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Abstract

The running maximum of Brownian motion appears often in mathe-

matical finance. In derivatives pricing, it is used in modelling deriva-

tives with lookback or barrier hitting features. For path dependent

derivatives, valuation and risk management rely on Monte Carlo simu-

lation. However, discretization schemes are often biased in estimating

the running maximum and barrier hitting time. For example, it is

hard to know if the underlying asset has crossed the barrier between

two discrete time points when the simulated asset prices are on one

side of the barrier but very close.

We apply several martingale methods, such as optional stopping and

change of measure, also known as importance sampling including ex-

ponential tilting, on simulating the stopping times, and positions in

some case, of the running maximum of Brownian motion. This results

in more accurate and computationally cheap Monte Carlo simulations.

In the linear deterministic barrier case, close-form distribution func-

tions are obtained from integral transforms. The stopping time and

position can hence be simulated exactly and efficiently by acceptance-

rejection method. Examples in derivative pricing are constructed by

using the stopping time as a trigger event. A differential equation

method is developed in parallel to solve for the Laplace transform

and has the potential to be extended to other barriers.

In the compound Poisson barrier case, we can reduce the variance and

bias of the crossing probabilities simulated by different importance

sampling methods. We have also addressed the problem of heavy

skewness when applying importance sampling.
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Chapter 1

Introduction

Brownian motion has been used in derivative pricing since Bachelier [1900] and

then Black and Scholes [1973] and Merton [1973]. The running maximum of

Brownian motion is used in modelling derivatives with lookback and barrier fea-

tures such as Goldman et al. [1979] and Garman [1989].

Since being introduced to the pricing of options by Boyle [1977], Monte Carlo

simulation has been widely used in the valuation of options with complicated

features, which would make them difficult to value through a straightforward

Black-Scholes-style or lattice based computation. The technique is thus widely

used in valuing path dependent structures like lookback- and barrier options, see

Glasserman [2003] and Chan and Wong [2015]. Although discretization schemes

for generating the sampling paths are convenient to use, the truncation often

creates bias for barrier hitting problems. Another choice is to simulate the bar-

rier hitting time directly. For more complicated distributions, rejection sampling

can be applied to simulate from the density function exactly, see Von Neumann

[1951], Devroye [1986] and Asmussen and Glynn [2007].

Importance sampling, which is closely related to change of measure, is one

of the common variance reduction techniques in derivatives pricing. A classi-

cal example is to price deeply out-of-money options in Reider [1993]. The idea

behind importance sampling is to concentrate on sample paths that contribute

most to estimating the required quantity. For instance, the crossing probability
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for a far-away barrier will be small since most sample paths have not crossed

the barrier, so simulating more sample paths that cross the barrier should reduce

the estimation variance. Improving simulation of such rare events by importance

sampling can be found in Asmussen et al. [1985].

In this research, we demonstrate acceptance-rejection method and importance

sampling on several barrier hitting problems regarding to the running maximum

of a Brownian motion.

1.1 Research Objectives

This research had two main parts. The first was to develop exact simulation

method for the first hitting time, and position, for the running maximum of a

Brownian motion by a linear time-dependent barrier. The second was to reduce

the simulation bias, and variance, of long horizon problems by a compound Pois-

son barrier.

We wanted to improve the simulation accuracy of some first hitting time of

the running maximum of a Brownian motion as discretization schemes were bi-

ased. One way to achieve improvement was to know the close-form distribution

function and simulate from it. In the case of linear time-dependent barrier, we

solved the analytical distribution functions. Acceptance-rejection method then

provided an exact way to simulate from the density function.

In some other cases when the close-form solutions were not available due to the

complexity of the problems, we wanted to reduce the bias and variance. Although

it was still not exact like the rejection method, importance sampling improved the

simulation in specific problems. We demonstrated through the infinite horizon

problems of the compound Poisson barrier since it involved truncation in simple

discretization schemes.
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1.2 Contributions

This thesis presents a number of original contributions in the field of stochastic

processes and mathematical finance. These include:

• A martingale for the running maximum of Brownian motion. Close-form

distribution functions, including Laplace transform, probability density func-

tion and cumulative distribution function, of the first hitting time of the

running maximum of a Brownian motion by a linear time-dependent barrier

(Chapter 3).

• Close-form distribution functions including double Laplace transform and

joint probability density function of the first hitting time and position of the

associated reflected Brownian motion. The infinite-horizon probability of

the linear time-dependent barrier hitting problem. An acceptance rejection

algorithm to simulate the first hitting time and position of the associated

reflected Brownian motion exactly (Chapter 3).

• An alternative differential equation approach for the Laplace transform of

the linear time-dependent barrier hitting problem (Chapter 4).

• Importance sampling methods for the infinite horizon problem of the com-

pound Poisson barrier hitting problem (Chapter 5).

We give more details on these contributions in the following subsections.

1.2.1 First hitting time by a linear time-dependent barrier

Comparing the level of the running maximum of a Brownian motion and the time-

dependent linear barrier can be seen as comparing the running maximum of the

return of the underlying asset and a deterministic interest rate. Therefore we can

look at derivatives comparing a stock price modelled by a geometric Brownian

motion and the present value of a zero coupon bond. The martingale obtained is

a function of the current level and the maximum drawdown level so it allows for

further pricing problems. The distribution functions are immediate results that

lead to the results in the next chapter.

13



1.2.2 Joint density function and rejection sampling

To price the derivatives described in the previous section, we also need the stop-

ping position of the underlying Brownian motion. Even in a binary payoff struc-

ture, the stopped Brownian motion appears in the change of measure. Hence,

we solve for the joint distribution function and develop an acceptance-rejection

algorithm.

1.2.3 A differential equation approach

The Laplace transform of the first hitting time in the linear barrier problem can

also be solved from an ordinary differential equation obtained from the stopped

martingale. We hope this alternative approach provides insights for further re-

search with the martingale obtained in the previous chapter.

1.2.4 Importance sampling for infinite horizon

Since the running maximum of a drifted Brownian motion does not hit a com-

pound Poisson barrier for certain, the naive simulation method of such an infinite

horizon problem involves a truncation and is biased. We present two importance

sampling methods for this problems. Under the new measures, the barrier cross-

ing happens for sure. Also, we do not need to wait for a long time for the

boundary crossing to happen in simulations. The importance sampling methods

reduce both the bias and variance.

14
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Figure 1.1: Organization of this thesis

1.3 Organization of This Thesis

This document is organized as in Figure 1.1. The body of this thesis consists

of the four chapters (in the shaded box in the figure) introduced in the previous

section (Section 1.2). The contents of each chapter is as follows:

Chapter 2 Literature Survey. Several simulation methods are introduced

for Brownian motion related quantities. The main tools are acceptance-rejection

method and importance sampling. First we describe how to simulate some well-

known Brownian motion related quantities. Second we demonstrate the applica-

tion of rejection sampling on more complicated density functions.

Chapter 3 Linear Barrier Stopping time. We start from the infinitesimal

generator of a Brownian motion and a reflected Brownian motion. A martingale

15



is obtained from the generator. By applying Optional Stopping Theorem and

Fourier sine/cosine transform, the Laplace transform is obtained. By inverting

the Laplace transform, we solve the uni-variate probability density function and

hence the cumulative distribution function. As the double Laplace transform of

the stopping time and the stopped reflected Brownian motion is a function of the

uni-variate Laplace transform, plugging the solution from the previous chapter al-

lows us to solve it. Inverting the double Laplace transform gives the joint density

function. An iterative discretization method is presented to validate the density

function. An acceptance-rejection algorithm is developed to simulate from joint

density function exactly. Example applications in derivative pricing are given.

Chapter 4 An Ordinary Differential Equation Approach. We provide

an alternative approach for the linear barrier problem. After applying Optional

Stopping Theorem to the martingale obtained in chapter 3, we are able rewrite

the expectation to an ordinary differential equation. Solving the initial value

problem gives the Laplace transform of the stopping time.

Chapter 5 Poisson Barrier Infinite Horizon. Since the infinite horizon

problem involves truncation, we provide two importance sampling methods to

improve the simulation. First we use exponential tilting. Second we use a more

general compound Poisson martingale. We have stressed the problem of extreme

skewness when applying importance sampling.

Chapter 6 Brownian Motion Barrier Algorithm. We provide an al-

gorithm for the Brownian motion barrier problem for completeness. Under the

discretization scheme, for each time step, the problem is reduced to a first hitting

time problem of a Brownian motion. There are three cases for positive, negative

and zero drift Brownian barrier.
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Chapter 2

A Survey on Simulation Methods

2.1 Introduction

This section first introduces the main simulation techniques used in this thesis.

Inverse transform is used for simpler distributions. Acceptance-rejection method

is used in the linear time-dependent barrier hitting problem. Importance sampling

is used in the compound Poisson barrier hitting problem. We also discuss the

potential issues when applying importance sampling. Second we give examples

on how to simulate quantities related to Brownian motion. Most examples apply

acceptance-rejection method.

2.2 Simulation Methods

In this section, we describe two basic simulation algorithms to generate continuous

random variables: inverse transform and acceptance-rejection method. They are

well discussed in standard textbooks, e.g. Chan and Wong [2015], Devroye [1986],

Glasserman [2003], etc.

2.2.1 Inverse Transform

When the inverse of the cumulative distribution function can be computed, in-

verse transform can be used to generate from a uniform random variable. The

inverse transform algorithm is based on the following classical theorem.

17



Theorem 1. Let U be a uniform (0, 1) random variable. For any continuous

distribution function F , the random variable X defined by X = F−1(U) has

distribution F . Here

F−1(U) = inf{x : F (x) ≥ U}

.

Proof. Let F denote the distribution of X = F−1(U). Then

F (x) = Pr(X ≤ x) = Pr(F−1(U) ≤ x) = Pr(U ≤ F (x)) = F (x).

Based on the theorem, we can generate the random variable if F−1 can be

computed.

Algorithm 1 Inverse Transform Algorithm

1: Generate U ∼ U(0, 1)
2: Set X = F−1(U)

2.2.2 Acceptance-Rejection Method

In many cases, the inverse of the cumulative distribution function is not easy to

compute. A simple example will be the normal cdf.

Acceptance-rejection methods can be applied to simulate the random variable

X from a density f(x) by generating another random variable Y from g and then

accept with probability proportional to f(Y )/g(Y ). Let c be such that

c ≥ f(y)

g(y)
∀y

.

Theorem 2. The random variable generated by the acceptance-rejection method

has density f . Moreover, the number of iterations this algorithm needs is a geo-

metric random variable with mean c.

18



Algorithm 2 Acceptance-rejection Algorithm
1: Generate Y ∼ g
2: Generate U ∼ U(0, 1)

3: if U ≤ f(y)
cg(y)

then return X = Y else go to 1

We want to prove Pr(Y < y|U ≤ h(Y )) = F (Y ) and Pr(U ≤ h(Y )) = 1/c.

Proof. We present the proof as in Chan and Wong [2015]. Let f(x) = cg(x)h(x),

where c ≥ 1 is a constant, g(x) is also a pdf and 0 < h(x) ≤ 1. Let Y has a pdf

g and U ∼ U(0, 1). By Bayes’ Theorem,

fY (x|U ≤ h(Y )) =
Pr(U ≤ h(Y )|Y = x)g(x)

Pr(U ≤ h(Y ))

and

Pr(U ≤ h(Y )|Y = x) = Pr(U ≤ h(x)) = h(x)

and also,

Pr(U ≤ h(Y )) =

∫
X

Pr(U ≤ h(Y )|Y = x)g(x)dx

=

∫
X

h(x)g(x)dx

=

∫
X

f(x)

c
dx

=1/c.

Finally, fY (x|U ≤ h(Y )) = ch(x)g(x) = f(x).

The art of using acceptance-rejection methods is to find a good envelop density

g such that c is minimized so the random variable is easy to sample from g.

2.2.3 Importance Sampling

To improve the simulation efficiency, importance sampling can be used. The

method is described in Glasserman [2003], Chan and Wong [2015], etc., as a vari-

ance reduction method. It is similar in idea to the acceptance-rejection method in
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Section 2.2.2 and attempts to reduce variance by changing the probability mea-

sure. The main idea lies in simulating at places where the quantity of interest

carries the most information, hence the name importance sampling.

Suppose we are interested in simulating the following expectation

θ = E[h(X)] =

∫
h(x)f(x)dx

where X = (X1, ..., Xn) is an n-dimensional random vector with a joint density

function f(x) = f(x1, ..., xn). A direct simulation is inefficient or not possible.

The inefficiency comes from difficulties in simulating X or the variance of h(x)

is too large, or both. One example is the infinite horizon problem described above.

Suppose now we have another density g(x), which is not hard to simulate and

match the support (i.e. f(x) = 0 whenever g(x) = 0). Then θ can be estimated

by

θ =E[h(X)]

=

∫
h(x)f(x)

g(x)
g(x)dx

=Eg
[
h(x)f(x)

g(x)

]
where Eg denotes the expectation of X ∼ g. Therefore, the Monte Carlo estimator

of θ can be computed by

θ̂ =
1

N

N∑
i=1

h(Xi)f(Xi)

g(Xi)

20



The art of importance sampling lies in how to choose g such that h(X)f(X)
g(X)

has

a smaller variance. It can result in a large increase in variance if the change of

measure is not chosen carefully.

Variance for probabilities estimation. We consider estimating by simula-

tion the probability p = Pr(X ∈ S) with importance sampling. The importance

sampling estimator is given by:

p̂ =
1

N

N∑
i=1

1{Xi ∈ S}
f(Xi)

g(Xi)

where Xi ∼ g.

V ar(p̂) =
1

N
V arg

(
1{Xi ∈ S}

f(Xi)

g(Xi)

)

=
1

N

Eg(1{Xi ∈ S}2f(Xi)

g(Xi)

2
)
− p2


=

1

N

[
E
(

1{Xi ∈ S}
f(Xi)

g(Xi)

)
− p2

]

The last step uses the properties of indicator function and importance sampling.

One can choose a density function g such that it minimizes the above variance

accordingly. In practice, we often do not know the expectation and p. A naive

work-around would be replacing them by simulation estimators and repeating the

procedure.

Skewness for probabilities estimation. The long horizon problem which

skews the distribution is less straight forward and discussed in Glasserman [2003]

and Glynn and L’ecuyer [1995]. Suppose we want to simulate the event 1{X ∈ S}
for S ⊆ Rn under the original measure (X ∼ f). Further if Pr(X ∈ S) = 1 under

the new measure (X ∼ g):

E
(
1{X ∈ S}

)
= Eg

(
f(X)

g(X)

)
≈ 1

N

N∑
i=1

f(Xi)

g(Xi)
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Suppose

Eg
(
| ln(f(X)/g(X))|

)
<∞

By the law of large numbers, there exists a constant c such that

1

N

N∑
i=1

ln
f(Xi)

g(Xi)
→ Eg

(
ln
f(X)

g(X)

)
= c

By Jensen’s inequality, since ln is strictly concave,

c ≤ ln

[
Eg
(
f(X)

g(X)

)]
= 0

c = 0 unless f = g. Therefore,

N∑
i=1

ln
f(Xi)

g(Xi)
→ −∞

exponentiating,
N∏
i=1

f(Xi)

g(Xi)
→ 0

Therefore, the likelihood ratio goes to 0 but its expectation equals 1 for all N .

The likelihood ratio becomes highly skewed, taking increasingly large values with

small but non-negligible probability.

In particular, if we want to simulate some stopping time 1{τ <∞} but

ln
f(t)

g(t)
∝ −t

The likelihood ratio, or Radon-Nikodym derivative, will be skewed if the first

hitting time is very large hence the name ”Long Horizon Problem”.
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2.3 Reviews on Simulation Methods related to

Brownian Motion

2.3.1 Brownian motion: Extremes and locations of ex-

tremes

For a standard Brownian motion W on [0,1], the marginal distributions of the

running maximum M = sup0≤t≤1Wt and its location H for W on [0, 1] are well-

known (see, e.g., Karatzas and Shreve [1991]). M
L
= |N |, where N is a standard

normal r.v. and H is arc sine distributed,

fH(x) =
1

π
√

(1− x)x
, x ∈ [0, 1]

The arc-sine, or beta(1/2,1/2) distribution, can be represented equivalently in

various forms. Denote C, C ′ are independent standard Cauchy random variables,

N and N ′ are independent standard normal random variables and Ga and G′a are

independent gamma random variables of shape parameter a > 0 and unit scale

parameters, the following expressions are equivalent in law (see Devroye [2010]).

G1/2

G1/2 +G′1/2

L
=

N2

N2 +N ′2
L
=

1

1 + C2

L
= sin2(2πU)

L
= sin2(πU)

L
= sin2(

πU

2
)

L
=

1 + cos(2πU)

2
L
=

1 + cos(πU)

2

In applications, M is rarely needed on its own. It is usually simulated jointly with

other processes. For example, M is often generated with W . The distribution

function of M conditional on W = r is

F (m) = 1− exp(
1

2
(r2 − (2m− r)2), m ≥ max(r, 0)

Inverting the CDF, with E ∼ exp(1), we have

M |W1
L
=

1

2
(r +

√
r2 + 2E)
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This was used by many, such as McLeish [2002], in simulations. Therefore, re-

placing r by N , the joint law is obtained

(M,W1)
L
= (

1

2
(N +

√
N2 + 2E), N)

Based on this result, we can simulate the path of the running maximum of Brow-

nian motion from 0 to T with N discrete points.

Algorithm 3 Simulation Algorithm of the running maximum path of a BM

1: Set j = 0, t0 = 0, tj = jT/N and M0 = W0 = 0
2: Generate Wj+1 = Wj +

√
∆tZ, where Z ∼ N(0, 1), set ∆W = Wj+1 −Wj

3: Generate the local maximum M loc
j+1 =

√
(∆W )2+2∆tE

2
+Wj, where E ∼ exp(1)

4: Set the global maximum Mj+1 = max(Mj,M
loc
j+1)

5: Repeat until tN

A path is generated below using 100 discrete time points.

Figure 2.1: A sample path of a Brownian motion and its running maximum
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A small difference of the running maximum (the red line) and the running

maximum of the discretized Brownian motion (the black line) is observed from

the graph. In fact, the running maximum from the discretization of the Brownian

motion path is always below the exact running maximum and hence biased.

When r = 0, we have the classical result M
L
=
√
E/2 from Lévy [1940]. Also,

M
L
= |N | L

= M −W1

The rightmost result is simply due to Lévy, the process Mt −Wt is a reflected

Brownian motion. For x > 0, we define the first passage time

Tx = min {t : Wt = x}

Simulating hitting times and maxima are in fact equivalent computational ques-

tions. For t > 0,

Tx
L
= (

x

M
)2

Now consider the joint density of the triple (H,M,W1), Karatzas and Shreve

[1991] showed that the joint density is

f(x,m, y) =
m(m− y)

πx3/2(1− x)3/2
exp(−m

2

2x
− (m− y)2

2(1− x)
), m ≥ y ∈ R, x ∈ (0, 1)

Therefore, we can simulate them jointly

(H,M,W1)
L
= (H =

1 + cos(2πU)

2
,
√

2HE,
√

2HE −
√

2(1−H)E ′)
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An illustration graph from Devroye [2010], X is the location of the maximum

Mr from 0 to B(1) = r:

Figure 2.2: A simulation of a Brownian bridge.
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2.3.2 Brownian motion: First Exit Time

We define the first exit time of a standard Brownian motion Wt

τδ = inf{t > 0;|Wt| > δ}

For simplicity, we consider δ = 1 here and τ := τ1. (For other values, the problem

can be reduced to δ = 1.)

From Borodin and Salminen [2002], the Laplace transform of τ

E(e−λτ ) =
1

cos
√

2λ

Inverting the Laplace transform gives the probability density

f(t) =
∞∑

k=−∞

(−1)kg(1+2k)(t), t ≥ 0,

where

gy(t) =
y√
2πt3

exp{−y2/2t}, t ≥ 0.

A description of the shape of f(t) is given in Burq and Jones [2008].

• The distribution f of τ is unimodal.

• Right tail asymptotics. For any ε > 0 we have, for γ = π2/8,

f(t) = o(e−(γ−ε)t), as t→∞.

• Left tail asymptotics. For all n ≥ 1

f(t) = o(tn), as t→ 0.

Define fn(t) =
∑n

k=−n(−1)kg(1+2k)(t) as a truncation of f(t). The sequence

of remainders εn(t) = f(t)− fn(t), n = 1, 2, ... oscillates about 0 for n ≥ N(t) :=

t(log 3)/4 ∨ 3.
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An acceptance-rejection algorithm is also developed in Burq and Jones [2008].

To complete the algorithm we need the sampling distribution g and constant

a ≥ supt≥0 f(t)/g(t). The Gamma distribution is used.

g(t;α, λ) =
λαtα−1e−λt

Γ(α)
, t ≥ 0

For any ε > 0 we have

g(t) = o(e−(λ−ε)t), as t→∞.

And for the left tail we have

g(t) = o(tα−1), as t→ 0.

As f and g are bounded on [0,∞), for any α ≥ 0 and 0 < λ < γ, there exists an

a such that f ≥ ag on [0,∞).

Numerical minimisation of supt≥0 f(t)/g(t;α, λ) subject to α ≥ 0 and 0 <

λ < γ gives, to 6 decimal places, occurred at t = 0.52495,

a = 1.243707 for α = 1.088870 and λ = 1.233701.
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Using the above set of parameters, a graph of f(t) and ag(t) is plotted below.

Figure 2.3: The density f(t) of the first exit time τ and dominating curve ag(t)
where g is a Gamma(1.088870, 1.233701) density and a= 1.243707.
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2.4 Further Examples on Supremum of Brown-

ian Motion

2.4.1 Supremum of reflected standard Brownian motion

From Borodin and Salminen [2002], for y ≥ 0, t ≥ 0,

Pr( sup
0≤s≤t

|Ws| ≤ y) =
1√
2πt

∞∑
k=−∞

∫ y

−y
(e−(z+4ky)2/2t − e−(z+2y+4ky)2/2t)dz

Differentiate w.r.t. y, we obtained the density:

f(y) =
1√
2πt

∞∑
k=−∞

[
−(4k − 1)e−(4k−1)2y2/2t + 2(4k + 1)e−(4k+1)2y2/2t

− (4k + 3)e−(4k+3)2y2/2t

]
=

4e−y
2/2t

√
2πt

∞∑
k=−∞

[
(4k + 1)e−4k(2k+1)y2/t

]

We want to generate sup0≤s≤t|Ws| by an acceptance-rejection method since the

inversion of cdf is complicated. By recognizing the expression outside the sum-

mation sign, the density function of |Wt| is considered as the envelope function,

g(y) =
2e−y

2/2t

√
2πt

, y > 0

Next we want to find a constant c ≥ supy≥0 f(y)/g(y).

Px( sup
0≤s≤t

|Ws| ∈ dy)

≤Px( sup
0≤s≤t

Ws ∈ dy, inf
0≤s≤t

Ws > −y) + Px( inf
0≤s≤t

Ws ∈ dy, sup
0≤s≤t

Ws < y)

≤Px( sup
0≤s≤t

Ws ∈ dy) + Px( inf
0≤s≤t

Ws ∈ dy)
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Therefore,

Px( sup
0≤s≤t

|Ws| ∈ dy) ≤ 2√
2πt

[
e−

(y−x)2
2t + e−

(y+x)2

2t

]
dy

=2Px(|Wt| ∈ dy)

Below is the likelihood ratio for x = 0 which is consistent with the result

above (≤ 2).

Figure 2.4: The likelihood ratio of pdf of supremum of reflected Brownian motion
and reflected Brownian motion
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5000 samples of the supremum of reflected Brownian motion are generated by

the acceptance-rejection algorithm by R.

Figure 2.5: 5000 samples of supremum of reflected Brownian motion
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2.4.2 Supremum of reflected Brownian motion and its lo-

cation

The joint distributions of the running maximum M∗
t for |Wt| and its location H∗

on [0, t] is (see Borodin and Salminen [2002])

Px(M
∗
t ∈ dy,H∗ ∈ dv,|Wt| ∈ dz) = 2ccv(x, y)cct−v(z, y)dvdydz

where

ccv(x, y) =
∞∑

k=−∞

(−1)k√
2πv3/2

[
x+ (2k + 1)y

]
e−(x+(2k+1)y)2/2v

Integrating z from 0 to y,∫ y

0

cct−v(z, y)dz =
∞∑

k=−∞

(−1)k+1√
2π(t− v)

[
e−

((2k+2)y)2

2(t−v) − e−
((2k+1)y)2

2(t−v)

]

The density of M∗
t and H∗t on [0, t] becomes

f(v, y) = 2ccv(x, y)

∫ y

0

cct−v(z, y)dz, v < t

Denote Mt = sup0≤s≤tWs, Mt = inf0≤s≤tWs and H and H as the corresponding

locations in [0, t]. Consider

Px(M
∗
t ∈ dy,H∗t ∈ dv)

=Px(Mt ∈ dy,H ∈ dv,−Mt < y) + Px(−Mt ∈ dy,H ∈ dv,Mt < y)

<Px(Mt ∈ dy,H ∈ dv) + Px(−Mt ∈ dy,H ∈ dv)

=
dvdy

πv3/2(t− v)1/2

[
(y − x)e−

(y−x)2
2v − (y + x)e−

(y+x)2

2v

]
To simplify the problem, we take x = 0, then

P (M∗
t ∈ dy,H∗t ∈ dv) <

2y

πv3/2(t− v)1/2
e−

y2

2v dvdy

=2P (Mt ∈ dy,Ht ∈ dv)
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Therefore, (M∗
t , H

∗
t ) can be generated with acceptance-rejection method by using

the joint density function of (Ht,Mt) as the envelope function.

Below is the simulation by R and compared with envelope random variables.

Figure 2.6: 10000 samples of supremum of reflected Brownian motion and loca-
tions.
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2.4.3 Supremum of Brownian motion with drift

We consider the running maximum Mµ
t of a Brownian motion with drift Wt + µt

on [0, 1]. From Borodin and Salminen [2002]

P (Mµ
t < y) = Φ

(
y − µt√

t

)
− e2µyΦ

(
−y + µt√

t

)
By putting t = 1 and differentiating w.r.t. y,

f(y) = P (Mµ
1 ∈ dy)/dy = 2φ(y − µ)− 2µe2µyΦ(−y − µ), y ≥ 0

where φ and Φ are the standard normal pdf and cdf respectively.

For different values of µ, the density behaves differently. This can be ex-

plained by intuition. If µ >> 0, the running maximum will grow similarly with

the underlying Brownian motion. On the other hand, if µ << 0, the running

maximum will not grow much.

For µ ≥ 0, f(y) ≤ 2φ(y − µ), therefore, the truncated normal is used as the

envelope (see Robert [1995] for truncated normal simulation).

g1(y) =
φ(y − µ)

1− Φ(−µ)
, and

f(y)

g1(y)
≤ 2(1− Φ(−µ))

For µ < 0, f(y) = 2φ(y−µ)+
[
−2µe−(−2µ)y

]
Φ(−y−µ) so consider an exponential

distribution with λ = −2µ > 0,

f(y)

g2(y)
= Φ(−y − µ)− φ(y − µ)

µe2µy
≤ 1− 1

µ
√

2π

However, the likelihood ratio becomes very large when µ → 0−. We need to

reconsider another envelope. Reconsider the truncated normal as the envelope.

f(y)

(1− Φ(−µ))g1(y)
= 2− 2µ

Φ(−µ− y)

φ(y + µ)
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Differentiating w.r.t. y, denote λ(µ) = 1− Φ(−µ) > 0

∂

∂y

(
f(y)

λ(µ)g1(y)

)
= −2µ

[
(y + µ)Φ(−µ− y)

φ(y + µ)
− 1

]
< 0

as xΦ(x) + φ(x) =
∫ x
−∞Φ(z)dz > 0. The likelihood ratio f/g1 is decreasing in y.

Therefore,
f(y)

g1(y)
≤ f(0)

g1(0)
= 2

(
1− Φ(−µ)µ

φ(µ)

)
(1− Φ(−µ))

However, when µ << 0, the likelihood ratio can become very large. Therefore, a

combination of g1 and g2 is used in the algorithm.

If µ > 0, g1 is used. If µ < 0, the upper bounds of likelihood ratios f/g1

and f/g2 are calculated and the smaller one is used. For example, if µ = −.5,

f/g1 ≤ 1.223048 and f/g2 ≤ 1.797885, g1 is used for the smaller bound. Some

value of µ (slightly less than -0.5) can be solved numerically when the bounds are

equal.

Note that all bounds above are smaller than 2. If the running maximum is

generated with the terminal value of the Brownian motion, 2 random variables

are generated. However, if only the running maximum is needed, the above

acceptance-rejection method is more efficient.

36



The histograms of simulation results are plotted below. Red lines are the pdf

functions.

Figure 2.7: 10000 samples of max of Brownian motion with different drifts -1, 0
and 1 respectively.
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Chapter 3

The First Hitting Time for the

Running Maximum of Brownian

Motion by a Linear Barrier

In this chapter, we set up the first hitting time problem for the running maximum

of a Brownian motion by a linear time-dependent barrier. We obtain distribution

functions and develop an exact simulation algorithm. The problem is motivated

by comparing the running maximum of a stock price modelled by a geometric

Brownian motion with the present value of a zero coupon bond.

Figure 3.1: A Sample Path of the Linear Barrier Hitting Problem
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3.1 Introduction

In the context of crisis management, contingent convertible bonds have been

particularly acknowledged for their potential to prevent systematic collapse of

important financial institutions Albul et al. [2010]. The concept of contingent

convertibles was first introduced in the Harvard Law Review in 1991 10. [1991],

following the junk bond crisis of the late 1980s. Following the financial crisis of

2007-08, the idea is considered as a solution for the banking industry. For ex-

ample, the Basel Committee supports the use of contingent capital as additional

Tier 1 Capital Committee et al. [2010].

Contingent convertible bonds can take a variety of different forms such as an

option enhanced reverse convertible Pennacchi et al. [2011]. A typical reverse

convertible is a short-term note linked to an underlying asset. Before maturity,

the security pays the owner the stated coupon rate. At maturity, the owner will

receive either the par value or, if the asset value falls, a predetermined number

of shares of the underlying. It can be linked to a single asset, an equity index

or a basket of indices. In such case, the capital repayment is cash settled, either

100% of principal, or less if the underlying asset falls. For example, at matu-

rity, if the stock closes at or above the initial stock price at issuance, the owner

will receive 100% of the original investment amount. If the stock closes below

the strike, the owner will get the predetermined number of shares. This means

the owner will end up with shares that are worth less than the original investment.

Since contingent convertibles are mandatory converted into equity when banks

are in need of a recapitalization, a bankruptcy can be entirely prevented due to

quick injection of capital which would be impossible to be obtained elsewhere

Pazarbasioglu et al. [2011]. From a bank’s standpoint, contingent convertibles

are attractive because the coupon payments are tax-deductible and the cost of

capital is lower than it is for a share capital increase. In case of conversion, ad-

ditional equity from debt drives down companys leverage Flannery [2002], Raviv

et al. [2004].
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One important concern is that the conversion contingent convertibles could

produce negative signaling effects leading to potential financial contagion and

price manipulation, causing an equity price ”death spiral” Pazarbasioglu et al.

[2011]. To ease the problem, the ”lookback” feature can be added to contin-

gent convertibles by comparing the running maximum of the asset’s price to the

present value of a zero coupon bond before maturity. In this design, the owner

will receive either the principal or, if the maximum of asset price falls below the

present value of the zero coupon bond at any time during the life of the note, a

predetermined amount of the underlying asset. The conversion is only triggered

when the maximum underlying asset’s price does not increase for long enough

time. The chance of a manipulation is lessened.

Lookback options are path-dependent options whose payoffs depend on not

only the final value of the underlying asset but also on the optimal (maximum

or minimum) underlying asset’s price occurring over the life of the option. The

option allows the owner to ”look back” over time to determine the payoff.Various

formulas have been produced for lookback options Goldman et al. [1979], Garman

[1989].

In order to price this kind of ’lookback reverse convertible’ notes, we need the

distribution of the first hitting time for the running maximum of the underlying

process by the present value of the zero coupon bond. The distribution of the

running maximum of a standard Brownian has been well studied Karatzas and

Shreve [1991]. The price of a zero coupon bond with constant interest rate can be

considered as a time dependent barrier. The problem of pricing time-dependent

barrier options can be reduced to finding the boundary crossing probabilities for

a standard Brownian motion with deterministic function Frishling et al. [1997],

Novikov et al. [2003] and Roberts and Shortland [1997]. The linear or (approx-

imated) piece-wise linear boundary crossing problems also have been attacked

in a great amount Abundo [2002], Lerche [2013], Scheike [1992] and Wang and

Pötzelberger [1997]. Especially in Scheike [1992], Scheike has developed a set

of results for a single linear time-dependent boundary similar to our setup but

the underlying process is a standard Brownian motion rather than the running
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maximum of it.

To solve the pricing problem, apart from the trigger time, we need to know

also the trigger price of the underlying asset. For contingent convertibles with a

lookback feature, the problem can be reduced to find the stopping time of the

running maximum (trigger time) and the corresponding stopping position of the

Brownian motion or the associated reflected Brownian motion (trigger level).

In the valuation of options with complicated payoff structures, close-form so-

lutions of the option price are often not available. In this case, Monte Carlo

Methods are particularly useful. In terms of theory, Monte Carlo valuation re-

lies on risk neutral pricing Glasserman [2003]. The technique applied then, is to

generate a large number of price paths for the underlying asset(s), and to then

calculate the associated payoff of the option for each path. These payoffs are then

averaged and discounted to today. This result is the price of the option. There

are more examples in Chan and Wong [2015].

Unfortunately, Monte Carlo simulations, which usually provide a flexible and

easy approach, do not perform well in the context of barrier options as the stan-

dard methods rely on discretization of the Brownian motion path Geman and

Yor [1996], Baldi et al. [1999]. If the option contractually monitors of the un-

derlying price discretely Broadie et al. [1997], Monte Carlo methods provide an

unbiased estimator for the price. However, if a contingent convertible is continu-

ously monitored, standard Monte Carlo simulations always give an overestimate

of the hitting time and therefore misprice the derivative. In fact, the barrier

might have been hit without being detected.

The performance of Monte Carlo simulation can be improved with the help of

Brownian bridge concepts Baldi et al. [1999]. Indeed, the simulation algorithm

generates the terminal values of the standard Brownian motion then the local

running maximum at each interval. However, the scheme has two drawbacks:

it is still a discretization scheme with uneven time length; it may take multiple

steps when the process is very close to the barrier.
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To overcome the limitations, we introduce an acceptance-rejection algorithm

based on the joint distribution function of the stopping time and position. The

algorithm was first proposed by John von Neumann Von Neumann [1951]. Var-

ious applications and alternations of the method have been developed Devroye

[1986]. One example is the ziggurat algorithm Marsaglia et al. [2000].

The difficulty of the method is to find an envelop density function such that

the likelihood ratio of the joint density function and the envelop density function

is bounded above by some constant which should be chosen as small as possi-

ble. In our case, a truncated reciprocal inverse Gaussian density function and a

truncated Weibull density function are used as the envelop density function. A

truncated distribution is a conditional distribution that results from restricting

the support of the targeted distribution. An example of truncated distribution is

the truncated normal Robert [1995].

The rest of this chapter is organized as follows. The linear time-dependent

barrier hitting problem setting is introduced in Section 3.2. We write down the

generator in 3.3 and solve for a martingale in 3.4. The distribution functions of

the first hitting time and the reflected Brownian motion are presented in Section

3.5. We start from the infinitesimal generator of a standard Brownian motion and

a reflected Brownian motion. A martingale of these two quantities is solved from

the PDE. Applying Optional Stopping Theorem and Fourier sine/cosine trans-

form, we present the Laplace transform of the first hitting time. Inverting the

Laplace transform gives us the probability density function which is integrated

to obtain the cumulative distribution function. By plugging in the single Laplace

transform to the stopped martingale, we are able to solve the double Laplace

transform of the first hitting time and the stopping position of the associated re-

flected Brownian motion. Inverting the double Laplace gives us the joint density

function.

In Section 3.6, two simulation methods are presented. An iterative discretiza-

tion simulation scheme is developed independently to benchmark and verify the
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previous results. An acceptance rejection algorithm is developed to simulate the

stopping time and position exactly. We are then able to solve the infinite horizon

problem for the drifted Brownian motion through the double Laplace transform

with a change of measure in Section 3.7. Finally, we provide numerical examples

in derivatives pricing in Section 3.8.

3.2 Definitions

In this chapter, we are going to define the running maximum of a standard

Brownian motion

Mt = sup
0<s<t

Ws

where Wt is a standard Brownian motion, t ≥ 0 and c > 0. The corresponding

first hitting time of a linear barrier is defined as

τb = inf
{
t > 0|Mt − ct = −b

}
(3.1)

with b > 0. Therefore, the hitting level is below zero.

If the hitting level is above zero, for some T > 0, we consider

{τ−b > T} = {Mt − ct < b,∀t < T} = {Wt − ct < b, ∀t < T}

The problem is reduced to the first hitting time of a Brownian motion with a

negative drift (see Borodin and Salminen [2002]). Therefore we focus the case

when the hitting level is below zero.

3.3 Infinitesimal Generator of a Reflected Brow-

nian Motion

We consider the Markov process (Yt,Wt), where the drawdown process Yt =

Mt − Wt is a reflected Brownian motion. The generator A for some function
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f(t, Yt,Wt) is defined as an operator such that

f(t, Yt,Wt)−
∫ t

0

Af(s, Ys,Ws)ds

is a martingale (see Karatzas and Shreve [1991]). Therefore solving

Af = 0

subject to certain conditions will provide us with martingales of the form f(t, Yt,Wt)

to which we can apply the optional stopping theorem to obtain the Laplace trans-

form we are interested in.

If ∂f(t,y,x)
∂y

∣∣∣
y=0

> 0, and T0 is some hitting time of Yt of 0, then f(YT0+δt) −
f(YT0) ≥ 0, hence the expression is a submartingale. Therefore, we need to solve

Af(t, y, x) =
∂f(t, y, x)

∂t
+

1

2

∂2f(t, y, x)

∂x2
+

1

2

∂2f(t, y, x)

∂y2
− ∂2f(t, y, x)

∂y∂x
= 0 (3.2)

with the boundary condition ∂f(t,y,x)
∂y

∣∣∣
y=0

= 0.

3.4 A Martingale of the Running Maximum of

Brownian Motion

Theorem 3. Let f(t, Yt,Mt) be the process defined by

f(t, Yt,Mt) = e
ω2

2
t−γMt

(
cos(ωYt) +

γ

ω
sin(ωYt)

)
.

Then f(t, Yt,Mt) is a martingale.

Proof. Assume the solution f of (3.2) has the form

f(t, y, x) = eηt−γ(x+y)h(y)
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for some function h and constant η and γ. Substitute into (3.2),

Af = ηf +
1

2
eηt−γ(x+y)h′(y)

Solving Af = 0, we obtain an ODE

h′′(y) + 2ηh(y) = 0

Take η > 0, ∆ = −8η < 0, the solution of the ODE

h(y) = C1 sin
√

2ηy + C2 cos
√

2ηy

for some constant C1, C2. With the boundary condition

∂f(t, y, x)

∂y

∣∣∣∣
y=0

= eηt−γxh′(0)− γeηt−γxh(0) = 0,

we have h′(0) = γh(0) and C2 = h(0). Also

h′(0) =
[√

2ηC1 cos
√

2ηy −
√

2ηC2 sin
√

2ηy
]∣∣∣∣
y=0

=
√

2ηC1

Then we have C1 = γC2√
2η

. Set C2 = 1 and let ω =
√

2η to obtain the solution

f(t, y, x) = e
ω2

2
t−γ(x+y)

(
γ

ω
sinωy + cosωy

)
.

3.5 Distribution Functions

3.5.1 Laplace Transform of the First Hitting Time

Theorem 4. For the first hitting time τb defined as in (3.1) with τ ∗b = τb − b/c
and ξ+ =

√
c2 + 2β − c > 0, when the process starts at zero (i.e. M0 = 0 and
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Y0 = 0, we have the following Laplace transform:

E
(

e−βτ
∗
b

)
=

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)
, (3.3)

where Φ is the standard normal cdf.

Proof. Let ω2

2
− γc = −β and z = x+ y − ct, we obtain the martingale,

f(t, y, z) = exp

(
−βt−

β + ω2

2

c
z

)[
(
β

cω
+
ω

2c
) sinωy + cosωy

]

We can apply the optional stopping theorem to f(t, y, z) with the stopping time

τb, where τb is defined by (3.1) and let τ ∗b = τb − b
c
,

E

{
exp(−βτ ∗b )

[
(
β

cω
+
ω

2c
) sinωYτb + cosωYτb

]}

= exp(−ω
2

2

b

c
) exp

(
−
β + ω2

2

c
m0

)[
(
β

cω
+
ω

2c
) sinωy0 + cosωy0

]

For simplicity, we only consider the case when the process starts at zero, that is

m0 = 0 and y0 = 0,

E

{
e−βτ

∗
b

[
(
β

cω
+
ω

2c
) sinωYτb + cosωYτb

]}
= e−

b
2c
ω2

(3.4)

Consider the following integrals, for ξ > 0,∫ ∞
0

cosωy

ξ2 + ω2
dω =

π

2ξ
e−ξy (3.5)∫ ∞

0

ω sinωy

ξ2 + ω2
dω =

π

2
e−ξy (3.6)∫ ∞

0

sinωy

ω(ξ2 + ω2)
dω = (1− e−ξy)

π

2ξ2
(3.7)
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On the other hand,∫ ∞
0

e−
b
2c
ω2

ξ2 + ω2
dω =

∫ ∞
0

∫ ∞
0

e−
b
2c
ω2−(ξ2+ω2)ududω

=

∫ ∞
0

e−ξ
2u

∫ ∞
0

e−( b
2c

+u)ω2

dωdu

=

∫ ∞
0

1

2

√
π

b/2c+ u
e−ξ

2udu

Let t =
√
u+ b

2c
and s2/2 = ξ2t2,

∫ ∞
0

e−
b
2c
ω2

ξ2 + ω2
dω =

∫ ∞
√

b
2c

e−ξ
2t2dt×

√
πe

ξ2b
2c

=πe
ξ2b
2c

∫ ∞
ξ
√

b
c

e−s
2/2

ξ
√

2π
ds

=
π

ξ
e
ξ2b
2c Φ

(
−ξ
√
b

c

)
(3.8)

We integrate both sides with the fraction 1
ξ2+ω2 in (3.4),

∫ ∞
0

E

{
e−βτ

∗
b

[
(
β

cω
+
ω

2c
) sinωYτb + cosωYτb

]}
dω

ω2 + ξ2
=

∫ ∞
0

e−
b
2c
ω2

ω2 + ξ2
dω

As the integral in (3.8) exists, with Fubini’s theorem,

E

{
e−βτ

∗
b

∫ ∞
0

[
(
β

cω
+
ω

2c
) sinωYτb + cosωYτb

]
dω

ω2 + ξ2

}
=

∫ ∞
0

e−
b
2c
ω2

ω2 + ξ2
dω

Substituting the integrals (3.5), (3.6), (3.7) and (3.8) above,

E

e−βτ
∗
b

{
βπ

2ξ2c
+

[
π

4c
+
π

2ξ
− βπ

2ξ2c

]
e−ξYτb

} =
π

ξ
e
ξ2b
2c Φ

(
−ξ
√
b

c

)
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Rearranging terms, we therefore obtain the double Laplace transform,

E
(

e−βτ
∗
b−ξYτb

)
=

e
ξ2b
2c

ξ
Φ

(
−ξ
√

b
c

)
− β

2ξ2c
E
(
e−βτ

∗
b

)
1
4c

+ 1
2ξ
− β

2ξ2c

(3.9)

If the double Laplace transform exists and is not equal to zero, when the nu-

merator in (3.9) goes to zero, the denominator must go to zero. We observe that

∃ξ > 0 s.t. 1
4c

+ 1
2ξ
− β

2ξ2c
= 0 and the double Laplace transform is still well-defined.

Solving the quadratic equation, we denote the roots ξ± = ±
√
c2 + 2β− c and

substitute ξ+ =
√
c2 + 2β − c > 0. We have in the numerator

ξ+e−
b
2cΦ(−ξ+

√
b

c
) =

β

2c
E
(

e−βτ
∗
b

)
Rearranging terms to obtain the Laplace transform of τ ∗b

E
(

e−βτ
∗
b

)
=

1

β

2ξ+ce
ξ2+b

2c Φ

(
−ξ+

√
b

c

)
=

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)
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3.5.2 Density Function of the First Hitting Time

Then we invert the Laplace transform (3.3) to obtain the density function of τ ∗b .

Theorem 5. The probability density function of τ ∗b is:

fτ∗b (s) =
4c√
s+ b

c

φ

 cs√
s+ b

c

Φ

√ bc

1 + b
cs

 (3.10)

− 4c2e2bcPr

(
X2 > −2

√
bc,X1 > c

√
s+

2b√
s

)
,

where X2 ∼ N(0, 1), X1 ∼ N(0, 1 + b
cs

), cov(X1, X2) = −
√

b
cs

, φ is the standard

normal pdf and Φ is the standard normal cdf.

Proof. From (3.3), we have the Laplace transform,

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)

=4c

∫ ∞
0

e−v(
√
c2+2β+c)dv ×

∫ ∞
0

1√
2π

e−
t2

2
−ξ+t
√

b
cdt

=2c

√
2

π

∫ ∞
0

∫ ∞
0

e−v(
√
c2+2β+c)− t

2

2
−ξ+t
√

b
cdvdt

=2c

√
2

π

∫ ∞
0

∫ ∞
0

exp

(
−(v + t

√
b

c
)(
√
c2 + 2β − c)− 2vc− t2

2

)
dvdt

By the Laplace transform of inverse gaussian density Zwillinger [2014],

L−1
β

exp

(
−(v + t

√
b

c
)(
√
c2 + 2β − c)

) (s)

=
v + t

√
b
c√

2πs3
exp

− c2

2s

s− v + t
√

b
c

c


2

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where Ls(f(s))(β) denotes the Laplace Transform of the function f w.r.t. s and

L−1
β (F (β))(s) denotes the inverse Laplace Transform of the function F w.r.t. β.

We omit the constant β in notation for convenience and interchange the inte-

grals. Therefore,

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)

=2c

√
2

π

∫ ∞
0

∫ ∞
0

Ls


v + t

√
b
c√

2πs3
exp

− c2

2s

s− v + t
√

b
c

c


2

× e−

t2

2
−2vcdvdt

=Ls

2c

∫ ∞
0

∫ ∞
0

v + t
√

b
c

π
√
s3

exp

(
−v

2

2s
− (c+

t

s

√
b

c
)v

)
dv

× exp

(
−t2

2
(1 +

b

cs
) +
√
bct− c2s

2

)
dt

 (3.11)

By considering the inner integral first, we have

∫ ∞
0

(v + t

√
b

c
) exp

(
−v

2

2s
− (c+

t

s

√
b

c
)v

)
dv

= s+

√
πs

2

(
t

√
b

c
− s(c+

t

s

√
b

c
)

)
exp

(
(c+

t

s

√
b

c
)2 s

2

)
erfc

(√
s

2
(c+

t

s

√
b

c
)

)

= s+ c

√
πs3

2
exp

(
(c+

s

2

t

s

√
b

c
)2

)
erfc

(√
s

2
(c+

t

s

√
b

c
)

)
, (3.12)

where erfc is the complementary error function.
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Substituting (3.12) into the Laplace transform in (3.11),

E
(

e−βτ
∗
b

)
=

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)

=Ls


∫ ∞

0

2c

π
√
s

exp

(
−t2

2
(1 +

b

cs
) +
√
bct− c2s

2

)
dt

− 2c2

√
2π

∫ ∞
0

e−
t2

2
+2
√
bct erfc

(√
s

2
(c+

t

s

√
b

c
)

)
dt

 (3.13)

Integrating the first part of the above expression,

∫ ∞
0

1

π
√
s

exp

(
−t2

2
(1 +

b

cs
) +
√
bct− c2s

2

)
dt (3.14)

=
1√

2πs(1 + b
cs

)
exp

(
−c

2s

2
+

bc

2(1 + b
cs

)

)
erfc

−√ bc

2(1 + b
cs

)


=

2√
2πs(1 + b

cs
)

exp

(
−c

2s

2
+

bc

2(1 + b
cs

)

)
Φ

√ bc

1 + b
cs


Rewriting the second part as a bivariate normal cdf,

∫ ∞
0

e−
t2

2
+2
√
bct erfc

(√
s

2
(c+

t

s

√
b

c
)

)
dt

=2

∫ ∞
0

e−
t2

2
+2
√
bctΦ

(
−
√
s(c+

t

s

√
b

c
)

)
dt (3.15)

=2e2bc

∫ ∞
0

e−
(t−2

√
bc)2

2 Pr(Z1 >
√
s(c+

t

s

√
b

c
))dt
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Let Z2 = t− 2
√
bc,

∫ ∞
0

e−
t2

2
+2
√
bct erfc

(√
s

2
(c+

t

s

√
b

c
)

)
dt

=2
√

2πe2bc

∫ ∞
−2
√
bc

φ(z2)Pr(Z1 −
√

b

cs
Z2 > c

√
s+

2b√
s
|Z2)dz2

=2
√

2πe2bcPr

(
Z2 > −2

√
bc, Z1 −

√
b

cs
Z2 > c

√
s+

2b√
s

)

=2
√

2πe2bcPr

(
X2 > −2

√
bc,X1 > c

√
s+

2b√
s

)
, (3.16)

where X2 = Z2 ∼ N(0, 1), X1 = Z1−
√

b
cs
Z2 ∼ N(0, 1+ b

cs
), cov(X1, X2) = −

√
b
cs

.

Therefore, combining (3.14) and (3.16), we obtain

E
(

e−βτ
∗
b

)
= Ls

 4c√
s+ b

c

φ

 cs√
s+ b

c

Φ

√ bc

1 + b
cs


−4c2e2bcPr

(
X2 > −2

√
bc,X1 > c

√
s+

2b√
s

)}

As the inversion of the Laplace transform is the density function of τ ∗b , the result

follows.
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3.5.3 Cumulative Distribution Function of the First Hit-

ting Time

Then we can integrate the density function in (3.10) w.r.t. s to obtain the cumu-

lative distribution of τ ∗b .

Theorem 6. The cumulative distribution function of τ ∗b is

Pr (τ ∗b < s) (3.17)

=2

∫ ∞
0

φ(t)Φ

(
c
√
s− t

√
b

cs

)
dt

− (2 + 4sc2 + 8bc)e2bc

∫ ∞
0

φ(t− 2
√
bc)Φ

(
−c
√
s− t

√
b

cs

)
dt

+ 2ce2bc 2sc+ 2b√
c(b+ cs)

φ

(
cs+ 2b√
s+ b/c

)
Φ

(
c

√
bs

b+ cs

)
− 4
√
bce2bcφ(2

√
bc)Φ(−c

√
s)

where we can rewrite the integrals of this form∫ ∞
0

φ(at+ b)Φ(ct+ d)dt =
1

a
Pr

(
X2 > b,X1 >

bc

a
− d
)

and X2 ∼ N(0, 1), X1 ∼ N(0, 1 + c2

a2
), cov(X1, X2) = c

a
, for some constants

a, b, c, d.

Proof. From (3.15), we interchange the integrals,

2

∫ s

0

∫ ∞
0

e−
t2

2
+2
√
bctΦ

(
−
√
u(c+

t

u

√
b

c
)

)
dtdu

=2

∫ ∞
0

e−
t2

2
+2
√
bct

∫ s

0

Φ

(
−
√
u(c+

t

u

√
b

c
)

)
du

 dt
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Integrating by parts,

∫ s

0

Φ

(
−
√
u(c+

t

u

√
b

c
)

)
du (3.18)

=Φ

(
−
√
s(c+

t

s

√
b

c
)

)
s+

1

2

∫ s

0

√
u(c− t

u

√
b

c
)φ

(
−
√
u(c+

t

u

√
b

c
)

)
du

First we consider the following integral and let z =
√
u,

∫ s

0

1√
u
φ

(
√
u(c+

t

u

√
b

c
)

)
du =2

∫ √s
0

φ

(
cz +

t

z

√
b

c

)
dz

=
2e−

√
bct

√
2π

∫ √s
0

exp(−c
2z2

2
−
t2 b
c

2z2
)dz

Here we apply the formula from Zwillinger [2014], for some constants a and b,∫
e−a

2x2−b2/x2dx =

√
π

4a

[
e2ab erf(ax+ b/x) + e−2ab erf(ax− b/x)

]
(3.19)

Hence,

∫ s

0

1√
u
φ

(
√
u(c+

t

u

√
b

c
)

)
du

=
2e−

√
bct

√
2π

√
π

4( c√
2
)

e
√
bct erf

 c√
2
z +

t
√

b
c√

2

1

z

+ e−
√
bct erf

 c√
2
z −

t
√

b
c√

2

1

z



√
s

0

=
1

2c

erf

 c√
2

√
s+

t
√

b
c√

2

1√
s

− 1 + e−2
√
bct erf

 c√
2

√
s−

t
√

b
c√

2

1√
s

+ e−2
√
bct


=

1

c

Φ

(
c
√
s− t√

s

√
b

c

)
e−2
√
bct − Φ

(
−c
√
s− t√

s

√
b

c

) (3.20)
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Then we consider the following integral and let z =
√
u,

∫ s

0

√
uφ

(
√
u(c+

t

u

√
b

c
)

)
du =

2e−
√
bct

√
2π

∫ √s
0

z2 exp(−c
2z2

2
−
t2 b
c

2z2
)dz

From (3.19), we differentiate both sides w.r.t. the constant a to obtain the

following formula,∫
x2e−a

2x2−b2/x2dx =− x2

2a2
e−a

2x2−b2/x2 −
√
π

8a2
(2b− 1

a
)e2ab erf(ax+ b/x)

+

√
π

8a2
(2b+

1

a
)e−2ab erf(ax− b/x) (3.21)

Hence,

∫ s

0

√
uφ

(
√
u(c+

t

u

√
b

c
)

)
du

=

 −2z

c2
√

2π
e−

1
2

(cz+ t
z

√
b
c
)2 − 1

2c2
(t

√
b

c
− 1

c
) erf

 c√
2
z +

t
√

b
c√

2

1

z



+
1

2c2
(t

√
b

c
+

1

c
) erf

 c√
2
z −

t
√

b
c√

2

1

z



√
s

0

=
−2
√
s

c2
φ

(
c
√
s+

t√
s

√
b

c

)
+

1

c2
(t

√
b

c
− 1

c
)Φ

(
−c
√
s− t√

s

√
b

c

)

+
1

c2
(t

√
b

c
+

1

c
)e−2

√
bctΦ

(
c
√
s− t√

s

√
b

c

)
(3.22)
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Substituting (3.20) and (3.22) into (3.18),

∫ s

0

Φ

(
−
√
u(c+

t

u

√
b

c
)

)
du

=Φ

(
−
√
s(c+

t

s

√
b

c
)

)
s

+
c

2

−2
√
s

c2
φ

(
c
√
s+

t√
s

√
b

c

)
+

1

c2
(t

√
b

c
− 1

c
)Φ

(
−c
√
s− t√

s

√
b

c

)

+
1

c2
(t

√
b

c
+

1

c
)e−2

√
bctΦ

(
c
√
s− t√

s

√
b

c

)
− 1

2c
t

√
b

c

Φ

(
c
√
s− t√

s

√
b

c

)
e−2
√
bct − Φ

(
−c
√
s− t√

s

√
b

c

)
=
−
√
s

c
φ

(
c
√
s+

t√
s

√
b

c

)
+ Φ

(
−c
√
s− t√

s

√
b

c

)s+
1

2c

(
2t

√
b

c
− 1

c

)
+ Φ

(
c
√
s− t√

s

√
b

c

)
e−2
√
bct

2c2
(3.23)
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Substituting (3.23) into (3.15),

2

∫ s

0

∫ ∞
0

e−
t2

2
+2
√
bctΦ

(
−
√
u(c+

t

u

√
b

c
)

)
dtdu

=2

∫ ∞
0

e−
t2

2
+2
√
bct

−√s
c

φ

(
c
√
s+

t√
s

√
b

c

)

+ Φ

(
−c
√
s− t√

s

√
b

c

)s+
1

2c

(
2t

√
b

c
− 1

c

)
+Φ

(
c
√
s− t√

s

√
b

c

)
e−2
√
bct

2c2

 dt
=
−2
√
s

c

∫ ∞
0

e−
t2

2
+2
√
bctφ

(
c
√
s+

t√
s

√
b

c

)
dt (3.24)

+ (2s− 1

c2
)

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
e−

t2

2
+2
√
bctdt (3.25)

+ 2

√
b

c3

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
te−

t2

2
+2
√
bctdt (3.26)

+
1

c2

∫ ∞
0

Φ

(
c
√
s− t√

s

√
b

c

)
e−

t2

2 dt (3.27)

Then we need to solve the integrals (3.24) and (3.26) above.
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For (3.24), we let z = t− 2
√
bc.

∫ ∞
0

e−
t2

2
+2
√
bctφ

(
c
√
s+

t√
s

√
b

c

)
dt

=e2bc

∫ ∞
0

e−
(t−2

√
bc)2

2 φ

(
c
√
s+

t√
s

√
b

c

)
dt

=e2bc

∫ ∞
−2
√
bc

e−
z2

2 φ

(
c
√
s+

2b√
s

+

√
b

cs
z

)
dz

=e2bc
√

2π

 1√
1 + b

cs

φ

c√s+ 2b√
s√

1 + b
cs

Φ

√1 +
b

cs
z +

√
b
cs

(c
√
s+ 2b√

s
)√

1 + b
cs



∞

−2
√
bc

= e2bc
√

2π

√
cs

b+ cs
φ

 cs+ 2b√
s+ b

c

Φ

(
c

√
bs

b+ cs

)
(3.28)
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For (3.26), similarly, with z = t− 2
√
bc,

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
te−

t2

2
+2
√
bctdt

=e2bc

∫ ∞
−2
√
bc

(z + 2
√
bc)e−

z2

2 Φ

(
−c
√
s− 1√

s

√
b

c
(z + 2

√
bc)

)
dz

=
√

2πe2bc

 −1√
s

√
b
c√

1 + b
cs

φ

−c√s− 2b√
s√

1 + b
cs

Φ

√1 +
b

cs
z +

√
b
cs

(c
√
s+ 2b√

s
)√

1 + b
cs


−φ(z)Φ

(
−c
√
s− 1√

s

√
b

c
(z + 2

√
bc)

)∞
−2
√
bc

+ 2
√
bce2bc

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
e−

(t−
√
2bc)2

2 dt

=
√

2πe2bc

φ(2
√
bc)Φ(−c

√
s)−

√
b

b+ cs
φ

 cs+ 2b√
s+ b

c

Φ

(
c

√
bs

b+ cs

)

+2
√
bc

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
φ(t−

√
2bc)dt

 (3.29)
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Combining (3.28), (3.29), (3.27) and (3.25), we obtain the integral

2

∫ s

0

∫ ∞
0

e−
t2

2
+2
√
bctΦ

(
−
√
u(c+

t

u

√
b

c
)

)
dtdu

=2

√
b

c3

√
2πe2bcφ(2

√
bc)Φ(−c

√
s)

−
√

2πe2bc

(
2
√
s

c

√
cs

b+ cs
+ 2

√
b

c3

√
b

b+ cs

)
φ

 cs+ 2b√
s+ b

c

Φ

(
c

√
bs

b+ cs

)

+ (2s− 1

c2
+

4b

c
)
√

2πe2bc

∫ ∞
0

Φ

(
−c
√
s− t√

s

√
b

c

)
φ(t−

√
2bc)dt

+

√
2π

c2

∫ ∞
0

Φ

(
c
√
s− t√

s

√
b

c

)
φ(t)dt (3.30)

For (3.14), we consider the following integral, and again let z =
√
u and use

(3.19),

∫ s

0

1√
u

exp

(
− t

2b

2cu
− c2u

2

)
du =

∫ √s
0

2 exp

(
− t2b

2cz2
− c2z2

2

)
dz

=
1

c

√
π

2

e
√
bct erf

 cz√
2

+
t
√

b
c√

2z

+ e−
√
bct erf

 cz√
2
−
t
√

b
c√

2z



√
s

0

=

√
2π

c

e−
√
bctΦ

(
c
√
s− t√

s

√
b

c

)
− e

√
bctΦ

(
−c
√
s− t√

s

√
b

c

) (3.31)
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Substituting (3.31) into (3.14),

1

π

∫ ∞
0

e−t
2/2+

√
bct

∫ s

0

1√
u

exp

(
− t

2b

2cu
− c2u

2

)
dudt

=
1

c

√
2

π

∫ ∞
0

e−
t2

2 Φ

(
c
√
s− t√

s

√
b

c

)
dt

−
∫ ∞

0

e−
t2

2
−2
√
bctΦ

(
−c
√
s− t√

s

√
b

c

)
dt

 (3.32)

Finally, combining (3.30) and (3.32), we can therefore obtain the result in

(3.17). Also, similar to (3.16), the expression can be rewritten a bivariate normal

cdf.
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The cumulative distribution functions with b = 1 and different values of c are

plotted in figure (3.2). The CDFs increase with the slope c as expected.

Figure 3.2: Cumulative distribution function of τ ∗b with b = 1
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3.5.4 The Joint Density Function

Once we have solved the single Laplace transform of the first hitting time τ ∗b , we

can substitute it to the double Laplace transform.

Theorem 7. The double Laplace transform is given by

E
(

e−βτ
∗
b−ξYτb

)
=

4c

ξ − ξ−

∫ ∞
0

φ(t)

ξe−ξt√ b
c − ξ+e−ξ+t

√
b
c

ξ − ξ+

 dt (3.33)

where φ(t) = 1√
2π

e−
t2

2 , ξ± = ±
√
c2 + 2β − c.

Proof. For the first hitting time τb defined as in (3.1) with τ ∗b = τb − b/c and

ξ+ =
√
c2 + 2β − c > 0, we have the following Laplace transform (3.3):

E
(

e−βτ
∗
b

)
=

4c√
c2 + 2β + c

e
ξ2+b

2c Φ

(
−ξ+

√
b

c

)
,

where Φ is the standard normal cdf. The explicit expression of Laplace transform

of τ ∗b (3.3) is substituted into the double Laplace transform obtained,

E
(

e−βτ
∗
b−ξYτb

)
=

e
ξ2b
2c

ξ
Φ(−ξ

√
b
c
)− β

2ξ2c
E
(
e−βτ

∗
b

)
1
4c

+ 1
2ξ
− β

2ξ2c

=
1

1
4c

+ 1
2ξ
− β

2ξ2c

1

ξ

∫ ∞
0

1√
2π

e−
t2

2
−ξt
√

b
cdt− β

2ξ2c
× 1

β

2ξ+ce
ξ2+b

2c Φ

(
−ξ+

√
b

c

)


=
4c

(ξ − ξ+)(ξ − ξ−)

(∫ ∞
0

ξ√
2π

e−
t2

2
−ξt
√

b
cdt−

∫ ∞
0

ξ+√
2π

e−
t2

2
−ξ+t
√

b
cdt

)

=
4c

ξ − ξ−

∫ ∞
0

φ(t)

ξe−ξt√ b
c − ξ+e−ξ+t

√
b
c

ξ − ξ+

 dt
We leave the integral sign for convenience.

We can further invert the double Laplace transform to get the joint density

function.
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Theorem 8. The joint density function of τ ∗b and Yτb is

fτ∗b ,Yτb (s, y) =
2cφ

(
y+sc√
s

)
(s+ b

c
)3/2

(y + sc) exp

(
b
c
(y + sc)2

2s(s+ b
c
)

)
Φ


√

b
c
(y + sc)

√
s
√
s+ b

c

 (3.34)

+(y − sc) exp

(
b
c
(y − sc)2

2s(s+ b
c
)

)
Φ

−
√

b
c
(y − sc)

√
s
√
s+ b

c




Proof. We consider the following integral in (3.33), using integration by parts,

∫ ∞
0

φ(t)

ξe−ξt√ b
c − ξ+e−ξ+t

√
b
c

ξ − ξ+

 dt
=

∫ ∞
0

√
c

b
φ(t)d

e−ξt
√

b
c − e−ξ+t

√
b
c

ξ − ξ+


=

√
c

b


φ(t)

e−ξt
√

b
c − e−ξ+t

√
b
c

ξ − ξ+

∞
0

+

∫ ∞
0

e−ξ+t
√

b
c − e−ξt

√
b
c

ξ − ξ+

tφ(t)dt


=

√
c

b

∫ ∞
0

e−ξt
√

b
c

1− e−(ξ+−ξ)t
√

b
c

ξ+ − ξ

 tφ(t)dt

=

√
c

b

∫ ∞
0

e−ξt
√

b
c

∫ t
√

b
c

0

e−(ξ+−ξ)udu

 tφ(t)dt

Substituting back to the double Laplace transform in (3.33),

E
(

e−βτ
∗
b−ξYτb

)
=4c

√
c

b

∫ ∞
0

∫ ∞
0

∫ t
√

b
c

0

tφ(t)e−ξ(v+t
√

b
c
−u)e−ξ+u+ξ−vdudtdv

=4c

√
c

b

∫ ∞
0

∫ ∞
0

∫ t
√

b
c

0

tφ(t)e−ξ(v+t
√

b
c
−u)e−

√
c2+2β(u+v)−c(v−u)dudtdv

64



Let y = v + t
√

b
c
− u and hence 0 < v < y < v + t

√
b
c
<∞,

∫ ∞
0

∫ ∞
0

∫ t
√

b
c

0

tφ(t)e−ξ(v+t
√

b
c
−u)e−

√
c2+2β(u+v)−c(v−u)dudtdv

=

∫ ∞
0

∫ ∞
0

∫ v+t
√

b
c

v

tφ(t)e−ξye−
√
c2+2β(2v+t

√
b
c
−y)−c(y−t

√
b
c
)dydtdv

=

∫ ∞
0

e−ξy
∫ y

0

∫ ∞
(y−v)
√

c
b

tφ(t)e−
√
c2+2β(2v+t

√
b
c
−y)−c(y−t

√
b
c
)dtdvdy

=Ly


∫ y

0

∫ ∞
(y−v)
√

c
b

tφ(t)e−c(y−t
√

b
c
)Ls


2v + t

√
b
c
− y

√
2πs3

e−
(2v+t

√
b
c−y)

2

2s
− c

2s
2

 dtdv


=Ly

Ls


∫ ∞

0

∫ y

y−t
√

b
c

2v + t
√

b
c
− y

√
2πs3

e−
(2v+t

√
b
c−y)

2

2s
− c

2s
2
−c(y−t

√
b
c
)tφ(t)

 dvdt


We can then integrate the double integrals inside the double Laplace transform

to obtain the density function. Consider the following integrals,

∫ y

y−t
√

b
c

2v + t
√

b
c
− y

√
2πs3

e−
(2v+t

√
b
c−y)

2

2s dv =
−1

2
√
s
φ

y + t
√

b
c√

s

+
1

2
√
s
φ

y − t
√

b
c√

s



65



and substitute into the double integral,

∫ ∞
0

∫ y

y−t
√

b
c

2v + t
√

b
c
− y

√
2πs3

e−
(2v+t

√
b
c−y)

2

2
+
√
bcttφ(t)dvdt

=

∫ ∞
0

1

2
√
s

φ
y − t

√
b
c√

s

− φ
y + t

√
b
c√

s


 tφ(t)e

√
bctdt

=
1

2
√
s
φ(

y√
s

)

∫ ∞
0

t√
2π

exp

−1

2s

(
(s+

b

c
)t2 − 2t

√
b

c
(y + sc)

)

− exp

−1

2s

(
(s+

b

c
)t2 + 2t

√
b

c
(y − sc)

)
 dt (3.35)

Consider the first integral,

∫ ∞
0

t exp

−1

2s

(
(s+

b

c
)t2 − 2t

√
b

c
(y + sc)

) dt

=
−
√
s

4(s+ b
c
)3/2

√2π

(
−2

√
b

c
(y + sc)

)
e

b
c (y+sc)

2

2s(s+ bc ) erf

2(s+ b
c
)t− 2

√
b
c
(y + sc)

2
√

2
√
s+ b

c

√
s


+4

√
s+

b

c

√
s exp

(
−1

2s
((s+

b

c
)t2 − 2t

√
b

c
(y + sc))

)∞
0

=
s

s+ b
c

+

√
s
√

2π

(s+ b
c
)3/2

√
b

c
(y + sc) exp

(
b
c
(y + sc)2

2s(s+ b
c
)

)
Φ


√

b
c
(y + sc)

√
s
√
s+ b

c

 (3.36)
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Similarly, for the second integral,

∫ ∞
0

t exp

−1

2s

(
(s+

b

c
)t2 + 2t

√
b

c
(y − sc)

) dt

=
s

s+ b
c

−
√
s
√

2π

(s+ b
c
)3/2

√
b

c
(y − sc) exp

(
b
c
(y − sc)2

2s(s+ b
c
)

)
Φ

−
√

b
c
(y − sc)

√
s
√
s+ b

c

 (3.37)

Substituting (3.36) and (3.37) into (3.35),

∫ ∞
0

1

2
√
s

φ
y − t

√
b
c√

s

− φ
y + t

√
b
c√

s


 tφ(t)e

√
bctdt

=
1

2
φ

(
y√
s

)
√

b
c
(y + sc)

(s+ b
c
)3/2

exp

(
b
c
(y + sc)2

2s(s+ b
c
)

)
Φ


√

b
c
(y + sc)

√
s
√
s+ b

c



+

√
b
c
(y − sc)

(s+ b
c
)3/2

exp

(
b
c
(y − sc)2

2s(s+ b
c
)

)
Φ

−
√

b
c
(y − sc)

√
s
√
s+ b

c



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Finally, we combine the integral with other terms and simplify the expression,

E
(

e−βτ
∗
b−ξYτb

)

=Ly

Ls

4c

√
c

b
× 1

2
φ

(
y√
s

)
e−

c2s
2
−cy


√

b
c
(y + sc)

(s+ b
c
)3/2

exp

(
b
c
(y + sc)2

2s(s+ b
c
)

)
Φ


√

b
c
(y + sc)

√
s
√
s+ b

c



+

√
b
c
(y − sc)

(s+ b
c
)3/2

exp

(
b
c
(y − sc)2

2s(s+ b
c
)

)
Φ

−
√

b
c
(y − sc)

√
s
√
s+ b

c






=Ly

Ls


2cφ

(
y+sc√
s

)
(s+ b

c
)3/2

(y + sc) exp

(
b
c
(y + sc)2

2s(s+ b
c
)

)
Φ


√

b
c
(y + sc)

√
s
√
s+ b

c



+(y − sc) exp

(
b
c
(y − sc)2

2s(s+ b
c
)

)
Φ

−
√

b
c
(y − sc)

√
s
√
s+ b

c






As the inversion of the double Laplace transform is the joint density function of

τ ∗b and Yτb , the result follows.
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The joint density function can be simplified to make it easier to program or

recognize the structure. Let

m =sc

t =s+ b/c

where m and t resemble the stopping position of the running maximum and the

original stopping time respectively. Furthermore,

1

s
− b/c

s(s+ b/c)
=

1

s+ b/c
=

1

t

which enables further simplification of notations. Let

1

σ
=

√
1

s
− 1

t
=

√
b/c

√
s
√
s+ b/c

> 0

d1 =
m+ y

σ
=

√
1

s
− 1

t
(m+ y) =

√
b/c(sc+ y)
√
s
√
s+ b/c

> 0

d2 =
m− y
σ

=

√
1

s
− 1

t
(m− y) =

√
b/c(sc− y)
√
s
√
s+ b/c

∈ R

The density function becomes

fτ∗b ,yτb (s, y) =
2c

t3/2
φ

(
σd1√
s

)[
σd1e

d21
2 Φ(d1)− σd2e

d22
2 Φ(d2)

]
=

2cσd1

t3/2
φ

(
σd1√
t

)[
Φ(d1)− d2

d1

e
−2by
t Φ(d2)

]
(3.38)
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The joint density function with parameters b = 2 and c = 3 is plotted in figure

(3.3) with Python.

Figure 3.3: Joint density function of (τ ∗b , Yτb) with (b, c) = (2, 3)
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3.6 Simulation Methods

3.6.1 Simulation by Iterative Discretization

The stopping time τb can be simulated by an iterative discretization of the paths

of Brownian motion and the corresponding running maximum.

Suppose we know how to simulate the running maximum exactly with the

Brownian path (see Devroye [2010]). The process Zt = Mt − ct can not hit the

level −b before time t1 = b/c. If the running maximum M1 at t1 = b/c re-

mains unchanged, i.e. M1 = M0 = 0, the M1 = −b + ct1 = 0 at time t1. In

fact, for further steps, the process Ztj at step tj can not hit the level −b be-

fore time tj = (Mj−1 + b)/c. If the running maximum Mj does not increase at

tj = (Mj−1 +b)/c, i.e. Mj = Mj−1, then Mj = −b+ctj = Mj−1 at time tj. There-

fore, we only need to check the process Ztj at every time point tj = (Mj−1 + b)/c

for j = 0, 1, 2.... An illustration is below.

M0

−b

M1

M2 M3

t1 t1 + t2 t1 + t2 + t3

−b+ ct

t

Figure 3.4: An illustration of iterative simulation for linear barrier crossing
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Algorithm 4 Simulation Algorithm of τb
1: Set j = 0, t0 = 0 and M0 = W0 = 0
2: Calculate the next closest possible hitting time by tj+1 = (Mj + b)/c
3: Calculate the time interval of simulation by ∆t = tj+1 − tj
4: Generate Wj+1 = Wj +

√
∆tZ, where Z ∼ N(0, 1), set ∆W = Wj+1 −Wj

5: Generate M loc
j+1 =

√
(∆W )2+2∆tE

2
+Wj, where E ∼ exp(1)

6: Set Mj+1 = max(Mj,M
loc
j+1)

7: if Mj+1 = Mj then set τb = tj+1 and break else set j = j + 1 and repeat
8: Set τ ∗b = τb − b/c if needed

72



We validate the explicit forms of pdf in (3.10) with simulation results. The

distribution functions can be calculated using established bivariate normal cdf

algorithms. An algorithm in Python is used here (see Genz and Bretz [2009]).

10000 τ ∗b are generated with different pair of parameters b, c in figure (3.5),

(3.6) and (3.7). The histograms are plotted by the simulation results by using the

iterative discretization method. The curves are calculated by the corresponding

analytical solution in (3.10).

Figure 3.5: Probability density function of τ ∗b with (b, c) = (1, 1)
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Figure 3.6: Probability density function of τ ∗b with (b, c) = (1, 0.125)
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Figure 3.7: Probability density function of τ ∗b with (b, c) = (1, 2)

From the graphs, the histograms barely fit the red curves since the simulations

are not exact. On the other hand, some consistencies between the histograms and

the red curves indicate the results are not too wrong.
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3.6.2 An Exact Simulation Algorithm by Rejection Sam-

pling

We want to sample the pair τ ∗b and Yτb from the joint density in (3.34) with

acceptance-rejection algorithm (see Devroye [1986] for more examples). By doing

this, we can avoid the discretization error. We can also improve the speed of

simulation as when the path is very close to the barrier, multiple steps may be

needed from the previous discretization scheme. Acceptance-rejection algorithm

allows us to sample directly from the stopping values.

We need to find an envelope density such that the likelihood ratio is bounded

above by some constant.

Theorem 9. Let fRIG be the reciprocal Inverse Gaussian density function and

fWeibull be the Weibull density function, then

fτ∗b ,yτb (s, y)

fRIG

(
s′|s′ > b

c

)
fWeibull

(
y′|y′ > sc, s

) ≤ 2Pr(S ′ > b/c) (3.39)

where s′ = s+b/c, y′ = y+sc and S ′ ∼ RIG(µ = c
b
, λ = c2), Y ′|S ∼ Weibull(λ =√

2(s+ b
c
), k = 2). Therefore, the envelope is given by the joint truncated density

function of s′ and y′.

Proof. Using the notation from (3.38)

fτ∗b ,yτb (s, y) =
2cσd1

t3/2
φ

(
σd1√
t

)[
Φ(d1)− d2

d1

e
−2by
t Φ(d2)

]
and noticing that

Φ(d1)− d2

d1

e
−2by
t Φ(d2) ≤ 1 (3.40)

The equality holds when either one of the following cases happens,

1. y →∞, then d1 →∞ and d2 → −∞, (3.40)→ Φ(∞)− e−∞Φ(−∞) = 1

2. s→ 0, then d1 →∞ and d2 → −∞, (3.40)→ Φ(∞) + e−∞Φ(−∞) = 1
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3. c→ 0, then d1 → y√
s

and d2 → − y√
s
, (3.40)→ Φ( y√

s
) + Φ(− y√

s
) = 1

Therefore,

fτ∗b ,yτb (s, y) ≤ 2cσd1

t3/2
φ

(
σd1√
t

)
Using the original notations in (3.34),

fτ∗b ,yτb (s, y) ≤
2cφ

(
y+sc√
s+ b

c

)
(s+ b

c
)3/2

(y + sc)

=
2c√

2π(s+ b
c
)

y + sc

s+ b
c

exp

(
−(y + sc)2

2(s+ b
c
)

)
By letting y′ = y + sc and conditioning on s, we recognize the density function

of a Weibull distribution with shape parameter k and scale parameter λ,

y + sc

s+ b
c

exp

(
−(y + sc)2

2(s+ b
c
)

)
= fWeibull

(
y′;λ =

√
2(s+

b

c
), k = 2

)

But the support of y′ does not match the support of a Weibull random variable

since y′ > sc > 0. We need a truncation with

Pr(Y ′ > sc) = exp

(
− c2s2

2(s+ b
c
)

)

and

fWeibull

(
y′
)

= fWeibull

(
y′|y′ > sc

)
Pr(Y ′ > sc)
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Hence,

fτ∗b ,yτb (s, y) ≤ 2c√
2π(s+ b

c
)
fWeibull

(
y′;λ =

√
2(s+

b

c
), k = 2

)

=
2c√

2π(s+ b
c
)
fWeibull

(
y′|y′ > sc

)
Pr(Y ′ > sc)

=
2c√

2π(s+ b
c
)

exp

(
− c2s2

2(s+ b
c
)

)
fWeibull

(
y′|y′ > sc

)

By letting s′ = s + b/c, we recognize the density function of a reciprocal inverse

Gaussian distribution with mean µ = c/b and scale parameter λ = c2,

c√
2π(s+ b

c
)

exp

(
− c2s2

2(s+ b
c
)

)
=

c√
2πs′

exp

−c2
(
1− c

b
s′
)2

2s′( c
b
)2


=fRIG

(
s′;µ =

c

b
, λ = c2

)
Again, a truncation is needed as s′ > b/c > 0. Therefore,

fτ∗b ,yτb (s, y) ≤ 2c√
2π(s+ b

c
)

exp

−b2
(
1− c

b
s′
)2

2s′

 fWeibull

(
y′|y′ > sc

)
=2fRIG

(
s′;µ =

c

b
, λ = c2

)
fWeibull

(
y′|y′ > sc

)
=2Pr(S ′ > b/c)fRIG

(
s′|s′ > b/c

)
fWeibull

(
y′|y′ > sc

)
The result follows after rearranging terms.
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(3.39) provides an acceptance rate and envelope density functions for simula-

tion. The acceptance rate is

Pr

U ≤ fτ∗b ,yτb (S, Y )

fRIG

(
S ′|S ′ > b

c

)
fWeibull

(
Y ′|Y ′ > Sc, S

)
 =

1

2Pr(S ′ > b/c)
≥ 1

2

The ratio looks complicated but can be simplified. Notice

Pr(S ′ > b/c)fRIG(S ′|S ′ > b/c)fWeibull(Y
′|Y ′ > sc)

=
c√

2π(s+ b
c
)

y + sc

s+ b
c

exp

(
−(y + sc)2

2(s+ b
c
)

)
which is proportional to the density function fτ∗b ,yτb (s, y).

Now, we can simulate (τ ∗b , Yτb) from the basis of S ′ ∼ RIG and Y ′|S ′ ∼
Weibull. The truncation here is simply done by throwing away any values outside

the wanted support. One can also apply inverse transform or acceptance-rejection

techniques to the truncated density.

Python SciPy is used to generate reciprocal Inverse Gaussian and Weibull ran-

dom variables Jones et al. [2001–]. Here the scaling property of inverse Gaussian

random variables 1/S ′ ∼ IG(µ, λ)⇒ 1/λS ′ ∼ IG(µ/λ, 1).

Algorithm 5 Acceptance-Rejection Algorithm of (τ ∗b , Yτb)

1: Generate S ′ from fRIG
(
s′;µ = c

b
, λ = c2

)
. Repeat until S ′ > b/c.

2: Generate Y ′|S ′ from fWeibull

(
y′;λ =

√
2s′, k = 2

)
. Repeat until Y ′ > sc.

3: Set S = S ′ − b/c and Y = Y ′ − sc.
4: Generate a uniform random number U ∼ U(0, 1).

5: if U <
fτ∗
b
,yτb

(S,Y )

2Pr(S′> b
c
)fRIG(S′|S′> b

c)fWeibull(Y ′|Y ′>Sc,S)
then set (τ ∗b , Yτb) = (S, Y )

6: else go to step 1.
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The histograms of 10000 pairs of (τ ∗b , Yτb) generated with parameters (b, c) =

(1, 1) are plotted in (3.8).

Figure 3.8: Histogram of (τ ∗b , Yτb) with (b, c) = (1, 1)
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10000 τ ∗b are generated by the rejection method with different pairs of param-

eters b, c. The histograms are plotted in figure (3.9), (3.10) and (3.11). The red

curves are calculated by the corresponding analytical solution (3.10) to validate

the simulation results.

Figure 3.9: Histogram of simulated τ ∗b with (b, c) = (1, 2)

• Empirical acceptance rate: 0.7980

• Simulated mean stopping time: 0.4074

• Approximated mean stopping time by Simpson’s rule: 0.4067
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Figure 3.10: Histogram of simulated τ ∗b with (b, c) = (1, 1)

• Empirical acceptance rate: 0.7443

• Simulated mean stopping time: 1.2826

• Approximated mean stopping time by Simpson’s rule: 1.2950
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Figure 3.11: Histogram of simulated τ ∗b with (b, c) = (1, 0.1)

• Empirical acceptance rate: 0.6055

• Simulated mean stopping time: 74.9207

• Approximated mean stopping time by Simpson’s rule: 74.9204

The simulated means are close to the numerical integrated mean and the

empirical acceptance rates are quite high (> 0.5).
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3.7 Infinite Horizon Problem

We are also interested in if the process will eventually hit the barrier. Also, we

want to know the condition when τb is almost surely finite.

Theorem 10. For the first hitting time τb defined in (3.1), Pr(τb <∞) = 1

Proof. Define the super-maximum Zt = Mt − ct, We consider the martingale in

(3),

f(t, Yt, Zt) = exp

(
−βt−

β + ω2

2

c
Zt

)[
(
β

cω
+
ω

2c
) sinωYt + cosωYt

]

and apply Optional Stopping Theorem with the finite stopping time τb ∧ T for

some fixed T > 0,

E(f(τb ∧ T, Yτb∧T , Zτb∧T )) = f(0, Y0, Z0) = 1

since we have Z0 = Y0 = 0. On the other hand,

E(f(τb ∧ T, Yτb∧T , Zτb∧T )) = E
(
f(τb, Yτb , Zτb)1 {τb < T}

)
+ E

(
f(T, YT , ZT )1 {τb ≥ T}

)
Since {ZT ≥ −b,∀T ≤ τb},

E
(
f(T, YT , ZT )1 {τb ≥ T}

)
≤ E

(
e−βT+

β+ω
2

2
c

b

[
(
β

cω
+
ω

2c
) sinωYT + cosωYT

]
1 {τb ≥ T}

)

As sin(·) and cos(·) are bounded and for β > 0, we then let T →∞ with bounded

convergence theorem,

lim
T→∞

E
(
f(T, YT , ZT )1 {τb ≥ T}

)
= E

(
lim
T→∞

f(T, YT , ZT )1 {τb ≥ T}
)

= 0

Therefore,

1 = lim
T→∞

E
(
f(τb, Yτb , Zτb)1 {τb < T}

)
= E

(
f(τb, Yτb , Zτb)1 {τb <∞}

)
.
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Finally let ω → 0 and β → 0,
sinωYτb
ωYτb

→ 1,

E
(
1 {τb <∞}

)
= 1

The result follows.

Suppose we have a Brownian motion with drift. Intuitively, the first hitting

time of the corresponding super-maximum should depend on the drift. If the

drift is too large, the super-maximum may never hit the barrier. The first hitting

time is inaccessible.

Theorem 11. Suppose W µ
t is a Brownian motion with drift µ under P and Mµ

t =

max0<s<tW
µ
s . We define the first hitting time of the super-maximum Zµ

t = Mµ
t −

ct as

τµb = inf
{
t > 0|Zµ

t = −b
}

and τµb
∗ = τµb − b/c,

Pr
(
τµb
∗ <∞

)
=


1, if µ < c

Φ

(
−µ
√

b
c

)
− µ−2c

µ
e−2b(µ−c)Φ

(
−(µ− 2c)

√
b
c

)
, otherwise

Proof. Define Q by dQ
dP = eµWt−µ2 t2 , Wt is a standard Brownian Motion under Q,

apply the Girsanov theorem (see Karatzas and Shreve [1991]), for some fixed time

T ,

Pr(τµb
∗ < T ) =EP

(
1
{
τµb
∗ < T

})
= EQ

(
1 {τb∗ < T} eµWT−µ

2T
2

)
=EQ

(
1 {τb∗ < T} e

µWτ∗
b
−µ

2τ∗b
2 eµ(WT−Wτb

)−µ
2(T−τ∗b )

2

)

=EQ

EQ

(
eµ(WT−Wτb

)−µ
2(T−τ∗b )

2

∣∣∣∣ τ ∗b
)

1 {τb∗ < T} eµWτb
−µ

2τ∗b
2


=EQ

(
1 {τb∗ < T} eµWτb

−µ
2τ∗b
2

)
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Let T →∞ and since Pr(τb <∞) = 1 under Q,

Pr(τµb
∗ <∞) =EQ

(
eµWτb

−µ
2τ∗b
2

)
=EQ

(
e−( 1

2
µ2−cµ)τ∗b−µYτb−

b
2c
µ2
)

If we consider ξ± = ±
√
c2 + 2β − c := ξ±(β) as a function of β,

ξ+

(
1

2
µ2 − cµ

)
=

−µ if µ < c

µ− 2c if µ ≥ c
ξ−

(
1

2
µ2 − cµ

)
=

µ− 2c if µ < c

−µ if µ ≥ c

From the double Laplace transform of τ ∗b and Yτb (3.33),

EQ
(

e−βτ
∗
b−ξYτb

)
=

4c

ξ − ξ−

∫ ∞
0

φ(t)

ξe−ξt√ b
c − ξ+e−ξ+t

√
b
c

ξ − ξ+

 dt
We substitute β = 1

2
µ2 − cµ and ξ = µ. If µ < c,

EQ
(

e−( 1
2
µ2−cµ)τ∗b−µYτb

)
=

∫ ∞
0

φ(t)

[
µe−µt

√
b
c + µeµt

√
b
c

]
dt

=

e
b
2c
µ2

2
erf

µ
√

b
c

+ t
√

2

+
e
b
2c
µ2

2
erf

−µ
√

b
c

+ t
√

2



∞

0

=e
b
2c
µ2 − e

b
2c
µ2

2

erf

µ
√

b
c√

2

+ erf

−µ
√

b
c√

2




=e
b
2c
µ2

as the error function is an odd function. Therefore, if µ < c, Pr(τµb
∗ <∞) = 1.
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If µ ≥ c,

EQ
(

e−( 1
2
µ2−cµ)τ∗b−µYτb

)
=

1

µ

∫ ∞
0

φ(t)

[
µe−µt

√
b
c − (µ− 2c)e−(µ−2c)t

√
b
c

]
dt

=
1

µ

µ2 e
b
2c
µ2 erf

µ
√

b
c

+ t
√

2

− µ− 2c

2
e
b
2c

(µ−2c)2 erf

(µ− 2c)
√

b
c

+ t
√

2



∞

0

=e
b
2c
µ2Φ

(
−µ
√
b

c

)
− 1

µ
(µ− 2c)e

b
2c

(µ−2c)2Φ

(
−(µ− 2c)

√
b

c

)

Therefore, if µ ≥ c,

Pr
(
τµb
∗ <∞

)
= Φ

(
−µ
√
b

c

)
− 1

µ
(µ− 2c)e−2b(µ−c)Φ

(
−(µ− 2c)

√
b

c

)

Note that when µ→ c, Pr
(
τµb
∗)→ 1 and also when µ→∞, Pr

(
τµb
∗)→ 0.
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3.8 Applications in Derivatives

The result can be used to price derivatives with a lookback trigger event. Some

payoff structure with a lookback feature can be found in Musiela and Rutkowski

[2006], Hull [2006], etc. Lookbacks are appealing to investors, but very expensive

when compared with regular options. As with barrier options, the value of a look-

back option is liable to be sensitive to the frequency with which the asset price is

observed for the purposes of computing the maximum or minimum. The deriva-

tive described in this section assume that the asset price is observed continuously.

Below are the financial notations:

St: Underlying asset price at time t

D: Face value of a zero-coupon bond

τ : Trigger time

S̃t: Maximum price of the asset before time t

r: Risk free rate

We assume S follows a geometric Brownian motion with constant risk free

rate r under the risk-neutral measure Q, set

Xt =
1

σ

(
r − σ2

2

)
t+WQ

t , Mt = sup
0<s<t

Xs, b =
1

σ

(
ln
S0

D
+ rT

)
, c =

r

σ

where WQ
t is a standard Brownian motion under the risk-neutral measure. We

have

St = S0e

(
r−σ

2

2

)
t+σWQ

t
= S0eσXt
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If we consider the following trigger event at time τ for some fixed time T :

{τ > T} = {Mt − ct > −b, ∀t < T} =

{
sup

0≤t≤T
St > De−r(T−t), ∀t < T

}

For this trigger event:

• If we want b > 0, S0 > De−rT . The current stock price must be higher than

the present value of the bond.

• Since τ ≥ b/c, to make the conversion meaningful i.e. Pr(τ ≤ T ) > 0, we

need b/c < T , i.e. S0 < D.

The price of a lookback derivative at time zero, V0, with some payoff function

Ψ(τ, Sτ , ST , S̃T ) can be written as the following:

V0 = EQ
[
e−rTΨ(τ, Sτ , ST , S̃T )1{τ ≤ T}

]
We denote by Ft = σ(Xs, s ≤ t) the natural filtration of the Brownian motion

(Xt, t ≥ 0). Then τ is an Ft-stopping time.

Let m = 1
σ

(
r − σ2

2

)
. Define Q̃ by dQ

dQ̃ = emXt−m
2 t
2 , Xt is a standard Brownian

Motion under Q̃. Applying Girsanovs Theorem, we have

V0 =EQ
{

e−rτE
[
e−r(T−τ)Ψ(τ, Sτ , ST , S̃T )|Fτ

]
1{τ ≤ T}

}
=e−rTEQ̃

{
E
[
emXT−m

2 T
2 Ψ(τ, Sτ , ST , S̃T )|Fτ

]
1{τ ≤ T}

}
=e−(r+m2

2
)TEQ̃

{
E
[
emXTΨ(τ, Sτ , ST , S̃T )|Fτ

]
1{τ ≤ T}

}
Denote S̃τ,T = supτ≤t≤T St and Mτ,T = supτ≤s≤T Xs, then we have

S̃T = S̃τ ∨ S̃τ,T and S̃τ,T = Sτe
σMτ,T
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Substituting into Ψ,

e(r+m2

2
)TV0 =EQ̃

{
E
[
emXTΨ(τ, Sτ , ST , S̃τ ∨ S̃τ,T )|Fτ

]
1{τ ≤ T}

}
=EQ̃

{
emXτE

[
emXT−τΨ(τ, Sτ , ST , S̃τ ∨ S̃τ,T )|Fτ

]
1{τ ≤ T}

}
Rewrite the inner expectation as an integral,

e(r+m2

2
)TV0

=EQ̃

{
1{τ ≤ T}emXτ

∫ ∞
0

∫ u

−∞
emzΨ(τ, Sτ , Sτe

σz, S̃τ ∨ Sτeσu)fM,X(u, z)dzdu

}
(3.41)

where

fM,X(u, z) =
2(2u− z)

(T − τ)
√

2π(T − τ)
e−

(2u−z)2
2(T−τ) , u ≥ 0, x ≤ u

is the joint distribution of the running maximum M and the corresponding stan-

dard Brownian motion X starting at zero (X0 = 0) at time T − τ .

In particular, if Ψ(τ, Sτ , ST , S̃T ) = Ψ(τ, Sτ , ST ) does not depend on S̃T .

e(r+m2

2
)TV0

=EQ̃

{
1{τ ≤ T}emXτ

∫ ∞
−∞

emzΨ(τ, Sτ , Sτe
σz)fX(z)dz

}

where

fX(z) =
1√

2π(T − τ)
e−

z2

2(T−τ) , −∞ < z <∞.
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(3.41) motivates a simulation algorithm to price the derivative.

Algorithm 6 Simulation Method for the Lookback Derivative

1: Generate (τ,Xτ ) from Algorithm 5

2: if τ > T then V
(i)

0 = 0 and repeat from step 1 else
3: Calculate Sτ = S0eσXτ and S̃τ = S0eσ(−b+cτ)

4: Generate XT = Xτ +
√
T − τZ, where Z ∼ N(0, 1)

5: Generate Mτ,T =

√
(XT−Xτ )2+2(T−τ)E

2
+Xτ , where E ∼ exp(1)

6: Calculate ST = Sτe
σ(XT−Xτ ), and S̃τ,T = Sτe

σMτ,T and hence S̃T = S̃τ ∨ S̃τ,T
7: Calculate V

(i)
0 = e−(r+m2

2
)T emXTΨ(Sτ , τ, ST , S̃T )

8: Repeat step 1-7 for N times to obtain V
(1)

0 , V
(2)

0 , ..., V
(N)

0

9: Return the simulated price V̂0 = 1
N

∑N
i=1 V

(i)
0
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In this chapter, we continue to solve the joint density function of the first hit-

ting time and the associated reflected Brownian motion and provide an acceptance-

rejection algorithm. The infinite horizon problems are solved as an immediate

result. Since the problem is motivate from derivatives pricing, financial claims

with look-back features are given, including contingent convertibles.

3.8.1 Trigger Probability

One crucial concern for such a derivative is the probability of the trigger event

happening before the maturity. Under the risk-neutral measure Q, the probability

is

Q(τ ≤ T ) = EQ(1{τ ≤ T}) = EQ̃(emXτ−
m2

2
τ1{τ ≤ T})

which can also be estimated by the simulation scheme. Intuitively, the trigger

(knock-in) probability increases with the slope c and the intercept −b of the linear

barrier. Both b = 1
σ

(
ln S0

D
+ rT

)
and c = r

σ
increase with r and decrease with σ.

The effects of volatility and interest rate are mixed on the trigger level.

The trigger probability, on the other hand, is related to binary options whose

prices are discounted trigger probabilities. Binary options can be of particular

interest as they are not regulated by the FCA but the Gambling Commission, at

the time of writing this dissertation.

One way to decide the knock-in level is to think D is a function of b and hence

D = S0erT−bσ. In particular, we can set b ≈ 0 and b > 0, so the trigger level

solely depends on c = r/σ. Then

D ≈ FT = S0erT

which is the forward price of the underlying asset. The financial interpretation

is straight forward: you want to bet on the difference between the running max-

imum and the forward price of the underlying asset.
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The following graph plots the trigger probabilities for different volatility σ,

for parameters S0 = 100, T = 5, r = 0.05, with D = F = S0erT . These values

are obtained by simulating 20000 samples.

Figure 3.12: Trigger Probabilities of Lookback Derivatives

Volatility may drive the stock price up or down. Since the running maximum

increases with volatility, the trigger probability decreases as expected.
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3.8.2 Barrier Options

Barrier options are options where the payoff depends on whether the underlying

asset’s price reaches a certain level during a certain period of time.

The trigger event described above can be embedded into the option contract

as a ”down-and-in” feature to reduce the initial premium. A down-and-in option

is a knock-in option which comes into existence only when the underlying asset

price reaches a barrier. Here we have the running maximum of the asset price

instead.

A standard down-and-in call option payoff will have the following form:

C1
T = (ST −K)+1{τ ≤ T}

The price of it will be

C1
0 =EQ

[
e−rT (ST −K)+1{τ ≤ T}

]
=EQ

{
1{τ ≤ T}e−rτE

[
e−r(T−τ)(ST −K)+|Fτ

]}
By the strong Markov property of Brownian motion (see Karatzas and Shreve

[1991]), the inner expectation can be recognized as a vanilla call.

Here we introduce the Black-Scholes formula for option pricing Black and

Scholes [1973]. The price of call option for a non-dividend paying asset at time 0

is

C0(S0, K, T ) =EQ
[
e−rT (ST −K)+

]
=S0Φ(d1)−Ke−rTΦ(d2)

where

d1 =
ln S0

K
+ (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T
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Substituting, we have

C1
0 =EQ {1{τ ≤ T}e−rτCτ (Sτ , K, T − τ)

}
=EQ

{
1{τ ≤ T}e−rτ

[
SτΦ(d′1)−Ke−r(T−τ)Φ(d′2)

]}
(3.42)

where

d′1 =
ln Sτ

K
+ (r + σ2/2)(T − τ)

σ
√
T − τ

, d2 = d1 − σ
√
T − τ , Sτ = S0eσXτ

Forward start options are options that will start at some time in the future.

Similar to (3.42), the price of a down-and-in forward start option FT start at τ

with payoff function

FST = (ST − Sτ )+1{τ ≤ T}

is

FS0 = EQ {1{τ ≤ T}e−rτCτ (Sτ , Sτ , T − τ)
}

where Cτ (Sτ , Sτ , T − τ) denotes the Black-Schole price of a vanilla call option at

time τ with initial asset price Sτ , strike Sτ and maturity T − τ .

3.8.3 Lookback Options

Lookback options are an example of path-dependent options. Option contracts

whose payoff at expiry depends not only on the price of the underlying asset at a

certain time point (usually maturity), but also on asset price fluctuations during

the options’ lifetimes.

A standard lookback put option and its pricing formula are described in

Musiela and Rutkowski [2006], whose terminal payoff equals

LPT = (S̃T − ST )+ = (S̃T − ST )

Note that a lookback option is not a genuine option contract since the (European)

lookback option is always exercised by its holder at its expiry date. This contract
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can be expensive too.

The trigger event described above can be embedded into the contract as a

”down-and-in” feature to reduce the initial premium. A down-and-in option is a

knock-in option which comes into existence only when the underlying asset price

reaches a barrier. Here we have the running maximum of the asset price instead.

An example of barrier lookback put is described below:

BLP0,τ = EQ
[
e−rτ (S̃τ − Sτ )1{τ ≤ T}

]
The owner will receive the difference between the running maximum of the asset

price and asset price at the trigger time τ .

Let m = 1
σ

(
r − σ2

2

)
. Define P̃ by dQ

dQ̃ = emXt−m
2 t
2 , Xt is a standard Brownian

Motion under Q̃. Applying Girsanovs Theorem, we have

BLP0,τ =EQ̃
[
emXτ−m

2 τ
2 e−rτ (S̃τ − Sτ )1{τ ≤ T}

]
=EQ̃

[
emXτ e−(r+m2

2
)τ (De−r(T−τ) − S0eσXτ )1{τ ≤ T}

]

Since the trigger time τ is random and hence the cash flow, it increases the

reinvestment risk. Another contract can be structured for the owner to receive

the receive the difference between the running maximum of the asset price and

asset price at maturity:

BLP0,T = EQ
[
e−rT (S̃T − ST )1{τ ≤ T}

]
By substituting Ψ(Sτ , τ, ST , S̃T ) = S̃T − ST into (3.41), we have

BLP0,T

=e−(r+m2

2
)TEQ̃

{
1{τ ≤ T}emXτ

∫ ∞
0

∫ u

−∞
emz(S̃τ ∨ Sτeσu − Sτeσz))fM,X(u, z)dzdu

}
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3.8.4 An example of Contingent Convertibles

The payoff of Contingent Convertibles (CoCo) would be equal to the value of a

bond if conversion never happens before maturity. If a trigger event occurs, the

owner would get the shares. Therefore, the price of CoCo at time t = 0 has the

following form (see Musiela and Rutkowski [2006] for pricing contingent claims):

CoCo0 = EQ
[
Sτe

−rτ1{τ ≤ T}+De−rT1{τ > T}
]

(3.43)

A lookback feature can be added to the contingent claim. The contingent

claim then is analogous to a reverse convertible but with a ”lookback” trigger

event, which depends on the maximum of the asset price over the lifetime and also

the present value of the zero coupon bond. The Lookback Reverse Convertible

can be structured as a combination of longing a zero coupon and shorting a barrier

lookback put option with the trigger time as the maturity.

CoCo0 =EQ
[
Sτe

−rτ1{τ ≤ T}+De−rT1{τ > T}
]

=EQ
[
Sτe

−rτ1{τ ≤ T}+De−rT (1− 1{τ ≤ T})
]

=De−rT + EQ
[
(Sτe

−rτ −De−rT )1{τ ≤ T}
]

=De−rT − EQ
[
e−rτ [De−r(T−τ) − Sτ ]1{τ ≤ T}

]
=De−rT − EQ

[
e−rτ [S̃τ − Sτ ]1{τ ≤ T}

]
=De−rT −BLP0,τ

where Q denotes the risk-neutral measure.

Obviously, we can see CoCo0 ≤ De−rT . The value is the highest when it is

not converted.
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Then we can carefully apply Girsanov’s Theorem and the result in the previous

sections to obtain the price by simulation. Let m = 1
σ

(
r − σ2

2

)
. Define Q̃ by

dQ
dQ̃ = emXt−m

2 t
2 , Xt is a standard Brownian Motion under Q̃. Then

CoCo0 =De−rTEQ
[
e−σYτ1{τ ≤ T}+ 1{τ > T}

]
=De−rTEQ

[
1− (1− e−σYτ )1{τ ≤ T}

]
=De−rT

{
1− EQ̃

[
emXτ−m

2 τ
2 (1− e−σYτ )1{τ ≤ T}

]}
This form is more desirable for simulation as when τ is very large,

EQ̃
[
emXτ−m

2 τ
2 1{τ > T}

]
→ 1

but

EQ̃
[
ln(emXτ−m

2 τ
2 1{τ > T})

]
→ −∞

can be very skewed and hence increase the variance of the price.
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Table 3.1, 3.2 and 3.3 give the prices of the lookback convertibles for different

initial stock prices S0, with parameters T = 5, r = 0.04, σ = 0.4, D = 100,

unless specified. The present value of a zero coupon bond with these parameters

is De−rT = 81.87. These values are obtained by simulating 20000 samples.

Table 3.1: Prices of Lookback Convertibles with Different Maturities

T S0 =90 S0 =92 S0 =94 S0 =96 S0 =98

2 - - 88.910883 90.854598 91.095172
3 82.088587 83.776462 85.467776 87.372622 87.651429
5 77.919373 78.382724 79.251274 79.703791 80.999520
10 64.851386 64.877435 64.894619 66.068075 66.172912

Table 3.2: Prices of Lookback Convertibles with Different Interest Rates

r S0 =90 S0 =92 S0 =94 S0 =96 S0 =98

0.03 81.671804 82.625188 83.735580 84.386375 85.266319
0.04 77.611750 78.633984 79.485007 80.303148 80.995793
0.05 73.789333 74.679791 75.547243 76.310873 77.075869
0.06 70.016678 70.808653 71.851603 72.541492 73.297076

Table 3.3: Prices of Lookback Convertibles with Different Volatilities

σ S0 =90 S0 =92 S0 =94 S0 =96 S0 =98

0.2 74.157754 75.586224 77.059301 78.818261 80.306868
0.3 76.687399 77.821685 78.722629 79.776830 80.867256
0.4 77.463987 78.462941 79.491323 80.173495 80.986845
0.5 78.110482 78.939914 79.658690 80.399851 81.156018
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We can explain the sensitivities from the tables.

• The price increases with the initial stock price. A large initial stock price

will defer the trigger event.

• The price decreases with the maturity. The instrument can be seen as long-

ing a zero coupon bond and shorting a down-and-in lookback put option.

Increasing the maturity decreases the present value of the bond and in-

creases the option time value. It also allows more time for the trigger event

to happen.

• The price decreases with the interest rate. Similarly, increasing the interest

rate decreases the present value of the bond. On the other hand, a change in

interest rates generally has a minor overall impact on the pricing of options.

Especially in this set-up, the strike of the lookback option is not fixed but

depends on the maximum of the stock price.

• The price increases with the volatility. High volatility pushes up the running

maximum of the stock price and has two effects on the option position.

First, a large running maximum will delay the trigger event. Second, the

payoff if triggered will be higher. It seems that the probability of triggering

has a larger effect than the payoff.
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Chapter 4

A Differential Equation Approach

for the Laplace Transform of the

First Hitting Time for the

Running Maximum Brownian

Motion by a Linear Barrier

4.1 Introduction

In the previous chapters, the Laplace transform of of the first hitting time τ ∗b is

solved by sine and cosine transform of the solution of the infinitesimal generator.

The trick is to recognize the existence of the Laplace transform.

In this chapter, we present another approach which rewrites the expectation

of the stopped martingale as an integral equation. With another integral trans-

form, the equation is reduced to an ODE. Solving the initial value problem of

the ODE gives the Laplace transform of the τ ∗b . Here we have to recognize the

maximum of Brownian motion only hits the barrier when it is not increasing.

This approach is developed in parallel and hopes to provide some insights for
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further research.

4.2 An Ordinary Differential Equation of the

Laplace Transform

Refer to (3.1), the corresponding first hitting time of a linear barrier is defined as

τb = inf
{
t > 0|Mt − ct = −b

}
Theorem 12. Let the joint density function of τ ∗b and Yτb be p(t, y) and denote

P̂ (y) =

∫ ∞
y

∫ ∞
0

e−βtp(t, u)dtdu

then it satisfies

−1

2c
P̂ ′′(y)− P̂ ′(y) +

β

c
P̂ (y) =

√
2

π

c

b
e−

c
2b
y2

with the boundary conditions P̂ (∞) = 0 and P̂ ′(0) = 0.

Proof. We start with the stopped martingale in (3.4)

E

{
e−βτ

∗
b

[
(
β

cω
+
ω

2c
) sinωyτb + cosωyτb

]}
= e−

b
2c
ω2

Let the joint density function of τ ∗b and Yτb be p(t, y) and denote

p̂(β, y) =

∫ ∞
0

e−βtp(t, y)dt
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Rewrite LHS of (3.4),

E

{
e−βτ

∗
b

[
(
β

cω
+
ω

2c
) sinωyτb + cosωyτb

]}

=

∫ ∞
0

∫ ∞
0

e−βt
[
(
β

cω
+
ω

2c
) sinωy + cosωy

]
p(t, y)dtdy

=

∫ ∞
0

[
(
β

cω
+
ω

2c
) sinωy + cosωy

]
p̂(β, y)dy

=
β

c

∫ ∞
0

sinωy

ω
p̂(β, y)dy +

1

2c

∫ ∞
0

ω sinωyp̂(β, y)dy +

∫ ∞
0

cosωyp̂(β, y)dy

For convenience, we drop β from the notation and denote p̂(β, y) = p̂(y). Consider

the first term, ∫ ∞
0

ω sinωyp̂(y)dy

=−
∫ ∞

0

ω sinωy

∫ ∞
y

p̂′(u)dudy

=−
∫ ∞

0

∫ u

0

ω sinωydyp̂′(u)du

=

∫ ∞
0

p̂′(u) cosωudu−
∫ ∞

0

p̂′(u)du

Since p̂(y) = −
∫∞
y
p̂′(u)du, we have

−
∫ ∞

0

p̂′(u)du = p̂(0) = 0

An intuitive argument is given here. Since the running maximum of the Brownian

motion will not hit the barrier when it is increasing, it means Yτb is always larger

than zero. Therefore, p(t, 0) ≡ 0 for all t and also

p̂(β, 0) =

∫ ∞
0

e−βtp(t, 0)dt = 0

This property can also be seen in the iterative discretization scheme in section (4).
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Consider the second term in the expectation,∫ ∞
0

sinωy

ω
p̂(y)dy

=−
∫ ∞

0

sinωy

ω
d

(∫ ∞
y

p̂(u)du

)

=

∫ ∞
0

(∫ ∞
y

p̂(u)du

)
cosωydy

Therefore, ∫ ∞
0

[
(
β

cω
+
ω

2c
) sinωy + cosωy

]
p̂(β, y)dy

=

∫ ∞
0

(
β

c

∫ ∞
y

p̂(u)du+
1

2c
p̂′(y) + p̂(y)

)
cosωydy

For the RHS of (3.4),

e−
b
2c
ω2

=

√
2

π

√
c

b

∫ ∞
0

e
− y2

2( bc ) cosωydy

Denote

P̂ (y) =

∫ ∞
y

∫ ∞
0

e−βtp(t, u)dtdu =

∫ ∞
y

p̂(u)du

and hence

P̂ ′(y) = −p̂(y), P̂ ′′(y) = −p̂′(y)

We obtained an ODE from (3.4),

−1

2c
P̂ ′′(y)− P̂ ′(y) +

β

c
P̂ (y) =

√
2

π

c

b
e−

c
2b
y2

Two boundary conditions are needed to solve the ODE. By definition, P̂ (∞) = 0.

Another boundary condition is P̂ ′(0) = −p̂(0) = 0.
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4.3 Solution of the Differential Equation and

the Laplace Transform

In particular, we are interested in solving P̂ (0) = E(e−βτ
∗
b ).

Theorem 13. Denote ξ± = ±
√
c2 + 2β − c,

P̂ (0) =
4c√

2β + c2 + c
e
b
2c
ξ2+Φ

(
−
√
b

c
ξ+

)

Proof. The general solution of the ODE(12) is given by

P̂ (y) =eξ−y
∫ y

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ−z

)
dz

− eξ+y
∫ y

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

+ k1eξ−y + k2eξ+y

for some constants k1 and k2. Consider the boundary conditions,

lim
y→∞

P̂ (y) = lim
y→∞

eξ+y

k2 −
∫ y

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

 = 0

then

k2 =

∫ ∞
1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

and

P̂ (y) =

eξ−y

∫ y

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ−z

)
dz + k1


+ eξ+y

∫ ∞
y

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz
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Consider another boundary condition,

P̂ ′(y) =

ξ−eξ−y

∫ y

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ−z

)
dz + k1


+ eξ−y

 c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cy

2

2b
− ξ−y

)
+ ξ+eξ+y

∫ ∞
y

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

− eξ+y

 c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cy

2

2b
− ξ+y

)
Substitute y = 0,

k1 =

− ξ+

ξ−

∫ ∞
1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

−
∫ 0

1

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ−z

)
dz

Therefore,

P̂ (y) =

eξ−y

∫ ∞
0

−ξ+

ξ−

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

+

∫ y

0

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ−z

)
dz


+ eξ+y

∫ ∞
y

c√
c2 + 2β

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz
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Put y = 0,

P̂ (0) =

(
1− ξ+

ξ−

)
c√

2β + c2

∫ ∞
0

√
2

π

√
c

b
exp

(
−cz

2

2b
− ξ+z

)
dz

=
4c√

2β + c2 + c

√
c

b

∫ ∞
0

φ

(√
c

b
(z +

b

c
ξ+)

)
e
b
2c
ξ2+dz

Let t =
√

c
b
(z + b

c
ξ+), the Laplace transform of τ ∗b is recovered,

P̂ (0) =
4c√

2β + c2 + c
e
b
2c
ξ2+

∫ ∞
√

b
c
ξ+

φ(t)dt

=
4c√

2β + c2 + c
e
b
2c
ξ2+Φ

(
−
√
b

c
ξ+

)
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Chapter 5

Crossing Probabilities for the

Running Maximum of Brownian

Motion by a Poisson Barrier

In this chapter, we present two importance sampling methods through exponen-

tial tilting and a compound Poisson martingale to estimate the crossing proba-

bilities for Running Maximum of Brownian motion by Poisson barriers

5.1 Introduction

In the previous chapters, the first hitting time for the running maximum of a

Brownian motion by linear barriers was simulated by an acceptance-rejection

method. Here we look at the infinite horizon problem by a compound Poisson

barrier and estimate the probability that the barrier is eventually crossed.

We are interested in the simulation method of the barrier crossing probabili-

ties. The running maximum of a drifted Brownian motion is not guaranteed to

hit the barrier if the drift is of a different sign of the barrier. In a naive simulation

scheme, one often needs to stop the simulation prematurely when the number of

iterations or the total time elapsed is large enough. These long trials are counted

as a failure to hit the barrier. Therefore, truncation methods underestimate the
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probabilities of barrier crossing. It is more problematic when the crossing prob-

abilities are very small, for example, when the barrier is far away or the force

driving away the process is strong, or both. Most of the sample paths do not

cross the barrier and are wasted.

Importance sampling methods are used to reduce both the bias and the vari-

ance of the estimated barrier crossing probabilities. The fundamental idea behind

importance sampling is the same as that of change of measure. Under certain

regularity conditions, the expectation under one probability measure can be ex-

pressed as an expectation under another probability measure through the Radon-

Nikodym theorem. The correct choice of the alternative probability measure will

achieve variance reduction.

An early classic example of importance sampling applied to derivatives pricing

is Reider [1993]. In pricing deeply out-of-money call European options, increasing

the drift in the underlying geometric Brownian motions substantially decreases

the variance in simulations. More examples on applying importance sampling in

derivatives pricing include Andersen [1995] and Boyle et al. [1997].

In the context of insurance risk, importance sampling is used to estimate

small ruin probabilities. In Asmussen et al. [1985], attention is given to the ruin

probability in infinite horizon for compound Poisson risk processes. In Dassios

and Zhao [2012], they consider a risk process with the arrival of claims mod-

elled by a dynamic contagion process, a generalization of the Cox process and

Hawkes process introduced by Dassios and Zhao [2011]. In both applications, im-

portance sampling is used to change the original measure to a new measure such

that large downward jumps occur more often and hence ruins happen more often.

In this chapter, we provide two likelihood ratios, via exponential tilting and

compound Poisson martingales, to obtain an upper bound of barrier crossing

probabilities and achieve variance reduction through importance sampling. Ex-

ponential tilting is a distribution shifting technique commonly used in rare-event

simulation, and rejection and importance sampling in particular. Exponential
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tilting is known as the Esscher transform in mathematical finance Asmussen and

Glynn [2007] and is used in such contexts as insurance futures pricing Cruz et al.

[2014]. The earliest formalization is often attributed to Esscher, see Butler [2007],

with its use in importance sampling being attributed to David Siegmund, see Sieg-

mund [1976]. Another way to look at importance sampling is change of measure

Musiela and Rutkowski [1997]. Therefore, we also present a Poisson martingale

method.

5.2 Definition

The construction is similar to definition (3.1) but the barrier is no longer deter-

ministic. In this chapter, we are going to define the Compound Poisson process

Zt =
Nt∑
i=1

Ui

where Nt is a Poisson process with rate λ and the jump size Ui > 0 has distribu-

tion function H(u). The corresponding first hitting time of a compound Poisson

barrier is defined as

τb = inf{t > 0|Mt − Zt ≤ −b}

with b > 0. Therefore, the hitting level is below zero. If the hitting level is above

zero, the problem is reduced to the first hitting time of a Brownian motion (not

the running maximum of it). Therefore we focus the case when the hitting level

is below zero.

The compound Poisson barrier is not continuous and will overshoot the run-

ning maximum so the stopping position for Mt−Zt can exceed −b. An illustration

graph will be presented in the later section with the simulation algo.
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5.3 A Martingale for the Compound Poisson

Barrier

Let ψ(ν) =
∫∞

0
eνudH(u) be the moment generating function the distribution

function of H(u). A martingale for the compound Poisson process Zt =
∑Nt

i=1 Ui

is

g(t, Z) = e−λt(ψ(ν)−1)+νZ

In particular, if Ui are i.i.d. exponential random variables with mean 1/α, i.e.

Ui ∼ exp(α), ψ(ν) = α
α−ν for ν < α. The martingale becomes:

g(t, Z) = exp

(
λ

(
1− α

α− ν

)
t+ νZ

)

Recall the martingale for (Mt, Yt) in (3),

f(t,M, Y ) = exp

(
ω2

2
t− γM

)
h(Y )

where

h(y) = cos(ωy) +
γ

ω
sin(ωy)

Let −β = ω2

2
+ λ

(
1− α

α−ν

)
, we have

νβ = α

(
1− λ

ω2

2
+ λ+ β

)
< α

As the compound Poisson process Zt and the pair (Mt, Yt) are independent, the

process f · g(t,M, Y, Z) is still a martingale.

f ·g(t,Mt, Yt, Zt) =e
(ω

2

2
+λ(1− α

α−νβ
))t

e−γMteνβZth(Yt)

=e−βte−(γ−νβ)Mte−νβ(Mt−Zt)h(Yt) (5.1)
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For convenience, we denote f ·g(t,Mt, Yt, Zt) as f ·g(t). With the finite stopping

time τb ∧ T for some fixed T > 0,

E(f ·g(τb ∧ T )) = E(f ·g(τb)1{τ < T}) + E(f ·g(T )1{τb ≥ T})

Since {MT − ZT > −b,∀T < τb},

E(f ·g(T )1{τb ≥ T}) < E(e−βT e−(γ−νβ)MT e−νβbh(YT )1{τb ≥ T})

For β > 0 and γ ≥ νβ, let T →∞, as h(YT ) is bounded,

E(e−βT e−(γ−νβ)MT e−νβbh(YT )1{τb ≥ T})→ 0

Therefore, applying the Optional Stopping Theorem,

E(f ·g(τ)1{τb <∞}) = E(f ·g(0)) = 1

By letting β → 0 and γ → νβ,

E(1{τb <∞}) = 1

Therefore, the boundary crossing happens with probability one in the driftless

case. Intuitively, it is natural since E(Mt) ∝
√
t but E(Zt) ∝ t. With these

martingales, we can obtain a differential equation for the Laplace transform of

the first hitting time, see Appendix (.1).
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5.4 An Iterative Simulation Algorithm for the

First Hitting Time

Boundary crossing can only happen when a jump occurs in Zt. Therefore, a

simple simulation method is to simulate the following quantities accordingly,

1. the inter-arrival time τi

2. the jump size Uτi

3. the running maximum Mτi at the jump time

and check if the boundary is crossed. In Figure 5.1, an illustration graph similar

to Figure 3.4 is plotted. The increasing barrier is a compound Poisson process

instead of a straight line. The first hitting time in this particular case is τb =

τ1 + τ2.

M0

−b
τ1

Mτ1

−b+ Uτ1

Mτ2

−b+ Uτ1 + Uτ2

τ1 + τ2

t

Figure 5.1: An illustration of iterative simulation of compound Poisson barrier
crossing
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Suppose Xµ
t = µt + Wt is a Brownian motion with drift µ and Mµ

t =

max0<s<tW
µ
s , the algorithm of simulation τµb = inf{t > 0|Mµ

t − Zt ≤ −b} is

below.

Algorithm 7 Simulation Method for the Compound Poisson Barrier

1: Generate τi ∼ exp(1/λ), with τ0 = 0
2: Generate Ui ∼ H
3: Generate Generate Xµ

i = Xµ
i−1 + µτi + N(0, 1), where N(0, 1) is a standard

normal r.v.

4: Generate mµ
i =

Xµ
i +Xµ

i−1+
√

(Xµ
i −X

µ
i−1)2−2τiln(V )

2
, where V ∼ U(0, 1)

5: Set Mµ
i = max(mµ

i ,M
µ
i−1)

6: Repeat previous steps until Mµ
i −

∑i
k=1 Uk ≤ −b, return (τµb , Mµ

τb
, Xµ

τb
,

Zµ
τb

)=(
∑i

k=1 τk, M
µ
i , Xµ

i ,
∑i

k=1 Uk)
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A sample path is plotted in fig 5.2, with b = 1, µ = 0, X0 = 0, M0 = 0, λ = 1

and Ui ∼ exp(1).

Figure 5.2: A sample path of Mt, Xt and Mt − Zt.

Since the simulation method only generates values when there is a jump, the

dots also indicate the locations of jumps.
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10000 samples of τb and Mτ −Xτ are plotted in fig 5.3 and 5.4 respectively,

with b = 1, µ = 0, X0 = 0, M0 = 0, λ = 1 and U ∼ exp(1).

Figure 5.3: Histogram of Stopping Time τ for Poisson Barrier

Figure 5.4: Histogram of Stopping Position Mτ −Xτ for Poisson Barrier

We observe from the histograms that (1) the distribution of τ might be thin-

tailed and (2) there is a peak at zero of the distribution of Mτ −Xτ , the density

function might not be zero at zero.
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5.5 Infinite Horizon with Drift

Theorem 14. Let Xt = µt + Wt is a Brownian motion with drift µ, Mt =

max0<s<tXs, Yt = Mt −Xt and τ = inf{t > 0|Mt − Zt ≤ −b}

Pr(τ <∞) =
α− νβ
α

e−νβb

Eµ
(

e−(γ−νβ)Mτ−µXτh(Yτ )
∣∣∣τ <∞)

where h(Yτ ) = cos(ωYτ ) + γ
ω

sin(ωYτ ).

Proof. Consider the martingale in (5.1) for a standard Brownian Motion Xt, its

running maximum Mt and the compound Poisson process Zt,

f ·g(t) = e−βte−(γ−νβ)Mte−νβ(Mt−Zt)h(Yt)

where νβ = α

(
1− λ

ω2

2
+λ+β

)
< α and νβ > 0 for β ≥ 0. By Optional Stopping

Theorem, for some fixed T > 0,

E(f ·g(τ ∧ T )) = 1

On the other hand,

E(f ·g(τ ∧ T )) = E(f ·g(τ)1{τ < T}) + E(f ·g(T )1{τ ≥ T})

Applying Girsanov Theorem,

E(f ·g(T )1{τ ≥ T}) = Eµ(e−µXT+µ2

2
Tf ·g(T )1{τ ≥ T})

Under the measure µ, Xt is a Brownian Motion with drift µ, Mt = sup0≤s≤tXs,

Yt = Mt −Xt is a reflected Brownian Motion with drift −µ (see Peskir [2006]),

Eµ(e−µXT+µ2

2
Tf ·g(T )1{τ ≥ T})

=Eµ(e−µXT+µ2

2
T e−βT e−(γ−νβ)MT e−νβ(MT−ZT )h(YT )1{τ ≥ T})

<Eµ(e−(β−µ
2

2
)T e−µXT e−(γ−νβ)MT eνβbh(YT )1{τ ≥ T})
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If −(γ − νβ) ≤ µ and β ≥ µ2/2, let T →∞,

Eµ(e−µXT+µ2

2
Tf ·g(T )1{τ ≥ T})

≤eνβbEµ(e−(β−µ
2

2
)T eµYTh(YT )1{τ ≥ T})→ 0

On the other hand,

E(f ·g(τ)1{τ < T})

=Eµ(e−µXτ+µ2

2
τf ·g(τ)1{τ < T})

=Eµ(e−µXτ+µ2

2
τe−βτe−(γ−νβ)Mτ e−νβ(Mτ−Zτ )h(Yτ )1{τ < T})

Let Uτ be the overshoot and Uτ ∼ exp(α),

E(f ·g(τ)1{τ < T})

=Eµ(e−(β−µ
2

2
)τe−µXτ e−(γ−νβ)Mτ eνβ(b+Uτ )h(Yτ )1{τ < T})

=
αeνβb

α− νβ
Eµ(e−(β−µ

2

2
)τe−µXτ e−(γ−νβ)Mτh(Yτ )1{τ < T})

Let T →∞,

1 =
αeνβb

α− νβ
Eµ(e−(β−µ

2

2
)τe−µXτ e−(γ−νβ)Mτh(Yτ )1{τ <∞})

=
αeνβb

α− νβ
Eµ
(

e−(β−µ
2

2
)τe−µXτ e−(γ−νβ)Mτh(Yτ )

∣∣∣τ <∞)Pr(τ <∞)

Rearranging terms,

Pr(τ <∞) =
α− νβ
α

e−νβb

Eµ
(

e−(β−µ2
2

)τe−µXτ e−(γ−νβ)Mτh(Yτ )
∣∣∣τ <∞)

Further substituting β = µ2/2,

Pr(τ <∞) =
α− νβ
α

e−νβb

Eµ
(

e−(γ−νβ)Mτ−µXτh(Yτ )
∣∣∣τ <∞)
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Note that if e−(γ−νβ)Mτ−µXτh(Yτ ) ≥ 1. We have an inequality for the ruin

probability,

Pr(τ <∞) ≤ α− νβ
α

e−νβb

For example if γ ≥ νβ−µ ≥ 0 then e−(γ−νβ)Mτ−µXτ ≥ eµYτ ≥ 1, we can let ω → 0,

and

h(Yτ ) = cos(ωYτ ) +
γ

ω
sin(ωYτ )→ 1 + γYτ ≥ 1

But if µ >> 0 and α→ 0,

β >> 0 and νβ = α

(
1− λ

ω2

2
+ λ+ β

)
→ α

then γ = α− µ < 0 and we may not obtain an upper bound between 0 and 1. In

this case, the process is very volatile.

Although we have an expression of the ruin probability via the original drifted

measure, the expression is not suitable for simulation as the sample size for the

ruin to happen could be small, especially for a large drift.
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5.6 Importance Sampling for Infinite Horizon

We also want to simulate the infinite horizon probability Pr(τb <∞) but we can

not let the programme run forever. One way is to stop the programme after a

large enough number of iterations N and approximate:

Pr(τµb =∞) ≈ Pr(Nτb > N)

Or stop it when τb is larger than a very big number, say T ′ and approximate:

Pr(τµb =∞) ≈ Pr(τb > T ′)

However both methods tend to overestimate Pr(τµb = ∞) and can be very slow

if a very large N or T ′ is used.

We can apply importance sampling to the Brownian motion, the compound

Poisson process or both.

5.6.1 Long Horizon Problem

One intuitive idea is to change the drift to zero or even negative so that the bar-

rier is hit faster. However, this can increase the variance of the simulation. This

problem is explained in Glasserman [2003].

Define P̃ by dP
dP̃ = eµWt−µ2 t2 and denote At = eµWt−µ2 t2 , Wt is a standard

Brownian Motion under P̃. Applying the Girsanov theorem,

Pr(τµb < T ) =EP
(
1
{
τµb < T

})
=EP̂′

(
1
{
τµ
′

b < T
} Aτb
A′τb

)

=EP̂′
(

1
{
τµ
′

b < T
}

e(µ−µ′)Xµ′
τb
−µ

2−µ′2
2

τb

)

where Xµ′

t is a Brownian motion with a drift µ′. Let T → ∞ and for µ′ ≤ 0,
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Pr(τµ
′

b <∞) = 1. For simplicity, we first consider the case when µ′ = 0,

Pr(τµb <∞) = EP̂
(

eµWτb
−µ

2τb
2

)
Since Pr(τb < ∞) = 1, theoretically, the programme will stop eventually. How-

ever, even when µ′ = 0, if the downward force is not strong enough, i.e. λE(U) <<

b+m0, the programme will only stop after many iterations.

We then consider negative drifts. For µ >> 0 and µ′ ≤ 0, At/A
′
t will be highly

skewed since EP̂′(At/A
′
t) = 1 but EP̂′(lnAt−lnA′t)→ −∞ as t→∞. An example

is when µ is large and take µ′ = −µ,

Pr(τµb <∞) = EP̂′(e2µXµ′
τb )

where Xµ′

t is a Brownian motion with a large negative drift µ′. The estimator

is always very close to zero but the expectation is one. Large values with small

but non-negligible probability are generated in the simulation. This can result in

a large increase in variance. Therefore, we may need a well-designed change of

measure for this case.
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5.6.2 Exponential Tilting

Exponential tilting is a distribution shifting technique commonly used in rare-

event simulation and importance sampling in particular.

Theorem 15. Let Xt be a Brownian motion with drift µ, Mt = max0<s<tXs,

Yt = Mt − Xt, Zt =
∑Nt

i=1 Ui, Nt ∼ Poi(λt) and Ui ∼ exp(α) and τµ = inf{t >
0|Mt − Zt ≤ −b} under the original measure,

Pr(τµ <∞) =
α− θ∗
α

e−θ∗bEµ
′

θ

(
e−θ∗Yτ1{τµ′∗ <∞}

)
Where under the tilted measure, Xt is a Brownian motion with drift µ′∗ , Nt ∼
Poi( λα

α−θ∗ t) and Ui ∼ exp(α− θ∗) , with µ′∗ = µ− θ∗ and

θ∗ = 1
2

(
α + 2µ−

√
(α− 2µ)2 + 4λ

)
.

Proof. Let Xt be a Brownian Motion with drift µ under the original measure and

the tilted density is

fθ(x) = e(µ−µ′)x−µ
2−µ′2

2
tfX(x)

which is a normal density function with drift µ′ and for the compound Poisson

process Zt =
∑Nt

i=1 Ui and the tilted density is

gθ(z) = e−θZtMZ(θ)gZ(z)

where

MZ(θ) = exp

(
λt

(
α

α− θ
− 1

))
Under the tilted measure, by Girsanov Theorem, Xt is a Brownian motion

with drift µ′. After the transformation the moment generating function of Zt,

M θ
Z(r) =

E(e(r+θ)Z)

MZ(θ)
=
MZ(r + θ)

MZ(θ)
=

exp

(
λt
(

α
α−r−θ − 1

))
exp

(
λt
(

α
α−θ − 1

))
= exp

(
λαt

α− θ

(
α− θ

α− θ − r
− 1

))
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So the transformation inflates the means of both distributions. Now Nt ∼
Poi( λα

α−θ t) and Ui ∼ exp(α− θ).
The ruin probability for µ > 0 and some µ′,

Pr(τµ <∞) =Eµ
′

θ

(
e(µ−µ′)Xτ e−

1
2

(µ2−µ′2)τe−θZτMZ(θ)1{τµ′ <∞}
)

=Eµ
′

θ

(
e(µ−µ′)(Mτ−Yτ )e−

1
2

(µ2−µ′2)τe−θZτ eλτ(ϕ(θ)−1)1{τµ′ <∞}
)

where ϕ(θ) is the MGF of U . Let µ− µ′ = θ > 0,

Pr(τµ <∞) =Eµ
′

θ

(
e−θ(b+Uτ )e−θYτ e(− 1

2
(µ2−µ′2)+λϕ(θ)−λ)τ1{τµ′ <∞}

)
If under the orginial measure, U ∼ exp(α), ϕ(θ) = α

α−θ . Under the new measure,

U ∼ exp(α− θ),
Eµ
′

θ

(
e−θUτ

)
=

α− θ
α− θ + θ

=
α− θ
α

If further set

−1

2
(µ2 − µ′2) +

αλ

α− θ
− λ = 0

Substituting µ′∗ = µ− θ and solve the quadratic equation

θ± =
1

2

(
α + 2µ±

√
(α− 2µ)2 + 4λ

)
as we want α− θ > 0 for the exponential distribution, take

θ∗ =
1

2

(
α + 2µ−

√
(α− 2µ)2 + 4λ

)
Then

Pr(τµ <∞) =
α− θ∗
α

e−θ∗bEµ
′

θ

(
e−θ∗Yτ1{τµ′∗ <∞}

)

Note that the ruin probability has an upper bound

Pr(τµ <∞) ≤ α− θ∗
α

e−θ∗b
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In particular, if µ′∗ ≤ 0,

Pr(τµ <∞) =
α− θ∗
α

e−θ∗bEµ
′

θ

(
e−θ∗Yτ

)
For (λ, α, b) = (2, 1, 1), 10000 samples are generated for every following µ.

Table 5.1: Importance Sampling by Exponential Tilting (10000 samples)
µ θ∗ µ′ η α̂ p̄ var(p) bound N̄ p̄′

2.0000 0.4384 1.5616 3.5616 0.5616 0.2213 0.0070 0.3622 3.0474 1.0000
2.5000 0.5505 1.9495 4.4495 0.4495 0.1488 0.0042 0.2592 2.4990 1.0000
3.0000 0.6277 2.3723 5.3723 0.3723 0.1117 0.0027 0.1987 2.1406 1.0000
3.5000 0.6834 2.8166 6.3166 0.3166 0.0871 0.0019 0.1599 1.9534 1.0000
4.0000 0.7251 3.2749 7.2749 0.2749 0.0725 0.0014 0.1331 1.8044 1.0000
4.5000 0.7574 3.7426 8.2426 0.2426 0.0613 0.0010 0.1138 1.6942 1.0000
5.0000 0.7830 4.2170 9.2170 0.2170 0.0533 0.0008 0.0992 1.6107 1.0000
5.5000 0.8038 4.6962 10.1962 0.1962 0.0475 0.0006 0.0878 1.5368 1.0000
6.0000 0.8211 5.1789 11.1789 0.1789 0.0422 0.0005 0.0787 1.4776 1.0000

Below are the notations in the table.

• µ′: drift under the tilted measure

• η: Poisson rate under the tilted measure

• α̂: Exponential parameter under the tilted measure

• p̄: Estimated ruin probability under the original measure

• var(p): Sample variance of the 10000 samples

• bound: the upper bound of the ruin probability under the original measure

• N̄ : Average iterations in 10000 samples

• p̄′: Estimated ruin probability under the tilted measure

Exponential tilting decreases the drifts of the Brownian motion µ′ and in-

creases both the jump intensities η and sizes 1/α̂ of the compound Poisson pro-

cess. The simulations stop in a finite time after the change of measure, indicated

by p̄′.
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5.6.3 Change of Measure via compound Poisson Martin-

gale

We may want some flexibility in the importance sampling and hence a Poisson

martingale, which is function of the Poisson process Nt, is introduced here.

Let Ui be iid random variables with measure ν and there is an absolutely

continuous measure ν̂ w.r.t. ν s.t. h is the Radon-Nikodym derivative, i.e.

h(x) := dν̂
dν

(x) and f(x) := ln( η
λ
h(x)). Define

Lt := exp

 Nt∑
i=1

f(Ui) + (λ− η)t


where η > 0 and Lt is a strictly positive martingale with expectation equal to 1.

This martingale allows the change of both jump intensity and size.

In particular, if the distributions of the jump size are unchanged, i.e. h(x) = 1

and let the new jump intensity η = (1 + β)λ,

dQ
dP

∣∣∣∣
Ft

:= Lt = (1 + β)Nte−λβt

The process Zt is a Q-Poisson process with intensity η = (1 + β)λ.

In our case, we might want to increase the jump size and keep the jump

distribution exponential, i.e. ν ∼ exp(α) and ν̂ ∼ exp(α̂), where 1/α and 1/α̂

are the expected jump sizes respectively,

Lt = exp

(
Nt(ln(

α

α̂
) + ln(

η

λ
)) + (α− α̂)Zt + (λ− η)t

)
Finally, if we want the jump intensity remains the same, i.e. η = λ,

Lt = exp

(
Nt ln(

α

α̂
) + (α− α̂)Zt

)

125



Theorem 16. Let Xt = µt + Wt is a Brownian motion with drift µ, Mt =

max0<s<tXs, Yt = Mt −Xt and τ = inf{t > 0|Mt − Zt ≤ −b}

Pr(τµ <∞) =
α− (µ− µ′)

α
e−(µ−µ′)bEP̂

Q

(
e−Nτ ln(α

α̂
η
λ

)−(µ−µ′)Yτ1{τµ′ <∞}
)

where µ′ satisfies µ′2 < 2λ+ µ2

µ′ > µ− α

Under the measure P̂′ and Q, Xt is a Brownian Motion with drift µ′ and Zt =∑Nt
i=1 Ui is compound Poisson process, where Nt is a Poisson process with rate η

and the jump size Ui ∼ exp(α̂).

Proof. By using the martingales of Brownian motion At = eµWt−µ2 t2 and A′t =

eµ
′Wt−µ′2 t2 , and the compound Poisson martingale Lt = exp

(
Nt ln(α

α̂
) + (α− α̂)Zt

)
,

Pr(τµ <∞) =EP̂′
Q

(
Aτ
A′τLτ

1{τµ′ <∞}
)

=EP̂′
Q

(
e−(λ−η+µ2−µ′2

2
)τ+(µ−µ′)Wτ−Nτ ln(α

α̂
η
λ

)−(α−α̂)Zτ1{τµ′ <∞}
)

Set λ− η + µ2−µ′2
2

= 0,

Pr(τµ <∞) =EP̂′
Q

(
exp

(
(µ− µ′)Wτ −Nτ ln(

α

α̂

η

λ
)− (α− α̂)Zτ

)
1{τµ′ <∞}

)

=EP̂′
Q

(
exp

(
(µ− µ′)(Mτ − Yτ )−Nτ ln(

α

α̂

η

λ
)− (α− α̂)Zτ

)
1{τµ′ <∞}

)
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Set µ− µ′ − (α− α̂) = 0,

Pr(τµ <∞) =EP̂′
Q

(
exp

(
−(µ− µ′)(b+ Uτ )−Nτ ln(

α̂

α

η

λ
)− (µ− µ′)Yτ

)
1{τµ′ <∞}

)
=

α̂

α̂ + µ− µ′
e−(µ−µ′)bEP̂

Q

(
e−Nτ ln(α

α̂
η
λ

)−(µ−µ′)Yτ1{τµ′ <∞}
)

=
α− (µ− µ′)

α
e−(µ−µ′)bEP̂

Q

(
e−Nτ ln(α

α̂
η
λ

)−(µ−µ′)Yτ1{τµ′ <∞}
)

where µ′ satisfiesη = λ+ µ2

2
− µ′2

2
> 0

α̂ = α + µ′ − µ > 0
⇔

µ′2 < 2λ+ µ2

µ′ > µ− α

Further if µ′ ≤ 0, Pr(τµ
′
<∞) = 1, then

Pr(τµ <∞) =
α− (µ− µ′)

α
e−(µ−µ′)bEP̂′

Q

(
e−Nτ ln(α

α̂
η
λ

)−(µ−µ′)Yτ
)

On the other hand, if η/α̂ > λ/α and µ′ < µ, we have an upper bound for the

ruin probability

Pr(τµ <∞) ≤α− (µ− µ′)
α

e−(µ−µ′)b

Note that we have some flexibility to choose the new drift µ′. Intuitively, if we

can achieve a smaller drift for the Brownian motion µ′ < µ, and a larger ’drift’

for the compound Poisson process η/α̂ > λ/α, the ruin probability under the new

measure Pr(τµ
′
< ∞) will be higher. Therefore, more non-zero samples can be

obtained from the simulation to reduce the variance.
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For (λ, α, b) = (2, 1, 1) and simply take µ′ = 1
2
(µ−α+

√
2λ+ µ2) (mid-point

of the feasible range), 10000 samples are generated for every following µ.

Table 5.2: Importance Sampling by Poisson Martingale (10000 samples)
µ µ′ η α̂ p̄ var(p) bound N̄ p̄′

2.0000 1.9142 2.1679 0.9142 0.2669 0.0561 0.7077 18.2330 1.0000
2.5000 2.3508 2.3619 0.8508 0.1434 0.0300 0.5280 21.7218 1.0000
3.0000 2.8028 2.5722 0.8028 0.0903 0.0164 0.4114 26.0977 0.9997
3.5000 3.2656 2.7930 0.7656 0.0658 0.0104 0.3320 27.8509 0.9989
4.0000 3.7361 3.0209 0.7361 0.0506 0.0069 0.2755 33.6629 0.9977
4.5000 4.2122 3.2536 0.7122 0.0416 0.0049 0.2338 35.3116 0.9971
5.0000 4.6926 3.4898 0.6926 0.0340 0.0037 0.2021 39.1861 0.9940
5.5000 5.1762 3.7286 0.6762 0.0292 0.0027 0.1774 44.4506 0.9946
6.0000 5.6623 3.9693 0.6623 0.0253 0.0022 0.1577 44.7210 0.9925

Below are the notations in the table.

• µ′: drift under the new measure

• η: Poisson rate under the new measure

• α̂: Exponential parameter under the new measure

• p̄: Estimated ruin probability under the original measure

• var(p): Sample variance of the 10000 samples

• bound: the upper bound of the ruin probability under the original measure

• N̄ : Average iterations in 10000 samples

• p̄′: Estimated ruin probability under the new measure
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From the numerical results of both methods, we can see

• The jump rates and sizes increases drastically under the new measures.

• The drifts under new measures are not decreased too much compared to

the Poisson rates and the exponential parameters.

• The average iterations are smaller than the plain simulations. If the true

ruin probability is very small, the average iterations in the plain simulation

scheme is usually the maximum iterations allowed.

• The estimated ruin probabilities under the new measures are close to one.

The comparison between two methods are plotted in Figure 5.5. (p1, bound1)

are the estimated ruin probability and upper bound for the Poisson Martingale

method. (p2, bound2) are the estimated ruin probability and upper bound for

the exponential tilting method.

Figure 5.5: Probabilities and Bounds for Importance Sampling
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The ruin probabilities estimates are close to each other and smaller than both

upper bounds. The variance for the Poisson Martingale method (var(p1)) and

the variance for the exponential tilting method (var(p2)) are plotted in Figure

5.6.

Figure 5.6: Variance for Importance Sampling
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In the previous set up, the variance of the exponential tilting are smaller, and

also the average iterations. However, the method using Poisson martingale has

some flexibility since we can choose µ′. It is possible to outperform exponential

tilting. In Figure 5.7, we choose µ′ = (µ − α +
√

2λ+ µ2)/2.5 in the Poisson

Martingale method and calculate the empirical variance, var(p1) and the variance

for the exponential tilting method, var(p2), with larger original drifts. Note that

µ′ here is chosen for convenience, one can apply proper optimization.

Figure 5.7: Variance for Importance Sampling with Larger Drifts
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Chapter 6

Crossing Probabilities for the

Running Maximum of Brownian

Motion by a Brownian Motion

Barrier

6.1 Definition

The set up is similar to definition (3.1) and (5.2). In this chapter, we are going

to define another independent Brownian motion as the barrier

Bc,σ
t = ct+ σBt

where Bt is a standard Brownian motion independent ofWt, c and σ are constants.

The corresponding first hitting time of this barrier is defined as

τb = inf{t > 0|Mt −Bc,σ
t ≤ −b}

with b > 0. Therefore, the hitting level is below zero. If the hitting level is above

zero, the problem is reduced to the first hitting time of a Brownian motion (rather

than the running maximum of it). Therefore we focus the case when the hitting

level is below zero. There is no overshooting in this case.
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6.2 A Simulation Algorithm for the First Hit-

ting Time

The boundary crossing can only happen when the Brownian motion barrier

reaches the previous running maximum. Therefore, a natural simulation method

will be to simulate the first hitting time for the previous level of the running max-

imum by the Brownian motion barrier then update running maximum to check

if the boundary is crossed. Depending on the sign of the drift c, the first hitting

time of the Brownian motion barrier follows different distributions.

• if c > 0, the first hitting time for a fixed level b > 0 by Bc,σ
t is distributed

according to an inverse-Gaussian, i.e.

Tb = inf{t > 0|Bc,σ
t = b} ∼ IG(

b

c
,
b2

σ2
)

• if c = 0, the first hitting time follows a Lévy distribution, i.e.

Tb = inf{t > 0|B0,σ
t = b} ∼ IG(∞, b

2

σ2
)

L
= Lévy(

b2

σ2
)

• if c < 0, the probability is defective (see Borodin and Salminen [2002]), i.e.

Pr(Tb <∞) = e
2bc
σ2 < 1

Consider Tb = inf{t > 0|Bc,1
t = b},

Pr(Tb ∈ dt) =
b√

2πt3
e−

(b−ct)2
2t dt

is not a proper inverse-Gaussian distribution as c < 0. By completing the

square,

Pr(Tb ∈ dt) = e2cb b√
2πt3

e−
(b+ct)2

2t dt = Pr(Tb <∞)× b√
2πt3

e−
(b+ct)2

2t dt

Therefore,

Pr(Tb ∈ dt|Tb <∞) ∼ IG(−b
c
,
b2

σ2
)
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Figure 6.1 demonstrates the simulation algorithm for a positively drifted case.

The stopping time is τb = τ1 + τ2 + τ3.

M0

−b

M1

M2 M3

τ1 τ1 + τ2 τ1 + τ2 + τ3

−b+ ct+ σBt

t

Figure 6.1: An illustration of iterative simulation for Brownian motion barrier
crossing
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DenoteXµ
t = µt+Wt is a Brownian motion with drift µ andMµ

t = max0<s<tW
µ
s ,

the algorithm of simulation τµb = inf{t > 0|Mµ
t −B

c,σ
t ≤ −b} is below.

Algorithm 8 Simulation Method for the Brownian Motion Barrier

1: Initialize with b0 = Mµ
0 + b. For i ≥ 1, set bi = Mµ

i −M
µ
i−1

2: For c ≥ 0, generate τi = Tbi according to the above distributions

3: For c < 0, generate U ∼ U(0, 1). If U > e
2bic

σ2 , set τµb = ∞ and stop.
Otherwise, generate τi = Tbi with the distribution Pr(Tbi ∈ dt|Tbi < ∞)
above

4: Generate Xµ
i = Xµ

i−1 +µτi +N(0, 1), where N(0, 1) is a standard normal r.v.

5: Generate mµ
i =

Xµ
i +Xµ

i−1+
√

(Xµ
i −X

µ
i−1)2−2τiln(V )

2
, where V ∼ U(0, 1)

6: Set Mµ
i = max(mµ

i ,M
µ
i−1)

7: Repeat previous steps until Mµ
i = Mµ

i−1, return (τµb , Mµ
τb

, Xµ
τb

)=(
∑i

k=1 τk,
Mµ

i , Xµ
i )

10000 τ ∗b are generated with (b, c) = (1,1) for the standard Brownian motion

case (µ = 0). The histograms are plotted in figure (6.2).

Figure 6.2: Histogram of simulated τb with (b, c) = (1, 1)

This is a thin-tailed distribution as expected, since µ < c.
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Appdx A

.1 An Unsolved Integral Equation for Compound

Poisson Barrier

Recall the martingale for (Mt, Yt, Zt) in (5.1),

f ·g(t,Mt, Yt, Zt) = e−βte−(γ−νβ)Mte−νβ(Mt−Zt)h(Yt)

We are interested in the stopping time

τ = inf{t > 0|Mt − Zt ≤ −b}

Denote the overshoot by Uτ . By the memoryless property of the exponential

distribution, Uτ ∼ exp(α) and is independent of the process Mτ−Zτ . By applying

the optional stopping theorem,

1 =E
(

e−βτe(νβ−γ)Mτ eνβ(b+Uτ )h(Yτ )
)

=E
(

e−βτe(νβ−γ)Mτh(Yτ )
) α

α− νβ
eνβb

Rearrange the deterministic terms,

E
(

e−βτe(νβ−γ)Mτh(Yτ )
)

=

(
1− νβ

α

)
e−νβb

=
λ

ω2

2
+ λ+ β

exp

−α(1− λ
ω2

2
+ λ+ β

)
b


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If γ = νβ, we have

E

e−βτ

cosωYτ +
α

ω

(
1− λ

ω2

2
+ λ+ β

)
sinωYτ




=
λ

ω2

2
+ λ+ β

exp

−α(1− λ
ω2

2
+ λ+ β

)
b


Therefore,

E
(

e−βτe(νβ−γ)Mτh(Yτ )
)

=

(
1− νβ

α

)
e−νβb

=
λ

ω2

2
+ λ+ β

exp

−α(1− λ
ω2

2
+ λ+ β

)
b


If γ = νβ, we have

E

e−βτ

cosωYτ +
α

ω

(
1− λ

ω2

2
+ λ+ β

)
sinωYτ




=
λ

ω2

2
+ λ+ β

exp

−α(1− λ
ω2

2
+ λ+ β

)
b


LHS=∫ ∞

0

∫ ∞
0

e−βtp(t, y)

(
cosωy +

α

ω

(
1− λ

ω2/2 + λ+ β

)
sinωy

)
dtdy

=

∫ ∞
0

p̂(β, y)

(
cosωy +

α

ω

(
1− λ

ω2/2 + λ+ β

)
sinωy

)
dy
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Consider the last part,∫ ∞
0

p̂(β, y)
α

ω

(
λ

ω2/2 + λ+ β

)
sinωydy

=−
∫ ∞

0

αλ

ω2/2 + λ+ β

sinωy

ω
d

(∫ ∞
y

p̂(u)du

)

=−

[
α

ω

(
λ

ω2/2 + λ+ β

)
sinωy

∫ ∞
y

p̂(u)du

]∞
0

+

∫ ∞
0

∫ ∞
y

p̂(u)du

(
λα

ω2/2 + λ+ β

)
cosωydy

=

∫ ∞
0

∫ ∞
y

p̂(u)du

(
λα

ω2/2 + λ+ β

)
cosωydy

Let

P̂ (y) =

∫ ∞
y

∫ ∞
0

e−βtp(t, u)dtdu =

∫ ∞
y

p̂(u)du

By the Faltung Theorem,∫ ∞
0

∫ ∞
y

p̂(u)du

(
λα

ω2/2 + λ+ β

)
cosωydy

=
2αλ√

2
√
λ+ β

∫ ∞
0

e−
√

2
√
λ+βy cosωydy ×

∫ ∞
0

P̂ (y) cosωydy

=
αλ√

2
√
λ+ β

∫ ∞
0

∫ ∞
0

P̂ (t)
{

e−
√

2
√
λ+β(t+y) + e−

√
2
√
λ+β|t−y|

}
dt cosωydy

Therefore, LHS=

∫ ∞
0

∫ ∞
0

e−βtp(t, y)

(
cosωy +

α

ω

(
1− λ

ω2/2 + λ+ β

)
sinωy

)
dtdy

=

∫ ∞
0

(
p̂(y) + α

∫ ∞
y

p̂(u)du

+
αλ√

2
√
λ+ β

∫ ∞
0

P̂ (t)
{

e−
√

2
√
λ+β(t+y) + e−

√
2
√
λ+β|t−y|

}
dt

)
cosωydy

=

∫ ∞
0

(
−∂P̂ (y)

∂y
+ αP̂ (y) +

αλ√
2
√
λ+ β

∫ ∞
0

P̂ (t)
{

e−
√

2
√
λ+β(t+y) + e−

√
2
√
λ+β|t−y|

}
dt

)
cosωydy
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Laplace Transform the LHS,∫ ∞
0

P̂ (t)
{

e−
√

2
√
λ+β(t+y) + e−

√
2
√
λ+β|t−y|

}
dt

=

∫ ∞
0

P̂ (t)e−
√

2
√
λ+β(t+y)dt+

∫ y

0

P̂ (t)e−
√

2
√
λ+β(y−t)dt+

∫ ∞
y

P̂ (t)e−
√

2
√
λ+β(t−y)dt

The first term,

Ly

{∫ ∞
0

P̂ (t)e−
√

2
√
λ+β(t+y)dt

}
(η) =

∫∞
0
P̂ (t)e−

√
2
√
λ+βtdt

η +
√

2
√
λ+ β

The second term,

Ly

{∫ y

0

P̂ (t)e−
√

2
√
λ+β(y−t)dt

}
(η)

=

∫ ∞
0

e−ηy
∫ y

0

P̂ (t)e−
√

2
√
λ+β(y−t)dtdy

=

∫ ∞
0

e
√

2
√
λ+βtP̂ (t)

∫ ∞
t

e−(
√

2
√
λ+β+η)ydydt

=

∫ ∞
0

e
√

2
√
λ+βtP̂ (t)

e−(
√

2
√
λ+β+η)t

√
2
√
λ+ β + η

dt

=

∫∞
0

e−ηtP̂ (t)dt
√

2
√
λ+ β + η

The third term,

Ly

{∫ ∞
y

P̂ (t)e−
√

2
√
λ+β(t−y)dt

}
(η)

=

∫ ∞
0

e−ηy
∫ ∞
y

P̂ (t)e−
√

2
√
λ+β(t−y)dtdy

=

∫ ∞
0

e−
√

2
√
λ+βtP̂ (t)

∫ t

0

e−(η−
√

2
√
λ+β)ydydt

=

∫∞
0
P̂ (t)(e−

√
2
√
λ+βt − e−ηt)dt

η −
√

2
√
λ+ β
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Finally,

Ly

{
−∂P̂ (y)

∂y
+ αP̂ (y) +

αλ√
2
√
λ+ β

∫ ∞
0

P̂ (t)
{

e−
√

2
√
λ+β(t+y) + e−

√
2
√
λ+β|t−y|

}
dt

}
(η)

=− η
∫ ∞

0

e−ηyP̂ (y)dy + P̂ (0) + α

∫ ∞
0

e−ηyP̂ (y)dy

+
αλ√

2
√
λ+ β

{
2η

η2 − 2(λ+ β)

∫ ∞
0

P̂ (t)e−
√

2
√
λ+βtdt+

2
√

2
√
λ+ β

2(λ+ β)− η2

∫ ∞
0

P̂ (t)e−ηtdt

}

=P̂ (0) +

(
α− η +

2αλ

2(λ+ β)− η2

)∫ ∞
0

e−ηyP̂ (y)dy

+
αλ√

2
√
λ+ β

2η

η2 − 2(λ+ β)

∫ ∞
0

P̂ (t)e−
√

2
√
λ+βtdt

Consider the RHS,

λ
ω2

2
+ λ+ β

exp

−α(1− λ
ω2

2
+ λ+ β

)
b

 = e−λb
∞∑
n=0

αnbnλn+1

n!(ω
2

2
+ λ+ β)n+1

Inverse Cosine Transform,

2

π

∫ ∞
0

e−λb
∞∑
n=0

αnbnλn+1

n!(ω
2

2
+ λ+ β)n+1

cos(ωy)dω

=
2

π
e−λb

∞∑
n=0

αnbn(2λ)n+1

n!

√
π

(2
√

2
√
λ+ β)n+ 1

2

yn+ 1
2Kn+ 1

2
(
√

2
√
λ+ βy)

n!

where K is the modified Bessel function of the second kind.
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Laplace Transform the RHS,

Ly

{
2

π

∫ ∞
0

e−λb
∞∑
n=0

αnbnλn+1

n!(ω
2

2
+ λ+ β)n+1

cos(ωy)dω

}
(η)

=
2

π
e−λb

∞∑
n=0

αnbn(2λ)n+1

n!

√
π

(2
√

2
√
λ+ β)n+ 1

2n!
Ly

{
yn+ 1

2Kn+ 1
2
(
√

2
√
λ+ βy)

}
(η)

=
2

π
e−λb

∞∑
n=0

αnbn(2λ)n+1

n!

√
π

(2
√

2
√
λ+ β)n+ 1

2n!

√
π

√
2(
√

2
√
λ+ β)

1
2

Γ(2n+ 2)

(η2 − 2(λ+ β))
1
2

(n+1)

× P−(n+1)
n

(
η√

2
√
λ+ β

)

=2e−λb
∞∑
n=0

αnbnλn+1

n!n!(
√

2
√
λ+ β)n+1

(2n+ 1)!

(η2 − 2(λ+ β))
1
2

(n+1)
P−(n+1)
n

(
η√

2
√
λ+ β

)

where P is the Legendre function.

The equation becomes

P̂ (0) +

(
α− η +

2αλ

2(λ+ β)− η2

)∫ ∞
0

e−ηyP̂ (y)dy

+
αλ√

2
√
λ+ β

2η

η2 − 2(λ+ β)

∫ ∞
0

P̂ (t)e−
√

2
√
λ+βtdt

=2e−λb
∞∑
n=0

αnbnλn+1

n!n!(
√

2
√
λ+ β)n+1

(2n+ 1)!

(η2 − 2(λ+ β))
1
2

(n+1)
P−(n+1)
n

(
η√

2
√
λ+ β

)

If b = 0, inverse cosine transform RHS becomes

2

π

∫ ∞
0

λ
ω2

2
+ λ+ β

cos(ωy)dω =
2λ√

2
√
λ+ β

e−
√

2
√
λ+βy

Then the Laplace transform

Ly

{
2

π

∫ ∞
0

λ
ω2

2
+ λ+ β

cos(ωy)dω

}
(η) =

2λ√
2
√
λ+ β

(
1

η +
√

2
√
λ+ β

)
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The equation becomes

P̂ (0) +

(
α− η +

2αλ

2(λ+ β)− η2

)∫ ∞
0

e−ηyP̂ (y)dy

+
αλ√

2
√
λ+ β

(
2η

η2 − 2(λ+ β)

)∫ ∞
0

P̂ (t)e−
√

2
√
λ+βtdt

=
2λ√

2
√
λ+ β

(
1

η +
√

2
√
λ+ β

)

Rearrange LHS, let θ =
√

2
√
λ+ β,(

α− η +
2αλ

2(λ+ β)− η2

)∫ ∞
0

e−ηyP̂ (y)dy

+
αλ√

2
√
λ+ β

(
2η

η2 − 2(λ+ β)

)∫ ∞
0

P̂ (t)e−
√

2
√
λ+βtdt

=
θ(αη2 − αθ2 + ηθ2 − η3 − 2αλ)

∫∞
0

e−ηyP̂ (y)dy + 2ηαλ
∫∞

0
e−θtP̂ (t)dt

θ(η2 − θ2)

η → θ

→
θ
∫∞

0
(2αη − 3η2 + θ2 − y(αη2 − αθ2 + ηθ2 − η3 − 2αλ))e−ηyP̂ (y)dy + 2αλ

∫∞
0

e−θtP̂ (t)dt

θ(2η − θ2)

→
2αλ

∫∞
0
ye−θyP̂ (y)dy + 2(αθ − θ2 + αλ)

∫∞
0

e−θtP̂ (t)dt

θ2(2− θ)

The equation further becomes

P̂ (0) +
2αλ

∫∞
0
ye−θyP̂ (y)dy + 2(αθ − θ2 + αλ)

∫∞
0

e−θtP̂ (t)dt

θ2(2− θ)
=

λ

θ2
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