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Abstract

Regression analysis is undoubtedly an important tool to understand the relationship
between one or more explanatory and independent variables of interest. In this thesis,
we explore a novel methodology for fitting a wide range of parametric and nonparametric
regression models, called the I-prior methodology (Bergsma, 2018).

We assume that the regression function belongs to a reproducing kernel Hilbert or
Kreĭn space of functions, and by doing so, allows us to utilise the convenient topologies
of these vector spaces. This is important for the derivation of the Fisher information of
the regression function, which might be infinite dimensional. Based on the principle of
maximum entropy, an I-prior is an objective Gaussian process prior for the regression
function with covariance function proportional to its Fisher information.

Our work focusses on the statistical methodology and computational aspects of fitting
I-priors models. We examine a likelihood-based approach (direct optimisation and EM
algorithm) for fitting I-prior models with normally distributed errors. The culmination
of this work is the R package iprior (Jamil, 2017) which has been made publicly available
on CRAN. The normal I-prior methodology is subsequently extended to fit categorical
response models, achieved by “squashing” the regression functions through a probit
sigmoid function. Estimation of I-probit models, as we call it, proves challenging due to
the intractable integral involved in computing the likelihood. We overcome this difficulty
by way of variational approximations. Finally, we turn to a fully Bayesian approach of
variable selection using I-priors for linear models to tackle multicollinearity.

We illustrate the use of I-priors in various simulated and real-data examples. Our
study advocates the I-prior methodology as being a simple, intuitive, and comparable
alternative to similar leading state-of-the-art models.

Keywords: regression, classification, probit, binary, multinomial, variable selection,
reproducing kernel, Hilbert space, Kreĭn space, Fréchet derivative, Gâteaux derivative,
Fisher information, Gaussian process, empirical Bayes, EM algorithm, variational infer-
ence, MCMC, truncated normal
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[A] The Iverson bracket; [A] = 1 if the logical proposition A is true, and

0 otherwise
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ex, exp(x) The natural exponential function
log(x) The natural logarithmic function
d

dxf(x), ḟ(x) The derivative of f with respect to x
d2

dx2 f(x), f̈(x) The second derivative of f with respect to x
f ◦ g Composition of functions, i.e. g following f

Abstract vector space operations and notations

V⊥ The orthogonal complement of the space V
V∨ The algebraic dual space of V
V∗ The continuous dual space of V
V The closure of the space V
B(V) The Borel σ-algebra of V
Lp(X , ν) The set of p-integrable functions over the space X with measure ν
L(V;W) The set of bounded, linear operators from V to W
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dim(V) The dimensions of the vector space V
⟨x, y⟩V The inner product between x and y in the vector space V
∥x∥V The norm of x in the vector space V
D(x, y) The distance between x and y
x⊗ y The tensor product of x and y which are elements of a vector space
F ⊗ G The tensor product space of two vector spaces
F ⊕ G The direct sum (or tensor sum) of two vector spaces
df(x) The first Fréchet differential of f at x
d2f(x) The second Fréchet differential of f at x
∂vf(x) The first Gâteaux differential of f at x in the direction v
∂2vf(x) The second Gâteaux differential of f at x in the direction v
∇f(x) The gradient of f at x (f is a mapping between Hilbert spaces)
∇2f(x) The Hessian of f at x (f is a mapping between Hilbert spaces)

Matrix and vector operations

a⊤, A⊤ The transpose of a vector a or a matrix A
A−1 The inverse of a square matrix A
∥a∥2 The squared 2-norm the vector a, equivalent to a⊤a
|A| The determinant of a matrix A
tr(A) The trace of a square matrix A
diag(A) The diagonal elements of a square matrix A
rank(A) The rank of a matrix A
vec(A) The column-wise vectorisation of a matrix A
a⊗ b The outer product of two vectors a and b
A⊗B The Kronecker product of matrix A with matrix B
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Statistical functions

P(A) The probability of event A occurring
p(X|θ) The probability density function of X given parameters θ
L(θ|X) The log-likelihood of θ given data X, sometimes simply L(θ)
BF(M,M ′) Bayes factor for comparing two models M and M ′
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E(X), EX The expectation1 of the random element X
Var(X), VarX The variance1 of the random element X
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DKL

(
q(x)∥p(x)

)
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1When there is ambiguity as to which random element the expectation or variance is taken under
or what its distribution is, this is explicated by means of subscripting, e.g. EX∼N(0,1) X to denote the
expectation of a standard normal random variable.

Nomenclature 29



Statistical distributions

N(µ, σ2) Univariate normal distribution with mean µ and variance σ2
Nd(µ,Σ) d-dimensional multivariate normal distribution with mean vector µ

and covariance matrix Σ
ϕ(z) The standard normal pdf
Φ(z) The standard normal cdf
ϕ(x|µ, σ2) The pdf of N(µ, σ2)
ϕ(x|µ,Σ) The pdf of Nd(µ,Σ)
MNn,m(µ,Σ,Ψ) Matrix normal distribution with mean µ and row variances Σ ∈ Rn×n
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tN(µ, σ2, a, b) Truncated univariate normal distribution with mean µ and variance
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N+(0, σ

2) The folded-normal distribution with variance σ2
tNd(µ,Σ,A) Truncated d-dimensional multivariate normal distribution with mean

vector µ and covariance matrix Σ restricted to the set A
Γ(s, r) Gamma distribution with shape s and rate r parameters
Γ−1(s, σ) Inverse gamma distribution with shape s and scale σ parameters
χ2
d Chi-squared distribution with d degrees of freedom

Bern(p) Bernoulli distribution with probability of success p
Cat(p1, . . . , pm) Categorical distribution with m categories, and each category has

probability of success pj
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Chapter 1

Introduction

Regression analysis is undoubtedly one of the most important tools available at a prac-
titioner’s disposal to understand the relationship between one or more explanatory vari-
ables x, and the independent variable of interest, y. This relationship is usually expressed
as y ≈ f(x|θ), where f is called the regression function, and this is dependent on one
or more parameters denoted by θ. Regression analysis concerns the estimation of said
regression function, and once a suitable estimate f̂ has been found, post-estimation
procedures such as prediction and inference surrounding f or θ, may be performed.

Estimation of the regression function may be done in many ways. This thesis concerns
the use of I-priors (Bergsma, 2018), in a semi-Bayesian manner, for regression modelling.
The I-prior is an objective, data-dependent prior for the regression function which makes
use of its Fisher information and is based on the principle of maximum entropy (Jaynes,
1957a, 1957b, 2003). Entropy-maximising priors are “uninformative” in the sense that
it minimises the amount of prior information encoded into prior distributions, and thus
should be advocated in the absence of any prior knowledge.

The essence of regression modelling using I-priors is introduced briefly in this chapter,
but as the development of I-priors is fairly recent, we dedicate two full chapters (Chap-
ters 2 and 3) to describe the concept fully, including a fairly comprehensive review of
functional analysis (Sections 2.1 to 2.3) germane to our discussions. These two chapters
constitutes the theoretical basis for the I-prior methodology.

Subsequently, this thesis has three main chapters which we hope to present as method-
ological innovations surrounding the use of I-priors for modelling. Chapter 4 describes
the I-prior modelling framework and computational methods relating to the estimation
of I-prior models. Chapter 5 extends the I-prior methodology to fit categorical outcome
models. Chapter 6 discusses the use of I-priors in variable selection for linear models.
In addition to introducing the statistical model of interest and motivating the use of
I-priors, this introductory chapter ultimately provides a summary outline of the thesis.
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1.1 Regression models

For subject i ∈ {1, . . . , n}, assume a real-valued response yi has been observed, as well
as a row vector of p covariates xi = (xi1, . . . , xip), where each xik belongs to some set
Xk, for k = 1, . . . , p. Let S = {(y1, x1), . . . , (yn, xn)} denote this observed sample of size
n. Consider then the following regression model, which stipulates the dependence of the
yi’s on the xi’s:

yi = α+ f(xi) + ϵi. (1.1)

Here, f is a regression function to be estimated, and α is an intercept. Additionally, it
is assumed that the errors ϵi are zero-meaned and normally distributed according to

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ−1), (1.2)

where Ψ = (ψij)
n
i,j=1 is the precision matrix. We shall often refer to model (1.1) subject

to (1.2) as the normal regression model. The choice of multivariate normal errors is
not only a convenient one (as far as distributional assumptions go), but one that is also
motivated by the principle of maximum entropy (Jaynes, 1957a, 1957b, 2003).

Interestingly, a wide variety of statistical models can be captured by the seemingly
humble normal regression model, simply by varying the form of the regression function
f . For instance, when f can be parameterised linearly as f(xi) = x⊤i β, β ∈ Rp, we then
have the ordinary linear regression—a staple problem in statistics and other quantitative
fields.

We might also have data that is separated naturally into groups or levels by design,
for example, data from stratified sampling, students within schools, or longitudinal mea-
surements over time. In such cases, we might want to consider a regression function with
additive components

f(x
(j)
i , j) = f1(x

(j)
i ) + f2(j) + f12(x

(j)
i , j)

where x(j)i denotes the p-dimensional i’th observation for group j ∈ {1, . . . ,m}. Again,
assuming a linear parameterisation, this is recognisable as the standard multilevel or
random-effects linear model (Rabe-Hesketh and Skrondal, 2012), with f2 representing
the varying intercept via f2(j) = αj , f12 representing the varying slopes via f12(x(j)i , j) =

x
(j)⊤
i uj , uj ∈ Rp, and f1 representing the fixed-effects linear component x(j)⊤i β as in the

linear model above.

Moving on from linear models, smoothing models may be of interest as well. A myriad
of models exist for this type of problem, with most classed as nonparametric regression
(Wassermann, 2006), and the more popular ones include LOcal regrESSion (LOESS),
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kernel regression, and smoothing splines (Wahba, 1990). Semiparametric regression
models, on the other hand, combines the linear component of a regression model with a
nonparameteric component.

Further, the regression problem is made more intriguing when the set of covariates
X is functional—in which case the linear regression model aims to estimate coefficient
functions α, β : T → R from the model

yi =

∫
T

{
α(t) + xi(t)β(t)

}
dt+ ϵi.

Nonparametric and semiparametric regression with functional covariates have also been
widely explored (Ramsay and Silverman, 2005). Models of this nature still fall under the
remit of the normal regression model by selecting a regression functional with domain
over the functional covariates.

1.2 Vector space of functions

It would be beneficial to prescribe some sort of structure for which estimation of the
regression function can be carried out methodically and reliably. This needed structure
is given to us by assuming that our regression function f for the normal model lies
in some topological vector space, namely, a reproducing kernel Hilbert or Kreĭn space
(RKHS/RKKS) F equipped with the reproducing kernel h : X × X → R. Often, the
reproducing kernel (or simply kernel, for short) is shaped by one or more parameters
which we shall denote by η. Correspondingly, the kernel is rightfully denoted hη to
indicate the dependence of the parameters on the kernels, though where this is seemingly
obvious, might be omitted. For I-prior modelling, which is the focus of this thesis, we
make the assumption that our regression function lies in an RKKS F .

RKKSs, and more popularly RKHSs, provide a geometrical advantage to learning
algorithms: projections of the inputs to a richer and more informative (and usually
higher dimensional) feature space, where learning is more likely to be successful, need
not be figured out explicitly. Instead, feature maps are implicitly calculated by the use of
kernel functions. This is known as the “kernel trick” in the machine learning literature
(Hofmann et al., 2008), and it has facilitated the success of kernel methods for learning,
particularly in algorithms with inner products involving the transformed inputs.

Due to the one-to-one mapping between the set of kernel functions and the set of
RKHSs, choosing the space in which the regression function lies is equivalent to choosing
a particular kernel function, and this is chosen according to the desired effects of the
covariates on the regression function. RKKSs on the other hand also possess unique
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kernels, but every (generalised) kernel1 is associated to at least one RKKS. An in-depth
discussion (including the motivation for their use) on kernels, RKHSs and RKKSs will
be provided later in Chapter 2, but for now, it suffices to say that kernels which invoke
either a linear, smooth or categorical dependence, or any combinations thereof, are of
interest. This would allow us to fit the various models described earlier within this
RKHS/RKKS framework.

1.3 Estimating the regression function

Having decided on a vector space F , we now turn to the task of choosing the best f ∈ F
that fits the data sample S. ‘Best’ here could mean a great deal of things, such as
choosing f which minimises an empirical risk measure2 defined by

R̂(f) =
1

n

n∑
i=1

Λ
(
yi, f(xi)

)
for some loss function Λ : R2 → [0,∞). A common choice for the loss function is the
squared loss function

Λ
(
yi, f(xi)

)
=

n∑
j=1

ψij

(
yi − f(xi)

)(
yj − f(xj)

)
,

and when used, defines the (generalised) least squares regression. For the normal model,
the minimiser of the empirical risk measure under the squared loss function is also the
maximum likelihood (ML) estimate of f , since R̂(f) would be twice the negative log-
likelihood of f , up to a constant.

The ML estimator of f typically interpolates the data if the dimension of F is at
least n, so is of little use. The most common method to overcome this issue is Tikhonov
regularisation, whereby a regularisation term is added to the risk function, with the aim
of imposing a penalty on the complexity of f . In particular, smoothness assumptions on
f can be represented by using its RKHS norm ∥·∥F : F → R as the regularisation term3.
Therefore, the solution to the regularised least squares problem—call this freg—is the
minimiser of the mapping from F to R defined by

f 7→

data fit term︷ ︸︸ ︷
1

n

n∑
i=1

n∑
j=1

ψij

(
yi − f(xi)

)(
yj − f(xj)

)
+ λ−1

penalty term︷ ︸︸ ︷
∥f − f0∥2F , (1.3)

1By generalised kernels, we mean kernels that are not necessarily positive definite in nature.
2 More appropriately, the risk functional R(f) =

∫
Λ(y, f(x))dP(y, x), i.e. the expectation of the

loss function under some probability measure of the observed sample, should be used. Often the true
probability measure is not known, so the empirical risk measure is used instead.
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which also happens to be the penalised maximum likelihood solution. Here, f0 ∈ F can
be thought of a prior “best guess” for the function f . The λ−1 > 0 parameter—known
as the regularisation parameter—controls the trade-off between the data-fit term and
the penalty term in (1.3), and is not usually known a priori and must be estimated.

An attractive consequence of the representer theorem (Kimeldorf and Wahba, 1970)
for Tikhonov regularisation implies that freg admits the form

freg = f0 +
n∑

i=1

h(·, xi)wi, wi ∈ R, ∀i = 1, . . . , n, (1.4)

even if F is infinite dimensional. This simplifies the original minimisation problem from
a search for f over a possibly infinite-dimensional domain, to a search for the optimal
coefficients wi in n dimensions.

Tikhonov regularisation also has a well known Bayesian interpretation, whereby the
regularisation term encodes prior information about the function f . For the normal
regression model with f ∈ F , an RKHS, it can be shown that freg is the posterior
mean of f given a Gaussian process prior (Rasmussen and Williams, 2006) with mean
f0 and covariance kernel Cov

(
f(xi), f(xj)

)
= λh(xi, xj). The exact solution for the

coefficients w := (w1, . . . , wn)
⊤ are in fact w =

(
H + Ψ−1

)−1
(y − f0), where H =(

h(xi, xj)
)n
i,j=1

(often referred to as the Gram matrix or kernel matrix) and (y − f0) =
(y1 − f0(x1), . . . , yn − f0(xn))⊤.

1.4 Regression using I-priors

Building upon the Bayesian interpretation of regularisation, Bergsma (2018) proposes an
original prior distribution for the regression function such that its realisations admit the
form for the solution given in the representer theorem. The I-prior for the regression
function f in (1.1) subject to (1.2) and f ∈ F , an RKKS with kernel hη, is defined
as the distribution of a random function of the form (1.4) when the wi are distributed
according to

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ),

where 0 is a length n vector of zeroes, and Ψ is the error precision matrix. As a result,
we may view the I-prior for f as having the Gaussian process distribution

f :=
(
f(x1), . . . , f(xn)

)⊤ ∼ Nn(f0,HηΨHη), (1.5)
3 Concrete notions of complexity penalties can be introduced if F is a normed space, though RKHSs

are typically used as it gives great conveniences.
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with Hη an n×n matrix with (i, j) entries equal to hη(xi, xj), and f0 a vector containing
the f0(xi)’s, i = 1, . . . , n. The covariance matrix of this multivariate normal prior is
related to the Fisher information for f , and hence the name I-prior—the ‘I’ stands
for information. Furthermore, the I-prior happens to be an entropy-maximising prior,
subject to certain constraints. Chapter 3 contains details of the derivation of I-priors for
the normal regression model.

As with Gaussian process regression (GPR), the function f is estimated by its poste-
rior mean. For the normal model, the posterior distribution for the regression function
conditional on the responses y = (y1, . . . , yn),

p(f|y) = p(y|f)p(f)∫
p(y|f)p(f)df , (1.6)

can easily be found, and it is in fact normally distributed. The posterior mean for f
evaluated at a point x ∈ X is given by

E
(
f(x)

∣∣y) = f0(x) + h⊤
η (x)

w̃︷ ︸︸ ︷
ΨHη

(
HηΨHη +Ψ−1

)−1
(y− f0) (1.7)

where we have defined hη(x) to be the vector of length n with entries hη(x, xi) for
i = 1, . . . , n. Incidentally, the elements of the n-vector w̃ defined in (1.7) are the pos-
terior means of the random variables wi in the formulation (1.4). The point-evaluation
posterior variance for f is given by

Var
(
f(x)

∣∣y) = h⊤
η (x)

(
HηΨHη +Ψ−1

)−1hη(x). (1.8)

Prediction for a new data point xnew ∈ X then concerns obtaining the posterior predictive
distribution

p(ynew|y) =
∫
p(ynew|fnew,y)p(fnew|y)dfnew,

where we had defined fnew := f(xnew). This is again a normal distribution in the case
of the normal model, with similar mean and variance as in (1.7). For a derivation, see
Section 4.2 (p. 109) in Chapter 4 for details.

There is also the matter of optimising model parameters θ, which in our case, collec-
tively refers to the kernel parameters η and the precision matrix of the errors Ψ. Model
parameters θ may be estimated in several ways, either by likelihood-based methods or
fully Bayesian methods. The former includes methods such as direct maximisation of
the (marginal) likelihood, L(θ) =

∫
p(y|θ, f)p(f)df, and the expectation-maximisation

(EM) algorithm. Both are seen as a form of empirical Bayes estimation, or a type-II ML
estimation (Bishop, 2006), as it is known in machine learning. In a fully Bayesian setting
on the other hand, Markov chain Monte Carlo (MCMC) may be employed, assuming
prior distributions on the model parameters.
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1.5 Advantages and limitations of I-priors

The I-prior methodology has the following advantages:

1. A unifying methodology for various regression models.

The I-prior methodology has the ability to fit a multitude of regression models
simply by choosing the RKKS to which the regression function belongs. As such,
it can be seen as a unifying methodology for various parametric and nonparametric
regression models including additive models, multilevel models and models with
one or more functional covariates.

2. Simple estimation procedure.

Estimation of model parameters using the aforementioned methods are very simple
to implement, barring any computational and numerical hurdles, which shall be
discussed in Chapter 4.

3. Parsimonious specification.

I-prior models are most typically specified using only RKHS scale parameters and
the error precision. This encourages parsimony in model building; for example,
smoothing models can be fitted using only two parameters, while linear multilevel
models can be fitted with notably fewer parameters than the standard versions.

4. Prevents overfitting and undersmoothing.

As alluded to earlier, any function f that passes through the data points is a
least squares solution. Regularising the problem with the use of I-priors prevents
overfitting, with the added advantage that the posterior solution under an I-prior
does not tend to undersmooth as much as Tikhonov regularisation does (Bergsma,
2018). Undersmoothing can adversely impact the estimate of f , and in real terms
might even show features and artefacts that are not really there.

5. Better prediction.

Empirical studies and real-data examples show that predictive performance of I-
priors are comparative to, and often better than, other leading state-of-the-art
models, including the closely related GPR.

6. Straightforward inference.

Marginal likelihoods after integrating out the I-prior are easily obtained, mak-
ing model selection via likelihood comparison a viable option. This method of
comparing marginal likelihood with maximum likelihood estimate plug-ins of the
model parameters, is viewed as empirical Bayes factors comparison in the Bayesian
literature (Casella, 1985; George and Foster, 2000).
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The main drawback of using I-prior models is computational in nature, namely, the
requirement of working with an n× n matrix and its inverse, as seen in equations (1.7)
and (1.8), regardless of estimation method (ML or Bayes). Analysis of data sets that are
not more than a few thousand in size can be considered feasible; anything more than this
is debilitatingly slow to compute. In addition, care must be taken to avoid numerical
instabilities when calculating the marginal log-likelihood during parameter estimation,
which can affect gradient based optimisation or the EM algorithm.

Another issue when performing likelihood-based methods is that the optimisation
objective may be non-convex such that multiple local optima may exist. In such cases,
multiple restarts from different initialisations may ultimately lead to a global maximum,
although difficulties may be faced if numerical instabilities occur.

Lastly, a remark on model assumptions, which are twofold: 1) the assumption of
f ∈ F an RKKS; and 2) normality of errors. Of the two, the latter is more likely
to be violated, especially when dealing with discrete responses, e.g. in classification.
Deviating from the normality assumption would require approximation techniques to be
implemented in order to obtain the posterior distributions of interest.

1.6 Outline of thesis

This thesis is structured as follows:

• Following this introductory chapter, Chapter 2 provides an overview of functional
analysis, and in particular, descriptions of interesting function spaces for regression.
In Chapter 3, the concept of the Fisher information is extended to potentially
infinite-dimensional parameters. This allows us to define the Fisher information
for the regression function which parameterises the normal regression model, and
we explain how this relates to the I-prior.

• The aforementioned computational methods relating to the estimation of I-prior
models are explored in Chapter 4, namely the direct optimisation of the log-
likelihood, the EM algorithm, and MCMC methods. The goal is to describe stable
and efficient algorithms for estimating I-prior models. The R package iprior (Jamil,
2017) is the culmination of the effort put in towards completing this chapter,
which has been made publicly available on the Comprehensive R Archive Network
(CRAN).

• Many models of interest involve response variables of a categorical nature. A naïve
implementation of the I-prior model is certainly possible, but proper ways do exist
to handle non-normality of errors. Chapter 5 extends the I-prior methodology to
discrete outcomes. There, the non-Gaussian likelihood that arises in the posteriors
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are approximated by way of variational inference. The advantages of the I-prior in
normal regression models carry over into categorical response models.

• Chapter 6 is a contribution to the area of variable selection. Specifically for linear
models with p variables to select from, model comparison requires elucidation of 2p

marginal likelihoods, and this becomes infeasible when p is large. To circumvent
this issue, we use a stochastic search method to choose models that have high
posterior probabilities of occurring, equivalent to choosing models that have large
Bayes factors. We experiment with the use of I-priors to improve false selections,
especially in the presence of multicollinearity.

Chapters 4 to 6 contain R computer implementations of the statistical methodologies
described therein, and the code for replication are made available at http://myphdcode.
haziqj.ml.

Familiarity with basic estimation concepts (maximum likelihood, Bayes, empirical
Bayes) and their corresponding estimation methods (gradient-based methods, Newton,
quasi-Newton methods, MCMC, EM algorithm) are assumed throughout. Brief sup-
plementary chapters are attached for readers who wish to familiarise themselves with
topics such as variational inference and Hamiltonian Monte Carlo, which are used in
Chapters 4 and 5. These brief readings are designed to be ancillary in nature, and are
not strictly essential for the main chapters. Additionally, Appendices A to I contain ref-
erences to several statistical distributions and their properties, proofs of various claims,
and derivations of the algorithms described in this thesis.

On a closing note, a dedicated website for this PhD project has been created, and it
can be viewed at http://phd.haziqj.ml.
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Chapter 2

Vector space of functions

For regression modelling with I-priors, it is assumed that the regression functions lie
in some vector space of functions. The purpose of this chapter is to provide a con-
cise review of functional analysis leading up to the theory of reproducing kernel Hilbert
and Kreĭn spaces (RKHS/RKKS). The interest with these RKHSs and RKKSs is that
these spaces have well established mathematical structure and offer desirable topologies.
In particular, it allows the possibility of deriving the Fisher information for regression
functions—this will be covered in Chapter 3. As we shall see, RKHSs are also extremely
convenient in that they may be specified completely via their reproducing kernels. Sev-
eral of these function spaces are of interest to us, for example, spaces of linear functions,
smoothing functions, and functions whose inputs are nominal values and even functions
themselves. RKHSs are widely studied in the applied statistical and machine learning
literature, but perhaps RKKSs are less so. To provide an early insight, RKKSs are sim-
ply a generalisation of RKHSs, whose reproducing kernels are defined as the difference
between two RKHS kernels. The flexibility provided by RKKSs will prove both useful
and necessary, especially when considering sums and products of scaled function spaces,
as is done in I-prior modelling.

It is emphasised that a deep knowledge of functional analysis, including RKHS and
RKKS theory, is not at all necessary for I-prior modelling, so perhaps the advanced reader
may wish to skip Sections 2.1 to 2.3. Section 2.4 describes the fundamental RKHSs of
interest for I-prior regression, which we refer to as the “building block” RKHSs. The
reason for this is that it is possible to construct new function spaces from existing ones,
and this is described in Section 2.5.

Two remarks before starting, and the first is on notation. Sets and vector spaces are
denoted by calligraphic letters, and as much as possible, we shall stick to the convention
that F denotes a function space, and X denotes the set of covariates or function inputs.
Occasionally, we will describe a generic Hilbert space denoted by H. Elements of the
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vector space of real functions over a set X are denoted by f(·), but more commonly and
simply, by f . This distinguishes them from the actual evaluation of the function at an
input point x ∈ X , denoted f(x) ∈ R. To make for a cleaner read, we dispense with
boldface notation for vectors and matrices when talking about them, without ambiguity,
in the abstract sense. Secondly, on bibliography: references will be minimised throughout
the presentation of this chapter, but a complete annotated bibliography is furnished at
the end in Section 2.6.

2.1 Some functional analysis

The core study of functional analysis revolves around the treatment of functions as ob-
jects in vector spaces over a field1. Vector spaces, or linear spaces as they are sometimes
known, may be endowed with some kind of structure so as to allow ideas such as closeness
and limits to be conceived. Of particular interest to us is the structure brought about
by inner products, which allow the rigorous mathematical study of various geometrical
concepts such as lengths, directions, and orthogonality, among other things. We begin
with the definition of an inner product.

Definition 2.1 (Inner products). Let F be a vector space over R. A function ⟨·, ·⟩F :

F × F → R is said to be an inner product on F if all of the following are satisfied:

• Symmetry. ⟨f, g⟩F = ⟨g, f⟩F , ∀f, g ∈ F .

• Linearity. ⟨λ1f1+λ2f2, g⟩F = λ1⟨f1, g⟩F+λ2⟨f2, g⟩F , ∀f1, f2, g ∈ F , ∀λ1, λ2 ∈ R.

• Non-degeneracy. ⟨f, f⟩F = 0⇔ f = 0.

Additionally, an inner product is said to be positive definite if ⟨f, f⟩F ≥ 0, ∀f ∈ F .
Inner products need not necessarily be positive definite, and we shall revisit this fact
later when we cover Kreĭn spaces. For the purposes of the forthcoming discussion, the
inner products that are referenced are the positive-definite kind, unless otherwise stated.

We can always define a norm on F using the inner product as

∥f∥F =
√
⟨f, f⟩F . (2.1)

Norms are another form of structure that specifically captures the notion of length. This
is defined below.

Definition 2.2 (Norms). Let F be a vector space over R. A non-negative function
|| · ||F : F × F → [0,∞) is said to be a norm on F if all of the following are satisfied:

• Absolute homogeneity. ||λf ||F = |λ| ||f ||F , ∀λ ∈ R, ∀f ∈ F
1In this thesis, this will be R exclusively.
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• Subadditivity. ||f + g||F ≤ ||f ||F + ||g||F , ∀f, g ∈ F

• Point separating. ||f ||F = 0⇔ f = 0

Note that since ∥−f∥F = |−1| ∥f∥F = ∥f∥F , and by the subadditivity and point sepa-
rating property, we have that ∥f∥F = 1

2∥f∥F + 1
2∥−f∥F ≥

1
2∥f−f∥F = 0, thus implying

non-negativity of norms.

The subadditivity property is also known as the triangle inequality. Following this,
there is also the reverse triangle inequality, which states ∥f − g∥F ≥

∣∣∥f∥F − ∥g∥F ∣∣. In
fact, the general forms of these triangle inequalities (Bergsma, 2018, Lemma 10) also
hold for 0 ≤ a ≤ 1 and any f, g, h ∈ F :

∥f − g∥aF ≤ ∥f − h∥aF + ∥g − h∥aF (2.2)

∥f − g∥aF ≥
∣∣∥f∥aF − ∥g∥aF ∣∣ (2.3)

Several other important relationships involving norms and inner products hold in linear
spaces, namely, the Cauchy-Schwarz inequality

|⟨f, g⟩F | ≤ ∥f∥F ∥g∥F ,

the parallelogram law

∥f + g∥2F + ∥f − g∥2F = 2∥f∥2F + 2∥g∥2F ,

and the polarisation identity (in various forms)

∥f + g∥2F − ∥f − g∥2F = 4⟨f, g⟩F ,

∥f + g∥2F − ∥f∥2F − ∥g∥2F = 2⟨f, g⟩F , and

−∥f − g∥2F + ∥f∥2F + ∥g∥2F = 2⟨f, g⟩F ,

for any f, g ∈ F .

A vector space endowed with an inner product (c.f. norm) is called an inner product
space (c.f. normed vector space). As a remark, inner product spaces can always be
equipped with a norm using (2.1), but not always the other way around. A norm needs
to satisfy the parallelogram law for an inner product to be properly defined.

The norm || · ||F , in turn, induces a metric (a notion of distance) on F , i.e. D(f, g) =

||f−g||F , for f, g ∈ F . With these notions of distances, one may talk about sequences of
functions in F which are convergent, and sequences whose elements become arbitrarily
close to one another as the sequence progresses (Cauchy).

Definition 2.3 (Convergent sequence). A sequence {fn}∞n=1 of elements of a normed
vector space (F , || · ||F ) is said to converge to some f ∈ F , if for every ϵ > 0, ∃N =

N(ϵ) ∈ N, such that ∀n > N , ||fn − f ||F < ϵ.
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Definition 2.4 (Cauchy sequence). A sequence {fn}∞n=1 of elements of a normed vector
space (F , || · ||F ) is said to be a Cauchy sequence if for every ϵ > 0, ∃N = N(ϵ) ∈ N,
such that ∀n,m > N , ||fn − fm||F < ϵ.

Every convergent sequence is Cauchy (from the triangle inequality), but the converse
is not true. If the limit of the Cauchy sequence exists within the vector space, then the
sequence converges to it. A vector space is said to be complete if it contains the limits
of all Cauchy sequences, or in other words, if every Cauchy sequence converges. There
are special names given to complete vector spaces. A complete inner product space
is known as a Hilbert space, while a complete normed space is called a Banach space.
Out of interest, an inner product space that is not complete is sometimes known as a
pre-Hilbert space, since its completion with respect to the norm induced by the inner
product is a Hilbert space.

A subset G ⊆ F is a closed subspace of F if it is closed under addition and multi-
plication by a scalar. That is, for any g, g′ ∈ G, λ1g + λ2g

′ is also in G, for λ1, λ2 ∈ R.
For Hilbert spaces, each closed subspace is also complete, and thus a Hilbert space in
its own right. Although, as a remark, not every Hilbert subspace need be closed, and
therefore complete.

Being vectors in a vector space, we can discuss mapping of vectors onto a another
space, or in essence, having a function acted upon them. To establish terminology, we
define linear and bilinear maps (operators).

Definition 2.5 (Linear map/operator). Let F and G be two Hilbert spaces over R. An
operator A is a map from F to G, and we denote its action on a function f ∈ F as
A(f) ∈ G, or simply Af ∈ G. A linear operator satisfies A(f + f ′) = A(f) + A(f ′) and
A(λf) = λA(f), for all f, f ′ ∈ F and λ ∈ R. If G is the base field (R in our case), then
the linear operator A is called a linear functional.

Definition 2.6 (Bilinear map/operator). Let F , G and H be Hilbert spaces over R. A
bilinear operator B : F × G → H is linear in each argument separately, i.e.

• B(λ1f + λ2f
′, h) = λ1B(f, h) + λ2B(f ′, h); and

• B(f, λ1g + λ2g
′) = λ1B(f, g) + λ2B(f, g′),

for all f, f ′ ∈ F , g, g′ ∈ G and λ1, λ2 ∈ R. In other words, the mappings Bg : f 7→ B(f, g)

for any g ∈ G, and Bf : g 7→ B(f, g) for any f ∈ F , are both linear maps. If F ≡ G, then
the bilinear map is symmetric. If H is the base field (R in our case), then B is called a
bilinear form.

An interesting property of these operators to look at, besides linearity, is whether or
not they are continuous.
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Definition 2.7 (Continuity). Let F and G be two Hilbert spaces. A function A : F → G
is said to be continuous at g ∈ F , if for every ϵ > 0, ∃δ = δ(ϵ, g) > 0 such that

∥f − g∥F < δ ⇒ ∥Af −Ag∥G < ϵ.

A is continuous on F , if it is continuous at every point g ∈ F . If, in addition, δ depends
on ϵ only, A is said to be uniformly continuous.

Continuity in the sense of linear operators here means that a convergent sequence in
the domain F can be mapped to a convergent sequence in the range G. For a particular
linear operator, the evaluation functional, this means that closeness in norm implies
pointwise closeness—this relates to RKHSs, which is discussed in Section 2.2. There is
an even stronger notion of continuity called Lipschitz continuity.

Definition 2.8 (Lipschitz continuity). Let F and G be two Hilbert spaces. A function
A : F → G is Lipschitz continuous if ∃M > 0 such that ∀f, f ′ ∈ F ,

∥Af −Af ′∥G ≤M∥f − f ′∥F .

Clearly, Lipschitz continuity implies uniform continuity: choose δ = δ(ϵ) := ϵ/M and
replace this in Definition 2.7. A continuous, linear operator is also one that is bounded.

Definition 2.9 (Bounded operator). The linear operator A : F → G between two
Hilbert spaces F and G is said to be bounded if there exists some M > 0 such that

∥Af∥G ≤M∥f∥F .

The smallest such M is defined to be the operator norm, denoted ∥A∥op := supf∈F
∥Af∥G
∥f∥F .

Lemma 2.1 (Equivalence of boundedness and continuity). Let F and G be two Hilbert
spaces, and A : F → G a linear operator. A is bounded if and only if it is continuous.

Proof. Suppose that A is bounded. Then, ∀f, f ′ ∈ F , ∃M > 0 such that ∥A(f −f ′)∥G ≤
M∥f − f ′∥G , so A is Lipschitz continuous. Conversely, let A be a continuous linear
operator, especially at the zero vector. In other words, ∃δ > 0 such that ∥A(f)∥G =

∥A(f + 0 − 0)∥G = ∥A(f) − A(0)∥G ≤ 1, ∀f ∈ F whenever ∥f∥F ≤ δ. Thus, for all
non-zero f ∈ F ,

∥A(f)∥G =

∥∥∥∥∥f∥Fδ A

(
δ

∥f∥F
f

)∥∥∥∥
G

=

∣∣∣∣∥f∥Fδ
∣∣∣∣ ∥∥∥∥A( δ

∥f∥F
f

)∥∥∥∥
G

≤ ∥f∥F
δ
· 1,

and therefore A is bounded. ■
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So important is the concept of linearity and continuity, that there are specially named
spaces which contain linear and continuous functionals.

Definition 2.10 (Dual spaces). Let F be a Hilbert space. The space F∨ of linear
functionals is called the algebraic dual space of F . The space F∗ of continuous linear
functionals is called the continuous dual space or alternatively, the topological dual space,
of F .

As it turns out, the algebraic dual space and continuous dual space coincide in finite-
dimensional Hilbert spaces: take any A ∈ F∨; since A is finite dimensional, it is bounded,
and therefore continuous (see Lemma 2.1), so A ∈ F∗ and F∨ ⊆ F∗; but F∗ ⊆ F∨

trivially, so F∨ ≡ F∗. For infinite-dimensional Hilbert spaces, this is not so, but in any
case, we will only be considering the continuous dual space in this thesis. The following
result is an important one, which states that continuous linear functionals of an inner
product space are nothing more than just inner products.

Theorem 2.2 (Riesz-Fréchet). Let F be a Hilbert space. Every element A of the con-
tinuous dual space F∗, i.e. all continuous linear functionals A : F → R, can be uniquely
written in the form ⟨·, g⟩F =: Ag ∈ F∗, for some g ∈ F . Moreover, ∥g∥F = ∥Ag∥F∗.

Proof. Omitted—see Yamamoto (2012, Thm. 4.2.1) for a proof. ■

Remark 2.1. The Riesz-Fréchet theorem is also commonly referred to as the Riesz rep-
resentation theorem for Hilbert spaces.

The notion of isometry (transformation that preserves distance) is usually associated
with metric spaces; two metric spaces being isometric means that they identical as far as
their metric properties are concerned. For Hilbert spaces (and more generally, for normed
spaces), there is an analogous concept as well in isometric isomorphism (a bijective
isometry), such that two Hilbert spaces being isometrically isomorphic imply that they
have exactly the same geometric structure, but may very well contain fundamentally
different objects.

Definition 2.11 (Isometric isomorphism). Two Hilbert spaces F and G are said to be
isometrically isomorphic, symbolised F ∼= G, if there is a linear bijective map U : F → G
which preserves the inner product, i.e. for any f, f ′ ∈ F ,

⟨f, f ′⟩F = ⟨Uf,Uf ′⟩G .

A consequence of the Riesz-Fréchet theorem is that it gives us a canonical isometric
isomorphism U : g 7→ ⟨·, g⟩F =: Ag between F and its continuous dual F∗: the map Ag is
obviously linear (by the bilinear property of inner products), and using the polarisation
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identity, we have that

2⟨Ug, Ug′⟩F∗ = ∥U(g)∥2F∗ + ∥U(g′)∥2F∗ − ∥U(g − g′)∥2F∗

= ∥g∥2F + ∥g′∥2F − ∥g − g′∥2F
= 2⟨g, g′⟩F .

Implicitly, this means that F∗ is a Hilbert space as well.

Another important type of mapping is the mapping P of an element in F onto a
closed subspace G ⊂ F , such that Pf ∈ G is closest to f . This mapping is called the
orthogonal projection, due to the fact that such projections yield perpendicularity in
the sense that ⟨f − Pf, g⟩F = 0 for any g ∈ G. Consequently, we see that ∥f∥2F =

∥Pf∥2F + ∥f − Pf∥2F from the polarisation identity. The remainder f − Pf belongs to
the orthogonal complement of G.

Definition 2.12 (Orthogonal complement). Let F be a Hilbert space and G ⊂ F be
a closed subspace. The linear subspace G⊥ = {f | ⟨f, g⟩F = 0,∀g ∈ G} is called the
orthogonal complement of G in F .

Theorem 2.3 (Orthogonal decomposition). Let F be a Hilbert space and G ⊂ F be a
closed subspace. For every f ∈ F , we can write f = g + gc, where g ∈ G and gc ∈ G⊥,
and this decomposition is unique.

Proof. Omitted—see Rudin (1987, Thm. 4.11) for a proof. ■

We can write F = G ⊕ G⊥, where the ⊕ symbol denotes the direct sum, and such
a decomposition is called a tensor sum decomposition. In infinite-dimensional Hilbert
spaces, some subspaces are not closed, but all orthogonal complements are closed. In
such spaces, the orthogonal complement of the orthogonal complement of G is the closure
of G, i.e. (G⊥)⊥ =: G, and we say that G is dense in G. Another interesting fact regarding
the orthogonal complement is that G∩G⊥ = {0}, since any g ∈ G∩G⊥ must be orthogonal
to itself, i.e. ⟨g, g⟩G = 0 implying that g = 0.

The following theorem states that orthogonal decompositions are unique.

Corollary 2.3.1. Let G be a subspace of a Hilbert space F . Then, G⊥ = {0} if and only
if G is dense in F .

Proof. If G⊥ = {0} then (G⊥)⊥ = G = F . Conversely, since G is dense in F , we have
G⊥ = G⊥ = F⊥ = {0}. ■

Besides tensor sums, of importance is the concept of tensor products, which can be
thought of as a generalisation of the outer product in Euclidean space.
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Definition 2.13 (Tensor products). Let x1 ∈ H1 and x2 ∈ H2 be two elements of two
real Hilbert spaces. Then, the tensor product x1 ⊗ x2 : H1 ×H2 → R, is a bilinear form
defined as

(x1 ⊗ x2)(y1, y2) = ⟨x1, y1⟩H1⟨x2, y2⟩H2

for any (y1, y2) ∈ H1 ×H2.

Correspondingly, we may also define the tensor product space.

Definition 2.14 (Tensor product space). The tensor product space H1 ⊗ H2 is the
completion of the space

A =


J∑

j=1

x1j ⊗ x2j

∣∣∣∣∣x1j ∈ H1, x2j ∈ H2, J ∈ N

 .

with respect to the norm induced by the inner product⟨
J∑

j=1

x1j ⊗ x2j ,
K∑
k=1

y1k ⊗ y2k

⟩
A

=

J∑
j=1

K∑
k=1

⟨x1j , y1k⟩H1⟨x2j , y2k⟩H2 .

Interestingly, the tensor product can be viewed as an operator between two Hilbert
spaces. That is, for each pair of elements (x1, x2) ∈ H1 × H2, we define the operator
Ax1,x2 : H1 → H2 in the following way:

Ax1,x2 : H1 → H2

y1 7→ ⟨x1, y1⟩H1x2.

Incidentally, an operator defined in such a way is called a rank one operator. Indeed,
for any y1 ∈ H1 and y2 ∈ H2, we have that

⟨Ax1,x2(y1), y2⟩H2 =
⟨
⟨x1, y1⟩H1x2, y2

⟩
H2

= ⟨x1, y1⟩H1⟨x2, y2⟩H2

= (x1 ⊗ x2)(y1, y2).

We now have three distinct interpretations of the tensor product. For x1, y1 ∈ H1 and
x2, y2 ∈ H2, these are:

• General form. An element in the tensor product space,

x1 ⊗ x2 ∈ H1 ⊗H2.

• Operator form. An operator between two Hilbert spaces,

x1 ⊗ x2 : H1 → H2

y1 7→ ⟨x1, y1⟩H1x2.
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• Bilinear form. As per Definition 2.13,

x1 ⊗ x2 : H1 ×H2 → R

(y1, y2) 7→ ⟨x1, y1⟩H1⟨x2, y2⟩H2 .

Remark 2.2. As explained by Kokoszka and Reimherr (2017, Sec. 10.5, p. 227), tensors
are often thought of as generalisations of matrices and outer products. For example, in
Euclidean space, a matrix A ∈ Rn×m, formed by two vectors x1 ∈ Rn and x2 ∈ Rm

via A = x1x⊤
2 =: x1 ⊗ x2, can be viewed in at least three ways: 1) as a traditional

matrix in the space Rn ⊗ Rm = Rn×m; 2) as a linear operator in Euclidean space
A : Rn → Rm (or the reverse) by multiplying A from the left or right by a vector;
or 3) as a bilinear mapping A : Rn × Rm → R in the form of A(y1,y2) = y⊤

1 Ay2 =

y⊤
1 x1x⊤

2 y2 = (y⊤
1 x1)(y⊤

2 x2), for some y1 ∈ Rn and y2 ∈ Rm, arising often in the study
of quadratic forms.

For the last part of this introductory section on functional analysis, we discuss mea-
sures on Hilbert spaces, and in particular, a probability measure. Let H be a real Hilbert
space. As discussed earlier, we can define a metric on H using D(x, x′) = ∥x − x′∥H,
where the norm on H is the norm induced by the inner product. A collection Σ of
subsets of H is called a σ-algebra if ∅ ∈ Σ, S ∈ Σ implies its complement Sc ∈ Σ, and
Sj ∈ Σ, j ≥ 1 implies

∪∞
j=1 Sj ∈ Σ. The smallest σ-algebra containing all open subsets

of H is called the Borel σ-algebra, and its members the Borel sets. Denote by B(H) the
Borel σ-algebra of H.

Recall that a function ν : Σ→ [0,∞] is called a measure if it satisfies

• Non-negativity: ν(S) ≥ 0 for all S in Σ;

• Null empty set: ν(∅) = 0; and

• σ-additivity: for all countable, mutually disjoint sets {Si}∞i=1,

ν

( ∞∪
i=1

Si

)
=

∞∑
i=1

ν(Si).

A measure ν on
(
H,B(H)

)
is called a Borel measure on H. We shall only concern

ourselves with finite Borel measures. In addition, if ν(H) = 1 then ν is a (Borel)
probability measure and the measure space

(
H,B(H), ν

)
is a (Borel) probability space.

Let (Ω, E ,P) be a probability space. We say that a mapping X : Ω→ H is a random
element in H if X−1(B) ∈ E for every Borel set, i.e., X is a function such that for every
B ∈ B(H), its preimage X−1(B) = {ω ∈ Ω |X(ω) ∈ B} lies in E . This is simply a
generalisation of the definition of random variables in regular Euclidean space. From
this definition, we can also properly define random functions f in a Hilbert space of
functions F . In any case, every random element X induces a probability measure on H
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defined by
ν(B) = P

(
X−1(B)

)
= P

(
ω ∈ Ω|X(ω) ∈ B

)
= P(X ∈ B).

The measure ν is called the distribution of X. The density p of X is a measurable
function with the property that

P(X ∈ B) =

∫
X−1(B)

ω dP(ω) =
∫
B
p(x)dν(x).

Definition 2.15 (Mean vector). Let ν be a Borel probability measure on a real Hilbert
space H. Supposing that a random element X of H is integrable, that is to say

E∥X∥H =

∫
H
∥z∥H dν(z) <∞,

then the unique element µ ∈ H satisfying

⟨µ, x⟩ =
∫
X
⟨z, x⟩X dν(z) = E⟨X,x⟩H

for all x ∈ H is called the mean vector.

Definition 2.16 (Covariance operator). Let ν be a Borel probability measure on a real
Hilbert space H. Suppose that a random element X of H is square integrable, i.e.,
E∥X∥2H < ∞, and let µ be the mean vector of X. Then the covariance operator C is
defined by the mapping

C : H → H

x 7→ E
[
⟨X − µ, x⟩H(X − µ)

]
.

The covariance operator C is also an element of H⊗H that satisfies

⟨C, x⊗ x′⟩H⊗H =

∫
H
⟨z − µ, x⟩H⟨z − µ, x′⟩H dν(z)

= E
[
⟨X − µ, x⟩H⟨X − µ, x′⟩H

]
for all x, x′ ∈ H.

From the definition of the covariance operator, we see that it induces a symmetric,
bilinear form, which we shall denote by Cov : H×H → R, through

⟨Cx, x′⟩H =
⟨

E
[
⟨X − µ, x⟩H(X − µ)

]
, x′
⟩
H

= E
[
⟨X − µ, x⟩H⟨X − µ, x′⟩H

]
=: Cov(x, x′).

Definition 2.17 (Gaussian vectors). A random element X is called Gaussian if ⟨X,x⟩H
has a normal distribution for all fixed x ∈ H. A Gaussian vector X is characterised by
its mean element µ ∈ H and its covariance C ∈ H ⊗H.
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Figure 2.1: A hierarchy of vector spaces2.

2.2 Reproducing kernel Hilbert space theory

The introductory section sets us up nicely to discuss the coveted reproducing kernel
Hilbert space. This is a subset of Hilbert spaces for which its evaluation functionals
are continuous (by definition, in fact). The majority of this section, apart from defining
RKHSs, is an exercise in persuading ourselves that each and every RKHS of functions can
be specified solely through its reproducing kernel. To begin, we consider a fundamental
linear functional on a Hilbert space of functions F , that assigns a value to f ∈ F for
each x ∈ X , called the evaluation functional.

Definition 2.18 (Evaluation functional). Let F be a vector space of functions f : X →
R, defined on a non-empty set X . For a fixed x ∈ X , the functional δx : F → R as
defined by δx(f) = f(x) is called the (Dirac) evaluation functional at x.

It is easy to see that evaluation functionals are always linear: δx(λf + g) = (λf +

g)(x) = λf(x) + g(x) = λδx(f) + δx(g) for λ ∈ R, f, g ∈ F real functions over X .
Humble as they may seem, the entirety of the evaluation functionals over the domain
X determines f uniquely, and thus are of great importance in understanding the space
F . Core topological properties like convergence are hinged on continuity, and it is
therefore important that evaluation functionals are continuous. As it turns out, RKHSs
by definition provide exactly this.

2Reproduced from the lecture slides of Dino Sejdinovic and Arthur Gretton entitled “Foundations
of Reproducing Kernel Hilbert Spaces: Advanced Topics in Machine Learning”, 2014. URL: http:
//www.stats.ox.ac.uk/~sejdinov/teaching/atml14/Theory_slides2_2014.pdf.
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Definition 2.19 (Reproducing kernel Hilbert space). A Hilbert space F of real-valued
functions f : X → R on a non-empty set X is called a reproducing kernel Hilbert space
if the evaluation functional δx : f 7→ f(x) is continuous (equivalently, bounded) on F ,
∀x ∈ X .

Continuity (boundedness) of evaluation functionals in an RKHS means that functions
that are close in RKHS norm imply that they are also close pointwise, since |δx(f) −
δx(g)| = |δx(f − g)| ≤ M∥f − g∥F for some real M > 0. Note that the converse is
not necessarily true. RKHSs are particularly well behaved in this respect, compared
to other Hilbert spaces, and this property in particular has desirable consequences for
a wide variety of applications, including nonparametric curve estimation, learning and
decision theory, and many more.

While the continuity condition by definition is what makes an RKHS, it is neither
easy to check this condition in practice, nor is it intuitive as to the meaning of its name.
In fact, there isn’t even any mention of what a reproducing kernel actually is. In order
to benefit from the desirable continuity property of RKHS, we should look at this from
another, more intuitive, perspective. By invoking the Riesz representation theorem, we
see that for all x ∈ X , there exists a unique element hx ∈ F such that

f(x) = δx(f) = ⟨f, hx⟩F ,∀f ∈ F

holds. Since hx itself is a function in F , it holds that for every x′ ∈ X there exists a
hx′ ∈ F such that

hx(x
′) = δx′(hx) = ⟨hx, hx′⟩F .

This leads us to the definition of a reproducing kernel of an RKHS—the very notion that
inspires its name.

Definition 2.20 (Reproducing kernels). Let F be a Hilbert space of functions over a
non-empty set X . A symmetric, bivariate function h : X × X → R is called a kernel,
and it is a reproducing kernel of F if h satisfies

• ∀x ∈ X , h(·, x) ∈ F ; and

• ∀x ∈ X , f ∈ F , ⟨f, h(·, x)⟩F = f(x) (the reproducing property).

In particular, for any x, x′ ∈ X ,

h(x, x′) = ⟨h(·, x), h(·, x′)⟩F .
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An important property for reproducing kernels of an RKHS is that they are positive
definite functions. That is, ∀λ1, . . . , λn ∈ R and ∀x1, . . . , xn ∈ X ,

n∑
i=1

n∑
j=1

λiλjh(xi, xj) ≥ 0.

Lemma 2.4 (Reproducing kernels of RKHSs are positive definite). Let h :X ×X → R be
a reproducing kernel for a Hilbert space F . Then h is a symmetric and positive-definite
function.

Proof.

n∑
i=1

n∑
j=1

aiajh(xi, xj) =
n∑

i=1

n∑
j=1

aiaj⟨h(·, xi), h(·, xj)⟩F

=

⟨
n∑

i=1

aih(·, xi),
n∑

j=1

ajh(·, xj)

⟩
F

=

∥∥∥∥∥
n∑

i=1

aih(·, xi)

∥∥∥∥∥
2

F

≥ 0 ■

Remark 2.3. In the kernel methods literature, a kernel h : X ×X → R is usually defined
as the inner product between inputs in feature space. That is, take ϕ : X → V, x 7→ ϕ(x),
where V is a Hilbert space. Then the kernel is defined as h(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V , for
any x, x′ ∈ X . The space V is known as the feature space and the mapping ϕ the feature
map. In many mathematical models involving feature space mappings, elucidation of the
feature map and feature space is not necessary, and thus computation is made simpler
by the use of kernels (known as the kernel trick—Hofmann et al., 2008). Note that
kernels defined in this manner are positive definite, while in this thesis, we opt for a
more general definition allowing kernels to not necessarily be positive. The relevance of
this generality will be appreciated when we discuss reproducing kernel Kreĭn spaces in
Section 2.3.

Introducing the following definition of the kernel matrix (also known as the Gram
matrix) is useful at this point.

Definition 2.21 (Kernel matrix). Let {x1, . . . , xn} be a sample of points, where each
xi ∈ X , and h a kernel over X . Define the kernel matrix H for h as the n × n matrix
with (i, j) entries equal to h(xi, xj).

Obviously, H is a positive definite matrix if the kernel that defines it is positive
definite: a⊤Ha =

∑n
i=1

∑n
j=1 aiajh(xi, xj) ≥ 0 for any choice of a1, . . . , an ∈ R and

x1, . . . , xn ∈ X .
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So far, we have seen that reproducing kernels of an RKHS are positive-definite func-
tions, and that RKHSs are Hilbert spaces with continuous evaluation functionals, but
one might wonder what exactly the relationship between a reproducing kernel and an
RKHS is. We assert the following:

• For every RKHS F of functions over a set X , there corresponds a unique, positive-
definite reproducing kernel h : X × X → R, and vice-versa. That is, a Hilbert
space is an RKHS if it possesses a unique, reproducing kernel.

• For every positive-definite function h : X × X → R, there corresponds a unique
RKHS F that has h as its reproducing kernel.

Pictorially, the following relationships are established:

Reproducing
kernels

P.d. func-
tions RKHS

Theorem 2.6

Theorem 2.5Lemma 2.4

Figure 2.2: Relationships between positive definite functions, reproducing kernels, and
RKHSs.

In essence, the notion of positive-definite functions and reproducing kernels of RKHSs
are equivalent, and that there is a bijection between the set of positive-definite kernels
and the set of RKHSs. The rest of this section is a consideration of these assertions,
addressed by the two theorems that follow.

Theorem 2.5 (RKHS uniqueness). Let F be a Hilbert space of functions over X . F is
an RKHS if and only if F has a reproducing kernel h : X ×X → R, and that h is unique
to F .

Proof. First we tackle existence, i.e. we prove that F is an RKHS if and only if F has
a reproducing kernel. Suppose F is a Hilbert space of functions, and h : X × X → R is
a reproducing kernel for F . Then, choosing δ = ϵ/∥h(·, x)∥F , for any f ∈ F such that
∥f − g∥F < δ, we have

∣∣δx(f)− δx(g)∣∣ = ∣∣(f − g)(x)∣∣
=
∣∣⟨f − g, h(·, x)⟩F ∣∣ (reproducing property)

≤ ∥h(·, x)∥F ∥f − g∥F (Cauchy-Schwarz)

= ϵ.
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Thus, the evaluation functional is (uniformly) continuous on F , and by definition, F is
an RKHS. Now suppose that F is an RKHS, and h is a kernel function over X ×X . The
reproducing property of h is had by following the argument preceding Definition 2.20.

As for uniqueness, assume that the RKHS F has two reproducing kernels h1 and h2.
Then, ∀f ∈ F and ∀x ∈ X ,

⟨f, h1(·, x)− h2(·, x)⟩F = f(x)− f(x) = 0.

In particular, if we take f = h1(·, x) − h2(·, x), we obtain ∥h1(·, x) − h2(·, x)∥2F = 0.
Thus, h1 = h2. ■

Theorem 2.6 (Moore-Aronszajn). If h : X ×X → R is a positive-definite function then
there exists a unique RKHS whose reproducing kernel is h.

Sketch proof. Most of the details here have been omitted, except for the parts which we
feel are revealing as to the properties of an RKHS. For a complete proof, see Gu (2013,
Thm. 2.3) or Berlinet and Thomas-Agnan (2004, Thm. 3). Start with the linear space

F0 =

{
fn : X → R

∣∣∣ fn =
n∑

i=1

wih(·, xi), xi ∈ X , wi ∈ R, n ∈ N

}

and endow this linear space with the following inner product:⟨
n∑

i=1

wih(·, xi),
m∑
j=1

w′
jh(·, x′j)

⟩
F0

=

n∑
i=1

m∑
j=1

wiw
′
jh(xi, x

′
j).

It may be shown that this is indeed a valid inner product satisfying the conditions laid
in Definition 2.1. At this point, the reproducing property is already had:

⟨
fn, h(·, x)

⟩
F0

=

⟨
n∑

i=1

wih(·, xi), h(·, x)

⟩
F0

=

n∑
i=1

wih(x, xi)

= fn(x),

for any fn ∈ F0.

Let F be the completion of F0 with respect to this inner product. In other words,
define F to be the set of functions f : X → R for which there exists a Cauchy sequence
{fn}∞n=1 in F0 converging pointwise to f ∈ F . The inner product for F is defined to be

⟨f, f ′⟩F = lim
n→∞

⟨fn, f ′n⟩F0 .
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The sequence {⟨fn, f ′n⟩F0}∞n=1 is convergent and does not depend on the sequence chosen,
but only on the limits f and f ′ (Berlinet and Thomas-Agnan, 2004, Lemma 5). We may
check that this indeeds defines a valid inner product. The reproducing property carries
over to the completion:

⟨f, h(·, x)⟩F = lim
n→∞

⟨fn, h(·, x)⟩F0

= lim
n→∞

fn(x)

= f(x).

To prove uniqueness, let G be another RKHS with reproducing kernel h. F has to be
a closed subspace of G, since h(·, x) ∈ G for all x ∈ X , and because G is complete and
contains F0 and hence its completion. Using the orthogonal decomposition theorem, we
have G = F ⊕F⊥, i.e. any g ∈ G can be decomposed as g = f + f c, f ∈ F and f c ∈ F⊥.
For each element g ∈ G we have that, for all x ∈ X ,

g(x) = ⟨g, h(·, x)⟩G
=
⟨
f + f c, h(·, x)

⟩
G

=
⟨
f, h(·, x)

⟩
G +

�������:0⟨
f c, h(·, x)

⟩
G

= f(x)

so therefore g ∈ F too. It must be that F ≡ G. ■

A consequence of the above proof is that we can show that any function f in an
RKHS F with kernel h can be written in the form f(x) =

∑n
i=1 h(x, xi)wi, with some

(w1, . . . , wn) ∈ Rn, n ∈ N. More precisely, F is the completion of the space G =

span{h(·, x) |x ∈ X} endowed with the inner product as stated in Section 2.2.

2.3 Reproducing kernel Kreĭn space theory

In this section, we review elementary Kreĭn and reproducing kernel Kreĭn space (RKKS)
theory, and comment on the similarity and differences between it and RKHSs. Kreĭn
spaces are linear spaces endowed with a Hilbertian topology, characterised by an inner
product which is non-positive.

Definition 2.22 (Negative and indefinite inner products). Let ⟨·, ·⟩F be an inner product
of a vector space F , as per Definition 2.1. An inner product is said to be negative-definite
if for all f ∈ F , ⟨f, f⟩F ≤ 0. It is indefinite if it is neither positive- nor negative-definite.
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Definition 2.23 (Kreĭn space). An inner product space
(
F , ⟨·, ·⟩F

)
is a Kreĭn space if

there exists two Hilbert spaces
(
F+, ⟨·, ·⟩F+

)
and

(
F−, ⟨·, ·⟩F−

)
spanning F such that

• All f ∈ F can be decomposed into f = f+ + f−, where f+ ∈ F+ and f− ∈ F−.

• This decomposition is orthogonal, i.e. F+ ∩ F− = {0}, and ⟨f+, f ′−⟩F = 0 for any
f, f ′ ∈ F , with the inner product on F defined below.

• ∀f, f ′ ∈ F , ⟨f, f ′⟩F = ⟨f+, f ′+⟩F+ − ⟨f−, f ′−⟩F− .

Remark 2.4. Any Hilbert space is also a Kreĭn space, which is seen by taking F− = {0}
in the above Definition 2.23.

Let P be the projection of the Kreĭn space F onto F+, and Q = I −P the projection
onto F−, where I is the identity map. These are caleld the fundamental projections of
F . We shall refer to F+ as the positive subspace, and F− as the negative subspace. These
monikers stem from the fact that for all f, f ′ ∈ F , ⟨Pf, Pf ′⟩F+ ≥ 0 while ⟨Qf,Qf ′⟩F− ≤
0. We introduce the notation ⊖ to refer to the Kreĭn space decomposition: F = F+⊖F−.
There is then a notion of an associated Hilbert space.

Definition 2.24 (Associated Hilbert space). Let F be a Kreĭn space with decomposition
into Hilbert spaces F+ and F−. Denote by FH the associated Hilbert space defined by
FH = F+ ⊕F−, with inner product

⟨f, f ′⟩FH = ⟨f+, f ′+⟩F+ + ⟨f−, f ′−⟩F− ,

for all f, f ′ ∈ F .

The associated Hilbert space can be found via the linear operator J = P −Q called
the fundamental symmetry. That is, a Kreĭn space F can be turned into its associated
Hilbert space by using the positive-definite inner product of the associated Hilbert space
as ⟨f, f ′⟩FH = ⟨f, Jf ′⟩F , for all f, f ′ ∈ F . The converse is true too: starting from a
Hilbert space FH and an operator J , the vector space endowed with the inner product
⟨f, f ′⟩F = ⟨f, Jf ′⟩FH , for all f, f ′ ∈ F , is a Kreĭn space.

We realise that for a Kreĭn space F , |⟨f, f⟩F | ≤ ∥f∥2FH
for all f ∈ F . As such, we say

that FH majorises F , and in fact it is the smallest Hilbert space to do so. The strong
topology on F is defined to be the topology arising from the norm of FH, and this does
not depend on the decomposition chosen (Ong et al., 2004). Now, we define an RKKS.

Definition 2.25 (Reproducing kernel Kreĭn space). A Kreĭn space F of real-valued
functions f : X → R on a non-empty set X is called a reproducing kernel Kreĭn space if
the evaluation functional δx : f 7→ f(x) is continuous on F , ∀x ∈ X , endowed with its
strong topology (i.e. the topology of its associated Hilbert space FH).
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One might wonder whether the uniqueness theorem (Theorem 2.5) holds for RKKS.
Indeed, for every RKKS F of functions over a set X , there corresponds a unique repro-
ducing kernel h : X × X → R.

Lemma 2.7 (Uniqueness of kernel for RKKS). Let F be an RKKS of functions over a
set X , with F = F+ ⊖ F−. Then, F+ and F− are both RKHS with kernel h+ and h−,
and the kernel h = h+ − h− is a unique, symmetric, reproducing kernel for F .

Proof. Since F is an RKKS, evaluation functionals are continuous on F with respect to
topology of the associated Hilbert space FH = F+ ⊕ F−. Therefore, FH is an RKHS,
and so too are F+ and F− with respective kernels h+ and h−.

Furthermore, h(·, x) ∈ F since h+(·, x) ∈ F+ and h−(·, x) ∈ F− for some x ∈ X .
Then, for any f ∈ F ,

⟨f, h(·, x)⟩F = ⟨f, h+(·, x)⟩F − ⟨f, h−(·, x)⟩F

= ⟨f+, h+(·, x)⟩F+ −���������:0
⟨f−, h+(·, x)⟩F−

−
���������:0
⟨f+, h−(·, x)⟩F+ + ⟨f−, h−(·, x)⟩F−

= f+(x) + f−(x)

= f(x)

The last two lines are achieved by linearity of evaluation functionals (δx(f+) + δx(f−) =

δx(f++f−)), and the fact that f = f++f− (by the Kreĭn space decomposition). We have
that h = h+− h− is a reproducing kernel for F . Uniqueness follows as a consequence of
the non-degeneracy condition of the respective inner products for F+ and F−. ■

Remark 2.5. Unlike reproducing kernels of RKHSs, reproducing kernels of RKKSs may
not be positive definite.

The analogue of the Moore-Aronszajn theorem holds partially for RKKS, up to
uniqueness. That is, there is at least one associated RKKS with kernel h : X × X → R
if and only if h can be decomposed as the difference between two positive kernels h+
and h− over X , i.e. h = h+ − h−. The proof of this statement is rather involved, so is
omitted in the interest of maintaining coherence to the discussion at hand. This subject
has been studied by various authors; one may refer to works by Alpay (1991, Thm. 2 &
E.g. in Sec. 4), and Mary (2003, Thm. 2.28).

The take-away message as we close this section is that there is no bijection, but a
surjection, between the set of RKKS and the set of bivariate, symmetric functions over
X × X . In any case, Hilbertian topology applies to Kreĭn spaces via the associated
Hilbert space, and in particular, RKKS provide a functional space for which evaluation
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functionals are continuous. The motivation for the use of Kreĭn spaces will become
clear when constructing function spaces out of (scaled) building block RKHS later in
Section 2.5.

2.4 RKHS building blocks

This section describes what we refer to as the “building block” RKHSs of functions. In
the context of regression modelling using I-priors, we may assume that the regression
function lies in any one of these single RKHSs, although it may be more appropriate
to consider function spaces built upon these RKHSs for more complex models. I-priors
will be presented in detail in Chapter 3, but in advance of the forthcoming discussion,
the plots in this section are intended to give an impression of sample I-prior paths from
the respective RKHSs. Construction of new function spaces from these building block
RKHSs will be discussed in the next section.

2.4.1 The RKHS of constant functions

The vector space of constant functions F over a set X contains the functions f : X → R
such that f(x) = cf ∈ R, ∀x ∈ X . These functions would be useful to model an overall
average, i.e. an “intercept effect”. The space F can be equipped with a norm to form
an RKHS, as shown in the following proposition.

Proposition 2.8 (RKHS of constant functions). The space F as described above en-
dowed with the norm ∥f∥F = |cf | forms an RKHS with the reproducing kernel h :

X × X → R as defined, rather simply, by

h(x, x′) = 1,

known as the constant kernel.

Proof. If F is an RKHS with kernel h as described, then F is spanned by the functions
h(·, x) = 1, so it is clear that F consists of constant functions over X . On the other hand,
if the space F is equipped with the inner product ⟨f, f ′⟩F = cfcf ′ , then the reproducing
property follows, since ⟨f, h(·, x)⟩F = cf = f(x). Hence, ∥f∥F =

√
⟨f, f⟩F = |cf |. ■

Remark 2.6. In I-prior modelling, it is simpler to consider the intercept of a regression
model as a parameter to be estimated, rather than a separate function within an RKHS
of constant functions for which its posterior is to be estimated. See Section 4.2.1 (p.
110) in Chapter 4 for further details.
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Figure 2.3: Sample I-prior paths from the RKHS of constant functions.

2.4.2 The canonical (linear) RKHS

Consider a function space F over X which consists of functions of the form fβ : X → R,
fβ : x 7→ ⟨x, β⟩X for some β ∈ R. Suppose that X ≡ Rp, then F consists of the linear
functions fβ(x) = x⊤β. More generally, if X is a Hilbert space, then its continuous dual
consists of elements of the form fβ = ⟨·, β⟩X by the Riesz representation theorem. We
can show that the continuous dual space of X is an RKHS which consists of these linear
functions.

Proposition 2.9 (Canonical RKHS). The continuous dual space of a Hilbert space X ,
denoted by X ∗, is an RKHS of linear functions over X of the form ⟨·, β⟩X , β ∈ X . Its
reproducing kernel h : X × X → R is defined by

h(x, x′) = ⟨x, x′⟩X .

Proof. Define fβ := ⟨·, β⟩X for some β ∈ X . Clearly this is linear and continuous, so
fβ ∈ X ∗, and so X ∗ is a Hilbert space containing functions f : X → R of the form
fβ(x) = ⟨x, β⟩X . By the Riesz representation theorem, every element of X ∗ has the form
fβ. It also gives us a natural isometric isomorphism such that the following is true:

⟨β, β′⟩X = ⟨fβ, fβ′⟩X ∗ .

Hence, for any fβ ∈ X ∗,

fβ(x) = ⟨x, β⟩X
= ⟨fx, fβ⟩X ∗

=
⟨
⟨·, x⟩X , fβ

⟩
X ∗ .

Thus, h : X × X → R as defined by h(x, x′) = ⟨x, x′⟩X is the reproducing kernel of
X ∗. ■
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In many other literature, the kernel h(x, x′) = ⟨x, x′⟩X is also known as the linear
kernel. The use of the term ‘canonical’ is fitting not just due to the relation between a
Hilbert space and its continuous dual space. Let ϕ : X → V be the feature map from the
space of covariates (inputs) to some feature space V. Suppose both X and V are Hilbert
spaces, then a kernel, as per Remark 2.3, is defined as h(x, x′) = ⟨ϕ(x), ϕ(x′)⟩V . Taking
the feature map to be ϕ(x) = ⟨·, x⟩X , we can prove the reproducing property to obtain
h(x, x′) = ⟨x, x′⟩X , which implies ϕ(x) = h(·, x), and thus ϕ is the canonical feature map
(Steinwart and Christmann, 2008, Lemma 4.19).

0

0
x

f(x
)

Sample linear I−prior paths

Figure 2.4: Sample I-prior paths from the canonical RKHS.

The origin of a Hilbert space may be arbitrary, in which case a centring may be
appropriate. We define the centred canonical RKHS as follows.

Definition 2.26 (Centred canonical RKHS). Let X be a Hilbert space, P be a probabil-
ity measure over X , and µ ∈ X be the mean of a random element X ∈ X . Define (X−µ)′,
the continuous dual space of X −µ, to be the centred canonical RKHS. (X −µ)′ consists
of the centred linear functions fβ(x) = ⟨x− µ, β⟩X , for β ∈ X , such that E[fβ(X)] = 0.
The reproducing kernel of (X − µ)′ is

h(x, x′) = ⟨x− µ, x′ − µ⟩X .

That the centred canonical RKHS consists of zero-meaned functions, E[fβ(X)] = 0,
consider the following argument:

E[fβ(X)] = E⟨X − µ, β⟩X
= E⟨X,β⟩X − ⟨µ, β⟩X ,

and since E⟨X,β⟩X = ⟨µ, β⟩X for any β ∈ X , the results follows.
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Remark 2.7. In practice, the probability measure P over X is unknown, so we find it
useful to use the empirical distribution over X instead, so that X is centred by the
sample mean µ̂ = 1

n

∑n
i=1 xi.

2.4.3 The fractional Brownian motion RKHS

Brownian motion, which also goes by the name Wiener process, has been an inquisitive
subject in the mathematical sciences, and here, we describe a function space motivated
by a generalised version of Brownian motion paths.

Suppose Bγ(t) is a continuous-time Gaussian process on [0, T ], i.e. for any finite set
of indices t1, . . . , tk, where each tj ∈ [0, T ],

(
Bγ(t1), . . . , Bγ(tk)

)
is a multivariate normal

random variable. Bγ(t) is said to be a fractional Brownian motion (fBm) if E[Bγ(t)] = 0

for all t ∈ [0, T ] and

Cov
(
Bγ(t), Bγ(s)

)
=

1

2

(
|t|2γ + |s|2γ − |t− s|2γ

)
∀t, s ∈ [0, T ],

where γ ∈ (0, 1) is called the Hurst index, Hurst parameter or even Hurst coefficient.
Introduced by Mandelbrot and Ness (1968), fBms are a generalisation of Brownian mo-
tion. The Hurst parameter plays two roles: 1) it describes the raggedness of the resultant
motion, with higher values leading to smoother motion; and 2) it determines the type
of process the fBm is, as past increments of Bγ(t) are weighted by (t − s)γ−1/2. When
γ = 1/2 exactly, the fBm is a standard Brownian motion and its increments are inde-
pendent; when γ > 1/2 (resp. γ < 1/2) its increments are positively (resp. negatively)
correlated.

Now, let X be a Hilbert space. Schoenberg (1937, Thm. 3) has shown that, for
0 < γ ≤ 1, there exists a Hilbert space V and a function ϕγ : X → V such that
∀x, x′ ∈ X , ∥∥ϕγ(x)− ϕγ(x′)∥∥V = ∥x− x′∥γX .

Using the polarisation identity, we find that the kernel of the RKHS with feature space
V and feature map ϕγ defines a kernel function h : X × X → R identical to the fBm
covariance kernel.

Definition 2.27 (Fractional Brownian motion RKHS). The fractional Brownian mo-
tion (fBm) RKHS F is the space of functions on the Hilbert space X possessing the
reproducing kernel hγ : X × X → R defined by

hγ(x, x
′) =

⟨
ϕγ(x), ϕγ(x

′)
⟩
V =

1

2

(
∥x∥2γX + ∥x′∥2γX − ∥x− x

′∥2γX
)
,

which depends on the Hurst coefficient γ ∈ (0, 1). We shall reference this space as the
fBm-γ RKHS.
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Remark 2.8. When γ = 1, by the polarisation identity we get h(x, x′) = ⟨x, x′⟩X , which
is the (reproducing) kernel of the canonical RKHS.

From its construction, it is clear that the fBm kernel is positive definite, and thus
defines an RKHS. That the fBm RKHS describes a space of functions is proved in Cohen
(2002), who studied this space in depth. It is also noted in the collection of examples of
Berlinet and Thomas-Agnan (2004, Sec 3.3, E.g. 3, p. 71 & Sec 7.4, E.g. 20, p. 319).

The Hurst coefficient γ controls the “smoothness” of the functions in the RKHS. We
can talk about smoothness in the context of Hölder continuity of functions.

Definition 2.28 (Hölder condition). A function f over a set (X , ∥·∥X ) is said to be
Hölder continuous of order 0 < a ≤ 1 if there exists an M > 0 such that ∀x, x′ ∈ X ,

|f(x)− f(x′)| ≤M∥x− x′∥a.

Functions in the Hölder space Ck,a(X ), where k ≥ 0 is an integer, consists of those
functions over X having continuous derivatives up to order k and such that the k’th
partial derivatives are Hölder continuous of order a. Unlike realisations of actual fBm
paths with Hurst index γ, which are well-known to be almost surely Hölder continuous of
order less than γ (Embrechts and Maejima, 2002, Thm. 4.1.1), functions in its namesake
RKHS are strictly smoother.

Proposition 2.10 (Hölder smoothness of fBm-γ RKHS functions). The fBm-γ RKHS
F of functions over (X , ∥·∥X ) are Hölder continuous of order γ.

Proof. For some f ∈ F we have f(x) = ⟨f, h(·, x)⟩F by the reproducing property of the
kernel h of F . It follows from the Cauchy-Schwarz inequality that for any x, x′ ∈ X ,

|f(x)− f(x′)| = |⟨f, hγ(·, x)− hγ(·, x′)⟩F |

≤ ∥f∥F
∥∥hγ(·, x)− hγ(·, x′)∥∥F

= ∥f∥F ∥x− x′∥γX ,

since

∥∥hγ(·, x)− hγ(·, x′)∥∥2F =
∥∥hγ(·, x)∥∥2F +

∥∥hγ(·, x′)∥∥2F − 2⟨hγ(·, x), hγ(·, x′)⟩F
= hγ(x, x) + hγ(x

′, x′)− 2hγ(x, x
′)

= ∥x∥2γX + ∥x′∥2γX −
(
∥x∥2γX + ∥x′∥2γX − ∥x− x

′∥2γX
)

= ∥x− x′∥2γX ,

and thus proving the proposition. ■
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The span of the kernels is dense in F (see paragraph at the end of Theorem 2.6), and
it is interesting to note that the basis functions h(·, x) are smoother still.

Proposition 2.11 (Hölder smoothness of fBm-γ basis functions). For 0 < γ ≤ 1/2 and
z ∈ X , the function hγ(·, z) : X → R is Hölder continuous of order 2γ.

Proof. Following the triangle inequalities (2.2) and (2.3), for any x, x′ ∈ X , we have that

∣∣hγ(z, x)− hγ(z, x′)∣∣ = 1

2

∣∣∣���∥z∥2γX + ∥x∥2γX − ∥z − x∥
2γ
X −���∥z∥2γX − ∥x

′∥2γX + ∥z − x′∥2γX
∣∣∣

≤ 1

2

∣∣∣∥z − x∥2γX − ∥z − x′∥2γX ∣∣∣+ 1

2

∣∣∣∥x∥2γX − ∥x′∥2γX ∣∣∣
≤ 1

2

∣∣∣���∥z∥2γX + ∥x∥2γX −���∥z∥2γX − ∥x
′∥2γX

∣∣∣+ 1

2

∣∣∣∥x∥2γX − ∥x′∥2γX ∣∣∣
≤
∣∣∣∥x∥2γX − ∥x′∥2γX ∣∣∣

≤ ∥x− x′∥2γX . ■

Remark 2.9. The above proposition can also be proven for 1/2 < γ < 1, for which Hölder
smoothness has to be defined for orders 1 < a ≤ 2. See (Bergsma, 2018, Lemma 9) for
details.
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Sample fBm I−prior paths (Hurst = 0.1)
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Sample fBm I−prior paths (Hurst = 0.3)
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Figure 2.5: Sample I-prior paths from the fBm RKHS with varying Hurst coefficients.
Note that the fBm-γ RKHS contains functions that are rougher than these I-prior paths
as a consequence of Proposition 2.11 and the fact that I-prior realisations are finite
combinations of the basis functions hη(·, x) (c.f. Equation 3.7, p. 99).
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An undesirable property of fBm-γ RKHS being spanned by the functions hγ(·, x) is
that f(0) = 0 for all f ∈ F . We define the centred fBm RKHS as follows.

Definition 2.29 (Centred fBm RKHS). Let X be a Hilbert space, P be a probability
measure over X , and µ ∈ X be the mean with respect to this probability measure. The
kernel h̄γ : X × X → R defined by

h̄γ(x, x
′) =

1

2
E
[
∥x−X∥2γX + ∥x′ −X ′∥2γX − ∥x− x

′∥2γX − ∥X −X
′∥2γX

]
is the reproducing kernel of the centred fBm-γ RKHS, which consists of functions f in
the fBm-γ RKHS such that E[f(X)] = 0. In the above definition, X,X ′ ∼ P are two
independent copies of a random vector X ∈ X .

Remark 2.10. Again, when γ = 1, we get the reduction

h̄γ=1(x, x
′) =

1

2
E
[
∥x−X∥2X + ∥x′ −X ′∥2X − ∥x− x′∥2X − ∥X −X ′∥2X

]
=

1

2
E
[
⟨X,X⟩X + ⟨X ′, X ′⟩X + 2⟨x, x′⟩X − 2⟨x,X⟩X − 2⟨x′, X ′⟩X

]
= ⟨µ, µ⟩X + ⟨x, x′⟩X − ⟨x, µ⟩X − ⟨µ, x′⟩X
= ⟨x− µ, x′ − µ⟩X ,

which is the (reproducing) kernel of the centred canonical RKHS.

Remark 2.11. For posterity, a general centring of any (positive-definite) kernel h : X ×
X → R can be achieved via

h̄(x, x′) = h(x, x′)− E[h(x,X ′)]− E[h(X,x′)] + E[h(X,X ′)],

where expectations are taken for the random elements X,X ′ iid∼ P, a probability measure
over X . This centred kernel gives rise to the centred RKHS F̄ of centred functions
E[f(X)], f ∈ F̄ . As per Remark 2.7, the empirical distribution of P can be used to
approximate the unknown, true P.

2.4.4 The squared exponential RKHS

The squared exponential (SE) kernel function is indeed known to be the default ker-
nel used for Gaussian process regression in machine learning. It is a positive definite
function, and hence defines an RKHS. The definition of the SE RKHS is as follows.

Definition 2.30 (Squared exponential RKHS). The squared exponential (SE) RKHS
F of functions over some set X ⊆ Rp equipped with the 2-norm ∥·∥2 is defined by the
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positive definite kernel hl : X × X → R

hl(x, x
′) = exp

(
−∥x− x

′∥22
2l2

)
.

The real-valued parameter l > 0 is called the lengthscale parameter, and is a smoothing
parameter for the functions in the RKHS.

It is known by many other names, including the Gaussian kernel, due to its semblance
to the kernel of the Gaussian pdf. Especially in the machine learning literature, the term
Gaussian radial basis functions (RBF) is used, and commonly the simpler parameterisa-
tion γ = (2l2)−1 is utilised. Duvenaud (2014) remarks that “exponentiated quadratic”
is a more aptly descriptive name for this kernel.

Despite being used extensively for learning algorithms using kernels, an explicit study
of the RKHS defined by the SE kernel was not done until recently by Steinwart et al.
(2006). In that work, the authors describe the nature of real-valued functions in the SE
RKHS by considering a a real restriction on the SE RKHS of functions over complex
values. Their derivation of an orthonormal basis of such an RKHS proved the SE kernel
to be the reproducing kernel for the SE RKHS.
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Figure 2.6: Sample paths from the SE RKHS with varying values for the lengthscale.

SE kernels are known to be “universal”. That is, it satisfies the following definition
of universal kernels is due to Micchelli et al. (2006).
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Definition 2.31 (Universal kernel). Let C(X ) be the space of all continuous, complex-
valued functions f : X → C equipped with the maximum norm ∥·∥∞, and denote K(X )
as the space of kernel sections span{h(·, x)|x ∈ X}, where here, h is a complex-valued
kernel function. A kernel h is said to be universal if given any compact subset Z ⊂ X ,
any positive number ϵ and any function f ∈ C(Z), there is a function g ∈ K(Z) such
that ∥f − g∥Z ≤ ϵ.

The consequence of universality vis-à-vis regression modelling is that any (continuous)
regression function f may be approximated very well by a function f̂ belonging to the SE
RKHS, and these two functions can get arbitrarily close to each other in the maximum
norm sense. This, together with the convenient computational advantages that the SE
kernel brings (Raykar and Duraiswami, 2007), is a testament to the popularity of SE
kernels, especially in machine learning methods.

In a similar manner to the two previous subsections, we may also derive the centred
SE RKHS.

Definition 2.32 (Centred SE RKHS). Let X ⊆ Rp be equipped with the 2-norm ∥·∥2,
and let P denote the distribution over X . Assuming integrability of h(x,X), for any
x ∈ X and a random element X ∈ X , the centred squared exponential (SE) RKHS (with
lengthscale l) of functions over X is defined by the positive definite kernel h : X ×X → R

h(x, x′) = e−
∥x−x′∥22

2l2 − E e−
∥x−X′∥22

2l2 − E e−
∥X−x′∥22

2l2 + E e−
∥X−X′∥22

2l2 ,

where X,X ′ ∼ P are two independent random elements of X . This ensures that
E[f(X)] = 0 for any f in this RKHS.

2.4.5 The Pearson RKHS

In all of the previous RKHSs of functions, the domain X was taken to be some Euclidean
space. The Pearson RKHS is a space of functions whose domain X is a finite set. Let P
be a probability measure over the finite set X . The Pearson RKHS is defined as follows.

Definition 2.33 (Pearson RKHS). The Pearson RKHS is the RKHS of functions over
a finite set X defined by the reproducing kernel

h(x, x′) =
δxx′

P(X = x)
− 1,

where X ∼ P and δ is the Kronecker delta.
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Figure 2.7: Sample I-prior “paths” from the Pearson RKHS. These are represented as
points over a finite set. Similarly coloured points are from the same “path”, and since
they are zero-mean functions, they sum to zero.

The Pearson RKHS contains functions which are centred, and has the desirable prop-
erty that the contribution of f(x)2 (the square of f(x)) to the squared norm of f is
proportional to P(X = x).

Proposition 2.12 (Mean and variance of functions in a Pearson RKHS). Let F be the
Pearson RKHS of functions over a finite set X . Then,

F = {f : X → R | E[f(X)] = 0}

with
∥f∥2F = Var[f(X)] =

∑
x∈X

f(x)2 P(X = x), ∀f ∈ F .

Proof. Write px = P(X = x). The set of functions {h(·, x) |x ∈ X} form a basis for F ,
and thus each f ∈ F can be written as f(x) =

∑
x′∈X wx′h(x, x′) for some scalars wi ∈ R,

i ∈ X . But E[h(X,x′)] = E[δXx′ ]/px′ − 1 = px′/px′ − 1 = 0, and thus E[f(X)] = 0.
Conversely, suppose f : X → R is such that E[f(X)] = 0. Taking wx = f(x)px, we see
that ∑

x′∈X
wx′h(x, x′) =

wx

px
−
∑
x′∈X

wx′

=
f(x)��px

��px
−

�������*
E[f(X)] = 0∑

x′∈X
f(x′)px′

= f(x)

and thus h(·, x) spans F so f ∈ F .
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The second part is proved as follows. Noting that with the choice wx = pxf(x) and
due to the reproducing property of h for the RKHS F , the squared norm is

∥f∥2F = ⟨f, f⟩F =

⟨∑
x∈X

wxh(·, x),
∑
x′∈X

wx′h(·, x′)

⟩
F

=
∑
x∈X

∑
x′∈X

wxwx′
⟨
h(·, x), h(·, x′)

⟩
F

=
∑
x∈X

∑
x′∈X

wxwx′h(x, x′)

=
∑
x∈X

f(x)wx

=
∑
x∈X

f(x)2 P(X = x),

and this is equal to the variance of f(X). ■

2.5 Constructing RKKSs from existing RKHSs

The previous section outlined all of the basic RKHSs of functions that will form the
building blocks when constructing more complex function spaces. We will see, at the
outset, that sums of kernels are kernels and products of kernels are also kernels. This
provides us a platform for constructing new function spaces from existing ones. To be
more flexible in the specification of these new function spaces, we do not restrict ourselves
to positive-definite kernels only, thereby necessitating us to use the theory of RKKSs.

2.5.1 Sums, products and scaling of RKHS

Sums of positive definite kernels are also positive definite kernels, and the product of
positive definite kernel is a positive definite kernel. They each, in turn, are associated
with an RKHS that is defined by the sum of kernels and product of kernels, respectively.
The two lemmas below formalise these two facts.

Lemma 2.13 (Sum of kernels). If h1 and h2 are positive-definite kernels on X1 and X2

respectively, then h = h1 + h2 is a positive-definite kernel on X1×X2. Moreover, denote
F1 and F2 the RKHS defined by h1 and h2 respectively. Then F = F1⊕F2 is an RKHS
defined by h = h1 + h2, where

F1 ⊕F2 = {f : X1 ×X2 → R | f = f1 + f2, f1 ∈ F1 and f2 ∈ F2}.

For all f ∈ F ,
∥f∥2F = min

f1+f2=f

{
∥f1∥2F1

+ ∥f2∥2F2

}
.
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Proof. That h1+h2 is a positive-definite kernel should be obvious, as the sum of two pos-
itive definite functions is also positive definite. For a proof of the remaining statements,
see Berlinet and Thomas-Agnan (2004, Thm. 5). ■

Lemma 2.14 (Products of kernels). Let F1 and F2 be two RKHSs of functions over X1

and X2, with respective reproducing kernels h1 and h2. Then, the tensor product space
F1 ⊗F2 is an RKHS with reproducing kernel h = h1h2 on X1 ×X2.

Proof. Fix n ∈ N, and let H1 and H2 be the kernel matrices for h1 and h2 respectively.
Since these kernel matrices are symmetric and positive definite by virtue of h1 and h2

being symmetric and positive-definite functions, we can write H1 = A⊤A and H1 =

B⊤B for some matrices A and B: perform an (orthogonal) eigendecomposition of each
of the kernel matrices, and take square roots of the eigenvalues. Let H be the kernel
matrix for h = h1h2. With xi = (xi1, xi2), its (i, j) entries are

h(xi, xj) = h1(xi1, xi2)h2(xj1, xj2)

= (A⊤A)ij (B⊤B)ij

=

n∑
k=1

aikajk

n∑
l=1

bilbjl,

where we have denoted aij and bij to be the (i, j)’th entries of A and B respectively
Then,

n∑
i=1

n∑
j=1

h(xi, xj) =

n∑
k=1

n∑
l=1

n∑
i=1

n∑
j=1

λiλjaikajkbilbjl

=
n∑

k=1

n∑
l=1

(
n∑

i=1

λiaikbil

) n∑
j=1

λjajkbjl


=

n∑
k=1

n∑
l=1

(
n∑

i=1

λiaikbil

)2

≥ 0

Again, for the remainder of the statement in the lemma, we refer to Berlinet and Thomas-
Agnan (2004, Thm. 13). ■

A familiar fact from linear algebra is realised here from Lemmas 2.13 and 2.14: 1) the
addition of positive-(semi)definite matrices is a positive-(semi)definite matrix; and 2) the
Hadamard product3 of two positive (semi-)definite matrices is a positive (semi-)definite
matrix.

3The Hadamard product is an element-wise multiplication of two matrices A and B of identical
dimensions, denoted A ◦ B. That is, (A ◦ B)ij = AijBij .
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The scale of an RKHS of functions F over a set X with kernel h may be arbitrary.
To resolve this issue, a scale parameter λ ∈ R for the kernel h may be introduced, which
will typically need to be estimated from the data. If h is a positive definite-kernel on
X × X , and λ ≥ 0 a scalar, then this yields a scaled RKHS Fλ = {λf | f ∈ F} with
reproducing kernel λh, where F is the RKHS defined by h.

Restricting λ to the positive reals is arbitrary and unnecessarily restrictive. Especially
when considering sums and products of scaled RKHSs, having negative scale parameters
also give additional flexibility. The resulting kernels from summation and/or multipli-
cation with negative kernels may no longer be positive definite, and in such cases, they
give rise to RKKSs instead.

Remark 2.12. Recall that an RKKS F of functions over X can be uniquely decomposed
as the difference between two RKHSs F+ and F−, and its associated Hilbert space FH

is the RKHS F+ ⊕ F−. It is important to note that both F and FH contain identical
functions over X , but different topologies. That is to say, functions that are close with
respect to the norm of F may not be close to each other in the norm of FH.

2.5.2 The polynomial RKKS

A polynomial construction based on a particular RKHS building block is considered
here. For example, using the canonical RKHS in the polynomial construction would
allow us to easily add higher order effects of the covariates x ∈ X . In particular, we only
require a single scale parameter in polynomial kernel construction.

Definition 2.34 (Polynomial RKKS). Let X be a Hilbert space. The kernel function
h : X ×X → R obtained through the d-degree polynomial construction of linear kernels
is

hλ(x, x
′) =

(
λ⟨x, x′⟩X + c

)d
,

where λ ∈ R is a scale parameter for the linear kernel, and c ∈ R is a real constant called
the offset. This kernel defines the polynomial RKKS of degree d. Note that if λ, c > 0

then the kernel is positive definite and thus defines an RKHS.

Write

hλ(x, x
′)F =

d∑
k=0

d!

k!(d− k)!
ck−dλk⟨x, x′⟩kX .

Evidently, as the name suggests, this is a polynomial involving the canonical kernel. In
particular, each of the k-powered kernels (i.e. ⟨x, x′⟩kX ) defines an RKHS of their own
(since these are merely products of kernels), and therefore the sum of these k-powered
kernels define the polynomial RKKS.
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The offset parameter influences trade-off between the higher-order versus lower-order
terms in the polynomial. It is sometimes known as the bias term.

Proposition 2.15. The polynomial RKKS F of real functions over X contains polyno-
mial functions of the form f(x) =

∑d
k=0 βkx

k.

Proof. By construction, F = F∅ ⊕
⊕d

i=1

⊗i
j=1Fj , where each Fj , j ≠ 0 is the canonical

RKHS, and F∅ is the RKHS of constant functions. Each f ∈ F can therefore be written
as f = β0 +

∑d
i=1

∏i
j=1 fj , and fj(x) = bjx as they are functions from the canonical

RKHS, where bj is a constant. Therefore, f(x) =
∑d

k=0 βkx
k. ■

Remark 2.13. We may opt to use other RKHSs as the building blocks of the polynomial
RKKS. In particular, using the centred canonical kernel seems natural, so that each of
the functions in the constituents of the direct sum of spaces is centred. However, the
polynomial RKKS itself will not be centred.

2.5.3 The ANOVA RKKS

We find it useful to begin this subsection by spending some time to elaborate on the
classical analysis of variance (ANOVA) decomposition, and the associated notions of
main effects and interactions. This will go a long way in understanding the thinking
behind constructing an ANOVA-like RKKS of functions.

The classical ANOVA decomposition

The standard one-way ANOVA is essentially a linear regression model which allows
comparison of means from two or more samples. Given sets of observations yj =

{y1j , . . . , ynjj}, j = 1, . . . ,m, we consider the linear model yij = µj + ϵij , where ϵij

are independent, univariate, normal random variables with a common variance. This
covariate-less model is used to make inferences about the treatment means µj . Often,
the model is written in the overparameterised form by substituting µj = µ + τj . This
gives a different, arguably better, interpretability to the model: the τj ’s, referred to as
the treatment effects, now represent the amount of deviation from the grand, overall
mean µ. Estimating all τj ’s and µ separately is not possible because there is one degree
of freedom that needs to be addressed in the model: there are p+1 mean parameters to
estimate but only information from p means. A common fix to this identification issue is
to set one of the µj ’s, say the first one µ1, to zero, or impose the restriction

∑m
j=1 µj = 0.

The former treats one of the m levels as the control, while the latter treats all treatment
effects symmetrically.

Now write the ANOVA model slightly differently, as yi = f(xi) + ϵi, where f is
defined on the discrete domain X = {1, . . . ,m}, and i indexes all of the n :=

∑m
j=1 nj
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observations. Here, f represents the group-level mean, returning µj for some j ∈ X . In
a similar manner, we can perform the ANOVA decomposition on f as

f = Af + (I −A)f = fo + ft,

where A is an averaging operator that “averages out” its argument x and returns a
constant, and I is the identity operator. fo = Af is a constant function representing the
overall mean, whereas ft = (I − A)f is a function representing the treatment effects τj .
Here are two choices of A:

• Af(x) = f(1) = µ1. This implies f(x) = f(1) +
(
f(x) − f(1)

)
. The overall

mean µ is the group mean µ1, which corresponds to setting the restriction µ1 = 0.

• Af(x) =
∑m

x=1 f(x)/m =: ᾱ. This implies f(x) = ᾱ+
(
f(x)− ᾱ

)
. The overall

mean is µ =
∑m

j=1 αj/m, which corresponds to the restriction
∑m

j=1 µj = 0.

By definition, AAf = A2f = Af , because averaging a constant returns that constant.
We must have that Aft = A(I − A)f = Af − A2f = 0. The choice of A is arbitrary, as
is the choice of restriction, so long as it satisfies the condition that Aft = 0.

The multiway ANOVA can be motivated in a similar fashion. Let x = (x1, . . . , xp) ∈∏p
k=1Xk, and consider functions that map

∏p
k=1Xk to R. Let Ak be an averaging

operator on Xk that averages the k’th component of x from the active argument list,
i.e. Akf is constant on the Xk axis but not necessarily an overall constant function. An
ANOVA decomposition of f is

f =

(
p∏

k=1

(Ak + I −Ak)

)
f =

∑
K∈Pp

(∏
k∈K

(I −Ak)
∏
k/∈K

Ak

)
f =

∑
K∈Pp

fK (2.4)

where we had denoted Pp = P({1, . . . , p}) to be the power set of {1, . . . , p} whose
cardinality is 2p. The summands fK will compose of the overall effect, main effects,
two-way interaction terms, and so on. Each of the terms will satisfy the condition
AkfK = 0, ∀k ∈ K ∈ Pp\{}.

Example 2.1 (Two-way ANOVA decomposition). Let p = 2, X1 = {1, . . . ,m1}, and
X2 = {1, . . . ,m2}. The power set P2 is

{
{}, {1}, {2}, {1, 2}

}
. The ANOVA decomposi-

tion of f (with indices derived trivially from the power set) is

f = f∅ + f1 + f2 + f12.

Here are two choices for the averaging operator Ak analogous to the previous illustration
in the one-way ANOVA.
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• Let A1f(x) = f(1, x2) and A2f(x) = f(x1, 1). Then,

f∅(x) = A1A2f = f(1, 1)

f1(x) = (I −A1)A2f = f(x1, 1)− f(1, 1)

f2(x) = A1(I −A2)f = f(1, x2)− f(1, 1)

f12(x) = (I −A1)(I −A2)f = f(x1, x2)− f(x1, 1)− f(1, x2) + f(1, 1).

• Let Akf(x) =
∑mk

xk=1 f(x1, x2)/mk, k = 1, 2. Then,

f∅(x) = A1A2f = f··
f1(x) = (I −A1)A2f = fx1· − f··
f2(x) = A1(I −A2)f = f·x2 − f··
f12(x) = (I −A1)(I −A2)f = f − fx1· − f·x2 + f··,

where f·· =
∑

x1,x2
f(x1, x2)/m1m2, fx1· =

∑
x2
f(x1, x2)/m2, and

f·x1 =
∑

x1
f(x1, x2)/m1.

It is also easy to convince ourselves that A1f1 = A2f2 = A1f12 = A2f12 = 0 in either
choice of the averaging operator Ak.

Functional ANOVA decomposition

Let us now extend the ANOVA decomposition idea to a general function f : X → R in
some vector space F . We shall jump straight into the multiway ANOVA analogue for
functional decomposition, and to that end, consider x = (x1, . . . , xp) ∈

∏p
k=1Xk =: X a

measurable space, where each of the spaces Xk has measure νk, and ν = ν1 × · · · × νp is
the product measure on X . In the following, denote by Fk the vector space of functions
over the set Xk, k = 1, . . . , p, and F∅ the vector space of constant functions.

As X need not necessarily be a collection of finite sets, we need to figure out a suitable
linear operator that performs an “averaging” of some sort. Consider the linear operator
Ak : F → F−k, where F−k is a vector space of functions for which the kth component is
constant over X , defined by

Akf(x) =

∫
Xk

f(x1, . . . , xp)dνk(xk). (2.5)

Thus, for the one-way ANOVA (p = 1), we get

f(x) =

f∅(x)︷ ︸︸ ︷∫
X
f(x)dν(x) +

f1(x)︷ ︸︸ ︷(
f −

∫
X
f(x)dν(x)

)
(2.6)
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and for the two-way ANOVA (p = 2), we have f = f∅ + f1 + f2 + f12, with

f∅(x) =

∫
X1

∫
X2

f(x1, x2)dν1(x1)dν2(x2)

f1(x) =

∫
X2

(
f(x1, x2)−

∫
X1

f(x1, x2)dν1(x1)
)

dν2(x2)

f2(x) =

∫
X1

(
f(x1, x2)−

∫
X2

f(x1, x2)dν2(x2)
)

dν1(x1)

f12(x) = f(x1, x2)−
∫
X1

f(x1, x2)dν1(x1)−
∫
X2

f(x1, x2)dν2(x2)

+

∫
X1

∫
X2

f(x1, x2)dν1(x1)dν2(x2).

The averaging operator Ak defined in (2.5) generalises the concept of the previ-
ous subsection’s averaging operator. We must then also have, as before, that AkfK =

0, ∀k ∈ K ∈ Pp\{}. For the one-way functional ANOVA decomposition in (2.6), it must
be that f1 is a zero-mean function. As for the two-way ANOVA, it is the case that∫
Xk
fK(x1, x2)dνk(xk) = 0, k = 1, 2, and K ∈

{
{1}, {2}, {1, 2}

}
(Durrande et al., 2013).

This is highly suggestive as to what the ANOVA decomposition of the space F should
look like in general. Starting with p = 1, any f ∈ F can be decomposed as a sum of a
constant plus a zero-meaned function, so we have that F = F∅⊕F̄1, where a bar over Fk,
k = 1, . . . , p will be used to denote the vector space of zero-meaned functions over Xk. For
p ≥ 2 we can argue something similar. Take the vector space space F of functions over∏p

k=1Xk to be the tensor product space F = F1⊗· · ·⊗Fp whose elements are identified
as being tensor product functions f1 ⊗ · · · ⊗ fp, where each fk : Xk → R belongs to Fk.
This is constructed by repeatedly taking the completion of linear combinations of the
tensor product fk ⊗ fj , k, j ∈ {1, . . . , p} as per Definition 2.14. Considered individually,
each Fk can then be decomposed as Fk = F∅k ⊕ F̄k, where F∅k is the space of functions
constant along the k’th axis. Expanding out under the distributivity rule of tensor
products and rearranging slightly, we obtain

F =
(
F∅1 ⊕ F̄1

)
⊗ · · · ⊗

(
F∅p ⊕ F̄p

)
= F∅ ⊕

p⊕
j=1

(⊗
i ̸=j

F∅i ⊗ F̄j

)
⊕

p⊕
j,k=1

j<k

( ⊗
i ̸=j,k

F∅i ⊗ F̄j ⊗ F̄k

)
(2.7)

⊕ · · · ⊕
(
F̄1 ⊗ · · · ⊗ F̄p

)
,

where ‘
⊕

’ and ‘
⊗

’ represent the summation and product operator for direct/tensor
sums and products, respectively. To clarify,

• F∅ is the space of constant functions f∅ : X1 × · · · × Xp → R;
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•
(⊗

i ̸=j F∅i⊗F̄j

)
is the space of functions that are constant on all coordinates ex-

cept the j’th coordinate of x, and the functions are centred on the j’th coordinate;

•
(⊗

i ̸=j,k F∅i⊗F̄j⊗F̄k

)
is the space of functions that are constant on all coordinates

except the jth and kth coordinate of x, and the functions are centred on these two
coordinates;

• F̄1 ⊗ · · · ⊗ F̄p is the space of zero-mean functions f : X1 × · · · × Xp → R;

and so on for for the rest of the spaces in the summand, of which there are 2p members
all together. Therefore, given an arbitrary function f ∈ F , the projection of f onto the
above respective spaces in (2.7) leads to the functional ANOVA representation

f(x) = α+

p∑
j=1

fj(xj) +

p∑
j,k=1

j<k

fjk(xj , xk) + · · ·+ f1···p(x), (2.8)

where α is the grand intercept (a constant).

Definition 2.35 (Functional ANOVA representation). Let Pp = P({1, . . . , p}), the
power set of {1, . . . , p}. For any function f : X1 × · · · × Xp → R, the formula for f
in (2.8) is known as the functional ANOVA representation of f if ∀k ∈ K ∈ Pp\{},

AkfK(x) =

∫
Xk

fK(x)dνk(xk) = 0. (2.9)

In other words, the integral of fK with respect to any of the variables indexed by the
elements in K, is zero. Consequentially, each of the functional ANOVA components are
centred with respect to each axis Xj , j = 1, . . . , p.

For the constant term, main effects, and two-way interaction terms, the familiar
classical expressions are obtained:

f∅ =

∫
f dν;

fj =

∫
f
∏

i ̸=j dνi − f∅;

fjk =

∫
f
∏

i ̸=j,k dνi − fj − fk − f∅.

The ANOVA kernel

At last, we come to the section of deriving the ANOVA RKKS, and, rest assured, the
preceding long build-up will prove to not be in vain. The main idea is to construct an
RKKS such that the functions that lie in them will have the ANOVA representation in
(2.8). The bulk of the work has been done, and in fact we know exactly how this ANOVA
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RKKS should be structured—it is the space as specified in (2.7). The ANOVA RKKS
will be constructed by a similar manipulation of the individual kernels representing the
RKHS building blocks.

Definition 2.36 (ANOVA RKKS). For k = 1, . . . , p, let Fk be centred RKHSs of func-
tions over the set Xk with kernel hk : Xk × Xk → R. Let λk, k = 1, . . . , p be real-valued
scale parameters. The ANOVA RKKS of functions f : X1× · · · ×Xp → R is specified by
the ANOVA kernel, defined by

hλ(x, x
′) =

p∏
k=1

(
1 + λkhk(xk, x

′
k)
)
. (2.10)

It is interesting to note that an ANOVA RKKS is constructed very simply through
multiplication of univariate kernels. Expanding out equations (2.10), we see that it is in
fact a sum of products of kernels with increasing orders of interaction:

hλ(x, x
′) = 1 +

p∑
j=1

λjhj(xj , x
′
j) +

p∑
j,k=1

j<k

λjλkhj(xj , x
′
j)hk(xk, x

′
k) + · · ·+

p∏
j=1

λjhj(xj , x
′
j).

It is now clear from this expansion that the ANOVA RKKS yields functions that resemble
those with the ANOVA representation in (2.8): the mean value of the function stems
from the ‘1’, i.e. it lies in an RKHS of constant functions; the main effects are represented
by the sum of the individual kernels; the two-way interaction terms are represented by
the second-order kernel interactions; and so on.

Example 2.2 (ANOVA RKKS construction). Consider two RKHSs Fk with kernel hk,
k = 1, 2. The ANOVA kernel defining the ANOVA RKKS F is

hλ
(
(x1, x2), (x

′
1, x

′
2)
)
= 1 + λ1h1(x1, x

′
1) + λ2h2(x2, x

′
2) + λ1λ2h1(x1, x

′
1)h2(x2, x

′
2).

Suppose that F1 and F2 are the centred canonical RKHS of functions over R. Then,
functions in F = F∅ ⊕F1 ⊕F2 ⊕ (F1 ⊗F2) are of the form

f(x1, x2) = β0 + β1x1 + β2x2 + β3x1x2.

As a remark, not all of the components of the ANOVA RKKS need to be included in
the construction. The selective exclusion of certain interactions characterises many in-
teresting statistical models. Excluding certain terms of the ANOVA RKKS is equivalent
to setting the scale parameter for those relevant components to be zero, i.e. they play
no role in the decomposition of the function. With this in mind, the ANOVA RKKS
then gives us an objective way of model-building, from linear regression, to multilevel
models, longitudinal models, and so on.
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2.6 Summary

The review of functional analysis allows us to describe the theory of RKHSs and RKKSs,
which are of interest to us because the topology endowed on such spaces gives apprecia-
ble assurances—in particular, all evaluation functionals are continuous in these spaces.
Moreover, RKHSs and RKKSs can be specified completely through kernel functions,
with new and complex function spaces built simply by manipulation of these kernel
functions. Of particular importance is the ANOVA functional decomposition, for which
we realise provides an objective way of constructing various function spaces for regression
and modelling. Such models will be described later on in detail in Chapter 4.

An annotated collection of bibliographical references used for this chapter is as follows.

• Functional analysis. On the introductory material relating to functional analysis
in Section 2.1, the lecture notes by Sejdinovic and Gretton (2012) is recommended,
and forms the basis for most of our material. Additionally, Kokoszka and Reimherr
(2017), Rudin (1987), and Yamamoto (2012) provides a complementary reading.

• RKHS theory. There are certainly no shortages of introductory texts relating
to the theory of RKHSs: Berlinet and Thomas-Agnan (2004), Gu (2013), and
Steinwart and Christmann (2008), to name a few. The concise sketch proof for
the Moore-Aronszajn theorem was mostly inspired by Hein and Bousquet (2004,
Thm. 4).

• Kreĭn space and RKKS theory. The innovation of indefinite inner product
spaces perhaps started in mathematical physics literature, for which the theory of
special relativity depends. Four-dimensional space-time is an often cited example.
In any case, we referred to mainly Ong et al. (2004), which gives an overview in
the context of learning using indefinite kernels. Alpay (1991) and Zafeiriou (2012)
were also useful for understanding the fundamental concepts of RKKSs.

• RKHS building blocks. The main building block RKHSs, i.e. the canonical
RKHS, the fBm RKHS and the Pearson RKHS, are described in the manuscript
of Bergsma (2018).

• ANOVA and functional ANOVA. Classical ANOVA is pretty much existent in
every fundamental statistical textbook. These texts have extremely well written
introductions to this very important concept: Casella and R. L. Berger (2002, Ch.
11), Dean and Voss (1999, Ch. 3). On the relation between classical ANOVA and
functional ANOVA decomposition, Gu (2013) offers novel insights. There is di-
verse literature concerning functional ANOVA, namely from the fields of statistical
learning (e.g. Wahba, 1990), applied mathematics (e.g. F. Y. Kuo et al., 2010),
and sensitivity analysis (e.g. Durrande et al., 2013; Sobol, 2001).
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Chapter 3

Fisher information and the I-prior

We are interested in calculating the Fisher information for our unknown regression
function f (the parameter to be estimated) in (1.1), subject to (1.2) and f ∈ F , a
reproducing kernel Kreĭn space (RKKS). Usually, the Fisher information pertains to
finite-dimensional parameters, but as F may be infinite dimensional, care must be taken
when computing derivatives with respect to f . For function spaces that possess an or-
thonormal basis, which all Hilbert spaces do, then one could define the derivative of the
functional ρ : F → R componentwise with respect to the orthonormal basis, as in the
finite-dimensional case. This is analogous to the usual concept of partial derivatives.

However, the notion of partial derivatives does not generalise to arbitrary topological
vector spaces for two reasons. Firstly, general spaces may not have an orthonormal
basis (Tapia, 1971, Sec. 5, p. 76). Secondly, componentwise derivatives, which are in
essence limits taken componentwise using the usual definition of derivatives, may not
coincide with the overall limit taken with respect to the topology of the vector space.
For these reasons, there is a need to consider the rigorous concepts of differentiation
suitable for infinite-dimensional vector spaces provided by Fréchet and Gâteaux deriva-
tives. These concepts are introduced in Section 3.2, prior to the actual derivation of the
Fisher information of the regression function in Section 3.3.

In the remaining sections, we discuss the notion of prior distributions for regression
functions, and how one might assign a suitable prior. In our case, we choose an objective
prior following (Jaynes, 1957a, 1957b, 2003): in the absence of any prior knowledge, a
prior distribution which maximises entropy should be used. As it turns out, the entropy
maximising prior for f is Gaussian with mean chosen a priori and covariance kernel
proportional to the Fisher information. We call such a distribution on f an I-prior
distribution for f . The I-prior has a simple, intuitive appeal: much information about f
corresponds to a larger prior covariance, and thus less influence of the prior mean, and
more of the data, in informing the posterior, and vice versa.
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3.1 The traditional Fisher information

It was Fisher (1922) who introduced the method of maximum likelihood (ML) as an ob-
jective way of conducting statistical inference. This method of inference is distinguished
from the Bayesian school of thought in that only the data may inform deductive reason-
ing, but not any sort of prior probabilities. Towards the later stages of his career1, his
work reflected the view that the likelihood is to be more than simply a device to obtain
parameter estimates; it is also a vessel that carries uncertainty about estimation. In this
light and in the absence of the possibility of making probabilistic statements, one should
look to the likelihood in order to make rational conclusions about an inference problem.
Specifically, we may ask two things of the likelihood function: where is the maximum
and what does the graph around the maximum look like? The first of these two problems
is of course ML estimation, while the second concerns the Fisher information.

In simple terms, the Fisher information measures the amount of information that an
observable random variable Y carries about an unknown parameter θ of the statistical
model that models Y . To make this concrete, let Y have the density function p(·|θ)
which depends on θ. Write the log-likelihood function of θ as L(θ) = log p(Y |θ), and
the gradient function of the log-likelihood (the score function) with respect to θ as
S(θ) = ∂L(θ)/∂θ. The Fisher information about the parameter θ is defined to be the
expectation of the second moment of the score function,

I(θ) = E
[(

∂

∂θ
log p(Y |θ)

)2
]
.

Here, expectation is taken with respect to the random variable Y under its true dis-
tribution. Under certain regularity conditions, it can be shown that E[S(θ)] = 0,
and thus the Fisher information is in fact the variance of the score function, since
Var[S(θ)] = E[S(θ)2]−E2[S(θ)]. Further, if log p(Y |θ) is twice differentiable with respect
to θ, then it can be shown that under certain regularity conditions,

I(θ) = E
[
− ∂2

∂θ2
log p(Y |θ)

]
.

Many texts provide a proof of this fact—see, for example, Wasserman (2004, Sec. 9.7).

From the last equation above, we see that the Fisher information is related to the
curvature or concavity of the graph of the log-likelihood function, averaged over the
random variable Y . The curvature, defined as the second derivative on the graph2 of a
function, measures how quickly the function changes with changes in its input values.

1The introductory chapter of Pawitan (2001) and the citations therein give a delightful account of
the evolution of the Fisherian view regarding statistical inference.

2Formally, the graph of a function g is the set of all ordered pairs (x, g(x)).
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This then gives an intuition regarding the uncertainty surrounding θ at its maximal
value; high Fisher information is indicative of a sharp peak at the maxima and therefore
of a small variance (less uncertainty), while low Fisher information is indicative of a
shallow maxima for which many θ share similar log-likelihood values.

3.2 Fisher information in Hilbert space

We extend the idea beyond thinking about parameters as merely numbers in the usual
sense, to abstract objects in Hilbert spaces. This generalisation allows us to extend the
concept of Fisher information to regression functions in RKKSs later. The score and
Fisher information is derived in a familiar manner, but extra care is required when taking
derivatives with respect to elements in Hilbert spaces. We discuss a generalisation of
the concept of differentiability from real-valued functions of a single, real variable, as is
common in calculus, to functions between Hilbert spaces.

Definition 3.1 (Fréchet derivative). Let V andW be two Hilbert spaces, and U ⊆ V be
an open subset. A function ρ : U → W is called Fréchet differentiable at x ∈ U if there
exists a bounded, linear operator T : V → W such that

lim
v→0

∥∥ρ(x+ v)− ρ(x)− Tv
∥∥
W

∥v∥V
= 0

If this relation holds, then the operator T is unique, and we write dρ(x) := T and call
it the Fréchet derivative or Fréchet differential of ρ at x. If ρ is differentiable at every
point U , then ρ is said to be (Fréchet) differentiable on U .

Remark 3.1. Since dρ(x) is a bounded, linear operator, by Lemma 2.1 (p. 47), it is also
continuous.

Remark 3.2. While the Fréchet derivative is most commonly defined as the derivative
of functions between Banach spaces, the definition itself also applies to Hilbert spaces,
since complete inner product spaces are also complete normed spaces. Since our main
focus are RKHSs and RKKSs, i.e. spaces with Hilbertian topology (recall that RKKSs
are endowed with the topology of its associated Hilbert space), it is beneficial to present
the material using Hilbert spaces. We appeal to the works of Balakrishnan (1981, Def.
3.6.5) and Bouboulis and Theodoridis (2011, Sec. 6) in this regard.

Remark 3.3. The use of the open subset U in the definition above for the domain of the
function ρ is so that the notion of ρ being differentiable is possible even without having
it defined on the entire space V.
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The intuition here is similar to that of regular differentiability, in that the linear
operator T well approximates the change in ρ at x (the numerator), relative to the
change in x (the denominator)—the fact that the limit exists and is zero, it must mean
that the numerator converges faster to zero than the denominator does. In Landau
notation, we have the familiar expression ρ(x+ v) = ρ(v) + dρ(x)(v) + o(v), that is, the
derivative of ρ at x gives the best linear approximation to ρ near x. Note that the limit
in the definition is meant in the usual sense of convergence of functions with respect to
the norms of V and W.

For the avoidance of doubt, dρ(x) is not a vector in W, but is an element of the set
of bounded, linear operators from V to W, denoted L(V;W). That is, if ρ : U → W is a
differentiable function at all points in U ⊆ V, then its derivative is a linear map

dρ : U → L(V;W)

x 7→ dρ(x).

It follows that this function may also have a derivative, which by definition will be a
linear map as well. This is the second Fréchet derivative of ρ, defined by

d2ρ : U → L
(
V;L(V;W)

)
x 7→ d2ρ(x).

To make sense of the space on the right-hand side, consider the following argument.

• Take any ϕ(·) ∈ L
(
V;L(V;W)

)
. For all v ∈ V, ϕ(v) ∈ L(V;W), and ϕ(v) is linear

in v.

• Since ϕ(v) ∈ L(V;W), it is itself a linear operator taking elements from V to W.
We can write it as ϕ(v)(·) for clarity.

• So, for any v′ ∈ V, ϕ(v)(v′) ∈ W, and it depends linearly on v′ too. Thus, given
any two v, v′ ∈ V, we obtain an element ϕ(v)(v′) ∈ W which depends linearly on
both v and v′.

• It is therefore possible to identify ϕ ∈ L
(
V;L(V;W)

)
with an element ξ ∈ L(V ×

V,W) such that for all v, v′ ∈ V, ϕ(v)(v′) = ξ(v, v′).

To summarise, there is an isomorphism between the space on the right-hand side and the
space L(V ×V,W) of all continuous, bilinear maps from V to W. The second derivative
d2ρ(x) is therefore a bounded, symmetric, bilinear operator from V × V to W.

Another closely related type of differentiability is the concept of Gâteaux differentials,
which is the formalism of functional derivatives in calculus of variations. Let V, W and
U be as before, and consider the function ρ : U → W.
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Definition 3.2 (Gâteaux derivative). The Gâteaux differential or the Gâteaux derivative
∂vρ(x) of ρ at x ∈ U in the direction v ∈ V is defined as

∂vρ(x) = lim
t→0

ρ(x+ tv)− ρ(x)
t

,

for which this limit is taken relative to the topology of W. The function ρ is said to be
Gâteaux differentiable at x ∈ U if ρ has a directional derivative along all directions at
x. We name the operator ∂ρ(x) : V → W which assigns v 7→ ∂vρ(x) ∈ W the Gâteaux
derivative of ρ at x, and the operator ∂ρ : U → (V;W) = {A |A : V → W} which assigns
x 7→ ∂ρ(x) simply the Gâteaux derivative of ρ.

Remark 3.4. For Gâteaux derivatives, V need only be a vector space, whileW a topolog-
ical space. Tapia (1971, p. 55) wrote that for quite some time analysis was simply done
using the topology of the real line when dealing with functionals. As a result, important
concepts such as convergence could not be adequately discussed.

Remark 3.5. Tapia (1971, p. 52) goes on to remark that the space (V;W) of operators
from V to W is not a topological space, and there is no obvious way to define a topol-
ogy on it. Consequently, we cannot consider the Gâteaux derivative of the Gâteaux
derivative.

Unlike the Fréchet derivative, which is by definition a linear operator, the Gâteaux
derivative may fail to satisfy the additive condition of linearity3. Even if it is linear,
it may fail to depend continuously on some v′ ∈ V if V and W are infinite dimen-
sional. In this sense, Fréchet derivatives are more demanding than Gâteaux derivatives.
Nevertheless, the reasons we bring up Gâteaux derivatives is because it is usually sim-
pler to calculate Gâteaux derivatives than Fréchet derivatives, and the two concepts are
connected by the lemma below.

Lemma 3.1 (Fréchet differentiability implies Gâteaux differentiability). If ρ is Fréchet
differentiable at x ∈ U , then ρ : U → W is Gâteaux differentiable at that point too, and
dρ(x) = ∂ρ(x).

Proof. Since ρ is Fréchet differentiable at x ∈ U , we can write ρ(x+v) ≈ ρ(x)+dρ(x)(v)
for some v ∈ V. Then,

lim
t→0

∥∥∥∥ρ(x+ tv)− ρ(x)
t

− dρ(x)(v)
∥∥∥∥
W

= lim
t→0

1

t

∥∥ρ(x+ tv)− ρ(x)− dρ(x)(tv)
∥∥
W

= lim
t→0

∥∥ρ(x+ tv)− ρ(x)− dρ(x)(tv)
∥∥
W

∥tv∥V
∥v∥V

(3.1)
3Although, for all scalars λ ∈ R, the Gâteaux derivative is homogenous: ∂λvρ(x) = λ∂vρ(x).
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converges to 0 since ρ is Fréchet differentiable at x, and t→ 0 if and only if ∥tv∥V → 0.
Thus, ρ is Gâteaux differentiable at x, and the Gâteaux derivative ∂vρ(x) of ρ at x in
the direction v coincides with the Fréchet derivatiave of ρ at x evaluated at v. ■

On the other hand, Gâteaux differentiability does not necessarily imply Fréchet dif-
ferentiability. A sufficient condition for Fréchet differentiability is that the Gâteaux
derivative is continuous at the point of differentiation, i.e. the map ∂ρ : U → (V;W)

is continuous at x ∈ U . In other words, if ∂ρ(x) is a bounded linear operator and the
convergence in (3.1) is uniform with respect to all v such that ∥v∥V = 1, then dρ(x)
exists and dρ(x) = ∂ρ(x) (Tapia, 1971, p. 57 & 66).

Consider now the function dρ(x) : V → W and suppose that ρ is twice Fréchet
differentiable at x ∈ U , i.e. dρ(x) is Fréchet differentiable at x ∈ U with derivative
d2ρ(x) : V × V → W. Then, dρ(x) is also Gâteaux differentiable at the point x and the
two differentials coincide. In particular, we have∥∥∥∥dρ(x+ tv)(v′)− dρ(x)(v′)

t
− d2ρ(x)(v, v′)

∥∥∥∥
W
→ 0 as t→ 0, (3.2)

by a similar argument in the proof of Lemma 3.1 above. We will use this fact when we
describe the Hessian in a little while.

There is also the concept of gradients in Hilbert space. Recall that, as a consequence
of the Riesz-Fréchet theorem, the mapping U : V → V∗ from the Hilbert space V to its
continuous dual space V∗ defined by U : v 7→ ⟨·, v⟩V is an isometric isomorphism. Again,
let U ⊆ V be an open subset, and let ρ : U → R be a Fréchet differentiable function with
derivative dρ : U → L(V;R) ≡ V∗. We define the gradient as follows.

Definition 3.3 (Gradient). The gradient of ρ is the operator ∇ρ : U → V defined by
∇ρ = U−1 ◦ dρ. Thus, for x ∈ U , the gradient of ρ at x, denoted ∇ρ(x), is the unique
element of V satisfying

⟨∇ρ(x), v⟩V = dρ(x)(v)

for any v ∈ V. Note that ∇ρ being a composition of two continuous functions, is itself
continuous.

Remark 3.6. Alternatively, the gradient can be motivated using the Riesz representation
theorem in Definition 3.1 of the Fréchet derivative. Since V∗ ∋ T : V → R, there is a
unique element v∗ ∈ V such that T (v) = ⟨v∗, v⟩V for any v ∈ V. The element v∗ ∈ V is
called the gradient of ρ at x.

Since the gradient of ρ is an operator on U to V, it may itself have a Fréchet derivative.
Assuming existence, i.e. ρ is twice Fréchet differentiable at x ∈ U , we call this derivative
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the Hessian of ρ. From (3.2), it must be that

d2ρ(x)(v, v′) = lim
t→0

dρ(x+ tv)(v′)− dρ(x)(v′)
t

= lim
t→0

⟨∇ρ(x+ tv), v′⟩V − ⟨∇ρ(x), v′⟩V
t

= lim
t→0

⟨
∇ρ(x+ tv)−∇ρ(x)

t
, v′
⟩

V

=
⟨
∂v∇ρ(x), v′

⟩
V .

The second line follows from the definition of gradients, the third line by linearity of
inner products, and the final line by definition of Gâteaux derivatives and continuity of
inner products4. Since ∇ρ is continuous, its Fréchet and Gâteaux differentials coincide,
and we have that ∂v∇ρ(x) = d∇ρ(x)(v). Letting V, W and U be as before, we now
define the Hessian for the function ρ : U → W.

Definition 3.4 (Hessian). The Fréchet derivative of the gradient of ρ is known as the
Hessian of ρ. Denoted ∇2ρ, it is the mapping ∇2ρ : U → L(V;V) defined by ∇2ρ = d∇ρ,
and it satisfies ⟨

∇2ρ(x)(v), v′
⟩
V = d2ρ(x)(v, v′).

for x ∈ U and v, v′ ∈ V.

Remark 3.7. Since d2ρ(x) is a bilinear form in V, we can equivalently write

d2ρ(x)(v, v′) = ⟨d2ρ(x), v ⊗ v′⟩V⊗V

following the correspondence between bilinear forms and tensor product spaces.

With the differentiation tools above, we can now derive the Fisher information that
we set out to obtain at the beginning of this section. Let Y be a random variable with
density in the parametric family {p(·|θ) | θ ∈ Θ}, where Θ is now assumed to be a Hilbert
space with inner product ⟨·, ·⟩Θ. If p(Y |θ) > 0, the log-likelihood function of θ is the
real-valued function L(·|Y ) : Θ → R defined by θ 7→ log p(Y |θ). The score S, assuming
existence, is defined to be the (Fréchet) derivative of L(·|Y ) at θ, i.e. S : Θ→ L(Θ;R) ≡
Θ∗ defined by S = dL(·|Y ). The second (Fréchet) derivative of L(·|Y ) at θ is then
d2L(·|Y ) : Θ→ L(Θ×Θ;R). We now prove the following proposition.

Proposition 3.2 (Fisher information in Hilbert spaces). Assume that both p(Y |·) and
log p(Y |·) are Fréchet differentiable at θ. Then, the Fisher information for θ ∈ Θ is the
element in the tensor product space Θ⊗Θ defined by

I(θ) = E[∇L(θ|Y )⊗∇L(θ|Y )].

4For any continuous function g : R → R, limx→a g(x) = g(limx→a x) = g(a).
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Equivalently, assuming further that log p(Y |·) is twice Fréchet differentiable at θ, the
Fisher information can be written as

I(θ) = E[−∇2L(θ|Y )].

Note that both expectations are taken under the true distribution of random variable Y .

Proof. The Gâteaux derivative of L(·|Y ) = log p(Y |·) at θ ∈ Θ in the direction b ∈ Θ,
which is also its Fréchet derivative, is

∂bL(θ|Y ) =
d
dt log p(Y |θ + tb)

∣∣∣∣∣
t=0

=
d
dtp(Y |θ + tb)

∣∣
t=0

p(Y |θ)

=
∂bp(Y |θ)
p(Y |θ)

.

Since it assumed that p(Y |·) is Fréchet differentiable at θ, dp(Y |θ)(b) = ∂bp(Y |θ). The
expectation of the score for any b ∈ Θ is shown to be

E[dL(θ|Y )(b)] = E
[

dp(Y |θ)(b)
p(Y |θ)

]
=

∫ dp(Y |θ)(b)
����p(Y |θ) ����p(Y |θ) dY

= d
(∫

p(Y |θ)dY
)
(b)

= 0.

The interchange of Lebesgue integrals and Fréchet differentials is allowed under certain
conditions5, which are assumed to be satisfied here. The derivative of

∫
p(Y |·)dY at

any value of θ ∈ Θ is the zero vector, as it is the derivative of a constant (i.e. 1).

Using the classical notion that the Fisher information is the variance of the score
function, then, for fixed b, b′ ∈ Θ, combined with the fact that dL(θ|Y )(·) is a zero-

5 Following Kammar (2016), the conditions are:
1. L(·|Y ) is Frechét differentiable on U ⊆ Θ for almost every Y ∈ R.
2. L(θ|Y ) and dL(θ|Y )(b) are both integrable with respect to Y , for any θ ∈ U ⊆ Θ and b ∈ Θ.
3. There is an integrable function g(Y ) such that L(θ|Y ) ≤ g(Y ) for all θ ∈ Θ and almost every

Y ∈ R.
These conditions as stated are analogous to the measure theoretic requirements for Leibniz’s integral
rule to hold (differentiation under the integral sign). For nice and well-behaved probability densities,
such as the normal density that we will be working with, there aren’t issues with interchanging integrals
and derivatives.
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meaned function, we have that

I(θ)(b, b′) = E[dL(θ|Y )(b)dL(θ|Y )(b′)]

= E
[
⟨∇L(θ|Y ), b⟩Θ

⟨
∇L(θ|Y ), b′

⟩
Θ

]
=
⟨
E[∇L(θ|Y )⊗∇L(θ|Y )], b⊗ b′

⟩
Θ⊗Θ

.

Hence, I(θ) as a bilinear form corresponds to the element E[∇L(θ|Y )⊗∇L(θ|Y )] ∈ Θ⊗Θ.

The Gâteaux derivative of the Fréchet differential is the second Fréchet derivative,
since L(·|Y ) is assumed to be twice Fréchet differentiable at θ ∈ Θ:

d2L(θ|Y )(b, b′) = ∂b′dL(θ|Y )(b)

= ∂b′

(
dp(Y |θ)(b)
p(Y |θ)

)
=

d
dt

(
dp(Y |θ + tb′)(b)

p(Y |θ + tb′)

) ∣∣∣∣∣
t=0

=
p(Y |θ)d2p(Y |θ)(b, b′)− dp(Y |θ)(b)dp(Y |θ)(b′)

p(Y |θ)2

=
d2p(Y |θ)(b, b′)

p(Y |θ)
− dL(θ|Y )(b)dL(θ|Y )(b′).

Taking expectations of the first term in the right-hand side, we get that

E
[

d2p(Y |θ)(b, b′)
p(Y |θ)

]
=

∫ d
(
dp(Y |θ)

)
(b, b′)

����p(Y |θ) ����p(Y |θ) dY

= d2

(∫
p(Y |θ)dY

)
(b, b′)

= 0.

Thus, we see that from the first result obtained,

E[−d2L(θ|Y )(b, b′)] = E[dL(θ|Y )(b)dL(θ|Y )(b′)]

= I(θ)(b, b′),

while

E[−d2L(θ|Y )(b, b′)] = −E⟨∇2L(θ|Y )(b), b′⟩Θ
= ⟨−E∇2L(θ|Y )(b), b′⟩Θ.

It would seem that E[−∇2L(θ|Y )(b)] is an operator from Θ onto itself which also induces
a bilinear form equivalent to E[−d2L(θ|Y )]. Therefore, I(θ) = E[−∇2L(θ|Y )]. ■
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The Fisher information I(θ) for θ, much like the covariance operator, can be viewed
in one of three ways:

1. As its general form, i.e. an element in the tensor product space Θ⊗Θ;

2. As an operator I(θ) : Θ→ Θ defined by I(θ) : b 7→ E[−∇2L(θ|Y )](b); and finally

3. As a bilinear form I(θ) : Θ×Θ→ R defined by I(θ)(b, b′) = ⟨−E∇2L(θ|Y )(b), b′⟩Θ
= E[−d2L(θ|Y )(b, b′)].

In particular, viewed as a bilinear form, the evaluation of the Fisher information for θ
at two points b and b′ in Θ is seen as the Fisher information between two continuous,
linear functionals of θ. For brevity, we denote this I(θb, θb′), where θb = ⟨θ, b⟩θ for some
b ∈ Θ. The natural isometry between Θ and its continuous dual Θ∗ then allows us to
write

I(θb, θb′) = ⟨I(θ), b⊗ b′⟩Θ⊗Θ =
⟨
I(θ), ⟨·, b⟩Θ ⊗ ⟨·, b′⟩Θ

⟩
Θ∗⊗Θ∗ . (3.3)

3.3 Fisher information for regression functions

We are now equipped to derive the Fisher information for our regression function. For
convenience, we restate the regression model and its assumptions. The regression model
relating response variables yi ∈ R and the covariates xi ∈ X , for i = 1, . . . , n is

yi = α+ f(xi) + ϵi (from 1.1)

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ

−1) (from 1.2)

where α ∈ R is an intercept and f is in an RKKS F with kernel h : X × X → R. Note
that the dependence of the kernel on parameters η is implicitly assumed.

Lemma 3.3 (Fisher information for regression function). For the regression model (1.1)
subject to (1.2) and f ∈ F where F is an RKKS with kernel h, the Fisher information
for f is given by

I(f) =
n∑

i=1

n∑
j=1

ψijh(·, xi)⊗ h(·, xj)

where ψij are the (i, j)’th entries of the precision matrix Ψ of the normally distributed
model errors. More generally, suppose that F has a feature space V such that the mapping
ϕ : X → V is its feature map, and if f(x) = ⟨ϕ(x), v⟩V , then the Fisher information
I(v) ∈ V ⊗ V for v is

I(v) =
n∑

i=1

n∑
j=1

ψijϕ(xi)⊗ ϕ(xj).
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Proof. For x ∈ X , let kx : V → R be defined by kx(v) = ⟨ϕ(x), v⟩V . Clearly, kx is linear
and continuous. Hence, the Gâteaux derivative of kx(v) in the direction u is

∂ukx(v) = lim
t→0

k(v + tu)− k(v)
t

= lim
t→0

⟨ϕ(x), v + tu⟩V − ⟨ϕ(x), v⟩V
t

= lim
t→0

⟨ϕ(x), �v + tu− �v⟩V
t

= lim
t→0

t⟨ϕ(x), u⟩V
t

= ⟨ϕ(x), u⟩V .

Since clearly ∂ukx(v) is a continuous linear operator for any u ∈ V, it is bounded, so
the Fréchet derivative exists and dkx(v) = ∂kx(v). Let y = {y1, . . . , yn}, and denote the
hyperparameters of the regression model by θ = {α,Ψ, η}. Without loss of generality,
assume α = 0, and even if this is not so, we can always add back α to the yi’s later.
Regardless, both α and y are constant in the differential of L(v|y, θ). The log-likelihood
of v is given by

L(v|y, θ) = const.− 1

2

n∑
i=1

n∑
j=1

ψij

(
yi − kxi(v)

)(
yj − kxj (v)

)
and the score by

dL(·|y, θ) = −1

2

n∑
i=1

n∑
j=1

ψij d(kxikxj − yjkxi − yikxj + yiyj)

= −1

2

n∑
i=1

n∑
j=1

ψij(kxjdkxi + kxidkxj − yjdkxi − yidkxj ).

Differentiating again gives

d2L(·|y, θ) = −1

2

n∑
i=1

n∑
j=1

ψij(dkxjdkxi + dkxidkxj )

= −
n∑

i=1

n∑
j=1

ψij dkxidkxj

= −
n∑

i=1

n∑
j=1

ψij⟨ϕ(xi), ·⟩V ⟨ϕ(xj), ·⟩V ,
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since the derivative of dkx = ⟨ϕ(x), ·⟩V is zero (it is the derivative of a constant). We
can then calculate the Fisher information to be

I(v) = −E
[
d2L(v|y, θ)

]
= E

 n∑
i=1

n∑
j=1

ψij⟨ϕ(xi), ·⟩V ⟨ϕ(xj), ·⟩V


=

n∑
i=1

n∑
j=1

ψij ⟨ϕ(xi)⊗ ϕ(xj), ·⟩V⊗V

=

n∑
i=1

n∑
j=1

ψij · ϕ(xi)⊗ ϕ(xj).

Here, we had treated ϕ(xi) ⊗ ϕ(xj) as a bilinear operator, since I(v) ∈ V ⊗ V as well.
Also, the expectation is free of the random variable under expectation (i.e. y), which
makes the second line possible.

By taking the canonical feature ϕ(x) = h(·, x), we have that ϕ ≡ h(·, x) : X → F ≡ V
and therefore for f ∈ F , the reproducing property gives us f(x) = ⟨h(·, x), f⟩F , so the
formula for I(f) ∈ F ⊗ F follows. ■

The above lemma gives the form of the Fisher information for f in a rather abstract
fashion. Consider the following example of applying Lemma 3.3 to obtain the Fisher
information for a standard linear regression model.

Example 3.1 (Fisher information for linear regression). As before, suppose model (1.1)
subject to (1.2) and f ∈ F , an RKHS. For simplicity, we assume iid errors, i.e. Ψ =

ψIn. Let X = Rp, and the feature space V = Rp be equipped with the usual dot
product ⟨·, ·⟩V : V ⊗ V → R defined by v⊤v. Consider also the identity feature map
ϕ : X → V defined by ϕ(x) = x. For some β ∈ V, the linear regression model is
such that f(x) = x⊤β = ⟨ϕ(x),β⟩V . Therefore, according to Lemma 3.3, the Fisher
information for β is

I(β) =
n∑

i=1

n∑
j=1

ψ · ϕ(xi)⊗ ϕ(xj)

= ψ

n∑
i=1

n∑
j=1

xi ⊗ xj

= ψX⊤X.

Note that the operation ‘⊗’ on two vectors in Euclidean space is simply their outer
product. The resulting X is a n× p matrix containing the entries x⊤

1 , . . . ,x⊤
n row-wise.

This is of course recognised as the Fisher information for the regression coefficients in
the standard linear regression model.
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We can also compute the Fisher information for linear functionals of f , and in par-
ticular, for point evaluation functionals of f , thereby allowing us to compute the Fisher
information at two points f(x) and f(x′).

Corollary 3.3.1 (Fisher information between two linear functionals of f). For our
regression model as defined in (1.1) subject to (1.2) and f belonging to an RKKS F with
kernel h, the Fisher information at two points f(x) and f(x′) is given by

I
(
f(x), f(x′)

)
=

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj).

Proof. In an RKKS F , the reproducing property gives f(x) = ⟨f, h(·, x)⟩F and in par-
ticular, ⟨h(·, x), h(·, x′)⟩F = h(x, x′). By (3.3), we have that

I(f)
(
h(·, x), h(·, x′)

)
=
⟨
I(f), h(·, x)⊗ h(·, x′)

⟩
F⊗F

=

⟨
n∑

i=1

n∑
j=1

ψijh(·, xi)⊗ h(·, xj) , h(·, x)⊗ h(·, x′)

⟩
F⊗F

=
n∑

i=1

n∑
j=1

ψij

⟨
h(·, xi), h(·, x)

⟩
F
⟨
h(·, xj), h(·, x′)

⟩
F

=
n∑

i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj).

The second to last line follows from the definition of the usual inner product for tensor
spaces, and the last line follows by the reproducing property. ■

An inspection of the formula in Corollary 3.3.1 reveals the fact that the Fisher in-
formation for f(x), I

(
f(x), f(x)

)
, is positive if and only if h(x, xi) ̸= 0 for at least one

i ∈ {1, . . . , n}. In practice, this condition is often satisfied for all x, so this result might
be considered both remarkable and reassuring, because it suggests we can estimate f
over its entire domain, no matter how big, even though we only have a finite amount of
data points.

3.4 The induced Fisher information RKHS

From Lemma 3.3, the formula for the Fisher information uses n points of the observed
data xi ∈ X . This seems to suggest that the Fisher information only exists for a finite
subspace of the RKKS F . Indeed, this is the case, and we will be specific about the
subspace for which there is Fisher information. Consider the following set, a similar one
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considered in the proof of the Moore-Aronszajn theorem (Theorem 2.6, p. 57):

Fn =

{
f : X → R

∣∣∣∣ f(x) = n∑
i=1

h(x, xi)wi, wi ∈ R, i = 1, . . . , n

}
. (3.4)

Since h(·, xi) ∈ F , any f ∈ Fn is also in F by linearity, and thus Fn is a subset of F .
Further, Fn is closed under addition and multiplication by a scalar, and is therefore a
subspace of F . Unlike Theorem 2.6, Fn defined here is a finite subspace of dimension n.

Let F⊥
n be the orthogonal complement of Fn in F . By the orthogonal decomposition

theorem (Theorem 2.3, p. 49), any regression function f ∈ F can be uniquely decom-
posed as f = fn + r, with fn ∈ Fn and r ∈ F⊥

n , where F = Fn ⊕ F⊥
n . We saw in the

proof of Theorem 2.6 that F is the closure of Fn, so therefore F is dense in Fn, and
hence by Corollary 2.3.1 (p. 49) we have that F⊥

n = {0}. Alternatively, we could have
argued that any r ∈ F⊥

n is orthogonal to each of the h(·, xi) ∈ F , so by the reproducing
property of h, r(xi) = ⟨r, h(·, xi)⟩F = 0. This suggests the following corollary.

Corollary 3.3.2. With g ∈ F , the Fisher information for g is zero if and only if g ∈ F⊥
n ,

i.e. if and only if g(x1) = · · · = g(xn) = 0.

Proof. Let I(f) be the Fisher information for f . The Fisher information for ⟨f, r⟩F is

I(f)(r, r) = ⟨I(f), r ⊗ r⟩F⊗F

=
n∑

i=1

n∑
j=1

ψij⟨h(·, xi), r⟩F ⟨h(·, xj), r⟩F

=
n∑

i=1

n∑
j=1

ψijr(xi)r(xj).

So if r ∈ F⊥
n , then r(x1) = · · · = r(xn) = 0, and thus the Fisher information at r ∈ F⊥

n

is zero. Conversely, if the Fisher information is zero, it must necessarily mean that
r(x1) = · · · = r(xn) = 0 since ψij > 0, and thus r ∈ F⊥

n . ■

The above corollary implies that the Fisher information for our regression function
f ∈ F exists only on the n-dimensional subspace Fn. More subtly, as there is no Fisher
information for r ∈ F⊥

n , r cannot be estimated from the data. Thus, in estimating f , we
will only ever consider the finite subspace Fn ⊂ F where there is information about f .

As it turns out, Fn can be identified as an RKHS with reproducing kernel equal to
the Fisher information for f . That is, the real, symmetric, and positive-definite function
hn over X × X defined by hn(x, x

′) = I
(
f(x), f(x′)

)
is associated to the RKHS which

is Fn, equipped with the squared norm ∥f∥2Fn
=
∑n

i,j=1wi(Ψ
−1)ijwj . This is stated in

the next lemma.
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Lemma 3.4. Let Fn as in (3.4) be equipped with the inner product

⟨f, f ′⟩Fn =
n∑

i=1

n∑
j=1

wi(Ψ
−1)ijw

′
j = w⊤Ψw′ (3.5)

for any two f =
∑n

i=1 h(·, xi)wi and f ′ =
∑n

j=1 h(·, xj)w′
j in Fn. Then, hn : X ×X → R

as defined by

hn(x, x
′) =

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj)

is the reproducing kernel of Fn.

Proof. What needs to be proven is the reproducing property of hn for Fn. First note
that by defining wj(x) =

∑n
k=1 ψjkh(x, xk), we see that

hn(x, ·) =
n∑

j=1

n∑
k=1

ψjkh(x, xj)h(·, xk) =
n∑

j=1

wj(x)h(·, xj)

Furthermore, writing h(·, xj) =
∑n

k=1 δjkh(·, xk), with δ being the Kronecker delta, we
see that h(·, xj) is also an element of Fn, and in particular,

⟨
h(·, xi), h(·, xk)

⟩
Fn

=

n∑
j=1

n∑
l=1

δij(Ψ
−1)jlδlk = (Ψ−1)ik.

Denote by ψ−
ij the (i, j)’th element of Ψ−1. A fact we will use later is

∑n
k=1 ψjkψ

−
ik =

(ΨΨ−1)ji = (In)ji = δji. In the mean time,

⟨f, hn(x, ·)⟩Fn =

⟨
n∑

i=1

h(·, xi)wi,

n∑
j=1

n∑
k=1

ψjkh(x, xj)h(·, xk)

⟩
Fn

=
n∑

i=1

wi

n∑
j=1

n∑
k=1

ψjkh(x, xj)
⟨
h(·, xi), h(·, xk)

⟩
Fn

=

n∑
i=1

wi

n∑
j=1

n∑
k=1

ψjkh(x, xj)ψ
−
ik

=

n∑
i=1

wi

n∑
j=1

δjih(x, xj)

=
n∑

i=1

wih(x, xi)

= f(x).

Therefore, hn is a reproducing kernel for Fn. Obviously, hn is positive definite (it is a
squared kernel), and hence it defines the RKHS Fn. ■
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3.5 The I-prior

In the introductory chapter (Chapter 1), we discussed that unless the regression function
f is regularised (for instance, using some prior information), the ML estimator of f is
likely to be inadequate. In choosing a prior distribution for f , we appeal to the principle
of maximum entropy (Jaynes, 1957a, 1957b, 2003), which states that the probability
distribution which best represents the current state of knowledge is the one with largest
entropy. In this section, we aim to show the relationship between the Fisher information
for f and its maximum entropy prior distribution. Before doing this, we recall the
definition of entropy and derive the maximum entropy prior distribution for a parameter
which has unrestricted support. Let (Θ, D) be a metric space and let ν = νD be a volume
measure induced by D (e.g. Hausdorff measure). In addition, assume ν is a probability
measure over Θ so that (Θ,B(Θ), ν) is a Borel probability space.

Definition 3.5 (Entropy). Denote by p a probability density over Θ relative to ν. Sup-
pose that

∫
p log pdν < ∞, i.e. p log p is Lebesgue integrable and belongs to the space

L1(Θ, ν). The entropy of a distribution p over Θ relative to a measure ν is defined as

H(p) = −
∫
Θ
p(θ) log p(θ)dν(θ). (3.6)

In deriving the maximum entropy distribution, we will need to maximise the func-
tional H with respect to p. Typically, this is done using calculus of variations techniques,
and standard calculations (Appendix A, p. 269) reveal that the functional derivative of
H(p) with respect to p, denoted ∂H/∂p, is equal to −1− log p. We now present another
well known result from information theory, regarding the form of the maximum entropy
distribution.

Lemma 3.5 (Maximum entropy distribution). Let (Θ, D) be a metric space, ν = νD

be a volume measure induced by D, and p be a probability density function on Θ. The
entropy maximising density p̃, which satisfies

arg max
p∈L2(Θ,ν)

{
H(p) = −

∫
Θ
p(θ) log p(θ)dν(θ)

}
,

subject to the constraints

E
[
D(θ, θ0)

2
]
=

∫
Θ
D(θ, θ0)

2p(θ)dν(θ) = const.,
∫
Θ
p(θ)dν(θ) = 1,

and p(θ) ≥ 0, ∀θ ∈ Θ,

is the density given by
p̃(θ) ∝ exp

(
−1

2
D(θ, θ0)

2

)
,

Fisher information and the I-prior96



for some fixed θ0 ∈ Θ. If (Θ, D) is a Euclidean space and ν a flat (Lebesgue) measure
then p̃ represents a (multivariate) normal density.

Sketch proof. This follows from standard calculus of variations, though we provide a
sketch proof here. Set up the Langrangian

L(p, γ1, γ2) = −
∫
Θ
p(θ) log p(θ)dν(θ) + γ1

(∫
Θ
D(θ, θ0)

2p(θ)dν(θ)− const.
)

+ γ2

(∫
Θ
p(θ)dν(θ)− 1

)
.

Taking derivatives with respect to p (see Appendix A, p. 269 for definition of functional
derivatives) yields

∂

∂p
L(p, γ1, γ2)(θ) = −1− log p(θ) + γ1D(θ, θ0)

2 + γ2.

Set this to zero, and solve for p(θ):

p(θ) = exp
(
γ1D(θ, θ0)

2 + γ2 − 1
)

∝ exp
(
γ1D(θ, θ0)

2
)
.

This density is positive for any values of γ1 (and γ2), and it normalises to one if γ1 < 0.
As γ1 can take any value less than zero, we choose γ1 = −1/2.

Now, if Θ ≡ Rm and ν is the Lebesgue measure, then D(θ, θ0)
2 = ∥θ − θ0∥2Rm , so

p̃ is recognised as a multivariate normal density centred at θ0 with identity covariance
matrix. ■

Returning to the normal regression model of (1.1) subject to (1.2), we shall now
derive the maximum entropy prior for f in some RKKS F . One issue that we have is
that the set F is potentially “too big” for the purpose of estimating f , that is, for certain
pairs of functions F , the data do not allow an assessment of whether one is closer to the
truth than the other. In particular, the data do not contain information to distinguish
between two functions f and g in F for which f(xi) = g(xi), i = 1, . . . , n since the
Fisher information for the difference between f and g would be zero. Since the Fisher
information for a linear functional of a non-zero fn ∈ Fn is non-zero, there is information
to allow a comparison between any pair of functions in f0 + Fn := {f0 + fn | fn ∈ Fn}
for some f0 ∈ F . A prior for f therefore need not have support F , instead it is sufficient
to consider priors with support f0 + Fn, where f0 ∈ F is fixed and chosen a priori as a
“best guess” of f . We now state and prove the main I-prior theorem.
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Theorem 3.6 (I-prior). Let F be an RKKS with kernel h, and consider the finite-
dimensional subspace Fn of F equipped with an inner product as per (3.5). Let ν be a
volume measure induced by the norm ∥·∥Fn =

√
⟨·, ·⟩Fn. With f0 ∈ F , let D0 be the class

of distributions p such that

E
(
∥f − f0∥2Fn

)
=

∫
Fn

∥f − f0∥2Fn
p(f)dν(f) = const.

Denote by p̃ the density of the entropy maximising distribution among the class of
distributions within D0. Then, p̃ is Gaussian over F with mean f0 and covariance
function equal to the reproducing kernel of Fn, i.e.

Cov
(
f(x), f(x′)

)
= hn(x, x

′).

We call p̃ the I-prior for f .

Proof. Recall the fact that any f ∈ F can be decomposed into f = fn+ r, with fn ∈ Fn

and r ∈ F⊥
n . Also recall that there is no Fisher information about any r ∈ Rn, and

therefore it is not possible to estimate r from the data. Therefore, p(r) = 0, and one
needs only consider distributions over Fn when building distributions over F .

The norm on Fn induces the metric D(f, f ′) = ∥f − f ′∥Fn . Consider functions in the
set f0 + Fn, i.e. functions of the form

f = f0 +

n∑
i=1

h(·, xi)wi,

such that (f − f0) ∈ Fn. Compute the squared distance between f and f0:

D(f, f0)
2 = ∥f − f0∥2Fn

=

∥∥∥∥∥
n∑

i=1

h(·, xi)wi

∥∥∥∥∥
2

Fn

= w⊤Ψ−1w.

Thus, by Lemma 3.5, the maximum entropy distribution for f − f0 =
∑n

i=1 h(·, xi)wi is

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ).

This implies that f is Gaussian, since

⟨f, f ′⟩F =

⟨
f0 +

n∑
i=1

h(·, xi)wi , f
′

⟩
F

= ⟨f0, f ′⟩F +
n∑

i=1

wi

⟨
h(·, xi), f ′

⟩
F
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is a sum of normal random variables, and therefore ⟨f, f ′⟩F is normally distributed for
any f ′ ∈ F . The mean µ ∈ F of this random vector f satisfies E⟨f, f ′⟩F = ⟨µ, f ′⟩F for
all f ′ ∈ Fn, but

E⟨f, f ′⟩F = ⟨f0, f ′⟩F + E
[

n∑
i=1

wi

⟨
h(·, xi), f ′

⟩
F

]

= ⟨f0, f ′⟩F +
n∑

i=1

���*
0

Ewi

⟨
h(·, xi), f ′

⟩
F

= ⟨f0, f ′⟩F ,

so µ ≡ f0.

Following Definition 2.16 (p. 52), the covariance between two evaluation functionals
of f is shown to satisfy

Cov
(
f(x), f(x′)

)
= Cov

(
⟨f, h(·, x)⟩F , ⟨f, h(·, x′)⟩F

)
= E

[
⟨f − f0, h(·, x)⟩F ⟨f − f0, h(·, x′)⟩F

]
.

Then, making use of the reproducing property of h for F , we have that

Cov
(
f(x), f(x′)

)
= E

⟨ n∑
i=1

h(·, xi)wi, h(·, x)

⟩
F

⟨
n∑

j=1

h(·, xj)wj , h(·, x′)

⟩
F


= E

 n∑
i=1

n∑
j=1

wiwj ⟨h(·, x), h(·, xi)⟩F
⟨
h(·, x′), h(·, xj)

⟩
F


=

n∑
i=1

n∑
j=1

ψijh(x, xi)h(x
′, xj),

which is the reproducing kernel for Fn. ■

In closing, we reiterate the fact that the I-prior for f in the normal regression model
subject to f belonging to some RKKS F with kernel hη has the simple representation

f(xi) = f0(xi) +

n∑
k=1

hη(xi, xk)wk

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ).

(3.7)

Equivalently, this may be written as a Gaussian process-like prior

(
f(x1), . . . , f(xn)

)⊤ ∼ N(f0,HηΨHη), (3.8)

where f0 =
(
f0(x1), . . . , f0(xn)

)⊤ is the vector of prior mean functional evaluations, and
Hη =

(
hη(xi, xj)

)n
i,j=1

is the kernel matrix.
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3.6 Conclusion

In estimating the regression function f of the normal model in (1.1) subject to (1.2) and f
belonging to an RKKS F , we established that the entropy maximising prior distribution
for f is Gaussian with some chosen prior mean f0, and covariance function proportional6

to the Fisher information for f . We call this the I-prior for f .

The concept of Fisher information for a regression function f is brought about by
viewing the regression model (1.1) subject to (1.2) as being parameterised by f . One
caveat is that the dimension of the function space F to which f belongs is potentially
infinite-dimensional, in which case the tools such as Fréchet and Gâteaux differentials
are necessary in order to calculate first and second derivatives.

On a related note, should F be infinite dimensional, the task of estimating f ∈
F relies only on a finite amount of data points. However, we are certain that the
Fisher information for f exists only for the finite subspace Fn as defined in (3.4), and
it is zero everywhere else. This suggests that the data only allows us to provide an
estimation to the function f ∈ F by considering functions in an (at most) n-dimensional
subspace instead. In other words, it would be futile to consider functions in a space
larger than this, and hence there is an element of dimension reduction here, especially
when dim(F)≫ n.

By equipping the subspace Fn with the inner product (3.5), Fn is revealed to be an
RKHS with reproducing kernel equal to the Fisher information for f . Importantly, since
Fn as in (3.4) is the pre-Hilbert space whose completion as n → ∞ is F , functions in
the subspace Fn contain “similarly shaped” functions as in the parent space F . The
problem at hand then boils down to a Gaussian process regression using the kernel of
the RKHS Fn, which is the Fisher information for f .

6Proportionality, rather than equality, is a consequence of any RKHS scale parameters that F may
have.
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Chapter 4

Modelling with I-priors

In the previous chapter, we defined an I-prior for the normal regression model (1.1)
subject to (1.2) and f belonging to a reproducing kernel Hilbert or Kreĭn space (RKHS/
RKKS) of functions F , as a Gaussian distribution on f with covariance function pro-
portional to the Fisher information for f . We also saw how new function spaces can be
constructed via the polynomial and ANOVA RKKSs. In this chapter, we shall describe
various regression models, and identify the regression function in each of these models
as belonging to an appropriate RKKS, so that an I-prior may be defined.

Methods for estimating I-prior models are described in Section 4.2. Estimation here
refers to obtaining the posterior distribution of the regression function under an I-prior,
while optimising the kernel parameters of F and the error precision Ψ. Likelihood based
methods, namely direct optimisation of the likelihood and the expectation-maximisation
(EM) algorithm, are the preferred estimation methods of choice. Having said this, it is
also possible to estimate I-prior models under a full Bayesian paradigm by employing
Markov chain Monte Carlo (MCMC) methods to sample from the relevant posterior
densities. Once estimation is completed, post-estimation procedures such as inference
and prediction for a new data point can be done. This is described in Section 4.4.

Careful considerations of the computational aspects are required to ensure efficient
estimation of I-prior models, and these are discussed in Section 4.3. The culmination
of the computational work on I-prior estimation is the iprior package (Jamil, 2017),
which is a publicly available R package that has been published to the Comprehensive
R Archive Network (CRAN).

Finally, several examples of I-prior modelling are presented in Section 4.5, in partic-
ular, a multilevel data set, a longitudinal data set, and a data set involving a functional
covariate, are analysed using the I-prior methodology. Code for replication is available
at http://myphdcode.haziqj.ml.
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4.1 Various regression models

In the introductory chapter (Section 1.1, p. 34), we described several interesting regres-
sion models. The goal of this section is to formulate the I-prior model that describes each
of these regression problems. This is done by thoughtfully choosing the RKHS/RKKS F
of real functions over a set X to which the regression function f belongs. Without loss
of generality and for simplicity, assume a prior mean of zero for the I-prior distribution.

4.1.1 Multiple linear regression

Let X ≡ Rp be equipped with the regular Euclidean dot product, and Fλ be the scaled
canonical RKHS of functions over X with kernel hλ(x,x′) = λx⊤x′, for any two x,x′ ∈
Rp. Then, an I-prior on f implies that

f(xi) =
n∑

j=1

λx⊤
i xjwj

=
n∑

j=1

λ

(
p∑

k=1

xikxjk

)
wj

= β1xi1 + · · ·+ βpxip,

where each βk := λ
∑n

j=1 xjkwj . This implies a multivariate normal prior distribution
for the regression coefficients

β := (β1, . . . , βp) ∼ Np(0, λ2X⊤ΨX), (4.1)

where X is the n × p design matrix for the covariates, excluding the column of ones at
the beginning typically reserved for the intercept. As expected, the covariance matrix
for β is recognised as the scaled Fisher information matrix for the regression coefficients.

If the covariates are not measured similarly, e.g. weights in kilograms, heights in
metres, etc., then it makes sense to introduce multiple scale parameters λk to account
for the differences in scale. One could decompose the regression function into

f(xi) = f1(xi1) + · · ·+ fp(xip)

for which f ∈ Fλ ≡ Fλ1 ⊕ · · · ⊕Fλp , and Fλk
, k = 1, . . . , p are unidimensional canonical

RKHSs with kernels hλk
(xik, xjk) = λkxikxjk. In effect, we now have p scale parameters,

one for each of the RKHSs associated with the p covariates. The RKKS Fλ therefore
has kernel

h(xi,xj) =

p∑
k=1

λkxikxjk,
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and hence each regression coefficient can now be written as βk =
∑n

j=1 λkxjkwj , for
which we see the λk’s scaling role on the xjk’s. Thus, the corresponding I-prior for β is

β ∼ Np(0,X⊤ΛΨΛX),

with Λ = diag(λ1, . . . , λp). Note that Fλ can be seen as a special case of the ANOVA
RKKS, in which only the main effects are considered. Thusly, the centred canonical
RKHSs containing zero-mean functions should be considered instead, in order to satisfy
the functional ANOVA decomposition (see Definition 2.35, p. 78 and Definition 2.36,
p. 79). This approach is disadvantageous when p is large, in which case there would be
numerous scale parameters to estimate.

Remark 4.1. Of course, one could simply turn to standardisation of the X variables,
so as to make the variables measure on the same scale. We feel this is a rather ad-
hoc approach which creates meaningless units (they are standard deviations) for the
covariates which are then fiddly to interpret. Small sample bias and non-normality are
also valid concerns when scaling data. On the other hand, there is a balance to be
made between elegance and feasibility. With large p, standardising is much simpler
and computationally less burdensome than estimating p individual scale parameters. In
Chapter 6, where we tackle the problem of Bayesian variable selection using I-priors in
linear models, standardisation of the variables is done for the sake of streamlining the
Gibbs sampler.

Remark 4.2. The I-prior for β in (4.1) bears resemblance to the g-prior (Zellner, 1986),
and in fact, the g-prior can be interpreted as an I-prior if the inner product of X is the
Mahalonobis inner product. See Appendix E (p. 291) for a discussion.

4.1.2 Multilevel linear modelling

Let X ≡ Rp, and suppose that alongside the covariates, there is information on group
levels M = {1, . . . ,m} for each unit i. That is, every observation for unit i is known to
belong to a specific group j, and we write x(j)

i to indicate this. Let nj denote the sample
size for cluster j, and the overall sample size be n =

∑m
j=1 nj . When modelled linearly

with the responses y(j)i , the model is known as a multilevel (linear) model, although
it is known by many other names: random-effects models, random coefficient models,
hierarchical models, and so on. As this model is seen as an extension of linear models,
application is plentiful, especially in research designs for which the data varies at more
than one level.

Consider a functional ANOVA decomposition of the regression function as follows:

f(x(j)
i , j) = α+ f1(x(j)

i ) + f2(j) + f12(x(j)
i , j). (4.2)
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To mimic the standard linear multilevel model, assume f1 ∈ F1 the Pearson RKHS,
f2 ∈ F2 the centred canonical RKHS, and f12 ∈ F12 = F1 ⊗ F2, the tensor product
space of F1 and F2. As we know, α is the overall intercept, and the varying intercepts
are given by the function f2. While f1 is the (main) linear effect of the covariates, f12
provides the varying linear effect of the covariates by each group. The I-prior for f − α
is assumed to lie in the function space F − α, which is an ANOVA RKKS with kernel

hλ
(
(x(j)

i , j), (x(j′)
i , j′)

)
= λ1h1(x(j)

i ,x(j′)
i′ ) + λ2h2(j, j

′) + λ1λ2h1(x(j)
i ,x(j′)

i′ )h2(j, j
′),

with h1 the centred canonical kernel and h2 the Pearson kernel. The reason for not
including an RKHS of constant functions in F is because the overall intercept is usually
simpler to estimate as an external parameter (see Section 4.2.1).

We can show that the regression function (4.2) corresponds to the standard way of
writing the multilevel model,

f(x(j)
i , j) = β0 + x(j)⊤

i β1 + β0j + x(j)⊤
i β1j . (4.3)

and determine the prior distributions on (β0j ,β
⊤
1j)

⊤ ∈ Rp+1. For the interested reader,
the details are in Appendix F.1 (p. 293). The standard multilevel random effects
assumption is that (β0j ,β

⊤
1j)

⊤ is normally distributed with mean zero and covariance
matrix Φ. In total, there are p+1 regression coefficients and (p+1)(p+2)/2 covariance
parameters in Φ to be estimated. In contrast, the I-prior model is parameterised by
only two RKKS scale parameters—one for F1 and one for F2—and the error precision
Ψ, which is usually proportional to the identity matrix. While the estimation procedure
for Φ in the standard multilevel model can result in non-positive covariance matrices, the
I-prior model has the advantage that positive definiteness is taken care of automatically1.

As a remark, the following regression functions are nested

• f(x(j)
i , j) = α+ f1(x(j)

i ) + f2(j) (random intercept model);

• f(x(j)
i , j) = α+ f1(x(j)

i ) (linear regression model);

• f(x(j)
i , j) = α+ f2(j) (ANOVA model);

• f(x(j)
i , j) = α (intercept only model),

and thus one may compare likelihoods to ascertain the best fitting model. In addition,
one may add flexibility to the model in two possible ways:

1. More than two levels. The model can be easily adjusted to reflect the fact that
that the data is structured in a hierarchy containing three or more levels. For the

1By virtue of the estimate of the regression function belonging to Fn, an RKHS with a positive
definite kernel equal to the Fisher information for f . The first example in Section 4.5 is an instance of
such cases.
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three level case, let the indices j ∈ {1, . . . ,m1} and k ∈ {1, . . . ,m2} denote the
two levels, and simply decompose the regression function accordingly:

f(x(j,k)
i , j, k) = α+ f1(x(j,k)

i ) + f2(j) + f3(k) + f12(x(j,k)
i , j) + f13(x(j,k)

i , k)

+ f23(j, k) + f123(x(j,k)
i , j, k).

2. Covariates not varying with levels. Suppose now we would like to add covari-
ates with a fixed effect to the model, i.e. covariates z(j)i which are not assumed to
affect the responses differently in each group. The regression function would be:

f(x(j)
i , j, zj) = α+ f1(x(j)

i ) + f2(j) + f3(z(j)i ) + f12(x(j)
i , j).

This can be seen as a limited functional ANOVA decomposition of f .

4.1.3 Longitudinal modelling

Longitudinal or panel data observes covariate measurements xi ∈ X and responses yi(t) ∈
R for individuals i = 1, . . . , n across a time period t ∈ {1, . . . , T} =: T . Often, the time
indexing set T may be unique to each individual i, so measurements for unit i happens
across a time period {ti1, . . . , tiTi} =: Ti—this is known as an unbalanced panel. It is
also possible that covariate measurements vary across time too, so appropriately they
are denoted xi(t). For example, xi(t) could be repeated measurements of the variable
xi at time point t ∈ Ti. The relationship between the response variables yi(t) at time
t ∈ Ti is captured through the equation

yi(t) = f
(
i, xi, t

)
+ ϵi(t)

where the distribution of ϵi =
(
ϵi(ti1), . . . , ϵi(tiTi)

)⊤ is Gaussian with mean zero and co-
variance matrix Ψi. Assuming Ψi = ψiITi or even Ψi = ψITi are perfectly valid choices,
even though this seemingly ignores any time dependence between the observations. In
reality, the I-prior induces time dependence of the observations via the kernels in the
prior covariance matrix for f . Additionally, the random vectors ϵi and ϵi′ are assumed
to be independent for any two distinct i, i′ ∈ {1, . . . , n}.

Motivated by a functional ANOVA decomposition, we obtain

f(i, xi, t) = α+ f1(i) + f2(xi) + f3(t) + f13(i, t) + f23(xi, t) + f12(i, xi)

+ f123(i, xi, t)
(4.4)

where α is an overall constant, and each of the ANOVA component functions belongs
to the appropriate (tensor product) space as described in Section 2.5.3 (p. 74). F1
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is the Pearson RKHS, but choices for F2 and F3 are plentiful. In fact, any of the
RKHS/RKKS described in Chapter 3 can be used to either model a linear dependence
(canonical RKHS), nominal dependence (Pearson RKHS), polynomial dependence (poly-
nomial RKKS) or smooth dependence (fBm or SE RKHS) on the xi’s and t’s on f .

4.1.4 Classification

We describe a naïve classification model using I-priors. Here, the responses are categor-
ical yi ∈ {1, . . . ,m} =:M, and additionally, write yi· = (yi1, . . . , yim)⊤ where the class
responses yij equal one if individual i’s response category is yi = j, and zero otherwise.
In other words, there is exactly a single ‘1’ at the j’th position in the vector yi·, and
zeroes everywhere else. For j = 1, . . . ,m, we model

yij = α+

f(xi,j)︷ ︸︸ ︷
αj + fj(xi) + ϵij

(ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1).

(4.5)

The idea here is to model the class responses yij using class-specific regression functions,
in which class responses are assumed to be independent among individuals, but may or
may not be correlated among classes for each individual. The class correlations manifest
themselves in the variance of the errors Ψ−1, which is an m×m matrix.

Denote the regression function f in (4.5) on the set X ×M as f(xi, j) = αj + fj(xi).
This regression function corresponds to an ANOVA decomposition of the spaces FM

and FX of functions over M and X respectively. That is, F = FM ⊕ (FM ⊗ FX ) is a
decomposition into the main effects of class, and an interaction effect of the covariates
for each class. Let FM and FX be RKHSs respectively with kernels a :M×M → R
and bη : X × X → R. Then, the ANOVA RKKS F possesses the reproducing kernel
hη : (X ×M)2 → R as defined by

hη
(
(x, j), (x′, j′)

)
= a(j, j′) + a(j, j′)bη(x, x

′), (4.6)

which leaves the α to be estimated separately (see Section 4.2.1). The kernel bη may be
any of the kernels described in this thesis, ranging from the linear kernel, to the fBm
kernel, or even an ANOVA kernel. Choices for a :M×M→ R include

1. The Pearson kernel (as defined in Definition 2.33, p. 69). With J ∼ P, a
probability measure over M,

a(j, j′) =
δjj′

P(J = j)
− 1.
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2. The centred identity kernel. With δ denoting the Kronecker delta function,

a(j, j′) = δjj′ − 1/m.

The purpose of either of these kernels is to contribute to the class intercepts αj , and to
associate a regression function in each class. The only difference between the two is the
inverse probability weighting per class that is applied in the Pearson kernel, but not in
the identity kernel.

With f ∈ F (the RKKS with kernel hη), it is straightforward to assign an I-prior on
f . It is in fact

f(xi, j) =
m∑

j′=1

n∑
i′=1

a(j, j′)
(
1 + bη(xi, xi′)

)
wi′j′

(wi′1, . . . , wi′m)⊤
iid∼ Nm(0,Ψ)

(4.7)

assuming a zero prior mean f0(x, j) = 0. The model then classifies the i’th data point
to class j if ŷij = max(ŷi1, . . . , ŷim), where ŷik = α̂+ f̂(xi, k), the prediction for the k’th
component of yi.

There are several drawbacks to using the model described above. Unlike in the case
of continuous response variables, the normal I-prior model is highly inappropriate for
categorical responses. For one, it violates the normality and homoscedasticity assump-
tions of the errors. For another, predicted values may be out of the range [0,m] and thus
poorly calibrated. Furthermore, it would be more suitable if the class probabilities—
the probability of an observation belonging to a particular class—were also part of the
model. In Chapter 5, we propose an improvement to this naïve I-prior classification
model by considering a probit-like transformation of the regression functions.

4.1.5 Smoothing models

Single- and multi-variable smoothing models can be fitted under the I-prior methodology
using the fBm RKHS. In standard kernel based smoothing methods, the squared expo-
nential kernel is often used, and the corresponding RKHS contains analytic functions.
There are several attractive properties of using the fBm RKHS, and for one-dimensional
smoothing, which are discussed below.

Assume that, up to a constant, the regression function lies in the scaled, centred
fBm RKHS F of functions over X ≡ R with Hurst index 1/2. Additionally, assume
independent and identical (iid) error precisions, i.e. Ψ = ψIn. Thus, with a centring
with respect to the empirical distribution Pn of {x1, . . . , xn} and using the absolute norm
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on R, F has kernel

hλ(x, x
′) =

λ

2n2

n∑
i=1

n∑
j=1

(
|x− xi|+ |x′ − xj | − |x− x′| − |xi − xj |

)
.

As proven by van der Vaart and van Zanten (2008, Sec. 10), F contains absolutely
continuous functions possessing a square integrable weak derivative satisfying f(0) = 0.
The norm is given by ∥f∥2F =

∫
ḟ2 dx. The posterior mean of f based on an I-prior is

then a (one-dimensional) smoother for the data. For f of the form f =
∑n

i=1 h(·, xi)wi,
i.e. f ∈ Fn, the finite subspace of F as in Section 3.4 (p. 93), then Bergsma (2018)
shows that f can be represented as

f(x) =

∫ x

−∞
β(t)dt (4.8)

where

β(t) =
∑

i∈{k|xk≤t}

wi =
f(xit+1)− f(xit)

xit+1 − xit
(4.9)

with it = maxxi≤t i. Under the I-prior with an iid assumption on the errors, the wi’s are
zero-meaned normal random variables with variance ψ, so that β as defined above is an
ordinary Brownian bridge with respect to the empirical distribution Pn. The I-prior for
f is piecewise linear with knots at x1, . . . , xn, and the same holds true for the posterior
mean. The implication is that the I-prior automatically adapts to irregularly spaced xi:
in any region where there are no observations, the resulting smoother is linear. This is
explained by the reduced Fisher information about the derivative of the regression curve
in regions with no observation.

In Bergsma (2018), it is shown that the covariance function for β is

Cov
(
β(x), β(x′)

)
= n

(
min{Pn(X < x),Pn(Xn < x′)} − Pn(X < x)Pn(Xn < x′)

)
From this, notice that Var

(
β(x)

)
= Pn(Xn < x)

(
1 − Pn(Xn < x)

)
, which shows an

automatic boundary correction: close to the boundary there is little Fisher information
on the derivative of the regression function β(x), so the prior variance is small. This
will lead to more shrinkage of the posterior derivative of f towards the derivative of the
prior mean f0.

Another advantage of the I-prior methodology is the ability to fit single or multi-
dimensional smoothing models with just two parameters to be estimated: the RKHS
scale parameter λ and the error precision ψ. The Hurst parameter γ ∈ (0, 1) of the
fBm RKHS can also be treated as a free parameter for added flexibility, but for most
practical applications, we find that the default setting of γ = 1/2 performs sufficiently
well.
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Remark 4.3. From (4.8), the prior process for f is thus an integrated Brownian bridge.
This shows a close relation with cubic spline smoothers, which can be interpreted as the
posterior mean when the prior is an integrated Wiener process (Wahba, 1990). Unlike
I-priors however, cubic spline smoothers do not have automatic boundary corrections,
and typically the additional assumption is made that the smoothing curve is linear at
the boundary knots.

4.1.6 Regression with functional covariates

Suppose that we have functional covariates x in the real domain, and that X is a set
of differentiable functions. If so, it is reasonable to assume that X is a Hilbert-Sobolev
space with inner product

⟨x, x′⟩X =

∫
ẋ(t)ẋ′(t)dt, (4.10)

so that we may apply the linear, fBm or any other kernels which make use of inner
products by making use of the polarisation identity. Furthermore, let z ∈ RT be the
discretised realisation of the function x ∈ X at regular intervals t = 1, . . . , T . Then

⟨x, x′⟩X ≈
T−1∑
t=1

(zt+1 − zt)(z′t+1 − z′t). (4.11)

For discretised observations at non-regular intervals {t1, . . . , tT } then a more general
formula to the above one might be used, for instance,

⟨x, x′⟩X ≈
T−1∑
i=1

(zti+1 − zti)(z′ti+1
− z′ti)

ti+1 − ti
. (4.12)

4.2 Estimation

After selecting an RKHS/RKKS F of functions over X suitable for the regression prob-
lem at hand, one then proceeds to estimate the posterior distribution of the regression
function. The I-prior model (1.1) subject to (1.2) and f ∈ F has the simple and conve-
nient representation

yi = α+

f(xi)︷ ︸︸ ︷
f0(xi) +

n∑
k=1

hη(xi, xk)wk + ϵi

(ϵ1, . . . , ϵn)
⊤ ∼ Nn(0,Ψ−1)

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ),

(4.13)
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where f0 : X → R is a function chosen a priori representing the “best guess” of f , and
the dependence of the kernel of F on parameters η is emphasised through the subscript
in hη : X × X → R.

The parameters of the I-prior model are collectively denoted by θ = {α, η,Ψ}. Given
θ and a prior choice for f0, the posterior regression function is determined solely by the
posterior distribution of the wi’s. Using standard multivariate normal results, one finds
that the posterior distribution for w := (w1, . . . , wn)

⊤ is w|y ∼ Nn(w̃, Ṽw), where

w̃ = ΨHηV−1
y (y− α1n − f0) and Ṽw =

(
HηΨHη +Ψ−1

)−1
= V−1

y , (4.14)

using the familiar notation that we introduced in Section 1.4. For a derivation, see
Appendix G.1 (p. 299). By linearity, the posterior distribution for f is also normal.

In each modelling scenario, there are a number of kernel parameters η that need to
be estimated from the data. Assuming that the covariate space is X = X1 × · · · × Xp,
and there is an ANOVA-like decomposition of the function space F into its constituents
spaces F1, . . . ,Fp, then at the very least, there are p scale parameters λ1, . . . , λp for each
of the RKHSs. Depending on the RKHS used, there could be more kernel parameters
that need to be optimised, for instance, the Hurst index for the fBm RKHS, the length-
scale for the SE RKHS, and/or the offset for the polynomial RKKS. However, these may
be treated as fixed parameters as well.

The following subsections describe possible estimation procedures for the hyperpa-
rameters of the model. Henceforth, for simplicity, the following additional standing
assumptions are imposed on the I-prior model (4.13):

A1 Centred responses. Set α = 0 and replace the responses by their centred versions
yi 7→ ỹi = yi − 1

n

∑n
i=1.

A2 Zero prior mean. Assume a zero prior mean f0(x) = 0 for all x ∈ X .

A3 Iid errors. Assume identical and independent error random variables, i.e. Ψ =

ψIn.

Assumptions A1 and A2 are motivated by the discussion in Section 4.2.1. Although
assumption A3 is not strictly necessary, it is often a reasonable one and one that simplifies
the estimation procedure greatly.

4.2.1 The intercept and the prior mean

In most statistical models, an intercept is a necessary inclusion which aids interpretation.
In the context of the I-prior model (4.13), a lack of an intercept would fail to account
for the correct locational shift of the regression function along the y-axis. Further, when
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zero-mean functions are considered, the intercept serves as being the “grand mean” value
of the responses.

The handling of an intercept to the regression model may be viewed in one of two
ways. The first is to view it as a function belonging to the RKHS of constant functions
F∅, and thereby tensor summing this space to F . The second is to simply treat the
intercept as a parameter of the model to be estimated. In the polynomial and ANOVA
RKKSs, we saw that an intercept is naturally induced by the inclusion of an RKHS
of constant functions in their construction. In any of the other RKHSs described in
Chapter 2, an intercept would need to be added separately. These two methods convey
slightly different interpretations of the intercept: in the first method, the intercept is
shrunk by an I-prior, while in the second, it is not. Estimation is also entirely different
for the two methods.

In the first method, the intercept-less RKHS/RKKS F with kernel h is made to
include an intercept by modifying the kernel to be 1 + h. The intercept will then be
implicitly taken care of without having dealt with it explicitly. However, it can be
obtained by realising that for α ∈ F∅ the RKHS of constant functions, then α =

∑n
i=1wi.

On the other hand, consider the intercept as a parameter α to be estimated. Ob-
taining an estimate α using a likelihood-based argument is rather simple. From (4.13),
E yi = α+f0(xi) for all i = 1, . . . , n, so the maximum likelihood (ML) estimate for E y is
its sample mean ȳ = 1

n

∑
i=1 yi, and hence the ML estimate for α is α̂ = ȳ− 1

n

∑n
i=1 f0(xi).

Thus, assumption A1 therefore implies that the ML estimate for the intercept is the sam-
ple mean of the responses (assuming A2 holds).

4.2.2 Direct optimisation

Under assumptions A1–A3, a direct optimisation of the parameters θ = {η,Ψ = ψIn}
using the log-likelihood of θ is straightforward to implement. Denote Σθ := ψH2

η +

ψ−1In = Vy. From (4.13), the marginal log-likelihood of θ is given by

L(θ) = log
∫
p(y|w, θ)p(w|θ)dw

= −n
2

log 2π − 1

2
log |Σθ| −

1

2
ỹ⊤Σ−1

θ ỹ, (4.15)

which is the log-likelihood of a zero-meaned multivariate normal distribution with covari-
ance matrix Σθ. This closed-form expression of the integral (4.15) stems from the fact
that the (conditional) likelihood and the I-prior are both Gaussian. Note that the term
‘marginal’ refers to the fact that we are averaging out the random function represented
by w.
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For Gaussian process regression (GPR), direct optimisation is typically done using
the conjugate gradients method in conjunction with a Cholesky decomposition on the
covariance kernel to maintain stability (Rasmussen and Williams, 2006). We opt for a
quasi-Newton algorithm (L-BFGS algorithm, Nocedal and Wright, 2006) with an eigen-
decomposition of the kernel matrix Hη = V diag(u1, . . . , un)V⊤ instead. This procedure
is relatively robust to numerical instabilities and is better at ensuring positive definite-
ness of the covariance kernel. Since Hη is a symmetric matrix, we have that VV⊤ = In,
and thus

Vy = ψV diag(u21, . . . , u2n)V⊤ + ψ−1VV⊤

= V diag(ψu21 + ψ−1, . . . , ψu2n + ψ−1)V⊤

for which the inverse and log-determinant is easily obtainable. To be explicit, the log-
likelihood is given by

L(θ) = − n

2
log 2π − 1

2

n∑
i=1

log(ψu2i + ψ−1)

− 1

2
ỹ⊤V diag

(
1

ψu21 + ψ−1
, . . . ,

1

ψu2n + ψ−1

)
V⊤ỹ.

(4.16)

The direct optimisation method can be prone to local optima, in which case repeating
the optimisation at different starting points and choosing the one which yields the highest
likelihood is one way around this. On a practical note, parameters are best transformed
so that optimisation of these parameters are done on an unrestricted scale (e.g. logψ).

Figure 4.1: A typical log-likelihood surface plot of I-prior models, in which there are two
ridges. The maximum occurs along one of the two ridges, or sometimes near or at the
intersection. Clearly, different initialisations can lead optimisation algorithms to either
ridge and possibly converge to a local optima.
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Let U be the Fisher information matrix for θ∈Rq. Standard calculations (Lemma C.2,
p. 276) show that under the marginal distribution ỹ ∼ Nn

(
0,Σθ

)
, the (i, j)’th coordi-

nate of U is
uij =

1

2
tr
(
Σ−1

θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj

)
, i, j = 1, . . . , q, (4.17)

where the derivative of a matrix with respect to a scalar is the element-wise derivative of
the matrix. With θ̂ denoting the ML estimate for θ, under suitable conditions,

√
n(θ̂ −

θ) has an asymptotic multivariate normal distribution with mean zero and covariance
matrix U−1 (Casella and R. L. Berger, 2002). In particular, the standard error for θk is
the k’th diagonal element of U−1/2.

4.2.3 Expectation-maximisation algorithm

Evidently, the model in (4.13) resembles a random-effects model, for which the EM
algorithm is easily employed to estimate its hyperparameters. Assume A1–A3 holds. By
treating the complete data as {y,w} and the wi’s as “missing”, the t’th iteration of the
E-step entails computing

Q(θ) = Ew
(

log p(y,w|θ)
∣∣y, θ(t))

= Ew

(
const. +

����n

2
logψ − ψ

2
∥ỹ−Hηw∥2 −

����n

2
logψ − ψ−1

2
∥w∥2

∣∣∣y, θ(t)) (4.18)

= const.− ψ

2
ỹ⊤ỹ− 1

2
tr
(
(

Σθ︷ ︸︸ ︷
ψH2

η + ψ−1In)W̃(t)
)
+ ψỹ⊤Hηw̃(t),

where w̃(t) = E
(
w|y, θ(t)

)
and W̃(t) = E

(
ww⊤|y, θ(t)

)
are the first and second posterior

moments of w calculated at the t’th EM iteration. These can be computed directly from
(4.14), substituting {η(t), ψ(t)} for θ(t) as appropriate.

The M-step assigns θ(t+1) the value of θ which maximises the Q function above. This
boils down to solving the first order conditions

∂Q

∂η
= −1

2
tr
(
∂Σθ

∂η
W̃(t)

)
+ ψ · ỹ⊤∂Hη

∂η
w̃(t) (4.19)

∂Q

∂ψ
= −1

2
ỹ⊤ỹ− tr

(
∂Σθ

∂ψ
W̃(t)

)
+ ỹ⊤Hηw̃(t) (4.20)

equated to zero. As ∂Σθ/∂ψ = H2
η −ψ−2In, the solution to (4.20) for ψ admits a closed

form given values for η:

ψ(t+1) =

{
tr W̃(t)

ỹ⊤ỹ + tr(H2
ηW̃(t))− 2ỹ⊤Hηw̃(t)

}1/2

. (4.21)
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We use this fact to form a sequential updating scheme η(t) → ψ(t+1) → η(t+1) → · · · ,
and this form of the EM algorithm is known as the expectation conditional maximisation
algorithm (Meng and Rubin, 1993). Now, the solution to (4.19) can also be found in
closed-form given values ψ, for many models, but in general, this is not the case. In
cases where closed-form solutions do exist for η, then it is just a matter of iterating the
update equations until a suitable convergence criterion is met (e.g. no more sizeable
increase in successive log-likelihood values). In cases where closed-form solutions do not
exist for η, the Q function is again optimised with respect to η using the gradient-based
algorithms.

In our experience, the EM algorithm is more stable than direct maximisation, in
the sense that the EM steps increase the likelihood in a gentle manner that prevents
sudden explosions of the likelihood. In contrast, the search direction using gradient-based
methods can grow the likelihood too quickly and potentially causes numerical errors to
creep in. As such, the EM is especially suitable if there are many scale parameters to
estimate, but on the flip side, it is typically slow to converge. The iprior package provides
a method to automatically switch to the direct optimisation method after running several
EM iterations. This then combines the stability of the EM with the speed of direct
optimisation.

4.2.4 Markov chain Monte Carlo methods

For completeness, it should be mentioned that a full Bayesian treatment of the model is
possible, with additional priors on the set of hyperparameters. MCMC methods can then
be employed to sample from the posteriors of the hyperparameters, with point estimates
obtained using the posterior mean or mode, for instance. Additionally, the posterior
distribution encapsulates the uncertainty about the parameter, for which inference can be
made. Posterior sampling can be done using Gibbs-based methods in WinBUGS (Lunn
et al., 2000) or JAGS (Plummer, 2003), and both have interfaces to R via R2WinBUGS
(Sturtz et al., 2005) and runjags (Denwood, 2016) respectively. Hamiltonian Monte
Carlo (HMC) sampling is also a possibility, and the Stan project (Carpenter et al., 2017)
together with the package rstan (Stan Development Team, 2016) makes this possible in
R.

On the software side, all of these MCMC packages require the user to code the model
individually, and we are not aware of the existence of MCMC-based packages which are
able to estimate GPR models. This makes it inconvenient for GPR and I-prior models,
because in addition to the model itself, the kernel functions need to be coded as well
and ensuring computational efficiency would be a difficult task.
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Speaking of efficiency, it is more advantageous to marginalise the I-prior and work
with the marginal model (4.15), rather than the hierarchical specification (4.13). The
reason for this is that the latter model has a parameter space whose dimension is O(n),
while the former only samples the hyperparameters. Note that the marginal model (4.15)
cannot then be sampled efficiently using a Gibbs procedure as the Gibbs conditionals
are not of closed-form. Instead, HMC should be used, which does not depend on model
conjugacy.

4.2.5 Comparison of estimation methods

Consider a one-dimensional smoothing example, for which n = 150 data pairs {(yi, xi)}ni=1

have been generated according to the relationship

yi = const. +

ftrue(xi)︷ ︸︸ ︷
0.35ϕ(xi|1, 0.82) + 0.65ϕ(xi|4, 1.52) + 1(xi > 4.5) e1.25(xi−4.5) + ϵi,

(4.22)

where ϕ(·|µ, σ2) is the probability density function of a normal distribution with mean
µ and variance σ2. The observed yi’s are thought to be noisy versions of the true points,
in which ϵi follows an indescript, non-normal, distribution. The predictors x1, . . . , xn
have been sampled roughly from the interval (−1, 6), and the sampling was intentionally
not uniform so that there is slight sparsity in the middle. Figure 4.2 plots the sampled
points and the true regression function.
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Figure 4.2: A plot of the sampled data points according to (4.22), with the true regression
function superimposed.
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We attempt to estimate ftrue by a function f belonging to the fBm-0.5 RKHS Fλ, with
an I-prior on f . There are two parameters that need to be estimated: the scale parameter
λ for the fBm-0.5 RKHS, and the error precision ψ. These can be estimated using the
maximum likelihood methods described above, namely by direct optimisation using a
quasi-Newton algorithm, and the EM algorithm. These two methods are implemented
in the iprior package. A full Bayesian treatment is possible, and we use the rstan
implementation of Stan to perform Hamiltonian Monte Carlo sampling of the posterior
densities. A vague prior choice for λ and ψ are prescribed, namely

λ, ψ
iid∼ N+(0, 100),

where N+(0, σ
2) represents the folded-normal distribution2,3. We have also set an im-

proper prior density p(α) ∝ const. for the intercept. The advantage of HMC is that
efficiency is not dictated by conjugacy, so there is freedom to choose any appropriate
prior choice on the parameters. Note that priors for λ and ψ are only applicable in a
fully Bayesian estimation of the I-prior model, and we did not assign any priors in the
EM algorithm or direct optimisation method.

Table 4.1: Table comparing the estimated parameter values, (marginal) log-likelihood
values, and also time taken for the three estimation methods.

Direct optimisation EM algorithm Hamiltonian MC
Intercept (α) 16.1 (0.35) 16.1 (0.35) 16.1 (0.17)
Scale (λ) 5.01 (1.23) 5.01 (1.26) 5.61 (1.42)
Precision (ψ) 0.236 (0.03) 0.236 (0.03) 0.237 (0.03)
Log-density -339.7 -339.7 -341.1
RMSE4 0.574 0.575 0.582
Iterations 12 266 2000
Time taken (s) 0.96 3.65 232

Table 4.1 tabulates the estimated parameter values, (marginal) log-likelihood values,
and also time taken for the three estimation methods. The three methods concur on the
estimated parameter values, although the scale parameter has been estimated slightly
differently, which is possibly attributed to the effect of the prior for λ. The resulting
log-likelihood value for the Bayesian method is lower than the ML methods, which also
took the longest to compute. Although the EM algorithm took longer than the direct
optimisation method to compute, the time taken per iteration is significantly shorter
than one Newton iteration.

2The random variable X ∼ N+(µ, σ
2) has the density p(x) = ϕ(x|µ, σ2)1(x ≥ 0).

3Note that a single scale parameter λ is not identified in sign, and is thus constrained to the positive
reals. This is applicable in both likelihood-based and Bayesian methods.

4The root mean squared error (RMSE) is calculated using the formula RMSE =
√

1
n

∑n
i=1(yi − ŷi)2,

where ŷi is the fitted value for the i’th observation, as described in Section 4.4
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4.3 Computational considerations and implementation

Computational complexity for estimating I-prior models (and in fact, for GPR in general)
is dominated by the inversion (by way of eigendecomposition in our case) of the n × n
matrix Σθ = ψH2

η + ψ−1In, which scales as O(n3) in time. For the direct optimisation
method, this matrix inversion is called when computing the log-likelihood, and thus
must be computed at each Newton step. For the EM algorithm, this matrix inversion
appears when calculating w̃ and W̃, the first and second posterior moments of the I-
prior random effects. Furthermore, storage requirements for I-priors models are similar
to that of GPR models, which is O(n2).

4.3.1 The Nyström approximation

The shared computational issues of I-prior and GPR models allow us to delve into
machine learning literature, which is rich in ways to resolve these issue, as summarised
by Quiñonero-Candela and Rasmussen (2005). One such method is to exploit low rank
structures of kernel matrices. The idea is as follows. Let Q be a matrix with rank q < n,
and suppose that QQ⊤ can be used sufficiently well to represent the kernel matrix Hη.
Then

(ψH2
η + ψ−1In)−1 ≈ ψ

{
In −Q

[(
ψ2Q⊤Q

)−1
+ Q⊤Q

]−1
Q⊤
}
,

obtained via the Woodbury matrix identity, is potentially a much cheaper operation
which scales O(nq2)—O(q3) to do the inversion, and O(nq) to do the multiplication
(because typically the inverse is premultiplied to a vector). When using the linear kernel
for a low-dimensional covariate then the above method is exact (Q = X, where X is the
design matrix). This fact is clearly demonstrated by the equivalence of the p-dimensional
linear model implied by (4.1) with the n-dimensional I-prior model using the canonical
RKHS. If p≪ n then certainly using the linear representation is much more efficient.

However, other interesting kernels such as the fractional Brownian motion (fBm)
kernel or the squared exponential kernel results in kernel matrices which are full rank.
An approximation to the kernel matrix using a low-rank matrix is the Nyström method
(Williams and Seeger, 2001). The theory has its roots in approximating eigenfunctions,
but this has since been adopted to speed up kernel machines. The main idea is to obtain
an (approximation to the true) eigendecomposition of Hη based on a small subset q ≪ n

of the data points.

Let Hη = VUV⊤ =
∑n

i=1 uiviv⊤
i be the (orthogonal) decomposition of the sym-

metric matrix Hη. As mentioned, avoiding this expensive O(n3) eigendecomposition
is desired, and this is achieved by selecting a subset Q of size q of the n data points
{1, . . . , n}, so that Hη may be approximated using the rank q matrix Hη ≈

∑
i∈Q ũiṽiṽ⊤

i .
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Without loss of generality, reorder the rows and columns of Hη so that the data points
indexed by Q are used first:

Hη =

(
Aq×q Bq×(n−q)

B⊤
q×(n−q) C(n−q)×(n−q)

)
.

In other words, the data points indexed by Q forms the smaller q × q kernel matrix A.
Let A = VqUqV⊤

q =
∑q

i=1 u
(q)
i v(q)

i v(q)⊤
i be the eigendeceomposition of A. The Nyström

method provides the formulae for ũi and ṽi (Rasmussen and Williams, 2006, Sec. 8.1,
Eqs. 8.2 and 8.3) as

ũi :=
n

q
u
(q)
i ∈ R

ṽi :=

√
q

n

1

u
(q)
i

(
A B

)⊤
v(q)
i ∈ Rn.

Denoting Uq as the diagonal matrix of eigenvalues u(q)1 , . . . , u
(q)
m , and Vq the correspond-

ing matrix of eigenvectors v(q)
i , we have

Hη ≈

V̄︷ ︸︸ ︷(
Vq

B⊤VqU−1
q

)
Uq

V̄⊤︷ ︸︸ ︷(
V⊤

q U−1
q V⊤

q B
)
.

Unfortunately, it may be the case that V̄V̄⊤ ̸= In, while orthogonality is crucial in order
to easily calculate the inverse of Σθ. An additional step is required to obtain an orthogo-
nal version of the Nyström decomposition, as studied by Fowlkes et al. (2004, 2001). Let
K = A+A− 1

2 B⊤BA− 1
2 , where A− 1

2 = VmU− 1
2

m Vm, and obtain the eigendecomposition
of this m×m matrix K = RÛR⊤. Defining

V̂ =

(
A

B⊤

)
A− 1

2 RÛ− 1
2 ∈ Rn × Rm,

then we have that Hη ≈ V̂ÛV̂⊤ such that V̂V̂⊤ = In (Fowlkes et al., 2004, Appx. A).
Estimating I-prior models with the Nyström method including the orthogonalisation
step takes roughly O(nm2) time and O(nm) storage.

The issue of selecting the subset Q remains. The simplest method, and that which
is implemented in the iprior package, would be to uniformly sample a subset of size q
from the n points. Although this works well in practice, the quality of approximation
might suffer if the points do not sufficiently represent the training set. In this light,
greedy approximations have been suggested to select the q points, so as to reduce some
error criterion relating to the quality of approximation. For a brief review of more
sophisticated methods of selecting Q, see Rasmussen and Williams (2006, Sec. 8.1).

Modelling with I-priors118



4.3.2 Front-loading kernel matrices for the EM algorithm

The evaluation of the Q function in (4.18) is O(n3), because a change in the values of
θ requires evaluating Σθ = ψH2

η + ψ−1In, for which squaring Hη takes the bulk of the
computational time. This is disadvantageous because, a Newton or quasi-Newton algo-
rithm used for the M-step would require multiple evaluations of Q in order to complete
an EM update.

In this section, we describe an efficient method of evaluating Q if the I-prior model
only involves estimating the RKHS scale parameters and the error precision under as-
sumptions A1–A3. The premise is this: squaring an ANOVA kernel matrix can be made
more efficient because it is a linear combination of several other kernel matrices, which
can be pre-calculated and stored for multiple use throughout the EM algorithm. We
now describe the procedure in detail.

Corresponding to p building block RKHSs F1, . . . ,Fp of functions over X1, . . . ,Xp,
there are p scale parameters λ1, . . . , λp and reproducing kernels h1, . . . , hp. Assume that
only the scale parameters are to be estimated, and the rest of the kernel parameters
(Hurst coefficient, lengthscale, or offset) are fixed. Write θ = {λ1, . . . , λp, ψ}. The most
common modelling scenarios that will be encountered are listed below:

1. Single scale parameter. With p = 1, f ∈ F ≡ λ1F1 of functions over a set X .
F may be any of the building block RKHSs. Note that X1 itself may be more than
one-dimensional. The kernel over X1 ×X1 is therefore

hλ = λ1h1.

2. Multiple scale parameters. Here, F is an RKKS of functions f : X1×· · ·×Xp →
R, and thus F ≡ λ1F1 ⊕ · · · ⊕ λpFp, where each Fk is one of the building block
RKHSs. The kernel is

hλ = λ1h1 + · · ·+ λphp.

3. Multiple scale parameters with level-2 interactions. This occurs commonly
with multilevel and longitudinal models. Suppose that X1 is the set of ‘levels’ and
there are p − 1 covariate sets Xk, k = 2, · · · , p. The function space F is a special
case of the ANOVA RKKS containing only main and two-way interaction effects,
and its kernel is

hλ =

p∑
j=1

λjhj +
∑
j<k

λjλkhjhk,

where F1 is the Pearson RKHS, and the remaining are any of the building block
RKHSs.
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4. Polynomial RKKS. When using the polynomial RKKS of degree d to incite a
polynomial relationship of the covariate set X1 on the function f ∈ F (excluding
an intercept), then the kernel of F is

hλ =

d∑
k=1

bkλ
k
1h

k
1.

where bk = d!
k!(d−k)! , k = 1, . . . , d are constants.

Of course, many other models are possible, such as the ANOVA RKKS with all p levels
of interactions. What we realise is that any of these scenarios are simply a sum-product
of a manipulation of the set of scale parameters λ = {λ1, . . . , λp} and the set of kernel
functions h = {h1, . . . , hp}.

Let us be more concrete about what we mean by ‘manipulation’ of the sets λ and
h. Define an “instruction operator” which expands out both sets identically as required
by the modelling scenario. Computationally speaking, this instruction could be carried
out through an instructive list Q containing the indices to multiply out. For the four
scenarios above, the list Q are as follows:

1. Q =
{
{1}
}

.

2. Q =
{
{1}, . . . , {p}

}
.

3. Q =
{
{1}, . . . , {p}, {1, 2}, . . . , {p− 1, p}

}
.

4. Q =
{
{1}, {1, 1}, . . . , {

d︷ ︸︸ ︷
1, . . . , 1}

}
.

For the polynomial RKKS in the fourth example, one must also multiply the constants
bk to the λ’s as appropriate. Let q be the cardinality of the set Q, which is the number
of summands required to construct the kernel for F . Denote the instructed sets as
ξ = {ξ1, . . . , ξq} for λ and a = {a1, . . . , aq} for h. We can write the kernel hλ as a linear
combination of ξ and a,

hλ = ξ1a1 + · · ·+ ξqaq.

The reason this is important is because changes in λ for hλ only changes the ξk’s, but not
the ak’s. This allows us to compute and store all of the required n × n kernel matrices
A1, . . . ,Aq by application of the instruction set Q on h, evaluated at all pairs of data
points (xi, xj) ∈ X × X . This process of initialisation need only be done once prior to
commencing the EM algorithm—a step we refer to as ‘kernel loading’.
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Notice that

tr
(
ΣθW̃(t)

)
= tr

(
(ψH2

η + ψ−1In)W̃(t)
)

= ψ tr(H2
ηW̃(t)) + ψ−1 tr W̃(t)

= ψ tr

 q∑
j,k=1

ξjξk
(
AjAk + (AjAk)

⊤)W̃(t)

+ ψ−1 tr W̃(t)

= 2ψ

q∑
j,k=1

ξjξk tr
(

AjAkW̃(t)
)
+ ψ−1 tr W̃(t).

Provided that we have the matrices Ajk = AjAk, j, k = 1, . . . , q in addition to A1, . . . ,Aq

pre-calculated and stored, then evaluating tr
(
AjkW̃(t)

)
= vec(Ajk)

⊤ vec(W̃(t)) isO(n2),
although this only need to be done once per EM iteration. Thus, with the kernels loaded,
the overall time complexity to evaluate Q is O(n2) at the beginning of each iteration,
but roughly linear in ξ thereafter.

In conclusion, we have achieved efficiency at the expense of storage and a potentially
long initialisation phase of kernel loading. In the iprior package, kernel loading is per-
formed using the kernL() command. The storing of the kernel matrices can be very
expensive, especially if the sample size is very large; Figure 4.3 shows the storage cost of
front-loading the kernel matrices for varying number of ANOVA components p = 1, . . . , 5

and sample sizes. On the bright side, once the kernel matrices are stored in hard mem-
ory, the iprior package allows them to be reused again and again. A practical situation
where this might be useful is when we would like to repeat the EM at various initial
values. Although front-loading of kernel matrices increase storage requirements, this is
manageable in practice in modern computer systems for sample sizes of n ≤ 5, 000, and
there is a clear advantage of doing so.

Remark 4.4. The sign of the scale parameters itself are not identified in the model (this is
easily seen when having a single scale parameter in the model since the scale is squared
when it appears in the likelihood) but the relative signs of the scale parameters with
respect to each other is.
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Figure 4.3: Storage cost of front-loading the kernel matrices for varying number of
ANOVA components p = 1, . . . , 5 and sample sizes. Solid lines indicate actual values,
while dotted lines are (linear) extrapolations. Storage requirements increases exponen-
tially, since for p ANOVA components, there are 2p+1 kernel matrices to store in memory.

4.3.3 The exponential family EM algorithm

In the original EM paper by Dempster et al. (1977), the EM algorithm was demonstrated
to be easily administered to complete data likelihoods belonging to the exponential
family for which the maximum likelihood estimates are easily computed. If this is the
case, then the M-step simply involves replacing the unknown sufficient statistics in the
ML estimates with their conditional expectations. Certain I-prior models admit this
property, namely regression functions belonging to the full or limited ANOVA RKKS.
For such models, we can reduce the EM algorithm to a sequential updating scheme of the
latent variables (missing data) and parameters, bypassing the need for a gradient-based
optimisation in the M-step. We describe the implementation of this exponential family
EM below.

Assume A1–A3 applies, and that only the error precision ψ and the RKHS scale
parameters λ1, . . . , λp need to be estimated, i.e. all other kernel parameters are fixed—a
similar situation was described in the previous subsection. For the full ANOVA RKKS,
the kernel can be written in the form

hλ =

p∑
i=1

λihi +
∑
i<j

λiλjhihj + · · ·+
p∏

i=1

λihi

= λk

terms of λk︷ ︸︸ ︷(
hk +

∑
i

λihihk + · · ·+ hk
∏
i ̸=k

λihi

)
+

no λk here︷ ︸︸ ︷∑
i ̸=k

λihi +
∑
i,j ̸=k

λiλjhihj + · · ·+ 0

= λkrk + sk
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where rk and sk are both functions over X ×X , defined respectively as the terms of the
ANOVA kernel involving λk, and the terms not involving λk. The reason for splitting
hλ like this will become apparently momentarily.

Programmatically, this looks complicated to implement in software, but in fact it
is not. Consider again the instruction list Q for the ANOVA RKKS (Example 3, Sec-
tion 4.3.2). We can split this list into two: Rk as those elements of Q which involve the
index k, and Sk as those elements of Q which do not involve the index k. Let ζk, ek be
the sets of λ and h after applying the instructions of Rk, and let ξk and ak be the sets
of λ and h after application of the instruction list Sk. Now, we have

rk =
1

λk

|Rk|∑
l=1

ζlkelk and sk =

|Sk|∑
l=1

ξlkalk,

as real-valued functions defined over X×X . Defining Rk and Sk to be the kernel matrices
with (i, j) entries rk(xi, xj) and sk(xi, xj) respectively, for i, j = 1, . . . , n, we have that

H2
η = λ2kR2

k + λk

Uk︷ ︸︸ ︷(
RkSk + (RkSk)

⊤)+ S2
k.

Consider now the full data log-likelihood for λk, k = 1, . . . , p, conditionally dependent
on the rest of the unknown parameters λ−k = {λ1, . . . , λp}\{λk} and ψ:

L(λk|y,w, λ−k, ψ) = const.− 1

2
tr
(
(ψH2

η + ψ−1In)ww⊤
)
+ ψỹ⊤Hηw (4.23)

= const.− λ2k
ψ

2
tr(R2

kww⊤) + λk

(
ψỹ⊤Rkw− ψ

2
tr(Ukww⊤)

)
.

Notice that the above likelihood is an exponential family distribution with the natural
parameterisation β = (−λ2k, λk) and sufficient statistics T1 and T2 defined by

T1 =
ψ

2
tr(R2

kww⊤) and T2 = ψỹ⊤Rkw− ψ

2
tr(U2

kww⊤).

This likelihood is maximised at λ̂k = T2/2T1, but of course, the variables w1, . . . , wn

are never observed. As per the exponential family EM routine, replace occurrences of
w and ww⊤ with their respective conditional expectations, i.e. w 7→ E(w|y) = w̃
and ww⊤ 7→ E(ww⊤|y) = Ṽw + w̃w̃⊤ as defined in (4.14). The fact that the λk’s have
closed-form expressions, together with the closed-form expression for ψ in (4.21), greatly
simplifies the EM algorithm. At the M-step, one simply updates the parameters in turn,
and as such, there is no maximisation per se.

The exponential family EM algorithm for ANOVA-type I-prior models is summarised
in Algorithm 1. It requires O(n3) computational time at each step, which is spent on
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computing the matrix inverse in the E-step. The M-step takes at most O(n2) time to
compute. Algorithm 1 also requires front-loading of the kernel matrices, which increases
storage requirements. As a remark, it is not necessary that hλ is the full ANOVA RKKS;
any of the examples 1–3 in Section 4.3.2 can be estimated using this method, since they
are seen as special cases of the ANOVA decomposition.

Algorithm 1 Exponential family EM for ANOVA-type I-prior models
1: procedure Initialisation
2: Initialise λ(0)1 , . . . , λ

(0)
p , ψ(0)

3: Compute and store matrices as per Rk and Sk.
4: t← 0
5: end procedure

6: while not converged do
7: procedure E-step
8: w̃← ψ(t)Hη(t)

(
ψ(t)H2

η(t)
+ ψ−(t)In

)−1ỹ
9: W̃←

(
ψ(t)H2

η(t)
+ ψ−(t)In

)−1
+ w̃w̃⊤

10: end procedure

11: procedure M-step
12: for k = 1, . . . , p do
13: T1k ← 1

2 tr(R2
kW̃)

14: T2k ← ỹ⊤Rkw̃− 1
2 tr(U2

kW̃⊤)

15: λ
(t+1)
k ← T2k/2T1k

16: end for
17: T3 ← ỹ⊤ỹ + tr(H2

η(t)
W̃(t))− 2ỹ⊤Hη(t)w̃(t)

18: ψ(t+1) ← tr W̃(t)/T3
19: end procedure
20: t← t+ 1
21: end while

22: {λ̂1, . . . , λ̂p, ψ̂} ← {λ(t)1 , . . . , λ
(t)
p , ψ(t)}

23: return Estimates λ̂1, . . . , λ̂p, ψ̂

Remark 4.5. Another compelling reason to use Algorithm 1 is conjugacy of the exponen-
tial family of distributions. Realise that λk|y,w, λ−k, ψ is in fact normally distributed,
with mean and variance given by T2/2T1 and 1/2T1 respectively. If we were so compelled,
we could assign normal priors on each of the λk’s, then the conditionally dependent log-
likelihood of λk, L(λk|y,w, λ−k, ψ), would have a normal prior log-density involving λk
added on. Importantly, viewed as a posterior log-density for λk, the λk is normally
distributed. The exponential family EM is thus easily modified to compute maximum a
posteriori (MAP) estimates (or penalised ML estimates) of the scale parameters.
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Remark 4.6. The restriction to ANOVA RKKSs is due to the fact that as soon as higher
degrees of the λk’s come into play, e.g. using the polynomial kernel, then the ML
estimates for the λk’s involve solving a polynomial of degree 2d− 1 for FOC equations.
Although this is not in itself hard to do, the elegance of the algorithm, especially viewed
as having the normal conjugacy property for the λk’s, is lost.

4.4 Post-estimation

One of the perks of a (semi-)Bayesian approach to regression modelling is that we are
able to use Bayesian post-estimation machinery involving the relevant posterior dis-
tributions. With the normal I-prior model, there is the added benefit that posterior
distributions are easily obtained in closed form. We describe post-estimation procedures
such as prediction of a new data point, inference surrounding the prediciton, and model
comparison. The plots that are shown in this subsection is a continuation of the example
from Section 4.2.5.

Recall that for the I-prior model (4.13), a regression function f(x) =
∑n

i=1 hη̂(x, xi)w̃i

has the posterior Gaussian distribution specified by the mean and variance of the mul-
tivariate normal w̃i’s given in (4.14). Denote by hη̂(x) the n-vector with entries equal
to hη̂(x, xi). Precisely, the posterior distribution of the regression function is

f(x)|y ∼ N
(

hη̂(x)ŵ,hη̂(x)
⊤(Hη̂Ψ̂Hη̂ + Ψ̂

−1)−1hη̂(x)
)

(4.24)

for any x in the domain of the regression function. Here, the hats on the parameters
indicate the use of the optimised model parameters, i.e. the ML or MAP estimates.

Prediction of a new data point is now described. A priori, assume that ynew =

α̂+ f(xnew)+ ϵnew, where ϵnew ∼ N(0, ψ−1
new), and an I-prior on f . Denote the covariance

between ϵnew and ϵ = (ϵ1, . . . , ϵn)
⊤ by σ⊤

new ∈ Rn. Under an iid model (assumption
A3), then ψnew = ψ = Var ϵi for any i ∈ {1, . . . , n}, and σ⊤

new = 0, but otherwise, these
extra parameters need to be dealt with somehow, either by specifying them a priori or
estimating them again, which seems excessive. In any case, using a linearity argument,
the posterior distribution for ynew is normal, with mean and variance given by

E(ynew|y) = α̂+ E
(
f(xnew)|y

)
+ correction term (4.25)

and

Var(ynew|y) = Var
(
f(xnew)|y

)
+ ψ−1

new + correction term. (4.26)

A derivation is presented in Appendix G.2 (p. 300). Note, that the mean and variance
correction term vanishes under an iid assumption A3. The posterior distribution for
ynew can be used in several ways. Among them, is to construct a 100(1−α)% credibility
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Figure 4.4: Prior (top) and posterior (bottom) sample path realisations of regression
functions drawn from their respective distributions when F is a fBm-0.5 RKHS. At the
very top of the figure, a smoothed density estimate of the x’s is overlaid. In regions
with few data points (near the centre), there is little Fisher information, and hence a
conservative prior closer to zero, the prior mean, for this region.
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interval for the (mean) predicted value ynew using

E(ynew|y)± Φ−1(1− α/2) Var(ynew|y)
1
2 ,

where Φ(·) is the standard normal cumulative distribution function. One could also
perform a posterior predictive density check of the data y, by repeatedly sampling n

points from its posterior distribution. This provides a visual check of whether there are
any systematic deviances between what the model predicts, and what is observed from
the data.

Lastly, we discuss model comparison. Recall that the marginal distribution for y
after integrating out the I-prior for f in model (4.13) is normal. Suppose that we are
interested in comparing two candidate models M0 and M1, each with parameter sets
θ0 and θ1. Commonly, we would like to test whether or not particular terms in the
ANOVA RKKS are significant contributors in explaining the relationship between the
responses and predictors. A log-likelihood comparison is possible using an asymptotic
chi-squared distribution, with degrees of freedom equal to the difference between the
number of parameters in M1 and M0. This is assuming model M0 is nested within M1,
which is the case for ANOVA-type constructions. Note that if two models have the same
number of parameters, then the model with the higher likelihood is preferred.

Remark 4.7. This method of comparing marginal likelihoods can be seen as Bayesian
model selection using empirical Bayes factors, where the Bayes factor of comparing
model M1 against model M0 is defined as

BF(M1,M0) =

∫
p(y|θ̂1, f)p(f)df∫
p(y|θ̂0, f)p(f)df

.

Bayes factor values of greater than one indicate more support for model M1 over M0.
The term ‘empirical’ stems from the fact that the parameters are estimated via an
empirical Bayes approach (maximum marginal likelihood), as opposed to assuming prior
distributions on them and integrating them out.

4.5 Examples

We demonstrate I-prior modelling using three real-data examples, as well as on a toy
data set to illustrate the Nyström method. All of the analyses were conducted in R, and
I-prior model estimation was done using the iprior package (Jamil, 2017). The iprior
package comes documented with usage examples in the vignette. The complete source
code for replication is found at http://myphdcode.haziqj.ml. Note that in all of these
examples, A1–A3 were assumed.
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Figure 4.5: The estimated regression line (solid black) is the posterior mean estimate of
the regression function (shifted by the intercept), which also gives the posterior mean
estimate for the responses y. The shaded region is the 95% credibility interval for
predictions. The true regression line (dashed red) is shown for comparison.
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Figure 4.6: Posterior predictive density checks of the responses: repeated sampling from
the posterior density of the yi’s and plotting their densities allows us to compare model
predictions against observed samples. Note that each line represents the distribution of
all data points {y1, . . . , yn}.
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4.5.1 Random effects models

In this section, a comparison between a standard random effects model and the I-prior
approach for estimating varying intercept and slopes model is illustrated. The example
concerns control data5 from several runs of radioimmunoassays (RIA) for the protein
insulin-like growth factor (IGF-I) (explained in further detail in Davidian and Giltinan,
1995, Sec. 3.2.1). RIA is an in vitro assay technique which is used to measure concentra-
tion of antigens—in our case, the IGF-I proteins. When an RIA is run, control samples
at known concentrations obtained from a particular lot are included for the purpose of
assay quality control. It is expected that the concentration of the control material re-
mains stable as the machine is used, up to a maximum of about 50 days, at which point
control samples from a new batch is used to avoid degradation in assay performance.

R> data(IGF, package = "nlme")
R> head(IGF)

## Grouped Data: conc ~ age | Lot
## Lot age conc
## 1 1 7 4.90
## 2 1 7 5.68
## 3 1 8 5.32
## 4 1 8 5.50
## 5 1 13 4.94
## 6 1 13 5.19

The data consists of IGF-I concentrations (conc) from control samples from 10 dif-
ferent lots measured at differing ages of the lot. The data were collected with the aim
of identifying possible trends in control values conc with age, ultimately investigat-
ing whether or not the usage protocol of maximum sample age of 50 days is justified.
Pinheiro and Bates (2000) remarks that this is not considered a longitudinal problem
because different samples were used at each measurement.

We shall model the IGF data set using the I-prior methodology using the ANOVA-
decomposed regression function

f(age, Lot) = f1(age) + f2(Lot) + f12(age, Lot)

where f1 lies in the linear RKHS F1, f2 in the Pearson RKHS F2 and f12 in the tensor
product space F12 = F1 ⊗ F2. The regression function f then lies in the RKHS F =

F1⊕F2⊕F12 with kernel equal to the sum of the kernels from each of the RKHSs. The
explanation here is that the conc levels are assumed to be related to both age and Lot,
and in particular, the contribution of age on conc varies with each individual Lot. This

5This data is available in the R package nlme (Pinheiro et al., 2017).
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gives the intended effect of a linear mixed-effects model, which is thought to be suitable
in this case, in order to account for within-lot and between-lot variability. We first fit
the model using the iprior package, and then compare the results with the standard
random effects model using the R command lme4::lmer(). The command to fit the
I-prior model using the EM algorithm is

R> mod.iprior <- iprior(conc ~ age * Lot, IGF, method = "em")

## =========================================
## Converged after 58 iterations.

R> summary(mod.iprior)

## Call:
## iprior(formula = conc ~ age * Lot, data = IGF, method = "em")
##
## RKHS used:
## Linear (age)
## Pearson (Lot)
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4.4890 -0.3798 -0.0090 0.2563 4.3972
##
## Hyperparameters:
## Estimate S.E. z P[|Z>z|]
## lambda[1] 0.0000 0.0002 0.004 0.997
## lambda[2] -0.0007 0.0030 -0.239 0.811
## psi 1.4577 0.1366 10.672 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Closed-form EM algorithm. Iterations: 58/100
## Converged to within 1e-08 tolerance. Time taken: 3.553403 secs
## Log-likelihood value: -291.9033
## RMSE of prediction: 0.8273565 (Training)

To make inference on the covariates, we look at the scale parameters lambda. We see
that both scale parameters for age and Lot are close to zero, and a test of significance
is not able to reject the hypothesis that these parameters are indeed null. We conclude
that neither age nor Lot has a linear effect on the conc levels. The plot of the fitted
regression line in Figure 4.7 does show an almost horizontal line for each Lot.

Modelling with I-priors130



8 5 4 3 7

9 6 1 10 2

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

age

co
nc

Figure 4.7: Plot of fitted regression line for the I-prior model on the IGF data set,
separated into each of the 10 lots.

The standard random effects model, as explored by Davidian and Giltinan (1995)
and Pinheiro and Bates (2000), is

concij = β0j + β1jageij + ϵij(
β0j

β1j

)
∼ N

((
β0

β1

)
,

(
σ20 σ01

σ01 σ21

))
ϵij ∼ N(0, σ2)

for i = 1, . . . , nj and the index j representing the 10 Lots. Fitting this model using
lmer, we can test for the significance of the fixed effect β0, for which we find that it is
not (p-value = 0.627), and arrive at the same conclusion as in the I-prior model.

R> (mod.lmer <- lmer(conc ~ age + (age | Lot), IGF))

## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: conc ~ age + (age | Lot)
## Data: IGF
## REML criterion at convergence: 594.3662
## Random effects:
## Groups Name Std.Dev. Corr
## Lot (Intercept) 0.082507
## age 0.008092 -1.00
## Residual 0.820628
## Number of obs: 237, groups: Lot, 10
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## Fixed Effects:
## (Intercept) age
## 5.374974 -0.002535

R> round(coef(summary(mod.lmer)), 4)

## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.3750 0.1075 41.5757 50.0053 0.0000
## age -0.0025 0.0050 9.5136 -0.5025 0.6267

However, we notice that the package reports a perfect negative correlation between
the random effects, σ01. This indicates a potential numerical issue when fitting the
model—a value of exactly −1, 0 or 1 is typically imposed by the package to force through
estimation in the event of non-positive definite covariance matrices arising. We can
inspect the eigenvalues of the covariance matrix for the random effects to check that
they are indeed non-positive definite. One of the eigenvalues was found to be negative,
so the covariance matrix is non-positive definite.

R> eigen(VarCorr(mod.lmer)$Lot)

## eigen() decomposition
## $values
## [1] 6.872939e-03 -1.355253e-20
##
## $vectors
## [,1] [,2]
## [1,] -0.99522490 -0.09760839
## [2,] 0.09760839 -0.99522490

Degenerate covariance matrices often occur in models with a large number of ran-
dom coefficients, and in cases where values of the variance components are estimated
at the boundary. These are typically solved by setting restrictions which then avoids
overparameterising the model. One advantage of the I-prior method for varying in-
tercept/slopes model is that the positive-definiteness is automatically taken care of.
Furthermore, I-prior models typically require fewer parameters to fit a similar varying
intercept/slopes model—in the above example, the I-prior model estimated only three
parameters, while the standard random effects model estimated a total of six parameters.

It is also possible to “recover” the estimates of the standard random effects model
from the I-prior model, albeit in a slighly manual fashion (refer to Section 4.1.2). Denote
by f j the individual linear regression lines for each of the j = 1, . . . , 10 Lots. Then,
each of these f j has a slope and intercept for which we can estimate from the fitted
regression lines f̂ j(xij), i = 1, . . . , nj . This would give us the posterior mean estimates
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Figure 4.8: A comparison of the estimates for random intercepts and slopes (denoted
as points) using the I-prior model and the standard random effects model. The dashed
vertical lines indicate the fixed effect values.

of the random intercepts and slopes. In order to obtain these intercepts and slopes, we
simply run a best fit line through the I-prior estimated conc values. Furthermore, as σ20
and σ21 represent measures of group variability for the intercepts and slopes respectively,
we can also calculate these manually for the 10 intercepts and slopes of the fitted I-
prior model. In the same spirit, ρ01 = σ01/(σ0σ1), which is the correlation between the
random intercept and slope, can also be calculated.

Figure 4.8 illustrates the differences in the estimates for the random coefficients, while
Table 4.2 illustrates the differences in the estimates for the covariance matrix. Minor
differences do exist, with the most noticeable one being that the slopes in the I-prior
model are categorically estimated as zero. Even so, the conclusions from both models
are similar. We also note that the sign of the estimated correlation ρ01 is the same in
both models.

Table 4.2: A comparison of the estimates for the covariance matrix of the random effects
using the I-prior model and the standard random effects model.

Parameter iprior lmer

σ0 0.012 0.083
σ1 0.000 0.008
ρ01 -0.691 -1.000

4.5 Examples 133



4.5.2 Longitudinal data analysis

We consider a balanced longitudinal data set consisting of weights in kilograms of 60
cows, 30 of which were randomly assigned to treatment group A, and the remaining
30 to treatment group B. The animals were weighed 11 times over a 133-day period;
the first 10 measurements for each animal were made at two-week intervals and the
last measurement was made one week later. This experiment was reported by Kenward
(1987), and the data set is included as part of the package jmcm (J. Pan and Y. Pan,
2017) in R. The variable names have been renamed for convenience.

R> data(cattle, package = "jmcm")
R> names(cattle) <- c("id", "time", "group", "weight")
R> cattle$id <- as.factor(cattle$id) # convert to factors
R> levels(cattle$group) <- c("Treatment A", "Treatment B")
R> str(cattle)

## 'data.frame': 660 obs. of 4 variables:
## $ id : Factor w/ 60 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1..
## $ time : num 0 14 28 42 56 70 84 98 112 126 ...
## $ group : Factor w/ 2 levels "Treatment A",..: 1 1 1 1 1 1 1 1 1 1 ..
## $ weight: int 233 224 245 258 271 287 287 287 290 293 ...

The response variable of interest are the weight growth curves, and the aim is to
investigate whether a treatment effect is present. The usual approach to analyse a
longitudinal data set such as this one is to assume that the observed growth curves are
realizations of a Gaussian process. For example, Kenward (1987) assumed a so-called
ante-dependence structure of order k, which assumes an observation depends on the
previous k observations, but given these, is independent of any preceeding observations.

Using the I-prior, it is not necessary to assume the growth curves were drawn ran-
domly. Instead, it suffices to assume that they lie in an appropriate function class. For
this example, we assume that the function class is the fBm RKHS, i.e. we assume a
smooth effect of time on weight. The growth curves form a multidimensional (or func-
tional) response equivalent to a “wide” format of representing repeated measures data.
In our analysis using the iprior package, we used the “long” format and thus our (uni-
dimensional) sample size n is equal to 60 cows × 11 repeated measurements. We also
have two covariates potentially influencing growth, namely the cow subject id and also
treatment group. The regression model can then be thought of as

weight = α+ f(id, group, time) + ϵ

ϵ ∼ N(0, ψ−1).
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Table 4.3: A brief description of the five models fitted using I-priors.

Model Explanation Formula (weight ~ ...)
1 Growth does not vary with treat-

ment nor among cows
time

2 Growth varies among cows only id * time
3 Growth varies with treatment only group * time
4 Growth varies with treatment and

among cows
id * time + group * time

5 Growth varies with treatment and
among cows, with an interaction ef-
fect between treatment and cows

id * group * time

We assume iid errors, and in addition to a smooth effect of time, we further assume
a nominal effect of both cow id and treatment group using the Pearson RKHS. In the
iprior package, factor type objects are treated with the Pearson kernel automatically,
and the only model option we need to specify is the kernel = "fbm" option for the time
variable. We shall use a default Hurst coefficient of 1/2 for the fBm kernel. Table 4.3
explains the five models we have fitted.

The simplest model fitted was one in which the growth curves do not depend on the
treatment effect or individual cows. We then added treatment effect and the cow id
as covariates, separately first and then together at once. We also assumed that both of
these covariates are time-varying, and hence added also the interaction between these
covariates and the time variable. The final model was one in which an interaction
between treatment effect and individual cows was assumed, which varied over time.

All models were fitted using the mixed estimation method. Compared to the EM
algorithm alone, we found that the combination of direct optimisation with the EM
algorithm fits the model about six times faster for this data set due to slow convergence
of EM algorithm. Here is the code and output for fitting the first model:

R> # Model 1: weight ~ f(time)
R> (mod1 <- iprior(weight ~ time, cattle, kern = "fbm", method = "mixed"))

## Running 5 initial EM iterations
## ======================================================================
## Now switching to direct optimisation
## final value 1394.615062
## converged
## Log-likelihood value: -2789.231
##
## lambda psi
## 0.83592 0.00375
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Table 4.4: Summary of the five I-prior models fitted to the cow data set. Error S.D.
refers to the inverse square root of the error precision, ψ−1/2.

Model Formula
(weight ~ ...)

Log-likelihood Error S.D. Number of
parameters

1 time -2789.23 16.33 1
2 id * time -2789.26 16.31 2
3 group * time -2295.16 3.68 2
4 id * time + group * time -2270.85 3.39 3
5 id * group * time -2249.26 3.90 3

The results of the model fit are summarised in Table 4.4. We can test for a treatment
effect by testing Model 4 against the alternative that Model 2 is true. The log-likelihood
ratio test statistic is D = −2(−2789.26 − (−2270.85)) = 1036.81, which has an asymp-
totic chi-squared distribution with 3 − 2 = 1 degree of freedom. The p-value for this
likelihood ratio test is less than 10−6, so we conclude that Model 4 is significantly better.

We can next investigate whether the treatment effect differs among cows by comparing
Models 5 and 4. As these models have the same number of parameters, we can simply
choose the one with the higher likelihood, which is Model 5. We conclude that treatment
does indeed have an effect on growth, and that the treatment effect differs among cows.
A plot of the fitted regression curves onto the cow data set is shown in Figure 4.9.
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Figure 4.9: A plot of the I-prior fitted regression curves from Model 5. In this model,
growth curves differ among cows and by treatment effect (with an interaction between
cows and treatment effect), thus producing these 60 individual lines, one for each cow,
split between their respective treatment groups (A or B).
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4.5.3 Regression with a functional covariate

We illustrate the prediction of a real valued response with a functional covariate using
a widely analysed data set for quality control in the food industry. The data6 contain
samples of spectrometric curve of absorbances of 215 pieces of finely chopped meat,
along with their water, fat and protein content. These data are recorded on a Tecator
Infratec Food and Feed Analyzer working in the wavelength range 850–1050 nm by the
Near Infrared Transmission (NIT) principle. Absorption data has not been measured
continuously, but instead 100 distinct wavelengths were obtained. Figure 4.10 shows a
sample of 10 such spectrometric curves.
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Figure 4.10: Sample of spectrometric curves used to predict fat content of meat. For
each meat sample the data consists of a 100 channel spectrum of absorbances and the
contents of moisture, fat (numbers shown in boxes) and protein measured in percent.
The absorbance is − log 10 of the transmittance measured by the spectrometer. The
three contents, measured in percent, are determined by analytic chemistry.

For our analyses and many others’ in the literature, the first 172 observations in
the data set are used as a training sample for model fitting, and the remaining 43 ob-
servations as a test sample to evaluate the predictive performance of the fitted model.
The focus here is to use the iprior package to fit several I-prior models to the Tecator
data set, and calculate out-of-sample predictive error rates. We compare the predictive
performance of I-prior models against Gaussian process regression and the many other
different methods applied on this data set. These methods include neural networks
(Thodberg, 1996), kernel smoothing (Ferraty and Vieu, 2006), single and multiple in-
dex functional regression models (D. Chen et al., 2011), sliced inverse regression (SIR)
and sliced average variance estimation (SAVE), multivariate adaptive regression splines

6 Obtained from Tecator (see http://lib.stat.cmu.edu/datasets/tecator for details). We used
the version made available in the dataframe tecator from the R package caret (Kuhn et al., 2017).
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(MARS), partial least squares (PLS), and functional additive model with and without
component selection (FAM & CSEFAM). An analysis of this data set using the SIR
and SAVE methods were conducted by Lian and Li (2014), while the MARS, PLS and
(CSE)FAM methods were studied by Zhu et al. (2014). Table 4.5 tabulates the all of
the results from these various references.

Assuming a regression model as in (4.13), we would like to model the fat content
yi using the spectral curves xi. Let xi(t) denote the absorbance for wavelength t =

1, . . . , 100. From Figure 4.10, it appears that the curves are smooth enough to be
differentiable, and therefore it is reasonable to assume that they lie in the Sobolev-Hilbert
space as discussed in Section 4.1.6. We take first differences of the 100-dimensional
matrix, which leaves us with the 99-dimensional covariate saved in the object named
absorp. The fat and absorp data have been split into *.train and *.test samples, as
mentioned earlier. Our first modelling attempt is to fit a linear effect by regressing the
responses fat.train against a single high-dimensional covariate absorp.train using
the linear RKHS and the direct optimisation method.

R> # Model 1: Canonical RKHS (linear)
R> (mod1 <- iprior(y = fat.train, absorp.train))

## iter 10 value 222.653144
## final value 222.642108
## converged
## Log-likelihood value: -445.2844
##
## lambda psi
## 4576.86595 0.11576

Our second and third model uses polynomial RKHSs of degrees two and three, which
allows us to model quadratic and cubic terms of the spectral curves respectively. We
also opted to estimate a suitable offset parameter, and this is called to iprior() with
the option est.offset = TRUE. Each of the two models has a single scale parameter,
an offset parameter, and an error precision to be estimated. The direct optimisation
method has been used, and while both models converged regularly, it was noticed that
there were multiple local optima that hindered the estimation (output omitted).

R> # Model 2: Polynomial RKHS (quadratic)
R> mod2 <- iprior(y = fat.train, absorp.train, kernel = "poly2",
+ est.offset = TRUE)
R> # Model 3: Polynomial RKHS (cubic)
R> mod3 <- iprior(y = fat.train, absorp.train, kernel = "poly3",
+ est.offset = TRUE)

Modelling with I-priors138



Next, we attempt to fit a smooth dependence of fat content on the spectrometric
curves using the fBm RKHS. By default, the Hurst coefficient for the fBm RKHS is set
to be 0.5. However, with the option est.hurst = TRUE, the Hurst coefficient is included
in the estimation procedure. We fit models with both a fixed value for Hurst (at 0.5)
and an estimated value for Hurst. For both of these models, we encountered numerical
issues when using the direct optimisation method. The L-BFGS algorithm kept on
pulling the hyperparameter towards extremely high values, which in turn made the
log-likelihood value greater than the machine’s largest normalised floating-point number
(.Machine$double.xmax = 1.797693e+308). To circumvent this issue, we used the EM
algorithm to estimate the fixed Hurst model, and the mixed method for the estimated
Hurst model. For both models, the stop.crit was relaxed and set to 1e-3 for quicker
convergence, though this did not affect the predictive abilities compared to a more
stringent stop.crit.

R> # Model 4: fBm RKHS (default Hurst = 0.5)
R> (mod4 <- iprior(y = fat.train, absorp.train, kernel = "fbm",
+ method = "em", control = list(stop.crit = 1e-3)))

## ==============================================
## Converged after 65 iterations.
## Log-likelihood value: -204.4592
##
## lambda psi
## 3.24112 1869.32897

R> # Model 5: fBm RKHS (estimate Hurst)
R> (mod5 <- iprior(fat.train, absorp.train, kernel = "fbm", method = "mixed",
+ est.hurst = TRUE, control = list(stop.crit = 1e-3)))

## Running 5 initial EM iterations
## ======================================================================
## Now switching to direct optimisation
## iter 10 value 115.648462
## final value 115.645800
## converged
## Log-likelihood value: -231.2923
##
## lambda hurst psi
## 204.97184 0.70382 9.96498

Finally, we fit an I-prior model using the SE RKHS with lengthscale estimated. Here
we illustrate the use of the restarts option, in which the model is fitted repeatedly
from different starting points. In this case, eight random initial parameter values were
used and these jobs were parallelised across the eight available cores of the machine.
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The additional par.maxit option in the control list is an option for the maximum
number of iterations that each parallel job should do. We have set it to 100, which is the
same number for maxit, but if par.maxit is less than maxit, the estimation procedure
continues from the model with the best likelihood value. We see that starting from eight
different initial values, direct optimisation leads to (at least) two log-likelihood optima
sites, −231.5 and −680.5.

R> # Model 6: SE kernel
R> (mod6 <- iprior(fat.train, absorp.train, est.lengthscale = TRUE,
+ kernel = "se", control = list(restarts = TRUE,
+ par.maxit = 100)))

## Performing 8 random restarts on 8 cores
## ======================================================================
## Log-likelihood from random starts:
## Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7
## -231.5440 -680.4637 -680.4637 -231.5440 -231.5440 -231.5440 -231.5440
## Run 8
## -231.5440
## Continuing on Run 6
## final value 115.771932
## converged
## Log-likelihood value: -231.544
##
## lambda lengthscale psi
## 96.11708 0.09269 6.15432

Predicted values of the test data is obtained using predict(). An example for
obtaining the first model’s predicted values is shown below. The predict() method for
ipriorMod objects also return the test MSE if the vector of test data is supplied.

R> predict(mod1, newdata = list(absorp.test), y.test = fat.test)

## Test RMSE: 2.890353
##
## Predicted values:
## [1] 43.607 20.444 7.821 4.491 9.044 8.564 7.935 11.615 13.807
## [10] 17.359
## # ... with 33 more values

These results are summarised in Table 4.5. For the I-prior models, a linear effect
of the functional covariate gives a training RMSE of 2.89, which is improved by both
the qudratic and cubic model. The training RMSE is improved further by assuming a
smooth RKHS of functions for f , i.e. the fBm and SE RKHSs. When it comes to out-of-
sample test error rates, the cubic model gives the best RMSE out of the I-prior models
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for this particular data set, with an RMSE of 0.58. This is followed closely by the fBm
RKHS with estimated Hurst coefficient (fBm-0.70) and also the fBm RKHS with default
Hurst coefficient (fBm-0.50). The best performing I-prior model is only outclassed by the
neural networks of Thodberg (1996), who also performed model selection using automatic
relevance determination (ARD). The I-prior models also give much better test RMSE
than Gaussian process regression.

Table 4.5: A summary of the root mean squared error (RMSE) of prediction for the I-
prior models and various other methods in literature conducted on the Tecator data set.
Values for the methods under Others were obtained from the corresponding references
cited earlier.

RMSE
Model Train Test
I-prior

Linear 2.89 2.89
Quadratic 0.72 0.97
Cubic 0.37 0.58
Smooth (fBm-0.50) 0.00 0.68
Smooth (fBm-0.70) 0.19 0.63
Smooth (SE-0.09) 0.35 1.85

Gaussian process regressiona

Linear 0.18 2.36
Smooth (SE-7.28) 0.17 2.07

Others
Neural networkb 0.36
Kernel smoothingc 1.49
Single/multiple indices modeld 1.55
Sliced inverse regression 0.90
Sliced average variance estimation 1.70
MARSe 0.88
Partial least squarese 1.01
FAMe 0.92
CSEFAMe 0.85

a GPR models were fit using gausspr() in kernlab.
b Neural network best results with automatic relevance determina-

tion (ARD) quoted.
c Data set used was a 160/55 training/test split.
d These are results of a leave-one-out cross-validation scheme.
e Data set used was an extended version with n = 240, and a random

185/55 training/test split.
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4.5.4 Using the Nyström method

We investigate the use of the Nyström method of approximating the kernel matrix in
estimating I-prior models. Let us revisit the data set generated by (4.22) described in
Section 4.2.5. The features of this regression function are two large bumps at the centres
of the mixed Gaussian pdfs, and also a small bump right after x > 4.5 caused by the
additional exponential function. The true regression function tends to positive infinity
as x increases, and to zero as x decreases. Samples of (xi, yi), i = 1, . . . , 2000 have been
generated by the built-in gen_smooth() function, of which the first few lines of the data
are shown below.

R> dat <- gen_smooth(n = 2000, xlim = c(-1, 5.5), seed = 1)
R> head(dat)

## y X
## 1 0.6803514 -2.608953
## 2 3.6747031 -2.554039
## 3 -1.1563508 -2.381275
## 4 2.2657657 -2.280259
## 5 2.5398243 -2.214122
## 6 1.2929592 -2.170532

One could fit the regression model using all available data points, with an I-prior
from the fBm-0.5 RKHS of functions as follows (note that the silent option is used to
suppress the output from the iprior() function):

R> (mod.full <- iprior(y ~ X, dat, kernel = "fbm",
+ control = list(silent = TRUE)))

## Log-likelihood value: -4355.075
##
## lambda psi
## 2.30244 0.23306

To implement the Nyström method, the option nystrom = 50 was added to the func-
tion call, which uses 50 randomly selected data points for the Nyström approximation.

R> (mod.nys <- iprior(y ~ X, dat, kernel = "fbm", nystrom = 50,
+ control = list(silent = TRUE)))

## Log-likelihood value: -1945.33
##
## lambda psi
## 1.64833 0.13538
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Figure 4.11: Plot of predicted regression function for the full model (top) and the Nys-
tröm approximated method (bottom). For the Nyström plot, the data points that were
active are shown by circles with bold outlines.

R> get_time(mod.full); get_size(mod.full, "MB"); get_prederror(mod.full)

## 14.75346 mins
## 128.2 MB
## Training RMSE
## 2.054232

R> get_time(mod.nys); get_size(mod.nys); get_prederror(mod.nys)

## 1.312222 secs
## 982.2 kB
## Training RMSE
## 2.171928
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The hyperparameters estimated for both models are slightly different. The log-
likelihood is also different, but this is attributed to information loss due to the approxi-
mation procedure. Nevertheless, we see from Figure 4.11 that the estimated regression
functions are quite similar in both the full model and the approximated model. The
main difference is that the the Nyström method was not able to extrapolate the right-
hand side of the plot well, because it turns out that there were no data points used
from this region. This can certainly be improved by using a more intelligent sampling
scheme. The full model took a little over 14 minutes to converge, while the Nyström
method took seconds without compromising too much on root mean squared error of
predictions. Storage savings is significantly higher with the Nyström method as well.

4.6 Conclusion

The steps for I-prior modelling are essentially three-fold:

1. Select an appropriate function space (equivalently, kernels) for which specific effects
are desired on the covariates.

2. Estimate the posterior regression function and optimise the hyperparameters, which
include the RKHS scale parameter(s), error precision, and any other kernel param-
eters such as the Hurst index.

3. Perform post-estimation procedures such as

• Posterior predictive checks;

• Model comparison via log-likelihood ratio tests/empirical Bayes factors; and

• Prediction of new data point.

The main sticking point with the estimation procedure is the involvement of the n×n
kernel matrix, for which an inverse is needed. This requires O(n2) storage and O(n3)

computational time. The computational issue faced by I-priors are mirrored in GPR,
so the methods to overcome these computational challenges in GPR can be explored
further. However, most efficient computational solutions exploit the nature of the SE
kernel structure, which is the most common kernel used in GPR. Nonetheless, we suggest
the following as considerations for future work:

1. Sparse variational approximations. Variational methods have seen an active
development in recent times. By using inducing points (Titsias, 2009) or stochastic
variational inference (Hensman et al., 2013), such methods can greatly reduce
computational storage and speed requirements. A recent paper by Cheng and
Boots (2017) also suggests a variational algorithm with linear complexity for GPR-
type models.
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Figure 4.12: Average time taken to complete the estimation of an I-prior model (EM
algorithm and direct optimisation) of varying sample sizes. The solid line represents
actual timings, while the dotted lines are linear extrapolations.

2. Accelerating the EM algorithm. Two methods can be explored. The first is
called parameter-expansion EM algorithm (PXEM) by Liu et al. (1998), which has
been shown to be promising for random-effects type models. It involves correcting
the M-step by a “covariance adjustment”, so that extra information can be capi-
talised on to improve convergence rates. The second is a quasi-Newton acceleration
of the EM algorithm as proposed by Lange (1995). A slight change to the EM gra-
dient algorithm in the M-step steers the EM algorithm to the Newton-Raphson
algorithm, thus exploiting the benefits of the EM algorithm in the early stages
(monotonic increase in likelihood) and avoiding the pitfalls of Newton-Raphson
(getting stuck in local optima). Both algorithms require an in-depth reassessment
of the EM algorithm to be tailored to I-prior models.
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Chapter 5

I-priors for categorical responses

Consider polytomous response variables y = {y1, . . . , yn}, where each yi takes on exactly
one of the values from the set of m possible choices {1, . . . ,m}. Modelling categorical
response variables is of profound interest in statistics, econometrics and machine learn-
ing, with applications aplenty. In the social sciences, categorical variables often arise
from survey responses, and one may be interested in studying correlations between ex-
planatory variables and the categorical response of interest. Economists are frequently
interested in discrete choice models to explain and predict choices between several al-
ternatives, such as consumers’ choices of goods or modes of transport. In this age of big
data, machine learning algorithms are used for classification of observations based on
what is usually a large set of variables or features.

The model (1.1) subject to normality assumptions (1.2) is not entirely appropriate
for polytomous variables y. As an extension to the I-prior methodology, we propose
a flexible modelling framework suitable for regression of categorical response variables.
In the spirit of generalised linear models (McCullagh and Nelder, 1989), we relate class
probabilities of the observations to a normal I-prior regression model via a link function.
Perhaps though, it is more intuitive to view it as machine learners do: since the regression
function is ranged on the entire real line, it is necessary to “squash” it through some
sigmoid function to conform it to the interval [0, 1] suitable for probability ranges.

Expanding on this idea further, assume that the yi’s follow a categorical distribution,
i = 1, . . . , n, denoted by

yi ∼ Cat(pi1, . . . , pim),

with the class probabilities satisfying pij ≥ 0,∀j = 1, . . . ,m and
∑m

j=1 pij = 1. The
probability mass function (pmf) of yi is given by

p(yi) = p
[yi=1]
i1 · · · p[yi=m]

im ,
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where the notation [·] refers to the Iverson bracket1. As a side note, when there are only
two possibilities for each outcome yi, i.e. m = 2, we have the Bernoulli distribution.
The class probabilities are made to depend on the covariates through the relationship

g(pi1, . . . , pim) =
(
α1 + f1(xi), . . . , αm + fm(xi)

)
,

where g : [0, 1]m → Rm is some specified link function. As we will see later, an under-
lying normal regression model as in (1.1) subject to (1.2) naturally implies a probit link
function. With an I-prior assumed on the fj ’s, we call this method of probit regression
using I-priors the I-probit regression model.

Due to the nature of the model assumptions, unfortunately the posterior distribution
of the regression functions cannot be found in closed form. In particular, marginalising
the I-prior from the joint likelihood involves a high-dimensional intractable integral (c.f.
Equation5.10). Similar problems are encountered in mixed logistic or probit multinomial
models (Breslow and Clayton, 1993; McCulloch et al., 2000) and also in Gaussian process
classification (Neal, 1999; Rasmussen and Williams, 2006). In these models, Laplace
approximation for maximum likelihood (ML) estimation or Markov chain Monte Carlo
(MCMC) methods for Bayesian estimation are used. We instead explore a variational
approximation to the marginal log-likelihood, and by extension, to the posterior density
of the regression functions. The main idea is to replace the difficult posterior distribution
with an approximation that is tractable to be used within an EM framework. As such,
the computational work derived in the previous section is applicable for the estimation
of I-probit models as well.

As in the normal I-prior model, the I-probit model estimated using a variational EM
algorithm is seen as an empirical Bayes method of estimation, since the model parameters
are replaced with their (pseudo) ML estimates. It is emphasised again, that working in
such a semi-Bayesian framework allows fast estimation of the model in comparison to
traditional MCMC, yet provides us with the conveniences that come with Bayesian
machinery. For example, inferences around log odds is usually cumbersome for probit
models, but a credibility interval can easily be obtained by resampling methods from the
posterior distribution of the regression function, which, as we shall see, is approximated
to be normally distributed.

By choosing appropriate RKHSs/RKKSs for the regression functions, we are able to
fit a multitude of binary and multinomial models, including multilevel or random-effects
models, linear and non-linear classification models, and even spatio-temporal models.
Examples of these models applied to real-world data is shown in Section 5.7. We find
that the many advantages of the normal I-prior methodology transfer over quite well to
the I-probit model for binary and multinomial regression.

1[A] returns 1 if the proposition A is true, and 0 otherwise. The Iverson bracket is a generalisation
of the Kronecker delta.
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5.1 A latent variable motivation: the I-probit model

We derive the I-probit model through a latent variable motivation. It is convenient,
as we did in Section 4.1.4 (p. 106), to again think of the responses yi ∈ {1, . . . ,m}
as comprising of a binary vector yi· = (yi1, . . . , yim)⊤, with a single ‘1’ at the position
corresponding to the value that yi takes. That is,

yij =

1 if yi = j

0 if yi ̸= j.

With yi
iid∼ Cat(pi1, . . . , pim) for i = 1, . . . , n, each yij is distributed as Bernoulli with

probability pij , j = 1, . . . ,m according to the above formulation. Now, assume that,
for each yi1, . . . , yim, there exists corresponding continuous, underlying, latent variables
y∗i1, . . . , y

∗
im such that

yi =



1 if y∗i1 ≥ y∗i2, y∗i3, . . . , y∗im
2 if y∗i2 ≥ y∗i1, y∗i3, . . . , y∗im
...

m if y∗im ≥ y∗i2, y∗i3, . . . , y∗im−1.

(5.1)

In other words, yij = arg maxm
k=1 y

∗
ik. Such a formulation is common in economic choice

models, and is rationalised by a utility-maximisation argument: an agent faced with a
choice from a set of alternatives will choose the one which benefits them most. In this
sense, the y∗ij ’s represent individual i’s latent propensities for choosing alternative j.

Instead of modelling the observed yij ’s directly, we model instead, for observation
i = 1, . . . , n, the m latent variables corresponding to each class or response category
j = 1, . . . ,m according to the regression problem

y∗ij = α+ αj + fj(xi) + ϵij

(ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1),

(5.2)

with α being the grand intercept, αj group or class intercepts, and fj : X → R a
regression function belonging to some RKKS F of functions over the covariate set X
with reproducing kernel hη. We can see some semblance of this model with the one
in (4.7), and ultimately the aim is to assign I-priors to the regression function of these
latent variables, which we shall describe shortly. For now, write µ(xi) ∈ Rm whose
j’th component is α + αj + fj(xi), and realise that each y∗

i· = (y∗i1, . . . , y
∗
im)⊤ has the

distribution Nm(µ(xi),Ψ
−1), conditional on the data xi, the intercepts α, α1, . . . , αm,

the evaluations of the functions at xi for each class f1(xi), . . . , fm(xi), and the error
covariance matrix Ψ−1.
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The probability pij of observation i belonging to class j (or responding into category
j) is then calculated as

pij = P(yi = j)

= P
(
{y∗ij > y∗ik | ∀k ̸= j}

)
=

∫
· · ·
∫

{y∗ij>y∗ik | ∀k ̸=j}

ϕ(y∗i1, . . . , y
∗
im|µ(xi),Ψ−1)dy∗i1 · · · dy∗im, (5.3)

where ϕ(·|µ,Σ) is the density of the multivariate normal with mean µ and variance
Σ. This is the probability that the normal random variable y∗

i· belongs to the set
Cj := {y∗ij > y∗ik | ∀k ̸= j}, which are cones in Rm. Since the union of these cones is
the entire m-dimensional space of reals, the probabilities add up to one and hence they
represent a proper probability mass function (pmf) for the classes. For reference, we
define our probit link function g−1

j (·|Ψ) : Rm → [0, 1] by the mapping

µ(xi) 7→
∫
Cj
ϕ(y∗|µ(xi),Ψ−1)dy∗. (5.4)

While this does not have a closed-form expression and highlights one of the difficulties
of working with probit models, the integral is by no means impossible to compute—see
Section 5.6.1 for a note regarding this matter.

Now, we’ll see how to specify an I-prior on the regression problem (5.2). In the naïve
I-prior classification model (Section 4.1.4, p. 106), we wrote f(xi, j) = αj + fj(xi), and
called for f to belong to an ANOVA RKKS with kernel defined in (4.6). Instead of doing
the same, we take a different approach. Treat the αj ’s in (5.2) as intercept parameters
to estimate with the additional requirement that

∑m
j=1 αj = 0. Further, let F be a

(centred) RKHS/RKKS of functions over X with reproducing kernel hη. Now, consider
putting an I-prior on the regression functions fj ∈ F , j = 1 . . . ,m, defined by

fj(xi) = f0(xi, j) +
n∑

k=1

hη(xi, xk)wkj

with wi· := (wi1, . . . , wim)⊤
iid∼ N(0,Ψ). This is similar to the naïve I-prior specification

(4.7), except that the intercept have been treated as parameters rather than account-
ing for them using an RKHS of functions (Pearson RKHS or identity kernel RKHS).
Importantly, the overall regression relationship still satisfies the ANOVA functional de-
composition, because the αj ’s sum to zero. We find that this approach, rather than
the I-prior specification described in the naïve classification, bodes well down the line
computationally.
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We call the multinomial probit regression model of (5.1) subject to (5.2) and I-priors
on fj ∈ F , the I-probit model. For completeness, this is stated again: for i = 1, . . . , n,
yi = arg maxm

k=1 y
∗
ik ∈ {1, . . . ,m}, where, for j = 1, . . . ,m,

y∗ij = α+ αj +

fj(xi)︷ ︸︸ ︷
f0(xi, j) +

n∑
k=1

hη(xi, xk)wkj + ϵij

ϵi· := (ϵi1, . . . , ϵim)⊤
iid∼ Nm(0,Ψ−1)

wi· := (wi1, . . . , wim)⊤
iid∼ Nm(0,Ψ).

(5.5)

The parameters of the I-probit model are denoted by θ = {α1, . . . , αm, η,Ψ}. To estab-
lish notation, let

• ϵ ∈ Rn×m denote the matrix containing (i, j) entries ϵij , whose rows are ϵi·,
columns are ϵ·j , and is distributed ϵ ∼ MNn,m(0, In,Ψ−1);

• w ∈ Rn×m denote the matrix containing (i, j) entries wij , whose rows are wi·,
columns are w·j , and is distributed w ∼ MNn,m(0, In,Ψ);

• f, f0 ∈ Rn×m denote the matrices containing (i, j) entries fj(xi) and f0(xi, j) re-
spectively, so that f = f0 + Hηw ∼ MNn,m(1nf⊤0 ,H2

η,Ψ);

• α = (α+ α1, . . . , α+ αm)⊤ ∈ Rm be the vector of intercepts;

• µ = 1nα
⊤ + f, whose (i, j) entries are µj(xi) = α+ αj + fj(xi); and

• y∗ ∈ Rn×m denote the matrix containing (i, j) entries y∗ij , that is, y∗ = µ + ϵ, so
y∗|w ∼ MNn,m(µ = 1nα

⊤ + Hηw, In,Ψ−1) and vec y∗ ∼ Nnm

(
vec(1nα

⊤),Ψ ⊗
H2

η + Ψ−1 ⊗ In
)
—note that the marginal distribution of y∗ cannot be expressed

as a matrix normal, except when Ψ = Im.

In the above, we have made use of matrix normal distributions, denoted by MN(·, ·). The
definition and properties of matrix normal distributions can be found in (Appendix C.2,
p. 279).

Before proceeding with estimating the I-probit model (5.5), we lay out several stand-
ing assumptions:

A4 Centred responses. Set α = 0.

A5 Zero prior mean. Assume a zero prior mean f0(x) = 0 for all x ∈ X .

A6 Fixed error precision. Assume Ψ is fixed.

Assumption A4 is a requirement for identifiability, while A5 is motivated by a similar
argument to assumption A2 in the normal I-prior model. While estimation of Ψ would
add flexibility to the model, several computational issues were not able to be resolved
within the time limitations of completing this project (see Section 5.6.3).
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5.2 Identifiability and IIA

The parameters in the standard linear multinomial probit model are well known to be
unidentified (Keane, 1992; Train, 2009), and we find this to be the case in the I-probit
model as well. Unrestricted probit models are not identified for two reasons. Firstly,
an addition of a non-zero constant a ∈ R to the latent variables y∗ij ’s in (5.1) will not
change which latent variable is maximal, and therefore leaves the model unchanged. It is
for this reason that assumptions A4 and A5 are imposed. Secondly, all latent variables
can be scaled by some positive constant c ∈ R>0 without changing which latent variable
is largest. Together, this means that m-variate normal distribution Nm

(
µ(xi),Ψ

−1
)

of the underlying latent variables y∗
i· would yield the same class probabilities as the

multivariate normal distribution Nm

(
a1m + cµ(xi), c

2Ψ−1
)
, according to (5.3). There-

fore, the multinomial probit model is not identified as there exists more than one set of
parameters for which the categorical likelihood

∏
i,j pij is the same.

Identification issues in the probit model is resolved by setting one restriction on the
intercepts α1, . . . , αm (location) and m+1 restrictions on the precision matrix Ψ (scale).
Restrictions on the intercepts include

∑m
j=1 αj = 0 or setting one of the intercepts to zero.

In this work, we apply the former restriction to the I-probit model, as this is analogous
to the requirement of zero-mean functions in the functional ANOVA decomposition.
If A6 holds, then location identification is all that is needed to achieve identification.
However, if Ψ is a free parameter to be estimated, only m(m− 1)/2− 1 parameters are
identified. Many possible specifications of the restriction on Ψ is possible, depending on
the number of alternatives m and the intended effect of Ψ (to be explained shortly):

• Case m = 2 (minimum number of restrictions = 3).

Ψ =

(
1

0 0

)
, or Ψ =

(
1

0 1

)

• Case m = 3 (minimum number of restrictions = 4).

Ψ =

 1

ψ12 ψ22

0 0 0

 , or Ψ =

1

0 ψ22

0 0 ψ33


• Case m ≥ 4 (minimum number of restrictions = m+ 1).

Ψ =


1

ψ12 ψ22
...

... . . .
ψ1,m−1 ψ2,m−1 · · · ψm−1,m−1

0 0 · · · 0 0

 , or Ψ =


ψ11

ψ22

. . .
ψmm


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Remark 5.1. Identification is most commonly achieved by fixing the latent propensities
of one of the classes to zero and fixing one element of the covariance matrix (Bunch,
1991; Dansie, 1985). Fixing the last class, say, to zero, i.e. y∗im = 0, ∀i = 1, . . . , n has
the effect of shrinking Ψ to an (m − 1) matrix, and thus one more restriction needs to
be made (typically, Ψ11 is set to one). This speaks to the fact that the absolute values
of the latent propensities themselves do not matter, and only their relative differences
do. We also remark that for the binary case (m = 2), setting the latent propensities for
the second class to zero and fixing the remaining variance parameter to unity yields

pi1 = P(y∗i1 > y∗i2 = 0)

= P
(
α1 + f1(xi) + ϵi1 > 0 | ϵi1

iid∼ N(0, 1)
)

= Φ
(
α1 + f1(xi)

)
(5.6)

and pi2 = 1−Φ
(
α1 + f1(xi)

)
, i = 1, . . . , n—the familiar binary probit model. Note that

in the binary case only one set of latent propensities need to be estimated, so we can
drop the subscript ‘1’ in the above equations. In fact, for m classes, only m− 1 sets of
regression functions need to be estimated (since one of them needs to be fixed), but in
the multinomial presentation of this thesis we define regression functions for each class.

Now, we turn to a discussion of the role of Ψ in the model. In decision theory, the
independence axiom states that an agent’s choice between a set of alternatives should
not be affected by the introduction or elimination of a choice option. The probit model
is suitable for modelling multinomial data where the independence axiom, which is also
known as the independence of irrelevant alternatives (IIA) assumption, is not desired.
Such cases arise frequently in economics and social science, and the famous Red-Bus-
Blue-Bus example is often used to illustrate IIA: suppose commuters face the decision
between taking cars and red busses. The addition of blue busses to commuters’ choices
should, in theory, be more likely chosen by those who prefer taking the bus over cars.
That is, assuming commuters are indifferent about the colour of the bus, commuters who
are predisposed to taking the red bus would see the blue bus as an identical alternative.
Yet, if IIA is imposed, then the three choices are distinct, and the fact that red and blue
busses are substitutable is ignored.

To put it simply, the model is IIA if choice probabilities depend only on the choice
in consideration, and not on any other alternatives. In the I-probit model, or rather, in
probit models in general, choice dependency is controlled by the error precision matrix Ψ.
Specifically, the off-diagonal elements Ψjk capture the correlations between alternatives
j and k. Allowing all m(m + 1)/2 covariance elements of Ψ to be non-zero leads to
the full I-probit model, and would not assume an IIA position. Figure 5.1 illustrates
the covariance structure for the marginal distribution of the latent propensities, Vy∗ =

Ψ⊗H2
η +Ψ−1 ⊗ In, and of the I-prior Vf = Ψ⊗H2

η.
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j = 1 j = 2 · · · j = m

j = 1 V[1, 1] V[1, 2] · · · V[1,m]

j = 2 V[2, 1] V[2, 2] · · · V[2,m]

...
...

...
. . .

...

j = m V[m, 1] V[m, 2] · · · V[m,m]

j = 1 j = 2 · · · j = m

V[1, 1]

V[2, 2]

. . .

V[m,m]

Figure 5.1: Illustration of the covariance structure of the full I-probit model (left) and
the independent I-probit model (right). The full model has m2 blocks of n×n symmetric
matrices, and the blocks themselves are arranged symmetrically about the diagonal. The
independent model, on the other hand, has a block diagonal structure, and its sparsity
induces simpler computational methods for estimation.

While it is an advantage to be able to model the correlations across choices (unlike in
logistic models), there are applications where the IIA assumption would not adversely
affect the analysis, such as classification tasks. Some analyses might also be indifferent
as to whether or not choice dependency exists. In these situations, it would be beneficial,
algorithmically speaking, to reduce the I-probit model to a simpler version by assuming
Ψ = diag(ψ1, . . . , ψm), which would trigger an IIA assumption in the I-probit model.
We refer to this model as the independent I-probit model. The independence structure
causes the distribution of the latent variables to be y∗ij ∼ N(µk(xi), σ

2
j ) independently

for j = 1, . . . ,m, where σ2j = ψ−1
j . As a continuation of line (5.3), we can show the class

probabilities pij to be

pij =

∫
· · ·
∫

{y∗ij>y∗ik|∀k ̸=j}

m∏
k=1

{
ϕ(y∗ik|µk(xi), σ2k)dy∗ik

}

=

∫ m∏
k=1
k ̸=j

Φ

(
y∗ij − µk(xi)

σk

)
ϕ(y∗ij |µj(xi), σ2j )dy∗ij

= EZ

[
m∏
k=1
k ̸=j

Φ

(
σj
σk
Z +

µj(xi)− µk(xi)
σk

)]
(5.7)

where Z ∼ N(0, 1), Φ(·) its cdf, and ϕ(·|µ, σ2) is the pdf of X ∼ N(µ, σ2). Equation 5.3
is thus simplified to a unidimensional integral involving the Gaussian pdf and cdf, which
can be computed fairly efficiently using quadrature methods.
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5.3 Estimation

The premise of the I-probit model is having regression functions capture the dependence
of the covariates on a latent, continuous scale using I-priors, and then transforming
these regression functions onto a probability scale. Therefore, as with the normal I-prior
model, an estimate of the posterior regression function with optimised hyperparameters
is sought. A schematic diagram depicting the I-probit model is shown in Figure 5.2.

xi

fij

η

wij

y∗ij pij yi

αj

Ψ

h

g−1

i = 1, . . . , n

j = 1, . . . ,m

Figure 5.2: A directed acyclic graph (DAG) of the I-probit model. Observed or fixed
nodes are shaded, while double-lined nodes represents calculable quantities.

The log likelihood function for θ using all n observations {(y1, x1), . . . , (yn, xn)} is
obtained by performing the following integration:

L(θ|y) = log
∫∫

p(y|y∗, θ)p(y∗|w, θ)p(w|θ)dy∗ dw. (5.8)

Here, p(w|θ) is the pdf of MNn,m(0, In,Ψ), p(y∗|w, θ) is the pdf of MNn,m(1nα
⊤ +

Hηw, In,Ψ−1), and p(y|y∗, θ) =
∏n

i=1

∏m
j=1

[
y∗ij = max y∗

i·
][yi=j], with 00 := 1. Note

that, given the corresponding latent propensities y∗
i· = (y∗i1, . . . , y

∗
im)⊤, the distribution

yi|y∗
i· is tantamount to a degenerate categorical distribution: with knowledge of which

latent propensities is largest, the outcome of the categorical response becomes a certainty.

The integral appearing in (5.8) is of order 2nm, and so presents a massive compu-
tational challenge for classical numerical integration methods. This can be reduced by
either integrating out the random effects w or the latent propensities y∗ separately.
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Continuing on (5.8) gets us to either

L(θ) = log
∫
p(y|y∗, θ)p(y∗|θ)dy∗

= log
∫ { n∏

i=1

m∏
j=1

[
y∗ij = max y∗

i·
][yi=j]

}
ϕ(y∗|1nα

⊤,Ψ⊗H2
η +Ψ−1 ⊗ In)dy∗

= log
∫
∩n

i=1{y∗iyi>y∗ik|∀k ̸=yi}
ϕ(y∗|1nα

⊤,Ψ⊗H2
η +Ψ−1 ⊗ In)dy∗, (5.9)

by recognising that
∫
p(y∗|w, θ)p(w|θ)dw has a closed-form expression since it is an

integral involving two Gaussian densities, or

L(θ) = log
∫
p(y|w, θ) p(w|θ)dw

= log
∫ n∏

i=1

{
m∏
j=1

(
g−1
j

( µ(xi)︷ ︸︸ ︷
α+ w⊤hη(xi) |Ψ

))[yi=j]
ϕ(wi·|0,Ψ)dwi·

}
, (5.10)

where we have denoted the class probabilities pij from (5.3) using the function g−1
j (·|Ψ) :

Rm → [0, 1]. Unfortunately, neither of these two simplifications are particularly helpful.
In (5.9), the integral represents the probability of a mn-dimensional normal variate which
is not straightforward to calculate, because its covariance matrix is dense. In (5.10), the
integral has no apparent closed-form. The unavailability of an efficient, reliable way of
calculating the log-likelihood hampers hope of obtaining parameter estimates via direct
likelihood maximisation methods.

Furthermore, the posterior density of the regression function f = Hηw, which requires
the posterior density of w obtained via p(w|y) ∝ p(y|w)p(w), has normalising constant
equal to L(θ), which is intractable. The challenge of estimation is then to first overcome
this intractability by means of a suitable approximation of the marginalising integral. We
present three possible avenues to achieve this aim, namely the Laplace approximation,
a variational EM algorithm, and Markov chain Monte Carlo (MCMC) methods.

5.3.1 Laplace approximation

The focus here is to obtain the posterior density p(w|y) ∝ p(y|w)p(w) =: eR(w) which
has normalising constant equal to the marginal density of y, p(y) =

∫
eR(w) dw, as per

(5.10). Note that the dependence of the pdfs on θ is implicit, but is dropped for clarity.
Laplace’s method (Kass and Raftery, 1995, Sec. 4.1.1) entails expanding a Taylor series
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for R about its posterior mode ŵ = arg maxw p(y|w)p(w), which gives the relationship

R(w) = R(ŵ) +
���������:0

(w− ŵ)⊤∇R(ŵ) − 1

2
(w− ŵ)⊤Ω(w− ŵ) + · · ·

≈ R(ŵ) +−1

2
(w− ŵ)⊤Ω(w− ŵ),

because, assuming that R has a unique maximum, ∇R evaluated at its mode is zero.
This is recognised as the logarithm of an unnormalised Gaussian density, implying w|y ∼
Nn(ŵ,Ω−1). Here, Ω = −∇2R(w)|w=ŵ is the negative Hessian of Q evaluated at the
posterior mode, and is typically obtained as a byproduct of the maximisation routine of
R using gradient or quasi-gradient based methods.

The marginal distribution is then approximated by

p(y) =
∫

exp

≈ R(ŵ)− 1
2
(w−ŵ)⊤Ω(w−ŵ)︷ ︸︸ ︷
R(w)dw

≈ (2π)n/2|Ω|−1/2eR(ŵ)

∫
(2π)−n/2|Ω|1/2 exp

(
−1

2
(w− ŵ)⊤Ω(w− ŵ)

)
dw

= (2π)n/2|Ω|−1/2p(y|ŵ)p(ŵ).

The log marginal density of course depends on the parameters θ, which becomes the
objective function to maximise in a likelihood maximising approach. Note that, should
a fully Bayesian approach be undertaken, i.e. priors prescribed on the model parameters
using θ ∼ p(θ), then this approach is viewed as a maximum a posteriori approach.

In any case, each evaluation of the objective function L(θ) = log p(y|θ) involves
finding the posterior modes ŵ. This is a slow and difficult undertaking, especially for
large sample sizes n—even assuming computation of the class probabilities is efficient—
because the dimension of this integral is exactly the sample size. Perhaps, for a future
study, the integrated nested Laplace approximation (INLA, Rue et al., 2009) could be
looked at.

Standard errors for the parameters can be obtained from diagonal entries of the in-
formation matrix involving the second derivatives of log p(y). However, it is not known
whether the asymptotic variance of the parameters are affected by a Laplace approxi-
mation to the likelihood.

Lastly, as a comment, Laplace’s method only approximates the true marginal likeli-
hood well if the true posterior density function is small far away from the mode. In other
words, a second order approximation of R(w) must be be reliable for Laplace’s method
to be successful. This is typically the case if the posterior distribution is symmetric
about the mode and falls quickly in the tails.
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5.3.2 Variational EM algorithm

We turn to variational methods as a means of approximating the posterior densities of
interest and obtain parameter estimates. Variational methods are widely discussed in
the machine learning literature, but there have been efforts to popularise it in statistics
(Blei et al., 2017). Although variational inference is typically seen as a fully Bayesian
method, whereby approximate posterior densities are sought for the latent variables and
parameters, our goal is to apply variational inference to facilitate a pseudo maximum
likelihood approach.

Consider employing an EM algorithm, similar to the one seen in the previous chapter,
to estimate I-probit models. This time, treat both the latent propensities y∗ and the
I-prior random effects w as “missing”, so the complete data is {y,y∗,w}. Now, due to
the independence of the observations i = 1, . . . , n, the complete data log-likelihood is

L(θ|y,y∗,w) = log p(y,y∗,w|θ)

=

n∑
i=1

log p(yi|y∗
i·) + log p(y∗|w) + log p(w)

= const. +
�����1

2
log|Ψ| − 1

2
tr
(
Ψ(y∗ − 1nα

⊤ −Hηw)⊤(y∗ − 1nα
⊤ −Hηw)

)
������
−1

2
log|Ψ| − 1

2
tr
(
Ψ−1w⊤w

)
(5.11)

which looks like the complete data log-likelihood seen previously in (4.18) (Section 4.2.3,
p. 113), except that here, together with w, the y∗

i·’s are not observed.

For the E-step, it is of interest to determine the posterior density p(y∗,w|y) =

p(y∗|w,y)p(w|y). We have discerned from the discussion at the beginning of this section
that this is hard to obtain, since it involves an intractable marginalising integral. We
thus seek a suitable approximation

p(y∗,w|y, θ) ≈ q̃(y∗,w),

where q̃ satisfies q̃ = arg minq DKL(q∥p) = arg minq

∫
log q(y∗,w)

p(y∗,w|y,θ)q(y
∗,w)dz, subject

to certain constraints. The constraint considered by us in this thesis is that q satisfies a
mean-field factorisation

q(y∗,w) = q(y∗)q(w).

Under this scheme, the variational distribution for y∗ is found to be a conically truncated
multivariate normal distribution, and for w, a multivariate normal distribution.
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It can be shown that, for any variational density q, the marginal log-likelihood is an
upper-bound for the quantity Lq(θ) := L(q, θ) defined by

log p(y|θ) ≥ Ey∗,w∼q[log p(y,y∗,w|θ)]− Ey∗,w∼q[log q(y∗,w)] =: L(q, θ),

a quantity often referred to as the evidence lower bound (ELBO). It turns out that
minimising DKL(q∥p) is equivalent to maximising the ELBO, a quantity that is more
practical to work with than the KL divergence, and certainly more tractable than the
log marginal density. Hence, if q approximates the true posterior well, then the ELBO
is a suitable proxy for the marginal log-likelihood.

In practice, obtaining ML parameter estimates and the posterior density q(y∗,w)

which maximises the ELBO is achieved using a variational EM algorithm, an EM algo-
rithm in which the conditional distribution are replaced with a variational approxima-
tion. The t’th E-step entails obtaining the density q(t+1) as a solution to arg maxq L(q, θ),
keeping θ fixed at the current estimate θ(t). Let ȳ∗ = y∗−1nα

⊤. The objective function
to be maximised is computed as

Q(θ) = Ey∗,w∼q(t+1) [log p(y,y∗,w|θ)]

= const.− 1

2
tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)

− 1

2
tr
(
Ψ
{

E(y∗⊤y∗) + nαα⊤ − 2α1⊤
n E y∗ − 2E(w⊤)Hη

(
E y∗ − 1nα

⊤)}),
(5.12)

and this is maximised with respect to θ in the M-step to obtain θ(t+1). The algorithm
alternates between the E- and M-step until convergence of the ELBO. A full derivation
of the variational EM algorithm used by us will be described in Section 5.4.

5.3.3 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods is the tool of choice for a complete
Bayesian analysis of multinomial probit models (McCulloch et al., 2000; Nobile, 1998).
Albert and Chib (1993) showed that a data augmentation approach, i.e. the latent vari-
able approach, to probit models can be analysed using exact Bayesian methods, due to
the underlying normality structure. Paired with corresponding conjugate prior choices,
sampling from the posterior is very simple using a Gibbs sampling approach. That is,
assuming a prior distribution on the parameters θ ∼ p(θ), the model with likelihood
given by (5.8) obtains posterior samples {y∗(t),w(t), θ(t)}Tt=1 from their respective Gibbs
conditional distributions. In particular, y∗|y,w, θ is distributed according to a truncated
multivariate normal, while w|y,y∗, θ a multivariate normal. These conditional distri-
butions are exactly of the same form as the ones obtained under a variational scheme.
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The difference is that in MCMC, sampling from posterior distributions is performed,
whereas in a variational inference framework, a deterministic update of the variational
distributions is performed.

A downside to the data augmentation scheme for probit models in a MCMC frame-
work is that it enlarges the variable space by an additional nm dimensions, which is
memory inefficient for large n. The models with likelihood (5.9) or (5.10) after inte-
grating out w and y∗ respectively, is less demanding for MCMC sampling than the
model with likelihood (5.8). However, as mentioned already, (5.9) contains an integral
involving an mn-variate normal distribution whose covariance matrix is dense, and as
far as we are aware, the Kronecker product structure cannot be exploited for efficiency
in sampling. This leaves (5.10), a non-conjugate model whose full conditional densities
are not of recognisable form. Hamiltonian Monte Carlo (HMC) is another possibility,
since it does not require conjugacy. For binary models, this is a feasible approach be-
cause the class probabilities normal cdfs (c.f. Equation 5.6), which means that it is
doable using off-the-shelf software such as Stan. However, with multinomial responses,
the arduous task of computing class probabilities, which involve integration of an at
most m-dimensional normal density, must be addressed separately.

5.3.4 Comparison of estimation methods

In this subsection, we utilise a toy binary classification data set which has been simulated
according to a spiral pattern, as in Figure 5.3. The predictor variables are X1 and X2,
each of which are scaled similarly. Following (5.6), the binary I-probit model that is
fitted is

yi ∼ Bern(pi)

Φ−1(pi) = α+

f(xi)︷ ︸︸ ︷
n∑

k=1

hλ(xi, xk)wk

w1, . . . , wn
iid∼ N(0, 1),

where hλ is the (scaled) kernel of the fBm-0.5 RKHS F to which f belongs.

We carry out the three estimation precodures described above (Laplace’s method,
variational EM, and HMC) to compare parameter estimates, (training) error rates, and
runtime. The Laplace and variational EM methods were performed in the iprobit pack-
age, while Stan was used to code the HMC sampler. Prior choices for the fully Bayesian
methods were: 1) a vague folded-normal prior λ ∼ N+(0, 100) for the RKHS scale pa-
rameter, and 2) a diffuse prior for the intercept p(α) ∝ const. Note that the restriction
of λ to the positive orthant is required for identifiability. The results are presented in
Table 5.1.
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Figure 5.3: A scatter plot of simulated spiral data set.

The three methods pretty much concur on the estimation of the intercept, but not
on the RKHS scale parameter. As a result, the log-density value calculated at the
parameter estimates is also different in all three methods. Notice the high posterior
standard deviation for the scale parameter in the HMC method. The posterior density
for λ was very positively skewed, and this contributed to the large posterior mean.

Table 5.1: Table comparing the estimated parameter values, (marginal) log-likelihood
values, and also time taken (in seconds) for the three estimation methods.

Laplace approximation Variational EM Hamiltonian MC
Intercept (α) -0.02 (0.03) 0.00 (0.06) 0.00 (0.58)
Scale (λ) 0.85 (0.01) 5.67 (0.23) 29.3 (5.21)
Log-density -171.8 -43.2 -8.5
Error rate (%) 44.7 0.00 0.00
Brier score 0.20 0.02 0.01
Iterations 20 56 2000
Time taken (s) >3600 5.32 >1800

A plot of the log-likelihood (or ELBO) surface for three methods in Figure 5.4 reveals
some insight. The variational likelihood has two ridges, with the maxima occurring
around the intersection of these two ridges. The Laplace likelihood seems to indicate a
similar shape—in both the Laplace and variational method, the posterior distribution
of w is approximated by a Gaussian distribution, with different means and variances.
However, parts of the Laplace likelihood are poorly approximated resulting in a loss of
fidelity around the supposed maxima, which might have contributed to the set of values
that were estimated. Laplace’s method is known to yield poor approximations to probit
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(a) Laplace approximation
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(b) Variational EM
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(c) Hamiltonian MC

Figure 5.4: Plots showing predicted probabilities (shaded region) for belonging to class
‘1’ or ‘2’ indicated by colour and intensity, and log-likelihood/ELBO surface plots for
(a) Laplace’s method, (b) variational EM, and (c) HMC. For the likelihood plot relating
to Hamiltonian Monte Carlo, parameters are treated as fixed, and the mean log-density
of the I-probit model recorded.
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model likelihoods (Kuss and Rasmussen, 2005). On the other hand, the log-likelihood
calculated using an HMC sampler (treating parameters as fixed values) yields a slightly
different graph: the log-likelihood increases as values of α become larger, resulting in
the upwards inflection of the log-likelihood surface (as opposed to a downward inflection
seen in the variational and Laplace likelihood).

In terms of predictive abilities, both the variational and HMC methods, even though
the posteriors are differently estimated, have good predictive performance as indicated
by their error rates and Brier scores2. Figure 5.4 shows that HMC is more confident of
new data predictions compared to variational inference, as indicated by the intensity of
the shaded regions (HMC is shaded stronger than variational EM). Laplace’s method
gave poor predictive performance.

Finally, on the computational side, variational inference was by far the fastest method
to fit the model. Sampling using HMC was very slow, because the parameter space is
in effect O(n + 2) (parameters are {w1, . . . , wn, α, λ} under the model with likelihood
(5.10), i.e. without the data augmentation scheme). As for Laplace, each Newton step
involves obtaining posterior modes of the wi’s, and this contributed to the slowness of this
method. The reality is that variational inference takes seconds to complete what either
the Laplace or full MCMC methods would take minutes or even hours to. The predictive
performance, while not as good as HMC, is certainly an acceptable compromise in favour
of speed.

5.4 The variational EM algorithm for I-probit models

We present an EM algorithm to estimate the I-probit latent variables y∗ and w, in which
the E-step consists of a mean-field variational approximation of the conditional density
p(y∗,w|y, θ) = q(y∗)q(w). As per assumptions A4, A5 and A6, the parameters of the
I-probit model consists of θ = {α = (α1, . . . , αm)⊤, η}.

The algorithm cycles through a variational inference E-step, in which the variational
density q(y∗,w) =

∏n
i=1 q(y∗

i·)q(w) is optimised with respect to the Kullback-Leibler di-
vergence DKL

(
q(y∗,w)∥p(y∗,w|y)

)
, and an M-step, in which the approximate expected

joint density (5.12) is maximised with respect to the parameters θ. Convergence is as-
sessed by monitoring the ELBO. Apart from the fact that the variational EM algorithm
uses approximate conditional distributions and involves matrices y∗ and w, it is very
similar to the EM described in Chapter 4, and as such, the efficient computational work
derived there is applicable.

2The Brier score is defined as 1
n

∑n
i=1

∑m
j=1(yij − p̂ij) with yij = 1 if yi = j and zero otherwise, and

p̂ij is the fitted probability P̂(yi = j). It gives a better sense of training/test error, compared to simple
misclassification rates, by accounting for the forecasted probabilities of the events happening. The Brier
score is a proper scoring rule, i.e. it is uniquely minimised by the true probabilities.
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5.4.1 The variational E-step

Let q̃(y∗,w) be the pdf that minimises the Kullback-Leibler divergence DKL
(
q∥p
)

subject
to the mean-field constraint q(y∗,w) = q(y∗)q(w). By appealing to Bishop (2006, Eq.
10.9, p. 466), the optimal mean-field variational density q̃ for the latent variables y∗ and
w satisfy

log q̃(y∗) = Ew∼q̃[log p(y,y∗,w)] + const. (5.13)

log q̃(w) = Ey∗∼q̃[log p(y,y∗,w)] + const. (5.14)

where p(y,y∗,w) = p(y|y∗)p(y∗|w)p(w) is as per (5.8). We now present the variational
densities q̃(y∗) and q̃(w). For further details on the derivation of these densities, please
refer to Appendix H (p. 303).

Variational distribution for the latent propensities y∗

The fact that the rows y∗
i· ∈ Rm, i = 1, . . . , n of y∗ ∈ Rn×m are independent can be

exploited, and this results in a further induced factorisation q(y∗) =
∏n

i=1 q(y∗
i ). Define

the set Cj = {y∗ij > y∗ik | ∀k ̸= j}. Then q(y∗
i·) is the density of a multivariate normal

distribution with mean µ̃i· = α + w̃⊤hη(xi), where w̃ = Ew∼q̃(w), and variance Ψ−1,
subject to a truncation of its components to the set Cyi . That is, for each i = 1, . . . , n

and noting the observed categorical response yi ∈ {1, . . . ,m} for the i’th observation,
the y∗

i ’s are distributed according to

y∗
i·

iid∼

Nm(µ̃i·,Ψ−1) if y∗iyi > y∗ik, ∀k ̸= yi

0 otherwise.
(5.15)

We denote this by y∗
i·

iid∼ tN(µ̃i·,Ψ−1, Cyi), and the important properties of this distri-
bution are explored in the appendix.

The required expectation ỹ∗
i := Ey∗

i∼q̃(y∗
i·) = Ey∗∼q̃(y

∗
i1, . . . , y

∗
im)⊤ in the M-step can

be tricky to obtain. One strategy that can be considered is Monte Carlo integration:
using samples from Nm(µ̃i·,Ψ−1), disregard those that do not satisfy the condition
y∗iyi > y∗ik,∀k ̸= j, and then take the sample average. This works reasonably well so long
as the truncation region does not fall into the extreme tails of the multivariate normal.
Alternatively, a Gibbs-based approach (Robert, 1995) for sampling from a truncated
multivariate normal can be implemented, and this is detailed in Appendix C.4.

If the independent I-probit model is under consideration, whereby the covariance
matrix has the independent structure Ψ = diag(σ−2

1 , . . . , σ−2
m ), then the first moment
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can be considered componentwise. Each component of this expectation is given by

ỹ∗ik =


µ̃ik − σkC−1

i

∫
ϕik(z)

∏
l ̸=k,yi

Φil(z)ϕ(z)dz if k ̸= yi

µ̃iyi − σyi
∑

k ̸=yi

(
ỹ∗ik − µ̃ik

)
if k = yi

(5.16)

with
ϕik(Z) = ϕ

(
σyi
σk
Z +

µ̃iyi − µ̃ik
σk

)
Φik(Z) = Φ

(
σyi
σk
Z +

µ̃iyi − µ̃ik
σk

)
Ci =

∫ ∏
l ̸=j

Φil(z)ϕ(z)dz

and Z ∼ N(0, 1) with pdf and cdf ϕ(·) and Φ(·) respectively. The integrals that appear
above are functions of a unidimensional Gaussian pdf, and these can be computed rather
efficiently using quadrature methods.

Variational distribution for the I-prior random effects w

Given that both vec y∗| vec w and vec w are normally distributed as per the model (5.5),
we find that the full conditional distribution p(w|y∗,y) ∝ p(y∗,y,w) ∝ p(y∗|w)p(w) is
also normal. The variational density q for vec w ∈ Rnm is found to be Gaussian with
mean and precision given by

vec w̃ = Ṽw(Ψ⊗Hη) vec(ỹ∗ − 1nα
⊤) and Ṽ−1

w = Ψ⊗H2
η +Ψ−1 ⊗ In = Vy∗ .

(5.17)

As a computational remark, computing the inverse Ṽ−1
w presents a challenge, as this takes

O(n3m3) time if computed naïvely. By exploiting the Kronecker product structure in
Ṽw, we are able to efficiently compute the required inverse in roughly O(n3m) time—see
Section 5.6.2 for details. Storage requirement is O(n2m2), as a result of the covariance
matrix in (5.17).

If the independent I-probit model is assumed, i.e. Ψ = diag(ψ1, . . . , ψm), then the
posterior covariance matrix Ṽw has a simpler structure which implies column indepen-
dence in the matrix w. By writing w·j = (w1j , . . . , wnj)

⊤ ∈ Rn, j = 1, . . . ,m, to denote
the column vectors of w, and with a slight abuse of notation, we have that

Nnm(vec w| vec w̃, Ṽw) =

m∏
j=1

Nn(w·j |w̃·j , Ṽwj ),

where Nd(x|µ,Σ) is the pdf of x ∼ N(µ,Σ), and

w̃·j = ψjṼwjHη(ỹ∗
j − αj1n) and Ṽwj =

(
ψjH2

η + ψ−1
j In

)−1
.
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We note the similarity between (5.17) above and the posterior distribution for the I-
prior random effects in a normal model (4.14) seen in the previous chapter, with the
difference being (5.17) uses the continuous latent propensities y∗ instead of the the
observations y. The consequence of this is that the posterior regression functions are
class independent, the exact intended effect by specifying a diagonal precision matrix
Ψ. Storage requirement is O(n2m), since we need Vw1 , . . . ,Vwm .

Remark 5.2. The variational distribution q(w) which approximates p(w|y) is in fact
exactly p(w|y∗), the conditional density of the I-prior random effects given the latent
propensities. By the law of total expectations,

E(r(w)|y) = Ey∗
(

E(r(w)|y∗)
∣∣y),

where r(·) is some function of w, and expectations are taken under the posterior distri-
bution of y∗. Hypothetically, if the true pdf p(y∗|y) were tractable, then the E-step can
be computed using the true conditional distribution. Since it is not tractable, we resort
to an approximation, and in the case of a variational approximation, (5.17) is obtained.

5.4.2 The M-step

From (5.12), the function to be maximised in the M-step is

Q(θ) = Ey∗,w∼q(t+1) [log p(y,y∗,w|θ)]

= const.− 1

2
tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)

− 1

2
tr
(
Ψ
{

E(y∗⊤y∗) + nαα⊤ − 2α1⊤
n E y∗ − 2E(w⊤)Hη

(
E y∗ − 1nα

⊤)}),
where expectations are taken with respect to the variational distributions of y∗ and w.
Note that since Ψ is treated as fixed, the term E(y∗⊤y∗) is absorbed into the constant.
On closer inspection, the trace involving the second moments of w is found to be

tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)
=

m∑
i,j=1

{
ψij tr(H2

ηW̃ij) + ψ−
ij tr(W̃ij)

}
by the results of the derivations in Appendix H.1.2 (p. 307). In the above, we had
defined ψ−

ij to be the (i, j)’th element of Ψ−1, and

W̃ij = E(w·iw⊤
·j) = Vw[i, j] + w̃·iw̃⊤

·j ,

where Vw[i, j] ∈ Rn×n refers to the (i, j)’th submatrix block of Vw, and the n-vector
w̃·j =

(
Ewij

)n
i=1

is the expected value of the random effects for class j. Specifically,
when the error precision is of the form Ψ = diag(ψ1, . . . , ψm), this trace reduces to
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tr
(
ΨE(w⊤H2

ηw) +Ψ−1 E(w⊤w)
)
=

m∑
j=1

{
ψj tr(H2

ηW̃jj) + ψ−1
j tr(W̃jj)

}

=

m∑
j=1

tr
(
(

Σθ,j︷ ︸︸ ︷
ψjH2

η + ψ−1
j In)W̃jj

)

The bulk of the computational effort required to evaluate Q(θ) stems from the trace
involving the second moments of w, and the fact that H2

η needs to be reevaluated each
time θ = {α, η} changes. As discussed previously, each E-step takes O(n3m) time to
compute the required first and second (approximate) posterior moments of w. Once
this is done, we can use the “front-loading of the kernel matrices” trick described in
Section 4.3.2, which effectively renders the evaluation of Q to be linear in θ (after an
initial O(n2) procedure at the beginning).

As in the normal linear model, we employ a sequential update of the parameters (à
la expectation conditional maximisation algorithm) by solving the first order conditions

∂

∂η
Q(η|α) = −1

2

m∑
i,j=1

ψij tr
(
∂H2

η

∂η
W̃ij

)
+ tr

(
Ψw̃⊤∂Hη

∂η
(ỹ∗ − 1nα

⊤)

)
(5.18)

∂

∂α
Q(α|η) = 2nΨα− 2

n∑
i=1

Ψ
(
y∗
i· − w̃⊤hη(xi)

)
(5.19)

equated to zero, where hη(xi) ∈ Rn is the i’th row of the kernel matrix Hη. We now
present the update equations for the parameters.

Update for kernel parameters η

When only ANOVA RKHS scale parameters are involved, then the conditional solution of
η to (5.18) can be found in closed-form, much like in the exponential family EM algorithm
described in Section 4.3.3 (p. 122). Under the same setting as in that subsection,
assume that only η = {λ1, . . . , λp} need be estimated, and for each k = 1, . . . , p, we
can decompose the kernel matrix as Hη = λkRk + Sk and its square as H2

η = λ2kR2
k +

λkUk + S2
k. As a follow-on from (5.18), the conditional solution for λk given the rest of

the parameters is obtained by solving

∂

∂λk
Q(λk|α,λ−k) = −

1

2

m∑
i,j=1

ψij tr
(
(2λkR2

k + Uk)W̃ij

)
+ tr

(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)

= − λk
m∑

i,j=1

ψij tr(R2
kW̃ij)−

1

2

m∑
i,j=1

ψij tr(UkW̃ij)

+ tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
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equals zero. This yields the solution

λ̂k =
tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
− 1

2

∑m
i,j=1 ψij tr(UkW̃ij)∑m

i,j=1 ψij tr(R2
kW̃ij)

In the case of the independent I-probit model, where Ψ = diag(ψ1, . . . , ψm), λ̂k has the
form

λ̂k =

∑m
j=1 ψj

(
w̃⊤·jRk(ỹ∗·j − αj1n)− 1

2 tr(UkW̃jj)
)

∑m
j=1 ψj tr(R2

kW̃jj)
.

Remark 5.3. There is no closed-form solution for η when the polynomial kernel is used,
or when there are kernel parameters to optimise (e.g. Hurst coefficient or SE kernel
lengthscale). In these situations, solutions for η are obtained using numerical methods
(i.e. employ quasi-Newton methods such as an L-BFGS algorithm for optimising Q(η)).

Update for intercepts α

It is easy to see that the unique solution to (5.19) is

α̂ =
1

n
Ψ−1

(
n∑

i=1

Ψ
(
y∗
i· − w̃⊤hη(xi)

))
=

1

n

n∑
i=1

(
y∗
i· − w̃⊤hη(xi)

)
∈ Rm.

Being free of Ψ, the solution is the same whether the full or independent I-probit model
is assumed. Furthermore, we must have that

∑m
j=1 αj = 0 for identifiability, so as an

additional step to satisfy this condition, the solution α̂ is centred.

5.4.3 Summary

Notice that the evaluation of each component of the posterior depends on knowing the
posterior distribution of the other, i.e. q(y∗) depends on q(w) and vice-versa. Simi-
larly, each parameter update is obtained conditional upon the value of the rest of the
parameters. These circular dependencies are dealt with by way of an iterative updating
scheme: with arbitrary starting values for the distributions q(0)(y∗) and q(0)(w), and for
the parameters θ(0), each are updated in turn according to the above derivations.

The updating sequence is repeated until no significant increase in the convergence
criterion, the ELBO, is observed. The ELBO for the I-probit model is given by the
quantity

Lq(θ) =
nm

2
+

n∑
i=1

logCi(θ) +
1

2
log|Ṽw| −

n

2
log|Ψ| − 1

2

m∑
i,j=1

ψ−
ij tr(W̃ij), (5.20)

I-priors for categorical responses168



where ψ−
ij is the (i, j)’th entry of Ψ−1, and Ci(θ) is the normalising constant of the

density of tNm(α+ w̃⊤hη(xi),Ψ
−1, Cyi), with Cyi = {y∗iyi > y∗ik|∀k ̸= yi}. That is,

Ci(θ) =

∫
· · ·
∫

{y∗iyi>y∗ik | ∀k ̸=yi}

ϕ(y∗i1, . . . , y
∗
im|α+ w̃⊤hη(xi),Ψ

−1)dy∗i1 · · · dy∗im.

Similar to the EM algorithm, each iteration of the algorithm increases the ELBO to a
stationary point (Blei et al., 2017). Unlike the EM algorithm though, the variational
EM algorithm does not guarantee an increase in the marginal log-likelihood at each step,
nor does it guarantee convergence to the global maxima of the log-likelihood.

Further, the ELBO expression to be maximised is often not convex, which means the
algorithm may terminate at local modes, for which there may be many. Note that the
variational distribution with the higher ELBO value is the distribution that is closer,
in terms of the KL divergence, to the true posterior distribution. In our experience,
multiple random starts alleviates this issue for the I-probit model.

5.5 Post-estimation

Post-estimation procedures such as obtaining predictions for a new data point, the cred-
ibility interval for such predictions, and model comparison, are of interest. These are
performed in an empirical Bayes manner using the variational posterior density of the
regression function obtained from the output of the variational EM algorithm.

We first describe prediction of a new data point xnew. Step one is to determine the
distribution of the posterior regression functions in each class, f(xnew) = w⊤hη(xnew),
where hη(xnew) is the vector of length n containing entries hη(xi, xnew), given values for
the parameters θ of the I-probit model. To this end, we use the ELBO estimates for θ,
i.e. θ̂ = arg maxθ Lq(θ), as obtained from the variational EM algorithm. As we know,
the variational distribution of vec w is normally distributed with mean and variance
according to (5.17). By writing vec w̃ = (w̃·1, . . . , w̃·m)⊤ to separate out the I-prior
random effects per class, we have that w·j |θ̂ ∼ Nn(w̃·j , Ṽw[j, j]), and Cov(w·j ,w·k) =
Ṽw[j, k], where the ‘[·, ·]’ indexes the n×n sub-block of the block matrix Vw. Thus, for
each class j = 1, . . . ,m and any x ∈ X ,

fj(x)|y, θ̂ ∼ N
(

hη̂(x)
⊤w̃·j , hη̂(x)

⊤Ṽw[j, j]hη̂(x)
)
,

and the covariance between the regression functions in two different classes is

Cov
(
fj(x), fk(x)|y, θ̂

)
= hη̂(x)

⊤Ṽw[j, k] h̃η̂(x).
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Algorithm 2 Variational EM for the I-probit model (fixed Ψ)
1: procedure Initialisation
2: Initialise θ(0) ← {α(0), η(0)}
3: q̃(0)(w)← MN(0, In,Ψ)
4: q̃(0)(y∗

i·)← tNm(α̃(0),Ψ−1, Cyi)
5: t← 0
6: end procedure

7: while not converged do
8: procedure Variational E-step
9: for i = 1, . . . , n do ▷ Update y∗

10: q̃(t+1)(y∗
i·)← tNm

(
α̃(t) + w̃(t)⊤hη(t)(xi),Ψ, Cyi

)
11: ỹ∗(t+1)

i· ← Eq(t+1)(y∗
i·)

12: end for

13: Ṽ(t+1)
w ←

(
Ψ⊗H2

η(t)
+Ψ−1 ⊗ In

)−1
▷ Update w

14: vec w̃(t+1) ← Ṽ(t+1)
w (Ψ⊗Hη(t)) vec(ỹ∗(t+1) − 1nα

(t)⊤)

15: q̃(t+1)(w)← Nnm

(
vec w̃(t+1), Ṽ(t+1)

w

)
16: end procedure

17: procedure M-step
18: if ANOVA kernel (closed-form updates) then ▷ Update η
19: for k = 1, . . . , p do
20: T1k ←

∑m
i,j=1 ψij tr(R2

kW̃ij)

21: T2k ← tr
(
Ψw̃⊤Rk(ỹ∗ − 1nα

⊤)
)
− 1

2

∑m
i,j=1 ψij tr(UkW̃ij)

22: λ
(t+1)
k ← T2k/T1k

23: end for
24: else
25: η(t+1) ← arg maxη Q(η|α(t)) by L-BFGS algorithm
26: end if

27: a← 1
n

∑n
i=1

(
ỹ∗(t+1)
i· − w̃(t+1)⊤h̃η(t+1)(xi)

)
▷ Update α

28: α(t+1) ← a− 1
m

∑m
j=1 aj

29: end procedure

30: Calculate ELBO L(t+1)

31: t← t+ 1

32:
{
q̃(y∗), q̃(w), θ̂

}
←
{
q̃(t)(y∗), q̃(t)(w), θ(t)

}
33: return Variational densities {q̃(y∗), q̃(w)}
34: return Estimates {α̂, η̂}
35: return ELBO Lq(θ) = L(t)
36: end while
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Then, in step two, using the results obtained in the previous chapter in Section 4.4 (p.
125), we have that the latent propensities y∗new,j for each class are normally distributed
with mean, variance, and covariances

E(y∗new,j |y, θ̂) = α̂j + E
(
fj(xnew)|y, θ̂

)
=: µ̂j(xnew)

Var(y∗new,j |y, θ̂) = Var
(
f(xnew)|y, θ̂

)
+Ψ−1

jj =: σ̂2j (xnew)

Cov(y∗new,j , y
∗
new,k|y, θ̂) = Cov

(
fj(x), fk(x)|y, θ̂

)
+Ψ−1

jk =: σ̂jk(xnew).

From here, step three would be to extract class information of data point xnew, which
are contained in the normal distribution Nm

(
µ̂new, V̂new

)
, where

µ̂new =
(
µ1(xnew), . . . , µm(xnew)

)⊤ and V̂new,jk =

σ̂2j (xnew) if j = k

σ̂jk(xnew) if j ̸= k.

The predicted class is inferred from the latent variables using

ŷnew = arg max
k

µ̂k(xnew),

while the probabilities for each class are obtained by way of integration of a multivariate
normal density, as per (5.3):

p̂new,j =

∫
· · ·
∫

{y∗j>y∗k|∀k ̸=j}

ϕ(y∗1, . . . , y
∗
m|µ̂new, V̂new)dy∗1 · · · dy∗m. (5.21)

For the independent I-probit model, class probabilities are obtained in a more compact
manner via

p̂new,j = EZ

[
m∏
k=1
k ̸=j

Φ

(
σ̂j(xnew)

σ̂k(xnew)
Z +

µ̂j(xnew)− µ̂k(xnew)

σ̂2k(xnew)

)]
,

as per (5.7), since the m components of f(xnew), and hence the y∗
new,j ’s, are independent

of each other (Ψ and V̂new are diagonal). Prediction of a single new data point takes
O(n2m) time, because there are essentially m I-prior posterior regression functions, and
each take O(n2) to evaluate. This is assuming negligible time to compute the class
probabilities.

We are able to take advantage of the Bayesian machinery to obtain credibility intervals
for probability estimates or any transformation of these probabilities (e.g. log odds
or odds ratios). The procedure is as follows. First, obtain samples w(1), . . . ,w(T ) by
drawing from its variational posterior distribution vec w(t)|θ̂ ∼ Nnm(vec w̃,Vw). Then,
obtain samples of class probabilities {p(1)xj , . . . , p

(T )
xj }mj=1, for a given data point x ∈ X by
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evaluating
p
(t)
xj =

∫
· · ·
∫

{y∗j>y∗k|∀k ̸=j}

ϕ
(
y∗1, . . . , y

∗
m|µ̂(t)(x), V̂(x)

)
dy∗1 · · · dy∗m,

where µ̂(t)(x) = α̂+w(t)⊤hη̂(x), and V̂(x)jk equals σ̂2j (x) if j = k, and σ̂jk(x) otherwise.
To obtain a statistic of interest, say, a 95% credibility interval of a function r(pxj) of the
probabilities, simply take the empirical lower 2.5th and upper 97.5th percentile of the
transformed sample

{
r(p

(1)
xj ), . . . , r(p

(T )
xj )

}
.

Remark 5.4. Unfortunately, with the variational EM algorithm, standard errors for the
parameters θ are not so easy to obtain. We could not ascertain as to the availability
of an unbiased estimate of the asymptotic covariance matrix for θ under a variational
framework. One strategy for obtaining standard errors is bootstrap (Y.-C. Chen et al.,
2018):

1. Obtain θ̂ = arg maxθ Lq(θ) using S = {(y1, x1), . . . , (yn, xn)}.

2. For t = 1, . . . , T , do

(a) Obtain S(t) = {(y(t)1 , x
(t)
1 ), . . . , (y

(t)
n , x

(t)
n )} by sampling n points with replace-

ment from S.

(b) Compute θ̂(t) = arg maxθ Lq(θ) using the data S(t).

3. For the l’th component of θ, compute its variance estimator using

V̂ar(θ̂l) =
1

T

T∑
t=1

(θ̂
(t)
l − θ̄l)

2 where θ̄l =
1

T

T∑
t=1

θ̂
(t)
l .

The obvious potential downside to this bootstrapp scheme is computational time.

Finally, a discussion on model comparison, which, in the variational inference liter-
ature, is achieved by comparing ELBO values of competing models (Beal and Ghahra-
mani, 2003). The rationale is that the ELBO serves as a conservative estimate for the
log marginal likelihood, which would allow model selection via (empirical) Bayes factors.
This stems from the fact that

log p(y|θ) = Lq(θ) + DKL(q∥p) > Lq(θ),

since the Kullback-Leibler divergence from the true posterior density p(y∗,w|y) to the
variational density q(y∗,w) is strictly positive (it is zero if and only if the two densi-
ties are equivalent), and is minimised under a variational inference scheme. Kass and
Raftery (1995) suggest Section 5.5 as a way of interpreting observed Bayes factor values
BF(M1,M0) for comparing model M1 against model M0, where BF(M1,M0) is approx-
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imated by
BF(M1,M0) ≈

Lq(θ|M1)

Lq(θ|M0)
,

and Lq(θ|Mk), k = 0, 1, is the ELBO for model Mk. It should be noted that while this
works in practice, there is no theoretical basis for model comparison using the ELBO
(Blei et al., 2017).

Table 5.2: Guidelines for interpreting Bayes factors (Kass and Raftery, 1995).

2 log BF(M1,M0) BF(M1,M0) Evidence against M0

0–2 1–3 Not worth more than a bare mention
2–6 3–20 Positive
6–10 20–150 Strong
>10 >150 Very strong

Remark 5.5. In the previous chapter on normal I-prior models, the I-prior could be
integrated out of the model completely, resulting in a normal log-likelihood for the
parameters. Model comparison can be validly done using likelihood ratio tests and
asymptotic chi-square distributions. Here however, we only have a lower bound to the
log-likelihood, and most likely the asymptotic results of likelihood ratio tests do not
hold. Then, the concept of approximate (empirical) Bayes factors seem most intuitive,
even if not rooted in theory.

5.6 Computational considerations

Computational challenges for the I-probit model stems from two sources: 1) calculation
of the class probabilities (5.3); and 2) storage and time requirements for the variational
EM algorithm. Ways in which to overcome these challenges are discussed. In addition,
we also discuss considerations to take into account if estimation of the error precision Ψ

is desired, and thus pave the way for future work.

5.6.1 Efficient computation of class probabilities

The issue at hand here is that for m > 4, the evaluation of the class probabilities in
(5.3) is computationally burdensome using classical methods such as quadrature meth-
ods (Geweke et al., 1994). As such, simulation techniques are employed instead. The
simplest strategy to overcome this is a frequency simulator (otherwise known as Monte
Carlo integration): obtain random samples from Nm

(
µ(xi),Ψ

−1
)
, and calculate how

many of these samples fall within the required region. This method is fast and yields
unbiased estimates of the class probabilities. However, in an extensive comparative
study of various probability simulators, Hajivassiliou et al. (1996) concluded that the
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Geweke-Hajivassiliou-Keane (GHK) probability simulator (Geweke, 1989; Hajivassiliou
and McFadden, 1998; Keane and Wolpin, 1994) is the most reliable under a multitude
of scenarios. This is now described, and for clarity, we drop the subscript i denoting
individuals.

Suppose that an observation y = j has been made. Reformulate y∗ in (5.1) by
anchoring on the j’th latent variable y∗j to obtain

z := (

z1︷ ︸︸ ︷
y∗1 − y∗j , . . . ,

zj−1︷ ︸︸ ︷
y∗j−1 − y∗j ,

zj︷ ︸︸ ︷
y∗j+1 − y∗j , . . . ,

zm−1︷ ︸︸ ︷
y∗m − y∗j , )⊤ ∈ Rm−1.

Note that we have indexed the vector z using j′ = k if k < j, and j′ = k− 1 if k > j for
k = 1, . . . ,m, so that the index j′ runs from 1 to m−1. Let Q(j) ∈ R(m−1)×m be a matrix
formed by inserting a column of minus ones at the j’th position in an (m − 1) identity
matrix. We can then write z = Q(j)y∗, and thus we have that z ∼ Nm−1(ν(j),Ω(j)),
where ν(j) = Q(j)µ(xi) and Ω(j) = Q(j)Ψ

−1Q⊤
(j). These are indexed by ‘(j)’ because

the transformation is dependent on which latent variable the z’s are anchored on.

Remark 5.6. Incidentally, the probit model in (5.1) is equivalently represented by

yi =

1 if max(y∗i2 − y∗i1, . . . , y∗im − y∗i1) < 0

j if max(y∗i2 − y∗i1, . . . , y∗im − y∗i1) = y∗ij − y∗i1 ≥ 0,
(5.22)

which is obtained by anchoring on the first latent variable (referred to as the reference
category), although the choice of reference category is arbitrary. This is similar to fixing
the latent variables of the reference category to zero, and thus, as discussed previously
in Section 5.2, full identification is achieved by fixing one more element of the covariance
matrix.

For the symmetric and positive definite covariance matrix Ω(j), obtain its Cholesky
decomposition as Ω(j) = LL⊤, where L is a lower triangular matrix. Then, z = ν(j)+Lζ,
where ζ ∼ Nm−1(0, Im−1). That is,

z1

z2
...

zm−1

 =


ν(j)1

ν(j)2
...

ν(j)m−1

+


L11

L21 L22

...
... . . .

Lm−1,1 Lm−1,2 · · · Lm−1,m−1




ζ1

ζ2
...

ζm−1



=


ν(j)1 + L11ζ1

ν(j)2 +
∑2

k=1 Lk2ζk
...

ν(j)m−1 +
∑m−1

k=1 Lk,m−1ζk

 .
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With this setup, the probability pj of an observation belonging to class j, which is
equivalent to the probability that each zj′ < 0, j′ = 1, . . . ,m− 1, can be expressed as

pj = P(z1 < 0, . . . , zm−1 < 0)

= P(ζ1 < u1, . . . , ζm−1 < um−1)

= P(ζ1 < u1)P(ζ2 < u2|ζ1 < u1)P(ζ3 < u3|ζ1 < u1, ζ2 < u2) · · ·

· · ·P(ζm−1 < um−1|ζ1 < u1, . . . , ζm−2 < um−2),

where

uj′ = uj′(ζ1, . . . , ζj′−1) =

−ν(j)1/L11 for j′ = 1

−
(
ν(j)j′ +

∑j′−1
k=1 Lkj′ζk

)
/Lj′j′ for j′ = 2, . . . ,m− 1

The GHK algorithm entails making draws from one-sided right truncated standard
normal distributions (for instance, using an inverse transform method detailed in Ap-
pendix C.3, p. 280):

• Draw ζ̃1 ∼ tN(0, 1,−∞, u1).

• Draw ζ̃2 ∼ tN(0, 1,−∞, ũ2), where ũ2 = u2(ζ̃1).

• Draw ζ̃3 ∼ tN(0, 1,−∞, ũ3), where ũ3 = u3(ζ̃1, ζ̃2).

• · · ·

• Draw ζ̃m−1 ∼ tN(0, 1,−∞, ũm−2), where ũm−1 = um(ζ̃1, . . . , ζ̃m−2).

These values are then used in the following manner:

• Use ζ̃1 to obtain a “draw” of P(ζ2 < u2|ζ1 < ζ1),

P̃(ζ2 < u2|ζ1 < ζ1) = P(ζ2 < u2|ζ1 = ζ̃1)

= Φ
(
−
(
ν(j)2 + L12ζ̃1

)
/L22

)
• Use ζ̃1 and ζ̃2 to obtain a “draw” of P(ζ3 < u3|ζ1 < u1, ζ2 < u2),

P̃(ζ3 < u3|ζ1 < u1, ζ2 < u2) = P(ζ3 < u3|ζ1 = ζ̃1, ζ2 = ζ̃2)

= Φ
(
−
(
ν(j)3 + L13ζ̃1 + L23ζ̃2

)
/L33

)
• And so on.
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Therefore, a simulated probability for pj (denoted with a tilde) is obtained as

p̃j = Φ
(
−ν(j)1/L11

)m−1∏
j′=2

Φ
(
−
(
ν(j)j′ +

∑j′−1
k=1 Lkj′ ζ̃k

)
/Lj′j′

)
. (5.23)

By performing the above scheme T number of times to obtain T such simulated proba-
bilities {p(1)j , . . . , p

(T )
j }, the actual probability of interest pj is then approximated by the

sample mean of the draws,

p̂j =
1

T

T∑
t=1

p
(t)
j .

If it so happens that one of the standard normal cdfs in (5.23) is extremely small,
this can cause loss of significance due to floating-point errors (catastrophic cancellation).
It is better to work on a log-probability scale, so the products in (5.23) turn into sums,
and the result reverted back by exponentiating.

Remark 5.7. The GHK algorithm provides reasonably fast and accurate calculations
of class probabilities when Ψ is dense. As we alluded to earlier in the chapter, the
class probabilities condense to a unidimensional integral involving products of normal
cdfs (c.f Equation 5.7) if Ψ is diagonal. Note that if Ψ is in fact diagonal, then the
transformed Ω(j) = QΨ−1Q⊤ is most certainly not; the components of z are correlated
because they are all anchored on the same random variable. Thus, direct evaluation
of the unidimensional integral in (5.7) using quadrature methods as mentioned at the
bottom of page 154 avoids the Cholesky step and random sampling employed by the
GHK method.

5.6.2 Efficient Kronecker product inverse

As with the normal I-prior model, the time complexity of the variational inference algo-
rithm for I-probit models is dominated by the step involving the posterior evaluation of
the I-prior random effects w, which essentially is the inversion of an nm × nm matrix.
The matrix in question is

Vw =
(
Ψ⊗H2

η +Ψ−1 ⊗ In
)−1

. (from 5.17)

We can actually exploit the Kronekcer product structure to compute the inverse effi-
ciently. Perform an orthogonal eigendecomposition of Hη to obtain Hη = VUV⊤ and
of Ψ to obtain Ψ = QPQ⊤. This process takes O(n3 +m3) ≈ O(n3) time if m≪ n or
if done in parallel, and needs to be performed once per variational EM iteration. Then,
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manipulate V−1
w as follows:

V−1
w = (Ψ⊗H2

η) + (Ψ−1 ⊗ In)
= (QPQ⊤ ⊗VU2V⊤) + (QP−1Q⊤ ⊗VV⊤)

= (Q⊗V)(P⊗U2)(Q⊤ ⊗V⊤) + (Q⊗V)(P−1 ⊗ In)(Q⊤ ⊗V⊤)

= (Q⊗V)(P⊗U2 + P−1 ⊗ In)(Q⊤ ⊗V⊤)

Its inverse is

Vw = (Q⊤ ⊗V⊤)−1(P⊗U2 + P−1 ⊗ In)−1(Q⊗V)−1

= (Q⊗V)(P⊗U2 + P−1 ⊗ In)−1(Q⊤ ⊗V⊤)

which is easy to compute since the middle term is an inverse of diagonal matrices. This
brings time complexity of the variational EM algorithm down to a similar requirement
as if Ψ were diagonal. Unfortunately, storage requirements remain at O(n2m2) when
Ψ is dense, because the entire nm× nm matrix Vw is needed to evaluate the posterior
mean of vec w.

5.6.3 Estimation of Ψ in future work

Suppose that Ψ ∈ Rm×m is a free parameter to be estimated, bearing in mind that only
m(m−1)/2−1 variance components are identified in the I-probit model (see Section 5.2).
If so, the Q function from (5.12) conditional on the rest of the parameters can be written
as

Q(Ψ|α, η) = const.− 1

2
tr
(
Ψ

G1︷ ︸︸ ︷
E
[
(y∗ − µ)⊤(y∗ − µ)

]
+Ψ−1

G2︷ ︸︸ ︷
E(w⊤w)

)
with µ = 1nα

⊤+Hηw. This can be solved using numerical methods, though it must be
ensured that the identifiability constraints and positive-definiteness are satisfied. Specif-
ically in the case where Ψ is a diagonal matrix diag(ψ1, . . . , ψm), then

Q(Ψ|α, η) = const.− 1

2

m∑
j=1

ψj tr E
[
(y∗
·j − µ·j)(y∗

·j − µ·j)⊤
]

− 1

2

m∑
j=1

ψ−1
j tr E(w·jw⊤

·j)

is maximised, for j = 1, . . . ,m, at

ψ̂j =

(
E(w⊤·jw·j)

E
[
(y∗·j − µ·j)⊤(y∗·j − µ·j)

]) 1
2

,
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independently of the rest of the other ψk’s, k ̸= j. As per the derivations in Ap-
pendix H.1.2 (p. 307), the numerator of this expression is equal to tr(Ṽwj + w̃·jw̃⊤·j) =
tr(W̃jj). The denominator on the other hand is

E(y∗⊤
·j y∗
·j)− nα

2
j − tr(H2

ηW̃jj)− 2y∗⊤
·j Hηw̃·j − 2αj

n∑
i=1

n∑
i′=1

(y∗ij − hη(xi, xi′)w̃ij).

In either the full or I-probit model, solving Ψ involves the second moments of a
truncated normal distribution. In the case where Ψ is dense, this is obtained by Monte
Carlo methods, where samples from a truncated multivariate normal distribution are
obtained using Gibbs sampling. Although this strategy can be used when Ψ is diagonal,
we show that the form for the second moments involve integration of standard normal
cdfs and pdfs (Lemma C.5, p. 283), much like the formula for the first moments.

5.7 Examples

We present analyses of real-data examples using the I-probit model for a variety of appli-
caitons, namely binary and multiclass classification, meta-analysis, and spatio-temporal
modelling of point processes. Examples in this section have been analysed using in R
using the in-development iprobit package written by us. Code for replication is pro-
vided at http://myphdcode.haziqj.ml. All of these examples had assumed a fixed
error precision Ψ = Im.

5.7.1 Predicting cardiac arrhythmia

Statistical learning tools are being used in the field of medicine as a means to aid medical
diagnosis of diseases. In this example, factors determining the presence or absence of
heart diseses are studied. Traditionally, cardiologists inspect patients’ cardiac activity
(ECG data) in order to reach a diagnosis, which remains the “gold standard” method
of obtaining diagnoses. The study by Guvenir et al. (1997) aimed to predict cardiac
abnormalities by way of machine learning, and minimise the difference between the gold
standard and computer-based classifications.

The data set3 at hand contains a myriad of ECG readings and other patient at-
tributes such as age, height, and weight. Altogether, there are n = 451 observations
and p = 279 predictors. In order for a valid comparison to be made to other studies,
we excluded nominal covariates, leaving us with p = 194 continuous predictors, which
we then standardised. In the original data set, there are 13 distinct classes of cardiac

3Data is made publicly available at https://archive.ics.uci.edu/ml/datasets/arrhythmia.
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arrhythmia—again, following the lead of other studies, we had combined all forms of car-
diac diseases to form a single class, thus reducing the problem to a binary classification
task (normal vs. arrhythmia).

Following (5.6), the relationship between patient i’s probability of having a form of
cardiac arrhthmia pi and the predictors xi ∈ X ≡ R194 is modelled as

Φ(pi) = α+ f(xi).

Further, assuming f ∈ F a suitable RKHS with kernel hλ, we may assign an I-prior on the
(latent) regression function f . We consider three RKHSs: the canonical (linear) RKHS,
the fBm-0.5 RKHS and the SE RKHS. The first of these three assumes an underlying
linear relationship of the covariates and the probabilities, while the other two assumes
a smooth relationship. As all covariates had been standardised, it is sufficient to assign
a single scale parameter λ for the I-probit model.

For reference, fitting an I-probit model on the full data set takes about 4 seconds only,
with convergence reached in at most 15 iterations. Figure 5.5 plots the variational lower
bound value over time and iterations for the cardiac arrhythmia data set. As expected,
the lower bound value increases over time until a convergence criterion is reached.

To measure predictive ability, we fit the I-probit models on a random subset of the
data and obtain the out-of-sample test error rates from the remaining held-out observa-
tions. We then compare the results against popular machine learning classifiers, namely:
1) linear and quadratic discriminant analysis (LDA/QDA); 2) k-nearest neighbours; 3)
support vector machines (SVM) (Steinwart and Christmann, 2008); 4) Gaussian process
classification (Rasmussen and Williams, 2006); 5) random forests (Breiman, 2001); 6)
nearest shrunken centroids (NSC) (Tibshirani et al., 2002); and 7) L-1 penalised logistic
regression (Friedman et al., 2001). The experiment is set up as follows:

1. Form a training set by sub-sampling s ∈ {50, 100, 200} observations.

2. The remaining unsampled data is used as the test set.

3. Fit model on training set, and obtain test error rates defined as

test error rate =
1

s

n∑
i=1

[ypred
i ̸= ytest

i ]× 100%.

4. Repeat steps 1-3 100 times to obtain the average test error rates and standard
errors.
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Figure 5.5: Plot of variational lower bound over time (top), and plot of training error
rate and Brier scores over time (bottom).

Results for the methods listed above were extracted from the in-depth study by Cannings
and Samworth (2017), who also conducted identical experiments using their random
projection (RP) ensemble classification method. These are all tabulated in Table 5.3.

Of the three I-probit models, the fBm model performed the best. That it performed
better than the canonical linear I-probit model is unsurprising, since an underlying
smooth function to model the latent variables is expected to generalise better than a
rigid straight line function. The poor performance of the SE I-probit model may be
due to the fact that the lengthscale parameter was not estimated (fixed at l = 1), but
then again, we noticed reliable performance of the fBm even with fixed Hurst index
(γ = 0.5). It can be seen that the fBm I-probit model also outperform the more popular
machine learning algorithms out there including k-nearest neighbours, support vector
machines and Gaussian process classification. It came second only to random forests,
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Table 5.3: Mean out-of-sample misclassification rates and standard errors in parantheses
for 100 runs of various training (s) and test (451 − s) sizes for the cardiac arrhythmia
binary classification task.

Misclassification rate (%)
Method s = 50 s = 100 s = 200

I-probit
Linear 35.52 (0.44) 31.35 (0.33) 29.45 (0.38)
Smooth (fBm-0.5) 33.64 (0.66) 28.12 (0.34) 24.33 (0.24)
Smooth (SE-1.0) 48.26 (0.40) 48.32 (0.43) 47.11 (0.37)

Others
RP-LDA 33.24 (0.42) 30.19 (0.35) 27.49 (0.30)
RP-QDA 30.47 (0.33) 28.28 (0.26) 26.31 (0.28)
RP-k-NN 33.49 (0.40) 30.18 (0.33) 27.09 (0.31)
Random forests 31.65 (0.39) 26.72 (0.29) 22.40 (0.31)
SVM (linear) 36.16 (0.47) 35.61 (0.39) 35.20 (0.35)
SVM (Gaussian) 48.39 (0.49) 47.24 (0.46) 46.85 (0.43)
GP (Gaussian) 37.28 (0.42) 33.80 (0.40) 29.31 (0.35)
NSC 34.98 (0.46) 33.00 (0.40) 31.08 (0.41)
L-1 logistic 34.92 (0.42) 30.48 (0.34) 26.12 (0.27)

an ensemble learning method, which is also generally faster to train than Gaussian
process-like regressions including I-prior models. The time complexity of a random
forest algorithm is O(pqn log(n)) (Louppe, 2014), where p is the number of variables
used for training, q is the number of random decision trees, and n is the sample size.

5.7.2 Meta-analysis of smoking cessation

Conider the smoking cessation data set, as described in Skrondal and Rabe-Hesketh
(2004). It contains observations from 27 separate smoking cessation studies in which
participants are subjected to either a nicotine gum treatment or a placebo. The interest
is to estimate the treatment effect size, and whether it is statistically significant, i.e.
whether or not nicotine gum is an effective treatment for quitting smoking. The studies
are conducted at different times and due to various reasons such as funding and cultural
effects, the results from all of the studies may not be in agreement. The number of
effective participants plays a major role in determining the power of the statistical tests
performed in individual studies. The question then becomes how do we meaningfully
aggregate all the data to come up with one summary measure?

Several methods exist to analyse such data sets. One may consider a fixed-effects
model, similar to a classical one-way ANOVA model to establish whether or not the
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effect size is significant. Because of the study-specific characteristics, it is natural to
consider multilevel or random-effects models as a means to estimate the effect size.
Regardless of method, the approach of analysing study-level treatment effects instead of
patient-level data only is the paradigm for meta-analysis, and our I-prior model takes
this approach as well.

Control Treatment

Remain Quit Remain Quit

1

2
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10

25

50

100

500

C
ou

nt

Figure 5.6: Comparative box-plots of the distribution of patients who successfully quit
smoking and those who remained smokers, in the two treatment groups. It is evident
that there are more successful patients quitting smoking in the treatment group than in
the control group. The raw odds ratio of quitting smoking (treatment vs. control) is
1.66.

A summary of the data is displayed by the box-plot in Figure 5.6. On the whole, there
are a total of 5,908 patients, and they are distributed roughly equally among the control
and treatment groups (46.3% and 53.7% respectively, on average). From the box-plots,
it is evident that there are more patients who quit smoking in the treatment group as
compared to the placebo control group. There are various measures of treatment effect
size, such as risk ratio or risk differences, but we shall concentrate on odds ratios as
defined by

odds ratio =
odds of quitting smoking in treatment group

odds of quitting smoking in control group .

The odds of quitting smoking in either group is defined as

odds = P(quit smoking)
1− P(quit smoking) ,
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and these probabilities, odds and ultimately odds ratio can be estimated from sample
proportions. This raw odds ratio for all study groups is calculated as 1.66 = e0.50. It is
also common for the odds ratio to be reported on the log scale (usually as a remnant
of logistic models). A value greater than one for the odds ratio (or equivalently, greater
than zero for the log odds ratio) indicates a significant treatment effect.

A random-effects analysis using a multilevel logistic model has been considered by
Agresti and Hartzel (2000). Let i = 1, . . . , nk index the patients in study group k ∈
{1, . . . , 27}. For patient i in study j, pik denotes the probability that the patient has
successfully quit smoking. Additionally, xik is the centred dummy variable indicating
patient i’s treatment group in study k. These take on two values: 0.5 for treated patients
and -0.5 for control patients. The logistic random-effects model is

log
(

pij
1− pij

)
= β0j + β1jxij

with (
β0j

β1j

)
∼ N

((
β0

β1

)
,

(
σ20 σ01

σ01 σ21

))

Agresti and Hartzel (2000) also made the additional assumption σ01 = 0, so that, coupled
with the contrast coding used for xik, the total variance Var(β0k + β1jxik) would be
constant in both treatment groups. The overall log odds ratio is represented by β1, and
this is estimated as 0.57 ≈ log 1.76.

In an I-prior model, the Bernoulli probabilities pik are regressed against the treatment
group indicators xik and also the patients’ study group k via the regression function f

and a probit link:

Φ−1(pik) = f(xik, k)

= f1(xik) + f2(k) + f12(xik, j).

We have decomposed our function f into three parts: f1 represents the treatment effect,
f2 represents the effect of the study groups, and f12 represents the interaction effect
between the treatment and study group on the modelled probabilities. As both xik

and k are nominal variables, the functions f1 and f2 both lie in the Pearson RKHS of
functions F1 and F2, each with RKHS scale parameters λ1 and λ2. As such, it does
not matter how the xik variables are coded (dummy coding 0, 1 vs. centred coding -0.5,
0.5) as the scaling of the function is determined by the RKHS scale parameters. The
interaction effect f12 lies in the RKHS tensor product F1 ⊗ F2. In the I-probit model,
there are only two parameters to estimate, while in the standard logistic random-effects
model, there are six. The results of the I-prior fit are summarised in the table below.
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Table 5.4: Results of the I-probit model fit for three models.

Model ELBO Error rate (%) Brier score No. of
parameters

f1 -3210.76 23.65 0.179 1
f1 + f2 -3142.24 29.30 0.206 2
f1 + f2 + f12 -3091.20 23.48 0.168 2

The approximated marginal log-likelihood value for the I-prior model (i.e. variational
lower bound), the Brier score for each model and the number of RKHS scale parameters
estimated in the model are reported in Table 5.4. Three models were fitted: 1) a
model with only the treatment effect; 2) a model with a treatment effect and a study
group effect; and 3) Model 2 with the additional assumption that treatment effect varies
across study groups. Model 1 disregards the study group effects, while Model 2 assumes
that the effectiveness of the nicotine gum treatment does not vary across study groups
(akin to a varying-intercept model). A model comparison using the evidence lower
bound indicates that Model 3 has the highest value, and the difference is significant
from a Bayes factor standpoint—BF(M3,M1) and BF(M3,M2) are both greater than
150. The misclassification rate and Brier score indicates good predictive performance of
the models, and there is not much to distinguish between the three although Model 3 is
the best out of the three models.

Unlike in the logistic random-effects model, where the log odds ratio can be read off
directly from the coefficients, with an I-prior probit model the log odds ratio needs to
be calculated manually from the fitted probabilities. The probabilities of interest are
the probabilities of quitting smoking under each treatment group for each study group
k—call these pk(treatment) and pk(control). That is,

pk(treatment) = Φ
(
ν̂(treatment, k)

)
pk(control) = Φ

(
ν̂(control, k)

)
,

where ν̂ represents the standardised posterior mean estimate for the regression functions
which are distributed according to

f(xik, k)|y, θ̂ ∼ N
(
µ̂(xik, k), σ̂

2(xij , k)
)
,

with xik ∈ {treatment, control} and k ∈ {1, . . . , 27} (see details in Section 5.5). The
log odds ratio for each study group can then be calculated as usual. For the overall
log odds ratio, the probabilities that are used are the averaged probabilities weighted
according to the sample sizes in each group. This has been calculated as 0.51 ≈ log 1.66,
slightly lower than both the raw log odds ratio and the log odds ratio estimated by the
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Zelman 1992

Villa 1999

Tonnesen 1988

Schneider 1985

Puska 1979

Pirie 1992

Niaura 1999

Niaura 1994

Nakamura 1990
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Figure 5.7: Forest plot of effect sizes (log odds ratios) in each group as well as the overall
effect size together with their 95% confidence bands. The plot compares the raw log odds
ratios, the logistic random-effect estimates, and the I-prior estimates. Sizes of the points
indicate the relative sample sizes per study group.
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logistic random-effects model. This can perhaps be attributed to some shrinkage of the
estimated probabilities due to placing a prior with zero mean on the regression functions.

The credibility intervals for the log odds ratios in the forest plot of Figure 5.7 are
also noticeably narrower under an I-prior compared to the fitted multilevel model. One
explanation is that empirical Bayes estimates, such as the I-probit estimates under a
variational EM framework, tend to underestimate the variability in the estimates because
the variability in the parameters are ignored when point estimates are used, compared
to distributions in a true Bayesian estimation framework.

5.7.3 Multiclass classification: Vowel recognition data set

We illustrate multiclass classification using I-priors on a speech recognition data set4 with
m = 11 classes to be predicted from digitized low pass filtered signals generated from
voice recordings. Each class corresponds to a vowel sound made when pronouncing
a specific word. The words that make up the vowel sounds are shown in Table 5.5.
Each word was uttered once by multiple speakers, and the data are split into a training
and a test set. Four males and four female speakers contributed to the training set,
while four male and three female speakers contributed to the test set. The recordings
were manipulated using speech processing techniques, such that each speaker yielded
six frames of speech from the eleven vowels, each with a corresponding 10-dimensional
numerical input vector (the predictors). This means that the size of the training set is
8×6×11 = 528, while 7×6×11 = 462 data points are available for testing the predictive
performance of the models. This data set is also known as Deterding’s vowel recognition
data (after the original collector, Deterding, 1990). Machine learning methods such as
neural networks and nearest neighbour methods were analysed by Robinson (1989).

Table 5.5: The eleven words that make up the classes of vowels.

Class Label Vowel Word Class Label Vowel Word
1 hid iː heed 7 hOd ɒ hod
2 hId ɪ hid 8 hod ɔː hoard
3 hEd ɛ head 9 hUd ʊ hood
4 hAd a had 10 hud uː who’d
5 hYd ʌ hud 11 hed əː heard
6 had ɑː hard

We will fit the data using an I-probit model with the canonical linear kernel, fBm-0.5
kernel, and the SE kernel with lengthscale l = 1. Each model took roughly 13 seconds
per iteration in fitting the training data set (n = 528). In particular, the canonical kernel

4Data is publicaly available from the UCI Machine Learning Repository, URL: https://archive.
ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data).
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model took a long time to converge, with each variational inference iteration improving
the lower bound only slighly each time. In contrast, both the fBm-0.5 and SE model
were quicker to converge. Multiple restarts from different random seeds were conducted,
and we found that they all converged to a similar lower bound value. This alleviates any
concerns that the model might have converged to different multiple local optima.
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Figure 5.8: Confusion matrices for the vowel classification problem in which predicted
values were obtained from the I-probit models. The maximum value for any cell is 42
(seven speakers delivered six frames of speech per vowel). Blank cells indicate nil values.

A good way to visualise the performance of model predictions is through a confusion
matrix, as shown in Figure 5.8. The numbers in each row indicate the instances of a
predicted class, while the numbers in the column indicate instances of the actual classes,
while nil values are indicated by blank cells.
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Table 5.6: Results of various classification methods for the vowel data set.

Error rate (%)
Model Train Test
I-probit

Linear 29 54
Smooth (fBm-0.5) 22 40
Smooth (SE-1.0) 7 34

Others
Linear regression 48 67
Logistic regression 22 51
Linear discriminant analysis 32 56
Quadratic discriminant analysis 1 53
Decision trees 5 54
Neural networks 45
k-nearest neighbours 44
FDA/BRUTO 6 44
FDA/MARS 13 39
GPC (SE) 4 42

Comparisons to other methods that had been used to analyse this data set is given in
Table 5.6. In particular, the I-probit model is compared against 1) linear regression; 2)
logistic linear regression; 3) linear and quadratic discriminant analysis; 4) decision trees;
5) neural networks; 6) k-nearest neighbours; and 7) flexible discriminant analysis. All
of these methods are described in further detail in Friedman et al. (2001, Chs. 4 & 12,
Table 12.3). Additionally, Gaussian process classification (SE kernel) using the kernlab
package (Karatzoglou et al., 2004) in R was used. The I-probit model using the fBm-0.5
and SE kernel offers two of the best out-of-sample classification error rates (40% and
34% respectively) of all the methods compared. The linear I-probit model is seen to be
comparable to logistic regression, linear and quadratic discrimant analysis, and decision
trees, yet provides a significant improvement over multiple linear regression.

5.7.4 Spatio-temporal modelling of bovine tuberculosis in Cornwall

Data containing the number of breakdows of bovine tubercolosis (BTB) in Cornwall,
the locations of the infected animals, and the year of occurence is analysed. The inter-
est, as motivated by veterinary epidimiology, is to understand whether or not there is
spatial segregation of the infection of the herds, and whether there is a time-element
to the presence or absence of this spatial segregation. There has been previous work
done to analyse this data set. Diggle et al. (2005) developed a non-parametric method
to estimate spatial segregation using a multivariate point process. The occurrences are
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modelled as Poisson point processes, and spatial segregation is said to have occured if
the model-estimated type-specific breakdown probabilities at any given location are not
significantly different from the sample proportions. The authors estimated the prob-
abilities via kernel regression, and the test statistic of interest had to be estimated
via Monte Carlo methods. Other works include Diggle et al. (2013), who used a fully
Bayesian approach for spatio-temporal multivariate log-Gaussian Cox processes, which
is implemented in the R package lgcp (Taylor et al., 2013).
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Figure 5.9: Distribution of the different types (Spoligotypes) of bovine tubercolosis
affecting herds in Cornwall over the period 1989 to 2002.

The data set contains n = 919 recorded cases over a span of 14 years. For each of
the cases, spatial data pertaining to the location of the farm (Northings and Eastings,
measured in kilometres) are available. Originally, 11 unique spoligotypes were recorded
in the data, with the four most common spoligotypes being Sp9 (m = 1), Sp12 (m = 2),
Sp15 (m = 3) and Sp20 (m = 4), as shown by the histogram in Figure 5.9. We had
grouped the remaining seven spoligotypes into an ‘Others’ category (m = 5), so that the
problem becomes a multinomial regression with five distinct outcomes.

We are able to investigate any spatio-temporal patterns of infection using I-priors
rather simply. Let pij denote the probability that a particular farm i is infected with a
BTB disease with spoligotype j ∈ {1, . . . , 5}. We model the transformed probabilities
gj(pij) as following a function which takes two covariates, i.e. the spatial data x1 ∈ R2,
and the temporal data x2 (year of infection):

pij = g−1
j

(
fk(x1, x2)

)m
k=1

= g−1
j

(
f1k(x1) + f2k(x2) + f12k(x1, x2)

)m
k=1

,
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Figure 5.10: Spatial distribution of all cases over the 14 years.

where the function g−1
j : Rm → [0, 1] is the same squashing function used in equation

(5.10). We assume a smooth effect of space and time on the probabilities, and appropriate
RKHSs for the functions f1 ∈ F1 and f2 ∈ F2 are the fBm-0.5 RKHS. Alternatively,
as per Diggle et al. (2005), divide the data into four distinct time periods: 1) 1996 and
earlier; 2) 1997 to 1998; 3) 1999 to 2000; and finally 4) 2001 to 2002. In this case, x2
would indicate which period the infection took place in, and thus would have a nominal
effect on the probabilities. An appropriate RKHS for f2 in such a case would be the
Pearson RKHS. In either case, the function f12 ∈ F1 ⊗ F2 would be the “interaction
effect”, meaning that with such an effect present, the spatial distribution of the diseases
are assumed to vary across the years.

We fitted four different models:

• M0: Intercept only.
pij = g−1

j

(
αk

)m
k=1
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• M1: Spatial segregation.

pij = g−1
j

(
αk + f1k(xi)

)m
k=1

f1k ∈ F1 Pearson RKHS.

• M2: Spatio-temporal.

pij = g−1
j

(
αk + f1k(xi) + f2k(ti) + f12k(xi, ti)

)m
k=1

f1k ∈ F1 Pearson RKHS, f2k ∈ F2 fBm-0.5 RKHS, and f12k ∈ F1 ⊗F2

• M3: Spatio-period.

pij = g−1
j

(
αk + f1k(xi) + f2k(ti) + f12k(xi, ti)

)m
k=1

f1k ∈ F1 Pearson RKHS, f2k ∈ F2 Pearson RKHS, and f12k ∈ F1 ⊗F2

Model M0 corresponds to a model which ignores any spatial or temporal effects (the
baseline intercept only model). Model M1 takes into account only spatial effects. Both
models M2 and M3 account for spatio-temporal effects, but M2 assumes a smooth effect
of time, while M3 segregates the points into four distinct time periods for analysis. Model
comparison is easily done, and Table 5.7 indicates that model M2 has the highest ELBO
of the four models, making it the preferable model.

For a more visual approach, we can look at the plots of the surface probabilities.
To obtain these probabilities, we first determined the spatial points (Northings and
Eastings) which fall inside the polygon which makes up Cornwall. We then obtained
predicted probabilities for each class of disease at each location. Figure 5.11 was obtained
using the model with spatial covariates only, thus ignoring any temporal effects. In the
case of the spatio-temporal model, we used the model which had the period formulation
for time (model M3). This way, we can display the surface probabilities of the time
periods in four plots only, which is more economical to exhibit within the margins of
this thesis. Note that there is no issue with using the continuous time model—we have
produced an animated gif image at http://phd.haziqj.ml/examples/, showing the
yearly evolution of the surface probabilities between 1989 and 2002.

As the plots suggests, there is indeed spatial segregation for the four most common
spoligotypes, and this is also very prominently seen from Figure 5.11. In comparing the
distribution of the spoligotypes over the years, we may refer to Figure 5.12, a series of
predicted probability surface plots over the four time periods obtained from model M3.
For each time period, we also superimposed the actual observations onto the predicted
surface probabilities. In addition, coloured dotted lines are displayed to indicate the
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Figure 5.11: Predicted probability surfaces for BTB contraction in Cornwall for the four
largest spoligotypes of the bacterium Mycobacterium bovis over the entire time period
using model M1.
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Figure 5.12: Predicted probability surfaces for BTB contraction in Cornwall for the
four largest spoligotypes of the bacterium Mycobacterium bovis over four different time
periods using model M3.
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“decision boundaries” for each of the four spoligotypes. The most evident change is
seen to the spatial distribution of spoligotype 12, with the decision boundary giving
it a large area in years 1996 and earlier, but this steadily shrunk over the years. The
occurrences of spoligotype 9 in the south-west, which is most commonly seen in the east
of Cornwall, is not deemed to be significant by the model. The other two spoligotypes
are also relatively unchanged across the years.

5.8 Conclusion

This work presents an extension of the normal I-prior methodology to fit categorical
response models using probit link functions—a methodology we call the I-probit. The
main motivation behind this work is to overcome the drawbacks of modelling proba-
bilities using the normal I-prior model. We assumed continuous latent variables that
represent “class propensities” exist, which we modelled using normal I-priors, and trans-
formed them into probabilities using a probit link function. In this way, the advantages
of the original I-prior methodology are preserved for categorical response models as well.

The core of this work explores ways in which to overcome the intractable integral pre-
sented by the I-probit model in (5.8). Techniques such as quadrature methods, Laplace
approximation and MCMC tend to fail, or are unsatisfactorily slow to accomplish. The
main reason for this is the dimension of this integral, which is nm, and thus for large
sample sizes and/or number of classes, is unfeasible with such methods. We turned to
variational inference in the face of an intractable posterior density that hampers an EM
algorithm, and the result is a sequential updating scheme, similar in time and storage
requirements to the EM algorithm.

In terms of similarity to other works, the generalised additive models (GAMs) of
Hastie and Tibshirani (1986) comes close. The setup of GAMs is near identical to the
I-probit model, although estimation is done differently. GAMs do not assume smooth
functions from any RKHS, but instead estimates the f ’s using a local scoring method
or a local likelihood method. Kernel methods for classification are extremely popu-
lar in computer science and machine learning; examples include support vector ma-
chines (Schölkopf and Smola, 2002) and Gaussian process classification (Rasmussen and
Williams, 2006), with the latter being more closely related to the I-probit method. How-
ever, Gaussian process classification typically uses the logistic sigmoid function, and
estimation most commonly performed using Laplace approximation, but other meth-
ods such as expectation propagation (Minka, 2001) and MCMC (Neal, 1999) have been
explored as well. Variational inference for Gaussian process probit models have been
studied by Girolami and Rogers (2006), with their work providing a close reference to
the variational algorithm employed by us.
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Suggestions for future work include:

1. Estimation of Ψ. A limitation we had to face in this work was to treat Ψ as fixed.
The discussion in Section 5.6.3 shows that estimation of Ψ is possible, however,
the specific nature of implementing this in computer code could not be explored
in time. In particular, for the full I-probit model, the best method of imposing
positive-definite constraints for Ψ in the M-step has not been fully researched.

2. Inclusion of class-specific covariates. Throughout the chapter, we assumed
that covariates were unit-specific, rather than class-specific. To illustrate, consider
modelling the choice of travel mode between two destinations (car, coach, train
or aeroplane) as a function of disposable income and travel time. Individuals’
income as a predictor of transportation choice is unit-specific, but clearly, travel
time depends on the mode of transport. To incorporate class-specific covariates
zij , the regression on the latent propensities in (5.2) could be extended as such:

y∗ij =

f(xi,zij ,j)︷ ︸︸ ︷
αj + fj(xi) + e(zij) + ϵij

An I-prior would then be applied as usual, with careful consideration of the RKKS
used to model f .

3. Improving computational efficiency. The O(n3m) time requirement for esti-
mating I-probit models hinder its use towards large-data applications. In a limited
study, we did not obtain reliable improvements using low-rank approximations of
the kernel matrix such as the Nyström method. The key to improving compu-
tational efficiency could lie in sparse variational methods, a suggestion that was
made to improve normal I-prior models as well.
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Figure 5.13: Time taken to complete a single variational inference iteration for varying
sample sizes and number of classes m. The solid line represents actual timings, while
the dotted lines are linear extrapolations.
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As a final remark, we note that variational Bayes, which entails a fully Bayesian
treatment of the model (setting priors on model parameters θ), is a viable alternative to
variational EM. The output of such a variational inference algorithm would be approxi-
mate posterior densities for θ, in addition to q(y∗) and q(w), instead of point estimates
for θ. Posterior inferences surrounding the parameters would then be possible, such as
obtaining posterior standard deviations, credibility intervals, and so on. However, a
variational Bayes route has its cons:

1. Tedious derivations. As the parameters now have a distribution θ = {α, η,Ψ} ∼
q(α, η,Ψ), quantities such as

• E(log |Ψ|);

• E(H2
η); and

• tr E
[
(y∗ − 1nα

⊤ −Hηw)Ψ(y∗ − 1nα
⊤ −Hηw)⊤

]
,

among others, will need to be derived for the variational inference algorithm, and
these can be tricky to compute.

2. Suited only to conjugate exponential family models. When conjugate expo-
nential family models are considered, the approximate variational densities (under
a mean-field assumption) are easily recognised, as they themselves belong to the
same exponential family as the model or prior. However, I-prior does not always
admit conjugacy for the kernel parameters η (only for ANOVA RKKSs scale pa-
rameters), and most certainly not for Ψ (at least not in the current parameterisa-
tion). When this happens, techniques such as importance sampling or Metropolis
algorithms need to be employed to obtain the posterior means required for the
variational algorithm to proceed.

3. Prior specification and sensitivity. It is not clear how best to specify prior
information (from a subjectivist’s standpoint) for the RKHS scale parameters,
intercepts, and perhaps the error precision, because these are parameters relating
to the latent propensities which are not very meaningful or interpretable. Of
course, one could easily specify vague or even diffuse priors. The concern is that
the model could be sensitive to prior choices.

In consideration of the above, we opted to employ a variational EM algorithm for
estimation of I-probit models, instead of a full variational Bayes estimation. In any case,
computational complexity is expected to be the same between the two methods. An
interesting point to note is that the RKHS scale parameters and intercept would admit
a normal posterior under a variational Bayes scheme. This means that the posterior mode
and the posterior mean coincide, so point estimates under a variational EM algorithm are
exactly the same as the posterior mean estimates under a variational Bayes framework
when a diffuse prior is used.

5.8 Conclusion 197



198



Chapter 6

Bayesian variable selection using
I-priors

Earlier in Section 4.1 (p. 102), we saw that model (1.1) subject to normal assumptions
(1.2), model assumptions A1–A3, and f belonging to the canonical RKHS of functions
over X ≡ Rp yields the standard multiple regression model

yi = α+

p∑
k=1

xikβk + ϵi

ϵi
iid∼ Nn(0, σ

2).

(6.1)

In this chapter, we use the notation σ2 = ψ−1 to denote the error variance. Furthermore,
an I-prior on the regression coefficient entails prescribing the following normal prior the
βk’s:

β := (β1, . . . , βp)
⊤ ∼ Np(0, κσ2X⊤X).

This follows from (4.1) after a slight reparameterisation of the RKHS scale parameter
κ 7→ λ2/σ4. Throughout this chapter, we assume that the columns of the design matrix
X = (X1, . . . , Xp) have been standardised, so that a single RKHS scale parameter is
sufficient for the p covariates.

The topic of interest for this chapter is model selection for linear regression models.
That is, from a set of p covariates or predictors {X1, . . . , Xp}, the task is to determine the
best choice of subset(s) of variables that should be included in a regression model used
to explain the variation in the response variable. As such, the term variable selection
is synonymous to model selection for linear regression models. Fundamental to this
notion of variable selection is an inherent belief in sparseness of the true data generative
process surrounding the response variable, i.e. not all of the variables need be used to
predict the response. Model selection is indeed a huge topic to cover fully. We broadly
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classify variable selection into three categories: 1) (pairwise) model comparison using
some criterion; 2) shrinkage to induce sparsity; and 3) Bayesian model selection. We
understand that different categorisations and hence categories of model selection exist
in the literature, but our focus is on the discussion of the three types as mentioned.

Model selection criteria, both from a frequentist and Bayesian standpoint, can ei-
ther be of a predictive nature (e.g. R2, mean squared error of prediction (MSEP), Cp

(Mallows, 1973), k-fold cross-validation MSEP, etc.), or be based on likelihood (e.g. like-
lihood ratios, Bayes factors, Akaike information criterion (AIC, Akaike, 1973), Bayesian
information criterion (BIC, Schwarz, 1978), etc.). Selecting a model based on either
of these criteria requires comparison of all 2p criteria, which is not feasible for large
p. Typically, these criteria are used in conjunction with stepwise procedures such as
forward-selection or backward-deletion to restrict attention to a smaller number of po-
tential subsets (George and McCulloch, 1993; Miller, 2002).

On the other hand, regularised least squares regression (ridge regression (Hoerl and
Kennard, 1970), Lasso (Tibshirani, 1996), or a convex combination of the two via elastic
nets (Zou and Hastie, 2005), etc.) provide additional information to the regression
model in order to provide a sparse solution to linear system of equations in β. These
methods are proven to be popular as they are fast and perform exceptionally well in
many situations, even in cases where p > n. Additionally, the Lasso produces solutions
for β which are exactly zero. However, the Lasso in general produces estimates which
are biased towards zero, are inconsistent, and have no valid standard errors (Friedman
et al., 2001; Kyung et al., 2010). Further criticisms of the Lasso include its inability
to select more than n predictors in a p > n situation, and poor performance when
multicollinearity exists among the covariates.

From a Bayesian perspective, regularisation is akin to placing priors on the βk’s
to shrink the effects of the βk’s: the ridge regression has a Bayesian interpretation of
placing normal priors on the regression coefficients, while for the Lasso, a Laplace or
double exponential prior (Park and Casella, 2008). The term adaptive shrinkage has
been used for the method in which hyperpriors are placed on the scale parameter of the
prior for the βk’s. The idea is to adaptively shape the prior depending on the importance
of the variable in the regression model. Bayesian shrinkage includes the task of specifying
tuning parameters. This could potentially affect chain mixing in a Markov chain Monte
Carlo method (MCMC) procedure, the estimation method that is commonly used.

True Bayesian model selection is probabilistic in nature: a priori, one assigns prob-
abilities over the set of models, and then after observing the data, posterior model
probabilities (PMPs) are used to discern which of the models was likeliest to have been
behind the data generative process of the observed responses. Of course, with large p,
calculation of all 2p posterior model probabilities to ascertain which is highest will be
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a challenge, if not impossible. But, as with most Bayesian applications, MCMC can be
applied as a practical means of overcoming this intractability. This stochastic approach
to variable selection was pioneered by George and McCulloch (1993), and studied by oth-
ers such as Dellaportas et al. (2002), L. Kuo and Mallick (1998), and Ntzoufras (2011).
Unlike shrinkage methods, Bayesian model selection is able to quantify the amount of
times a variable “enters the model” (inclusion probabilities), and thereby measuring its
worth as a predictor.

Note that, in addition to model probabilities and inclusion probabilities, estimates of
regression coefficients are obtained simultaneously in Bayesian variable selection. When
several competing models have high posterior probabilities, regression coefficients from
each model, or indeed any quantity of interest, may be combined and weighted by
their posterior model probabilities—a technique known as Bayesian model averaging
(Hoeting et al., 1999; Madigan and Raftery, 1994). Averaging over a set of models
takes into account the uncertainty surrounding model selection, which other standard
statistical procedures ignore upon selection of a single model from which to do inference.
It is known to be the case that predictive accuracy of the model-averaged quantity is
improved, as measured by a logarithmic scoring rule (Raftery et al., 1997).

Bayesian model selection is not without criticism, however. For complex models with
many predictors or samples, MCMC is slow and may mix poorly (O’Hara and Sillanpää,
2009). Often, there are a lot of tuning parameters that need to be set correctly for the
problem at hand. Also, the choice of priors for model parameters affects consistency
of Bayesian model selection procedures. Specifically, improper priors cannot be used
to calculate posterior model probabilities (Casella et al., 2009)—otherwise, one risks
running into Lindley’s paradox1 (Lindley, 1957).

The plan for this chapter is to describe a fully Bayesian model for variable selection
using I-priors. The approach that we take is a stochastic search of the model space due
to L. Kuo and Mallick (1998), realised through a simple Gibbs sampling procedure. The
main motivation behind using I-priors in Bayesian variable selection is its suitability
in accommodating to datasets with strong multicollinearity and being able to run with
little to no prior information about the parameters. A simulation study is conducted
and several real-world examples presented to demonstrate this fact.

1Briefly, in testing a point null hypothesis of the mean of a normally distributed parameter, the null
hypothesis is increasingly accepted as the prior variance of the parameter approaches infinity, regardless
of evidence for or against the null. The paradox is also termed Jeffreys-Lindley paradox (Robert, 2014).
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6.1 Preliminary: model probabilities, model evidence and
Bayes factors

The paradigm of model selection is as follows. From a finite set of models M =

{M1, . . . ,MK}, pairs of data {(y1,x1), . . . , (yn,xn)}, yi ∈ R and xi ∈ X ≡ Rp, had been
generated according to the generative process dictated by one of the models Mk ∈ M
and its respective parameters Θk. Having observed only this data set, the goal is to infer
which of the models had generated the data, and consequently obtain estimates for the
parameters. It is perhaps most natural to ponder which of the models is most likely to
be the “true” one given the data presented, and thus, this natural way of thinking leads
one to the concept of model probabilities. From a Bayesian perspective in particular, pos-
terior model probabilities allow us to quantify the certainty to which any model is behind
the data generative process, after taking into account relevant evidence (observation of
the data) and prior beliefs about model and parameter uncertainty.

Let p(M1), . . . , p(MK) be prior probabilities assigned to the model space M, and
p(Θk|Mk) be the prior on the parameters of model Mk. For any model Mk ∈ M, the
posterior model probability for model m is

p(Mk|y) =
p(y|Mk)p(Mk)∑K
k=1 p(y|Mk)p(Mk)

(6.2)

where

p(y|Mk) =

∫
p(y|Mk,Θk)p(Θk|Mk)dΘk (6.3)

is known as the marginal likelihood, or evidence, for model Mk. As a remark, the prior
distributions for the parameters do not necessarily need to depend on the model, so
we might have that p(Θk|Mk) = p(Θk). A natural strategy for model selection is to
select the model such that p(Mk|y) is largest (the highest probability model, HPM), but
several models rather than just a single one may be reported to convey model uncertainty
(Chipman et al., 2001).

Note, that models may be pairwise compared based on these posterior model proba-
bilities, for which the posterior odds

p(Mk|y)
p(M0|y)

=

Bayes factor︷ ︸︸ ︷
p(y|Mk)

p(y|M0)
×

prior odds︷ ︸︸ ︷
p(Mk)

p(M0)
(6.4)

provide a point summary for comparing model Mk against model M0. The first term
on the right-hand side is the Bayes factor for comparing any model Mk ∈ M to an-
other model M0 ∈ M, and is denoted by BF(Mk,M0). Thus, model selection based on
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posterior model probabilities can be formalised as the Bayesian alternative to classical
hypothesis testing using Bayes factors (Kass and Raftery, 1995).

The issue that is faced with Bayesian model selection is that all posterior model
probabilities must be calculated in order for a full comparison to be made. When the
model space is very large, this can prove to be an insurmountable task. In the case
of linear regression, where each of the p variables may be selected or not, the size
of the model space is 2p. Even for moderate sized p this can already be a challenge
computationally. In the coming sections, we shall see that this problem is alleviated by
the use of MCMC methods to evaluate posterior model probabilities.

6.2 The Bayesian variable selection model

We shall loosely refer to a model as a subset of variables selected from the full set of
variables {X1, . . . , Xp}. It would be useful to be able to index each of these 2p possible
models somehow, and we achieve this by the use of indicator variables γ = (γ1, . . . , γp) ∈
{0, 1}p. Let γj = 1 if the variable Xj is selected, and γj = 0 otherwise, for j = 1, . . . , p.
As an example, the full model, where all the variables are included in the model, is
denoted by γ = (1, . . . , 1), while the intercept only model is denoted by γ = (0, . . . , 0).
Note that we do not consider the intercept to be selectable.

Following L. Kuo and Mallick (1998), the linear model in (6.1) is expanded to include
the indicator variables to form

yi = α+

p∑
k=1

xikγkβk + ϵi

ϵi
iid∼ Nn(0, σ

2).

(6.5)

Hence, in addition to the usual model parameters (β, σ, α), we are also interested in
conducting model inferences through the posterior distribution of the γ’s. The priors for
the parameters are described below:

• Model indicators γj . An independent Bernoulli prior is specified for the model
indicators

p(γ) =

p∏
j=1

π
γj
j (1− πj)1−γj . (6.6)

We may choose to set all πj = 0.5 a priori to reflect equally likely probabilities that
any model may be chosen. Alternatively, we might have some subjective beliefs
about which predictor is more likely or unlikely to be included in the model. We
may also choose to include πj in the estimation procedure by assigning a hyperprior
on πj such as the Beta(1, 1) (uniform distribution), Beta(1/2, 1/2) (Jeffreys prior),
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or any other suitable hyperprior. In any case, in this thesis we consider the simplest
case of setting all πj = 0.5.

• Regression coefficients β. The L. Kuo and Mallick (1998) model is often known
as the independent sampler due to the independence of model parameters and
the indicator variables, i.e., p(β, γ) = p(β)p(γ). As such, prior choices for the
regression coefficients can be any of the usual priors on β, including

– the independent prior β ∼ Np(0, c2Ip) for some choice of c (e.g. c = 10);

– the g-prior β|σ, g ∼ Np(0, gσ2(X⊤X)−1) for some g either chosen a priori or
estimated (Bayes or empirical Bayes); or

– the I-prior β|σ, κ ∼ Np(0, κσ2X⊤X), which is the focus of this chapter.

• Intercept α. A normal prior α ∼ N(0, σ2A).

• Scale σ. An inverse gamma prior σ ∼ Γ−1(c, d).

Priors for the intercept and scale parameters are chosen so as to maintain conjugacy
to the normal regression model. Choices for the prior hyperparameters depend on the
user’s prior beliefs, but it is reasonable to set vague and uninformative hyperparameters
to let the data speak as much as it can, especially in the absence of prior information.
With this in mind, we may choose large values of A (e.g. 100) and small values of the
shape and scale parameters for the inverse gamma (e.g. 0.001). Note that as c, d→ 0 in
the inverse gamma distribution we get the Jeffreys prior2 for scale parameters.

Remark 6.1. The BVS model (6.5) together with the choice of Bernoulli priors on γ

and a normal prior Np(0,Vβ) for β can be seen a spike-and-slab prior prior for linear
regression models, a mixture of a point mass at zero and a normal density (Geweke, 1996;
Mitchell and Beauchamp, 1988). Write θ = (γ1β1, . . . , γpβp)

⊤, which is interpreted as
the “model-specific” regression coefficients. Then, the prior on θ is equivalently written

θ|γ ∼

Np(0,Vβ) w.p. p(γ)

0 w.p. 1− p(γ).

A subtle fact of these spike-and-slab priors is that the posterior distribution for θ will
also be a combination of a point mass and a normal density (with appropriate posterior
parameters). Looking at it from this perspective, regression coefficients are assigned
zero values with positive probability, and it is this fact that allows covariates to be
dropped from the model. As pointed out by L. Kuo and Mallick (1998), the form of the
variable selection model allows the selection of important variables, while simultaneously
shrinking the coefficients via prior information.

2The Jeffreys prior for a parameter θ is defined as p(θ) ∝ |I(θ)|1/2 (Jeffreys, 1946).
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6.3 Gibbs sampling for the I-prior BVS model

The Bayesian variable selection model can be estimated using Gibbs sampling, as demon-
strated originally by L. Kuo and Mallick (1998). In this section, we describe the Gibbs
sampling procedure to obtain posterior samples of the parameters. For the I-prior specif-
ically, the joint density of the responses and the priors is

p(y, γ,β, α, σ2, κ) = p(y|γ,β, α, σ2)p(β|σ2, κ)p(α|σ2)p(γ)p(σ2)p(κ),

where the distribution of the model p(y|γ,β, α, σ2) and of the priors have been described
in the previous section (except for κ, which we now assign an inverse gamma distribu-
tion). Let us denote Θ = {α,β, γ, σ2, κ} to be the full set of parameters that we wish
to obtain posterior samples for. Starting with suitable initial values Θ(0), we then pro-
ceed to obtain samples Θ(1), . . . ,Θ(T ) by sampling each parameter from the conditional
posterior density of that parameter given the rest of the parameters. A suggested set
of initial values are the maximum likelihood (ML) estimates of Θ or the posterior mean
estimate of Θ under the full model γ = (1, . . . , 1) after an initial MCMC run.

The Gibbs conditional densities are straightforward to obtain on account of model
conjugacy (details of the derivation are given in Appendix I, p. 311). We start with
β. The conditional density of β given α, γ, σ2, κ is multivariate normal with mean
B̃(y − α1n) and covariance matrix σ2B̃, where B̃ = X⊤

γ Xγ + (κX⊤X)−1, and Xγ =

(γ1X1 · · · γpXp). Interestingly, when Xj is dropped from the model (γj = 0), the poste-
rior mean and variance for j’th component of β is entirely informed by the prior (L. Kuo
and Mallick, 1998). The data-driven I-prior incorporates information from the covariates
into the prior, which then informs the posterior. In a similar manner, the conditional
density for the intercept α is found to be N

(∑n
i=1(yi−x⊤

i θ)/Ã, σ
2Ã
)
, where Ã = n+A−1

and A is the prior variance for α.

The (conditional) posterior samples of γ = (γ1, . . . , γp) are obtained componentwise,
and each conditional probability mass function for γj is Bernoulli with success probability
π̃j = uj/(uj + vj), where

uj = πj exp
(
− 1

2σ2
∥y− α1n −Xθ

[1]
j ∥

2

)
and

vj = (1− πj) exp
(
− 1

2σ2
∥y− α1n −Xθ

[0]
j ∥

2

)
.

Here, we have used the notation θ
[1]
j to indicate the vector θ with the j’th component

replaced by βj , and θ
[0]
j to indicate the vector θ with the j’th component replaced by

0. Values of 1 for γ are more likely to be sampled when the ratio uj/vj is greater than
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the prior odds πj/(1− πj). Specifically when the prior probabilities πj are all set to be
0.5, then γj will be more likely to be sampled as ‘1’ if uj > vj , i.e. if the residual sum of
squares (RSS) ∥y − α1n −Xθ∥2 is smaller when the j’th component of θ is non-zero,
compared to the RSS when the j’th component of θ is zero.

We can in fact draw parallels to a Bayesian hypothesis test, with the null hypothesis
being H0 : βj = 0 and the alternative being H1 : βj ̸= 0, conditional on knowing all
other values of the parameters. Under Hk, y|Θ ∼ Nn(α1n + Xθ

[k]
j , σ2In), k = 0, 1. The

conditional Bayes factor comparing the model in the alternative hypothesis M1 to the
model in the null hypothesis M0 is therefore

BF(M1,M0) =
uj/πj

vj/(1− πj)
=

π̃j
1− π̃j

/
πj

1− πj
.

Thus, it can be seen that the decision to include or exclude the j’th variable from
the model relates a hypothesis test using the Bayes factor rule, and this decision is
embedded in the conditional posterior probabilities π̃j . The Gibbs sampling procedure
does something that can be described as “an automated stochastic F-test for subset
selection” (L. Kuo and Mallick, 1998).

Both scale parameters σ2 and κ follow the conditional inverse gamma distributions

σ2|α, β, γ, κ ∼ Γ−1
(
n/2 + cσ + 1, ∥y− α1n −Xθ∥2/2 + dσ

)
and

κ|α, β, γ, σ2 ∼ Γ−1
(
p/2 + cκ + 1,β⊤(X⊤X)−1β/σ2 + dκ

)
.

Note that the inverse gamma distribution that we specify here is defined by its shape
and scale parameter, and has the density function described in Appendix C.6. Here,
{cσ, dσ} and {cκ, dκ} are the shape and scale hyperparameters of the inverse gamma
priors on σ2 and κ respectively.

6.4 Posterior inferences

Having obtained posterior samples Θ(t) = {α(t),β(t), γ(t), σ2(t), κ(t)}, there are two quan-
tities of interest in relation to model inferences. The first is an estimate of posterior
model probabilities, given by

P̂(γ = γ′|y) = 1

T

T∑
i=1

[γ(t) = γ′], (6.7)

where [·] is the Iverson bracket. This gives an estimate of the probability of a model coded
by γ′ appearing in the posterior state space of models. The second is a quantification
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of the posterior inclusion for each of the p variables X1, . . . , Xp, known as posterior
inclusion probabilities (PIPs) for a variable being selected in any model. This is given
by

P̂(γj = 1|y) = 1

T

T∑
i=1

[γ
(t)
j = 1], j = 1, . . . , p. (6.8)

Posterior inclusion probabilities are the marginals of the posterior model probabilities
across each variable.

Table 6.1: Illustration of samples of γ from the Gibbs sampler for p = 3. As an example,
to estimate the posterior model probability of {X1,X3}, we count the occurrences of
the combination γ(t) = (1, 0, 1) in the sample and divide by T . To estimate posterior
inclusion probabilities for any of the three variables, we take the sample mean of the
binary variates column-wise.

t γ
(t)
1 γ

(t)
2 γ

(t)
3

1 1 0 1
2 1 0 0
3 1 1 0
...

...
...

...
T 1 0 1

Note, that the regression coefficient of interest is not β, but rather the “model aver-
aged” regression coefficients θ = (γ1β1, . . . , γpβp)

⊤ (Madigan and Raftery, 1994). Pos-
terior variances for θ will typically be larger than variances for β, because posterior
estimates surrounding θ will have incorporated model uncertainty, but β on the other
hand, will not. Thus, any inferential procedure surrounding the regression coefficients
avoids the risk of over-confidence. Note that, since θ will contain values of exactly zero
when predictors are dropped out of the model, the posterior density for θ is a mixture
of a point mass at zero and a normal density. In any case, the likelihood only provides
sufficient information to identify the product of β and γ, but not each of them separately
(L. Kuo and Mallick, 1998).

Remark 6.2. The intention of computing model-averaged regression coefficients θ is solely
for the inclusion of model uncertainty. There is a strong agreement in the Bayesian
variable selection literature that that such coefficients are practically meaningless when
it comes to explanatory inferences. Banner and Higgs (2017) writes that “regression
coefficients... may not hold equivalent interpretations across all of the models in which
they appear”, and one reason for this might be “interpretation of partial regression
coefficients can depend on other variables that have been included in the model”. The
use of model-averaged effect sizes may thus result in misleading inferences (Cade, 2015).
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Finally, any quantity of interest ∆ can be incorporated as part of the Gibbs sampling
procedure. That is, at each Gibbs iteration t = 1, . . . , T , calculate ∆(t) as a function
of the parameter values at iteration t. This can be done during the Gibbs sampling
process, or even after the fact as part of a post-processing procedure. Any inference
on the posterior of ∆ will then have incorporated the model uncertainty from a model
averaging standpoint, as discussed earlier. As an example, suppose we are interested in
the predicted value at a new covariate value xnew ∈ Rp. For each Gibbs sample, calculate

y
(t)
new = α(t) + x⊤

new(γ1β1, . . . , γpβp),

and obtain a point estimate ŷnew using the posterior mean or mode. The uncertainty
for this estimate is contained in the standard deviation calculated from the sample
y
(1)
new, . . . , y

(T )
new, from which a 95% credibility interval for this estimate can be obtained

from the empirical upper and lower 0.025 cut off points.

6.5 Two stage procedure

The variable selection procedure can be improved by a “preselection” of variables to
trim off unimportant variables which reduces the size of the model space being explored.
Without appealing to other external preselection methods, there is actually informa-
tion that we could use from Bayesian variable selection models in the form of posterior
inclusion probabilities. The procedure would work as follows:

1. Run the Bayesian variable selection model and obtain posterior inclusion proba-
bilities for each variable.

2. Discard variables with inclusion probablities less than a certain treshold, τ .

3. Re-run the Bayesian variable selection model on the set of reduced variables.

A natural choice for τ would be 0.5, and therefore a two-stage approach to Bayesian
variable selection can then be motivated as selecting the subset of variables which consti-
tutes what is known as the median probability model. The median probability model is
obtained by selecting all variables with a posterior inclusion probability of greater than
or equal to a half. Barbieri and J. O. Berger (2004) show that the median probability
model has the property of being optimally predictive (minimises squared error loss for
predictions) under certain strict conditions.

The notion of a two-stage approach is not new, as many variable selection methods
in the literature generally employ a preselection method of some kind before running
their selection process proper. This can be based on subjective preconceptions about
which variables to retain, substantive theory, or even an objective preselection criterion.
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Two-stage procedures for Bayesian variable selection models have been used in works by
Fouskakis and Draper (2008) and Ntzoufras (2011).

In the simulation studies conducted and observations from real-data examples, this
two-stage approach does seem to provide a benefit. The complexity of estimating all
model probabilities grows exponentially with p, therefore reducing this benefits the model
selection procedure because the search of the model space is less cluttered. Of course,
this idea works if the “correct” variables are deleted when proceeding to the second stage.
We posit that the p posterior inclusion probabilities are easier to estimate than the 2p

posterior model probabilities from the same amount of information coming from the
MCMC samples. As a result, information summarised through the posterior inclusion
probabilities are more precise than the posterior model probabilities.

6.6 Simulation study

In this section, we conduct a simulation study to compare the performance of different
priors in the Bayesian variable selection framework described above. The priors on β that
are compared are those mentioned in Section 6.2, i.e. the I-prior, the independent prior
with large prior variance (flat/uninformative prior), and the g-prior with g = n (unit
information prior, Ntzoufras, 2011). We also make a comparison the variable selection
performance of the Lasso, which, from a Bayesian perspective, is similar to setting a
double-exponential or Laplace priors on the regression coefficients (Park and Casella,
2008). For clarity, the Lasso model employed in the simulations is of a frequentist
regularisation framework as per Tibshirani (1996), and is neither a Bayesian variable
selection model as described earlier, nor a fully Bayes implementation as per Park and
Casella (2008). We felt it interesting to compare the Lasso as it is widely used for
variable selection of linear models.

The experiment is to select from a total of p = 100 variables of an artificial dataset
of sample size n = 150, which has pairwise correlations induced between the variables.
This was inspired by the studies done by George and McCulloch (1993) and L. Kuo and
Mallick (1998) in their respective papers, albeit on a larger scale (in theirs, p = 30). Five
different scenarios were looked at. For each scenario, only s out of 100 variables were
selected to form the “true” model and generate the responses according to the linear
model y ∼ N100(Xβ, σ2I150). The signal-to-noise ratio (SNR) as a percentage is defined
as s%, and the five scenarios are made up of varying SNR from high to low: 90%, 75%,
50%, 25%, and 10%. Variables that were included in the model had true β coefficients
equal to one. That is, βtrue = (1s,0100−s)

⊤, where 1s is a row-vector of s ones, and
0100−s is a row-vector of 100− s zeroes.
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The data generation process is summarised as follows:

• Draw Z1, . . . ,Z100
iid∼ N150(0, I150).

• Draw U ∼ N150(0, I150).

• Set X = (Z1 + U, . . . ,Z100 + U). This induces pairwise correlations of about 1/2
between the columns of X.3

• Draw y ∼ N150(Xβtrue, σ2I150), with σ = 2.

In each scenario, we are interested in obtaining the highest probability model and
counting the number of false choices made in this model after a two-stage procedure of
variable selection. False choices can either be selecting variables wrongly (false inclusion)
or failing to select a variable (false exclusion). Each scenario was repeated a total of 100
times to account for variability in the data generation process, and the results averaged.
A summary of the results is presented in Table 6.2. The overall results are also plotted
in the form a frequency polygon (see Figure 6.1).

Table 6.2: Simulation results (proportion of false choices) for the Bayesian variable
selection experiment using the I-prior, an independent prior, the g-prior and the Lasso
across varying SNR. Standard errors are given in parentheses.

Signal-to-noise ratio
False choices 90% 75% 50% 25% 10%
I-prior
0-2 0.93 (0.03) 0.92 (0.03) 0.90 (0.03) 0.79 (0.04) 0.55 (0.05)
3-5 0.07 (0.03) 0.07 (0.03) 0.10 (0.03) 0.20 (0.04) 0.27 (0.04)
>5 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.01 (0.01) 0.18 (0.04)

Ind. prior
0-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.44 (0.05) 1.00 (0.00)
3-5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.30 (0.05) 0.00 (0.00)
>5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.26 (0.04) 0.00 (0.00)

g-prior
0-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.78 (0.04) 0.86 (0.03)
3-5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.03) 0.13 (0.03)
>5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.08 (0.03) 0.01 (0.01)

Lasso
0-2 0.03 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
3-5 0.19 (0.04) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
>5 0.78 (0.04) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

3For any row of X, Cov[Xj , Xk] = Cov[Zj+U,Zk+U ] = Var [U ] = 1, and Var[Xj ] = Var[Zj+U ] = 2.
Thus, Corr[Xj , Xk] = Cov[Xj , Xk]/(Var[Xj ]Var[Xk])

1/2 = 1/2.
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Figure 6.1: Frequency polygons for the number of false choices for each of the four priors.
The I-prior performs robustly well across the five scenarios tested, mostly yielding five
or fewer false inclusions or exclusions. Spurious exclusions led to the independent and
g-prior simultaneously performing well in low SNR and badly in high SNR scenarios.
The Lasso is known to be unreliable in the presence of collinearity.
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The simulation results seem to indicate that the I-prior performs consistently well
across all five scenarios, making no more than five false choices out of 100 (i.e. a 95%
correct selection rate) in at least 82% of the time in the worst scenario. We do not
observe much difference between the g-prior and the independent prior, and while they
behave poorly in high SNR scenarios, these two priors seem to perform extremely well
in low SNR scenarios. A high propensity to drop variables in these scenarios is a likely
explanation, which does not necessarily indicate good performance—they perform well
by contentiously omitting of a large number of unnecessary variables, especially in a
two-stage procedure. Finally, the Lasso is well known to yield poor selection perfor-
mance under multicollinearity, so the results are expected. The Lasso procedure was
not subject to a two-stage approach because the Lasso does not provide information
regarding posterior inclusion probabilities for individual variables.

We also inspect the sensitivity of the hyperprior choice of πj for the indicator variables
on the number of false choices made. Figure 6.2 plots the mean number of false choices
made in each of the five SNR scenarios with varying hyperprior setting for πj . From
the plot, it is seen that for high SNR scenarios, setting πj too low increases the number
of false exclusions. Conversely, for low SNR scenarios, setting πj too high increases the
number of false inclusions. This makes sense: when the true model size is small, then
setting πj too high encourages variables to be retained in the model, and vice versa.
While the optimal πj corresponds directly to the true SNR (e.g. SNR = 10% performs
best under πj = 0.10), Figure 6.2 makes a case for πj = 0.5 to be a “safe choice” in the
face of prior ignorance on model size.
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Figure 6.2: Average number of false choices (false inclusions or false exlusions) for the five
different scenarios (SNR varied between 90%, 75%, 50%, 25% and 10%) with different
hyperprior settings for γj ∼ Bern(πj).
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6.7 Examples

Now, we apply our I-prior Bayesian variable selection model to three real-world data
sets that have all been previously analysed in the variable selection literature. All
examples were analysed in R using our ipriorBVS package (Jamil, 2018) which con-
tains a wrapper to JAGS (Plummer, 2003). Reproducible code is available at http:
//myphdcode.haziqj.ml. In all analyses, a two-stage procedure was conducted for the
I-prior model, where each stage consists of obtaining 10,000 MCMC samples.

6.7.1 Aerobic data set

Figure 6.3: The sample correlations of interest in the aerobic fitness dataset. These show
variables with correlations greater than 0.4 in magnitude.

This dataset appeared in the SAS/STAT® User’s Guide (SAS Institute Inc., 2008)
and was also analysed by L. Kuo and Mallick (1998). It involves understanding the
factors which affect aerobic fitness, which is measured by the ability to consume oxygen.
A sample of n = 30 male participants’ had their physical fitness measured by means
of simple exercise tests. The response variable contains measurement of oxygen uptake
rate in mL/kg body weight per minute. The six covariates were the participants’ age
(X1), weight (X2), time taken to run one mile (X3), resting heart rate (X4), heart rate
while running (X5), and maximum heart rate during the exercise (X6). This dataset,
although small in size, is interesting to analyse because of the correlations between the
variables, mainly due to the measurements being taken during the same exercise test.
The sample correlations of interest are shown in Figure 6.3.

Notice that Table 6.3 reports only on four out of 26 = 64 possible models, but the
sum of the posterior model probabilities add to one. Naturally, models which are deemed
important by virtue of data evidence are sampled more often, and in fact, models which
are unpromising may not even get sampled. So, MCMC methods does not need to list
out all possible models because models which are never visited in the posterior state
space are assigned a probability of zero. The highest posterior model was found to be
the model with the variables X1, X3 and X5 (PMP = 0.564). In Figure 6.4, we can see
that the point mass at zero overwhelms the rest of the values in the density plots for
X2, X4 and X6, and hence these variables were dropped.
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Table 6.3: Results for variable selection of the Aerobic data set. Note that the Bayes
factors reported are the Bayes factors comparing any of the models to Model 1 (base
model).

PIP Coef. (SD) Model 1 Model 2 Model 3 Model 4
X1 0.685 −0.169 (0.14) 3 3

X2 0.205 −0.017 (0.05)
X3 1.000 −0.745 (0.12) 3 3 3 3

X4 0.168 −0.013 (0.05)
X5 0.663 −0.163 (0.15) 3 3

X6 0.275 0.003 (0.10)

PMP 0.564 0.235 0.105 0.096
BF 1.000 0.418 0.187 0.170
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Figure 6.4: Posterior density plots of the regression coefficients θ for the aerobic data
set. The spike at zero observed in the density plots for X2, X4 and X6 is indicative of
these variable being dropped often in the posterior samples.
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6.7.2 Mortality and air pollution data

The next real world application comes from a paper by McDonald and Schwing (1973).
In it, the effects of air pollution on mortality in a US metropolitan area (n = 60 and
p = 15) were studied. The response variable is the total age adjusted mortality rate, and
the main pollution effects of interest were that of hydrocarbons (HC), oxides of nitro-
gen (NOx) and sulphur dioxide (SO2). Several other environmental and socioeconomic
considerations were taken into account, otherwise the model may include unexplained
variation caused by factors other than pollution. For example, a metropolitan area with
a high proportion of the elderly should expect to have a higher mortality rate than one
with a low proportion. All of the variables can be considered as continuous and real;
Table 6.4 provides a description of the variables.

Table 6.4: Description of the air pollution data set.

Variable Description
Mortality Total age adjusted mortality rate
Precipitation Mean annual precipitation (in)
Relative humidity Percent relative humidity, annual average at 1 p.m.
January temperature Mean January temperature (◦F)
July temperature Mean July temperature (◦F)
Population density Population per square mile in urbanised area
Household size Population per household
Education Median school years completed for those over 25
Sound housing units Percentage of sound housing units (no defects)
Age >65 years Percent of population that is 65 years of age or over
Non-white Percent of urbanised area population that is non-white
White collar Percent employment in white-collar urbanised occupations
Income <$3,000 Percent of families with income under $3,000
HC Relative population potential of hydrocarbons
NOx Relative population potential of oxides of nitrogen
SO2 Relative population potential of sulphur dioxide

This dataset also contains several highly correlated variables which impedes a mean-
ingful regression analysis. When the full model is fitted using ordinary least squares,
none of the pollutant effects were found to be significant. Clearly, a variable selection
method was required. McDonald and Schwing (1973) used a ridge regression technique
to determine which variables to select and eliminate “unstable” coefficients found from
a trace analysis. In addition, the authors also looked at a variable elimination method
based on total squared error via Mallow’s Cp. The results are summarised in Table 6.5.

In this case, the I-prior BVS model concurred with the overall finding of McDonald
and Schwing (1973), in that SO2 was found to be a significant contributing factor towards
mortality rates, while the rest of the pollutants were not. the I-prior BVS model also
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Table 6.5: A comparison of the coefficient values obtained using ordinary least squares
(full model), McDonald and Schwing’s minimum Cp and ridge analysis, and the I-prior.
Standard errors/posterior standard deviations are given in parentheses. Values shaded
grey indicate OLS regression coefficients not significant at the 10% level.

Full model Min. Cp Ridge I-prior
Environmental factors

Precipitation 0.306 (0.14) 0.247 (0.07) 0.230 (0.07) 0.254 (0.12)
Relative humidity 0.009 (0.10)
January temperature -0.318 (0.18) -0.164 (0.06) -0.172 (0.06) -0.195 (0.11)
July temperature -0.237 (0.15) -0.073 (0.07)

Demographic factors
Population density 0.084 (0.09) 0.091 (0.06)
Household size -0.232 (0.15)
Education -0.233 (0.16) -0.190 (0.06) -0.171 (0.07) -0.151 (0.12)
Sound housing units -0.052 (0.15)
Age >65 years -0.213 (0.20)
Non-white 0.640 (0.19) 0.481 (0.07) 0.462 (0.07) 0.517 (0.10)
White collar -0.014 (0.12)
Income <$3,000 -0.009 (0.22)

Pollution potential
HC -0.979 (0.72)
NOx 0.983 (0.75)
SO2 0.090 (0.15) 0.255 (0.06) 0.232 (0.06) 0.302 (0.09)

Size 15 6 6 5
R2 0.764 0.541 0.553 0.676

obtained a model with the largest R2 and the smallest size. We note that the effect size
for SO2 is slightly larger under an I-prior, but generally, the rest of the I-prior coefficients
are similar in magnitude and sign to the coefficients of the other two models.

6.7.3 Ozone data set

In this section, we replicate the Bayesian variable selection analysis of the Ozone dataset
done by Casella and Moreno (2006, abbr. C&M) which appeared initially in Breiman and
Friedman (1985, abbr. B&F), and also show how Bayesian variable selection can help
select important interaction terms. The data consists of daily ozone readings and various
meteorological quantities, and the aim was to see which of these quantities contributed
to the ozone concentration. The variables considered are explained in Table 6.6.

The data contains 366 points, one for each day of the leap year 1976. There are 163
data points containing missing data on some of the predictors, so we did a complete case
analysis on the remaining 203 samples. Out of these 203, we randomly set aside 25 to
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Table 6.6: Description of the ozone data set used in this analysis. The data is available
from the R package mlbench (Leisch and Dimitriadou, 2010).

Variable Description
y Daily maximum one-hour-average ozone reading (ppm) at Upland, CA
X1 Month: 1 = January, . . . , 12 = December
X2 Day of month: 1, 2, . . .
X3 Day of week: 1 = Monday, . . . , 7 = Sunday
X4 500-millibar pressure height (m) measured at Vandenberg Air Force Base
X5 Wind speed (mph) at Los Angeles International Airport (LAX)
X6 Humidity (%) at LAX
X7 Temperature (◦F) measured at Sandberg, CA
X8 Inversion base height (feet) at LAX
X9 Pressure gradient (mmHg) from LAX to Daggett, CA
X10 Visibility (mi) measured at LAX
X11 Temperature (◦F) measured at El Monte, CA
X12 Inversion base temperature (degrees Fahrenheit) at LAX

use for validation, thus the n used to train the model was n = 178. The training and test
set were repeated multiple times and results averaged in order to make a comparison to
the unknown training and test set used in the other studies. Out-of-sample prediction
RMSE were obtained, as well as the coefficient of determination R2.

C&M removed the variables X11 and X12 before running their selection model, citing
multicollinearity causing ill-conditioned design matrices. Upon inspection, there are
indeed correlations among the variables as high as 0.93 for some of them, but not enough
to cause rank deficiency in the design matrix and a degenerate X⊤X matrix. The
sample correlations Ĉorr(X7, X11) = 0.91 and Ĉorr(X11, X12) = 0.93 seemed to drive
the decision to drop the two variables, and while it is a valid concern, we shall still
conduct variable selection on the full set of 12 variables to see the performance of I-
priors in the presence of multicollinearity in this real-world data set. On another note,
the variables X1, X2 and X3 were presumably intended to be categorical as in modelling
seasonality in a time series data, but these were treated as continuous, as did C&M. The
results are compared in Table 6.7.

Table 6.7: Results for variable selection of the Ozone data set using only linear predictors.

Method Variables Size R2 RMSE
I-prior X1, X6, X11 3 0.708 0.554
Casella and Moreno (C&M) X6, X7, X8 3 0.686 0.992
Breiman and Friedman (B&F) X7, X8, X9, X10 4 0.669 1.056

What we found was that the model selected using the I-prior does better in terms of
R2 as well as RMSE compared to the methods used by C&M and B&F. The average
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posterior model probability for {X1, X6, X11} as found by the I-prior was 0.7224. One
thing to note is that the I-prior model selected the variable X11 instead of its highly
correlated proxy X7, which is what C&M selected. These two variables are temperature
measurements at different locations in California. As C&M excluded X11 from the model
search it was of course never considered in their model selection process, and because
we included it in ours, the variable selection model was able to consider both variables
together and decide on the more appropriate one.

Interestingly, the distance as the crow flies between Sandberg, CA (location of tem-
perature measurements for X7) and Upland, CA (location of ozone readings) is roughly
121 km, but El Monte, CA (location of temperature measurements for X11) is just 35
km away from Upland, CA. It stands to reason that X11 provides more geographical
reliability than X7. Unless there is a strong insistence on deleting variables beforehand,
we might not know for sure whether the variable was rightfully removed from consider-
ation, as this example seems to prove. Out of curiosity, running the variable selection
model on the reduced variable space as C&M did, we arrive at the same results as theirs.

Figure 6.5: Locations5 of the various points of interest in California, USA, related to the
ozone measurements.

We then used the I-prior method to select between the squared terms and all level two
interactions, in addition to all the variables, in an effort to improve model prediction. For
12 such variables, the number of variables to select becomes 12+12+12(12−1)/2 = 90.
By doing so, we were able to improve the model to give a slightly better predictive
ability. The results are shown below in Table 6.8. The I-prior again selected a model
which was superior in terms of R2 and RMSE compared to that obtained by C&M.

4Since the total model space used was different between our method, C&M and B&F, it does not make
sense to compare posterior model probabilities which we obtained. C&M reported a model probability
of 0.491 for their model, but this model was not selected at all using the I-prior.

5Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under CC BY-SA 3.0.
Created using the ggmap package (Kahle and Wickham, 2013) in R.
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Table 6.8: Results for variable selection of the Ozone data set using linear, squared and
two-way interaction terms.

Method Variables Size R2 RMSE
I-prior X1, X5, X6, X11, X12, X

2
1 , X

2
9 , X6X11, X6X12, X7X9 10 0.812 0.503

C&M X2, X
2
1 , X

2
7 , X

2
9 , X1X5, X2X6, X3X7, X4X6, X6X8, X6X10 10 0.758 0.873

6.8 Conclusion

The model selection problem is an important one in statistics, but highly contentious.
Miller (2002) writes that many statisticians view model selection as “unclean” or “dis-
tasteful”, and that “terms such as ‘fishing expeditions’, ‘torturing the data until they
confess’, ‘data mining’, and others are used as descriptions of these practices”. The dis-
agreement with the principle of model selection stems from the belief in the mantra that
models should only be built by thoughtfully choosing variables which are expected to
influence the response by appealing to substantive theory, and not by virtue of optimis-
ing some model selection criterion. However, variable selection as an exploratory study
is certainly justified by many practical applications, especially when there is a genuine
desire to know the most reasonable, parsimonious and interpretable model. Through
variable selection exercises, we can learn which covariates are important, and which are
negligible, in explaining the variation in the response.

The Bayesian variable selection method that we have seen has the appeal of reducing
the problem of model search into one of estimation. At the outset, we aimed to seek
a model which: 1) requires little tuning on the part of the user; 2) would work well
in the presence of multicollinearity; and 3) is able to work well with little to no prior
information. The I-prior on the regression coefficients in L. Kuo and Mallick’s (1998)
spike-and-slab stochastic search framework achieves this aim.

The attractive feature of a Bayesian approach to variable selection is the ability to
simultaneously shrink and select predictors, thereby incorporating model uncertainty in
the regressors. Sparsification is not “hard coded”, in the sense that regression coefficients
are assigned a value of zero with some positive probability in the posterior. This is
unlike the regularisation or penalised log-likelihood approach to variable selection using
the Lasso, elastic net, and so on, whereby sparsity is induced at the mode, but not in
the posterior distribution (Scott and Varian, 2014). This translates to being provided
with a single variable selection decision, rather than information that is coded through
a probability distribution.

We discuss three areas to concentrate on for future research and improvement:
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1. p > n cases. Typically, when there is insufficient information in the data to
inform the estimation, then additional information is sought from the priors. In
our case, the I-prior covariance involves the inverse of a low rank matrix which is not
invertible. A p-variate normal distribution with a singular covariance matrix will
only have a probability distribution defined on a low dimensional subspace. The
issue may however be computational—it might be worth exploring the generalised
inverse, or study ways in which to avoid the inverse computation in the Gibbs
sampler. As a matter of fact, we note that the posterior precision for β can be
written as

B̃−1 =
(
X⊤

γ Xγ + (κX⊤X)−1
)−1

= X⊤
γ Xγ

(
(X⊤

γ Xγ)
2 + κIp

)−1

which avoids the need for inverting the low-rank matrix X⊤
γ Xγ .

2. Improvement in computational time. Although the model itself is not com-
putationally intensive to run (roughly O(np2) in time per Gibbs iteration), the
main bottleneck is the reliance on a stochastic sampling algorithm. As in the
previous chapter, variational inference is a promising area to look into, especially
given that the Gibbs conditional distributions were straightforward to obtain, and
these might be similar to a mean-field variational distribution. If this is successful,
then it is expected to reduce computational time and avoid convergence issues that
comes with traditional MCMCs. Variational inference with spike-and-slab priors
on regression coefficients was studied by Ormerod et al. (2017).

3. Extension to generalised linear models. L. Kuo and Mallick (1998) in their
paper already provided a sketch of how the variable selection model would work.
With the ideas in Chapter 5, we can extend the I-prior variable selection to cate-
gorical responses when the continuous latent propensities are modelled using linear
functions. Such an approach has been implemented in gene selection studies, for
which the variables are gene expressions and the responses are presence of a par-
ticular disease (Lee et al., 2003).

Finally, it should be mentioned that more complex variable selection models can be
coded with the γ indicators. For instance, in selecting squared or interaction terms, we
can insist on having the model select the main term if the squared or interaction term
is selected, by specifying

yi = α+ max(γ1, γ3)β1x1i + max(γ2, γ3)β2x2i + γ3β3x1ix2i.

Or perhaps, we could use a single γ indicator for the dummy variables which make up
a single categorical covariate, which we would then infer on the selection of the single
covariate rather than each individual category of the covariate.
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Chapter 7

Summary

The work done in this thesis explores the concept of regression modelling using priors
dependent on Fisher information covariance kernels (I-priors, Bergsma, 2018). It is
best seen as a flexible regression technique which is able to fit both parametric and
nonparametric models, and bears similarity to Gaussian process regression.

The regression model of the form (1.1) subject to (1.2) is of interest, and this is stated
again for convenience:

yi = α+ f(xi) + ϵi (from 1.1)

(ϵ1, . . . , ϵn) ∼ Nn(0,Ψ−1) (from 1.2)

i = 1, . . . , n.

It is also assumed that the regression function f lies in some reproducing kernel Hilbert
or Kreĭn space (RKHS/RKKS) F with kernel hη defined over the set of covariates X .

In Chapter 2, we built a primer on basic functional analysis, and described various
interesting RKHS/RKKS for regression modelling. We then ascertained the form of the
Fisher information for f , treated as a parameter of the model to be estimated, and from
Corollary 3.3.1 (p. 93), it is

I
(
f(x), f(x′)

)
=

n∑
i,j=1

ψijhη(x, xi)hη(x
′, xj)

= hη(x)
⊤Ψhη(x

′),

for any two points x, x′ in the domain of f , obtained using appropriate calculus for
topological spaces detailed in Chapter 3. An I-prior for f is defined as Gaussian with
mean function f0 chosen a priori, and covariance function equal to the Fisher information.
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The I-prior for f has the simple representation

f(xi) = f0(xi) +

n∑
k=1

hη(xi, xk)wk

(w1, . . . , wn)
⊤ ∼ Nn(0,Ψ)

i = 1, . . . , n,

and is written equivalently as the Gaussian process prior

(
f(x1), . . . , f(xn)

)⊤ ∼ Nn(f0,HηΨHη),

where Hη =
(
hη(xi, xj)

)n
i,j=1

.

In Chapter 4, we looked how the I-prior model has wide-ranging applications, from
multilevel modelling, to longitudinal modelling, and modelling with functional covari-
ates. Estimation was conducted mainly using a simple EM algorithm, although direct
optimisation and Bayesian estimation using Markov chain Monte Carlo (MCMC) are
also possible. In the case of polytomous responses, we used a latent variable framework
in Chapter 5 to assign I-priors to latent propensities which drive the outcomes under a
probit-transform scheme. An extension of the EM algorithm was considered, in which
the E-step was replaced with variational inference, so as to overcome the intractability
brought about by the conditional distributions. For both continuous and categorical re-
sponse I-prior models, we find advantages of using I-priors, namely that model building
and estimation is simple, inference straightforward, and predictions comparable, if not
better, to similar state-of-the-art techniques.

Finally, in Chapter 6, we dealt with the problem of model selection, specifically for
linear regression models. There, we used a fully Bayesian approach for estimating model
probabilities in which regression coefficients are assigned an I-prior. We devised a model
that requires minimal tuning on the part of the user, yet performs well in simulated and
real-data examples, even if multicollinearity exists among the covariates.

7.1 Summary of contributions

We give a summary of the novel contributions of this thesis.

• Fisher information for infinite-dimensional parameters. When the RKHS/
RKKS F is infinite dimensional (e.g. covariates are themselves functions), then
the Fisher information involves derivatives with respect to an infinite-dimensional
vector. Finite-dimensional results using componentwise/partial derivatives may
fail in infinite dimensions. The technology of Fréchet and Gâteaux differentials
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accommodate for the fact that f may be infinite dimensional, which, at minimum,
requires F to be a normed vector space. We foresee the work of Section 3.2
being applicable elsewhere, such as learning in (reproducing kernel) Banach spaces
(Haizhang Zhang et al., 2009; Haizhang Zhang and J. Zhang, 2012), or in the
theory of parameter estimation for general exponential family type distributions
of the form

p(y|θ) = B(y) exp
(
⟨θ, T (y)⟩H −A(θ)

)
,

in which θ lies in some inner-product space H which might be infinite dimensional
(Sriperumbudur et al., 2017).

• Efficient estimation methods for normal I-prior models. The preferred
estimation method for normal I-prior models for stability is the EM algorithm.
Implementing the EM algorithm can be computationally costly, due to the squar-
ing and inversion of the kernel matrices in the Q function in (4.18) on page 113.
Unfortunately, not much can be done about the inversion, but we explored system-
atic ways in which to perform the squaring. Combining a “front-loading method”
of the kernel matrices (Section 4.3.2, p. 119) and an exponential family ECM
(expectation conditional maximisation) algorithm (Meng and Rubin, 1993), the
estimation procedure is streamlined. Our computational work culminated in the
publicly available and well-documented R package iprior (Jamil, 2017) published
on CRAN.

• Methodological extension of I-priors to categorical responses. An ex-
tension of the I-prior methodology to fit categorical responses was studied. We
proposed a latent variable framework, in which there corresponds latent propen-
sities for each category of the observations. Instead of modelling the responses
directly, the latent propensities are modelled using an I-prior, and class probabil-
ities obtained using a normal integral. We named this model the I-probit model.
The challenge of estimation was overcoming said integral, and we used a varia-
tional EM algorithm in which the E-step involves a variational approximation of
the intractable conditional density. The variational EM algorithm was preferred
over a fully Bayesian variational inference algorithm for two main reasons: 1) the
work done in the normal I-prior EM algorithm applies directly; and 2) prior spec-
ification for hyperparameters can be dispensed with. Classification, meta-analysis
and spatio-temporal modelling are specific examples of the applications of I-probit
models.

• Distributional results for truncated normals. In deriving the variational
algorithm, some properties related to the conically truncated multivariate inde-
pendent normal distribution (as defined in Appendix C.4, p. 281) were required.
A small contribution of ours was to derive the closed-form expressions for its first
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and second moments, and its entropy (Lemma C.5, p. 283). We have only seen
closed-form expressions of the mean of such a distribution being used before (Giro-
lami and Rogers, 2006) but not for the variance, nor an explicit derivation of these
quantities.

• Bayesian variable selection under collinearity. Model comparison using
likelihood ratio tests or Bayes factors is fine when the number of models under
consideration is fairly small. Under a fully Bayesian scheme, we use MCMC to
approximate posterior model probabilities of competing linear models. At the
outset, we sought a model which required minimal intervention on the part of the
user. The I-prior achieved this, with the added advantage of performing well under
multicollinearity.

7.2 Open questions

In closing, we briefly discuss several questions which remain open during the course of
completing this project.

• Initialisation of EM or gradient-based methods. Figure 4.1 (p. 112) in-
dicates the impact that starting values can have on gradient-based optimisation.
One can end up at a local optima on one of the two ridges. Usually, one of the
ridges will have a higher maximum than the other, but it is not clear how to direct
the algorithm in the direction of the “correct” ridge.

Importantly, the interpretation of a flat ridge in the likelihood is that there is
insufficient information coming from the data to inform parameter estimation.
In the EM algorithm, estimation is usually characterised by a fast increase in
likelihood in the first few steps (as it climbs up the ridge), and then later iterations
only improve the likelihood ever so slightly (as it moves along the ridge in search
of the maximum). In some real-data cases (e.g. Tecator data set), we noticed
that the EM sequence veers to the boundary of the parameter space, where the
likelihood is infinite (e.g. L(ψ)→∞ as ψ → 0,∞).

Ill-posed problems similar to this are resolved by adding penalty terms to the log-
likelihood. As to what penalty terms are appropriate remains an open question.

• Standard errors for variational approximation. Under a variational scheme,
the log-likelihood function L(θ) is replaced with the evidence lower bound (ELBO)
Lq(θ) which serves as a conservative approximation to it. The question we have is
whether the approximation degrades the asymptotic properties of the estimators
obtained via variational inference? In particular, are the standard errors obtained
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from the information matrix involving Lq(θ) reliable? This question has also been
posed by Bickel et al. (2013), Y.-C. Chen et al. (2018), and Hall et al. (2011).

Variational methods for maximum likelihood learning can be seen as a deliber-
ate misspecification of the model to achieve tractibility. As such, the variational
EM has been referred to as obtaining pseudo- or quasi-ML estimates. The quasi-
likelihood literature has results relating to efficiency of parameter estimates (ad-
justments to the information matrix is needed), and we wonder if these are appli-
cable for variational inference.

Incidentally, obtaining standard errors directly from an EM algorithm is also of
interest, especially under a variational EM setting. Though this is described in
McLachlan and Krishnan (2007, Ch. 4), we have not seen this implemented widely.

• Comparison of logistic and probit links. For general binary and multinomial
models, the logistic link function sees more prevalent use than its probit counter-
part. Of course, we chose the probit as it has distributional advantages which we
can exploit for estimation using variational inference. However, is there a differ-
ence between the behaviour of the probit and logistic model? We know that there
is a difference between the logistic and normal distribution, especially in scaling
and behaviour in the tails, but do these affect the outcome of I-prior models?

• Consistency of I-prior Bayesian variable selection. We wondered about
model selection consistency for I-priors in Bayesian variable selection. That is,
assuming that model Mtrue is actually behind the true data generative process, do

lim
n→∞

P(Mtrue|y) = 1 and lim
n→∞

P(Mk|y) = 0,∀Mk ̸=Mtrue

hold for the I-prior Bayesian variable selection methodology? In machine learning,
this property is referred to as the oracle property. For the g-prior specifically,
model consistency results were obtained by Fernández et al. (2001) and Liang et
al. (2008). Casella et al. (2009) also looks at consistency of Bayesian procedures
for a wide class of prior distributions, but we have yet to examine whether the
I-prior falls under the remit of their work.
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Supplementary S1

Basic estimation concepts

Statistics concerns what can be learned from data (Davison, 2003). A statistical model
comprises of a probabilistic component which drives the data generative process, in ad-
dition to a systematic or deterministic component, which sets it apart from pure math-
ematical models. Real-valued observations y := {y1, . . . , yn} are treated as realisations
from an assumed probability distribution with parameters θ = (θ1, . . . , θp)

⊤ ∈ Θ ⊆ Rp.
The crux of statistical inference is to estimate θ given the observed values, so that
this optimised value may be used in the model to make deductions. We describe the
frequentist and Bayesian paradigms for parameter estimation.

S1.1 Maximum likelihood estimation

In the frequentist setting, the likelihood function, or simply likelihood, is a function of the
parameters θ which measures the plausibility of the parameter value given the observed
data to fit a statistical model. It is defined as the mapping θ 7→ p(y|θ), where p(y|θ) is
the probability density function (or in the case of discrete observations, the probability
mass function) of the modelled distribution of the observations.

It is logical to consider the parameter which provides the largest likelihood value,

θ̂ML = arg max
θ

p(y|θ). (S1.1)

The value θ̂ML is referred to as the maximum likelihood estimate for θ. For convenience,
the log-likelihood function L(θ) = log p(y|θ) is maximised instead; as the logarithm is a
monotonically increasing function, the maximiser of the log-likelihood function is exactly
the maximiser of the likelihood function itself.
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When ML estimates are unable to be found in closed-form, the maximisation problem
of (S1.1) requires iterative, numerical methods to find the maximum. These methods
are often gradient based, i.e. algorithms that make use of the gradient of the objec-
tive function to be optimised. Examples include Newton’s method, Fisher’s scoring,
quasi-Newton methods, gradient descent, and conjugate gradient methods. As the name
suggests, these methods require evaluation of gradients or approximate gradients, and
in some cases, the Hessian. Depending on the situation, gradients or Hessians can be
expensive or inconvenient to compute or approximate. In cases of multi-modality of the
objective function, the algorithms can potentially converge to a local optima, as it is
known that the algorithms are quite sensitive to starting locations.

Besides invariance, the ML estimate comes with the attractive limiting property
√
n(θ̂ML − θtrue)

dist.−−→ Np

(
0, I(θ)−1

)
(Casella and R. L. Berger, 2002) as sample size

n→∞, where I(θ) is the Fisher information for θ. Other asymptotic properties of the
ML estimate include consistency, i.e. P(∥θ̂ML − θtrue∥ > ϵ)

prob.−−−→ 0 for any ϵ > 0, and
efficiency, i.e. it achieves the Cramér-Rao lower bound Var(θML) ≥ I(θ)−1.

As the likelihood measures the plausibility of a parameter value given the data, it can
be used to compare two competing models. Let Θ0 = {θ | θd+1 = θd+1,0, . . . , θp = θp,0}
be the set of parameters with restrictions on the last d components of θ. The likelihood
ratio test statistic for testing the null hypothesis H0 : θ ∈ Θ0 against the alternative
H1 : θ /∈ Θ0 is

λ = −2 log
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
= −2

(
logL(θ̂0)− logL(θ̂)

)
, (S1.2)

where θ̂0 = arg maxθ∈Θ0
log p(y|θ). Wilks’ theorem states that λ has an asymptotic chi-

squared distribution with degrees of freedom equal to the number of restrictions imposed
(or rather, the difference in dimensionality of Θ and Θ0). This gives a convenient way
of comparing nested models.

As a remark, models with more parameters will always have higher, or similar, log-
likelihood, than models with fewer parameters, because the model has a better ability
to fit the data with more free parameters. In a linear regression setting, this relates to
overfitting: a linear model with as many explanatory variables as there are data points
(n = p) will extrapolate every point in the data set. Overfitting is an oft cited problem
of maximum likelihood.

S1.2 Bayesian estimation

The Bayesian approach to estimating θ takes a different outlook, in that it supplements
what is already known from the data with additional information in the form of prior
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beliefs about the parameters. This usually means treating the parameters as random,
following some distribution dictated by a prior density p(θ). There are many ways
of categorising different types of priors. Broadly speaking, priors, and hence Bayesian
analysis (Kadane, 2011; Robert, 2007), can be either subjective or objective, with the
demonyms ‘subjectivists’ and ‘objectivists’ used to refer to those subscribing to each
respective principle. Subjectivists assert that probabilities are merely opinions, while
objectivists, in contrast, view probabilities as an extension of logic. In this regard,
objective Bayes seek to minimise the statistician’s contribution to inference and “let
data speak for itself”, while subjective Bayes does the opposite.

In either case, inference about the parameters are then performed using the posterior
density

p(θ|y) ∝
likelihood︷ ︸︸ ︷
p(y|θ) ×

prior︷︸︸︷
p(θ), (S1.3)

rather than through a single point estimate such as the ML estimate in the frequentist
case. The posterior density encapsulates the uncertainty surrounding the parameters θ
after observing the data y. The posterior mean

θ̃ =

∫
θp(θ|y)dθ (S1.4)

is normally taken to be the point estimate for θ, with its uncertainty usually reported in
the form of a credible interval: if θk is the k’th component of θ, then a (1− α)× 100%
credible interval for θk is (θlk, θ

u
k ), where P(θlk ≤ θk ≤ θuk ) = (1 − α) × 100%. Under

a quadratic loss function, θ̃ minimises the expected loss E[(θ − θtrue)2] (J. O. Berger,
1985, Sec. 4.4.2, Result 3), and is hence also viewed as the minimum mean squared error
(MMSE) estimator.

On a practical note, integration over the parameter space may be intractable, for
instance, the model consists of a large number of parameters for which we would like the
posterior mean of, or the marginalising integral cannot be found in closed form. Markov
chain Monte Carlo (MCMC) methods are the standard way of approximating such inte-
grals, by way of random sampling from the posterior. The sample {θ(1), . . . , θ(T )} is then
manipulated in a way to derive its approximation. In the case of the posterior mean,

Ê(θ|y) = 1

T

T∑
i=1

θ(t) (S1.5)

gives an approximation, and its (1 − α) × 100% credible interval can be approximated
using the lower α/2× 100% and upper (1− α/2)× 100% quantile of the sample.

The normalising constant is the marginal likelihood over the distribution of the pa-
rameters, p(y) =

∫
p(y|θ)p(θ)dθ. The quantity p(y) is also known as the model evidence,
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or simply, evidence. As its name suggests, model evidence is used as a measure of how
much support there is for a particular model. As such, it is used as a basis for model
comparison. Let p(y|M0) and p(y|M1) be the model evidence for two competing models
M0 and M1 respectively. Define the Bayes factor for comparing model M0 against an
alternative model M1 as

BF(M0,M1) =
p(y|M0)

p(y|M1)
. (S1.6)

Values of BF(M0,M1) < 1 would suggest that the data provides more evidence for model
M1 over M0.

Note that the model evidence is free of θ because all of the parameters have been
marginalised out, or put another way, considered in entirety and averaged over all possi-
ble values of θ drawn from its prior density. Thus, model comparison using Bayes factors
differs from the frequentist likelihood ratio comparison in that it does not depend on
any one particular set of values for the parameters.

S1.3 Maximum a posteriori estimation

One may also find the value of θ which maximises the posterior,

θ̂MAP = arg max
θ

p(y|θ)p(θ), (S1.7)

which is the mode of the posterior distribution. This quantity is known as the maximum a
posteriori (MAP) estimate. It is different from the ML estimate in that the maximisation
objective is augmented with with the prior density for θ. In this sense, MAP estimation
can be seen as regularisation of the ML estimation procedure, whereby a “penalty” term
is added to avoid overfitting.

MAP estimation is often criticised for not being representative of Bayesian methods.
That is, MAP estimation returns a point estimate with no apparent way of quantifying
its uncertainty. Furthermore, unlike ML estimators, MAP estimators are not invariant
under reparameterisation. If θ is a random variable with density p(θ), then the pdf of
ξ := g(θ), where g : θ 7→ g(θ) is a one-to-one transformation, is

pξ(ξ) = pθ
(
g−1(ξ)

) ∣∣∣∣ d
dξ g

−1(ξ)

∣∣∣∣ . (S1.8)

The second term in (S1.8) is called the Jacobian (determinant). Therefore, a different pa-
rameterisation of θ will impact the location of the maximum because of the introduction
of the Jacobian into the optimisation objective (S1.7).
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S1.4 Empirical Bayes

The term empirical Bayes (Casella, 1985; Robbins, 1956) refers to a procedure in which
features of the prior is informed by the data. This is realised by parameterising the
prior by a hyperparameter η, i.e. θ ∼ p(θ|η). Values for the hyperparameter are clearly
important, because they appear in the posterior for θ:

p(θ|y) = p(y|θ)p(θ|η)
p(y|η) (S1.9)

To avoid the subjectivist’s approach of specifying values for η a priori, one instead turns
to the data for guidance. Information concerning η is contained in the marginal likeli-
hood p(y|η) =

∫
p(y|θ)p(θ|η)dθ. This paves the way for using the maximum marginal

likelihood estimate
η̂ = arg max

η
p(y|η) (S1.10)

in place of η in the equation of (S1.9). This procedure is also coined maximum likelihood
type-II (Bishop, 2006), and is commonly referred to as such in the machine learning
literature. It is also commonplace in statistics, especially in random-effects or latent
variable models which employ a maximum likelihood procedure such as EM algorithm.

As a remark, estimation of η itself can be made to conform to Bayesian philosophy,
i.e., by placing priors on it and inferring η through its posterior. Such a procedure is
referred to as Bayesian hierarchical modelling. A motivation for doing this is because
the ML estimate of η ignores any uncertainty in it. Of course, the hyperprior for η could
be parameterised by a hyper-hyperparameter, and itself have a prior, and so on and so
forth. Evidently the model is specified until such a point where there are parameters of
the model which are left unoptimised and must be specified in subjective manner (Beal,
2003).
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Supplementary S2

The EM algorithm

Often times, there are unobserved, random variables w = {w1, . . . , wn} that are assumed
to make up the data generative process, prescribed in the statistical model through
the joint pdf p(y,w|θ). Examples of models that include latent variables are plentiful:
Gaussian mixture models, latent class analysis, factor models, random coefficient models,
and so on. In order to obtain maximum likelihood (ML) estimates through a direct
maximisation of the likelihood, it is necessary to first marginalise out the latent variables,

p(y|θ) =
∫ p(y,w|θ)︷ ︸︸ ︷
p(y|w, θ)p(w|θ)dw, (S2.1)

and obtain the marginal likelihood. Note that the integral is replaced by a summation
over all possible values in the case of discrete latent variables w.

Direct maximisation of the marginal (log-)likelihood might not be favourable due to
intractability in obtaining ML solutions. The form of the marginal likelihood might
might not be conducive for closed-form estimates to be found, necessitating the use of
numerical, gradient-based methods which is subject to its own undesirable quirks. More-
over, when the evaluation of the (log-)likelihood, gradient and/or Hessian are expensive
to compute, then numerical methods are burdensome to execute.

It is usually the case that if the latent variables w were somehow known, estimation
would be made simpler. That is, the solution to arg maxθ log p(y,w|θ) can be obtained
in a simple manner. The expectation-maximisation algorithm (Dempster et al., 1977),
commonly known as the EM algorithm, is an iterative procedure which exploits the fact
that the so-called complete data likelihood is easier to work with. Correspondingly, in
EM terminology, the marginal likelihood is referred to as the incomplete data likelihood.
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We describe a derivation of both a general EM algorithm and an EM algorithm for
models whose data generative pdf belongs to an exponential family of pdfs. Interestingly,
the EM algorithm can be modified to obtain maximum a posteriori estimates or penalised
log-likelihood solutions. As a note, the EM algorithm is not an algorithm per se, in that
it does not provide exact instructions as to what the E- and M-steps should comprise of.
Rather, it is a generic device to obtain parameter estimates (McLachlan and Krishnan,
2007).

S2.1 Derivation of the EM algorithm

For want of an iterative procedure to obtain maximum likelihood estimates, we seek a
solution to

arg max
θ
{L(θ|y)− L(θ(t)|y) ≥ 0}, (S2.2)

where the solution to (S2.2) yields an improvement to the current t’th iteration of the
log-likelihood value L(θ(t)|y). Note that the objective function in (S2.2) forms an upper
bound for the quantity Q(θ|θ(t)), as shown below:

L(θ|y)− L(θ(t)|y) = log
∫
p(y|w, θ)p(w|θ) p(w|y, θ

(t))

p(w|y, θ(t))
dw− log p(y|θ(t))

≥
∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)

p(w|y, θ(t))
dw (Jensen’s inequality)

− log p(y|θ(t))
∫
p(w|y, θ(t))dw

=

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)

p(w|y, θ(t))p(y|θ(t))
dw

=: Q(θ|θ(t)).

Evidently, to maximise L(θ|y), we can’t do any worse than maximising Q(θ|θ(t)) in θ.
Denote by θ(t+1) as the maximiser of Q(θ|θ(t)). Then,

θ(t+1) = arg max
θ

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)

p(w|y, θ(t))p(y|θ(t))
dw

= arg max
θ

∫
p(w|y, θ(t)) log p(y|w, θ)p(w|θ)dw

= arg max
θ

∫
p(w|y, θ(t)) log p(y,w|θ)dw

= arg max
θ

Ew
[
log p(w,y|θ)|y, θ(t)

]
We arrive at an iterative procedure summarised succintly as the following:
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Algorithm S1 EM algorithm
1: initialise θ(0) and t← 0
2: while not converged do
3: E-step: compute Q(θ|θ(t)) = Ew

[
log p(w,y|θ)|y, θ(t)

]
4: M-step: θ(t+1) ← arg maxθQ(θ|θ(t))
5: t← t+ 1
6: end while

Notice that the log-likelihood function satisfies

L(θ|y) ≥ L(θ(t)|y) +Q(θ|θ(t)), (S2.3)

for which equality is achieved when θ = θ(t), since

Q(θ(t)|θ(t)) =
∫
p(w|y, θ(t)) log p(y|w, θ

(t))p(w|θ(t))
p(w|y, θ(t))p(y|θ(t))

dw

=

∫
p(w|y, θ(t))

��������:0
log p(y,w|θ

(t))

p(y,w|θ(t))
dw

= 0.

This implies that the EM algorithm improves the log-likelihood values at each iteration,
since

L(θ(t+1)|y)− L(θ(t)|y) ≥ Q(θ(t+1)|θ(t)) ≥ 0

and Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) = 0 since θ(t+1) maximises Q(·|θ(t)).

The expectation in the E-step involves the conditional pdf p(w|y, θ(t)). Viewed
through a Bayesian lens, this is the posterior density of the latent variables using the
t’th iteration parameter values. The success of the E-step is predicated on the avail-
ability of the conditional pdf for the expectation. If not, approximations to the E-step
can be explored, for example using Monte Carlo methods (Wei and Tanner, 1990) or a
variational approximation (Beal, 2003).

The solution to the M-step usually, but not always, exists in closed form. Maximising
the Q function over all possible values of θ may not be feasible (McLachlan and Krishnan,
2007). In such situations, the generalised EM algorithm (as defined by Dempster et al.,
1977) requires only that θ(t+1) be chosen in a way that

Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)).

That is, θ(t+1) is chosen so as to increase the value of the Q function at its current
parameter value. As seen in the argument above, this requirement is sufficient for a
guaranteed increase in the log-likelihood function at each iteration.
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S2.2 Exponential family EM algorithm

Consider the density function p(·|θ) of the complete data z = {y,w}, which depends
on parameters θ = (θ1, . . . , θs)

⊤ ∈ Θ ⊆ Rs, belonging to an exponential family of
distributions. This density takes the form p(z|θ) = B(z) exp

(
⟨η(θ),T(z)⟩ − A(θ)

)
,

where η : Rs 7→ R is a link function, T(z) =
(
T1(z), . . . , Ts(z)

)⊤ ∈ Rs are the sufficient
statistics of the distribution, and ⟨·, ·⟩ is the usual Euclidean dot product. It is often
easier to work in the natural parameterisation of the exponential family distribution

p(z|η) = B(z) exp
(
⟨η,T(z)⟩ −A∗(η)

)
(S2.4)

by defining η :=
(
η1(θ), . . . , ηr(θ)

)
∈ E , and expA∗(η) =

∫
B(z) exp ⟨η,T(z)⟩dz

to ensure the density function normalises to one. As an aside, the set E :=
{
η =

(η1, . . . , ηs) |
∫

expA∗(η) < ∞
}

is called the natural parameter space. If dim E = r <

s = dimΘ, then the the pdf belongs to the curved exponential family of distributions. If
dim E = r = s = dimΘ, then the family is a full exponential family.

Assuming the latent w variables are observed and working with the natural param-
eterisation, then the complete maximum likelihood (ML) estimate for η is obtained by
solving

∂

∂η
log p(z|η) = T(z)− ∂

∂η
A∗(η) = 0. (S2.5)

Of course, the variable w are never observed, so the ML estimate for η can only be
informed from what is observed. Let p(y|η) =

∫
p(y,w|η)dw represent the marginal

density of the observations y. Now, the ML estimate for η is obtained by solving

∂

∂η
log p(y|η) = 1

p(y|η) ·
∂

∂η
p(y|η)

=
1

p(y|η) ·
∂

∂η

(∫
p(y,w|η)dw

)
=

1

p(y|η)

∫ (
∂

∂η
p(y,w|η)

)
dw

=
1

p(y|η)

∫ (
p(y,w|η) ∂

∂η
log p(y,w|η)

)
dw

=

∫ (
T(y,w)− ∂

∂η
A∗(η)

)
p(w|y,η)dw

= Ew
[
T(y,w)|y

]
− ∂

∂η
A∗(η) (S2.6)

equated to zero. Note that we are allowed to change the order of integration and dif-
ferentation provided the integrand is continuously differentiable. So the only difference
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between the first order condition of (S2.5) and that of (S2.6) is that the sufficient statis-
tics involving the unknown w are replaced by their conditional or posterior expectations.

A useful identity to know is that ∂
∂ηA

∗(η) = Ez[T(z)] (Casella and R. L. Berger,
2002, Thm. 3.4.2 & Exer. 3.32(a)), which can be expressed in terms of the original
parameters θ. As a consequence, solving for the ML estimate for θ from the FOC
equations (S2.6) is possible without having to deal with the derivative of A∗ with respect
to the natural parameters. Having said this, an analytical solution in θ may not exist,
because the relationship of θ could be implicit in the set of equations Ew

[
T(w,y)|y,θ

]
=

Ey,w [T(y,w)|θ]. One way around this is to employ an iterative procedure, as detailed
in Algorithm S2.

Algorithm S2 Exponential family EM
1: initialise θ(0) and t← 0
2: while not converged do
3: E-step: T̃(t+1)(y,w)← Ew

[
T(w,y)|y,θ(t)

]
4: M-step: θ(t+1) ← solution to T̃(t+1)(y,w) = Ey,w [T(y,w)|θ]
5: t← t+ 1
6: end while

To see how Algorithm S2 motivates the EM algorithm, consider the following argu-
ment. Recall that for the EM algorithm, the function Qt(η) = Ew[log p(y,w|η)|y,η(t)]

is maximised at each iteration t. For exponential families of the form (S2.4), the Qt

function turns out to be

Qt(η) = Ew
[
⟨η,T(z)⟩|y,η(t)

]
−A∗(η) + logB(z),

and this is maximised at the value of η satisfying

∂

∂η
Qt(η) = Ew

[
T(y,w)|y,η(t)

]
− ∂

∂η
A∗(η) = 0,

a similar condition to (S2.6) when obtaining ML estimate of η. Thus, Qt is maximised
by the solution to line 4 in Algorithm S2.

S2.3 Bayesian EM algorithm

A simple modification of the EM algorithm can be done to obtain maximum a posteriori
estimates, or maximum penalised likelihood estimates. Under a Bayesian framework, a
prior is assigned on the model parameters, θ ∼ p(θ). Recall that the MAP estimate is
obtained as the maximiser of the log-density log p(y|θ) + log p(θ).
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The EM algorithm works as before, but replaces the E-step with

Ew
[
log p(w,y|θ) + log p(θ)|y, θ(t)

]
= Q(θ|θ(t)) + log p(θ) (S2.7)

since log p(θ) has no terms involving the latent variables w. The M-step now maximises
(S2.7) with respect to θ, which includes the log prior density (or a penalty term). It would
seem that the regular EM algorithm maximises (S2.7) such that p(θ) ∝ const. is a diffuse
prior for θ. Beal and Ghahramani (2003) discuss a more Bayesian extension of EM, in
which the output of the so-called variational Bayes EM algorithm are (approximate)
posterior distributions of the parameters, rather than MAP estimates discussed here.
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Supplementary S3

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo had its beginnings in statistical physics, with the 1987 pa-
per by Duane et al., using what they called ‘Hybrid Monte Carlo’ in lattice models of
quantum theory. Their work merged the approaches of molecular dynamics and Markov
chain Monte Carlo methods. As an interesting side note, their method abbreviates also
to ‘HMC’, but throughout the statistical literature, it is more commonly referred to
by its more descriptive name Hamiltonian Monte Carlo. Incidentally, the use of HMC
started with applications to neural networks as early as 1996 (see Neal, 2011 for an ex-
cellent review of the subject matter). It was not until 2011 when active development of
the method, and in particular, software for for statistical applications began. The Stan
initiative (Carpenter et al., 2017) began in response to difficulties faced when performing
full Bayesian inference on multilevel generalised linear models. These difficulties mainly
involved poor efficiency in usual MCMC samplers, particularly due to high autocorrela-
tions in the posterior chains, which meant that many chains and many iterations were
required to get an adequate sample. It was a case of exhausting all possible algorithmic
remedies for existing samplers (Gibbs samplers, Metropolis samplers, etc.), and realising
that fundamentally not much improvement can be had unless a novel sampling technique
was discovered.

The basic idea behind HMC is to use Hamiltonian dynamics to propose new states
in the posterior sampling, rather than relying on random walks. If one were to un-
derstand and use the geometry of the posterior density to one’s benefit, then it should
be possible to generate new proposal states with high probabilities of acceptance and
move far away from the current state. Hamiltonian dynamics, like classical Newtonian
mechanics, provides a framework for modelling the motion of a body in space across
time t. Additionally, Hamiltonian dynamics concatenates the position vector x with its
momentum z, and the motion of x in d-dimensional space is then described through
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Hamilton’s equations
dx
dt =

∂H

∂z
and dz

dt = −∂H
∂x

, (S3.1)

where H = H(x, z) is called the Hamiltonian of the system. The Hamiltonian is an
operator which encapsulates the total energy of the system. In a closed system, one can
express the sum of operators corresponding to the kinetic energy K(p) and the potential
energy U(z) of the system

H(x, z) = K(z) + U(x). (S3.2)

Substituing (S3.2) into (S3.1), we get the system of partial differential equations (PDEs)

dx
dt =

∂

∂z
K(z) and dz

dt = − ∂

∂x
U(x). (S3.3)

To describe the evolution of
(
x(t), z(t)

)
from time t to t+T , it is necessary to discretise

time, and split T = Lϵ. The quantity L is known as the number of leapfrogs, and ϵ the
step size.

ϵ ϵ ϵ ϵ ϵ · · · ϵ
0 T

L times

The system of PDEs is solved using Euler’s method, or the more commonly used leapfrog
integration, which is a three-step process:

1. Half-step momentum. z(t+ ϵ/2) = z(t)− ϵ
2

∂
∂xU

(
x(t)

)
2. Full-step position. x(t+ ϵ) = x(t) + ϵ ∂

∂zK
(
z(t+ ϵ/2)

)
3. Half-step momentum. z(t+ ϵ) = z(t+ ϵ/2) = z(t)− ϵ

2
∂
∂xU

(
x(t)

)
in which steps 1–3 are repeated L times.

Having knowing the formula for how particles move in space, we can use this in-
formation to treat random points drawn from some probability density as “particles”.
Randomness of position and momentum are prescribed through probability densities on
each. Given some energy function E(θ) over states θ, the canonical distribution of the
states θ (otherwise known as the canonical ensemble) is given by the probability density
function

p(θ) ∝ exp
(
−E(θ)

kτ

)
,

where k is Boltzmann’s constant, τ is the absolute temperature of the system. The
Hamiltonian is one such energy function over states (x, z). By replacing E(θ) by (S3.2)
in the pdf above, we realise that the distribution for x and z are independent. The
system can be manipulated such that kτ = 1—in any case, these are constants which
can be absorbed into one of the terms in the pdf anyway.
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Using a quadratic kinetic energy function K(z) = z⊤M−1z/21, we find that the
probability density function for z is

p(z) ∝ exp
(
−1

2
z⊤M−1z

)
,

implying z ∼ Nd(0,M). Here, M = diag(m1, . . . ,md) is called the mass matrix, which
obviously serves as the variance for the randomly distributed z. As for the potential
energy, choose a function such that U(x) = − log p(x), implying p(x) ∝ exp

(
− U(x)

)
.

Here, p(x) represents the target density from which we wish to sample, for instance,
a posterior density of interest. Thus, to sample variables x from p(x), one artificially
introduces momentum variables z and sample jointly instead from p(x, z) = p(z)p(z),
and discarding z thereafter. The HMC algorithm is summarised in Algorithm S3.

Algorithm S3 Hamiltonian Monte Carlo
1: initialise x(0), z(0) and choose values for L, ϵ and M
2: for t = 1, . . . , T do
3: Draw z ∼ Nd(0,M) ▷ Perturb momentum
4: Move (x(t), z(t)) 7→ (x∗, z∗) using Hamiltonian dynamics ▷ Proposal state
5: Accept/reject proposal state, i.e. ▷ Metropolis update

(x(t+1), z(t+1))←

{
(x∗, z∗) w.p. min(1, A)
(x(t), z(t)) otherwise

where
A =

p(x∗, z∗)

(x(t), z(t))
= exp

(
H(x, z)−H(x(t), z(t))

)
6: end for
7: return Samples

{
x(1), . . . , x(T )

}
HMC is often times superior to standard Gibbs sampling, for a variety of reasons.

For one, conjugacy does not play any role in the efficiency of the HMC sampler, thus
freeing the modeller to choose more appropriate and more intuitive prior densities for
the parameters of the model. For another, the HMC sampler is designed to incite little
autocorrelations between samples, and thus increasing efficiency.

Several drawbacks do exist with the HMC sampler. Firstly, it is impossible to directly
sample from discrete distributions p(x). More concretely, HMC requires that the domain
of p(x) is continuous and that ∂ log p(x)/∂x is inexpensive to compute. To work around
this, one must reformulate the model by marginalising out the discrete variables, and
obtain them back later by separately sampling from their posteriors. Alternatively, a
Gibbs sampler specifically for the discrete variables could be augmented with the HMC
sampler. The other drawback of HMC is that there are many tuning parameters (leapfrog
L, step-size ϵ, mass matrix M , etc.) that is not immediately easy to perfect, at least not
to the novice user.
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Figure S3.1: A phase diagram schematic of HMC sampling in one-dimension. At step
0, initialise values for momentum and position. At step 1, simulate movement using
Hamiltonian dynamics, accept position and discard momentum. At step 2, perturb
momentum using a normal density, then repeat.
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The implementation of HMC by the programming language Stan, which interfaces
many other programming languages including R, Python, MATLAB, Julia, Stata and
Mathematica, is a huge step forward in computational Bayesian analysis. Stan takes the
liberty of performing all the tuning necessary, and the practitioner is left with simply
specifying the model. A vast library of differentiable probability functions are available,
with the ability to bring your own code as well. Development is very active and many
improvements and optimisations have been made since its inception.

1Thinking back to elementary mechanics, this is the familiar 1
2
mv2 formula for kinetic energy and

substituting in the identity z = mv, where m is the mass of the object, and v is its velocity.
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Supplementary S4

Variational inference

Consider a statistical model parameterised by θ = (θ1, . . . , θp)
⊤ for which we have obser-

vations y := {y1, . . . , yn}, but also some latent variables w. Typically, in such models,
there is a want to to evaluate the integral

I =

∫
p(y|w)p(w)dw, (S4.1)

Marginalising out the latent variables in (S4.1) is usually a precursor to obtaining a log-
likelihood function to be maximised in a frequentist setting, whereby there is an implicit
dependence on the model parameters in the evaluation of I. In Bayesian analysis, priors
are specified on the model parameters θ ∼ p(θ). By concatenating the latent variables
and model parameters to form w, the I corresponds to the marginal density for y, on
which the posterior depends.

In many instances, for one reason or another, evaluation of (S4.1) or is difficult, in
which case inference is halted unless a way of overcoming the intractability is found.
In this chapter, we discus variational inference (VI) as a means of approximating the
integral. The literature on variational inference is typically presented in a Bayesian light
(Bishop, 2006; Blei et al., 2017; Jordan et al., 1999), and as such, it is commonly known
as variational Bayes method. The main attraction from a Bayesian point of view is that
it provides a deterministic way of obtaining (approximate) posteriors, i.e. it does not
involve sampling from posteriors.

Variational inference can be used in conjunction with an EM algorithm, in which the
E-step is replaced with a variational E-step. This variational EM algorithm is used for
maximum likelihood learning, but can modified to obtain maximum a posteriori esti-
mates. In the works of (Beal, 2003; Beal and Ghahramani, 2003), the authors realised
that the EM algorithm can be extended easily to obtain posterior densities of the latent
variables and parameters if the statistical model is conjugate exponential family. They
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refer to this as the variational Bayes EM algorithm, but in fact this is really just vari-
ational inference in which the algorithm resembles an EM algorithm with clear E- and
M-steps.

We first briefly introduce variational methods for approximating the intractable in-
tegral, and this is usually considered a fully Bayesian treatment of the model. We then
describe variational EM, and provide a comparison of the two methods.

S4.1 A brief introduction to variational inference

The crux of variational inference is this: find a suitably close distribution function q(w)

that approximates the true posterior p(w|y), where closeness here is defined in the
Kullback-Leibler divergence sense,

DKL(q∥p) =
∫

log q(w)

p(w|y)q(w)dw.

Posterior inference is then conducted using q(w) in lieu of p(w|y). Advantages of this
method are that 1) it is fast to implement computationally (compared to MCMC); 2)
convergence is assessed simply by monitoring a single convergence criterion; and 3) it
works well in practice, as attested to by the many studies implementing VI.

Briefly, we present the motivation behind variational inference and the minimisation
of the KL divergence. Denote by q(·) some density function of w. One may show that
log marginal density, i.e. the log of the intractable integral (S2.1), holds the following
bound:

log p(y) = log p(y,w)− log p(w|y) (Bayes’ theorem)

=

∫ {
log p(y,w)

q(w)
− log p(w|y)

q(w)

}
q(w)dw (expectation both sides)

= L(q) + DKL(q∥p)

≥ L(q) (S4.2)

since the KL divergence is a non-negative quantity. The functional L(q) given by

L(q) =
∫

log p(y,w)

q(w)
q(w)dw

= Ew∼q[log p(y,w)] +H(q), (S4.3)

where H is the entropy functional, is known as the evidence lower bound (ELBO).
Evidently, the closer q is to the true p, the better, and this is achieved by maximising
L, or equivalently, minimising the KL divergence from p to q. Note that the bound
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(S4.2) achieves equality if and only if q(w) ≡ p(w|y), but of course the true form of
the posterior is unknown to us—see Section S4.2 for a discussion. Maximising L(q) or
minimising DKL(q∥p) with respect to the density q is a problem of calculus of variations,
which incidentally, is where variational inference takes its name. The astute reader
will realise that DKL(q||p) is impossible to compute, since one does not know the true
distribution p(w|y). Efforts are concentrated on maximising the ELBO instead.

Maximising L over all possible density functions q is not possible without consid-
ering certain constraints. Two such constraints are described. The first, is to make a
distributional assumption regarding q, for which it is parameterised by ν. For instance,
we might choose the closest normal distribution to the posterior p(w|y) in terms of KL
divergence. In this case, the task is to find optimal mean and variance parameters of a
normal distribution.

q(w; ν)

νinit

ν∗

p(w|y)

DKL(q∥p)

Figure S4.1: Schematic view of variational inference1. The aim is to find the closest dis-
tribution q (parameterised by a variational parameter ν) to p in terms of KL divergence
within the set of variational distributions, represented by the ellipse.

The second type of constraint, and the one considered in this thesis, is simply an
assumption that the approximate posterior q factorises into M disjoint factors. Partition
w into M disjoint groups w = (w[1], . . . , w[M ]). Note that each factor w[k] may be
multidimensional. Then, the structure

q(w) =
M∏
k=1

qk(w[k])

for q is considered. This factorised form of variational inference is known in the statistical
physics literature as the mean-field theory (Itzykson and Drouffe, 1991).

Remark S4.1. The choice of factorisation is completely arbitrary, although forcing a
factorisation also induces independence between the factors in the posterior, and this
may or may not be suitable for the problem at hand. Landing the correct choice of

1Reproduced from the talk by David Blei entitled “Variational Inference: Foundations and Innova-
tions”, 2017. URL: https://simons.berkeley.edu/talks/david-blei-2017-5-1.
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factorisation is rather experimental, as the aim is to balance tractability and model
misspeficication. In a model with both latent variables and random parameters (in a
Bayesian setting), then a good starting point would be to factorise the latent variables
and parameters.

Let us denote the distributions which minimise the Kullback-Leibler divergence (max-
imise the variational lower bound) by the use of tildes. The impact of the mean-field
factorisation on the ELBO is inspected:

L(q) =
∫
· · ·
∫

log p(y,w)∏M
k=1 qk(w)

m∏
k=1

{
qk(w[k])dw[k]

}
=

∫
· · ·
∫ (

log p(y,w)−
M∑
k=1

log qk(w)

)
M∏
k=1

{
qk(w[k])dw[k]

}
and rearranging slightly for terms involving the j’th component only, we get

L(q) =
∫
· · ·
∫ (

log p(y,w)− log qj(w[j]) + const.
)
qj(w[j])dw[j]

∏
k ̸=j

{
qk(w[k])dw[k]

}

=

∫ ( log p̃(y,w[j])+const.︷ ︸︸ ︷∫
· · ·
∫

log p(y,w)
∏
k ̸=j

{
qk(w[k])dw[k]

})
qj(w[j])dw[j]

−
∫

log qj(w[j])qj(w[j])dw[j] + const.

= −DKL(q[j]∥p̃) + const.

The task of maximising L is then equivalent to maximising −DKL(q[j]∥p̃), where p̃ is
defined in the overbrace of the second line in the equation above. Thus, for each w[k],
k = 1, . . . ,M , q̃k satisfies

log q̃k(w[k]) = E−k[log p(y,w)] + const. (S4.4)

where expectation of the joint log density of y and w is taken with respect to all of the
unknowns w, except the one currently in consideration w[k], under their respective q̃k
densities. For further details, refer to Bishop (2006, Eq. 10.9, p. 466).

In practice, rather than an explicit calculation of the normalising constant, one simply
needs to inspect (S4.4) to recognise it as a known log-density function, which is the
case when exponential family distributions are considered. That is, suppose that each
complete conditional p(w[k]|w−k,y), where w−k = {w[i] | i ̸= k}, follows an exponential
family distribution

p(w[k]|w−k,y) = B(w[k]) exp
(
⟨ζk(w−k,y), w[k]⟩ −A(ζk)

)
.
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Then, from (S4.4),

q̃(w[k]) ∝ exp
(
E−k

[
log p(w[k]|w−k,y)

])
= exp

(
logB(w[k]) + E⟨ζk(w−k,y), w[k]⟩ − E[A(ζk)]

)
∝ B(w[k]) exp E⟨ζξ(w−k,y), w[k]⟩

is also in the same exponential family. In situations where there is no closed form
expression for q̃, then one resorts to sampling methods such as a Metropolis random walk
to estimate quantities of interest. This stochastic step within a deterministic algorithm
has been explored before in the context of a Monte Carlo EM algorithm—see Meng and
Van Dyk (1997, Sec. 4) and references therein.

One notices that the optimal mean-field variational densities for each component are
coupled with one another, in the sense that the distribution q̃k depends on the moments
of the rest of the components w−k. For very simple problems, an exact solution for each
q̃k can be found, but usually, the way around this is to employ an iterative procedure.
The coordinate ascent mean-field variational inference (CAVI) algorithm cycles through
each of the distributions in turn, updating them in sequence starting with arbitrary
distributions as initial values.

Algorithm S4 The CAVI algorithm
1: initialise Variational factors qk(w[k])
2: while ELBO L(q) not converged do
3: for k = 1, . . . ,M do
4: q̃k(w[k])← const.× exp E−k [log p(y,w)] ▷ from (S4.4)
5: end for
6: L(q)← Ew∼

∏
k q̃k log p(y,w) +

∑m
k=1H

[
qk(w[k])

]
▷ Update ELBO

7: end while
8: return q̃(w) =

∏M
k=1 q̃j(w[k])

Each iteration of the CAVI brings about an improvement in the ELBO (hence the
name coordinate ascent). The algorithm terminates when there is no more significant
improvement in the ELBO, indicating a convergence of the CAVI. Blei et al. (2017) notes
that the ELBO is typically a non-convex function, in which case convergence may be to
(one of possibly many) local optima. A simple solution would be to restart the CAVI
at multiple initial values, and the solution giving the highest ELBO is the distribution
that is closest to the true posterior.
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S4.2 Variational EM algorithm

Consider again the latent variable setup described in Supplementary Chapter S2, in
which the goal is to maximise the (marginal) log-likelihood of the parameters θ of the
model, after integrating out the latent variables, as given by (S2.1). We will see how the
EM algorithm relates to minimising the KL divergence between a density q(w) and the
posterior of w, and connect this idea to variational methods.

DKL(q∥p)

L(q, θ)

log p(y|θ)

Figure S4.2: Illustration2 of the decomposition of the log-likelihood into L(q, θ) and
DKL(q∥p). The quantity L(q, θ) is a lower bound for the log-likelihood.

As we did in deriving (S4.2), we decompose the (marginal) log-likelihood as

log p(y|θ) = log p(y,w|θ)− log p(w|y, θ)

=

∫ {
log p(y,w|θ)

q(w)
− log p(w|y, θ)

q(w)

}
q(w)dw

= Ew∼q

[
log p(y,w|θ)

q(w)

]
︸ ︷︷ ︸

L(q,θ)

− Ew∼q

[
log p(w|y, θ)

q(w)

]
︸ ︷︷ ︸

−DKL(q∥p)

,

where q(w) is any density function over the latent variables. This decomposition is shown
in Figure S4.2. The interest is then to have a density function q(w) which is as close as
possible to the true posterior density p(y|w, θ) in the KL divergence sense. Since the KL
divergence is non-negative, minimising DKL(q∥p) is equivalent to maximising L(q, θ).

As a remark, the above line of thought should be familiar as it is the exact same one
made for variational inference. The twist here is that we will peruse a distribution which
tightens the lower bound L(q, θ) to the marginal log-likelihood, and this happens when
DKL(q∥p) is exactly zero, and this in turn happens when q is exactly the true posterior
density. That is, for some parameter value, θ = θ(t) say, the solution to

arg max
q

L(q, θ(t)) (S4.5)

2Reproduced from Bishop (2006, Fig. 9.11).
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is q(t+1)(w) = p(w|y, θ(t)), because

DKL(q∥p) = E
[

log p(w|y, θ
(t))

p(w|y, θ(t))

]
= 0.

At this stage, we have the equality

log p(y|θ) = L(q(t+1), θ) (S4.6)

= Ew∼q(t+1)

[
log p(y,w|θ)

p(w|y, θ(t))

]
(S4.7)

= Ew∼q(t+1)

[
log p(y,w|θ)

]︸ ︷︷ ︸
Q(θ|θ(t))

− Ew∼q(t+1)

[
log p(w|y, θ(t))

]︸ ︷︷ ︸
−H(q(t+1))

, (S4.8)

The term on the left is recognised as the Q function of the E-step

Q(θ) = Q(θ|θ(t)) = Ew
(

log p(y,w|θ)
∣∣y, θ(t)) ,

while the term on the left is an entropy term which does not depend on θ. Thus,
minimising the KL divergence, or maximising the lower bound L with respect to q,
corresponds to the E-step in the EM algorithm.

Furthermore, since equality between the log-likelihood and the lower bound is achieved
after the E-step, increasing L(q(t+1), θ) with respect to θ is sure to bring about an in-
crease in the log-likelihood. That is, for any θ, we find that

log p(y|θ)− log p(y|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t)) + ∆ entropy

≥ Q(θ|θ(t))−Q(θ(t)|θ(t)).

because entropy differences are positive by Gibbs’ inequality. We see that maximising Q
with respect to θ (the M-step) brings about an improvement to the log-likelihood value.

To summarise, given initial values q(0) for the distribution and θ(0) for the parameters,
the EM algorithm is seen as iterating between

• E-step: q(t+1) ← arg maxq L(q, θ(t)), i.e., maximise L(q, θ) with respect to q, keep-
ing θ fixed. This is equivalent to minimising the KL divergence DKL(q∥p).

• M-step. θ(t+1) ← arg maxθ L(q(t+1), θ), i.e., maximise L(q, θ) with respect to θ,
keeping q(w) fixed.

When the true posterior distribution p(w|y) is not tractable, then the E-step becomes
intractable as well. By constraining the maximisation in the E-step to consider q be-
longing to a family of tractable densities, the E-step yields a variational approximation
q̃ to the true posterior. In Section S4.1, we saw that constraining q to be of a factorised
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form, then q̃ is a mean-field density. After a variational E-step, the M-step proceeds
as normal. This form of the EM is known as variational EM algorithm (VEM) (Beal,
2003). The variational EM algorithm can also be modified to obtain MAP estimates by
including the log prior density to the maximisation objective in the M-step.

Due to an approximation to the true posterior being used in the E-step, there is
no guarantee that the log-likelihood value will increase at each iteration. This is seen
pictorially in Section S4.2: since the bound on the log-likelihood is not tight, increasing
this bound will not necessarily cause an increase in log-likelihood value (Scenario C),
and even if it did, it may not give as much an increase as it would under the true
posterior density (Scenario B). Scenario A depicts an ideal case whereby the increase in
log-likelihood is as much as it would be if the true posterior density was used.

On a practical note, if the posterior density is intractable, then so is the marginal
likelihood, which means that we’re unable to determine convergence of the EM using
the log-likelihood. Instead, the lower bound L(q, θ) should be used, which monotonically
increases to a local optima (as in the CAVI algorithm).

S4.3 Comparing variational inference and variational EM

Variational inference is a fully Bayesian treatment of the model, for which the goal
is to obtain approximate posterior densities for all latent variables and parameters.
Variational EM algorithm on the other hand has the objective of obtaining ML or MAP
estimates of the parameters using an EM algorithm in which the E-step is replaced with
a variational E-step. In some cases, the CAVI algorithm can resemble an EM algorithm,
especially when there is a distinction between latent variables and parameters, and a
conjugate exponential family model is involved (Blei et al., 2017).

Variational inference can yield exactly similar point estimates as variational EM if
the approximate posterior is symmetric, e.g. a normal distribution. Under a normal
posterior, its mean is used as a point estimate, which coincides with the mode, which
is a MAP estimate, or in the case of diffuse priors, a ML estimate. However, since the
output of variational inference are posterior densities instead of a single point estimate,
one is able to obtain posterior standard deviations or credibility intervals about the
parameters, something which is not so straightforward under a variational EM or even
EM framework.

Derivation of the CAVI algorithm and ELBO for specific models is certainly more
tedious than the derivation of the variational EM algorithm. Often, quantities that are
required in the derivation include E(θ), E(θ2), E(θ−1), E(log θ) or any other moment of
some function of θ, where expectations are taken under the approximating q posterior
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Figure S4.3: Illustration of EM vs Variational EM (VEM) algorithms. Whereas the EM
guarantees an increase in log-likelihood value (red shaded region), the VEM does not.
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Table S4.1: Comparison between variational inference and variational EM.

Variational inference Variational EM

GOAL: Posterior densities for (w, θ) GOAL: ML/MAP estimates for θ

Variational approximation for latent
variables and parameters q(w, θ) ≈
p(w, θ|y)

Variational approximation for latent
variables only q(w) ≈ p(w|y)

Priors required on θ Priors not necessary for θ

Derivation can be tedious Derivation less tedious

Inference on θ through posterior den-
sity q(θ)

Asymptotic distribution of θ not well
studied; standard errors for θ not easily
obtained

Suited to conjugate exponential family
models: posteriors will be easily recog-
nisable

Suited to conjugate exponential family
models, but not necessary

density. For certain distributions q(θ) these quantities can be awkward to compute, and
may need approximating themselves.

The computational time and storage requirements of variational methods is virtually
the same as EM algorithm (Beal, 2003; Blei et al., 2017). Consider the mean-field
variational approximation. In variational inference or variational EM, the updating step
for the factors involve

q̃
(t+1)
k (w[k])← const.× exp

(
Ew−k∼q̃(t) [log p(y,w)]

)
, (S4.9)

for each of the factors of the approximate posterior q(w) =
∏M

k=1 qk(w[k]). In the EM
algorithm E-step, one obtains the Q function

Q(θ|θ(t)) = Ew
(

log p(y,w)|y, θ(t)
)
. (S4.10)

We can see that in both equations (S4.9) and (S4.10), there is a need to compute the
expectation of the joint log density, but the difference between the variational inference
and EM or variational EM lies in the M-step. In variational inference one seeks a
distribution, while in EM or variational EM one seeks a point estimate (posterior mode)
of this distribution.
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Appendix A

Functional derivative of the
entropy

We present the functional derivative of the entropy H(p) in Equation 3.6 (p. 96). Typ-
ically, this is tackled using calculus of variations, but it can also be obtained using the
Fréchet and Gâteaux differentials. Both methods are presented.

A.1 The usual functional derivative

The functional derivative is defined as follows.

Definition A.1 (Functional derivative). Given a manifold M representing continu-
ous/smooth functions ρ with certain boundary conditions, and a functional F :M → R,
the functional derivative of F (ρ) with respect to ρ, denoted ∂F/∂ρ, is defined by∫

∂F

∂ρ
(x)ϕ(x)dx = lim

ϵ→0

F (ρ+ ϵϕ)− F (ρ)
ϵ

=

[
d
dϵF (ρ+ ϵϕ)

]
ϵ=0

,

where ϕ is an arbitrary function. The function ∂F/∂ρ as the gradient of F at the point
ρ, and

∂F (ρ, ϕ) =

∫
∂F

∂ρ
(x)ϕ(x)dx

as the directional derivative at point ρ in the direction of ϕ. Analogous to vector calculus,
the inner product with the gradient gives the directional derivative.
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Now let X be a discrete random variable with probability mass function p(x) ≥ 0,
for ∀x ∈ Ω, a finite set. The entropy is a functional of p, namely

H(p) = −
∑
x∈Ω

p(x) log p(x).

Equivalently, using the counting measure ν on Ω, we can write

H(p) = −
∫
Ω
p(x) log p(x)dν(x).

Using the definition of functional derivatives, we find that∫
Ω

∂H

∂p
(x)ϕ(x)dx =

[
d
dϵH(p+ ϵϕ)

]
ϵ=0

=

[
− d

dϵ
(
p(x) + ϵϕ(x)

)
log
(
p(x) + ϵϕ(x)

)]
ϵ=0

= −
∫
Ω

(
p(x)ϕ(x)

p(x) + ϵϕ(x)
+

ϵϕ(x)

p(x) + ϵϕ(x)
+ ϕ(x) log

(
p(x) + ϵϕ(x)

))
dx

= −
∫
Ω
(1 + log p(x))ϕ(x)dx.

Thus, (∂H/∂p)(x) = −1− log p(x).

A.2 Fréchet differential of the entropy

Since we have already introduced concepts of Fréchet and Gâteaux derivatives earlier,
we shall use those instead. Assume that the entropy H is Fréchet differentiable at p,
and that the probability densities p under consideration belong to the Hilbert space of
square integrable functions L2(Θ, ν) with inner product ⟨p, p′⟩L2(Θ,ν) =

∫
pp′ dν. Now

since the Fréchet derivative of H at p is assumed to exist, it is equal to the Gâteaux
derivative, which can be computed as follows:

∂qH(p) =
d
dtH(p+ tq)

∣∣∣∣
t=0

=
d
dt

{
−
∫
Θ

(
p(θ) + tq(θ)

)
log
(
p(θ) + tq(θ)

)
dν(θ)

} ∣∣∣∣∣
t=0

= −
∫
Θ

{
d
dt
(
p(θ) + tq(θ)

)
log
(
p(θ) + tq(θ)

)∣∣∣∣
t=0

}
dν(θ)

= −
∫
Θ

(
p(θ)q(θ)

p(θ) + tq(θ)
+

tq(θ)2

p(θ) + tq(θ)
+ q(θ) log

(
p(θ) + tq(θ)

)) ∣∣∣∣
t=0

dν(θ)

= −
∫
Θ
q(θ)

(
1 + log p(θ)

)
dν(θ)
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=
⟨
−
(
1 + log p

)
, q
⟩
Θ

= dH(p)(q).

By definition, the gradient of H at p, denoted ∇H(p), is equal to −1− log p. This agrees
with the usual functional derivative of the entropy obtained via standard calculus of
variations.
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Appendix B

Kronecker product and
vectorisation

The Kronecker product crops up in the definition of matrix normal distributions, which
is used in Chapter 5 for the I-probit model.

Definition B.1 (Kronecker product). The Kronecker matrix product, denoted by ⊗,
for two matrices A ∈ Rn×m and B ∈ Rp×q is defined by

A⊗B =


A11B A12B · · · A1mB

A21B A22B · · · A2mB
...

... . . . ...
An1B An2B · · · AnmB

 ∈ Rnp×mq.

The Kronecker product is a generalisation of the outer product for vectors to matrices.
Of use will be these properties of the Kronecker product (Huamin Zhang and Ding, 2013):

• Bilinearity and associativity. For appropriately sized matrices A, B and C,
and a scalar λ,

A⊗ (B + C) = A⊗B +A⊗ C

(A+B)⊗ C = A⊗ C +B ⊗ C

λA⊗B = A⊗ λB = λ(A⊗B)

(A⊗B)⊗ C = A⊗ (B ⊗ C)

• Non-commutative. In general, A ⊗ B ̸= B ⊗ A, but they are permutation
equivalent, i.e. A⊗B ̸= P (B ⊗A)Q for some permutation matrices P and Q.

• The mixed product property. (A⊗B)(C ⊗D) = AC ⊗BD.
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• Inverse. A ⊗ B is invertible if and only if A and B are both invertible, and
(A⊗B)−1 = A−1 ⊗B−1.

• Transpose. (A⊗B)⊤ = A⊤ ⊗B⊤.

• Determinant. If A is n×n and B is m×m, then |A⊗B| = |A|m|B|n. Note that
the exponent of |A| is the order of B and vice versa.

• Trace. Suppose A and B are square matrices. Then tr(A⊗B) = tr(A) tr(B).

• Rank. rank(A⊗B) = rank(A) rank(B).

• Matrix equations. AXB = C ⇔ (B⊤ ⊗A) vecX = vec(AXB) = vecC.

The equivalence between matrix normal and multivariate normal distributions are
established making use of vectorisation for matrices. This is defined below.

Definition B.2 (Vectorisation). The vectorisation operation ‘vec’ stacks the columns
of the matrices into one long vector, for instance, for the matrix A ∈ Rn×m

vecA = (A11, . . . , An1, A12, . . . , An2, . . . , A1m, . . . , Anm)⊤ ∈ Rnm.
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Appendix C

Statistical distributions and their
properties

This appendix is intended as a reference relating to the multivariate normal, matrix
normal, truncated univariate and multivariate normal, gamma and inverse gamma dis-
tributions, which are collated from various sources for convenience. Of interest are their
probability density functions, first and second moments, and entropy (Definition 3.5, p.
96). Note that in this part of the appendix, boldface notation for matrix and vectors
are not used.

C.1 Multivariate normal distribution

Definition C.1 (Multivariate normal distribution). Let X ∈ Rd be distributed ac-
cording to a multivariate normal (Gaussian) distribution with mean µ ∈ Rd and co-
variance matrix Σ ∈ Rd (a square, symmetric, positive-definite matrix). We say that
X ∼ Nd(µ,Σ). Then,

• Pdf. p(X|µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
− 1

2(X − µ)
⊤Σ−1(X − µ)

)
.

• Moments. EX = µ, E(XX⊤) = Σ + µµ⊤.

• Entropy. H(p) = 1
2 log|2πeΣ| = d

2(1 + log 2π) + 1
2 log|Σ|.

For d = 1, i.e. X is univariate, then its pdf is p(X|µ, σ2) = 1
σϕ
(
X−µ
σ

)
, and its cdf is

F (X|µ, σ2) = Φ
(
X−µ
σ

)
, where ϕ(·) and Φ(·) are the pdf and cdf of a univariate standard

normal distribution. In the special case that Σ = diag(σ21, . . . , σ2d), then the components
of X = (X1, . . . , Xd)

⊤ are independently distributed according to Xi ∼ N(µi, σ
2
i ).
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Lemma C.1 (Properties of multivariate normal). Assume that X ∼ Nd(µ,Σ) and Y ∼
Nd(ν,Ψ), where

X =

(
Xa

Xb

)
, µ =

(
µa

µb

)
, and Σ =

(
Σa Σab

Σ⊤
ab Σb

)
.

Then,

• Marginal distributions.

Xa ∼ NdimXa(µa,Σa) and Xb ∼ NdimXb
(µb,Σb).

• Conditional distributions.

Xa|Xb ∼ NdimXa(µ̃a, Σ̃a) and Xb ∼ NdimXb
(µ̃b, Σ̃b),

where

µ̃a = µa +ΣabΣ
−1
b (Xb − µb) µ̃b = µb +Σ⊤

abΣ
−1
a (Xa − µa)

Σ̃a = Σa − ΣabΣ
−1
b Σ⊤

ab Σ̃b = Σb − Σ⊤
abΣ

−1
a Σab

• Linear combinations.

AX +BY + C ∼ Nd(Aµ+Bν + C,AΣA⊤ +BΨB⊤)

where A and B are appropriately sized matrices, and C ∈ Rd.

• Product of Gaussian densities.

p(X|µ,Σ)p(Y |ν,Ψ) ∝ p(Z|m,S)

where p(Z) is a Gaussian density, m = S(Σ−1µ+Ψ−1ν) and S = (Σ−1 +Ψ−1)−1.
The normalising constant is equal to the density of µ ∼ N(ν,Σ+Ψ).

Proof. Omitted—see Petersen and Pedersen (2012, Sec. 8). ■

Frequently, in Bayesian statistics especially, the following identities will be useful in
deriving posterior distributions involving multivariate normals.
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Lemma C.2. Let x, b ∈ Rd be a vector, X,B ∈ Rn×d a matrix, and A ∈ Rd×d a
symmetric, invertible matrix. Then,

−1

2
x⊤Ax+ b⊤x = −1

2
(x−A−1b)⊤A(x−A−1b) +

1

2
b⊤A−1b

−1

2
tr(X⊤AX) + tr(B⊤X) = −1

2
tr
(
(X −A−1B)⊤A(X −A−1B)

)
+

1

2
tr(B⊤A−1B).

Proof. Omitted—see Petersen and Pedersen (2012, Sec. 8.1.6). ■

Lemma C.3. Let X ∼ Np(µθ,Σθ), that is, the mean vector µθ and covariance matrix
Σθ depends on a real, q-dimensional vector θ. The Fisher information matrix U ∈ Rq×q

for θ has (i, j) entries given by

Uij =
∂µ⊤θ
∂θi

Σ−1
θ

∂µθ
∂θj

+
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂Σθ

∂θj

)
(C.1)

for i, j = 1, . . . , q.

Proof. Define the derivative of a matrix Σ ∈ Rp×p with respect to a scalar z, denoted
∂Σ/∂z ∈ Rp×p, by (∂Σ/∂z)ij = ∂Σij/∂z, i.e. derivatives are taken element-wise. The
two identities below are useful:

∂

∂z
trΣ = tr ∂Σ

∂z
(C.2)

∂

∂z
log|Σ| = tr

(
Σ−1∂Σ

∂z

)
(C.3)

∂Σ−1

∂z
= −Σ−1∂Σ

∂z
Σ−1 (C.4)

A useful reference for these identities is Petersen and Pedersen (2012).

Differentiating the log-likelihood for θ with respect to the i’th component of θ yields

∂

∂θi
L(θ|X) = − 1

2

∂

∂θi
log|Σθ| −

1

2

∂

∂θi
tr(Σ−1

θ (X − µθ)(X − µθ)⊤)

= − 1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

)
− 1

2
tr
(
∂Σ−1

θ

∂θi
(X − µθ)(X − µθ)⊤

)

− 1

2
tr
(
Σ−1
θ

∂

∂θi

(
(X − µθ)(X − µθ)⊤

))

= −

(A)︷ ︸︸ ︷
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

)
−

(B)︷ ︸︸ ︷
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)⊤

)

= +

(C)︷ ︸︸ ︷
tr
(
Σ−1
θ (X − µθ)

∂µ⊤θ
∂θi

)
.
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Taking derivatives again, this time with respect to θj , of the three parts (A), (B) and
(C) above, we get:

• (A)

1

2

∂

∂θj
tr
(
Σ−1
θ

∂Σθ

∂θi

)
=

1

2
tr
(
∂Σ−1

θ

∂θj

∂Σθ

∂θi
+Σ−1

θ

∂2Σθ

∂θiθj

)

• (B)

1

2

∂

∂θj
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)⊤

)
=

1

2
tr
(
∂Σ−1

θ

∂θj

∂Σθ

∂θi
Σ−1
θ (X − µθ)(X − µθ)⊤

)

+
1

2
tr
(
Σ−1
θ

∂2Σθ

∂θiθj
Σ−1
θ (X − µθ)(X − µθ)⊤

)
+

1

2
tr
(
Σ−1
θ

∂Σθ

∂θi

∂Σ−1
θ

∂θj
(X − µθ)(X − µθ)⊤

)

− tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂µθ
∂θj

(X − µθ)⊤
)

• (C)

∂

∂θj
tr
(
Σ−1
θ (X − µθ)

∂µ⊤θ
∂θi

)
= tr

(
∂Σ−1

θ

∂θj
(X − µθ)

∂µ⊤θ
∂θi
− Σ−1

θ

∂µθ
∂θj

∂µ⊤θ
∂θi

− Σ−1
θ (X − µθ)

∂2µθ
∂θi∂θj

)

The Fisher information matrix U contains (i, j) entries equal to the expectation of
− ∂2

∂θiθj
L(θ|X). Using the fact that 1) E[X −µθ] = 0; 2) E[trΣ] = tr(EΣ); 3) E[XX⊤] =

Σθ; and 4) the trace is invariant under cyclic permutations, we get

Uij = tr
(
Σ−1
θ

∂µθ
∂θj

∂µ⊤θ
∂θi

)
+

1

2
tr
(
������∂Σ−1

θ

∂θj

∂Σθ

∂θi
+

�����
Σ−1
θ

∂2Σθ

∂θiθj
−

������∂Σ−1
θ

∂θj

∂Σθ

∂θi
−

�����
Σ−1
θ

∂2Σθ

∂θiθj
− ∂Σθ

∂θi

∂Σ−1
θ

∂θj

)

=
∂µ⊤θ
∂θi

Σ−1
θ

∂µθ
∂θj

+
1

2
tr
(
Σ−1
θ

∂Σθ

∂θi
Σ−1
θ

∂Σθ

∂θj

)
as required. ■
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C.2 Matrix normal distribution

Definition C.2 (Matrix normal distribution). Let X ∈ Rn×m matrix, and let X follow
a matrix normal distribution with mean µ ∈ Rn×m and row and column variances
Σ ∈ Rn×n and Ψ ∈ Rm×m respectively, which we denote by X ∼ MNn,m(µ,Σ,Ψ). Then,

• Pdf. p(X|µ,Σ,Ψ) = (2π)−nm/2|Σ|−m/2|Ψ|−n/2e−
1
2

tr
(
Ψ−1(X−µ)⊤Σ−1(X−µ)

)
.

• Moments. EX = µ, Var(Xi·) = Ψ for i = 1, . . . , n, and Var(X·j) = Σ for
j = 1, . . . ,m.

• Entropy. H(p) = 1
2 log|2πe(Ψ⊗ Σ)| = nm

2 (1 + log 2π) + 1
2 log|Σ|m|Ψ|n.

The matrix normal distribution is simply an extension of the Gaussian distribution to
matrices. A matrix normal random variable can be expressed as a multivariate normal
random variable.

Lemma C.4 (Equivalence between matrix and multivariate normal). X ∼ MNn,m(µ,Σ,Ψ)

if and only if vecX ∼ Nnm(vecµ,Ψ⊗ Σ).

Proof. In the exponent of the matrix normal pdf, we have

−1

2
tr
(
Ψ−1(X − µ)⊤Σ−1(X − µ)

)
= −1

2
vec(X − µ)⊤ vec(Σ−1(X − µ)Ψ−1)

= −1

2
vec(X − µ)⊤(Ψ−1 ⊗ Σ−1) vec(X − µ)

= −1

2
(vecX − vecµ)⊤(Ψ⊗ Σ)−1(vecX − vecµ).

Also, |Σ|−m/2|Ψ|−n/2 = |Ψ ⊗ Σ|−1/2. This converts the matrix normal pdf to that of a
multivariate normal pdf. ■

Some useful properties of the matrix normal distribution are listed:

• Expected values.

E[(X − µ)(X − µ)⊤] = tr(Ψ)Σ ∈ Rn×n

E[(X − µ)⊤(X − µ)] = tr(Σ)Ψ ∈ Rm×m

E(XAX⊤) = tr(A⊤Ψ)Σ + µAµ⊤

E(X⊤BX) = tr(ΣB⊤)Ψ + µ⊤Bµ

E[XCX] = ΣC⊤Ψ+ µCµ
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• Transpose. X⊤ ∼ MNm,n(µ
⊤,Ψ,Σ).

• Linear transformation. Let A ∈ Ra×n be of full-rank a ≤ n and B ∈ Rm×b be
of full-rank b ≤ m. Then AXB ∼ MNa,b(µ

⊤, AΣA⊤, B⊤ΨB).

• Iid. If Xi
iid∼ Nm(µ,Ψ) for i = 1, . . . , n, and we arranged these vectors row-wise

into the matrix X = (X⊤
1 , . . . , X

⊤
n )⊤ ∈ Rn×m, then X ∼ MN(1nµ

⊤, In,Ψ).

C.3 Truncated univariate normal distribution

Definition C.3 (Truncated univariate normal distribution). Let X ∼ N(µ, σ2) with
the random variable X restricted to the interval (a, b) ⊂ R. Then we say that X
follows a truncated normal distribution, and we denote this by X ∼ tN(µ, σ2, a, b). Let
α = (a− µ)/σ, β = (b− µ)/σ, and C = Φ(β)− Φ(α). Then,

• Pdf. p(X|µ, σ, a, b) = C−1(2πσ2)−1/2e−
1

2σ2 (X−µ)2 = σC−1ϕ(X−µ
σ ).

• Moments.
EX = µ+ σ

ϕ(α)− ϕ(β)
C

EX2 = σ2 + µ2 + σ2
αϕ(α)− βϕ(β)

C
+ 2µσ

ϕ(α)− ϕ(β)
C

VarX = σ2

[
1 +

αϕ(α)− βϕ(β)
C

−
(
ϕ(α)− ϕ(β)

C

)2
]

• Entropy.

H(p) =
1

2
log 2πeσ2 + logC +

αϕ(α)− βϕ(β)
2C

=
1

2
log 2πeσ2 + logC +

1

2σ2
·

VarX−σ2+(EX−µ)2︷ ︸︸ ︷
σ2
αϕ(α)− βϕ(β)

C

=
1

2
log 2πσ2 + logC +

1

2σ2
E[X − µ]2

because VarX + (EX − µ)2 = EX2 −����(EX)2 +����(EX)2 + µ2 − 2µEX.

For binary probit models, the distributions that come up are one-sided truncations
at zero, i.e. tN(µ, σ2, 0,+∞) (upper tail/positive part) and tN(µ, σ2,−∞, 0) (lower
tail/negative part), for which their moments are of interest. As an aside, if µ = 0 then
the truncation tN(0, σ2, 0,+∞) ≡ N+(0, σ

2) is called the folded-normal distribution. For
the positive one-sided truncation at zero, C = Φ(+∞) − Φ(−µ/σ) = 1 − Φ(−µ/σ) =

Φ(µ/σ), and for the negative one-sided truncation at zero, C = Φ(−µ/σ) − Φ(−∞) =

1 − Φ(µ/σ). Additionally, if σ = 1, then tN(0, 1, 0,+∞) ≡ N+(0, 1) is called the half-
normal distribution.
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One may simulate random draws from a truncated normal distribution by drawing
from N(µ, σ2) and discarding samples that fall outside (a, b). Alternatively, the inverse-
transform method using

X = µ+ σΦ−1 (Φ(α) + UC)

with U ∼ Unif(0, 1) will work too. Either of these methods will work reasonably well
as long as the truncation region is not too far away from µ, but neither is particularly
efficient. Efficient algorithms have been explored which are along the lines of either
accept/reject algorithms (Robert, 1995), Gibbs sampling (Damien and Walker, 2001),
or pseudo-random number generation algorithms (Chopin, 2011). The latter algorithm
is inspired by the Ziggurat algorithm (Marsaglia and Tsang, 2000) which is considered
to be the fastest Gaussian random number generator.

C.4 Truncated multivariate normal distribution

Definition C.4 (Truncated multivariate normal distribution). Consider the restric-
tion of X ∼ Nd(µ,Σ) to a convex subset1 A ⊂ Rd. Call this distribution the trun-
cated multivariate normal distribution, and denote it X ∼ tNd(µ,Σ,A). The pdf is
p(X|µ,Σ,A) = C−1ϕ(X|µ,Σ)1(X ∈ A), where

C =

∫
A
ϕ(x|µ,Σ)dx = P(X ∈ A).

Generally speaking, there are no closed-form expressions for E[g(X)] for any well-
defined functions g on X. One strategy to obtain values such as EX (mean), EX2

(second moment) and E[log p(X)] (entropy) would be Monte Carlo integration. If
X(1), . . . , X(T ) are samples from X ∼ tNd(µ,Σ,A), then Ê g(X) = 1

T

∑T
t=1 g(X

(t)).

Sampling from a truncated multivariate normal distribution is described by Robert
(1995), who used a Gibbs-based approach, which we now describe. Assume that the
one-dimensional slices of A

Ak(X−j) = {Xj | (X1, . . . , Xj−1, Xj , Xj+1, . . . , Xd) ∈ A}

are readily available so that the bounds or anti-truncation region of Xj given the rest
of the components X−j are known to be (x−j , x

+
j ). Using properties of the normal

1A convex subset is a subset of a space that is closed under convex combinations. In Euclidean space,
for every pair of points in a convex set, all the points that lie on the straight line segment which joins
the pair of points are also in the set.
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distribution, the full conditionals of Xj given X−j is

Xj |X−j ∼ tN(µ̃j , σ̃
2
j , x

−
j , x

+
j )

µ̃j = µj +Σ⊤
j,−jΣ−j,−j(x−j − µ−j)

σ̃2j = Σ11 − Σ⊤
j,−jΣ−j,−jΣj,−j .

According to Robert (1995), if Ψ = Σ−1, then

Σ−1
−j,−j = Ψ−j,−j −Ψj,−jΨ

⊤
−j,−j/Ψjj

which means that we need only compute one global inverse Σ−1. Therefore, the Gibbs
sampler makes draws from truncated normal distributions in the following sequence,
given initial values X(0):

• Draw X
(t)
1 |X

(t)
2 , . . . , X

(t)
d ∼

tN(µ̃1, σ̃
2
1, x

−
1 , x

+
1 ).

• Draw X
(t)
2 |X

(t+1)
1 , X

(t)
3 , . . . , X

(t)
d ∼

tN(µ̃2, σ̃
2
1, x

−
2 , x

+
2 ).

• · · ·

• Draw X
(t)
d |X

(t+1)
1 , . . . , X

(t+1)
d−1 ∼

tN(µ̃d, σ̃
2
d, x

−
d , x

+
d ).

In a later work, Damien and Walker (2001) introduce a latent variable Y ∈ R such
that the joint pdf of X and Y is

p(X1, . . . , Xd, Y ) ∝ exp(−Y /2)1
(
Y > (X − µ)⊤Σ−1(X − µ)

)
1(X ∈ A).

Now, the Gibbs conditional densities for the Xk’s are given by

p(Xj |X−j , Y ) ∝ 1(Xj ∈ Bj)

where
Bj ∈ (x−j , x

+
j ) ∩ {Xj | (X − µ)⊤Σ−1(X − µ) < Y }.

Thus, given values for X−j and Y , the bounds for Xj involves solving a quadratic equa-
tion in Xj . The Gibbs conditional density for Y |X is a shifted exponential distribution,
which can be sampled using the inverse-transform method. Thus, both X and Y can be
sampled directly from uniform variates.

For probit models, we are interested in the conical truncations Cj = {Xj > Xk|k ̸=
j, and k = 1, . . . ,m} for which the j’th component of X is largest. These truncations
form cones in d-dimensional space such that C1 ∪ · · · ∪ Cd = Rd, and hence the name.

In the case where Σ is a diagonal matrix, the conically truncated multivariate normal
distributions are easier to deal with due to the independence structure in the covariance
matrix. In particular, most calculations of interest involve only a one dimensional inte-
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gral of products of normal cdfs. We present some results that we have not previously
seen before elsewhere.

Lemma C.5. Let X ∼ tNd(µ,Σ, Cj), with µ = (µ1, . . . , µd)
⊤ and Σ = diag(σ21, . . . , σ2d),

and Cj = {Xj > Xk|k ̸= j, and k = 1, . . . ,m} a conical truncation of Rd such that the
j’th component is largest. Then,

(i) Pdf. The pdf of X has the following functional form:

p(X) =
C−1

σ1 · · ·σd(2π)d/2
exp

[
−1

2

d∑
i=1

(
xi − µi
σi

)2
]

where ϕ is the pdf of a standard normal distribution and

C = EZ

[ d∏
i=1
i ̸=j

Φ

(
σj
σi
Z +

µj − µi
σi

)]

where Z ∼ N(0, 1).

(ii) Moments. The expectation EX =
(

EX1, . . . ,EXd

)⊤ is given by

EXi =

µi − σiC−1 EZ

[
ϕi
∏

k ̸=i,j Φk

]
if i ̸= j

µj − σj
∑

i ̸=j

(
EXi − µi

)
if i = j

and the second moments E[X − µ]2 are given by

E(Xi−µi)2 =

σ
2
i + (µj − µi)(EXi − µi) + σiσjC

−1 EZ

[
Zϕi

∏
k ̸=i,j Φk

]
if i ̸= j

C−1σ2j EZ

[
Z2
∏

k ̸=j Φk

]
if i = j

where we had defined

ϕi = ϕi(Z) = ϕ

(
σjZ + µj − µi

σi

)
, and

Φi = Φi(Z) = Φ

(
σjZ + µj − µi

σi

)
.

(iii) Entropy. The entropy is given by

H(p) = logC +
d

2
log 2π +

1

2

d∑
i=1

logσ2i +
1

2

d∑
i=1

1

σ2i
E[xi − µi]2.

Proof. See Appendix D for the proof. ■
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C.5 Gamma distribution

Definition C.5 (Gamma distribution). For X ∈ R≥0, let X be distributed according
to the gamma distribution with shape s and rate r, denoted X ∼ Γ(s, r). Then,

• Pdf. p(X) = Γ(s)−1rsXs−1e−rX .

• Moments. EX = s/r, VarX = s/r2.

• Entropy. H(p) = s− log r + logΓ(s) + (1− s)ψ(s).

In the above, Γ(·) and ψ(·) are the gamma and digamma functions respectively,
defined by

Γ(a) =

(a− 1)! if a ∈ Z+∫∞
0 ua−1e−u du otherwise

and
ψ(a) =

∂

∂a
logΓ(a) = ∂Γ(a)/∂a

Γ(a)
.

Often, the gamma distribution is parameterised according to shape s and scale σ = 1/r

parameters, X ∼ Γ(s, σ).

C.6 Inverse gamma distribution

Definition C.6 (Inverse gamma distribution). For X ∈ R≥0, a random variable X

distributed according to an inverse gamma distribution with parameters s (shape) and
σ (scale) is denoted by X ∼ Γ−1(s, σ). Then,

• Pdf. p(X) = Γ(s)−1σsX−(s+1)e−σ/X .

• Moments. EX = σ/(s− 1), VarX = σ2
(
(s− 1)2(s− 2)

)−1.

• Entropy. H(p) = s+ log
(
σΓ(s)

)
− (1 + s)ψ(s).

with Γ(·) and ψ(·) representing the gamma and digamma functions respectively, as de-
fined in Appendix C.5.

Lemma C.6. If X ∼ Γ(s, r) (shape and rate parameterisation), then 1/X ∼ Γ−1(s, r).

Proof. Let Y = 1/X. Then the pdf of Y is

pY (Y ) = pX(1/Y )

∣∣∣∣ ∂∂Y (1/Y )

∣∣∣∣
= Γ(s)−1rs(1/Y )s−1e−r/Y (1/Y 2)

= Γ(s)−1rsY −(s+1)e−r/Y

which is the pdf of an inverse gamma with shape s and scale r. ■
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Appendix D

Proofs related to conical
truncations of multivariate
normals

We present the proof for Lemma C.5 related to the conically truncated multivariate
normal distribution with an independent covariance matrix structure, which we had not
encountered in the literature.

D.1 Proof of Lemma C.5: Pdf

Using the fact that
∫
p(x)dx = 1, and that∫

· · ·
∫
[xi < xj ,∀i ̸= j] ·

d∏
i=1

ϕ(xi|µi, σ2i )dx1 · · · dxd

=

∫
· · ·
∫

1[xi < xj , ∀i ̸= j]
d∏

i=1

[
1

σi
ϕ

(
xi − µi
σi

)]
dx1 · · · dxd

=

∫
· · ·
∫

1[xi < xj , ∀i ̸= j]
1

σj
ϕ

(
xj − µj
σj

) d∏
i=1
i ̸=j

[
1

σi
ϕ

(
xi − µi
σi

)]
dx1 · · · dxd

=

∫ d∏
i=1
i ̸=j

Φ

(
xj − µi
σi

)
1

σj
ϕ

(
xj − µj
σj

)
dxj

=

∫ d∏
i=1
i ̸=j

Φ

(
σjz + µj − µi

σi

)
ϕ(z)dz

(by using the standardisation z = (xj − µj)/σj)
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=EZ

[ d∏
i=1
i ̸=j

Φ

(
σj
σi
Z +

µj − µi
σi

)]

the proof follows directly.

D.2 Proof of Lemma C.5: Moments

Recall that for Y ∼ tN(µ, σ2,−∞, b), for some function g of Y , we have that

E[g(Y )] = Φ(β)−1

∫
[y < b] · g(y)ϕ(y|µ, σ2)dy,

and in particular, we have

E(Y − µ) = −σ ϕ(β)
Φ(β)

(D.1)

E(Y − µ)2 − σ2 = −σ2βϕ(β)
Φ(β)

(D.2)

where β = (b − µ)/σ. For the conically truncated multivariate normal distribution
X ∼ tNd(µ,Σ,Aj), where Σ = diag(σ21, . . . , σ2d), the independence structure of Σ makes
it possible to consider the expectations of each of the components separately by marginal-
ising out the rest of the components. For simplicity, denote p(xk) = ϕ(xk|µk, σk) =

σ−1
k ϕ(xk−µk

σk
). For i ̸= j, we have

E[g(Xi)] = C−1

∫
· · ·
∫

[xk < xj ,∀k ̸= j] · g(xi)
d∏

k=1

p(xk)dx1 · · · dxd

= C−1Φ((xj − µj)/σj)
Φ((xj − µj)/σj)

∫∫
[xi < xj ] · g(xi)p(xi)p(xj)

d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
dxi dxj

= C−1

∫
EXi∼tN(µi,σ2

i ,−∞,xj)
[g(Xi)]

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj (D.3)

where C is the normalising constant for X, while for the j’the component we have

E[g(Xj)] = C−1

∫
· · ·
∫
[xk < xj ,∀k ̸= j] · g(xj)

d∏
k=1

p(xk)dx1 · · · dxd

= C−1

∫
g(xj)

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxd. (D.4)
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Plugging in (D.1) for g(Xi) = Xi − µi in (D.3) we get

EXi − µi = −C−1

∫ (
σiϕ

(
xj − µi
σi

)/
Φ

(
xj − µi
σi

)) d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= −σiC−1

∫
ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

= −σiC−1

∫
ϕ

(
σjz + µj − µi

σi

) d∏
k=1
k ̸=j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= −σiC−1 EZ

[
ϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=j

Φ

(
σjZ + µj − µk

σk

)]

where Z is the distribution of N(0, 1), and we had used a change of variable xj = σjz+µj ,
so that p(xj) = σ−1

j ϕ(z) and dxj = σjdz. For the j’th component, substitute g(xj) =
xj − µj in (D.4) to get

EXj − µj = C−1

∫
(xj − µj)

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= C−1σj

∫
z

d∏
k=1
k ̸=j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= σj

d∑
i=1
i ̸=j

σiC
−1 E

[
ϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=i,j

Φ

(
σjZ + µj − µk

σk

)]

= −σj
d∑

i=1
i ̸=j

(
EXi − µi

)
,

where we have made use of Lemma D.1 in the second last step.
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For the second moments, plug in (D.2) for g(Xi) = (Xi − µi)2 − σ2i in (D.3) to get

E(Xi − µi)2 − σ2i = − σ�2i C−1

∫xj−µi−µj+µj︷ ︸︸ ︷
xj − µi

��σi
·
ϕ
(
(xj − µi)/σi

)
Φ
(
(xj − µi)/σi

) d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= − σiC−1

∫
(xj − µj)ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

+ (µj − µi) ·

EXi−µi︷ ︸︸ ︷
−σiC−1

∫
ϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
xj − µk
σk

)
p(xj)dxj

= (µj − µi)(EXi − µi)

+ σiC
−1

∫
σjzϕ

(
xj − µi
σi

) d∏
k=1
k ̸=i,j

Φ

(
σjz + µj − µk

σk

)
ϕ(z)dz

= (µj − µi)(EXi − µi)

+ σiσjC
−1 E

[
Zϕ

(
σjZ + µj − µi

σi

) d∏
k=1
k ̸=i,j

Φ

(
σjZ + µj − µk

σk

)]

And similarly, for the j’th component

E(Xj − µj)2 = C−1

∫
(xj − µj)2

d∏
k=1
k ̸=j

Φ

(
xj − µk
σk

)
p(xj)dxj

= C−1σ2j

∫
z2

d∏
k=1
k ̸=j

Φ

(
zσj + µj − µk

σk

)
p(xj)dz

= C−1σ2j EZ

[
Z2

d∏
k=1
k ̸=j

Φ

(
Zσj + µj − µk

σk

)]
.

Lastly, we used the following result in the derivation above.

Lemma D.1. Let Z ∼ N(0, 1). Then for all m ∈ {N |m > 1} and (µ, σ) ∈ R× R+,

E
[
Z

m∏
k=1
k ̸=j

Φ(σkZ + µk)

]
=

m∑
i=1
i ̸=j

E
[
σiϕ(σiZ + µi)

m∏
k=1
k ̸=i,j

Φ(σkZ + µk)

]

for some j ∈ {1, . . . ,m}.
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Proof. Use the fact that for any differentiable function g, E[Zg(Z)] = E[g′(Z)], and
apply the result with the function gm : z 7→

∏
k ̸=j Φ(σkz + µk). All that is left is to

derive the derivative of g, and we use an inductive proof to do this. Introduce the
following notation for convenience:

ϕi = ϕ(σiz + µi)

Φi = Φ(σiz + µi)

The simplest case is when m = 2, which can be trivially shown to be true. Without
loss of generality, let j = 1. Then

g2(z) = Φ2

⇒ ġ2(z) = σ2ϕ2 =
2∑

i=1
i ̸=1

[
σiϕi

2∑
k=1
k ̸=1,2

Φk

]
.

Now assume that the inductive hypothesis holds for some m ∈ {N |m > 1}. That is,
the derivative of gm(z) =

∏
k ̸=j Φk,

ġm(z) =
m∑
i=1
i ̸=j

[
σiϕi

m∏
k=1
k ̸=i,j

Φk

]
,

is assumed to be true. Also assume that, without loss of generality, j ̸= m + 1. Then,
the derivative of

gm+1(z) =
m+1∏
k=1
k ̸=j

Φk = gm(z)Φm+1

is found to be

ġm+1(z) = σm+1ϕm+1gm(z) + ġm(z)Φm+1

= σm+1ϕm+1

m∏
k=1
k ̸=j

Φk +

m∑
i=1
i ̸=j

[
σiϕi

m∏
k=1
k ̸=i,j

Φk

]
Φm+1

= σm+1ϕm+1

m+1∏
k=1

k ̸=j,m+1

Φk +

m∑
i=1
i ̸=j

[
σiϕi

m+1∏
k=1
k ̸=i,j

Φk

]

=
m+1∑
i=1
i ̸=j

[
σiϕi

m+1∏
k=1
k ̸=i,j

Φk

]
,

as required for the inductive proof. Using linearity of expectations, the proof is complete.
■
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D.3 Proof of Lemma C.5: Entropy

As a direct consequence of the definition of entropy,

H(p) = −E[log p(X)]

= −E
[
− logC − d

2
log 2π − 1

2

d∑
i=1

logσ2i −
1

2

d∑
i=1

(
xi − µi
σi

)2
]

= logC +
d

2
log 2π +

1

2

d∑
i=1

logσ2i +
1

2

d∑
i=1

1

σ2i
E[xi − µi]2.
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Appendix E

I-prior interpretation of the
g-prior

The I-prior for β in a standard linear model resembles the objective g-prior (Zellner,
1986) for regression coefficients,

β ∼ Np

(
0, g(X⊤ΨX)−1

)
,

although they are quite different objects. The g-prior for β has the inverse (scaled)
Fisher information matrix as its covariance matrix. This, in itself, has a much different
and arguably counterintuitive meaning: large amounts of Fisher information about β

corresponds to a small prior variance, and hence less deviation away from the prior mean
of zero in estimating β. The choice of the hyperparameter g has been the subject of much
debate, with choices ranging from fixing g = n (corresponding to the concept of unit
Fisher information), to fully Bayesian and empirical Bayesian methods of estimating g
from the data.

On the other hand, we note that the g-prior has an I-prior interpretation when argued
as follows. Assume that the regression function f lies in the continual dual space of Rp

equipped with the inner product ⟨x,x′⟩X = x⊤(X⊤ΨX)−1x. With this inner product
and from (3.3) (p. 90), the Fisher information on β is

Ig(β) =
n∑

i=1

n∑
j=1

ψij(X⊤ΨX)−1xi ⊗ (X⊤ΨX)−1xj

= (X⊤ΨX)−1
�����(X⊤ΨX)������

(X⊤ΨX)−1

= (X⊤ΨX)−1,

and this, rather than the usual X⊤ΨX as the prior covariance matrix for β, means that
the I-prior is in fact the standard g-prior.
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The metric induced by the inner product is actually the Mahalanobis distance, a scale-
invariant natural distance if the covariates are measured on different scales. To expand
on this idea, circle back to the regression function and write it as f(x) = ⟨x,β⟩X . In
usual least squares regression, the choice of inner product is irrelevant, so the usual dot
product is commonly used (however, as we have seen above, the choice of inner product
determines the form of the Fisher information for β). In particular, suppose that all
the xik’s, k = 1, . . . , p for each unit i = 1, . . . , n are measured on the same scale; for
instance, these could be measurements in centimetres. In this case, the dot product
is reasonable, because ⟨xi,xj⟩ =

∑p
k=1 xikxjk and the inner product has a coherent

unit, namely the squared unit of the xik’s. However, if they were a mix of various
scaled measurements, then obviously the inner product’s unit is incoherent—one would
be resorted to adding measurements in different units, for example, cm2 and kg2 and so
on. In such a case, a unitless inner product is appropriate, like the Mahalonobis inner
product, which technically rescales the xik’s to unity. In summary, if the covariates are
all measured on the same scale, then the I-prior is appropriate, and if not, the g-prior is
appropriate.
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Appendix F

Additional details for various
I-prior regression models

These are additional details relating to discussion on various I-prior regression models in
Section 4.1 of Chapter 4 (p. 102). These details relate to the standard linear multilevel
model and the naïve classification model.

F.1 The I-prior for standard multilevel models

We show the corresponding I-prior for the regression coefficients of the standard linear
multilevel model (4.3). Write α = β0, and for simplicity, assume iid errors, i.e., Ψ = ψIn.
The form of f ∈ F is now f(x(j)

i , j) =
∑nj′

i′=1

∑m
j′=1 hλ

(
(x(j)

i , j), (x(j′)
i′ , j′)

)
wi′j′ , where

each wi′j′ ∼ N(0, ψ−1).

Now, functions in the scaled RKHS F2 have the form

f2(j) =

nj′∑
i=1

m∑
j′=1

λ2

(
δjj′

pj
− 1

)
wij′

= λ2

(
w+j

pj
− w++

)
,

where a ‘+’ in the index of wik indicates a summation over that index, and pj is the
empirical distribution over M, i.e. pj = nj/n. Clearly f2(j) is a variable depending on
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j, so write f2(j) = β0j . The distribution of β0j is normal with mean zero and variance

Varβ0j = λ22

(
��njψ

n�2j /n
2
+ nψ

)

= nψλ22

(
1

pj
+ 1

)
.

The covariance between any two random intercepts β0j and β0j′ is

Cov(β0j , β0j′) = Cov
[
λ2

(
w+j

pj
− w++

)
, λ2

(
w+j′

pj′
− w++

)]
=

λ22
pjpj′ ��������:0

Cov(w+j , w+j′) − λ22
pj

Cov(w+j , w++)−
λ22
pj′

Cov(w++, w+j′)

+ λ22 Cov(w++, w++)

= − λ22

��nj /n
��njψ −

λ22

��nj′ /n
��nj′ψ + λ22nψ

= − nψλ22.

Functions in F12, on the other hand, have the form

f12(xi, j) =

nj′∑
i′=1

m∑
j′=1

λ1λ2 · x̃(j)⊤
i x̃(j′)

i′ ·
(
δjj′

pj
− 1

)
wi′j′

= x̃(j)⊤
i

λ1λ2
pj

nj∑
i′=1

x̃(j)
i′ wi′j − λ1λ2

nj′∑
i′=1

m∑
j′=1

x̃(j′)
i′ wi′j′


︸ ︷︷ ︸

β1j

,

and this is, as expected, a linear form dependent on cluster j. We can calculate the
variance for β1j to be

Varβ1j = λ21λ
2
2 Var

(
1

pj
X̃⊤

j wj − X̃⊤w
)

= λ21λ
2
2

(
ψ

n2j/n
2
X̃⊤

j X̃j + ψX̃⊤X̃− 1

pj
X̃⊤

j Cov(wj ,w)X̃⊤

)

= nψλ21λ
2
2

(
1

pj
Sj + S− Sj

)
= nψλ21λ

2
2

[(
1

pj
− 1

)
Sj + S

]
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where Sj = 1
nj

∑nj

i=1(x
(j)
i − x̄)⊤(x(j)

i − x̄), S = 1
n

∑nj

i=1

∑m
j=1(x

(j)
i − x̄)⊤(x(j)

i − x̄), and
x̄ = 1

n

∑nj

i=1

∑m
j=1 x(j)

i . The covariance between two vectors of the random slopes is

Cov(β1j ,β1j′) = λ21λ
2
2 Cov

(
1

pj
X̃⊤

j wj − X̃⊤w, 1

pj′
X̃⊤

j′wj′ − X̃⊤w
)

= ψλ21λ
2
2

(
X̃⊤X̃− 1

pj
X̃⊤

j X̃j −
1

pj′
X̃⊤

j′X̃j′

)
= nψλ21λ

2
2

(
S− Sj − Sj′

)
.

Another quantity of interest is the covariance between the random intercepts and
random slopes:

Cov[β0j ,β1j ] = λ1λ
2
2 Cov

[
1

pj
1⊤
nj

wj − 1⊤
n w, 1

pj
X̃⊤

j wj − X̃⊤w
]

= ψλ1λ
2
2

(
���*0
1⊤
n X̃ +

1

p2j
1⊤
nj

X̃j −
2

pj
1⊤
nj

X̃j

)

= nψλ1λ
2
2

[(
1

pj
− 2

)
1

nj

nj∑
i=1

(x(j)
i − x̄)

]

= nψλ1λ
2
2

(
1

pj
− 2

)
(x̄(j) − x̄)

and

Cov(β0j ,β1j′) = λ1λ
2
2 Cov

(
1

pj
1⊤
nj

wj − 1⊤
n w, 1

pj′
X̃⊤

j′wj′ − X̃⊤w
)

= ψλ1λ
2
2

(
���*0
1⊤
n X̃ +

1

pjpj′
1⊤
nj�������:0

Cov(wj ,wj′) X̃j′ −
1

pj
1⊤
nj

X̃j

− 1

pj′
1⊤
nj′

X̃j′

)
= nψλ1λ

2
2

(
− 1

nj

nj∑
i=1

(x(j)
i − x̄)− 1

nj′

nj′∑
i=1

(x(j′)
i − x̄)

)
= nψλ1λ

2
2

(
2x̄− x̄(j) − x̄(j′)

)
.

F.2 The I-prior for naïve classification

For the naïve I-prior classification model (4.7), the I-prior is derived as follows. Firstly,
the functions in FM and FX need necessarily be zero-mean functions (as per the func-
tional ANOVA definition in Definition 2.36 (p. 79), but also, as per the definition
of the Pearson RKHS and centred identity kernel RKHS). What this means is that

F.2 The I-prior for naïve classification 295



∑m
j=1 αj = 0,

∑m
j=1 fj(xi) = 0, and

∑n
i=1 fj(xi) = 0. In particular,

E
[ m∑

j=1

yij

]
=

m∑
j=1

(α+ αj + fj(xi))

= mα+

�
�
�
�
��>

0
m∑
j=1

αj +

�
�
�

�
�>
0

m∑
j=1

fj(xi)

and since
∑m

j=1 yij = 1, we get the ML estimate α̂ = 1/m, and thus the grand intercept
can be fixed to resolve identification.

It is much more convenient to work in vector and matrix form, so let us introduce
some notation. Let w (c.f. y, f and ϵ) be an n × m matrix whose (i, j) entries con-
tain wij (c.f. yij , f(xi, j), and ϵij). The row-wise entries of w are independent of
each other (independence assumption of the n observations), while any two of their
columns have covariance as specified in Ψ. This means that w follows a matrix nor-
mal distribution MNn,m(0, In,Ψ), which implies vec w ∼ Nnm(0,Ψ⊗ In), and similarly,
ϵ ∼ Nnm(0,Ψ−1 ⊗ In). Denote by Bη the n × n kernel matrix with entries supplied
by kernel 1 + bη over X × X , and A the m×m matrix with entries supplied by a over
M×M. From (4.7), we have that

f = BηwA ∈ Rn×m,

and thus vec f ∼ Nnm(0,AΨA ⊗B2
η). As y = 1nα

⊤ + f + ϵ, where α ∈ Rm with j’th
component α+ αj = 1/m+ αj , by linearity we have that

vec y ∼ Nnm

(
vecα,AΨA⊗B2

η +Ψ−1 ⊗ In
)

(F.1)

and
vec y|w ∼ Nnm

(
vec(α+ BηwA),Ψ−1 ⊗ In

)
. (F.2)

By the results of Chapter 4, the posterior distribution of the I-prior random effects is
vec w|y ∼ N(vec w̃, Ṽw), where

vec w̃ = Ṽw(Ψ⊗Hη) vec(y− 1nα
⊤) and Ṽ−1

w = AΨA⊗B2
η +Ψ−1 ⊗ In = Vy.

(F.3)

Suppose hypothetically, one uses the uncentered identity kernel a(j, j′) = δjj′ , in
which case centring of the intercepts αj must be handled separately. In conjunction
with an assumption of iid errors (Ψ = ψIn), the above distributions simplify further.
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Specifically, the variance in the marginal distribution becomes

Var(vec y) = (ψIm ⊗B2
η) + (ψ−1Im ⊗ In)

= (Im ⊗ ψB2
η) + (Im ⊗ ψ−1In)

= Im ⊗ (

Ṽy︷ ︸︸ ︷
ψB2

η + ψ−1In).

which implies independence and identical variances Ṽy for the vectors (y1j , . . . , ynj)⊤ for
each class j = 1, . . . ,m. Evidently, this stems from the implied independence structure
of the prior on f too, since now Var(vec f) = diag(ψB2

η, . . . , ψB2
η), which could be

interpreted as having independent and identical I-priors on the regression functions for
each class f·j =

(
f(x1, j), . . . , f(xn, j)

)⊤.
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Appendix G

Posterior distribution of the
I-prior regression function

We derive the posterior distribution for the I-prior random effects w = (w1, . . . , wn)
⊤,

which is related to the I-prior regression function via f(xi) =
∑n

k=1 hη(xi, xk)wk, or in
matrix terms, f :=

(
f(x1), . . . , f(xn)

)⊤
= Hηw, and f ∈ F an RKHS with kernel hη.

A closely related distribution of interest is the posterior predictive distribution of ynew,
the prediction at a new data point xnew. We note the similarity of these results with the
posterior distributions of Gaussian process regressions (Rasmussen and Williams, 2006).

G.1 Deriving the posterior distribution for w

In the following derivation, we implicitly assume the dependence on f0 and θ. The
distribution of y|w is Nn(α+f0+Hηw,Ψ−1), where α = α1n, while the prior distribution
for w is Nn(0,Ψ). Since p(w|y) ∝ p(y|w)p(w), we have that

log p(w|y) = log p(y|w) + log p(w)

= const. +
�����1

2
log|Ψ| − 1

2
(y−α− f0 −Hηw)⊤Ψ(y−α− f0 −Hηw)

−
�����1

2
log|Ψ| − 1

2
w⊤Ψ−1w

= const.− 1

2
w⊤(HηΨHη +Ψ−1)w + (y−α− f0)⊤ΨHηw.

Setting A = HηΨHη +Ψ−1, a⊤ = (y−α− f0)⊤ΨHη, and using the fact that

w⊤Aw− 2a⊤w = (w−A−1a)⊤A(w−A−1a),
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we have that w|y is normally distributed with the required mean and variance.

Alternatively, one could have shown this using standard results of multivariate normal
distributions. Noting that the covariance between y and w is

Cov(y,w) = Cov(α+ f0 + Hηw + ϵ,w)

= Hη Cov(w,w)

= HηΨ

and that Cov(w,y) = ΨHη = HηΨ = Cov[y,w] by symmetry, the joint distribution
(y,w) is (

y
w

)
∼ Nn+n

((
α+ f0

0

)
,

(
Vy HηΨ

ΨHη Ψ

))
.

Thus,

E(w|y) = E w + Cov(w,y)(Var y)−1(y− E y)
= ΨHηV−1

y (y−α− f0),

and

Var(w|y) = Var w− Cov(w,y)(Var y)−1 Cov(y,w)

= Ψ−HηΨV−1
y HηΨ

= Ψ−ΨHη

(
Ψ−1 + HηΨHη

)−1 HηΨ

=
(
Ψ−1 + HηΨHη

)−1

= V−1
y

as a direct consequence of the Woodbury matrix identity (Petersen and Pedersen, 2012,
Eq. 156, Sec. 3.2.2).

G.2 Deriving the posterior predictive distribution

The posterior predictive distribution is obtained in an empirical Bayesian manner, in
which the parameters of the model are replaced with their ML estimates (denoted with
hats).

A priori, assume that ynew ∼ N(α̂, vnew), where vnew = hη̂(xnew)⊤Ψ̂hη̂(xnew) + ψ−1
new.

Consider the joint distribution of (ynew,y⊤)⊤, which is multivariate normal (since both
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ynew and y are. Write(
ynew

y

)
∼ Nn+1

((
α̂

α̂1n

)
,

(
vnew Cov(ynew,y)

Cov(ynew,y)⊤ V̂y

))
,

where

Cov(ynew,y) = Cov(fnew + ϵnew, f + ϵ)

= Cov(fnew, f) + Cov(ϵnew, ϵ)

= Cov
(

hη̂(xnew)
⊤w̃,Hη̂w̃

)
+ (σnew,1, . . . , σnew,n)

= hη̂(xnew)
⊤Ψ̂Hη̂ + σnew.

The vector of covariances σnew between observations y1, . . . , yn and the predicted point
ynew would need to be prescribed a priori (treated as extra parameters), or estimated
again, which seems excessive. Under an iid assumption of the error precisions, then
σnew = 0 would be acceptable.

In any case, using standard multivariate normal results, we get that ynew|y is also
normally distributed with mean

E(ynew|y) = α̂+ (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)V̂−1

y ỹ

= α̂+ hη̂(xnew)
⊤

ŵ︷ ︸︸ ︷
hη̂(xnew)

⊤Ψ̂Hη̂V̂−1
y ỹ + σnewV̂−1

y ỹ
= α̂+ E

(
f(xnew)|y

)
+ mean correction term

and variance

Var(ynew|y) = vnew − (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)V̂−1

y (hη̂(xnew)
⊤Ψ̂Hη̂ + σnew)

⊤

= hη̂(xnew)
⊤Ψ̂ĥη̂(xnew) + ψ−1

new − hη̂(xnew)
⊤Ψ̂Hη̂V̂−1

y Hη̂Ψ̂hη̂(xnew)

+ variance correction term

= hη̂(xnew)
⊤(Ψ̂− Ψ̂Hη̂V̂−1

y Hη̂Ψ̂
)
hη̂(xnew) + ψ−1

new

+ variance correction term

= hη̂(xnew)
⊤V̂−1

y hη̂(xnew) + ψ−1
new + variance correction term

= Var
(
f(xnew)|y

)
+ ψ−1

new + variance correction term.
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Appendix H

Variational EM algorithm for
I-probit models

The two sections that follow detail the derivation of the variational densities used in
the E-step of the variational EM algorithm, and also the lower bound (ELBO) used to
monitor convergence.

H.1 Derivation of the variational densities

In what follows, the implicit dependence of the densities on the parameters of the model
θ are dropped. We derive a mean-field variational approximation of

p(y∗,w|y) ≈ q(y∗)q(w)

=

n∏
i=1

q(y∗
i )q(w).

The first line is by assumption, while the second line follows from an induced factorisation
on the latent propensities, as we will see later. Recall that the optimal mean-field
variational density q̃ satisfy

log q̃(y∗) = Ew∼q̃

[
log p(y,y∗,w)

]
+ const. (from 5.13)

log q̃(w) = Ey∗∼q̃

[
log p(y,y∗,w)

]
+ const. (from 5.14)

The joint likelihood is given by

p(y,y∗,w) = p(y|y∗)p(y∗|w)p(w).

For reference, the three relevant distributions are listed below.
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• p(y|y∗). For each observation i ∈ {1, . . . , n}, given the corresponding latent
propensities y∗

i = (y∗i1, . . . , y
∗
im), the distribution for yi is a degenerate distribu-

tion which depends on the j’th component of y∗
i being largest, where the value

observed for yi was j. Since each of the yi’s are independent, everything is multi-
plicative.

p(y|y∗) =

n∏
i=1

m∏
j=1

p
[yi=j]
ij =

n∏
i=1

m∏
j=1

1[y∗ij = max
k

y∗ik]
1[yi=j].

• p(y∗|w). Given values for the parameters and I-prior random effects, the distri-
bution of the latent propensities is matrix normal

y∗|w ∼ MNn,m(1nα
⊤ + Hηw, In,Ψ−1).

Write µ = 1nα
⊤ + Hηw. Its pdf is

p(y∗|w) = exp
[
−nm

2
log 2π +

n

2
log|Ψ| − 1

2
tr
(
(y∗ − µ)Ψ(y∗ − µ)⊤

)]
= exp

[
−nm

2
log 2π +

n

2
log|Ψ| − 1

2

n∑
i=1

(y∗
i· − µi·)⊤Ψ(y∗

i· − µi·)
]
,

where y∗
i· ∈ Rm and µi· ∈ Rm are the rows of y∗ and µ respectively. The second

line follows directly from the definition of the trace, but also emanates from the
fact that y∗

i· are independent multivariate normal with mean µi and variance Ψ−1.

• p(w). The w’s are normal random matrices w ∼ MNn,m(0, In,Ψ) with pdf

p(w) = exp
[
−nm

2
log 2π − n

2
log|Ψ| − 1

2
tr
(
wΨ−1w⊤)]

= exp
[
−nm

2
log 2π − n

2
log|Ψ| − 1

2

n∑
i=1

w⊤
i·Ψ

−1wi·

]
.

H.1.1 Derivation of q̃(y∗)

The rows of y∗ are independent, and thus we can consider the variational density for
each y∗

i separately. Consider the case where yi takes one particular value j ∈ {1, . . . ,m}.
In such cases, we have that y∗ij > yik for all k ̸= j, and that

log q̃(y∗
i·) = Ew∼q̃

[
−1

2
(y∗

i − µi)
⊤Ψ(y∗

i − µi)

]
+ const.

=

[
−1

2
(y∗

i − µ̃i)
⊤Ψ(y∗

i − µ̃i)

]
+ const. (⋆)
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where µ̃i· = α + w̃hη(xi), w̃ = Ew∼q̃[w]. This is recognised as the logarithm of a
multivariate normal pdf with mean µ̃i· and variance Ψ−1. On the other hand, when
yi ̸= j, the pdf is zero. Thus,

q̃(y∗
i·) =

ϕ(y∗
i·|µ̃i·,Ψ−1) if y∗ij > y∗ik,∀k ̸= j

0 otherwise,

implying a truncated multivariate normal distribution for y∗
i·. The required moments

from the truncated multivariate normal distribution can be obtained using the methods
described in Appendix C.4 (p. 281).

Remark H.1. In the above derivation, we needn’t consider the second order terms in the
expectations because they do not involve y∗

i·, and thus, these terms can be absorbed
into the constant. To see this,

E[(y∗
i· − µi·)⊤Ψ(y∗

i· − µi·)] = E[y∗⊤
i· Ψy∗

i· + µ⊤
i·Ψµi· − 2µ⊤

i·Ψy∗
i·]

= y∗⊤
i· Ψy∗

i· − 2E[µ⊤
i·]Ψy∗

i· + const.

= y∗⊤
i· Ψy∗

i· − 2µ̃⊤
i·Ψy∗

i· + const.

= (y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·) + const.

The square is then completed to get the final line, which is the expression for the term
(⋆) multiplied by a half.

H.1.2 Derivation of q̃(w)

The terms involving w in the joint likelihood (5.14) are the p(y∗|w) and p(w) terms, so
the rest are absorbed into the constant. The easiest way to derive q̃(w) is to vectorise
y∗ and w. We know that

vec y∗|α,w, η,Ψ ∼ Nnm

(
vec(1nα

⊤ + Hηw),Ψ−1 ⊗ In
)

and

vec w|Ψ ∼ Nnm(0,Ψ⊗ In)

using properties of matrix normal distributions.
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We also use the fact that vec(Hηw) = (Im ⊗Hη) vec w. For simplicity, write ȳ∗ =

vec(y∗ − 1nα
⊤), and M = (Im ⊗Hη). Thus,

log q̃(w) = Ey∗∼q̃

[
−1

2
(ȳ∗ −M vec w)⊤(Ψ−1 ⊗ In)−1(ȳ∗ −M vec w)

]
+ Ey∗∼q̃

[
−1

2
(vec w)⊤(Ψ⊗ In)−1 vec(w)

]
+ const.

= − 1

2
Ey∗∼q̃

(vec w)⊤
( A︷ ︸︸ ︷

M⊤(Ψ⊗ In)M + (Ψ−1 ⊗ In)
)

vec(w)


+ Ey∗∼q̃

[ a⊤︷ ︸︸ ︷
ȳ∗⊤(Ψ⊗ In)M vec(w)

]
+ const.

= − 1

2
Ey∗∼q̃

[
(vec w−A−1a)⊤A(vec w−A−1a)

]
+ const.

This is recognised as a multivariate normal of dimension nm with mean and precision
given by vec w̃ = E[A−1a] and Ṽ−1

w = E[A] respectively. With a little algebra, we find
that

Ṽw =
{

Ey∗∼q̃[A]
}−1

=
{

Ey∗∼q̃

[
(Im ⊗Hη)

⊤(Ψ⊗ In)(Im ⊗Hη) + (Ψ−1 ⊗ In)
]}−1

=
(
Ψ⊗H2

η +Ψ−1 ⊗ In
)−1

and

vec w̃ = Ey∗∼q̃[A−1a]
= Ṽw Ey∗∼q̃

[
(Im ⊗Hη)(Ψ⊗ In) vec(y∗ − 1nα

⊤)
]

= Ṽw(Ψ⊗Hη)Ey∗∼q̃

[
vec(y∗ − 1nα

⊤)
]

= Ṽw(Ψ⊗Hη) vec(ỹ∗ − 1nα
⊤).

We will often refer to w̃ as the n ×m matrix constructed by filling in its entries with
vec w̃ column-wise (akin to the opposite of vectorisation). This way, the w̃ contains
posterior mean values arranged by class j = 1, . . . ,m column-wise, and by observations
i = 1, . . . , n row-wise. Ideally, we do not want to work with the nm × nm matrix Vw,
since its inverse is expensive to compute. Refer to Section 5.6.2 (p. 176) for details.
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In the case of the independent I-probit model, where Ψ = diag(ψ1, . . . , ψm), then the
covariance matrix takes a simpler form. Specifically, it has the block diagonal structure:

Ṽw =
(

diag(ψ1, . . . , ψm)⊗H2
η + diag(ψ1, . . . , ψm)⊗ In

)−1

= diag
((
ψ1H2

η + ψ−1
1 In

)−1
, · · · ,

(
ψmH2

η + ψ−1
m In

)−1
)

=: diag(Ṽw1 , . . . , Ṽwm).

The mean vec w̃ is

vec w̃ = Ṽw(diag(ψ1, . . . , ψm)⊗ H̃η) vec(ỹ∗ − 1nα
⊤)

= diag(Ṽw1 , . . . , Ṽwm)diag(ψ1Hη, . . . , ψmHη) vec(ỹ∗ − 1nα
⊤)

= diag(ψ1Ṽw1Hη, . . . , ψmṼwmHη)(ỹ∗ − 1nα
⊤)

=
( w̃⊤·1 · · · w̃⊤·m(
ψ1Ṽw1Hη(ỹ∗·1 − α11n)

)⊤ · · ·
(
ψmṼwmHη(ỹ∗·m − αm1n)

)⊤ )⊤.
Therefore, we can consider the distribution of w = (w·1, . . . ,w·m) column-wise, and
each are normally distributed with mean and variance

w̃·j = ψjṼwjHη(ỹ∗
·j − αj1n) and Ṽwj =

(
ψjH2

η + ψ−1
j In

)−1
.

A quantity that we will be requiring time and again will be tr(C E[w⊤Dw]), where
C ∈ Rm×m and D ∈ Rn×n are both square and symmetric matrices. Using the definition
of the trace directly, we get

tr(C E[w⊤Dw]) =
m∑

i,j=1

Cij E(w⊤Dw)ij

=
m∑

i,j=1

Cij E(w⊤
·iDw·j). (H.1)

The expectation of the univariate quantity w⊤·iDw·j is inspected below:

E(w⊤
·iDw·j) = tr(D E[w·jw⊤

·i])

= tr
(

D
[

Cov(w·j ,w·i) + E(w·j)E(w·i)⊤
])

= tr
(

D
[
Vw[i, j] + w̃·jw̃⊤

·i
])
.

where Vw[i, j] ∈ Rn×n refers to the (i, j)’th submatrix block of Vw. Of course, in the
independent the I-probit model, this is equal to

Vw[i, j] = δij(ψjH2
η + ψ−1

j In)−1
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where δ is the Kronecker delta. Continuing on (H.1) leads us to

tr(C E[w⊤Dw]) =
m∑

i,j=1

Cij tr
(

D
[
δijVwj + w̃·jw̃⊤

·i
])
.

If C = diag(c1, . . . , cm), then

tr(C E[w⊤Dw]) =

m∑
j=1

cj

(
tr
(
DṼwj

)
+ w̃⊤
·jDw̃·j

)
=

m∑
j=1

cj tr
(

D
[
Ṽwj + w̃·jw̃⊤

·j
])
.

H.2 Deriving the ELBO expression

The evidence lower bound (ELBO) expression involves the following calculation:

Lq(θ) =
∫
· · ·
∫
q(y∗,w) log p(y,y

∗,w|θ)
q(y∗,w)

dy∗ dw dθ

= E
[

log
joint likelihood︷ ︸︸ ︷
p(y,y∗,w|θ)

]
+

entropy︷ ︸︸ ︷
−E

[
log q(y∗,w)

]
= E

[
����������n∑
i=1

m∑
j=1

log p(yi|y∗ij) +
n∑

i=1

log p(y∗
i·|α,w,Ψ, η) + log p(w|Ψ)

]

+
n∑

i=1

H
[
q(y∗

i·)
]
+H

[
q(w)

]
.

As discussed, given the latent propensities y∗, the pdf of y is degenerate and hence can
be disregarded.

H.2.1 Terms involving distributions of y∗

n∑
i=1

{
E
[

log p(y∗
i·|α,w,Ψ, η)

]
+H

[
q(y∗

i·)
]}

= − nm

2
log 2π +

n

2
log|Ψ| − 1

2
E
[ n∑

i=1

(y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·)
]

+
nm

2
log 2π − n

2
log|Ψ|+ 1

2
E
[ n∑

i=1

(y∗
i· − µ̃i·)⊤Ψ(y∗

i· − µ̃i·)
]
+ logCi

=
n∑

i=1

logCi
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where Ci is the normalising constant for the distribution of multivariate truncated normal
y∗
i· ∼ tN(µ̃(xi),Ψ

−1, Cyi), with µ̃(xi) = α+ w̃hη(xi).

H.2.2 Terms involving distributions of w

E log p(w|Ψ) +H
[
q(w)

]
= ������−nm

2
log 2π − n

2
log|Ψ| − 1

2
E tr

(
wΨ−1w⊤)

+
nm

2
(1 +���log 2π ) + 1

2
log|Ṽw|

=
nm

2
− n

2
log|Ψ| − 1

2

m∑
i,j=1

Ψ−1
ij tr E

[
w̃·jw̃⊤

·j
]
+

1

2
log|Ṽw|
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Appendix I

The Gibbs sampler for the I-prior
Bayesian variable selection model

The I-prior Bayesian variable selection model has the following hierarchical form:

y|α,β, γ, σ2, κ ∼ Nn(α1n + Xθ, σ2In)

θ = (γ1β1, . . . , γpβp)
⊤

β|σ2, κ ∼ Np(0, σ2κX⊤X)

α|σ2 ∼ N(0, σ2A)

σ2, κ ∼ Γ−1(c, d)

γj ∼ Bern(πj) j = 1, . . . , p

In the simulations and real-data examples, we used πj = 0.5,∀j, A = 100, and c = d =

0.001, and the columns of the matrix X are standardised.

The first line of the set of equations above is the likelihood, while the joint prior
density is given by

p(α, β, γ, σ2, κ) = p(β|σ2)p(α|σ2)p(σ2)p(κ)p(γ1) · · · p(γp).

For simplicity, in the following subsections we shall denote by Θ the entire set of param-
eters, while Θ−ξ implies the set of parameters excluding the parameter ξ.
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I.1 Conditional posterior for β

log p(β|y,Θ−β) = const. + log p(y|Θ) + log p(β|σ2)

= const.− 1

2σ2
∥y− α1n −Xγβ∥2 −

1

2σ2
β⊤(κX⊤X)−1β

= const.− 1

2σ2

(
β⊤(X⊤

γ Xγ + (κX⊤X)−1)β − 2(y− α1n)
⊤Xγβ

)
= const.− 1

2σ2
(
β − B̃(y− α1n)

)⊤B̃−1
(
β − B̃(y− α1n)

)
where B̃ = X⊤

γ Xγ + (κX⊤X)−1, and Xγ = (γ1X1 · · · γpXp) is the n × p design matrix
X with each of the p columns multiplied by the indicator variable γ. This is of course
recognised as the log density of a p-variate normal distribution with mean and variance

E(β|Θ−β) = B̃(y − α1n) and Var(β|Θ−β) = σ2B̃.

I.2 Conditional posterior for γ

Consider each γj in turn. For j ∈ {1, . . . , p},

p(γj |y,Θ−γj ) ∝ p(y|Θ)p(γj)

∝ exp
(
− 1

2σ2
∥y− α1n −Xθ∥2

)
π
γj
j (1− πj)1−γj

Since the support of γj is {0, 1}, the above is a probability mass function which can be
normalised easily. When γj = 1, we have

p(γj |y,Θ−γj ) ∝ πj exp
(
− 1

2σ2
∥y− α1n −Xθ

[1]
j ∥

2

)
:= uj

while for γj = 0, we have

p(γj |y,Θ−γj ) ∝ (1− πj) exp
(
− 1

2σ2
∥y− α1n −Xθ

[0]
j ∥

2

)
:= vj .

For j = 1, . . . , p, we have used the notation θ
[ω]
j to mean

θ
[ω]
j =

(θ1, . . . , θj−1, βj , θj+1, . . . , θp)
⊤ ω = 1

(θ1, . . . , θj−1, 0, θj+1, . . . , θp)
⊤ ω = 0.
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Therefore, the conditional distribution for γj is Bernoulli with success probability

π̃j =
uj

uj + vj
.

I.3 Conditional posterior for α

We can obtain the conditional posterior for α in a similar fashion we obtained the
conditional posterior for β. That is,

log p(α|y,Θ−α) = const. + log p(y|Θ) + log p(α|σ2)

= const.− 1

2σ2
∥y− α1n −Xθ∥2 − α2

2σ2A

= const.− 1

2σ2

(
(n+A−1)α2 − 2α

n∑
i=1

(yi − x⊤
i θ)

)

= const.− 1

2σ2(n+A−1)

(
α−

∑n
i=1(yi − x⊤

i θ)

n+A−1

)2

.

Thus, the conditional posterior for α is normal with mean and variance which can be
easily read off the final line above.

I.4 Conditional posterior for σ2

The conditional density for σ2 is

log p(σ2|y,Θ−σ2) = const. + log p(y|Θ) + log p(σ2)

= const.− n

2
logσ2 − 1

2σ2
∥y− α1n −Xθ∥2 − (c+ 1) logσ2 − d/σ2

= const.− (n/2 + c+ 1) logσ2 − ∥y− α1n −Xθ∥2/2 + d

σ2

which is an inverse gamma distribution with shape c̃ = n/2 + c + 1 and scale d̃ =

∥y− α1n −Xθ∥2/2 + d.
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I.5 Conditional posterior for κ

Interestingly, since κ is a hyperparameter to be estimated, it does not actually make use
of any data, apart from the appearance of X in the covariance matrix for β.

log p(κ|y,Θ−κ) = const. + log p(β|σ2, κ) + log p(κ)

= const.− p

2
logκ− 1

κ
· 1

2σ2
β⊤(X⊤X)−1β − (c+ 1) logκ− d/κ

= const.− (p/2 + c+ 1) logκ− β⊤(X⊤X)−1β/σ2 + d

κ

This is an inverse gamma distribution with shape c̃ = p/2 + c + 1 and scale d̃ =

β⊤(X⊤X)−1β/σ2 + d.

I.6 Computational note

From the above, we see that all of the Gibbs conditionals are of recognisable form,
making Gibbs sampling a straightforward MCMC method to implement. We built an R
package ipriorBVS that uses JAGS (Plummer, 2003), a variation of WinBUGS, internally
for the Gibbs sampling, and wrote a wrapper function which takes formula based inputs
for convenience. The ipriorBVS also performs two-stage BVS, and supported priors are
the I-prior, g-prior, and independent prior, as used in this thesis. Although a Gibbs
sampler could be coded from scratch, JAGS has the advantage of being tried and tested
and has simple controls for tuning (burn-in, adaptation, thinning, etc.). Furthermore,
the output from JAGS can be inspected using a myriad of multipurpose MCMC tools
to diagnose convergence problems. The ipriorBVS package is available at https://
github.com/haziqj/ipriorBVS.

In all examples, a default setting of 4,000 burn-in samples, 1,000 adaptation size, and
10,000 samples with no thinning seemed adequate. There were no major convergence
issues encountered.

Computational complexity is dominated by the inversion of a p×p matrix, and matrix
multiplications of order O(np2). These occur in the conditional posterior for β. Overall,
if n≫ p, then time complexity is O(np2). Storage requirements are O(np).
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