevance)

� CCit is as good as randomly assigned. (Independence)

� CCit in�uences home prices only through changes in tra�c conditions. (exclusionary

restriction)

2.5.2 Testing the Identi�cation Assumptions

In this section, I will highlight instances that could violate identi�cation as-

sumptions and address them to ensure that the instrumental variable regression

framework is able to consistently estimate the MWTP to avoid tra�c.

While it is straightforward to show the test the relevance from F-statistics from

�rst-stage regressions (equation 2.2), it is challenging to ensure that the other condi-

tions are not violated. To begin with, it is improbable that the charge zone is drawn

exogenously as the policy is targeted towards curtailing tra�c along the most con-

gested roads in Central London. This is clearly the case as the charge zone overlaps

with the Central Business Districts, major tourist attractions and shopping belts.

Therefore, I progressively restrict the analysis to properties physically close to the

charge zone, up to 500 meters left and right of the charge boundary. To visualize,

refer to Figure 2.5. The assumption now is that the CCZ and WEZ are as good

as randomly drawn between analogous neighbourhoods close to one another in and

around the charge boundary. This strategy is possible because the charge induces a

sharp discontinuous change in tra�c around the boundary.

For exclusionary restriction to hold, the charge must only a�ect home prices

only through tra�c. There are at least three instances that this condition could be

violated. First, the policy allows residents staying in the zone to a 90% waiver of

the charge. The concern is whether new residents are paying more for homes in the

zone to enjoy the CC discounts. Hence, the capitalization e�ects, if there are any,

could be capturing the present value of these congestion charge savings. To address

this concern, I exploit a feature of the CC policy that allows some homeowners close

to but outside the zone a 90% discount to the charge. The reasons for extending

the discount to these neighbourhoods are due to parking and severance issues (TfL,

2009). Some of the residents living outside the zone might have their designated
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Figure 2.5: The CCZ (shaded) and 1 kilometre bu�ers from the CC boundary

parking lots inside the zone. Also, the nearest services and amenities (e.g hospitals,

libraries etc) for these residents could also be in the charged area. These discount

zones are shaded in purple-striped for the WEZ and in grey for the CCZ in Figure

2.1. To examine whether homeowners pay for the 90% waiver of the charge, I

estimate the following regression:

Yijkt = πk + ζCCit + ψDisit +X ′jtδ + V ′jtη + υt + εijkt, (2.5)

where Disit that denotes properties in the discount zone that were sold after the

implementation of the CCZ/WEZ. The key parameter of interest, ψ, captures the

willingness to pay for the 90% CC discount. If new homeowners are paying more

to live in the CCZ/WEZ for better tra�c conditions and not for the discounts, I

expect ψ to be indistinguishable from zero. Looking closer, this regression resembles

equation 2.3 other than the inclusion of properties sold in the discount zone.

As there are limited transactions18 outside CCZ eligible for the CC savings, the

focus will be on the discount zone of the WEZ that has a larger sample of 15,976

sales. Panel A of Table 2.1 presents the estimates. Home prices in the discount

zone are not materially a�ected after the WEZ is enforced, suggesting that new

home buyers are not paying more to enjoy the 90% discount of the CC. No house

price changes are observed even when the discounts are taken away after the WEZ

is removed. Taken together, these results suggest that homeonwers do not pay more

18In particular, there are only 936 sales in these areas. Considering the fact that home
owners living near the WEZ, on average, earn higher income, have a higher tendency to
drive and stay further from their work place compared to those bordering the CCZ, I would
expect the WTP for the CC discounts to be more magni�ed for the homeowners in the
WEZ discount zone.
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for their homes to enjoy the CC discounts.

However, the tra�c conditions in the discount zone might be a�ected by the

charge, therefore confounding the WTP for these CC discounts. To verify, I conduct

similar regressions but with tra�c �ow as the dependent variable. I relegate these

results to Table 2.14 in Data Appendix due to space constraints. In short, the

results show that the enforcement of the WEZ do not a�ect tra�c conditions in

these discount zones. Overall, evidence suggests that the CCZ/WEZ is not a�ecting

home prices through the charge discounts.

Table 2.1: Reduced form estimates of the Congestion Charge Discount
on House Prices

(1) (2) (3) (4) (5)
5km 4km 3km 2km 1km

Discount 0.0173 0.0117 0.0118 0.0104 0.0258
(0.0207) (0.0216) (0.0228) (0.0257) (0.0310)

WEZ 0.0579a 0.0534a 0.0500a 0.0477a 0.0458b

(0.0141) (0.0147) (0.0155) (0.0170) (0.0195)
Obs 55849 47117 37603 28033 17997
R2 0.80 0.79 0.78 0.77 0.74
No.of Postcodes 9021 7503 5868 4329 2665

Discount -0.0097 -0.0095 -0.0088 0.0046 0.0294
(0.0213) (0.0222) (0.0236) (0.0258) (0.0298)

RemWEZ 0.0219 0.0211 0.0182 0.0242 0.0248
(0.0148) (0.0157) (0.0170) (0.0184) (0.0209)

Obs 68415 57710 46289 33702 21236
R2 0.81 0.81 0.80 0.79 0.76
No.of Postcodes 9698 8034 6316 4653 2874

Each coe�cient is from a di�erent regression. Sample is constrained to sales
within 5km (Column 1) to 1km (Column 5). Discount is a binary vari-
able equals to one for sales made inside the discount zone after the WEZ
is introduced. Dependent variable is the natural logarithm of the transacted
property prices. Robust standard errors clustered at output area are reported
in parenthesis.c p<0.10, b p<0.05, a p<0.01

Secondly, there could be sorting of better households into the charge zone after

the charge is implemented. If a�uent homeowners, who incur higher congestion

delays due to higher wages, are incentivised to move into the zone after the CC

is introduced, the issue is whether the WTP to stay in the CCZ/WEZ could be

confounded with the WTP to reside in better neighbourhoods, violating the exclu-

sionary restriction. To investigate, I examine the changes in various neighbourhood

characteristics across the boundary before and after the charge is implemented in

Figure 2.6. This include percentage change (% ∆) of (1) residents who are ethnic

minorities, (2) unemployment rate, (3) residents with no education, (4) lone-parent
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households, (5) households with cars and (6) residents driving to work. These �g-

ures are constructed by taking the long di�erences of neighbourhood characteristics

from Census Data collected at Output Area19 in 2001 (before) and 2011 (after), be-

fore regressing these changes on the interaction of the CCZ dummy with distance to

boundary �xed e�ects. Each point in the �gure, which is the coe�cient of the respec-

tive distance dummies (in 100 meters bandwidth), denotes the conditional average

change in neighbourhood characteristics at a given distance from the CC boundary.

Negative distances, to the left of the dashed line, indicate neighbourhoods in the

CCZ. As shown, there are no sharp changes across various demographics, driving

habits and car ownership in and around the CC, suggesting that there is no sorting

across the boundary after the charge is enforced. Due to space constraints, a similar

set of �gures for the WEZ is moved to Figure 2.10 in the Data Appendix. These

results are fairly congruent to that reported for the CCZ.

Finally, by replacing address with postcode �xed e�ects, I am assuming that

there are no changes in quality/characteristics for units sold in the same postcode

(or building) after the charge is implemented. Exclusionary restriction could be

violated if the WTP for the CCZ/WEZ are driven by the quality di�erences of the

units sold in a postcode after the CC is enforced. This is possible if more a�uent

households move into the charged zone after the CC is implemented such that better

units (e.g penthouses) in the same building are sold after the charge is enforced.

To address this concern, I conduct a battery of balancing tests on various observ-

able housing characteristics. Results are summarized in Table 2.2. The speci�cation

is similar to that in Equation 2.3 but the dependent variable is replaced with hous-

ing characteristics, including �at dummy, leasehold dummy, �oor area, availability

of central heating and garage, number of bedrooms and bath, and the age of unit.

Columns 1 to 2 summarize results from a larger sample from the Land Registry,

while columns 3 to 8 entail �ndings from a sub-sample of residential sales from the

Nationwide sales database with a richer set of housing characteristics. The analy-

sis incorporates transactions within 3 kilometres of the CC boundary. As observed,

there are no signi�cant changes in the composition of transactions within a postcode

before and after the introduction of the CC, mitigating the risk that estimates are

driven by the change in quality of housing units20.

19Output Area is the lowest geographical level at which census estimates are provided
in UK. There are a total of 175,434 Output Areas in England and Wales.

20I also estimated equation 2.3 with these hedonic characteristics as controls for the
sample of transactions from Nationwide Database. The results are very similar to that
reported in Table 2.5. However, due to the small sample size (less than 1,000 observations),
I do not report the �ndings in this paper although it is available upon request.
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(a) Minority ethnicity

(b) Lone parent households

(c) Driving to work

(d) Uneducated

(e) Unemployment Rate

(f) Car ownership

Figure 2.6: Census demographics around the CCZ. The solid line represents the
conditional average change of various demographics at a given distance from the
CC boundary and the dashed line represents the 95% con�dence interval. It is
constructed by regressing the % ∆ in demographics at Census Output Area with
boundary �xed e�ect and 100 meters distance bandwidths and coe�cient of each
distance dummy is plotted. Distance is negative when it is in the charged zone (Left
of dashed Line). There are a total of 1,727 output areas within 1.5 kilometres in
and out of the CCZ.

2.6 Empirical Results

In this section, I estimate the e�ects of the Congestion Charge on tra�c and

house prices. First, I describe the dataset with summary statistics. Next, I examine
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Table 2.2: Balancing Test for Housing Characteristics for a subsample of transactions within 3km from
the CC boundary

(1) (2) (3) (4) (5) (6) (7) (8)
Flat Leasehold Floor Area Bathrooms Bedrooms Central Heat Garage Age

CCZ -0.00498 -0.00361 -2.349 0.0338 0.00295 -0.0122 -0.113 -3.041
(0.00352) (0.00348) (3.699) (0.125) (0.0709) (0.0933) (0.212) (6.795)

N 110719 110719 5288 5288 5288 5288 5288 5288
WEZ 0.00188 0.00686 -5.041 -0.102 0.0288 -0.238 -0.381 -1.628

(0.00533) (0.00461) (11.22) (0.116) (0.193) (0.251) (0.349) (4.779)
N 62952 62952 3283 3283 3283 3283 3283 3283

Each coe�cient is from a di�erent regression. All regressions include post code and year quarter �xed e�ects.
Dependent variable is the respective housing characteristics as labelled. Flat (1) is a binary variable indicating
whether property sold is a �at. Leasehold (2) is a binary variable representing whether unit sold is leasehold. Floor
area (3) is the size of unit in square meters. Bathrooms (4) and Bedrooms (5) is the count of Baths and Bedrooms
in the unit. Central heating (6) and Garage (7) is a binary variable that denotes if unit has such facilities. Age
(8) is the number of years since the unit is built. Columns 1 & 2 comprise of transactions from Land Registry
while Columns 3 to 8 comprise of sales from Nationwide Database. Robust standard errors clustered at output
area are reported in parenthesis.

the impact of the CCZ and WEZ on both tra�c and home prices before combining

the estimates to recover the MWTP to avoid tra�c. Subsequently, I constrain the

analyses to properties up to 500 metres from the CC boundary to minimize unob-

served neighbourhood di�erences between sales across the CC boundary. Finally,

I show that the results remain robust to a battery of tests that relaxes the identi-

�cation assumptions, before discussing the policy implications associated with the

�ndings.

There are two main results from the analysis. First, the implementation of

the CCZ and the WEZ improve tra�c conditions in the cordoned area relative

to neighbourhoods outside. The e�ects are notably weaker associated with the

WEZ, raising questions of its suitability as an instrument. New homeowners moving

into the charge zone appear to pay more after the charge is implemented. Second,

naive OLS speci�cations produce inconsistent estimates while instrumental variable

estimates are much larger, more robust and stable, suggesting that previous studies

have underestimated the willingness to pay to avoid tra�c.

2.6.1 Descriptive Statistics

Table 4.2 reports summary statistics for the estimation sample of sales within

5 kilometres of the CCZ (Panel A) and WEZ (Panel B). I further breakdown the

sample into inside and outside the charge zone. There are a total of 239,909 sales

from 27,430 unique postcodes within 5 kilometres from the CCZ. The sample is

slightly smaller for the WEZ. There are 136,375 transactions from 20,686 di�erent

postcodes within 5 kilometres from the WEZ. The sheer number of sales illustrates

how densely built Central London is. Approximately 33% and 45% of the sales took

place within the CCZ and the WEZ after the charge is implemented.
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Table 2.3: Descriptive Statistics for Estimation Sample for the CCZ & WEZ

Inside CCZ Outside CCZ Inside WEZ Outside WEZ
Mean SD Mean SD Mean SD Mean SD

Sale Price 377424.44 354914.12 306406.18 253006.11 909496.17 1086279.62 394369.52 344095.99
Tra�c Volume 18804.53 13546.04 19244.95 15326.21 17358.16 15279.52 16504.42 15327.01
CCZ/WEZ Treatment 0.33 0.47 0.00 0.00 0.45 0.50 0.00 0.00
New build 0.22 0.41 0.11 0.31 0.04 0.18 0.11 0.31
Flat/Mansionette 0.95 0.23 0.73 0.44 0.83 0.38 0.74 0.44
Terraced house 0.05 0.21 0.21 0.41 0.16 0.36 0.20 0.40
Leasehold 0.95 0.22 0.74 0.44 0.83 0.37 0.75 0.44
Dist to Park 1115.82 747.54 2419.50 1309.43 692.40 369.66 2451.62 1296.88
Heritage buildings (200m) 0.91 1.65 0.05 0.39 0.14 0.45 0.05 0.37
Thames River View 0.07 0.25 0.09 0.29 0.06 0.23 0.08 0.27
% with no education 12.99 9.84 16.42 10.58 8.16 6.64 13.07 9.26
Unemployment Rate 4.19 2.53 4.74 2.42 3.61 2.28 4.62 2.52
% of Lone Parent Households 3.99 4.38 6.01 4.88 3.24 3.39 6.27 5.15
% of Minority Race 25.41 12.90 27.69 15.66 25.36 13.10 31.99 16.81
Sample Size 239909 136375
No. of Postcodes 27430 20686

Sample of sales are 5km or less from the CCZ/WEZ boundary. Inside (Outside) CCZ/WEZ are property sales/roads within (outside) the
charge zones.

The �rst row shows that the average transacted prices are much higher in the

charged zone. The mean sale price in the CCZ (¿377,424) is more than ¿70,000

higher than sales outside the zone (¿306,406). This is expected given that proper-

ties in the CCZ are more desirable as they are better connected to transportation

nodes, major shopping belts and the CBD. This disparity in transacted prices is

even greater in the WEZ. The average house prices are more than twice inside the

WEZ (¿909,496) relative to outside (¿394,370). The stark divergence in sale prices

highlights the presence of "super-rich" neighbourhoods in the WEZ. The second row

indicates that tra�c conditions are about the same in and out of the CCZ and WEZ

across the sample period. While the average daily tra�c �ow is just slightly higher

in the WEZ (17,358) compared to outside (16,504), tra�c is lighter in the CCZ

(18,804) compared to neighbouring areas outside the zone (19,245). Furthermore,

across the boundary, properties in the charge zone are more likely to be leasehold

multi-family �ats. They are also located closer to parks and are more likely to be

surrounded by buildings with heritage value.

Surrounding neighbourhood characteristics, residents inside the CCZ and WEZ

are more educated and are less likely to be unemployed. Also, households inside the

zone are less likely to be single parent households with smaller minority race repre-

sentation. Although there are di�erences in observable housing and neighbourhood

characteristics, these disparities across the CC boundary will be minimized once I

exploit (1) variation of property prices and tra�c within postcodes and over time

and (2) limit the analysis to sales and roads very close to the CC boundary.

To illustrate how neighbourhoods and properties are more similar when I limit

the analysis to just in and out of the charge zone, I tabulate the di�erence-in-

means of the average observable neighbourhood and housing characteristics between

sales from 900 to 500 metres from the CC boundary. Results are summarized in
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Panel A of Table 2.4 for the CCZ and Panel B for the WEZ. One can observe the

convergence in house prices, neighbourhood and housing characteristics once as soon

as I limit the analysis to sales closer to the charge zone. Conversely, the di�erence in

tra�c conditions exacerbates when I constrain the comparison to areas proximate

to the charge perimeter. These results further emphasize the presence of tra�c

displacement across the boundary after the charge is implemented. Because Central

London is so densely built, even when I constrain the analysis to 500 metres from the

CCZ boundary, my sample is still fairly representative with 28,850 transactions from

3,344 postcodes. The sample size is slightly smaller for the WEZ with 18,571 sales

from 1,839 postcodes. The sizeable number of transactions mitigates the concern

that my study is drawing inferences from an unrepresentative sample of sales around

the charge boundary.

To further show how the CC in�uences house prices and tra�c conditions around

the charge perimeter, I plot the conditional changes of house prices and tra�c at

every 100 metre from the CCZ boundary after the CC is implemented. These esti-

mates are constructed by regressing tra�c volume and house prices against postcode

and year-month �xed e�ects, observable housing and neighbourhood covariates, 100

metre distance bandwidth dummies interacted with an indicator variable that takes

the value of 1 for observations after the CC is implemented, and the interaction of

these dummies with an indicator variable whether this observations are found in

the CCZ, before plotting the coe�cient of these distance dummies21. These results,

analogous to those found in Figure 2.6, are summarized in Figure 2.7. Due to space

constraints, similar results for the WEZ are reported in Figure 2.11 in Data Ap-

pendix. The general observation is that tra�c volume is lower while home prices

increase in the charge zone after the CCZ is implemented. These magnitude of the

e�ects di�ers across space but the direction is largely consistent. Substantial traf-

�c displacement is observed across the CC boundary as areas closest to the border

experience a 12% increase in tra�c �ow.

21In other words, coe�cients for the distance bandwidths inside the charge zone will be
taken from the CCit*Distance-bandwidth dummies (See equation 2.3), while those outside
will be taken from Postit*Distance Bandwidth dummies where Postit is equal to one for
observations after the CCZ is enforced.
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Figure 2.7: The e�ects of the CCZ on Tra�c (Top) and House Prices (Bottom)
across distance around the CC boundary. Distance is negative when it in the
charged zone (Left of dashed line). The plotted coe�cients denote the localised
conditional changes of tra�c/house prices at a given distance from the CC bound-
ary. Tails marks the 95% con�dence interval. They are constructed by regressing
tra�c volume or house prices against postcode and year-month �xed e�ects, ob-
servable housing and neighbourhood covariates and 100 metres distance-bandwidth
dummies interacted with Postit and distance-bandwidth dummies interacted with
CCit. Postit is equal to one for observations after the CCZ is enforced, while CCit
takes the value of one for observations in the charge zone after the CCZ is enforced.
This �gure plots the coe�cients associated with these distance dummies in and out
the charged zone.
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2.6.2 E�ects of the London Congestion Charge on Tra�c and

Home Prices

Table 2.5: Estimates on the Impact of the CCZ/WEZ on Tra�c & House
Prices

(1) (2) (3) (4) (5)
5km 4km 3km 2km 1km

Panel A - First Stage (Log Tra�c)

CCZ -0.0523b -0.0581a -0.0711a -0.0751a -0.0816a

(0.0206) (0.0209) (0.0208) (0.0206) (0.0223)
R2 0.98 0.98 0.98 0.97 0.98
∆ Tra�c -1194 -1324 -1609 -1696 -1779
1st Stage F-statistics 6.42 7.76 11.66 13.34 13.38
WEZ -0.0397a -0.0401a -0.0303a -0.0267a -0.0172c

(0.0075) (0.0080) (0.0081) (0.0080) (0.0100)
R2 0.99 0.99 0.99 0.99 0.99
∆ Tra�c -832 -839 -637 -562 -366
1st Stage F-statistics 28.06 24.94 14.06 11.00 2.99

Panel B - Reduced Form (Log House Price)

CCZ 0.0305b 0.0271b 0.0245c 0.0259c 0.0349b

(0.0130) (0.0132) (0.0136) (0.0137) (0.0150)
R2 0.77 0.76 0.76 0.75 0.73
∆ HP 36320 32259 29089 30757 40968
Obs 85106 72001 54149 37433 23504
No.of Postcodes 9861 8329 6360 4258 2574
WEZ 0.0695a 0.0679a 0.0636a 0.0658a 0.0689a

(0.0159) (0.0166) (0.0174) (0.0191) (0.0215)
R2 0.80 0.80 0.79 0.78 0.75
∆ HP 109227 106635 99589 103141 106074
Obs 44056 36636 29126 21328 12490
No.of Postcodes 7222 5938 4639 3360 1896

Each coe�cient is from a di�erent regression. Sample is constrained to properties
within 5 kilometres (Column 1) to 1 kilometre (Column 5) from the CCZ/WEZ
boundary. Panel A reports �rst regression estimates (γ) from equation 2.2 and
Panel B reports reduced form estimates (ζ) from equation 2.3 for both the CCZ
and WEZ. Dependent variable is the logarithm of annual average daily tra�c
volume for vehicles with 4 wheels or more for Panel A and the logarithm of trans-
acted house prices for Panel B. All regressions are estimated with postcode and
year quarter �xed e�ects. Other control variables include housing characteristics
(leasehold, newbuild and terrace dummies), neighbourhood characteristics by-year
(% of residents with no education quali�cations, % of residents with minority races,
unemployment rate and % of lone parent households) and location characteristics
by-year (Thames river view dummy, counts of heritage buildings within 200m, dis-
tance of the property from nearest park and from the CCZ/WEZ boundary). For
more information on the variables, refer to Table 4.6 in Data Appendix. ∆ Tra�c
is the absolute reduction in average daily tra�c volume and ∆ HP is the absolute
e�ects on house prices converted to 2015 pound(¿) value. Robust standard errors
(in parenthesis) are clustered at output area. c p<0.10, b p<0.05, a p<0.01.

Panel A of Table 2.5 presents the e�ects of the CCZ and the WEZ on tra�c

volume. These estimates illustrate the e�cacy of the CC in curbing congestion and

the validity of the CC as an instrumental variable for tra�c �ow. Moving from

column (1) to (5), I progressively restrict the sample to areas from 5 kilometres to

1 kilometre left and right of the CC boundary. After the introduction of the CC in
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2003 (CCZ), I observe that tra�c �ow in the zone is 5.37%22 lower when compared

to neighbourhoods outside but within 5 kilometres from the boundary. The charge

e�ects remain fairly stable when I streamline the sample to more comparable neigh-

bourhoods in proximity to the zone. Within 4 kilometres, the e�ect increases to

5.98% and within 3 kilometres, the e�ect is 7.37%. These impact further increases

to 7.80% when I constrain the sample to areas within 2 kilometres from the charged

boundary and is even larger at 8.50% within 1 kilometre from the CC boundary. In

absolute terms, I am looking at between 1,194 and 1,779 less vehicles23 inside the

zone everyday compared to areas outside the CCZ.

Magni�ed e�ects when constrained to areas near the boundary suggest the pres-

ence of tra�c displacement across the CC boundary. Evidence implies the charge

could have forced drivers to detour the charge area, inducing a surge in tra�c for

roads close to but outside the CCZ/WEZ. This displacement of tra�c, although

not an ideal outcome for the CC, induces substantial variation in tra�c conditions

between proximate neighbourhoods around the charge boundary. This makes the

policy an ideal instrument for identifying the MWTP to avoid tra�c because it per-

mits the comparison of nearby properties around the charge perimeter to mitigate

unobserved neighbourhood di�erences.

The implementation of the WEZ (WEZ) reduces tra�c by 4.04% in the charged

zone relative to areas outside but within 5 kilometres from the boundary. Within

4 kilometres, the e�ect is 4.09% and is 3.07% when I constrain the analysis to

neighbourhoods 3 kilometres from the boundary. When I examine areas within 2

kilometres from the charged zone, the impact falls to 2.71%. As soon as I limit the

analysis to districts 1 kilometres or less from the WEZ boundary, the impact further

drops to 1.72%. In absolute terms, I am observing around 366 to 839 less vehicles

every day after the WEZ is enforced. These e�ects are less than half compared to

that reported in the CCZ. The WEZ is no longer a valid instrument when construed

to areas 1 kilometre or less from the WEZ boundary, as evidenced by the low 1st

stage F-statistics of less than 10.

Panel B of Table 2.5 summarizes the impacts of the CCZ and WEZ on transacted

property values. Similar to before, I restrict the analysis to a sample of properties

that are physically close to the CC boundary to mitigate unobserved heterogeneity

in neighbourhood amenities between sales in and out the charged zone. I observe

signi�cant house price appreciation in the charge zone after the CCZ is introduced.

When compared to residential sales within 5 kilometres from the boundary, house

22As it is a log-linear model, capitalization e�ects are computed by taking the expo-
nential of the point estimates before subtracting by one. For instance, Exp(0.0523)− 1 ≈
5.37%. The same conversion is applied for housing prices.

23This is obtained by multiplying the point estimates with the average pre-treatment
tra�c volume.
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prices in the charge zone are 3.10% higher. Estimated e�ect drops to 2.75% relative

to houses within 4 kilometres and 2.50% within 3 kilometres. Restricting the analysis

to housing units just 2 kilometres in and out the CC boundary, I observe stable price

responses at around 2.62%. Finally, looking at sales 1 kilometre or less from the

CC boundary, which reduces the sample by almost 80%, I document that property

values are 3.55% higher than before. In absolute monetary terms, the CCZ increases

housing values in the charge zone by a magnitude of between ¿29,089 and ¿40,96824.

All these estimates are signi�cant at least at 5% level.

House prices in the charge zone also increase after the WEZ (WEZ) is intro-

duced. Capitalization e�ects are around 7.20% when compared to transactions out-

side but within 5 kilometres of the boundary. Within 4 kilometres, the e�ect falls to

around 7.02% and within 3 kilometres, impact further decreases to 6.57%. Restrict-

ing to housing units just 2 kilometres from the boundary increases price response

marginally to 6.80%. Comparing units not more than 1 kilometre in and out the CC

boundary, which cuts the sample size by about 75%, I observe that the house price

appreciation is around 7.13%. All of the estimates are signi�cant at least at 10%

level. In monetary terms, homeowners are paying between ¿99,589 and ¿109,227

to enjoy better tra�c in the WEZ. These absolute e�ects are much larger as home

prices are, on average, much higher in Central West London.

Overall, these results indicate that the implementation of the CCZ and WEZ

resulted in substantial improvement in tra�c conditions and property values in the

charge area relative to areas outside the zone. These �ndings con�rm that the

strength of the CC as an instrument for local tra�c conditions.

2.6.3 Regression estimates of Marginal Willingness to Pay to

avoid Tra�c

Table 2.6 summarizes the estimates of the average MWTP to avoid tra�c. Like

before, I progressively restrict the sample of property sales from 5 kilometres to 1

kilometre from the CCZ/WEZ boundary moving from columns (1) to (5). In Panel

A, I present naive Ordinary Least Square (OLS) estimates (βOLS) from equation 2.1.

These estimates are essential because they not only allow us to compare the instru-

mental variable (IV) estimates with the typical results reported in the literature,

but they also illustrate how exploiting the exogenous variation in tra�c conditions

induced by the CC could improve identi�cation of the WTP to avoid tra�c.

24This is computed by multiplying the estimates on the pre-treatment average home
prices adjusted to 2015 price levels in the cordoned area within the distance bandwidth
from the CC boundary.
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Table 2.6: OLS & IV estimates of the e�ect of Tra�c on House Prices

(1) (2) (3) (4) (5)
5km 4km 3km 2km 1km

Panel A - Naive OLS

ln(Tra�c) - CCZ -0.0113 -0.0140 -0.0174 -0.0170 -0.0530c

(0.0132) (0.0144) (0.0154) (0.0193) (0.0302)
R2 0.77 0.76 0.76 0.75 0.73
ln(Tra�c) - WEZ -0.0303 -0.0365 -0.0358 -0.0576 -0.0135

(0.0312) (0.0357) (0.0441) (0.0582) (0.0625)
R2 0.80 0.80 0.79 0.78 0.75

Panel B - IV Regressions

ln(Tra�c) - CCZ -0.5827c -0.4664c -0.3443 -0.3444c -0.4276b

(0.3229) (0.2738) (0.2110) (0.2017) (0.2035)
Obs 85106 72001 54149 37433 23504
R2 0.76 0.75 0.76 0.75 0.73
No.of Postcodes 9861 8329 6360 4258 2574
1st Stage F-statistics 6.42 7.76 11.66 13.34 13.38
ln(Tra�c) - WEZ -1.7498a -1.6950a -2.0990a -2.4656b -4.0071

(0.5219) (0.5361) (0.8062) (1.0347) (2.6389)
Obs 44056 36636 29126 21328 12490
R2 0.77 0.77 0.75 0.73 0.61
No.of Postcodes 7222 5938 4639 3360 1896
1st Stage F-statistics 28.06 24.94 14.06 11.00 2.99

Each coe�cient is from a di�erent regression that measures the direct elasticity
between tra�c volume and house prices. Dependent variable is the logarithm
of transacted house prices. Panel A reports naive OLS estimates (βOLS) from
equation 2.1 and Panel B reports IV estimates (βIV ) from equation 2.4. Sample is
constrained to properties within 5 kilometres (Column 1) to 1 kilometre (Column
5) from the CCZ/WEZ boundary. For CCZ, the instrument is the binary variable
that takes the value of 1 for properties in the CCZ that are sold after the charge is
implemented on the 17th February 2003. For WEZ, the instrument is the binary
variable that takes the value of 1 for properties in the WEZ that are sold after the
charge is implemented on the 19th February 2007. See notes in previous tables for
details on the control variables included. Robust standard errors (in parenthesis)
are clustered at output area. c p<0.10, b p<0.05, a p<0.01.

Consistent with the previous literature, these OLS estimates are very small and

highly unstable depending on the sample analysed. To interpret, a 1% increase in

tra�c is associated to a reduction in housing values that ranged between 0.01% to

0.05%. None of these estimates appear to be statistically distinguishable from zero

except when I restrict the sample to just 1 kilometre in and out the CCZ boundary.

The reported e�ects are now more than 5 times larger and are statistically signi�cant

at 10% level. Smaller e�ects for regressions incorporating transactions further away

from the CC boundary is consistent with the idea that unobserved neighbourhood

heterogeneity between properties could induce the underestimation of the cost of

tra�c. Next, I present OLS estimates for the properties in the WEZ. Likewise,

the direct elasticity between tra�c and house prices is very small between 0.014 and

0.058, and none of these estimates are statistically signi�cant. Taken together, these

results suggest that either home buyers do not care about local tra�c conditions or
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conventional OLS estimates are severely biased by omitted variables.

Panel B of Table 2.6 summarizes IV estimates (βIV ) of the MWTP to avoid

tra�c from Equation 2.4 using either the CCZ or WEZ as instruments. These

estimates are simply the ratio of ζ and γ from Table 2.5. Results reveals that a 1%

increase in tra�c volume corresponds to 0.34% - 0.58% lower transacted housing

values. Compared to the traditional OLS estimates, the IV estimates are at least 10

times larger. This is a phenomenon that is congruent with the �ndings reported by

Chay et al. (2005) for air quality. Most of the e�ects are signi�cant at conventional

levels except for sales within 3 kilometres in and out of the CCZ. Even so, the

estimated e�ect remain similar in size although it is less precisely estimated. It

is also reassuring to observe that the IV estimates are far less sensitive to sample

chosen compared to the OLS estimates.

I further report IV estimates from the WEZ and these e�ects appear 4 to 5

times larger than those reported in the CCZ, suggesting that home owners in the

WEZ are more willing to pay to avoid tra�c. In particular, a 1% increase in tra�c

leads to a 1.70% to 2.47% decrease in housing values. This is not surprising given

that earlier results from Table 2.5 show that home buyers pay much more for a

negligible improvement in tra�c from the WEZ. This much larger WTP to avoid

tra�c commands more attention.

Dwelling deeper into the demographics of home owners in both the CCZ and

WEZ25, I observe that residents in the WEZ are more likely to drive and incur much

higher costs being stuck in the tra�c. Homeowners living in the WEZ earn (¿4,095),

on average, much higher wages compared to those living in the CCZ (¿3,517). It

is also more likely for households in the WEZ (49%) to own a auto-mobile than

those living in the CCZ (37%). There is also a higher tendency for those staying in

the WEZ (25%) to drive to work when compared to residents in the CCZ (13%).

This is probably because homeowners in the CCZ stay closer to their work place.

42% of the residents in the CCZ stay less than 2 kilometres from their workplace,

compared to 25% of the residents in the WEZ. All these factors could explain why

home owners in the WEZ are more willing to pay to avoid tra�c. This disparity in

the WTP is consistent with the idea that individuals have heterogeneous preferences

on travel time (Small et al., 2005).

Nevertheless, it is paramount to point out that as soon as I constrain the sample

to 1 kilometre or less, the validity of the WEZ as an instrument is put into question as

evidenced by the weak �rst-stage F-statistics. Moreover, earlier summary statistics

reveal sizeable di�erences in sale prices between properties inside and outside the

WEZ even when I restrict to sales around the charge perimeter (See Table 2.4).

25Data is collected from Census 2001 and 2011 and is weighted according to the geo-
graphical distribution of transactions analysed in this study.
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This further exacerbate the risk that house price e�ects across the WEZ boundary

could be driven by unobserved neighbourhood di�erences. Hence, from this point

onwards, further analyses will rely only the variation in tra�c conditions induced

by the CCZ. Similar analyses for the WEZ can be found in the Tables 2.12 and 2.13

in Data Appendix.

2.6.4 Estimates Restricted To Proximate Transactions

Table 2.7: First Stage, Reduced form & IV estimates from sample 900m
to 500m from the CCZ Boundary

(1) (2) (3) (4) (5)
900m 800m 700m 600m 500m

Panel A: First Stage (Log Tra�c)

CCZ -0.0833a -0.0924a -0.0883a -0.0908a -0.0847a

(0.0229) (0.0248) (0.0263) (0.0268) (0.0263)
R2 0.98 0.98 0.98 0.98 0.98
∆ Tra�c -1818 -1966 -1879 -1852 -1780
Panel B: Reduced Form (Log House Price)

CCZ 0.0349b 0.0434a 0.0373b 0.0365b 0.0390b

(0.0159) (0.0167) (0.0169) (0.0181) (0.0188)
R2 0.72 0.72 0.72 0.72 0.72
∆ HP 41213 50203 43425 43003 46066
Panel C: IV Regressions
ln(Tra�c) -0.4192b -0.4697b -0.4231b -0.4023c -0.4603c

(0.2099) (0.2049) (0.2123) (0.2199) (0.2530)
Obs 21843 19719 17866 15775 14072
R2 0.72 0.72 0.72 0.72 0.72
No.of Postcodes 2380 2177 1962 1765 1555
1st Stage F-stats 13.22 13.90 11.27 11.45 10.37

Each coe�cient is from a di�erent regression. Sample is constrained to prop-
erties within 900m (Column 1) to 500m (Column 5) from the CCZ/WEZ
boundary. See notes in previous tables for details on the control variables in-
cluded. Robust standard errors (in parenthesis) are clustered at output area.
c p<0.10, b p<0.05, a p<0.01.

Next, I restrict the analysis to transactions that are even closer to the CC bound-

ary from 900 metres in Column (1) to 500 metres in Column (5). This strategy

further abates the risk of unobserved neighbourhood di�erences from driving the re-

sults. Results are documented in Table 2.7. Panel A presents �rst stage estimates.

It is comforting to observe e�ects that are not only comparable in size to earlier

results, but are also stable across the various distance bandwidths. Overall, the

enforcement of the CCZ attributed to signi�cant reductions in tra�c in the zone of

between 8.70% and 9.68%, which amount to between 1780 and 1966 fewer vehicles

every day. Strong �rst stage F-statistics across the regressions reinforce the validity

of the instrument even for adjacent roads bordering the CCZ.
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Panel B reports the reduced form estimates of the CCZ on housing prices. Con-

forming with earlier �ndings, I document signi�cant house prices changes that are

remarkably robust even when I con�ne the analysis to sales 500 metres from the CC

boundary. Speci�cally, housing values are approximately 3.55% - 4.43% higher in

the charge zone after the CCZ is implemented. In absolute terms, these increments

range between ¿41,232 and ¿50,203, depending on distance from the CC boundary.

Putting these two estimates together in Panel C, I am not surprise to observe a

robust association between tra�c volume and house prices. In particular, the direct

elasticity between tra�c volume and housing values ranges between -0.40 to -0.47,

analogous to earlier estimates in Table 2.6. These IV estimates are also appear

strikingly stable in size across the board. This is because the magnitude of the

house price changes vary with the relative changes in tra�c �ow across the distance

bandwidths, lending support that what I am capturing from the house prices is the

WTP to avoid tra�c.

Overall, these results con�rm that the estimates of the MWTP to avoid tra�c

are not susceptible to unobserved neighbourhood di�erences that are attenuated by

limiting the analysis to properties just in out of the CCZ/WEZ.

2.6.5 Robustness and Placebo Tests

Table 2.8 summarizes the �ndings from a battery of robustness and placebo tests

that further addresses the challenges that impede identi�cation to provide more

assuring evidences. It is shown earlier that estimates restricted to sales very close

to the CC boundary (See Table 2.7) are fairly similar to the e�ects documented

for sales within 1 kilometre from the CCZ. Therefore, the rest of the sensitivity

analyses are conducted for sales within this distance bandwidth to balance between

the representativeness of the �ndings and the potential bias driven by unobserved

neighbourhood heterogeneity across the boundary.

Announcement E�ects: In Column (1), I replicate earlier results but with an-

nouncement dates. This addresses the concern26 whether there are any spurious

house price or tra�c responses to the release of the news for the charge before the

actual implementation of the CC. The treatment period is de�ned as the day the

CC event is o�cially announced by TfL and ends the day before the CC event is

implemented27. Although I observe tra�c is marginally heavier after the CCZ is

26Another concern is whether there are negative house price e�ects that predate the
CC implementation such that any e�ects documented earlier is merely capturing mean
reversion of home prices. As observed, this is not a concern as home prices are una�ected
by the announcement of the CC.

27As hikes are announced only a few months before being enforced, there are insu�cient
pre-treatment property transactions. Hence, announcement e�ects are computed only for
the initial implementation of the CCZ and WEZ (refer to �gure 2.4 in Data Appendix)
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announced, homebuyers do not respond to the news. This could be explained by

the uncertainty of the residents over the e�ectiveness of the novel policy to curb

congestion. This is consistent with the survey conducted by TfL that indicated that

the respondents are unsure about whether the CC can reduce tra�c and improve

accessibility (TfL, 2003b).

CBD E�ects: Another concern is whether the e�ects on tra�c and house prices

documented earlier could be associated with changes to the Central Business Dis-

trict (CBD), violating the exclusionary restriction. This could be an issue since

the charge zone overlaps with the CBD. There is considerable decentralization of

economic activities from the CBD with the emergence of Canary Wharf28 around

the implementation of the CC. This shift in economic activities could reduce the

attractiveness of the CBD, leading to a fall in house prices and tra�c in the zone

unrelated to the CC and thereby confounding the average MWTP to avoid tra�c.

Although limiting the analysis to sales bordering the CCZ/WEZ could potentially

mitigate this problem, to further allay this concern, I create arti�cial treatment

areas by shrinking and expanding the CCZ by 1 kilometre. For the shrank zones,

neighbourhoods at 0 to 1 kilometre from the boundary inside the CCZ are denoted

as control areas (Shrank Control Area) and neighbourhoods beyond 1 kilometre from

the boundary in the cordoned area are denoted as treated areas (Shrank Treatment

Area). Conversely, for expanded CC zones, areas between 0 and 1 kilometre outside

the actual CC zone are �agged as treated areas (Expanded Treatment Area) while

areas between 1 and 2 kilometres outside the actual CC zone are denoted as control

units (Expanded Control Area). For an illustration, refer to Figure 2.8. Column (2)

and (3) report estimates associated with these shrank and expanded placebo areas.

As observed, I do not document any spurious e�ects on tra�c �ow and house prices

in these arti�cially created charge zones. This suggest that earlier �ndings are not

confounded by the emergence of other commercial areas around London.

28From 1999 to 2005, the employment force in Canary Wharf surged by more than
100% from 40,000 to 87,000. This could be attributed to the development and opening
of at least 10 commercial developments, including 8 Canada Street, One Churchill Place
etc. For more information, refer to https://www.london.gov.uk/sites/default/files/
gla_migrate_files_destination/londons-cbd-jan08.pdf

https://www.london.gov.uk/sites/default/files/gla_migrate_files_destination/londons-cbd-jan08.pdf
https://www.london.gov.uk/sites/default/files/gla_migrate_files_destination/londons-cbd-jan08.pdf


2.6. Empirical Results 40

T
ab
le
2.
8:

R
ob
u
st
n
es
s
T
es
ts
fo
r
th
e
C
C
Z

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

A
n
n
ou
n
ce

S
h
ra
n
k

E
x
p
an
d

P
cd
>

=
5

N
or
th

T
ra
n
sp
or
t

R
em

N
ea
r

50
m

H
ou
se
s

ID
W

P
an
el
A
:
F
ir
st

S
ta
ge

(L
og

T
ra
�
c)

C
C
Z

0.
01
23

c
0.
00
41

-0
.0
04
7

-0
.0
78
3a

-0
.0
73
6a

-0
.0
76
1a

-0
.0
97
1a

-0
.0
94
5a

-0
.0
73
9a

(0
.0
07
3)

(0
.0
49
6)

(0
.0
24
7)

(0
.0
23
9)

(0
.0
28
4)

(0
.0
22
2)

(0
.0
27
3)

(0
.0
27
5)

(0
.0
23
0)

R
2

0.
99

0.
98

0.
97

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

∆
T
ra
�
c

28
1

11
1

-1
17

-1
72
3

-1
49
3

-1
66
3

-2
00
5

-1
99
0

-1
61
8

F
-s
ta
ts

2.
82

0.
01

0.
04

10
.7
7

6.
70

11
.7
3

12
.6
2

11
.8
2

10
.3
5

P
an
el
B
:
R
ed
u
ce
d
F
or
m

(L
og

H
ou
se

P
ri
ce
)

C
C
Z

-0
.0
03
7

0.
00
66

-0
.0
12
3

0.
04
43

a
0.
05
01

a
0.
03
82

b
0.
04
17

b
0.
04
75

b
0.
03
18

c

(0
.0
19
4)

(0
.0
38
4)

(0
.0
21
1)

(0
.0
15
9)

(0
.0
19
2)

(0
.0
15
0)

(0
.0
17
2)

(0
.0
20
3)

(0
.0
17
4)

R
2

0.
73

0.
71

0.
76

0.
70

0.
73

0.
73

0.
72

0.
72

0.
74

∆
H
P

-4
26
0

84
52

-1
54
29

50
54
2

64
01
3

44
92
1

49
17
9

54
70
0

37
28
1

P
an
el
C
:
IV

R
eg
re
ss
io
n
s

ln
(T
ra
�
c)

-0
.3
01
1

1.
61
64

2.
64
55

-0
.5
62
9b

-0
.6
81
2b

-0
.5
02
0b

-0
.4
29
3b

-0
.5
02
4b

-0
.4
30
0c

(1
.5
93
0)

(2
2.
85
52
)

(1
4.
52
19
)

(0
.2
47
2)

(0
.3
44
1)

(0
.2
30
3)

(0
.1
95
2)

(0
.2
39
8)

(0
.2
52
0)

O
b
s

14
28
3

12
32
3

25
39
1

20
26
8

17
31
5

23
50
4

18
61
2

12
82
6

23
50
4

R
2

0.
73

0.
60

0.
57

0.
69

0.
72

0.
72

0.
72

0.
71

0.
73

N
o.
of
P
os
tc
o
d
es

19
05

13
35

29
57

14
03

20
22

25
74

20
67

14
02

25
74

E
ac
h
co
e�

ci
en
t
is
fr
om

a
di
�
er
en
t
re
gr
es
si
on
.
Sa
m
pl
e
is
co
ns
tr
ai
ne
d
to

sa
le
s
1
ki
lo
m
et
re
s
fr
om

th
e
C
C

b
ou
nd
ar
y
un
le
ss

ot
he
rw
is
e

st
at
ed
.
In

(1
),
th
e
tr
ea
tm

en
t
p
er
io
d
(C
C
it
)
is
de
�n
ed

by
th
e
an
no
un
ce
m
en
t
w
in
do
w
an
d
b
eg
in
s
th
e
da
y
th
e
C
C
Z
is
an
no
un
ce
d
o�

ci
al
ly

by
th
e
T
ra
ns
p
or
t
fo
r
L
on
do
n
(T
fL
)
an
d
en
ds

th
e
da
y
b
ef
or
e
th
e
C
C
Z
is
im
pl
em

en
te
d.

In
(2
)
an
d
(3
),
I
cr
ea
te

ar
ti
�c
ia
l
tr
ea
tm

en
t
zo
ne
s

by
ex
pa
nd
in
g
an
d
sh
ri
nk
in
g
th
e
C
C
Z
by

1
ki
lo
m
et
re
.
T
o
vi
su
al
iz
e,
re
fe
r
to

F
ig
ur
e
2.
8.

In
(4
),
I
re
m
ov
e
an
y
sa
le
s
in

p
os
tc
od
es

w
it
h
le
ss

th
an

5
re
p
ea
te
d
tr
an
sa
ct
io
ns

ov
er

sa
m
pl
e
p
er
io
d.

In
(5
),
I
re
m
ov
e
an
y
sa
le
s
so
ut
h
of

th
e
T
ha
m
es

R
iv
er
.
In

(6
),
I
in
cl
ud
e
di
st
an
ce

to
tu
b
e-
by
-y
ea
r
an
d
nu
m
b
er

of
bu
sl
in
es
-b
y-
ye
ar

�x
ed

e�
ec
ts
.
In

(7
),
I
ex
cl
ud
e
sa
le
s
th
at

ar
e
10
0
m
et
er
s
or

le
ss
fr
om

th
e
ch
ar
ge

b
ou
nd
ar
y

(b
ot
h
in
si
de

an
d
ou
ts
id
e
th
e
zo
ne
).

In
(8
),
I
re
m
ov
e
an
y
tr
an
sa
ct
io
ns

th
at

ar
e
b
ey
on
d
50

m
et
er
s
fr
om

th
e
ne
ar
es
t
ro
ad
s
th
at

I
ca
n

re
lia
bl
y
m
ea
su
re

tr
a�

c
�o
w
.
In

(9
),
es
ti
m
at
es

ar
e
w
ei
gh
te
d
in
ve
rs
el
y
ac
co
rd
in
g
th
e
di
st
an
ce

fr
om

tr
an
sa
ct
ed

pr
op
er
ty

fr
om

m
at
ch
ed

ro
ad
.
R
ob
us
t
st
an
da
rd

er
ro
rs
(i
n
pa
re
nt
he
si
s)
ar
e
cl
us
te
re
d
at

ou
tp
ut

ar
ea
.
c
p<

0.
10
,
b
p<

0.
05
,
a
p<

0.
01
.



2.6. Empirical Results 41

Figure 2.8: The Shrank and Expanded Placebo CCZ

Insu�cient Transactions: Another issue is that there could be inadequate re-

peated observations within some postcode and outliers could be driving the esti-

mates. Thus, I drop any postcodes with less than 5 repeated transactions over the

sample period in Column (4). This reduces the number of observations marginally

by about 14%. Again, this did not matter as results are similar to those reported

earlier.

Physical Barriers: An additional concern is whether the CCZ boundary overlaps

with physical constraints (hills, rivers, forest etc.) or major infrastructures (railways,

�yovers etc.). If the CC boundary coincides with these features, even restricting to

proximate areas on di�erent side of these features might not eliminate unobserved

neighbourhood di�erences. While the CCZ crosses the Thames River due to the

ease of charge implementation, the south of the WEZ is bounded by Thames River.

The concern that properties to the south of the river are di�erent from those in

the north is not unfounded as these areas are typically not considered as part of

Central London. Thus, I exclude housing transactions located south of the Thames

River from the estimation in Column (5). Doing so has no discernible impact on

the estimates although the CCZ is no longer a relevant instrument as re�ected by

the slightly lower �rst stage F-statistics.

Removal of Sales closest to the CC boundary: I further remove property sales

than are within 100 metres from the CC boundary. The notion is that although

restricting to properties closest to the charge boundary can minimize unobserved

neighbourhood di�erences, the spillover e�ects could be greater as well. For instance,

pollutants from tra�c emissions could travel across the boundary to neighbouring

areas inside the zone. Moreover, properties very close to the CC boundary but
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inside the CCZ could be near to these congested ring roads circumventing the zone.

Home-owners living in these areas, despite being inside the CCZ, might receive

considerable negative tra�c externalities that cross the boundary, resulting in an

underestimation of the WTP to avoid tra�c. Results are summarized in Column (6).

Removing these roads and property sales close to the CC boundary do not matter

much. It appears that although home owners pay more for properties further inside

the CCZ, the impact of the charge on tra�c is larger as well, resulting in an elasticity

that is within the range reported previously.

Public Transport Capitalization E�ects: One of the correlated e�ects associ-

ated with the implementation of the CC is the channelling of charge revenues on

improving public transport facilities. This could increase the values of homes that

are better connected to public transportation nodes and is especially the case for

houses outside the cordoned area as driving into the zone is more expensive. To

partial out these e�ects, I add a vector of controls that include: (1) a binary vari-

able denoting whether postcode j is within 200 metres of a tube station and (2)

the count of bus lines from bus stops within 200 metres of the postcode. Both are

interacted with year dummies as they are time-invariant. As seen in Column (7),

upon controlling for these covariates, the e�ects on housing prices are marginally

larger now compared to earlier results from Table 2.5. This is consistent with the

idea that house prices outside of the CCZ but close to transportation nodes have

appreciated more and accounting for this attribute to larger MWTP to avoid tra�c.

Measurement Error: One may also argue that the local tra�c for each property

could be inaccurately measured by assigning road tra�c conditions that are up to

100 metres away from the property (See Figure 2.3). This measurement error could

lead to attenuation bias. To mitigate this concern, I adopt several strategies to more

reliably quantify local tra�c �ow. In Column (8), I only incorporate sales that are

within 50 metres from the roads that I could accurately measure tra�c conditions.

Here, I observe more pronounced e�ects of the CCZ on both tra�c and housing

prices. Putting them together, a 1% increase in tra�c corresponds to a 0.50% fall in

home prices, which is congruent to earlier �ndings. In Column (9), I re-weight the

estimates inversely based on the euclidean distance of the property from the nearest

road. Put di�erently, like before, I am placing more emphasis on sales that I can

more precisely determine tra�c conditions. Again, the impacts on the estimates are

modest.

Spurious time e�ects: Next, I address the concern whether e�ect of the CCZ on

home prices29 could be documented spuriously during pre-treatment periods. To do

so I generate rolling 1-year pre-treatment placebo windows for the CCZ. Placebo

29As I only have yearly tra�c �ow from 2000 onwards, I am unfortunately not able to
perform a similar analysis for tra�c �ow.



2.6. Empirical Results 43

treatment period is between tfalse and tfalse+1year and the placebo window is from

tfalse − 1year to tfalse + 1year where tfalse represents every quarter from 1996Q1

onwards till 2002Q1. For instance, for 1996Q1, the pre-treatment period is from

1995Q1 to 1995Q4 and the treatment period is from 1996Q1 to 1996Q4. The new

key regressor - CCZ ∗ tfalse - is the interaction of a binary variable of whether the

property i in the CCZ is sold during the false treatment period. This falsi�cation

test incorporates transactions within 1 kilometre from the CCZ boundary.

Placebo estimates are summarized in Figure 3.8. Each dot represents estimate from

a di�erent placebo regression and the tails denote the 95% con�dence interval. The

dashed line denotes the implementation e�ects from Column (5) of table 2.5. As

observed, none of the placebo estimates, except for 1998Q1, is statistically di�erent

from zero and most of the estimates are smaller than the implementation e�ects.

These �ndings increase the con�dence that e�ects documented earlier are not spu-

riously reported in non-treatment periods.

Figure 2.9: The CCZ Placebo Estimates during pre-treatment period. Each point
represents a di�erent regression where the treatment period is 1-year rolling win-
dow from the corresponding quarter and the pre-treatment period is 1 year before
the quarter. The tails represent 95% con�dence interval. Cross indicates that the
estimate is signi�cant at least at 10%, while dot shows otherwise.

2.6.6 Discussion

In this section, I employ earlier estimates to compute the localised economic

bene�ts associated with the charge. To simplify things, I make the following as-

sumptions: (1) the preferences for tra�c are identical across individuals living in
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the same cordoned area but could di�er between the CCZ and WEZ and (2) the

relationship between tra�c and house price is linear. The implementation of the

charge, on average, induces home prices to increase by ¿33,879 and ¿104,93330 in

the CCZ and WEZ respectively. Based on the Census estimates on the number

of dwellings, which indicates that there are around 91,848 and 113,535 houses in

the CCZ and WEZ in 2011 respectively, this implies that the CCZ and WEZ have

generated an aggregate windfall of around ¿3.11 billion and ¿11.91 billion relative

to those outside the zone. This �gure is meaningful as it presents monetary measure

of the local bene�ts associated with the charge.

Although these e�ects seem large at �rst sight, it is not as it measures the WTP

for improvement in tra�c conditions in perpetuity given the long-lived nature of

real estate. But are they tenable? To answer this, I compare the bene�ts to the

cost of implementing the charge. I did some adjustments to the operating costs of

running the London Congestion Charge provided by Leape (2006). Estimating the

�rst year cost to be around ¿163 million and the subsequent annual operating cost

equal to ¿140 million (¿23 million is the set up cost), the present value net cost

of implementing the charge for the next 30 years at 2015 ¿value is around ¿4.15

billion. This is computed by assuming an in�ation rate of 2.7% and a discount rate

of 3.0%. The net house price gains, which measures the bene�ts for home owners

in the zone, covers almost 75% of the net cost. This is just about right considering

the array31 of bene�ts enjoyed by others that are not quanti�ed in this study.

There are policy implications associated with this study. The main reason why

many individuals are against the Pigouvian tax is that it is regressive. The huge

windfall enjoyed by residents in the zone at the expense of poorer households living

outside the cordoned area suggests that this is true. Hence, policy makers should

ensure that the charge is more equitable for individuals residing outside the zone.

For one, the 90% waiver of the charge that is given to homeowners living in the

CCZ/WEZ should be either removed or reduced since they have bene�ted tremen-

dously from better tra�c conditions and higher home values. Furthermore, policy

makers could consider implementing a tax to cream o� these capitalization gains.

Channelling these additional revenues or taxes to enhance the reliability and quality

of public transit could further improve the e�cacy of the charge and provide a more

equitable redistribution of bene�ts to home-owners living outside.

Finally, I investigate the impact on the LCC on tra�c accidents and air quality.

As this is out of the purview of this study, I move these results to Table 2.15

30This is computed by simply taking the average of the capitalization e�ects across the
di�erent distance bandwidths from Table 2.5.

31Other bene�ts that are not localised include the time savings for those living outside
the zone and the overall improvement in air quality with less tra�c.
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and Table 2.16 in Data Appendix. In short, these results show that the CC not

only reduces the number of tra�c collisions, but also improves air quality in the

cordoned area. Speci�cally, compared to areas outside but within 3 kilometres from

the charged zone, the number of accidents and injuries decline by around 5%, while

the concentration of PM10 decrease by 4% after the CC is implemented. These

e�ects are weaker associated with air quality as, depending on wind speed and

direction, air pollutants could travel across the boundary into the charge zone. This

is observed for lighter air pollutants such as NOX and NO2. Another explanation

purported by Green et al. (2018) for the increase in these nitrogen oxides is the

substitution of diesel based vehicles into the cordoned area as taxis and buses are

not charged. Combustion of diesel could lead to higher content of nitrogen oxides.

Nevertheless, these �ndings largely support the notion that the cordoned area has

become a more pleasant area after the charge is implemented, which could explain

why home prices are higher.

2.7 Conclusion

This paper exploits the sharp but localised changes in tra�c conditions induced

by the London Congestion Charge (LCC) in the Congestion Charge Zone (CCZ) and

the Western Extension Zone (WEZ) to estimate the cost of tra�c by estimating the

hedonic house price function. Using the LCC as an instrumental variable for tra�c

conditions, this study is an improvement from the typical cross-sectional approaches

that are blighted by omitted variable bias and sorting.

The evidence suggests that the introduction of the CC in the CCZ and WEZ are

associated with declines in tra�c volume and increments in housing values. Com-

paring properties just inside and outside the Congestion Charge (CC) boundary to

reduce unobserved neighbourhood di�erences, I observe that new homeowners pay,

on average, 3.6% (¿40,968) more for their homes to enjoy 8.5% (1,779 vehicles)

reduction in tra�c in the CCZ. Putting these results together, the instrumental

variable estimates imply that the elasticity of housing values with respect to tra�c

is -0.43. These results are robust across a battery of sensitivity analyses and placebo

tests. Compared to the previous literature, these estimates on the average marginal

willingness to pay to avoid tra�c are much larger and are far less sensitive to spec-

i�cations. Additional results indicate that home buyers could have paid more for

better air quality and safer roads in the cordoned area.

My estimates indicate that the tolls generated substantial local wealth gains of

around ¿3.11 billion and ¿11.91 billion for home-owners in the CCZ and the WEZ

respectively relative to neighbours residing outside the zone. These gains measures

the local bene�ts associated with the charge and suggested that the policy created
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a windfall for residents in the zone by creating a less congested and more conducive

living environment.

Given that congestion is fast becoming a salient issue for many cities around

the world, this problem has drawn considerable interests from policy makers and

economists. Yet, solutions such as constructing more roads (Duranton & Turner,

2011) and implementing fuel taxes (Anas & Lindsey, 2011) are notoriously ine�ec-

tual in reducing tra�c jams. My �ndings suggest that although congestion tolls

successfully reduce in tra�c in the cordoned area, this may be at the expense of

neighbouring areas outside as substantial displacement of tra�c across the bound-

ary is detected. Hence, to ensure that the policy is e�ective in abating bottlenecks,

there must be proper management of tra�c around and beyond the charge zone.

Also, it is imperative to provide a reliable and comprehensive public transport sys-

tem to encourage commuters to switch from driving.
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2.8 Data Appendix

A1. Description of Data

Table 2.9: Description of Variables used in the analysis

Panel A: Main Speci�cation Variables
Variable Source Description
Dependent Variable
Housing Price ( Yijkt ) Land Registry Natural logarithm of prop-

erty price of transaction i at
postcode k, neighbourhood j
at quarter q of year t

Tra�c Flow ( Tijkt ) Department
Of Transport

Natural logarithm of tra�c
�ow from vehicles with 4 or
more wheels for transaction
i at postcode k at year t

Collision Outcomes ( Art ) STATS19 Counts of collisions outcome
(Accidents, Slight injuries,
Serious injuries and Deaths)
at road section r at year-
month t

Air Pollutant (Pmt) London Air
Quality Net-
work

Natural logarithm of air
pollutant (NO2, NOX &
PM10) at monitoring sta-
tion m at year-month t

Housing Characteristics(X ′it)

New Sales Land Registry Dummy denoting whether
transaction i is new build

Terrace Land Registry Dummy denoting whether
the property type for trans-
action i is terrace

Leasehold Land Registry Dummy denoting whether
the tenure for transaction i
is leasehold

Location/Neighbourhood Characteristics (V ′jt)

Distance to the CCZ/WEZ
boundary

- Elucidian distance of post-
code j from the perimeter of
the CCZ/WEZ

Distance to nearest Grade 1
Park

Magic Elucidian distance of nearest
Grade 1 Park from postcode
j in km

Counts of Heritage Build-
ings

Magic Number of Heritage build-
ings within 200m from post-
code j

Thames River View Digimap Binary variable = 1 if post-
code j within 200m from
Thames River, 0 otherwise

Minority race residents Census 2001
& 2011

% of Asian/African/Middle
Eastern and other minority
race residents in OA

Unemployment rate Census 2001
& 2011

% of unemployed working
adults in OA

Uneducated residents Census 2001
& 2011

% of residents in OA with no
education quali�cations

Lone parent households Census 2001
& 2011

% of single-parent house-
holds in OA
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A2. Additional Descriptive Statistics

(a) Minority ethnicity

(b) Lone parent households

(c) Driving to work

(d) Uneducated

(e) Unemployment Rate

(f) Car ownership

Figure 2.10: Census demographics around the WEZ. The solid line represents the
conditional average change of various demographics at a given distance from the
CC boundary and the dashed line represents the 95% con�dence interval. It is
constructed by regressing the % ∆ in demographics at Census Output Area with
boundary �xed e�ect and 100 meters distance bandwidths and coe�cient of each
distance dummy is plotted. Distance is negative when it is in the charged zone (Left
of dashed Line). There are a total of 1,727 output areas within 1.5 kilometres in
and out of the WEZ.
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Figure 2.11: The e�ects of the WEZ on Tra�c (Top) and House Prices (Bottom)
across distance around the CC boundary. Distance is negative when it in the charged
zone (Left of dashed line). The plotted coe�cients denote the localised conditional
changes of tra�c/house prices at a given distance from the WEZ boundary. Tails
denote 95% con�dence interval. They are constructed by regressing tra�c volume or
house prices against postcode and year-month �xed e�ects, observable housing and
neighbourhood covariates and 100 metres distance-bandwidth dummies interacted
with Postit and distance-bandwidth dummies interacted with CCit. Postit is equal
to one for observations after the WEZ is enforced, while CCit takes the value of one
for observations in the cordoned area after the WEZ is enforced. This �gure plots
the coe�cients associated with these distance dummies.
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A3. E�ects of Other Congestion Charge Events on Tra�c &

House Prices

In this section, I report the e�ects of the other Congestion Charge events on

tra�c and housing values. These events include (1) the increase in the charge from

¿5 to ¿8 from the 4th of July 2005 (CCZ2005) and (2) from ¿8 to ¿10 from the 4th

of January 2011 (CCZ2011), (3) the removal of the WEZ from the 24th December

2010 (RemWEZ) and (4) the increase in the charge from ¿10 to ¿11.50 from the

16th of June 2014 (CCZ2014). The sample windows for these events are de�ned

by 2 years before and after the respective event dates. Refer to Figure 2.4 for more

details.

Overall, as re�ected in Panel A of Table 2.10, most of the charge increments

do not materially improve tra�c conditions. This could explain why these hikes

have no e�ects on house prices, as documented in Panel B. The only exception is

during the charge increment in 2005 (CCZ2005). Restricting the analysis to areas

1 kilometre in and out the CCZ, I observe signi�cant reductions of tra�c �ow at

around 2.98%. This works out to around 523 less vehicles every day. Corresponding

to these reductions, home prices are 1.28% higher in the CCZ although this esti-

mate is not statistically signi�cant at any conventional levels. Interpreting these

estimates collectively, the elasticity of housing prices with respect to tra�c volume,

as shown in Column (5) of Table 2.11, is around -0.43, which is fairly comparable

to earlier �ndings. Negligible impact of these hikes explain why none of the MWTP

to avoid tra�c estimates are statistically signi�cant in Table 2.11. The immaterial

e�ects of the charge increment are consistent with the �ndings reported by Agarwal

et al. (2015) who also show that the increase in the CC in Singapore do not a�ect

residential transacted prices.

In other results, I observe a slight rebound in tra�c �ow that ranges between

2.47% and 4.08% (482 - 798 vehicles) in response to the removal of the WEZ. This

surge in the tra�c after the WEZ (366 - 839 vehicles) is taken away is remarkably

comparable to the e�ects documented after the implementation of the WEZ (See

Table 2.5). These results reinforce the e�ectiveness of the implementation of the CC

in reducing congestion. Contrary to expectations, I observe e�ects of around 3.24%

to 3.77% that are too imprecise to be statistically signi�cant after the removal of

the WEZ. The muted e�ects on home prices explain why the average MWTP on

tra�c are imprecisely estimated32 across the board for the removal of the WEZ as

observed in Table 2.11.

32Even though the removal of the WEZ has a signi�cant e�ect on tra�c conditions, the
weak �rst stage F-statistics (See Table 2.10) suggest that the instrument might have the
strength to obtain consistent estimate of the MWTP to avoid tra�c.
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Table 2.11: Instrumental Variable Estimates of the impact of the other charge events
on House Prices

(1) (2) (3) (4) (5)
5km 4km 3km 2km 1km

ln(Tra�c) - CCZ2005 -0.2041 -0.3135 -0.1225 -0.4352 -0.4304
(1.0233) (1.0112) (0.8029) (0.8587) (0.6845)

Obs 43169 34873 26588 18743 11060
R2 0.79 0.78 0.78 0.76 0.75
No.of Postcodes 7361 6042 4667 3259 1888
ln(Tra�c) - CCZ2011 0.7741 1.0902 1.2334 5.7398 2.7304

(1.8886) (3.3888) (3.2590) (53.9422) (5.9623)
Obs 21098 17952 13729 9499 5508
R2 0.76 0.74 0.75 0.19 0.62
No.of Postcodes 3967 3440 2756 1964 1108
ln(Tra�c) - RemWEZ 1.1398 0.8800 0.8714 0.8194 1.5180

(0.9530) (0.7470) (0.8183) (0.7652) (1.6835)
Obs 27122 22920 18372 13486 8545
R2 0.77 0.77 0.77 0.76 0.70
No.of Postcodes 4190 3474 2748 2010 1235
ln(Tra�c) - CCZ2014 18.9003 10.1860 -26.5141 -47.3229 -47.5710

(35.7493) (11.6536) (67.0420) (186.2897) (71.3023)
Obs 16064 12882 9349 6705 4068
R2 -2.18 -0.07 -1.62 -5.67 -3.49
No.of Postcodes 3092 2550 1886 1301 748

Each coe�cient is the IV estimate (βIV ) from a di�erent regression that measures the
direct elasticity between tra�c volume and house prices using the di�erent CC
events as instruments that include 1) the increase in the charge from ¿5 to ¿8 in 2005
(CCZ2005), (2) the increase in the charge from ¿8 to ¿10 in 2011 (CCZ2011) (3) the
removal of the WEZ in 2010 (RemWEZ) and (4) the increase in the charge from ¿10 to
¿11.50 in 2014 (CCZ2014). Dependent variable is the natural logarithm of transacted
house prices. Sample is constrained to properties within 5 kilometres (Column 1) to 1
kilometre (Column 5) from the CCZ/WEZ boundary. See notes in previous tables for
details on the control variables included. Robust standard errors (in parenthesis) are
clustered at output area. c p<0.10, b p<0.05, a p<0.01.
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A4. Additional Results for the WEZ

In this section, I provide results for the WEZ analogous to earlier speci�cations

that I have conducted for the CCZ. In particular, I constraint the sample of trans-

actions from 900 to 500 meters from the WEZ boundary in Table 2.12. Although

there are some evidences indicating that the introduction of the WEZ reduces tra�c

�ow and increases home prices in the cordoned area, these results �uctuate across

the di�erent samples. Moreover, low F-statistics (<10) suggests that WEZ is a weak

instrument with limited impact on improving tra�c conditions. Using the WEZ as

an instrument could produce unreliable and overly in�ated estimates of the hedonic

price schedule gradient.

Table 2.12: Reduced form & IV estimates of the WEZ on Tra�c & House
Prices

900m 800m 700m 600m 500m
Panel A: First Stage (Log Tra�c)

WEZ -0.0180c -0.0212c -0.0207 -0.0098 -0.0316c

(0.0107) (0.0120) (0.0139) (0.0147) (0.0170)
R2 0.99 0.99 0.99 0.99 0.99
∆ Tra�c -419 -505 -469 -218 -717
F-stats 2.84 3.12 2.22 0.44 3.47
Panel B: Reduced Form (Log House Price)

WEZ 0.0573b 0.0334 0.0412 0.0352 0.0031
(0.0254) (0.0272) (0.0305) (0.0345) (0.0419)

R2 0.75 0.75 0.74 0.74 0.73
∆ HP 87387 49606 56745 47444 4107
Panel C: IV Regressions
ln(Tra�c) - WEZ -3.1821 -1.5741 -1.9944 -3.6093 -0.0989

(2.2443) (1.4907) (1.8881) (6.3134) (1.3213)
Obs 11110 9938 8770 7496 6388
R2 0.66 0.72 0.70 0.59 0.73
No.of Postcodes 1675 1469 1296 1110 921

Each coe�cient is from a di�erent regression. Sample is constrained to prop-
erties within 900m (Column 1) to 500m (Column 5) from the WEZ boundary.
See notes in previous tables for details on the control variables included. Ro-
bust standard errors (in parenthesis) are clustered at output area. c p<0.10,
b p<0.05, a p<0.01.

Similar observations can be made in Table 2.13. Noisy and small e�ects from

the introduction of the WEZ on tra�c �ow could explain why the willingness to

pay to avoid using the WEZ as an instrument is in�ated and imprecisely estimated.

One notable result is the announcement e�ects associated with the WEZ in Column

(1). It appears that homeowners are fairly optimistic about the impact of the WEZ,

as evidenced by the 2.7% (¿34,532) increase in home prices. These positive beliefs

could be driven by the e�ectiveness of the CCZ in curbing tra�c congestion. It is

also intriguing to observe that tra�c volume went down by 4.77% (1037 vehicles).

One explanation is the possible spillover e�ects from the implementation of the CCZ.

There could be less tra�c passing through the WEZ towards the CCZ because of

the charge imposed.
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Table 2.13: Robustness Tests for the WEZ

(1) (2) (3) (4) (5) (6) (7)
Announce Pcd>=5 North Transport Rem Near 50m Houses IDW

Panel A: First Stage (Log Tra�c)

WEZ -0.0466a -0.0160 -0.0301a -0.0240b -0.0187c -0.0085 -0.0212b

(0.0103) (0.0106) (0.0104) (0.0099) (0.0113) (0.0135) (0.0100)
R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99
∆ Tra�c -1037 -362 -669 -534 -392 -193 -472
F-stats 20.30 2.29 8.41 5.84 2.76 0.40 4.44
Panel B: Reduced Form (Log House Price)

WEZ 0.0266 0.0639a 0.0654a 0.0681a 0.0647a 0.0582c 0.0731a

(0.0174) (0.0242) (0.0227) (0.0215) (0.0221) (0.0319) (0.0234)
R2 0.75 0.70 0.76 0.75 0.75 0.74 0.76
∆ HP 34532 91592 100413 104768 103284 88204 112700
Panel C: IV Regressions
ln(Tra�c) -0.5710 -3.9998 -2.1686b -2.8407c -3.4598 -6.8249 -3.4534c

(0.3951) (3.0329) (1.0496) (1.4920) (2.3799) (11.7901) (1.9555)
Obs 19303 9987 10914 12490 10598 6453 12490
R2 0.74 0.54 0.72 0.68 0.66 0.35 0.66
No.of Postcodes 2951 1014 1776 1896 1635 975 1896

Each coe�cient is from a di�erent regression. Sample is constrained to sales 1 km from the CC boundary
unless otherwise stated. In (1), the treatment period (CCit) is de�ned by the announcement window and
begins the day the WEZ is announced o�cially by the Transport for London (TfL) and ends the day before
the CCZ is implemented. In (2), I remove any sales in postcodes with less than 5 repeated transactions over
sample period. In (3), I remove any sales south of the Thames River. In (4), I include distance to tube-by-year
and number of buslines-by-year �xed e�ects. In (5), I exclude sales that are 100 meters or less from the charge
boundary (both inside and outside the zone). In (6), I remove any transactions that are beyond 50 meters from
the nearest roads that I can reliably measure tra�c �ow. In (7), estimates are weighted inversely according the
distance from transacted property from matched road. Robust standard errors (in parenthesis) are clustered
at output area. c p<0.10, b p<0.05, a p<0.01.

Figure 2.12 report estimates from placebo tests associated with fake pre-treatment

windows for the WEZ. Like the analysis before in Figure 3.8, I generate rolling 1-year

pre-treatment placebo windows for every quarter from 1996Q1 onwards till 2006Q1.

Placebo treatment period is between tfalse and tfalse+1year and the placebo window

is from tfalse − 1year to tfalse + 1year where tfalse represents every quarter 1 year

before the implementation of the WEZ. The new key regressor - WEZ ∗ tfalse - is
the interaction of a binary variable of whether the property i in the WEZ is sold

during the false treatment period. This falsi�cation test incorporates transactions

within 1 kilometre from the WEZ boundary. None of the placebo estimates are

bigger than the implementation e�ects33 denoted by the dashed line. If anything,

home prices in the WEZ dipped before 2000 but these trends should not confound

earlier capitalization e�ects on the WEZ.

33This WEZ estimate on house prices is obtained from Column (5) of Panel A from
Table 2.5.
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Figure 2.12: The WEZ Placebo Estimates during pre-treatment period. Each point
represents a di�erent regression where the treatment period is 1-year rolling window
from the corresponding quarter and the pre-treatment period is 1 year before the
quarter. The tails represent 95% con�dence interval and cross denotes that the
estimate is signi�cant at least at 10%, and is insigni�cant otherwise.
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Table 2.14: Reduced form estimates of the Congestion Charge Discount
on Tra�c

(1) (2) (3) (4) (5)
5km 4km 3km 2km 1km

Discount 0.0023 0.0013 0.0088 0.0103 0.0178
(0.0084) (0.0087) (0.0091) (0.0099) (0.0120)

WEZ -0.0407a -0.0415a -0.0332a -0.0315a -0.0258a

(0.0075) (0.0079) (0.0080) (0.0080) (0.0098)
Obs 46819 39349 31814 24012 15161
R2 0.99 0.99 0.99 0.99 0.99
No.of Postcodes 7576 6284 4979 3699 2232

Discount 0.0053 0.0152 0.0010 0.0220 0.0289
(0.0158) (0.0177) (0.0182) (0.0193) (0.0218)

RemWEZ 0.0388a 0.0486a 0.0465a 0.0639a 0.0546a

(0.0132) (0.0142) (0.0141) (0.0137) (0.0151)
Obs 51393 43746 35255 25554 15976
R2 0.99 0.99 0.99 0.99 0.99
No.of Postcodes 7770 6458 5132 3763 2332

Each coe�cient is from a di�erent regression. Sample is constrained to sales
within 5km (Column 1) to 1km (Column 5). Discount is a binary variable
equals to one for sales made inside the discount zone after the WEZ is in-
troduced. Dependent variable is the natural logarithm of the tra�c �ow.
Robust standard errors clustered at output area are reported in parenthesis.c

p<0.10, b p<0.05, a p<0.01
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A5. E�ects of the Congestion Charge on Air Quality and

Accidents

In this section, I provide some evidence to understand why home buyers are

willing to pay for better tra�c in the cordoned area after the CC is introduced. In

particular, I examine how the e�ects of the CC - both the CCZ and the WEZ - on

tra�c collisions and air pollution.

Art = αr + δCCrt + ωt + εrt, (2.6)

Table 2.15 reports the key estimate (δ) from equation 2.6 for both the CCZ

and the WEZ. These regressions include road-level (αr) and year-quarter (ωt) �xed

e�ects and the key variable of interest, CCrt, is an indicator variable that takes the

value of 1 for roads inside the CCZ/WEZ after the charge is implemented. If the

reduction in tra�c due to the introduction of CC makes roads safer, I expect δ to

be < 0. I constrain the analysis to roads within 3 kilometres from the CCZ/WEZ

boundary, with the notion being that this bandwidth covers the entire cordoned

area. Here, the dependent variables are the year-quarterly counts34 of collisions,

slight injuries, serious injuries and deaths collected at a particular section of the

road (r) at year-quarter (t). Given that the dependent variables are non-discrete

count outcomes, I further report Poisson estimates of δ.

As expected, small but signi�cant reductions in collisions are observed and es-

timates are fairly comparable between OLS and Poisson regressions. Speci�cally,

the counts of accidents and injuries went down by about 4.7 to 4.9% after the CCZ

is implemented. Although sizeable reductions in deaths are documented, they are

too imprecisely estimated to be statistically signi�cant. Conversely, I do not report

signi�cant reductions in collision outcomes after the WEZ is implemented. This is

understandable given that the Western Extension of the CC had a negligible e�ect

on reducing tra�c �ow in the �rst place.

34The reason why this is not conducted at a monthly level is because tra�c accidents
are fairly rare events and aggregation at a monthly level will lead to a disproportionate
number of zeros in the dataset.
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Table 2.15: E�ect of the CCZ & WEZ on Tra�c Accidents

CCZ WEZ
Acc Slight Serious Deaths Acc Slight Serious Deaths

OLS -0.0150a -0.0147b -0.0028 -0.0140 0.0019 -0.0007 0.0019 -0.0040
(0.0045) (0.0066) (0.0039) (0.0107) (0.0042) (0.0055) (0.0061) (0.0112)

Obs 255789 243192 94271 6428 193431 182007 67578 5019
R2 0.26 0.21 0.05 0.01 0.19 0.16 0.04 0.01
No.of Road Segments 10671 10146 3932 268 8070 7593 2819 210
Poisson -0.048b -0.050c -0.002 -0.295 0.005 -0.010 0.013 -0.108

(0.023) (0.027) (0.056) (0.284) (0.034) (0.040) (0.089) (0.380)
Obs 255789 243192 94271 6428 193431 182007 67578 5019
Absolute -0.011 -0.012 -0.000 -0.015 0.001 -0.001 0.001 -0.005
% ∆ -4.723 -4.910 -0.182 -25.560 0.544 -0.953 1.268 -10.229
No.of Road Segments 10671 10146 3932 268 8070 7593 2819 210

Dependent variable is the counts of accident outcomes collected at road segment r at quarter t. Acc is the total
counts of all collision, Slight is the number of slight injuries, Deaths is the total number of causalities from accidents.
Each coe�cient (δ) is from di�erent regressions that incorporate roads within 3 kilometres from the CCZ/WEZ
boundary estimated with year-quarter and road �xed e�ects. CCrt is a binary variable that takes the value of 1 for
roads in the CCZ/WEZ after the charge is implemented. Robust standard errors, reported in the parenthesis, are
clustered at road-level

Pmt = αm + ϕCCmt +X ′mtφ+ ωt + εmt, (2.7)

Table 2.16 reports the key estimate (ϕ), which captures the percentage change

in pollutants after the CCZ and WEZ are implemented from equation 2.7. The

dependent variables include the natural logarithm of various pollutants including

nitrogen oxide (NOX), nitrogen dioxide (NO2) and particulate matter 10 (PM10) 35

collected at a monitoring station level (m) at month (t). Other than exploiting the

monthly variation of air quality within monitoring stations with station (αm) and

year-month (ωt) �xed e�ects, I further control for di�erences in wind speed, wind

direction, temperature, relative humidity and barometric pressure.

Panel A presents the e�ects of the CCZ on air quality within the cordoned

area. A surprising and intriguing set of results emerges. The estimate implies that

after the CCZ is enforced, the concentration of NOX and NO2 are 4% and 1%

higher respectively although the estimates for NO2 are too imprecisely estimated

to be statistically signi�cant. This result is consistent with that reported by Green

et al. (2018). They explain that the implementation of the CC could lead to the

substitution of diesel-based vehicles, such as buses and taxis, in the charged zone

as they are waived from paying the CC. The combustion of diesel produces more

nitrogen oxides and this could explain the higher concentration of these pollutants

in the zone.

Moreover, given that I am comparing neighbourhoods very close to one another

around the boundary, another possibility is that air pollutants travel across space

35There are other pollutants such as sulphur dioxide, PM2.5 and ozone. However, miss-
ing observations across the sample period meant that there are insu�cient data points for
statistical analysis.
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into the cordoned area. Findings on PM10 support this hypothesis. In particu-

lar, I observe that the concentration of PM10 is about 4% lower after the CCZ is

introduced. This pollutant is considerably heavier and less airborne compared to

nitrogen oxides. Panel B performs similar analyses for the introduction of the WEZ

and reveal smaller e�ects that are less precisely estimated in the same direction.

This is expected given that tra�c conditions do not improve signi�cantly after the

WEZ is put in place.

All in all, these results suggest that the reduction in tra�c from the implemen-

tation of the CC leads to safer roads and better air quality in the cordoned area

that could explain why homeowners are paying more for homes.

Table 2.16: E�ect of the CCZ & WEZ on Air Quality

Panel A:CCZ Panel B:WEZ
NOX NO2 PM10 NOX NO2 PM10

CCZ/WEZ 0.039c 0.010 -0.038b 0.018 0.023 -0.016
(0.021) (0.017) (0.016) (0.027) (0.021) (0.026)

Obs 1422 1412 990 1215 1214 1118
R2 0.94 0.90 0.86 0.94 0.93 0.86
No.of.Stations 22 22 19 27 27 22
Treated 8 8 6 3 3 2
Absolute 5.93 0.65 -1.27 4.13 2.10 -0.46

Dependent variable is the natural log of pollutant collected at monitoring sta-
tion m at month t. Each coe�cient (ϕ) is from di�erent regressions that incor-
porate stations within 3 kilometres from the CCZ/WEZ boundary estimated
with year-month and monitoring station �xed e�ects. CCmt is a binary variable
that takes the value of 1 for stations in the CCZ/WEZ after the charge is im-
plemented. Control variables include wind speed, wind direction, temperature,
relative humidity and barometric pressure. Robust standard errors, reported
in the parenthesis, are clustered at district*year-month.



Chapter 3

Do Speed Cameras Save Lives?

3.1 Introduction

Every year, more than 50 million people are injured, with more than 1.2 mil-

lion people are killed by auto-mobile crashes around the world (Peden et al., 2004).

Likewise, across United Kingdom (UK), tra�c collisions cause more than 160,000

injuries and 1,730 fatalities in 2015 (DfT, 2016). These crashes have disproportion-

ately a�ected the younger generation. It is the leading cause of death for those

between 5 and 34 years old, accounting for more than 15% of their deaths and in-

ducing many life years lost1. In monetary terms, these accidents cost UK a total of

¿10.3 billion in 20152.

Speeding is one of the main reasons3 why crashes occur. According to Depart-

ment for Transport (DfT), speeding accounts for more than 24% of the fatal accidents

that occurred in UK in 2015. The severity of the crashes is also dependent on the

velocity of the colliding vehicles. Studies have shown that the fatality risk at 50

km/h is twice larger than the risk at 40 km/h, and more than �ve times larger than

the risk at 30 km/h (Rosén & Sander, 2009). Although speeding is often considered

a menial o�ence to many, it is immense in determining both the probability and

gravity of crashes.

Di�erent interventions, such as tra�c police, tra�c lights, road humps, speed

limits, warning signs, vehicle-activated speed signs and speed enforcement cameras,

have been employed to deter speeding. Since the seminal paper by Peltzman (1975),

1Based on 2016 �gures from O�ce for National Statistics, there are a total of 3,423
deaths from accidents. This is just slightly more than 10% of the 30,570 who passed on
from lung cancer. However, assuming that life expectancy is 79 for males and 82.8 for
females, based on the demographics of the victims, the total number of life years lost from
accident amounts to 117,285, which is almost half of the 264,424 life years lost from lung
cancer. Clearly, one is underestimating how detrimental tra�c accidents can be by just
looking at casualty �gures.

2These �gures are much larger in United States. A federal study conducted by National
Highway Tra�c Safety Administration reveals that estimated economic cost from motor
crashes is approximately US$242 billion in 2010 (Administration et al., 2014).

3Many other factors explain why tra�c collisions occur. For instance, intoxication (Dee,
1999; Levitt & Porter, 2001a; Hansen, 2015), distraction from the use of mobile phones
(Abouk & Adams, 2013), failure to use seat belts (Levitt & Porter, 2001b; Cohen & Einav,
2003) and visibility (Ho et al., 2017) could increase the risk and severity of crashes.
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evaluating these measures has drawn considerable attention from economists. These

studies have examined the e�ect of speed limits (Ashenfelter & Greenstone, 2004;

van Benthem, 2015), tra�c police (DeAngelo & Hansen, 2014) and red-light cam-

eras (Gallagher & Fisher, 2017) on tra�c accidents. Falling back to the economic

models of crime (Becker, 1968), these instruments deter reckless driving through

punishment, such as �nes, driving suspension and incarceration. One widely used

strategy that has drawn substantial interest from the transport safety literature,

but surprisingly scant attention from economists, is speed camera. These devices

are usually deployed at sites prone to collisions (e.g windy, hilly roads) or sites with

vulnerable pedestrians (e.g near schools, transportation nodes and petrol stations).

They penalize drivers for exceeding speed limits around the cameras.

In this paper, I estimate the e�ects of �xed speed cameras on reducing the occur-

rence and severity of collisions. To do so, I put together a rich dataset of more than

2,500 �xed speed cameras across England, Scotland and Wales (Great Britain).

I rely on the STATS19 Road Accident Dataset that documents details (location,

number of injuries and fatalities etc.) of every reported collision since 1979. This

comprehensive dataset allows me to conduct the analysis at a �ne spatial scale and

capture how enforcement e�ects change moving away from the camera. In short,

I compare accident outcomes before and after the camera is introduced with sim-

ilar non-camera sites using a quasi-experimental di�erence-in-di�erence estimation

strategy.

For the estimates to be valid, it requires the mean di�erences in unobserved

characteristics between sites not to be correlated with the installation of enforcement

cameras. This assumption, however, is likely to be violated given the endogeneity in

site selection. Cameras are often found at areas prone to collisions (e.g more tra�c,

sharp bends) and this selection process is likely to accentuate the di�erences between

sites with and without cameras. The di�culty in identifying the enforcement e�ects

of cameras is further exacerbated by the fact that installations can happen even

when sites do not meet the selection rules (see Section 2). Moreover, the timing

of intervention is likely to be endogenous as well. It is more probable for sites

that experience a sharp increase in accidents to receive cameras. This means that,

regardless of intervention, collisions will probably to revert to lower levels, inducing

an over-estimation of enforcement e�ects.

I adopt several strategies to address these endogeneity concerns. First, to partial

out time-invariant di�erences between sites, I include site �xed e�ects to exploit

the variation in collisions within each site before after the speed camera is installed.

Second, to avoid the bias from the obscure selection process, I restrict the analysis

to only sites that will ever have enforcement cameras and rely on time variation of

installation for identi�cation. Put di�erently, sites with camera installations in the
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future (but no cameras now) will be employed as reference groups for sites having

installations now. Third, I minimize observable di�erences by controlling for a rich

set of time-variant city level characteristics. The concern is whether there are region-

speci�c shocks that could be correlated with camera installations. Still there is the

issue whether "worse" sites are treated �rst. This means that sites that received

cameras far apart in time may be incomparable. Thus, I restrict reference groups

to sites that received installations less than six years apart from those treated now.

Finally, I address the endogenous timing of installations with two strategies.

First, I plot the pre-treatment collision trends to show that cameras are not strate-

gically introduced after a spike in collisions. In fact, due to bureaucratic red-tapes,

cameras are often installed a few years later after the sharp spike, mitigating con-

cerns that the estimates are in�ated by mean reversion e�ects. Second, I exploit

the "switching-o�" of speed cameras to capture the e�cacy of these devices. Due to

budget cuts, some local camera partnerships are forced to switch o� their cameras.

I argue that this decision to cut funding is unlikely be driven by collision trends.

The question is whether shutting down of speed cameras attributes to a rebound in

tra�c collisions.

Other than adopting a more careful identi�cation strategy, this paper improves

the existing literature (See Table 3.8 in Data Appendix for details) on several fronts.

First, in contrast to previous papers, which are usually city-speci�c analyses re-

stricted to a small sample of cameras, this paper draw inferences from a represen-

tative nationwide dataset to increase the external validity of the research. Second,

with �ne spatial temporal information on accidents and speed cameras, I can ac-

curately capture how enforcement e�ects vary across space. Last but not least, I

provide a rigorous welfare assessment of speed cameras, after considering a exhaus-

tive list of bene�ts and costs, to understand whether these cameras improve social

welfare.

The headline �nding is that speed cameras reduce both the number and severity

of collisions. After installing a speed camera, the number of accidents and minor in-

juries reduce by 17%-39% and 17%-38% respectively, which corresponds to 0.89-2.36

less accidents and 1.19-2.87 less injuries per kilometre per year. As for seriousness of

the crashes, the number of fatalities and serious injuries are 0.08-0.19 and 0.25-0.58

lower per kilometre per year, which represents a drop of 58%-68% and 28%-55%

respectively. Installing another 1,000 speed cameras reduce around 1130 collisions4,

mitigate 330 serious injuries, and save 190 lives annually5, generating bene�ts of

4These estimates are taken from the preferred speci�cation in Column (7) of Table 3.2.
5The ratio of lives save in my study is much higher than the average national accidents

death ratio over the last 10 years from 1995 to 2015 (1.02%). There are several expla-
nations to this �nding. First, speed cameras are often found along roads with a much
larger proportion of death related accidents. The pre-treatment percentage of deaths from
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around ¿309 million6. These �ndings are robust across a range of speci�cations

that mitigates the risk of potential con-founders from driving the estimates.

I further allow enforcement e�ects to vary across di�erent speed limits, road

types, and over distance. My results show that enforcement e�ects are larger along

roads with higher speed limits. This could be due to the fact that these roads

are more dangerous as drivers commute at higher speeds. Enforcement e�ects also

appear highly localised around 500 metres from the camera and dissipate moving

away. Beyond 1.5 kilometres from the camera, there are suggestive evidences of

rebounds in collisions, injuries and deaths, implying that drivers could have speed

up beyond camera surveillance and cause more accidents.

These �ndings are of interest for at least three reasons. First, the public has

always been concerned because of the huge amount of �nes that are raked up by

these cameras. A total of 166,216 speed tickets was issued in England and Wales

in 2015, amounting to more than ¿31 million7. Interests groups8 have campaigned

vehemently against these instruments, believing that alternative strategies, such as

vehicle-activated speed limit sign, could be equivalently e�ective in improving road

safety9. Second, there are concerns whether these devices could cause more collisions

due to "kangaroo" e�ects (Elvik, 1997). That is when drivers abruptly slow down in

proximity to the camera or immediately speed up beyond surveillance. Thirdly, due

to budget cuts to the Road Safety Grants, many older obsolete wet-�im cameras

are not upgraded and local governments10 are forced to switch o� their cameras.

If �xed speed cameras improve road safety, then these devices should be upgraded

and switched back on. The objective of this paper is to provide educated answers

to these questions through high quality data and rigorous empirical analyses.

My results verify the e�cacy of speed cameras in enhancing road safety. How-

ever, the limited enforcement e�ects across space, together with mild rebound of

collisions further away, highlight the limitations associated with these �xated de-

collisions around speed camera sites is 2.50% (see Table 3.1), which is more than twice
of the national ratio. Second, by reducing speed through deterrence, cameras could have
disproportionately mitigated more severe accidents. Another explanation is that speed
cameras are less e�ective in preventing collisions compared to deaths. Possible kangaroo
e�ects, such as sudden braking in front of camera, or speeding up beyond surveillance,
could have attributed to more collisions.

6This is obtained from multiplying the net bene�ts from welfare analysis in Table 3.5
by 1,000.

7Read more at http://www.bbc.co.uk/news/uk-38724301
8Read http://www.safespeed.org.uk/
9See https://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080422/

debtext/80422-0003.htm for more information
10This include Oxfordshire, West Midlands, Avon and Somerset, Wiltshire, Swindon and

Northamptonshire. Recent reports indicate that switching-o� of cameras may have been
more widespread, raising greater concerns of the e�cacy of speed cameras.

http://www.bbc.co.uk/news/uk-38724301
http://www.safespeed.org.uk/
https://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080422/debtext/80422-0003.htm
https://www.publications.parliament.uk/pa/cm200708/cmhansrd/cm080422/debtext/80422-0003.htm
http://www.bbc.co.uk/news/uk-41869134
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vices. My �ndings also show that switched-o� "dummy" cameras can still enforce

speed limit and reduce collisions. Local government, therefore, should keep these

cameras as a deterrence whether or not they are operating. All in all, with technolog-

ical advancement, these older devices should be superseded with newer prototypes,

such as mobile and variable speed cameras, that can enforce speed limits over a

larger area with the �exibility of redeployment .

The remainder of this paper is structured as follows. Section 2 provides a back-

ground to speed enforcement cameras in UK. Section 3 describes the identi�cation

strategy adopted in this paper. Section 4 outlines the data used in this paper and

Section 5 discusses the �ndings in this paper. Section 6 concludes the study.

3.2 Background

Di�erent enforcement cameras, including �xed, mobile and variable speed, are

deployed across the United Kingdom. Fixed speed cameras, the earliest generation

of speed detecting devices, are �rst introduced in 1992. Mobile and Variable11 speed

camera are newer prototypes that only grew in prominence in the last decade. For

an illustration of these devices, refer to Figure 3.1. The focus of this paper is on

�xed speed cameras as I can reliably determine both the location and installation

dates. The minimum penalty for speeding is a �ne of ¿100 and 3 demerit points

but o�ender could be �ned up to ¿2,500 and suspended from driving, depending on

how much the speed limit is exceeded.

Cameras are managed by a safety camera partnership, which is a joint collabora-

tion of police force, local government, highway agency and health authorities. They

work hand-in-hand to identify dangerous sites for enforcement. Sites that chosen for

installations must comply with the following national selection rules (DfT, 2004)12:

1. Length must be between 0.4 and 1.5 kilometres;

2. At least 4 killed and serious collisions (KSI) & 8 personal injury collisions

(PIC) per kilometre in the 3 years before installation13;

11Mobile speed cameras are �xated on auto-mobiles with the �exibility to be deployed
in di�erent locations but require manpower to operate. Variable speed cameras enforce
speed limit over a stretch by measuring average speed between two points on the road and
have the advantage of enforcing speed limit over longer distances.

12One other strategy is to utilize a regression discontinuity design over these rules and
to obtain some local estimates around these thresholds. This is not adopted due to the
following reasons. First, I do not have information on average speed, site length, suitability
that a�ect whether a site receives camera enforcement. Furthermore, these rules are not
deterministic for installation. It is possible for sites to have installations without meeting
these rules, impeding identi�cation of e�ects around these thresholds.

13One crash can result in multiple causalities. Adding up the number of slight injury
collisions and KSI will provide the PIC counts.
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(a) Fixed Speed (b) Average Speed

(c) Mobile Speed

Figure 3.1: Di�erent types of Speed Cameras used in United Kingdom

3. Suitable for the loading and unloading of cameras

4. At least 85% of the tra�c is travelling is at or above the Association of Chief

Police O�cers (ACPO) threshold based on speed surveys;

5. At least 20% of the drivers are exceeding speed limits;

6. No other more cost e�ective solutions to improve road safety as determined

by the road engineers.

The �rst two guidelines are considered more important for enforcement. While

not stated explicitly, I do observe that many of these cameras are near schools, bus

stops and petrol stations to ensure pedestrians safety. Even when some of the stated

requirements are not met, enforcement could still occur if a large number of non-fatal

collisions due to speeding is recorded. These sites are classi�ed as exceptional sites.

This ambiguity impedes the use of selection rules to identify comparable reference

groups.

The local partnerships also decide whether to install mobile, average or �xed

speed cameras. Fixed speed cameras are usually deployed when there are many ac-

cidents clustered around the sites. To commission new sites for camera installation,

partnerships are require to provide full details on these proposed sites for the forth-

coming year, subjected to the approval of the national board. They are allowed to

recover penalty receipts to cover the cost of camera installations and enforcement.

Since 2006, there are several amendments to the guidelines. In particular, the KSI

requirements fall from 4 to 3. A risk value is computed for each site and KSI and

PIC collisions are given 5 points and 1 point respectively. To qualify for camera
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installation, sites must have at least 22 points if the speed limit is 40mph or less

and have at least 18 points for speed limits beyond 50mph. For more details, refer

to DfT (2005).

Once installed, several clear signages must be placed less than 1 kilometre away

from the camera. This is to warn drivers about the presence of camera and to inform

them about the speed limit. Since 2002, all the cameras are painted in bold yellow

and must be visible at least 60 metres away if the speed limit is less than 40 mph

and must be visible at least 100 metres away if the speed limits are higher. This

is to ensure that drivers do not abruptly reduce speed around the camera to avoid

�nes.

Most of the cameras across UK are Gatsometer BV Cameras that are single

direction and rear facing. This means the camera will only take images of the back

of a speeding vehicle so as not to blind the o�ender and impede driving performance.

However, some of the newer cameras could be bi-directional14 or front facing15.

Majority of the cameras operate though radar technology although there are some

that rely on strips on the roads for speed detection (e.g Truvelo D-Cam, SpeedCurb).

If there is a dispute to the �ne, the white lines on the roads near the cameras will

provide a secondary instrument to determine 16 whether drivers exceed speed limits.

For an illustration on how speed cameras operate, refer to Figure 3.2.

Figure 3.2: Illustration on how �xed speed cameras operate

14Cameras installed in the central of the road could be turned periodically to target
motorists at either side of the road. Sometimes, multiple cameras could be installed on
both sides of the road. Newer devices such as the Truvelo D-Cam can take pictures at
both directions.

15The second most popular type is Truvelo Camera that takes an image of the speeding
o�ender from the front using non visible infra-red �ashes. The advantage is that there will
be no disputes on who is driving the vehicle.

16The distance between each of the white lines represent 5mph. Several images of the
moving vehicle over time will illustrate whether driver is speeding.
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3.3 Literature Review

Previous literature, largely from transport safety, shows that speed cameras re-

duce travel speed, accidents, injuries and fatalities near the camera (Gains et al.,

2004, 2005; Chen et al., 2002; Shin et al., 2009). These estimates, however, vary

substantially across di�erent studies. A survey of existing literature reveals speed

cameras reduce travel speed by between 1.7 and 4.4 miles per hour and crashes by

between 11% and 51%. For a review of the existing literature, refer to Wilson et al.

(2010).

Existing empirical work, however, su�ers from substantial limitations that ques-

tions the validity of the estimates. For one, researches are often limited to a small

number of speed cameras constrained in a particular area (Chen et al., 2002; Gold-

enbeld & van Schagen, 2005; Jones et al., 2008; Shin et al., 2009), raising concerns

on the external validity of their �ndings. This paper overcomes this limitation by

analysing a more representative sample of cameras of up to 2,500 �xed speed cameras

installed across England, Scotland and Wales.

Secondly, and perhaps most importantly, many studies are restricted to before-

and-after analysis with either no or loosely constructed control groups to account

for trends in accidents in the absence of camera enforcement (Christie et al., 2003;

Jones et al., 2008). Without controlling for the general downward trends of acci-

dents due to technological advancements over time, such as better brake system,

more robust car frame and improved road built, these studies are likely to overesti-

mate camera enforcement e�ects. For studies with control groups, they address the

fact that camera location choices are endogenous. Selected camera sites are peculiar

accident "black" spots with many drivers exceeding speed limits such that those

without cameras are unlikely to be comparable. These di�erences, if unobserved

or imprecisely measured, will enter the speci�cation and confound the estimates.

Without due consideration to the endogenous site selection process, studies con-

struct reference groups based on either nearby roads (Newstead & Cameron, 2003;

Perez et al., 2007; Shin et al., 2009) or sites with similar observable road and tra�c

characteristics (Keall et al., 2001; Cunningham et al., 2008).

To create more comparable reference groups, some studies rely on data-generating

methods like empirical bayes to identify reference groups with similar trends in ac-

cidents and tra�c �ow (Elvik, 1997; Chen et al., 2002; Gains et al., 2004, 2005).

However, these studies fail to show how the reference groups are chosen. To clarify

on the matching process, Li et al. (2013) uses propensity score matching selection

guidelines. This is unlikely to improve identi�cation as sites can receive installa-

tions even without meeting all the requirements. Moreover, the surge in accidents

surrounding these quali�ed non-camera sites could be considered transient and is
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expected to decrease even without intervention. This post-treatment collision reduc-

tions could underestimate enforcement e�ects. In this paper, I adopt the intuitive

strategy of using only sites with cameras. That is, sites with cameras in future will

be employed as reference groups for sites with installation now.

Another point neglected by the literature is how the e�ectiveness of enforcement

cameras vary over distance. This is important as cameras could attribute to "kanga-

roo" e�ects (Elvik, 1997). Several studies, including Newstead & Cameron (2003);

Mountain et al. (2004); Jones et al. (2008), try to break down the impacts across

distance but the lack of �ne spatial information on collisions mean that results are

often uninformative as distance bandwidths are often too big. Relying on �ne spatial

information on accidents and speed cameras, I can delineate enforcement e�ects ev-

ery 100 metres (up to 2 kilometres) to understand whether cameras cause kangaroo

e�ects.

Finally, there is a lack of analysis on how these enforcement cameras fare over

time and across di�erent speed limits. One of the few papers that addresses this

issue is Christie et al. (2003). Their study, however, is limited to an unrepresentative

sample of cameras over a short period. Utilising detailed information on speed

camera characteristics, and over a longer timespan, I inform how cameras perform

over time and across roads with di�erent speed limits. For a succinct summary of

the previous literature, refer to Table 3.8 in Data Appendix.

3.4 Data

To examine the e�ect of speed cameras on accidents, I put together a few data

sources. First, I rely on STATS 19 Road Accident Database that provides detailed

information for each reported accident to the Police Force in England, Wales and

Scotland 17. Details including location, time, date, road conditions, vehicle type,

number of injuries, serious injuries and fatalities (pedestrians and inside the vehicle)

are recorded. Shape�les that delineate the road network and boundaries of local

authority districts18 are provided by Ordinance Survey.

Details of the di�erent speed cameras are hand-collected from websites of various

camera partnerships provided by Department for Transport (DfT) 19. For most of

17It is possible that there could be under reporting of non-fatal accidents to the Police
Force but this should be less of an issue for more serious crashes. As long as the under
reporting of accidents is random across time and is not correlated with camera installations,
this should not a�ect my estimates

18Local authorities are responsible of conferring government services within a district.
In total, there are 353 di�erent districts in England, 32 in Scotland and 22 in Wales.

19For more information on the list of https://www.gov.uk/government/publications/
speed-camera-information

https://www.gov.uk/government/publications/speed-camera-information
https://www.gov.uk/government/publications/speed-camera-information
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the partnerships, location of camera, year of installation, speed limits and camera

type are provided. For areas that do not provide these data, I request access using

Freedom of Information Act (FOI).

Combining various sources of information using Geographic Information System

(GIS), I am able to match the location of speed cameras and accidents to the road

network. To visualize, refer to Figure 3.3. Imagine the line as a particular stretch

of road with a camera installed. With the exact location of each accident, I could

sum up the annual accident outcomes along the road that the speed camera i is

installed between k and k− 100 metres interval where k ∈ 100, ...1900, 2000 metres.

For instance, within 100 metres around the camera, all the accidents that take place

in area "A" in a particular year are taken into account. For my baseline estimates,

which examine the e�ects 500 metres around the camera, I will aggregate all the

accidents that took place in areas "A", "B", "C", "D" and "E". Because I know

the total number of injuries, serious injuries and deaths associated with each auto-

mobile crash, I can construct these collision measures for the di�erent bandwidths

as well.

Figure 3.3: Illustration on how accident outcomes are computed across space

To capture the year-on-year variation in region-speci�c shocks, I rely on sev-

eral sources. Information on the Annual Average Vehicle Miles Travelled (VMT) is

collected from DfT. Details on the average earnings and number of hours worked

are complied from Annual Labour Force Survey. Data on population pro�le are

collected from Nomis Population Estimates. For details on how the variables are

constructed, refer to Table 3.7 in Data Appendix.

3.5 Identi�cation Strategy and Methodology

The research design adopted in this paper is a �xed e�ect, quasi-experimental

di�erence-in-di�erence approach estimated using count regressions models. This is

because collision outcomes follow an implicit count process that only takes non-

negative integer values. Using Ordinary Least Squares (OLS), which speci�es a

conditional mean function that takes negative values, one could possibly yield in-

consistent estimates (Cameron & Trivedi, 2013). Therefore, I implement two count
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models, Poisson and Negative Binomial, that is estimated using maximum likelihood

estimators (MLE). The latter is adopted because it relaxes the assumption that the

conditional mean is equal to the conditional variance, allowing for over-dispersion in

the data. To correct for over-dispersion in Poisson regressions, following DeAngelo

& Hansen (2014), I report sandwich (robust) standard errors.

To examine the impact of speed cameras on tra�c accidents, the following base-

line speci�cation is adopted:

E(Yijt) = exp(αi + γTit +X ′jtφ+ θt + εijt), (3.1)

where Yijt is the counts of Y (Accidents, Slight Injuries, Serious Injuries,

Deaths20) within 0 to 500 metres from camera i in local authority j that is installed

in year t. The key variable of interest is Tit, a binary variable that equals to unity

after the speed camera is installed. If enforcement cameras can deter speeding and

improve road safety, I expect γ to be < 0.

αi represents site �xed e�ects that captures time invariant unobserved charac-

teristics that in�uence whether a camera is installed. For instance, sites that are

more precarious (e.g on a steep slope, windy roads) or are bypassing areas with

more vulnerable pedestrians (e.g schools, petrol stations) are more likely to receive

cameras. By including site �xed e�ects, I am now comparing the change in collision

outcomes for each site before and after the cameras become operational with the

changes in collision outcomes in some comparable sites.

I further include a vector of time variant city-level controls at local authority

j at year t (X ′jt). These variables include vehicle miles travelled, population size,

percentage of population between 18 to 25 years old, gross annual pay, hours worked

and weather conditions. This is to allay concern that there are regional shocks that

could be correlated with installation of cameras and in�uence collision outcomes.

For instance, if cameras are installed in areas with an increase in teen drivers that

could reduce road safety, γ could be underestimated. θt represent year �xed e�ects to

control for any time-speci�c macro factors that a�ect tra�c collisions across regions.

For example, technological advancements on car safety (better car frames, tires, air

bags) and roads quality can reduce both the occurrences and severity of collisions

over time. For more details on the description of the variables used in this paper,

refer to Table 3.7 in Data Appendix.

20According to the de�nition provided by the Department for Transport, slight injury is
de�ned as an injury of minor character that do not require any medical attention. Serious
injury is when the injury causes the person to be detained in the hospital for medical
treatment and that the injury causes death more than 30 days after the collision. Deaths
is de�ned as a human casualty who sustained injuries from the accident are die less than
30 days from the collision.
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εijt is the error term and consistent estimation of γ requires E[εijt|Tit = 0]. This

is unlikely to be plausible even after controlling for camera and year �xed e�ects,

and partial-ling out time variant region speci�c shocks. Roads with enforcement

cameras are peculiar accident-prone sites with many drivers exceeding speed limits

and sites without cameras are likely to be very di�erent. The concern is whether

these unobserved di�erences between camera and non-camera sites in�uence collision

outcomes.

Hence, I restrict the sample to only sites with cameras and exploit the variation in

the timing of installation. Identi�cation of enforcement e�ects stems from comparing

changes in accident outcomes around camera sites with changes around sites that

will have camera installations in the near future. This allow us to attenuate the

bias from the "black-box" selection procedure given that these sites will eventually

receive cameras in the future. The assumption is that sites having enforcement

cameras in the future are not that di�erent from sites having cameras installations

now.

However, it is plausible that "worse" sites receive installations �rst such that

later-treated sites are not comparable. Therefore, I remove any observations that are

more than 3 years before and after the installation year. To visualize, refer to �gure

3.4 that illustrates the timeline for a sample of four cameras (A,B,C & D). Unshaded

areas denote the window 3 years before and after the cameras are installed with

T = 0 representing pre-installation period and T = 1 representing post-installation

period. Shaded areas denote observations outside the +3,-3 window that are not

included in the analysis. In this example, CAM B and D are counterfactuals for

CAM C. CAM B provides the baseline (collision trends in the absence of camera

enforcement) from 1998 to 1999 and CAM D from 2000 to 2001 after CAM C is

installed. Conversely, CAM A is not a reference group for CAM C because the

treatment dates are too far apart. This also means that only a future recent treated

camera will enter as reference group.
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Figure 3.4: Illustration of time-lines for di�erent cameras in sample. Bold lines
represent the installation year and unshaded window denotes 3 years before and
after the camera is installed. Shaded areas denotes observations more than three
years before or after installation and are omitted from the analysis. T=1: Treatment
Period; T=0: Pre-Treatment Period

Still, there are concerns that the timing of the installation may be endogenous.

Consider the case that the camera is installed only after a sharp increase in collisions.

If that is the case, then γ could overstate the enforcement e�ects as crashes could be

reverting to mean (falling) even without cameras. To verify, I plot the conditional

mean collision trends at 200 metres from the site 12 years before and after the speed

camera is installed in Figure 3.5. I construct this by regressing collision outcomes

on site �xed e�ects and a vector of local authority characteristics and each point

represents the respective year-from-installation dummies. Year 0 represents one

year before camera installation. Results show that collisions are already falling

before the cameras are installed, suggesting that there might have been additional

policing around these sites before cameras are put in place. The delay in installation

could be due to bureaucratic red-tapes. As explained in by the Department for

Transport(DfT, 2004), local camera partnerships are only allowed to request for

cameras installations once a year, subjected to the approval of the national safety

camera board. Installation could only be scheduled upon approval and the downtime

could take up to half a year. These delays in installation mean that my estimates

are unlikely to be in�ated by any mean reversion e�ects in collision.
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Figure 3.5: Conditional mean collision trends 200 metres from camera site 12 years
before and after the installation. Controls include camera �xed e�ects and a vector
of local authority characteristics (Gross Annual Salary, Vehicle Miles Travelled, %
of Population from 18 -25, Job Density, Hours Worked). Each dot denotes the
coe�cients from the number of years from installation dummies. Horizontal axis
denotes the number of years from treatment and year 0 is the year before the camera
is installed. Vertical axis measures the counts of collision outcomes. Dashed line
represents the 95% Con�dence Interval.

3.6 Empirical Results

In this section, I estimate the e�ects of speed enforcement cameras on various ac-

cident outcomes. First, I provide some summary statistics before presenting baseline

estimates on the e�ects of speed cameras. I then put these estimates through various

robustness and placebo tests that relax identi�cation assumptions. Subsequently, I

allow camera enforcement e�ects to vary across di�erent speed limits, road types,

over time and distance. Finally, I compute welfare estimates associated with these

devices.

3.6.1 Descriptive Statistics

Figure 3.6 and 3.7 shows the temporal and spatial distribution of �xed speed

cameras from 1992 to 2016. 24 cameras are �rst installed in London in a pilot pro-

gram in 1992. Soon, other major cities like Manchester, Liverpool and Birmingham

begin to adopt these devices. By 2000, there are more than 1,000 cameras dis-

tributed across more than half of the local authorities across Great Britain. Fixed

speed cameras remain the predominant instrument in enforcing speed limits with

another 1,368 devices deployed in the next 8 years. Most local authorities have at

least 1 speed camera by 2008. Since then, these devices become less popular as local

partnerships rely on newer prototypes, such as variable and mobile speed cameras,

for speed enforcement. Only 109 �xed camera sites are added from 2008 to 2016. By
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2016, there are approximately 3,500 �xed speed cameras across England, Scotland

and Wales. My dataset, which encompasses 2,548 cameras, covers more than 70% of

the population. The rest of the 30% are missing either because (1) the local camera

partnerships did not respond to data requests21 or (2) I am not able to accurately

determine the location of cameras based on the information provided.

Figure 3.6: Number of Speed Cameras and Local Authorities with speed cameras
from 1992 to 2016 across England, Scotland and Wales

Next, I present some basic summary statistics for pre-treatment accident out-

comes, camera, road and local authority characteristics in Table 3.1. Pre-treatment

accident outcomes are computed by averaging the number of collisions within 2

kilometres from the site and within �ve years before the camera is installed. For

instance, if a camera is installed in 2000, I will account for the collision outcomes

from 1995 to 1999. There are approximately 0.41 counts of accidents every 100

metres annually, resulting in 0.40 counts of slight injuries, 0.08 counts of serious

injuries and 0.01 counts of deaths. On average, the limit enforced by speed cameras

is around 37mph although bulk of the cameras impose a 30mph limit (more than

70%). Most of the cameras (75%) are installed in A Roads - primary routes that

are slightly smaller than motorways (or expressways). The rest are mostly installed

in B (11%) and Minor Roads (14%), with less than 2% of the cameras �xed along

Motorways and C roads. There are not many �xed cameras on Motorways because

variable speed cameras are usually deployed instead to enforce speed limit over a

longer distance. Also, approximately 80% of the cameras are located along busier

roads in populated urban areas.

As mentioned, one of the major concerns is that earlier camera sites are di�erent

21This include Warwickshire, Su�olk, Norfolk, Wiltshire and Swindon.
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(a) 24 sites (b) +1044 sites

(c) +1368 sites (d) +109 sites

Figure 3.7: Locations of Fixed Speed Cameras across England, Scotland and Wales
from 1992 to 2016.

from those receiving installation later. To examine if this is the case, I split the

sample into 5 groups (1992 to 1995, 1996 to 2000, 2001 to 2005, 2005 to 2010 and

2010 onwards) according to the year the cameras are installed. I do not �nd sites

that have camera installations �rst more dangerous than those having installations

later. No evident di�erences are also observed in camera/road characteristics, local

authority demographics and labour outcomes. If anything, there seems to be more

crashes and injuries for cameras that are installed after 2006. These cameras are

often found on roads with higher speed limit. One possible explanation is the change

in the guidelines for selecting camera sites. As a precaution, I remove these cameras

in my robustness tests but this do not materially a�ect the results.
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Table 3.1: Summary statistics of camera sites across time

(1) (2) (3) (4) (5) (6)
All 1992 - 1995 1996 - 2000 2001 - 2005 2006 - 2010 2011 - 2016
Pre-treatment Accident Outcomes

Accident/100m 0.39 0.36 0.35 0.39 0.50 0.44
(0.33) (0.31) (0.32) (0.30) (0.40) (0.32)

Injuries/100m 0.52 0.48 0.47 0.52 0.64 0.58
(0.41) (0.40) (0.39) (0.38) (0.51) (0.43)

Serious Inj/100m 0.07 0.07 0.07 0.07 0.08 0.07
(0.05) (0.05) (0.05) (0.05) (0.06) (0.06)

Deaths/100m 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Camera/Road Characteristics
Speed Limit 34.79 37.20 36.53 32.75 34.16 41.05

(9.33) (10.92) (10.73) (6.72) (9.39) (12.35)
A Road 0.73 0.75 0.76 0.69 0.79 0.77

(0.44) (0.43) (0.43) (0.46) (0.41) (0.42)
B Road 0.12 0.11 0.10 0.14 0.08 0.12

(0.32) (0.31) (0.31) (0.35) (0.27) (0.33)
C Road 0.02 0.00 0.01 0.02 0.00 0.00

(0.12) (0.06) (0.12) (0.15) (0.06) (0.00)
Motorway 0.01 0.01 0.01 0.01 0.01 0.04

(0.09) (0.08) (0.11) (0.07) (0.08) (0.19)
Minor Road 0.13 0.14 0.11 0.14 0.13 0.07

(0.33) (0.34) (0.31) (0.35) (0.33) (0.26)
Rural 0.15 0.18 0.21 0.12 0.09 0.14

(0.36) (0.38) (0.41) (0.32) (0.28) (0.35)
Camera/Road Characteristics

Gross Annual Salary 24245.93 25612.47 24170.51 23423.40 26221.43 23488.91
(4143.14) (4317.99) (3650.61) (4193.10) (4143.65) (2774.21)

Hours Worked 37.86 37.84 37.92 37.87 37.66 37.83
(0.67) (0.74) (0.62) (0.71) (0.56) (0.53)

Job Count 116533.02 118697.66 112070.20 112079.69 143444.02 109272.51
(95111.37) (92509.82) (84887.33) (93917.90) (120102.28) (90747.35)

Job Density 0.88 0.85 0.76 1.01 0.81 0.65
(2.61) (0.41) (0.23) (3.91) (0.42) (0.16)

% of Pop 18 to 25 9.38 9.29 9.11 9.56 9.42 9.73
(2.59) (2.44) (2.35) (2.92) (2.00) (1.82)

Population Size 219312.20 204907.15 221811.27 208318.24 262401.66 254666.19
(142834.82) (104695.46) (135361.03) (142054.29) (177959.39) (178190.47)

Unemployment Rate (%) 6.84 6.33 6.63 6.95 7.25 8.40
(1.95) (1.94) (1.95) (1.81) (1.99) (2.89)

VMT 2797.63 2425.91 2633.17 3271.23 2053.54 1619.41
(2685.05) (2370.39) (2566.26) (2878.41) (2368.73) (1410.15)

Number of Cameras 2548 314 754 1123 301 57

Note: Mean outcomes reported. Standard errors in parenthesis below. Observations further strati�ed accord-
ing to the year the camera is installed.

3.6.2 E�ects of Speed Cameras on Accidents

Baseline Estimates

Table 3.2 presents a set of baseline estimates from equation (1) that captures

the e�ect of speed enforcement cameras on on various accident outcomes 500 me-

tres left and right of the camera, including number of Accidents, Slight Injuries,

Serious Injuries and Deaths. Due to space constraints, I only report results from

Poisson regressions. Findings from Negative Binomial regressions in Table 3.9 in

Data Appendix and are fairly similar. Only the coe�cients (γ) for key estimate

Tit are reported. To interpret these coe�cients, I compute the semi-elasticity (%∆)

by taking the exponential of γ before subtracting by 1. The absolute reductions

in collision outcomes (Absolute) are by computed by multiplying %∆ with the pre-

treatment mean of collision outcomes. Only ever-treated sites are analysed except of
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Column (6). In short, I am comparing changes in collision outcomes for sites after

camera installations with sites that have camera installations in the future. The

sample is smaller for Serious Injuries and Deaths. This is because there are several

sites that experience no fatalities or severe injuries over the sample period and these

sites are removed from the analysis.

Moving from left to right, additional covariates are included in the estimation.

In column (1), I analyse the entire sample of speed cameras from 1992 to 2016 and

limit the analysis to sites that I have a full set of control variables in the column

(2). In both speci�cations, I include site and year �xed e�ects but do not add any

control variables. I observe that enforcement cameras not only reduce the number

of crashes, but also abate the severity of collisions. It is also comforting to observe

that results are very consistent across the two columns, suggesting that the reduced

sample with control variables is fairly representative.

Next, I include a vector of time-variant local authority (LA) characteristics to

partial out regional speci�c shocks that could correlate with the camera installations

and a�ect collision outcomes. This include demographic (population size and % of

population between 18 to 25) and labour characteristics (gross annual salary and

working hours). Controlling for these di�erences across LA has an inconsequential

e�ect on the estimates. Subsequently, I control for the annual average vehicle miles

travelled (VMT) as more driving could induce more accidents. Estimates remain

fairly stable. I further include a number of weather controls including temperature

and wind speed. The concern is whether bad weather shocks, which could induce

more accidents, are correlated with camera installations. Doing so signi�cantly

reduces the sample by more than two-third due to missing data but again this do

not materially a�ect the estimates.

In column (6), I include a sample of non-camera sites22 despite meeting the

selection guidelines (for more information refer to section 2). The rationale is to

understand the bias from incorporating non-treated sites based on some matching-

on-observables strategy frequently adopted in the previous literature. I observe that

estimated enforcement e�ects are much smaller. This is consistent with the idea that

untreated sites experience a large fall in collision outcomes even without camera

installation. Because this surge in accidents is deemed to be transient, collision

outcomes could fall even in the absence of camera enforcement. This explains why

local camera partnerships choose not to install cameras around these sites. This

22To create a sample of non-camera sites, I �rst place random points along major roads
(A & B roads) that are at least 2,000 metres from one another and 2,000 metres from the
nearest speed camera. Following that I calculate the yearly collision, injuries and death
counts within 500 metres from these random points. I only retain sites with more than 4
killed and serious injuries (KSI) and 8 personal injury collisions in a 3 year rolling window.
In total, I �nd 694 sites that meet the selection criterion but are not treated.
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result shows that using non-camera sites coul underestimate the enforcement e�ects

of speed cameras.

Furthermore, as mentioned, sites that receive installations later could be di�er-

ent from those earlier treated sites. Thus, in column (7), I restrict the reference

groups to just recently treated cameras by excluding any observations more than

3 years before and after the camera is installed. To illustrate, this is equivalent of

removing the shaded areas in Figure 3.4 from estimation. Like before, estimates

remain comparable, suggesting that the di�erences between earlier and later treated

sites are not confounding the estimates.

Overall, I document that speed cameras not only attribute to signi�cant reduc-

tions in the number of collisions, but also abate the severity of the crashes. Results

are fairly steady to the addition of controls. I observe substantial decreases for the

various accident outcomes signi�cant at 1% level. After an enforcement camera is

installed, the number of collisions are, on average, 17% to 39% lower, representing

an absolute reduction of 0.89 to 2.36 per kilometre per annum. The counts of Slight

injuries also decline by between 1.19 and 2.87 per kilometre per annum, which cor-

responds to a 17% to 38% decrease. There are between 0.25 and 0.58 less serious

injuries surrounding the camera, equivalent to a 28% to 55% fall from pre-treatment

levels. The largest e�ects are documented for tra�c fatalities. There are approxi-

mately 0.08 to 0.19 less fatalities per kilometre, which represents a substantial 58%

to 68% decline23 from pre installation levels.

Robustness & Alternative Explanations

Table 3.3 summarizes a battery of robustness tests that addresses concerns that

earlier estimates could be spuriously driven by other factors.

A1. Tra�c Displacement : One issue is whether the installation of cameras induce

drivers to switch to non-camera roads. Therefore, the reduction in accidents could

be due to less tra�c rather than camera enforcement24. To mitigate the possibility

that tra�c displacement is driving the estimates, I limit my analysis to a sub-sample

of Motorways and A-Roads. The rationale is that there is less tra�c displacement

along these major roads because there are less alternative routes available. Results

in Columns (1) are fairly similar compared to before, indicating that enforcement

e�ects documented earlier are not driven by lighter tra�c.

23This is because often there are very little reported deaths on roads, which is why the
small estimate could generate signi�cant changes.

24The straightforward solution is to include tra�c as a control. This, however, will
not be advisable as tra�c is likely to be a "bad" control. The implementation of speed
camera is likely to reduce tra�c �ow by displacing them to neighbouring unmonitored
roads. Moreover, detailed road level tra�c data is only available for a small sub-sample of
roads.
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Table 3.2: E�ects of Speed Camera on various accident outcomes within 500 metres
from Camera using Poisson Regressions

(1) (2) (3) (4) (5) (6) (7)
All Baseline Demo VMT Weather Non-CAM -3,+3

Accidents -0.469a -0.488a -0.268a -0.243a -0.184a -0.095a -0.222a

(0.009) (0.011) (0.016) (0.017) (0.028) (0.016) (0.017)
Obs 66868 25720 25720 25720 7383 35929 9841
Absolute -2.11 -2.36 -1.44 -1.32 -0.89 -0.82 -1.13
% ∆ -37.43 -38.65 -23.54 -21.55 -16.78 -9.09 -19.88
No.of CAM 2481 1555 1555 1555 659 2249 1481
Slight -0.412a -0.483a -0.278a -0.253a -0.185a -0.057a -0.207a

(0.010) (0.013) (0.019) (0.019) (0.038) (0.019) (0.021)
Obs 57224 21355 21355 21355 5483 31564 8175
Absolute -2.25 -2.87 -1.82 -1.67 -1.19 -0.64 -1.33
% ∆ -33.74 -38.29 -24.30 -22.34 -16.87 -5.56 -18.70
No.of CAM 2123 1294 1294 1294 518 1988 1223
Serious -0.788a -0.747a -0.454a -0.414a -0.326a -0.326a -0.373a

(0.015) (0.022) (0.033) (0.034) (0.074) (0.028) (0.042)
Obs 63280 23650 23650 23650 6539 33823 8306
Absolute -0.58 -0.57 -0.39 -0.37 -0.25 -0.35 -0.33
% ∆ -54.55 -52.63 -36.49 -33.93 -27.81 -27.84 -31.15
No.of CAM 2346 1428 1428 1428 572 2115 1240
Deaths -0.956a -1.071a -1.029a -1.018a -1.124a -0.761a -0.858a

(0.041) (0.073) (0.116) (0.119) (0.209) (0.093) (0.153)
Obs 42924 11394 11394 11394 2787 18765 2843
Absolute -0.08 -0.12 -0.12 -0.12 -0.15 -0.09 -0.19
% ∆ -61.57 -65.75 -64.28 -63.85 -67.51 -53.27 -57.59
No.of CAM 1591 683 683 683 220 1155 426
CAM FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Demographics 3 3 3 3 3

VMT 3 3 3 3

Weather 3

Note: Each reported coe�cient is the γ from a di�erent Poisson regression esti-
mated using Maximum likelihood. Dependent variable is the annual Y count where
Y=accident, injuries, serious injuries and deaths 500m left and right of camera. Ab-
solute is the number of reductions in accident outcomes computed by multiplying
the % ∆ with the pre-treatment mean of Y . % ∆ is the proportional change (semi-
elasticity) of collision outcomes after treatment and is computed by taking exp(γ)−1.
In Column (1), I include the entire sample of cameras. In Column (2), I restrict the
sample to sites that I have full set of co-variates. In Column (3), I control for popu-
lation size, % of 18 to 25, Gross Annual Pay & hours worked. In Column (4), I con-
trol for the annual average vehicle miles travelled (VMT). In Column (5), weather
controls are added into the speci�cation. In Column (6), I include a sample of non-
camera sites that are eligible for camera installations. In Column (7), I constraint
the analysis to observations just 3 years before and after from the year of installa-
tion. Sandwich (robust) standard errors are reported in the parentheses. c p<0.10,
b p<0.05, a p<0.01
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A2. Change in Selection Rules : In 2006, there are major changes on how sites are

selected for camera enforcement. The problem is whether newer guidelines cause

these latter sites to be less comparable. Thus, in column (3), I remove sites that

receive installations from 2006 onwards. Removing these later treated sites appear

to reduce my estimates marginally but inconsequentially. Cameras installed before

2006 appear to reduce more accidents but much lesser slight and serious injuries,

suggesting that the newer selection rules are more e�ective in identifying dangerous

roads for camera enforcement.

A3. Omitted Variable Bias : Next, I rely on the rich information associated with

each camera to further mitigate observable di�erences. To do so, I match each each

site with another site based on the following rules: (1) within 5 kilometres from

one another; (2) same rural-urban classi�cation; (3) same road type (A, B, C, Mi-

nor or Motorways); (4) similar speed limits; (5) within 5 years from one another

in installation dates; (6) within 70% - 130% in pre-treatment collision outcomes.

The objective is to benchmark each site with the most similar yet-to-be treated site.

This rigorous matching process reduce the sample to 214 sites. I include both site

�xed e�ects and pair-match �xed e�ects interacted with years in the analysis. In

other words, I am now computing changes in collision outcomes before and after

the camera is installed, and benchmarking these changes in collision outcomes with

the closest reference site matched based on observable characteristics. This proce-

dure does not materially a�ect the estimates as signi�cant reductions across various

collision outcomes are observed.

A4. Endogenous Timing : One of the main concerns is whether a camera is only

introduced after a sharp increase in collisions, in�ating enforcement e�ects. While

the timing of introduction may be endogenous, the timing for switching cameras

o� is less a�ected by collision trends. Due to budget cuts, some local partnerships,

including Avon and Somerset and West Midlands, are forced to turned o� their

cameras 25. Although these cameras are no longer in operation, local government

usually leave them in place as "dummy" cameras to deter speeding. To ensure that

these switched-o� cameras are benchmarked against comparable reference groups, I

further restrict the control group to sites in adjacent local authorities. This reduces

the sample to 174 cameras, with 55 cameras in switched-o� areas. Results summa-

rized in Column (7) and (8) indicate that enforcement e�ects are much weaker as

compared to before. Although these "dummy" cameras still reduce accidents and

slight injuries, the absolute e�ects are less than half compared to operating cameras.

25There are more areas that have shut down their devices. This include Cleveland,
Durham, Northamptonshire and North Yorkshire. Avon and Somerset and West Midlands
are selected because I can accurately determine the locations of these switched-o� devices
and the local partnerships publicly announce that these cameras are out of operation.
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Moreover, these switched-o� devices no longer reduce serious injuries and deaths.

These �ndings suggest that some informed drivers are no longer adhering to the

speed limits and their reckless driving behaviors are diluting enforcement e�ects.

A5. Spurious Timing : Next, I mitigate the issue whether enforcement e�ects are

spuriously documented outside treatment periods. To do so I generate 1,000 ran-

dom treatment dates at least 5 years before the cameras are installed. For instance,

if a camera is installed in 1997, the random generated year will be between 1980

and 1992. These placebo regressions are computed using OLS as it is too compu-

tationally intensive for MLE. Cumulative probability and probability density of the

estimated γ from 1,000 di�erent placebo regressions for accidents and deaths esti-

mated using OLS are plotted in Figure 3.8. Dash lines denote the estimated e�ects

of speed cameras from the preferred speci�cation from Column (5) of Table 3.2. It

is comforting to observe that all but two estimates from these 1,000 placebo regres-

sions are larger (more positive) than the treatment e�ects, increasing the con�dence

that earlier �ndings are not spuriously driven in pre-installation periods.

(a) Accidents (b) Deaths

Figure 3.8: 1,000 Placebo Regressions with random generated treatment dates be-
fore camera installation on Accidents & Deaths estimated using OLS: Probability
Density Function (PDF) top, Cumulative Density Function (CDF) bottom. Dash
line denotes estimates from Column (6) of Table 4.3.
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Table 3.3: Robustness Tests

Major Roads No 2006-2016 Matched Pairs Switch O�s
Accidents -0.248a -0.243a -0.165a -0.224a

(0.018) (0.019) (0.028) (0.082)
Obs 19152 19936 3304 2814
Absolute -1.58 -1.20 -1.73 -0.54
% ∆ -21.95 -21.61 -15.24 -20.06
No.of CAM 1159 1208 214 174
Slight -0.245a -0.261a -0.184a -0.269a

(0.020) (0.022) (0.033) (0.104)
Obs 16566 16143 3052 2814
Absolute -1.89 -1.56 -2.13 -0.84
% ∆ -21.75 -22.98 -16.84 -23.59
No.of CAM 1004 982 196 174
Serious -0.412a -0.389a -0.174b 0.113

(0.036) (0.041) (0.080) (0.507)
Obs 18382 18405 2348 972
Absolute -0.40 -0.32 -0.34 0.00
% ∆ -33.75 -32.22 -15.97 12.01
No.of CAM 1110 1114 200 59
Deaths -0.987a -0.822a -1.064b -0.068

(0.125) (0.149) (0.480) (0.247)
Obs 9958 7988 230 2427
Absolute -0.12 -0.11 -0.39 -0.02
% ∆ -62.74 -56.06 -65.50 -6.55
No.of CAM 596 480 64 150
CAM FE 3 3 3 3

Year FE 3 3 3 3

LA Controls 3 3 3 3

Pair-FE* Year 3

Note: Each reported coe�cient is the γ from a di�erent poisson regression.
Dependent variable is the annual Y count where Y=accident, injuries, se-
rious injuries and deaths 500m left and right of camera. The speci�cation
adopted is similar to that of Column (4) in Table 3.2. In columns (1), I
restrict the analysis to cameras in A-Roads and Motorway to alleviate the
e�ects of tra�c displacement on collisions. In columns (2), I remove cam-
eras installed from 2006 onwards as they could be di�erent from the other
cameras. In columns (3), I match each site with another site based on lo-
cation, pre-treatment accident outcomes and various road characteristics.
I exploit the variation now between two speed cameras by including pair-
�xed e�ects interacted with year �xed e�ects. In columns (4), I restrict the
analysis to areas that turn o� their cameras and counties that are contigu-
ous to these areas. Sandwich (robust) standard errors are reported in the
parenthesis. c p<0.10, b p<0.05, a p<0.01.
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E�ects across Road Types, Speed Limits & Time

Next, I allow the e�ectiveness of speed cameras to vary across di�erent road

types, speed limits and over time with the following speci�cation:

E(Yijt) = exp(αi + γw(Tit ∗H′w) +X ′jtφ+ θt + εijt), (3.2)

where the H′w represents a vector of binary variables that equals to unity denoting

the di�erent:

1. Speed limits (30,40,50,60 & 70)

2. Road Classes (Motorway, A, B & Minor)

3. Years after treatment (1,2...10 years after installation)

In short, I am allowing enforcement e�ects to vary across these characteristics.

Speci�cations for speed limits and road types are summarized in Panel A and B

of Table 3.4 respectively. Only the key estimates γw are reported.

From Panel A, although I �nd signi�cant improvement in road safety across

di�erent speed limits, the largest enforcement e�ects are documented along roads

with higher speed limits. Speci�cally, the number of collisions are, on average, 50%

lower along 60mph roads after a speed camera is installed. This is much larger than

the 22% reduction along 20mph roads. The number of serious injuries and deaths are

81% and 95% lower after speed cameras are installed along 60mph roads and nuch

smaller e�ects of around 36% and 41% are observed for serious injuries and deaths

respectively along 20mph roads. There are several explanations to these �ndings.

First, drivers along the lower speed limit roads are already commuting slowly and

reductions in speed achieved by cameras do not matter much in reducing the gravity

of collisions. Second, attenuated enforcement e�ects for more binding speed limits

suggest that drivers may be forced to hastily drop speed to avoid �nes. This could

cause more accidents via kangaroo e�ects.

Panel B summarizes the results of camera enforcement e�ects on di�erent road

types. Motorways are inter-city major roads for long distance travelling. A-Roads

are slightly less important compared to Motorways but can still be considered trunk

roads that provide large scale transport links. B-Roads are slightly smaller linkage

roads for tra�c between A-Roads and Minor roads. Minor Roads are smallest roads

that connect local tra�c, linking an estate/village with the larger road links. I do

not observe stark di�erences in enforcement e�ects across the di�erent road types.

This is except for Motorway in which no signi�cant reduction in slight injuries and

deaths are reported. This is likely due to a sample issue as only 1% of the cameras

are found along Motorways.
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Table 3.4: Heterogeneous e�ects of Speed Camera on various accident outcomes
across road types and speed limits

Panel A: Speed Limit
Accidents Slight Serious Deaths

Speed Limit 20 -0.247a -0.130b -0.446b -0.514
(0.066) (0.066) (0.211) (1.007)
-21.91 -12.23 -35.96 -40.19
-1.34 -0.92 -0.39 -0.07

Speed Limit 30 -0.227a -0.241a -0.356a -0.891a

(0.017) (0.020) (0.035) (0.124)
-20.31 -21.43 -29.98 -58.98
-1.24 -1.61 -0.32 -0.11

Speed Limit 40 -0.371a -0.358a -0.657a -1.277a

(0.036) (0.040) (0.067) (0.238)
-30.99 -30.10 -48.14 -72.11
-1.89 -2.25 -0.52 -0.13

Speed Limit 50 -0.213a -0.217a -0.538a -1.188a

(0.057) (0.063) (0.138) (0.285)
-19.15 -19.49 -41.62 -69.52
-1.17 -1.46 -0.45 -0.13

Speed Limit 60 -0.697a -0.598a -1.645a -3.060a

(0.162) (0.203) (0.275) (0.755)
-50.21 -45.01 -80.70 -95.31
-3.07 -3.37 -0.87 -0.18

Speed Limit 70 -0.314a -0.291c -0.709b -1.505a

(0.115) (0.163) (0.286) (0.307)
-26.94 -25.21 -50.79 -77.80
-1.64 -1.89 -0.55 -0.14

Obs 24871 20522 22833 11004
No.of CAM 1503 1243 1378 659

Panel B: Road Type
A Road -0.232a -0.243a -0.393a -0.990a

(0.017) (0.019) (0.035) (0.121)
-20.70 -21.60 -32.49 -62.84
-1.26 -1.62 -0.35 -0.12

B Road -0.325a -0.345a -0.514a -1.289a

(0.040) (0.053) (0.077) (0.301)
-27.77 -29.19 -40.20 -72.44
-1.70 -2.19 -0.43 -0.13

Minor Road -0.317a -0.340a -0.645a -1.346a

(0.055) (0.094) (0.096) (0.344)
-27.20 -28.82 -47.52 -73.98
-1.66 -2.16 -0.51 -0.14

Motorway -0.262a -0.105 -0.496c -0.135
(0.077) (0.141) (0.283) (0.470)
-23.05 -9.95 -39.13 -12.62
-1.41 -0.75 -0.42 -0.02

Obs 25720 21355 23650 11394
No.of CAM 1555 1294 1428 683

Note: Each reported coe�cient is the γw from a di�erent pois-
son regression from equation 3.2 estimated using maximum
likelihood. Dependent variable is the annual Y counts where
Y=accident, injuries, serious injuries and deaths 500m left
and right of camera. I allow the e�ects to vary across dif-
ferent speed limits and road types in Panel A and B respec-
tively. The speci�cation adopted is similar to Column 4 of
Table 3.2. Sandwich (robust) standard errors are reported
in parentheses. c p<0.10, b p<0.05, a p<0.01.
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Next, I examine the e�ectiveness of speed cameras over time. Results are sum-

marized in Figure 3.11. Results reveal that cameras remain e�ective and in fact

become more potent in reducing collisions and fatalities over time. Weaker e�ects

in the beginning suggest that some drivers could be unfamiliar with the locations

of camera and abruptly drop speed to avoid �nes. This could cause collisions and

dilute enforcement e�ects. Over time, drivers learn about these locations and are

less prone to reckless braking, explaining stronger enforcement e�ects.

E�ects over Distance

A major drawback of �xed speed cameras is that they might cause more accidents

further away from the camera. This is know as "kangaroo" e�ects - when drivers

abruptly halt in response to camera signs to avoid being �ne, or accelerate beyond

surveillance. To precisely capture how the e�ects change with distance from the

camera, the following speci�cation is estimated:

E(Y k−100,k
ijt ) = exp(αk−100,ki + γTk−100,k

it +X ′k−100,kjt φ+ θk−100,kt + εijt) (3.3)

where k represents the various distance bandwidths (eg. 0 to 100m, 100m to 200m...

1900m to 2000m) up to 2 kilometres left and right of the camera. In brevity, I

am estimating the enforcement e�ects for every 100m bandwidth to identify how

enforcement e�ects vary moving away from the camera. I achieve this by running

strati�ed regressions for every k and k − 100 bandwidth for k ∈ 100, ...1900, 2000

metres. If the e�ects are highly localised, I expect γk to be more negative as k is

smaller. If there are displacement of accidents, I would expect γk to be positive

outside camera surveillance.

Figure 3.10 summarizes the estimated e�ects of speed enforcement cameras at

every 100m from the camera using Poisson regressions. Results from Negative Bino-

mial models are summarized in Figure 3.12 in Data Appendix. Like before, results

are fairly similar across these two models. Precisely, I am capturing the change in

accident outcomes every 100 metres. Every dot denotes γk for a di�erent distance

bandwidth between k to k − 100 from the camera where k = 100, ....2000. Dashed

lines denote the 95% con�dence interval. The coe�cients can be interpreted as

number of accident outcomes per 100 metre.

Unsurprisingly, I �nd localised enforcement e�ects around the camera that dissi-

pate quickly across distance. Reductions are largely around 0 to 500 metres around

the camera and strongest e�ects are reported closest to the camera. This result is

fairly consistent across the di�erent accident outcomes. Beyond 700 metres from

the device, �xed speed cameras are no longer able to enhance road safety. Moving

further away at around 1500 metres from the camera, there are suggestive evidence
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of kangaroo e�ects as I report small rebound in the number of collisions, serious

injuries and deaths. A small proportion of drivers could have speed up beyond

the surveillance of cameras, inducing more collisions post implementation. How-

ever, these e�ects are quite small compared to the enforcement e�ects and are too

imprecisely estimated to be statistically signi�cant.

3.6.3 Welfare Analysis

This section reports a welfare analysis on speed cameras to understand whether

these devices improve social welfare. The costs include the �xed and operating costs

of camera and the time delays incurred by bypassing drivers, while the bene�ts

include the savings from less collision, injuries and fatalities. Fines from speed-

ing tickets are not considered as the government could redistribute these revenues

through public spending. The parameters considered are summarized in Table 3.5.

For the bene�ts, I rely on the savings per tra�c accidents, injuries and deaths

computed by Department of Transport (DfT)26. These values account for both (1)

casualty-related costs (loss output, medical and ambulance, human costs) and (2)

accident-related costs (property damage, insurance and administrative and police

costs). Total savings are computed by multiplying earlier estimates on reductions

with the savings on per capita or accident basis.

For the costs, I obtain approximated time delays from speed cameras from Gains

et al. (2005). Speed is around 10kmh slower after the camera is installed. Taking the

average speed limit of 58kmh27 (30mph) and a distance of 1km around the camera,

drivers incur a delay of around 0.2 minutes (or around 12 seconds) whenever they

bypass a speed camera. According to the average tra�c �ow along roads provided by

DfT, I estimate that there are approximately 3,600 vehicles bypassing each camera

every day, corresponding to around 1.3 million vehicles annually. Assuming the

average occupancy per car is 1.5, time delays incurred by all bypassing vehicles

amount to more than 7,000 hours every year28.

To compute loss of income from time delays, I rely on the estimates on the value

of time savings and the purposes of journey from DfT (2014). I assume that 5.0% of

the journeys are made for work, 20% are for commuting towards or from the place

26For more information, refer to https://www.gov.uk/government/uploads/system/
uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf

27Since most of the speed cameras impose a 30mph speed limit, time delays will be
computed based on the scenario that drivers commute, on average, at a speed limit of
30mph before camera installation. Drivers are assumed to slow down around 500m left
and right of the camera. Time delays per driver per trip is therefore approximately equal
to Distancearoundcamera

OriginalSpeed−Reductions .
28This is likely to over-estimate the time delays given that accidents can cause tra�c

bottlenecks that can increase travel time.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/254720/rrcgb-valuation-methodology.pdf
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of work, and the rest of the 75% of the journeys are for non-work purposes (e.g

leisure trips). The values of travel time (VOT) per hour are much higher at ¿26.42

for work, and ¿6.65 and ¿5.90 for commuting and non-work purposes respectively.

Multiplying the total number of hours delayed with the estimated proportion of

journeys for various purposes and their respective VOTs, the total loss of income due

to delays per speed camera amounts to around ¿50,000 per annum. Taking the cost

of installing a �xed speed camera at ¿309,000 and the operating and maintenance

cost at around ¿12,500 per annum, the total cost of installing a speed camera per

annum is around ¿121,000.

Table 3.5: Cost-Bene�t Analysis per speed camera across Great Britain

Parameter Source Value per Unit Net Cost/Bene�t/Year
Savings from avoiding Accidents

Damage-only DfT(2015) ¿2,142 1.13×£2, 142 = £2, 420
Slight Injuries DfT(2015) ¿15,450 1.33×£15, 450 = £20, 549
Serious Injuries DfT(2015) ¿200,422 0.33×£200, 422 = £66, 139
Deaths DfT(2015) ¿1,783,556 0.19×£1, 783, 556 = £338, 876
(A)Total Bene�ts ≈ ¿430,000

Time Delays
Speed Reductions Gains(2005) 9.65kmh 1km

58kmh−9.65km −
1km

58kmh
≈ 0.206mins

Average No. of Cars DfT(2016) 3,600 cars/day 3, 600× 365 = 1, 314, 000
Average Occupancy/car DfT 1.56/car
Total Time Loss (h) 1, 314, 000× 0.206

60
× 1.56 ≈ 7, 038hrs

Journey By Purpose DfT (2014)
Work 5.0% (¿26.42/h) 5.0%× 7, 038×£26.42 = £9, 297
Commuting 20.3% (¿6.65/h) 20.3%× 7, 038×£6.65 = £9, 501
Others 74.7%(¿5.90/h) 74.7%× 7, 038×£5.90 = £31, 018
(B)Loss of Income from delays ≈ ¿50,000

Cost of Cameras
Fixed Cost Parliament(2008) ¿50,000 £50, 000× 1.18 = £59, 000
Operating Cost Hooke(1996) ¿8,560 £8, 560× 1.45 = £12, 441
(C)Total Camera Costs per year ≈ ¿71,000
(D)Total Costs ≈ B+C=¿121,000
Net Costs/Bene�ts ≈ A-D=+¿309,000

Note: All the dollar values are adjusted to 2015 price levels. Estimates on savings from avoiding accidents are
obtained from Column (7) of Table 3.2. Fixed Costs include planning, signage, installation and procurement,
and other �xed costs. Operating costs include operation, administrative, maintenance, publicity and liaison
costs that recurs annually. These �gures are obtained by averaging across a sample of cameras installed 10
study areas across UK in �nancial year 1995/96.

It is important to highlight that the estimated bene�ts from this analysis are

likely to underestimate the actual bene�ts realized as I did not factor in other

non-pecuniary perks. These include environmental bene�ts from slower travelling

speed that could save more fuel, reduce emissions and improve health outcomes

(van Benthem, 2015). Enforcement cameras could also enhance crime intelligence

as images from these devices could help to solve other crimes (Hooke et al., 1996).

Even without considering these perks, each speed camera generates net bene�ts of

¿309,000 per annum, which is more than twice the cost of implementing a speed

camera.

Next, I conduct a battery of sensitivity analyses to the welfare estimates in Table
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Table 3.6: Sensitivity Analysis of Welfare Estimates

(1) (2) (3) (4) (5) (6)
Net Bene�ts ¿200,000 ¿281,000 ¿280,000 ¿270,000 ¿222,000 ¿35,000
25% ↓ in e�ectiveness 3 3

50% ↑ in tra�c 3 3

25% of journey work trips 3 3

50% ↑ in cost 3 3

25% ↓ in VSL 3 3

Note: All the dollar values are adjusted to 2015 price levels. In Column (1), I reduce the
e�ectiveness of speed cameras by 25%. In Column (2), I increase the tra�c that bypasses
speed cameras by 50%. In Column (3), I change the composition of trips such that 25% of
the journeys made now are for work purposes. In Column (4), the cost of installing and op-
erating �xed speed cameras are now 50% higher. In Column (5), I reduce the cost of death
from collisions by 25%.

3.6. Di�erent assumptions on the e�ectiveness, time delay and cost associated with

speed cameras do not a�ect the main �ndings. If I assume that the cameras are 25%

less e�ective as before, I still observe positive bene�ts fall to around ¿200,000. If the

amount of tra�c bypassing speed cameras goes up by 50%, the net bene�ts dipped

to around ¿281,000. If the percentage of trips made for work purposes increases

to 25%, the bene�ts reduce to ¿280,000. If the cost of installing and operating a

speed camera increase by 50%, the bene�ts fall to around ¿270,000. Finally, cutting

the value of statistical life (VSL) from tra�c collisions by 25% reduce the bene�ts

considerably to around ¿222,000. This is understandable considering the bulk of

the welfare from speed cameras is from the reduction of fatalities from accidents. In

the worst case scenario when I consider that all the following conditions happen, I

still observe substantial bene�ts of around ¿35,000, which represents around 30%

of the cost. All these results suggest that installing speed cameras improve social

welfare.

3.7 Conclusion

This paper utilizes micro geo-coded dataset on tra�c accidents to evaluate the

e�ectiveness of speed enforcement cameras. These devices deter reckless driving on

roads particularly prone to collisions by imposing �nes when drivers exceed speed

limits. In contrast to earlier literature, this paper addresses the selection bias by

analyzing only sites that will ever have a speed camera installed. The empirical

strategy is a quasi-experimental di�erence-in-di�erence framework that relies on

comparing accident outcomes before and after a speed camera is installed with other

sites that will experience installation in the near future.

Assuming a linear relationship between cameras and collisions, putting another

1,000 speed cameras on roads could reduce approximately 1130 crashes, preventing
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around 330 serious injuries and in turn, saving 190 lives every year and generating

bene�ts up to ¿309 million. These results remain robust across a range of speci�-

cations that relaxes the identi�cation strategies. Dwelling further, however, reveal

that these e�ects are largely localised within 0 to 500 metres from the camera and

there are suggestive evidence of a rebound in collisions further away from the cam-

era. This illustrates the possibility of drivers speeding up beyond the surveillance

of cameras and inducing more accidents. Nevertheless, simple cost-bene�t analysis

reveals that the perks from installing a camera are much larger than the cost of

cameras, suggesting that these devices improve social welfare. But with technology

advancement, newer prototypes, such as mobile and variable speed cameras, should

be considered to circumvent the weaknesses associated with �xed speed cameras to

more e�ectively deter speeding.



3.8. Data Appendix 92

3.8 Data Appendix

Table 3.7: List of Variables

Variable Source Description
Dependent Variable (Yijt )

Accident STATS19 Number of Accidents at site i in LA j
in year t

Slight Injuries STATS19 Number of Slight Injuries at site i in
LA j in year t

Serious Injuries STATS19 Number of Serious Injuries at site i in
LA j in year t

Deaths STATS19 Number of Deaths at site i in LA j in
year t

Local Authority Characteristics(X ′jt)

Gross Annual
Salary

Annual Labour
Force Survey

Average Gross annual salary at LA j

Hours worked Annual Labour
Force Survey

Average number of hours worked in LA
j

Job Density Nomis Number of Jobs per unit area of LA j
(hectare)

% of 18 to 25 Nomis Population
Estimates

Percentage of population aged 18 to 25
in LA j

VMT DfT Annual average vehicles miles travelled
in LA j

Max Temperature MIDAS Annual average max air temperature
in LA j

Min Temperature MIDAS Annual average min air temperature in
LA j

Wind Speed MIDAS Annual average wind speed in LA j
Camera/Road Characteristics

Speed Limit - Binary variable denoting whether
speed camera in site i has a speed limit
of l where l=30,40,50,60 or 70

Road Type - Binary variable denoting whether
speed camera in site i in road type r
where r=Motorway, A, B, C or Minor

Rural ONS Rural Urban
2011 classi�cation

Binary variable denoting whether
speed camera in site i is in rural area,
otherwise it is located in urban area
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Table 3.8: Review of Existing Literature on Speed Camera Evaluation

Authors Dataset Methodology Results

Chen et al. (2002) 12 Photo Radar
Programs (PRP)
over 22km along a
highway in British
Columbia, Canada,
2 years pre post

EB 2.8 km/h (3%) ↓ in speed; 7% ↑ in traf-
�c; overall 16% ↓ in collisions across en-
tire corridor with positive spillover ef-
fects at non PRP locations. Unlike cam-
eras, drivers are unsure of PRP deploy-
ment

Christie et al.

(2003)
101 Mobile Speed
cameras in South
Wales, UK, 3 years
pre, 1 year post

BA with circle and
route based mea-
sures

50% (1.8) ↓ in injury crashes; e�ects are
within 300 to 500m and no longer sig-
ni�cant beyond; e�ects are stable across
time and similar for 30mph and 60-
70mph roads

Cunningham et al.

(2008)
Mobile Speed cam-
eras in Charlotte,
North Carolina, US,
5 years

BA with compara-
ble reference groups
constructed based
on characteristics

10% ↓ in collisions, decrease in travelling
speed

Elvik (1997) 64 Speed cams in
Norway,

EB 20% ↓ in injury crashes; 12% ↓ in prop-
erty crashes; e�ects are largely driven by
road sections with warrants - a certain
level of crash and speed limit for the use
of speed limit.

Gains et al. (2004,
2005)

2,300 speed cam-
eras across 23 areas
across UK, 3 years
pre post

BA & EB 6% ↓ in speed; 91% ↓ in excessive speed-
ing (>15mph); 22% ↓ in collisions; 42%
↓ in casualties

Goldenbeld & van
Schagen (2005)

28 Rural Roads in
Friesland, Nether-
lands, 5 years pre
and 8 years post

BA with other ru-
ral roads as compa-
rables

4 km/h ↓ in speed; overall 21% ↓ in col-
lisions and casualties

Hess & Polak
(2003)

43 �xed speed cams
in Cambridgeshire,
England, over 11
years

ARIMA, BA with
comparable ref-
erence sites, long
pre-treatment pe-
riod to mitigate
RTM

18% ↓ in collisions & 32% ↓ in injury
crashes

Jones et al. (2008) 29 mobile cams in
Norfolk, England,
for 4 years

BA with 48 �xed
speed cam sites as
comparables

18% ↓ in collisions & 35% ↓ in fatal
crashes; no evidence of migration of ac-
cidents

Li et al. (2013) 771 �xed speed cam
sites across Eng-
land, 9 years

DID-PSM, EB;
reference groups
by matching on
observables

23-31% (0.9-1.4) ↓ in collisions; 0.12 -
0.34 ↓ in fatal crashes; e�ects smaller
with PSM & localised within 200m ; no
spillovers of accidents

Li & Graham
(2016)

771 �xed speed cam
sites across Eng-
land, 9 years

DID-PSM, EB;
reference groups
by matching on
observables

Cameras are more e�ective in reducing
collisions on riskier sites, measured by
higher historical collision counts.

Keall et al. (2001) Visible and Hidden
cameras in 4 regions
in New Zealand, 1
year pre and post

BA with matching
on road characteris-
tics for comparables

0.7 km/h ↓ in speed; overall 11% ↓ in
collisions, 19% ↓ casualties; hidden cam-
eras has a more general e�ect across
road

Mountain et al.

(2004)
62 �xed speed
cams across Great
Britain, 3 years pre
post

EB 35% ↓ in speeding, 26% (1.36) ↓ in colli-
sions, 34% (0.31) ↓ in fatal crashes 500m
from cam; e�ects ↓ moving away from
cam

Mountain et al.

(2005)
79 enforcement
schemes (17 mobile,
62 �xed) across
Great Britain, 3
years pre post

EB 4% ↓ for every 1mph ↓ in speed ;Larger ↓
reported for lower speed roads; Vertical
de�ections (speed humps) more e�ective
in reducing speed and accidents

Newstead &
Cameron (2003)

Speed cameras in
Queensland, Aus-
tralia, over a 5 year
span (2006 to 2007)

Poisson BA with
reference sites more
than 6km away

21% ↓ in non-injury crashes, 31% ↓ in
injury crashes, largest e�ects localised
within 2km

Perez et al. (2007) 8 mobile cams in
Barcelona, Spain

BA Poisson regres-
sions with nearby
reference sites

9 mph ↓ in speed; 27% ↓ in collisions and
injuries, greater e�ects on weekends

Shin et al. (2009) 6 speed cameras in
Scottsdale, Arizona
US, over a 2 year
span (2006 to 2007)

BA, EB with
nearby reference
sites

9 mph ↓ in speed; overall 44-55% ↓ in
all collisions, 28-48% ↓ in injury crashes,
but no e�ect on rear-end crashes; no dis-
cernable spillovers

EB - Empirical Bayes, BA - Before and after analysis, DID - Di�erence-in-Di�erence
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Table 3.9: E�ects of Speed Camera on various accident outcomes within 500 metres
from Camera using Negative Binomial Regressions

(1) (2) (3) (4) (5) (6) (7)
All Baseline Demo VMT Weather Non-CAM -3,+3

Accidents -0.489a -0.520a -0.280a -0.268a -0.212a -0.168a -0.232a

(0.009) (0.013) (0.016) (0.016) (0.028) (0.013) (0.017)
Obs 66868 25720 25720 25720 7383 35929 9841
Absolute -2.18 -2.47 -1.49 -1.43 -1.01 -1.40 -1.18
% ∆ -38.68 -40.52 -24.40 -23.47 -19.07 -15.48 -20.70
No.of CAM 2481 1555 1555 1555 659 2249 1481
Slight -0.433a -0.527a -0.423a -0.379a -0.332a -0.221a -0.310a

(0.010) (0.013) (0.021) (0.019) (0.036) (0.013) (0.021)
Obs 57224 21355 21355 21355 5483 31564 8175
Absolute -2.35 -3.07 -2.59 -2.36 -1.99 -2.28 -1.89
% ∆ -35.16 -40.97 -34.52 -31.52 -28.27 -19.84 -26.67
No.of CAM 2123 1294 1294 1294 518 1988 1223
Serious -0.785a -0.758a -0.533a -0.499a -0.447a -0.403a -0.443a

(0.016) (0.018) (0.034) (0.039) (0.079) (0.025) (0.044)
Obs 63280 23650 23650 23650 6539 33823 8306
Absolute -0.58 -0.57 -0.45 -0.42 -0.32 -0.41 -0.38
% ∆ -54.40 -53.15 -41.30 -39.31 -36.07 -33.15 -35.81
No.of CAM 2346 1428 1428 1428 572 2115 1240
Deaths -0.934a -1.006a -1.048a -1.018a -0.950a -0.756a -0.883a

(0.043) (0.071) (0.108) (0.109) (0.185) (0.077) (0.131)
Obs 42924 11394 11394 11394 2787 18765 2843
Absolute -0.08 -0.12 -0.12 -0.12 -0.14 -0.09 -0.19
% ∆ -60.69 -63.41 -64.95 -63.85 -61.32 -53.04 -58.63
No.of CAM 1591 683 683 683 220 1155 426
CAM FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Demographics 3 3 3 3 3

VMT 3 3 3 3

Weather 3

Note: Each reported coe�cient is the γ from a di�erent Negative Binomial regression
estimated using Maximum likelihood. Dependent variable is the annual Y count
where Y=accident, injuries, serious injuries and deaths 500m left and right of cam-
era. Absolute is the number of reductions in accident outcomes computed by multi-
plying the % ∆ with the pre-treatment mean of Y . % ∆ is the proportional change
(semi-elasticity) of collision outcomes after treatment and is computed by taking
exp(γ) − 1. In Column (1), I include the entire sample of cameras. In Column (2),
I restrict the sample to sites that I have full set of co-variates. In Column (3), I
control for population size, % of 18 to 25, Gross Annual Pay & hours worked. In
Column (4), I control for the annual average vehicle miles travelled (VMT). In Col-
umn (5), weather controls are added into the speci�cation. In Column (6), I include
a sample of non-camera sites that are eligible for camera installations. In Column
(7), I constraint the analysis to observations just 3 years before and after from the
year of installation. Bootstrapped standard errors are reported in the parentheses.
c p<0.10, b p<0.05, a p<0.01
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Chapter 4

Beauty Pays for Crime? Evidence

from Sentencing Outcomes

4.1 Introduction

According to the Fourteenth Amendment to the U.S Constitution, all citizens

must be guaranteed equal protection from laws. This implicitly means that when

facing trial, all defendants should not be treated di�erently based on unimportant

factors, such as physical appearance, race, gender etc. Judges are entrusted with

the task of upholding this principle. Although for more serious o�ences, the jury

will agree upon whether to convict a suspect, judges decide on the harshness of the

punishment. They are required to be impartial and not be in�uenced by personal

experiences, emotions or other unimportant factors. Their verdict should ultimately

be based on laws and evidences presented in the courts. Yet, time and time again,

judges have been in the spot light for the inconsistency in the punishment for con-

siderably similar o�ences.

Di�erent extraneous factors have been identi�ed to in�uence judicial outcomes.

Numerous studies have shown that outcome for football games (Eren & Mocan,

2016), duration from food breaks (Danziger et al., 2011), media attention (Lim

et al., 2015), race of jury (Anwar et al., 2012), judge (Shayo & Zussman, 2011) and

defendants (Abrams et al., 2012; Alesina & La Ferrara, 2014), and gender of defen-

dants (Mustard, 2001) can impact judicial rulings. These studies seem to suggest

that these "expert" decision makers are easily swayed by unimportant factors.

In this paper, I contribute to the existing literature by evaluating whether fa-

cial attractiveness of criminals impact sentencing outcomes. This is motivated by

the prevalence of the discrimination against the physically unattractive in multi-

ple contexts. It has been long documented that labour markets discriminate based

on appearance as attractive individuals earn higher wages while plain looking peo-

ple are penalized with poor labour market outcomes (Hamermesh & Biddle, 1994;

Biddle & Hamermesh, 1998; Graham et al., 2016). Researches suggest that better

looking people earn more because they appear to be more con�dent with superior

communication skills (Mobius & Rosenblat, 2006). Being attractive also reduces

the propensity for young adult to engage in criminal activities (Mocan & Tekin,
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2010). This bias towards more attractive individuals is also documented widely out-

side labour markets. While better-looking politicians appear to win more votes in

elections (Berggren et al., 2010), lenders also trust better looking borrowers more

than unattractive counterparts (Duarte et al., 2012; Ravina et al., 2008; Jenq et al.,

2015). Looks could also impede human capital accumulation. Hat�eld & Sprecher

(1986) suggest that better-looking adolescents are showered with more attention

from teachers that can improve their con�dence and social skills. Supporting this,

Mocan & Tekin (2010) show that less physically attractive teenagers have poorer

test scores.

Despite the burgeoning evidences on the disparity in judicial sentencing due

to extraneous factors, and the pervasiveness of bias against the unattractive in

di�erent settings, the literature linking appearance of felons and sentencing outcomes

is remarkably limited. This is probably because the empirical analysis is beset with

multiple challenges. First, measuring attractiveness is challenging as it is hard to

clearly de�ne what constitutes beauty. Measures widely used in the psychology

literature to de�ne attractiveness1 include facial symmetry, averageness and sexual

dimorphism. Furthermore, as the saying goes, beauty lies in the eyes of the beholder.

The de�nition of attractiveness could vary tremendously across cultures and time.

The argument made by many academics is that there seems to be consensus among

individuals on the standards of beauty within culture and time. To circumvent this

problem, studies often require di�erent respondents2 to rate the same subjects to

obtain an objective measure of attractiveness. This resource-intensive research set

up, however, meant that the sample sizes are usually small, questioning the external

validity of these studies.

Even if appearance is accurately measured, there could be unobserved con-

founders that correlate with facial attractiveness and in�uence judicial sentenc-

ing. For instance, if labour market outcomes are aversely a�ected by appearance

(Hamermesh & Biddle, 1994; Biddle & Hamermesh, 1998), labour market penalties

could incentivise unattractive individuals to engage in illicit activities. Higher socio-

economic status could allow attractive felons to engage in more reputable attorneys

who can reduce the severity of their sentences. All these factors could exacerbate

the sentencing gap between the better and worse looking criminals.

Bearing these challenges in mind, this research contributes to the existing lit-

1This list is by no means exhaustive. Other measures used include grooming, youthful-
ness, babyfaced-ness and expression. Moreover, there is a lack of consistency in the de�ni-
tion of attractiveness.

2For instance, in the seminal study by Hamermesh & Biddle (1994), assessors of between
7 and 50 years old are asked to rank the same images and their responses appear to be
highly correlated. Similarly, Mocan & Tekin (2010) rely on di�erent evaluators to assess
beauty to obtain a representative measure of attractiveness.
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erature on several fronts: I conduct the analysis to a universe of almost 300,000

convicted criminals from 1998 to 2015 in Florida to increase the representativeness

of my �ndings. This is possible because I rely on a facial recognition algorithm

on the mugshots to accurately delineate various facial features (eyes, nose, mouth,

forehead and jawline) and compute facial symmetry to approximate attractiveness.

Third, I exploit the random assignment of cases to judges in the courts in Florida.

This means that cases are randomly allocated to judges not based on the appear-

ance of the felon. Finally, to mitigate the risk of observed di�erences between better

and worse looking criminals from biasing the estimates, I control for a rich set of

covariates that includes (1) physical attributes of felons (age, height, weight, race,

tattoo, eye and hair color), (2) case facts (crime type, number of concurrent charges,

whether is the principal criminal) and (3) criminal history (counts and types of pre-

vious o�ences).

The main �nding is that judges hand out lenient sentences to criminals with

more symmetrical faces. The disparity in punishment between criminals with more

symmetric faces, at the 25th percentile, and criminals with less symmetric faces,

at the 75th percentile, is around 1.0% to 1.9% of the mean sentence length, which

amounts between 17 and 32 days. These results hold across a battery of sensitivity

analyses. This bias against less attractive felons appears to vary across race, gender

and type of crimes. The e�ects are smaller associated with black inmates, suggesting

that cross-race judgement of facial symmetry could be weaker than within race as

most of the judges in Florida are white. Conversely, female felons with more sym-

metrical features are given harsher sentences. This reversal in relationship could be

explained by paternalism towards female felons as asymmetric facial features could

be correlated with sympathetic life circumstances. I further observe the e�ects of

facial symmetry on sentences are weaker for serious o�ences (e.g murder, manslaugh-

ter), suggesting that judges have less �exibility to depart from sentencing guidelines

for high pro�le cases.

The remainder of the paper is organized as follows. Next, I review several

streams of literature related to this research, before describing the data and how

I measure attractiveness using facial symmetry. Subsequently, I will illustrate the

institutional background of judicial sentencing before highlighting the identi�cation

strategy adopted in this paper. Finally, I will present the �ndings before concluding

the research.

4.2 Literature Review

There are several streams of literature particularly related to this research. The

�rst line of research is understanding what de�nes attractiveness. The three main
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components prominent in psychology are averageness (Langlois & Roggman, 1990),

symmetry (Scheib et al., 1999), and sexual dimorphism (Perrett et al., 1998). An

average face has mathematically mean trait values of the population and is low

in distinctiveness. A symmetrical face has physiognomy features that are highly

proportional. Sexual dimorphism refers to facial traits that emerge during puberty,

signalling sexual maturity and reproductive potential.

These measures of facial attractiveness each has their pros and cons. For in-

stance, an average face is usually created out of compositing many digitized faces

that confounds averageness with symmetry and smoothness of the skin (Alley &

Cunningham, 1991). It is also challenging to de�ne the standards of "attractive"

sexual dimorphism. For instance, it is subjective to consider what is a distinctive

jawline. Conversely, among the di�erent measures, it is the most straightforward to

measure facial symmetry as it is based on the proportionality of various facial fea-

tures. Numerous studies have also shown that facial symmetry is highly correlated

with attractiveness Grammer & Thornhill (1994); Perrett et al. (1999); Jones & Hill

(1993). Hence, this paper will focus on facial symmetry to measure attractiveness.

Why do attractive faces matter? They are desirable because they re�ect func-

tional optimality, disease resistance, development stability and signal better mate

quality (Rhodes, 2006). An attractive face could also draw positive �rst impressions

and elicit desirable traits - a popular stereotype of what is beautiful is good (Dion

et al., 1972). Previous literature has shown that attributes such as trustworthiness,

competency, sociability and con�dence etc. are highly correlated with ratings of

facial attractiveness. For a summary of the existing literature, refer to Feingold

(1992) and Langlois et al. (2000). All these results suggest that facial attractiveness

could matter in the courtroom.

Despite the copious amount of research indicating that judicial decisions are

swayed by extraneous factors, existing literature on the presence of discrimination

on appearance in the courtroom is largely limited to the �eld of psychology. The

bulk of these studies conclude that appearance matters as judges tend to hand

out favourable sentences to better looking felons. Stewart (1980) conducted an

observational analysis for 74 defendants from Pennsylvania during trials, requiring

observers to rate them on attractiveness, grooming and cleanliness etc. Although he

�nds that attractive defendants receive lighter sentences, appearance do not matter

for conviction rates. Zebrowitz & McDonald (1991) examine the impact of baby-

facedness and attractiveness for a sample of 504 cases from the small claims court in

Massachusetts. They report that the appearance of defendants and plainti�s matter

as judges side youthful-looking individuals. Whether attractiveness matters also

depends on the type of crimes committed. Attractiveness could work against felons

who committing crimes that rely on their appearances (Sigall & Ostrove, 1975). The
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bias against less attractive felons also appears to be implicit. Subjects seem unaware

of their bias against the uglier suspects despite recommending lighter sentences and

lower conviction rates for better looking felons (Efran, 1974).

A review of the existing literature reveals several shortcomings. Many of these

studies mentioned above, especially earlier ones, are laboratory experiments that

are not only constrained to a limited sample, but also require non-judge subjects

to make judicial decisions outside courtroom settings. Hence, it is unlikely that

the results from these �eld experiments are going to be representative or re�ective

of actual sentencing outcomes. Even for observational studies, most of them are

fairly dated and lack information on cases and felons. These limitations restrict the

analyses to parsimonious regression models plagued with omitted variable bias.

Economics researches on the discrimination in judicial sentencing have made

more headway in detecting prejudice. Most of these papers focus on understand-

ing racial and gender bias in judicial outcomes. These studies rely on random

assignment of cases to judges and a richer set of control variables to improve the

identi�cation of discrimination. Researches have provided overwhelmingly support

for racial or gender bias in capital punishment (Alesina & La Ferrara, 2014), bail

(Ayres & Waldfogel, 1994), probability of being convicted (Mustard, 2001; Abrams

et al., 2012) and sentence length (Abrams et al., 2012; Butcher et al., 2017). Most

of these studies report favourable treatment towards females and whites. Several

studies seek to understand the underlying motivations for discrimination in policing

with some innovative strategies. For instance, Knowles et al. (2001) examine the

guilty rates for motor vehicle searches across di�erent races. The idea is that if

race is indicative of the propensity to carry contraband substance - consistent with

statistical discrimination - then even if the number of searches are higher for a par-

ticular group, the guilty rates should be very similar across races. Indeed, they �nd

evidence supporting statistical discrimination. Rank-order tests3 are conducted to

detect whether judges are consistent in the judgement towards felons belonging in

di�erent groups (Park, 2017; Butcher et al., 2017).

Overall, it is surprising to �nd no studies on appearance bias in judicial out-

comes in the economics literature despite the sheer volume of work illustrating the

discrimination against the less attractive in multiple settings. This is a gap that

this paper aims to �ll.

3This strategy is �rst adopted by Anwar & Fang (2006) on motor vehicle searches. The
idea is that taste-based discrimination prevails if white police o�cers search black motorists
more than black o�cers and vice versa. However, if both black and white o�cers are more
prone to search black motorists, then race might be signalling some latent criminality and
statistical discrimination prevails.
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4.3 Data

The main source of data is from the OBIS database provided by the Florida

Department of Corrections (FDOC). This comprehensive database documents infor-

mation for a universe of convicted felons, including those released, those currently

under supervision and incarceration from 1997 onwards. For each case record, de-

tails on the sentencing outcomes and case facts, which include length of sentence,

date of sentencing and o�ence committed, number of concurrent charges, type of

crime and location of court, are reported. Other details recorded for each felon in-

clude criminal history, gender, race, age, height, weight, body tattoos and residential

address.

To assess facial attractiveness of the convicts, I �rst scrape inmate mugshots from

FDOC. These pictures are usually taken when inmates are initially incarcerated in

the facility. Using a facial recognition package, I extracted 69 facial landmarks from

each of the mugshots4. These features delineate the top of the forehead, eyebrows,

eyes, nose, lips and jaw line. An illustration is shown in the Figure 4.1.

Figure 4.1: An illustration of the 69 facial features extracted & how facial symmetry
is computed

Using the location of these facial landmarks, I measure the distance of the left

and right features from the middle of the face denoted by the dashed line. A total of

seven features, which include eye brows (r1 & l1), eyes (r2, l2), interocular (r3, l3),

middle face (r4 & l4), nose (r5 & l5), mouth (r6 & l6) and lower face (r7 & l7), are

accounted for. I �rst measure the absolute di�erence between the distance of the

4The algorithm is written by Vahid Kazemi and Josephine Sullivan to locate facial
landmarks rapidly using machine learning. For more details, refer to Kazemi & Sullivan
(2014).
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left (ln) and right (rn) for each of the 7 features, before averaging them to compute

facial symmetry for each inmate (FSi) as shown in equation 4.1. Details of these

features are summarized in Table 4.1.

FSi =

7∑
n=1
|rn − ln|

7
(4.1)

Table 4.1: Facial Symmetry Ratios

Feature Computation Description
Eyebrows r1 − l1 Right Brow - Left Brow
Eyes r2 − l2 Right Eye - Left Eye
Interocular r3 − l3 Right Interocular - Left Interocular
Middle Face r4 − l4 Right Face Width - Left Face Width
Nose r5 − l5 Right Nose Width - Left Nose Width
Mouth r6 − l6 Right Mouth Width - Left Mouth Width
Lower Face r7 − l7 Right Bottom Face Width - Left Bottom Face Width

While the pros of using facial symmetry to proxy for attractiveness are that it is

straightforward to measure and it provides a continuous measure of attractiveness,

there are some cons with using facial symmetry. First, FSi only measures horizontal

symmetry and will not account for inmates with disproportionately wide or long

faces. Therefore, I include face-width-height ratio as an additional control in the

robustness tests (See Table 4.5).

Another concern is that facial symmetry captured from mugshots could be inac-

curately measured from badly taken pictures. For instance, if the inmates' head is

tilted to the left or right when the mugshot is taken (See Figure 4.2), it is possible

for faces to be asymmetrical even though this might not be true. The concern is

whether de�ant inmates, who receive harsher sentences, take poorer mugshots. To

correct for measurement error in facial symmetry from poorly taken mugshots, I

compute various adjustment angles that account for how slanted the face is. First,

I calculate eye-adjustment angle (k) - the angle between the actual eye-line and the

horizontal eye-line. Then, I account for the nose-adjustment angle (d) - the angle

between the actual nose-line and the vertical nose-line. For illustration of tilted

and well-taken mugshots, and how I compute these adjustment angles, refer to Fig-

ure 4.2. A well-taken mugshot should have a �at horizontal eye-line and a vertical

nose-line as observed in Figure 4.2c.

When taking mugshots, inmates could also be facing left or right, or could be

lifting their heads up or down, a�ecting facial symmetry. Hence, I further compute

the absolute of the di�erence between right eye-to-face-edge (Dr) and left eye-to-face-

edge distance (Dl), and the absolute di�erence between forehead-eyebrow distance
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(a) This image has been re-
moved as the copyright is
owned by another organisa-
tion

(b) This image has been re-
moved as the copyright is
owned by another organisa-
tion

(c) This image has been re-
moved as the copyright is
owned by another organisa-
tion

Figure 4.2: Examples of side-way tilted mugshots that could a�ect facial at-
tractiveness. To �nd d and k, one can do it using Pythagoras Theorem where
d = Cos−1(V erticalNoseLength

ActualNoseLength
) and k = Cos−1(HorizonalEyeLength

ActualEyeLength
). Source: Florida

Department of Corrections

(Du) and mouth-chin distance (Dd). These measures are illustrated in Figure 4.3.

(a) This image has been removed as the copy-
right is owned by another organisation

(b) This image has been removed as the copy-
right is owned by another organisation

Figure 4.3: Examples of left or right facing and up or downward facing mugshots
that could a�ect facial attractiveness. To account for this I calculate the |Dr −Dl|
and |Du−Dd| and include these measures as controls. Source: Florida Department
of Corrections

4.4 Institutional Background

Sentencing guidelines are adopted in Florida since 1983 to eradicate disparity

in punishments between similar o�ences to ensure fairness, and to make sure that

felons are adequately punished for their transgressions. A scoresheet is prepared for

each defendant by the state attorney, before being presented to the defense counsel

and signed o� by the judge. O�ences are categorized into 10 levels, depending on

the severity of the crime that is based on the purported level of harm in�icted on the

community. The more severe the crime, the more points will be allocated. Additional

points could be given depending on the way the crime is committed5 and the criminal

history of the felon. The total points will determine the severity the punishment6.

Although the points determine the recommended sentencing, judges are allowed to

depart from the recommendations if proper reasons7 could be provided.

5Additional points could be given if the felon in�icts victim injury or made sexual
contact, the felon has serious o�ence history, there is a use of �rearms or the crime is gang
related.

6O�enders receiving 44 points or less could receive a non-state prison sanction, while
those exceeding will be given a minimum sentence in months by subtracting the points
received by 28 before decreasing the value by 25%.

7Departure of sentences could occur depending on whether the defendant is juvenile,
whether the defendant is an accomplice, and whether the defendant is able to appreciate the
criminal nature of the conduct. For more information, refer to http://www.dc.state.fl.us/
pub/sen_cpcm/cpc_manual.pdf.

http://www.dc.state.fl.us/pub/sen_cpcm/cpc_manual.pdf
http://www.dc.state.fl.us/pub/sen_cpcm/cpc_manual.pdf
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Sentencing guidelines went through major changes8 over the years. The Criminal

Punishment Code (CPC) became e�ective on the 1st October 1998. The new code

not only lowers the threshold for incarceration, but also increases the maximum

sentences permitted. Under CPC, the maximum sentence is determined by the

maximum provided in statute 775.082 rather than being capped by the 25% upward

discretion under previous guidelines. Adhering to the statutory maximum means

that potentially all felony o�enders could be incarcerated, and that they are likely

to receive longer sentence lengths9. With more �exibility given to judges to depart

from the guidelines, it is more likely for extraneous factors, such as appearance, to

have a consequential e�ect on judicial outcomes.

4.5 Identi�cation Strategy and Methodology

To estimate the impact of facial symmetry on sentencing length, I specify the

following equation:

Dijct = αj ∗ δc + γFSi +X ′ijφ+M ′
iω + θt + εijct, (4.2)

where Dijct is the natural logarithm of the sentence length measured in days for

defendant i committing crime type j and trialled in court c at time t. The key

variable of interest, FSi, is the absolute deviation from the perfect facial symmetry.

This is measured based on the average symmetry from 7 di�erent facial features as

described earlier in Table 4.1. Hence, γ captures the percentage change in sentencing

length from a one unit increase in deviation from a perfectly symmetrical face. If

judges are favoring felons with symmetric facial features, I would expect γ to be >

0.

X ′ij represents a vector of personal characteristics, case facts and criminal history

associated with defendant i committing crime type j. Personal details include race,

gender, age, tattoos (counts of visible tattoos), height, weight, hair and eye colour.

By partial-ing out the e�ect of height and weight, this paper focuses on the impact

8The �rst reforms took place in 1994. New guidelines were created in response to
the epidemic of certain o�ences, such as crack-related crimes, the passage of unfunded
mandatory minimum sentence legislation and the population boom to reduce the strain on
correction facilities. The objective is to ensure that state incarceration will be enforced on
repeated o�enders who are threatening the society committing serious or violent crimes.
These reforms include better categorization of the o�ences, and allowing additional points
to be given for repeated o�enders and for the manner the crime is committed. In 1995,
the guidelines were amended again. Point values were increased in a variety of areas and
additional policy levers were created to permit tougher punishments. These guidelines
went through more modi�cations in 1997 and 1998 that further exacerbates sanctions.

9Based on the new code, a felon charged with life felony could receive life imprisonment,
while 1st, 2nd and 3rd degree could receive jail terms of up to 30, 15 and 5 years respectively.
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of physiognomy on judicial outcomes. As the majority of the inmates are either

black or white males, I restrict the analysis to these groups, which makes up more

than 88% of the sample, to reduce heterogeneity in the sample. I will examine the

di�erential e�ects of facial symmetry on sentencing outcomes across di�erent races

and gender in subsequent sections.

Case facts accounted for include the number of concurrent charges and whether

the felon is the principal criminal. Those playing lesser roles in the transgression

are less culpable and could be given lighter sentences. I further control for the

criminal history of each defendant by including the total number of times the felon

has been previously incarcerated as a regressor. The idea is that serial o�enders

are subjected to heftier punishment to deter re-o�ending. M ′
i represents a vector of

mugshot related characteristics. These variables include various adjustment angles

and distances that correct for badly taken mugshots that could a�ect the measure-

ment of facial symmetry. Refer to Figure 4.2 and 4.3 for more information. I also

control for the image data size as the fuzziness of the mugshots could exacerbate

measurement error.

δc represents court �xed e�ects that are indicators for the court responsible for

handling the case. αj are indicators denoting the type of crime committed. Relying

on the detailed information provided for each sentence, I classify the o�ences into

1294 unique categories10. I include the interaction of crime (αj) and court (δc) �xed

e�ects 11. In other words, I am exploiting the variation of facial symmetry and

sentences between felons committing the same crime type j and trial in the same

court c. Adding crime-court �xed e�ects not only mitigates the risk of time-invariant

unobserved di�erences between o�ences from confounding the estimates, but also

ensure that e�ects are not induced by the variation of harshness in sentencing across

courts.

θt denotes month and year �xed e�ects for both the o�ence and sentencing dates

that controls for general trends in the sentencing across counties over time. Due

to major changes in sentencing guidelines over the sample period, I restrict the

sample to o�ences committed after the passing of the Criminal Punishment Code

on the 1st of October 1998. εijct represents the standard errors that are clustered

at court-by-year levels. The assumption is that E[εijct|FSi = 0].

10For more information on how the di�erent transgression are classi�ed, refer to http:

//www.dc.state.fl.us/appcommon/offctgy.asp
11This speci�cation is chosen also because I do not have information on the judges. Ide-

ally, I would like to include judge �xed e�ects and exploit the variation in facial symmetry
and sentencing within judge and crime type. Given the lack of judicial details, interact-
ing the crime and court �xed e�ects ensures that I am closer to exploiting within judge
variation given that there seems to be some specialization in the types of crimes that are
handled by judges in a court.

http://www.dc.state.fl.us/appcommon/offctgy.asp
http://www.dc.state.fl.us/appcommon/offctgy.asp
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4.6 Empirical Results

4.6.1 Descriptive Statistics

Table 4.2: Summary Statistics

All Above Median Below Median Di�erence
(More Symmetric) (Less Symmetric)

Mean SD Mean SD Mean SD Di� T-stats
Sentencing Outcomes
Sentence Length (Years) 4.65 5.56 4.61 5.56 4.88 5.76 0.27 23.97
Personal Traits
Age 34.63 10.84 34.32 10.52 34.61 10.89 0.29 13.32
Height(feet) 5.27 0.40 5.27 0.39 5.28 0.40 0.01 17.32
Weight(lbs) 182.82 35.79 182.07 35.05 183.13 36.08 1.06 14.90
Black 0.41 0.49 0.39 0.49 0.41 0.49 0.02 20.50
Hispanic 0.04 0.19 0.04 0.20 0.04 0.19 -0.00 -6.76
White 0.55 0.50 0.57 0.50 0.55 0.50 -0.02 -17.46
Female 0.13 0.34 0.14 0.35 0.12 0.32 -0.03 -37.62
Counts of Tattoos 3.30 3.89 3.36 3.94 3.33 3.90 -0.03 -3.39
Have Face Tattoos 0.15 0.35 0.15 0.36 0.15 0.36 -0.00 -0.46
Case Related Characteristics
Principal Criminal 0.99 0.08 0.99 0.08 0.99 0.08 0.00 1.80
No. of Charges per Case 4.83 12.39 4.72 11.89 5.05 12.84 0.33 13.16
No. of previous o�ences 1.18 3.98 1.17 3.95 1.19 4.12 0.02 2.72
Assault 0.09 0.28 0.08 0.28 0.09 0.28 0.00 6.86
Drug 0.24 0.43 0.24 0.43 0.23 0.42 -0.01 -9.67
Manslaughter 0.00 0.07 0.00 0.07 0.00 0.07 -0.00 -1.06
Murder 0.01 0.09 0.01 0.09 0.01 0.10 0.00 5.92
Other Crimes 0.20 0.40 0.20 0.40 0.20 0.40 -0.00 -5.96
Property Crime 0.01 0.09 0.01 0.09 0.01 0.09 0.00 4.16
Robbery 0.05 0.22 0.05 0.22 0.06 0.23 0.00 7.16
Sex 0.06 0.24 0.06 0.23 0.07 0.25 0.01 19.65
Theft 0.31 0.46 0.31 0.46 0.31 0.46 -0.01 -6.69
Weapon 0.03 0.17 0.03 0.17 0.03 0.17 0.00 2.79

All represents the entire sample of 807,013 sentences from 278,240 inmates . Above Median represents a group
of inmates with facial features more symmetrical that the median face, while Below Median represents a group
of inmates with facial features less symmetrical than the median face. Di�erence captures the absolute di�erence
in the mean of observable covariates between the Above and Below Median and T-statistics denote the statistical
signi�cance of such di�erences.

Table 4.2 presents the summary statistics of sentencing outcomes, observable

personal and case related characteristics surrounding the felons in the analysis. I �rst

report statistics for the entire sample, before stratifying the sample into above and

below median facial symmetry. I further report the di�erences-in-mean for various

observable characteristics. These preliminary results show whether felons with more

symmetric facial features are di�erent from others in observable characteristics.

There are signi�cant di�erences in sentencing outcomes. On average, criminals

with more proportional facial features serve sentences that are 0.27 years (about

3 months) shorter, suggesting that judges are more lenient to those felons with

more symmetrical faces. In terms of personal traits, I observe that inmates with

less symmetrical facial features are, on average, 0.3 years older, around 1 pound
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heavier, and have fewer tattoos. There are, on average, a slightly bigger proportion

of black inmates and smaller proportion of white inmates with facial symmetry below

median.

Surrounding case related characteristics, more facially symmetrical criminals are

charged with 0.34 fewer counts of concurrent o�ences compared to those below

median symmetry. There are no stark di�erences in terms of the types of crime

committed although less facially symmetry criminals are more prone to be convicted

for sex related o�ences, and less likely to be remanded for theft and drug crimes.

Overall, although there are disparities associated with personal traits and case-

related facts between criminals with above and below median facial symmetry, these

di�erences are unlikely to bias the estimates as they are controlled for in the regres-

sion analyses as shown in the subsequent sections.

4.6.2 Baseline Results

Table 4.3 presents the baseline estimation of γ from equation 4.2. On top of

restricting the sample to white and black male felons, I further truncate the top and

bottom 1% of facial symmetry to alleviate the possibility of outliers from driving the

results. Column (1) shows results from a parsimonious model with only crime*court

�xed e�ects and indicators for the months and years of sentencing and o�ence dates.

Put di�erently, I am comparing the e�ect of facial symmetry of criminals committing

the same crime type and being sentenced in the same court on their sentencing

outcomes. This amounts to more than 14,000 �xed e�ects (from 20 Circuit Courts)

associated with almost 280,000 di�erent felons. Results suggest that a unit increase

in deviation from a perfectly symmetrical face increases sentencing length by 0.2%.

Putting these estimates into perspective, the sentencing gap between the felon at

the 25th percentile and the felon at the 75th percentile in facial attractiveness is

approximately 17 days, which corresponds to around 1% of the mean sentence length.

I extend the baseline model by including observable inmate characteristics in Column

(2). Indicator variables for age, race, ethnicity and the presence of face tattoos, the

counts of tattoos, height and weight of the inmate are controlled for. These personal

traits do not appear to matter much as the estimates remain fairly similar to before.

Next, I add a vector of photo-related characteristics into the analysis. These con-

trols include (1) the image data size of the photo, which accounts for the resolution

of the picture, (2) the nose and eye adjustment angles that measure how tilted the

face is, and (3) the absolute face to eye ratio that measures whether the inmate is

facing sideways, and (4) the forehead to mouth-chin ratio that captures whether the

inmate is facing up or downwards. This speci�cation accounts for measurement error

associated with using facial symmetry to measure attractiveness because of poorly
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Table 4.3: Baseline Results

(1) (2) (3) (4) (5) (6)
FSi 0.002a 0.002a 0.004a 0.003a 0.005b

(0.001) (0.001) (0.001) (0.001) (0.002)
FS2

i -0.000
(0.000)

Quintile1 -0.031a

(0.008)
Quintile2 -0.029a

(0.008)
Quintile3 -0.026a

(0.007)
Quintile4 -0.012c

(0.006)
Obs 807037 802952 795944 795944 795944 795944
R2 0.54 0.55 0.56 0.57 0.57 0.57
No. of Inmates 278483 277166 274972 274972 274972 274972
Crime*Court FEs 14118 14089 14021 14021 14021 14021
Absolute E�ects (25% → 75%) 17.32 15.80 31.31 23.81 32.62 .
%∆ (25% → 75%) 0.99 0.90 1.81 1.37 1.88 .
Crime*Court Fixed E�ects 3 3 3 3 3 3

Year Month Fixed E�ects 3 3 3 3 3 3

Inmate Details 3 3 3 3 3

Photo Details 3 3 3 3

Case Facts 3 3 3

Dependent variable is logarithm of total number of days of sentence i by felon j. Key Independent
variable, FSi, measures the deviation from a perfectly symmetrical face. Absolute e�ects report
the sentencing gap in the number of days moving from the 25th to 75th percentile in facial
attractiveness, Crime*Court �xed e�ects is the interaction of j di�erent categories of crime with
c court �xed e�ects. Year Month Fixed e�ects include both year and month dummies for date
of sentencing. Inmate characteristics include race, age, height, weight, number of tattoos and
whether the tattoos are visible. Photo Characteristics entail adjustment angle, distances and
picture size. Case facts include the number of charges included in the same case, whether felon i
is the principal criminal, and detailed criminal history capturing the number of times the felon i
has been incarcerated, and the number of times felon i commit the same crime j. Standard errors
are clustered in court*year level. Columns (5) and (6) report the non-linear relationship between
facial attractiveness and sentencing. In Column (5), FS2

i is the squared term of FSi. ln Column
(6), continuous measure of facial attractiveness is divided into quintiles where Quintile1 takes the
value of 1 for inmates classi�ed in the �rst quintile (most attractive) or otherwise zero while Q5,
the base (excluded) group, takes the value of 1 for inmates in the last quintile (least attractive) or
otherwise zero. Standard errors clustered at court-by-year levels are reported in the parenthesis.
c p<0.10, b p<0.05, a p<0.01.

taken mugshots. Indeed, controlling for these di�erences increases sentencing gaps

considerably to 31 days, suggesting that measurement error in facial symmetry could

have attributed to attenuation bias.

In Columns (4), I control for details of the case that include the number of

concurrent charges, whether the felon is the principal criminal and the criminal

history that is measured by the number of times the felon has been convicted for

the same crime type before. These details should a�ect the harshness of sentencing

and controlling for these di�erences should mitigate the concern that unattractive

felons could be serial criminals prone to committing more severe transgressions.
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Accounting for these di�erences marginally reduces sentencing gap to 24 days but

the e�ects remain statistically signi�cant at 1%.

Next, I examine whether the relationship between facial attractiveness and harsh-

ness of sentencing could be non-linear. That is, whether judges show stronger

favouritism to the most attractive felons. I �rst include the quadratic term of fa-

cial symmetry (FS2
i ) in Column (7). Although the squared term is not statistically

signi�cant, the coe�cient is negative and the inclusion appears to accentuate the

estimates. This suggests that the most attractive felons could enjoy the sharpest

reductions in sentences. Now, the sentencing gap is around 25 days moving from

the 25th to the 75th percentile in facial symmetry.

I further divide facial symmetry into quintiles, with Quintile1 representing the

top quintile of felons with the most symmetrical faces and Quintile5, the omitted

reference group, representing felons with the least symmetrical faces. The di�erence

in sentence length between the most (Quintile1) and least attractive felons (Quin-

tile5) is 3.1%, which corresponds to a gap of 44 days. This magnitude of favouritism

decreases as faces become less proportional as evidenced by the smaller estimated

e�ects moving down the quantiles. The di�erence in sentencing between felons in

the fourth quintile (Quintile4) and the least attractive faces are smaller at 1.2%,

which works out to be around 21 days. This sharp drop in e�ects moving into the

fourth quintile suggests that judges are siding more on criminals with distinctively

more symmetrical facial features.

In summary, my baseline results reveal that the facial symmetry a�ects the

sentencing outcomes. In particular, criminals with more symmetrical faces are given

shorter sentences for the crimes they committed compared to criminals with less

symmetrical faces. Further analysis suggests that the bias towards criminals with

more proportional faces could be non-linear. Judges appear to hand out the most

lenient punishments to the most proportional faces and this preferential treatment

is smaller as faces become less symmetric.

4.6.3 Heterogeneous E�ects

Next, I explore whether the e�ects of facial symmetry on sentencing vary between

di�erent groups. I analyse the relationship separately for black, white, male and

female felons12. Results are summarized in Table 4.4.

Columns (1) and (2) report the e�ect of facial symmetry on sentence length

for black and white felons respectively13 for the entire population of inmates and

12Result are similar when I combine the analysis with interaction variables. They are
available upon request.

13In other unreported results, I include other minority races including Asian and His-
panics. This takes up about less than 4% of the sample. Similar to the blacks, I do not
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for those released. It appears that e�ects of facial symmetry on sentencing are

fairly consistent between black and white felons although the estimates are slightly

larger for white inmates. To put the estimates into perspective, compared to the

75th percentile, a white inmate at the 25th percentile in facial symmetry serve, on

average, 27 fewer days. Conversely, black inmates with more proportional facial

features serve, on average, 20 fewer days. Why are the e�ects stronger for white

inmates? One possible explanation is that more than 91% of the judges in Florida

are white. Cross-race judgement for attractiveness could be slightly weaker than

within race assessment (Malpass & Kravitz, 1969; Bernstein et al., 1982). White

judges could be more able to discern facial symmetry for white felons, explaining

slightly larger e�ects associated with white felons.

Columns (3) and (4) further breakdown the analysis to male and female felons.

Results in Column (3) are similar to that reported in Column (4) of Table 4.3. It

is very interesting to observe a reverse in the relationship for female felons. Now,

comparing the sentencing outcomes for female inmates at the 25th percentile with

the 75th percentile in facial symmetry, holding all other factors constant, I observe

a 32 day reduction in sentencing length. While an in-depth analysis of this intrigu-

ing result is out of the purview of this paper, the divergence in e�ects for female

felons could stem from the fact that judges are paternalistic towards women be-

lieving that they are physically weaker (Moulds, 1978; Spohn, 1999). Unobserved

sympathetic life circumstances, such as mental illness, poverty and addiction, could

be correlated with facial symmetry and these factors could explain why less attrac-

tive female defendants are less harshly punished. Refer to (Starr, 2014) for more

detailed discussion of possible explanations to male-female sentencing gaps.

Next, I explore how the e�ect of facial symmetry on sentencing outcomes to

manifest across di�erent crime types. This is estimated by allowing bias to vary

across the 9 major crime types. I interact the indicator variable of each crime with

FSi and coe�cients of this interaction term are plotted in Figure 4.4. A few notable

observations can be made. It is interesting to observe that criminals with more

proportional facial features are more likely to get away with lighter sentences for

sex-related transgression although the estimates are too imprecisely estimated to be

statistically signi�cant. This is consistent with the �ndings reported by Jacobson

(1981) that the outcome of rape cases could be in�uenced by the appearance of

defendants and plainti�s. Furthermore, more serious transgressions, such as murder

and manslaughter, are more equitably sentenced regardless of the facial symmetry

of the felons. This suggests that judges may have less �exibility to depart from the

sentencing guidelines for more higher pro�le cases.

�nd that judges favoured more proportional faces for races other than white
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Table 4.4: E�ects of Gender & Race on Discrimination of Facial Attractiveness

(1) (2) (3) (4)
Black White Male Female

FSi 0.003b 0.004a 0.003a -0.008a

(0.001) (0.001) (0.001) (0.002)
Obs 336513 456281 795944 117757
R2 0.59 0.57 0.57 0.52
No. of Inmates 124364 149826 274972 40079
Absolute E�ects (25% → 75%) 20.25 26.80 25.36 -31.50
%∆ (25% → 75%) 0.86 0.95 0.91 -1.53

Refer to the notes from earlier Table 4.3 for more information. In Columns
(1) & (2), I stratify the analysis to Black and White inmates, allow the
discrimination to vary between black and white felons. In Columns (3) &
(4), I stratify the analysis to Male and Female inmates. This group of 40,079
female inmates are previously omitted from the analysis . c p<0.10, b p<0.05,
a p<0.01.

4.6.4 Robustness Tests & Alternative Interpretations

Table 4.5 summarizes the �ndings from a battery of robustness tests that examine

the validity of the results.

Table 4.5: Robustness Tests

(1) (2) (3) (4) (5) (6) (7) (8)
FWHR Zipcode FE Age<=70 <=5 Crime After2005 <=90% High Res Crime#Time

FSi 0.003a 0.004a 0.003a 0.004a 0.002b 0.005a 0.004a 0.003a

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Obs 795944 469951 794298 640159 582299 639113 626907 758672
R2 0.57 0.36 0.57 0.58 0.60 0.57 0.59 0.64
No. of Inmates 274972 176864 274382 260270 200996 221208 206671 264247
Crime*Court FEs 14021 8157 13999 13426 12529 13051 13193 66291
Absolute E�ects (25% → 75%) 23.08 18.88 25.19 28.16 15.04 26.92 32.52 23.51
%∆ (25% → 75%) 1.33 1.69 1.45 1.72 0.89 1.56 1.74 1.37

Refer to notes in Table 4.3 for more information. The speci�cation adopted is similar to Column (6) in Table 4.3. In Column (1), I account
for face-width-height ratio of each inmate. In Column (2), I include zipcode �xed e�ects that control for the zipcode of the released inmate.
In Column (3), I remove any inmates that are older than 70 years old. In Column (4), any felons that are charged with 5 or more crimes are
omitted from the analysis. In column (5), I only examine inmates sentenced after 2005. In column (6), I exclude the top 10% least attractive
faces. In column (7), any low resolution images less than 12,000 bytes are removed from the sample. In column (8), I include crime*year*court
�xed e�ects. Standard errors clustered at court-by-year levels are reported in the parenthesis. c p<0.10, b p<0.05, a p<0.01.

1. Vertical Symmetry: As mentioned before, face symmetry only accounts for hori-

zontal symmetry and do not account for faces that could be disproportionately wide

or long. Therefore, I include face-width-height ratio (FWHR) as an additional con-

trol in Column (1). FWHR is computed by taking the ratio of the face height and

the face width. This do no matter much as documented sentencing gaps remain

fairly similar to before.

2. Zipcode Fixed E�ects: If less attractive felons have poorer labour market outcomes

(Hamermesh & Biddle, 1994; Biddle & Hamermesh, 1998) and prevent them from
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Figure 4.4: E�ects of facial attractiveness on sentencing outcomes across di�erent
crimes. Each dot denotes the estimated e�ect (γ) of facial symmetry on the sen-
tencing outcomes for each crime type. Tails indicate the 95% con�dence intervals.
The speci�cation is similar to Column (5) of table 4.3 but I allow the discrimination
towards facial attractiveness to vary across the 9 major crime types. Other crimes
include escape from correction facility, kidnapping, racketeering, crime on elderly
and other violent crimes.

hiring better attorney to defend their cases, criminals with less symmetric faces

could be more harshly sentenced due to their lower socio-economic status (SES).

Thus, I proxy for SES based on the neighbourhood of residence with the inclusion of

zipcode �xed e�ects. The assumption is that inmates living in same zipcode should

have fairly similar economic background. Doing so reduces the sample considerably

by more than 40% as I only have residential address for released inmates. After

accounting for disparity in SES, as shown in Column (2), the sentencing gap remains

signi�cant at around 19 days moving from the 25th to 75th percentile in facial

symmetry. The smaller absolute sentence gaps despite larger estimated e�ects could

be because sentencing lengths are on average shorter for those who are already

released at the point of analysis.

3. Age E�ects: If ageing felons have less symmetrical facial features, and judges

are sympathetic towards elderly criminals, it is plausible that earlier estimates are

underestimating the e�ect of facial symmetry on sentencing. Thus, in Column (1),
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I remove any inmates who are more than 70 years old from the analysis14. Results

remain similar to before in terms of both magnitude and statistical signi�cance,

ameliorating the concerns that earlier e�ects could be driven by age.

4. Serial Felons: Given that less attractive individuals could be forced to engage in

illicit activities due to poorer labour outcomes (Mocan & Tekin, 2010), the concern

is whether criminals with less proportional facial features are more likely to be

repeated o�enders. Since the harshness of punishment is in�uenced by the number

of concurrent and historical charges, less attractive criminals could be more harshly

sentenced even when there is no discrimination against appearance. Therefore, I

limit the analysis to felons with 5 or less concurrent and historical charges in Column

(2). Removing repeated o�enders from the sample has a negligible impact on the

estimates, suggesting that the discrimination against criminals with less symmetric

faces are not driven by recalcitrant o�enders.

5. Measurement Error: As mentioned, it is plausible that facial symmetry could

be subjected to measurement error that could lead to attenuation bias. I consider

the following cases that increase the risk that facial symmetry could be wrongly

measured:

(1) Dated Pictures: The mugshots taken may not re�ective of the appearance

of inmates when facing trial. This might be the case as mugshots are updated

periodically in the correction facilities. Although previous researches have argued

that appearance is highly correlated over time (Hamermesh & Biddle, 1994), for

inmates who are incarcerated for an extended period, the outlook in these pictures

could still be di�erent from how inmates appear in courts. Hence, I limit the analysis

to more recent cases post 2005 to ensure that the mugshots are re�ective of the felons'

appearance during trial. Now, moving from the 25th to the 75th percentile in facial

symmetry increases sentence length by almost 15 days, which represents a gap of

0.9%.

(2) Resolution of mugshots: Measurement error could also be intensi�ed

by the fuzziness of the images. Hence, I remove the bottom 25% of the images

measured by the �le size. Results summarized in Column (5) indicate that sentenc-

ing gaps between the 25th and 75th percentile are slightly higher now at 26 days

when constrained to a sample of higher quality mugshots. This suggests that the

measurement error associated with blurred photos are not driving the results.

14Results remain very stable even when I constraint the analysis to felons not more than
40 years old.
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4.6.5 Discussion

There are still several issues yet to be addressed in this paper. Most of them

are driven by the lack of data. One concern is the potential bias that arises from

sample selection. In this analysis, I only observe cases when the felon is found guilty.

If judges are lenient towards felons with more symmetric facial features, then my

sample comprises of felons with asymmetric faces and felons with symmetric faces

but some unobserved factors that could increase their conviction rates. This means

that convicted felons with asymmetric faces are unlikely to be comparable with those

convicted felons with symmetric faces.

Ideally, I would like to address this issue using a two-stage Heckman correction

model but this would require me to observe all the cases, including suspects who are

charged but not found guilty. Unfortunately, this data is not available. But how will

this selection bias a�ect my estimates? Presumably, better-looking individuals found

guilty are more likely to have stronger evidence presented against them. Conversely,

bad-looking felons are more likely to be involved in borderline cases with weak

evidence against them. Hence, based on evidences presented in courts, criminals

with more symmetric faces are more likely to receive heftier punishment, which will

attribute to an underestimation of discrimination on facial symmetry by judges. It

is comforting to observe signi�cant e�ects of facial symmetry on sentencing even in

the presence of selection issues.

Another issue is that I do not have judge identi�ers for each case. However, this

should not be a major concern given that cases are randomly assigned to judges in

Florida. Judges allocated to cases with better-looking felons should not be di�erent,

on average, from judges assigned to cases with worse-looking felons. Second, there

are no details on the sentencing cells that each felon is allocated to based on the

points given for the crime(s). This could exacerbate unobserved severity between

cases. I address this limitation by including indicator variables for micro-crime cat-

egories, which are much �ner than sentencing cells. This is permissable given that

I have detailed information on the crimes committed by each felon that allows me

to exploit variation of facial symmetry and sentencing outcomes within these pre-

cisely de�ned crime types. In addition, the enhanced �exibility of judges to depart

from recommended sentences under the Criminal Punishment Code also meant that

sentencing cells could be less e�ective in controlling for the severity of crimes.

4.7 Conclusion

In this paper, I examine whether the appearance of an inmate, measured by facial

symmetry, a�ects sentencing outcomes. This research contributes to the burgeoning
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literature that documents the pervasiveness of appearance-based discrimination in

di�erent contexts, and the malpractices of judges allowing extraneous factors such

as race, gender and emotions to in�uence decision-making.

This study employs facial recognition algorithms on mugshots of convicted felons

to locate 69 di�erent facial landmarks, including forehead, eyes, nose, mouth, ears

and jawline to compute facial symmetry associated with each inmate. This auto-

mated way of detecting facial features allows this study to be conducted at much

larger scale, incorporating the entire universe of more than 200,000 inmates in

Florida. This is an improvement from previous studies that are usually restricted

to small sample sizes as researchers are required to painstakingly collect multiple

attractiveness ratings from respondents on subjects to objectively measure appear-

ance. To address the concern of omitted con-founders from biasing the estimates,

I include a rich set of controls on personal characteristics and case-related facts

associated with each inmate, and crime-by-court �xed e�ects. Put di�erently, I

am examining the e�ects of facial symmetry of inmates conducting the same crime

(1294 categories) and being trialled at the same court (20 courts) on their sentencing

outcomes.

Using a universe of sentencing outcomes associated with criminals from Florida,

I observe that judges hand out harsher sentences to criminals with asymmetric facial

features. The disparity in punishment between criminals with more symmetric faces,

at the 25th percentile, and criminals with less symmetric faces, at the 75th percentile,

is around 1.0% to 1.9% of the mean sentence length, which corresponds to between

17 and 32 days. Additional analyses reveal that this bias against felons with less

proportional faces could vary across race, gender and type of crimes.
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4.8 Data Appendix

Table 4.6: List of Variables

Variable Source Description
Dependent Variable (Dijct)

Log(Sentence) OBIS The natural logarithm of the sentence
length (in days) of inmate i for crime
type j

Facial Attractiveness(FSi)

Facial Symmetry - Absolute deviation from a perfectly
symmetrical face measured based on
the locations of eyebrows, eyes, mid
face, nose, mouth and lower face for
inmate i

Personal Characteristics(X ′ij)

Gender OBIS Binary variable denoting whether in-
mate i is male or female

Ethnicity OBIS Binary variable denoting whether in-
mate i is black, white, hispanic or oth-
ers

Address OBIS Zipcode of the residential address of
inmate i upon release

Age OBIS Age of inmate i at sentencing date
Height OBIS Height of inmate i
Weight OBIS Weight of inmate i
Eye Color OBIS Binary variable denoting eye color of

inmate i
Hair Color OBIS Binary variable denoting hair color of

inmate i
Total Tattoo
Counts

OBIS Total counts of tattoo for inmate i

Facial Tattoo
Counts

OBIS Counts of facial tattoo for inmate i

Criminal History(X ′ij)

Concurrent
Charges

OBIS Number of concurrent charges for in-
mate i during sentence

Criminal History OBIS Total counts of historical charges
for inmate i similar to the sentence
charged

Mugshot Characteristics(M ′
i)

Adjustment Angle - Average of eyeline angle and noseline
angle of inmate i

Face Edge to Eye
Ratio

- ratio of the distance from left face edge
to left eye corner and the distance from
right face edge to right eye corner for
inmate i

Forehead-Bottom
Ratio

- Ratio of the distance between forehead
and eyebrow to the distance between
chin and mouth of inmate i

Picture Size - The picture size for inmate i in kilo-
bytes
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